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A B S T R A C T

Dynamical systems (DS) theory provides a rich framework to model dynamic
processes across science and engineering. However, traditional scientific model
building is often laborious and struggles with the complexities of real-world DS.
Advances in machine learning (ML) have led to the development of automated,
data-driven techniques for approximating governing equations from time series,
called Dynamical Systems Reconstruction (DSR). Yet, these approaches often
struggle with real-world systems characterized by chaos, noise, non-Gaussian
and multimodal observations, or multistability. The black-box nature of many
ML models further complicates their analysis even if they describe the data well.
This thesis introduces novel methods for inferring interpretable DSR models
from challenging empirical time series. This includes several recurrent neural
network models and training algorithms, tailored to extracting low-dimensional
and tractable DSR models, and a flexible framework for DSR from multimodal
and non-Gaussian observations. It further introduces a hierarchical inference
framework, an analysis pipeline for a class of piecewise linear DSR models, and
a novel pruning approach that yields interpretable network topologies. Exten-
sive comparisons to state-of-the-art DSR algorithms illustrate the significant ad-
vancements made by the proposed methods, promising applications in physics,
neuroscience, and beyond.

Z U S A M M E N FA S S U N G

Die Theorie dynamischer Systeme (DS) bietet einen reichen Rahmen für die Mo-
dellierung dynamischer Prozesse in Wissenschaft und Technik. Die traditionelle
wissenschaftliche Modellbildung ist jedoch oft mühsam und hat Schwierigkei-
ten, die Komplexität realer DS abzubilden. Fortschritte im maschinellen Lernen
(ML) haben zur Entwicklung automatisierter, datengesteuerter Verfahren für
die Approximation zugrundeliegender Gleichungen aus Zeitreihen geführt, die
als dynamische Systemrekonstruktion (DSR) bezeichnet werden. Diese Ansätze
haben jedoch oft Probleme mit realen Daten, die durch Chaos, Rauschen, nicht-
gaußsche und multimodale Beobachtungen oder Multistabilität gekennzeichnet
sind. Die Black-Box-Natur vieler ML-Modelle macht ihre Analyse schwierig,
selbst wenn sie die Daten gut beschreiben. In dieser Arbeit werden neue Me-
thoden zur Ableitung interpretierbarer DSR-Modelle aus empirischen Zeitrei-
hen vorgestellt. Dazu gehören mehrere rekurrente neuronale Netzwerkmodelle
und Trainingsalgorithmen, die auf die Extraktion niedrigdimensionaler und in-
terpretierbarer DSR-Modelle zugeschnitten sind, sowie ein flexibler Ansatz für
DSR aus multimodalen und nicht-gaußschen Beobachtungen. Darüber hinaus
werden ein hierarchischer Inferenzansatz, eine Analysemethode für eine Klasse
von stückweise linearen DSR-Modellen und ein neuartiger Pruning-Ansatz vor-
gestellt, der interpretierbare Netzwerktopologien liefert. Ausführliche Verglei-
che mit führenden DSR-Algorithmen veranschaulichen die bedeutenden Fort-
schritte der vorgestellten Methoden, die vielversprechende Anwendungen in
Physik, Neurowissenschaften und darüber hinaus bieten.
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Part I

I N T R O D U C T I O N
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1
S U M M A RY

The discovery of governing equations from empirical data has underpinned sci-
entific progress for centuries. Dynamical systems (DS) theory provides a pow-
erful mathematical framework to describe dynamical processes and their prop-
erties in the language of differential equations and discrete maps. DS models
are prevalent in many scientific areas, from physics, neuroscience, and climate
science to finance and engineering. A good DS model that reflects the under-
lying dynamical processes well can give rise to insights about the system it
describes, from capturing its sensitivity to perturbation, its bifurcations, or, in
the case of neuroscience, the computational mechanism implemented by the
neural dynamics.

However, in many scientific contexts, we often begin with noisy time series
observations without a clear understanding of the DS underlying them. Es-
pecially for complex DS, constructing models from the ground up may not
fully capture the dynamics’ complexity, may introduce the scientist’s biases into
the model, and can be very time-consuming. Consequently, learning-based ap-
proaches have gained popularity for the automated approximation of governing
equations from time series observations, known as Dynamical Systems Recon-
struction (DSR). With the recent success of Machine Learning (ML) and Artifi-
cial Intelligence (AI) models in various scientific and applied areas, most lead-
ing DSR approaches are based on ML techniques. Although the ultimate goal
of DSR algorithms is to approximate DS models from experimental datasets,
the focus in the field has predominantly been on reconstructing benchmark sys-
tems derived from synthetic and often relatively simple models. However, these
benchmarks frequently fail to address several practical challenges inherent in
real-world data:

• the ubiquity of chaos in real-world systems

• noisy and partial observations

• non-Gaussian measurements that significantly coarse-grain or alter the
representation of the underlying DS, such as discrete ordinal scales in
psychology, count data in neuroscience, or non-Gaussian Levy processes
in turbulent fluid flows

• multiple jointly observed data channels, combining Gaussian and non-
Gaussian observations

• the presence of multiple dynamical regimes in the same underlying sys-
tem (multistability)

• short experimental time series, observed across multiple related systems
or subjects

Automated regression-based approaches following in the footsteps of classi-
cal scientific model building largely fail on real-world data due to these chal-
lenges. Meanwhile, ML models based on universal approximators are often

3
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4 summary

black-box in nature, making it challenging to analyze models even if they have
been successfully inferred.

This thesis’s primary contributions, detailed further in Chapter 1.1, address
all these challenges, introducing models and training algorithms equipped to
extract interpretable and tractable DSR models from challenging empirical time
series data.

Chapter 2 provides an overview of DS theory and DSR methods, with a par-
ticular emphasis on ML-based approaches. It also explores the current frontiers
in DSR, including multimodality, out-of-domain generalization, and transfer
learning, and outlines applications of DSR in physics, neuroscience, and psychi-
atry.

Chapter 3 presents the DSR models and training algorithms used through-
out the thesis. Sect. 3.1 introduces two recurrent neural network (RNN) models,
the dendritic and shallow piecewise linear (PL) RNN, that facilitate DSR in
low-dimensional latent spaces while maintaining the mathematical tractability
of the standard PLRNN. Chapter 3.2 presents training algorithms based on se-
quential variational autoencoders (SVAEs) and sparse and generalized teacher
forcing (STF/GTF), tailored for DSR from time series observations of chaotic
DS. The multimodal teacher forcing (MTF) technique combines all methods
into a comprehensive probabilistic DSR framework for inferring DSR models
from discrete or multimodal time series. The hierarchical inference framework
(Sect. 3.3) enables DSR from multiple time series, such as measurements from
different but related physical systems or multiple subjects in a clinical context.
It enables transfer learning by combining group-level and individual-level in-
formation while extracting interpretable low-dimensional substructure.

Chapter 4 demonstrates DSR on a wide range of benchmark and empirical
time series and extensive comparisons to many other state-of-the-art (SOTA)
DSR algorithms. Sect. 4.1 first introduces a range of performance metrics for
assessing DSR quality, based on invariant geometric, temporal, and topological
properties of reconstructed systems, including modality-specific metrics. Sect.
4.1.3 introduces a generalization error for DSR, which is used to define the
concept of the learnability of an out-of-domain generalization problem in DSR.
Sect. 4.2.1 showcases DSR using STF and GTF from noisy, short, and partially
observed time series, and from several experimental time series (Sect. 4.2.2), on
which other SOTA approaches fail. Sect. 4.3.1 provides reconstructions from
multimodal benchmarks using MTF, while Sect. 4.3.2 showcases DSR solely
from discrete symbolic and ordinal encodings of chaotic DS. Sect. 4.3.3 finally
showcases reconstructions from multimodal experimental time series, illustrat-
ing the benefits of multimodal data integration in empirical settings. Sect. 4.4
presents results using the hierarchization framework, extracting interpretable
low-dimensional structure from benchmark systems and learning a joint DSR
model across experimental time series measured from different subjects. Sect.
4.5 illustrates results interpreting inferred PLRNN models with respect to the
linear subregions they inhabit, extracting low-dimensional sparse graph repre-
sentations from several benchmark systems. Sect. 4.6 summarizes key results us-
ing a novel pruning approach tailored to DSR, removing weights based on their
influence on attractor agreement, which enables reconstructions with sparser
models and the extraction of interpretable network topologies beneficial for
DSR. Chapter 5 presents results using MTF on short, ordinal experimental time
series within a psychological trust game paradigm, creating ‘digital twins’ of
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summary 5

complex human social interactions. It illustrates several ways to interpret in-
ferred models, leveraging their generative dynamics for novel scientific insight.
Finally, Chapter 6 discusses limitations and future research directions.

The methods developed in this thesis, alongside the experimental results,
mark a significant advancement in the field of DSR. This is underscored by
extensive comparisons to other existing SOTA algorithms for DSR on a range of
simulated and real-world datasets both in the unimodal and multimodal case
(Sect. A.2), and quantified by a range of performance metrics specifically tai-
lored to DSR (Sect. 4.1). The models are general and allow for a wide range
of applications in all disciplines where time series data are measured, from
physics to neuroscience and psychiatry, offering promise for future scientific
research and clinical practice.
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1.1 main contributions

This section outlines the key contributions from the papers and preprints au-
thored during my PhD. The first four papers summarized in the following
(Brenner et al. [53–55] and Hess et al. [152]) form the core of this thesis. Concepts
and results from Göring et al. [139] and Hemmer et al. [149] are discussed more
briefly in various parts of this thesis. My own publications are indicated with
colored brackets for easy reference. The linear subregions analysis approach is
in preparation for submission to NeurIPS 2024 as part of Brenner, Hemmer, and
Durstewitz [52]. The hierarchisation approach has not yet been published but
will be transformed into a publication in the upcoming months.

For figures and tables derived from or taken from these publications, I have
cited the respective papers. All figures displayed in this thesis, including those
taken from or based on publications, were either solely or substantially created
by me. For all methods and results from those papers, I have included only
those to which I have made significant contributions, with the specific contribu-
tions for each paper outlined below.

1.1.1 Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems

problem Current ML models for DSR are often mathematically complex
and intractable and require high-dimensional latent spaces to properly recon-
struct DS from observed time series data. Other types of models require prior
knowledge about the true system’s functional form or are not dynamically uni-
versal.

solution Expanding on the framework of piecewise linear (PL) RNNs [95],
in Brenner et al. [54] we introduce the dendritic PLRNN (dendPLRNN), a math-
ematically tractable and more expressive variant of the PLRNN, inspired by the
principles of dendritic computation. This approach retains several of the bene-
fits of the PLRNN, such as analytical access to system characteristics like fixed
points and k-cycles, and it allows for the conversion into a continuous time
model, simplifying dynamical system (DS) analysis post-training. At the same
time, it allows reconstructions in significantly lower-dimensional state spaces
by making the computations of the individual units of the PLRNN more ex-
pressive. We introduce two different training frameworks for the dendPLRNN,
one based on sequential variational autoencoders (SVAEs), which integrate the
dendPLRNN into a fully probabilistic training paradigm, and one based on
backpropagation through time (BPTT), combined with sparse teacher forcing
(STF), called BPTT-TF. An additional contribution of this study lies in assem-
bling a collection of evaluation methods, which include short-term prediction
errors and long-term invariant statistics of the reconstructed systems. These
methods were used to benchmark a range of state-of-the-art (SOTA) DS al-
gorithms. Training the dendPLRNN with BPTT-TF outperformed all other ap-
proaches, successfully reconstructing even challenging experimental datasets.

my contribution As first author, I was involved in most aspects of the
paper. Together with Leonard Bereska, I was mainly responsible for structur-
ing the paper, searching for comparison methods and performance measures,
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1.1 main contributions 7

and compiling benchmark systems and experimental datasets. On the empirical
side, I evaluated the results using the SVAE approach and several comparison
methods (SINDy, Neural ODEs), while results with BPTT-TF and other com-
parisons were primarily contributed by Florian Hess. The formal proofs were
mainly provided by Zahra Monfared and Jonas Mikhaeil.

1.1.2 Generalized Teacher Forcing for Learning Chaotic Dynamics

problem Training RNN models on chaotic dynamics is challenging because
exponential trajectory divergence in chaotic systems is intimately tied to gra-
dient divergence in BPTT-based training. On the other hand, long training se-
quences are beneficial for capturing the long-term behavior of the underlying
system, particularly when training on experimental data.

solution After the success of BPTT-TF-based training in Brenner et al. [54],
in Hess et al. [152] we further developed the idea of training RNNs with BPTT-
TF into the generalized teacher forcing (GTF) framework. We show that this
training method can ensure provably bounded gradients throughout training
on chaotic systems. We propose an adaptive training framework where opti-
mal forcing strengths are estimated and adjusted during training to optimally
balance gradients. We further introduce a novel variant of the PLRNN, the ‘shal-
low PLRNN’ (shPLRNN), which, just as the dendPLRNN, retains the original
PLRNN’s mathematical tractability, while further decreasing the number of la-
tent dimensions required for successful reconstructions, in many cases even
achieving reconstructions in the observation dimension of the system. We show
that the shPLRNN trained with GTF particularly excels at DSR from experimen-
tal time series, outperforming many other SOTA approaches in the field which
overwhelmingly fail on real-world data.

my contribution I was involved in developing the shPLRNN architecture,
in conceptual discussions surrounding GTF and the adaptive annealing proto-
col, and in writing the paper. On the empirical side, I evaluated most of the
comparison methods, including SINDy, LEM, Neural ODEs, ODE-RNN, and
Latent ODE.

1.1.3 Integrating Multimodal Data for Joint Generative Modeling of Complex Dy-
namics

problem Most DS are empirically accessed via measurements. In many prac-
tical settings, these measurements can be discrete, such as survey data in psy-
chology, or event counts in climate science, or only represent partial observa-
tions of the underlying system. Often, several different modalities are observed
simultaneously, such as behavioral data and neural recordings in neuroscience,
and often feature multimodal cross-modal links. While multimodality is by now
increasingly popular in AI as a whole, in the field of DSR, efficient training al-
gorithms to address non-Gaussian measurements and multimodality are essen-
tially lacking.
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solution In Brenner et al. [53], we propose a general training framework for
DSR from multimodal and non-Gaussian data called Multimodal Teacher Forc-
ing (MTF). This approach integrates TF-based training into a fully probabilistic
framework capable of DSR from any combination of jointly observed time se-
ries, even when these follow different distributional assumptions. We demon-
strate that the MTF approach significantly surpasses all other tested methods,
including a multimodal sequential variational autoencoder [214], across a range
of simulated and empirical benchmarks. We showcase that DSR remains fea-
sible even in the presence of heavy distortion by observation noise through
multimodal data integration. We illustrate that the MTF framework naturally
handles missing observations, and learns temporal delay embeddings automat-
ically from data when an underlying DS is only partially observed. We also
show for the first time in the literature that DSR from a purely categorical (sym-
bolic) representation of chaotic attractors is achievable. In addition, we compile
a range of modality-specific and general performance metrics, introducing for
instance a measure that compares reconstructed attractor geometry in cases in
which continuous observations of the underlying system are lacking. Lastly,
we illustrate the advantages of multimodal data integration through analysis
of two experimental datasets: one incorporating functional magnetic resonance
imaging (fMRI) and behavioral data, and another combining spike data from
the rat hippocampus with simultaneously observed position data. These results
reveal interesting cross-modal links in the reconstructed DSR models that the
MTF approach can leverage.

my contribution The MTF approach was developed primarily by me with
some conceptual discussions with Florian Hess. The implementation of the ap-
proach and all empirical evaluations, including the compilation and evaluation
of all comparison methods, benchmark datasets, and empirical datasets, were
carried out by me.

1.1.4 Creating Digital Twins of Social Interaction Partners through Deep Dynamical
Systems Learning

problem Traditional methods of studying social interactions, such as social
exchange games in controlled environments, lead to complex and multi-faceted
behavioral outcomes. One key challenge in modeling these lies in disentangling
the computational mechanisms underlying these interactions and taking into
account individual differences. Previous modeling approaches, such as those
based on Reinforcement Learning (RL), have been theory-driven and hand-
crafted, potentially missing out on the true generative mechanisms due to their
reliance on the model builder’s prior knowledge.

solution In Brenner et al. [55], we explore purely data-driven models, specif-
ically dendPLRNNs trained with the MTF framework, as a novel approach to
learning the generative computational mechanisms underlying social interac-
tions. We demonstrate that these models can accurately predict out-of-sample
behavior and replicate behavioral group statistics. We further find that the in-
ferred state spaces of the RNNs effectively encode investment decisions and
their associated uncertainty, and distinctly encoded external cues like facial
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1.1 main contributions 9

identity and emotional expressions. We also used trained models to simulate
completely novel interactions, leveraging the generative nature of the algorithm.
Here we discovered bifurcations between exploratory and stable investment be-
havior based on external cues, and interpretable clusters in the interaction styles
across subjects when paired with novel trustees. Our findings demonstrate the
capability of data-driven RNN models to decode and predict complex social in-
teraction patterns, opening the door to applications in psychology and beyond.

my contribution All analyses discussed in Chapter 5 were performed by
me. The conceptual discussions and writing of the paper were carried out jointly
with Georgia Koppe.

1.1.5 Out-of-Domain Generalization in Dynamical Systems Reconstruction

problem While the field of DSR has been increasingly successful in extract-
ing dynamics models from data that share the same long-term statistics as the
true underlying system, a general framework for studying out-of-domain gen-
eralization in DSR is still lacking. For instance, while many real-world systems,
such as the brain or the climate, are believed to be multistable, the challenge of
learning multistable DS is essentially unstudied in the literature.

solution In Göring et al. [139], we developed a formal framework that ad-
dresses generalization in DSR, highlighting the unique aspects of out-of-domain
generalization (OODG) in DSR compared to other areas of ML. We demonstrate
that there are close ties between OODG and multistability, and introduce con-
cepts derived from topology and ergodic theory to define topological and sta-
tistical generalization errors, which are shown to be sensitive to multistability.
Building on this understanding of generalization, we introduce the learnability
of an OODG problem in DSR. We formally prove that a class of algorithms that
create a strong prior by explicitly providing a function class for the underlying
DS and are trained via linear parameter estimation can successfully general-
ize. We show that ML techniques without a similarly strong prior generally fail
to learn a DSR model capable of effective generalization. We also empirically
validate this by assessing several major classes of DSR algorithms, identifying
where and why they fall short in generalizing across the entire phase space for
several multistable benchmark systems. Our work presents the first comprehen-
sive mathematical treatment of OODG in DSR, offering deeper insights into the
core challenges of OODG and potential strategies to address them.

my contribution I developed the conceptual outline of the paper jointly
with Niclas Göring, particularly concerning the general framework for OODG
in DSR and the learnability distribution (Sect. 2.5), and the framing of the ex-
perimental section with both Niclas Göring and Florian Hess. I also performed
an extensive literature search, including the classification of benchmark systems
provided in Table 1. Additionally, I performed all empirical analyses based on
symbolic regression using SINDy (see Appx. A.2.1).
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1.1.6 Optimal Network Topologies for Dynamical Systems Reconstruction

problem Small and parsimonious models with a small parameter count are
often desirable in interpreting trained ML models. Pruning procedures that it-
eratively prune parameters based on their magnitude after starting with highly
overparameterized networks have been particularly successful in recent years.
In the context of feedforward NNs and tasks like image classification, they
have uncovered ‘lottery tickets’ of subnetworks that are particularly effective at
solving a given task with much fewer parameters. However, magnitude-based
pruning approaches commonly used for other ML tasks fail when applied to
DSR.

solution In Hemmer et al. [149] we introduce a new pruning procedure
called ‘geometric pruning’ tailored for pruning of DSR models. This approach
contrasts with traditional magnitude-based pruning by focusing on removing
weights that have a low contribution to the reconstructed attractor’s geometrical
structure and hence is sensitive to how changes in the parameter affect the
dynamics of the reconstructed system. This method can drastically reduce the
parameter load of models without significantly affecting the quality of DSR,
and results in sparse networks with a particular network topology composed
of hubs and featuring small-world substructure. This resulting topology, rather
than the magnitude of weights of the initialization, is crucial for improving
DSR using the resulting networks. Inspired by this result, we reverse-engineer
an algorithm that generates such topologies, which can be used as a prior for
initializing new DSR models. Compared with other well-studied topologies like
small-world or scale-free networks, this approach leads to faster convergence of
trained models and highly sparse and interpretable models.

my contribution My main contributions included conceptual discussions,
contributions to the related work, especially on network topology in machine
learning, and the writing and creation of figures for the paper (e.g. Fig. 39).
The idea of disentangling network topology from the specific random network
weights was developed jointly with Christoph Hemmer. Additionally, I tested
other pruning procedures, such as pruning based on the Lyapunov spectrum,
and applied these techniques to other network architectures, such as the sh-
PLRNN.

1.1.7 Hierarchical Inference Framework

problem In experimental settings, we often record short time series across
multiple subjects. While individual time series are expected to share characteris-
tics with the group, facilitating transfer learning across subjects, the differences
between subjects necessitate subject-specific fine-tuning of models. An optimal
inference procedure should integrate data from different subjects, while also
retaining individual differences and identifying latent interpretable structures
encoding these individual differences.

solution Sect. 3.3 introduces a general and flexible inference framework
for hierarchization and transfer learning in DSR. In this context, parameter hi-
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erarchization involves varying levels of parameter inference, where the upper
hierarchy parameters are inferred from time series data derived from multiple
subjects, and the lower hierarchy from individual subjects’ data. Specifically,
we introduce a low-dimensional, subject-specific parameter vector designed to
capture all relevant subject-specific differences. This vector is projected onto the
parameters of a DSR model through projection matrices jointly trained across
all subjects. After training, the extracted low-dimensional feature vector can
be further analyzed, and related to ground-truth parameters in benchmark DS,
or psychologically or clinically relevant differences between subjects for experi-
mental time series.

my contribution All results and analyses displayed in Sect. 4.4 were im-
plemented and performed by me. The extraction of low-dimensional parameter
vectors from the Lorenz-63 system was first tested jointly with Elias Weber.

1.1.8 Analyzing Linear Subregions of Inferred RNNs

problem DSR algorithms often employ universal approximators such as
RNNs to model DS. Although these models can represent any DS, they are
typically difficult to analyze, and the methods through which they approxi-
mate functions are not well understood. Specifically, piecewise linear RNNs
(PLRNNs) use a network architecture that divides the RNN’s state space into
subregions with locally linear dynamics, representing nonlinear DS through
transitions between these linear subregions. Despite a longstanding interest in
using more analytically tractable linear models to capture complex nonlinear
dynamics, the exact mechanisms by which PLRNNs achieve this are still not
well understood.

solution Sect. 4.5 introduces a pipeline for analyzing trained PLRNN mod-
els in terms of the linear sub-regions reconstructed systems inhabit, and presents
results on five benchmark systems. Although the number of available sub-
regions increases exponentially with larger PLRNN models, reconstructed sys-
tems tend to occupy only a limited subset of these. Within this subset, the
dynamics of the system are primarily implemented in an even smaller group
of sub-regions that frequently transition between each other. The transitions
between different linear subregions in this dominant subgroup can be repre-
sented as sparse graphs, exhibiting graph-theoretic properties such as small-
world structures. These properties reflect the nature of the reconstructed DS,
distinguishing, for example, between chaotic behavior and limit cycles.

my contribution All results and analyses discussed in Sect. 4.5 were per-
formed by me.
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2
I N T R O D U C T I O N

All models are wrong, but some are useful.

— George Box

2.1 introduction

At least since the advent of Greek philosophy, humans have recognized that the
world is in constant flux. Heraclitus famously stated that ’panta rhei’: every-
thing flows, while in Buddhism, the concept of ‘anicca’ (impermanence) simi-
larly enshrines the flowing nature of reality. For an equally long time, humans
have tried to understand the nature of this flux. Millennia of inquiry have led
to the development of a rich theoretical framework for describing the flow-
ing world around us. Johannes Kepler spent four years analyzing the plane-
tary orbits observed by Tycho Brahe, ultimately formulating his famous laws.
The development of calculus by Newton and Leibniz introduced a formal lan-
guage for expressing continuous change through infinite sums of infinitesimal
changes. This advancement opened the door for many scientific breakthroughs
and continues to underpin the language of science and engineering to this day
[381].

The cycle of experimenters collecting data and theoreticians constructing
models to explain this data has been fundamental to scientific progress for
centuries. However, with the advent of machine learning (ML) and artificial in-
telligence (AI), the scientific discovery process is undergoing a significant trans-
formation. The emerging ‘culture’ [51] of ML emphasizes algorithmic models
that learn or discover data-generating mechanisms directly from data. Whereas
Kepler spent four laborious years brute-forcing his way through equations to
discover that ellipses described the planetary orbits well, ’AI Feynman’ can
derive these laws directly from data in seconds [401] by determining which
function from a large library of candidate functions best describes the data.

ML research focuses on creating the right conditions for learning algorithms
to succeed. Once these conditions are met, and given sufficient computational
resources, model discovery occurs ‘automatically’. This changes the way scien-
tific research is conducted: new models are not formulated from scratch but by
providing a blueprint and an optimization framework that enables algorithms
to discover models by themselves. While not built from the bottom up to en-
code scientific knowledge or test hypotheses, models are often still designed
to advance the scientific discovery process in ways that raw data cannot, such
as by making out-of-sample predictions, extracting low-dimensional patterns
from big data, or by allowing access to properties of the systems they describe
that are otherwise unattainable.

ML has undergone a dramatic boom during the course of this thesis, espe-
cially in the space of generative modeling, with models such as DALL-E [323]
or GPT-4 [292] taking the world by storm. State-of-the-art (SOTA) ML models
are now trained with up to a factor of 1010 [383] of the computational resources

13
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than only ten years ago when breakthroughs like AlexNet [216] brought deep
learning (DL) to the forefront of AI research. The ‘unreasonable effectiveness of
deep learning in artificial intelligence’ [360] now means that approaches based
on DL, and associated large-scale models, are increasingly dominant in the
fields of AI and ML. The advances in computational capacity and model size
through the rise of DL even go far beyond the scaling of Moore’s law, with its
doubling of transistor density on a chip roughly every two years holding since
the 1970s. The ‘DL revolution’ [359] has led to major advancements in AI ca-
pabilities, but it has also substantially increased the cost of training foundation
models [292, 448], restricting some types of research to well-funded large tech
companies or start-ups with significant backing.

Models are now often formulated as gigantic black boxes that learn patterns
from equally gigantic amounts of data. Large language models (LLMs) perform
well across a range of tasks [448], but how they achieve this is often still a
mystery. Scientists are now leveraging tools like cognitive psychology [41] to
study LLMs, much like we study human behavior and brains that cause this
behavior (which had up until this point been arguably the most complex ‘black
boxes’ in the known universe).

This situation highlights a fundamental clash in the two cultures of scientific
model building: the traditional method of constructing models from the ground
up by human experts versus the modern method of building from the data
up by self-learning algorithms. This dichotomy has perhaps nowhere been as
succinctly encapsulated as in Fred Jelinek’s tongue-in-cheek remark (speaking
in 1988, long before witnessing the advances in modern AI): ‘Every time I fire
a linguist, the performance of the speech recognizer goes up.’

Relying less on hyper-specialized domain expertise also promises more flex-
ibility and scope for cooperation across fields: AI is fostering a new kind of
scientific ’lingua franca,’, enabling scientists from different fields to commu-
nicate in the shared language of latent variable models, autoencoders, or ML
packages like Pytorch.

On the other hand, the dominance of large, opaque architectures in SOTA
models complicates the extraction of knowledge from these models. From a
scientific perspective, these models are often ill-suited to provide insights into
their inner workings. In fields like neuroscience, psychology, or medicine, data
is further much more difficult to come by than in areas like language or image
processing, where vast amounts of data are readily available on the internet.

In scientific ML, where interpretation of inferred models is often of primary
interest [280] and data is sparse, other approaches are therefore needed, and the
question arises how models can be designed to optimally incorporate human-
derived scientific knowledge as an inductive bias while retaining the flexibility
and expressivity of modern ML approaches.

The field of dynamical systems reconstruction (DSR), and the methods de-
veloped during this thesis, can be seen as a bridge between traditional and AI-
driven approaches. DSR increasingly relies on ML methods for the extraction
of models from data, especially in contexts where dynamics are too complex
to be captured by simple equations or where the underlying principles are not
fully understood, such as in neuroscience or climate science. On the other hand,
in DSR there is a strong emphasis on the interpretability of inferred models for
further scientific insight [97], and an increasing emphasis on the integration of
prior domain knowledge, such as in physics-informed ML [321].
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The RNN models developed in this thesis were specifically designed with
their mathematical tractability in sight (Sect. 3.1), and are trained based on
theoretical insights into the nature of chaotic DS (Sect. 3.2). However, at the
same time, they can be used in a range of different contexts, from complex
chaotic weather systems (Sect. 4.2.1), experimental multimodal neuroscientific
data (Sect. 4.3.3) or discrete behavioral data from psychological experiments
(Sect. 5), with their analysis tailored to the specific research questions at hand.

2.2 dynamical systems

Dynamical systems (DS) underpin many real-world systems of scientific and
practical importance. Complex chaotic and multi-fractal DS are believed to gov-
ern market dynamics [263], as well as the rhythms of the brain, efficiently en-
coding information across brain regions while simultaneously solving numer-
ous tasks [62]. Chaotic DS also form the basis of weather and climate models,
from Edward Lorenz’s model of atmospheric convection, which introduced the
famous chaotic butterfly attractor and spurred the scientific investigation of
chaos [129, 252], to models of climate patterns such as El Niño [400].

The concept of DS goes back to the 19th century, with Poincaré laying impor-
tant groundwork [191, 315] for the formal study of DS. Following the definition
in [139], a DS is defined by a combination of a state space M ⊆ Rn, a time set
T ⊆ R, and a law that governs its evolution over time. For a continuous-time
system, this evolution is described by ordinary differential equations (ODEs):

ẋ = f(x), x ∈M ⊆ Rn, (1)

where the vector field (VF) f ∈ X1(M) comprises functions with continuous
first derivatives on the compact, metric, measurable state space M. This VF
determines the evolution of initial conditions in time via the evolution operator
Φ : T ×M → M, which maps an initial condition x0 to states at time t, xt =

Φ(t,x0) [220]. Even if such a solution exists in principle, most DS can not be
solved analytically [308]. For systems where the evolution depends not only on
time but also on spatial coordinates, partial differential equations (PDEs) are
used:

u̇ = g(u,∇u,∆u, . . . ), u ∈M ⊆ Rn+1, (2)

where g represents a function involving spatial derivatives such as gradients
(∇) and Laplacians (∆).

While these formulations assume a continuous-time DS, empirically we usu-
ally access DS via discrete-time measurements, and thus for many empirical DS
models, formulations as discrete-time maps are more natural [58]:

xt = F
(
xt−1

)
, x ∈M ⊆ Rn. (3)

The relationship between discrete and continuous time systems is rich and com-
plex, so doing it justice would go beyond the scope of this introduction. While
some discrete-time systems can be reformulated as continuous DS [282], this
transformation is usually not unique. The reverse direction, sampling a discrete
system from a continuous one, can for instance be achieved by discretely sam-
pling the trajectory in time [58]. Assume we have datapoints xk sampled from
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the DS at intervals k∆t, such that xk = x(k∆t). Then, the discrete-time system
is characterized by the mapping F∆t, which is parameterized by the time step
∆t. This induces a flow map F∆t for the discrete step ∆t that maps the system
to time t0 +∆t, given by

F∆t(x(t0)) = x(t0) +

∫t0+∆t
t0

f(x(τ))dτ. (4)

An important tool for representing continuous DS as discrete maps is the
Poincaré map [392]. This involves selecting a subset of the system’s phase space,
known as a Poincaré section, and observing the points at which a system’s
trajectory intersects this section. By mapping the points on this section onto
each other, a continuous DS is effectively reduced to a discrete map that exists
in a state space with one dimension less than the original system. Properties
of the continuous DS, such as the stability of its orbits, can then be related to
properties of the Poincaré map, such as the stability of its fixed points.

Chaos can manifest in discrete-time systems with two (or even one) dimen-
sions, such as the logistic map. However, in continuous systems, a minimum of
three dimensions is required to produce chaos due to the Poincaré-Bendixson
theorem [74]. Discrete DS can also feature different kinds of bifurcations than
their continuous counterparts, such as the Neimark-Sacker bifurcation [219] in
maps, referring to the birth of a closed invariant curve (a periodic orbit) from a
fixed point as a parameter of the DS is varied, similar to a Hopf bifurcation in
continuous time systems.

chaos Chaos is ubiquitous in real world systems [91, 102, 108, 186, 264].
While there are several related formal definitions of chaos [43], they are unified
by describing systems that are highly sensitive to initial conditions and fea-
ture some bounded, but not periodic, motion. Sensitivity to initial conditions
is the most important practical condition for estimating the presence of chaos
and implies that even small changes in a system’s states, induced by process or
measurement noise or numerical errors (see Fig. 1) can lead to large divergences
between system states. The divergence of trajectories due to sensitivity to ini-
tial conditions can be formally described by the maximum Lyapunov exponent
λmax. Considering two trajectories x(t) and x(t) + δx(t) with initial difference
δx(0), the maximum Lyapunov exponent δx(t) describes how the norm of the
difference vector evolves:

lim
t→∞ lim

∥δx(0)∥→0

1

t
ln
(
∥δx(t)∥
∥δx(0)∥

)
= λmax (5)

A positive maximum Lyapunov exponent (λmax > 0) signifies that the trajec-
tories will diverge over time, indicating chaos. λmax = 0 corresponds to limit
cycles, while λmax < 0 denotes equilibrium points. Exponential trajectory diver-
gence in chaotic DS is closely related to challenges encountered when training
DSR models on time series from chaotic DS, which will be discussed in depth
in Sect. 3.2.1. Numerical methods for approximating Lyapunov exponents from
DS models are described in Sect. 4.1.1.

The Lyapunov spectrum of a system can also contain multiple positive Lya-
punov exponents (hyperchaos). These encode the amount of entropy produc-
tion of the system, where its entropy production is proportional to the sum of
its positive Lyapunov exponents [309], and the entropy of the distribution over
its limit sets can be used to quantify the complexity of its dynamics [139].
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Figure 1: Illustration of chaos at the example of two simulated solutions of the chaotic
Lorenz-63 system (Eq. 110) using the same numerical solver (Runge-Kutta
method of order 5(4) [87] from scipy.integrate), with the sole exception
being a small difference in absolute error tolerances (10−8 vs. 10−11) of the
numerical integrator. While trajectories diverge rapidly after a certain time
horizon, the long-term limit sets still closely resemble each other.

Figure 2: Flow fields and example trajectories (blue) for different 2D and 3D attractors.

attractors and limit sets Since the exact solutions of most DS can only
be approximated numerically [308], and due to the presence of chaos in many
real-world systems, global descriptions of DS are often more desirable than
precise short-term predictions. These descriptions encompass the long-term set-
theoretical and topological properties of the DS. Many of the performance mea-
sures for assessing the reconstruction quality of DS introduced in Sect. 4.1 are
based on these considerations. One important concept is the ω-limit set of a
point x ∈ M. This set consists of the points reached when iterating the DS
forward in time towards infinity:

ω(x,Φ) =
⋂
s∈R

{Φ(t,x) : t > s} (6)

Statistical errors based on (dis-)agreement of limit sets can be used to assess
whether the reconstruction of a DS was successful (Fig. 3).
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A related important concept in the context of a DS is that of an attractor. Fol-
lowing [139, 278, 308], an attractor is defined as a closed invariant set A ⊆
M such that there exists an open and forward-invariant set B(A) = {x ∈
M|ω(x,Φ) ⊆ A}, called the basin of attraction, with ω(B(A)) = A, and where A
is minimal (i.e., there is no proper subset with that same property). Intuitively,
the basin of attraction associates points in state space with an invariant set that
fully captures its long-term behavior. In the simplest case, this can be a globally
attractive equilibrium point but also allows for more complex objects, such as
strange attractors. Fig. 2 illustrates several examples of attractors with different
topologies. Together, the basins of attraction, combined with the topology of
the attractors, can be viewed as encompassing the anatomy of a DS. One way
of formalizing this anatomy with respect to its basins is by way of the Morse
decomposition [139, 278]:

M = ⊔ne=1B(Ae)⊔ M̃ such that µ
(
M̃
)
= 0, (7)

where the DS is composed of n disjoint basins of attraction, and µ is the
Lebesgue measure, implying that this decomposition encompasses the entire
state space (since the complement has measure zero). Many of the benchmark
systems used in this thesis are globally attracting (where the basin of attraction
spans the whole state space M). While DS can also feature multiple basins, as
discussed in more detail in the context of multistability and generalization in
Sect. 2.5.

2.3 dynamical systems reconstruction (dsr)

DSR is by now a rapidly growing field in scientific ML. In DSR, the goal is
to learn a DS model from observations that constitutes a surrogate model of
the data-generating DS. This entails that observations produced by the recon-
structed model preserve important temporal, geometrical, and topological prop-
erties of the underlying DS. The general procedure is illustrated in Fig. 3. If such
a surrogate model is successfully learned, it can be analyzed further for scien-
tific insight [58, 97]. For instance, in neuroscience, computational mechanisms
are believed to be implemented in terms of system dynamics [97], and infer-
ring these dynamics can hence advance our understanding of the workings of
the brain. In meteorology and climate science, one important goal is to pre-
dict the future state of a system, such as short and mid-term weather patterns
[222] or long-term climate changes. In the context of model-predictive control
[27], models can be used to analyze how a system is affected and controlled by
external influences [110, 188]. A DS perspective is also becoming increasingly
relevant in robotics [4, 89, 194, 432] for the control of complex movements in
space. Finally, models can also be used for state estimation from limited or noisy
measurements. This is exemplified by the Kalman filter’s [184] contribution to
Apollo 11 landing on the moon, or the important role state space models play
in neuroscience [299, 385].

observation functions and temporal delay embeddings DS are
usually empirically accessed via time series measurementsX , where (xt)t=1...T ,
xt ∈ RN. In DSR we often assume that measurements at time t are in some way
related to an unknown (latent) unobserved dynamical process zt via some mea-
surement function xt = h(zt) depending on the current time point or a window
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Figure 3: Overview over dynamical systems reconstruction.

of time points. This introduces two difficulties: first, the set of time points dur-
ing which observations are measured can be relatively sparse in time, signifi-
cantly undersampling the DS, or irregularly sampled. Second, the measurement
function can only capture limited aspects of the latent dynamical process. For
instance, in neuroscience, the primary object of interest, the brain, is hidden be-
hind the skull, evolved precisely to keep intrusions like curious neuroscientists
out. Imaging brain activity directly requires invasive techniques only carried
out on animals, or, in rare cases, on patients undergoing invasive neurosurgery.
Noninvasive techniques like functional magnetic resonance imaging (fMRI), on
the other hand, require the application of strong magnetic fields in expensive
machines and only resolve neural activity at relatively low temporal and spa-
tial resolutions. While recording techniques are undergoing significant progress
through the increasing availability of large-scale, high-density multi-electrode
arrays and the rise of optogenetics, ushering in what Liam Paninski calls a
‘golden age of statistical neuroscience’ [192], even those techniques only image
small parts of the intricate DS that is the brain as a whole.

One avenue of hope that important properties of underlying DS can still be
reconstructed even from partial observations are the temporal delay-embedding
(TDE) theorems [297, 349, 388]. A TDE is defined as:

xt = (xt, xt−τ, xt−2τ, . . . , xt−(m−1)τ)
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here τ represents the delay time and m the embedding dimension. To construct
a TDE, one must first determine the appropriate values for τ and m. The pa-
rameter τ determines the temporal separation between the components of the
embedding, while m determines the dimensionality of the reconstructed phase
space. Optimal values are important for properly unfolding the attractor in the
reconstructed state space, as illustrated in Fig. 4. Standard techniques for de-
termining optimal values of these parameters include methods such as the first
minimum of the autocorrelation or mutual information function [2, 187] for
τ, and false nearest neighbors methods for m. More sophisticated techniques,
such as the PECUZAL algorithm [215] exist for determining embeddings with
different lags τm for each embedding dimension, and were used for the recon-
structions of electrocardiogram data in Sect. 4.2.2. One important implication of
the delay-embedding theorems is that for sufficiently large embedding dimen-
sions, the reconstructed state space will reproduce all topological properties of
the underlying system.

Figure 4: Illustration of temporal delay embeddings.

Another complication for DSR from empirical time series arises when con-
sidering that measurements of systems are often not continuous. For instance,
survey data in psychology is quantified using Likert scales given by discrete
ordinal levels [241]. Neuronal activity is often captured as spike counts, climate
data comprises discrete events, and language is represented through distinct to-
kens [342]. While in most cases, we can assume that an underlying continuous
process is causing these observations, it is often not clear how the measurement
function x = h(z) distorts and coarse-grains the underlying process, and thus
not clear how much of the underlying system can still be reconstructed. While
these questions are of long-standing interest in the literature [347, 348], with
[347] showing DSR is in principle feasible from interspike intervals in a neu-
roscientific context, many theoretical and practical questions surrounding the
influence of measurement functions on DSR have not been resolved yet. The
results in Sect. 4.3.2 present DSR from symbolic or otherwise highly coarse-
grained representations of chaotic DS. While providing evidence that recon-
structions are often still feasible even under these challenging circumstances,
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clear theoretical results underpinning under which conditions these reconstruc-
tions remain feasible are still lacking.

Figure 5: Illustration of measurement functions in DSR.

The ideas behind Koopman theory [57, 208] and its operators are closely re-
lated to the discussion of measurement functions and the challenge of capturing
the dynamics of latent DS through observations. Koopman theory can be seen
as an ‘operator-theoretic perspective’ on DS theory [58]. Given a DS represented
by the evolution function zt = F(zt−1) as before, the Koopman operator U acts
on an infinite-dimensional Hilbert space1 of observation functions h : RN → R.
For any observation function h, the action is defined as:

(Uh)(z) = h(F(z)). (8)

This implies that the Koopman operator U transforms the observation function
h based on the system’s evolution function f via a linear operator operating in
the infinite-dimensional space of observation functions. It hence allows for the
analysis of nonlinear DS using linear techniques. While the infinite-dimensional
nature of the Koopman operator also introduces practical challenges, working
in linear representations of nonlinear DS makes them much easier to analyze,
predict, and control [57]. Accordingly, many techniques, including many ML-
driven approaches, have been developed in recent years to approximate the
action of the Koopman operator in finite dimensions in the context of DSR [18,
56, 119, 257, 285, 296, 415].

The considerations outlined in this paragraph more generally point to the
dual challenge inherent in data-driven DSR (and in many other scientific dis-
ciplines): algorithms must jointly discover coordinates/embeddings that allow
for the representation of interpretable and generalizing models in this coordi-
nate system [218]. The MTF framework introduced in Sect. 3.2.5 tackles this
challenge by learning DSR models within a flexible encoder-decoder structure,
inferring an appropriate coordinate representation of the underlying DS even
for situations in which the measurement process itself is highly complex, such

1 Koopman theory also bears some resemblance to quantum mechanics (QM): in QM, quan-
tum states live in infinite-dimensional Hilbert spaces, and observables are represented as self-
adjoint operators acting on these spaces. The evolution of a quantum state is determined by the
Schrödinger equation, which, similar to the Koopman approach, is linear, so it is perhaps no
surprise that Koopman and von Neumann developed this theory in 1932 during the golden age
of QM [208].
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as when training on ordinal samplings or symbolic representations of the un-
derlying DS (see e.g. Sect. 4.3.2, Fig. 29), or even discovering an appropriate
TDE when training on partial observations (Fig. 27).

ds models as probabilistic generative models Generative models
are statistical models that model joint probability distributions over variables,
often to produce new data following an observed distribution p(X). Deep gen-
erative models, combining generative approaches with deep learning architec-
tures have taken the world by storm. These include GANs [132], variational au-
toencoders [202, 330], diffusion models [371] or transformer-based LLMs [406],
which have found widespread use in practical applications [292, 323]. Following
the assumption that measurements of a dynamical system X = x0:T depend
on an underlying unobserved latent process Z = z0:T , a generative model of an
observed time series pθ(x0:T ) can be written as [127]:

pθ(x0:T ) =

∫
pθ(x0:T |z0:T )p(z0:T )dz0:T . (9)

where the X depend on some underlying latent process via the distribution
pθ(X |Z), which can be viewed as the probabilistic formulation of the measure-
ment function x = h(z). For DS, we usually assume that the prior is autoregres-
sive, and only depends on the τ past observations. More explicitly, assuming
that the prior is given by a discrete-time DS (Eq. 3), it becomes a first-order
hidden Markov model, in which each future state zt+1 is conditionally inde-
pendent of the past given the present zt:

pθ(z0:T ) = p(z0)

T∏
t=1

p(zt|zt−1). (10)

It is often assumed that observations at any time t conditionally only depend
on the current latent state zt, which further simplifies the likelihood function:

pθ(x0:T |z0:T ) =

T∏
t=0

pθ(xt|zt)dz0:T (11)

However, more complex relationships between dynamics and observations, such
as those given by hemodynamic response function in fMRI, are also possible
[212].

This class of models, consisting of a state equation and an observation equa-
tion, is usually referred to as state space models (SSMs, [95]). If dynamics are
linear and observations and latent states are Gaussian, the Kalman filter [184]
represents the optimal solution for estimating the state of a linear system with
Gaussian noise. If these assumptions are not met, e.g. for nonlinear DS, more
sophisticated approaches such as Extended Kalman Filters [332], Unscented
Kalman Filters [413], Expectation Maximization [95, 212] or Variational Infer-
ence (VI, [202]) can be used. The RNN models introduced in Sect. 3.1 can be
naturally formulated as SSMs by assuming the nonlinear latent variable model
is given by an RNN (Eq. 12 and coupled to different observation models (Sec.
3.2.7), and trained using e.g. VI (Sect. 3.2.2) and MTF (Sect. 3.2.5).
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2.4 machine learning techniques for dsr

Given the advances in ML techniques to learn models from data, the field of
DSR has likewise seen the development of many novel approaches in the past
decade. There are several angles through which a classification of different DSR
methods can be approached. An important line of distinction is for instance
between continuous-time models that approximate the vector field of the DS
directly [59, 71, 148, 368], while discrete-time models, such as those based on
recurrent neural networks (RNNs) [95, 304, 355, 444] approximate the observed
time series as a discrete-time map. Vector field-based approaches often require
first numerically estimating derivatives from the data before inference, which
can be noise-prone and introduce additional numerical instability [25, 322]. On
the other hand, they more naturally accommodate irregularly sampled time
series [336, 438], which can often occur e.g. in experimental settings. Some ap-
proaches combine the advantages of both methods, e.g. by allowing the trans-
formation of discrete-time formulations into continuous time models [282], or
by estimating the vector field while training directly on the observations, such
as in Neural ODEs [70, 93, 336].

The ‘classical’ scientific paradigm, reaching back to the days of Kepler and
Newton, relies on symbolic regression of model coefficients. Symbolic approaches
have seen increasing popularity as a tool for data-driven model discovery [221,
261]. Since they are formulated in the same language as scientific models, one
key advantage is their interpretability [148], making them useful in scientific ap-
plications or when used e.g. in high-stakes decisions [339]. In DSR, the Sparse
Identification of Nonlinear Dynamics (SINDy) algorithm and its many variants
[59, 76, 182, 183, 251, 274] represent the most widely used regression-based ap-
proach. These methods perform (sparse) regression on predefined function li-
braries on estimates of the vector field directly (for more details, see Sect. A.2.1).
However, symbolic approaches have limitations, including their difficulty in
capturing complex and noisy empirical data ([54, 152], see also Sect. 4.2.2). They
further often require some prior knowledge of the system’s underlying struc-
ture, limiting their applicability in discovering novel phenomena or in fields
where the system dynamics are not well understood. Recent approaches aim to
overcome these limitations by integrating symbolic regression with more flexi-
ble ML techniques, such as neural networks (NNs, [198]) or transformers [449].

On the other hand, many recent DSR approaches rely on the principle of
universal approximators, an important concept in ML that states that suffi-
ciently large NNs with at least one hidden layer can approximate any function
to arbitrary precision [158]. Importantly, these results have been extended to
RNNs, establishing that sufficiently large RNNs can approximate any underly-
ing DS [116, 146, 200]. Several different classes of DSR methods based on uni-
versal approximators exist, featuring different model formulations and training
paradigms. Following the grouping in [97], there are broadly speaking three
such classes used in DSR: those based on RNN models that are often combined
with special training techniques, e.g. backpropagation through time (BPTT, [54,
408, 409]). RNN models also often feature specific model architectures or reg-
ularizations [66, 106, 181, 193, 341, 355] or are combined with specific training
techniques [276] to remidy exploding-and vanishing gradient problems [33, 54,
152, 276]. Another class of models is given by reservoir computers (RC, [304,
312, 313]), featuring a large randomly initialized reservoir while training only
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a read-out layer via linear regression to the reservoir dynamics. Lastly, there
are neural ODEs [11, 70, 189, 204], which approximate vector fields directly via
NNs, and which are usually trained using the adjoint method [70]. Many of
these techniques have been evaluated as comparison methods for this thesis,
and are described in more detail in Appx. Sect. A.2.

This grouping is, however, not exhaustive, as DSR algorithms vary across
several criteria that may significantly influence their applicability to specific
problems. Many DSR algorithms can, for instance, be formulated both as de-
terministic or probabilistic algorithms and often both variants of similar algo-
rithms exist (see e.g. SINDy [59] vs. HyperSINDy [171], Neural ODEs [70] vs.
Neural SDEs [399] etc.). Often models also try to separate deterministic and
stochastic components, such as in Langevin-type SDEs [171, 228] which differ-
entiate between deterministic drift and stochastic diffusion terms. This thesis
likewise will introduce and evaluate both deterministic (Sect. 3.2.3 & 3.2.4) and
probabilistic (Sect. 3.2.2 & 3.2.5) algorithms for DSR. In many applications such
as in neuroscience, quantum physics, or finance, probabilistic approaches that
explicitly model observation and dynamic noise are often more suited to rep-
resent the uncertainty inherent in real-world systems, and naturally provide
uncertainty estimates, which are often desirable e.g. in a clinical context ([232],
see also Sect. 5). Optimizing probabilistic models may often present additional
challenges during training, motivating the search for optimal trade-offs [121].

time series forecasting While often not the primary goal, DSR models
can be naturally used to forecast time series, and hence approaches in time se-
ries forecasting (TSF) often share commonalities with DSR algorithms. While
a DSR model aims to learn the latent DS p(zt|zt−1) underlying an observed
time series and the relationship between the latent process and the observations
p(xt|zt), the goal of TSF is to learn a probability distribution over a state based
on its past, p(xt|xt−1...x0). If a DSR model fully captures the DS underlying
the TS, it naturally serves as an optimal forecasting model [126]. However, since
a good DS model is challenging to learn, particularly from empirical data, TSF
algorithms often approximate the distribution over future time steps directly
from the history of past time steps. A sequential latent variable model is not
strictly necessary for this, and TSF can be approached by training sequence-to-
sequence mappings without explicitly adopting the inductive bias of a sequen-
tial approach, such as the factorization of the probabilistic model according to
Eq. 10.

Since TSF is a prominent problem with many practical applications, from
weather forecasting to stock market predictions, it has a long history that reaches
back long before the advent of ML methods. Classical methods, such as Au-
toregressive Integrated Moving Average (ARIMA) models [49], predict the fu-
ture value of a system using a linear combination of its past values and errors.
With RNNs being the most popular choice for sequential data for many years,
many RNN-based architectures have been employed in TSF [324, 345]. How-
ever, they usually require training with BPTT, which leads to exploding-and
vanishing-gradient problems (EVGP) omnipresent in gradient-based training
on sequential data [33] (related problems are discussed in more depth in Sect.
3.2.1). When not relying on a sequential model, these problems can be avoided.
The success of transformers has largely replaced sequential models like RNNs
in other domains such as language [250, 406, 448], and has led to many publi-

[ May 6, 2024 at 7:40 – classicthesis ]



2.4 machine learning techniques for dsr 25

cations using transformer models for TSF [45, 346, 425, 446]. Unlike sequential
models, transformer models are easier to parallelize on GPUs though they bear
a high computational load, with their training cost scaling naively with O(T2)

given the sequence length they are trained on. Given their widespread use in
commercial applications, the search for more computationally scalable sequence
models remains an active area of research. One novel emergent class of models
is structured SSMs [135, 136, 370]. These retain the inductive bias of underly-
ing continuous-time dynamics (or discrete approximations thereof) to model
sequences, similar as in Eq. 9, but usually assume linear dynamics to allow for
more efficient parallelizable optimization as in transformers, e.g. by combining
linear layers with fast Fourier transforms or by using structured sparse matri-
ces. In combination, they reduce the computational complexity of transformers
from O(T2) to O(T log T) or even O(T). Similarly, approaches based on Convo-
lutional NNs (CNNs) [213, 233], which can be optimized on long sequences in
parallel, are widely employed in TSF and TS classification [168]. While some
publications claim that ML methods have become SOTA for TSF [34], others
have put the validity of using transformers for TSF into question, showing that
they are often outperformed by simpler models [440], and only excel when large
amounts of clean data are available. Popular TSF competitions, such as the M5,
have routinely seen a prevalence of methods not based on deep learning tech-
niques, such as those based on trees (e.g. random forest or gradient boosted
trees), among the best-performing models [175].

A different but related subfield that aims to model complex dynamics with
ML methods involves approximating reduced order models [10]. Reduced or-
der models are particularly relevant when an existing DS of a complex system,
such as a fluid flow or the Earth’s weather, has to be simulated on supercom-
puters, incurring prohibitively high computational costs. Fourier Neural Oper-
ators (FNOs) have gained popularity in this context recently [235, 254]. Similar
to other sequence-to-sequence models, these don’t directly approximate the sys-
tem dynamics represented e.g. by a set of PDEs, but instead learn to numerically
approximate their solutions given parameterizations and initial conditions. The
FNOs are then trained on numerically simulated solutions, leading to relatively
high training costs, but end up with efficient representations that incur much
lower inference costs. FNOs have also been combined with physics knowledge
[237] and extended to other settings, such as deformed grids [234], and ap-
plied to model chaotic DS [236]. As in structured SSMs like S4 [136], moving to
Fourier space avoids the costly scaling of training sequential models, since in
this representation computations run in parallel and often numerically efficient
approximations exist.

A variety of leading generative modeling approaches, including score-based
methods [373], continuous normalizing flows [70], continuous diffusion models
[86], and flow matching [247], integrate concepts from DS theory. For instance,
diffusion models were inspired by diffusion processes in non-equilibrium ther-
modynamics [371]. These methods aim to learn continuous deformations of
simple probability distributions into complex target distributions, typically the
data likelihood p(x), such as the probability over all images in a training set.
These deformations are often easier to learn with gradient-based methods than
approximating the data likelihood directly. The evolution of these distributions
can be viewed as trajectories in the space of probability densities, and their
evolution is governed by (Neural) ODEs and SDEs. Since for valid probabilistic
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modeling, probability mass has to be conserved, physical constraints inspired
by fluid dynamics like the continuity equation are often integrated [247].

multimodal dsr Multimodal data integration is a popular topic in many
areas of AI and ML [5, 15, 23, 39, 239, 246, 292, 365, 379, 387, 417, 431], partic-
ularly since the advent of models embedding vision and language in joint la-
tent spaces [13, 320]. Multimodal generative models combine multiple observed
modalities into a common latent representation, an ability not unlike the brain
fusing different sensory inputs (vision, hearing, touch, etc.) into a combined
world model [114]. Multimodal integration can be used for cross-modal predic-
tion or output generation (such as generating textual descriptions of scenes).
It can also be used to complement noisy or missing information in one chan-
nel through observations from other modalities [319]. Humans routinely do
this when combining auditory and visual signals in noisy environments, e.g.
when combining visual cues from lip movement to understand each other in
noisy environments. Discovering joint multimodal representations can further
reveal interesting links among observed modalities [238], e.g. when combining
different data streams such as genomics and imaging to improve diagnostics
in clinical settings [246]. Variational autoencoders (VAE) [202, 330], introduced
formally in Sect. 3.2.2, are one popular variant of generative models which nat-
urally lend themselves to multimodal extensions [23, 387, 426] and applications
to time series data [20, 26, 128]. VAEs have been applied to multimodal time
series data for TSF [15, 39, 85, 319, 365, 387].

Despite the widespread use of multimodality in other areas of ML, a gener-
ally effective framework for multimodal data integration in the context of DSR
is still lacking. Kramer et al. [214] proposed the first work of this sort, training
DSR models with two algorithms based on sequential VAE (Sect. 3.2.2) and an
Expectation Maximization (EM) algorithm [95, 212]. However, both algorithms
come with significant downsides: while the SVAE performs poorly on experi-
mental data, as observed in [214] and [54], the EM algorithm incurs high train-
ing costs and requires adjustments to the training objective for different combi-
nations of multimodal data. These shortcomings motivated the development of
the multimodal teacher forcing (MTF) approach introduced in Sect. 3.2.5 as a
general and effective framework for DSR from multimodal observations.

2.5 generalisation in dsr

The task of generalizing from training data to unseen test data lies at the heart of
much of ML [414, 441]. However, in the field of DSR, this question has only been
explored to a limited extent. This observation might be related to the fact that
benchmark validations in DSR are still mostly carried out on simple synthetic
benchmark systems. To this end I carried out a survey of 59 papers in the field of
DSR for [139], based on a wide range of methods and applications, classifying
them based on which benchmark datasets were employed. Benchmark datasets
were classified according to the following three categories:

• Simple linear or nonlinear systems like the Fitz-Hugh-Nagumo and Lotka-
Volterra systems, or coupled or damped harmonic oscillators/pendulums
like the van-der-Pol oscillator
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• simple monostable chaotic attractors, predominantly the Lorenz-63, Rössler,
or forced Duffing attractors

• nonlinear PDEs, inspired e.g. by fluid flows or convection (Burgers equa-
tion, Navier Stokes equation, Lorenz-96, Kuramoto–Sivashinsky equation,
etc.)

Category Counts

Linear Models/Oscillators 24

Chaotic 3D Models 29

Fluid Dynamics/PDEs 13

Experimental Data 6

Multistable 3

Table 1: Classification of benchmark systems in the DS literature.

Table 1 summarizes these results. Only a small part of DSR considers experi-
mental datasets as benchmark systems, half of them being in publications from
our group, and almost no publications consider multistable systems. SOTA
DSR algorithms by now often show good performance on monostable bench-
marks like the Lorenz-63 or Lorenz-96 systems (see also Table 7), generalizing
to nearby initial condition and reproducing the long-term temporal and geo-
metric structure of the DS. However, for most of these systems, given their
monostable nature, generalization does not extend to unobserved or underex-
plored regions of state space, especially if these regions feature different dy-
namics than those present in the observed data. Multistability, where multiple
attractors coexist within the same system, is a common feature even in simple,
low-dimensional nonlinear DS, and is believed to underlie many real-world
systems, from neuroscience [99, 170, 197, 353], chemistry [288], and biology [92]
to financial markets [65] and climate science [437]. One important insight in
[139] is that multistability can be intimately tied to out-of-domain generaliza-
tion (OODG), where models are required to generalize across basin boundaries.
On the other hand, generalization for monostable systems can often be viewed
as a form of in-distribution generalization (Fig. 6). Another challenge in DSR
from experimental time series is the presence of external inputs to the system
[385], or the presence of non-stationarities, such as slow changes in the earth’s
climate, or shifts in neurotransmitter concentrations in the brain [97] that can
further complicate the discovery of generalizing solutions.

Generalization in DSR has only been indirectly studied in the literature. Of
particular interest for instance in climate science is the anticipation of tipping
points [61, 120, 302] and prediction of post-tipping point dynamics. A related
task is the forecasting of extreme events, here denoting phenomena that are un-
derrepresented in the training data but can have high practical relevance [109,
138, 318]. Other approaches model multiple environments with distinct param-
eter settings and jointly infer the environment’s dynamics and assess to which
environment an observed trajectory belongs [35, 436]. In recent years, there
is also an increasing interest in physics-informed ML (PI-ML, [269, 321, 382]),
which has been more widely applied in DSR. PI-ML integrates physical laws or
domain knowledge into ML algorithms, enhancing the model’s ability to gen-
eralize and perform well in situations where training data is sparse. It can also
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Figure 6: Generalization and multistability in DSR.

help build physical constraints into DS [185], e.g. when modeling power grids
where unphysical predictions and errors can prove very costly [279]. However,
to what extent DSR algorithms generalize to unobserved regions of state space
remains an open challenge. In [139] we aim to address this by providing a first
formal and empirical treatment of generalization in DSR (see also Sect. 4.1.3),
investigating under which conditions common DSR generalize (or fail to) to
unobserved data, particularly to data from unobserved basins in multistable
DS.

2.6 hierarchisation and transfer learning in dsr

Recent foundation models such as LLMs are trained on an abundance of data
[292]. In contrast, many experimental or empirical settings encountered in the
sciences, typically deal with much sparser data [211]. Data collection can be
expensive and challenging, relying on expensive measurement devices or on
self-reports that require active compliance from participants [419]. This scarcity
of data often makes traditional learning algorithms difficult to apply, and more
prone to overfitting. Conversely, in many scientific settings, data is collected
from multiple ’subjects’ XN, with ‘subjects’ denoting different instances of a
process expected to display both shared structure and significant inter-individual
variation. This can include measurements from several similar physical systems,
a group of patients in a medical study [165, 404], or repeated measurements
from the same subject across consecutive trials [439].

hierarchical modeling Training individual models for each subject fails
to ‘transfer’ group-level information across subjects [298], and the indepen-
dence of model training complicates the quantification of inter-subject variabil-
ity [439]. Hierarchical models tackle this challenge by integrating data across
multiple levels of abstraction, allowing for the sharing of statistical strength
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among subjects while maintaining room for subject-specific differences. One
common approach is to extract a set of latent variables from models that quan-
tify subject-specific differences [260], and that can be used to extract class labels
for mental illnesses (e.g., healthy vs. schizophrenic, [211] or other interpretable
structures [395]). Bayesian hierarchical models have been used as a principled
framework for encoding shared group- and subject-level structure, and are usu-
ally trained using common statistical optimization techniques such as Monte
Carlo techniques [38] or VI [202, 330]. The hierarchical structure of the data can
be directly incorporated into the probabilistic structure of the Bayesian model,
e.g. by drawing individual-level parameters from shared group-level distribu-
tions. Bayesian hierarchical models usually define priors for each parameter
and therefore naturally incorporate prior knowledge or assumptions about the
parameters into the model [118] (see also Sect. 3.2.2).

applications to time series and ds Since time series are prevalent in
many scientific and clinical settings, several hierarchical approaches have been
adapted for time series data. [22, 447] introduce a dynamic hierarchical model
that models individual time series through linear models while incorporating
explicit dependencies to an average group-level model. Different versions of hi-
erarchical models have been used for forecasting tasks [265, 266, 344, 430], or
for extracting interpretable summary statistics to encode inter-individual differ-
ences between time series [6, 430]. Hierarchical models are conceptually related
to the principle of transfer learning in ML [298], with ideas from transfer learn-
ing being increasingly applied to time series and DS models. Examples include
one-shot learning of linear differential equations using physics-informed ML
[84], using RCs [137] to learn two closely related DS, or transferring learned
dynamics across different robots [374]. In a DS context, the tasks of learning
new dynamics from small amounts of data by transferring knowledge from
different dynamical regimes of the same system [167] and generalizing to new
unobserved dynamical regimes [203] are conceptually closely related to the hi-
erarchization approach that will be introduced in Sect. 3.3.

Inspired by the success of LLMs, the transfer learning paradigm is also en-
capsulated in the quest for foundation models that can be flexibly adapted to
a range of specific tasks through one-shot/few-shot learning [448] and fine-
tuning. Several attempts have been made to train foundation models for time
series recently [277, 434], with the leading tech companies like Amazon [14],
Google [81] and Meta [325] all releasing such models in the last few months.
Since hierarchical approaches serve as a natural mechanism for transfer learn-
ing, they could also provide a mechanism to implement such foundation mod-
els tailored to DSR.

2.7 applications of dsr

While the methods developed in this thesis are general, many of the develop-
ments were motivated by applications to real-world data. Within the context
of the Theoretical Neuroscience and Computational Psychiatry group at the
Central Institute of Mental Health Mannheim, our focus was on applications
in neuroscience and psychiatry. Particularly, important parts of this thesis, such
as the MTF framework (Sect. 3.2.5) and hierarchization framework (Sect. 3.3),
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were specifically developed for the IMMERSE (Implementing Mobile MEntal
health Recording Strategy for Europe) consortium, which aims to integrate data-
driven approaches into psychiatry. As two motivating examples, I will therefore
discuss applications of DSR in the context of neuroscience and psychiatry. To
illustrate the wider relevance of DSR in other fields, I will also discuss applica-
tions in the context of quantum (many-body) physics.

dsr in quantum physics DS theory is intimately intertwined with many
theories in physics, and ML approaches have been used to model DS in many
disciplines. These applications range from approximating the evolution of quan-
tum systems [161] and predicting the motions of galaxies in astronomy [207],
to simulating fluid flows in hydrodynamics [206] and forecasting large-scale
climate models [305].

For example, DS theory plays a critical role in describing the temporal evo-
lution of quantum systems [156]. As noted in the context of Koopman theory,
contrary to classical many-body dynamics, QM is linear, so there is no intrinsic
chaos. However, because the Hilbert space dimension of many-body systems
is exponentially large, QM systems are still hard to solve [179]. One goal of
quantum many-body physics is to identify effective lower-dimensional descrip-
tions, which are often non-linear [140], such as the Gross-Pitaevskii-equation
describing Bose-Einstein condensates [134]. Even though QM does not feature
chaos in the usual sense due to its linearity, it has recently been pointed out that
chaos-like signatures can be seen in specific observables [8], a phenomenon also
called the ‘quantum butterfly effect’. For instance, [196] invoke a strong connec-
tion to classical chaos by finding positive Lyapunov exponents in commutators
of quantum systems, which have also been used to study many-body quantum
chaos near phase transitions [358].

While quantum computers are increasingly leveraged for the simulation of
quantum systems [369], often effective classical thermodynamical descriptions
called ‘classical shadows’ [161] of these systems have been shown to emerge
[179, 358]. The development of these models, however, is often laborious and
challenging, so data-driven DSR techniques provide a natural way to learn these
descriptions directly from data [150, 161].

On the other hand, quantum computers are increasingly combined with ML
algorithms to leverage the strengths of both approaches [32, 40]. Tasks that are
hard to optimize on classical computers are sometimes more naturally suited
to quantum computers [226], such as sampling from complex probability distri-
butions, as common in modern ML. For instance, quantum versions of Markov
Chain Monte Carlo methods [226, 255, 357] and stochastic gradient optimization
[124] have been proposed, which integrate sampling from a quantum computer
into the algorithms. Closely related to the methods discussed in this thesis,
similar hybrid approaches have also been employed in quantum reservoir com-
puters [122, 429] (where a quantum computer provides the dynamical reservoir)
for modeling classical chaotic DS [429] and quantum systems [122]. More gener-
ally, quantum computers have been used to simulate complex classical DS with
exponentially large dimensions [123], since computational tasks scaling expo-
nentially on classical computers often scale in polynomial time in a quantum
setting [367]. However, it remains an open problem how to extract the exponen-
tially large information about the DS from the quantum computers, for which
ML approaches could again be helpful.
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dsr in neuroscience DS approaches are of long-standing importance in
computational neuroscience, with computational processes in the brain believed
to be implemented in terms of neural dynamics [97]. A famous early example
is given by Hopfield networks [157], a type of NN model that mimics associa-
tive memory by learning to store and ‘remember’ patterns seen during training
by implementing the memory of the patterns via fixed points of its dynamics.
While the underlying dynamics of original Hopfield networks are quite simple,
modern versions of Hopfield networks have been directly linked to neurobio-
logically plausible implementations of working memory [217].

DSR approaches offer the possibility to extract computational models from
data directly, which can be leveraged on different levels to gain insights into
underlying computational mechanisms. For example, a DSR model inferred on
the individual neuron level can be used to simulate stimulus-response curves
of the model to external currents. Interpretability of inferred models can further
be enhanced by including substructure into DSR models, where e.g. a subsec-
tion of the latent states maps onto excitatory units and another on inhibitory
units of a population [97], observation models are structured to encode differ-
ent brain regions with different subsets of the latent states [97, 210], or topolog-
ical structure is introduced into the DSR model [149]. Extracted DSR models
can be used for the classification and diagnosis of neurodegenerative disorders,
such as lateral sclerosis [395]. Another line of research integrates neuroscien-
tific recordings with behavioral data into joint embedding spaces [356], which
can help elucidate the computational mechanism underlying behavior (see also
Sect. 4.3.3).

dsr in psychiatry In line with the trends discussed in Sect. 2.1, research in
psychiatry is moving increasingly beyond verifying specific psychiatric hypothe-
ses, but instead aims to leverage flexible data-driven models that are directly in-
corporated into clinical settings [69], e.g. enabling early intervention before the
onset of acute mental health episodes, and recommending tailored treatment
strategies and interventions [153]. This includes integrating data from biomark-
ers such as genomics [12], or using digital measurement tools [159], such as
smartphones or wearable devices, in the day-to-day life of subjects, moving
from the traditional reliance on subjective assessments by psychiatrists towards
the continuous monitoring of patients. Several studies integrate the collection
of ecological momentary assessment (EMA) data, which consists of regular sur-
veys reflecting the moment-to-moment well-being and symptoms of subjects,
into psychiatric care [396]. This now often goes along with leveraging passively
recorded sensor data e.g. by smartphones [230, 311, 333, 361, 393] for the ex-
traction of features for the prediction and diagnosis of psychiatric symptoms.
For instance, Place et al. [311] correlate features derived from data such as the
sum of outgoing calls and absolute distance traveled with the severity of symp-
toms of mental health issues like depression or PTSD. Some recent studies try
to combine EMA data with passive sensor data to forecast psychiatric symp-
toms with greater accuracy and in real-time [172, 173], such as predicting daily
fluctuations of depressive symptoms assessed from EMA ratings together with
GPS and weather data [172]. Some of these studies also leverage ML methods
such as RNNs [210] and other deep learning techniques [69, 211] known for
their potential to automatically extract complex patterns from many different
types of data simultaneously, and also directly incorporate DS models [153, 210].
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DS models are used based on the observation that psychiatric symptoms often
follow a complex and individual temporal evolution [117]. Connecting both a
neuroscientific and psychiatric perspective, mechanisms underlying mental ill-
ness can also be understood as changes in neural network dynamics [96]. For
instance, [335] connect obsessive-compulsive disorder to overly stable neural
attractors, while [334] propose that similarly deep attractors in the non-reward
system in the lateral orbitofrontal cortex underlie depression.
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3
N E T W O R K M O D E L S A N D T R A I N I N G A L G O R I T H M S

This section recapitulates the main methodological contributions of Brenner et
al. [54], Hess et al. [152] and Brenner et al. [53]. The developments in [152]
build on the experimental results in [54], while [53] extends them to multi-
modal and non-Gaussian data. Section 3.1 introduces two novel RNN architec-
tures, the dendritic piecewise linear RNN (dendPLRNN, Sect. 3.1.1) and the
shallow PLRNN (shPLRNN, Sect. 3.1.2), that retain the mathematical tractabil-
ity of the original PLRNN formulation [95] while achieving reconstructions
in much lower-dimensional state spaces. Sect. 3.2.1 first outlines challenges en-
countered when training RNN models for DSR on time series observations from
chaotic DS. The following sections then introduce four frameworks for train-
ing the proposed RNN models, based on sequential variational autoencoders
(SVAEs, 3.2.2), including extensions to a fully probabilistic Bayesian framework,
and three variants of teacher forcing (TF): sparse TF (STF, Sect. 3.2.3) gener-
alized TF (GTF, Sect. 3.2.4) and multimodal TF (MTF, Sect. 3.2.5). Sect. 3.2.6
and Sect. 3.2.7 collect different encoder and decoder/observation models used
within the SVAE and MTF approaches, while finally, Sect. 3.3 introduces a gen-
eral hierarchization framework for training the proposed DSR models on time
series observations collected across a group of different subjects/systems.

3.1 rnn models

The network architectures introduced here build on piecewise linear RNNs
(PLRNNs, [95]). PLRNNs are defined by the latent process equation

zt = Azt−1 +Wϕ(zt−1) +h+Cst,+ϵt, ϵt ∼ N(0,Σ). (12)

This equation describes the evolution of an M-dimensional latent state vector
zt = (z1t . . . zMt)

T . A ∈ RM×M are linear self-connections, and the entries of
W ∈ RM×M are off-diagonal nonlinear connections between units. h ∈ RM is
a bias term, and external input st ∈ RK can be provided via C ∈ RM×K. ϕ
is a nonlinear activation function, here given by the rectified linear unit (ReLU)
applied element-wise:

ϕ(zt−1) = max(0, zt−1). (13)

The diagonal terms inA can be interpreted as encoding different time constants
of the underlying DS [355]). If trained in a probabilistic setting, such as the
SVAE or MTF approach (Sect. 3.2), a Gaussian noise term ϵt ∼ N(0,Σ) with
diagonal covariance Σ is added in Eq. 12.

The PLRNN has several mathematically attractive properties due to its piece-
wise linear formulation. For instance, it allows the explicit computation of fixed
points and cycles [104, 212, 355], and can be translated into dynamically equiv-
alent continuous-time systems [282]. Furthermore, PLRNNs belong to the class
of continuous piecewise-linear (PWL) maps, a category for which many types
of bifurcations have been studied [281]. Bifurcations are fundamental in under-
standing how the geometrical and topological characteristics of a system’s state

35
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space are affected by its parameters. This understanding is often beneficial for
characterizing or improving the training process [88, 104, 301, 350], as well as
for understanding the properties of trained systems [104, 258, 259].

Additionally, the state space of the PLRNN is divided into 2M sub-regions
in which the dynamics are locally linear. Analyzing inferred PLRNNs in terms
of the linear subregions inhabited by reconstructed systems leads to several
interesting insights, which are discussed in more detail in Sect. 4.5.

The latent process (Eq. 12) can be connected to observationsX , where (xt)t=1...T ,
xt ∈ RN via an observation model (decoder model). While this can take many
different forms, collected in Sect. 3.2.7, in the simplest case, we can assume a
linear Gaussian observation model:

xt = Bzt + ηt, ηt ∼ N(0,Γ ). (14)

Here B ∈ RN×M is a factor loading matrix and ηt ∼ N(0,Γ ) Gaussian obser-
vation noise with diagonal covariance Γ ∈ RN×N. As with the latent process
noise Σ, the covariances are only explicitly estimated in the SVAE and MTF
approach.

on the relationship between latent dimension and observation

dimension Note that the observation model N can in principle both im-
ply that the latent states project to higher dimensional (M < N) or lower-
dimensional observations (M > N) (see also Sect. 2.3). In neuroscience, state
space models are often used as nonlinear dimensionality reduction tools for
extracting lower-dimensional manifolds formed by a system’s attractors from
high-dimensional observations. This is particularly the case if there is redun-
dancy between dimensions of the observed time series, as hypothesized for
neural activity in parts of the brain [225]. For the Electroencephalography (EEG)
data in [152], this allowed us to reduce the reconstructions from 64 observed
channels to a 16-dimensional state space (see Sect. 4.2.2). More generally, the
observation that many high-dimensional real-world datasets (such as images)
lie on relatively low-dimensional latent manifolds is known as the ‘Manifold’
hypothesis [111] and is more widely discussed in ML. Many popular ML tech-
niques, such as variational autoencoders (see Sect. 3.2.2) or CNNs [290] can
be viewed as implicitly or explicitly serving as nonlinear dimensionality tech-
niques, contributing an explanation for the surprising generalization abilities of
ML algorithms [30, 360].

However, for time series measurements of latent DS, we often face the reverse
problem when not all the system’s dimensions are observed. As discussed in
the introduction, in this case, systems can be embedded in higher-dimensional
state spaces, e.g. by using temporal delay embeddings ([21, 187, 349], Fig. 4).
For the electrocardiogram (ECG) data (Sect. 4.2.2), which was provided as a
one-dimensional electrophysiological time series, we, in turn, delay-embedded
the system into a 5-dimensional latent space. The required latent dimension
also depends on the RNN architecture and can play a similar role as the width
of classical NNs [256] in determining its expressivity. The two RNN models
proposed in the following were developed to enhance the expressivity of the
PLRNN (Eq. 12) while retaining its tractability, thus enabling reconstructions in
lower-dimensional latent spaces.
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3.1.1 Dendritic PLRNN

dendritic computation and spline basis expansion Dendrites are
believed to significantly contribute to neural computation [205, 271, 272], e.g.
by the amplification of synaptic inputs to neurons [166, 354]. The concept of
dendritic branches functioning as semi-independent computational units has
also been likened to the computation of a 2-layer neural network [270, 271, 316,
317]. Inspired by these principles, we integrate dendritic processing into the
latent equation of the PLRNN, Eq.12, by employing a linear mix of ReLU-type
threshold nonlinearities [54], as depicted in Fig. 7. This is achieved by modifying
Eq. 13 to:

ϕ(zt−1) =

B∑
b=1

αbmax(0, zt−1 −hb). (15)

Here we define the dendritic input/output slopes αb ∈ R and activation thresh-
olds hb ∈ RM, and B is the number of dendrites. Mirroring real dendrites,
which adjust their morphology when learning takes place [317, 378], these pa-
rameters are jointly optimized with the other PLRNN parameters. The system
encompassing Eqs. 12, and 15 is called the dendPLRNN [54].

When Eq. 15 is integrated into Eq. 12, it represents a linear spline basis ex-
pansion. Such expansions are well-studied in statistics and ML for function
approximation [147, 380, 412] in regression and model-based scenarios.

Figure 7: The dendPLRNN extends each neuron of the PLRNN into a set of nonlinear
branches, significantly increasing its expressivity and enabling reconstruc-
tions in lower dimensions. Figure created with the artistic support of Dar-
shana Kalita. Taken from [54].

mathematical tractability and dynamical systems interpreta-
tion Sharp threshold nonlinearities, such as the ReLU function, align well
with neurobiological perspectives, as dendrites exhibit similar threshold-type
behavior [205, 272]. More importantly, this choice preserves the theoretical prop-
erties of the PLRNN, including its mathematical tractability, which allows ana-
lytical access to fixed points and cycles [95, 104], as discussed previously. For
example, for a dendPLRNN trained on the Lorenz-63 system (Fig. 21), I com-
puted all fixed points in under 1 second and cycles up to the 40th order within
20 seconds using a single 1.8GHz CPU. The tractability of the dendPLRNN nat-
urally follows from the proposition that any dendPLRNN can be rewritten as a
conventional PLRNN [54]:
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Theorem 1 A dendPLRNN ofM dimensions can always be restructured as a standard
PLRNN with dimensions M×B, represented as

ẑt = Ãẑt−1 + W̃ max(0, ẑt−1) + ĥ0 + C̃st + ϵ̃t. (16)

The detailed proof is given in [54]. This theorem also provides some intuition
on how a dendPLRNN can reduce the dimensionality of a reconstructed sys-
tem since a high-dimensional PLRNN could often be represented as a lower-
dimensional yet equally effective dendPLRNN. Fig. 8 illustrates that a dend-
PLRNN enables reconstructions in much lower dimensions than PLRNNs. De-
tails on the precise computation of fixed points and k-cycles for the dend-
PLRNN are provided in [54].

A notable issue with PLRNNs is the potential unboundedness of latent states
due to the ReLU function. The dendPLRNN, however, provides a straightfor-
ward and natural solution to limit latent states while retaining the piecewise
linear formulation:

Theorem 2 For each basis {αb,hb} in Eq. 15 of a dendPLRNN, we can add another
basis {α∗

b,h∗
b} with α∗

b = −αb and h∗
b = 0. Then, for σmax(A) < 1, any orbit of this

clipped dendPLRNN (Eq. 17) will remain bounded.

The proof for this theorem is likewise given in [54]. The clipped dendPLRNN
model is then defined by:

zt = Azt−1 +W

B∑
b=1

αb
[

max(0, zt−1 −hb) − max(0, zt−1)
]
+h0. (17)

3.1.2 Shallow PLRNN

A further advance in formulating low-dimensional, mathematically tractable
RNN models is the shallow PLRNN (shPLRNN), introduced in [152] as:

zt = Azt−1 +W1max(0,W2zt−1 +h2) +h1, (18)

with latent states zt ∈ RM, diagonal matrix A ∈ RM×M, rectangular connec-
tivity matrices W1 ∈ RM×L and W2 ∈ RL×M, and thresholds h2 ∈ RL and
h1 ∈ RM. Here, L is the dimension of the hidden layer. With L > M, the network
expands each unit’s activation into a weighted sum of ReLU nonlinearities.

The shPLRNN can be rewritten in the form of a dendPLRNN. It follows, in
particular, that fixed points and cycles of Eq. 18 can be computed analogously as
for the dendPLRNN. Vice versa, any M-dimensional dendPLRNN can be refor-
mulated as an M-dimensional shPLRNN with hidden layer size L =M ·B. The
detailed proof is given in [152]. As for the dendPLRNN, the shPLRNN naturally
incorporates a clipping mechanism that prevents state divergence provided the
largest absolute eigenvalue of A is smaller than 1 [152]:

zt = Azt−1 +W1

[
max(0,W2zt−1 +h2)

−max (0,W2zt−1)
]
+h1. (19)

The shPLRNN enables reconstructions of systems such as the Lorenz-63 or
Lorenz-96 system directly in the observation dimension (M = N) (see Table
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Figure 8: Basis expansion reduces latent space dimensionality. a: Agreement in attrac-
tor geometries (Sect. 4.1) (top) and proportion of successful reconstructions
(bottom) for the Lorenz-63 system as a function of the number of bases (B)
and latent states (M). B = 0 in the top graph denotes the standard PLRNN
(no basis expansion). b: Runs with Dstsp < 4 were defined as successful (sim-
ilar results are obtained with other choices for the Dstsp threshold). Taken
from [54].

7), a result not possible both with the PLRNN and dendPLRNN, using the
same training techniques (see also Fig. 8). This observation indicates that the
specific form of the nonlinearity, which is applied in the usually much higher-
dimensional hidden space L >> M of the shPLRNN via max(W2zt−1 +h2), is
particularly powerful at reducing the number of unitsM required for successful
reconstructions with the RNN model.

Despite the implementation of a clipping mechanism (Eqs. 17 and 19) for
the two RNN models, divergences can still occur if entries of the linear self-
connections matrix A exceed one, σmax(A) > 1. However, these divergences can
generally be mitigated by incorporating additional regularizations during train-
ing. One possibility is to penalize the self-connections that approach a threshold
around one too closely:

LA = λA
∑
i

max(0,aii − θ)2

where λA is a regularization coefficient, aii are the entries of the diagonal matrix
A, and θ is a threshold value slightly less than one (e.g. ≈ 0.995). Additionally,
regularizing the magnitude of the latent states zt has also often proven effective
in preventing divergences:

Llatent = λlatent

∑
t

∥zt∥2
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where again λlatent is a regularization constant. While divergences were gen-
erally not an issue on synthetic benchmark systems, including these regular-
izations was helpful on some of the real-world datasets (Sect. 4.3.3) or for the
reconstructions from symbolic DS (Sect. 4.3.2). Fig. 13 further outlines how dif-
ferent training methods can influence the sensitivity of the loss landscape to
divergences in the DSR model.

Finally, as proposed in Schmidt et al. [355], a manifold attractor regularization
(MAR) can be added to the loss function on a subset of states Mreg ⩽ M to
encourage the discovery of long-term dependencies and slow time scales in the
data:

Lreg = λreg

Mreg∑
i=1

(Aii − 1)
2 +

Mreg∑
i=1

M∑
j̸=i

(Wij)
2 +

Mreg∑
i=1

h2i

 . (20)

This regularization pushes a subset of states towards a stable manifold of equi-
librium points and can be included for both the PLRNN and the dendPLRNN.
For the shPLRNN, in [152] we adjusted this regularization to

Lreg = λreg

(
∥1 −A∥2F + ∥W1∥2F + ∥W2∥2F + ∥h1∥22 + ∥h2∥22

)
(21)

where ∥∥F denotes the Frobenius norm. The MAR can aid with the learning of
systems with different time scales, such as the bursting neuron model ([94, 355]).
The MAR was used when training the RNN models within the SVAE approach
(Sect. 3.2.2) for the results in Sect. 4.2.1, and helps with stabilizing estimates for
the annealing protocol for GTF [152].

3.2 training algorithms

3.2.1 Challenges of Training RNN Models on Chaotic Dynamical Systems

Before delving into specific training algorithms, I will provide a brief overview
of the theoretical results from Mikhaeil, Monfared, and Durstewitz [276] for
understanding the challenges of training RNNs when modeling chaotic systems
with gradient-based methods, following the outline in [152].

An RNN model with parameters θ constitutes a recursive map as defined in
Eq. 3:

zt = Fθ
(
zt−1, st

)
, (22)

where the st denote external inputs. Note that this definition does not make
any assumptions about the specific parameterization of the RNN, and holds for
the dendPLRNN or shPLRNN as well as other popular RNNs such as Long
Short Term Memory (LSTM) networks [155].

Training RNNs often requires sampling sequences from the RNN, and hence
the iterative application of Eq. 22. The to-date most popular algorithms for
training RNNs are based on variants of Backpropagation Through Time (BPTT;
[340, 420]), where RNN sequences of length T are drawn and gradients are
propagated backward in time through the network. The computation of these
gradients rests on a loss function L =

∑T
t=1Lt(zt, z̄t), where Lt is often just

the mean-squared error, and with zt being the outputs of the RNN and z̄t the
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targets. During training, the gradients of the RNN parameters θi ∈ θ are then
obtained by unfolding the RNN over time:

∂L

∂θi
=

T∑
t=1

∂Lt

∂θi
, with

∂Lt

∂θi
=

t∑
r=1

∂Lt

∂zt

∂zt
∂zr

∂+zr
∂θi

, (23)

It has been long observed that the repeated application of recurrent connec-
tions during the backward pass of gradients in time can lead to exploding and
vanishing gradient problems (EVGP, [33]). Many RNN architectures, such as
LSTMs [155] or, more recently Long Expressive Memories (LEM; [341]), have
been designed to deal with the EVGP explicitly.

However, the central insight from [276] is that when training via BPTT on
time series observations from a chaotic DS, exploding gradients are in princi-
ple unavoidable. To see this, first note that RNN models become surrogates
of the underlying ground truth system during training, and an RNN model-
ing a chaotic DS likewise has to constitute a chaotic DS. As detailed in 2.2,
chaotic DS are characterized by trajectory divergence, formally encapsulated by
the system’s maximum Lyapunov spectrum (Eq. 5). The maximum Lyapunov
exponent of an RNN orbit Z = {z1, z2, . . . , zT , . . . } is given by the product of
Jacobians Jt along the orbit by

λmax := lim
T→∞ 1

T
log

∥∥∥∥∥
T−2∏
r=0

JT−r

∥∥∥∥∥
2

, (24)

where ∥·∥2 denotes the spectral norm, and the Jacobians are given by

Jt :=
∂Fθ

(
zt−1, st

)
∂zt−1

=
∂zt
∂zt−1

, (25)

This same product is present in the gradients of the loss function in Eq. 23,
which can be seen more directly when rewriting the derivatives of two states
∂zt2
∂zt1

at times t1 and t2 (with t2 > t1) as:

∂zt2
∂zt1

=
∂zt2
∂zt2−1

∂zt2−1
∂zt2−2

· · ·
∂zt1+1
∂zt1

= Jt2Jt2−1 · · ·Jt1+1 =
t2−t1−1∏
k=0

Jt2−k,
(26)

Therefore, the gradients in BPTT (Eq. 23) contain the same product of Ja-
cobians also present in the computation of the maximum Lyapunov exponent
in Eq. 24. Mikhaeil, Monfared, and Durstewitz [276] prove that this leads to
exponentially increasing loss gradients as T → ∞. In practical scenarios, this re-
sults in unstable and challenging training even for moderate sequence lengths
T (see also Fig. 48). On the other hand, capturing slow time scales of the un-
derlying system often requires training on longer sequences, and we have ob-
served that long training sequences particularly help when training on experi-
mental datasets [54, 152]. Additionally, even with more complex architectures
like LSTMs [155] or LEMs [341] that are designed to manage gradient flows
and mitigate the EVGP, or by straightforward gradient clipping methods, the
underlying issue remains unresolved [276]. The training methods described in
the rest of this thesis all deal with the challenge posed by this insight implicitly
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or explicitly. Training with SVAEs avoids the problem altogether by only train-
ing on 1-step ahead predictions and not sampling longer sequences from the
DSR model. Sparse, generalized, and multimodal TF directly tackle gradient
divergence by providing the model with control-theoretic forcing signals that
pull diverging trajectories ‘back on track’ during training.

3.2.2 Sequential Variational Autoencoders (SVAEs)

generative models of time series The DSR models introduced in the
previous section can be framed in the language of probabilistic, generative la-
tent variable models outlined in Sect. 2.3. Given the assumptions on the factor-
ization of the probabilistic graph (Eqs. 10 and 11), the PLRNN models intro-
duced in the previous section are naturally expressed as a probabilistic gener-
ative time series model by writing the latent model and observation model as
probability densities according to:

p(zt|zt−1) = N(zt;µzt ,Σ), (27)

and likewise for the observations:

p(xt|zt) = N(xt;µxt(zt), Γ). (28)

This relationship is e.g. given by the linear Gaussian observation model (Eq. 14).
More complex observation models, such as a hemodynamic response function
for fMRI data [212], can also depend on multiple latent states across a time
window τ. In the case of non-Gaussian observations like count or ordinal data,
the latent states are linked to decoder models that reflect the discrete nature of
the observations, using e.g. generalized linear models (see Sect. 3.2.7).

variational inference Variational autoencoders (VAEs) have since their
inception [202, 330] gained widespread traction for the training of deep gener-
ative latent variable models, particularly after the introduction of the reparam-
eterization trick [202, 330], enabling their efficient training with gradient-based
methods. VAEs are encoder/decoder architectures that are trained to optimize
the Evidence Lower Bound (ELBO), a concept closely linked to the Helmholtz
free energy, and already used for training Helmholtz machines [83]. The main
idea behind VAEs is to introduce a variational density q over the latent states Z
which is generally approximated from the data directly by some trainable NN
architecture with parameters ϕ, such as RNNs, Convolutional NNs or Trans-
formers (see Sect. 3.2.6). Introducing this approximate posterior leads to an
expression that is easier to optimize with gradient-based methods than the true
posterior, which is usually intractable since no closed-form solutions exist and
its computation requires evaluating high-dimensional integrals [44]. The ELBO
constitutes a lower bound on the data likelihood, derived using Jensen’s in-
equality (see e.g. [131] for a detailed derivation):

logpθ(X) ⩾ Eqϕ

[
log

pθ(X ,Z)

qϕ(Z |X)

]
(29)

= Eqϕ [logpθ(X ,Z)] − Eqϕ
[
logqϕ(Z |X)

]
= −KL

(
qϕ(Z |X)||pθ(Z |X)

)
+ logpθ(X)

= ELBOX(ϕ,θ).
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The KL divergence term in the third line measures the dissimilarity between the
approximate posterior and the true posterior distribution. This divergence is
always non-negative and only equals zero if the two distributions are identical.
If the approximate posterior perfectly captures the true posterior, the ELBO is,
therefore, equal to the log-likelihood of the data logpθ(X), reaching the upper
bound of the ELBO.

During training with VI, the expectation value Eqϕ is approximated using
Monte Carlo samples from the approximate posterior:

ELBOX(ϕ,θ) ≈ 1

L

L∑
ℓ=1

[
logpθ(X ,Z(ℓ)) − logqϕ(Z(ℓ)|X)

]
. (30)

Sampling directly from the approximate posterior qϕ(Z |X) can introduce
high variance into the gradients of the ELBO with respect to the parameters ϕ.
The reparameterization trick overcomes this by expressing the random variable
Z as a deterministic transformation of a fixed distribution ϵ (usually chosen to
be standard normal) and parameters ϕ:

Z(ℓ) = gϕ(ϵ
(ℓ),X), ϵ(ℓ) ∼ p(ϵ), (31)

Several state-of-the-art generative modeling approaches [314], such as normal-
izing flows [331] and diffusion models [371], build on the idea of combining
simple fixed noise distributions with flexible trainable (invertible) transforma-
tions for optimizing complex statistical models.

Training RNNs with VI is conceptually illustrated in Fig. 9 (a more detailed
treatment is given e.g. in [351]), and usually referred to as training a sequential
variational autoencoder (SVAE). Spelling out the first term in the ELBO (Eq. 29)
explicitly, one obtains a joint likelihood over latent states and observations that
factorizes according to the assumptions from Eqs. 27 and 28:

p(X ,Z) = p(z1)p(x1|z1)

T∏
t=2

p(zt|zt−1)p(xt|zt). (32)

Spelling out the joint log-likelihood over the M-dimensional latent states and
N-dimensional observations explicitly leads to:

logp(X ,Z) = −
M

2
log(2π) −

1

2
log |Σ0|−

1

2
(z1 −µ0)

TΣ−1
0 (z1 −µ0) (33)

−
N

2
log(2π) −

1

2
logΓ |−

1

2
(x1 −µx1)

TΓ−1(x1 −µx1)

+

T∑
t=2

(
−
M

2
log(2π) −

1

2
log |Σ|−

1

2
(zt −µzt)

TΣ−1(zt −µzt)

)
+

(
−
N

2
log(2π) −

1

2
log |Γ |−

1

2
(xt −µxt)

TΓ−1(xt −µxt)

)
.

The initial state and its covariance are usually taken as free model parameters
and jointly optimized during training. However, they can also be estimated
from the data directly using the encoder model. This joint likelihood is the
first term in the second line in Eq. 29. What remains for the computation of
the ELBO is the expectation over the approximate posterior density, which is
just its entropy Hqϕ . This entropy can often be analytically computed given
certain simplifying assumptions about the parameterization of the approximate
posterior.
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Figure 9: Illustration of the SVAE setup.

approximate posterior Training the SVAE means maximizing the ELBO,
which, in turn, implies maximizing the likelihood of the data X . The most
important practical choice lies in choosing an appropriate parameterization for
the approximate posterior via the encoder model qϕ(Z |X). The approximate
posterior is usually assumed to be a multivariate Gaussian of the form [44]:

qϕ(Z |X) = N(µϕ(X),Σϕ(X)) (34)

Here, the mean and covariance are functions of the observations. Assuming a
trajectory of observations X = {x1,x2, . . . ,xT } and corresponding latent states
Z = {z1, z2, . . . , zT } of length T, the main challenge is to find a formulation
of the approximate posterior that both captures the complexity and temporal
structure of the underlying time series while making the computation of the en-
tropy in the ELBO (Eq. 30) resource-efficient. Computing the entropy requires
evaluating the determinant of the covariance matrix Σϕ(x) ∈ RMT×MT , which
naively scales with O(T2), and thus becomes costly to evaluate for longer se-
quence lengths T . Thus for computational efficiency, for the results in [54] and
[53], we assumed a mean-field approach, breaking down qϕ(Z |X) over time by
introducing a time-varying mean µt,ϕ and covariance Σt,ϕ at every time step,
and further assuming the covariance matrix is diagonal. Other approximations
based on a block-tri-diagonal covariance structure that mimic the assumptions
of a first-order Markov process have been proposed in Archer et al. [16], and em-
ployed in publications in our group in Kramer et al. [214], and as a comparison
in [53]. However, the Cholesky factorization required in the computation of the
determinant of the covariance matrix becomes a significant computational bot-
tleneck. This makes a full mean-field approximation computationally desirable
while constituting a potentially overly simplifying assumption [26, 44]. For this
thesis, I have implemented and tested a number of encoder models, detailed in
Sect. 3.2.6, including direct comparisons in Table 2. A parameterization based
on temporal convolutional neural networks (CNNs) [227] was most successful
for the experiments in [53, 54].

problems with svaes in dsr Given the mean-field assumption, the joint
likelihood and the entropy calculations become fully parallelizable. Combined
with encoder models based on architectures that likewise scale well on long
sequences, such as CNNs, this renders the runtime of the SVAE almost inde-
pendent of the sequence length T . Training within the SVAE approach does not
require drawing sequences from the DSR model (Eq. 22) during training since
the joint likelihood only contains one-step ahead predictions (Eq. 33), avoiding
the exploding gradients discussed in the Sect. 3.2.1. The burden for capturing
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long-term temporal dependencies is hence directly put on the encoder model.
However, extensive experiments in the context of [54] and comparisons with the
results from [214] revealed clear problems with this setup. Even when relying
on sophisticated encoder models, implementing the block tri-diagonal covari-
ance structure based on the Markovian latent model assumption [16, 214], the
results on anything but simple benchmark systems like the Lorenz-63 system
were sub-par, and reconstructions on challenging experimental datasets were
next to impossible [54, 214]. This observation is more directly illustrated in Fig.
13, which outlines how training an SVAE in the context of DSR leads to overly
smoothened loss landscapes ill-equipped to correctly capture long-term statis-
tics of the reconstructed system. These results, combined with the much better
performance of TF-based techniques in achieving this goal (also illustrated in
Fig. 13), motivated the development of the MTF framework. This approach com-
bines the advantages of the SVAE, such as its flexible encoder-decoder structure
and its potential to integrate across multiple modalities, with the strong perfor-
mance of TF-based training in DSR.

bayesian data integration In the SVAE, latent states Z are treated as
random variables, but model parameters are not. A natural extension of the
SVAE into a fully probabilistic setting is to treat all or a subset of the model pa-
rameters of the DSR model (e.g. θ = {A,W ,h,B,µ0,Σ0,Σ} for the PLRNN in
Eq. 12) as random variables as well. Similar ideas can be traced back to Bayesian
NNs [306]. Bayesian approaches for RNNs also bear some resemblance to con-
cepts in modeling stochastic dynamics, such as random DS [17] or random
ODEs (RDEs, [90]). Here model parameters themselves are seen as stochastic
components of a DS. RDEs are conjugate to SDEs [144, 171], and hence stochas-
ticity in model parameters is intimately tied to stochasticity in the modeled
dynamics.

A fully Bayesian approach was implemented and tested within the SVAE
framework in our group jointly with the work in Sayer [351], whose notation
I will follow here. Assume we have observed time series X from some DS as
before, but also observed some other structural data D that could contain prior
knowledge about the system. Treating model parameters as random variables
leads to a joint posterior over Z and model parameters θ, which can be written
as a product:

p(Z,θ |X ,D) = p(Z | θ,X ,D)p(θ |X ,D).

The posterior over model parameters can be spelled out explicitly using Bayes’
formula:

p(θ |X ,D) =
p(X | θ,D)pα(θ |D)

p(X |D)
,

This approach therefore introduces a prior distribution pα = (θ|D) over model
parameters. This prior provides a natural way to integrate data/prior knowl-
edge D into the model, which might often be available in empirical settings
(e.g. neural structural information or psychological survey data). It further in-
corporates two approximate posterior distributions, one over model parameters
and one over latent states:

qξ(Z,θ |X ,D) = qϕ(Z |X ,D)qψ(θ |X ,D).
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Deriving an optimization criterion based on these distributions is somewhat
lengthy (see [351] for more details). The resulting optimization criterion how-
ever is relatively intuitive:

L(ϕ,ψ,α) =

{
Eqϕ

[
Eqψ logp(X ,Z | θ,D)

]
− KL

(
qψ(θ |X ,D) ∥ pα(θ |D)

)
+ H

(
qϕ(Z |X ,D)

)}
.

This term consists of the joint likelihood (Eq. 33) and entropy over the approx-
imate posterior over latent states (the ELBO in the SVAE), combined with a
KL divergence between approximate posterior and prior over the model pa-
rameters. This expression contains expectation values over both approximate
posteriors, which can again be approximated by Monte-Carlo sampling using
the reparameterization trick:

L(ϕ,ψ,α) =
1

K

K∑
k=1

1

L

L∑
ℓ=1

(
logp(X ,Z(ℓ)|θ(k),D) + logpα(θ(k)|D) (35)

− logqϕ(Z(ℓ)|X ,D) − logqψ(θ(k)|X ,D)
)

,

While this expression can be used as an optimization criterion for training a
PLRNN on time series data X and structural data D, the crux in successfully
using this framework for DSR lies in designing appropriate prior pα and ap-
proximate posterior distributions qϕ over latent states and qψ over the model
parameters. In both cases, we can assume multivariate normal distributions pa-
rameterized by NNs, leading to analytical expressions for the likelihoods in Eq.
35. We tested different architectures to parameterize the respective distributions,
such as fully connected NNs for pα or LSTMs for qψ. Within this framework, it
however proved challenging to achieve successful DSR even for simple bench-
mark systems. Some of these challenges can be tied to the overall inferiority
of the SVAE approach explained above, since the optimization criterion for the
latent states remains the same as in Eq. 33. Further, taking model parameters
θ = {A,W } as random variables likely destabilizes training, since as observed
in [104, 149], often small changes in the parameters of the PLRNN can lead to
large qualitative changes in dynamics. Since model parameters are drawn dur-
ing training, this would be reflected in a high variance of the error gradients
given different samples from qψ or jumps in the loss landscape around bifurca-
tion boundaries, as detailed in [104]. Thus, although theoretically appealing and
offering a natural method to incorporate structural informationD, an approach
successfully leveraging Bayesian integration in DSR requires further research.

3.2.3 Sparse Teacher Forcing (STF)

The three TF approaches described in the following sections directly address the
main challenge framed in Sect. 3.2.1: how can we avoid diverging gradients on
chaotic systems and still capture long-term statistics of the underlying system
correctly by sampling long RNN trajectories during training? The main idea
behind TF is to leverage a combination of forward-iterated latent states (those
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potentially incurring exploding gradients during the backward pass when iter-
ating Eq. 22) and data-inferred states (estimated in some way from the data)
to balance the training process by ‘forcing’ trajectories back on track. While TF
has been discussed in the literature before [178, 307, 310, 421], the connections
to chaotic dynamics and successful applications in the context of DSR has only
been thoroughly explored in our group in the works discussed here [53, 54,
152], and in [276].

sparse tf In sparse TF (STF), we directly replace latent states (or a subset
of them) with states inferred from observations at intervals τ while leaving the
network to evolve freely otherwise. What remains to be determined is the rela-
tionship between observations and latent states, reminiscent of what is learned
by the encoder model in the SVAE approach. Since the STF approach combines
classical RNN training with BPTT with TF, it is also called ‘BPTT-TF’ in [54].

If we assume observations to be normally distributed, as when employing
the observation model from Eq. 14, then the reverse direction of the observa-
tion equation is obtained by building the Moore–Penrose (pseudo-) inverse of
B, taking ẑt = (BTB)−1BTxt. When using the full observation model, B oc-
casionally becomes ill-conditioned (close to singular) during training. To avoid
this, we can regularize the condition number of B [152], ensuring invertibility:

Lcn = λcn

(
1−

σmax(B)

σmin(B) + ϵ

)2
. (36)

Here σmax(B) and σmin(B) are the largest and smallest singular values of B,
respectively, λcn is a regularization constant and ϵ = 10−8 is a small number
added for numerical stability.

identity tf Instead of training a linear matrix B, the inversion becomes
trivial if we instead adopt an identity mapping as the observation model:

x̂t = Izt, (37)

with I ∈ RN×M, and an identity matrix with Ikk = 1 for the k read-out neu-
rons, k ⩽ N, and zeroes elsewhere. This training technique is called identity-TF
(id-TF). Since the observation model boils down to an identity mapping be-
tween observations and latent states, the read-out neuron states can be directly
replaced with observations at every τ time steps:

zt+1 =

RNN(z̃t) if t ∈ F

RNN(zt) else
(38)

with F = {lτ+ 1}l∈N0
, and where we assume that teacher-forced states are equal

to the observations, z̃t = xt. Training with id-TF takes place in a fully deter-
ministic framework where latent states only factor into the training objective
indirectly through the observations, and hence the observation model in Eq. 37

does not contain any parameter for the noise covariance. The more complex
likelihood function of the SVAE in Eq. 33 over both latent states and observa-
tions then reduces to the Mean Squared Error (MSE) loss function over model
predictions and observations:

ℓMSE(X̂ ,X) =
1

N · T

T∑
t=1

∥x̂t −xt∥22 , (39)
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where X̂ represents the model predictions andX denotes the training sequence
of length T . The M− k non-readout neurons do not contribute to the loss func-
tion but help to embed the approximated DS into a higher-dimensional space
that increases expressivity and can help to represent unobserved variables of
the underlying DS (as illustrated e.g. in Chapter 5).

Finding an optimal TF interval τ is a choice of much practical importance,
and is often instrumental in achieving successful DSR. [276] suggest selecting τ
based on the predictability time, defined as

τpred =
ln 2
λmax

. (40)

where λmax is the maximum Lyapunov exponent of the underlying system.
When no ground-truth value for λmax exists, such as when training on exper-
imental data, it needs to be estimated numerically from the data, e.g. using
the Julia library DynamicalSystems.jl [82]. However, in most practical settings,
such as for the results presented in Chapter 4, we could also determine opti-
mal settings for τ by performing a line search. Besides assuming an identity
matrix for the observation model and restricting forcing to read-out states, we
can more generally co-train some parameterized (possibly nonlinear) operator
ẑt = Bθ(xt) to infer control states from the data.

3.2.4 Generalized Teacher Forcing (GTF)

Generalized TF (GTF) [152] is similar in spirit to STF, but instead of fully (but
sparsely in time) replacing latent states by model inferred states as in STF, the
idea is to interpolate them during training with some constant 0 ⩽ α ⩽ 1,
according to:

z̃t := (1−α)zt +αẑt, (41)

Figure 10: Principle of Generalized Teacher Forcing. Taken from [152].

Here, the RNN-predicted states zt evolve according to Eq. 22, the data-inferred
states are given as before by ẑt := B+xt, where B+ is again the (pseudo-
)inverse of B, and the z̃t are the teacher forced states given by a combination of
forced and unforced states. Figure 10 illustrates the general procedure and no-
tation. While the idea behind GTF can also already be traced back to the 1990s
[88], a thorough theoretical and empirical study in the context of DSR was only
carried out by us in [152].

As with STF, an appropriate choice of the hyperparameter α can fully remedy
the exploding gradients for chaotic DS described in Sect. 3.2.1. This can be seen
by considering how GTF affects the system’s Jacobians. Using the chain rule
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and plugging in Eq. 41, the Jacobians of the TF states scale proportionally to
the strength of the TF signal 1−α:

Jt =
∂zt
∂zt−1

=
∂zt
∂z̃t−1

∂z̃t−1
∂zt−1

=
∂Fθ(z̃t−1)

∂z̃t−1

∂z̃t−1
∂zt−1

= (1−α)J̃t, (42)

Derivatives of temporally distant states are then given by a product of Jaco-
bians over forced states, multiplied with an exponential decay term scaling with
the strength of α:

∂zt
∂zr

=

t−r−1∏
k=0

Jt−k =

t−r−1∏
k=0

(1−α)J̃t−k

= (1−α)t−r
t−r−1∏
k=0

J̃t−k.

(43)

This already provides some intuition into why GTF allows us to control the
Jacobian product norm along trajectories. Particularly, considering all Jacobians
of an RNN model J = {J̃κ}κ∈K , we can define

σ̃max := sup
{∥∥J̃κ∥∥ = σmax(J̃κ) : J̃κ ∈ J

}
, (44)

For an RNN reconstructing a chaotic DS, σ̃max > 1 [152], and hence the product
in Eq. 43 diverges for T towards infinity. However, the decay term (1−α)t−r can
compensate for this divergence: ideally, it should balance the product so that
gradient divergence is avoided without pushing gradients too far toward zero.
Particularly, for most distant states in the product series, for which this diver-
gence is expected to be most significant, this product should remain balanced
around one:

∂zT
∂z1

= (1−α)T−1
T−2∏
k=0

J̃T−k
!
= 1. (45)

These considerations imply that an optimal α can be chosen based on esti-
mates of the system’s Jacobians. In practice, different ways for using and esti-
mating α during training exist, discussed in more detail in [152]. One straight-
forward way of directly relating α to σmax is given by taking α := 1 − 1

σ̃max
.

This guarantees that the Jacobian product series is bounded from above [152].
Using this formula requires obtaining a sensible estimate for σ̃max. However,
the theoretically most principled approach for estimating σ̃max, based on Eq. 44,
requires the evaluation of the full set J of the DSR model, which scales exponen-
tially with model size for the PLRNN architectures discussed in the previous
section (Sect. 3.1), since it entails evaluating the Jacobians in every linear sube-
gion of the DSR model separately.

Since mimicking the dynamics on the training data is the goal of RNN train-
ing, a sensible and less computationally intense estimate σ̃max can be obtained
by directly considering the Jacobians along training trajectories given by the TF
states z̃t, and taking the maximum:

σ̂max = max
t

∥∥J̃t∥∥ , (46)
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These estimates guarantee an α that formally avoids divergence by providing an
upper bound on the Jacobian product series. In practice, however, they provide
an overly conservative estimate for the TF signal, where the desired balance
in Eq. 45 is not necessarily provided. A more practical way of estimating α is
found by selecting α based on the condition in Eq. 45. Assuming non-singular
Jacobians, this implies that

(1−α)G(J̃T :2)
!
= 1, (47)

where G(J̃T :2) :=

(
T−2∏
k=0

J̃T−k

) 1
T−1

. (48)

Assuming we estimate the Jacobians Ĵt from a training sequence, evaluated
at data-inferred states, this yields:

α =

[
1−

1∥∥G(ĴT :2)∥∥
]

. (49)

This estimate can also be taken over several p training batches, using α =

maxp α(p). While computing this estimate again necessitates evaluating prod-
ucts of Jacobians, whose divergence in the context of chaotic system motivates
using TF techniques in the first place, approximations for these products of Ja-
cobians can be found to obtain estimates for α during training (details are given
in [152]). Lastly, α can also be treated adaptively during the training process, e.g.
by starting with a strong forcing signal when observations do not yet match the
true dynamics, and then slowly phasing out forcing as the model increasingly
learns to approximate system dynamics (see also Fig. 11). This idea can also be
combined with iteratively updating estimates of α from Eq. 48.

However, as for STF, α can also be treated as a hyperparameter optimized
by line search. For several benchmark systems, reconstructions were also not
overly sensitive to the precise choice of α, achieving good reconstructions along
a range of values [152], and α optimized via line search performed similarly
to the adaptive α scheme (shPLRNN+GTF and shPLRNN+aGTF in Table 7).
An important observation is that GTF smoothens loss landscapes (see also Figs.
13 and 14 illustrating the same effect for MTF), which has previously been
noted in the context of other control theoretic approaches [3]. This can intu-
itively be understood by noting that small changes in parameters lead to less
dramatic changes in overall dynamics: just as the product of Jacobian in Eq. 43

is smoothened out by an exponential decay term weighted by 1−α, differences
in dynamics caused by small changes in parameter do not lead to equally expo-
nential changes in predicted trajectories that would naturally occur in chaotic
DS, and hence to less abrupt changes in the resulting losses. However, as illus-
trated in Figs. 13 and 14, overly strong TF signals lead to over smoothed loss
landscapes that even become insensitive to divergences in the dynamics of the
DSR model. Finally, Fig. 11 summarizes example training sequences at different
stages of training using STF and GTF.

3.2.5 Multimodal Teacher Forcing (MTF)

The multimodal TF (MTF) framework [53] combines many of the ideas dis-
cussed in the previous sections. While STF (Sect. 3.2.3) and GTF (Sect. 3.2.4) are
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Figure 11: Example training sequences (Tseq = 300) at different stages of training using
STF (τ = 25, with forcing times highlighted in red), and GTF (α = 0.15) for
training a shPLRNN on the Lorenz-63 system. Forced states with STF do
not align perfectly with the data since forcing occurs prior to the RNN step.
Note that training on this sequence length without any TF quickly leads to
divergences. Hence the unforced prediction (light green) is drawn from the
model trained with GTF, and intended to serve as a reference for the freely
evolving model predictions at this epoch.

effective at obtaining balanced gradients during training, thereby allowing train-
ing on long sequences, they embed the reconstruction model in a deterministic
framework and rely on the inversion of the observation model to infer TF states.
Inverting the observation model, however, is not always possible, since so far
we have assumed a relatively straightforward relationship between the latent
states of the DSR model and observations via the linear Gaussian observation
model (Eq. 14) and the identity observation model (Eq. 37). However, relating
back to the dual challenge inherent in data-driven DSR discussed in the intro-
duction (Sect. 2.3, [218]), it is often a crucial component of a DSR algorithm to
discover an appropriate coordinate system within which to represent the recon-
structed latent DS, especially if the relationship between measurements and the
latent DS is increasingly complicated, such as for partial observations, discrete
random variables or combinations of jointly observed time series.

The SVAE (Sect. 3.2.2) trains the DSR model within a flexible encoder/de-
coder architecture (Fig. 9). Kramer et al. [214] integrate the SVAE in a multi-
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modal setting, combining multiple different continuous and/or discrete data
channels into the same reconstruction model. However, as discussed in Sect.
3.2.2 (see also Fig. 13), SVAEs perform much worse on experimental data and
challenging DS benchmarks than approaches based on TF, as will also be con-
firmed by the benchmark comparisons presented in Sect. 4.3.1.

Inspired by the respective strengths of SVAEs and TF-based training, MTF
provides a novel and comprehensive framework for multimodal data integra-
tion for DSR. The central idea is to use a Multimodal Variational Autoencoder
(MVAE) to create a joint latent representation across different observed data
channels and potentially different data types (continuous and/or discrete). This
latent representation then provides a (sparse) TF signal during the training of a
DSR model. Both the DSR model and the MVAE are then coupled to the obser-
vations through a set of shared, modality-specific decoder (observation) models
that take the distinct statistical properties of the observations into account. This
approach is illustrated in Fig. 12.

Figure 12: Principle of Multimodal Teacher Forcing. Taken from [53].

This exposition follows the one in [53] with some adjustments in notation
to ensure consistency with the rest of this chapter. As in [53], here I assume
training with STF, but the ideas behind GTF are also naturally accommodated
into MTF by incorporating the MTF states in Eq. 41.

Consider a combination of multivariate Gaussian (X), ordinal (O), and count
(C) observations of length T , constituting the training data

Y = {{x1, . . . ,xT }; {o1, . . . ,oT }; {c1, . . . , cT }}.

We assume these are generated by a sequence of M-dimensional latent states
of a general DSR model (Eq. 22) e.g. given by a dendPLRNN, Z = {z1, . . . , zT },
zt ∈ RM. In this case, we may take modality-specific decoder models such as
the already introduced linear Gaussian model (see Eq. 50), a cumulative link
model for ordinal data, and a log-link function for Poisson data (see Sect. 3.2.7
for details):

xt|zt ∼ N (Bzt,Γ ) ; (50)

ot|zt ∼ Ordinal(βzt, ϵ); (51)

ct|zt ∼ Poisson(λ(zt)). (52)

Other combinations of modalities can naturally be accommodated (e.g. con-
tinuous neural recordings with categorical behavioral labels or discrete count
spike trains combined with continuous position data, Sect. 4.3.3). The frame-
work can also be used to train solely on discrete data, such as ordinal or count
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data (Sect. 4.3.2). The loss of the DSR model is computed by summing the nega-
tive log-likelihoods of the respective observation models, which we here assume
to be conditionally independent given the latent state z:

LDSR = −

T∑
t=1

(logpθ(xt|z1:K,t) + logpθ(ot|z1:K,t) + logpθ(ct|z1:K,t)), (53)

The MVAE is used to encode a set of control states Ẑ = {ẑ1, . . . , ẑT }, ẑt ∈
RK jointly from the observations via the approximate posterior distribution
pϕ(Ẑ |Y ). This can, as for the SVAE in Sect. 3.2.2, be parameterized in different
ways, e.g. via temporal convolutions (Sect. 3.2.6). The encoded states will serve
as the (sparse) TF signals during the training of the DSR model. As for the
SVAE, the MVAE is trained to minimize the negative Evidence Lower Bound
(ELBO), here including all multimodal observations Y :

L(ϕ,θ;Y ) =− Eqϕ [logpθ(Y |Ẑ)

+ logpθ(Ẑ)] − Hqϕ(Ẑ |Y )
(54)

with Hqϕ the entropy term as in Eq. 29. To ensure consistency between both
latent codes, the control states are coupled to the same set of decoder models
as the DSR model:

xt|ẑt ∼ N (Bẑt,Γ ) ; (55)

ot|ẑt ∼ Ordinal(βẑt, ϵ); (56)

ct|ẑt ∼ Poisson(λ(ẑt)), (57)

The first term of the ELBO is then similar to the DSR loss (Eq. 54), but evalu-
ated for the control states using the shared decoder models:

logpθ(Y |Ẑ) = −

T∑
t=1

(logpθ(xt|ẑt) + logpθ(ot|ẑt) + logpθ(ct|ẑt)), (58)

The DSR states Z ∈ RM and MVAE states Ẑ ∈ RK are not required to have the
same dimensionality, K ⩽M. As in id-TF, this separates the K readout states of
the DSR model and the M−K unforced states that do not contribute to the loss
but can increase the expressivity of the DSR model.

With the decoder and encoder of the MVAE specified, what remains is the
prior over control states pθ(Ẑ). Given that in the optimal case after training,
control states should agree with the states of the DSR model, it is natural to
assume that this prior in turn is given by the DSR model:

Eqϕ [logpθ(Ẑ)] ≈1
L

L∑
l=1

T∑
t=1

−
1

2

(
log |Σ|

+ (ẑ
(l)
t −µt)

⊤Σ−1(ẑ
(l)
t −µt)

+ const.
)
,

(59)

When using MTF with STF, the terms in Eq. 59 where t ∈ F are evaluated before
forcing, as otherwise they would trivially evaluate to zero.

This expression is similar to the third row in the joint likelihood in Eq. 33,
where the means µt = E(zt|zt−1) are given by the DSR model. However, the
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crucial difference between MTF and SVAEs lies in the fact that here we obtain
the means by generating longer trajectories of length T of RNN states Z from
the DSR model while applying STF/GTF, and only use the control states for
initialization and TF. This allows the DSR model to freely evolve longer trajec-
tories and leverage the advantages of training with BPTT. This in turn puts less
burden on the approximate posterior to fully capture the long-term structure
(since here its primary role is in providing a control signal). In contrast, for the
SVAE, we only consider means that are forward propagated one time step from
the encoded state at the previous time step µt = E(zt|ẑt−1), ensuring short-
term consistency. These observations, and their effect on the loss curves of the
DSR models, are summarized in Fig. 13.

Figure 13: Illustration of the impact of dramatic changes in long-term dynamics on the
SVAE and MTF loss. a: A dendPLRNN successfully trained on multimodal
observations from the Lorenz-63 system is altered by setting a parameter
of the linear self-connectivity A22 > 1, which results in globally diverging
dynamics, while still looking locally consistent with the Lorenz-63. b: The
global divergence is reflected in the training-time trajectories Z generated
using MTF with interval τ = 10 (right), within which the DSR model evolves
freely. This divergence leads to large increases in the MTF training loss (see
MTF loss curve for A22 > 1), and hence is strongly penalized. This effect is
essentially not present for the SVAE, where the global divergence induces
no considerable effect on the training loss and training-time trajectories. The
mismatch in global (long-term) dynamics hence remains unrecognized by
the SVAE. As shown at the bottom, at the minimum of the SVAE loss (A22 ≈
0.966) the dynamics converge to an equilibrium point (left), while MTF at its
minimum (A22 ≈ 0.637) produces trajectories which agree in their temporal
structure with those of the original Lorenz-63 (right).
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Figure 14: a: MTF loss landscapes, computed using the total loss (Eq. 60) by varying
two parameters of a trained dendPLRNN (A22, W34) and computing the
loss for a sequence of T = 300 time steps. Illustrated are four values of TF in-
terval τ. Lower values of τ increasingly smoothen the loss landscape. τ = 10
corresponds to an optimal choice for the TF interval, where the loss land-
scape appears both smoothed out and convex, while for low τ = 1, the loss
landscape flattens, making training more difficult. b: Comparison of MTF
and SVAE loss landscapes. Since the SVAE loss (Eq. 33) only includes one-
step ahead predictions from the DSR model, it essentially over-smoothens
the loss landscape, similar to the observations made when choosing a very
small τ in MTF, not allowing the model to evolve freely during training. Note
that the parameter range that can be meaningfully explored for the MTF is
smaller than for the SVAE since larger variations in the parameters (e.g. a
value of A22 over 1) induce divergences in the sequences drawn from the
DSR model for the computation of the DSR loss (see also Fig. 13). Based on
[53].

Using the DSR model as a prior for the MVAE ensures consistency between
both latent codes (top and bottom row in Fig. 12) and is therefore called con-
sistency loss, Lcon. The total loss for the MTF framework is then given by the
consistency loss, the DSR loss (Eq. 53, and the remaining ELBO terms (Eq. 54):

LMTF = Lcon +LDSR − Eqϕ [logpθ(Y |Ẑ)] − Hqϕ(Ẑ |Y ) (60)
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Fig. 15 demonstrates that all components of the loss contribute meaningfully
to successful reconstructions. As already mentioned for GTF (see [152]) MTF
smoothens the loss landscape, and an optimal TF interval makes the loss land-
scape convex and well-navigable around optimal parameter values (Fig. 14).

Figure 15: Comparison of state space agreementDstsp in two scenarios (see Sect. 4.1 for
details): (a) when omitting different terms from the total loss as specified in
Eq. 60, and (b) while altering the scaling of the consistency loss Lcon. These
comparisons are made for a dendPLRNN trained using MTF on multimodal
Gaussian, ordinal, and count data from the chaotic Lorenz system (Fig. 24).
Taken from [53].

3.2.6 Encoder Models

This section summarizes the encoder models used when training within the
SVAE and MTF approach.

temporal cnn encoder The mean µt,ϕ of the CNN Encoder is modeled
using stacked temporal convolutions, which process the inputs xt−w...xt+w,
where the maximum kernel size determines w. In many real-world systems,
such as chaotic systems, future values become decorrelated from the past after
characteristic time-scales [127], and hence an optimal kernel size depends on
the properties of the underlying DS [233]. In [54], we used a four-layer stack of
temporal CNNs with progressively reducing kernel sizes (e.g. 41, 31, 21, and
11) for the mean, which are then mapped to the parameters of the approximate
posterior. The diagonal covariance is directly mapped from the observations to
the logarithms of the covariance using a single convolutional layer. The ratio-
nale for employing CNNs is based on the assumption that the data exhibits
translationally invariant features in time, enabling the encoder model to inte-
grate meaningful temporal context into its latent representation [78, 227]. This
is exemplified by the observation that the CNN encoder effectively learns a
temporal delay embedding when trained on partial observations of the Lorenz-
63 attractor (Fig. 27). For image data, deep CNNs with small kernel sizes are
the most popular choice [195, 397], while in the context of TSF and TS classi-
fication, wider kernels are often used [233]. For real-world applications where
forecasting is the primary goal and inputs from the future are unrealistic (as
for the trust game data in Sect. 5), the CNN encoder can implement this causal
structure by only encoding past values xt−w...xt.

mixture-of-experts cnn encoder The Mixture-of-Experts (MoE) [366]
and product-of-experts (PoE) [154, 426] are extensions of the temporal CNN en-
coder to multimodal settings that combine distinct encodings for each modality
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into a combined estimate. For the modality-specific estimates, we used the same
CNN encoder as above but trained a distinct encoder model for each modality
individually. For the MoE, the outputs of each encoder are then combined into
a joint estimate by either a weighted average :

µMoE = wgµg +woµo +wcµc

ΣMoE = wgΣg +woΣo +wcΣc,

with means µ{g,o,c}, diagonal covariances Σ{g,o,c} of the respective experts,
and mixing weights wg (Gaussian), wo (ordinal) and wc (count process), which
can either be co-trained or set to constant values, here chosen to be 1/3 for each
modality. The MoE can for instance be beneficial for cross-modal inference in
the case where individual time series contain missing entries (see Fig. 26 for
DSR from both Gaussian and ordinal observations in a situation where 20% of
the time steps are randomly missing in each modality).

For the PoE, the estimates of the individual experts are multiplied instead
of summed, which however often led to numerical instabilities during training
from discrete variables.

rnn encoder We further tested an RNN encoder [73], where the hidden
states ht of an RNN are mapped onto the parameters of the approximate pos-
terior at every time step. Following the standard RNN model in torch.nn.RNN,
this results in:

ht = tanh(Wht−1 +Uyt + b)

µt =Wµht + bµ

diag
(
[logσ21, . . . , logσ2K]

)
=WΣht + bΣ

with trainable RNN parameters {W ,U , b} and linear readout weights {Wµ, bµ}
for the mean and {WΣ, bΣ} for the logarithm of the diagonal covariance of the
approximate posterior, respectively. The observations yt are hence provided as
input at every time step and the model is trained non-autonomously, corre-
sponding to the ‘classical’ RNN training setup (see Sect. A.2). Therefore, the
model will usually reflect the sub-par performance of classical RNN training
on DSR tasks (see for instance comparison to ‘BPTT’ in Table 5). If instead the
RNN encoder is evolved freely for longer times, which would be beneficial in
a DSR context, it either requires a TF signal, or longer sequence lengths will
inevitably lead to the same gradient problems described in Sect. 3.2.1. This
somewhat tautological issue of requiring to effectively train an RNN (the en-
coder model), which is then used to provide a TF signal to train another RNN
(the DSR model), might help explain why this formulation did not achieve com-
parable performance (Table 2).

transformer We also implemented a Transformer encoder based on [406].
Given the time series nature of the data, we used positional encodings as pro-
posed by Vaswani et al. [406]. The input time series, augmented with embed-
dings, was processed through a typical Transformer encoder block, using the
default implementation in Pytorch torch.nn.TransformerEncoder. The output,
as for the other encoder models, was then mapped to the mean and logarithm
of the covariance of the approximate posterior through linear readout layers.
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multi-layer perceptron (mlp) Lastly, we also implemented an MLP
encoder, comprising 3 fully connected layers with ReLU nonlinearity. Again,
the MLP output is mapped to the mean and logarithm of the covariance of the
approximate posterior via a linear readout layer.

Table 2: Performance comparison of encoder and RNN models trained using MTF on
multimodal data from the chaotic Lorenz system, using the performance met-
rics introduced in Sect. 4.1. Taken from [53].

Encoder/RNN Model Dstsp ↓ DH ↓ PE ↓ OPE ↓ SCC ↓ OACF ↓ CACF ↓
CNN 3.4± 0.35 0.30± 0.06 1.3e−2± 2e−4 0.12± 0.03 0.07± 0.01 0.07± 0.01 6.6e−5± 8e−6

CNN-MoE 5.89± 0.18 0.43± 0.03 2.3e−2± 5e−4 0.13± 0.00 0.10± 0.00 0.19± 0.01 1.1e−4± 2e−5
RNN 5.47± 0.48 0.32± 0.04 1.6e−2± 2e−4 0.15± 0.01 0.13± 0.02 0.05± 0.01 8.5e−5± 9e−6
Transformer 5.85± 0.14 0.40± 0.04 4.8e−2± 5e−4 0.16± 0.00 0.17± 0.03 0.16± 0.02 9.5e−5± 7e−6
MLP 6.57± 0.14 0.43± 0.01 5.4e−2± 6e−4 0.15± 0.00 0.15± 0.01 0.21± 0.01 1.3e−4± 9e−6
dendPLRNN 3.4± 0.35 0.30± 0.06 1.3e−2± 2e−4 0.12± 0.03 0.07± 0.01 0.07± 0.01 6.6e−5± 8e−6

LSTM 3.8± 0.74 0.31± 0.01 5.4e−2± 5e−4 0.16± 0.03 0.09± 0.02 0.09± 0.02 8.8e−5± 8e−6
GRU 3.47± 0.56 0.29± 0.03 3.5e−2± 5e−4 0.13± 0.03 0.06± 0.01 0.08± 0.01 7.1e−5± 5e−6

3.2.7 Decoder Models

ordinal decoder model For ordinal data, there is a natural ordering
between variables, e.g. in survey data in economy or psychology commonly as-
sessed through Likert scales [241], often ranking from 1 to 7. Treating ordinal
data as metric can lead to a variety of problems, as pointed out in [240]. Here
ordinal observations are coupled to latent states via a generalized linear model
[267]. Specifically, we assume that the ordinal observations ot relate to an un-
derlying continuous variable uit, which is linked to latent states zt via a linear
model

uit = β
T
i zt + ϵit, (61)

where βTi ∈ RM are the model parameters and ϵit is an independently dis-
tributed noise term. The distributional assumptions about the noise term ϵit
determine which link function to use. A Gaussian assumption leads to an or-
dered probit model, while a logistic assumption leads to an ordered logit model
[423]. While both models lead to relatively similar results in preliminary exper-
iments, we found the ordered logit model to work slightly better in practice
for the results in [53]. Inverting the link function leads to an expression for the
cumulative probabilities:

p (oit ⩽ k|zt) =
exp

(
β0ik −β

T
i zt

)
1+ exp

(
β0ik −β

T
i zt

) . (62)

The probabilities p (oit = k|zt) follow from the cumulative distribution by sub-
tracting neighboring cumulative probabilities p (oit = k|zt) = p (oit ⩽ k|zt) −
p (oit ⩽ k− 1|zt), which finally gives the log-likelihood as

logpθ(O|Z) =

N∑
i

T∑
t

K∑
k

[oit = k] logp (oit = k|zt) . (63)

categorical model Categorical observations are, like ordinal observa-
tions, not associated with a metric space, but in contrast to ordinal data, there

[ May 6, 2024 at 7:40 – classicthesis ]



3.2 training algorithms 59

is also no natural ordering between the variables. To couple categorical obser-
vations to the latent states, we employed the natural link function given by

πi =
exp

(
βTi zt

)
1+

∑K−1
j=1 exp

(
βTj zt

) ∀i ∈ {1 . . . K− 1} (64)

πK =
1

1+
∑K−1
j=1 exp

(
βTj zt

)
Here, the parameters βi ∈ RM×1 constitute the respective regression weights
for category i = 1 . . . K−1, with the total probability over all categories

∑K
i=1 πi =

1. This leads to the following log-likelihood for the categories:

logpθ(O|Z) =

N∑
i

T∑
t

K∑
k

[oit = k] log

 exp
(
βTkzt

)
1+

∑K−1
j=1 exp

(
βTj zt

)


where [oit = k] is an indicator function that is 1 if the observation oit belongs
to category k and 0 otherwise.

poisson model For count observations {ct}
T
t=1, with ct = (c1t, . . . , cLt)

T ,
we tested three different decoder models. First, a standard Poisson model, with
probabilities

pθ (clt|zt) =
λcltlt
clt!

e−λlt . (65)

The probabilities are related to the latent states via the log-link function, log λlt =

γ
(l)
0 +

∑M
m=1 γ

(l)
m zmt, where γ(l) is a vector of coefficients. Thus, λlt = eγ

(l)
0 +γ(l)zt

is the expected count for the lth observation at time t. The total log-likelihood
for observed counts C is then given by:

logpθ(C |Z) =

T∑
t=1

L∑
l=1

[clt log λlt − λlt − log(clt!)] , (66)

zero-inflated poisson model Alternatively, we tested a zero-inflated
Poisson (ZIP) observation model [223]. The ZIP model is designed for count
data that has an excess of zero counts compared to what would be expected
from a traditional Poisson distribution, and thus can naturally handle overdis-
persion often observed in real data, such as the spike trains displayed in Fig. 32.
The ZIP model addresses this by combining a binary process that determines
whether a count is zero with probability πlt) or follows a Poisson distribution.
The combined probability of an observed count given both processes is then
given by

pθ (clt | zt) =

{
πlt + (1− πlt) e

−λlt if clt = 0

(1− πlt)
λ
clt
lt

clt!
e−λlt if clt > 0

(67)

The probabilities are connected to the latent states via a logit and a log-link func-
tion log πlt

1−πlt
= β

(l)
0 +

∑M
m=1 β

(l)
m zmt and log λlt = γ

(l)
0 +

∑M
m=1 γ

(l)
m zmt,

where γ(l) and β(l)are coefficient vectors. Thus, λlt = eγ
(l)zt is the expected

count for the l− th observation and πlt = eβ
(l)zt

1+eβ
(l)zt

is the probability of observ-
ing a zero.
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negative binomial model Finally, the count observations can be mod-
eled by a negative binomial model, given by

pθ (clt|zt) =
Γ(clt +ϕl)

Γ(ϕl)clt!

(
ϕl

µlt +ϕl

)ϕl ( µlt
µlt +ϕl

)clt
, (68)

where µlt is the mean count and ϕl the dispersion parameter of the negative
binomial distribution for the lth observation at time t. As for the Poisson model,
we used a log-link function, logµlt = γ

(l)
0 +

∑M
m=1 γ

(l)
m zmt, with γ(l) a vector

of coefficients, and zmt the mth latent variable at time t. Properly accounting
for dispersion significantly improved the modeling of the spike counts in Fig.
32.

3.3 hierarchization framework

The DSR models and learning algorithms proposed in the previous sections can
be naturally accommodated into a hierarchization framework. Previous work in
our group by Abaigar [1] approached hierarchization by splitting the parame-
ters of the dendPLRNN (Sect. 3.1.1) into group-level parameters, shared by all
models, and subject-specific parameters of the dendritic basis expansion:

θgroup = {A,W,h,Σ} (69)

θ
(j)
subj = {θ

(j)
obs, θ

(j)
a , θ(j)b ,h(j)} for j = 1, . . . ,Nsubj

The idea is then to train the model simultaneously on data from all participants.
During training, random batches x(j)

0...T belonging to subject j are drawn from
all observations XN across all N subjects. The respective loss, given this mini-
batch x(j)

0...T , is then used to compute error gradients for both θgroup and θ(j)subj.
Depending on the training setup, gradient updates can be computed after ev-
ery minibatch, or updates can be averaged across several minibatches. In the
experiments in Sect. 4.4, I computed parameter updates after 16 minibatches,
the same as for the results without hierarchization.

3.3.1 Hierarchical shPLRNN

While we assume that subjects share common statistical features with the group,
the level of variation across subjects might differ across different studies, or
subjects might fall into several clusters with relatively distinct properties. This
implies that a hierarchization framework should be flexible enough to accom-
modate different levels of in-group variation in its formulation. Further, in the
approach along the lines of Eq. 69, it is unclear how to optimally choose which
parameters belong to θgroup and which to θ(j)subj, and how this grouping affects
expressivity of the framework.

These shortcomings motivated the development of a more flexible formula-
tion for hierarchization in DSR models. In this approach, the main idea is to split
the DSR model into a set of trainable weight vectors constituting subject-level
parameters/features θsubj = l

(j) with Nfeat free parameters, which during train-
ing are projected onto the parameters of the DSR model via projection matrices
θgroup which are jointly trained and shared across subjects. Only the weight vec-
tors l(j) are then fine-tuned for each subject, reducing the inter-subject differ-
ences to an Nfeat-dimensional parameter manifold. This approach is illustrated
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in Fig. 16. Similar ideas of splitting model parameters into larger projection
matrices and fine-tuning low-rank parameter vectors on individual tasks have
been explored in different ML applications, for instance in generative model-
ing tasks using RNNs [375, 386] or restricted Boltzmann machines [391], or in
the context of transfer learning and fine-tuning of large scale models on new
tasks (such as Low-Rank Adaptation (LoRA) and its many variants [160] used
on LLMs).

I will introduce this approach more formally for the example of a hierarchi-
cally trained shPLRNN (Eq. 18), but the method naturally extends to other DSR
models by replacing the respective parameters. As previously noted, the sub-
ject level parameters θsubj are captured by the feature vector l(j) ∈ R1×Nfeat ,
which we here take to be a row vector. This vector is used to generate the full
parameter set of the DSR model through learned projection matrices:

W
(j)
1 := mat(l(j) ·PW1

,M,L),

W
(j)
2 := mat(l(j) ·PW2

,L,M),

h
(j)
1 := l(j) ·Ph1 ,

h
(j)
2 := l(j) ·Ph2 ,

A(j) := diag(l(j) ·PA),

where mat(·,m,n) denotes the operation of reshaping a vector into an m× n
matrix,W1 is the resultingM×L connectivity matrix,W2 is the resulting L×M
connectivity matrix, h1, h2 are the threshold vectors of dimensions M and L,
and PW1

∈ RNfeat×(M·L), PW2
∈ RNfeat×(L·M), PA ∈ RNfeat×M, Ph1 ∈ RNfeat×M,

and Ph2 ∈ RNfeat×L are the projection matrices for each respective parameter.
From this, we obtain the latent equation of a reparameterized shPLRNN,

given a subject-specific parameter vector l(j) ∈ RNfeat , as:

zt = A
(j)zt−1 +W

(j)
1 ϕ(W

(j)
2 zt−1 +h

(j)
2 ) +h

(j)
1 , (70)

A crucial ingredient for successful training within this framework is to as-
sign a considerably higher learning rate to the feature vector (around an order
of magnitude) compared to the projection matrices. This helps ensure that a
higher burden is put on the model to incorporate subject-specific information
through the feature vector. It further avoids numerical instabilities which often
occur when choosing higher learning rates for the projections. Another impor-
tant aspect of successful training involves careful initialization of the projection
matrices. Here I used a Xavier Uniform Initialization [130], which is designed
to keep the variance of the outputs nout of a layer roughly the same as the
variance of its inputs nin by drawing weights from a uniform distribution in

the interval [a,a], where a =
√

6
nin+nout

. After drawing the weights I scaled
down the initialized projection matrices by a factor of 0.1 to further reduce the
variance of the outputs in the early stages of training. Again, this helps stabi-
lize the learning process since in this formulation, slight changes in weights can
lead to bifurcations in dynamics often observed in DSR [104, 149].
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Figure 16: Illustration of the hierarchical inference framework.
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4
R E S U LT S

This chapter recapitulates the main experimental results of [54], [152], and [53],
some theoretical results from [139], a summary of the main results from [149],
and unpublished results for the hierarchical inference framework and the linear
regions analysis pipeline. These results include:

• The introduction of a range of performance metrics tailored to DSR for
unimodal and multimodal data.

• The introduction of a statistical and topological error sensitive to multista-
bility, and a discussion of OOD learnability in DSR.

• Extensive evaluations of the dendPLRNN and shPLRNN trained with STF,
GTF and SVAE on several low-and high-dimensional unimodal bench-
mark systems.

• DSR from challenging experimental datasets.

• Comparisons with many other DSR algorithms, based e.g. on Reservoir
Computers (RCs, [303]), Long-Short-Term Memory Networks (LSTMs, [408],
Sparse Identification of Nonlinear Dynamical Systems (SINDy, [59]), Neu-
ral ODEs (Neural ODE, [70]) and Long-Expressive-Memory (LEM, [341].)

• Evaluations of MTF on a range of multimodal benchmarks, including com-
parisons with five other approaches for DSR from multimodal data, based
on a sequential MVAE as proposed in [214], ‘classical’ RNN training with
truncated backpropagation through time (BPTT), multiple shooting (MS),
and two approaches with ‘Gaussianized’ data.

• DSR of chaotic systems purely from discrete ordinal and symbolic/cate-
gorical encodings, using MTF.

• DSR from two real-world multimodal datasets, using MTF.

• The extraction of low-dimensional parameter vectors from benchmark sys-
tems and experimental data using the hierarchization approach.

• The extraction of sparse interpretable graph structure from the linear sub-
regions visited by PLRNNs trained on several benchmark systems.

• A novel pruning procedure based on geometric attractor agreement that
leads to specific network topologies beneficial for DSR.

4.1 performance metrics in dsr

The training algorithms introduced in the previous chapter all rely on loss
functions that incorporate some variant of a prediction error between model-
generated predictions and observed data in the optimization criterion (e.g. the

65
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MSE in Eq. 39, and the corresponding Gaussian likelihoods in Eq. 33). How-
ever, in DSR, we are not primarily interested in good short-term predictions,
but rather in reproducing the long-term temporal, geometric and topological
properties of the underlying system. Further, the MSE (and short-term predic-
tion errors) is unsuitable for assessing reconstruction in chaotic DS for reasons
touched upon before [139]: it is inadequate as a test loss due to exponential
trajectory divergence in chaotic DS (cf. Eq. 24, Fig. 17a left), and does not neces-
sarily capture long-term, invariant, or topological properties of DS. Particularily,
it is not designed to be sensitive to multistability [139]. These shortcomings ne-
cessitate the introduction of new performance metrics that take the geometric,
temporal, and topological structure of the reconstructed systems into account,
ensuring that these are captured correctly.

4.1.1 Performance Metrics for Unimodal Continuous Time Series

Figure 17: Overview over metrics for continuous data for models trained on the chaotic
Lorenz-63 system. a: While short-term predictions deteriorate after a certain
time horizon for chaotic systems due to exponential trajectory divergence
(here after around 120 time steps), the long-term temporal patterns can still
agree (right). b: State-space agreement approximated via the binning ap-
proximation, projected along the z-direction. c: Correlation between Dstsp
approximated via the binning method (m = 30) and the logarithm of Dstsp
approximated as a GMM for generated data from different trained models.
d: Example power spectra for different smoothing factors σ. (c) and (d) taken
from [54].
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short term prediction error The n-step ahead prediction error (PE) is
defined as the mean squared error (MSE) between predicted and true observa-
tions:

PE(n) =
1

N(T −n)

T−n∑
t=1

N∑
i=1

(xi,t+n − x̂i,t+n)
2. (71)

The PE is computed by initializing the model with the test set time series
up to a certain time point t, and then iterating it forward by n time steps to
yield a prediction at time step t+ n. Due to exponential trajectory divergence
(Fig. 17a), the precise initialization at time t can significantly affect prediction
performance. This has some practical implications since for some DSR algo-
rithms initializing the reconstruction model is difficult, or not possible at all.
In approaches where an encoder model is explicitly co-trained, such as the
SVAE, the initial state zt can be estimated from the data p(zt|X). In applica-
tions where short-term forecasts are of primary interest (see Sect. 5), this often
requires masking future values (causal masking), as otherwise future observa-
tions are taken into account in the estimation of the present state. This is often
either not feasible in real-time applications or provides an unfair advantage in
benchmark comparisons.

For training with STF, we estimated the initial state zt by a co-trained linear
mapping to xt [54]. For MTF, the initial state (zt|X) is directly obtained from
the encoder model if K = M. In cases where K < M, the subset of M − K

unforced latent states needs to be initialized differently, e.g. by sampling from
a normal distribution. In this under-specified scenario, I employed a warm-up
phase of tw = 20 time steps. This phase involved initializing the system from
the encoder at time t− tw and iteratively providing encoded states as TF signals,
resulting in an initial state estimate E[zt|x(t−tw):t]. Incorporating this warm-up
phase significantly improved predictions, though it still yielded slightly inferior
results compared to the fully specified case where K =M. Since the MS method
lacks an encoder model, no reliable estimate for the initial state can be estimated
(see Appx. A.2.2). For methods based on RCs, such as [304], a similar warm-
up phase is often employed: initial states are usually estimated by iterating
the network until time point xt by providing ground-truth data (x0 . . . xt−1) as
input, and then iterating forward with the model-predicted output as input for
future time steps.

geometric agreement For evaluating attractor geometries, we use a state
space measure Dstsp based on the Kullback-Leibler (KL) divergence, which as-
sesses the match between the ground truth distribution of the data ptrue(x)

and the distribution pgen(x|z) freely generated by the inferred DSR model. The
probability distributions can be approximated in several different ways from tra-
jectories. Here, we usually sampled long trajectories corresponding to the test
set length (usually 100, 000 time steps, but sometimes shorter for the empirical
time series) from trained systems, removing transients to ensure that the sys-
tem has reached a limit set (see the discussion of attractors and limit sets in Sect.
2.2). For low-dimensional systems, the KL divergence can be straightforwardly
calculated through a discrete binning approximation [54]:

Dstsp
(
ptrue(x),pgen(x | z)

)
≈

K∑
k=1

p̂
(k)
true(x) log

(
p̂
(k)
true(x)

p̂
(k)
gen(x | z)

)
, (72)
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where K = mN is the total number of bins, with m bins per dimension and N
being the dimension of the ground truth system (Fig. 17b). A bin number of
m = 30 per dimension was chosen as a good compromise for distinguishing be-
tween successful and bad reconstructions for 3d systems. Since K = mN scales
exponentially with the observation dimension, the number of data required to
fill the bins also scales exponentially, and for higher-dimensional systems (e.g.
N = 5), we reduced the number of bins accordingly [149]. For even higher-
dimensional systems (N > 6), evaluating Dstsp as outlined above is not feasible
computationally. We hence resorted to an approximation of the distributions
using Gaussian Mixture Models (GMMs). The true data distribution is approxi-
mated as a GMM via ptrue(x) ≈ 1

T

∑T
t=1N(xt,Σ), with Gaussians centered on

the observed data points xt and a covariance Σ. The generated distribution is
similarly calculated as pgen(x|z) ≈ 1

L

∑L
l=1N(x̂l | zl,Σ). The Kullback-Leibler

divergence between the two resulting GMMs can then be approximated with
an efficient Monte Carlo approximation ([151], see also [212]):

D̃stsp
(
ptrue(x),pgen(x|z)

)
≈ 1

n

n∑
i=1

log
1/T

∑T
t=1N(x(i);xt,Σ)

1/L
∑L
l=1N(x(i); x̂l,Σ)

, (73)

where nMonte-Carlo samples x(i) are drawn from the GMM representing ptrue.
The covarianceΣ = σ2I can be estimated from the encoder model in probabilis-
tic approaches (i.e. SVAE and MTF training). For the deterministic training tech-
niques, such as BPTT-TF, we can also set it to a scaled identity matrix. We found
that values around σ2 = 0.1− 1.0 differentiated well between reconstructions,
underscored by the observation that the logarithm of the GMM approximation
correlated well with approximations computed via the binning method (Fig.
17c).

temporal agreement To assess temporal agreement, we computed power
spectrum correlations (PSC) in [54] (see Table 3), and Hellinger distances DH in
[53, 149, 152] (see Table 4 and Table 5). We first simulated long time series, cor-
responding in length to the test set length. After standardization, we computed
dimension-wise Fast Fourier Transforms (FFT) using scipy.fft. The power
spectra were smoothened using a Gaussian kernel, and normalized, and the
extended, high-frequency tails, which predominantly consisted of noise, were
truncated. Illustrations of different values for the smoothing width σ are given
in Fig. 17d. For the PSC, we computed dimension-wise correlations between
the smoothed ground-truth spectra F(ω), and generated spectrum G(ω). The
Hellinger distance [276], between spectra is given by:

H(F(ω),G(ω)) =

√
1−

∫∞
−∞

√
F(ω)G(ω)dω ∈ [0, 1] (74)

In both cases, the dimension-wise PSC values and Hellinger distances were
then averaged across dimensions to obtain the reported values. The Hellinger
distance DH has the advantage that it is normalized between 0 and 1, and dis-
tinguishes better between good and bad reconstruction, while the PSC exhibits
a significant ceiling effect, crowding values close to one (see Table 3).

maximum lyapunov exponent As discussed in Sect. 2.2 and Sect. 3.2.1,
the maximum Lyapunov exponent of a system quantifies trajectory divergence
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and is computed in the limit of T going to infinity from the product of Jaco-
bians. To approximate the maximum exponent numerically, we first iterated a
trained model forward from some initial condition (randomly drawn or by ini-
tializing using the encoder on the test set), and discarded transients. Given the
product of Jacobians explodes for chaotic systems (Sect. 3.2.1), we employed a
numerical algorithm from [410, 424] that re-orthogonalizing the series of Jaco-
bian products at regular intervals using a QR decomposition. For well-known
benchmark systems, ground truth values for the maximum Lyapunov exponent
are given in the literature (Lorenz: λmax = 0.905, Rössler: λmax = 0.072, Alli-
good, Sauer, and Yorke [9]). For other systems, such as the Lewis-Glass network
model (λmax = 0.072), we approximated the exponent using the Julia library
DynamicalSystems.jl [82] and the dysts Python package [125], both based
on the same algorithm from [424]. The values obtained through this method
were consistent with values from the literature (Lorenz: λmax = 0.903, Rössler:
λmax = 0.071).

4.1.2 Performance Metrics for Multimodal Time Series

This subsection introduces the multimodal performance metrics used in [53]
and for the results in Sect. 4.3.

state space measure without continuous observations If an un-
derlying continuous DS is only available through discrete observations, a direct
mapping between the state space of the reconstructed system and the true DS
is generally not available.

Suppose we have temporal alignment between states of the true DS and states
of the reconstructed DS, and both systems have the same dimensionality (M =

N). In that case, we can directly overlay latent states inferred from the encoded
data with the ground truth latent states. Assume we have observed an ordinal
sampling p(ot|xt) of a continuous underlying DS. After training, we can draw
states from the encoder model p(ẑt|ot) that are temporally aligned with the
ground truth states xt of the continuous DS. Then we can directly optimize a
linear matrix B, aligning all encoded states Ẑ and ground truth states X via
linear regression:

B =
(
ẐT Ẑ

)−1
ẐTX (75)

This procedure was used to overlay the reconstructed Lorenz-96 system in Fig.
29.

In the more general case, the dimensionality of the reconstruction model can
be higher (M > N) than the dimension of the underlying DS, or we do not have
access to latent states temporally aligned with the states of the underlying DS.
In this case, to still assess to what degree reconstructed systems agree in terms
of attractor geometry, we require a mapping between the two state spaces that
does not introduce any additional degrees of freedom. To this end, we optimize
an operator that consists of a linear projection operation, combined with a rota-
tion operation that preserves geometry, which was either found via grid search
over rotation matrices or via Procrustes transformation [273]. The procedure
is illustrated in Fig. 18. The linear projection was computed by first applying
Principal Component Analysis (PCA) and then re-standardizing all axes. As

[ May 6, 2024 at 7:40 – classicthesis ]



70 results

a second step, we identified a rotation matrix to rotate the latent state space,
aiming to minimize Dstsp used for assessing attractor geometries agreement.
Fig. 19a shows how state space agreement is affected by different rotations.
Fig. 19b illustrates that for a system trained on continuous observations with
a co-trained linear observation model, where values of Dstsp can be directly
obtained via the binning method described in Sect. 4.1.1, those values given by
Dbin are strongly correlated with those approximated via DPCA in the recon-
structed latent space. While Procrustes analysis is numerically more efficient,
we found it less effective despite being less conservative than our method.

Figure 18: Illustration of the state space measure in the absence of continuous observa-
tions.

temporal agreement for discrete observations To evaluate the
temporal alignment between model-generated and ground truth time series,
particularly for ordinal and count observations, we computed the average Spear-
man Autocorrelation Function (SACF) up to 200 time lags, using scipy.stats.spearmanr,
defined by:

SACFi(τ) =

∑T−τ
t=1 (ri,t − ri) · (ri,t+τ − ri)∑T

t=1(ri,t − ri)
2

, (76)

where ri,t and ri,t+τ are the ranks of the discrete observations, and ri is the
average rank of the time series. Example SACF functions are illustrated in Fig.
24. To obtain a performance error based on this function, we calculated the
average squared error between the corresponding SACFs of ground truth and
generated time series across all lags and dimensions:

MSESACF =
1

D× T

N∑
i=1

T∑
τ=1

(
SACFgen,i(τ) − SACFground truth,d(τ)

)2 (77)

For the values reported in Table 5, OACF corresponds to this error for the
ordinal observations, while CACF responds to the error for count observations.
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Figure 19: a: Ground truth and rotated attractors of the Rössler system with associated
Dstsp-values. b: Correlation between Dstsp for models trained on trajecto-
ries from the Rössler system, computed directly in observation space given
a co-trained linear (Gaussian) observation model (Dbin), and after approx-
imation applying PCA and the combined rotation operation directly in the
20-dimensional state space (DPCA), based on a total of 30 trained models.
Based on [53].

global correlation structure of discrete variables To deter-
mine if reconstructions maintain the global cross-correlation structure among
ordinal time series, we computed the Spearman correlation for each pair of
ordinal time series, for both the generated and ground truth test data:

SCCij =
1

T

T∑
t=1

(
rit − ri
σri

)(
rjt − rj
σrj

)
(78)

with σri and σrj the standard deviation of the ranks of time series i and j.
We then calculated the mean squared error (MSE) across all elements of the
respective correlation matrices given N ordinal time series:

MSESCC =
1

N2 −N

N∑
i=1

N∑
j̸=i

(
SCCgen,ij − SCCground truth,ij

)2
, (79)

prediction error for discrete variables For ordinal variables, a PE
was computed analogously to the case of continuous variables. As the MSE is
implicitly based on the maximum likelihood principle of Gaussian observations,
for non-metric spaces given e.g. by ordinal data, this is not necessarily the best
choice. As suggested by Öğretir et al. [450], we here instead take the absolute
(L1) deviation between observed and predicted values:

OPE(n) =
1

N(T −n)

T−n∑
t=1

N∑
i=1

|oi,t+n − ôi,t+n| (80)

spike statistics for count variables For the hippocampal spike data
in Sect. 4.3.3, we evaluated a number of spike statistics. The firing rate for each
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neuron i was calculated by dividing the total spike count by the observation
time:

µi =

∑T
t=1 cit
T

, (81)

where cit is the count of neuron i at time t, and T is the total number of time
bins. The coefficient of variation (CV) for each neuron i is defined as the ratio
of the standard deviation to the mean of spike counts:

CVi =
σ(ci)

µ(ci)
, (82)

For the autocorrelation function and cross-correlation function, we used the
SACF (Eq. 76) and SCF (Eq. 78) defined above.

4.1.3 Generalization Error in DSR

In [139], we developed a combination of a statistical error evaluating agreement
in limit sets, and a topological error, aiming to assess the topological equiva-
lence of ground truth and reconstructed systems. Both errors were developed
to be sensitive to multistability, but can in principle also be employed to quan-
tify the reconstruction quality of monostable systems.

statistical error The statistical error is defined using the sliced Wasserstein-
1 distance (SW1) [47], between the occupation measures µΦx,T of a ground-truth
DS Φ and µΦRx,T of the reconstructed DS ΦR:

SW1(µ
Φ
x,T ,µΦRx,T ) = Eξ∼U(Sn−1)

[
W1(gξ♯µ

Φ
x,T ,gξ♯µ

ΦR
x,T )

]
, (83)

where Sn−1 represents the unit hyper-sphere. The statistical error Estat is then
defined as the integration of SW1 over initial conditions from a subset U of state
space:

EUstat
(
ΦR
)
:=

∫
U⊆M

SW1(µ
Φ
x,T ,µΦRx,T ) dx, (84)

topological error Topological equivalence between two DS can not eas-
ily be assessed numerically, as this entails approximating the homeomorphism
between flows. This approximation, e.g. using invertible NNs, has proven chal-
lenging in practice, while the reverse direction, i.e. a failure to approximate the
homeomorphism e.g. via invertible NNs does not necessarily show that sys-
tems are not topologically equivalent. Hence, we assess agreement in topology
between ground truth and reconstructed system based on weaker conditions
related to their Lyapunov spectra. The first condition requires the signs of Lya-
punov exponents to agree so that sgn(λi) = sgn(λRi ) ∀i. Second, we require that
the maximum Lyapunov exponents are close to each other: |λn − λRn| / |λn| <

ελn , where ελn is a tolerance threshhold that can be chosen as a hyperparame-
ter. Lastly, the limit sets should agree in state space. A natural metric to assess
this is the Hausdorff distance:

dH(ω(x,ΦR), ω(x,Φ)) < εdH (85)
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The Hausdorff distance is motivated by its robustness and sensitivity to out-
liers between the two sets, but other distance measures are also possible. The
topological generalization error then combines all three conditions conditions,
using an indicator function 1ΦR(x) that is only one if all conditions are met:

EUtop(ΦR) = 1−
1

vol(U)

∫
U⊆M

1ΦR(x),dx, (86)

These errors are sensitive to a failure to reconstruct multistable systems, and the
resulting error is proportional to the volume of the basin of the not-reconstructed
attractor in a multistable system (see [139] for a formal proof):

EMtest
gen (ΦR) ∝ vol(B(Ak)). (87)

Here, Egen represents both Etop and Estat, with Eq. 87 holding for both errors.

learnability of a ds The concept of learnability has been widely dis-
cussed in statistical learning theory [363, 405] and deep learning [403]. Assume
we have an inference algorithm from a hypothesis class H. In the simplest case,
a hypothesis class is called learnable if the error between the learned function
and the ground-truth function decreases as more data is provided, and goes
towards zero in the limit of infinite data. To make this concept applicable to
multistability and out-of-domain generalization in DSR, assume for simplicity
that the state space segregates into 2 basins (domains) (see e.g. Fig. 6 bottom
row), where one subset is the training domain Mtrain and the other the test
domain Mtest. Assume we have a DSR algorithm H that includes hypotheses
consistent with both the training and test data [29, 402], i.e. models that per-
fectly approximate the underlying DS on both train and test domain. We define
Θ0 = {θ ∈ Θ|EMtrain

gen (Φθ) ≈ 0} as the set of parameters that have (near) zero
reconstruction error on the training domain, with H0 the corresponding recon-
structed DS. Then, we define learnability in DSR as [139]:

Definition 1 The OODG problem (H,D) defined by the hypothesis class H and data
set D is strictly learnable if

∀ ΦR ∈ H0 : EMtest
gen (ΦR) = 0 (88)

Hence, the OODG problem is strictly learnable, if zero reconstruction error on
the training domain leads to zero reconstruction error on the test domain.

For hypothesis classes based on universal approximators, there can be in-
finitely many models in H0 with different generalization errors on Mtest (e.g.
models that locally overfit Mtrain vs. generalizing models). For a parameterized
hypothesis class Hθ = {Φθ|θ ∈ Θ ⊂ RP}, such as those based on NNs, the
optimization procedure contains several stochastic components (initialization,
optimization via stochastic gradient descent, drawing from distributions e.g. in
VI/MTF), usually leading to a range of values for Mtest. Given the hypothesis
class, Hθ, we can instead express the distribution over generalization errors for
models in H0.

Definition 2 We define this as the learnability-distribution of the OODG problem
(Hθ,D) as

p(εgen|D) =
1

vol(Θ0)

∫
Θ0

1[EMtest
gen (Φθ) = εgen]dθ, (89)
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Here, 1[·] is 1 if the condition in brackets holds and 0 otherwise. If p(εgen|D)

is fully concentrated at εgen = 0, the OODG problem becomes strictly learn-
able, while the mass of the distribution around zero quantifies the learnability
of the problem. One of the main results in [139] is that for regression-based
approaches such as SINDy [59], the strong inductive bias given by a predefined
function library containing the correct functions constituting a (potentially mul-
tistable) DS f ∈ BL can guarantee that the OODG problem given by f ∈ BL and
an observed trajectory Γx0 ⊂ D is strictly learnable under some conditions (for
more details, see Sect. A.2.1). On the other hand, approaches based on universal
approximators, while necessary for DSR from empirical data, will largely fail
to generalize to basins not observed in the training data for reasons detailed in
more depth in [139].

4.2 reconstructions from unimodal time series

4.2.1 Unimodal Benchmarks

As discussed in Sect. 2.3 and illustrated in Table 1, DSR algorithms are still
overwhelmingly benchmarked on unimodal, monostable DS. This section will
first present results on a range of simulated benchmark systems, including a
detailed comparison to several other state-of-the-art (SOTA) DSR algorithms,
based on the results from [54] and [152]. Details on all benchmark systems are
given in Appx. A.3, while comparison methods are described in more detail in
Appx. A.2.

bistable wilson-cowan model To illustrate the mathematical tractabil-
ity of the dendPLRNN (Sect. 3.1.1), we first reconstructed the dynamics of a
relatively simple 2-dimensional Wilson-Cowan model of a population of both
excitatory and inhibitory neurons (see Appx. A.3.1 for details), containing two
stable and one unstable equilibrium points (EPs). Reconstructed vector field and
EPs closely agree, as illustrated in Fig. 20. The vector field of the learned model
was approximated by computing the 1-step difference vectors Fθ

(
zt−1

)
− zn

induced by applying the trained dendPLRNN across a grid of sample points
and decoding the resulting values using the linear observation model. The an-
alytically determined EPs agree both in terms of their location and in terms of
their stability, as assessed by the system’s Jacobians around the EPs.

benchmark systems We then compared the performance of the dend-
PLRNN, trained with VI and BPTT-TF (using id-TF introduced in Sect. 3.2.3), on
four simulated benchmark systems, featuring two low-dimensional examples
(Fig. 21) and two high-dimensional examples (Fig. 22). For all reconstructions
displayed in these figures, trajectories were sampled by initializing the network
at the first time step of the test set, where the initial state was estimated by some
mapping p(z0|X) as discussed in Sect. 4.1.1, and hence go beyond short-term
forecasts, in that the system’s temporal and geometric structure need to be fully
captured in its dynamics equation.

We first investigated the famous 3D chaotic Lorenz attractor (Lorenz-63) [252],
to date the most common benchmark for DSR algorithms. The reconstructions
in Fig. 21 show that the dendPLRNN can faithfully reconstruct both the tem-
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Figure 20: Reconstructed and ground truth vector field for the 2D Wilson-Cowan sys-
tem, including locations of the analytically obtained fixed points the trained
dendPLRNN, and ground truth fixed point locations. Taken from [54].

poral and geometric structure of the true system. The analytically computed
fixed points of the reconstructed system, displayed as dots, closely agree with
those of the ground truth system. This result is notable in so far as these fixed
points are never actually observed during training. This implies that the trained
model not only locally fits the observations but captures the global topological
structure of the state space.

We then reconstructed a 3d biophysical model of a bursting neuron from [94]
(Fig. 21b). This model is challenging to reconstruct in that it features two very
different time scales: one producing fast spiking behavior, and one producing
slow oscillations. Different time scales are challenging to learn due to the often
mentioned exploding and vanishing gradient problems when training RNN
models (Sect. 3.2.1, [33]), and are often explicitly addressed e.g. by regulariza-
tion techniques [355] or special network architectures featuring gating mecha-
nisms, such as the LSTM network [155]. While reconstructions with BPTT-TF
almost perfectly match the true system, training with VI did not achieve compa-
rably good reconstructions for this model, likely due to the challenges discussed
in Sect. 3.2.2.

We then reconstructed two high-dimensional examples: a 10-dimensional spa-
tially extended Lorenz-96 weather model [253] with local interactions (Fig. 22a),
and a chaotic neural population model [224] with 50 neurons (Fig.22b). For
both systems, Fig.22 displays ground truth and generated time series plots, spa-
tiotemporal patterns and reconstructed and ground truth power spectra (see
Sect. 4.1.1).

benchmark comparisons We then compared the dendPLRNN trained
either with VI or with BPTT-TF with four other algorithms, described in more
detail in Sect. A.2. First, SINDy [59] reconstructs governing equations by first
approximating numerical derivatives. Then, appropriate terms from a library of
basis functions, e.g. polynomial or trigonometric functions, are selected by some
sparse regression algorithm, e.g. LASSO regression. Second, [408] suggests a hy-
brid of LSTMs, trained using truncated BPTT, and which approximates a mean-
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Figure 21: Example reconstructions of two low-dimensional benchmark systems, pro-
duced from a dendPLRNN trained with VI (B = 20, M = 15) on the chaotic
Lorenz system (a, Eq. 110) and with STF (B = 47, M = 26, τ = 5) on the
bursting neuron model (b, Eq. 112), with time series (left) and state space
reconstructions for both true and generated time series (right). Since the
bursting neuron model is non-chaotic, model predictions agree closely with
the ground truth data for up to 1000 time steps, while due to the chaotic
nature of the Lorenz system, predictions diverge while agreeing in terms of
overall temporal and geometric structure. Taken from [54].

field stochastic model (MSM) based on Ornstein-Uhlenbeck processes (LSTM-
MSM) in case a trajectory diverges too far from the training data. Third, as sug-
gested in [303] we use reservoir computing (RC) with reservoir parameters se-
lected to ensure the ‘echo state property’ [174]. For higher-dimensional systems,
as introduced in [303], we use a spatially arranged set of reservoirs with local
neighborhood interactions. Finally, we used Neural-ODEs [70], implemented in
the torchdiffeq package, and using the adjoint method [70] for training. Table
3 summarizes these results. Besides the benchmark systems introduced above,
we investigated challenging data situations using the Lorenz-63 system. Here
‘low amount of data’ denotes short training time series with just 1000 time steps
used for training, ‘partially observed’ implies only training on state variable x
in Eq.110, combined with a delay embedding [349, 388] to create a 3d dataset,
and the ‘high noise’ setting combines high process and high observation noise
(drawing from a Gaussian with dϵ ∼ N(0, 0.1dt× I) for the process noise and us-
ing 10% observation noise, respectively). As indicated by the right column, we
chose model sizes to provide roughly the same number of trainable parameters
for each model. For important hyperparameters, we performed grid searches to
determine optimal settings.
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Table 3: Comparison of the dendPLRNN trained by VI or BPTT+TF, RC [303], LSTM-
MSM [408], SINDy [59] and Neural ODE ([70]) on 4 DS benchmarks (top) and
3 challenging data situations (bottom). Values are mean ± SEM. Based on [54].

Dataset / Setting Method PSC Dstsp 20-step PE Dynamical variables Parameters

Lorenz

dendPLRNN+VI 0.997 ± 0.001 0.80 ± 0.25 2.1e−3 ± 0.2e−3 22 1032

dendPLRNN+TF 0.997 ± 0.002 0.13 ± 0.18 9.2e−5 ± 2.8e−5 22 1032

RC 0.991 ± 0.001 0.24 ± 0.05 1.2e−2 ± 0.1e−3 345 1053

LSTM-MSM 0.985 ± 0.004 0.85 ± 0.07 1.2e−2 ± 0.1e−3 29 1035

SINDy 0.998 ± 0.0003 0.04 ± 0.01 6.8e−5 ± 0.2e−5 3 252

Neural ODE 0.992 ± 0.001 0.149 ± 0.014 1.1e−3 ± 4.1e−5 3 1011

Bursting
Neuron

dendPLRNN+VI 0.55 ± 0.03 7.5 ± 0.4 6.1e−1 ± 0.1e−1 26 2052

dendPLRNN+TF 0.76 ± 0.04 2.9 ± 1.3 6.1e−2 ± 2.2e−2 26 2040

RC 0.51 ± 0.01 5.1 ± 0.6 8.6e−2 ± 0.1e−2 711 2133

LSTM-MSM 0.54 ± 0.02 2.83 ± 0.36 3.9e−2 ± 0.1e−2 45 2166

SINDy diverging diverging diverging 3 252

Neural ODE 0.65 ± 0.017 3.85 ± 0.1 2.1e−1 ± 0.5e−2 3 2073

Lorenz-
96

dendPLRNN+VI 0.987 ± 0.001 0.10 ± 0.01 3.1e−1 ± 0.9e−1 42 4384

dendPLRNN+TF 0.998 ± 0.0001 0.04 ± 0.01 4.1e−2 ± 0.8e−2 50 4480

RC 0.986 ± 0.008 0.25 ± 0.17 7.1e−1 ± 0.1e−2 440 4400

LSTM-MSM 0.993 ± 0.002 0.23 ± 0.03 8.2e−1 ± 0.3e−2 62 4384

SINDy 0.996 ± 0.001 0.06 ± 0.003 6.3e−2 ± 0.1e−3 10 27410

Neural ODE 0.985 ± 0.001 0.21 ± 0.02 4.4e−2 ± 4.5e−3 10 4130

Neural
Popula-
tion
Model

dendPLRNN+VI 0.45 ± 0.05 0.56 ± 0.05 0.82 ± 0.09 12 821

dendPLRNN+TF 0.51 ± 0.01 0.19 ± 0.02 1.53 ± 0.03 75 9990

RC 0.30 ± 0.05 0.95 ± 0.19 1.82 ± 0.82 50 2500

LSTM-MSM 0.45 ± 0.03 0.43 ± 0.02 1.02 ± 0.02 56 848

SINDy diverging diverging diverging 50 66300

Neural ODE 0.47 ± 0.03 9.56 ± 0.86 0.58 ± 0.006 50 10200

Low
amount
of data

dendPLRNN+VI 0.967 ± 0.007 4.36 ± 0.10 2.8e−2 ± 0.2e−2 22 1032

dendPLRNN+TF 0.97 ± 0.04 6.9 ± 5.3 1.5e−2 ± 0.9e−2 22 1032

RC 0.68 ± 0.05 5.74 ± 0.11 4.1e+5 ± 1.2e+5 345 1053

LSTM-MSM 0.960 ± 0.006 6.06 ± 0.37 2.1e−1 ± 0.3e−2 29 1035

SINDy 0.998 ± 0.0003 0.04 ± 0.01 6.8e−5 ± 0.2e−5 3 252

Neural ODE 0.967 ± 0.008 4.66 ± 0.31 1.6e−3 ± 1.8e−4 3 1011

Partially
observed

dendPLRNN+VI 0.940 ± 0.006 12.6 ± 1.0 6.5e−2 ± 1.4e−2 22 1032

dendPLRNN+TF 0.993 ± 0.003 0.54 ± 0.16 5.3e−3 ± 0.2e−3 22 1032

RC 0.981 ± 0.001 2.92 ± 0.08 7.6e−3 ± 0.1e−3 345 1053

LSTM-MSM 0.934 ± 0.005 6.06 ± 0.37 2.3e−2 ± 0.3e−2 29 1035

SINDy 0.974 ± 6× 10−4 17.5 ± 0.4 5.1e−2 ± 0.4e−2 3 252

Neural ODE 0.945 ± 0.004 3.34 ± 0.12 8.3e−3 ± 9e−5 3 1011

High
noise

dendPLRNN+VI 0.973 ± 0.006 4.9 ± 0.75 3.5e−2 ± 0.1e−2 22 1032

dendPLRNN+TF 0.995 ± 0.002 0.4 ± 0.13 4.6e−3 ± 0.4e−3 22 1032

RC 0.988 ± 0.001 2.33 ± 0.21 3.1e−2 ± 0.2e−2 345 1053

LSTM-MSM 0.967 ± 0.006 1.19 ± 0.27 3.3e−2 ± 0.2e−2 29 1035

SINDy 0.984 ± 0.005 1.01 ± 0.05 2.3e−3 ± 0.1e−4 3 252

Neural ODE 0.982 ± 0.055 0.79 ± 0.06 5.5e−3 ± 1.7e−4 3 1011
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Figure 22: Example reconstruction of DSR from high-dimensional benchmark systems,
using a dendPLRNN trained with STF (B = 50, M = 30, τ = 10). a: Time
series (top), spatiotemporal evolution (middle), and power spectra (bottom)
for the true 10d Lorenz-96 system (Eq. 117) and for time series sampled
from the dendPLRNN. b: Same for a 50d neural population model (Eq. 119)
(B = 5, M = 12, λ = 1.0, Mreg/M = 0.2). Taken from [54].

4.2.2 Unimodal Experimental Results

As discussed in 2.3, DSR algorithms are still primarily benchmarked on simu-
lated systems on simulated systems designed as simplified models of complex
real-world systems, such as the weather [252, 253]. As laid out in Sect. 2.3, real-
world experimental DS are often much more challenging to reconstruct due
to a number of factors. Real-world systems, such as the brain, may include a
large number of unobserved dynamical variables. Individual neurons ([94], Eq.
112) and even dendrites (Sect. 3.1.1) constitute complex DS in their own right.
Moreover, real-world data often contain observation noise and process noise,
such as movement artifacts in neural recordings. Real DS can be influenced by
unobserved external stimuli, leading to non-stationary behavior, or exhibit very
slow time scales. For instance, brain activity is modulated by neurotransmitter
or hormone levels varying over weeks and months. Since many DSR algorithms
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perform well on simpler benchmarks such as the Lorenz-63 system (see Table 3),
comparing them on real-world systems is more revealing due to the aforemen-
tioned challenges. Therefore, in [54, 152], we included two real-world DS in our
analysis: an Electrocardiogram (ECG) time series, which is a recording of the
heart’s electrical activity, and an Electroencephalogram (EEG), which measures
the electrical activity of the brain by attaching electrodes to the scalp.

Table 4: Comparisons of SOTA DSR algorithms on two challenging experimental
datasets (Sect. A.3), adapted from [152]. Values are median ± median abso-
lute deviation over 20 runs. ‘dim’ refers to the model’s dynamical variables,
while |θ| are number of trainable parameters. Based on [152].

Dataset Method Dstsp ↓ DH ↓ PE(20) ↓ dim |θ|

ECG
(5d)

shPLRNN + GTF 4.3± 0.6 0.34± 0.02 (2.4± 0.1) · 10-3 5 2785

shPLRNN + aGTF 4.5± 0.4 0.34± 0.02 (2.4± 0.2) · 10-3 5 2785

shPLRNN + STF 7.1± 1.8 0.38± 0.03 (5± 2) · 10−3 5 2785

dendPLRNN + id-TF 5.8± 0.6 0.37± 0.06 (4.0± 0.4) · 10−3 35 3245

RC 5.3± 1.7 0.39± 0.05 (4± 1) · 10−3 1000 5000

LSTM-TBPTT 15.2± 0.5 0.73± 0.02 (2.5± 0.5) · 10−2 70 5920

SINDy diverging diverging diverging 5 3960

Neural ODE 12.2± 0.7 0.7± 0.03 (4.1± 0.1) · 10−1 5 4955

LEM 16.3± 0.2 0.56± 0.04 (7.4± 0.1) · 10−1 62 4872

Latent ODE 15.1± 3 0.61± 0.03 (6.6± 0.2) · 10−1 5 4852

ODE-RNN 12.9± 1.1 0.67± 0.03 (5.1± 0.1) · 10−1 5 4816

EEG
(64d)

shPLRNN + GTF 2.1± 0.2 0.11± 0.01 (5.5± 0.1) · 10−1 16 17952

shPLRNN + aGTF 2.4± 0.2 0.13± 0.01 (5.4± 0.6) · 10−1 16 17952

shPLRNN + STF 14± 7 0.50± 0.16 (2.5± 0.3) · 10-1 16 17952

dendPLRNN + id-TF 3± 1 0.13± 0.04 (3.4± 0.1) · 10−1 105 18099

RC 14± 7 0.54± 0.15 (5.9± 0.3) · 10−1 448 28672

LSTM-TBPTT 30± 21 0.2± 0.1 (9.2± 2.3) · 10−1 160 51584

SINDy diverging diverging diverging 64 133120

Neural ODE 20± 0.5 0.47± 0.01 (5.5± 0.2) · 10−1 64 17995

LEM 10.2± 1.5 0.38± 0.06 (8.2± 0.6) · 10−1 76 18304

Latent ODE 16.1± 3 0.47± 0.02 (5.6± 0.2) · 10−1 64 17915

ODE-RNN 13.9± 2.1 0.59± 0.03 (9.1± 0.6) · 10−1 64 17859

On both datasets, we compared in total ten different DSR algorithms: the
dendPLRNN, trained with id-TF, a shPLRNN trained with GTF, and as be-
fore, the LSTM-MSM [408], RCs [303], SINDy [59], three formulations based
on Neural ODEs (Neural ODE [70], Latent ODE, and ODE-RNN [336]) and
Long-Expressive-Memory (LEM) [341]. For the shPLRNN trained with GTF, we
compared results where the optimal parameter for the strength of GTF α was
determined by grid search, as well as using the adaptive α scheme described
in Sect. 3.2.4. Table 4 shows that both DSR algorithms based on TF outperform
all other approaches according to the geometric, temporal and short-term pre-
diction errors introduced in Sect. 4.1. Fig. 23 illustrates this point more directly.
Freely generated trajectories of our models iterated forward by only providing
some initial state estimate z0, match the overall behavior of the true time series,
while the comparison methods struggle to produce any meaningful long-term
patterns or lead to divergences. It is important to emphasize that this point is
not merely explained by us mishandling the other approaches or lack of hyper-
parameter tuning, since comparisons on simulated benchmark systems, such as
the Lorenz-63 and Lorenz-96 system, showed performance of the comparison
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methods much closer to our methods (see Appx. Table 7). Overall most methods
managed to capture long-term statistics of these benchmark systems reasonably
well (Appx. Fig. 54). Further, short-term predictions for the comparisons also
all looked comparable even on the challenging real-world data (Appx. Fig. 55).
In summary, our results show that the reconstruction algorithms based on STF
and GTF techniques (Sect. 3.2), combined with the network architectures from
Sect. 3.1, are more capable of addressing the challenges inherent in experimen-
tal datasets.

Figure 23: Example time traces of ECG (a) and EEG (b) reconstructions for all methods
compared in Table 4. For each model, we picked the best run out of 20 runs,
according to the state space agreement Dstsp. Taken from [152].

4.3 reconstructions from discrete and multimodal time series

This section summarizes the main results from [53], using the MTF framework
introduced in Sect. 3.2.5.

4.3.1 Multimodal Benchmarks

benchmark comparisons As for the unimodal data, we first began by
assessing performance on a range of synthetic benchmark systems. Here we
generated training and test datasets from the Lorenz-63 system, the Rössler
system, and a 6d Lewis-Glass network model [125, 229] with chaotic dynamics.

To obtain multimodal time series, we sampled ordinal and count observa-
tions from these trajectories using the continuous time series as latent states for
the ordinal observation model (Eq. 62) and Poisson observation model (Eq. 65)
with randomly initialized parameters, and added 10% Gaussian noise to the
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continuous observations. Example reconstructions for a dendPLRNN trained
by MTF are shown in Fig. 24.

Table 5: Comparison of dendPLRNN trained by MTF, by a multimodal SVAE based on
[214], a VAE-TF approach similar to MTF except that all data modalities were
‘Gaussianized’ (GVAE-TF), BPTT-TF as in [54] using Gaussianized data, and a
multiple-shooting (MS) approach. Training was performed on multivariate nor-
mal, ordinal, and count data produced by the chaotic Lorenz system, Rössler
system, and Lewis-Glass model. Values are mean ± SEM, averaged over 15

trained models. X = value cannot be computed for this model (e.g., because
resp. decoder model is not present). SCC (Spearman cross-correlation), OACF
(ordinal autocorrelation function), and CACF (count autocorrelation function)
all refer to mean-squared-errors (MSEs) between ground truth and generated
correlation functions. Bold numbers indicate top performance within ±1 SEM.
Taken from [53].

Dataset Method Dstsp ↓ DH ↓ PE ↓ OPE ↓ SCC ↓ OACF ↓ CACF ↓

Lorenz

MTF 3.4± 0.35 0.30± 0.06 1.3e−2± 2e−4 0.12± 0.03 0.07± 0.01 0.07± 0.01 6.6e−5± 8.1e−6

SVAE 11.1± 0.6 0.82± 0.05 6.3e−1 ± 5.1e−2 0.68± 0.03 0.14± 0.01 0.18± 0.02 8.5e−5 ± 1.6e−5

BPTT 6.31± 1.2 0.47± 0.11 2.1e−1 ± 2.4e−2 0.33± 0.04 0.11± 0.02 0.09± 0.02 8.2e−5 ± 9e−6

MS 4.5± 1.5 0.61± 0.08 X X 0.14± 0.04 0.11± 0.02 6.5e−5± 3.8e−6

GVAE-TF 4.3± 0.3 0.47± 0.07 3.6e−1± 1.5e−3 X X X X

BPTT-TF 8.8± 1.9 0.86± 0.05 4.4e−1± 2.2e−2 X X X X

Rössler

MTF 1.45± 0.71 0.32± 0.03 1.9e−3± 7.1e−5 0.08± 0.02 0.04± 0.004 0.017± 0.003 6.5e−5± 1.2e−5

SVAE 10.7± 1.5 0.66± 0.05 1.5e−1 ± 3.1e−2 0.24± 0.02 0.17± 0.03 0.13± 0.02 1.1e−4± 1.4e−5
BPTT 9.05± 0.5 0.7± 0.01 7.4e−2 ± 2.0e−3 0.18± 0.02 0.3± 0.03 0.19± 0.07 1.5e−4 ± 6e−6

MS 3.99± 1.1 0.59± 0.04 X X 0.08± 0.04 0.09± 0.02 1.6e−4 ± 5.9e−5

GVAE-TF 12.1± 0.5 0.55± 0.04 4.9e−2± 3.4e−3 X X X X

BPTT-TF 8.9± 1.4 0.64± 0.07 2.8e−1± 1.8e−3 X X X X

Lewis-Glass

MTF 0.27± 0.07 0.33± 0.02 2.1e−3± 7e−5 0.11± 0.01 0.12± 0.03 0.05± 0.02 2.3e−4± 2.0e−5
SVAE 2.6± 0.5 0.52± 0.03 8.0e−2 ± 4e−3 0.26± 0.01 0.4± 0.05 0.18± 0.03 7.5e−3± 4.7e−3
BPTT 2.8± 0.5 0.57± 0.05 6.2e−2 ± 3e−3 0.23± 0.02 0.47± 0.08 0.21± 0.03 9.1e−3± 3.2e−3
MS 0.33± 0.06 0.35± 0.01 X X 0.08± 0.01 0.04± 0.002 1.9e−4± 7.5e−6

GVAE-TF 0.28± 0.08 0.44± 0.02 4.6e−3± 4e−4 X X X X

BPTT-TF 2.51± 0.71 0.43± 0.03 2.6e−2± 3e−3 X X X X

We compared performance on these simulated datasets to several other se-
tups for DSR from multimodal time series. While for the evaluations on uni-
modal continuous time series, several DSR methods existed, this was not the
case in the multimodal setting, since, as laid out in 2.4, the problem of multi-
modal data integration in DSR has hardly been studied, except for the sequen-
tial multimodal VAE (MVAE) from Kramer et al. [214]. Besides using the MVAE
as a comparison method, we further tried ‘classical’ RNN training (where ob-
servations are provided as external input at every time step, and likelihoods
of the observations are computed using modality-specific decoder models), an
approach based on ‘multiple shooting (MS)’ [411], and two methods involv-
ing transformation of multimodal data to approximate Gaussian distributions,
followed by training the RNN via standard BPTT-TF [54] or VAE-TF without
modality-specific decoder models (called ‘Gaussianized’ VAE-TF, or GVAE-TF).
While in the previous comparisons, the DSR algorithm and reconstruction mod-
els often went hand in hand (in that RCs, SINDy, or Neural ODEs are all opti-
mized differently and result in different parameterizations of the DSR models),
in the comparisons carried out here, we are primarily interested in comparing
different training techniques with the same DSR model. We hence used the
same DSR model (a dendPLRNN) for all comparisons. As shown in Table 5,
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MTF outperformed all other tested training algorithms, often to a significant
extent.

Particularly, training with MTF substantially outperformed training with Gaus-
sianized data despite using an otherwise identical algorithm (GVAE-TF). No-
tably, for the Rössler system, smoothed ordinal and count data led the mod-
els to often infer limit cycles instead of chaotic dynamics, leading to much
higher Dstsp values. Since the Rössler system operates relatively close to a
cyclic regime (see also Fig. 33) and its dynamics are only weakly chaotic when
for instance compared to the Lorenz-63 system (Lorenz: λmax = 0.905, Rössler:
λmax = 0.072, [9]), a possible explanation is that smoothing ordinal and count
data removes important details in the data that help the algorithm distinguish
between cycle and chaotic dynamics, while under-smoothing the data leads to
discontinuities in the observations that are difficult to capture.

Figure 24: a: Sample trajectories and time series produced by a dendPLRNN with pa-
rameters (M = 20, B = 10, K = 15, τ = 10), trained using MTF on multi-
modal data (Gaussian, ordinal, and count)—sampled from a Lorenz-63 sys-
tem. b: Example power spectra from Gaussian data alongside Spearman au-
tocorrelation functions for ordinal and count data. Taken from [53].

reconstructions from highly noisy data Since in the case of the pre-
vious benchmark comparisons, given the moderate level of observation noise
added to the continuous observations, DSR is in principle feasible without rely-
ing on multimodal data integration, we next explored DSR in which continuous
observations are significantly distorted by noise. Here we added observation
noise with 50% of the data variance and included ordinal observations with 8
variables divided into 7 ordinal levels, ont ∈ {1 . . . 7}, n = 1 . . . 8, again using a
randomly initialized ordinal observation model. This subdivides the state space
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Figure 25: DSR from multimodal observations (continuous and ordinal, sampled from
a Lorenz-63 system) using MTF, where continuous observations were dis-
torted with medium (10% of data variance) (a) and high (50% of data vari-
ance) noise levels (b-c). a: Freely generated example trajectories from a dend-
PLRNN (M = 20,B = 10,K = 20, τ = 10). b: Same as (a), but for heavily dis-
torted Gaussian observations. The maximum Lyapunov exponent (λmax) of
the dendPLRNN resembles that of the GT system, λmax ≈ 0.903). c: Normal-
ized cumulative histograms of geometrical attractor disagreement (Dstsp,
left) and Hellinger distance (DH, right) between reconstructed and ground-
truth system with and without ordinal observations indicate that DSR from
highly distorted data in the unimodal case is impossible. Taken from [53].

into regions belonging to different ordinal levels, which significantly coarse-
graining dynamics, especially when different levels occupy larger regions of
state space than others (see for instance level 1 in Fig. 28). Example reconstruc-
tions are shown in Fig. 25. While successful DSR is next to impossible without
including ordinal information, as assessed by the state space measure Dstsp
and temporal measure DH (Fig. 25c), including ordinal observation allows DSR
even under these challenging conditions, and further often successfully cap-
tures the chaotic nature of the underlying DS (λGTmax = 0.903, λrecmax = 0.98).

cross-modal inference for missing observations Dealing with miss-
ing observations is in principle straightforward in the MTF framework. Missing
time steps can be dropped from the respective likelihood terms of the decoder
models (Eqs. 53 and 54). For the encoder model, while performing on average
worse than the full temporal CNN encoder in situations when all modalities
are observed at all time steps (Table 2), the mixture of experts posterior [427]
described in Sect. 3.2.6 becomes useful when observations are missing from
only one of the channels simultaneously since it combines estimates from both
modalities independently into the posterior. We illustrated this by reconstruct-
ing the Lorenz-63 system jointly from Gaussian and ordinal observations, where
20% of time steps were missing at random time points individually drawn for
each modality (Fig 26a). Fig 26b shows that the MTF framework not only allows
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Figure 26: Cross-modal inference, using the mixture-of-experts encoder model. a: Re-
constructions of the Lorenz-63 from Gaussian and ordinal observations,
where 20% of time steps are missing at random time points individually
drawn for each modality. This allows the model to develop useful cross-
modal links and infer an approximate posterior estimate even when obser-
vations from the other modality are missing. b: Using only the Gaussian
expert to encode ground truth Gaussian observations, the corresponding or-
dinal ratings can be almost perfectly decoded, including steps missing in the
ordinal training data.

successful reconstructions in this challenging situation but learns cross-modal
links that allow the inference of the correct ordinal ratings decoded only from
the Gaussian expert, including at time points that were missing during training.

reconstructions from partial observations Besides integrating across
several modalities, the encoder model in the MTF framework more generally fa-
cilitates the learning of complex relationships between observations and under-
lying DS, and can also be used to embed and unfold DS in a higher-dimensional
embedding space. As highlighted in the introduction (Sect. 2.3, Fig. 4), tempo-
ral delay embeddings (TDEs) are closely related to observation functions, and
provide a mechanism to reconstruct and unfold attractors even from partial ob-
servations. Given that the CNN encoder employs temporal convolutions, it is in
principle well-equipped to learn TDEs directly from the data. This is illustrated
in Fig. 27. When training a shPLRNN (M = 3) with MTF on one-dimensional
partial observations of the Lorenz-63 system (x-coordinate), the encoder model
succeeds in unfolding the attractor. The encoded states p(Z̃ |X) closely resemble
the unfolded attractor using a TDE with settings determined by the first min-
imum of the mutual information [2, 187]. These capabilities might contribute
an explanation as to why the temporal CNN Encoder outperformed all other
encoder models tested (Table 2), and underscores why even in the case of contin-
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Figure 27: Encoded states p(Z̃ |X) (left) after training a shPLRNN with MTF on one-
dimensional observations of the Lorenz-63 system (x coordinate, bottom),
resemble the unfolded attractor using a temporal delay embedding (right)
with optimal settings determined using the minimum of the mutual infor-
mation [187]. For this plot, states were again approximately overlayed with
the delay-embedded states using Eq. 75.

uous and unimodal observations, the MTF framework can provide significant
advantages.

4.3.2 DSR from Discrete Random Variables

Since the integration of discrete variables on top of distorted continuous obser-
vations allows DSR even in situations where it would otherwise be infeasible,
we omitted continuous observations altogether and attempted DSR solely from
discrete random variables. Assessing to which extent DSR was successful in
this context is more challenging, since a priori no mapping to the space of the
true underlying DS, as usually provided by the linear Gaussian/identity obser-
vation model (Eqs. 14 and 37) exists. To still obtain an estimate for whether the
underlying DS is captured, we approximate this mapping after training via a
linear dimensionality reduction technique, based on principal component analy-
sis (PCA), combined with a rotation operation that maximizes attractor overlap.
This procedure is illustrated in Fig. 18 and allows us to approximate the state
space measureDstsp in the reduced space viaDPCA. For the ordinal encodings,
we subdivided the state space of the underlying DS by randomly initializing an
ordinal observation model for each variable, as depicted on the left of Fig. 28,
sampling 8 ordinal variables with 7 levels and 60 variables with 2 levels for the
reconstructions shown in the bottom row in Fig. 28. While ordinal encodings
discretize the underlying dynamical process, particularly when using only two
levels per variable as in the bottom row, they maintain the ordering between lev-
els, reflecting the assumption that ordinal levels reflect a continuous underlying
variable. Consequently, the ordinal encodings preserve aspects of the original
continuous variable’s structure.
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Figure 28: DSR from discrete observations for the Rössler system (λtrue
max ≈ 0.072) and

Lorenz system λtrue
max ≈ 0.903). Note that in all cases the topology and general

geometry are preserved, and maximal Lyapunov exponents closely match
those of the true systems. First row: Symbolic coding of Lorenz attractor
(see Fig. 30 for true and predicted class label probabilities and statistics),
TDE = temporal delay embedding. Second row: Reconstruction of Rössler
attractor from 8 ordinal time series with 7 levels each. Third row: DSR of
Lorenz attractor from 8 ordinal time series with 7 levels each. Fourth row:
DSR of Rössler attractor from 60 ordinal time series with 2 levels each. Based
on [53].

To test our approach in higher dimensions, we reconstructed the 10-dimensional
chaotic Lorenz-96 system (Eq. 117) from 30 ordinal variables, each having up to
15 levels. On average, each variable only occupied 7 unique categories due to
the random initialization of the observation model. For these reconstructions,
we used the shPLRNN (Eq. 18), since the results in [152] (see Table 7) indicate
that with the shPLRNN, we can in principle reconstruct the Lorenz-96 system
directly in the observation dimension. Given in this situation the reconstruction
model has the same state space dimension M = 10 as the underlying system,
this has the further advantage that when analyzing the reconstructed latent ac-
tivity we do not require any additional dimensionality reduction techniques.
Despite the ordinal sampling leading to a completely different representation
of the dynamics of the underlying Lorenz-96 system (Fig. 29a), MTF allows us
to almost perfectly decode the ground truth Lorenz-96 trajectories from the dis-
crete ordinal time series (Fig. 29b middle, c right). It is important to emphasize
that the model has never seen the original Gaussian observations during train-
ing. They are instead only indirectly inferred from the ordinal observations by
forcing the DSR model to approximate the underlying DS in its latent space.
Further, trajectories freely generated using the DSR model capture the overall
complex chaotic spatiotemporal pattern of the Lorenz-96 system well (Fig. 29b
bottom). Note that here we do not expect perfect alignment of the generated
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trajectories with the ground truth data due to exponential trajectory divergence
in chaotic systems.

Figure 29: Reconstruction of a 10d chaotic Lorenz-96 system solely from ordinal obser-
vations with up to 15 levels using a shPLRNN ([152]; M = 10,L = 100, τ =

10). a top: Ground truth ordinal time series sampled from a randomly ini-
tialized ordinal observation model p(ot|xt) from ground truth states xt of
the Lorenz-96 system, and reconstructed ordinal observations decoded from
freely generated latent states using the trained decoder model p(ot|z̃t). Bot-
tom: Example ground truth and freely generated ordinal time series from 1

channel. b: Ground truth states xt (top), states encoded using the trained
MTF encoder p(z̃t|ot) (center), and freely generated latent activity from the
trained DSR model zt = Fθ(zt−1) (bottom). States z̃t encoded from the ordi-
nal data were aligned with ground truth states xt (not seen during training)
using a linear operator B (Eq. 75). This linear operator was also used to
project the freely generated activity of the shPLRNN into the observation
space of the Lorenz-96 system. c left: Example of ground truth (orange) and
freely generated (blue) activity. c right: Aligned ground truth (xt) and en-
coded latent states (z̃t) as in b for one example unit. Note that the encoded
states p(z̃t|ot) and ground truth states xt overlap almost perfectly, although
the xt have never been seen by the model during training.

Finally, we explored the feasibility of DSR based on a purely symbolic repre-
sentation of the dynamics. Here, we used 43 distinct symbols corresponding to
subregions delineated by a 4× 4× 4 grid overlaying the attractor. Since 28 of
the subregions thus obtained were never visited, we further reduced the sym-
bolic code to 36 independent symbols. Other symbolic encodings are feasible
(see Appx. Fig. 56) The symbolic encoding, unlike ordinal encodings, does not
inherently retain the structural relationships of the continuous state space. Each
symbol in this method represents a specific subregion independently, with all
categorical probabilities in Eq. 64 learned separately. Different symbols also oc-
curred with different frequencies, further reducing the information content of
the symbolic encoding. However, as shown in Fig. 28 (top) and Fig. 30a, recon-
structions could be achieved even from this symbolic encoding. Notably, many
MTF-trained runs approximated the maximum Lyapunov exponent of the true
Lorenz system (λmax = 0.903) closely, demonstrating that they faithfully cap-
tured the system’s chaotic nature despite the highly challenging nature of the
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representation (Fig. 30b). In comparison, other training algorithms like MS or
the sequential MVAE [214] either significantly deviated in estimating λmax (MS)
or failed to capture meaningful geometric structure (sequential MVAE). Further
numerical results underpinning these conclusions for various datasets and set-
tings can be found in Appx. Table 8.

These results underscore the MTF’s proficiency in leveraging its flexible encoder-
decoder structure to generate TF signals even from data representations sub-
stantially different from the Gaussian continuous case. To our knowledge, such
reconstructions from symbolic time series of chaotic DS have never been shown
before. These applications are interesting from a theoretical perspective, bridg-
ing the gap to the field of symbolic dynamics, which studies, among other
things, the relationship between symbolic encodings of a DS and its properties,
such as topological invariants and spectral properties [162, 268, 294, 442]. How-
ever, these advances also have other practical implications. Experimental time
series in fields like physics, neuroscience and psychology often exist solely as
discrete data (see Sect. 2.7). An application of this method to discrete ordinal
data, derived from a psychological study of social interactions, is more compre-
hensively discussed in Chapter 5.

Figure 30: a: True and predicted class label probabilities (given the maximum posterior
probability for a category at each time step) from a freely generated trajec-
tory of and dendPLRNN, trained with MTF on the symbolic representation
of the chaotic Lorenz-63 dynamics. b and c: Kernel-density estimates of max-
imum Lyapunov exponents (b) and cumulative distributions of Dstsp (c),
comparing training with MTF, Multiple Shooting (MS), and sequential mul-
timodal VAE (MVAE) across 30 trained models each. Taken from [53].

4.3.3 Multimodal Experimental Results

We then assessed the MTF’s efficacy on two real-world multimodal examples
from neuroscience, studying to which extent multimodal integration enhances
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reconstructions and builds cross-modal links in the reconstructed system’s la-
tent space.

neuroimaging and behavioral data As a first experimental baseline,
we used recordings from subjects performing cognitive tasks in an fMRI scan-
ner [209]. The dataset included continuous BOLD time series from 26 subjects
(sampled at 1/3 Hz) and categorical time series of cognitive stage labels corre-
sponding to five different task stages: (‘Rest’, ‘Instruction’, ‘Choice Reaction
Task [CRT]’, ‘Continuous Delayed Response Task [CDRT]’ and ‘Continuous
Matching Task [CMT]’). The recorded time series were pre-processed by extract-
ing the first principal component of BOLD activity from 20 brain regions per
subject, with each time series spanning T = 360 time points. For MTF training,
we combined a linear Gaussian observation model (Eq. 50) for the fMRI data,
and a categorical observation model (Eq. 64) for the five task stages. We trained
models on the first four repetitions of the trial, featuring a total of Ttrain = 288

time steps per subject, and held back a test set of length Ttest = 72 to assess
short-term predictions. Given invariant geometric and temporal properties can
not be meaningfully assessed on very short (test) time series, we computed
them along the combined training and test set. This still requires the model
to recapitulate the correct long-term properties after only providing one esti-
mated initial state, a challenge most comparison methods struggled with (as
also observed on other experimental datasets, Fig. 23).

We then followed a similar analysis to that performed by Kramer et al. [214].
We trained a dendPLRNN using MTF on BOLD signals alone and then by in-
cluding additional categorical data. Results showed a significant improvement
in DSR when incorporating multimodal data, as assessed by comparing geomet-
ric and temporal agreement, averaged across 15 runs per subject, and across 20
subjects who did not feature strong movement artifacts in the recorded time se-
ries (Fig. 31a; paired t-test: Dstsp, t19 = 2.45,p < .013; DH, t19 = 2.72,p < .007).
This result confirms that categorical data enhances empirical DS reconstruction.
The effect was particularly pronounced in the temporal domain, indicating that
the categorical variables help structure the reconstructed neural activity in line
with the different cognitive task stages. Example short-term predictions on the
left-out test set closely matched the real data for some subjects (Fig. 31b). Ad-
ditionally, the latent space after multimodal training showed clear cross-modal
links (Fig. 31c). Finally, freely generated model predictions after training resem-
ble the overall complex activity pattern of the ground truth data (Fig. 31d). Com-
parative performance metrics are shown in Table 6, with MTF outperforming
the sequential MVAE from [214] by significant margins. While other approaches
trained via TF methods all performed relatively well on this dataset, including
BPTT-TF as described in Sect. 3.2.3 on ‘Gaussianized’ data, incorporating cate-
gorical data via the categorical observation model leads to better performance.
Overall, these results underscore two key observations from the previous sec-
tions: firstly, that approaches based on TF play a crucial role in achieving suc-
cessful DSR on challenging experimental datasets, and secondly, that including
multimodal information via modality-specific decoder models tailored to their
underlying probabilistic assumptions leads to improved reconstructions.

spike trains and continuous position data In a second empirical
test for the MTF approach, we trained on electrophysiological recordings from
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Figure 31: a: Multimodal integration on functional magnetic resonance imaging
(fMRI)+behavioral data significantly improves DSR compared to just train-
ing on fMRI data alone (unimodal). Results are shown for 20 subjects (sub-
jects represented by black lines, with the mean across subjects by a blue
line), shown for both geometrical (Dstsp, left) and temporal (DH, right) dis-
agreement between true and reconstructed systems. p-values obtained by
performing a paired t-test. b: Example of decoded (color-coding of time se-
ries) and true (background colors) task stages l̂ ∈{Rest, Instruction, CRT,
CDRT, CMT} for an example subject. The trained model was freely iterated
forward from the first time step of the test set not seen during training, and
task stages were decoded from the simulated activity based on the maxi-
mum posterior probability, l̂t = arg max p(lkt|zt), given the latent trajectory
zt. c: Example subspaces of freely generated latent activity for a DSR model
trained jointly on continuous and categorical data by MTF for an example
subject. Task labels at each latent state are predicted according to the max-
imum posterior probability given the latent state at each time step, as in b.
The latent space is structured according to the task stages. d: Freely gener-
ated time series from 10 brain areas per subject from subjects #3 (left) and #7.
(right). The trained DSR model, only iterated by providing an initial state,
captures the overall temporal structure of the complex activity patterns even
from very short time series. Based on [53].

the hippocampus of rats navigating a track, provided to the model as spike
counts, combined with their longitudinal position data [133]. The hippocampus
is a popular area of study of multimodality, given its involvement in spatial
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Table 6: Comparison among multi-modal reconstruction methods for experimental
fMRI+behavioral data. For each subject and training method, medians across
15 trained models were first obtained for each measure, which were then aver-
aged across 20 subjects (± SEM). SEM = standard error of the mean. X = value
not accessible for this method. The abbreviations are the same as in Table 5.
Taken from [53].

Dataset Method Dstsp ↓ DH ↓ PE ↓

fMRI

MTF 0.55± 0.04 0.301± 0.007 1.21± 0.08

SVAE 1.9± 0.22 0.441± 0.019 2.34± 0.12

BPTT 3.31± 0.8 0.52± 0.05 2.8± 0.15

MS 1.06± 0.14 0.373± 0.012 X

GVAE-TF 0.67± 0.06 0.335± 0.011 1.64± 0.07

BPTT-TF 0.63± 0.03 0.312± 0.006 1.39± 0.05

navigation and memory [62, 284]. The same dataset was recently used to dis-
cover joint multimodal embeddings of behavioral and spike data [356], without
however extracting any DSR model from the data.

Before training, we first segmented spike trains into 200ms bins [445], ob-
taining a multivariate count time series. Since many of the 120 recorded neu-
rons only featured very sparse activity, we further filtered the 60 most active
neurons from this dataset. We modeled counts using three different decoder
models: a standard Poisson decoder, a zero-inflated Poisson decoder, and a
negative-binomial decoder (see Sect. 3.2.7 for details). We found the negative-
binomial decoder to lead to the best results, whereas the Poisson decoder un-
derestimated and the zero-inflated Poisson decoder overestimated zero counts.
Since the negative-binomial model is tailored to deal with high dispersion in
count data, it performed well given the high dispersion in the observed time
series. The position data was provided as a Gaussian 1d time series. The water
reward cues provided at the end of each track were further given to the model
as short external reward cues.

We split the overall trial of the rat navigating the maze into equal-sized train-
ing and test sets, each comprising 4600 time steps. The model’s performance
was evaluated by comparing various spike train statistics (mean firing rate,
mean zero rate, coefficient of variation, and neural cross-correlation matrix, in-
troduced in Sect. 4.1.2), between the true and generated spike trains across the
test set. As shown in Fig. 32b, these agreed as closely with the test data as sim-
ilar comparisons computed between the two sections (training and test set) of
the experimental data. Predictions of the rat’s position on the test set further
matched the real behavior (Fig. 32a bottom). Reconstructions on the training set
almost perfectly agree with the true data, and are displayed in Appx. Fig. 57.

Crucially, the integration of both spike train and positional data led to more
robust and accurate reconstructions than using spike data alone, as confirmed
by a Mann-Whitney U-test (p < 0.025 for all metrics) across 50 models (Fig. 32c,
with spike statistics as in Sect. 4.1.2). Fig. 32d shows that the model constructs
a joint latent embedding of neural activity and the rat’s activity movement.

Cells in the CA1 region of the hippocampus are known for their role in en-
coding spatial information [291]. These cells activate in response to specific loca-
tions in an environment, providing a neural basis for mapping and navigating
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Figure 32: a: Example reconstructions of spike trains and spatial location of a rat mov-
ing along a vertical track on the unseen test set (second half of the trial),
generated from a data-inferred initial condition. b: Correlation of mean
spike rate, zero count ratio, coefficient of variation, and correlation between
cross-correlation coefficients between all 60 reconstructed neurons between
test set and model-generated data (blue), and between experimental train-
ing and test set data (orange). Diagonal gray lines are bisectrices. Bottom:
Cross-correlation matrices among all 60 neurons for the test set (left) and
model-generated data (right). c: Joint DSR from both spatial and neural data
significantly improves reconstructions across all spike statistics, as assessed
by computing the average MSE between spike statistics across all neurons.
The MSE was normalized for each statistic for better visibility. d: Subspace
of the DSR model’s latent space, illustrating how the latent dynamics are
structured according to the animal’s spatial position. Based on [53].

physical spaces. Our results demonstrate that the MTF algorithm can leverage
spatial information to better reconstruct the neural activity of the place cells.
The observation that this improves its ability to capture and predict spike statis-
tics along the unseen test set hence illustrates the functional role of the neurons
in that region in navigation, and the MTF’s ability to meaningfully link different
observed modalities.
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4.4 hierarchisation framework

This section summarizes results using the hierarchization approach described
in Sect. 3.3.

4.4.1 Benchmark Evaluation

I first assessed the ability of the hierarchical inference framework to discover
interpretable structure from the Lorenz-63 (Eq. 110) and Rössler system (Eq.
111). To this end, I sampled relatively short time series of length T = 2000 for
ten different values of ρ(j) ∈ {26 . . . 60}, while for the Rössler system, I tuned
c(j) ∈ {3.8 . . . 4.8} leading to multiple time series X(j) here representing differ-
ent ‘subjects’ or experimental conditions. Changes in these parameters lead to
significant changes in dynamics, where e.g. for the Rössler system, the dynam-
ics moved from a limit cycle to the chaotic regime for larger values of c (see Fig.
33, right).

feature vectors map to ground truth parameter variation As
illustrated in Fig. 16, every time series is trained with an individual feature vec-
tor l(j) ∈ R1×Nfeat , while projections are shared across all subjects. Since only
one free parameter is altered in the ground truth systems, the most challeng-
ing but most principled situation is one wherein the hierarchical shPLRNN is
trained with only one free parameter per subject, Nfeat = 1. This forces the
system to restrict all subject-specific variation to a one-dimensional parameter
manifold. After training, this straightforwardly allows us to relate the extracted
feature vector with the ground truth values for ρ(j) and c(j). Fig. 33 illustrates
that using this approach, the respective features l(j) after training further allow
us to almost perfectly predict ground-truth values for ρ and c via linear regres-
sion. Since the training algorithm has no knowledge of the ground truth values,
it has to infer them indirectly from the training data. Given the functional form
of the DSR model (Eq. 70) significantly differs from that of the ground truth
systems, which are formulated as low-order polynomials (Equations 110 and
111), this makes the ability of the hierarchical approach to implement a linear
relationship surprising.

4.4.2 Applications to fMRI data

I then applied the hierarchization framework to the experimental fMRI data
previously evaluated in Sect. 4.3.3 using MTF. For simplicity, I focus here on the
unimodal case and trained the hierarchical shPLRNN using GTF on time se-
ries from 10 subjects with the least amount of irregularities/artifacts. Although
we cannot expect a low-dimensional manifold to sufficiently capture individ-
ual differences for the more complex fMRI data, I attempted reconstructions
with a relatively low-dimensional feature vector of Nfeat = 15. This approach
still allowed the model to capture the unique characteristics of the individual
time series, as illustrated for several example subjects in Fig. 34a. For a left-out
sample subject, the reconstruction of the overall dynamics was feasible, even
when only fine-tuning the low-dimensional feature vector on unseen data, as
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Figure 33: a: Reconstructions of the Lorenz-63 attractor (left) and Rössler attractor
(right) for different values of ρ and c, respectively, using a hierarchical sh-
PLRNN with a one-dimensional feature vector. b: By performing linear re-
gression on the one-dimensional feature vectors l(j) after training, the actual
ground truth values of ρ(j) and c(j) for each system can be accurately pre-
dicted via linear regression.

shown in Fig. 34b. This demonstrates the potential of the approach to effectively
employ transfer learning across subjects.

Since the feature vectors were highly interpretable for the two benchmark sys-
tems in Fig. 33, I investigated whether the identification of the low-dimensional
feature vectors is equally robust for the experimental time series. Since the fea-
ture vectors are randomly initialized and optimized stochastically, they are not
directly comparable across different model instances, yet they should robustly
encode differences across subjects. Therefore, I computed a cosine similarity
matrix between the extracted feature vectors l(j) for the 10 subjects across 10

different training runs. Subsequently, I calculated the correlation coefficient be-
tween the resulting similarity matrices, indicating a strong correlation (r ≈ 0.84).
This indicates a robust extraction of the low-dimensional manifolds, implying
that the extracted features could also be employed, for example, for down-
stream classification tasks such as diagnosing mental illnesses from neurosci-
entific recordings. Performing unsupervised approaches like clustering on the
extracted features can further reveal differences within the observed popula-
tion. This is illustrated in Fig. 35 for four example subjects from two different
clusters determined via k-means on the average cosine similarity matrix, with
the extracted clusters aligning with visual differences between the fMRI time
series.
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Figure 34: Example reconstructions of several subjects from the experimental fMRI
dataset (Sect. A.3.2) using a hierarchical shPLRNN withNfeat = 15, L = 300,
and trained using GTF with α = 0.1 and Tseq = 72.

4.5 analysis of linear subregions of trained plrnns

Piecewise linear activation functions, such as the rectified linear unit (ReLU),
decompose complex nonlinear functions into subregions with linear activity
[115]. They have both biological and mathematical justifications [141], and have
been widely used in ML as activation functions for NNs. The use of piecewise
linear functions can significantly simplify the analysis of the complexity of in-
ferred models [283, 362], and can make it easier to understand and visualize
how inferred NNs process information. In DS theory, linear dynamics are well-
understood and straightforward to analyze, while nonlinear DS lack an equally
simple description [58]. This has motivated the modeling of complex dynamics
in terms of compositions of locally linear dynamics, e.g. by piecewise linear ap-
proximations [64, 77, 169], or by combining linear dynamics with a switching
or external forcing mechanism [56, 244, 245].

Consider again the PLRNN defined by Eq. 12:

zt = (A+WDΩ(t−1))zt−1 +h :=WΩ(t−1) zt−1 +h, (90)

To make the dependence of the dynamics on the piecewise nonlinearity explicit,
hereDΩ(t−1) := diag(dΩ(t)) is a diagonal matrix and dΩ(t) = (d1,d2, · · · ,dM)
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Figure 35: a: Cosine similarity matrix based on the average similarity of the feature
vectors across ten training runs for four example subjects. b: Extracted sim-
ilarities and cluster labels reflect visual differences in the recorded BOLD
signals.

an indicator vector with dm(zm,t) = 1 whenever zm,t > 0 and zero otherwise
[104].

For the 2M different configurations of DΩ(t) as DΩk , k ∈ {1, 2, · · · , 2M}, the
phase space of system Eq. 90 is divided into 2M linear sub-regions with linear
dynamics, where

zt+1 = WΩk zt + h, WΩk := A+WDΩk , (91)

Using the binary number system, all the sub-regions SΩk can be uniquely
labeled by an index. A sequence of latent states Z = {z1, · · · , zT } can thus be
mapped onto a sequence of bitcodes D = {dΩ(1), · · · ,dΩ(T)} that encode which
linear subregion of the PLRNN the latent state inhabits at each time step.

Assume we have trained a PLRNN model (eq. 90) approximating a DS. In
the following, I investigated five benchmark systems: the Lorenz-63 system (Eq.
110), the Lorenz-96 system (Eq. 117), the Rössler system (Eq. 111) and a forced
Duffing oscillator (Eq. 120), all in their chaotic regimes, and a bursting neuron
model (Eq. 112) implementing a complex limit cycle. All models were trained
using STF with a trainable B matrix (Sect. 3.2.3). In the following, the results
are illustrated for five example PLRNNs that reconstructed the underlying DS
well. However, similar results to the ones presented here could also be robustly
reproduced for other trained models.

To assess how the PLRNN model reconstructs these systems in its state space,
I sampled a long trajectory Z = {z1, · · · , zT } with 100.000 time steps, removed
transients of 1000 time steps, and mapped the trajectory onto its bit code repre-
sentation.

I first investigated the number of unique linear sub-regions traversed by the
sampled trajectory for different trajectory lengths, denoted as T . Results for all
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Figure 36: a: Plateau effect observed for the number of total subregions traversed for
different reconstructed DS and different PLRNN dimensions (Lorenz-63:
M = 10, Lorenz-96: M = 30, bursting neuron: M = 25, Duffing: M = 20,
Rössler: M = 8) b: Scaling of the total number of linear subregions of a
PLRNN, given its latent dimension M, versus the number of subregions
inhabited by trained Lorenz-63 systems with different dimensions. While
the number of total subregions scales exponentially with M, the used linear
subregions increase much more slowly. c: Number of boundary crossings
per time step for a trajectory with 100, 000 time steps. For the Lorenz-63

and Rössler systems, the models do not cross any boundaries on most time
steps, illustrating that the dynamics are highly linearized. d: Cumulative fre-
quencies of the individual subregions for trained systems. e: Reconstructed
attractors for the Lorenz-63 and bursting neuron model, colored with respect
to the linear subregions corresponding to each observation.

five benchmark systems are displayed in Fig. 36a. For all systems, the total num-
ber of unique sub-regions reaches a plateau between approximately 1, 000 and
10, 000 time steps. The plateau level for the total regions is much lower than
the total number of available sub-regions for the PLRNNs, given by 2M for an
M-dimensional PLRNN model. This suggests that the reconstructed systems
are confined to a substantially lower-dimensional subspace than the total num-
ber of linear sub-regions available. To further quantify this plateau effect, Fig.
36b compares the total number of linear sub-regions traversed by the PLRNNs
with increasing latent dimensions M trained on the chaotic Lorenz-63 system,
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compared with the total number of available regions, given by 2M. Despite the
total number of sub-regions increasing exponentially with the model’s latent
dimension M, the number of utilized sub-regions increases much more slowly.

To assess the extent of local linearity in the dynamics, I analyzed the average
number of boundary crossings at each time step. Fig. 36c shows histograms
normalized over 100, 000 time steps. For all systems, zero boundary crossings
per time step occur most frequently, indicating that the systems frequently re-
main within the same linear sub-region for multiple time steps. This result was
particularly pronounced for the Rössler system, in which a boundary-crossing
occurred on average only every 12 time steps.

The bit code representation D of the latent sequence can further be analyzed
concerning the relative frequency of occurrence of the individual sub-regions
in the sequence. Fig. 36d illustrates cumulative density plots, comparing the
total number of sub-regions required to cover the maximum percentage of data
points. Here, the sub-regions were first sorted by their relative frequency. For
all models, particularly the four chaotic attractors, a relatively small subset of
regions contains most data points, leading to a Pareto-type distribution. This
indicates that the system predominantly lives in a much smaller subset Ωn =

{WΩj1 ,WΩj2 , · · · ,WΩjn } of n dominant sub-regions.
Fig. 36e illustrates reconstructed systems, with colors corresponding to dis-

tinct linear sub-regions mapped onto each observation. Although the mapping
from latent space to observation space is not necessarily unique becauseM > N,
and hence the kernel of the linear observation model given by B is not empty
(for the identity mapping, this can be trivially seen since non-readout neurons
do not contribute to the observations). While the observed data points are there-
fore not inherently associated with specific linear sub-regions, we found that
proximal points in observation space were typically related to unique linear sub-
regions. To verify this, I conducted proximity matching by defining a threshold
distance (e.g. d = 0.05, corresponding to 5% of the data variance) and assessing
whether proximal points corresponded to different sub-regions. For the Lorenz-
63 system, for instance, only 4% of proximal data points within d belonged to
different sub-regions, confirming that the attractor is segmented into relatively
distinct patches.

Given the set of all linear sub-regions the system traverses, I then examined
the average frequency of transitions between all pairs of sub-regions s,k =

SΩs → SΩk , sorted according to their frequency (Ω0 denoting the most fre-
quented sub-region) yielding a matrix of transition frequencies that can be rep-
resented as a directed graph between the sub-regions, and further analyzed
with graph-theoretical methods. Note that the number of possible transitions
naively scales with M4, and hence this analysis is only meaningful due to the
sparse structure of actual transitions in the reconstructed models.

Fig. 37 illustrates these results for a reconstructed Lorenz-63 system. The
graph in Fig. 37a (top) features a clustering coefficient of 0.31 and high sparsity
(only 5 percent of elements in the connectome were non-zero) and indicates
small-world structure [418], as assessed by the small world sigma approximated
using the NetworkX Python package. The visualized graph even mimics the ge-
ometry of the true Lorenz-63 system when using the spectral layout in networkx.
This layout is based on the Laplacian matrix, which is defined as L = D −A

whereA is the adjacency matrix of the graph, andD is the degree matrix, which
is a diagonal matrix where each element is the degree (sum of the weights of

[ May 6, 2024 at 7:40 – classicthesis ]



4.5 analysis of linear subregions of trained plrnns 99

Figure 37: a: Connectome of transitions between linear sub-regions, sorted by their rel-
ative frequency, for a PLRNN trained on a Lorenz-63 system, and resulting
graph structure visualized using the spectral layout in networkx. The result-
ing graph shadows the layout of the real Lorenz-63 system, with the most fre-
quented subregion (label 0) at the center of the intersection between the left
and right lobe. b: Connectome for a reconstructed bursting neuron model,
using the same layout. The graph for this system mimics the cyclic nature of
the system and lacks a similarly dominant and interconnected sub-graph.

the edges) of node i. The spectral layout in networkx uses the eigenvectors of
the Laplacian matrix corresponding to the smallest non-zero eigenvalues as po-
sitions for the nodes. This tends to group more tightly connected nodes closer
together. The Laplacian is more widely used as a dimensionality reduction tech-
nique in ML, for example in Laplacian eigenmaps [31], and has also been used
to represent discretizations of PDEs as graphs [372].

The bursting neuron model, being the only non-chaotic benchmark system,
but instead implementing a complex cycle, featured a markedly different graph
structure than the chaotic benchmarks (Fig. 37b). Here, the cycle was imple-
mented in terms of a trajectory passing the same linear sub-regions in the same
order for every cycle. Accordingly, most sub-regions were only connected to
one other sub-region, with a few exceptions of sub-regions that occur multiple
times during the cycle. These regions are connected to several other sub-regions
and clustered more strongly in the graph.
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The extracted graphs across all four chaotic benchmark systems featured
moderate to high levels of modularity (0.4− 0.6), clustering coefficients (0.3−
0.5), and small world structure. The presence of small-worldness indicates that
while connections between sub-regions are infrequent, the structure of the in-
teractions ensures that any sub-region can be reached from any other through
a relatively small number of steps [418]. Overall, these graph theoretic results
illustrate how extracted PLRNN models fit locally linear dynamics to the data
while retaining a global level of integration necessary to represent the complex
state transitions present in chaotic systems. For the bursting neuron model, the
clustering coefficient was much smaller (0.07), with the network being highly
modular (0.78) and even sparser (1.3%), underscoring that most units are only
connected to one other sub-region. These results imply that the obtained graph
structure is distinct from the chaotic DS and reflects the non-chaotic nature.

Another way of quantifying the complexity of the connectome is via its en-
tropy, which can be computed for a single node using the Shannon entropy:

Hi = −

M∑
j=1

pij log(pij). (92)

Here pij represents the probability of transitioning from node i to node j, and
M is the total number of nodes in the connectome to which node i can tran-
sition. Normalizing probabilities pij for each node ensures that

∑M
j=1 pij = 1,

accommodating for a proper probability distribution over the outgoing connec-
tions from node i. The mean entropy H across the connectome can then be
averaged over all individual nodes. In line with the previous observations, the
entropy for all chaotic systems was much higher (Lorenz-63, H = 0.51, Lorenz-
96, H = 0.46, Rössler, H = 0.48, chaotic Duffing, H = 0.55) than for the bursting
neuron model (H = 0.11).

Collectively, these findings show that despite the exponential scaling of the
available number of sub-regions for larger PLRNN models, only a small portion
of these are used in reconstructed systems. Within this small subset, an even
smaller subset of sub-regions contains the majority of the system’s dynamics.
These sub-regions are interconnected by sparse graphs with small-world charac-
teristics. Since these results generalize across multiple benchmark systems and
for RNN models of different sizes, they indicate shared principles in the struc-
tural organization of reconstructed PLRNN models. Particularly, reconstructed
models do not simply ‘overfit’ the data but extract low-dimensional and in-
terpretable structures from them that can be leveraged for the interpretation
of inferred models. These results also highlight several interesting connections
to symbolic dynamics [243, 295]. In symbolic dynamics, the behavior of DS is
studied by representing them as symbols and sequences of symbols. A common
approach is to divide the state space into a finite number of disjoint subregions,
assigning a unique symbol to each subregion, and describing the evolution of
the system in time as a sequence of symbols. The collection of all possible in-
finite sequences of symbols that can be generated by the system’s dynamics is
called the shift space, and the dynamics of moving between symbols is formally
represented by the shift map. This shift map encapsulates the underlying DS in
symbolic space and is often of key interest to understand in which way this map
represents (and potentially simplifies) the underlying DS. The results from this
section can be seen as a specific variant of this approach: the disjoint subregions
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are naturally given by the linear subregions of a PLRNN, with each quadrant
associated with a symbol, and the shift map is identified with graphs defin-
ing transitions between subregions. The results in this section indicate that the
graph representation of the shift map could conserve and reflect some impor-
tant properties of the reconstructed systems (see Fig. 37). These parallels and
results indicate that there is much room for further theoretical and empirical
investigations.

4.6 optimal network topologies for dynamical systems recon-
struction

Here I briefly summarize the approach and key results in [149].

motivation As discussed in the introduction, training interpretable and
parsimonious models is often desirable in the context of scientific ML. However,
this approach contrasts with trends in training and employing large-scale foun-
dation models in many ML disciplines. Observations regarding the surprising
generalization abilities of highly over-parameterized models, such as the double
descent curve [30], further motivate the training of large-scale models. To never-
theless obtain interpretable, smaller models, an increasingly popular approach
relies on starting in over-parameterized regimes and pruning out unimportant
weights. A well-established and easily applied strategy in ML is magnitude-
based parameter pruning, which removes low-magnitude weights in iterative
training procedures [42]. The success of these pruning approaches is related
to the insight that randomly initialized models often contain ‘lottery tickets’:
these are small subnetworks whose specific random initialization allows them
to achieve performance almost equal to that of the full large network [112].
This lottery ticket hypothesis (LTH) has been well-established and investigated
both empirically and theoretically across different applications and network ar-
chitectures [60, 262, 293, 376, 443], such as CNNs in image classification [143].
However, the existence of lottery tickets has not been investigated in the context
of DSR.

Real-world DS are often composed of many interacting components, con-
nected through specific network topologies. For example, topologies may arise
due to specific physical constraints [176], and the brain consists of firing neu-
rons within a complex network structure featuring scale-free properties, which
facilitate global information sharing and local information processing [28, 337].
Consequently, inferring the underlying network topology directly from data
has been of long-standing interest [364, 416]. On the other hand, integrating
topology with ML approaches has been extensively explored in the context of
graph NNs [428]. Given the crucial role of topology in influencing dynamics in
real-world systems, this influence has also been studied in DS models such as
RNNs and RCs. In RCs (Sect. A.2), the dynamical reservoir is randomly initial-
ized and not trained. Therefore, the expressivity of the reservoir heavily relies
on its initialization, such as its topology. Accordingly, numerous studies have
investigated the impact of various topologies, such as hub structures, directed
graphs, Erdős–Rényi graphs, or those resembling cortical networks, on RC per-
formance [63, 79, 101, 180, 231, 435]. While the influence of topology on RC
performance and generalization has been well-documented, these approaches
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are not suitable for discovering novel structures that emerge through pruning,
as the reservoir weights are not actually trained.

The main contributions in [149] are twofold. First, we demonstrate that the
classical approach of magnitude-based pruning is ineffective in the context of
DSR, while a pruning method that targets weights based on their influence on
state space geometry allowed significant pruning of models. Second, through
this pruning procedure, we obtain an interpretable network topology across
DSR models trained on different datasets that can be reverse-engineered and
used to initialize novel DSR models, leading to faster convergence and the de-
velopment of more performant, interpretable, and parsimonious models.

𝐼𝜃𝑖 = 15.76

𝜃𝑖 = 0.15

𝐼𝜃𝑖 = 3.16

𝜃𝑖 = 0.06

𝐼𝜃𝑖 = 0.04

𝜃𝑖 = 0.82

a b𝐷𝑠𝑡𝑠𝑝 = 0.03

𝐷𝑠𝑡𝑠𝑝 = 15.79 𝐷𝑠𝑡𝑠𝑝 = 3.19 𝐷𝑠𝑡𝑠𝑝 = 0.07

Figure 38: a: Illustration of geometry-based pruning. The top row shows a ground truth
and reconstructed Lorenz-63 attractor (blue) and a successful reconstruction
(red). The bottom row illustrates reconstructions where a single weight was
removed with varying influence on attractor geometry. The shift in differ-
ence in geometric importance score Dstsp does not necessarily relate to the
absolute magnitude of the pruned parameter indicated below. b: Weight
parameters with large (∆Dstsp > 0.1) vs. low (∆Dstsp ⩽ 0.1) impact on ge-
ometrical reconstruction quality only feature a small difference in absolute
magnitude. This observation illustrates why magnitude can not be mean-
ingfully leveraged for pruning DSR models. Taken from [149]. Created by
Christoph Hemmer.

geometric pruning For the results in [149], we used the standard PLRNN
(Eq. 12), trained with id-TF (Sect. 3.2.3), since here the connection between the
weight matrix W and network topology is the most straightforward. We use
a standard procedure for weight pruning, where pruned weights are given
by a mask m that is applied to the weight matrix W . The resulting mask
m ∈ {0, 1}M×M hence represents the network topology. Traditional pruning
methods often assess the importance Iθi of a parameter by its absolute mag-
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nitude. However, in [149] we show that weight magnitude is not significantly
linked to performance in DSR (Fig. 38), as measured by geometric agreement
Dstsp and temporal agreement DH across several different benchmark datasets
already discussed in other parts of this thesis (Lorenz-63, Rössler, bursting neu-
ron, Lorenz-96, ECG, Sect. A.3), and does not outperform random pruning. In
geometric pruning, weights that minimally impact the attractor geometry of
the reconstructed dynamical system in state space are pruned. This approach
results in notable improvements across a range of benchmark datasets and sig-
nificantly more sparse models.

Computing the geometric pruning measure is more costly than magnitude
pruning. It entails generating long trajectories of the reconstructed system and
computing Dstsp on the respective limit set after removing individual weights,
hence naively scaling with network size withM2. However, since this procedure
is independent of each network weight, it can be parallelized. Further, despite
the potential downside of increased computational costs, geometric pruning
yields interpretable network topologies, enabling the creation of a template for
novel initialization.

pruned network topologies lead to improved dsr The second key
result in [149] is that network topology, but not the specific (randomly initial-
ized) weight configuration is essential for the improved performance of the
pruned RNNs. The classical LTH [112] states that the combined topology of the
‘winning’ subnetwork m, in conjunction with a specific random initialization
of model parameters θ0 of this subnetwork constitutes the winning ticket par-
ticularly well-suited at solving a given task. To test whether this also held for
the masks m and weights θ0 obtained via geometric pruning, we resampled
network parameters θ∗ ∼ N(0,σ2I) with a fixed mask m from the same distri-
bution as the initial weights θ0, and compared this to the scenario where θ0 is
fixed after the initial draw, as in the standard LTH. We found that the network
topology, given by the maskm, was far more important than the specific weight
vector θ0: Redrawing θ∗ from scratch vs. fixing it to the initial θ0 did not lead
to significant differences in DSR performance across a range of datasets. In the
‘classical’ LTH, masks and weight distributions are tied to each other in a spe-
cific way. While lottery tickets are bound to appear in highly overparameterized
networks, they can therefore not be straightforwardly reverse-engineered. How-
ever, since in our case, network topology was the determinant factor, we can
study the obtained topologies independently of specific weights, and extract in-
variant structures that can be reverse-engineered to initialize new models. This
procedure is illustrated in Fig. 39.

When analyzing the network topologies of models pruned with geometric
pruning, we found topologies characterized by both hub-type structures and
small-worldness, such as present in the famous Watts-Strogatz model [418]. This
means that graphs have a small average path length, as well as a high cluster-
ing coefficient. At the same time, the networks feature a hub-like structure with
a few highly connected network nodes and many sparsely connected nodes,
such as in the Barabási-Albert model [7, 24]. We hence call this topology Geo-
Hub (for geometrically-pruned-hub network). Example graphs for these classi-
cal network topologies, compared to the one obtained with GeoHub, are dis-
played in Fig. 40. Our experiments in [149] show that networks initialized with
GeoHub lead to overall best performance in DSR tasks across a range of sys-
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tems, followed by the Barabási-Albert model, and also train significantly faster
than their counterparts. It is interesting to note the connections between these
results and the ones in the previous section 4.5. While here the obtained graphs
relate to completely different aspects of the trained models (the connectome of
the linear subregions vs. the connectome of the network weight matrices them-
selves), in both cases, we obtain small-world-type sparse graphs that indicate
mechanisms by which PLRNNs approximate complex DS.

Figure 39: Approach for translating graph-topological properties of trained networks
into a general scheme to be used as topological prior. From [149].
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Figure 40: Example graph topologies with network sparsity of 85%. Hubs with ⩾ 6

connections are marked in red. From [149].
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5
D ATA - D R I V E N L E A R N I N G O F S O C I A L I N T E R A C T I O N
D Y N A M I C S

This chapter outlines the main results from Brenner et al. [55], providing a
direct use case of the MTF framework (Sect. 3.2.5) on discrete experimental time
series. Since this study constitutes a relatively self-contained project, I included
some additional methodological details and a description of the dataset directly
within the chapter.

5.1 introduction

computational modeling of social interactions Social interac-
tions significantly influence emotional well-being and relationships [287, 329].
Successful interactions can reduce loneliness and depression while enhancing
positive emotions, self-esteem, and a sense of purpose and meaning in life [326].
However, mental disorders, such as autism spectrum disorder and borderline
personality disorder, can impair one’s ability to engage in social interactions,
often exacerbating other problems that come with these disorders [113]. Under-
standing and predicting interaction behavior is crucial for developing therapeu-
tic approaches and comprehending the psychological underpinnings of human
social behavior.

Social exchange games in laboratory settings offer a structured method to
study social interactions and decision-making. The trust game (TG), for exam-
ple, involves participants in repeated interactions, enabling the analysis of evolv-
ing behaviors and decisions [36]. Playing this game successfully entails a variety
of cognitive processes like trust evaluation, risk assessment, and emotion regu-
lation, making investment behavior in the TG a complex decision-making task
[248]. Computational models have been developed to understand behaviors in
the TG, employing process-driven generative modeling approaches, such as re-
inforcement learning (RL) [67, 163, 164]. These models allow for the dissection
of decision-making aspects into interpretable parameters. However, models are
usually based on the designers’ prior knowledge and tailored to the specific
experiment, which can make model building laborious and error-prone [98].

Recently, data-driven models, particularly RNN models, have emerged as
alternatives for learning the computational mechanisms underlying behavior
from time series data [103, 384, 407]. Since these models are learned in an
entirely data-driven manner, they can uncover novel hypotheses about mech-
anisms underlying social behavior. Despite their potential, RNNs have not been
widely applied to study social interactions, possibly due to the often short and
noisy nature of experimental data, the lack of models for inferring nonlinear
dynamics from ordinal data, and the challenges in analyzing and interpreting
RNNs. The MTF framework discussed in Sect. 3.2.5, its promising results in
DSR from purely ordinal data, discussed in Sect. 4.3.2, and the mathematical
tractability of the introduced DSR models (Sect. 3.1) motivated their applica-
tion as a data-driven approach to study social interactions. Once inferred, the
RNN model serves as a ‘digital twin’ of the real-world entity [275], optimally
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mimicking the complex social decision style of the participant it was trained
on. Digital twins have found widespread use in medicine for their potential
to yield mechanistic insights into the process of interest beyond the scope of
the recorded data (which is often difficult to come by). For instance, digital
twins have been used in cardiovascular medicine [75], where digital twins of
patients’ hearts are created to simulate cardiac function [289], and can aid in
developing new interventions such as drug therapies or surgical procedures.
Learning digital twins of social interaction dynamics can similarly advance our
understanding of complex decision-making processes, and the inferred model
can then be used as a virtual interaction partner to simulate new interaction
scenarios.

trust game The behavioral data studied here was collected with 32 stu-
dents. The students played a TG, where participants acted as investors, en-
gaging with four virtual trustees across multiple rounds, deciding to invest
between 10 and 50 monetary units in each round. Their investment is then
tripled and given to the trustee, who then returns a portion to the investor
based on predetermined ratios (illustrated in Fig. 41a and b). Participants were
randomly assigned to either a social condition, interacting with human faces, or
a non-social condition, interacting with geometric shapes, with 16 participants
in each group. This assignment aimed to minimize anthropomorphism in the
non-social images, and significantly affected investment behavior. Participants
received visual input from a trustee, which was characterized by a combination
of ’expression’ and ’fairness’ cues, which determined the average repayment
ratio (RR). The fair trustees returned an average of 44.5% ± 9.5%, and unfair
trustees 26.5% ± 9.5% of the investment chosen by the participant. In the social
condition, expression cues varied across five levels of emotional facial expres-
sions, signaling different repayment ratios, whereas in the non-social condition,
the cues were represented by straight lines at different angles on top of ge-
ometric shapes. These cues were graded from ’++’ (highest repayment ratio)
to ’- -’ (lowest), with each ’+’ or ’-’ altering the repayment ratio by approx-
imately 7%. Participants did not have any prior knowledge about how cues
would relate to repayment ratios and had to infer this during the interaction.
Each participant played for T = 80 trials, with each trial involving the presenta-
tion of a trustee image, an investment decision, and feedback on the outcome.
Importantly, the order of conditions, trustee roles, and presence of cues were
pseudo-randomized across participants.

model inference The models were inferred using the MTF framework.
As a DSR model we used a dendPLRNN, which is coupled to the same ordered
logit ordinal observation model (Sect. 3.2.7, Eq. 51), predicting an investment
of at = {1, 2, 3, 4, 5}, at each time point, relating to the five investment of 10
up to 50 (here simply scaled with a factor of 10) monetary units invested per
trial. Since the ordinal observation model specifies the probabilities of selecting
each of the K = 5 choice options at each time point, conditioned on the latent
states at that time, p(at = k | zt), the choice entropy can be straightforwardly
assessed by computing the Shannon entropy of this choice distribution:

H(zt) = −
∑
k

p(at = k | zt) log(p(at = k | zt)). (93)
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Figure 41: a: The Trust Game (TG) setup, where participants, presented with an image
of one of four virtual trustees, are given 50 fictitious monetary units for
investment. The invested sum is then tripled and passed on to the trustee.
Participants subsequently receive feedback detailing their investment, the
trustee’s repayment, and the retained amount. b: Example trial. c: The RNN
model training process, mimicking the TG setup. The RNN, after receiving
fairness and expression inputs, forecasts future investments. Based on its
forecasts, the RNN is updated with data on the repayment and new balance.

As the encoder, we used the same temporal CNN encoder (Sect. 3.2.6) also
employed for the other results using MTF (Sect. 4.3), but using a causal mask-
ing of the time window so future values can not be used to infer current states.
The effectiveness of the CNN encoder in learning time delay embeddings from
partially observed data (see Fig. 27) makes it a suitable choice here, especially
considering that the behavioral investment data constitutes only a partial ob-
servation of the complex latent dynamics underlying investment decisions. The
dendPLRNN, given as before by

zt = Azt−1 +W

(
B∑
b=1

αbmax(0, zt−1 −hb)

)
+h+Cst + ϵt, (94)

is here trained with external inputs st that represent the visual stimuli pre-
sented to the participant in each trial of the TG as

st = (Fair1,Unfair1,Fair2,Unfair2,++,+,o,-,–,Return, Balance).

The RNN is trained in a way that mirrors the participant’s experience as closely
as possible by splitting the received inputs into two time steps, one for the in-
vestment phase and one for the feedback phase, ensuring the model receives the
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same visual inputs as participants do in the experiment (Fig. 41c). The model
then generates its investment decisions during the investment phase.

The input vector includes the four facial identities a participant encounters
and the five emotional expressions associated with these identities (entries 5-
9), both provided as one-hot encodings. The monetary return from the trustee
(entry 10), and the current account balance (entry 11) are provided as numerical
values (e.g. 3.2 for a return of 32 monetary units). During the investment phase,
the monetary return and balance are initially set to 0, as the participant does not
yet have visual feedback on these amounts. At the feedback phase, the actual
received return and account balance, are included in the input vector.

Once inferred, the dendPLRNN can be used as a generative model to simulate
several different conditions:

• The true experimental simulation, where st = st, meaning the simulated
input sequence is identical to that presented during the actual experiment.

• A simulation to examine the effects of trustee and expression inputs in
isolation, where st = c · st and c is a real-valued tuning parameter.

• Simulations of ‘realistic’ exchanges with novel, predetermined interaction
strategies of the trustees, in which the model receives updates on return
and balance based on its previous investment decision according to some
rule.

model validation Data were divided into a training set (trials 1− 60) and
a test set (trials 61 − 80), each consisting of two time steps (investment and
feedback phase), with models inferred from the training set. To assess the ro-
bustness of the inferred models, ten models of equal size were inferred for
each participant. Model validation involved evaluating the models’ prediction
performance using three scores designed to encapsulate different relevant data
attributes. First, the mean linear prediction error (MLE) between predicted and
actual investments on the test setMLEtest and the correlation between predicted
and actual investment trajectories on the test set Ctest (Fig. 42a). For the out-of-
sample forecasting, models were iterated forward in time from the last training
data point (Fig. 42b). Due to the potential for incorrect investment predictions
that generate misleading feedback (since true returns on the test set reflect re-
sponses to the ‘ground-truth’ investment values), models were re-initialized
with accurate test-set investments after every five time steps.

Since from a DSR perspective, we are also interested in capturing long-term
statistics in the generative model, which are naturally challenging to model on
the very short empirical time series investigated here, we also computed the
mean squared error (MSE) between the overall mean of predicted and actual
investment responses, grouped by trustee and cue types across all 80 available
trials (MSEglobal) (i.e. difference between blue and orange graphs in Fig. 42c).
All three scores showed significant correlations with one another, though they
assess slightly different aspects (r12 = 0.81,p < .001; r13 = 0.32,p < .001; r23 =

0.29,p < .001)). We first normalized the respective metrics across trained mod-
els, and computed an aggregate prediction score (PS):

PS =
1

3

(
Ctest −MLEtest −MSEglobal

)
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Based on this score, we chose a latent state dimensionality of M = 8, as this
led to a significant overall improvement in the scores when comparing model
performance across dimensionalities. TakingM = 8, we then selected the model
for each participant that had the overall best PS. It should be noted that, in the
optimal case, assessing test performance and model selection should be carried
out on two different sets (i.e. a validation set and a test set). However, due to the
very short available time series, this was not feasible for this dataset. Fig. 42b
illustrates the observed and forecasted investments for example participants
using the highest PS models. Fig. 42a compares the mean linear prediction error
(MLE) and correlation of these predictions across participants, also including
results from a random forecast model. The positive mean correlation (mean
r = 0.16, t(31) = 7.8, p < 0.001) indicates a significant out-of-sample predictive
performance by the RNN models. Moreover, the models effectively mirrored
the aggregate investment behavior of the sample, as depicted in Fig. 42c.

5.2 analysis of state space of inferred models

state space encodes entropy and investment Beyond reproducing
the data, we went on to study the underlying data-generating dynamics. The
models predict investments as a probabilistic outcome of the latent RNN states,
whose dynamics wholly dictate the generative mechanisms for investment be-
havior. To elucidate these mechanisms, we analyzed the dominant axes within
the state space via principal component analysis (PCA) on each participant’s
latent spaces. We correlated the first two principal components (PCs) with
the investment patterns and the predicted choice entropy (Eq. 93). The first
PC showed a significant correlation with entropy (mean absolute correlation
r = 0.36 ± 0.24), whereas the second PC correlated with investment magni-
tude (r = 0.61 ± 0.18; Fig. 43a left). These findings suggest that the latent
space encodes both the investment decision and its associated certainty. Fig.
43b presents two examples of subjects with strong correlations. We call regions
in state space associated with high investments and low entropy "highly cooper-
ative" states, while those leading to low investments and low entropy are called
"highly non-cooperative" states. Additionally, the predicted choice entropy was
demonstrably lower in the social condition (T(15) = −2.3, p = .028; Fig. 43a
right panel), indicating that clearer choice preferences might be present given
facial cues.

directional encodings in state space The input matrix C in Eq. 94

describes the direction and magnitude of displacement in state space induced
by each of the 11 inputs (referred to as displacement vectors). To assess the
direction of displacement of each cue, we computed average cosine similari-
ties between the first 9 columns of the input matrix, corresponding to the 9

fairness and expression inputs. The cosine similarity measures the orientation
of two vectors in high-dimensional spaces relative to each other, normalized
by their magnitude, where for instance 1 indicates maximum similarity and
0 indicates no similarity (orthogonal vectors). From these, we constructed a
symmetric cosine similarity matrix by averaging across all participants of the
social vs. non-social group, respectively, where each off-diagonal matrix ele-
ment represents the similarity between a pair of inputs. We then employed a
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Figure 42: Model Prediction: a: Mean linear prediction error (MLE; left) and correla-
tion (right) between predicted and actual investments in the test set across
all 32 participants, including a comparison of selected models’ performance
against random investment choices marked by the red bar. Red dots are
selected models, error bars are SEM. b: Observed and model-predicted in-
vestments for a subset of participants for selected models. c: Observed vs.
predicted average investment behavior based on the trustee for both social
(left) and non-social (right) conditions.

hierarchical agglomerative clustering algorithm on the cosine similarity matrix,
using the sklearn library in Python with the ’complete’ linkage criterion. We
could clearly distinguish two clusters and thus two movement directions, one
that corresponds to (facial or form) stimulus identity, and one that corresponds
to emotional expression (see Fig. 44a), which are approximately orthogonal to
each other. Mechanistically, these results indicate that participants learned to
encode identity and expression independently from one another. For the so-
cial condition (Fig. 44a top), the individual directions of cues encoded in latent
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Figure 43: a Left: Cumulative density for average correlations between entropy and first
principal component (PC; light shade), and investment and second PC (dark
shade) across latent trajectories of the true experimental simulation for all 32

participants. Right: Observation model entropy over investments, averaged
over actual interactions in social (dark shade) and non-social (light shade)
conditions. b: State space projection onto the first two PCs for two example
participants, structured by an entropy gradient along the first PC (left) and
investment gradient along the second PC (right).

space further perfectly reflected the clustering structure into positive, negative,
and neutral cues for the expression cues and between the trustees with shifting
expression (Fair 1 and Unfair 1) and constant neutral expression (Fair 2 and
Unfair 2). Notably, for the non-social condition, the clusters for the expression
cues were not correctly identified, in line with the observation that participants
struggled to distinguish expression cues in this condition (see also Fig. 42c).
These results are surprising insofar as the inferred RNNs had no prior notion
of what the (binary) input vectors represent, but rather learned the separation
entirely from data, i.e. from the investment choices of the participants when
responding to the different cues.

Besides examining the direction of displacement in state space caused by
an external input, we can also investigate its magnitude. To assess magnitude
effects, we compared the Euclidian length of each displacement vector (i.e.
columns of C) normalized by the respective latent state variance, across inputs.
Normalization is necessary since latent dimensions can have different scales
across models and subjects. The displacement effects were higher in the social as
compared to the non-social condition (T(15) = 2.08,p = .047; Fig. 44b). Strong
expression cues (++ or – vs. + or -) moreover caused a larger displacement than
weaker cues for the social condition (paired t-tests: T(15) = 3.0,p < 0.009; Fig.
43b). While a similar trend could be observed for the non-social condition, the
difference between these cues was only marginally significant (paired t-tests:
T(15) = 2.1,p = 0.054; Fig. 43b), consistent with and possibly accounting for
the observation of higher entropy in this condition. Collectively, these results
indicate that participants are more sensitive to facial expressions as compared
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Figure 44: a: Cosine similarity matrix of input vectors (left) and resulting clustering
dendrogram (right) for social (top) and non-social (bottom) conditions. b:
Average input strength comparison for strong (++ and –) versus weak (+ and
-) expression cues in social and non-social conditions. Bottom right: Average
input strength across all cues between social and non-social conditions is
higher in the social condition.

to forms, and the models are driven more strongly by strong expression cues
than weak ones.

5.3 model simulations

One strength of the present approach is that we can use it to simulate behav-
ior in response to different observed and hypothetical inputs. This allows us to
perform analyses that go beyond what we can examine in the observed data,
gaining additional insight into interaction styles and dynamics, as well as re-
sponses to external inputs.

external inputs induce bifurcations in system dynamics We first
simulated the effect of inputs in isolation. For these analyses, we presented each
input to the inferred models repeatedly over time without repayment and var-
ied the input strength by multiplying the (binary) input vectors st with a scal-
ing factor c (e.g. input strength=c · st, with c = 0, ..., cmax). These simulations
investigate hypothetical scenarios that the models were not trained on (apart
from c = 1 or c = 0), but that could reveal interesting insights into interaction
dynamics. For instance, altering the intensity of a ‘fair trustee’ input can be ex-
pected to alter the fairness attribute (e.g., in case of c > 1 we increase and for
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Figure 45: Simulated behavior of an example participant in response to the presenta-
tion of an unfair trustee at 4 varying intensity levels (c = 0, c = 0.6, c =

1.0, c = 1.4). The investment in the absence of any input is at the maximum
investment value of 50. As input intensity is up-regulated, the investment be-
havior (and corresponding system dynamics) exhibits a qualitative change,
also referred to as a bifurcation. The participant first enters an exploratory
state (c = 0.6), whose precise nature depends on the input strength as well.
When the unfair trustee is displayed at full intensity (c = 1.4), the invest-
ment reaches a minimum (reflecting an unwillingness to cooperate with the
unfair trustee).

c < 1 we decrease its fairness). Fig. 45 illustrates one such analysis. The input
strength is varied with c = 0...cmax. At 0 intensity (c = 0, reflecting no input),
the system has an autonomous FP, located in a highly cooperative state. As the
intensity c is increased, and with it the intensity of the unfair trustee, the FP
location is slowly shifting until a qualitative change in response patterns occurs
(a bifurcation; Fig. 45 right). This bifurcation is characterized by the birth of a
cycle in which the model switches from maximum investment to now explor-
ing several choice alternatives, in a repetitive fashion. Finally, as the intensity is
further increased, a second bifurcation occurs and the system falls back into an
FP, now located in the non-cooperative regime. We found qualitatively similar
bifurcation patterns for most participants. The RNNs implemented simple FPs
for no inputs (c = 0) or large inputs (c = cmax), often located at the minimum
(10) or maximum (50) investment value, and exhibited a transition phase char-
acterized by a period of exploration (see Fig. 45). Given that these simulations
depict behavior on phenomena not seen during model training, the precise bi-
furcation onset varied across inferred models of the same participant. However,
the general pattern of transitioning between exploitation and exploration was
frequently observed in the overall sample. Computing the maximum Lyapunov
exponent along trajectories revealed that 26/32 subjects featured a positive max-
imum Lyapunov exponent for at least some of the cues, while all models also
featured negative exponents for other cues, indicating the ability of models to
showcase both chaotic/exploratory behavior and stable investment behavior,
depending on the presented cues.

simulating different interaction styles reveals distinct behav-
ioral clusters Finally, we aimed at leveraging the full power of the gen-
erative models by simulating end-to-end TG interactions with entirely novel
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Figure 46: a: Interactions of models with four example trustees with different interac-
tion styles. b: Example predicted strategies (y-axis) over time (x-axis) for
models with successful investment strategies for the antagonistic trustee
(AT, the cooperative trustee (CT), the trust-building trustee (BT), and the
uncooperative trustee (UT). c: Clustering based on average relative gain ex-
tracted from different trustees. Low values indicate low ranks, i.e., good
performance and high extracted gains. In the off-diagonal panels, the x and
y axis denote the ranks of the 32 participants for the respective trustee con-
dition.

simulated trustees with distinct (yet unencountered) return strategies (trans-
ferring knowledge of the generative models to out-of-domain interactions; Fig.
46a). We simulated four strategically distinct virtual trustees:

• An “antagonistic trustee” (AT) that inversely reciprocates, meaning this
trustee exhibits low returns in response to high investments and high
returns to low investments.

• A “cooperative trustee” (CT) that consistently reciprocates with an RF of
1.5, returning exactly half of the amount he receives.

• An inconstant “trust-building trustee” (BT) that increasingly reciprocates
starting from an initial RF of 0.1 and monotonically increasing to an RF
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of 2.0, thus returning less than the invested amount for half the trial and
more for the other half.

• An “uncooperative trustee” (UT) that consistently reciprocates with an RF
of 0.1.

While these four trustees were selected here because they correspond to intu-
itive but distinct return strategies, in principle countless strategies could be ex-
plored here, tailored to specific research questions. We simulated TGs between
the participant-inferred models and these four agents (AT, CT, BT, and UT),
recording the average returns each model obtained over a series of 20 interac-
tions. We then ranked the participant models based on the average relative gain
over simulated interactions (averaged across all expression and type cues). This
gain was defined as the difference between the returned and invested amount,
where high values indicate a high gain (since in that case, more is returned than
invested), and predicts individual differences in participants’ decision-making
strategies, and how these may lead to varying levels of success depending on
the nature of the person they interact with. The relative gain between AT and CT
was negatively correlated (Spearman’s ρ=-.72, p<.001), and positively correlated
between between AT and UT (Spearman’s ρ=-.78, p<.001) suggesting that mod-
els that performed well with the AT performed relatively poorly with the CT,
and vice versa. Correlations in performance to the BT were small (ρ=-0.04 with
AT, ρ=0.32 with CT, ρ=0.47 with UT), indicating that to obtain a high gain when
interacting with the BT may require a different strategy. We then ranked the rel-
ative gains of the participant models and applied clustering algorithms (one
based on k-means, and a hierarchical clustering algorithm based on the Ward
variance minimization) to investigate whether we could identify interpretable
clusters with distinguishable interaction styles. Both clustering algorithms lead
to similar results. The obtained clusters using k-means are visualized in a pair
plot in Fig. 46b. We identified two major clusters: a cluster that performed well
with the CT, bad with the AT and UT, and moderately to badly with the BT,
and a cluster that performed badly with the CT, but well with the AT, UT, and
well to moderately with the BT.

Figure 47: a: Comparison of rank for the CT vs. AT for subjects in the social vs. non-
social group. b: Extracted gain across social vs. non-social group, averaged
across all four agents.

identified clusters relate to social and non-social condition

To understand how the obtained clusters can be interpreted, we trained a linear
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classifier to separate the cluster ranks for all four trustees according to the social
and non-social conditions. We found the two groups to be relatively well sepa-
rable even by a linear classifier (Accuracy: 0.81, Precision: 0.81, Recall: 0.81, F1-
Score: 0.79, AUC-ROC: 0.86), particularly along the axis separating performance
for the AT vs CT (Fig. 47a). Notably, most well-performing subjects for the AT
were from the social group, while most performing best with the CT were from
the non-social group. This was in line with the observation that only 3/16 of
the subjects in the social condition belonged to the first cluster, while only 5/16

subjects of the non-social group belonged to the second cluster. The strong
relation between obtained clusters and the social and non-social group was fur-
ther confirmed by a chi-square test of independence (χ2(1) = 6.62,p = 0.012).
Since participants in the first cluster only performed better with the CT, while
performing worse with the other trustees, when comparing the absolute gain
extracted across all four agents, the social and non-social groups also displayed
significant differences, with the social group (p < 0.0039, t(27) = 3.18) extract-
ing on average significantly higher gain during the interactions (Fig. 47b). The
differences between social and non-social conditions indicate that participants
learned different interaction strategies depending on the precise nature of the
cues that were presented, even though the underlying meaning of the cues did
not change across the two conditions, and are in line with the previous obser-
vations that models reflect differences between directional encodings for both
conditions (Fig. 43c).

5.4 interpretation

Beyond predicting behavioral patterns observed in empirical data, employing
the inferred RNNs as generative models in new contexts led to several interest-
ing observations.

First, the dynamics were primarily characterized by movement along axes
that encode investment and choice entropy, often partitioning the state space
into cooperative (high investment, low entropy), and non-cooperative (low in-
vestment, low entropy) regimes. Additionally, participants encoded fairness
and expression cues along almost orthogonal directions in the model’s latent
space, indicating the participant’s ability to accurately discern the independent
experimental factors (rather than ascribing the effects of cues to specific trustees
or vice versa) despite the comparatively short exchange game. Inferring cause
and effect and distinguishing between independent causal sources based on en-
vironmental interactions is an important human quality. In this game, orthog-
onal encoding likely facilitates quicker generalization to new situations (e.g.,
from one smiling trustee to another).

Several additional mechanisms came to light when examining the models for
their generative dynamics. For instance, transitions between cooperative and
non-cooperative states were often mediated by high entropy regimes character-
ized by oscillations or chaotic activity. These findings provide evidence that as
participants change their strategy from low to high investments and vice versa,
they enter an exploratory period in which they initially test different choice op-
tions (rather than slowly converging to investments of different order). These
findings are consistent with evidence from animal studies that demonstrate
that rule-switching behavior is preceded by exploratory hypothesis-building
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phases [100]. A clustering analysis of model-predicted investment patterns in
response to four strategically different trustees revealed distinct clusters of in-
vestment success that aligned well with the social/non-social subgroup. These
results indicate that the models might have picked up on subtle differences in
interaction styles displayed by the two groups that would otherwise be easily
missed from observing the data alone. While validation through future studies
is warranted, this simulation approach may help identify distinct interaction
styles and elucidate strengths and weaknesses in a player’s interaction pattern,
possibly beneficial to design novel therapeutic approaches.

The modeling approach based on MTF has several advantages for the analy-
sis of human behavior. As mentioned earlier, data-driven models can be more
robust at handling misspecification when compared to process-driven models
that rely on (often strong) assumptions about the data-generating process [98].
This makes them flexible in capturing patterns that may not conform to existing
theories. This may be particularly relevant to complex decision-making situa-
tions, when we lack domain knowledge, or when we assume inter-individual
differences are at play that cannot be captured within a common process-driven
model. Second, the models can be easily adapted to novel situations or exper-
imental conditions. Due to the mathematically tractable RNN model, we have
analytical access to Jacobians and, by that, can easily characterize a system’s
dynamics (e.g., to differentiate, for instance, whether cue-driven exploratory be-
havior is chaotic or follows a predictable repetitive pattern). We can further use
the model to extensively simulate behavior, both under experimental conditions,
and novel, yet unseen settings. This can help to identify and predict distinct be-
havioral patterns and mechanisms. Many of these analyses cannot be done on
the observed behavioral data itself. Finally, since we obtain a generative model
of a participant, we could reverse engineer the model to identify settings under
which a participant is likely to show cooperative or non-cooperative behavior
([394]). Finally, using the dendPLRNN trained via MTF comes with several ben-
efits. Since the DSR model predicts investments probabilistically, this enables
the investigation not only of participants’ investment choices but also the (pre-
dicted) uncertainty of these choices. Further, the DSR model distinguishes be-
tween latent dynamics and observed measurements, enabling the inference of
dynamic variables not directly observable from the data. These additional vari-
ables can e.g. allow the model to differentiate between subtle differences in the
meaning of the cues (Fig. 44). Human social exchanges likely rely on building
such latent models and beliefs of the other’s intentions, which are frequently
only partially observable [114].
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6
C O N C L U S I O N S A N D O U T L O O K

6.1 conclusions

The methods introduced in this thesis constitute powerful reconstruction algo-
rithms that advance the field of DSR in several directions.

A principal theme connecting the methods and results discussed here is
interpretability: the dendPLRNN (Sect. 3.1.1) and shPLRNN (Sect. 3.1.2) con-
stitute DSR models designed to facilitate dynamically interpretable and low-
dimensional reconstructions. The hierarchical inference framework (Sect. 3.3.1)
aims at extracting low-dimensional interpretable substructure from time series
measured across multiple subjects. Sect. 4.5 introduces a general pipeline for
analyzing inferred PLRNN models with respect to the linear subregions they
inhabit, while Sect. 4.6 introduces a pruning method tailored to DSR that leads
to interpretable and parsimonious network topologies. Finally, Sect. 5 discusses
applications of the DSR models and training algorithms to experimental psy-
chological data, illustrating ways in which inferred models can be analyzed
and simulated to gain insights into complex social behavior.

Another significant focus of this thesis was the application of DSR methods
to real-world data. While most of the DSR literature has focused on simple
benchmark systems (Sect. 2.5), applying these algorithms to real-world systems
to advance scientific insight remains the ultimate goal. Many SOTA algorithms
evaluated as comparisons for this thesis struggle with real-world data (see e.g.
Fig. 23) due to various challenges, such as noise, partial observations, or non-
Gaussian measurements. The methods introduced in this thesis no only achieve
good reconstructions from real-world data (Sect. 4.2.2), but even do so from dis-
crete symbolic time series (Sect. 4.3.2) or short multimodal experimental time
series (Sect. 4.3.3, Sect. 5). The hierarchization framework (Sect. 4.4) also ad-
vances the interpretation of extracted DSR models: it allows transfer learning
and data integration across multiple subjects even from short experimental time
series.

The MTF (Sect. 3.2.5) approach can be seen as the centerpiece of this thesis.
It integrates the tractable RNN models, the SVAE, and the TF-based techniques
into a common framework tailored to DSR from real-world data. Its encoder-
decoder structure provides a natural way to model (and invert) observation
functions common in real-world scientific settings, where missing modalities
(Fig. 26), partial observations (Fig. 27), discrete/coarse-grained representations
(Fig. 28) or multimodal data (Fig. 32) are commonplace. As such, it can be ap-
plied in any discipline where time series observations are measured, including
those where the difficulties induced by the measurement process usually im-
pede the application of other DSR approaches, such as those based on symbolic
regression [59].

The MTF and hierarchization framework were developed as part of the IM-
MERSE (Implementing Mobile MEntal Health Recording Strategy for Europe)
project. This project aims to promote personalized, patient-centered treatment
through the implementation of a Digital Mobile Mental Health (DMMH) tool.

119
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This DMMH tool is used to sample and visualize active survey data collected
via the Experience Sampling Method (ESM) and passive sensor data, such as
step counts and GPS data, from the everyday lives of service users. As such,
the data is naturally multimodal and occurs as both continuous data (e.g. GPS
data) and Likert scale ordinal ratings, combined with count observation (e.g.
step counts). At the same time, observed time series are often short, contain
missing observations, and are recorded from several subjects simultaneously.
Beyond this study, these characteristics are the rule rather than the exception in
clinical settings, e.g. in psychiatry. One goal of applying ML models in a psy-
chiatric context is the identification of digital ‘fingerprints’ of mental illnesses.
These fingerprints for instance allow for the development of more individu-
alized therapeutic approaches. Models also allow the short-term forecasting
of mood trajectories, which can give clues about the onset or offset of acute
episodes of mental illness, and which can be combined with external interven-
tions to determine improved outcomes. Some of these applications are already
explored within IMMERSE and the AI4U project [153].

In neuroscientific settings, DSR approaches can help elucidate computational
mechanisms from neural activity [97]. Changes in neural activity are believed
to underlie mental illness [96], so extracting interpretable DSR models can help
deliver mechanistic insights into these changes. The advances in neuroimaging
techniques like multi-electrode arrays [300] and optogenetics [50] discussed in
the introduction underscore the importance of algorithms that perform well on
challenging real-world data for progress in computational neuroscience. Partic-
ularly the integration of behavioral data and neuroscientific recordings (Sect.
4.3) is an important topic in this context [356], and can help elucidate how the
brain integrates information from different channels into its world model [114].

Another significant focus of study in DSR (see Table 1) involves systems of
partial differential equations (PDEs), simulating e.g. fluid flows. These systems
are usually modeled on a 2D grid, and thus typically have many more state
variables (e.g., 128× 128) than the benchmark systems evaluated in this thesis.
In this context, the development of computationally efficient approximations
for these high-dimensional systems, known as reduced order models [10, 235],
is of great practical interest, for instance, for effective real-time control [286] of
turbulent flows. Although not explicitly evaluated in this thesis, the encoder-
decoder architecture of the MTF approach can be extended to this type of data
[10]. The encoder model can for example be tailored to spatially extended DS by
incorporating two-dimensional convolutions, as commonly used in computer
vision. Local interactions between variables common in PDEs could also be
incorporated into the DSR models, e.g. by specifying a topological prior as
discussed in [149]. As outlined in Sect. 2.7, the search for classical shadows,
providing computationally efficient models of complex interacting many-body
quantum systems is an area of active research [161], and could leverage the DSR
models discussed here.

Reduced-order models are also important in climate science. The earth’s cli-
mate is a complex DS across many temporal and spatial scales, making it incred-
ibly challenging to model accurately. An important current frontier in climate
science is the integration of general ML techniques with pre-existing sophisti-
cated climate models [190], e.g. by leveraging physics-informed ML [321]. The
integration of domain knowledge and physical knowledge was also touched
upon in several parts of this thesis. In [139], we, for instance, show that out-of-
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domain generalization in DS is almost impossible without incorporating strong
priors, which are often instrumental in enforcing physically realistic, generaliz-
ing models. Hence, leveraging these priors is often essential for applications of
DSR models in the physical sciences. Many recent methods build physical pri-
ors into ML architectures, for example, by embedding a Hamiltonian structure
directly into an RNN [72]. Finding effective ways to integrate priors with the
methods introduced here thus remains an important topic for future research.

The results showcasing reconstructions solely from discrete time series (Sect.
4.3.2) also offer much room for future explorations. For instance, language has
been likened to a DS before [105]. In language models, language is naturally
represented as discrete tokens [342] that encode complex semantic relationships
in high-dimensional latent spaces. Reconstructing DS from language data, e.g.
reflecting shifts in underlying beliefs and values [398], or even capturing bifur-
cations in syntactical structures observed during language learning [107], could
provide novel and exciting applications.

Beyond this general discussion, in the following, I will specifically address
limitations and future research questions for the methods and results discussed
in this thesis.

6.2 limitations and outlook

rnn models While the proposed RNN models (Sect. 3.1) are designed to
be mathematically tractable, their formulation remains general, and further con-
straints can be imposed to aid with interpreting inferred models [97, 212], for
instance by enforcing specific network topologies [149].

Another direction to investigate is the integration of trainable and adaptive
time scales into the model, similar to LEM networks [341]. Further analysis on
how to best apply the manifold attractor regularization ([355], Eq. 20) could
also aid in extracting interpretable time scales from DSR models. Combining
slow and fast time scales also relates to questions of inferring non-stationary
and non-autonomous DS. While non-stationarities are quite common in real-
world systems, as already encountered for instance for the hippocampal spike
data (Fig. 32) or the social interaction data (Sect. 5), how best to integrate non-
stationarities into DSR models is still a topic of ongoing research.

bayesian data integration The possibility of integrating prior informa-
tion is of interest in many applications [242]. For instance, in clinical settings,
combinations of both time series and other forms of non-temporal data often
coexist, and it is not yet clear how best to integrate structural data to improve
TS models. Integrating structural information or imposing interpretable struc-
ture also relates to the Bayesian framework discussed in Sect. 3.2.2. While a
fully Bayesian formulation has proven challenging to train in practice within
the SVAE, combining a Bayesian framework with the more powerful, TF-based
approaches, or within the hierarchization framework, could lead to novel, more
effective ways of integrating priors.

stf and gtf While the MTF approach was tested in ablation studies both
with LSTMs and GRUs (Table 2) and showcased similar performance to the
dendPLRNN, how to best utilize approaches like STF and GTF in other model
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architectures still requires more research. While GTF is straightforwardly inte-
grated into the MTF framework, MTF has only been thoroughly studied using
STF. Using GTF, and benchmarking it against STF on unimodal and multimodal
data could therefore be explored further.

The observations linking the smoothing of the loss landscape to the strength
of the TF interval τ or TF constant α motivate estimating and adjusting the
respective τ and α values during training based on the loss landscape and op-
timizer directly. For instance, Adam [201] automatically estimates the exponen-
tial moving average of the first and second moments of the gradients during
training, which could be used as a proxy to provide insights into the local
smoothness of the loss landscape during training (Fig. 48). Second order opti-
mizers, such as AdaHessian [433], could provide the curvature estimates of the
loss landscape more explicitly, while potentially incurring higher computational
cost. Of particular interest would be the curvature of the loss landscape with
respect to the TF constant α. Whether these curvature estimates can be com-
puted in a reasonable time, and whether an optimal parameter for α could be
deduced and iteratively adjusted from these curvature estimates in a way that
outperforms estimates based on the Jacobians outlined in Sect. 3.2.4 remains an
exciting topic for further research.

In chaotic DS, future values of the system become decorrelated from past
values after characteristic timescales. This property is connected to exponen-
tial trajectory divergence and the Lyapunov time [127], which can be used as
a criterion to choose the STF interval [276]. It remains an open question un-
der which precise conditions training on a longer sequence length Tseq beyond
this timescale nevertheless proves beneficial, particularly for chaotic time se-
ries, and why and under which conditions TF-based approaches outperform,
for instance, truncated BPTT trained solely on short sequences. This discussion
about optimal sequence lengths also relates to the question of what role mem-
ory plays in DSR. Many sequence models, such as Transformers and structured
SSMs, are benchmarked on long-range memory tasks such as the long-range
arena [390], and integrating longer sequences, e.g. in transformer-based LLMs,
is crucial for enabling understanding across thousands or even millions of to-
kens [327]. While long-term memory can be integrated into a DSR perspective
through slow time scales, e.g. by enforcing manifold attractors [355], it is often
not the primary goal. Markovian DS do not contain any explicit dependence
on the history of the time series, but future states only depend on the current
state (which can still encode all relevant information from the past). Particularly
for chaotic DS, memory effectively gets wiped out due to trajectory divergence
[127]. While in principle, the training algorithms discussed here can be applied
to gated architectures (Table 2), in [149], we observed that applying geometric
pruning on an LSTM when training on a chaotic DS led to the pruning of the
gating mechanism implementing the long-term memory [155], effectively result-
ing in a vanilla RNN without gating. Investigating these results further might
further help elucidate the role of memory and gating mechanisms in DSR.

mtf Beyond the ablation studies (Fig. 15) already performed, indicating that
the combination of losses is crucial for successful reconstructions, optimal weight-
ing schemes for the different loss terms making up the total loss [21] may fur-
ther improve performance. Another interesting question is to what extent a
probabilistic setting benefits the TF approaches: the TF signal in MTF is drawn

[ May 6, 2024 at 7:40 – classicthesis ]



6.2 limitations and outlook 123

from the approximate posterior, and the MVAE is optimized via the ELBO.
However, in principle, the TF signal can also be modeled deterministically, for
instance by a deterministic autoencoder (AE). On the other hand, in the deter-
ministic TF approaches (STF and GTF), we have often found it beneficial to add
small amounts of noise to the TF signal. Work by Ghosh et al. [121] has shown
that injecting some noise into deterministic AEs can often provide similar bene-
fits as VAEs while being easier to train. In many ML contexts, including stochas-
tic components during optimization, such as dropout [377], stochastic gradient
descent [338] or the inclusion of data/label noise [80], often improves learning
and generalization. Trading off stochastic and deterministic components within
the MTF optimally thus offers room for further exploration.

hierarchical inference framework While the reported results un-
derscore the efficacy of the hierarchization framework, there is still significant
scope for future work. An interesting question is whether hierarchically inferred
models provide improved reconstructions compared to individual-level models.
A second important direction is comparing how extracted feature vectors can
be related to other data, such as class labels or survey data for experimental
datasets in which this data exists, or to what extent this information can be inte-
grated as a model prior. More generally, the hierarchical framework provides a
mechanism for transfer learning in DSR. Foundation models have become pop-
ular in many areas of ML, such as large language models, which are trained on
a wide range of tasks and can be fine-tuned to specific downstream tasks [160,
292, 448]. While several such models have recently been proposed for TSF [277,
325, 434], how best to design these in the context of DSR, retaining the tractable
structure of the PLRNN models while leveraging the power of training on large
amounts of data is still an open question.

linear subregions analysis The results presented here allow for several
interesting follow-up questions. Particularly, applying this analysis pipeline to
real-world systems could provide a new angle through which to investigate
inferred models. One could further investigate to what extent new training ob-
jectives can be designed to enforce interpretable linearized dynamics. Another
direction to investigate is to compare the representations discovered by the
PLRNN to other approaches explicitly encouraging the learning of linearized
representations of nonlinear DS [56, 77, 244]. Finally, extending this analysis
pipeline to other PLRNN models, such as the dendPLRNN and the shPLRNN,
in which the relationships between linear sub-regions and reconstructed sys-
tems are more complicated, could provide new avenues through which to ana-
lyze these models.

symbolic dynamics The field of symbolic dynamics studies sequences of
symbols to understand the behavior of complex systems. Symbolic dynamics
were touched upon in two different contexts: MTF allows the reconstruction
of chaotic DS from purely symbolic representations (Sec. 4.3.2). Conversely, the
results in Sec. 4.5 symbolically represent reconstructed PLRNNs by interpreting
the connectome of the linear subregions of a reconstructed PLRNN as a variant
of the symbolic shift map.

DSR from symbolic and other discrete representations of DS has hardly been
investigated in the literature before. The success of the MTF framework in en-
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abling these reconstructions was somewhat unexpected since ordinal or sym-
bolic codings of the dynamics seem to remove much geometric and topological
information from the underlying DS. Further investigating how symbolic encod-
ings of DS preserve topological characteristics such as invariants or Lyapunov
exponents [162, 268, 294, 442], and the extent to which the original state space
topology is retained in DSR from these representations, opens many avenues for
future experimental and theoretical research. This includes examining how de-
lay embeddings, already formulated for non-continuous signals in Sauer [347,
348], relate to and can aid in DSR from symbolic representations, which we
found to hold empirically for the results in Sect. 4.3.2.

network topologies and pruning The discovery of an effective net-
work topology for DSR poses several interesting follow-up questions. In recur-
rent models such as RNNs, where parameters are used repeatedly to generate
sequences, the significance of network weight magnitude as an indicator of im-
portance may be less apparent compared to feed-forward NNs, where the LTH
has primarily been explored. This leads to the question of whether the effec-
tiveness of the GeoHub topology could be applicable beyond DSR in other time
series applications, or whether the resulting network topology is distinct to DSR.
Considering the inherent topological characteristics observed in real-world sys-
tems, such as scale-free networks or small-worldness, it would be interesting to
investigate whether the optimal RNN configuration for a DS could reflect the
empirical topology of the underlying DS. Another aspect to consider is whether
more efficient pruning criteria, for instance through dimension-wise and paral-
lelizable proxies of Dstsp or through other quantities encoding the influence of
individual parameters on dynamics (such as the system’s Lyapunov spectrum),
can be found.

social learning The dataset investigated in Chapter 5 poses several chal-
lenges. Firstly, the experiment featured 20 input combinations (4 trustees x
5 expressions) but only 60 training data points. Despite the MTF framework
performing well even on short time series, accurately inferring DS models on
such short sequences remains a challenge, and leads to relatively high vari-
ance in outcomes. Combining the training algorithm with the hierarchical in-
ference framework (Sect. 3.3.1) could alleviate some of these challenges by in-
tegrating information across subjects. Further, in the repeated rounds of the
TG, participants acquired knowledge of the trustee’s behavior over time. The
RNN model did not explicitly integrate temporal dependencies to capture the
learning-induced changes but had to implement them via shifts within its la-
tent space, which however made it challenging to re-initialize the network in a
way that accounted for this learning effect. Follow-up studies could integrate
a non-stationarity component explicitly, e.g. by providing an external input en-
coding the current trial number. Finally, the input sequence of the cues was
randomized, such that the current investment should not depend on the RF of
the preceding trial, and the balance of the participants was reset at every time
step. Both of these facts did not encourage the development of longer-term
investment strategies by the participants, which would e.g. form in repeated
interactions with the same subject, and complicate the extraction of long-term
behavioral patterns.
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One key advantage of the generic modeling approach is that applications to
novel datasets do not require much fine-tuning or adjustments of the algorithm,
and can be applied ‘off the shelf’. Hence future studies using this approach on
other discrete behavioral datasets are in principle straightforward.
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A
A P P E N D I X M E T H O D S

a.1 training details

layer normalization Layer normalization normalizes the inputs to each
layer of a NN, and has been widely used to improve RNN training [19]. In
[54] we adapted this approach to the PLRNN, often leading to improved per-
formance. To this end, we mean-centered latent states according to:

zt = Azt−1 +Wϕ
(
M(zt−1)

)
+h0, (95)

where M(zt−1) = zt−1 − µt−1, which can be be rewritten as a linear matrix-
multiplication

M(zt−1) = zt−1 −µt−1

=
1

M


M− 1 −1 · · · −1

−1 M− 1 · · · −1
...

...
. . .

...

−1 −1 · · · M− 1

 zt−1 =Mzt−1. (96)

The linearity of this operation implies that all theoretical results about the RNN
models still hold [54].

Figure 48: Estimates of the first and second moment from the Adam optimizer for dif-
ferent parameters of the shPLRNN during training on the chaotic Lorenz-63

system. a: Without TF, even for a moderate sequence length (here T = 30),
gradients retain high variance, making successful training impossible. b:
With GTF (α = 0.2), gradient moments decrease over time after a short
initial period with high variance, stabilizing training even for much longer
sequences (here T = 200).
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optimization In all experiments, we used Adam [201] and its variants,
such as Radam [249], as optimizers. We further trained with an iterative learn-
ing rate schedule, starting with a learning rate of 10−3, which exponentially
decayed to 10−6 during training. Using an adaptive optimizer led to significant
improvements over naive stochastic gradient descent (SGD). Adam estimates
the first and second moments of the gradients, using a moving average model to
adjust the learning rate individually for each parameter. To illustrate the impor-
tance of this approach, Fig. 48 displays the first and second moment estimates
for different parameters during the training of a shPLRNN using GTF. There is
a distinct hierarchy in the average estimates for the different parameters. The A
matrix features much higher values, followed by the W1 and W2 matrices. The
values in the A matrix encode the time constants of the states of the shPLRNN,
which have a direct and strong influence on the resulting long-term dynamics
of the DSR model (see also Fig. 13). This results in a larger variance of the
gradients with respect to these parameters. The marked difference between the
moments of the gradients at the beginning versus later stages of training also
illustrates why learning rate schedulers and the annealing protocol that adjusts
α during training, as discussed in [152], often lead to better outcomes.

important hyperparameter settings In all papers, we performed grid
searches over important hyperparameters for our methods and the comparison
comparison methods. As already noted in other parts of this thesis, for train-
ing with STF and GTF, τ and α had the largest impact on performance, so we
performed line searches for τ ∈ {1, 5, 7, 10, 15, 20, 25, 50} and α ∈ [0, 1] in steps
of 0.05. For the latent dimension M and basis expansion B of the dendPLRNN,
and the hidden size L of the shPLRNN, we observed that increasing the model
size generally enhanced performance up to a certain threshold (also see Fig.
8). Therefore, we selected model sizes around the point where this threshold
effect set in. The parameters of the dendPLRNN A, W and h were initialized
according to [389], and drawn from a uniform distribution for the rest, where
the initial ranges of the distribution of the thresholds {hb} was determined by
the extent of the data [54]. For the shPLRNN, we used a uniform distribution
for all parameters [130].

a.2 comparison methods

a.2.1 Unimodal Comparisons

There is a plethora of approaches for data-driven DSR. This section gives an
overview of several techniques from the most important classes of DSR algo-
rithms, all of which have been employed as comparisons in Chapter 4.

sindy This summary closely follows the one I wrote for [139], based on the
introduction of the algorithm in [59]. The Sparse Identification of Nonlinear Dy-
namics (SINDy) algorithm aims at deriving a sparse representation of govern-
ing dynamical equations from observed data. Consider a set of measurements
x(t) ∈ Rn, where n represents the count of system variables and t = t1 . . . tm
denotes the times of observation. The first step in applying SINDy involves
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numerically approximating the flow dx
dt = ẋ, typically using finite difference

methods. As per [59], these derivatives are structured into a matrix form:

Ẋ =


ẋ⊤(t1)

ẋ⊤(t2)
...

ẋ⊤(tm)

 =


ẋ1(t1) ẋ2(t1) · · · ẋn(t1)

ẋ1(t2) ẋ2(t2) · · · ẋn(t2)
...

...
. . .

...

ẋ1(tm) ẋ2(tm) · · · ẋn(tm)

 (97)

In the subsequent optimization phase of SINDy, the objective is to identify a
sparse matrix of regression coefficients Ξ satisfying:

Ẋ = Θ(x)Ξ, (98)

where Θ(x) denotes a pre-defined library of candidate functions applied to the
state variables x, exemplified as:

Θ(X) =

 | | | | | |

1 X X2 X3 X4 cos(X) . . .

| | | | | |

 , (99)

To determine the regression coefficients, a sparsity-promoting optimization method,
such as LASSO regression or the Sequentially Thresholded Least Squares (STLSQ)
algorithm, is used to solve for Ξ. For all the experiments relating to SINDy, we
used the Python implementation (PySINDy, [368]).

Formally, SINDy defines a class of finite-dimensional linearly parameterized
functions with m differentiable basis functions ψi : Rn → R, i = 1, ...,m,

BL =
{
fj(x;θ) =

m∑
i=1

θi,jψi(x)
∣∣∣∣ ∀j,θ ∈ Rm×n

}
. (100)

In [139], we show that SINDy can reconstruct any (potentially multistable) DS
from a single trajectory Γx0 ⊂ D provided it is not solving an algebraic equation
in the parameters (Eq. 100), and given the correct set of library functions. In
this case, the OODG problem is strictly learnable (Eq. 89). These observations
are illustrated in Fig. 49 for the following two-dimensional ODE system:

ẋ = x+ x(x2 + y2 − 1)(4x2 − 4xy+ 4y2) + (x2 + y2)(−2x+ 2y+ x3 + xy2),

ẏ = y+ y(x2 + y2 − 1)(4x2 − 4xy+ 4y2) + (x2 + y2)(−2x− 2y+ y3 + x2y).

This system has one stable (inner cycle) and one unstable cycle solution (outer
cycle). The unstable outer cycle solves an algebraic equation, leading to an incor-
rect reconstruction. On the other hand, SINDy correctly infers the vector field
from the inner trajectory.

We also considered another VF that has the same solution solving an alge-
braic curve (the unit circle), but is composed of both polynomial and trigono-
metric functions:

ẋ = 2y cos(x),

ẏ = x2 sin(x) − 2x cos(x) + y2 sin(x) − sin(x).

Results for different function libraries and observed trajectories are illustrated
in Fig. 50. SINDy also excels at reconstructing other multistable DS, such as the
multistable Duffing system, given the correct library is provided, but fails to
generalize and only locally approximates dynamics if this is not the case (Fig.
51).
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Figure 49: Example reconstructions using SINDy, comparing reconstructions from a
trajectory solving (red) and not solving (black) an algebraic equation in the
parameters. From [139].

Figure 50: For the GT shown top-left, providing SINDy only with a polynomial library
leads to an incorrect solution for the VF (top-right), while providing the
correct library including both trigonometric and polynomial functions (and
mixing terms) leads to the correctly inferred VF (bottom-left). Finally, even
with the correct library, providing as data the curve solving an algebraic
trajectory leads to an incorrectly inferred VF (bottom-right). From [139].

reservoir computers Reservoir Computing (RC), first suggested in [37,
174], is a general framework for training RNN models which avoids the exploding-
and vanishing gradient problems discussed in Sect. 3.2.1. The central concept
in RCs is the use of a large, fixed, and random RNN, known as the reservoir.
The dynamics of the reservoir can be described by:

rt+1 = Φ(Winut+1 + Wrt) (101)

Here, rt represents the state of the reservoir at time t, ut is the input at time
t, Win is the weight matrix for input connections, W is the weight matrix for
connections within the reservoir, and Φ denotes a nonlinear activation func-
tion, often the hyperbolic tangent function, applied element-wise. The general
procedure is illustrated in Fig. 52.
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Figure 51: SINDy needs the proper function library to correctly infer a system across
the whole state space (left). If the 3rd order term present in the Duffing
equations is lacking (right), the inferred VF may only be locally correct (or
not at all for more complex systems). From [139].

Figure 52: The basic principle of Reservoir Computing.

In RC, only the weights of the readout layer are trained, while the reservoir
weights (W and Win) remain fixed. This approach significantly simplifies the
training process. Since the weights involved in the dynamics do not receive any
gradient updates, it avoids the challenges associated with BPTT discussed in
Sect. 3.2.1. To spell this out, assume again we have observed a time series given
by (xt)t=1...T , xt ∈ RN. This time series is iteratively fed into the reservoir as
ut, where the reservoir state rt is updated according to Eq. 101. The readout
layer Wout connects reservoir states to observations x̂t = Woutrt. Since the
reservoir states are already pre-computed, the readout weights can simply be
determined by linear regression

min
Wout

T∑
t=1

∥xt − x̂t∥2. (102)

The RC can also be used to predict multiple steps by using its own predictions
as input for the next time step, ut+1 = x̂t. Hence, RCs rely on the dynamic
richness of the reservoir to capture the dynamics inherent in the observations.
There is a large literature on initializing the reservoirs effectively to ensure this
dynamical richness within the initialization. One critical aspect of this initializa-
tion is the topology of the reservoir [63, 79, 101, 145, 180, 435], where hub-like
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networks or specific graph structures are often considered, similar in spirit to
the ideas investigated by us in Hemmer et al. [149]. A second important com-
ponent is the spectral radius of the reservoir weight matrix, which significantly
influences the echo state property and the memory capacity of the reservoir. The
spectral radius corresponds to the largest absolute eigenvalue of W. A smaller
spectral radius typically leads to a more stable, but less expressive network, as
it constrains the dynamic range of the reservoir states, while a larger spectral
radius can enhance the network’s dynamics but can make optimization more
unstable.

neural odes Neural Ordinary Differential Equations (Neural ODEs) [70]
have emerged as a powerful framework for modeling continuous-time dynam-
ics with NNs. The governing equation of a Neural ODE can be expressed as:

dz(t)
dt

= fθ(z(t), t) (103)

where z(t) denotes the state of the system at time t, and fθ is a NN parame-
terized by θ that models the derivative of the state with respect to time. The
choice of NN architecture is very flexible, including deep NNs and different
nonlinear activation functions (for the results in [139], we for instance used a
4-layer Neural ODE). Neural ODEs fall into the class of models based on deep
implicit layers [177]. Since the derivative dz(t)

dt is implicitly defined through
an NN, this enables the deployment of different ODE solvers to integrate the
system’s dynamics. Therefore, the Neural ODE should be agnostic to the spe-
cific choice of numerical method for solving the differential equation, accom-
modating anything from simple Euler methods to more complex, adaptive-step
methods. Using simple solvers can however lead to challenges in stiff ODE sys-
tems which exhibit rapid changes in parts of the state space [199] while using
more sophisticated adaptive solvers can lead to higher computational costs. For
the results in [152], we tested several fixed-step numerical solvers (rk4, euler,
midpoint), which had little influence on the results, while an adaptive-step
solver (adaptive_heun) led to prohibitively long training times.

Figure 53: The basic principle of Neural ODEs.

As for most other DSR approaches, the parameters θ of the Neural ODE
are learned by minimizing the MSE between observed data and model predic-
tions. Gradients are computed based on the adjoint sensitivity method [70]. This
method computes the solution of an auxiliary ODE backward in time to com-
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pute gradients with respect to the parameters θ. Here, the adjoint state, a(t), is
defined as the gradient of the loss L with respect to the state z(t):

a(t) =
∂L

∂z(t)
. (104)

The evolution of the adjoint state backward in time is governed by

−
da(t)
dt

= a(t)⊤
∂fθ(z(t), t)
∂z(t)

. (105)

The gradient of the loss L with respect to the parameters θ, which is ultimately
of interest when training the model with gradient descent, is thus given by:

∂L

∂θ
=

∫t0
t1

a(t)⊤
∂fθ(z(t), t)

∂θ
dt, (106)

where t0 and t1 represent the initial and final times of observation, respec-
tively [70]. This formulation allows the computation of gradients without ex-
plicit knowledge of the solver’s internal mechanics, thereby not restricting the
choice of the numerical method for the forward pass, and does not require stor-
ing intermediate states during forward integration. It also means that Neural
ODEs can naturally be applied to irregularly sampled time series [336]. For the
comparisons presented in Chapter 4 we used an implementation based on the
torchdiffeq package. Here we chose the number of layers and hidden sizes to
make them comparable to the other models, while grid searching over different
activation functions {elu, silu, tanh}, sequence length for training {5, 10, 25, 50}
used per batch, and learning rates {1e− 3, 1e− 2}.

lstm-msm Vlachas et al. [408] introduce a hybrid model that combines Long
Short-Term Memory (LSTM) networks with Mean-Field Stochastic Models (MSM),
based on Ornstein-Uhlenbeck processes. The LSTM component of the hybrid
model is given by classical the governing equations of an LSTM [155], which is
a combination of a hidden state, a cell state, a forget gate, and an input gate:

1. Forget gate: ft = σ(Wf · [ht−1,xt] + bf),

2. Input gate: it = σ(Wi · [ht−1,xt] + bi),

3. Cell state update: C̃t = tanh(WC · [ht−1,xt] + bC),

4. Final cell state: Ct = ft ·Ct−1 + it · C̃t,

5. Output gate: ot = σ(Wo · [ht−1,xt] + bo),

6. Hidden state: ht = ot · tanh(Ct).

Here, W and b denote the weight matrices and bias vectors, respectively, for
each gate, σ is a sigmoid function, and tanh the hyperbolic tangent function. ht
and Ct are the hidden state and cell state at time t, and xt an external input.

The MSM component comes into play when the forecasted trajectory diverges
significantly from the training data. The model then transitions to a mean-field
stochastic model, defined by an Ornstein-Uhlenbeck process:

dZi = ciZidt+ ξidWi (107)
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where dWi represents the increment of the Wiener process. The coefficients ci
and ξi are determined from the training data by estimating the data variance
and decorrelation time directly from the data. The LSTM component of the
model is trained using truncated BPTT. Truncated BPTT limits the number of
time steps over which gradients are propagated backward, thus avoiding the
problems discussed in Sect. 3.2.1 by restricting the sequence length Tseq directly.

a.2.2 Multimodal Comparisons

classical rnn training ‘Classical’ RNN training is still probably the
most common technique for training RNN models in the literature. Here the
model is not freely iterated forward from some initial state, but, much as with
RCs, observations are provided as external inputs to the model at every time
step. To freely generate long time series after training, the model can be pro-
vided its predictions at time t as input for the predictions at time t+ 1. Given
some observed (potentially multimodal) time series Y of length T , observations
yt are included in the latent equation of a DSR model, e.g. a PLRNN (compare
Eq. 12) via an input-to-hidden factor loading matrix C:

zt = Azt−1 +Wϕ(zt−1) +Cyt +h+ ϵt, ϵt ∼ N(0,Σ) (108)

After obtaining a latent trajectory Z, the model can, as during training with
MTF, be optimized using modality-specific decoder models. Training is per-
formed on short subsequences of length Tseq, where Tseq is a hyperparameter,
as in truncated BPTT. We found similar values for Tseq as for the sparse TF
interval τ to work well in practice.

multiple shooting An alternative approach to training RNN models that
control gradient divergence is multiple shooting (MS) [46], a method already
introduced in the context of DSR [411]. To train an RNN with MS, an observed
time series, consisting of unimodal or multimodal observations Y , is divided
into Nseq subsequences Y s, s = 1 . . .Nseq, each of length L. Then every sub-
sequence is treated as an individual initial value problem, where the initial
conditions (shooting nodes), are learned as free model parameters. Coherence
between different subsequences is achieved by enforcing the continuity between
model-predicted states and shooting nodes with an explicit loss term. During
training, trajectories for each subsequence are autonomously generated from
the initial states µs0 over L time steps, using a DSR model Fθ (Eq. 22). Then, the
last predicted time step Fθ(zsL) is compared with the next shooting node µs+10 ,
and their consistency is enforced via a loss term scaled by a regularization con-
stant λMS:

LMS = λMS

Nseq−1∑
s=1

||Fθ(z
s
L) −µ

s+1
0 ||22 (109)

Here, Fθ(zsL) = Fθ(Fθ(. . . Fθ(µ
s
0))) = F

L
θ(µ

s
0). From the generated latent trajecto-

ries, the likelihoods of the observations Y s can be evaluated, using modality-
specific decoder models (Sect. 3.2.6). As MS does not require any inversion of
the observation model, it naturally accommodates multiple observations. How-
ever, since it does not co-train an encoder model, it can not be leveraged to
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make short-term predictions, since the model can not be initialized from new
observations (see Sect. 4.1). Further note that the sequence length L plays a sim-
ilar role as the TF interval τ for MTF, controlling the times at which states and
gradients are reset during training. Optimal settings for τ and L agreed during
experiments.

gaussianization of non-normal modalities Since the TF-based ap-
proaches discussed in 3.2.3 and 3.2.4 require the inversion of the observation
model to obtain control states, which is, as in the case of id-TF, only straight-
forward if observations are normally distributed, another approach for training
on multimodal data involves simply preprocessing all modalities to align them
with Gaussian assumptions. For the comparisons in 4.3.1, we applied a Box-Cox
transformation [48], z-scoring, and Gaussian kernel smoothing to transform or-
dinal and count observations into variables that approximately follow a Gaus-
sian distribution. To determine the most effective Gaussian kernel width, we
conducted a grid search across a range of kernel sizes [53].

a.3 datasets

a.3.1 Benchmark Systems

lorenz-63 system The 3d chaotic Lorenz attractor, suggested in Lorenz
[252] is probably the most famous chaotic dynamical system in the literature
and the most widely used benchmark system in DSR. Its governing equations
are given by:

dx = (σ(y− x))dt+ dϵ1(t),

dy = (x(ρ− z) − y)dt+ dϵ2(t), (110)

dz = (xy−βz)dt+ dϵ3(t).

Standard parameter settings putting the system into a chaotic regime are σ =

10, ρ = 28, and β = 8/3. This formulation as a stochastic differential equation
(SDE) includes process noise, which we injected into the system when drawing
trajectories by adding a random Gaussian noise term dϵ ∼ N(0, 0.012dt× I).

rössler system The chaotic Rössler system from Rössler [343] is defined
by:

dx = (−y− z)dt+ dϵ1(t),

dy = (x+ ay)dt+ dϵ2(t), (111)

dz = (b+ z(x− c))dt+ dϵ3(t).

For the benchmarks reported in 4.2, we used a = 0.2,b = 0.2, and c = 5.7.
Process noise was included as before by drawing dϵ ∼ N(0, 0.012dt× I).
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bursting neuron model The 3-dimensional bursting neuron model from
Durstewitz [94] is defined as a combination of slow and fast variables:

−CmV̇ = gL (V − EL) + gNam∞(V) (V − ENa)

+ gKn (V − EK) + gMh (V − EK)

+ gNMDA
[
1+ .33e−.0625V]−1 (V − ENMDA)

(112)

ṅ =
n∞(V) −n

τn
, ḣ =

h∞(V) − h

τh
, (113)

where

{m∞,n∞,h∞} =
[
1+ e({VhNa,VhK,VhM}−V)/{kNa,kK,kM}

]−1
. (114)

For the results in Sect. 4.2, we used the same parameter settings from Schmidt
et al. [355] to shift the system into a complex but not chaotic limit cycle, where:

Cm = 6µF,gL = 8mS,EL = −80mV,gNa = 20mS,

ENa = 60mV,VhNa = −20mV,kNa = 15,gK = 10mS,

EK = −90mV,VhK = −25mV,kK = 5, τn = 1 ms,gM = 25mS

VhM = −15mV,kM = 5, τh = 200 ms,gNMDA = 10.2mS

wilson cowan model The Wilson-Cowan model [422] is a popular model
of neural population dynamics. It describes interactions between a collection of
excitatory (E) cells and inhibitory (I) cells, described by:

τi
dri
dt

= −ri +ϕ (wei · re −wii · ri − zi) (115)

τe
dre

dt
= −re +ϕ (wee · re −wei · ri − ze) , (116)

Here, wei,wee,wie,wii are coupling strengths, zi and ze denote constant in-
put currents, and τi and τe are time constants. For the simulations in [54], I
chose parameter settings that placed the model into a multistable regime, with
two stable fixed points and one unstable fixed point: wei = 9.,wee = 9.,wie =

5.,wii = 5., ze = 3, zi = 4. The vector field and fixed points for this configura-
tion are shown in Fig. 20.

lorenz-96 system The Lorenz-96 [253] is a spatially extended weather
model, featuring interaction terms between neighboring units, and extending
characteristic spatiotemporal dynamical features:

dxi = ((xi+1 − xi−2)xi−1 − xi + F)dt+ dϵ, i = 1 . . .N, (117)

Here F is a constant forcing term, where F = 8 was used in the experiments,
leading to chaotic behavior. As for the other chaotic benchmarks, process noise
was injected with dϵ ∼ N(0, 0.012dt× I).

lewis-glass chaotic network model The Lewis-Glass model is a 6d
network model introduced in Lewis and Glass [229]. The vector field is given
by

dx
dt

=
−x

τ
+G(ϵKx) −β. (118)
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with activation function G(x) = 1+tanh(−αx)
2 , and K a specific connectivity ma-

trix, given by

K =



0 −1 0 0 −1 −1

0 0 0 −1 −1 −1

−1 −1 0 0 −1 0

−1 −1 −1 0 0 0

−1 −1 0 −1 0 0

0 −1 −1 −1 0 0


and α = −1,β = 0.5, ϵ = 10, τ = 2.5. The implementation of the model was
based on the dysts.flows package from Gilpin [125].

neural population model As a benchmark for more complex large-
scale chaotic dynamics in [54], we used the chaotic network model from Landau
and Sompolinsky [224], which combines structured connectivity (a rank-1 com-
ponent) with a randomly initialized network matrix. Specifically, the network
dynamics are given by

dh
dt

= −h + Jϕ(h) +
J1√
N
ξvTϕ(h), (119)

where ϕ(h) = tanh(h(t)). For the reconstructions in Sect. 4.2.2, we sampled tra-
jectories from a 50-d network model with J1 = 0.09.

forced duffing system The forced Duffing equation represents a non-
linear oscillator with a double-well potential, introduced in Hamel [142]. The
forced version of the system is usually written as:

ẍ+ δẋ+αx+βx3 = γ cos(ωt), (120)

with linear stiffness coefficient α, non-linear stiffness coefficient β, damping
coefficient δ, forcing amplitude γ, and forcing frequency ω. For the chaotic
regime often explored in the literature and used for the results in Sect. 4.5,
parameters were set to α = −1,β = 1, δ = 0.3,γ = 0.37, and ω = 1.2.

The unforced Duffing system is usually formulated as a set of two coupled
ODEs:

ẋ = y (121)

ẏ = ay− x
(
b+ cx2

)
where [a,b, c] = [−12 ,−1, 110 ] places the system into a multistable regime with
two coexisting EPs (see Figs. 6 and 51).

a.3.2 Experimental Datasets

eeg dataset The Electroencephalogram (EEG) dataset used in ([54, 152],
Sect. 4.2.2) was taken from a study in [352], comprising 64-channel EEG data
from human subjects engaged in various motor and imagery tasks. For the
evaluations, we focused on the ‘eyes open’ baseline time series from subject
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0, since this featured the least amount of movement artifacts, and consisted
of a total of 9760 time steps. Before training the signal was standardized and
smoothed using a Hann function.

ecg dataset The Electrocardiogram (ECG) data was taken from the pub-
lically available PPG-DaLiA dataset [328], captured using a chest-worn device
with a sampling rate of 700Hz. For the experiments in ([54, 152], Sect. 4.2.2),
we used the first one-dimensional time series for subject 2 in a sitting posi-
tion with a total of 419973 time steps. The time series was again standardized
and smoothed with a Gaussian kernel (σ = 5 time bins). We further included
a temporal delay embedding. In [54], we used a delay dimension m = 7 and
lag τlag = 61, determined using the DynamicalSystems.jl Julia package [82].
In [152], we chose delay-embeddings based on the PECUZAL algorithm [215],
likewise implemented implemented in DynamicalSystems.jl. The algorithm
employs non-uniform delays with different time lags to find an optimal delay
embedding, using a Theiler window based on the first minimum of the mutual
information. This led to an embedding dimension of m = 5.

human functional magnetic resonance imaging (fmri) dataset

This dataset was taken from Kramer et al. [214], where it was studied in a
similar context for multimodal data integration in DSR, and originally taken
from [209]. The dataset consisted of 26 participants, out of which I selected
20 participants, which did not feature strong movement artifacts which often
lead to unstable training due to strong discontinuities in the observed time
series. Participants were shown a series of images (rectangles and triangles)
while undergoing fMRI recording. The sampling rate was 1/3 Hz. The neural
activity was assessed via the blood oxygenation level-dependent (BOLD) signal,
projected on the first principal component, in 10 different brain regions per
hemisphere identified to be relevant for the tasks. The subjects then had to
carry out several different cognitive tasks concerning the displayed shapes: a
continuous delayed response 1-back task (CDRT), a continuous matching 1-back
task (CMT), and a 0-back control choice reaction task (CRT). All tasks were
repeated five times, with a resting condition in between tasks and an instruction
phase before each task. We excluded the last repetition as a test set for assessing
predictive performance.

hippocampal multiple single-unit (msu) and spatial position data

As the second empirical multimodal dataset, we used electrophysiological record-
ings from the rodent hippocampus, combined with spatial location data [133]
publicly accessible at https://crcns.org/data-sets/hc/hc-11/about-hc-11. Our
analysis focused on the recordings of the rat ’Achilles’. The extracted spike
times were preprocessed using the script provided in [445], to obtain counts
per time interval with a bin width of 200 ms, and selected the 60 most active
neurons. Since for our analysis, we were primarily interested in the combina-
tion of spike counts and position data, we focused solely on the MAZE task,
in which the rat was moving along a platform, with the rats receiving water
rewards at both ends of the track, represented in our model as scalar external
inputs st (cf. equation 12), set to 1 for five time bins when the rat moved away
from the reward location.
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b.1 further results

Table 7: Comparisons of SOTA DSR methods on the Lorenz-63 and Lorenz-96 system.
Note that our training methods perform approximately on par with SINDy,
which features a strong inductive bias in favor of reconstructing the two bench-
mark systems since these are low-order polynomials which the provided li-
brary included in these experiments (see Sect. A.2.1). Taken from [152].

Dataset Method Dstsp ↓ DH ↓ PE(20) ↓ dim |θ|

Lorenz-
63 (3d)

shPLRNN + GTF 0.26± 0.03 0.090± 0.007 (6.0± 0.5) · 10-4 3 365

dendPLRNN + id-TF 0.9± 0.2 0.15± 0.03 (2.2± 0.7) · 10−3 10 361

RC 0.52± 0.12 0.19± 0.04 (5± 2) · 10−3 201 603

LSTM-TBPTT 0.46± 0.22 0.11± 0.03 (1.1± 0.3) · 10−3 30 1188

SINDy 0.24± 0.00 0.091± 0.000 (6.1± 0.0) · 10-4 3 30

N-ODE 0.63± 0.2 0.15± 0.05 (2.3± 0.3) · 10−3 3 353

LEM 0.39± 0.24 0.12± 0.05 (6.0± 0.9) · 10−3 14 360

Lorenz-
96 (20d)

shPLRNN + GTF 1.68± 0.06 0.072± 0.001 (1.21± 0.02) · 10−1 20 4540

dendPLRNN + id-TF 1.65± 0.05 0.083± 0.005 (1.1± 0.1) · 10-1 60 5740

RC 2.40± 0.15 0.14± 0.02 (4.9± 0.4) · 10−1 600 12000

LSTM-TBPTT 5± 1 0.31± 0.04 (1.14± 0.04) · 100 80 10580

SINDy 1.59± 0.00 0.06± 0.00 (4.6± 0.0) · 10-3 20 4620

N-ODE 1.77± 0.07 0.076± 0.01 (2.5± 0.02) · 10−1 20 4530

LEM 7.2± 2.3 0.54± 0.13 (1.3± 0.06) · 100 46 4620

141
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Figure 54: Short-term predictions (a) and long-term spatiotemporal behavior (b) for our
models and N-ODEs for the multiscale Lorenz-96 system, introduced in [68]
to assess forecasting performance of different DSR approaches. Taken from
[152].
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Figure 55: 5-step-ahead predictions (yellow) of DSR algorithms on EEG time series
(blue). While all methods provide reasonable short-term forecasts, reflecting
the optimization criterion, most fail to produce non-trivial limiting dynam-
ics (Fig. 23). Taken from [152].

Table 8: Comparison of dendPLRNN trained by MTF with the MVAE [214], and an MS
approach, on 8 ordinal observations with seven ordered categories, produced
by the chaotic Lorenz system, Rössler system, and Lewis-Glass model, and on
a symbolic representation of the chaotic Lorenz system. Values are mean ±
SEM, averaged over 15 trained models. Taken from [53].

Dataset Method Dstsp ↓ λmax OPE ↓ SCC ↓ OACF ↓

Lorenz-ordinal

MTF 8.8± 0.59 0.92± 0.39 0.24± 0.015 0.085± 0.02 0.016± 0.04

SVAE 14.7± 0.7 0.44± 0.71 0.8± 0.03 0.17± 0.02 0.23± 0.02

MS 13.8± 1.1 0.47± 0.67 X 0.24± 0.06 0.15± 0.03

Rössler-ordinal

MTF 7.9± 0.8 0.03± 0.07 0.093± 0.007 0.051± 0.009 0.051± 0.009

SVAE 11.5± 1.3 -0.27± 0.58 0.39± 0.02 0.23± 0.05 0.18± 0.04

MS 14.1± 1.0 -0.05± 0.12 X 0.12± 0.04 0.14± 0.03

Lewis-Glass-ordinal

MTF 0.89± 0.04 −0.11± 0.41 0.15± 0.02 0.28± 0.05 0.15± 0.03

SVAE 1.40± 0.22 −1.8± 2.1 0.29± 0.01 0.49± 0.04 0.24± 0.02

MS 1.0± 0.14 −0.14± 0.31 X 0.51± 0.04 0.45± 0.03

Lorenz-symbolic

MTF 4.4± 2.69 0.67± 0.37

SVAE 12.02± 1.98 1.87± 0.88

MS 4.46± 1.82 5.67± 1.25
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Figure 56: Different approaches for symbolizing the same underlying dynamical sys-
tem. In preliminary experiments, MTF managed to approximately recon-
struct the underlying DS from all four symbolic representations.

Figure 57: Example reconstructions of spike trains and spike statistics on the training
set (see Methods A.3.2). Test set reconstructions and further statistics are in
Figure 32. Taken from [53].
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Figure 1 Illustration of chaos at the example of two simulated so-
lutions of the chaotic Lorenz-63 system (Eq. 110) using
the same numerical solver (Runge-Kutta method of or-
der 5(4) [87] from scipy.integrate), with the sole ex-
ception being a small difference in absolute error tol-
erances (10−8 vs. 10−11) of the numerical integrator.
While trajectories diverge rapidly after a certain time
horizon, the long-term limit sets still closely resemble
each other. 17

Figure 2 Flow fields and example trajectories (blue) for different
2D and 3D attractors. 17

Figure 3 Overview over dynamical systems reconstruction. 19

Figure 4 Illustration of temporal delay embeddings. 20

Figure 5 Illustration of measurement functions in DSR. 21

Figure 6 Generalization and multistability in DSR. 28

Figure 7 The dendPLRNN extends each neuron of the PLRNN
into a set of nonlinear branches, significantly increas-
ing its expressivity and enabling reconstructions in lower
dimensions. Figure created with the artistic support of
Darshana Kalita. Taken from [54]. 37

Figure 8 Basis expansion reduces latent space dimensionality. a:
Agreement in attractor geometries (Sect. 4.1) (top) and
proportion of successful reconstructions (bottom) for the
Lorenz-63 system as a function of the number of bases
(B) and latent states (M). B = 0 in the top graph denotes
the standard PLRNN (no basis expansion). b: Runs with
Dstsp < 4 were defined as successful (similar results
are obtained with other choices for the Dstsp threshold).
Taken from [54]. 39

Figure 9 Illustration of the SVAE setup. 44

Figure 10 Principle of Generalized Teacher Forcing. Taken from
[152]. 48

Figure 11 Example training sequences (Tseq = 300) at different
stages of training using STF (τ = 25, with forcing times
highlighted in red), and GTF (α = 0.15) for training a
shPLRNN on the Lorenz-63 system. Forced states with
STF do not align perfectly with the data since forcing oc-
curs prior to the RNN step. Note that training on this
sequence length without any TF quickly leads to diver-
gences. Hence the unforced prediction (light green) is
drawn from the model trained with GTF, and intended
to serve as a reference for the freely evolving model pre-
dictions at this epoch. 51

Figure 12 Principle of Multimodal Teacher Forcing. Taken from
[53]. 52
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Figure 13 Illustration of the impact of dramatic changes in long-
term dynamics on the SVAE and MTF loss. a: A dend-
PLRNN successfully trained on multimodal observations
from the Lorenz-63 system is altered by setting a param-
eter of the linear self-connectivity A22 > 1, which re-
sults in globally diverging dynamics, while still looking
locally consistent with the Lorenz-63. b: The global di-
vergence is reflected in the training-time trajectories Z
generated using MTF with interval τ = 10 (right), within
which the DSR model evolves freely. This divergence
leads to large increases in the MTF training loss (see MTF
loss curve for A22 > 1), and hence is strongly penalized.
This effect is essentially not present for the SVAE, where
the global divergence induces no considerable effect on
the training loss and training-time trajectories. The mis-
match in global (long-term) dynamics hence remains un-
recognized by the SVAE. As shown at the bottom, at the
minimum of the SVAE loss (A22 ≈ 0.966) the dynam-
ics converge to an equilibrium point (left), while MTF at
its minimum (A22 ≈ 0.637) produces trajectories which
agree in their temporal structure with those of the origi-
nal Lorenz-63 (right). 54

Figure 14 a: MTF loss landscapes, computed using the total loss
(Eq. 60) by varying two parameters of a trained dend-
PLRNN (A22, W34) and computing the loss for a se-
quence of T = 300 time steps. Illustrated are four val-
ues of TF interval τ. Lower values of τ increasingly
smoothen the loss landscape. τ = 10 corresponds to an
optimal choice for the TF interval, where the loss land-
scape appears both smoothed out and convex, while for
low τ = 1, the loss landscape flattens, making training
more difficult. b: Comparison of MTF and SVAE loss
landscapes. Since the SVAE loss (Eq. 33) only includes
one-step ahead predictions from the DSR model, it essen-
tially over-smoothens the loss landscape, similar to the
observations made when choosing a very small τ in MTF,
not allowing the model to evolve freely during training.
Note that the parameter range that can be meaningfully
explored for the MTF is smaller than for the SVAE since
larger variations in the parameters (e.g. a value of A22
over 1) induce divergences in the sequences drawn from
the DSR model for the computation of the DSR loss (see
also Fig. 13). Based on [53]. 55
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Figure 15 Comparison of state space agreement Dstsp in two sce-
narios (see Sect. 4.1 for details): (a) when omitting differ-
ent terms from the total loss as specified in Eq. 60, and
(b) while altering the scaling of the consistency loss Lcon.
These comparisons are made for a dendPLRNN trained
using MTF on multimodal Gaussian, ordinal, and count
data from the chaotic Lorenz system (Fig. 24). Taken
from [53]. 56

Figure 16 Illustration of the hierarchical inference framework. 62

Figure 17 Overview over metrics for continuous data for models
trained on the chaotic Lorenz-63 system. a: While short-
term predictions deteriorate after a certain time horizon
for chaotic systems due to exponential trajectory diver-
gence (here after around 120 time steps), the long-term
temporal patterns can still agree (right). b: State-space
agreement approximated via the binning approximation,
projected along the z-direction. c: Correlation between
Dstsp approximated via the binning method (m = 30)
and the logarithm of Dstsp approximated as a GMM for
generated data from different trained models. d: Exam-
ple power spectra for different smoothing factors σ. (c)
and (d) taken from [54]. 66

Figure 18 Illustration of the state space measure in the absence of
continuous observations. 70

Figure 19 a: Ground truth and rotated attractors of the Rössler
system with associated Dstsp-values. b: Correlation be-
tween Dstsp for models trained on trajectories from the
Rössler system, computed directly in observation space
given a co-trained linear (Gaussian) observation model
(Dbin), and after approximation applying PCA and the
combined rotation operation directly in the 20-dimensional
state space (DPCA), based on a total of 30 trained mod-
els. Based on [53]. 71

Figure 20 Reconstructed and ground truth vector field for the 2D
Wilson-Cowan system, including locations of the analyti-
cally obtained fixed points the trained dendPLRNN, and
ground truth fixed point locations. Taken from [54]. 75

Figure 21 Example reconstructions of two low-dimensional bench-
mark systems, produced from a dendPLRNN trained
with VI (B = 20, M = 15) on the chaotic Lorenz sys-
tem (a, Eq. 110) and with STF (B = 47, M = 26, τ = 5) on
the bursting neuron model (b, Eq. 112), with time series
(left) and state space reconstructions for both true and
generated time series (right). Since the bursting neuron
model is non-chaotic, model predictions agree closely
with the ground truth data for up to 1000 time steps,
while due to the chaotic nature of the Lorenz system,
predictions diverge while agreeing in terms of overall
temporal and geometric structure. Taken from [54]. 76
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Figure 22 Example reconstruction of DSR from high-dimensional
benchmark systems, using a dendPLRNN trained with
STF (B = 50, M = 30, τ = 10). a: Time series (top), spa-
tiotemporal evolution (middle), and power spectra (bot-
tom) for the true 10d Lorenz-96 system (Eq. 117) and for
time series sampled from the dendPLRNN. b: Same for
a 50d neural population model (Eq. 119) (B = 5, M = 12,
λ = 1.0, Mreg/M = 0.2). Taken from [54]. 78

Figure 23 Example time traces of ECG (a) and EEG (b) reconstruc-
tions for all methods compared in Table 4. For each
model, we picked the best run out of 20 runs, accord-
ing to the state space agreement Dstsp. Taken from
[152]. 80

Figure 24 a: Sample trajectories and time series produced by a
dendPLRNN with parameters (M = 20, B = 10, K =

15, τ = 10), trained using MTF on multimodal data
(Gaussian, ordinal, and count)—sampled from a Lorenz-
63 system. b: Example power spectra from Gaussian
data alongside Spearman autocorrelation functions for
ordinal and count data. Taken from [53]. 82

Figure 25 DSR from multimodal observations (continuous and or-
dinal, sampled from a Lorenz-63 system) using MTF,
where continuous observations were distorted with medium
(10% of data variance) (a) and high (50% of data vari-
ance) noise levels (b-c). a: Freely generated example
trajectories from a dendPLRNN (M = 20,B = 10,K =

20, τ = 10). b: Same as (a), but for heavily distorted
Gaussian observations. The maximum Lyapunov expo-
nent (λmax) of the dendPLRNN resembles that of the GT
system, λmax ≈ 0.903). c: Normalized cumulative his-
tograms of geometrical attractor disagreement (Dstsp,
left) and Hellinger distance (DH, right) between recon-
structed and ground-truth system with and without or-
dinal observations indicate that DSR from highly dis-
torted data in the unimodal case is impossible. Taken
from [53]. 83

Figure 26 Cross-modal inference, using the mixture-of-experts en-
coder model. a: Reconstructions of the Lorenz-63 from
Gaussian and ordinal observations, where 20% of time
steps are missing at random time points individually
drawn for each modality. This allows the model to de-
velop useful cross-modal links and infer an approximate
posterior estimate even when observations from the other
modality are missing. b: Using only the Gaussian expert
to encode ground truth Gaussian observations, the cor-
responding ordinal ratings can be almost perfectly de-
coded, including steps missing in the ordinal training
data. 84
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Figure 27 Encoded states p(Z̃ |X) (left) after training a shPLRNN
with MTF on one-dimensional observations of the Lorenz-
63 system (x coordinate, bottom), resemble the unfolded
attractor using a temporal delay embedding (right) with
optimal settings determined using the minimum of the
mutual information [187]. For this plot, states were again
approximately overlayed with the delay-embedded states
using Eq. 75. 85

Figure 28 DSR from discrete observations for the Rössler system
(λtrue

max ≈ 0.072) and Lorenz system λtrue
max ≈ 0.903). Note

that in all cases the topology and general geometry are
preserved, and maximal Lyapunov exponents closely match
those of the true systems. First row: Symbolic coding of
Lorenz attractor (see Fig. 30 for true and predicted class
label probabilities and statistics), TDE = temporal de-
lay embedding. Second row: Reconstruction of Rössler
attractor from 8 ordinal time series with 7 levels each.
Third row: DSR of Lorenz attractor from 8 ordinal time
series with 7 levels each. Fourth row: DSR of Rössler
attractor from 60 ordinal time series with 2 levels each.
Based on [53]. 86

Figure 29 Reconstruction of a 10d chaotic Lorenz-96 system solely
from ordinal observations with up to 15 levels using a sh-
PLRNN ([152]; M = 10,L = 100, τ = 10). a top: Ground
truth ordinal time series sampled from a randomly ini-
tialized ordinal observation model p(ot|xt) from ground
truth states xt of the Lorenz-96 system, and reconstructed
ordinal observations decoded from freely generated la-
tent states using the trained decoder model p(ot|z̃t). Bot-
tom: Example ground truth and freely generated ordi-
nal time series from 1 channel. b: Ground truth states
xt (top), states encoded using the trained MTF encoder
p(z̃t|ot) (center), and freely generated latent activity from
the trained DSR model zt = Fθ(zt−1) (bottom). States z̃t
encoded from the ordinal data were aligned with ground
truth states xt (not seen during training) using a linear
operator B (Eq. 75). This linear operator was also used
to project the freely generated activity of the shPLRNN
into the observation space of the Lorenz-96 system. c left:
Example of ground truth (orange) and freely generated
(blue) activity. c right: Aligned ground truth (xt) and
encoded latent states (z̃t) as in b for one example unit.
Note that the encoded states p(z̃t|ot) and ground truth
states xt overlap almost perfectly, although the xt have
never been seen by the model during training. 87
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Figure 30 a: True and predicted class label probabilities (given the
maximum posterior probability for a category at each
time step) from a freely generated trajectory of and dend-
PLRNN, trained with MTF on the symbolic representa-
tion of the chaotic Lorenz-63 dynamics. b and c: Kernel-
density estimates of maximum Lyapunov exponents (b)
and cumulative distributions ofDstsp (c), comparing train-
ing with MTF, Multiple Shooting (MS), and sequential
multimodal VAE (MVAE) across 30 trained models each.
Taken from [53]. 88

Figure 31 a: Multimodal integration on functional magnetic reso-
nance imaging (fMRI)+behavioral data significantly im-
proves DSR compared to just training on fMRI data alone
(unimodal). Results are shown for 20 subjects (subjects
represented by black lines, with the mean across subjects
by a blue line), shown for both geometrical (Dstsp, left)
and temporal (DH, right) disagreement between true and
reconstructed systems. p-values obtained by perform-
ing a paired t-test. b: Example of decoded (color-coding
of time series) and true (background colors) task stages
l̂ ∈{Rest, Instruction, CRT, CDRT, CMT} for an example
subject. The trained model was freely iterated forward
from the first time step of the test set not seen during
training, and task stages were decoded from the simu-
lated activity based on the maximum posterior proba-
bility, l̂t = arg max p(lkt|zt), given the latent trajectory
zt. c: Example subspaces of freely generated latent ac-
tivity for a DSR model trained jointly on continuous and
categorical data by MTF for an example subject. Task
labels at each latent state are predicted according to the
maximum posterior probability given the latent state at
each time step, as in b. The latent space is structured
according to the task stages. d: Freely generated time se-
ries from 10 brain areas per subject from subjects #3 (left)
and #7. (right). The trained DSR model, only iterated by
providing an initial state, captures the overall temporal
structure of the complex activity patterns even from very
short time series. Based on [53]. 90
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Figure 32 a: Example reconstructions of spike trains and spatial
location of a rat moving along a vertical track on the un-
seen test set (second half of the trial), generated from a
data-inferred initial condition. b: Correlation of mean
spike rate, zero count ratio, coefficient of variation, and
correlation between cross-correlation coefficients between
all 60 reconstructed neurons between test set and model-
generated data (blue), and between experimental train-
ing and test set data (orange). Diagonal gray lines are
bisectrices. Bottom: Cross-correlation matrices among
all 60 neurons for the test set (left) and model-generated
data (right). c: Joint DSR from both spatial and neu-
ral data significantly improves reconstructions across all
spike statistics, as assessed by computing the average
MSE between spike statistics across all neurons. The
MSE was normalized for each statistic for better visibil-
ity. d: Subspace of the DSR model’s latent space, illus-
trating how the latent dynamics are structured according
to the animal’s spatial position. Based on [53]. 92

Figure 33 a: Reconstructions of the Lorenz-63 attractor (left) and
Rössler attractor (right) for different values of ρ and c,
respectively, using a hierarchical shPLRNN with a one-
dimensional feature vector. b: By performing linear re-
gression on the one-dimensional feature vectors l(j) after
training, the actual ground truth values of ρ(j) and c(j)

for each system can be accurately predicted via linear
regression. 94

Figure 34 Example reconstructions of several subjects from the ex-
perimental fMRI dataset (Sect. A.3.2) using a hierarchical
shPLRNN with Nfeat = 15, L = 300, and trained using
GTF with α = 0.1 and Tseq = 72. 95

Figure 35 a: Cosine similarity matrix based on the average simi-
larity of the feature vectors across ten training runs for
four example subjects. b: Extracted similarities and clus-
ter labels reflect visual differences in the recorded BOLD
signals. 96

[ May 6, 2024 at 7:40 – classicthesis ]



152 List of Figures

Figure 36 a: Plateau effect observed for the number of total subre-
gions traversed for different reconstructed DS and differ-
ent PLRNN dimensions (Lorenz-63: M = 10, Lorenz-96:
M = 30, bursting neuron: M = 25, Duffing: M = 20,
Rössler: M = 8) b: Scaling of the total number of linear
subregions of a PLRNN, given its latent dimension M,
versus the number of subregions inhabited by trained
Lorenz-63 systems with different dimensions. While the
number of total subregions scales exponentially with M,
the used linear subregions increase much more slowly.
c: Number of boundary crossings per time step for a tra-
jectory with 100, 000 time steps. For the Lorenz-63 and
Rössler systems, the models do not cross any boundaries
on most time steps, illustrating that the dynamics are
highly linearized. d: Cumulative frequencies of the indi-
vidual subregions for trained systems. e: Reconstructed
attractors for the Lorenz-63 and bursting neuron model,
colored with respect to the linear subregions correspond-
ing to each observation. 97

Figure 37 a: Connectome of transitions between linear sub-regions,
sorted by their relative frequency, for a PLRNN trained
on a Lorenz-63 system, and resulting graph structure vi-
sualized using the spectral layout in networkx. The re-
sulting graph shadows the layout of the real Lorenz-63

system, with the most frequented subregion (label 0) at
the center of the intersection between the left and right
lobe. b: Connectome for a reconstructed bursting neuron
model, using the same layout. The graph for this system
mimics the cyclic nature of the system and lacks a simi-
larly dominant and interconnected sub-graph. 99

Figure 38 a: Illustration of geometry-based pruning. The top row
shows a ground truth and reconstructed Lorenz-63 at-
tractor (blue) and a successful reconstruction (red). The
bottom row illustrates reconstructions where a single weight
was removed with varying influence on attractor geome-
try. The shift in difference in geometric importance score
Dstsp does not necessarily relate to the absolute magni-
tude of the pruned parameter indicated below. b: Weight
parameters with large (∆Dstsp > 0.1) vs. low (∆Dstsp ⩽
0.1) impact on geometrical reconstruction quality only
feature a small difference in absolute magnitude. This
observation illustrates why magnitude can not be mean-
ingfully leveraged for pruning DSR models. Taken from
[149]. Created by Christoph Hemmer. 102

Figure 39 Approach for translating graph-topological properties of
trained networks into a general scheme to be used as
topological prior. From [149]. 104

Figure 40 Example graph topologies with network sparsity of 85%.
Hubs with ⩾ 6 connections are marked in red. From
[149]. 104
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Figure 41 a: The Trust Game (TG) setup, where participants, pre-
sented with an image of one of four virtual trustees,
are given 50 fictitious monetary units for investment.
The invested sum is then tripled and passed on to the
trustee. Participants subsequently receive feedback de-
tailing their investment, the trustee’s repayment, and the
retained amount. b: Example trial. c: The RNN model
training process, mimicking the TG setup. The RNN, af-
ter receiving fairness and expression inputs, forecasts fu-
ture investments. Based on its forecasts, the RNN is up-
dated with data on the repayment and new balance. 107

Figure 42 Model Prediction: a: Mean linear prediction error (MLE;
left) and correlation (right) between predicted and actual
investments in the test set across all 32 participants, in-
cluding a comparison of selected models’ performance
against random investment choices marked by the red
bar. Red dots are selected models, error bars are SEM. b:
Observed and model-predicted investments for a subset
of participants for selected models. c: Observed vs. pre-
dicted average investment behavior based on the trustee
for both social (left) and non-social (right) conditions. 110

Figure 43 a Left: Cumulative density for average correlations be-
tween entropy and first principal component (PC; light
shade), and investment and second PC (dark shade) across
latent trajectories of the true experimental simulation for
all 32 participants. Right: Observation model entropy
over investments, averaged over actual interactions in so-
cial (dark shade) and non-social (light shade) conditions.
b: State space projection onto the first two PCs for two
example participants, structured by an entropy gradient
along the first PC (left) and investment gradient along
the second PC (right). 111

Figure 44 a: Cosine similarity matrix of input vectors (left) and
resulting clustering dendrogram (right) for social (top)
and non-social (bottom) conditions. b: Average input
strength comparison for strong (++ and –) versus weak
(+ and -) expression cues in social and non-social con-
ditions. Bottom right: Average input strength across all
cues between social and non-social conditions is higher
in the social condition. 112
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Figure 45 Simulated behavior of an example participant in response
to the presentation of an unfair trustee at 4 varying in-
tensity levels (c = 0, c = 0.6, c = 1.0, c = 1.4). The invest-
ment in the absence of any input is at the maximum in-
vestment value of 50. As input intensity is up-regulated,
the investment behavior (and corresponding system dy-
namics) exhibits a qualitative change, also referred to as
a bifurcation. The participant first enters an exploratory
state (c = 0.6), whose precise nature depends on the in-
put strength as well. When the unfair trustee is displayed
at full intensity (c = 1.4), the investment reaches a min-
imum (reflecting an unwillingness to cooperate with the
unfair trustee). 113

Figure 46 a: Interactions of models with four example trustees with
different interaction styles. b: Example predicted strate-
gies (y-axis) over time (x-axis) for models with successful
investment strategies for the antagonistic trustee (AT, the
cooperative trustee (CT), the trust-building trustee (BT),
and the uncooperative trustee (UT). c: Clustering based
on average relative gain extracted from different trustees.
Low values indicate low ranks, i.e., good performance
and high extracted gains. In the off-diagonal panels, the
x and y axis denote the ranks of the 32 participants for
the respective trustee condition. 114

Figure 47 a: Comparison of rank for the CT vs. AT for subjects
in the social vs. non-social group. b: Extracted gain
across social vs. non-social group, averaged across all
four agents. 115

Figure 48 Estimates of the first and second moment from the Adam
optimizer for different parameters of the shPLRNN dur-
ing training on the chaotic Lorenz-63 system. a: Without
TF, even for a moderate sequence length (here T = 30),
gradients retain high variance, making successful train-
ing impossible. b: With GTF (α = 0.2), gradient mo-
ments decrease over time after a short initial period with
high variance, stabilizing training even for much longer
sequences (here T = 200). 129

Figure 49 Example reconstructions using SINDy, comparing recon-
structions from a trajectory solving (red) and not solving
(black) an algebraic equation in the parameters. From
[139]. 132

Figure 50 For the GT shown top-left, providing SINDy only with
a polynomial library leads to an incorrect solution for
the VF (top-right), while providing the correct library
including both trigonometric and polynomial functions
(and mixing terms) leads to the correctly inferred VF
(bottom-left). Finally, even with the correct library, pro-
viding as data the curve solving an algebraic trajectory
leads to an incorrectly inferred VF (bottom-right). From
[139]. 132
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Figure 51 SINDy needs the proper function library to correctly in-
fer a system across the whole state space (left). If the 3rd
order term present in the Duffing equations is lacking
(right), the inferred VF may only be locally correct (or
not at all for more complex systems). From [139]. 133

Figure 52 The basic principle of Reservoir Computing. 133

Figure 53 The basic principle of Neural ODEs. 134

Figure 54 Short-term predictions (a) and long-term spatiotemporal
behavior (b) for our models and N-ODEs for the multi-
scale Lorenz-96 system, introduced in [68] to assess fore-
casting performance of different DSR approaches. Taken
from [152]. 142

Figure 55 5-step-ahead predictions (yellow) of DSR algorithms on
EEG time series (blue). While all methods provide rea-
sonable short-term forecasts, reflecting the optimization
criterion, most fail to produce non-trivial limiting dy-
namics (Fig. 23). Taken from [152]. 143

Figure 56 Different approaches for symbolizing the same underly-
ing dynamical system. In preliminary experiments, MTF
managed to approximately reconstruct the underlying
DS from all four symbolic representations. 144

Figure 57 Example reconstructions of spike trains and spike statis-
tics on the training set (see Methods A.3.2). Test set
reconstructions and further statistics are in Figure 32.
Taken from [53]. 144

L I S T O F TA B L E S

Table 1 Classification of benchmark systems in the DS literature.
27

Table 2 Performance comparison of encoder and RNN models
trained using MTF on multimodal data from the chaotic
Lorenz system, using the performance metrics introduced
in Sect. 4.1. Taken from [53]. 58

Table 3 Comparison of the dendPLRNN trained by VI or BPTT+TF,
RC [303], LSTM-MSM [408], SINDy [59] and Neural ODE
([70]) on 4 DS benchmarks (top) and 3 challenging data
situations (bottom). Values are mean ± SEM. Based on
[54]. 77

Table 4 Comparisons of SOTA DSR algorithms on two challeng-
ing experimental datasets (Sect. A.3), adapted from [152].
Values are median ± median absolute deviation over 20
runs. ‘dim’ refers to the model’s dynamical variables,
while |θ| are number of trainable parameters. Based on
[152]. 79
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Table 5 Comparison of dendPLRNN trained by MTF, by a mul-
timodal SVAE based on [214], a VAE-TF approach simi-
lar to MTF except that all data modalities were ‘Gaus-
sianized’ (GVAE-TF), BPTT-TF as in [54] using Gaus-
sianized data, and a multiple-shooting (MS) approach.
Training was performed on multivariate normal, ordi-
nal, and count data produced by the chaotic Lorenz sys-
tem, Rössler system, and Lewis-Glass model. Values are
mean ± SEM, averaged over 15 trained models. X =
value cannot be computed for this model (e.g., because
resp. decoder model is not present). SCC (Spearman
cross-correlation), OACF (ordinal autocorrelation func-
tion), and CACF (count autocorrelation function) all re-
fer to mean-squared-errors (MSEs) between ground truth
and generated correlation functions. Bold numbers indi-
cate top performance within ±1 SEM. Taken from [53].
81

Table 6 Comparison among multi-modal reconstruction meth-
ods for experimental fMRI+behavioral data. For each
subject and training method, medians across 15 trained
models were first obtained for each measure, which were
then averaged across 20 subjects (± SEM). SEM = stan-
dard error of the mean. X = value not accessible for this
method. The abbreviations are the same as in Table 5.
Taken from [53]. 91

Table 7 Comparisons of SOTA DSR methods on the Lorenz-63

and Lorenz-96 system. Note that our training methods
perform approximately on par with SINDy, which fea-
tures a strong inductive bias in favor of reconstructing
the two benchmark systems since these are low-order
polynomials which the provided library included in these
experiments (see Sect. A.2.1). Taken from [152]. 141

Table 8 Comparison of dendPLRNN trained by MTF with the
MVAE [214], and an MS approach, on 8 ordinal obser-
vations with seven ordered categories, produced by the
chaotic Lorenz system, Rössler system, and Lewis-Glass
model, and on a symbolic representation of the chaotic
Lorenz system. Values are mean ± SEM, averaged over
15 trained models. Taken from [53]. 143
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