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Zusammenfassung

In dieser Arbeit stellen wir konform symmetrische Modelle vor, um das Hierarchie
und andere Probleme jenseits des Standardmodells in der Hochenergiephysik zu
behandeln. Nach einer Einführung in die Konzepte der konformen und der Skalen-
invarianz, erläutern wir kurz die quantenmechanische Skalenerzeugung, die kon-
forme Anomalie und das Hierarchieproblem. Wir verwenden diese Konzepte in
Form eines Modells, in dem die quantenmechanische Brechung der Skalensymme-
trie den einzigen dynamischen Ursprung sowohl für die Planck-Masse als auch
für die Skala der elektroschwachen Symmetriebrechung darstellt. Wir stellen fest,
dass wir die vorgeschlagenen Lösungen für andere Probleme jenseits des Standard-
modells, nämlich die dunkle Materie und die Masse aktiver Neutrinos, sowie die
Beschreibung der kosmologischen Inflation in guter Übereinstimmung mit den derzeit
stärksten experimentellen Beschränkungen mühelos einbeziehen können. Bei der
weiteren Untersuchung des gravitativen Beitrags zur Symmetriebrechung im oben
genannten Kontext extrahieren wir den berüchtigten Spin-2-Geist Freiheitsgrad aus
dem quadratischen Beitrag des Weyl-Tensors und stellen fest, dass er einen wesentlichen
Beitrag nicht nur zur Skalenerzeugung mit einem minimaleren Skalar Sektor, son-
dern auch zur Aufrechterhaltung der experimentell günstigen Vorhersagen leistet.
Schließlich nutzen wir das Skalierungsverhalten von stark gekoppelten konform
symmetrischen Theorien, um ein allgemeines Konzept für die UV-Vervollständigung
von Little-Higgs-Modellen zu schaffen.

Abstract

In this thesis, we present conformally symmetric models to address the gauge hier-
archy problem and other beyond Standard Model (BSM) problems in high-energy
physics. After introducing the concepts of conformal, and scale symmetry, we re-
view radiative scale generation, the trace anomaly, and the hierarchy problem. We
employ these concepts in the form of a model, where the radiative breaking of scale
symmetry denotes the sole dynamical origin for both the Planck mass and the scale
of electroweak symmetry breaking. We find that it is natural to include proposed
solutions to other problems of BSM physics, namely dark matter, and active neu-
trino mass, as well as describing cosmological inflation, in good agreement with
the currently strongest experimental constraints. Further investigating the gravita-
tional contribution to symmetry breaking in the aforementioned context, we extract
the infamous spin-2 ghost degree of freedom from the Weyl tensor squared contri-
bution and find it to induce an essential contribution to not only scale generation
with a more minimal scalar sector but also to maintaining experimentally favored
predictions. Finally, we leverage the scaling behavior of strongly coupled confor-
mally symmetric theories to provide a general framework of UV completion for Lit-
tle Higgs models.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics, as well as General Relativity (GR), are
both exceptionally successful in describing a wide variety of real-world phenomena
utilizing symmetry principles, whether it be internal gauge symmetries or symme-
tries of the spacetime. Nevertheless, neither manages to provide a complete descrip-
tion of nature and thus apart from the apparent issue of unifying the two funda-
mentally different theories, both require modification or extension. Building upon
the concept of symmetries as the guiding principle of theoretical physics, adding
conformal symmetry, which acts directly on the fields and the spacetime, allows for
reconciliation or at the least offers an interesting perspective to the (gauge) hierarchy
problem and other issues of the SM, GR, and their unification.

The hierarchy problem denotes the complex puzzle concerning resolving the vast
disparity between the fundamental scales of the SM, the scale of electroweak (EW)
symmetry breaking vEW, and gravity, the Planck scale MPl. In the absence of other
fundamental scales, the SM alone is found to be perturbative and without insta-
bilities, e.g. Landau poles, up to high energies E ≫ MPl [5–8]. Thus, it alone is
free of the hierarchy problem. Nevertheless, the SM requires extension or the in-
evitable unification with quantum gravity at energies close to MPl. These beyond
the standard model (BSM) physics will (often unavoidably) introduce another el-
ementary scale ΛBSM ≫ vEW much larger than the electroweak scale. Therefore, the
heart of the hierarchy problem is found in the Higgs boson’s nature as an elementary
scalar with mass mh ≃ 125 GeV [9, 10] in the presence of another large fundamental
scale. Quantum loop contributions induce a quadratic sensitivity to the heavy scale
through radiative corrections to the Higgs mass m2

h ∝ Λ2
BSM, which requires a large

amount of unnatural (in the sense of ’t Hooft [11]) fine-tuning to reconcile with the
experimentally observed Higgs mass. Oftentimes, supersymmetry (SUSY) [12] is in-
voked to address the hierarchy problem by introducing superpartners that ensure
the cancellation of the troublesome quantum corrections. Other approaches feature
(large) extra dimensions, specifically addressing the vast discrepancy between vEW

and MPl [13, 14], by utilizing the properties of compactification to describe the SM
as an effective 4D theory from a 5D spacetime description of gravity. Others again,
question the original “assumption” that the Higgs is a fundamental scalar but rather
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identify it as a pseudo-Nambu-Goldstone boson (pNGB) of spontaneous symme-
try breaking (SSB)[15–17]. However, the hierarchy problem is not yet resolved in
a fully satisfying manner, as all proposed solutions come with serious caveats, like
a little hierarchy problem [18, 19] or experimental null results for predicted heavy
resonances.

Thus, in this thesis, we return to fundamental symmetries as our guiding princi-
ple and suggest conformal symmetry, arguably the “maximal” non-supersymmetric
group of spacetime symmetries that conserves the light cone and is compatible with
the SM gauge groups, to address the hierarchy problem. Conformal symmetry re-
quires not only the absence of dimensionful scales in the (tree-level) Lagrangian,
thus demanding the theory to remain unchanged under rescaling of its length or
energy scales (scale invariance), but also enforces rotational, boost, and translational
invariance, as well as invariance under special conformal transformation. Crucially,
for any conformal invariant theory to describe real-world physics at least its scale
invariance has to be broken and therefore dimensionful scales are generated dynam-
ically. As a consequence, scale invariance and the breaking thereof play an essential
role in understanding the behavior of physical systems across different energy scales
and thus the gauge hierarchy problem. Regarding the SM, the logarithmic running
of the Higgs mass [20, 21] and the flatness of the Higgs potential at large energies [5,
7] can be understood as hints towards scale invariant extensions. Whereas for gen-
eral relativity (GR), measurements of the cosmic microwave background (CMB) [22–
24] show an approximate scale-invariant power spectrum and a nearly zero value for
its tensor-to-scalar ratio, tightly related to the flatness and therefore scale-invariance
of the inflationary potential.

From a theoretical point of view, the fact that both the SM and GR each only
contain one fundamental scale results in appealing “minimal” conformal symmet-
ric extension. Denoted as the conformal SM (cSM) [25] it was first considered to just
omit the mass term of the Higgs potential and thus not rely on tree-level SSB as in the
Higgs mechanism to generate masses for gauge bosons, but rather generate masses
by radiative spontaneous symmetry breaking (RSSB), i.e. by one-loop quantum cor-
rections spontaneously breaking the symmetry [26]. However, the large mass of the
top-quark destabilizes the effective Higgs potential, thus necessitating the inclusion
of additional scalars [27] to successfully realize RSSB-generated Higgs mass and po-
tential and address the hierarchy problem [28–30]. Assuming that the conformal
symmetry breaking is only anomalous, i.e. spontaneously by quantum corrections,
all scales are generated dynamically in relation to the logarithmic renormalization
group (RG) running of dimensionless couplings such that quadratic divergences can
be removed as remnants of regularization [31–34]. In addition to addressing the hi-
erarchy problem, conformal extensions of the SM naturally allow for the inclusion
of proposed solutions to, e.g. dark matter [35, 36] or neutrino masses [37–39].

The scale-invariance of these conformal extensions and the resulting validity up
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to, in principle, arbitrary energy scales makes them prime candidates for the ultravi-
olet (UV) completion of an effective theory, consequently ensuring renormalizability,
the absence of Landau poles or instabilities, and converging couplings at high ener-
gies. Especially, the so-called Little Higgs models [40, 41], a class of composite Higgs
models, realize the Higgs as pNGB of SSB without quadratic divergences and can
be UV completed by strongly coupled conformal dynamics, which we will show
in Chapter 4. This opens up another avenue for addressing the gauge hierarchy
problem utilizing conformal symmetry. However, when describing theories at large
energies close to the Planck scale, gravitational interactions start to play a role in
particle physics, such that it becomes inevitable to embed into a theory of gravity.
As a consequence, it is important to differentiate between fully conformal (CG) or
only scale-invariant gravity, often referred to as quadratic gravity (QG). Whereas
in general quantum field theory (QFT), scale-invariance and conformal symmetry
can often be used interchangeably, this does not apply anymore when gravity is in-
volved1.

Quadratic gravity contains all three independent quadratic contractions of the
Riemann curvature tensor [42], which include the Weyl tensor squared term, whereas
CG is restricted to just the latter. Including these contributions already at tree level
is quite natural, as they are inevitably generated by quantum corrections when con-
sidering GR to be an effective field theory. Yet, specifically the Weyl tensor squared
term induces troublesome contributions to the conformal anomaly (also known as
trace anomaly) [43] and massive spin-2 ghost degrees of freedom (DOFs), which
potentially threaten unitarity. At the same time, there are promising attempts to
resolve the conformal anomaly [44–49], as well as to understand how to properly
treat the spin-2 ghost [50–62]. Therefore, both scale-invariant [63–73], and confor-
mal symmetric [74–86] descriptions of quantum gravity still enjoy great popularity
and remain an interesting and active field of research. This is in no small part due
to the fact that in contrast to the (classical) description of GR, both QG as well as CG
are proven to be renormalizable [87, 88] and also due to their versatility in applica-
tion. Conformal invariance and its anomalous breaking appear, for example, when
describing the cosmological constant problem [89–91], Hawking radiation [92] or the
information paradox of black holes [93–95], dark energy in the universe [96], and in
asymptotic safety [97–101].

In this thesis, we consider scale invariant and conformal symmetric models to
address the gauge hierarchy and other problems of BSM physics in the presence of
gravity. Therefore, we start in Chapter 2 by closely defining the symmetry concepts
and terminologies from scale-invariance to conformal symmetry to Weyl invariance.

1 More details on this distinction and the relation to the trace anomaly are provided in Sections 2.1
and 2.2, respectively.
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We further discuss the related and aforementioned issues of the trace anomaly (Sec-
tion 2.2) and the gauge hierarchy problem (Section 2.4) and introduce a general de-
scription of dynamical scale generation via radiatively induced spontaneous sym-
metry breaking for (multiple) scalars, in Section 2.3. Subsequently, in Chapter 3 we
employ the previously introduced description to dynamically generate the Planck
mass, neutrino mass, and the electroweak VEV through RSSB of scale invariance
in the model as introduced in [1]. In Section 3.1, we first focus on how one exter-
nal scalar acquires a non-trivial VEV and thus induces an effective Einstein-Hilbert
term that dynamically identifies the Planck mass. Next, in Section 3.2, we show-
case how through including the scale-invariant version of the neutrino option, the
scalar’s VEV is related to the neutrino sector and ultimately to the electroweak VEV
via technically natural Yukawa couplings. Thereafter, we introduce the concept of
cosmological inflation as a solution to fundamental problems of Big Bang cosmology
in Section 3.3 and utilize its constraints by observations of the CMB to match with
predictions from our model. We find that indeed our model can achieve inflation in
agreement with the most current bounds set by experiments and shortly touch on
the possibility of including a dark matter candidate in Section 3.4. In Section 3.5, we
switch focus over to investigating the gravitational contributions of the Weyl tensor
squared term to RSSB and the inflaton potential, along the lines of [2]. After briefly
reviewing the ghost problem, we find that successful symmetry breaking and infla-
tion are already possible with only external scalar due to the graviton’s DOFs. At
last, in Chapter 4, we explore the aforementioned appealing properties of conformal
symmetric dynamics as UV completion for Little Higgs models, as shown in [4]. We
first review the basic idea of the Higgs as a composite, next we introduce the gen-
eral framework for UV completing Little Higgs models, and show an example before
finally concluding with a discussion of our results in Chapter 5.

In this thesis, if not stated explicitly otherwise, we generally employ natural units
c = h̄ = 1, work in the metric with the signature (+,−,−,−), and when mentioning
the Planck mass, we refer to the reduced Planck mass, such that MPl = 1/

√
8 π GN =

2.435 32 × 1018 GeV, with GN denoting the Newtonian constant of gravitation.
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Chapter 2

Conformal Symmetry and Scale
Invariance

2.1 Scale Invariance, Conformal Transformations, and Weyl
Symmetry

In this thesis, we will consider all sorts of scale invariant and conformally symmet-
ric theories to address specific parts of the gauge hierarchy and other problems of
beyond standard model (BSM) physics. Therefore, it is important to clarify the ter-
minology and definitions of the symmetries which are going to be the foundation
of the subsequently presented results. We start with scale symmetry and then move
towards conformal and Weyl symmetry, which both include the former scale invari-
ance, to distinguish the dependencies and directional implications correctly.

Scale invariance or scale symmetry describes the invariance under rescaling of
the spacetime coordinates xµ:

xµ → x′µ = Ω(x) xµ , (2.1)

where, Ω, often called the scale factor, is a positive and dimensionless function of all
x for local and a constant Ω(x) = Ω for global transformations. Fields Φi transform
accordingly to their scaling dimension di under dilatations via

Φi → Φ′
i(x′µ) = Ω−di Φi(x′µ) . (2.2)

If the quantum field theory is scale symmetric, the scaling dimension is a fixed num-
ber d = d0. However, if scale symmetry is broken, the scaling dimension receives
a correction d = d0 + γ. This correction γ is called the anomalous dimension and
depends on the dimensionless couplings of the interaction terms in the Lagrangian.
In a scale-invariant theory in D = 4 dimensional spacetime, the scaling dimension
for scalar, fermion, and vector boson fields are given by dϕ = 1, dψ = 3/2, dA = 1,
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thus they transform as

ϕ(xµ) → Ω−1 ϕ(x′µ) , (2.3)

ψ(xµ) → Ω−3/2 ψ(x′µ) , (2.4)

Aν(xµ) → Ω−1 Aν(x′µ) . (2.5)

A classical Lagrangian that is invariant under Eqs. (2.1) and (2.3) to (2.5), then pre-
serves the dilatation current Dµ at the classical level. Therefore, in four-dimensional
Minkowski space M4 these can be expressed as

Dµ(x) = xν Tµν, ∂µ Dµ = 0 . (2.6)

Now, adding invariance under inhomogeneous Lorentz transformations, also
known as Poincaré transformations [102, p.26][103, p.68] and special conformal trans-
formations (SCT) to scale symmetry, we obtain symmetry under the full conformal
group.

Poincaré : xµ → x′µ = Λµ
ν xν + aµ , (2.7)

SCT : xµ → x′µ =
xµ + bµ x2

1 + 2 b · x + b2 x2 , (2.8)

The infinitesimal form of a general conformal transformation is then given by

xµ → x′µ = xµ + ϵ
(
aµ + bµ

ν xν + c xµ + dν

(
ηµν x2 − 2 xµ xν

))
. (2.9)

In D spacetime dimensions, the Lie algebra of the conformal group can be expressed
by 1

2 (D + 1) (D + 2) generators (we will also refer to them as the group’s DOF). In
the preferred D = 4 dimensions this leads to a total of 15 generators, 1 that gener-
ates dilatations, 4 that generate special conformal transformations, and 10 from the
Poincaré group’s algebra. While the Poincaré symmetry ensures invariance under

FIGURE 2.1: Conformal transformations in D = 2 dimensions, taken
from [104].
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the full symmetry of special relativity, the invariance under dilatations, i.e. rescaling,
leads to conformal transformations preserving angle (or direction) but not length of
a vector xµ. This is nicely visualized in Fig. 2.1, where conformal transformations
are displayed for D = 2 dimensions.

The conformal group is considered the "maximal" non-supersymmetric group
of space-time symmetries that conserves the light-cone ds2 = 0 and the Yang-Mills
EOMs, as argued via the Coleman-Mandula theorem [105] by e.g. [106]. This is espe-
cially interesting as symmetry principles have a deep-rooted connection to the laws
of nature. For example, promoting Lorentz invariance to be a symmetry of space-
time itself denotes the essence of Special Relativity as said by Einstein himself [107].
Furthermore, enforcing that space-time would be invariant under local coordinate
transformation then led to the discovery of General Relativity [108]. Given this con-
nection between symmetry principles and fundamental laws of nature, there is hope
that demanding conformal invariance might lead to equally fundamental insights in
the search for new physics.

Lastly, we introduce the notion of Weyl invariance in the presence of gravity in
our theories. Including gravity in our quantum field theory leads to the generaliza-
tion of (potentially) curved spacetime with the metric being a dynamical DOF. Re-
calling that conformal transformations are diffeomorphisms that locally transform
the coordinates according to Eqs. (2.1) and (2.9), the metric then transforms the fol-
lowing way

gµν → g′µν(x′) =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) = Ω2(x′) gµν(x′) . (2.10)

Here, we see that the metric is invariant under conformal transformations up to
Ω2(x′), which again denotes a (re-)scaling factor that now depends on the trans-
formed coordinates. In contrast, Weyl transformations are not defined as coordinate
transformations but rather act directly on the fields, transforming them similarly to
Eq. (2.2) as

Φi → Φ′
i(xµ) = Ωwi(x) Φi(xµ) . (2.11)

On one hand, Ω(x) again denotes a dimensionless and non-negative parameter
of the transformation, that is coordinate-dependent for a local and constant for a
global Weyl transformation, much like for conformal transformations. On the other
hand, the Weyl weight w differs from the scaling dimension d, particularly for vector
bosons. In D = 4 spacetime dimensions it is given for the metric, its determinant,
scalars, fermions, and vector bosons respectively as:

wg = 2, wdet(g) = 8, wϕ = −1, wψ = −3/2, wA = 0 . (2.12)

Thus, Weyl, conformal, and scale symmetry are distinctly different, and there is no
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equivalence relation between the three concepts of symmetry. Yet, there exists direc-
tional implication, where Weyl invariance implies conformal symmetry and confor-
mal symmetry implies scale invariance but not necessarily vice versa. Depending
on the situation there are several additional requirements, like e.g. flatness, locality,
and unitarity, for these terminologies to be used equivalently. In the following, we
will use the term "scale invariance" (or symmetry) to refer to the global case, as it is
the guiding principle for Section 2.3 and Chapter 3. In the case of local scale invari-
ance and therefore most often also conformal invariance, we will allude to using the
terminology of "conformal" or "Weyl invariance". Since the last part might introduce
ambiguity, we will point these out if and when they arise, e.g. when talking about
conformal dynamics in Chapter 4. For more information on scale invariance, con-
formal and Weyl symmetry, as well as Weyl geometry in the context of theories of
gravity and their quantization, we gladly refer the reader to these extensive works
[3, 61, 62, 109–114]

2.2 Trace Anomaly

As conformal symmetry includes the invariance under scale transformations, and
thus forbids the appearance of dimensionful scales and parameters, it is evident that
any initial conformal symmetry has to be broken to describe a theory that properly
describes real-world physical phenomena. For example, conformal symmetry can
be broken explicitly (by e.g. mass terms in the Lagrangian) or spontaneously (via a
non-zero VEV, see Section 2.3). To check whether a symmetry of a quantum field
theory is preserved one employs the Ward-Takahashi identities [115, 116]. Already
in 1974, Capper and Duff found that 1-loop quantum corrections break said Ward-
Takahashi identities [43] of the conformal currents, thus rendering conformal sym-
metry anomalous. Thus, independent from the aforementioned ways of breaking
conformal symmetry, it is always already broken anomalously by quantum contri-
butions. The identity-violating terms were found to be proportional to the trace of
the improved energy-momentum tensor [64] and thus, the conformal anomaly is
also known as the (stress-energy) trace anomaly:

Tµ
µ = gµν

δS
δgµν

̸= 0 . (2.13)

The general form of the (non-local) violating terms depending on the particle content
was deduced by Deser, Duff, and Isham in 1976 [117]. For a scale-invariant theory,
the anomalous terms can generally be categorized by their origin, either sourced
by gravitational curvature, then also called Weyl anomaly W1, or by local dimension
four operators O(4) of the theory’s particle content and the running of their couplings

1 In that respect, we highly recommend the comprehensive and historical review of [118].



2.2. Trace Anomaly 9

through their β-functions

Tµ
µ = βi O(4)

i + W , (2.14)

First, addressing the gravitational contributions to the anomaly of classical con-
formal symmetry in Eq. (2.14), i.e. W, they consist of contributions proportional to
the Gauss-Bonnet term G, to the dynamics of gravity and in D = 4 spacetime di-
mensions to the square of the Weyl tensor C2

W = a
(

F +
2
3
□R
)
+ bG , (2.15)

G = Rµνρσ Rµνρσ − 4Rµν Rµν + R2 , (2.16)

F = Rµνρσ Rµνρσ − 2Rµν Rµν +
1
3

R2 (D=4)
= Cµνρσ Cµνρσ ≡ C2 . (2.17)

While the Gauss-Bonnet term is oftentimes ignored, as it reduces to a topological
surface term for D = 4 and its counterterms are total divergences and therefore only
contribute in non-trivial topologies, the C2 term is generally non-zero and even if set
to zero by assumption, in conformal invariant theories of gravity, it is nevertheless
generated by quantum correction. In addition to its role in the anomalous breaking
of conformal symmetry, the Weyl tensor also affects other physical observables as
we will further discuss in Chapter 3, where it is shown to give corrections to the
inflation parameters. Therefore, proper treatment of the Weyl tensor DOFs is crucial
when dealing with conformal theories that include gravity.

Now, to the dimension four operators O(4)
i contributions of the theory’s particle

content in Eq. (2.14). In contrast to W, they describe the anomalous breaking in
flat spacetime by quantum corrections. Thus, when βi ̸= 0, the RG-running of the
dimensionless couplings induces a scale dependence, which in turn breaks scale and
therefore also conformal invariance at the quantum level. As a consequence, the β

function being non-zero is often used synonymously with the anomalous breaking
of scale invariance, often overlooking possible contributions from curvature. Since
the β functions only introduce logarithmic scale dependence and are not related to
the often apparent quadratic divergences, the (only) anomalous breaking of scale
invariance is considered a viable perspective to addressing the hierarchy problem
[25, 31]. Yet, these arguments only hold for the assumptions of no intermediate
scales between IR and UV, no instabilities or poles for the dimensionless couplings
between these two scales, and most importantly, that the UV scale is an embedding
scale, or scale of validity for QFTs, rather than a second physical mass. Furthermore,
as the non-gravitational contribution to the trace anomaly is given by a sum over
dimension four operators and their beta functions, it could be possible to adjust the
particle content to achieve full cancellation and therefore no anomalous breaking by
non-gravitational quantum corrections. If this is possible, this would possibly be
only a statement at a specific energy scale as dimensionless couplings would still be
running. Here, we leave this interesting topic to be discussed in future works, as
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the preservation of scale invariance at the quantum level is not our priority, instead,
we are interested in the anomalous breaking of scale invariance and the following
implications. For an in-depth discussion of quantum scale invariance, we refer to
[46, 89, 99, 119–122].

Lastly, we want to note, that renormalization does not break conformal symme-
try but (dimensional) regularization does. It seems that a quite straightforward way
out is to change the regulator to one that respects the symmetry, yet attempts in-
evitably introduce non-renormalizable interactions [74, 121, 123–125], while others
even state that all regulators must break conformal symmetry [31, 44, 126]. Further-
more, it has been argued that the trace anomaly is a sign of the breaking of global
scale invariance, rather than local conformal symmetry [127]2. It seems that there
are still misconceptions and misunderstandings regarding the conformal anomaly,
and even after 50 years, it is to this day an unsolved puzzle and an active field in
the community. As, in this thesis, we will tackle problems by employing scale in-
variant and/ or conformal symmetric models, we inevitably come into contact with
the conformal anomaly when discussing our results. To avoid a discussion, that
is beyond the scope of this work, e.g. in Chapter 3, we will assume that conformal
symmetry is only broken by the anomaly and show how one can soften the hierarchy
problem in this framework, thus highlighting a possible use case for conformal sym-
metry and its anomalous breaking. Other examples of the utilization of conformal
invariance and its anomalous breaking can be found in the investigation of models
of cosmological inflation [1, 2, 86, 128–130] and reheating [131], the explanation of
the origin of masses and their generation [1, 110, 128, 130, 132], or addressing the
gauge hierarchy problem [76, 133–135]. Furthermore, studying the nature of gravity
[65, 69, 74, 83, 85, 136–138], dark matter [137, 139], and possible UV completions
for phenomenologically interesting theories [4]. In addition, the conformal anomaly
has been argued to be responsible for Hawking radiation [92], to be the reason for
the formation of cosmological perturbations [140], to be able to explain dark energy
[96], to induce non-Gaussianities in the cosmic microwave background (CMB) [141],
as well as playing a large role in the formation of compact stellar objects, that are
proposed as alternatives to black holes [142].

2.3 Radiative Breaking of Scale Invariance

As pointed out in the previous section Section 2.2, a sensible scale-invariant the-
ory needs to include a mechanism to generate scales dynamically, i.e. break scale
symmetry spontaneously. Hence, before getting into the actual calculations and ap-
plications of spontaneously broken scale symmetry later on in Chapters 3 and 4,

2 The same authors address the conservation of Weyl symmetry at the quantum level by adding a
non-local curved spacetime generalization of the dilatation current, thus restoring the conformal
Ward identity.
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we first introduce the concepts of spontaneous symmetry breaking (SSB) and espe-
cially the case where the symmetry breaking contributions are given by (one-loop)
quantum corrections, then known as the Coleman-Weinberg mechanism. A criti-
cal component is to understand the generation of non-trivial vacuum expectation
values (VEVs) of the quantum fields that break scale symmetry. Thus, we start by
introducing the quantum effective action, which is comparable to the classical action
but takes into account quantum effects of all loop levels. In parallel to the classical
action, the field equations of our quantum fields are obtained by functional deriva-
tives of said quantum effective action. Furthermore, the non-derivative terms of the
quantum effective action in the local approximation will give the (quantum) effec-
tive potential, whereas its minimization gives us information about the nature and
generation of the symmetry-breaking VEV. We will only briefly sketch the above-
mentioned derivation as it can be found in many more resources, ranging from re-
views, e.g. [143–145], to in-detail derivations from mathematical principles, often
found in QFT textbooks or lecture notes, see e.g. [146–152]. Roughly following [26,
144, 145], we will highlight the general derivation of the one-loop approximation
of the effective potential, i.e. the Coleman-Weinberg potential. As this will need
regularization and renormalization, we will furthermore give an expression for the
Coleman-Weinberg potential of general particle content in the minimal subtraction
scheme (MS) and analyze its implications for symmetry breaking in Section 2.3.2.
In Section 2.3.3 we will shortly review the Gildener-Weinberg approximation [153],
commonly used to systematically minimize the one-loop effective potential in theo-
ries with multiple scalar fields.

We begin with the generating functional Z[J] of the Green’s functions of a scalar
field ϕ(x) and its classical action S[ϕ(x)] in the presence of a classical source field
J(x)

Z [J] =
∫

Dϕ exp
(

iS[ϕ(x)] + i
∫

d4x ϕ(x) J(x)
)

, (2.18)

where Dϕ denotes the path integral over ϕ. It is crucial to remark here, that the re-
lation of Z [J] being the generating functional to the n-point correlation (or Green’s)
functions is only due to the properties of canonical quantization and regularization.
Hence, Eq. (2.18) is universal for all canonically quantized and regularized (quan-
tum) theories. Given that, Z [J] = ⟨0in|0out⟩ also represents the transition ampli-
tude between two vacuum states in the presence of the external field J, factoring
out the disconnected Green’s functions one is left with the following relation to the
generating functional of the connected Green’s functions (also known as Schwinger
functional) W[J]:

Z [J] = exp (iW[J]) . (2.19)

Now, further following the spirit of reducing towards only the physical information,
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the quantum effective action Γ[φ] is the generating functional for the one-particle
irreducible (1PI) diagrams. It is then related to Z[J] and W[J] via functional Legendre
transformation

Γ[φ] = W[Jφ]−
∫

d4x φ(x) Jφ(x) , (2.20)

such that the functional dependency on J is replaced by φ(x), the VEV of ϕ. Also
called mean or background field, the VEV of ϕ in the presence of the external source
J is a classical field given by

φJ(x) = ⟨ϕ(x)⟩J =
1

Z[J]
δZ[J]
δi J(x)

(2.19)
=

δW[J]
δi J(x)

. (2.21)

Assuming that the relation Eq. (2.21) is invertible, it reveals φJ(x) and J(x) to be
conjugate objects. Hence, we define J(x) = Jφ(x) to be the current that satisfies
φJ(x) = φ(x) and gain the quantum effective action Γ[φ(x)] in Eq. (2.20) via afore-
mentioned Legendre transformation. In analogy to the classical action, we derive
the equation of motion for φ(x) via functional differentiation with respect to the
field itself

δΓ[φ]
δφ(x)

= −Jφ(x) , (2.22)

thus further affirming the parallel to the classical theory, specifically, that the ex-
pectation value of the quantum field is obtained via the stationary principle of the
action functional. Here, under the condition of vanishing external sources (J = 0)
but accounting for all orders of quantum effects. Expanding the effective action Γ[φ]
around φ = 0 the quantum n-point vertex functions Γn (also known as proper ver-
tices) appear as coefficients of the aforementioned expansion. Thus, Γn(x1, . . . , xn)

is obtained via n functional derivatives with respect to φ(xi) for i = [1, n]. Further-
more, expressing Γ[φ] in terms of the Fourier transformation Γ̃n of the proper ver-
tices and expanding them around vanishing momenta, we can write the quantum
effective action of Eq. (2.20) in terms of a derivative expansion

Γ[φ] =
∞

∑
n=1

1
n!

∫
d4x Γ̃n(0, . . . , 0) φ(x)n +

1
2

∫
d4x Z(φ) ∂µ φ ∂µ φ + . . . . (2.23)

Here, Z[φ] is the mean-field normalization factor and the dots represent all higher
orders of derivative terms. We want to remark here, that to get to the expression
in Eq. (2.23) one has to assume the mean field φ(x) to be only slowly changing in
space-time. This is known as the so-called local approximation of the generally non-
local effective action Γ[φ]. In analogy to the classical action, the effective potential
Veff(φ) is identified as the non-derivative terms of the quantum effective potential in
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Eq. (2.23),

Veff(φ) = −
∞

∑
n=1

1
n!

Γ̃n(0, . . . , 0)φ(x)n . (2.24)

Additionally, if we require, as usually done, the vacuum expectation value to be
invariant under translations, i.e. constant in spacetime φ(x) = φc, we arrive at

Γ[φc] = −Veff(φc)
∫

d4x . (2.25)

At this point, we have Eq. (2.25) relating the effective Potential Veff(φc) of the con-
stant VEV φc to the quantum effective action Γ[φc] and Eq. (2.24) that lets us calcu-
late the effective potential through the Fourier transformed proper vertex functions
Γ̃n. This, in turn, can be calculated via functional derivatives of the quantum effec-
tive action Γ[φc] with respect to φ, on which we will expand further in this section
or through representation in Feynman diagrams and proper summation over the
corresponding contributions, which is nicely illustrated in e.g. [151]. Yet, in either
approach, we have to deal with the external field J or Jφ (after Legendre transfor-
mation) and thus we want to remark here, that in this derivation, J(x) is a purely
artificial construct with no physical meaning. Thus, by setting J = 0 we go from any
hypothetical vacuum configuration to the “true” or physical vacuum state. There-
fore, the stationary principle of the quantum effective action Eq. (2.22) in the absence
of external sources J = 0, i.e. for the theory’s physical vacuum state, leads to a sta-
tionary condition on the effective potential Veff

∂Veff(φ)

∂φ

∣∣∣∣
J=0

= 0 . (2.26)

Here, we want to shortly emphasize the significance of this relation, as this con-
sequently means that analysis of a quantum theory’s physical vacuum structure is
equivalent to minimizing the effective potential. Together, Eq. (2.26) and requiring
the potential to be bound from below, ensuring stability, give the necessary and suf-
ficient conditions for a minimum of the potential. From here one can carry out all
sorts of investigations on, e.g. vacuum decays via analysis of the local and global
minima. On the other hand, the problem of actually calculating the effective po-
tential still exists, since both aforementioned methods (functional derivatives and
Feynman diagrams) contain infinite sums over contributions that can be grouped by
loop-order n, i.e. O(h̄n). Therefore, it is feasible to look at the effective potential in
an expansion by order of loops.

2.3.1 The One-loop Effective Potential

Specifically, we will briefly introduce the general derivation of the one-loop contri-
butions to the effective potential as we will discuss their potential for spontaneous
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breaking of scale symmetry in the rest of this and Chapter 3. Given, the loop-
suppression factor that we know from calculations of Feynman diagrams, one might
expect that tree-level contributions dominate the mechanism of symmetry breaking.
Nevertheless, we will show fairly general examples where this is not the case, and
tree-level and one-loop contributions are of the same order of magnitude when it
comes to the equations determining the scale of symmetry breaking. Furthermore,
as going from tree-level to including one-loop contributions marks taking into ac-
count the “leading” order of quantum corrections, we will refrain from including
quantum effects of higher loop-order. Including higher-order contributions might
increase precision but we believe the fundamental aspects of the findings we will
present in Chapters 3 and 4 will not change, hence we stick to the one-loop approx-
imation of the effective potential. The zero-loop order contributions, also known
as tree-level are then given by the classical potential V(0), which is obtained in the
limit h̄ → 0. The one-loop contributions are then given by the so-called Coleman-
Weinberg potential V(1) = VCW, which represents the sum over all 1PI Feynman
Diagrams that contain one closed loop and n external legs connected to the mean
field ϕ0. In the following, we will introduce the most important steps and concepts
of the calculation on how to derive the general form of the Coleman-Weinberg po-
tential via functional methods from the quantum effective action Γ[φ], following the
detailed and instructive example of [145].

We start with the the usual QFT treatment [26, 145, 154, 155], i.e. we perturbativly
expand our quantum field ϕ around a classical, approximately constant, background
field ϕ0

ϕ → ϕ0 + Φ . (2.27)

Thus, Φ(x) denotes the small quantum fluctuations around ϕ0. The classical action,
expanded around this field configuration is then given to be

S [ϕ0 + Φ] = S [ϕ0] +
∫

d4x
δS[Φ]

δΦ(x)

∣∣∣∣
Φ=ϕ0

Φ(x)

+
∫

d4x
∫

d4x′
1
2

Φ(x)
δ2S[Φ]

δΦ(x)δΦ(x′)

∣∣∣∣
Φ=ϕ0

Φ(x′)

+ O(Φ3) + . . . , (2.28)

where the functional derivative in the first integrand can be identified as the field’s
classical EOM and the one in the second integrand precisely gives the definition of
the inverse propagator of the classical theory in the constant background ϕ0

δS[Φ]

δΦ(x)

∣∣∣∣
Φ=ϕ0

= −J(x),
δ2S[Φ]

δΦ(x)δΦ(x′)

∣∣∣∣
Φ=ϕ0

= iD−1(ϕ0; x, x′) . (2.29)

Seeing, that in Z[J], the action contributes exponentially inside the path integral Dϕ,
we find that the second term in above’s expansion Eq. (2.28) will give a Gaussian
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path integral of the form

∫
DΦ exp

(
−Φ iD−1 Φ

)
= N

[
Det

(
iD−1

)]−1/2
, (2.30)

where N denotes a spacetime normalization factor. For a detailed derivation of
Eq. (2.30), we refer the reader to their preferred QFT textbook, as most of them
address Gaussian path integrals, but in the unfortunate case that they do not, see
e.g. [146]. Furthermore, note that the EOM in Eq. (2.29) leads to the cancellation of
the
∫

d4x Φ(x) J(x) term in Eq. (2.18) after plugging in the perturbed classical action
S[ϕ0 + Φ]. This only leaves terms that depend on ϕ0 and the Gaussian path integral
Eq. (2.30) to describe Z[J]. Now using Eq. (2.19), which is easily inverted to give
W[J] = −i ln Z[J], we can finally calculate the quantum effective action via Eq. (2.20)
after Legendre transformation, again trading the functional dependence J(x) with
the slowly changing background field φ, according to Eq. (2.21). The effective action
Γ[φ] at one-loop is then given to be

Γ[φ] = S[φ] +
i
2

V ln Det
(

iD−1(φ)
)
+O(h̄2) , (2.31)

where V =
∫

d4x denotes the four-dimensional spacetime volume that is consis-
tent with the appearance of the normalization of the Gaussian path integral N in
Eq. (2.30). Further following the derivation above, we can use Eq. (2.25) to identify
the one-loop Coleman-Weinberg potential in Eq. (2.31) to be

V(1)(φ) = VCW(φ) = − i
2

ln Det
(

iD−1(φ)
)
= − i

2
Tr Ln

(
iD−1(φ)

)
, (2.32)

where the capitalized operators Det, Ln and Tr are meant to be acting on the inverse
propagator D−1 in the functional sense. Here, given the dependence on the inverse
propagator in calculating the Coleman-Weinberg potential, one can easily see that
it can be quite advantageous to work in a Feynman diagrammatic representation
of the theory. Yet, more generally, the dependence on the inverse propagator in
Eq. (2.32) is replaced with the functional Hessian of the action with respect to the
field content. Thus, once gravity is included as a dynamical DOF, working with the
functional Hessian to determine the one-loop contributions becomes favorable. It
is necessary to note here, that the full one-loop effective potential Veff, which will
determine symmetry breaking and will allow us to investigate the (one-loop) “true”
VEV of the theory, also contains the classical potential V(0), which contributes via
the classical action S[φ] in Eq. (2.31)

Veff(φ) = V(0)(φ) + V(1)(φ) . (2.33)
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To calculate V(1) we first remark, that in most cases the inverse propagator iD−1(φ, p, q)
(in momentum space) is some kind of diagonal Klein-Gordon operator

iD−1(φi, p, q) =
[
p2δab − m2

ab(φi)
]

δ4 (p − q) , (2.34)

here given for multiple scalar fields φi, with the field dependent mass (matrix) m2
ab

given by the tree-level potential V(0)

m2
ab(φi) =

∂2V(0)

∂φa∂φb
. (2.35)

Collecting the pieces from Eqs. (2.32), (2.34) and (2.35), evaluating the trace, per-
forming Wick rotation and dropping field independent terms3, one finds that the
one-loop effective potential contribution most often depends on integrals of the form

∫ d4 p
(2π)4 ln

[
p2 + m2(φi)

]
, (2.36)

this kind of integral is clearly UV divergent and therefore needs regularization and
renormalization. Using the well-known MS scheme, a generalized result for the one-
loop contribution to the effective potential can be calculated to be [144]

V(1)(φj) =
1

64π2 ∑
i

Ni m4
i (φj)

(
ln

[
m2

i (φj)

µ2

]
− ci

)
, (2.37)

where the index i runs over all particles, such that mi(φ) denotes their corresponding
field dependent masses, while ci and Ni are constants that depend on the particle’s
species, i.e. their spin. These species-dependent constants are due to the appearance
of the trace operator in Eq. (2.32), as it directly incorporates the particles’ internal
degrees of freedom. For real scalars, vector bosons, and Weyl and Dirac fermions Ni

and ci are respectively given by

Ni = {1, 3, −2, −4} , ci =

{
3
2

,
5
6

,
3
2

,
3
2

}
. (2.38)

While Ni denotes the particle’s real number of DOFs and therefore a physical quan-
tity, ci is “purely” technical and renormalization scheme dependent. Furthermore,
the renormalization scale µ is also an unphysical scale and hence, if the particle con-
tent of the theory is such that all ci = c are equal, they can easily be absorbed in the
definition of µ. We want to note here, that even though it is only a technical quantity,
treating ci and therefore also µ consistently is important to keep results, like e.g. the
scale of symmetry breaking, comparable.

Given the result for the one-loop Coleman-Weinberg potential in Eq. (2.37), one

3 They would only contribute as infinite constants and thus would be subtracted in the next (nec-
essary) step, i.e. renormalization. Therefore, without loss of generality, they can be neglected.
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can somewhat easily investigate toy models for certain properties of radiative sym-
metry breaking by defining the particle content and its symmetries in the classical
Lagrangian, calculating the radiative corrections and determining the (global) VEV
and its symmetries. Yet, we want to strongly remark here that, when working with
scale invariance or conformal symmetry one always has to be careful with the choice
of regulator for the theory’s divergences. Using Eq. (2.37) requires dimensional reg-
ularization and renormalization via the minimal subtraction scheme. However, the
regulator itself already breaks scale invariance (dilatations) explicitly by introduc-
ing a scale, even though it is only an unphysical one. This refers back to Section 2.2,
conformal symmetry being anomalous, i.e. being broken by quantum corrections al-
ready. Thus, working with Eq. (2.37) one ultimately recovers the naive power count-
ing behavior when generating multiple scales together, or in other words; in this
framework using MS one does not (easily) find the spontaneously broken, but still
non-linearly realized scale symmetry. Unfortunately, this means that if one wants to
see whether the non-linearized scale symmetry allows for hierarchically separated
scales, one always has to wrestle with the anomaly of scale and conformal symme-
try and especially Eq. (2.37) and MS formalism, even though very accessible, appear
to be a sub-optimal framework for investigation. There have been several attempts
to reconcile this conundrum, yet all of them come with their own concerns, none
addressing the problem in a fully satisfying manner. Hence, for this discussion,
we refer the interested reader again to Section 2.2 and the therein given literature.
Nonetheless, since the main point of the results in Sections 2.3.2 and 2.3.3 and Chap-
ter 3 is separate from this discussion, for the reason of simplicity we use Eq. (2.37) in
the MS-scheme.

2.3.2 Coleman-Weinberg Mechanism

Having introduced scale and conformal symmetry, and the derivation of the one-
loop effective potential to include leading quantum effects, there is still one critical
piece missing before we can dive into the specific calculations, namely how (scale)
symmetry is broken. As our starting (tree-level) Lagrangian and EOMs are scale-
invariant by definition, explicit breaking is not possible, and hence we assume it is
broken spontaneously instead. More precisely, the phenomena of spontaneous sym-
metry breaking (SSB) describes the dynamical process by which a system invariant
under certain symmetries ends up in a state that is not invariant under (all) these
symmetries. Typically, this state denotes the lowest-energy vacuum solution, the
(global) VEV, which then does not respect the symmetries that are present in the
EOMs, thus symmetry is broken for perturbations around that VEV even though
the symmetry is still upheld by the EOMs and Lagrangian. Since symmetries are
one of the most important concepts of physics, their spontaneous breakdown holds
incredibly great significance, as it for example, determines the dynamics of phase
transitions, the excitations of states, and the appearance of new particles. Thus, it
is not surprising that SSB finds application in a variety of different fields of physics.
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Early descriptions of SSB can be found in 1950s theoretical condensed matter physics
to explain the phenomenon of superconductivity [156–158]. These ideas were taken
up quickly by particle physicists and in the early 1960s, especially Nambu [159] and
Goldstone [154, 160] developed a generalized description of SSB and with it the ac-
cording masslessness of bosons, the so-called Nambu–Goldstone bosons (NGBs). This
led to the exploration of SSB in QFTs via the Goldstone theorem and the subsequent
discovery, that it is essential to the generation of the gauge bosons’ mass in the Stan-
dard Model through the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism [161–
165], often shortened to just Higgs mechanism. The Higgs mechanism utilizes a so-
called “Mexican hat” potential at tree level

V(0)(h) =
1
4

λHh4 − 1
2

m2h2 , (2.39)

with m2 > 0, λ > 0 and h denoting the neutral component of the Standard Model
Higgs doublet H, to generate non-zero VEV for h, thus breaking electroweak sym-
metry spontaneously and generating all scales of the SM through couplings to this
VEV ⟨h⟩ = vEW ̸= 0. We immediately see, that symmetry breaking of this form is
not applicable in scale-invariant theories as Eq. (2.39) vitally depends on the exis-
tence of an m2 > 0 term for the generation of a non-zero VEV at tree level, while
scale-invariance demands m2 = 0. This is where the Coleman-Weinberg mecha-
nism comes in, describing a theory that is symmetric at tree level but exhibits SSB if
quantum contributions are included. Given the widespread application of symme-
try breaking and scale-invariance, or conformal symmetry, as principles in physics,
there are countless ways in which they are formally introduced. For the Coleman-
Weinberg mechanism, we want to follow the original publication [26] and will give a
short review via the example of massless scalar QED, as it is easy to comprehend but
still raises the important aspects of RSSB for the subsequent chapter. For literature
on more extensive treatments we recommend [166–168].

As usual, we start with the classical action of massless scalar QED

SsQED =
∫

d4x LsQED =
∫

d4x
(
−1

4
FµνFµν +

(
DµΦ

)†
(DµΦ)− V(0)(Φ)

)
, (2.40)

with the complex scalar Φ = 1√
2
(ϕ1 + iϕ2) and its tree-level potential V(0) = λ

(
Φ†Φ

)2.
Here, λ denotes the dimensionless quartic self-coupling, Dµ = ∂µ − igAµ the covari-
ant derivative that couples the complex scalar Φ to the U(1) gauge field Aµ with
field-strength tensor Fµν = ∂µ Aν − ∂ν Aµ and gauge coupling g. Due to the de-
manded masslessness, Eq. (2.40) exhibits scale symmetry in addition to the evident
invariance under U(1) transformations. For our purpose, we will assume the U(1)
symmetry to be global, as it is directly relevant to Chapter 3. We want to remark
though, that RSSB via the Coleman-Weinberg mechanism allows for a very general
description and thus is applicable for global as well as for local symmetries4 and

4 For an in-depth discussion of the different implications, see e.g. [147].
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even respects gauge invariance in renormalizable theories [169, 170]. The latter is
especially important when expanding around the non-trivial minima and investi-
gating the Goldstone modes in specific gauge configurations, which is particularly
helpful in discussions of unitarity and propagating (physical) DOFs. Turning back
to massless scalar QED, we can calculate the one-loop effective potential using the
methods introduced in Section 2.3.1, specifically, Eq. (2.37) is directly applicable and
gives

V(1)(φ; µ) =
φ4

64π2

(
9λ2 ln

[
3λφ2

µ2

]
+ λ2 ln

[
λφ2

µ2

]
− 15λ2 (2.41)

+ 3g4 ln
[

g2φ2

µ2

]
− 5

2
g4
)

,

with φ2 = φ2
1 + φ2

2 being the gauge invariant combination of the real scalars’ ϕ1, ϕ2

background fields. Furthermore, separately displaying the dependence on the renor-
malization scale µ serves as a reminder, that in addition to the explicit dependency
in Eq. (2.41), there is also an implicit dependence via the dimensionless couplings
λ = λ(µ), g = g(µ) renormalization group (RG) running. Now, to ascertain
whether any symmetry is radiatively spontaneously broken, we have to evaluate
the stationary condition Eq. (2.26) for Veff(φ; µ) = V(0)(φ; µ) + V(1)(φ; µ). Given,
that physical observables need to be independent of µ, we make the self-consistent
choice of µ = ⟨φ⟩ = v ̸= 0. This leads to the criticality equation

λ = − 1
16π2

(
9λ2 ln [3λ] + λ2 ln [λ]− 10λ2 + 3g4 ln

[
g2]− g4

)
, (2.42)

where we reorganized the term such that the left-hand side represents the tree-level
and the right-hand side the one-loop quantum contributions. The first thing we
want to point out here is, that for g(µ = v) = 0 RSSB is impossible, since the
tree-level contributions of O(λ) would have to be of the same magnitude as (loop-
suppressed) quantum corrections of O(λ2) or O(λ2 ln λ). In this case, the validity
of our perturbative expansion would break down, such that we need a different for-
malism to investigate whether symmetry breaking occurs. One possibility is to use
the renormalization group equations (RGEs) to improve the effective potential. This
is already featured in the original publication of Coleman and Weinberg [26], where
they find that a single scalar without additional contributions (e.g. gauge) cannot
induce RSSB. Secondly, we want to remark that by choosing µ = v, the generally
running couplings in Eq. (2.42) are understood to be evaluated at the scale of the
VEV, i.e. λ = λ(µ = v) ≡ λcr, g = g(µ = v) ≡ gcr. Now, assuming that 0 < λ ≪ 1
to ensure unitarity and perturbativity, we can omit the O(λ2) terms in Eq. (2.42), as
they are subleading. This leaves us with

λ = − 3g4

16π2

(
ln
[
g2]− 1

3

)
, (2.43)
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which nicely showcases that quantum corrections are of the same order of magni-
tude as the tree-level contribution O(λ) ∼ O(g4) and thus can deform the potential
sufficiently to allow for a non-trivial (non-zero) vacuum configuration leading to
RSSB, all without leaving regime of perturbativity of our expansion. This is visual-
ized for exemplary values in Fig. 2.2. Given our choice for µ = v above, the relation
Eq. (2.43) is not valid for all µ but it rather means that for a given choice of couplings
λ0 = λ(Λren), g0 = g(Λren) at the scale Λren, where the theory is demanded to be
renormalizable, there exists a µ < Λren such that Eq. (2.43) is fulfilled. For mass-
less scalar QED, this existence has been proven for (small) perturbative couplings
λ, g in, e.g. [26, 171]. The RG evolution of a running couplings λi is given by their
β-function

βλi = βλi (λi(µ)) = µ
∂λi(µ)

∂µ
=

∂λi(µ)

∂ ln[µ]
. (2.44)

With this evolution Eq. (2.44) and the relation between λ and g at the scale µ = v
Eq. (2.43), we can now reparameterize the effective potential Eq. (2.41) to depend on
g and v instead of λ and g. This phenomenon is called dimensional transmutation
and it is essentially the fact, that the dimensionless couplings’ numerical values de-
pend on the arbitrary and dimensionful renormalization scale (or running scale) µ.
Knowing now, that a non-zero VEV is indeed generated, we can calculate the masses
of the scalar and the gauge boson

m2
φ =

∂2Veff

∂φ2

∣∣∣∣
φ=v

=
3 g4

cr v2

8π2 , m2
A = g2

cr v2 . (2.45)

In summary, we found that under the assumption of perturbative dimensionless
couplings and at leading order in quantum corrections, the one-loop gauge contri-
butions lead to successful RSSB for a massless complex scalar. Since higher-order
corrections come with greater powers of λ and g (comparable via the scaling in

FIGURE 2.2: Example of a scalar QED tree-level and its one-loop effec-
tive potential at µ = ⟨ϕ⟩ ̸= 0 and couplings λ, g that satisfy Eq. (2.43).
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Eq. (2.43)), they are not expected to fundamentally change the vacuum structure
of the theory.

For more general cases with, multiple scalars, multiple gauge groups, etc., it can
quickly become much more complex and there are several ways of tackling this com-
plexity, as insights gained from multiscalar toy models are often directly applicable
to the dynamical generation of the electroweak scale in scalar extensions of the SM.
In the following, we will present a widely used approximation (see e.g. Chapter 3)
to massively reduce the complexity of RSSB in models with multiple scalars, the
Gildener-Weinberg (GW) approach.

2.3.3 Gildener-Weinberg Approximation

Only a few years after Coleman and E. Weinberg [26] demonstrated that one-loop
quantum contributions can cause the spontaneous breakdown of gauge symmetry
and induce a non-trivial VEV, Gildener and S. Weinberg [153] developed a sys-
tematic approach to minimize the effective one-loop potential for classically scale-
invariant theories with multiple scalars. This approach relies on the essential as-
sumption, that there exists a flat direction in the tree-level potential, such that quan-
tum corrections, which are generally smaller than the tree-level contributions, can
induce a non-trivial vacuum along that flat direction. Effectively allowing for the
reduction of the minimization problem’s dimension from N, the number of scalar
fields, to one. Since the existence of a tree-level flat direction is the main requirement
for RSSB, the condition for criticality depends only implicitly on (one-loop) gauge
contributions through RG-running of dimensionless couplings. In contrast, in the
full description via Coleman-Weinberg, they are explicitly present in the equations
determining criticality, c.f. Eq. (2.42). Thus, if there are non-scalar DOFs present,
one needs to carefully check whether the assumptions that go into the Gildener-
Weinberg approximation hold for the full effective potential. Given, that in Chap-
ter 3 we employ the most minimal setup to allow for RSSB in the GW-approximation,
i.e. two scalars without additional gauge fields or fermions (that take part in the
symmetry-breaking), in this work we want to dodge the interesting discussion of
symmetry breaking in the full effective potential and instead refer to [172–175] for
a more comprehensive treatment. Instead, in the following we will shortly revisit
the most important aspects of the GW approach and then apply these to the later
utilized two scalar model.

Under the assumption of classical scale invariance, the tree-level potential for N
scalars only contains their quartic interactions and can be described by the general
form of

V(0)(Φ) = CNorm λijkl Φi Φj Φk Φl , (2.46)

where Φ⊺ = (Φ1, . . . ΦN) contains the theory’s real scalar DOFs, CNorm denotes a
normalization constant and λijkl is the general quartic scalar coupling. For reasons of
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unitarity and boundness of the potential, λijkl can only have non-negative individual
entries. To ensure, that the tree-level contributions dominate the one-loop effective
potential it is assumed that all non-zero entries of λijkl are of O(g2), with g ≪ 1
denoting a usual gauge coupling of the theory. As a consequence, it is assumed that
at high scales, the theory exhibits only the trivial global minimum, i.e. located at Φ =

0. Furthermore, after RG-running to some scale ΛGW the dimensionless couplings
λijkl(ΛGW) fulfill the GW condition, i.e. the tree-level vanishes along

Φflat = n ϕ, V(0)(Φflat) = 0 , (2.47)

such that the potential develops a flat direction along the unit vector n, with the
radial component ϕ. This leads to an infinite set of degenerate minima along this
flat direction. Because of the (nearly) vanishing tree-level contribution along this flat
direction, the curvature introduced by quantum corrections is now able to induce a
non-degenerate global minimum ⟨ϕ⟩ = vϕ ̸= 0. To find this global minimum, one
only has to investigate the one-loop effective potential along the flat direction at the
GW scale, which can generally be written as

Veff(Φflat) = A ϕ4 + B ϕ4 ln
[

ϕ2

Λ2
GW

]
, (2.48)

where the dimensionless A and B are obtained by identification after calculating the
full Veff via Eq. (2.32), projection along Φflat and using scale-invariance to find the
scaling of the field-dependent masses to be m2

i (Φflat) = m̂2
i (n) ϕ2, we thus arrive at

A =
1

64π2 ∑
i

Ni m̂4
i (n)

(
ln
[
m̂2

i (n)
]
− ci

)
, (2.49)

B =
1

64π2 ∑
i

Ni m̂4
i (n) . (2.50)

Deploying the stationary principle Eq. (2.26), we can calculate the value of the (pos-
sible) non-trivial minimum along the flat direction depending on the GW scale as

⟨ϕ⟩ = vϕ = ΛGW exp
(
−1

4
− A

B

)
. (2.51)

Calculating the second derivative of the effective potential along the flat direction at
the above-given value vϕ in Eq. (2.51)

∂2Veff(n ϕ)

∂ϕ2

∣∣∣∣
ϕ=vϕ

= 8 B v2
ϕ =: m2

ϕ , (2.52)

verifying that Eq. (2.51) indeed describes a minimum, when assuming B > 0. This
assumption also has to be verified for a theory’s specific particle content but given
the quadratic dependence on the field dependence masses in Eq. (2.50) this assump-
tion is rather generally justified. In summary, the existence of the GW scale ΛGW at
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which the tree-level potential vanishes, allows for RSSB along a flat direction and
thus induces one massive scalar (radial) DOF ϕ, the pseudo-Goldstone boson of bro-
ken scale invariance, which Gildener and S. Weinberg called the scalon [153]. As this
approach fundamentally depends on the existence of this flat direction, we want to
remark, that the one-dimensional description of Veff(Φflat) (c.f. Eq. (2.48)) most im-
portantly still is an approximation and that quantum contributions, most notably
from non-scalar DOFs, may considerably deform the effective potential and there-
fore change the orientation of the flat direction or even remove it completely.

Now, for a model only containing scalars, the GW approach is certainly advanta-
geous to investigate possible RSSB based on simple tree-level conditions. For a min-
imal example, we consider two massless real scalar fields, with their scale-invariant
tree-level potential

V(0)(ϕ1, ϕ2) =
1
4

(
λ1 ϕ4

1 + λ2 ϕ4
2 + λp ϕ2

1 ϕ2
2

)
, (2.53)

where we, for simplicity, assumed a Z2 symmetry between ϕ1 and ϕ2, excluding
terms proportional to e.g. ϕ1 ϕ3

2. To find the GW condition on the couplings, which
determines the existence and orientation of a flat direction at tree level we use the
stationary equations with respect to ϕ1, ϕ2. Combining both equations, we find that
the choice of λp ≶ 0 allows for two distinct sets of solutions:

1. λp > 0: Since we require λ1, λ2 > 0 for the potential to be bound from below,
with λp > 0, there is no opportunity for cancellations at tree level to achieve a
flat direction, i.e. stationary and vanishing tree-level potential. Therefore, the
only possible solution is for only one of the two fields to develop a non-zero
VEV while this field’s quartic coupling vanishes at ΛGW

5

⟨ϕ1⟩ = v1 ̸= 0, ⟨ϕ2⟩ = v2 = 0 , (2.54)

λ1(ΛGW) = 0 . (2.55)

2. λp < 0: We still require λ1, λ2 > 0, but given that λp < 0, there can be
cancellations at tree-level, such that both the stationary equations as well as the
tree-level potential vanish at the GW scale ΛGW for both scalar fields acquiring
non-zero VEVs ⟨ϕ1⟩ = v1 ̸= 0, ⟨ϕ2⟩ = v2 ̸= 0. The stationary equations then
lead to the following GW conditions on the couplings and VEVs(

v2

v1

)2

= −2λ1

λp
,

(
v1

v2

)2

= −2λ2

λp
, (2.56)

λ2
p = 4 λ1 λ2 , (2.57)

5 Given the Z2 exchange symmetry between ϕ1 and ϕ2, the GW conditions simply also transform
under 1 ↔ 2. Therefore, which field acquires a non-zero VEV is a model or parameter choice.
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with all the couplings being evaluated at the GW scale λi = λi(ΛGW) and
Eq. (2.57) arises from the combination of the relations in Eq. (2.56). After trans-
forming into polar coordinates ϕ1 = ϕr cos(θ), ϕ2 = ϕr sin(θ), the orientation
of the flat direction in two-dimensional field space θ0 is given by Eq. (2.56) to
be

tan θ0 =

√
−2λ1

λp
. (2.58)

This nicely displays that the orientation of the tree-level flat direction is solely
determined by the dimensionless scalar couplings at ΛGW, at the same time
fixing the ratio between the VEVs, yet the dimensionful value of the radial
VEV ⟨ϕr⟩ = vr is selected by the one-loop quantum corrections. Including
them allows for the calculation of vr, fully fixing the parameters of the theory
depending only on the values of the dimensionless couplings at some scale of
renormalization Λren via the RG-running and GW conditions on the couplings.

2.4 The (Gauge) Hierarchy Problem

The Standard Model of particle physics is a theory with tremendous success in de-
scribing the fundamental interactions of elementary particles. With the discovery
of the Higgs boson at the LHC in 2012 [9, 10], all the SM predicted particles have
been experimentally confirmed and crucially, the Higgs mechanism has been veri-
fied to be responsible for the generation of all masses in the SM through coupling
to its one fundamental scale, the electroweak VEV vEW. Despite its success in ex-
plaining a huge amount of experimentally observed phenomena, there are various
puzzles that the SM cannot explain, e.g. the existence of dark matter and neutrino
masses. Another type of problem, that is of great significance, is the SM’s unification
with the theory of gravity, to ultimately describe phenomena at high energy scales
where gravity dominates. To address some or even all of these problems, one often
has to introduce another physical scale ΛNP ≫ vEW to incorporate new physics (NP)
and extend the SM. This then introduces the SM Higgs’ infamous gauge hierarchy
problem, where the bare Higgs mass m2 (c.f. Eq. (2.39)) experiences (one-loop) quan-
tum corrections δm2 that quadratically depend on some dimensionless coupling λi

and the scale of new physics δm2 ∝ λ2
i Λ2

NP, hence shifting the effective Higgs mass
significantly away from the experimentally observed value.

Here we want to remark, that the hierarchy problem is oftentimes falsely inter-
preted when one does not include a physical high-energy scale but a large scale of
renormalization or regularization. For example, regularizing a divergent integral
via a high cutoff scale ΛUV , at first glance also leads to large corrections to the Higgs
mass. But since the cutoff scale ΛUV is not physical, the large corrections are only
a technical artifact from our method of calculation. This inevitably becomes clear,
when employing renormalization group methods, as there are no large corrections
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to the Higgs mass once the proper RG improved mass is used [176]. Hence, the SM
by itself does not have a hierarchy problem.

To demonstrate the nature of the hierarchy problem, when extending the SM,
we want to utilize an effective field theory (EFT) approach. Imagine, for example,
embedding the SM into a theory of quantum gravity, therefore containing the large
energy scale MPl ≈ 1019 GeV, we use a toy model with a light scalar φ with mass m
to resemble the Higgs boson and heavy scalar Φ with mass M corresponding, in this
case, to a gravity DOF with the Planck mass as the UV scale. The Lagrangian of the
full (toy-model) theory is then given by

L =
1
2

∂µ φ ∂µ φ − 1
2

m2φ2 − 1
4!

λφ4 +
1
2

∂µΦ ∂µΦ − 1
2

M2Φ2 − 1
4

λp φ2Φ2 , (2.59)

where other quartic terms have been omitted since the above ones are sufficient to
demonstrate the nature of the hierarchy problem in the most basic way. Now, run-
ning this full theory down to lower energies µ ≪ MPl, we see that the large mass M
will dominate the dynamics of Φ such that we assume it to be constant, leaving us
with a low-energy theory with only the light scalar φ as propagating DOF

LEFT =
1
2

∂µ φ ∂µ φ − 1
2

m2
EFT φ2 − 1

4!
λEFT φ4 . (2.60)

This EFT procedure is referred to as integrating out the heavy DOF. To properly
incorporate the decoupling behavior of the scalars, one has to match the full theory
with the EFT at the scale of integrating out µ̄, often chosen to be at or close to the
scale of the large mass µ̄ ≃ M. The matching condition for the low-energy effective
mass parameter mEFT at µ̄ is given by [176]

m2
EFT = m2 − λp

32π2 M2
(

ln
[

µ̄2

M2

]
+ 1
)

, (2.61)

where all the masses and couplings are understood to be evaluated at the scale µ̄.
Here we can nicely revisit that the SM without an additional large physical mass
M has no hierarchy problem, as for λp = 0, the large corrections to the (would be)
Higgs mass simply vanish. Nevertheless, assuming λp ̸= 0, the matching condi-
tion Eq. (2.61) shows the hierarchy problem to be a problem of fine-tuning, such that
the bare Higgs mass m at µ̄ has to be adjusted greatly to match the large scale M
order by order in perturbation theory to allow for extensive cancellations and thus
m2

EFT ≪ M2. This adjustment or fine-tuning is considered unnatural in the sense of
’t Hooft naturalness [11], where a small parameter is thought to be technically natu-
ral if the theory exhibits additional symmetry in the limit said parameter is taken to
zero. This is a distinguishing factor for scalar masses from fermion or gauge boson
masses, the latter two are protected by chiral or gauge symmetry in their respec-
tive massless limits, leading to EFT matching corrections that show no problematic
sensitivity to the large mass M. Thus, the fact that all SM particles acquire mass
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through coupling to the Higgs boson, a fundamental scalar, induces the hierarchy
problem when (necessarily) embedded into a UV theory that contains large physical
energy scales. These implications were first recognized in 1979 [177] and are still the
foundation for attempts to reconcile the SM Higgs boson’s hierarchy problem. To
get around this fundamental problem, some attempts to solve the hierarchy prob-
lem utilize cosmological solutions to dynamically explain the Higgs fine-tuning (see
e.g. [178–182]), while others introduce new symmetries or extra dimensions to pro-
tect the Higgs mass from large corrections (see e.g. [15–17, 29, 183],[13, 14])6. One of
the approaches utilizing symmetry protection for the smallness of the Higgs mass is
via scale invariance and its anomalous breaking. Under the assumption, that scale
invariance is only broken by quantum corrections, i.e. anomaly, and that no interme-
diate scales are present, the scale generation will be dominated by the RG-running
behavior of the dimensionless couplings (their β-funtions), therefore relating the IR
to the UV scale only logarithmically [31]. Yet, these two assumptions are not nec-
essarily generally valid, as discussed in Section 2.2, see Eq. (2.13)), curvature can
induce a different contribution to the anomaly of scale invariance. Furthermore, the
dimensionless couplings can have divergences in the assumed range of validity of
the theory, depending on the theory’s particle content. But, ensuring that these as-
sumptions hold, in scale-invariant extensions to the SM, one can generate mass that
is much smaller than for example the Planck mass and stable under radiative cor-
rections (see e.g. [27, 32–34, 38]). Regardless of this success, the hierarchy problem is
not solved, since generating multiple scales that are exponentially separated again
introduces a fine-tuning problem in the dimensionless portal couplings of these new
scales. To our best knowledge, this problem has not yet been addressed in a fully
satisfying manner, yet, among others, scale invariance and therefore also conformal
symmetry seem to be an interesting perspective for the continuous investigation of
the gauge hierarchy problem.

Thus, in Chapter 3 we will display a classical scale-invariant implementation of
the neutrino option to significantly reduce the amount of fine-tuning necessary for
the Higgs mass to be small while also generating the Planck mass via SSB, whereas
in Chapter 4, we demonstrate that the Higgs boson’s mass, as a composite state
of strongly coupled conformal UV dynamics, is protected against large (quadratic)
corrections.

6 Recently, the breakdown of the effective quantum field theory has been proposed to induce UV
with IR mixing, which in turn is used to address the hierarchy problem [184].
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Chapter 3

Unifying Emergence of Scales

Looking to embed the Standard Model into gravity, we present an exemplary model
for the dynamical generating of both the Planck mass MPl and the electroweak VEV
vEW via spontaneous breaking of classical scale invariance by additional scalars. Thus,
both the SM and gravity have a unified origin for their single respective fundamen-
tal mass scale. Given that, MPl/vEW ∼ 10−16, the generation of scales separated this
hierarchically needs further explanation in the light of the gauge hierarchy problem,
as introduced in Section 2.4. Utilizing scale invariance and spontaneous breaking
thereof is not a new concept in either generating the Planck mass (see e.g. [45, 65–86,
110, 128, 129, 132, 135, 136, 185–187]) or the electroweak VEV (see e.g. [25, 27–29,
32, 33, 35–39, 188–194]). This is well motivated by current experimental observa-
tions in particle physics and astrophysics hinting toward (classically) scale-invariant
extensions to both the SM as well as Einstein’s theory of gravity1.

Regarding the SM, we consider the absence of Landau poles up to the Planck
scale and the resulting perturbativity of the SM Higgs mass parameter mh as hints
for scale invariance being a natural extension to the SM. The fact that mh only runs
logarithmically hints towards a purely anomalous breaking of scale invariance [20,
21], excluding the soft breaking of mh itself. Finally, the approximate flatness of the
Higgs potential at high energies around MPl can be interpreted as another indica-
tion for scale invariance at large scales. This flatness of the scalar potential at high
energies ties perfectly into observables of gravity. The measurements by the Planck
satellite of the cosmic microwave background (CMB) [22, 23] reveal not only that a
slowly rolling scalar field can drive cosmic inflation [196–198], but also that a (super)
flat inflationary scalar potential is favorable for complying with the observation that
the value for the spectral index ns of the gravitational fluctuations is close to one,
indicating a scale-invariant spectrum and that the tensor to scalar ratio r of the grav-
itational fluctuations’ power-spectrum is nearly equal to zero. The link to the flatness
of the potential is easily seen after a local Weyl rescaling from the Jordan frame to
the Einstein frame where the tensor-to-scalar ratio r is proportional to the gradient
of the potential [199, 200]. This observation makes R2 inflation [200–204] and Higgs

1 Here, we refer to Einstein-Hilbert action of gravity, which generates the pure Einstein equations
via the stationary principle, see e.g. [195].
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inflation [199] models promising candidates. One finds, that in both models the flat-
ness of the scalar potential occurs due to a suppression of the not scale invariant
Einstein-Hilbert term ∝ R with respect to the scale-invariant terms of R2 inflation
∝ γR2, with γ ∼ O(109) and Higgs inflation ∝ β|H|2R, with β ∼ O(104). As a
result, the Planck CMB measurement strengthens the case for scale-invariant exten-
sions of Einstein gravity not only due to the observation of nearly scale invariance
of the scalar perturbation’s power spectrum, i.e. ns ∼ 1, but also due to the (strong)
constraints on r to be small.

In addition, on behalf of scale-invariant extensions, one can argue that the higher
derivative terms in the action of local scale symmetric gravity can lead to renormal-
izability [42, 85, 87, 187]. However, the presence of these higher derivative terms,
and therefore also inevitably the Weyl tensor squared term, is well-known to cause
violation of unitarity. This problem is directly related to the existence of a spin-2
ghost, therefore often called the ghost problem. An in-depth discussion is beyond
the scope of this thesis, yet incredibly important for conformal realizations of grav-
ity. Thus, for now, we refer to e.g. [51, 59, 205, 206] for discussion of the subject and
potential ways of addressing it. While these solutions can be compatible with our
approach, other potential solutions to the ghost problem depend on the existence of
higher curvature terms [207–209], which explicitly break global scale invariance. For
Sections 3.1 and 3.2 we assume such terms to be absent and instead follow the guid-
ing principle of global scale invariance and its spontaneous breaking to generate the
necessary scales. In Section 3.5 we will focus more on the role of graviton DOFs in
spontaneous symmetry breaking and therefore briefly revisit the topic of the ghost
problem.

To generate the scale that will be the origin for both MPl and vEW we employ
radiative spontaneous breaking of global scale symmetry via two additional scalars
S and σ in the Gildener-Weinberg approximation. For the minimality of extending
the SM, we chose two real scalars, since external fermionic DOFs were found to be
destabilizing to the non-trivial vacuum structure [27]. As a result of the Gildener-
Weinberg-like symmetry breaking (see Section 2.3.3), only the SM singlet S acquires
a non-zero VEV ⟨S⟩ ∼ O(1016−17)GeV, that directly generates the Planck mass of
the right size via non-minimal coupling to curvature LGR ⊃ βSS2R and thus MPl ≃√

βS ⟨S⟩ (see Section 3.1). Demanding that our quantum effective scalar potential
Ṽeff(S) takes the role of an appropriate slow-roll inflation potential, gives constraints
on βS ∼ O(102−3) and therefore leads to the large value of ⟨S⟩. To simultaneously
have ⟨S⟩ as the origin for vEW ∼ 102 GeV we employ the scale invariant extension of
the neutrino option [210] to weaken this hierarchy.

The neutrino option [211] demonstrates a connection between vEW and heavy
right-handed neutrinos NR with mass mN via large but finite corrections that may
generate v2

EW ≃ ∆v2
EW ∝ y2

νm2
N/4π2 [212–215]. Here, yν denotes the Dirac Yukawa
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coupling as seen in Section 3.2. We find the “right” combination of the parame-
ters to be mN ∼ 107 GeV and yν ∼ 10−4 by demanding the right-handed neutri-
nos also generate proper light active neutrino masses via the usual type-I seesaw
mechanism [216–219]. To incorporate these massive right-handed neutrinos in a
scale-invariant way, we generate their mass via the Majorana-Yukawa interaction
LNχ ⊃ yM S NT

R C NR, with C denoting the charge conjugation matrix. Thus, the mass
of the right-handed neutrinos is given by mN = yM ⟨S⟩ and therefore lastly show
that both the Planck scale MPl and vEW originate from one scale, the scalar VEV of S.
Given the size of ⟨S⟩ mentioned above, the Majorana-Yukawa coupling yM has to be
yM ∼ O(10−(9−10)), which is a technically natural value, because the limit yM → 0 re-
stores an anomaly-free global U(1)B-L symmetry (more details in Section 3.2). These
are not the only problems of suppressed couplings; we do not know of a symme-
try that could forbid the scalar portal interaction between the SM Higgs doublet H
and the additional scalar S, i.e. LSM ⊃ λp S2 |H|2. In contrast to the above-discussed
interactions, the scalar portal interaction would cause too large corrections to v2

EW

for the above-given size of ⟨S⟩ ∼ O(1016−17)GeV. Even though a smallness of λp

is not natural in the technical sense, we can at least set it up to remain small under
quantum corrections. In the absence of yM this is possible due to the multiplicative
RG-running of λp, which causes the portal-induced radiative corrections to also be
proportional to λp

2.
As for now, we have touched on how in Sections 3.1 and 3.2 we address some

problems of the SM, i.e. hierarchy in the presence of MPl and small active neutrino
masses. Turning towards gravity, we aim to realize an appropriate period of infla-
tion in the early universe, so-called cosmological inflation, thus addressing the flatness,
horizon, and magnetic monopole problem of the Hot Big Bang cosmology. In Sec-
tion 3.3 we will further expand on the paradigm of inflation itself and show that we
achieve slow-roll (or “new”) inflation that is in good agreement with the strongest
constraints from CMB measurements [23]. Weyl-transforming our effective scalar
potential after symmetry breaking and the identification of MPl from Jordan to Ein-
stein frame (gE

µν = Ω2 gJ
µν) reveals a second dynamical DOF next to the scalar S,

the scalaron ϕ ∝ MPl ln
∣∣Ω2

∣∣. We find that the potential exhibits a (sufficiently) flat
direction and thus can be approximated by an effective one-field model, instead of
a more complicated multifield description of inflation. Choosing S to be the field
driving inflation, as the so-called inflaton, adds a third role to its “responsibilities”.
The first two are the spontaneous breaking of global scale invariance by developing
a non-zero VEV and simultaneously generating MPl and vEW by coupling to gravity
LGR and the neutrino sector LN,χ respectively. This accumulation of roles in S serves
as a nice showcase of the unified emergence of energy scales and cosmological in-
flation. Furthermore, we extensively discuss the validity of this approximation and

2 There can be a case made for λp ≪ 1 being technically natural, in the aforementioned sense, by
an enhanced Poincaré symmetry in the limit λp → 0 [220].
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comment on some of the reheating properties that occur after inflation without as-
suming a specific reheating mechanism, following the reasoning in [12, 221]. Also,
in Section 3.4 we introduce a viable candidate for dark matter, the Z2-odd fermion χ,
to account for the observed relic abundance of dark matter [22] via the well-known
freeze-in mechanism [222]. This discrete Z2 symmetry is imposed at the level of the
total Lagrangian LT and serves two purposes, if unbroken, the stabilization of Z2-
odd fields (here only χ and σ) and the simplification of the scalar potential in LCW.

Thus, for Sections 3.1 to 3.4 our total Lagrangian LT represents the most gen-
eral function that incorporates the SM and respects its gauge symmetries, exhibits
general diffeomorphism invariance3, a discrete Z2 symmetry and classical global
conformal symmetry. It can be separated by function into four parts:

LT = LCW + LGR + LcSM + LN,χ , (3.1)

where LCW is responsible for the radiative spontaneous breaking of global confor-
mal symmetry, thus generating the origin of all scales in this model, LGR is used
to identify the dynamically generated MPl that gives rise to an effective Einstein-
Hilbert term and together with LCW contains the DOFs that describe inflation. LSM

contains the scale-invariant SM and the scalar couplings to the “external” scalars
S, σ. Lastly, LNχ is responsible for the generation of light active neutrino masses,
the radiative generation of the Higgs mass term by corrections from couplings to the
right-handed neutrino and contains the fermionic FIMP dark matter candidate χ.

After we have established all the aforementioned concepts and have shown that
they indeed allow for a unified emergence of energy scales while simultaneously
achieving proper inflation, in Section 3.5 we investigate the contributions from met-
ric (or graviton) DOFs to the scalar potential that governs the spontaneous breaking
of conformal invariance. We specifically expand on the remarks regarding the ef-
fect of the Weyl tensor squared term as well as on the consequent appearance of the
ghost problem. We focus on the scalar and gravitational part of LT, with the crucial
difference that this time only one additional real scalar S is present. It will turn out
that the contributions from the graviton will allow for RSSB with only this one ad-
ditional scalar, such that no additional scalar fields are necessary. Furthermore, we
will show that for this case, the predicted parameters of inflation (ns, r) are also well
within the current bounds from CMB measurements. The general total action4 S1S

T of
global scale symmetric quadratic gravity non-minimally coupled to one real scalar
S(x) is then given by

S1S
T = SQG + SS , (3.2)

3 Even though it is of no significance to our analysis, it is implicitly understood that the vierbein
formalism is applied to terms containing minimal fermion-gravitational couplings.

4 To distinguish the here considered total action from the one in Sections 3.1 to 3.4, we added the
superscript “1S”, referring to the appearance of only one additional scalar.



3.1. Generating the Planck Mass 31

where SQG contains the curvature contributions of the squares of the Ricci scalar R2

and the Weyl tensor C2, while SS contains the scalar’s kinetic term, its quartic self-
interaction and the non-minimal coupling to curvature.

3.1 Generating the Planck Mass

Following the concept of scale invariance, to generate the Einstein-Hilbert term and
therefore the Planck mass MPl, one has to add additional scalars, (S, σ) that couple
non-minimally to the Ricci scalar R, to the general Lagrangian of (quadratic) scale-
invariant gravity

LGR√−g
= −1

2

(
βS S2 + βσ σ2 + βH H†H

)
R + γ R2 + κ Cµνρσ Cµνρσ , (3.3)

where Cµνρσ denotes the Weyl tensor and we have dropped the Gauß-Bonnet surface
term G (see Eq. (2.16)).

Here, we want to shortly expand on the earlier comment regarding the minimal-
ity of extending quadratic gravity with scalars to allow for RSSB of scale invariance
à la Coleman-Weinberg [26]. As already argued in [26], a single scalar is not suffi-
cient to allow for RSSB in the region of perturbativity of the theory’s dimensionless
couplings, thus two real scalars are the next most minimal system to realize RSSB
via the Gildener-Weinberg approximation [153] (see Section 2.3.3). Optionally, RSSB
could also be allowed for a system containing only one scalar which in turn needs
to be charged under a U(1) gauge group, therefore depicting the example in [26]
(see Section 2.3.2). In addition to these two well-known options, later in Section 3.5
we will demonstrate that also the dynamical DOFs of the metric can induce contri-
butions that allow for RSSB with only one additional scalar. As opposed to the first
two options, RSSB via dynamical DOFs of the metric necessitates a careful treatment
of the Weyl tensor squared C2 terms and therefore also the problems of the Weyl
anomaly (see Section 2.2, Eq. (2.15)) and a (possibly) massive spin-2 ghost. Con-
sequently, for simplicity, we choose a system of two real scalars, leave the proper
discussion of these problems for later, and first establish the foundation that proper
inflation is possible with dynamically generated Planck mass MPl and vEW from one
unified origin.

The Lagrangian LCW of these two scalars S, σ is then given by

LCW√−g
=

1
2

gµν ∂µS ∂νS +
1
2

gµν ∂µσ ∂νσ − V(0)(S, σ) , (3.4)

where V(0)(S, σ) is the two scalars tree-level potential. Since the non-minimal cou-
pling to curvature is contained in LGR and the quartic interactions with the SM Higgs
doublet H are dealt with in LNχ later in Section 3.2, when vEW is generated via the
neutrino option, the most general Z2 symmetric (S even, σ odd) and scale invariant
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tree-level potential V(0)(S, σ) can be written as

V(0)(S, σ) =
1
4

λS S4 +
1
4

λσ σ4 +
1
4

λSσ S2 σ2 . (3.5)

Up to this point, our setup is symmetric under the exchange of S and σ. Following
the Gildener-Weinberg approach, we can choose an orientation for the direction of
the tree-level flat direction of the potential (see Section 2.3.3) either along S = 0 or
σ = 0. At the same time avoiding the domain wall problem [223] and stabilizing
the fermionic dark matter candidate χ, we choose the flat direction along σ = 0
and S ̸= 0, thus ensuring the Z2 symmetry to remain preserved in the presence of
the non-trivial VEV5. This choice of flat direction is realized when the other GW
condition is fulfilled, here for the sake of generality we do not impose λS = 0 exactly
but only relative to the other quartic scalar couplings leading to the GW condition
for (approximate) flat direction along S ̸= 0, σ = 0:

λS ≪ λSσ and λS ≪ λσ . (3.6)

On another note, for the utilization of the neutrino option, we already need to as-
sume that the Higgs portal couplings to S and σ respectively, λp, λHσ in LcSM, and
yM in LN,χ are extremely small. Similarly, we assume an approximately vanishing
dimensionless coupling βH ≈ 0, such that the non-minimal coupling interaction be-
tween the SM Higgs and the Ricci scalar term in Eq. (3.3) can be neglected. Or more
precisely, we assume that βHR ≪ λpS2 during the period of inflation. While none
of these assumptions are technically natural (after ’t Hooft), at least λp, λHσ, yM, yχ,
and yNχ exhibit multiplicative RG-behavior, i.e. they are stable under higher order
quantum corrections when initially set to zero at tree-level. Thus, their smallness
can be perceived as natural in “some” sense despite no restoration or enhancement
of symmetry being associated6.

Ultimately, our assumptions above lead to the SM Higgs playing no part in infla-
tion, as well as in the RSSB of scale invariance. With this, we get exactly the situation
described already before, namely that the external fields determine the symmetry
breaking while S later on will act as the inflaton. Thus, we can now use the concepts
introduced earlier in Sections 2.3.2 and 2.3.3 to calculate the quantum effective po-
tential in MS along the flat direction S ̸= 0, σ = 0. In other words, we integrate out
the one-loop quantum fluctuations δS and δσ in the background S ̸= 0 and σ = 0.
Following Eqs. (2.48) to (2.50), the one-loop MS contribution to the effective potential
is calculated as

V(1)
eff (S, R) =

1
64π2

(
m4

S ln
[

m2
S

µ2

]
+ m4

σ ln
[

m2
σ

µ2

] )
, (3.7)

5 Again, this choice depends only on the previous choice that S is even and σ is odd under the Z2.
6 For a discussion of the role of Poincaré symmetry in this, see e.g. [220]
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where we have absorbed the constants cS,σ = −3/2 into the renormalization scale µ

and the field dependent masses are given by

m2
S = 3λSS2 + βSR , (3.8)

m2
σ =

1
2

λSσS2 + βσR . (3.9)

As usual, calculating the one-loop effective potential also gives rise to divergences
that are dealt with in the typical way, i.e. they are absorbed in a redefinition of the
dimensionless couplings λS, γ, and βS. For the divergences caused by loop diagrams
of scalars this method is already demonstrated in the original Coleman-Weinberg
paper [26], for divergences due to additional contributions proportional to curvature
this method is shown in e.g. [224, 225] and references cited therein. These authors
perform a similar calculation and come to results that are in agreement with our
computation above. Furthermore, in Eqs. (3.8) and (3.9) the non-minimal couplings
should read (βS − 1/6) and (βσ − 1/6), where the additional constant contribution
is due to the non-flatness of the spacetime [143]. However, for simplicity, we choose
to omit these constant contributions of 1/6, since for proper inflation βS ≳ 102 and
we find that physical observables, i.e. parameters of inflation, barely depend on the
value of βσ

7. The effective potential along the flat direction Veff(S, R) is then given
by

Veff(S, R) = V(0)(S, σ = 0) + V(1)
eff (S, R)

=
1
4

λS S4 + V(1)
eff (S, R) , (3.10)

with V(1)
eff (S, R) as shown in Eq. (3.7) with m2

S and m2
σ respectively from Eqs. (3.8)

and (3.9). We find, that σ and λσ will not play a further role in symmetry breaking
and inflation, as there is no explicit dependence in Veff, and while there is also no
tree-level contribution proportional to the couplings λSσ and βσ, these appear in the
one-loop contributions via m2

σ of Eq. (3.9).
We turn to the calculation of ⟨S⟩ to in turn identify the dynamically generated

value of the Planck mass MPl via comparison with the usual Einstein-Hilbert term.
Therefore, we separate R from the S dependence in Veff(S, R). Since we can assume
a tiny but non-zero value for the curvature R during inflation, or more specifically
βSR ≪ 3λSS2 and βσR ≪ (1/2)λSσS2, we can expand Eq. (3.10) in powers of R

Veff(S, R) = VCW(S) + V(1)(S) R + V(2)(S) R2 + O(R3) , (3.11)

7 See Appendix A.1 for a brief numerical evaluation of the dependence of the theories parameters
on βσ.
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with

VCW(S) =
1
4

λS S4 +
S4

64 π2

(
9 λ2

S ln
[

3 λS S2

µ2

]
+

1
4

λ2
Sσ ln

[
λSσ S2

2 µ2

] )
, (3.12)

V(1)(S) =
S2

128 π2

(
6 βS λS

[
1 + 2 ln

[
3 λS S2

µ2

]]
+ βσ λSσ

[
1 + 2 ln

[
λSσ S2

2 µ2

]] )
,

(3.13)

V(2)(S) =
1

128 π2

(
β2

S

[
3 + 2 ln

[
3 λS S2

µ2

]]
+ β2

σ

[
3 + 2 ln

[
λSσ S2

2 µ2

]] )
. (3.14)

Given the smallness of R that we assume during inflation, we obtain a R-independent
leading-order results for ⟨S⟩ from the zero-order (in R) term VCW(S) of the full effec-
tive potential Veff(S, R) through analysis of the stationary condition and verification
that ⟨S⟩ indeed is a minimum of VCW(S)

∂VCW(S)
∂S

∣∣∣∣
S=⟨S⟩

= 0,
∂2VCW(S)

∂S2

∣∣∣∣
S=⟨S⟩

> 0 , (3.15)

We find the analytic expression for ⟨S⟩, that VCW(⟨S⟩) is non-zero and negative and
thus denotes a finite zero-point energy density V0

V0 := VCW(⟨S⟩) = −βλS

16
⟨S⟩4 = −βλS

16
µ4 exp

[
−1 − 16 C

βλS

]
, (3.16)

where βλS is the one-loop β-function of λS in the absence of the Yukawa couplings
yM, yχ, and C depends only on the dimensionless scalar couplings λS, λSσ

βλS =
1

16 π2

(
18 λ2

S +
1
2

λ2
Sσ

)
, (3.17)

C =
1
4

λS +
1

64 π2

(
9 λ2

S ln [3 λS] +
1
4

λ2
Sσ ln

[
1
2

λSσ

])
. (3.18)

This negative zero-point energy V0 can be identified as the cosmological constant
and is a consequence of the spontaneous breaking of global conformal symmetry
and therefore is finite in dimensional regularization8. Since this zero-point energy
does not agree with the cosmological constant’s experimentally observed value, we
choose to avoid the cosmological constant problem in this model by subtracting this
zero-point energy density, ensuring that ṼCW(⟨S⟩) = 0

ṼCW(S) = VCW − V0 . (3.19)

This “solution” comes at the cost of super-soft breaking of scale invariance already
at tree-level but since for properly addressing the cosmological constant problem
one should take into account gravitational quantum fluctuations, including ones

8 Note that since there exists no absolute scale, only differences can be measured and thus the zero-
point energy cannot be uniquely determined within the framework of quantum field theory in
flat spacetime.



3.2. Standard Model, Neutrinos, and the EW Scale 35

with origin in the Weyl tensor squared term C2 in the tree-level action and therefore
(possibly) introducing unitarity violation, we are content with evading this discus-
sion for this thesis and continue with the identification of the dynamically induced
Planck mass MPl. As the identification of MPl follows from comparison with the term
of the Einstein-Hilbert action, i.e. − 1

2 M2
PlR, we collect the terms proportional to the

first power of R in Eq. (3.3) and Eq. (3.11) when evaluated at S = ⟨S⟩, compare the
pre-factors and find MPl to be given by

MPl = ⟨S⟩
√

βS +
2 V(1) (⟨S⟩)

⟨S⟩2 . (3.20)

Taking into account the form of ⟨S⟩ as derived from Eq. (3.16)), i.e. ⟨S⟩ = µ f1 (λS, λSσ),
the above equation Eq. (3.20) shows that the dynamically generated Planck mass is
directly proportional to the renormalization scale µ in the form of

MPl = µ f2 (βS, βσ, λS, λSσ) , (3.21)

where f1, f2 are dimensionless functions of the theory’s dimensionless couplings.

3.2 Standard Model, Neutrinos, and the EW Scale

For now, we have covered the spontaneous symmetry breaking of global conformal
symmetry via the two additional scalars and thus the generation of MPl independent
from the SM. In the following, we will discuss the couplings to the SM and the mech-
anism to generate the electroweak scale via the neutrino option. Since the external
scalars in LCW (see Eq. (3.4)) are singlets under the SM gauge symmetry, there are two
scale-invariant coupling terms between the gauge invariant combination H†H and
S, σ. Also, there is a scale-invariant non-minimal coupling of H†H to R, as shown
in LGR (see Eq. (3.3)), which has great importance in models that utilize inflation
driven by the SM Higgs field itself. Here, in our model, we already argued that the
contributions of the Higgs to inflation are negligible, due to S being the dominant
field during inflation, as well as its heavy VEV ⟨S⟩ ∼ O(1016−17)GeV. Therefore,
incorporating the SM into our model is achieved by LBSM in the total Lagrangian LT

in Eq. (3.1)

LBSM = LcSM + LN,χ . (3.22)

We separate this part of our model into the one containing the scale-invariant or con-
formal symmetric SM, LcSM, plus the allowed (quartic) couplings to the additional
scalars and into a second one, LN,χ, which includes the new Majorana fermions NR, χ

and their couplings to the SM and the external scalar S. First, we discuss the scalars
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couplings to the SM in LcSM

LcSM√−g
= LSM|mH=0 −

1
4
(

λp S2 + λHσ σ2)H†H , (3.23)

where LSM|mH=0 denotes the conformal or scale-invariant SM Lagrangian, namely
the SM with the Higgs’s tree-level mass term set to zero (see Eq. (2.39)). The portal
couplings to S would induce an effective mass for the SM Higgs proportional to
⟨S⟩2 ≫ v2

EW. As a consequence, λp ≪ 1 has to be extremely small so as not to
ruin the compatibility with the experimental observed value of vEW. For λp to stay
small under RG-running, also λHσ is required to be almost vanishing so that it does
not induce sizable contributions via quantum loop corrections. Using the portal
coupling λp, fine-tuned to a specific value to explain the smallness of vEW in relation
to MPl, precisely constitutes the gauge hierarchy problem as discussed in Section 2.4.
While not addressing said hierarchy problem in a fully satisfying manner, we use
the neutrino option to soften this huge hierarchy.

The neutrino option [211] was proposed as a way of simultaneously generating
masses for light active SM neutrinos via a type-I seesaw mechanism [216–219], as
well as the Higgs mass via radiative corrections by heavy right-handed Majorana
neutrinos NR [212–215]. Including NR in a scale-invariant way (as has been done in
e.g. [210, 226, 227]), is achieved by the LN,χ contribution in the total Lagrangian LT

of Eq. (3.1)

LN,χ√−g
=

i
2

N̄/∂N − 1
2

yMSNTCN +
i
2

χ̄/∂χ − 1
2

yχSχTCχ

−
(

yNχσNTCχ + yν L̄H̃ 1
2 (1 + γ5)N + h.c.

)
, (3.24)

where, NR, χ are the (three+three) right-handed Majorana neutrinos and C the charge
conjugation matrix, while H (H̃ = iσ2H∗) and L denote the SM Higgs and lepton
doublets. Furthermore, flavor indices are suppressed throughout this calculation
and discussion as we do not address details of the flavor structure. Therefore, we
will treat the matrices yM, yχ, yNχ and yν as representative real numbers. The large
Majorana mass mN is then generated dynamically via the coupling to ⟨S⟩ through
the second term in Eq. (3.24) to be

mN = yM ⟨S⟩ = yM MPl√
βS +

2 V(1)(⟨S⟩)
⟨S⟩2

. (3.25)

Considering the parameter space for successful inflation (see Section 3.3), namely
βS ≳ 102, we find that βS ≫ 2 V(1) (⟨S⟩) / ⟨S⟩2 is satisfied, such that we can calculate
the leading order estimate for yM

yM ≃ mN

√
βS

MPl
≃ 10−10 ×

(
βS

103

)1/2

. (3.26)
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Here we want to shortly note again, that the smallness of yM as shown above is tech-
nically natural. Following the arguments of ’t Hooft [11], a small yM is considered
natural since in the limit yM, yNχ → 0 the U(1)B−L symmetry is restored. The neces-
sary smallness of yNχ is in agreement with the requirements for the production of the
correct abundance of dark matter as described in Section 3.4. Now, with the large
right-handed neutrino mass mN, the total neutrino mass matrix M is given by a 2× 2
matrix

M =

(
0 m
m mN

)
, (3.27)

with m = yνvH denoting the off-diagonal mass term of the active neutrino that is
generated by the last term in Eq. (3.24) after the spontaneous breaking of the EW
symmetry. Since, vEW = 246 GeV, for (technically) natural values of yν, one finds that
m ≪ mN, thus the eigenvalues and determinant of M are then calculated to be

M± =
1
2

(
mN ±

√
m2

N + 4m2

)
, M+ ≈ mN , M− ≈ −m2

mN
, (3.28)

det M = M+ M− = −m2 . (3.29)

The fixed value for the determinant implies that the relation Eq. (3.29) constitutes
the eponymous seesaw, an increase in M+ leads to a decrease in M− and vice versa.
In our case, this results in the generation of the correct active neutrino masses mν via
the type-I seesaw and yν ≈ 10−4 as

mν ≃ y2
ν v2

EW

mN
∼ 0.1 eV . (3.30)

At the same time, due to the Feynman diagram shown in Fig. 3.1 (left), heavy right-
handed Majorana neutrinos induce a sizable correction to the after EW symmetry
breaking effective Higgs mass term −µ2

HH†H. The finite part of this contribution
is generally renormalization scale µ dependent (here via mN ∼ ⟨S⟩ ∼ µ) and is
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FIGURE 3.1: Neutrino contributions to the Higgs mass term (left) and
Higgs portal coupling (right).
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calculated to be [212–215]

|∆µ2
H| ∼

y2
νm2

N

4π2 . (3.31)

Under the main assumption of the neutrino option [211], namely that the radiative
correction in Eq. (3.31) constitutes the dominant contribution to the Higgs mass term,
we can write µ2

H ∼ ∆µ2
H ≃ 2(125 GeV)2 and thus find that with mN ≈ 107 GeV, neu-

trino option successfully generates light active neutrino masses as well as the correct
Higgs mass term. While the aforementioned basic assumption of the neutrino op-
tion is perfectly in agreement with its scale-invariant implementation, which forces
∆µ2

H = 0 at tree-level, and our previous arguments regarding the smallness of radia-
tive scalar corrections to the Higgs mass parameter, namely λp, λHσ ≪ 1, one has
to also consider the radiative fermionic corrections to these scalar couplings via the
second diagram in Fig. 3.1

∆λp ∼ y2
ν y2

M

16 π2 , (3.32)

which is then assumed to provide the dominant contribution to λp, for the neutrino
option to function properly. Ultimately, we found that the scale-invariant realization
of the neutrino option works very well in the here considered model and thus allows
for a consecutive identification of the Higgs mass term µH with larger energy scales,
and finally with the Planck scale MPl, all with the same radiative origin, the non-zero
VEV of S.

Lastly, we want to add that the generation of the universe’s baryon asymme-
try via leptogenesis [228, 229] is compatible with the framework of the neutrino
option [230, 231]. Later, in Sections 3.3 and 3.4 we will show that for most of our
parameter space and especially the three benchmark points (see Table 3.1), thermal
leptogenesis can work successfully under reasonable assumptions.

3.3 Inflation

Inflation or cosmological inflation is a theory that describes an era in the (very) early
universe where spacetime expands exponentially. While originally introduced by
Guth [232] to resolve the problem of not observed but predicted magnetic monopoles
(in grand unified theories), theoretical physicists quickly noticed that it could also
address other fundamental issues of standard (hot) Big Bang cosmology. Most no-
tably, inflation is used to explain why the universe is as flat as we observe today
(flatness problem), why we observe it as almost perfectly isotropic on large dis-
tances (horizon problem), and additionally provides the seed for large-scale struc-
ture formation in the universe. Inflation resolves these problems by introducing an
early era dominated by dark energy or a cosmological constant with an equation
of state ω = −1, thus resulting in the exponential expansion of spacetime, diluting
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the number density of magnetic monopoles sufficiently to avoid detection, expand-
ing conformal time far enough back to allow for early causal contact that would
explain the later observed isotropies and suppressing the curvature energy density
exponentially. Unavoidably, there is a huge energy density contained in this early
phase of the universe, which has to be converted back to SM DOFs, the so-called
reheating. This is where the shortcomings of Guth’s early model of inflation became
apparent. It would not generate the necessary amount of reheating and reintroduce
inhomogeneities. This problem was solved when Linde, Albrecht, and Steinhardt
introduced the model of slow-roll inflation [196–198]. They found that at least one
bosonic DOF, namely the inflation field, must be present and thus led to the emer-
gence of a great variety of models with different particle content and origin to realize
successful inflation. While there exists already the scalaron as a bosonic DOF in the
R2 to allow for proper slow-roll inflation, the so-called R2 inflation [201–203], this
scalar DOF can not generate the spontaneous breakdown of scale-invariance. Simi-
larly, the Higgs field might be considered a suitable candidate for the inflaton [199],
yet when introducing scale-invariance there are again problems with the symmetry
breaking. Thus, in models where scales originate from the spontaneous breaking of
scale-invariance, one needs at least one additional scalar DOF to incorporate suc-
cessful slow-roll inflation. But before we get further into the specifics of how our
model of Eq. (3.1) can achieve proper inflation, we deem it necessary to introduce
the basic notions of slow-roll inflation.

Since inflation denotes an essential component of our current understanding of
cosmology, there are multiple excellent reviews, lectures, and presentations intro-
ducing the basics of slow-roll inflation. Hereafter, we decided to follow [233] and
dive right into our review with the basic Lagrangian of a scalar field (minimally)
coupled to gravity

L√−g
=

1
2

M2
Pl R +

1
2

gµν ∂µϕ ∂νϕ − V(ϕ) = LEH + Lϕ , (3.33)

where ϕ denotes the inflaton, with its potential V(ϕ) coupled to the Einstein-Hilbert
term of gravity. Furthermore, the metric gµν is assumed to be the flat Friedmann-
Lemaître-Robertson-Walker (FLRW) metric [234–238] so that the line element ds2

becomes

ds2 = −dt2 + a2(t)Σ(r, ϑ, θ) , (3.34)

where a(t) denotes the scale factor that describes the relative size of the spatial slices
Σ(r, ϑ, θ) as time evolves. The evolution of a(t) and therefore also the dynamics of
the universe are given by the Einstein equations, which under the assumption of
isotropy and homogeneity (ϕ(x, t) = ϕ(t)) lead to the Friedmann equations

H2 =

(
ȧ
a

)2

=
1

3 M2
Pl

ρ − k
a2 ,

ä
a
= − 1

6 M2
Pl

(ρ + 3 p) , (3.35)
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with H being the Hubble parameter as defined above, a dot denotes a time deriva-
tive and k denotes the curvature parameter, that takes the values k = {−1, 0, +1},
respectively, for a negatively, flat or positively curved spacelike hypersurface Σ. Fur-
thermore, ρ denotes the matter energy density and p the isotropic pressure as given
by the theory’s energy-momentum tensor Tµν. In the case of Eq. (3.33), Tµν takes the
form of a perfect fluid so that

ρϕ =
1
2

ϕ̇ + V(ϕ) , pϕ =
1
2

ϕ̇ − V(ϕ) , ωϕ =
pϕ

ρϕ
=

1
2 ϕ̇ − V(ϕ)
1
2 ϕ̇ + V(ϕ)

, (3.36)

where ωϕ is the inflaton’s equation of state parameter. The EOM for ϕ and the Fried-
mann equations then lead to the following two dynamical equations describing a
single scalar particle rolling down a potential with a friction term of 3Hϕ̇

ϕ̈ + 3Hϕ̇ + V ′(S) = 0 , H2 =
1

3 M2
Pl

(
1
2

ϕ̇ + V(ϕ)

)
, (3.37)

where V ′ describes a derivative of V(ϕ) with respect to ϕ. Inflation addresses the
problems of standard cosmology via an era of exponential expansion where a flat
scalar potential acts as a cosmology constant ω ≃ −1 and dominates the dynamics
of a(t) with subsequent reheating into SM DOFs and thus matter and radiation dom-
inated eras during which the universe exhibits power-law dependent expansion be-
havior. This flatness of the potential V(ϕ) is realized through ϕ̇2 ≪ V(ϕ). Under this
assumption, Eq. (3.36) clearly shows that indeed ωϕ ≃ −1 and therefore a(t) ∼ eHt,
with a constant background evolution H2 ≈ V(ϕ)/(3M2

Pl). Additionally, imposing
that the scalar field only rolls slowly down the potential ϕ̈ ≪ 3Hϕ̇ ensures that in-
flation lasts long enough to solve the cosmological problems. In Fig. 3.2 we show
two depictions of appropriate potentials for single-field slow-roll inflation. These
slow-roll conditions can be rewritten in terms of the slow-roll parameters ϵ, |η| ≪ 1
with

ϵ(ϕ) ≡ 1
2

M2
Pl

(
V ′

V

)2

, η(ϕ) ≡ M2
Pl

(
V ′′

V

)
. (3.38)

The end of inflation is then quantified by ϵ and |η| reaching order unity, such that
the duration is expressed by the number of e-folds Ne

Ne(ϕ) = ln
[

aend

aCMB

]
=
∫ tend

tCMB

H dt ≈ 1
M2

Pl

∫ ϕCMB

ϕend

V
V ′ dϕ , (3.39)

with the subscripts “CMB” and “end” denoting the quantities at the time of CMB
horizon exit and the end of inflation, respectively. It is clear from the above equa-
tions for ϵ, η Eq. (3.38) and Ne Eq. (3.39) that the successful realization of inflation
depends heavily on the shape and scale of the scalar potential V. Nevertheless, there
are many models, also ones containing multiple scalar fields, that generate an appro-
priate potential. To constrain these models, one utilizes that quantum fluctuations
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FIGURE 3.2: Examples of a single-field inflation potential where the in-
flaton ϕ slowly rolls down the flat potential and oscillates around its true
minimum, transferring the energy density to SM DOFs. Inflation ends
once the kinetic energy has become comparable to the potential energy
and starts some time before the CMB horizon decoupling, thus leaving
an imprint in the fluctuations observed from the CMB. The distance ∆ϕ
travelled between ϕCMB and ϕend has a direct influence on the amplitude

of inevitably created gravitational waves.

during inflation are blown up by the exponential expansion to macroscopic scale
and “frozen-in” after inflation, thus leaving an imprint in later structure formation.
This imprint is best observed in the anisotropies of the CMB, which was recently
measured by the Planck and BICEP/Keck collaboration [22, 24], and currently sets
the strongest limits on inflation [23, 24]. These CMB observables are related to the
power spectrum of gravitational scalar and tensor perturbations that originate from
the period of inflation. The (for us) relevant observables are the Amplitude As and
spectral index ns of the scalar power spectrum, as well as the tensor-to-scalar ratio
r. They can be related to the inflationary potential V at the time of CMB horizon exit
by

As =
VCMB

24 π2 M4
Pl ϵCMB

, ns = 1 + 2 ηCMB − 6 ϵCMB , r = 16 ϵCMB , (3.40)

where ϵ and η denote the slow-roll parameters as defined in Eq. (3.38). For detailed
derivations of the relations in Eq. (3.40) and a more in-depth discussion of inflation,
we refer to more elaborate reviews, e.g. [233, 239] and rather continue the investiga-
tion of inflation in the context of a unified origin for emerging scales.

3.3.1 Radiatively Induced Effective Action for Inflation

In Sections 3.1 and 3.2 we discussed the emergence of scales with a single origin in
the non-zero VEV ⟨S⟩, which spontaneously breaks scale invariance through quan-
tum corrections. We have also hinted towards S being the dominant contribution
to drive a period of exponential expansion of spacetime, namely inflation. In the
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following, we want to explicitly investigate these statements and show that indeed
inflation that is in agreement with the most current experimental observations is
possible in this framework. The assumptions of the previous sections regarding the
smallness of the couplings λp, λHσ, βH ≪ 1 result in the Higgs doublet H not playing
a role for inflation. On the other hand, the assumptions for a reasonable expansion
of Veff(S, R) in R, i.e. βSR < 3λSS2 and βσR < (1/2)λSσS2, are confirmed straightfor-
wardly by approximating the scalar curvature during inflation as R = 12Hinf, where
Hinf denotes the Hubble parameter and therefore directly the universe’s expansion
rate. Accordingly, we collect the terms relevant for inflation of the total Lagrangian
Eq. (3.1) in the effective (Jordan frame) inflation Lagrangian LJ

eff

LJ
eff√−gJ

= −1
2

M2
PlB(S) RJ + G(S) R2

J +
1
2

gµν
J ∂µS ∂νS − ṼCW(S) , (3.41)

where MPl takes the dynamical value as calculated in Eq. (3.20), ṼCW(S) is the “nor-
malized to zero at the minimum” potential of Eq. (3.19) and “J” denotes that all quan-
tities are understood to be dependent on the original metric of Jordan-frame space-
time. Referring to the original factors in front of R and R2 terms in LGR (see Eq. (3.3)),
i.e. βi and γ, we have defined the functions B(S) and G(S)

B(S) =
1

M2
Pl

(
βS S2 + 2 V(1)(S)

)
, (3.42)

G(S) = γ − V(2)(S) . (3.43)

These now include the (one-loop) quantum corrections to the original parameters
from the effective potential via contributions V(1)(S) and V(2)(S), with their analyt-
ical expression found in Eqs. (3.13) and (3.14), respectively. A similar framework
with a priori arbitrary functions B, G, and V was considered by [240–244] and stud-
ied with purely phenomenological intentions. More closely to our approach is the
study of [130], where the authors utilize strong dynamics to break scale invariance
and generate an effective potential for inflation. While strong dynamics have their
advantages for breaking scale-invariance, we will now continue with our discussion
of Coleman-Weinberg type breaking of scale invariance and revisit strong dynamics
in Chapter 4. Similarly, we have omitted the Weyl tensor C2 term under the as-
sumption of a small coupling κ and will further investigate its effects in detail in
Section 3.5.

We move on by dealing with the R2 term, which houses an additional scalar
DOF that needs to be accounted for as it contributes significantly to inflation. Even
though the slow-roll parameters of inflation are frame-independent [245, 246], they
are much easier to calculate in the usual Einstein frame and the dynamical scalar
DOF of R2 is revealed when transforming to the Einstein frame. Therefore, we intro-
duce an auxiliary field ψ of mass dimension two and the appropriate EOMs to make
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the replacement

R2
J → 2 RJ ψ − ψ2 , (3.44)

and then go to the Einstein frame through a conformal rescaling of the metric

gE
µν = Ω2 gJ

µν, with Ω2(S, ψ) = B(S)− 4
M2

Pl

G(S) ψ . (3.45)

While this step here is straightforward, there are reasons for caution when this trans-
formation is taken at the quantum level, namely including quantum fluctuations of
the metric. Then, the quantum theories of the individual classical Lagrangians are
not necessarily equivalent [247, 248]. This could prove especially problematic for
the comparability of our results to other investigations of inflation realized in scale-
invariant models, as some of them transform first to Einstein frame (under the as-
sumption of broken scale-invariance) and then calculate the specifics of spontaneous
symmetry breaking (see e.g. [137, 249]). However, since they and we treat gravity
classically, we will not worry about this in the following discussions. The effective
Lagrangian in the Einstein frame is then given by

LE
eff√−gE

=− 1
2

M2
Pl

(
RE −

3
2

gµν
E ∂µ ln

[
Ω2] ∂ν ln

[
Ω2] )

+
1
2

Ω−2 gµν
E ∂µS ∂νS − VE(S, ψ) , (3.46)

with the “E” analog to “J” before, referring to the Einstein frame, Ω = Ω(S, ψ) and
VE(S, ψ) simply denoting the scalar potential in the Einstein frame, now depending
on both S and ψ

VE(S, ψ) = M4
Pl

ṼCW(S) + G(S)ψ2[
B(S)M2

Pl − 4 G(S) ψ
]2 . (3.47)

Looking back to Eq. (3.46), we find that due to the second term, ψ is indeed a prop-
agating scalar field in the Einstein frame. We can derive its canonically normalized
form ϕ, which is then called the scalaron [250, 251]

ϕ =

√
3
2

MPl ln
∣∣Ω2∣∣ . (3.48)

As a consequence, we can rewrite the effective Einstein-frame Lagrangian in terms
of the “proper” fields S, ϕ

LE
eff√−gE

= −1
2

M2
Pl RE +

1
2

gµν
E ∂µϕ ∂νϕ +

1
2

e−Σ(ϕ) gµν
E ∂µS ∂νS − VE(S, ϕ) , (3.49)
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where the Σ(ϕ) =
√

2 ϕ/
(√

3 MPl

)
factor shows that now S is not canonically nor-

malized anymore. When calculating the dynamics of inflation in the one-field ap-
proach of slow-roll inflation later, we find that this problem is easily remedied, as
we attain a canonically normalized inflaton field through integration over the pref-
actor of its kinetic term. Furthermore, the Einstein-frame potential of Eq. (3.47), now
as of function of S and ϕ can be written as

VE(S, ϕ) = e−2 Σ(ϕ)
[

ṼCW(S) +
M4

Pl

16 G(S)

(
B(S)− eΣ(ϕ)

)2
]

, (3.50)

and in principle already denotes a valid two-scalar inflation potential, which we
could study employing multifield techniques9. Nevertheless, this approach would
constitute a great effort and introduce complexity, which seems unnecessary in the
light of the potential in Eq. (3.50) exhibiting a valley structure, as e.g. seen in Fig. 3.3,
along which the potential is sufficiently flat for slow-roll inflation and thus allows
for an effective one-field model description10.

3.3.2 One-field Slow-roll Inflation Predictions

In the following, we will discuss the validity and the conditions under which the
two-field potential in Eq. (3.50) can be approximated by an effective one-scalar po-
tential along a contour either along the S or the ϕ field. The contour plot in Fig. 3.3
shows the existence of said valley structure, along which the potential is suitable
for one-field slow-roll inflation. Similarly, in [132] they also found that the classical
trajectories with different initial conditions converge to an attractive valley contour.
For the validity of the valley, we check the gradient along the contour to be much
smaller than the one perpendicular to it, or in other words the eigenvalues of the
scalar mass matrix ∂2V(Φi)/(∂Φi∂Φj) are separated hierarchically. The basic prin-
ciple to find appropriate contours for different parameter spaces is to look for local
minima in the direction of one of the two fields. Comparing both options, one finds,
that which one is more suited to describe the potential properly in a one-field man-
ner depends heavily on the parameters chosen (see the appendix in [1] for more
details.).

The first contour C can be found via the analytical observation, that there is ex-
actly one local extremum in the scalaron direction for each value of S > ⟨S⟩, thus
ensuring flatness along the contour

C = {S, ϕ̃(S)} where
∂VE(S, ϕ)

∂ϕ

∣∣∣∣
ϕ=ϕ̃(S)

= 0 , (3.51)

9 For an example where multifield techniques are employed to study inflation, see [252].
10 Thus, we will omit the discussion of possible non-Gaussianities of multifield inflation in our anal-

ysis. Instead for more detail, we refer to [253, 254].
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FIGURE 3.3: Scalar potential VE(S, ϕ) of Eq. (3.50) (right) for values of
benchmark point #3 of Table 3.1. The in Eqs. (3.51) and (3.60) defined
contours C and C ′ are shown in the contour plot (right), while the cor-
responding one-field inflaton potentials are shown on the left. While
“end” refers to the end of inflation, “⋆” denotes the horizon decou-

pling of the CMB.

where we can calculate the solution to ϕ̃(S) in Eq. (3.51) analytically to be

ϕ̃(S) =

√
3
2

MPl ln
[

B(S) +
16 G(S)ṼCW(S)

B(S) M4
Pl

]
. (3.52)

Whether the trajectory of inflation satisfies Eq. (3.51) during inflation is verified by
the following condition on the scalaron mass along the contour C

m2
ϕ

H2
inf

≫ 1 , (3.53)

with Hinf again denoting the Hubble parameter during inflation. When Eq. (3.53)
above is fulfilled, the large and positive scalaron mass m2

ϕ can sufficiently stabilize
the contour C during inflation, thus ensuring that the two-field system moves only
along the contour with only insignificant motion away from C. Now, employing the
solution for ϕ̃(S) to potential VE of Eq. (3.50), we are left with the one-field inflaton
potential Vinf(S)

Vinf(S) = VE(S, ϕ̃(S)) =
ṼCW(S)

B(S)2 + 16 M−4
Pl G(S) ṼCW(S)

. (3.54)
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Replacing the scalaron in the rest of the Lagrangian Eq. (3.49) results in a further
modification of the kinetic term for S

e−Σ(ϕ̃(S)) gµν
E ∂µS ∂νS + gµν

E ∂µϕ̃(S) ∂νϕ̃(S) = F2(S) gµν
E ∂µS ∂νS , (3.55)

where, for simplicity, we have introduced the normalization factor F2(S)

F2(S) =
(1 + 4 A(S)) B(S) + 3

2 M2
Pl [(1 + 4 A(S)) B′(S) + 4 A′(S) B(S)]2

[(1 + 4 A(S)) B(S)]2
, (3.56)

A(S) =
4 G(S)ṼCW(S)

B(S)2 M4
Pl

, (3.57)

such that we can write the final effective Lagrangian for inflation as

LE
eff√−gE

= −1
2

M2
Pl R +

1
2

F(S)2 gµν
E ∂µS ∂νS − Vinf(S) . (3.58)

Here, due to the normalization factor F2, S is still not a generally canonically nor-
malized field. But we have all the ingredients to obtain the canonically normalized
inflaton field Ŝ through

Ŝ(S) =
∫ S

⟨S⟩
dx F(x) . (3.59)

With this, we can now calculate the slow-roll parameters and ultimately the CMB
observables as predictions of our inflation model.

The other option for a valley contour C ′ is obtained in an analog way, namely by
locating local minima along the direction of the scalar field S, yielding the solution
S̃(ϕ)

C ′ = {S̃(ϕ), ϕ} , where
∂VE(S, ϕ)

∂S

∣∣∣∣
S=S̃(ϕ)

= 0 , Vinf(ϕ) = VE(S̃(ϕ), ϕ) . (3.60)

By going through the steps as discussed above for contour C, one e.g. arrives at the
scalaron field normalization F2(ϕ)

F2(ϕ) =

[
1 + e−Σ(ϕ)

(
∂S̃(ϕ)

∂ϕ

)2]
, (3.61)

as a replacement for F2(S) in Eq. (3.56). Because of the possible analytic solution ϕ̃

of Eq. (3.52) and the limited influence of the choice of contour on the CMB observ-
ables, we choose to go forward by mainly using C to describe our one-field slow-roll
inflation. Regardless, in Table 3.1 we also show results for calculations with contour
C ′ for comparison at the three chosen benchmark points.

The last step before finally calculating the CMB observables As, ns, and r, and



3.3. Inflation 47

Contour C Contour C ′

# βS γ ns r As Send/µ SCMB/µ ns r As ϕend/µ ϕCMB/µ

1 1.01 × 102 5.24 × 108 0.967 0.004 3.032 0.09 0.11 0.965 0.004 3.088 0.83 4.75
2 5.69 × 102 1.68 × 108 0.972 0.010 3.041 0.11 0.45 0.972 0.010 3.075 2.02 13.46
3 8.67 × 102 2.80 × 107 0.973 0.034 3.038 0.13 2.56 0.973 0.034 3.040 2.74 23.46

TABLE 3.1: Predicted CMB observables from inflation for three
benchmark points. For all points, λSσ = 0.77, λS = 0.005 and βσ = 1
and thus ⟨S⟩ = 0.088µ have been fixed. We show the results for ei-
ther one of the two contours, C Eq. (3.51) or C ′ Eq. (3.60) for Ne = 55

e-folds.

therefore constraining our model, is to calculate the slow-roll parameters. To com-
pute the slow-roll parameters ϵ and η as in Eq. (3.38), one usually needs to use the
canonically normalized inflaton field, however with Ŝ given by Eq. (3.59), we can
instead use S and correct for the non-canonical normalization via F2(S):

ϵ(S) =
M2

Pl

2 F2(S)

(
V ′

inf(S)
Vinf(S)

)2

, (3.62)

η(S) =
M2

Pl

F2(S)

(
V ′′

inf(S)
Vinf(S)

− F′(S)
F(S)

V ′
inf(S)

Vinf(S)

)
. (3.63)

This modification also applies to the formula for the number of e-folds Ne of Eq. (3.39),
which in this case is then given by

Ne =
∫ Send

SCMB

F2(S)
M2

Pl

Vinf(S)
V ′

inf(S)
, (3.64)

like in Eq. (3.39), SCMB denotes the value of the scalar S to be evaluated at the time of
horizon decoupling of the CMB, and Send refers to S at the time when inflation ends,
i.e. when Eqs. (3.62) and (3.63) reach values of order one

max{ϵ(S = Send), |η(S = Send)|} = 1 . (3.65)

With this, we have all the ingredients to investigate the dependence of the CMB ob-
servables of inflation on our model’s parameters, by calculating As, ns, and r via
Eq. (3.40) with the aforementioned ϵ of Eq. (3.62), η of Eq. (3.63) and Ne in Eq. (3.64).
Given, that ultimately, all the CMB observables of inflation depend on the one-field
inflaton potential Vinf(S) Eq. (3.54) and F2(S) Eq. (3.56), they determine the relevant
parameters to be the dimensionless couplings λS, λSσ, βS, βσ and γ. The renormal-
ization scale is fixed by the identification of MPl in Eq. (3.20) and the choice of flat
direction Eq. (3.6) results in λS and βσ being almost irrelevant for the CMB observ-
ables of inflation (see also Appendix A.1). Therefore, in the following analysis, we
set them to the realistic values λS = 0.005 and βσ = 1. This leaves us with the scalar
portal coupling λSσ, the non-minimal coupling βS and the R2 coupling γ as relevant,
free parameters of the model. Furthermore, there is some freedom in the number
of e-folds between CMB horizon exit and the end of inflation Ne, such that we will
use the well-established assumption, Ne ∈ [50, 60] to be a sufficiently long period of
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inflation to address the problems of hot Big Bang cosmology. Consequently, we can
use the tight constraint on As from the latest Planck mission data [22, 132]

ln
[
1010As

]
= 3.044 ± 0.014 , (3.66)

to further reduce our number of free parameters by one. Demanding that points
fulfill Eq. (3.66), we find an effective relation between βS and γ for fixed values of
Ne and λSσ. Using this we can neatly show the model’s parameter dependence in
the ns − r plane in Fig. 3.4. In addition, demanding Eq. (3.66) results in upper limit
on allowed values for βS,max ∼ O(103) and γmax ∼ O(109), again for fixed values
of λSσ and Ne. Comparing our results in Fig. 3.4 with other models for one-field
slow-roll inflation we find that our model seems to interpolate between two well-
known models of inflation. The lower end (large γ) of our predictions converges
to the ones by R2 (or Starobinsky) inflation [201–203], while the upper end (smaller
γ) corresponds to predictions by linear chaotic inflation [185, 255, 256]. Lastly, we
find a wide region of parameter space for which the predictions of our model are
perfectly in agreement with the constraints on inflation via the CMB observations
[22, 23] (see Fig. 3.4), even with the improved constraints from [24] and possible
future observations, which are expected to further increase the constraint on r.
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FIGURE 3.4: Predictions for the scalar spectral index ns and the
tensor-to-scalar ratio r with varying number of e-folds Ne (top) and
varying λSσ (bottom). βσ = 1 and λS = 0.005 we fixed for all points
and only points which satisfy the scalar power spectrum As con-
straint (3.66) and thus fixing βS w.r.t. γ are displayed. In the top panel,
we included the Planck TT,TE,EE+lowE+lensing+BK15 68% and 95%

CL regions as displayed in [23].
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3.4 Reheating and Dark Matter

At this point, we have discussed the main point of this thesis in the given framework,
namely the generation of hierarchical energy scales utilizing conformal symmetry
and the spontaneous breaking thereof. Yet, reheating is necessary to convert the
inflaton energy density into SM DOFs (like radiation, etc.), and dark matter remains
missing in the SM. While we refer to other literature for a more in-depth treatment of
these two aspects, we want to give a short sketch of how dark matter can be included
in our scale-invariant framework of dynamically generated scales. We can and will
do so without specifying a reheating mechanism and without choosing a specific
DM model. For more information on reheating we refer to [257, 258], while more
details on the present derivation are found in [1] and the references therein.

To include effects of the reheating phase without specifying its mechanism we
follow [12, 221] and under general assumptions and model-specific observations
derive a relation between the number of e-folds Ne and the reheating temperature
TRH, which in turn is directly related to the energy density ρRH of radiation at the end
of the reheating phase by

ρRH =
π2

30
gRH T4

RH , (3.67)

with the subscript “RH” denoting quantities to be evaluated at the end of the reheat-
ing phase and thus gRH describing the relativistic DOFs at the end of reheating. This
energy density ρRH and therefore also the reheating temperature TRH can be related
to the energy density of the inflaton ρend at the end of inflation via [12]

ln Rrad = ln

[
aend

aRH

(
ρend

ρRH

)1/4
]
=

1 − 3 ω̄

12(1 + ω̄)
ln
[

ρRH

ρend

]
, (3.68)

where a is the scale factor, the subscript “end” refers to the end of inflation and ω̄ de-
notes the average equation of state parameter during the reheating phase. Through
the dependence on aend in Eq. (3.68), we can find the following relation between the
number of e-folds Ne and TRH

Ne = ln
[

aend

aCMB

]
= C +

1
4

ln

[(
3 − ϵend

3 − ϵCMB

)4/3
(

V2
inf,CMB

M4
Pl V4/3

inf,end

)]
+

1
3

ln [TRH] . (3.69)

To obtain the above relation we used the constraints on the current Hubble parame-
ter H0 and the pivot scale k⋆ of [22, 23] and assumed conservation of entropy [259].
Furthermore, we expressed ρend in terms of the slow-roll parameters, found ω̄ = 0
by analyzing the inflaton potentials behavior near its minimum11 and introduced

11 For more details on these steps, see [1].
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the constant C for simplicity

C =
1
12

ln
[

π2

30

]
+ 66.89 − ln

[
k⋆
H0

]
. (3.70)

One can see that TRH is the only free parameter on the right-hand side of the above
relation, thus assuming that Ne and ρRH satisfy the constraints from experimental
observation [23], we can calculate use Eq. (3.69) to either calculate TRH in terms of
Ne or constrain Ne in terms of TRH. This will turn out to be of great importance as
the reheating temperature TRH plays a vital role in the production of the correct dark
matter relic abundance as well as in the generation of the baryon-asymmetry via
Leptogenesis. Using Eq. (3.69), in Fig. 3.5 we display the effects of varying Ne on the
predictions for CMB parameters of inflation in the ns − r plane via the corresponding
reheating temperature TRH. For this, we fix all couplings to the benchmark points
1, 2 or 3 (as seen in Table 3.1) and vary Ne ∈ [50, 60]. We also demand that all points
fulfill the constraint Eq. (3.66) and therefore slightly vary βS accordingly. In the line
for points with couplings the same as benchmark 1, the lower bound on βS only
allows for Ne ∈ [53.5, 60].

With the reheating temperature TRH in hand, we turn towards the production of
the right relic abundance of dark matter. We have already introduced χ in the the-
ory’s Lagrangian LT Eq. (3.1), which is stabilized due to the unbroken Z2 symmetry
and thus constitutes a good candidate for dark matter. Since dark matter can be pro-
duced after or during the reheating phase [260–262], we consider both the inflaton
S as well as SM (and BSM) particles decaying into χ. Let us note here, that due to
the conditions for the flat direction Eq. (3.6), σ is heavier than S and therefore is not

FIGURE 3.5: Inflation predictions in the (ns, r) plane with varying
Ne ∈ [50, 60] and (slightly) varying βS to account for the As constraint
of Eq. (3.66). TRH is shown using its relation to Ne through Eq. (3.69).
We have fixed βS = 0.005, λSσ = 0.77 and βσ = 1 and for each
line respectively as displayed. Furthermore, we include the Planck

TT,TE,EE+lowE+lensing+BK15 68% and 95% CL regions of [23].
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produced during reheating [261]. χ on the other hand can be produced either via
inflaton decay S → χ χ or via the scattering of right-handed neutrinos NR NR → χ χ

with the cross-section σN,χ. Upon computation of σN,χ ∼ y4
Nχ one quickly finds that

the process NR NR → χ χ is extremely suppressed due to the size of the Yukawa cou-
pling yNχ, which is required to be small to realize neutrino option (see Section 3.2).
Consequently, the process NR NR → χ χ is irrelevant for the production of χ [260],
such that we focus on the inflaton decay as the production mechanism for χ. The
decay width γχ for S → χ χ is then given by

γχ =
3 y2

χ mS

16 π

√
1 − 4 m2

χ

m2
S

, (3.71)

where we assume that S is dominant as the inflaton field compared to ϕ, which if
not valid, needs to be included in the decay width above. Furthermore, we want
to remark that χ only interacts with the SM particles through the right-handed neu-
trino NR, and since yNχ ≪ O(10−8) this contact is extremely suppressed. Thus, it is
sufficient to consider a two-particle system of S and χ where the coupled Boltzmann
equations of the number densities nS, nχ are given by

dnS

dt
= −3 H nS − ΓS nS ,

dnχ

dt
= −3 H nχ + Bχ ΓS nS , (3.72)

where Bχ = γχ/ΓS and ΓS denotes the total decay width of S. We can easily see,
that the equation for nS is not coupled and therefore can be solved on its own [257].
Using this solution to solve for the number density nχ we can calculate its freeze-in
value, namely the value at t = ∞, which leads to the relic abundance Ωχh2 of

Ωχh2 =
1
3

mχ Bχ M2
Pl

ρend

mS

(
aend

a0

)3 (H0

h

)−2

, (3.73)

where a0 = 1 is the current value of the scale factor and H0 = h 2.1332 × 10−42 GeV
with h ≃ 0.674 [22] denotes the present day value of the Hubble parameter. Using
the results of the calculation of Eq. (3.69) we can express the DM relic abundance as
(see also [261])

Ωχh2 ≃ 2.04 × 108 Bχ

(
mχ

mS

)
TRH

1 GeV
. (3.74)

Finally, the branching ratio Bχ can be calculated using Eq. (3.71) and assuming that
we can identify the total decay width ΓS, with the Hubble parameter at the end of
reheating H(aRH) = (3 M2

Pl/ρRH)−1/2, so that for the example of benchmark point 2
of Table 3.1 we find

mS ≃ 4.4 × 1015 GeV , ⟨S⟩ ≃ 1.0 × 1017 GeV , (3.75)

TRH ≃ 1.9 × 1010 GeV , k⋆ = 0.002 Mpc−1 , (3.76)
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and thus an appropriate relic abundance is generated for yχ ≃ 1.4 × 10−11

Ωχh2 ≃ 4.4 × 1031 y3
χ ≃ 0.12 , mχ = yχ ⟨S⟩ ≃ 4.3 × 106 GeV . (3.77)

In Fig. 3.6 we display the possible masses for the dark matter candidate χ that pro-
duce the right relic abundance of dark matter, depending on the temperature at the
end of reheating TRH. Utilizing the relation Eq. (3.69), we change Ne ∈ [50, 60] and
thus considerably vary TRH ∈ [6.8 × 103 GeV, 4.1 × 1016 GeV].

Furthermore, we remember that interaction with S is highly suppressed by yM ≪
1 and thus we can assume that the right-handed neutrinos NR are only reheated
through interaction with the SM particles. Consequently, the lower bound TRH ≳ 2×
109 GeV applies for mN ≳ 2× 107 GeV, to account for successful thermal leptogenesis
[263]. We show this lower bound in Fig. 3.6 as the black dotted line. Lastly, we find
that demanding working thermal leptogenesis restricts us to Ne ≳ 54 for the three
benchmark points in Table 3.1. This still leaves plenty of parameter space in which
we not only dynamically generate MPl, µH, mN, mν, in fact all scales of the SM from
the same origin, the spontaneous breaking of scale-invariance by ⟨S⟩, which also
yields the inflation potential with predictions that are well in agreement with the
current observational constraints, but furthermore even allows for the generation of
the proper amount of dark matter relic abundance.

FIGURE 3.6: Dark matter candidate mass mχ against reheating tem-
perature TRH, such that a proper relic abundance is generated. While
all the other input parameters are fixed to, βS was varied around the
value of benchmark point 2 (Table 3.1) to vary Ne while respecting
Eq. (3.66). The black dotted line shows the lower bound on TRH for a

viable thermal leptogenesis for mN ≳ 2 × 107 GeV [263].
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3.5 Gravity as an Extra Scalar

Until now, we have suppressed contributions by the Weyl tensor C2 term (via κ ≈ 0),
therefore, in the following, we will address this shortcoming and focus on the role
of curvature in the breaking of scale-invariance and the corresponding inflaton po-
tential. Even though quantum effects inevitably generate these general higher-order
contributions of curvature (e.g. C2), they are often suppressed and rarely included
in the action from the start, as they are known to carry not only the massless spin-
0 graviton but also propagating massive spin-2 ghost DOFs. These ghosts pose a
threat to the unitarity and therefore the probabilistic interpretation of quantum the-
ory and consequently require proper treatment. Nevertheless, the thesis presented
here focuses more on the spontaneous breaking of scale invariance in the light of the
dynamical generation of scales. So, we will only briefly discuss the so-called ghost
problem, in which we will explain why we consider globally scale-invariant quadratic
gravity not necessarily to be unphysical, despite the existence of the massive spin-2
ghost and rather discuss the ghost’s contributions to the radiative breaking of scale-
invariance. Thus, we will first give a quick treatment of the aforementioned ghost
problem, then expose the gravitational DOFs in a minimal (for RSSB) toy model, fur-
ther explore the resulting Coleman-Weinberg potential, and show that it can realize
successful inflation that is in perfect agreement with the strongest constraints from
CMB observations [23, 24].

The Ghost Problem

The ghost problem is generally known to be the quantum version of the instability
Ostrogradsky already found in 1850 [264], then for classical mechanics. Naturally,
quantum and classical instabilities are not always comparable, yet in this case, they
are both based on the existence of higher order (> 2) time derivatives at the level
of the equations of motion. In the case of scale-invariant or quadratic gravity, these
problematic contributions are contained specifically in the C2 Weyl tensor squared
term of the action12. Extracting these contributions in terms of propagating fields
one finds that there are spin-2 contributions with a relative minus sign on their ki-
netic term, thus classifying them as ghosts. This relative minus sign leads to negative
norm states when canonical quantization is applied to cure the instability. The ex-
istence of negative norm states, in turn, breaks unitarity and thus the probabilistic
interpretation of QFT. This spin-2 ghost is not to be confused with other often-seen
ghosts, like the Boulware-Deser ghost of massive gravity [265] or the Faddeev-Popov
ghost [266], often introduced to ensure consistency in the path integration of gauged
quantum field theories. The Faddeev-Popov ghost is unphysical and therefore not
part of the theory’s spectrum, the Boulware-Deser ghost was shown to be vanishing
at all orders for massive gravity when parameters were tuned in accordance [267–

12 This is shown by expanding the metric around its quantum fluctuations, such that these higher
derivatives terms can be seen in Eq. (3.82).
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269]. In contrast, the spin-2 ghost of quadratic (scale-invariant) gravity whether
massive or massless is still an issue as it appears in the theory’s asymptotic states
threatening unitarity. For a more in-depth discussion of the ghost in scale-invariant
or quadratic gravity, we refer to our colleagues [61, 62], who among other things
introduce the concept of conditional unitarity that offers an interesting perspective on
the issue of unitarity in scale-invariant theories with massive spin-2 ghost DOFs.

Generally, there are many interesting suggestions on how to address the ghost
problem, i.e. unitarity in higher order derivative theories, some demand different
symmetry requirements on the theory’s Hamiltonian, e.g. PT -symmetry that results
in positive definite inner product [50, 51], others are based on Lee-Wick models [52–
54] which employ the Pauli-Villars [270] regularization with a physical mass instead
of technical one, ultimately leading to ghost not being created. Further possible res-
olutions are based on alternative quantization procedures, e.g. the so-called fakeon
prescription [55, 56], which employs a different quantization for the ghost DOFs,
i.e. as “fake” particles (hence the name). These “fake” particles are then ensured to
be purely virtual and therefore do not appear in the spectrum of asymptotic physical
states. Others, change the notion of probability in quantum mechanics altogether by
generalizing the inner product and thus arrive at positive probabilities for processes
involving ghosts [57, 58], while yet others propose the ghost to be unstable, conse-
quently decaying into SM particles and therefore to not be part of the spectrum of
asymptotic physical states [59, 60].

While this list is by no means a complete recollection of proposed ways to ad-
dress the ghost problem, none of the existing ones seem to come without substantial
caveats, for example, the introduction of (micro) causality violation. Nevertheless,
even among the aforementioned there are promising resolutions to the ghost prob-
lem, such that the existence of the spin-2 ghost in higher-order gravity should not be
a reason for its neglect. Furthermore, we will also find that its contributions can be
rather beneficial when it comes to RSSB of scale invariance in the one-loop Coleman-
Weinberg potential.

Massive Spin-2 Ghost Inflation

In contrast to LT of Sections 3.1 to 3.4, we now do not require κ to be small such
that for our minimal model of RSSB we only consider one single additional scalar
field S(x) coupled to globally scale-invariant quadratic gravity, as we find that the
additional DOFs from the Weyl tensor squared term will allow for the successful
breaking of scale invariance. The complete action S1S

T = SQG + SS that respects global
scale symmetry and infinitesimal local diffeomorphism invariance can be written as

SQG =
∫

d4x
√
−g
(
γR2 − κ CµνρσCµνρσ

)
, (3.78)

SS =
∫

d4x
√
−g
(

1
2
∇µS ∇µS − 1

2
β S2 R − 1

4
λ S4

)
, (3.79)
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such that S1S
T contains all individual squared terms of the curvature tensors and

scalars except for the omitted contributions from total derivatives like the Gauss-
Bonnet term (c.f. Eq. (2.16)). The dimensionless constants γ, κ, β, and λ are taken to
be at natural values. To investigate the effects of the gravitational or metric DOFs
on breaking of scale-invariance as well as inflation, we separate the dynamical part
of the metric by expanding the action in terms of the fluctuations hµν(x) around flat
Minkowski space ηµν

gµν → ηµν + hµν . (3.80)

In the same manner, we rewrite the scalar S as quantum fluctuations Ŝ around the
approximately constant (classical) background field Scl

S → Scl + Ŝ , (3.81)

such that the total action expanded up to second order in the dynamical fields Ŝ and
hµν using Eqs. (3.80) and (3.81) is calculated to be

S(quad)
T =

∫
d4x

[
γ
(
hµν∂µ∂ν∂ρ∂σhρσ + hµ

µ□2hν
ν + 2hµ

µ□∂ν∂ρhνρ
)

+
1
6

κ
(
−3hµν□2hµν − 6hµν□∂ν∂ρhµρ − 2hµν∂µ∂ν∂ρ∂σhρσ

+ hµ
µ□2hν

ν + 2hµ
µ□∂ν∂ρhνρ

)
+

1
8

β S2
cl
(
hµν□hµν + 2hµν∂ν∂ρhµρ − hµ

µ□hν
ν − 2hµ

µ∂ν∂ρhνρ
)

− 1
2

Ŝ β Scl
(
∂ν∂µ +□ηµν

)
hµν +

1
2

Ŝ
(
□− 3λS2

cl
)

Ŝ
]

, (3.82)

where we use the notation □ = −gµν∂µ∂ν to denote the d’Alembert operator, per-
formed partial integration and left out terms ∝ Ŝ4, that would have induced a cos-
mological constant at tree-level. To further isolate the individual gravitational DOFs,
we perform a so-called York decomposition [271] to separate the contributions of dif-
ferent spins

hµν =

(
∂µ∂ν −

1
4

ηµν□
)

a +
1
4

ηµνhα
α + ∂µVν + ∂νVµ + h̃µν , (3.83)

where we find the scalar modes a(x) and hµ
µ, the transverse (∂µVµ = 0) vector

modes Vµ(x) and finally the transverse-traceless (∂µh̃µν = h̃µ
µ = 0) tensor modes

h̃µν(x) [272]. As demonstrated in [273], the two spin-0 DOFs can be combined in the
then gauge-invariant13 scalar quantity ϕ(x)

ϕ = hµ
µ −□a , (3.84)

13 Here, gauge-invariance is understood to be w.r.t the diffeomorphism hµν → hµν + ∂µξν + ∂νξµ.
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which denotes the scalar DOF of the R2 contribution, the so-called scalaron, that also
acts as the inflaton in e.g Starobinsky’s model of inflation [201]. Applying Eqs. (3.83)
and (3.84) to the action in Eq. (3.82) we find that all the quadratic terms of Vµ and a
cancel out identically to give S(quad)

T as

S(quad)
T =

∫
d4x

[
9

16
γ ϕ

(
□2 − m2

ϕ□
)

ϕ − 1
2

κ δµνρσ h̃µν
(
□2 − m2

gh□
)

h̃ρσ

−Ŝ
(

3
4

β Scl□
)

ϕ +
1
2

Ŝ
(
□− m2

S
)

Ŝ
]

, (3.85)

with δµνρσ = 1
2 (ηµρηνσ + ηµσηνρ). In analogy to the general Coleman-Weinberg cal-

culation (see Sections 2.3.1 and 2.3.2 and Eq. (2.37)), we have included the on the
classical background field Ŝ depending masses

m2
ϕ =

β

12γ
S2

cl , m2
S = 3 λ S2

cl , m2
gh =

β

4κ
S2

cl . (3.86)

We see, that not only the two scalars S and ϕ but also the spin-2 ghost generate
a field-dependent mass term and thus all three are expected to contribute to the
quantum effective potential. We use the aforementioned Coleman-Weinberg mech-
anism to calculate said quantum effective potential at one-loop order by integrating
out the fluctuation fields Ŝ, ϕ, and h̃µν to determine the VEV of Scl. Following the
Coleman-Weinberg procedure, i.e. isolating the terms that are quadratic in the fields
Φ = (h̃µν, ϕ, Ŝ)T, evaluating the functional Gaussian integral, and dropping the “cl”
subscript for Scl, we arrive at the familiar equation for the one-loop contribution V(1)

eff

(see Eq. (2.32)) to the effective potential Veff

V(1)
eff (S) = − i

2
ln

[
Det

(
δ2S(quad)

T

δΦδΦ

)]

= − i
2

ln [DetM]− i
2

Tr
(

ln
[
δµνρσ

(
−□2 + m2

gh□
)] )

, (3.87)

where, again, the determinant is understood to be functional. We find, that the scalar
contribution to the one-loop effective potential, denoted by the scalar Hessian ma-
trix M (derivatives w.r.t ϕ, Ŝ) in the first term, nicely separates from the spin-2 ghost
contribution in the second term above, such that we can deal with them individu-
ally. First, we will compute the scalar contribution using the standard techniques as
outlined in Section 2.3.1, then we will turn to the spin-2 part, which requires some
further consideration since the general calculation of the Coleman-Weinberg poten-
tial is often shown only for SM-like particles, which are of the spin s =

{
0, 1

2 , 1
}

(see
e.g. [144]).



58 Chapter 3. Unifying Emergence of Scales

First, regarding the scalar contribution, with the scalar Hessian M given by

M =

(
9
8 γ
(
□2 − m2

ϕ□
)

− 3
4 β S □

− 3
4 β S □ □− m2

S

)
, (3.88)

we can still rewrite the logarithmic determinant in Eq. (3.87) as the functional trace
over logarithms but since M, as seen above Eq. (3.88) contains off-diagonal terms,
we arrive at the little more complicated expression

ln [DetM] = Tr
(

ln
[
□− m2

+

] )
+ Tr

(
ln
[
□− m2

−
] )

+ · · · , (3.89)

where “. . .” represents constant terms independent S that therefore will not con-
tribute to the effective potential14. Furthermore, the two masses m2

± are defined as

m2
± =

1
2

(
m2

S + (1 + 6 β) m2
ϕ

)
± 1

2

√(
m2

S + (1 + 6 β) m2
ϕ

)2
− 4 m2

S m2
ϕ , (3.90)

which we find to agree with the Einstein frame mass eigenstates as calculated in [69].
Using Eq. (3.89), we see that in momentum space, the scalar contributions to V(1)

eff (S)
are again of the familiar form of Eq. (2.36). Therefore, we can employ the usual
dimensional regularization and renormalization via the MS scheme to calculate the
scalar one-loop contribution to the effective potential according to Eq. (2.37) as

V(1)
s (S) = − i

2 ∑
j=±

∫ d4 p
(2 π)4 ln

[
p2 − m2

j

]

=
1

64π2 ∑
j=±

m4
j

(
ln

[
m2

j

µ2

]
− 3

2

)
. (3.91)

Here, µ denotes the renormalization scale and divergent terms have been absorbed
in the redefinition of the renormalized dimensionless coupling λ15.

Now, addressing the calculation of the spin-2 contribution works similarly to the
CW calculation above and it will turn out that the general MS expression Eq. (2.37)
still holds for the massive spin-2 ghost, merely with adjusted N = 5 numbers of
DOFs and constant c = 1/10. Yet, since we believe this not to be obvious, we will
showcase the calculation its considerations, and assumptions in the following. Using
the well-known properties of the trace and the natural logarithm, we can rewrite the
spin-2 contribution of Eq. (3.87) to be

Tr
(

ln
[
δµνρσ

(
−□2 + m2

gh□
)])

= Tr
(

ln
[
δµνρσ

(
□− m2

gh

)])
+ Tr (ln [−□]) ,

(3.92)

therefore recovering familiar contribution of Tr ln(□− m2) by separating it from the

14 If not left out here, they would be subtracted when these contributions are renormalized and thus
would not contribute either way.

15 This is the usual procedure in calculating the Coleman-Weinberg potential, see e.g. [26]
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“new” Tr ln(−□) contribution. In addition, we find the “new” contribution to be
independent of S and thus we drop it, for the same reason the “. . .” terms were
dropped before. Due to the properties of the logarithm, the relative minus sign is
also dropped, thus the overall sign of the spin-2 ghost contribution to the effective
potential is the same as for usual particles. We find this to be in agreement with
the calculations in [69] of the quartic coupling’s β-function. Now, to compute the
remaining contribution by the first term in Eq. (3.92) we utilize that h̃µν is transverse-
traceless in momentum space to arrive at

h̃µν δµνρσ h̃ρσ = h̃µν P(2)
µνρσ h̃ρσ , (3.93)

with P(2)
µνρσ being a spin-2 projection operator (see e.g. [274]) of the form

P(2)
µνρσ =

1
2
(
θµρθνσ + θµσθνρ

)
− 1

d − 1
θµνθρσ , (3.94)

θµν = ηµν −
pµ pν

p2 . (3.95)

Applying the replacement Eq. (3.93) to Eq. (3.92) guarantees that the number of DOF
(e.g. Ni in Eq. (2.37)) is counted correctly, which in the case of the massive spin-2
boson comes out to N = 5. Furthermore, we find that

Tr
(

P(2)
µνρσ

)
= δµνρσP(2)

µνρσ =
1
2
(d + 1)(d − 2) , (3.96)

and with that proceed to calculate the contribution of the massive spin-2 ghost h̃µν

to the one-loop effective potential through the usual CW approach to find

V(1)
h (S) = − i

2
lim
d→4

(
µ4−d

∫ dd p
(2 π)d

1
2
(d + 1)(d − 2) ln

[
p2 − m2

gh

p2

])

=
5

64π2 m4
gh

(
ln

[
m2

gh

µ2

]
− 1

10

)
, (3.97)

where in the first line we explicitly show the step of dimensional regularization be-
fore employing the MS scheme for renormalization.

Now, collecting all the contributions, the quantum effective potential at one-loop
level is given by

Veff(S) =
1
4

λ S4 + V(1)
s (S) + V(1)

h (S) + V0 , (3.98)

where the first term denotes the tree-level scalar contribution from Eq. (3.79) and,
in analogy to before in Section 3.1, specifically Eq. (3.19), we have included the con-
stant contribution V0 to demand a classically vanishing zero-point energy to avoid
problem of the cosmological constant. Here, it is worth noting that our framework
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ensures that the cosmological constant remains zero in the Einstein frame when can-
celed in the Jordan frame as in Eq. (3.98). Further following the example of Sec-
tions 3.1 and 3.3 we first discuss the spontaneous breaking of scale-invariance by
quantum effects in Veff(S), the resulting dynamically generated MPl and lastly the
corresponding inflation predictions and constraints on this toy model. We will re-
frain from discussing couplings to the SM and solutions to further problems like
dark matter and just remark that (potentially) they can be included in the same way
as discussed above in Sections 3.2 and 3.4.

To calculate the VEV of S via Eq. (3.98), we first rewrite the effective potential,
factoring out dependencies on S

Veff(S) = V0 +

(
C1 + C2 ln

[
S2

µ2

])
S4 , (3.99)

where C1 and C2 depend only on the dimensionless couplings λ, β, γ, and κ of
Eqs. (3.78) and (3.79) and can be easily computed from the expressions given for
the individual contributions to Veff in Eq. (3.98), i.e. Eqs. (3.91) and (3.97) and are
displayed in Appendix A.2. With the effective potential in this form, it is easy to
minimize

∂Veff(S)
∂S

∣∣∣∣
S=⟨S⟩

= 0,
∂2Veff(S)

∂S2

∣∣∣∣
S=⟨S⟩

> 0 , (3.100)

such that we obtain the non-zero value for the VEV of S, that spontaneously breaks
global scale-invariance, to be

⟨S⟩ = µ exp
(
−1

4
− C1

2 C2

)
, (3.101)

and in turn, also determines the value of V0 through

Veff(⟨S⟩) !
= 0 ⇒ V0 =

1
2

C2 ⟨S⟩4 . (3.102)

Lastly, the dynamically generated Planck mass MPl is again obtained by identifica-
tion of the effective Einstein-Hilbert term in the effective action Seff

Seff =
∫

d4x
√
−g
(

1
2

S□S − 1
2

β S2 R + γ R2 − κ CµνρσCµνρσ − Veff(S)
)

, (3.103)

when evaluated at S = ⟨S⟩, such that its renormalization scale dependent value is
given by

M2
Pl = β ⟨S⟩2 . (3.104)

At this point, we want to take a breath, shortly conclude, and compare to the previ-
ous calculation Section 3.1.
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While a lot of arguments and computational steps are similar to Section 3.1 be-
fore, there are three points we want to remark on here. First, and possibly most
notable, the radiative spontaneous breakdown of global scale-invariance is realized
only with one additional scalar due to the additional contributions to the effective
potential from the massive spin-2 ghost DOF, that emerges when gravity is not
treated classically but quantum mechanically. This specifically, to our knowledge,
is a new result, yet maybe not a surprising one given the previous derivation of a
more general version of this phenomenon at the level of the RG-equations by [69,
275] that also includes a dynamical solution to the appearance of a cosmological
constant. Hereof, and secondly, we again require the cosmological constant to van-
ish after RSSB already in the Jordan frame, thus ensuring that it stays zero also in the
Einstein frame. Hence, we again choose to not address this problem in more detail
and rather avoid the discussion. Third and last, one might wonder about the “miss-
ing” ∝ R contributions to MPl when comparing Eq. (3.104) with Eq. (3.20). Since we
are not treating gravity purely classical anymore, these ∝ R contributions from the
expansion in powers of R, are implicitly included in the gravitational contributions
via m2

ϕ and m2
gh of Eq. (3.86), now sourced due to the expansion of the metric gµν and

integrating out its quantum fluctuations.
Now, that we have discussed the spontaneous breaking of scale symmetry in the

Jordan frame, we find ourselves in a similar situation to Section 3.3.1. Indeed, our
effective potential will again prove to be a proper potential to successfully realize in-
flation. Since the approach is so similar, we will only briefly go over the intermediate
steps and instead refer to the previous treatment for more details. We start with the
effective action in Jordan frame of Eq. (3.103), introduce an auxiliary scalar field to
remove the R2 dependency, transform to the Einstein frame through a Weyl rescal-
ing, and again find the auxiliary field to be dynamical as the scalaron. Furthermore,
we again find a valley structure in this two-scalar potential, and choose one of two
possible flat contours along either field to arrive at an effective one-field inflation
potential. Similar to before, the choice of contour has only an insignificant influence
on the inflationary predictions, as both contours turn out to be valid for our consid-
ered parameter space. Without loss of generality, we then choose to eliminate the
scalaron, such that we are left with the final effective one-field Einstein frame action

SE
eff =

∫
d4x

√
−g
(
−1

2
M2

Pl R − κ CµνρσCµνρσ +
1
2

F(S)2 S□S − Vinf(S)
)

, (3.105)

with the modification to the kinetic term of S due to F2(S) given by

F2(S) =
(1 + 4 A) B + 3

2 M2
Pl [(1 + 4 A) B′ + 4 A′ B]2

[(1 + 4 A) B]2
, (3.106)

where primes are understood to be derivatives w.r.t. S. The dimensionless short-
hand functions A, B are similar to the notation in Section 3.3.1, depending on the
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dimensionless couplings, and S but now given by

A(S) =
4 γ Veff(S)
B(S)2M4

Pl

, B(S) =
β S2

M2
Pl

. (3.107)

Collecting the results above we can obtain the canonically normalized Ŝ through
the integration shown in Eq. (3.59) and most importantly, the final inflaton potential
Vinf(S) can be written as

Vinf(S) =
Veff(S)

B(S)2 + 16 M−4
Pl γ Veff(S)

, (3.108)

now only depending on the dimensionless couplings λ, β, γ, κ and the single inflaton
field S. Vinf allows us to calculate the slow-roll parameters ϵ, η as in Eqs. (3.62)
and (3.63) and therefore also the predictions for the CMB observables, the amplitude
As and the spectral tilt of the scalar power spectrum ns as well as the tensor-to-scalar
ratio r as shown in Eq. (3.40). We show the predictions for ns and r in Fig. 3.7 for
couplings in the parameter space

λ = 0.005 , β ∈ [103, 104] , γ ∈ [103, 109] , κ ∈ [102, 103.25] . (3.109)

While µ is fixed by demanding the experimentally observed value for MPl through
Eq. (3.104), the dimensionless couplings of the action Eq. (3.103) are chosen accord-
ing to Eq. (3.109), to assure that the As constraint Eq. (3.66) of [23] is fulfilled, all
while keeping the theory perturbative. In other words, we ensure that the loga-
rithms (e.g. ln[S/ ⟨S⟩]) keep to perturbative values during inflation, thus allowing
us to neglect RG-running effects as they are insignificant. In addition to displaying
γ (see Fig. 3.7), we also display the coupling of the Weyl tensor squared term κ in
Fig. 3.7 to emphasize the C2 terms contribution. Similar to Section 3.3.2, we find that
the predictions for r of our model interpolate between the ones of linear inflation
(m3ϕ) as an upper and Starobinsky (R + R2) as a lower limit. Both other models’
predictions are also displayed in Fig. 3.7, where the circles on each side represent
Ne = 50 (left) and Ne = 60 (right), respectively. All in all, we find a considerably
sized parameter space that allows for RSSB of global scale invariance while being
in good agreement with the currently strongest constraints on inflation set by the
Planck and BICEP/Keck collaborations [23, 24].

Furthermore, the benchmark point (“B1”) corresponds to the coupling values of

B1 : λ = 0.005 , β = 5.62 × 102 , γ = 1.22 × 108 , κ = 837 , (3.110)

and to get a better grasp on contributions of the gravitational DOFs, we compute
the to “B1”-values corresponding masses mϕ(S) and mgh(S) evaluated at the global



3.5. Gravity as an Extra Scalar 63

FIGURE 3.7: Predictions for the scalar spectral tilt ns, the tensor-
to-scalar ratio r with varying numbers of e-folds Ne, and γ (top)
or κ (bottom) are displayed as color grading. The points shown
have fixed λ = 0.005, while β, γ, and κ are taken randomly from
Eq. (3.109), such that Eq. (3.66) is fulfilled. We include the Planck
TT,TE,EE+lowE+lensing+BK18+BAO 68% and 95% CL regions from
[23, 24]. Additionally, the predictions of the Starobinsky model
(green) and linear inflation (red) are included. Corrections to r due
to the C2 term [276–278] have not been included here, though they

are accounted for in Fig. A.1.
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minimum ⟨S⟩ through Eq. (3.86)

mB1
ϕ (⟨S⟩) ≃ 6.35 × 1013 GeV , mB1

gh(⟨S⟩) ≃ 4.21 × 1016 GeV . (3.111)

These exemplary values serve as a good order of magnitude estimate for the entire
considered parameters space Eq. (3.109), as they sit in the middle of their range of
values, allowing only for deviations of roughly one order of magnitude. Further-
more, since both mϕ and mgh display the same dependence on β, yet also dependen-
cies on the remaining curvature couplings mϕ ∝ γ−1 and mgh ∝ κ−1 (c.f. Eq. (3.86)),
we see in Fig. 3.7, that large γ as well as small κ are present for predictions of the
experimentally preferred low r region. Thus, we can novelly conclude, that the mas-
sive spin-2 ghost contribution, in our scale-invariant model, is not only beneficial
but crucial for successfully realizing the spontaneous breaking of scale invariance
while maintaining the prediction of a small tensor-to-scalar ratio r. Apart from phe-
nomenological implications, there have been recent works that show that there is
also a theoretical requirement for the spin-2 ghost to be (very) heavy in models sim-
ilar to the one considered here [61].

Lastly, the Weyl tensor contribution in Eq. (3.103) causes additional corrections
to the tensor-to-scalar ratio r prediction due to non-trivial tensor perturbations in a
de Sitter background [275–278]. Choosing representative field values for S, i.e. S =

SCMB, we can calculate these corrections using the slow-roll approximation to be

rcorr = r

(
1 +

2 H2

m2
gh

)−1

≃ r

(
1 +

2 Vinf(SCMB)

3 M2
Pl m2

gh(SCMB)

)−1

, (3.112)

and find that the corrections are rather small, with a maximal effect of ≈ 10%. Thus,
the predictions for the same parameter space as before in Eq. (3.109) including the
correction factor in Eq. (3.112) are shown Fig. A.1. We still find our model’s pre-
dictions to be fully compatible with the most stringent constraints from the latest
observational data [24]. Consequently, the above conclusion that the inclusion of
the C2 term already at the tree-level can lead to a spin-2 ghost contribution with
a large mass and thus allows for the radiative breakdown of scale-invariance with
phenomenological favored inflation predictions while dynamically generating the
correct MPl, is not altered by these corrections and therefore still stands as the (ar-
guably) most notable outcome of the considerations regarding this model.
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Chapter 4

Conformal Dynamics as UV
Completion to Little Higgs

So far we have discussed the hierarchy problem of including gravity in the Standard
Model only for a fundamental Higgs boson. But what if we question that assumption
and consider the Higgs to be non-fundamental, to be composite? At first glance the
answer seems simple, we avoid the hierarchy problem (as introduced in Section 2.4)
when the Higgs is identified as a bound state of QCD-like strong dynamics with a
mass that sits roughly at its confining scale mh ∼ Λ. Yet, the complete answer, as is
often the case, is not so simple and not without significant caveats, as the example
of the original technicolor model teaches us.

But first, the basic principle for the non-elementary Higgs to avoid the hierar-
chy problem is that when probed at energies below the confinement scale Λ, the
Higgs will appear as fundamental, thus will exhibit quadratically sensitive correc-
tions and take part in electroweak symmetry breaking as usual, but at energies above
the confinement scale, the fact that the bound state has a finite size will be probed as
well, hence introducing form factors and thus resulting in quickly converging cor-
rections. Furthermore, one now may wonder whether the confining scale Λ ≪ MPl

itself induces another hierarchy problem. This is indeed not the case, as Λ is gener-
ated through the dimensional transmutation of QCD-like dynamics, where instead
of the dimensionless coupling fulfilling a criticality condition (oftentimes related to
smallness) to spontaneously induce a scale as described in Section 2.3, instead the
coupling grows large to non-perturbative values at lower energies and thus allows
the forming of bound colorless states. This process, also known as confinement, pro-
vides naturally exponentially separated scales via the logarithmic RG-running of the
dimensionless coupling constants via their β-functions. While the process of scale
generation is fairly similar to the considerations of dynamically induced mass scales
before, the composite nature of the Higgs here means that it is not present in the
particle spectrum at energies above the confinement scale and therefore warrants
the embedding into a UV complete theory already above Λ. In contrast, the SM on
its own is UV-complete at least up to MPl when the embedding of quantum gravity
becomes necessary. This specifically is where conformal symmetry comes in handy,
as one can arrange for only non-Abelian gauge couplings to be fundamental at high
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energies, such that the theory automatically exhibits the proper fixed points for UV
completion.

This chapter is structured as follows, based on the excellent reviews of [15, 17],
we first revisit the fundamentals of the Higgs as a non-fundamental scalar in Sec-
tion 4.1, shortly introducing (historically) important models like technicolor to later
arrive at the class of so-called Little Higgs models. Thereafter, in Section 4.2 we
shortly touch on the general aspects of UV completion and then introduce conformal
dynamics as a general framework for the UV completion of Little Higgs models. Fi-
nally, we consider the example of UV completing the Bestest Little Higgs via strongly
coupled conformal dynamics and comment on the corresponding (phenomenologi-
cal) implications.

4.1 The Higgs as a Non-fundamental Scalar

When describing the electroweak symmetry-breaking, the original composite Higgs
models (CHMs) by Georgi and Kaplan [279–285] provide an alternative “middle
ground” to the Higgs model, where the Higgs is a fundamental scalar of the SM and
simple technicolor [177, 286], which similar to QCD does not contain a scalar at all.
They realized that if the Higgs arises as a pseudo-Nambu-Goldstone boson (pNGB)
of the global symmetry breaking of strong dynamics, it can be naturally lighter than
the other emerging particles. While its composite nature lets them avoid the hi-
erarchy problem of the SM Higgs model, containing the light Higgs boson in the
spectrum of physical particles at low energies ensures that electroweak precision
tests (EWPT) are satisfied, contrary to technicolor models, which struggle specifi-
cally with this aspect. Thus, as we ultimately want to introduce a specific class of
CHMs, we think it instructive to first present the fundamental ideas of technicolor
models, to then later understand how its issues lead to the formulation of CHMs.

4.1.1 Technicolor

In contrast to the Higgs model, technicolor is fundamentally based on the QCD-
like breaking of symmetry. While not QCD itself can account for the breaking of
electroweak symmetry, technicolor employs a heavily analog concept. NTC tech-
nifermions Q of a new force are charged under the forces strong non-Abelian gauge
group GTC, the so-called technicolor, they experience spontaneous breaking of their
global chiral symmetry down to their vectorial subgroup

SU(2)L × SU(2)R → SU(2)V , (4.1)

due to the (assumed) confinement
〈

Q̄Q
〉

of this new force rather than the color force
of QCD and consequently, generate the required Goldstone bosons. Gauging the
electroweak part of the symmetry then gives mass to the SM electroweak gauge
bosons. As in QCD, the scale of confinement fTC determines the mass the SM gauge
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bosons acquire this way. Indeed, one arrives at proper W and Z masses for

fTC = 246 GeV ≫ fQCD , (4.2)

where we want to note, that even though the majority of mW, mZ is due to the techni-
pions, the QCD vacuum already breaks EW symmetry and thus always contributes
to the SM gauge boson masses, however negligible compared to other effects from
e.g. technicolor or the (composite) Higgs. Regardless, the SM fermions do not di-
rectly interact with the condensate

〈
Q̄Q

〉
and thus require an additional mechanism

for the generation of their mass. The answer was to extend the technicolor gauge
group to the larger gauge group GETC of the so-called extended technicolor (ETC) [287,
288]. This larger gauge group is then broken down to GTC at the scale ΛETC > ΛTC,
allowing for an interaction between the SM fermions and the technifermions me-
diated by the massive ETC bosons. Yet, with the solution to this problem, there
came substantial caveats, namely the generation of flavor changing neutral currents
(FCNCs), which require heavy suppression to not violate the experimental obser-
vations. While there were several attempts to reconcile ETC with electroweak pre-
cision observations [288–290], we want to shortly remark here that there exists also
the framework of walking technicolor [291], which resolves this issue by introducing
a conformal fixed point for technicolor in contrast to the usual asymptotically free
theory. Regardless, the discovery of the Higgs boson with a mass at 125 GeV in 2012
at the LHC [9, 10]1, and therefore much lighter than the confinement scale, consti-
tute the most vital issue for technicolor models, which eventually lead to them being
regarded as unfavorable or even excluded. Now, after reviewing the basic idea of
technicolor, in the following, we will discuss how composite Higgs models gener-
ate a light Higgs boson in their physical spectrum with a similar but significantly
modified flavor structure.

4.1.2 Composite Higgs

Although the flavor structure and its breaking might resemble the ones considered
in technicolor, the general class of composite Higgs models exhibit the fundamental
difference, that the condensate of the strong confining dynamics does not directly
break electroweak symmetry. Therefore, we start with a large global flavor sym-
metry G, which is spontaneously broken to the smaller subgroup Hcon due to the
confinement of G at the scale f . So far so technicolor, but in contrast, now the elec-
troweak symmetry GEW = SU(2)L × U(1)Y is unbroken and therefore contained in
Hcon. Furthermore, G is explicitly broken by weakly gauging another one of its sub-
groups, Hg which also contains the SM electroweak symmetry (EW) group GEW, and

1 It was verified that the observed particle indeed has the properties of the SM Higgs with subse-
quent measurements (see e.g. [292, 293]). The most recent analysis of experimental data reaches a
precision of 0.09% w.r.t the Higgs mass [294].
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thus

H = Hcon ∩ Hg ⊃ SU(2)L × U(1)Y , (4.3)

ensuring that EW is unbroken by the strong confining dynamics while simultane-
ously being gauged. Consequently, at the level of preserved EW symmetry, the the-
ory contains nm = dim Hg − dim H massive gauge bosons and nNGB = dim G −
dim Hcon − nm massless Nambu-Goldstone boson (NGB). This symmetry-breaking
pattern is shown in Fig. 4.1 (left). Under the consideration of Goldstone’s theorem
[154] we choose G and Hcon in such a way that the nNGB include a SU(2)L doublet
which we in turn identify with the Higgs doublet

G/Hcon ⊃ (1, 2)1/2 . (4.4)

At tree level the Higgs doublet does not exhibit a potential and EW symmetry re-
mains unbroken but since we gauged Hg, the SM gauge interactions radiatively in-
duce a Higgs potential, thus breaking EW symmetry at the scale v. Consequently,
there exists a separation of the confinement scale f and the scale of EW symmetry
breaking v, quantified by the parameter ξ

ξ =

(
v
f

)2

, (4.5)

which can be interpreted as the angle of vacuum misalignment2 (see Fig. 4.1 (right)).
While this separation allows for a light Higgs doublet from strong confining dynam-
ics and thus avoids the “original” hierarchy problem as discribed in Section 2.4, it
introduces new fine-tuning, much smaller than MPl/vEW and thus often referred to
as the little hierarchy problem.

Since the mechanism of vacuum misalignment is essential for composite Higgs
models to separate confinement and electroweak scale we want to further reiterate
this unfamiliar concept by shortly discussing the CCWZ formalism introduced by
Callan, Coleman, Wess and Zumino [295, 296] to describe the general low-energy
effective (or phenomenological) Lagrangian, the corresponding Nambu-Goldstone
bosons and heavy resonances for strongly (or weakly) coupled theories with the
generic symmetry breaking of G → Hcon

3. One starts by utilizing the Goldstone the-
orem to describe the NGB Πâ by defining the exponential Goldstone matrix U (Π)

to express general local fluctuations in G around the vacuum V⃗ by

Φ⃗(x) = U (Π) V⃗ = exp

[
i
√

2
f

ΠâT̂ â

]
V⃗ , (4.6)

2 The interpretation of ξ as an angle becomes apparent when one chooses G = SO(3), the group of
spatial rotations, see [16].

3 Here we chose the generic H = Hcon to be in line with the notation used above.
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where T̂ â denotes only the broken generators of the vacuum and we thus have al-
ready omitted all contributions from unphysical DOFs, that drop out as they anni-
hilate with the vacuum V⃗. While G is an exact global symmetry the above NGBs re-
main exactly massless and thus do not obtain a potential and a non-zero VEV. Even if
one manages to construct

〈
Πâ〉 ̸= 0, it could be removed by global symmetry trans-

formation of G. Now, as already briefly mentioned above, we introduce explicit
breaking of G (by gauging Hg) and hence radiatively generate a potential for the
NGBs, along with a mass, ultimately making them into pseudo-Nambu-Golstone
bosons (pNGBs). Since G is broken explicitly, their VEV is stable

〈
Πâ〉 = vâ ̸=

0 against G transformations and therefore becomes physical. The corresponding
pNGB potential determines the scale of v and thus is quite dependent on the specific
realization of the above formalism. Realizing a large separation, parameterized by
ξ = v2/ f 2 ≪ 1, is possible by constructing the vacuum with an orientation almost
along the direction of symmetry preservation. On one hand, the limit of ξ → 1 corre-
sponds to the so-called maximally broken EW symmetry and is technically not much
different from technicolor. On the other hand, the limit of ξ → 0, ultimately leads
to the decoupling of the strong confining dynamics, leaving only the pNGB Higgs
in the low-energy spectrum while at the same time introducing fine-tuning. Since
the confinement at f generates the potential, a VEV of a similar order is “natural”,
whereas a smaller v exhibits the familiar quadratic sensitivity and therefore requires
the fine-tuning

δft =
f 2

v2 . (4.7)

Now considering v ≈ 102 GeV, and the experimental null results for new physics
up to TeV energies, like the inevitably generated “heavy” resonances with masses of
order f , results in fine-tuning issues of general composite Higgs models, also known

FIGURE 4.1: Symmetry breaking pattern of global symmetry G spon-
taneously broken to Hcon, also explicitly broken to Hg via weakly
gauging, Such that H = Hcon ∩ Hg contains the SM gauge group.
While the EW symmetry is unbroken at tree-level (left), the one-loop
contributions induce a shift in the vacuum and thus breaking of EW

symmetry (right).
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as the little hierarchy problem. The class of composite Higgs models referred to as
Little Higgs models, additionally addresses specifically this fine-tuning problem and
thus we will continue our discussion by introducing the corresponding framework.

4.1.3 Little Higgs

To address this quadratic sensitivity to radiative corrections from the SM gauge
bosons, the Little Higgs models follow the symmetry-breaking pattern of general
composite models as outlined above but extend the global symmetry G to utilize
the so-called collective symmetry breaking [40, 297–300] of EW symmetry. In the fol-
lowing, we will discuss this mechanism for removing radiative quadratic sensitive
corrections by the example of The Simplest Little Higgs [301].

While just altering the gauged content of the theory did not prove sufficient to
remove the quadratic sensitive fine-tuning between the confinement scale f and the
electroweak VEV vEW, considering a larger global symmetry G as a starting point
will allow for multiple non-linear sigma model (nlsm) fields to parameterize the
pNGB potential and therefore realize collective breaking. In The Simplest Little Higgs,
we start out with the strongly interacting sector, invariant under the global product
group G = SU(3)× SU(3). Through confinement at Λ, G is spontaneously broken
to its subgroup Hcon = SU(2)× SU(2)

G → Hcon = SU(3)× SU(3) → SU(2)× SU(2) . (4.8)

To determine the electroweak symmetry breaking in this framework, we parameter-
ize the NGB potential via the now two nlsm fields Σ1 and Σ2

4, which are given by the
usual Goldstone matrix U(Πi) (c.f. Eq. (4.6)) of the cosets SU(3)/SU(2), respectively
as

Σ1 = U (Π1)

0
0
f

 , Σ2 = U (Π2)

0
0
f

 , (4.9)

where we set f1 = f2 = f for simplicity in the knowledge that it will not spoil
collective symmetry breaking, as we will see in the following. Moreover, G is also
broken explicitly to its diagonal (sometimes also called vectorial) subgroup SU(3)D

by only gauging this subgroup

G → Hg = SU(3)× SU(3) → SU(3)D , (4.10)

4 Often seen in the context of left-right models, where the degeneracy between either SU(3)/SU(2)
coset is usually broken by different couplings to the SM. Nevertheless, this additional assumption
is not necessary for the general mechanism of collective breaking and thus we keep our discussion
to the general 1, 2 notation, rather than left-right.
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such that the leading order nlsm Lagrangian is given by

Lnlsm = |DαΣ1|2 +
∣∣DβΣ2

∣∣2 . (4.11)

Here, Dα denotes the SU(3)D covariant derivative, which does not induce SU(3)
breaking spurion contributions in Lnlsm, due to the chosen gauge structure, i.e. that
the gauged subgroup of the global G constitutes the full SU(3)D. The absence of
these spurion contributions alone ensures that the leading order quadratic divergent
terms in the CW-Higgs potential, calculated from Eq. (4.11) are

VCW(H) ∝ Tr
[
Σ†

1Σ1

]
+ Tr

[
Σ†

2Σ2

]
, (4.12)

and therefore do not depend on the physical Higgs. This allows us to remove these
divergent contributions in the process of renormalization. While the quadratic sen-
sitivity is then dealt with, the enlarged global symmetry G needs to provide enough
“uneaten” NGB to identify the SM Higgs and thus properly break EW symmetry.
Indeed, the breaking G → Hcon results in

nNGB = 2 dim [SU(3)]− 2 dim [SU(2)] = 2
[(

32 − 1
)
−
(
22 − 1

)]
= 10 . (4.13)

Following the symmetry breaking pattern in Fig. 4.1, and since we only consider the
SU(2) part of the EW symmetry and treat U(1)Y separately, we find H = Hcon ∩
Hg = SU(2) and thus the number massive gauge bosons nm to be

nm = dim
[
Hg
]
− dim[H] =

(
32 − 1

)
−
(
22 − 1

)
= 5 . (4.14)

This leaves exactly nNGB − nm = 5 uneaten NGB, four give a complex doublet H ∝
Π1 − Π2 to be identified with the SM Higgs and the remaining one denotes a real
scalar η. Furthermore, in the next step, we will see, that not any enlargement of G is
acceptable, but rather one that induces multiple nlsm fields in the Lagrangian, such
that the symmetry can be broken collectively, preventing the removed quadratic di-
vergences from reappearing.

Looking for the leading non-quadratic-divergent contributions to the CW-Higgs
potential, we turn specifically to the interaction of the nlsm fields Σi with the SM
gauge bosons Wα in Eq. (4.11), namely

Lnlsm ∋ |g Wα Σ1|2 +
∣∣g Wβ Σ2

∣∣2 , (4.15)

where we want to remark that both terms’ invariance under the gauged SU(3)D im-
plies a global SU(3) invariance. In here lies the essence of collective breaking, each
term individually in Eq. (4.15) exhibits an extended global SU(3)× SU(3) symmetry
and only the existence of both terms in Eq. (4.15) ensures that the global symmetry
is broken to SU(3)D, the symmetry is collectively broken. Note here the importance
of gauging the diagonal subgroup SU(3)D, as opposed to one of the SU(3), since
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FIGURE 4.2: Leading divergent contributions to VCW from contribu-
tions that contain a combination of both Σ1,2 for the fermion (left) and

the gauge (right) sector, respectively.

the latter would lead to a separation of the massive SU(3) gauge bosons and the
NGBs in symmetry space such that the NGBs would not obtain a potential and sim-
ply remain massless. Indeed when calculating radiative corrections one finds exact
cancellations between same-spin particles of the SM gauge contributions that only
involve one of the terms in Eq. (4.15) (see e.g. [17]). Consequently, the radiative
corrections to the pNGBs’ potential, e.g. see Fig. 4.2 (right), only contain contribu-
tions that contain both Σ1 and Σ2 and therefore (simple power-counting) are only
logarithmically divergent, such that the leading order CW-potential contribution is
given by

VCW(H) ∝
g4

16 π2

∣∣∣Σ†
1Σ2

∣∣∣2 ln
[

Λ2

µ2

]
, (4.16)

which after expanding Σ1,2 in terms of the doublet H∣∣∣Σ†
1Σ2

∣∣∣2 ∼ f 2 − 2 H†H + . . . , (4.17)

can generate an appropriate SM Higgs mass when f is roughly O(TeV).
For now, we have only focused on the theory’s gauge structure to find the proper

symmetry-breaking pattern to successfully induce a naturally light Higgs boson as
a pNGB of strong confining dynamics. Nevertheless, the Higgs receives its dom-
inant SM radiative corrections from the fermions, specifically the top quark5. To
make sure, that these are not quadratically divergent and thus bring back the un-
wanted quadratic sensitivity, we continue inspired by the results from the gauge
sector above, i.e. aiming for same-spin partner cancellations by introducing top part-
ners (3, 1) + (1, 3) of the global SU(3)× SU(3). The explicit breaking of G to SU(3)D

5 The above discussed contributions to the Higgs’ CW potential should therefore rather read VCW,g
to make it clear, these are not the only contributions.
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results in its corresponding 3 containing the SM SU(2)L doublet QL and the top part-
ner TL

Ψ =

(
QL

TL

)
=

 tL

bL

TL

 , (4.18)

whereas the 1 includes the two right handed t1,2. The top quark and therefore also
the dominant contribution to the fermion-nslm Lagrangian is then given by

Lt,nslm = λ1 Ψ̄ Σ1 t1 + λ2 Ψ̄ Σ2 t2 . (4.19)

In the same manner as above for the gauge sector, one finds that a global SU(3)×
SU(3) is collectively broken to a global SU(3)D, thus again inducing cancellation
of the quadratic divergent contributions that contain only one of the two terms in
Eq. (4.19). Subsequently, the leading divergent contributions come from contribu-
tions involving both terms of Eq. (4.19), e.g. see Fig. 4.2 (left). These give the loga-
rithmically divergent contributions of

VCW, f (H) ∝
λ4

16 π2

∣∣∣Σ†
1Σ2

∣∣∣2 ln
[

Λ2

µ2

]
. (4.20)

In summary, the above result demonstrates that this framework of collective break-
ing successfully generates a light SM Higgs boson naturally separated from the
confining scale of the strongly coupled extended symmetry G by ensuring that the
newly introduced partner particles exactly cancel the quadratic divergent contribu-
tions to the radiatively generated Higgs potential. As shown above this cancellation
is achieved by introducing appropriate larger global symmetry G, here shown in the
form of a product group.

As a promising framework with rich phenomenology, since the first successful
Little Higgs model [40], there have been numerous realizations of this Little Higgs
framework, all based on the same concept of collective symmetry breaking to gen-
erate a pNGB Higgs [41, 297, 298, 301–318]. Some employ product groups for G,
as seen above for The Simplest Little Higgs (SU(3)× SU(3)/SU(3)) [301], others are
successful without relying on such, e.g. The Littlest Higgs (SU(5)/SO(5)) [297], but
the general class of Little Higgs models generally face two major problems. First, to
match experimental observations of the physical Higgs boson, they are required to
include a mechanism to induce a quartic Higgs coupling which often leads to prob-
lems with the experimental constraints on ρ parameter6. Second, the experimental
results for electroweak precision observables and the null results for the inevitably
generated heavy resonances, i.e. the newly introduced particles with masse O(TeV),

6 The strong experimental constraints on ρ ∼ 1 are often interpreted to make require a custudial
SU(2). This is not a general case, in the absence of a custodial SU(2) one has to merely compute
the corrections to ρ and thus show compatibility with the experimental constraints explicitly.
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result in required fine-tuning between specifically the top quark and the gauge sec-
tor. Especially The Bestest Little Higgs [319], based on the SO(6)× SO(6)/SO(6) coset
space, seems to deal with these issues particularly well, such that we will later in Sec-
tion 4.2.2 use it as an example to demonstrate UV completion with strongly coupled
conformal dynamics.

4.2 Conformal Dynamics as UV Completion

While the Higgs not as a fundamental scalar, whether in the form of composite
Higgs models or as a Little Higgs as reviewed in the section above Section 4.1, de-
notes an interesting and promising avenue to address the gauge hierarchy prob-
lem, they all are effective (low-energy) theories, only valid up to their cutoff scale
Λ ≃ 4π f ∼ O(TeV). Therefore, they require UV completion, or in other words,
embedding into a high energy theory that provides a proper description (often per-
turbativity) up to at least MPl, where one runs into the inevitable embedding into
quantum gravitational theories. At the same time, the UV completion must pro-
vide the appropriate symmetry framework7 at Λ to realize for example the collective
breaking of a Little Higgs model. The UV completion often has to reconcile the per-
turbativity in Λ < E < MPl with the non-perturbative breaking (confinement) that
generates Λ istself. Furthermore, to avoid spoiling the “rich” phenomenology of the
low-energy model one oftentimes requires the UV completion not to introduce new
particles with small masses mnew < f . Thus, given the popularity and sheer amount
of CHM or Little Higgs models, there have been lots of proposed UV completions
for a low-energy Higgs that is not a fundamental scalar. Specifically for the frame-
work of Little Higgs models, they can be generally organized into two categories,
supersymmetric and non-supersymmetric realizations.

Theories which employ supersymmetry (SUSY) can do so in several different
ways and generate the Higgs as a pNGB. Some give supersymmetric low-energy
theories [313, 320–327], or employ extra dimensions and their compactification [328].
Others realize the Little Higgs as a composite particle from strong [312, 329] or
weakly [330] coupled high energy SUSY theory.

The non-supersymmetric UV completions mostly rely on strongly coupled dy-
namics in the spirit of technicolor or QCD but with modified symmetry content [312,
329, 331, 332], others employ the AdS/CFT correspondence to generate 4D strongly
coupled systems from 5D (so-called) holographic Little Higgs models, e.g. [309, 316,
318] and again others do not rely on strong dynamics but rather on the simple group
[317] or a weakly coupled system [314] which itself arises from collective symmetry
breaking.

In the following, we combine the two ideas of a non-fundamental Higgs and con-
formal symmetry, both used to address the gauge hierarchy problem, to propose a

7 Additional to the global symmetry G and its breaking structure, this also includes all other sym-
metries required of the low-energy to respect, e.g. scale invariance.
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UV completion from conformal strongly interacting dynamics for Little Higgs mod-
els. We will demonstrate the general framework in Section 4.2.1 and as an example
we review the UV completion of The Bestest Little Higgs in Section 4.2.2

4.2.1 General Conformal Framework for Little Higgs Models

Generally, utilizing conformal dynamics to UV complete Little Higgs models, one
naturally needs to address the issue of its anomaly, as introduced in Section 2.2.
While the anomalous breaking of conformal symmetry can be beneficial to address
for example the gauge hierarchy problem itself, here, we entertain the notion of a
non-fundamental Higgs to remedy said problem and thus want to avoid contri-
butions from anomalous breaking. To avoid the conformal anomaly altogether is
non-trivial but possible by carefully adjusting the symmetry content, specifically the
gauge sector, and the representations [333]. This is where the combination with
a Higgs as pNGB comes in to ensure that the required UV fixed points (FPs) are
present. The emergent nature of the Higgs results in only gauge couplings being
fundamental, thus scalar and Yukawa couplings are not present in the UV, and sim-
ply by choosing the UV gauge theory to be non-Abelian we ensure that the theory
contains the required FPs. For the theory to exit the high-energy conformal phase at
Λ, we employ soft (explicit) breaking and find confinement of the strongly coupled
dynamics close to Λ, thus generating pNGB related to the spontaneous breaking of
chiral symmetry [133, 134, 334] and eventually the physical Higgs via the collective
breaking mechanism of Little Higgs models (see Section 4.1.3).

More specifically, to UV complete a Little Higgs model, which relies on the symmetry-
breaking coset G/H, we assume the global symmetry G to be the general chiral
product symmetry

G = SU(N)L × SU(N)R , (4.21)

where N denotes the number of Dirac fermion flavors. While some Little Higgs are
not based on G to be a SU(N) product group (c.f. Section 4.1.3), after introducing
the conceptual symmetry-breaking pattern, we will argue that any Little Higgs of
a symmetry-breaking coset as above with a weakly gauged subgroup F can be UV
complete this way. Now, for G as in Eq. (4.21), we introduce the symmetry of the
strongly coupled conformal field theory (CFT) to be SU(Nc), which after exiting
the conformal FP at Λ, confines and thus spontaneously breaks G to its diagonal
subgroup H = SU(N)D. To ensure conformal dynamics at energies above Λ, we
extend the global chiral symmetry by Nm Dirac fermion flavors, such that the theory
exhibits the global

SU(N f )L × SU(N f )R , (4.22)
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with N f = N + Nm. This puts us in the so-called conformal window of non-supersymmetric
gauge theories [335, 336]

7
2
≲

N f

Nc
≲

11
2

, (4.23)

by adjusting Nm depending on N and Nc. Consequently, this guarantees that at
E > Λ our theory undergoes a phase of strongly coupled conformal dynamics. The
N Dirac fermions are considered to be massless and in the following denoted by ψi

with i = {1, . . . , N}, whereas the Nm flavors carry mass M and therefore constitute
the massive Dirac fermions χj with j = {1, . . . , Nm}. Both ψi and χj are so-called
technifermions in the fundamental representation of the gauge SU(Nc), such that
we also include ψ̂i and χ̂j in the antifundamental or conjugate representation. Given
the massive nature of χj, the UV Lagrangian contains a term of the form

LUV ⊃ −M χ̂ χ , (4.24)

describing the aforementioned (soft) explicit breaking of conformal symmetry. For
a scaling dimension d ≤ 4 of the bilinear operator χ̂ χ constitutes a sufficient defor-
mation of the conformal dynamics and thus the theory exists the conformal FP by
softly breaking conformal symmetry at

Λ ≡ M1/(4−d) . (4.25)

The theory then enters the confining phase at E < Λ with now only N flavors and Nc

colors. Since we assume our CFT to be strongly coupled the now QCD-like theory
directly confines, allowing us to identify Λ ≃ Λcon, which need not be the case
when not considering strongly coupled CFT. Said confinement means a condensate
of technifermions ψ (and ψ̂) is formed

〈
ψ̂αψα

〉
∼ Λd

16π2 δij , (4.26)

with α being the SU(Nc) color and i, j the fermion flavor index i, j = {1, . . . , N}. The
above condensate breaks the flavor symmetry G to its diagonal subgroup H

SU(N)L × SU(N)R → SU(N)D , (4.27)

and therefore generate nNGB =
(

N2 − 1
)

Nambu-Goldstone bosons in the process.
Since ψ and χ belong to the same symmetry before breaking of conformal sym-
metry, their bilinear operators ψ̂ψ and χ̂χ exhibit the same scaling behavior. This
scaling behavior is bounded from below by requiring unitarity to d ≥ 1, where the
exact d = 1 would correspond to a (free) elementary or fundamental scalar field and
thence in our case d > 1. At this point, we have introduced a UV completion via
strongly coupled conformal dynamics which generates a symmetry structure that
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allows for the successful implementation of Little Higgs models. Yet, there are two
open questions to discuss, which are essential for the above-mentioned framework.
These are, firstly, the actual value of the scaling dimension d, which is determined by
the CFT and has far-reaching consequences for the validity of addressing not only
the gauge hierarchy problem but also the flavor puzzle. Secondly, the generality of
the framework, namely that one can UV complete all known Little Higgs models
in this way, regardless of whether they are based on chiral product symmetries as
assumed above.

First, regarding the scaling dimension d, constructing the physical Higgs to be a
composite of the confinement of the technifermions ψ, the Higgs operator OH ∼ ψ̂ψ

itself also has scaling dimension d > 1 and thus the lowest gauge-invariant Higgs
operator O†

HOH with scaling dimension ∆ would reintroduce quadratic divergencies
and thus the gauge hierarchy problem in the limit of d → 1, since it would become
weakly coupled and therefore exhibit

lim
d→1

∆ = 2 d . (4.28)

To avoid spoiling the removal of quadratic divergencies by the Little Higgs collective
breaking, we require the gauge-invariant Higgs operator O†

HOH to be irrelevant, such
that it scales like ∆ > 4 [133]. The calculation for general CFTs in the limit d → 1 by
[337, 338] arrives at

∆ ≲ 2d +O(
√

d − 1) , (4.29)

implying that at least d ≳ 1.5 to ensure ∆ ≳ 4. Since the results of [337] do not
distinguish between scalar operators that differ only by internal symmetries, the
result above in Eq. (4.29) should be taken with a grain of salt. While this gives us a
(rough) constraint of d from below, to constrain d from above we first look to models
with similar symmetry-breaking patterns, namely technicolor models exhibit d = 3
[177, 286], whereas in walking technicolor d is only constrained to d ≳ 2 [339–344].
As this only gives indications to properly constrain d from above, we turn to use the
freedom the CFT construction allows for d to address a common problem of strongly
coupled UV completions for Little Higgs models, namely the problem of fine-tuning
between flavor and electroweak dynamics. Following the arguments in [133], by the
appropriate generation of d ≳ 1 from the CFT, the flavor dynamics decouple from
the electroweak scale up to the flavor scale Λt through

Λt ≡ Λ
(

4 π vEW

mt

)1/(d−1)

, (4.30)

where Λ denotes the conformal (and therefore also the confining) scale, vEW is the
electroweak VEV and mt denotes the top-quark mass. We see that d close to one
leads to a larger decoupling, thus softening the (Little Higgs) flavor puzzle. Con-
sequently, to address both the gauge hierarchy problem and the flavor puzzle, we



78 Chapter 4. Conformal Dynamics as UV Completion to Little Higgs

have to combine the requirements on d of Eq. (4.29) and Eq. (4.30), such that in the
end we require d to be large enough to guarantee the gauge-invariant scalar oper-
ator’s O†

HOH irrelevance and close enough to one to effectively decouple the flavor
dynamics.

Second, regarding the generality of the presented UV completion given that
above we assumed some specific (chiral product) group structure for G, we will
show how to extend any general Little Higgs to fit the UV completion via confor-
mal dynamics as introduced above, without altering the low-energy physics. The
main idea is based on the observations of [329, 331, 345] and also [332], that Little
Higgs models that rely on the coset G/H with a weakly coupled gauge subgroup
F ⊂ G (theory-A) exhibit the same low-energy physics as a two-site nonlinear sigma
model with a global product symmetry G × G (or G2), which is spontaneously bro-
ken to subgroup G and gauging the subgroup F × H in the limit of large H gauge
coupling (theory-B). The latter case resembles the one introduced above, where the
bifundamental (techni-) fermion’s SU(Nc) or Sp(2Nc) confining strong dynamics
UV complete the QCD-like breaking G2/G, which in turn results in a two-site nlsm,
as seen in the Moose diagram in Fig. 4.3. A quick and first check that both theory-A
and theory-B indeed give the same low-energy physics is to compare the number of
uneaten pNGBs NA,B

pNGB, respectively

NA
pNGB = (dim[G]− dim[H])− dim[F] , (4.31)

NB
pNGB = dim[G]− (dim[H] + dim[F]) , (4.32)

where the first term denotes the broken generators and the second one the by the
gauge bosons eaten DOFs. We immediately find that both scenarios generate the
same number of pNGB. Furthermore, the limit of large H gauge coupling in theory-B
results in correspondingly heavy gauge bosons, which can be integrated out similar
to Hidden Local Symmetry [346]. In addition to the number of pNGB bosons, this
ensures that both theories exhibit the same light gauge boson dynamics of F ⊂ G.
With this we can continue the UV completion like before for theory-B, while still
attaining the low-energy physics of theory-A. This way we effectively UV com-
plete theory-A through theory-B. Here we need to remark, that our argument is
based on the Moose in Fig. 4.3 and therefore demands the G2/G breaking to be of

ψ ψ̂
G

F

G

Hgauged

global

SU(Nc)

FIGURE 4.3: Moose diagram depicting the symmetry breaking pat-
tern of strongly coupled Little Higgs UV completion.
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QCD-like nature, i.e. strongly coupled confining dynamics. Consequently, G needs
to be a SU(N) flavor symmetry for N fermions, which in turn are in the funda-
mental representation of confining SU(Nc) or Sp(2Nc) symmetry. This of course
restricts our arguments general validity. Nevertheless, Little Higgs models based on
G = SO(N + 1) with N ∈ 2Z can be expressed in terms of Sp(N), which can then
be enlarged to SU(N). To preserve the proper number of pNGB, one can explic-
itly break the SU(N)/Sp(N) orthogonal symmetry, such that at low energies, the
theory exhibits Sp(N) ∼ SO(N + 1) symmetry. We will shortly discuss the exam-
ple of SO(5)2/SO(5) based Little Higgs, i.e. Minimal Moose Little Higgs [306], when
discussing the exemplary UV completion of The Bestest Little Higgs below in Sec-
tion 4.2.2. Little Higgs models with SO(N) and N = 2Z can be UV completed in an
analog way by utilizing their isomorphic (or larger) SU groups.

With this we have introduced a general mechanism to UV complete all cur-
rently known Little Higgs models by employing strongly coupled conformal dy-
namics, thus simultaneously addressing the flavor puzzle and gauge hierarchy prob-
lem while preserving the low-energy physics of Little Higgs models by utilizing the
“duality” of symmetry patterns à la theory-A-B.

4.2.2 Conformal Bestest Little Higgs

Having introduced the general concept before, here we want to showcase the UV
completion and corresponding low-energy phenomenology for a class of Little Higgs
models based on the global symmetry breaking pattern of G2/G with G = SU(4)
(c.f. theory-B in Section 4.2.1) and therefore

SU(4)L × SU(4)R → SU(4)D , (4.33)

where SU(4)D denotes the diagonal (or vectorial) subgroup, whereas the subscripts
“L, R” refer to the analogy of the product symmetry to chiral symmetry. Since the
above coset is isomorphic to the SO(6)2/SO(6) coset of The Bestest Little Higgs [319]
we colloquially refer to the here discussed example as Conformal Bestest Little Higgs,
even though this symmetry breaking pattern could also refer to other Little Higgs
models, depending on the low-energy assumptions. We will return to this point after
introducing the general UV completing dynamics when discussing the low-energy
implications.

Following the procedure presented in Section 4.2.1, we now choose our confin-
ing gauge symmetry, which generates the symmetry breaking pattern of Eq. (4.33),
to be SU(Nc) with Nc = 3, and therefore add the technifermions ψ with mass M
and the massless χ charged under said gauge group. Their corresponding quan-
tum numbers under SU(Nc) and under the SU(3)C × SU(2)L × U(1)Y SM gauge
group are shown in Table 4.1. We split ψ into the parts which are fundamentals of
the electroweak gauge group SU(2)L ⊂ SU(4)L, namely ψ̃, and the custodial group
SU(2)′L ⊂ SU(4)L, denoted by ψ′. Likewise, the conjugate fields ψ̂ are charged
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under subgroups of SU(4)R and the U(1)Y hypercharge constitutes the diagonal
generators of the custodial SU(2). Furthermore, we assume Nm = 8 flavors of χ

such that the theory is well within the conformal window (c.f. Eq. (4.23)) and si-
multaneously believed to give a strongly coupled confining SU(3) gauge symmetry
near the conformal FP, in other words after exiting the conformal phase at the scale
Λ. The mass term of χ (c.f. Eq. (4.24)) is again responsible for the (soft) explicit
breaking of conformal symmetry, such that Λ again is determined by Λ = M1/(4−d)

(c.f. Eq. (4.25)). After integrating out the heavy χ DOFs, in the effective theory for
E ≲ Λ we are only left with the massless ψ and ψ̂ which spontaneously break the
apparent SU(4)L × SU(4)R by forming the condensate

〈
ψ̂ψ
〉
. Given the transfor-

mation behavior of ψ and ψ̂, i.e. as 4 and 4 of SU(4)L and SU(4)R, respectively, the
condensate’s transformation behavior follows as

〈
ψ̂ψ
〉
= (4, 4̄)SU(4)L×SU(4)R

, (4.34)

and therefore spontaneously breaks the global flavor SU(4)L × SU(4)R → SU(4)D

to its diagonal subgroup. The resulting nNGB = dim [SU(4)] = 15, NGBs transform
as the adjoint of SU(4)D, such that we can align the vacuum along the unbroken
SU(4)D

〈
ψ̂ψ
〉
=

Λd

16 π2

(
1 0
0 1

)
, (4.35)

and therefore ensure that EW symmetry is preserved in the presence of
〈
ψ̂ψ
〉
. Here,

Λ denotes the scale of condensation, which can be identified with the conformal
symmetry breaking scale due to the strongly coupled conformal dynamics and the
orientation of the condensate again depends on the assumption of zero-mass for
ψ. Furthermore, d the scaling dimension of the condensate is equal to the scaling
dimension of χ̂χ due to both ψ and χ being part of the same conformal dynam-
ics (c.f. Section 4.2.1). At this point, we have introduced strongly coupled confin-
ing gauge symmetries which exhibit conformal dynamics above the soft conformal
breaking scale Λ, while below Λ they generate the appropriate global chiral sym-
metry which is spontaneously broken to its diagonal subgroup by a condensate that
simultaneously preserves EW symmetry to be broken by radiative contributions,

SU(Nc) SU(3)C SU(2)L U(1)Y

ψ̃ ≡
(

ψ1
ψ2

)
□ 1 □ 0

ψ′ ≡
(

ψ3
ψ4

)
□ 1

1
1

− 1
2

+ 1
2

χ × Nm □ 1 1 0

TABLE 4.1: Quantum numbers for the technifermions ψ = (ψ̃, ψ′)
and χ under the confining gauge group SU(Nc) and the SM gauge

group SU(3)C × SU(2)L × U(1)Y.
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therefore allowing to successfully incorporate the collective breaking of Little Higgs
models.

But before getting into the specifics of the collective breaking and the low-energy
phenomenology, we want to briefly comment on the aforementioned possibility
that the here-discussed UV completion can perhaps lead to multiple different Lit-
tle Higgs models depending on some low-energy assumptions. In particular the
SU(4)2 flavor symmetry can also UV complete the Minimal Moose Little Higgs [306].
This model relies on the SO(5)2/SO(5) symmetry-breaking coset. As before men-
tioned in end of Section 4.2.1, we can utilize that SO(5)2/SO(5) is isomorphic to
Sp(4)2/Sp(4), and explicitly break “our” SU(4)2 to Sp(4)2 by introducing the non-
renormalizable contribution

L ⊃ c m2

Λ2d−2 Tr
[(

ψ̂ψ
)

J
(
ψ̂ψ
)T J

]
, (4.36)

with c ∼ 4π denoting a strong coupling, m ∼ Λ is a mass scale and J a matrix that
explicitly breaks the orthogonal directions of SU(4) while preserving only Sp(4)
transformations

J ≡ 1
2

(
iσ2 0
0 iσ2

)
, σ2 =

(
0 −i
i 0

)
. (4.37)

This explicit breaking renders 5 of the 15 NGB massive with m ∼ Λ, such that we can
integrate them out and are left with the remaining Sp(4)L × Sp(4)R symmetry, spon-
taneously broken to Sp(4)D, leaving us with the desired Sp(4)2/Sp(4) coset and the
corresponding 10 NGB (c.f. [332]). The low-energy theory as described in the Mini-
mal Moose Little Higgs [306] can then be recovered by repeating the aforementioned
Sp(4)2/Sp(4) symmetry breaking pattern. With this, we end our excursion to gen-
erating other Little Higgs models and return to the theory above containing the full
SU(4)L × SU(4)R symmetry.

Now focusing on the effects of the chiral symmetry breaking SU(4)L ×SU(4)R →
SU(4)D, we will first discuss the generated 15 NGBs and the subsequent identifica-
tion of the Higgs, its mass and its quartic self-coupling. These NGBs transform un-
der the custodial SO(4) ≃ SU(2)L × SU(2)R ⊂ SU(4)D as two triplets, two doublets
and one singlet

15SU(4)V
= (2, 2) + (2, 2) + (3, 1) + (1, 3) + (1, 1) . (4.38)

Following the usual Little Higgs notation we can write down the NG-matrix U =

exp [i 2Π/ f ] with

Π =
1
2

(
σa∆a

1 + η/
√

2 −iΦH

iΦ†
H σa∆a

2 − η/
√

2

)
, (4.39)
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where the ΦH denotes a bi-doublet containing the Higgs doublets Hi and σa∆a
1,2 are

the triplets, respectively given by

ΦH ≡
(

H̃1 + iH̃2, H1 + iH2

)
, (4.40)

σa∆a =

(
∆0

√
2∆+

√
2∆− −∆0

)
, (4.41)

with H̃i ≡ iσ2H∗
i , where σi (with subscript) denote the Pauli matrices. Both Higgs

doublets H1,2 developing a non-zero VEV ⟨H1,2⟩ = v1,2 ̸= 0 determines the EW sym-
metry breaking vacuum configuration. Consequently, we can rewrite the custodial
symmetry respecting ΦH VEV in terms of the radial Higgs VEV v2 ≡ v2

1 + v2
2 and the

Higgs doublets VEVs’ angular component tan β ≡ v2/v1 as

⟨ΦH⟩ = v ei β 1 . (4.42)

Then we can parameterize the misalignment between v and VEV of global symme-
try breaking f ≡ Λ/(4π) by the misalignment angle sin θ ≡ v/ f , which can be
computed via a rotation with Ω0 of the NG-matrix U to determine the pNGB-matrix
Σ

Σ = Ω0 · U · Ω0 , (4.43)

where the rotation matrix Ω0 is given by

Ω0 =

(
cos θ

2 1 eiβ sin θ
2 1

−e−iβ sin θ
2 1 cos θ

2 1

)
. (4.44)

The new EW symmetry-breaking vacuum ⟨Σ⟩ is then consequently calculated to be

⟨Σ⟩ ≡ Σ0 = Ω0 · Ω0 ≡
(

cos θ 1 eiβ sin θ 1

−e−iβ sin θ 1 cos θ 1

)
, (4.45)

and therefore in the phase of broken EW symmetry relates the pNGB-matrix Σ to the
chiral condensate (ψ̂ψ) through

(ψ̂ψ) =
Λd

16 π2 Σ . (4.46)

The factor of (16π2) is from (naive) dimensional analysis (NDA) of a strongly cou-
pled theory. Having defined the proper EW breaking vacuum, we turn to one of
the essential aspects of Little Higgs models, the collective breaking, which generates
a mass and quartic potential without quadratic divergences (see Section 4.1.3). In
analogy to the collective breaking in the Bestest Little Higgs [319], we introduce two
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operators J1,2, which project into separate vacuum configurations

J1 =
1
2

(
iσ2 0
0 iσ2

)
, J2 =

1
2

(
iσ2 0
0 −iσ2

)
, (4.47)

with the result that the collective quartic potential can be written as

L ⊃ −1
4

λ12 f 4
∣∣∣Tr
[
Σ J1 ΣT J2

]∣∣∣2 − 1
4

λ21 f 4
∣∣∣Tr
[
Σ J2 ΣT J1

]∣∣∣2 , (4.48)

where λij as usual denote dimensionless coupling parameters. Due to the nature
of the projectors J1,2, the two terms in Eq. (4.48) break the global chiral symmetry
SU(4)L × SU(4)R into distinctly different vacuum configurations. In fact, the first
term breaks SU(4)L × SU(4)R to Sp(4)L1 × Sp(4)R2, while the second term breaks
it to Sp(4)L2 × Sp(4)R1. Consequently, at tree level, all pNGB bosons except η are
protected by the unbroken symmetries, specifically the Sp(4)L1 × Sp(4)R2 protects
both Higgs doublets from attaining a potential. Since η obtains the mass

m2
η = (λ12 + λ21) f 2 , (4.49)

we can integrate it out. As a consequence, we obtain a quartic Higgs potential term
that is proportional to the product of both dimensionless couplings λ12 λ21, which
is required by the collective breaking of Little Higgs models. At one loop level,
radiative corrections from the potential in Eq. (4.48) generate a Higgs mass that is
only logarithmically dependent on the confinement scale Λ and also proportional to
the product of both dimensionless couplings λ12 λ21

λ12λ21

16π2 f 2 ln
[

Λ2

µ2

] (
H†

1 H1 + H†
2 H2

)
, (4.50)

where µ is understood to be of order mη (c.f.Eq. (4.49)), such that the finite correc-
tions to the potential are minimal. Having demonstrated that collective breaking
successfully generates the Higgs mass with the desired logarithmic dependency on
Λ, we refer to The Bestest Little Higgs [319] for more details on the phenomenology
concerning the Higgs sector, since one can apply their procedure similarly to our
theory, and turn to this theory’s gauge sector.

We generate collective breaking in the gauge sector by gauging the subgroups
SU(2) ⊂ SO(4) ⊂ SU(4) of SU(4)L,R, respectively, thus resulting in the symmetry
breaking pattern as displayed in Fig. 4.4. Thus, we calculate the gauge boson mass
terms from the EW breaking pNGB matrix Σ

L ⊃ 1
2

f 2Tr
[
(DµΣ)†(DµΣ)

]
, (4.51)
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with the gauge covariant derivative given as

DµΣ ≡ ∂µΣ + i gL Aa
LTa Σ − i gR Aa

RTa Σ , (4.52)

where AA,B denote to SU(2)LA,B corresponding gauge bosons and g2
EW = g2

L g2
R/(g2

L +

g2
R). Collecting the above, we can expand Eq. (4.51) in terms of quadratic gauge bo-

son contributions

L ⊃ 1
2

g2
EW f 2 sin2 θ WµWµ +

1
4 cos2 θW

g2
EW f 2 sin2 θ ZµZµ

+
1
2
(

g2
L + g2

R
)

f 2 cos2 θ W ′
µW ′µ

+
1
4
(

g2
L + g2

R
)

f 2 cos2 θ Z′
µZ′µ + · · · , (4.53)

where, for simplicity, we have omitted the U(1)Y gauge bosons, as they only insignif-
icantly contribute to the little hierarchy problem. furthermore, interaction terms of
the Goldstone bosons and the gauge bosons are contained in ellipses above. Now, it
is straightforward to read of the gauge boson masses from Eq. (4.53), such that we
obtain the same mass for the two heavy gauge boson partners W ′, Z′

m2
W ′ = m2

Z′ =
1
2
(

g2
L + g2

R
)

f 2 cos2 θ , (4.54)

while the SM gauge bosons acquire the masses

m2
W = m2

Z cos2 θW =
1
2

g2
EWv2 +O(v4/ f 2) , (4.55)

with θW as the Weinberg angle. To affirm, that the above calculated massive gauge
bosons’ contributions do not spoil the absence of quadratic Λ dependencies for the
Higgs mass (and other pNGBs), we can now calculate the one-loop contributions
from the gauge bosons to H1,2 but also ∆1 to be

L ⊃ 9 g2
EW m2

W ′

64 π2 ln

[
Λ2

m2
W ′

](
|H1|2 + |H2|2 +

8
3
|∆1|2

)
, (4.56)

ψ ψ̂
SU(4)L

SU(2)L

SU(4)R

SU(2)Rgauged

global

SU(Nc)

U(1)Y

FIGURE 4.4: Moose diagram depicting the symmetry breaking pat-
tern of strongly coupled conformal dynamics UV completing The

Bestest Little Higgs.
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where we find only logarithmic dependence on Λ itself and otherwise quadratic de-
pendence on mW ′ , which might be heavy in comparison to the SM gauge bosons but
can still be much smaller than Λ. Thus, so far, neither the Higgs nor the gauge sec-
tor spoil the collective breaking as the main aspect of Little Higgs. Before verifying
with the fermion sector, we want to shortly note, that most low-energy specific phe-
nomenological considerations, e.g. gauge partners (W ′, Z′) with masses larger than
f , can be implemented straightforwardly. For more details, we refer to [4].

We only required the Higgs scalar to be composite to avoid the gauge hierar-
chy problem and thus the SM fermions are elementary and gain their masses from
Yukawa interaction with the composite Higgs operator OH ∼ ψ̂3ψ̃

L ⊃ λt

Λd−1
t

QLtROH, (4.57)

with d again denoting the scaling dimension of OH and Λt is the scale at which the
top coupling grows non-perturbative or strong λt ∼ 16π2. Once conformal symme-
try is explicitly broken, the strong dynamics confine at Λ ≡ 4π f , generating a VEV
for ⟨OH⟩ ∼ sin θ Λd/(16π2), which then in turn induces the top-quark mass of the
size

mt ≡ yt vEW ∼ λt

16 π2

(
Λ
Λt

)d−1

Λ sin θ , (4.58)

where vEW = f sin θ is the EW VEV in terms of the misalignment angle θ and f . Alter-
natively, one could generate the top-quark mass via the framework of partial com-
positeness, by mixing composite fermion operators with the top-quark [347, 348].
While partial compositeness is often used in composite Higgs models, the funda-
mental nature of our SM fermions marks the top-quark mass generation like above
as preferred. As seen in Eq. (4.30), the flavor scale Λt naturally decouples from
EW breaking for scaling dimensions 1 < d < 2, resulting in up to three orders of
magnitude larger Λt than the Λ. This is especially helpful in avoiding experimental
flavor constraints when there is no protective UV flavor symmetry. At this point
we turn to the verification that no quadratic dependencies on Λ reemerge for the
SM Higgs due to couplings to the fermions. Sadly, this is not as straightforward as
in the two sectors before, since already the top-quark operator in Eq. (4.57) along-
side other fermionic operators, explicitly break the SU(4) symmetry protecting the
pNGBs’ and therefore also the Higgs’ mass. To amend this issue we can introduce
additional doublets to complete the original SU(2)L doublets to a fundamental of
SU(4)L, thus removing the harmful contributions to the Higgs and pNGB masses.
While this approach works for each quark generation and the charged leptons in-
dividually, we demonstrate it in the following at the example of the SM SU(2)L

up/down-type (u/d) quark doublet QL = (uL, dL)
T. To complete the fundamental

representation of SU(4)L we introduce an additional quark doublet Q′
L = (u′

L, d′L)
T

that transforms under SU(2)′L and carries the same SM U(1)Y hypercharge as QL.
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Consequently, ΨL = (QL, Q′
L)

T denotes a fundamental of SU(4)L. We proceed simi-
larly for SU(4)R, to complete its fundamental representation ΨR we introduce the
vector-like pair Q′

R = (U′
R, D′

R)
T, which similar to the SM SU(2)L singlet fields

UR, DR, carry only U(1)Y hypercharge quantum numbers. The SU(4)R fundamental
is then given by ΨR = (0, 0, λuUR, λdDR)

T, such that the quark-Yukawa interactions
of the SU(4)L,R fundamentals are encoded in the Lagrangian as

L ⊃ 1
Λd−1

t
Ψ̄L(ψ̂ψ)ΨR +

λ′

4π
Λ Q̄′

LQ′
R

=
Λ

(4π)2

(
Λ
Λt

)d−1

Ψ̄LΣΨR + λ′ f Q̄′
LQ′

R . (4.59)

Here, from NDA estimates we find that the strong couplings λu,d of order 16π2,
and Σ exhibits the from

〈
ψ̂ψ
〉

familiar transformation behavior of Eq. (4.34), i.e. as a
(4, 4̄) of SU(4)L × SU(4)R. The apparent SU(4) invariance of the first term above en-
sures that all quadratic divergences from quark contributions cancel. Therefore, pro-
ceeding like above for the other generations of quarks and charged leptons, one ar-
rives at a valid Little Higgs model without quadratic divergences in the Higgs mass
contributions from the Higgs itself, gauge bosons and ultimately also the fermion
sector. Furthermore, this construction to avoid fermionic quadratic divergencies in
the Higgs mass contributions, leads to the generation of a linear combination of UR

and U′
R that acquires a mass of order f for λ′ ∼ 1, next to the usual SU(2)L sin-

glet up/down-type quark uR, dR. The top-quark mass is still generated according to
Eq. (4.58) with the top-Yukawa coupling given by

yt =
λt

4π

(
Λ
Λt

)d−1

. (4.60)

At last we want to comment on the low-energy physics of the presented Little
Higgs model. Since, it closely resembles the phenomenology of The Bestest Little
Higgs model [319, 349], we have been brief with discussing actual computational
steps and rather focused on present the essential aspects that showcase the viabil-
ity and effects of strongly coupled conformal dynamics as UV completion to Little
Higgs models. To make the comparison easier, we want to clarify, that in our context,
H1 is identified to be the SM Higgs doublet, whereas other pNGBs, i.e. H2, ∆1 and
η and the heavy gauge boson partners W ′, Z′ acquire masses of O(TeV), whereas
the fermionic top partners have masses of O( f ). The above listed DOFs, constitute
scalar, fermionic, and gauge boson states with appropriate masses to be promising
targets for the upcoming LHC runs [349]. While these targets are not unique to our
framework, the emergence of broad resonance and continuum states from confor-
mal dynamics around the scale of Λ are more distinctive predictions. For f ∼ 1 TeV,
equal to ≈ 10% of fine-tuning for the little hierarchy, these characteristic signatures
would emerge at roughly 10 TeV and thus prove promising targets for future collid-
ers like the FCC [350, 351].
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Chapter 5

Conclusion

In this thesis, we present conformally symmetric models to address the gauge hi-
erarchy problem and other BSM problems in high-energy physics. Since the root
of the hierarchy problem lies in the existence of the mass term for the Higgs scalar
and its corrections from much larger scales of new physics or eventually gravity, in
addition to the gauge symmetries of the SM and general diffeomorphism invariance
of gravity, we employ global scale invariance to protect a dynamically generated
Higgs mass from fatal corrections. Furthermore, we utilize the theory’s resulting
scaling behavior to UV complete a class of models, which realize the Higgs not as
a fundamental but as a composite field in an extended gauge structure to protect
its pNGB mass from quadratic corrections. Motivated by observational hints from
SM RG-running, the CMB, and the fact that both the SM and GR each only exhibit
one fundamental scale, we propose the radiative breaking of scale symmetry as the
sole origin for their dynamic generation. While we find that it is natural to include
proposed solutions to other BSM problems, employing conformal symmetry comes
with the caveats of its anomaly and propagating a massive spin-2 ghost DOF, threat-
ening the consistency of gauge theory and unitarity. However, there are already
multiple promising attempts for the resolution of these issues, such that we rather
focus on their beneficial properties. The anomalous breaking of scale invariance due
to dimension four operators is believed to protect dynamically generated masses
from quadratic divergences while we found the “problematic” massive spin-2 ghost
DOFs of the metric to induce substantial contributions to RSSB, replacing an other-
wise necessary additional external scalar. Thus allowing for a “more minimal” dy-
namical generation of the Planck mass and corresponding inflation, in good agree-
ment with the currently strongest experimental constraints from CMB observations.
This leaves us assured, that conformal symmetry as the fundamental principle is a
natural way to address the embedding of the SM into gravity and the resolution of
the consequent puzzle of hierarchically separated scales.

Therefore, after introducing conformal symmetry and the radiative spontaneous
breaking of scale invariance in Chapter 2, we construct a model that based on classi-
cal scale invariance, dynamically generates all scales with a unified origin in Chap-
ter 3. Thus, we extend the scalar sector by two real scalars S, σ, with one of them
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attaining a non-zero VEV, namely ⟨S⟩ ̸= 0 ∼ O(1017 GeV), in the one-loop effec-
tive potential, described by the Gildener-Weinberg approximation. In Section 3.1,
we show that the non-minimal coupling to scale-invariant quadratic gravity allows
us to identify the dynamically generated Planck mass MPl ∼

√
βS ⟨S⟩ in terms of

the non-trivial VEV, which in turn is solely dependent on dimensionless couplings
of the Lagrangian and the technical renormalization scale. For the coupling of these
external scalars to the cSM, namely the SM with zero tree-level Higgs mass term, we
assume the quartic portal couplings to be almost vanishing to not introduce correc-
tions to the Higgs mass directly proportional to ⟨S⟩. Instead, in Section 3.2 we intro-
duce the heavy right-handed Majorana neutrinos NR with mass mN ∼ O(107 GeV),
which generate small masses for the active neutrinos via the type-I seesaw mech-
anism and an appropriate Higgs mass through finite radiative corrections |µ2

H| ∼
|∆µ2

H| ∼ y2
ν m2

N/(4π2) as the dominant contribution. Given that the large Majo-
rana mass of NR is dynamically generated through the Yukawa interaction with S,
i.e. mN = yM ⟨S⟩, this constitutes a scale-invariant implementation of the neutrino
option, which softens the gauge hierarchy problem by relating the effective Higgs
mass to the large scalar VEV ⟨S⟩ through small but technically natural Yukawa cou-
plings yν ∼ O(10−4), yM ∼ O(10−10) as µ2

H ∼ y2
νy2

M ⟨S⟩2 /(4π2). Furthermore, we
can introduce a Z2 odd Majorana neutrino χ, which we later in Section 3.4 find to be
a viable FIMP dark matter candidate when its mass through coupling to S is roughly
mχ ∈

[
104 GeV, 108 GeV

]
. Furthermore, we notice that with the heavy right-handed

Majorana neutrino as above and mχ ≳ 106 GeV, the baryon asymmetry of the uni-
verse (BAU) can be successfully generated in the framework of leptogenesis. In
summary, we have an additional scalar sector of two real scalars, with one emerging
non-trivial VEV at one-loop level ⟨S⟩, which induces the Planck mass as the funda-
mental scale of gravity through non-minimal coupling to curvature, as well as the
effective Higgs mass term of the SM via interaction with a BSM fermion sector. The
coupling to the fermion sector not only softens the hierarchy problem by utilizing
small yet technically natural values of Yukawa couplings, but also addresses the
BSM issues of small active neutrino mass, dark matter, and BAU.

For our scale-invariant model of the unified emergence of fundamental scales in
the SM and GR to be a proper description of gravity, it has to provide a mechanism
for cosmological inflation. Given the formulation of our model in the Jordan frame,
in Section 3.3 we collect the relevant contributing DOFs from the same quantum ef-
fective action used before, where due to the aforementioned assumptions the Higgs
doublet itself does not play a role. After extracting the scalaron DOF ϕ from the R2

term and Weyl transformation to the Einstein frame, we are left with an effective
two-field potential for inflation VE(S, ϕ) exhibiting the valley structure depicted in
Fig. 3.3. Making sure that the trajectory along this valley is sufficiently stabilized by
the scalaron mass m2

ϕ, we can, in good approximation, describe inflation as the scalar
field S slowly rolling down the effective inflation potential Vinf(S). We calculate the
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corresponding slow-roll parameters and thus generate predictions for the CMB ob-
servables As, ns and r depending on the dimensionless quartic scalar couplings λS,
λSσ, the non-minimal couplings βS, βσ and the coupling γ of the R2 contribution.
The choice of flat direction when employing the GW approximation leads to little
relevance of λS and βσ for the CMB observable predictions, so we set them to be
constant. Furthermore, the stringent constraint from CMB observation on the am-
plitude of the scalar power spectrum As allows us to further reduce the number
of free parameters and show our predictions for the scalar spectral tilt ns and the
tensor-to-scalar ratio r in terms of γ for the range of sufficiently long inflationary
period, denoted by the number of e-folds Ne ∈ [50, 60] in Fig. 3.4. We find, that the
predictions by our scale-invariant model of unified emergence of SM and gravity
scales are in good agreement with the currently strongest constraints provided by
the Planck and BICEP/Keck collaborations [22–24].

Further investigating the contributions of quadratic and conformal gravity to the
dynamical generation of scales, we devote Section 3.5 to extracting the metrics prop-
agating DOFs, calculating their contributions to the Coleman-Weinberg potential to
quantify their contribution in the radiative spontaneous breaking of scale invariance
and consequently the realization of inflation in this context. Therefore, we construct
a scale-invariant realization of one external scalar S, non-minimally coupled to grav-
ity with the Weyl tensor squared term C2 already present at tree level. Often, espe-
cially this contribution is suppressed as it contains not only a propagating spin-0 but
also a propagating (massive) spin-2 ghost DOF. The latter is troublesome as it threat-
ens the theory’s unitarity by introducing negative norm states due to its kinetic term
coming with a relative minus sign. However, these contributions, even when not
included from the start are inevitably generated by quantum effects. Thus we rather
decide to include them from the beginning and utilize the promising works [50–62]
to develop a proper treatment of these ghost DOFs, so that a theory with a massive
spin-2 ghost can still be deemed viable as a QFT, providing unitarity. We simply fo-
cus on the dynamical generation of the Planck mass and the resulting inflaton poten-
tial, as one can include the scale generation for the SM in the same way as outlined
above in Sections 3.1 and 3.2. After expanding the action around quantum fluctua-
tions of the metric, we utilize the York decomposition to separate metric contributions
by spin. Collecting the contributions quadratic in fields, we find contributions to
the CW one-loop effective potential generated from the classical scalar S, the gauge-
invariant metric spin-0 DOF ϕ and the massive spin-2 ghost h̃µν. Due to the nature of
contributions to the CW potential, namely Tr ln[. . .], the spin-2 ghost’s relative minus
sign drops out as a constant term. Hence, the overall sign of the spin-2 ghost contri-
bution to the one-loop effective potential is the same as for non-ghost particles. With
the CW potential Veff(S) in hand we find that indeed S develops a non-trivial VEV
through spontaneous symmetry breaking by quantum corrections, without the need
for two external scalar DOFs, as the non-classical treatment of gravitational DOFs
provides additional contributions. Now, employing the machinery developed in
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Section 3.3 to calculate this model’s inflationary CMB predictions, as seen in Fig. 3.7,
which again are well in agreement with the strongest modern constraints. Also, sim-
ilarly to before in Section 3.3, we find our predictions for r to interpolate between the
ones from the two well-known models of inflation, with linear inflation (m3ϕ) as the
less experimentally favored upper and Starobinsky inflation (R + R2) as the lower
limit. In sum, in a scale-invariant realization of dynamically generated Planck mass,
the massive spin-2 ghost contribution is not only beneficial but crucial for success-
fully realizing the spontaneous breaking of scale invariance with only one additional
scalar, while maintaining the prediction of a small tensor-to-scalar ratio r. However
phenomenologically advantageous, its massive presence comes with the so-called
ghost problem, which in turn evokes a better understanding of QFT in the presence of
quantum gravity. Yet, with a mass of roughly m2

gh ∼ O(1016 GeV), our spin-2 ghost
qualifies for the recently introduced concept of conditional unitarity [61, 62], possibly
helping to resolve its threat to unitarity and therefore our fundamental interpreta-
tion of QFT.

In Chapter 4 we switch gears and take advantage of a conformally symmetric
theory’s scaling behavior to provide UV completion by strongly coupled conformal
dynamics for Little Higgs models, which realize the light physical Higgs boson as a
composite state, namely as the pNGB of spontaneously broken global symmetry, free
of quadratic divergencies. Utilizing the observation of [329, 331, 332, 345], that Lit-
tle Higgs models based on the global symmetry breaking coset G/H with a weakly
gauged F ⊂ G (theory-A), yield the same low-energy physics as models based on
the breaking of a product group to its diagonal G2/G with gauged F × H, where H
exhibits strong gauge coupling (theory-B), in Section 4.2.1 we propose a generalized
way to UV complete Little Higgs models through UV completing a model of type B
with the symmetry structure as displayed in Fig. 4.3. Suppose, we want to UV com-
plete a type-B Little Higgs model with G2 as the chiral global SU(N)L × SU(N)R

spontaneously broken to its diagonal subgroup SU(N)D with N Dirac fermion fla-
vors ψi. To ensure the necessary FPs for the couplings at high energies we introduce
the strongly coupled confining CFT symmetry SU(Nc) (or Sp(2Nc)) and also extend
the global chiral symmetry by Nm massive Dirac fermion flavors χ, leaving us with
the global SU(N f )L × SU(N f )R, where N f = N + Nm. The proper adjustment of Nm

and therefore N f /Nc ensures the theory exhibits conformal dynamics at high ener-
gies by placing it in the so-called conformal window (c.f. Eq. (4.23)), while the massive
nature of χ as a fundamental of SU(Nc) softly breaks conformal symmetry at the
scale Λ = M1/(4−d), thus providing an exit from the conformal FP towards lower
energies E ≲ Λ. Since we assume our CFT to be strongly coupled the theory almost
directly enters a QCD-like confining phase with N flavors and Nc colors, forming the
condensate

〈
ψ̂ψ
〉
∼ Λd, which breaks the chiral symmetry to its diagonal subgroup

while preserving EW symmetry. At this point, we have generated a symmetry struc-
ture that allows for the successful implementation of Little Higgs models by intro-
ducing strongly coupled conformal dynamics as an embedding UV complete theory.
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In Section 4.2.2 we demonstrate, close to the example of The Bestest Little Higgs, that
this form of UV completion does not spoil the collective breaking of EW symmetry
as the main feature of Little Higgs models to remove quadratic divergences of the
SM Higgs doublet. Apart from providing a systematic way to secure FPs for the
couplings thus extending the theory’s validity up to arbitrary scales, strongly cou-
pled dynamics allow for a non-trivial scaling dimension d of the bilinear operator
ψ̂ψ, such that the flavor dynamics fully decouple from the EW symmetry breaking
dynamics. Lastly, we find the non-SM Higgs pNGB, heavy gauge boson partners,
and fermionic top partners, constitute promising but generic scalar, fermionic, and
gauge boson targets for upcoming LHC runs [349]. Whereas, the strongly coupled
conformal dynamics provide also promising and more distinctive targets for future
colliders like the FCC [350, 351] in the form of broad resonances and continuum
states that emerge at around O(10 TeV).

Finally, we want to remark on several topics related to this work that need fur-
ther exploration and therefore denote possible future avenues of research. First, as
conformal symmetry or scale invariance is applied as the guiding principle to in-
vestigate the embedding of the SM intro gravity or as UV completion to arbitrary
scales (eventually MPl), the conformal anomaly naturally plays an important role in
the realization of such models. While its anomalous breaking of scale invariance can
protect the effective Higgs mass from quadratic divergences [31], it also inevitably
introduces a finite zero-point energy. Such that, when considering the dynamical
generation of both vEW and MPl, this finite zero-point energy induces an also finite
cosmological constant (CC). Similar to a vanishing conformal anomaly for precisely
adjusted gauge symmetries and representations [333], the contributions calculated
in Sections 3.1 and 3.5 are assumed to precisely cancel with contributions from other
sectors to give an approximately vanishing value, matching the observations [352–
354]. We implement this assumption by subtracting V0, such the value of the finite
zero-point energy is exactly zero. However, this denotes only a rudimentary solution
and naturally requires further investigation of the precise contributions from other
sectors and the corresponding cancellations. Especially, in a globally scale-invariant
theory where the origin of scales for both the SM and gravity is unified, the connec-
tion of both the conformal anomaly and the CC problem becomes evident. Further-
more, when considering conformal gravity, a non-zero conformal anomaly can lead
to a fundamental inconsistency in the theory by violating gauge symmetry [147], yet
some propose this problem to be considered void if gravity and matter are treated on
equal footing and renormalized together [85, 355]. Thus, it is apparent that the sub-
ject of the conformal anomaly and with that its origin, i.e. breaking of scale or con-
formal invariance by the theory’s regulator, requires further investigation to form a
deeper understanding of the general applicability of conformal symmetry to address
outstanding fundamental issues of the (B)SM and gravitational physics.

Other than from fundamental revelations in understanding QFT in the light of
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conformal symmetric theories, the here-considered models for the dynamical gen-
eration of both Planck and EW scale seem only to be constrained by their predic-
tions for the inflation CMB observables. Additional BSM degrees of freedom are too
heavy to be probed by current and near-future experiments, and even if observa-
tions could determine the nature of neutrinos, Majorana or Dirac, this would not
confirm or forbid the inclusion of (scale-invariant) neutrino option to generate the
Higgs and active neutrino mass. Thus, stronger constraints on inflation by future
CMB measurements as well as exploring the remaining space of inflation CMB ob-
servables, like non-Gaussian primordial fluctuations, could help constrain our mod-
els. While these non-Gaussianities are heavily suppressed in single-field slow-roll
inflation, they can contribute substantially in multifield inflation models [253, 254].
Hence, relaxing the assumption of effective single-field inflation and calculating the
occurring non-Gaussianities via, e.g. [356], could potentially further constrain the
parameters space of the model discussed in Chapter 3. Especially in the case, when
the spin-2 ghost of gravity is present, as in Section 3.5, since it is found to possibly
amplify the non-Gaussianities [277]. With the future experimental projects the likes
of LiteBird [357], Euclid [358] and LSST [359], to constrain their existence and even-
tually measure their magnitude, this topic proves to be an interesting direction for
future research.

All in all, we hope to supply a new perspective and some deeper insight into
how conformal symmetry as a guiding principle can address the gauge hierarchy
problem either via generating all (fundamental) mass scales dynamically and also by
leveraging its scaling behavior to provide UV completion for successful low-energy
effective models à la Little Higgs.
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Appendix A

Appendix

A.1 Dependence on the non-minimal couplings to gravity

While the in Section 3.1 given argument for omitting the constant −1/6 contribution
to βS, i.e. βS ≳ 102, seems sufficient, here want to shortly elaborate on the fact that
even omitting both contributions, also to βσ does not have a measurable effect and is
thus justified. The latter is not as obvious, since for the benchmark values in Table 3.1
we use βσ = 1. Thus, here we show the results for the benchmark points as seen in
Table 3.1 while adjusting for the missing factor by substituting

βσ → βσ − 1/6 ⇒ βσ = 5/6 . (A.1)

Focusing on the induced difference compared to the original benchmark calcula-
tions, in the following we display the relative difference δpi for each resulting pa-
rameter pi given by

δpi =

∣∣pcorr
i − pi

∣∣
pi

, (A.2)

where pcorr
i denotes the “corrected” result with βσ = 5/6. As seen in Appendix A.1

(the table below), we find that all relative differences are at most O(10−5) and thus
we can conclude that omitting the constant −1/6 contributions to the non-minimal
gravitational couplings βS, βσ does not alter the results of our investigation signifi-
cantly.

Contour C Contour C ′

# δns δr δAs δSend/µ δS∗/µ δns δr δAs δϕend/µ δϕ∗/µ

1 2 × 10−8 2 × 10−6 9 × 10−7 6 × 10−7 4 × 10−6 3 × 10−8 1 × 10−6 4 × 10−7 1 × 10−5 1 × 10−5

2 1 × 10−8 3 × 10−6 1 × 10−6 6 × 10−7 4 × 10−6 9 × 10−9 4 × 10−6 1 × 10−6 2 × 10−6 3 × 10−6

3 3 × 10−9 5 × 10−6 1 × 10−6 4 × 10−7 6 × 10−6 3 × 10−9 5 × 10−6 1 × 10−6 2 × 10−6 3 × 10−6

TABLE A.1: Relative differences between the parameters of the benchmark points
in Table 3.1 and the adjusted ones βσ = 5/6. As our focus is the order of magnitude

of the corrections, we just display only the first significant digit.
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A.2 Explicit Expressions for the Effective Potential

Given the scale-invariant nature of the proposed model in Eqs. (3.78) and (3.79), we
can factor out S dependencies in the contributions to the one-loop effective potential
Veff(S) Eq. (3.98) to rewrite it in the form of Eq. (3.99):

Veff(S) = V0 +

(
C1 + C2 ln

[
S2

µ2

])
S4 . (A.3)

Starting by factoring out S contributions from the field-dependent mass contribu-
tions m2

S , m2
ϕ and m2

gh, as given in Eq. (3.86), we can express them in terms of dimen-
sionless contributions m̂2

i = m2
i /S2 with

m̂2
ϕ =

β

12γ
, m̂2

S = 3 λ , m̂2
gh =

β

4κ
, (A.4)

such that eventually also m2
± are rewritten in terms of m̂2

± = m2
±/S2, where m̂2

± is
given by

m̂2
± =

1
2

(
m̂2

S + (1 + 6 β) m̂2
ϕ

)
± 1

2

√(
m̂2

S + (1 + 6 β) m̂2
ϕ

)2
− 4 m̂2

S m̂2
ϕ . (A.5)

Therefore, continuing this procedure for the one-loop contributions V(1)
s and V(1)

h ,

V(1)
s (S) =

1
64π2 S4 ∑

j=±
m̂4

j

(
ln
[

S2

µ2

]
+ ln

[
m̂2

j

]
− 3

2

)
, (A.6)

V(1)
h (S) =

5
64π2 S4 m̂4

gh

(
ln
[

S2

µ2

]
+ ln

[
m̂2

gh

]
− 1

10

)
, (A.7)

such that we can ultimately bring the full one-loop effective potential Veff(S) in the
aforementioned form of Eq. (3.99), with C1 and C2 given by

C1 =
λ

4
+

1
64π2

[
m̂4

+

(
ln
[
m̂2

+

]
− 3

2

)
+ m̂4

−

(
ln
[
m̂2

−
]
− 3

2

)
+5 m̂4

gh

(
ln
[
m̂2

gh

]
− 1

10

)]
, (A.8)

C2 =
1

64π2

[
m̂4

+ + m̂4
− + 5 m̂4

gh

]
. (A.9)
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A.3 Tensor-to-scalar Ratio Corrections Induced by the Weyl
Tensor Squared

Here we display the predictions for the same parameter space as before in Eq. (3.109)
including the correction factor of Eq. (3.112), induced by the appearance of the Weyl
tensor squared term in Eq. (3.78). It is apparent that the model’s predictions are still
fully compatible with the strongest and most current constraints from the latest CMB
observational data [24].

FIGURE A.1: Predictions for the scalar spectral tilt ns and tensor-to-
scalar ratio rcorr for three different Ne. This includes corrections due
to the C2 term given in Eq. (3.112). The data is displayed in the same

way as the lower plot of Fig. 3.7.
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This thesis is heavily based on three papers that have been published in peer-reviewed
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- The results of Chapter 4 are based on [4] in collaboration with Aqeel Ahmed
and Manfred Lindner.
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