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Zusammenfassung

In dieser Arbeit werden mehrdimensionale Simulationen von magnetohydrody-
namischen Phänomenen im Inneren von Sternen vorgestellt. Das Verständnis dieser
Phänomene ist für die Verbesserung der aktuellen Theorien zur Sternentwicklung
von wesentlicher Bedeutung. Die hochgradig subsonischen Strömungsregime, die
in den Regionen tief im Inneren von Sternen zu finden sind, stellen herkömm-
liche Methoden der numerischen Magnetohydrodynamik (MHD) vor große Heraus-
forderungen. Daher konzentriert sich der erste Teil dieser Arbeit auf die Entwicklung
eines geeigneten numerischen Lösers, der für magnetisierte, stellare Strömungen bei
niedrigen Machzahlen optimiert ist. Der vorgeschlagene MHD-Löser wird in den
Seven-League Hydro (SLH) Code implementiert und dann verwendet, um neuar-
tige Simulationen der turbulenten Dynamowirkung in einer sauerstoffbrennenden
Schale eines massereichen Sterns durchzuführen. Es wird gezeigt, dass starke, dy-
namisch erzeugte Magnetfelder einen erheblichen Einfluss auf die Entwicklung der
konvektiven Schicht haben und möglicherweise den Explosionsmechanismus von
Kernkollaps-Supernovae beeinflussen. Die neuen MHD-Fähigkeiten von SLH ebnen
den Weg für die nächste Generation von Sternmodellen und helfen bei der Unter-
suchung verschiedener stellarer MHD-Prozesse in Strömungsregimen, die bisher
unzugänglich waren.

Abstract

This thesis presents multidimensional simulations of magnetohydrodynamic phe-
nomena occurring in the interior of stars. Understanding these phenomena is essential
for improving current theories of stellar evolution. The highly subsonic flow regimes
found in the regions deep inside stars pose severe challenges to conventional meth-
ods of computational magnetohydrodynamics (MHD). Therefore, the first part of this
thesis focuses on the development of a suitable numerical solver optimized for mag-
netized, low-Mach-number stellar flows. The proposed MHD solver is implemented
in the Seven-League Hydro (SLH) code and then used to perform unprecedented sim-
ulations of turbulent dynamo action in an oxygen-burning shell of a massive star. It
is demonstrated that strong, dynamically generated magnetic fields have a significant
impact on the evolution of the convective shell and potentially influence the explosion
mechanism of core-collapse supernovae. The new MHD capabilities of SLH pave the
way for the next generation of stellar models and will aid in the study of various
stellar MHD processes in flow regimes that were previously inaccessible.
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CHAPTER 1

Introduction

1.1 Stellar evolution modeling approaches

Stars are the building blocks of the visible Universe. They are the main contributors
to the chemical evolution of galaxies and act as tracers of the evolution of the cosmos
as a whole. In light of these facts, understanding the physical mechanisms that drive
stellar evolution is one of the most important tasks in astrophysics.
In its simplest form, a star can be described as a gaseous sphere held together by its
own gravity. The temperatures reached in its innermost regions are high enough to
ignite nuclear reactions and generate thermal energy at the expense of the rest mass of
the star (e.g., Prialnik, 2000; Salaris and Cassisi, 2005; Iliadis, 2007). This excess ther-
mal energy is transported to cooler regions and eventually reaches the stellar surface,
making it shine.
Several physical processes are responsible for transporting the energy deposited by
nuclear reactions in the core to the surface of the star, including convection, radiative
diffusion, and thermal conduction (e.g., Maeder, 2008; Kippenhahn et al., 2012). These
processes can be modeled self-consistently by solving the equations of fluid dynamics
in three spatial dimensions (3D), along with source terms such as gravity, nuclear en-
ergy generation, neutrino cooling, and thermal diffusion (Kupka and Muthsam, 2017).
The model equations must be supplemented by an equation of state, thermal opaci-
ties, and nuclear reaction rates, which describe the microscopic properties of the stellar
plasma. Ideally, by solving this set of equations (together with a suitable treatment of
the energy transport through the stellar atmosphere) it is possible to determine the
evolution of stars with any given initial mass and composition.

1.1.1 Stellar evolution in one dimension

Although analytic solutions to the fluid-dynamic equations can be found for some
idealized problems (e.g., Lamb, 1932; Landau et al., 1959), one generally needs to rely
on numerical simulations to model more complicated systems such as stars. However,
the vast range of spatial and temporal scales that characterizes these astronomical
objects makes it extremely difficult (if not impossible) to follow their entire evolution
by solving the model equations numerically. For instance, in our Sun, the dynamical
response of the gas to small perturbations in the solar structure occurs in about 20
minutes, while the nuclear burning time scale is on the order of 10 billion years; the
typical size of the convective cells in the solar photosphere is approximately 103 km,
while the radius of the Sun is 7× 105 km (e.g., Kippenhahn et al., 2012). Even with the
help of massively parallelized simulations, such wide ranges of spatial and temporal
scales cannot yet be tackled by 3D models of stellar evolution.
Therefore, in order to evolve a star over most of its lifetime in a computer, drastic
assumptions must be made on the model equations. A common approach is to treat
stars as spherically symmetric objects, in which the physical quantities that character-
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CHAPTER 1. INTRODUCTION

ize their structure depend only on the radial distance from the center of the star (e.g.,
Maeder, 2008). Moreover, since the dynamical time scale is much shorter than the nu-
clear time scale in most evolutionary stages, 1D codes assume that the star evolves
through sequences in which its structure is in hydrostatic equilibrium. These sim-
plifications drastically reduce the computational effort required to solve the model
equations and enable us to provide a qualitative description of stellar evolution.

1.1.2 Shortcomings of 1D stellar modeling

The simplicity and computational inexpensiveness of 1D calculations are achieved
at the cost of crudely parameterizing the rich variety of inherently multidimensional
hydrodynamic processes that occur in stellar interiors, which cannot be treated self-
consistently by approximating stars as hydrostatic spheres. One such process is con-
vective energy transport, which is modeled in most 1D codes by means of the mixing-
length theory (MLT, Prandtl, 1925; Böhm-Vitense, 1958). Although MLT provides good
estimates of the convective energy flux, the choice of the free parameters that enter this
prescription for convection has a significant impact on the evolution of a star, thus in-
troducing large uncertainties into the stellar models (Joyce and Tayar, 2023).
One-dimensional prescriptions also fail to provide insight into the physical mecha-
nisms behind stellar hydrodynamic processes. In the MLT, for example, the criterion
for convective instability is derived from the linearization of the fluid-dynamic equa-
tions with a gravitational source term. In reality, convective flows in stars are highly
turbulent (i.e., nonlinear) due to the fact that the particle mean free path in the stel-
lar plasma is many orders of magnitude shorter than the characteristic length scale of
the convective flows (in other words, the Reynolds number of the stellar flows is very
high1, see also Jermyn et al., 2022). Turbulent flows are extremely efficient at mixing
chemical elements in a burning region of a star over the relatively short revolution
time scale of the turbulent eddies, thus affecting the nuclear energy generation rate
(e.g., Meakin and Arnett, 2007; Ritter et al., 2018; Andrassy et al., 2020; Yadav et al.,
2020; Rizzuti et al., 2023).
Convective flows also scrape material from neighboring convectively stable layers and
bring fresh fuel into burning regions, ultimately prolonging the lifetime of the star. The
conglomeration of the mixing processes that occur at convective boundaries, such as
shear instabilities, surface wave breaking, or convective overshoothing, is referred to
in the literature as “convective boundary mixing” (CBM, e.g., Cristini et al., 2019; An-
drassy et al., 2022; Anders and Pedersen, 2023). CBM increases the size of convective
regions over time (see Fig. 1.1) and is crucial in explaining a large number of observa-
tions, including the distribution of galactic massive stars in the Hertzsprung-Russell
diagram (Castro et al., 2014), the properties of double-lined eclipsing binaries (Claret
and Torres, 2016; Valle et al., 2016), or the rate of period change of classical Cepheids
(Miller et al., 2020). Despite its importance, the mixing that occurs at stellar convec-
tive boundaries is not modeled by most parameterized theories of convection. To be
able to study the effects of CBM on stellar evolution, 1D codes must therefore use ad-
ditional prescriptions (e.g., diffusive overshooting or convective penetration models;
see also Anders and Pedersen, 2023, for a recent review) where the ignorance about

1In fluid dynamics, the Reynolds number is a dimensionless quantity defined as Re := uL/ν, where
u is the flow speed, L is the characteristic length scale of the flow, and ν is the kinematic viscosity of the
fluid. Thus, Re measures the ratio of inertial to viscous forces in the fluid.
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CHAPTER 1. INTRODUCTION

the physics of turbulent mixing processes is put into additional parameters2.
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Figure 1.1: 3D simulations of turbulent convection and convective boundary mixing
in an oxygen-burning shell of a massive star. The panels are adapted from Leidi et al.
(2023) and show the absolute value of the fluid velocity in the z = 0 plane at different
times during the evolution of the shell, as indicated by the insets. In this setup, the
turbulent convective region grows over time due to the convective boundary mixing
processes operating at its boundary that entrain material from the stable layer above.

1.1.3 Calibrating 1D prescriptions against observations

The crude treatment of convective energy transport, CBM, and other complex hydro-
dynamic phenomena in 1D codes has far-reaching consequences for our understand-
ing of supernova explosion mechanisms (e.g., Davis et al., 2019; Temaj et al., 2024), the
chemical evolution of galaxies (e.g., Romano et al., 2010), and the evolution of stel-
lar populations (e.g., Willson, 2000). It is therefore imperative that 1D prescriptions of

2There have been several attempts to develop nonlocal theories of convection (e.g., Kuhfuss, 1986;
Canuto, 1997; Garaud et al., 2010), but their use in stellar evolution codes is still limited.
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CHAPTER 1. INTRODUCTION

multidimensional hydrodynamic processes are properly calibrated to produce reliable
models of stars.
An effective way to calibrate the free parameters that are incorporated into 1D pre-
scriptions is to fit theoretical models against observations. This can be done using
different methods, including the fitting of stellar isochrones to the color-magnitude
diagram of stellar clusters (VandenBerg et al., 2006), the analysis of asteroseismic data
(Guenther et al., 2014; Aerts, 2021), or by reproducing the main observational proper-
ties of double-lined eclipsing binaries (Stancliffe et al., 2015; Claret and Torres, 2016).
Ideally, in order to build a comprehensive grid of stellar models, the values of the
free parameters should be constrained as functions of the stellar mass, age, and com-
position. In practice, this approach is challenged by the scarcity of suitable stellar
samples and by the observational uncertainties that inevitably propagate into the stel-
lar models. Furthermore, the degeneracy between the parameters makes it difficult to
disentangle the role of different hydrodynamic processes in the stellar evolution.

1.1.4 Multidimensional modeling of stars

A complementary approach to calibrating 1D prescriptions against observations is the
direct study of hydrodynamic processes in the stellar interior using multidimensional
simulations. Multidimensional stellar modeling has become increasingly more attrac-
tive in recent years due to the continuous advancements in high-performance comput-
ing, which have made it possible to study a variety of stellar hydrodynamic processes
with high spatial resolution, even in 3D. In particular, much effort has been devoted
to the study of turbulent convection, convective boundary mixing, time-dependent
burning, and excitation mechanisms of internal waves during the main sequence (e.g.,
Gilet et al., 2013; Pratt et al., 2016; Käpylä, 2019; Horst et al., 2020; Baraffe et al., 2023;
Lecoanet and Edelmann, 2023) and later evolutionary stages (e.g., Meakin and Arnett,
2007; Jones et al., 2017; Cristini et al., 2017; Andrassy et al., 2020; Blouin et al., 2023).
A drawback of multidimensional hydrodynamic simulations is that they can only
evolve the flows of interest on their characteristic time scales (e.g., the revolution time
scale of the convective plumes, see also Kupka and Muthsam, 2017), which are much
shorter than the evolution time scale of the star. However, in contrast to 1D calcu-
lations, they allow the main physical processes occurring in the stellar interior to be
disentangled and modeled self-consistently. Thus, multidimensional simulations can
be used as testbeds for parameterized theories of, e.g., stellar convection and con-
vective boundary mixing when calibration against observations is not feasible (e.g.,
Trampedach et al., 2014; Cristini et al., 2019; Sonoi et al., 2019; Higl et al., 2021; Horst
et al., 2021; Rizzuti et al., 2023). Multidimensional stellar modeling is also required to
explore the violent burning stages prior to the collapse of the iron core in supernova
progenitors (e.g., Powell and Müller, 2020; Yadav et al., 2020; Varma and Müller, 2021).
In fact, in such evolutionary stages, the assumptions of hydrostatic equilibrium and
spherical symmetry made by 1D codes are inadequate even for describing the back-
ground stellar stratification (Müller, 2020) and observational constraints on the flow
properties are difficult to obtain (Van Dyk, 2017).
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CHAPTER 1. INTRODUCTION

1.2 Going one step further: stellar magnetohydrodynamics

Despite the recent encouraging successes in multidimensional stellar modeling, our
understanding of stellar hydrodynamic processes and how they relate to stellar evo-
lution is far from being complete. An additional layer of complexity is provided by
the presence of magnetic fields, which have been observed in many different types of
stars (Reiners, 2012; Brun and Browning, 2017; Keszthelyi, 2023).
Like gravity, magnetic fields exert long-range forces that can affect the star as a whole.
Under certain conditions, magnetohydrodynamic (MHD) effects on the stellar struc-
ture can be quite dramatic. For example, magnetic fields play a crucial role in spinning
down newly formed stars and getting rid of most of their angular momentum through
disk locking and protostellar outflows (e.g., Mestel, 1999; Pudritz and Ray, 2019). Fully
convective, low-mass stars are highly active with average surface magnetic fields on
the order of a few kG (Reiners, 2012). Such strong magnetic activity gives rise to vi-
olent transient events (e.g., flares and coronal mass ejections) during which the star
loses mass at a rate hundreds of times higher than the current solar wind rate (Crosley
and Osten, 2018). In the convective layers deep inside the star, magnetic fields can be
amplified by the action of a turbulent dynamo (e.g., Brun et al., 2005; Augustson et al.,
2011), thus affecting the convective energy transport and the mixing at convective
boundaries (Hotta, 2017). Magnetic fields can also change the stratification of core-
collapse supernova progenitors (Varma and Müller, 2021) and are thought to power
some of the most energetic events in the Universe, i.e., hypernovae (e.g., Powell et al.,
2023; Müller, 2024).
The field of stellar magnetohydrodynamics has been driven mainly by the study of
our Sun, whose surface magnetism is constrained by a large number of observations
(e.g., Brun and Browning, 2017, and references therein). In particular, many works
have attempted to infer the generation mechanism for the observed 22-year solar cycle,
which has puzzled researchers for decades (e.g., Brun et al., 2004; Ghizaru et al., 2010;
Passos and Charbonneau, 2014; Fan and Fang, 2014; Augustson et al., 2015; Käpylä
et al., 2023). Although the interplay between the solar differential rotation and the
convection in the solar envelope has been recognized as crucial for exciting a large-
scale dynamo and driving a cyclic activity (e.g., Charbonneau, 2020, and references
therein), no simulation has yet been able to fully reproduce the global properties of
the solar cycle.
Even more uncertain are the implications for stellar evolution of potential MHD
processes operating in deep stellar interiors. Some efforts have been made to infer
the magnetic field generation mechanism in fully convective (e.g., Browning, 2008;
Käpylä, 2021) and upper-main-sequence stars (e.g., Brun et al., 2004; Augustson et al.,
2016), but very little has been done so far to explore the effects of magnetic fields
on the evolution of stellar flows in post-main-sequence burning phases. Only very
recently, a few pioneering studies revealed that small-scale dynamos operating in late
convective shells of massive stars can build up relatively strong magnetic fields and
affect the dynamics of the shells to some extent (Varma and Müller, 2021; Canivete
Cuissa and Teyssier, 2022). However, even the state-of-the-art numerical methods
used in these studies suffer from major flaws when applied to model MHD flows
at the conditions found in stellar interiors, severely limiting their applicability (see
Sect. 1.2.1). Further investigation of multidimensional MHD processes in stellar in-
teriors, which is crucial for improving current theories of stellar evolution, requires
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CHAPTER 1. INTRODUCTION

specialized numerical techniques that have not yet been implemented.

1.2.1 Modeling MHD flows in the interior of stars: numerical challenges

Due to the high conductivity of the stellar plasma (e.g., Mestel, 1999; Spruit, 2013),
the evolution of the magnetic field and its effects on the dynamics of stellar flows
can be modeled to a good approximation by the set of 3D, fully compressible MHD
equations (see Chapter 2). Like the fluid-dynamic equations, solutions to the MHD
equations can in most cases only be found numerically.
The need for robust numerical methods capable of tackling supersonic and highly
magnetized flows, which occur in many different astrophysical environments and
confined laboratory plasma experiments, has led to a flourishing development of con-
servative, shock-capturing MHD schemes in the last thirty years (e.g., Powell, 1994;
Tóth, 2000; Dedner et al., 2002; Balsara, 2004; Miyoshi and Kusano, 2005; Stone and
Gardiner, 2009; Martí and Müller, 2015; Mignone and Del Zanna, 2021). Most of these
schemes are based on higher-order extensions of the Godunov algorithm (Godunov,
1959), where the MHD variables are represented by piecewise polynomial functions
over the computational grid. Discontinuities in the state quantities at the grid cell
boundaries define a Riemann problem (e.g., LeVeque, 2002; Toro, 2009), which can be
easily solved to obtain the MHD fluxes and update the quantities in each grid cell. The
popularity of this method derives from the fact that the solution to the Riemann prob-
lem is naturally upwind, i.e., it is biased toward the incoming direction of the flow,
which is an essential property for building stable and accurate numerical schemes for
hyperbolic conservation laws such as the MHD equations (LeVeque, 1990).
In the field of computational astrophysics, Godunov-type methods for MHD have
found fertile ground in simulations of star-forming regions (e.g., Federrath and
Klessen, 2012; Teyssier and Commerçon, 2019), accretion disks (e.g., Zanni et al.,
2007; Flock et al., 2010), binary interactions (e.g., Schneider et al., 2019; Röpke and
De Marco, 2023), supernova explosions (e.g., Mösta et al., 2014; Müller, 2024; Morán-
Fraile et al., 2024), and outer layers of stars (e.g., Freytag et al., 2012; Feng et al., 2021).
In contrast to such astrophysical environments, the flows in the deep interior of stars
have characteristic speeds u that are much lower than the speed of sound a, i.e., they
are highly subsonic. Their typical Mach number (M := u/a) ranges between 10−4 and
0.1 (e.g., Kupka and Muthsam, 2017; Jermyn et al., 2022). Most Godunov-type, shock-
capturing methods for MHD are optimized for the treatment of supersonic flows
(M & 1) and face several numerical challenges when modeling low-Mach-number
flows. These challenges are briefly summarized in the following sections.

1.2.1.1 Strict constraint on the time step

First, shock-capturing MHD schemes based on time-explicit discretizations can retain
numerical stability only if the time step used for the numerical integration satisfies the
Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 1928). This condition states
that the fastest wave generated in the system cannot cross more than one cell per time
step. For MHD, the fastest signals are the fast-magnetosonic waves (see Chapter 2),
whose speed is orders of magnitude higher than that of the fluid in highly subsonic
flow regimes. Because in stellar interiors these fast waves carry very little energy as
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compared to convective motions3, they play a marginal role in shaping the dynamics
of stellar flows. Still, fast-magnetosonic waves impose an overly strict constraint on
the time step when simulating low-Mach flows, so that they become parasitic in the
simulations (Dumbser et al., 2019). Simply advecting the convective flows by a sin-
gle cell on the computational grid would require an enormous number of integration
steps, making the simulation exceedingly expensive.

1.2.1.2 Large numerical dissipation

Second, conventional MHD schemes introduce an excessive amount of numerical dis-
sipation when modeling slow flows (Minoshima and Miyoshi, 2021). The reason for
this flawed behavior is that Godunov-type schemes always introduce discontinuities
in the MHD variables at every grid cell boundary by construction. While such a repre-
sentation for the numerical solution is suitable for supersonic flows and shocks, which
are naturally discontinuous, it gives rise to artificial nonlinear waves when the flow is
highly subsonic. These waves are dissipated within the sound crossing time scale over
the grid cell, which in the long run converts a large fraction of the kinetic energy con-
tent of the flow into internal energy of the gas. Although increasing the grid resolution
helps reduce the size of the discontinuities at grid cell boundaries and the effects of
the artificial waves, this approach can be particularly expensive for grid-based MHD
simulations4.
By evaluating the Rankine–Hugoniot jump conditions across the nonlinear, fast-
magnetosonic waves arising from the Riemann discontinuity (see Chapter 2), one can
compute the value of the gas pressure fluctuation δp = p− p0 around the mean state
p0 at the grid cell interface. In the limitM→ 0, the solution to the Riemann problem
for the gas pressure fluctuation is

δp ≈ 1
2
(δpL + δpR)−

ρ a
2
(Vn,R −Vn,L), (1.1)

where ρ and a are appropriate averages of the left and right Riemann states of the gas
density and sound speed, respectively. The Vn,L,R are the left (L) and right (R) Rie-
mann states in the component of the velocity vector normal to the grid cell boundary.
Equation (1.1) is inconsistent with the solution to the MHD equations in the asymp-
totic limitM→ 0, where the flow approaches the incompressible regime (Matthaeus
and Brown, 1988) and

δp = O(M2). (1.2)

In fact, while the physical term (δpL + δpR)/2 in Eq. (1.1) has the correct Mach number
scaling,

1
2
(δpL + δpR) = O(M2), (1.3)

the upwind dissipative term, which is crucial to retain numerical stability, is

− ρ a
2
(Vn,R −Vn,L) = O(M), (1.4)

3The ratio of the acoustic energy flux Pac radiated by a turbulent flow to the turbulent kinetic energy
flux is Pac/ρu3≈M5, where ρ is the density of the gas, u is the mean velocity of the flow, andM is the
turbulent Mach number (e.g., Lighthill, 1952). Therefore, the energy transported by acoustic waves is
negligibly small compared to the kinetic energy content of the flow in subsonic velocity regimes.

4The complexity of a 3D, Godunov-type algorithm for MHD isO(N4), where N is the number of grid
cells given along a certain spatial axis. Therefore, doubling the grid resolution in each spatial dimension
makes the numerical simulation 16 times more expensive.
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so that it eventually overwhelms the physical flux at low Mach numbers.

1.2.1.3 Spurious flows from unbalanced stratifications

Lastly, standard Godunov-type schemes for MHD cannot preserve hydrostatic solu-
tions owing to the different ways pressure gradients and gravitational forces are dis-
cretized on the computational grid (e.g., Käppeli, 2022). Such discretization errors
affect the evolution of stellar flows, which can be viewed as small disturbances of
the mean hydrostatic stellar stratification. If the Mach number of the flow is very
low or if the medium is strongly stratified (i.e., the grid spans several pressure scale
heights), the spurious flows arising from an unbalanced background stratification can
even dominate the dynamics of the simulated system, leading to unreliable results
(Edelmann et al., 2021).

1.2.2 Existing approaches to model stellar MHD flows

The dynamical conditions found in the deep interior of stars are extremely challeng-
ing to tackle with fully compressible MHD codes. To circumvent such numerical dif-
ficulties, three fundamentally different approaches have been proposed so far in the
literature that allow MHD processes in stellar interiors to be modeled with a certain
degree of accuracy.

1.2.2.1 The anelastic approximation

One of these approaches consists in filtering out the fast-magnetosonic waves to over-
come the strict CFL stability criterion on the time step, which is then determined
only by the much slower Alfvén and entropy waves. In order to discard the fast-
magnetosonic waves from the numerical solution, the original set of partial differen-
tial equations is often modified in the anelastic approximation (e.g., Glatzmaier, 1984;
Lantz and Fan, 1999). In this approximation, the gas pressure is not given by the
equation of state of the stellar plasma, but rather its value is constrained by the veloc-
ity field (similar to the incompressible limit of the fluid-dynamic equations) and the
mean density stratification. This constraint leads to an elliptic equation that can be
solved efficiently with spectral or multigrid-based methods. After computing the dis-
tribution of the gas pressure on the computational grid, the other MHD quantities are
advanced over the Alfvén or advective time step using simple time-explicit marching
schemes. Anelastic codes have been used quite extensively to study the solar dynamo
(e.g., Brun et al., 2004; Ghizaru et al., 2010; Cameron et al., 2017) and other turbu-
lent dynamo mechanisms operating in the convective cores of massive main-sequence
stars (e.g., Brun et al., 2005; Augustson et al., 2016).
Despite being efficient, these codes suffer from two major shortcomings. First, they
produce highly inaccurate solutions if the Mach number of the flow is higher than
∼ 10−2. Such velocity regimes are often found, for instance, in simulations of late
burning shells of massive stars (e.g., Jones et al., 2017; Varma and Müller, 2021) or
subsurface convective layers (e.g., Bhatia et al., 2022). Second, because they filter out
fast-magnetosonic waves by design, anelastic codes cannot be used to simulate the
excitation of compressible, pressure (p) modes of oscillations. Such oscillation modes
have been detected in many classes of stellar objects and can be used to probe the
stellar stratification (Michielsen et al., 2019; Mathis et al., 2021; Aerts, 2021). Retaining
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p-modes in the numerical solution is therefore highly desirable because it allows us
to compare simulation results to observations and better constrain the role of different
wave excitation mechanisms and theories of convective boundary mixing in the stellar
interior.

1.2.2.2 The luminosity enhancement method

The second approach retains the fully compressible nature of the original MHD equa-
tions at the cost of artificially driving convection at much higher Mach numbers
(M≈ 0.1− 0.3), where conventional MHD methods are reasonably efficient and ac-
curate (e.g., Käpylä et al., 2023, and references therein). Faster convective flows are
obtained in the numerical simulations by boosting the nuclear energy generation
rate or the radiative energy flux, thereby increasing the luminosity of the star. This
method has been used to study the solar dynamo (e.g., Käpylä et al., 2013; Warnecke
et al., 2016) and low-mass stars (e.g., Dobler et al., 2006; Käpylä, 2021). Although
fast-magnetosonic waves are part of the numerical solution in this approach, driving
faster convective flows significantly increases the amplitude of fluctuations around
the hydrostatic equilibrium, enhances the convective energy flux, and modifies the
spectrum of internal waves.

1.2.2.3 The reduced speed of sound technique

The third method makes it possible to model fully compressible stellar MHD flows
at their nominal speeds by artificially reducing the speed of sound (or the fast-
magnetosonic speed) to diminish the gap between the acoustic and advective time
scales. This so-called “reduced speed of sound technique“ (RSST, Rempel, 2005; Hotta
et al., 2012; Iijima et al., 2019) has mostly been used to study turbulent dynamos in the
solar convection zone (Hotta et al., 2015; Hotta, 2017). Although RSST can efficiently
model convection and internal gravity waves without increasing the luminosity of
the star, it greatly overestimates the effects of fluid compressibility by construction.
Highly compressible flows can significantly alter the mixing processes that occur at
stiff convective boundaries and the mechanisms of magnetic field generation.

1.3 Goal of the thesis: developing a fully compressible MHD
solver for low-Mach-number stellar flows

All of the numerical approaches used to date to model MHD processes in the interior
of stars suffer from serious shortcomings that severely limit their applicability. Due
to the complex nature of the numerical problem, no Godunov-type scheme capable of
modeling fully compressible stellar MHD flows at low Mach numbers has yet been
presented in the literature. The goal of this thesis is to fill this gap and provide a re-
liable method that is both accurate and efficient for such flows. The new numerical
scheme should have good scalability properties, thus allowing it to exploit modern
high-performance computing resources in unprecedented multidimensional simula-
tions of stellar MHD.
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1.3.1 Methodology

In order to develop an optimized numerical scheme for MHD flows in stellar interiors,
the main numerical challenges listed in Sect. 1.2.1 need to be approached and solved
separately.

1.3.1.1 Semi-implicit time discretization

One way to relax the strict CFL criterion on the time step while preserving the fully
compressible character of the MHD equations is to use time-implicit discretization
techniques (e.g., Aydemir and Barnes, 1985; Chacón, 2008; Lütjens and Luciani, 2010).
Owing to their unconditional stability, fully implicit time steppers promise to deliver
a considerable performance improvement over explicit time steppers, provided that
the time step is chosen to be long enough to overcome the overhead cost of the implicit
solver. However, fully implicit methods for MHD require finding the roots of a large
system of highly nonlinear equations, which is ill-conditioned for low-Mach-number
flows5 and may yield nonconverged solutions (Dumbser et al., 2019; Fambri, 2021).
Moreover, most of the fully implicit solvers for MHD presented in the literature have
been developed to model tokamak plasmas, where the magnetic pressure is usually
larger than the gas pressure (Boyd and Sanderson, 2003). In contrast to such plasma
regimes, stellar interiors are weakly magnetized and equipartition is achieved only
between the magnetic and kinetic energy reservoirs of the flow (Mestel, 1999). There-
fore, it is generally unnecessary to treat Alfvén waves implicitly in MHD simulations
of subsonic stellar flows.
In this thesis, a hybrid (semi-implicit) method is used instead. In particular, the
magnetic field is marched in time by solving the induction equation with an explicit
Runge–Kutta integrator, while the rest of the MHD system is solved using implicit
time discretization. The advantage of the proposed approach over fully implicit meth-
ods is that the subset of equations that is solved implicitly is better conditioned than
the full system of MHD equations, making the numerical solution easier to compute.
The two subsets of equations are then coupled together using a staggered-in-time ap-
proach (i.e., Strang splitting, Strang, 1968) to achieve second-order temporal accuracy.
Unlike fully implicit time discretization techniques, the proposed implicit-explicit
Strang splitting (IESS) method is conditionally stable, but the time step is limited only
by the speed of the fastest Alfvén and entropy waves on the grid. In highly subsonic
flow regimes, these waves are much slower than the fast-magnetosonic waves that
determine the CFL time step, so IESS is expected to be significantly more performant
than conventional methods for computational MHD.

1.3.1.2 Low-dissipation Riemann solvers

The second shortcoming of conventional Godunov-based methods (i.e., the large
amount of numerical dissipation introduced at low Mach numbers) is addressed by
a low-dissipation 5-wave Riemann solver for MHD (Minoshima and Miyoshi, 2021).
This special solver corrects for the flawed Mach number scaling of the numerical

5The condition number of the fully compressible system of MHD equations is approximately given
by the ratio of the highest fast-magnetosonic wave speed to the lowest entropy wave speed in the spatial
domain of interest. Therefore, in highly subsonic flows, the condition number is typically much larger
than one, i.e., the system of MHD equations is ill-conditioned.
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viscosity generated by shock-capturing methods (see Eq. (1.4)), which considerably
reduces the amount of spurious dissipation introduced during the evolution of the
flow. We note that this low-dissipation method is optimized only for high plasma-β
environments6. The solver would still be excessively dissipative in simulations of
highly magnetized plasmas at low Mach numbers. However, such regimes are far
from the applications of interest of this dissertation.

1.3.1.3 Well balancing

The Deviation well-balancing method (Berberich et al., 2021; Edelmann et al., 2021) is
used to to preserve hydrostatic solutions on the computational grid and to suppress
the spurious flows that arise in simulations of stratified low-Mach-number flows. The
method works by splitting the MHD quantities into a time-independent, hydrostatic
state and a fully nonlinear fluctuation. The MHD equations are then solved by sub-
tracting the contribution of the equilibrium state from the spatial residuals (i.e., the
difference between the discretized flux divergence and source terms). This guarantees
that hydrostatic solutions are maintained even in the discrete sense except for devi-
ations due to the finite precision of the floating-point representation. This approach
is justified by the fact that, at the level of the partial differential equations, the spatial
residuals associated with hydrostatic solutions are zero by definition. Therefore, the
chosen numerical discretization is consistent with the model equations.

1.3.2 Implementation and testing

The proposed MHD scheme has been implemented into the Seven-League Hydro code
(SLH, Miczek, 2013; Edelmann, 2014; Miczek et al., 2015). SLH is a finite-volume, time-
implicit, Godunov-like code that was originally developed in the context of Fabian
Miczek’s Ph.D. thesis (Miczek, 2013) and it has since been used to study turbulent
convection, mixing processes (Edelmann et al., 2017; Horst et al., 2021; Andrassy et al.,
2022, 2023), and the spectrum of internal waves (Horst et al., 2020) in stellar interiors.
SLH works with arbitrarily curvilinear, but logically rectangular, Eulerian grids. The
code is parallelized with the message passing interface (MPI) using domain decom-
position and it has been shown to scale up to several hundred thousand processes
(Edelmann and Röpke, 2016). The MHD implementation uses the same paralleliza-
tion strategy.
The performance and accuracy of the new MHD scheme can only be assessed through
a series of verification benchmarks. Such tests should include i) a linear wave anal-
ysis to infer the actual convergence rate of the code; ii) shear instabilities, which are
fundamental to trigger the energy cascade in a turbulent flow field; and iii) magne-
toconvection under dynamic conditions similar to those found in the interior of stars.
A detailed description of the newly developed numerical algorithm, together with
results from numerical tests and a thorough analysis of the main shortcomings of con-
ventional methods for stellar MHD is given in Sect. 3.1.
The use of a low-dissipation Riemann solver is crucial for the development of an
asymptotic-preserving scheme capable of simulating highly subsonic flow regimes.
However, it is unclear how the choice of the polynomial used to reconstruct the Rie-
mann states affects the quality of the numerical solution. Simply increasing the degree

6In plasma physics, β is the ratio of gas pressure to magnetic pressure.
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of the polynomial does not always lead to more accurate solutions, especially when
the flow is characterized by discontinuities, large gradients, or unresolved features
(e.g., Greenough and Rider, 2003). If the numerical problem admits convergent solu-
tions, then theoretically any method should produce the same results on sufficiently
fine grids. Unfortunately, this approach is not feasible for astrophysical simulations
due to their high computational cost, which makes it impractical to use an excessively
fine grid. Therefore, it is fundamental to determine which method achieves the low-
est computational cost per fixed accuracy. The answer to this question is given in
Sect. 3.2, where a comparison of different combinations of reconstruction methods
and Riemann solvers is carried out with a special focus on subsonic flow regimes. To
be meaningful, the chosen benchmark should be close to the application of interest.
In particular, the comparison is performed over a test problem involving turbulent
convection, convective boundary mixing, and internal wave excitation, all of which
processes occur in the interior of stars.

1.3.3 An astrophysical application: simulations of turbulent dynamo ac-
tion in an oxygen-burning shell

After the first phase of development, implementation, and tests, the new low-Mach
MHD scheme of SLH is used for the first time to answer some specific physical ques-
tions. In particular, the second part of this thesis focuses on the study of an oxygen-
burning shell in a non-rotating massive star that features turbulent dynamo action.
The initial conditions of the chosen setup are taken from the work of Andrassy et al.
(2022), who performed a comparison of five hydrodynamic codes in simulations of
turbulent convection and convective boundary mixing without the inclusion of mag-
netic fields. Here, a weak magnetic seed field is added to the system and allowed to
evolve under the influence of the convective motions occurring inside the shell.
In the absence of rotation, the magnetic field is mostly amplified at scales smaller than
those at which the turbulent convective flows are driven, that is a small-scale turbulent
dynamo (SSD, e.g., Meneguzzi et al., 1981; Schekochihin et al., 2004; Brandenburg and
Subramanian, 2005). SSDs can only be excited if the magnetic Reynolds number7 of
the turbulent flows exceeds a certain threshold value, usually on the order of 100 (e.g.,
Schober et al., 2012; Warnecke et al., 2023). In Godunov-like codes such as SLH, the
resistivity of the plasma is not explicitly modeled, but rather some degree of numerical
resistivity is introduced by the methods used to simulate the evolution of the magnetic
field. Numerical methods that are too dissipative would not be able to excite the SSD
or would significantly underestimate the magnetic field strength in the saturated stage
of the dynamo (e.g., Schekochihin et al., 2004). By using low-dissipation solvers, SLH
can successfully excite SSDs even on coarse grids. This is a significant advantage over
conventional methods, which can only reduce the effects of numerical dissipation by
considerably increasing the grid resolution (see Sect. 3.1 for a performance comparison
between a conventional and a low-dissipation MHD Riemann solver).
The SSD can convert a significant fraction of the kinetic energy of the turbulent flows
into magnetic energy, thereby influencing convective energy transport and the mixing
at the boundaries of the convective oxygen shell. The efficiency of both these processes
is directly proportional to the mean velocity of the convective flows. The implications
of strong dynamo action within the oxygen shell for later evolutionary stages can be

7The magnetic Reynolds number is defined as ReM := uL/η, where η is the magnetic diffusivity.
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important. Inefficient convective boundary mixing processes would result in a lower
rate of mass entrainment into the burning shell and could ultimately prevent shell
mergers (e.g., Ritter et al., 2018; Mocák et al., 2018; Yadav et al., 2020; Andrassy et al.,
2020). In addition, strong magnetic fields generated in the convective oxygen shell
can alter the spatial structure of convective motions and the magnitude of the density
fluctuations around the mean background state. The stratification of the core-collapse
supernova progenitor and the dynamical conditions found in its innermost convective
shells are fundamental parameters that determine the efficacy of the perturbation-
aided explosion mechanism (e.g., Müller et al., 2017; Couch et al., 2020). Therefore,
this work aims to answer the following questions: What is the saturation strength of
the magnetic field in the oxygen shell? What is the topology of the magnetic field?
How do strong fields affect the dynamics of the convective shell? The results of this
study are presented in Sect. 3.3.

1.3.4 Thesis outline

Chapter 2 introduces the equations of stellar magnetohydrodynamics and gives a brief
overview of conventional Godunov-type methods for computational MHD. Chapter 3
presents the main results of this thesis, including the development of a new MHD
scheme optimized for low-Mach-number stellar flows (Sect. 3.1), the evaluation of
the performance of different Godunov-type methods in simulations of subsonic flows
(Sect. 3.2), and the study of turbulent dynamo action and its effects on the dynamics
of an oxygen-burning shell (Sect. 3.3). A short summary and conclusions are given in
Chapter 4.
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CHAPTER 2

Numerical methods for stellar MHD

This Chapter introduces some of the most commonly used methods for simulating
stellar MHD flows. It is not intended to be a comprehensive review of numerical
schemes in computational MHD, which can be found elsewhere (e.g., Tóth, 2000; Bal-
sara, 2004; Mignone and Del Zanna, 2021), but serves only to put into context the
results presented in this thesis.
As discussed in Chapter 1, conventional schemes for fully compressible MHD suf-
fer from major shortcomings when used to model flows at the dynamical conditions
found in the regions deep inside stars. The wealth of methods listed in this Chapter
must therefore be modified and extended in order to accurately and efficiently simu-
late MHD processes in stellar interiors. The development and application of a novel
MHD scheme suitable for low-Mach stellar MHD flows is presented in Chapter 3.

2.1 The equations of stellar MHD

2.1.1 Physical considerations

The plasma in stars can be described as an interacting mixture of negatively and pos-
itively charged particles, with each species behaving as a charged, ideal gas. The
constituents of the stellar plasma are strongly collisionally coupled, such that as one
species evolves, the other reacts instantaneously. Under these conditions, the two
sets of model equations for the charged species can be reduced to a single set of fluid-
dynamic equations that models the evolution of the plasma only in terms of its density,
momentum, and energy.
To account for the influence of electromagnetic fields on the stellar plasma, the fluid-
dynamic equations must be coupled to Maxwell’s equations. Since the flows in the
stellar interior are highly subluminal, Maxwell’s equations can be greatly simplified.
In particular, the displacement current can be excluded from Ampère’s law, resulting
in

∇× b =
4πj

c
. (2.1)

In Eq. (2.1), b = (bx, by, bz) is the magnetic field, j = (jx, jy, jz) the electric current, and
c the speed of light. Also, in the non-relativistic limit, Ohm’s law is

j = σ
(
E +

V

c
× b
)

, (2.2)

where σ is the electrical conductivity of the plasma, E = (Ex, Ey, Ez) is the electric
field, and V = (Vx, Vy, Vz) is the velocity field. Equation (2.2) can be inserted into
Eq. (2.1) to obtain

E =
c

4πσ
∇× b− V

c
× b. (2.3)
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Then, after inserting Eq. (2.3) into Faraday’s law of induction and some algebraic ma-
nipulation, one obtains the induction equation for an electrically resistive fluid,

∂b

∂t
= η∇2b+∇× (V × b), (2.4)

where

η =
c2

4πσ
(2.5)

is the magnetic diffusivity.
The ratio of induction to magnetic diffusion,

|∇ × (V × b)|
|η∇2b| ≈ Lu

η
, (2.6)

is very high in stellar interiors. In fact, the right-hand side of Eq. (2.6) is the magnetic
Reynolds number, which in stars is typically higher than 106 (e.g., Spruit, 2013; Jermyn
et al., 2022). Thus, the stellar plasma can be assumed to be a perfect conductor to a
very good approximation.
The magnetic field exerts the Lorentz force on the fluid,

fL =
1

4π
(∇× b)× b, (2.7)

which does work on the system according to

WL = −∇ ·
[

1
8π
|b|2V − 1

4π
b(b · V )

]
. (2.8)

Equations (2.7) and (2.8) must be supplemented in the equations modeling the evolu-
tion of the the momentum and energy density of the fluid, respectively.
Additionally, that effects of viscosity can be neglected on the typical spatial scales of
convection in the stellar interior. This statement becomes clear after estimating the
ratio of advective to viscous forces,

|∇(ρV ⊗ V )|
|ρν∇2V | ≈ Lu

ν
, (2.9)

for typical values of the kinematic viscosity ν of the stellar plasma and the length scale
L and velocity u of the convective flows. Here, ρ denotes the gas density. The right-
hand side of Eq. (2.9) is the fluid Reynolds number, which in the interior of stars is
usually much higher than 1010 (e.g., Kupka and Muthsam, 2017; Jermyn et al., 2022;
Lecoanet and Edelmann, 2023).

2.1.2 The model equations

In the limit of zero viscosity and electrical resistance, the dynamical evolution of the
flows and the magnetic field in the interior of stars is described by the equations of
ideal MHD, together with the advection of chemical species and source terms such
as gravity, radiative diffusion, and energy generation. In conservation form, these
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equations read1 (e.g., Mestel, 1999)

∂ρ

∂t
+∇ · (ρV ) = 0, (2.10)

∂(ρV )

∂t
+∇ · [ρV ⊗ V + (p + pB)I−B ⊗B] = ρg, (2.11)

∂(ρe)
∂t

+∇ · [(ρe + p + pB)V −B(B · V )] = ρg · V +∇ · (K∇T) + ρė, (2.12)

∂B

∂t
+∇ · (V ⊗B −B ⊗ V ) = 0, (2.13)

∂(ρXl)

∂t
+∇ · (ρXlV ) = ρẊl . (2.14)

Here, pB = |B|2/2 denotes the magnetic pressure, I the unit tensor, ⊗ the tensor
product, g = (gx, gy, gz) the gravitational field, e the specific energy of the gas, and
Xl the mass fractional abundance of the species l. The system in Eqs. (2.10)–(2.14) is
closed by an equation of state (EoS), which gives the gas pressure (p) and temperature
(T) as a function of density (ρ), internal energy (eint), and composition,

p = p(ρ, eint, {Xl}), (2.15)
T = T(ρ, eint, {Xl}), (2.16)

where
eint = e− 1

2
|V |2 − 1

2ρ
|B|2. (2.17)

Furthermore, Eqs. (2.10)–(2.14) must be provided with the thermal conductivity of the
gas (K), the production rate of the species l (Ẋl), and the rate of energy generation per
unit mass (ė),

K = K(ρ, eint, {Xl}), (2.18)
Ẋl = Ẋl(ρ, eint, {Xl}), (2.19)

ė = ė(ρ, eint, {Xl}). (2.20)

Equations (2.10)–(2.14) can be cast into a system of conservation laws,

∂U

∂t
+∇ · F (U ) = S(U ), (2.21)

where U = (ρ, ρV , ρe,B, ρXl) is the set of conservative variables, F is the tensor of
MHD fluxes, and S is a source term.

2.1.3 Linear MHD waves

In the absence of gravity and other source terms, an ideal MHD flow supports 4 types
of linear waves: fast- and slow-magnetosonic, Alfvén, and entropy waves. Their wave
speeds, λv, correspond to the eigenvalues of the flux-Jacobian Ax in the following
1D, quasi-linear form of the homogeneous MHD system (left-hand side of Eqs. (2.10)-
(2.13)),

∂U

∂t
+Ax(U )

∂U

∂x
= 0, (2.22)

1Here, the Lorentz-Heaviside units are used, i.e., B = b/
√

4π.
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where

Ax(U ) =
∂Fx(U )

∂U
(2.23)

and
Fx(U ) = (1, 0, 0) ·F (U ). (2.24)

The eigenstructure of Ax comprises 7 waves: two fast-magnetosonic waves,

λ1,7 = Vx ∓ cf,x, (2.25)

two Alfvén waves,
λ2,6 = Vx ∓ ca,x, (2.26)

two slow-magnetosonic waves,

λ3,5 = Vx ∓ cs,x, (2.27)

and one entropy wave,
λ4 = Vx. (2.28)

The complete set of MHD waves is ordered as

λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7, (2.29)

where

cf,s,x =


1

2


a2 +

|B|2
ρ
±
√(

a2 +
|B|2

ρ

)2

− 4a2c2
a,x






1
2

(2.30)

are the fast- and slow-magnetosonic speeds,

ca,x = |Bx|/
√

ρ (2.31)

is the Alfvén speed, and

a =

(
∂p
∂ρ

+
p
ρ2

∂p
∂eint

) 1
2

(2.32)

is the adiabatic sound speed.
The fast- and slow-magnetosonic waves are compressible modes of propagation, in
which oscillations in the gas pressure and the magnetic field are in phase and anti-
phase, respectively. Alfvén waves, on the other hand, are incompressible and trans-
port only perturbations in the components of the velocity and the magnetic field trans-
verse to the wave vector. The entropy wave is advected with the fluid and carries
density and entropy perturbations. The knowledge of the wave-structure arising from
Eq. (2.22) is crucial in building accurate numerical methods for MHD with proper up-
winding to ensure numerical stability (see Sect. 2.3.2).
The system of ideal MHD equations is hyperbolic, meaning Ax has a complete set
of linearly independent eigenvectors and the corresponding eigenvalues are all real.
However, unlike the system of fluid-dynamic equations, the MHD system is not
strictly hyperbolic because the eigenvalues are not all distinct under all circumstances
(see Eq. (2.29)). Wave degeneracy occurs, e.g., when Bx = 0, in which case the slow-
magnetosonic and Alfvén waves collapse onto the entropy wave, or when |Bx|/√ρ> a
and By = Bz = 0, in which case the Alfvén waves collapse onto the fast-magnetosonic
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waves. Other degenerate cases can also occur (e.g., Mestel, 1999). In the nonlinear
regime of the MHD equations, the loss of strict hyperbolicity at one point does not
guarantee the uniqueness of the solution, can lead to compound solutions where
shocks and rarefaction waves travel together, and gives rise to other non-regular
waves that may be unphysical (e.g., Torrilhon and Balsara, 2004). Fortunately, wave
degeneracy is unlikely to occur under the dynamic conditions found in stellar inte-
riors. In fact, the sonic Mach number inside stars is very low and the Alfvén Mach
number

MAlf =
√

ρ
|V |
|B| (2.33)

is usually on the order of unity, so the MHD wave speeds are well separated. More-
over, the only weak (i.e., discontinuous) solutions to the MHD equations that may
characterize stellar interiors are in the form of genuinely linear waves (e.g., contact or
rotational discontinuities), which are physical and easy to treat numerically.

2.2 Finite volume discretization

The finite-volume method is a powerful tool for finding numerical solutions to
Eq. (2.21). This approach divides the spatial domain of interest into a number of
grid cells (finite volumes) and performs time updates on cell-volume averages rather
than on point values. Each cell in the computational grid is denoted by a set of in-
dices such as {i, j, k}, which is also associated with any quantity located at the center
of the cell. Quantities located at cell boundaries are denoted by half-integers, e.g.,
{i + 1/2, j, k}, which represents the interface between cell {i, j, k} and cell {i + 1, j, k}.
The model equation for the cell-volume averages in cell {i, j, k} is derived by integrat-
ing Eq. (2.21) over the volume of cell Vi,j,k,

Vi,j,k

(
∂U i,j,k

∂t

)
+ ∑

s
F s · ξ̂s As = Vi,j,kS i,j,k. (2.34)

Here, U i,j,k denotes the cell-volume averaged vector of conservative quantities,

U i,j,k =
1

Vi,j,k

∫

Vi,j,k

U dV, (2.35)

F s the surface-averaged fluxes across the cell boundary s,

F s =
1

As

∫

As

F dA, (2.36)

ξ̂s the outward normal vector to the surface As, and S i,j,k the cell-volume averaged
source term,

S i,j,k =
1

Vi,j,k

∫

Vi,j,k

S dV. (2.37)

If the values of the cell-volume averaged conservative quantities are known at the
initial time t = 0, the solution to Eq. (2.34) at an arbitrary time t is then given by

U i,j,k(t) = U i,j,k(0)−
∫ t

0

(
1

Vi,j,k
∑

s
F s(t) · ξ̂s As − S i,j,k(t)

)
dt. (2.38)
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Usually, it is not possible to find analytic solutions to the system of stellar MHD equa-
tions. Therefore, Eq. (2.38) must be discretized both in space and time to approximate
the solution numerically. If suitable discretizations of F s(t) and S i,j,k(t) are provided,

F s(t) ≈ F̃ s, (2.39)

S i,j,k(t) ≈ S̃ i,j,k, (2.40)

the cell-volume averaged conservative quantities can be updated from time tn to time
tn+1 = tn + ∆t using a simple, first-order accurate Forward Euler method,

U n+1
i,j,k = U n

i,j,k −
(

1
Vi,j,k

∑
s
F̃ n

s · ξ̂s As − S̃n
i,j,k

)
∆t, (2.41)

or higher-order time integration methods (see Sect. 2.3.3). For the numerical scheme to
be stable, the time step ∆t must satisfy the Courant-Friedrichs-Lewy (CFL) condition
(Courant et al., 1928). On a uniform Cartesian grid, the CFL condition is formulated
as

∆t ≤ Cmin
i,j,k,d

[
∆x

|Vd|i,j,k + cf,d,i,j,k

]
, (2.42)

where ∆x is the width of the grid cell, d represents the three spatial directions, and C
is a parameter whose value depends on the time integration method, typically of the
order of unity.
The advantage of the finite-volume method over other discretization techniques (e.g.,
finite differences) is that it preserves the conservation properties of Eq. (2.21). There-
fore, for an isolated system in the absence of source terms, this method allows the
total mass, momentum, energy, and magnetic field to be conserved at the level of ma-
chine precision. Since the finite-volume method is conservative by construction, the
Lax-Wendroff theorem (Lax and Wendroff, 1960) guarantees that if the scheme is nu-
merically stable, the numerical solution will converge to a weak solution of Eq. (2.34).
This property is crucial in simulations of supersonic flows, as it ensures that shock
fronts are propagated at the correct speed. In subsonic flow regimes, it ensures accu-
rate treatment of contact and rotational discontinuities.
In order to advance the numerical solution over time, it is necessary to first compute
the discretized source terms and fluxes in Eq. (2.41). To second-order approximation,
the cell-volume averaged source terms can simply be estimated from cell-centered
point values as

S i,j,k(tn) ≈ S̃n
i,j,k = Sn

i,j,k +O(∆x2). (2.43)

Although it may be tempting to compute the surface-averaged fluxes F̃ n
s by interpo-

lating corresponding cell-centered values to the cell boundary s, this approach lacks
proper upwinding and is known to generate numerically unstable solutions (e.g., LeV-
eque, 2002).

2.2.1 The Godunov algorithm

A better flux discretization is provided by the Godunov algorithm (Godunov, 1959). In
this method, the time update from tn to tn+1 = tn + ∆t is performed in four successive
steps:
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1. The time step ∆t is computed using Eq. (2.42).

2. A pair of Riemann states U n
s,L,R is reconstructed at each grid cell boundary

through 1D sweeps by assuming that the distribution of the conservative
quantities is piecewise constant across the grid. For example, at the interface
s = {i + 1/2, j, k}, the Riemann states are given by

U n
i+1/2,j,k,L = U n

i,j,k, (2.44)

U n
i+1/2,j,k,R = U n

i+1,j,k. (2.45)

At domain boundaries, a layer of “ghost cells“ is utilized to obtain a pair of
Riemann states at the outermost grid cell interfaces and to enforce boundary
conditions.

3. The Riemann states U n
i+1/2,j,k,L,R define the following 1D Riemann problem of

ideal MHD (see, e.g., Toro, 2009),

∂U

∂t
+

∂Fx(U )

∂x
= 0, (2.46)

U (x, tn) =

{
U n

i+1/2,j,k,L, x < xi+1/2,j,k,

U n
i+1/2,j,k,R, x > xi+1/2,j,k.

(2.47)

After finding the solution to the Riemann problem, U ∗(x, t), the discretized
surface-averaged fluxes are computed as

F̃ n
i+1/2,j,k = Fx

(
U ∗(xi+1/2,j,k, tn)

)
. (2.48)

This operation is performed at every cell boundary on the grid.

4. The newly computed fluxes, together with discretized cell-volume averaged
source terms, are used to update the cell-volume averaged conservative quanti-
ties according to Eq. (2.41).

These steps are repeated until the desired maximum time is reached. The solution
to the Riemann problem defined by Eqs. (2.46) and (2.47) is computed by taking into
account the wave structure resulting from the initial Riemann discontinuity (see Fig.
2.1). Therefore, the numerical solution is naturally upwind, allowing the numerical
scheme to remain stable.
Despite its robustness and stability properties, the original method of Godunov (1959)
has two major shortcomings. First, the assumption that the conservative quantities
are distributed on the grid according to piecewise constant functions leads to a poor,
first-order accurate estimation of the surface-averaged fluxes2,

F s(tn) = F̃ n
s +O(∆x). (2.49)

2 This result follows from i) the assumption that the distribution of the conservative quan-
tities is constant in space within the grid cells; ii) the consistency property of the nu-
merical flux, i.e., F̃ s(U ,U ) =F s(U ); and iii) the Lipschitz continuity property of the nu-
merical flux. The last two properties are fundamental to guarantee convergence of the
numerical scheme. Thus, in the limit Ui,Ui+1→U , there exists a constant C so that
|F̃ i+1/2(Ui,Ui+1)−F i+1/2(U )| ≤ C max(|Ui −U |, |Ui+1 −U |) (see also LeVeque, 2002). Because
max(|Ui −U |, |Ui+1 −U |) =O(∆x), then F i+1/2 = F̃ i+1/2(Ui,Ui+1) +O(∆x).
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Figure 2.1: Space-time structure of a 1D Riemann problem of MHD. The Riemann
fan is comprised of 8 states separated by 7 waves: two fast-magnetosonic waves
(Vx ± cf,x, dashed lines), two Alfvén waves (Vx ± ca,x, dashed-dotted lines), two slow-
magnetosonic waves (Vx ± cs,x, dotted lines), and one entropy wave (Vx, solid line).

Thus, numerical solutions computed with the Godunov algorithm tend to be much
more dissipative than those produced by second-order accurate methods such as Lax-
Wendroff or MacCormack (e.g., LeVeque, 2007). Second, solving a Riemann problem
of MHD exactly requires finding the roots of a highly nonlinear equation, which is
typically accomplished using iterative methods such as Raphson–Newton (e.g., Taka-
hashi et al., 2014). The solution to the nonlinear equation can only be computed at the
level of machine accuracy by performing multiple iterations within the root-finding
algorithm. This operation can be relatively expensive, especially if a tabulated EoS
has to be evaluated in each iteration. Since the Riemann problem must be solved at
each grid cell boundary on the computational grid, using an exact Riemann solver can
make the computational cost of the simulation excessively high.

2.3 Higher-order Godunov methods for MHD

Numerous attempts have been made to improve both the accuracy and the perfor-
mance of the original algorithm of Godunov (1959) for solving the system of ideal
MHD equations. These attempts led to the development of high-resolution shock-
capturing methods (e.g., Brio and Wu, 1988; Powell, 1994; Dai and Woodward, 1998;
Balsara, 2004; Fromang et al., 2006; Stone and Gardiner, 2009), which are now rou-
tinely used in simulations of astrophysical magnetized flows. These methods are
based on higher-order extensions of the Godunov algorithm. Their peculiarity is that
they achieve at least second-order accuracy in smooth regions of the flow while at the
same time they are able to robustly capture discontinuous solutions without sacrific-
ing stability. These properties result from suitable modifications of the main steps of
the Godunov algorithm, i.e., the spatial reconstruction procedure, the solution strat-
egy of the Riemann problem, and the time integration method. Such modifications are
discussed in the following sections. For the sake of simplicity, it is assumed that the
MHD equations are solved on a 1D, uniform, Cartesian grid.
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2.3.1 Higher-order spatial reconstruction methods

To achieve higher-order spatial accuracy in the numerical solution, one can represent
the distribution of the MHD variables within each grid cell using higher-order polyno-
mials. The price to pay for this increased accuracy is that the reconstruction stencil is
now wider than a single cell. In fact, the coefficients of the polynomial expressions can
only be determined if information about the values of the MHD variables in neighbor-
ing cells is provided. The more accurate the method the wider the stencil must be.
Second-order spatial accuracy is achieved for smooth solutions by means of piecewise
first-order polynomials, i.e., straight lines,

Ui(x; xi) = ai + bi(x− xi) +O(∆x2), (2.50)

where Ui is the variable being reconstructed inside cell i. From the constraint

1
∆x

∫ xi+∆x/2

xi−∆x/2

Ui(x; xi) dx = Ui, (2.51)

follows ai = Ui, while the slope bi can be estimated using, e.g., the Fromm method,

bi =
Ui+1 −Ui−1

2∆x
. (2.52)

which requires a stencil that is three-cell wide, {i− 1, i, i + 1}. However, other choices
for approximating b are possible (e.g., LeVeque, 2002). The Riemann states at the sides
of the cell i are then reconstructed as

Ui+1/2,L = Ui(xi + ∆x/2; xi) = ai + bi
∆x
2

, (2.53)

Ui−1/2,R = Ui(xi − ∆x/2; xi) = ai − bi
∆x
2

. (2.54)

Analogous formulas can be derived for third- or even higher-order polynomials (e.g.,
Toro, 2009, and Sect. 3.2).
Despite their high accuracy in representing smooth solutions, higher-order reconstruc-
tion polynomials suffer from a serious flaw. According to Godunov’s theorem (Go-
dunov, 1959), linear methods (i.e., those in which the value of the reconstructed state
depends linearly on the quantities across the reconstruction stencil) that are more ac-
curate than first-order cannot be monotonicity preserving. Therefore, the simple use
of higher order polynomials in Godunov-type schemes leads to spurious oscillations
in the MHD quantities in the vicinity of large gradients or discontinuities. Strong un-
dershoots generated at shock fronts are particularly disastrous, as they can lead to
unphysical negative densities and pressures and cause severe stability problems. In
simulations of subsonic flows, which are free of strongly nonlinear waves, these os-
cillations generate unphysical mass fractional abundances and alter the properties of
material and rotational discontinuities.
For higher-order reconstruction methods to be monotonicity preserving, they must
be nonlinear. Nonlinear reconstruction can be achieved by means of slope limiters,
such as the one proposed by van Leer (1974). The van-Leer reconstruction method
computes the slope bi used in Eqs. (2.53) and (2.54) according to

bi =

{ 2δi−1/2 δi+1/2
δi−1/2+δi+1/2

if δi−1/2 δi+1/2 > 0,

0 otherwise,
(2.55)
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Figure 2.2: Cell-volume averaged values, Ui, and their piecewise-linear reconstruc-
tion, Ui(x; xi), obtained using an unlimited linear reconstruction method (red solid
line) and the van-Leer slope limiter (blue dotted line). The vertical dashed lines rep-
resent the boundaries of the cells. Here, the cell-volume averages are given by a sinu-
soidal function truncated at x = 0.5. Although the two methods reconstruct smooth
solutions in a similar way, the unlimited reconstruction method introduces large un-
dershoots and overshoots near the discontinuity, which are absent when using the
slope limiter.

where

δi−1/2 =
Ui −Ui−1

∆x
, (2.56)

δi+1/2 =
Ui+1 −Ui

∆x
. (2.57)

are second-order accurate, interface-centered slopes. This method is total-variation-
diminishing (TVD), which implies that is monotonicity-preserving (e.g. LeVeque,
2002). It is second-order accurate for smooth flows and avoids oscillations by reduc-
ing or flattening the slope bi near large gradients or discontinuities. The result of using
a slope limiter versus an unlimited method in the reconstruction of the Riemann states
in a problem characterized by a discontinuous solution is shown in Fig. 2.2.
Other TVD methods are, e.g., the minmod, superbee, and monotonized central lim-
iters (see LeVeque, 2002, for an overview of slope limiters). Higher than second-order,
nonlinear (limited) reconstruction schemes have also been presented in the litera-
ture, such as the piecewise-parabolic-method (PPM) of Colella and Woodward (1984),
an extension of PPM that preserves extrema (Colella and Sekora, 2008), essentially
nonoscillatory (ENO), or weighted-ENO (WENO) schemes (e.g., Liu et al., 1994; Jiang
and Shu, 1996; Shu, 2009).
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2.3.2 Approximate Riemann solvers

Computing the exact solution to the Riemann problem of MHD can be particularly
expensive. In most applications, it is sufficient to use approximate Riemann solvers
that can roughly capture the main properties of the solution without having to use an
iterative method. Although this approach may sound very crude, the discretization
errors resulting from the reconstruction of the Riemann states at the grid cell interfaces
are often larger than the errors made in approximating the solution of the Riemann
problem. Nevertheless, some approximate Riemann solvers may be better suited than
others for accurately modeling the physical properties of the flow in question.
The simplest method is the Rusanov flux function (Rusanov, 1962, also known as the
“local Lax-Friedrichs solver”), which estimates the flux at the cell interface as

F̃ (UL,UR) =
1
2
[Fx(UL) + Fx(UR)]−

1
2

Smax(UR −UL). (2.58)

Here, the complex upwinding resulting from the exact Riemann solver is approxi-
mated by a simple dissipative term that is proportional to the maximum wave speed
at the cell interface,

Smax = max
(
|Vx,L|+ cf,L,x, |Vx,R|+ cf,R,x

)
. (2.59)

This dissipative term allows numerical stability to be retained in the simulation by
smoothening out any discontinuity that may arise in the system within a few time
steps. The Rusanov flux is computationally inexpensive and robust when simulating
fast-magnetosonic shocks. However, its simplicity and efficiency come at the cost of
disregarding the complex structure of the Riemann fan (see also Fig. 2.1). Thus, this
method is usually too dissipative for practical use.
A better way to describe the structure of the solution to the Riemann problem without
sacrificing performance is to retain only a subset of the original 7 MHD waves and pro-
vide appropriate parameterizations of the Rankine–Hugoniot jump conditions across
each of the considered waves,

F ∗∗x −F ∗x = λv(U
∗∗ −U ∗). (2.60)

In Eq. (2.60), λv is the speed of the wave separating the states U ∗∗ and U ∗, while
F ∗∗x and F ∗x are the fluxes in the ∗∗ and ∗ regions, respectively. If suitable estimates
of the wave speeds {λv} are provided beforehand, the system of Rankine–Hugoniot
jump conditions can be solved to obtain the fluxes in each region of the Riemann fan
without using an iterative method. Then, the flux at the cell interface is chosen ac-
cording to the direction of propagation of the waves, so the solution is upwind. This
is the Harten-Lax-van Leer-family (HLL) of approximate Riemann solvers. In par-
ticular, the two-wave HLL solver of Einfeldt et al. (1991) retains only the outermost
fast-magnetosonic waves in the Riemann fan, similar to the Rusanov flux3. Thus, HLL
is accurate and robust for modeling fast-magnetosonic waves, but it strongly dissi-
pates the intermediate states. Improvements over HLL can be made by restoring the
contact wave back to the structure of the solution to the Riemann problem, such as
in the three-wave HLL-Contact (HLLC) solver of Li (2005). HLLC is accurate for fast-
magnetosonic and contact waves, but it still introduces excessive dissipation for the

3Rusanov is a special case of HLL with λ1 = λ7 = Smax.
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Figure 2.3: Structure of the solution to a Riemann problem of MHD in four approx-
imate Riemann solvers: Rusanov (upper left), HLL (upper right), HLLC (lower left),
and HLLD (lower right).

slow-magnetosonic and Alfvén waves. Even more complex is the five-wave HLL-
Discontinuities (HLLD) solver of Miyoshi and Kusano (2005), which restores both the
contact and the rotational discontinuities into the Riemann fan, but it still excludes
slow-magnetosonic waves (see Fig. 2.3 for a visualization of the wave structure of the
Rusanov, HLL, HLLC, and HLLD solvers). All the members of the HLL-family are
positivity preserving, i.e., they guarantee that density and pressure always remain
positive (at least in 1D flows), which is a highly desirable property for any numerical
scheme.
Besides Rusanov and the HLL-family, a wide variety of approximate Riemann solvers
for MHD have been presented in the literature. These include solvers based on a
linearization of the MHD equations around some average state, for which even exact
solutions can be computed easily (e.g., Cargo and Gallice, 1997), relaxation approaches
(e.g., Waagan et al., 2011), or flux splittings (e.g., Balsara et al., 2016).

2.3.3 Higher-order time integration

Globally second-order accurate methods require that both the spatial and time dis-
cretizations are at least second-order accurate, i.e., the global error must be equal to
or better than O(∆x2, ∆t2). There are two main ways to achieve higher-order tem-
poral accuracy in Godunov-type methods. The first family is that of fully discrete
schemes, in which the spatial and temporal discretizations are performed at the same
time. These schemes include the monotonic upstream-centered scheme for conserva-
tion laws (MUSCL) of van Leer (1974) and the corner transport upwind (CTU) method
of Colella (1990). In both MUSCL and CTU, the key idea is to advance the numerical
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solution in a single step as

U n+1
i = U n

i + ∆tRn+1/2
i . (2.61)

Here, Rn+1/2
i approximates the time derivative of the cell-volume averaged state

quantities at half time step, so

Rn+1/2
i = S̃n+1/2

i − F̃ n+1/2
i+1/2 − F̃ n+1/2

i−1/2

∆x
. (2.62)

The right-hand side of Eq. (2.62) can only be computed if the conservative quantities
at tn+1/2 are known. These can be obtained by the second-order Taylor expansion

U n+1/2
i = U n

i −
∆t
2

(
An

i,x
∆U n

i
∆x
− S̃n

i

)
, (2.63)

U n+1/2
i±1/2 = U n

i ±
1
2

(
I− ∆t

∆x
An

i,x

)
∆U n

i +
∆t
2
S̃n

i . (2.64)

In Eqs. (2.63) and (2.64), An
i,x is the flux-Jacobian of the MHD system (see Eq. (2.23))

computed in U n
i and

∆U n
i = U n

i+1/2,L −U n
i−1/2,R. (2.65)

Unlike MUSCL, CTU performs the spatial reconstruction in Eq. (2.65) by discarding
the waves (characteristics) that do not reach the cell boundaries within ∆t/2 starting
from the cell center. This operation generally increases the accuracy of the numer-
ical solution but requires previous knowledge about the eigenstructure of the flux-
Jacobian Ax and makes the method somewhat more complicated to implement than
MUSCL.
Semi-discrete schemes represent the second class of time steppers. Here the idea is
to first discretize Eq. (2.34) in space while leaving the problem continuous in time
according to the method of lines (e.g., LeVeque, 2007), thus giving rise to a system of
ordinary differential equations (ODEs),

∂U i

∂t
+R∗i = 0. (2.66)

In Eq. (2.66),

R∗i =
F̃ ∗i+1/2 − F̃ ∗i−1/2

∆x
− S̃∗i , (2.67)

are the so-called “spatial residuals”. Equation (2.66) can then be solved using any
standard method for systems of ODEs, such as multi-stage Runge–Kutta methods.
The strong-stability-preserving method of Shu and Osher (1988) is a popular choice for
achieving second-order temporal accuracy in the numerical solution. In this method,
the time update from time tn to time tn+1 = tn + ∆t is performed in two steps,

U (1)
i = U n

i − ∆tRn
i , (2.68)

U n+1
i =

1
2

(
U n

i +U (1)
i − ∆tR(1)

i

)
. (2.69)

Unlike the MUSCL or CTU schemes, semi-discrete methods must integrate the model
equations using at least two substeps to achieve second-order temporal accuracy, so

27



CHAPTER 2. NUMERICAL METHODS FOR STELLAR MHD

they are typically more expensive than fully discrete time-marching schemes. In ad-
dition, semi-discrete methods have a more restrictive time step constraint than fully
discrete methods in more than one dimension. However, semi-discrete schemes can
achieve arbitrarily high temporal accuracy by simply increasing the number of inte-
gration substeps without having to modify the algorithm for computing the spatial
residuals. This is not true for fully discrete methods, which can only achieve higher
than second-order temporal accuracy by adding extra terms to the Taylor expansion
in Eqs. (2.63) and (2.64). In addition to increasing the implementation effort, retaining
higher-order terms in the Taylor expansion makes the overall scheme less robust for
discontinuous solutions (e.g., LeVeque, 2002).

2.3.3.1 Implicit time discretization

The MUSCL, CTU, and Runge–Kutta methods presented in the previous section be-
long to the family of explicit time steppers, where the time update of the state quan-
tities from tn to tn+1 is performed based uniquely on the knowledge of the numerical
solution at time tn. Explicit time marching schemes are conditionally stable, i.e., the
time step ∆t used to integrate the model equations must be constrained to retain nu-
merical stability. For the system of fully compressible MHD equations, the time step
must be limited by the CFL condition given by Eq. (2.42), which states that the fastest
magnetoacoustic wave present on the grid cannot cross more than one cell per time
step. Given this constraint, the number of time steps required to advect an entropy
wave traveling at speed u =Ma through one grid cell is

Nexp =
∆tadv

∆tCFL
≈M−1, (2.70)

where ∆tadv is the crossing time scale of the entropy wave over a grid cell,

∆tadv ≈
∆x
u

, (2.71)

and M and a are the Mach number of the wave and the local sound speed, respec-
tively. When entropy waves are highly subsonic, following their propagation over
the entire grid requires a large number of steps, making the simulation excessively
expensive. In such situations, significant performance improvements can be obtained
by using implicit time steppers, which are unconditionally stable and therefore allow
the model equations to be integrated over a much longer time step than that imposed
by the CFL condition. The simplest implicit time stepper is the first-order accurate
backward Euler method4, in which Eq. (2.66) is discretized as

U n+1
i −U n

i

∆t
+Rn+1

i = 0. (2.72)

Unlike explicit time steppers, here the numerical solution is not given in closed form,
but rather it must be found using iterative, root-finding algorithms such as Raphson–
Newton. In each iteration step of the root-finding algorithm, a large linear system
of equations must be solved to improve the estimate of the root. This can be accom-
plished using, e.g., relaxation methods or Krylov subspace linear solvers (e.g., LeV-
eque, 2007). The iteration is eventually halted when the correction on the numerical
solution is smaller than the prescribed tolerance.

4Higher than first-order accurate implicit time steppers are, e.g, the Crank–Nicolson method (Crank
et al., 1947) or ESDIRK schemes (Hosea and Shampine, 1996).
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The use of an iterative scheme for obtaining the numerical solution at time tn+1 signif-
icantly increases the computational cost per time step of implicit time steppers com-
pared to conventional time-explicit methods. However, if the time step is chosen to
be large enough to overcome the overhead cost of the root-finding algorithm, implicit
time discretization can be significantly faster than explicit steppers. In practice, one
should limit the time step to properly resolve the flow of interest in time and to pro-
duce accurate numerical solutions. For entropy waves, the time step should be limited
by Eq. (2.71), which is about 1/M larger than ∆tCFL. Depending on the specific setup,
the cost per time step of the implicit solver is 20 to 50 times higher than that of explicit
time steppers, so implicit time discretization becomes convenient over explicit time
steppers whenM. 0.05 (e.g., Miczek, 2013; Edelmann, 2014).

2.4 The ∇ · B = 0 constraint in Godunov-type schemes

One of Maxwell’s equations states that magnetic monopoles do not exist,

∇ ·B = 0. (2.73)

Analytic solutions to Eqs. (2.10)-(2.14) automatically satisfy the solenoidal property of
the magnetic field. This property is also trivially satisfied in 1D simulations, where
Eq. (2.73) implies Bx = const. However, in more than one dimension, Godunov-type
schemes for MHD only satisfy the divergence-free condition for the magnetic field up
to discretization errors,

∇ ·B = 0 +O(∆xp, ∆tq), (2.74)

where p and q are the spatial and temporal orders of accuracy of the numerical scheme,
respectively. Under the effects of a nonsolenoidal magnetic field, the fluid experiences
a fictitious component of the Lorentz force parallel to the magnetic field lines,

fL‖ =
fL ·B
|B| = −B(∇ ·B), (2.75)

which does work on the fluid according to

WL‖ = −B · V (∇ ·B). (2.76)

If left uncontrolled, these spurious terms can severely degrade the quality of the nu-
merical solution (e.g., Brackbill and Barnes, 1980). Furthermore, most Godunov-type
methods for multidimensional MHD rely on 1D Riemann solvers for computing the
fluxes at each grid cell boundary (see Sect. 2.3.2). In 1D Riemann solvers, the condi-
tion ∇ ·B = 0 is implemented by assuming that the magnetic field component per-
pendicular to the cell boundary is continuous5. This representation is not suitable for
multidimensional problems and can result in a lack of numerical dissipation, leading
to numerical instabilities.
Several methods have been proposed to mitigate the effects caused by spurious mag-
netic monopoles on the evolution of the flow in multidimensional MHD simulations.
Some of these techniques are described in the following sections.

5A typical way to ensure continuity in the magnetic field component perpendicular to the grid cell
boundary is to compute the arithmetic mean of the two Riemann states, e.g., Bx = (Bx,L + Bx,R)/2
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2.4.1 Projection methods

Projection methods are based on the idea that the magnetic field solution produced
by the base numerical scheme, B∗i,j,k, consists of a divergence-free and a divergent
component. Therefore, the Hodge projection can be used to isolate the divergence-
free part of the solution (e.g. Brackbill and Barnes, 1980; Balsara, 2004),

Bn+1 = B∗ −∇φ. (2.77)

To find φ, one computes the divergence of Eq. (2.77), which results in the Poisson
equation

∇2φ = ∇ ·B∗. (2.78)

Equation (2.78) can be solved for φ if suitable discretizations of the Laplacian and
divergence operators are provided. Numerical solutions to Eq. (2.78) are then found,
e.g., using fast-Fourier transform techniques, multigrid-based methods, or sparse lin-
ear solvers (e.g. Ferziger and Perić, 2002; LeVeque, 2007). Once φ is obtained, the
corrected (divergence-free) magnetic field is computed using Eq. (2.77).
Projection methods are an effective way to enforce a particular discretization of ∇ ·B
to the level of machine accuracy. However, they require finding the solution of a large
elliptic system of equations at each time step. In parallelized simulations, this opera-
tion involves all-to-all communication which can be particularly expensive compared
to solving the hyperbolic system of MHD equations. Furthermore, the correction step
in Eq. (2.77) can lead to negative pressures in strongly magnetized plasmas.

2.4.2 Powell’s eight-wave method

Instead of numerically enforcing ∇ ·B = 0, the method of Powell (1994) avoids the
accumulation of errors at any given location by letting the fluid advect the magnetic
monopoles away, i.e.,

∂(∇ ·B)

∂t
+∇ · (V ∇ ·B) = 0. (2.79)

This result is achieved by retaining the source term proportional to the divergence
of the magnetic field present in the more general form of the MHD equations (e.g.,
Godunov, 1972; Fuchs et al., 2011),

S 7→ S −




0
B

B · V
V
0



(∇ ·B). (2.80)

The source term6 in Eq. (2.80) is activated whenever ∇ ·B 6= 0 and adds an 8th wave
to the eigenstructure of the MHD system (see Sect. 2.1.3) that travels with the fluid
speed, λ8 = Vx . The new wave transports fluctuations in the magnetic field compo-
nent parallel to the wave vector, resulting in Eq. (2.79). Furthermore, the additional
wave restores Galilean invariance and symmetrizes the system of ideal MHD equa-
tions (Godunov, 1972), thus increasing the stability of the numerical scheme at dis-
continuous solutions (Powell et al., 1999).

6Suitable upwind discretizations of the Powell source term can be found, e.g., in Klingenberg and
Waagan (2010) or Fuchs et al. (2011).
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The 8-wave formulation is inexpensive and in most applications is capable of keeping
∇ ·B to relatively small values. However, this scheme does not conserve the total
momentum, energy, and magnetic field, so it can yield wrong weak solutions (e.g.,
Tóth, 2000). Another drawback of Powell’s method is that magnetic monopoles can
accumulate at stagnation points and never leave the system unless outflow boundary
conditions are used.

2.4.3 Hyperbolic divergence cleaning

Along the lines of Powell’s 8-wave method is the hyperbolic divergence cleaning
scheme of Dedner et al. (2002). In this method, the divergence-free constraint on the
magnetic field is coupled to the induction equation by means of a generalized La-
grangian multiplier ψ,

∂B

∂t
+∇ · (V ⊗B −B ⊗ V ) +∇ψ = 0, (2.81)

∂ψ

∂t
+ c2

h∇ ·B = 0. (2.82)

Equations (2.81) and (2.82) can be combined to obtain a wave equation for ∇ ·B,

∂2(∇ ·B)

∂2t
= c2

h∇2(∇ ·B), (2.83)

which implies that divergence errors generated at a given location are radiated away
isotropically with constant speed ch. In the case ch = ∞, the divergence errors would
be removed completely. However, such a case corresponds to the elliptic correction
described in Sect. 2.4.1, which can be expensive to solve numerically. To maintain the
hyperbolic character of the modified set of equations, the divergence waves can be
assumed to propagate at the same speed of the fastest magnetosonic wave present on
the grid, which yields

ch = C∆x
∆t

. (2.84)

This choice allows divergence errors to be kept under control and the extended model
equations to be solved numerically without having to modify the CFL criterion on the
time step.
In order to use the hyperbolic correction in Godunov-type schemes, the conventional
1D Riemann solvers for MHD presented in Sect. 2.3.2 must be supplemented with the
solution to the subset of equations

∂Bx

∂t
+

∂ψ

∂x
= 0, (2.85)

∂ψ

∂t
+ c2

h
∂Bx

∂x
= 0. (2.86)

Equations (2.85) and (2.86) are decoupled from the rest of the system and they are
linear in Bx and ψ. Therefore, their Riemann problem has an exact (upwind) solution
that can be computed analytically,

Bx =
1
2
(Bx,L + Bx,R)−

1
2ch

(ψR − ψL), (2.87)

ψ =
1
2
(ψL + ψR)−

ch

2
(Bx,R − Bx,L). (2.88)
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Bx and ψ are then used to solve the Riemann problem of MHD and to compute the
fluxes in Eqs. (2.85) and (2.86). To damp the magnetic monopoles over time, an extra
parabolic term can be added to the right-hand side of Eq. (2.82),

∂ψ

∂t
+ c2

h∇ ·B = −ψ/τ, (2.89)

where τ is a tunable parameter.
The main advantage of hyperbolic divergence cleaning over projection schemes is that
it preserves the hyperbolic nature of the MHD equations and requires only a few mi-
nor modifications to the Godunov algorithm. Unlike Powell’s 8-wave method, the
fixed velocity ch guarantees that magnetic monopoles are transported away under all
circumstances. Even if the flow has stagnation points, magnetic monopoles cannot ac-
cumulate there. However, this method tends to introduce excessive dissipation for the
magnetic field when the characteristic Alfvén and fluid speeds are much lower than
ch. Furthermore, the optimal value of the damping time scale τ depends on the given
problem and can sometimes be difficult to constrain.

2.4.4 Constrained transport

Instead of solving the induction equation in its conservation form (see Eq. 2.13), con-
strained transport (CT) methods (e.g., Evans and Hawley, 1988; Dai and Woodward,
1998; Balsara and Spicer, 1999) aim to solve the equivalent form

∂B

∂t
+∇×E = 0, (2.90)

where
E = −V ×B (2.91)

is the electromotive force. Using Stokes’ theorem to perform the surface integral of
Eq. (2.90) over the grid cell boundary {i + 1/2, j, k} gives7

∂Bx,i+1/2,j,k

∂t
=− 1

∆y
(
Ez,i+1/2,j+1/2,k − Ez,i+1/2,j−1/2,k

)

+
1

∆z
(
Ey,i+1/2,j,k+1/2 − Ey,i+1/2,j,k−1/2

)
,

(2.92)

where

Bx =
1

Ai+1/2,j,k

∫

Ai+1/2,j,k

Bx dA (2.93)

is the surface-averaged magnetic field and, e.g.,

Ez,i+1/2,j+1/2,k =
1

∆zi+1/2,j+1/2,k

∫

∆zi+1/2,j+1/2,k

Ez dz (2.94)

is the line-averaged z-component of the electromotive force. Analogous formulas can
be derived for the other components of the electromotive force and the magnetic field.

7For simplicity, the following calculations assume that the grid is Cartesian.
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When the surface-averaged magnetic field components are evolved according to equa-
tions such as Eq. (2.92), the update to the cell volume average of the magnetic field
divergence,

(∇ ·B)i,j,k =
Bx,i+1/2,j,k −Bx,i−1/2,j,k

∆x
+

By,i,j+1/2,k −By,i,j−1/2,k

∆y
+

Bz,i,j,k+1/2 −Bz,i,j,k−1/2

∆z
,

(2.95)

vanishes up to rounding errors.
There are two caveats to this result. First, the magnetic field must be updated at cell
boundaries and not at cell centers as in the original finite-volume method, which re-
quires the use of a staggered grid. Second, the line-averaged electromotive forces used
to update the magnetic field (see Eq. (2.92)) must be estimated somehow. The simple
approach of averaging the electromotive force resulting from the Riemann problems
at the four adjacent cell boundaries,

Ez,i+1/2,j+1/2,k =
1
4

(
Ez,i+1/2,j,k + Ez,i+1/2,j+1,k

+ Ez,i,j+1/2,k + Ez,i+1,j+1/2,k

)
,

(2.96)

lacks upwinding and gives rise to numerical instabilities. To produce upwind and
robust solutions, dissipative terms can be added to Eq. (2.96) based on the sign of the
contact wave at the grid cell boundaries, as described in Gardiner and Stone (2005).
Another method is to solve a 2D Riemann problem for the induction equation at the
grid cell edges as in the upwind constrained transport (UCT) method (e.g., Londrillo
and del Zanna, 2004; Mignone and Del Zanna, 2021).
CT has significant advantages over the methods discussed in the previous sections:
i) it keeps a discretization of ∇ ·B to zero (except for small errors due to the finite
precision of floating-point arithmetic) while preserving the hyperbolic character of
the MHD equations; ii) is a conservative scheme, so its numerical solution converges
to the weak solution of the equations; and iii) it conserves the magnetic flux across the
surface of each grid cell, which in numerical MHD is a more fundamental conservation
property than preserving the volume integral of the magnetic field over the whole
grid as in the cell-centered representation (Gardiner and Stone, 2005). However, the
need for a staggered representation of the magnetic field makes CT difficult to use on
arbitrarily curvilinear grids.
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CHAPTER 3

Results

This Chapter presents the main results of the thesis. The content of each section con-
sists of a peer-reviewed publication1 preceded by a short introduction. The order of
the sections does not necessarily correspond to the publication order of the papers,
but rather reflects the interdependence of the content. The results are summarized
and discussed further in Sect. 4.

1All the papers presented in this Chapter have been accepted for publication in the peer-reviewed
journal “Astronomy & Astrophysics” (https://www.aanda.org/).
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CHAPTER 3. RESULTS

3.1 Publication I: A numerical scheme for modeling low-
Mach-number magnetohydrodynamic flows in stars

Accurate treatment of MHD flows in the interior of stars requires special methods that
can tackle highly subsonic flow regimes in strongly stratified media. Indeed, conven-
tional methods of MHD are too dissipative and inefficient when used to model such
dynamical conditions (see Sect. 1.2.1). This paper presents a novel scheme that is both
accurate and efficient for flows in stellar interiors while preserving the fully compress-
ible nature of the stellar MHD equations. The novel scheme comprises semi-implicit
time discretization (IESS, see Sect. 1.3) to overcome the overly strict CFL condition on
the time step, a low-dissipation Riemann solver to correct for the erroneous scaling of
the numerical viscosity with the Mach number, and a well-balancing technique that
maintains hydrostatic solutions on the computational grid. A staggered constrained
transport method (see Sect. 2.4.4) is used to preserve one particular discretization of
∇ ·B.
The paper first describes the major shortcomings of standard shock-capturing schemes
in modeling stellar flows and provides implementation details of the proposed low-
Mach-number MHD method in SLH. Then, the numerical properties of IESS are as-
sessed through five verification benchmarks. These tests include i) a linear wave anal-
ysis; ii) a stable, magnetized vortex which allows the robustness of the scheme to be
tested in a wide range of Mach numbers and regimes of magnetization; iii) simulations
of a magnetized Kelvin–Helmholtz instability at various Mach numbers of the initial
shear layers; iv) the rise of a buoyant bubble in a strongly stratified medium; and v)
small-scale dynamo action in a stratification that resembles that of an oxygen-burning
shell of a massive star. These tests are characterized by a progressively increasing level
of difficulty and are designed to challenge the low-Mach capabilities of any numerical
scheme.
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ABSTRACT

Fully compressible magnetohydrodynamic (MHD) simulations are a fundamental tool for investigating the role of dynamo amplifica-
tion in the generation of magnetic fields in deep convective layers of stars. The flows that arise in such environments are characterized
by low (sonic) Mach numbers (Mson ≲ 10−2). In these regimes, conventional MHD codes typically show excessive dissipation and
tend to be inefficient as the Courant–Friedrichs–Lewy (CFL) constraint on the time step becomes too strict. In this work we present a
new method for efficiently simulating MHD flows at low Mach numbers in a space-dependent gravitational potential while still retain-
ing all effects of compressibility. The proposed scheme is implemented in the finite-volume SEVEN-LEAGUE HYDRO (SLH) code,
and it makes use of a low-Mach version of the five-wave Harten–Lax–van Leer discontinuities (HLLD) solver to reduce numerical
dissipation, an implicit–explicit time discretization technique based on Strang splitting to overcome the overly strict CFL constraint,
and a well-balancing method that dramatically reduces the magnitude of spatial discretization errors in strongly stratified setups. The
solenoidal constraint on the magnetic field is enforced by using a constrained transport method on a staggered grid. We carry out five
verification tests, including the simulation of a small-scale dynamo in a star-like environment atMson ∼ 10−3. We demonstrate that the
proposed scheme can be used to accurately simulate compressible MHD flows in regimes of low Mach numbers and strongly stratified
setups even with moderately coarse grids.

Key words. magnetohydrodynamics (MHD) – methods: numerical

1. Introduction

The interplay between turbulent convection and shear is fun-
damental in understanding the role of small- and large-scale
dynamo mechanisms in the generation of strong magnetic
fields in stellar interiors. These processes can only be modeled
self-consistently with multidimensional magnetohydrodynamic
(MHD) simulations (Brun et al. 2004; Browning et al. 2006;
Browning 2008; Brown et al. 2010; Ghizaru et al. 2010; Käpylä
et al. 2012; Masada et al. 2013; Karak et al. 2015; Hotta
et al. 2015; Yadav et al. 2016; Augustson et al. 2016; Brun &
Browning 2017; Rempel 2018; Käpylä 2021). Nowadays, many
codes used for astrophysical MHD rely on finite-volume dis-
cretization and Godunov-like methods to retain the conservative
property of the MHD equations. This method is particularly
suited for simulating flows in the transonic and supersonic
regimes, which characterize many astrophysical systems. How-
ever, stars are objects in nearly magnetohydrostatic equilibrium
(MHSE), and the flows arising from such stratifications have a
very low sonic Mach number, typically Mson = |V|/a ≲ 10−2

(Kupka & Muthsam 2017), where V is the flow speed and

a is the adiabatic sound speed. It is well known that con-
ventional finite-volume schemes are not designed to work in
such regimes (Viallet et al. 2011; Miczek et al. 2015; Dumbser
et al. 2019; Minoshima et al. 2020). First, the approximate Rie-
mann solvers used in many astrophysical MHD codes, such as
the Harten–Lax–van Leer (HLLE; Einfeldt et al. 1991), Roe
(Cargo & Gallice 1997), and Harten–Lax–van Leer discontinu-
ities (HLLD; Miyoshi & Kusano 2005) solvers, show excessive
numerical dissipation when the typical Mach number of the flow
is below 10−2. Second, explicit time-steppers have to satisfy
the Courant–Friedrichs–Lewy (CFL) stability criterion (Courant
et al. 1928) so that the propagation of fast magnetosonic waves is
resolved in time. This poses a severe limitation when simulating
low-Mach-number flows. In this regime, the fast magnetosonic
waves become parasitic since they transport very little energy
and drastically reduce the time step. This makes convectional
schemes exceedingly expensive for simulating the evolution of
fluid motions and Alfvén waves, which are orders of magni-
tude slower than fast magnetosonic waves in deep layers of stars
(Brun et al. 2005; Browning 2008; Käpylä 2011; Augustson
et al. 2016). Lastly, standard Godunov-type schemes, by
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construction, cannot preserve stratifications in MHSE. This hap-
pens because hyperbolic fluxes and gravitational source terms
are separately discretized and do not balance exactly in hydro-
static setups, which inevitably leads to the generation of spurious
flows even in pure hydrodynamic simulations (Edelmann et al.
2021). This problem becomes even more critical in steep stratifi-
cations, where the spatial reconstruction from cell centers results
in large jumps in the pressure at the cell interfaces, considerably
accelerating the fluid along the gravity vector. Such numeri-
cal artifacts can dominate over the physical convective motions,
leading to unreliable results.

Difficulties in modeling low-Mach-number MHD flows
in stellar interiors are usually overcome by using alternative
approaches based on a different formulation of the physical prob-
lem. One of them consists in artificially boosting the energy
flux (or energy generation) to drive faster convective motions,
such that the typical Mach number of the resulting flows falls
above the low-Mach regime (Mson ≳ 10−2), where explicit time-
steppers can be used efficiently (Käpylä et al. 2011, 2012, 2013;
Viviani et al. 2019; Käpylä 2021). However, this approach sig-
nificantly enhances the relative fluctuations of thermodynamic
quantities (Warnecke et al. 2016; Käpylä et al. 2020), alters the
mixing at convective boundaries (Hotta 2017; Käpylä 2019), and
modifies the spectrum of internal waves in radiative regions of
stars (Rogers et al. 2013; Edelmann et al. 2019; Horst et al. 2020;
Higl et al. 2021). Another approach consists in solving the set of
MHD equations using the anelastic approximation (Glatzmaier
1984, 1985; Brun et al. 2004; Jones et al. 2009; Gastine &
Wicht 2012; Smolarkiewicz & Charbonneau 2013; Featherstone
& Hindman 2016), which filters out the fast magnetosonic waves,
alleviating the overly strict constraint on the time step. How-
ever, such an approximation cannot model the excitation of the
compressible pressure modes. Another way to overcome the con-
straint on the time step is to drastically reduce the speed of the
fast magnetosonic waves (Rempel 2005; Hotta et al. 2015); again,
at the cost of modifying the original set of MHD equations.

A numerical scheme that is capable of efficiently solving
the fully compressible MHD equations at low sonic Mach num-
bers in strongly stratified setups is still missing. In this work we
present a new method that aims to fill this gap. This can only be
accomplished (i) by reducing the numerical dissipation, (ii) by
overcoming the strict CFL condition, and (iii) by preserving the
background stratification in MHSE over long timescales. For
aspect (i), we use a low-Mach version of the five-wave HLLD
solver (Minoshima & Miyoshi 2021), whose numerical dissipa-
tion is independent of the sonic Mach number of the modeled
flow in subsonic regimes.

In order to deal with aspect (ii), time-implicit discretization
techniques can be used. Most of the fully implicit (e.g., Aydemir
& Barnes 1985; Charlton et al. 1990; Chacón 2008; Lütjens &
Luciani 2010) and semi-implicit (e.g., Harned & Kerner 1985;
Schnack et al. 1987; Lerbinger & Luciani 1991; Glasser et al.
1999; Jardin 2012; Fambri 2021) MHD schemes presented in the
literature are designed to simulate magnetically confined plas-
mas and low-β environments, where β is defined as the ratio of
the gas pressure to the magnetic pressure: β = p/pB. In such
strongly magnetized plasmas, both fast magnetosonic and Alfvén
waves put a strong limit on the time step. On the contrary, plas-
mas in stellar interiors are characterized by high β values (Mestel
1999)1, and the only source of stiffness is the generation of fast

1 Low-β environments can be found in the outer layers of active stars,
like the solar corona.

magnetosonic waves. Thus, Alfvén waves do not need to be
treated implicitly, which greatly simplifies the numerical prob-
lem. Recently, Dumbser et al. (2019) developed a semi-implicit
conservative method that treats only the fast magnetosonic waves
implicitly; however, that scheme cannot be implemented easily
within the framework of our hydrodynamic code. In this work,
we construct an alternative time-marching scheme suitable for
modeling high-β plasmas at low Mach numbers, based on the
approach described by Fuchs et al. (2009), in which the induc-
tion equation is solved in a separate step and coupled to the rest
of the system through Strang splitting (Strang 1968). As the high
speed of the fast magnetosonic waves is mostly determined by
the pressure flux in the momentum equation, we solve the sub-
set containing the continuity, momentum, and energy equations
implicitly, whereas the induction equation is integrated using an
explicit time-stepper. For stability, the time step is now limited
by the fastest fluid and Alfvén speeds on the grid; it is approx-
imately 1/Mson longer than that allowed by the CFL condition,
which leads to a considerable speed-up when the Mach number
of the flow is low. Since the update on the induction equation
is performed in a separate step, the flux-Jacobian in the time-
implicit part of the algorithm does not need to be evaluated with
respect to the magnetic field components. This allows for more
flexibility when choosing the method that evolves the magnetic
field. In particular, we use a staggered formulation of constrained
transport (CT-contact; Gardiner & Stone 2005) to keep ∇ · B = 0
to machine precision, at least for a specific discretization of the
divergence of the magnetic field.

Finally, aspect (iii) is solved by using the deviation well-
balancing method (Berberich et al. 2021; Edelmann et al. 2021),
which allows the a priori known background stratification in
MHSE to be preserved, dramatically reducing the magnitude of
numerical errors and the strength of spurious flows2. Recently,
Canivete Cuissa & Teyssier (2022) performed fully compressible
simulations of stellar magneto-convection atMson ∼ 10−3 using
a well-balancing technique similar to the deviation method.
However, their scheme relied on explicit time-steppers, and it
was used to simulate only 2.5 convective turnovers. Moreover,
they did not cure the excessive dissipation of the HLLD solver at
low Mach numbers.

These methods have been implemented in the
SEVEN-LEAGUE HYDRO (SLH) code, which has already
been used in the past to simulate convective boundary mixing,
shear instabilities, and wave excitation in stellar interiors, even
in regimes of low Mach numbers (Miczek 2013; Edelmann 2014;
Miczek et al. 2015; Edelmann & Röpke 2016; Edelmann et al.
2017; Horst et al. 2020, 2021; Andrassy et al. 2022). We stress
that the current MHD implementation in SLH is not suitable
for modeling low-β plasmas. For simulating such regimes, a
different method should be used instead, which is beyond the
scope of this work.

In Sect. 2, we summarize the main properties of the fully
compressible MHD equations with gravity. In Sects. 3 and 4,
we provide details on the numerical algorithms implemented in
SLH. In Sect. 5, several numerical experiments are run with
the new MHD scheme in order to check its accuracy and effi-
ciency in simulating flows at low Mach numbers, even in the

2 A similar approach in which the states are split into a back-
ground component and deviations is described in Vögler et al. (2005),
Khomenko & Collados (2006), Felipe et al. (2010), and Hotta et al.
(2015).
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presence of a steep stratification. Finally, in Sect. 6 we draw con-
clusions and summarize the fundamental aspects of the proposed
algorithm.

2. Equations of compressible ideal MHD with
gravity

The MHD scheme implemented in SLH is designed to solve
the set of compressible ideal MHD equations with a (time-
independent) gravitational source term3:

∂ρ

∂t
+ ∇ · (ρV) = 0, (1)

∂(ρV)
∂t
+ ∇ · [ρV ⊗ V + (p + pB)I − B ⊗ B] = ρg, (2)

∂(ρEϕ)
∂t

+ ∇ · [(ρEϕ + p + pB)V − B(B · V)] = 0, (3)

∂B
∂t
+ ∇ · (V ⊗ B − B ⊗ V) = 0, (4)

where ρ denotes the density, V = (Vx,Vy,Vz) the velocity field,
B = (Bx, By, Bz) the magnetic field4, I the unit tensor, g =
(gx, gy, gz) the gravitational acceleration, p the gas pressure and
pB = |B|2/2 the magnetic pressure. The total energy density ρEϕ

is defined as

ρEϕ = ρeint +
1
2
ρ|V|2 + 1

2
|B|2 + ρeϕ, (5)

where eint and eϕ are the specific internal and gravitational
energies5.

The system is closed by an equation of state (EoS), which
provides the numerical value of the gas pressure. Several dif-
ferent definitions for the EoS can be used in SLH, including a
simple ideal gas law, radiation pressure, and a tabulated EoS
(Helmholtz EoS; Timmes & Swesty 2000) that allows the effects
of electron degeneracy and Coulomb corrections to be included,
which are often needed to properly describe the thermodynamic
conditions found in stellar material.

2.1. Eigenstructure of the MHD system and definition of Mach
numbers

The homogeneous MHD system (left-hand side of Eqs. (1)–(4))
reduced to one spatial dimension has seven nonzero
eigenvalues6,

λ1,7 = Vx ∓ cf,x, λ2,6 = Vx ∓ ca,x, λ3,5 = Vx ∓ cs,x, λ4 = Vx, (6)

associated with different modes of propagation: left/right fast
magnetosonic waves, left/right Alfvén waves, left/right slow

3 However, other source terms can be added to the system depending
on the problem at hand. These include energy generation by nuclear
reactions, radiative transport of energy in the diffusion limit, neutrino
cooling, and parabolic viscous terms.
4 Throughout the paper we use the Lorentz-Heaviside notation: B =
b/
√

4π.
5 If the gravitational potential is time independent, solving the energy
equation for ρEϕ instead of ρE allows the ρg · V source term to be
removed. This leads to more accurate results and better entropy- and
energy-conservation properties in simulations of gas dynamics with
gravity (Müller 2020; Edelmann et al. 2021).
6 Here, x represents a generic direction.

x

t

Vx + cf,xVx + ca,xVx + cs,xVxVx − cs,xVx − ca,xVx − cf,x

Fig. 1. Wave structure of the MHD system.

magnetosonic waves and one entropy wave. cs,x, ca,x, and cf,x are
the slow magnetosonic, Alfvén, and fast magnetosonic speeds,

cf,s,x =


1
2

a
2 +
|B|2
ρ
±

√(
a2 +

|B|2
ρ

)2

− 4a2c2
a,x





1
2

, (7)

ca,x = |Bx|/√ρ, (8)

with the adiabatic sound speed a defined as

a =
(
∂p
∂ρ
+

p
ρ2

∂p
∂eint

) 1
2

. (9)

As illustrated in Fig. 1, the MHD wave pattern has a fixed
ordering:

λ1 < λ2 < λ3 < λ4 < λ5 < λ6 < λ7. (10)

Alfvén waves correspond to incompressible modes of propaga-
tion, as they only carry perturbations in the velocity and mag-
netic field components orthogonal to the wave vector. Effects of
compressibility are due to the propagation of slow and fast mag-
netosonic waves, while the entropy wave is simple advection of
fluid.

In contrast to pure hydrodynamics, the more complex struc-
ture of the MHD waves allows several Mach numbers to be
defined, depending on the considered reference velocity. In
addition to Mson (see Sect. 1), the Alfvén Mach number is
defined as

MAlf =
|V|√

c2
a,x + c2

a,y + c2
a,z

, (11)

while the directional slow and fast magnetosonic Mach numbers
are given by

Mslow,fast,x =
|Vx|
cs,f,x

. (12)

2.2. Low-Mach limit of the MHD system

Magnetic fields amplified by dynamo mechanisms in deep con-
vective layers of stars are likely to approach equipartition with
respect to the kinetic energy content of the flow (Brandenburg
& Subramanian 2005; Featherstone et al. 2009; Augustson et al.
2016; Hotta 2017; Käpylä 2019). To model such processes, the
MHD system in Eqs. (1)–(4) must be solved in regimes of Mach
numbers Mfast,x ≲ Mson ≲ 10−2 and MAlf ∼ 1. To infer the
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structure of the solution under such conditions, it is useful to con-
sider the nondimensional form of the fully compressible MHD
equations7,

∂ρ̂

∂t̂
+ ∇̂ · (ρ̂V̂) = 0,

(13)

∂(ρ̂V̂)
∂t̂
+ ∇̂ ·

ρ̂V̂ ⊗ V̂ +


p̂

M̂2
son
+

p̂B

M̂2
Alf

 I − B̂ ⊗ B̂
M̂2

Alf

 = 0,

(14)

∂(ρ̂Ê)
∂t̂
+ ∇̂ ·


ρ̂Ê + p̂ + p̂B

M̂2
son

M̂2
Alf

 V̂ − B̂
(
B̂ · V̂

) M̂2
son

M̂2
Alf

 = 0,

(15)
∂B̂
∂t̂
+ ∇̂ · (V̂ ⊗ B̂ − B̂ ⊗ V̂) = 0.

(16)

Here, the different variables have been rescaled by some refer-
ence quantity representative of the physical system of interest:
x = x̂xr, ρ = ρ̂ρr, V = V̂Vr, E = Êa2

r , p = p̂ρra2
r , B = B̂Br.

M̂son = |Vr|/ar and M̂Alf = |Vr|/(|Br|/√ρr) are the characteristic
sonic and Alfvén Mach numbers of the flow.

In the limit of M̂son → 0, Eqs. (13)–(15) approach the incom-
pressible regime (see Matthaeus & Brown 1988), in which the
gas pressure is constant in space except for fluctuations ∝ M̂2

son.
As this solution does not allow for compressible modes of propa-
gation, only Alfvén and entropy waves can transport fluctuations
in the state variables across the physical domain. In the regime
we are interested in (M̂Alf ∼ 1), these waves travel at similar
speeds. However, the incompressible limit is not the only solu-
tion to the compressible MHD equations at M̂son ≪ 1. In fact,
both slow and fast magnetosonic waves can be propagated with
arbitrary small velocity fluctuations. Fast magnetosonic waves
in particular travel at much higher speed than Alfvén waves and
fluid motions in the low-Mach limit. If the plasma-β is high, the
large fast magnetosonic speed cf,x is mostly determined by the
pressure flux p̂/M̂2

son in Eq. (13). Since both slow incompress-
ible flows and fast magnetosonic waves are permitted in the limit
of M̂son → 0, the system of fully compressible MHD equations
is stiff.

2.3. Magnetohydrostatic solutions

Magnetohydrostatic stratifications are a special class of solu-
tions to the MHD system with gravitational source terms (see
Eqs. (1)–(4)), where all the time derivatives are zero and the
velocity is zero everywhere. Under these conditions, the distri-
bution of density, pressure and magnetic field is given by the
magnetohydrostatic equation

∇ · [(p + pB)I − B ⊗ B] = ρg. (17)

Any set (ρ,p,B) that solves Eq. (17) is called a “magnetohy-
drostatic solution”. Equation (17) is undetermined, so a whole
continuum of magnetohydrostatic solutions exists.

The stratification of stars is very well described by MHSE
over a large fraction of their lifetime. Large deviations from
MHSE are only expected in the late evolutionary stages of

7 For simplicity, we only consider the homogeneous MHD system in
this analysis.

massive stars, in atmospheric layers and in stellar winds. Even
though their stratification is continuously perturbed by a whole
variety of physical processes over fast dynamical timescales, the
amplitude of such perturbations remains small, and the overall
structure of the star can be considered to be in MHSE. Signif-
icant changes to the stratification only happen over the much
longer thermal and nuclear timescales (Kippenhahn et al. 2013).

2.4. The solenoidal constraint

The magnetic field satisfies the solenoidal constraint

∇ · B = 0. (18)

This constraint has its origin in Maxwell’s equation and states
that physically no magnetic monopoles can exist. Solutions to
Eqs. (1)–(4) automatically satisfy this condition at all times if the
initial field obeys the constraint. This can easily be illustrated by
rewriting Eq. (4) into the equivalent form

∂B
∂t
+ ∇ × E = 0, (19)

where E = −V × B is the electromotive force. Applying the
divergence to Eq. (19) results in

∂(∇ · B)
∂t

= 0. (20)

3. Spatial discretization

The system of partial differential equations (PDEs) described in
Sect. 2 takes the general conservative form

∂U
∂t
+
∂F(U)
∂x

+
∂G(U)
∂y

+
∂H(U)
∂z

= S(U), (21)

with the respective vector of conservative variables U, physical
fluxes F, G, H and source term S. In SLH, Eq. (21) is solved
numerically using the finite-volume method (LeVeque 2002;
Toro 2009), which is briefly summarized in the next section.

3.1. Finite-volume discretization

In a first step, the physical system is mapped on a 3D Carte-
sian grid8 divided into Nx × Ny × Nz cells, whose spatial extent
is given by [xL, xR] × [yL, yR] × [zL, zR]. Each cell in the com-
putational domain is defined by the set of indices (i, j, k), and
its volume is given by the product of the spatial resolution ele-
ments along each axis: Θi, j,k = ∆x∆y∆z. Any quantity located at
the center of the cell refers to the same indices, while quantities
located at the cell boundaries are denoted by sets of indices like
(i + 1/2, j, k), which in this case defines the interface between
cells (i, j, k) and (i + 1, j, k).

Integrating Eq. (21) over the cell volume leads to

∂Ûi, j,k

∂t
= − 1
∆x

(
F̂i+1/2, j,k − F̂i−1/2, j,k

)

− 1
∆y

(
Ĝi, j+1/2,k−Ĝi, j−1/2,k

)

− 1
∆z

(
Ĥi, j,k+1/2−Ĥi, j,k−1/2

)

+ Ŝi, j,k,

(22)

8 Here we describe the 3D algorithm; however, 1D and 2D Cartesian
grids can also be used in SLH.
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where Ûi, j,k is the volume-averaged vector of conserved
quantities

Ûi, j,k =
1
Θi, j,k

∫

Θi, j,k

UdΘ. (23)

The same procedure applies to Ŝi, j,k, while the surface-averaged
fluxes are defined as

F̂i+1/2, j,k =
1

Ai+1/2, j,k

∫

Ai+1/2, j,k

F · n̂dA, (24)

where Ai+1/2, j,k is the area of the interface (i + 1/2, j, k) and n̂ is
the normal to the surface pointing outward from the cell.

The right-hand side of Eq. (22) can be discretized in space if
suitable numerical values for F̂i+1/2, j,k and Ŝi, j,k are provided. For
the latter, a typical choice consists in substituting the volume-
averaged quantity with its value in the center of the cell, which
is accurate to second order:

Ŝi, j,k ≃ Si, j,k. (25)

The computation of numerical fluxes, in contrast, needs more
care, and upwind techniques must be used to achieve stability.
The resulting system of ordinary differential equations (ODEs)
is then discretized in time using the methods described in Sect. 4.

3.2. Numerical flux function

In order to get a proper estimate of the fluxes F̂i+1/2, j,k, we use
the Godunov method (Godunov & Bohachevsky 1959). First, a
pair of left and right states UL

i+1/2, j,k, UR
i+1/2, j,k is reconstructed9

(through 1D sweeping) to the center of each cell boundary,
starting from the cell-centered states Ûi, j,k. These states define
a 1D Riemann problem, which can then be solved (either
exactly or approximately) to provide the value of a flux func-
tion F (UL

i+1/2, j,k,U
R
i+1/2, j,k). The surface-averaged flux is then

approximated (to second-order accuracy) as

F̂i+1/2, j,k ≃ F (UL
i+1/2, j,k,U

R
i+1/2, j,k). (26)

Many MHD Riemann solvers used nowadays are designed to
work in supersonic regimes. In order to achieve numerical stabil-
ity, such solvers need to add upwind numerical diffusion terms to
the physical fluxes10, which smear out any discontinuity present
in the flow on a timescale comparable to the cell crossing time
of the shock. The choice of these terms depends on the specific
approximate Riemann solver used. In particular, the diffusion
term associated with the pressure flux (see Eq. (2)) usually takes
the form (see, e.g., Einfeldt et al. 1991; Cargo & Gallice 1997;
Miyoshi & Kusano 2005)

Dx
p ∝ −ρ̄c̄f(VR

x − VL
x ), (27)

where ρ̄ and c̄f are suitable averages of the density and the
fast magnetosonic speed at the cell interface. However, in low-
Mach regimes, discontinuities in the flow are only transported by
the linearly degenerate entropy and Alfvén waves. These modes
9 Several spatial reconstruction routines are implemented in SLH, from
simple constant extrapolation to the Piecewise Parabolic Method of
Colella & Woodward (1984). These reconstruction schemes can be
applied to both conservative and primitive variables.
10 The physical fluxes are usually computed in Riemann solvers as some
variation of the central flux (FL + FR)/2.

x

t

UR

S R

U∗R

S ∗R

U∗∗R

S M

U∗∗L

S ∗L

U∗L

S L

UL

Fig. 2. Wave structure of HLLD-type solvers: only the fast mag-
netosonic (S L, S R), Alfvén (S ∗L, S ∗R), and entropy (S M) waves are
considered in the computation of the states across the Riemann fan. The
slow magnetosonic waves are discarded.

propagate with small speeds (see Sect. 2.2), and by the time they
cross one cell in the computational grid they are strongly dissi-
pated by the action of the numerical term in Eq. (27). This effect
can also be explained by noticing that the pressure-diffusion
coefficient scales asO(1/Mfast,x), so that it overwhelms the phys-
ical flux proportional to O(1) at low sonic Mach numbers. To
remove this excessive dissipation, we use the low-dissipation
HLLD solver (LHLLD) of Minoshima & Miyoshi (2021). This
is a variation of the original five-wave HLLD solver (see Fig. 2)
of Miyoshi & Kusano (2005). LHLLD introduces a Mach-
dependent parameter ϕ ∝ Mfast,x in the intermediate state of the
total pressure pT = p + pB:

p∗T =
(S R − VR

x )ρR pL
T − (S L − VL

x )ρL pR
T

(S R − VR
x )ρR − (S L − VL

x )ρL

+ ϕ
ρLρR(S R − VR

x )(S L − VL
x )(VR

x − VL
x )

(S R − VR
x )ρR − (S L − VL

x )ρL
.

(28)

In this context, S L and S R are conservative estimates of the
speeds λ1,7. In SLH they are evaluated as

S L =min(VL
x ,V

R
x ) −max(cL

f,x, c
R
f,x),

S R =max(VL
x ,V

R
x ) +max(cL

f,x, c
R
f,x).

(29)

The low-Mach fix ϕ is computed according to the following
formulas:

cL
u =


1
2


|BL|2
ρL
+ |VL|2 +

√( |BL|2
ρL
+ |VL|2

)2

− 4
|VL|2B2

x

ρL





1
2

,

cR
u =


1
2


|BR|2
ρR
+ |VR|2 +

√( |BR|2
ρR
+ |VR|2

)2

− 4
|VR|2B2

x

ρR





1
2

,

χ =max
{

cL
u

cL
f,x

,
cR

u

cR
f,x

}
,

ϕ =χ(2 − χ).
(30)

Since the fast magnetosonic wave speeds cL,R
f,x and consequently

also S L,R scale as O(1/Mfast,x), the second term in Eq. (28)
would scale as O(1/Mfast,x) if ϕ = 1, as in the original for-
mulation of the HLLD solver. As previously described, this
would lead to excessive numerical dissipation for small values
of Mfast,x. Instead, by computing ϕ according to Eq. (30), the
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dissipation term becomes independent of the fast magnetosonic
Mach number, since ϕ ∝ Mfast,x. This modification does not
affect the other properties of the HLLD solver, such as pre-
serving positivity of density and internal energy (Miyoshi &
Kusano 2005; Minoshima & Miyoshi 2021). We note that the
combined diffusion coefficient in Eq. (28) has a residual scaling
O(1/MAlf), which would still introduce too much dissipation in
very sub-Alfvén regimes. However, these are far from our main
astrophysical applications.

3.3. Well-balancing method

As already noted in Sects. 1 and 3.1, hyperbolic fluxes and grav-
itational source terms are discretized with different methods. As
a consequence, Godunov-type schemes do not automatically pre-
serve magnetohydrostatic solutions on a discrete grid exactly.
Therefore, whenever a stratification needs to be enforced to be
in MHSE on the computational grid, we use the deviation well-
balancing method (Berberich et al. 2021; Edelmann et al. 2021).
The main ingredient of this method is an a priori known target
state Ũ that is a magnetohydrostatic solution to Eq. (21),

∂F(Ũ)
∂x

+
∂G(Ũ)
∂y

+
∂H(Ũ)
∂z

= S(Ũ), (31)

with Ṽ = 0. Subtracting Eq. (31) from the original balance law
in Eq. (21) yields a system of PDEs for the deviations from the
target solution ∆U = U − Ũ:

∂(∆U)
∂t
+

(
∂F(Ũ + ∆U)

∂x
− ∂F(Ũ)

∂x

)

+

(
∂G(Ũ + ∆U)

∂y
− ∂G(Ũ)

∂y

)

+

(
∂H(Ũ + ∆U)

∂z
− ∂H(Ũ)

∂z

)
= S(Ũ + ∆U) − S(Ũ).

(32)

Now, to obtain a well-balanced method, Eq. (32) is discretized
according to the finite-volume method described in Sect. 3.1,
which leads to the semi-discrete form

∂(∆U)i, j,k

∂t
= − 1

∆x

(
Fdev

i+1/2, j,k − Fdev
i−1/2, j,k

)

− 1
∆y

(
Gdev

i, j+1/2,k − Gdev
i, j−1/2,k

)

− 1
∆z

(
Hdev

i, j,k+1/2 − Hdev
i, j,k−1/2

)

+Sdev
i, j,k.

(33)

In this formulation, the deviation fluxes and source terms are
defined by

Fdev
i+1/2, j,k = F̂i+1/2, j,k − F

(
Ũi+1/2, j,k

)
, (34)

Gdev
i, j+1/2,k = Ĝi, j+1/2,k − G

(
Ũi, j+1/2,k

)
, (35)

Hdev
i, j,k+1/2 = Ĥi, j,k+1/2 − H

(
Ũi, j,k+1/2

)
, (36)

Sdev
i, j,k = Ŝi, j,k − S(Ũi, j,k), (37)

where F̂i+1/2, j,k is computed according to Eq. (26) in the states

UL,R
i+1/2, j,k = Ũi+1/2, j,k + ∆UL,R

i+1/2, j,k, (38)

while F
(
Ũi+1/2, j,k

)
corresponds to the physical fluxes in Eq. (21)

evaluated in the target solution at the cell boundary. The devia-
tions ∆Ui, j,k, rather than the states Ui, j,k, are reconstructed to the
boundary of the cell11. This guarantees that magnetohydrostatic
solutions are preserved on the discrete grid, since in that case
∆Ui, j,k = 0, which leads to

F̂i+1/2, j,k = F
(
Ũi+1/2, j,k, Ũi+1/2, j,k

)
= F

(
Ũi+1/2, j,k

)
. (39)

Thus, the resulting method is well-balanced. Moreover, by
removing the numerical errors arising from the magnetohydro-
static stratification, this method allows low-Mach flows to be
simulated in stratified setups, which only cause small deviations
from the MHSE state and would be completely dominated by
spurious flows otherwise.

3.4. Constrained transport method

The divergence-free constraint described in Sect. 2.4 is not
automatically satisfied if the induction equation is solved with
Godunov-type schemes. As a result, magnetic monopoles are
created locally at each time step and tend to accumulate, as they
cannot be transported away by any of the MHD waves. If not
properly treated, these artifacts can accelerate the flow along the
magnetic field lines, generate wrong field topologies, and ulti-
mately lead to severe stability problems (Brackbill & Barnes
1980).

Different strategies have been presented in the literature to
cure this problem (for a review of these methods, see Tóth 2000).
Among these, the eight-wave formulation (Powell 1997; Powell
et al. 1999) modifies the MHD equations by including additional
source terms that are proportional to ∇ · B. The modified system
has an additional nonzero eigenvalue λ8 = Vx, which transports
jumps in the normal component (to the cell interface) of the mag-
netic field, so numerical monopoles are advected with the flow
and do not accumulate over time.

Other solutions rely on divergence cleaning schemes
(Dedner et al. 2002), where the divergence constraint is coupled
to the MHD system using a generalized Lagrangian multiplier,
ψ. This allows numerical monopoles to be transported with the
maximum available speed on the grid and divergence errors to
be damped at the same time.

One downside of both the eight-wave formulation and diver-
gence cleaning is that they are not conservative and they cannot
enforce any discretization of ∇ · B to zero. Furthermore, these
methods are most effective when open boundaries are used, so
that the magnetic monopoles can leave the domain. However,
this is rarely the case for simulations of stellar interiors, where
impermeable boundaries are often used to avoid a significant
mass loss from the system.

Constrained transport methods based on a staggered formu-
lation, instead, conserve the magnetic flux through the bound-
aries of each cell and force one particular discretization of ∇ · B
to remain zero within round-off errors (Evans & Hawley 1988;
Dai & Woodward 1998; Balsara & Spicer 1999; Tóth 2000;
Londrillo & del Zanna 2004; Gardiner & Stone 2008; Mignone
& Del Zanna 2021). Although a conservative scheme cannot
guarantee that the discretized Lorentz force is orthogonal to
the magnetic field lines in each cell of the computational grid
(Tóth 2000), the magnitude of the parallel component of

11 Deviations in the primitive variables can also be reconstructed if the
corresponding equilibrium values are provided at the cell centers and at
the cell boundaries.
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the force acting on the fluid is much smaller than in other
methods.

The key point of staggered constrained transport methods
is to compute the surface integral of Eq. (19) over cell bound-
aries using Stokes’s theorem, which leads to the finite-area
equation12

∂B̂x,i+1/2, j,k

∂t
= − 1
∆y

(
Êz,i+1/2, j+1/2,k − Êz,i+1/2, j−1/2,k

)

+
1
∆z

(
Êy,i+1/2, j,k+1/2 − Êy,i+1/2, j,k−1/2

)
.

(40)

Here, B̂x,i+1/2, j,k is the surface-averaged magnetic field compo-
nent normal to the cell boundary

B̂x,i+1/2, j,k =
1

Ai+1/2, j,k

∫

Ai+1/2, j,k

B · n̂dA, (41)

while the line-averaged electromotive force is defined as

Êz,i+1/2, j+1/2,k =
1

∆zi+1/2, j+1/2,k

∫

∆zi+1/2, j+1/2,k

Ezdz. (42)

Analogous formulas can be derived for the other components of
the magnetic field and the electromotive force.

In order to solve Eq. (40) numerically, a proper estimate for
B̂x,i+1/2, j,k and Êz,i+1/2, j+1/2,k must be provided. For the former, we
approximate the surface-averaged quantity with its value at the
center of the cell boundary,

B̂x,i+1/2, j,k ≃ Bx,i+1/2, j,k, (43)

which is accurate to second order. In contrast to the standard
finite-volume approach, here the magnetic field component nor-
mal to the interface is stored at cell boundaries, while the
line-averaged electromotive force is evaluated at cell edges.
Thus, the operation is performed on a staggered grid. Since the
parallel magnetic field still needs to be reconstructed to compute
the flux function, its value at cell-center locations is estimated
as a simple arithmetic average between the neighboring cell
interfaces:

B̂x,i, j,k =
1
2

(
B̂x,i−1/2, j,k + B̂x,i+1/2, j,k

)
,

B̂y,i, j,k =
1
2

(
B̂y,i, j−1/2,k + B̂y,i, j+1/2,k

)
,

B̂z,i, j,k =
1
2

(
B̂z,i, j,k−1/2 + B̂z,i, j,k+1/2

)
.

(44)

To compute the line-averaged electromotive force in Eq. (42),
in SLH we use the CT-contact algorithm of Gardiner & Stone
(2005). In this method, the electric field at cell edges is com-
puted as a simple arithmetic average of the four neighboring
face-centered electromotive force components, with the addi-
tion of a diffusion term that helps removing spurious oscillations
when the magnetic field is advected. For instance, Êz,i+1/2, j+1/2,k

12 Here the calculation is made over the cell boundary (i + 1/2, j, k).

is approximated to second-order accuracy by

Êz,i+1/2, j+1/2,k ≃ 1
4

(
Ēz,i+1/2, j,k + Ēz,i+1/2, j+1,k

+ Ēz,i, j+1/2,k + Ēz,i+1, j+1/2,k

)

+
∆y

8

{ (
∂Ez

∂y

)

i+1/2, j+1/4,k
−

(
∂Ez

∂y

)

i+1/2, j+3/4,k

}

+
∆x
8

{ (
∂Ez

∂x

)

i+1/4, j+1/2,k
−

(
∂Ez

∂x

)

i+3/4, j+1/2,k

}
,

(45)

where Ēz can be computed from the solution to the Riemann
problem in Eq. (26). The calculation for the x- and y-component
is again analogous. The upwind diffusion term enters in the
derivatives of the electromotive force in Eq. (45), which are
obtained according to the sign si+1/2, j,k of the entropy (contact)
waves at the cell interfaces:
(
∂Ez

∂y

)

i+1/2, j+1/4,k
=

1 + si+1/2, j,k

2


Ēz,i, j+1/2,k − Ecc

z,i, j,k

∆y/2



+
1 − si+1/2, j,k

2


Ēz,i+1, j+1/2,k − Ecc

z,i+1, j,k

∆y/2

 .

(46)

Here Ecc
z,i, j,k = (−Vi, j,k × Bi, j,k)z represents the z-component of the

cell-centered electromotive force. The discretization of the line-
averaged electromotive force leads to a semi-discrete form of
Eq. (40) that can be integrated numerically in time. Any time-
stepper that solves the resulting system of ODEs can keep the
cell-volume average of ∇ · B,

(∇ · B)i, j,k =
B̂x,i+1/2, j,k − B̂x,i−1/2, j,k

∆x

+
B̂y,i, j+1/2,k − B̂y,i, j−1/2,k

∆y

+
B̂z,i, j,k+1/2 − B̂z,i, j,k−1/2

∆z
,

(47)

within rounding errors.

4. Time integration algorithm

The CFL constraint in time-explicit marching schemes restricts
the time step to the crossing time of the fastest wave resulting
from the underlying PDEs over a grid cell. In low-Mach-number
flows, the fast magnetosonic wave speeds become very large, so
that the time step needs to be reduced accordingly. Thus, sim-
ulating the evolution of slow fluid motions and Alfvén waves
becomes expensive. In these regimes, implicit methods, in which
the time step is not limited by stability conditions but only by the
desired accuracy, represent an attractive alternative. When using
such methods, the time step should be restricted to the short-
est advection and Alfvén crossing time over one grid cell. If the
sonic Mach number is small enough, the possibility of larger
chosen time steps then outweighs the disadvantage of higher
computational costs for a single time step by using the implicit
solver.

As outlined in Sect. 1, we split the induction equation (see
Eq. (4)) from the continuity, momentum and energy equations

A143, page 7 of 29



A&A 668, A143 (2022)

(see Eqs. (1)–(3)), based on the approach described by Fuchs
et al. (2009). This allows different spatial and temporal dis-
cretizations to be used depending on the problem at hand. In
regimes of low Mach numbers and high β values, the stiffness is
mostly generated by the pressure flux ∝ 1/M̂2

son in the momen-
tum equation, while the nondimensional form of the induction
equation does not depend on the Mach number of the flow (see
Sect. 2.2). This suggests that implicit time discretization only
needs to be applied to the subset of continuity, momentum and
energy equations, whereas the induction equation can be solved
with explicit time-steppers. These two updates can be combined
to second-order accuracy with Strang splitting (Strang 1968):

Un+1 = I( 1
2∆t)H (∆t)I( 1

2∆t)Un. (48)

Here, I represents a linear operator that updates only the mag-
netic field with an explicit marching scheme, while the nonlinear
operatorH updates density, momentum and total energy (includ-
ing source terms) using an implicit stepper. In each sub-step of
Strang splitting, the discretization of the fluxes, source terms,
and electromotive force is performed according to the methods
described in Sect. 3.

In SLH, several implicit time-steppers can be used to solve
the semi-discrete form of Eq. (22), such as first-order backward-
Euler, higher-order ESDIRK schemes, and Crank-Nicolson. The
resulting nonlinear system of equations is solved iteratively with
a root-finding Raphson–Newton algorithm, which relies on the
analytic formulation of the flux-Jacobian. Iterative linear solvers
(such as BiCGSTAB(l), GMRES, and Multigrid) are used in
combination with preconditioning techniques to solve each sub-
step of the nonlinear solver13. In contrast, the semi-discrete
form of the induction equation (see Eq. (40)) is solved with the
time-explicit SSP-RK2 method of Shu & Osher (1988).

Numerical experiments performed with the proposed
implicit–explicit Strang splitting (IESS) approach suggest that
the maximum time step allowed for stability is approximately
determined by

∆t = min
Ω=(i, j,k)

{
∆x

|Vx,Ω| + ca,x,Ω
,

∆y

|Vy,Ω| + ca,y,Ω
,

∆z
|Vz,Ω| + ca,z,Ω

}
, (49)

so that the propagation of fluid motions and Alfvén waves is
well resolved in time. This time step is approximately 1/Mson
larger than that allowed by the conventional CFL condition if
the plasma-β is high, which considerably reduces the compu-
tational effort when simulating low-Mach-number flows. The
price one has to pay is that the propagation of fast magnetosonic
waves is not well resolved in time. Another advantage of IESS
is that it can easily be implemented within the framework of
the SLH code, which already had fully implicit time integration
capabilities to solve the compressible Euler equations.

A single step of the described time-marching scheme can
be summarized in the following way. First, ∆t is obtained from
Eq. (49) given Bn, ρn, ρVn, and ρEn

ϕ. If gravity is not present, eϕ
does not appear in Eq. (5).

Second, SSP-RK2 and CT-contact are used to solve the
induction equation over the first half of the time step, ∆t/2. This
results in an intermediate solution for the magnetic field, Bn+1/2.

Third, this intermediate solution, Bn+1/2, is used to solve the
continuity, momentum, and energy equations over the full time
step, ∆t, with an implicit time-stepper. If gravity is present, then

13 For more details on the implementation of implicit time stepping in
SLH, see Miczek (2013) and Miczek et al. (2015).

the well-balancing method described in Sect. 3.3 can be used.
Any other source term is also considered in this step. This allows
the solution for density, momentum, and energy to be obtained
at the next step, ρn+1, ρVn+1, and ρEn+1

ϕ .
Fourth, Bn+1/2, ρn+1, ρVn+1, and ρEn+1

ϕ are used to solve the
induction equation over ∆t/2. This yields the magnetic field at
the final step Bn+1.

The proposed MHD scheme is extremely modular, so dif-
ferent time-steppers, spatial reconstruction schemes and approx-
imate Riemann solvers can be used in each sub-step of the
algorithm, and well-balancing can be switched off if required.
For instance, in addition to LHLLD, the original five-wave
HLLD solver of Miyoshi & Kusano (2005) is also implemented
in SLH. The performance and accuracy of both Riemann solvers
are checked in some of the numerical experiments described in
Sect. 5. Finally, in case slightly subsonic or transonic regimes
need to be modeled with SLH, a fully un-split SSP-RK2 explicit
time-stepper can be used.

5. Numerical tests

In order to assess the accuracy and performance of the newly
implemented MHD algorithm, we have to rely on numerical
experiments. Since the main purpose of the scheme is to be able
to simulate MHD flows at low sonic Mach numbers in strong
stratifications, we decide not to show the typical tests commonly
run by other MHD codes. These usually include shock-tubes,
supersonic vortices and magnetic blasts, which, however, are
designed to test the shock-capturing capabilities of a numerical
scheme. Instead, we ran a series of verification benchmarks that
are more suited for testing the low-Mach properties of an MHD
code.

As a first test, we solved the homogeneous MHD equations
in three different cases (i, ii, and iii). In order to check the
convergence and scaling of the methods for the whole MHD
wave family, we performed a 1D linear analysis (i). The scal-
ing was also checked against the advection of a stable MHD
vortex in a wide range of Mach numbers (ii). Such a setup is
particularly important as it resembles the typical vortex struc-
tures present in magneto-convection. The simulations were also
run in fully-explicit mode using SSP-RK2, which allows the
speed-up of IESS to be quantified as a function of the Mach
number.

The ability of accurately evolving shear instabilities is fun-
damental in the context of simulations of turbulence as they
generate additional vorticity, which leads to the cascade of
energy. For this reason, we ran simulations of a magnetized
Kelvin–Helmholtz instability (iii). We followed the growth and
evolution of the instability in a resolution study from low-
Mach to slightly subsonic regimes. A comparison between the
HLLD and LHLLD solvers was performed to show the advan-
tage of using low-dissipation fluxes over conventional methods
in regimes of low Mach numbers.

Then we considered two setups in which gravity is present
(iv, v). To check the entropy-conservation properties of the
scheme based on the deviation well-balancing method, we mod-
eled the rise of a parcel of fluid with higher entropy content
than the (isentropic) background stratification, that is, a “hot
bubble” (iv). By changing the magnitude of the entropy pertur-
bation, we simulated different rise velocities of the bubble, down
to Mach numbers ofMson ∼ 10−4. To quantify the magnitude of
the numerical errors generated by an unbalanced stratification,
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we also simulated the rise of the bubble atMson ∼ 10−2 without
well-balancing.

Finally, we simulated a fully 3D small-scale dynamo (SSD)
amplification in a star-like environment at moderate grid res-
olutions (v). By changing the rate at which energy is injected
in the system, we simulated progressively slower flows down to
Mson ∼ 10−3.

For all of the following tests, an ideal gas EoS was used with
γ = 5/3 except when specified otherwise. Within the frame-
work of the IESS time-marching scheme described in Sect. 4,
ESDIRK23 was chosen to treat the implicit part of the algorithm.
This guarantees second-order accuracy in time. The time step in
Eq. (49) was reduced by 20% to get a more conservative sta-
bility criterion. Finally, unlimited linear reconstruction, which is
second-order accurate in space, was applied to primitive vari-
ables. Overall, the proposed scheme is (globally) second-order
accurate.

5.1. Linear analysis

In this test, we followed the propagation of linear modes for
all the MHD waves (see Sect. 2) as a way to get quantitative
estimates of diffusion errors and to check the scaling of the
numerical scheme. The setup is based on Stone et al. (2008),
which we modified by considering much larger values of the
gas pressure to increase the fast magnetosonic speed relative
to the Alfvén and entropy wave speeds. Such a stiff system is
characteristic of low-Mach flows in high-β environments (see
Sect. 2.2).

The homogeneous MHD equations were solved on a peri-
odic 1D Cartesian grid divided into N cells, with the spa-
tial domain ranging from 0 to L = 1. For the ith wave,
the solution at t = 0 was obtained by perturbing a uni-
form medium w0 = (1, 0, 0, 0, 103/γ, 1,

√
2, 1/2) with δw =

ARi(w0) sin(2πx/L), where w is the vector of primitive vari-
ables (ρ,Vx,Vy,Vz, p, Bx, By, Bz), A = 10−4 is the amplitude of
the perturbation, x is the spatial coordinate and Ri is the ith col-
umn of the right-eigenvector matrix (see Appendix A.3 in Stone
et al. 2008). The chosen values for w0 are such that cf,x ≃ 40.85,
ca,x = 1 and cs,x ≃ 0.99. For the entropy mode, we set Vx = 1,
so the sonic Mach number of the wave is Mson ≃ 0.032. The
simulations were run for one crossing time defined as tc = L/λi,
where λi is the wave speed. The L1 error was then computed for
each primitive variable wk as

L1,i(wk) =
1
N

∑

j

|wk, j(t = tc) − wk, j(t = 0)|, (50)

and the global error associated with the ith wave was then
computed as

δi =
1
A

√√∑

k

(
L1,i(wk)
ξ(w0,k)

)2

, (51)

with

ξ(w0,k) =
{
w0,k, for w0,k > 0,
1, otherwise.

(52)

In Eq. (50), j is the spatial index. The tolerance of the Raphson-
Newton algorithm was set to 10−10, so that the errors computed
using Eq. (51) were not dominated by the finite convergence of
the nonlinear solver.
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Vx − ca,x

Vx − cs,x

Vx

Vx + cs,x

Vx + ca,x

Vx + cf,x

∝ 1/N2

Fig. 3. Global error as a function of the grid resolution for the seven
MHD waves after one crossing time, tc. The dashed black line represents
the second-order scaling.
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∝ 1/N2

Fig. 4. Global error as a function of the grid resolution for the left-going
fast magnetosonic wave. Different colors are associated with different
values of cf,x/ca,x. The dashed black line is the second-order scaling.

Figure 3 shows the change of the global error as a function
of N (ranging from 10 to 100) for all the seven MHD waves.
Leftward and rightward propagating waves have identical errors.
Since the MHD scheme relies on second-order methods to treat
both the spatial and the temporal parts, the scheme converges
with second-order accuracy for all waves except the fast mag-
netosonic waves, which are characterized by much larger errors.
This is expected since IESS allows the MHD equations to be
integrated over much longer time steps than the CFL constraint
(see Sect. 4). As a consequence, the propagation of fast magne-
tosonic waves is not properly resolved in time and discretization
errors strongly deteriorate the numerical solution. This effect
is further quantified in Fig. 4, where we show the global error
associated with the left-going fast magnetosonic wave as a
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function of the grid resolution for different values of the gas
pressure p, such that cf,x/ca,x = 2, 3, 6, 12, 27, 59, 129. Overall,
the errors tend to decrease for smaller values of cf,x/ca,x, since
the time step in Eq. (49) gets closer to the CFL time step
and fast magnetosonic waves are progressively better resolved.
Moreover, the simulations run with cf,x/ca,x ≤ 27 converge with
second-order accuracy on the grids considered in this study.

5.2. Balsara vortex

In the previous section, we demonstrated that the current MHD
scheme is capable of simulating linear waves with the expected
(second-order) scaling with respect to resolution on 1D grids.
In order to check the scaling in 2D and to test the low-Mach
capabilities of the scheme, we considered the MHD vortex first
described by Balsara (2004). This is an exact stationary solution
of the ideal 2D homogeneous MHD equations, in which the dis-
tribution of the centrifugal acceleration, magnetic tension, gas
and magnetic pressure gradients is such that the vortex is sta-
ble. The spatial domain is (x, y) ∈ [−5, 5] × [−5, 5], and we used
64 × 64 grid cells with periodic boundaries in both directions.
The initial conditions are given by

(Vx,Vy) = Ṽe
1−r2

2 (−y, x),

(Bx, By) = B̃e
1−r2

2 (−y, x),

p = 1 +
[

B̃2

2
(1 − r2) − Ṽ2

2

]
e1−r2

,

ρ = 1,

(53)

with r2 = x2 + y2. Ṽ is the maximum rotational velocity of the
vortex and B̃ sets the value of the maximum Alfvén speed on the
grid. To make this problem numerically more challenging, the
vortex is advected along the diagonal of the computational grid,
with |Vadv| = Ṽ . The vortex is evolved for one advective crossing
time tadv = 10

√
2/Ṽ , after which it returns to the initial position.

In this time interval, the vortex rotates 2.25 times.
We ran the grid of models

(
Ṽ
)
× (βK) =

(
10−5, 10−4, 10−3, 10−2, 10−1

)

×
(
10−2, 10−1, 1, 101, 102

)
,

(54)

with βK = B̃2/Ṽ2 being the ratio of the magnetic to the rotational
kinetic energy, which is constant across the domain. Given this
choice of parameters, the initial maximum Mach number Mson
ranges from 1.55 × 10−5 to 1.55 × 10−1, so this parameter study
covers both low Mach numbers and slightly subsonic regimes, in
both weakly and strongly magnetized fluids.

Figure 5 shows the magnetic energy distribution after one
advective crossing time tadv. Numerical dissipation converts a
fraction of kinetic and magnetic energy into internal energy,
but the shape of the vortex is well preserved in all runs. The
dissipation rate is virtually independent of Mson. In contrast,
dissipation of magnetic energy depends on the value of βK. As
already pointed out in Sect. 3.2, the pressure–diffusion coef-
ficient in LHLLD has a residual scaling O(1/MAlf). A larger
value of βK corresponds to lowerMAlf , which then increases the
magnitude of the numerical dissipation. The velocity field is pro-
gressively more diffused out and becomes less efficient in sus-
taining the magnetic field through induction against numerical
resistivity.

To check the convergence of the scheme in 2D, we ran a
vortex with Ṽ = 10−3 (corresponding to max(Mson)t=0 = 1.55 ×
10−3) and βK = 1 at different resolutions14. At the end of the sim-
ulation, the L1 error was computed for each primitive variable wk
as

L1(wk) =
1

N2

∑

i, j

|wk,i, j(t = tadv) − wk,i, j(t = 0)|, (55)

where i, j are the spatial indices. Figure 6 shows the conver-
gence of the L1 error for different grids from N = 32 up to
N = 512 cells per dimension. Convergence is second order for
all primitive variables.

To compare the amount of numerical dissipation introduced
by a standard and a low-Mach MHD flux function, we reran
this last set of simulations with HLLD. In Fig. 7, we show the
final rotational kinetic energy distribution obtained with the two
methods:

ER =
1
2
ρ
[(

Vx − Ṽ/
√

2
)2
+

(
Vy − Ṽ/

√
2
)2
]
. (56)

At low resolution, HLLD considerably stretches the vortex and
a large fraction of kinetic energy is dissipated into internal
energy. In contrast, simulations run with LHLLD show mild
dissipation and dispersion errors are only visible at the lowest
resolutions. All simulations converge with increasing resolution,
but the kinetic energy conservation in the vortex simulated with
HLLD is still two orders of magnitude worse than that obtained
with LHLLD at the highest resolution considered in this
study.

As explained in Sect. 4, one advantage of IESS is that the
MHD equations can be integrated on time steps longer than
that allowed by the CFL condition without sacrificing stability.
However, a single step of the proposed scheme is much more
expensive than a single step of a more standard time-explicit
marching scheme, as a large nonlinear system has to be solved
iteratively with a Raphson–Newton method. Because of these
competing effects, we expect the IESS scheme to be more effi-
cient than an explicit time-stepper below a certain Mach number.
To determine this threshold, we ran sets of simulations with the
parameters

(Ṽ) × (βK) = (10−4, 10−3, 10−2, 10−1)

× (10−1, 1, 101),
(57)

using both IESS and the explicit SSP-RK215 on 40 × 40 grid
cells. Every other sub-step of the Godunov method (like the spa-
tial reconstruction, the LHLLD flux function and constrained
transport) remained unchanged, so the only difference was in the
time discretization. At the end of each simulation, the ratio of the
wall-clock times WCTSSP−RK2/WCTIESS was taken as a measure
of the relative efficiency between the marching schemes16. The
results are shown in Fig. 8. As expected, the speed-up of IESS
increases as the Mach number of the vortex is decreased. The
simulations with βK = 10 are slower than the other cases, as the
larger Alfvén speed considerably reduces the time step estimate

14 We took these values as representative of the typical conditions found
in stellar convection zones close to equipartition regimes (Augustson
et al. 2016).
15 For the time-explicit simulations, the CFL time step is reduced by
20%.
16 No snapshots were saved throughout the simulations to minimize the
cost of I/O operations.
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Fig. 5. Magnetic energy distribution of the Balsara vortex after one advective crossing time, tadv, normalized by the maximum magnetic energy at
t = 0. The ratio of the magnetic to the (rotational) kinetic energy of the vortex is varied along the y-axis (in descending order), while the initial
maximum rotational velocity, Ṽ , varies along the x-axis. The inset in each subplot shows the ratio of the final to the initial magnetic energy. The
vortex run with Ṽ = 10−1 and βK = 102 (bottom-right corner) has a maximum Mach number max(Mson)t=0 = 1.65 × 10−1. In that system, the gas
pressure drops in the regions around the center of the vortex to balance the large magnetic and centrifugal forces, which ultimately decreases the
sound speed where the velocity is maximum.

in Eq. (49), while no significant difference is seen between βK =
0.1 and βK = 1.0. IESS overtakes SSP-RK2 at max(Mson)t=0 ≃
4 × 10−2 for βK = (0.1, 1) and max(Mson)t=0 ≃ 2 × 10−2 for
βK = 10. At max(Mson)t=0 = 10−3, IESS is 10–20 times faster
than SSP-RK2. This justifies the implementation efforts of a par-
tially implicit time discretization algorithm for modeling slow
flows.

5.3. Magnetized Kelvin–Helmholtz instability

For the following test, we ran MHD simulations of a Kelvin–
Helmholtz instability. This is the primary instability that arises
when there is a velocity shear within a continuous fluid, and it is
the main source of vorticity that leads to the energy cascade in
3D turbulent flows. An accurate representation of this process is
therefore a fundamental requirement for any numerical scheme

to be used for simulating magneto-convection. We considered a
2D domain with (x, y) ∈ [0, 2]× [−0.5, 0.5], mapped on a 2N ×N
grid. The horizontal velocity profile is given by

Vx =Mx[1 − 2η(x)], (58)

with

η(x) =



1
2
{
1 + sin

[
16π(y + 0.25)

] }
, for y > − 9

32 and y < − 7
32 ,

1, for y ≥ − 7
32 and y ≤ 7

32 ,

1
2
{
1 − sin

[
16π(y − 0.25)

] }
, for y > 7

32 and y < 9
32 ,

0, otherwise.
(59)

The parameter Mx is the maximum sonic Mach number of the
horizontal flow, and p = 1 and ρ = γ, so initially the adiabatic

A143, page 11 of 29



A&A 668, A143 (2022)

102

N

10−10

10−9

10−8

10−7

10−6

10−5

L 1

ρ
Vx

Vy

Bx

By

p
∝ 1/N2

Fig. 6. Convergence of the L1 error in the Balsara vortex for each primi-
tive variable as a function of resolution. For these simulations, Ṽ = 10−3

and βK = 1. The dashed black line is the second-order scaling.

sound speed a is 1 everywhere. In this test, γ = 1.4. The mag-
netic field at t = 0 is uniform and horizontal (Bx = 0.1Mx), and
the minimum Alfvén Mach numberMAlf is 11.82 for all values
ofMx.

It is well known that magnetic fields aligned with the shear
flow have a stabilizing effect because they exert a restoring force
on the perturbed interface (Chandrasekhar 1961). With a too
strong field, the instability may reach saturation when the flow
is still essentially laminar or it may be suppressed completely.
Instead, weak magnetic stresses do not considerably affect the
initial growth of the instability, so the flow can develop the typ-
ical vortex structures present in the pure hydrodynamic case.
This leads to a much more complex evolution in the nonlin-
ear phase (Frank et al. 1996). For this setup, nearly laminar
flows are expected only when min(MAlf)t=0 ≲ 1.1, as shown in
Fig. A.1.

The instability is started by adding a perturbation to the
y-velocity component in the initial state, Vy = 0.1Mx sin(2πx)
(see Fig. 9). The initial conditions are periodic in both directions.
The evolution of the Kelvin–Helmholtz instability was studied
for a wide range of Mach numbers and grid resolutions:

(Mx) × (N) =
(
10−4, 10−3, 10−2, 10−1

)

× (32, 64, 128, 256, 512, 1024) .
(60)

The final time reached by each simulation was set according to
the initial amplitude of the shear flow (tmax = 4.8/Mx). The cho-
sen initial conditions are such that the interface across the shear
flow is smooth and resolved, which leads to convergent results
at least in the early stages of the evolution of the flow. As in the
previous test, we compared the results obtained with both the
HLLD and LHLLD solvers.

Figures 10 and 11 show the time evolution of the y-direction
kinetic energy EK,y =

∑
i j(ρV2

y )i j/2 and the total magnetic energy
EM =

∑
i j |Bi j|2/2 for all the simulations considered in this study.

As in the previous problem, i, j are the spatial indices. Because
of stretching and wrapping of the field lines within the vortices,
the magnetic energy slowly increases with time at the expense

of the kinetic energy content of the flow. After the primary rolls
reach the top and bottom boundaries (t/tmax ≃ 0.25), EK,y satu-
rates due to the periodicity of the grid and starts to decrease. The
secondary vortices keep winding up the magnetic field lines until
Lorentz forces start to feedback on the velocity field, breaking
down these inner structures. The two original shear interfaces
get closer to each other (see Fig. A.3) until a strong numeri-
cal reconnection event happens at t/tmax ≃ 0.45, which violently
decouples the primary rolls and causes a secondary peak in EK,y
at t/tmax ≃ 0.5. After this time, other reconnection events break
down the flow into smaller structures, and both the magnetic and
the kinetic energy are slowly dissipated away by the action of
numerical resistivity and viscosity.

Since in this case we solved the ideal MHD equations,
there is no characteristic scale on which magnetic and kinetic
energy are dissipated into heat, so numerical effects play a
significant role on progressively smaller scales at higher resolu-
tion. Thus, the amplification and dissipation of magnetic energy
hardly converge for the resolutions considered in this study.
The initial growth of EK,y, in contrast, is not much influenced
by the initial weak field, and it is mostly determined by the
strength of the shear flows and the width of the shear interface,
which is resolved. As a consequence, EK,y converges until the
major numerical reconnection event affects the velocity field.
As shown in Fig. 10, the HLLD solver requires more resolu-
tion to reach convergence as the setup is run at progressively
lower sonic Mach numbers. Eventually, the Mach-dependent
pressure-diffusion coefficient in Eq. (27) completely dominates
the evolution of the flow and deteriorates the numerical solution.
For this reason, atMx = 10−4 we were able to successfully run
with HLLD only the 64× 32 and 128× 64 grids, while for higher
resolutions the nonlinear solver failed to converge.

The effects of numerical dissipation are also shown in
Fig. 12, where the distributions of the sonic Mach number
obtained with HLLD and LHLLD are compared at fixed reso-
lution (128× 64 cells) for different values ofMx at t/tmax = 1/6.
While in moderately subsonic regimes the large-scale structures
in the flow are qualitatively similar, for lower Mach numbers
HLLD introduces progressively more dissipation and the insta-
bility is eventually halted. When LHLLD is used instead, the
morphology of the flow seems to be independent of the Mach
number.

Finally, we performed a quantitative convergence study by
computing the L1 error associated with EK,y at t/tmax = 1/6.
At this time, the first rolls have developed to considerable ver-
tical wavelengths (see Fig. 12) so that the instability has already
entered the nonlinear regime, and the flow is expected to con-
verge as shown in Fig. 10. The L1 error was computed against a
reference solution, which was taken from the highest grid reso-
lution runs considered in this test (N = 1024) using the LHLLD
solver. All simulations (including the reference solutions) were
down-sampled to a 64 × 32 grid, so that the errors could directly
be computed for different resolutions. This analysis was repeated
for different values ofMx using both HLLD and LHLLD. The
results are shown in Fig. 13. The errors are rescaled by M2

x so
that curves corresponding to different sonic Mach numbers lie on
the same scale. Overall, the convergence is second-order with N
for all simulations. LHLLD provides almost identical (rescaled)
errors at given resolution in different regimes of Mach numbers.
This is expected because the numerical dissipation introduced
by this solver does not depend onMson, thanks to the low-Mach
fix in Eq. (30). Instead, the errors computed for the HLLD runs
show a clear dependence on the sonic Mach number, and the
errors get larger for slower flows. In particular, at Mx = 0.1,
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HLLD needs approximately 1.2 times the resolution of LHLLD
to achieve the same accuracy, which justifies the use of HLLD
in this regime of Mach numbers. Instead, whenMx = 10−2 and
Mx = 10−3, HLLD needs respectively twice or four times the
resolution to be as accurate as the low-dissipation flux, which
increases the amount of computing time by 8 or 64. Thus, the
use of a low-Mach approximate Riemann solver becomes indis-
pensable for providing accurate results in regimes of low sonic
Mach numbers with moderate grid resolutions, which would be
unfeasible with more standard solvers.

5.4. Hot bubble

Flows in deep stellar convection zones are usually characterized
by the presence of slow parcels of fluid that move in a strati-
fication that is unstable against convection. In the absence of
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Fig. 9. Initial setups of Vx and Vy (here rescaled byMx) used for simu-
lating the growth of the Kelvin–Helmholtz instability.

volume heating and cooling processes, these packets of fluid pre-
serve their entropy content until they mix with the surroundings.
Therefore, a numerical scheme designed to simulate such flows
should have good entropy-conservation properties. However,
entropy conservation is hard to achieve if the density, tempera-
ture and pressure stratifications span several orders of magnitude
and if the flows are very slow, since their entropy content would
only be slightly higher or lower than the adiabatic surround-
ings17. Under these conditions, discretization errors caused by
an imperfect balance of the background MHSE stratification can
dominate the dynamics and deteriorate the numerical solution.
As shown in Sect. 3.3, the magnitude of such errors can be
drastically reduced by using well-balancing techniques.

17 Better entropy-conservation properties can be achieved by directly
evolving the specific entropy instead of ρEϕ. However, this approach
does not conserve the total energy.
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Fig. 10. Time evolution of the y-direction kinetic energy rescaled by its initial value in the magnetized Kelvin–Helmholtz instability test problem.
Each panel corresponds to a different initial Mach number,Mx. Different colors are used for different grid resolutions (the 64 × 32 and 128 × 64
grids cells have been left out for clarity). Results obtained with the HLLD solver are represented by dot-dashed lines, while solid lines are used for
LHLLD. The solid black line in each panel is the reference solution. As explained in the text, the nonlinear solver does not converge when using
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In this section, we check the entropy-conservation properties
of the MHD scheme implemented in SLH by running simu-
lations of the hot bubble setup described by Edelmann et al.
(2021), where a bubble of higher entropy content with respect
to the surroundings buoyantly rises in an adiabatic stratification.
The physical domain is mapped on a 2D Cartesian grid (Nx =
2/3×Ny), and the background stratification is in MHSE. Bound-
ary conditions are periodic everywhere and the gravitational
acceleration takes the form

gy(y) = g0 sin(kyy), (61)

where g0 = −1.09904373 × 105 cm s−2, ky = 2π/Ly, y is the ver-
tical spatial coordinate, and Ly is the vertical extent of the grid.
The value of g0 is set such that the ratio of the maximum to
the minimum gas pressure18 p(y) is 100, which corresponds to

18 More details on how to compute the pressure profile can be found in
Edelmann et al. (2021).

4.6 pressure scale heights. The entropy profile inside the bubble
is given by

A = A0

{
1 +

(
∆A
A

)

t=0
cos

(
π

2
r
r0

)2 }
, (62)

where A0 is background entropy, r0 is the radius of the bubble,
r is the distance from the center of the bubble and (∆A/A)t=0 is
the initial entropy perturbation. The density is

ρ(y) =
(

p(y)
A

)1/γ

, (63)

so that the (initial) buoyant acceleration of the bubble is propor-
tional to the entropy perturbation,

ab =
∆ρ

ρ
gy ∝

(
∆A
A

)

t=0
. (64)
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Fig. 11. Same as Fig. 10 but showing the total magnetic energy divided by its initial value.
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We ran the models for the set of parameters

(
∆A
A

)

t=0
×

(
Ny

)
=

(
10−7, 10−5, 10−3, 10−1

)

× (96, 192, 384, 768) ,
(65)

and we set the maximum time such that in each run the bubble
raised approximately the same distance l. This allowed different
regimes of sonic Mach numbers to be simulated, as the velocity,

V , reached by the bubble over a length, l, scales as

V ∝ (abl)1/2. (66)

This ultimately leads to the relation

Mson ∝
(
∆A
A

)1/2

t=0
. (67)

A uniform horizontal magnetic field was added to the sys-
tem, and its strength was rescaled depending on the entropy
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perturbation,

Bx = B0

(
∆A
A

)1/2

t=0
. (68)

This ensures that the relative magnitude of magnetic stresses
compared to the ram pressure of the bubble remains the same
for all simulations, and that the morphology of the flow is unal-
tered. B0 = 47.3 was chosen such that the final Alfvén Mach
number at the position of largest entropy is in the rangeMAlf ≃
2–3 depending on the grid resolution. Thus, magnetic fields
are dynamically important but not strong enough to suppress
buoyancy.

In Fig. B.1, we show the final entropy excess for all the
simulations run in the parameter study. The center of the bub-
ble accelerates faster than other regions as it is the point with
maximum entropy, and the acceleration profile across the bub-
ble leads to the development of shear at its outer edges. As the
bubble rises in the stratification, the magnetic field lines are
stretched into thin tubes, which locally amplifies the magnetic
energy (see Fig. B.2). The amount of amplification depends on
the numerical resistivity and so on resolution. In contrast to the
pure hydrodynamic case studied by Edelmann et al. (2021), here
the presence of a magnetic field suppresses the formation of vor-
tices at the sides of the bubble. Overall, the entropy content of the
bubble is well preserved even on the coarsest grid, but some
negative entropy fluctuations are present at the very top of the
bubble. These negative fluctuations are numerical artifacts. In
fact, the entropy fluctuations may locally increase as a fraction
of magnetic and kinetic energy is dissipated into internal energy,
but they cannot become negative physically. These artifacts do
not depend on the entropy perturbation, and they are limited to
a very narrow region in the spatial domain that tends to shrink
as the resolution is increased. All models converge upon grid
refinement.

According to Eq. (67), the sonic Mach number of the bub-
ble is expected to scale as the square root of the initial entropy
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Fig. 14. Maximum sonic Mach number, minimum and maximum
entropy fluctuations and Alfvén speed of the hot bubble as a function
of the initial entropy perturbation obtained on a 64 × 96 grid. The black
lines represent the physical scalings.

perturbation. Any deviation from this relation, which has been
obtained on the basis of physical arguments, can be due to dif-
ficulties in modeling slow flows in a stratified setup and the
build-up of significant numerical errors. In Fig. 14, we show
this scaling for the coarsest grid resolution. All data points over-
lap with the theoretical curve, and the minimum Mach number
Mson achieved in this parameter study is 3.32 × 10−4 (see also
Fig. B.3). The ratio of the rising velocity of the bubble to the
Alfvén speed (in the point of maximum entropy) does not depend
on the amplitude of the entropy perturbation. Since the ini-
tial magnetic field is proportional to (∆A/A)1/2

t=0, the amount of
amplification due to induction only depends on the velocity of
the bubble V and the timescale over which magnetic induction
operates (∝ 1/V).

Finally, to quantify the strength of the spurious flows that
are expected to arise if the stratification is left unbalanced, in
Fig. 15 we show a comparison between simulations obtained
with and without deviation well-balancing, where the vertical
resolution Ny ranges from 96 to 768. For this comparison, we
fixed (∆A/A)1/2

t=0 = 10−3 such that the maximum sonic Mach
number of the bubble is approximately 3× 10−2. The unbalanced
simulations develop large entropy fluctuations, both negative and
positive, which strongly deteriorate the numerical solution. As
the grid is refined, the simulations tend to converge, but wide
regions of negative entropy fluctuations are still present even on
the finest grid. Thus, this test demonstrates that well-balancing
techniques are fundamental to correctly simulate the evolution of
small entropy perturbations in steep isentropic stratifications and
to reduce the effects of numerical errors when using moderately
coarse grids.

5.5. Small-scale dynamo in a stratified setup

The previous tests demonstrated that the proposed MHD imple-
mentation can accurately simulate slow flows even in strongly
stratified setups. As this numerical method will mostly be
applied to simulate stellar interiors, it seems natural to test
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the scheme for dynamo amplification, which is the main cause
for the generation of strong magnetic fields in a wide mass
range of stars (see Brun & Browning 2017, and references
therein). In this section we focus on simulations of SSDs, where
the magnetic energy is amplified on scales comparable to or
smaller than the scales at which turbulence is forced (Meneguzzi
et al. 1981; Schekochihin et al. 2004, 2007; Brandenburg &
Subramanian 2005; Iskakov et al. 2007), in contrast to large-
scale dynamos where most of the magnetic energy is at scales
larger than the forcing scale (Brun et al. 2004; Käpylä et al.
2008; Charbonneau 2013; Augustson et al. 2016). Even though
the efficiency of the dynamo amplification depends on many
physical parameters, including the magnetic Prandtl number
Pm = ν/η (Schekochihin et al. 2004, 2007; Pietarila Graham
et al. 2010; Brandenburg 2011, 2014), here we do not perform
a parameter study for Pm, since in the current MHD scheme
the viscosity (ν) and resistivity (η) coefficients are not fixed,
but are intrinsic to the underlying numerical methods, so they
are not easy to constrain. Instead, we aim to check if it is pos-
sible to excite an SSD using the SLH code at low sonic Mach
numbers.

We built the initial conditions based on the work of Andrassy
et al. (2022), who performed a pure hydrodynamic study of a 3D
convection zone with a stable layer on top of it, where the con-
vective flows had a typical maximum Mach numberMson ∼ 0.1.
The stratification of that model resembled oxygen shell burn-
ing in a massive star, even though some simplifications were
adopted. Among these, an ideal gas EoS was used and effects of
neutrino cooling were ignored. Here, we modified that setup even
further by retaining only the convection zone and by decreasing
the rate of energy injection to test our method in the low-Mach-
number regime. Removing the stable layer greatly simplifies the
problem at low Mach numbers, as the propagation of internal
gravity waves does not need to be resolved. Since the wavelength

of these modes becomes shorter for progressively slower con-
vective flows (Sutherland 2010; Edelmann et al. 2021), high grid
resolutions would be necessary to capture this process accurately
at low Mach numbers, which would make the simulations very
expensive.

For our experiment, we used Nx × Ny × Nz = 2N × N × 2N
grid cells and the spatial domain (normalized by a characteristic
length L = 4 × 108 cm) is −1 ≤ x ≤ 1, 1 ≤ y ≤ 2, −1 ≤ z ≤
1. Periodic boundaries were used in the horizontal directions,
while reflecting boundaries were used in the vertical direction.
The initial stratification is adiabatic and in MHSE, and it is given
by the polytropic relation

d ln p
d ln ρ

= γ. (69)

The stratification spans 2.2 pressure scale heights. The gravita-
tional acceleration takes the form

g(y) = g0 fg(y)y−5/4, (70)

where g0 = 1.414870, and

fg(y) =



1
2

{
1 + sin

[
16π

(
y − 1

32

)] }
, for 1 ≤ y < 1 + 1

16 ,

1, for 1 + 1
16 ≤ y < 2 − 1

16 ,
1
2

{
1 + sin

[
16π

(
y − 1

32

)] }
, for 2 − 1

16 ≤ y < 2,

0, otherwise.
(71)

Moreover, in contrast to Andrassy et al. (2022), we are not inter-
ested in studying convective boundary mixing, so we only used
a single species with mean molecular weight µ = 1.
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Fig. 16. Time evolution of the magnetic energy (sky blue) and kinetic energy (vermillion) in the simulations of the SSD for different grid resolutions
(dotted: 64 × 32 × 64, dot-dashed: 128 × 64 × 128, solid: 192 × 96 × 192). Each panel shows the results obtained with a specific value of b (from
left to right: b = 10−6, 10−3, 1). The time is expressed in units of the convective turnover, while the magnetic and kinetic energy curves are rescaled
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Convection is driven by a constant in time heat source q̇(y)
placed close to the bottom boundary,

q̇(y) =


bq̇0 sin (8πy) , for 1 ≤ y ≤ 1 + 1

8 ,

0, for 1 + 1
8 < y ≤ 2,

(72)

where q̇0 = 3.795720 × 10−4 erg cm−3 s−1 and b is a nondimen-
sional factor that allows the strength of the convective flows to be
controlled through the scaling (see, e.g., Kippenhahn et al. 2013;
Andrassy et al. 2020; Horst et al. 2021; Edelmann et al. 2021;
Käpylä 2021)

Mson ∝ q̇1/3 ∝ b1/3. (73)

We considered the following grid of models:

(b) × (N) =
(
10−6, 10−3, 1

)

× (32, 64, 96) .
(74)

We ran the simulations at nominal luminosity (b = 1) with
SSP-RK2, where the convective flows are characterized by a
maximum Mson of 0.1. In this regime of sonic Mach numbers,
IESS is less efficient than explicit time-steppers (see Fig. 8). In
contrast, the cases with b = 10−3 and b = 10−6 were run with
IESS, since according to Eq. (73), the maximum Mson is 10−2

and 10−3, respectively.
In order to initiate an SSD, a weak seed magnetic field was

added to the system19,

Bx(t = 0) = 105b1/3, (75)
19 As observed by Seta & Federrath (2020), the evolution of the dynamo
in the nonlinear regime does not depend on the form of the seed field,
as long as its magnitude is weak enough to not affect the development
of convection.

where the dependence on b is such that the timescale on which
the magnetic energy reaches saturation (expressed in units of
convective turnovers) does not depend on the value of b. The
convective turnover timescale was estimated as

τconv = 2
L
⟨σV⟩t , (76)

where

σV =

√
σ2

V,x + σ
2
V,y + σ

2
V,z (77)

is averaged over time, and σ2
V,x, σ2

V,y, σ
2
V,z represent the stan-

dard deviation of each velocity component computed over the
whole domain. All simulations were run until t/τconv = 70,
with τconv ≃ 5000, 500, 50 s for b = 10−6, 10−3, 1, respectively.
The initial MHSE density stratification was perturbed to ini-
tiate convection20. This perturbation leads to the development
of buoyant structures that rise in the stratification until they hit
the top boundary, after which they quickly become turbulent
(see Fig. C.2). Convection fully develops after one convective
turnover.

Figure 16 shows the time evolution of the kinetic and the
magnetic energy for all the simulations run in the grid of mod-
els considered in this test. In the kinematic phase, the magnetic
field is irrelevant to the dynamics, and it is amplified expo-
nentially by the action of a dynamo process, with most of
the magnetic energy distributed close to the resistive scale. As
visible in the horizontal cuts shown in Fig. 17, the magnetic
field distribution is characterized by small-scale structures with
mixed polarity, while the velocity field is distributed on slightly
larger scales, which suggests that Pm ≳ 1. The growth rate

20 Details on how to compute the density perturbation can be found in
Andrassy et al. (2022).

A143, page 18 of 29



G. Leidi et al.: A new magnetohydrodynamic solver for low-Mach-number flows
K

in
em

at
ic

Mson,y ×103 By/(By)rms

Sa
tu

ra
te

d

−0.5 0.0 0.5 −2 0 2

Fig. 17. Horizontal slices in the y = 1.5 plane taken in the kinematic
(upper plots) and saturated (lower plots) regimes of the SSD with b =
10−6 on the 192× 96× 192 grid. The panels on the left show the vertical
sonic Mach numberMson,y = Vy/a multiplied by 103, while the plots on
the right show the vertical magnetic field rescaled by the root mean
square value across the plane.

Table 1. Time averages of EM/b2/3 [1045 × erg] over the time interval
20 < t/τconv < 70 for the different resolutions, N, and boost factors, b,
considered in this study.

b = 10−6 b = 10−3 b = 1

N = 32 3.13 ± 0.34 3.65 ± 0.60 3.33 ± 0.37
N = 64 3.73 ± 0.32 4.31 ± 0.55 3.78 ± 0.31
N = 96 4.40 ± 0.44 4.67 ± 0.39 4.40 ± 0.47

Notes. The errors represent one standard deviation over the time series.

γM = d(lnEM)/dτconv increases with resolution (see also
Fig. C.4), which is compatible with SSD amplification. In par-
ticular, we find that γM ∝ ∆x−0.8. The dependence of the growth
rate on ∆x is weaker than γM ∝ ∆x−4/3, which is typically
observed in simulations of SSDs in solar and stellar convec-
tion zones (Pietarila Graham et al. 2010; Rempel 2014; Hotta
et al. 2015; Riva & Steiner 2022; Canivete Cuissa & Teyssier
2022), and steeper than γM ∝ ∆x−2/3, which is predicted by
the Kazantsev dynamo theory (Kazantsev 1968; Brandenburg &
Subramanian 2005).

When the magnetic field becomes strong enough, the Lorentz
force starts to influence the evolution of the turbulent flows,
damping the velocity on the small scales (see the bottom pan-
els in Fig. 17). A statistically steady state configuration is then
reached where the magnetic energy achieves sub-equipartition
values EM/EK ≃ 0.1–0.2. In all simulations, an SSD is suc-
cessfully excited, and the mean value of the amplified magnetic
energy increases with resolution (see Table 1). In fact, the
size of the resistive scale is smaller on finer grids, which in
turn increases the maximal stretching rate of the field lines
and the SSD becomes more efficient. In contrast, no system-
atic difference is observed in the magnetic to the kinetic energy

10−6 10−5 10−4 10−3 10−2 10−1 100

b

10−3

10−2

(M
so

n)
rm

s

b1/3

µ±3σ : 64×32×64
µ±3σ : 128×64×128
µ±3σ : 192×96×192

Fig. 18. Root mean square of the sonic Mach number as a function of
the driving luminosity b. The data points are averages computed in the
time interval 20 < t/τconv < 40. The error bars represent three standard
deviations over the time series, while the dotted black line is the b1/3

scaling.

ratio in simulations run with the same resolution but different
values of b. This is due to the fact that, thanks to the use of
the LHLLD solver, the size of the viscous and resistive scales
does not depend on the sonic Mach number of the flow, which
is mostly determined by the chosen value of b. At given resolu-
tion, the SSD amplifies the magnetic field on the same spatial
(resistive) scales, so the evolution of EM/EK becomes virtually
independent of Mson (and so of b) if the time is rescaled by
the convective turnover τconv, except for statistical fluctuations
caused by the chaotic nature of the turbulent flows.

Figure 18 shows the root mean square sonic Mach number
averaged over 20 convective turnovers in the saturated regime
as a function of b. As noted in Edelmann et al. (2021), numer-
ical errors introduced by an unbalanced stratification can cause
deviations from the scaling in Eq. (73). In this case, the use of
deviation well-balancing and LHLLD allows a good agreement
between the computed Mach numbers and the scaling law to be
reached, within three standard deviations. This proves that the
convective flows are correctly simulated and are not dominated
by numerical errors. The smallest (Mson)rms achieved in these
runs is approximately 3.7 × 10−4, which is close to what typi-
cally found in simulations of core-convective stars (Augustson
et al. 2016; Edelmann et al. 2019; Horst et al. 2020; Higl et al.
2021).

Finally, Fig. 19 shows the kinetic and magnetic energy spec-
tra (taken in the midplane of the box) in the saturated stage
for different values of b and grid resolutions. Both spectra have
been rescaled by b2/3 to take into account the different energy
contents of the flows achieved with different values of b. The
kinetic energy spectra converge to the k−5/3 Kolmogorov law
(Kolmogorov 1941) upon grid refinement, and the dissipation
range shifts toward progressively larger wave numbers k. The
magnetic energy distributions peak in the inertial range, as
expected in SSD simulations, and on the large scales they show a
shallower dependence on k than the Kazantsev isotropic dynamo
theory, k3/2 (Kazantsev 1968). This can be explained by the
fact that, in this setup, turbulence is not isotropic, and large-
scale anisotropic convective flows are present because of the
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Fig. 19. Kinetic (solid lines) and magnetic (dashed lines) energy spectra
as a function of the wave number k obtained in an horizontal slice of
the convective box at y = 1.5. All spectra are averaged over the time
interval 20 < t/τconv < 40 and are rescaled by b2/3. The three panels
show the results for different numbers of grid cells (from top to bottom:
64 × 32 × 64, 128 × 64 × 128, 192 × 96 × 192). The dotted black lines
are the Kolmogorov (k−5/3) and Kazantsev (k3/2) scalings.

steep stratification and the use of closed vertical boundaries (see
Fig. C.2). Magnetic and kinetic energy achieve equipartition at
the bottom of the inertial range, except for the simulations run
on 64 × 32 × 64 grid cells, in which equipartition is reached
only in the dissipation range. The maximum magnetic to kinetic
energy ratio is around 3 in the dissipation range for the highest
resolution considered in this study. Again, since the numerical
diffusion of the MHD scheme is Mach-independent, the shape
and amplitude of the rescaled spectra do not depend on b on any
of the three grids. Thus, this test indicates that SLH is capable of
correctly simulating fully compressible magneto-convection and
SSDs in regimes of low sonic Mach numbers even with moderate
grid resolutions.

6. Summary and conclusions

In this work, we have presented a new finite-volume scheme
for solving the fully compressible MHD equations with gravity
in regimes of low sonic Mach numbers and high-β environ-
ments, which is suitable for simulating magneto-convection and
dynamo processes in deep layers of stars. This method relies on

a low-dissipation MHD Riemann solver (LHLLD; Minoshima
& Miyoshi 2021) to avoid the excessive numerical dissipation
typical of high-resolution, shock-capturing solvers asMson → 0.

The strict CFL condition on the time step is overcome
by using an implicit–explicit time discretization algorithm, for
which the induction equation is integrated using an explicit
time-stepper, while the rest of the MHD system is integrated
implicitly. The solutions to the two subsets of equations are cou-
pled through Strang splitting following the prescription of Fuchs
et al. (2009). The combined marching scheme has a less restric-
tive condition on the time step, which is limited only by the
fastest fluid and Alfvén speeds instead of the fast magnetosonic
speed, leading to a considerable speed-up in regimes of low sonic
Mach numbers.

Whenever required, a magnetohydrostatic solution can be
enforced on the discrete grid with the deviation well-balancing
method (Berberich et al. 2021; Edelmann et al. 2021). This
technique leads to better entropy-conservation properties of the
numerical scheme, even in cases where the pressure and density
stratifications span several orders of magnitude across the com-
putational domain. Finally, the ∇ · B = 0 condition is enforced
using the CT-contact method (Gardiner & Stone 2005). This new
scheme is implemented in the SLH code, and it has been tested
in five numerical experiments.

First, we checked the global convergence of the methods by
following the propagation of linear modes for all the MHD waves
on a 1D grid. This test proves that the scheme is globally second-
order accurate.

For the second test, we ran simulations of an MHD vortex
advected along the diagonal of a square 2D grid. The charac-
teristic velocities involved in the problem were varied such that
the maximum Mach number, Mson, ranged from 1.55 × 10−5

to 1.55 × 10−1. This experiment showed that the MHD scheme
also scales with second-order accuracy on 2D grids and that the
numerical dissipation is independent of Mson, even though it
becomes larger for lowerMAlf . However, we observed a consid-
erable dissipation only when the magnetic energy of the vortex
was 100 times its rotational kinetic energy. This regime is far
from our main astrophysical applications. The dissipation of
kinetic energy for both the LHLLD and the standard HLLD
solvers has been quantified for different resolutions at a maxi-
mum Mach number Mson = 1.55 × 10−3. Even though all the
results converged upon grid refinement, conservation of rota-
tional kinetic energy was two orders of magnitude worse when
using the HLLD flux instead of LHLLD. We also quantified the
efficiency of IESS over a standard SSP-RK2 as a function of
Mson. When the maximum sonic Mach number of the flow is
below (2–5) × 10−2, IESS becomes considerably more efficient
than explicit time-steppers.

In the third experiment we considered the growth of a
Kelvin–Helmholtz instability under the effects of a weak mag-
netic field parallel to the shear flow, which is known to generate
more complex vortex structures than the case with a strong mag-
netic field (Frank et al. 1996). The second-order convergence
of the y-direction kinetic energy was checked using both the
LHLLD and HLLD solvers for different shear velocities, such
that the corresponding sonic Mach number ranged from 10−4

to 10−1. Again, we observed that the amount of dissipation was
virtually independent ofMson for LHLLD, while the numerical
solution obtained with HLLD was progressively more degraded
as the Mach number was further decreased. This test showed that
HLLD needed twice or four times the resolution to be as accu-
rate as LHLLD when Mson ∼ 10−3 and Mson ∼ 10−2, while it
only needed 20% more resolution atMson ∼ 10−1.
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In our fourth test we simulated the rise of a hot bubble in an
adiabatic stratification in MHSE. The initial magnetic field was
horizontal and uniform. Different entropy perturbations were
considered to test the capabilities of the MHD scheme in mod-
eling slow flows in steep stratifications (in this case, the vertical
domain spanned 4.6 pressure scale heights). Overall, the entropy
content of the bubble was very well preserved and all results con-
verged upon grid refinement. Thanks to the deviation method,
we were able to successfully simulate the rise of the bubble for
entropy perturbations as low as 10−7, leading to typical sonic
Mach numbers of 3 × 10−4. A relation between the rise veloc-
ity of the bubble and the entropy perturbation has been obtained
on the basis of physical considerations. We show that the results
obtained with this MHD scheme could satisfy that relation even
on coarse grids, which suggests that discretization errors arising
from the background stratification did not play any significant
role in the evolution of the bubble. For comparison, we also
ran the same setup at an intermediate entropy perturbation with-
out well-balancing. The unbalanced states led to the generation
of large pressure jumps at the cell interfaces, which launched
strong waves that degraded the numerical solution at low resolu-
tion. Even when the magnitude of these errors was progressively
reduced at higher resolution, they were still significant on the
finest grid.

Lastly, we ran a fully convective box on a 3D Cartesian
grid (with 2N × N × 2N grid cells) to simulate an SSD. The
initial stratification was in MHSE and it resembled the thermo-
dynamic conditions found in oxygen shell burning in a massive
star (Andrassy et al. 2022). Convection was driven by a heat
source placed at the bottom of the box, and a weak seed magnetic
field was planted in the system to initiate the dynamo. By chang-
ing the rate of energy injection, we were able to study different
velocity regimes. In particular, we simulated three different
cases, with Mson ∼ 10−3, 10−2, and 10−1. We only considered
moderate grid resolutions (N = 32, 64, 96). In the kinematic
phase, the magnetic field energy was exponentially amplified on
the smallest scales of the turbulent flow, with a higher growth
rate in finer grids, which is consistent with SSD amplification.
When the Lorentz force started to affect the evolution of the
fluid, the saturated nonlinear phase began. Because of the use
of a low-Mach Riemann solver, the amount of magnetic energy
amplified (compared to the kinetic energy content of the flow)
did not depend on the sonic Mach number of convection and
achieved sub-equipartition values for the resolutions considered
in this study (EM/EK ≃ 0.1–0.2).

Overall, the results obtained in these tests demonstrate that
the numerical methods implemented in SLH can accurately and
efficiently tackle a variety of MHD processes that act in stel-
lar interiors, in regimes that are inaccessible to conventional
methods.
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Appendix A: Magnetized Kelvin–Helmholtz instability

This appendix explores the effects of the grid resolution and
strength of the initial magnetic field on the evolution of the
Kelvin–Helmholtz instability shown in Sect. 5.3.
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Fig. A.1. Distribution of the sonic Mach number in the simulations of the Kelvin–Helmholtz instability at t/tmax = 1/6 for different values of
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γα, with α = (0.1, 0.2, 0.5, 0.6, 0.7, 0.9, 0.9, 1.0, 1.2). These simulations were performed on a

512 × 256 grid with Mx = 10−3. The title in each panel is the corresponding minimum Alfvén Mach number of the flow at t = 0. For a strong
enough initial magnetic field, the magnetic stresses prevent the growth of the instability.
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Fig. A.2. Distribution of Bx in the simulations of the Kelvin–Helmholtz instability at t/tmax = 1/6 for different grid resolutions, starting from the
initial conditions described in Sect. 5.3 withMx = 10−3. On grids with N ≤ 128, numerical discretization errors generate grid-scale vorticity, which
leads to the growth of secondary instabilities in the regions between the primary rolls. This effect does not appear in better converged simulations.
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Fig. A.3. Time evolution of Bx in the simulations of the Kelvin–Helmholtz instability starting from the initial conditions described in Sect. 5.3
withMx = 10−3. The grid is 2048 × 1024.
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Appendix B: Hot bubble

Here, we extend the study described in Sect. 5.4. In particular, we
show the dependence of the entropy fluctuations,Mson, and pB
on the magnitude of the initial entropy perturbation (∆A/A)t=0.
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Fig. B.1. Final distribution of the entropy fluctuations, ∆A/A, of the hot bubble for different values of (∆A/A)t=0 and grid resolutions. Each panel is
rescaled by the corresponding value of (∆A/A)t=0. The insets provide the minimum and maximum values of the entropy fluctuations in each plot.
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Fig. B.2. Final distribution of |B|/Bx,t=0 for different values of (∆A/A)t=0 and grid resolutions in the simulations of the hot bubble. The insets show
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stripes with stronger magnetic fields.
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Fig. B.3. Final distribution of the sonic Mach number of the hot bubble for different values of (∆A/A)t=0 and different grid resolutions. Each panel is
rescaled by the corresponding value of (∆A/A)1/2

t=0. The insets show the maximum sonic Mach number. An entropy perturbation of (∆A/A)t=0 = 0.1
drives flows that are far from the low-Mach-number regime. In this case, effects of compressibility caused by the high ram pressure of the bubble
are large enough to cause a 6–7% deviation from the theoretical scaling discussed in Sect. 5.4.
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Appendix C: Small-scale dynamo

In this section we extend the analysis of the SSD test described
in Sect. 5.5. In particular, we show 1D vertical averages of the

velocity and magnetic field distributions, the time evolution of
the numerical divergence of the magnetic field, vertical cuts of
the sonic Mach number distribution and the time evolution of the
total magnetic energy in the kinematic phase.
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Fig. C.1. Vertical profiles of Vy (left) and By (right) in the simulations of the SSD, averaged over 20 < t/τconv < 40. Different colors represent
different grid resolutions, while different line styles are used for representing different values of b. The vertical velocity is rescaled by b2/3 to
remove the dependence of the energy injection rate, while By is rescaled by the corresponding equipartition value, Beq =

√
ρ|V|rms.
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Fig. C.2. Vertical cuts of the sonic Mach number taken at z = 0 in the simulations of the SSD run with b = 10−6 on the 192 × 96 × 192 grid. Each
panel is taken at a different moment in time, which is given in the title. As the SSD approaches the saturated regime, the small-scale structures in
the velocity field are damped by the Lorentz force, and vertical motions mainly happen in the form of large-scale flows.
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Fig. C.3. Time evolution of the maximum (solid line) and mean (dot-dashed) relative divergence of the magnetic field in the simulations of the
SSD. Since the induction equation is solved using a staggered constrained transport method, the update on the magnetic field keeps the divergence
in Eq. (47) within round-off error. Although these errors accumulate in time, by the end of the simulation magnetic monopoles are still irrelevant
to the dynamics of the SSD.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t/τconv

1037

1039

1041

1043

1045

E
M
/b

2/
3

[e
rg

]

64×32×64 : b = 10−6

128×64×128 : b = 10−6

192×96×192 : b = 10−6

64×32×64 : b = 10−3

128×64×128 : b = 10−3

192×96×192 : b = 10−3

64×32×64 : b = 1
128×64×128 : b = 1
192×96×192 : b = 1

Fig. C.4. Time evolution of the magnetic energy in the simulations of
the SSD up to t/τconv = 20. Each line style represents a specific value of
the boost factor, b, while different colors are used for different numbers
of grid cells.

A143, page 29 of 29



CHAPTER 3. RESULTS

3.2 Publication II: Comparison of different Godunov-like
methods in simulations of astrophysical subsonic flows

The study presented in Sect. 3.1 demonstrated the significance of employing low-
dissipation Riemann solvers in simulations of low-Mach-number MHD flows. At the
same time, it was shown that the use of partially implicit time discretization can dras-
tically diminish the computational cost of simulations for Mach numbers lower than
≈ 0.05. To limit the size of the parameter space, no emphasis was put on the spa-
tial reconstruction method. A second-order accurate, unlimited scheme was used to
reconstruct the pair of Riemann states at cell boundaries in all tests.
However, the choice of the reconstruction function plays a key role in determining
both the accuracy and performance of the code. In simulations of astrophysical flows,
the question of what combination of the Riemann solver and spatial reconstruction
will produce the desired solution at minimal computational cost is crucial. In fact,
these simulations often require huge amounts of computational resources, pushing
the limits of even big computing centers. Finding the ingredients in the Godunov
algorithm that minimize the effort to compute a given solution is non-trivial. As ex-
plained in section 2.3.1, simply increasing the order of the reconstruction polynomial
does not necessarily produce more accurate results, especially when the flows are dis-
continuous or show other nonlinearities. Also, higher-order TVD methods such as
PPM involve several conditional statements that break vectorization, so they tend to
be more expensive than lower-order or unlimited methods.
This paper aims to quantify the properties of 18 different combinations of methods in
the Godunov algorithm with a special focus on subsonic flows, which are particularly
relevant to stellar and geophysical hydrodynamics. In particular, 6 spatial reconstruc-
tion schemes (ranging from unlimited linear to a 7th-order accurate method) and 3
Riemann solvers (Rusanov, HLLC, and a low-dissipation solver) are tested using two
verification benchmarks: a 2D, Kelvin–Helmholtz instability, where the Mach number
of the shear layers varies from 10−3 to 0.1, and an astrophysical setup, namely an ideal-
ized oxygen-burning shell of a massive star, which involves 3D turbulent convection,
convective boundary mixing processes, and excitation of internal waves.
This work is limited to purely hydrodynamic flows (i.e., without magnetic fields). An
analogous comparison of MHD methods would require taking into account the way
the divergence-free property of the magnetic field is characterized by the numerical
scheme, which would considerably increase the complexity of the study. However,
the main results obtained in this paper are general and also apply to MHD flows.
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ABSTRACT

High-order Godunov methods for gas dynamics have become a standard tool for simulating different classes of astrophysical flows.
Their accuracy is mostly determined by the spatial interpolant used to reconstruct the pair of Riemann states at cell interfaces and by
the Riemann solver that computes the interface fluxes. In most Godunov-type methods, these two steps can be treated independently,
so that many different schemes can in principle be built from the same numerical framework. Because astrophysical simulations of-
ten test out the limits of what is feasible with the computational resources available, it is essential to find the scheme that produces
the numerical solution with the desired accuracy at the lowest computational cost. However, establishing the best combination of
numerical options in a Godunov-type method to be used for simulating a complex hydrodynamic problem is a nontrivial task. In
fact, formally more accurate schemes do not always outperform simpler and more diffusive methods, especially if sharp gradients are
present in the flow. In this work, we use our fully compressible Seven-League Hydro (SLH) code to test the accuracy of six recon-
struction methods and three approximate Riemann solvers on two- and three-dimensional (2D and 3D) problems involving subsonic
flows only. We consider Mach numbers in the range from 10−3 to 10−1, which are characteristic of many stellar and geophysical flows.
In particular, we consider a well-posed, 2D, Kelvin–Helmholtz instability problem and a 3D turbulent convection zone that excites
internal gravity waves in an overlying stable layer. Although the different combinations of numerical methods converge to the same
solution with increasing grid resolution for most of the quantities analyzed here, we find that (i) there is a spread of almost four orders
of magnitude in computational cost per fixed accuracy between the methods tested in this study, with the most performant method
being a combination of a “low-dissipation” Riemann solver and a sextic reconstruction scheme, (ii) the low-dissipation solver always
outperforms conventional Riemann solvers on a fixed grid when the reconstruction scheme is kept the same, (iii) in simulations of
turbulent flows, increasing the order of spatial reconstruction reduces the characteristic dissipation length scale achieved on a given
grid even if the overall scheme is only second order accurate, (iv) reconstruction methods based on slope-limiting techniques tend
to generate artificial, high-frequency acoustic waves during the evolution of the flow, (v) unlimited reconstruction methods introduce
oscillations in the thermal stratification near the convective boundary, where the entropy gradient is steep.

Key words. Convection – Hydrodynamics – Instabilities – Methods: numerical – Turbulence – Waves

1. Introduction

High-resolution schemes for gas dynamics (see, e.g., van Leer
1979; Colella & Woodward 1984; Harten et al. 1987; Colella
1990; Liu et al. 1994; Jiang & Shu 1996; Colella & Sekora
2008; Toro 2009; Balsara 2017) are routinely used for modeling
a broad variety of astrophysical flow phenomena. Their popu-
larity derives from their conservation properties and robustness,
which allow them to accurately capture both smooth and discon-
tinuous solutions on the same computational grid without sacri-
ficing numerical stability.

These schemes are based on higher-order extensions of the
original first-order accurate method of Godunov (1959) and their
time-integration algorithm is typically carried out in three steps.
First, a pair of Riemann states is reconstructed at each grid cell
interface by applying high-order monotonic interpolants to a set
of cell-averaged hydrodynamic quantities. Second, the resulting

Riemann problems are solved (either exactly or approximately)
to obtain fluxes across every cell boundary. Finally, the cell sur-
face integral of the fluxes is evaluated, allowing the cell-volume-
averaged state quantities to be advanced in time1.

In most high-order Godunov schemes, the solution strategy
of the Riemann problem is independent of the spatial interpolant
used for reconstructing the Riemann states. Therefore, many dif-
ferent schemes can be built from the same numerical framework.
The choices made in the construction of a particular scheme,
however, do have a strong effect on its accuracy, that is the dif-

1 High-resolution schemes for gas dynamics can be fully discrete,
where the system of equations is discretized both in space and time, or
semi-discrete, where spatial discretization is performed first while leav-
ing the problem continuous in time. In the latter approach, state quanti-
ties are then advanced in time using any standard numerical solver for
systems of ordinary differential equations.
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ference between the numerical (U) and the true (u) solution,

∥U − u∥ = O(∆xm) + O(∆tn), (1)

computed in some norm ∥ · ∥ (see, e.g., LeVeque 2002). Here, ∆x
is the width of the grid cell and ∆t is the time step. Although the
formal order of the spatial and temporal accuracy of a Godunov-
like scheme, “m” and “n” in Eq. (1), can be derived for smooth
flows, they do not give any information about the magnitude of
the numerical errors generated on a given grid, which is problem-
dependent. The convergence rates can also be significantly lower
than the formal order of accuracy of the scheme for problems
that admit non-smooth solutions. Consequently, formally higher-
than-second-order interpolants do not always outperform sim-
pler linear spatial reconstruction schemes when large gradients
or discontinuities are present in the flow (Greenough & Rider
2003). Moreover, if the flow is stochastic or chaotic, like in the
case of turbulence, convergence may not be achieved in the sense
of Eq. (1), but rather the quality of the numerical results can
only be judged in terms of global or ensemble-averaged quanti-
ties that characterize the flow and its evolution.

Given these considerations, it is impossible to generalize the
convergence properties of a certain combination of numerical
methods in a Godunov-type scheme, so they have to be explored
by running numerical tests. Such tests, to be significant, have to
be challenging enough and close to the actual application case.
The performance of the numerical scheme is another crucial as-
pect to be considered alongside its accuracy, especially in as-
trophysical simulations, which often test out the limits of what
is feasible nowadays with available computational resources.
Therefore, the question arises of what combination of different
ingredients in a Godunov-type scheme should be used to produce
the desired solution at a minimal computational cost.

Several comparison studies have been presented in the lit-
erature with the aim of shedding light on the behavior of dif-
ferent high-resolution schemes in simulations of complex hy-
drodynamic phenomena, such as forced turbulence (Klingenberg
et al. 2007; Kritsuk et al. 2011; San & Kara 2015; Radice et al.
2015; Seo & Ryu 2023), convection (Müller 2020), jet evolu-
tion (Beckwith & Stone 2011; Musoke et al. 2020), magneto-
rotational instabilities in accretion disks (Flock et al. 2010),
Richtmyer-Meshkov instabilities (Latini et al. 2007), and shear
instabilities (McNally et al. 2012; Lecoanet et al. 2017). These
numerical experiments focused on supersonic or mildly subsonic
flow regimes, for which Godunov-type methods are highly opti-
mized (see, e.g., LeVeque 2002; Toro 2009). Nonetheless, high-
resolution schemes have been proven to be a powerful tool also
for modeling regimes of low Mach numbers (M B |V|/c≲ 0.1,
where V is the fluid velocity and c is the sound speed), especially
in simulations of terrestrial (see, e.g., Day & Bell 2000; Klein
2009; Dumbser et al. 2009; Motheau et al. 2018) and stellar
(see, e.g., Meakin & Arnett 2007; Muthsam et al. 2010; Wood-
ward et al. 2014; Goffrey et al. 2017; Müller 2020; Horst et al.
2021; Canivete Cuissa & Teyssier 2022) flows. To our knowl-
edge, other than idealized tests, no extensive work along the line
of the aforementioned comparison studies has been presented
for low-Mach-number flows yet. Only a few studies evaluated
the impact of the order of the spatial and temporal discretization
in the numerical scheme on the properties of highly subsonic
turbulent flows, but they kept the Riemann solver fixed (Wong-
wathanarat et al. 2016; Teissier & Müller 2023).

In this work, we use our fully compressible Seven-League
Hydro (SLH) code to test 18 different combinations of spatial re-
construction schemes and Riemann solvers on two test problems

in which flows are highly subsonic (10−3 ≲M≲ 10−1). In partic-
ular, we consider a two-dimensional (2D) Kelvin–Helmholtz in-
stability with smooth initial conditions and a 3D, turbulent con-
vection zone that entrains material from an upper, stably strati-
fied layer, where internal waves are free to propagate. The initial
conditions of the latter test are adopted from the work of An-
drassy et al. (2022). Here, we opt to reduce the strength of the
heat source driving the convection in order to achieve lower con-
vective speeds than those obtained by Andrassy et al. (2022).
Also, contrary to that work, we provide performance measure-
ments for all the methods tested in our study. In both tests, we
conduct a resolution study to analyze the convergence of the nu-
merical results obtained by each method.

The paper is structured as follows: in Sect. 2, we provide
a detailed description of the equations solved and the numeri-
cal methods included in this study. In Sect. 3, we measure the
convergence properties of different Godunov-type schemes for
the 2D, Kelvin–Helmholtz instability test problem (see Sect. 3.1)
and for the 3D setup involving turbulent convection, convective
boundary mixing, and wave excitation (see Sect. 3.2). In Sect. 4,
we use the kinetic energy spectrum of the convective flows sim-
ulated in the latter test, which is close to a real astrophysical
application, to provide measurements of the computational cost
per fixed accuracy for each method. Finally, in Sect. 5, we sum-
marize the main results and we give some guidance on which
methods to use for specific applications.

2. Methods

2.1. Governing equations

We solve the fully compressible, inviscid Euler equations with a
source term S in the integral form

1
|Ω|

∂

∂t

Å∫

Ω

U dΩ
ã
+

1
|Ω|

∮

∂Ω

T · n dA =
1
|Ω|

∫

Ω

S dΩ, (2)

where

U =




ρ
ρu
ρv
ρw
ρetot
ρX




(3)

is the set of conserved quantities, |Ω| is the volume of a fluid
element Ω enclosed by a surface ∂Ω, n is the outward normal
vector to the surface, and T = [F|G|H] is a tensor defined by the
flux vectors

F =




ρu
ρu2 + p
ρuv
ρuw

(ρetot + p)u
ρXu



, G =




ρv
ρuv

ρv2 + p
ρvw

(ρetot + p)v
ρXv



, H =




ρw
ρuw
ρvw

ρw2 + p
(ρetot + p)w

ρXw



.

(4)

Here, ρ denotes the mass density, V = (u, v,w) the velocity field,
etot = eint +

1
2 |V|2 the total energy per unit mass, eint the specific

internal energy, and X the mass fraction of a passive scalar used
as a tracer advected with the fluid. The system represented by
Eq. (2) is closed by an equation of state (EoS), which gives the
gas pressure as a function of the density and internal energy,

p = p(ρ, eint). (5)
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In this work, we only consider a perfect gas with a given adia-
batic index γ, for which

p(ρ, eint) = (γ − 1)ρeint. (6)

For modeling the test problem introduced in Sect. 3.2, which
involves the presence of a gravitational field, g= (gx, gy, gz), the
corresponding source term,

Sgrav =




0
ρgx
ρgy
ρgz
ρg · V

0



, (7)

must be included in the right-hand-side term of Eq. (2). Because
we assume g to be time-independent, we opt to solve an equiv-
alent form of Eq. (2), in which the gravitational potential ϕ is
directly added to etot, eliminating the ρg ·V source term from the
energy equation,

etot 7→ etot + ϕ, Sgrav =




0
ρgx
ρgy
ρgz
ρg · V

0



7→




0
ρgx
ρgy
ρgz
0
0



. (8)

Numerical schemes that solve this form of Eq. (2) are capable of
conserving the total energy of the system over time exactly. Such
a property is particularly important in low-Mach-number hy-
drodynamics, where even small energy conservation errors can
become comparable to the kinetic energy content of the flows
(Müller 2020; Edelmann et al. 2021).

2.2. Seven-League Hydro code

In our study, Eq. (2) is solved numerically using the Seven-
League Hydro code (SLH, Miczek 2013; Edelmann 2014),
which was originally developed to model the broad variety of
hydrodynamic processes that characterize the deep interiors of
stars, such as shear instabilities (Edelmann et al. 2017), excita-
tion of internal waves (Horst et al. 2020), convective boundary
mixing (Horst et al. 2021; Andrassy et al. 2022, 2023), and tur-
bulent dynamos (Leidi et al. 2022, 2023). SLH makes use of the
finite-volume discretization on an arbitrarily curvilinear, but log-
ically rectangular, Eulerian grid to retain the conservation prop-
erties of the fluid-dynamics equations. Numerical solutions to
Eq. (2) are computed by means of Godunov-type methods based
on the definition of Riemann problems at cell interfaces. The
code is parallelized using the Message Passing Interface (MPI)
and it has been proven to scale up to several hundred thousand
processes (Edelmann & Röpke 2016).
SLH allows the user to choose among many different numer-

ical options at compile time, which makes this code perfectly
suited to run the comparison study introduced in Sect. 1. In par-
ticular, in addition to the well-known Rusanov (Rusanov 1962),
Roe (Roe 1981), and Harten-Lax-van Leer-Contact (HLLC, Toro
et al. 1994) approximate Riemann solvers, SLH adopts special
low-Mach-number methods (Liou 2006; Miczek et al. 2015; Mi-
noshima & Miyoshi 2021) to reduce the excessive numerical
dissipation introduced by shock-capturing schemes at low Mach
numbers (see Sect. 2.4). A wide spectrum of spatial reconstruc-
tion methods can be used to generate a pair or Riemann states

at each grid cell interface, ranging from (first-order accurate)
constant reconstruction to very high order methods, some of
which are described in Sect. 2.3. In problems involving the pres-
ence of a gravitational field, the deviation well-balancing method
(Berberich et al. 2021; Edelmann et al. 2021) is used to preserve
hydrostatic solutions and to reduce the strength of spurious flows
generated by grid discretization errors in strongly stratified me-
dia.

In SLH, the cell-volume-averaged source term and the cell-
surface-averaged fluxes are approximated using the midpoint
method, making the code at best second-order accurate in space.
On a 3D, evenly spaced Cartesian grid, the final expressions for
these integrals read

1
∆V

∫

Ωi, j,k

S dxdydz = Si, j,k + O(∆x2), (9)

1
∆A

∫

∆Ai+1/2, j,k

F dydz = F i+1/2, j,k + O(∆x2), (10)

1
∆A

∫

∆Ai, j+1/2,k

G dxdz = Gi, j+1/2,k + O(∆x2), (11)

1
∆A

∫

∆Ai, j,k+1/2

H dxdy =H i, j,k+1/2 + O(∆x2), (12)

whereSi, j,k is the point value of the source term S at the center of
the cell represented by the set of indices (i, j, k) and vector quan-
tities such as F i+1/2, j,k refer to the face-centered value of the flux
at the boundary between two adjacent cells, in this case (i, j, k)
and (i + 1, j, k). The volume of the cell and the surface of a cell
face are ∆V = ∆x3 and ∆A = ∆x2, respectively. The discretized
source term and fluxes in Eqs. (9)–(12) are used to build a semi-
discrete version of Eq. (2) which leaves the problem continuous
in time, following the method of lines (see, e.g., LeVeque 2002),

∂Ui, j,k

∂t
= − 1
∆x

Ä
F i+1/2, j,k − F i−1/2, j,k

+Gi, j+1/2,k −Gi, j−1/2,k

+H i, j,k+1/2 −H i, j,k−1/2

ä

+Si, j,k. (13)

The time update on the cell-volume-averaged conserved vari-
ables, Ui, j,k, is then carried out in a dimensionally unsplit fashion
using explicit or implicit time stepping. Here, we only consider
a limited set of all of the numerical methods available in SLH to
avoid constructing a too large parameter space. In the following
sections, we provide a detailed description of the algorithms that
we use for running the tests presented in Sect. 3.1 and 3.2.

2.3. Spatial reconstruction methods

We use six reconstruction methods as summarized in Table 1.
We do not attempt to be exhaustive in the choice of our methods,
which is why, for example, essentially non-oscillatory (ENO)
and weighted ENO (WENO) schemes (see, e.g., Liu et al. 1994;
Jiang & Shu 1996; Shu 2009) are left out from our comparison
study2. We also exclude multidimensional reconstruction meth-
ods. However, the methods we do include cover a wide range in

2 The influence of the parameter that occurs in the smoothness indi-
cators of the compact third order WENO scheme of Kolb (2014) on
the generation of sound waves by turbulent flows is discussed in Ap-
pendix C.
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complexity and formal order of accuracy and several of them are
often used in stellar hydrodynamics.

The simplest are unlimited linear (LIN) and parabolic (PAR)
methods, which have proved to be well-behaved in implicit sim-
ulations of slow flows using our SLH code (e.g. Horst et al. 2020,
2021; Andrassy et al. 2023). Their main disadvantage – the gen-
eration of artificial oscillations around steep gradients – can be
eliminated using slope limiters. Out of a wide spectrum of lim-
iters available, we have decided to include the popular van Leer
limiter (van Leer 1974) in combination with linear reconstruc-
tion (LIN+VL). This limiter has the total-variation-diminishing
(TVD) property and eliminates the oscillations completely.3 As
examples of higher-order methods with limiters, we include two
versions of the widely used piecewise-parabolic method (PPM):
Colella & Woodward (1984, CW84 hereinafter) and Colella &
Sekora (2008, CS08 hereinafter), for which we introduce the
acronyms PPM84 and PPM08, respectively. We also construct a
hybrid method, which we name piecewise sextic hybrid (PSH). It
combines unlimited sextic reconstruction for dynamic variables
(ρ, V, p) with the PPM08 method for passive scalars. We pro-
vide lower-order alternatives to the PSH method in Appendix A,
although we do not test them in this study.

In the remainder of this section, we provide detailed descrip-
tions of all the six reconstruction methods in unified notation.
We do this to (i) maximise the reproducibility of our work, (ii)
simplify the methods’ more general original forms (e.g. for non-
uniform grids), (iii) make clear what choices we make if several
options are available, and (iv) to point out a few typographic
mistakes in the original works.

We refer to the variable being reconstructed as a in Sec-
tions 2.3.1–2.3.6. Although reconstruction can be performed in
physical coordinates, we chose to do it in logical coordinates
defined by the cell index i, which leads to much simpler expres-
sions. This choice does not influence our results in any way since
we use uniform Cartesian grids. In some cases, we introduce the
continuous linear logical coordinate ζ such that the coordinate of
the centre of cell i is ζi = i and the left and right cell interfaces
are located at ζi−1/2 = i − 1

2 and ζi+1/2 = i + 1
2 , respectively. The

reconstruction is usually discontinuous at the interfaces. We use
the notation ai+1/2,L and ai+1/2,R to denote the reconstructed states
on the left and right side of the interface at ζi+1/2, respectively.
Reconstruction is performed along each spatial axis separately,
i.e. the reconstruction procedure is always one-dimensional. To
highlight the difference between cell averages and point values,
we use the notation ai for the average value of a within cell i.

In this work, we always reconstruct the set of cell-volume-
averaged primitive variables q, where q = (ρ, V, p, X), because
it helps reducing oscillations near discontinuities as compared
to reconstructing cell-volume-averaged conserved quantities U.
In SLH, transformations between q and U are performed using
2nd-order approximations,

q = ξ
Ä

U
ä
+ O(∆x2),

U = ξ−1
Ä

q
ä
+ O(∆x2), (14)

3 This formally holds for linear advection in one spatial dimension.
In practice, we do not observe oscillations even when the LIN+VL
method is applied to a multi-dimensional system of conservation laws,
see Sect. 3.1.

where ξ is a nonlinear, invertible transformation,

ξ(U) =




U1
U2/U1
U3/U1
U4/U1

(γ − 1)
Å

U5 − 1
2U1

Ä
U2

2 + U2
3 + U2

4

äã

U6/U1



, (15)

and Ui is the i-th component of U.

2.3.1. The LIN method

The unlimited linear reconstruction method is based on a linear
approximation to the underlying function a(ζ). Its slope δi (in
cell-index coordinates) is estimated using the central difference
(the Fromm method)

δi =
ai+1 − ai−1

2
= ∆x ∂xa|xi + O(∆x3), (16)

using which we obtain the reconstructed states

ai−1/2,R = ai − δi

2
+ O(∆x2), (17)

ai+1/2,L = ai +
δi

2
+ O(∆x2). (18)

The LIN method is exact wherever a(ζ) is locally linear,
2nd-order accurate for general but smooth functions a(ζ), and it
requires two ghost cells at domain boundaries.4

2.3.2. The LIN+VL method

The van-Leer-limited linear reconstruction method is partic-
ularly easy to describe in terms of the 2nd-order-accurate,
interface-centred slopes

δi−1/2 = ai − ai−1, (19)
δi+1/2 = ai+1 − ai. (20)

The final slope δi,lim is then obtained by applying the limiter
of van Leer (1974),

δi,lim =

® 2δi−1/2 δi+1/2

δi−1/2+δi+1/2
if δi−1/2 δi+1/2 > 0,

0 otherwise,
(21)

which gives the reconstructed states

ai−1/2,R = ai − δi,lim

2
+ O(∆x2), (22)

ai+1/2,L = ai +
δi,lim

2
+ O(∆x2). (23)

The limiter makes the slope less steep where a(ζ) is strongly
curved and flat at local extrema. With a smooth and monotonic
function a(ζ), the effect of the limiter weakens upon grid refine-
ment and the left and right states converge to those provided
by the LIN method. This makes the LIN+VL method formally
2nd-order accurate away from any extrema. Two ghost cells are
required at domain boundaries.

4 Although the method only uses the cells i − 1, i, and i + 1, recon-
struction must also be performed in the first ghost cell to fully define
the Riemann problem at the domain boundary.
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Table 1. Overview of spatial reconstruction methods used in this work.

ID Theoretical Practical Number of Description
order order ghost cells

LIN 2 2.0 2 piecewise linear, no limiter
LIN+VL 2 2.0 2 piecewise linear, van Leer limiter
PAR 3 3.0 2 piecewise parabolic, no limiter
PPM84 4 2.3, 1.6 3 PPM method of Colella & Woodward (1984)
PPM08 6 6.0 4 PPM method of Colella & Sekora (2008)
PSH 7 7.0 4 hybrid piecewise sextic with no limiter for dynamic

variables and PPM08 for passive scalars

Notes. ID: identifier; Theoretical order: formal order of accuracy for smooth and monotonic solutions in 1D; Practical order: asymptotic order
obtained in the 1D experiments reported in Appendix B (smooth but non-monotonic solutions). In the case of PPM84, the higher order of accuracy
corresponds to linear advection and the lower one to the propagation of a sound wave using the LHLLC flux function, see Appendix B for details.

2.3.3. The PAR method

The unlimited parabolic method assumes that a(ζ) can within
cell i be described using the parabola

a(ζ) =
2∑

n=0

cn(ζ − ζi)n. (24)

The three coefficients cn are uniquely determined by the require-
ment that the averages of a(ζ) in cells i − 1, i, and i + 1 equal
ai−1, ai, and ai+1, respectively. The reconstructed states are then
obtained by evaluating Eq. (24) at ζi−1/2 and ζi+1/2, respectively.
The resulting expressions are

ai−1/2,R =
1
6

(2ai−1 + 5ai − ai+1) + O(∆x3), (25)

ai+1/2,L =
1
6

(−ai−1 + 5ai + 2ai+1) + O(∆x3). (26)

The PAR method is exact wherever a(ζ) is locally parabolic,
3rd-order accurate for general but smooth functions a(ζ), and it
requires two ghost cells at domain boundaries.

2.3.4. The PPM84 method

The piecewise parabolic reconstruction of CW84 is a two-step
process. The first is based on the 4th-order-accurate interpolation
formula

ai+1/2 =
1
2

(ai + ai+1) − 1
6

(δi+1 − δi) = a|xi+1/2 + O(∆x4). (27)

This expression is the equivalent of Eq. 1.6 of CW84 in the spe-
cial case of a uniform grid. CW84 then replace δi by the limited
value

δi,lim =

®
sgn(δi) min

(|δi|, 2|δi−1/2|, 2|δi+1/2|
)

if δi−1/2 δi+1/2 > 0
0 otherwise,

(28)

which is the monotonised central limiter of van Leer (1977). In
our implementation, we do not set δi,lim = 0 if δi−1/2 δi+1/2 ≤ 0
(i.e. at local extrema). We have tested that, thanks to the presence
of another limiter in PPM84 (see below), this modification has
essentially no influence on the results. However, it makes the
code faster because it removes three conditional expressions per
reconstruction step (we need δi−1,lim, δi,lim, and δi+1,lim to obtain
ai−1/2 and ai+1/2).

The interpolated value ai+1/2 is initially assigned to both
ai+1/2,L and ai+1/2,R, i.e. there is no discontinuity at the inter-
face. However, CW84 approximate the distribution of variable
a in cell i by the parabola uniquely defined by ai−1/2,R, ai+1/2,L,
and the cell average ai. This parabola may in some cases take on
values outside of the interval defined by ai−1/2,R and ai+1/2,L, i.e.
overshoots may appear within the cell. To prevent this, a second
limiting step is introduced. We express it in terms of the differ-
ences

a−i = ai−1/2,R − ai, (29)
a+i = ai+1/2,L − ai. (30)

The limiter is then defined by the variable replacements

a−i 7→ 0, a+i 7→ 0 if a−i a+i ≥ 0,
a−i 7→ −2a+i if |a−i | > 2|a+i |, (31)
a+i 7→ −2a−i if |a+i | > 2|a−i |.

The reconstructed states ai−1/2,R and ai+1/2,L are recovered us-
ing Eqs. (29) and (30). Equation (31) is equivalent to Eq. 1.10
of CW84. This second limiter introduces discontinuities at cell
interfaces in regions where the gradient of a(ζ) changes rapidly
and it flattens the assumed parabola at local extrema.

Unlike CW84, we do not use the parabolic model of a(ζ)
inside the cell in any way. We only need the states at the two
sides of each interface to construct Riemann problems and time
integration is done using a Runge-Kutta scheme (see Sect. 2.5 for
details). However, the second limiter (Eq. (31)), which is based
on the parabolic model, is still needed to remove oscillations and
to introduce dissipation where necessary.

Although the interpolation formula that PPM84 starts with
is 4th-order accurate, the slope flattening introduced at all ex-
trema reduces the practically attainable order of accuracy sub-
stantially for non-monotonic solutions even if they are smooth.
Our 1D experiment in Sect. B.1 gives the order of 2.3 whereas
Colella & Sekora (2008) reach the order of 2.6 in a similar ad-
vection experiment with a Gaussian-shaped profile and PPM84
reconstruction. The PPM84 method requires three ghost cells at
domain boundaries.

2.3.5. The PPM08 method

The piecewise parabolic method of CS08 is based on ideas sim-
ilar to those of CW84 in constructing the PPM84 scheme and
PPM08 also contains two limiters. However, the limiters are
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modified such that PPM08 models smooth extrema instead of
flattening them.

In PPM08, the first estimate of ai+1/2 is obtained using the
6th-order-accurate interpolation formula (c.f. Eq. 17 of CS08)

ai+1/2 =
37
60

(ai + ai+1) − 2
15

(ai−1 + ai+2) +
1

60
(ai−2 + ai+3)

(32)

= a|xi+1/2 + O(∆x6). (33)

If ai+1/2 does not satisfy the condition (c.f. Eq. 13 of CS08)

min(ai, ai+1) ≤ ai+1/2 ≤ max(ai, ai+1) (34)

a limiter is applied. It is based on three 2nd-order-accurate second
derivatives,
(
D2a

)
i+1/2 = 3

(
ai − 2ai+1/2 + ai+1

)
= ∂2

xa|xi+1/2∆x2 + O(∆x4),
(35)

(
D2a

)
i = ai−1 − 2ai + ai+1 = ∂

2
xa|xi∆x2 + O(∆x4), (36)

(
D2a

)
i+1 = ai − 2ai+1 + ai+2 = ∂

2
xa|xi+1∆x2 + O(∆x4). (37)

In Eq. (35), the more common finite difference formula with
a prefactor 4 would arise if the involved quantities were of
the same kind, i.e. all three point values, or all three averages.
These derivatives are combined to obtain a limited derivative(
D2a

)
i+1/2,lim such that

(
D2a

)
i+1/2,lim = sgn

î(
D2a

)
i+1/2

ó
min
Å ∣∣∣(D2a

)
i+1/2

∣∣∣ ,

C
∣∣(D2a

)
i

∣∣ ,C
∣∣(D2a

)
i+1

∣∣
ã

(38)

if all three derivatives have the same sign and
(
D2a

)
i+1/2,lim = 0 (39)

otherwise. We use C = 1.25 in Eq. (38). The limited derivative
is then used to modify the value of ai+1/2,

ai+1/2 7→ 1
2

(ai + ai+1) − 1
6
(
D2a

)
i+1/2,lim . (40)

Equation 19 of CS08 is equivalent to our Eq. (40) except for the
factor in front of the second term, which is 1

3 in CS08. This is
likely a typographical error because the factor of 1

6 is needed to
obtain the original, unlimited value of ai+1/2 when the solution is
so smooth that the limiter does not change the second derivative
significantly.

Just like in the PPM84 method, the interpolated value ai+1/2
is initially assigned to both ai+1/2,L and ai+1/2,R, i.e. there is no
discontinuity at the interface. The second limiting step depends
on whether cell i is in the vicinity of a local extremum or not. If
(c.f. Eq. 20 of CS08)

(ai − ai−1/2,R)(ai+1/2,L − ai) ≤ 0 or
(ai − ai−1)(ai+1 − ai) ≤ 0, (41)

cell i is close to a local extremum, which should be preserved if
smooth enough. The second derivatives
(
D2a

)∗
i = 6(ai−1/2,R − 2ai + ai+1/2,L), (42)

(
D2a

)
i−1 = ai−2 − 2ai−1 + ai, (43)

(
D2a

)
i = ai−1 − 2ai + ai+1, (44)

(
D2a

)
i+1 = ai − 2ai+1 + ai+2. (45)

are combined to judge the solution’s smoothness (CS08 have one
wrong index in their equivalent of our Eq. (43), c.f. their Eq. 21).
We then set

(
D2a

)∗
i,lim = sgn

î(
D2a

)∗
i

ó
min
Å ∣∣∣(D2a

)∗
i

∣∣∣ ,

C
∣∣(D2a

)
i−1

∣∣ ,C
∣∣(D2a

)
i

∣∣ ,C
∣∣(D2a

)
i+1

∣∣
ã

(46)

if all four second derivatives have the same sign and

(
D2a

)∗
i,lim = 0 (47)

otherwise. Finally, the reconstructed states are updated,

ai−1/2,R 7→ ai + (ai−1/2,R − ai)

(
D2a

)∗
i,lim(

D2a
)∗

i

, (48)

ai+1/2,L 7→ ai + (ai+1/2,L − ai)

(
D2a

)∗
i,lim(

D2a
)∗

i

. (49)

If
∣∣(D2a

)∗
i

∣∣ < ε = 10−12 we do not modify the reconstructed
states in this step. Equations (48) and (49) are equivalent to
Eq. 23 of CS08.

If the condition in Eq. (41) is not satisfied, i.e. cell i is not
in the vicinity of a local extremum, we use Eqs. (29)-(31) in-
stead of Eqs. (48) and (49) to limit the reconstructed states. CS08
propose to use a slightly less restrictive limiter away from ex-
trema (their Eq. 26), but that limiter produces oscillations with
our time-discretization scheme and we do not use it.

Just as we do in the case of PPM84, we only use the re-
constructed states and not the assumed parabolic model of a(ζ)
within the cell, see Sect. 2.3.4 for details. The PPM08 method is
6th-order accurate for smooth functions a(ζ) even if they are not
monotonic. Our 1D experiment in Sect. B.1 confirms this. The
PPM08 method requires four ghost cells at domain boundaries.

2.3.6. The PSH method

Whereas all of the previous reconstruction methods are applied
to all variables in the same way, the PSH method is hybrid: it
is an unlimited piecewise-sextic method for all dynamic vari-
ables combined with PPM08 for passive scalars. This allows us
to eliminate certain issues that occur with methods containing
limiters when applied to slow flows (see Sect. 3.1 for details)
while essentially eliminating oscillations in the passive scalars,
which could represent mass fractions. The piecewise sextic re-
construction assumes that within cell i a(ζ) can be described by
the sextic polynomial

a(ζ) =
6∑

n=0

cn(ζ − ζi)n. (50)

The seven coefficients cn are uniquely determined by the require-
ment that the averages of a(ζ) in cells i − 3 + n equal ai−3+n for
n = 0, 1, . . . , 6. The reconstructed states are then obtained by
evaluating Eq. (50) at ζi−1/2 and ζi+1/2, respectively. The result-
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ing expressions are

ai−1/2,R =
1

420

Å
4ai−3 − 38ai−2 + 214ai−1 + 319ai

− 101ai+1 + 25ai+2 − 3ai+3

ã
+ O(∆x7), (51)

ai+1/2,L =
1

420

Å
− 3ai−3 + 25ai−2 − 101ai−1 + 319ai

+ 214ai+1 − 38ai+2 + 4ai+3

ã
+ O(∆x7), (52)

The method is exact wherever a(ζ) is locally a sextic polynomial,
7th-order accurate for general but smooth functions a(ζ), and it
requires four ghost cells at domain boundaries.

2.4. Approximate Riemann solvers

The reconstructed pair of primitive state quantities, qi+1/2,L,R, de-
fines a Riemann problem at the cell interface i+ 1/2, which SLH
solves by means of 1D approximate Riemann solvers to obtain
the face-centered value of the fluxes F i+1/2. We run the tests
presented in Sect. 3 using two widely popular flux functions,
namely the RUSANOV and HLLC solvers. Because in this work
we only focus on simulations of subsonic flows, for comparison
we also build a low-dissipation version of HLLC following the
approach of Minoshima & Miyoshi (2021), who modified the
Harten-Lax-van Leer-Discontinuities (HLLD, Miyoshi & Ku-
sano 2005) scheme for magnetohydrodynamics to diminish the
magnitude of the numerical dissipation for low-Mach-number
flows. The authors called this low-dissipation flux “LHLLD”, so,
for consistency, we will refer to the low-dissipation HLLC solver
as “LHLLC” throughout the text5. In the rest of this section, we
summarize the main aspects of each of these solvers and pro-
vide the implementation details whenever several choices can be
made for specifying the value of a certain quantity that is needed
to evaluate the numerical flux.

2.4.1. RUSANOV

The RUSANOV flux is computed by adding an upwind, numer-
ical diffusive term proportional to the maximum wave speed at
the cell interface, S max, to every component of the central flux.
The final expression for the numerical flux reads6

F (UL,UR) =
1
2

[F(UL) + F(UR)] − 1
2

S max(UR − UL), (53)

where UL,R are the left and right sets of conserved quantities,
respectively. In SLH, S max is estimated as

S max = max
Ä
|uL| + cL, |uR| + cR

ä
, (54)

where c= (γp/ρ)1/2 is the sound speed. The diffusive term in
Eq. (53) scales with the Mach number of the flowM and allows

5 Although SLH was already equipped with several low-Mach solvers,
like AUSM+-up (Liou 2006) and Miczek-Roe (Miczek et al. 2015), we
decide not to use them in this study because they all suffer from a more
restrictive stability criterion on the time step than LHLLC when used
in combination with explicit time steppers, whilst all of these fluxes
provide very similar results in terms of accuracy.
6 For sake of clarity, here we assume that the fluxes are computed in
the x direction and dropped the indices, but analogous expressions can
be obtained for the y and z directions.

x

t

UR

S R

U∗R

S ∗
U∗L

S L

UL

Fig. 1. Space-time diagram showing the wave structure of the HLLC
solver for a Riemann problem of gas dynamics. S L,R are the two outer
sonic waves (solid lines), while S ∗ is the speed of the linearly degenerate
contact and shear waves (dashed line) that separate the two intermediate
“star” states, U∗L,R.

the scheme to achieve numerical stability by smearing out any
discontinuity that may arise in the vector of state quantities U.

The RUSANOV solver is one of the simplest schemes that
can be used to approximate the fluxes at grid cell interfaces,
which makes it very efficient in terms of Floating Point Oper-
ations per Second. However, it does not take into account the
complex structure of the solution arising from the Riemann prob-
lem of gas dynamics (see, e.g., Toro 2009), so the states between
the two outer waves in the Riemann fan are averaged out. For
this reason, this flux function is particularly diffusive for trans-
porting contact and shear waves, which lack the self-steepening
property of sound waves.

2.4.2. HLLC

Different from RUSANOV, the HLLC solver restores the linearly
degenerate contact and shear waves back to the structure of the
solution of the Riemann problem (see Fig. 1). In this method,
the numerical flux is chosen according to the sign of the wave
speeds in the Riemann fan,

F (UL,UR) =





FL if 0 ≤ S L,
F∗L if S L < 0 ≤ S ∗,
F∗R if S ∗ < 0 ≤ S R,
FR if S R < 0.

(55)

While the computation of the physical fluxes FL = F(UL) and
FR = F(UR) is trivial, the fluxes in the intermediate regions,
F∗L and F∗R, are obtained by solving the Rankine–Hugoniot jump
conditions across the two outer sonic waves,

S LU∗L − F∗L = S LUL − FL, (56)
S RU∗R − F∗R = S RUR − FR. (57)

Here, U∗L and U∗R represent the state quantities in the star regions.
In order to solve Eqs. (56)–(57), proper estimates of the wave
speeds S L and S R must be provided beforehand. SLH computes
these wave speeds as

S L = min(uL, uR) −max(cL, cR), (58)
S R = max(uL, uR) +max(cL, cR). (59)

After some assumptions and algebraic manipulations (see Toro
2009), these estimates allow Eqs. (56)–(57) to be solved for the
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star states U∗L,R ,

(ρ)∗L,R = α̃L,R, (60)

(ρu)∗L,R = α̃L,RS ∗, (61)

(ρv)∗L,R = α̃L,RvL,R, (62)

(ρw)∗L,R = α̃L,RwL,R, (63)

(ρetot)∗L,R = α̃L,R
(ρetot)L,R

ρL,R

+ α̃L,R(S ∗ − uL,R)
ï

S ∗ +
pL,R

ρL,R(S L,R − uL,R)

ò
, (64)

(ρX)∗L,R = α̃L,RXL,R, (65)

with

α̃L,R = ρL,R

Å
S L,R − uL,R

S L,R − S ∗

ã
, (66)

and S ∗ being the speed of the intermediate wave,

S ∗ =
pR − pL + ρLuL(S L − uL) − ρRuR(S R − uR)

ρL(S L − uL) − ρR(S R − uR)
. (67)

The gas pressure is preserved across the middle wave and takes
the value

p∗ =
1
2

î
pL + pR + ρL(S L − uL)(S ∗ − uL)

+ ρR(S R − uR)(S ∗ − uR)
ó
. (68)

These expressions are then inserted back into Eqs. (56)–(57) to
compute F∗L and F∗R. Finally, the interface flux is chosen accord-
ing to Eq. (55).

In our study, we use a variant of the original HLLC solver
of Toro et al. (1994), which allows the low-Mach correction pre-
sented in the next section to be implemented trivially into the
solver. In particular, we directly evaluate the physical fluxes in
the selected state of the Riemann fan,

F (UL,UR) =





FL if 0 ≤ S L,
F(U∗L) if S L < 0 ≤ S ∗,
F(U∗R) if S ∗ < 0 ≤ S R,
FR if S R < 0,

(69)

and we compute p∗ using a linearized Riemann solver for the
equations of gas dynamics (see, e.g., Toro 1991),

p∗ =
1
2

(pL + pR) − 1
2
ρ̃c̃(uR − uL), (70)

where c̃ = (cL + cR)/2 and ρ̃ = (ρL + ρR)/2. The system in
Eq. (69) is consistent with the physical fluxes in the sense that

F (U,U) = F(U) (71)

and it satisfies the Rankine–Hugoniot jump conditions across the
contact wave S ∗ as the original solver,

S ∗U∗R − F∗R = S ∗U∗L − F∗L. (72)

Diagnostic tests of the Kelvin–Helmholtz instability problem,
described in Sect. 3.1, show that the numerical solutions com-
puted with our modified version and the original solver of Toro
et al. (1994) are virtually indistinguishable for subsonic flows.
We stress, however, that the fluxes in Eq. (69) do not satisfy
the jump conditions across the sonic waves S L and S R (see
Eqs. (56) and (57)). Therefore, there is no guarantee that the
resulting scheme preserves positivity of density and internal en-
ergy when the flow is nearly transonic, in which case effects of
compressibility and nonlinearities can become dominant. Such a
flow regime, however, is not considered in this study.

2.4.3. LHLLC

As discussed in Sect. 2.4.2, HLLC restores the intermediate, lin-
early degenerate waves, so it is generally more accurate than
two-wave solvers like RUSANOV or HLL (Harten et al. 1983)
in simulations involving the presence of material interfaces or
the propagation of entropy waves. However, the effects of the
numerical dissipation introduced by HLLC on the evolution of
the flow become progressively more dominant asM → 0, thus
producing unnecessarily large diffusive errors in highly subsonic
velocity regimes (see, e.g., Fleischmann et al. 2020). In our vari-
ant of HLLC, this behavior is caused by the upwind term in the
expression for p∗ (see Eq. (70)),

D(p∗) = −1
2
ρ̃c̃(uR − uL). (73)

This term scales with M, which is inconsistent with the scal-
ing of pressure fluctuations dynamically generated by subsonic
flows. In fact, in the asymptotic limit M → 0, the solution to
the compressible Euler equations approaches the incompressible
regime (Guillard & Viozat 1999), in which the gas pressure is ho-
mogeneous in space except for fluctuations proportional toM2.
At low Mach numbers, the numerical term in Eq. (73) can even-
tually become larger than the physical pressure fluctuation at the
cell interface, thus leading to an highly inaccurate pressure flux
estimation.

In order to correct for the flawed scaling of the numerical
dissipation introduced by HLLC-like methods, we here follow
the approach described in Minoshima & Miyoshi (2021), who
proposed to multiply the diffusive term in Eq. (73) by a factor
ϕ proportional to the local Mach number of the flow7. Such a
correction was originally applied to the magnetohydrodynamic
solver HLLD, but it can easily be used in HLLC by setting all
magnetic field components to zero, resulting in

ϕ = χ(2 − χ), (74)

with

χ = min
ß

1,max
Å |VL|

cL
,
|VR|
cR

ã™
. (75)

The final expression for p∗ then reads

p∗ =
1
2

(pL + pR) − ϕ1
2
ρ̃c̃(uR − uL). (76)

The resulting upwind term in this “low-dissipation” version of
the HLLC flux (LHLLC) scales withM2 when the flow is sub-
sonic, so the ratio of the numerical diffusive term to the ampli-
tude of pressure fluctuations is independent ofM.

We note that the same fix cannot equally be applied to the
RUSANOV flux without sacrificing numerical stability. In par-
ticular, a diffusive coefficient proportional to M2 would result
in too little dissipation for sound waves. This is not the case for
LHLLC, in which the complex upwinding performed in Eq. (69)
guarantees that the scheme remains stable for the propagation of
sound waves (see also Appendix B.1).

7 Other low-Mach corrections for the HLLC Riemann solver can be
found, e.g., in Thornber et al. (2008); Rieper (2011); Xie et al. (2019);
Chen et al. (2020); Fleischmann et al. (2020).
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2.5. Time discretization

Because the acoustic Courant-Friedrichs-Lewy (CFL, Courant
et al. 1928) criterion on the time step becomes excessively
strict in regimes of very low Mach numbers, implicit time dis-
cretization techniques are typically better suited for simulating
the evolution of such slow flows (see, e.g., Viallet et al. 2011;
Miczek et al. 2015; Dumbser et al. 2019). However, we recog-
nize that most hydrodynamic codes nowadays do not have time-
implicit integration capabilities, whose implementation requires
a considerable effort from code developers. Thus, to make our
study easily reproducible, we decide to target in our test setups,
see Sect. 3.1 and 3.2, flows with Mach numbers in the range
10−3 ≲M≲ 10−1, where simple time-explicit marching schemes
are still competitive with implicit ones. In this work, explicit
time integration is performed in a semi-discrete fashion, in which
the cell-surface integral of the fluxes and the cell-volume inte-
gral of the source terms in Eq. (2) are first separately discretized
in space whilst the system is left continuous in time according
to the method of lines (see Sect. 2.2). The resulting system of
ordinary differential equations (see Eq. (13)), is then solved nu-
merically to advance the cell-volume-averaged state quantities in
time. To solve Eq. (13), we use the third-order accurate, strong
stability preserving (SSP) RK3 method of Shu & Osher (1988),
in which the update on U

(n)
i, j,k from time tn to time tn+1 = tn + ∆t

is performed in three stages,

U
(1)
i, j,k = U

(n)
i, j,k −R

Ä
U

(n)
i, j,k

ä
∆t, (77)

U
(2)
i, j,k =

3
4

U
(n)
i, j,k +

1
4

U
(1)
i, j,k −

1
4
R
Ä

U
(1)
i, j,k

ä
∆t, (78)

U
(n+1)
i, j,k =

1
3

U
(n)
i, j,k +

2
3

U
(2)
i, j,k −

2
3
R
Ä

U
(2)
i, j,k

ä
∆t. (79)

In particular, we compute the spatial residuals at stage s,

R
Ä

U
(s)
i, j,k

ä
=

1
∆x

Ä
F (s)

i+1/2, j,k − F (s)
i−1/2, j,k

+G(s)
i, j+1/2,k −G(s)

i, j−1/2,k

+H (s)
i, j,k+1/2 −H (s)

i, j,k−1/2

ä

−S(s)
i, j,k, (80)

using the numerical techniques described in Sects. 2.3 and 2.4.
Finally, in order to achieve numerical stability, we limit the time
step according to

∆t =
CFL
Ndim

min
i, j,k

Å
∆x

|V|i, j,k + ci, j,k

ã
, (81)

where Ndim is the number of spatial dimensions. In all the tests
presented in Sect. 3, we always adopt CFL= 0.8. We prefer to
use a third-order accurate time stepper over less computationally
expensive (but more inaccurate) methods, such as the “Midpoint
rule” or SSP-RK2 (Shu & Osher 1988), so that the spatial in-
stead of the temporal discretization would contribute most to the
building up of global truncation errors.

3. Convergence properties of different
Godunov-type methods

In this section, we check if the methods included in our study
(described in Sect. 2) converge to the same numerical solution
for several physical quantities of interest. In particular, we test a

Kelvin–Helmholtz instability and a more complex setup charac-
terized by the presence of turbulent convective flows, turbulent
entrainment, and wave excitation. The results of the latter set of
simulations allow us to estimate the computational cost per fixed
accuracy for any given scheme, which we show in Sect. 4.

3.1. Kelvin–Helmholtz instability

We first test all of our 18 combinations of numerical schemes
as described in Sects. 2.3 and 2.4 on a 2D Kelvin–Helmholtz
problem with the initial condition

ρ = γ, (82)

u =M0
[
1 − 2η(y)

]
, (83)

v =
M0

10
sin(2πx), (84)

p = 1, (85)
X = η(y), (86)

where γ = 1.4 and

η(y) =





1
2

{
1 + sin

[
16π(y + 0.25)

] }
, for y > − 9

32 and y < − 7
32 ,

1, for y ≥ − 7
32 and y ≤ 7

32 ,
1
2

{
1 − sin

[
16π(y − 0.25)

] }
, for y > 7

32 and y < 9
32 ,

0, otherwise.
(87)

The smooth function η(y) provides a resolvable transition be-
tween layers moving in opposite horizontal directions. The ini-
tial speed of sound is unity, soM0 is a tunable initial Mach num-
ber of the shear flow. We discuss solutions with M0 = 10−1,
10−2, and 10−3. In Eq. (84), a smooth initial perturbation with an
amplitude ofM0/10 is included as a velocity component perpen-
dicular to the shear flow. The computational domain, assumed to
be periodic in both x and y, spans 0 ≤ x ≤ 2, −0.5 ≤ y ≤ 0.5.

The fact that the transition function η(y) between the shear-
ing layers is smooth8 allows us to compute numerically con-
verged solutions even in the absence of physical viscosity as
long as the simulations are stopped before the flow field be-
comes chaotic (see also Robertson et al. 2010; McNally et al.
2012; Lecoanet et al. 2017; Berlok & Pfrommer 2019). Each of
the two transitions spans only 1/16 of the domain height and is
poorly resolved on the coarser grids used in our tests. Therefore,
we improve the accuracy of the initial cell averages that involve
η(y) by averaging η(y) over 100 points uniformly distributed in
the y-range covered by each cell. We measure numerical errors
with respect to a reference solution computed using PSH recon-
struction and the LHLLC flux function on a 8192 × 4096 grid.
The solution for M0 = 10−2 is shown in Fig. 2 at four points
in time9. As the instability grows in amplitude, the sinusoidal
initial perturbation is rolled up into a series of vortices. Parts of
the initial shear layers are stretched and become trapped in the
centres of the vortices. Other parts of the shear layers become
substantially narrower. We quantify this phenomenon by com-
puting the minimum scale height min(HX) ≡ 1/max (|∇X|) of
the passive scalar X. Figure 3 shows that this quantity drops by
as much as a factor of 28 between t = 0 and t = 0.8M−1

0 . At the

8 η(y) and its first derivative are continuous but the second derivative
is not.
9 We give the time in units ofM−1

0 such that the same numerical value
corresponds to the same evolutionary stage of the instability at all three
initial Mach numbers we use.

Article number, page 9 of 42



A&A proofs: manuscript no. godunov_performance

t = 0.2M−1
0 t = 0.4M−1

0

t = 0.8M−1
0 t = 1.6M−1

0

0.0 0.2 0.4 0.6 0.8 1.0
X

Fig. 2. Reference solution to the Kelvin–Helmholtz problem with initial
Mach numberM0 = 10−2. The solution was computed using PSH re-
construction and the LHLLC flux function on an 8192× 4096 grid. The
mass fraction X of the passive scalar is shown at four points in time:
late in the linear growth of the instability (t = 0.2M−1

0 ), at an early
stage of non-linear evolution (t = 0.4M−1

0 ), at a stage when the pri-
mary vortices have fully formed (t = 0.8M−1

0 ; the final time for all of
our other Kelvin–Helmholtz simulations), and at a late stage when fine
threads have formed inside the primary vortices (t = 1.6M−1

0 ). We use
the same colour scale as in Figs. 4, D.2, and D.1, although 0 ≤ X ≤ 1 in
the reference solution.

64 128 256 512 1024 2048 4096 8192
Nx

100

101

102

m
in

(H
X

)[
ce

lls
]

t = 0.0M−1
0

t = 0.2M−1
0

t = 0.4M−1
0

t = 0.6M−1
0

t = 0.8M−1
0

min(HX) ∝ Nx

Fig. 3. Resolution dependence of the minimum scale height min(HX) of
the passive scalar in the Kelvin–Helmholtz problem expressed in units
of the computational cell width and shown at five points in time. Grid
resolution is given by the number Nx of computational cells along the
x axis. The initial Mach number is M0 = 10−2 and we use PSH re-
construction and the LHLLC flux function in this series of simulations.
Once the steepest gradients in X become resolved the minimum scale
height starts to follow the linear scaling relations shown.

latter point in time, the minimum scale height is only 5.75 com-
putational cells on the 8192 × 4096 reference grid. Extremely
thin and difficult-to-resolve filaments appear at even later times
(see Fig. 2). Therefore, we compare the solutions at t = 0.8M−1

0 ,
making the problem non-linear and challenging enough but not
computationally prohibitive. The maximum Mach number in the
flow field is 1.8M0 at this point in time.

Figure 4 compares the distributions of the passive scalar in
simulations withM0 = 10−2 computed on a 128 × 64 grid. The
steepest gradients are strongly under-resolved on this grid (see
Fig. 3), which increases the amplitude and visibility of small-

scale artefacts produced by different methods. All of the six
reconstruction functions lead to extremely diffusive solutions
with the RUSANOV flux, although high-order methods with
limiters (PPM84, PPM08, PSH) still preserve steep gradients at
some places. Numerical diffusion is strongly suppressed with the
HLLC flux function owing to the explicit treatment of the con-
tact wave in HLLC. The three highest-order methods (PPM84,
PPM08, PSH) reproduce the structure of the primary vortices
(c.f. Fig. 2) much more closely than the lower-order methods
(LIN, LIN+VL, PAR). However, the two PPM methods develop
secondary instabilities around the primary vortices. This effect,
not present in the reference solution, occurs also with the LH-
LLC flux function (see also McNally et al. 2012). The secondary
instabilities become the dominant source of numerical errors. We
find that these instabilities tend to grow when excessive velocity
shear is generated at the grid scale and there is not enough nu-
merical dissipation to suppress their growth. Therefore, the ex-
citation of artificial, short wavelength Kelvin–Helmholtz insta-
bilities is favored on coarser grids, which generate larger shear
at the grid scale across the poorly resolved slip line, and by less
dissipative Riemann solvers. For the same reason, simulations
run with the HLLC solver are more prone to developing sec-
ondary instabilities at higher rather than lower Mach numbers, as
HLLC introduces less numerical diffusion into the system when
modeling faster flows (see, e.g., the panels for PPM84+HLLC
in Fig. 4 and Fig. D.1). As the grid is refined, the shear lay-
ers are progressively better resolved thus reducing grid scale
shear and suppressing the growth of the secondary instabilities.
Not surprisingly, the smooth interiors of the primary vortices
are best represented with the highest-order method PSH (c.f.
Fig. 2). Figures D.1 and D.2, respectively, show that the dif-
ferences between the three flux functions become smaller with
M0 = 10−1 and much larger withM0 = 10−3. This is expected
because the amount of numerical dissipation (relative to the flow
of interest) introduced by the RUSANOV and HLLC flux func-
tions increases with decreasing Mach number of the flow, see
Sect. 2.4. With M0 = 10−3, only the PSH method reproduces
the basic structure of the primary vortices when combined with
the HLLC flux. Comparing Fig. 4 with Fig. D.2, we see that the
LHLLC flux produces results independent of the initial Mach
numberM0 because all of the flows are considerably subsonic.
All of the methods we test converge to the same flow pattern
with M0 = 10−2, see Fig. D.7 for solutions computed on the
4096 × 2048 grid10.

The magnitude of the largest overshoot (or undershoot) in
the passive scalar is shown in the insets in Figs. 4, D.1, and D.2.
Thanks to their use of limiters, the LIN+VL, PPM84, PPM08,
and PSH methods largely eliminate the overshoots, making the
methods useful for the advection of mass fractions. We observe
only some accumulation of round-off-level overshoots (up to
≈ 10−14) with LIN+VL, independently of the initial Mach num-
ber or grid resolution. The PPM84, PPM08, and PSH methods
produce small but finite overshoots. At t = 0.8M−1

0 , the mag-
nitude of the largest overshoots is ≈ 10−4 with PPM84, ≈ 10−2

with PPM08, and ≈ 10−6 with PSH across all grids and all ini-
tial Mach numbers. However, they only occur in a few cells or
groups of cells scattered across the computational grid, so the
total mass affected by this effect is negligibly small. Moreover,
the amplitude of such overshoots, drops to the round-off level in
many of our simulations as the resolution is increased. Unlim-

10 Similar plots for all initial Mach numbers and all computational
grids are available on Zenodo (https://zenodo.org/doi/10.5281/
zenodo.10280900).
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ited methods produce substantially larger overshoots, reaching
8% and 17% for LIN and PAR, respectively. They are the result
of the dispersion errors characteristic of linear schemes of 2nd

or higher order, so they are nearly always present around sharp
structures and affect a much larger amount of mass than the spo-
radic and isolated overshoots produced by PPM84, PPM08, and
PSH. The benefits of the hybrid approach in PSH thus become
obvious – secondary instabilities are suppressed (as compared
with PPM84 and PPM08) thanks to the absence of limiters for
dynamic variables while mass fractions, for which limiters are
used, are well behaved.

We quantify numerical convergence of all of our methods by
measuring L1 errors with respect to the reference solution in the
density ρ, kinetic energy Ek,y associated with motions perpendic-
ular to the initial shear flow, and mass fraction X of the passive
scalar. We define the relative L1 error for any quantity q as

L1 =
1
σref

∑Nx
i=1

∑Ny

j=1

∣∣∣qi, j − qref
i, j

∣∣∣
NxNy

, (88)

where qref is the reference solution and the sums run over the
whole computational grid of Nx × Ny cells. The error is nor-
malised using the standard deviation σref of qref . This choice is
motivated by the fact that density fluctuations are much smaller
than the mean density in our setup. The reference solution is al-
ways re-binned from its original, 8192×4096 grid, by repeatedly
averaging groups of 2×2 neighbouring cells until the desired grid
resolution is achieved.

The L1 errors for the set of simulations with the initial Mach
number M0 = 10−2 are shown in Fig. 5. We first focus on the
kinetic energy Ek,y and mass fraction X. The solutions computed
using the LHLLC flux approach 2nd-order convergence, as ex-
pected. Only the PPM84 reconstruction method gives a slight
decrease in the convergence rate in Ek,y on the finest of our
grids. The same effect is observed in the sets of simulations with
M0 = 10−1 (Fig. D.3) and M0 = 10−3 (Fig. D.4). The con-
vergence rate of PPM08 also decreases on very fine grids in the
latter case. Apart from this, the convergence curves are nearly in-
dependent of the initial Mach number with the LHLLC flux (c.f.
Figs. 5, D.3, and D.4), confirming its low-Mach property. The
highest-order reconstruction methods usually (but not always)
produce the smallest errors on a given and sufficiently fine grid.
The errors differ by up to one order of magnitude, although the
overall 2D scheme is 2nd-order accurate in all of the cases.

The magnitude of numerical errors strongly increases when
we decrease initial Mach number with the non-low-Mach flux
functions RUSANOV and HLLC. As described above, the spa-
tial structure of errors produced by linear methods differs from
that produced by methods with limiters. Figures 5, D.3, and D.4
show that the linear methods LIN, PAR, and for dynamic vari-
ables also PSH approach 2nd-order convergence on sufficiently
fine grids even if the magnitude of the errors is much larger than
what we obtain with the LHLLC flux function.

The two PPM methods converge poorly in ρ at low Mach
numbers (Figs. 5 and D.4). Because the initial density is con-
stant everywhere, all of the density fluctuations are the integrated
effects of the divergence (or convergence) of the velocity field
in the continuity equation. The magnitude of the velocity diver-
gence in simulations computed on the 512 × 256 grid is shown
in Figs. 6, D.5, and D.6. The solutions computed using the LIN,
PAR, and PSH methods clearly show the structure of the pri-
mary vortices with some oscillations in the shear layers and a
background of relatively weak, large-scale sound waves. On the

other hand, the solutions computed using the PPM84 and PPM08
methods show a large amount of small-scale “numerical noise”.
After inspecting the time dependence of these artificial struc-
tures11, we conclude that some of these structures travel with the
flow while others have the character of small-scale sound waves.
We believe that both originate from cumulative effects of the lim-
iters switching their local state many times over the time span of
the simulation12. The switching can result in rapid changes in the
magnitude of the discontinuities at cell faces and, consequently,
in the amount of dissipation applied in the Riemann solver (i.e.
the numerical flux function). This effect is weakest with the low-
dissipation flux function LHLLC but it is still clearly present
on the 4096 × 2048 grid, see Fig. D.8. The structures disappear
when we disable the limiters in PPM84 and PPM08 (not shown
in the figures). We do not observe the fast-propagating, small-
scale sound waves with LIN+VL but the method does produce
thin structures in the velocity divergence around the primary vor-
tices, which follow the flow.

Overall, the PSH method produces by far the smallest errors
with the RUSANOV and HLLC flux functions and initial Mach
numbers M0 ≤ 10−2 (Figs. 5 and D.4). The only exception is
the poor convergence (or even divergence) in the passive tracer
X observed with the PSH+RUSANOV combination in simula-
tions withM0 ≤ 10−2 performed on very fine grids. This effect
is also likely related to the limiters switching their local state
many times over the time span of the simulation but we did not
investigate it further.

3.2. 3D simulations of convection, turbulent entrainment, and
wave excitation

In this section, we consider a test problem in which a variety
of complex hydrodynamic phenomena can be captured on the
same computational grid. These include convective transport of
energy, turbulent mixing at a convective boundary, and the prop-
agation of internal waves in a stably stratified layer, all of which
are often encountered in simulations of geophysical and stellar
hydrodynamics. The initial conditions for this test are adopted
from the work of Andrassy et al. (2022) and they represent a
hydrostatic solution of Eq. (2). In particular, the thermodynamic
conditions in this setup are similar to those found in an oxygen-
burning shell of a massive star. We map the hydrostatic stratifica-
tion (see Fig. 7) on an evenly spaced, 3D, Cartesian grid defined
by (x, y, z) ∈ [−1, 1] × [1, 3] × [−1, 1]. The gravitational acceler-
ation points downward in the y-direction,

gy = g0 fg(y)y−5/4, (89)

where g0 = −1.414870 and

fg(y) =





1
2

¶
1 + sin

î
16π
Ä

y − 1
32

äó©
, for 1 ≤ y < 1 + 1

16 ,

1, for 1 + 1
16 ≤ y ≤ 3 − 1

16
1
2

¶
1 + sin

î
16π
Ä

y − 1
32

äó©
, for 3 − 1

16 < y ≤ 3.

(90)

As in Andrassy et al. (2022), we work with rescaled quantities
such that the speed of sound and the density at the base of the

11 See an animation available on Zenodo (https://zenodo.org/
doi/10.5281/zenodo.10280900).
12 The animations show high values of the velocity divergence devel-
oping early on where the second derivative of the transition function
η(y) (Eq. (87)) is discontinuous. This higher-order discontinuity may
influence the behaviour of limiters.
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box are taken as units of velocity and density, and the thickness
of the convective oxygen shell as unit of length. A detailed list
of units with the associated values can be found in Table 1 of
Andrassy et al. (2022).

The initially hydrostatic stratification is described by a
piecewise-polytropic relation in the form

∂ ln p
∂ ln ρ

=





γ0, for 1 ≤ y < 2 − 1
16 ,

γ0 + η(y)(γ1 − γ0), for 2 − 1
16 ≤ y ≤ 2 + 1

16 ,

γ1, for 2 + 1
16 < y ≤ 3,

(91)

where γ0 = 5/3, γ1 = 1.3, and η(y) is a smooth function,

η(y) =





0, for 1 ≤ y < 2 − 1
16 ,

1
2 [1 + sin(8πy)], for 2 − 1

16 ≤ y ≤ 2 + 1
16 ,

1, for 2 + 1
16 < y ≤ 3.

(92)

The adiabatic index is γ= γ0. In this work, we assume peri-
odic boundary conditions in the horizontal x- and z-direction,
whereas reflecting, stress-free boundaries are used in the verti-
cal y-direction. This problem is set up such that turbulent con-
vective flows develop in the lower half of the domain, which is
initially adiabatic, while internal gravity waves are free to prop-
agate in the upper, stably stratified layer. To keep track of the
position of the upper convective boundary, at t= 0 we fill the sta-
ble layer with a passive scalar whose abundance smoothly turns
to 0 across the upper boundary of the adiabatic region according
to X = η(y).

In order to drive the convection, we include a time-
independent heat source that continuously injects energy into the
system close to the base of the box. The rate of energy released
per unit volume,

q̇(y) =





q̇0sin(8πy)
sin(4π∆x)

(4π∆x)
, for 1 ≤ y < 1 + 1

8 ,

0, for 1 + 1
8 ≤ y ≤ 3,

(93)

is added to the right-hand side of Eq. (2) as

S 7→ S +




0
0
0
0
q̇
0



. (94)

In the work of Andrassy et al. (2022), the amplitude of the heat
source was q̇0 = 3.795720 × 10−4, which gave rise to convective
flows with a root-mean-square Mach number Mrms ≈ 0.04. To
make the problem more challenging, here we decrease q̇ by a
factor of ten, so q̇0 = 3.795720 × 10−5. The lower heating rate,
according to the well-established M ∝ q̇1/3

0 relation (see, e.g.,
Woodward et al. 2014; Käpylä 2021; Horst et al. 2021), should
drive convection atMrms ≈ 0.02.

In this setup, internal gravity waves (IGWs) are excited by
the interaction of the convective flows with the bottom boundary
of the stably stratified layer. The wavelength of IGWs in the di-
rection of gravity becomes shorter when the waves are excited
at progressively lower temporal frequencies (Sutherland 2010).
At the heating rate we consider, the most prominent IGWs that
originate at the convective boundary are only barely spatially re-
solved on the coarsest of our grids with 1283 cells. Therefore,
we decide not to decrease q̇0 even further for these simulations
because it would give rise to convective flows with lower char-
acteristic frequencies and lead to the generation of unresolved

IGWs in the stable layer. Due to the fully compressible nature
of SLH, we also expect short-wavelength sound waves to be gen-
erated, although at much lower amplitudes than those of IGWs
at the typical Mach numbers encountered in this test problem
(Lighthill 1952).

As done for the test described in Sect. 3.1, here we run sim-
ulations for each of the 18 considered combinations of Riemann
solvers and spatial reconstruction schemes. To judge the numer-
ical convergence of our results, each combination of methods is
run on grids with 1283 and 2563 cells. Additionally, we run a sin-
gle simulation on a 5123 grid using the LHLLC Riemann solver
and the PAR reconstruction scheme, which we consider the ref-
erence solution for this test problem. However, because of the
chaotic nature of the turbulent flows that arise in the convective
layer, convergence is not expected in the exact flow morphology,
so we do not compute L1 errors as done in Sect. 3.1. Instead,
we analyze the convergence of the numerical results in terms of
ensemble-averaged quantities that are representative of the dy-
namical properties of the system, such as kinetic energy spectra
computed in the convective and stable layers.

To break the initial symmetry, we add a perturbation to the
hydrostatic density stratification in the form

∆ρ = 1.1×10−5 q̇(y)
q̇0

[sin(3πx)+cos(πx)][sin(3πz)−cos(πz)]. (95)

The subsequent evolution of the system and the development of
convection is shown in Fig. 8. The density perturbation, along-
side the action of the heat source, generate packets of fluid
with higher entropy content than the adiabatic surroundings. The
packets of hot and low-density material buoyantly rise in the adi-
abatic stratification until they reach y≈ 2. At this height, the tem-
perature stratification turns subadiabatic and the buoyant force
acting on the rising plumes changes sign, forcing them to over-
turn. IGWs excited at the bottom boundary of the subadiabatic
region propagate upward in the stratification (with characteristic
Mach numbers in the range from 0.005 to 0.01) and are subse-
quently reflected at the top boundary of the domain. Shear in-
stabilities break the large-scale buoyant structures that arise in
the adiabatic layer and initiate the cascade of kinetic energy to-
ward smaller scales. Turbulent convection fully develops after
approximately one convective turnover time scale, τconv = 133
time units, which we define according to

τconv =
2Lconv

⟨|V|rms⟩ . (96)

In Eq. (96), the root-mean-square convective speed is averaged
over several convective turnover time scales and Lconv = 1 is
taken as representative of the vertical extent of the convection
zone. In our reference simulation, the root-mean-square Mach
number in the convection zone is13Mrms = 0.019±0.001, which
is in agreement with the value predicted by theMrms ∝ q̇1/3

0 scal-
ing relation. All simulations are run until tmax = 32τconv to have
a proper coverage of the dynamical evolution of the system and
to compute meaningful time averages needed for the following
analysis.

3.2.1. Flow morphology and spatial kinetic energy spectra

In Fig. 9, we show snapshots of the Mach number taken at
the vertical plane z= 0, obtained at the final time t= 32τconv

13 The error bar represents one standard deviation computed over the
last 20 convective turnovers.
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with all the methods tested here. Although all panels show re-
sults computed using the same grid resolution (2563), there is a
vast difference between the methods in terms of effects induced
by numerical dissipation. With the RUSANOV flux, convection
mainly happens in the form of large-scale plumes and IGWs are
barely excited in the stable layer except when high-order meth-
ods such as PSH or PPM08 are used to reconstruct the Riemann
states. Smaller-scale structures typical of turbulent flows become
progressively more visible in the convection zone with higher-
order reconstruction methods and less dissipative solvers. Inter-
nal waves with progressively shorter wavelengths also tend to be
more visible in the stable layer with less dissipative methods.

The effects of the numerical dissipation on the properties of
the flow are better quantified in Fig. 10 and 11, where we show
the power spectra of kinetic energy extracted from a horizon-
tal plane in the middle of the convection zone (y= 1.5) and sta-
ble layer (y= 2.5) as functions of the horizontal wavenumber,
kh =
»

k2
x + k2

z . We compute kx and kz as

kx =

{
m, for 0 ≤ m ≤

ö
Nx−1

2

ù
,

−Nx + m,
ö

Nx−1
2

ù
< m < Nx,

(97)

kz =

{
n, for 0 ≤ n ≤

ö
Nz−1

2

ù
,

−Nz + n,
ö

Nz−1
2

ù
< n < Nz,

(98)

where ⌊.⌋ represents the floor function and Nx and Nz are the
numbers of cells in the x− and z−direction, respectively. The
spectra are averaged over the time interval t ∈ (10τconv, 32τconv).
In the convection zone, all of the curves approximately agree
with the Kolmogorov scaling law (k−5/3

h ) on some intermediate
scales. We notice that the kinetic energy spectra shown in Fig. 10
present a pile-up of kinetic energy at the bottom of the iner-
tial range. This phenomenon, also known as “bottleneck effect”,
is often observed both in hydrodynamic simulations (see, e.g.,
Dobler et al. 2003) and experimental studies (see, e.g., Küchler
et al. 2019) of turbulent flows. The extent of the inertial range
of the turbulent kinetic energy spectrum greatly differs from
method to method. With a fixed spatial reconstruction scheme,
the kinetic energy spectrum obtained with LHLLC enters the vis-
cous sub-range (where the kinetic energy of the turbulent eddies
is dissipated into internal energy of the gas) at higher wavenum-
bers as compared to both HLLC and RUSANOV. Reconstruc-
tion schemes based on slope limiters are characterized by shal-
lower spectra in the viscous sub-range than those generated by
unlimited schemes. In the stable layer (see Fig. 11), RUSANOV
and HLLC generate much weaker IGWs than the reference run
even on large scales, except when used in combination with PSH.
Both in the convective and stable layers, all spectra converge to
the reference solution if the order of the spatial reconstruction
method or the grid resolution are increased.

3.2.2. Turbulent entrainment at the convective boundary

The overturning of the convective flows at the upper convective
boundary gives rise to a variety of hydrodynamic processes (in-
cluding shear instabilities, convective overshoot, and breaking of
surface waves) that lead to the entrainment of material from the
upper, stably stratified layer into the convection zone. The con-
glomeration of these processes is known in the literature as “con-
vective boundary mixing” (see, e.g., Meakin & Arnett 2007; An-
drassy et al. 2020; Horst et al. 2021; Anders & Pedersen 2023)
and it increases the size of convective regions over time. As part
of our comparison study, we quantify the impact of the choice

of a specific combination of methods in Godunov-type schemes
on the evolution of the convective boundary. At any given point
in time, we assume that the vertical coordinate of the boundary
between the convective and stable layer, ycb, is the position at
which the horizontal average of the passive scalar X takes the
value

X̃ =
1
2

(Xmin + Xmax), (99)

where Xmin and Xmax are the minimum and maximum values of
X, respectively. Such a choice for ycb is justified by the fact that
the initial abundance of the passive scalar, X, smoothly transi-
tions from 0 to 1 at y≈ 2, which is the boundary of the initially
adiabatic layer where convection sets in first. The time evolu-
tion of ycb is shown in Fig. 12 for all of our combinations of
methods. We note that PPM-based methods used in combina-
tion with RUSANOV do not show signs of numerical converge
to the reference solution. Also, the other reconstruction schemes
used with RUSANOV seem to accelerate the mixing at the con-
vective boundary with respect to the reference run, especially
on the 1283 grid. In reality, this is an artifact of the method
used to estimate the position of the convective boundary ycb.
In fact, because RUSANOV does not resolve shear or contact
waves (see Sect. 2.4), the initial gradient in X at the convec-
tive boundary is further smoothed out by the effects of numer-
ical dissipation. When convection fully develops, it mixes the
passive scalar that has diffused inside the convection zone and
homogenizes its abundance, thus shifting the formal position of
X = X̃ outward. This effect is further enhanced with the most
diffusive reconstruction methods tested here. Therefore, with the
RUSANOV solver, entrainment of material from the stable to
the convective layer is mostly determined by numerical diffusion
rather than turbulent mixing and the distribution of the passive
tracer is not representative of ycb. On the other hand, all of the
other methods tested here quickly achieve numerical converge
to the reference solution with increasing grid resolution, the or-
der of the reconstruction scheme, or by using progressively less
dissipative Riemann solvers. Among the data sets obtained with
the six reconstruction schemes, the maximum relative deviation
of ycb from the reference solution at the final time is 20% and
15% with HLLC on the 1283 and 2563 grids, respectively, while
with LHLLC it decreases from 12% to 5% with increasing grid
resolution.

3.2.3. Shape of the convective boundary

The properties of the upper convective boundary are also studied
by means of horizontal averages in the Brunt-Väisälä frequency,
which determines both the spectrum of convectively driven
IGWs (see, e.g., Sutherland 2010) and the rate of mass entrain-
ment from the stable layer according to the bulk-Richardson-
number mixing model (see, e.g., Meakin & Arnett 2007; An-
drassy et al. 2020; Rizzuti et al. 2023). Here, the Brunt-Väisälä
frequency is computed as

NBV =

ï
− gy

Hp
(∇ad − ∇)

ò1/2

, (100)

where

∇ = d ln T
d ln p

, (101)
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T = p/ρ is the temperature of the gas14, Hp = − (d ln p/dy)−1

is the local pressure scale height, and ∇ad = 0.4 is the adia-
batic temperature gradient. We average the profiles of NBV over
t ∈ (30τconv, 32τconv) so that the change in the position of the con-
vective boundary is smaller than its width. At the same time, the
chosen averaging time interval is long enough to partly suppress
the statistical fluctuations induced by the turbulent nature of the
convective flows. The results are shown in Fig. 13. As convec-
tion sets in and entrains material from the upper, stably stratified
layer, it steepens the vertical entropy gradient ds/dy across the
convective boundary. Therefore, due to the N2

BV ∝ ds/dy pro-
portionality (see, e.g., Maeder 2009), the vertical profile of the
Brunt-Väisälä frequency develops a spike in the region close to
the convective boundary and it quickly approaches N t=0

BV, in the
rest of the stable layer. The fact that, in this setup, NBV is charac-
terized by large vertical gradients near the convective boundary
(at least with HLLC and LHLLC), makes this quantity particu-
larly suited to measure the amplitude of numerical undershoots
or overshoots generated by the methods included in our study. In
the regions right above the position of the spike in NBV, limited
reconstruction methods (i.e., LIN + VL, PPM08, and PPM08)
do not generate undershoots below the curve N t=0

BV, except for
dynamical fluctuations smaller than 2% induced by the flows
in the stable layer. On the other hand, reconstruction schemes
that do not use limiters for dynamic variables (i.e., LIN, PAR,
and PSH) produce undershoots whose amplitude is considerably
larger than that of the dynamical fluctuations. The values of the
largest undershoots relative to N t=0

BV, are shown in the insets of
Fig. 13. Overall, the amplitude of the undershoots increases with
the order of the unlimited reconstruction method, and it ranges
from ≈ 7% with LIN to almost 40% with PSH. The profiles
of NBV obtained on the 1283 grid, not shown here (but avail-
able on Zenodo15), reveal that the amplitude of the undershoots
slightly increases from the 1283 to the 2563 grid for LIN and
PAR, although the undershoot region becomes narrower on pro-
gressively finer grids. We note that, despite the large-amplitude
undershoots generated by some of our unlimited reconstruction
methods, such numerical errors do not have any significant im-
pact on the growth of the convection zone, as shown in Fig. 12.
Nonetheless, they could still affect the frequency spectrum of
IGWs in the stable layer, although the spatial spectra from the
stable layer (see Fig. 11) do show any such effect and converge
to the reference solution. If numerical undershoots are largely
to be avoided whilst generating a steep convective boundary,
PPM84 + LHLLC or PPM08 + LHLLC could be the methods of
choice.

3.3. Frequency power spectra

Finally, in Fig. 14, we show the frequency power spectrum of
the vertical velocity component, v, obtained in the middle of
the stable layer for all of our 18 Godunov-type schemes. In
particular, the frequency power spectra shown in Fig. 14 are
Fourier projections of an array16 containing the value of v at
(x, y, z) = (−0.2, 2.5,−0.2) at each time step. There is a clear
distinction between the frequency range corresponding to the
regime of IGWs (ω < NBV), where all spectra are almost flat,
and the high-frequency range (ω > NBV, where only sound

14 Here, we assume that the gas constant is unity.
15 https://zenodo.org/doi/10.5281/zenodo.10280900
16 The array of the values of v obtained at each time step is multiplied
by the Hanning window function to reduce the amplitude of the discon-
tinuities in the signal at the boundaries of the time domain.

waves are non-evanescent) in which the spectra are character-
ized by a steep decrease in power (although non monotonic) to-
ward higher frequencies. The forest of lines visible at frequen-
cies in the range from 1 to 50 correspond to the resonant pressure
modes of the cavity as predicted by the linear wave theory in the
Cowling approximation (Aerts 2021, see also Fig. 15). In the fre-
quency regime of IGWs, the power spectrum seems to converge
to the reference solution when increasing the grid resolution or
when using less dissipative Riemann solvers. A more quantita-
tive analysis of the IGW spectrum would require substantially
longer simulations, which would benefit from more time averag-
ing as well as reach higher frequency resolution.

On the other hand, the high-frequency domain is well re-
solved even in simulations run on the 1283 grid, and differ-
ences between the spectra are clearly visible. Overall, there is
a large spread in power (by almost 20 orders of magnitude at the
Nyquist frequency) among the different methods tested in our
study, which does not decrease with grid resolution. Therefore,
numerical convergence is not achieved at high frequencies. We
note that the spectra with the highest power density in the high-
frequency range are always those obtained with limited recon-
struction methods, in particular PPM84 and PPM08, while un-
limited reconstruction methods tend to generate much “quiter”
spectra and that are closer to the reference solution. In the simu-
lations of the Kelvin–Helmholtz instability shown in in Sect. 3.1,
we find that a power excess in high-frequency, short-wavelength
sound waves is generated by the complex limiting procedure per-
formed in PPM84 and PPM08 to reconstruct the Riemann states
at cell interfaces. In this setup, a similar phenomenon is likely
responsible for generating an acoustic power excess close to the
Nyquist frequency, where the spread between the spectra is max-
imum. The power excess, however, is still large down to frequen-
cies similar to the that of the fundamental oscillation mode of
the cavity ω0 = 1.1. Also, PPM-based methods used in com-
bination with HLLC excite much stronger resonant lines than
those generated with LHLLC, and their peak power density is
almost as high as the flat part of the spectrum associated with
IGWs. When used with PPM84, both RUSANOV and LHLLC
produce a broad feature in the frequency spectrum whose peak is
at ωpeak ≈ 50 and 100 on the 1283 and 2563 grids, respectively.
If these were sound waves, their wavelength λ would be

λ =
2π
ωpeak

csound(y = 2.5) ≈ 2.7∆x, (102)

which is close to the Nyquist frequency in space. Therefore, such
a feature in the spectrum may be caused by odd-even cell de-
coupling traveling at the local speed of sound. Additional peaks
are observed at even higher frequencies than the frequency of
the least resolvable sound wave on the grid (with a wavelength
of two cells), so these are most likely numerical artifacts. Tests
performed with lower CFL factors of 0.4 and 0.2 show that the
amplitude of these peaks is slightly reduced when using shorter
time steps in the simulation, but the level of the continuum in the
power spectrum remains essentially unaltered. In light of these
results, we advise against using PPM-based methods in simula-
tions of sound generation by low-Mach-number turbulence.

4. Performance metrics

After proving that all of the methods tested in our study converge
to the correct solution for most of the physical quantities of inter-
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est17, we can now search for the most efficient way to generate
a numerical solution at the desired accuracy. In principle, one
could use the L1 errors computed from the simulations of the
Kelvin–Helmholtz instability (see Sect. 3.1) to find the resolu-
tion of the grid on which the scheme achieves a given level of
accuracy. Then, the computational cost of the simulation run on
such a grid can be estimated if the wall-clock time spent by the
program to perform a single cell update is known. Here, we pre-
fer to use the results from the test problem involving turbulent
convective flows and wave excitation (see Sect. 3.2), which is
more challenging than the Kelvin–Helmholtz instability test and
much closer to a real application of stellar hydrodynamics. How-
ever, due to the chaotic nature of the turbulent flows that develop
in the convection zone, convergence in the L1 error norm cannot
be achieved. Therefore, rather than measuring the computational
cost per fixed accuracy in the sense of L1 errors, we opt to mea-
sure the computational cost of a simulation run with a specific
combination of numerical methods that achieves a given level of
effective resolution of the turbulent flows, Neff . We estimate the
effective resolution obtained on a given grid with N3

x cells as

Neff(Nx) =
2Lconv

λvis(Nx)
, (103)

where λvis(Nx) is a characteristic dissipation length scale in the
turbulent kinetic energy spectrum. In high-resolution schemes,
the amount of kinematic viscosity introduced into the system is
not fixed, but rather its value depends on the local dynamical
properties of the flow and it is often found to be a steep function
of the spatial wavenumber (see, e.g., Porter & Woodward 1994).
Therefore, λvis(Nx) cannot be defined uniquely. Here, we choose

λvis(Nx) ≈ 2Lconv

kh,10(Nx)
(104)

as a representative value for the dissipation length scale, with
kh,10(Nx) being the spatial wavenumber at which the kinetic
power spectrum rescaled by the Kolmogorov law drops by one
dex from its maximum. In this approximation, the effective res-
olution is simply given by

Neff(Nx) = kh,10(Nx). (105)

To perform a more precise measurement of Neff(Nx), both the
array of wavenumbers and of the kinetic energy spectrum are
linearly interpolated on a finer grid. The values of the effective
resolution (rescaled by the grid resolution Nx) obtained in the
simulations included in our study are collected in Table 2. There
is a clear trend toward higher effective resolution when using
progressively higher-order reconstruction methods or less dissi-
pative Riemann solvers.

By combining the values of Neff(Nx) and the average wall-
clock time δt(Nx) spent by the program to perform a single cell
update, shown in Table 3, it is possible to estimate the computa-
tional effort required by each combination of numerical options
to achieve the effective resolution of PPM08 + LHLLC18 as

Θ(Nx) =
δt(Nx)

δt(Nx)PPM08+LHLLC

Å
Neff(Nx)

Neff,PPM08+LHLLC(Nx)

ã−4

. (106)

17 A prominent example of a nonconvergent numerical solution is the
frequency power spectrum of sound waves in the test problem of turbu-
lent convection and mass entrainment shown in Sect. 3.2.
18 In the following expression, we make use of the fact that the com-
plexity of a 3D, Godunov algorithm, such as that implemented in SLH,
scales with N4

x , with Nx being the number of grid cells per dimension.

Equation (106) is rescaled such that the cost of the simulation run
with PPM08 + LHLLC on any given grid is unity. All values of
Θ(Nx = 128) and Θ(Nx = 256) are shown in Table 4. The spread
of almost four orders of magnitude in the relative computational
cost among the different methods is due to the steep dependence
of Θ(Nx) on Neff(Nx), which varies by as much as a factor of
10 (see Table 2). On the other hand, Θ(Nx) only scales linearly
with δt(Nx), which in our simulations varies at most by a factor
of ≈ 3 (with LIN + RUSANOV and PPM84 + LHLLC achiev-
ing the lowest and highest wall-clock time per cell-update, re-
spectively). The most expensive combination of methods among
those tested in our study (in terms of computational cost per
fixed resolving power) is LIN + VL + RUSANOV, ∼1000 times
as expensive as PPM08 + LHLLC. The strong numerical dissi-
pation generated by RUSANOV leads to very poor performance
of the finite-volume scheme even when used in combination with
PPM-based reconstruction methods. Only with the unlimited
PSH method such a flux function is capable of achieving accept-
able performance (Θ(Nx) ≈ 4). When the reconstruction scheme
is kept the same, using progressively less dissipative Riemann
solvers decreases the cost of reaching the same effective resolu-
tion. At the typical Mach numbers encountered in the convection
zone (M≈ 0.02), the combination of HLLC and second-order
reconstruction schemes or PAR is considerably more expensive
than PPM08 + LHLLC (Θ(Nx) in the range from 10 to 30). The
performance of the scheme increases when HLLC is used with
PPM-based reconstruction schemes (Θ(Nx) in the range from 2
to 6) and it is even higher than that of PPM08 + LHLLC when
coupled to PSH. PSH + LHLLC is the most performant method
on both grids according to the chosen metric. Overall, the com-
putational cost of the finite-volume scheme is considerably re-
duced when using the low-dissipation solver (by a factor from 2
to 10 with respect to a scheme using HLLC and the same spatial
reconstruction method). The relative performance of the scheme
only varies slightly when LHLLC is used in combination with
reconstruction methods less accurate than PSH, with the worst
performance being achieved by LIN + VL (Θ(Nx) ≈ 3).

We note that, for most methods, the value of Θ(Nx) sensibly
increases (by as much as a factor of ≈ 2) from the 1283 to the
2563 grid. Such differences are due to the small but systematic
decrease of the rescaled effective resolution Neff(Nx)/Nx with in-
creasing the grid resolution (this behavior is also confirmed by
the reference solution computed on the 5123 grid, see Table 2).
Although the differences observed in Neff(Nx)/Nx among the two
grids are at most 20%, they are significantly amplified after ap-
plying the steep scaling relation between Θ(Nx) and Neff(Nx).
However, this effect is negligible if compared to the large spread
obtained in the values of Θ(Nx) on a given grid. Furthermore, we
stress that our measure of Θ(Nx) is based on a crude approxima-
tion of effective resolution of the turbulent flows, so the values
provided in Table 4 should only be taken as estimates of the rela-
tive performance of different Godunov-type methods in simula-
tions of turbulent convection. The measurements of the absolute
performance provided in Table 3, which are needed to estimate
Θ(Nx), may also depend on the parallelization strategy and the
number of cores used to run the simulations, especially for the
methods that require many ghost cells (e.g., PPM08 and PSH)
and are therefore characterized by higher communication costs.

5. Summary and conclusions

High-resolution, finite-volume schemes are popular methods
for simulating the behaviour of astrophysical fluids. There is
a wide range of spatial-reconstruction schemes, numerical flux
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Table 2. Effective resolution Neff(Nx) as defined in in Sect. 3.2 for
all of the 18 Godunov-type methods tested in our study on grids with
Nx = 128 and Nx = 256 cells per dimension. Here, all numbers are given
as a percentage of the grid resolution Nx for an easier comparison be-
tween different grids. In this metric, the rescaled effective resolution of
the reference run (PAR + LHLLC + 5123) is 24.43.

1283 RUSANOV HLLC LHLLC

LIN 6.21 14.45 24.68
LIN+VL 5.24 13.53 21.97
PAR 7.04 16.68 29.05
PPM84 10.62 24.15 31.47
PPM08 14.21 28.42 33.85
PSH 20.47 37.24 49.22

2563 RUSANOV HLLC LHLLC

LIN 5.47 12.61 23.30
LIN+VL 4.38 11.08 19.75
PAR 6.35 14.28 26.16
PPM84 10.10 21.23 29.06
PPM08 13.55 27.00 32.02
PSH 19.90 35.08 47.00

Table 3. Mean wall-clock time spent by the program to advance the so-
lution by one time step with RK3 in a single cell of the computational
grid, in units of µs. The numbers provided in the tables are averages
of five measurements, each of which is obtained by evolving the setup
described in Sect. 3.2 for 100 steps. Relative errors in the averages (in
the sense of 1σ) are smaller than 2% in all cases. Every simulation run
for this analysis is MPI parallelized using grids with 323 cells per task.
Computations are performed on 2.3 GHz Intel Xeon, Skylake-based
processors.

1283 RUSANOV HLLC LHLLC

LIN 1.47 1.68 1.70
LIN+VL 1.57 1.80 1.89
PAR 1.47 1.74 1.78
PPM84 4.12 4.30 4.31
PPM08 3.57 3.75 3.83
PSH 2.01 2.36 2.41

2563 RUSANOV HLLC LHLLC

LIN 1.60 1.73 1.77
LIN+VL 1.73 1.87 1.88
PAR 1.60 1.81 1.86
PPM84 4.23 4.40 4.47
PPM08 3.79 4.03 4.00
PSH 2.24 2.47 2.52

functions and time-integration methods that can be combined
into a numerically stable and robust, finite-volume scheme. Fo-
cusing on subsonic flows, we have analysed the accuracy and
computational cost of all possible combinations of six spatial-
reconstruction schemes and three numerical flux functions, i.e.
18 methods in total. The numerical solution was marched in time
with a semi-discrete scheme based on a third-order Runge–Kutta
method. This choice was motivated by our focus on the spatial
accuracy of the schemes and the related need to suppress time-
stepping errors.

We consider two main test problems. The first is a Kelvin–
Helmholtz instability problem, in which the initial shear flows
have Mach numbers of 10−1, 10−2, and 10−3. We use a smooth

Table 4. Relative computational cost of each Godunov-type method
considered in this study to achieve the same effective resolution as the
PPM08 + LHLLC combination (Θ, see Eq. (106)) in the simulations
described in Sect. 3.2. Here all numbers are rounded to two significant
figures.

1283 RUSANOV HLLC LHLLC

LIN 340 13.0 1.60
LIN+VL 710 18.0 2.80
PAR 210 7.70 0.86
PPM84 110 4.30 1.50
PPM08 30.0 2.00 1.00
PSH 3.90 0.42 0.14

2563 RUSANOV HLLC LHLLC

LIN 470 18.0 1.60
LIN+VL 1200 33.0 3.30
PAR 260 11.0 1.00
PPM84 110 5.70 1.60
PPM08 30.0 2.00 1.00
PSH 3.80 0.43 0.14

initial condition to make it possible to obtain numerically con-
vergeable solutions to the inviscid Euler equations at a fixed
point in time in the non-linear phase of the instability. We char-
acterise the accuracy of the solutions by (i) performing a qualita-
tive assessment of the spatial structure of the solutions and (ii) by
measuring L1 errors with respect to a reference solution obtained
on a fine grid of 8192 × 4096 cells.

The low-Mach flux function LHLLC is found to be much
less dissipative and much more accurate than the HLLC and RU-
SANOV flux functions at the two lowest Mach numbers consid-
ered. Even though the overall 2D numerical scheme is 2nd-order
accurate, the errors produced by different spatial reconstruction
schemes span as much as an order of magnitude. Unlimited
reconstruction schemes of increasing order, up to 7th, provide
progressively more accurate results when the solution is suffi-
ciently well resolved. However, these schemes are of limited
use for the advection of mass fractions due to the oscillations
and overshoots they produce around discontinuities. This issue is
largely eliminated by the use of limiters in the schemes LIN+VL,
PPM84, and PPM08. However, we find that the switching be-
haviour of the limiters introduces spurious structures and small-
scale sound waves to the solutions, which severely reduce the
accuracy of the methods when applied to slow flows. Our hybrid
method PSH, which combines unlimited, 7th-order reconstruc-
tion for dynamic variables with PPM08 for mass fractions, is
found to provide the most accurate solutions in nearly all of our
simulations of the Kelvin–Helmholtz instability.

Our second test problem, chosen to be as close as possible
to practical applications in the dynamics of stellar interiors, in-
volves stratified turbulent convection generating waves in and
entraining mass from an overlying stably stratified layer. The
typical Mach number of the convection is ≈ 0.02. The turbu-
lent nature of the convective flow makes the solutions chaotic
but space- and time-averaged quantities can still be meaningfully
compared between different simulations. We run the simulations
on grids of 1283 and 2563 cells with one additional simulation
on a 5123 grid serving as a reference solution.

Qualitatively speaking, the solutions match the trends seen in
the simulations of the Kelvin–Helmholtz instability, i.e. combi-
nations of the least dissipative flux functions with the highest-
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order reconstruction schemes provide the highest resolving
power in both the convective and stable layers. Spatial spectra of
kinetic energy computed in the convective and stable layers con-
verge toward the reference solution with any of the 18 methods
but the least dissipative combinations (especially PSH+LHLLC)
are much closer to the reference solution than the most dissipa-
tive ones (especially LIN+VL+RUSANOV). The spatial spec-
trum in both layers obtained with PSH+LHLLC on a 2563 grid
is essentially the same as that with PAR+LHLLC on a 5123 grid.

The growth rate of the convective layer converges upon grid
refinement with all 6 reconstruction schemes and both the HLLC
and LHLLC flux function but the convergence is significantly
faster with the low-Mach flux function LHLLC. The RUSANOV
flux function produces extremely viscous flows and large devia-
tions from the reference solution in terms of the position of the
upper convective boundary.

We show that schemes that do not use limiting for dynamic
variables (LIN, PAR, PSH), unlike those that do (LIN+VL,
PPM84, PPM08), produce overshoots in the Brunt-Väisälä fre-
quency at the relatively sharp convective boundary. The magni-
tude of the overshoots increases with increasing order of accu-
racy of the method, as expected. Neither the growth rate of the
convective layer, nor the temporal and spatial spectra of internal
gravity waves are affected by this phenomenon in our simula-
tions but we recommend careful testing when such high-order
methods are applied to other setups or used to derive quantities
not investigated here.

Temporal spectra of the vertical component of velocity in
the stable layer show that all six reconstruction schemes produce
qualitatively similar, flat and featureless spectra in the regime of
internal gravity waves. On the other hand, the spectra of pres-
sure (i.e. high frequency) waves are sensitive to the choice of
the reconstruction scheme even with the low-Mach flux function
LHLLC. The spectra also reinforce our conclusions based on
the Kelvin–Helmholtz problem that methods that apply limiters
to dynamic variables generate much more acoustic “noise” than
methods that do not. This includes the popular methods PPM84
and PPM08. Although we do not know what the acoustic spec-
trum in our problem should look like, we show that the frequen-
cies of vertical resonant modes agree with 1D linear wave theory.

Finally, we use the steep drop-off of the spatial kinetic en-
ergy spectra in the convective layer close to the grid scale to de-
fine a measure of effective resolution. Rescaling the wall-clock
time of our 1283 and 2563 simulations, we estimate the com-
putational cost of matching the same effective resolution using
our 18 methods. The cost is found to span almost four orders of
magnitude. The largest cost reduction comes from choosing the
least dissipative flux function, which is LHLLC in our study. We
show that the reconstruction schemes PSH, PAR, and PPM08, in
order of increasing cost, are the cheapest at the same effective
resolution.

Our study demonstrates that it is generally advisable to use
low-dissipation Riemann solvers in Godunov-type finite-volume
schemes for simulating low-Mach-number flows. The low-Mach
fix ϕ in Eq. (76) can easily be implemented in any HLLC-type
scheme without affecting the absolute performance of the code,
and it reduces the amount of computation required to achieve
the same accuracy as HLLC by a factor ranging from 2 to
10 at typical Mach numbers of ≈ 0.01. At Mach numbers of
≈ 10−4 or ≈ 10−3, like those encountered in the convective cores
of main sequence stars, the usage of a low-Mach solver de-
creases the computational cost per fixed accuracy with respect
to a conventional Riemann solver by even larger factors (Leidi
et al. 2022). Although low-dissipation Riemann solvers such as

LHLLC bring clear advantages in simulations of subsonic flows
when used in Eulerian codes, their robustness and accuracy prop-
erties in quasi-Lagrangian, moving-mesh schemes still has to
be verified. We note that such schemes hold promise for a par-
ticularly significant improvement because mesh motions aim at
reducing advection errors by minimizing the velocities relative
to the cell interfaces. This naturally leads to low-Mach-number
flows in the comoving frame, which are better modeled by low-
Mach-number Riemann solvers. We are currently testing an im-
plementation of the LHLLC/D solvers of Minoshima & Miyoshi
(2021) in the moving-mesh MHD code AREPO (Springel 2010),
which we will report in a forthcoming study.

On the other hand, the choice of the spatial reconstruction
scheme depends on the physical application of interest. Overall,
second-order reconstruction methods lead to the generation of
considerably more inaccurate results than higher-order schemes
when the Mach number of the flow is low. If numerical over-
shoots have to be suppressed whilst retaining high resolving
power, PPM84 and PPM08 should be the methods of choice.
However, higher-order unlimited reconstruction methods should
be preferred over PPM-based methods in simulations of sound
wave generation by subsonic turbulence because they generate
much less numerical “noise” in the acoustic spectrum. Less os-
cillatory alternatives to the hybrid PSH method, such as the 3th-
order piecewise parabolic hybrid (PPH) or the 5th-order piece-
wise quartic hybrid (PQH) methods described in Appendix A,
could offer the best compromise between the complete removal
of numerical overshoots and reduction of acoustic noise.

Finally, we note that there are complex astrophysical envi-
ronments where both high- and low-Mach-number flows can co-
exist. This scenario often occurs, for instance, in accretion disks
(see, e.g., Klessen & Hennebelle 2010), star forming regions
(see, e.g., Wang et al. 2024), or outer layers of stars (see, e.g.,
Wedemeyer et al. 2017). To model such diverse flow regimes, the
simple use of unlimited higher-order reconstructions and low-
dissipation solvers may give rise to numerical instabilities, espe-
cially in the proximity of shock fronts. To cure this problem, an
alternative approach based on the local dynamical properties of
the flow is needed (see, e.g., Mignone et al. 2011; Fleischmann
et al. 2020). One possibility is to add a selection criterion to
the function that computes the flux at a cell interface such that
the LHLLC solver is used if the Mach number of the flow is
lower than a conservative threshold (e.g.,M ≲ 0.6), whereas a
proper shock-capturing method (e.g., HLL or HLLC) is chosen
for modeling faster flows. A similar argument can be made for
the choice of the spatial reconstruction scheme. To avoid intro-
ducing large oscillations in the state quantities near large, non-
linear discontinuities, schemes that are more dissipative and pos-
sibly close to being TVD (such as LIN+VL, PPM84, PPM08, or
WENO) should be preferred over high order unlimited methods.
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Fig. 4. Distributions of the mass fraction X of the passive scalar in simulations of the Kelvin–Helmholtz instability with the initial Mach number
M0 = 10−2 on a 128 × 64 grid. The results are shown at t = 0.8M−1

0 . Rows and columns show different reconstruction schemes and numerical
flux functions, respectively. The colour scale intentionally shows values X < 0 and X > 1 to highlight the overshoots that some of the schemes
produce. The absolute value of the largest overshoot outside of this range is given in each panel.
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Fig. 9. Snapshots obtained at the final simulation time (t = 32τconv) showing the distribution of the Mach number at z = 0 in the simulations of
turbulent convection and wave propagation in a 3D box. The grid resolution is 2563. Each panel is cut between y = 1.3 and y = 2.7 for a better
visualization of the flows in the proximity of the upper convective boundary.
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(Ê
K
/Ê
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Fig. 10. Kinetic energy spectra computed on the horizontal plane y = 1.5 of the convective layer for all of our 18 combinations of Riemann solvers
and spatial reconstruction schemes in the problem of turbulent convection and wave excitation. The spectra have been averaged over the time
interval t ∈ (10τconv, 32τconv) and rescaled by the Kolmogorov law (k−5/3

h ) and by the value Ê0 of the spectral energy density of the reference run at
kh = 15.
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Fig. 11. Kinetic energy spectra computed on the horizontal plane y = 2.5 of the stable layer for all of our 18 combinations of Riemann solvers and
spatial reconstruction schemes in the problem of turbulent convection and wave excitation. The spectra have been averaged over the time interval
t ∈ (10τconv, 32τconv). The black solid line represents the reference run (REF), which is computed using the LHLLC Riemann solver and the PAR
reconstruction scheme on a 5123 grid.
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(REF).
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Fig. 13. Vertical profiles of the Brunt-Väisälä frequency (NBV) averaged over the time interval t ∈ (30τconv, 32τconv) in the problem of turbulent
convection and wave excitation. Each panel shows the results of simulations run using the same reconstruction scheme but different Riemann
solvers. Here, we only show results from the 2563 grid to avoid cluttering the figures. The reference run (REF) is represented by a black dashed
line. The black dash-dotted line is the profile of the Brunt-Väisälä frequency at t = 0, and the vertical black dotted lines represent the position
of the convective boundary at the beginning and the end of the chosen averaging time interval in the reference run, y = 2.168 and y = 2.174,
respectively. The percentages shown in the insets for simulations run with the HLLC and LHLLC solvers represent the amplitude of the largest
undershoot in NBV relative to NBV,t=0, in the spatial range y ∈ (2.15, 2.40). The amplitude of the largest undershoot in the reference run is 12%.
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Fig. 14. Frequency power spectrum of the vertical velocity component v extracted in the middle of the stable layer at (x, y, z) = (−0.2, 2.5,−0.2)
over the time series t ∈ (10τconv, 32τconv) in the problem of turbulent convection and wave excitation. The left and right panels show results
obtained on the 1283 and the 2563 grid, respectively. Each row of panels shows the results of simulations run using 6 reconstruction schemes with
the same Riemann solver. The reference solution (indicated with REF) is the black curve. The convective turnover frequency (ωconv = 2π/τconv),
the Brunt-Väisälä frequency at (x, y, z) = (−0.2, 2.5,−0.2) (NBV), and the frequency of the fundamental oscillation mode of the cavity (ω0 = 1.1)
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lines represent the resonant modes of the cavity which we derived from the theory of linear oscillations in Cowling approximation (see, e.g., Aerts
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Appendix A: The PPH and PQH methods

The idea of applying limiters to passive scalars (or mass frac-
tions) only, which lead us to formulating the PSH method
(Sect. 2.3.6), can be applied at any order of accuracy. In this
section, we provide two methods that can be seen as lower-order
alternatives to PSH. Their potential advantages include a lower
amplitude of overshoots in dynamic quantities and the need for
fewer ghost cells.

We start with the unlimited parabolic method PAR
(Sect. 2.3.3) and apply a two-step limiter to passive scalars. The
first step is defined by the variable replacements

ai−1/2,L/R 7→ median(ai−1, ai−1/2,L/R, ai). (A.1)

These replacements are followed by the application of the
PPM84 limiter defined by Eq. (31). We call the resulting method
piecewise parabolic hybrid (PPH). The PPH method is exact
wherever a(ζ) is locally parabolic, 3rd-order accurate for gen-
eral but smooth functions a(ζ), and it requires two ghost cells at
domain boundaries.

A more accurate method, which we call piecewise quartic
hybrid (PQH), can be obtained by assuming that within cell i
a(ζ) can be described by the quartic polynomial

a(ζ) =
4∑

n=0

cn(ζ − ζi)n. (A.2)

The five coefficients cn are uniquely determined by the require-
ment that the averages of a(ζ) in cells i − 2 + n equal ai−2+n for
n = 0, 1, . . . , 4. The reconstructed states are then obtained by
evaluating Eq. (A.2) at ζi−1/2 and ζi+1/2, respectively. The result-
ing expressions are

ai−1/2,R =
1
60

Å
− 3ai−2 + 27ai−1 + 47ai − 13ai+1 + 2ai+2

ã
,

(A.3)

ai+1/2,L =
1
60

Å
2ai−2 − 13ai−1 + 47ai + 27ai+1 − 3ai+2

ã
. (A.4)

The limiter we apply to passive scalars in the PQH method is the
same as that in the PPH method, see above. The PQH method
is exact wherever a(ζ) is locally a quartic polynomial, 5th-order
accurate for general but smooth functions a(ζ), and it requires
three ghost cells at domain boundaries.

We have only performed a small number of tests with these
two methods. Specifically, we ran simulations of the Kelvin-
Helmholtz problem (Sect. 3.1) with the initial Mach number of
M0 = 10−3 and the HLLC flux function on grids of 64 × 32 and
128 × 64 cells. There were no overshoots in the passive tracer in
the results of these tests.

Appendix B: 1D test cases

We use two simple 1D experiments – linear advection and the
propagation of a linear sound wave – to compare the accuracy
that the six reconstruction schemes can reach if not constrained
by the 2nd-order accuracy limit imposed by our multidimensional
scheme.

B.1. Linear advection

The initial conditions in this experiment correspond to a right-
going contact wave:

ρ(x) = γ [1 + 0.01 sin (2πx)] , (B.1)
u(x) = 0.1, (B.2)
p(x) = 1. (B.3)

We consider the interval 0 ≤ x ≤ 1 with periodic boundary con-
ditions and the equation of state of an ideal gas with the ratio
of specific heats γ = 1.4. The average speed of sound is unity
and it varies by 0.5% due to the density variation. The solution
is sought at t = 10, when the sinusoid has been advected by
one period and the analytic solution becomes identical to the ini-
tial condition. This makes the quantification of numerical errors
trivial.

We use the same code for this experiment as we do for all
the other experiments reported in this work. Since some of the
schemes tested exceed 2nd order of accuracy, cell averages can-
not be approximated by sampling the initial condition at cell cen-
tres. We initialise the discrete density profile using the formula

ρi = γ

ï
1 + 0.01

sin (π∆x)
π∆x

sin (2πxi)
ò
, (B.4)

where ∆x is the constant grid spacing and xi the location of i-th
cell’s centre. This formula is easily obtained by analytically av-
eraging Eq. (B.1) in the interval xi − ∆x/2 ≤ x ≤ xi + ∆x/2.
We suppress time-stepping errors by using the RK3 scheme with
CFL = 0.01. Because the Mach number of the flow is 0.1, this
means that the wave is advected by only 10−3∆x during every
3rd-order-accurate time step. We use the LHLLC flux function
for this experiment.

The L1 errors we obtain on grids with different numbers of
cells Nx are shown in Fig. B.1. We test the LIN, LIN+VL, PAR,
and PPM84 schemes on grids with 8 to 512 cells. We are forced
to stop at grids of 64 cells for the most accurate schemes PPM08
and PSH, because the errors rapidly become dominated by the fi-
nite precision of floating-point arithmetic. The asymptotic orders
of accuracy based on L1 errors measured on the three finest grids
available are reported in Table 1. Both LIN and LIN+VL reach
the expected 2nd order of accuracy. The absolute errors produced
by LIN+VL are somewhat larger as compared with LIN because
of the presence of the van Leer limiter. The PPM84 scheme is
formally 4th-order accurate but that only holds for monotonic so-
lutions. PPM84 contains a limiter that flattens the slope at local
extrema and that reduces the scheme’s asymptotic order to 2.3
in this test case. We have experimentally turned off both limiters
present in PPM84, which increased the asymptotic order of ac-
curacy to 4.0, as expected. The PAR, PPM08, and PSH methods
reach the asymptotic orders of 3.0, 6.0, and 7.0, also matching
theoretical expectations.

B.2. Sound wave

The initial conditions in this experiment correspond to a right-
going sound wave:

ρ(x) = ρ0
[
1 + γ−1Ψ(x)

]
, (B.5)

u(x) = γ−1c0Ψ(x), (B.6)
p(x) = p0 [1 + Ψ(x)] , (B.7)

where

Ψ(x) = Ψ0 sin (2πx) . (B.8)
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Fig. B.1. Relative L1 errors obtained by advecting a sinusoid by one
period on 1D grids with Nx cells using different reconstruction schemes.
A few scaling relations are shown to guide the eye.

We use ρ0 = γ, p0 = 1 and the equation of state of an ideal gas
with the ratio of specific heats γ = 1.4, so that the unperturbed
speed of sound is c0 = 1. We set the amplitude Ψ0 = 10−10

to suppress non-linear effects. This allows us to avoid accuracy
constraints imposed by our 2nd-order-accurate transformations
between primitive and conserved variables. Round-off errors are
suppressed by using 128-bit floating point numbers. In a way
analogous to Eq. (B.4), we initialise the discrete wave such that
the cell average of Ψ(x) in cell i is19

Ψi =
sin (π∆x)
π∆x

Ψ(xi). (B.9)

The simulations are stopped at t = 1, when the sound wave
has propagated by a single wavelength around the periodic do-
main 0 ≤ x ≤ 1. Neglecting non-linear effects, which are of order
Ψ2

0 = 10−20, the evolved solution is expected to be identical to
the initial condition. Timestepping errors are suppressed by us-
ing the RK3 scheme with CFL = 0.001, i.e. the wave moves by
only 10−3∆x per time step. We use the LHLLC flux function for
this experiment.

We show L1 errors in the velocity u on grids with 8 to 512
cells in Fig. B.2. The simulation series with the most accurate
PPM08 and PSH schemes are stopped at grids of 64 cells, be-
cause the absolute errors rapidly approach 10−20, i.e. the mag-
nitude of the residual non-linear effects. The asymptotic orders
of accuracy, as defined by the L1 errors measured on the three
finest grids available, are 2.0, 3.0, 6.0, and 7.0 for the LIN, PAR,
PPM08, and PSH methods, respectively, matching theoretical
expectations. The LIN+VL and PPM84 methods only reach the
order of 1.6, which seems to be caused by the combination of
the low-Mach flux function LHLLC with the limiters contained
in these two methods. We have checked that both methods reach
the order of 2.0 with the RUSANOV and HLLC flux functions
(PPM84 flattens the slope at local extrema, which reduces its
order, see also Sect. B.1).

The L1 errors discussed so far do not distinguish between
amplitude and phase errors. We quantify amplitude errors by
computing the relative loss of the total kinetic energy from t = 0

19 We do not average the Ψ2 term, which would appear in the product
ρu, because the term is only ≈ 10−20 withΨ0 = 10−10. This term must be
kept small or other non-linear effects would also cease to be negligible
in the range of relative L1 errors we explore.
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Fig. B.2. Relative L1 errors in velocity u obtained by propagating a si-
nusoidal sound wave by one period on 1D grids with Nx cells using
different reconstruction schemes. A few scaling relations are shown to
guide the eye.
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Fig. B.3. Relative decrease in kinetic energy after propagating a sinu-
soidal sound wave by one period on 1D grids with Nx cells using differ-
ent reconstruction schemes. Two scaling relations are shown to guide
the eye.

to t = 1, see Fig. B.3. Some kinetic energy is lost in all of the
simulations, which is a sign of stability. The amount of energy
dissipated decreases with the 3rd power of the grid spacing for
LIN, LIN+VL, PAR, and PPM84. It is not immediately clear
why this is the case given that the methods have different orders
of accuracy, but we did not investigate this further. In case of
PSH, the dissipation rate decreases with the 7th power of the grid
spacing, matching the method’s order of accuracy. PPM08 is a
special case – the method preserves extrema and sinusoids re-
solved by 16 or more cells per wavelength turn out to be smooth
enough not to trigger any of the method’s limiters. PPM08 re-
duces to a simple interpolation function in this special case, elim-
inating jumps at all cell interfaces, see Sect. 2.3.5. This, in turn,
eliminates all explicit dissipative terms in the flux function. The
dissipation rate drops by many orders of magnitude and time-
stepping errors start to dominate.
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Appendix C: Sound wave generation with a
compact third order WENO scheme

The results presented in Sects. 3.1 and 3.2 reveal that nonlinear,
switching reconstruction schemes (such as LIN+VL, PPM84,
and PPM08) generate excess acoustic power which is not present
in simulations run with unlimited (linear) reconstruction meth-
ods. The question naturally arises whether nonlinear but non-
switching schemes (e.g., WENO) also generate artificial sound
waves in simulations of low-Mach-number flows. In this Ap-
pendix we try to answer this question using the compact third
order (CTO) WENO scheme of Kolb (2014). This scheme re-
constructs the quantity a within the cell i using a weighted sum
of three polynomials, aL,R,C(ζ). The ultimate expression for the
underlying function a(ζ) reads

a(ζ) = wLaL(ζ) + wCaC(ζ) + wRaR(ζ). (C.1)

The weighting coefficients are computed as

wm =
αm∑

k∈{L,C,R} αk
, (C.2)

where

αm =
cm

(ϵWENO + ISm)p , (C.3)

m ∈ {L,C,R}, cL = cR = 0.25, cC = 0.5, and ISm are the smooth-
ness indicators of the scheme20,

ISL = (ai − ai−1)2, (C.4)

ISR = (ai+1 − ai)2, (C.5)

ISC =
13

12c2
C

(ai+1 − 2ai + ai−1)2 +
1
4

(ai+1 − ai−1)2. (C.6)

In Eq. (C.3), we set p = 2. The functions a(ζ)L,R are one-sided
linear reconstructions

aL(ζ) = ai + (ai − ai−1)(ζ − ζi), (C.7)
aR(ζ) = ai + (ai+1 − ai)(ζ − ζi), (C.8)

whereas aC(ζ) is defined such that

aopt(ζ) = cLaL(ζ) + cCaC(ζ) + cRaR(ζ) (C.9)

is the unique parabola that conserves the cell volume averages
ai−1, ai, and ai+1 over cells i − 1, i, and i + 1, respectively. This
constraint implies

aopt(ζ) = ai +
∂a
∂ζ

∣∣∣∣
ζi

(ζ − ζi) +
1
2
∂2a
∂ζ2

∣∣∣∣
ζi

(ζ − ζi)2, (C.10)

with

ai = ai − 1
24

(ai+1 − 2ai + ai−1), (C.11)

∂a
∂ζ

∣∣∣∣
ζi

=
ai+1 − ai−1

2
, (C.12)

∂2a
∂ζ2

∣∣∣∣
ζi

= ai+1 − 2ai + ai−1. (C.13)

The smoothness indicators ISL,R,C are such that the smoothest
among the polynomials a(ζ)L,R,C has the largest weight in

20 For a formal derivation of these indicators, see Sect. 2.1 of Kolb
(2014).

Eq. (C.1). This feature allows CTO-WENO to achieve third-
order spatial accuracy in smooth parts of the flow while at the
same time it remains robust near discontinuities. The parameter
ϵWENO that appears in the denominator of αm avoids division by
zero in the case a smoothness indicator ISm = 0. Thus, the os-
cillatory behavior of a(ζ) is also determined by the value of this
parameter. In fact, when ϵWENO ≫ ISL,R,C, the weighting coef-
ficients become almost equal and the scheme is unlimited even
near discontinuities, making it similar to our PAR method. On
the other hand, if ϵWENO ≪ ISm, the weighting coefficients are
only determined by ISL,R,C and the scheme becomes close to be-
ing TVD near discontinuities or in poorly resolved parts of the
flow.

Although CTO-WENO, unlike LIN+VL or the PPM meth-
ods, does not involve any conditional statements, the weighting
coefficients that occur in a(ζ) can still abruptly change from time
step to time step if a barely resolved wave or feature in the flow
crosses that particular cell. Such a rapid change in the form of
the polynomial a(ζ) can generate high-frequency perturbations
in the state quantities on the grid scale and affect the propaga-
tion of sound waves. Therefore, we expect a version of CTO-
WENO that uses small values of ϵWENO to generate artificial
acoustic noise, whereas large values of ϵWENO should generate
results closer to our unlimited reconstruction methods.

To test this hypothesis, we run a series of simulations
of the setup involving turbulent convective flows and ex-
citation of internal waves described in Sect. 3.2. We fix
the grid resolution to 1283 cells and the Riemann solver is
LHLLC. We run one simulation for each value of ϵWENO ∈
(10−12, 10−10, 10−8, 10−6, 10−4, 102), so that several interme-
diate cases between the two extreme behaviors of the scheme
(close to being TVD and fully oscillatory) are considered. We
extract the frequency spectrum of the vertical velocity compo-
nent from the middle of the stable layer as done for the analy-
sis in Sect. 3.3. The results are shown in Fig. C. As expected,
the power stored in sound waves is considerably increased when
very small values of ϵWENO are used. For ϵWENO = 10−12, the
power spectrum obtained using CTO-WENO resembles that pro-
duced by LIN+VL. Decreasing the value of ϵWENO progressively
reduces (in a monotonic way) the energy of the sound waves and
eventually the continuum of the power spectrum converges for
ϵWENO ≳ 10−4. In the study performed by Kolb (2014), the value
of ϵWENO that achieves the optimal order of accuracy lies within
the range21 ∆x3 ≲ ϵWENO ≲ ∆x2, which, for this setup, corre-
sponds to 10−6 ≲ ϵWENO ≲ 10−4. However, we note that, in this
test, the values of the primitive variables reconstructed at the grid
cell interfaces span several orders of magnitude. Therefore, us-
ing a unique value of ϵWENO could potentially result in different
oscillatory properties of the scheme depending on which vari-
able is being reconstructed. One way to avoid this problem is
to rescale the reconstructed quantity a such that its mean value
across the stencil is close to unity. However, we decide not to
investigate this effect on the generation of artificial sound waves
further.

Appendix D: Additional plots for the
Kelvin–Helmholtz problem

21 Here we assume that the reconstructed variable a is dimensionless.
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Fig. C.1. Frequency power spectrum of the vertical velocity component v extracted in the middle of the stable layer at (x, y, z) = (−0.2, 2.5,−0.2)
over the time series t ∈ (10τconv, 32τconv) in the problem of turbulent convection and wave excitation described in Sect. 3.2. These results are
obtained on a grid with 1283 cells, using the LHLLC Riemann solver and the CTO-WENO scheme of Kolb (2014) for different values of the
parameter ϵWENO occurring in the smoothness indicators of the scheme (see Sect. C), ranging from 10−12 to 102. As a reference, power spectra
obtained with the numerical options LHLLC + PPM84 and LHLLC + LIN + VL are also shown. The convective turnover frequency (ωconv =
2π/τconv), the Brunt-Väisälä frequency at the location of the point probe (NBV), and the frequency of the fundamental oscillation mode of the
cavity (ω0 = 1.1) are represented by the black dashed-dotted, dashed, and dotted lines, respectively.
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Fig. D.1. As Fig. 4 but with the initial Mach numberM0 = 10−1.
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Fig. D.2. As Fig. 4 but with the initial Mach numberM0 = 10−3.
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Fig. D.3. As Fig. 5 but with the initial Mach numberM0 = 10−1.
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Fig. D.4. As Fig. 5 but with the initial Mach numberM0 = 10−3.
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Fig. D.5. As Fig. 6 but with the initial Mach numberM0 = 10−1.
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Fig. D.6. As Fig. 6 but with the initial Mach numberM0 = 10−3.
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Fig. D.7. As Fig. 4 but showing simulations computed on the 4096 × 2048 grid.
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Fig. D.8. As Fig. 6 but showing simulations computed on the 4096 × 2048 grid.
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CHAPTER 3. RESULTS

3.3 Publication III: Turbulent dynamo action in an oxygen-
burning shell

In this Chapter, the new MHD capabilities of SLH are used to study an astrophysical
system. In particular, this paper presents simulations of small-scale dynamo action in
an idealized oxygen-burning shell of a massive star. The setup is taken from the work
of Andrassy et al. (2022) and is idealized in that detailed nuclear burning is replaced
by a time-independent heat source, the EoS is that of an ideal gas, the stratification is
plane-parallel, and neutrino cooling is disregarded. These simulations do not aim to
provide a realistic model of a core-collapse supernova progenitor, but rather their goal
is to infer the efficacy of the small-scale dynamo in generating dynamically relevant
magnetic fields at the typical dynamical conditions found in late burning shells.
Strong small-scale dynamo action could change both the topology of the velocity field
and the magnitude of the density perturbations inside the convective oxygen shell.
Flow asphericities and seed perturbations in the oxygen and silicon shells of the pro-
genitor star are often found to be fundamental ingredients for shock-revival and for
producing successful models of core-collapse supernova explosions (e.g., Couch and
Ott, 2013; Müller et al., 2017; Vartanyan et al., 2019). Despite the crucial role that turbu-
lent dynamos may play in determining the star’s fate, the hydrodynamic simulations
of oxygen-burning shells presented so far either did not include magnetic fields or
were affected by excessive numerical dissipation (e.g., Jones et al., 2017; Müller et al.,
2016; Yoshida et al., 2019; Varma and Müller, 2021). The proposed simulations, al-
though idealized, are a first step toward the quantification of potential MHD effects
on the dynamical evolution of oxygen-burning shells.
The setup studied here involves the presence of mixing processes occurring at the
upper boundary of the convective shell, so it is fundamental to avoid strong numerical
overshoots that may be generated near steep entropy gradients. Based on the results
shown in Sect. 3.2, the PPM method of Colella and Woodward (1984) is chosen to
reconstruct the Riemann states at grid cell boundaries. The quality of the numerical
results is judged by means of a resolution study, where the number of grid cells is
varied from 1283 to 5123. This is the first time that MHD processes in an oxygen-
burning shell are studied with grid resolution this high.

111



CHAPTER 3. RESULTS

Title
Turbulent dynamo action and its effects on the mixing at the convective boundary of
an idealized oxygen-burning shell

Authors
G. Leidi, R. Andrassy, J. Higl, P. V. F. Edelmann, F. K. Röpke

Publication status
The manuscript was published in November 2023.

DOI
https://doi.org/10.1051/0004-6361/202347621

Author’s contribution
GL is the principal author of this paper. The initial idea for this project developed dur-
ing discussions with FKR and RA. The initial setup for the simulations was suggested
by RA. GL ran the 3D MHD simulations presented in the study, analyzed the results,
produced all the figures, and wrote the manuscript. All authors actively contributed
by discussing the results at various stages of the project and by suggesting improve-
ments and corrections to the manuscript.

Credit
Leidi et al., A&A, 679, A132, 2023, reproduced with permission c©ESO.

112

https://doi.org/10.1051/0004-6361/202347621


A&A 679, A132 (2023)
https://doi.org/10.1051/0004-6361/202347621
c© The Authors 2023

Astronomy
&Astrophysics

Turbulent dynamo action and its effects on the mixing at the
convective boundary of an idealized oxygen-burning shell

G. Leidi1 , R. Andrassy1, J. Higl1,2 , P. V. F. Edelmann3 , and F. K. Röpke1,4

1 Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
e-mail: giovanni.leidi@h-its.org

2 High-Performance Computing Center Stuttgart, Nobelstraße 19, 70569 Stuttgart, Germany
3 Computer, Computational and Statistical Sciences (CCS) Division and Center for Theoretical Astrophysics (CTA), Los Alamos

National Laboratory, Los Alamos, PO Box 1663, NM 87545, USA
4 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Philosophenweg 12, 69120 Heidelberg,

Germany

Received 1 August 2023 / Accepted 27 September 2023

ABSTRACT

Convection is one of the most important mixing processes in stellar interiors. Hydrodynamic mass entrainment can bring fresh fuel
from neighboring stable layers into a convection zone, modifying the structure and evolution of the star. Because flows in stellar
convection zones are highly turbulent, multidimensional hydrodynamic simulations are fundamental to accurately capture the physics
of mixing processes. Under some conditions, strong magnetic fields can be sustained by the action of a turbulent dynamo, adding
another layer of complexity and possibly altering the dynamics in the convection zone and at its boundaries. In this study, we used
our fully compressible Seven-League Hydro code to run detailed and highly resolved three-dimensional magnetohydrodynamic
simulations of turbulent convection, dynamo amplification, and convective boundary mixing in a simplified setup whose stratification
is similar to that of an oxygen-burning shell in a star with an initial mass of 25 M�. We find that the random stretching of magnetic field
lines by fluid motions in the inertial range of the turbulent spectrum (i.e., a small-scale dynamo) naturally amplifies the seed field by
several orders of magnitude in a few convective turnover timescales. During the subsequent saturated regime, the magnetic-to-kinetic
energy ratio inside the convective shell reaches values as high as 0.33, and the average magnetic field strength is ∼1010 G. Such strong
fields efficiently suppress shear instabilities, which feed the turbulent cascade of kinetic energy, on a wide range of spatial scales.
The resulting convective flows are characterized by thread-like structures that extend over a large fraction of the convective shell. The
reduced flow speeds and the presence of magnetic fields with strengths up to 60% of the equipartition value at the upper convective
boundary diminish the rate of mass entrainment from the stable layer by ≈20% as compared to the purely hydrodynamic case.

Key words. stars: interiors – convection – dynamo – magnetohydrodynamics (MHD) – turbulence

1. Introduction

Convection plays a key role in the evolution of stars. In the deep,
optically thick layers, convective flows can efficiently transport
energy and angular momentum outward, so they determine both
the thermal structure and the rotational profile of stars (see, e.g.,
Maeder 2009; Kippenhahn et al. 2013). Furthermore, because
the characteristic spatial scales of convection are much larger
than the mean free path in the stellar plasma, stellar convection
zones are highly turbulent environments, with Reynolds num-
bers that can be as high as 1014 (Jermyn et al. 2022). Turbu-
lent flows quickly mix chemical elements over the relatively
short convective turnover timescale, thus profoundly affecting
the nuclear energy generation in burning layers of stars and their
evolution.

Despite the huge imprint of convection on stars, most one-
dimensional (1D) stellar evolution codes still rely on sim-
plified parametrizations of the convective energy transport,
such as the popular mixing-length theory (MLT; Prandtl 1925;
Böhm-Vitense 1958). On the one hand, these parameterized the-
ories allow 1D models to simulate the evolution of stars over
thermal and nuclear timescales, which is still unfeasible in multi-
D. On the other hand, the parameters that enter these prescrip-

tions cannot be derived from first principles and need to be cali-
brated. Usually, their value is tuned so that 1D models can repro-
duce the global properties of our Sun (see, e.g., Richard et al.
1996), but the universality of this approach has been heavily
questioned in the literature (Trampedach et al. 2014; Magic et al.
2015; Joyce & Chaboyer 2018; Sonoi et al. 2019). Moreover,
local theories of convection such as the MLT assume that con-
vective mixing stops at the position of the formal convective
boundary. More realistically, convective plumes approach the
convective boundary with nonzero velocities and give rise to
hydrodynamic processes that can entrain some excess mass and
entropy from the neighboring stable layer into the convection
zone. Evidence of extra mixing occurring at stellar convective
boundaries has been provided by a number of observations,
including eclipsing binaries (Valle et al. 2016; Claret & Torres
2016), old open clusters (Aparicio et al. 1990), or asteroseis-
mology (Bossini et al. 2015; Aerts 2021). The entrainment of
fresh fuel into a burning layer can prolong its lifetime, enlarge
convective cores in upper main sequence stars, and determine
the structure of supernova progenitors in more massive stars
(Müller 2020, and references therein). In stellar evolution codes,
mixing at convective boundaries is crudely modeled by means
of additional parametrizations, usually in the form of diffusive
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over-mixing or convective penetration (Anders & Pedersen
2023, and references therein). The uncertainties arising from
the usage of such simplistic models limit the predictive power
of stellar evolution calculations and have far-reaching conse-
quences for supernova explosions, the formation of stellar pop-
ulations, and galactic chemical evolution. Although several non-
local theories of convection have been presented in the litera-
ture (see, e.g., Xiong 1978; Kuhfuss 1986; Canuto 1997, 2011;
Li & Yang 2007; Garaud et al. 2010), they have not been exten-
sively used in 1D stellar calculations so far.

To overcome the limitations of stellar-evolution models, sev-
eral research groups have started focusing their efforts in the
past two decades on multi-D hydrodynamic modeling of tur-
bulent convection and mixing at convective boundaries in dif-
ferent classes of stellar objects, including core-convective main
sequence stars (Gilet et al. 2013; Horst et al. 2020; Higl et al.
2021; Baraffe et al. 2023; Herwig et al. 2023; Andrassy et al.
2023), envelope-convective stars (Pratt et al. 2016; Hotta 2017;
Käpylä 2019; Blouin et al. 2023), and more massive stars during
late burning stages (Meakin & Arnett 2007; Jones et al. 2017;
Cristini et al. 2017; Andrassy et al. 2020; Rizzuti et al. 2023). In
this approach, nonlinear hydrodynamic processes are captured
self-consistently, which allows parameterized theories of con-
vection and convective boundary mixing to be tested and cali-
brated for different stellar masses and evolutionary stages.

One more layer of complexity to the problem of stellar
convection is, however, represented by the possible presence
of magnetic fields, which have been observed both in low- and
high-mass stars (Brun & Browning 2017; Keszthelyi 2023,
and references therein). The coupling between turbulent fluid
motions and magnetic fields can give rise to small-scale dynamos
(SSDs; Meneguzzi et al. 1981; Brandenburg & Subramanian
2005; Schekochihin et al. 2007), which amplify magnetic
fields on scales smaller than the forcing scale of turbulence.
As observed in numerous simulations of solar convection
(Vögler & Schüssler 2007; Pietarila Graham et al. 2010; Rempel
2014; Thaler & Spruit 2015; Hotta et al. 2016; Hotta 2017),
SSDs can drastically change the morphology of the convective
flows, reduce their speed, and alter the dynamics of the overshoot
region at the bottom of the solar convection zone as compared to
the purely hydrodynamic case.

Other than the Sun, effects of magnetohydrodynamic (MHD)
processes on the properties of convective flows have also
been investigated in cool (Browning 2008; Käpylä 2021;
Bhatia et al. 2022) and upper-main-sequence stars (Brun et al.
2005; Featherstone et al. 2009; Augustson et al. 2016), but very
few MHD simulations of late burning stages of massive
stars have been run to date (Varma & Müller 2021, 2023;
Canivete Cuissa & Teyssier 2022). In contrast to the main
sequence phase, these late evolutionary stages are character-
ized by vigorous convective shells that can entrain a substan-
tial amount of mass on relatively short timescales, possibly giv-
ing rise to shell mergers (Ritter et al. 2018; Mocák et al. 2018;
Yadav et al. 2020; Andrassy et al. 2020). If an efficient SSD
action takes place inside these shells, it could reduce the mass
entrainment rate at the convective boundaries and possibly delay
or even inhibit the occurrence of the merger events. Numerical
simulations of the dynamical amplification of magnetic fields in
these layers then become essential for determining the stratifica-
tion of the supernova progenitor and the fate of the star. Acquir-
ing more insight into dynamo mechanisms in late burning shells
of massive stars is also particularly important because magnetic
fields can act as seeds to magneto-rotationally powered super-
novae (Müller & Varma 2020).

In this paper, we investigated the effects of a small-scale
turbulent dynamo acting in a late stellar convective shell using
our fully compressible, MHD, Seven-League Hydro (SLH)
code. In particular, we used an idealized setup whose stratifi-
cation is close to that of an oxygen-burning shell in a mas-
sive star (Andrassy et al. 2022). In this study, we did not intend
to perform realistic simulations of such an evolutionary stage.
Instead, we checked the efficiency of small-scale dynamo action
in generating dynamically relevant magnetic fields on the typi-
cal timescales set by convective motions in the oxygen shell and
quantified their impact on the evolution of the convection and on
the mixing at the convective boundary.

The paper is structured as follows: in Sect. 2, we give a brief
description of the numerical methods used to run the simulations
needed for this study. The details of the initial stratification are
provided in Sect. 3. In Sect. 4, we present the numerical results,
including the evolution of the small-scale turbulent dynamo and
its effects on the boundary mixing. Finally, in Sect. 5, we draw
conclusions and summarize the main results.

2. Methods

2.1. Equations solved

We described the physical problem by means of the fully com-
pressible equations of ideal MHD with time-independent gravity,

∂ρ

∂t
+ ∇ · (ρV) = 0, (1)

∂(ρV)
∂t

+ ∇ · [ρV ⊗ V + (p + pB)I − B ⊗ B] = ρg, (2)

∂(ρetot)
∂t

+ ∇ · [(ρetot + p + pB)V − B(B · V)] = 0, (3)

∂B
∂t

+ ∇ · (V ⊗ B − B ⊗ V) = 0, (4)

∂(ρψ)
∂t

+ ∇ · (ρψV) = 0, (5)

where ρ denotes the density, V = (Vx,Vy,Vz) the velocity vector,
B = (Bx, By, Bz) the magnetic field1, pB = |B|2/2 the magnetic
pressure, g = (gx, gy, gz) the gravitational acceleration, etot =

eint + |V|2/2 + |B|2/(2ρ) + φ the total energy per unit mass, eint
the internal energy per unit mass, φ the gravitational potential, ψ
the mass fraction of a passive tracer, and I the unit tensor. The
system in Eqs. (1)–(5) is closed by an Equation of State (EoS)
for the gas pressure p,

p = p(ρ, eint). (6)

In our simulations, we assumed an ideal gas law,

p(ρ, eint) = (γ − 1)ρeint, (7)

where γ = 5/3 is the adiabatic index.
We stress that the absence of the viscous and resistive dis-

sipation terms in Eqs. (2)–(4) does not mean that the simulated
flows are inviscid and nonresistive. In fact, the numerical meth-
ods that we used to solve the equations of ideal MHD (see
Sect. 2.2) must add a certain amount of numerical dissipation
into the system in order to achieve numerical stability.

1 We use the Lorentz-Heaviside units throughout the paper (B =

b/
√

4π).
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2.2. Numerical methods

We solved Eqs. (1)–(5) with the SLH code, which is suited for
simulating low-Mach-number (magneto-)convection and exci-
tation of internal gravity waves (IGWs) in the deep interi-
ors of stars (Miczek et al. 2015; Edelmann et al. 2017, 2021;
Horst et al. 2020, 2021; Andrassy et al. 2022, 2023; Leidi et al.
2022). SLHmakes use of a second-order finite-volume discretiza-
tion and upwinding techniques that require an approximate
solution to the Riemann problem at each cell interface.
Here, the pair of Riemann states was reconstructed using
the Piecewise-Parabolic-Method (PPM) of Colella & Woodward
(1984). Upwind, hyperbolic fluxes were computed at cell inter-
faces with the low-dissipation version of the HLLD solver
(LHLLD) of Minoshima & Miyoshi (2021). LHLLD modifies
the stabilizing pressure-diffusion term in the original HLLD
solver of Miyoshi & Kusano (2005) to ensure that the magnitude
of numerical dissipation (relative to the physical central flux) is
independent of the Mach number of the flow,M = |V|/c, where
c = (γp/ρ)1/2 is the sound speed. This correction dramatically
reduces the excessive amount of numerical diffusion introduced
by shock-capturing methods in simulations of subsonic flows
(Miczek et al. 2015; Leidi et al. 2022).

To suppress the development of spurious flows due to grid
discretization errors in strongly stratified setups, we used a well-
balancing technique (the Deviation method, Berberich et al.
2021; Edelmann et al. 2021). In this method, the vector of con-
served quantities, U = (ρ, ρV, ρetot, B, ρψ), is split into a time-
independent hydrostatic component, Ũ, and a fully nonlinear
perturbation, δU. Equations (1)–(5) are then solved by enforc-
ing ∂Ũ/∂t = 0, which is achieved in practice by subtracting
the hydrostatic fluxes and source terms from the spatial resid-
uals. Such a measure is necessary because conventional finite
volume methods discretize hyperbolic fluxes and gravitational
source terms at different locations on the computational grid,
so hydrostatic solutions cannot be maintained for long times. If
ignored, these discretization errors can dramatically affect the
evolution of buoyancy-driven flows and produce grossly inaccu-
rate numerical solutions (Edelmann et al. 2021).

To keep the strength of magnetic monopoles under con-
trol, we used a staggered constrained transport (CT) method
(Evans & Hawley 1988). Different from the finite volume dis-
cretization, here the surface-averaged magnetic field compo-
nents are evolved at cell interfaces by performing the line
integral of the electromotive force along the cell edges. Thanks
to this operation, the update on the cell-volume average of ∇ · B
vanishes to machine precision. In SLH, the upwind electromotive
force at the cell edges is computed according to the CT-Contact
scheme of Gardiner & Stone (2005).

Finally, both cell-centered and staggered quantities were
evolved in time with a semi-discrete scheme based on the
method of lines. The resulting system of ordinary differential
equations was solved using the explicit strong stability preserv-
ing (SSP) RK2 method of Shu & Osher (1988). Further details
regarding the implementation of the fully unsplit MHD solver in
SLH can be found in Leidi et al. (2022).

3. Setup

We used the setup first described in Andrassy et al. (2022),
who performed a comparison of five different hydrodynamic
codes (SLH, PPMSTAR, MUSIC, FLASH, and PROMPI) on a prob-
lem involving turbulent convection, convective boundary mix-
ing, and the excitation of IGWs in an overlying stable layer.

The thermodynamic conditions of this test setup resemble those
found during oxygen shell burning in a star with an initial mass
of 25 M� (Jones et al. 2017). However, Andrassy et al. (2022)
adopted a few simplifications to make the study easily repro-
ducible by other research groups. In particular, the geometry of
the shell was plane-parallel, the EoS was that of an ideal gas,
neutrino cooling was not included, and detailed nuclear burn-
ing was replaced by a time-independent heat source term, whose
amplitude was set such that convective motions were driven with
root-mean-square velocities characteristic of late evolutionary
stages in massive stars (Mrms ≈ 0.04).

We mapped the initial hydrostatic stratification (see Fig. 1)
on a 3D Cartesian grid with spatial domain (x, y, z) ∈
[−Lref , Lref]×[Lref , 3 Lref]×[−Lref , Lref], where Lref = 4×108 cm.
We used periodic boundaries in the horizontal x- and z-direction.
At the top and bottom boundaries of the domain, instead, we
adopted impermeable, stress-free boundary conditions for the
velocity field,

∂Vx

∂y
=
∂Vz

∂y
= Vy = 0, (8)

we forced the magnetic field to be purely horizontal,

∂Bx

∂y
=
∂Bz

∂y
= By = 0, (9)

and for the scalar quantities we assumed

∂ρ

∂y
=
∂p
∂y

=
∂ψ

∂y
= 0. (10)

The gravitational acceleration, assumed to be time-
independent, points downward in the y-direction and goes to zero
at the vertical boundaries according to Eq. (1) of Andrassy et al.
(2022). In that work, such a choice for the gravitational accel-
eration was made to allow the hydrostatic density and pressure
profiles to become constant at the domain boundaries, making
the problem consistent with the conditions in Eq. (10). Although
unrealistic, turning off the gravity at the boundaries does not
appreciably alter the stratification of the oxygen shell, which is
mostly affected by the aforementioned simplifications, as can be
seen in Fig. 1 of Andrassy et al. (2022). For consistency with
their model, we decided not to modify the profile of the gravita-
tional acceleration here.

The stratification is isentropic up to approximately y = 2 Lref ,
and it smoothly turns subadiabatic in the upper half of the
domain. Overall, the grid covers 4.35 pressure scale heights in
the vertical direction. To be able to track the time evolution of
the mass entrained into the convection zone, we filled the con-
vectively stable layer with a passive tracer at t = 0 s, whose abun-
dance progressively drops to zero across the convective bound-
ary. Further details regarding the initial stratification and the heat
source can be found in Andrassy et al. (2022).

To start the dynamo action, we planted an initially horizontal
magnetic field into the grid, Bx = 105 G. The strength of the seed
field was chosen such that the Lorentz force exerted on the fluid
at early times was weak enough to not affect the development of
convection.

We judged the numerical convergence of the results obtained
in this work by running simulations on grids with 1283, 2563,
and 5123 cells. To compute meaningful time-averaged quanti-
ties and avoid introducing temporal correlations caused by the
turbulent nature of the convective flows, all test cases were run
until tmax = 25τconv, where τconv = 63.36 s is the mean convec-
tive turnover timescale in the purely hydrodynamic case, defined
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Fig. 1. Profiles of density, pressure, pseudo-entropy (p/ργ), gravity,
mass fraction of a passive tracer (ψ), and heat source term (q̇) as a func-
tion of the vertical coordinate y at t = 0 s. Here, ρref = 1.82×106 g cm−3,
pref = 4.64 × 1023 dyne cm−2, gref = 6.37 × 108 cm s−2, q̇ref = 1.76 ×
1020 erg cm−3 s−1, and Lref = 4 × 108 cm.

according to Eq. (16) of Andrassy et al. (2022). By t = tmax, the
growing convective layer is still sufficiently far away from the
upper boundary of the spatial domain that the imposed boundary
conditions do not appreciably alter the dynamics of the mixing
region. Thus, we decided not to extend the simulations beyond
tmax. Finally, in order to capture possible differences between the
MHD and the purely hydrodynamic case, we ran an additional
set of simulations without magnetic fields.

4. Results

4.1. Onset of convection and kinematic stage of the dynamo

To break the initial symmetry, we added a small-amplitude per-
turbation to the hydrostatic density stratification according to
Eq. (6) of Andrassy et al. (2022). The energy injected by the
heat source at the base of the box leads to the development of
buoyant parcels of hot fluid that rise in the adiabatic layer (see
Fig. 2). As soon as these flows cross the boundary of the subadi-
abatic layer, the buoyant acceleration changes sign (so it points
downward in the y-direction) and forces the rising plumes to turn
around. The large-scale buoyant fluid elements that are driven by
the energy source quickly develop shear instabilities that cascade
down to smaller scales, and turbulent convection fully develops
by t ≈ τconv.

As shown in Fig. 3, the mean magnetic energy density inside
the convective shell2,

ẼB =
1
2
〈|B|2〉conv, (11)

increases exponentially in time. The growth rate of the insta-
bility is higher on finer grids, which indicates that the ampli-
fication process mostly occurs on intermediate or small spatial
scales. It could be an SSD, where the magnetic field is randomly
stretched at scales smaller than the forcing scale of turbulence.

2 〈·〉 is the volume-weighted spatial average operator.

However, two other processes could contribute to the amplifica-
tion of small-scale magnetic fields in this setup: turbulent induc-
tion, which is the stretching of large-scale magnetic fields by
a turbulent, small-scale velocity component (Schekochihin et al.
2007), and turbulent cascade of magnetic energy toward smaller
scales (Pietarila Graham et al. 2010). In fact, the large-scale
fields that are needed to excite the latter two processes, not
only are characteristic of large-scale dynamos (Brandenburg
2009; Charbonneau 2013), but they can also be supported by
the large-scale velocity structures typical of turbulent convec-
tion (Käpylä et al. 2018). Moreover, the imposed boundary con-
ditions (see Sect. 3) allow the integrated horizontal magnetic
flux, and consequently the mean horizontal magnetic field, to
be preserved in time inside the spatial domain. Therefore, the
mean horizontal field takes the value of the chosen seed field,
Bx = 105 G, and represents a persistent large scale magnetic field
component that could, in principle, contribute to the amplifica-
tion of magnetic energy via turbulent induction.

To get a better understanding of the underlying mech-
anisms that amplify the magnetic energy in these simula-
tions, we computed transfer functions TXYZ(k) in the Fourier
space between the kinetic (K) and magnetic (B) energy reser-
voirs inside the convective layer, following the approach of
Pietarila Graham et al. (2010). In particular, TXYZ(k) represents
the energy received (or lost in case of TXYZ(k) < 0) per unit time
and per unit wavenumber at scale k of energy type Y from all
scales of energy type X via process Z. The transfer of magnetic
energy to the kth component of kinetic energy is determined by
the net work done on the fluid by the magnetic tension force,

TBKT(k) =
1
2

V̂(k) · [B̂ · ∇B]∗(k)

+
1
2

(ρ̂V)(k) ·
[
̂1

ρ
B · ∇B

]∗
(k) + c.c., (12)

and the magnetic pressure force,

TBKP(k) = − 1
4

V̂(k) · [∇̂|B|2]∗(k)

− 1
4

(ρ̂V)(k) ·
[
̂1
ρ
∇|B|2

]∗
(k) + c.c., (13)

where ∗ is the complex conjugate, c.c. is the complex conjugate
of the whole expression on the right-hand side, and ˆ represents
the Fourier projection3. Magnetic energy on scale k is produced
or removed via stretching of the magnetic field lines,

TKBS(k) = B̂(k) · [B̂ · ∇V]∗(k) + c.c., (14)

and through compression and advection of the magnetic field,

TKBCA(k) = − B̂(k) · [B̂∇ · V]∗(k)

− B̂(k) · [V̂ · ∇B]∗(k) + c.c. (15)

Because here we solved the fully compressible MHD equations,
TKBCA(k) includes both the transport of energy within the mag-
netic energy reservoir and the generation of magnetic energy
through fluid compression. These two processes, however, can-
not be decoupled (Rempel 2014), which can be seen by expand-
ing the advective flux of magnetic energy as

−∇ ·
(
V
|B|2

2

)
(k) = −B̂(k) ·

̂[
(V · ∇)B +

B
2
∇ · V

]∗
(k) + c.c. (16)

3 A thorough derivation of the transfer functions computed here can be
found in Appendix A.1 of Pietarila Graham et al. (2010).
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Fig. 2. Development of convection in the MHD simulation of the idealized oxygen shell run on a 5123 grid. The panels show fluctuations in
pseudo-entropy (A = p/ργ) in the z = 0 plane at different times, as indicated by the insets. The entropy generated by the heat source at the base
of the box (see Fig. 1) is mixed throughout the initially adiabatic layer by turbulent convection. This process slowly increases the entropy content
of the convection zone in time. The broad stripe of negative entropy fluctuation visible in the upper half of the domain at early times is due the
thermal expansion of the convective layer. The turbulent flows also excite IGWs at the upper convective boundary (lower center panel) which then
propagate in the subadiabatic layer.

To simplify the calculations, instead of computing 3D Fourier
projections in Eqs. (12)–(15), we averaged transfer functions
TXYZ(kh, y j) obtained at each horizontal plane y j inside the con-
vection zone,

TXYZ(kh) = 〈TXYZ(kh, y j)〉y j∈(Lref ,2Lref ). (17)

Here, kh is the horizontal wavenumber kh =

√
k2

x + k2
z , where

kx =

{
m, 0 ≤ m ≤ bNx−1

2 c,
−Nx + m, bNx−1

2 c < m < Nx,
(18)

kz =


n, 0 ≤ n ≤ bNz−1

2 c,
−Nz + n, bNz−1

2 c < n < Nz,
(19)

b.c is the floor function, and Nx and Nz are the number of cells in
the x- and z- direction, respectively.

Figure 4 shows results from the transfer analysis performed
on the grid with 5123 cells. Stretching of the magnetic field lines
contributes most of the magnetic energy generation at spatial
wavenumbers close to kh = 50. In these simulations, the typi-
cal velocities in the convection zone are considerably subsonic
(Mrms ≈ 0.04), so fluid compression due to the ram pressure
of the convective flows (pram ∼ M2) has a negligible contri-
bution to the generation of magnetic energy (see TKBC(kh) =

−B̂(kh) · [B̂∇ · V]∗(kh) + c.c. in Fig. 4). Therefore, TKBCA(kh)
measures mostly the advective transport of magnetic energy to
scale kh from all scales of the magnetic field, similar to the case
of incompressible MHD,

TKBCA(kh) ≈ −B̂(kh) · [V̂ · ∇B]∗(kh) + c.c. (20)
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Fig. 3. Time evolution of the mean magnetic energy density inside the
convection zone for the indicated grid resolutions.

We observe that the magnetic cascade mainly removes mag-
netic energy from large scales, where TKBCA < 0, and redis-
tributes it at scales with kh > 75, where TKBCA > 0. This
process dominates the generation of magnetic energy over
stretching only at kh > 130, which corresponds to a spatial
scale of 3.9 times the width of the grid cells, ∆x. Work done by
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Fig. 4. Transfer functions extracted from the convection zone on the 5123 grid and averaged over the kinematic stage of the dynamo. The panel on
the left shows the transfer rates from the kinetic (K) to the magnetic (B) energy reservoir, whereas the panel on the right shows magnetic-to-kinetic
energy transfer rates. The time averaging was performed such that, at each time t, all the transfer curves were rescaled by the maximum value of
TKBS(kh). The resulting curves were then averaged over the time interval t ∈ (1.5τconv, 3τconv). Dashed lines represent negative transfer rates, while
solid lines are used for positive rates.

fluid motions against the magnetic tension force (−TBKT) most
efficiently transforms kinetic energy at kh ≈ 30 into magnetic
energy. Work done by the magnetic pressure force on the fluid is
negligible everywhere except on very large scales. These results
allow us to find the range of wavenumbers where the magnetic
field is most efficiently stretched by fluid motions. As pointed
out by Pietarila Graham et al. (2010), the spatial wavenumber
at which magnetic field is generated (q), the one at which it is
stretched (k), and the one at which the flow works against mag-
netic tension (p) form a triadic relation,

k = q − p. (21)

By considering the most extreme cases in which q and p have the
same or the opposite orientation, we estimate that the magnetic
field lines are most efficiently stretched at 20 . kh . 80. As we
show in Sect. 4.2, this interval lies at the bottom of the inertial
range of the turbulent kinetic energy spectrum. Thus, the ampli-
fication of magnetic energy is mostly caused by the action of a
small-scale turbulent dynamo, with a minor contribution from
the turbulent cascade close to the grid scale.

Further evidence of small-scale turbulent dynamo action
can be provided by checking the scaling of the growth rate of
the magnetic energy, γ = ∂lnẼB/∂t, with the grid resolution.
Because in this work we used the Implicit Large Eddy Simula-
tion (ILES) method, the magnetic Prandtl number (Prm = ν/η)
is likely to be close to or larger than unity (Vögler & Schüssler
2007; Rempel 2014). In this regime of Prandtl numbers, an
SSD can only be started if the fluid Reynolds number, Re =
VrmsLref/ν, is larger than a critical threshold. The growth rate of
the magnetic energy in an unstable SSD should then scale as
Re1/2 (Kazantsev 1968; Schekochihin et al. 2004). Although the
effective value of the kinematic viscosity (ν) and resistivity (η)
coefficients are determined by the underlying numerical meth-
ods used to solve the MHD equations, in the ILES approach the
fluid Reynolds number should depend on the spatial resolution as
∆x−4/3 (Cristini et al. 2017), which leads to γ ∝ Re1/2 ∝ ∆x−2/3.
Our study indicates that the growth rate γ follows the predicted

theoretical scaling (see Fig. 5). These results can only be con-
firmed by using an explicit kinematic viscosity coefficient so
that Re can be measured directly, which, however, is beyond the
scope of this work.

At early times, the magnetic energy is still subdominant with
respect to the kinetic energy content of the flow. Therefore, the
Lorentz force does not affect the evolution of the convection, and
we do not observe any systematic difference in the velocity field
between the MHD and the hydrodynamic simulations. This is
the kinematic stage of the dynamo, which lasts for several con-
vective turnover timescales, depending on the resolution of the
grid.

4.2. Nonlinear phase of the dynamo

The amplification of the magnetic field due to the action of the
small-scale turbulent dynamo proceeds until the Lorentz force
becomes strong enough to start having a feedback effect on
the flow. Such a change in the evolution of the dynamo hap-
pens when the magnetic energy approaches equipartition with
the kinetic energy content of the eddies on the small scales of
turbulence. Strong, small-scale magnetic fields inhibit the devel-
opment of shear instabilities that feed the turbulent cascade and
drive the dynamo amplification. The stretching of the magnetic
field lines happens now on larger scales, where turbulence has
not been quenched. Work done against the magnetic tension
force by the turbulent convective flows sustains the magnetic
field against numerical (resistive) dissipation, and the dynamo
reaches saturation. By t/τconv ≈ 15, all of the MHD simulations
presented here have entered this phase. This stage of the dynamo,
however, does not represent a statistical steady state solution of
the simulated setup. In fact, the continuous injection of entropy
into the system by the heat source and the mixing processes that
take place at the convective boundary (see Sect. 4.3) both con-
tribute to the entrainment of material from the overlying stable
layer. Therefore, the size, mass, and entropy content of the con-
vective layer keep increasing over time.
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Fig. 5. Growth rate of the mean magnetic energy inside the convec-
tion zone (averaged over the kinematic phase of the dynamo) as a
function of the grid spacing, ∆x. For this analysis, we also simulated
the kinematic phase of the dynamo on grids with 3843 and 6403 cells
(∆x/Lref = 5.2×10−3, and ∆x/Lref = 3.1×10−3, respectively). Error bars
represent three standard deviations, computed over the time series. The
expected theoretical scaling for SSD amplification (γ ∝ Re1/2 ∝ ∆x−2/3)
is represented by the black dashed line.

The magnetic-to-kinetic energy ratio, shown in Fig. 6,
reaches saturation with a mean value of ≈0.22 on the finest grid,
with sporadic, intermittent episodes in which it reaches values
as high as 0.33. During the nonlinear phase of the dynamo, the
mean kinetic energy density inside the convective shell in the
MHD simulations,

ẼK =
1
2
〈ρ|V|2〉conv, (22)

is on average 25% lower than that in the hydrodynamic case on
the 5123 grid (see Fig. 7). We obtained this result by first com-
puting the time average {·} of ẼK over t ∈ (15τconv, 25τconv), and
then by calculating

ε = {ẼK,MHD}/{ẼK,HYDRO} − 1. (23)

However, the large temporal fluctuations that characterize ẼK
made it necessary to provide an error estimate on ε in order to
prove the statistical significance of this result. The error on ε is
a combination of the statistical uncertainties on {ẼK,HYDRO} and
{ẼK,MHD}, which we computed as follows. First we obtained the
standard deviation σK of ẼK over the selected time series for
both the hydrodynamic and MHD setups. Second, we estimated
the statistical uncertainty on the mean quantity {ẼK} by taking
into account possible temporal correlations introduced by the
turbulent nature of the convective flows. According to Fig. 4 of
Andrassy et al. (2022), the autocorrelation function of the con-
vective velocity drops to zero after a time shift ∆t ≈ τconv, which
suggests that there is approximately one independent realiza-
tion of the convective flows per convective turnover. Thus, we
approximated the uncertainty associated to {ẼK}, σ̃K, as

σ̃K =
σK√
Nto

, (24)
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Fig. 6. Time evolution of the mean magnetic-to-kinetic energy ratio
inside the convective shell.

where Nto = 10 is the number of convective turnovers (see also
Table 1). Finally, we computed the variance of ε,

σ2
ε =

(
∂ε

∂{ẼK,HYDRO}

)2

σ̃2
K,HYDRO +

(
∂ε

∂{ẼK,MHD}

)2

σ̃2
K,MHD. (25)

We find σε ≈ 3%, making a mean relative deviation of 25% sta-
tistically significant (i.e., different from zero) by more than 8σε .

In the ILES approach, increasing the grid resolution reduces
the amount of numerical resistivity introduced into the system,
making the turbulent dynamo progressively more efficient. Con-
sequently, the mean magnetic energy density in our simulations
increases by a factor of two from the 1283 to the 5123 grid,
where the typical strength of the magnetic field is ≈5 × 109 G
(see Table 2). On the other hand, ẼK does not seem to show a
significant resolution dependence when averaged over the satu-
rated phase of the dynamo, t ∈ (15τconv, 25τconv), as can be noted
from the values provided in Table 1. Averaging over a wider
time window could potentially reveal a statistically significant
trend in {ẼK} with increasing spatial resolution. However, this
is not possible with our current setup, in which the convective
boundary approaches the upper domain boundary at late times,
potentially altering the dynamics of the mixing region and pro-
ducing unreliable results (see also Sect. 3). We also note that
a fixed time-averaging window, in principle, samples different
evolutionary times of the dynamo depending on grid resolution.
In fact, the oxygen shell does not have a statistical steady state
solution, and the time at which the dynamo enters its nonlinear
regime is resolution dependent. However, as visible in Fig. 7,
neither ẼK nor ẼB show clear, long-term trends in the saturated
phase of the dynamo. This result suggests that the secular evolu-
tion of the mean stratification can be neglected for this analysis
since it does not seem to affect basic properties of the flows and
of the dynamo.

The suppression of small-scale shear instabilities in the con-
vective flows caused by the generated strong magnetic fields can
be noted in Fig. 8, where we compare snapshots of the Mach
number taken from an MHD and a purely hydrodynamic sim-
ulation in the nonlinear phase of the dynamo. In contrast to
the hydrodynamic case, where turbulence is essentially isotropic
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Table 1. Mean kinetic energy density (in units of erg cm−3) inside the
convection zone, averaged over t ∈ (15τconv, 25τconv) for the indicated
grid resolutions in the hydrodynamic and MHD cases.

N ẼK/1020 (HYDRO) ẼK/1020 (MHD)

128 1.25 ± 0.03 0.97 ± 0.03
256 1.26 ± 0.02 1.00 ± 0.03
512 1.22 ± 0.03 0.91 ± 0.03

Notes. The errors represent one standard deviation over the time series
divided by

√
Nto, where Nto = 10 is the estimated number of indepen-

dent data points (one per convective turnover).

Table 2. Mean magnetic field strength inside the convection zone, aver-
aged over t ∈ (15τconv, 25τconv) for the indicated grid resolutions.

N 〈|b|/√4π〉conv
[109 G]

128 3.49 ± 0.06
256 4.24 ± 0.06
512 5.06 ± 0.08

Notes. The errors represent one standard deviation over the time series
divided by

√
Nto, where Nto = 10 is the estimated number of indepen-

dent data points (one per convective turnover).
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Fig. 7. Time evolution of the mean kinetic energy density inside the
convection zone, ẼK, for the purely hydrodynamic (vermilion) and
MHD (light blue) simulations. The time evolution of the mean mag-
netic energy density in the MHD simulations, ẼB, is also shown.

on spatial scales smaller than Lref , the velocity field in the
MHD simulation is characterized by the presence of anisotropic,
thread-like structures that extend over a large part of the convec-
tive shell.

A comparison of horizontally averaged velocity profiles (see
Fig. 9) shows that horizontal velocities in the MHD case are
reduced by as much as 30% in the convective layer, as com-
pared to the simulations without magnetic fields. Vertical veloc-
ities, instead, are diminished on average only by 10%. As visible
in Fig. 10, the partial suppression of the horizontal mixing in

the MHD runs increases the magnitude of the root-mean-square
entropy fluctuation inside the convection zone with respect to the
hydrodynamic simulations. A larger contrast in the thermal con-
tent between up- and downflows in turn increases the efficiency
of the convective energy transport. For this reason, despite the
mild suppression of vertical velocities in the convection zone
caused by the action of the dynamo, we do not observe any sig-
nificant difference in the vertical enthalpy fluxes,

FH = 〈(eint + p)Vy〉x,z, (26)

between the MHD and the hydrodynamic setups (see Fig. 11).
Only in the overshoot layer, where FH < 0, the MHD simula-
tions are characterized by a smaller unsigned enthalpy flux than
their hydrodynamic counterpart. This result may be due to the
combined effects of reduced flow speeds and entropy fluctua-
tions at the upper convective boundary in the MHD case, as vis-
ible in Figs. 9 and 10, respectively.

In Fig. 12, we show the kinetic and magnetic energy spec-
tra computed in the y = 1.5 Lref plane, averaged over the
saturated phase of the dynamo. The kinetic energy spectra
resulting from the hydrodynamic simulations converge to the
Kolmogorov scaling (k−5/3

h , Kolmogorov 1941) in the inertial
range. The scale at which the power spectrum deviates from
the Kolmogorov law due to the action of numerical dissipation
becomes smaller as the resolution is progressively increased,
as expected in the ILES approach. The kinetic energy spec-
tra in the MHD simulations, instead, deviate from the hydro-
dynamic curves already at wavenumbers of kh ≈ 10, where
the dynamo is most efficient at converting kinetic energy into
magnetic energy (i.e., it achieves maximum |TBKT|/ÊK). The
observed drop of kinetic energy in the MHD case corresponds
to an increase of magnetic power in the inertial range, and
the sum of the two energy contributions approximately resem-
bles the kinetic energy spectrum in the hydrodynamic simula-
tions. The wavenumber at which the magnetic-to-kinetic energy
ratio becomes greater than unity decreases on finer grids4. On
the grid with 5123 cells, the break-even point is at kh = 10,
which corresponds to approximately half of the pressure scale
height at y = 1.5 Lref . Unlike the case of forced, isotropic
MHD turbulence (Haugen et al. 2004; Schekochihin et al. 2004;
Iskakov et al. 2007; Brandenburg 2011), our simulations of strat-
ified convection also show a substantial amount (up to 30%)
of magnetic power stored at wavenumbers kh < 10. This field
component is generated by coherent structures in the form of
large-scale up- and downflows that stretch the magnetic field
lines over a large fraction of the size of the convection zone.
The presence of a large-scale field component can be observed
in Fig. 13, where we show vertical and horizontal cuts in By for
all our three grids. A small-scale component with mixed polarity
also becomes more noticeable on progressively finer grids with
reduced numerical dissipation.

Both the horizontal and the vertical component of the mag-
netic field become stronger as the grid is refined (see Fig. 14).
The magnetic field smoothly turns horizontal across the upper
convective boundary, where the convective flows overturn due
to the negative buoyant acceleration. At the bottom of the shell,
the magnetic field is forced to be horizontal in order to retain
its solenoidal property given the imposed boundary conditions.
We note that the reflecting boundary forces the convective flows
to abruptly change direction over a few computational cells,
which artificially enhances the stretching and the compression

4 Energy spectra extracted from different planes in the convective shell
show qualitatively similar results.
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Fig. 8. Snapshots of the Mach number on the 5123 grid at t/τconv = 22. The panels on the left show results from the purely hydrodynamic
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row shows a horizontal cut through the y = 1.5 Lref plane. The white-dotted line indicates the initial position of the convective boundary.

of the magnetic field lines. This process, however, only affects
the generation of magnetic energy in a narrow region close to
the bottom boundary of the convective shell. In simulations of
SSD action in the solar convection zone, Hotta (2017) finds that
including part of the underlying stable layer does not apprecia-
bly alter the generation of the magnetic field as compared to
simulations with closed boundary conditions. This author shows
that an imposed steep, positive entropy gradient across the solar
overshoot region prevents convective plumes from penetrating
into the stable layer deeper than a small fraction of the pres-
sure scale height, at least on the characteristic timescales set
by convection. Thus, in those simulations, the bottom bound-
ary of the solar convective region acts like a reflecting wall
for the turbulent flows and the magnetic fields. Oxygen-burning
shells of massive stars are also characterized by steep, stabilizing
entropy gradients at their bottom boundary (Meakin & Arnett
2007; Jones et al. 2017; Varma & Müller 2021). In the model of
Jones et al. (2017, which this setup is based on), the square of
the Brunt–Väisälä frequency at the silicon-oxygen boundary is

several times larger than that at the upper boundary of the oxy-
gen shell (see Fig. 4 of Jones et al. 2017). Because this quantity
is directly related to the buoyancy jump, entrainment of mate-
rial from the underlying stable layer into the convection zone
can easily be neglected over the timescales simulated here. All
these considerations give us confidence that the chosen boundary
conditions are well suited for the simulations presented in this
study.

The strength of the magnetic field is not uniform across the
convective shell. As previously discussed, the magnetic energy
approaches equipartition with the kinetic energy content of the
turbulent eddies in the inertial range. Because the mean flow
speed does not vary considerably across the convective shell,
the spatial dependence of the magnetic field strength is mostly
set by the density stratification. Indeed, the vertical profile of the
root-mean-square magnetic field rescaled by its local equipar-
tition value (Beq =

√
ρVrms) shows much less dependence on

y as compared with the results shown in Fig. 15. The height-
dependence of the dynamo action can also be seen in Fig. 16,
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at y = (2.3−2.4) Lref .

where we show horizontal averages of the Lorentz work,

WL = 〈V · [(∇ × B) × B]〉x,z. (27)

As a reference, we also show the buoyancy work,

Wb = 〈Vy gy δρ〉x,z, (28)

where δρ is the density fluctuation. Buoyancy generates kinetic
energy in the whole convective shell except in the overshoot
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Fig. 11. Vertical profiles of the vertical enthalpy flux (FH) averaged over
t ∈ (15τconv, 25τconv). Here, light blue is used to indicate the quantities
extracted from the MHD simulations, whereas vermilion is used for the
hydrodynamic simulations.

layer, where it is responsible for the deceleration of the con-
vective flows. On all grids, the magnitude of the Lorentz work
is maximum at the bottom of the convective shell and progres-
sively drops to zero toward the upper convective boundary. WL
is negative throughout the whole convective layer, meaning that,
on average, kinetic energy is everywhere converted into mag-
netic energy. Moreover, profiles of the Lorentz work approach
convergence on the finest grids. This result confirms that most of
the conversion of kinetic energy into magnetic energy happens
on relatively large spatial scales, which are well resolved even
with moderate grid resolutions.

We note that the dynamo does not operate in the subadiabatic
layer, although a seed field is present there as well. The turbulent
structures created by the nonlinear breaking of IGWs (visible in
Fig. 8), which is one of the mechanisms that can excite an SSD
in stable stratifications (Skoutnev et al. 2021), are not efficient
enough to build a significant magnetic field in these simulations.
The magnetic field in the stable layer reaches saturation with
average strengths of only two to ten times that of the initial seed
field.

4.3. Impact of magnetic fields on the growth of the
convective shell

The turbulent convective flows generated in this setup give rise
to a rich variety of hydrodynamic processes at the upper convec-
tive boundary, including shear instabilities, breaking of surface
gravity waves, and convective overshooting. These processes
contribute to the entrainment of high-entropy material from the
overlying stable layer into the convection zone, which causes the
convective shell to grow in time (see also Fig. 8). We computed
the mass entrained per unit surface area inside the convection
zone by using horizontal averages of the density and the passive
tracer ψ as in Andrassy et al. (2022),

Me(t) =

∫ ycb(t)

Lref

ρ̄(y, t)ψ̄(y, t)dy. (29)
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At each time, we assumed that the vertical coordinate of the
upper convective boundary, ycb, was the position of the steep-
est gradient in ψ̄. In Fig. 17 we show the time evolution of the
entrained mass for all the simulations run in this study. In the
hydrodynamic case, numerical convergence is reached already
on the lowest-resolved grid (with 1283 cells) within a maximum
relative statistical uncertainty of 5%, which is consistent with
the results obtained by Andrassy et al. (2022). Instead, the mass
entrained in the MHD runs slightly decreases with increasing
the grid resolution. A significant deviation between the MHD
and the hydrodynamic simulations is visible only after 15τconv,
when the dynamo has fully entered its nonlinear phase. By the
time the simulations have finished, the best resolved MHD setup
has entrained 12% less mass than the hydrodynamic runs, and
the mass entrainment rate Ṁe has been reduced by ≈20%.

Because MHD effects do not dramatically reduce the mass
entrainment rate at the upper convective boundary, finding the
mechanisms responsible for the observed discrepancy in Me
between the MHD and the hydrodynamic results is challeng-

ing. One possible explanation is that convective flows in the
MHD simulations have some of their kinetic energy converted
into magnetic energy by the action of the SSD (see the discus-
sion in Sect. 4.2), which reduces the amount of energy available
to overcome the buoyancy of the entrained high-entropy mate-
rial as compared to the hydrodynamic case (Spruit 2015). Fur-
thermore, strong horizontal magnetic fields (see Fig. 14) could
considerably reduce the growth rate of the shear instabilities that
take place at the convective boundary, which are in part responsi-
ble for the mixing. Magnetic fields aligned with the shear flows,
in fact, have a stabilizing effect against the growth of Kelvin–
Helmholtz instabilities, especially if the Alfvénic Mach num-
ber MAlf =

√
ρ|V|/|B| is close to unity (Chandrasekhar 1961;

Frank et al. 1996). As shown in Fig. 15, the mean magnetic field
at the upper convective boundary reaches values as high as 60%
of the equipartition field (MAlf & 1.5), so short-wavelength
Kelvin–Helmholtz instabilities are likely to be partly suppressed.

As pointed out by a number of authors (Meakin & Arnett
2007; Andrassy et al. 2020, 2023; Horst et al. 2020), some
degree of mixing at stellar convective boundaries can be induced
by nonadiabatic effects. In this setup, the mean entropy inside
the convection zone increases by the action of the heat source,
and eventually overcomes the entropy level of a narrow suba-
diabatic layer right above the upper convective boundary. This
layer becomes negatively buoyant, so it sinks and gets mixed
into the convection zone. This process enlarges the size of the
convective shell over time as long as the source of entropy gen-
eration is active. In the work of Andrassy et al. (2022), it was
estimated that by the end of the simulations, ≈60% of Ṁe in this
setup was due to the heating. This process is expected to oper-
ate regardless of the properties of the convective flows, so MHD
processes would only be able to affect the remaining 40% of
the entrainment rate. In the absence of heating-induced mixing,
magnetic fields would then suppress as much as 50% of the mass
entrainment.

5. Summary and discussion

We have run 3D simulations of turbulent convection, dynamo
amplification and convective boundary mixing in an idealized
oxygen-burning shell of a 25 M� star. In particular, we have
searched for possible MHD effects on the boundary mixing and
the properties of the convective flows by performing a compar-
ison between an MHD and a purely hydrodynamic setup. The
numerical results have been carefully analyzed by means of a
convergence study, in which the grid resolution was progres-
sively increased from 1283 to 5123 cells.

Random stretching of the magnetic field lines due to the
turbulent motions in the convective shell excites small-scale
dynamo (SSD) action on all of the considered grids. The dynamo
instability amplifies the seed field by ≈4 orders of magnitude
in a few convective turnover timescales. The kinematic phase
of the dynamo ends when the magnetic field becomes strong
enough to affect the evolution of the flows on the small scales
of turbulence. During the saturated stage, the work done by
fluid motions against magnetic tension forces sustains the mag-
netic field against numerical resistive dissipation. The satu-
rated mean magnetic-to-kinetic energy ratio reaches values in
the 20−30% range. The magnetic field strength in the oxygen
shell moderately increases with the grid resolution, and it has
characteristic values of ∼1010 G in the 5123 simulation. Such
strong fields partly suppress the small-scale isotropic features
in the velocity field typical of turbulent convection in hydro-
dynamic simulations. The resulting flows present anisotropic,
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Fig. 13. Distribution of By on the z = 0 plane (upper row) and the y = 1.5 Lref plane (lower row) at t/τconv = 22 for the indicated grid resolutions.

thread-like structures that extend over a large fraction of the
convective shell. The magnetic fields generated during the
oxygen burning stage can be further amplified if parts of the
oxygen shell end up collapsing onto a neutron star. By assum-
ing a simple flux-freezing model, we estimate that the mag-
netic field strength at the surface of the neutron star would be
on the order of 1015−1016 G, which is in agreement with val-
ues inferred from observations of magnetars (Kouveliotou et al.
1998; Woods & Thompson 2006; Olausen & Kaspi 2014).

Vertical and horizontal fluid velocities in the bulk of the con-
vective layer in the MHD simulations are reduced, as compared
to the hydrodynamic runs, on average by 10% and 20%, respec-
tively. The fact that the dynamo does not have the same impact
on the different fluid velocity components could be related to the
transport of thermal energy inside the convection zone. In fact,
in order for convection to transport the excess heat deposited
by the energy source outward with partly suppressed vertical
velocities, the thermal content of the buoyant flows must be
enhanced. Because the heat source is unchanged in the MHD
simulations, this can only be achieved by reducing the horizontal
mixing of entropy between the up- and the downflows. Indeed,
we observe that root-mean-square entropy fluctuations are sys-
tematically enhanced in the MHD simulations, which in turn
increases the thermal contrast between the convective plumes.
Consequently, we do not observe a significant impact of mag-
netic fields on the vertical enthalpy fluxes.

Power spectra computed in the bulk of the convective shell
reveal that 30% of the total magnetic energy is stored at spatial
wavenumbers kh < 10. Such a large-scale field component is gen-
erated by large-scale convective cells, which can efficiently stretch
the magnetic field lines on length scales comparable to the size of
the convection zone. The kinetic energy spectra in the MHD sim-
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Fig. 14. Vertical profiles of the horizontal (Bh =
√

B2
x + B2

z ) and
vertical (By) magnetic field, averaged over the time interval t ∈
(15τconv, 25τconv).

ulations deviate from the Kolmogorov law (k−5/3
h ) in the inertial

range, where the efficiency of the dynamo is maximum. On the
finest grid, the magnetic energy becomes greater than the kinetic
energy at a spatial wavenumber of kh ≈ 10, corresponding to half
of a pressure scale height in the convection zone.

The mass entrained into the convection zone in the MHD
case is smaller by 12% than that in the hydrodynamic setup.
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The partial suppression of the mixing at the convective boundary
correlates with the average strength of the magnetic field in the
convection zone. It is possible that the reduction of the kinetic
energy of the convective flows caused by the action of the small-
scale turbulent dynamo and the presence of magnetic fields with
strengths up to 60% of the equipartition value at the convective
boundary contribute to the partial suppression of the mixing. By
the end of the simulations, the mass entrainment rate is reduced
by 20% with respect to the hydrodynamic simulations.

In our simulations, SSDs seem to have only a mild effect
on the growth of the convective oxygen shell. This is consis-
tent with the findings of Varma & Müller (2021), who ran global
MHD simulations of an oxygen shell in an 18 M� star. Overall,
these authors do not observe any significant impact of the small-
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Fig. 17. Time evolution of the mass entrained from the stable layer into
the convection zone, rescaled by the total mass contained in the stable
layer at t = 0 s. Light blue is used for the MHD simulations, whereas
vermilion is used for the purely hydrodynamic runs.

scale turbulent dynamo on the properties of the convective flows
as compared to a non-MHD simulation. Those results, however,
may have been affected by low effective Reynolds numbers,
which are typical for global simulations of turbulent convec-
tion at moderate grid resolutions. Our “box-in-a-star” approach,
used in combination with special numerical solvers optimized
for tackling stratified, subsonic magnetoconvection, allows us
to achieve much higher effective resolution than that obtained
by Varma & Müller (2021). We find that the small-scale tur-
bulent dynamo reduces the kinetic energy content of the con-
vective shell by 25% on average and significantly changes the
topology of the velocity field with respect to the purely hydro-
dynamic problem. These results are particularly important in
the context of the “perturbation-aided” explosion mechanism,
whose efficiency is set by both the magnitude of the convec-
tive velocities and the typical spatial scales of convection in the
burning shells of the supernova progenitor (Müller et al. 2017;
Couch et al. 2020).

One point of concern is related to the usage of the Implicit
Large Eddy Simulation (ILES) approach in this study, which
gives rise to effective magnetic Prandtl numbers Prm = ν/η
close to or even larger than unity. Such large values of Prm
are an overestimation of the actual conditions found in oxygen-
burning shells. Based on the analytic expressions of the viscous
and resistive coefficients provided in Augustson et al. (2019), we
estimate that realistic magnetic Prandtl numbers in the oxygen
shell considered here range from Prm = 0.001 to Prm = 0.1.
It is well known that certain properties of the small-scale tur-
bulent dynamo are sensitive to the value of Prm. In particu-
lar, the strength of the saturated magnetic field is often found
to be an increasing function of Prm (Schekochihin et al. 2004;
Brandenburg 2011; Käpylä et al. 2018). Unfortunately, no gen-
eral consensus has been reached so far as to the behavior of
SSDs at low Prm, which is likely setup dependent. More MHD
simulations of the oxygen-burning phase with realistic Prandtl
numbers are therefore required in order to properly establish the
impact of magnetic fields on the dynamics of the convective
shell. Finally, we did not include a nuclear-burning network in
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our simplified setup, so further investigation on possible indirect
effects of magnetic fields on the nuclear energy generation and
nucleosynthesis is certainly needed.
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CHAPTER 4

Conclusions

This thesis focused on the development and application of a numerical scheme opti-
mized for modeling MHD flows in stellar interiors. This kind of simulations is crucial
to improve current theories of stellar evolution and to gain insight into the explosion
mechanism of core-collapse supernovae. As discussed in Chapter 1, the dynamical
conditions found in the interior of stars pose various challenges to the widely popular
high-resolution shock-capturing (HRSC) methods for MHD, which are mostly suited
for supersonic flows. The low Mach MHD scheme proposed in this work overcomes
the numerical difficulties faced by HRSC methods, thus enabling the exploration of
magnetized flow regimes that were previously inaccessible.
An implementation of this scheme is now available in the finite-volume SLH code.
In Sect. 3.3, the newly developed MHD method saw a first astrophysical application
in production-quality simulations of turbulent dynamo action in an oxygen-burning
shell of a massive star. These simulations allow us to study the impact of strong mag-
netic fields on the dynamical evolution of the convective flows in the oxygen shell and
are a first step toward building accurate models of core-collapse supernova progeni-
tors.
Section 4.1 gives a short summary of the publications presented in Chapter 3. The
main results of this thesis are then discussed in the context of stellar evolution mod-
eling in Sect. 4.2, along with an outlook on potential future applications of the new
MHD capabilities of SLH.

4.1 Summary of the individual publications

4.1.1 Implementation of a low-Mach scheme optimized for stellar MHD
flows [Section 3.1]

Conservative, finite-volume methods for ideal MHD are routinely used in simula-
tions of highly magnetized and supersonic flows, but they are inadequate for low-
Mach-number flow regimes. Three major shortcomings limit their use when modeling
MHD flows in stellar interiors, namely the overly strict CFL condition on the time step,
the large numerical dissipation introduced by standard approximate Riemann solvers,
and discretization errors that destroy the hydrostatic equilibrium of the background
stratification.
The main deficiencies of HRSC schemes have been corrected in the work presented
in Sect. 3.1. First, the strict condition on the time step is overcome using a semi-
implicit time discretization technique, in which the induction equation is solved ex-
plicitly while the rest of the system is advanced with an implicit time stepper. These
two integration substeps are then coupled via Strang splitting. The resulting implicit-
explicit Strang splitting (IESS) method maintains numerical stability even over the
relatively long Alfvén and advective time steps, thus significantly increasing the over-
all efficiency of the code. Second, the flawed Mach number scaling of the numerical
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dissipation is adjusted by means of a low-dissipation Riemann solver, which retrieves
the correct asymptotic limit of the MHD equations asM→ 0. Third, a well-balancing
method is used to preserve hydrostatic solutions on the finite grid.
Five verification benchmarks have been designed to put the newly implemented
scheme to the test and to infer its numerical properties. These tests include a linear
wave analysis, a stable magnetized vortex, a smooth Kelvin–Helmholtz instability, a
buoyant bubble rising in a strongly stratified medium, and a small-scale turbulent
dynamo in a setup whose thermodynamic conditions are close to that of an oxygen-
burning shell of a massive star.
The low Mach MHD method successfully passed the benchmarks. These numeri-
cal experiments also allowed the main numerical properties of IESS to be quantified.
In particular, this study showed that i) the IESS method is second-order accurate in
both space and time; ii) SLH can model magnetized flows even at Mach numbers of
10−5− 10−4, which correspond to the lowest values expected for stellar convection; iii)
thanks to the use of a semi-implicit time discretization technique, the proposed MHD
method is ≈ 100 faster than a scheme based on explicit time steppers when model-
ing flows at M = 10−4; iv) although IESS is not optimized for strongly magnetized
plasmas, it performs relatively well even at a plasma-β of 0.01; v) the low-dissipation
solver allows stratified, small-scale dynamos to be excited even on coarse grids span-
ning only 16 cells per pressure scale height.

4.1.2 Comparison of higher-order Godunov-type methods in simulations
of astrophysical subsonic flows [Section 3.2]

In the second publication (see Sect. 3.2), all combinations of 6 spatial reconstruction
schemes and 3 Riemann solvers were compared using two test problems involving
subsonic flows only. These included a convergable Kelvin–Helmholtz instability and
a setup involving turbulent convection, convective boundary mixing, and excitation
of internal waves. The goal of this study was to assess the computational cost of
each combination of methods required to achieve a desired accuracy in the numerical
solution.
It was found that higher than second order, unlimited reconstruction methods gen-
erate strong undershoots and overshoots in regions where the conservative quanti-
ties are characterized by large gradients. These numerical artifacts do not appear (or
are significantly reduced) in simulations using TVD methods. On the other hand,
TVD methods introduce artificial acoustic noise that dominates the spectrum of phys-
ical, high-frequency waves, whereas unlimited reconstructions produce much cleaner
spectra. By extracting the dissipation length scale from the kinetic energy spectrum
of turbulent flows, it was possible to measure the computational effort required by
each combination of methods to resolve a given spatial scale in the turbulent flow
field. In particular, the least efficient method (i.e., van Leer reconstruction with the
Rusanov solver) is ≈ 10000 less efficient than a low-dissipation solver combined with
a 7th-order reconstruction method. Moreover, the low-dissipation scheme always out-
matches the HLLC solver when the spatial reconstruction is fixed.
This study also showed that no single reconstruction method is ideal for all problems
of stellar hydrodynamics. If artificial overshoots are largely to be avoided in the sim-
ulation, as it may be necessary in studies of convective boundary mixing, the PPM
method of Colella and Woodward (1984) or the modification to PPM of Colella and
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Sekora (2008) are the most suitable choices. If internal waves need to be modeled ac-
curately without generating excessive overshoots near steep thermal stratifications, an
unlimited parabolic method is preferable instead.

4.1.3 Simulations of turbulent dynamo action in an oxygen-burning shell
[Section 3.3]

The new numerical MHD scheme optimized for stellar MHD flows presented in
Sect. 3.1 was used to simulate the excitation of a small-scale turbulent dynamo in a
convective oxygen shell of a 25 M� star (see Sect. 3.3). This problem involves convec-
tive boundary mixing processes occurring at the upper boundary of the shell, which
enlarge the size of the convective region over time. In light of the results obtained in
the comparison study shown in Sect. 3.2, the PPM method of Colella and Woodward
(1984) was chosen to perform the spatial reconstruction of the Riemann states at the
grid cell boundaries. The initial stratification of the shell was taken from Andrassy
et al. (2022), to which a weak seed field was added to trigger dynamo amplification.
A small-scale dynamo is successfully excited on all of the grids considered in this
study. The weak initial seed field (Bx = 105 G) is amplified exponentially to values on
the order of 1010 G. The instability proceeds until the magnetic field becomes strong
enough to back-react on the flow, suppressing the small scale features in the velocity
field. In the subsequent saturated phase of the dynamo, the total magnetic energy
inside the convection zone stabilizes around values close to 30% of the kinetic energy
content of the convection. Such strong fields reduce the average speed of the convec-
tive flows and suppress shear instabilities at the convective boundary of the oxygen
shell. Consequently, the rate of convective boundary mixing in the MHD simulations
is reduced by 20% as compared to simulations run without magnetic fields.
These simulations proved that turbulent dynamo action is strong enough to change
the typical spatial scales of convection and the magnitude of fluctuations of thermo-
dynamic quantities around the hydrostatic state. Therefore, magnetic fields cannot be
ignored in the context of the perturbation-aided supernova explosion scenario. Fur-
thermore, less efficient mixing at convective boundaries may have implications for
shell mergers.

4.2 Discussion and outlook

4.2.1 Low-Mach-number modeling of stellar MHD flows

The novel MHD method developed in this thesis has proven to be a powerful tool
for modeling fully compressible, magnetized flows at the dynamical conditions found
in the interior of stars. In Sect. 3.1, the IESS method implemented in SLH was used
to simulate small-scale turbulent dynamo action at mean Mach numbers of ≈ 10−4,
but in principle flows with even lower Mach numbers can be modeled. Only at Mach
numbers of 10−8− 10−7 do rounding errors due to the finite precision of floating-point
arithmetic significantly affect the quality of the numerical solution1 (e.g., Edelmann

1In low-Mach flows, the amplitude of the fluctuations of the thermodynamic quantities relative to
their mean state is approximately M2. Therefore, at M≈ 10−8, the relative physical fluctuations pro-
duced by the flow are comparable to the machine epsilon of double-precision numbers (ε≈ 2.22× 10−16).
However, rounding errors can build up to significant values at even higher Mach numbers if the number
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et al., 2021). Since the Mach number of convection in stars is usually higher than 10−5

(e.g., Jermyn et al., 2022), SLH is suited to model all stages of stellar evolution, from
the main sequence of low-mass, fully convective stars to the last moments before the
collapse of the iron core in massive stars.
To date, no conservative scheme other than that implemented in SLH has been pre-
sented in the literature that is capable of simulating highly subsonic stellar MHD flows
without modifying the original set of ideal MHD equations. A few pressure-based
methods have recently been developed for low Mach MHD, but they do not include
gravitational sources (Dumbser et al., 2019; Fambri, 2021). Other conservative, time-
implicit codes optimized for fully compressible, low Mach stellar flows, such as MU-
SIC (e.g., Viallet et al., 2011) or ANTARES (e.g., Muthsam et al., 2010), do not have
MHD capabilities. Thus, SLH is so far the only code that can efficiently model fully
compressible MHD flows in the regions deep inside stars, which are beyond the reach
of other methods developed for stellar MHD as discussed in Sect. 1. In fact, thanks to
the use of semi-implicit time discretization techniques, SLH is about 10 or 100 times
faster than state-of-the-art stellar MHD codes when the Mach number of the flow is
10−3 or 10−4, respectively. Specialized Riemann solvers and well-balancing methods
allow SLH to achieve high effective Reynolds numbers in simulations of turbulent
flows and drive turbulent dynamos even on relatively coarse grids. When modeling
flows atM≈ 10−3, conventional methods typically need to use grids that are 4 times
finer than those used by SLH to achieve the same accuracy in the numerical solution,
making the simulation 256 times more expensive in 3D (see Sect. 3.1 and 3.2).

4.2.1.1 How to choose the optimal combination of numerical methods in simula-
tions of stellar MHD flows

The study presented in Sect. 3.2 has shown that the choice of Riemann solver and spa-
tial reconstruction scheme has profound consequences on the quality of the numerical
solution in simulations of subsonic astrophysical flows. The low-dissipation solver
proposed by Minoshima and Miyoshi (2021) is easy to implement in any Godunov-
like code and has a negligible impact on the number of floating point operations per
second. When the Mach number of the flow is ≈ 10−2, the use of a low-dissipation
Riemann solver reduces the computational cost of the simulation per fixed accuracy
by a factor of 2 to 10 compared to shock-capturing methods, depending on the spatial
reconstruction method used. At even lower Mach numbers, such as those found in
the convective cores of massive main-sequence stars, the difference in performance
between asymptotic-preserving methods and HRSC schemes is even more dramatic.
The choice of spatial reconstruction depends mainly on the astrophysical setup. In
general, the use of higher-order methods sensibly reduces the amount of numeri-
cal dissipation introduced into the system compared to second-order reconstruction
schemes. Higher-order TVD methods should be preferred to unlimited reconstruc-
tions in simulations where preserving the boundness of the solution is crucial for the
correct treatment of the physical processes of interest. For example, mass fractional
abundances should always be bounded between 0 and 1 to avoid any need to clip
unphysical abundances, which would lead to mass conservation errors. In addition,
strong overshoots in the state quantities at steep stellar convective boundaries might
lead to incorrect conclusions about convective boundary mixing processes. On the

of integration steps is particularly large.
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other hand, it has been shown in Sect. 3.2 that TVD methods generate spurious excess
power in the frequency regime of pressure waves. Therefore, for asteroseismic studies,
unlimited polynomials should be used to reconstruct the Riemann states, thus dras-
tically reducing the numerical “noise” introduced in the high-frequency part of the
spectrum.
Still uncertain are the implications of the treatment of the ∇ ·B = 0 constraint in
Godunov-type schemes for the dynamics of low-Mach-number MHD flows. As dis-
cussed in Sect. 1, several methods have been proposed in the literature to mitigate the
effects of numerical magnetic monopoles in HRSC schemes. In SLH, the Contact con-
strained transport method of Gardiner and Stone (2005) is used to keep the update on
the magnetic flux across the boundaries of each cell within rounding errors. However,
this discretization method does not guarantee that magnetic monopoles are generally
absent during the evolution of the flow or that the numerical scheme remains sta-
ble under all circumstances. Furthermore, the need for a staggered representation of
the magnetic field makes constrained transport methods difficult to use on arbitrarily
curvilinear grids, which are often required in simulations of stellar MHD. Other cell-
centered methods, such as Powell’s 8-wave model or hyperbolic divergence cleaning,
which are easy to use on any grid, may provide reasonably accurate results even if they
are not formally divergence-free. The properties of each of these methods can only be
inferred with numerical experiments. A few works tried to compare the performance
of different ∇ ·B solver for MHD in simulations of magnetized blasts (Tóth, 2000),
accretion disks (Flock et al., 2010), or the solar corona (Zhang and Feng, 2016). None
of these studies focused on subsonic flow regimes. To establish the best method to be
used in simulations of MHD flows in stellar interiors, future works should focus on
comparing ∇ ·B solvers using setups that closely resemble the dynamical conditions
found in production-quality simulations of low-Mach-number stellar MHD.

4.2.1.2 Magnetic field generation mechanisms

Thanks to the special properties of the MHD scheme implemented in SLH, the im-
plications of strong magnetic fields for stellar evolution can be be studied for the first
time in a self-consistent way. This represents a major breakthrough in stellar evolution
modeling, where so far the effects of magnetic fields on the stellar structure have only
been considered using simplified prescriptions. For example, a diffusive model is of-
ten used in 1D codes to represent the mixing and the transport of angular momentum
induced by the Spruit–Tayler dynamo in differentially rotating stable layers of stars
(e.g., Spruit, 2002; Heger et al., 2005; Petrovic et al., 2005). Not only do such simpli-
fied theories crudely approximate the inherently multidimensional MHD processes
associated with the Spruit–Tayler dynamo, but they also rely on tunable parameters
that limit the predictive power of the stellar models. Multidimensional MHD sim-
ulations are therefore fundamental to overcome the limitations of 1D codes and to
quantitatively interpret the interplay between magnetic fields and dynamical shear
instabilities in radiative layers of stars.
Fully compressible MHD simulations are also crucial in gaining insight into the gen-
eration mechanism of magnetic fields in convective regions of stars. Due to the high
Reynolds numbers that characterize stellar interiors, a turbulent, small-scale dynamo
(e.g., Schekochihin et al., 2004; Brandenburg and Subramanian, 2005) is likely to be ex-
cited in every convection zone that arises during stellar evolution, even in the absence
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of rotation. Rotation adds another layer of complexity to the problem, organizing
the convective flows and leading to large-scale dynamos, as it occurs in the convective
envelope of our Sun (e.g., Ghizaru et al., 2010; Augustson et al., 2015; Brun and Brown-
ing, 2017; Käpylä et al., 2023). Indeed, dynamo action has been identified in numerous
MHD simulations of stellar convection, predominantly in upper-main-sequence (e.g.
Brun et al., 2005; Augustson et al., 2016) and low-mass stars (e.g., Dobler et al., 2006;
Käpylä, 2021). Recently, turbulent dynamos have been explored also in late burning
shells of massive stars (e.g., Varma and Müller, 2021; Canivete Cuissa and Teyssier,
2022). However, the implications of efficient dynamo action for convective boundary
mixing and the transport of angular momentum remain largely unknown. Moreover,
the results presented in most of the aforementioned studies were obtained either by
solving a modified set of partial differential equations, or by increasing the luminosity
of the star to drive faster convection. With the exception of the work presented by
Varma and Müller (2021), who simulated an oxygen-burning shell in a core-collapse
supernova progenitor, no fully compressible MHD simulation of stellar interiors has
ever been run at the nominal stellar luminosity. Such simulations are highly desirable
for the even more challenging cases of upper-main-sequence and red-giant stars, for
which it is now possible to estimate the magnetic field strength near or inside the core
with asteroseismic techniques (e.g., Fuller et al., 2015; Lecoanet et al., 2022; Li et al.,
2022; Deheuvels et al., 2023). A comparison between the results of realistic MHD sim-
ulations of stellar convection run with the SLH code and asteroseismic observations
would allow us to determine whether the magnetic field in a given star has been gener-
ated dynamically or if it is the remnant of earlier stages of star formation, as discussed
in the next section.

4.2.1.3 MHD effects on internal waves

Another interesting application of the new capabilities of SLH is the study of potential
MHD effects on the properties of internal waves in stars. Waves in stellar interiors
can be divided into two main groups: pressure waves, where the restoring force for
small fluid displacements from hydrostatic equilibrium is provided by pressure gra-
dients, and gravity waves, where the restoring force is provided by the buoyancy of
the fluid. The frequencies of the resonant p- and g-modes of oscillation are sensitive to
the stellar structure, so their study serves to probe the interior properties of a star (e.g.,
Aerts, 2021). Cantiello et al. (2016) showed that magnetic fields stronger than 105 G
can affect the properties of g-modes in slowly pulsating B (SPB) stars. Such magnetic
field strengths are not implausible for SPB stars. In fact, Lecoanet et al. (2022) inferred
a magnetic field strength of ≈ 5× 105 G near the convective core of the SPB star HD
43317. Strong magnetic fields in the core of red giant stars are also thought to suppress
mixed dipole modes (i.e., modes that behave as pressure waves in the convective en-
velope and as gravity waves in the radiative core) by trapping mode energy inside the
core (e.g., Stello et al., 2016; Cantiello et al., 2016). However, the exact mechanism of
mode trapping in the core of these objects is not fully understood yet. Furthermore,
the origin of the magnetic field in the interior of red giants is unknown. Magnetic field
strengths inferred in the core by asteroseimic techniques are on the order of 105 G (Li
et al., 2022; Deheuvels et al., 2023), which is consistent with dynamo action in the con-
vective core during the main sequence (e.g., Augustson et al., 2016), but a fossil origin
cannot be excluded (Bugnet et al., 2021). Since the flows in the core of red-giant stars

132



CHAPTER 4. CONCLUSIONS

are low Mach, SLH is the perfect tool to constraint the topology, strength, and origin
of the magnetic field in the stellar core by comparing the spectrum of the observed
mixed modes to simulation results. This is one of the main advantages of using a fully
compressible code such as SLH over anelastic methods, which do not retain pressure
modes of oscillation in the numerical solution and therefore cannot be used to infer
the properties of the magnetic field in red giants from asteroseismic data.

4.2.2 MHD simulations of late burning shells of massive stars

The simulations shown in Sect. 3.3 demonstrated that small-scale, turbulent dynamos
can have a significant impact on the dynamical evolution of oxygen-burning shells of
massive stars. In this thesis, it was found that efficient dynamo action reduces the
kinetic energy content of the convective flows by up to 30% compared to the purely
hydrodynamic case. This in turn reduces the amount of energy available to overcome
the buoyancy of the entrained material and slows down the mixing occurring at the
upper convective boundary of the shell. Although the magnetic fields amplified by the
turbulent dynamo are not strong enough to completely suppress convective boundary
mixing, a lower mass entrainment rate can delay or even prevent shell mergers in later
evolutionary stages. Shell mergers have been found in a number of numerical studies
which did not consider magnetic fields (e.g., Ritter et al., 2018; Andrassy et al., 2020;
Yadav et al., 2020), and their occurrence profoundly changes the structure of core-
collapse supernova progenitors.
The turbulent dynamo operating in the oxygen shell generates superequipartition
magnetic fields (∼ 1010 G) on spatial scales corresponding to the local pressure scale
height. The Lorentz force exerted by such strong magnetic fields suppresses shear in-
stabilities in the inertial range of the turbulent spectrum and changes the topology of
the convective flows. In particular, during the nonlinear phase of the dynamo, convec-
tion proceeds in the form of large-scale, thread-like structures, where strong magnetic
tension forces partly suppress the horizontal mixing between up- and downflows.
This allows the convective plumes to better retain their heat content compared to the
purely hydrodynamic case, resulting in larger entropy fluctuations around the back-
ground, hydrostatic state.
Both the reduced convective velocities and the altered topology of the turbulent con-
vective flows affect the efficacy of the perturbation aided supernova explosion mech-
anism (e.g., Couch et al., 2020; Müller, 2024). In particular, it is expected that the tur-
bulent dynamo amplification in the convective shells of the supernova progenitor ul-
timately results in a reduced ram pressure in the gain region behind the stalled shock.
However, if the magnetic field generated by the turbulent dynamo is “frozen” in the
plasma, it can be further amplified to strengths on the order of 1015 − 1016 G when
the convective oxygen shell reaches the gain region. These magnetic field strengths
are in the range of observations for magnetars (e.g., Kouveliotou et al., 1998; Woods
and Thompson, 2006; Olausen and Kaspi, 2014) and could potentially trigger shock re-
vival (e.g., Bugli et al., 2020; Powell et al., 2023). Despite the unique insight provided
by the simulations performed with the SLH code in this thesis, MHD simulation of su-
pernova progenitors in the last moments prior to core-collapse are needed to provide
realistic initial conditions for core-collapse supernova explosions and better judge the
role of magnetic fields in reviving the stalled shock.
Finally, it should be noted that the main properties of the small-scale turbulent dy-
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namo depend on the magnetic Prandtl number, which is defined as the ratio of the
kinematic viscosity to the magnetic diffusivity,

Prm =
ν

η
. (4.1)

Because SLH does not add explicit viscosity and magnetic diffusivity to the set of stel-
lar MHD equations (see Sect. 2), the value of Prm achieved in simulations of MHD
turbulence is not fixed, but rather it is determined by the underlying properties of the
numerical scheme and the local flow conditions. In this so-called “implicit large eddie
simulation” approach (e.g., Grinstein et al., 2007), Prm is typically close to unity (e.g.,
Riva and Steiner, 2022). In reality, the plasma in the late burning shells of massive stars
has typical magnetic Prandtl numbers in the range from 10−3 to 0.1 (e.g., Varma and
Müller, 2021). Whether small-scale dynamos can be successfully excited even at such
low values of Prm is still open question. Recently, (Warnecke et al., 2023) demonstrated
that turbulent dynamo action is possible even at Prm ≈ 10−3, but that work only cov-
ered the kinematic stage of the dynamo instability. The strength of the magnetic field
in the saturated phase of the dynamo is usually found to be an increasing function of
Prm, although the dependence is very mild (e.g., Schekochihin et al., 2004; Branden-
burg, 2011). Low magnetic Prandtl number flows are particularly difficult to simulate
because of the large separation between the viscous and resistive scales. In fact, in
order to excite a small-scale dynamo, magnetic Reynolds numbers on the order of 100
must usually be achieved in the flow, which requires very fine grids with thousands
of grid cells per axis when Prm � 1. In the future, numerical simulations of oxygen
burning shells run at more realistic values of Prm will be needed to better establish the
effects of turbulent dynamo action on the dynamics of the convective flows and the
convective boundary mixing.

134



List of abbreviations

1D one-dimensional
3D three-dimensional
CBM convective boundary mixing
CFL Courant-Friedrichs-Lewy
CT constrained transport
CTU corner transport upwind
ENO essentially non-oscillatory
EoS equation of state
HLL Harten-Lax-van Leer
HLLC Harten-Lax-van Leer-Contact
HLLD Harten-Lax-van Leer-Discontinuities
HRSC high-resolution shock-capturing
IESS implicit explicit Strang splitting
MHD magnetohydrodynamics
MLT mixing-length theory
MPI message passing interface
MUSCL monotonic upstream-centered scheme for conservation laws
ODE ordinary differential equation
PPM piecewise parabolic method
RSST reduced speed of sound technique
SLH Seven-League Hydro
SSD small-scale dynamo
TVD total variation diminishing
UCT upwind constrained transport
WENO weighted essentially non-oscillatory
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