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Abstract

This thesis reports on the first realization of a two-particle Laughlin state
– the quintessential building block of fractional quantum Hall states – in a
rotating ultracold quantum gas. Utilizing a single atom and spin resolved
imaging technique, we probe the Laughlin wavefunction and reveal its
microscopic signatures: the suppression of interparticle interactions by
incorporating angular momentum into the particles’ relative motion.

In order to rotate few-fermion systems we develop a novel all-optical
approach based on the interference of the optical trapping potential of
the atoms with Laguerre-Gaussian beams. Since this method requires
high quality optical light fields, we implement an advanced optical phase
aberration correction technique by using the quantum gas itself as the
wavefront sensor. We verify the imprint of the angular momentum from
the rotating trap onto the atoms by transferring a single atom in an
angular momentum eigenstate of the harmonic potential. To realize a
Laughlin state, we prepare two repulsively interacting, spinful fermions
in the ground state of the tweezer and subsequently turn on the trap
rotation which coherently populates a state with angular momentum in
the atoms’ relative motion. We identify the state as the Laughlin state
based on the reconstructed density distribution and the second-order
correlation functions.

This work establishes the foundation for assembling bosonic and fermionic
fractional quantum Hall states in rotating atomic gases.





Zusammenfassung

Im Rahmen dieser Arbeit wurde ein aus zwei Teilchen bestehender Laugh-
lin Zustand – der essentielle Grundbaustein fraktionaler Quanten-Hall-
Zustände – in einem rotierenden ultrakalten Quantengas realisiert. Unter
Verwendung einer atom- und spinaufgelösten Abbildungsmethode, wur-
den die mikroskopischen Signaturen der Laughlin Wellenfunktion beob-
achtet: die Unterdrückung der Wechselwirkung durch die Aufnahme des
Drehimpulses in der Relativbewegung der Teilchen.

Um Systeme mit wenigen Fermionen zu rotieren, entwickeln wir einen
neuen, rein optischen Ansatz, der auf der Interferenz des optischen Poten-
tials der Atome und Laguerre-Gaußscher Strahlen basiert. Da für diese
Methode qualitativ hochwertige optische Strahlen notwendig sind, im-
plementieren wir eine progressive Technik zur Korrektur der optischen
Phasenaberration, indem wir das Quantengas selbst als Wellenfrontsen-
sor verwenden. Wir verifizieren die Aufnahme des Drehimpulses von der
rotierenden Falle auf die Atome, indem wir ein einzelnes Atom in Drehim-
pulseigenzustände des harmonischen Potentials transferieren. Um einen
Laughlin-Zustand zu realisieren, präparieren wir zwei stark abstoßend
wechselwirkende, spinbehafteten Fermionen im Grundzustand der Falle,
um anschließend die Falle zu rotieren, wodurch wir kohärent einen Zu-
stand populieren, welcher Drehimpuls in der Relativbewegung der Atome
besitzt. Wir identifizieren den Zustand als Laughlin-Zustand, basierend
auf der rekonstruierten Dichteverteilung und der zweiten Ordnung Kor-
relationsfunktionen.

Diese Experimente schaffen die Grundlage für die Zusammensetzung
bosonischer und fermionischer fraktionaler Quanten-Hall-Zustände in ro-
tierenden atomaren Quantengasen.
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1

Introduction
Structures emerge in nature, and physics classifies them into phases of matter. This
organizing principle manifests in the universal properties exhibited by distinct systems
that are in the same phase, irrespective of their specific constituents. These properties
are emergent as they cannot be constructed from a first principle microscopic descrip-
tion, and are instead defined by the collective behaviour of the entire ensemble [And72;
Lau00]. A phase transition between two different phases is then associated with a
qualitative change in their emergent, macroscopic properties.

Many phases in condensed matter systems can be classified by their symmetries [Lan36;
Lan37; Gol62; Sac11], a concept introduced by Landau, which describes phase tran-
sitions based on spontaneous symmetry breaking. The ground state of the system is
labelled disordered if it possesses the same symmetries as the system, while a phase
transition occurs when the ground state breaks the symmetry of the system, referred
to as the ordered state. A phenomenological description of phase transitions was de-
rived by Ginzburg and Landau [Gin50], where an order parameter describes the phase
transition. In the disordered phase, the order parameter vanishes, while it emerges in
the symmetry-broken phase, signalling the onset of a phase transition. Such a tran-
sition can be invoked by thermal fluctuations where the temperature of the system is
changed and is associated with a classical phase transition. On the other hand, a quan-
tum phase transition, e.g. the superfluid to Mott-insulator transition [Jak98; Gre02],
occurs at zero temperature and is driven by quantum fluctuations, rather than thermal
fluctuations [Sac11]. However, these are still successfully described by the emergence
of an order parameter.

There is yet another class of quantum phase transitions which preserve their symme-
tries, and therefore cannot be described by Landau’s theory of spontaneously broken
symmetries. The new ingredient is topological order [Hal17; Wen95; Che10]. Topo-
logical phases of matter are instead classified by a global invariant that is robust
with respect to smooth deformations. More precisely, two states of a Hamiltonian
with a gapped energy spectrum, that can be adiabatically deformed into each other
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1 Introduction

by a local unitary transformation belong to the same topological phase. If the gap
is not preserved during that process, the system undergoes a topological quantum
phase transition [Has10; Qi11]. While topological phases of matter are found across
numerous physical systems, including quantum spin liquids [Sac08; Bal10], photonic
systems [Lu16], ultracold quantum gases [Gol16], mechanical systems [Hub16] or topo-
logical insulators [Has10; Qi11], the field came into existence with the topological in-
terpretation [Tho82] of the quantum Hall effect [Kli80; Gir89].

The defining property of the quantum Hall effect is its quantization of the Hall
conductance to integer values of e2/h [Kli80], which originate from dissipationless,
current carrying states at the boundary and insulating states in the bulk region [Hal82;
Has10]. The quantum Hall states can be understood as topological phases since the
number of states at the boundary can be related to a topological invariant, the so-
called Chern number [Tho82; Gol16]. Hence, the quantized conductivity, a macroscopic
property, is independent of the microscopic structure of the material and in particular,
robust against minor deformations such as a change in the magnetic field.

A few years after the discovery of the integer quantum Hall (IQH) effect, fractional
values of the Hall conductance e2/h were also observed [Tsu82]. Such systems host
quasiparticles that are fractionalized at the boundary [Wen95] and exhibit fractional
exchange statistics within the bulk [Ste08]. Unlike the IQH effect, where the energy gap
of the Hamiltonian stems from the single particle cyclotron frequency, the gap in the
fractional quantum Hall (FQH) effect arises from an inherent many-body problem of
strongly interacting electrons [Lau83]. As these systems are typically hard to simulate
numerically, realizing them in synthetic materials, which offer observables that are hard
to access in conventional solid state materials, could provide a deeper understanding
of their microscopic origins [Gol16; Coo19; Ma24].

Ultracold atoms in rotating traps
Ultracold atoms are an excellent platform for the simulation of complex quantum-
many-body systems, which offer high degree of control and tunability with respect to
the temperature, the inter-particle interactions, the density, or the geometry and di-
mensionality of the potential landscape [Blo08; Blo12; Nav21; Gro21a; Wei21]. They
provide a variety of observables to study their properties, ranging from spectroscopic
probes [Val21], spatially resolved thermometry [Yan24], or correlation measurements
by detecting single atoms in real and momentum space [Alt04; Gro21a; Hol21; Bra23].
In order to simulate electrons subjected to magnetic fields, neutral atoms require en-
gineering of an artificial magnetic field due to their charge neutrality [Dal16]. Among
the various approaches in Floquet engineered optical lattices [Jot14; Aid14] and spin-
orbit coupled atomic gases [Lin09] in synthetic dimensions [Stu15; Man15], the most
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intuitive one, on a conceptual level, is to rotate the system [Fet03; Coo08]. Here, in the
classical picture, the artificial magnetic field is introduced by exploiting the analogy
between the Lorentz force and the Coriolis force.

The most direct manifestation of this equivalence in the context of rotating ultracold
atomic gases, is the nucleation of quantized vortices [Mad00; Hod01] which form an
Abrikosov lattice with increasing vortex number [Abo01; Zwi05], analogous to type-II
superconductors exposed to a magnetic field [Til19]. When the number of vortices
reaches the number of particles, however, the system undergoes a phase transition
driven by quantum fluctuations of the vortices to a strongly correlated state [Coo01;
Sin02; Bay04]. In a system of repulsively interacting bosons, a transition to a Laughlin
state occurs [Wil98; Wil00; Coo08; Coo20], which is a paradigmatic example of the FQH
effect [Lau83]. First signatures of entering the quantum Hall regime have been observed
in the rapidly rotating limit, by the softening of the Abrikosov lattice [Bre04; Sch04],
the suppression of photoassociation loss [Gem10], and more recently by geometrically
squeezing a Bose-Einstein condensate into the LLL [Fle21; Muk22].

From an experimental point of view, reaching the strongly interacting limit is chal-
lenging since trap imperfections may cause heating of the system and the exceedingly
small energy gaps render the stability of the FQH state delicate. In particular, rapidly
rotating fermionic systems remain experimentally unexplored so far, primarily due to
the necessity to use rotating optical potentials which often suffer from optical aber-
rations. Moreover, challenges arise in transferring all fermions from the non-rotating
ground state into the LLL, given the Pauli principle.

In this thesis, we choose a bottom-up approach to realize a Laughlin state in a rapidly
rotating optical potential comprised of two fermionic atoms, the fundamental building
block of a FQH state. Our fluorescence imaging technique allows us to resolve each
individual atom, thereby unveiling the microscopic structures of the strongly correlated
Laughlin wavefunction. In this way, we demonstrate key properties of a Laughlin state,
including the suppression of interactions due to the incorporation of angular momentum
in the particles’ relative motion. This establishes the foundation for future studies on
strongly correlated topological phases of matter with rotating ultracold quantum gases.

Outline of this thesis
In chapter 2, we present the theoretical framework for the main experimental results
in this thesis. We give a concise (and non-exhaustive) overview on the quantum Hall
effect and its relevant connections to this work. In particular, we motivate the analogy
of rapidly rotating atomic gases and FQH systems.

Chapter 3 contains a description of the interactions of neutral atoms at ultracold
temperatures. Furthermore, we introduce the concept of Feshbach resonances which
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1 Introduction

allows to tune the interactions of the atoms from attractive to non-interacting and to
repulsive. Chapter 4 highlights the experimental apparatus to cool and trap neutral
atoms in optical potentials, with control on the single particle level. We showcase
a generic optical phase aberration correction scheme by directly using the quantum
gas itself. Furthermore, we describe our optical setup to set a tightly focused optical
tweezer in rotation by interference with a Laguerre-Gaussian mode. In the last section
of this chapter, we describe the imaging techniques in our experiment to extract the
single atom and spin resolved momenta of individual atoms which allows us to detect
correlations of the quantum state.

In chapter 5, we study the motional control of a single fermion which we engineer into
various angular momentum eigenstates of the harmonic trapping potential. We confirm
the imprint of angular momentum by investigating the time evolution of the angular
momentum state in a slightly deformed, anisotropic trap. In chapter 6, we realize
a Laughlin state with two rapidly rotating spinful fermions. Our single atom and
spin resolved fluorescence imaging allows us to sample from the Laughlin wavefunction
and to reconstruct the two-dimensional density of the wavefunction. Furthermore, the
imaging technique enables us to determine the pair and angle correlations of the two
particles. Chapter 7 summarizes the results of this thesis and gives a taste of the
possibilities of future studies.
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2

The quantum Hall effect
The ground breaking discovery of the quantum Hall effect in 1980 [Kli80] has led to
findings of completely novel phenomena in condensed matter physics [Kön07; Yu10;
Ser20; McI19; Lee09; Tan19] and even beyond that field, such as the redefinition of
the SI unit system. The precise quantization of the Hall resistance defined by two
fundamental constants, the Planck constant and the elementary charge, underscores
the astonishing robustness of this macroscopic quantum phenomenon in semiconductor
samples that contain uncontrolled material impurities or imprecise geometries.

The discovery of the fractional quantum Hall effect (FQH), that is the quantization
of the Hall resistance to fractional values, avalanched a variety of theoretical develop-
ments as it required a complete new rethinking of strongly correlated many-electron
systems [Lau83; Hal83a; Hal84; Gir84; Mac85; Lee89; Jai89]. Laughlin’s radical idea
to propose a variational ground states wavefunction which describes an incompressible
quantum fluid with excitations that are of fractional elementary charge [Lau83] turned
out to describe the effect accurately and is until to date the cornerstone of many of
these developments.

In this chapter, we intend to give a short introduction to the classical Hall effect and
the integer quantum Hall (IQH) effect to introduce the mathematical notation, and
to discuss the fundamental differences to the FQH effect. In the last section 2.4, we
establish an analogy between electron systems in magnetic fields and ultracold neutral
atoms in rotating potentials, which are used in this thesis to simulate FQH states. This
chapter is based on books [Yos98; Gir89; Wen04; Coo20; Dal16], lectures notes [Ton16;
Mac94] and reviews [Coo08; Pap22] on the quantum Hall effect, where we refer to a
more in-depth treatment.

2.1 Classical Hall effect
Consider the motion of electrons with mass me and charge −e restricted to a two-
dimensional (2D) horizontal plane and exposed to an external magnetic field B along
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2 The quantum Hall effect

Ix

b

B

ρxx

ρxy

a

B
x

y

Figure 2.1: Classical Hall effect. a, Electrons confined to the horizontal xy-
plane, slowly moving along the longitudinal x-direction, and subjected to
an axial magnetic field B, undergo cyclotron motion, illustrated by the
blue arrows. b, Resistivity along the longitudinal (blue) and transverse
(red) direction.

the axial direction, illustrated in Fig. 2.1. Due to the Lorentz force the motion of
the electrons obey cyclotron orbits with a frequency ωB = eB/me, which introduces a
natural length scale, the magnetic length lB =

√
ℏ/meωB, associated to the radius of

the orbits.
A classical description of the electron transport in a metal is given by the Drude

model [Dru00] that describes the electron velocity v accelerated by an electric field E
along the x−direction, with a friction term to account for scattering of the electrons
with underlying lattice or other electrons on a characteristic time scale τ . The equation
of motion then reads

m
dv

dt = −eE − ev × B − mv

τ
. (2.1)

We would like to find the equilibrium solution dv/dt = 0 and relate it to the current
density j = nev, here n is the electron density. Solving Eq. (2.1) in the 2D plane then
relates the current density to the electric field by

j = σDC

1 + ω2
Bτ

2

(
1 −ωBτ
ωBτ 1

)
E,= σE (2.2)

where σDC = ne2τ/me is the DC conductivity in the absence of the magnetic field. This
relation is known as Ohm’s law as it relates the response of the current to an electric
field via the conductivity σ. The off-diagonal terms in σ cause a voltage perpendicular
to the current direction, know as the Hall voltage [Hal79].
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2.2 Integer quantum Hall effect

The resistivity ρ is found by inverting the conductivity σ which yields

ρ = 1
σDC

(
1 ωBτ

−ωBτ 1

)
. (2.3)

Remarkably, the off-diagonal term ρxy = ωBτ/σDC = B/ne depends only on the elec-
tron density and the electron charge, and is independent of the materials imperfections
captured by the scattering time τ . In contrast, the resistivity along the longitudinal
direction ρxx = me/ne

2τ depends on τ and converges towards zero as the scattering
time increases. The classical prediction of the resistivity based on the Drude model is
illustrated in Fig. 2.1b, where ρ is displayed in arbitrary units. Having the classical
expectation on the behaviour of the resistivity, we might wonder how they change un-
der extreme conditions, that is at low temperatures and strong magnetic fields where
quantum effects start to play the dominant role.

2.2 Integer quantum Hall effect
The IQH describes the quantization of the Hall resistivity at high magnetic fields to an
extraordinary accuracy in terms of two fundamental constants

ρxy = h

e2ν
, ν ∈ Z (2.4)

the Planck constant h and the elementary charge e. The quantization of the Hall
resistivity is accompanied with a vanishing longitudinal resistivity ρxx, displayed in
Fig. 2.2. On the other hand, at low magnetic fields the classical expectation is recovered
where ρxy increases linearly with the magnetic field and ρxx is approximately constant.

2.2.1 Landau levels
The IQH can be understood by considering non-interacting electrons in two dimensions
x = (x, y) exposed to a magnetic field B = Bêz along the axial direction. Since the
electrons are non-interacting, the discussion can be simplified to a single electron, for
which the Hamiltonian reads

H = 1
2me

(p + eA)2 , (2.5)

where p = (px, py) is the canonical momentum and the vector potential A determines
the magnetic field B = ∇×A. For a given magnetic field the choice of the vector poten-
tial is not unique as it stays the same under a gauge transformation A → A + ∇χ(r),
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2 The quantum Hall effect

Figure 2.2: Integer quantum Hall effect. The IQH effect manifests in the quan-
tization of the Hall resistivity ρxy with integer values accompanied with a
drop in the longitudinal resistivity ρxx at strong magnetic fields and low
temperatues. Taken from [Kli93].

where χ(r) is a scalar field1. We directly choose to work in the symmetric gauge
A = (−By/2, Bx/2, 0) which preserves rotation symmetry about the origin. Let us
remark that this is a natural choice in the underlying context of rotating systems as
the angular momentum remains a good quantum number in both cases (more details
in section 2.4).

In order to calculate the eigenergies of the Hamiltonian, we introduce new operators
associated with the kinetic momentum and guiding center coordinates [Yos98; Mac94]

π =
(
px − ℏ

2l2B
y, py + ℏ

2l2B
x

)
, (2.6a)

ρ =
(
x

2 − l2B
ℏ
py,

y

2 + l2B
ℏ
px

)
, (2.6b)

1The rotation of the divergence of a scalar field is zero ∇ × ∇χ(r) = 0
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2.2 Integer quantum Hall effect

respectively, which obey the commutation relations

[πx, πy] = −iℏ2/l2B, (2.7a)
[ρx, ρy] = il2B, (2.7b)
[ρi, πj] = 0, (2.7c)

where we used the known commutation relation for the canonical coordinates [xi,pj] =
iℏδij. From these commutation relations, we see that both the components of π and
ρ are canonical conjugate variables, in which the magnetic length lB appears as a
natural length scale. Furthermore, the guiding center ρ can be interpreted as the
center position of the cyclotron orbits. As they commute with the Hamiltonian (see
Eq.(2.7c)) we expect that the energy states are degenerate. To put this in a physical
picture, it doesn’t cost any energy to shift the position of the guiding center. The
only relevant energy scale is the kinetic energy given by the fast rotating cyclotron
frequency.

The Hamiltonian can be expressed in a rather simple form consisting of the sum of
π2

x and π2
y, which has the same structure as the one-dimensional harmonic oscillator.

Introducing the ladder operators

a = lB√
2ℏ

(πx − iπy) , (2.8a)

a† = lB√
2ℏ

(πx + iπy) , (2.8b)

which obey the commutation relation [a, a†] = 1 allows us to rewrite the Hamiltonian
into the familiar structure

H = ℏωB

(
a†a+ 1

2

)
. (2.9)

This yields equally spaced eigenergies E = ℏωB(n+1/2) which are called Landau levels
and are separated by the cyclotron frequency ωB proportional to the magnetic field,
shown in Fig. 2.3a.

From the commutation relation of the guiding center coordinates we can estimate the
number of degenerate states per Landau level, as a single state occupies an area 2πl2B.
If we consider a disk with radius R and thus an area πR2, the number of available states
within the disk is therefore N = R2/2l2B which corresponds to an enormous degeneracy
as we compare the macroscopic size of the disk with the microscopic length scale of
the cyclotron orbit. The total flux which penetrates the wavefunction of an electron is
given by 2πl2BB = h/e ≡ ϕ0 which is exactly the magnetic flux quantum. Hence, there
is a single flux quantum available for each electron.

11



2 The quantum Hall effect

a b
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m
 (
ħω

B
)

2

0

1

0 2-2

Angular momentum 

m=0 m=3 m=5

0

1

a†
b†

Figure 2.3: Landau levels. a, Degenerate Landau levels with respect to the an-
gular momentum. Each Landau levels is separated equidistantly by the
cyclotron frequency. The LLL n = 0 is highlighted in red. b, Probabil-
ity density distributions of the single particle wavefunctions in the LLL
for different angular momenta m. The radial extend grows with

√
2mlB.

Non-zero angular momentum manifests in a node of the wavefunction at
the origin x = y = 0. The circular arrows in the m = 5 case indicate the
cyclotron orbits. Each density is normalized to 1.

In symmetric gauge, the angular momentum operator Lz distinguishes the states
within each Landau level. To see this, let us express Lz in terms of the kinetic mo-
mentum and the guiding center coordinates by using Eq. (2.6a) and (2.6b). We arrive
at

Lz = xpy − ypx (2.10)

= − ℏ
2l2B

(ρ2
x + ρ2

y) + l2B
2ℏ(π2

x + π2
y). (2.11)

The second term is associated with the kinetic energy (or equivalently the Hamiltonian),
while the first term of Lz is again similar to the harmonic oscillator in terms of ρx, and
ρy. Since Lz commutes with the Hamiltonian, it allows us to distinguish between
states in a single Landau level. We introduce another set of creation and annihilation
operators [Yos98; Mac94]

b = 1√
2lB

(ρx + iρy) (2.12a)

b† = 1√
2lB

(ρx − iρy), (2.12b)

which obey the commutation relation [b, b†] = 1. We can then express the angular
momentum operator in terms of the ladder operators Lz = ℏ(a†a − b†b). The ladder

12



2.2 Integer quantum Hall effect

operators a† raises an energy state between Landau levels, while the application of b†

keeps the state in the same Landau level, but raises its angular momentum. This is
illustrated in Fig. 2.3.

With that at hand, we can generally describe the state of an electron by the ket
vector

|n,m⟩ = a†n
b†m

√
n!m!

|0, 0⟩ , (2.13)

where |0, 0⟩ is the ground state which is annihilated to zero for both operators a, b and
n,m ≥ 0. These states are eigenstates of the operators a†a and b†b, and in particular
of the angular momentum operator Lz |n,m⟩ = (n − m)ℏ |n,m⟩. Here, the prefactor
(n−m)ℏ reflects the amount of orbital angular momentum incorporated by the electron.

To construct the wavefunctions in coordinate space we express the creation and anni-
hilation operators in coordinate space x. Therefore, we choose the complex coordinate2

z = x− iy. The ground state wavefunction in coordinate space φ0,0 ≡ ⟨x|0, 0⟩ reads

φ0,0(z) = 1√
2πl2B

e−|z|2/4l2B . (2.14)

Of particular importance are the states in the lowest Landau level (LLL) which become
most relevant in the FQH effect. These wavefunctions take the form

φ0,m(z) = 1√
2π2mm!l2B

(
z

lB

)m

e−|z|2/4l2B (2.15)

and are illustrated in Fig. 2.3b. States in the LLL consist of two parts, the trivial
Gaussian contribution which take care that the the wavefunction converges to zero
for large radii |z| → ∞, and a polynomial of order m of the angular momentum
causing a zero in the wavefunction at small radii |z| → 0, given that m > 0. The
maximum expectation value of the probability distribution |φ0,m(z)|2 is at a finite
radius

√
2mlB which does not correspond to the classical cyclotron orbit. In fact, the

radius of the cyclotron orbit is still given by lB in the LLL. Instead, the state φ0,m(z)
can be understood as a linear combination of many cyclotron orbits with a radius lB,
see blue circular arrows in Fig. 2.3b with m = 5.

2.2.2 Robustness of the Hall plateaus
Having established the mathematical notation we come back to the question on the
formation of the quantized plateaus of the resistivity. Here, we will concentrate on pro-

2This is in contrast to the usual mathematical expression z = x + iy due to the direction of the
magnetic field.
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Figure 2.4: Landau levels with disorder. a, Landau levels without disorder are
infinitely degenerate in a translational invariant system. b, Disorder lifts
the degeneracy (broadening of Landau levels) and causes localization (in
gray) of the extended (in red) states. Occupied extended and localized
states up to the Fermi energy EF are highlighted in blue.

viding a physical intuition of the origin of the IQH effect to underscore the fundamental
distinctions from the fractional quantum Hall effect.

The role of impurities is crucial for the quantization of the Hall plateaus [Ton16]. This
seems surprising in the first place as typically quantum mechanical effects are sensitive
and tend to break down if subjected to disorder. However in the context of IQH effect,
disorder is even necessary to exhibit broad plateaus of quantized resistivity. In the
case of a pure, translationally invariant sample, the energy spectrum exhibits infinitely
degenerate Landau levels equally spaced by the cyclotron frequency ωB, illustrated
in Fig. 2.4a. Disorder, which does not conserve any symmetry, lifts that degeneracy
resulting in a broadening of the Landau levels, see Fig. 2.4b. However broadening alone
does not explain the quantum Hall effect.

A second effect of disorder is the localization of states. Only extended states con-
tribute to the conductivity of a material as they carry the charges throughout the
sample. Localized states on the contrary are confined to a certain region of the ma-
terial which undergo cyclotron motion around the impurities. Therefore, they do not
contribute to the longitudinal conductivity.

The interplay of populating extended and localized states is the reason for the occur-
rence of the quantized Hall plateaus. Consider a fully filled Landau level at a certain
magnetic field. Reducing the magnetic field leads to a decrease of available states per
Landau level as the number of states scales with N ∼ B. Instead of populating the
next higher Landau level, localized states are populated which do not contribute to the
conductivity. Hence, the Hall conductance σxy remains constant, while the longitudinal
conductivity σxx remains close to zero.
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2.3 Fractional quantum Hall effect

Finally, the origin of the stability of the IQH effect, that is the quantization of the
Hall resistivity ρxy = h/e2ν at fully occupied Landau levels, stems from the energy gap
to the next higher lying Landau level given by the large cyclotron frequency ℏωB. This
is valid as long the temperatures are low enough kBT ≪ ℏωB to suppress excitations
to higher Landau levels and the disorder of the sample is small enough, though not
vanishing, 0 < Vd ≪ ℏωB to cause broadening and localization of extended states.

2.3 Fractional quantum Hall effect
From a phenomenological point of view the FQH and IQH feature similar properties
in that both show a quantized Hall resistivity at which the longitudinal resistivity
vanishes. In contrast to the integer values in the IQH effect, In the FQH effect, the
Hall resistance takes fractional values of the von Klitzing constant RK = h/e2, the most
prominent one being the ν = 1/3 plateau, see Fig. 2.5.

However, the nature of the energy gap in the FQH effect is of fundamental difference
from the IQH effect. In the latter, the gap arises from a single particle effect given
by the separation of the Landau levels, while in the former, the energy gap stems
from a many-body effect caused by the inter-particle Coulomb interaction between the
electrons in the LLL. Laughlin proposed with an ingenious intuition a variational ansatz
for a wavefunction that captures the essence of the FQH effect [Lau83].

2.3.1 Laughlin wavefunction
The construction of Laughlin’s trial wavefunction to describe the ground state of the
ν = 1/3 FQH effect was largely inspired by the following arguments [Lau83]. The
Coulomb interactions between the electrons are repulsive, hence electrons tend to max-
imize their distance to lower the interaction energy. Thus, the trial wavefunction should
be composed of a term which minimizes the inter-electron distance of the form

N∏
i<j
f(zi − zj). (2.16)

Here, f is a function that vanishes for (zi − zj) → 0. These type of functions are known
as Jastrow-type wavefunctions [Jas55] in which only two-body correlations are taken
into account and higher orders are neglected. Furthermore, f needs to be antisymmetric
due to the spinless fermionic nature of the particles. To ensure that the wavefunction
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2 The quantum Hall effect

Figure 2.5: Fractional quantum Hall effect. Similar to the IQH effect, the FQH
effect exhibits a quantized Hall resistance RH, however at fractional values
of the von Klitzing constant RK = h/e2, accompanied with a vanishing
longitudinal resistance R, at strong magnetic fields and low temperatures.
Taken from [Sto92].

can be normalized, an exponential factor for each particle is factored out, yielding

ψ(z1, ...zN) =
N∏

i<j
f(zi − zj) e−

∑N

i=1 |zi|2/4l2B . (2.17)

The variational approach suggests to vary the Jastrow function f until the expectation
value of the Hamiltonian minimizes the total energy. However, we can impose further
constraints on f that remove the variational degree of freedom. First, the many-
body wavefunction can be constructed from single particle wavefunctions in the LLL,
see Eq. (2.15). Second, f needs to be odd fulfilling f(−z) = −f(z). And third, the
wavefunction is an eigenstate of the total angular momentum M = ∑

i mi which implies
that f is a homogeneous polynomial3 of degree M . Note that the constraints to the
wavefunction also apply to excited states of the system. The only function which obeys
all three restrictions is f(z) = zm with m an odd integer. Thus, we arrive at the famous

3If a polynomial P is homogenous of order d, then P (λx1, ..., λxN) = λdP (x1, ..., xN)
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2.3 Fractional quantum Hall effect

Laughlin wavefunction

ψ1/m(z1, ...zN) =
N∏
i<j

(zi − zj)m e−
∑N

i=1 |zi|2/4l2B , (2.18)

which is an eigenstate of the angular momentum operator with the eigenvalue

M = N(N − 1)
2 m. (2.19)

Note that even though the Laughlin wavefunction is a variational ansatz, it does not
contain any variational parameters since the angular momentum m fixes the filling
factor ν = 1/m within the LLL.

One of the main characteristic of the Laughlin wavefunction is the distribution of
the zero points. For a filling factor ν = 1/m, the probability density |ψ1/m|2 of two of
any electrons in the system decreases with the power 2m. These are deep nodes4 in the
probability of two electrons to approach each other, quantitatively stronger than the
Pauli exclusion of two fermions which scales only linearly, i.e. m = 1. Furthermore,
due to the structure of the prefactor (zi − zj)m there exists a single node for each
electron with respect to all others. These bound states of zero points and electrons are
also called vortices as they are accompanied with a phase winding of the wavefunction.
In conclusion, the incorporation of relative angular momentum m of an electron with
respect to each and every other electron in the system results in a reduction of the
repulsive Coulomb interaction and to an overall reduction of the total energy of the
system

2.3.2 Classical plasma analogy
The only variational parameter of the Laughlin wavefunction is the relative angular
momentum m between the electrons. Even though m fixes the filling factor ν = 1/m
in the LLL, we can still assess which one of the Laughlin states has the lowest energy.
Therefore, we express the probability density distribution in the form

|ψ1/m|2 = e−βΦ, (2.20)

where β = 2/m and a classical potential energy

Φ = −
∑
i<j

2m2 ln |zi − zj| + m

2l2B

∑
i

|zi|2, (2.21)

4This notion was coined by Laughlin in [Gir89]
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2 The quantum Hall effect

Figure 2.6: Density distribution of the Laughlin wavefunction. a, b, Normal-
ized 2D density distribution of N = 42 particles occupying the ν = 1/3
(red) and ν = 1/5 (blue) Laughlin state calculated via Monte Carlo sim-
ulation [Tom18]. c, Radial density of the ν = 1/3 (red) and ν = 1/5
(blue) Laughlin state normalized with respect to the particle number N .
Characteristic for the incompressibility of the FQH fluid is the flat den-
sity at 1/3 (solid line) and 1/5 (dashed line) extending up to a radius
rmax ≃

√
2NmlB. At the edge, the density exhibits a peak and falls off to

zero.

which, remarkably, is a well known studied problem in statistical mechanics, namely
the one-component plasma (OCP) in two dimensions. The choice of β = 2/m = 1/kBT
can be interpreted as a temperature at which the system is in thermal equilibrium.

We further identify the two terms in Eq. (2.21) by correspondence with the OCP. The
first term coincides with the Coulomb potential energy in two dimensions which scales
logarithmically. This is seen by considering the Poisson equation of a point charge
−∇2ϕ = 2πδ(r) in two dimensions, from which we obtain the Coulomb potential
−q2 ln(r/lB). The second term scales quadratically with the radius. Using again the
Poisson equation, we get −∇2(r2/4l2B) = −1/l2B. Hence, the electrons of the plasma
experience a homogeneous background density ρ = 1/2πl2B. In order to minimize their
energy, the electrons neutralize the homogeneous background density ρ+mn = 0 such
that the electron density reaches n = 1/2πl2Bm, which is exactly the density at a filling
factor ν = 1/m. Therefore, the analogy with the OCP tells us that the average density
distribution of the FQH state is constant with a density of 1/m in units of 2πl2B.

We use numerical methods to visualize the density distribution of many particles
occupying the Laughlin state. In particular, we calculate 2D density through the
Metropolis Monte Carlo (MC) algorithm [Tom18] which is an established method to
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2.3 Fractional quantum Hall effect

Figure 2.7: Crystallization of the FQH fluid. MC simulation of the 2D normal-
ized density distribution of the N = 42 particle Laughlin wavefunction as
the filling factor ν = 1/m is decreased (from left to right).

calculate properties of FQH states which depend on the particles position [Mor86;
Kjø99; Umu18]. In Fig. 2.6, we show the 2D and azimuthally averaged density of the
ν = 1/3 and ν = 1/5 Laughlin state of N = 42 particles. The Laughlin state exhibits
its characteristic flat density profile within the bulk, up to a maximum radius given by
the particle number and the relative angular momentum ∼

√
2(N − 1)m. As the filling

factor ν = 1/m decreases, each particle acquires a larger angular momentum thereby
carving out more space less likely to be occupied by the neighbouring particles. Hence,
the increase in the radial size of the density.

Furthermore, in the OCP an important quantity is the plasma parameter Γ which
relates the Coulomb interaction to the temperature. Identifying the corresponding
energy scales in the quantum system, the plasma parameter takes the form

Γ = ECoulomb

Ethermal
= 2m. (2.22)

Numerical simulations show [Bau80] that at large Γ > 140 the OCP crystallizes as the
Coulomb interactions dominate over the thermal energy, while for smaller Γ < 140 the
OCP behaves as a fluid.

In particular, in the case of the FQH states at ν = 1/3, 1/5 the Laughlin wave-
function describes an incompressible quantum fluid [Lau83; Gir85]. The origin of the
incompressibility stems from a finite energy gap of low-lying quasiparticle excitations
within the bulk of the system [Gir84; Gir85; Gir86; Hal85]. In addition to the finite
gap of the collective excitation spectrum at small wavevectors, the spectrum exhibits a
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2 The quantum Hall effect

minimum at finite wavevectors associated to a magneto-roton, similar to the roton min-
imum in superfluid helium [Fey72]. The deepening of the magneto-roton for decreasing
filling factors ν is interpreted as a precursor of a Wigner crystal [Wig34; Tsu24].

In Fig. 2.7, we show the crystallization of the FQH liquid by gradually decreasing
the filling factor using MC simulation. At comparatively large filling factors ν = 1/3
the density is flat within the bulk region, while the crystalline structure manifests via
a periodic density modulation along the radial and azimuthal direction, as the filling
factor is further reduced. Since the Laughlin state is a variational ground state wave-
function, it is expected that the Laughlin state is not a good approximation anymore
of the true ground state at smaller filling factors.

2.3.3 Haldane pseudopotentials
What makes the Laughlin wavefunction such an effective approximation for the ground
state of the ν = 1/3 FQH state? Despite the large overlap with the ground state [Fan86],
it is however not the exact ground state due to the long-range order of the Coulomb
interaction. Following this line of thought, Haldane constructed a toy model with
short-range interactions in which the Laughlin state becomes the exact ground state
of the system [Hal83a] This method turns out to be quite powerful, as the toy model
allows to determine for which interaction parameters the Laughlin state approximates
the exact ground state satisfactory.

The conceptual idea is to construct a set of parameters Vm which characterize the
interaction energy of pairs of particles with relative angular momentum m. These are
the expectation value of the interaction potential Vint satisfying the relation [Hal83a;
Sim07]

Vm = ⟨φm|Vint|φm⟩
⟨φm|φm⟩

, (2.23)

and are referred to as Haldane pseuodpotentials. Knowledge of the interaction potential
Vint uniquely determines the pseudopotentials. However, the opposite is not true, as
there are many interaction potentials for the same pseudopotentials. They uniquely
determine the properties of the system for isotropic interactions.

Here, Vm does not depend on the total angular momentum for central potentials
V (|r1 − r2|) as the eigenstates factorize in center-of-mass and relative motion due to
the conservation of angular momentum. Since φm peaks at a radius r =

√
2mlB the

eigenvalues Vm approximately correspond to the value of the interaction potential at
the peak radius Vm ∼ Vint(r =

√
2mlB). In a toy model of spin-polarized fermions

with only short-range interaction in which all pseudopotentials are zero, except V1 ̸= 0,
the Laughlin wavefunction is the exact ground state with an eigenvalue zero [Hal83a].
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Figure 2.8: Haldane pseudopotentials for Coulomb interaction. Calculated
Haldane pseudopotentials in the LLL for Coulomb interactions in 2D and
in units of e2/4πϵ0lB. Even Vm are greyed out since they don’t contribute
to the interaction of spin polarized fermions.

Furthermore, the pseudopotential V1 determines the scale of the energy gap to higher
lying excitations.

We calculate the Haldane pseudopotentials for electrons interacting via Coulomb
interactions Vint = e2/4πϵ0r in the LLL, with a negligible extend in the vertical direction
(modelled via a Dirac δ). The mth pseudopotential takes the form

Vm = e2

4πϵ0

∫ 2π

0
dϕ
∫ ∞

0
dr|φm(r, ϕ)|2, (2.24)

where we integrated out the axial direction and expressed the single-particle states in
the LLL in Eq. (2.15) in polar coordinates r, ϕ. Solving the integral then yields

Vm =
Γ
(
m+ 1

2

)
2m!

e2

4πϵ0lB
. (2.25)

We show the lowest Vm in Fig. 2.8. The even Vm (greyed out) do not contribute to the
interaction since we consider spin polarized fermions. The magnitude of Vm decreases
monotonically with increasing angular momentum m in the LLL, provided that the
real interaction potential behaves similarly.

To close the circle to the initially posed question of this section regarding the overlap
of the Laughlin wavefunction with the exact ground, we compare the lowest Haldane
pseudopotential V1 with higher angular momenta V1 = 0.44 > V3 = 0.28,V5 = 0.22,
which supports that the Laughlin wavefunction is a good approximation to the ground
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2 The quantum Hall effect

Figure 2.9: Quasihole excitation. a, Normalized 2D density distribution of N = 42
particles occupying the ν = 1/3 Laughlin state with a single quasihole
excitation, calculated via MC simulation [Tom18]. b, Azimuthal average
of the 2D density to visualize the density drop to zero at the position of
the quasihole. The blue dashed line corresponds to 1/3 in the units of the
density.

state. On the other hand, for large angular momenta the pseudopotentials scale with
Vm ≃ 1/2

√
m and the difference in Vm and Vm+2 decreases. Hence at low filling factors

m ≫ 1, the Laughlin state is expected to deviate from the real ground state. This is
consistent with the instability of the FQH liquid with respect to the appearance of a
Wigner crystal at ν < 1/7 [Pap22; Tsu24].

2.3.4 Quasihole excitations
The Laughlin wavefunction ψ1/m hosts excitations with a fractional value of the ele-
mentary charge e/m, these are quasi-hole and quasi-particle excitations [Lau83]. Here,
we focus on the quasi-hole excitations.

The wavefunction of such a quasi-hole excitation is constructed by adding a zero
point at the position η in the radial plane with respect to the each particle

ψ
(hole)
1/m (z1, ..., zN, η) =

N∏
i=1

(zi − η)
N∏
i<j

(zi − zj)m e−
∑N

i=1 |zi|2/4l2B . (2.26)

In order to calculate the charge of the hole, we make use again of the plasma analogy.
The classical potential energy from Eq. (2.21) with the included hole reads

Φ(hole)
η = Φ −m ln |zi − η|. (2.27)

22



2.3 Fractional quantum Hall effect

The hole in the Laughlin wavefunction leads to an additive term in the classical poten-
tial energy. Thus, the electrons experience on top of the uniform background density
an additional charge at the position of the hole, with a unit test charge. To ensure
overall charge neutrality of the system, a deficit of 1/m electrons close to η is required,
from which follows that the hole carries a charge of e/m. Furthermore, we calculate
the 2D and radial density of the Laughlin wavefunction with a quasihole excitation by
means of MC simulation, shown in Fig. 2.9. At the position of the quasihole, which is
arbitrarily chosen at the center, the flat bulk density falls off to zero.

2.3.5 Halperin states – spinful Laughlin states
So far we have neglected the spin of the electrons, the energy of which scales with
E = gµBmsB. In free space, the Landé factor of the electron is g ≈ 2 while the spin
component along the magnetic field axis is ms = 1/2. This energy scales with E ≃ ℏωB
and is therefore significantly larger than the Coulomb interaction within the LLL. How-
ever, the Landé factor in semiconductor materials can decrease drastically compared to
free space, as well as spin-orbit coupling can change the effective mass of the electrons.
These effects lead to the reduction of the Zeeman splitting thereby rendering the spin
degree of freedom a comparable energy scale to the Coulomb interactions, first observed
experimentally in a double-layer electron system [Sue92]

Halperin proposed an extension of the Laughlin wavefunction to account for the spin
degree of freedom [Hal83b]

ψm↑,m↓,n(z1, ..., zN, ξ1, ..., ξN) ∝
N↑∏
i<j

(zi − zj)m↑

N↓∏
i<j

(ξi − ξj)m↓

N↑,N↓∏
i,j

(zi − ξj)n, (2.28)

where we disregard the Gaussian envelope of each spin state for the sake of simplicity.
The variables zi, ξi label the complex coordinate of the ith spin up, spin down particle,
respectively, in the radial plane of the system. They are expressed in units of lB. The
exponents m↑,↓ are odd integers determining the relative angular momentum between
particles with the same spin, and n > 0 is an integer. This set of wavefunctions
characterized by (m↑,m↓, n) are referred to as Halperin states.

A particularly prominent Halperin state is a spin singlet [Hal88], i.e. the total spin is
zero in a balanced mixture of spin states N↑ = N↓ = N , and one which contains equal
relative angular momentum in both spin states m↑ = m↓ = m. The anti-symmetry of
the wavefunction under exchange of same spin states imposes that m is odd. Since the
spin singlet is antisymmetric, we require that n is even. The respective Halperin state
is thus characterized by the set (n+ 1, n+ 1, n). The total filling factor in the LLL of
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such a state is then given by

ν = ν↑ + ν↓ = 2
2n+ 1 . (2.29)

The simplest case (1, 1, 0) corresponds to an IQH state where each of the spin states
fully occupies the LLL, hence ν = 2 and ν↑,↓ = 1. Here, both spin states form Fermi
seas which are uncorrelated with respect to each other. More interestingly is the first
state with vanishing interactions (1, 1, 1), which corresponds to a ferromagnetic state
due to the long-range order among all particles.

2.4 Ultracold quantum gases in synthetic magnetic
fields – a rotating perspective

Ultracold atomic gases in synthetic magnetic fields allow the study of quantum many-
body physics in magnetic fields with unprecedented control of the system parameters
such as the density, interaction strength or geometry [Blo08; Blo12], with an enormous
variety of observables ranging from microscopy of individual atoms [Gro21b] to collec-
tive excitations [Ket08] or transport measurements [Chi15]. Realizing FQH states in
these engineered systems has the potential to unravel unanswered questions in the field
of quantum Hall physics [Kli20; Coo08; Gol14; Gol16; Coo19]. We outline the genera-
tion of synthetic magnetic fields in ultracold atoms and establish relevant connections
to the solid state systems. Details on the preparation and manipulation of ultracold
quantum gases can be found in the next chapter 3.

2.4.1 Rotating quantum gases
When an external magnetic field is applied perpendicular to a 2D plane, charged par-
ticles that move on a full circle of their cyclotron orbits accumulate a complex phase,
known as the Aharonov-Bohm phase [Aha59]. Neutral atoms on the contrary are rather
insensitive to external magnetic fields which necessitates other methods to engineer
such a complex phase. There are several experimental techniques to realize synthetic
magnetic fields, based on the underlying principle that particles which adiabatically
move on a closed path in Hilbert space acquire a geometric phase after a full trajectory.
The notion of geometry arises from the fact that this phase is unchanged regardless of
the exact dynamics of a specific path. Such a geometric phase is referred to as Berry
phase [Ber84] and is a generalization of the Aharonov-Bohm phase [Wu75].

In Fig. 2.10, different approaches in ultracold atomic gases are illustrated. Floquet
engineering in optical lattices renders the tunneling amplitudes between lattice sites
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Figure 2.10: Geometric phases in ultracold atoms. Different realizations of a
geometric phase in ultracold atomic gases analogous to the Aharonov-
Bohm phase experienced by an electron subjected to a magnetic field.
a, Due to Laser-assisted tunneling J in optical lattices, the atom ac-
quires a complex phase when tunneling along a closed circle. b, In a
coherent two-photon process Ω the internal states |m⟩ of the atom are
coupled to their center-of-mass velocity, known as spin-orbit coupling.
c, The analogue of the Lorentz and Coriolis force introduces an artificial
Aharonov-Bohm phase in a rotating system.

complex, thereby imprinting a non-vanishing geometric phase after a closed hopping
loop [Aid11; Jim12; Miy13; Aid13b; Aid13a; Aid14; Ken15; Tai17; Ast19; Str12; Jot14;
Win20]. A geometric phase can also be engineered by coupling the spin and the mo-
tional degree of freedom [Lin09; Man15; Stu15; Cha20; Zho23]. Here, the atoms are
dressed by an optical light field that imparts a momentum on the atoms when coupled
to a different spin state.

However, one of the most intuitive approaches to engineer a synthetic magnetic
field, which leads to the accumulation of a geometric phase, is to simply rotate the
system [Mad00; Abo01; Sch04; Bre04; Zwi05; Fle21]. This technique makes use of the
analogy of the Lorentz force qv × B and the Coriolis force 2mav × Ω, where v is the
velocity of a particle, ma its mass and Ω the rotation frequency. Similar to electrons
that are constrained by a magnetic field to move on cyclotron orbits, neutral particles
rotate on closed orbits, thereby acquiring a geometric phase.

Formally in the quantum mechanical context, we consider the Hamiltonian

H = p2

2ma
+ ma

2 ω2r2 (2.30)

of a single particle confined in a rotationally symmetric, 2D harmonic potential with a
harmonic oscillator frequency ω. By transformation of the Hamiltonian in the labora-

25



2 The quantum Hall effect

tory frame to the rotating frame of reference

HΩ = H − ΩLz (2.31)

the angular momentum operator L = r × p is introduced and directly projected along
the axial direction since the rotation is perpendicular to the motional plane of the atom.
Rewriting the Hamiltonian yields

HΩ = (p −maΩ × r)2

2ma
+ ma

2
(
ω2 − Ω2

)
r2. (2.32)

In the deconfinement limit Ω → ω the second term, corresponding to the trapping
potential, vanishes. The Hamiltonian then resembles a particle with charge q in a 2D
plane exposed to a vector potential qA = maΩ × r. We identify the analogue quantities
qB = 2maΩ from which we can define the effective magnetic length in the rotating
atomic gas

lB =
√

ℏ
qB

=
√

ℏ
2maω

= lHO√
2
. (2.33)

The magnetic length lB only differs by a factor 1/
√

2 from the natural length scale lHO
of the harmonic oscillator.

The Hamiltonian HΩ is exactly solvable for all rotation frequencies Ω [Coo08]. The
eigenstates are classified by their primary quantum number n and angular momentum
m, and take the form in real space coordinates

φn,m(r, ϕ) = 1√
πl2HO

√
k!

(k + |m|)!e
imϕρ|m|e−ρ2/2L

|m|
k

(
ρ2
)
, (2.34)

where we have introduced k = 1/2(n − |m|), the dimensionless radius ρ = r/lHO
in units of the harmonic oscillator length and the associated Laguerre Polynomials
Lm

k (ρ) of degree k and order m. In the LLL k = 0, the maximum available angular
momentum with respect to its primary quantum number is n = m, and we retrieve
the same eigenstates as for a charged particle exposed to an external magnetic field in
Eq. (2.15).

Furthermore, the eigenenergies as a function of the rotation frequency take the form

En,m = (2n+ 1 + |m|)ℏω −mℏΩ, (2.35)

shown in Fig. 2.11. In the non-rotating limit Ω/ω = 0 the energy levels are equally
spaced with the harmonic oscillator frequency ℏω and display the characteristic shell
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Figure 2.11: 2D harmonic oscillator levels. Energy levels of the 2D harmonic
oscillator with trap frequency ℏω, rotated with a frequency Ω. Without
rotation, we retrieve the typical shell structure where each level has a
degeneracy n+ 1. Increasing the rotation frequency breaks the degener-
acy by shifting levels with m > 0 (m < 0) up (down) in energy due to
the preferred rotation direction. In the deconfinement limit Ω = ω, the
level structure resembles that of Landau levels, where each level contains
infinitely many degenerate levels which are separated by the cyclotron
frequency ℏωB. States in the LLL are highlighted in red.

structure of the 2D harmonic oscillator, where each energy level has a degeneracy of n+1
due to the rotational symmetry. Increasing Ω breaks this degeneracy due to the energy
levels shifting higher / lower depending on the sign of their angular momentum m. The
eigenstates, however, are not affected by the rotation since the angular momentum is
still a conserved quantity. In the deconfinement limit Ω/ω = 1, the level structure is
reminiscent of Landau levels, where each level is highly degenerare and separated by
the cyclotron frequency ωB = 2ω.

Hence, a single neutral atom confined in a 2D harmonic potential which rotates in the
deconfinement limit Ω → ω is formally equivalent to a charged particle exposed to an
external magnetic field. However, we are interested in strongly correlated many-body
states within the LLL, which imposes the condition on the energy of the interaction
strength to be smaller than the separation of the Landau levels, given by ωB.

2.4.2 The filling factor
In the context of the FQH effect, the phases of matter are characterized by the filling
factor ν [Giu12], which is defined as the electron density ne that occupies a partially
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2 The quantum Hall effect

filled Landau level

ν = 2πne
ℏ
eB

= 2πnel
2
B. (2.36)

In ultracold atomic gases, the filling factor can be expressed by the 2D atomic density
n2D and the analogous expression for the magnetic length (see Eq. (2.33))

ν = 2πn2D
ℏ

2maω
= n2D

nv
, (2.37)

where we have introduced the vortex density nv [Don91]. Assuming a uniform density
we arrive at

ν = N

Nv
, (2.38)

which defines the filling factor as the ratio of number of atoms per number of vortices.
Similarly to the FQH effect, the filling factor controls the emergent phases of mat-

ter in repulsively interacting BECs [Wil98; Coo01]. Above a critical filling factor
ν > νc ∼ 17 [Bay04], the ground state of the system is qualitatively well described
by the mean-field Gross-Pitaevskii equation [Coo08; Pit16]. It consists of a triangu-
lar vortex lattice, also known as Abrikosov lattice in analogy to type-II superconduc-
tors [Til19]. Close to the critical filling factor νc, quantum fluctuations of the vortices
become dominant, which leads to a breakdown of mean-field theory. A zero temper-
ature quantum phase transition from a BEC to a strongly correlated quantum Hall
liquid is anticipated [Coo01; Sin02]. In particular, at a filling factor of ν = 1/2, that
is a total angular momentum of L = N(N − 1), the exact ground state of repulsively,
contact interacting bosons is a bosonic Laughlin state [Wil98; Lau83].

We emphasize that when bosons occupy the LLL, i.e. µ < ℏωB, it does not signal
the onset of the fractional quantum Hall regime ν ≲ 1. This is in contrast to spinless
fermions, where Pauli exclusion principle allows only one particle per state. Consider
the example of non-interacting bosons where all occupy the ground state of a 2D har-
monic oscillator. The chemical potential is vanishing and therefore significantly smaller
than the cyclotron frequency µ ≪ ℏωB, on the other hand, the filling factor diverges
ν → ∞ since all particles occupy a state with zero angular momentum.

2.4.3 Haldane pseudopotentials in ultracold atoms
Ultracold atomic gases serve as a well controllable experimental platform to study exact
ground states of the FQH effect since their zero-range contact interactions accurately
fulfil the conditions of Haldanes toy model. In fact, all Haldane pseudopotentials
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introduced in Eq. (2.23) are exactly zero at these ultracold temperatures except of
the zeroth order V0 (considering either bosons or spinful fermions). This renders the
Laughlin state the exact ground state in the deconfining rotating limit.

Similar as in the previous subsection on the Haldane pseudopotentials, we calculate
Vm for a contact interacting potential Vint = 4πℏ2asδ(r)/mr (see next chapter 3 for
more details on interactions in ultracold atoms), where as is the scattering length in
three dimensions which provides a measure for the strength of the interaction, and mr
is the relative mass of the atoms. We take into account a finite, Gaussian extend in
the axial direction lax, however assuming a quasi-2D regime lax ≪ lHO. The relative
wavefunction of two particles in the LLL is then given in cylindrical coordinates by

φm(r, ϕ, zax) = 1√
πm!l2HO

(
reiϕ

lHO

)m

e−r2/4l2HO
1√

2πl2ax

e−z2
ax/4l2ax (2.39)

We have introduced the axial coordinate zax, not to be confused with the complex
coordinate z in the radial plane and expressed the wavefunction in units of the harmonic
oscillator length in the radial plane lHO and the axial direction lax since these are the
natural units in the harmonic potential. From this expression, we can immediately
see that higher angular momentum states m > 0 possess a node in the relative two-
particle wavefunction as they scale with ∼ rm and thus are exactly zero in the context
of zero-range interactions. The only Haldane pseudopotential which survives is

V0 =
∫ 2π

0
dϕ
∫ ∞

0
dr
∫ ∞

−∞
dzax|φ0(r, ϕ, zax)|2 4πℏ2as

mr
δ(r) (2.40a)

=
√

2
π

as

lax
ℏω. (2.40b)

It depends on three variables, the scattering length as, the radial trap frequenc ω and
the axial harmonic oscillator length lax, which are all independently tunable in typical
ultracold atom experiments. Hence, at low energies in the quasi-2D LLL, the zeroth
pseudopotential V0 defines the only relevant energy scale in rapidly rotating ultracold
Bose and two-component Fermi gases.

We remark that rotating ultracold atoms with dipolar long-range interactions, real-
ized in the slow rotating limit [Kla22], could be used to model toy Hamiltonians with
contributions from all Vm [Bar12; Cho22].
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Ultracold quantum gases
With the advent of Bose-Einstein condensation [And95; Dav95] and the realization
of degenerate Fermi gases [DeM99], completely new platforms emerged for studying
complex quantum many-body physics in very clean and controlled environments [Blo08;
Blo12]. The degree of control has been a gold standard in ultracold quantum gas
experiments from early on, leading to an impressive technological development up to
the manipulation of these systems on the single particle level, in various platforms
ranging from optical lattices in quantum gas microscopes [Gro21a; Blo12], tweezer
arrays of Rydberg atoms [Bro20], to few-body quantum systems in a single optical
tweezer [Ser11a].

This chapter aims to provide a concise overview on the concepts of ultracold quan-
tum gas experiments which are of relevance for this thesis. In particular, we outline
the properties of fermionic Lithium 6 which is used throughout all the experiments.
We give an introduction into the scattering processes at ultracold temperatures and
their tunability via a Feshbach resonance. In the last section, optical dipole traps are
introduced for trapping neutral atoms.

3.1 Bosons and fermions
Particles are identical if they cannot be distinguished by any intrinsic property. A
quantum mechanical system of N identical particles described by the many-body wave-
function ψ must be invariant under the successive interchange of particles at position
ri and rj back to their original configuration. Such an operator Pij needs to retrieve the
identity I after two consecutive operations P 2

ij = I. Therefore, the eigenvalues of this
operator are ±1 which distinguishes a symmetric and anti-symmetric wavefunction.
The former one is referred to as Bosons

PijψB(r1, ..., ri, ..., rj, ..., rN) = +ψB(r1, ..., rj, ..., ri, ..., rN), (3.1)
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3 Ultracold quantum gases

Figure 3.1: Bosons and (spinful) fermions. The exchange symmetry of the
total wavefunction results in two types of particles which differ in their
quantum statistics – referred to as bosons (red) and fermions (blue). An
internal spin degree of freedom (denoted as an arrow), renders fermions
distinguishable, which allows the occupation of the same quantum state
for different spin configurations.

while the latter one are called Fermions

PijψF(r1, ..., ri, ..., rj, ..., rN) = −ψF(r1, ..., rj, ..., ri, ..., rN). (3.2)

As a consequence, bosons can occupy the same state while for fermions the anti-
symmetry of the wavefunction is the origin of the Pauli exclusion principle which forbids
identical particles to occupy the same quantum state, illustrated in Fig. 3.1.

Let us consider two fermions with a spatial and spin degree of freedom, as this is a
standard configuration in our experiments. The fermions contain a spin s = 1/2, which
projected on the magnetic field axis can take two values ms = ±1/2 denoted with |↑⟩
and |↓⟩, respectively. Neglecting any coupling between the spin and spatial degree of
freedom, we can write the total wavefunction as a product state of the spatial ϕ and
spin part χ of the wavefunction

ψ = ϕ(r1, r2)χ (|↑⟩ , |↓⟩) . (3.3)

The fermionic nature of the particles imposes that the total wavefunction is anti-
symmetric. Hence, either the spin part is symmetric and the spatial part is anti-
symmetric, or vice versa. Note that in the case of bosons either both parts need
to be symmetric or anti-symmetric. There are four possible combinations for the
spin wavefunction, three symmetric configurations referred to as triplets |↑↑⟩, |↓↓⟩,
1
√

2(|↑↓⟩ + |↓↑⟩ and one anti-symmetric spin singlet χS = 1/
√

2(|↑↓⟩ − |↑↓⟩). In par-
ticular, let us consider two fermions in a spin singlet and two spin polarized bosons.
Both their spatial wavefunction must be symmetric to fulfil the total anti-symmetric
wavefunction of the fermions and symmetric wavefunction of the bosons. Hence, in this
scenario the spatial wavefunction of two spinful fermions mimics that of two bosons1.

1We make use of this analogy by preparing a bosonic ν = 1/2 Laughlin state with two fermions in
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Figure 3.2: Hyperfine splitting of 6Li. a, Fine structure (left) and hyperfine struc-
ture (right) level diagram of the electronic ground state 22S1/2 and the 2P
excited states of 6Li. The fine structure splitting of the excited states is
given by the characteristic D1 and D2 lines of Alkali atoms. b, Magnetic
field dependence of the 22S1/2 ground state and c, of the excited state
22P3/2. At low magnetic fields, the splitting is characterized by the total
angular momentum F = I + J , while in the Paschen-Back regime at high
magnetic fields the nuclear spin I and the total electron spin J decouple,
leading to a linear energy dependence. Adapted from [Hol22].

3.2 Internal structure of lithium 6
Lithium is an excellent choice of matter for studying strongly interacting ultracold
atomic gases as it hosts several beneficial properties such as a simple hydrogen-like
electronic structure, a cycling transition in its electronic spectrum, resonant transi-
tions which are easily accessible with current laser technologies, multiple stable hyper-
fine mixtures, a Feshbach resonance to tune inter-particle interactions, low three-body
recombination rates and many more. A description en detail can be found in the
reference [Geh03]; here, we briefly introduce the relevant concepts for this thesis.

The isotope of choice for our experiments is 6Li which has a single electron in its
outer-most shell exhibiting a total electron spin S = 1/2. Its nucleus comprises three
protons and three neutrons, resulting in a total nuclear spin of I = 1. Consequently,
the isotope is of fermionic nature. The electronic ground state 22S1/2 and the two
lowest excited states 22P1/2 and 22P3/2 are separated by 671 nm. The excited states

chapter 6. This might seem odd at first glance, since for fermions only odd filling factors ν are
allowed, but is possible due to the spinfulness of the fermions.
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are split by 10 GHz due to spin-orbit coupling, similar to other Alkali atoms exhibiting
the D1 and D2 lines [Tie10; Ste23]. Applying an external magnetic field results in a
Zeeman shift of the energy levels, both in the ground and excited states. Typically, we
work in the Paschen-Back regime at magnetic fields > 100 G where the nuclear spin and
electron spin decouple. The separation of energy levels of the lowest hyperfines mixtures
|1⟩ , |2⟩ , |3⟩ is ∼ 80 MHz. All three combinations of hyperfine states are collisionally
stable. In Fig. 3.2, we show the hyperfine splitting of 6Li.

To cool and detect the atoms we solely use the D2 cycling transition which has a
linewidth Γ/2π = 5.87 MHz. In particular, we drive the σ− transition from state |3⟩
to |1′⟩ which does not contain any admixture of the mI sublevels at high magnetic
fields (marked in red in Fig. 3.2). On the contrary, the state |1⟩ is excited to |3′⟩
which has a 1 % probability to decay to state |5⟩. In order to close the transition we
use a second laser on the σ+ transition to couple state |5⟩ to |11′⟩ which has some
finite overlap to |1⟩ (states are marked in blue in Fig. 3.2). With that, we achieve spin
resolved imaging of the two hyperfine states |1⟩ , |3⟩ by subsequently addressing the
optical transitions [Ber18], as further discussed in section 4.4.

3.3 Optical dipole traps
When an electric laser field is spatially aligned with an atom, it induces an atomic
dipole moment. The interaction potential relates the electric field amplitude E and
the induced dipole moment p of the atom Udip = −1/2 ⟨p · E⟩, where the factor 1/2
takes into account that the dipole moment is induced and the brackets ⟨⟩ denote the
time average. Within the classical Lorentz model, this system is interpreted as a driven
harmonic oscillator at a driving frequency ω set by the laser, the resonance frequency
of the atom ω0 and a damping rate Γ. The optical potential created by the laser light
is described by [Gri99]

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+ Γ
ω0 + ω

)
I(r), (3.4)

while the scattering rate of single photons by absorption and spontaneous reemission
takes the form

Γsc(r) = 3πc2

2ℏω3
0

(
ω

ω0

)3
(

Γ
ω0 − ω

+ Γ
ω0 + ω

)2

I(r). (3.5)

Here, c is the speed of light. Therefore, at a fixed optical wavelength ω, the optical
dipole potential is fully determined by the shape of the light intensity field I(r), which
in our experiments typically have a Gaussian distribution.
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From these equations we can deduce two essential characteristics. The sign of the
detuning ∆ = ω − ω0 determines whether the dipole potential is attractive (∆ < 0,
referred to as red-detuned) or repulsive (∆ > 0, referred to as blue-detuned). Further-
more, the potential depth scales with Udip ∼ I/∆ while the single photon scattering rate
scales with Γsc ∼ I/∆2. Hence, in order to suppress scattering at the same potential
depth we can choose light that is detuned further away but at a higher intensity.

3.4 Interactions in ultracold quantum gases
Tuning the interactions in ultracold quantum gases is a well established technique cov-
ered in the literature [Dal99; Ket08; Chi10], and in previous theses [Hol22; Kle21;
Bay20b; Bec20b]. Here, we focus on the essential features of contact-interacting parti-
cles at ultracold temperatures.

3.4.1 Elastic collisions
The main features of the scattering processes of neutral atoms at low temperatures are
captured by considering a spherically symmetric van der Waals potential V (r) = −C6/r

6

at the two-body level. The van der Waals length r0 defines the characteristic length
scale r0 = (2mrC6/ℏ2)1/4 ≈ 60 a0 of the interaction potential and is given by the van
der Waals coefficient2 C6 and the reduced mass mr of the colliding particles, in units of
the Bohr radius a0. The details of the inter-atomic potentials can be neglected since the
typical inter-particle spacing n−1/3 ∼ 10 000a0 is significantly smaller than r0 ≪ n−1/3.
Therefore, it is save to assume that the elastic collision process is depicted by binary
interactions determined by a single length scale, the scattering length a.

The Schrödinger equation which describes the scattering process of two colliding
particles 1 and 2 can be reduced to a one-body problem in center-of-mass and relative
coordinates R = r1 + r2, and r = (r1 − r2)/2, as the center-of-mass motion does not
depend on the interaction potential and therefore is simply given by a plane wave
solution. The Schrödinger equation in relative coordinates then reads(

ℏ2

2mr
∇2

r + V (r)
)
ψk(r) = Ekψk(r), (3.6)

where k is associated with the wavenumber of the relative wavefunction, and the colli-
sion energy Ek = ℏ2k2/2mr is given by the energy of a free particle with reduced mass
mr in the limit of large particle separations r ≫ r0 with respect to the van der Waals

2The C6 coefficient of Li is 1396Eha6
0, where Eh = mee4/4ϵ2

0h2 is the Hartree energy [Gou16].
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length. The total energy and wavenumber is conserved in the elastic collision process
allowing only a phase shift of the outgoing wavefunction. The total wavefunction is
then a sum of the incoming and outgoing wavefuntion:

ψk(r) = ψin(r) + ψout(r) ∼ eik·r + f(k,k′)e
ikr

r
, (3.7)

where we have introduced the scattering amplitude f(k,k′) which describes an incoming
plane wave with wavevector k = |k| scattered into a direction k′ = kr/r.

Since the interaction potential is central symmetric we can expand the ansatz wave-
function in eq. (3.7) in partial waves. The wave function is then expressed in terms of
Legendre polynomials. Within this partial wave expansion, it becomes clear that all
states with angular momentum l > 0 do not contribute to a phase shift due to the cen-
trifugal barrier and can therefore be neglected. Hence, the only relevant contribution
stems from the s-wave (l = 0) term, resulting in the final scattering amplitude

f(k, θ) = 1
k/ tan δ0 − ik

≃ 1
−1/a+ reffk2/2 − ik

, (3.8)

where θ is the angle between the incoming and outgoing plane wave, a is the scattering
length, δ0 is the phase shift from the s-wave contribution and reff is the effective range.
In the case of 6Li the effective range is reff = 87a0 and can be omitted throughout the
scope of this thesis [Zür12b]. Let us consider two particularly interesting cases. The
limit k|a| ≪ 1 results in a scattering amplitude f = −1/a, thus the scattering process
is independent on the momentum and fully determined by the scattering length a.
Another limiting case is k|a| ≫ 1, in which f = i/k. This is known as the unitary limit
discussed later in the section on Feshbach resonances.

We can further simplify the scattering problem in case that the de-Broglie wavelength
2π/k of the constituents is significantly larger than the inter-atomic length scale r0 ≫
1/k. The most rudimentary approximation is to replace the interaction potential by
a δ-potential, which however turns out to be an accurate description. The interaction
strength of the δ-potential

V (r) = gδ(r) (3.9)

is quantified by the coupling constant g = 4πℏ2a/mr. This interaction potential is also
referred to as contact interactions since the particles only interact with each other when
their relative distance is zero. All the short-range physics covered in the inter-atomic
potential is neglected, the only relevant information is the phase shift imprinted on the
outgoing wavefunction during the collision.
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The interpretation of contact interactions becomes important in the last chapter 6,
where the relative wavefunction of two particles exhibits a node at zero relative distance.
In a physical picture, this means that the probability to detect the particles on top of
each other vanishes, leading to a non-interacting state of the two particles.

3.4.2 Feshbach resonances
Feshbach resonances are a remarkable experimental tool to tune the scattering prop-
erties of ultracold atomic gases by orders of magnitude with an extraordinary degree
of control [Chi10; Ket08]. On general grounds, Feshbach resonances occur when the
energy of two colliding atoms is close to the bound state energy of a molecule. The
energy of the molecular bound state can be varied with respect to the energy of the
unbound atoms via an external magnetic field, if their magnetic moments differ. This
is called a magnetically tuned Feshbach resonance.

The underlying mechanism is the interaction of the magnetic moment µ of the
atom with an external magnetic field B, leading to the effective Zeeman Hamilto-
nian H = −µ · B. In the limit of large magnetic fields (which in the case of 6Li is
reached for fields of a few Gauss), this results in energy shifts with respect to zero
magnetic field

∆E = µB

ℏ
(gJmJ + gImI)B, (3.10)

where gJ (gI) is the Landé g-factor of the electron (nucleus), µB is the Bohr magneton.
The external magnetic field is strong enough to decouple the magnetic moment of the
electron and the nucleus such that they can be treated independently.

The Feshbach resonance can be understood within the model of two molecular po-
tentials, illustrated in Fig. 3.3a. The open channel represents the scattering potential
of two free atoms which collide in the gas with an energy E. A resonance occurs when
a bound state within the closed channel approaches the same energy as the colliding
particles in the open channel. The scattering atoms virtually couple to the bound state
before they separate into free atoms after the scattering event. In this situation, even
a small coupling between the closed and open channel strongly affects the phase of
wavefunction.

The scattering length around the broad Feshbach resonance in 6Li can be described
by a relatively simple model [Chi10]

a3D = abg

(
1 − ∆B

B −B0

)
, (3.11)
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Figure 3.3: Feshbach resonance in 6Li. a, A Feshbach resonance occurs if the
collisional energy of two particles in an open channel can be tuned into
resonance with the energy of a bound state EB in a forbidden closed
channel. The energy of the bound states is proportional to an external
magnetic field. b, Tunable scattering length of all combinations of the
three lowest hyperfine states. The interactions can be tuned from ±∞ to
0. Adapted from [Hol22].

with the background scattering length abg of the open channel, the position of the
Feshbach resonance B0 and the width ∆B. The Feshbach resonances in 6Li were mea-
sured for all three hyperfine mixtures [Zür12a], and are shown in Fig. 3.3b. Throughout
this thesis, we work with a |1⟩ , |3⟩ mixture for which abg = −1770a0, B = 689.7 G and
∆B = −166.6 G. An important point is the zero crossing of the scattering length which
results in a completely non-interacting hyperfine mixture at the field B = B0 + ∆B.

3.4.3 Two interacting particles in a harmonic potential
The interactions between two atoms trapped in a confining potential deviate from those
in free space. The level spectrum of two interacting atoms in harmonic potentials in
various dimensions have been explored in previous studies [Bus98; Ols98; Ber03; Idz05;
Idz06]. While our optical trap can be approximated by a one-dimensional harmonic
potential with an aspect ratio η = ω/ωz for small atom numbers occupying the ground
state, we also consider excitations to higher lying radial states, e.g. by rotating the
atoms, which necessitates to include all three dimensions. We provide a short intro-
duction into the derivation of the energy of two particles with respect to the scattering
length, following [Idz06].
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3.4 Interactions in ultracold quantum gases

We consider two interacting particles 1 and 2 in an axially symmetric harmonic trap
such that the Hamiltonian reads

H = − ℏ2

2m∇2
1 − ℏ2

2m∇2
2 + Vt(r1) + Vt(r2) + Vi(r1 − r2), (3.12)

where the the trapping potential is given by

Vt(r) = m

2
(
ωr2 + ωzz

2
)
, (3.13)

and the interacting potential Vi is translational invariant according to eq. (3.9). Note
that the mass m of both particles is the same since in our case they only differ in their
hyperfine state.

The center-of-mass R = (r1 + r2)/2 and relative r = r1 − r2 motion decouple in a
harmonic potential such that the Hamiltonian can be separated in

Hcom = − ℏ2

2mtot
∇2

R + mtot

m
Vt(R) (3.14)

and

Hrel = − ℏ2

2mr
∇2

r + mr

m
Vt(r) + gδ(r) ∂

∂r
r, (3.15)

with the total mtot = 2m and relative mr = m/2 mass. The center-of-mass degree of
freedom is independent of the interaction potential and therefore solely resembles the
equidistant energy levels of a harmonic oscillator. Hence, there will be many copies of
the energy levels in the relative motion, spaced by the center-of-mass energies.

The energies and eigenfunctions of the relative motion are found by solving the time-
independent Schrödinger equation, where the interacting wavefunction is expanded in
the basis of harmonic oscillator states. This is examined in thorough detail in [Idz06],
in which an implicit equation of the scattering length a and the energy E = E − E0
with respect to the ground state energy E0 is derived, which reads

−1
a

= 1√
π

η

2π

∞∑
n=0

(
Γ(−E/2 + nη)

Γ(1
2 − E/2 + nη) − 1

√
η
√
n+ 1

)
+

√
η

2π ζ
(1

2

)
, (3.16)

where Γ is the Gamma Euler function and ζ is the Riemann zeta function. This
expression holds for integer aspect ratios η. The energies are shown in Fig. 3.4.

Since we have a cigar-shaped trap with a tighter confinement in the radial than in
the axial direction ω/ωz ≈ 7, there are many axially excited levels in the radial ground
state. Furthermore, many axially excited energy levels of the Feshbach molecule in the
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Figure 3.4: Level spectrum of two interacting particles in a harmonic trap.
The energies are calculated for a three-dimensional, cigar-shaped har-
monic potential with an aspect ratio ω/ωz = 7, similar to the experimen-
tally realized trap, according to eq. (3.16). The energy is shifted with
respect to the energy E0 of the non-interacting state at 568 G. a, Energy
levels in the radial ground state (red) of two interacting fermions in terms
of the magnetic field determined from eq. (3.11). In gray, the molecular
branches with center-of-mass excitations in the axial direction are shown.
In an anharmonic potential the energy crossings lead to energy gaps, and
thus coupling between the levels. b, Relevant energy levels in the 0ℏ, 2ℏ,
4ℏ angular momentum manifold. All other energy levels are disregarded.
The energy of the states with the relative degree of freedom in the ground
state m = 0 (excited state m > 0) are shown in red (blue).

center-of-mass degree of freedom lead to level crossings in particular with the repulsive
branch, i.e. the state with −0.5 < E < 1.5. In an anharmonic potential this leads to
coupling to a Feshbach molecule when tuning the magnetic field from a non-interacting
state at 568 G to a strongly repulsive state at 680 G.

In Fig. 3.4b, we show the relevant energy levels in the 0ℏ, 2ℏ, 4ℏ angular momentum
manifold. States which remain in the ground state in the center-of-mass degree of free-
dom, i.e. their angular momentum quantum number in the relative degree of freedom
is m = 0, tune their interactions with the magnetic field and thus lead to an energy
shift (red). On the contrary, states with m > 0 remain constant (blue).
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4

Experimental setup and techniques
This chapter summarizes the relevant experimental techniques to deterministically pre-
pare ground state systems of few fermionic atoms in a tightly focused optical tweezer
and to manipulate and detect their quantum state. For that, it is necessary to isolate
the atoms from the environment in a vacuum chamber, to cool the atoms to quantum
degeneracy by means of magnetic and optical trapping potentials and to manipulate
their internal and motional degrees of freedom. A general overview on the production
and probing of ultracold Fermi gases can be found in [Ket08], a detailed description of
the experimental apparatus is given in previous PhD theses [Ser11b; Zür13; Ber17].
However during the course of this thesis, major changes regarding the microscope ob-
jective and the optical tweezer setup were implemented, which are documented here.
The optical setup of the tweezers used for trapping and manipulating the atoms has
been described in the recent master theses [Hil21; Rei23].

The chapter is divided in three main topics. The first part introduces the relevant
experimental stages to prepare few-fermion systems. The second part focuses on the
implementation of rotating optical potentials realized via the interference of Laguerre-
Gaussian beams. The third part highlights the imaging techniques available in the
apparatus for characterization of the quantum system.

4.1 Deterministic preparation of few-fermion systems
All the experiments described in this thesis are carried out in a vacuum chamber,
shown in Fig. 4.1, at ultrahigh vacuum 1 × 10−11 mbar, which is necessary to reach
a lifetime of tens of seconds for the atoms in the optical dipole traps. The titanium
sublimator (1) and the ion pumps (2) provide the sufficient pumping strength to reach
the high vacuum conditions. In order to achieve a degenerate sample of 6Li atoms
multiple cooling stages are required. The starting point is a collimated beam of lithium
atoms exiting the oven at a temperature of ∼ 370 ◦C (3). The atoms are slowed down
in a 30 cm long Zeeman slower (4) and finally trapped in the stainless steel octagon (5).
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4 Experimental setup and techniques

The octagon enables optical access through six viewports in the horizontal plane with
optical access of NA = 0.15 and two re-entrant viewports in the vertical direction with
optical access NA = 0.65. The valves (6) are build in for separate access to the science
chamber and the oven, in case lithium has to be refilled in the oven.

4.1.1 Zeeman slower and Magneto-optical trap
The first challenge to reach a degenerate Fermi gas is to slow the lithium atoms from a
mean rms thermal velocity vth =

√
3kBT/mLi ≈ 1600 m/s at a temperature T = 370 ◦C

down to a few 0.01 m/s. To this end, we use a Zeeman slower consisting of a magnetic
field gradient along the propagation direction of the atoms and a counter-propagating
laser beam resonant on the D2 line [Geh03]. Atoms that absorb a photon experience a
directed momentum transfer p = h/λ opposite to the propagation direction, resulting
in a change of velocity of ∼ 0.1 m/s. The resonance condition of the atoms changes with
the velocity due the Doppler effect ∆ω = kv, where v corresponds to the velocity of
the atoms. To account for the change in the resonance condition we apply a decreasing
magnetic field with the minimum field at the science chamber.

At the final stage of the Zeeman slower the atoms reach a thermal velocity vth ≈ 50 m/s
sufficiently slow to be captured in the magneto-optical trap (MOT). The MOT con-
sists of three red-detuned, retro-reflected laser beams that apply a friction force on the
atoms slowing them even further. Additionally with a magnetic field gradient provided
by dedicated MOT-coils, the atoms are trapped spatially. Typical MOT loading times
are 0.75 s limited by the speed of the mechanical ovenshutter. In the experiment, we use
a pair of beams in each direction, named the repumper and cooler to close the optical
transition between the F = 3/2 and F = 1/2 ground states [Geh03]. The lowest tem-
peratures in the MOT are limited by the Doppler temperature TD = hΓ/2kB ≈ 140 µK,
given by the natural linewidth of the transition Γ ≈ 6 MHz. These temperatures are
still too high to reach quantum degeneracy requiring further cooling techniques.

4.1.2 Crossed optical dipole trap
We thus transfer the atoms from a compressed MOT to a crossed optical dipole trap
(CODT) at a wavelength λ = 1064 nm, which is far-off resonant detuned to any optical
transition. The CODT consists of two focused lasers beams that intersect at an angle
of 14◦ resulting in a waist of 50 µm [Ber17]. At the latest stage of the transfer only the
repumper beam is kept on to accumulate atoms in the F = 1/2 manifold. We then jump
the magnetic field from B = 0 G to B = 795 G to accumulate atoms in the hyperfine
mixture |1⟩ and |2⟩ at high magnetic field [Geh03]. We perform a 400 ms linear forced
evaporation ramp within the CODT during which we apply an rf-pulse to create a
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4.1 Deterministic preparation of few-fermion systems

Figure 4.1: Vacuum chamber. Mechanical setup of the vacuum chamber. Taken
from [Ser11b].

balanced hyperfine mixture. Subsequently, we transfer atoms from the hyperfine state
|2⟩ to |3⟩ via a Landau-Zener passage at a magnetic field of 570 G. Depending on
whether we work above or below the Feshbach resonance of 6Li of the |1⟩ , |3⟩ hyperfine
mixture, we either jump to 800 G or 300 G, respectively. At this stage, we are left with
104 atoms in the CODT which are good starting conditions to load the atoms into our
tightly focused optical tweezer.

4.1.3 High-NA objective
At the heart of the experiment lies the objective with a numerical aperture NA = 0.55,
a focal length fobj = 20.3 mm, and an aperture size of 24.4 mm which serves two main
purposes. First, it facilitates the generation of tightly focused optical tweezers on the
µm size and second, it collects the fluorescence signal emitted by the atoms during the
imaging. The implementation of the rotating optical tweezers required a new mounting
system for the high-NA objective, sketched in Fig. 4.2.

The objective mount requires to meet the following criteria. The stability of the
objective with respect to the vacuum chamber has the highest priority. This ensures
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Objective

Figure 4.2: Objective mount. The objective is mounted in the flexure mount
which is directly attached to the octagon on three contact points to adjust
the height and the angle of the objective. The only kinematic degrees of
freedom are the position in the horizontal direction. Optical elements
(except the objective) are not shown for better visibility of the relevant
components. Taken from [Dux].

stable positioning of the optical tweezers preferably on the nm scale, with high repro-
ducibility. Furthermore, minimizing the degrees of freedom on the objective mount
contributes to the overall stability. The only degrees of freedom required after the ob-
jective is mounted are the position in the horizontal plane enabled via a flexure mount
to overlap the tweezer position with the magnetic field saddle of the Feshbach coils.
The total adjustable distance in either axis is ±0.5 mm with a resolution of ∼ 1 µm
given by the M4 fine threaded screws. Crucial in the design of the flexure mount is the
suppression of cross talk, both in the displacement of the axes and the change in the
vertical angle. Simulating the flexure mount in Autodesk Inventor 2021 yields an esti-
mation on how severe the unavoidable cross-talk is, which turns out that for maximal
displacements in either axis the tilt of the objective is < 6 µrad, the displacement in
the perpendicular axis is < 4 µm, and the shift in the vertical direction is < 3 µm. The
shifts are below the percent level and therefore negligible for the alignment procedure.
More important is the coupling to the angle of the objective since a mismatch in the
relative angle of the objective and the incoming light beam introduces optical aberra-
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4.1 Deterministic preparation of few-fermion systems

C
am
era

E
M

C
C

D
cam

era

f120

λ/4 +
Point-mirror

Objective

Atom plane

Dichroic 
mirror

Trapping light
from SLM

Horizontal 
reflection

Vertical
reflection

Imaging
light

**

**

a b

Legend

Mirrors

Lens

Figure 4.3: Optical path above the vacuum chamber. a, Optical path of the
trapping and imaging light split by a dichroic mirror. Retro-reflection of
the MOT beam is done via a so-called point-mirror, consisting of a 1 inch
λ/4 waveplate with a 1 mm-diameter aluminium mirror sputtered on the
center of the waveplate. b, Optical path of the imaging light focused on
the EMCCD camera (from NueVue). The mirrors marked with ∗∗ in a,b
are the same.

tions. The flexure mount is attached to a lower mount on a tripod. By using spacers
between the flexure and lower mount, we adjust the angle and height of the objective
with an accuracy of ∼ 1 mrad measured with an acceleration sensor on a precision of
0.25 mrad.

Above the objective we combine several optical components used for the MOT, for
the generation of the rotating optical tweezers and the fluorescence imaging system,
sketched in Fig. 4.3a.

Unlike the horizontal MOT beams, which are collimated on the atoms and retro-
reflected using a standard Thorlabs mirror, the vertical MOT beam passes through
the objective, leading to a divergent beam. Here, we focus the MOT beam with a lens
system1 close to the atoms which shifts the back-focal point slightly above the objective.
At the position of the focus, we place a λ/4 waveplate with a 1 mm-diameter aluminium

1f = 40 mm achromatic lens and f = 150 mm spherical 1 inch Thorlabs lenses.
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mirror (point-mirror) in the center of the waveplate to retro-reflect the beam on the
atoms. The divergent MOT beam might result in lower MOT loading rate, however
still sufficiently high for our purposes. On the contrary, we gain a compact optical
setup for the MOT light with minimal distortion on the trapping and imaging light
and without any additional mechanically moving elements in the setup. Note that the
trapping and imaging light pass through the waveplate and thus the point-mirror as
well. However, since we image small scale structures on the atoms and the objective
acts as Fourier transformation, both the trapping and imaging light are on a large scale
at the position of the point-mirror and therefore marginally affected.

The trapping and imaging light are combined via a dichroic mirror2. The imaging
light is then reflected horizontally and focused with a fEMCCD = 120 mm 2-inch sized
lens on the EMCCD camera3, shown in Fig. 4.3b. We make an image of the atom plane
on the camera, with a magnification M determined by the ratio of the focal length of
the objective and the focusing lens in front of the camera M = fobj/fEMCCD ≈ 6. A
single pixel on the camera has a size of 16 µm and thus corresponds to 2.7 µm in the
atom plane. This is a compromise between resolving small scale structures in the atom
plane – for which a large magnification is required – and collecting enough photons on
a single pixel to discriminate the signal from the background noise – for which a small
focal length is beneficial. A more detailed description of the imaging technique is given
in section 4.4.

4.1.4 Optical tweezer setup
The new experimental tool in the optical setup is a spatial light modulator (SLM) 4

placed in the Fourier plane of the atoms. The general working principle is illustrated in
Fig. 4.4. The SLM consists of 800×600 liquid crystals with a size of 20 µm. The crystal’s
orientation alters the refractive index, allowing the imprint of a spatially varying phase
ϕ(x, y) on the reflected light field

uout(x, y) = eiϕ(x,y)uin(x, y) (4.1)

given the local control of each crystal. By utilizing an optical lens which performs a
Fourier transformation in its focal plane we can generate almost arbitrary intensity
patterns. Details on the principles and characterization of the SLM can be found in
[Hol17; Pal18; Hil21].

Using the Fourier transformation of the light field – instead of alternative applica-
tions where an SLM is set up in the image plane of the atoms – has the advantage that

2Laser components, HT10664nm, HR671nm
3NüVü Hnü 512
4Hamamatsu X10468-03 Liquid Crystal on Silicon (LCoS)
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Figure 4.4: Spatial light modulator. The SLM imprints a locally varying phase
ϕ(x, y) on the flat incident wavefront. Arbitrary intensity distributions
can be generated by Fourier transformation of the light field via a lens.
Adapted from [Pal20].

aberrations of the optical potential can be corrected at the resolution limit. Further-
more, the diffractive nature of the SLM renders it possible to generate multiple beams
with different spatially varying phases. We make use of this to generate rotating optical
potentials, discussed in the next sections.

The complete optical setup for the SLM is shown in Fig. 4.5. In our approach for
creating rotating optical potentials, we use two beams from the SLM that interfere
with each other. Beam 1 serves as the main optical tweezer in which we prepare the
few fermion systems. This beam generates a Gaussian optical potential with minimal
optical aberrations corrected with the aid of the SLM [Rei23]. Beam 2 is shaped to
a Laguerre-Gaussian mode using the SLM. Its optical frequency relative to beam 1 is
adjustable via an acousto-optical modulator (AOM) such that the deformation of the
optical potential caused by the interference of the two beams can be rotated (details
in the next section).

For the preparation of the tailored optical potentials, we clean the polarization and
power stabilize the Beams on a photodiode (PD). Beam 1 and 2 are combined via a
non-polarizing beam splitter (NPBS). Both beams are aligned on the SLM via a non-
PBS on a 90◦ angle. This setup has the drawback of loosing at least 75 % of the light
after the SLM but decreases the beam length tremendously, and hence increasing the
beam pointing stability. We use a circular aperture in the Fourier plane of the SLM to
remove unwanted diffraction orders, after which we magnify the Beams to match the
aperture size of the objective. We install an additional camera in front of the objective
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Figure 4.5: Optical setup. Optical setup to create tailored optical potentials via
a spatial light modulator (SLM). The main optical tweezer is generated
from Beam 1, while Beam 2 is used to deform the main tweezer with a
precisely controllable rotation frequency.

to monitor the beam shape and the position of the beams generated by the SLM.
The central element of our experiment is a tightly focused optical tweezer with a

waist of 1 µm, with which we prepare few-fermion systems with fidelities up to 95 %.
First demonstrated in [Ser11a], it was refined to create multi-well systems [Ber19;
Bec20a] and recently extended to 2D [Bay20a] by usage of an SLM. The small focus
entails a drastic increase of the chemical potential, known as the dimple trick [Gri07],
originally described in [Pin97; Sta98]. The small tweezer is superimposed with our
CODT which serves as a large reservoir, from which the tweezer is filled with atoms
through elastic collisions. Assuming thermal equilibrium between the large reservoir
trap and the tweezer, this leads to a significant increase of the local density, the phase
space density, elastic collision rate and T/TF. In particular in our setup, we reach
densities in the tweezer on the order of 1015atoms/cm3. These are excellent starting
conditions for forced evaporative cooling to reach a cold sample of hundreds of fermions
in the tweezer. We achieve that by ramping down the optical power quadratically by
a factor of 20 within 40 ms. Additionally, during the transfer from the CODT to the
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4.1 Deterministic preparation of few-fermion systems

a b c

Figure 4.6: Deterministic preparation of few-fermion systems. The starting
point is a degenerate, two-component Fermi gas of roughly 200 atoms in
total in a tightly focused optical tweezer (a). Each energy level is occupied
by two fermions differing in their spin degree of freedom. Applying a
magnetic field gradient of 40 G/cm and lowering the trap depth removes
all atoms above a certain energy threshold (b). We end up with a discrete
quantum state in the ground state of the optical potential with variable
atom number.

tweezer and the evaporation procedure, we turn on a magnetic field gradient of 40 G/cm
to expel atoms with high kinetic energy.

In order to prepare few fermion systems, we start from a degenerate Fermi gas in
the tweezer, illustrated in Fig. 4.6a. Subsequently, we apply a magnetic field gradient
along the vertical direction, which corresponds to a linear potential in addition to the
harmonic confinement given by the tweezer. As a result, depending on the strength of
the gradient and the optical power in the tweezer, we can tune the number of bound
states set by the large trap frequency (Fig. 4.6b). All atoms above a certain energy
threshold are expelled from the trap, and after adiabatically turning off the magnetic
field gradient we end up with a fixed number of fermions in the ground state of the
optical potential (Fig. 4.6c).

Specifically, we start with a spin mixture in the hyperfine states |1⟩ , |3⟩ of roughly
200 atoms in total, close to the ground state of the optical tweezer. We linearly ramp
the magnetic field gradient to δB/δz = 20 G/cm within 10 ms while keeping the tweezer
power constant. After reaching the maximum gradient, we quadratically decrease the
tweezer power within 80 ms and hold it for 40 ms to spill out the remaining atoms. We
invert the sequence, leaving us with the desired atom number.

In Fig. 4.7, we show the experimental results on the preparation of mesosocpic Fermi
systems. The upper row contains the variance, while the lower row displays the corre-
sponding full counting statistics of the atom numbers. Within the lowest radial shell
(a,b), the variance drops near zero accompanied by a step like occurrence of a particle
number. In particular, we prepare the ground state of a single spin up and spin down
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Figure 4.7: Experimental preparation of mesoscopic fermi systems. Variance
a, and full counting statistics b, in the lowest radial shell are shown. Steps
in the atom number counting are visible associated with a decrease in the
variance to almost zero. The right column shows the variance c, and the
full counting statistics d, of many fermions in the ground state extending
to higher lying radial shells. The blue lines are linear slopes of the atom
numbers corresponding to the density of states within each radial shell.

fermion with a fidelity of 95(3) % at an optical power of 136 µW above the objective.
Note that the required optical power changes with the magnetic field gradient. As
shown in [Ser11a], we can spill a second time to the same optical power to ensure that
no excitations occur during the spilling procedure. The fidelity to spill two times is
then given by the square of the single spill fidelity.

For larger atom numbers (c,d) we do not occupy the lowest radial shell and therefore
near-deterministic preparation is not possible anymore given the degeneracy of the axial
levels. However, the variance provides valuable information about the fluctuations in
atom number. At a mean atom number of N = 100 atoms we observe a standard
deviation std =

√
var(N) = 4.2 which is more than a factor 2 suppression in atom

number fluctuations compared to the Poisson distribution
√
N = 9.9 expected for a

thermal gas. Note that the atom number fluctuations is an upper bound as our method
of counting the number of atoms cannot reliably discriminate between single atoms at
these high atom numbers (see section 4.4 for details).
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Figure 4.8: Phase shifting interferometry. Experimental setup for phase shifting
interferometry (PSI). On the source, in our case an SLM, two patches
are created, which interfere in the atom plane. The objective acts a
a Fourier transformation. As the light stemming from the two patches
travels through the optical elements they accumulate a different relative
phase ∆φ if aberrations are present. This phase shift can be measured on
a reference camera or on the atoms.

4.2 Correction of optical phase aberrations

High numerical aperture objectives enable access to the microscopic structures of quan-
tum many-body systems, down to the single particle level [Kau21; Gro21a; Ber18]. In
order to achieve such a small resolution the optical setup requires to be free of optical
aberrations which limit the performance of the trapping and imaging system above the
diffraction limit. Measuring the complete optical path turns out to be challenging, as
the quantum gas is typically placed in a vacuum system with optical elements causing
optical aberrations which are experimentally impractical to measure. This requires to
use the quantum gas itself as a wavefront detector, to map out the optical aberrations
from the source of the light field to the atoms. This section is partly based on the
publication citeHill2024.

Phase shift interferometry (PSI) is an established technique to measure optical phase
aberrations [Bru74]. The conceptual idea is to create two local patches on the source
of the light field, in our case an SLM, sketched in Fig. 4.8. The light stemming from
the two patches traverse through the optical elements along different paths, thereby
accumulating different phases in the presence of optical aberrations. In the Fourier
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plane of the source, which is accessed through a focusing lens or an objective, the two
patches overlap and interfere with each other. The spatial distance of the patches |r|
at the source translates into an interference pattern with a fringe spacing given by the
inverse of the initial spatial separation 1/|r|. In case that aberrations are present in
the optical setup, they cause a path dependent relative phase shift of the patches ∆φ,
thereby shifting the position of the maxima (and minima) of the interference pattern.
Thus, the shift of the interference pattern directly relates to the optical aberrations
present in the optical system.

In order to experimentally realize the PSI algorithm by using the quantum gas as
the wavefront sensor, we identify three key components. First, we require an SLM
in the Fourier plane of the atoms used as the source of the light fields and for local
manipulation. Second, a 2D confining potential is required which restricts the extend
of the atoms along the vertical direction. Since we use small patches on the SLM, to
increase the resolution of the phase map obtained by sampling the patches over the
SLM, the Rayleigh length in the atom plane is large leading to a broad extend along the
vertical direction. This is mitigated by the usage of the 2D trap. The third component
consists of an imaging procedure to detect the atomic distribution along the optical
axis.

We are concerned with the light field in the atom plane Eatoms stemming from the
input field ESLM on the SLM. Under the assumption that the SLM is in the Fourier
plane of the atoms, and that we can approximate all the optical elements into an ideal
lens with an effective focal lens f , the electric field amplitude in the atom plane takes
the form

Eatoms(x) ∼ F
[
|ESLM(x′)|eiW (x′)

]
(ν)

∣∣∣
ν=x/λf

, (4.2)

where we have included all the local optical aberrations acquired by traversing through
the optical elements into the wavefront W (x′). Hence, the aim is to measure W (x′) in
the atom plane and imprint the inverse −W (x′) on the SLM to achieve a flat wavefront.

Consider two adjacent patches at positions p1 and p2 = p1 + d, separated by a
distance |d|. We approximate the wavefront of each path to first order by W (x) =
hpi

+gpi
·(x−pi), where hpi

is a constant phase and the gpi
corresponds to a linear phase

gradient. Assuming a constant field amplitude ESLM, we can use the approximative
wavefront W (x) to integrate Eq. (4.2). This yields an intensity distribution of the
interference pattern in the atom plane

I(ν) = Ip1 + Ip2 + 2
√
Ip1Ip2 cos ∆Φ(ν) (4.3a)

∆Φ(ν) = 2πd · ν + ∆φ, (4.3b)

where ∆φ = φp1 − φp2 is the essential phase difference which determines the position
of the central intensity peak of the interference pattern. The intensities Ip1 , Ip2 are
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Figure 4.9: Phase sensitive intensity pattern. Interference pattern created from
two patches on SLM, directly taking the light field on the reference cam-
era (upper row, blue) and fluorescence images of the atomic distribution
(lower row, red).

created from each patch, respectively, and are assumed to be homogeneous for small
patch sizes.

In order to determine the phase ∆φ we perform phase shift interferometry, where
we deliberately add a phase offset δφn between 2πn/N, n = 0, 1, ..., N − 1 to patch p1.
This yields a periodic function in the intensity in the Fourier plane I(ν) with respect to
the phase offset. Hence, we can Fourier decompose the intensity and directly retrieve
the phase [Sch83]

tan ∆Φ(ν) =
∑N−1

n=0 In(ν) sin δφn∑N−1
n=0 In(ν) cos δφn

. (4.4)

While in principle the phase ∆ϕ can be extracted by fitting Eq. (4.3a) to the intensity
signal of the atoms, the PSI algorithm offers a more general approach, since it does not
rely on specific assumptions on the intensity distribution across the patches.

In Fig. 4.9, we show the interference patterns of two neighbouring patches aligned
along the horizontal direction for multiple relative phase offset δφn. The upper row
contains the light intensity on the reference camera while the lower row displays the
fluorescence signal of the atoms trapped in the interference pattern (details on the
imaging scheme are found in section 4.4). As we increase the relative phase offset δφ
the node of the of central fringe moves along the horizontal direction, visible in both
cases. Using Eq. (4.4), we determine the phase ∆φ by fitting a linear gradient to the
unwrapped phase ∆Φ. We constrain the signal region in which the phase increases
linearly by selecting only pixels above a certain intensity threshold. The signal region
is highlighted with black dots in Fig. 4.9 in the right panel.

Let us emphasize that it in general, the fluorescence signal of the atomic distribution
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SLM

Figure 4.10: Shear maps. Neighbouring patches stacked along the horizontal and
vertical direction are moved throughout the adjacent grid points on the
SLM. The points correspond to the grid along which the patches are
moved. The circle indicates the aperture of the objective.

is proportional to the distribution of the light intensity [Hil24]. Instead, a non-linear
mapping is expected which is more pronounced in small atomic samples, where the
local density approximation, i.e. where the chemical potential is approximated by
µ(r) = µ−V (r), is not applicable. Furthermore, the temperature and the interactions
might play an additional role on the distribution of the atoms. Moreover, during
the imaging process the atoms perform a random walk which leads to broadening.
Nevertheless, we observe that the atomic distribution follows the intensity distribution
when the relative phase is varied, which justifies our approach.

The determination of the relative phase offset ∆φ of one pair of patches is the
groundwork for the construction of the complete wavefront across the SLM. To this
end, we use neighbouring patches along the horizontal and vertical direction, which
are moved across the entire SLM, shown in Fig. 4.10. The reason to use neighbouring
patches which move simultaneously is to maximize the fringe spacing in the atom plane.
However, this measures not the relative phase offset but instead the shear of the phase
along the respective direction. Alternative methods [Bru74] use a static reference patch
with only a single moving patch from which the relative phase offset can be directly
retrieved. This method requires sufficient resolution of the imaging system which is
not accessible on the atoms.

To be precise, we measure the shear Sx
i,j, S

y
i,j defined as

Sx
i,j = φi+1,j − φi,j (4.5a)
Sy

i,j = φi,j+1 − φi,j, (4.5b)

along the x− and y−direction, respectively, of patches located at p = (xi, yi) =
(x0, y0) + (di, dj) and (i, j = 0, ...,M − 1). Here, φp corresponds to the absolute phase
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Figure 4.11: Wavefront flattening. Measured shear maps Sx and Sy in x− and
y−direction, respectively. The integration of the shear maps in both
dimensions yields the coarse grained phase map which is interpolated
using biharmonic splines to receive a smoothly varying phase map. The
inverted phase map is imprinted on the SLM resulting in a flattened
wavefront.

in the atom plane at the patch position p. The shear map Sx is sampled on a grid
with dimensions M − 1 × M , while the shear map Sy is defined on the grid with size
M×M−1. In order to obtain the actual relative phase ∆φ we use least squares [Tal06]
which minimizes the gradient of the phase map ϕi,j with respect to the shear map along
the x− and y−direction

min
∑

ij

(ϕi+1,j − ϕi,j − Sx
ij)2 +

∑
ij

(ϕi,j+1 − ϕi,j − Sy
ij)2

 (4.6)

To retrieve the full phase map in the atom plane, we load ∼ 100 ultracold atoms (the
exact number varies among the patch positions) into the interference pattern formed
by two neighbouring patches and image their density distribution. At each location on
a 9 × 9 grid of the neighbouring patches with a patch size of 70 pixels (in comparison,
the SLM contains 800 × 600 pixels, one pixel has a size of 20 × 20 µm), we scan the
relative phase offset δφn for six different phases. In each setting, we average around 20
fluorescence images of the atoms to increase the signal-to-noise ratio. From that, we
end up with two shear maps Sx and Sy, shown in Fig. 4.11. Using the least squares,
we retrieve the integrated phase map, which is subsequently interpolated. We invert
the phase map, and display it on the SLM. We run the PSI algorithm multiple times to
retrieve the phase map, which is then additionally displayed on the SLM. We observe
that after three iterations the residual errors remain constant and conclude that the
algorithm converged. The sum of all phase maps is shown in Fig. 4.11 on the right.
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Target map Recovered map Residual map

Figure 4.12: Benchmarking the PSI algorithm. We benchmark the PSI algo-
rithm by applying a known erroneous phase map to the SLM consisting
of a combination of coma and astigmatism. We run the PSI algorithm
iteratively and recover a phase map close to the target one. The differ-
ence of the target and recovered phase map yields the residuals, which
show a σrms = 0.03λ deviations.

Quantitatively, we calculate the root-mean-square (rms) deviation compared to a
flat wavefront resulting in σrms = 0.05λ. Furthermore, running multiple iterations on
the atoms allows us to calculate the rms precision of the technique σrms = 0.01λ by
comparing the difference of the rms deviation of the 3rd and 4th iteration. In that
calculation, we exclude the outermost grids on the edges since they are clipped by
the finite aperture size of the objective, marked as a shaded squares. Moreover on
a qualitative level, we observe the structure of the point-mirror (for clarification, see
Fig 4.3a)) at the center of the phase map. We emphasize that the obtained phase map
includes the optical phase aberrations stemming primarily from the objective and the
vacuum window. The aberrations caused by the optical elements between the SLM and
the objective were cancelled on the reference camera before running the PSI algorithm
on the atoms.

Having determined the precision of the PSI algorithm, the natural question arises
how accurate it is. To this end, we apply a target map on the SLM which consists
of coma and astigmatism aberrations, as these typically occur in optical systems. A
crucial parameter is the peak-to-valley strength of the aberrations which is chosen to
σptv = 0.6λ – too strong and the aberrations render the PSI algorithm impossible
on the atoms, too small and the signal-to-noise ratio is not sufficient to determine the
target map. We measure in three iterations the shear maps in both x− and y−direction,
integrate them according to Eq. (4.6) and display the inverse on the SLM.

In Fig. 4.12, we show the target phase map, the sum of the recovered phase map
and the residual map, which is calculated by the difference of the former maps. Quali-
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tatively, we observe agreement between the target and recovered map in regions. The
shaded regions are discarded since at these patch locations we do not trap any atoms
in the interference pattern. Furthermore, in the center of the maps, we observe a mis-
match due to the presence of the point-mirror (see Fig. 4.3a). On a quantitative level,
we determine an rms deviation of the residual map σrms = 0.03λ, by neglecting the
shaded region, which is a factor of 3 larger than the rms-precision.

4.3 Implementation of rotating optical potentials
Many roads lead to rotation. Over the last decades various methods have been success-
fully implemented to rotate ultracold bosonic gases close to the deconfinement limit, by
using either magnetic traps [Sch04; Fle21], optical lattices [Gem10] or a combination of
a magnetic trap and a rotating elliptic optical potential [Bre04]. Strongly interacting
fermionic atoms of lithium require trapping in optical potentials which often suffer from
optical aberrations, specifically when using small focal waists on the µm scale. Rotating
optical traps have been employed to reveal superfluidity in strongly interacting Fermi
gases [Zwi05; Rie10], however reaching the rapid rotation limit without heating the sys-
tem has been elusive so far. Here, we overcome these challenges and use an all-optical
approach to smoothly rotate our tweezer up to arbitrary rotation frequencies. In this
section, we highlight the implementation of the rotating optical potentials.

The conceptual idea of our technique is based on the interference of Laguerre-
Gaussian modes with different orbital angular momentum. They are characterized
by a radial and azimuthal index p and l, respectively, and read

LGl
p(r, φ) =

√
2

w0

√
p!

π(|l| + p)!

(√
2r
w0

)|l|

L|l|
p (2r2/w0)eilφe−r2/w2

0 , (4.7)

where w0 is the waist of the laser beam in the focal plane, and L|l|
p are the associ-

ated Legendre polynomials. The phase winding of the LG mode is given by eilφ, thus
carrying l quanta of angular momentum resulting in a node in the intensity distribu-
tion. Superimposing two LG modes does not lead to rotation, yet; it also requires the
temporal control of the relative phase. Changing the phase continuously is equivalent
to a relative frequency offset between the two beams. To accomplish this, we use an
AOM for each beam, allowing us to set the relative frequency to arbitrary values via a
frequency generator5.

To approximate a harmonic potential with the tweezer we choose the zeroth order
LG mode corresponding to a flat phase ϕ(x, y) = 0 on the SLM. In order to generate

5Rigol DG4162
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Figure 4.13: Implementation of rotating optical potentials. a, The SLM is
used to generate two diffraction patterns from a single incident beam,
generating in total four outgoing beams, two of which are overlapped
by adjusting the gradients gA, gB. b, Position of the four outgoing
beams in the Fourier plane, slightly displaced due to an offset in the
angle. Gradient A (B) diffracts a LG00 (LG02) mode. The black circles
indicate the position of the outgoing beams if no gradient is applied on
the SLM. c, The phase pattern on gradient A and B can be adjusted
independently. A Gaussian mode is chosen for Beam 1A and a l = 2
Laguerre-Gaussian mode is selected for Beam 2B. Interference of the
beams deforms the optical potential elliptically. The relative frequency
Ω of the beams determines the rotation frequency Ω/l.

a higher order LG mode, we imprint a phase winding

ϕ(x, y) = l arctan(x, y) = lφ, (4.8)

of l-th order on the SLM depending on the amount of angular momentum we intend
to imprint on the atoms. Here, φ corresponds to the angle in polar coordinates. The
Fourier transformation of the above phase pattern then yields a LG0l mode in the atom
plane.

In Fig. 4.13, we illustrate the generation of two interfering beams by utilizing the
SLM. To this end, two incident Beams 1 (red) and 2 (blue) are shone on the SLM
under a small relative angle ∆θ (see Fig. 4.13a). In order to individually modify the
local phase of each beam, we generate multiple outgoing beams from a single source by
choosing the phase pattern

ϕ(x, y) = arg
(
eiϕA(x,y) + eiϕB(x,y)

)
(4.9)
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on the SLM. This yields approximately an outgoing electric field amplitude

uout(x, y) ≃ (eiϕA + eiϕB)uin, (4.10)

which consists exactly of two beams reflected with an angle given by the phase gradient
ϕA and ϕB. Note that this contrasts the situation where simply a sum of two phase
gradients ϕA + ϕB is applied to the SLM which results in the outgoing amplitude
uout ≃ ei(ϕA+ϕB)uin corresponding only to a single outgoing beam.

The outgoing angle of the beams in eq. (4.10) can be adjusted by the phase gradients
gA, gB which create the sub-beams A, B. To compensate for the initial relative angle
∆θ, the gradients are set to ∆θ = (gA − gB)/λ which aligns two out of the four beams
on top of each other. This scenario is illustrated in Fig. 4.13b, where the beams overlap
ever so slightly. Here, we also imprinted a LG00 (LG02) mode on gradient A (B).

In Fig. 4.13c, we calculate the interference of a LG00 and LG02 mode in the limit
of small relative intensity of the latter one. Even though the intensity pattern of
both beams is radially symmetric, the interference pattern deforms to an ellipse. This
becomes evident when considering the phase of each beam. While the LG00 mode has
a flat phase the LG02 has 2×2π phase windings leading to constructive and destructive
interference along perpendicular axes. The relative frequency Ω of the two beams sets
the rotation frequency which is adjustable via a single AOM for each beam. However,
the real geometric frequency at which the optical potential rotates is Ω/l = Ω/2 which
is reflected in the 2-fold symmetry of the perturbation – after 1/2th of a period the
perturbed potential is mapped back on itself.

4.4 Imaging techniques

Imaging the atomic system gives access to crucial information required to characterize
the quantum state. In contrast to quantum non-demolition imaging techniques which
rely on the atoms imprinting a phase shift on the incident light field [Ket99], we employ
measurements which destroy the initial quantum state. Within the scope of this thesis
we mainly utilize two methods. The first one counts the number of atoms with high
fidelity [Hum13] which allows us to characterize the system spectroscopically. The sec-
ond one employs a single atom and spin resolved fluorescence imaging technique [Ber18]
which projects the quantum state on the momentum of each particle. To extract infor-
mation about the system we prepare the exact same quantum state many times and
reconstruct various observables from statistics.
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Figure 4.14: Histogram of fluorescence signal of few atoms. Single atoms can
be distinguished via the large separation of their normalized fluorescence
signal, with an average peak separation of 6.7σ for the displayed atom
numbers. The envelope corresponds to Gaussian fits which scale linearly
with the fluorescence signal of increasing atom numbers.

4.4.1 Atom number counting
A prerequisite for any measurements in our few fermion systems is the detection of
atoms at the single particle level. To this end, we use an atom number counting
technique [Ser11a; Hum13] where the atoms are recaptured from the tweezer into the
MOT. In order to increase the emitted fluorescence of the atoms in the MOT, we ramp
the detuning ∆ = −2Γ close to resonance and increase the magnetic field gradient to
250 G/cm to localize the particles tightly. The fluorescence signal is then focused on
a CCD camera and integrated over 500 ms, which experimentally turned out to be an
optimal integration time to reliably discriminate single atoms. With these settings we
achieve a large separation of the fluorescence signals of different atom numbers up to
range of 12 atoms, shown in Fig. 4.14, already normalized to the mean intensity of single
atom. Assuming a Gaussian distribution of the fluorescence signal, the separation of
the peaks is on average 6.7σ and, within the displayed atom numbers, scales linearly
with the single atom intensity.

The high counting fidelities come at the cost of losing information about the po-
sition, the momentum and the spin state of the particles. It is however possible to
access information about the energy of the particles within the trap by probing the
system spectroscopically. This situation is sketched in Fig. 4.15. Typically, we start
with two non-interacting spinful fermions in the ground state of the optical tweezer.
Subsequently, we perturb the system at a given frequency Ω for a certain perturbation
time τp after which we spill again to the same energy level of the ground state, thereby

60



4.4 Imaging techniques

a b c

Perturbation

Figure 4.15: Atom loss spectroscopy. The two spinful fermions in the ground
state of the optical potential (a) are characterized by perturbing the
system (b, typically a rotation of the deformed optical potential) and
subsequent counting of the remaining atoms in the ground state (c).

removing all excited atoms.
The perturbation can take various forms, ranging from amplitude modulation of the

optical power of the tweezer to Laguerre-Gaussian modes LG0l of different orders l. The
variety of perturbations allows us to selectively address specific motional states within
the optical potential giving access to the complete potential landscape (see appendix A
for details). We demonstrate this technique in chapter 5 by preparing different angular
momentum eigenstates.

4.4.2 Spin and atom resolved fluorescence imaging
We make use of a single atom and spin resolved imaging technique pioneered in previous
work [Ber18] to access correlations in momentum space. The conceptual idea is to
illuminate the atoms with resonant light on a time scale that is short with respect to
their velocity. The fluorescence light is then collected via the high-NA objective and
focused on an EMCCD camera.

The schematics are sketched in Fig. 4.16a. Two alternating resonant laser pulses
with a periodicity of 200 ns illuminate the atoms for 15 µs resulting in ∼ 250 emitted
photons from which we collect on average 24 photons given the numerical aperture
NA = 0.55 of the objective, the radiation pattern of the atoms and the losses on the
optical components. In order to discriminate a single atom from the background noise
we employ an EMCCD camera, for details see [Jan16]. We achieve a gain over read-
out noise g/σread = 23 with our camera. Choosing a 5σ detection threshold we reach
single photon detection fidelities of P = e−5σread/g = 80 %. When operating the camera
in the electron multiplying mode the most dominant noise source are clock-induced
charges (CICs) which are randomly generated photoelectrons during the read-out. For
a successful detection of single atoms it is essential to operate in a regime where the
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Figure 4.16: Single atom and spin resolved imaging. Two counter-propagating,
resonant laser beams with alternating intensity are shone on the atoms.
The fluorescence light is collected via the NA = 0.55 objective and
focused on an EMCCD camera. The total imaging time of 15 µs is suf-
ficiently long to collect enough photons to discriminate them from the
background and short enough to limit the diffusion of the atoms, such
that no cooling is required. Adapted from [Ber17].

CICs are as low as possible. Remaining background light in the experiment leads to an
additional increase of randomly generated photoelectrons. In total, the probability to
excite an unwanted photoelectron per pixel is in our case 0.3 % on a pixel size 320×320.

The detection of single atoms requires additional processing of the obtained raw
images. We first binarize each pixel to one if the value is above the threshold of 5σread,
otherwise it is set to zero. Afterwards we use a low-pass filter with a Gaussian width
of 5 pixels. This increases the signal of the atoms drastically as the photons emitted
from the atoms cluster while the CICs are randomly distributed over the camera chip.
The process is showcased in Fig. 4.16b for both a spin up (red) and spin down (blue)
fermion. Finally, they are combined to a single image.

The in-situ imaging resolution σl is not sufficient to resolve the microscopic features
of the wavefunction within the tweezer. Typically, we work with radial trap frequencies
up to ω/2π = 50 kHz resulting in a harmonic oscillator length lHO = 0.18 µm which sets
the natural length scale of the system. Due to the random walk caused by the recoil of
the scattered photons during the imaging procedure, the diffusion of the atom position
leads to an in-situ imaging resolution on the order of ∼ 10 µm, see Fig. 4.17, for the
spin down state (blue) and the spin up state (red). Here, we image the spin down state
directly after switching off the tweezer, and subsequently the spin up state with a time
delay of 145 µs leading to an additional broadening. We observe a slight asymmetry in
the x− and y−direction which we attribute to stimulated emission along the direction
of the flashing beams.

To circumvent the problem of the resolution, we use a time-of-flight expansion on
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Figure 4.17: Effective imaging resolution. The in-situ imaging resolution is not
sufficient to resolve any microscopic details of the wavefunction. The
successive imaging of spin down (blue, a,b) and spin up (red, c,d) with
a time delay of 145 µs leads to off-resonant scattering of the spin up state
and thus an increase in the effective imaging resolution.

the order of ttof = 2 ms which leads to a magnification M = ωttof ∼ 600. The time-of-
flight expansion maps the initial real space system to momentum space given that we
are considering eigenstates of the 2D harmonic oscillator. This results in an effective
imaging resolution in momentum space

σp

pHO
= σl

lHO

1
M
, (4.11)

in units of the harmonic oscillator momentum pHO. Specifically, we obtain an effec-
tive imaging resolution in momentum space of the spin down state 2σx

p,↓ ≈ 0.08pHO,
2σy

p,↓ ≈ 0.13pHO and the spin up state σx
p,↑ ≈ 0.29pHO, σy

p,↑ ≈ 0.57pHO. Note that the
magnification of the spin up state is slightly larger due to the 145 µs time delay.
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5

Engineering angular momentum states
In order to simulate complex quantum many-body systems with ultracold atoms, novel
experimental approaches are required to engineer the desired Hamiltonians [Llo96;
Geo14]. Optical dipole traps are particularly suited for this tasks as they allow the
utilization of spatial light modulators (SLMs) to manipulate the optical potential lo-
cally, down to the diffraction limit [Bij13]. Nowadays, SLMs have become a stan-
dard technique in cold atom experiments to engineer Hamiltonians. These range
from the Hubbard model [Gro21a], spin models in Rydberg systems [Bro20], homo-
geneous systems [Gau13; Muk17; Hue18], cosmological models [Vie22], to artificial
gauge fields [Aid13b; Tai17], to name an incomplete list.

A long-standing goal in ultracold atom experiments has been the realization of strong
artificial magnetic fields [Aid18; Gol16; Coo19; Coo08]. They enable a direct mapping
to strongly correlated phases analogues to those in the FQH effect. Among various
experimental techniques [Lin11; Cha20; Man15; Zho23; Str12; Aid14; Jot14; Ken15;
Ast19], rotating ultracold atomic gases stand out due to the intuitive mathematical
equivalence of the Coriolis force acting on a neutral particle and a charged particle
exposed to the Lorentz force [Dal16]. From an experimental standpoint however, ro-
tating a quantum system is a delicate process as, if not well controlled, it might lead to
coupling to unwanted states which eventually heats the system. The exquisite control
of the particle number, interactions and optical potentials in ultracold atomic gases
allows for the examination of the simplest experimental systems to test the rotating
perturbation for heating mechanisms, before exploring strongly correlated many-body
phases with many particles.

In this chapter, we report on the preparation of a single fermionic atom in angular
momentum eigenstates, trapped in a radially symmetric optical potential. These mea-
surements are enabled by the precise control of the ellipticity of the optical tweezer,
as well as a newly developed experimental technique to deform and rotate the optical
potential. We demonstrate the preparation of angular momentum states by measuring
the density of the wavefunction in momentum space after a time-of-flight expansion.
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Figure 5.1: Experimental sequence for preparing angular momentum states.
a, We prepare two spinful non-interacting fermions (black particles) in
the ground state of a radially symmetric optical tweezer, tightly focused
through a high-NA objective. b, The in-plane potential forms a two-
dimensional harmonic oscillator up to anharmonic corrections. The ro-
tating perturbation couples the stationary ground state to a state with
Lz = mℏ angular momentum. These are states that carry maximal angu-
lar momentum in their respective shell n and lie in the LLL. c, We either
spectroscopically characterize the prepared angular momentum state (1)
or we use our imaging scheme to detect the momentum of each of the
particles (2).

The incorporation of the angular momentum manifests in a radially symmetric density
distribution with a depletion in the center. We further investigate the angular mo-
mentum eigenstates by letting the quantum state evolve in slightly anisotropic trap,
thereby demonstrating the imprint of a phase winding. Most of the results presented
in this chapter are based on the Supplementary material of the publication [Lun24].

5.1 Preparation of angular momentum states
Our approach to prepare a single fermion in an angular momentum eigenstate consists
of three main steps, illustrated in Fig. 5.1. First, we start with two spinful fermions in
the ground state of the optical tweezer at a magnetic field of 300 G where the atoms
are still interacting. Subsequently, we adiabatically tune the magnetic field to 568 G at
which interactions between the fermions are zero. We prepare this non-interacting state
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near-deterministically with fidelities of 95(3) %. Here, we can treat the two fermions as
independent, identical copies of the same system. This allows us to effectively consider
a single atom in the ground state of the optical potential and is the starting point of
all experiments described in this chapter.

In the second step, we employ a rotating perturbation to couple the ground state to
an angular momentum state. We imprint a LG mode of lth order for a varying time τrot
on the atoms. This perturbation deforms the originally, rotationally symmetric optical
tweezer and rotates at a frequency Ω/2πl, where Ω is the difference of the optical
frequencies between the light used to create the LG mode and the optical tweezer. The
order l of the LG mode determines the amount of angular momentum inserted into the
system. Furthermore, we make use of the anharmonicity of our optical potentials which
renders the ground state and the desired angular momentum eigenstate an effective
two-level system since coupling to higher states is suppressed. We then drive Rabi
oscillations between these states, followed by a π−pulse to the angular momentum
state.

The third step, following the state preparation, consists of the the state detection.
We have two options in our experiment: we can either spectroscopically characterize
the system, where we transfer atoms back to the MOT after applying the rotating
perturbation and count the total number of remaining atoms in the ground state,
or we can utilize our fluorescence imaging technique. The latter technique involves
projecting the wavefunction with a momentum measurement on each of the spin states.
The repeated preparation of the exact same quantum state allows us to re-construct
the density of the wavefunction.

If not mentioned otherwise throughout this chapter, we will only detect the hyperfine
state |F = 3/2,mF = −3/2⟩ (corresponding to |↓⟩) since the detection fidelity is signif-
icantly larger compared to the hyperfine state |F = 1/2,mF = 1/2⟩ (corresponding to
|↑⟩) due to the closed imaging transition (see chapter 4) and the other one being only
an identical copy.

5.1.1 Experimental caveats
Before studying the preparation and detection of angular momentum states, it is in-
structive to understand the experimental challenges of realizing such angular momen-
tum states. We had to overcome several experimental obstacles.

Relative position of the main trap and the rotating perturbation beam. It is necessary
to align the perturbation beam on the main optical tweezer with a precision that is
on the same order of magnitude as the radial extend of the wavefunction, typically
∼ 200 nm, set by the tight radial confinement of the tweezer. Displacement of the per-
turbation beam and the main trap leads to unwanted coupling elements which might
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Figure 5.2: Alignment of the perturbation beam and main trap. a, Sketch
of the alignment procedure. We choose a LG00 mode as the perturbation
beam and scan it across the two-dimensional atom plane while modulating
the intensity of the perturbation with the radial trap frequency. In the
case of slight displacement of the perturbation and the main trap this leads
to excitations of the atoms from the ground state. b, Excitation spectrum
for various displacements of the perturbation beam with respect to the
position of the atoms. c, Exemplary excitation spectrum at dy = 0 µm.
The coupling to the dipole mode is suppressed when the perturbation
beam and the atoms overlap, at this point no atoms are lost during the
perturbation.

break the required symmetry of the perturbation, and thus leading to dominant cou-
pling to superpositions of angular momentum states. The procedure of aligning the
perturbation beam and the main tweezer is shown in Fig. 5.2a. We utilize a Gaus-
sian mode LG00 as the perturbation whose intensity is modulated at the radial trap
frequency of the tweezer. Hence, in the case that the perturbation beam is slightly
displaced with respect to the main trap the atoms are excited from the ground state.
Only when the perturbation is largely displaced the intensity modulation has no effect,
or when the perturbation is aligned precisely on top of the main tweezer. Then, the
coupling to the odd-parity state at the trap frequency is suppressed. We scan the po-
sition of the perturbation beam on the atom plane and measure the remaining atoms
in the ground state, shown Fig. 5.2b, with an exemplary excitation spectrum in Fig.
5.2c where we recover almost all atoms when both beams overlap. We observe that the
relative position of the two beams is stable on a time scale of a few months up to the
radial extent of the wavefunction.

Optical abberations - anisotropy of the main trap. The anisotropy δω of the optical
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potential breaks the rotational symmetry, therefore, the angular momentum is not a
good quantum number anymore. Hence, δω sets the time scale of preparing the angular
momentum state < 1/δω before the state dephases due to coupling to other states (see
section 5.3 for further details). Furthermore, after the preparation of the quantum
state, any manipulation such as ramping magnetic fields, rf-pulses, etc., needs to be
faster than 1/δω. Later in the chapter, we will demonstrate that we can precisely
measure the anisotropy of the optical tweezer, enabling us to adjust it. Furthermore,
we show that the anisotropy can be harnessed as a tool for characterizing the prepared
angular momentum state.

Homogeneity of the perturbation beam. Surprisingly, it turns out that the azimuthal
homogeneity of the LG mode is not as crucial as the points mentioned above. We can
directly load many non-interacting atoms into an LG mode and measure the density
distribution of the atoms in-situ, which correlates with the intensity distribution of the
optical potential created via the LG mode. We observe that the azimuthal homogeneity
is roughly 10 %. This inhomogeneity of the LG mode results in additional coupling
elements to unwanted states, however here it is beneficial that the energy spacing set
by the trap frequencies of the main trap are large ∼ 10 kHz such that any additional
couplings are suppressed.

5.1.2 Model of the optical trap
The optical tweezer is a tightly focused red-detuned laser beam which can be ap-
proximated by a harmonic potential with a radial ω/2π ≈ 28.1 kHz and an axial
ωz/2π ≈ 3.7 kHz trap frequency. Since the rotation only couples to the in-plane motion
of the particles, we consider a 2D harmonic oscillator (dotted lines), as shown in Fig.
5.3. Anharmonic corrections lead to shifts of the harmonic energy levels illustrated
by the solid lines, they preserve the rotational symmetry, however. The angular mo-
mentum state |m⟩ in the LLL are highlighted in red, carrying m quanta of angular
momentum, consequently the density at the center is depleted and the state increases
in size (in blue). The phase winding of the wavefunction is denoted by the arrow
surrounding the density.

The potential is generated from a Gaussian beam which includes higher anharmonic
terms. Therefore, we use a 2D Gaussian beam model for the optical tweezer to account
for the anharmonicity, which reads for a single particle

Hsp = Hkin + Hpot = − ℏ
2mLi

∆ − γ
P

w2
0
e−2r2/w2

0 , (5.1)

expressed in SI-units and with γ ≈ 800 h ·kHz µm2/mW. Approximating the Gaussian
potential to second lowest non-vanishing order and neglecting a constant energy shift
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Figure 5.3: Two-dimensional harmonic oscillator. Lowest energy levels of the 2D
harmonic oscillator including anharmonic corrections. States in the LLL
are highlighted in red. These states carry m quanta of angular momentum
revealed through the increase in size of their density distribution (blue).

yields the following approximation of the optical potential

Hpot ≈ 2γP
w4

0
r2 − 2γP

w6
0
r4. (5.2)

From this equation, we can see the connection of the harmonic oscillator frequency
mLiω

2/2 ≡ 2γP/w4
0 to the optical power P and the waist w0. Note that the sign of the

quartic contribution is negative leading to a down-shift of the energy levels.
In order to obtain the harmonic oscillator frequency ω we measure various transition

frequencies from the ground state |0⟩ to the final states |1⟩ , |2⟩ , |20⟩. We use these
transition frequencies to fit the optical power P and the waist w0. This gives a waist of
the optical potential w0 = 1.1 µm close to the diffraction limited waist wdiff

0 = 0.72 µm
of the objective at the optical wavelength λopt = 1064 nm. This limit is only reached
in the case that an aberration-free light beam illuminates the entrance aperture of the
objective completely. The latter requirement is not fulfilled in our setup, instead our
incoming Gaussian beam is slightly smaller leading to a larger waist in the atom plane.

5.1.3 Transfer to an angular momentum state
In the following discussion, we focus on the preparation of an angular momentum
state with 2ℏ quanta of angular momentum per particle. For that, we choose a LG02
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Figure 5.4: Excitation to the angular momentum state. Excitation spectrum by
counting the remaining atoms in the single-particle ground state ⟨n̂0

↑ + n̂0
↓⟩

after applying the rotating perturbation for τrot = 350 µs; on the left. Rabi
oscillations on the resonance Ωres ≈ 1.73ω (red arrow) driven with a Rabi
rate Ωrabi/2π ≈ 0.44 kHz. The coherence time is τnon-int

coh = 23(1) ms; on
the right.

mode which tunes the radially symmetric trap to an elliptical shape, provided that
the intensity of the LG02 mode is significantly smaller than the main tweezer. The
perturbation then reads

Vp(t) = ϵp
(
z2e−iΩt + h.c

)
, (5.3)

where z = x + iy is the complex coordinate in the radial plane, ϵp is the strength of
the perturbation and Ω the excitation frequency. Given the perturbation, we couple
states with angular momentum ∆m = ±2 and energy ℏΩ = ±2ℏω. Since we start from
the ground state |0⟩ the next available state is |2⟩. In addition to the conservation of
angular momentum, the correct excitation frequency Ω needs to be chosen which is set
by the harmonic oscillator frequency ω. Coupling to the next higher lying state |4⟩ is
suppressed due to the anharmonicity of the trap levels, effectively rendering the ground
state |0⟩ and the state |2⟩ a two-level system.

In Fig. 5.4, we measure the single-particle occupation number in the ground state
⟨n̂0

↑ + n̂0
↓⟩ after applying a rotating perturbation for τrot = 350 µs. The resonance

frequency of the transition (indicated by the red arrow) is lowered to Ωres ≈ 1.73ω,
compared to the expected frequency at 2ω in a harmonic potential due to the anhar-
monicity of the optical trap. On resonance, we drive Rabi oscillations between the
ground state |0⟩ and the |2⟩ state. In order to treat the |0⟩ and |2⟩ as an effective two
level system, the Rabi rate Ωrabi ≈ 0.44 kHz must be be smaller than the energy shift
to the next level |4⟩ due to the anharmonicity. The long coherence time τcoh = 23(1) ms
suggests that this approximation is valid. Furthermore, the coherence time needs to be
longer than the inverse Rabi rate 1/Ωrabi ≈ 2.3 ms which is well satisfied in our system.
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Figure 5.5: Randomly selected images of an angular momentum state. Ran-
dom selection of snapshots of the wavefunction for a spin down fermion
in the angular momentum state |2⟩. We apply a post-selection of images
where a single atom is detected. The dotted cross indicates the center of
the images.

Finally, we transfer the ground state population to the state |2⟩ via a π−pulse.

5.2 Detection of angular momentum states
After we prepare the desired angular momentum state |m⟩ in the LLL we utilize our
fluorescence imaging technique, discussed in detail in chapter 4. The main trap is
switched off instantaneously letting the atoms expand in all three dimensions. In order
to keep the atoms in the depth of focus of the objective, we suppress the expansion in
the vertical direction by quenching on a 2D lattice yielding a vertical confinement on
the same order as the tweezer. The 2D lattice is only turned on during the time-of-
flight expansion. The atoms expand radially in the remaining harmonic confinement
of the 2D lattice ωr,2D ≈ 47.2 Hz which is roughly a factor 600 smaller than ω. On
the camera we record the final position of the atoms after the time-of-flight expansion.
Since the expansion of the atoms is self-similar, given that we prepare an eigenstate
of the harmonic oscillator, we map the final position of the atoms to their initial mo-
mentum. Here, we compensate the slight radial confinement of the 2D lattice. In each
experimental realization we obtain an image corresponding to the momentum of the
spin down fermion in the prepared state. We binarize and apply a low-pass filter to
the image. Afterwards, we use a peak-detection algorithm based on a simple threshold
function to identify the atoms’ position. If the number of peaks in the image coincide
with the prepared atom number (in this case a single atom), the peak positions are
saved. All other images with the incorrect atom number are disregarded. Since the
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Figure 5.6: Normalized 2D momentum space density of states in the LLL.
a, the ground state |0⟩ shows a Gaussian distribution. b, the state |1⟩
shows a vortex distribution in the density indicating the imprint of an-
gular momentum on the wavefunction. c, the state |2⟩ shows a similar
distribution as |1⟩, however the vortex size increases due to a larger an-
gular momentum.

preparation and the imaging are independent of one each other, the post-selection pro-
cedure has no systematic effect on the measurement of the wavefunction. In Fig. 5.5,
we show randomly selected images of atoms prepared in the angular momentum state
|2⟩, after post-selecting on the correct atom number. The black circle highlights the
detected position of the atom. Hence, in each experimental realization, we project the
wavefunction on the momentum of the single atom. Preparing the exact same quantum
state in multiple experimental realizations yields a list of momenta which allows us to
reconstruct the momentum density of the wavefunction.

In Fig. 5.6, we show the density of the first three angular momentum states in
the LLL. The ground state (red) is naturally obtained by our state preparation. The
states |1⟩ (black) and |2⟩ (blue) are obtained by imprinting an LG01 or LG02 mode
on the SLM, respectively. This is followed by measuring the resonance frequency of
the transition and driving rabi oscillations on resonance. Subsequently, we pulse the
ground state to the respective angular momentum state. Both states |1⟩ , |2⟩ show the
striking feature of non-zero angular momentum states - a radially symmetric density
depletion in the center of the wavefunction. As the angular momentum of the state
increases, so does the size of the wavefunction visible in the density that peaks at a
distance

√
mpHO.
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Figure 5.7: Radial densities of states in the LLL. The 2D densities are az-
imuthally averaged. The radial densities are quantitatively compared to
the theoretically expected density of the harmonic oscillator in the ground
state |0⟩ (a), the state |1⟩ (b) and the state |2⟩ (c).

In order to compare the experimental data to the theoretically expected density dis-
tributions we azimuthally average the 2D densities. We use a kernel density estimation
(KDE) to obtain the appropriately normalized radial density np from the 2D densities.
The two free parameters of KDE are the kernel and the bandwidth. We choose a tophat
kernel to avoid strong smoothing of the data and thus the suppression of small scale
structures. Furthermore, the bandwidth is chosen to 0.17pHO which is slightly smaller
than the average of the effective resolution of both spin states (see chapter 4). The
KDE normalizes the density

∫∞
0 ñpdpr = 1, which makes it necessary to divide by the

radius pr to obtain
∫∞

0 prnpdpr = 1, with ñp = prnp. Therefore, the data point at pr = 0
is neglected.

The radial densities np in momentum space are shown in Fig. 5.7. The solid lines
are the theoretical expectations without free parameters, solely based on the radial
trap frequency ω obtained from the model of the optical trap. All distributions show
qualitative agreement with the parameter-free theoretical curve. The largest deviation
of the angular momentum states |1⟩, |2⟩ from theory arises at small momenta. This is
most dominantly caused by an imperfect Rabi pulse such that a part of the population
remains in the ground state (which peaks at zero momentum).

5.3 Sense of rotation
So far, we have shown that the density distribution of the angular momentum states
|1⟩, |2⟩ contain a density depletion in the center suggesting the imprint of a phase
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winding, and thus the incorporation of angular momentum. However, playing the devils
advocate it is possible to construct a density with exactly the same density depletion
in the center, which we have considered so far as the smoking gun of a rotating atom,
but with zero angular momentum. To illustrate this argument, we focus on the density
of the state |2⟩ in the following of this section.

Consider two examples, first, an equal superposition of the ground state |0⟩ and the
state |20⟩ (see in Fig. 5.3). Neither of the states contains angular momentum, however
the density distribution of the superposition |0⟩ − |20⟩ is not distinguishable from the
density in Fig. 5.6c. Furthermore in the second example, consider a superposition of the
clockwise |2⟩ and counter-clockwise rotating states |−2⟩, that is |±⟩ = 1/

√
2(|2⟩±|−2⟩).

Neither of the superposition states |±⟩ contains any angular momentum, however, if we
were to sample from a balanced incoherent mixture of these states, the obtained density
would resemble the density distribution shown in Fig. 5.6c. How can we distinguish
between these examples and the case of an angular momentum state?

To this end, we investigate the time evolution of the wavefunction in a slightly
anisotropic trap, illustrated in Fig. 5.8. In a symmetric potential the angular momen-
tum states are eigenstates of the Hamiltonian and therefore stationary. However, we
make use of a small anisotropy of the optical potential which we attribute to a slight
ellipticity of the trap. This breaks the rotational symmetry and couples states with
angular momentum ∆m = ±2. Specifically, we can include the ellipticity of the form
x2 − y2 in the optical potential in Eq. 5.1 and approximate to the lowest order in the
ellipticity

Vp ∝ 2
w2

0
r2 − 2

w4
0
r4 + 2ϵe

w2
0
r2(cos2 ϕ− sin2 ϕ), (5.4)

where ϵe corresponds to the strength of the ellipticity, and where we have expressed
the ellipticity in polar coordinates.

Due to the ellipticity of the trap the angular momentum states are not eigenstates
anymore, instead the superposition states |±⟩ = 1/

√
2(|2⟩ ± |−2⟩) form the new eigen-

states of the system, with an energy difference given by the anisotropy δω, assuming
that the anharmonicity suppresses coupling to the state |20⟩. Effectively, we can con-
sider the |±⟩ as a two-level system which span the basis states of the Bloch sphere,
sketched in Fig. 5.8a. Coupling to states in different Lz manifolds is suppressed due to
the large spectroscopic gap of the harmonic oscillator frequency ω. Preparing the an-
gular momentum state |2⟩ then leads to a characteristic time evolution on the equator
of the Bloch sphere given by the energy difference δω of the eigenstates |±⟩.

We perform Ramsey spectroscopy on the state |2⟩ and observe coherent oscillations
with a frequency given by the anisotropy δω. The conceptual protocol is sketched
in Fig. 5.8b, and the measured Ramsey spectrum is shown in Fig. 5.8c. We use a
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a b b
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Figure 5.8: Ramsey spectroscopy of two non-interacting rotating fermions.
a, The angular momentum eigenstates are not a good basis anymore
in an anisotropic harmonic oscillator. Instead, the superposition states
|±⟩ = 1/

√
2(|2⟩ ± | − 2⟩) constitute the new eigenstates of the system

with an energy difference given by the anisotropy δω. The state |2⟩
is an equal superposition of the eigenstates |+⟩, |−⟩. Hence, it evolves
over a duration of time τR on the equator of the Bloch sphere. b, The
anisotropy introduces a coupling of the clockwise and counter-clockwise
rotating states |2⟩ and | − 2⟩, respectively. We makes use of this effect
to conduct Ramsey spectroscopy on the |2⟩ state. After preparing it via
a π−pulse, we wait for a delay time τR. Subsequently, we use a second
π−pulse to de-excite the atoms to the ground state. The overlap with
the ground state oscillates, depending on the contribution of the | − 2⟩
state. c, Ramsey spectrum of two non-interacting fermionic atoms in an
anisotropic optical potential.

π−pulse to prepare the clockwise rotating state |2⟩ (grey solid arrow). Subsequently,
we let the system evolve for a Ramsey delay time τR (red arrows), after which we use a
second π−pulse to de-excite the evolved state to the ground state (gray dashed arrow)
and measure the single-particle occupation number in the ground state ⟨n̂0

↑ + n̂0
↓⟩. The

number of atoms in the ground state oscillate depending on the contribution of the
state |−2⟩. It is worthwhile to point out that at long times the occupation number in
the ground state after long Ramsey delay times τR > 80 ms reaches a constant value
of roughly 1 which indicates that the we indeed end up with a balanced incoherent
mixture of the states |±⟩.

We further measure the 2D densities during the time evolution to directly reveal
the sense of rotation, shown in Fig. 5.9, at times τR = 0 ms, 7.5 ms, 15 ms, 22.5 ms.
These correspond to multiples of quarter times of the periodicity of the oscillation.
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Figure 5.9: Sense of rotation. Solid and dashed lines are orthogonal among each
other, and tilted by 45◦ with respect to each other. upper row, clockwise
rotation on the Bloch sphere. lower row, counter-clockwise rotation on
the Bloch sphere.

On the SLM we can imprint both a clockwise (upper row, blue) and counter-clockwise
(lower row, red) phase winding resulting in the opposite rotation direction on the Bloch
sphere (see Fig. 5.8a). In both cases, we observe the expected time evolution of the
wavefunction determined by the rotation direction. The black solid and dashed lines
indicate the orientation of the superposition states tilted by an angle of 45◦ with respect
to each other.

5.4 Two non-interacting rotating fermions
Since the particles are non-interacting it is sufficient to only detect a single spin com-
ponent and treat the other one as an identical copy. However, our imaging technique
allows us to detect both spin states in a single experimental realization, as detailed in
section 4.4. In each experimental realization we obtain two images corresponding to
the spin up and spin down fermion of the prepared state after a time-of-flight expan-
sion. If the number of atoms in both images coincide with the correct atom number
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Figure 5.10: Spin-resolved sampling of the two-particle wavefunction. Ran-
domly chosen images after post-selection for the correct atom number in
each state for atoms in state |2⟩. The spin down state is shown in blue,
spin up state in red.

in both images (one atom per spin state), the peak position are saved. All other im-
ages with the incorrect atom number are discarded. We then use the same method
as above to determine the momentum of each spin state and express it in units of the
harmonic oscillator momentum pHO. Randomly selected images of the projection of the
two-particle wavefunction in state |2⟩ are shown in Fig. 5.10.

Sampling the wavefunction of both spin states allows us to perform a transforma-
tion to center-of-mass and relative coordinates. In each experimental realization we
measure the momentum p = (px, py) of the spin up and spin down fermion, denoted as
p↑ and p↓, respectively. We then calculate the center-of-mass pcom = 1/

√
2(p↑ + p↓)

and relative prel = 1/
√

2(p↑ − p↓) momentum in each snapshot of the wavefunction.
Multiple realizations of the same initial wavefunction allow us to reconstruct the 2D
momentum space density in center-of-mass and relative coordinates.

5.4.1 Center-of-mass and relative coordinates
In Fig. 5.11, we show the normalized 2D densities of the non-interacting rotating
fermions excited to the state |2⟩ in both the single-particle basis (a) and the center-
of-mass and relative basis (b). Besides experimental imperfections, most dominantly
due to the off-resonant scattering of the spin up state which leads to broadening of the
vortex distribution (see section 4.4 for details), both spin states are identical in the
single-particle basis. They show a vortex distribution due to insertion of 2ℏ quanta
of angular momentum per spin state. In the center-of-mass and relative basis, both
densities look identical as well since the particles are non-interacting. The density
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Figure 5.11: Density of two non-interacting, rotating fermions. a, Normalized
density of the spin up and spin down states. Both densities show a
vortex distribution. b, Normalized density in center-of-mass coordinates
pcom = 1/

√
2(p↑ + p↓) and in relative coordinates prel = 1/

√
2(p↑ −

p↓). The center-of-mass and relative distribution are identical since the
particles are non-interacting. The same colorbars are used for a and b.

depletion at small momenta is not visible, on the contrary the density distribution
exhibits a peak.

In order to understand the shape of the particles’ wavefunction in the center-of-
mass and relative coordinates it is instructive to consider the following arguments in
the harmonic potential. In total, we insert 4ℏ quanta of angular momentum into the
system via the LG02 perturbation since our perturbation is symmetric both in the
single-particle basis and the center-of-mass and relative basis

Vp(t) = ϵp
(
z2

↑e
−iΩt + z2

↓e
−iΩt + h.c

)
(5.5a)

= ϵp
(
z2

come
−iΩt + z2

rele
−iΩt + h.c

)
, (5.5b)

where ϵp corresponds to the strength of the perturbation, and the arrows denote the
respective spin state. We couple the ground state |0⟩↑ |0⟩↓ to a state with a total angular
momentum of 2 × 2ℏ. The state to which we couple lives in the 4ℏ quanta of angular
momentum manifold and equally distributes the angular momentum among the spin
components, as they are non-interacting. The state takes the form

|2⟩↑ |2⟩↓ ≃ z2
↑z

2
↓ , (5.6)

where we have expressed the 2D harmonic oscillators states in real space coordinates.
Inserting the definition of center-of-mass and relative coordinates zcom = 1/

√
2(z↑ + z↓)

and zrel = 1/
√

2(z↑ − z↓), respectively, allows then to identify the harmonic oscillator
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Figure 5.12: Azimuthally averaged densities of two non-interacting, rotat-
ing fermions. a, Normalized radial density of the spin up and spin
down states. The solid line corresponds to the state |2⟩. b, Normalized
radial density in center-of-mass coordinates pcom = 1/

√
2(p↑ + p↓) and

in relative coordinates prel = 1/
√

2(p↑ − p↓). The solid line corresponds
to the density according to Eq. (5.7). c, Azimuthal distribution of both
spin states in the single-particle basis.

states in the center-of-mass and relative basis. Taking care of the normalization factors,
we arrive at

|2⟩↑ |2⟩↓ =
√

3
8

(
|4⟩com |0⟩rel + |0⟩com |4⟩rel

)
− 1

2 |2⟩com |2⟩rel , (5.7)

where on the left side it is expressed in the single-particle basis, and on the right
side the center-of-mass and relative basis is chosen. In the latter basis, the state is a
superposition of states where either the center-of-mass motion incorporates the total of
4ℏ quanta of angular momentum and the relative motion remains in the ground state
or vice versa, or 2ℏ quanta of angular momentum are shared.

In Fig. 5.12a,b, we show the radial densities of the spin up and spin down state in the
single-particle basis (a) and in the center-of-mass and relative basis (b). Qualitatively,
we observe reasonable agreement between theory and experiment in both bases. In the
single-particle basis, both spin up and spin down distributions follow the distribution
of the state |2⟩. Most noticeable is the difference of theory and experiment at low
momenta pr → 0, where the experimental data doesn’t reach zero, in both cases of the
spin up and spin down state. This might be a residual effect of the finite probability
of transferring the ground state to the excited state. In the center-of-mass and relative
basis, both densities are identical following the theoretically expected curve of Eq. (5.7).

In addition to azimuthally averaging, we determine the normalized histogram of the
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azimuthal distribution by integrating out the radial direction, shown in Fig. 5.12c. The
homogeneity of the azimuthal distribution indicates (in addition to the observed Rabi
oscillations) that we indeed prepare an angular momentum eigenstate. However, we
also observe a small oscillation with a frequency 4φ suggesting a contribution of the
counter clockwise rotating state |−2⟩ which results in an interference pattern, discussed
in the previous section.

Conclusion
We have demonstrated motional control of angular momentum states in the lowest
Landau level of a single fermion in an optical potential. To this end, we interfere the
rotationally symmetric tweezer with a Laguerre-Gaussian mode of lth order to imprint
lℏ quanta of angular momentum on a single atom. Furthermore, we made use of a slight
anisotropy of the optical potential to confirm the sense of rotation of the particle. This
is not only a precise experimental tool to determine the anisotropy, but it also allows
us to tune the anisotropy with the SLM.

The experimental tools we have developed in this chapter are the foundations for the
following work, where we introduce interactions among the fermions to realize exotic
quantum states reminiscent of FQH states.
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Realization of a Laughlin state
Topologically ordered phases of matter emerge in the context of the fractional quantum
Hall (FQH) effect, arising from the interplay of strong magnetic fields and interactions
among the electrons [Tsu82; Wen07]. The magnetic field constrains the electrons to
move on fast rotating cyclotron orbits which quenches their kinetic energy1. This leads
to the formation of highly degenerate Landau levels which are separated by the high
cyclotron frequency. The properties of these states are characterized by the filling fac-
tor ν defined as the ratio of electrons and the number of available states per Landau
level [Giu12]. It was Laughlin’s ingenious idea to postulate a wavefunction where the
electrons minimize their Coulomb interaction energy by incorporating relative angular
momentum with respect to each and every electron. This qualitatively describes the
ground state of the ν = 1/m filling factor [Lau83], with m being an odd integer for
fermions. His variational ansatz is nowadays famously known as Laughlin’s wavefunc-
tion, see Eq. (2.18).

In the limit of rapidly rotating ultracold atomic gases, strongly correlated phases
are predicted analogous to FQH states [Coo08; Coo01; Ho01; Reg03; Pop04]. Here,
the Coriolis force takes on the role of the Lorentz force as they are mathematically
equivalent. This opens up an intriguing approach to study FQH states in these engi-
neered systems as they offer an unprecedented level of microscopic control of individual
constituents and tunability of the system parameters [Blo08; Dal16].

Reaching the deconfinement limit of the rapidly rotating potential Ω → ω, where Ω is
the rotation frequency and ω is the radial trap frequency, is experimentally challenging
as it requires to overcome two central aspects. First, on the technical side, any trap
imperfection (such as the ellipticity, roughness, etc. of the trap) leads to a static
perturbation in the laboratory frame which couples the ground state to higher lying
or degenerate states, and therefore results in heating. Second, the energy gap of the

1The notion of quenching the kinetic energy refers to its significant increase with respect to the
interaction energy. Thus, in the low-energy sector the only dominant energy scale is given by the
interactions and the kinetic energy can be neglected.
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FQH state to excited states tends to be fragile. It is given by the only relevant energy
scale in the 2D LLL, the zeroth order Haldane pseudopotential [Coo08] V0 ≃ ℏωas/a∥
(introduced in chapter 2), with the scattering length as and the vertical harmonic
oscillator length a∥. In typical experiments of rotating bosonic systems [Muk22], the
pseudopotential is on the order of V0 ∼ 200 mHz which demands exceedingly slow
preparation times to achieve adiabatic ground state preparation and furthermore poses
a challenge on the robustness of the Laughlin state with respect to excitations from
heating. To increase V0, the radial trap frequency ω and the vertical length scale
a∥ can be increased by using tighter optical traps in the respective dimension, and
the scattering length can be manipulated via a Feshbach resonance in many atomic
species [Tie10; Geh03]

Slowly rotating ultacold atomic gases corresponding to ν ≫ 1 have been used early
on to study the properties of superfluidity [Fet03]. In this limit, quantized flux vortices
form above a critical rotation frequency [Mad00] which then arrange in a triangular
Abrikosov lattice [Abo01; Zwi05], similar to superfluid liquid helium-3 [Don91] and
type-II superconductors [Til19]. Spinning up the gas further has been realized with
ultracold Bose gases, signalled by the softening of the Abrikosov lattice [Bre04; Sch04]
and more recently, by geometric squeezing into the LLL, thereby distilling a single Lan-
dau gauge wavefunction [Fle21; Muk22; Yao23]. First signatures of entering the regime
ν ∼ 1 were detected with few bosonic atoms in a rotating optical lattice [Gem10], and
lately an unambiguous observation of a Laughlin state with two bosons in a driven opti-
cal lattice [Léo23] has been realized. It is worth noting that Laughlin states consisting
of two photons were also observed in photonic platforms [Cla20; Wan24]. However,
ultracold Fermi gases in the regime ν ≲ 1 are so far unexplored experimentally since,
additionally to the aforementioned reasons, it is notoriously hard to transfer all fermions
from the non-rotating ground state to the LLL, given the Pauli exclusion principle.

Here, we exploit the experimental tools developed in the previous chapter to realize
the ν = 1/2 Laughlin state with two spinful fermions by rapidly rotating the optical
potential. We spectroscopically characterize the Laughlin state and demonstrate the
suppression of inter-particle interactions within the model of the optical potential.
Furthermore, we make use of our single atom and spin resolved imaging technique to
sample the Laughlin wavefunction. This reveals its remarkable features including the
incorporation of angular momentum in the relative motion of the particles, while the
center-of-mass motion remains in the ground state. These measurements give direct
access to the microscopic details of the Laughlin wavefunction determined via the pair
and angle correlations. We can now enter the playground to assemble FQH states with
rotating ultracold atomic gases. Most of the results presented in this chapter are based
on the publication [Lun24].
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State detectionState preparation State manipulation

Interactions Rotation

non-int. ground state

Atom 
counting

Momentum
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Figure 6.1: Experimental sequence for realizing a Laughlin state. First, a non-
interacting spin up and spin down fermion (black particles) is prepared
in the ground state of the optical tweezer focused through the objective.
Interactions are tuned to break the symmetry between the center-of-mass
and relative degree of freedom, since interactions only couple to the rel-
ative part of the wavefunction. The center-of-mass and relative rotating
states tune differently in energy with the scattering length which allows for
selective addressing. After the state manipulation, we detect the Laughlin
state either by counting the number of atoms occupying the non-rotating
ground state (upper box) or by measuring the momentum of each particle
after a time-of-flight expansion (lower box).

6.1 Preparation of a Laughlin state
Conceptually, the realization of the Laughlin state requires two ingredients, interac-
tions between the constituents and a strong synthetic magnetic field. In the absence of
interactions, as discussed in the previous chapter, the particles simply rotate indepen-
dently of each other. In this scenario, both the distributions in the single-particle basis
and the center-of-mass and relative basis are identical. Interactions however, break the
symmetry between the particles’ center-of-mass and relative motion as they only couple
to the relative degree of freedom. In the context of contact interactions, a state where
the rotation is only present in the center-of-mass motion is still interacting, in contrast
to a state where the rotation appears in the relative motion. Hence, the energy of the
two states tune differently with the interaction strength and thus can selectively be
addressed spectroscopically.

Our approach to prepare and detect a Laughlin state of two rapidly rotating fermions
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consists of three main steps, illustrated in Fig. 6.1. We start by preparing a non-
interacting spin up and spin down fermion in the ground state of the optical potential.
In the next step, state manipulation takes place by tuning the interactions of the
fermions via a Feshbach resonance. Thereafter, we insert angular momentum into
the system by tuning the trap to an elliptical shape that rotates. For sufficiently large
interactions the center-of-mass and relative rotation decouple, which allows for selective
addressing of the relative rotation corresponding to the Laughlin state. Finally, we
exploit two methods available in our experiment to detect the Laughlin state. Either
we characterize the system spectroscopically by measuring the remaining number of
atoms occupying the ground state in the non-rotating frame or we let the system
expand during a time-of-flight to detect the momentum of each particle. In the latter
case, each experimental realization yields a snapshot of the Laughlin wavefunction in
momentum space which allows to re-construct the density after many experimental
cycles and to access correlations of the two particles.

The spatial part of the N = 2 particle Laughlin wavefunction in real space reads

ψ1/m(z↑, z↓) ≃ (z↑ − z↓)me−1/2(|z↑|2+|z↓|2), (6.1)

where z↑, z↓ correspond to the complex coordinate of the spin up and spin down fermion
in the radial plane, respectively. They are expressed in units of the harmonic oscillator
length lHO which is the natural unit in our harmonic oscillator potential. The angular
momentum is given by mℏ which is incorporated in the relative coordinates of the spin
up and spin down fermion (z↑ − z↓), and the filling factor is given by ν = 1/m. In our
case of two contact-interacting particles, the Laughlin wavefunction is the true ground
state in the rotating frame at total angular momentum M = N(N − 1)m/2 [Wil98]
and is normalized to the given number of particles N = 2.

The total wavefunction is composed of a spin part and a spatial part and needs to be
anti-symmetric due to the fermionic nature of the constituents. Since we work with a
spin singlet (which is anti-symmetric), the spatial part of the wavefunction needs to be
symmetric, restricting the angular momentum to even numbers. Therefore, the lowest
accessible Laughlin state is the ν = 1/2 state. Curiously, due to the symmetry of the
spatial wavefunction it is a bosonic ν = 1/2 Laughlin state made out of two spinful
fermions.

A time-of-flight expansion of a many-body wavefunction in the LLL, for which in-
teractions are negligible, corresponds to a magnification of the initial real space wave-
function that is rotated by π/2 within the plane of expansion [Rea03]. For a Laughlin
wavefunction, which is a strongly correlated but non-interacting state in the context of
contact-interactions living in the LLL, these assumptions are save to assume. In the
specific case of N = 2 particles, the invariance of the ν = 1/2 Laughlin state after a
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Figure 6.2: Preparing the ν = 1/2 Laughlin state. a, We prepare two non-
interacting spinful fermions in the ground state of the optical potential. In
the horizontal plane, the potential is described by a 2D harmonic oscillator
with anharmonic corrections. States |m⟩ in the LLL are marked red and
carry angular momentum Lz = mℏ along the axial direction. b, We
show the energy spectrum of two interacting fermions in a cigar-shaped
harmonic trap in the Lz = 0ℏ, 2ℏ angular momentum manifolds, where we
include an anharmonicity ∆ (highlighted in black). States in the relative
ground state |0⟩B

rel tune with the magnetic field resulting in an energy
shift compared to the the non-interacting ground state energy Eg. The
interaction energy shift Eint is on the order of the axial trap frequency ωz.
The states |2⟩com|0⟩rel and |0⟩com|2⟩rel in the Lz = 2ℏ manifold decouple
in the limit Eint ≫ ∆. In that limit, the Laughlin state is |ψ1/2⟩ =
|0⟩com|2⟩rel.

time-of-flight expansion also follows from the fact that it is an eigenstate of the har-
monic oscillator. The wavefunction we detect in momentum space is therefore identical
to the real space wavefunction.

6.1.1 Spectroscopy of two interacting fermions
The approach to realize the two particle ν = 1/2 Laughlin state is illustrated in Fig.
6.2. We start with two non-interacting fermions in the ground state of the optical
potential which can be approximated by a harmonic trap with a radial trap frequency
of ω/2π ≈ 56.1 kHz and an axial trap frequency of ωz/2π ≈ 7.9 kHz. Since the rotation
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6 Realization of a Laughlin state

couples only to the radial degree of freedom we treat the system as a 2D harmonic
oscillator with anharmonic corrections (see in a). To realize the ν = 1/2 Laughlin
state, we interfere the optical potential with a LG02 mode which deforms the trap
elliptical in the limit of small perturbation strengths ϵp. The perturbation is symmetric
in center-of-mass and relative coordinates and reads

Vp(t) = ϵp
(
z2

come
−iΩt + z2

rele
−iΩt + h.c

)
. (6.2a)

The Laughlin wavefunction (see Eq. (6.1) contains angular momentum only in the rela-
tive motion of the two particles. It is therefore necessary to tune the interaction energy
between the particles in order to break the symmetry in the center-of-mass and relative
degree of freedom. We depict the energy spectrum of two contact-interacting fermions
trapped in cigar-shaped optical trap (see in Fig. 6.2b), highlighting the relevant energy
levels within the Lz = 0ℏ, 2ℏ manifold. Any axially excited states and different angular
momentum manifolds are excluded.

In a harmonic potential, the center-of-mass and relative motion decouple. However,
anharmonic corrections ∆ ≈ 1.4 kHz stemming from quartic contributions ∼ r4 of
the anharmonic potential lead to coupling between the center-of-mass and relative
coordinates, illustrated by the avoided crossing in Fig. 6.2b (black). In the limit of
large interaction energy shifts Eint ≫ ∆ this coupling can be neglected and the Laughlin
state is a plain rotation in relative coordinates. Note that in general the energy shift is
approximately on the order of the axial trap frequency, however the exact energy shift
depends on the trap geometry.

The normalized spatial wavefunction of the two particle Laughlin state |ψ1/2⟩ can be
expressed in harmonic oscillator eigenstates

|ψ1/2⟩ = |0⟩com|2⟩rel (6.3a)
= (|0⟩↑|2⟩↓ + |2⟩↑|0⟩↓)/2 − |1⟩↑|1⟩↓/

√
2, (6.3b)

in the center-of-mass and relative basis (Eq. 6.3a) and the single particle basis (Eq.
6.3b). In the center-of-mass basis, the Laughlin state |ψ1/2⟩ carries 0ℏ angular momen-
tum in the center-of-mass motion, thus remaining in the ground state, while incorpo-
rating 2ℏ quanta of angular momentum in the relative motion. In the single-particle
basis, on the other hand, |ψ1/2⟩ can be viewed as a superposition of either one fermion
carrying 2ℏ of angular momentum while the other one remains in the ground state, or
both sharing 1ℏ of angular momentum. Note that the subscripts ↑, ↓ directly relate
each particle to its spin value. Therefore, this notation describes the spatial part of
the wavefunction after the measurement process where the the total wavefunction is
projected on |↑↓⟩.
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Figure 6.3: Excitation spectrum. Excitation spectrum of two fermions for various
magnetic fields in the Lz = 2ℏ manifold. The experimentally measured
excitation frequencies are shifted by the numerically calculated ground
state energy at the respective magnetic field. For visibility, the z-axis is
inverted, hence a peak corresponds to atom loss. For increasing interac-
tions the separation of the center-of-mass and relative excitation becomes
more pronounced. The relative excitation stays approximately constant
at Ωrel ≈ 1.9ω indicated by the blue line. The magnetic field tunes the
interactions strength from attractive (left side) to repulsive (right side).
Note, the magnetic field is plotted with a non-linear scale to increase the
visibility of the data.

We characterize the two fermions in the anharmonic potential spectroscopically by
applying a rotating perturbation for τ = 350 µs at different interactions strengths. The
measured single-particle occupation number in the unperturbed ground state ⟨n̂0

↑ + n̂0
↓⟩

is shown in Fig. 6.3. Experimentally, we measure the excitation frequency relative
to the ground state energy which shifts with the magnetic field (see dashed arrow
in Fig. 6.2b). To compare the excitation spectrum to the energy levels, we shift the
experimentally measured excitation frequencies by the numerically calculated energy
shift of the ground state as depicted in Fig. 6.2b. In the case of non-interacting particles
at 568 G we observe a single resonance. However, tuning the interactions to be either
repulsive (> 568 G) or attractive (< 568 G) results in a splitting to two resonances.
In the limit of large interaction energies Eint ≫ ∆, these correspond to the center-of-
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mass |2⟩com |0⟩rel and relative rotation |0⟩com |2⟩rel. The relative excitation does not tune
with the interaction strength (within our model of the optical potential) highlighting the
suppression of interactions, which is one of the defining properties of the Laughlin state.
The resonance frequency is downshifted to Ωrel ∼ 1.9ω due to the anharmonicity ∆
compared to a harmonic potential where the resonance frequency is expected at 2ω. In
contrast, the center-of-mass rotation tunes with the magnetic field from lower excitation
frequencies Ωcom < Ωrel on the attractive side to larger excitation frequencies Ωcom >
Ωrel on the repulsive branch. In order to prepare a clean Laughlin state |0⟩com |2⟩rel it is
required to separate the center-of-mass and relative excitations such that |Ωcom−Ωrel| ≫
∆. This condition is only achieved on the repulsive side at around 680 G where the
scattering length of the hyperfine states |F = 1/2,mF = 1/2⟩ and |F = 3/2,mF = 3/2⟩
is as ∼ 20 000a0. In contrast, on the attractive side, the largest scattering length
as ∼ −900a0 is not large enough to fulfil the condition |Ωcom − Ωrel| ≫ ∆. Let us
remark that above the Feshbach resonance the attractive scattering length can take
similarly large values as the repulsive scattering length below the Feshbach resonance.

We compare our experimental data to theory by computing the atom loss spectrum at
various magnetic fields for a rotating perturbation of the LG02-mode. In correspondence
to the experiment, we calculate ⟨n̂0

↑ + n̂0
↓⟩ after applying perturbation Vp for a duration

time tp in the frame rotating with half the excitation frequency. In the co-rotating
frame, the time evolution of initial state is expressed as

|ψ(t)⟩ = e−i[H+Vp(0)− 1
2 ΩLz] t

ℏ |0⟩com |0⟩B
rel , (6.4)

where the angular momentum operator Lz appears. Here, |0⟩B
rel relates to the interacting

ground state which tunes with the magnetic field (see Fig. 6.2b). The numerical results
are shown in Fig. 6.3 as shaded regions.

By ramping to a magnetic field of 680 G, we reach the limit Eint/h ≈ 9.9 kHz. In Fig.
6.4a we show the shifted excitation spectrum at 681 G where the red arrow indicates
the resonance of the relative rotation. We drive Rabi oscillations at 680 G on the
resonance Ωrel ≈ 1.9ω with a Rabi rate Ωrabi/2π ≈ 0.42 kHz, shown in Fig. 6.4b. We
transfer the repulsively interacting ground state to the Laughlin state via a π−pulse.
Note that in contrast to the non-interacting fermions (see Fig. 5.4), the minimum of
the Rabi oscillations reaches 0.5, following Eq. 6.3b. This is the first indication that
the qualitiative nature of the rotating state changes compared to the non-interacting
rotating fermions. From the Rabi oscillations, we can determine the coherence time
τcoh = 38(13) ms which exceeds the periodicity of the rabi oscillations 2π/Ωrabi ≈ 2.4 ms
significantly. Furthermore, we infer an upper bound of the preparation fidelity through
the single-particle occupation after half a Rabi cycle F = 96(2) %. Here, we also take
into account the preparation fidelity of two atoms in the ground state Fgs = 95(3) %.
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Figure 6.4: Rabi oscillations. a, Shifted excitation spectrum at 681 G. The separa-
tion of the relative rotation Ωrel (red arrow) and the center-of-mass Ωcom
are large compared to the anharmonicity ∆. b, Rabi oscillations between
the repulsively interacting ground state and the Laughlin state at 680 G
on the resonance Ωrel ∼ 1.9ω. We drive Rabi oscillations with a Rabi
rate Ωrabi ≈ 0.42 kHz. According to Eq. (6.3b) the Rabi oscillations occur
between 2 and 0.5 (dashed lines).

.

The high preparation fidelity of the Laughlin state is rendered possible through the
large separation of the relevant energy scales which follow the hierarchy

Eint ≫ ∆, ℏΩrabi ≫ Eani. (6.5)

The interaction energy shift is required to be larger than the anharmonicity in order
for the center-of-mass and relative coordinates to decouple. Furthermore, the Rabi
rate needs to be smaller than energy shift to suppress coupling to the center-of-mass
excitation. Lastly, the energy scales in Eq. (6.5) need to be larger than the anisotropy
of the optical trap Eani which breaks the rotational symmetry of the Hamiltonian. The
effect of the anisotropy is discussed in more detail in section 6.3.

6.2 Observation of the Laughlin wavefunction
To measure the density of the ν = 1/2 Laughlin wavefunction, we collect roughly 11 000
snapshots in momentum space after post-selection on the correct atom number (with an
imaging fidelity ∼ 69 %) to reconstruct the 2D density. Each snapshot is a projection
of the wavefunction onto the momentum of the two particles. This enables us not only
to measure the density of the Laughlin wavefunction through successive experimental
realizations of the same quantum state but also to determine the wavefunction in the
center-of-mass and relative coordinates. Furthermore, it allows us to study correlations
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Figure 6.5: Observation of the Laughlin wavefunction. a, Normalized density
of the spin up and spin down states. Both states exhibit a flattening of
their density in the central region. b, Normalized density in the center-
of-mass pcom = 1/

√
2(p↑ + p↓) and relative basis prel = 1/

√
2(p↑ − p↓).

While in the center-of-mass coordinates, the density distribution exhibits
a Gaussian shape, the incorporation of 2ℏ quanta of angular momentum in
the relative motion manifests in a radially symmetric vortex distribution,
which peaks at a radius of

√
2pHO. At small relative momenta, a peak is

visible corresponding to a ∼ 1 % admixture of a Feshbach molecule.

between the spin states. These observables reveal the striking microscopic features of
the Laughlin wavefunction.

We sample the Laughlin wavefunction by deterministically preparing the same initial
quantum state and subsequently initializing our atom- and spin-resolved momentum
space imaging technique. To this end, we turn off the optical tweezer and let the
system expand for a time-of-flight of 1.78 ms. During the expansion we quench on a
2D confinement which suppresses the expansion in the vertical direction. The atoms
then expand in a combined potential of the 2D trap with a radial trap frequency of
ωr,2D/2π ≈ 85 Hz and the magnetic field saddle ωr,M ≈ 15 Hz. Similar to the previous
chapter, we numerically solve the equation of motion of the particles in the combined
potential. This yields the momentum of each spin state p↑,p↓ in each experimental
realization. The calculation of the center-of-mass and relative momentum pcom =
1/

√
2(p↑ + p↓) and prel = 1/

√
2(p↑ − p↓), respectively, is then straightforward. If

not mentioned otherwise, we express all momenta in units of the harmonic oscillator
momentum pHO =

√
ℏmLiω.

In Fig. 6.5, we show the normalized 2D density of the Laughlin wavefunction in
the single-particle basis (a) and the center-of-mass and relative basis (b). In contrast
to the non-interacting fermions, the 2D density in the single-particle basis does not
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exhibit a vortex distribution. On the contrary, the density profile flattens at the center.
Furthermore, the density distribution of both spin states is identical up to experimental
imperfections. These imperfections stem from off-resonant scattering of the spin up
state during the prior imaging of the spin down state, resulting in a broadened density
distribution.

The coordinate transformation to the center-of-mass and relative basis reveals the
striking features of the Laughlin wavefunction. In the center-of-mass coordinates, the
density exhibits a Gaussian shape, in stark contrast to the rotationally symmetric
vortex distribution in the relative coordinates. The ν = 1/2 Laughlin wavefunction
incorporates m = 2ℏ quanta of angular momentum leading to a peak of the vortex
distribution at

√
mpHO =

√
2pHO, as a expected for a single-particle wavefunction in

LLL. In addition, we also observe a small peak at zero momenta which stems from
anharmonic coupling to molecular states with center-of-mass excitations during the
magnetic field ramp from the non-interacting case at 568 G to repulsive interactions at
680 G (see also in the energy spectrum in Fig. 3.4).

6.3 Properties of the Laughlin state
Based on qualitative features, we have identified the observed state as the ν = 1/2
Laughlin state. In the following section, we shift to a quantitative analysis of the ex-
perimental data, where we compare the radial densities with the theoretically expected
Laughlin state densities. Furthermore, our imaging technique gives access to correla-
tions between the particles which we utilize to analyze the pair and angle correlations
of the Laughlin wavefunction. Last, we characterize the Laughlin state via Ramsey
spectroscopy and compare its properties to the non-interacting rotating fermions and
the center-of-mass rotating state.

6.3.1 Radial densities
To quantitatively compare the measured density of the Laughlin wavefunction with
the theoretical prediction we azimuthally average the 2D densities in the single-particle
basis and the center-of-mass and relative basis. We obtain the radial density np as a
function of the radial momentum pr =

√
p2

x + p2
y, shown in Fig. 6.6a,b. Note that the

radial density np is normalized to 1/2πp2
HO due to the azimuthal average of the 2D

density.
Similar to the previous chapter, we use a KDE to obtain the normalized radial density

np from the 2D densities. We choose a tophat kernel with a bandwidth of 0.17pHO
slightly smaller than the average of the effective imaging resolution of both spin states.
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Figure 6.6: Azimuthally averaged radial densities. a, Radial densities of the spin
up and spin down states. The black solid line is the prediction according
to Eq. (6.3b). b, In the center-of-mass basis, the Laughlin state remains
in the ground state |0⟩com, while it occupies the |2⟩rel state in the relative
basis, according to Eq. (6.3a). At small momenta, the relative density
does not approach zero due to the Feshbach molecule.

Since the KDE normalizes
∫∞

0 ñpdpr = 1, we divide by the radial momentum pr to
obtain the radial density np = ñp/pr in momentum space, such that

∫∞
0 prnpdpr = 1.

In the single-particle basis, the Laughlin state forms a superposition of states in the
LLL, following Eq. 6.3b. The black solid line is the theoretical prediction for both
spin states which only depends on the harmonic oscillator frequency ω, and agrees
qualitatively with the data. A total amount of 2ℏ quanta of angular momentum is
introduced into the system. Hence either, a single particle carries both quanta while
the other one remains in the ground state or both particles share 1ℏ quantum of angular
momentum. The flattening of the density profile is a result of the superposition of
single-particle states in the LLL as the size of these states grows with increasing angular
momentum mℏ. The highest angular momentum state determines the cut-off at which
the density decreases to zero. In particular in our case, the cut-off is set by m =
2ℏ [Coo08], thus np/2 is reached at

√
2pHO. The radial densities of the spin up and

spin down fermion are identical, except for a broadening of the imaging resolution of
the spin up state, already discussed above. This is most visible at small momenta,
where a peak in the density is visible for the spin down state while this effect is barely
discernible in the density of the spin up state.

In the center-of-mass basis, the Laughlin state stays in the ground state |0⟩com,
while it incorporates 2ℏ quanta of angular momentum in the relative motion, thus
occupying the |2⟩rel, in accordance with Eq. (6.3a). For pr → 0, the presence of a Fesh-
bach molecule leads to an increase in density in contrast to the theoretically expected
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convergence to zero. Azimuthal inhomogeneities caused by a superposition with the
counter-clockwise rotating state |−2⟩ are not visible in the radial density. To reveal
defects in the azimuthal distributions of both the center-of-mass and relative basis, we
integrate the 2D density along the radial direction, shown in Fig. 6.6c. Both densities
are flat along the azimuthal angle.

6.3.2 Emergence of fractional quantum Hall states
Exploring how the two-particle Laughlin state approaches the many-body limit is an
intriguing question. In our case, we do not reach a Laughlin state in the many-body
limit due to the fermionic spin, but rather a so-called Halperin state [Hal83b]. However,
in the two-particle limit of spinful fermions, the Laughlin state and the Halperin state
are identical. This section aims to assess the essential characteristics of the many-body
Laughlin state that persist down to the few-particle limit.

In order to relate the two-particle Laughlin state to the many-body limit, we trans-
form the momentum space units to real space and express the system in units of the
magnetic length lB =

√
ℏ/mLi2ω. This is possible since the two-particle Laughlin wave-

function is an eigenstate of the harmonic oscillator and therefore expands self-similar.
Therefore, we calculate the two-particle density in real space defined as ñr = nr↑ + nr↓,
shown in Fig. 6.7, where nr↑, nr↓ is the single-particle density in real space of the spin
up and spin down state, respectively.

We determine the analytical expression of the single-particle density of an arbitrarily
chosen particle within the N -particle system. More precisely, we integrate out the
phase of all N particles and the radii of N − 1 particles. In the special case of N = 2
the single-particle density then reads

ñr(r1) = 1
A

∫
dφ1

∫
dr2

∫
dφ2r2

∣∣∣ψ1/2 (r1, φ1, r2, φ2)
∣∣∣2 (6.6a)

= 8 + 8r2
1 + r4

1
16 e−r2

1/2, (6.6b)

where A is the normalization constant. This terms grows quite fast with increasing
atom number and is therefore not displayed for more particles. Instead, we plot the
analytical solution of the single-particle density in Fig. 6.7, up to 4 particles. Eq. (6.6b)
consists of a product of two terms, a sum of polynomials and a Gaussian envelope. The
latter term corresponds to the edge which falls off to zero on a length scale given by
the magnetic length lB, independent of the particle number. The former term is a
sum of even polynomials, up to the order of the maximum angular momentum 2M in
the system, while only even polynomials contribute due to the absolute square of the
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Figure 6.7: Emergence of the many-body Laughlin state. Comparison of the
measured two-particle density ñr in real space (blue circles) with the an-
alytical prediction (blue and red solid lines for N = 2, 4) and the MC
simulation [Tom18] (squares) for N = 2, 4, 8 particles. For increasing par-
ticles, the separation of the bulk density and the edge of the FQH droplet
manifests. The slope of the edge stays constant for all particle numbers.

wavefunction. The number of terms in the sum scales quadratically with the particle
number and causes the flat central density.

In addition to the analytical solution, we calculate the single-particle densities by
means of MC simulation [Tom18] for up to 8 particles, shown in Fig. 6.7. Both theo-
retical predictions lie on top of each other and are in qualitative agreement with the
experimental data of N = 2 particles.

One of the most prominent properties of the many-body Laughlin wavefunction is
the incompressibility of the bulk density [Lau83]. Strikingly, the bulk density of the
many-body Laughlin wavefunction ψ1/m is flat at a value 1/m, when expressed in the
natural units of lB, and extends up to a radius 2

√
N − 1lB [Coo08]. Following the

narrative from above, the flat central density at 1/m persists for small atom numbers,
in particular in the case of N = 2, our measured value of 2πl2Bñr(r → 0) ≈ 0.6 is close
to the expected value of 1/2. Increasing the atom number numerically by means of MC
simulation [Tom18] shows that the bulk density remains at approximately 1/2 while
the edge extends to larger radii. Therefore, a flat bulk in the single-particle density of
an increasing number of atoms confined in a harmonic potential is an indication of a
FQH state.

In the region of the edge, the density first increases before it falls off to zero at
a length scale of the magnetic length. This effect persists down to the two particle
case, visible in the experimental data. In the many-body limit, this indicates the onset
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6.3 Properties of the Laughlin state

of compressibility of the edge [Wen04]. In general, the separation of the bulk and
edge is subtle in the few-particle limit, and only with increasing particle number this
distinction becomes more pronounced.

6.3.3 Pair correlations
The excitation spectrum of FQH states consists of density waves which exhibit a collec-
tive excitation gap at zero and a magneto-roton minimum at finite momenta [Gir89].
In a series of papers [Gir84; Gir85; Gir86], Girvin et al. demonstrated that the low
momentum properties of the static structure factor s(k) in the LLL are intimately re-
lated to the finite excitation gap. In particular, a suppression of the quadratic term in
the structure factor, leading to

s(k) ∝ k4, (6.7)

provides a necessary condition for the existence of a finite gap. In the case where no
low-lying single-particle excitations are present, which is reasonable to assume due to
the kinetic energy being quenched by the magnetic field, Eq. (6.7) becomes a sufficient
condition. In a physical picture, the structure factor corresponds to the amplitude of a
density wave with wave vector k. The suppression of density waves at long wavelengths
k → 0 causes the incompressibility of the fluid and is the origin of the collective excita-
tion gap of the FQH states. Considering the preceding discussion, we pose the question
of whether our observables grant us access to the structure factor, and consequently
infer a statement on the incompressibility of our two-particle Laughlin state.

The structure factor is a natural observable in the context of solid state systems as it
is accessible via neutron scattering [Pap22]. In ultracold atomic systems, the detection
of real space correlation function g(2)(r) is well established [Föl14], which is related by
a Fourier transformation to [Giu12]

s(k) = 1 + n
∫

[g(r) − 1] e−ik·rd2r, (6.8)

where n is the particle density. By sampling the Laughlin wavefunction, we access
correlations between the particles, subtly demonstrated in the previous section by the
transformation of the single particle density to center-of-mass and relative coordinates.
Here, we determine the pair correlation function g(2)(z↑, z↓) by measuring the relative
distance of the two particles in each experimental realization and normalize it by the
single-particle densities ⟨n↑⟩ ⟨n↓⟩. Integrating out the center-of-mass coordinate and
utilizing the azimuthal symmetry of the system, we can reduce the pair correlation
function from a four- to a one-dimensional object, which then only depends on the
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Figure 6.8: Pair correlations. Pair correlations of the ν = 1/2 Laughlin state con-
sisting of two particles. The solid lines is a fit according to Eq. (6.10)
restricted to the two lowest Haldane amplitudes A0, A2.

relative radius r of the two particles

g(2)(r) = ⟨n↑(0)n↓(r)⟩
⟨n↑⟩ ⟨n↓⟩

, (6.9)

where the position of the spin up fermion is fixed at r = 0. Similar to the previous
section, we express the quantities in real space and in units of the magnetic length lB.

In a translational and rotational invariant system in the LLL, the pair correlation
function can be expressed as a sum of single particle densities in the LLL ∝ r2me−r2/4l2B

weighted by the Haldane pair amplitudes Am [Hal87], which yields [Gir84; Hof23]

g(2)(r) = 1 + e−r2/2l2B + 1
ν2

∑
m∈even

2
m!

(
r

2lB

)2m

e−r2/4l2B
(
Am − ν2

)
, (6.10)

for particles with a symmetric spatial wavefunction (bosons, or in our case two spinful
fermions in the spin singlet state). The Haldane amplitudes relate to the number
of particle pairs with relative angular momentum m, are independent of the center-of-
mass angular momentum, and determine the strength of the mth single particle density.
Furthermore, the above expression guarantees that g(2)(r → ∞) = 1, since Am → ν2

for m ≫ 1 [Hal87].
The Eq. (6.10) allows us to determine the Haldane amplitudes from the measured

pair correlations. Due to the small system size we restrict the series expansion to the
two lowest values A0 and A2. This is justified since the single particle densities localize
at a radius r =

√
4mlB and their contribution falls of rapidly for m ≥ 4.
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6.3 Properties of the Laughlin state

In Fig. 6.8, we show the experimentally measured pair correlations and the fit of
the theoretical prediction that lead to the Haldane amplitudes A0 = 0.013(7) and
A2 = 0.65(2). Here, A0 is close to the theoretically expected value Ath

0 = 0 of the
many-body ν = 1/2 Laughlin state. Hence, no pairs with angular momentum m = 0
are expected to enter the Laughlin state. However, taking into account only the lowest
amplitudes is not sufficient to make a sophisticated statement about the incompress-
ibility. Measuring the pair correlations for large particle numbers and large radii yields
access to higher-order Haldane amplitudes and thus the low momentum limit of the
structure factor s(k) in Eq. (6.7). We conclude that the lowest Haldane amplitude A0 is
in agreement with theoretical expectation of the Laughlin wavefunction, however these
concepts become more relevant when approaching the many-body limit, which allows
us then to identify an observable which demonstrates the incompressibility of the FQH
state.

6.3.4 Angle correlations
The particles described by the Laughlin wavefunction are a prime example of motionally
entangled states [Pop04]. The particles are entangled in real space in contrast to many
other atomic platforms where the states are entangled in internal space. In our case
of the two-particle wavefunction ψ1/m, the correlations that arise are quantified by the
normalized angle correlation function g1/m where the radii r↑, r↓ of the spin states are
integrated out. Specifically, the unnormalized angle correlation function is defined as

G1/m(φ) ≡
∫

dr↑

∫
dϕ↑

∫
dr↓

r↑r↓ |ψ1/m(r↑, ϕ↑, r↓, ϕ↑ − φ)|2,
(6.11)

where we integrate out r↑ and r↓, as well as the angle of the spin up fermion ϕ↑. The
relative angle φ between the two spin states characterizes the correlations. This yields

G1/m(φ) = 2π
∫

dr↑

∫
dr↓

r↑r↓ (r2
↑ + r2

↓ − 2r↑r↓ cosφ)me−(r2
↑+r2

↓)

= π

2

m∑
k=0

m−k∑
q=0

(
m

k

)(
m− k

q

)

(−2 cosφ)kΓ
(

1 − k

2 +m− q

)
Γ
(

1 + k

2 + q

)
.
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Figure 6.9: Angle correlations. a, Example snapshot of the Laughlin wavefunction
where the relative angle φ is shown. b, Normalized histogram of relative
angle correlations of the Laughlin wavefunction (blue) between the spin
up and spin down state. The solid line (dashed line) is the theoretical
angle correlation function g1/2(φ) (g1/4(φ)) , see text. As a reference,
the angle correlations of the non-interacting rotating fermions are shown
(red). As expected, we find a flat distribution.

We make sure that the correlation function g1/m(φ) is normalized such that

g1/m(φ) = G1/m(φ)∫
dφ G1/m(φ) .

In our case of m = 2, we arrive at the relative angle correlation function

g1/2(φ) = 6 − 3π cos(φ) + 4 cos2(φ)
16π . (6.12)

Our free-space imaging technique allows us to extract the relative angle correlations
between the spin up and spin down fermions. For that, we determine the relative
angle between the two particles in each experimental realization, illustrated in Fig.
6.9a, where an exemplary snapshot of the Laughlin wavefunction is chosen. In Fig.
6.9b, we show the normalized angle distribution of the Laughlin wavefunction ψ1/2
calculated with a KDE. The theoretically expected distribution is represented by the
blue solid line without any free-parameters. To illustrate that the two-particle Laughlin
wavefunction ψ1/m genuinely exhibits a distinctive peak at a relative angle φ = π, we
additionally show the case m = 4 (blue dashed line) which becomes narrower the larger
the angular momentum in the system. Geometrically, the particles tend to increase the
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6.3 Properties of the Laughlin state

relative distance while the center-of-mass distribution remains the same. Hence, the
angle correlations become narrower.

As reference, we show the angle correlations of the non-interacting rotating fermions
(red) which is a flat line, as expected. Ironically, in the context of our zero-range
interactions both states are non-interacting. However, the Laughlin state distinguishes
itself dramatically from a trivial non-interacting state. Only due to incorporation of
angular momentum in the particles’ relative degree of freedom the interaction energy
of the state becomes zero, however strong correlations, that were absent in the case of
the initially non-interacting fermions, emerge in the motional degree of freedom.

6.3.5 Ramsey spectroscopy
We have shown that the density of the Laughlin wavefunction remains in the ground
state in the center-of-mass frame, while it shows a characteristic vortex distribution in
relative coordinates, suggesting the imprint of a phase winding in the relative degree
of freedom. However, similar arguments as in section 5.3 apply, that is the density
distribution alone does not directly indicate rotation. To show that the prepared state
is indeed the Laughlin state we investigate its time evolution.

We use the same protocol as in section 5.3. In a nutshell, we pulse to the Laughlin
state and let it evolve in a slightly anisotropic trap after which we de-excite the state to
the ground state. The anisotropy is incorporated into the model of the optical potential
by introducing a term 2ϵ(x2 − y2)/w2

0, where w0 is the waist of the tweezer and ϵ is
the strength of the perturbation. This term breaks the radial symmetry of the optical
potential and couples angular momentum states ∆m = ±2 to first order in ϵ by a
strength δ2. To second order in ϵ, it couples angular momentum states ∆m = ±4 with
a strength δ4. Therefore, states in the Lz = 2ℏ manifold which carry 2ℏ quanta of
angular momentum (both clockwise and counter-clockwise rotating) couple to states
with 0ℏ quanta of angular momentum. The |+2⟩ state only couples to the |−2⟩ state
to second order in ϵ. This process is sketched in Fig. 6.10a. We define the anisotropy
by

δω = 2δ4 − 2 δ
2
2

∆′ , (6.13)

where ∆′ corresponds to the detuning to the 0ℏ angular momentum state. Interactions
tune the energy levels with 0ℏ quanta of angular momentum with respect to states
with non-zero quanta of angular momentum. If the detuning is large enough, the
effective coupling in primarily given by δ4 and therefore solely between the degenerate
|0⟩com |±2⟩rel states. In that scenario, the new eigenstates of the two level system are
formed by the states |±⟩ = |0⟩com (|2⟩rel ± |2⟩rel) which can be depicted on a Bloch
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Figure 6.10: Ramsey spectra. On the left, sketch of the coupling of the anisotropy
without (upper panel) and with an interactions shift (lower panel). a,
Ramsey spectrum of the Laughlin state. We measure an anisotropy
of δω/2π = 21.4(1) Hz at a trap frequency ω/2π ≈ 56.1 kHz yield-
ing a relative anisotropy δω/ω = 4 × 10−4. The coherence time is
τcoh = 191(21) ms, corresponding to 21 430 coherent oscillations. b,
Ramsey spectrum of two non-interacting particles at 568 G. We mea-
sure an oscillation frequency of δω(non-int)/2π = 42(1) Hz. The coherence
time is τ (non-int)

coh = 33(8) ms. c, Ramsey spectrum of the center-of-mass
excitation |2⟩com|0⟩rel at 680 G. We measure an oscillation frequency of
δω(com)/2π = 42.0(2) Hz. The coherence time is τ (com)

coh = 87(12) ms.

sphere. It is worth highlighting that the described protocol only works if the duration
of the π−pulse is much shorter than the time scale set by the anisotropic coupling of
the different states.

We apply the Ramsey protocol to three different cases, the Laughlin state (blue),
the non-interacting rotating fermions (black) and the center-of-mass rotating state
|2⟩com |0⟩rel at 680 G (red), shown in Fig. 6.10a-c, respectively. In all three cases we
observe coherent oscillations confirming that we prepare states with non-zero angular
momentum. Let us first highlight the properties of the Laughlin state, which can be
better appreciated when placed in the context of the other two scenarios. We measure
an anisotropy of δω/2π = 21(4) Hz at a trap frequency ω/2π ≈ 56.1 kHz. This yields a
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6.3 Properties of the Laughlin state

Figure 6.11: Time evolution of the Laughlin wavefunction. Density distribu-
tion in center-of-mass (red) and relative (blue) basis at different times.
In the center-of-mass basis, the ground state remains stationary. In the
relative basis, the density evolves according a state prepared on the eq
to a two-level system formed by the states |±⟩.

relative anisotropy of δω/ω = 4×10−4. The oscillation frequency of the non-interacting
rotating fermions is δωnon-int/2π = 42(1) Hz, similar to the center-of-mass excitation
|2⟩com |0⟩rel which is δωcom/2π = 42.0(2) Hz. As outlined above, the reduction in the
oscillation frequency of the Laughlin state is due to the energy shift of the non-zero
angular momentum state |2, 0⟩ which suppresses the coupling from the state |2⟩ to
|−2⟩.

Even more remarkable is the coherence time of the Laughlin state τcoh = 191(2) ms
corresponding to 21 400 coherent rotations of the particles around each other. This
demonstrates that already the two-particle Laughlin state is well isolated from envi-
ronmental noise sources. We also determine the coherence time of the non-interacting
rotating fermions τ (non-int)

coh = 33(8) ms and of the center-of-mass excitation τ
(com)
coh =

87(12) ms. Intriguingly, the coherence time of Laughlin state exceeds both other states
by at least a factor of 2. The Laughlin state is a non-interacting state since its energy
level is flat as a function of the magnetic field, as shown in Fig. 6.3. In contrast to
the other two states which show a magnetic field dependence. This highlights that the
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two-particle Laughlin state lives in a decoherence-free subspace, i.e. a subspace which
is insensitive to linear shifts of the magnetic field [Mam20; Har22].

In addition to the spectroscopic tool for the characterization of the Laughlin state,
we measure the time evolution of the Laughlin wavefunction at Ramsey delay times
τR = nT/4, with n ∈ {0, 1, 2, 3} and T = 2π/δω. In Fig. 6.11, we show the density
of the Laughlin wavefunction in the center-of-mass (red) and relative (blue) basis. As
expected, the center-of-mass motion remains stationary in time. The relative part
however is oscillating according to the sketch in Fig. 6.10.

Conclusion
We have realized the ν = 1/2 Laughlin state with two spinful fermions rapidly rotating
in an optical tweezer. Our single particle and spin resolved imaging technique allowed
us to directly observe microscopic correlations of the Laughlin wavefunction. We have
demonstrated multiple key properties, including the ground state distribution in center-
of-mass coordinates, the incorporation of angular momentum in the relative motion of
the particles, as well as the resulting suppression of interacting energy and its strongly
correlated nature in the motional degree of freedom.

These measurements demonstrate the first realization of a Laughlin state in a rotating
ultracold quantum gas, with access to microscopic observables of the underlying system.
They lay the foundation for the realization of fractional quantum Hall states in ultracold
atoms with deterministic control of the particle number, as well as the precise tunability
of the interaction strength.
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Summary and Outlook

The realization of a Laughlin state with two spinful fermionic atoms, demonstrated in
this thesis, establishes the groundwork for future studies on strongly-correlated many-
body fractional quantum Hall states with rotating ultracold atomic gases. Access to
the microscopic details was achieved by directly probing the Laughlin wavefunction
with single atom and spin resolution. This revealed its pair and angle correlations
(see chapter 6), thereby yielding novel observables for fractional quantum Hall states
with the potential to unravel currently unanswered questions of the quantum Hall
effect [Pap22; Ma24].

Two key technological developments made the realization of the Laughlin state in
our experiment possible. First, it was necessary to determine the optical aberrations
by using the quantum gas as a wavefront sensor. To achieve this, we implemented
a phase shift interferometry algorithm from which we retrieved a phase map of the
light propagating through the optical elements up to the position of the atoms (see
chapter 4). Most critical was the ellipticity of the optical potential set by the anisotropy
of the trap frequencies in the horizontal plane and which required further reduction.
To this end, we used Ramsey interferometry which allowed us to measure and reduce
the ellipticity down to a relative anisotropy of ∼ 10−4 (see chapter 5 and 6). Second,
we demonstrated the motional control of the angular momentum eigenstate of a single
atom in a tightly focused optical tweezer. We implemented a novel technique which
relies on the interference of Laguerre-Gaussian beams, to transfer angular momentum
from the light field to the atoms (see chapter 4 and 5). This technique grants us full
control over the strength of the rotating perturbation, as well as the rotation frequency
and the order of the Laguerre-Gaussian beam, that is the amount of angular momentum
inserted into the system.

In the following, we present a selection of applications which are either directly in
reach or require minor modifications to the current experimental setup.

105



7 Summary and Outlook

7.1 Quasihole excitations
The quasiparticle excitations of FQH states, also referred to as anyons [Wil82; Aro84;
Hal84], obey fractional exchange statistics when two of them are interchanged, which
was recently measured experimentally in solid state systems [Bar20; Nak20]. Ultracold
atomic gases, on the other hand, might offer the required control to deterministically
prepare a certain number of quasiholes and to not only measure their fractional phase
by braiding them [Par01] but also to exploit their properties for quantum information
applications [Kit03; Fre02]. Here, we outline a procedure to deterministically prepare
a single quasihole excitation in the two-particle Laughlin state.

Recall that a central quasihole excitation on the ν = 1/2 two-particle Laughlin state
ψ1/2 is described by the wavefunction

ψ
(hole)
1/2 (z1, z2) = z1z2(z1 − z2)2e−1/2(|z1|2+|z2|2) (7.1)

∝ z3
1z2 + z1z

3
2 − 2z2

1z
2
2 , (7.2)

where in the second line, we factored out the terms in the brackets and omitted the
Gaussian envelope. Rewriting this state in center-of-mass and relative coordinates as
defined in section 6.2 allows us to identify the quasihole wavefunction with states of
the 2D harmonic oscillator in the LLL

ψ
(hole)
1/2 (zcom, zrel) ∝ z2

comz
2
rel −

√
6z4

rel (7.3)
≃ |2⟩com |2⟩rel −

√
6 |0⟩com |4⟩rel . (7.4)

Hence, the quasihole is a superposition of two states of the 2D harmonic oscillator
in the 4ℏ angular momentum manifold. Since both states contain relative angular
momentum the quasihole is non-interacting and in the case of a harmonic trap these
states are degenerate.

In contrast to the Laughlin state, which exhibits a flat density for small radii in the
single particle basis, the quasihole excitation exhibits a density depletion, as shown in
Fig. 7.1, where we compare the radial densities of the two particle Laughlin wavefunc-
tion ψ1/2 and the quasihole excitation ψ

(hole)
1/2 . Furthermore, the center-of-mass density

does not remain in the ground state and the additional angular momentum manifests
in a shift of the relative density to higher radii.

In order to prepare the state, it is required to additionally insert 2ℏ quanta of angular
momentum on top of the Laughlin state. In principle, this can be achieved with a sec-
ond π-pulse to the 4ℏ manifold which can be resolved spectroscopically as the rotation
frequency from the Laughlin state to the quasihole differs from the de-excitation to
the ground state (for clarification, see Fig. 3.4b). While observing a single quasihole
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Figure 7.1: Quasihole excitation. Comparing the radial density of the two particle
Laughlin state ψ1/2 (red) to a quasihole excitation ψ(hole)

1/2 (blue) in a, sin-
gle particle coordinates b, the center-of-mass coordinates and c, relative
coordinates. At the position of the quasihole r = 0, the single parti-
cle density exhibits a depletion in contrast to the Laughlin state which
reaches a density given by the filling factor.

excitation in the two-particle Laughlin state sets the foundation for exploring its ex-
otic properties, preparing multiple quasiholes requires a larger number of particles to
distribute them across the bulk density of the Laughlin state.

7.2 Increasing the particle number
Some properties of the many-body FQH states persist even down to two particles.
These include that the single particle density approaches for small radii the value
of the filling factor ν = 1/2, in units of the magnetic length, or the incorporation of
angular momentum in the relative motion of the particles. However, in order to observe
thermodynamic properties such as the quantized Hall conductance or the excitation
spectrum, large particle numbers on the order ten are required [Hal85]. We outline the
required technical advances in our experiment to prepare a many-body FQH state and
provide an overview of various applications on our platform.

Quasi-2D regime From a technical point of view, it is necessary to reach a quasi-2D
trap geometry. In the current setup, we use a single, tightly focused optical tweezer
with an aspect ratio ω/ωz ≈ 7 of the radial to axial trap frequency. In the case of
two spinful fermions the assumption that the atoms remain in the axial ground state
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is justified as the rotation couples only to the in-plane motion. However, when adding
another particle by using our spilling technique, the system is not in the axial ground
state anymore. Therefore, it is necessary to implement an additional confinement in the
axial direction to invert the aspect ratio such that ω ≪ ωz. Such an optical potential
was already built in our experiment [Kle21]. It has been shown on another machine in
our group that it is possible to prepare stable ground states in 2D [Bay20a] up to 20
atoms with such a potential geometry.

Spin polarized Fermi gases Once we reach the quasi-2D regime in our experiment,
there is a variety of possible future directions. The simplest is to start from a closed shell
configuration of the 2D harmonic oscillator with spin polarized fermions corresponding
to 1, 3, 6, 10, ... atoms in the ground state and to transfer all of the atoms to the LLL.
This coincides with an incompressible IQH state as the filling factor is ν = 1. The
density displays a flat profile reflecting the occupation of the single particle states in
the LLL [Ho00]. Even though this might be a trivial state to start with, it is helpful
for benchmarking adiabatic protocols to prepare many fermions in the LLL.

Spinfull fractional quantum Hall states The addition of the second spin state allows
for introducing repulsive interactions among the different spin components. A balanced
mixture of N↑ spin up and N↓ spin down particles with relative angular momentum
among each and every particle correspond to states observed in the spinful FQH effect,
which are described by the Halperin wavefunction (see chapter 2). In particular, in
reference [Pal20] they propose a scheme to adiabatically transfer a system of N↑ + N↓
particles to the so-called skyrmion ground state which exhibits local ferromagnetic
order and long-range reversed spin order.

BEC-BCS crossover in the LLL In a non-rotating system, the BCS state consist-
ing of weakly bound pairs of fermions is smoothly connected to a BEC of diatomic
molecules [Joc03; Gre03; Zwi03]. However, if all fermions occupy the LLL it is pre-
dicted that the evolution from the BCS to BEC side involves a topological quantum
phase transition, rather than a crossover [Möl07; Yan08; Ho16; Rep17]. Here, the tran-
sition is expected from a ν = 1/2 Laughlin state of molecules on the BEC side to a
fermionic integer quantum Hall state with a filling factor ν↑ = ν↓ = 1 for each spin
state on the BCS.
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7.3 Superfluidity in finite systems
So far, we have focused on the rapidly rotating limit at which strongly-correlated states
analogous to FQH states are anticipated [Coo08]. In the non-rotating limit and for large
particles numbers, the system is expected to exhibit a superfluid ground state in the
BCS-BEC crossover [Zwi05; Ket08]. Investigating the response of a mesoscopic system
to a slowly rotating perturbation allows to explore the emergence of superfluidity from
the single particle limit.

A superfluid does not rotate like an ordinary fluid. If the rotation frequency Ω of the
confining potential remains below a critical rotation frequency Ω < ωc, the superfluid
stays at rest. However, if the rotation frequency exceeds ωc, quantized vortices nucleate
on top of the superfluid. This state state is infinitely long lived since it constitutes
the new ground state in the rotating frame. The conditions on the critical rotation
frequency and the lifetime are known as Landau’s criteria of superfluidity [Pit16].

Intriguingly, these criteria also hold for a single atom in the ground state which
is transferred to an angular momentum eigenstate of a radially symmetric harmonic
oscillator, similar to chapter 5 and 6. The atom remains in the ground state of the
system if the rotation frequency of the perturbation remains below the trap frequency
ω, thus corresponding to ωc. Furthermore, the angular momentum eigenstate carries
quantized amount of angular momentum and is infinitely long lived as it corresponds
to an eigenstate of the harmonic oscillator.

The beautiful experiments carried out with Bose Einstein condensates [Mad00; Abo01]
and strongly interacting Fermi gases [Zwi05; Rie10] with large number of particles can
provide inspiration and incentives to discriminate between single particle and super-
fluid effects. In particular, in two-component strongly interacting Fermi gases a se-
ries of important measurements hinted towards superfluidity [OHa02; Reg04; Zwi04;
Bar04; Kin04; Chi04] but do not provide an unambiguous proof. A smoking gun for
superfluidity, on the other hand, is the manifestation of a long lived Abrikosov lattice,
the arrangement of many quantized flux vortices in a triangular lattice, observed in a
BEC [Abo01] and in a Fermi gas [Zwi05]. Another evident observable for superfluid-
ity is the reduction of the moment of inertia with respect to the classical rigid body
below the nucleation frequency of vortices [Rie10], closely related to measurements in
nuclear systems [Str18]. Given that our system in the thermodynamic limit is expected
to constitute a superfluid the question arises whether these observables persist in the
few-particle regime at temperatures close to zero.

Inspired by the measurements in [Rie10], in which they use the precession of the
quadrupole mode to measure the inserted angular momentum L in the system and
from that determine the moment of inertia defined as I = L/Ω, we conducted first
experiments on the excitation of a radial quadrupole mode in a system of few-fermions
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a b c d

Figure 7.2: Emergence of the quadrupole mode. Excitation spectrum of the
radial quadrupole mode in the BEC-BCS crossover for varying atom
numbers by using atom loss spectroscopy. The excitation frequency Ω
is expressed in units of the radial trap frequency ω, while the scatter-
ing length a is normalized to the Fermi momentum kF. As the atom
number is increased (left to right) the quadrupole mode reveals the qual-
itative change of the system’s response from collective to single particle
behaviour indicated by the sudden transition of the resonance frequency,
adapted from [Rei23].

in the BEC-BCS crossover, shown in Fig. 7.2. Here, we use atom loss spectroscopy
to measure the resonance frequency of the quadrupole mode, indicated by a loss of
atoms (in red). The excitation scheme is similar as in [Bay20a]. We observe a quali-
tative change of the system’s response with increasing atom number in the BEC-BCS
crossover, indicated by a sudden transition of the resonance frequency.

In particular, the single particle limit of 1 + 1 atoms exhibits no dependence on the
interactions expressed in terms of the fermi momentum kF of the non-interacting system
and the scattering length as. With increasing particle number two branches emerge.
On the BEC side, an interaction dependent branch associated to the quadrupole mode
appears at excitation frequencies Ω < 2ω which is absent in the single particle limit. At
weaker interactions towards the BCS side, we observe a discontinuity of the quadrupole
mode at which the resonance frequency suddenly transitions to Ω ≈ 2ω, reminiscent of
the single particle excitations in the 1 + 1 case. This qualitative change in the response
of the system suggests the transition from a collective behaviour on the BEC side to
single particle excitations on the weakly interacting BCS side.

Measurements of the collective excitations [Bar04; Alt07; Tey13] hint towards super-
fluid behaviour, however as outlined above, are not a smoking gun. These experiments
provide us with a reference in terms of particle numbers and interaction strengths at
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7.3 Superfluidity in finite systems

which we might expect to observe either a reduction of the moment of inertia due to
the superfluid properties of these small systems or even an Abrikosov lattice of a few
vortices.
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Appendix A

n=0,m=0

1,-1 1,1

2,22,02,-2
1,-11,1 +eiφ

2,-22,2 +eiφ

pHO

Figure A.1: Quantum control of 2D harmonic oscillator states. We showcase
the quantum control of a single atom in a 2D harmonic oscillator. Start-
ing point is a single atom in the ground state |i⟩ = |00⟩ of the optical
potential. We engineer various perturbations V̂pert via the SLM to couple
the ground state to the desired final stated ⟨i|V̂pert|f⟩, which we then
image via our fluorescene imaging technique in momentum space. The
units for all densities are in pHO. The colours mark the shell quantum
numbers – black n = 0, red n = 1 and blue n = 2.

113





Bibliography
[Abo01] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle. Observation

of Vortex Lattices in Bose-Einstein Condensates. Science 292.5516 (2001),
pp. 476–479.

[Aha59] Y. Aharonov and D. Bohm. Significance of Electromagnetic Potentials in
the Quantum Theory. Phys. Rev. 115 (3 1959), pp. 485–491.

[Aid13a] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I.
Bloch. Realization of the Hofstadter Hamiltonian with Ultracold Atoms in
Optical Lattices. Physical Review Letters 111.18 (2013).

[Aid11] M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and I.
Bloch. Experimental Realization of Strong Effective Magnetic Fields in an
Optical Lattice. Phys. Rev. Lett. 107 (25 2011), p. 255301.

[Aid13b] M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and I.
Bloch. Experimental realization of strong effective magnetic fields in optical
superlattice potentials. Applied Physics B 113.1 (2013), pp. 1–11.

[Aid14] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S.
Nascimbène, N. R. Cooper, I. Bloch, and N. Goldman. Measuring the Chern
number of Hofstadter bands with ultracold bosonic atoms. Nature Physics
11.2 (2014), pp. 162–166.

[Aid18] M. Aidelsburger, S. Nascimbene, and N. Goldman. Artificial gauge fields in
materials and engineered systems. Comptes Rendus. Physique 19.6 (2018),
pp. 394–432.

[Alt04] E. Altman, E. Demler, and M. D. Lukin. Probing many-body states of ultra-
cold atoms via noise correlations. Physical Review A 70.1 (2004), p. 013603.

[Alt07] A. Altmeyer, S. Riedl, M. J. Wright, C. Kohstall, J. H. Denschlag, and R.
Grimm. Dynamics of a strongly interacting Fermi gas: The radial quadrupole
mode. Phys. Rev. A 76 (3 2007), p. 033610.

[And72] P. W. Andersen. More is different. Science 177.4047 (1972), pp. 393–396.

115

http://dx.doi.org/10.1126/science.1060182
http://dx.doi.org/10.1126/science.1060182
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/physrevlett.111.185301
http://dx.doi.org/10.1103/physrevlett.111.185301
http://dx.doi.org/10.1103/PhysRevLett.107.255301
http://dx.doi.org/10.1103/PhysRevLett.107.255301
http://dx.doi.org/10.1007/s00340-013-5418-1
http://dx.doi.org/10.1007/s00340-013-5418-1
http://dx.doi.org/10.1038/nphys3171
http://dx.doi.org/10.1038/nphys3171
http://dx.doi.org/10.1016/j.crhy.2018.03.002
http://dx.doi.org/10.1016/j.crhy.2018.03.002
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1103/PhysRevA.76.033610
http://dx.doi.org/10.1103/PhysRevA.76.033610
http://dx.doi.org/10.1126/science.177.4047.393


Bibliography

[And95] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.
Cornell. Observation of Bose-Einstein condensation in a dilute atomic va-
por . Science 269.5221 (1995), pp. 198–201.

[Aro84] D. Arovas, J. R. Schrieffer, and F. Wilczek. Fractional Statistics and the
Quantum Hall Effect. Phys. Rev. Lett. 53 (7 1984), pp. 722–723.

[Ast19] L. Asteria, D. T. Tran, T. Ozawa, M. Tarnowski, B. S. Rem, N. Fläschner,
K. Sengstock, N. Goldman, and C. Weitenberg. Measuring quantized cir-
cular dichroism in ultracold topological matter . Nature Physics 15.5 (2019),
pp. 449–454.

[Bal10] L. Balents. Spin liquids in frustrated magnets. Nature 464.7286 (2010), pp. 199–
208.

[Bar12] M. A. Baranov, M. Dalmonte, G. Pupillo, and P. Zoller. Condensed Mat-
ter Theory of Dipolar Quantum Gases. Chemical Reviews 112.9 (2012),
pp. 5012–5061.

[Bar04] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag,
and R. Grimm. Collective excitations of a degenerate gas at the BEC-BCS
crossover . Physical Review Letters 92.20 (2004).

[Bar20] H. Bartolomei et al. Fractional statistics in anyon collisions. Science 368.6487
(2020), pp. 173–177.

[Bau80] M. Baus and J.-P. Hansen. Statistical mechanics of simple coulomb systems.
Physics Reports 59.1 (1980), pp. 1–94.

[Bay20a] L. Bayha, M. Holten, R. Klemt, K. Subramanian, J. Bjerlin, S. M. Reimann,
G. M. Bruun, P. M. Preiss, and S. Jochim. Observing the emergence of a
quantum phase transition shell by shell. Nature 587.7835 (2020), pp. 583–
587.

[Bay20b] L. X. Bayha. Emergence of Many-Body Physics in Two-Dimensional Few-
Fermion Systems. PhD thesis. University of Heidelberg, 2020.

[Bay04] G. Baym. Vortex lattices in rapidly rotating Bose-Einstein condensates:
Modes and correlation functions. Phys. Rev. A 69 (4 2004), p. 043618.

[Bec20a] J. H. Becher, E. Sindici, R. Klemt, S. Jochim, A. J. Daley, and P. M. Preiss.
Measurement of Identical Particle Entanglement and the Influence of Anti-
symmetrization. Phys. Rev. Lett. 125 (18 2020), p. 180402.

[Bec20b] J. H. W. Becher. Characterizing Few-Fermion Systems with Momentum Cor-
relations. PhD thesis. University of Heidelberg, 2020.

116

http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1103/PhysRevLett.53.722
http://dx.doi.org/10.1103/PhysRevLett.53.722
http://dx.doi.org/10.1038/s41567-019-0417-8
http://dx.doi.org/10.1038/s41567-019-0417-8
http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1021/cr2003568
http://dx.doi.org/10.1021/cr2003568
http://dx.doi.org/10.1103/PhysRevLett.92.203201
http://dx.doi.org/10.1103/PhysRevLett.92.203201
http://dx.doi.org/10.1126/science.aaz5601
http://dx.doi.org/https://doi.org/10.1016/0370-1573(80)90022-8
http://dx.doi.org/10.1038/s41586-020-2936-y
http://dx.doi.org/10.1038/s41586-020-2936-y
http://dx.doi.org/https://doi.org/10.11588/heidok.00028740
https://doi.org/10.11588/heidok.00028740
http://dx.doi.org/https://doi.org/10.11588/heidok.00028740
https://doi.org/10.11588/heidok.00028740
http://dx.doi.org/10.1103/PhysRevA.69.043618
http://dx.doi.org/10.1103/PhysRevA.69.043618
http://dx.doi.org/10.1103/PhysRevLett.125.180402
http://dx.doi.org/10.1103/PhysRevLett.125.180402
http://dx.doi.org/https://doi.org/10.11588/heidok.00028329
https://doi.org/10.11588/heidok.00028329
http://dx.doi.org/https://doi.org/10.11588/heidok.00028329
https://doi.org/10.11588/heidok.00028329


[Ber03] T. Bergeman, M. G. Moore, and M. Olshanii. Atom-Atom Scattering under
Cylindrical Harmonic Confinement: Numerical and Analytic Studies of the
Confinement Induced Resonance. Phys. Rev. Lett. 91 (16 2003), p. 163201.

[Ber17] A. Bergschneider. Strong correlations in few-fermion systems. PhD thesis.
University of Heidelberg, 2017.

[Ber19] A. Bergschneider, V. M. Klinkhamer, J. H. Becher, R. Klemt, L. Palm, G.
Zürn, S. Jochim, and P. M. Preiss. Experimental characterization of two-
particle entanglement through position and momentum correlations. Nature
Physics 15.7 (2019), pp. 640–644.

[Ber18] A. Bergschneider, V. M. Klinkhamer, J. H. Becher, R. Klemt, G. Zürn,
P. M. Preiss, and S. Jochim. Spin-resolved single-atom imaging of 6Li in
free space. Physical Review A 97.6 (2018), p. 063613.

[Ber84] M. V. Berry. Quantal phase factors accompanying adiabatic changes. Pro-
ceedings of the Royal Society of London. A. Mathematical and Physical Sci-
ences 392.1802 (1984), pp. 45–57.

[Bij13] R. M. W. Bijnen van. Quantum engineering with ultracold atoms. PhD the-
sis. Eindhoven University of Technology, 2013.

[Blo12] I. Bloch, J. Dalibard, and S. Nascimbène. Quantum simulations with ultra-
cold quantum gases. Nature Physics 8.4 (2012), pp. 267–276.

[Blo08] I. Bloch, J. Dalibard, and W. Zwerger. Many-body physics with ultracold
gases. Reviews of Modern Physics 80.3 (2008), pp. 885–964.

[Bra23] S. Brandstetter et al. Emergent hydrodynamic behaviour of few strongly in-
teracting fermions. 2023.

[Bre04] V. Bretin, S. Stock, Y. Seurin, and J. Dalibard. Fast Rotation of a Bose-
Einstein Condensate. Phys. Rev. Lett. 92 (5 2004), p. 050403.

[Bro20] A. Browaeys and T. Lahaye. Many-body physics with individually controlled
Rydberg atoms. Nature Physics 16.2 (2020), pp. 132–142.

[Bru74] J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White,
and D. J. Brangaccio. Digital Wavefront Measuring Interferometer for Test-
ing Optical Surfaces and Lenses. Appl. Opt. 13.11 (1974), pp. 2693–2703.

[Bus98] T. Busch, B. G. Englert, K. Rzazewski, and M. Wilkens. Two Cold Atoms
in a Harmonic Trap. Foundations of Physics 28.4 (1998), pp. 549–559.

[Cha20] T. Chalopin, T. Satoor, A. Evrard, V. Makhalov, J. Dalibard, R. Lopes,
and S. Nascimbene. Probing chiral edge dynamics and bulk topology of a
synthetic Hall system. Nature Physics 16.10 (2020), pp. 1017–1021.

117

http://dx.doi.org/10.1103/PhysRevLett.91.163201
http://dx.doi.org/10.1103/PhysRevLett.91.163201
http://dx.doi.org/10.1103/PhysRevLett.91.163201
http://dx.doi.org/https://doi.org/10.11588/heidok.00023328
https://doi.org/10.11588/heidok.00023328
http://dx.doi.org/10.1038/s41567-019-0508-6
http://dx.doi.org/10.1038/s41567-019-0508-6
http://dx.doi.org/10.1103/PhysRevA.97.063613
http://dx.doi.org/10.1103/PhysRevA.97.063613
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.6100/IR754785
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/PhysRevLett.92.050403
http://dx.doi.org/10.1103/PhysRevLett.92.050403
http://dx.doi.org/10.1038/s41567-019-0733-z
http://dx.doi.org/10.1038/s41567-019-0733-z
http://dx.doi.org/10.1364/AO.13.002693
http://dx.doi.org/10.1364/AO.13.002693
http://dx.doi.org/10.1023/A:1018705520999
http://dx.doi.org/10.1023/A:1018705520999
http://dx.doi.org/10.1038/s41567-020-0942-5
http://dx.doi.org/10.1038/s41567-020-0942-5


Bibliography

[Che10] X. Chen, Z.-C. Gu, and X.-G. Wen. Local unitary transformation, long-range
quantum entanglement, wave function renormalization, and topological or-
der . Phys. Rev. B 82 (15 2010), p. 155138.

[Chi15] C.-C. Chien, S. Peotta, and M. Di Ventra. Quantum transport in ultracold
atoms. Nature Physics 11.12 (2015), pp. 998–1004.

[Chi04] C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, H. H. Denschlag,
and R. Grimm. Observation of the pairing gap in a strongly interacting
Fermi gas. Science (2004).

[Chi10] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga. Feshbach resonances in
ultracold gases. Reviews of Modern Physics 82.2 (2010), pp. 1225–1286.

[Cho22] L. Chomaz, I. Ferrier-Barbut, F. Ferlaino, B. Laburthe-Tolra, B. L. Lev, and
T. Pfau. Dipolar physics: a review of experiments with magnetic quantum
gases. Reports on Progress in Physics 86.2 (2022), p. 026401.

[Cla20] L. W. Clark, N. Schine, C. Baum, N. Jia, and J. Simon. Observation of
Laughlin states made of light. Nature 582.7810 (2020), pp. 41–45.

[Coo20] N. Cooper. Fractional Quantum Hall States of Bosons: Properties and Prospects
for Experimental Realization. In: Fractional Quantum Hall effects – New
Developments. Ed. by B. I. Halperin and J. K. Jain. World Scientific, 2020,
pp. 487–521.

[Coo19] N. R. Cooper, J. Dalibard, and I. B. Spielman. Topological bands for ultracold
atoms. Rev. Mod. Phys. 91 (1 2019), p. 015005.

[Coo01] N. R. Cooper, N. K. Wilkin, and J. M. F. Gunn. Quantum Phases of Vor-
tices in Rotating Bose-Einstein Condensates. Phys. Rev. Lett. 87 (12 2001),
p. 120405.

[Coo08] N. Cooper. Rapidly rotating atomic gases. Advances in Physics 57.6 (2008),
pp. 539–616.

[Dal16] J. Dalibard. Introduction to the physics of artificial gauge fields. In: Quan-
tum Matter at Ultralow Temperatures. Ed. by M. Inguscio, W. Ketterle, S.
Stringari, and G. Roati. Proceedings of the International School of Physics
Enrico Fermi. IOS Press, 2016, pp. 1–61.

[Dal99] J. Dalibard. Collisional dynamics of ultra-cold atomic gases. In: Proceedings
of the International School of Physics - Enrico Fermi. 1999, pp. 321–349.

[Dav95] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. Van Druten, D. S. Durfee,
D. M. Kurn, and W. Ketterle. Bose-Einstein condensation in a gas of sodium
atoms. Physical Review Letters 75.22 (1995), pp. 3969–3973.

118

http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1103/PhysRevB.82.155138
http://dx.doi.org/10.1038/nphys3531
http://dx.doi.org/10.1038/nphys3531
http://dx.doi.org/10.1126/science.1100818
http://dx.doi.org/10.1126/science.1100818
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1088/1361-6633/aca814
http://dx.doi.org/10.1088/1361-6633/aca814
http://dx.doi.org/10.1038/s41586-020-2318-5
http://dx.doi.org/10.1038/s41586-020-2318-5
http://dx.doi.org/10.1103/RevModPhys.91.015005
http://dx.doi.org/10.1103/RevModPhys.91.015005
http://dx.doi.org/10.1103/PhysRevLett.87.120405
http://dx.doi.org/10.1103/PhysRevLett.87.120405
http://dx.doi.org/10.1080/00018730802564122
http://dx.doi.org/10.3254/978-1-61499-225-7-321
http://dx.doi.org/10.1103/PhysRevLett.75.3969
http://dx.doi.org/10.1103/PhysRevLett.75.3969


[DeM99] B. DeMarco and D. S. Jin. Onset of Fermi Degeneracy in a Trapped Atomic
Gas. Science 285.5434 (1999), pp. 1703–1706.

[Don91] R. J. Donnelly. Quantized vortices in helium II. Vol. 2. Cambridge University
Press, 1991.

[Dru00] P. Drude. Zur Elektronentheorie der Metalle. Annalen der Physik 306.3
(1900), pp. 566–613.

[Dux] D. Dux. Towards the construction of rapidly rotating optical dipole traps.
Bachelor Thesis. University of Heidelberg.

[Fan86] G. Fano, F. Ortolani, and E. Colombo. Configuration-interaction calcula-
tions on the fractional quantum Hall effect. Phys. Rev. B 34 (4 1986),
pp. 2670–2680.

[Fet03] A. L. Fetter, J. D. Walecka, and L. P. Kadanoff. Quantum Theory of Many
Particle Systems. Dover: Dover Publications, 2003. isbn: 9780486134758.

[Fey72] R. P. Feynman. Statistical Mechanics: a set of lectures. Benjamin, Reading,
Mass., 1972.

[Fle21] R. J. Fletcher, A. Shaffer, C. C. Wilson, P. B. Patel, Z. Yan, V. Crépel,
B. Mukherjee, and M. W. Zwierlein. Geometric squeezing into the lowest
Landau level. Science 372.6548 (2021), pp. 1318–1322.

[Föl14] S. Fölling. Quantum Noise Correlation Experiments with Ultracold Atoms.
In: 2014, pp. 145–177.

[Fre02] M. H. Freedman, A. Kitaev, M. J. Larsen, and Z. Wang. Topological Quan-
tum Computation. 2002.

[Gau13] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadz-
ibabic. Bose-Einstein Condensation of Atoms in a Uniform Potential. Phys-
ical Review Letters 110.20 (2013).

[Geh03] M. E. Gehm. Properties of 6Li. Jetlab (2003), pp. 1–33.
[Gem10] N. Gemelke, E. Sarajlic, and S. Chu. Rotating Few-body Atomic Systems in

the Fractional Quantum Hall Regime. 2010.
[Geo14] I. M. Georgescu, S. Ashhab, and F. Nori. Quantum simulation. Rev. Mod.

Phys. 86 (1 2014), pp. 153–185.
[Gin50] V. L. Ginzburg and L. D. Landau. To the Theory of Superconductivity. Zh.

Eksp. Teor. Fiz. 20 (1950), p. 1064.

119

http://dx.doi.org/10.1126/science.285.5434.1703
http://dx.doi.org/10.1126/science.285.5434.1703
http://dx.doi.org/https://doi.org/10.1002/andp.19003060312
http://dx.doi.org/10.1103/PhysRevB.34.2670
http://dx.doi.org/10.1103/PhysRevB.34.2670
http://dx.doi.org/10.1126/science.aba7202
http://dx.doi.org/10.1126/science.aba7202
http://dx.doi.org/10.1142/9781783264766_0008
http://dx.doi.org/10.1103/physrevlett.110.200406
https://www.physics.ncsu.edu/jet/techdocs/pdf/PropertiesOfLi.pdf
http://dx.doi.org/10.1103/RevModPhys.86.153
https://link.springer.com/chapter/10.1007%2F978-3-540-68008-6_4


Bibliography

[Gir84] S. M. Girvin. Anomalous quantum Hall effect and two-dimensional classical
plasmas: Analytic approximations for correlation functions and ground-state
energies. Phys. Rev. B 30 (2 1984), pp. 558–560.

[Gir85] S. M. Girvin, A. H. MacDonald, and P. M. Platzman. Collective-Excitation
Gap in the Fractional Quantum Hall Effect. Phys. Rev. Lett. 54 (6 1985),
pp. 581–583.

[Gir86] S. M. Girvin, A. H. MacDonald, and P. M. Platzman. Magneto-roton theory
of collective excitations in the fractional quantum Hall effect. Phys. Rev. B
33 (4 1986), pp. 2481–2494.

[Gir89] S. Girvin and R. Prange. The Quantum Hall Effect. New York: Springer
New York, NY, 1989. isbn: 978-0-387-97177-3.

[Giu12] G. Giuliani and G. Vignale. Quantum Theory of the Electron Liquid. Cam-
bridge Univ. Press, 2012.
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