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Abstract

In this thesis, we prove the generalised pro-2 real SectionConjecture forwhatwe call equivari-
antly triangulable varieties overR. Examples include all smooth varieties as well as all (possibly
singular) affine/projective varieties. Building on this, we derive the generalised real Section
Conjecture in the geometrically étale simply connected case.

Zusammenfassung

In dieser Arbeit beweisen wir die verallgemeinerte reelle pro-2 Schnittvermutung für soge-
nannte äquivariant triangulierbare Varietäten über R. Dies beinhaltet alle glatten Varietäten,
sowie alle (möglicherweise singuläre) affinen/projektiven Varietäten. Darauf aufbauend zeigen
wir die verallgemeinerte reelle Schnittvermutung im geometrisch étale einfach zusammenhän-
genden Fall.
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0 Introduction
In this thesis, we study the generalised Section Conjecture over the real numbersR, utilising the
so-called Sullivan Conjecture from homotopy theory. To adequately contextualise the present
manuscript, we begin with a brief overview of anabelian geometry. To this end, let us fix the
following situation:

Setup. Let 𝑘 be a field with separable closure 𝑘̄ ⊃ 𝑘, and let 𝑋 be a geometrically connected
quasi-compact and quasi-separated scheme over 𝑘. Write𝐺𝑘 ∶= Gal(𝑘̄∕𝑘) for the absolute Galois
group of 𝑘, 𝑋𝑘̄ for the base change of 𝑋 to 𝑘̄, and let 𝑥̄ ∊ 𝑋𝑘̄ be a geometric point.

The basic idea of anabelian geometry is to study the geometry and arithmetic of𝑋∕𝑘 in terms
of the so-called fundamental exact sequence of étale fundamental groups

(𝜋ét1 (𝑋∕𝑘)) 1 𝜋ét1 (𝑋𝑘̄, 𝑥̄) 𝜋ét1 (𝑋, 𝑥̄) 𝐺𝑘 1,

which one has in the above situation (see [SGA 1, Exposé IX, Théorème 6.1]). The following
section makes this idea more precise:

Grothendieck’s anabelian geometry. In a letter to Faltings [14] from 1983, Grothendieck
formulated his “yoga of anabelian geometry”. To keep this overview reasonably short, let us
restrict to the characteristic 0 case (as Grothendieck actually also did in his letter). Thus, let 𝑘∕Q
be an arithmetically rich ground field, usually a finitely generated field extension of Q.

In his letter, Grothendieck postulated the existence of so-called anabelian schemes (over 𝑘).
Here, the feature that decides whether a scheme 𝑋 shows “anabelian characteristics” is the
extent to which it is determined by means of its fundamental exact sequence (𝜋ét1 (𝑋∕𝑘)). If the
geometry of 𝑋∕𝑘 is, in its entirety, determined by its fundamental exact sequence, 𝑋 is said
to be anabelian. Grothendieck did not make this intuition into a formal definition and instead
postulated three conjectures, themain conjectures of anabelian geometry, that anabelian schemes
ought to satisfy.

He only formulated these conjectures for anabelian curves, which, as we will later see when
encountering the étale homotopy type, was probably a wise decision. In order to give a precise
formulation of Grothendieck’s anabelian conjectures, let us introduce the following notations:

0.1 Notation (outer homomorphisms). Let ℰ∶ 1 𝜋̄ 𝜋 𝐺 1 be a short exact se-
quence of profinite groups and let 𝜋′ → 𝐺 be another homomorphism of profinite groups.

(a) The set of outer homomorphisms from 𝜋′ → 𝜋 over 𝐺 is given by

Homout
𝐺 (𝜋′, 𝜋) ∶= Hom𝐺(𝜋′, 𝜋)𝜋̄,

where 𝜋̄ acts via conjugation.

(b) Similarly, the set of outer isomorphisms from 𝜋′ → 𝜋 over 𝐺 is given by

Isomout
𝐺 (𝜋′, 𝜋) ∶= Isom𝐺(𝜋′, 𝜋)𝜋̄.

(c) Finally, in the case that 𝜋′ = 𝐺 → 𝐺 is the identity map, we write

𝒮(ℰ) ∶= 𝒮(𝜋 ↠ 𝐺) ∶= Homout
𝐺 (𝐺, 𝜋)

for the set of 𝜋̄-conjugacy classes of sections of 𝜋 ↠ 𝐺.
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(d) In the case of the fundamental exact sequence, we consequently write 𝒮(𝜋ét1 (𝑋∕𝑘)) for the
set of 𝜋ét1 (𝑋𝑘̄, 𝑥̄)-conjugacy classes of sections of 𝜋

ét
1 (𝑋, 𝑥̄) ↠ 𝐺𝑘.

The étale fundamental group is a pointed invariant and therefore only functorial with respect
to basepoint-preserving morphisms. Passing to outer homomorphisms remedies this technical
nuisance:

0.2 Construction. Let 𝑌 and 𝑋 be qcqs geometrically connected schemes over 𝑘 and 𝑦̄ → 𝑌 as
well as 𝑥̄ → 𝑋 geometric points.

(1) Given a morphism of schemes 𝑓∶ 𝑌 → 𝑋 over 𝑘, the functoriality of 𝜋ét1 (−) induces a map

𝑓∗ ∶ 𝜋ét1 (𝑌, 𝑦̄) → 𝜋ét1 (𝑋, 𝑓(𝑦̄)).

The choice of an étale path 𝛾∶ 𝑓(𝑦̄) → 𝑥̄ furthermore yields a conjugation isomorphism

𝛾(−)𝛾−1 ∶ 𝜋ét1 (𝑋, 𝑓(𝑦̄)) → 𝜋ét1 (𝑋, 𝑥̄).

The composite 𝛾𝑓∗𝛾−1 thus determines a map 𝜋ét1 (𝑌, 𝑦̄) → 𝜋ét1 (𝑋, 𝑥̄).

(2) It turns out that varying the étale path 𝛾∶ 𝑓(𝑦̄) → 𝑥̄ conjugates 𝛾𝑓∗𝛾−1 precisely by𝜋ét1 (𝑋𝑘̄, 𝑥̄).
We therefore get a well-defined map

Hom𝑘(𝑌, 𝑋) → Homout
𝐺𝑘 (𝜋

ét
1 (𝑌, 𝑦̄), 𝜋

ét
1 (𝑋, 𝑥̄)), 𝑓 ↦ [𝛾𝑓∗𝛾−1]

for any choice of geometric points 𝑦̄ → 𝑌 and 𝑥̄ → 𝑋.

With this observation in place, we are ready to state Grothendieck’s anabelian conjectures.
First of all, he conjectured that the isomorphism class of an anabelian curve should be entirely
determined by its étale fundamental group:

0.3 Isomorphism Conjecture. Let 𝑋 and 𝑌 be two connected anabelian curves over some
finitely generated field extension 𝑘∕Q. Then the canonical map

Isom𝑘(𝑌, 𝑋) → Isomout
𝐺𝑘 (𝜋

ét
1 (𝑌), 𝜋

ét
1 (𝑋))

is a bijection.

Even more surprising, he postulated that all (dominant) morphisms of anabelian curves
could be recovered from étale fundamental groups:

0.4 Homomorphism Conjecture. Let 𝑋 and 𝑌 be two connected anabelian curves over some
finitely generated field extension 𝑘∕Q. Then the canonical map

Homdom
𝑘 (𝑌, 𝑋) → Homop,out

𝐺𝑘
(𝜋ét1 (𝑌), 𝜋

ét
1 (𝑋))

is a bijection. Here, Homdom
𝑘 denotes the set of dominant homomorphisms and Homop,out

𝐺𝑘
the

set of open outer group homomorphisms.

0.5 Remark. In a later remark, Grothendieck even conjectured that one could relax the as-
sumptions on 𝑌 in the homomorphism conjecture to 𝑌 being any smooth variety. This has been
shown to be true by Mochizuki, see Remark 0.8.
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In the case of𝑌 = Spec(𝑘), we introduce the following name for the map of Construction 0.2:

0.6 Definition (Kummer map). The map 𝜅𝑋∕𝑘 ∶ 𝑋(𝑘) → 𝒮(𝜋ét1 (𝑋∕𝑘)) given by

𝑎 ↦ 𝑠𝑎 ∶= [𝛾𝑎∗𝛾−1]

is called Kummer map.

In his final anabelian conjecture, Grothendieck envisioned that one should even be able to
detect rational points in an anabelian fashion:

0.7 Section Conjecture. Let 𝑋 be a connected and proper anabelian curve over some finitely
generated field extension 𝑘∕Q. Then the Kummer map

𝜅𝑋∕𝑘 ∶ 𝑋(𝑘) → Homout
𝐺𝑘 (𝐺𝑘, 𝜋

ét
1 (𝑋)) = 𝒮(𝜋ét1 (𝑋∕𝑘))

is a bijection.

There is one significant question left, namely: Which curves are actually supposed to satisfy
the above three conjectures? This is where Grothendieck turned his anabelian philosophy into
a precise programme: He conjectured that hyperbolic curves are anabelian.

0.8 Remark (state of the art).

(a) There is a lot ought to be said, but ultimately left unsaid, about anabelian geometry in this
introduction: Anabelian geometry in positive characteristic, birational anabelian geometry
andmany other things. Instead, we refer the reader to Pop’s excellent “lectures on anabelian
phenomena in geometry and arithmetic” [34] for a more comprehensive overview of the
different subdisciplines of anabelian geometry, as well as the state of the art (of 2011) on
these.

(b) For hyperbolic curves, two of the three main conjectures have been solved:

(1) The Isomorphism Conjecture has been resolved by Tamagawa’s doctoral thesis [45] in
the affine case and Mochizuki’s article [29] in the proper case.

(2) Moreover, Mochizuki resolved the Homomorphism Conjecture in [30].

(c) The SectionConjecture, however, is still open to this day despite substantial efforts to resolve
it.

To be more precise, Grothendieck already knew how to prove injectivity of the Kummermap.
The surjectivity of 𝜅𝑋∕𝑘 ∶ 𝑋(𝑘) → 𝒮(𝜋ét1 (𝑋∕𝑘)) is the truly hard part. There is, however, one
surprising case where the Section Conjecture has seen a satisfactory solution: When working
over the base field 𝑘 = R.

The real Section Conjecture. Over the reals, injectivity of 𝜅𝑋∕R ceases to hold. Nevertheless,
two real points 𝑎, 𝑏 of 𝑋 determine the same conjugacy-class of sections if and only if they lie in
the same connected component of the real analytification 𝑋(R) of 𝑋. Moreover, 𝜅𝑋∕R indeed is
surjective as has first been proven by Mochizuki:
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0.9 Theorem (Mochizuki, 2003; [31, Theorem 3.13-3.15]). Let 𝑋∕R be a smooth, geometrically
connected curve of genus 𝑔 ≥ 1. Then the Kummer map

𝜅𝑋∕R ∶ π0 𝑋(R) → 𝒮(𝜋ét1 (𝑋∕R))

is a bijection of finite sets. More generally, the same holds for any geometrically connected algebraic
étale K(𝜋, 1)-space 𝑋∕R.

0.10 Remark.

(a) Note that, in contrast to Section Conjecture 0.7, 𝑋 is not assumed to be proper in Theo-
rem 0.9. This is a pecularity of working over the real numbers. Usually, the naive Section
Conjecture fails in the non-proper case because of so-called cuspidal sections (which are the
sections induced by rational points of the boundary of 𝑋 in its smooth completion 𝑋̄). Over
R, any such boundary point can be obtained as a limit of a sequence of real points lying
in (the same connected component of) 𝑋. Therefore, the cuspidal section attached to this
boundary point is already detected by a connected component of 𝑋(R).

(b) Over general 𝑘, the correct formulation of the Section Conjecture in the non-proper case
takes cuspidal sections into account.

Wickelgren moreover refined the above theorem in [46] by proving that, in fact, the geomet-
rically 2-step nilpotent (pro-2) quotient of 𝜋ét1 (𝑋∕R) suffices to determine π0 𝑋(R).

A 2-step nilpotent version. In order to give a precise statement of Wickelgren’s result, we
first need to introduce some further notation.

0.11 Notation. Let ℰ∶ 1 𝜋̄ 𝜋 𝐺 1 be a short exact sequence of profinite groups
and let 𝜋̄ ↠ 𝜋̄′ be a fixed quotient of 𝜋̄.

(1) Pushing out the above exact sequence along 𝜋̄ ↠ 𝜋̄′ yields a new short exact sequence

(ℰ′) 1 𝜋̄ 𝜋 ∗𝜋̄ 𝜋̄′ 𝐺 1

together with a map
ℰ 1 𝜋̄ 𝜋 𝐺 1

ℰ′ 1 𝜋̄′ 𝜋 ∗𝜋̄ 𝜋̄′ 𝐺 1
=⌜

of short exact sequences.

(2) In particular, we get an induced map 𝒮(ℰ) → 𝒮(ℰ′).

0.12 Definition (descending central series). The descending central series 𝐶∙Γ of a profinite
group Γ is defined inductively by

𝐶−1Γ = Γ and 𝐶−(𝑛+1)Γ = [Γ, 𝐶−𝑛Γ],

for 𝑛 ≥ 2. Here, [𝑈, 𝑉] denotes the closed subgroup generated by the commutators

[𝑢, 𝑣] = 𝑢𝑣𝑢−1𝑣−1

for 𝑢 ∊ 𝑈 and 𝑣 ∊ 𝑉.
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0.13 Notation. Let ℰ∶ 1 𝜋̄ 𝜋 𝐺 1 be a short exact sequence of profinite groups.

(1) We write 𝐶≥−𝑛(ℰ) for the short exact sequence obtained by pushing out ℰ along the quotient
map 𝜋̄ ↠ 𝜋̄∕𝐶−(𝑛+1)𝜋̄ and call it the 𝑛-step nilpotent quotient of ℰ.

(2) In the case 𝑛 = 1 we simply write ℰab ∶= 𝐶≥−1ℰ and refer to it as the abelianisation of ℰ.

(3) Given a prime 𝓁, we write ℰ∧𝓁 for the short exact sequence obtained by pushing out ℰ along
the maximal pro-𝓁 quotient map 𝜋̄ ↠ 𝜋̄∧𝓁 (see §1.6 for Σ = {𝓁}).

We can now provide a concise statement of Wickelgren’s result:

0.14 Theorem (Wickelgren’s 2-step nilpotent real Section Conjecture; [46, Theorem 1.1]). Let
𝑋∕R be a smooth projective geometrically connected curve of genus 𝑔 ≥ 1. Then the map

π0 𝑋(R) → im(𝒮(𝐶≥−2(𝜋ét1 (𝑋∕R)
∧2)) → 𝒮(𝜋ét1 (𝑋∕R)

ab,∧2)

induced by the Kummer map is a bijection.

As already mentioned, Grothendieck only formulated his main conjectures for anabelian
curves. Since our results apply to more general varieties, let us also briefly discuss higher-
dimensional anabelian geometry.

What about higher-dimensional varieties? In dimension 1, Grothendieck postulated that
hyperbolic curves should be anabelian. In higher dimensions, the anabelian programmebecomes
much more speculative. Not only is it unknown whether the anabelian conjectures hold, but
there is not even a consensus about which higher-dimensional varieties should be anabelian to
begin with.

Grothendieck postulated that at least successive smooth fibrations of anabelian curves should
be anabelian. In their seminal paper [40], Schmidt and Stixmade substantial progress toward this
conjecture by proving (among other important results) that successive fibrations of hyperbolic
curves satisfy the Isomorphism Conjecture. More precisely:

0.15 Theorem (Schmidt-Stix; [40, Corollary 1.6]). Let 𝑌 and 𝑋 be strongly hyperbolic Artin
neighborhoods (see [40, Def. 6.1]) over a finitely generated field extension 𝑘 ofQ. Then the natural
map

Isom𝑘(𝑌, 𝑋) → Isomout
𝐺𝑘 (𝜋

ét
1 (𝑌), 𝜋

ét
1 (𝑋))

is a bijection.

As a corollary, they deduced the following striking result, which was also predicted by
Grothendieck in his letter:

0.16 Theorem (Schmidt-Stix; [40, Corollary 1.7]). Let𝑋 be a smooth and geometrically connected
variety over a finitely generated field extension 𝑘 ofQ. Then every point of 𝑥 has a basis of Zariski-
neighborhoods consisting of anabelian varieties (in the sense that they satisfy the Isomorphism
Conjecture).

It is important to note that, although the above results are all formulated in terms of étale
fundamental groups, the methods used to deduce these theorems heavily rely on Artin and
Mazur’s étale homotopy theory from [AM], which we will now discuss.
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The étale homotopy type. The aim of étale homotopy theory is to attach an entire homotopy
type Πét(𝑋), called the étale homotopy type, to a scheme 𝑋.

The following constitutes a minimal set of properties that any sensible notion of étale homo-
topy type ought to satisfy:

0.17 Desideratum. The étale homotopy type Πét(𝑋) should simultaneously refine the étale
fundamental group as well as the étale cohomology of 𝑋:

(a) There is a natural identification of profinite groups

π1(Πét(𝑋), 𝑥̄) = 𝜋ét1 (𝑋, 𝑥̄)

for any geometric point 𝑥̄ → 𝑋.

(b) There is a natural identification

H∗(Πét(𝑋); 𝐴) = H∗
ét(𝑋;𝐴)

for any finite abelian group 𝐴.

This first requirement already shows that Πét(𝑋) cannot be represented by an ordinary topo-
logical space: The fundamental group π1(𝑇) of any such 𝑇 is a plain discrete group, but 𝜋ét1 (𝑋)
carries itself a profinite topology. Instead, just how profinite groups are represented by formal
cofiltered limits of finite groups, Πét(𝑋) should be modelled as a formal cofiltered (homotopy)
limit of (suitably finite) topological spaces, i.e. a notion of profinite homotopy type.

The first construction of Πét(𝑋) along these lines was given by Artin and Mazur in [AM].
They constructed an étale homotopy type Πét

AM(𝑋) satisfying the requirements formulated in
0.17 as an object of the category Pro(ho(𝐬𝐒𝐞𝐭))— the pro-category (see §1.1) of the homotopy
category of simplicial sets.

A major drawback of Artin and Mazur’s construction is that it requires first passing to the
homotopy category and then forming the pro-category. However, in order to employ techniques
from abstract homotopy theory (in the sense of Quillen) to analyse Πét(𝑋), one would much
rather do things the other way around: First pass to the pro-category, and then to a homotopy
category. It has taken considerable effort from many people, notably Friedlander (see, e.g., [13])
and Isaksen (see [11]), to make this happen. One reason for this is that it is technically very
demanding to set up a well-behaved homotopy theory of formal cofiltered limits, i.e. equip pro-
categories with model structures.

0.18. In this thesis, we exclusively work with the∞-categorical incarnation Πét
∞(𝑋) defined via

Lurie’s shape theory as can be found, for example, in [20], where also the connection toΠét
AM(𝑋)

is discussed. We give a concise introduction to Πét
∞(𝑋) in (§2.1).

The étale homotopy type lets us define higher étale homotopy groups.

0.19 Definition (higher étale homotopy groups). Let 𝑋 be a qcqs scheme, 𝑥̄ a geometric point
of 𝑋 and 𝑛 ≥ 1. The 𝑛-th étale homotopy group of 𝑋 at 𝑥 is given by

𝜋ét𝑛 (𝑋, 𝑥̄) ∶= π𝑛(Πét(𝑋), 𝑥̄).

If 𝑛 ≥ 2, it is a profinite abelian group.

It turns out that for curves, these are not so interesting. They are étale K(𝜋, 1)-schemes (see
Theorem 2.3.12) in the following sense:
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0.20 Definition (étale K(𝜋, 1)). A qcqs scheme 𝑋 is said to be an étale K(𝜋, 1) if, for any choice
of geometric point 𝑥̄ of 𝑋 and any 𝑛 ≥ 2, the étale homotopy group 𝜋ét𝑛 (𝑋, 𝑥̄) vanishes.

Note that all the anabelian main conjectures rely solely on 𝜋ét1 . Therefore, it is unreasonable
to expect any of them to hold for schemes that are not étale K(𝜋, 1). Instead, one has to con-
sider variants of the above conjectures utilising the full étale homotopy type in this case. In the
following section, we present the appropriate variant of the Section Conjecture.

The generalised Section Conjecture. Within the realm of anabelian geometry, the present
manuscript constitutes a further step in the study of anabelian phenomena of higher-dimensional
varieties as in the work of Schmidt and Stix [40]. Concretely, we study the generalised real Section
Conjecture. In order to give a precise statement of our main results, we first briefly explain how
one formulates the generalised Section Conjecture using the étale homotopy type:

0.21. Similarly to the fundamental exact sequence, we proved that there is a fundamental fibre
sequence

Πét
∞(𝑋𝑘̄) → Πét

∞(𝑋) → B𝐺𝑘
of étale homotopy types in joint work with Peter J. Haine and Sebastian Wolf, see [15, Corollary
0.5] or Theorem 2.1.16.

This suggests to replace the set 𝒮(𝜋ét1 (𝑋∕𝑘)) of Grothendieck’s Section Conjecture with the
set of homotopy classes of sections of the above fibration Πét

∞(𝑋) → B𝐺𝑘:

Definition (2.2.1). The set of étale sections of 𝑋∕𝑘 is given by

𝒮ét(𝑋∕𝑘) ∶= π0mapB𝐺𝑘 (B𝐺𝑘, Π
ét
∞(𝑋)).

With an appropriate replacement for𝒮(𝜋ét1 (𝑋∕𝑘)) in place, the generalised Section Conjecture
becomes:

Conjecture (generalised Section Conjecture, 2.2.3). The canonical map

𝑋(𝑘) → 𝒮ét(𝑋∕𝑘), 𝑎 ↦ [𝑎∗]

is a bijection.

By performing a homotopy-theoretic analogue of the construction in 0.11 on the fundamental
fibre sequence 0.21, we are furthermore able to define a pro-𝓁 version 𝒮ét𝓁 (𝑋∕𝑘) of 𝒮

ét(𝑋∕𝑘) for
every prime 𝓁, resulting in:

Conjecture (generalised pro-𝓁 Section Conjecture, 2.3.9). The composition

𝑋(𝑘) → 𝒮ét(𝑋∕𝑘) → 𝒮ét𝓁 (𝑋∕𝑘)

is a bijection.
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0.1 Overview of results
In order to give a precise statement of our main results, let us quickly introduce the following
notation:

0.22 Definition (equivariantly triangulable, 3.3.1). A scheme 𝑋∕R is called equivariantly trian-
gulable if its complex analytification 𝑋(C) admits the structure of a finite-dimensional Z∕2-CW
complex.

0.23 Remark. In Proposition 3.3.11, we show that 𝑋∕R is equivariantly triangulable in the
following cases:

(1) 𝑋 is smooth overR.

(2) 𝑋 is affine and of finite type overR.

(3) 𝑋 is projective overR.

However, we expect this to hold in much greater generality, namely whenever 𝑋∕R is separated
and of finite type (see Remark 3.3.12).

Our first main result is, in first approximation, a higher-dimensional generalisation of Wick-
elgren’s pro-2 real Section Conjecture:

Theorem A (3.3.6). Let 𝑋 be any equivariantly triangulable qcqs scheme of finite type overR.
Then 𝑋∕R satisfies the generalised pro-2 Section Conjecture: The canonical map

π0 𝑋(R) → 𝒮ét2 (𝑋∕R)

is a bijection.

0.24 Remark. In the case of a hyperbolic curve 𝑋∕R, Theorem A recovers the classical pro-2
real Section Conjecture (see Corollary 2.3.13). Our Theorem A thus in particular provides yet
another proof of the classical real Section Conjecture for hyperbolic curves, see Corollary 3.3.16.

Leveraging on the fact that simply connected homotopy types are nilpotent, we deduce that
a surprisingly large class of varieties overR satisfies the full generalised Section Conjecture:

Theorem B (3.3.9). Any equivariantly triangulable and geometrically étale simply connected
qcqs scheme 𝑋 of finite type over R satisfies the generalised Section Conjecture: The canonical
map

π0 𝑋(R) → 𝒮ét(𝑋∕R)

is a bijection of sets.

0.25 Remark. Theorem A and B showcase the following novel phenomena in anabelian geom-
etry, which are worth highlighting:

(a) Theorems A and B are the first anabelian results that do not require smoothness of the
varieties in question.

(b) In existing results of anabelian geometry, all the geometric information is extracted from𝜋ét1 .
In this sense, Theorem B is orthogonal to all other existing results in anabelian geometry.
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Our proof is very homotopy-theoretic in nature (see §0.2 for an outline of the proof) and is
based upon the (proven, see [28], [25] and [7]) Sullivan Conjecture. In order to make the Sullivan
Conjecture applicable to the real Section Conjecture, we furthermore proved some results in
profinite homotopy theory. As these results might be of interest on their own, we are now going
to briefly present them as well.

0.26. Fix some nonempty set of primes Σ.

Firstly, we slightly expanded upon Lurie’s [SAG, Appendix E] by working out some basic
facts surrounding the notion of nilpotency in (Σ-)profinite homotopy theory. Here, our main
theorem is a homotopy-theoretic analogue of the well-known fact that nilpotent profinite groups
are the product over their 𝑝-Sylow subgroups:

Theorem C (1.6.22). The following are equivalent for a connected Σ-profinite anima 𝐾:

(1) 𝐾 is nilpotent (in the sense of Definition 1.6.17).

(2) The canonical map
𝐾 →

∏

𝓁∊Σ
𝐾∧
𝓁

is an equivalence of (Σ-)profinite anima.

Here, (−)∧𝓁 denotes Lurie’s 𝓁-profinite completion functor (see §(1.4)).

As explained in (§0.2), the key ingredient we prove in order to deduce Theorem B from
Theorem A is the following:

TheoremD (3.2.4). Let 𝐺 be a finite 𝑝-group and 𝐾 a connected nilpotent profinite anima with
𝐺-action. Assume that 𝐾h𝐺 ≠ ∅. Then the canonical map

(𝐾h𝐺)∧𝑝 → (𝐾∧
𝑝 )h𝐺

is an equivalence of 𝑝-profinite anima.

Theorem D is a straightforward consequence of Theorem C and our final result, a computa-
tion in non-abelian profinite group cohomology. This latter computation is probably well-known
to experts, but we were unable to find a reference for it:

Theorem E (3.1.1). Let Γ be a profinite group acting on another profinite group𝑁. If the super-
natural orders of Γ and 𝑁 are coprime, then H1(Γ,𝑁) vanishes.

0.2 Outline of the proofs of Theorems A and B
Our proofs of Theorems A & B proceed in several steps, which we are now going to outline:

Step 1: Reinterpretation in terms of homotopy fixed points. We employ Quick’s strategy
from [37] to reinterpret the Section Conjecture as a problem comparing fixed points to homotopy
fixed points. In our setup, this reinterpretation is based on the following Theorem of Lurie, see
[SAG, E.6.5.1]:
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Ingredient 1. Let 𝐺 be a profinite group.
Denote by 𝐀𝐧𝐢∧𝜋(𝐺) the ∞-category of profinite anima with continuous 𝐺-action and by

(𝐀𝐧𝐢∧𝜋)∕B𝐺 the∞-category of profinite anima over B𝐺. Then the construction

𝐾 ↦ (𝐾∕∕𝐺 →∗∕∕𝐺 = B𝐺)

carrying a profinite 𝐺-anima 𝐾 to its homotopy quotient 𝐾∕∕𝐺 furnishes an equivalence of∞-
categories 𝐀𝐧𝐢∧𝜋(𝐺) → (𝐀𝐧𝐢∧𝜋)∕B𝐺 . The inverse of this equivalence is given by sending a map
𝐿 → B𝐺 to its fibre equipped with the natural 𝐺-action.
0.27. The fundamental fibre sequence 0.21

Πét
∞(𝑋𝑘̄) → Πét

∞(𝑋) → B𝐺𝑘
implies that, under the equivalence of Ingredient 1, the map Πét

∞(𝑋) → B𝐺𝑘 corresponds to
Πét
∞(𝑋𝑘̄) equipped with its natural 𝐺𝑘-action.
As, under the equivalence of Ingredient 1, the mapping animamapB𝐺(B𝐺, 𝐾∕∕𝐺) gets further-

more identified with the materialisation |𝐾h𝐺| (see §1.3.1) of the homotopy fixed point anima
𝐾h𝐺 (see §1.5), we obtain:

0.28. There is a canonical bijection

𝒮ét(𝑋∕𝑘) = π0Πét
∞(𝑋𝑘̄)h𝐺𝑘 .

Ingredient 1 therefore lets us reformulate the Section Conjecture as a comparison

𝑋(𝑘) = 𝑋(𝑘̄)𝐺𝑘 π0Πét
∞(𝑋𝑘̄)h𝐺𝑘 = 𝒮ét(𝑋∕𝑘)

of fixed pointswith homotopy fixed points. In [44], Sullivan proposed his conjecture about exactly
this kind of comparison.

Step 2: Applying the Sullivan Conjecture. In our proof, we employ the following version
of the Sullivan Conjecture, again due to Lurie:

Ingredient 2 (Sullivan Conjecture, see 1.7.1).
Let 𝑝 be a prime number, 𝐺 a finite 𝑝-group and 𝐾 a finite-dimensional 𝐺-CW complex.

Then the composite of the canonical maps

(𝐾𝐺)∧𝑝 → (𝐾h𝐺)∧𝑝 → (𝐾∧
𝑝 )h𝐺

is an equivalence of 𝑝-profinite anima.
Here, given a space 𝐿 with 𝐺-action, 𝐿𝐺 denotes the fixed point space and 𝐿h𝐺 the homotopy

fixed point anima of 𝐿 with respect to the given 𝐺-action (§1.5).
Now we apply Ingredient 2 to the complex analytification 𝑋(C).

0.29. If𝑋 is equivariantly triangulable, the Sullivan Conjecture from above is applicable to𝑋(C)
and, since 𝑋(R) = 𝑋(C)Z∕2, we obtain a chain of equivalences

𝑋(R)∧2 ≃ (𝑋(C)Z∕2)∧2
≃ (𝑋(C)∧2 )

hZ∕2 by the Sullivan Conjecture.

Our objective is to eventually extend the above chain of equivalences in such a way that
Theorem A is what remains when applying π0(−) everywhere.

Since 𝒮ét(𝑋∕R) = π0Πét
∞(𝑋C)h𝐺𝑘 is defined purely in terms of the étale homotopy type

Πét
∞(𝑋C), we need a bridge from the topological to the algebraic world:
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Step 3: The generalised Riemann existence theorem. In order to continue, we have to
relate

𝑋(C) Πét
∞(𝑋C).

To this end, recall that the Riemann existence theorem asserts that there is a canonical
isomorphism of profinite groups

𝜋ét1 (𝑋C) ≅ π1(𝑋(C))∧,

where (−)∧ denotes profinite completion.
Artin and Mazur refined this isomorphism to an equivalence of homotopy types:

Ingredient 3 (generalised Riemann existence, see 3.3.3). Let 𝑋 be a scheme of finite type over
R. Then the profinite completion (see 1.2.14) of 𝑋(C), denoted by 𝑋(C)∧𝜋, coincides with the
étale homotopy type Πét

∞(𝑋C).

Ingredient 3 is the crucial input enabling us to relate the Sullivan Conjecture with the Section
Conjecture.

0.30. Indeed, the generalised Riemann existence theorem supplies equivalences

𝑋(C)∧2 ≃ (𝑋(C)∧𝜋)∧2
≃ Πét

∞(𝑋C)∧2 ,

compatible with the respective Z∕2-actions, and therefore lets us prolong the chain of equiva-
lences of 0.29 to

𝑋(R)∧2 ≃ (𝑋(C)Z∕2)∧2
≃ (𝑋(C)∧2 )

hZ∕2 by the Sullivan Conjecture

≃ (Πét
∞(𝑋C)∧2 )

hZ∕2 by the generalised Riemann existence theorem.

The set of connected components of (Πét
∞(𝑋C)∧2 )

hZ∕2 is precisely 𝒮ét2 (𝑋∕R). So, since (−)∧2
preserves connected components, Theorem A is what remains of the equivalence

𝑋(R)∧2 ≃ (Πét
∞(𝑋C)∧2 )

hZ∕2

on π0.

0.31. With this final description, there is only one obstruction to proving the full Section Con-
jecture left: The 2-profinite completion (−)∧2 appearing in (Π

ét
∞(𝑋C)∧2 )

hZ∕2 but not in the set of
étale sections 𝒮ét(𝑋∕R) = π0Πét

∞(𝑋C)hZ∕2.

This is where our Theorem D comes into play:

Step 4: “A +D ⟹ B”. In order to finally deduce the real Section Conjecture for𝑋, we would
like the following to hold:

Ingredient 4. The canonical map

(Πét
∞(𝑋C)hZ∕2)∧2 → (Πét

∞(𝑋C)∧2 )
hZ∕2

is an equivalence of 2-profinite anima.
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0.32. Assuming Ingredient 4, we can yet again prolong the chain of equivalences of (0.30) to

𝑋(R)∧2 ≃ (𝑋(C)Z∕2)∧2
≃ (𝑋(C)∧2 )

hZ∕2 by the Sullivan Conjecture

≃ (Πét
∞(𝑋C)∧2 )

hZ∕2 by the Riemann existence theorem

≃ (Πét
∞(𝑋C)hZ∕2)∧2 by Ingredient 4,

and, since (−)∧2 preserves connected components, conclude that the real Section Conjecture
holds:

π0 𝑋(R) = π0 𝑋(R)∧2
= π0(Πét

∞(𝑋C)hZ∕2)∧2
= π0Πét

∞(𝑋C)hZ∕2

= 𝒮ét(𝑋∕R).

Unfortunately, Ingredient 4 does not hold in general. In fact, it already fails in the case of
ordinary homotopy theory:

0.33. In his seminal article [44], Sullivan’s conjecture originally asked for the map

(𝐾𝐺)∧𝑝 → (𝐾h𝐺)∧𝑝

to be an equivalence. In [7], Carlsson showed that this conjecture does not hold in general:
Instead, as in our Ingredient 2, one should look at the composition

(𝐾𝐺)∧𝑝 → (𝐾h𝐺)∧𝑝 → (𝐾∧
𝑝 )h𝐺 ,

which, using Bousfield-Kan’s 𝑝-completion, he shows to be an equivalence. So the discrepancy
of Sullivans original conjecture and what Carlsson showed lies precisely in a comparison of the
form

(†) (𝐾h𝐺)∧𝑝 → (𝐾∧
𝑝 )h𝐺

as Ingredient 4 is asking for in the case 𝑝 = 2 and 𝐾 = Πét
∞(𝑋C).

Nevertheless, Carlsson demonstrates that (†) is indeed an equivalence, provided that 𝐾 is
nilpotent. Our Theorem D, a profinite analogue of this fact, shows that the above Ingredient 4
holds, provided that Πét

∞(𝑋C) is nilpotent. Since this is particularly the case whenever 𝑋∕R is
geometrically étale simply connected, we arrive at Theorem B by means of 0.32.

0.3 Related work
Since much of the related work has already been discussed in the introduction, we will be very
brief here. Within the realm of anabelian geometry, our main Theorems A and B are most
closely related to the work of Schmidt and Stix [40], since we also consistently employ the
étale homotopy type to address higher-dimensional phenomena, along with the existing body
of results on the real Section Conjecture. It should be noted that among the various proofs of
the classical real Section Conjecture available in the literature —most notably Mochizuki’s [31],
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which contains the first such proof, as well as those by Stix [42], Vistoli and Bresciani [5], Pál [32]
and Wickelgren’s nilpotent version [46] — the methods of the present paper are most similar to
those of Pál andWickelgren: Pál’s proof is certainly influenced by ideas surrounding the Sullivan
Conjecture, and Wickelgren actually derives her result by applying the Sullivan Conjecture.

We should also mention Quick’s article [37] again: We follow his strategy to reinterpret the
Section Conjecture in terms of homotopy fixed points. This reinterpretation is crucial for our
use of the Sullivan Conjecture.

0.4 Linear overview
Section 1 is dedicated to profinite homotopy theory: We briefly recall some facts about Serre’s
mod 𝒞 homotopy theory and pro-objects in∞-category theory (§1.1) and then take some time
to set up the notions and results of (Σ-)profinite homotopy theory we need in (§1.2 - §1.5). Here,
it should be noted that the contents of (§1.2 - §1.5) are essentially a subset of [SAG, Appendix E].
It is in (§1.6) that we slightly expand on SAG: We discuss nilpotency in the context of profinite
homotopy theory, resulting in a proof of Theorem D of (§0.1).

Section 2 discusses various forms of the generalised Section Conjecture: We briefly touch
upon our choice of model of the étale homotopy type Πét

∞(𝑋) via Lurie’s shape theory in (§2.1).
Then, we formulate the generalised Section Conjecture in (§2.2) and show that it recovers
Grothendieck’s Section Conjecture for étale K(𝜋, 1) schemes. In (§2.3), we combine (§1.6) with
(§2.2): We introduce the notion of generalised Σ-nilpotent étale sections for any choice of set of
primes Σ, again compare it with the classical notion of geometrically (Σ-)nilpotent sections for
hyperbolic curves, and use this to formulate a generalised pro-𝓁 Section Conjecture.

Section 3 is where we prove Theorems A, B, D and E: Theorem E is proven in (§3.1) and
subsequently combined with Theorem C to deduce Theorem D in (§3.2). Finally, we deduce
Theorems A and B in (§3.3).

Notation and Conventions
(1) We freely make use of the language of ∞-categories as developed by Lurie in his trilogy

[HTT], [HA] and [SAG].

(2) By abuse of notation, we will consider ordinary categories (i.e. 1-categories) as∞-categories
via the nerve construction N(−), and usually suppress it from the notation.

(3) We follow Scholze and Clausen’s suggestion to replace the term “space” by “anima”.Wewrite
𝐀𝐧𝐢 for what Lurie calls “∞-category of spaces” and refer to it as “∞-category of anima”.

1 Some (Σ-)profinite homotopy theory
This section develops all the purely homotopy-theoretical machinery and results we use. We
start with a brief background section (§1.1) containing a short recollection of Serre’s mod 𝒞
homotopy theory and the notion of pro-objects in the language of∞-categories. In (§1.2), we
introduce the notion of Σ-profinite anima for a chosen set of primes Σ and discuss some of their
formal properties. Next, we specialise to the case Σ = 𝜋 of all primes in (§1.3): Here, we adapt
well-known concepts of homotopy theory, most importantly homotopy groups and cohomology
groups, to the profinite setting. In (§1.4), we go to the other extreme and specialise to Σ = {𝑝}
the set consisting of a single prime. The resulting 𝑝-profinite homotopy theory is especially easy
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to control, as it turns out to be entirely determined by F𝑝-cohomology. We also introduce the
𝑝-profinite completion functor (−)∧𝑝 and discuss some of its pleasant properties. We then briefly
discuss the notion of homotopy fixed points in (§1.5). In (§1.6), we adapt the notion of “nilpotent
anima” to the setting of profinite homotopy theory: Among other things, we show that Bousfield-
Kan 𝑝-completion F𝑝∞(−) agrees with 𝑝-profinite completion (−)∧𝑝 of 𝜋-finite anima and use
that to deduce Theorem D from the classical arithmetic fracture square. Finally, in (§1.7), we
state the variant of the Sullivan Conjecture, due to Lurie, that we use.

1.1 Background
Serre’s mod 𝒞 theory

In this section, we quickly recall the basics of Serre’s mod 𝒞 theory as originally laid out in
[41]. The main result relevant to the present paper is Theorem 1.1.3, a version of the classical
Hurewicz theorem relative to a fixed class of abelian groups.

1.1.1 Definition (Hurewicz class). Let 𝒞 be a non-empty collection of abelian groups.

(a) 𝒞 is a class, if for any exact sequence𝐴 𝐵 𝐶 of abelian groups𝐴,𝐶 ∊ 𝒞 implies 𝐵 ∊ 𝒞.

(b) 𝒞 is a Hurewicz class if it is a class satisfying the the following additional properties:

(⊗) If 𝐴, 𝐵 ∊ 𝒞, then also 𝐴⊗Z 𝐵 and Tor
Z
1 (𝐴, 𝐵) ∊ 𝒞.

(H) If 𝐴 ∊ 𝒞, then also H𝑖(𝐴;Z) ∊ 𝒞 for 𝑖 > 0. Here, H∗(𝐴;Z) denotes the group homology
of 𝐴 acting trivially on Z.

1.1.2 Definition. Let 𝒞 be a class and 𝜑∶ 𝐴 → 𝐵 a homomorphism of abelian groups.

(a) 𝜑 is a 𝒞-monomorphism, if ker(𝜑) ∊ 𝒞.

(b) 𝜑 is a 𝒞-epimorphism, if coker(𝜑) ∊ 𝒞.

(c) 𝜑 is a 𝒞-isomorphism if it is both a 𝒞-monomorphism and a 𝒞-epimorphism.

1.1.3 Theorem (Serres’ Hurewicz mod 𝒞, [41, Théorème 1]). Let 𝒞 be a Hurewicz class of abelian
groups, 𝑛 a positive integer and 𝐾 a topological space with π0 𝐾 = π1 𝐾 = ∗. Suppose π𝑖 𝐾 ∊ 𝒞 for
𝑖 < 𝑛. Then, for 0 < 𝑖 < 𝑛, alsoH𝑖(𝐾;Z) ∊ 𝒞 and π𝑛 𝐾 → H𝑛(𝐾;Z) is a 𝒞-isomorphism.

In this thesis, we make use of the following Hurewicz classes:

1.1.4 Example. Let 𝑝 be a prime number and∅ ≠ Σ a set of prime numbers. The following are
Hurewicz classes:

(1) The collection 𝒞 = {0}. Serre’s Hurewicz mod 𝒞 recovers the ordinary Hurewicz theorem in
this case.

(2) The collection 𝒞 of finitely generated abelian groups.

(3) The collection 𝒞 of finite abelian 𝑝-groups.

(4) The collection 𝒞 of uniquely 𝑝-divisible abelian groups.

(5) The collection 𝒞 of Σ-finite abelian groups (Definition 1.2.3).
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Categories of pro-objects

In this section, we will collect some basic facts concerning pro-categories. We will only discuss
the∞-categorical version as this also subsumes the 1-categorical concept, i.e.

Pro(N(𝒞)) ≃ N(Pro(𝒞)),

for any ordinary category 𝒞 (see Remark 1.1.15).

1.1.5 Recollection (equivalence of∞-categories). Let 𝒞 and𝒟 be∞-categories and 𝐹∶ 𝒞 → 𝒟
a functor.

(a) Recall that a functor 𝐺∶ 𝒟 → 𝒞 is said to be homotopy inverse to 𝐹 if 𝐺◦𝐹 and 𝐹◦𝐺 are
isomorphic to the identity functors id𝒞 and id𝒟 in Fun(𝒞, 𝒞) and Fun(𝒟,𝒟), respectively.

(b) 𝐹 is said to be an equivalence of∞-categories if it admits a homotopy inverse.

(c) 𝒞 and𝒟 are equivalent if there exists some equivalence of∞-categories 𝐹∶ 𝒞 → 𝒟.

1.1.6 Notation. Given two∞-categories 𝒞 and𝒟, we write Funcof ilt(𝒞,𝒟) ⊂ Fun(𝒞,𝒟) for the
full subcategory spanned by those functors 𝐹∶ 𝒞 → 𝒟 that preserve cofiltered limits.

We define the pro-category of an∞-category 𝒞 via a universal property:

1.1.7 Definition (pro-category). Let 𝒞 be an ∞-category. A functor 𝑗 ∶ 𝒞 → Pro(𝒞) exhibits
Pro(𝒞) as pro-category of 𝒞 if the following hold:

(a) The∞-category Pro(𝒞) admits cofiltered limits.

(b) Given any ∞-category ℰ admitting cofiltered limits, precomposition with 𝑗 induces an
equivalence

𝑗∗ ∶ Funcof ilt(Pro(𝒞), ℰ) → Fun(𝒞, ℰ)

of∞-categories.

1.1.8 Remark. If 𝒞 → Pro(𝒞) and 𝒞 → Pro(𝒞)′ exhibit Pro(𝒞) and Pro(𝒞)′ as pro-categories of
𝒞 respectively, then the above definition gives rise to a canonical equivalence Pro(𝒞) ≃ Pro(𝒞)′.
Therefore, if there exists a functor 𝒞 → Pro(𝒞) exhibiting Pro(𝒞) as a pro-category of 𝒞, it is
essentially unique.

1.1.9 Notation. Let 𝒞 be an∞-category.

(a) We write 𝑗 ∶ 𝒞 → Fun(𝒞,𝐀𝐧𝐢)op, 𝑐 ↦ ℎ𝑐 = map𝒞(𝑐, −) for the Yoneda embedding.

(b) A prorepresentation of a functor 𝐹∶ 𝒞 → 𝐀𝐧𝐢 is a cofiltered diagram ℐ → 𝒞, 𝑖 ↦ 𝑑𝑖 together
with an equivalence

𝐹 ≃ lim𝑖∊ℐ ℎ
𝑑𝑖 ,

where the limit is taken in Fun(𝒞,𝐀𝐧𝐢)op.

(c) We say that a functor 𝐹∶ 𝒞 → 𝐀𝐧𝐢 is prorepresentable if there exists a propresentation of it.

(d) We write Funpro(𝒞,𝐀𝐧𝐢) for the full subcategory of Fun(𝒞,𝐀𝐧𝐢) spanned by the prorepre-
sentable functors.
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By the dual of [HTT, 5.3.5.4], pro-categories always exist:

1.1.10 Theorem (existence of pro-categories, Lurie). Let 𝒞 be an∞-category.

(1) The restriction of the Yoneda embedding

𝑗 ∶ 𝒞 → Funpro(𝒞,𝐀𝐧𝐢)op, 𝑐 ↦ ℎ𝑐 = map𝒞(𝑐, −)

exhibits Funpro(𝒞,𝐀𝐧𝐢)op as a pro-category of 𝒞.

(2) If 𝒞 admits finite limits, then a functor is prorepresentable if and only if it preserves finite limits.
Therefore,

𝑗 ∶ 𝒞 → Funlex(𝒞,𝐀𝐧𝐢)op, 𝑐 ↦ ℎ𝑐 = map𝒞(𝑐, −)

exhibits Funlex(𝒞,𝐀𝐧𝐢)op as a pro-category of 𝒞. Here, Funlex(𝒞,𝐀𝐧𝐢) denotes the full subcate-
gory of Fun(𝒞,𝐀𝐧𝐢) spanned by the left exact functors.

1.1.11 Remark. Let 𝒞 be an∞-category. Note that, by Theorem 1.1.10, Remark 1.1.8 and the
Yoneda lemma, any functor 𝑗 ∶ 𝒞 → Pro(𝒞) exhibiting Pro(𝒞) as a pro-category of𝒞 is necessarily
fully faithful.

1.1.12 Notation («lim»). Let 𝒞 be an ∞-category, 𝑗 ∶ 𝒞 → Pro(𝒞) a pro-category of 𝒞 and
𝑐 ∊ Pro(𝒞) a pro-object in 𝒞. By Theorem 1.1.10, there exists a cofiltered diagram ℐ → 𝒞, 𝑖 ↦ 𝑐𝑖
and an equivalence

𝑐 ≃ lim𝑖∊ℐ 𝑗(𝑐𝑖).

By abuse of notation, we will from now on simply write 𝑐 ≃ «lim»𝑖 𝑐𝑖 in this case.

We will make extensive use of the following observation:

1.1.13 Theorem (existence of pro-adjoints). Let 𝑅∶ 𝒟 → 𝒞 be a functor between∞-categories
with finite limits. If 𝑅 preserves finite limits, it admits a pro-left adjoint 𝐿∶ Pro(𝒞) → Pro(𝒟) that,
with respect to the identifications of Theorem 1.1.10,

Pro(𝒞) ≃ Funlex(𝒞,𝐀𝐧𝐢)op and Pro(𝒟) ≃ Funlex(𝒟,𝐀𝐧𝐢)op,

is given by precomposition with 𝑅.

Proof. The assumptions imply that

𝐿∶ 𝒞 → Pro(𝒟) = Funlex(𝒟,𝐀𝐧𝐢)op, 𝑐 ↦ [𝑑 ↦ map𝒞(𝑐, 𝑅(𝑑))]

is well-defined. The fact that its extension 𝐿∶ Pro(𝒞) → Pro(𝒟) is left adjoint to 𝑅∶ Pro(𝒟) →
Pro(𝒞) follows immediately from the Yoneda lemma.

Wewillmake frequent use of the following important result about diagrams in pro-categories:

1.1.14 Proposition. Let 𝒞 be an∞-category and ℐ a finite partially ordered set. Then precomposi-
tion along 𝒞 → Pro(𝒞) induces an equivalence of∞-categories

Pro(Fun(ℐ, 𝒞)) → Fun(ℐ, Pro(𝒞)).

In other words, any diagram ℐ → Pro(𝒞) can be obtained, in an essentially unique way, as a
cofiltered limit of diagrams ℐ → 𝒞.
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Proof. Using the natural identifications

Pro(−) ≃ Ind(−op)op and Fun(−,−)op ≃ Fun(−op, −op),

this follows from dualizing [HTT, Prop. 5.3.5.15]:

Pro(Fun(ℐ, 𝒞)) ≃ Ind(Fun(ℐ, 𝒞)op)op

≃ Ind(Fun(ℐop, 𝒞op))op

≃ Fun(ℐop, Ind(𝒞op))op (by [HTT, Prop. 5.3.15])
≃ Fun(ℐ, Ind(𝒞op)op)
≃ Fun(ℐ, Pro(𝒞)).

1.1.15 Remark. If 𝒞 is an ordinary category with finite limits, there similarly is an identification

Pro(𝒞) ≃ Funlex(𝒞, 𝐒𝐞𝐭)op,

see (the opposite of) [24, Prop. 6.1.7]. This can be leveraged to see that

Pro(N(𝒞)) ≃ N(Pro(𝒞))

in this case: According to [HTT, 5.5.6.16], any left-exact functor preserves (𝑘-)truncatedness of
objects and morphisms. This shows that any left exact functor N(𝒞) → 𝐀𝐧𝐢 factorises over the
inclusion N(𝐒𝐞𝐭) ⊂ 𝐀𝐧𝐢 implying that

Pro(N(𝒞)) = Funlex(N(𝒞), 𝐀𝐧𝐢)op

≃ Funlex(N(𝒞), N(𝐒𝐞𝐭))op

≃ N(Funlex(𝒞, 𝐒𝐞𝐭)op)
≃ N(Pro(𝒞)).

An argument for this without assuming 𝒞 to admit finite limits can be found in [HTT, 5.3.5.6].

1.2 Σ-profinite homotopy theory
The goals of this section are to define the ∞-category of Σ-profinite anima, and to introduce
homotopy-theoretic analogues of the group-theoretic (Σ-)profinite completion functors.

Throughout this section, let Σ denote a nonempty set of prime numbers.

1.2.1. In the following, we will mostly work with

(1) Σ = 𝜋 the set of all primes,

(2) Σ = {𝑝} the set containing a single prime 𝑝, and

(3) Σ = 𝑝′ the set containing all primes but 𝑝.

1.2.2 Notation.

(a) Given any set of primes Σ, we write Σ′ = 𝜋 ∖ Σ = {𝑝 prime ∣ 𝑝 ∉ Σ}.

(b) By abuse of notation, we usually substitute Σ = {𝑝} with 𝑝 in formulas, i.e. we write 𝐀𝐧𝐢∧𝑝
instead of 𝐀𝐧𝐢∧{𝑝}, (−)

∧
𝑝 instead of (−)∧{𝑝} etc. in the following.
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Σ-profinite group theory

To define the homotopy-theoretic concept of a Σ-(pro)finite anima, we first briefly discuss its
group-theoretic counterpart.

1.2.3 Definition (Σ-finite groups).

(a) A group 𝐺 is said to be Σ-finite if it is a finite group the cardinality of which lies in the
multiplicative closure of Σ.

(b) We write 𝐆𝐫𝐩Σ ⊂ 𝐆𝐫𝐩 for the full subcategory of the category of groups spanned by the
Σ-finite groups.

Now, we pass to pro-objects:

1.2.4 Definition (Σ-profinite groups). The category 𝐆𝐫𝐩∧Σ ∶= Pro(𝐆𝐫𝐩Σ) is called the category
of Σ-profinite groups.

1.2.5 Lemma. Let 1 𝐻 𝐺 𝐾 1 be a short exact sequence of groups. The following are
equivalent:

(1) 𝐺 is Σ-finite.

(2) 𝐻 and 𝐾 are Σ-finite.

Proof. Immediately follows from #𝐺 = #𝐻 ⋅ #𝐾.

1.2.6 Proposition (Σ-profinite completion of groups).

(1) The inclusions 𝐆𝐫𝐩Σ ⊂ 𝐆𝐫𝐩𝜋 ⊂ 𝐆𝐫𝐩 are stable under finite limits.

(2) The inclusions 𝐆𝐫𝐩∧Σ ⊂ 𝐆𝐫𝐩∧𝜋 ⊂ Pro(𝐆𝐫𝐩) admit left adjoints

(−)∧ = (−)∧𝜋 ∶ Pro(𝐆𝐫𝐩) → 𝐆𝐫𝐩∧𝜋 and (−)∧Σ ∶ 𝐆𝐫𝐩∧𝜋 → 𝐆𝐫𝐩∧Σ,

called profinite completion and Σ-profinite completion respectively. Under the identification
Pro(−) ≃ Funlex(−, 𝐒𝐞𝐭)op of Remark 1.1.15, they correspond to precomposition with the in-
clusions 𝐆𝐫𝐩Σ ⊂ 𝐆𝐫𝐩𝜋 ⊂ 𝐆𝐫𝐩.

Proof.

(1) The inclusions 𝐆𝐫𝐩Σ ⊂ 𝐆𝐫𝐩𝜋 ⊂ 𝐆𝐫𝐩 are certainly stable under finite products. Given any
cospan𝐺 → 𝐾 ← 𝐻 of groups, the fibre product𝐺×𝐾𝐻 is a subgroup of𝐺×𝐻. Therefore, by
Lemma 1.2.5, they are also stable under fibre products. As fibre products and finite products
generate all finite limits, the claim follows.

(2) In virtue of Theorem 1.1.13, this is a formal consequence of (1).

1.2.7 Remark.

(a) Note that 𝐆𝐫𝐩𝜋 simply denotes the category of finite groups.
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(b) Write 𝐏𝐟𝐆𝐫𝐩𝐬 for the category of “topological” profinite groups, i.e. compact Hausdorff and
totally disconnected topological groups. Then the functor 𝐆𝐫𝐩∧𝜋 → 𝐏𝐟𝐆𝐫𝐩𝐬 given as the
extension by cofiltered limits of the functor

𝐆𝐫𝐩𝜋 → 𝐏𝐟𝐆𝐫𝐩𝐬, 𝐺 ↦ 𝐺𝛿,

where 𝐺𝛿 denotes 𝐺 equipped with the discrete topology, is an equivalence of categories by
Stone duality, see [23, p.236].

(c) The composition 𝐆𝐫𝐩 ⊂ Pro(𝐆𝐫𝐩)
(−)∧
,,,,→ 𝐆𝐫𝐩∧𝜋 ≃ 𝐏𝐟𝐆𝐫𝐩𝐬 recovers the usual profinite

completion functor.

Σ-profinite anima

The following is the homotopy-theoretic counterpart of Σ-finite groups:

1.2.8 Definition (Σ-finite anima).

(a) An anima 𝐾 is said to be Σ-finite if the following conditions are satisfied:

(1) 𝐾 is truncated, i.e. there exists𝑁 ∊ N such that π𝑛(𝐾, 𝑘) = 0 for all 𝑘 ∊ 𝐾 and all 𝑛 ≥ 𝑁.

(2) The set π0(𝐾) is finite.

(3) For each point 𝑘 ∊ 𝐾 and each integer 𝑛 ≥ 1, the group π𝑛(𝐾, 𝑘) is a Σ-finite group.

(b) The full subcategory 𝐀𝐧𝐢Σ ⊂ 𝐀𝐧𝐢 spanned by the Σ-finite anima is called the∞-category
of Σ-finite anima.

1.2.9 Definition (Σ-profinite anima). The ∞-category 𝐀𝐧𝐢∧Σ ∶= Pro(𝐀𝐧𝐢Σ) is called the ∞-
category of Σ-profinite anima.

1.2.10 Remark. Let Σ and Σ′ be two nonempty sets of primes.

(1) Note that Σ′ ⊂ Σ implies 𝐀𝐧𝐢Σ′ ⊂ 𝐀𝐧𝐢Σ and hence also 𝐀𝐧𝐢
∧
Σ′ ⊂ 𝐀𝐧𝐢∧Σ.

(2) Since Σ ⊂ 𝜋 we in particular have an inclusion 𝐀𝐧𝐢∧Σ ⊂ 𝐀𝐧𝐢∧𝜋.

1.2.11 Lemma. Let
𝐹 𝐸

∗ 𝐵

⌟

be a fibre sequence of anima with 𝐵 connected. If two out of 𝐹, 𝐸 and 𝐵 are Σ-finite, so is the third.

Proof. By splitting the induced long exact sequence on homotopy groups into short exact se-
quences, this follows from Lemma 1.2.5. A little extra care has to be taken in the case where 𝐸
and 𝐵 are assumed to be Σ-finite: Here, the induced long exact sequence on homotopy groups
terminates in

… π1(𝐵) π0 𝐹 π0 𝐸 ∗ = π0 𝐵.

and one has to show that π0 𝐹 is finite. This can be done by choosing different points of𝐹: Indeed,
since π0 𝐸 is assumed to be finite, the surjection π0 𝐹 ↠ π0 𝐸 gives a finite decomposition
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π0 𝐹 = ⊔𝐶∊π0 𝐸(π0 𝐹)𝐶 , where (π0 𝐹)𝐶 denotes the subset of those connected components of
𝐹 that are mapped to 𝐶 ∊ π0 𝐸. It is therefore enough to show that (π0 𝐹)𝐶 is finite for each
𝐶 ∊ π0 𝐸. Given such a connected component 𝐶, choose a point 𝑥 ∊ 𝐹 the component of which
gets mapped to 𝐶 ∊ π0 𝐸 (which is possible since π0 𝐹 ↠ π0 𝐸 is surjective). The long exact
sequence of homotopy groups induced at this point shows that

(π0 𝐹)𝐶 = (π0 𝐹 ↠ π0 𝐸)−1(𝐶)
= im(π1(𝐵, 𝑏) → π0 𝐹),

where 𝑏 ∊ 𝐵 denotes the image of 𝑥 ∊ 𝐹. Thus (π0 𝐹)𝐶 is the image of a map with finite domain,
hence finite. This shows that π0 𝐹 is finite as claimed.

1.2.12 Proposition (Σ-profinite completion of anima).
(1) The inclusions 𝐀𝐧𝐢Σ ⊂ 𝐀𝐧𝐢𝜋 ⊂ 𝐀𝐧𝐢 are stable under finite limits.

(2) The inclusions 𝐀𝐧𝐢∧Σ ⊂ 𝐀𝐧𝐢∧𝜋 ⊂ Pro(𝐀𝐧𝐢) admit left adjoints

(−)∧𝜋 ∶ Pro(𝐀𝐧𝐢) → 𝐀𝐧𝐢∧𝜋 and (−)∧Σ ∶ 𝐀𝐧𝐢
∧
𝜋 → 𝐀𝐧𝐢∧Σ.

Moreover, under the identifications Pro(−) ≃ Funlex(−,𝐀𝐧𝐢)op of Theorem 1.1.10, they corre-
spond to precomposition with the inclusions 𝐀𝐧𝐢Σ ⊂ 𝐀𝐧𝐢𝜋 ⊂ 𝐀𝐧𝐢.
For the proof, we need the following observation:

1.2.13 Lemma (Mayer-Vietoris sequence). Let

𝐸′ 𝐸

𝐵′ 𝐵

𝑝

𝑞
⌟

𝑓

𝑔

be a pullback square of anima with 𝐵 connected. Then, for any choice of points 𝑒 ∊ 𝐸 and 𝑏′ ∊ 𝐵′,
there is an induced fibre sequence

Ω𝐵 𝐸′

∗ 𝐸 × 𝐵′,

⌟
𝑝×𝑞

𝑒×𝑏′

Proof of Lemma 1.2.13. Write 𝑏 ∶= 𝑔(𝑏′) and let 𝐹 ∶= fib𝑏(𝑔) denote the fibre of 𝑔 at 𝑏. Note that,
since 𝐵 is connected, the maps 𝐸

𝑒
←, ∗ ← 𝐹 → 𝐵′ induce a map 𝐹 → 𝐸′ making the diagram

𝐹 𝐸′ 𝐸 ∗

𝐵′ 𝐸 × 𝐵′ 𝐸 × 𝐵 𝐵

𝐵′ 𝐵

𝑝

𝑝×𝑞 id𝐸 ×𝑓 𝑏

𝑒 × id𝐵′
id𝐸 × 𝑔

pr𝐵′

pr𝐵

pr𝐵

𝑔

(1) (2) (3)

(4)
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commute. By assumption, the pasted diagrams (1)+ (2)+(3) and (2)+ (4) are cartesian. Squares
(3) and (4) are also clearly cartesian. Because (2)+ (4) as well as (4) are cartesian, so is (2). Since
(1)+(2)+(3) as well as (2) and (3) are cartesian, it analogously follows that (1) is cartesian.Write
𝐹× for the fibre of 𝑝 × 𝑞 at 𝑒 × 𝑏′. Then the above shows that we have a commutative diagram

𝐹× 𝐹 𝐸′

∗ 𝐵′ 𝐸 × 𝐵′.

𝑝×𝑞

𝑏′ 𝑒×id𝐵′

(5) (1)

By definition, the pasted diagram (5) + (1) is cartesian. Since, by the above, square (1) is also
cartesian, it follows that (5) is cartesian too. The computation

∗ ×𝑏′,𝐵′ 𝐹 ≃ ∗ ×𝑏′,𝐵′ (𝐵′ ×𝐵,𝑏 ∗)
≃ ∗ ×𝑏,𝐵,𝑏 ∗
≃ Ω𝐵,

now lets us conclude.

Proof of Proposition 1.2.12.

(1) It certainly suffices to show that 𝐀𝐧𝐢Σ ⊂ 𝐀𝐧𝐢 is stable under finite limits, as we obtain the
second claim in the special case Σ = 𝜋. Note that 𝐀𝐧𝐢Σ ⊂ 𝐀𝐧𝐢 is clearly stable under finite
products. It is therefore enough to show that it is also stable under fibre products. To this
end, let 𝐿 → 𝐾 ← 𝐿′ be any cospan of Σ-finite anima. If 𝐾 is not connected, say 𝐾 = ⊔𝑛𝑖=1𝐾𝑖
with each 𝐾𝑖 a connected component of 𝐾, then

𝐿 ×𝐾 𝐿′ = ⊔𝑛𝑖=1(𝐿𝑖 ×𝐾𝑖 𝐿
′
𝑖 ),

where 𝐿𝑖 and 𝐿′𝑖 denote the unions of those connected components of 𝐿 and 𝐿
′, respectively,

mapping to 𝐾𝑖 . Since Σ-finite anima are clearly stable under finite coproducts, we may as-
sume 𝐾 to be connected. We may thus apply Lemma 1.2.13 to conclude that there is a fibre
sequence

Ω𝐾 𝐿 ×𝐾 𝐿′

∗ 𝐿 × 𝐿′,

⌟

𝑙×𝑙′

for any choice of points 𝑙 ∊ 𝐿 and 𝑙′ ∊ 𝐿′. Since 𝐿 and 𝐿′ are Σ-finite, so is 𝐿×𝐿′. In particular,
π0(𝐿 × 𝐿′) = π0 𝐿 × π0 𝐿′ is finite. Choose a component 𝐶 × 𝐶′ of 𝐿 × 𝐿′ as well as a point
𝑙 × 𝑙′ lying in 𝐶 × 𝐶′ and observe that, since fibre products commute with products, square
(𝐵) in

Ω𝐾 𝐶 ×𝐾 𝐶′ 𝐿 ×𝐾 𝐿′

∗ 𝐶 × 𝐶′ 𝐿 × 𝐿
𝑙×𝑙′

(𝐴) (𝐵)
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is cartesian. Since the pasted rectangle (𝐴) + (𝐵) is also cartesian, it follows that (𝐴) is
cartesian. Because 𝐶 × 𝐶′ is furthermore connected, Lemma 1.2.11 is applicable to (𝐴) and
implies that 𝐶 ×𝐾 𝐶′ is Σ-finite. Therefore, so is

𝐿 ×𝐾 𝐿′ =
⨆

𝐶×𝐶′∊π0 𝐿×π0 𝐿′
𝐶 ×𝐾 𝐶′

as a finite disjoint union of Σ-finite anima.

(2) In virtue of Theorem 1.1.13, this is a formal consequence of (1).

1.2.14 Definition (Σ-profinite completion). The functors constructed in Proposition 1.2.12

(−)∧𝜋 ∶ Pro(𝐀𝐧𝐢) → 𝐀𝐧𝐢∧𝜋 and (−)∧Σ ∶ 𝐀𝐧𝐢
∧
𝜋 → 𝐀𝐧𝐢∧Σ

are called profinite completion and Σ-profinite completion, respectively.

1.3 Profinite homotopy theory
In this section, we specialise to the set Σ = 𝜋 consisting of all primes. Since 𝐀𝐧𝐢∧Σ ⊂ 𝐀𝐧𝐢∧𝜋 for
all other choices of Σ, all concepts and results that hold at this level of generality automatically
apply to Σ-profinite anima as well.

Our motivation for studying profinite anima is as follows: Since the étale fundamental group
𝜋ét1 (𝑋, 𝑥̄) of a scheme 𝑋 is a profinite group, one cannot hope to adequately develop étale homo-
topy theory using ordinary anima, as their fundamental groups are ordinary groups.Wewill start
by explaining how the homotopy groups of profinite anima are naturally profinite groups. We
will then attach cohomology groups to any such profinite anima and close the section by study-
ing their cohomological finiteness properties. We refer the reader to [SAG, §E] for a thorough
treatment of profinite homotopy theory.

Homotopy groups of profinite anima

As every profinite anima 𝐾 can be written as a formal cofiltered limit 𝐾 = «lim»𝛼 𝐾𝛼 of 𝜋-
finite anima 𝐾𝛼, levelwise application of the ordinary homotopy group functors yield profinite
homotopy groups π̂𝑛(𝐾) of 𝐾 (see Definition 1.3.3). An important feature of profinite anima
(that ceases to hold for the∞-category Pro(𝐀𝐧𝐢) of arbitrary proanima) is that one can check
on homotopy groups whether a map of profinite anima is an equivalence (Theorem 1.3.9 &
Corollary 1.3.10).

1.3.1 Definition (materialisation). Thematerialisation functor |−|∶ 𝐀𝐧𝐢∧𝜋 → 𝐀𝐧𝐢 is the exten-
sion by cofiltered limits of the inclusion 𝐀𝐧𝐢𝜋 ⊂ 𝐀𝐧𝐢, i.e. |«lim»𝛼 𝐾𝛼| = lim𝛼 𝐾𝛼 ∊ 𝐀𝐧𝐢.

1.3.2 Definition (points). Let 𝐾 be a profinite anima.

(a) A point of 𝐾 is a map 𝑘∶ ∗ → 𝐾 of profinite anima. We sometimes write 𝑘 ∊ 𝐾 in this case.

(b) The∞-category of pointed profinite anima is given by 𝐀𝐧𝐢∧𝜋,∗ = (𝐀𝐧𝐢∧𝜋)∗∕ ≃ Pro(𝐀𝐧𝐢𝜋,∗).

1.3.3 Definition (profinite homotopy groups). Let 𝐾 be a profinite anima, 𝑘 a point of 𝐾 and
𝑛 ≥ 1.
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(a) The (profinite) set of connected components of 𝐾 is the image of 𝐾 under the Pro-extension

π̂0 ∶ 𝐀𝐧𝐢
∧
𝜋 = Pro(𝐀𝐧𝐢𝜋) → Pro(𝐒𝐞𝐭𝜋) = 𝐒𝐞𝐭∧𝜋

of the connected component functor π0 ∶ 𝐀𝐧𝐢𝜋 → 𝐒𝐞𝐭𝜋.

(b) The 𝑛-th (profinite) homotopy group of 𝐾 at 𝑘 is the image of (𝐾, 𝑘) under the Pro-extension

π̂𝑛 ∶ 𝐀𝐧𝐢
∧
𝜋,∗ ≃ Pro(𝐀𝐧𝐢𝜋,∗) → Pro(𝐆𝐫𝐩𝜋) = 𝐆𝐫𝐩∧𝜋

of the ordinary homotopy group functor π𝑛 ∶ 𝐀𝐧𝐢𝜋,∗ → 𝐆𝐫𝐩𝜋. Note that π̂𝑛(𝐾, 𝑘) is a
profinite abelian group for 𝑛 ≥ 2.

1.3.4 Lemma [SAG, E.5.2.2]. The functor 𝐀𝐧𝐢∧𝜋 → 𝐒𝐞𝐭, carrying a profinite anima 𝐾 to the set of
connected components π0(|𝐾|) of its materialisation, preserves cofiltered limits.

1.3.5 Corollary. Let 𝑛 ≥ 1. The functor 𝐀𝐧𝐢∧𝜋,∗ → 𝐆𝐫𝐩, carrying a pointed profinite anima (𝐾, 𝑘)
to the 𝑛-th homotopy group π𝑛(|𝐾|, |𝑘|) of its materialisation, preserves cofiltered limits.

Proof. In virtue of Lemma 1.3.4, this follows from π𝑛 = π0 ◦ Ω𝑛, where Ω𝑛 denotes the 𝑛-fold
iterated loop anima functor Ω∶ 𝐀𝐧𝐢∗ → 𝐀𝐧𝐢∗, (𝐾, 𝑘) ↦ Ω𝑘(𝐾) ∶= map∗((𝕊

1, ∗), (𝐾, 𝑘)).

1.3.6 Corollary. Let 𝐾 be a profinite anima, 𝑘 a point of 𝐾 and 𝑛 ≥ 1. Then:

(1) The underlying set of π̂0 𝐾 coincides with π0|𝐾|.

(2) The underlying group of π̂𝑛(𝐾, 𝑘) coincides with π𝑛(|𝐾|, |𝑘|).

1.3.7 Definition. Let 𝑛 ≥ 0 and 𝐾 a profinite anima.

(a) 𝐾 is said to be 𝑛-truncated if for all points 𝑘 ∊ 𝐾 and all𝑚 > 𝑛 the homotopy group π̂𝑚(𝐾, 𝑘)
vanishes.

(b) 𝐾 is said to be truncated if it is 𝑛-truncated for some 𝑛 ≥ 0.

(c) 𝐾 is said to be 𝑛-connected if it is connected and if for all points 𝑘 ∊ 𝐾 and all 1 ≤ 𝑖 ≤ 𝑛 the
homotopy group π̂𝑖(𝐾, 𝑘) vanishes.

The following is a useful tool for reducing from profinite to 𝜋-finite statements:

1.3.8 Lemma. Let 𝐾 be a profinite anima.

(1) The following are equivalent:

(a) 𝐾 is 𝑛-truncated.

(b) 𝐾 can be written as a formal cofiltered limit 𝐾 = «lim»𝛼 𝐾𝛼 with 𝑛-truncated 𝜋-finite
anima 𝐾𝛼 .

(2) The following are equivalent:

(a) 𝐾 is 𝑛-connected.

(b) 𝐾 can be written as a formal cofiltered limit 𝐾 = «lim»𝛼 𝐾𝛼 with 𝑛-connected 𝜋-finite
anima 𝐾𝛼 .
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Proof. The first statement follows immediately from the equivalences of conditions (2) and
(4) in [SAG, E.4.6.2], the second one from [SAG, E.4.6.3]. In order to see this, note that Lurie
defines the notions of 𝑛-truncatedness and 𝑛-connectedness by the conditions (b) above, see
[SAG, §E.4.1.1].

A map of profinite groups 𝐺 → 𝐻 is an isomorphism if and only if the induced map on un-
derlying groups is an isomorphism. One way to see this is through the topological incarnation of
profinite groups mentioned in Remark 1.2.7: continuous bijections between compact Hausdorff
spaces are already homeomorphisms. Crucially, a homotopy-theoretic analogue of this fact holds
for profinite anima:

1.3.9 Theorem (Profinite Whitehead theorem; [SAG, E.3.1.6]).
The materialisation functor |−|∶ 𝐀𝐧𝐢∧𝜋 → 𝐀𝐧𝐢 is conservative. That is, the following are equiv-

alent for a map 𝑓∶ 𝐾 → 𝐿 of profinite anima:

(1) The map 𝑓 is an equivalence of profinite anima.

(2) The map 𝑓 induces an equivalence of ordinary anima |𝐾| → |𝐿|.

Since it is not explicitly mentioned in [SAG, E.3.1.6], let us also record the following imme-
diate corollary of the Profinite Whitehead theorem:

1.3.10 Corollary. The following are equivalent for a map 𝑓∶ 𝐾 → 𝐿 of profinite anima:

(1) The map 𝑓 is an equivalence of profinite anima.

(2) The map 𝑓 induces isomorphisms on homotopy groups, more precisely:

(a) The induced map 𝑓∗ ∶ π̂0 𝐾 → π̂0 𝐿 is an isomorphism of profinite sets.

(b) For all 𝑘 ∊ 𝐾 and 𝑛 ≥ 1, the inducedmap𝑓∗ ∶ π̂𝑛(𝐾, 𝑘) → π̂𝑛(𝐿, 𝑓(𝑘)) is an isomorphism
of profinite groups.

Proof. The only non-obvious part is to prove that 𝑓 is already an equivalence if it induces iso-
morphisms on homotopy groups (and connected components). By Theorem 1.3.9, it suffices
to show that |𝑓|∶ |𝐾| → |𝐿| is an equivalence of ordinary anima in this case. But since, by
Corollary 1.3.6, we have that π𝑛(|𝐾|, 𝑘) is the underlying group (resp. set, if 𝑛 = 0) of π̂𝑛(𝐾, 𝑘)
and similarly for 𝐿, the claim follows from the ordinary Whitehead theorem [17, Thm. 4.5].

Cohomology of profinite anima

Since filtered colimits of abelian groups are exact, one is able to define cohomology of profinite
anima in terms of that of 𝜋-finite anima (Definition 1.3.12). See [SAG, §E.7.1] for more details.

1.3.11 Notation. For 𝐾 a Kan complex and𝐴 an abelian group, we write C∗(𝐾;𝐴) for the chain
complex of 𝐴-valued (singular) cochains on 𝐾. Since the construction 𝐾 ↦ C∗(𝐾;𝐴) carries
equivalences to quasi-isomorphisms, it induces a functor C∗(−;𝐴)∶ 𝐀𝐧𝐢op → 𝒟(Z), where
𝒟(Z) denotes the derived∞-category of Z.

1.3.12 Definition. Let 𝐴 be an abelian group.

(a) We let C∗(−;𝐴)∶ (𝐀𝐧𝐢∧𝜋)op → 𝒟(Z) denote the extension of C∗(−;𝐴)∶ 𝐀𝐧𝐢op𝜋 → 𝒟(Z)
preserving filtered colimits.
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(b) If 𝐾 is a profinite anima and 𝑛 ≥ 0 is an integer, we write H𝑛(𝐾;𝐴) = H𝑛(C∗(𝐾;𝐴)) and
refer to it as the 𝑛-th cohomology group of 𝐾 with coefficients in 𝐴.

1.3.13 Remark. If 𝐾 = «lim»𝛼 𝐾𝛼, then C
∗(𝐾;𝐴) = colim𝛼 C

∗(𝐾𝛼; 𝐴).
In particular, H𝑛(𝐾;𝐴) = colim𝛼 H

𝑛(𝐾𝛼; 𝐴).

As is the case for ordinary anima, cohomology is representable by Eilenberg-Maclane anima:

1.3.14 Theorem (representability of H𝑛(−;𝐴), [SAG, E.7.1.6]). Let 𝐴 be a finite abelian group
and 𝑛 ≥ 1. The functor

𝐀𝐧𝐢∧𝜋 → 𝐀𝐛, 𝐾 ↦ H𝑛(𝐾;𝐴)

is represented by K(𝐴, 𝑛) ∊ 𝐀𝐧𝐢𝜋 ⊂ 𝐀𝐧𝐢∧𝜋 (in the homotopy category of 𝐀𝐧𝐢
∧
𝜋).

Proof. Both functors

𝐿 ↦ H𝑛(𝐿; 𝐴) and 𝐿 ↦ π0map(𝐿, K(𝐴, 𝑛))

coincide on 𝐀𝐧𝐢op𝜋 and commute with filtered colimits.

The following notion will be used extensively throughout the subsequent sections:

1.3.15 Definition. A map of (profinite) anima is said to be an F𝑝-equivalence if it induces an
isomorphism on F𝑝-cohomology groups.

1.3.16 Remark. Because 𝐾 ↦ C∗(𝐾;𝐴) agrees with 𝐾 ↦ C∗(|𝐾|; 𝐴) whenever 𝐾 is 𝜋-finite,
Remark 1.3.13 shows that there is a natural comparison map C∗(𝐾;𝐴) → C∗(|𝐾|; 𝐴) depending
functorially on 𝐾 ∊ 𝐀𝐧𝐢∧𝜋. In particular, there are natural maps H

∗(𝐾;𝐴) → H∗(|𝐾|; 𝐴) com-
paring “continuous” to ordinary cohomology. We refer the reader to [SAG, E.7.1.5] for more
details.

(Co-)homological finiteness properties of 𝜋-finite anima

In this section, we will collect some basic (co-)homological finiteness properties of 𝜋-finite and
profinite anima that will be made use of later on. We also derive a Künneth theorem for profinite
anima (Proposition 1.3.21).

1.3.17 Lemma. For 𝐾 ∊ 𝐀𝐧𝐢𝜋 we have thatH𝑛(𝐾;Z) is finite for 𝑛 ≥ 1.

Proof. We proceed in several steps:

(1) 𝐾 simply connected.
In the simply connected case, the claim is an immediate consequence of Serre’s Hurewicz
mod 𝒞, Theorem 1.1.3, for 𝒞 the class of finite abelian groups.

(2) 𝐾 = B𝐺 for a finite group 𝐺.
When 𝐾 = B𝐺 for a finite group 𝐺, we have H∗(B𝐺;Z) = H∗(𝐺;Z), so the claim follows
from the corresponding statement in group homology (H𝑛(𝐺;Z) is finitely generated and
annihilated by ord(𝐺) provided that 𝑛 > 0, hence finite). Furthermore, if we have a local sys-
tem on B𝐺 with value a finite abelian group𝐴,H𝑛(B𝐺;𝐴) = H𝑛(𝐺;𝐴) is finite provided that
𝑛 > 0 (observe that this is already the case for the standard complex computing H∗(𝐺;𝐴)).
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(3) Arbitrary 𝜋-finite 𝐾.
We may assume 𝐾 to be connected. Consider the Serre spectral sequence

E2𝑝,𝑞 = H𝑝(Bπ1𝐾;H𝑞(τ≥1𝐾;Z)) ⇒ H𝑝+𝑞(𝐾;Z)

attached to the fibre sequence τ≥1𝐾 → 𝐾 → Bπ1𝐾. Combining the first two steps, we see
that E2𝑝,𝑞 is finite provided that 𝑝 + 𝑞 > 0. Therefore E∞𝑝,𝑞 and thus also H𝑛(𝐾;Z) are finite
whenever 𝑛 = 𝑝 + 𝑞 > 0 as claimed.

We obtain the following immediate cohomological vanishing results:

1.3.18 Corollary. Let 𝐾 be a connected 𝜋-finite anima. Then, for all but finitely many primes 𝓁,
the cohomology groupH𝑛(𝐾;F𝓁) vanishes for all 𝑛 > 0.

Proof. This immediately follows from Lemma 1.3.17 and the universal coefficient theorem.

1.3.19 Corollary. For 𝐾 a connected profinite anima, we have that

H𝑛(𝐾;Q) = {
Q, 𝑛 = 0,
0, 𝑛 > 0.

Proof. By writing 𝐾 as a cofiltered limit of connected 𝜋-finite anima, we may assume 𝐾 to
be 𝜋-finite. The claim is now an easy consequence of the universal coefficient theorem and
Lemma 1.3.17.

1.3.20 Proposition. Let∅ ≠ Σ be a set of primes, 𝓁 a prime number not in Σ, and 𝐾 a connected
Σ-profinite anima. Then

H𝑛(𝐾,F𝓁) = {
F𝓁, 𝑛 = 0,
0, 𝑛 > 0.

Proof. By writing 𝐾 = «lim»𝛼 𝐾𝛼 with connected and Σ-finite 𝐾𝛼, we may assume 𝐾 to be
Σ-finite. We proceed in several steps:

(1) 𝐾 is simply connected and Σ-finite.
If 𝐾 is simply connected, Serre’s Hurewicz mod 𝒞 1.1.3 for 𝒞 the class of Σ-finite abelian
groups implies that also H∗(𝐾;Z) are Σ-finite abelian groups. The claim is now an easy
consequence of the universal coefficient theorem.

(2) 𝐾 = B𝐺 for 𝐺 a Σ-finite group.
If we have any local system on B𝐺 with value a Σ′-finite abelian group 𝐴, H𝑛(B𝐺;𝐴) =
H𝑛(𝐺;𝐴) vanishes, see e.g. [NSW, Proposition 1.6.2].

(3) Arbitrary connected Σ-finite 𝐾.
The Serre spectral sequence

E𝑝,𝑞2 = H𝑝(Bπ1(𝐾);H
𝑞(τ≥1𝐾;F𝓁)) ⇒ H𝑝+𝑞(𝐾;F𝓁).

attached to the fibre sequence τ≥1𝐾 → 𝐾 → Bπ1(𝐾) degenerates at the E2-page by the
preceeding steps. This shows the claim.

Finally, we deduce a Künneth theorem for profinite anima:
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1.3.21 Proposition (Künneth theorem). Let 𝐾 and 𝐿 be profinite anima. For every field 𝜅, the
canonical map

C∗(𝐾; 𝜅) ⊗𝜅 C
∗(𝐿; 𝜅) → C∗(𝐾 × 𝐿; 𝜅)

is an equivalence. In particular, we have a canonical isomorphism

H∗(𝐾; 𝜅) ⊗𝜅 H
∗(𝐿; 𝜅) → H∗(𝐾 × 𝐿; 𝜅)

Proof. Using Proposition 1.1.14, we can write the diagram 𝐾 → ∗ ← 𝐿 as a cofiltered limit of
diagrams 𝐾𝛼 → ∗ ← 𝐿𝛼 of 𝜋-finite anima. The canonical map of the statement can therefore be
identified with the filtered colimit of the canonical maps

C∗(𝐾𝛼; 𝜅) ⊗𝜅 C
∗(𝐿𝛼; 𝜅) → C∗(𝐾𝛼 × 𝐿𝛼; 𝜅)

The result now follows from the ordinary Künneth theorem [17, Thm. 3.15] (and the fact that,
according to Lemma 1.3.17, it is applicable to 𝜋-finite anima).

1.3.22 Remark. Alternatively, Proposition 1.3.21 can be deduced from [SAG, E.7.2.1]. We de-
cided to give an alternative proof since the proof of [SAG, E.7.2.1] contains broken references as
of right now.

Profinite completion and materialisation

An essential property of profinite completion is that it remembers cohomology with finite coef-
ficients. In order to give a precise statement, we first require the following formal observation:

1.3.23 Lemma [SAG, E.4.4.1, E.0.7.12]. The restriction of the profinite completion functor

(−)∧𝜋 ∶ 𝐀𝐧𝐢 ⊂ Pro(𝐀𝐧𝐢) → 𝐀𝐧𝐢∧𝜋

is left adjoint to the materialisation functor |−|∶ 𝐀𝐧𝐢∧𝜋 → 𝐀𝐧𝐢.

Proof. Write |−|∶ Pro(𝐀𝐧𝐢) → 𝐀𝐧𝐢 for the extension by cofiltered limits of the identity func-
tor on 𝐀𝐧𝐢. Then this is clearly right adjoint to the inclusion 𝐀𝐧𝐢 ⊂ Pro(𝐀𝐧𝐢). The profinite
completion functor (−)∧𝜋 ∶ Pro(𝐀𝐧𝐢) → 𝐀𝐧𝐢∧𝜋 is defined as the pro-left adjoint to the inclusion
𝐀𝐧𝐢𝜋 ⊂ 𝐀𝐧𝐢. Since adjoints compose, we see that the restriction

(−)∧𝜋 ∶ 𝐀𝐧𝐢 ⊂ Pro(𝐀𝐧𝐢) → 𝐀𝐧𝐢∧𝜋

is left adjoint to the restriction

|−|∶ 𝐀𝐧𝐢∧𝜋 ⊂ Pro(𝐀𝐧𝐢) → 𝐀𝐧𝐢,

which coincides with the materialisation functor |−|∶ 𝐀𝐧𝐢∧𝜋 → 𝐀𝐧𝐢 of Definition 1.3.1.

The unit of the above adjunction allows us to compare the cohomology of an anima 𝐾 with
the cohomology of its profinite completion 𝐾∧

𝜋 .

1.3.24 Proposition. Let 𝐾 be an anima and 𝐴 a Σ-finite abelian group. Then, the composition of
the maps

H∗(𝐾;𝐴) → H∗(|𝐾∧
Σ |; 𝐴) → H∗(𝐾∧

Σ ; 𝐴),

where the first map comes from pulling back along the unit map 𝐾 → |𝐾∧
Σ | and the second map is

the one of Remark 1.3.16, is an isomorphism.
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Proof. This is an easy consequence of the representability of cohomology:

H𝑛(𝐾∧
Σ ; 𝐴) = π0map(𝐾∧

Σ , K(𝐴, 𝑛))
= π0map(𝐾,K(𝐴, 𝑛))
= H𝑛(𝐾,𝐴),

where the first and third equality hold by Theorem 1.3.14 (and the version of it for ordinary
anima), and where the second equality holds even on the level of mapping anima since, by
construction, (−)∧Σ is left adjoint to 𝐀𝐧𝐢

∧
Σ ⊂ Pro(𝐀𝐧𝐢).

1.4 𝑝-profinite homotopy theory
In this section, we specialise to the set Σ = {𝑝} consisting of a single prime 𝑝. What makes
𝑝-profinite anima very pleasant is that their homotopy theory is entirely determined by their
F𝑝-cohomology (Theorem 1.4.1). As a corollary, 𝑝-profinite completion 𝐾∧

𝑝 (Definition 1.4.4) of a
(profinite) anima 𝐾 is uniquely determined by the property that it exactly remembers all the in-
formation found in theF𝑝-cohomology of𝐾 (Proposition 1.4.6). More background on 𝑝-profinite
homotopy theory can be found in [DAG, §3].

The following theorem can be found in [DAG, Lemma 3.3.15]:

1.4.1 Theorem (cohomological characterization of equivalences between 𝑝-profinite anima).
The following are equivalent for a map 𝑓∶ 𝐾 → 𝐿 of 𝑝-profinite anima:

(1) The map 𝑓 is an equivalence of 𝑝-profinite anima.

(2) The map 𝑓 is an F𝑝-equivalence (in the sense of Definition 1.3.15).

As a consequence, we obtain a useful reformulation of Corollary 1.3.18:

1.4.2 Corollary. Let 𝐾 be a connected 𝜋-finite anima. Then 𝐾∧
𝓁 is contractible for all but finitely

many 𝓁.

Proof. According to Proposition 1.4.6 and Theorem 1.4.1, this is an immediate consequence of
Corollary 1.3.18.

𝑝-profinite completion and materialisation

The profinite completion and materialisation adjunction carries over to the 𝑝-profinite setting:

1.4.3 Lemma ([DAG, Not. 3.3.14]). The inclusion 𝐀𝐧𝐢∧𝑝 ⊂ 𝐀𝐧𝐢∧𝜋 admits a left-adjoint

(−)∧𝑝 ∶ 𝐀𝐧𝐢
∧
𝜋 → 𝐀𝐧𝐢∧𝑝 .

Proof. This is Proposition 1.2.12 in the case that Σ = {𝑝}.

1.4.4 Definition. The functor (−)∧𝑝 ∶ 𝐀𝐧𝐢
∧
𝜋 → 𝐀𝐧𝐢∧𝑝 from Lemma 1.4.3 is called 𝑝-profinite

completion functor.
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1.4.5 Notation. We also simply write (−)∧𝑝 ∶ 𝐀𝐧𝐢 → 𝐀𝐧𝐢∧𝑝 for the composite

𝐀𝐧𝐢 𝐀𝐧𝐢∧𝜋 𝐀𝐧𝐢∧𝑝 .
(−)∧𝜋 (−)∧𝑝

Since adjoints compose, this is a left adjoint to the materialisation functor |−|∶ 𝐀𝐧𝐢∧𝜋 → 𝐀𝐧𝐢
restricted to 𝐀𝐧𝐢∧𝑝 ⊂ 𝐀𝐧𝐢∧𝜋 (recall Lemma 1.3.23).

For completeness’ sake, let us also record the following immediate corollary of Proposi-
tion 1.3.24:

1.4.6 Proposition. Let 𝐾 be a (profinite) anima. Then the composition of the maps

H∗(𝐾;F𝑝) → H∗(|𝐾∧
𝑝 |;F𝑝) → H∗(𝐾∧

𝑝 ;F𝑝),

where the first map comes from pulling back along the unit map 𝐾 → |𝐾∧
𝑝 | and where the second

map is the one of Remark 1.3.16, is an isomorphism.

Proof. This is Proposition 1.3.24 specialised to Σ = {𝑝} and 𝐴 = F𝑝.

Exactness properties of 𝑝-profinite completion

In this section, we record some elementary “exactness” properties of 𝑝-profinite completion-
More precisely, we show that 𝑝-profinite completion preserves finite products and coproducts
as well as connected components of profinite anima.

1.4.7 Lemma. The 𝑝-profinite completion functor (−)∧𝑝 ∶ 𝐀𝐧𝐢 → 𝐀𝐧𝐢∧𝑝 preserves finite coproducts.

Proof. Let 𝐾𝑖 , 𝑖 = 1, … , 𝑛 be a finite family of anima. Then ⨿𝑖(𝐾𝑖)∧𝑝 exists and is given by the
levelwise coproduct. For any 𝑝-finite anima 𝐿, we have

map(⨿𝑖(𝐾𝑖)∧𝑝 , 𝐿) ≃ Π𝑖map((𝐾𝑖)∧𝑝 , 𝐿)
≃ Π𝑖map(𝐾𝑖 , 𝐿)
≃ map(⨿𝑖𝐾𝑖 , 𝐿)

and the result follows from the Yoneda lemma.

1.4.8 Corollary. Let 𝐾 be an anima. If π0 𝐾 is finite, the unit map 𝐾 → |𝐾∧
𝑝 | induces a bijection

π0 𝐾 = π0 𝐾∧
𝑝 . If 𝐾 is moreover 0-truncated, so is |𝐾∧

𝑝 |.

Proof. By Lemma 1.4.7, it suffices to see that π̂0 ∶ 𝐀𝐧𝐢
∧
𝜋 → 𝐒𝐞𝐭 preserves finite coproducts. But

as π̂0 = π0 ◦|−|, this follows from the fact that |−| preserves finite coproducts [SAG, E.4.4.4]. If
𝐾 is moreover 0-truncated, we have 𝐾 ∊ 𝐀𝐧𝐢𝑝 so that 𝐾∧

𝑝 = 𝐾.

1.4.9 Corollary. Let 𝐾 be a profinite anima.

(1) The unit map 𝐾 → 𝐾∧
𝑝 induces a bijection π̂0 𝐾 = π̂0 𝐾∧

𝑝 .

(2) If 𝐾 is 0-truncated, so is 𝐾∧
𝑝 , i.e. 𝐾 = 𝐾∧

𝑝 in this case.
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Proof. Since the canonical map π̂0 𝐾 → π̂0 𝐾∧
𝑝 is a continuous map between profinite sets,

it suffices to show that it is a bijection on underlying sets. According to Lemma 1.3.4, π0(−)
preserves cofiltered limits. By construction, so do |−| as well as (−)∧𝑝 . Therefore, the functors
π0(|−|) and (−)∧𝑝 both preserve filtered limits, so we may assume 𝐾 to be 𝜋-finite. Now apply
Corollary 1.4.8. Using Lemma 1.3.8, the second claim follows exactly the same way.

1.4.10 Lemma. The 𝑝-profinite completion functor (−)∧𝑝 ∶ 𝐀𝐧𝐢
∧
𝜋 → 𝐀𝐧𝐢∧𝑝 preserves finite products.

Proof. Since, according to Theorem 1.4.1, 𝑝-profinite anima are entirely determined by their F𝑝-
cohomology, it suffices to show that the canonical map 𝐾 × 𝐿 → 𝐾∧

𝑝 × 𝐿∧𝑝 is an F𝑝-equivalence.
To this end, using Proposition 1.3.21 twice, we compute

H∗(𝐾∧
𝑝 × 𝐿∧𝑝 ;F𝑝) ≅ H∗(𝐾∧

𝑝 ;F𝑝) ⊗F𝑝 H
∗(𝐿∧𝑝 ;F𝑝)

≅ H∗(𝐾;F𝑝) ⊗F𝑝 H
∗(𝐿;F𝑝)

≅ H∗(𝐾 × 𝐿;F𝑝).

Here we also used that 𝑝-profinite completion preserves F𝑝-cohomology, see Proposition 1.4.6.

Later, we will make use of the following straightforward observation:

1.4.11 Corollary. The 𝑝-profinite completion functor (−)∧𝑝 is symmetric monoidal as a functor

(−)∧𝑝 ∶ (𝐀𝐧𝐢
∧
𝜋)× → (𝐀𝐧𝐢∧𝑝)× ⊂ (𝐀𝐧𝐢∧𝜋)×

Proof. Lemma 1.4.10 shows that (−)∧𝑝 ∶ (𝐀𝐧𝐢
∧
𝜋)× → (𝐀𝐧𝐢∧𝑝)× is symmetric monoidal. The result

hence follows since, by Proposition 1.2.12 (1) for Σ = {𝑝}, the inclusion (𝐀𝐧𝐢∧𝑝)× ⊂ (𝐀𝐧𝐢∧𝜋)× is
also symmetric monoidal.

1.5 Homotopy fixed points
In this subsection, we finally introduce the notion of homotopy fixed points. For this, given a
profinite group 𝐺, we first need to define an∞-category 𝐀𝐧𝐢∧𝜋(𝐺) of profinite anima with contin-
uous 𝐺-action (Definition 1.5.1). A central feature here is that the operation of taking a profinite
anima 𝐾 with 𝐺-action to its homotopy quotient 𝐾∕∕𝐺 does not lose any information, provided
one remembers the induced map 𝐾∕∕𝐺 → B𝐺 (Theorem 1.5.3). This result will be the basis for
reformulating the Section Conjecture in terms of homotopy fixed points. We finish this section
with discussing a version of Quick’s homotopy fixed point spectral sequence (Proposition 1.5.6).

1.5.1Definition. Let𝐺 be a profinite group. The∞-category of profinite animawith (continuous)
𝐺-action is given as 𝐀𝐧𝐢∧𝜋(𝐺) ∶= RMod𝐺(𝐀𝐧𝐢

∧
𝜋). We usually writemap𝐺 instead ofmap𝐀𝐧𝐢∧𝜋(𝐺).

1.5.2 Remark.

(1) The∞-category 𝐀𝐧𝐢∧𝜋 is symmetric monoidal with respect to the product. As 𝐺 is a profi-
nite group (i.e. a group object in profinite sets), it is also a group in 𝐀𝐧𝐢∧𝜋 and therefore an
associative algebra in (𝐀𝐧𝐢∧𝜋)×. The∞-category RMod𝐺(𝐀𝐧𝐢

∧
𝜋) of Definition 1.5.1 denotes

the∞-category of right modules over 𝐺, see [HA, §4.2] for more details.

(2) If 𝐺 is a finite group, the above definition unwinds to 𝐀𝐧𝐢∧𝜋(𝐺) ≃ Fun(B𝐺,𝐀𝐧𝐢∧𝜋).
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We are now finally able to give a precise statement of Ingredient A of the introduction:

1.5.3 Theorem [SAG, E.6.5.1, E.6.4.4]. Let 𝐺 be a profinite group. The construction

𝐺↷𝐾 ↦ 𝐾∕∕𝐺 → ∗∕∕𝐺 = B𝐺,

where 𝐾∕∕𝐺 denotes the homotopy quotient of 𝐾 under the action of 𝐺, determines an equivalence
of∞-categories 𝐀𝐧𝐢∧𝜋(𝐺) → (𝐀𝐧𝐢∧𝜋)∕B𝐺 . Furthermore, the inverse of this equivalence is given by
taking fibres.

We now come to the definition of homotopy fixed points.

1.5.4 Definition. Let 𝐺 be a finite group and 𝐾 ∊ 𝐀𝐧𝐢∧𝜋(𝐺) a profinite anima with 𝐺-action. The
(profinite) homotopy fixed point anima of 𝐾 is given by 𝐾h𝐺 ∶= limB𝐺 𝐾 ∊ 𝐀𝐧𝐢∧𝜋.

1.5.5 Remark.

(1) Recall that by [SAG, E.6.0.8], given any map 𝑞∶ 𝐾′ → 𝐾 of 𝜋-finite anima, the pullback
functor

𝑞∗ ∶ (𝐀𝐧𝐢∧𝜋)∕𝐾 → (𝐀𝐧𝐢∧𝜋)∕𝐾′ , 𝐿 ↦ 𝐿 ×𝐾 𝐾′

admits a right adjoint 𝑞∗. Denote the unique map B𝐺 → ∗ by 𝑡. Then, under the equivalence
𝐀𝐧𝐢∧𝜋(𝐺) ≃ (𝐀𝐧𝐢∧𝜋)∕B𝐺 of Theorem 1.5.3, (−)h𝐺 gets identified with 𝑡∗, i.e. 𝐾h𝐺 ≃ 𝑡∗𝐾∕∕𝐺.
Indeed, unwinding the definitions we see:

map(𝐿, 𝑡∗𝐾∕∕𝐺) ≃ mapB𝐺(𝐿 × B𝐺,𝐾∕∕𝐺)
≃ map𝐺(𝐿

tr, 𝐾)
≃ lim

B𝐺
map(𝐿, 𝐾),

where 𝐿tr denotes 𝐿 equipped with the trivial 𝐺-action.

(2) Specialising to 𝐿 = ∗, we in particular obtain

|𝐾h𝐺| ≃ map(∗, 𝐾h𝐺)
≃ mapB𝐺(B𝐺, 𝐾∕∕𝐺)
≃ map𝐺(∗

tr, 𝐾).

(3) One could use the last observation to at least define |𝐾h𝐺| for any profinite group 𝐺 acting
on 𝐾.

A central feature for us is the existence of a homotopy descent spectral sequence converging
to the homotopy groups of homotopy fixed point anima:

1.5.6 Proposition (Quick, [36, Theorem 2.16]). Let𝐺 be a finite group and𝐾 a connected profinite
anima with 𝐺-action. Assume 𝐾h𝐺 ≠ ∅ and let 𝑥 ∊ 𝐾h𝐺 . Then there is a conditionally convergent
homotopy descent spectral sequence

E𝑠,𝑡2 = H𝑠(𝐺, π̂𝑡(𝐾)) ⇒ π̂𝑡−𝑠(𝐾h𝐺, 𝑥),

where the action of 𝐺 on π̂𝑡(𝐾) depends on the choice of 𝑥.
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1.5.7. In the following proof, we writeℳ∞ for the underlying∞-category of a model category
ℳ, i.e.ℳ∞ denotes the∞-categorical localisation of the nerve ofℳ with respect to the weak
equivalences.

Proof. Denote Quick’s model category of profinite spaces by 𝒮̂ (see [35] for more details). By
[1, Corollary 7.4.9], there is an equivalence of∞-categories 𝐀𝐧𝐢∧𝜋 ≃ 𝒮̂∞. By [36, Corollary 2.11],
there is a Quillen adjunction between Quick’s category of profinite 𝐺-spaces 𝒮̂(𝐺) and the slice
model category 𝒮̂∕B𝐺 . Combining all of these results, we obtain a chain of equivalences of∞-
categories

𝐀𝐧𝐢∧𝜋(𝐺) ≃ (𝐀𝐧𝐢∧𝜋)∕B𝐺 by Theorem 1.5.3

≃ (𝒮̂∞)∕B𝐺
≃ (𝒮̂∕B𝐺)∞
≃ 𝒮̂(𝐺)∞,

where, in virtue of [9, Corollary 7.6.13], the second to last equivalence holds since B𝐺 is fibrant
in 𝒮̂. The result hence follows from Quick’s profinite homotopy fixed point spectral sequence
[36, Theorem 2.16].

1.5.8 Remark.

(1) The differentials in the above spectral sequence are of the form

𝑑𝑟 ∶ E𝑠,𝑡𝑟 → E𝑠+𝑟,𝑡+𝑟−1𝑟 .

Moreover, E𝑠,𝑡𝑟 = ∗ if 𝑡 − 𝑠 < 0 and the diagonal E𝑠,𝑠𝑟 is only receiving differentials.

(2) Also note that [36, Theorem 2.16] assumes that𝐾 is pointed. This assumption is unnecessary:
In [4], Bousfield explains how to obtain the spectral sequence of a unpointed cosimplicial
space, as long as one chooses a point of its totalization (=∧ 𝐾h𝐺 above). So using themachinery
of [4] instead of [BK, §X.6], one obtains the above unpointed variant.

(3) Quick puts unnecessary assumptions on 𝐾 (resp. 𝐺) in order to enforce strong convergence
of the above spectral sequence (as he later noted himself in [37, Remark 4.3]). We refer the
reader to [4, §4] for a detailed discussion of convergence of homotopy spectral sequences.

1.6 Nilpotent Σ-profinite anima
One often encounters simply-connectedness assumptions in homotopy theory. In a lot of cases,
one can considerably relax these assumptions: First, a lot of the arguments assuming simply-
connectedness also work for simple anima, i.e. anima with abelian fundamental group acting
trivially on the higher homotopy groups. Second, using Postnikov towers, one can then often
generalise to anima that are inductively build from such simple anima: So called nilpotent anima
(we refer the reader to [27, §3, §4] for an overview of nilpotency in homotopy theory).

Unfortunately, except for some remarks here and there, [SAG, Appendix E] does not really
develop the theory of nilpotent profinite anima. So in this section, we will provide a concise
treatment of the theory of nilpotency in profinite homotopy theory.

39



Nilpotent Σ-profinite groups

Following the strategy of (§1.2), we start by discussing nilpotency in the world of profinite groups.

1.6.1 Recollection (nilpotent group action). Let 𝜋 be a group acting on a (possibly nonabelian)
group 𝐺.

(a) The action of 𝜋 on 𝐺 is called nilpotent if there exists a finite series of normal subgroups

1 = 𝐺𝑞 ⊂ 𝐺𝑞−1 ⊂ … ⊂ 𝐺0 = 𝐺

such that:

(1) 𝐺𝑗−1∕𝐺𝑗 is abelian and a central subgroup of 𝐺∕𝐺𝑗 , and

(2) 𝐺𝑗 is a 𝜋-subgroup of 𝐺 and the induced action of 𝜋 on 𝐺𝑗−1∕𝐺𝑗 is trivial.

(b) 𝜋 is said to be nilpotent if the natural conjugation action of 𝜋 on itself is nilpotent.

1.6.2 Definition (nilpotent Σ-profinite groups). Let ∅ ≠ Σ denote a set of prime numbers.

(a) We write 𝐆𝐫𝐩Σ-nil ⊂ 𝐆𝐫𝐩Σ for the full subcategory of nilpotent Σ-finite groups.

(b) We write 𝐆𝐫𝐩∧Σ-nil ∶= Pro(𝐆𝐫𝐩Σ-nil) ⊂ 𝐆𝐫𝐩∧Σ for the full subcategory of (pro-)nilpotent Σ-
profinite groups.

1.6.3 Lemma. Let 1 𝑁 𝐺 𝐻 1
𝑝

be a short exact sequence of 𝜋-groups with 𝑁 con-
tained in the centre C(𝐺) of 𝐺. If both𝑁 and𝐻 are nilpotent 𝜋-groups, so is 𝐺.

Proof. Let 1 = 𝐻𝑠 ⊂ 𝐻𝑠−1 ⊂ … ⊂ 𝐻0 = 𝐻 be a chain of subgroups witnessing the 𝜋-nilpotency
of 𝐻. Similarly, let 1 = 𝑁𝑡 ⊂ 𝑁𝑡−1 ⊂ … ⊂ 𝑁0 = 𝑁 be a chain witnessing the 𝜋-nilpotency of 𝑁.
If we now write

𝐺𝑞 ∶= {
𝑝−1(𝐻𝑞), 𝑞 ≤ 𝑠
𝑁𝑞−𝑠, 𝑠 + 𝑡 ≥ 𝑞 > 𝑠,

the chain 1 = 𝐺𝑠+𝑡 ⊂ 𝐺𝑠+𝑡−1 ⊂ … ⊂ 𝐺𝑠+1 ⊂ 𝑁 = 𝐺𝑠 ⊂ … ⊂ 𝐺0 = 𝐺 witnesses the 𝜋-nilpotency
of 𝐺.

1.6.4 Proposition. Any action of a finite 𝑝-group 𝜋 on another finite 𝑝-group 𝐺 is nilpotent.

Proof. We prove this by induction on #𝐺. If #𝐺 = 1 the claim is trivial. So assume the claim
holds for all finite 𝑝-groups𝐻 with #𝐻 < #𝐺. Since C(𝐺) is a characteristic subgroup of 𝐺, the
short exact sequence 1 C(𝐺) 𝐺 𝐺∕C(𝐺) 1 is a short exact sequence of 𝜋-groups
with all appearing groups being 𝑝-finite. Since, according to [16, Theorem 4.3.1], 1 ≠ C(𝐺),
we have that #C(𝐺), #𝐺∕C(𝐺) < #𝐺. Therefore, by our inductive assumption, both C(𝐺) and
𝐺∕C(𝐺) are 𝜋-nilpotent. Hence so is 𝐺 by Lemma 1.6.3.

1.6.5 Lemma. Let 𝜋 and 𝜋′ be groups acting nilpotently on 𝐺 and 𝐺′ respectively. Then the diago-
nal action of 𝜋 × 𝜋′ on 𝐺 × 𝐺′ is nilpotent as well.

Proof. Let 1 = 𝐺𝑞 ⊂ 𝐺𝑞−1 ⊂ … ⊂ 𝐺0 = 𝐺, resp. 1 = 𝐺′
𝑞′ ⊂ 𝐺′

𝑞′−1 ⊂ … ⊂ 𝐺′
0 = 𝐺′, be chains of

subgroups witnessing the𝜋-nilpotency of𝐺 and the𝜋′-nilpotency of𝐺′, respectively. By possibly
switching 𝐺 and 𝐺′, we may assume that 𝑞 ≥ 𝑞′. Define 𝐺′

𝑖 ∶= 1 for 𝑞′ < 𝑖 ≤ 𝑞. Then clearly

40



1 = 𝐺′
𝑞 ⊂ 𝐺′

𝑞−1 ⊂ … ⊂ 𝐺′
0 = 𝐺′ also witnesses the 𝜋′-nilpotency of 𝐺′. One now immediately

verifies that
1 = 𝐺𝑞 × 𝐺′

𝑞 ⊂ 𝐺𝑞−1 × 𝐺′
𝑞−1 ⊂ … ⊂ 𝐺0 × 𝐺′

0 = 𝐺 × 𝐺′

witnesses the (𝜋 × 𝜋′)-nilpotency of 𝐺 × 𝐺′.

1.6.6 Lemma (nilpotent completion). Let∅ ≠ Σ denote a set of prime numbers.

(1) The full subcategory 𝐆𝐫𝐩Σ-nil ⊂ 𝐆𝐫𝐩Σ is stable under finite limits.

(2) The inclusion 𝐆𝐫𝐩∧Σ-nil ⊂ 𝐆𝐫𝐩∧Σ admits a left adjoint

(−)nil ∶ 𝐆𝐫𝐩∧Σ → 𝐆𝐫𝐩∧Σ-nil.

Moreover, under the identifications Pro(−) ≃ Funlex(−, 𝐒𝐞𝐭)op, it corresponds to precomposi-
tion with the inclusion 𝐆𝐫𝐩Σ-nil ⊂ 𝐆𝐫𝐩Σ.

Proof.

(1) By Lemma 1.6.5, 𝐆𝐫𝐩Σ-nil ⊂ 𝐆𝐫𝐩Σ is stable under finite products. Since subgroups of nilpo-
tent groups are again nilpotent, 𝐆𝐫𝐩Σ-nil ⊂ 𝐆𝐫𝐩Σ is also stable under fibre products (see the
proof of Proposition 1.2.6). Since finite products and fibre products generate all finite limits,
we conclude.

(2) In virtue of Theorem 1.1.13, this is a formal consequence of (1).

The homotopy-theoretic analogue of the following group-theoretic characterization of nilpo-
tency in the profinite world will be a crucial ingredient in our strategy for proving Theorem B of
the introduction.

1.6.7 Theorem (characterization of pronilpotent groups; [38, Prop. 2.3.8]). Let𝐺 be a Σ-profinite
group.

(1) 𝐺 is pronilpotent if and only if 𝐺 contains a unique 𝓁-Sylow subgroup 𝐺𝓁 ⊂ 𝐺 for each prime
𝓁∊ Σ.

(2) If 𝐺 is pronilpotent, then 𝐺 ≅
∏

𝓁∊Σ 𝐺𝓁.

1.6.8 Remark. In [38, Prop. 2.3.8], Theorem 1.6.7 is only formulated in the case that Σ = 𝜋
is the set of all prime numbers. The Σ-profinite version is an immediate consequence of this
version.

Nilpotent (Σ-finite) anima

In this section, we collect some results concerning nilpotent (Σ-finite) anima. A key advantage
of working with nilpotent instead of simple/simply connected anima is that they are stable
under finite limits (Lemma 1.6.12). This allows us to define a nilpotent completion functor on
profinite anima. We furthermore prove a homotopy-theoretic analogue of Theorem 1.6.7 (see
Theorem 1.6.22 — Theorem C of the introduction).
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1.6.9 Recollection (𝜋1↷𝜋𝑛). Let𝐾 be an anima with basepoint 𝑥. Recall that there is a natural
action of π1(𝐾, 𝑥) on the homotopy groups π𝑛(𝐾, 𝑥), 𝑛 ≥ 1. Indeed, π1(𝐾, 𝑥) acts naturally on
itself by conjugation. One way to see the action on higher homotopy groups is via the universal
cover τ≥1 𝐾 of 𝐾. This sits in a fibre sequence

τ≥1 𝐾 𝐾

∗ Bπ≤1(𝐾),

⌟

𝑥

where 𝜋≤1(𝐾) denotes the fundamental groupoid of 𝐾. One has π𝑛(τ≥1 𝐾) = π𝑛(𝐾, 𝑥) for 𝑛 ≥ 2
and π1(𝐾, 𝑥) = π1(Bπ≤1(𝐾), 𝑥) naturally acts on the fibre τ≥1 𝐾 (by the classical version of
Theorem 1.5.3). Since τ≥1 𝐾 is simply connected, this actions induces an action on π𝑛(𝐾, 𝑥) as
desired.

1.6.10 Definition (nilpotent anima). Let 𝐾 be an anima.

(a) 𝐾 is said to be nilpotent if it is connected and if for any basepoint 𝑥 ∊ 𝐾, the action of
π1(𝐾, 𝑥) on π𝑛(𝐾, 𝑥) is nilpotent for all 𝑛 ≥ 1 (in the sense of Recollection 1.6.1).

(b) 𝐾 is said to be componentwise nilpotent if every connected component 𝐾𝛼 of 𝐾 is nilpotent.

(c) The full subcategory of 𝐀𝐧𝐢 determined by the componentwise nilpotent anima is denoted
by 𝐀𝐧𝐢nil.

There are plenty of nilpotent anima:

1.6.11 Example. Let 𝑝 be a prime number.

(1) Any simply connected anima is nilpotent.

(2) More generally, any simple anima (i.e. any connected anima 𝐾 such that the action of π1(𝐾)
on π𝑛(𝐾) is trivial for all 𝑛 ≥ 1) is nilpotent.

(3) Any 𝑝-finite anima is componentwise nilpotent, as follows from Proposition 1.6.4.

A huge technical advantage of allowing nilpotent anima in comparison of restricting oneself
to simply connected anima are good categorical closure properties shared by the former but not
the latter:

1.6.12 Lemma. The subcategory 𝐀𝐧𝐢nil ⊂ 𝐀𝐧𝐢 is stable under finite limits.

Proof. It suffices to show that 𝐀𝐧𝐢nil ⊂ 𝐀𝐧𝐢 is stable under finite products and fibre products.
That it is stable under finite products follows immediately from its group-theoretic counterpart
Lemma 1.6.5.

Stability under pullbacks is for example proven in [27, Proposition 4.4.3] for 𝒞 = 𝐀𝐛 or also
[10, Lemma 7.1].

A characterization of nilpotent Σ-finite anima

The goal of this subsection is to show that nilpotent Σ-finite anima split as the product of their 𝑝-
profinite completions, see Theorem 1.6.16. This is deduced from the classical arithmetic fracture
square after comparing our 𝑝-profinite completion (−)∧𝑝 to the Bousfield-Kan 𝑝-completion
F𝑝∞(−).
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1.6.13 Notation. We write F𝑝∞(−) for the Bousfield-Kan mod 𝑝 completion functor, i.e. what
Bousfield and Kan in [BK] denote by 𝑅∞(−) for 𝑅 = F𝑝. Note that, in [BK], they use the notation
Z𝑝 to denote F𝑝.

1.6.14 Lemma. Let 𝐾 be a connected 𝜋-finite anima and 𝑝 a prime number.

(1) The Bousfield-Kan 𝑝-completion F𝑝∞ 𝐾 is 𝑝-finite.

(2) The canonical map 𝐾∧
𝑝 → F𝑝∞ 𝐾 induced by 𝐾 → F𝑝∞ 𝐾 is an equivalence.

Proof.

(1) This is shown in [BK, VII.4.3 (i)].

(2) By (1), Proposition 1.4.6 and Theorem 1.4.1, it is enough to show that 𝐾 → F𝑝∞ 𝐾 is an F𝑝-
equivalence. This is an immediate consequence of the universal property of Bousfield-Kan
𝑝-completion for “𝑝-good” anima [BK, VII.2.1] and the fact that 𝜋-finite anima are 𝑝-good
[BK, VII.4.3 (iii)].

1.6.15 Corollary. Let 𝐾 be a 𝜋-finite anima and 𝑝 a prime number. Then 𝐾∧
𝑝 is 𝑝-finite.

Proof. Wemay assume 𝐾 to be connected. The result then follows by combining (1) and (2) of
Lemma 1.6.14.

1.6.16 Theorem. The following are equivalent for a connected Σ-finite anima 𝐾:

(1) 𝐾 is nilpotent.

(2) The canonical map 𝐾 →
∏

𝓁∊Σ 𝐾
∧
𝓁 is an equivalence.

Proof. Since 𝐾 is Σ-finite, so is
∏

𝓁∊Σ F𝓁∞ 𝐾 =
∏

𝓁∊Σ 𝐾
∧
𝓁 as is seen by combining Lemma 1.6.14

and Corollary 1.4.2. So, in virtue of Corollary 1.3.19, both 𝐾 and
∏

𝓁∊Σ 𝐾
∧
𝓁 have vanishing Q-

cohomology. Therefore (1) implies (2) by the classical arithmetic fracture square [BK, VI.8.1].
Combining Example 1.6.11 (3), Lemma 1.6.12 and Corollary 1.6.15, we see that also (2) implies
(1).

Nilpotent Σ-profinite anima

By now, it should come as no surprise that we extend the notion of nilpotency into the world of
profinite homotopy theory along cofiltered limits. We again fix a nonempty set of primes Σ.

1.6.17 Definition (nilpotent Σ-profinite anima). Let 𝐾 a Σ-profinite anima.

(a) 𝐾 is said to be (pro-)nilpotent if it can be written as a formal cofiltered limit 𝐾 = «lim»𝛼 𝐾𝛼
with 𝐾𝛼 componentwise nilpotent and Σ-finite.

(b) Wewrite𝐀𝐧𝐢∧Σ-nil ∶= Pro(𝐀𝐧𝐢Σ-nil) ⊂ 𝐀𝐧𝐢∧Σ for the full subcategory spanned by the nilpotent
Σ-profinite anima.

1.6.18 Lemma (nilpotent completion).

(1) The full subcategory 𝐀𝐧𝐢Σ-nil ⊂ 𝐀𝐧𝐢Σ is stable under finite limits.
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(2) The inclusion 𝐀𝐧𝐢∧Σ-nil ⊂ 𝐀𝐧𝐢∧Σ admits a left adjoint

(−)∧nil ∶ 𝐀𝐧𝐢
∧
Σ → 𝐀𝐧𝐢∧Σ-nil.

Moreover, under the identifications Pro(−) ≃ Funlex(−,𝐀𝐧𝐢)op of Theorem 1.1.10, (−)∧nil cor-
responds to precomposition with the inclusion 𝐀𝐧𝐢Σ-nil ⊂ 𝐀𝐧𝐢Σ.

Proof.

(1) This is an immediate consequence of the fact that 𝐀𝐧𝐢Σ ⊂ 𝐀𝐧𝐢 as well as 𝐀𝐧𝐢nil ⊂ 𝐀𝐧𝐢
are stable under finite limits, as was proven in Proposition 1.2.12 (1) and Lemma 1.6.12,
respectively.

(2) In virtue of Theorem 1.1.13, this is a formal consequence of (1).

1.6.19 Notation. We also write (−)∧Σ-nil for the compositions

𝐀𝐧𝐢∧𝜋
(−)∧Σ,,,,→ 𝐀𝐧𝐢∧Σ

(−)∧nil,,,,,→ 𝐀𝐧𝐢∧Σ-nil as well as Pro(𝐀𝐧𝐢)
(−)∧𝜋,,,,→ 𝐀𝐧𝐢∧𝜋

(−)∧Σ-nil,,,,,,→ 𝐀𝐧𝐢∧Σ-nil.

and we call 𝐾∧
Σ-nil the Σ-nilpotent completion of the pro(-finite) anima 𝐾. Since adjoints com-

pose, these (−)∧Σ-nil are left adjoint to the inclusion 𝐀𝐧𝐢
∧
Σ-nil ⊂ 𝐀𝐧𝐢∧𝜋 and 𝐀𝐧𝐢

∧
Σ-nil ⊂ Pro(𝐀𝐧𝐢),

respectively.

1.6.20 Remark. Fix a nonempty set of primes Σ.

(1) Since the diagram
𝐀𝐧𝐢Σ

𝐀𝐧𝐢Σ-nil 𝐀𝐧𝐢𝜋

𝐀𝐧𝐢𝜋,nil

⊂

⊂

⊂

⊂

of inclusions of full subcategories, that all are stable under finite limits, commutes, so does
the corresponding diagram

𝐀𝐧𝐢∧Σ

𝐀𝐧𝐢∧𝜋 𝐀𝐧𝐢∧Σ-nil

𝐀𝐧𝐢∧𝜋,nil

(−)∧nil

(−)∧nil

(−)∧Σ

(−)∧Σ

of left adjoints by uniqueness of adjoints. In other words, in order to form the Σ-nilpotent
completion 𝐾∧

Σ-nil of a profinite anima 𝐾, it does not matter whether one first Σ-profinitely
and then nilpotently completes 𝐾 or the other way around.

(2) Specialising to Σ = {𝑝}, we furthermore observe the following:

(a) By Example 1.6.11 (3), the inclusion 𝐀𝐧𝐢𝑝-nil ⊂ 𝐀𝐧𝐢𝑝 is an equivalence. That is: All
𝑝-profinite anima 𝐾 are automatically nilpotent, the canonical map 𝐾 → 𝐾∧

nil is an
equivalence.
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(b) In particular, we see that for all profinite anima 𝐾 the canonical map

𝐾∧
𝑝 → (𝐾∧

nil)
∧
𝑝

is an equivalence of 𝑝-profinite anima.

(3) An immediate consequence of the last observation is that, for any profinite anima 𝐾, the
canonical map

𝐾 → 𝐾∧
nil

is an F𝑝-equivalence for every prime 𝑝.

(4) More generally, 𝐾 → 𝐾∧
Σ-nil is an F𝑝-equivalence for every prime 𝑝 ∊ Σ.

A big class of examples of nilpotent profinite anima are given by simply connected ones:

1.6.21 Lemma. Simply connected profinite anima are nilpotent.

Proof. Let 𝐾 be any simply connected profinite anima. Then, according to Lemma 1.3.8, we
can write 𝐾 = «lim»𝛼 𝐾𝛼 with each 𝐾𝛼 being 𝜋-finite and simply connected. But since, by
Example 1.6.11, simply connected anima are nilpotent, each 𝐾𝛼 is nilpotent, hence so is 𝐾.

Finally, we are able to prove a homotopy-theoretic analogue of Theorem 1.6.7 :

1.6.22 Theorem (characterization of nilpotent Σ-profinite anima, Theorem C). The following
are equivalent for a connected Σ-profinite anima 𝐾:

(1) 𝐾 is nilpotent.

(2) The canonical map 𝐾 →
∏

𝓁∊Σ 𝐾
∧
𝓁 is an equivalence of Σ-profinite anima.

Proof. Write 𝐾 = «lim»𝛼 𝐾𝛼 for connected Σ-finite anima 𝐾𝛼.
We first prove that (1) implies (2). If 𝐾 is nilpotent, we may assume all the 𝐾𝛼 to be nilpotent.

Then 𝐾𝛼 ≃
∏

𝓁∊Σ(𝐾𝛼)
∧
𝓁 by Theorem 1.6.16, hence

𝐾 ≃ «lim»𝛼 𝐾𝛼
≃ lim𝛼

∏

𝓁∊Σ
(𝐾𝛼)∧𝓁

≃
∏

𝓁∊Σ
lim𝛼(𝐾𝛼)∧𝓁

≃
∏

𝓁∊Σ
«lim»𝛼(𝐾𝛼)∧𝓁

≃
∏

𝓁∊Σ
𝐾∧
𝓁 ,

where the second to last equivalence holds in virtue of Corollary 1.6.15.
We now prove that also (2) implies (1). Using Corollary 1.3.18 and Corollary 1.6.15, we see

that the canonical map
𝐾 →

∏

𝓁∊Σ
𝐾∧
𝓁
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is given as «lim»𝛼(𝐾𝛼 →
∏

𝓁∊Σ(𝐾𝛼)
∧
𝓁). Since this is an equivalence, we may pass to a cofinal

subset {𝛽} ⊂ {𝛼} such that each map

𝐾𝛽 →
∏

𝓁∊Σ
(𝐾𝛽)∧𝓁

is an equivalence of connected Σ-finite anima. Theorem 1.6.16 now shows that each 𝐾𝛽 is nilpo-
tent, hence so is 𝐾 = «lim»𝛽 𝐾𝛽 .

As a corollary, we obtain an alternative and very simple description of (−)∧Σ-nil:

1.6.23 Corollary. Let 𝐾 be a connected profinite anima. Then the canonical map

𝐾∧
Σ-nil →

∏

𝓁∊Σ
𝐾∧
𝓁

is an equivalence.

Proof. Since 𝐾∧
Σ-nil is a connected and nilpotent Σ-profinite anima, Theorem 1.6.22 implies that

the canonical map
𝐾∧
Σ-nil →

∏

𝓁∊Σ
(𝐾∧

Σ-nil)
∧
𝓁

is an equivalence. The result thus immediately follows from Remark 1.6.20 (4).

Exactness properties of Σ-nilpotent completion

In this section, we record some exactness properties of the Σ-nilpotent completion functor just
as we did for 𝑝-profinite completion. The proofs are essentially the same.

1.6.24 Lemma. The Σ-nilpotent completion functor (−)∧Σ-nil ∶ 𝐀𝐧𝐢 ⊂ Pro(𝐀𝐧𝐢) → 𝐀𝐧𝐢∧Σ-nil pre-
serves finite coproducts.

Proof. Let 𝐾𝑖 , 𝑖 = 1, … , 𝑛 be a finite family of anima. Then ⨿𝑖(𝐾𝑖)∧Σ-nil exists and is given by the
levelwise coproduct. For any componentwise nilpotent Σ-finite anima 𝐿, we have

map(⨿𝑖(𝐾𝑖)∧Σ-nil, 𝐿) ≃ Π𝑖map((𝐾𝑖)∧Σ-nil, 𝐿)
≃ Π𝑖map(𝐾𝑖 , 𝐿)
≃ map(⨿𝑖𝐾𝑖 , 𝐿)

and the result follows from the Yoneda lemma.

1.6.25 Corollary. Let𝐾 be an anima. If π0 𝐾 is finite, the unit map𝐾 → |𝐾∧
Σ-nil| induces a bijection

π0 𝐾 = π0 𝐾∧
Σ-nil. If 𝐾 is moreover 0-truncated, so is |𝐾∧

Σ-nil|.

Proof. By Lemma 1.6.24, it suffices to see that π̂0 ∶ 𝐀𝐧𝐢
∧
𝜋 → 𝐒𝐞𝐭 preserves finite coproducts. But

as π̂0 = π0 ◦|−|, this follows from the fact that |−| preserves finite coproducts [SAG, E.4.4.4]. If
𝐾 is moreover 0-truncated, it is a finite set and hence 𝐾 ∊ 𝐀𝐧𝐢Σ-nil so that 𝐾∧

Σ-nil = 𝐾.

1.6.26 Corollary. Let 𝐾 be a profinite anima.

(1) The unit map 𝐾 → 𝐾∧
Σ-nil induces a bijection π̂0 𝐾 = π̂0 𝐾∧

Σ-nil.
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(2) If 𝐾 is 0-truncated, so is 𝐾∧
Σ-nil, i.e. 𝐾

∧
Σ-nil = 𝐾 in this case.

Proof. Since both π̂0(−) and (−)∧Σ-nil preserve cofiltered limits, we may assume 𝐾 to be 𝜋-finite.
Now apply Corollary 1.6.25.

Finally, we deduce that Σ-nilpotent completion is symmetric monoidal:

1.6.27 Proposition. The functor (𝐀𝐧𝐢∧𝜋)× → (𝐀𝐧𝐢∧Σ)×, 𝐾 ↦ 𝐾∧
Σ-nil is symmetric monoidal.

Proof. We need to show that, given two profinite anima 𝐾 and 𝐿, the canonical map

(𝐾 × 𝐿)∧Σ-nil → 𝐾∧
Σ-nil × 𝐿

∧
Σ-nil

is an equivalence. Since both sides are compatible with cofiltered limits, we may assume 𝐾 and
𝐿 to be 𝜋-finite. As 𝐾 and 𝐿 now also only have finitely many connected components, we may
furthermore assume both to be connected. Using Corollary 1.6.23, we are reduced to showing
that ∏

𝓁∊Σ
(𝐾 × 𝐿)∧𝓁 →

∏

𝓁∊Σ
𝐾∧
𝓁 ×

∏

𝓁∊Σ
𝐿∧𝓁 ≃

∏

𝓁∊Σ
(𝐾∧

𝓁 × 𝐿
∧
𝓁)

is an equivalence in this case. This is an immediate consequence of Corollary 1.4.11 though.

1.7 The Sullivan Conjecture
To conclude this section, we state Lurie’s version of the Sullivan Conjecture as proven in his
course [SC, Lecture 30: Theorem 4].

1.7.1 Theorem (Sullivan Conjecture). Let𝐺 be a finite 𝑝-group and𝐾 a finite-dimensional𝐺-CW
complex. Then the composite map

(𝐾𝐺)∧𝑝 → (𝐾h𝐺)∧𝑝 → (𝐾∧
𝑝 )h𝐺

is an equivalence of 𝑝-profinite anima.

1.7.2 Remark.

(1) The map (𝐾𝐺)∧𝑝 → (𝐾h𝐺)∧𝑝 is obtained by applying (−)∧𝑝 to the canonical map 𝐾𝐺 → 𝐾h𝐺

comparing the (1-categorical) limit to the homotopy limit.

(2) The map (𝐾h𝐺)∧𝑝 → (𝐾∧
𝑝 )h𝐺 is obtained as follows: The unit map 𝐾 → |𝐾∧

𝑝 | is 𝐺-equivariant
and therefore induces a map 𝐾h𝐺 → |𝐾∧

𝑝 |h𝐺 ≃ |(𝐾∧
𝑝 )h𝐺|. Since (−)∧𝑝 is left adjoint to |−|,

this determines a map (𝐾h𝐺)∧𝑝 → (𝐾∧
𝑝 )h𝐺 .

2 Higher-dimensional generalisations of the Section Con-
jecture

In this section, we discuss a generalisation of Grothendieck’s Section Conjecture to schemes that
are not of type K(𝜋, 1). In this generality, one has to utilise the full (profinite) étale homotopy
typeΠét

∞(𝑋), which we will briefly recall in (§2.1). We discuss the generalised Section Conjecture
and its real variant in (§2.2). Finally, in (§2.3), we discuss the pro-𝓁 variant of the generalised
Section Conjecture.
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2.1 The étale homotopy type
One major technical advantage of working with∞-categories when developing étale homotopy
theory is that the étale homotopy type Πét

∞(𝑋) is uniquely determined in terms of a universal
property. In order to make this precise, let us first discuss the∞-categorical version of the étale
topos of 𝑋.

The étale∞-topos of a scheme

First, we recall the definition of an étale sheaf in the language of∞-categories:

2.1.1 Recollection (étale sheaves, [SAG, §A.3.3]). Let 𝑋 be a qcqs scheme and denote by 𝑋ét

its (classical, 1-categorical) small étale site. Let 𝒞 be any∞-category.

(a) Recall that a functor 𝐹∶ 𝑋ét,op → 𝒞 is an étale sheaf on 𝑋 with values in 𝒞 if the following
two conditions are satisfied:

(1) The functor 𝐹 preserves finite products.

(2) Let𝑓∶ 𝑈0 ↠ 𝑌 be an étale surjection and let𝑈∙ be aČech nerve of𝑓 (see [HTT, §6.1.2]),
regarded as an augmented simplicial object of 𝑋ét. Then the composite map

𝚫+
𝑈∙,,→ 𝑋ét,op 𝐹

,→ 𝒞

is a limit diagram, i.e.

𝐹(𝑌) ≃ lim
(
𝐹(𝑈0) 𝐹(𝑈0 ×𝑌 𝑈0) …

)
.

(b) The∞-category of 𝒞-valued étale sheaves on 𝑋, denoted by Shét(𝑋, 𝒞) = Sh(𝑋ét, 𝒞), is the
full subcategory of Fun(𝑋ét,op, 𝒞) spanned by the étale sheaves.

Plugging in 𝒞 = 𝐀𝐧𝐢 in the above, we arrive at the étale∞-topos of 𝑋:

2.1.2 Definition (étale∞-topos). Let 𝑋 be a qcqs scheme. The∞-category 𝑋ét ∶= Shét(𝑋,𝐀𝐧𝐢)
of 𝐀𝐧𝐢-valued sheaves for the étale topology on 𝑋 is called the étale∞-topos of 𝑋.

We of course have an analogue of global sections and constant sheaves:

2.1.3 Notation (global sections). The global sections functor

Γ𝑋,∗ ∶= Γét(𝑋, −)∶ 𝑋ét → 𝐀𝐧𝐢, 𝐹 ↦ 𝐹(𝑋)

admits a left-exact left adjoint Γ∗𝑋 ∶ 𝐀𝐧𝐢 → 𝑋ét that carries an anima 𝐾 to the constant sheaf on
𝑋 (with value 𝐾). The adjunction Γ∗𝑋 ⊣ Γ𝑋,∗ determines a geometric morphism 𝑋ét → 𝐀𝐧𝐢 of
∞-topoi (which is essentially unique since 𝐀𝐧𝐢 is the terminal∞-topos).

2.1.4. We refer the reader to [HTT, §6] and [SAG, §A.3] for an overview of the theory of∞-topoi
and sheaves.

With these notations in place, we are now able to give a concise definition of the étale homo-
topy type in terms of a universal property:

2.1.5 Definition (étale homotopy type). The (profinite) étale homotopy type of a qcqs scheme 𝑋
is the profinite anima Πét

∞(𝑋) prorepresenting the functor 𝐀𝐧𝐢𝜋 → 𝐀𝐧𝐢, 𝐾 ↦ Γét(𝑋, Γ∗𝑋𝐾).
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2.1.6 Remark.

(a) Since the functor 𝐀𝐧𝐢𝜋 → 𝐀𝐧𝐢, 𝐾 ↦ Γét(𝑋, Γ∗𝑋𝐾) is left exact, there exists some Π
ét
∞(𝑋)

prorepresenting it by Theorem 1.1.10 (2).

(b) By unwinding the definition, we see that Πét
∞(𝑋) is a profinite anima equipped with an

identification
map(Πét

∞(𝑋), 𝐾) ≃ Γét(𝑋, Γ∗𝑋𝐾)
that is functorial in 𝐾 ∊ 𝐀𝐧𝐢𝜋.

To close this section, let us give some motivation for the above definition of the étale homo-
topy type.

2.1.7 Remark. Let 𝑛 ∊ N and let 𝐺 be a finite (abelian if 𝑛 ≥ 2) group.

(a) By [HTT, §7.2.2.17], there is a natural identification

H𝑛
ét(𝑋; 𝐺) = π0 Γ∗(𝑋ét, Γ∗ K(𝐺, 𝑛)).

Combining this with the universal property of Πét
∞(𝑋) as well as representability of coho-

mology (Theorem 1.3.14 and its non-abelian variant for 𝑛 = 1), we see that

H𝑛(Πét
∞(𝑋); 𝐺) = π0map(Πét

∞(𝑋), K(𝐺, 𝑛))
= π0 Γ∗(𝑋ét, Γ∗ K(𝐺, 𝑛))
= H𝑛

ét(𝑋; 𝐺).

This in particular shows that Πét
∞(𝑋) satisfies Desideratum 0.17:

One recovers the π1-statement by observing that H
1
ét(𝑋; 𝐺) classifies étale 𝐺-torsors on 𝑋.

(b) Given a group 𝐺 acting on an abelian group 𝐴, there is a twisted variant K(𝐺 ↷𝐴, 𝑛) of
Eilenberg–MacLane anima that satisfy:

(1) One has that π𝑘 𝐾(𝐺↷𝐴, 𝑛) =
⎧

⎨
⎩

𝐺, 𝑘 = 1,
𝐴, 𝑘 = 𝑛,
0, otherwise.

(2) The action of 𝐺 = π1 𝐾(𝐺↷𝐴, 𝑛) on 𝐴 = π𝑛 K(𝐺↷𝐴, 𝑛) precisely recovers the action
of 𝐺 on 𝐴 one started with.

These twisted Eilenberg–MacLane anima can be used to represent cohomology of local
coeffiecient systems. One can leverage this to show that Πét

∞(𝑋) similarly recovers the étale
cohomology of 𝑋 with respect to local systems of finite abelian groups.

(c) Moreover, by strengthening Desideratum 0.17 to incorporate cohomology of local systems,
one can actually realize these desiderata as a “homotopical representability criterion” that
precisely boils down to the universal property of Πét

∞(𝑋), as follows:

(1) Instead of asking for a comparison of cohomology, one should ask for a comparison of
the form

map(Πét
∞(𝑋), −) ≃ Γ∗(𝑋ét, Γ∗−)

for all 𝜋-finite twisted Eilenberg–MacLane anima.
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(2) Using Postnikov towers, one can see that 𝐀𝐧𝐢𝜋 ⊂ 𝐀𝐧𝐢 is the smallest subcategory of
𝐀𝐧𝐢 containing all 𝜋-finite (twisted) Eilenberg–MacLane anima that is closed under
finite disjoint unions as well as finite limits. Since both

map(Πét
∞(𝑋), −) and Γ∗(𝑋ét, Γ∗−)

are compatible with these constructions, we arrive at the universal property of Defini-
tion 2.1.5.

Definition via shape theory

In this section, we explain how our definition of the étale homotopy type Πét
∞(𝑋) fits together

with the definition via Lurie’s shape theory, which is nowadays mostly used to define Πét
∞(𝑋).

2.1.8 Recollection (shape of an∞-topos). Write 𝐑𝐓𝐨𝐩∞ for the∞-category of∞-topoi and
(right adjoints in) geometric morphisms. The shape is a left adjoint functor Π∞ ∶ 𝐑𝐓𝐨𝐩∞ →
Pro(𝐀𝐧𝐢) admitting the following explicit description:

(a) Given an∞-topos𝒳, the shape Π∞(𝒳) ∊ Pro(𝐀𝐧𝐢) prorepresents the left exact functor

𝐀𝐧𝐢 → 𝐀𝐧𝐢, 𝐾 ↦ Γ∗(𝒳, Γ∗𝒳𝐾)

(see Theorem 1.1.13).

(b) Given a geometric morphism of ∞-topoi 𝑓∗ ∶ 𝒴 → 𝒳 with unit 𝑢∶ id𝒴 → 𝑓∗◦𝑓∗, the
induced map Π∞(𝒴) → Π∞(𝒳) corresponds to the map

Γ𝒳,∗ 𝑢 Γ∗𝒳 ∶ Γ𝒳,∗Γ
∗
𝒳 → Γ𝒳,∗𝑓∗𝑓∗Γ∗𝒳 ≃ Γ𝒴,∗Γ∗𝒴

in Pro(𝐀𝐧𝐢)op ⊂ Fun(𝐀𝐧𝐢, 𝐀𝐧𝐢).

2.1.9 Definition (étale shape). Let 𝑋 be a qcqs scheme. The proanima Π∞(𝑋ét) is called the
étale shape of 𝑋.

2.1.10 Lemma. The profinite completionΠ∞(𝑋ét)∧𝜋 of the étale shapeΠ∞(𝑋ét) of 𝑋 is equivalent
to the étale homotopy typeΠét

∞(𝑋) in the sense of Definition 2.1.5.

Proof. The explicit description of (−)∧𝜋 ∶ Pro(𝐀𝐧𝐢) → 𝐀𝐧𝐢∧𝜋 given in Proposition 1.2.12 (2) com-
bined with the description of Π∞(𝑋ét) of Recollection 2.1.8 (1) unravel to Π∞(𝑋ét)∧𝜋 satisfying
the universal property of Πét

∞(𝑋) given in Definition 2.1.5.

In particular, we see that the assignment 𝑋 ↦ Πét
∞(𝑋) is functorial in 𝑋:

2.1.11 Corollary. The étale homotopy type defines a functor

Πét
∞(−)∶ 𝐒𝐜𝐡

qcqs → 𝐀𝐧𝐢∧𝜋, 𝑋 ↦ Πét
∞(𝑋).

Proof. Using Lemma 2.1.10, we can define Πét
∞(−)∶ 𝐒𝐜𝐡

qcqs → 𝐀𝐧𝐢∧𝜋 as the composition of
the functors 𝐒𝐜𝐡qcqs → 𝐑𝐓𝐨𝐩∞, 𝑋 ↦ 𝑋ét, Π∞ ∶ 𝐑𝐓𝐨𝐩∞ → Pro(𝐀𝐧𝐢) and (−)∧𝜋 ∶ Pro(𝐀𝐧𝐢) →
𝐀𝐧𝐢∧𝜋.
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2.1.12 Warning. Beware that many authors write Πét
∞(𝑋) for what we denote by Π∞(𝑋ét) and

instead write something like Πét
∞(𝑋)∧𝜋 or Π̂ét

∞(𝑋) for what we denote by Πét
∞(𝑋). We chose to

writeΠét
∞(𝑋) for the profinitely completed invariant since this is the only one we ever use in this

thesis.

2.1.13 Remark (comparison with Πét
AM(𝑋)).

(1) Hoyois proved in [20, Proposition 5.1] that the “protrunction” of Π∞(𝑋ét) (i.e. the pro-left
adjoint to the inclusion𝐀𝐧𝐢<∞ ⊂ 𝐀𝐧𝐢 of truncated anima into all anima) recovers Artin and
Mazur’s classical construction of the étale homotopy type introduced in [AM].

(2) Consequently, Πét
∞(𝑋) always recovers the profinitely completed étale homotopy type of

Artin andMazur. This of course also shows that our definition ofΠét
∞(𝑋) satisfies the Desider-

atum 0.17 — which should come to no surprise, given the preceeding discussions.

(3) If 𝑋 is geometrically unibranch, the protruncation of Π∞(𝑋ét) is profinite already, hence
agrees with Πét

∞(𝑋) in this case, as is shown in [AM, Theorem (11.1)]. This last statement is
equivalent to saying that the equivalence

map(Πét
∞(𝑋), 𝐾) ≃ Γ∗(𝑋ét; Γ∗𝐾)

in fact holds for all truncated anima 𝐾, not the 𝜋-finite ones only.

The fundamental fibre sequence in étale homotopy theory

2.1.14. Recall that if 𝑋 is a qcqs geometrically connected scheme over some field 𝑘, then the
choice of algebraic closure 𝑘̄ and geometric point 𝑥̄ → 𝑋𝑘̄ determines a short exact sequence

1 𝜋ét1 (𝑋𝑘̄, 𝑥̄) 𝜋ét1 (𝑋, 𝑥̄) 𝐺𝑘 1

of profinite groups, the so-called fundamental exact sequence of étale fundamental groups.

2.1.15. Moreover, it is well-known that the projection 𝑋𝑘̄ → 𝑋 induces isomorphisms

𝜋ét𝑛 (𝑋𝑘̄) → 𝜋ét𝑛 (𝑋)

for all 𝑛 ≥ 2.

In joint work with Peter J. Haine and Sebastian Wolf, we proved the following homotopy-
theoretical unification of the two preceeding phenomena:

2.1.16 Theorem (fundamental fibre sequence, [15, Corollary 0.5]). Let 𝑋 be a qcqs scheme over
a field 𝑘 with absolute Galois group 𝐺𝑘 . Then the sequence

Πét
∞(𝑋𝑘̄) → Πét

∞(𝑋) → B𝐺𝑘,

induced by the canonical maps 𝑋𝑘̄ → 𝑋 → Spec(𝑘), is a fibre sequence in 𝐀𝐧𝐢∧𝜋 .
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2.2 The generalised Section Conjecture
As explained in the introduction, it is unreasonable to expectGrothendieck’s original formulation
of the Section Conjecture to be correct for schemes that are not étale 𝐾(𝜋, 1), as 𝒮(𝜋ét1 (𝑋∕𝑘))
does not contain any information whatsoever on the higher étale homotopy of 𝑋∕𝑘.

We start this section by formulating an appropriate variant of the Section Conjecture that
remedies the above deficiency.

Setup. Throughout this section, let 𝑋 be some qcqs scheme over a field 𝑘 with algebraic closure
𝑘̄ and absolute Galois group 𝐺𝑘 ∶= Gal(𝑘̄∕𝑘).

Motivated by the fundamental fibre sequence 2.1.16, we propose to replace the set of sections
𝒮(𝜋ét1 (𝑋∕𝑘)) with the following:

2.2.1 Definition (étale sections). The set of étale sections of 𝑋 over 𝑘, denoted by 𝒮ét(𝑋∕𝑘), is
given by the set of homotopy classes of sections of Πét

∞(𝑋) → B𝐺𝑘, that is:

𝒮ét(𝑋∕𝑘) ∶= π0mapB𝐺𝑘 (B𝐺𝑘, Π
ét
∞(𝑋)).

Using the functoriality of the étale homotopy type, any 𝑘-rational point 𝑎 ∊ 𝑋(𝑘) induces a
section 𝑎∗ ∶ B𝐺𝑘 → Πét

∞(𝑋) of Πét
∞(𝑋) → B𝐺𝑘. By taking the corresponding homotopy class, we

obtain a replacement for the classical Kummer map:

2.2.2 Definition (Kummer map). The map

𝜅𝑋∕𝑘 ∶ 𝑋(𝑘) → 𝒮ét(𝑋∕𝑘), 𝑎 ↦ [𝑎∗],

is called the Kummer map of 𝑋∕𝑘.

Using these higher-dimensional replacements for 𝒮(𝜋ét1 (𝑋∕𝑘)) and the Kummer map 𝜅𝑋∕𝑘,
we obtain the desired formulation of the generalised Section Conjecture for 𝑋:

2.2.3 Conjecture (generalised Section Conjecture). The Kummer map

𝜅𝑋∕𝑘 ∶ 𝑋(𝑘) → 𝒮ét(𝑋∕𝑘)

is a bijection of sets.

Relation to the classical Section Conjecture

Conjecture 2.2.3 certainly fulfills the requirement of actually utilising all the étale homotopy-
theoretic information contained in 𝑋∕𝑘. In order for it to adequately replace Grothendieck’s
Section Conjecture, we still have to make sure that it agrees with it for étale K(𝜋, 1) schemes. To
this end, we have to understand unpointed homotopy classes of sections of classifying anima of
profinite groups.

2.2.4 Proposition. Let 𝜋′ 𝐺 𝜋
𝑝′ 𝑝

be a cospan of profinite groups with 𝑝 surjective. Then the
mapping [𝜑] ↦ [π̂1(𝜑)] defines a bijection of sets

π0mapB𝐺(B𝜋
′, B𝜋) → Hom𝐺(𝜋′, 𝜋)∆,

where ∆ ∶= 𝑝−1(C𝐺(im(𝑝′))) denotes the preimage in 𝜋 of the centraliser in 𝐺 of the image of 𝑝′
and acts via conjugation.
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Proof. We use the equivalence (𝐀𝐧𝐢∧𝜋)∕B𝐺 ≃ (𝒮̂∕B𝐺)∞ with Quick’s model category that we
already saw in Proposition 1.5.6. Since 𝜋 ↠ 𝐺 is surjective, B𝜋 → B𝐺 is a fibration in 𝒮̂ (see [35,
Corollary 2.25]). Since every object is cofibrant, we thus have

π0mapB𝐺(B𝜋
′, B𝜋) = π0𝐑map𝒮̂∕B𝐺 (B𝜋

′, B𝜋)

= π0map𝒮̂∕B𝐺 (B𝜋
′, B𝜋).

Hence two maps 𝜑0, 𝜑1 ∶ B𝜋′ → B𝜋 over B𝐺 are homotopic to each other if and only if there
exists a homotopy ℎ∶ B𝜋′ × ∆1 → B𝜋 over B𝐺 such that the diagram

B𝜋′ × {0}

B𝜋′ × ∆1 B𝜋

B𝜋′ × {1}

𝜑0

ℎ

𝜑1

commutes. Such a homotopy corresponds to a continuous natural transformation ℎ∶ 𝜑0 ⇒ 𝜑1 of
maps of profinite 1-groupoids such that the whisker fulfills 𝑝◦ℎ = id𝑝′ (observe that the category
of profinite 1-groupoids embeds fully faithfully into 𝒮̂ via the “usual” nerve construction). Write
𝑐𝑔 ∶ 𝐺 → 𝐺 for the conjugation by 𝑔. The choice of such a continuous natural transformation
boils down to the choice of an element 𝛾 ∊ 𝜋 with the properties that:
(1) For all 𝜎 ∊ 𝜋′ the diagram

∗ ∗

∗ ∗
𝛾

𝜑0(𝜎)

𝛾

𝜑1(𝜎)

commutes, i.e. 𝜑0 = 𝑐𝛾◦ 𝜑1 (naturality of ℎ).

(2) For all 𝜎 ∊ 𝜋′ the diagram

∗ ∗

∗ ∗
𝑝(𝛾)

𝑝′(𝜎)

𝑝(𝛾)

𝑝′(𝜎)

commutes, i.e. 𝑝(𝛾) ∊ C𝐺(im(𝑝′)) (since 𝑝◦ℎ = id𝑝′).
2.2.5 Remark. The notion of “profinite 1-groupoid” being used in the proof of Proposition 2.2.4
is to be understood as “groupoid object in the category of profinite sets”.

The bridge between the generalised Section Conjecture 2.2.3 and Grothendieck’s Section
Conjecture 0.7 is completed by the following group-theoretic observation:

2.2.6 Lemma. Let 1 𝜋̄ 𝜋 𝐺 1
𝑝

be a short exact sequence of profinite groups and write
∆ ∶= 𝑝−1(C(𝐺)). Then the canonical quotient map

𝒮(𝜋 ↠ 𝐺) = Hom𝐺(𝐺, 𝜋)𝜋̄ ↠ Hom𝐺(𝐺, 𝜋)∆, [𝑠]𝜋̄ ↦ [𝑠]∆
is a bijection.
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Proof. We obtain the quotient map since 𝜋̄ ⊂ ∆. To prove bijectivity, let 𝑠0 and 𝑠1 be sections of
𝑝 such that there exists some 𝜎 ∊ ∆ satisfying 𝑠0 = 𝜎 ⋅ 𝑠1 ⋅ 𝜎−1. We then have to show that there
exists some 𝜎̄ ∊ 𝜋̄ with the same property. To this end, observe that 𝜎̄ ∶= 𝑠0(𝑝(𝜎−1)) ⋅ 𝜎 lies in 𝜋̄
and satisfies

𝜎̄ ⋅ 𝑠1 ⋅ 𝜎̄−1 = 𝑠0(𝑝(𝜎−1)) ⋅ (𝜎 ⋅ 𝑠1 ⋅ 𝜎−1) ⋅ 𝑠0(𝑝(𝜎))
= 𝑠0(𝑝(𝜎−1)) ⋅ 𝑠0 ⋅ 𝑠0(𝑝(𝜎))
= 𝑠0◦ 𝑐𝑝(𝜎−1)
= 𝑠0,

where the last equality holds since 𝑝(𝜎−1) ∊ C(𝐺) by assumption.

Combining Proposition 2.2.4 with Lemma 2.2.6, we conclude:

2.2.7 Corollary. Let 𝑋 be a qcqs étale K(𝜋, 1) scheme over 𝑘. Then the mapping [𝑠] ↦ [𝜋ét1 (𝑠)]
defines a bijection of sets

𝒮ét(𝑋∕𝑘)⟶ 𝒮(𝜋ét1 (𝑋∕𝑘)).
In particular, Conjecture 2.2.3 precisely recovers Grothendieck’s Section Conjecture 0.7 in this case.

The generalised real Section Conjecture

When working over 𝑘 = R, injectivity of the (classical) Kummer map ceases to hold. Instead,
two points 𝑎, 𝑏 ∊ 𝑋(R) induce the same section if and only if they lie in the same connected
component of the underlying real analytification of 𝑋.

2.2.8 Notation. By abuse of notation, we write 𝑋(R) for the real analytification of 𝑋. Similarly,
we write 𝑋(C) for the complex analytification of 𝑋.

The real Section Conjecture thus becomes:

2.2.9 Conjecture (real Section Conjecture). Let 𝑋 be a smooth projective curve of genus 𝑔 ≥ 2
overR. Then the Kummer map 𝜅𝑋∕R induces a bijection

π0 𝑋(R) → 𝒮(𝜋ét1 (𝑋∕R)).

2.2.10 Remark. As mentioned in the introduction, there are several proofs of the above real
Section Conjecture 2.2.9 by now.

Consequently, one would expect the correct generalised real Section Conjecture to be the
following:

2.2.11 Conjecture (generalised real Section Conjecture). The Kummer map 𝜅𝑋∕R induces a
bijection

π0 𝑋(R) → 𝒮ét(𝑋∕R).

2.3 Σ-nilpotent étale sections
In this section we turn our attention to a pro-𝓁 version of Grothendieck’s Section Conjecture
0.7. First, we recall the group-theoretic construction of the set 𝒮(𝜋ét1 (𝑋∕𝑘)

∧Σ-nil) of geometrically
Σ-nilpotent sections. We then introduce a homotopy-theoretic analogue of this construction to
obtain the set of higher-dimensional Σ-nilpotent étale sections 𝒮étΣ-nil(𝑋∕𝑘) of 𝑋∕𝑘 and show that
𝒮étΣ-nil(𝑋∕𝑘) recovers 𝒮(𝜋

ét
1 (𝑋∕𝑘)

∧Σ-nil) in the case of hyperbolic curves. Specialising to Σ = {𝓁},
we obtain the desired pro-𝓁 version.
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Group-theoretic geometrically Σ-nilpotent sections

Before defining higher-dimensional Σ-nilpotent sections, we first recall the classical ones in this
section. A thorough reference for the contents of this section is [43, §14].

2.3.1 Construction. Let 1 𝜋̄ 𝜋 𝐺 1 be a short exact sequence of profinite groups.
Pushing out along 𝜋̄ ↠ 𝜋̄∧Σ-nil =

∏
𝓁∊Σ 𝜋̄

∧𝓁, we obtain an induced short exact sequence

1 𝜋̄∧Σ-nil 𝜋∧(Σ-nil) 𝐺 1,

where 𝜋∧(Σ-nil) = 𝜋 ∗𝜋̄ 𝜋̄∧Σ-nil, together with a map

1 𝜋̄ 𝜋 𝐺 1

1 𝜋̄∧Σ-nil 𝜋∧(Σ-nil) 𝐺 1
=⌜

of short exact sequences.

2.3.2 Definition (Σ-nilpotent 𝜋ét1 -sections). Let 𝑋 be a qcqs geometrically connected scheme
over a field 𝑘 with absolute Galois group 𝐺𝑘. The set of Σ-nilpotent 𝜋ét1 -sections, denoted by
𝒮(𝜋ét1 (𝑋∕𝑘)

∧Σ-nil), is the set of sections of the short exact sequence

1 𝜋ét1 (𝑋𝑘̄)
∧Σ-nil 𝜋ét1 (𝑋)

∧(Σ-nil) 𝐺𝑘 1.

The map of short exact sequences of 2.3.1 induces a map 𝒮(𝜋ét1 (𝑋∕𝑘)) → 𝒮(𝜋ét1 (𝑋∕𝑘)
∧Σ-nil).

2.3.3 Remark.

(1) Usually, one only considers a “Σ-nilpotent Section Conjecture” in the case where Σ = {𝓁}
consists of a single prime. In this case, one simply says pro-𝓁 section (resp. Section Conjecture)
instead of 𝓁-nilpotent section (resp. Section Conjecture).

(2) The reason for this is that the product decomposition 𝜋̄∧Σ-nil =
∏

𝓁∊Σ 𝜋̄
∧𝓁 of Theorem 1.6.7

induces a decomposition

𝒮(𝜋∧(Σ-nil) ↠ 𝐺) =
∏

𝓁∊Σ
𝒮(𝜋∧(𝓁) ↠ 𝐺).

Therefore, two different points 𝑎, 𝑏 ∊ 𝑋(𝑘) give rise to a plethora of group-theoretic sections
by choosing one prime 𝑝 ∊ Σ and considering e.g. (𝑠𝓁)𝓁∊Σ ∊ 𝒮(𝜋ét1 (𝑋∕𝑘)

∧Σ-nil) determined
by

𝑠𝓁 = {
𝜅𝑋∕𝑘(𝑏)∧𝑝, 𝓁 = 𝑝,
𝜅𝑋∕𝑘(𝑎)∧𝓁, otherwise.

(3) Unfortunately, even the pro-𝓁 SectionConjecture generally ceases to hold, aswas first proven
byHoshi, see [19, TheoremA]. However, the counterexamples produced byHoshi seem to be
of a very specific nature. There is a slightly weaker version of the pro-𝓁 Section Conjecture
that throws out Hoshi’s counterexamples by requiring every hyperbolic curve to admit a
finite étale cover satisfying the pro-𝓁 Section Conjecture, see [43, Question 221].

(4) Over 𝑘 = R, the pro-2 Section Conjecture in fact holds, as was first proven by Wickelgren in
[46].
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Σ-nilpotent étale sections for higher-dimensional varieties

We now turn our attention to formulating a higher-dimensional variant of the above. This boils
down to finding a homotopy-theoretic analogue of Construction 2.3.1 and applying it to the
fundamental fibre sequence

Πét
∞(𝑋𝑘̄) → Πét

∞(𝑋) → B𝐺𝑘,

resulting in a definition of Σ-nilpotent étale sections 𝒮étΣ-nil(𝑋∕𝑘), see Definition 2.3.6.

Setup. Let 𝑘 be a field and𝑋 a qcqs scheme over 𝑘. Choose an algebraic closure 𝑘̄ of 𝑘 and write
𝐺𝑘 ∶= Gal(𝑘̄∕𝑘) for the absolute Galois group of 𝑘 with respect to 𝑘̄. Fix a nonempty set Σ of
prime numbers.

2.3.4 Lemma. Let 𝐺 be a profinite group. The Σ-nilpotent completion functor (−)∧Σ-nil induces a
functor (−)∧Σ-nil ∶ 𝐀𝐧𝐢

∧
𝜋(𝐺) → 𝐀𝐧𝐢∧Σ(𝐺) such that the diagram

𝐀𝐧𝐢∧𝜋(𝐺) 𝐀𝐧𝐢∧Σ(𝐺)

𝐀𝐧𝐢∧𝜋 𝐀𝐧𝐢∧Σ,

(−)∧Σ-nil

(−)∧Σ-nil

commutes. Here the vertical arrows 𝐀𝐧𝐢∧𝜋(𝐺) → 𝐀𝐧𝐢∧𝜋 and 𝐀𝐧𝐢
∧
Σ(𝐺) → 𝐀𝐧𝐢∧Σ denote the functors

forgetting the 𝐺-action.

Proof. By Proposition 1.6.27, the functor (−)∧Σ-nil ∶ (𝐀𝐧𝐢
∧
𝜋)× → (𝐀𝐧𝐢∧Σ)× is symmetric monoidal.

It therefore preserves group objects and induces a functor on associated module categories. As
𝐺, considered as an object of 𝐀𝐧𝐢∧𝜋, is 0-truncated, i.e. 𝐺 = π̂0 𝐺, it follows that 𝐺∧

Σ-nil = 𝐺 (see
Corollary 1.6.26). This shows that (−)∧Σ-nil ∶ (𝐀𝐧𝐢

∧
𝜋)× → (𝐀𝐧𝐢∧Σ)× induces a functor

𝐀𝐧𝐢∧𝜋(𝐺) = RMod𝐺(𝐀𝐧𝐢
∧
𝜋) → RMod𝐺(𝐀𝐧𝐢

∧
𝜋) = 𝐀𝐧𝐢∧𝜋(𝐺), 𝐾 ↦ 𝐾∧

Σ-nil

satisfying the specified compatibility conditions as claimed.

2.3.5. In particular, the natural action of 𝐺𝑘 onΠét
∞(𝑋𝑘̄) induces an action of 𝐺𝑘 onΠét

∞(𝑋𝑘̄)∧Σ-nil.
We write Πét

∞(𝑋)∧(Σ-nil) ∶= Πét
∞(𝑋𝑘̄)∧Σ-nil∕∕𝐺𝑘 so that, by Theorem 1.5.3, we have a fibre sequence

Πét
∞(𝑋𝑘̄)∧Σ-nil Πét

∞(𝑋)∧(Σ-nil) B𝐺𝑘.

of profinite anima.

2.3.6 Definition (Σ-nilpotent étale sections). The set of Σ-nilpotent étale sections of 𝑋 over 𝑘 is
given by

𝒮étΣ-nil(𝑋∕𝑘) ∶= π0mapB𝐺𝑘 (B𝐺𝑘, Π
ét
∞(𝑋)∧(Σ-nil)).

2.3.7 Notation. To increase readability, we introduce the following abbreviations.

(a) We write 𝒮étnil(𝑋∕𝑘) instead of 𝒮
ét
𝜋-nil(𝑋∕𝑘) and refer to it as the set of nilpotent étale sections

of 𝑋 over 𝑘.
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(b) Given a prime 𝓁, we also write 𝒮ét𝓁 (𝑋∕𝑘) instead of 𝒮
ét
𝓁-nil(𝑋∕𝑘) and refer to it as the set of

pro-𝓁 étale sections of 𝑋 over 𝑘.

2.3.8. Let ∅ ≠ Σ′ ⊂ Σ denote sets of primes. The canonical and 𝐺𝑘-equivariant maps

Πét
∞(𝑋𝑘̄) Πét

∞(𝑋𝑘̄)∧Σ-nil Πét
∞(𝑋𝑘̄)∧Σ′-nil

𝑐 prΣΣ′

induce maps of fibre sequences

Πét
∞(𝑋𝑘̄) Πét

∞(𝑋𝑘̄) B𝐺𝑘

Πét
∞(𝑋𝑘̄)∧Σ-nil Πét

∞(𝑋)∧(Σ-nil) B𝐺𝑘

Πét
∞(𝑋𝑘̄)∧Σ′-nil Πét

∞(𝑋)∧(Σ′-nil) B𝐺𝑘

𝑐 𝑐∕∕𝐺𝑘 =

prΣΣ′ prΣΣ′ ∕∕𝐺𝑘 =

of profinite anima. In particular, postcomposition with 𝑐∕∕𝐺𝑘 and prΣΣ′ ∕∕𝐺𝑘 define maps

𝒮ét(𝑋∕𝑘) → 𝒮étΣ-nil(𝑋∕𝑘) and 𝒮étΣ-nil(𝑋∕𝑘) → 𝒮étΣ′-nil(𝑋∕𝑘).

Fix a prime 𝓁. We are now able to formulate the appropriate analogue of the pro-𝓁 Section
Conjecture:

2.3.9 Conjecture (generalised pro-𝓁 Section Conjecture). The canonical map

𝑋(𝑘) → 𝒮ét𝓁 (𝑋∕𝑘)

is a bijection of sets.

Again, one obtains a real variant of the above conjecture by looking at π0 𝑋(R) instead of
𝑋(R).

As a corollary of Theorem 1.6.22, we obtain a product decomposition of the set of Σ-nilpotent
étale sections.

2.3.10 Lemma. The canonical map

𝒮étΣ-nil(𝑋∕𝑘) →
∏

𝓁∊Σ
𝒮ét𝓁 (𝑋∕𝑘)

is a bijection of sets.

Proof. The map in question is obtained as the product over 𝓁∊ Σ of the maps induced by taking
{𝓁} ⊂ Σ in 2.3.8. Using the equivalence of Theorem 1.5.3, we compute: Taking homotopy fixed
points of the 𝐺𝑘-equivariant equivalence Πét

∞(𝑋𝑘̄)∧Σ-nil ≃
∏

𝓁∊ΣΠ
ét
∞(𝑋𝑘̄)∧𝓁 yields an equivalence

(Πét
∞(𝑋𝑘̄)∧Σ-nil)

h𝐺𝑘 ≃
∏

𝓁∊Σ
(Πét

∞(𝑋𝑘̄)∧𝓁)
h𝐺𝑘 .

The result now follows by applying π0.
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2.3.11 Remark.

(a) In view of the product decomposition of 𝒮étΣ-nil(𝑋∕𝑘) =
∏

𝓁∊Σ 𝒮
ét
𝓁 (𝑋∕𝑘) from above, we

expect the “Σ-nilpotent Section Conjecture” to usually fail for similar reasons as in Re-
mark 2.3.3. This is why we only stated it in the case where Σ = {𝓁} consists of a single
prime.

(b) Somewhat surprisingly, the (2 ∊ Σ)-nilpotent SectionConjecture often holds over 𝑘 = R:We
will later see in Corollary 3.2.2 that, overR, it is equivalent to the pro-2 Section Conjecture.

Comparison with the classical Σ-nilpotent sections

In this section, we show that our set of Σ-nilpotent étale sections 𝒮étΣ-nil(𝑋∕𝑘) agrees with the
classically considered𝒮(𝜋ét1 (𝑋∕𝑘)

∧Σ-nil) in the case of hyperbolic curves.With all the preliminary
results proven so far, this quickly reduces to the following result of Schmidt:

2.3.12 Theorem (Schmidt, [39, Prop. 15]). Let 𝑘 be a field and 𝐶 a connected, smooth curve over
𝑘 that is either incomplete or of strictly positive genus. Then:

(1) 𝐶 is an étale K(𝜋, 1), i.e.Πét
∞(𝐶) = B𝜋ét1 (𝐶).

(2) If 𝑘 is separably closed and 𝓁 is any prime number, then alsoΠét
∞(𝐶)∧𝓁 = B𝜋ét1 (𝐶)

∧𝓁.

2.3.13 Corollary. Let Σ denote a nonempty set of prime numbers. Then, under the additional
assumptions of Theorem 2.3.12, one has

Πét
∞(𝐶)∧Σ-nil = B𝜋ét1 (𝐶)

Σ-nil.

In particular, we have that 𝒮étΣ-nil(𝐶∕𝑘) = 𝒮(𝜋ét1 (𝐶∕𝑘)
∧Σ-nil) in this case.

Proof. The first part of the statement follows immediately from Theorem 2.3.12 and the product
decompositions

Πét
∞(𝐶)∧Σ-nil =

∏

𝓁∊Σ
Πét
∞(𝐶)∧𝓁 and 𝜋ét1 (𝐶)

Σ-nil =
∏

𝓁∊Σ
𝜋ét1 (𝐶)

∧𝓁.

of Theorem 1.6.22 and Theorem 1.6.7, respectively. The second part follows from combining the
first part with Lemma 2.2.6.

2.3.14 Remark. Let 𝜋 be a profinite group and 𝓁 a prime.

(1) It is generally not true that
H∗(𝜋,F𝓁) ≅ H∗(𝜋∧𝓁;F𝓁)

and therefore it is also generally not true that

(B𝜋)∧𝓁 ≃ B𝜋∧𝓁.

(2) In particular, it is a special property of algebraic curves 𝐶 (satisfying the conditions of Theo-
rem 2.3.12) that it in fact holds that

(B𝜋ét1 (𝐶𝑘̄))
∧
𝓁 = B𝜋ét1 (𝐶𝑘̄)

∧𝓁.

We currently do not know if a similar property holds for a wider range of étale K(𝜋, 1)-
schemes.
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3 Proof of the generalised (pro-2) real Section Conjecture

3.1 A vanishing theorem for nonabelian cohomology
Our proof of the various versions of the real Section Conjecture heavily relies on the following
group-theoretic observation:

3.1.1 Theorem (Theorem E). Let Γ be a profinite group acting continuously on another profinite
group𝑁. If the supernatural orders of #Γ and #𝑁 are coprime, thenH1(Γ,𝑁) = ∗.

Our proof of Theorem 3.1.1 relies on a characterization ofH1(Γ,𝑁) in terms of complements,
which we will recall first.

Nonabelian cohomology, sections and complements

First of all, recall that there is a characterization ofH1(Γ,𝑁) in terms of group-theoretic sections.

3.1.2 Recollection (nonabelianH1 and sections, see [43, §1, Prop. 8]). Let Γ be a profinite group
acting continuously on another profinite group𝑁. Then we obtain a canonically split short exact
sequence

1 𝑁 𝑁⋊Γ Γ 1

of profinite groups. Recall that H1(Γ,𝑁) classifies sections of 𝑁⋊Γ ↠ Γ up to conjugation by
𝑁, i.e. there is a canonical identification

H1(Γ,𝑁) = HomΓ(Γ,𝑁 ⋊Γ)𝑁
= 𝒮(𝑁⋊Γ ↠ Γ).

3.1.3 Definition (complement of a subgroup). Let𝐻 ≤ 𝐺 be a closed subgroup of the profinite
group 𝐺.

(a) A complement of𝐻 in 𝐺 is a closed subgroup 𝐾 ≤ 𝐺 such that:

(1) 𝐻 ⋅ 𝐾 = 𝐺

(2) 𝐻 ∩ 𝐾 = 1

(b) We denote by Comp𝐺(𝐻) the set of all complements of𝐻 in 𝐺.

We are interested in complements since they encode sections:

3.1.4 Lemma. Let 1 𝑁 𝐺 𝐻 1
𝑝

be a short exact sequence of profinite groups. Then
there is a bijection

Hom𝐻(𝐻, 𝐺) Comp𝐺(𝑁)
1∶1

carrying a section 𝑠 to the complement 𝐾𝑠 ∶= im(𝑠) and a complement 𝐾 to the section 𝑠𝐾 given by

𝑠𝐾 ∶ 𝐻 𝐾 ⊂ 𝐺
(𝑝|𝐾)−1

∼

Proof. We first show that both maps are well-defined, and then that they are mutually inverse
to each other.
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(1) Let 𝑠 ∊ Hom𝐻(𝐻, 𝐺) be a section of 𝑝. Then 𝐾𝑠 = im(𝑠) certainly is a closed subgroup of 𝐺.
Furthermore, 𝑁 ∩ 𝐾𝑠 = 1 as 𝑁 = ker(𝑝). Finally, we also have 𝑁 ⋅ 𝐾𝑠 = 𝐺: To see this, let 𝑔
be an element of 𝐺. Then 𝑔 = (𝑔 ⋅ 𝑠(𝑝(𝑔))−1) ⋅ 𝑠(𝑝(𝑔)) ∊ 𝑁 ⋅ 𝐾𝑠 as required. This shows that
𝐾𝑠 indeed is a complement of 𝑁 in 𝐺.

(2) Let 𝐾 ∊ Comp𝐺(𝑁) be a complement of 𝑁 in 𝐺.

Then the composition 𝐾 ⊂ 𝐺 𝐻
𝑝

is an isomorphism: Note that

ker(𝐾 ⊂ 𝐺 𝐻
𝑝

) = ker(𝑝) ∩ 𝐾
= 𝑁 ∩ 𝐾
= 1,

i.e. 𝐾 ⊂ 𝐺 𝐻
𝑝

is injective. Furthermore,

𝐻 = 𝑝(𝐺)
= 𝑝(𝑁 ⋅ 𝐾)
= 𝑝(𝐾),

so 𝐾 ⊂ 𝐺 𝐻
𝑝

is seen to also be surjective. This shows that 𝑠𝐾 ∶ 𝐻 𝐾 ⊂ 𝐺
(𝑝|𝐾)−1

∼ is well-
defined and a section of 𝑝.

(3) Finally, let us prove that both constructions are inverse to each other:

(a) Let 𝑠 be a section of 𝑝. Then 𝑠 factorises as

𝐻 𝐾𝑠 = im(𝑠) ⊂ 𝐺.
𝑠 = (𝑝|𝐾𝑠 )

−1

∼

This shows that 𝑠𝐾𝑠 = 𝑠.

(b) Let 𝐾 be a complement of 𝑁 in 𝐺. Then

𝐾𝑠𝐾 = im( 𝑠𝐾 ∶ 𝐻 𝐾 ⊂ 𝐺
(𝑝|𝐾)−1

∼ )

= 𝐾

as claimed.

To use complements to determine H1, we still have to control the effect of conjugation by
elements of 𝑁 to the above bijection.

3.1.5 Lemma. Let 1 𝑁 𝐺 𝐻 1
𝑝

be a short exact sequence of profinite groups. The
bijection of Lemma 3.1.4 induces a bijection

𝒮(𝐺 ↠ 𝐻) = Hom𝐻(𝐻, 𝐺)𝑁 Comp𝐺(𝑁)∕conj..
1∶1

Proof. We proceed in two steps:
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(1) Let 𝑠 ∊ Hom𝐻(𝐻, 𝐺) be a section and 𝜎 ∊ 𝑁 an element. Then

𝐾𝜎⋅𝑠⋅𝜎−1 = im(𝜎 ⋅ 𝑠 ⋅ 𝜎−1)
= 𝜎 ⋅ im(𝑠) ⋅ 𝜎−1

= 𝜎 ⋅ 𝐾𝑠 ⋅ 𝜎−1,

i.e. 𝐾𝜎⋅𝑠⋅𝜎−1 is conjugate to 𝐾𝑠.

(2) Let 𝐾 ∊ Comp𝐺(𝑁) be a complement and 𝑔 ∊ 𝐺 any element. Then, since 𝐺 = 𝑁 ⋅ 𝐾, there
exist elements 𝜎 ∊ 𝑁 and 𝑘 ∊ 𝐾 such that 𝑔 = 𝜎 ⋅ 𝑘. Thus

𝑔 ⋅ 𝐾 ⋅ 𝑔−1 = 𝜎 ⋅ (𝑘 ⋅ 𝐾 ⋅ 𝑘−1) ⋅ 𝜎−1

= 𝜎 ⋅ 𝐾 ⋅ 𝜎−1, since 𝑘 ∊ 𝐾,

which readily implies that 𝑠𝑔⋅𝐾⋅𝑔−1 = 𝜎 ⋅ 𝑠𝐾 ⋅ 𝜎−1 is conjugate to 𝑠𝐾 via 𝑁.

Finally, we are able to deduce Theorem 3.1.1 via the following profinite version of a classical
result of Schur-Zassenhaus.

3.1.6 Theorem (Profinite Schur-Zassenhaus, [38, Thm 2.3.15]). Let 𝑁 be a closed normal sub-
group of a profinite group 𝐺 satisfying (#𝑁,#𝐺∕𝑁) = 1. Then:

(1) There exists a complement 𝐾 of𝑁 in 𝐺.

(2) Any two complements of𝑁 in 𝐺 are conjugate.

Here, we write #𝐺 for the supernatural order of a profinite group 𝐺.

Proof of Theorem 3.1.1. Since (#Γ, #𝑁) = 1, the above theorem is applicable to the closed sub-
group 𝑁 ≤ 𝑁⋊Γ. Therefore

H1(Γ,𝑁) = Comp𝑁⋊Γ(𝑁)∕conj.
= 1,

where the first equality follows from combining Recollection 3.1.2 and Lemma 3.1.5.

3.1.7 Remark.

(a) The proof of the second part of the above theorem is elementary, provided that either 𝑁 or
𝐺∕𝑁 is solvable, see e.g. [21, Thm. §I.18.2]. All known proofs of the above theorem reduce
to the solvable case by the celebrated Feit–Thompson theorem [12], applicable since either
𝑁 or 𝐺∕𝑁 are of odd order.

(b) Note that there also is a natural definition ofH2(Γ,𝑁) via extensions of Γ by 𝑁, see e.g. [43,
Def. 9]. Since, by Theorem 3.1.6 (1) combined with Lemma 3.1.4, any short exact sequence
1 𝑁 𝐺 Γ 1 necessarily splits, one actually also has that H2(Γ,𝑁) vanishes.
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3.2 Proof of Theorem D
We are interested in Theorem 3.1.1 because it has the following useful homotopy-theoretic ap-
plication:

3.2.1 Proposition. Let 𝑝 be a prime number and let 𝐺 be a finite 𝑝-group acting on a connected
𝑝′-profinite anima 𝐾. Assume that 𝐾h𝐺 ≠ ∅ and let 𝑥 ∊ 𝐾h𝐺 . Then π̂𝑛(𝐾h𝐺, 𝑥) = π̂𝑛(𝐾)𝐺 . In
particular, 𝐾h𝐺 is connected.

Proof. The homotopy fixed point spectral sequence 1.5.6

E𝑠,𝑡2 = H𝑠(𝐺, π̂𝑡(𝐾)) ⇒ π̂𝑡−𝑠(𝐾h𝐺, 𝑥)

attached to 𝐺↷𝐾 collapses on the E2-page:
Since, by construction, E𝑠,𝑡2 = ∗ whenever 𝑡 − 𝑠 < 0, it suffices to discuss the cases 𝑡 ≥ 𝑠 ≥ 0.

Note that E𝑠,𝑡2 = H𝑠(𝐺, π̂𝑡(𝐾)) vanishes whenever 𝑡 ≥ 2, as we are looking at group cohomology
of a finite 𝑝-group with values in an abelian group prime to 𝑝. As 𝐾 is assumed to be connected,
there is furthermore nothing to show whenever 𝑡 = 0. When 𝑡 = 1, the only potentially non-
trivial term is E1,12 = H1(𝐺, π̂1(𝐾)), which vanishes by Theorem 3.1.1.

As a corollary, we obtain that the pro-2 Section Conjecture is equivalent to the full nilpotent
Section Conjecture over the real numbers. More precisely:

3.2.2 Corollary. Let∅ ≠ Σ denote a set of prime numbers and 𝑋∕R any geometrically connected
qcqs scheme. Assume that 𝑋(R) ≠ ∅. Then

𝒮étΣ-nil(𝑋∕R) = {
𝒮ét2 (𝑋∕R), if 2 ∊ Σ
{∗}, otherwise.

Proof. Using Lemma 2.3.10, it suffices to see that 𝒮ét𝓁 (𝑋∕R) = {∗} for all primes 𝓁 ≠ 2. Since
𝑋(R) ≠ ∅, we also have that Πét

∞(𝑋C)hZ∕2 ≃ mapBZ∕2(BZ∕2,Π
ét
∞(𝑋)) ≠ ∅. This shows that in

particular (Πét
∞(𝑋C)∧𝓁)

hZ∕2 ≠ ∅, so that Proposition 3.2.1 is applicable. Therefore, for any 𝓁 ≠ 2,

𝒮ét𝓁 (𝑋∕R) = π0(Πét
∞(𝑋C)∧𝓁)

hZ∕2

= {∗}

as claimed.

This also lets us settle the “prime-to-2 nilpotent real Section Conjecture”:

3.2.3 Corollary (prime-to-2 nilpotent real Section Conjecture). Let 2 ∉ Σ be a nonempty set of
prime numbers. Then the following are equivalent for a qcqs scheme 𝑋∕R such that 𝑋(R) ≠ ∅:

(1) 𝑋 satisfies the Σ-nilpotent real Section Conjecture, i.e. the map

π0 𝑋(R) → 𝒮étΣ-nil(𝑋∕R)

is a bijection.

(2) The topological space 𝑋(R) is connected.
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Proof. By Corollary 3.2.2, we have that 𝒮étΣ-nil(𝑋∕R) = {∗} since we assumed 2 ∉ Σ.

The following result is the key homotopical input that lets us derive the full Section Conjec-
ture from the pro-2 Section Conjecture:

3.2.4 Theorem (Theorem D). Let 𝐺 be a finite 𝑝-group and 𝐾 a connected nilpotent profinite
anima with 𝐺-action. Assume that 𝐾h𝐺 ≠ ∅. Then the canonical map

(𝐾h𝐺)∧𝑝 → (𝐾∧
𝑝 )h𝐺

is an equivalence of 𝑝-profinite anima.

Proof. As 𝐾 is nilpotent, the canonical map 𝐾 →
∏

𝓁 𝐾
∧
𝓁 is an equivalence of profinite anima

with 𝐺-action. Hence

𝐾h𝐺 ≃ (
∏

𝓁
𝐾∧
𝓁 )

h𝐺

≃
∏

𝓁
(𝐾∧

𝓁 )
h𝐺 .

Given any prime 𝓁, (𝐾∧
𝓁 )

h𝐺 remains 𝓁-profinite as𝐀𝐧𝐢∧𝓁 ⊂ 𝐀𝐧𝐢∧𝜋 is stable under limits. Therefore,
since by Lemma 1.4.10 𝑝-profinite completion preserves finite products, we have that

(𝐾h𝐺)∧𝑝 ≃ (𝐾∧
𝑝 )h𝐺 × (

∏

𝓁≠𝑝
(𝐾∧

𝓁 )
h𝐺)∧𝑝 .

By Proposition 3.2.1,
∏

𝓁≠𝑝(𝐾
∧
𝓁 )

h𝐺 is a product of connected profinite anima, hence itself con-
nected. Since it is furthermore 𝑝′-profinite, Proposition 1.3.20 implies that (

∏
𝓁≠𝑝(𝐾

∧
𝓁 )

h𝐺)∧𝑝 is
contractible. Thus (𝐾h𝐺)∧𝑝 ≃ (𝐾∧

𝑝 )h𝐺 as claimed.

3.3 Proofs of Theorems A and B
We can now finally prove the (pro-2) real Section Conjecture. We identify Gal(C∕R) = Z∕2.

In order to follow through with our strategy, we need to make sure that the Sullivan Conjec-
ture is applicable to 𝑋(C), i.e. we need to make sure that 𝑋(C) is a finite-dimensional Z∕2-CW
complex. For the moment, we will turn this property into an auxiliary adjective:

3.3.1 Definition (equivariantly triangulable). A scheme 𝑋 overR is equivariantly triangulable
if there exists a finite-dimensionalZ∕2-CW complex 𝐾 and aZ∕2-equivariant homeomorphism
𝐾 → 𝑋(C), where Z∕2 acts on 𝑋(C) via complex conjugation.

3.3.2 Remark. In Proposition 3.3.11, we will see that the following classes of varieties overR
are equivariantly triangulable:

(1) 𝑋∕R smooth.

(2) 𝑋∕R affine and of finite type.

(3) 𝑋∕R projective.

As explained in the introduction, we need to relate the homotopy type of 𝑋(C)with the étale
homotopy type Πét

∞(𝑋C). This is achieved by the following theorem of Artin and Mazur (see
[AM, Theorem (12.9)]):
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3.3.3 Theorem (generalised Riemann existence). Let 𝑋 be a scheme of finite type over C. Then
there is a canonical equivalence 𝑋(C)∧𝜋 ≃ Πét

∞(𝑋).
3.3.4 Remark. Artin and Mazur’s version of the generalised Riemann existence theorem as-
sumed 𝑋 to be pointed and connected. Using the modern shape-theoretic definition of the
étale homotopy type, these assumptions can be dropped (as we did in the formulation of Theo-
rem 3.3.3), see e.g. [2, Theorem 11.5.3], [6, Theorem 4.12] and [8, Theorem 4.3.10].

The following constitutes the homotopical incarnation of the real Section Conjecture:

3.3.5 Theorem (homotopical real Section Conjecture, equivariantly triangulable version). Let
𝑋 be any geometrically connected and equivariantly triangulable qcqs scheme of finite type overR
and 2 ∊ Σ a set of primes. There are natural equivalences

𝑋(R)∧2 ≃ (Πét
∞(𝑋C)∧2 )

hZ∕2

≃ ((Πét
∞(𝑋C)∧Σ-nil)

hZ∕2)∧2
of 2-profinite anima.
Proof. We will apply the Sullivan Conjecture in the form of Theorem 1.7.1. First of all, it holds
that

𝑋(R)∧2 = (𝑋(C)Z∕2)∧2 .

Since 𝑋(C) is a finite-dimensional Z∕2-CW-complex, Theorem 1.7.1 is applicable and shows
that furthermore

(𝑋(C)Z∕2)∧2 = (𝑋(C)∧2 )
hZ∕2 .

By the generalised Riemann existence theorem (3.3.3),

𝑋(C)∧2 = (𝑋(C)∧𝜋)∧2
= Πét

∞(𝑋(C))∧2
and thus

(𝑋(C)∧2 )
hZ∕2 = (Πét

∞(𝑋C)∧2 )
hZ∕2,

which shows that 𝑋(R)∧2 ≃ (Πét
∞(𝑋C)∧2 )

hZ∕2 as claimed. Regarding the second equivalence, note
that we also have a Z∕2-equivariant identification

Πét
∞(𝑋C)∧2 = (Πét

∞(𝑋C)∧Σ-nil)
∧
2 .

If (Πét
∞(𝑋C)∧Σ-nil)

hZ∕2 ≠ ∅, the second claim now follows as we then have that

((Πét
∞(𝑋C)∧Σ-nil)

∧
2 )
hZ∕2 = ((Πét

∞(𝑋C)∧Σ-nil)
hZ∕2)∧2

by Theorem 3.2.4. However, if
(
Πét
∞(𝑋C)∧Σ-nil

)hZ∕2
is empty, so is 𝑋(R): any real point 𝑎 ∊ 𝑋(𝑅)

induces a map BZ∕2
𝑎∗,,→ Πét

∞(𝑋) → Πét
∞(𝑋)∧(Σ-nil) over BZ∕2 and thus a point of

(Πét
∞(𝑋C)∧Σ-nil)

hZ∕2 = mapBZ∕2(BZ∕2,Π
ét
∞(𝑋)∧(Σ-nil)).

This finishes the proof.
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Putting everything together, the pro-2 real Section Conjecture follows:

3.3.6 Corollary ((2 ∊ Σ-) Theorem A, equivariantly triangulable version). Let 𝑋 be any equivari-
antly triangulable qcqs scheme of finite type overR and 2 ∊ Σ a set of primes. Then the (Σ-)nilpotent
Section Conjecture holds for 𝑋, i.e. the natural map

π0 𝑋(R) → 𝒮étnil(𝑋∕R) = 𝒮étΣ-nil(𝑋∕R) = 𝒮ét2 (𝑋∕R)

is a bijection of finite sets.

Proof. By (2.3.5), Πét
∞(𝑋)∧(Σ-nil) sits in a fibre sequence Π

ét
∞(𝑋C)∧Σ-nil → Πét

∞(𝑋)∧(Σ-nil) → BZ∕2 of
profinite anima. Therefore, under the equivalence of Theorem 1.5.3, the map

Πét
∞(𝑋)∧(Σ-nil) → BZ∕2

corresponds toΠét
∞(𝑋C)∧Σ-nil with theZ∕2-action also constructed in (2.3.5). Combining this with

Remark 1.5.5, we obtain

|(Πét
∞(𝑋C)∧Σ-nil)

hZ∕2| = mapBZ∕2(BZ∕2,Π
ét
∞(𝑋)∧(Σ-nil)).

Taking π0(−), we conclude

π0(Πét
∞(𝑋C)∧Σ-nil)

hZ∕2 = π0mapBZ∕2(BZ∕2,Π
ét
∞(𝑋)∧(Σ-nil))

= 𝒮étΣ-nil(𝑋∕R),

and, in virtue of Corollary 1.4.9, the claim follows from Theorem 3.3.5.

In order to be able to state the most general form of the real Section Conjecture that we can
prove, let us introduce the following notation:

3.3.7 Definition (geometrically étale nilpotent). A qcqs scheme 𝑋∕𝑘 is said to be geometrically
étale nilpotent if the étale homotopy type Πét

∞(𝑋𝑘̄) is nilpotent (in the sense of Definition 1.6.17).

3.3.8 Remark. By Lemma 1.6.21, any geometrically étale simply connected scheme is geomet-
rically étale nilpotent.

Finally, we deduce the real Section Conjecture in the nilpotent (and therefore simply con-
nected) case:

3.3.9 Corollary (Theorem B, equivariantly triangulable version). Let 𝑋 be any equivariantly
triangulable qcqs and geometrically étale nilpotent scheme of finite type overR. Then the Section
Conjecture holds for 𝑋, i.e. the canonical map

π0 𝑋(R) → 𝒮ét(𝑋∕R)

is a bijection.

Proof. Since Πét
∞(𝑋C) is nilpotent by assumption, the canonical map

𝒮ét(𝑋∕R) → 𝒮étnil(𝑋∕R)

is a bijection and the claim thus immediate from Corollary 3.3.6.
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3.3.10 Remark. Unfortunately, Lurie’s version of the Sullivan Conjecture 1.7.1 has not been
published outside of his set of lecture notes. Based on the comparison of Sullivans 𝑝-adic com-
pletion and the Bousfield-Kan 𝑝-completionF𝑝∞(−), we are still able to derive Corollary 3.3.6 as
well as Corollary 3.3.9, using the more classical versions of the Sullivan Conjecture as follows.

(1) Carlsson’s version of the Sullivan Conjecture, [7, Theorem B], states that the canonical map

F𝑝∞(𝐾𝐺) → F𝑝∞(𝐾h𝐺) → (F𝑝∞ 𝐾)h𝐺

is an equivalence of ordinary anima for every finite 𝑝-group 𝐺 and finite-dimensional 𝐺-
CW complex 𝐾. Starting the first step of the proof of Theorem 3.3.5 with this version of the
Sullivan Conjecture, we obtain an equivalence

F2∞𝑋(R) ≃ (F2∞𝑋(C))hZ∕2.

We can thus continue as in Theorem 3.3.5, provided we have an equivalence

(†) F2∞ 𝑋(C) ≃ |𝑋(C)∧2 |,

in which case, because (−)hZ∕2 commutes with |−| (both are limits), the F2∞ -version of
Theorem 3.3.5 will yield equivalences

F2∞(𝑋(R)) ≃ |((Πét
∞(𝑋C)∧2 )

hZ∕2)|
≃ |((Πét

∞(𝑋C)∧Σ-nil)
hZ∕2)∧2 |

of ordinary anima. This is still strong enough to deduce Theorems A and B, the proofs of
which evidently only depend on |Theorem 3.3.5| to begin with.

(2) The functor 𝐀𝐧𝐢 → 𝐀𝐧𝐢, 𝐾 ↦ |𝐾∧
𝑝 | recovers Sullivan’s 𝑝-profinite completion functor.

Bousfield-Kan 𝑝-completion and Sullivan’s 𝑝-profinite completion are known to agree for
spaceswith degreewise finitely generatedF𝑝-homology (see [13, Thm6.10]). Therefore, since

H∗(𝑋(C);F𝑝) ≅ H∗
ét(𝑋C;F𝑝)

the comparison (†): F2∞ 𝑋(C) ≃ |𝑋(C)∧2 | indeed holds in virtue of [SGA 4, §XIX, Thm 5.1].

We however chose to stick with using Lurie’s version of the Sullivan Conjecture 1.7.1, since this
better reflects the way we actually arrived at the proofs of Theorems A and B.

Examples of equivariantly triangulable schemes

In order to bring the above theorems to life, we of course need to address the question for which
schemes 𝑋∕R the complex points 𝑋(C) actually admit the structure of a finite-dimensional
Z∕2-CW complex, i.e. which 𝑋∕R are equivariantly triangulable.

The most general results in this direction that we could find in the literature are summarized
in the following proposition:

3.3.11 Proposition. Let𝑋 be a scheme overR. Then𝑋 is equivariantly triangulable, provided one
of the following conditions hold:

(1) 𝑋 is smooth overR.
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(2) 𝑋(C) can be obtained as the zero-locus of a finite family of polynomials in R[𝑇1, … , 𝑇𝑛] for
some 𝑛 ∊ N. This includes the cases:

(a) 𝑋 is affine and of finite type overR.

(b) 𝑋 is projective overR.

Proof. We prove the statement case by case.

(1) If 𝑋 is smooth, 𝑋(C) admits the structure of a smooth Z∕2-manifold, hence admits a finite-
dimensional equivariant Z∕2-triangulation by the main result of [22]. Note that, by the
conventions regarding equivariant simplicial complexes made in [22, §1], all simplicial com-
plexes considered by Illman are finite-dimensional.

(2) For 𝑋(C) ⊂ R𝑛 cut out by polynomial equations, the result follows from [33, Theorem 1.3].

(a) If 𝑋 is affine and of finite type overR, then 𝑋(C) ⊂ C𝑛 ≅ R2𝑛 for suitable 𝑛 ∊ N.

(b) If 𝑋 is projective, then 𝑋(C) ⊂ 𝐏𝑛(C) for suitable 𝑛 ∊ N. The claim now follows from
the embedding

𝐏𝑛(C) R
2𝑛2 , [𝑧0 ∶ … ∶ 𝑧𝑛] ↦ ( 𝑧𝑖 ⋅𝑧̄𝑗

∑
𝑘|𝑧𝑘|2

)
1≤𝑖,𝑗≤𝑛

of complex projective 𝑛-space into real Euclidean 2𝑛2-space as a compact, algebraic
subset, originally due to Mannoury [26] (see also [3, Prop. 3.4.6]).

3.3.12Remark. In his PhD thesis [18], Hofmann shows that the complex points of any separated
scheme𝑋 of finite type overR admit the structure of a finite-dimensional CW complex. It seems
extremely likely that one can actually refine this into the structure of a Z∕2-CW complex, but
we have not been able to find a reference for this fact.

We therefore obtain the following concrete incarnations of Theorem 3.3.5, Corollary 3.3.6
and Corollary 3.3.9:

3.3.13 Theorem (homotopical pro-2 Section Conjecture). Let𝑋 be any qcqs scheme that is either
smooth, or affine and of finite type, or projective overR and 2 ∊ Σ a set of primes. There are natural
equivalences

𝑋(R)∧2 ≃ (Πét
∞(𝑋C)∧2 )

hZ∕2

≃ ((Πét
∞(𝑋C)∧Σ-nil)

hZ∕2)∧2
of 2-profinite anima.

3.3.14 Corollary ((2 ∊ Σ-) Theorem A). Let 𝑋 be any qcqs scheme that is either smooth, or affine
and of finite type, or projective over R and 2 ∊ Σ a set of primes. Then the (Σ-)nilpotent Section
Conjecture holds for 𝑋, i.e. the natural map

π0 𝑋(R) → 𝒮étnil(𝑋∕R) = 𝒮étΣ-nil(𝑋∕R) = 𝒮ét2 (𝑋∕R)

is a bijection of finite sets.
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3.3.15 Corollary (Theorem B). Let 𝑋 be any qcqs scheme that is either smooth, or affine and of
finite type, or projective overR. Assume further that𝑋 is geometrically étale simply connected. Then
the Section Conjecture holds for 𝑋, i.e. the canonical map

π0 𝑋(R) → 𝒮ét(𝑋∕R)

is a bijection.

Proofs of Theorem 3.3.13, Corollary 3.3.14 and Corollary 3.3.15.
Combine Proposition 3.3.11 with Theorem 3.3.5, Corollary 3.3.6 and Corollary 3.3.9.

Finally, let us note that the above Theorem A also provides yet another proof of the classical
real Section Conjecture for hyperbolic curves overR:

3.3.16 Corollary. Let 𝑋∕R be a hyperbolic curve. Then 𝑋 satisfies the Section Conjecture, i.e. the
Kummer map

𝜅𝑋∕R ∶ π0 𝑋(R) → 𝒮(𝜋ét1 (𝑋∕R)) = 𝒮ét(𝑋∕R)

is a bijection.

Proof. By [43, Lemma 228] it suffices to show that the existence of a section 𝑠 ∊ 𝒮(𝜋ét1 (𝑋∕R))
implies that 𝑋(R) ≠ ∅. But since, by Theorem 2.3.12 and Corollary 2.2.7, 𝒮(𝜋ét1 (𝑋∕R)) =
𝒮ét(𝑋∕R), any such 𝑠 induces a section 𝑠∧2 ∊ 𝒮

ét
2 (𝑋∕R) via the map of 2.3.8 (for Σ = {2}). Thus

𝑋(R) ≠ ∅ by Corollary 3.3.14.
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