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— Summary in German -
Vielteilchenphysik mit Van-der-Waals-Halbleitern und ultrakalten Atomen

Diese Arbeit untersucht wie das Auftreten von gebundenen Zustanden genutzt werden kann,
um Eigenschaften von Quantensystemen zu vermessen und zu manipulieren. Diese Frage wird
im Kontext zweier verschiedener Felder — zweidimensionale Materialien und ultrakalte atomare
Rydberg-Physik — beleuchtet.

Insbesondere wird untersucht wie Bindungszustande aus Elektronen und Léchern in geschich-
teten zweidimensionalen Halbleitern verwendet werden kénnen um die Streueigenschaften von
Ladungstragern und Exzitonen zu verandern. Hier wird durch eine numerische Analyse von
Drei-Teilchen Zustanden gefunden, dass die Mechanismen von Feshbach Resonanzen, welche
aus dem Kontext ultrakalter Quantengase bekannt sind, auf das Gebiet zweidimensionaler
Halbleiter ausgedehnt werden konnen, dort jedoch auch grundlegende Unterschiede aufweisen,
wie z.B. die Notwendigkeit der Aufgabe der iiblichen Definition der Resonanzbreite.

Weiter wird die Verwendung ultra-langreichweitiger Rydbergmolekiile — gebundene Zustande
aus Atomen und Rydbergatomen — als Sonden fiir Korrelationen in ultrakalten Quantengasen
untersucht. Hierbei wird die wohldefinierte Bindungslange dieser Molekiile, deren optische
Anregbarkeit und die Separation der Zeit- und Energieskalen der Molekiil-Formierung und der
typischen Dynamik innerhalb von Systemen ultrakalter Quantengase ausgenutzt. Insbesondere
wird ein direkter Zusammenhang zwischen der Paarkorrelationsfunktion und dem spektralen
Gewicht des Dimer-Rydbergmolekiils im Absorptionsspektrum gefunden.

— Summary in English —
Many-Body Physics with Atomically Thin Semiconductors and Ultracold Atoms

This thesis investigates how the emergence of bound states can be used to modify and sense
properties of quantum systems. This question is addressed in the context of two different
fields — two-dimensional materials and ultracold atomic Rydberg physics.

In particular it is studied how charged bound states of electrons and holes in a system of
stacked two-dimensional semiconductors can be used to manipulate and control scattering
properties of excitons and charge carriers. Here it is found by a first-principle calculation that
the mechanism of Feshbach resonances as known from ultracold atoms extends to atomically
thin semiconductors with some important differences as, e.g., the necessity to discard the
usual definition of the resonance width.

Further the use of Rydberg molecules — bound states of atoms and Rydberg atoms —
as probes of ultracold atoms is investigated. In particular, a connection between the pair
correlation function and the spectral response of the Rydberg-dimer molecule is found. The
separation of time and energy scales of the typical system dynamics in ultracold atoms and
the molecule formation in addition to their well defined molecular binding length allows to use
these molecules as a probe of inter-particle distances in ultracold gases.
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1. Introduction

Microscopic interactions and the individual properties of the constituents of matter de-
termine their collective macroscopic behavior. Imagine an ensemble of water molecules.
Depending on temperature and pressure (or their kinetic, vibrational energies and inter-
particle spacings) they can either be found in a solid, liquid or gaseous collective state.
Analogously, in quantum matter — a regime where quantum mechanical effects become
essential to describe the physical state — such as superfluids [1, 2] or supersolids [3, 4],
microscopic properties of particles and their interplay lead to the formation of macro-
scopic collective quantum states that may comprise a large number of particles. This
transition from few-body microscopic interactions to the emergence of many-body states
and phases is essential for the understanding of matter and appears in many different
areas of current research such as quantum spin liquids [5, 6], kinetic magnetism [7, 8],
dipolar supersolids [9] or quantum simulators of strongly correlated quantum matter
[10].

The underlying theoretical description of interacting many-body systems is itself often
extremely challenging, as in general Schrodinger equations for more than two interact-
ing particles do not have analytical solutions and the numerical complexity of classical
implementations grows exponentially with the number of particles being involved. The
number of exactly solvable problems is rather small forcing us to understand nature in
terms of approximations such as perturbative descriptions [11], mean-field theories [12],
Monte-Carlo methods [13] and renormalization group approaches [14, 15], or to rely on a
clever ansatz for the physical state we wish to describe such as matrix product states and
projected entangled pair states [16, 17] or variational states [18]. Often finding effective
descriptions such as in the case of the theory of superconductivity [19] (describing the
binding of Cooper pairs by an effective exchange of phonons) or — going back to the
example of an ensemble of water molecules — the classical theories of thermodynamics
[20] or fluids [21] (both describing matter in terms of continuous mean quantities rather
than treating particles individually) deepens our understanding of physics. The classical
examples illustrate the power of effective models on an intuitive level; even long before
the existence of atoms and molecules had become part of our perception of the world,
effective theories existed that were able to describe their collective macroscopic behavior.

One prime example of a quantum many-body system that, however, has an exact
solution is the heavy impurity problem in the limit of infinite mass [22-24]. Here a
single immobile impurity interacts with a bath of indistinguishable particles. This system
seems to be rather simple on first glance but gives rise to a variety of nontrivial effects.
The interaction of the impurity with the neighboring particles leads to a dressing of the
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impurity by bath excitations, resulting in the formation of collective quantum states
involving many particles — called polarons®. Such situations can be found in various
fields of physics ranging from condensed matter [25, 26] and ultracold atoms [27, 28|
to high energy physics (where particles get dressed by vacuum fluctuations leading to
the lamb shift [29] which, e.g., modifies the energies of electronic states within the the
hydrogen atom). This allows to study the reoccurring concept of quantum impurities
using one platform (e.g., ultracold atoms) and thereby also gaining insight in other fields
of physics. In this context ultracold atoms take a special role. This is rooted in the ability
to control interaction strengths between atoms using Feshbach resonances allowing to
investigate the emergence of complex quantum states when interaction strengths are
tuned from zero to finite values (e.g., between the impurity and its environment) and
thereby controllably entering a regime of strong interactions.

The success of ultracold atoms as platform for quantum simulation also builds on the
universality of low-energy scattering, i.e., the fact that the properties of scattering parti-
cles with low momenta are based purely on their asymptotic behavior. All features of the
relevant scattering states are fully characterized by a single parameter — the scattering
length [30]. In this sense low-energy scattering of particles is universal as the micro-
scopic details of scattering potentials do not affect their asymptotic behavior. This can
result in two completely different potentials to be indistinguishable when only observing
low-energy scattering properties. Hence, allowing unbound particles to be treated as if
they would interact via contact interactions with a coupling strength that reproduces the
correct phase shifts (i.e., scattering lengths). Therefore different platforms realizing the
same interacting many-body systems behave similarly within their respective low-energy
regime?.

On the other hand the description of bound states typically depends on the knowledge
of the full interaction potential. This sets the scope for this thesis where we investigate
how few-body bound states that are formed during the scattering process of their con-
stituents allow to modify, control or probe properties of the many-body system in which
they are formed (i.e., tune scattering properties or measure correlations). To this end,
we will study universal connections between the, at first sight, vastly different fields of
two-dimensional materials and ultracold atoms. We will focus on specific examples that
show how knowledge from one field can be transfered to the other. In the following we
give a short outline of this thesis.

IThis name dates back to Landau [25] who introduced the concept of electrons polarizing their envi-
ronment by displacing atoms when moving through a lattice.
2This is the basic idea behind quantum simulation [31, 32].



QOutline

Part I: tunable exciton-electron scatteringin atomically thin semiconductors

The first part of this thesis investigates two-dimensional exciton-electron scattering in
atomically thin semiconductors. We focus on the question how exciton-electron Feshbach
resonances translate to two-dimensional systems and how they can be understood from
a microscopic few-particle point of view.

In Chapter 2 we start by giving a short overview of Feshbach resonances in ultracold
atoms and transition metal dichalcogenides (TMDs). These atomically thin semicon-
ductors are a class of van der Waals materials that posses semiconducting band gaps.
The two-dimensional nature of these materials supports the formation of deeply bound
excitonic states. The interactions between these excitons and free charge carriers are
typically fixed by material parameters which limits the range of application. Conversely,
the coupling of scattering states and bound states in ultracold atoms, leading to the phe-
nomenon of Feshbach resonances, allows for a manipulation of the scattering properties.

In Chapter 3 we investigate how two-dimensional exciton-electron Feshbach resonances
and consequently tunability of interaction strengths result from the interactions of two
electrons and a hole in a TMD heterostructure. In the context of van der Waals materials
this concept is new [33] and was lacking an understanding based on first principles
which is presented in Section 3.2. We also introduce a toy model for the description of
a two-dimensional heavy impurity in a Fermi sea and investigate the consequences of
the tunability of interaction strengths via Feshbach resonances on the optical signatures
of the respective two-dimensional Fermi-polaron problem. We conclude this chapter
in Section 3.3 by an investigation of a two-dimensional Hubbard-type model of excitons
interacting with a lattice of electrons formed by a charge-ordered state in two-dimensional
semiconductors. Here interaction strengths between the exciton and the lattice sites can
be tuned using the previously introduced Feshbach resonance, giving rise to tunable
excitonic band structures.

In Chapter 4 we develop an ultracold atom inspired effective many-body model for
exciton-electron scattering in TMDs and find a remarkably good agreement with the
energies obtained from a few-body calculation. This further strengthens the analogy
between ultracold atoms and two-dimensional materials.

Part II: Rydberg excitations as probe of quantum matter

The second part of this thesis is dedicated to the investigation of a particular bound
state — an ultralong-range Rydberg molecule (ULRRM) — formed by a Rydberg atom
and a ground state atom and how it can be used to probe correlations in ultracold
quantum gases.

In Chapter 5 we review the basic concepts necessary to understand the interactions
between Rydberg atoms and ground state atoms that lead to the formation of ULRRMs.
In Chapter 6 we develop an approximate ansatz of ULRRM dimers in an ideal Fermi
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sea which is used to calculate the dimer absorption signal using Fermi’s golden rule. We
find a direct connection between the absorption strength of the ULRRM-dimer and the
pair correlation function of the quantum gas in which it was created. This allows to use
Rydberg excitations as probe of correlations in ultracold gases on length scales given by
the Rydberg radius, which is typically in the sub-optical regime.

In Chapter 7 this novel method of probing correlations in ultracold atoms using Ryd-
berg excitations is theoretically applied to a dilute gas of Feshbach molecules and a
heavy impurity in a Fermi gas. In the first case Rydberg spectroscopy grants access to
the Feshbach-molecular wave function. In the second scenario the Rydberg spectroscopic
measurement of correlations allows to map the density profile of the polaron cloud. This
shows how Rydberg spectroscopy can be used to in-situ detect and study correlations in
experimental setups.

In Chapter 8 we switch gears and investigate the loss dynamics of atoms from a BEC
when one of the atoms is excited into a Rydberg state. Therefore we use a semiclassical
theory where we solve the classical equations of motion for an ensemble of point-like
particles. We compare our numerical results to the experimental findings of [34] and
find good qualitative agreement.

Finally, Chapter 9 concludes the thesis, where we summarize its results and present
an outlook on future directions.



Part |I.

Tunable Exciton-Electron Scattering in
Atomically Thin Semiconductors






Part I is based on the publications [P3] and [P5].
Additional unpublished material is discussed in Sections 3.1.1 and 3.3 and Chapter 4.






Low-energy scattering of particles is universal across physics, ranging from ultracold
atoms to solids and high-energy physics. This allows to observe the same phenomena
and similar features in entirely different areas of physics [35]. With their capability to
act as quantum simulators ultracold atoms take a special role. This is in particular based
on the astonishing control over interatomic scattering properties [32, 36] by making use
of Feshbach resonances [37, 38].

In solid state physics, on the other hand, interactions between particles (charge carriers
and emerging quasiparticles, such as excitons, phonons, or plasmons) are typically fixed
by material properties with no possibility to easily tune and control interactions in a
given sample. This naturally limits the versatility of solid-state systems as platform to
study and simulate universal physics. The recent experimental observation of a Feshbach
resonance in twisted bilayer TMDs [33] prompts questions about their microscopic origin
and to which extent their tunability allows the exploration of many-body physics even
beyond the reach of ultracold atomic quantum gases.

In this first part of this thesis, we investigate the emergence of tunable exciton-electron
scattering in multi-layered heterostructures of two-dimensional materials. We start with
a short reminder on Feshbach resonances in ultracold atoms in three dimensions and
a short review of two-dimensional semiconductors. Then we show how Feshbach res-
onances between electrons and excitons in two-dimensional materials arise from a mi-
croscopic first-principle analysis of the underlying three-body problem. We specifically
focus on how layer hybridization of excitons can lead to the emergence of Feshbach reso-
nances that allow to tune interactions between electrons and both short-lived intralayer,
as well as long-lived interlayer excitons. The first type of resonance gives access to the
sensing of charge correlations via optical injection of excitons. The latter brings tun-
able interactions to Bose-Fermi mixtures consisting of electrons and long-lived interlayer
excitons (bosons). This opens the avenue to explore Bose-Fermi mixtures in solid-state
systems in regimes that were previously not accessible in ultracold atom experiments
(due to their chemical instability [39]) by bringing fully controllable interactions to the
field of two-dimensional semiconductors.

Based on this new possibility of tunable interactions between excitons and charges we
investigate their implications for an exciton interacting with a charged-ordered many-
body state. We find that the tunability of exciton-electron interactions leads to tunable
excitonic band structures. Further we derive an effective description for two-dimensional
Feshbach resonances motivated by two-channel models commonly used in ultracold
atoms.






2. Overview: Van der Waals Materials
and Feshbach Resonances

The goal of this chapter is to provide a short overview of transition metal dichalcogenides
(TMDs) — a group of van der Waals materials with semiconducting band gaps — and
Feshbach resonances in ultracold atoms. In Chapter 3 the combination of both fields
will provide the theoretical foundation for the microscopic understanding of tunable
exciton-electron scattering in TMD heterostructures.

2.1. Two-Dimensional Semiconductors

Van der Waals materials provide a fast evolving platform for the experimental investi-
gation of strongly correlated quantum matter. Over the past years developments in the
field of van der Waals heterostructures have led to new types of experiments allowing
to study Mott phases [40, 41], insulating density waves [42-44], excitonic insulators [45],
Wigner crystals [40, 46, 47], the quantum anomalous Hall effect [48], polaron-polariton-
cavity physics [26] and fractional Chern insulators [49].

Monolayer TMDs — atomically thin semiconductors [50] — are a subgroup of van der
Waals materials. A detailed review on the physics of these materials can be found in [51].
Their three-dimensional bulk versions consist of parallelly aligned crystalline monolayers
which are held together by van der Waals forces. The robust mechanical properties
of monolayers (caused by the strong inter-atomic binding within the layers) and the
relatively weak adhesion between individual layers allow to extract single atomically
thin sheets of these materials by exfoliation! [53]. Such monolayers can be stacked
on top each other in a modular way [54], enabling the engineering of multilayer van der
Waals heterostructures with specific properties. In this way a semiconducting monolayer
can be, e.g., encapsulated by insulators, hexagonal boron nitride (hBN), or gated by a
layer of graphene, which leads to ability to investigate and make use of the existence of
deeply-bound two-dimensional excitons.

A TMD monolayer has a width of about 0.7 nm (MoSe,) and has a crystalline structure
with transition metal atoms being located in the central symmetry plane and chalcogen
atoms located above and below (see Fig. 2.1a,b). Each transition metal atom (e.g., Mo,

!There are also other methods for creating layered structures of van der Waals materials such as
chemical vapor deposition [52].
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2. Overview: Van der Waals Materials and Feshbach Resonances

(a) @ (b) ©

Figure 2.1.: Sketch of the crystal structure of a TMD monolayer; (a) top view, (b) side view
along the axis where neighboring transition metal atoms align (freely based on
[55]). The positions of transition metal atoms (e.g., Mo, W) are marked in blue
and the ones of dichalcogenide atoms (e.g., S, Se) in yellow. The latter are pairwise
aligned in the top view. (c) Illustration of the electrical field lines between an
electron (blue) and a hole (red) in a TMD monolayer. Most of the field lines are
out of plane (and pass through, e.g., vacuum).

W) is swrrounded by six chalcogen atoms and each chalcogen atom (e.g., S, Se) neighbors
three transition metal atoms, as reflected in their chemical formulas of, e.g., MoSes.

TMDs have direct band gaps [50] that appear at the high symmetry points K and K’
within the Brillouin zone and are labeled K and K’ valley respectively? (see Fig. 2.2).
At these points electrons can be excited from the valence to the conduction band by
the absorption of a photon of matching energy. This process annihilates an electronic
state in the valence band leaving a ‘hole’ (a positively charged state) in the valence-band
Fermi sea of electrons. The hole acts in a sense like the antiparticle of the annihilated
electron [58].

Thus the absorption of a photon can create a pair of positive and negative charge
which attract each other like electrons and positrons or like the proton and electron
within a hydrogen atom. The bound state of a hole and an electron is a quasiparticle?
called ‘exciton’. It is found that spectroscopic results can be rather well described by
an effective-mass model [51] where one extracts an effective mass for electrons and holes
from the harmonic curvatures of the respective band extrema. Later we will follow this
approach by treating electrons and holes in TMD monolayers to behave like particles
with effective masses. The excitons in the different valleys can be addressed individually
using circular polarized light. The K-valley exciton couples to o~ -polarized photons
while the K’-valley exciton couples to o™ polarization [59-62].

In contrast to excitons in three-dimensional bulk semiconductors like gallium arsenide
or cuprous oxide, only a small fraction of the electrical field lines between the electron
and hole are located within the atomically thin monolayer as most of the electrical field
lines are out of plane. An illustration of the electric field between the electron and
hole can be found in Fig. 2.1(c). The screening of the out-of-plane electric field lines

2Theoretical calculations of band structures typically use density functional theory (DFT) [56, 57].
3].e., an excitation out of a vacuum with a well defined dispersion relation that approximately has a
well-defined quantum statistics.

12



2.1. Two-Dimensional Semiconductors

(b)

14
!

Figure 2.2.: (a) Illustration of the direct band gaps at the K and K’ valleys of the band
structure for MoSes (freely based on [51]). The valence and conduction bands are
split due to spin-orbit coupling where the valence band splitting is significantly
larger than the conduction band splitting [66]. (b) Illustration of the Brillouin
zone and symmetry points for a two-dimensional triangular lattice (freely based
on [67]).The high symmetry points can be derived from the crystalline structure
of the monolayer crystal (MoSy: space group P6m2 [68]). The arrows mark the
reciprocal lattice vectors.

[63-65] caused by the two-dimensional geometry of the system results in a modification
of the Coulomb interaction potential. This screening can additionally be amplified by
constructing heterostructures where the TMD monolayer is encapsulated by insulators.
In the limit of vanishing layer thickness the modified interaction potential of two charges
in a single monolayer is given by the Rytova-Keldysh potential [63, 64]

2

o =2 () ()] ot

2r 0 To To

where Hy and Y are the Struve and Neumann functions, and ry = agq/2 is the screening
length due to the polarizability asq of the atomically thin layer.

The excitonic binding energies resulting from this interaction potential are enhanced
by up to two orders of magnitude compared to bulk semiconductors [69-71] justifying
many-body theories approximating excitons as point-like particles by neglecting its inter-
nal structure. Fig. 2.3 shows the energies and radial states of excitons of different angular
momenta in a MoSe; monolayer calculated in an effective mass model by numerically
diagonalizing the radial Schrédinger equation

m

{—5—2 (a? - %&) V) + L ) = B (2.2)

2,2
241 20 12
with reduced mass p and angular momentum m. The extent of the s-wave ground state
is approximately 2nm. The ground-state energy increases with angular momentum and

the growing centrifugal barrier increasingly pushes the maximum of the radial wave
function towards larger radii.

13



2. Overview: Van der Waals Materials and Feshbach Resonances
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Figure 2.3.: Exciton binding energies (gray solid lines) and radial wave functions (colored lines)
in a MoSes monolayer for different angular momenta (a) m = 0, (b) m = 1 and
(¢) m = 2. The two-dimensional centrifugal potential for m # 0 causes the wave
functions to be extended to larger radii.

Virtual electron-hole recombination in a many-body environment and the resulting
exchange interactions modify the potential presented here which is the result of solely
considering direct Coulomb interactions. The electrodynamic back-action of the exci-
tonic dipole on the exciton itself additionally contributes to the interactions (known as
long-range exchange interaction) [51]. The ratio of direct and exchange interactions is of
the order 10:1 [72]. In our analysis of the exciton-electron three-body problem presented
in Section 3.2 we will neglect exchange interactions and solely focus on direct Coulomb
interactions.

In TMDs the interactions between charges are typically fixed by material parame-
ters. On the other hand, in ultracold atoms, the ability to couple different scattering
channels and energetically shifting them with respect to each other allows to control
interaction strengths. In the next section we give a short introduction to the underlying
concept within the context of ultracold atoms. Then in Chapter 3 we will translate this
mechanism to TMDs.

2.2. Tunable Interactions in Ultracold Atoms

In the following we give a short review of Feshbach resonances [37, 38| as employed in
ultracold atoms. They represent the elementary tuning knob for controlling interactions
between atoms and thereby enable ultracold atoms to serve as a versatile platform for
quantum simulation. A detailed coverage of Feshbach resonances can be found in [73, 74].
Here we state the idea and give a short overview of how the tuning of the scattering
length a between ultracold atoms can be represented using a two-channel model.

14



2.2. Tunable Interactions in Ultracold Atoms

closed channel

A

; '
/ A B-B,
' o
T

Figure 2.4.: (a) Illustration of open and closed channel of Feshbach resonances. Thin dashed
lines mark scattering thresholds and the bold dashed line marks the energy of the
closed-channel bound state. An external magnetic field B allows to shift the energy
difference between the two channels. Sketches of the bound state and scattering
wave function are also depicted in the figure. (b) Schematic showing the typical
behavior of the scattering length for particles in the open channel according to
Eq. (2.3).
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2.2.1. Feshbach Resonances

Scattering resonances arise from the existence almost-bound states of the scattering
particles which result from the coupling of a bound state in a so-called close scattering
channel to to continuum states of the asymptotic (open) scattering channel. Generally
this allows to change the properties of the scattering process (i.e., the phase shift). In
the context of Feshbach resonances [37, 38, 75, 76] this occurs when two particles scatter
with a certain kinetic energy and simultancously (after a change of an internal degree
of freedom) are able to form a resonant bound state. For magnetically tuned Feshbach
resonances this is achieved by allowing the atoms to switch between two different in-
teraction potentials belonging to different hyperfine manifolds and applying an external
magnetic field B to shift the energies of the different hyperfine (spin) states via the
Zeeman effect (see Fig. 2.4a).

Thus atoms can be in a scattering state for one spin configuration and in a bound state
after (virtually) changing their spin state. The energetically lower scattering potential in
which the particles enter the scattering process is commonly labeled as the open channel.
Due to the fact that the bound state is formed in a potential with an energetically higher
scattering threshold (see Fig. 2.4a) and particles can not leave the scattering process in
this channel because of energy conservation, one refers to this scattering potential as the
closed channel.

When B is tuned in a way that the zero-momentum scattering state of the open channel
and the bound state in the closed channel (dressed by scattering states of the open-
channel) have the same energy it is found that the scattering length in the open channel
diverges. In the regime around the resonance where the bound and the scattering state
are energetically very close to each other the scattering length changes significantly with
their energy detuning and is positive (negative) when the bound state is energetically
below (above) the open channel scattering threshold. This mechanism can be used to

15



2. Overview: Van der Waals Materials and Feshbach Resonances

realize all scattering lengths above/below the respective background scattering length
by fine tuning the magnetic field around the resonance. The parametrization of the
dependence of the scattering length a in terms of the magnetic field B

@m:mgO—Bf&) (2.3)

was first described in [77]. Here the background scattering length ay,, is given by the
asymptotic behavior far away from the resonance and the resonance width A is defined
by the distance between the resonance position By and the magnetic field value where
the scattering length a vanishes. The typical behavior of the scattering length around
the resonance is sketched in Fig. 2.4(b).

Later we will see that the resonance width A, which is an important characteristics of
three-dimensional Feshbach resonances, loses its meaning in a two-dimensional setting
as here the resonance position and the zero crossing of the scattering length always
coincide. Thus the resonance width A cannot be used in the context of two-dimensional
materials to characterize Feshbach resonances.

2.2.2. Two-Channel Model

More insight into the physics of Feshbach resonances can be obtained by studying an
effective two-channel model [78, 79|

2 At o4 €k 217 9 Tt 4 o
H = Z €k CpoCro t Z <? + VB> by + v Z (bgck+q/27¢c—k+q/2ﬁ + h.c.> , (2.4)
k.o k k,q

J/

Ho v

here for simplicity in absence of background scattering. The ég-operators create/annihi-
late an atom in the open channel with momentum k, hyperfine spin o € (1, ) and kinetic
energy e, = h°k?/2m. The Bk—operators are compound operators that create/annihilate
a bound state of two atoms in a momentum mode k with energy v in the closed channel.
As the bound state is formed out of two atoms its mass is twice the mass of an atom and
hence the kinetic energy is given by e /2. The non-interacting Hamiltonian Hy, describes
the total kinetic energy of the system. The last term V couples the two channels by a
coupling constant* g.

We now consider the center-of-mass zero-momentum sector of the Hilbert space and
ask for the transition probabilities of an initial scattering state éL ¢éik¢ 0) = |k, —k)
into a state |k’, —k’). The transition matrix T describing this process can be expressed
via the Lipmann-Schwinger equation

T=V+VGT, (2.5)

4If one would consider scattering at higher momenta one would need to include the momentum de-
pendency of the coupling parameter gp in order to resolve microscopic details of the interaction
potentials. Here we consider the limit k¥ — 0 where g &~ g = const.
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2.2. Tunable Interactions in Ultracold Atoms

where V is the third term in Eq. (2.4) and G = 1/(E — Hy+ie) the free Green’s function.
The transition element is then given by

(K, —K|T |k, —k) =K', K|V +VGT |k, —k)

(k' —FK|V |k, —k)

(K',—K|VGV |k, —k)

K, —K|VGVGV |k, —k) (2.6)

ol

o
(K, —K[VY (GV)"GV |k, —k) .

n=0
Here all terms where the application of the operators converts a scattering state into
a bound state (whenever 1 + 4n operators appear) vanish, leading to the expression in
the last line of the equation. This expression has the advantage that GV |k, —k) is an
eigenstate of each term (G«V)Zn To see this one realizes that during the evaluation of

Eq. (2.6) four different types of terms may occur. Terms where V' acts on a scattering
state |k, —k)

V ik, —k) = - Z (Bhprasnt praps +1:e) hyilis 10)
- v Z bq(spﬂl/?,k O—p+q/2—k 10) (2.7)
p.q
9 i
= —2_p0) ,
\/V 0 | >

terms where G acts on a scattering state |k, —k)

A 1
Glk,—k)=——-——2¢b &t 0
k) = i 10)
1 (2.8)
:—k -k
o | )
— Go(E, k) |k,—k:),

terms where V acts on a bound state b, |0)
it ; it
Vb)10) = f 3 (Hhpsarni®praras + 1) 110
\/— Z%m/u Lpras2494010) (2.9)

:_ |p7_p )
AT
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2. Overview: Van der Waals Materials and Feshbach Resonances

and terms where terms where G acts on a bound state b{; |0)

A 1
by 0) = ﬁ[ﬁ 10)
o T+ 1€
1 : (2.10)
=———D[0
E—I/B—i-iG O| >

= Go(E) I;(T) 0) .
Here we have defined
1 1

F)Y= ———— Ep =——"-——. 2.11
9B) =g wd GolBp) =g (2.11)
One now finds that the state
A A g AT
GV |k, —k) = —=Go(E) b, |0 2.12
|k, —k) N 0(E) b [0) (2.12)
is an eigenstate of the operator (GVGV)", i.e
e
GVGV b |0) = —go(E) > Go(E,p)b§|0) . (2.13)

p

For details see Appendix A. We are now in the position to evaluate Eq. (2.6) to arrive
at

n

K, —K|T |k, —k) i Go(E / dp 1 (2.14)
ol (2n)P E —ep+ie | 7 '

n=0

::EZEE)

where we identify the self energy
d3p 1
Y(E) =
(E) /(2n)3E—ep+ie
SO .
Vv Z —€p +ie’

\p\ A

with the momentum cutoff A. This allows to rewrite the transition matrix element

1 1
v E—u]23+ie _ Z

g
Ip\<A

/ s ~
(K, —K'| Tk, —k) ~ (2.16)

E— ep+1e
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2.2. Tunable Interactions in Ultracold Atoms

The transition matrix elements are linked to the scattering amplitude by

Tolk. k) = —sE V(K <K/ T [k, k) . (2.17)

with the reduced mass p = m/2. This expression can be transformed for elastic and
on-shell scattering where |k| = |k'| = k and E = h*k?/2u to

2n

(k) :/ch? Fulle, k)
0 2.18
L 219

T 4nhPvp  2A
g2m T

with ¥ = Z(k,k’). In the limit £ — 0 the scattering length « is direct proportional to
the scattering amplitude

o= —lim f(k) = — (47[’:‘2”3 _ %)_ | (2.19)

k—0 g>m T

which implies that the scattering length depends on the energy detuning vg of the
closed-channel molecule with respect to the open-channel scattering threshold.

As we motivated above this energy of the closed-channel bound state can be con-
trolled via an external magnetic field in the context of magnetically tuned Feshbach
resonances. Away from the resonance the binding energy of the closed-channel bound
state is linearly dependent on the magnetic field via the linear Zeeman effect and can
thus be parametrized as

vp =6,(B— B.) . (2.20)

Here 4, is the difference of the magnetic moments of the closed-channel bound state
and the atoms in the open channel and B, is the magnetic field strength where the bare
closed-channel bound state energy crosses the open-channel scattering threshold [80].
Further one finds

1 _4717"225“(3 - B,) N 2A

a = —

g>m T
_ 20 4nlP0,(B — By)  4nh’6.(Bo — Be) (2.21)
= — ~m 92m
romr*
If one identifies 5
4rth
g = e (2.22)
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2. Overview: Van der Waals Materials and Feshbach Resonances

Figure 2.5.: Sketch of bound state energies (dashed lines) and the scattering length (solid gray
line) around a Feshbach resonance. Here v, is the energy of the closed-channel
bound state. The bound state energy is modified due to the coupling g of open
and closed channel. Freely based on [80].

where 7* is the Feshbach range, one finds a shifted resonance position of the Feshbach
resonance (see Fig. 2.5). The scattering length diverges at the resonance position B = By
where 1/a = 0 in Eq. (2.21) such that

B 2 mr*

mr* _20MR* g*mA
T h? B

Tmr* 2mh?

0

0,(Bo — Be) = 0,(Bo — Be) (2.23)
Hence due to the coupling g of open and closed-channel the renormalized ground state
is energetically below the bare closed channel-bound state.

In this chapter we have reviewed basic concepts in TMDs and Feshbach resonances
that will allow to investigate exciton-electron scattering in TMD heterostructures in
Chapter 3. In this course we will identify exciton-electron scattering resonances that
resemble the picture of open and closed-channels introduced in the description of ul-
tracold atomic Feshbach resonances. In the context of TMDs anticrossings between
exciton-electron bound states (trions) and exciton-electron scattering thresholds will oc-
cur due to exciton hybridization resulting from interlayer hole tunneling, leading to the
coupling of open and closed scattering channels. This will allow for a microscopic theory
of exciton-electron Feshbach resonances in TMD heterostructures.
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3. Tunable Exciton-Electron
Interactions

In this chapter we show how two-dimensional Feshbach resonances result from an analysis
of the two-dimensional exciton-electron scattering in a TMD heterostructure. In doing
so, we first introduce a two-dimensional toy model for the scattering of two particles
that captures the most important features to obtain tunable scattering phase shifts and
use it to model impurity-bath interactions in the Fermi-polaron problem. This allows to
understand optical signatures of Feshbach resonances in two dimensions. Afterwards we
turn to the concrete example of a TMD heterostructure and show how two-dimensional
exciton-electron Feshbach resonances arise from a microscopic theory of electron-hole
scattering by solving the underlying three-body problem. This represents a central
result of this thesis. Finally we investigate consequences of tunable exciton-electron
interactions on excitons interacting with electrons in two-dimensional charge ordered
states which arise naturally within TMD heterostructures.

3.1. A Toy Model - Two-Dimensional Scattering
Resonances

First we consider two particles that interact via a square-well potential of variable depth.
This allows to introduce bound states in a scattering potential while simultaneously
monitoring the scattering wave functions. The analysis of this simple model! provides
insights into scattering resonances in two-dimensional systems as it allows to calculate
scattering phase shifts when new bound states are introduced into a two-body interaction
potential. In Section 3.2 the same procedure will be applied to the three-body problem
allowing to extract exciton-electron phase shifts.
We consider the relative two-body Hamiltonian

[% + V(rﬁ)] U(r)=EV(r) . (3.1)

Here r is the relative coordinate between the particles, p is the reduced mass and we

IThe found mechanism is valid on a more general basis due to the universality of low-energy scattering.
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3. Tunable Exciton-Electron Interactions

VA 7/

Y

Figure 3.1.: Sketch of the radial potential landscape of the two-dimensional square-well-
potential toy model. The infinite potential for r > R} imposes hard-wall bound-
ary conditions on the radial wave functions.

assume vanishing total momentum. The interaction potential reads

1 <
V= s (3.2)
0 else

To get grip on this problem numerically?, we confine the system in a quantization box
by demanding V(7) = oo if Ryex < |r| and choose Ryox > R. Fig. 3.1 shows a sketch
of the radial potential landscape of the toy model, with V being the depth and R the
range of the potential. The circular two-dimensional quantization box with radius Ry
imposes hard-wall boundary conditions on the radial wave functions. We separate radial
and angular wave functions by the ansatz

V(7)) = Uy, (1)e™? (3.3)
leading to the radial Schrodinger equation

2 2,2
5 (2430) £ v0)+ 5 ) = Bt (3.
and restrict the following analysis on the s-wave sector of the Hilbert space containing
the wave functions with zero angular momentum, i.e., m = 0. The Hamiltonian is imple-
mented numerically where we make use of finite difference coeflicients to represent the
momentum operator and use exact diagonalization to calculate the low-energy spectrum
and the corresponding eigenstates of Eq. (3.4).

A comparison of the resulting radial two-body wave functions (blue) and the corre-
sponding non-interacting wave functions (black) can be found in Fig. 3.2. It shows three
different choices of Vj around the emergence of the second bound state at Vi in the
interaction potential for a fixed range R < Rpox (note, R is so small that it is not visible
on the scale of the r-axis).

In (a) we can see how the scattering wave functions are pushed out of the potential
well (i.e., 6 > 0). For excited states the particles repel each other despite the attractive

2Despite the existence of an analytical solution of this problem we apply the same numerical method
as developed for the analysis of the three-body problem presented in the next section.
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3.1. A Toy Model - Two-Dimensional Scattering Resonances

(c) y

bound state

bound state

bound state

Figure 3.2.: Illustration of the relative radial two-body wave functions of a two-dimensional
square-well interaction potential for R < Ryx. Blue (interacting): wave functions
of the system with square-well potential. Black (non-interacting): wave functions
without square-well potential. The potential depth V{y is chosen around the value
Vies where the second bound state is created in the interaction potential. In (a) one
bound state exists for Vj 2 Vies and the interacting scattering wave functions are
pushed out of the square-well potential. In (b) the interacting energy levels match
for Vi = Vies and the long-distance behavior of the interacting states coincides with
their non-interacting counterparts. In (c¢) two bound states exist for Vj < Vies as
the previously lowest scattering state now shows an exponentially decaying wave
function. The interacting scattering wave functions are pulled into the square-well
potential.

character of the interaction potential (i.e., V5 < 0, throughout the whole analysis).
This scenario corresponds to Vg 2 Vies where the potential hosts a single deeply-bound
state and the scattering states are slightly shifted upwards in energy compared to their
non-interacting counterparts.

If Vj is only slightly lowered the point Vy = V,e is reached where the lowest scattering
state has the same energy as the non-interacting ground state®, see Fig. 3.2(b). A
numerical analysis of the scattering wave functions suggests that their long-distance part
matches exactly their corresponding non-interacting counterparts, i.e., that the phase
shifts vanish (d(k) = 0 also for & > 0 in the limit of Rpox — 00). Thus for Vi = Vies
the effective interactions between the two particles vanish as the asymptotic scattering
wave functions have no signature of the potential and pairwise match the non-interacting
states. The system effectively behaves like two free particles, apart from the existence
of the deeply-bound state.

By lowering Vj slightly more a new bound state is created. For Vj < Vi in (c)
the previously lowest scattering wave function is pulled into the potential well and its
long-distance behavior decays exponentially, signaling bound-state formation. All energy
levels of the interacting states (except the deeply-bound state) are now slightly below

3Due to the confinement in the box the non-interacting s-wave ground-state energy is given by
E, =h? jg’n (2u R ) with jo,, the n-th zero of Jy the Bessel function of first kind.

box
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Figure 3.3.: Energy scale Fg extracted from the lowest scattering wave function. Whenever a
bound state is introduced into the scattering potential Fg diverges and jumps to
zero. The zero at V[ = 0 corresponds to the emergence of the first bound state.

their non-interacting counterparts and the phase shifts ¢ are negative (or 6 < 7 when
restricted to the interval 6 € [0, 1)).

This simple analysis already shows a remarkable feature of two-dimensional scattering
physics. Whenever a two-particle scattering potential is modified in a way that the two
particles obtain (lose) the ability to form a bound state, the system becomes effectively
non-interacting?, and the phase shifts jump from 0 to 7 (or vise versa).

To substantiate these statements found from this simple analysis of scattering wave
functions we extract the phase shifts of the low-energy scattering states by a numerical
fit of their radial long-distance behavior with the two-dimensional scattering functions

R,(r) = am(kn) I (knr) + B (kn) Yo (Knr) (3.5)

where J,, and Y,, are the Bessel functions of first and second kind, and k,, labels the
scattering momentum of the n-th state. Note m = 0 as we consider s-wave scattering.
Using [30, 82]

Om (k) = —arctan (B, (kn) /am(kn)) (3.6)
we obtain the two-dimensional phase shift § = dy(k), which is linked to the energy scale
E; by

cot(8) "= 1/7 In(E/Ey) , (3.7)

where E = h?k?/u. E, is connected to the two-dimensional scattering length asq by

12
2E,

(3.8)

A2q =

In Fig. 3.3, we show E obtained from an analysis of the lowest two-body scattering
wave function. When crossing the resonance at |Vie| from left to right (introducing
a new bound state to the interaction potential) Fy diverges and jumps to zero. The

4For the transition of repulsive to attractive potentials (when V changes its sign), this is a direct
consequence of the fact that in two-dimensions all attractive potentials host at least one bound
state [81].
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3.1. A Toy Model - Two-Dimensional Scattering Resonances

divergence of the two-dimensional scattering length and simultaneous vanishing of inter-
actions whenever a bound state is created in an interaction potential is a peculiar feature
of two-dimensional scattering [83]. This pinpoints the loss of meaning of the resonance
width as defined in three-dimensional ultracold atomic systems®.

The analysis of s-wave scattering states® in this section shows how the interactions
between particles can be tuned by will analogously to a Feshbach resonance in ultra-
cold atoms, if one is able to introduce/remove bound states from a two-dimensional
scattering potential. This has important consequences for the optical response of the
two-dimensional Fermi-polaron problem (also discussed in [84]) which will be laid out in

the following (for a review of polarons in three dimensions see [24]).

3.1.1. Fermi-Polaron Problem with Tunable Square-Well
Interactions in Two Dimensions

Impurity problems show universal features across physics. The emerging polaron allows
to study a many-body system when brought away from its non-interacting state, making
it essential for the understanding of the phase diagrams of strongly interacting quantum
systems. In the upcoming subsection we investigate a static impurity (with infinite mass)
in a Fermi sea. The interactions between fermions and the impurity are modeled by
the square-well potential introduced in the previous section. We use a direct functional
determinant approach [24] (see Appendix B) to calculate the Fermi polaron spectrum (cf.
Fig. 3.4) while lowering Vj (i.e., increasing |Vy|) around V.5 where the second bound state
emerges in the impurity-bath interaction potential. An analogous generic behavior of
attractive and repulsive polaron branches is found whenever a bound state is introduced
into (or removed from) the interaction potential.

Importantly the universality of s-wave scattering allows to replace any physical in-
teraction potential by a model potential that reproduces the same phase shifts (and in
consequence Eg parameters) to describe the scattering physics. Hence despite the rela-
tive simplistic choice of a square-well interaction potential the resulting polaron spectrum
still resembles the physics for more realistic choices of interaction potentials for given
values of Ei.

At the resonance marked with V.. in Fig. 3.4 the second bound state appears in
the interaction potential and a new repulsive polaron branch emerges in the spectrum
with zero spectral weight. The repulsive branch on the left of |Vi| emerged in the
same way at the point where the first bound state is introduced in the system (i.e., at
Vo = 0, see Fig. 3.3 where Ej vanishes at Vy = 0). At Vi = Vs this repulsive branch
maximizes its spectral weight, crosses the energy of the two-body scattering threshold
and is then converted into an attractive polaron. When moving to the right it begins

°Here the resonance width (as discussed in Section 2.2.1) was defined as the distance of the zero
crossing of the scattering length and the resonance position, which coincide in two dimensions.
6A similar analysis can be done for higher angular momentum states.
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Figure 3.4.: Polaron spectrum in dependence of the potential depth Vj and energy with respect
to the impurity-fermion scattering threshold in units of the Fermi energy Er. Vj
is chosen around the resonance at Vies where the second bound state is introduced
to the square-well potential. In the top panel the corresponding Eg parameter is
shown. The colors correspond to the absorption strength in arbitrary units, where
darker colors indicate larger absorption. The dashed line is a guide to the eye
of the emerging repulsive polaron branch at Er the resonance. At this point the
repulsive branch crosses the energy of the two particle scattering threshold at zero
with maximal spectral weight and is converted into an attractive polaron branch.
When moving to the right the attractive branch looses spectral weight while the
repulsive branch gains spectral weight (until it would reach the point where the
third bound state is created, where it has maximal spectral weight, is converted
into an attractive polaron, yet another repulsive polaron is created, and the whole
process repeats itself). Note that the attractive polaron branch caused by the
deeply-bound state is not shown in the figure. This branch also looses spectral
weight while increasing [Vp|.

to lose spectral weight. Analogously the energetically lower attractive polaron caused
by the deeply-bound state (which is not shown in Fig. 3.4) looses spectral weight. The
combined loss of the spectral weight of the attractive branches is transferred to the
repulsive branch, which emerges at the Fermi energy £ = ep. When increasing | V| until
it reaches the point where the third bound state would be introduced to the interaction
potential (not shown in the figure). At this point (analogously to Vi = Vi) the repulsive
branch crosses the two-body scattering threshold, maximizes its spectral weight and is
converted into an attractive polaron, while a new repulsive polaron branch emerges with
zero spectral weight. This process repeats itself whenever a new bound state is generated
in the two-body interaction potential and is linked to the reallocation of scattering states
when the lowest scattering state becomes a new bound state.
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Figure 3.5.: Illustration of energy levels and transitions of states which determine the strength
of the different polaron branches. The non-interacting states are marked in gray
(free Fermi sea). The arrows indicate the refilling of single particle orbitals during
the formation of the respective polarons. Note that the deeply-bound state also
causes an attractive polaron branch that is present in (a) Vo 2 Vies, (b) Vo = Vies
and (c) Vy < Vies which is again neglected due to illustrative reasons. In (a) the
interacting energy levels (dashed lines) are slightly shifted upwards with respect
to the non-interacting ones (solid lines). In (b) the interacting energy levels match
their non-interacting counterparts (solid lines). Note that in contrast to Fig. 3.4
the energy of the lowest non-interacting state (i.e., scattering threshold) is not
at 0 this is only true in an infinite system. Inside the quantization box the non-
interacting s-wave energy levels are given by FE,, = h? jg’n /(2u RE ) with jo, the
n-th zero of Jy the Bessel function of first kind. Note that ¢ = Mrpermion as we
consider an immobile impurity. For the case of an infinitely heavy impurity in a
three-dimensional Fermi sea see [24].

This scheme can be easily understood from a picture of many-body states created
from filling up single-particle orbitals illustrated in Fig. 3.5. The horizontal dashed lines
correspond to the interacting single-particle energy levels which are shifted either up or
downwards with respect to their non-interacting counterparts (solid black lines). In this
simple picture the overlap of interacting and non-interacting single-particle scattering
states is large if their energies are similar. The occupation of the respective single-particle
state in a many-body state is represented by a black dot.

In the following the interacting single particle states are labeled by |v) and the cor-
responding non-interacting single particle states by |n), respectively. In Fig. 3.5(a) the
interacting energy levels (dashed lines) are slightly shifted upwards with respect to the
non-interacting ones (solid lines). The polaron energy is given by the sum of these energy
differences

Bpot = ) A, , (3.9)

n<ng

with |np) the free single-particle mode at the Fermi level and the energy difference
AFE = F, — E, of the respective interacting and non-interacting single-particle orbitals
E, and FE,. Hence the corresponding repulsive polaron is shifted slightly upwards in
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energy with respect to the impurity-bath scattering threshold (c.f. Fig. 3.5a). The re-
spective many-body states (Slater determinants of the corresponding interacting and
non-interacting single-particle orbitals, connected by arrows in a) have a rather good
overlap causing the spectral weight of the repulsive polaron to be substantial.

At the resonance V) = Vi, the interacting and non-interacting energy levels match (in
the limit Ry — 00) shown on the left side of (b) causing the polaron energy to match
the impurity-fermion scattering threshold (see Fig. 3.4, the polaron energy changing its
sign at the resonance). Also the asymptotic interacting orbitals |v) exactly match their
non-interacting counterparts |n) causing a maximized spectral weight. At this point a
different rearrangement of single-particle orbitals becomes possible, illustrated on the
right panel of (b). This leads to the emergence of a new repulsive polaron branch with
zero spectral weight as its Slater determinant contains a state that causes the overlap
with the non-interacting many-body state to vanish. The onset of the newly emerging
repulsive branch is then given by summing the offsets of neighboring energy levels, i.e.,
v=n-+1,

SN AE, =Y B - E,R By (3.10)

n<ng n<ng

which sum up trivially to the Fermi energy (in the limit Rpox — 00).

The above investigation of a toy model clarified the ingredients needed for the realiza-
tion of tunable interactions in two dimensions and how they could be observed via clear
optical signatures in a many-body setting. We now turn to the microscopic analysis
of Feshbach resonances in atomically thin semiconductors, where exciton-electron Fesh-
bach resonances will enable to study the mobile” Fermi-polaron problem with tunable
interaction.

3.2. Feshbach Resonances in Two-Dimensional
Materials from First Principles

The following section summarizes [P5] and presents one of the main results of this thesis.
We show how two-dimensional electron-exciton Feshbach resonances result from first-
principles by analyzing the underlying microscopic three-body problem. To this end, we
solve the problem of two electrons and one hole interacting with each other in a bilayer
TMD structure. In contrast to the two-body toy model studied above the three particles
are now interacting with more realistic interaction potentials. We find that the excited
states of the low-energy spectrum always contain a bound electron-hole pair, an exciton,
that scatters with the third charge carrier. In this context it is the exciton-electron

"In this context the impurity is given by an exciton.
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Figure 3.6.: (a) Sketch of the bilayer system. The two TMD layers are separated by a distance
d, which will be later set to a value that reflects the thickness of a hBN monolayer.
The blue (red) circles represent the electrons (holes). The system is subject to an
external perpendicular electric field E = E,é,. (b) Illustration of the band struc-
ture offset in the TMD-hBN-TMD heterostructure. The hBN conduction-band
offset suppresses the tunneling amplitude of the electron. The external electric
field allows to shift the TMD band structures with respect to each other.

scattering properties that can be manipulated by allowing the three particles to form a
three-body bound state, a trion (that can be effectively viewed as an exciton-electron
bound state and is sometimes also called ‘charged exciton’ in literature).

An illustration of the system is shown in Fig. 3.6(a). The electrons are fixed to one
layer while the hole can tunnel between the layers. In experiments this condition can be
realized by placing a layer of hexagonal boron nitride (hBN) between the TMD layers.
The conduction band of the hBN layer represents an energy barrier for the electrons
which they need to overcome when tunneling between the layers (see Fig. 3.6b). Thus,
suppressing electron tunneling compared to hole tunneling, justifying the approximation
of fixing the electrons to one layer of the bilayer structure while the holes are able to
tunnel between them.

The Hamiltonian we investigate reads

b= 3 RN, _GAE i 3 V(IR — R 11
- Z R, — 9 ( _Tz) +tl7—x +ZZ ab(| T ]|) s (3 )
=1

a,b 1<j

with the mass m;, the spacial coordinate vector R; of the i-th particle, the band detuning
of top and bottom layer AFE (cf. [85] for the monolayer scenario) and the Pauli matrices

U R A 612

which act on the layer subspace (pseudospin) of each particle.

First, we will derive the kinetic part of the Hamiltonian in relative coordinates, keeping
the interaction potential V,, between charges in layer a and b unspecified. We however
assume that V,;, only depends on the layer projected charge separation and the layer
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Rs m3 z

Figure 3.7.: Illustration of the relative three-body coordinate system used to parametrize the
Hamilonian when viewed orthogonally on the plane of the heterostructure. The
electron-hole distances are given by r; and r9. The in-plane separations span the
angle 6. The overall orientation of the three particles is parametrized by the angle
Q.

configuration of the involved charges, i.e., V(7)) = Vi (|7|), where 7 is a two-dimensional
vector. In doing so, we separate the center-of-mass motion via the transformation

’I"1=R1—R3 s T2:R2_R3 ) TCM:M(

with the total mass M, leading to the Hamiltonian

m1R1 + m2R2 —+ m3R3) s (313)
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+ Z Z Vao(|73]) + Vas (|71 — 72|)

a,b =1

where p; = mymg/(m; +ms) is the reduced mass. Using the electron-hole distances ry,
ro and the in-plane angle spanned between the electrons # and « the orientation of the
three particles (see Fig. 3.7) to parametrize the relative distances

vy =ri(cos(a + 6/2)e, +sin(a + 0/2)e,) .

ry =1y (cos(a — 0/2)e, +sin(a — 0/2)e,) | (3.15)

one arrives at the Hamiltonian in the relative coordinate system with the hole in its

center
2
. —h? 0. 0F 02 00
Hkm _ 82. _b o VT
rel Z—Zl 2[[% ( T T + +47“ 7“1-2 )
2

2
_ " (COSQ Oy, Oy — COSQ % _ (% + %) sinf 9, (3.16)
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3.2. Feshbach Resonances in Two-Dimensional Materials from First Principles

The ansatz for the relative wave functions
U(ry,re, 0, a) = (ry,re, Q)eimo‘ (3.17)

includes the conservation of angular momentum m. In the following we focus on the zero
angular momentum case m = 0. The kinetic Hamiltonian acting on the m = 0 subspace
is given by

2

- in —h? O, | 03
HE =" (83i+—+r—§)

20 i
=1 2“ o 2 (3.18)
— h— (COSQ O, Ory — cost B — (% + %> sinf 89)
mg T T9 ™

Including the interaction potential as well as the hopping between layers, the total
Hamiltonian can be written as

rel 2

2
+ Z Z Van(13) + Viap (\/r% + 73 — 27179 COS 0) .

a,b =1

3
N AE , .
H = HN — E g (1 —7) + tiT,
= (3.19)

Now we turn to the interaction potential between the two charges that is obtained by

solving Poisson’s equation
1

AD(r)=——p (3.20)

€0
for two identical layers separated by a distance of d = 1.03nm that accounts for the
separation of the TMD centers by a monolayer of hBN® of thickness 0.33nm [86] and
the thickness of MoSes (0.7 nm [87]). In Eq. (3.20) ®(r) is the electrostatic potential, &y

the vacuum permittivity and the total charge density is given by
P = Pext T Pind; + Pinds (3.21)
where pinq, is the induced charge density in layer 7,
Pind; = _VPQdZ- ) (3-22)
with the two-dimensional polarizarion vector of layer i

Pgd. = —SOQQdeCI)gd(m)(S(Z) s (323)

1

8Note that the layer of hBN is treated here as a layer of vacuum with a thickness according to a
monolayer of hBN. This causes our results to underestimate binding energies, however the general
mechanism described here remains valid.
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3. Tunable Exciton-FElectron Interactions

with the TMD layer’s two-dimensional polarizability asp and @ = (r, z), where 7 is the
two-dimensional in-plane relative coordinate vector.

The layer dependent interaction potential for charges @); and (); in momentum space
is then obtained as

_QiQ; ((1+709)e*™ —roq)

(I)in ra - 324
al?) 20 ((1 + rog)qe™ — r3q?) (824
for two charges in the same layer, and
QiQ;e"
(I)inter(Q) (325)

- 20 (1 + roq)2qe®® — rig?)

for charges in different layers (for details see the supplemental material of [P5]). The
electrostatic screening of a monolayer is described by the screening length rq = agp /2.
A numerical Fourier transformation links the momentum- and real-space potentials

Biniral(q) 5 Vip(r) ,  witha=1b,

F (3.26)
Diner(q) — Vap(r) ,  witha #0b,

which are used in the following to describe the interactions between charges in a bilayer
TMD system. Note that in the limit d — 0 Eq. (3.24) converges to the Rytova-Keldysh
potential (see Eq. (2.1)) [63, 64] which is used in Literature to model the interaction
potential between charges in TMD monolayers or to approximate the potential in bilayer
systems with vanishing layer separation, d — 0.

3.2.1. Feshbach Resonances from Solving the Three-Body Problem

To obtain a better understanding of two-dimensional exciton-electron scattering we now
turn to the discussion of the results of the numerical diagonalization of the Schrédinger
equation A

H(ry,re,0) = E(ry,19,0) (3.27)

with the three-body Hamiltonian H in the zero angular momentum sector given in
Eq. (3.19). To obtain the results we use a discrete variable representation (DVR) [71, 88]
(also see Appendix C) and a standard Arnoldi diagonalization method. We focus on a
bilayer system made from two MoSe, monolayers and use material parameters obtained
from DFT [57]. An extension to heterostructures made out of different TMDs is straight
forward.

We assume the absence of electron hopping, which makes the layer index of the elec-
trons a conserved quantity, causing the Hilbert space to decouple into three invari-
ant subspaces (both electrons in either the top or bottom layer and one electron in
either layer respectively). Further, the Hamiltonian (3.19) is invariant with respect
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Figure 3.8.: (a) Spectrum of spatially symmetric three-body states with respect to electron
exchange, as function of the band detuning AF and a hole tunneling amplitude
t = 2meV [33]. Bold colored lines mark trion energies for t = 0, whereas black
lines show the eigenenergies (including trion and exciton-electron scattering states)
in presence of hole tunneling. Shaded areas are guides to the eye representing
the different scattering continua. Blue color indicates intralayer and green color
interlayer configurations as shown in the pictogram. Feshbach resonances appear
at the positions labeled F; and Fy. Symbols I-VI mark AFE values for which
the states labeled by 0-3, R; and Rg are visualized in Fig. 3.9. (b) Sketch of
the Feshbach-resonance channel description. A resonance occurs when an exciton
scatters with a top layer electron and can resonantly couple to a trion state (bold
colored line). The energy offset between both configurations (channels) can be
tuned via the band offset AF.

to the exchange of electrons, leading to wave functions ¢ that are either symmetric
Y(ry,re,0) = Y(re, r1, —0) or antisymmetric 1 (ry, re,0) = —1)(rq9, 1, —0) under electron
exchange. Each of these sets of wave functions again span an invariant subspace of
the Hilbert space. In the following we solely focus on the symmetric subspace contain-
ing states with electrons (of unequal spin) in the top layer. The two possible particle
configurations are depicted in the inset of Fig. 3.8(a), which shows how the symmetric
low-energy spectrum depends on the detuning of the band structures AE for a hole tun-
neling amplitude of ¢ = 2 meV [33]. The tunneling of holes couples intralayer (blue) and
interlayer (green) states. For a better visual identification of the energies corresponding
to hybridized states (thin black lines) energies of trion states in the ¢ = 0 scenario are
plotted in respective bold colored lines, the intralayer trion in blue and the interlayer
trion in green. In the following we address these states as bare trions. The lower edge
of the shaded areas correspond to the respective exciton-electron scattering thresholds
(energies of the lowest scattering states) in the ¢ = 0 scenario. Due to the finite size of
the system the scattering states form a set of discrete states rather than a continua that
would be obtained in the infinite box limit Rpo — 00.
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Figure 3.9.: Angle averaged probability densities of electrons n(ri,72) o [df[o(r1,72,0)[?
for the lowest states at the AE values (shown above the figure) marked with
labels I-VI in Fig. 3.8. Dark colors indicate a large probability density. The
hybridization of intralayer (hole in top layer, T) and interlayer (hole in bottom
layer, B) configuration is indicated for each state.

Particularly interesting points are those where the bare trions cross the exciton-hole
scattering thresholds. The respective anticrossings of hybridized eigenstates signals
strong couping of open and closed channels at these points, marked with red circles
in Fig. 3.8(a).

This motivates to think of two-dimensional exciton-hole scattering in TMDs in the
usual Feshbach resonance picture known from ultracold atoms (see Fig. 3.8b). The
exciton-hole scattering threshold is equivalent to the open channel whereas the bare
trions (bold colored lines) take the role of closed-channel molecules that are coupled to
continuum states via exciton layer hybridization.

One bound state always remains separate from the scattering threshold for all values
of AE. This indicates that the effective exciton-electron interaction is always attractive,
as in two-dimensional systems any attractive interaction causes the presence of a bound
state. Note that the attractive character of exciton-electron interactions is not trivial,
despite the two-particle electron-hole interactions being attractive, as the effective inter-
actions between an exciton and an electron can turn out to be repulsive, not allowing
for the formation of a bound trion state.

In Fig. 3.9, the f-averaged probability densities n(ry,rs) oc [ df | (r1,7r9,0)|* of the
lowest states (thin black lines labeled with 0-3, R; and Ry in Fig. 3.8a) are shown for
different band detunings AE labeled with I-VI in Fig. 3.8(a). For each state we give the
probability of finding the hole in the top (T) or bottom (B) layer.
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3.2. Feshbach Resonances in Two-Dimensional Materials from First Principles

For AE = 120 meV (I) the ground-state probability density is shown in the top of the
first column in Fig. 3.9. The probability of finding both electrons close to the hole is
high. This state is the deeply-bound intralayer trion. The two states below are the first
and second exciton-electron scattering states. Here the probability density is high along
the r1 and 7y axis, i.e., when one electron is close (bound) to the hole, the other is far
away. Thus, these states can be effectively viewed as exciton-electron scattering states.
Their wave functions exhibiting the typical lobe structure of scattering states confined
in a box (see second and third line of column I in Fig. 3.9).

The bottom panel of the first column shows the resonant interlayer trion (marked with
R; in Fig. 3.8) immersed in the intralayer scattering ‘continuum’. The spatial extent
of this interlayer trion is much larger compared to the intralayer trion due to the more
pronounced effect of electron repulsion in the interlayer configuration.

While crossing the first resonance F; at AE ~ 125 meV, we observe a continuous
transformation of the first excited state from being the first intralayer scattering state
into the interlayer trion (see second line in Fig. 3.9 across columns I-III). In the same
way the second excited state changes from being the second intralayer scattering state
(showing two lobes) into being the first interlayer scattering state (showing only one
lobe). Analogously, higher excited states change their number of radial lobes by one when
crossing the resonant state. The ground-state wave function remains nearly unchanged
(bottom line) for values of AE < 139.5 meV.

A further increase of AFE leads to an anticrossing of the bound states at IV. At this
point the bound state wave functions show signatures of the nearly maximally hybridized
inra and interlayer trions.

While crossing the second resonance Fy at V (here AE ~ 141.7meV) the excited states
gain an additional lobe. Here the hybridized intralayer trion crosses into the interlayer
scattering continuum turning into a resonant state (labeled R in Figs. 3.8(a) and 3.9).

This analysis further substantiates the picture of tightly bound excitons scattering
with an additional electron. However, it also shows that the layer hybridization® of
excitons can play a key role in the emergence of exciton-electron Feshbach resonances.

To further establish the notion of Feshbach resonances in two-dimensional semiconduc-
tors, we investigate the scattering properties of the lowest scattering state (open channel)
when tuning AFE across the resonances by determining the exciton-electron phase shifts
characterizing the extent of the wave-function modification due to exciton-electron inter-
actions. To this end, we again fit the long-distance part of the lowest scattering state to
the asymptotic scattering wave function, analogously to the analysis of scattering wave
functions in the previous part, see Eq. (3.5). We then extract E as defined in Eq. (3.7)
as parameter that characterizes exciton-electron interactions in two dimensions.

In Fig. 3.10, we show E; obtained from an analysis of the lowest exciton-electron

9Note that the layer hybridization found in Fig. 3.9 implies a modification of the electric dipole of the
excitons and trions. This might give rise to interesting, tunable many-body physics of long-lived
excitons and trions at finite density.
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Figure 3.10.: Band detuning dependence of the exciton-electron scattering parameter Eg. The
broad and narrow Feshbach resonances are labeled as F; and Fa, respectively (as
shown in Fig. 3.8a).

scattering wave functions across the resonances F; and Fy. On the left, far away from
the resonance Fy, E is approximately constant and takes a value linked to the back-
ground scattering length asq = \/h?/2E;u of excitons and electrons in the intralayer
configuration. When approaching F; the parameter Ey increases, diverges and jumps
to zero. At this point a new bound state, the interlayer trion, appears and the system
becomes effectively non-interacting. In the regime shortly after the appearance of the
newly emerging Feshbach bound trion, Ej follows its binding energy. After crossing the
narrow resonance Fy the parameter F, converges to a value linked to the background
scattering length in the interlayer configuration.

The equivalence of vanishing and diverging scattering lengths at F; and Fs is inherent
for two-dimensional systems [83] as we have seen in the discussion of the toy model in
Section 3.1. In contrast to three-dimensional Feshbach resonances in ultracold gases,
the concept of the resonance width, defined as the separation of the zero crossing of
the scattering length and the resonance position, is not practicable in TMDs. Namely,
the zero of agg = \/h?/2 E{(AFE) coincides with the two-dimensional Feshbach resonance
position.

The hybridization of intra and interlayer scattering thresholds in the vicinity of F;
causes a large overlap of open and closed channel. This results in a relatively broad
resonance at the position F;. At the more narrow resonance Fy the parameter E; quickly
vanishes and returns from infinity as the intralayer Feshbach trion crosses the interlayer
scattering threshold.

Further the character of the resonances F; and Fy differ with respect to lifetime and
oscillator strength of excitons in the open channel. The resonance F; allows to manipu-
late the scattering of electrons and short-lived intralayer excitons with a large oscillator
strength, while the scattering properties of long-lived intralayer excitons (small oscilla-
tor strength) can be tuned via Fy. This allows to either use optically injected intralayer
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excitons (at Fp) to probe correlations of electronic systems, or to bring tunable in-
teractions (at Fy) to the many-body system comprising stable interlayer excitons and
electrons, paving the way to the realization of long-lived exciton-electron mixtures at
strong-coupling, and thus enables a new approach to explore the Fermi-polaron problem
and the phase diagram of Bose-Fermi mixtures in regimes that have so far been out of
reach in ultracold atomic systems due to their chemical instability [39].

Note, we have focused on one specific configuration that is directly relevant for on-
going experiments. Allowing for different van der Waals heterostructures and electron-
hole layer configurations (including modified tunneling strength, charge, valley and spin
degrees of freedom) will give rise to an even richer set of Feshbach resonances to be
explored.

In this section we have shown how electrically tunable two-dimensional Feshbach res-
onances emerge from the states within a TMD heterostructure. We found two distinct
resonances that allow to control scattering processes of both short and long-lived excitons
with electrons.

3.3. An Application - Tunable Exciton Band Structures
in Charged Ordered States

We now turn to an effective model to investigate how Feshbach resonances can be used
to introduce tunable band structures for excitons interacting with lattices of charges.
In two-dimensional semiconductors such lattices arise naturally in form of charge or-
dered states such as Wigner crystals or correlated Mott insulators [41, 46, 47]. Their
interactions with excitons give rise to Bragg scattering, leading to the appearance of an
Umklapp peak in the optical response of the material [41, 46].

However, in these systems the trion binding energy Er is typically fixed and large
compared to the energy scale of many-body excitations. This prohibits the resonant
formation of molecular bands arising from excitons ‘hopping’ between charges that can
be viewed as lattice sites in this tight-binding regime. As a consequence the exploration
of the emergence of Hubbard-type physics governed by hopping of excitons in a tight-
binding-model-type fashion is not possible. This can be overcome by using Feshbach
resonances as discussed above to tune exciton-lattice interactions and thereby manipu-
lating the trion binding energy.

We consider a lattice of electrons and describe the electron density effectively within
a mean field model

— (k+6)?
H= Z Tom + Hing
g (3.28)
Hy v / A2 (7)) Vaa(Ir — 7')) (ne(r))
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where k is the momentum in the first Brillouin zone, the sum runs over the reciprocal
lattice (G = iGy + jG with i,j € Z) and (n.(r')) is the average electron density. We
consider the case of perfectly localized electrons, i.e., (no(r)) = 3" 0@ (r — R), ordered
in a triangular lattice with lattice vectors

d (1 -1

nof(L) e () o9

lattice constant d and reciprocal lattice vectors

(see also Fig. 2.2b).
We assume a lattice spacing d = 25 nm and use an effective Gaussian exciton-electron
model potential

Ver(r) = —Vo e~ /02 (3.31)

with width o ~ 2.4 nm to approximate the behavior far away from the resonance found
from the three-body results for exciton-electron scattering (Es; ~ 6 meV). The exciton
band structure that results from the diagonalization of the Hamiltonian in reciprocal
space is shown in the upper half of Fig. 3.11 as the system is tuned across the Feshbach
resonance. As shown in Fig. 3.11(d) the potential depth Vj (measured in units of the
characteristic lattice energy F,.. = h*G? /2mx = 2.81 meV, with exciton mass my and
reciprocal lattice vector G) is tuned to generate scattering parameters Fy as relevant
for our Feshbach resonance data in Fig. 3.10. Fig. 3.11(a) corresponds to the scenario
realized in presence of a single deeply-bound trion (blue in (c), not shown on the scale
of the figure); in this case, the band structure is renormalized upwards with respect to
the free bands (shown in gray).

As the resonance is crossed, the newly emerging trion state creates a molecular band
(see Fig. 3.11(b), orange band), while the first excited exciton band (corresponding to a
repulsive polaron in the continuum case) now features a negative band mass. Interest-
ingly, both bands feature a significant oscillator strength, as can be seen from the linear-
response absorption spectra shown in the respective right subpanels of Fig. 3.11(a,b).
The combination of large oscillator strength and negative effective mass may provide
a way to study anomalous exciton diffusion. In the regime where the molecular band
(corresponding to an attractive polaron in the continuum case) is slightly below the
first excited band, it takes the role of a tight binding band. Since this band is address-
able spectroscopically, the direct realization of tight-binding Hubbard models of exciton
should become possible.

We now turn to the spectral signatures of the different bands, whose oscillator strengths
are proportional to the overlap with the bare zero momentum exciton

A(w) o< [(X225 | Xo) |* - (3.32)
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Figure 3.11.: Band structures of excitons in a triangular lattice of electrons for different depths
of the Gaussian model potential Vj = 10 Eyec (a) and V) = 30 Eyee (b) with
Frec = h2G?/2mx. The absorption spectra A(w) are shown in the right panels
respectively. Colored arrows mark the absorption peak positions corresponding
to their spectral weight shown in (c) as color matching lines. The energy cor-
responding to the blue line exceeds the scale of (a,b). (c) shows the spectral
weight of the corresponding peaks where dashed lines correspond to Umklapp
peaks plotted against the zoomed-in right y-axis (while solid lines correspond to
the spectral weight of polaron branches in the continuum limit). (d) shows the
two-dimensional scattering parameter Ej resulting from a fit to the first scat-
tering state obtained from diagonalizing the Hamiltonian describing an exciton
interacting with an immobile electron via the Gaussian model potential inside a
two-dimensional box.

Following the computational procedure in Ref. [41], we show the oscillator strength
of the lowest four absorption peaks across the Feshbach resonance in Fig. 3.11(c). The
peaks can be assigned to states that arise from Umklapp scattering (dashed lines plotted
against the zoomed in right axis). Peaks that correspond to trions and the exciton-charge
scattering threshold (solid lines) correspond to polarons in the continuum case.

On the left, a single trion state (attractive polaron, blue line) is present which becomes
increasingly bound for growing V;, where the binding energy of this artificial state quickly
becomes too large, exceeding the physical regime. The Umklapp peak (dashed green line)
is rather small compared to the strength of the repulsive polaron peak (orange line in
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Fig. 3.11c). While the oscillator strength of the first Umklapp peak increases at first
it becomes again smaller as the Feshbach resonance (vertical solid line in Fig. 3.11c,d)
is approached, where it eventually vanishes and the system becomes effectively non-
interacting.

At the resonance the absorption spectrum is dominated by the previously repulsive
polaron which has maximal oscillator strength and is converted into an attractive po-
laron while a new repulsive branch emerges with zero oscillator strength (see solid green
line in Fig. 3.11c). After crossing the resonance the oscilator strength of the Umklapp
peak (now dashed red line, which was the second Umklapp peak on the left side of the
resonance) again increases. This process of conversion and emerging of peaks repeats
itself whenever a new bound state is created in the interaction potential by increasing
|Vo|. This is in full accordance to the discussion of the Fermi-polaron problem in Sec-
tion 3.1.1. Also see Fig. 3.4.

3.4. Summary

In this chapter we have shown how tunable exciton-electron interactions in two-dimen-
sional TMD heterostructures arise from first principles. We found two types of res-
onances that allow to tune the interaction strength of either short-lived intralayer or
long-lived interlayer excitons and electrons. The first may allow to use optically injected
excitons as a probe of electronic states in van der Waals heterostructures, by controllably
coupling them to electrons. The latter promise the prospect to realize controllable many-
body systems comprised of long-lived, dipolar interlayer excitons and electrons. In this
context the tunability of interactions following from the Feshbach resonances described
in this chapter might enable exciton-induced superconductivity [89-91] or supersolidity
in dipolar exciton condensates [92-94].

Further we have studied excitons moving in lattices formed by two-dimensional charge-
ordered states in TMDs. Here the previously introduced Feshbach resonances were used
to tune the exciton-lattice interactions. The emerging excitonic bands could be tuned to
a regime with negative curvature, suggesting a negative effective exciton mass, indicating
the presence of anomalous exciton diffusion.
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4. Towards an Effective Theory
Description of Exciton-Charge
Feshbach Resonances

The development of effective models is crucial for the understanding of many-body sys-
tems, e.g., BCS theory for the understanding of superconductivity [19] that describes
the binding of electrons into Cooper pairs by an exchange of phonons, or the theory
of strong forces that describes the scattering of bound nucleons instead the detailed
physics of quarks and gluons [95]. In the context of ultracold atoms, two-channel models
for Feshbach resonances were crucial to get key insight into the physics of polarons or the
BEC-BCS crossover [96]. In this chapter we aim to develop an effective theory for exci-
tons scattering with electrons in TMDs that does not rely on resolving the full dynamics
of all charge carriers, but rather describes the scattering of excitons and electrons. The
approach we use here is heavily inspired by two-channel models [73] and aims to estab-
lish an even closer connection between the scattering of excitons and electrons in TMDs
and atoms in ultracold atomic systems. In this regard our approach differs crucially
from our recent work in [P3] where the coupling of the different scattering channels is
achieved by explicitly including hole tunneling in the effective Hamiltonian. Here we use
the conversion of scattering states and bound states to couple open and closed-channels,
as known from typical two-channel models used for describing Feshbach resonances in
ultracold gases (see Section 2.2.2). The results of this chapter represent another so far
unpublished result of this thesis.

The ab initio results for the low-energy spectrum obtained from an exact diagonaliza-
tion of the three-body problem (discussed in Section 3.2) have revealed two interesting
anticrossings between different exciton-electron scattering thresholds and trions. The
strong coupling between these states in the vicinity of these anticrossings modifies the
scattering processes similar to the situation in ultracold atoms. Motivated by these find-
ings we develop an effective many-body description of exciton-charge scattering that cap-
tures the binding energies of trions within a model correctly describing exciton-electron
scattering while being simple enough to be suitable for many-body calculations. To es-
tablish the approach the results of this effective description are compared to a simplified
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Figure 4.1.: Illustration of the different charge configurations and possible intra and interlayer
trions used in the multi-channel model. Please note that the interlayer trion (de-
picted in green) is not bound within the more physical interaction potential used
in Section 3.2.

three-body calculation, where a bilayer Rytova-Keldysh potential® is used to model the
electron-hole interactions. This approximation is valid if the layer separation vanishes
and the two hypothetical layers, in which the particles are confined, lie directly on top
of each other.

Further, in contrast to the previous discussion, the three-body results are obtained for
two holes and one electron (again in a bilayer structure of MoSey). The configurations
relevant to the following discussion are illustrated in Fig. 4.1. Although the interlayer
trion formed by the scattering of an intralayer exciton and a hole in the bottom layer
(found to exist using the bilayer Rytova-Keldisch model potential) is not present in the
more physical potential used above in Section 3.2 (see Eq. (3.26)), the overall ability
of the effective theory to capture the behavior of the three-body results is expected to
remain valid, e.g., in the context of two electrons interacting with one hole as studied in
Section 3.2.

4.1. Model

Motivated by the parallels to ultracold atoms, we investigate a two-channel like model
by considering the following Hamiltonian

H= Z s+ AE) hsTh5+Zwk+EX)X X,
+Z (Q + E; + EAE)i ”tk

mpq — MyP st s
+> g Xs( P— ),,+qXphq +he.
ss'pq

(4.1)

where X}, is an annihilation operator of an intralayer exciton (tireated as a rigid point-
like particle) with energy @y in the top layer. The operator hj annihilates a hole in

'We use Eq. (2.1) with the substitutions 79 — 75 2' 4+ 70 P2 and r — p®(r) = ViZ + 6d2 to
account for the layer separation d caused by the finite thlckness of the TMD layers separated by a
monolayer of hBN. Note this approximation is strictly only valid in the limit d — 0.

42



4.2. Two-Body Solution

layer s € {T,B} with dispersion relation &, and £ is the annihilation operator of the
corresponding trion with dispersion QZ Here we aim to study a model that reproduces
the scattering of holes and excitons where both particles have fixed effective layer index
(thus layer tunneling is effectively integrated out). The last term couples excitons and
holes via the formation of trions with coupling strengths g% (for the connection between
real space and momentum space formulation of the interaction term, see Appendix D).
The parameters Ex and F; represent the bare binding energies of excitons and trions
that are renormalized due to the Yukawa type interactions terms in the last line of
Eq. (4.1). In the following we choose the notation

€ =€, +AE
w =Wk + Ex (4.2)
v =0+ B+ EAE
The factors €T = 0 and ¢® = —1 account for the energy shift of holes in the intralayer
(T) and interlayer (B) configuration due to the band detuning AE. The form factors
Xs(k) arise from a finite extent of the trion wave function. In order to obtain analytical

solvable expressions we choose modified Bessel functions of the second kind Ky(x) to
describe the real-space form factors

W= (L) (43)

from which the momentum-dependent form factors are obtained via Fourier transforma-
tion

F 2\/%0'5
Z k)= —“Y—= . 4.4

4.2. Two-Body Solution

We are interested in the spectrum of Eq. (4.1) in the vicinity of the anticrossings of
the exciton-electron scattering threshold and trions related to the Feshbach resonances
obtained in the three-body solution. To analyze the spectrum we solve the Schrédinger
equation using a wave function ansatz of the form (which is exact for the two-body
problem considered here within our exciton-electron scattering model)

) =D a0y + Y peX T kit [0) (4.5)
s sk

The parameters «, 5 are determined from the Schroedinger equation by (functional)
derivatives of .
(Y| H [¢)
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4. Towards an Effective Theory Description of Exciton-Charge Feshbach Resonances

with respect to o7/B and Bg/ B To this end, we compute

(W H— E ) = Z |25 + Z 18517 (e, + wr)
+ ; a’gs Z ﬂ; Xs(p) + h.c. (A7)
~E (Z P+ |/3;|2) ,

allowing to arrive at

8L | / 1 / |
=0 & o"Y+> gl —=> Bxip)—a’E=0,
s’ \/Z D

a&s*
(4.8)
3L | 1 / / !
Lo e g s (< E) <0
8/8; - ags mX( >+Bp €p+wp
The second equation yields relations for 5;,/
/ Zs” Oésugill’LXS” (p)
By =~ v4 , (4.9)

s’ _
e +twp— FE

that can be used to eliminate the 6;’ dependency in the first line of Eq. (4.8) what im-
plicitly solves the momentum dependent part of the of the Schrodinger equation allowing
to reduce the infinite-dimensional set of equations (given in Eq. (4.8)) to two equations

(ie., s € {T,B})

1 2w’ ghxs (p) !
QP — s J(p)—a’E=0. 4.10
% Z Z T Fwy—E Xs(p) — a (4.10)

It is instructive to take the continuum limit by replacing

AZ / &’p el (4.11)

and identify the respective self-energies

*p X5, (P) X5 (P)
Ts1,82.82 (1) — 2 3 . 4.12
(E) / (2n)2 E — ep + e (4.12)

This allows to rewrite Eq. (4.10)

=S o gl g (B = 0, (4.13)

which can be expressed as a matrix equation? with an energy dependent coefficient

Eigenstates of the Schrédinger equation (see Eq. (4.5)) fulfill this relation. Note that det[M] = 0 in
order to ensure the existence of a nontrivial solution.
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4.3. Results and Discussion

matrix M
a b\ (a®) 0
c d)\a®) 7 (4.14)
=M

where

1 1
@ =0F - E - g3 5P (B) - |63 =T(B)

1 1
d= 08 — B — g SPP3(E) — gt P2 P(E)

1 1 (4.15)
b= gTBQE*ZEBBT(E) — g%QE*ZETBT(E) :

c=goge ZEBTB(E) — 9897 ZETTB(E) :

The spectral functions are given by the imaginary part of the retarded Green’s func-
tions GI = (0| 1/[H — E —i0*] 31 10), i.e.,

A(B,AE) = Im [G!(E, AE)] | (4.16)

that follow from the resolvent 1/ [H — E] by shifting the energy F — FE +i07. As
Eq. (4.14) is nothing but a reformulation of the system of equations obtained from
the variation of the eigenvalues of the inverse resolvent after solving the momentum
dependence (see Eq. (4.8)), i.e.,

0

W H-FEy) Lo, (417

the retarded Green’s functions are given directly by the entries of the main diagonal of
the matrix M ~! after shifting £ — E +i07.

4.3. Results and Discussion

We can now turn to the question how well the model Eq. (4.1) can reproduce the energy
spectrum of the underlying three-body problem. To this end, the parameters o*, g¥,
E% and E} of the model are obtained by fitting the spectrum to the three-body re-
sults. The resulting spectrum is shown in Fig. 4.2, where the discrete set of energies of
the underlying three-body solution is shown as orange curves. The spectrum obtained
from Eq. (4.16) in turn is overlaid as an density (color) plot. As evident, we find a
remarkable capability of the effective multi-channel model to reproduce the spectrum
of the first-principle three-body calculation. Our preliminary findings thus demonstrate
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Figure 4.2.: The left (right) panel shows the interlayer (intralayer) spectral function A(F, AFE)
in arb. units, with band detuning AFE, where bright colors indicate large weight.
The orange lines are the eigenenergies of the corresponding three-body problem
(two holes and one electron interacting via a bilayer Rytova-Keldysh potential).

that exciton-electron scattering in two-dimensional semiconductors is well described by
essentially the same type of models used in ultracold atoms to effectively describe the
scattering of ultracold atoms close to Feshbach resonances. This further strengthens the
analogy between two-dimensional materials and ultracold atoms.

4.4. Open Questions

In the same way the spectral properties can be reproduced by an ultracold-atom inspired
effective many-body model, we expect that the study of the corresponding T-matrix
(similarly to the two-channel model presented in Section 2.2.2) will exhibit scattering
properties that can reproduce also the low-energy phase shift as found in the three-body
solution. Moreover, we expect that this low-energy scattering can be described using
relations similar to Eq. (2.3) where the band detuning AE takes over the role of the
magnetic field B in the parameterization of the scattering length around the Feshbach
resonance. This derivation of a relation that allows to characterize Feshbach resonances
in atomically thin semiconductors is left for future work.
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Part II.

Rydberg Excitations as a Probe of
Quantum Matter
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Part II is based on the publications [P1], [P2] and [P4].
Additional unpublished material is discussed in Chapter 6.
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Ultracold atoms provide a versatile platform to study quantum many-body physics. In
this context Rydberg excitations — atoms in which an electron is excited to an orbital with
high principal quantum number — are naturally embedded in a many-body environment,
as they are usually excited from within a cloud of atoms. The Rydberg blockade radius
is typically much larger than the inter-particle distance, and can, in extreme cases, even
reach up to the extent of the ultracold cloud, ensuring that Rydberg atoms immersed
in ultracold atoms are well described by single impurity models [97]. The interactions
between a Rydberg impurity and the surrounding atoms are dominated by the attraction
mediated by the scattering of the neutral atoms and the Rydberg electron on its highly
excited orbit. The resulting attractive interaction potential can support the formation
of bound states, ultralong-range Rydberg molecules (ULRRMs) [98, 99]. Further, these
bound states which may contain multiple atoms (dimer, trimer, tetramer states, and
so on) themselves are dressed by excitations of atoms in the vicinity of the Rydberg
atom. This leads to the formation of a series of Rydberg polarons, which manifest in
characteristic peaks in the Rydberg absorption spectrum [100, 101].

In an intuitive, semiclassical picture one can think of the Rydberg electron as a point-
like particle orbiting the core at a distance given by the Rydberg radius. The scattering
of a ground-state atom and the Rydberg electron, leads to the formation of a bound
state with a well defined binding length, precisely given by the Rydberg radius. The
probability that such bound-state formation occurs grows with increasing number of
ground-state atoms located on the Rydberg electron orbit.

The following second part of this thesis is focused around the idea to use Rydberg
excitations as a means to detect correlations in ultracold atomic systems. To this end, one
may recognize that, if a ground-state atom is excited to a Rydberg state by a laser with
narrow line width, and the laser frequency is detuned by the ULRRM binding energy,
only ULRRMs of a matching binding length (determined by the principal quantum
number n of the Rydberg excitation) and matching number of neutral atoms bound
in the Rydberg potential are created. Focusing here on the dimer, this establishes
a direct connection between the absorption of photons of a certain frequency and the
creation of an ULRRM with matching binding length, which itself reflects the probability
of two atoms (one being the Rydberg atom, the other the neutral atom) having this
particular separation in the ultracold cloud. Therefore the strength of the dimer-peak
in the absorption spectrum should be related to the probability distribution of inter-
particle spacings in the ultracold gas, i.e., the pair correlation function, evaluated at the
binding length of the ULRRM, given by the respective Rydberg radius. Importantly, the
ULRRM formation takes place on timescales set by the molecular binding energies in the
MHz range, which is fast compared to time scales of typical ultracold-atom dynamics.
This suggests that the ULRRM formation process can be used as an in-situ, time-resolved
probe of the quantum gas surrounding the Rydberg atom.

In the following we develop a theoretical description of this idea, i.e., of using Rydberg
excitations as a probe of correlations within a cloud of ultracold atoms in which the
Rydberg state is created. First we provide a short reminder of ULRRMs before we show
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that the spectroscopic response of the ULRRM-dimer peak is indeed proportional to
the pair correlation function when the quantum state from which it was created can
be represented as Fock state. We then apply this method on two examples and outline
possible future research directions. In the end of this part we discuss a related topic,
studying how Rydberg impurities in a BEC can be described by a semiclassical theory.
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5. Ultralong-Range Rydberg Molecules

In order to understand how Rydberg excitations can be used to detect correlations
in ultracold quantum gases we first give a short overview of the effects dominating
the Rydberg-ground-state-atom interaction, leading to the formation of ultralong-range
Rydberg molecules (ULRRMSs). More detailed information on the underlying physics
can be found in the reviews [102, 103].

5.1. Rydberg-Ground-State-Atom Interaction

When a Rydberg atom is excited within a cloud of ultracold atoms the Rydberg electron
scatters with atoms in its environment, thereby mediating an interaction (see Fig. 5.1).
This interaction leads to shift of the energy of the collective state of the Rydberg atom
and the neighboring atoms, which modify (perturb) the bare Rydberg excitation and are
therefore called ‘perturbers’ in this context. The Rydberg-atom-perturber interaction
potential has two contributions

V(r) = Vea(R) + Vea(R,7) , (5.1)

namely the Rydberg-core-perturber interaction V., and the Rydberg-electron-perturber
interaction V,,. They are given by the polarization potential of the neutral ground-state
atom in the electric field of the Rydberg ionic core and the Rydberg electron

62 (6% 62 (8%
VaR) = ———=— . Va(R7) = - ,
(R) =~ om (Bom) = — e A R =i

(5.2)

where e is the elementary charge, €5 the vacuum permittivity and a the polarizability
of the ground-state atom.
The Hamiltonian describing the Rydberg electron is given by

A h? e 1 e? a
Hy=— A — — — - 5.3

T 2me T dneg |P|  (4meo)? Z 2|R; — 7|t (5:3)
where the first term accounts for the kinetic energy of the Rydberg electron with the
electron mass m,, the second term accounts for its approximate Coulomb interaction
with the Rydberg core and the last term for its interaction with the ground-state atoms
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Figure 5.1.: Sketch of the Rydberg atom interacting with a ground-state atom, at the example
of Rb. The dashed line marks the semi-classical Rydberg orbit.

which depends parametrically on their positions R;. The Rydberg-electron-perturber in-
teraction can be treated within the framework of Fermi pseudopotentials! [105]. The idea
behind the introduction of Fermi pseudopotentials is based on a low-energy expansion
that allows to simplify the treatment of the last term in Eq. (5.3) which would other-
wise only be possible in a purely numerical fashion. The idea that the electronic wave
function is modified only locally in close vicinity of the perturbers allows to effectively
describe their interaction in terms of contact interactions [106]

e? a
— 1 Vpseudo(Tr — R)|Yar (), 5.4
(4me0)? 2| R; — 72 / T Vpseudo(T e (r)[* (5.4)
with the Fermi pseudopotential
2nh?ay
Viseudo(1) = =2 6@ (1) (5.5)
Me

where a, is the s-wave scattering length between the electron and the neutral atom.
Higher-order order scattering terms can be treated in a similar way and one obtains the
Born-Oppenheimer energy curves by solving the electronic problem for fixed perturber
positions R (here in case of a single perturber)

mee 1 e? a  2nhag 6nh?a’
+ [Ya(R)* + H V(R (5.6)

E(R) = — _
(R) 8c2h?2(n —dg)  (4meg)? 2R* Me Me

where 0y is the quantum defect that accounts for the effects of the shielding of the
Rydberg atom nucleus by tightly bound electrons, and a,, is the p-wave scattering length
of Rydberg-electron-ground-state-atom scattering. The function E(R) represents the

IFermi introduced this description of quantum scattering including zero-range pseudopotentials as
explanation of spectral excitation lines of Rydberg excitations in a dense gas of atoms [104].
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Figure 5.2.: Radial s-wave potential landscape VyrLrrm (green) and radial wave functions u(r)
(orange) of the lowest ULRRM-dimer state for 3”Sr and different principal quantum
numbers n. The dashed lines show Gaussian fits of the radial wave functions.

energy landscape for perturbers around a Rydberg atom. Thus the interaction potential
of a ground-state and a Rydberg atom is given by
e a  2nh’ag 6nh’a’

VULRRM<T) = —mﬁ + Te|¢el(fr)|2 —+ - p |V’L/Jel(’r)|2 ; (57)

whose long range behavior is dominated by the terms caused by the highly oscillating
Rydberg electronic wave function (see green curves in Fig. 5.2).

The next step is to solve the relative Schrédinger equation for a ground-state atom
interacting with a Rydberg atom

2
—S—MA + Vorrent (1) | duim (1) = Evt Guam(r) (5.8)

where p is the reduced mass. The indices v, [ and m label the principal quantum num-
ber, angular momentum quantum number and angular momentum projection quantum
number. The ansatz for the wave functions

u(r)

¢ulm<r) = }/lm((g, 90) (59)
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Figure 5.3.: (a) A Rydberg atom is excited at frequency wgr. (b) A Rydberg molecule is excited
at frequency o' < wgr. (c) Simplified sketch of a typical Rydberg absorption
spectrum (freely based on [99]).

separates the radial and angular part and allows to find the radial Schrédinger equation

h? Rl +1
—ﬂ&? —+ ﬂ ( 7"2 ) + VULRRM<T) UVZ(T) = Eul uyl(r) . (510)

Fig. 5.2 shows the [ = 0 ULRRM interaction potential and the resulting radial wave
functions of the corresponding lowest ULRRM-dimer states, which are well approximated
by a Gaussian (dashed lines in Fig. 5.2)

_ (r—rp)?

uy(r) ~e i . (5.11)

These bound states of Rydberg atoms and ground-state atoms were first observed by
Bendkowsky et al. [99] using spectroscopic methods where one detects (via ionization of
the Rydberg atom) if Rydberg excitations were created at a specific laser frequency which
is detuned from the atomic Rydberg excitation energy. This allows for the reconstruction
of Rydberg absorption spectra (see Fig. 5.3). In general such spectra contain two types of
absorption peaks that can be either associated with the atomic Rydberg excitation or the
formation of ULRRM bound states of on one or multiple neutral atoms. Depending on
the density of the background gas these peaks are shifted with respect to the respective
bare absorption peaks due to single-particle excitations of ground-state atoms in close
vicinity of the Rydberg atom or ULRRM, reflecting the formation of Rydberg polarons
[100]. Absorption peaks originating from ULRRM bound states exhibit a sub-structure
of peaks, where each peak corresponds to a vibrational state of the underlying ULRRM
97].

It was found that the density of the ultracold background gas in which the Rydberg
atom is excited affects the Rydberg absorption spectrum, specifically the mean of the
absorption spectrum, which is red shifted with increasing density of the background gas
(106, 107]. This indicates that Rydberg excitations in ultracold quantum gases can be
used as a sensing tool of the ultracold environment.
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5.1. Rydberg-Ground-State-Atom Interaction

In the following chapter we will expand on this idea. The particular shape of the
ULRRM bound states, a ground-state atom located on a thin spherical shell (resembling
the Rydberg orbit) with the Rydberg atom in its center in case of s-wave states, com-
bined with the separation of timescales of molecule formation (~MHz, fast) and typical
dynamics of the environment (~kHz, slow) will allow to use these molecules as probes
for inter-particle distances in ultracold quantum gases.
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6. Rydberg Excitations as a Probe of
Quantum Gases

Interesting effects in systems of ultracold atoms (e.g., the formation Feshbach molecules,
polarons, superfluid fermion pairs) typically occur on sub-optical length scales (< 380
nm) which makes them inherently difficult to in-situ detect and study in experimental
setups. The typical radii of Rydberg atoms (50-500 nm), however, coincidentally fall into
this regime. Combined with their ability to form detectable bound states with ground-
state atoms, Rydberg excitations thus open up the possibility to probe inter-particle
distances in ultracold quantum gases in the sub-optical regime that was previously in-
accessible via standard optical detection methods.

Here we investigate the connection between the ULRRM-dimer response in the ab-
sorption spectrum and the pair correlation function of an ultracold gas from which the
Rydberg atom is excited. The results of this chapter present another (so far unpub-
lished) central result of this thesis. When the excitation frequency is detuned from the
bare Rydberg excitation by the binding energy of an ULRRM dimer and the line width
of the excitation laser is narrow enough such that the absorption of photons solely leads
to the formation of ULRRM-dimer states with a specific binding length (see Fig. 6.1 a),
the absorption rate of photons is a measure of the excitation probability of ULRRM-
dimer states. In particular we use Fermi’s golden rule to show that the ULRRM-dimer
absorption strength is directly related to the system’s pair correlation function.

6.1. A Molecule in an Ideal Fermi Sea

Having the ULRRM states in mind, we first investigate the creation of a general dimer
molecule in a Fermi sea. Later we use the results of this section to compute the dimer
absorption rate in the specific case of an ULRRM state created in a Fermi sea.

We use Fermi’s golden rule and focus on the zero-temperature case, i.e.,

Aw) =3[ HV ) [P 0 (w — (B — B)) (6.1)

to predict the transition rate of the fermionic initial state [i) into a final state |f) caused
by the laser operator Vj, that transfers a ground-state atom into a Rydberg state. Here
w is the laser frequency and the sum runs over all possible final states with energies Ej.

29



6. Rydberg Excitations as a Probe of Quantum Gases

Figure 6.1.: (a) An atom from a cloud of ultracold atoms is excited into a Rydberg state (the
illustration shows a cross section of a three-dimensional cloud). The excitation
probability of an ULRRM dimer (i.e., absorption probability of a photon of the final
excitation laser) scales with the probability of finding a ground-state atom within
the outermost well (sphere and red shaded region) of the interaction potential. (b)
Sketch of the corresponding Rydberg absorption spectrum. The ULRRM-dimer
wave function in the ULRRM potential (bold gray line) is indicated as red dashed
line.

The initial state |7) (with energy F;) containing only ground-state atoms is an eigenstate
of the Hamiltonian

o= Zekckck +Zwkd d,, +/d3 /d3 "dld,V(r—r)ele, (6.2)

with momentum mode creation (annihilation) operators ¢l (¢, ) of ground-state fermions
and Rydberg-atom momentum-mode creation (annihilation) operators dL (dy,). The
respective field operators are conveniently labeled by an index r, where we use the

convention .
~ irk -
Cp = — g e . 6.3
r /—V . k ( )

The interaction potential V(r — ') may be given by the ULRRM potential Eq. (5.7)
and the laser operator

i, = /d3r dié, +h.c.
=S e, +he
k

excites a ground-state atom into a Rydberg state.
We assume the initial state to be given by a fermionic momentum-mode Fock state

ﬁ( ) = |n1,ng, .. Ny e, M) (6.5)

i=1

(6.4)
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6.1. A Molecule in an Ideal Fermi Sea

which is equivalent to a Fermi sea of N particles if only the N lowest N modes are filled

=

IFs) = H( )yo —1,..,1,0,..) . (6.6)

=1 (N)

By a careful analysis of the commutation relations one finds that any Fock state results
in the exact same expressions as the Fermi sea. Therefore we restrict the following
discussion to the Fermi-sea scenario where the initial state is given by

N

i =T] (CL) 10) =[1,..., 1,0,..). ® |0), = |FS.) , (6.7)

i=1 (N)

i.e., a Fermi sea of ground-state atoms and a vacuum of Rydberg atoms.

The relevant final states that are compatible with a laser frequency detuned from the
Rydberg line by the ULRRM-dimer binding energy, are then states that result from the
excitation of a single ground-state atom into a Rydberg state which is bound to another
ground-state atom forming an ULRRM-dimer state. To describe these dimer bound
states embedded in a fermionic environment we choose the ansatz

f) = |f(X, e, p, p'))
/d3R/d3’l° UsalR,7)dy , éR+§ Cp Gy [1) (6.8)

:/d?’R(I)A(R)/dSr%( )dl, ré;HTc ¢y IFSe)

where R is the center-of-mass coordinate and = the relative distance between the dimer
atoms. In this ansatz

Upa(R,7) = Oz(R) 6alr) (6.9)

are the molecular wave functions that will later be taken to describe the ULRRM dimer
discussed in the previous chapter (see Chapter 5). The collective indices e and A
combine all additional parameters on which the dimer state may depend (e.g., center-of-
mass momentum or angular momentum of the molecule, etc.). We assume that any of
the ground-state atoms can be excited to a Rydberg state. Further, it is possible for any
ground-state atom to form a molecule with the excited Rydberg atom. Therefore any
two of the ground-state atoms in modes p,p’ < kr may be annihilated from the initial
Fermi sea and converted into a two-body bound state with wave function Wy (R, 7).
Within the bound state the position of the Rydberg atom is R+ % and the ground-state
atom is located at R — % (note that not all momentum modes can be occupied due to
the Pauli exclusion principle). In Appendix E.1 we show that the resulting final states

|f) defined by Eq. (6.8) are normalized.
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6. Rydberg Excitations as a Probe of Quantum Gases

We are interested in the absorption strength of all possible dimer states given by the
ansatz in Eq. (6.8)

A= / dw Aw) = 3 TR [ (6.10)
Wh Aw f

By averaging over a small frequency window Aw, centered around the excitation fre-
quency of the dimer state wp, we are restricting all possible final states to the relevant
subset which describes these dimer states embedded in a Fermi seal. Thereby we assume
that no other processes contribute to the absorptive response in this frequency window
(cf. Fig. 6.1b). It is important to keep in mind that the final states | f) are not a complete
set of basis states in the corresponding Hilbert space, i.e.,

DR A1 (6.11)

By inserting all definitions into Eq. (6.10) we obtain

A=Y@l
f
=33 FS|/d3R/d3r\I/ (R.7) &, éhep - dp s

Ao p,p
( / &rydl, e, + h.c.) IFS.) |

_§§| Fsy/d?’R/d?’r\Imer) Rz Cr (6.12)
X /d3rL 5 (’rL . (R— —>) FS.) |
_Z/d3R/d3R’/d3 /d3r' o(RT)Uso(R,T)

x (FS.| el . e, . > e, e, [FSe) (FS |l ¢ Y Crir iz IFSC) .

p,p’

[ J/
-~

=B

'Note that the condition imposed by 6 (w—(E;—E;)) (in Fermi’s golden rule) can not be trivially fulfilled
within the small frequency interval Aw for high momentum modes p,p’ (i.e., high temperatures).
Making the extension to the case T' # 0 a nontrivial venture.
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6.2. ULRRM Dimer in an Ideal Fermi Sea

This expression can be further simplified using the relation

B=|> ¢,¢,[FSc) (FS|el, el Crir oz FSe) =2ég, . q +|FS,) . (6.13)

p,p’

derived in Appendix E.2. It holds for all initial states that are given by a single Fock
state (i.e., |FS) — |F), see Appendix E.3). Making use of Eq. (6.13) in Eq. (6.12) we
obtain an expression from which the relation between the absorption rate and the pair
correlation function

n2g@(r — vy = (el el e e,) (6.14)

T

already becomes evident, i.e.,

A= 2Z/d3R/d3R’ /d3r/d3r’ Wy a(R,1)Ux (R, T
A«

At At A .
x (FS| Crt Cryr Crir Cpoe |F'Se) .

(6.15)

Depending on the wave functions W the expectation value may reduce directly to the
pair correlation function. For instance, approximating the final dimer state as

|f> _ %/diiR /d3,,, 5(3) (R _ RC) 5(3) (’I" _ TD) d;_g C;Z—l-% Cp Cp, |FSC> s (616)

with fixed positions of the atoms forming the ULRRM-dimer state (see also Appendix E.1)
one finds a direct proportionality of A ~ ¢ (rp).

Note that in Eq. (6.15) the concrete shape of the wave functions ¥ characterizing
the dimer molecule is not specified. In the following discussion other molecular states
(created by photoassociation) could be used as well, as long as their wave functions imply
a sufficiently well defined (sharp) binding length. Next we will study how the exact shape
of the bound state wave functions impacts the relation between the absorption strength
and the pair correlation function.

6.2. ULRRM Dimer in an Ideal Fermi Sea

In the following we show how the specific choice of the ULRRM-dimer wave functions
allows to reconstruct ¢® from the absorption spectrum. We now start by taking an
explicit form of the center-of-mass wave function while keeping the relative dimer wave
function unspecified. In the following we investigate wave functions of the type

VkalR 1) = Pk(R) ¢a(r)
(6.17)
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6. Rydberg Excitations as a Probe of Quantum Gases

where K is the center-of-mass momentum of the ULRRM dimer. This allows to perform
the integration over one of the center-of-mass coordinates in Eq. (6.15)

—QZ/d?’R/d3R’/d3 /d3r’¢ ) bl ) oK (R'—R)

x (FS.¢f el wlp s Cpn [FS)
R+%Z R-Z R-Z R+7

=2)" / &R / R / dPr / B’ ¢k (1) () 0O (R — R)

(6.18)
<FS |C r’ T r’ é r r |FS>
Cri_ R-T R+7
=2)" / PR / d*r / A3’ ¢7,(1) dalr')
x (FS | & o é&oe e |FS) .
+7 ‘R © "R-T R+
For the relative wave functions we choose the ansatz
¢1‘Dlm(’r) - XTDI(T> Yim(ea (,0) ) (619)

where x,:(7) is the radial wave function and Y}, (6, ¢) are the spherical harmonics. The
sum over a becomes a sum over /,m and an integral over the solid angle 2, ;. We use
the notation d€2, = sin(f) df dy and obtain

Ay =23 [0, [ @R [@r [ @006, Y00.0) %) V(@' )
Im

ot . ;
Cpor Cpr Cpun [FS)

x (FS.|el

2

~ 2/dQTD/d3R/dr/dr’ r2r? Xy (7 )XTD(T')/dQ,./dQ,,,
0

0
—i- ~
Z n(0,0) im0, ) (FS| €, & ey, Ep, [FS)

(6.20)

Here we have assumed that the Rydberg atom is large in comparison to the range of the
centrifugal potential, i.e., that the energies of the centrifugal barrier is sufficiently small
compared to the ULRRM potential at the dimer binding length rp

RII+1)
: 21
iz <IVim) (6.21)
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6.2. ULRRM Dimer in an Ideal Fermi Sea

In this limit the radial ULRRM-dimer wave functions do not depend on the angular
momentum and we can make use of the identity

DY Y(0,9) Yin(0', @) = 6(p — ¢') 6(cos 6 — cos b)), (6.22)

=0 m=—1

allowing to perform the integration over d2,.

ATD :2/dQ"'D/dQT/d3R/dT/dT/ 7“27”/2 XTD )XTD(TI)
0 0

<FS |C T‘e AT T"e é é [d |FS> *
Rive “pover CRpoz Cpyr
(6.23)
This expression can be further simplified as shown in Appendix E.4
A, = 2(4n)2V/dr/ dr' 1 X (1) X (F') E(r 1) (6.24)
0 0
where the function &(r, ") takes the form
k3 2 A N\ 2
§rr') = (2—2) [h (k:FT 27“) _h(kFr;r) ,
T (6.25)

with:  h(z) = sin(x) — z cos(x) '

3

Now we turn to the radial wave functions ., (7"). The deepest ULRRM-dimer bound
state is situated in the outer most well of the ULRRM potential at distance rp (see
Fig. 5.2b). Since the potential well is approximately harmonic we first investigate an
approximation of the ULRRM dimer state in form of a radial Gaussain wave function

Uy (T
Xoolr) = 22l
1 _('r—rD)2 (626)
Up, (1) = ————e "D
)= G

To obtain some analytical insight, before we turn to the numerical evaluation of
Eq. (6.24), we consider the limiting case of small o, (see Fig. 6.2). In this case we
may replace

1 _ (T*TQD)2
uy,(r)= ——e " —  (2n0?)
(2no? )1 Trpy—+ 0=0

=

o(r—rp) . (6.27)
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6. Rydberg Excitations as a Probe of Quantum Gases

Figure 6.2.: lllustration of the limiting case of a dimer ULRRM wave functions with zero-
radial-width wave functions.

This results in an absorption response which is directly proportional to ¢*(rp) as can be
seen from an evaluation of

o0 [e.9]

A, =2V (4n)? 27[0/ /dr’rr d(r—rp)d(r' —rp)&(r,r)
0
F

e e ) (WO = h(kero)?) 02
=8V \/ﬁnDkF (h(0)? = h(kep)?) .
First we determine the value of h(0) using L'Hospital’s rule
i) = i SRS SR 0 020

Identifying ¢@ (rp) = 1 — (3h(kpp))? (see Appendix E.5) Eq. (6.28) yields the dimer
absorption strength in the d-shell limiting case

A, =8VV2ro4n?r3 ¢@ () . (6.30)

This shows the direct relation between the dimer absorption line strength and the pair
correlation function ¢ (rp). As we show by a comparison with the results of a direct
numerical evaluation of Eq. (6.24) using finite-width Gaussian wave functions in this
turns out to be a remarkably good approximation. The comparison is shown in Fig. 6.3,
where we have normalized the numerical results by the prefactor obtained in the case of
zero-width Gaussian wave functions. Specifically, we have used here a Fermi momentum
motivated by typical experimental settings

1 \3 1
ke = (612n)% = (6n 3 % 103 3) ~ 6.4 x 1074 — . (6.31)
cm ag
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Figure 6.3.: Normalized absorption strength obtained from a numerical evaluation of Eq. (6.24)
using Gaussian radial wave functions for different values o. Here we renamed
fer — zzlpo]. A fit of the fermionic zero-temperature pair correlation function, i.e.,
f(rp) = const. x g (rp) to the results for a Gaussian radial wave function with
o = 100 ag is shown as a dashed line.

The comparison of the normalized absorption signal with ¢(® () shows that the pair
correlation function can indeed be reconstructed from the Rydberg absorption spectra
for sufficiently narrow radial wave functions. Figure 6.4 shows the width of Gaussian fits
(see Fig. 5.2) to the ULRRM wave functions for different principle quantum numbers
n* =n — 9, suggesting that Rydberg excitations up to large principal values of n* < 80
are still sufficiently narrow to act as a probe for quantum correlations in ultracold gases.
The ULRRM-dimer binding length (Rydberg radius) rp is related to n by rp ~ n*2a.
The effect that Rydberg excitations with smaller n* have smaller Rydberg radii and
narrower radial ULRRM-dimer wave functions results in an increased sensitivity of Ryd-
berg excitations as probe of correlations closer to the Rydberg core. This additionally
supports the usage of Rydberg excitations as probe of the fermionic pair correlation
function as the relative change of the local density is bigger at small distances where the
sensitivity of the Rydberg probe is enhanced.

In the specific experimental setting [P1] we found a scaling of the integrated dimer re-
sponse deviating from g by binding length dependent prefactor (e.g., A, ~ n?r3 g3 (rp)
in Eq. (6.30)). This prefactor turns out to be the same for ULRRMs formed by atoms
with equal spin (where the respective creation and annihilation operators anticommute)
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Figure 6.4.: Gaussian width o obtained trough Gaussian fits to the radial ULRRM wave func-
tions x(r) with respect to the principal quantum number of the Rydberg excitation.

and for ULRRMs made out of atoms with different spins (commuting creation and an-
nihilation operators). As a result the ratio of the absorption signals obtained in these
two cases allows to, again, exactly reconstruct ¢(®.

Following this discussion, we now repeat the calculation of the ULRRM-dimer ab-
sorption strength for an initial state that is a two-component Fermi gas and an ULRRM
final state that consists of two distinguishable fermions, i.e.,

i) = [FSt) ® [FSy)
) = [f(A, a,p, p')) (6.32)

— [@R [@rUsalRor)d g g & gy iyt IFS) @ FS)

which results in (for details see Appendix E.6)

_ 4 ToT L. P r—1r'\2
Aunpol = = Vo[ dr [ dr' ', (1) wr (1) ke h(kp 5 > ) (6.33)
0 0

This allows to numerically evaluate the ratio flpol / flunpol where factors other than the
pair correlation function ¢ cancel. In Fig. 6.5 we show the result of the normalized
ULRRM-dimer absorption strength obtained from a numerical evaluation of Eqs. (6.24)
and (6.33) using the ULRRM wave functions obtained from the analysis of the radial
Schrodinger equation in Eq. (5.10) and compare the results to the signal obtained from
Gaussian radial wave functions. We find an excellent agreement of the predicted nor-
malized ULRRM-dimer absorption strength and the fermionic pair correlation function.
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Figure 6.5.: Normalized integrated absorption signals for spin-polarized ULRRMs by the sig-
nal for unpolarized ULRRMs, obtained from Egs. (6.24) and (6.33). The ra-
tio Apol/flunpol converges to g(2) (rp), shown as dashed line, for narrow radial
wave functions. The red line marks the result obtained using the actual 87Sr
ULRRM-dimer wave functions obtained from solving the Schrodinger equation
(see Eq. (5.10)).

6.3. Summary

In this chapter we have shown how Rydberg spectroscopy can be used to probe corre-
lations in ultracold quantum gases at the example of a non-interacting Fermi gas. In
our recent work [P4] we also showed that this principle works, e.g., for the detection of
Fermi polarons, suggesting a much more general applicability of this idea. Nonetheless,
the general relation between the correlations within an arbitrary quantum state and the
Rydberg absorption spectrum remains an open question. In Appendix F we provide
details on the application of the ansatz Eq. (6.8) on an arbitrarily correlated fermionic
initial state (i.e., a superposition state of Fock states |F))

i) =) ar[F)®10), . (6.34)

with
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6. Rydberg Excitations as a Probe of Quantum Gases

where

=N ,VF. (6.36)
=1

The possibility to use optical tweezers [108-110] to fix the position of one species of
atoms that can be later excited to a Rydberg state should allow for the measurement
of the local density around the Rydberg excitation in a quantum gas (see our work
[P4] for the case of infinitely heavy Rydberg impurities). Further, Rydberg excitations
as probe of quantum matter could make it possible to probe ferromagnetic domain
walls [111-114] that possibly form in strongly interacting Fermi gases in the context of
stoner ferromagnetism. The presence of such domains would results in a suppression
of ULRRM formation at their boundaries. In the same way Rydberg excitations could
provide a probe for domain walls in a phase separated state of Bose-Fermi mixtures
[115] or spin-imbalanced Fermi gases [116].

Probing correlations of interacting many-body systems presents a major experimental
challenge and was so far only possible using standard methods in restricted settings
such as absorption imaging of ultracold atoms in optical lattices. Hence, the general
study of non-equilibrium quantum dynamics in strongly correlated systems depends
upon the development of new methods that allow for spacial and time-resolved sensing
of the quantum state. The presented method of Rydberg excitation microscopy where
Rydberg excitations are used to probe quantum states addresses this challenge. In the
next chapter we present two scenarios — a gas of Feshbach molecules and the formation
of a polaron cloud around a quantum impurity in ultracold atoms — where Rydberg
excitations allow to detect correlations and local densities of strongly correlated quantum
states.
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7. Applications to Experiments

In this chapter we study examples of how Rydberg excitations can be used as probe
of quantum matter. First we investigate a dilute gas of weakly bound Feshbach halo
molecules. Here the excitation of one of the atoms within the molecule into a Rydberg
state allows to detect the characteristic Feshbach-molecule wave function. Then we turn
to the Fermi-polaron problem and propose how the excitation of ULRRMs, containing
the impurity as Rydberg atom, can be used to detect the density of the polaron cloud
around an impurity in a Fermi gas.

7.1. Rydberg Excitations as Probe of Feshbach
Molecules

As seen in Chapter 6, the resonant creation of Rydberg excitations at the ULRRM-
dimer frequency probes the probability of finding two atoms in a certain distance from
each other. Hence this scheme of probing correlations can be used for the detection of
molecular states with characteristic binding behavior. Below we discuss the example of
a dilute gas of Feshbach halo dimers [117] whose individual relative wave functions are

described by
2 e a
i) =4 = — Vi (0 7.1
2 =2 @) (7.1)

where a is the s-wave scattering length®, and [ = 0 for such weakly bound states. Out of
the two atoms one is excited into into a Rydberg state which can then form an ULRRM
dimer with the second atom. We will now show that the respective absorption strength
allows to reconstruct the Feshbach-molecule’s wave function.

We assume the system to be initially prepared in gas of Feshbach-dimers with wave-
function Eq. (7.1) for 1=0. Further we assume the gas of Feshbach molecules to be
dilute, such that the overlap of two halo dimers is negligible and also the typical dis-
tance between two molecules is large compared to the ULRRM binding length used to
probe the quantum gas. This ensures that the contribution of the ULRRM absorption
signal of molecules formed from atoms belonging to different Feshbach molecules can be
neglected. Due to the conservation of angular momentum the ULRRM-dimer state has
to be a [ = 0 state. The absorption strength of a resonant excitation of Rydberg atoms
at the ULRRM-dimer frequency is then proportional to the Franck-Condon overlap of

'Here the scattering length can be tuned using Feshbach resonances as described in Section 2.2.
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Feshbach molecule

o

Rydberg molecule

Figure 7.1.: Illustration of the excitation of an atom bound in a Feshbach molecule (gray) with
an exponential decaying tail into a Rydberg state that forms an ULRRM with the
second atom from the Feshbach molecule.

the Feshbach-molecule initial state and the Rydberg-molecule final state wave functions

(see Fig. 7.1)
2

Ao ‘ / dr Gy (1) bpo (7)
. ) (7.2)
— (2n)32 /dTTXL*/l—O(T) e

a
0

We again choose a Gaussian to approximate the radial ULRRM-dimer wave functions

Upr, (T
Xrp (T) = # )
1 _(T—TD)2 (7-3)
Urp (T) - T € *7ip )
(QJIGED)4

and consider the limiting case of small o, (see Fig. 6.2). Here we may again replace the
Gaussian by a é-function

1 _ (r—'rD)2
u,(r) = ————e " — (2Tt02)i d(r—rp) . (7.4)
(27’[0’%})) 4 O'TD—)O'ZO

This allows us to rewrite the ULRRM-dimer absorption strength as
2

— 2 T T
A= - (2m)? (27[02)% /dr (r—rp)ea
0 (7.5)
2 ™
== (21)2 V2ro2e 2% ~n2rd ¢ (rp) ,
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where we used that the pair correlation function of two particles described by a rela-
tive two particle wave function ¢(r) is given by the corresponding probability density
g (|r|) ~ |o(r)? (see Appendix G). We find the same scaling of A ~ 72 ¢®(rp) as in
the scenario of an ULRRM dimer excited in a Fermi sea (see Eq. (6.30)).

This analysis shows that Rydberg spectroscopic measurements of a dilute gas of Fesh-
bach molecules allow to extract information about the wave function of the Feshbach
halo molecules and thus the scattering length a of the interactions of the ultracold atoms.

7.2. Towards the Rydberg Spectroscopic Detection of a
Polaron Cloud

Following our recent publication [P4] we here briefly discuss how Rydberg excitation
spectroscopy can be used to measure the density profile of a polaron cloud around an
immobile impurity when the impurity atom itself can be excited into a Rydberg state
(see Fig. 7.2). In an experimental setting this can be approximated by using an ultracold
quantum gas comprising two different atomic species, where one, the minority species,
is heavy compared to the other. The Hamiltonian describing the system reads

Hip =Y exihin + 3 wndl i, + 30 / dr / &'} Valr' = 1)ty . (76)
k k,o o

Here the operators éL and CZL create fermions and impurities respectively in the momen-
tum mode k. The index o € {1, R} in turn characterizes the state of the impurity, o = 1
corresponds to an impurity that interacts via contact interactions V;(r) with the bath
atoms and o = R corresponds to an impurity in a Rydberg state which interactions with
the surrounding atoms as described by the ULRRM potential Vz(7) = ViyLrrMm () given
in Eq. (5.7). The Hamiltonian is not quadratic in creation and annihilation operators, as
interactions between the impurity (ci—operators) and the Fermions (¢-operators) appear.
For finite mass impurities this prohibits the application of a direct functional determi-
nant approach [24] as a tool to compute the respective absorption spectra. However, in
the immobile single impurity limit the Hamiltonian Eq. (7.6) does become quadratic

Hing =Y e Chéy, + / ErV,(r)éle, (7.7)
k

recognizing that the impurity position is a conserved quantity and thus may be assumed,
e.g., to be placed at the origin of the coordinate system.

In [P4] we have shown how one can extract the local density of the polaron cloud
around the impurity from the line strength of the ULRRM-dimer peak in the absorption
spectrum using a functional determinant approach [24]. To this end, one calculates the
Rydberg excitation spectrum when the impurity itself is excited in a Rydberg state.
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RF pulse: non-equilibrium Rydberg excitation:
prepare polaron time evolution probe polaron cloud

Figure 7.2.: Illustration of the excitation of an impurity into a Rydberg state that allows to
probe the polaron cloud (the figures show a cross section of a three-dimensional
cloud). First the impurity is brought into its interacting state. As a consequence
the polaron is formed. Neighboring atoms are pulled towards the impurity (in case
of the attractive polaron). In a second step (here after the polaron is fully formed)
the impurity atom is excited into a Rydberg state. The ULRRM formation probes
the polaron cloud.

The relevant functional determinant formula can be derived by considering the finite
temperature absorption spectrum of a Rydberg impurity which is given by Fermi’s golden
rule

e B(Ei—uNi)
T (e_ﬁ(ﬁo_l‘]\?))

By rewriting d(w) = 1/2n [ dt exp(—iwt) we obtain

Aw) =" [ @I | ) S(w— (B~ E)) . (7.8)
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In Appendix B we follow the derivation of the Levitov-Klich formula [118; 119] and
sketch how the Loschmidt echo

S(t) = det (1 — f 4 e it eiﬁt) (7.11)

S(t) = (7.10)
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can be treated effectively numerically. In

B= (1 it ﬁe—iﬁoteiﬁt> (7.12)
the operators are single particle operators as, e.g., ﬁo = k2 /2m while
1
n=—— . (7.13)
eﬁ(ho_ﬂ) + 1

The interacting single particle Hamiltonian is given by h = k?/2m + V(#). Using the
eigenbasis of ho the representation of B is block diagonal as each set of 2/ + 1 states
with fixed values of [ and m forms an orthonormal basis in an invariant subspace of the
Hilbert space. With the respective eigenstates of the single particle Hamiltonians

ﬁo [nlm) = e [ndm) |

. (7.14)
h |vlm) = wypm, [vim)
one finds (see Appendix B)
(n'I'm/| B |ndm) = 0 01 Omms — Ot Ot Oy M (Ei) + (M1’ | fe~ihot ikt |nlm)
() (7.15)
(%) = n(pim) €50 101 B Z e“rimt (n/Im|v Im) (vim|nlm)
and
det(B Hdet (Bim) = Hdet AR (7.16)

If one uses the eigenstates of the polaromc problem as states [nlm) and the ones of the
Rydberg problem as interacting states |vim) one is able to calculate the ULRRM-dimer
absorption strength, when the impurity in the center of the polaron cloud is excited to
a Rydberg state. Performing a detailed analysis of absoprtion spectra in [P4] we show
that the ratio of line strength of the ULRRM-dimer peak in the polaron cloud and a
background gas that is not interacting with the impurity (i.e., for turned off impurity-
bath interactions, which can be achieved in an experimental setting using Feshbach
resonances) precisely follows the density of the polaron cloud.

Indeed this finding can also directly be understood in terms of the method presented
in Chapter 6. As we have seen in Eq. (6.30) the ULRRM-dimer absorption strength is
directly proportional to the pair correlation function ¢». Applying this to the single
immobile impurity limit one directly sees that this leads to a measure of the local density
of the environment of the impurity

where, in this case, a%c?o probes the presence of an immobile impurity atom in the center
of the polaron cloud.
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7.3. Summary

In this chapter we have seen how Rydberg excitations can be used to probe correlated
quantum states at the example of two systems that can be investigated in experiments.
In the context of a gas of Feshbach molecules Rydberg spectroscopy allows to investigate
the molecular wave functions which gives access to the scattering length of the ultracold
atoms, while Rydberg excitations of impurity atoms in an ultracold quantum gases
provide a direct probe of the polaron cloud. These applications show the versatility of
Rydberg excitations as probe of ultracold quantum matter.
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8. Detour: Semiclassical Description of
Rydberg Excitations in a BEC

In this chapter we shift gears and turn to investigating a semiclassical description of Ryd-
berg excitations in a BEC. This discussion is motivated by the observation that at large
gas densities the absorption spectra of Rydberg impurities in BECs are well described
by a classical Monte Carlo sampling of point-like particles in a ULRRM potential that is
quenched into the BEC [101]. We first investigate the statistical distribution of Rydberg
excitations within a BEC. Then we turn to the analysis of the dynamics of atoms around
a Rydberg impurity in a BEC of 8Rb atoms.

8.1. Rydberg Excitation Positions in a BEC

The following section is part of our publication [P2]. For the description of Rydberg
excitations in a BEC the first crucial point is to understand where inside of a BEC
Rydberg atoms are created by the absorption of photons of a specific energy. Here
we present a semiclassical analysis of this problem. To obtain the spatial distribution
of Rydberg excitations within a harmonically confined BEC we model the excitation
process by drawing from different probability distributions that describe the excitation
of a Rydberg atom from a harmonically trapped BEC by a Gaussian laser beam.

We start by generating clouds of point-like particles with a distribution function
matching the Thomas-Fermi profile of the BEC density p(r) in a cigar shaped harmonic
trap, with long axis along y. In cylindrical coordinates

or,6) = o (= T + W) x © (= T + 7)) (8)
0
where © is the Heaviside step function, r = /22 + 22, u the chemical potential, the mass
of the bosons m and the trapping frequencies w, in the radial direction and w, along the
long axis of the BEC.

From the density distribution we derive the corresponding cumulative distribution
functions (CDFs) for each coordinate that allow us to randomly draw particle positions
matching the probability of finding atoms at a certain position inside the BEC. The
extension of the BEC in the long direction is between

Ymax = ~Ymin = \/ 2,[1,/(77%05) ) (82)
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and then for each y an upper bound for the radial coordinate is given by

Tmax(y) = 1/wry/20/m — wly? . (8.3)

Consequently, the total particle number of the BEC is given by

Ymax  Tmax(y) 27
N = / / dr/d¢rnry, , (8.4)
Ymin N
—g (ry) )
=710 (u)

where 7, 4(y) dy gives the contribution of a disc with thickness dy (i.e. a cross-section
of the BEC) and ny(r, y) dy dr characterizes the contribution to the total density of an
infinitesimal cylinder of radius r for a given value of y. The CDF of the y-coordinate is
given by

Y

CDF,,, )= 5 [ &' malt) 5)

Ymin

which maps the possible y-coordinates onto the interval [0,1]. Hence we can use the
inverse CDF to draw random numbers & € [0, 1] and assign them to y-coordinates y*,
which are then correctly distributed according to the density of the Thomas-Fermi profile
of the BEC. Analogously, we obtain the CDF of the radial coordinate

1
CDFy, (r, y)‘y:y* =N /dr' n¢(r',y)‘y:y* : (8.6)
0

The inverse of CDFy, (7,y*) assigns a random number &' € [0,1] to an r-coordinate
r* under the condition that the atom is found at the y-coordinate y*, which has been
obtained in the previous step. Finally the ¢-coordinate is drawn uniformly from the
interval [0,27), as the density profile Eq. (8.1) of the BEC is invariant under rotation
around the y-axis. By successively drawing random numbers £ € [0, 1] and converting
them into coordinates as described above, we obtain three-dimensional atom positions
forming a cloud that matches the density distribution of a BEC confined in a harmonic
trap. For an illustration of a distribution drawn using this approach see Fig. 8.1(a).

In the following we describe how to select atoms from this cloud to be excited into a
Rydberg state by a laser beam with a Gaussian profile and exploiting the density detun-
ing of the energy of the Rydberg state. The overall excitation probability is proportional
to the intensity profile of the Gaussian beam which we assume to propagate parallel to
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Figure 8.1.: [llustration of the spacial distribution of atoms and excitation process. Panel
(a) shows the Thomas-Fermi profile and the section which is used for the semi-
classical simulation in the next section where we model a BEC containing 10°
atoms. The central region depicted here (relevant for the dynamics discussed in
Section 8.2) contains approx. 225000 atoms (purple). Panel (b) shows the atoms
that are excited according to the intensity profile of a Gaussian beam. The final
excitation positions that take into account the energy detuning and line width of
the excitation laser are shown in (c).

the z-axis of our coordinate system. To implement this, we evaluate the laser intensity

profile [120]
2 2r2
I(ro,z) = [)—0_ ¢"aer (8.7)

w(z)?

at the position of each atom within the cloud, where we defined

- PR
w(z) =wo 1+ (z/xR)? .

(8.8)
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Figure 8.2.: Illustration of the energy dependence of the excitation probability p(FE) (given in
Eq. (8.9)). The normalization factor A is chosen such that p(E) = 1 allowing
to assign a probability to each excitation with energy detuning E. This ensures
that excitations which precisely match the energy detuning of E are guaranteed
to happen and excitations that produce a different energy shift are represented

accordingly in the overall number of excitation positions.

Here xz = mw?/) is the Rayleigh range. In accordance with a typical experimental
setup [34], we choose a waist radius wy = 1.8 um and wave length A = 1.011 pm. We
keep Iy dimensionless and define it such that the sum of all I(r,,z) evaluated at all
atom positions is normalized to one. Assuming the excitation of exactly one Rydberg
atom, the function /(r,x) can then directly be taken as the excitation probability of an
atom at location (7, x). This allows to select atoms to be excited into a Rydberg state
according to the Gaussian intensity profile of the excitation laser. Fig. 8.1(b) shows the
distribution of atoms selected from the initial cloud corresponding to the probability
distribution resulting from the laser intensity profile.

In addition to the dependence on the laser intensity and the density profile of the
cloud, the excitation probability of an atom into a Rydberg state carries an additional
density dependence caused by the energies of the neighboring atoms being shifted by the
presence ULRRM potential. The spectral width of the laser only allows for excitations
within a certain energy range AF, caused by a matching density in the vicinity of the
Rydberg atom. We assume a Gaussian line shape of the excitation laser and hence an
energy dependence of the excitation probability

(E-E)2

p(E) =Ne 287, (8.9)

with width AE centered around a detuning E (see Fig. 8.2). This detuning is chosen
matching to a recent experiment [34] by AE = 1 MHz and £ = —55 MHz. If the
normalization factor A is chosen such that p(E) = 1, this assigns a probability to each
excitation with energy detuning F. For each atom, the energy E is found by summing
the potential energy shift due to the ULRRM potential Eq. (5.7) for all other atoms in

the cloud
E=> Viya(lR; — ). (8.10)

Here @ is the location of the atom for which the excitation probability is calculated and
R; # x is the location of the ith atom inside the cloud.
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8.2. Semiclassical Trajectory Dynamics

Finally the total Rydberg excitation probability for each atom in the cloud is given by
I(ry,z) x p(E). The spatial distribution of Rydberg excitation positions following from
this probability distribution is illustrated in Fig. 8.1(c). In the following we use these
excitation positions as input for a semiclassical simulation of the dynamics of atoms in
a BEC when one of the atoms of the BEC is excited into a Rydberg state.

8.2. Semiclassical Trajectory Dynamics

We now use the positions of Rydberg excitation as inputs for the simulation of the
dynamics of atoms in the vicinity of a Rydberg atom which is excited from a BEC. To
this end, we solve the classical Hamilton’s equations of motion

. M
q’i - apz 9
. oH

2
Z D;

for an ensemble of N classical non-interacting particles using a fourth-order Runge-
Kutta method. Initially all atoms rest and are arranged according to the probability
distribution resembling the Thomas-Fermi profile (see Eq. (8.1)) with w, = 2rn x 197 Hz,
w, = 21 x 15Hz. We model clouds with 10% 8"Rb atoms to match the experimental
setup of [34]. Following the procedure described above one atom is chosen to be excited
into a Rydberg state. The other particles move accordingly to the ULRRM interaction
potential Eq. (5.7)

. )
0 , otherwise

tem
v(q,t)z{vULRRM TS Ry (8.12)

where Tryq is the set of time intervals with a Rydberg atom present in the cloud (see
Fig. 8.3). We model a pulse sequence as studied in [34]. One pulse consists of 3.5 us
in which a Rydberg atom is present and the ground-state atoms move in the Rydberg
potential. Afterwards the Rydberg atom is ionized and removed from the cloud. Sub-
sequently, atoms move freely for 1.3 us before the next atom is excited into a Rydberg
state. After the pulse sequence the particles evolve freely for 250 us (see Fig. 8.3).

Additionally we model the effects of three-body loss. In order to do that we calculate
the local density around each atom and remove the three respective atoms from the
cloud according to the probability distribution psp, resulting from the density change
due to three-body loss [121]

N3 AN N?

T'l = —Lg n3 = _LSW = P3p1 = T = —Lg Atw s (813)
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Rydberg excitation

F\Zyd . I free Ry oo ] free

h 1 N\ ~ > >
3.5 13 ) 250 t [ps]
jonization

Figure 8.3.: lllustration of the pulse sequence. An evolution of 3.5 us of the atoms of the BEC in
which the Rydberg potential is present is followed by 1.3 us of free evolution before
the next atom is excited into a Rydberg state. Here we assume an instantaneous
creation as well as ionization and subsequent extraction of the Rydberg atom from
the BEC.

where Ly = 1.8 x 107%cm®/s [122] characterizes the rate of the three-body loss. In our
simulation the time interval At is the Runge-Kutta step and V' is a small volume around
each individual atom containing a sufficient amount of atoms to reproduce the correct
peak density of the respective Thomas-Fermi profile. For our simulations we consider
the 25 nearest neighbors around each individual atom to calculate local densities as
this presents itself to be a good trade-off between obtaining consistent densities and not
underestimating local densities due to averaging over a too large volume. For each time
step of the simulation we compute the probability ps, for each atom and remove the
respective atoms accordingly.

While the Rydberg atom is present atoms are accelerated radially, moving either
towards or away from the Rydberg atom (see Fig. 8.4). After the Rydberg atom is
removed from the cloud all atoms move freely with the momentum they have gathered
previously. In simulations with a single Rydberg excitation all trajectories of inward-
moving atoms intersect at the position of the Rydberg excitation causing a temporal
increase of the local density. This approximation is exact if the dynamics of the Rydberg
atom itself is neglected, which is reasonable as the excitation is most likely to occur in the
center of the BEC where the density profile around the Rydberg atom is approximately
inversion symmetric resulting in a vanishing accelerating force on the Rydberg core itself.

\Y

Figure 8.4.: Illustration of the radial acceleration of ultracold atoms (black dots) of a BEC in
the vicinity of a Rydberg atom located ar » = 0. Depending on their distance from
the Rydberg core, atoms are either accelerated towards or away from Rydberg core.
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8.2. Semiclassical Trajectory Dynamics

local atom number
0 5 10 15 20 25 30 35

Figure 8.5.: Integrated atom number along the x-axis for a single Rydberg excitation (a) and
5 successive Rydberg excitations (b) after 250 us of free evolution. The smaller
circle gives the diameter of the Gaussian beam in the focal plane and the larger
circle illustrates the size of the Rydberg orbit of a I = 0, n = 133 8’Rb Rydberg
state. The orange square is the region that is used to calculate the number of lost
atoms by comparing the atoms within the region of the initial cloud of atoms to
the number of atoms inside the region in each time step. The small squares mark
the Rydberg excitation positions.

The effect of an increased local density at the location of the Rydberg excitation can
be seen in Fig. 8.5(a) which shows the local atom number of the central region of the
BEC after the simulated sequence for a single Rydberg excitation. Similar effects are
also found in [P2]. The presentation of data in Fig. 8.5 is motivated by absorption
images and phase-contrast images obtained from experiments [34], which correspond to
integrated densities rather than local densities due to the projection along the imaging
axis. From a comparison to a simulation that does not include three-body loss it is found
that three-body loss plays a crucial role as it reduces the height of the central peak by
a factor of approximately 1/4.

This focusing effect becomes less pronounced the longer the pulse sequence (the more
Rydberg atoms are excited) as in this case, in contrast to the scenario of a single Rydberg
excitation, the trajectories are not passing through the same point. This effect can be
seen in Fig. 8.5(b) which shows the local atom number of the central region of the BEC
after a pulse sequence of five individual Rydberg excitations. As a consequence the
influence of three-body loss on the total number of lost atoms becomes smaller. The
qualitative behavior of the BEC in the vicinity of the Rydberg excitation matches the
findings of a simulation based on the solution of the radial Gross-Pitaevskii equation in
[P2] and experiments [34].
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Figure 8.6.: Comparison of the atom loss after N consecutive Rydberg excitations in a BEC
after 200 s of free evolution. The blue line marks the experimental results taken

from [34].

The green line shows the results of a semiclassical simulation (the

dashed lines neglect the effect of three body loss). The red lines show the theoreti-
cal prediction for a free evolution time of 400 us. Each theoretical data point is
obtained from a single simulation. We expect smoother behavior if the results of
many individual simulations are averaged.

However, the semiclassical simulation quantitatively underestimates the number of
atoms lost from the cloud by one order of magnitude. Fig. 8.6 compares the atom loss
observed in experiments [34] and the numerical results of the semiclassical simulation
of the excitation sequence illustrated in Fig. 8.3 for a free evolution time of 200 us.
The theoretical results are obtained from a simulation of one initial configuration and
N consecutive Rydberg excitations. We expect a smoother behavior after statistically
averaging over many individual simulations. In the numerical simulation the atoms have
not yet left the region that is used to detect the atom number after 200 us, resulting in
a smaller number of lost atoms and a plateau of the numerical results (see green line in
Fig. 8.6). To bring the numerical results into approximately the same region as found in
the experiment the free evolution time following the pulse sequence has to be doubled

(see red line in Fig. 8.6).
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8.3. Summary

8.3. Summary

In this chapter we have numerically modeled the loss of atoms from a BEC caused by the
repeated excitation of Rydberg atoms using a semiclassical description. To this end, we
first investigated the distribution of Rydberg excitation positions within a harmonically
confined BEC. Then we solved the classical equations of motion of an ensemble of point-
like particles resembling the density profile of a harmonically trapped BEC. While the
overall qualitative behavior of the numerical simulation matches experimental results,
our results predict longer time scales for the loss dynamics as those found in experiments.
The study of the fundamental reason for the much faster dynamics observed in the
experiment [34] is left for future work.
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9. Conclusion

In this thesis we have investigated two fields of physics where the scattering of particles
and the accompanying formation of bound states gives rise to interesting new possibilities
to control and probe many-body quantum systems.

In the first part we have studied the scattering of charge carriers in two-dimensional
semiconductors. We have seen how the concept of Feshbach resonances as known from
ultracold atoms can be extended to exciton-electron scattering in two-dimensional mate-
rials. In Chapter 3 we provided a new theoretical framework that allows to understand
two-dimensional exciton-electron Feshbach resonances from a microscopic few-particle
point of view and does not rely on the assumption of preexisting excitonic states. We
found two types of electronically tunable Feshbach resonances that can be used to control
interactions between electrons and either short-lived intralayer excitons or long-lived in-
terlayer excitons in TMD heterostructures. The first one promises to find applications in
injection spectroscopy of intralayer excitons with large oscillator strength to probe corre-
lations of electronic systems, whereas the latter can be used to bring tunable interactions
to Bose-Fermi mixtures comprising electrons and long-lived interlayer excitons.

The two-dimensional nature of these systems results in a rather unintuitive behavior of
scattering at the resonance, where interactions effectively vanish. In contrast, ultracold
atoms in three-dimensions are strongly interacting at the resonance position. This indi-
cates the necessity to discard the usual definition of the resonance width when describing
two-dimensional Feshbach resonances. We have also introduced a toy-model description
of the two-dimensional Fermi-polaron problem. Here this particular feature of two-
dimensional Feshbach resonances that the phase shifts (i.e., the effective interactions)
vanish at the resonance position results in the emergence of a repulsive polaron branch
with zero spectral weight in the optical signatures of the respective two-dimensional
Fermi polaron. Moreover we investigated a possible realization of a Bose-Hubbard type
model for excitons in TMDs where excitons move in lattices formed by two-dimensional
charge-ordered states and the previously introduced Feshbach resonances were used to
tune the exciton-lattice interactions. We have found that the emerging excitonic bands
can be tuned to a regime with negative curvature, suggesting a negative effective exciton
mass, indicating a regime in which anomalous exciton diffusion could be observable.

In Chapter 4 we have developed an effective theory for exciton-electron scattering in
TMDs that treats excitons as rigid point-like particles and captures the energetic prop-
erties of trions while being simple enough to be applicable in many-body calculations.
We have found that two-dimensional exciton-electron scattering can be described by
essentially the same type of models used to describe the scattering of ultracold atoms,
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9. Conclusion

again underlining the analogy between two-dimensional materials and ultracold atoms.

In the second part of this thesis we have investigated how the creation of ultralong-
range Rydberg molecules (ULRRMs) in an ultracold quantum gas allows to probe corre-
lations on (sub-optical) length scales given by the Rydberg radius. In Chapter 6 we have
developed an approximate description of ULRRM dimers in an ideal Fermi sea that can
be used to calculate the dimer absorption signal using Fermi’s golden rule. We found
that the line strength of the ULRRM dimer in the Rydberg absorption spectrum is di-
rectly related to the pair correlation function of the Fermi sea. Moreover, we have shown
that the particular shape of the s-wave ULRRM-dimer state, where a ground-state atom
is located on a thin spherical shell (resembling the Rydberg orbit) around the Rydberg
core, allows to use these molecules as probe for inter-particle spacings on sub-optical
length scales.

In Chapter 7 we have applied this new sensing tool to a gas of Feshbach molecules
and the Fermi-polaron problem and found that Rydberg excitations also provide a way
to probe correlations in the context of interacting systems. The additional separation
of timescales of the ULRRM formation and the typical dynamics in ultracold atoms
suggests that ULRRMSs can be used as an in-situ, time-resolved probe of the quantum gas
in the vicinity of the Rydberg atom. The novel way of probing correlations using Rydberg
excitations in interacting many-body systems is a promising new tool to experimentally
study non-equilibirum quantum dynamics in strongly correlated systems.

In Chapter 8 we applied a semiclassical theory to describe the dynamics of atoms in
a BEC when one of the atoms is excited into a Rydberg state. This investigation tried
to explain the atom loss found in recent experiments [34]. While the overall qualitative
behavior of the semiclassical model matched the experimental findings the theoretical
timescales of the atom loss underestimated the ones found in the experiment hinting to
a crucial role of quantum effects present in such experiments and opens the avenue for
further theoretical and experimental investigations.

As we have outlined in the summary above, there are interesting future venues follow-
ing from the results of this thesis. In particular, the tunability of exciton-charge interac-
tions resulting from the Feshbach resonances discussed in Chapter 3 opens new possibili-
ties to implement and study many-body models known from ultracold atoms in solid-
state systems (such as, e.g., supersolidity in dipolar exciton condensates [92-94]), further
substantiating the analogy between ultracold atoms and van der Waals materials. More-
over, studying the theory of exciton-charge Feshbach resonances beyond the TMD-bilayer
scenario (i.e., in the case of three layers) could provide a microscopic understanding of
the interactions that lead to exciton-induced superconductivity [89-91] in TMD het-
erostructures. Further, an extension of the framework developed in Chapter 6 to a
description of Rydberg excitations in arbitrary states of ultracold atoms would provide
a general theory of Rydberg excitation microscopy of correlations in ultracold quantum
gases. This would allow to investigate, e.g., the BCS-BEC crossover [96], ferromagnetic
domain walls in strongly interacting Fermi gases [111-114], or the domains within phase
separated states of Bose-Fermi mixtures [115] or spin-imbalanced Fermi gases [116].
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A. Details: From Lippmann-Schwinger

Equation to Tunable Scattering

Lengths

In the following we provide details on the two-channel model presented in Section 2.2.2.
We start by showing that the state

GV |k, —k) =

is an eigenstate of (GVGV)", i.e

AAAAA
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This can be used to evaluate the transition matrix elements (see Eq. (2.6))
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where we used the geometric series to obtain the third last line, i.e., Y >° jaz" = =
if: |z| < 1, and identified the self energy (with momentum cutoff A)
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B. Functional Determinant Approach

In the following (A = 1) we follow the derivation of the Levitov-Klich formula [118, 119]
and sketch how the Lohschmidt Echo

S(t) = det<1 — iy + e ihot eiﬁt) (B.1)

can be treated effectively numerically.
The free Hamiltonian is given by

X k2
Hy = ngchk = Z (K| om k) CLCk )
k k

k2 A
- % - 2m

(B.2)

ho

Y

with three-dimensional momenta k, the mass m of the fermionic particles and energy
ex = k?/(2m). Analogously we find the full Hmiltonian (that includes the interaction
potential)

~

2

h=—+V(#), (B.3)

2m
with a spherical symmetric potential V(r) = V(r). We will denote the respective eigen-
states and eigenvalues as follows

ﬁo |nlmy = eppm [nlm)

. (B.4)
h |vlm) = wypm, [vIm)
and the respective wave functions are given by
Uy (T
(rlnim) = bulr) = v, 0,)
B.5
o (r) (B.5)

<T|Vlm> = 7vbulm("") = - iflm<Q,ﬂ) .

The indices n (resp. v), [ and m label the principal quantum number, angular momentum
quantum number and angular momentum projection quantum number. We want to solve
the problem in a spherical potential well (cf. Fig. B.1a). Thus the radial functions w,,(r)
and v,,(r) have to fulfill the boundary conditions

Unl(L) = ’UVZ<L) = unl(O) = ’UVZ(O) =0. (B6)
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Figure B.1.: Sketches of different radial potential wells. The radial ground state wave function
uyi(r) (free problem) is shown as a dashed line. The other panels additionally
show the radial wave functions of the ground state in a three-dimensional square-
well potential for two choices of V) in (b) and the ULRRM-dimer ground state
(c.f. Fig. 5.2) in (c) and the respective interaction potentials.

The radial Schrédinger equations are given by

{_ 9, 1+ 1)

} Uni (1) = Enrtin (1)

2 2mr?
i m mr (B.7)
_8_T+ Ay + V()| va(r) = wavu(r)
om 22 vl — Wity .
The free problem is solved by
unl(r) = an le(k'nﬂ’) ) (BS)
with spherical Bessel functions j;(x). In the case [ = 0 we obtain
Uno (1) = Npo sin(kyor) - (B.9)

from the boundary condition wu,0(L) = 0 we obtain k,o = nn/L and the normalization
([ dr|uno|? = 1) yields N, = (2/L)3/2.

In general we solve Eq. (B.7) numerically by discretizing the radial coordinate. To do
so we define a uniform grid r € {r = nAr|n = 0,1,...N} (one could also use DVR, see
Appendix C, or any other method of choice to numerically represent the Hamiltonian)
on which we use finite difference coefficients allowing to represent the second derivative
according to

-2 1 0
. 1 -2 1
2 —
o =33 1 '2 '1 | : (B.10)
0 1 -2 1

92



From the numerical diagonalization of the respective Hamiltonians we obtain two sets
of eigenenergies and eigenfunctions {(g,;, wn), ...} and {(w,;, v1), ...} which are used to
evaluate the determinant of

B = (1= i+ e Mret) | (B.11)
with .
L (B.12)
eBlho—p) 4 1

One then computes the representation of B in the eigenbasis of ho and uses its block
diagonal form as the 21 + 1 states with fixed values of [ and m form orthonormal bases
in [ invariant subspaces. This allows the determinant to be rewritten as

det(B) = [ [ det(Bin) = [ ] det(B)*+" = S(t) , (B.13)

and one finds

(n'l'm’| B |nlm> = 5nn’5ll’5mm’ - 5nn/5lp5mm/n(5nlm) + (n'l'm’| fle_ihoteiht |7’le>

(%)

(%) = n(Enim) €=t (0/U'm| €M [nlm)
_ n(£n’lm) o i imt Z <n'l’m’\ eiﬁt ‘Vl“m”) <V l”m”]nlm>
Vl//m//
= n(Epim) € nim! Z e“rimt (0! I'm! |vlm) (vim|nlm) 86y
Vl//m//

= n(Epim) € 81 Gy Z e“rimt (n'Im|v Im) (vim|nlm) .
(%)

(B.14)

v

(%) = overlaps of the free and full states (as the angular parts are equal this is given
solely by the overlap of the respective radial wave functions)

This allows then to evaluate Eq. (B.13) and to obtain the absorption spectrum A(w)
by a Fourier transformation

Alw) = % / dt S(t)e ™" . (B.15)

—00
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C. Discrete Variable Representation
(DVR)

In order to numerically calculate eingenvalues and eigenstates of a given Hamiltonian
typically a concrete choice of basis functions is needed for the matrix representation of
the Hamiltonian. Here we present details on the choice of the basis functions used in
Section 3.2 to represent the three-body Hamiltonian numerically allowing for its diago-
nalization. Thereby we summarize and follow the discussion given in [88] and [71].

First we consider an infinite set of square-integrable basis functions {;(r)}32,. Each
pair ¢, and ¢, allows to analytically evaluate the matrix elements

Qjr = (pil T |er)
d
1
D](‘k) = (pj] P k) (C.1)

(2) d
Djk = (¢l @Vﬂk) )

that usually appear in a typically Hamiltonian. Here it is convenient to also assume
square-integrability of z ¢;(z) and d/dz ¢;(z).

In the following we will investigate the truncated basis {¢; ()}, formed by the first
N functions. The projector

P = Z |5) (@] (C2)

projects any state on the subspace spanned by the truncated basis. Further we define
the matrices' Q, D™ and D® acting on this subspace by allowing only j,k < N in
Eq. (C.1).
If the potential energy is the expectation value of an operator that itself is a function
of the position operator z, i.e.,
V=V(), (C.3)

there are two different ways of approximately representing V. The matrix can be defined
in the truncated basis via the matrix elements

VPR = (il View) (C4)

INote, in the following matrices will be labeled by bold capital latin letters.
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with 7,k < N or as a function of the matrix representing the position operator in the
truncated basis, i.e.,

VIER — V(Q) . (C.5)

Here VBR refers to ‘variational basis-set representation’ and FBR refers to ‘finite basis-
set representation’. Note that VFBR may have components that are outside of the
subspace spanned by the truncated basis and that VVBR = V¥BR ipy general only holds
in the limit N — oo, where both representations are exact.
The Hamiltonian
H=T+V (C.6)

can be approximated using either of the approximate representations and the resulting
bound state energies represent upper bounds to the exact (infinite dimensional) problem.
In general the evaluation of the matrix elements V{P* is complicated, whereas the

VFBR ig easier to handle as Q is diagonalizable
Q=UXU'. (C.7)

Here X = diag(xy, xe, ...xy) is the diagonalized matrix, where z,, are the eigenvalues of
Q and U is the matrix containing the respective eigenvectors |u,). Consequently the
matrix VFBR is obtained as

VIR = V(Q) =UVIX)U'" = U diag(V (1), V(22), ..., V(zn)) U, (C.8)

or element-wise N
ViR = Z UjaV(7a)Usy - (C.9)

a=1

The discrete variable representation (DVR) basis is now the basis in which the poten-
tial energy operator’s matrix representation is diagonal, i.e.,

VPVR U VPR U = UTU VIX)U'U = V(X))

:diag(V(xl), V(za), ..., V(wN)) . (C.10)

Here the eigenvalues z, of the position operator Q appear as lattice sites on which
the potential is evaluated. The corresponding basis is spanned by superpositions of the
truncated basis functions, i.e., {g; (x)}jvzl, where the weights are given by the matrix
elements of the unitary transformation U

Xa(@)) = D #i(*)Uja - (C.11)

To obtain the numerical results in Section 3.2 we use 11 Laguerre functions ¢; in each
radial direction and seven in the angular direction.
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D. Details: Real Space Interaction
Term

Here we provide details of the conversion of the interaction term in Eq. (4.1) from real
space to momentum space. The interactions in real space are given by

Hyt = g / / Pry &Py Yy — ) ﬁ(mx"'XA; mhr") X(rx)h(ry) +he., (D)

with the total mass M = mx +my, and the field operators £(r), X (r) and a(r) of trions,
excitons and holes. In contrast to the discussion in Chapter 4 we here suppress the
layer index s of holes and trions to improve the clarity of the presentation. We use the
conventions

N - 1 ikr A
P(r) = m;e Cr
d?r
—e
VA

This allows to express Hj,; in momentum space

(D.2)
)

Cr =

mxrxt+mpry

~ 1 . ~ ~ . ~
Hy = g// d*rx d*rp, X(rx — 73) N Z e P v t; elFrx X, e h, + h.c. |

pkq
(D.3)
which can be transformed into relative and center of mass coordinates
R _ mxmrx + mpTh ’
M (D.4)
rTr=Trx —Tp,
leading to
- 1 JUREPNIIN ) ) .
_ 2 2 > T —ipR ik (R+mp/Mr) iq(R—my/Mmr
Hing —g//d rd*Rx(r) \/@Z%thqe PR ik (R+m,/MT) jiq( /M7) 4 e

pkq

1 A A . .
=g / / d*r 2R {(r) NI S il X hg e RETRm i emnMam /M) |y ¢

rkq
1 ~oA A
= g/dQT x(r) N Z Opktq t;r) Xy hg ™ kmu/M=amx/M) 4y, ¢

pkq

(D.5)
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where we used .

Opg = % /d2'r etire=a)

Making use of the definition of the Fourier transform

\(k) = ﬁ / Pre Tk i(r) |

we find the interaction term in momentum space
~ o mp my ot Ao
Hipe = g;x(Mq — M’C) tk+quhq + h.c. ,
q

as used in Eq. (4.1).
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E. Details: Calculation of the
ULRRM-Dimer Absorption Strength

Here we provide additional information for the calculation presented in Chapter 6

E.1. Normalization of the Approximate ULRRM Final
States

Here we calculate the norm of a d-peaked final state, i.e

0 =5 [ R [ @ 89 (R=Re) 8 (7 —r0) sty Gy, FS)

(E.1)
Vo o
= EdRC—m R +"'D p p ’FS>
From this state we obtain
v t ; o f
(F1£) = 5 (FSe| &y g m dp, rp dy mn Cr Gy &y [FSe)
_w st oata o ; o
(FScl &y hépy o € mp € [FS0) (0al dpy e dfy oy 100)
v ot LN i(Rot Tk o i(Ro TP )a s o
:7(FS| ' pVZe 2 /%e 209, ¢y ¢, ¢ [FSe)
& A A (E.2)
X <0|ddRC_%D d;gc_%n 10)4
V i(Rc+T AAAAA
ZEZe 9 (FS.| el el ey che, e, |FSe)
kq

5®) (0)=1/V
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E. Details: Calculation of the ULRRM-Dimer Absorption Strength

Now we consider the expression
<FS| pck,qpp|FS>
<FS|C el ey (Ogp éé) FS,)

= Ogp (FSc| &l ¢, ¢, [FSc) — (FSc| el ehe, ¢, chc, [FS.)
= 5qp< — Opp'Op ’k> (FS, ‘C Ck p (Oqpr — é ) |F'Se)
(E.3)
= 5qp< — OppOp ’k) Oqp (FSe |Cp Cpck p [FSc)
= 5qp( p'p'Vpk — pp’5 ’k> - 5111) (511 p(spk 5pp6p’k)

= Ogp (5pk - 5pp’5p’k) — Ogp' (5p’p5pk - 5p’k)

= 5qp6pk + 5qp’5p’k )

where we used that the case p = p’ can be neglected as it implies |f) = 0. Making use
of this result in Eq. (E.2) we find

174 r
(f]£) N elRer k0 (ps | ol ef ¢, cle, e, IFS.)
kq
D Tp
S g )]
5®) (0)=1/V
1 . r
=3 Zel(RC+TD)(k*Q) <5qp5pk + 5qp,5p,k> (E.4)

kq

— % (ei(RC-FTTD)(p_p) + ei(RC_A,_’"TD)(p/_p,))

=1.

This also holds true for a final state
If) = /d3R/d3r UnalR,7)dl . é}% Cply i) (E.5)
which normalization condition reduces to

// PR Uy o(R, 7)) =1. (E.6)
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E.2. Derivation of a Useful Relation

Here we derive Eq. (6.13). We again use the definition of the field operator
by = —— > e, (E.7)
T \/V - Y
and investigate the expression B defined in Eq. (6.12)

B =Y &6, [FS:) (FS.| ¢} ehég, s ép s [FS.)

p,p’

= &0y [FSe) (FS |l &, — Ze”ﬁ” B=%)¢, ¢, |FS.) (B.8)

p.p’
Z 1 Z ig(R+%) k(R
— _— e 2 e
<V
D,p q,k

Now we consider the expectation value of momentum creation and annihilation operators
with respect to the Fermi sea and find

MH

|FS)(FS|C c Cq Cr IFSe)

(FSc| e, el e, e [FSe) = (FSe| &, (g — ¢4 €5 )é [FSe)
= (FSe| (Oprse — ¢4, €1, )0pg — 1, ¢4 €1 ¢, [FS.) (£9)
= (FS¢| 6pkbpg — (6prg — éq C; ) (Opt — &, Cp) [F'S,)
= Op'kOpg — Op/qOpk -
Using this relation in Eq. (E.8) we obtain
1 .
B = Z V Z elq(R-‘r 1k:(R ‘FS > < ’képq - 5p/q5pk:>
p.p' q.k
= L (ommen e on ) @) F)
(E.10)

- 26R+g éng FSe)

which is the statement of Eq. (6.13). In the last step we made use the anti-commutation
relations for ¢, ¢,
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E.3. Extension to Single Fock States

Again we look at the expression B (c.f. Eq. (6.13)) now with Fock states

o0

|F) = H <@Ll> i |0) = |n1, Mo, e, Mgy ooy M) (E.11)

=1

as initial states, i.e.,

B= pr ) (Flel e Chepyr Cpr |F)

_ZZC T XN p ‘R4 éng )
p<p’
2 o° nF
= 52D e O] (&) )
p<p’ p,p’ i=1
o n.
R ' (R R
X elp ( +2)elp ( 2)Cﬁcf)/ (C’LI) ’0>
=1
F F
Z Zn q<pnq (_1>q§p’n elP " (R+3) i’ (R—73) n}jng,
p<p’ p.p
Z/zg ZﬁnSA X oo A oF O ) nf (E12)
<0 o e 0 0 TT (a,)” TT (6)" 0
Jj=1 i=1
p#k;#p’ pFki#p
—5 5 5l 5pp/5p/p
V2 Z n < RE ) lp .(R_g) - eip"(R—&-%) eip'(R—§)> ép ép/ |F>
p<p’
]_ iy . T ESSVAN r s » . ” o
- W (elp R e? (F=3) e’ (B+3) e'? (R7§)> Cp Cp/ |F>
p.p’
1 . . . . - o
= W Z (elp (R+3) elP (R—3) _ elP (R+3) olP (R7§)> é Cp/ ‘F>
p.p’

This is the same result as in the Fermi sea scenario (see E.10).
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E.4. Further Details on the Calculation of the
ULRRM-Dimer Absorption Strength

Here we derive a function used in the evaluation of the ULRRM-dimer absorption
strength (c.f. Eq. (6.24)) and start by calculating the expression

At AT é —iry s p1 —ire " p2 Lirs-p3 T4 pa
(FSclel el ¢, ¢, |FSe) = 2 e e e e
P1,..., P4
/\'i' /\'i' /\
X (FSe| &, &, Cp, Cp, [FSe)
1 <kgp
_ o3 § : e i1 Pl o—iT2 P2 iy ps e pa
p1,-.. P4 (E13)
X (0p1paOpaps — OpapsOpips)
<kp
12 “ipr () g ipa - (ra )
—_ epl 7‘1’!‘461172 T2—T3
V2
P1, P2

_ e*1P1 : (7‘1*7‘3) eflpz ° (7’2*7‘4)> ,

which can be used to simplify Eq. (6.18)

A, = 2Z/d3R/d3r/d3r’ G (1) da (1)

<kp

! : 7‘, ™ : ’l”, ™
Z 2'7rz_r_e—1131'7; elP2 " T3
V2
P1,P2
=25 :/d3R/d3 /d3r’q§ ) alr)
e / / / (E.14)
e_1p1 r—r eip2 . "'72—7" - e_ipl . % eip? . "‘7;7‘
V2
P1, P2

= zza: / 4R / dr / Er' ¢% (1) dalr)

2
/ p R / &’p 0P T
k<kp (271)3 k<kp (2“)3

)
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E. Details: Calculation of the ULRRM-Dimer Absorption Strength

Further we find

2

dBp . 1 / .
—— e PY| = dpp2/d /dze_lpyx
fo T (2n)? '
0 o
5 kg 2
T : :
= dpp?— (e PV — &Y E.15
(2m)? / PPy <e ‘ ) (E.15)
) kg 5 2
BRIGISE / dpp sin <py)
0
We use
. L.
dz zsin(Cz) = E(sm(C’x) - Cz cos(C’m)) + const. (E.16)
and obtain
2 2
&Ep o1 .
— e = |— kry) — k k
/KkF (27)? e 27 (hry)? sm( Fy) FY cos( Fy>
(E.17)
2
ki
~ 2w h(’“F?J)) 7
were we defined )
W) = sin(x) —?)x cos(x) ' (E.15)
x
The absorption rate is then given by (c.f. Eq. (6.24))
kK
i — 3 3 3,0 ix F
Arp _QZ/d R/d T/d T 9o(T) da(r’) (2—712)
« (E.19)
r—r]\’ 47|\’
In the case r || ¥’ we define
k3 2 r—1r\? 4\ ?
E(r,r') = (2_7c2> [h (kF 5 ) —h | kg 5 (E.20)
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E.5. Pair Correlation Function of the Fermi Sea

In the following we present a derivation of the pair correlation function g®(r) for spin
polarized Fermions. By again using the convention

1 irk
Cr = —= ey E.21
T B2y

we find
n?g@(|lr — ') = (FS|él el e, ¢, |FS)
1 —ir -+ (p1— —ir’ - — é
=73 Z oI (P1—pa) o (p2—p3) (FS. |Cp1 G o, [FS)
P, P4 (E.22)

Z e~ (PL=pa) =i’ (P2=ps) (5p1p45p2p3 _6p2p45p1p3)) )

where we used

<FS ’Cpl P2 p3 p4 ’FS > <FSC‘ éL1 (6172(13 - P3 p2> ’FS >

= (FS.| (51711)4 - 6p4 CLl )51)2173 - C;rn épg sz P4 [FSe)

= (FS¢| 0pypsOpaps — (Op1ps — Cp3 CLl ) (E.23)
X (5P2P4 - p4 pz ) |FS >
= 51311)45132173 - 5p1p35p2p4 .
This allows to obtain
1 & . iy
n29(2)(|’r —7r'|) = V2 Z <1 — e i (P1mp2) oir '(m_pl)>
p1,P2
— / d*p / &’p <1 _ oip1e (r=1) Gip2 (T—T’))
2n)p | (@n)p (E.24)
k<kgp k<kp
2
3
2 / S )
(2m)?
k<kp
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E. Details: Calculation of the ULRRM-Dimer Absorption Strength

Now we calculate the integral

GR) = [ 52 e ol p)

1 kp ) 27 1 -
= d / d / dze P
<2n>3/0 P

1 b o 1 ipR  _ipR
_ d —ipR _ _ip
A2 /O PP TR [ ]

IS
== /O dpp 7 2 sin(pR)
k E.25
_ 1 _Bcos(R) F—/deM ( )
TR R VW s PR
kg
1 _ ky cos(pR) sin(pR)
21’ R R R? .
1 sin(kpR) — kpR cos(kpRR)
- 22 R3
., sin(kpR) — kpR cos(krR)
N (ke R)? ’
with n = k3 /6% for spin polarized fermions. The pair correlation function
2
GO(r — ) =1— (3h(kp\r—r’])> (E-26)

follows from the combination of Eq. (E.24) and Eq. (E.25), after dividing by n* and

defining

h(u) = sin(u) —U;,L cos(u) ‘ (E.27)
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E.6. Absorption Strength of an Unpolarized ULRRM
Dimer

In analogy to the discussion in Chapter 6 we here repeat the calculation of the ULRRM-
dimer absorption strength for quantum gases consisting of fermions with two different
spins (1,)) and ULRRM-dimer molecules consisting of atoms with different spins. In
this case the final state is approximated by

f) = [f{(A\, o, p, P'))

_ / &R / CrUxa(Ror) g o & pys 0,0, [FS) ©FS) (E.28)
_/d3R<I>>‘(R)/d3r¢a(r) d}R_%é]R% Cip o [FSy) @ |FS))

Using the definition Eq. (6.4) for the laser operator which does not allow for spin flips
and the initial state
i) = [FSy) ® [FS)) ® |0), (E.29)

we find (where we suppress ‘® |0),” in the notation)

A=l [

=3 > | FSy|@ (FS¢|/d3R/d3r U3 o(R,7)E é;péw%dm_g

Aa p,p

3 ~ 2
X /d3rL dl,, ¢, [FSy) @ |FSy) |

=) |(Fs® (FS¢]/d3R/d3r Via(RT)E e, 8 s by

Ao p,p/

X /d3rL o ('rL - (R— g)) FSy) @ [FS) [ (g .30)

=> > ]/dSR/d?’r U5 o (R, T)

Ao p,p/
N A N A 2
x (FS;| @ (FS|| CIp' C%p CLR+z “R-Z IFSy) ® |FS,) |

=>> / R / AR/ / d®r / &r' U3 (R, 1)U o(R,T')

Ao p,p
x (FSy] éiRu%’ Crp [FSt) (FS4 éhéTng [F'Sy)

x (FS,| aIm%, ¢, IFS) (FSy| ¢l ¢ ez IFS)) -
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Now we evaluate

(FS|éf, ¢, [FS) (FS| el ¢, |FS) = Zeﬂk el T (FS| ¢ ¢, |FS)

x (FS|é cp, Cq IFS)

1 . (E.31)
- v Ze_lk T O Ogp
kq
1
— — amip(rier2)
Ve ’

which can be used to simplify Eq. (E.30). We arrive at the expression for the absorption
rate of spin-zero Rydberg molecules

A=) / *R / SR / ds”“/ &Er' U} o(R.7) Vs (R, 7)
A«

<kp ; , (E.32)
x Z o P (R'=5—(R-3)),—ip' " (R'+5—(R+3))
Ansatz: plane wave center of mass wave function
We again investigate wave functions of the type
\Ij)\ a(R7 ’I") - CI))\(R> (ba(r) )
_ Uprp (r)
¢a('r') - r Yim(Q'r’> ) (E33)
o—iKR
Or\(R) = ,
A( ) \/V
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E.6. Absorption Strength of an Unpolarized ULRRM Dimer

where the radial component y does not depend on [. We again keep the relative dimer
wave function unspecified and find

ZZ/d3R/d3R'/d3 /d3r’¢ ) Ga(r )_ —iK - (R'—R)

K,a p,p/
<kp
« Z 0P (R=5—(R=3)) —ip' - (R'+% —(R+3))
—Z/d3R/d3R’/d3 /d3r'¢ ) da(r) 0¥ (R — R)
<kg
« WZ 0P (R=5—(R=5)) —ip' - (R'+ 5 —(R+3))
P (E.34)

<kp

_Z/d3R/d3 /d?’rr’qs ) bal(r sze e gt
— za:/d?’R/dgfr/dSr’ &L, (1) b (7) J (211;3 oip T

- fonf o foriono (ats5)

were we have again used the relation derived in App. E.4 and the define

2

h(u) = sin(u) —u;L cos(u) ‘ (F.35)

Here it is important to note that the fermion density is given by ny /2 = k3 /67°.

Relative Dimer Wave Functions

We investigate functions of the type

alr) = "2y (0, (5.5

where the radial component ¢, does not depend on [, and the indices v, [ and m again
label the principal quantum number, angular momentum quantum number and angular
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momentum projection quantum number. From Eq. (E.34) we obtain

I/T' * Upr (T/)
A, Z/erD/d3R/d3 /d3 o (7) Vi (Qr) =22 Vi ()
B =Y
il r-r
% (ZTEQh(kF 2 >>
= /dQTD /d?’R/dr/dr' 'y, (r) uwD(r’)/er/dQT/
0o 0
B =Y
Yy, 2 (g 2T
= /erD/er/ng/dr/dr ', (1) Uy (17)
0
2
k3 r—r
(2712 h<k 2 ))

/

——ﬂ/dr/dr 1 )t ) B (e )
0

which is the statement of Eq. (6.33). In the second last step we again made use of the
completeness relation

00 l

D> Vi) Vi (@) = (¢ — ¢') 8(cos  — cos 6) . (E.38)

=0 m=—1
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F. Towards a Theoretical Description
of Rydberg Excitation Microscopy
in Arbitrarily Correlated States

Here we want to present open questions arising from the ansatz presented in Chapter 6
when used to analytically predict the ULRRM-dimer response of Rydberg atoms excited
from an arbitrarily correlated state of ultracold atoms. To this end, we assume that the
initial state can be expressed as a superposition of Fock states, i.e.,

)= arlF)®10), (F.1)

F

with one unique set of coefficients {ap}
D larf =1 (F.2)

F

and fermionic Fock states

nf
|F>:H(a;i) 10) = [nF,nE, . nf, by (F.3)
=1
with N
> ni=N ,VF. (F.4)
=1

Again we choose the ansatz similar to the one presented in Eq. (6.8) to describe the final
states

) = [f(A, o, p, p))
:/d3R/d3r\D>\7a(R,T)c&_; hapr CpCy li)

2

(F.5)

and investigate the ULRRM-dimer response

A= [aiml (F.6)
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with the laser operator
Vi = /d3'r dié, +he. . (F.7)

The dimer signal is then given by

A=>"ww |
f
_ZZ} |/d3R/d3T\IJ )6 Al éRJrgCZR—g

Ao p,p

-3 |« y/d?’R/d?"r\I’ )y g Gy (F.8)

Ao p,p

—Z/d3R/d3R’/d3 /di”r'\y;a R,r) Uy (R, 7)

X <1|c;_2, L,+r Zc Cp 1) (1|CL chRJrr Cpz i) .
o

J

—B
Again we look at the expression B where |i) is now the general state characterized by
Eq. (F.1)

B=3 ¢ .y
-i- ~ ~ .
=2 Z cp Cryz Cpox i) (F.9)
p<p’
=2) ¢, Y apapap [F)(Flel ¢ Chigys in z [F') .
p<p’ FF/ JF7

The sum over F, F’ and F” can be split into two contributions one where the occurring
Fock states are identical, i.e., F=F'=F" and one containing all other terms

_QZyaFy ap Y é,c, |F) (Flel /&gy s ip s |F)

p<p’
2 Z Cply Y apajap [F) (el el ep v ep o [F") (F.10)
p<p’ F,F/,F” 2 P}
w.o. F=F/'=F"
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where ‘w.o.” stands for ‘without’. Using the relation derived in Appendix E.3 each term
in the first line is found to be proportional to ¢g, » ¢ - |F)
2 2

B = 22 |k [*ar Criz Cr_: IF)

F
+2> i, > apapap [F) (Flél chep, o o [F) (F.11)
p<p’ F,F’,F” 2 2
w.o. F=F/'=F"

The expression in the first line reveals the first problem of the ansatz in Eq. (F.1) as it
only results in terms proportional to
A K A R .
<l‘ CR/_%’ CR/_;’_%/ CR+% cR*% ‘1>
in cases where the coefficients ar only take two values 0 or a constant (i.e., for superpo-
sitions of Fock states with equal weights) as only in this case

D larfParép, s ép o |F) ~égrén o i) - (F.12)
F

The other terms in the second line of Eq. (F.11) give rise to off diagonal elements
that couple all individual Fock states |F) that appear in the general state |i) and the
general relation between the ULRRM-dimer absorption peak in an arbitrarily correlated
quantum gas remains an open question.
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G. Pair Correlation Function of a
Dimer Molecule

Here we show how the pair correlation function of a molecule consisting of two fermions
is connected to their wave function. The molecular state is defined by

= //dgrdgr'klf('r,r’) el o), (G.1)

with a fermionic two-body wave function ¥V(r,r’) = —W¥ (7', r) and fermionic creation
operators ¢l.. The pair correlation function is then given by

n2g(2)(| |) <\D‘ Cx :c’cac’é:c ‘\Ij>
= (U|efel e, e, / / &r &' U(r, ) el 0)

—(U|élel e // dPr &®r' U(r, )

X (éT,6(3)(r —x)— B (' — w)) |0)

ATAT //d3 d*r' U(r,r')

. of the Tolowing’
x (0 (r —2)s® (v — ') — ¥ (v — 26 (r — 2')) |0)
= [¥(z,2') - V(2 2"
= 4|U(x, )|

(G.2)
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