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– Summary in German –

Vielteilchenphysik mit Van-der-Waals-Halbleitern und ultrakalten Atomen

Diese Arbeit untersucht wie das Auftreten von gebundenen Zuständen genutzt werden kann,

um Eigenschaften von Quantensystemen zu vermessen und zu manipulieren. Diese Frage wird

im Kontext zweier verschiedener Felder – zweidimensionale Materialien und ultrakalte atomare

Rydberg-Physik – beleuchtet.

Insbesondere wird untersucht wie Bindungszustände aus Elektronen und Löchern in geschich-

teten zweidimensionalen Halbleitern verwendet werden können um die Streueigenschaften von

Ladungsträgern und Exzitonen zu verändern. Hier wird durch eine numerische Analyse von

Drei-Teilchen Zuständen gefunden, dass die Mechanismen von Feshbach Resonanzen, welche

aus dem Kontext ultrakalter Quantengase bekannt sind, auf das Gebiet zweidimensionaler

Halbleiter ausgedehnt werden können, dort jedoch auch grundlegende Unterschiede aufweisen,

wie z.B. die Notwendigkeit der Aufgabe der üblichen Definition der Resonanzbreite.

Weiter wird die Verwendung ultra-langreichweitiger Rydbergmoleküle – gebundene Zustände

aus Atomen und Rydbergatomen – als Sonden für Korrelationen in ultrakalten Quantengasen

untersucht. Hierbei wird die wohldefinierte Bindungslänge dieser Moleküle, deren optische

Anregbarkeit und die Separation der Zeit- und Energieskalen der Molekül-Formierung und der

typischen Dynamik innerhalb von Systemen ultrakalter Quantengase ausgenutzt. Insbesondere

wird ein direkter Zusammenhang zwischen der Paarkorrelationsfunktion und dem spektralen

Gewicht des Dimer-Rydbergmoleküls im Absorptionsspektrum gefunden.

– Summary in English –

Many-Body Physics with Atomically Thin Semiconductors and Ultracold Atoms

This thesis investigates how the emergence of bound states can be used to modify and sense

properties of quantum systems. This question is addressed in the context of two different

fields – two-dimensional materials and ultracold atomic Rydberg physics.

In particular it is studied how charged bound states of electrons and holes in a system of

stacked two-dimensional semiconductors can be used to manipulate and control scattering

properties of excitons and charge carriers. Here it is found by a first-principle calculation that

the mechanism of Feshbach resonances as known from ultracold atoms extends to atomically

thin semiconductors with some important differences as, e.g., the necessity to discard the

usual definition of the resonance width.

Further the use of Rydberg molecules – bound states of atoms and Rydberg atoms –

as probes of ultracold atoms is investigated. In particular, a connection between the pair

correlation function and the spectral response of the Rydberg-dimer molecule is found. The

separation of time and energy scales of the typical system dynamics in ultracold atoms and

the molecule formation in addition to their well defined molecular binding length allows to use

these molecules as a probe of inter-particle distances in ultracold gases.
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1. Introduction

Microscopic interactions and the individual properties of the constituents of matter de-
termine their collective macroscopic behavior. Imagine an ensemble of water molecules.
Depending on temperature and pressure (or their kinetic, vibrational energies and inter-
particle spacings) they can either be found in a solid, liquid or gaseous collective state.
Analogously, in quantum matter – a regime where quantum mechanical effects become
essential to describe the physical state – such as superfluids [1, 2] or supersolids [3, 4],
microscopic properties of particles and their interplay lead to the formation of macro-
scopic collective quantum states that may comprise a large number of particles. This
transition from few-body microscopic interactions to the emergence of many-body states
and phases is essential for the understanding of matter and appears in many different
areas of current research such as quantum spin liquids [5, 6], kinetic magnetism [7, 8],
dipolar supersolids [9] or quantum simulators of strongly correlated quantum matter
[10].

The underlying theoretical description of interacting many-body systems is itself often
extremely challenging, as in general Schrödinger equations for more than two interact-
ing particles do not have analytical solutions and the numerical complexity of classical
implementations grows exponentially with the number of particles being involved. The
number of exactly solvable problems is rather small forcing us to understand nature in
terms of approximations such as perturbative descriptions [11], mean-field theories [12],
Monte-Carlo methods [13] and renormalization group approaches [14, 15], or to rely on a
clever ansatz for the physical state we wish to describe such as matrix product states and
projected entangled pair states [16, 17] or variational states [18]. Often finding effective
descriptions such as in the case of the theory of superconductivity [19] (describing the
binding of Cooper pairs by an effective exchange of phonons) or – going back to the
example of an ensemble of water molecules – the classical theories of thermodynamics
[20] or fluids [21] (both describing matter in terms of continuous mean quantities rather
than treating particles individually) deepens our understanding of physics. The classical
examples illustrate the power of effective models on an intuitive level; even long before
the existence of atoms and molecules had become part of our perception of the world,
effective theories existed that were able to describe their collective macroscopic behavior.

One prime example of a quantum many-body system that, however, has an exact
solution is the heavy impurity problem in the limit of infinite mass [22–24]. Here a
single immobile impurity interacts with a bath of indistinguishable particles. This system
seems to be rather simple on first glance but gives rise to a variety of nontrivial effects.
The interaction of the impurity with the neighboring particles leads to a dressing of the
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1. Introduction

impurity by bath excitations, resulting in the formation of collective quantum states
involving many particles – called polarons1. Such situations can be found in various
fields of physics ranging from condensed matter [25, 26] and ultracold atoms [27, 28]
to high energy physics (where particles get dressed by vacuum fluctuations leading to
the lamb shift [29] which, e.g., modifies the energies of electronic states within the the
hydrogen atom). This allows to study the reoccurring concept of quantum impurities
using one platform (e.g., ultracold atoms) and thereby also gaining insight in other fields
of physics. In this context ultracold atoms take a special role. This is rooted in the ability
to control interaction strengths between atoms using Feshbach resonances allowing to
investigate the emergence of complex quantum states when interaction strengths are
tuned from zero to finite values (e.g., between the impurity and its environment) and
thereby controllably entering a regime of strong interactions.

The success of ultracold atoms as platform for quantum simulation also builds on the
universality of low-energy scattering, i.e., the fact that the properties of scattering parti-
cles with low momenta are based purely on their asymptotic behavior. All features of the
relevant scattering states are fully characterized by a single parameter – the scattering
length [30]. In this sense low-energy scattering of particles is universal as the micro-
scopic details of scattering potentials do not affect their asymptotic behavior. This can
result in two completely different potentials to be indistinguishable when only observing
low-energy scattering properties. Hence, allowing unbound particles to be treated as if
they would interact via contact interactions with a coupling strength that reproduces the
correct phase shifts (i.e., scattering lengths). Therefore different platforms realizing the
same interacting many-body systems behave similarly within their respective low-energy
regime2.

On the other hand the description of bound states typically depends on the knowledge
of the full interaction potential. This sets the scope for this thesis where we investigate
how few-body bound states that are formed during the scattering process of their con-
stituents allow to modify, control or probe properties of the many-body system in which
they are formed (i.e., tune scattering properties or measure correlations). To this end,
we will study universal connections between the, at first sight, vastly different fields of
two-dimensional materials and ultracold atoms. We will focus on specific examples that
show how knowledge from one field can be transfered to the other. In the following we
give a short outline of this thesis.

1This name dates back to Landau [25] who introduced the concept of electrons polarizing their envi-
ronment by displacing atoms when moving through a lattice.

2This is the basic idea behind quantum simulation [31, 32].
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Outline

Part I: tunable exciton-electron scattering in atomically thin semiconductors

The first part of this thesis investigates two-dimensional exciton-electron scattering in
atomically thin semiconductors. We focus on the question how exciton-electron Feshbach
resonances translate to two-dimensional systems and how they can be understood from
a microscopic few-particle point of view.

In Chapter 2 we start by giving a short overview of Feshbach resonances in ultracold
atoms and transition metal dichalcogenides (TMDs). These atomically thin semicon-
ductors are a class of van der Waals materials that posses semiconducting band gaps.
The two-dimensional nature of these materials supports the formation of deeply bound
excitonic states. The interactions between these excitons and free charge carriers are
typically fixed by material parameters which limits the range of application. Conversely,
the coupling of scattering states and bound states in ultracold atoms, leading to the phe-
nomenon of Feshbach resonances, allows for a manipulation of the scattering properties.

In Chapter 3 we investigate how two-dimensional exciton-electron Feshbach resonances
and consequently tunability of interaction strengths result from the interactions of two
electrons and a hole in a TMD heterostructure. In the context of van der Waals materials
this concept is new [33] and was lacking an understanding based on first principles
which is presented in Section 3.2. We also introduce a toy model for the description of
a two-dimensional heavy impurity in a Fermi sea and investigate the consequences of
the tunability of interaction strengths via Feshbach resonances on the optical signatures
of the respective two-dimensional Fermi-polaron problem. We conclude this chapter
in Section 3.3 by an investigation of a two-dimensional Hubbard-type model of excitons
interacting with a lattice of electrons formed by a charge-ordered state in two-dimensional
semiconductors. Here interaction strengths between the exciton and the lattice sites can
be tuned using the previously introduced Feshbach resonance, giving rise to tunable
excitonic band structures.

In Chapter 4 we develop an ultracold atom inspired effective many-body model for
exciton-electron scattering in TMDs and find a remarkably good agreement with the
energies obtained from a few-body calculation. This further strengthens the analogy
between ultracold atoms and two-dimensional materials.

Part II: Rydberg excitations as probe of quantum matter

The second part of this thesis is dedicated to the investigation of a particular bound
state – an ultralong-range Rydberg molecule (ULRRM) – formed by a Rydberg atom
and a ground state atom and how it can be used to probe correlations in ultracold
quantum gases.

In Chapter 5 we review the basic concepts necessary to understand the interactions
between Rydberg atoms and ground state atoms that lead to the formation of ULRRMs.
In Chapter 6 we develop an approximate ansatz of ULRRM dimers in an ideal Fermi

3



1. Introduction

sea which is used to calculate the dimer absorption signal using Fermi’s golden rule. We
find a direct connection between the absorption strength of the ULRRM-dimer and the
pair correlation function of the quantum gas in which it was created. This allows to use
Rydberg excitations as probe of correlations in ultracold gases on length scales given by
the Rydberg radius, which is typically in the sub-optical regime.

In Chapter 7 this novel method of probing correlations in ultracold atoms using Ryd-
berg excitations is theoretically applied to a dilute gas of Feshbach molecules and a
heavy impurity in a Fermi gas. In the first case Rydberg spectroscopy grants access to
the Feshbach-molecular wave function. In the second scenario the Rydberg spectroscopic
measurement of correlations allows to map the density profile of the polaron cloud. This
shows how Rydberg spectroscopy can be used to in-situ detect and study correlations in
experimental setups.

In Chapter 8 we switch gears and investigate the loss dynamics of atoms from a BEC
when one of the atoms is excited into a Rydberg state. Therefore we use a semiclassical
theory where we solve the classical equations of motion for an ensemble of point-like
particles. We compare our numerical results to the experimental findings of [34] and
find good qualitative agreement.

Finally, Chapter 9 concludes the thesis, where we summarize its results and present
an outlook on future directions.

4



Part I.

Tunable Exciton-Electron Scattering in
Atomically Thin Semiconductors
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Part I is based on the publications [P3] and [P5].
Additional unpublished material is discussed in Sections 3.1.1 and 3.3 and Chapter 4.
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Low-energy scattering of particles is universal across physics, ranging from ultracold
atoms to solids and high-energy physics. This allows to observe the same phenomena
and similar features in entirely different areas of physics [35]. With their capability to
act as quantum simulators ultracold atoms take a special role. This is in particular based
on the astonishing control over interatomic scattering properties [32, 36] by making use
of Feshbach resonances [37, 38].

In solid state physics, on the other hand, interactions between particles (charge carriers
and emerging quasiparticles, such as excitons, phonons, or plasmons) are typically fixed
by material properties with no possibility to easily tune and control interactions in a
given sample. This naturally limits the versatility of solid-state systems as platform to
study and simulate universal physics. The recent experimental observation of a Feshbach
resonance in twisted bilayer TMDs [33] prompts questions about their microscopic origin
and to which extent their tunability allows the exploration of many-body physics even
beyond the reach of ultracold atomic quantum gases.

In this first part of this thesis, we investigate the emergence of tunable exciton-electron
scattering in multi-layered heterostructures of two-dimensional materials. We start with
a short reminder on Feshbach resonances in ultracold atoms in three dimensions and
a short review of two-dimensional semiconductors. Then we show how Feshbach res-
onances between electrons and excitons in two-dimensional materials arise from a mi-
croscopic first-principle analysis of the underlying three-body problem. We specifically
focus on how layer hybridization of excitons can lead to the emergence of Feshbach reso-
nances that allow to tune interactions between electrons and both short-lived intralayer,
as well as long-lived interlayer excitons. The first type of resonance gives access to the
sensing of charge correlations via optical injection of excitons. The latter brings tun-
able interactions to Bose-Fermi mixtures consisting of electrons and long-lived interlayer
excitons (bosons). This opens the avenue to explore Bose-Fermi mixtures in solid-state
systems in regimes that were previously not accessible in ultracold atom experiments
(due to their chemical instability [39]) by bringing fully controllable interactions to the
field of two-dimensional semiconductors.

Based on this new possibility of tunable interactions between excitons and charges we
investigate their implications for an exciton interacting with a charged-ordered many-
body state. We find that the tunability of exciton-electron interactions leads to tunable
excitonic band structures. Further we derive an effective description for two-dimensional
Feshbach resonances motivated by two-channel models commonly used in ultracold
atoms.

9





2. Overview: Van der Waals Materials
and Feshbach Resonances

The goal of this chapter is to provide a short overview of transition metal dichalcogenides
(TMDs) – a group of van der Waals materials with semiconducting band gaps – and
Feshbach resonances in ultracold atoms. In Chapter 3 the combination of both fields
will provide the theoretical foundation for the microscopic understanding of tunable
exciton-electron scattering in TMD heterostructures.

2.1. Two-Dimensional Semiconductors

Van der Waals materials provide a fast evolving platform for the experimental investi-
gation of strongly correlated quantum matter. Over the past years developments in the
field of van der Waals heterostructures have led to new types of experiments allowing
to study Mott phases [40, 41], insulating density waves [42–44], excitonic insulators [45],
Wigner crystals [40, 46, 47], the quantum anomalous Hall effect [48], polaron-polariton-
cavity physics [26] and fractional Chern insulators [49].

Monolayer TMDs – atomically thin semiconductors [50] – are a subgroup of van der
Waals materials. A detailed review on the physics of these materials can be found in [51].
Their three-dimensional bulk versions consist of parallelly aligned crystalline monolayers
which are held together by van der Waals forces. The robust mechanical properties
of monolayers (caused by the strong inter-atomic binding within the layers) and the
relatively weak adhesion between individual layers allow to extract single atomically
thin sheets of these materials by exfoliation1 [53]. Such monolayers can be stacked
on top each other in a modular way [54], enabling the engineering of multilayer van der
Waals heterostructures with specific properties. In this way a semiconducting monolayer
can be, e.g., encapsulated by insulators, hexagonal boron nitride (hBN), or gated by a
layer of graphene, which leads to ability to investigate and make use of the existence of
deeply-bound two-dimensional excitons.

A TMD monolayer has a width of about 0.7 nm (MoSe2) and has a crystalline structure
with transition metal atoms being located in the central symmetry plane and chalcogen
atoms located above and below (see Fig. 2.1a,b). Each transition metal atom (e.g., Mo,

1There are also other methods for creating layered structures of van der Waals materials such as
chemical vapor deposition [52].
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2. Overview: Van der Waals Materials and Feshbach Resonances

realize all scattering lengths above/below the respective background scattering length
by fine tuning the magnetic field around the resonance. The parametrization of the
dependence of the scattering length a in terms of the magnetic field B

a(B) = abg

(

1 − ∆

B − B0

)

(2.3)

was first described in [77]. Here the background scattering length abg is given by the
asymptotic behavior far away from the resonance and the resonance width ∆ is defined
by the distance between the resonance position B0 and the magnetic field value where
the scattering length a vanishes. The typical behavior of the scattering length around
the resonance is sketched in Fig. 2.4(b).

Later we will see that the resonance width ∆, which is an important characteristics of
three-dimensional Feshbach resonances, loses its meaning in a two-dimensional setting
as here the resonance position and the zero crossing of the scattering length always
coincide. Thus the resonance width ∆ cannot be used in the context of two-dimensional
materials to characterize Feshbach resonances.

2.2.2. Two-Channel Model

More insight into the physics of Feshbach resonances can be obtained by studying an
effective two-channel model [78, 79]

Ĥ =
∑

k,σ

εk ĉ
†
k,σ ĉk,σ +

∑

k

(εk
2

+ νB

)

b̂†kb̂k

︸ ︷︷ ︸

Ĥ0

+
g√
V

∑

k,q

(

b̂†q ĉk+q/2,↓ĉ−k+q/2,↑ + h.c.
)

︸ ︷︷ ︸

V̂

, (2.4)

here for simplicity in absence of background scattering. The ĉk-operators create/annihi-
late an atom in the open channel with momentum k, hyperfine spin σ ∈ (↑, ↓) and kinetic
energy εk = ~

2k2/2m. The b̂k-operators are compound operators that create/annihilate
a bound state of two atoms in a momentum mode k with energy νB in the closed channel.
As the bound state is formed out of two atoms its mass is twice the mass of an atom and
hence the kinetic energy is given by εk/2. The non-interacting Hamiltonian Ĥ0 describes
the total kinetic energy of the system. The last term V̂ couples the two channels by a
coupling constant4 g.

We now consider the center-of-mass zero-momentum sector of the Hilbert space and
ask for the transition probabilities of an initial scattering state ĉ†k,↓ĉ

†
−k,↑ |0〉 = |k,−k〉

into a state |k′,−k′〉. The transition matrix T̂ describing this process can be expressed
via the Lipmann-Schwinger equation

T̂ = V̂ + V̂ Ĝ T̂ , (2.5)

4If one would consider scattering at higher momenta one would need to include the momentum de-
pendency of the coupling parameter gk in order to resolve microscopic details of the interaction
potentials. Here we consider the limit k → 0 where gk ≈ g =const.
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2.2. Tunable Interactions in Ultracold Atoms

where V̂ is the third term in Eq. (2.4) and Ĝ = 1/(E−Ĥ0+iǫ) the free Green’s function.
The transition element is then given by

〈k′,−k′| T̂ |k,−k〉 = 〈k′,−k′| V̂ + V̂ Ĝ T̂ |k,−k〉
= 〈k′,−k′| V̂ |k,−k〉
+ 〈k′,−k′| V̂ ĜV̂ |k,−k〉
+ 〈k′,−k′| V̂ ĜV̂ ĜV̂ |k,−k〉
+...

= 〈k′,−k′| V̂
∞∑

n=0

(ĜV̂ )2nĜV̂ |k,−k〉 .

(2.6)

Here all terms where the application of the operators converts a scattering state into
a bound state (whenever 1 + 4n operators appear) vanish, leading to the expression in
the last line of the equation. This expression has the advantage that ĜV̂ |k,−k〉 is an
eigenstate of each term (ĜV̂ )2n. To see this one realizes that during the evaluation of
Eq. (2.6) four different types of terms may occur. Terms where V̂ acts on a scattering
state |k,−k〉

V̂ |k,−k〉 =
g√
V

∑

p,q

(

b̂†q ĉp+q/2,↓ĉ−p+q/2,↑ + h.c.
)

ĉ†k,↓ĉ
†
−k,↑ |0〉

=
g√
V

∑

p,q

b̂†qδp+q/2,k δ−p+q/2,−k |0〉

=
g√
V
b̂†
0
|0〉 ,

(2.7)

terms where Ĝ acts on a scattering state |k,−k〉

Ĝ |k,−k〉 =
1

E − Ĥ0 + iǫ
ĉ†k,↓ĉ

†
−k,↑ |0〉

=
1

E − εk + iǫ
|k,−k〉

= G0(E,k) |k,−k〉 ,

(2.8)

terms where V̂ acts on a bound state b̂†0 |0〉

V̂ b̂†0 |0〉 =
g√
V

∑

p,q

(

b̂†q ĉp+q/2,↓ĉ−p+q/2,↑ + h.c.
)

b̂†0 |0〉

=
g√
V

∑

p,q

ĉ†
p+q/2,↓ĉ

†
−p+q/2,↑δq,0 |0〉

=
g√
V

∑

p

|p,−p〉 ,

(2.9)
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2. Overview: Van der Waals Materials and Feshbach Resonances

and terms where terms where Ĝ acts on a bound state b̂†0 |0〉

Ĝb̂†0 |0〉 =
1

E − Ĥ0 + iǫ
b̂†0 |0〉

=
1

E − νB + iǫ
b̂†0 |0〉

= G0(E) b̂†0 |0〉 .

(2.10)

Here we have defined

G0(E) =
1

E − νB + iǫ
and G0(E, p) =

1

E − εp + iǫ
. (2.11)

One now finds that the state

ĜV̂ |k,−k〉 =
g√
V

G0(E) b̂†
0
|0〉 (2.12)

is an eigenstate of the operator (ĜV̂ ĜV̂ )n, i.e.,

ĜV̂ ĜV̂ b̂†
0
|0〉 =

g2

V
G0(E)

∑

p

G0(E,p) b̂†
0
|0〉 . (2.13)

For details see Appendix A. We are now in the position to evaluate Eq. (2.6) to arrive
at

〈k′,−k′| T̂ |k,−k〉 =
g2

V
G0(E)

∞∑

n=0







G0(E) g2

∫
d3p

(2π)3
1

E − ǫk + iǫ
︸ ︷︷ ︸

:=Σ(E)








n

, (2.14)

where we identify the self energy

Σ(E) =

∫
d3p

(2π)3
1

E − ǫp + iǫ

=
1

V

∑

p

1

E − ǫp + iǫ

≈ 1

V

∑

|p|<Λ

1

E − ǫp + iǫ
,

(2.15)

with the momentum cutoff Λ. This allows to rewrite the transition matrix element

〈k′,−k′| T̂ |k,−k〉 ≈ 1

V

1
E−νB+iǫ

g2
− 1

V

∑

|p|<Λ

1
E−ǫp+iǫ

.
(2.16)
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The transition matrix elements are linked to the scattering amplitude by

fE(k,k′) = − µ

2π~2
V 〈k′,−k′| T̂ |k,−k〉 , (2.17)

with the reduced mass µ = m/2. This expression can be transformed for elastic and
on-shell scattering where |k| = |k′| = k and E = ~

2k2/2µ to

f(k) =

2π∫

0

dϑ fE(k,k′)

k→0
=

1
4π~2νB
g2m

− 2Λ
π

,

(2.18)

with ϑ = ∠(k,k′). In the limit k → 0 the scattering length a is direct proportional to
the scattering amplitude

a = − lim
k→0

f(k) = −
(

4π~2νB
g2m

− 2Λ

π

)−1

, (2.19)

which implies that the scattering length depends on the energy detuning νB of the
closed-channel molecule with respect to the open-channel scattering threshold.

As we motivated above this energy of the closed-channel bound state can be con-
trolled via an external magnetic field in the context of magnetically tuned Feshbach
resonances. Away from the resonance the binding energy of the closed-channel bound
state is linearly dependent on the magnetic field via the linear Zeeman effect and can
thus be parametrized as

νB = δµ(B − Bc) . (2.20)

Here δµ is the difference of the magnetic moments of the closed-channel bound state
and the atoms in the open channel and Bc is the magnetic field strength where the bare
closed-channel bound state energy crosses the open-channel scattering threshold [80].
Further one finds

a−1 = −4π~2δµ(B − Bc)

g2m
+

2Λ

π

=
2Λ

π

− 4π~2δµ(B − B0)

g2m
− 4π~2δµ(B0 − Bc)

g2m

!
= −mr

∗

~2
δµ(B − B0) .

(2.21)

If one identifies

g2 =
4π~2

m2r∗
, (2.22)
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3. Tunable Exciton-Electron
Interactions

In this chapter we show how two-dimensional Feshbach resonances result from an analysis
of the two-dimensional exciton-electron scattering in a TMD heterostructure. In doing
so, we first introduce a two-dimensional toy model for the scattering of two particles
that captures the most important features to obtain tunable scattering phase shifts and
use it to model impurity-bath interactions in the Fermi-polaron problem. This allows to
understand optical signatures of Feshbach resonances in two dimensions. Afterwards we
turn to the concrete example of a TMD heterostructure and show how two-dimensional
exciton-electron Feshbach resonances arise from a microscopic theory of electron-hole
scattering by solving the underlying three-body problem. This represents a central
result of this thesis. Finally we investigate consequences of tunable exciton-electron
interactions on excitons interacting with electrons in two-dimensional charge ordered
states which arise naturally within TMD heterostructures.

3.1. A Toy Model - Two-Dimensional Scattering

Resonances

First we consider two particles that interact via a square-well potential of variable depth.
This allows to introduce bound states in a scattering potential while simultaneously
monitoring the scattering wave functions. The analysis of this simple model1 provides
insights into scattering resonances in two-dimensional systems as it allows to calculate
scattering phase shifts when new bound states are introduced into a two-body interaction
potential. In Section 3.2 the same procedure will be applied to the three-body problem
allowing to extract exciton-electron phase shifts.

We consider the relative two-body Hamiltonian

[
p̂2

2µ
+ V (r̂)

]

Ψ(r) = EΨ(r) . (3.1)

Here r is the relative coordinate between the particles, µ is the reduced mass and we

1The found mechanism is valid on a more general basis due to the universality of low-energy scattering.
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3.1. A Toy Model - Two-Dimensional Scattering Resonances

divergence of the two-dimensional scattering length and simultaneous vanishing of inter-
actions whenever a bound state is created in an interaction potential is a peculiar feature
of two-dimensional scattering [83]. This pinpoints the loss of meaning of the resonance
width as defined in three-dimensional ultracold atomic systems5.

The analysis of s-wave scattering states6 in this section shows how the interactions
between particles can be tuned by will analogously to a Feshbach resonance in ultra-
cold atoms, if one is able to introduce/remove bound states from a two-dimensional
scattering potential. This has important consequences for the optical response of the
two-dimensional Fermi-polaron problem (also discussed in [84]) which will be laid out in
the following (for a review of polarons in three dimensions see [24]).

3.1.1. Fermi-Polaron Problem with Tunable Square-Well
Interactions in Two Dimensions

Impurity problems show universal features across physics. The emerging polaron allows
to study a many-body system when brought away from its non-interacting state, making
it essential for the understanding of the phase diagrams of strongly interacting quantum
systems. In the upcoming subsection we investigate a static impurity (with infinite mass)
in a Fermi sea. The interactions between fermions and the impurity are modeled by
the square-well potential introduced in the previous section. We use a direct functional
determinant approach [24] (see Appendix B) to calculate the Fermi polaron spectrum (cf.
Fig. 3.4) while lowering V0 (i.e., increasing |V0|) around Vres where the second bound state
emerges in the impurity-bath interaction potential. An analogous generic behavior of
attractive and repulsive polaron branches is found whenever a bound state is introduced
into (or removed from) the interaction potential.

Importantly the universality of s-wave scattering allows to replace any physical in-
teraction potential by a model potential that reproduces the same phase shifts (and in
consequence Es parameters) to describe the scattering physics. Hence despite the rela-
tive simplistic choice of a square-well interaction potential the resulting polaron spectrum
still resembles the physics for more realistic choices of interaction potentials for given
values of Es.

At the resonance marked with Vres in Fig. 3.4 the second bound state appears in
the interaction potential and a new repulsive polaron branch emerges in the spectrum
with zero spectral weight. The repulsive branch on the left of |Vres| emerged in the
same way at the point where the first bound state is introduced in the system (i.e., at
V0 = 0, see Fig. 3.3 where Es vanishes at V0 = 0). At V0 = Vres this repulsive branch
maximizes its spectral weight, crosses the energy of the two-body scattering threshold
and is then converted into an attractive polaron. When moving to the right it begins

5Here the resonance width (as discussed in Section 2.2.1) was defined as the distance of the zero
crossing of the scattering length and the resonance position, which coincide in two dimensions.

6A similar analysis can be done for higher angular momentum states.
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energy with respect to the impurity-bath scattering threshold (c.f. Fig. 3.5a). The re-
spective many-body states (Slater determinants of the corresponding interacting and
non-interacting single-particle orbitals, connected by arrows in a) have a rather good
overlap causing the spectral weight of the repulsive polaron to be substantial.

At the resonance V0 = Vres, the interacting and non-interacting energy levels match (in
the limit Rbox → ∞) shown on the left side of (b) causing the polaron energy to match
the impurity-fermion scattering threshold (see Fig. 3.4, the polaron energy changing its
sign at the resonance). Also the asymptotic interacting orbitals |ν〉 exactly match their
non-interacting counterparts |n〉 causing a maximized spectral weight. At this point a
different rearrangement of single-particle orbitals becomes possible, illustrated on the
right panel of (b). This leads to the emergence of a new repulsive polaron branch with
zero spectral weight as its Slater determinant contains a state that causes the overlap
with the non-interacting many-body state to vanish. The onset of the newly emerging
repulsive branch is then given by summing the offsets of neighboring energy levels, i.e.,
ν = n+ 1,

∑

n≤nF

∆En =
∑

n≤nF

En+1 − En
n→∞≈ EF , (3.10)

which sum up trivially to the Fermi energy (in the limit Rbox → ∞).

The above investigation of a toy model clarified the ingredients needed for the realiza-
tion of tunable interactions in two dimensions and how they could be observed via clear
optical signatures in a many-body setting. We now turn to the microscopic analysis
of Feshbach resonances in atomically thin semiconductors, where exciton-electron Fesh-
bach resonances will enable to study the mobile7 Fermi-polaron problem with tunable
interaction.

3.2. Feshbach Resonances in Two-Dimensional

Materials from First Principles

The following section summarizes [P5] and presents one of the main results of this thesis.
We show how two-dimensional electron-exciton Feshbach resonances result from first-
principles by analyzing the underlying microscopic three-body problem. To this end, we
solve the problem of two electrons and one hole interacting with each other in a bilayer
TMD structure. In contrast to the two-body toy model studied above the three particles
are now interacting with more realistic interaction potentials. We find that the excited
states of the low-energy spectrum always contain a bound electron-hole pair, an exciton,
that scatters with the third charge carrier. In this context it is the exciton-electron

7In this context the impurity is given by an exciton.
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The ansatz for the relative wave functions

Ψ(r1, r2, θ, α) = ψ(r1, r2, θ)e
imα (3.17)

includes the conservation of angular momentum m. In the following we focus on the zero
angular momentum case m = 0. The kinetic Hamiltonian acting on the m = 0 subspace
is given by

Ĥkin
rel =

2∑

i=1

−~
2

2µi

(

∂2ri +
∂ri
ri

+
∂2θ
r2i

)

− ~
2

m3

(

cosθ ∂r1∂r2 −
cosθ ∂2θ
r1r2

−
(
∂r1
r2

+
∂r2
r1

)

sinθ ∂θ

)

.

(3.18)

Including the interaction potential as well as the hopping between layers, the total
Hamiltonian can be written as

Ĥ = Ĥkin
rel −

3∑

i=1

qi∆E

2
(1 − τ iz) + tiτ

i
x

+
∑

a,b

2∑

i=1

Vab(ri) + Vab

(√

r21 + r22 − 2r1r2 cos θ

)

.

(3.19)

Now we turn to the interaction potential between the two charges that is obtained by
solving Poisson’s equation

∆Φ(r) = − 1

ε0
ρ (3.20)

for two identical layers separated by a distance of d = 1.03 nm that accounts for the
separation of the TMD centers by a monolayer of hBN8 of thickness 0.33 nm [86] and
the thickness of MoSe2 (0.7 nm [87]). In Eq. (3.20) Φ(r) is the electrostatic potential, ε0
the vacuum permittivity and the total charge density is given by

ρ = ρext + ρind1 + ρind2 , (3.21)

where ρindi is the induced charge density in layer i,

ρindi = −∇P2di , (3.22)

with the two-dimensional polarizarion vector of layer i

P2di = −ε0α2d∇xΦ3d(x)δ(z) , (3.23)

8Note that the layer of hBN is treated here as a layer of vacuum with a thickness according to a
monolayer of hBN. This causes our results to underestimate binding energies, however the general
mechanism described here remains valid.
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with the TMD layer’s two-dimensional polarizability α2D and x = (r, z), where r is the
two-dimensional in-plane relative coordinate vector.

The layer dependent interaction potential for charges Qi and Qj in momentum space
is then obtained as

Φintra(q) =
QiQj

(
(1 + r0q)e

2dq − r0q
)

2ε0 ((1 + r0q)2qe2dq − r20q
3)

(3.24)

for two charges in the same layer, and

Φinter(q) =
QiQje

dq

2ε0 ((1 + r0q)2qe2dq − r20q
3)

(3.25)

for charges in different layers (for details see the supplemental material of [P5]). The
electrostatic screening of a monolayer is described by the screening length r0 = α2D/2.
A numerical Fourier transformation links the momentum- and real-space potentials

Φintra(q)
F−→ Vab(r) , with a = b ,

Φinter(q)
F−→ Vab(r) , with a 6= b ,

(3.26)

which are used in the following to describe the interactions between charges in a bilayer
TMD system. Note that in the limit d→ 0 Eq. (3.24) converges to the Rytova-Keldysh
potential (see Eq. (2.1)) [63, 64] which is used in Literature to model the interaction
potential between charges in TMD monolayers or to approximate the potential in bilayer
systems with vanishing layer separation, d→ 0.

3.2.1. Feshbach Resonances from Solving the Three-Body Problem

To obtain a better understanding of two-dimensional exciton-electron scattering we now
turn to the discussion of the results of the numerical diagonalization of the Schrödinger
equation

Ĥ ψ(r1, r2, θ) = E ψ(r1, r2, θ) , (3.27)

with the three-body Hamiltonian Ĥ in the zero angular momentum sector given in
Eq. (3.19). To obtain the results we use a discrete variable representation (DVR) [71, 88]
(also see Appendix C) and a standard Arnoldi diagonalization method. We focus on a
bilayer system made from two MoSe2 monolayers and use material parameters obtained
from DFT [57]. An extension to heterostructures made out of different TMDs is straight
forward.

We assume the absence of electron hopping, which makes the layer index of the elec-
trons a conserved quantity, causing the Hilbert space to decouple into three invari-
ant subspaces (both electrons in either the top or bottom layer and one electron in
either layer respectively). Further, the Hamiltonian (3.19) is invariant with respect
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For ∆E = 120 meV (I) the ground-state probability density is shown in the top of the
first column in Fig. 3.9. The probability of finding both electrons close to the hole is
high. This state is the deeply-bound intralayer trion. The two states below are the first
and second exciton-electron scattering states. Here the probability density is high along
the r1 and r2 axis, i.e., when one electron is close (bound) to the hole, the other is far
away. Thus, these states can be effectively viewed as exciton-electron scattering states.
Their wave functions exhibiting the typical lobe structure of scattering states confined
in a box (see second and third line of column I in Fig. 3.9).

The bottom panel of the first column shows the resonant interlayer trion (marked with
R1 in Fig. 3.8) immersed in the intralayer scattering ‘continuum’. The spatial extent
of this interlayer trion is much larger compared to the intralayer trion due to the more
pronounced effect of electron repulsion in the interlayer configuration.

While crossing the first resonance F1 at ∆E ≈ 125 meV, we observe a continuous
transformation of the first excited state from being the first intralayer scattering state
into the interlayer trion (see second line in Fig. 3.9 across columns I-III). In the same
way the second excited state changes from being the second intralayer scattering state
(showing two lobes) into being the first interlayer scattering state (showing only one
lobe). Analogously, higher excited states change their number of radial lobes by one when
crossing the resonant state. The ground-state wave function remains nearly unchanged
(bottom line) for values of ∆E < 139.5 meV.

A further increase of ∆E leads to an anticrossing of the bound states at IV. At this
point the bound state wave functions show signatures of the nearly maximally hybridized
inra and interlayer trions.

While crossing the second resonance F2 at V (here ∆E ≈ 141.7 meV) the excited states
gain an additional lobe. Here the hybridized intralayer trion crosses into the interlayer
scattering continuum turning into a resonant state (labeled R2 in Figs. 3.8(a) and 3.9).

This analysis further substantiates the picture of tightly bound excitons scattering
with an additional electron. However, it also shows that the layer hybridization9 of
excitons can play a key role in the emergence of exciton-electron Feshbach resonances.

To further establish the notion of Feshbach resonances in two-dimensional semiconduc-
tors, we investigate the scattering properties of the lowest scattering state (open channel)
when tuning ∆E across the resonances by determining the exciton-electron phase shifts
characterizing the extent of the wave-function modification due to exciton-electron inter-
actions. To this end, we again fit the long-distance part of the lowest scattering state to
the asymptotic scattering wave function, analogously to the analysis of scattering wave
functions in the previous part, see Eq. (3.5). We then extract Es as defined in Eq. (3.7)
as parameter that characterizes exciton-electron interactions in two dimensions.

In Fig. 3.10, we show Es obtained from an analysis of the lowest exciton-electron

9Note that the layer hybridization found in Fig. 3.9 implies a modification of the electric dipole of the
excitons and trions. This might give rise to interesting, tunable many-body physics of long-lived
excitons and trions at finite density.
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excitons (at F1) to probe correlations of electronic systems, or to bring tunable in-
teractions (at F2) to the many-body system comprising stable interlayer excitons and
electrons, paving the way to the realization of long-lived exciton-electron mixtures at
strong-coupling, and thus enables a new approach to explore the Fermi-polaron problem
and the phase diagram of Bose-Fermi mixtures in regimes that have so far been out of
reach in ultracold atomic systems due to their chemical instability [39].

Note, we have focused on one specific configuration that is directly relevant for on-
going experiments. Allowing for different van der Waals heterostructures and electron-
hole layer configurations (including modified tunneling strength, charge, valley and spin
degrees of freedom) will give rise to an even richer set of Feshbach resonances to be
explored.

In this section we have shown how electrically tunable two-dimensional Feshbach res-
onances emerge from the states within a TMD heterostructure. We found two distinct
resonances that allow to control scattering processes of both short and long-lived excitons
with electrons.

3.3. An Application - Tunable Exciton Band Structures

in Charged Ordered States

We now turn to an effective model to investigate how Feshbach resonances can be used
to introduce tunable band structures for excitons interacting with lattices of charges.
In two-dimensional semiconductors such lattices arise naturally in form of charge or-
dered states such as Wigner crystals or correlated Mott insulators [41, 46, 47]. Their
interactions with excitons give rise to Bragg scattering, leading to the appearance of an
Umklapp peak in the optical response of the material [41, 46].

However, in these systems the trion binding energy ET is typically fixed and large
compared to the energy scale of many-body excitations. This prohibits the resonant
formation of molecular bands arising from excitons ‘hopping’ between charges that can
be viewed as lattice sites in this tight-binding regime. As a consequence the exploration
of the emergence of Hubbard-type physics governed by hopping of excitons in a tight-
binding-model-type fashion is not possible. This can be overcome by using Feshbach
resonances as discussed above to tune exciton-lattice interactions and thereby manipu-
lating the trion binding energy.

We consider a lattice of electrons and describe the electron density effectively within
a mean field model

H =
∑

G

(k + G)2

2m
+Hint ,

Hint ≈ r

∫

d2r′nX(r)Veff(|r − r′|)〈ne(r
′)〉 ,

(3.28)
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where k is the momentum in the first Brillouin zone, the sum runs over the reciprocal
lattice (G = iG1 + jG2 with i, j ∈ Z) and 〈ne(r

′)〉 is the average electron density. We
consider the case of perfectly localized electrons, i.e., 〈ne(r)〉 =

∑

R δ
(2)(r−R), ordered

in a triangular lattice with lattice vectors

R1 =
d

2

(
1√
3

)

, R2 =
d

2

(
−1√

3

)

, (3.29)

lattice constant d and reciprocal lattice vectors

G1 =
2π

d

(
1

1/
√

3

)

, G2 =
2π

d

(
−1

1/
√

3

)

(3.30)

(see also Fig. 2.2b).
We assume a lattice spacing d = 25 nm and use an effective Gaussian exciton-electron

model potential
Veff(r) = −V0 e−(r/σ)2/2 , (3.31)

with width σ ≈ 2.4 nm to approximate the behavior far away from the resonance found
from the three-body results for exciton-electron scattering (Es ≈ 6 meV). The exciton
band structure that results from the diagonalization of the Hamiltonian in reciprocal
space is shown in the upper half of Fig. 3.11 as the system is tuned across the Feshbach
resonance. As shown in Fig. 3.11(d) the potential depth V0 (measured in units of the
characteristic lattice energy Erec = ~

2G2/2mX = 2.81 meV, with exciton mass mX and
reciprocal lattice vector G) is tuned to generate scattering parameters Es as relevant
for our Feshbach resonance data in Fig. 3.10. Fig. 3.11(a) corresponds to the scenario
realized in presence of a single deeply-bound trion (blue in (c), not shown on the scale
of the figure); in this case, the band structure is renormalized upwards with respect to
the free bands (shown in gray).

As the resonance is crossed, the newly emerging trion state creates a molecular band
(see Fig. 3.11(b), orange band), while the first excited exciton band (corresponding to a
repulsive polaron in the continuum case) now features a negative band mass. Interest-
ingly, both bands feature a significant oscillator strength, as can be seen from the linear-
response absorption spectra shown in the respective right subpanels of Fig. 3.11(a,b).
The combination of large oscillator strength and negative effective mass may provide
a way to study anomalous exciton diffusion. In the regime where the molecular band
(corresponding to an attractive polaron in the continuum case) is slightly below the
first excited band, it takes the role of a tight binding band. Since this band is address-
able spectroscopically, the direct realization of tight-binding Hubbard models of exciton
should become possible.

We now turn to the spectral signatures of the different bands, whose oscillator strengths
are proportional to the overlap with the bare zero momentum exciton

A(ω) ∝ | 〈Xbare
k=0 |Xk=0〉 |2 . (3.32)
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Fig. 3.11c). While the oscillator strength of the first Umklapp peak increases at first
it becomes again smaller as the Feshbach resonance (vertical solid line in Fig. 3.11c,d)
is approached, where it eventually vanishes and the system becomes effectively non-
interacting.

At the resonance the absorption spectrum is dominated by the previously repulsive
polaron which has maximal oscillator strength and is converted into an attractive po-
laron while a new repulsive branch emerges with zero oscillator strength (see solid green
line in Fig. 3.11c). After crossing the resonance the oscilator strength of the Umklapp
peak (now dashed red line, which was the second Umklapp peak on the left side of the
resonance) again increases. This process of conversion and emerging of peaks repeats
itself whenever a new bound state is created in the interaction potential by increasing
|V0|. This is in full accordance to the discussion of the Fermi-polaron problem in Sec-
tion 3.1.1. Also see Fig. 3.4.

3.4. Summary

In this chapter we have shown how tunable exciton-electron interactions in two-dimen-
sional TMD heterostructures arise from first principles. We found two types of res-
onances that allow to tune the interaction strength of either short-lived intralayer or
long-lived interlayer excitons and electrons. The first may allow to use optically injected
excitons as a probe of electronic states in van der Waals heterostructures, by controllably
coupling them to electrons. The latter promise the prospect to realize controllable many-
body systems comprised of long-lived, dipolar interlayer excitons and electrons. In this
context the tunability of interactions following from the Feshbach resonances described
in this chapter might enable exciton-induced superconductivity [89–91] or supersolidity
in dipolar exciton condensates [92–94].

Further we have studied excitons moving in lattices formed by two-dimensional charge-
ordered states in TMDs. Here the previously introduced Feshbach resonances were used
to tune the exciton-lattice interactions. The emerging excitonic bands could be tuned to
a regime with negative curvature, suggesting a negative effective exciton mass, indicating
the presence of anomalous exciton diffusion.
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4. Towards an Effective Theory
Description of Exciton-Charge
Feshbach Resonances

The development of effective models is crucial for the understanding of many-body sys-
tems, e.g., BCS theory for the understanding of superconductivity [19] that describes
the binding of electrons into Cooper pairs by an exchange of phonons, or the theory
of strong forces that describes the scattering of bound nucleons instead the detailed
physics of quarks and gluons [95]. In the context of ultracold atoms, two-channel models
for Feshbach resonances were crucial to get key insight into the physics of polarons or the
BEC-BCS crossover [96]. In this chapter we aim to develop an effective theory for exci-
tons scattering with electrons in TMDs that does not rely on resolving the full dynamics
of all charge carriers, but rather describes the scattering of excitons and electrons. The
approach we use here is heavily inspired by two-channel models [73] and aims to estab-
lish an even closer connection between the scattering of excitons and electrons in TMDs
and atoms in ultracold atomic systems. In this regard our approach differs crucially
from our recent work in [P3] where the coupling of the different scattering channels is
achieved by explicitly including hole tunneling in the effective Hamiltonian. Here we use
the conversion of scattering states and bound states to couple open and closed-channels,
as known from typical two-channel models used for describing Feshbach resonances in
ultracold gases (see Section 2.2.2). The results of this chapter represent another so far
unpublished result of this thesis.

The ab initio results for the low-energy spectrum obtained from an exact diagonaliza-
tion of the three-body problem (discussed in Section 3.2) have revealed two interesting
anticrossings between different exciton-electron scattering thresholds and trions. The
strong coupling between these states in the vicinity of these anticrossings modifies the
scattering processes similar to the situation in ultracold atoms. Motivated by these find-
ings we develop an effective many-body description of exciton-charge scattering that cap-
tures the binding energies of trions within a model correctly describing exciton-electron
scattering while being simple enough to be suitable for many-body calculations. To es-
tablish the approach the results of this effective description are compared to a simplified
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layer s ∈ {T,B} with dispersion relation ǫ̃sk, and t̂sk is the annihilation operator of the
corresponding trion with dispersion Ω̃s

k. Here we aim to study a model that reproduces
the scattering of holes and excitons where both particles have fixed effective layer index
(thus layer tunneling is effectively integrated out). The last term couples excitons and
holes via the formation of trions with coupling strengths gs

′

s (for the connection between
real space and momentum space formulation of the interaction term, see Appendix D).
The parameters EX and Es

t represent the bare binding energies of excitons and trions
that are renormalized due to the Yukawa type interactions terms in the last line of
Eq. (4.1). In the following we choose the notation

ǫsk = ǫ̃sk + ξs ∆E ,

ωk = ω̃k + EX ,

Ωs
k = Ω̃s

k + Es
t + ξs∆E .

(4.2)

The factors ξT = 0 and ξB = −1 account for the energy shift of holes in the intralayer
(T) and interlayer (B) configuration due to the band detuning ∆E. The form factors
χs(k) arise from a finite extent of the trion wave function. In order to obtain analytical
solvable expressions we choose modified Bessel functions of the second kind K0(x) to
describe the real-space form factors

χ̃s(r) =
1√
πσs

K0

(
r

σs

)

, (4.3)

from which the momentum-dependent form factors are obtained via Fourier transforma-
tion

χ̃s(r)
F→ χs(k) =

2
√
πσs

1 + k2σ2
s

. (4.4)

4.2. Two-Body Solution

We are interested in the spectrum of Eq. (4.1) in the vicinity of the anticrossings of
the exciton-electron scattering threshold and trions related to the Feshbach resonances
obtained in the three-body solution. To analyze the spectrum we solve the Schrödinger
equation using a wave function ansatz of the form (which is exact for the two-body
problem considered here within our exciton-electron scattering model)

|ψ〉 =
∑

s

αst̂s †0 |0〉 +
∑

sk

βs
kX̂

†
−kĥ

s †
k |0〉 . (4.5)

The parameters α, β are determined from the Schroedinger equation by (functional)
derivatives of

L =
〈ψ| Ĥ |ψ〉
〈ψ|ψ〉 = min ⇔ 〈ψ| Ĥ − E |ψ〉 = min , (4.6)
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with respect to αT/B and β
T/B
k . To this end, we compute

〈ψ| Ĥ − E |ψ〉 =
∑

s

|αs|2Ωs
0 +

∑

sk

|βs
p|2
(
ǫsk + ωk

)

+
∑

ss′

αsgs
′

s

1√
A

∑

p

βs′

p χs(p) + h.c.

− E

(
∑

s

|αs|2 +
∑

sp

|βs
p|2
)

,

(4.7)

allowing to arrive at

∂L

∂αs ∗
!

= 0 ⇔ αsΩs
0 +

∑

s′

gs
′

s

1√
A

∑

p

βs′

p χs(p) − αsE
!

= 0 ,

∂L

∂βs′ ∗
p

!
= 0 ⇔

∑

s

αsgs
′

s

1√
A
χs(p) + βs′

p

(

ǫs
′

p + ωp − E
)

!
= 0 .

(4.8)

The second equation yields relations for βs′

p

βs′

p = −
∑

s′′ α
s′′gs

′

s′′
1√
A
χs′′(p)

ǫs′p + ωp − E
, (4.9)

that can be used to eliminate the βs′

p dependency in the first line of Eq. (4.8) what im-
plicitly solves the momentum dependent part of the of the Schrödinger equation allowing
to reduce the infinite-dimensional set of equations (given in Eq. (4.8)) to two equations
(i.e., s ∈ {T,B})

αsΩs
0 −

∑

s′

gs
′

s

1

A

∑

p

∑

s′′ α
s′′gs

′

s′′χs′′(p)

ǫs′p + ωp − E
χs(p) − αsE

!
= 0 . (4.10)

It is instructive to take the continuum limit by replacing

1

A

∑

p

−→
∫

d2p

(2π)2
, (4.11)

and identify the respective self-energies

Σs1,s2,s2(E) =

∫
d2p

(2π)2
χs2(p)χs3(p)

E − ǫs1p + iǫ
. (4.12)

This allows to rewrite Eq. (4.10)

αs (Ωs
0 − E) −

∑

s′ s′′

αs′′gs
′

s g
s′

s′′Σ
s′,s′′,s(E)

!
= 0 , (4.13)

which can be expressed as a matrix equation2 with an energy dependent coefficient

2Eigenstates of the Schrödinger equation (see Eq. (4.5)) fulfill this relation. Note that det[M ] = 0 in
order to ensure the existence of a nontrivial solution.
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matrix M

(
a b
c d

)

︸ ︷︷ ︸

=M

(
αT

αB

)

= 0 ,
(4.14)

where

a = ΩT
0 − E − |gBT|2

1

A
ΣBTT(E) − |gTT|2

1

A
ΣTTT(E) ,

d = ΩB
0 − E − |gBB|2

1

A
ΣBBB(E) − |gTB |2

1

A
ΣTBB(E) ,

b = gBTg
B∗
B

1

A
ΣBBT(E) − gTTg

B∗
B

1

A
ΣTBT(E) ,

c = gBBg
B∗
T

1

A
ΣBTB(E) − gTBg

T∗
T

1

A
ΣTTB(E) .

(4.15)

The spectral functions are given by the imaginary part of the retarded Green’s func-
tions G r

s = 〈0| t̂s0 1/[Ĥ − E − i0+] t̂s †0 |0〉, i.e.,

As(E,∆E) = Im [G r
s(E,∆E)] , (4.16)

that follow from the resolvent 1/[Ĥ − E] by shifting the energy E → E + i0+. As
Eq. (4.14) is nothing but a reformulation of the system of equations obtained from
the variation of the eigenvalues of the inverse resolvent after solving the momentum
dependence (see Eq. (4.8)), i.e.,

∂

∂αs ∗ 〈ψ| Ĥ − E |ψ〉 !
= 0 , (4.17)

the retarded Green’s functions are given directly by the entries of the main diagonal of
the matrix M−1 after shifting E → E + i0+.

4.3. Results and Discussion

We can now turn to the question how well the model Eq. (4.1) can reproduce the energy
spectrum of the underlying three-body problem. To this end, the parameters σs, gs′s ,
Es

X and Es
t of the model are obtained by fitting the spectrum to the three-body re-

sults. The resulting spectrum is shown in Fig. 4.2, where the discrete set of energies of
the underlying three-body solution is shown as orange curves. The spectrum obtained
from Eq. (4.16) in turn is overlaid as an density (color) plot. As evident, we find a
remarkable capability of the effective multi-channel model to reproduce the spectrum
of the first-principle three-body calculation. Our preliminary findings thus demonstrate
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Part II.

Rydberg Excitations as a Probe of
Quantum Matter
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Part II is based on the publications [P1], [P2] and [P4].
Additional unpublished material is discussed in Chapter 6.
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Ultracold atoms provide a versatile platform to study quantum many-body physics. In
this context Rydberg excitations – atoms in which an electron is excited to an orbital with
high principal quantum number – are naturally embedded in a many-body environment,
as they are usually excited from within a cloud of atoms. The Rydberg blockade radius
is typically much larger than the inter-particle distance, and can, in extreme cases, even
reach up to the extent of the ultracold cloud, ensuring that Rydberg atoms immersed
in ultracold atoms are well described by single impurity models [97]. The interactions
between a Rydberg impurity and the surrounding atoms are dominated by the attraction
mediated by the scattering of the neutral atoms and the Rydberg electron on its highly
excited orbit. The resulting attractive interaction potential can support the formation
of bound states, ultralong-range Rydberg molecules (ULRRMs) [98, 99]. Further, these
bound states which may contain multiple atoms (dimer, trimer, tetramer states, and
so on) themselves are dressed by excitations of atoms in the vicinity of the Rydberg
atom. This leads to the formation of a series of Rydberg polarons, which manifest in
characteristic peaks in the Rydberg absorption spectrum [100, 101].

In an intuitive, semiclassical picture one can think of the Rydberg electron as a point-
like particle orbiting the core at a distance given by the Rydberg radius. The scattering
of a ground-state atom and the Rydberg electron, leads to the formation of a bound
state with a well defined binding length, precisely given by the Rydberg radius. The
probability that such bound-state formation occurs grows with increasing number of
ground-state atoms located on the Rydberg electron orbit.

The following second part of this thesis is focused around the idea to use Rydberg
excitations as a means to detect correlations in ultracold atomic systems. To this end, one
may recognize that, if a ground-state atom is excited to a Rydberg state by a laser with
narrow line width, and the laser frequency is detuned by the ULRRM binding energy,
only ULRRMs of a matching binding length (determined by the principal quantum
number n of the Rydberg excitation) and matching number of neutral atoms bound
in the Rydberg potential are created. Focusing here on the dimer, this establishes
a direct connection between the absorption of photons of a certain frequency and the
creation of an ULRRM with matching binding length, which itself reflects the probability
of two atoms (one being the Rydberg atom, the other the neutral atom) having this
particular separation in the ultracold cloud. Therefore the strength of the dimer-peak
in the absorption spectrum should be related to the probability distribution of inter-
particle spacings in the ultracold gas, i.e., the pair correlation function, evaluated at the
binding length of the ULRRM, given by the respective Rydberg radius. Importantly, the
ULRRM formation takes place on timescales set by the molecular binding energies in the
MHz range, which is fast compared to time scales of typical ultracold-atom dynamics.
This suggests that the ULRRM formation process can be used as an in-situ, time-resolved
probe of the quantum gas surrounding the Rydberg atom.

In the following we develop a theoretical description of this idea, i.e., of using Rydberg
excitations as a probe of correlations within a cloud of ultracold atoms in which the
Rydberg state is created. First we provide a short reminder of ULRRMs before we show
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that the spectroscopic response of the ULRRM-dimer peak is indeed proportional to
the pair correlation function when the quantum state from which it was created can
be represented as Fock state. We then apply this method on two examples and outline
possible future research directions. In the end of this part we discuss a related topic,
studying how Rydberg impurities in a BEC can be described by a semiclassical theory.
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5. Ultralong-Range Rydberg Molecules

In order to understand how Rydberg excitations can be used to detect correlations
in ultracold quantum gases we first give a short overview of the effects dominating
the Rydberg-ground-state-atom interaction, leading to the formation of ultralong-range
Rydberg molecules (ULRRMs). More detailed information on the underlying physics
can be found in the reviews [102, 103].

5.1. Rydberg-Ground-State-Atom Interaction

When a Rydberg atom is excited within a cloud of ultracold atoms the Rydberg electron
scatters with atoms in its environment, thereby mediating an interaction (see Fig. 5.1).
This interaction leads to shift of the energy of the collective state of the Rydberg atom
and the neighboring atoms, which modify (perturb) the bare Rydberg excitation and are
therefore called ‘perturbers’ in this context. The Rydberg-atom-perturber interaction
potential has two contributions

V (r) = Vca(R) + Vea(R, r) , (5.1)

namely the Rydberg-core-perturber interaction Vca and the Rydberg-electron-perturber
interaction Vea. They are given by the polarization potential of the neutral ground-state
atom in the electric field of the Rydberg ionic core and the Rydberg electron

Vca(R) = − e2

(4πε0)2
α

2R4
, Vea(R, r) = − e2

(4πε0)2
α

2|R− r|4 , (5.2)

where e is the elementary charge, ε0 the vacuum permittivity and α the polarizability
of the ground-state atom.

The Hamiltonian describing the Rydberg electron is given by

Ĥel = − ~
2

2me

∆ − e2

4πε0

1

|r̂| −
e2

(4πε0)2

∑

i

α

2|Ri − r̂|4 , (5.3)

where the first term accounts for the kinetic energy of the Rydberg electron with the
electron mass me, the second term accounts for its approximate Coulomb interaction
with the Rydberg core and the last term for its interaction with the ground-state atoms
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5.1. Rydberg-Ground-State-Atom Interaction

In the following chapter we will expand on this idea. The particular shape of the
ULRRM bound states, a ground-state atom located on a thin spherical shell (resembling
the Rydberg orbit) with the Rydberg atom in its center in case of s-wave states, com-
bined with the separation of timescales of molecule formation (∼MHz, fast) and typical
dynamics of the environment (∼kHz, slow) will allow to use these molecules as probes
for inter-particle distances in ultracold quantum gases.
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6. Rydberg Excitations as a Probe of
Quantum Gases

Interesting effects in systems of ultracold atoms (e.g., the formation Feshbach molecules,
polarons, superfluid fermion pairs) typically occur on sub-optical length scales (. 380
nm) which makes them inherently difficult to in-situ detect and study in experimental
setups. The typical radii of Rydberg atoms (50-500 nm), however, coincidentally fall into
this regime. Combined with their ability to form detectable bound states with ground-
state atoms, Rydberg excitations thus open up the possibility to probe inter-particle
distances in ultracold quantum gases in the sub-optical regime that was previously in-
accessible via standard optical detection methods.

Here we investigate the connection between the ULRRM-dimer response in the ab-
sorption spectrum and the pair correlation function of an ultracold gas from which the
Rydberg atom is excited. The results of this chapter present another (so far unpub-
lished) central result of this thesis. When the excitation frequency is detuned from the
bare Rydberg excitation by the binding energy of an ULRRM dimer and the line width
of the excitation laser is narrow enough such that the absorption of photons solely leads
to the formation of ULRRM-dimer states with a specific binding length (see Fig. 6.1 a),
the absorption rate of photons is a measure of the excitation probability of ULRRM-
dimer states. In particular we use Fermi’s golden rule to show that the ULRRM-dimer
absorption strength is directly related to the system’s pair correlation function.

6.1. A Molecule in an Ideal Fermi Sea

Having the ULRRM states in mind, we first investigate the creation of a general dimer
molecule in a Fermi sea. Later we use the results of this section to compute the dimer
absorption rate in the specific case of an ULRRM state created in a Fermi sea.

We use Fermi’s golden rule and focus on the zero-temperature case, i.e.,

A(ω) =
∑

f

∣
∣ 〈f| V̂L |i〉

∣
∣
2
δ
(
ω − (Ef − Ei)

)
(6.1)

to predict the transition rate of the fermionic initial state |i〉 into a final state |f〉 caused
by the laser operator V̂L that transfers a ground-state atom into a Rydberg state. Here
ω is the laser frequency and the sum runs over all possible final states with energies Ef.
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6.1. A Molecule in an Ideal Fermi Sea

which is equivalent to a Fermi sea of N particles if only the N lowest N modes are filled

|Fs〉 =
N∏

i=1

(

ĉ†ki

)

|0〉 = |1, ... , 1 , 0, ...〉
(N)

. (6.6)

By a careful analysis of the commutation relations one finds that any Fock state results
in the exact same expressions as the Fermi sea. Therefore we restrict the following
discussion to the Fermi-sea scenario where the initial state is given by

|i〉 =
N∏

i=1

(

ĉ†ki

)

|0〉 = |1, ... , 1 , 0, ...〉
(N)

c ⊗ |0〉d :=|FSc〉 , (6.7)

i.e., a Fermi sea of ground-state atoms and a vacuum of Rydberg atoms.

The relevant final states that are compatible with a laser frequency detuned from the
Rydberg line by the ULRRM-dimer binding energy, are then states that result from the
excitation of a single ground-state atom into a Rydberg state which is bound to another
ground-state atom forming an ULRRM-dimer state. To describe these dimer bound
states embedded in a fermionic environment we choose the ansatz

|f〉 = |f(λ,α,p,p′)〉

=

∫

d3R

∫

d3r Ψλ,α(R, r) d̂†
R− r

2
ĉ†
R+ r

2
ĉp ĉp′ |i〉

=

∫

d3RΦλ(R)

∫

d3r φα(r) d̂†
R− r

2
ĉ†
R+ r

2
ĉp ĉp′ |FSc〉 ,

(6.8)

where R is the center-of-mass coordinate and r the relative distance between the dimer
atoms. In this ansatz

Ψλ,α(R, r) = Φλ(R)φα(r) (6.9)

are the molecular wave functions that will later be taken to describe the ULRRM dimer
discussed in the previous chapter (see Chapter 5). The collective indices α and λ

combine all additional parameters on which the dimer state may depend (e.g., center-of-
mass momentum or angular momentum of the molecule, etc.). We assume that any of
the ground-state atoms can be excited to a Rydberg state. Further, it is possible for any
ground-state atom to form a molecule with the excited Rydberg atom. Therefore any
two of the ground-state atoms in modes p, p′ ≤ kF may be annihilated from the initial
Fermi sea and converted into a two-body bound state with wave function Ψλ,α(R, r).
Within the bound state the position of the Rydberg atom is R+ r

2
and the ground-state

atom is located at R − r
2

(note that not all momentum modes can be occupied due to
the Pauli exclusion principle). In Appendix E.1 we show that the resulting final states
|f〉 defined by Eq. (6.8) are normalized.
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6. Rydberg Excitations as a Probe of Quantum Gases

We are interested in the absorption strength of all possible dimer states given by the
ansatz in Eq. (6.8)

Ā =

ω
D+∆ω

2∫

ω
D−∆ω

2

dω A(ω) ≈
∑

f

∣
∣ 〈f| V̂L |i〉

∣
∣
2
. (6.10)

By averaging over a small frequency window ∆ω, centered around the excitation fre-
quency of the dimer state ωD, we are restricting all possible final states to the relevant
subset which describes these dimer states embedded in a Fermi sea1. Thereby we assume
that no other processes contribute to the absorptive response in this frequency window
(cf. Fig. 6.1b). It is important to keep in mind that the final states |f〉 are not a complete
set of basis states in the corresponding Hilbert space, i.e.,

∑

f

|f〉〈f| 6= 1 . (6.11)

By inserting all definitions into Eq. (6.10) we obtain

Ā ≈
∑

f

∣
∣ 〈f| V̂L |i〉

∣
∣
2

=
∑

λ,α

∑

p,p′

∣
∣ 〈FSc|

∫

d3R

∫

d3r Ψ∗
λ,α(R, r) ĉ†p′ ĉ

†
p ĉR+ r

2
d̂
R− r

2

×
(∫

d3rL d̂
†
rL
ĉrL + h.c.

)

|FSc〉
∣
∣
2

=
∑

λ,α

∑

p,p′

∣
∣ 〈FSc|

∫

d3R

∫

d3r Ψ∗
λ,α(R, r) ĉ†p′ ĉ

†
p ĉR+ r

2
ĉrL

×
∫

d3rL δ
(3)
(

rL −
(

R− r

2

))

|FSc〉
∣
∣
2

=
∑

λ,α

∫

d3R

∫

d3R′
∫

d3r

∫

d3r′ Ψ∗
λ,α(R, r)Ψλ,α(R′, r′)

× 〈FSc| ĉ†
R′− r′

2

ĉ†
R′+ r′

2

∑

p,p′

ĉp ĉp′ |FSc〉 〈FSc| ĉ†p′ ĉ
†
p ĉR+ r

2
ĉ
R− r

2
|FSc〉

︸ ︷︷ ︸

=B

.

(6.12)

1Note that the condition imposed by δ
(
ω−(Ef−Ei)

)
(in Fermi’s golden rule) can not be trivially fulfilled

within the small frequency interval ∆ω for high momentum modes p,p′ (i.e., high temperatures).
Making the extension to the case T 6= 0 a nontrivial venture.
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This expression can be further simplified using the relation

B =

[
∑

p,p′

ĉp ĉp′ |FSc〉 〈FSc| ĉ†p′ ĉ
†
p

]

ĉ
R+ r

2
ĉ
R− r

2
|FSc〉 = 2 ĉ

R+ r

2
ĉ
R− r

2
|FSc〉 , (6.13)

derived in Appendix E.2. It holds for all initial states that are given by a single Fock
state (i.e., |FS〉 → |F〉, see Appendix E.3). Making use of Eq. (6.13) in Eq. (6.12) we
obtain an expression from which the relation between the absorption rate and the pair
correlation function

n2g(2)(r − r′) = 〈ĉ†r ĉ†r′ ĉr′ ĉr〉 (6.14)

already becomes evident, i.e.,

Ā = 2
∑

λ,α

∫

d3R

∫

d3R′
∫

d3r

∫

d3r′ Ψ∗
λ,α(R, r)Ψλ,α(R′, r′)

× 〈FSc| ĉ†
R′− r′

2

ĉ†
R′+ r′

2

ĉ
R+ r

2

ĉ
R− r

2

|FSc〉 .
(6.15)

Depending on the wave functions Ψ the expectation value may reduce directly to the
pair correlation function. For instance, approximating the final dimer state as

|f〉 =
V√

2

∫

d3R

∫

d3r δ(3)
(
R−RC

)
δ(3)
(
r − rD

)
d†
R− r

2
c†
R+ r

2
cp cp′ |FSc〉 , (6.16)

with fixed positions of the atoms forming the ULRRM-dimer state (see also Appendix E.1)
one finds a direct proportionality of Ā ∼ g(2)(rD).

Note that in Eq. (6.15) the concrete shape of the wave functions Ψ characterizing
the dimer molecule is not specified. In the following discussion other molecular states
(created by photoassociation) could be used as well, as long as their wave functions imply
a sufficiently well defined (sharp) binding length. Next we will study how the exact shape
of the bound state wave functions impacts the relation between the absorption strength
and the pair correlation function.

6.2. ULRRM Dimer in an Ideal Fermi Sea

In the following we show how the specific choice of the ULRRM-dimer wave functions
allows to reconstruct g(2) from the absorption spectrum. We now start by taking an
explicit form of the center-of-mass wave function while keeping the relative dimer wave
function unspecified. In the following we investigate wave functions of the type

ΨK,α(R, r) = ΦK(R)φα(r) ,

ΦK(R) =
1√
V

e−iK ·R ,
(6.17)
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6. Rydberg Excitations as a Probe of Quantum Gases

where K is the center-of-mass momentum of the ULRRM dimer. This allows to perform
the integration over one of the center-of-mass coordinates in Eq. (6.15)

ĀrD = 2
∑

K,α

∫

d3R

∫

d3R′
∫

d3r

∫

d3r′ φ∗
α(r)φα(r′)

1

V
eiK · (R′−R)

× 〈FSc| ĉ†
R′+ r′

2

ĉ†
R′− r′

2

ĉ
R− r

2

ĉ
R+ r

2

|FS〉

= 2
∑

α

∫

d3R

∫

d3R′
∫

d3r

∫

d3r′ φ∗
α(r)φα(r′) δ(3)(R′ −R)

× 〈FSc| ĉ†
R′+ r′

2

ĉ†
R′− r′

2

ĉ
R− r

2

ĉ
R+ r

2

|FS〉

= 2
∑

α

∫

d3R

∫

d3r

∫

d3r′ φ∗
α(r)φα(r′)

× 〈FSc| ĉ†
R+ r′

2

ĉ†
R− r′

2

ĉ
R− r

2

ĉ
R+ r

2

|FS〉 .

(6.18)

For the relative wave functions we choose the ansatz

φrDlm(r) = χrDl(r)Ylm(θ, ϕ) , (6.19)

where χrDl(r) is the radial wave function and Ylm(θ, ϕ) are the spherical harmonics. The
sum over α becomes a sum over l,m and an integral over the solid angle ΩrD . We use
the notation dΩr = sin(θ) dθ dϕ and obtain

ĀrD = 2
∑

lm

∫

dΩrD

∫

d3R

∫

d3r

∫

d3r′ χ∗
rDl(r)Y

∗
lm(θ, ϕ) χrDl(r

′)Ylm(θ′, ϕ′)

× 〈FSc| ĉ†
R+ r′

2

ĉ†
R− r′

2

ĉ
R− r

2

ĉ
R+ r

2

|FS〉

≈ 2

∫

dΩrD

∫

d3R

∞∫

0

dr

∞∫

0

dr′ r2r′2 χ∗
rD

(r)χrD(r′)

∫

dΩr

∫

dΩr′

×
∑

lm

Y ∗
lm(θ, ϕ)Ylm(θ′, ϕ′) 〈FSc| ĉ†

R+ r′

2

ĉ†
R− r′

2

ĉ
R− r

2

ĉ
R+ r

2

|FS〉 .

(6.20)

Here we have assumed that the Rydberg atom is large in comparison to the range of the
centrifugal potential, i.e., that the energies of the centrifugal barrier is sufficiently small
compared to the ULRRM potential at the dimer binding length rD

~
2

2µ

l(l + 1)

r2D
≪ |V (rD)| . (6.21)
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6.2. ULRRM Dimer in an Ideal Fermi Sea

In this limit the radial ULRRM-dimer wave functions do not depend on the angular
momentum and we can make use of the identity

∞∑

l=0

l∑

m=−l

Y ∗
lm(θ, ϕ)Ylm(θ′, ϕ′) = δ(ϕ− ϕ′) δ(cos θ − cos θ′) , (6.22)

allowing to perform the integration over dΩr′

ĀrD = 2

∫

dΩrD

∫

dΩr

∫

d3R

∞∫

0

dr

∞∫

0

dr′ r2r′2 χ∗
rD

(r)χrD(r′)

× 〈FSc| ĉ†
R+ r′er

2

ĉ†
R− r′er

2

ĉ
R− r

2

ĉ
R+ r

2

|FS〉 .
(6.23)

This expression can be further simplified as shown in Appendix E.4

ĀrD = 2(4π)2 V

∞∫

0

dr

∞∫

0

dr′ r2r′2 χ∗
rD

(r) χrD(r′) ξ(r, r′) , (6.24)

where the function ξ(r, r′) takes the form

ξ(r, r′) =

(
k3F
2π2

)2
[

h

(

kF
r − r′

2

)2

− h

(

kF
r + r′

2

)2
]

,

with: h(x) =
sin(x) − x cos(x)

x3
.

(6.25)

Now we turn to the radial wave functions χrD(r′). The deepest ULRRM-dimer bound
state is situated in the outer most well of the ULRRM potential at distance rD (see
Fig. 5.2b). Since the potential well is approximately harmonic we first investigate an
approximation of the ULRRM dimer state in form of a radial Gaussain wave function

χrD(r) =
urD(r)

r
,

urD(r) =
1

(2πσ2
rD

)
1
4

e
− (r−rD)2

4σ2
rD .

(6.26)

To obtain some analytical insight, before we turn to the numerical evaluation of
Eq. (6.24), we consider the limiting case of small σrD (see Fig. 6.2). In this case we
may replace

uν(r) =
1

(2πσ2
rD

)
1
4

e
− (r−rD)2

4σ2
rD −→

σrD
→σ=0

(2πσ2)
1
4 δ(r − rD) . (6.27)

65





6.2. ULRRM Dimer in an Ideal Fermi Sea

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

✷ ✹ ✻ ✽ ✶✵

0 1 2 3 4 5 6

Ā
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Figure 6.3.: Normalized absorption strength obtained from a numerical evaluation of Eq. (6.24)
using Gaussian radial wave functions for different values σ. Here we renamed
ĀrD 7→ Āpol. A fit of the fermionic zero-temperature pair correlation function, i.e.,
f(rD) = const.× g(2)(rD) to the results for a Gaussian radial wave function with
σ = 100 a0 is shown as a dashed line.

The comparison of the normalized absorption signal with g(2)(rD) shows that the pair
correlation function can indeed be reconstructed from the Rydberg absorption spectra
for sufficiently narrow radial wave functions. Figure 6.4 shows the width of Gaussian fits
(see Fig. 5.2) to the ULRRM wave functions for different principle quantum numbers
n∗ = n− δ, suggesting that Rydberg excitations up to large principal values of n∗ . 80
are still sufficiently narrow to act as a probe for quantum correlations in ultracold gases.
The ULRRM-dimer binding length (Rydberg radius) rD is related to n by rD ≈ n∗ 2a0.
The effect that Rydberg excitations with smaller n∗ have smaller Rydberg radii and
narrower radial ULRRM-dimer wave functions results in an increased sensitivity of Ryd-
berg excitations as probe of correlations closer to the Rydberg core. This additionally
supports the usage of Rydberg excitations as probe of the fermionic pair correlation
function as the relative change of the local density is bigger at small distances where the
sensitivity of the Rydberg probe is enhanced.

In the specific experimental setting [P1] we found a scaling of the integrated dimer re-
sponse deviating from g(2) by binding length dependent prefactor (e.g., ĀrD∼ n2r2Dg

(2)(rD)
in Eq. (6.30)). This prefactor turns out to be the same for ULRRMs formed by atoms
with equal spin (where the respective creation and annihilation operators anticommute)
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Figure 6.4.: Gaussian width σ obtained trough Gaussian fits to the radial ULRRM wave func-
tions χ(r) with respect to the principal quantum number of the Rydberg excitation.

and for ULRRMs made out of atoms with different spins (commuting creation and an-
nihilation operators). As a result the ratio of the absorption signals obtained in these
two cases allows to, again, exactly reconstruct g(2).

Following this discussion, we now repeat the calculation of the ULRRM-dimer ab-
sorption strength for an initial state that is a two-component Fermi gas and an ULRRM
final state that consists of two distinguishable fermions, i.e.,

|i〉 = |FS↑〉 ⊗ |FS↓〉 ,
|f〉 = |f(λ,α,p,p′)〉

=

∫

d3R

∫

d3r Ψλ,α(R, r) d̂†↑R− r

2
ĉ†↓R+ r

2
ĉ↑p ĉ↓p′ |FS↑〉 ⊗ |FS↓〉 ,

(6.32)

which results in (for details see Appendix E.6)

Āunpol =
4

π
2
V

∞∫

0

dr

∞∫

0

dr′ rr′ u∗νrD(r) uνrD(r′) k6F h
(

kF
r − r′

2

)2

. (6.33)

This allows to numerically evaluate the ratio Āpol/Āunpol where factors other than the
pair correlation function g(2) cancel. In Fig. 6.5 we show the result of the normalized
ULRRM-dimer absorption strength obtained from a numerical evaluation of Eqs. (6.24)
and (6.33) using the ULRRM wave functions obtained from the analysis of the radial
Schrödinger equation in Eq. (5.10) and compare the results to the signal obtained from
Gaussian radial wave functions. We find an excellent agreement of the predicted nor-
malized ULRRM-dimer absorption strength and the fermionic pair correlation function.
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where ∞∑

i=1

nF
i = N , ∀ F . (6.36)

The possibility to use optical tweezers [108–110] to fix the position of one species of
atoms that can be later excited to a Rydberg state should allow for the measurement
of the local density around the Rydberg excitation in a quantum gas (see our work
[P4] for the case of infinitely heavy Rydberg impurities). Further, Rydberg excitations
as probe of quantum matter could make it possible to probe ferromagnetic domain
walls [111–114] that possibly form in strongly interacting Fermi gases in the context of
stoner ferromagnetism. The presence of such domains would results in a suppression
of ULRRM formation at their boundaries. In the same way Rydberg excitations could
provide a probe for domain walls in a phase separated state of Bose–Fermi mixtures
[115] or spin-imbalanced Fermi gases [116].

Probing correlations of interacting many-body systems presents a major experimental
challenge and was so far only possible using standard methods in restricted settings
such as absorption imaging of ultracold atoms in optical lattices. Hence, the general
study of non-equilibrium quantum dynamics in strongly correlated systems depends
upon the development of new methods that allow for spacial and time-resolved sensing
of the quantum state. The presented method of Rydberg excitation microscopy where
Rydberg excitations are used to probe quantum states addresses this challenge. In the
next chapter we present two scenarios – a gas of Feshbach molecules and the formation
of a polaron cloud around a quantum impurity in ultracold atoms – where Rydberg
excitations allow to detect correlations and local densities of strongly correlated quantum
states.
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In this chapter we study examples of how Rydberg excitations can be used as probe
of quantum matter. First we investigate a dilute gas of weakly bound Feshbach halo
molecules. Here the excitation of one of the atoms within the molecule into a Rydberg
state allows to detect the characteristic Feshbach-molecule wave function. Then we turn
to the Fermi-polaron problem and propose how the excitation of ULRRMs, containing
the impurity as Rydberg atom, can be used to detect the density of the polaron cloud
around an impurity in a Fermi gas.

7.1. Rydberg Excitations as Probe of Feshbach

Molecules

As seen in Chapter 6, the resonant creation of Rydberg excitations at the ULRRM-
dimer frequency probes the probability of finding two atoms in a certain distance from
each other. Hence this scheme of probing correlations can be used for the detection of
molecular states with characteristic binding behavior. Below we discuss the example of
a dilute gas of Feshbach halo dimers [117] whose individual relative wave functions are
described by

φFM
lm (r) =

√

2

a

e−
r
a

r
Ylm(Ωr) , (7.1)

where a is the s-wave scattering length1, and l = 0 for such weakly bound states. Out of
the two atoms one is excited into into a Rydberg state which can then form an ULRRM
dimer with the second atom. We will now show that the respective absorption strength
allows to reconstruct the Feshbach-molecule’s wave function.

We assume the system to be initially prepared in gas of Feshbach-dimers with wave-
function Eq. (7.1) for l=0. Further we assume the gas of Feshbach molecules to be
dilute, such that the overlap of two halo dimers is negligible and also the typical dis-
tance between two molecules is large compared to the ULRRM binding length used to
probe the quantum gas. This ensures that the contribution of the ULRRM absorption
signal of molecules formed from atoms belonging to different Feshbach molecules can be
neglected. Due to the conservation of angular momentum the ULRRM-dimer state has
to be a l = 0 state. The absorption strength of a resonant excitation of Rydberg atoms
at the ULRRM-dimer frequency is then proportional to the Franck-Condon overlap of

1Here the scattering length can be tuned using Feshbach resonances as described in Section 2.2.
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where we used that the pair correlation function of two particles described by a rela-
tive two particle wave function φ(r) is given by the corresponding probability density
g(2)(|r|) ∼ |φ(r)|2 (see Appendix G). We find the same scaling of Ā ∼ r2D g

(2)(rD) as in
the scenario of an ULRRM dimer excited in a Fermi sea (see Eq. (6.30)).

This analysis shows that Rydberg spectroscopic measurements of a dilute gas of Fesh-
bach molecules allow to extract information about the wave function of the Feshbach
halo molecules and thus the scattering length a of the interactions of the ultracold atoms.

7.2. Towards the Rydberg Spectroscopic Detection of a

Polaron Cloud

Following our recent publication [P4] we here briefly discuss how Rydberg excitation
spectroscopy can be used to measure the density profile of a polaron cloud around an
immobile impurity when the impurity atom itself can be excited into a Rydberg state
(see Fig. 7.2). In an experimental setting this can be approximated by using an ultracold
quantum gas comprising two different atomic species, where one, the minority species,
is heavy compared to the other. The Hamiltonian describing the system reads

Himp =
∑

k

ǫkĉ
†
kĉk +

∑

k,σ

ωkd̂
†
k,σd̂k,σ +

∑

σ

∫

d3r

∫

d3r′ d̂†r,σd̂r,σVσ(r′ − r)ĉ†r′ ĉr′ . (7.6)

Here the operators ĉ†k and d̂†k create fermions and impurities respectively in the momen-
tum mode k. The index σ ∈ {1, R} in turn characterizes the state of the impurity, σ = 1
corresponds to an impurity that interacts via contact interactions V1(r) with the bath
atoms and σ = R corresponds to an impurity in a Rydberg state which interactions with
the surrounding atoms as described by the ULRRM potential VR(r) = VULRRM(r) given
in Eq. (5.7). The Hamiltonian is not quadratic in creation and annihilation operators, as
interactions between the impurity (d̂-operators) and the Fermions (ĉ-operators) appear.
For finite mass impurities this prohibits the application of a direct functional determi-
nant approach [24] as a tool to compute the respective absorption spectra. However, in
the immobile single impurity limit the Hamiltonian Eq. (7.6) does become quadratic

Hinf =
∑

k

ǫk ĉ
†
kĉk +

∫

d3r Vσ(r) ĉ†r ĉr , (7.7)

recognizing that the impurity position is a conserved quantity and thus may be assumed,
e.g., to be placed at the origin of the coordinate system.

In [P4] we have shown how one can extract the local density of the polaron cloud
around the impurity from the line strength of the ULRRM-dimer peak in the absorption
spectrum using a functional determinant approach [24]. To this end, one calculates the
Rydberg excitation spectrum when the impurity itself is excited in a Rydberg state.
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can be treated effectively numerically. In

B̂ =
(

1 − n̂+ n̂e−iĥ0teiĥt
)

(7.12)

the operators are single particle operators as, e.g., ĥ0 = k̂2/2m while

n̂ =
1

eβ(ĥ0−µ) + 1
. (7.13)

The interacting single particle Hamiltonian is given by ĥ = k̂2/2m + V (r̂). Using the
eigenbasis of ĥ0 the representation of B̂ is block diagonal as each set of 2l + 1 states
with fixed values of l and m forms an orthonormal basis in an invariant subspace of the
Hilbert space. With the respective eigenstates of the single particle Hamiltonians

ĥ0 |nlm〉 = εnlm |nlm〉 ,
ĥ |νlm〉 = ωνlm |νlm〉 ,

(7.14)

one finds (see Appendix B)

〈n′l′m′| B̂ |nlm〉 = δnn′δll′δmm′ − δnn′δll′δmm′n(εnlm) + 〈n′l′m′| n̂e−iĥ0teiĥt |nlm〉
︸ ︷︷ ︸

(∗)

(∗) = n(εn′lm) e−iεn′lmtδll′δmm′

∑

ν

eiωνlmt 〈n′lm|ν lm〉 〈νlm|nlm〉
(7.15)

and
det(B̂) =

∏

lm

det(B̂lm) =
∏

l

det(B̂l)
2l+1 . (7.16)

If one uses the eigenstates of the polaronic problem as states |nlm〉 and the ones of the
Rydberg problem as interacting states |νlm〉 one is able to calculate the ULRRM-dimer
absorption strength, when the impurity in the center of the polaron cloud is excited to
a Rydberg state. Performing a detailed analysis of absoprtion spectra in [P4] we show
that the ratio of line strength of the ULRRM-dimer peak in the polaron cloud and a
background gas that is not interacting with the impurity (i.e., for turned off impurity-
bath interactions, which can be achieved in an experimental setting using Feshbach
resonances) precisely follows the density of the polaron cloud.

Indeed this finding can also directly be understood in terms of the method presented
in Chapter 6. As we have seen in Eq. (6.30) the ULRRM-dimer absorption strength is
directly proportional to the pair correlation function g(2). Applying this to the single
immobile impurity limit one directly sees that this leads to a measure of the local density
of the environment of the impurity

nc(r) ∼ 〈i| d̂†
0
d̂
0
ĉ†r ĉr |i〉 , (7.17)

where, in this case, d̂†
0
d̂
0

probes the presence of an immobile impurity atom in the center
of the polaron cloud.
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7.3. Summary

In this chapter we have seen how Rydberg excitations can be used to probe correlated
quantum states at the example of two systems that can be investigated in experiments.
In the context of a gas of Feshbach molecules Rydberg spectroscopy allows to investigate
the molecular wave functions which gives access to the scattering length of the ultracold
atoms, while Rydberg excitations of impurity atoms in an ultracold quantum gases
provide a direct probe of the polaron cloud. These applications show the versatility of
Rydberg excitations as probe of ultracold quantum matter.
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8. Detour: Semiclassical Description of
Rydberg Excitations in a BEC

In this chapter we shift gears and turn to investigating a semiclassical description of Ryd-
berg excitations in a BEC. This discussion is motivated by the observation that at large
gas densities the absorption spectra of Rydberg impurities in BECs are well described
by a classical Monte Carlo sampling of point-like particles in a ULRRM potential that is
quenched into the BEC [101]. We first investigate the statistical distribution of Rydberg
excitations within a BEC. Then we turn to the analysis of the dynamics of atoms around
a Rydberg impurity in a BEC of 87Rb atoms.

8.1. Rydberg Excitation Positions in a BEC

The following section is part of our publication [P2]. For the description of Rydberg
excitations in a BEC the first crucial point is to understand where inside of a BEC
Rydberg atoms are created by the absorption of photons of a specific energy. Here
we present a semiclassical analysis of this problem. To obtain the spatial distribution
of Rydberg excitations within a harmonically confined BEC we model the excitation
process by drawing from different probability distributions that describe the excitation
of a Rydberg atom from a harmonically trapped BEC by a Gaussian laser beam.

We start by generating clouds of point-like particles with a distribution function
matching the Thomas-Fermi profile of the BEC density ρ(r) in a cigar shaped harmonic
trap, with long axis along y. In cylindrical coordinates

ρ(r, y, φ) =
1

U0

(

µ− m

2
(ω2

rr
2 + ω2

yy
2)
)

× Θ
(

µ− m

2
(ω2

rr
2 + ω2

yy
2)
)

, (8.1)

where Θ is the Heaviside step function, r =
√
x2 + z2, µ the chemical potential, the mass

of the bosons m and the trapping frequencies ωr in the radial direction and ωy along the
long axis of the BEC.

From the density distribution we derive the corresponding cumulative distribution
functions (CDFs) for each coordinate that allow us to randomly draw particle positions
matching the probability of finding atoms at a certain position inside the BEC. The
extension of the BEC in the long direction is between

ymax = −ymin =
√

2µ/(mω2
y) , (8.2)
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and then for each y an upper bound for the radial coordinate is given by

rmax(y) = 1/ωr

√

2µ/m− ω2
yy

2 . (8.3)

Consequently, the total particle number of the BEC is given by

N =

ymax∫

ymin

dy

rmax(y)∫

0

dr

2π∫

0

dφ r n(r, y, φ)

︸ ︷︷ ︸

=n̄φ(r,y)
︸ ︷︷ ︸

=n̄r,φ(y)

, (8.4)

where n̄r,φ(y) dy gives the contribution of a disc with thickness dy (i.e. a cross-section
of the BEC) and n̄φ(r, y) dy dr characterizes the contribution to the total density of an
infinitesimal cylinder of radius r for a given value of y. The CDF of the y-coordinate is
given by

CDFnr,φ
(y) =

1

N

y∫

ymin

dy′ n̄r,φ(y′) , (8.5)

which maps the possible y-coordinates onto the interval [0, 1]. Hence we can use the
inverse CDF to draw random numbers ξ∗y ∈ [0, 1] and assign them to y-coordinates y∗,
which are then correctly distributed according to the density of the Thomas-Fermi profile
of the BEC. Analogously, we obtain the CDF of the radial coordinate

CDFn̄φ
(r, y)

∣
∣
y=y∗

=
1

N

r∫

0

dr′ n̄φ(r′, y)
∣
∣
y=y∗

. (8.6)

The inverse of CDFn̄φ
(r, y∗) assigns a random number ξ∗r ∈ [0, 1] to an r-coordinate

r∗ under the condition that the atom is found at the y-coordinate y∗, which has been
obtained in the previous step. Finally the φ-coordinate is drawn uniformly from the
interval [0, 2π), as the density profile Eq. (8.1) of the BEC is invariant under rotation
around the y-axis. By successively drawing random numbers ξ ∈ [0, 1] and converting
them into coordinates as described above, we obtain three-dimensional atom positions
forming a cloud that matches the density distribution of a BEC confined in a harmonic
trap. For an illustration of a distribution drawn using this approach see Fig. 8.1(a).

In the following we describe how to select atoms from this cloud to be excited into a
Rydberg state by a laser beam with a Gaussian profile and exploiting the density detun-
ing of the energy of the Rydberg state. The overall excitation probability is proportional
to the intensity profile of the Gaussian beam which we assume to propagate parallel to

78







8.2. Semiclassical Trajectory Dynamics

Finally the total Rydberg excitation probability for each atom in the cloud is given by
I(r⊥, x)× p(E). The spatial distribution of Rydberg excitation positions following from
this probability distribution is illustrated in Fig. 8.1(c). In the following we use these
excitation positions as input for a semiclassical simulation of the dynamics of atoms in
a BEC when one of the atoms of the BEC is excited into a Rydberg state.

8.2. Semiclassical Trajectory Dynamics

We now use the positions of Rydberg excitation as inputs for the simulation of the
dynamics of atoms in the vicinity of a Rydberg atom which is excited from a BEC. To
this end, we solve the classical Hamilton’s equations of motion

q̇i =
∂H
∂pi

,

ṗi = −∂H
∂qi

,

H =
∑

i

p2
i

2m
+ V (qi, t) ,

(8.11)

for an ensemble of N classical non-interacting particles using a fourth-order Runge-
Kutta method. Initially all atoms rest and are arranged according to the probability
distribution resembling the Thomas-Fermi profile (see Eq. (8.1)) with ωr = 2π× 197 Hz,
ωy = 2π × 15 Hz. We model clouds with 106 87Rb atoms to match the experimental
setup of [34]. Following the procedure described above one atom is chosen to be excited
into a Rydberg state. The other particles move accordingly to the ULRRM interaction
potential Eq. (5.7)

V (q, t) =

{

VULRRM , t ∈ TRyd

0 , otherwise
, (8.12)

where TRyd is the set of time intervals with a Rydberg atom present in the cloud (see
Fig. 8.3). We model a pulse sequence as studied in [34]. One pulse consists of 3.5 µs
in which a Rydberg atom is present and the ground-state atoms move in the Rydberg
potential. Afterwards the Rydberg atom is ionized and removed from the cloud. Sub-
sequently, atoms move freely for 1.3 µs before the next atom is excited into a Rydberg
state. After the pulse sequence the particles evolve freely for 250 µs (see Fig. 8.3).

Additionally we model the effects of three-body loss. In order to do that we calculate
the local density around each atom and remove the three respective atoms from the
cloud according to the probability distribution p3bl resulting from the density change
due to three-body loss [121]

ṅ = −L3 n
3 = −L3

N3

V 3
⇒ p3bl =

∆N

N
= −L3 ∆t

N2

V 2
, (8.13)
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8.3. Summary

In this chapter we have numerically modeled the loss of atoms from a BEC caused by the
repeated excitation of Rydberg atoms using a semiclassical description. To this end, we
first investigated the distribution of Rydberg excitation positions within a harmonically
confined BEC. Then we solved the classical equations of motion of an ensemble of point-
like particles resembling the density profile of a harmonically trapped BEC. While the
overall qualitative behavior of the numerical simulation matches experimental results,
our results predict longer time scales for the loss dynamics as those found in experiments.
The study of the fundamental reason for the much faster dynamics observed in the
experiment [34] is left for future work.
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9. Conclusion

In this thesis we have investigated two fields of physics where the scattering of particles
and the accompanying formation of bound states gives rise to interesting new possibilities
to control and probe many-body quantum systems.

In the first part we have studied the scattering of charge carriers in two-dimensional
semiconductors. We have seen how the concept of Feshbach resonances as known from
ultracold atoms can be extended to exciton-electron scattering in two-dimensional mate-
rials. In Chapter 3 we provided a new theoretical framework that allows to understand
two-dimensional exciton-electron Feshbach resonances from a microscopic few-particle
point of view and does not rely on the assumption of preexisting excitonic states. We
found two types of electronically tunable Feshbach resonances that can be used to control
interactions between electrons and either short-lived intralayer excitons or long-lived in-
terlayer excitons in TMD heterostructures. The first one promises to find applications in
injection spectroscopy of intralayer excitons with large oscillator strength to probe corre-
lations of electronic systems, whereas the latter can be used to bring tunable interactions
to Bose-Fermi mixtures comprising electrons and long-lived interlayer excitons.

The two-dimensional nature of these systems results in a rather unintuitive behavior of
scattering at the resonance, where interactions effectively vanish. In contrast, ultracold
atoms in three-dimensions are strongly interacting at the resonance position. This indi-
cates the necessity to discard the usual definition of the resonance width when describing
two-dimensional Feshbach resonances. We have also introduced a toy-model description
of the two-dimensional Fermi-polaron problem. Here this particular feature of two-
dimensional Feshbach resonances that the phase shifts (i.e., the effective interactions)
vanish at the resonance position results in the emergence of a repulsive polaron branch
with zero spectral weight in the optical signatures of the respective two-dimensional
Fermi polaron. Moreover we investigated a possible realization of a Bose-Hubbard type
model for excitons in TMDs where excitons move in lattices formed by two-dimensional
charge-ordered states and the previously introduced Feshbach resonances were used to
tune the exciton-lattice interactions. We have found that the emerging excitonic bands
can be tuned to a regime with negative curvature, suggesting a negative effective exciton
mass, indicating a regime in which anomalous exciton diffusion could be observable.

In Chapter 4 we have developed an effective theory for exciton-electron scattering in
TMDs that treats excitons as rigid point-like particles and captures the energetic prop-
erties of trions while being simple enough to be applicable in many-body calculations.
We have found that two-dimensional exciton-electron scattering can be described by
essentially the same type of models used to describe the scattering of ultracold atoms,
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again underlining the analogy between two-dimensional materials and ultracold atoms.
In the second part of this thesis we have investigated how the creation of ultralong-

range Rydberg molecules (ULRRMs) in an ultracold quantum gas allows to probe corre-
lations on (sub-optical) length scales given by the Rydberg radius. In Chapter 6 we have
developed an approximate description of ULRRM dimers in an ideal Fermi sea that can
be used to calculate the dimer absorption signal using Fermi’s golden rule. We found
that the line strength of the ULRRM dimer in the Rydberg absorption spectrum is di-
rectly related to the pair correlation function of the Fermi sea. Moreover, we have shown
that the particular shape of the s-wave ULRRM-dimer state, where a ground-state atom
is located on a thin spherical shell (resembling the Rydberg orbit) around the Rydberg
core, allows to use these molecules as probe for inter-particle spacings on sub-optical
length scales.

In Chapter 7 we have applied this new sensing tool to a gas of Feshbach molecules
and the Fermi-polaron problem and found that Rydberg excitations also provide a way
to probe correlations in the context of interacting systems. The additional separation
of timescales of the ULRRM formation and the typical dynamics in ultracold atoms
suggests that ULRRMs can be used as an in-situ, time-resolved probe of the quantum gas
in the vicinity of the Rydberg atom. The novel way of probing correlations using Rydberg
excitations in interacting many-body systems is a promising new tool to experimentally
study non-equilibirum quantum dynamics in strongly correlated systems.

In Chapter 8 we applied a semiclassical theory to describe the dynamics of atoms in
a BEC when one of the atoms is excited into a Rydberg state. This investigation tried
to explain the atom loss found in recent experiments [34]. While the overall qualitative
behavior of the semiclassical model matched the experimental findings the theoretical
timescales of the atom loss underestimated the ones found in the experiment hinting to
a crucial role of quantum effects present in such experiments and opens the avenue for
further theoretical and experimental investigations.

As we have outlined in the summary above, there are interesting future venues follow-
ing from the results of this thesis. In particular, the tunability of exciton-charge interac-
tions resulting from the Feshbach resonances discussed in Chapter 3 opens new possibili-
ties to implement and study many-body models known from ultracold atoms in solid-
state systems (such as, e.g., supersolidity in dipolar exciton condensates [92–94]), further
substantiating the analogy between ultracold atoms and van der Waals materials. More-
over, studying the theory of exciton-charge Feshbach resonances beyond the TMD-bilayer
scenario (i.e., in the case of three layers) could provide a microscopic understanding of
the interactions that lead to exciton-induced superconductivity [89–91] in TMD het-
erostructures. Further, an extension of the framework developed in Chapter 6 to a
description of Rydberg excitations in arbitrary states of ultracold atoms would provide
a general theory of Rydberg excitation microscopy of correlations in ultracold quantum
gases. This would allow to investigate, e.g., the BCS-BEC crossover [96], ferromagnetic
domain walls in strongly interacting Fermi gases [111–114], or the domains within phase
separated states of Bose-Fermi mixtures [115] or spin-imbalanced Fermi gases [116].
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A. Details: From Lippmann-Schwinger
Equation to Tunable Scattering
Lengths

In the following we provide details on the two-channel model presented in Section 2.2.2.
We start by showing that the state

ĜV̂ |k,−k〉 =
g√
V

G0(E) b̂†
0
|0〉 (A.1)

is an eigenstate of (ĜV̂ ĜV̂ )n, i.e.,

ĜV̂ ĜV̂ b̂†
0
|0〉 = ĜV̂ Ĝ

g√
V

∑

p

|p,−p〉

=
g√
V
ĜV̂

∑

p

1

E − εp + iǫ
|p,−p〉

=
g√
V
Ĝ
∑

p

G0(E,p)
g√
V
b̂†
0
|0〉

=
g2

V

∑

p

G0(E,p) Ĝ b̂†
0
|0〉

=
g2

V

∑

p

G0(E,p)
1

E − νB + iǫ
b̂†
0
|0〉

=
g2

V
G0(E)

∑

p

G0(E,p) b̂†
0
|0〉 ,

(A.2)

where we defined

G0(E) =
1

E − νB + iǫ
(A.3)

and

G0(E, p) =
1

E − εp + iǫ
. (A.4)
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A. Details: From Lippmann-Schwinger Equation to Tunable Scattering Lengths

This can be used to evaluate the transition matrix elements (see Eq. (2.6))

〈k′,−k′| T̂ |k,−k〉 = 〈k′,−k′| V̂
∞∑

n=0

(ĜV̂ )2nĜV̂ |k,−k〉

=
g√
V

G0(E) 〈k′,−k′| V̂ b̂†
0
|0〉

∞∑

n=0

(

g2

V
G0(E)

∑

p

G0(E,p)

)n

=
g2

V
G0(E) 〈k′,−k′|

∑

p′

|p′,−p′〉
∞∑

n=0

(

g2

V
G0(E)

∑

p

G0(E,p)

)n

=
g2

V
G0(E)

∞∑

n=0

(

G0(E)
g2

V

∑

p

G0(E,p)

)n

=
g2

V
G0(E)

∞∑

n=0

(

G0(E) g2
∫

d3p

(2π)3
G0(E,p)

)n

=
g2

V
G0(E)

∞∑

n=0







G0(E) g2

∫
d3p

(2π)3
1

E − ǫk + iǫ
︸ ︷︷ ︸

:=Σ(E)








n

=
g2

V
G0(E)

∞∑

n=0

(
g2 G0(E) Σ(E)

)n

=
g2

V
G0(E)

1

1 − g2 G0(E) Σ(E)

=
1

V

1

G−1
0 (E)/g2 − Σ(E)

≈ 1

V

1
E−νB+iǫ

g2
− 1

V

∑

|p|<Λ

1
E−ǫp+iǫ

,

(A.5)

where we used the geometric series to obtain the third last line, i.e.,
∑∞

n=0 ax
n = a

1−x
,

if: |x| < 1, and identified the self energy (with momentum cutoff Λ)

Σ(E) =

∫
d3p

(2π)3
1

E − ǫp + iǫ

=
1

V

∑

p

1

E − ǫp + iǫ

≈ 1

V

∑

|p|<Λ

1

E − ǫp + iǫ
.

(A.6)
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B. Functional Determinant Approach

In the following (~ = 1) we follow the derivation of the Levitov-Klich formula [118, 119]
and sketch how the Lohschmidt Echo

S(t) = det
(

1 − n̂+ n̂ e−iĥ0t eiĥt
)

(B.1)

can be treated effectively numerically.
The free Hamiltonian is given by

Ĥ0 =
∑

k

εkc
†
kck =

∑

k

〈k| k̂
2

2m
|k〉 c†kck ,

ĥ0 =
k̂2

2m
= −~

2∇2

2m
,

(B.2)

with three-dimensional momenta k, the mass m of the fermionic particles and energy
εk = k2/(2m). Analogously we find the full Hmiltonian (that includes the interaction
potential)

ĥ =
k̂2

2m
+ V (r̂) , (B.3)

with a spherical symmetric potential V (r) = V (r). We will denote the respective eigen-
states and eigenvalues as follows

ĥ0 |nlm〉 = εnlm |nlm〉 ,
ĥ |νlm〉 = ωνlm |νlm〉 ,

(B.4)

and the respective wave functions are given by

〈r|nlm〉 = φnlm(r) =
unl(r)

r
Ylm(Ωr) ,

〈r|νlm〉 = ψνlm(r) =
vνl(r)

r
Ylm(Ωr) .

(B.5)

The indices n (resp. ν), l and m label the principal quantum number, angular momentum
quantum number and angular momentum projection quantum number. We want to solve
the problem in a spherical potential well (cf. Fig. B.1a). Thus the radial functions unl(r)
and vνl(r) have to fulfill the boundary conditions

unl(L) = vνl(L) = unl(0) = vνl(0) = 0 . (B.6)
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From the numerical diagonalization of the respective Hamiltonians we obtain two sets
of eigenenergies and eigenfunctions {(εnl,unl), ...} and {(ωνl,vνl), ...} which are used to
evaluate the determinant of

B̂ =
(

1 − n̂+ n̂e−iĥ0teiĥt
)

, (B.11)

with

n̂ =
1

eβ(ĥ0−µ) + 1
. (B.12)

One then computes the representation of B̂ in the eigenbasis of ĥ0 and uses its block
diagonal form as the 2l + 1 states with fixed values of l and m form orthonormal bases
in l invariant subspaces. This allows the determinant to be rewritten as

det(B̂) =
∏

lm

det(B̂lm) =
∏

l

det(B̂l)
2l+1 = S(t) , (B.13)

and one finds

〈n′l′m′| B̂ |nlm〉 = δnn′δll′δmm′ − δnn′δll′δmm′n(εnlm) + 〈n′l′m′| n̂e−iĥ0teiĥt |nlm〉
︸ ︷︷ ︸

(∗)

(∗) = n(εn′lm) e−iεn′lmt 〈n′l′m′| eiĥt |nlm〉
= n(εn′lm) e−iεn′lmt

∑

ν l′′m′′

〈n′l′m′| eiĥt |ν l′′m′′〉 〈ν l′′m′′|nlm〉

= n(εn′lm) e−iεn′lmt
∑

ν l′′m′′

eiωνlmt 〈n′l′m′|νlm〉 〈νlm|nlm〉 δll′′δmm′′

= n(εn′lm) e−iεn′lmtδll′δmm′

∑

ν

eiωνlmt 〈n′lm|ν lm〉 〈νlm|nlm〉
︸ ︷︷ ︸

=(∗∗)

.

(B.14)

(∗∗) = overlaps of the free and full states (as the angular parts are equal this is given
solely by the overlap of the respective radial wave functions)

This allows then to evaluate Eq. (B.13) and to obtain the absorption spectrum A(ω)
by a Fourier transformation

A(ω) =
1

2π

∞∫

−∞

dt S(t) e−iωt . (B.15)
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C. Discrete Variable Representation
(DVR)

In order to numerically calculate eingenvalues and eigenstates of a given Hamiltonian
typically a concrete choice of basis functions is needed for the matrix representation of
the Hamiltonian. Here we present details on the choice of the basis functions used in
Section 3.2 to represent the three-body Hamiltonian numerically allowing for its diago-
nalization. Thereby we summarize and follow the discussion given in [88] and [71].

First we consider an infinite set of square-integrable basis functions {ϕj(x)}∞j=1. Each
pair ϕj and ϕk allows to analytically evaluate the matrix elements

Qjk = 〈ϕj| x̂ |ϕk〉 ,

D
(1)
jk = 〈ϕj|

d

dx
|ϕk〉 ,

D
(2)
jk = 〈ϕj|

d2

dx2
|ϕk〉 ,

(C.1)

that usually appear in a typically Hamiltonian. Here it is convenient to also assume
square-integrability of xϕj(x) and d/dxϕj(x).

In the following we will investigate the truncated basis {ϕj(x)}Nj=1 formed by the first
N functions. The projector

P̂ =
N∑

j=1

|ϕj〉 〈ϕj| (C.2)

projects any state on the subspace spanned by the truncated basis. Further we define
the matrices1 Q, D(1) and D(2) acting on this subspace by allowing only j, k ≤ N in
Eq. (C.1).

If the potential energy is the expectation value of an operator that itself is a function
of the position operator x̂, i.e.,

V̂ = V (x̂) , (C.3)

there are two different ways of approximately representing V̂ . The matrix can be defined
in the truncated basis via the matrix elements

V VBR
jk = 〈ϕj| V̂ |ϕk〉 , (C.4)

1Note, in the following matrices will be labeled by bold capital latin letters.
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C. Discrete Variable Representation (DVR)

with j, k ≤ N or as a function of the matrix representing the position operator in the
truncated basis, i.e.,

V FBR = V (Q) . (C.5)

Here VBR refers to ‘variational basis-set representation’ and FBR refers to ‘finite basis-
set representation’. Note that V FBR may have components that are outside of the
subspace spanned by the truncated basis and that V VBR = V FBR in general only holds
in the limit N → ∞, where both representations are exact.

The Hamiltonian
Ĥ = T̂ + V̂ (C.6)

can be approximated using either of the approximate representations and the resulting
bound state energies represent upper bounds to the exact (infinite dimensional) problem.

In general the evaluation of the matrix elements V VBR
jk is complicated, whereas the

V FBR is easier to handle as Q is diagonalizable

Q = U XU † . (C.7)

Here X = diag(x1, x2, ...xN) is the diagonalized matrix, where xα are the eigenvalues of
Q and U is the matrix containing the respective eigenvectors |uα〉. Consequently the
matrix V FBR is obtained as

V FBR = V (Q) = U V(X)U † = U diag
(
V (x1), V (x2), ..., V (xN)

)
U † , (C.8)

or element-wise

V FBR
jk =

N∑

α=1

UjαV (xα)U∗
kα . (C.9)

The discrete variable representation (DVR) basis is now the basis in which the poten-
tial energy operator’s matrix representation is diagonal, i.e.,

V DVR =U † V FBRU = U †U V(X)U †U = V (X)

=diag
(
V (x1), V (x2), ..., V (xN)

)
.

(C.10)

Here the eigenvalues xα of the position operator Q appear as lattice sites on which
the potential is evaluated. The corresponding basis is spanned by superpositions of the
truncated basis functions, i.e., {ϕj(x)}Nj=1, where the weights are given by the matrix
elements of the unitary transformation U

|χα(x)〉 =
N∑

α=1

ϕj(x)Ujα . (C.11)

To obtain the numerical results in Section 3.2 we use 11 Laguerre functions ϕj in each
radial direction and seven in the angular direction.
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D. Details: Real Space Interaction
Term

Here we provide details of the conversion of the interaction term in Eq. (4.1) from real
space to momentum space. The interactions in real space are given by

Ĥint = g

∫∫

d2rX d2rh χ̃(rX − rh) t̂†
(
mXrX +mhrh

M

)

X̂(rX) ĥ(rh) + h.c. , (D.1)

with the total mass M = mX +mh and the field operators t̂(r), X̂(r) and ĥ(r) of trions,
excitons and holes. In contrast to the discussion in Chapter 4 we here suppress the
layer index s of holes and trions to improve the clarity of the presentation. We use the
conventions

ψ̂(r) =
1√
A

∑

k

eik r ĉk

ĉk =

∫
d2r√
A

e−ik r ψ̂(r) .

(D.2)

This allows to express Ĥint in momentum space

Ĥint = g

∫∫

d2rX d2rh χ̃(rX − rh)
1√
A3

∑

pk q

e−ip
mXrX+mhrh

M t̂†p eik rX X̂k eiq rhĥq + h.c. ,

(D.3)

which can be transformed into relative and center of mass coordinates

R =
mXrX +mhrh

M
,

r = rX − rh ,
(D.4)

leading to

Ĥint = g

∫∫

d2r d2R χ̃(r)
1√
A3

∑

pk q

t̂†p X̂k ĥq e−ipR eik (R+mh/M r) ei q (R−mx/M r) + h.c.

= g

∫∫

d2r d2R χ̃(r)
1√
A3

∑

pk q

t̂†p X̂k ĥq e−iR (p−k−q) eir (kmh/M−qmX/M) + h.c.

= g

∫

d2r χ̃(r)
1√
A

∑

pk q

δp,k+q t̂
†
p X̂k ĥq eir (kmh/M−qmX/M) + h.c. ,

(D.5)
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D. Details: Real Space Interaction Term

where we used

δp,q =
1

A

∫

d2r e±ir(p−q) . (D.6)

Making use of the definition of the Fourier transform

χ(k) =
1√
A

∫

d2r e−ir k χ̃(r) , (D.7)

we find the interaction term in momentum space

Ĥint = g
∑

k q

χ
(mh

M
q − mx

M
k
)

t̂†k+q X̂k ĥq + h.c. , (D.8)

as used in Eq. (4.1).
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E. Details: Calculation of the
ULRRM-Dimer Absorption Strength

Here we provide additional information for the calculation presented in Chapter 6.

E.1. Normalization of the Approximate ULRRM Final

States

Here we calculate the norm of a δ-peaked final state, i.e.,

|f〉 =
V√

2

∫

d3R

∫

d3r δ(3)
(
R−RC

)
δ(3)
(
r − rD

)
d̂†
R− r

2
ĉ†
R+ r

2
ĉp ĉp′ |FSc〉

=
V√

2
d̂†
RC− rD

2

ĉ†
RC+

rD
2

ĉp ĉp′ |FSc〉 .
(E.1)

From this state we obtain

〈 f | f 〉 =
V 2

2
〈FSc| ĉ†p′ ĉ

†
pĉRC+

rD
2

d̂
RC− rD

2

d̂†
RC− rD

2

ĉ†
RC+

rD
2

ĉp ĉp′ |FSc〉

=
V 2

2
〈FSc| ĉ†p′ ĉ

†
pĉRC+

rD
2

ĉ†
RC+

rD
2

ĉp ĉp′ |FSc〉 〈0d| d̂RC− rD
2

d̂†
RC− rD

2

|0d〉

=
V 2

2
〈FSc| ĉ†p′ ĉ

†
p

1

V

∞∑

kq

ei(RC+
rD
2
)k e−i(RC+

rD
2
)q ĉk ĉ

†
q ĉp ĉp′ |FSc〉

× 〈0|d d̂RC− rD
2

d̂†
RC− rD

2

|0〉d

=
V

2

∑

kq

ei(RC+
rD
2
)(k−q) 〈FSc| ĉ†p′ ĉ

†
p ĉk ĉ

†
q ĉp ĉp′ |FSc〉

× δ(3)
(
RC − rD

2
−
(

RC − rD

2

))

︸ ︷︷ ︸

δ(3)(0)=1/V

.

(E.2)
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E. Details: Calculation of the ULRRM-Dimer Absorption Strength

Now we consider the expression

〈FSc| ĉ†p′ ĉ
†
pĉk ĉ

†
q ĉp ĉp′ |FSc〉
= 〈FSc| ĉ†p′ ĉ

†
pĉk (δqp − ĉp ĉ

†
q)ĉp′ |FSc〉

= δqp 〈FSc| ĉ†p′ ĉ
†
pĉk ĉp′ |FSc〉 − 〈FSc| ĉ†p′ ĉ

†
pĉk ĉp ĉ

†
q ĉp′ |FSc〉

= δqp

(

δp′p′δpk − δpp′δp′k

)

− 〈FSc| ĉ†p′ ĉ
†
pĉk ĉp (δqp′ − ĉp′ ĉ

†
q) |FSc〉

= δqp

(

δp′p′δpk − δpp′δp′k

)

− δqp′ 〈FSc| ĉ†p′ ĉ
†
pĉk ĉp |FSc〉

= δqp

(

δp′p′δpk − δpp′δp′k

)

− δqp′

(

δp′pδpk − δppδp′k

)

= δqp

(

δpk − δpp′δp′k

)

− δqp′

(

δp′pδpk − δp′k

)

= δqpδpk + δqp′δp′k ,

(E.3)

where we used that the case p = p′ can be neglected as it implies |f〉 = 0. Making use
of this result in Eq. (E.2) we find

〈 f | f 〉 =
V

2

∑

kq

ei(RC+
rD
2
)(k−q) 〈FSc| ĉ†p′ ĉ

†
p ĉk ĉ

†
q ĉp ĉp′ |FSc〉

× δ(3)
(
RC − rD

2
−
(

RC − rD

2

))

︸ ︷︷ ︸

δ(3)(0)=1/V

=
1

2

∑

kq

ei(RC+
rD
2
)(k−q)

(

δqpδpk + δqp′δp′k

)

=
1

2

(

ei(RC+
rD
2
)(p−p) + ei(RC+

rD
2
)(p′−p′)

)

= 1 .

(E.4)

This also holds true for a final state

|f〉 =

∫

d3R

∫

d3r Ψλ,α(R, r) d̂†
R− r

2
ĉ†
R+ r

2
ĉp ĉp′ |i〉 , (E.5)

which normalization condition reduces to
∫∫

d3R d3r |Ψλ,α(R, r)|2 = 1 . (E.6)
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E.2. Derivation of a Useful Relation

E.2. Derivation of a Useful Relation

Here we derive Eq. (6.13). We again use the definition of the field operator

ĉr =
1√
V

∑

k

eirkĉk , (E.7)

and investigate the expression B defined in Eq. (6.12)

B =
∑

p,p′

ĉp ĉp′ |FSc〉 〈FSc| ĉ†p′ ĉ
†
pĉR+ r

2
ĉ
R− r

2
|FSc〉

=
∑

p,p′

ĉp ĉp′ |FSc〉 〈FSc| ĉ†p′ ĉ
†
p

1

V

∑

k,q

eiq(R+ r

2
) eik(R− r

2
)ĉq ĉk |FSc〉

=
∑

p,p′

1

V

∑

q,k

eiq(R+ r

2
) eik(R− r

2
)ĉp ĉp′ |FSc〉 〈FSc| ĉ†p′ ĉ

†
p ĉq ĉk |FSc〉 .

(E.8)

Now we consider the expectation value of momentum creation and annihilation operators
with respect to the Fermi sea and find

〈FSc| ĉ†p′ ĉ
†
p ĉq ĉk |FSc〉 = 〈FSc| ĉ†p′ (δpq − ĉq ĉ

†
p )ĉk |FSc〉

= 〈FSc| (δp′k − ĉk ĉ
†
p′ )δpq − ĉ†p′ ĉq ĉ

†
p ĉk |FSc〉

= 〈FSc| δp′kδpq − (δp′q − ĉq ĉ
†
p′ )(δpk − ĉk ĉ

†
p ) |FSc〉

= δp′kδpq − δp′qδpk .

(E.9)

Using this relation in Eq. (E.8) we obtain

B =
∑

p,p′

1

V

∑

q,k

eiq(R+ r

2
) eik(R− r

2
)ĉp ĉp′ |FSc〉

(

δp′kδpq − δp′qδpk

)

=
1

V

∑

p,p′

(

eip(R+ r

2
) eip

′(R− r

2
) − eip(R− r

2
) eip

′(R+ r

2
)
)

ĉp ĉp′ |FSc〉

=
(

ĉ
R+ r

2
ĉ
R− r

2
− ĉ

R− r

2
ĉ
R+ r

2

)

|FSc〉

= 2 ĉ
R+ r

2
ĉ
R− r

2
|FSc〉 ,

(E.10)

which is the statement of Eq. (6.13). In the last step we made use the anti-commutation
relations for ĉx ĉx′ .
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E. Details: Calculation of the ULRRM-Dimer Absorption Strength

E.3. Extension to Single Fock States

Again we look at the expression B (c.f. Eq. (6.13)) now with Fock states

|F〉 =
∞∏

i=1

(

ĉ†ki

)ni

|0〉 = |n1, n2, ... , ni, ... , n∞〉 , (E.11)

as initial states, i.e.,

B =
∑

p,p′

ĉp ĉp′ |F〉 〈F| ĉ†p′ ĉ
†
p ĉR+ r

2
ĉ
R− r

2
|F〉

= 2
∑

p<p′

ĉp ĉp′ |F〉 〈F| ĉ†p′ ĉ
†
p ĉR+ r

2
ĉ
R− r

2
|F〉

=
2

V 2

∑

p<p′

∑

p̃,p̃′

ĉp ĉp′ |i〉 〈0|
∞∏

i=1

(

ĉki

)nF
i

ĉ†p′ ĉ
†
p

× eip̃ · (R+ r

2
) eip̃

′ · (R− r

2
) cp̃cp̃′

∞∏

i=1

(

ĉ†ki

)nF
i |0〉

=
2

V 2

∑

p<p′

∑

p̃,p̃′

nF
pn

F
p′ (−1)

∑

q≤p

nF
q

(−1)

∑

q≤p′
nF
q

eip̃ · (R+ r

2
) eip̃

′ · (R− r

2
) nF

p̃n
F
p̃′

× (−1)

∑

q≤p̃

nF
q

(−1)

∑

q≤p̃′
nF
q

ĉp ĉp′ |F〉 〈0|
∞∏

j=1

p 6=kj 6=p′

(

ĉkj

)nF
j

∞∏

i=1
p̃ 6=ki 6=p̃′

(

ĉ†ki

)nF
i |0〉

︸ ︷︷ ︸

=δpp̃δp′p̃′−δ
pp̃′δp′p̃

=
2

V 2

∑

p<p′

nF
pn

F
p′

(

eip · (R+ r

2
) eip

′ · (R− r

2
) − eip

′ · (R+ r

2
) eip · (R− r

2
)
)

ĉp ĉp′ |F〉

=
1

V 2

∑

p,p′

(

eip · (R+ r

2
) eip

′ · (R− r

2
) − eip

′ · (R+ r

2
) eip · (R− r

2
)
)

ĉp ĉp′ |F〉

=
1

V 2

∑

p,p′

(

eip · (R+ r

2
) eip

′ · (R− r

2
) − eip

′ · (R+ r

2
) eip · (R− r

2
)
)

ĉp ĉp′ |F〉

= 2 ĉ
R+ r

2
ĉ
R− r

2
|F〉 .

(E.12)

This is the same result as in the Fermi sea scenario (see E.10).
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E.4. Further Details on the Calculation of the

ULRRM-Dimer Absorption Strength

Here we derive a function used in the evaluation of the ULRRM-dimer absorption
strength (c.f. Eq. (6.24)) and start by calculating the expression

〈FSc| ĉ†r1 ĉ
†
r2
ĉr3 ĉr4 |FSc〉 =

1

V 2

∑

p1,...,p4

e−ir1 ·p1 e−ir2 ·p2 eir3 ·p3 eir4 ·p4

× 〈FSc| ĉ†p1
ĉ†p2

ĉp3
ĉp4

|FSc〉

=
1

V 2

≤kF∑

p1,...,p4

e−ir1 ·p1 e−ir2 ·p2 eir3 ·p3 eir4 ·p4

× (δp1p4δp2p3 − δp2p4δp1p3)

=
1

V 2

≤kF∑

p1,p2

(

e−ip1 · (r1−r4) e−ip2 · (r2−r3)

− e−ip1 · (r1−r3) e−ip2 · (r2−r4)
)

,

(E.13)

which can be used to simplify Eq. (6.18)

ĀrD = 2
∑

α

∫

d3R

∫

d3r

∫

d3r′ φ∗
α(r)φα(r′)

× 1

V 2

≤kF∑

p1,p2

(

e−ip1 · r
′−r

2 eip2 · r
′−r

2 − e−ip1 · r
′+r

2 eip2 · r
′+r

2

)

= 2
∑

α

∫

d3R

∫

d3r

∫

d3r′ φ∗
α(r)φα(r′)

× 1

V 2

≤kF∑

p1,p2

(

e−ip1 · r
′−r

2 eip2 · r
′−r

2 − e−ip1 · r
′+r

2 eip2 · r
′+r

2

)

= 2
∑

α

∫

d3R

∫

d3r

∫

d3r′ φ∗
α(r)φα(r′)

(∣
∣
∣
∣
∣

∫

k≤kF

d3p

(2π)3
e−ip · r−r

′

2

∣
∣
∣
∣
∣

2

−
∣
∣
∣
∣
∣

∫

k≤kF

d3p

(2π)3
e−ip · r+r

′

2

∣
∣
∣
∣
∣

2)

.

(E.14)
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Further we find

∣
∣
∣
∣
∣

∫

k≤kF

d3p

(2π)3
e−ip ·y

∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

1

(2π)3

kF∫

0

dp p2
2π∫

0

dϕ

1∫

−1

dx e−ipyx

∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

2π

(2π)3

kF∫

0

dp p2
−1

ipy

(

e−ipy − eipy
)
∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

1

(2π)2

kF∫

0

dp p
2

y
sin
(

py
)
∣
∣
∣
∣
∣

2

.

(E.15)

We use
∫

dx x sin(Cx) =
1

C2

(

sin(Cx) − Cx cos(Cx)
)

+ const. (E.16)

and obtain
∣
∣
∣
∣
∣

∫

k≤kF

d3p

(2π)3
e−ip ·y

∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

k3F
2π2

1

(kFy)3

(

sin
(

kFy
)

− kFy cos
(

kFy
)
)∣
∣
∣
∣
∣

2

=

(

k3F
2π2

h
(

kFy
)
)2

,

(E.17)

were we defined

h(x) =
sin(x) − x cos(x)

x3
. (E.18)

The absorption rate is then given by (c.f. Eq. (6.24))

ĀrD = 2
∑

α

∫

d3R

∫

d3r

∫

d3r′ φ∗
α(r)φα(r′)

(
k3F
2π2

)2

×
[

h

(

kF
|r − r′|

2

)2

− h

(

kF
|r + r′|

2

)2
]

.

(E.19)

In the case r ‖ r′ we define

ξ(r, r′) =

(
k3F
2π2

)2
[

h

(

kF
r − r′

2

)2

− h

(

kF
r + r′

2

)2
]

. (E.20)
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E.5. Pair Correlation Function of the Fermi Sea

In the following we present a derivation of the pair correlation function g(2)(r) for spin
polarized Fermions. By again using the convention

ĉr =
1√
V

∑

k

eirkĉk , (E.21)

we find

n2g(2)(|r − r′|) = 〈FS| ĉ†r ĉ†r′ ĉr′ ĉr |FS〉

=
1

V 2

∑

p1,...,p4

e−ir · (p1−p4) e−ir′ · (p2−p3) 〈FSc| ĉ†p1
ĉ†p2

ĉp3
ĉp4

|FSc〉

=
1

V 2

≤kF∑

p1,...,p4

e−ir · (p1−p4) e−ir′ · (p2−p3) (δp1p4δp2p3 − δp2p4δp1p3)) ,

(E.22)

where we used

〈FSc| ĉ†p1
ĉ†p2

ĉp3
ĉp4

|FSc〉 = 〈FSc| ĉ†p1
(δp2q3 − ĉp3

ĉ†p2
)ĉp4

|FSc〉
= 〈FSc| (δp1p4 − ĉp4

ĉ†p1
)δp2p3 − ĉ†p1

ĉp3
ĉ†p2

ĉp4
|FSc〉

= 〈FSc| δp1p4δp2p3 − (δp1p3 − ĉp3
ĉ†p1

)

× (δp2p4 − ĉp4
ĉ†p2

) |FSc〉
= δp1p4δp2p3 − δp1p3δp2p4 .

(E.23)

This allows to obtain

n2g(2)(|r − r′|) =
1

V 2

≤kF∑

p1,p2

(

1 − e−ir · (p1−p2) e−ir′ · (p2−p1)
)

=

∫

k≤kF

d3p

(2π)3

∫

k≤kF

d3p′

(2π)3

(

1 − e−ip1 · (r−r′) eip2 · (r−r′)
)

= n2 −

∣
∣
∣
∣
∣
∣

∫

k≤kF

d3p

(2π)3
e−ip · (r−r′)

∣
∣
∣
∣
∣
∣

2

.

(E.24)
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Now we calculate the integral

G(R) =

∫
d3p

(2π)3
e−ip ·R Θ(kF − |p|)

=
1

(2π)3

∫ kF

0

dp p2
∫ 2π

0

dϕ

∫ 1

−1

dze−ipRz

=
1

4π2

∫ kF

0

dp p2
1

−ipR

[
e−ipR − eipR

]

=
1

4π2

∫ kF

0

dp p
1

R
2 sin(pR)

=
1

2π2R





[

− p

R
cos(pR)

]kF

0

−
∫ kF

0

dp
− cos(pR)

R





=
1

2π2R



−kF cos(pR)

R
+

[

sin(pR)

R2

]kF

0





=
1

2π2
sin(kFR) − kFR cos(kFR)

R3

= 3n
sin(kFR) − kFR cos(kFR)

(kFR)3
,

(E.25)

with n = k3F/6π
2 for spin polarized fermions. The pair correlation function

g(2)(|r − r′|) = 1 −
(

3h(kF|r − r′|)
)2

(E.26)

follows from the combination of Eq. (E.24) and Eq. (E.25), after dividing by n2 and
defining

h(u) =
sin(u) − u cos(u)

u3
. (E.27)
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E.6. Absorption Strength of an Unpolarized ULRRM

Dimer

In analogy to the discussion in Chapter 6 we here repeat the calculation of the ULRRM-
dimer absorption strength for quantum gases consisting of fermions with two different
spins (↑, ↓) and ULRRM-dimer molecules consisting of atoms with different spins. In
this case the final state is approximated by

|f〉 = |f(λ,α,p,p′)〉

=

∫

d3R

∫

d3r Ψλ,α(R, r) d̂†↑R− r

2
ĉ†↓R+ r

2
ĉ↑p ĉ↓p′ |FS↑〉 ⊗ |FS↓〉

=

∫

d3RΦλ(R)

∫

d3r φα(r) d̂†↑R− r

2
ĉ†↓R+ r

2
ĉ↑p ĉ↓p′ |FS↑〉 ⊗ |FS↓〉 .

(E.28)

Using the definition Eq. (6.4) for the laser operator which does not allow for spin flips
and the initial state

|i〉 = |FS↑〉 ⊗ |FS↓〉 ⊗ |0〉d (E.29)

we find (where we suppress ‘⊗ |0〉d’ in the notation)

Ā =
∑

f

∣
∣ 〈f| V̂L |i〉

∣
∣
2

=
∑

λ,α

∑

p,p′

∣
∣ 〈FS↑| ⊗ 〈FS↓|

∫

d3R

∫

d3r Ψ∗
λ,α(R, r) ĉ†↓p′ ĉ

†
↑p ĉ↓R+ r

2
d̂↑R− r

2

×
∫

d3rL d̂
†
↑ rL ĉ↑ rL |FS↑〉 ⊗ |FS↓〉

∣
∣
2

=
∑

λ,α

∑

p,p′

∣
∣ 〈FS↑| ⊗ 〈FS↓|

∫

d3R

∫

d3r Ψ∗
λ,α(R, r) ĉ†↓p′ ĉ

†
↑p ĉ↓R+ r

2
ĉ↑ rL

×
∫

d3rL δ
(3)
(

rL −
(

R− r

2

))

|FS↑〉 ⊗ |FS↓〉
∣
∣
2

=
∑

λ,α

∑

p,p′

∣
∣

∫

d3R

∫

d3r Ψ∗
λ,α(R, r)

× 〈FS↑| ⊗ 〈FS↓| ĉ†↓p′ ĉ
†
↑p ĉ↓R+ r

2
ĉ↑R− r

2
|FS↑〉 ⊗ |FS↓〉

∣
∣
2

=
∑

λ,α

∑

p,p′

∫

d3R

∫

d3R′
∫

d3r

∫

d3r′ Ψ∗
λ,α(R, r)Ψλ,α(R′, r′)

× 〈FS↑| ĉ†↑R′− r′

2

ĉ↑p |FS↑〉 〈FS↑| ĉ†↑p ĉ↑R− r

2
|FS↑〉

× 〈FS↓| ĉ†↓R′+ r′

2

ĉ↓p′ |FS↓〉 〈FS↓| ĉ†↓p′ ĉ↓R+ r

2
|FS↓〉 .

(E.30)
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Now we evaluate

〈FS| ĉ†r1 ĉp′ |FS〉 〈FS| ĉ†p′ ĉr2 |FS〉 =
1

V

∑

kq

e−ik · r1eiq · r2 〈FS| ĉ†k ĉp′ |FS〉

× 〈FS| ĉ†p′ ĉq |FS〉

=
1

V

∑

kq

e−ik · r1eiq · r2 δkp′δqp′

=
1

V
e−ip′ · (r1−r2) ,

(E.31)

which can be used to simplify Eq. (E.30). We arrive at the expression for the absorption
rate of spin-zero Rydberg molecules

Ā =
∑

λ,α

∫

d3R

∫

d3R′
∫

d3r

∫

d3r′ Ψ∗
λ,α(R, r)Ψλ,α(R′, r′)

×
≤kF∑

p,p′

1

V 2
e−ip · (R′− r

′

2
−(R− r

2
))e−ip′ · (R′+ r

′

2
−(R+ r

2
)) .

(E.32)

Ansatz: plane wave center of mass wave function

We again investigate wave functions of the type

Ψλ,α(R, r) = Φλ(R)φα(r) ,

φα(r) =
uνrD(r)

r
Ylm(Ωr) ,

Φλ(R) =
e−iKR

√
V

,

(E.33)
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where the radial component χ does not depend on l. We again keep the relative dimer
wave function unspecified and find

Ā =
∑

K,α

∑

p,p′

∫

d3R

∫

d3R′
∫

d3r

∫

d3r′ φ∗
α(r)φα(r′)

1

V
e−iK · (R′−R)

×
≤kF∑

p,p′

1

V 2
e−ip · (R′− r

′

2
−(R− r

2
))e−ip′ · (R′+ r

′

2
−(R+ r

2
))

=
∑

α

∫

d3R

∫

d3R′
∫

d3r

∫

d3r′ φ∗
α(r)φα(r′) δ(3)(R′ −R)

× 1

V 2

≤kF∑

p,p′

e−ip · (R′− r
′

2
−(R− r

2
))e−ip′ · (R′+ r

′

2
−(R+ r

2
))

=
∑

α

∫

d3R

∫

d3r

∫

d3r′ φ∗
α(r)φα(r′)

1

V 2

≤kF∑

p,p′

e−ip · r−r
′

2 eip
′ · r

′−r

2

=
∑

α

∫

d3R

∫

d3r

∫

d3r′ φ∗
α(r)φα(r′)

∣
∣
∣
∣
∣

∫

k≤kF

d3p

(2π)3
e−ip · r−r

′

2

∣
∣
∣
∣
∣

2

=
∑

α

∫

d3R

∫

d3r

∫

d3r′ φ∗
α(r)φα(r′)

(

k3F
2π2

h
(

kF
|r − r′|

2

)
)2

,

(E.34)

were we have again used the relation derived in App. E.4 and the define

h(u) =
sin(u) − u cos(u)

u3
. (E.35)

Here it is important to note that the fermion density is given by n↑↓/2 = k3F/6π
2.

Relative Dimer Wave Functions

We investigate functions of the type

φα(r) =
uνrD(r)

r
Ylm(Ωr) , (E.36)

where the radial component φα does not depend on l, and the indices ν, l and m again
label the principal quantum number, angular momentum quantum number and angular
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momentum projection quantum number. From Eq. (E.34) we obtain

ĀrD =
∑

lm

∫

dΩrD

∫

d3R

∫

d3r

∫

d3r′ u
∗
νrD

(r)

r
Y ∗
lm(Ωr)

uνrD(r′)

r′
Ylm(Ωr′)

×
(

k3F
2π2

h
(

kF
|r − r′|

2

)
)2

=

∫

dΩrD

∫

d3R

∞∫

0

dr

∞∫

0

dr′ rr′ u∗νrD(r) uνrD(r′)

∫

dΩr

∫

dΩr′

×
∑

lm

Y ∗
lm(Ωr)Ylm(Ωr′)

(

k3F
2π2

h
(

kF
|r − r′|

2

)
)2

=

∫

dΩrD

∫

dΩr

∫

d3R

∞∫

0

dr

∞∫

0

dr′ rr′ u∗νrD(r) uνrD(r′)

×
(

k3F
2π2

h
(

kF
r − r′

2

)
)2

=
4

π
2
V

∞∫

0

dr

∞∫

0

dr′ rr′ u∗νrD(r) uνrD(r′) k6F h
(

kF
r − r′

2

)2

,

(E.37)

which is the statement of Eq. (6.33). In the second last step we again made use of the
completeness relation

∞∑

l=0

l∑

m=−l

Y ∗
lm(Ωr)Ylm(Ωr′) = δ(ϕ− ϕ′) δ(cos θ − cos θ′) . (E.38)
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F. Towards a Theoretical Description
of Rydberg Excitation Microscopy
in Arbitrarily Correlated States

Here we want to present open questions arising from the ansatz presented in Chapter 6
when used to analytically predict the ULRRM-dimer response of Rydberg atoms excited
from an arbitrarily correlated state of ultracold atoms. To this end, we assume that the
initial state can be expressed as a superposition of Fock states, i.e.,

|i〉 =
∑

F

αF |F〉 ⊗ |0〉d , (F.1)

with one unique set of coefficients {αF}
∑

F

|αF|2 = 1 (F.2)

and fermionic Fock states

|F〉 =
∞∏

i=1

(

ĉ†ki

)nF
i |0〉 = |nF

1 , n
F
2 , ... , n

F
i , ... , n

F
∞〉 , (F.3)

with
∞∑

i=1

nF
i = N , ∀ F. (F.4)

Again we choose the ansatz similar to the one presented in Eq. (6.8) to describe the final
states

|f〉 = |f(λ,α,p,p′)〉

=

∫

d3R

∫

d3r Ψλ,α(R, r) d̂†
R− r

2
ĉ†
R+ r

2
ĉp ĉp′ |i〉 ,

(F.5)

and investigate the ULRRM-dimer response

Ā =
∑

f

∣
∣ 〈f| V̂L |i〉

∣
∣
2
, (F.6)
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with the laser operator

V̂L =

∫

d3r d̂†r ĉr + h.c. . (F.7)

The dimer signal is then given by

Ā =
∑

f

∣
∣ 〈f| V̂L |i〉

∣
∣
2

=
∑

λ,α

∑

p,p′

∣
∣ 〈i|

∫

d3R

∫

d3r Ψ∗
λ,α(R, r) ĉ†p′ ĉ

†
p ĉR+ r

2
d̂
R− r

2

×
(∫

d3rL d̂
†
rL
ĉrL + h.c.

)

|i〉
∣
∣
2

=
∑

λ,α

∑

p,p′

∣
∣ 〈i|

∫

d3R

∫

d3r Ψ∗
λ,α(R, r) ĉ†p′ ĉ

†
p ĉR+ r

2
ĉrL

×
∫

d3rL δ
(3)
(

rL −
(

R− r

2

))

|i〉
∣
∣
2

=
∑

λ,α

∫

d3R

∫

d3R′
∫

d3r

∫

d3r′ Ψ∗
λ,α(R, r)Ψλ,α(R′, r′)

× 〈i| ĉ†
R′− r′

2

ĉ†
R′+ r′

2

∑

p,p′

ĉp ĉp′ |i〉 〈i| ĉ†p′ ĉ
†
p ĉR+ r

2
ĉ
R− r

2
|i〉

︸ ︷︷ ︸

=B

.

(F.8)

Again we look at the expression B where |i〉 is now the general state characterized by
Eq. (F.1)

B =
∑

p,p′

ĉp ĉp′ |i〉 〈i| ĉ†p′ ĉ
†
p ĉR+ r

2
ĉ
R− r

2
|i〉

= 2
∑

p<p′

ĉp ĉp′ |i〉 〈i| ĉ†p′ ĉ
†
p ĉR+ r

2
ĉ
R− r

2
|i〉

= 2
∑

p<p′

ĉp ĉp′

∑

F,F′,F′′

αF α
∗
F′ αF′′ |F〉 〈F′| ĉ†p′ ĉ

†
p ĉR+ r

2
ĉ
R− r

2
|F′′〉 .

(F.9)

The sum over F, F′ and F′′ can be split into two contributions one where the occurring
Fock states are identical, i.e., F=F′=F′′ and one containing all other terms

B = 2
∑

F

|αF|2αF

∑

p<p′

ĉp ĉp′ |F〉 〈F| ĉ†p′ ĉ
†
p ĉR+ r

2
ĉ
R− r

2
|F〉

+ 2
∑

p<p′

ĉp ĉp′

∑

F,F′,F′′

w.o. F=F′=F′′

αF α
∗
F′ αF′′ |F〉 〈F′| ĉ†p′ ĉ

†
p ĉR+ r

2
ĉ
R− r

2
|F′′〉 , (F.10)
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where ‘w.o.’ stands for ‘without’. Using the relation derived in Appendix E.3 each term
in the first line is found to be proportional to ĉ

R+ r

2
ĉ
R− r

2
|F〉

B = 2
∑

F

|αF|2αF ĉR+ r

2
ĉ
R− r

2
|F〉

+ 2
∑

p<p′

ĉp ĉp′

∑

F,F′,F′′

w.o. F=F′=F′′

αF α
∗
F′ αF′′ |F〉 〈F′| ĉ†p′ ĉ

†
p ĉR+ r

2
ĉ
R− r

2
|F′′〉 . (F.11)

The expression in the first line reveals the first problem of the ansatz in Eq. (F.1) as it
only results in terms proportional to

〈i| ĉ†
R′− r′

2

ĉ†
R′+ r′

2

ĉ
R+ r

2
ĉ
R− r

2
|i〉

in cases where the coefficients αF only take two values 0 or a constant (i.e., for superpo-
sitions of Fock states with equal weights) as only in this case

∑

F

|αF|2αF ĉR+ r

2
ĉ
R− r

2
|F〉 ∼ ĉ

R+ r

2
ĉ
R− r

2
|i〉 . (F.12)

The other terms in the second line of Eq. (F.11) give rise to off diagonal elements
that couple all individual Fock states |F〉 that appear in the general state |i〉 and the
general relation between the ULRRM-dimer absorption peak in an arbitrarily correlated
quantum gas remains an open question.
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G. Pair Correlation Function of a
Dimer Molecule

Here we show how the pair correlation function of a molecule consisting of two fermions
is connected to their wave function. The molecular state is defined by

|Ψ〉 =

∫∫

d3r d3r′ Ψ(r, r′) ĉ†r ĉ
†
r′ |0〉 , (G.1)

with a fermionic two-body wave function Ψ(r, r′) = −Ψ(r′, r) and fermionic creation
operators ĉ†r. The pair correlation function is then given by

n2 g(2)(|x− x′|) = 〈Ψ| ĉ†xĉ†x′ ĉx′ ĉx |Ψ〉

= 〈Ψ| ĉ†xĉ†x′ ĉx′ ĉx

∫∫

d3r d3r′ Ψ(r, r′) ĉ†r ĉ
†
r′ |0〉

= 〈Ψ| ĉ†xĉ†x′ ĉx′

∫∫

d3r d3r′ Ψ(r, r′)

×
(

ĉ†r′δ
(3)(r − x) − ĉ†rδ

(3)(r′ − x)
)

|0〉

= 〈Ψ| ĉ†xĉ†x′

︸ ︷︷ ︸

‘h.c. of the following’

∫∫

d3r d3r′ Ψ(r, r′)

×
(
δ(3)(r − x)δ(3)(r′ − x′) − δ(3)(r′ − xδ(3)(r − x′)

)
|0〉

= |Ψ(x,x′) − Ψ(x′,x)|2
= 4 |Ψ(x,x′)|2 .

(G.2)
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[16] U. Schollwöck. The density-matrix renormalization group. Rev Mod Phys 77:259–
315, 2005. doi:10.1103/RevModPhys.77.259.

[17] J. I. Cirac, D. Pérez-Garćıa, N. Schuch, F. Verstraete. Matrix product states and
projected entangled pair states: concepts, symmetries, theorems. Rev Mod Phys
93:045003, 2021. doi:10.1103/RevModPhys.93.045003.

[18] D. J. Griffiths, D. F. Schroeter. Introduction to quantum mechanics. Cambridge
university press, 2018. ISBN: 9781107189638.

[19] J. Bardeen, L. N. Cooper, J. R. Schrieffer. Theory of superconductivity. Phys Rev
108:1175–1204, 1957. doi:10.1103/PhysRev.108.1175.

[20] L. D. Landau, E. M. Lifshitz. Statistical physics: course of theoretical physics,
volume 5. Elsevier, 2013. ISBN: 0080570461.

[21] L. D. Landau, E. M. Lifshitz. Fluid mechanics: course of theoretical physics,
volume 6. Elsevier, 2013. ISBN: 1483128628.

[22] U. Weiss. Quantum dissipative systems. World Scientific, 2012. ISBN:
9789811243134.

[23] A. Rosch. Quantum-coherent transport of a heavy particle in a fermionic bath.
Advances in Physics 48(3):295–394, 1999. doi:10.1080/000187399243446.

[24] R. Schmidt, M. Knap, D. A. Ivanov, et al. Universal many-body response of heavy
impurities coupled to a Fermi sea: a review of recent progress. Reports on Progress
in Physics 81(2):024401, 2018. doi:10.1088/1361-6633/aa9593.

[25] L. D. Landau. Electron motion in crystal lattices. Phys Z Sowjet 3:664, 1933.
doi:10.1016/b978-0-08-010586-4.50015-8.

[26] M. Sidler, P. Back, O. Cotlet, et al. Fermi polaron-polaritons in charge-
tunable atomically thin semiconductors. Nature Physics 13(3):255–261, 2017.
doi:10.1038/nphys3949.

120



Bibliography

[27] A. Schirotzek, C.-H. Wu, A. Sommer, M. W. Zwierlein. Observation of Fermi
polarons in a tunable Fermi liquid of ultracold atoms. Phys Rev Lett 102:230402,
2009. doi:10.1103/PhysRevLett.102.230402.

[28] Y. E. Shchadilova, R. Schmidt, F. Grusdt, E. Demler. Quantum dy-
namics of ultracold Bose polarons. Phys Rev Lett 117:113002, 2016.
doi:10.1103/PhysRevLett.117.113002.

[29] W. E. Lamb, R. C. Retherford. Fine structure of the hydrogen atom. Part I. Phys
Rev 79:549–572, 1950. doi:10.1103/PhysRev.79.549.

[30] J. J. Sakurai, J. Napolitano. Modern quantum mechanics. Cambridge University
Press, 2020. ISBN: 9781108587280.

[31] J. I. Cirac, P. Zoller. Goals and opportunities in quantum simulation. Nature
Physics 8(4):264–266, 2012. doi:10.1038/nphys2275.

[32] I. Bloch, J. Dalibard, S. Nascimbene. Quantum simulations with ultracold quan-
tum gases. Nature Physics 8(4):267–276, 2012. doi:10.1038/nphys2259.

[33] I. Schwartz, Y. Shimazaki, C. Kuhlenkamp, et al. Electrically tunable Feshbach
resonances in twisted bilayer semiconductors. Science 374(6565):336–340, 2021.
doi:10.1126/science.abj3831.

[34] F. Engel. From positive to negative ions, studies based on Rydberg spectroscopy.
Ph.D. thesis, 2020. ISBN: 9783843946049.

[35] M. Endres, T. Fukuhara, D. Pekker, et al. The ‘Higgs’ amplitude mode at the
two-dimensional superfluid/Mott insulator transition. Nature 487(7408):454–458,
2012. doi:10.1038/nature11255.

[36] I. Bloch, J. Dalibard, W. Zwerger. Many-body physics with ultracold gases. Rev
Mod Phys 80:885–964, 2008. doi:10.1103/RevModPhys.80.885.

[37] H. Feshbach. Unified theory of nuclear reactions. Annals of Physics 5(4):357–390,
1958. doi:10.1016/0003-4916(58)90007-1.

[38] H. Feshbach. A unified theory of nuclear reactions. II. Annals of Physics 19(2):287–
313, 1962. doi:10.1016/0003-4916(62)90221-X.

[39] M. Duda, X.-Y. Chen, A. Schindewolf, et al. Transition from a polaronic con-
densate to a degenerate Fermi gas of heteronuclear molecules. Nature Physics
19(5):720–725, 2023. doi:10.1038/s41567-023-01948-1.

[40] E. C. Regan, D. Wang, C. Jin, et al. Mott and generalized Wigner crys-
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[88] M. H. Beck, A. Jäckle, G. A. Worth, H.-D. Meyer. The multiconfiguration time-
dependent Hartree (MCTDH) method: a highly efficient algorithm for propa-
gating wavepackets. Physics Reports 324(1):1–105, 2000. doi:10.1016/S0370-
1573(99)00047-2.

[89] F. P. Laussy, A. V. Kavokin, I. A. Shelykh. Exciton-polariton mediated supercon-
ductivity. Phys Rev Lett 104:106402, 2010. doi:10.1103/PhysRevLett.104.106402.

[90] F. P. Laussy. Superconductivity with excitons and polaritons: review and exten-
sion. Journal of Nanophotonics 6(1):064502, 2012. doi:10.1117/1.jnp.6.064502.

125



Bibliography

[91] J. von Milczewski, X. Chen, A. Imamoglu, R. Schmidt. Supercon-
ductivity induced by strong electron-exciton coupling in doped atomically
thin semiconductor heterostructures. arXiv preprint arXiv:231010726 2023.
doi:10.48550/arXiv.2310.10726.

[92] I. A. Shelykh, T. Taylor, A. V. Kavokin. Rotons in a hybrid Bose-Fermi system.
Phys Rev Lett 105:140402, 2010. doi:10.1103/PhysRevLett.105.140402.

[93] E. Cherotchenko, T. Espinosa-Ortega, A. Nalitov, et al. Superconductivity in semi-
conductor structures: the excitonic mechanism. Superlattices Microstruct 90:170–
175, 2016. doi:10.1016/j.spmi.2015.12.003.
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