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Abstract

The rise of artificial intelligence (AI) has significantly impacted the field of computer vision
(CV). In particular, deep learning (DL) has advanced the development of algorithms that
comprehend visual data. In specific tasks, DL exhibits human capabilities and is impacting
our everyday lives such as virtual assistants, entertainment or web searches. Despite of the
success of visual algorithms, in this thesis we study the threat adversarial examples, which
are input manipulation to let to misclassifcation.

The human vision system is not impaired and can classify the correct image, while for
a DL classifier one pixel change is enough for misclassification. This is a misalignment
between the human and CV system. Therefore, we start this work by presenting the concept
of an classification model to understand how these models can be tricked by the threat model
– adversarial examples.

Then, we analyze the adversarial examples in the Fourier domain, because after this
transformation they can be better identified for detection. To that end, we assess different
adversarial attacks on various classification models and datasets deviating from the standard
benchmarks

As a complementary approach, we developed an anti-pattern utilizing a frame-like patch
(prompt) on the input image to counteract the input manipulation. Instead of merely iden-
tifying and discarding adversarial inputs, this prompt neutralizes adversarial perturbations
during testing.

As another detectionmethod, we expanded the use of a characteristics ofmulti-dimensional
data – the local intrinsic dimensionality (LID) to differentiate between benign and attacked
images, improving detection rates of adversarial examples.

Recent advances in diffusion models (DMs) have significantly improved the robustness
of adversarial models. Although DMs are well-known for their generative abilities, it re-
mains unclear whether adversarial examples are part of the learned distribution of the DM.
To address this gap, we propose a methodology that aims to determine whether adversarial
examples are within the distribution of the learned manifold of the DM. We present an ex-
ploration of transforming adversarial images using the DM, which can reveal the attacked
images.
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Zusammenfassung

Der Aufstieg der künstlichen Intelligenz (KI) hat den Bereich der Computer Vision (CV)
erheblich beeinflusst. Insbesondere das Deep Learning (DL) hat die Entwicklung von Al-
gorithmen zum Verstehen visueller Daten vorangetrieben. Bei bestimmten Aufgaben zeigt
DL (über)menschliche Fähigkeiten und wirkt sich auf unser tägliches Leben aus, z.B. bei
virtuellen Assistenten, in der Unterhaltungsbranche oder bei der Websuche.

Trotz des Erfolgs der visuellen Algorithmen untersuchen wir in dieser Arbeit die Bedro-
hung: Feindliche Beispiele, die das Bildmanipulieren, um eine bewusste Fehlklassifizierung
zu ermöglichen. Das menschliche Sehsystem ist im Falle von feindlichen Beispielen nicht
beeinträchtigt und kann das Bild richtig wahrnehmen, während für einen DL-Klassifikator
eine Pixeländerung für eine Fehlklassifizierung ausreicht. Dies ist eine Unstimmigkeit zwis-
chen dem menschlichen und dem maschinellen Sehen. Daher beginnen wir diese Arbeit mit
der Vorstellung des Konzepts eines Klassifizierungsmodells, um zu verstehen, wie diese
Modelle überlistet werden können.

Anschließend analysieren wir die feindliche Beispiele in der Fourier-Domäne, da sie
nach dieser Transformation für die Erkennung besser identifiziert werden können. Zu diesem
Zweck bewerten wir verschiedene Angriffe auf verschiedene Klassifizierungsmodelle und
Datensätze, welche von den Standardevaluierungen abweichen.

Als weiteren Ansatz haben wir ein Anti-Muster entwickelt, das einen rahmenähnlichen
Überlagerung (Prompt) auf dem Eingabebild verwendet, um der Manipulation der Eingabe
entgegenzuwirken. Dieser Prompt soll feindliche Eingaben neutralisieren.

Als weitere Erkennungsmethode habenwir unter der Verwendung einer Charakterististik
von mehrdimensionale Daten - der lokalen intrinsischen Dimensionalität (LID) - erweitert,
um zwischen gutartigen und angegriffenen Bildern zu unterscheiden, was zur Verbesserung
der Erkennungsraten für feindliche Beispiele führt.

Neue Fortschritte in Diffusionsmodellen (DMs) haben die Robustheit gegen Angriffs-
modellen erheblich verbessert. Obwohl DMs bekannt sind für ihre generativen Fähigkeiten,
ist unklar, ob angegriffenen Bilder Teil der gelernten Verteilung sind. Um diese Lücke zu
schließen, schlagen wir eine Methodik vor, um zu bestimmen, ob feindliche Beispiele in-
nerhalb der gelernten Verteilung von DM liegen.
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Glossary of Terms

Artifical intelligence (AI) simulates human intelligence processes using machines, partic-
ularly computer systems. It involves creating algorithms for classification, analysis,
prediction, and learning from data. AI machines process real-time data and perform
problem-solving operations.

Computer vision (CV) is a subcategory of AI that enables computers and systems to derive
meaningful information from digital images, videos, and other visual inputs, and take
actions or make recommendations based on that information.

Machine learning (ML) is a discipline of artificial intelligence that enables systems to
learn and improve from experience without being explicitly programmed.

Neural networks (NN) also known as artificial neural networks (ANNs), are computa-
tional models inspired by the human brain’s biological neural networks. They consist
of interconnected nodes (artificial neurons) organized in layers. During training, the
network adjusts connection weights to learn and improve.

Deep learning (DL) is a subfield of machine learning that involves the use of neural net-
works with multiple layers (deep neural networks). The term “deep” refers to the
depth of the network, which is characterized by having many hidden layers between
the input and output layers. Deep learning has proven effective in learning hierarchi-
cal representations and patterns from complex data.

Adversarial example is an input (e.g. a manipulated image) designed to cause a machine
learning model to make a wrong prediction. It is generated from a clean example by
adding a small perturbation, imperceptible for humans, but sensitive enough for the
model to change its prediction.

Adversarial machine learning focuses on attacks againstmachine learning algorithms and
the corresponding defenses. An adversarial attack generates examples to deceive deep
learning models.

Whitebox (WB) scenarios grant attackers complete access to the target model, its archi-
tecture and parameters. For instance, the Projected Gradient Descent (PGD) attack is
one prominent gradient-based attack method.

Blackbox (BB) is a scenario where an attacker has limited access to the target model and
can only observe the outputs without insight into its internal mechanisms.
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Adversarial defense aims to protect a deep learning model by reducing the attack surface
against adversarial attacks. For instance, adversarial training, in which a network is
hardened against adversarial examples.

Adversarial robustness in machine learning refers to a model’s capability to maintain per-
formance and accuracy despite being exposed to intentionally crafted adversarial in-
puts.

Classification in machine learning refers to a supervised learning task where the goal is
to assign input data points to predefined categories or classes. This process entails
training a model on labeled data to learn patterns and relationships, enabling it to
predict outcomes for new, unseen instances.

Detection in computer vision is the process of identifying and locating objects or patterns
within images or videos. It involves training models to recognize specific classes of
objects and then predicting their presence and positions in new, unseen data.

Identification in computer vision refers to the process of identifying and locating objects
or patterns within images or videos. It entails training models to recognize specific
classes of objects and subsequently predicting their presence and positions in new,
unseen data.

On the other hand, identification goes beyond mere detection. It involves not only
locating objects or regions within an image but also assigning specific labels or cate-
gories to those objects.

Diffusion models (DMs) belong to a category of generative models employed in machine
learning. Their purpose is to generate new data based on the training data they have
encountered. Specifically, diffusion models learn a process that generates probabili-
ties, often represented by either joint rotations or positions. These models find appli-
cations in various domains, including text-to-video synthesis, image-to-image trans-
lation, image search, and reverse engineering.

Explainability in machine learning pertains to a model’s capacity to offer a clear and un-
derstandable explanation for its predictions or decisions. It encompasses the extent to
which humans can interpret the model’s internal workings and decision-making pro-
cess. Explainability is crucial for building trust, identifying biases, rectifying errors,
and enhancing model performance.

Interpretability refers to a model’s ability to provide insight into its internal processes.
It involves explaining how the model processes input data, learns from it, and makes
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predictions or decisions based on that learning. Interpretability allows us to assess the
model’s inner workings and ensure it relies on relevant features. The key distinction
lies in the focus: explainability emphasizes the model’s output, while interpretability
delves into its internal mechanisms.
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Chapter 1

Introduction

1.1 Computer Vision and Artificial Intelligence

Computer vision (CV), situated within the broader domain of artificial intelligence (AI),
empowers machines – ranging from computers and mobile phones to cameras – to discern
meaningful insights from diverse visual digital content such as images and videos. This
ability enables machines to take informed actions based on their visual perception. While
AI imparts cognitive capabilities to systems, CV specifically equips them with visual dis-
cernment, aiming to develop algorithms that enable artificial entities to understand intricate
details in visual data, akin to human vision, thus inferring contextual information about their
surroundings.

When discussing human vision, the primary focus naturally turns to the eyes, the sensory
organs responsible for detecting light and transmitting signals containing visual information
along the optic nerve to the brain. The brain, serving as the central processing unit, then
analyzes and retains the input content. It is essential to recognize that this constitutes a
continuous process marked by a gradual and steady learning trajectory.

CV operates in a manner that closely mirrors human vision, albeit with a notably trun-
cated history. Consequently, the artificial solutions within this domain are constrained by
temporal limitations. To address this inherent constraint, CV systems are endowed with a
suite of tools encompassing cameras, data, and algorithms, supplanting the biological com-
ponents of retinas, optic nerves, and the visual cortex. This substitution empowers these
systems to significantly expedite the learning process. The fig. 1.1 clarifies the visual repre-
sentation of the schematic progression of human vision, faced with its artificial equivalent
within the realm of CV.

Continuously emerging and evolving technologies are consistently adapting to address
contemporary and impending challenges. Among these, machine learning – particularly
deep learning (DL) – has emerged as a predominant force in numerous CV endeavors, en-

1
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Figure 1.1. Schematic representation of the human vision and computer vision (CV)
pipelines. Nature has always served as a source of inspiration for humanity. In the CV
community, scientists draw inspiration from the various elements of human vision to con-
struct an artificial equivalent. A machine can calculate the probabilities of the object on the
image, while for humans they know from experience.

compassing tasks such as image classification, object detection, image generation, and se-
mantic segmentation. The rationale behind its remarkable achievements lies in the fact that
deep learning methodologies embrace self-contained, iterative learning processes that dis-
cern specific input patterns, in stark contrast to traditional hard-coded programming. Con-
sequently, the present-day emphasis on automated feature extraction has led to significant
breakthroughs, leading influence not solely within the realm of vision, but extending to
various other domains as well.

The term “feature extraction” alludes to the process undertaken by an artificial neu-
ral network, wherein it is tasked with deriving task-specific indicators from provided data
while adhering to the constraints associated with a particular problem. In historical con-
text, the discovery of these indicators or traits has been a laborious endeavor, necessitating
manual intervention from machine learning (ML) practitioners. Although DL approaches
have eclipsed preceding methodologies in this domain, they are not devoid of shortcomings,
which warrant consideration during their application. Notably, they often grapple with data
insufficiency due to their dependence on extensive volumes of labeled data. To mitigate this
limitation, techniques like data augmentation, algorithms demanding less data, or structures
with inherent biases have been employed.

Nonetheless, this remains an ongoing research challenge that continues to engage the
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attention of researchers. As previously mentioned, DL has outperformed conventional man-
ually designed CV algorithms in overall efficiency across nearly all types of data, thereby
enabling data science teams to redirect their efforts toward more substantive tasks such as
spam, surveillance, automatic face recognition, or autonomous driving. Some of these tasks
rely on safety critical application and the question arises, if these ML systems are robust
and trustworthy. For example an autonomous car does not recognize a stop car and con-
tinues driving. Besides robustifying existing DL models, images/videos can be authentic
generated.

1.2 Classification

Classification is a fundamental concept in machine learning (ML), referring to the process of
categorizing or labeling data into distinct classes or categories based on their characteristics
or features. The primary goal of classification is to train a model that can automatically
assign new, unseen data points to one of these predefined classes.

In a precise definition, we will establish the model (also known as the hypothesis func-
tion) denoted as fθ : X → Rk. This function acts as a mapping from the input space to the
output space, represented as a k-dimensional vector. It is important to note that k represents
the number of classes considered in the prediction task. It is worth mentioning that the out-
put is in the logit space, indicating that the values are real numbers that can be positive or
negative. The θ vector encompasses all the parameters that determine the structure of this
model, such as convolutional filters or fully-connected layers.

In the next step, we introduce a loss function denoted as ℓ : Rk×Z+ → R+. This func-
tion maps the model’s predictions and the true labels, producing a non-negative numerical
value. The interpretation of this loss function is as follows: the first parameter represents the
model’s output in the form of logits, which can be positive or negative values, while the sec-
ond parameter indicates the true class index. In other words, it represents a number between
1 and k that identifies the accurate label’s index. Therefore, the symbolic expression

ℓ(fθ(x), y) (1.1)

wherex ∈ X represents the input and y ∈ Z denotes the true class, serves as a representation
of the loss incurred by the classifier in its predictions concerning x, given the presumption
that the true class is y.

The cross entropy loss, often referred to as the softmax loss, is the most widely em-
ployed loss function in deep learning. It quantifies the disparity between two probability
distributions

ℓ (fθ(x), y) = log

(
k∑

j=1

exp (fθ(x)j)

)
− fθ(x)y, (1.2)
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where fθ(x)j denotes the j-th elements of the vector fθ(x). In assessing the effectiveness of
a classification model with probability outputs ranging from 0 to 1, the cross entropy loss is
employed. As the predicted probability deviates further from the true label, this loss metric
increases. The structure of this loss function is derived from the commonly used softmax
activation. It involves defining the softmax operator σ : Rk → Rk, which operates on a
vector z as follows:

σ(z)i =
exp (zi)∑k
j=1 exp (zj)

. (1.3)

This operator transforms the class logits generated by the model into a probability distri-
bution. When training a neural network, the primary objective is typically to maximize
the likelihood of accurately predicting the true class label. However, because probabilities
can become extremely small, it is more customary to maximize the natural logarithm of the
probability associated with the true class label, as expressed by the formula:

logσ (fθ(x))y = log

(
exp (fθ(x)y)∑k
j=1 exp (fθ(x)j)

)
= fθ(x)y− log

(
k∑

j=1

exp (fθ(x)j)

)
. (1.4)

Since the usual practice is to minimize loss rather than maximize probability, the negative
form of this quantity is utilized as the loss function.

1.3 Threat Model: Adversarial Examples

Machine learning (ML) leaves the labs and immerse in everyday life. This premise provides
malicious attackers with opportunities to exploit various cyber attacks in order to compro-
mise the ML software and its operations. In this section, we introduce the threat model:
adversarial examples, which minimal manipulate an image for misclassification.

As in computer vision (CV) captures the real world, we endeavor to to implement ML
systems not merely on virtual domains, but also in real systems. It becomes crucial that
we evaluate not only the systems’ functionality under typical circumstances but also their
capacity to consistently demonstrate genuine robustness and reliability. Adversarial robust-
ness has become a prominent area of interest when it comes to the concepts of resilience
and trustworthiness. This field concentrates on creating classifiers that can endure input
disturbances during testing, even in the presence of adversaries aiming to deceive the clas-
sifier. Therefore, in this section, we introduce the treat model “adversarial examples” and
how to create them to fool a classifier. Then, we briefly introduce a selection of whitebox
adversarial attacks, which has been proposed from the year 2014 until today.

Creating an adversarial example. Tomanipulate an image and deceive the classifier into
misclassifying it, we can create an adversarial example. In the common approach to training
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a classifier, the parameters θ are optimized to minimize the average loss over a training set
{xi ∈ X , yi ∈ Z}, which can be formulated as the optimization problem:

minimize
θ

1

m

m∑
i=1

ℓ (fθ (xi) , yi) .

This optimization problem is typically solved using (stochastic) gradient descent. For a
minibatch B ⊆ {1, . . . ,m}, the gradient ∇θℓ (fθ (xi) , yi) is computed with respect to the
parameters, and the parameters are adjusted in the negative direction of the gradient:

θ := θ − α

|B|
∑
i∈B

∇θℓ (fθ (xi) , yi) ,

where α is the step size. This process is repeated for different minibatches until the param-
eters converge.

The gradient is a key term of interest as it quantifies how small adjustments to the param-
eters affect the loss function. In deep neural networks, the gradient is efficiently computed
using backpropagation. The beauty of automatic differentiation, which underlies backprop-
agation, is that we can also compute the gradient of the loss with respect to the input image
itself. This gradient reveals how small changes to the image impact the loss function.

To construct an adversarial example, our objective is to adjust the image to maximize the
loss instead of minimizing it as in parameter optimization. We aim to solve the optimization
problem:

maximize
x̂

ℓ (fθ(x̂), y) ,

where x̂ represents the adversarial example. However, we cannot optimize arbitrarily over
x̂ since some images are not the target class. Thus, we need to ensure that the adversarial
example, denoted as x̂, remains close to the original input x. Conventionally, we achieve
this by optimizing over the perturbation added to x, denoted as δ, and then optimizing over
δ:

maximize
δ∈∆

ℓ (fθ(x+ δ), y) .

Here, ∆ represents the set of allowable perturbations. Determining the “correct” set of al-
lowable perturbations is challenging, as we ideally want∆ to include variations that humans
perceive as visually similar to the original input x. These variations can range from slight
amounts of noise to rotations, translations, scalings, or even complete changes in non-target
regions of the image.

In summary, to create an adversarial example, we optimize the perturbation to the orig-
inal image to maximize the loss while ensuring the manipulated image remains visually
similar to the original. The set of allowable perturbations should encompass variations that
preserve visual similarity. Needless to say, it is not possible to give a mathematically rig-
orous definition of all the perturbations that should be allowed, but the philosophy behind
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Figure 1.2. Example of adversarial perturbation used to evade classifiers [46]. The per-
turbation δ is added to the “pig” image. In this case, the perturbation is just magnified for
illustration. Figure from Madry and Schmidt [93].

adversarial examples is that we can consider some subset of the possible space of allowed
perturbations, such that by any “reasonable” definition, the actual semantic content of the
image could not change under this perturbation. A commonly used perturbation set, al-
though not the only valid choice, is the L∞ ball, defined as the set:

∆ : {δ : ∥δ∥∞ ≤ ϵ} , (1.5)

where the L∞ norm of a vector z is given by:

∥δ∥∞ = max
i
|zi|. (1.6)

In this case, we allow the perturbation to have a magnitude between [−ϵ, ϵ] for each of its
components. Additionally, we need to ensure that x+ δ remains bounded between [0, 1] to
ensure it remains a valid image.

Later on, we will discuss the rationale behind considering the L∞ ball or norm-balls
in general as perturbation sets. For now, we can say that the advantage of the L∞ ball is
that, for small values of ϵ, the perturbations it creates are visually indistinguishable from the
original image. This property provides a “necessarily-but-definitely-not-close-to-sufficient”
condition for considering a classifier robust to perturbations. It is worth noting that deep
networks are susceptible to being easily deceived by such manipulations.

There are methods to target the functionality of the machine learning model itself, which
essentially entails identifying inputs that cause the model to behave unexpectedly and inac-
curately. Such inputs are referred to as “adversarial examples”. This section aims to provide
a comprehensive explanation of adversarial examples and their operational principles.

Adversarial examples are specially crafted inputs designed to deceive neural networks,
causing them to misclassify the given input. These inputs are visually similar to the original
images, yet they cause the network to fail in recognizing their true contents. One prominent
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type of attack is the fast gradient sign method (FGSM) [46], which is a whitebox attack
where the attacker has complete access to the targeted model.

An example of an adversarial image is shown in fig. 1.2. In this case, the attacker intro-
duces small perturbations (distortions) to an original image, labeled as a “pig”. As a result,
the model confidently misclassifies the image as a gibbon. The process of adding these
perturbations can be further explained mathematically.

Linearmodels. More advancedmodels, such as deep neural networks, are often employed
to capture the non-linear patterns present in the data and improve robustness against ad-
versarial examples. When considering adversarial examples, assuming a linear hypothesis
function can be a useful simplification. By assuming linearity, the problem of defending
against adversarial examples can be formulated as a linear optimization problem, which is
easier to analyze and solve. However, it is important to note that real-world data often con-
tains complex, non-linear relationships. In such cases, using a linear hypothesis function
may not be sufficient to effectively defend against adversarial attacks. However, for the
multi-class setting fθ : Rn →Rk, we consider a classifier of the form

fθ(x) = Wx+ b, (1.7)

where θ =
{
W ∈ Rk×n, b ∈ Rk

}
. Before delving into the multi-class case, we will briefly

examine a binary classifier with a slightly different structure. This approach will make it
easier to illustrate and describe many of the underlying ideas.

By substituting this hypothesis into our robust optimization framework and considering
the case where the perturbation set δ is a norm ball δ = {δ : ∥δ∥ ≤ ϵ} (where the specific
norm is not specified, it could beL∞, L2, etc.), we arrive at the following min-max problem:

minimize
W ,b

1

|D|
∑
x,y∈D

max
∥δ∥≤ϵ

ℓ(W (x+ δ) + b, y). (1.8)

We will highlight the key point: under this formulation, we can solve the inner max-
imization exactly for binary optimization and provide a relatively tight upper bound for
multi-class classification. Additionally, because the resulting minimization problem re-
mains convex in θ (even after maximizing over δ), the resulting robust training procedure
can be optimally solved. As a result, we can achieve the globally optimal robust classifier,
at least for binary classification. However, understanding the linear case provides important
insights into the theory and practice of adversarial robustness, and also provides connections
to more commonly-studied methods in machine learning such as support vector machines.

Adversarial robustness and training. In this section, we provide a more rigorous analy-
sis of the challenge posed by adversarial attacks on deep learning classifiers, involving the
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construction of adversarial examples. Additionally, we explore the challenge of training or
modifying existing classifiers in a way that enhances their resilience against such attacks.

To begin, we can consider more formally the traditional notion of risk as it is used in
machine learning. The risk of a classifier is it’s expected loss under the true distribution of
samples, i.e.

R(fθ) = E(x,y)∼D [ℓ(fθ(x), y)] , (1.9)

where D denotes the true distribution over samples. In practice, of course, we do not know
the underlying distribution of the actual data, so we approximate this quantity by considering
a finite set of samples drawn draw i.i.d. from D,

D = {(xi, yi)} ∼ D, i = 1, . . . ,m (1.10)

and we then consider the empirical risk on some training set denotedDtrain (or possibly some
regularized version of this objective)

minimize
θ

R̂(fθ, Dtest). (1.11)

Once the parameters θ have been chosen based upon the training set Dtrain, this data set
can no longer give us an unbiased estimated of the risk of the resulting classifier, and so
frequently an alternative data set Dtest (also contains points sampled i.i.d. from the true
underlying distributionD), andwe use R̂(fθ, Dtest) as a proxy to estimate the true riskR(fθ).

Adversarial attacks. Improving the robustness and generalization ability of neural net-
works are fundamental problems in machine learning and specifically in computer vision
(e.g. [89, 125]). Thereby, several different aspects of robustness and generalization issues
are addressed, from simple distribution shifts between training and test data distributions
over a network’s robustness to severe image corruptions to adversarial examples.

Let us divide the attack methods between blackbox (BB) and WB. The direct access to
the model gradient is unrealistic in many real-world applications, where we need to perform
attacks in the blackbox manner such as a query search. WB attacks have access to the
gradient. Except for the Square attack in AutoAttack (AA), we consult whitebox attacks.

Furthermore, there are targeted attacks, which aims to receive a certain class for an
input. Non-targeted adversarial attacks only aims at misclassification. The susceptability
of convolutional neural networks to distribution shifts [53,72,103,106,116] concerns input
domain shifts by for example considering corrupted, noisy or blurred data, as well as small
changes in the input induced by adversarial attacks. These are targeted and optimized such
as to cause mis-classifications [10, 131] - and thereby reveal the model’s failure modes.
In fact, most current CNN models can easily be fooled by adversarial attacks such as [46,
99, 131]. The Fast Gradient Sign Method (FGSM) [46] has been proposed in 2014 and
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was followed by more sophisticated methods like Projected Gradient Descent (PGD) [92],
DeepFool [99], Carlini and Wagner [14] or Decoupling Direction and Norm [114]. In 2020,
[30] launched a benchmark website1 with the goal to provide a standardized benchmark for
adversarial robustness. The dominating adversarial attackmethod is AutoAttack [33], which
is an ensemble of four attacks: two variations of the PGD [92] attack with cross-entropy
loss (APGD-CE) and difference of logits ratio loss (APGD-t), the targeted version of the
FAB attack [32], and the blackbox Square attack [4]. The AutoAttack benchmark provides
several modes. The standard mode executes the four attack methods consecutively. Only if
one attack fails, the failed samples are passed to the next attack method.

In table 1.1, we list the attack methods with their properties. We use the untargeted ver-
sion of the attack if available because we want to degrade the accuracy most. For examining
the experiments, such as table 2.2, table 2.12 and fig. 2.1, it is recommended to group the
attacks into the “gradient-based” and the “optimal-boundary” attacks. To the first group
belongs FGSM, BIM, PGD, and partly AA). To the second group belongs DF and C&W.

Table 1.1. Overview of the selected attacks methods with their properties.

Attacks ϵ Norm Untargeted Whitebox

FGSM 8/255 L∞ yes yes
BIM 8/255 L∞ yes yes
PGD 8/255 L∞ yes yes
AA 8/255 L∞ both both
DF none L2 yes yes
CW none L2 no yes

• Fast GradientMethod (FGSM): The FGSM [46] uses the gradients of a givenmodel
to create adversarial examples. In other words, it embodies a whitebox attack, re-
quiring full access to the model’s architecture and weights. The process involves
maximizing the model’s loss with respect to the input image through gradient ascent,
resulting in the creation of an adversarial image xadv:

xadv = x+ ϵ · sign(∇xJ(x, y)), (1.12)

where x is the original input, ϵ is the perturbation magnitude, ∇xJ(x, y) is the gra-
dient of the loss J with respect to the input x, and y is the true label.

• Basic IterativeMethod (BIM): The BIM [138] is an iterative version of FGSM.After
each iteration the pixel values need to be clipped to ensure the generated adversarial

1robustbench.github.io
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examples are still within the range of both the ϵ ball (i.e. [x− ϵ,x+ ϵ]) and the input
space (i.e. [0, 255] for the pixel values). The formulation is expressed as follows:

x0
adv = x,

xN+1
adv = CLIPx,ϵ{xN

adv − αsign(∇xJ(x, y))},
(1.13)

where N denotes the number of iterations, CLIPx(·, ϵ) ensures that the perturbation
stays within the ϵ-ball around x, ∇xJ(x

(t)
adv, y) is the gradient of the loss.

• Projected Gradient Descent (PGD): PGD [92] is a prominent attack method. Op-
posed to FGSM, PGD is iterative and adds random initialization of the perturbations
in each iteration. The optimized perturbations are then projected onto the ϵ ball to
maintain similarity between the original and attacked images in terms of L2 or L∞

norm.

x
(0)
adv = x, x

(t+1)
adv = CLIPϵ{x(t)

adv + α · sign(∇xJ(x
(t)
adv, y))}, (1.14)

where t is the iteration index, α is the step size, and ∇xJ(x
(t)
adv, y) is the gradient of

the loss with respect to the perturbed input at iteration t. In addition, random initial-
ization and restarts are adopted to further strengthen the attack. An enhanced version
of PGD, known as AutoPGD [33], presents a variant of PGD with automatic step size
tuning and a refined objective function. AutoPGD has demonstrated superior effec-
tiveness compared to PGD under similar attack budgets. RobustBench evaluates on
the standard mode, executing the four attack methods consecutively. The failed at-
tacked samples are handed over to the next attack method, to ensure a higher attack
rate.

• DeepFool (DF): DF [99] is considered one of the more sophisticated attacks and has
beenwidely studied in the field of adversarial machine learning. This is a non-targeted
method that is able to find the minimal amount of perturbations possible, which mis-
lead the model using an iterative linearization approach [99]. The main idea is to find
the closest distance from the input sample to the model decision boundary. At each
iteration, DeepFool computes the gradient of the network’s output with respect to the
input image:

∇xf(x
′,θ). (1.15)

Then, it finds the minimum-norm direction that maximally changes the network’s
output class. This can be done by solving the following optimization problem:

min
θ
||θ||2 subject to f(x+ δ;θ) ̸= f(x′,θ). (1.16)
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The solution to this problem gives the direction in which the perturbation should be
updated. DeepFool updates the perturbation by taking a small step in this direction:

δadv = δ +
r

||∇xf(x′;θ)||2
∇xf(x

′;θ) (1.17)

where r is a small positive constant that controls the step size. The algorithm con-
tinues iterating until the image is misclassified or a maximum number of iterations is
reached.

• Carlini&Wagner (C&W): The attack method C&W [14] is considered one of the
most effective adversarial attacks, as it can generate adversarial examples that are
hard to detect and can fool a wide range of machine learning models. The attack can
be formulated as an optimization problem that minimizes the perturbation while max-
imizing the model’s misclassification rate or minimizing its confidence in the correct
classification. This attack can be customized to target different types of norms, such
as L∞ and L2 norms, which measure the magnitude of the perturbation in different
ways. In our benchmarks, we use the L2 distance, which is most common by using
this attack. The optimization problem can be formalized as follows:

min
∥∥∥∥12(tanh(xadv) + 1)− x

∥∥∥∥+ c · f
(
1

2
(tanh(xadv) + 1)

)
(1.18)

with
f(x) = max(Z(x)true − max

i ̸=true
{Z(x)i}, 0), (1.19)

where Z(x) is the softmax classification result vector. The initial value for c is c =

10−3, a binary search is performed to find the smallest c, s.t. f(xadv) ≤ 0.

1.4 Contribution

This thesis provides the following main contributions:

1. We highlight the important weakness of adversarial training, since almost all exis-
tent methods are based on vast amounts and depending on the image size it becomes
computational expensive. A Fourier analysis strategy is proposed to cope with such a
limitation, by allowing to detect adversarial examples in the Fourier domain. More-
over, we leverage the research fields to higher resolution datasets and we are able to
detect the proposed attack by RobustBench by higher resolutions more easily.

2. Currently, there are many techniques that can detect adversarial examples. We intro-
duce a method with small changes on the local intrinsic dimensionality to enhance
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detection of adversarial examples on smaller and larger image sizes. An analysis of
the extracted LID features and their theoretical properties allows us to redefine an
LID-based feature using unfolded local growth rate estimates that are significantly
more discriminative than the aggregated LID measure.

3. We adversarial train a visual prompting for the first time, which will be added at test-
time to the input image. Adversarial trainingwill be usually used to harden a classifier.
Since visual prompting is just a padding on the image, it does not rely on the heavy
data usage.

4. In this chapter, we highlight success of generative diffusion models to generate im-
ages which are very close to the real distribution. We study, if adversarial examples
are close to this distribution and therefore transform the adversarial and benign sam-
ples respectively through the diffusion model. Our experiments demonstrate strong
evidence a noteworthy ability to effectively distinguish between different types of at-
tacks, indicating its capacity not only to detect the presence of an attack in an image
but also to identify the specific nature of the attack.

1.5 Publications

This dissertation has led to the following scientific peer-reviewed publications:

1. Lorenz P, Harder P, Straßel D, Keuper M, Keuper J. Detecting AutoAttack Pertur-
bations in the Frequency Domain. In International Conference on Machine Learning
(ICML) - Workshop on Adversarial Machine Learning. 2021. (Poster)

2. Lorenz P, Strassel D, Keuper M, Keuper J. Is RobustBench/AutoAttack a suitable
Benchmark for Adversarial Robustness? In the Association for the Advancement
of Artificial Intelligence (AAAI) Workshop on Adversarial Machine Learning and
Beyond. 2022. (Poster)

3. Lorenz P, Keuper M, Keuper J. Unfolding Local Growth Rate Estimates for (Almost)
Perfect Adversarial Detection. International Conference on Computer Vision Theory
and Applications (VISAPP). 2023. (Oral)

4. Chen* A, Lorenz* P, Yao Y, Chen PY, Liu S. Visual prompting for adversarial robust-
ness. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2023. (Oral, recognition top 3%)
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5. Lorenz P, Ricard D, Keuper J. Adversarial Examples are Misaligned in Diffusion
ModelManifolds. In IEEE International Joint Conference onNeural Networks (IJCNN).
2024.

1.6 Thesis Organization

This thesis consists of several main parts, excluding the introduction and conclusion. A
concise summary of the chapters is provided below.
Chapter 2. In the last few years, RobustBench is a standardized adversarial robustness
benchmark using AutoAttack that reflects the robustness of the considered classification
models. Instead of hardening a network, we detect adversarial attacks during inference,
rejecting manipulated inputs based on a rather simple and fast analysis in the frequency
domain. We argue that the alternation of data by AutoAttack unrealistically strong, resulting
in close to perfect detection rates of adversarial samples even by simple detection algorithms
while other attack methods are much harder to detect and achieve similar success rates.
Second, results on low resolution data sets do not generalize well to higher resolution images
as gradient based attacks appear to become evenmore detectable with increasing resolutions.
This work was previously published at ICML 2021 and AAAI 2022 workshops.
Chapter 3. We propose a simple and light-weight adversarial examples detector, which
leverages recent findings on the relation between networks’ local intrinsic dimensionality
(LID) and adversarial attacks. Based on a re-interpretation of the LID measure and several
simple adaptations, we surpass the state-of-the-art LID detection by a significant margin
and reach almost perfect results in terms of F1-score for several networks and datasets on
several attack methods. This work was previously published at VISAPP 2023.
Chapter 4. Visual prompting is a paradigm shift in the field of computer vision. You label
only a few small areas of an object in a few images, and the model almost immediately de-
tects the whole object in all of your images. In most cases, the model’s predictions are not
100% accurate the first time around, but you can easily label a few more small areas, re-run
the model, and check your results. We are the first who attempt to counteract adversar-
ial examples via visual prompts. Compared to conventional adversarial defenses, visual
prompting allows us to design universal (i.e., data-agnostic) input prompting templates,
which have plug-and-play capabilities at test time to achieve desired model performance
without introducing much computation overhead. Although VP has been successfully ap-
plied to improving model generalization, it remains elusive whether and how it can be used
to defend against adversarial attacks. In this work, we leverage visual prompting to improve
adversarial robustness of a fixed, pre-trained model at test time. This work was previously
published at ICASSP 2023 and recognized as top 3% oral paper.
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Chapter 5. In this chapter, we explore how diffusion models (DMs) demonstrate robust-
ness by distinguishing adversarial examples outside their learned manifold. While DMs
are known for their generative abilities, this study specifically examines their use in detect-
ing anomalies caused by adversarial attacks, rather than enhancing adversarial robustness
in image classifiers. We systematically investigate the impact of adversarial examples and
evaluate the efficacy on widely used classifier datasets. The results highlight DMs’ signifi-
cant ability to effectively differentiate between normal and attacked images, offering strong
evidence that adversarial instances deviate from the DMs’ learned manifold. This work was
previously published at IJCNN 2024.
Chapter 6. Last but not least, we conclude this thesis with a final discussion summarizing
the most interesting findings regarding adversarial. We also draw some conclusions on what
might be promising future directions.



Chapter 2

Detecting Adversarial Images in the
Fourier-Domain

Despite the success of Convolutional Neural Networks (CNN) in many computer vision and
image analysis tasks, CNNs remain vulnerable against so-called adversarial attacks:

Small, crafted perturbations in the input images can lead to false predictions. Instead of
hardening a network, e.g. by adversarial training, we aim to detect attacks during inference
and reject manipulated inputs. In this context, we evaluate a practical adversarial example
detector termed SpectralDefense (SD) for CNNs. Utilizing the Fourier domain represen-
tations of input images and feature maps, we use two methods to distinguish benign test
samples from adversarial images on non-standard benchmarks: Our first method, SDBlackBox

(or short SDBB), employs the magnitude spectrum of the input images to detect an adversar-
ial attack. This simple can successfully detect adversarial perturbations of four out of six
commonly used attack methods without having access to the attacked network. The second
method, SDWhiteBox (or short SDWB) additionally extracts the magnitude of Fourier coeffi-
cients of feature-maps at different activation layers of the network. This extension further
improves adversarial detection rates on different attack methods and architectures and is
highly transferable between neural architectures and datasets.

This detection method is a simple alternative to adversarial training as suggested by
RobustBench [30], which has become a widely recognized benchmark for the adversar-
ial robustness of image classification networks. In its most commonly reported sub-task,
RobustBench evaluates and ranks the adversarial robustness of trained neural networks on
CIFAR-10 under AutoAttack [33] with L∞ perturbations limited to ϵ = 8/255. With Spec-
tralDefense, we can show its effectiveness on datasets with higher image dimensions or
number of classes and show that AutoAttack is not a stronger attack under the lens of the
Fourier transformation.

15
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2.1 BACKGROUND

In this section, we provide an overview of the countermeasures against adversarial examples.
Additionally, we introduce related literature and some of its most prominent work.

2.1.1 Preliminaries

Convolutional neural networks have significantly increased the accuracy in many computer
vision and image analysis tasks, especially in the field of image classification [68, 115]. To
date, the predictions of CNNs can easily be fooled, as shown byGoodfellow et al. [46]. Only
small changes in an image, sometimes merely one pixel, can force a CNN based classifier to
into a misclassification. These perturbed images are called “adversarial examples” [13, 13]
and have drawn a lot of attention recent years. One reason is the possible lack of security
theymight induce to practical use cases. For instance in image spam filters for emails, where
spam is embedded in an image [105]. Another example is if the attacker uploads videos on a
platform, i.e. Dropbox, where the content violates the rules of the platform. Though various
countermeasures have already been suggested in the literature, new defense mechanisms
have often been broken quickly again [17]. Adversarial defenses are mainly divided into two
categories. The first refers to various training techniques for improved model robustness
even under adversarial attacks. Yet, to successfully defend against orchestrated attacks,
vast amounts of training data are necessary. Methods belonging to the first category are
for example using JPEG compression [83], which causes artifacts and is equal to adding
noise to images. There are more sophisticated training paradigms that employ adversarial
examples during training to harden networks (e.g. [46,92]). The second option is to learn to
detect adversarial images and reject them. Several detection methods based on PCA [54,76]
or other statistical properties [73] have been introduced, but often they have been found to
be only effective on simple problems like the MNIST dataset [17].

Other approaches use a separate neural network to distinguish between adversarial and
non-adversarial images [96]. However, Carlini and Wagner [17] show that by extending the
attack, this additional neural network can be fooled as well. Recently, Tramér et al. [135]
showed that many defenses are not able to counteract against so-called adaptive attacks,
which are aware of the underlying defense method.

In this work, we evaluate two detection methods, called SpectralDefense [52], that uti-
lize the Fourier domain representation of an image or its feature maps. These methods are
able to decide whether the input is benign or an adversarial image. Employing the Fourier
spectrum to extract features imperceptible to human eyes has shown to be successful before,
for example, to detect Deepfakes [40, 63]. As the adversarial perturbations depend on and
interact with the image content, they are usually hard to grasp at a local pixel level. We
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argue that a global, space-invariant representation such as the Fourier spectrum facilitates
to discern of such subtle but systematic modifications.

The first SpectralDefense (SD) method SDBlackBox employs the magnitude Fourier spec-
trum (MFS) of an input image to detect an adversarial example. Unlike almost all existing
detection methods, SDBlackBox does not need any access to the underlying network, it only
depends on the input images. Our second Spectral Defense - SDWhiteBox extends this ap-
proach to the Fourier spectra of feature maps of the network and has, therefore, insights into
the architecture and weights.

We evaluate the proposed methods on the commonly used datasets CIFAR-10, CIFAR-
100 [67], CelebaHQ-4 [84] and ImageNet [26] with VGG-16 [124] and aWRN 28-10 [160]
target architectures in combination with a wide range of state-of-the-art attacks: FGSM [46],
BIM [70], PGD [92], AA [33], Deepfool [99] and C&W [14]. We compare our approaches
to the well-established local intrinsic dimensionality (LID) and M-D detectors.

2.1.2 Related Work

Improving the robustness and generalization ability of neural networks are fundamental
problems in machine learning and specifically in computer vision (e.g. [89,125]). Thereby,
several different aspects of robustness and generalization issues are addressed, from simple
distribution shifts between training and test data distributions over a network’s robustness
to severe image corruptions to adversarial examples. We will shortly introduce adversarial
attacks and its defend methods, i.e. adversarial training and detection.

Adversarial attacks. Let us divide the attack methods between blackbox and whitebox.
The direct access to the model gradient is unrealistic in many real-world applications, where
we need to perform attacks in the blackboxmanner such as a query search. Whitebox attacks
have access to the gradient. Except for the Square attack in Autoattack, we consult whitebox
attacks.

The susceptability of convolutional neural networks to distribution shifts [53, 72, 103,
106, 116] concerns input domain shifts by for example considering corrupted, noisy or
blurred data, as well as small changes in the input induced by adversarial attacks. These
are targeted and optimized such as to cause mis-classifications [10, 131] - and thereby re-
veal the model’s failure modes. In fact, most current CNN models can easily be fooled
by adversarial attacks such as [46, 99, 131]. The Fast Gradient Sign Method (FGSM) [46]
has been proposed in 2014 and was followed by more sophisticated methods like Projected
Gradient Descent (PGD) [92], DeepFool [99], Carlini and Wagner [14] or Decoupling Di-
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rection and Norm [114]. In 2020, [30] launched a benchmark website1 with the goal to
provide a standardized benchmark for adversarial robustness. The dominating adversarial
attack method is AutoAttack [33], which is an ensemble of four attacks: two variations of
the PGD [92] attack with cross-entropy loss (APGD-CE) and difference of logits ratio loss
(APGD-t), the targeted version of the FAB attack [32], and the blackbox Squares attack [4].
The AutoAttack benchmark provides several modes. The standard mode executes the four
attack methods consecutively. Only if one attack fails, the failed samples are passed to the
next attack method.

Adversarial training. Robust models can be built by extending the training data with ad-
versarial examples, yielding an adversarial training scheme. This idea of adversarial training
(AT) can be backtracked to FGSM [46] in 2015. An adversarial example is in this case a
subtly changed image causing a machine learning model to misclassify it. Consequently,
the achieved robustness by AT depends on the strength and type of the adversarial examples
used. For example, training on Goodfellow’s FGSM, which is a fast and non-iterative algo-
rithm, only provides robustness against non-iterative attacks, but needs for example early
stopping [111, 145] to provide robustness against for example PGD [92] attacks. Conse-
quently, [135] propose training on multi-step PGD adversaries, achieving state-of-the-art
(SOTA) robustness against L∞ attacks on MNIST and CIFAR-10 datasets. The impractical
computational complexity of AT makes this hardly affordable for large-scale problems such
as ImageNet.

Adversarial detection. Many recent publications have concentrated on adversarial attack
detection address to distinguish adversarial from natural images.

Hendrycks and Gimpel [54] showed that adversarial examples have higher weights for
larger principal components of the images’ decomposition and use this finding to train a de-
tector. Similarly, [76] and [9] also employ a principal component analysis (PCA) approach.
Based on the outputs of the neural networks’ final layer, [44] defines two metrics: 1) the
kernel density estimation and 2) the Bayesian neural network uncertainty to identify adver-
sarial perturbations. [81] proposed a method to detect adversarial examples by leveraging
steganalysis2 and estimating the probability of modifications caused by adversarial attacks.
Apart from the statistical analysis of the input images, adding a second neural network to
decide whether an image is an adversarial example is another possibility. [96] proposed such
a model that is trained on outputs of multiple intermediate layers. Our proposed detection
approach is different from the above - it leverages an images or its feature map’s frequency

1robustbench.github.io
2Steganography is the practice of concealing a message within an image.
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decomposition to discriminate between benign and adversarial images.

Supervised approaches. The local intrinsic dimensionality (LID) [91] and the maha-
lanobis distance (M-D) [73] are two strong and popular detectors:

• Mahalanobis distance detector: Lee et al. proposed a simple yet effective method
for detecting any adversarial samples. The confidence score is defined using the Ma-
halanobis distance w.r.t. the nearest class-conditional distribution, where its param-
eters are chosen as empirical class means and tied empirical covariance of training
samples. Lee et al. computed the empirical mean and covariance for each training
sample. Then, Lee et al. calculated the M-D distance between a test sample and its
nearest class-conditional Gaussian.

• Local Intrinsic Dimension (LID) detector: LID is a general-purpose metric that
measures the distance from an input to its neighbors. Ma et al. used the LID as a char-
acteristic of adversarial subspaces and identified attacks using this measure. Specifi-
cally, they propose to numerically approximate the LID for each image and layer of
benign and adversarial examples and train a logistic regression model to discriminate
between both.

Fourier analysis of adversarial attacks. Durall et al. [137] analyzed the Fourier represen-
tation of generated images and pointed out that CNN based generative models are not able
to reproduce specific frequency ranges in the Fourier domain. The investigated trade-offs
between Gaussian data augmentation and adversarial training [158] take a Fourier perspec-
tive on adversarial detection and observed that adversarial examples are not only a high-
frequency phenomenon. In their very recent paper, Ma et al. [90] assumed that internal
responses of Deep Neural Network (DNN) follow the generalized Gaussian distribution,
both for benign and adversarial examples (but with different parameters). They extract the
feature maps at each layer in the classification network and calculate the Benford-Fourier
coefficients for all of these representations. This concurrent approach is similar to the white-
box detector, but builds upon a more complicated representation.

2.2 CONTRIBUTIONS

In this context, the simple SDBlackBox is on-par with these detectors on images attacked by
FGSM, BIM, PGD and AA but less successful on DF and C&W, while the SDWhiteBox ap-
proach shows superior results in most evaluated scenarios. In detail, this paper provides:

• an investigation of the systematic changes in the frequency representation of images
altered by adversarial attacks.
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• an in-depth evaluation of SDBlackBox, a simple detector that only uses the input im-
ages, without any need of access to the network, employing the magnitude of Fourier
coefficients.

• an in-depth evaluation of SDWhiteBox, a more complex method that uses the magni-
tude Fourier spectrum of feature maps and further improves detection performance as
well as transferability of learned detectors with respect to datasets, architectures, and
attacks.

• an in depth investigation showing that adversarial samples generated by AutoAttack
with L∞, ϵ = 8/255 are modifying test images to the extent that these manipulations
can be so easily detected, which in conclusion, leads to our argument that this common
benchmark configuration should be abandoned.

This work consolidates our previous conference and workshop contributions published in
[52], [85] and [87] on Spectral Defenses and their analysis.

2.3 METHOD

In this section, we first summarize Fourier analysis as a tool to investigate the properties and
behavior of adversarial attacks. We provide an analysis of adversarial samples generated by
different attack methods in the Fourier domain. Last, we present and discuss the proposed
methods for adversarial attack detection.

2.3.1 Problem Definition

With the proposed method “SpectralDefense”, we address the detection of adversarial ex-
amples in the frequency space, in particular the prominent AutoAttack from RobustBench,
a standardized adversarial examples benchmark. Since, current adversarial attack methods
are usually desgined on the CIFAR-10 dataset, we investigate on other datasets with vari-
ous scales and number of classes. Given an adversarial attacked image x + δ ∈ RH×W×3,
and a pre-trained classifier f(θ), we want to filter detect the attacked images out before
the reach and fool the prep-trained classifier. Our goal is to show based on comprehensive
experiments, that the proposed attack AutoAttack is not outperforming the other attacks es-
pecially on higher image resolutions. Note that H and W are the height and width of the
data, respectively.



2.3. METHOD 21

2.3.2 Definition of the Fourier Transform

The Fourier transformation decomposes a function into its spatial and temporal frequency. A
signal sampled at equidistant points is known as discrete Fourier transformation (DFT). The
DFT of a signal with length N can be computed efficiently with the Fast Fourier Transfor-
mation (FFT) inO(N logN) [28] time. For a discrete 2D signal, like color image channels
or single CNN feature maps – ∈ [0, 1]N×N – the 2D discrete Fourier transform is defined as

F(X)(l, k) =
N∑

n,m=0

e−2πi lm+kn
N Xm,n, (2.1)

for l, k = 0, . . . N − 1, with complex valued Fourier coefficients F(X)(l, k). In the fol-
lowing, we will only utilize the magnitudes of Fourier coefficients

|F(X)(l, k)| =
√
Re (F(X)(l, k))2 + Im (F(X)(l, k))2 (2.2)

and show that this is sufficient to detect adversarial perturbations with high accuracy.

2.3.3 Analysis of Adversarial Samples in Frequency Space

Adversarial examples are not always visible in the spatial domain on the first sight, but is
significant in the Fourier domain. Therefore, we investigated each attack and additionally
Gaussian noise in fig. 2.1. The spectrum difference between and example and its attacked
counterpart shows differences in the Fourier domain for each attack.
The 1st column shows example of the original image followed by examples for the differ-
ent attack methods for a perturbation size of ϵ = 8/255. The 2nd column contains the 2D
Fourier spectrum of the (adversarial) examples. The 3rd column shows the average mean
power spectrum of the difference from 1000 examples and adversarial examples in the spa-
tial domain. The 4th column displays the mean of the difference from 1000 examples and
adversarial examples in the spatial domain. The last column shows the spectrum difference
between the normal example and the corresponding adversarial example. Both, DF and
C&W, have a noticeably smaller spectrum difference as the other attacks.

2.3.4 Detecting Adversarial Samples in the Frequency Domain

Based on the observation in the previous section, we propose a detection method, which
is based on the frequency-domain features originally introduced in [52], which we revise
in the next subsections. We explicitly propose two types of detectors in contrast to the
original [52]. First, a more general SDBlackBox based detector, which has zero knowledge
about the target network. Second, a SDWhiteBox detector which has access to the feature maps
of the target network, allowing it to observe the network response to input images. To detect
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perturbations, we found that the Fourier power spectrum provides sufficient information in
both cases. Finally, we neglect the phase-based features, which are also suggested in [52].

Blackbox detection - Fourier features of input images. Figure 2.1 and 2.2 gives a brief
visualization of the analysis of the changes in successfully perturbed images from AutoAt-
tack: While different attacks show distinct but randomly located change patterns in the
spatial domain (which makes them hard to detect), adversarial samples show strong, well-
localized signals in the frequency domain.
Hence, we extract and concatenate the 2D power spectrum of each color channel (see eq. (2.2)
and fig. 2.1 as feature representations of input images and use simple classifiers like Random
Forests (RF) and Logistic Regression (LR) to learn to detect perturbed input images.

Whitebox detection - Fourier features of feature-maps. In the whitebox (WB) case,
we apply the same method as in the blackbox approach, but extend the inputs to the feature
map responses of the target network to test samples. Since this extension will drastically
increase the feature space for larger target networks, we select only a subset of the available
feature maps. Note that the optimal selection of feature maps depends on the topology of
the target network. See table 2.5 in section 2.5.1 for details on our selection for CIFAR-10
and for an overview of all feature maps of all networks see section 2.5.4.

2.3.5 Measuring Adversarial Detection

The AutoAttack benchmark [33] uses a “Robust Accuracy” measure to compare different
methods (see table 2.1 for details). However, our approach does not fit this evaluation
scheme, since we are aiming to reject adversarial test samples instead of hardening the net-
works. Hence, we propose two different metrics: The adversarial succes rate (ASR) in
eq. (2.3) is calculated as

ASR =
# perturbed samples

# all samples
(2.3)

the fraction of successfully perturbed test images and provides a basis of the ability of attacks
to fool unprotected target networks. We measure the performance of our defense by the
adversarial success rate under detection (ASRD) in eq. (2.4). Here, we compute the ratio
of successful attacks under defense

ASRD =
# undetected perturbations

# all samples
= FNR× ASR, (2.4)

where FNR is the false negative rate of the applied detection algorithm. The lower the ASRD
rate, the more perturbed examples are conquered.
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Figure 2.1. Differences between spatial and frequency domain (see eq. (2.1)) are shown.
The Fourier power spectrum is plotted logarithmically.
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Table 2.1. RobustBench: The top-5 entries of CIFAR-10 leaderboard for L∞ in June 2021.

Rank Method
Standard
Accuracy

Robust
Accuracy

Extra
Data

Architecture Date

1 Fixing Data Augmentation to Improve Adversarial Robustness 92.23% 66.56% 3 WRN 70-16 Mar 2021
2 Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples 91.10% 65.87% 3 WRN 70-16 Oct 2020
3 Fixing Data Augmentation to Improve Adversarial Robustness 88.50% 64.58% 8 WRN 106-16 Mar 2021
4 Fixing Data Augmentation to Improve Adversarial Robustness 88.54% 64.20% 8 WRN 70-16 Mar 2021
5 Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples 89.48% 62.76% 3 WRN 28-10 Oct 2020
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Figure 2.2. Visualization of AutoAttack perturbations on a ResNet18 for CIFAR-10. The
top row: APGD-CE L∞ attack, bottom row: Squares L∞ attack. Left column shows the
spacial difference between a random test image from CIFAR-10 and its perturbation. The
center column depicts the mean of spacial differences over 1000 perturbed images. Right
column: accumulated magnitudes of the spectral differences over the same 1000 images.
While there are no obvious clues that can be obtained from the spacial domain, the fre-
quency representation of perturbations show significant and systematic changes which can
be exploited to detect attacks.

2.4 EXPERIMENTS

In this section, we present experimental results evaluating the effectiveness of the proposed
method. We first give a detailed description of the experimental setup and of the provided
datasets. Then, we present the results, and we discuss the possible interpretation. We dis-
tinguish between the blackbox and whitebox defense method.
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2.4.1 Experimental Setup

In this section, we explain our experimental setup and fig. 2.3 gives an overview: First of
all, we train a model on different datasets such as CIFAR-10, ImageNet and CelebaHQ-4,
so that we have different image size and class numbers. Then, we can select the benign data
and apply different attacks on it. From the attacked images, either we extract the features
(DFT) from the images directly or from the feature maps the neural networks. Based on
these extracted layer features, we compare our SDBlackBox and SDWhiteBox defenses. Based
on these features we train a binary classifier. For comparison, we choose LR and RF as
binary classifier. For all experiments (except we clarify it), we use 2000 samples and split
it into 80:20 for train and test set.

Figure 2.3. Overview of the experimental setup. We have a pre-trained classifier and gener-
ate benign dataset by just selecting the correct predicted images. These benign are attacked
and features are extracted to train a binary classifier. We define class 0 as benign data and
class 1 as the attacked counterparts.

2.4.2 Datasets

Since most of the successful methods ranked on Robustbench are based on a WRN 28-
10 [146, 160] architecture, we also conduct our evaluations on a vanilla WRN 28-10, if not
noted otherwise. We use the following datasets without applying adversarial examples or
other methods to increase the robustness during training.

• CIFAR-10. We train on the plain CIFAR-10 training set to a test accuracy of 96% on a
WRN 28-10 and apply the different attacks on the test set. We also have benchmarks
on VGG-16 [124], which reports a test-accuracy of 72%.

• CIFAR-100. The procedure is similar to CIFAR-10 dataset. We train on the CIFAR-
100 training set to a test-accuracy of 81% on a WRN 51-2 apply the attacks on the
test set. We also have benchmarks on the VGG-16 architecture, which reports a test-
accuracy of 83%. The main difference to the CIFAR-10 dataset is that CIFAR-100
has 100 classes instead of just 10.
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• ImageNet. For the benchmarks on ImageNet we used the pre-trained WRN 51-
2 [160] from the PyTorch library. As test set, we apply the official validation set
from ImageNet. The accuracy of this pre-trained model is about 77%.

• ImageNet32 (64 and 128.). This dataset [26] (and its variants 64×64 / 128×128px)
has the exact same classes and images as the original ImageNet with the only differ-
ence that the images are down sampled and trained on a WRN 28-10. Moreover, a
lower resolution of the images makes the classification task more difficult. The test-
accuracy of the ImageNet is for size 32px 60%, for size 64px 69% and for size 128px
86%.

• CelebaHQ32 (64 and 128.). This dataset [84] provides images of celebrities faces in
HQ quality (1024 × 1024px) whereas we down sampled it to 32, 64 and 128 pixels
width and height. In addition, we only selected the attributes “Brown Hair”, “Blonde
Hair”, “Black Hair” and “Gray Hair” to train a wide residual networks (WRN) 28-
10 with an accuracy of 91%. Due to the 4 classes, we call the dataset CelebaHQ-4
throughout this work. The data is unbalanced, where the class “Gray Hair” has least
samples.

2.4.3 Evaluation of Attack Success Rates

In this section, we will explain the measurement ASR. There is a relation between pertur-
bation size and how successful an attack can be applied.

Optimal perturbation size for FGSM, BIM, PGD and AutoAttack. The ASR for each
method are reported in table 2.12, along with the used perturbation size3 ϵ = 8/255. We
choose the perturbation sizes small enough, not to visually distort the images, but large
enough to be able to attack the network successfully. The perturbation size is smaller than
in many other publications, for example, [81, 90] this makes detection more difficult but is
also a more realistic case. In fig. 2.4 the influence of the perturbation size ϵ on the rate of
success is depicted for FGSM, BIM, PGD, AA attacks and the SDBlackBox detection method.
If the epsilon ϵ is too small, the attacks are only successful on a few samples and it is hard
to detect them.

3Perturbed images would round the adversarial changes to the next of 256 available bins in commonly used
8-bit per channel image encodings.



2.4. EXPERIMENTS 27

Figure 2.4. The rate of successfully attacked examples by FGSM, BIM, PGD, and AA
attacks together with the detection rate (in AUC) of the SDBlackBox detector depending on
epsilon ϵ. The attacks are applied on the CIFAR-10 test set with their default hyperparame-
ters in foolbox [109].

Success rates depending on image resolution. As shown in fig. 2.5a and 2.5b, we com-
pare attack rates over the three image sizes (s = {32, 64, 128}) on the datasets CelebaHQ and
ImageNet. The attacks FGSM, BIM, PGD and AA are sensitive to the image size. The used
detector has better results when the image size is increased. In contrast, DF and C&W keep
their attack strength over all image sizes s. Figure 2.7b and 2.7a show a subset of whitebox
and blackbox ASRD results for all attack methods on datasets with a resolution of 32× 32.
The full ASRD evaluation on all datasets is listed in table table 2.12 of the appendix. In both
cases, AutoAttack has very low ASRD rates, not only compared to other methods but also in
absolute values. In most cases, the probability of successful AA attacks is marginally low.

(a) On ImageNet. (b) On CelebaHQ-4.

Figure 2.5. ASRD with Random Forest classifiers on increasing resolutions.
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2.4.4 Results

Comparative results with other state-of-the-art detectors are reported in table 2.2, we present
the area-under-curve (AUC) score, false negative rate (FNR) and adversarial success rate
under detection (ASRD), on CIFAR-10 with theWRN 28-10 architecture. This architecture
is very often used for adversarial training as listed in RobustBench [30].

We compare our detection methods to two popular open-source detectors, local intrin-
sic dimensionality (LID) and mahalanobis distance (M-D) detection, as described in sec-
tion 2.1.2. The hyper-parameters for the LID methods are the batch size and the number of
neighbors, as suggested in [91] the batch size is set as 100, and the number of neighbors to
20.

For M-D we use the whole CIFAR-10 training set to calculate the mean and covariance.
We choose the magnitude individually for each attack method, 0.0002 for FGSM, 0.00005
for BIM and DF, 0.05 for AA, and 0.00001 for C&W.

For the gradient-based attacks (BIM and AA), blackbox and whitebox on the magnitude
Fourier spectrum (MFS) yields promising results. Opposed to blackbox, whitebox is able
to improve the result of the DF attack by using the features from the neural network. Note
that our blackbox is the only blackbox approach in table 2.2, while the defenses use layer
features maps.

On BIM attacked images even the SDBlackBox performs better than LID and M-D detec-
tors. The LID detector is also outperformed for BIM and PGD by the blackbox method. On
the DF attacked images, the LID detector is able to outperform in overall by using RF clas-
sifier. In the appendix table 2.15, we made another experiment with more samples, trained
the binary classifier with samples from the training set, and evaluated on samples on the test
set and we could see a better performance on the DF attacked samples.
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Table 2.2. Comparison of several known detectors with LID [91], M-D [73] (see sec-
tion 2.1.2) on CIFAR-10 and WRN 28-10 architecture. The full ASRD evaluation on all
datasets is listed in the table 2.12 of the appendix.

CIFAR-10 [67] onWRN 28-10 [160]

Defenses Attacks AUC FNR ASRD

SDBlackBox

FGSM 99.95 0.00 0.00
BIM 99.44 0.00 0.00
PGD 99.47 0.00 0.00
AA 99.79 0.00 0.00
DF 76.04 33.75 33.75
CW 60.17 41.25 41.25

SDWhiteBox

FGSM 100.00 0.00 0.00
BIM 99.87 0.00 0.00
PGD 99.87 0.25 0.25
AA 99.98 0.00 0.00
DF 94.77 4.75 4.75
CW 95.82 2.75 2.75

LID [91]

FGSM 98.90 7.50 3.57
BIM 98.61 7.89 7.89
PGD 97.31 10.00 10.00
AA 99.88 4.21 4.21
DF 86.74 25.53 25.53
CW 79.97 26.05 26.05

M-D [73]

FGSM 99.34 2.63 1.25
BIM 99.61 3.42 3.42
PGD 99.66 3.42 3.42
AA 100.00 0.00 0.00
DF 96.18 6.05 6.05
CW 96.54 6.05 6.05

2.5 ABLATION STUDY

In this section, we show additonal results to the experiment section. First, we study the
blackbox defense depending on the frequencies in the Fourier domain Then we study also
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the influence of the number of classes for the whitebox defense and also show the impor-
tance of the layer selection for the detection quality. Second, we study the AutoAttack’s
transferability on the epsilon sizes but data also datasets. Lastly, expand our ablation study
on transferability on different attacks.

2.5.1 Black- / WhiteBox Defense Properties

In this section, an ablation study of the SDBlackBox gives insights into the investigated fre-
quencies from the attack BIM, AA, and DF. The number of classes affects the detection.
Finally, an analysis is shown on AA and DF from each ReLU’s feature maps on two archi-
tecture, WRN 28-10 [160] and VGG-16 [124].

Influence of the frequency. An interesting question is which frequencies are affected by
an adversarial effect. Therefore, we analyze at which frequencies are attacked by BIM and
DF on CIFAR-10. As shown in table 2.3, we observe for both methods that by only looking
at the lowest or highest 25% frequencies the performance is low. When we only consider the
mid-frequency bands, we achieve a very good result. [66,158] already state that adversarial
examples are not a high-frequency issue, but rather a mid-frequency issue.

Influence of the number of classes. The number of classes of a dataset affect the detection
results. More classes can lower the detection effectiveness. In table 2.4, we trained several
WRN 28-10 models on the ImageNet32 dataset with different number of classes: 50, 100
and 250 are evaluated respectively. For the attack DF, the AUC values decreases, while the
ASRD value increases by the number of classes. The detection results of AA is confident
over the number of classes.
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Table 2.3. SDBlackBox detection results (AUC in %) by selected frequencies for AA and DF
attacks, using CIFAR-10 on WRN 28-10 net with ϵ = 8/255.

CIFAR-10 [67] onWRN 28-10 [160]

from / to 8 16 24 32

BIM

1 53.8 92.8 98.4 97.8
8 98.0 98.7 98.4
16 98.5 98.4
24 59.0

AA

1 68.5 92.8 99.7 99.7
8 99.9 99.9 99.9
16 99.9 100.0
24 76.8

DF

1 50.3 57.0 61.8 62.9
8 60.9 64.2 62.9
16 62.6 61.9
24 50.7

Table 2.4. Detection results of our SDWhiteBox detector. ImageNet32 is trained by different
number of classes. The more classes the classifier is trained on, the more difficult to detect
for our SDWhiteBox. We also refer to the appendix fig. 2.7b, which shows similar results.

WB defense on ImageNet32 trained onWRN 28-10

Classes Attacks
SDWhiteBox LID M-D

AUC ASRD AUC ASRD AUC ASRD

50
AA 100.0 0.00 100.0 0.00 100.0 1.24
DF 61.2 39.0 53.4 44.9 56.8 46.4

100
AA 100.0 0.00 100.0 0.00 99.94 0.00
DF 56.78 46.8 56.9 35.91 55.9 52.9

250
AA 100.0 0.00 100.0 0.00 100.0 0.31
DF 49.37 49.5 55.7 36.5 56.3 44.6
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Layer comparison. Adeep neural network is basically a composition of input, hidden and
output layers. whitebox defenses have access to the hidden layers and extract the feature
mapswhen a normal image or an attacked image is used as an input. The selection of features
is important for a successful SDWhiteBox detector. Therefore, we made two experiments: one
for the CIFAR-10vgg [124], the second on the WRN 28-10 [160] as shown in table 2.5,
where we also distinguish between VGG andWRN architecture. It is noticeable that a lower
accuracy of the WRN 28-10 architecture leads to lower quality of the feature, which are
needed for the detection. The VGG-16 architecture indeed does not show that high accuracy
but this does not influence the extracted features. We noted the layer number, which is
always a ReLU function for the VGG-16 architecture. For the WRN 28-10 architecture, we
always take the features map from the second ReLU function in each wide residual block.
The SDWhiteBox performs on all architectures very high for the last two extracted layers. A
more comprehensive layer analysis for WRN 28-10 is located in the appendix in table 2.10
for the magnitude.

Table 2.5. Detection rate as AUC (in %) using a LR classifier from the SDWhiteBox extracted
features from VGG-16 [124] and WRN 28-10 [160] network architectures activation layers
on CIFAR-10. The dimension of tensor per layer is also stated.

Layer
SDWhiteBox

WRN28-10, 96% and 87% ACC VGG-16, 83% ACC
AA DF AA DF AA DF

0 99.62 77.21 88.64 57.56 98.52 57.38
1 99.95 80.33 92.59 59.01 98.30 59.06
2 99.87 79.09 96.59 63.60 95.69 53.55
3 99.95 81.41 97.28 64.74 95.62 54.92
4 99.98 81.83 97.87 68.73 98.36 58.82
5 99.94 78.30 97.74 70.86 99.91 66.71
6 99.91 78.17 97.91 69.84 99.94 74.41
7 99.96 78.15 97.21 70.40 99.98 82.43
8 99.97 78.33 98.28 71.01 99.96 89.20
9 99.94 76.51 99.40 74.29 99.96 89.20
10 99.94 82.57 99.58 77.37 99.96 92.50
11 100.0 92.32 99.97 85.76 99.95 92.79
12 100.0 94.50 99.79 82.93 99.96 93.59
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2.5.2 AutoAttack’s Transferability

In this section, we study AutoAttack (AA) in more detail and the capability of attack and
dataset transfer. AutoAttack is detectable over different sizes of epsilons with our method.
The transferability of between AA, BIM and PGD is high. We also show the transferability
between different datasets and resolutions. Finally, we also show the transferability of AA
on different epsilon size in combination with different datasets and image resolutions. We
also evaluate AA on a more complex and higher resolution dataset, ImageNet.

AutoAttack for different choices of epsilons ϵ. AutoAttack (AA) is the latest attack
method. We also can report the best perturbation size is ϵ = 8/255. One might argue
that the low ASRD rates of AA might be caused by too high choice of ϵ. Hence, we re-
peat the full set of AutoAttack experiments for a full range of different ϵ-values. Figures
2.6a and 2.6b show a subset of these evaluation for ImageNet and CelebaHQ-4 on differ-
ent ϵ, image resolutions as well as SDBlackBox and SDWhiteBox detectors with Random Forests
(Comprehensive evaluation results in table 2.18 of the appendix.).

(a) On ImageNet. (b) On CelebaHQ.

Figure 2.6. ASRD of AA with random forest for a range of different ϵ and image sizes in
pixels.

Examining AA based on WRN 50-2 features. Table 2.6 shows the results for the indi-
vidual mode for ϵ = 8/255 and L∞-perturbations as well as a comparison to other detection
methods. Here, we used 1500 samples from each dataset, CIFAR-10 and ImageNet, for our
evaluation. The pre-trained model for ImageNet is from the PyTorch library. AA standard
is an ensemble of attacks and applies the attacks in a certain order. The first attack, apgd-ce,
is most promising one to detect, which is an advantage when using the standard mode. A
comprehensive evaluation of the standard mode is in the appendix table 2.14. Additionally,
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in table 2.11, we analyzed ReLU layers for our approaches. We take the same feature maps
as for AA standard.

Table 2.6. AUC score comparison of detection methods [52]. The attacks from AutoAt-
tack individual mode are applied. SDBlackBox and SDWhiteBox use random forest classifier as
in table 2.2 in the section 2.4.4.

AUT Score on each Attack Method from AutoAttack

Attack
Dataset Detector APGD-CE APGD-t FAB-t Square

CIFAR-10 [67] onWRN 28-10 [160]

SDBlackBox 99.90 99.95 73.36 86.77
SDWhiteBox 100.00 100.00 81.13 98.12

LID [91] 96.99 99.94 93.80 95.56
M-D [73] 100.00 99.43 96.59 97.59

ImageNet [115] onWRN 51-2 [160]

SDBlackBox 96.97 95.16 50.23 90.94
SDWhiteBox 99.97 99.97 49.60 99.05

LID [91] 99.68 83.94 55.57 67.73
M-D [73] 99.89 99.99 99.12 98.95

2.5.3 Transferability of other Attack Methods

The transferability within attacks or even datasets is very interesting for real world applica-
tions. The attack methods and datasets might be unknown and thus it is a desired feature that
a detector trained on one attack method performs well for a different attack. Furthermore,
we also show the transferability from the epsilon size 8/255↔ 1/255 and 1/255↔ 8/255

on AA. Similar to datasets, where a high transferability of different datasets can increase
tremendously effectiveness of an attack.

Attack transferability. Attack transfers on SDBlackBox and SDWhiteBox. In table 2.7, we
compare three datasets with the same image size, but different dataset complexity by the
classes. We can report a high transferability between the gradient-based attacks BIM, PGD
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Table 2.7. Attack transfer from different attacks on the datasets CIFAR-10, ImageNet32 and
CelebaHQ32-4 trained on WRN 28-10 [160].

Attack
Transfer

CIFAR-10 [67] ImageNet32 [26] CelebaHQ32-4 [85]
AUC FNR ASRD AUC FNR ASRD AUC FNR ASRD

SDBlackBox

BIM→ PGD 98.57 0.00 0.00 86.73 14.33 14.33 85.24 31.33 31.33
BIM→ AA 99.29 0.00 0.00 85.17 9.67 9.67 82.95 19.67 19.67
PGD→ AA 99.31 0.00 0.00 85.13 9.33 9.30 82.47 23.00 23.00

SDWhiteBox

BIM→ PGD 98.29 1.33 1.33 100.0 0.00 0.00 95.53 13.67 13.66
BIM→ AA 99.33 0.00 0.00 99.98 0.33 0.33 96.78 5.00 5.00
PGD→ AA 99.52 0.00 0.00 99.99 0.33 0.33 95.52 6.00 6.00

and AA. Both SDBlackBox and SDWhiteBox show high transferability between these attacks.
The AUC values stay confident over 90% on CIFAR-10 and ImageNet32 SDWhiteBox.

Dataset transferability. The dataset transferability shows strong results across all attack
methods in table 2.8. We compare with the image sizes 32×32 and 64×64 px. Compared to
table 2.7 the AUC-score decreased far more but still the ASRD depicts high transferability.

Table 2.9. SDBlackBox dataset transfer across different datasets using random forest classifier.

RF AUC FNR ASRD AUC FNR ASRD

From→ To CIFAR-10→ Imagenet32 CIFAR-10→ CelebaHQ32-4

FGSM 88.14 0.00 0.00 47.01 0.00 0.00
BIM 61.55 1.67 1.67 47.06 21.00 21.00
PGD 62.06 2.33 2.33 47.31 19.67 19.67
AA 66.64 1.00 1.00 45.86 14.33 14.33
DF 49.58 2.00 2.00 49.98 2.33 2.33
CW 50.54 10.33 10.33 50.23 32.00 32.00

From→ To ImageNet32→ CelebaHQ32 ImageNet64→ CelebaHQ64-4

FGSM 57.26 0.67 0.63 75.20 0.00 0.00
BIM 52.67 3.00 3.00 62.91 0.00 0.00
PGD 54.08 1.67 1.67 65.27 0.00 0.00
AA 54.39 2.00 2.00 63.67 0.00 0.00
DF 51.18 47.00 47.00 48.82 48.00 48.00
CW 48.54 50.00 50.00 48.42 46.33 46.33
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Table 2.8. SDBlackBox dataset transfer across different datasets using logistic regression clas-
sifier.

LR AUC FNR ASRD AUC FNR ASRD

From→ To CIFAR-10→ ImageNet32 CIFAR-10→ CelebaHQ32-4

FGSM 93.41 0.00 0.00 53.83 0.00 0.00
BIM 68.66 0.00 0.00 58.25 0.00 0.00
PGD 68.22 0.00 0.00 66.14 0.00 0.00
AA 72.87 0.00 0.00 55.69 0.00 0.00
DF 50.18 1.67 1.67 50.48 0.00 0.00
CW 50.12 2.33 2.33 50.54 0.00 0.00

From→ To ImageNet32→ CelebaHQ32-4 ImageNet64→ CelebaHQ64-4

FGSM 58.82 4.00 3.75 73.42 0.67 0.59
BIM 56.95 0.33 0.33 67.31 0.00 0.00
PGD 56.12 0.33 0.33 65.44 0.33 0.33
AA 56.85 1.67 1.67 68.46 0.33 0.33
DF 50.44 18.00 18.00 50.33 34.33 34.33
CW 50.21 35.00 35.00 50.16 4.00 4.00

2.5.4 Analyzing on all Layers on all Architectures and Datasets

In this section, we analyze all layers on all architectures and dataset. Moreover, we distin-
guish between logistic regression (LR) and random forest (RF). The top 10% of the AUC
or ASRD values per attack are highlighted in the colors green (AUC) and blue (ASRD).
The layers across gradient-based attacks are bold faced. See Section 2.4 for details of the
experimental setup.
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Table 2.10. SDWhiteBox investigation of each ReLU layer of the WRN 28-10 trained on
CIFAR-10. The top 10% of the AUC or ASRD values per attack are highlighted in the
colors green (AUC) and blue (ASRD). For the LR classifier, we select layer 4 for for attacks
FGSM - AA and layer 11 for DF and C&W.

CIFAR-10 [67] onWRN 28-10 [160]

FGSM [46] BIM [70] PGD [92] AA [33] DF [99] CW [14]
Layers

AUC ASRD AUC ASRD AUC ASRD AUC ASRD AUC ASRD AUC ASRD

SDWhiteBox - Logistic Regression

0 100.00 0.00 99.89 1.40 99.55 1.15 99.91 0.67 79.82 29.33 65.23 40.67
1 100.00 0.00 99.99 0.35 99.72 0.87 99.89 0.00 84.17 28.33 72.05 34.33
2 100.00 0.00 100.00 0.00 99.84 0.29 99.98 0.33 84.23 29.67 70.95 36.33
3 100.00 0.00 99.99 0.35 99.92 0.29 100.00 0.00 86.25 26.00 77.06 31.00
4 100.00 0.00 100.00 0.00 99.86 0.00 99.99 0.00 86.76 25.33 76.12 33.00
5 100.00 0.00 99.99 0.35 99.86 0.58 99.99 0.33 84.64 30.00 72.37 37.00
6 100.00 0.00 99.94 0.70 99.87 0.29 100.00 0.00 82.60 32.67 70.96 37.00
7 100.00 0.00 99.91 1.05 99.78 1.73 100.00 0.00 82.49 30.00 70.37 38.33
8 100.00 0.20 99.96 0.70 99.92 0.58 100.00 0.00 82.07 30.33 71.17 37.67
9 99.94 0.00 99.88 1.05 99.55 1.73 100.00 0.00 81.93 29.00 72.27 34.00
10 99.80 0.63 99.72 0.70 99.79 2.31 100.00 0.00 85.30 24.67 77.74 33.33
11 99.74 0.00 99.93 1.75 99.81 2.89 100.00 0.00 93.52 18.33 89.54 18.00
12 99.23 1.40 98.82 4.21 98.90 3.18 100.00 0.00 92.96 14.33 88.11 18.67

SDWhiteBox - Random Forest

0 99.98 0.00 99.80 0.00 99.44 0.29 99.69 0.33 77.62 34.67 62.39 44.33
1 99.99 0.00 99.91 0.00 99.73 0.29 99.89 0.00 80.91 32.33 67.95 39.00
2 99.97 0.00 99.87 0.00 99.57 0.29 99.83 0.00 79.12 34.33 65.35 43.00
3 100.00 0.00 99.98 0.00 99.72 0.00 99.95 0.00 81.53 29.33 71.86 36.67
4 99.98 0.00 99.96 0.00 99.75 0.58 99.91 0.00 81.50 31.67 69.03 38.00
5 99.83 0.60 99.62 1.05 98.97 2.31 99.81 1.00 78.30 32.00 60.61 38.33
6 99.80 1.00 99.50 1.05 98.52 2.31 99.82 0.33 77.96 31.67 61.68 44.33
7 99.79 0.80 99.58 1.05 98.55 3.18 99.92 0.67 78.00 33.33 62.86 33.67
8 99.82 0.00 99.34 2.46 98.54 3.47 99.86 0.00 78.03 33.67 63.41 42.00
9 99.60 0.40 99.02 5.96 97.73 9.53 99.82 2.33 77.10 37.33 66.55 34.00
10 99.02 0.63 99.34 3.86 98.88 5.20 99.95 1.33 82.53 31.33 82.06 18.00
11 99.33 0.40 99.54 1.75 99.25 2.89 100.00 0.00 92.13 9.33 89.50 13.00
12 99.56 0.60 99.65 2.11 99.20 2.89 100.00 0.00 94.57 5.00 93.90 5.33
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Table 2.11. SDWhiteBox investigation of each ReLU layer of the WRN 51-2 [160] trained on
ImageNet [115]. The top 10% of the AUC or ASRD values per attack are highlighted in
the colors green (AUC) and blue (ASRD). For the LR classifier, we select layer 13 for all
attacks.

ImageNet [115] onWRN 50-2 [160]

FGSM [46] BIM [70] PGD [92] AA [33] DF [99] CW [14]
Layers

AUC ASRD AUC ASRD AUC ASRD AUC ASRD AUC ASRD AUC ASRD

SDWhiteBox - Logistic Regression

0 99.31 1.52 95.37 9.12 93.85 10.53 98.37 2.81 50.22 47.02 51.04 43.86
1 100.00 0.00 99.86 1.40 99.78 2.11 99.98 0.00 52.47 53.33 55.63 51.93
2 100.00 0.00 99.87 1.05 99.63 1.75 100.00 0.00 53.80 47.72 56.41 44.56
3 100.00 0.00 99.85 0.35 99.77 1.05 100.00 0.00 56.74 43.16 60.02 41.05
4 99.97 0.30 99.98 0.70 99.95 1.40 100.00 0.00 63.85 37.19 68.11 34.04
5 99.98 0.30 99.98 0.70 99.98 1.05 100.00 0.00 63.74 40.70 67.63 35.79
6 100.00 0.00 99.98 0.70 99.98 0.70 100.00 0.00 63.23 42.81 67.51 35.09
7 100.00 0.00 99.98 0.70 99.97 1.40 100.00 0.00 63.38 41.05 67.32 36.49
8 100.00 0.00 99.96 0.70 99.96 0.70 100.00 0.00 59.03 36.84 63.78 36.14
9 100.00 0.00 99.96 0.70 99.92 1.05 100.00 0.00 58.90 37.19 63.85 33.68
10 100.00 0.00 99.96 1.05 99.92 1.40 100.00 0.00 59.07 36.84 63.01 35.44
11 100.00 0.00 99.96 1.05 99.91 1.40 100.00 0.00 59.06 40.00 63.28 35.44
12 100.00 0.00 99.97 1.05 99.92 1.40 100.00 0.00 59.08 39.30 63.01 36.84
13 100.00 0.00 99.99 0.70 99.96 1.05 100.00 0.00 58.87 39.30 63.58 35.09
14 99.97 0.00 99.86 1.75 99.85 1.40 100.00 0.00 56.85 40.70 60.44 44.56
15 99.95 0.00 99.91 1.05 99.98 0.35 100.00 0.00 57.22 41.75 60.12 43.51
16 97.23 8.54 97.56 9.12 98.92 6.67 100.00 0.00 59.76 42.11 62.53 41.05

SDWhiteBox - Random Forest

0 99.13 0.30 93.68 2.11 94.44 1.75 97.51 0.00 49.78 52.98 50.53 48.07
1 98.52 3.05 96.60 4.91 93.04 8.77 98.94 0.00 49.84 55.44 50.57 50.88
2 99.41 1.83 96.90 3.51 95.04 6.32 99.45 0.35 48.42 53.68 49.28 51.93
3 99.41 1.22 95.21 8.77 92.53 10.18 99.18 0.70 48.90 51.93 51.03 51.58
4 99.54 0.61 99.01 1.75 98.75 1.75 99.87 0.35 51.14 51.23 53.02 43.51
5 99.72 0.61 99.06 1.75 99.01 1.40 99.95 0.35 50.08 51.93 51.31 52.28
6 99.79 1.22 99.40 2.46 98.89 1.75 99.92 0.35 51.02 52.28 49.48 50.53
7 99.80 1.22 99.36 2.46 99.10 0.70 99.96 0.35 48.22 55.09 50.17 51.23
8 99.99 0.00 99.88 1.05 99.66 2.46 100.00 0.00 49.28 52.63 56.84 45.96
9 99.99 0.30 99.93 0.35 99.78 1.75 100.00 0.00 51.19 43.16 54.60 46.32
10 99.99 0.61 99.92 0.35 99.55 1.40 100.00 0.00 53.25 49.82 53.07 46.67
11 99.99 0.91 99.92 0.70 99.50 2.46 100.00 0.00 50.55 49.82 52.16 47.37
12 99.98 0.61 99.94 0.70 99.59 1.75 100.00 0.00 52.83 47.02 52.65 46.32
13 99.97 1.22 99.86 0.35 99.59 2.81 100.00 0.00 51.83 45.61 50.50 48.42
14 99.97 0.00 99.42 2.46 99.22 4.91 100.00 0.00 52.95 48.07 52.95 51.58
15 99.93 0.30 99.70 2.46 99.76 2.46 100.00 0.00 52.81 49.47 54.69 45.61
16 91.60 13.42 98.25 4.56 99.22 1.75 100.00 0.00 57.18 39.65 60.49 43.16
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2.5.5 Comprehensive Study on Vanilla Classification Models

In this section, we show our results of our methods SDBlackBox (or short SDBB) and SDWhiteBox

(or short SDWB) on different models and datasets. In table 2.12 is a comprehensive study
on WRN 28-10 of our methods. The SDBlackBox is effective on the attacks FGSM, BIM,
PGD and AA.While the SDWhiteBox performs better on DF and C&W on smaller resolutions.
Additionally, we plotted these insights in fig. 2.7a and fig. 2.7b. In table 2.15, we show that
the number of classes have an impact of detection performance from the adaptive attack DF.
Lastly, we expand our study on the VGG-16 [124] trained on CIFAR-10 and CIFAR-100
and the pre-trained model WRN 50-2 [160] trained on ImageNet and show that our defenses
are model independent.

(a) SDBlackBox. (b) SDWhiteBox.

Figure 2.7. ASRD comparison using a random forest classifier on different 32×32 datasets.
The lower the ASRD value, the less adversarial examples have successfully fooled the
classifier. SDWhiteBox detector shows in general better ASRD results as SDBlackBox detec-
tor. SDWhiteBox detector [52]: AutoAttack are so easy to detect. ImageNet32 has the most
classes and therefore is harder to detect for DF and C&W.
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Table 2.12. Results of the proposed detectors on different attacks with the hyper-parameter
ϵ (default in most publications is ϵ = 8/255) and test sets. ASR=Attack Success Rate,
ASRD=Attack Success Rate under Detection. A logistic regression and random forest clas-
sifier obtains SDBlackBox and SDWhiteBox results on all datasets. AUC and the false negative
rate (FNR) are used to report the detection performance. See Section 2.4 for details of the
experimental setup.

Dataset Attack ASR
SDBlackBox SDWhiteBox

AUC FNR ASRD AUC FNR ASRD
LR RF LR RF LR RF LR RF LR RF LR RF

WRN 28-10 . Selected Layers for FGSM - AA: Layer 3, 4; DF - CW: Last layer with ReLU activation function. (see table 2.5)

CIFAR-10

FGSM 50.88±0.0 99.57±0.0 99.79±0.0 1.18±0.0 0.00±0.0 0.6±0.0 0.00±0.0 100.0±0.0 100.0±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
BIM 100.0±0.0 96.99±0.0 99.67±0.0 7.33±0.0 0.00±0.0 7.33±0.0 0.00±0.0 100.0±0.0 99.99±0.0 0.26±0.0 0.00±0.0 0.26±0.0 0.00±0.0
PGD 100.0±0.0 97.43±0.1 99.57±0.0 9.33±0.5 0.00±0.0 9.33±0.5 0.00±0.0 99.99±0.0 99.96±0.0 0.26±0.0 0.26±0.0 0.26±0.0 0.26±0.0
AA 100.0±0.0 96.66±0.2 99.31±0.0 7.67±2.2 0.00±0.0 7.67±2.2 0.00±0.0 100.0±0.0 100.0±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
DF 100.0±0.0 59.00±0.4 62.87±1.3 47.33±2.3 43.67±12. 47.33±2.3 43.67±12. 93.66±1.8 94.82±2.5 10.33±26. 7.33±7.4 10.33±26. 7.33±9.4
CW 100.0±0.0 51.41±0.1 50.31±0.0 54.33±4.2 42.67±25. 54.33±4.2 42.67±25. 91.48±4.8 96.44±0.8 11.67±22. 2.33±0.5 11.67±22. 2.33±0.5

CIFAR-100

FGSM 84.50±0.0 98.74±0.0 99.97±0.0 6.67±0.0 0.00±0.0 5.64±0.0 0.00±0.0 100.0±0.0 100.0±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
BIM 99.95±0.0 95.55±0.0 98.88±0.0 10.33±0.0 0.00±0.0 10.32±0.0 0.00±0.0 99.92±0.0 99.49±0.0 0.79±0.0 0.26±0.0 0.79±0.0 0.26±0.0
PGD 99.85±0.0 95.65±0.5 99.48±0.0 10.0±6.8 0.00±0.0 9.98±6.8 0.00±0.0 99.97±0.0 99.68±0.0 1.32±0.1 0.79±0.0 1.32±0.1 0.79±0.0
AA 100.0±0.0 97.6±0.8 99.8±0.0 7.33±2.5 0.67±0.1 7.33±2.5 0.67±0.1 99.98±0.0 99.73±0.0 0.26±0.0 0.53±0.2 0.26±0.0 0.53±0.2
DF 100.0±0.0 50.00±0.0 49.98±0.0 49.67±4.9 46.00±7.7 49.67±4.9 46.00±7.7 78.51±1.0 76.1±0.3 32.0±4.2 23.67±6.4 32.0±4.2 23.67±6.4
CW 100.0±0.0 50.07±0.0 49.92±0.0 49.67±3.3 10.33±0.8 49.67±3.3 10.33±0.8 72.74±1.5 70.08±0.2 34.33±1.6 30.00±2.7 34.33±1.6 30.00±2.7

CelebaHQ32-4

FGSM 98.24±0.0 77.65±4.1 78.18±2.2 31.71±0.9 24.39±1.6 31.15±0.8 23.96±1.5 99.74±0.1 97.88±0.1 2.79±0.4 3.48±1.0 2.74±0.3 3.42±0.9
BIM 100.0±0.0 69.89±2.7 73.66±0.2 39.59±29.0 27.65±0.0 39.59±29.0 27.65±0.0 99.19±0.0 98.4±0.0 2.73±1.6 2.82±0.5 2.73±1.6 2.82±0.5
PGD 99.93±0.0 65.19±1.7 72.18±2.9 43.34±18.7 29.01±0.5 43.31±18.6 28.99±0.5 98.7±0.1 95.09±0.8 6.48±1.6 9.22±1.5 6.48±1.6 9.21±1.5
AA 100.0±0.0 77.05±1.2 80.6±0.2 31.67±3.9 21.67±3.7 31.67±3.9 21.67±3.7 99.74±0.0 98.67±0.1 1.05±0.1 3.95±0.6 1.05±0.1 3.95±0.6
DF 100.0±0.0 59.05±7.6 60.47±0.0 51.05±0.3 52.00±18. 39.67±31. 52.00±18. 86.25±8.4 93.13±0.7 23.33±27. 9.67±1.1 23.33±27. 9.67±1.1
CW 100.0±0.0 55.76±4.5 57.95±0.1 50.23±0.0 52.33±1.0 44.33±17. 52.33±1.0 86.43±12. 98.67±0.5 19.33±30. 0.67±0.5 19.33±30. 0.67±0.5

CelebaHQ64-4

FGSM 100.0±0.0 90.67±1.1 86.29±0.8 18.09±2.5 9.56±1.3 18.09±2.5 9.56±1.3 100.0±0.0 100.0±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
BIM 100.0±0.0 86.46±0.2 84.86±2.1 17.75±20.4 10.58±5.6 17.75±20.4 10.58±5.6 100.0±0.0 100.0±0.0 0.00±0.1 0.00±0.0 0.00±0.1 0.00±0.0
PGD 100.0±0.0 79.91±1.0 78.59±2.0 24.91±14.5 19.11±3.0 24.91±14.5 19.11±3.0 100.0±0.0 99.96±0.0 0.00±0.1 0.00±0.0 0.00±0.1 0.00±0.0
AA 100.0±0.0 91.47±1.4 92.87±0.6 14.33±7.2 5.67±1.0 14.33±7.2 5.67±1.0 99.63±0.0 100.0±0.0 2.67±0.2 0.00±0.0 2.67±0.2 0.00±0.0
DF 100.0±0.0 50.60±0.0 49.84±0.0 54.00±2.3 55.00±9.0 54.00±2.3 55.00±9.0 87.11±4.4 95.30±0.2 15.67±4.2 1.00±0.6 15.67±4.2 1.00±0.6
CW 100.0±0.0 50.60±0.0 49.53±0.1 50.00±1.8 47.33±7.2 50.00±1.8 47.33±7.2 84.77±5.2 96.21±0.0 19.33±3.9 0.33±0.8 19.33±3.9 0.33±0.8

CelebaHQ128-4

FGSM 95.74±0.0 99.91±0.0 99.97±0.0 2.00±0.1 0.00±0.0 1.91±0.1 0.00±0.0 99.99±0.0 100.0±0.0 0.67±0.0 0.00±0.0 0.64±0.0 0.00±0.0
BIM 99.95±0.0 99.23±0.1 99.98±0.0 2.00±0.1 0.33±0.0 2.00±0.1 0.33±0.0 99.65±0.0 100.0±0.0 1.33±0.0 0.00±0.0 1.33±0.0 0.00±0.0
PGD 99.76±0.0 99.78±0.1 99.96±0.0 1.33±2.3 0.00±0.1 1.33±2.2 0.00±0.1 99.97±0.0 100.0±0.0 1.33±0.1 0.00±0.0 1.33±0.1 0.00±0.0
AA 100.0±0.0 98.08±0.0 99.64±0.0 3.00±3.9 0.00±0.1 3.00±3.9 0.00±0.1 99.89±0.0 100.0±0.0 1.33±0.2 0.00±0.0 1.33±0.2 0.00±0.0
DF 100.0±0.0 55.96±1.9 54.48±1.7 44.33±16 46.67±3.3 44.33±16 46.67±3.3 75.50±5.8 90.93±0.3 30.00±15. 4.00±0.0 30.00±15. 4.00±0.0
CW 100.0±0.0 50.82±0.0 50.35±0.0 47.33±7.6 49.00±1.9 47.33±7.6 49.00±1.9 75.75±3.7 88.95±0.6 29.67±4.3 5.00±0.3 29.67±4.3 5.00±0.3

Imagenet32

FGSM 94.35±0.3 95.97±0.0 97.94±0.1 6.65±0.4 1.02±0.2 6.27±0.3 0.96±0.2 100.0±0.0 100.0±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
BIM 100.0±0.0 69.67±2.8 80.31±6.2 35.38±2.5 14.62±2.8 35.38±2.5 14.62±2.8 100.0±0.0 99.99±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
PGD 100.0±0.0 69.94±3.9 79.46±4.0 34.1±0.3 15.13±1.2 34.1±0.3 15.13±1.2 100.0±0.0 99.99±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
AA 100.0±0.0 80.23±0.5 87.95±2.0 23.8±1.1 9.62±3.1 23.8±1.1 9.62±3.1 100.0±0.0 99.93±0.0 0.00±0.0 0.76±0.1 0.00±0.0 0.76±0.1
DF 100.0±0.0 50.00±0.0 50.02±0.0 53.31±0.1 54.17±0.8 53.31±0.1 54.17±0.8 57.77±0.7 53.44±4.6 47.67±2.3 53.33±18. 47.67±2.3 53.33±18.
CW 100.0±0.0 50.10±0.0 50.01±0.0 0.28±516 41.67±5.4 0.28±516 41.67±5.4 56.79±0.9 52.82±2.9 42.33±7.5 47.67±3.6 42.33±7.5 47.67±3.6

ImageNet64

FGSM 100.0±0.0 93.78±0.0 98.26±0.1 12.00±0.9 0.00±0.1 12.00±0.9 0.00±0.1 100.0±0.0 99.99±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
BIM 100.0±0.0 80.00±0.6 89.64±1.0 26.33±2.7 3.33±2.3 26.33±2.7 3.33±2.3 99.91±0.0 99.92±0.0 0.33±0.0 0.00±0.0 0.33±0.0 0.00±0.0
PGD 100.0±0.0 80.70±0.1 89.11±0.3 25.00±4.5 4.33±1.2 25.00±4.5 4.33±1.2 99.96±0.0 99.84±0.0 0.33±0.0 0.00±0.0 0.33±0.0 0.00±0.0
AA 100.0±0.0 82.20±0.6 89.50±0.2 21.33±4.7 4.33±0.0 21.33±4.7 4.33±0.0 100.0±0.0 99.99±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
DF 100.0±0.0 50.00±0.0 50.03±0.0 51.33±6.2 48.33±1.4 51.33±6.2 48.33±1.4 58.17±0.2 48.74±6.9 43.67±0.8 54.67±29. 43.67±0.8 54.67±29.
CW 100.0±0.0 50.16±0.0 50.01±0.0 50.99±30. 46.00±0.2 50.99±30. 46.00±0.2 57.01±0.1 49.71±6.9 42.0±10.3 51.33±6.8 42.0±10.3 51.33±6.8

ImageNet128

FGSM 100.0±0.0 94.89±0.8 98.99±0.0 10.00±4.9 0.00±0.0 10.00±4.9 0.00±0.0 100.0±0.0 100.0±0.0 0.00±0.0 0.00±0.1 0.00±0.0 0.00±0.1
BIM 100.0±0.0 90.24±1.3 98.91±0.0 20.33±10.3 1.33±0.1 20.33±10.3 1.33±0.1 100.0±0.0 99.97±0.0 0.00±0.0 0.33±0.0 0.00±0.0 0.33±0.0
PGD 100.0±0.0 89.71±0.6 98.38±0.0 19.00±4.8 2.67±0.1 19.00±4.8 2.67±0.1 100.0±0.0 99.96±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
AA 100.0±0.0 82.40±1.4 93.26±0.2 18.67±2.5 0.67±0.0 18.67±2.5 0.67±0.0 99.9±0.0 99.88±0.0 0.00±0.0 0.33±0.1 0.00±0.0 0.33±0.1
DF 100.0±0.0 50.00±0.0 50.00±0.0 50.33±19. 51.67±0.9 50.33±19. 51.67±0.9 56.08±1.0 48.61±0.0 41.00±9.4 52.33±0.1 41.00±9.4 52.33±0.1
CW 100.0±0.0 50.16±0.0 50.00±0.0 25.0±33. 41.33±4.3 25.0±33. 41.33±4.3 57.52±2.1 50.15±0.1 39.33±6.0 55.67±6.0 39.33±6.0 55.67±6.0
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Table 2.13. Analogous to table 2.12, we evaluated our proposed detectors on the by using
a VGG-16 model. See Section 2.4 for details of the experimental setup.

VGG-16 [124]. Selected layers for FGSM - AA [52] are the feature maps of the last 6 and for C&W and DF [52] the last ReLU activation function(s).

Dataset Attack ASR
SDBlackBox SDWhiteBox

AUC FNR ASRD AUC FNR ASRD
LR RF LR RF LR RF LR RF LR RF LR RF

CIFAR-10 [67]

FGSM 92.6±0.3 99.57±0.0 99.79±0.0 1.18±0.0 0.0±0.0 1.09±0.0 0.0±0.0 100.0±0.0 99.83±0.0 0.0±0.0 0.78±0.0 0.0±0.0 0.72±0.0
BIM 100.0±0.0 96.99±0.0 99.67±0.0 7.33±0.0 0.0±0.0 7.33±0.0 0.0±0.0 99.93±0.0 99.52±0.0 0.67±0.0 1.67±0.0 0.67±0.0 1.67±0.0
PGD 100.0±0.0 97.43±0.1 99.57±0.0 9.33±0.5 0.0±0.0 9.33±0.5 0.0±0.0 99.94±0.0 98.97±0.0 0.33±0.1 2.67±0.1 0.33±0.1 2.67±0.1
AA 100.0±0.0 96.66±0.2 99.31±0.0 7.67±2.2 0.0±0.0 7.67±2.2 0.0±0.0 99.94±0.0 99.2±0.0 0.33±0.0 0.33±0.5 0.33±0.0 0.33±0.5
DF 100.0±0.0 72.52±0.0 77.03±0.0 36.67±0.9 34.0±1.0 36.67±0.9 34.0±1.0 93.19±0.0 94.52±0.0 14.67±0.0 5.33±0.5 14.67±0.0 5.33±0.5
CW 100.0±0.0 57.34±0.1 60.77±0.4 45.0±0.5 44.0±2.5 45.0±0.5 44.0±2.5 88.28±0.1 94.29±0.0 19.0±0.1 5.67±0.2 19.0±0.1 5.67±0.2

CIFAR-100 [67]

FGSM 72.27±0.0 98.24±0.2 99.66±0.0 5.50±0.5 0.00±0.0 3.97±0.3 0.00±0.0 98.46±0.1 99.70±0.0 4.00±0.5 0.00±0.0 2.89±0.3 0.00±0.0
BIM 98.19±0.0 94.24±1.8 98.78±0.4 11.25±1.4 0.00±0.0 11.05±1.4 0.00±0.0 94.50±2.0 98.87±0.4 10.50±2.1 0.00±0.0 10.31±2.0 0.00±0.0
PGD 98.00±0.0 95.25±1.7 99.22±0.1 10.00±1.1 0.00±0.0 9.80±1.0 0.00±0.0 96.22±2.3 99.05±0.1 9.75±3.6 0.00±0.0 9.56±3.4 0.00±0.0
AA 100.0±0.0 95.74±0.0 99.32±0.0 10.00±0.5 0.00±0.0 10.00±0.5 0.00±0.0 95.62±0.0 99.73±0.0 9.75±0.5 0.00±0.0 9.75±0.5 0.00±0.0
DF 100.0±0.0 55.89±0.0 67.71±0.0 53.00±6.1 38.50±1.5 53.00±6.1 38.50±1.5 71.66±0.8 83.56±3.9 36.00±0.4 22.33±7.2 36.00±0.4 22.33±7.2
CW 100.0±0.0 52.14±0.0 57.55±0.6 54.25±5.5 39.75±4.8 54.25±5.5 39.75±4.8 72.32±1.0 84.80±1.9 37.67±5.5 17.33±2.7 37.67±5.5 17.33±2.7

Table 2.14. Analogous to table 2.12, we evaluated our proposed detectors on the ImageNet
dataset. See Section 2.4 for details of the experimental setup.

PyTorch Library: WRN 50-2 [160]. Selected Layers for FGSM - AA: Layer 8, 9; DF - CW: Last layer with ReLU activation function. (see table 2.14)

Dataset Attack ASR
SDBlackBox SDWhiteBox

AUC FNR ASRD AUC FNR ASRD
LR RF LR RF LR RF LR RF LR RF LR RF

ImageNet [69]

FGSM 86.94±0.3 93.91±0.2 98.74±0.0 10.67±1.4 0.00±0.0 9.28±1.0 0.00±0.0 99.99±0.0 99.96±0.0 0.00±0.0 0.00±0.3 0.00±0.0 0.00±0.2
BIM 99.95±0.0 81.93±0.2 93.37±0.5 22.0±1.0 1.00±0.0 21.99±1.0 1.00±0.0 99.99±0.0 99.94±0.0 0.00±0.0 0.26±0.2 0.00±0.0 0.26±0.2
PGD 100.0±0.0 91.23±0.1 98.43±0.1 12.00±1.7 0.00±0.1 12.00±1.7 0.00±0.1 99.88±0.0 99.23±0.0 0.79±0.1 2.63±1.0 0.79±0.1 2.63±1.0
AA 100.0±0.0 90.82±0.0 97.22±0.0 16.67±2.2 0.33±0.0 16.67±2.2 0.33±0.0 100.0±0.0 100.0±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0
DF 100.0±0.0 50.10±0.0 49.27±0.2 67.33±20.2 55.0±8.2 67.33±20.2 55.0±8.2 61.62±1.5 58.13±0.7 35.26±4.0 40.53±3.0 35.26±4.0 40.53±3.0
CW 100.0±0.0 50.31±0.0 49.31±1.0 62.33±10.2 49.33±0.5 62.33±10.2 49.33±0.5 62.52±2.2 60.76±0.5 38.68±2.3 39.74±1.0 38.68±2.3 39.74±1.0
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Table 2.15. This table shows the difference ofWRN and VGG features in regards of number
of classes from the dataset. Same setup as in table 2.12. We use all possible train samples
and test samples for CIFAR-10 and CIFAR-100 and for ImageNet we take the equivalent
amount (44000 from training set and 8000 from the test set). On the DeepFool (DF) attack,
we are able to show an improvement of the ASRD value for comparison: table 2.12 and
table 2.14. VGG features are not effected by the number of classes. For the WRN 28-
10 with CIFAR-100, it also shows that it is more difficult with theWRN 28-10 features and
just little performance improvement on DF. See section 2.4 for details of the experimental
setup.

Dataset Attack ASR
SDBlackBox SDWhiteBox

AUC FNR ASRD AUC FNR ASRD
LR RF LR RF LR RF LR RF LR RF LR RF

VGG-16 [124]

CIFAR-10 [67]
AA 100.0 99.38 99.74 2.81 0.04 2.81 0.04 100.0 99.98 0.04 0.67 0.04 0.67
DF 100.0 60.07 63.33 45.98 37.90 45.98 37.90 95.60 97.70 7.99 1.01 7.99 1.01

CIFAR-100 [67]
AA 100.0 96.70 99.44 6.99 0.03 6.99 0.03 99.99 99.84 0.33 0.15 0.33 0.15
DF 100.0 62.88 70.21 46.30 39.24 46.30 39.24 76.90 90.76 15.45 1.80 15.45 1.80

WRN 28-10 [160]

CIFAR-10 [67]
AA 100.0 97.69 99.74 5.98 0.03 5.98 0.03 100.0 99.86 0.23 1.13 0.23 1.13
DF 100.0 61.74 66.23 45.47 37.47 45.47 37.47 81.97 90.79 21.31 1.14 21.31 1.14

CIFAR-100 [67]
AA 100.0 98.37 99.65 4.42 0.06 4.42 0.06 99.99 99.74 0.15 0.61 0.15 0.61
DF 100.0 59.98 64.64 48.43 39.44 48.43 39.44 76.92 79.84 24.16 23.54 24.16 23.54

WRN 51-2 [160]

ImageNet [69]
AA 100.0 94.76 97.43 6.70 0.29 6.70 0.29 100.0 100.0 0.05 0.10 0.05 0.10
DF 100.0 50.01 49.88 99.98 52.62 99.98 52.62 66.74 63.43 35.44 37.79 35.44 37.79
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2.5.6 Comprehensive Study onAdversarial TrainedClassificationMod-
els

In this section, we evaluated our defenses, SDBlackBox and SDWhiteBox, on an adversarial-
trained model [47] from RobustBench. In Table 2.16, we show at first our results on the
same features maps as selected in table 2.12. Then, we adapted the selection of features for
the robust model. The selection of the feature maps shows a significant improvement of the
detection results. See Section 2.4 for details of the experimental setup.

Table 2.16. Same setup as in table 2.12, but different trained WRN 28-10. The model
weights [47] are downloaded from RobustBench, which is adversarial trained. Different
feature maps are taken for the whitebox defense method.

Dataset Attack ASR
SDBlackBox SDWhiteBox

AUC FNR ASRD AUC FNR ASRD
LR RF LR RF LR RF LR RF LR RF LR RF

RobustBench: WRN 28-10 same activation functions as for CIFAR-10 for WRN 28-10 in table 2.12.

CIFAR-10 [67]

FGSM 66.73±0.1 92.51±0.4 98.37±0.1 13.33±3.3 0.00±0.0 8.90±1.5 0.00±0.0 75.08±0.5 60.88±0.2 25.67±15. 41.33±12. 17.13±6.8 41.33±12.
BIM 79.92±0.0 89.54±0.8 97.96±0.5 14.00±0.5 0.33±0.0 11.19±0.3 0.26±0.0 73.25±0.4 60.52±0.0 30.67±0.5 43.00±0.5 24.51±0.3 43.00±0.5
PGD 74.22±0.0 89.51±0.4 97.02±0.6 18.00±3.4 0.33±0.0 13.36±1.9 0.24±0.0 72.57±0.9 60.87±0.3 33.00±0.3 43.67±6.7 24.49±0.1 43.67±6.7
AA 27.42±0.0 90.02±0.3 97.94±0.0 17.33±0.2 0.33±0.1 4.75±0.0 0.09±0.0 61.92±0.0 49.78±6.0 43.67±4.3 51.67±6.4 11.97±0.3 51.67±6.4
DF 100.0±0.0 62.83±1.0 68.50±0.8 47.67±4.2 46.33±9.0 47.67±4.2 46.33±9.0 71.95±0.2 66.19±0.1 30.00±5.7 19.67±4.3 30.00±5.7 19.67±4.3
CW 100.0±0.0 58.68±0.6 65.87±0.1 45.33±2.1 45.67±3.1 45.33±2.1 45.67±3.1 71.06±0.3 65.64±0.6 29.33±3.1 22.00±2.4 29.33±3.1 22.00±2.4

RobustBench: WRN 28-10 FGSM - AA: first activation function. DF and CW: last activation functions.

CIFAR-10 [67]

FGSM 66.73±0.1 92.49±0.5 98.67±0.2 13.00±4.0 0.00±0.0 8.67±1.8 0.00±0.0 93.81±0.3 91.00±0.3 13.33±10. 11.67±1.3 8.90±4.9 7.79±0.6
BIM 79.92±0.0 89.54±1.0 97.80±0.4 13.67±7.6 0.33±0.0 10.93±4.9 0.26±0.0 90.31±0.6 83.15±4.2 22.33±15. 24.67±14. 17.85±9.3 19.72±8.8
PGD 74.22±0.0 89.52±0.7 97.18±0.5 18.00±3.1 0.33±0.1 13.36±1.7 0.24±0.0 91.51±1.9 86.66±1.0 15.00±2.1 18.00±8.9 11.13±1.2 13.36±5.0
AA 27.42±0.0 90.02±0.3 97.94±0.0 17.33±0.2 0.33±0.1 4.75±0.0 0.09±0.0 86.11±1.3 83.03±1.1 24.67±2.1 25.00±3.3 6.76±0.2 6.86±0.2
DF 100.0±0.0 62.83±1.0 68.50±0.8 47.67±4.2 46.33±9.0 47.67±4.2 46.33±9.0 71.95±0.2 66.19±0.1 30.00±5.7 19.67±4.3 30.00±5.7 19.67±4.3
CW 100.0±0.0 58.68±0.6 65.87±0.1 45.33±2.1 45.67±3.1 45.33±2.1 45.67±3.1 71.06±0.3 65.64±0.6 29.33±3.1 22.00±2.4 29.33±3.1 22.00±2.4

2.5.7 AutoAttack: Hyperparameter and Datasets

In this section, we compare the performance of AutoAttack (AA) applied to different ep-
silons on all datasets trained onWRN28-10. In table 2.17, we transferred from larger epsilon
to a smaller epsilon (8/255 → 1/255) and vice versa. The transferability from smaller to
larger epsilon reveal strong ASRD values on SDWhiteBox.



44 2.5. ABLATION STUDY

Table 2.17. AutoAttack ϵ-transfer on WRN 28-10 [160]. We transfer from the epsilon (ϵ)
size 8/255 ↔ 1/255 and 1/255 ↔ 8/255. 1/255 ↔ 8/255 (smaller to larger epsilon)
shows higher transferability.

8/255 →1/255 1/255 →8/255
ϵ-Transfer AUC FNR ASRD AUC FNR ASRD

LR RF LR RF LR RF LR RF LR RF LR RF

CIFAR-10 [67]
SDBB 57.78 67.45 90.67 89.33 90.67 89.33 60.80 63.06 98.33 92.67 98.33 92.67
SDWB 98.30 88.63 0.00 1.67 0.00 1.67 97.20 88.75 2.33 6.00 2.33 6.00

ImageNet32 [26]
SDBB 52.04 52.62 70.00 63.67 70.00 63.67 91.49 92.85 98.00 85.00 98.00 85.00
SDWB 74.72 63.53 18.00 34.33 18.00 34.33 99.17 99.76 0.00 0.00 0.00 0.00

CelebaHQ32-4 [87]
SDBB 50.58 51.86 70.07 73.81 70.07 73.81 52.08 56.49 92.18 89.46 92.18 89.46
SDWB 61.52 62.74 36.67 45.67 36.67 45.67 88.80 69.26 4.67 32.67 4.67 32.67

ImageNet64 [87]
SDBB 52.07 52.98 75.33 66.67 75.33 66.67 82.11 85.85 99.33 99.00 99.33 99.00
SDWB 88.08 66.43 4.33 32.00 4.33 32.00 99.83 99.85 0.00 0.00 0.00 0.00

CelebaHQ64-4 [87]
SDBB 51.33 52.88 89.00 78.33 89.00 78.33 56.97 64.67 97.67 99.71 97.67 99.71
SDWB 76.78 58.90 18.33 46.33 18.33 46.33 99.49 96.01 0.00 1.67 0.00 1.67

ImageNet128 [87]
SDBB 51.64 51.72 78.00 66.67 78.00 66.67 73.70 70.29 99.33 98.00 99.33 98.00
SDWB 84.17 62.40 8.33 30.67 8.33 30.67 95.17 97.26 0.00 0.00 0.00 0.00

CelebaHQ128-4 [87]
SDBB 51.72 52.84 91.67 87.67 91.67 87.67 58.97 66.33 99.33 99.67 99.33 99.67
SDWB 89.50 60.56 5.67 44.33 5.67 44.33 99.93 98.45 0.00 0.33 0.00 0.33
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Table 2.18. Various datasets are attacked by AutoAttack but with different epsilons for the
perturbation [87]. The ASR falls for different datasets. Another visualization of this table
can be found in fig. 2.6a and fig. 2.6b in section 2.5.2. See section 2.4 for details of the
experimental setup.

AutoAttack (AA) [33] onWRN 28-10 [160]

Dataset Epsilon ϵ ASR
SDBlackBox SDWhiteBox

AUC FNR ASRD AUC FNR ASRD
LR RF LR RF LR RF LR RF LR RF LR RF

CIFAR-10 [67]

8/255 100.0 96.58 99.38 7.00 0.00 7.00 0.00 99.90 99.85 2.00 0.33 2.00 0.33
4/255 100.0 90.74 96.63 15.67 0.33 15.67 0.33 97.45 95.85 7.33 2.67 7.33 2.67
2/255 94.41 76.39 90.10 31.67 10.33 29.90 9.75 91.99 86.08 14.00 16.00 13.22 15.11
1/255 56.39 61.75 75.05 44.00 26.33 24.81 14.85 75.66 64.38 30.33 33.33 17.10 18.79
0.5/255 23.14 53.47 54.18 55.52 10.95 47.33 9.56 59.64 53.80 40.67 51.00 9.41 11.80

CIFAR-100 [67]

8/255 100.0 97.52 99.78 8.67 0.33 8.67 0.33 99.69 99.70 2.00 0.00 2.00 0.00
4/255 99.90 90.80 97.32 17.33 1.33 17.31 1.33 98.02 98.06 9.00 4.67 8.99 4.67
2/255 97.28 78.33 90.26 31.33 9.33 30.48 9.08 91.51 91.70 15.67 12.00 15.24 11.67
1/255 73.65 64.89 76.07 36.67 23.33 27.01 17.18 82.42 80.03 25.00 19.67 18.41 14.49
0.5/255 38.97 55.13 61.72 51.33 36.33 20.00 14.16 68.27 63.13 39.33 37.00 15.33 14.42

ImageNet32 [26]

8/255 100.0 77.80 85.39 29.33 11.00 29.33 11.00 99.99 100.0 0.00 0.33 0.00 0.33
4/255 99.95 65.67 66.55 37.00 27.33 36.98 27.32 99.92 99.91 0.67 0.33 0.67 0.33
2/255 100.0 56.61 59.55 42.67 45.67 42.67 45.67 99.70 99.03 3.67 4.00 3.67 4.00
1/255 99.67 52.04 50.86 47.67 49.00 47.51 48.84 95.17 96.45 12.33 6.33 12.29 6.31
0.5/255 92.78 50.55 49.60 45.00 46.33 41.75 42.98 86.83 84.81 20.00 18.33 18.56 17.01

ImageNet64 [26]

8/255 100.0 82.20 89.50 21.33 4.33 21.33 4.33 100.0 99.99 0.00 0.00 0.00 0.00
4/255 100.0 67.44 74.63 33.00 19.33 33.00 19.33 99.79 99.92 1.33 0.00 1.33 0.00
2/255 100.0 58.75 59.79 39.00 40.00 39.00 40.00 99.65 99.03 2.00 3.00 2.00 3.00
1/255 99.95 53.98 52.90 52.00 54.67 51.97 54.64 95.69 95.76 12.67 5.67 12.66 5.67
0.5/255 98.40 51.04 49.25 54.67 55.33 53.80 54.44 77.30 78.21 37.00 24.67 36.41 24.28

ImageNet128 [26]

8/255 100.0 82.40 93.26 18.67 18.67 18.67 0.67 99.90 99.88 0.00 0.33 0.00 0.33
4/255 100.0 65.76 76.18 42.33 42.33 42.33 17.00 99.37 99.56 1.67 0.33 1.67 0.33
2/255 98.47 55.72 59.02 44.33 44.33 44.33 41.00 97.49 97.56 6.33 1.00 6.33 1.00
1/255 100.0 51.85 54.08 54.00 54.00 54.00 47.33 89.97 88.16 15.00 6.67 15.00 6.67
0.5/255 100.0 50.55 51.03 53.00 53.00 52.19 44.31 76.53 74.87 25.00 14.00 24.62 13.79

CelebaHQ32-4 [84]

8/255 100.0 77.05 80.60 31.67 21.67 31.67 21.67 94.86 96.33 11.33 9.67 11.33 9.67
4/255 99.43 58.42 57.43 43.33 37.67 43.08 37.46 78.05 78.09 27.33 29.33 27.17 29.16
2/255 68.26 52.02 51.33 49.00 50.67 33.45 34.59 61.60 60.26 40.00 46.67 27.30 31.86
1/255 27.70 50.17 49.17 57.82 55.44 16.02 15.36 52.35 51.65 52.38 47.96 14.51 13.28
0.5/255 10.91 49.99 51.04 40.17 57.26 4.38 6.25 50.14 45.62 43.59 58.12 4.76 6.34

CelebaHQ64-4 [84]

8/255 100.0 91.47 92.87 14.33 2.67 14.33 2.67 99.63 100.0 2.67 0.00 2.67 0.00
4/255 100.0 68.72 62.38 35.67 40.00 35.67 40.00 96.40 98.85 10.33 4.67 10.33 4.67
2/255 99.31 54.54 51.28 43.33 46.00 43.03 45.68 81.43 84.53 28.33 31.67 28.13 31.45
1/255 69.94 51.28 49.65 54.00 49.00 37.77 34.27 61.66 61.65 47.00 43.33 32.87 30.31
0.5/255 28.14 50.24 50.64 53.33 53.00 15.01 14.91 53.13 51.90 46.00 55.00 12.94 15.48

CelebaHQ128-4 [84]

8/255 100.0 98.08 99.64 24.67 23.00 24.67 23.00 99.89 100.0 5.00 0.00 5.00 0.00
4/255 100.0 77.98 79.24 3.00 0.00 3.00 0.00 98.62 99.98 1.33 0.00 1.33 0.00
2/255 100.0 58.48 52.65 45.33 53.67 45.33 53.67 91.93 96.33 18.67 7.67 18.67 7.67
1/255 98.02 52.20 49.23 48.67 54.33 47.71 53.25 67.28 62.30 37.67 41.33 36.92 40.51
0.5/255 61.98 50.77 51.01 48.67 53.67 30.17 33.26 55.28 53.45 47.67 47.00 29.55 29.13
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2.6 LIMITATIONS

We have benchmarked a lightweight blackbox and whitebox SpectralDefense algorithm to
detect adversarial examples and datasets outside of the standardized benchmark procedure.
The algorithm is capable to detect most common attack methods and especially AutoAttack
(AA). As shown in fig. 2.5a and 2.5b, we compare the ASRD over the three image size
(s = {32, 64, 128}) on the datasets CelebaHQ and ImageNet.

The attacks FGSM, BIM, PGD and AA are not sensitive to the image size. One lim-
itation is that DF and C&W keep their attack strength over all image sizes s. Again, AA
does not show sufficient results for using adversarial detection robustness. The results of
our empirical evaluations show strong evidence that the widely used AutoAttack scheme
for bench-marking the adversarial robustness of image classifier models on low-resolution
data might not be a suitable setup in order to generalize the obtained results to estimate
the robustness in practical vision applications. Even for lower choices of the ϵ-parameter,
AutoAttack still appears to modify target images beyond reasonable class boundaries.

A potential issue, the resolution of the benchmark images should not be neglected. In
terms of resolution as well as in the number of classes and training images, CIFAR-10
is a conveniently sized dataset for the very expensive state-of-the-art adversarial training
approaches. However, our experiments suggest that these results might not generalize to
problems that are more complex. In light of our results, we argue that too strong adversar-
ial benchmarks like the current setting of RobustBench might hamper the development of
otherwise practically relevant methods towards more model robustness. For the future, we
would like to exploit our understanding of the Fourier spectrum gathered from our analysis
to design an unsupervised detector SpectralDefense.

2.7 SUMMARY

We have presented an extensive evaluation on the blackbox and whitebox adversarial ex-
amples defense called SpectralDefense. The main motivation behind SpectralDefense is
to understand adversarial examples through the lens of the Fourier transform. We analyze
SpectralDefense and compare it with other important variants to reveal practical trade-offs
using different datasets with varying image sizes, particularly different scales of the same
datasets.

On large and competitive datasets SpectralDefense approach shows strong results along
to current state-of-the-art approaches and can resist gradient obfuscation [5]. The results of
our empirical evaluations show strong evidence that the widely used AutoAttack scheme for
bench-marking the adversarial robustness of image classifier models on low-resolution data
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might not be a suitable setup in order to generalize the obtained results to estimate the robust-
ness in practical vision applications. Even for lower choices of the ϵ-parameter, AutoAttack
still appears to modify target images beyond reasonable class boundaries. Additionally, the
resolution of the benchmark images should not be neglected. We hope our experiments will
encourage researchers to engage their attention towards the more challenging dataset.





Chapter 3

Enhancing Adversarial Detection
through Local Growth Rate Analysis

Convolutional neural networks (CNN) define the state-of-the-art solution on many percep-
tual tasks. However, current CNN approaches largely remain vulnerable against adversarial
perturbations of the input that have been crafted specifically to fool the system while being
quasi-imperceptible to the human eye. In recent years, various approaches have been pro-
posed to defend CNNs against such attacks, for example by model hardening or by adding
explicit defense mechanisms. Thereby, a small “detector” is included in the network and
trained on the binary classification task of distinguishing benign data from data contain-
ing adversarial perturbations. In this work, we propose a simple and light-weight detector,
which leverages recent findings on the relation between networks’ local intrinsic dimen-
sionality (LID) and adversarial attacks. Based on a re-interpretation of the LID measure
and several simple adaptations, we improve the adversarial detection and reach almost per-
fect results in terms of F1-score for several networks and datasets.

3.1 BACKGROUND

In this section, we briefly compare adversarial training with adversarial detection and show-
case a few methods. Afterward, we define the concept of Local Intrinsic Dimensionality
(LID), which forms the basis for our analysis.

3.1.1 Preliminaries

Deep Neural Networks (DNNs) are highly expressive models that have achieved state-of-
the-art performance on a wide range of complex problems, such as in image classification.
However, studies have found that DNN’s can easily be compromised by adversarial exam-
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ples [32, 33, 46, 92]. Applying these intentional perturbations to network inputs, chances
of potential attackers to fool target networks into making incorrect predictions at test time
are very high [16]. Hence, this undesirable property of deep networks has become a major
security concern in real-world applications of DNNs, such as self-driving cars and identity
recognition [42, 122].

Recent research on adversarial counter measures can be grouped into twomain approach an-
gles: adversarial training and adversarial detection. While the first group of methods aims
to “harden” the robustness of networks by augmenting the training data with adversarial
examples, the later group tries to detect and reject adversarial inputs.

3.1.2 Related Work

In the following, we first briefly review the related work on adversarial attacks and pro-
vide details on the established attack approaches that we base our evaluation on. Then, we
summarize approaches to network hardening by adversarial training. Last, we revise the
literature on adversarial detection.

Adversarial attacks. Convolutional neural networks are known to be susceptible to ad-
versarial attacks, i.e. to (usually small) perturbation of the input images that are optimized
to flip the network’s decision. Several such attacks have been proposed in the past and we
base our experimental evaluation on the following subset of most widely used attacks.
In section 1.3, we introduced some common adversarial attacks. Most of them are whitebox
attacks (compare table 1.1), which means they have full knowledge of the target model in
order to achieve highest attack strengths.

Adversarial training (AT). AT denotes the concept of using adversarial examples to aug-
ment the training data of a neural network. Ideally, this procedure should lead to a better and
denser coverage of the latent space and thus to in increased model robustness. FGSM [46]
adversarial training offers the advantage of rather fast adversarial training data generation.
Yet, models tend to overfit to the specific attack such that additional tricks like early stop-
ping [111, 145] have to be employed. Training on multi-step adversaries generalizes more
easily, yet is hardly affordable for large-scale problems such as ImageNet due to its com-
putation costs.

Adversarial detection. Adversarial detection aims to distinguish adversarial examples
from benign examples and is thus a low computational replacement to expensive adversarial
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training strategy. In test scenarios, adversarial attacks can be rejected and cause to faulty
classifications.
Given a trained DNN on a benign dataset for the origin task, many existing methods [44,
52,73,85,91] train a binary classifier on top of some hidden-layer embeddings of the given
network as the adversarial detector. The strategy is motivated by the observation that adver-
sarial examples have very different distribution from natural examples on intermediate-layer
features. So a detector can be built upon some statistics of the distribution, i.e., kernel den-
sity (KD) [44], M-D [73] distance, or LID [91].

Spectral defense (SD) approaches [52, 85, 87] aim to detect adversarial images by their
frequency spectra in the input or feature map representation.
Complementary, [153] propose to train a variational autoencoder following the principle of
the class distanglement. They argue that the reconstructions of adversarial images are char-
acteristically different and canmore easily be detected using for example KD,M-D and LID.

Local Intrinsic Dimensionality (LID). LID is a measure that represents the average dis-
tance from a point to its neighbors in a learned representation space [3, 56] and thereby
approximates the intrinsic dimensionality of the representation space via maximum likeli-
hood estimation.
Let B be a mini-batch of N benign examples and let d(x,y) be the Euclidean distance
between the sample x and its i-th nearest neighbor in B as shown in fig. 3.1. Then, the LID
can be approximated by

LID(x) = −

(
1

k

k∑
i=1

log
di(x)

dk(x)

)−1

, (3.1)

where k is a hyper-parameter that controls the number of nearest neighbors to consider,
and d is the employed distance metric. Ma et al. [91] propose to use LID to characterize
properties of adversarial examples, i.e. they argue that the average distance of samples to
their neighbors in the learned latent space of a classifier is characteristic for adversarial and
benign samples. Specifically, they evaluate LID for the j-dimensional latent representations
of a neural network f(x) of a sample x use the L2 distance

dl(x,y) = ∥f 1..j
l (x)− f 1..j

l (y)∥2 (3.2)

for all l ∈ L feature maps. They compute a vector of LID values for each sample:
−−→LID(x) = {LIDdl(x)}nl . (3.3)

Finally, they compute the−−→LID(x) over the training data and adversarial examples generated
on the training data, and train a logistic regression classifier1 to detect adversarial samples.

1We are grateful to the authors for releasing their complete source code.

https://github.com/xingjunm/lid_adversarial_subspace_detection
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(a) Selected sample x is benign. (b) Selected sample x is adversrial.

Figure 3.1. Concept of the LID method. An adversarial subspace exists, if the distances are
higher as usual from a random selected sample x to k nearest neighbors.

3.2 CONTRIBUTION

In this work, we restrict our investigation to the detection of adversarial images exposed to
convolutional neural networks (CNN). We introduce a novel whitebox detector, showing a
close-to-perfect detection performance on widely used benchmark settings. Our method is
built on the notion that adversarial samples are forming distinct sub-spaces, not only in the
input domain but most dominantly in the feature spaces of neural networks [131]. Hence,
several prior works have attempted to find quantitative measures for the characterization and
identification of such adversarial regions. We investigate the properties of the commonly
used local intrinsic dimensionality (LID) and show that a robust identification of adversar-
ial sub-spaces requires (i) an unfolded local representation and (ii) a non-linear separation
of these manifolds. We utilize these insights to formulate our novel multiLID descriptor.
Extensive experimental evaluations of the proposed approach show that multiLID allows a
reliable identification of adversarial samples generated by state-of-the art attacks on CNNs.
In summary, our contributions are:

• an analysis of the widely used LID method, which is able to seperate benign from
attacked ones.

• novel re-formulation of an unfolded, non-linear multiLID descriptor which allows to
improve the detection of adversarial input images in CNN architectures.

• in-depth evaluation of our approach on common benchmark architectures and datasets,
showing the superior performance of the proposed method.
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3.3 METHOD

We start this section introducing the problem definition. Then, we revise the LID method
and suggest our modifications and introduce “multiLID” as novel approach.

3.3.1 Problem Definition

To average the nearest neighbors [7] (see eq. (3.1)) is general accepted in the context of LID.
Therefore, our research question is: Can the detection accuracy of adversarial examples be
improved, if not averaging over the nearest neighbors?

Thus, we modify the LID and introduce the multiLID as detection method. Adversarial
examples detection can be mathematically defined as follows: LetD be a dataset consisting
ofN pairs (xi, yi)

N
i=1, wherexi represents an input image and yi is the corresponding ground

truth label. Let f : Rm → Rc denote a trained neural network model, where m is the input
dimensionality (e.g., image dimensions) and c is the number of possible classes.

An adversarial examplexadv for a given inputx is generated by applying a perturbation δ
tox, such thatxadv =x+δ, where δ is constrained within a certain perturbation budget (e.g.,
Lp norm bound). The goal of adversarial examples detection is to identify whether a given
inputxadv is an adversarial example or a benign sample, given the model f . Mathematically,
an adversarial examples classifierC can be defined as a functionRm → 0, 1, where: C(x) =

1 if x is classified as an adversarial example. C(x) = 0 if x is classified as a benign sample.

The goal is to compare the performance of two classifers, LID and multiLID, in accu-
rately identifying adversarial examples. The performance of both classifiers are compared
using different metrics exhibits better accuracy in detecting adversarial examples.

3.3.2 Revisiting Local Intrinsic Dimensinality - multiLID

The LIDmethod for adversarial example detection as proposed in [91] was motivated by the
MLE estimate for the intrinsic dimension as proposed by [3]. We refer to this original for-
mulation to motivate our proposed multiLID. Let us denoteRm, d a continuous domain with
non-negative distance function d. The continuous intrinsic dimensionality aims to measure
the local intrinsic dimensionality of Rm in terms of the distribution of inter point distances.
Thus, we consider for a fixed point x the distribution of distances as a random variable D
on [o,+∞) with probability density function fD and cumulative density function FD. For
samples x drawn from continuous probability distributions, the intrinsic dimensionality is
then defined as in [3]:
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Definition 1. Instrinsic Dimensionality (ID). Given a sample x ∈ Rm, let D be a random
variable denoting the distance from x to other data samples. If the cumulative distribution
F (d) of D is positive and continuously differentiable at distance d > 0, the ID of x at
distance d is given by:

IDD(d)
∆
= limϵ→0

logFD((1 + ϵ)d)− logFD(d)

log(1 + ϵ)
(3.4)

In practice, we are given a fixed number n of samples of x such that we can compute their
distances to x in ascending order d1 ≤ d2 ≤ · · · ≤ dn−1 with maximum distance w between
any two samples. As shown in [3], the log-likelihood of IDD(d) for x is then given as

nlog
FD,w(w)

w
+ nlogIDD + (IDD − 1)

n−1∑
i=1

log
di
w
. (3.5)

The maximum likelihood estimate is then given as

ÎDD = −

(
1

n

n−1∑
i=0

log
di
w

)−1

with (3.6)

ÎDD ∼ N
(
IDD,

ID2
D

n

)
, (3.7)

i.e. the estimate is drawn from a normal distribution with mean IDD and its variance de-
creases linearly with increasing number of samples while it increases quadratically with
IDD. The local ID is then an estimate of the ID based on the local neighborhood of x, for
example based on its k nearest neighbors. This corresponds to equation (3.1). This local
approximation has the advantage of allowing for an efficient computation even on a per
batch basis as done in [91]. It has the disadvantage that is does not consider the strong vari-
ations in variances ID2

D/n, i.e. the estimates might become arbitrarily poor for large ID if
the number of samples is limited. This becomes even more severe as [2] showed that latent
representations with large ID are particularly vulnerable to adversarial attacks.
In fig. 3.2, we evaluate the distribution of LID estimates computed for benign and adversarial
examples of different attacks on the latent feature representation of a classifier network (see
section 3.4). We make the following two observations: (i) the distribution has a rather
long tail and is not uni-modal, i.e. we are likely to face rather strong variations in the ID for
different latent sub-spaces, (ii) the LID estimates for adversarial examples have the tendency
to be higher than the ones for benign examples, (iii) the LID is more informative for some
attacks and less informative on others. As a first conclusion, we expect the discrimination
between adversarial examples and benign ones to be particularly hard when the tail of the
distribution is concerned, i.e. for those benign points with rather large LID that can only be
measured at very low confidence according to equation (3.6). Secondly, we expect linear
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separation methods based on LID such as suggested by [91] to be unnecessarily weak and
third, we expect the choice of the considered layers to have a rather strong influence on the
expressiveness of LID for adversarial detection.

Figure 3.2. Visualization of the LID features from the benign set of samples (black) and
different adversarial attacks of 100 samples. The network isWRN 28-10 trained on CIFAR-
10 and LID is evaluated on the feature map after the last ReLU activation.

As a remedy, we propose several rather simple improvements:

• We propose to unfold the aggregated LID estimates in equation (3.1) and rather con-
sider the normalized log distances between a sample and its neighbors separately in a
feature vector, which we denote multiLID.

• We argue that the deep network layers considered to compute LID or multiLID have
to be carefully chosen. An arbitrary choice might yield poor results.

• Instead of using a logistic regression classifier, highly non-linear classifiers such as
a random forest should increase LID based discrimination between adversarial and
benign samples.

Let us analyze the implications of the LID unfolding in more detail. As argued for example
in [91] before, the empirically computed LID can be interpreted as an estimate of the local
growth rate similarly to previous generalized expansion models [58, 65]. Thereby, the idea
is to deduce the expansion dimension from the volume growth around a sample and the
growth rate is estimated by considering probability mass in increasing distances from the
sample. Such expansion models, like the LID, are estimated within a local neighborhood
around each sample and therefore provide a local view of the data dimensionality [91]. The
local ID estimation in eq. (3.1) can be seen as a statistical interpretation of a growth rate
estimate. Please refer to [56, 57] for more details.
In practical settings, this statistical estimate not only depends on the considered neighbor-
hood size. In fact, LID is usually evaluated on amini-batch basis, i.e. the k nearest neighbors
are determined within a random sample of points in the latent space. While this setting is
necessarily relatively noisy, it offers a larger coverage of the space while considering only
few neighbors in every LID evaluation. Specifically, the relative growth rate is aggregated
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over potentially large distances within the latent space, when executing the summation in
eq. (3.1). We argue that this summation step integrates over potentially very discriminative
information since it mixes local information about the growth rate in the direct proximity
with more distantly computed growth rates. Therefore, we propose to “unfold” this growth
rate estimation. Instead of the aggregated (semi) local ID, we propose to compute for every
sample x a feature vector, denoted multiLID, with length k as

−−−−−−−−−→
multiLIDd(x)[i] = −

(
log

di(x)

dk(x)

)−1

. (3.8)

where d is measured using the Euclidean distance. Figure 3.3 visualizes multiLID for 100
benign CIFAR-10 samples and samples that have been perturbed using FGSM. It can easily
be seen that there are several characteristic profiles in the multiLID that would be integrated
into very similar LID estimates while being discriminative when all k growth ratio sam-
ples are considered as a vector. The multiLID defense facilitates to leverage the different
characteristic growth rate profiles.

Figure 3.3. Visualization of the LID features from the benign and FGSM set of 100 samples
over each k. The network is WRN 28-10 trained on CIFAR-10. The feature values for the
nearest neighbors (low values on the x-axis) are significantly higher for the benign dataset.
The LID log values are inversely proportional to the distance as shown in eq. (3.8) and
fig. 3.1. The plot on the right illustrates mean and standard deviation of the two sets of
profiles.

3.4 EXPERIMENTS

In this section, we present experimental results evaluating the effectiveness of the proposed
method. We first give a detailed description of the experimental setup. Then, we present
our datasets which are attacked by different whitebox attacks. Finally, we compare to other
detection methods.
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3.4.1 Experimental Setup

To validate our proposedmultiLID,we conduct extensive experiments onCIFAR-10, CIFAR-
100, and ImageNet. Following the same setup as depicted in fig. 2.3: We train two different
models, a WRN 28-10 (wide resnet) [146,160] and a VGG-16 model [124] on the different
datasets. While we use test samples from the original datasets as benign samples, we gener-
ate adversarial samples using a variety of adversarial attacks. From benign and adversarial
data, we extract the feature maps for different layers, at the output of the ReLU activations.
We use a random subset of 2000 samples of this data for each attack method and extract the
multiLID features from the feature maps. From this random subset we take a train-test split
of 80:20, i.e. we have a training set of 3200 samples (1600 benign, 1600 attacked images)
and a balanced test set of 400 images for each attack. This setting is common practice as
used in [73, 87, 91]. All experiments were conducted on 3 Nvidia A100 40GB GPUs for
ImageNet and 3 Nvidia Titan with 12GB for CIFAR-10 and CIFAR-100.

Layer feature selection per architecture. Following eq. (3.3), for the WRN 28-10 and
WRN 51-2, we focus on the ReLU activation layers, whereas in each residual block, we take
the last one. This results in 13 activations layer for WRN 28-10 and 17 for WRN 51-2 to
compute multiLID representations. This is different from the setting proposed in [153], who
propose to use the outputs of the three convolutional blocks. In [91] only simpler network
architectures have been considered and the feature maps at the output of every layer are
considered to compute LID. For the VGG-16 architecture, according to [52], we take the
features of all activation layers, which are again 13 layers in total.

Minibatch size in LID estimation. As motivated in [91], we estimate the multiLID values
using a default minibatch size |B| of 100 with k selected as of 20% of mini batch size [91].
As discussed above and theoretically argued before in [3] the MLE estimator of LID suffers
on such small samples, yet, already provides reasonable results when used for adversar-
ial detection [91]. Our proposed multiLID can perform very well in this computationally
affordable setting across all datasets.

3.4.2 Datasets

Many of the adversarial training methods ranked on RobustBench2 are based on the WRN
28-10 [146, 160] architecture. Therefore, we also conduct our evaluation on a baseline
WRN 28-10 and train it with benign examples.

• CIFAR-10: The WRN 28-10 reaches a test accuracy of 96% and the VGG-16 model
2https://robustbench.github.io

https://robustbench.github.io
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reaches 72% top-1 accuracy [87] on the test set. We then apply the different attacks
on the test set.

• CIFAR-100: The procedure is equal to CIFAR-10 dataset. We report a test-accuracy
for WRN 28-10 of 83% (VGG-16 reaches 81%) [87] .

• ImageNet: The PyTorch library provides a pre-trained WRN 51-2 [160] for Ima-
geNet. As test set, we use the official validation set from ImageNet and reach a vali-
dation accuracy of 80%.

3.4.3 Attack Methods

We generate test data from six most commonly used adversarial attacks: FGSM, BIM,
PGD(-L∞), C&W(-L2), DF(-L2) and AA, as explained in section 3.1.2. For FGSM, BIM,
PGD(-L∞), and AA, we use the commonly employed perturbation size of ϵ = 8/255, DF is
limited to 20 iterations and C&W to 1000 iterations.

3.4.4 Results

In this section, we report our final results of our multiLID method and compare it to com-
peting methods. In table 3.1, we compare the results of the original LID [91] to the results of
our proposed multiLID method for both model types, the Wide-ResNets (WRN) and VGG-
16 models on the three datasets CIFAR-10, CIFAR-100, and ImageNet. For LID and the
proposed multiLID, we extract features from exactly the same layers in the network to fa-
cilitate direct comparison. While LID already achieves overall good results the proposed
multiLID can even perfectly discriminate between benign and adversarial images on these
data in terms of AUC as well as F1 score.
In table 3.2, we further compare the AUC and F1 score, for CIFAR-10 trained on WRN 28-
10 to a set of most widely used adversarial defense methods. First, we list the results from
[153] for the defenses kernel density (KD), LID and M-D as baselines. According to [153],
KD does not show strong results across the attacks, LID and M-D yield a better average
performance in their setting. For completeness, we also report the results CD-VAE [153]
by showing R(x) (which is the reconstruction of a sample x through a β variational auto
encoder (β-VAE)). Encoding in such a well-conditioned latent space can help adversarial
detection, yet is also time consuming and requires task specific training of the β-VAE.
Our results, when reproducing LID on the same network layers as [153], are reported in the
second block of table 3.2. While we can not exactly reproduce the numbers from [153], the
resulting AUC and F1-scores are in the same order of magnitude and slightly better in some
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Table 3.1. Results. Comparison of the original LID method with our proposed multiLID
on different datasets. We report the AUC and F1 score as mean and variance over three
evaluations with randomly drawn test samples.

Attacks
CIFAR-10 CIFAR-100 ImageNet

WRN 28-10 VGG16 WRN 28-10 VGG16 WRN 50-2

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

original LID [91]

FGSM 95.89± 0.07 89.46± 0.01 87.76± 0.21 78.58± 0.15 97.71± 0.82 92.71± 2.17 77.20± 1.48 70.08± 0.31 71.40± 9.07 65.96± 4.34

BIM 86.68± 0.50 78.50± 0.46 87.73± 0.68 78.53± 0.52 95.53± 1.02 87.75± 0.93 81.31± 3.62 73.73± 6.66 94.02± 0.27 86.58± 0.50

PGD 88.92± 0.86 80.11± 1.77 84.78± 0.68 74.93± 1.86 97.76± 0.06 91.40± 0.09 84.75± 1.59 78.04± 2.47 95.81± 1.00 88.54± 3.08

AA 96.49± 0.32 90.78± 0.22 95.25± 0.49 87.35± 2.30 99.18± 0.03 94.74± 0.85 87.02± 0.83 78.81± 0.23 99.87± 0.00 98.01± 0.06

DF 94.40± 0.07 86.08± 3.15 85.93± 0.26 75.88± 0.74 57.02± 0.39 52.59± 1.44 54.39± 0.03 52.93± 0.32 54.62± 0.07 49.04± 2.06

CW 92.83± 0.21 84.33± 1.50 83.34± 0.47 74.51± 0.53 55.07± 0.31 53.74± 4.31 61.47± 0.86 61.99± 2.12 54.45± 0.05 50.36± 3.86

multiLID + improved layer setting + RF or short: multiLID (ours)

FGSM 96.98± 0.20 91.19± 0.95 90.78± 0.38 82.34± 1.37 98.55± 0.28 94.80± 1.32 83.00± 0.84 76.89± 0.02 79.25± 2.75 72.98± 0.67

BIM 96.10± 0.39 89.93± 1.24 94.50± 0.26 88.14± 0.43 97.88± 0.07 91.72± 0.09 82.96± 0.94 75.42± 1.39 94.48± 0.18 86.92± 0.93

PGD 97.69± 0.12 92.81± 0.37 92.35± 1.46 83.52± 3.46 98.76± 0.05 94.74± 1.14 88.39± 0.06 81.42± 0.44 96.39± 0.11 90.21± 0.49

AA 99.45± 0.03 96.88± 0.00 98.77± 0.08 94.85± 1.42 99.85± 0.00 98.33± 0.01 91.25± 0.33 83.48± 0.17 99.90± 0.00 98.83± 0.04

DF 97.51± 0.12 94.04± 0.26 89.37± 2.42 84.32± 0.83 74.75± 0.16 70.18± 0.57 73.78± 1.12 70.04± 0.09 52.93± 1.01 52.77± 1.89

CW 97.92± 0.01 96.00± 0.11 89.75± 0.21 85.27± 0.85 70.10± 1.33 67.77± 0.85 76.15± 0.20 71.59± 0.20 53.37± 0.01 52.04± 0.17

cases. In this setting, LID performs slightly worse than the competing methods M-D and
SDBlackBox and SDWhiteBox [52].
We ablate on our different changes towards the full multiLID in the third block. When
replacing LID by the unfolded features as in eq. (3.8) we already achieve results above 98%
F1 score in all settings. Defending against BIM is hardest. The next line ablates on the
employed feature maps. When replacing the convolutional features used in [153]3 by the
last ReLU outputs in every block, we observe a boost in performance even on the plain
LID features. Combining these two lead to almost perfect results on the CIFAR-10 dataset.
Results for other datasets are in table 3.3. F1-scores and AUC scores classifer results are
lifted, on this feature basis, using a random forest classifier instead of the logistic regression.
We refer to this setting as multiLID in all other tables including table 3.1.

3.5 ABLATION STUDY

In this section we give insights on the different factors affecting our approach. We inves-
tigate the importance of the activation maps the features are extracted from as well as the
number of multiLID features that are needed to reach good classification performance. An
ablation on the number of considered neighbors as well as on the attack strength in terms of
ϵ is also provided.

3Assumption of CD-VAE LID layers taken from https://github.com/kai-wen-yang/CD-VAE/
blob/a33b5070d5d936396d51c8c2e7dedd62351ee5b2/detection/models/wide_resnet.py#L86.

https://github.com/kai-wen-yang/CD-VAE/blob/a33b5070d5d936396d51c8c2e7dedd62351ee5b2/detection/models/wide_resnet.py#L86
https://github.com/kai-wen-yang/CD-VAE/blob/a33b5070d5d936396d51c8c2e7dedd62351ee5b2/detection/models/wide_resnet.py#L86
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Table 3.2. Comparison of multiLID with the state-of-the-art on CIFAR-10.

CIFAR-10 on WRN 28-10

Defenses
FGSM BIM PGD CW

TNR AUC TNR AUC TNR AUC TNR AUC

Results reported by [153]

KD 42.38 85.74 74.54 94.82 73.12 94.59 73.33 94.75
KD (R(x)) 57.10 89.69 96.79 99.27 96.56 99.30 94.67 98.73
LID 69.05 93.60 77.73 95.20 71.52 93.19 74.98 94.32
LID (R(x)) 92.60 98.59 86.42 97.29 87.54 97.57 76.42 95.10
M-D 94.91 98.69 88.33 97.66 77.23 95.38 86.30 97.36
M-D (R(x)) 99.68 99.36 98.92 99.74 99.13 99.79 98.94 99.68

Competing Methods

M-D [91] 97.37 99.34 98.16 99.61 97.37 99.66 91.58 96.54
SDBlackBox [52] 95.79 99.87 92.63 99.83 92.11 99.29 53.68 63.23
SDWhiteBox [52] 99.47 100.00 96.32 99.99 95.79 99.97 84.47 96.89
LID, settings from [153] 87.25 84.82 85.02 81.07 81.61 89.00 85.89 90.48

Ours

multiLID, settings from [86] + LR 85.89 95.02 83.21 95.56 93.93 98.00 91.07 97.05
multiLID, settings from [86] + RF 87.50 94.01 85.89 96.74 94.64 98.96 92.14 97.15
LID, improved layer setting 90.18 96.62 93.21 98.18 85.89 90.48 87.50 93.36
multiLID + improved layer setting + LR 90.18 96.62 81.43 93.83 86.61 96.44 93.21 98.18
multiLID + improved layer setting + RF 90.54 96.33 85.71 94.75 94.64 98.96 92.14 97.15

3.5.1 Impact of non-linear Classification

In this section, we compare themethods from the last two lines of table 3.2 in more detail and
for all three datasets. The results are reported in table 3.1. While the simple LR classifier
already achieves very high AUC and F1 scores on multiLID for all attacks and datasets, RF
can further push the performance.

3.5.2 Feature Importance

The feature importance (variable importance) of the random forest describes the relevant
features for the detection. In fig. 3.4, we plot the feature importance for the aggregated LID
features of WRN 28-10 trained on a CIFAR-10 dataset. The feature importance represents
the importance of the selected ReLU layers (see [73]) in increasing order. The last fea-
tures/layers shows higher importance. For the attack FGSM the 3rd and last feature can be
very relevant.
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Table 3.3. Results of using multiLID. Comparison of LR and RF classifier on different
datasets. Comparison to table 3.1 which uses LR. The minibatch size is |B| = 100 and the
number of neighbors k = 20 according to section 3.4.1.

Attacks
CIFAR-10 CIFAR-100 ImageNet

WRN 28-10 VGG16 WRN 28-10 VGG16 WRN 50-2

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

multiLID + LR (ours)

FGSM 97.64± 0.16 91.58± 1.40 93.24± 0.05 86.39± 1.23 99.10± 0.05 95.06± 0.33 85.32± 0.02 78.41± 0.84 80.65± 3.30 73.15± 3.08

BIM 95.44± 0.36 90.40± 0.28 93.59± 0.88 87.02± 1.27 98.29± 0.04 92.84± 0.14 84.76± 0.72 77.76± 3.38 96.78± 0.02 90.54± 0.32

PGD 96.60± 0.36 91.87± 1.34 90.91± 0.95 82.81± 0.56 98.89± 0.00 95.26± 0.35 89.10± 0.18 82.24± 0.09 97.44± 0.06 92.28± 0.01

AA 99.00± 0.06 95.74± 0.09 98.25± 0.24 93.70± 0.87 99.89± 0.00 98.27± 0.04 91.27± 0.71 83.66± 0.74 99.95± 0.00 98.76± 0.04

DF 97.93± 0.03 94.06± 0.04 89.54± 1.02 84.34± 1.02 75.99± 0.73 70.77± 1.79 70.76± 4.48 67.15± 2.55 54.49± 0.18 53.06± 0.76

CW 97.86± 0.03 94.88± 0.23 89.79± 0.79 84.34± 1.21 71.01± 1.23 66.03± 0.09 70.79± 0.90 67.75± 2.29 54.51± 0.97 53.87± 0.66

multiLID + RF (ours)

FGSM 96.84± 0.14 90.90± 0.70 91.04± 0.24 82.97± 1.32 98.47± 0.31 94.31± 2.28 82.56± 0.77 76.61± 1.21 79.52± 2.09 72.85± 0.78

BIM 96.11± 0.28 89.61± 1.77 94.55± 0.33 88.37± 0.99 97.74± 0.12 91.48± 0.14 83.14± 0.29 74.94± 0.13 94.33± 0.26 87.43± 2.04

PGD 97.50± 0.11 92.39± 0.13 92.18± 1.07 84.00± 2.62 98.77± 0.06 94.82± 1.08 88.36± 0.09 81.40± 0.50 96.55± 0.19 90.79± 0.21

AA 99.54± 0.01 96.96± 0.05 98.61± 0.02 94.74± 1.41 99.87± 0.00 98.20± 0.02 91.25± 0.36 83.76± 0.87 99.88± 0.01 99.08± 0.01

DF 97.47± 0.21 94.20± 0.12 89.04± 1.61 84.43± 1.11 74.85± 0.58 70.11± 1.71 73.44± 0.66 69.09± 0.96 53.41± 2.63 52.41± 1.36

CW 97.91± 0.04 95.76± 0.20 89.67± 0.52 85.32± 0.49 69.80± 0.65 66.61± 0.03 76.12± 0.07 72.66± 0.38 53.80± 2.39 52.26± 3.19

3.5.3 Investigation of the multiLID Features

Following the eq. (3.1), all neighbors k are used for the classification. This time, we in-
vestigate the performance of the binary classifier logistic regression over the full multiLID
features. For example, in fig. 3.4 we consider 13 layers and the aggregated ID features for
each. Thus, the number of multiLID features per sample can be calculated as #layers × k

which yields 260 features for k = 20. In fig. 3.5, we visualize the AUC according to the
length of the LID feature vectors, when successively more features are used according to
their random forest feature importance. On ImageNet, it can be seen that DF and C&Wneed
the full length of these LID feature vectors to achieve the highest AUC scores. The obser-
vation, that the attacks DF and C&W are more effectively are also reported in [87]. Using
a non-linear classifier on these very discriminant features, we can even achieve perfect F1
scores (see section 3.5.1).

3.5.4 Impact of the Number of Neighbors

We train the LID with the APGD-CE attack from the AutoAttack benchmark with different
epsilons (L∞ and L2). In fig. 3.6, we compare RF and LR on different norms. Random
Forest succeeds on all epsilon sizes4 on both norms. On smaller perturbation sizes the LR
classifier AUC score fall. On the optimal perturbation size (L∞ : ϵ = 8/255 and L2 : ϵ =

0.5) the LR shows its best AUC scores. The RF classifier gives us outstanding results over
4 Perturbed images would round the adversarial changes to the next of 256 available bins in commonly

used 8-bit per channel image encodings.
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Figure 3.4. Feature importance. Increasing order according to the activation function layers
(feature) fromWRN 28-10 trained on CIFAR-10. The most relevant features are in the last
ReLU layers.

the LR. Moreover, to save computation time, k = 3 neighbors would be enough for high
accuracy.

3.5.5 Impact of the Number of Neighbors and Attack Strength ϵ.

We train LID and multiLID with the APGD-CE attack from the AutoAttack benchmark for
different perturbation magnitudes, i.e. using different epsilons (L∞ and L2). On smaller
perturbation sizes the logistic regression (LR) classifier AUC scores are dropping, which
is to be expected. On the most commonly used perturbation sizes (L∞ : ϵ = 8/255 and
L2 : ϵ = 0.5) LID shows its best AUC scores. The multiLID classifier provides superior
results over LID in all cases. Moreover, to save computation time for multiLID, k = 10

neighbors would be enough for high accuracy adversarial detection.

3.5.6 Attack Transferability

In this section, we evaluate the attack transferability of our models, for LID in table 3.4
and multiLID in table 3.4. In case of real world applications, the attack methods might
be unknown and thus it is a desired feature that a detector trained on one attack method
performs well for a different attack. We evaluate in both directions. The random forest
(RF) classifier shows significantly higher transferability on both LID and multiLID. The
attack tuples (PGD ↔ BIM), (PGD ↔ AA), (AA ↔ BIM), and (DF ↔ CW) yield very
high bidirectional attack transferability. However, the experiments also show that not all
combinations can be transferred successfully, e.g. (FGSM↔CW) in ImageNet. This leaves
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(a) Cummulative of all attacks on CIFAR-10. (b) Cummulative of all attacks on ImageNet.

Figure 3.5. Cummulative features used for the LR classifier. The x-axis describes the length
of the used feature vectors. The y-axis reports the AUC reached by using the most important
features out of the full vector, sorted by RF feature importance.

(a) The attack APGD-CE L∞ evaluated on dif-
ferent epsilons and neighbors.

(b) The attack APGD-CE L2 evaluated on differ-
ent epsilons and neighbors.

Figure 3.6. Ablation study of LID and multiLID detection rates by using different k on the
APGD-CE (L2, L∞) attack and different epsilon sizes.

room for further research.
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Table 3.4. Attack transfer - LID. Rows with the target µ give the average transfer rates from
one attack to all others. Random forest (RF) in table 3.5 shows higher accuracy (ACC) for
the attack transfer as RF.

LID

Attacks
CIFAR-10 CIFAR-100 ImageNet

WRN 28-10 VGG16 WRN 28-10 VGG16 WRN 50-2
from to AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

Logistic regression (LR)

FGSM BIM 62.3± 102.5 55.7± 35.5 62.9± 118.6 57.3± 33.1 66.8± 191.5 62.3± 107.5 79.2± 0.8 64.4± 3.9 76.3± 0.2 62.1± 1.2

FGSM PGD 78.3± 65.7 61.2± 208.8 86.9± 0.4 77.7± 0.5 95.6± 1.0 87.2± 1.8 66.1± 273.0 61.1± 217.0 60.6± 265.3 58.3± 137.2

FGSM AA 78.9± 68.6 60.8± 229.0 86.9± 0.3 79.5± 0.5 96.5± 0.2 88.5± 0.7 66.6± 321.8 61.7± 268.3 62.0± 319.2 59.4± 176.1

FGSM DF 79.4± 45.2 60.4± 191.4 86.4± 0.0 74.0± 1.3 87.4± 2.2 74.3± 2.2 66.5± 284.8 60.8± 204.7 61.7± 280.9 58.4± 136.7

FGSM CW 87.8± 0.9 79.4± 0.0 67.5± 70.9 55.0± 50.0 67.2± 99.5 54.8± 46.1 72.5± 227.6 61.7± 270.7 92.8± 0.3 82.9± 0.4

FGSM µ 69.5± 82.7 60.4± 36.3 77.5± 121.1 69.1± 113.1 78.2± 142.0 70.0± 134.9 76.3± 122.6 65.6± 107.3 77.5± 79.8 66.8± 73.4

BIM FGSM 85.5± 0.8 77.8± 0.2 66.3± 43.3 54.6± 41.7 66.5± 72.4 54.7± 43.6 72.0± 192.2 60.8± 233.3 94.0± 0.2 86.6± 1.0

BIM PGD 81.0± 0.6 74.0± 0.4 78.8± 0.9 72.0± 1.0 92.0± 1.7 84.6± 2.6 78.8± 0.1 69.2± 0.4 75.9± 0.4 66.8± 0.1

BIM AA 81.3± 0.6 72.9± 1.4 85.0± 0.2 75.5± 0.5 95.6± 0.4 87.9± 1.1 80.5± 0.0 71.6± 0.1 78.3± 0.4 69.0± 2.0

BIM DF 81.6± 0.1 73.5± 0.6 87.6± 0.8 79.5± 0.5 95.5± 0.3 87.3± 1.6 79.2± 0.9 71.4± 0.5 77.2± 0.8 68.7± 0.3

BIM CW 82.7± 0.1 71.2± 0.4 86.7± 0.4 75.4± 0.4 84.1± 0.3 71.8± 0.5 80.7± 1.4 67.1± 0.1 78.2± 1.1 63.2± 0.3

BIM µ 76.8± 61.8 66.9± 63.9 81.3± 0.8 73.3± 0.9 84.1± 0.3 75.4± 1.0 84.2± 0.6 76.1± 0.7 82.5± 0.7 69.7± 0.4

PGD FGSM 80.7± 0.2 72.6± 0.4 83.6± 0.7 76.1± 2.6 80.5± 0.4 73.8± 0.8 93.8± 0.1 85.3± 0.1 82.9± 0.5 74.5± 0.1

PGD BIM 79.8± 0.1 72.6± 0.5 84.2± 0.4 77.4± 1.2 81.1± 0.2 74.6± 1.8 94.0± 0.1 85.2± 0.2 86.3± 0.2 77.5± 0.2

PGD AA 90.1± 10.2 78.8± 10.5 91.0± 4.2 80.3± 15.4 94.8± 4.8 87.6± 9.1 54.5± 0.2 52.1± 0.1 52.1± 0.1 50.7± 0.3

PGD DF 94.2± 2.9 84.1± 8.8 97.7± 0.1 91.9± 1.1 99.3± 0.0 94.8± 0.2 52.4± 1.1 49.2± 0.3 50.9± 0.2 48.9± 0.1

PGD CW 93.6± 5.8 77.2± 48.2 95.2± 0.9 87.3± 1.8 99.3± 0.0 94.9± 0.2 52.1± 1.0 49.7± 0.1 51.2± 0.2 49.7± 0.3

PGD µ 84.3± 0.4 76.5± 0.8 85.1± 0.2 77.5± 0.8 76.5± 3.9 69.9± 7.1 78.9± 0.9 73.8± 2.1 78.3± 1.6 71.7± 10.1

AA FGSM 93.4± 2.7 71.2± 15.6 94.4± 1.2 80.8± 8.5 97.0± 0.1 87.4± 2.1 52.2± 0.9 50.0± 0.0 50.6± 0.0 49.9± 0.1

AA BIM 93.3± 1.2 78.5± 0.8 40.9± 114.9 48.2± 40.9 29.2± 128.7 41.1± 42.8 20.8± 63.1 37.1± 12.8 52.5± 0.0 51.5± 0.2

AA PGD 87.7± 2.5 72.8± 4.2 39.3± 3.5 42.9± 3.4 30.2± 5.3 38.3± 9.7 20.0± 3.6 33.9± 4.4 54.1± 0.6 52.6± 0.2

AA DF 77.7± 0.9 70.3± 0.0 79.4± 0.5 72.9± 0.6 83.5± 0.4 76.4± 0.2 53.3± 0.2 50.5± 0.2 54.7± 1.1 52.0± 0.4

AA CW 70.6± 0.3 64.2± 1.0 83.0± 2.4 75.9± 3.1 86.3± 0.2 79.1± 0.4 52.8± 0.7 50.2± 0.6 56.8± 0.4 51.3± 1.5

AA µ 77.5± 1.0 67.9± 5.3 47.3± 61.6 51.3± 19.5 46.2± 3.1 48.1± 4.4 69.7± 0.6 64.4± 0.3 69.9± 0.8 64.1± 1.3

DF FGSM 69.5± 0.3 64.0± 0.7 80.3± 1.3 72.6± 4.0 83.7± 1.0 77.4± 0.2 52.5± 0.5 50.6± 1.6 58.8± 0.7 51.8± 1.6

DF BIM 71.9± 0.8 62.2± 0.6 80.3± 4.8 71.9± 4.5 80.6± 1.8 71.6± 2.7 53.0± 0.2 49.6± 1.1 54.3± 0.1 49.6± 1.2

DF PGD 68.4± 2.4 64.1± 3.4 72.5± 1.0 65.4± 0.1 74.4± 0.6 68.6± 0.1 79.3± 12.4 70.0± 11.2 55.6± 0.2 54.1± 0.7

DF AA 61.9± 2.4 58.7± 2.3 73.7± 11.5 66.1± 2.8 82.9± 7.1 71.1± 2.7 77.5± 10.9 65.8± 1.8 52.5± 0.3 52.0± 0.3

DF CW 70.1± 10.0 64.5± 5.7 78.4± 2.4 71.5± 1.8 94.2± 5.8 77.5± 6.0 51.5± 0.1 51.1± 0.9 51.3± 0.0 50.9± 0.0

DF µ 69.0± 0.8 63.3± 1.6 68.0± 1.5 61.0± 2.0 70.0± 3.3 64.4± 3.1 69.7± 6.5 62.7± 2.0 69.1± 3.7 63.1± 2.9

CW FGSM 56.5± 1.1 51.3± 0.4 93.8± 1.3 87.0± 2.0 99.9± 0.0 95.8± 0.2 54.2± 0.1 51.6± 0.1 54.1± 0.1 50.9± 0.1

CW BIM 59.0± 2.3 51.2± 0.3 91.8± 2.7 82.2± 2.6 100.0± 0.0 97.0± 0.2 54.1± 0.0 51.0± 0.1 53.9± 0.0 51.3± 0.1

CW PGD 52.7± 1.0 49.8± 0.2 89.5± 1.8 62.9± 3.4 88.0± 1.8 63.6± 1.2 53.4± 0.0 50.2± 0.0 53.1± 0.0 50.0± 0.0

CW AA 57.4± 3.1 54.8± 1.1 92.6± 0.6 77.6± 0.7 94.9± 0.0 78.2± 1.0 99.8± 0.0 79.8± 0.4 54.2± 0.0 52.5± 0.1

CW DF 56.2± 0.0 54.7± 0.9 92.5± 2.2 75.6± 2.0 94.5± 0.9 77.4± 2.6 99.8± 0.0 79.1± 2.7 54.4± 0.1 53.0± 0.5

CW µ 71.7± 0.5 67.3± 0.6 71.8± 1.0 66.5± 0.7 67.3± 0.9 55.3± 1.0 79.8± 0.8 68.6± 0.7 79.5± 0.7 68.0± 1.7
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Table 3.5. Attack transfer LID. Rows with the target µ give the average transfer rates from
one attack to all others. Random forest (RF) shows higher accuracy (ACC) for the attack
transfer as LR in table 3.4.

LID

Attacks
CIFAR-10 CIFAR-100 ImageNet

WRN 28-10 VGG16 WRN 28-10 VGG16 WRN 50-2
from to AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

Random forest (RF)

FGSM BIM 62.3± 166.8 57.9± 79.1 61.0± 220.7 55.7± 100.7 68.5± 243.0 62.4± 198.1 79.6± 0.2 66.5± 2.0 75.7± 0.6 64.9± 7.3

FGSM PGD 54.4± 498.7 54.1± 238.9 90.0± 1.1 82.3± 3.9 94.8± 1.4 88.0± 2.0 64.4± 133.6 59.8± 61.7 59.1± 130.7 56.0± 49.3

FGSM AA 55.6± 535.7 55.5± 355.3 87.3± 0.1 79.6± 0.2 95.6± 0.9 89.2± 1.0 66.3± 216.2 61.1± 141.7 61.1± 224.0 57.4± 115.8

FGSM DF 58.3± 499.3 57.9± 234.0 86.3± 1.4 73.2± 0.4 88.7± 5.8 77.7± 5.2 69.3± 199.5 62.0± 104.3 62.8± 248.7 57.0± 91.6

FGSM CW 86.5± 0.9 78.3± 0.5 62.5± 102.5 54.7± 44.2 66.6± 100.0 56.2± 76.1 71.5± 276.0 63.3± 352.0 93.4± 0.3 87.3± 0.1

FGSM µ 69.4± 126.3 61.5± 77.4 72.5± 153.1 68.0± 71.2 73.2± 195.4 68.5± 122.8 73.1± 191.0 65.6± 87.1 76.1± 96.0 68.0± 94.6

BIM FGSM 84.5± 0.4 77.3± 0.4 53.9± 231.5 55.5± 61.6 59.2± 230.5 56.8± 93.4 66.1± 418.1 62.9± 335.4 94.6± 0.1 89.2± 0.8

BIM PGD 79.4± 0.1 70.5± 0.5 75.6± 0.6 67.6± 0.4 88.2± 3.5 79.5± 0.5 76.1± 0.0 67.3± 0.9 73.4± 0.2 65.5± 0.1

BIM AA 75.4± 0.5 64.9± 0.1 90.3± 0.5 82.0± 0.7 97.6± 0.2 91.5± 0.1 77.1± 2.4 66.8± 5.1 74.8± 1.3 62.8± 1.4

BIM DF 74.9± 0.4 66.2± 0.1 91.9± 1.2 84.3± 1.2 97.4± 0.1 89.8± 0.4 75.0± 3.1 65.5± 3.7 73.5± 0.2 63.3± 0.4

BIM CW 79.3± 0.1 64.5± 0.7 90.9± 1.2 81.5± 0.3 88.4± 0.3 78.3± 0.3 80.2± 1.0 65.3± 0.8 77.7± 0.2 60.7± 0.9

BIM µ 71.7± 176.1 68.3± 98.3 78.5± 0.9 70.1± 0.5 83.0± 1.0 73.6± 1.5 82.5± 1.0 73.8± 1.2 83.3± 0.6 70.0± 0.6

PGD FGSM 78.8± 0.7 71.7± 0.8 81.9± 0.7 75.4± 0.8 78.9± 0.7 72.8± 2.2 91.5± 0.2 82.6± 0.3 83.3± 0.7 76.8± 0.1

PGD BIM 76.4± 0.8 71.8± 0.7 79.8± 0.1 74.2± 0.7 77.5± 0.0 72.2± 0.2 88.1± 3.6 82.1± 1.6 85.5± 0.0 79.5± 0.2

PGD AA 80.7± 11.2 68.1± 1.2 79.0± 11.8 67.1± 3.4 83.3± 3.7 70.4± 0.4 53.4± 0.1 52.6± 0.0 51.7± 0.2 51.2± 0.1

PGD DF 89.7± 0.8 73.7± 7.4 97.7± 0.0 92.3± 0.4 99.1± 0.0 94.6± 0.3 52.1± 2.5 48.7± 0.7 50.5± 0.0 48.8± 0.1

PGD CW 90.5± 2.7 67.9± 38.9 95.2± 0.4 88.7± 0.3 99.2± 0.0 95.2± 0.6 49.9± 0.8 49.0± 0.2 49.0± 0.2 48.7± 0.1

PGD µ 82.9± 0.6 75.9± 0.8 81.5± 0.9 75.9± 0.7 69.6± 5.4 61.9± 1.0 77.8± 0.7 71.6± 1.8 76.8± 0.8 69.9± 8.0

AA FGSM 89.0± 12.1 58.6± 11.9 94.8± 0.5 86.3± 0.4 97.5± 0.1 91.6± 0.2 49.7± 0.5 49.2± 0.0 48.8± 0.6 49.3± 0.1

AA BIM 70.3± 9.3 64.0± 7.3 20.1± 7.3 34.8± 0.1 14.9± 0.5 30.6± 4.1 10.0± 3.5 29.1± 2.1 58.7± 0.7 56.3± 1.3

AA PGD 59.4± 5.8 57.3± 7.2 22.9± 16.7 32.9± 4.2 19.1± 17.7 29.9± 4.6 14.2± 25.7 27.5± 2.7 60.7± 1.9 58.0± 2.2

AA DF 73.0± 0.7 66.8± 0.2 77.7± 0.8 71.4± 0.7 78.3± 0.9 71.3± 1.3 55.7± 0.2 53.5± 0.2 56.6± 0.3 54.7± 1.5

AA CW 70.7± 1.9 63.0± 3.9 85.3± 1.8 78.5± 3.7 89.4± 0.6 80.0± 0.7 53.1± 0.0 51.4± 1.2 57.9± 0.4 53.9± 0.3

AA µ 76.0± 2.8 67.0± 2.5 34.8± 4.3 42.9± 3.0 35.3± 13.6 41.1± 4.2 68.3± 0.6 63.5± 0.8 71.3± 1.0 65.4± 2.0

DF FGSM 70.5± 1.3 59.8± 0.4 80.5± 3.8 72.4± 3.8 88.4± 0.8 80.2± 0.8 53.7± 2.0 52.1± 1.2 57.8± 0.2 54.2± 0.9

DF BIM 70.3± 0.9 60.5± 0.2 82.4± 5.2 73.6± 6.0 85.7± 1.6 77.8± 2.7 52.8± 0.0 50.1± 0.7 56.8± 0.3 53.0± 0.9

DF PGD 58.8± 0.6 56.1± 0.4 51.4± 2.1 49.9± 3.5 56.0± 2.4 54.2± 2.5 46.6± 3.7 47.1± 0.7 60.9± 2.0 57.4± 0.7

DF AA 58.4± 2.4 56.7± 1.0 62.2± 3.4 60.1± 1.3 67.8± 3.0 63.4± 1.9 56.2± 7.0 55.0± 9.5 59.0± 0.1 56.5± 0.1

DF CW 59.4± 5.9 55.9± 2.0 62.1± 0.3 58.5± 6.0 56.3± 7.1 52.9± 5.7 50.6± 0.1 50.4± 1.2 50.5± 0.1 50.5± 0.1

DF µ 70.2± 1.6 63.7± 1.4 69.6± 1.6 63.0± 2.1 54.7± 2.2 52.9± 1.6 60.7± 3.2 58.3± 2.8 55.8± 2.7 53.6± 3.0

CW FGSM 54.7± 3.1 52.8± 0.5 92.9± 1.2 85.8± 1.4 99.4± 0.1 94.6± 0.1 53.7± 0.1 51.4± 0.1 53.0± 0.0 50.8± 0.3

CW BIM 55.3± 5.2 52.0± 0.8 91.3± 1.7 82.7± 3.9 99.7± 0.0 96.0± 0.1 53.6± 0.2 51.0± 0.0 53.1± 0.3 51.4± 0.2

CW PGD 48.3± 1.9 49.8± 0.0 85.5± 4.0 64.9± 5.3 88.5± 7.5 73.0± 1.4 51.3± 0.2 50.3± 0.0 52.0± 1.9 50.2± 0.0

CW AA 54.1± 2.4 53.0± 1.0 71.7± 4.9 65.7± 2.8 73.5± 27.9 66.0± 6.0 67.6± 140.4 62.3± 90.2 53.7± 1.8 52.7± 0.3

CW DF 52.3± 1.5 51.9± 1.3 72.1± 0.3 65.5± 1.8 79.6± 4.6 68.6± 1.0 80.8± 124.5 68.3± 44.4 53.7± 0.7 53.0± 1.1

CW µ 70.7± 0.9 67.1± 0.5 70.6± 1.5 66.6± 1.0 65.1± 3.1 57.6± 1.4 64.1± 35.5 59.9± 20.1 67.7± 26.3 61.4± 9.9



66 3.5. ABLATION STUDY

Table 3.6. Attack transfer multiLID. Rows with the target µ give the average transfer rates
from one attack to all others. The full multiLID with Random forest (RF) in table 3.7 shows
significantly better accuracy (ACC) for the attack transfer as LR.

multiLID

Attacks
CIFAR-10 CIFAR-100 ImageNet

WRN 28-10 VGG16 WRN 28-10 VGG16 WRN 50-2
from to AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

Logistic regression (LR)

FGSM BIM 74.9± 62.2 59.5± 164.0 90.4± 1.6 76.5± 33.9 91.0± 28.8 76.1± 249.5 83.0± 4.8 71.7± 10.6 79.1± 1.5 68.0± 5.0

FGSM PGD 42.4± 1244.3 61.3± 292.9 45.2± 1322.9 64.1± 373.6 69.2± 1808.0 78.7± 410.9 32.5± 1507.4 58.9± 248.6 30.3± 1279.1 55.3± 197.6

FGSM AA 93.7± 2.5 86.0± 4.5 50.2± 976.9 63.3± 334.6 70.0± 1672.5 79.7± 438.1 88.0± 0.5 80.0± 0.0 83.7± 4.9 76.1± 0.0

FGSM DF 69.1± 1144.7 72.9± 286.9 70.7± 959.5 71.3± 219.2 70.6± 1203.8 75.0± 311.5 61.5± 1432.3 68.9± 222.8 57.9± 1367.7 65.1± 160.8

FGSM CW 87.0± 1.9 79.6± 0.9 57.0± 587.2 54.7± 43.6 87.1± 4.5 69.2± 10.8 66.4± 1584.1 77.6± 383.0 97.1± 0.7 93.7± 0.3

FGSM µ 83.7± 19.8 70.4± 92.6 43.9± 1432.3 63.6± 304.7 77.1± 531.5 77.0± 155.5 66.0± 1221.6 70.7± 240.2 78.9± 435.7 75.0± 87.7

BIM FGSM 86.0± 2.2 77.8± 3.8 48.1± 554.0 52.2± 9.4 86.1± 1.5 64.0± 0.5 66.6± 1507.0 76.8± 360.1 97.6± 0.1 93.7± 0.3

BIM PGD 78.3± 0.6 68.8± 0.2 75.5± 1.1 66.8± 1.7 89.5± 0.6 82.0± 0.4 78.1± 1.6 68.9± 0.6 78.3± 1.1 68.0± 2.9

BIM AA 81.0± 0.6 71.8± 0.7 89.9± 0.1 82.1± 2.3 98.1± 0.7 91.2± 0.7 70.6± 4.4 63.7± 0.9 70.7± 7.2 63.0± 11.5

BIM DF 82.5± 2.7 73.9± 3.0 92.6± 1.4 84.8± 0.7 97.8± 0.6 89.7± 2.3 69.4± 0.3 63.9± 1.1 69.4± 1.4 62.1± 5.2

BIM CW 83.6± 1.8 70.6± 1.3 91.8± 0.8 85.6± 0.9 88.7± 0.7 81.0± 2.5 74.6± 0.2 63.5± 1.1 74.6± 1.8 61.9± 2.7

BIM µ 76.9± 412.9 72.9± 74.8 80.0± 1.0 70.9± 1.2 82.1± 2.6 74.4± 3.2 82.4± 1.3 74.9± 2.5 82.7± 1.1 72.5± 1.7

PGD FGSM 81.9± 0.3 73.4± 0.7 78.7± 0.1 71.5± 0.2 73.0± 0.5 67.3± 1.1 91.0± 1.5 83.7± 3.8 89.5± 1.3 83.0± 1.4

PGD BIM 80.8± 0.7 73.2± 0.0 78.2± 3.4 70.7± 0.0 72.4± 1.8 66.9± 1.8 90.4± 2.2 83.4± 1.9 89.5± 1.2 82.0± 1.4

PGD AA 81.5± 1.0 65.2± 2.1 78.4± 2.9 63.4± 9.7 84.9± 0.9 68.6± 2.6 61.6± 0.4 54.7± 0.5 57.5± 1.2 52.3± 0.3

PGD DF 77.5± 0.6 62.9± 4.1 98.8± 0.0 94.1± 0.4 99.9± 0.0 95.8± 0.5 43.6± 0.5 48.2± 0.0 45.2± 0.5 48.2± 1.0

PGD CW 72.6± 5.6 57.6± 1.0 97.8± 0.1 92.3± 0.0 99.9± 0.0 97.3± 0.3 42.3± 0.8 48.4± 0.2 44.7± 0.9 48.3± 0.1

PGD µ 82.8± 0.7 75.8± 1.5 82.2± 1.9 75.2± 1.0 72.8± 1.3 60.8± 3.0 73.0± 0.3 69.8± 1.2 71.4± 1.5 68.8± 0.3

AA FGSM 68.1± 0.9 52.4± 1.0 97.4± 0.2 91.6± 0.1 98.5± 0.0 94.8± 0.7 41.6± 0.9 48.9± 0.1 43.8± 0.7 48.3± 0.6

AA BIM 86.8± 2.6 79.6± 3.7 43.8± 12.1 39.2± 1.4 37.8± 0.1 34.3± 1.2 35.7± 0.6 32.9± 0.5 69.4± 1.3 63.0± 0.5

AA PGD 83.3± 4.3 75.1± 0.9 38.7± 3.0 36.5± 0.2 33.6± 5.1 32.6± 1.4 30.6± 7.4 30.0± 1.1 75.2± 1.1 68.0± 0.3

AA DF 77.4± 2.8 70.1± 3.6 80.1± 3.7 72.5± 3.1 81.0± 3.9 73.1± 4.9 64.6± 0.8 57.9± 1.8 63.6± 0.3 56.1± 1.6

AA CW 77.6± 0.9 69.9± 0.0 87.8± 0.3 78.8± 0.3 89.4± 2.2 80.6± 6.8 58.5± 3.9 53.9± 2.5 60.5± 1.1 55.6± 0.9

AA µ 69.9± 0.5 67.2± 0.5 54.7± 3.3 49.8± 1.5 52.3± 4.2 48.4± 0.8 73.3± 2.3 65.9± 3.0 74.8± 1.7 67.7± 2.1

DF FGSM 75.2± 3.3 64.6± 4.9 83.4± 0.7 74.7± 0.1 88.0± 1.0 79.9± 0.4 57.6± 0.3 52.4± 0.2 61.6± 0.1 55.3± 0.3

DF BIM 74.8± 7.1 65.2± 11.4 83.1± 2.6 74.7± 1.6 87.4± 0.4 78.8± 0.5 55.1± 1.4 50.6± 0.4 57.1± 0.4 52.4± 0.1

DF PGD 74.2± 0.3 68.1± 0.1 67.2± 2.8 64.2± 0.2 68.4± 7.4 64.5± 7.3 65.5± 0.8 63.4± 0.3 67.9± 0.7 61.9± 0.7

DF AA 73.5± 0.7 66.7± 0.3 72.8± 0.7 67.7± 0.9 78.0± 1.7 72.2± 3.2 71.4± 5.6 65.1± 2.5 68.7± 1.4 62.9± 5.4

DF CW 70.4± 0.0 63.8± 0.6 69.2± 5.0 63.4± 14.9 75.8± 17.0 69.2± 19.4 51.6± 0.3 51.2± 0.0 52.0± 0.0 51.4± 0.0

DF µ 73.2± 1.1 65.4± 1.2 71.5± 2.4 64.3± 2.8 68.6± 2.4 64.4± 1.7 72.9± 2.0 66.9± 2.5 63.8± 4.5 59.8± 7.0

CW FGSM 59.8± 1.0 54.5± 2.1 93.1± 1.5 85.4± 5.1 99.8± 0.0 92.1± 7.5 54.4± 0.4 52.4± 0.1 54.2± 0.4 51.7± 0.2

CW BIM 58.7± 0.6 53.5± 0.4 92.6± 3.6 84.3± 5.0 99.8± 0.0 93.4± 0.2 54.3± 0.1 51.9± 0.1 54.0± 0.6 51.6± 0.1

CW PGD 55.8± 0.5 50.2± 0.1 91.6± 0.2 75.7± 5.7 93.3± 0.1 77.3± 1.6 53.8± 0.1 50.7± 0.0 53.7± 0.6 50.4± 0.0

CW AA 57.5± 2.7 55.8± 1.5 88.1± 3.4 72.2± 3.2 85.4± 9.9 73.0± 0.0 97.0± 0.6 75.1± 10.1 53.6± 0.2 52.2± 0.2

CW DF 58.6± 4.9 56.3± 3.5 87.4± 1.7 71.5± 5.0 83.4± 9.5 72.0± 8.6 96.1± 2.4 75.8± 1.5 53.6± 0.0 52.6± 1.3

CW µ 72.2± 0.7 67.2± 3.0 71.9± 1.0 66.9± 1.2 69.6± 0.3 60.8± 1.5 76.3± 3.4 65.6± 3.0 75.8± 3.7 65.7± 4.0
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Table 3.7. Attack transfer multiLID. Rows with the target µ give the average transfer rates
from one attack to all others. The full multiLIDwith Random forest (RF) shows significantly
better accuracy (ACC) for the attack transfer as LR in table 3.6.

multiLID

Attacks
CIFAR-10 CIFAR-100 ImageNet

WRN 28-10 VGG16 WRN 28-10 VGG16 WRN 50-2
from to AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

Random forest (RF)

FGSM BIM 62.2± 249.6 56.4± 131.6 86.5± 1.8 70.8± 23.6 82.2± 336.8 76.6± 257.7 84.4± 2.0 72.6± 1.4 81.2± 1.3 68.5± 4.4

FGSM PGD 60.6± 321.0 56.3± 154.8 68.8± 389.8 66.2± 317.8 83.3± 347.0 80.7± 316.8 63.6± 124.9 54.7± 2.2 58.6± 130.2 52.2± 3.7

FGSM AA 84.8± 0.1 73.0± 3.5 69.5± 301.0 65.2± 250.2 85.5± 362.8 83.3± 324.8 84.2± 1.5 57.6± 3.5 84.8± 0.4 57.2± 0.9

FGSM DF 78.0± 263.0 69.2± 100.4 77.7± 116.9 61.2± 2.4 80.1± 289.1 68.8± 77.4 80.5± 288.1 62.4± 44.3 78.7± 385.7 60.5± 49.6

FGSM CW 86.6± 1.2 78.7± 1.7 61.3± 190.5 49.7± 0.1 84.0± 5.4 55.3± 0.3 79.9± 397.6 74.5± 299.3 97.7± 0.0 95.4± 0.1

FGSM µ 79.3± 118.3 69.0± 83.8 67.0± 262.6 62.0± 159.1 81.8± 133.2 67.3± 116.6 79.0± 268.5 64.4± 54.8 81.9± 118.9 70.7± 60.3

BIM FGSM 84.5± 3.5 77.9± 1.2 49.7± 186.9 49.0± 0.2 78.5± 2.1 53.8± 3.1 76.3± 567.8 69.5± 221.4 97.2± 0.1 94.5± 0.2

BIM PGD 77.6± 0.0 67.5± 0.1 74.9± 1.4 65.7± 0.9 88.8± 0.5 81.0± 1.4 80.9± 1.6 72.2± 0.2 81.4± 1.6 69.5± 0.9

BIM AA 69.7± 2.8 57.1± 1.3 91.1± 2.0 83.4± 4.8 97.4± 0.8 92.3± 1.8 64.3± 12.2 52.8± 0.3 64.7± 2.4 52.4± 0.9

BIM DF 67.5± 2.9 57.1± 2.3 93.5± 0.4 86.2± 0.4 97.0± 0.9 91.3± 1.5 58.3± 7.0 51.8± 0.2 58.8± 4.8 51.9± 2.3

BIM CW 79.7± 0.4 57.4± 2.4 91.8± 0.8 83.7± 1.2 88.3± 4.6 79.4± 4.1 79.9± 0.9 54.4± 0.6 79.6± 1.7 54.0± 0.6

BIM µ 77.2± 152.1 69.0± 45.2 80.7± 1.0 71.2± 0.7 77.4± 4.1 67.6± 1.8 75.0± 3.2 67.7± 1.4 83.9± 1.7 65.8± 1.8

PGD FGSM 81.2± 0.2 72.7± 0.0 71.6± 1.6 63.7± 3.0 66.7± 1.6 57.6± 2.6 82.3± 4.5 75.8± 25.4 89.7± 0.5 83.1± 2.5

PGD BIM 79.8± 0.6 72.1± 0.7 69.8± 0.0 58.1± 9.1 64.9± 2.8 53.2± 5.4 79.0± 13.8 67.2± 47.7 89.1± 1.4 82.8± 1.9

PGD AA 80.1± 1.1 65.1± 1.5 76.6± 0.5 64.1± 0.7 84.3± 0.1 70.1± 1.5 54.9± 0.7 52.3± 0.0 52.8± 0.2 51.3± 0.2

PGD DF 81.6± 6.1 56.8± 7.9 98.8± 0.1 95.0± 0.8 99.9± 0.0 97.0± 0.1 44.2± 4.8 48.2± 0.1 43.3± 1.0 47.8± 0.8

PGD CW 83.0± 0.2 52.6± 1.3 97.4± 0.2 90.8± 0.5 99.9± 0.0 97.9± 0.0 44.6± 4.2 48.6± 0.0 44.2± 0.9 48.5± 0.5

PGD µ 78.3± 1.7 70.6± 6.7 76.5± 3.7 66.7± 13.0 69.7± 0.6 60.6± 0.8 73.6± 2.4 69.0± 1.9 73.8± 1.1 67.7± 0.5

AA FGSM 76.4± 4.0 50.3± 0.0 97.0± 0.3 88.3± 0.0 98.5± 0.1 92.2± 0.8 45.8± 2.4 49.5± 0.0 44.9± 6.1 49.2± 0.1

AA BIM 76.3± 3.3 69.5± 8.4 19.3± 21.3 34.4± 1.1 15.5± 11.8 32.5± 0.3 13.6± 12.8 31.7± 0.9 69.3± 0.5 63.7± 0.6

AA PGD 70.7± 4.7 66.6± 7.5 21.0± 5.0 32.7± 2.2 17.8± 12.6 30.1± 2.5 15.0± 4.2 29.6± 3.8 73.1± 0.7 67.7± 1.1

AA DF 76.0± 3.3 69.6± 1.0 78.5± 2.8 71.0± 3.0 78.1± 2.8 70.2± 2.8 61.1± 1.2 57.6± 1.1 60.7± 0.4 57.2± 2.7

AA CW 71.6± 2.4 63.9± 1.3 86.1± 1.2 79.1± 0.8 89.2± 1.0 81.0± 1.7 53.9± 0.3 51.5± 1.0 58.2± 2.0 54.7± 0.6

AA µ 72.5± 2.6 65.9± 0.2 38.8± 9.9 46.4± 2.3 39.5± 5.5 45.3± 3.4 70.9± 2.1 65.1± 2.1 71.8± 1.4 66.0± 1.1

DF FGSM 70.0± 1.1 60.3± 2.9 80.5± 2.1 71.9± 2.4 87.5± 0.9 78.8± 2.6 54.6± 0.6 51.4± 0.3 58.8± 0.6 54.5± 0.7

DF BIM 65.9± 0.7 60.0± 3.3 81.4± 2.7 72.8± 5.5 86.7± 0.6 78.3± 1.0 52.4± 0.6 50.5± 0.2 56.5± 1.1 53.1± 0.0

DF PGD 66.0± 1.5 61.3± 1.0 58.5± 2.9 53.9± 6.8 63.5± 4.1 57.1± 2.8 55.0± 2.6 50.0± 1.5 75.0± 0.4 69.1± 0.3

DF AA 66.6± 7.5 63.1± 1.9 65.2± 7.3 61.2± 9.4 70.3± 2.7 66.1± 3.3 62.2± 10.5 59.0± 13.3 70.7± 0.5 65.4± 0.6

DF CW 55.3± 3.7 52.8± 3.6 59.5± 1.3 55.8± 1.9 50.7± 11.7 48.8± 5.8 50.1± 0.3 49.6± 0.1 50.5± 0.2 50.6± 0.0

DF µ 70.3± 1.1 63.4± 1.8 68.6± 1.1 62.9± 2.0 63.6± 2.3 58.3± 2.5 67.0± 5.7 63.0± 5.7 53.2± 3.4 51.5± 2.3

CW FGSM 54.6± 0.6 51.6± 0.0 94.1± 0.1 87.3± 1.8 99.5± 0.0 93.4± 1.6 53.9± 0.1 52.5± 0.0 53.4± 0.5 51.5± 0.2

CW BIM 55.2± 1.0 51.5± 0.3 91.8± 0.6 82.9± 1.3 99.6± 0.0 94.2± 1.6 53.6± 0.3 51.7± 0.4 53.7± 0.4 51.2± 0.2

CW PGD 51.4± 2.6 49.9± 0.1 85.7± 0.7 63.4± 5.8 89.9± 0.4 71.9± 0.1 51.5± 1.1 50.2± 0.0 51.7± 0.1 50.3± 0.0

CW AA 52.8± 5.4 51.5± 0.5 74.3± 2.6 67.1± 2.1 78.6± 15.6 69.5± 6.9 75.1± 227.1 66.4± 84.9 53.6± 0.2 52.0± 0.9

CW DF 53.4± 1.1 53.0± 1.8 76.8± 7.9 67.7± 0.8 80.8± 21.8 71.2± 15.1 87.5± 63.7 72.5± 5.4 50.9± 0.8 50.8± 1.5

CW µ 71.1± 0.3 67.3± 0.7 70.8± 0.5 66.3± 0.8 66.0± 1.0 57.1± 1.2 66.9± 50.2 61.3± 19.1 69.9± 19.0 63.0± 4.9
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3.6 LIMITATIONS

While our method allows to achieve imporoved results in the considered test scenario and for
the given datasets, we do not claim to have solved the actual problem. We use the evaluation
setting as proposed in previous works (e.g. [91]) where each attack method is evaluated
separately and with constant attack parameters. For a deployment in real-world scenarios,
the robustness of a detector under potential disguise mechanisms needs to be verified. An
extended study on the transferability of our method from one attack to the other can be found
in section 3.5.6. It shows first promising resulting in this respect but also leaves room for
further improvement.

3.7 SUMMARY

In this work, we revisit the MLE estimate of the local intrinsic dimensionality (LID) which
has been used in previous works on adversarial detection. An analysis of the extracted LID
features and their theoretical properties allows us to redefine an LID-based feature using
unfolded local growth rate estimates that are significantly more discriminative than the ag-
gregated LID measure.

We show improved results across different attacks and variety of epsilons. Moreover,
we modify the LID so that the log features are trained by the Logistic Regression which lead
to improved results as well. We believe that our approach have a potential to apply to many
other related machine learning tasks.



Chapter 4

Visual Prompting for Adversarial
Robustness

In this chapter, we leverage visual prompting (VP) to improve adversarial robustness of a
fixed, pre-trained model at test time. Compared to conventional adversarial defenses, VP
allows us to design universal (i.e., data-agnostic) input prompting templates, which have
plug-and-play capabilities at test time to achieve desired model performance without intro-
ducing much computation overhead.

Although VP has been successfully applied to improving model generalization, it re-
mains elusive whether and how it can be used to defend against adversarial attacks. We
investigate this problem and show that the vanilla VP approach is not effective in adver-
sarial defense since a universal input prompt lacks the capacity for robust learning against
sample-specific adversarial perturbations.

To circumvent it, we propose a new VP method, termed Class-wise Adversarial Visual
Prompting (C-AVP), to generate class-wise visual prompts so as to not only leverage the
strengths of ensemble prompts but also optimize their interrelations to improve model ro-
bustness. Our experiments show that C-AVP outperforms the conventional VPmethod, with
2.1× standard accuracy gain and 2× robust accuracy gain. Compared to classical test-time
defenses, C-AVP also yields a 42× inference time speedup.

4.1 BACKGROUND

In this section, we explain the advantages and the already applied fields of visual prompting
(alias model reprogramming) and importance for adversarial robustness. Additionally, we
introduce related literature and some of its most prominent work.

69
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4.1.1 Preliminaries

Machine learning (ML) models can easily be manipulated (by an adversary) to output dras-
tically different classifications. Thereby, model robustification against adversarial attacks
is now a major focus of research. Yet, a large volume of existing works focused on training
recipes and/or model architectures to gain robustness. Adversarial training (AT) [92], one
of the most effective defense, adopted min-max optimization to minimize the worst-case
training loss induced by adversarial attacks. Extended from AT, various defense methods
were proposed, ranging from supervised learning to semi-supervised learning, and further
to unsupervised learning [18, 24, 43, 108, 121, 144, 150, 161, 163, 168].

Although the design for robust training has made tremendous success in improving
model robustness [5,33], it typically takes an intensive computation cost with poor defense
scalability to a fixed, pre-trained ML model. Towards circumventing this difficulty, the
problem of test-time defense arises; see the seminal work in Croce et al. [31]. Test-time
defense alters either a test-time input example or a small portion of the pre-trained model.
Examples include input (anti-adversarial) purification [1, 94, 159] and model refinement
by augmenting the pre-trained model with auxiliary components [45, 64, 118]. However,
these defense techniques inevitably raise the inference time and hamper the test-time ef-
ficiency [31]. Inspired by that, our work will advance the test-time defense technology
by leveraging the idea of visual prompting (VP) [8], also known as model reprogram-
ming [23, 41, 136, 162].

Generally speaking, as shown in fig. 4.1, VP [8] creates a universal (i.e., data-agnostic)
input prompting template (in terms of input perturbations) in order to improve the general-
ization ability of a pre-trained model when incorporating such a visual prompt into test-time
examples.

Figure 4.1. Concept of visual prompt (VP). At test-time a visual prompt is added to the
input image, which improve the generalization ability of a pre-trained model.

It enjoys the same idea as model reprogramming [23, 41, 136, 162] or unadversarial ex-
ample [117], which optimizes a universal perturbation pattern to maneuver (i.e., reprogram)
the functionality of a pre-trained model towards the desired criterion, e.g., cross-domain
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transfer learning [136], out-of-distribution generalization [117], and fairness [162].

4.1.2 Related Work

Visual prompting. Originated from the idea of in-context learning or prompting in natural
language processing (NLP) [12, 77, 107, 166], VP was first proposed in Bahng et al. [8]
for vision models. Before formalizing VP in Bahng et al. [8], the underlying prompting
technique has also been devised in computer vision with different naming. For example, VP
is closely related to adversarial reprogramming or model reprogramming [23, 41, 100, 136,
152, 169], which focused on altering the functionality of a fixed, pre-trained model across
domains by augmenting test-time examples with an additional (universal) input perturbation
pattern. Unadversarial learning also enjoys a similar idea to VP. In [117], unadversarial
examples that perturb original ones using ‘prompting’ templates were introduced to improve
out-of-distribution generalization. Yet, the problem of VP for adversarial defense is under-
explored.

Adversarial defense. The lack of adversarial robustness is a weakness of ML models.
Adversarial defense, such as adversarial detection [45,48,95,96,143,155] and robust train-
ing [11, 24, 43, 118, 144, 163], is a current research focus. In particular, adversarial training
(AT) [92] is the most widely-used defense strategy and has inspired many recent advances
in adversarial defense [5, 33, 64, 97, 139, 157]. However, these AT-type defenses (with the
goal of robustness-enhanced model training) are computationally intensive due to min-max
optimization over model parameters. To reduce the computation overhead of robust train-
ing, the problem of test-time defense arises [31], which aims to robustify a given model
via lightweight unadversarial input perturbations (a.k.a input purification) [123,159] or mi-
nor modifications to the fixed model [25, 167]. In different kinds of test-time defenses, the
most relevant work to ours is anti-adversarial perturbation [1]. However, it remains elu-
sive whether or not VP could be designed as an effective solution to adversarial defense.
We will investigate this problem, which we call adversarial visual prompting (AVP) in this
work. Compared to conventional test-time defense methods, AVP significantly reduces the
inference time overhead since visual prompts can be designed offline over training data and
have the plug-and-play capability applied to any testing data.

4.2 CONTRIBUTIONS

We summarize our contributions as below.

• We formulate and investigate the problem of AVP for the first time and empirically
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show the conventional data-agnostic VP design is incapable of gaining adversarial
robustness.

• We propose a new VP method, termed class-wise AVP (C-AVP), which produces
multiple, class-wise visual prompts with explicit optimization on their couplings to
gain better adversarial robustness.

• We provide insightful experiments to demonstrate the pros and cons of VP in adver-
sarial defense.

4.3 METHOD

We start this section introducing the problem definition and discuss to utilize visual prompt-
ing for adversarial robustness. This work represents the first approach to improve the ro-
bustness against adversarial examples with visual prompting. After examining a universal
prompt against adversarial examples we leveraged the robustness by using creating a visual
prompt for each class.

4.3.1 Problem Defintion

In this section, we will begin by providing a brief background on VP, and then introduce the
problem of our interest – adversarial visual prompting (AVP) – which aims at generating
visual prompts to improve adversarial robustness of a pre-trained, fixed model. Through a
warm-up example, we will empirically show that the conventional design of VP is difficult
to apply to the paradigm of AVP.

Visual prompting. Wedescribe the problem setup of VP following Bahng et al. [8,41,136,
162]. Specifically, let Dtr denote a training set for supervised learning, where (x, y) ∈ Dtr

signifies a training sample with feature x and label y. And let δ be a visual prompt to be
designed. The prompted input is then given by x + δ with respect to (w.r.t.) x. Different
from the problem of adversarial attack generation that optimizes δ for erroneous prediction,
VP drives δ to minimize the performance loss ℓ of a pre-trained model θ. This leads to

minimize
δ

E(x,y)∈Dtr [ℓ(x+ δ; y,θ)]

subject to δ ∈ C,
(4.1)

where ℓ denotes prediction error given the training data (x, y) and base model θ, and C is a
perturbation constraint. Following Bahng et al. [8,41,136], C restricts δ to let x+δ ∈ [0, 1]

for any x. Projected gradient descent (PGD) [92,117] can then be applied to solving problem
(4.1). In the evaluation, δ is integrated into test data to improve the prediction ability of θ.
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Figure 4.2. Concept of the U-AVP. The (U-AVP) consists of two terms: (Top) The first
term affects the visual prompt to improve the prediction ability. (Bottom) The second terms
compromises, if the prompted image is attacked, but the visual prompt is trained to neutralize
the attack perturbation.

4.3.2 Adversarial Visual Prompting

Inspired by the usefulness of VP to improve model generalization [8, 136], we ask:

(AVP problem) Can VP (4.1) be extended to robustify θ against adversarial attacks?

At the first glance, the AVP problem seems trivial if we specify the performance loss ℓ as
the adversarial training loss [92, 163]:

ℓadv(x+ δ; y,θ) = maximize
x′:∥x′−x∥∞≤ϵ

ℓ(x′ + δ; y,θ), (4.2)

where x′ denotes the adversarial input that lies in the ℓ∞-norm ball centered at xwith radius
ϵ > 0.

Recall from (4.1) that the conventional VP requests δ to be universal across training
data. Thus, we term universal AVP (U-AVP) the following problem by integrating (4.1)
with (4.2) and compare the following equation with fig. 4.2:

minimize
δ: δ∈C

λE(x,y)∈Dtr [ℓ(x+ δ; y,θ)]+

E(x,y)∈Dtr [ℓadv(x+ δ; y,θ)]
(U-AVP)

where λ > 0 is a regularization parameter to strike a balance between generalization and
adversarial robustness [163]. The problem (U-AVP) can be effectively solved using a stan-
dard min-max optimization method, which involves two alternating optimization routines:
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Figure 4.3. Example of designing U-AVP for adversarial defense on (CIFAR-10,
ResNet18), measured by robust accuracy against PGD attacks [92] of different steps. The
robust accuracy of 0 steps is the standard accuracy.

inner maximization and outer minimization. The former generates adversarial examples as
AT, and the latter produces the visual prompt δ like (4.1). At test time, the effectiveness
of δ is measured from two aspects: (1) standard accuracy, i.e., the accuracy of δ-integrated
benign examples, and (2) robust accuracy, i.e., the accuracy of δ-integrated adversarial ex-
amples (against the victim model θ). Despite the succinctness of (U-AVP), fig. 4.3 shows
its ineffectiveness to defend against adversarial attacks. Compared to the vanilla VP (4.1),
it also suffers a significant standard accuracy drop (over 50% in fig. 4.3 corresponding to
0 PGD attack steps) and robust accuracy is only enhanced by a small margin (around 18%
against PGD attacks). The negative results in fig. 4.3 are not quite surprising since a data-
agnostic input prompt δ has limited learning capacity to enable adversarial defense. Thus,
it is non-trivial to tackle the problem of AVP.

4.4 EXPERIMENTS

We start this section to explain the experiment setup, then we explain the U-AVP algorithm,
and afterwards our improvements.
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4.4.1 Experiment Setup

We conduct experiments on CIFAR-10 with a pre-trained ResNet18 of testing accuracy of
94.92% on the standard test dataset. We use PGD-10 (i.e., PGD attack with 10 steps [92])
to generate adversarial examples with ϵ = 8/255 during visual prompts training, and with a
cosine learning rate scheduler starting at 0.1. Throughout experiments, we choose λ = 1 in
(U-AVP), and τ = 0.1 and γ = 3 in (C-AVP). The width of a visual prompt is set to 8 (see
fig. 4.5 for the visualization).

4.4.2 Universal Adversarial Visual Prompt

In order to clarify the U-AVP, we describe the algorithm 1 in detail in eq. (U-AVP). First the
visual prompt is initialized. Since this is a supervised approach, the normal and the adversar-
ial counterpart are added to a batch. These batches are used in optimization loss function,
minimized by stochastic gradient descent. The minimum between the normal image and
adversarial counterpart should be found.

4.4.3 Class-wise Adversarial Visual Prompt

We explain that a simple utilizaton of the U-AVP is not effective. Then, we expand the
U-AVP by different terms to take the information of different classes into account.

No free lunch for class-wise visual prompts. A direct extension of (U-AVP) is to in-
troduce multiple adversarial visual prompts, each of which corresponds to one class in the
training set Dtr. If we split Dtr into class-wise training sets {D(i)

tr }Ni=1 (for N classes) and
introduce class-wise visual prompts {δ(i)}, then the direct C-AVP extension from (U-AVP)
becomes

minimize
{δ(i)∈C}i∈[N ]

1

N

N∑
i=1

{
λE

(x,y)∈D(i)
tr
[ℓ(x+ δ(i); y,θ)]+

E
(x,y)∈D(i)

tr
[ℓadv(x+ δ(i); y,θ)]

} (C-AVP-v0)

where [N ] denotes the set of class labels {1, 2, . . . , N}. It is worth noting that C-AVP-v0
is decomposed over class labels. Although the class-wise separability facilitates numerical
optimization, it introduces challenges (C1)-(C2) when applying class-wise visual prompts
for adversarial defense.
• (C1) Test-time prompt selection: After acquiring the visual prompts {δ(i)} from (C-

AVP-v0), it remains unclear how a class-wise prompt should be selected for application to a
test-time example xtest. An intuitive way is to use the inference pipeline of θ by aligning its
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Algorithm 1 The expectation E [6] is calculated using stochastic gradient descent (SGD)
in the context of universal visual adversarial prompting for test-time defense, as described
in the cited work. This process can be viewed as a game between the visual prompt and the
adversarial example. The first term calculates the expectation value per sample of the visual
prompt, while the second term maximizes the expectation value of the adversarial example.
Require:A pre-trained classification model f , clean training dataDtr = {(x, y)}, batch size
B, λ controls the visual prompt term. The visual prompt x with the learnable parameters θ
and the maskm.
Ensure: Defense Perturbation - minimizeδ λE(x,y)∈Dtr [ℓCE(f(x + m ⊙ δ)); y)] +

E(x,y)∈Dtr maximize∥δadv∥∞≤ϵ
[ℓCE(f(x+m⊙ δ + δadv); y))] ▷ δ(x,θ)

1: repeat
2: Initialization: initial value of visual prompt δ = 0 (or random initialization)
3: for each B in {(x, y)}: do
4: B′ = []

5: for each x, y in B: do
6: δ∗adv ← argmax∥δadv∥≤ϵ ℓCE(f(x+m⊙ δ + δadv); y) ▷ Adv. generation given δ
7: B′.append((x+ δ∗adv, y))

8: end for
9: Given B and B′, update visual prompt δ by SGD: ▷ Visual Prompt

δ ← δ − η1

[ λ

|B|
∑
x,y∈B

∇δℓCE(f(CLIP(x+m⊙ δ)); y)+

1

|B|
∑

x′,y∈B′

∇δℓCE(f(CLIP(x′ +m⊙ δ)); y)
] (U-AVP)

10: end for
11: until training converged
12: Output δ ▷ U-AVP
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Inputs

Visual
Prompt

Pretrained
Classifier

Predictions

Method (c) C-AVP(b) U-AVP(a) No Prompt

Dog Cat Dog Cat Dog Cat

Figure 4.4. Overview of C-AVP over two classes (red and green) vs. eq. (U-AVP) and the
prompt-free learning pipeline.

top-1 prediction with the prompt selection. That is, the selected prompt δ and the predicted
class i∗ are determined by

δ = δ∗, i∗ = argmax
i∈[N ]

fi(xtest + δ(i);θ), (4.3)

where fi(x;θ) denotes the ith-class prediction confidence. However, the seemingly correct
rule (4.3) leads to a large prompt selection error (thus poor prediction accuracy) due to (C2).

• (C2) Backdoor effect of class mis-matched prompts: Given δ(i) from (C-AVP-v0), if
the test-time example xtest is drawn from class i, the visual prompt δ(i) then helps prediction.
However, if xtest is not originated from class i, then δ(i) could serve as a backdoor attack
trigger [51] with the targeted backdoor label i for the ‘prompted input’ xtest+δ(i). Since the
backdoor attack is also input-agnostic, the class-discriminative ability of xtest+ δ(i) enabled
by δ(i) could result in incorrect prediction towards the target class i for xtest.

Joint prompts optimization for C-AVP. The failure of C-AVP-v0 inspires us to rethink
the value of class-wise separability. As illustrated in challenges (C1)-(C2), the compati-
bility with the test-time prompt selection rule and the interrelationship between class-wise
visual prompts should be taken into account. To this end, we develop a series of new AVP
principles below. Figure 4.4 provides a schematic overview of C-AVP and its comparison
with U-AVP and the predictor without VP.

First, to bake the prompt selection rule (4.3) into C-AVP, we enforce the correct prompt
selection, i.e., under the condition that fy(x+δ(y);θ) > maxk:k ̸=y fk(x+δ(k);θ) for (x, y) ∈
D(y). The above can be cast as a CW-type loss [14]:
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ℓC−AVP,1({δ(i)};Dtr,θ) =

E(x,y)∈Dtr max{max
k ̸=y

fk(x+ δ(k);θ)− fy(x+ δ(y);θ),−τ},
(4.4)

where τ > 0 is a confidence threshold. The rationale behind (4.4) is that given a data
sample (x, y), the minimum value of ℓC−AVP,1 is achieved at−τ , indicating the desired con-
dition with the confidence level τ . Compared with (C-AVP-v0), another key characteristic
of ℓC−AVP,1 is its non-splitting over class-wise prompts {δ(i)}, which benefits the joint opti-
mization of these prompts.

Second, to mitigate the backdoor effect of mis-matched prompts, we propose additional
two losses, noted by ℓC−AVP,2 and ℓC−AVP,3, to penalize the data-prompt mismatches. Specif-
ically, ℓC−AVP,2 penalizes the backdoor-alike targeted prediction accuracy of a class-wise
visual prompt when applied to mismatched training data. For the prompt δ(i), this leads to

ℓC−AVP,2({δ(i)};Dtr,θ) =

1

N

N∑
i=1

E
(x,y)∈D(−i)

tr
max{fi(x+ δ(i);θ)− fy(x+ δ(i);θ),−τ},

(4.5)

where D(−i)
tr denotes the training data set by excluding D(i)

tr . The class i-associated prompt
δ(i) should not behave as a backdoor trigger to non-i classes’ data. Likewise, if the prompt
is applied to the correct data class, then the prediction confidence should surpass that of a
mismatched case. This leads to

ℓC−AVP,3({δ(i)};Dtr,θ) =

E(x,y)∈Dtr max{max
k ̸=y

fy(x+ δ(k);θ)− fy(x+ δ(y);θ),−τ}.
(4.6)

Let ℓC−AVP,0({δ(i)};Dtr,θ) denote the objective function of (C-AVP-v0). Integratedwith
ℓC−AVP,q({δ(i)};Dtr,θ) for q ∈ {1, 2, 3}, the desired class-wise AVP design is cast as

minimize
{δ(i)∈C}i∈[N ]

ℓC−AVP,0({δ(i)};Dtr,θ)+

γ
∑3

q=1 ℓC−AVP,q({δ(i)};Dtr,θ),
(C-AVP)

where γ > 0 is a parameter for class-wise prompting penalties.

4.4.4 C-AVP outperforms conventional Visual Prompting

Tab. 4.1 demonstrates the effectiveness of proposed C-AVP approach vs. U-AVP (the direct
extension of VP to adversarial defense) and the C-AVP-v0 method in the task of robustify
a normally-trained ResNet18 on CIFAR-10. For comparison, we also report the standard
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accuracy of the pre-trained model and the vanilla VP solution given by (4.1). As we can see,
C-AVP outperforms U-AVP and C-AVP-v0 in both standard accuracy and robust accuracy.
We also observe that compared to the pretrained model and the vanilla VP, the robustness-
induced VP variants bring in an evident standard accuracy drop as the cost of robustness.

Table 4.1. VP performance comparison in terms of standard (std) accuracy (ACC) and
robust accuracy against PGD attacks with ϵ = 8/255 and multiple PGD steps on (CIFAR-
10, ResNet18).

Evaluation Std Robust ACC vs PGD w/ step #
metrics (%) ACC 10 20 50 100

Pre-trained 94.92 0 0 0 0
Vanilla VP 94.48 0 0 0 0
U-AVP 27.75 16.9 16.81 16.81 16.7

C-AVP-v0 19.69 13.91 13.63 13.6 13.58
C-AVP (ours) 57.57 34.75 34.62 34.51 33.63

4.4.5 Prompting regularization Effect in (C-AVP)

Tab. 4.2 shows different settings of prompting regularizations used in C-AVP, where ‘Si’
represents a certain loss configuration. As we can see, the use of ℓC−AVP,2 contributes most
to the performance of learned visual prompts (see S3). This is not surprising, since we
design ℓC−AVP,2 for mitigating the backdoor effect of class-wise prompts, which is the main
source of prompting selection error. We also note that ℓC−AVP,1 is the second most important
regularization. This is because such a regularization is accompanied by the prompt selection
rule (4.3). Tab. 4.2 also indicates that the combination of ℓC−AVP,1 and ℓC−AVP,2 is a possible
computationally lighter alternative to (C-AVP).

airplane automobile bird cat dear dog frog horse ship truck

Figure 4.5. C-AVP visualization. One image is chosen from each CIFAR-10 class with the
corresponding C-AVP.
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Table 4.2. Sensitivity analysis of prompting regularization in C-AVP on (CIFAR-10,
ResNet18).

Setting ℓC−AVP,1 ℓC−AVP,2 ℓC−AVP,3 Std ACC (%) PGD-10 ACC (%)

S1 8 8 8 19.69 13.91
S2 3 8 8 22.72 13.01
S3 8 3 8 40.01 25.40
S4 8 8 3 17.44 11.78
S5 3 3 8 57.03 32.39
S6 3 8 3 26.02 15.80
S7 3 3 3 57.57 34.75

4.4.6 Class-wise Prediction Error Analysis

Figure 4.6 shows a comparison of the classification confusionmatrix. Each row corresponds
to testing samples from one class, and each column corresponds to the prompt (‘P’) selection
across 10 image classes. As we can see, our proposal outperforms C-AVP-v0 since the
former’s higher main diagonal entries indicate less prompt selection error than the latter.

(a) C-AVP-v0. (b) C-AVP.

Figure 4.6. The test-time predictions of C-AVP-v0 vs. C-AVP on (CIFAR-10, ResNet18).

Comparisons with other test-time defenses. In Tab. 4.3, we compare our proposed C-
AVP with three test-time defense methods selected from Croce et al. [31]. Note that all
methods are applied to robustifying a fixed, standardly pre-trained ResNet18. Following
Croce et al. [31], we divide the considered defenses into different categories, relying on
their defense principles (i.e., IP or MA) and needed test-time operations (i.e., IA, AN, and
R). As we can see, our method C-AVP falls into the IP category but requires no involved
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test-time operations. This leads to the least inference overhead. Although there exists a
performance gap with the test-time defense baselines, we hope that our work could pave a
way to study the pros and cons of visual prompting in adversarial robustness.

Table 4.3. Comparison of C-AVP with other SOTA test-time defenses. Per the benchmark
in Croce et al. [31], the involved test-time operations in these defenses include: IP (input
purification), MA (model adaption), IA (iterative algorithm), AN (auxiliary network), and R
(randomness). And inference time (IT), standard accuracy (SA), and robust accuracy (RA)
against PGD-10 are used as performance metrics.

Method IP MA IA AN R IT SA (%) RA (%)

[123] 3 8 3 8 8 518 × 85.9 0.4
[159] 3 8 3 3 3 176 × 91.1 40.3
[25] 8 3 3 3 8 59 × 56.1 50.6

C-AVP 3 8 8 8 8 1.4 × 57.6 34.8

4.5 LIMITATIONS

While visual prompting can be effective in improving adversarial robustness, it also has
some limitations. Here are a few limitations to consider:

• Single attack defense limitation: The visual promptmay only defend against the attack
it is trained on, i.e. PGD. The effectiveness on other attacks depends on transferability.

• Number of classes limitation: This work only shows the result of on simple CIFAR-
10 dataset which has only 10 classes. It is a simple dataset because the classes are not
hierarchical and has a low complexity from the image size and number of objects per
image perspective.

4.6 SUMMARY

In this work, we develop a novel VP method, i.e., C-AVP, to improve the adversarial ro-
bustness of a fixed model at test time. Compared to existing VP methods, this is the first
work to peer into how VP could be in adversarial defense. We show the direct integration
of VP into robust learning is not an effective adversarial defense at test time for a fixed
model. To address this problem, we propose C-AVP to create ensemble visual prompts and
jointly optimize their interrelations for robustness enhancement. We empirically show that
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our proposal significantly reduces the inference overhead compared to classical adversarial
defenses which typically call for computationally-intensive test-time defense operations.



Chapter 5

Manifold Mismatch: Misalignment of
Adversarial Examples with the Learned
Space of the Diffusion Model

In recent years, diffusion models (DMs) have drawn significant attention for their success in
approximating data distributions, yielding state-of-the-art generative results. Nevertheless,
the versatility of these models extends beyond their generative capabilities to encompass
various vision applications, such as image inpainting, segmentation, adversarial robustness,
among others. This study is dedicated to the investigation of adversarial attacks through the
lens of diffusion models. However, our objective does not involve enhancing the adversar-
ial robustness of image classifiers. Instead, our focus lies in utilizing the diffusion model
to detect and analyze the anomalies introduced by these attacks on images. To that end,
we systematically examine the alignment of the distributions of adversarial examples when
subjected to the process of transformation using diffusion models. The efficacy of this ap-
proach is assessed across CIFAR-10 and ImageNet datasets, including varying image sizes
in the latter. The results demonstrate a notable capacity to discriminate effectively between
benign and attacked images, providing compelling evidence that adversarial instances do
not align with the learned manifold of the DMs.

5.1 BACKGROUND

In this section, we address the challenge of identifying adversarial images. We provide a
comprehensive overview of the related work, with a particular focus on diffusion model-
based generated images.

83
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Figure 5.1. Illustration of the difference between an adversarial and a benign sample when
subjected to the transformation process. pa(x) represents the distribution of adversarial
images, while pb(x) represents the distribution of benign images. Using the inversion and
reversion process of a purple DDIM [127],xa andxb becomex′

a andx′
b, respectively. These

transformed counterparts now belong to distinct distributions, namely p′a(x) and p′b(x),
characterized by a significantly reduced overlap. Therefore, this results in a distinct rep-
resentation of adversarial samples compared to benign samples.

5.1.1 Prelimineries

A longstanding problem of deep learning (DL) is the vulnerability to adversarial exam-
ples [46,130]. These instances are maliciously crafted by introducing imperceptible pertur-
bations to natural examples, inducing in this way erroneous predictions in DL models, such
as misclassifications.

Given the potential security threats posed by the lack of adversarial robustness in real-
world applications, substantial efforts have been dedicated to developing defenses against
adversarial examples. Various strategies have been explored, including addressing obfus-
cated gradients [5], adversarial training (AT) [92,132,163], image denoising [119,128], and
certified defenses [27, 108, 144].

The exploration of adversarial attacks on larger image dimensions is progressing rapidly,
as evidenced by recent studies [22, 132, 165]. This progress is particularly focused on en-
hancing transferability to broaden their scope of application. In contrast, defenses [6, 135]
targeting adversarial examples [31, 36] concentrate on adjusting input or hyperparameters
during test-time. However, these methods are restricted by computational demands, limiting
their effectiveness to smaller image sizes (resolutions), such as CIFAR-10 [67]. Common
defense methods are certifiable robustness [148], randomized smoothing [164], and adver-
sarial training [36]. Consequently, supervised learning defense methods are more successful
on larger image sizes but only show a proof-of-concept of the detection capabilities rather
than being a defense.

Diffusion models (DMs) have emerged as a powerful family of generative models, with
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Denoising Diffusion Probabilistic Models (DDPMs) [55, 126] standing as pioneers in this
field. DDPMs have set up a new paradigm in image generation, showcasing a robust ca-
pability to produce high-quality images [112]. Another important model is the Denoising
Diffusion Implicit Model (DDIM) [127], known for speeding up the generation and improv-
ing sample quality. Recently, DMs have found applications within the adversarial attack
domain. In particular, Nie et al. [102] developed a DM-based method to purify the input
images, i.e., removal of noise or adversarial perturbations, from adversarial examples be-
fore entering a classifier. Expanding upon this, a recent study by Chen et al. [21] introduces
a generative classifier constructed from a pre-trained DM, achieving a high level of robust
accuracy against norm-bounded adversarial perturbations.

However, the aforementioned approaches concentrate on perfectly purified images. In
this paper, we investigate the impact of adversarial examples after transforming the inverse
and reverse processes. As opposed to purification methods, the transformation does not
have to be perfect. The hypothesis behind this is that transformed adversarial images yield a
certain pattern (fingerprint) resulting from a shift in the manifold learned by the DM on the
benign distribution. A similar effect has been observed in Generative Adversarial Networks
(GANs) [120]. Our objective is to undertake a similar investigation for DMs, requiring
the data to transform a pre-trained DM (see fig. 5.1). The input image, represented by x,
undergoes an inversion process, mapping it to the noise vector xT in the noise spaceN (0, I).
This mapping is utilized as an initialization for the subsequent process known as reverse,
wherein the denoising of the image occurs from the latent space back to its original image
domain. This transformation offers a reliable pipeline for differentiating between attacked
and benign images. By training a simple binary off-the-shelf classifier on the transformed
samples, it becomes possible to detect adversarial examples with ease. To evaluate the
effectiveness of the detector, we take the ImageNet [34] and various WB and BB attacks,
each characterized by different hyperparameters.

5.1.2 Related Work

In this subsection, we are going to adversarial attacks, defenses, and then the contribution of
DMs to adversarial robustness. n this section, we introduce adversarial attacks and defenses,
and finally, we outline the contribution of DMs to adversarial robustness.

Adversarial Attacks

Convolutional neural networks are known to be susceptible to adversarial attacks, i.e. small
perturbations of the input images that are optimized to fool the network’s decision. In sec-
tion 1.3, we have discussed most common whitebox attacks. We expand attack methods by
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a variante of the PGD attack and DM-based and some blackbox attacks. The most relevant
ones are presented below.

Masked PGD [151] is a variation of the PGD attack, in which perturbations are confined
to a specific area in the image rather than impacting the entire image. With a simple mask,
a patch region can be defined to attack. As shown in eq. (5.1), only pixels inside the patch
region [x, y, h, w] will be modified by the PGD:

x
(t+1)
adv = Clipx

(
x
(t)
adv + α · sign(∇xJ(x

(t)
adv, y,θ)[patch]), ϵ

)
. (5.1)

In this context, the term patch denotes the region specified as [x : x + h, y : y + w] with
the provided values of [x, y, h, w]. Masked PGD is capable of targeting object detectors and
video classifiers by extracting gradients from their respective loss functions.

DiffAttack [22] is the first adversarial attack based on DMs [55]. Unlike traditional adver-
sarial attacks that directly manipulate pixel values, DiffAttack focuses on creating human-
insensitive perturbations embedded with semantic clues, making them difficult to detect.
DiffAttack crafts perturbations in the latent space of DMs, whose properties achieve very
high imperceptibility and transferability. DiffAttack leverages the DDIM inversion pro-
cess [101], where the clean image is mapped back into the diffusion latent space by revers-
ing the sampling process. The image in the latent space is directly perturbed. To create a
final attacked image, the latent space must be transformed back into an image. Image edit-
ing approaches [29, 98] propose the image latent can gradually shift to the target semantic
space during the iterative denoising process.

Natural Evolution Strategy (NES) [60] is a method used in blackbox adversarial attacks
on machine learning models. It involves estimating the gradient by averaging the confi-
dence scores of randomly sampled nearby points and then using projected gradient descent
to perturb an image of the target class until it is sufficiently close to the original image.
NES can be applied to the embedding space, which accelerates the search process for adver-
sarial examples. This approach has been shown to efficiently generate perturbations for a
target model, making it effective in compromising the integrity of machine learning models.

Bandits [61] is a technique employed for generating adversarial examples within a blackbox
setting, where only limited information about the target model is accessible. This approach
harnesses bandit optimization, a form of online optimization featuring bandit feedback, to
effectively generate adversarial examples with fewer queries and higher success rates com-
pared to existing methods. The Bandits attack seamlessly integrates gradient priors, which



5.1. BACKGROUND 87

are both data-dependent and time-dependent priors, to improve the efficiency and efficacy
of blackbox attacks. Through the incorporation of bandit optimization and gradient priors,
this methodology seeks to optimize the generation of adversarial examples while minimiz-
ing the requisite number of queries to compromise the target model. The Bandits attack
has demonstrated promising outcomes boosting the performance of blackbox adversarial
attacks, underscoring its significance as an area of research in adversarial machine learning.

Adversarial Defenses

In recent years, a variety of strategies have emerged to defend against adversarial attacks.
Initially, defenses focused on supervised methods for detecting adversarial examples. Then,
adversarial training gained popularity as another supervised learning approach. Later, more
robust defenses have been developed to counter adaptive attacks [135]. More recently, there
has been a shift towards exploring defenses that are adaptive at test-time, as highlighted in
the study by Croce et al. [31]. However, adversarial defenses are always one step behind ad-
versarial attacks, since adversarial attacks have a strong ability to transfer effectively across
different datasets and models.

Adversarial Detection presents a computationally efficient alternative to adversarial train-
ing, focusing on distinguishing adversarial examples from benign ones to mitigate mis-
classifications. One notable approach is SpectralDefense (SD) [52], which analyzes the
frequency domain representation of input images and feature maps to identify adversar-
ial attacks. By leveraging the magnitude spectrum and phase of Fourier coefficients, this
method achieves high detection rates. Another one is multiLID [86] which is an improve-
ment of the LID (Local Intrinsic Dimensionality) [88, 91] in terms of detection rates. CD-
VAE (Class-Dependent Variational Auto-Encoder) [153] offers an alternative approach by
training a variational auto-encoder to extract class-dependent information from images, en-
hancing adversarial detection. CD-VAE consistently outperforms traditional approaches,
including Kernel Density (KD) [15], LID [91], and Mahalanobis distance (M-D) [73], pro-
viding valuable insights into the realm of adversarial attack detection.

Adversarial Training (AT) [92,110,163] might be the most effective method, which trains
neural networks using adversarial augmented data. Noteworthy benchmark leaderboards,
such as ARES-Bench1 and RobustBench2, are actively tracking advancements in this area.
There is a need to address the trade-off between accuracy and resilience against adversarial
examples [78]. Despite their popularity, these models often demonstrate robustness primar-

1ml.cs.tsinghua.edu.cn/ares-bench
2robustbench.github.io

https://ml.cs.tsinghua.edu.cn/ares-bench
https://robustbench.github.io
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ily to specific attacks they are trained against, exhibiting limited generalization ability to
unforeseen threats, as highlighted in [71, 134].

Defenses at Test-time differ from the aforementioned static defense methods (detection
and adversarial training) as their inputs and parameters adapt during inference. To adapt
the defense parameters, Croce et al. [31] evaluate optimization-based methods. The study
reveals considerable difficulty in defending at test-time, with observed accuracy drops of up
to 0%. The evaluation compromises: I) Obfuscated gradients [5] where BPDA (Backward
Pass Differentiable Approximation) can be used to attack non-differentiable preprocessing-
based defenses. II) Randomness: The inclusion of randomized elements, such as Expec-
tation over Transformation (EoT) [6], increases the cost for attackers. This is significant
because attacks usually presume a global perspective on the input image.

Transferability ofAdversarial Examples [49] across differentmodel architectures or train-
ing datasets is the ability that makes these attacks so effective. The transferability property
of adversarial examples makes blackbox attacks a powerful methodology, even in cases
where the attacker has limited knowledge of the victim network. Furthermore, it is an area
of active research that continuously seeks to improve transferability via new methodologies
such as mitigating attention shift [37], translation invariant attacks [38], tune variance [140],
more fine-grained perturbations through diffusion models like DiffAttack [22], and direc-
tion tuning [156]. In contrast, defense strategies focus on adapting during test-time. This
adaptation is necessitated by the computational complexity involved in dealing with smaller
images. In comparison, there are only a few defenses to aim to mitigate transferability, and
if they focus on scaled datasets, i.e. [133] or examined in [31]. At this end, attackers have
an easier role because they only have to lead to misclassification to be successful, whereas
defenders also need to keep up the correct prediction.

Diffusion Models for Adversarial Robustness

DMs have been applied within the domain of adversarial robustness, demonstrating their
efficacy and versatility in addressing challenges related to the security and resilience of
systems against adversarial attacks. The DiffPure approach [102] utilizes DMs to purify
adversarial perturbations. This purification process involves the addition of Gaussian noises
to input images, followed by the denoising of the images. Recently, Yang et al. [154] claim
that Diffpure is still not that protective against unseen threats. One potential explanation for
this issue is the continued emphasis on discriminative classifiers, which may not capture the
underlying structure of the data distribution. DMs have more accurate score estimation in
the whole data space, where they explore a DM itself as a robust classifier. Moreover, DMs
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can also contribute to improving the certified robustness in conjunction with randomized
smoothing [148]. Besides, the utilization of data generated by DMs has demonstrated an
improvement in the performance of adversarial training [110,142].

5.2 CONTRIBUTION

Our main contributions can be summarized as follows:

• We utilize the diffusion model transformation process applied to both adversarial and
benign samples, enabling the discrimination between attacked and benign samples.
This investigation includes a broad spectrum of image sizes.

• The employed classifier demonstrates the ability to effectively distinguish between
multiple types of attacks. This implies a discerning capacity to identify not only
whether an image has been subjected to an attack, but also the specific nature of the
attack itself.

• We explore the transferability of the detector by assessing its performance on other
transformed images.

5.3 METHOD

In this paper, we conduct a thorough investigation of adversarial examples passing through
a pre-trained DM, specifically of DDIM. It is important to understand that the initial noise
vector is replaced by the image to reconstruct the latent space as Wang et al. [141] already
have shown in their work for deepfake detection. This initialization should be enough to get
reconstructed images from an unconditional DM.Moreover, the transformation of adversar-
ial and benign samples should be different, although there are just tiny pixel changes crafted
by an attack method. Our research question compromises these effects of small changes in
the initial distribution and consequently on the final images.

This section is organized as follows: We begin with reviewing DDPMs, and the inver-
sion and reconstruction process of the DDIM [127]. Then, we present details of adversarial
image detection including the training procedure. The conceptual framework of our pro-
posal is illustrated in algorithm 2.

5.3.1 Problem Definition

In the case of a DM, we can think of the input data as a manifold in a high-dimensional
space, where each data point is a point on the manifold. The diffusion model learns to
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map this manifold to a lower-dimensional latent space, where each point in the latent space
corresponds to a point on the manifold.

Now, let’s consider an adversarial example, which is a data point that has been deliber-
ately modified to cause misclassification. In the context of a diffusion model, we can think
of an adversarial example as a point on the manifold that is close to the original data point,
but not necessarily on the same manifold.

The question is, are adversarial examples outliers or inliers in the latent space of the
diffusion model?

An outlier, in the context of a diffusion model, is a point in the latent space that is far
away from the manifold learned by the model. In other words, an outlier is a point that the
model has not learned to generate, and is likely to be a point that the model cannot generate
accurately.

An inlier, on the other hand, is a point in the latent space that is close to the manifold
learned by the model. In other words, an inlier is a point that the model has learned to
generate, and is likely to be a point that the model can generate accurately.

5.3.2 Prelimaries

In the following, we use the notations from DDIM [127] because we use this architecture
throughout this paper and is also able to use the pre-trained weights from the DDPM archi-
tecture [55]: We note that in [55], a diffusion hyperparameter βt is first introduced, and then
relevant variables αt := 1 − βt and ᾱt =

∏T
t=1 αt are defined. From the DDIM paper we

use the notation αt to represent ᾱt and also define

βt = 1− αt

αt−1

. (5.2)

Denoising Diffusion Probabilistic Model (DDPM) is initially proposed in [126], inspired
by non-equilibrium thermodynamics. This innovation has marked a significant advance-
ment in image generation, yielding noteworthy results [35, 55, 101, 113].

DDPMs define a Markov chain of diffusion steps, progressively introducing Gaussian
noise to the data. This iterative process continues until the data transforms, ultimately con-
verging into an isotropic Gaussian distribution. This defines the forward process of DMs
as:

q(xt|xt−1) = N
(
xt;

√
αt

αt−1
xt−1, (1−

αt

αt−1
)I
)
, (5.3)

in which xt denotes the noisy image at the t-th step and let α1, . . . , αT ∈ (0, 1]T be a pre-
determined decreasing schedule, where T represents the total number of steps. An essential
property conferred by the Markov chain is the direct derivation of xt from x0, as follows:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I) , (5.4)
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Figure 5.2. Illustration from the data generation over the transformation through a pre-
trained DM to train a binary classifier C. Adversarial and benign samples are separately
transformed. The transformation implies that the input image x0 is first gradually inverted
into a noise image xT using DDIM inversion [127], and then it is denoised step by step until
the transformed x′0 is obtained, as illustrated in eq. (5.11).

Next, the models are trained to reverse this diffusion process, enabling the generation of
samples from the noise—a process termed the reverse process. The reverse process in [55]
is also defined as a Markov chain:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(x, t)). (5.5)

DMs employ a network pθ(xt−1|xt) to approximate the real distribution q(xt−1|xt). The
primary goal of optimization is to achieve a sampling and denoising process as outlined
below:

Lsimple(θ) = Et,x0,ϵ

[∥∥ϵ− ϵθ(
√
αtx0 +

√
1− αtϵ, t)

∥∥2
2

]
. (5.6)

where ϵ ∼ N (0, I).

Denoising Diffusion Implicit Model (DDIM) [127] proposes a method for accelerating the
iterative process without the Markov hypothesis. The modified reverse process in DDIM is
defined as follows:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, t)√

αt

)
︸ ︷︷ ︸

predicted x0

+
√

1− αt−1 − σ2
t · ϵθ(xt, t)︸ ︷︷ ︸

direction pointing to xt

+ σtϵt︸︷︷︸
random noise

. (5.7)

In the given equation, when σt = 0, the term involving σtϵt becomes zero. In this case,
the reverse process becomes deterministic (backward process) because the term involving
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noise, σt ϵt, is zero. In a deterministic process, each input uniquely determines the corre-
sponding output. Therefore, when σt = 0, the reverse process is fully determined by the
given formula, and there is no randomness introduced during the backward process. Fur-
thermore, when T is large enough (e.g. T = 1000), eq. (5.7) can be seen as Euler integration
for solving Ordinary Differential Equations (ODEs):

xt−∆t√
αt−∆t

=
xt√
αt

+

(√
1− αt−∆t

αt−∆t
−
√

1− αt

αt

)
ϵθ(xt, t). (5.8)

Suppose σ =
√
1− α/

√
α, x̄ = x/

√
α, the corresponding ODE becomes:

dx̄(t) = ϵθ

(
x̄(t)√
σ2 + 1

, t

)
dσ(t). (5.9)

Then, the inversion process (from xt to xt+1) is then later reversed:

xt+1√
αt + 1

=
xt√
αt

+

(√
1− αt+1

αt+1
−
√

1− αt

αt

)
ϵθ(xt, t). (5.10)

This procedure aims to acquire the corresponding noisy sample xT for an input image x0.
Nevertheless, performing step by step inversion or sampling is notably time-consuming. To
speed up the DM sampling, DDIM [127] permits us to sample a subset of S steps τ1, . . . , τS ,
so that the neighboring xt and xt+1 become xτt and xτ+1, respectively, in eq. (5.7) and
eq. (5.10).

5.3.3 Method Details

In this paper, we conduct a thorough investigation of adversarial examples passing through
a pre-trained DM, specifically a DDIM. After the transformation (inversion and reversion),
we examine the impact that the images have undergone, and our core assumption is that
samples from the diffusion generation space pa(x) are slightly different reversed as from
pb(x).

Given an input image x0, our objective is to classify whether it is adversarial or natural
(benign). To achieve this, we utilize a pre-trained diffusion model, specifically a DDIM,
and apply the inversion process, gradually introducing Gaussian noise (refer to eq. (5.10)).
After T steps, x0 transforms into xT , which now belongs to an isotropic Gaussian noise
distribution. Subsequently, we apply the reverse process (refer to 5.7) to convert the noisy
image, resulting in a recovered version x. The overall transformation is defined as:

x′
0 = R(I(x0)), (5.11)

where I(·) represents the inversion process, and R(·) denotes the reverse process.
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To train a binary classifier differentiating between adversarial and benign samples, we
apply this transformation to both types of samples. The outcomes are then used to train the
binary classifier using binary cross-entropy loss, formulated as:

ℓ(y, y′) = −
N∑
i=1

(yi log(y′i) + (1− yi) log(y′i)) , (5.12)

whereN is mini-batch size, y is the ground-truth label, and y′ is the corresponding prediction
by the detector.

5.4 EXPERIMENTS

In this section, we begin by introducing the datasets, metrics, and the training procedure.
Following this, we present and discuss an extensive collection of experiments.

5.4.1 Datasets

For our experiments, we create several datasets: Adversarial datasets corresponding to an
attack denoted asXa and a benign dataset denoted asXb. The adversarial datasets are crafted
with a batch size of 50, giving particular attention to blackbox attacks due to their enhanced
performance with larger batch sizes [129]. Specifically, we only take images where the ap-
plied attacks are successful. To create the datasets, we systematically gather 10,000 benign
datasets and 10,000 datasets subjected to adversarial attacks, ensuring a complete absence of
overlap between the two. Ultimately, we partition the datasets into training 80%, validation
10%, and test 10% sets.

CIFAR-10 [67]: We employ the CIFAR-10 dataset as our low-resolution dataset (size 32×
32 pixels). The reverse process is performed using the DDIM CIFAR-10 L-hybrid model,
accessible at the DDIM repository3.

ImageNet [34]: We utilize the ImageNet dataset as our foundational dataset. To ensure a
class-balanced representation, we curate a dataset by extracting 100 samples from each of
the 100 classes, resulting in a total of 10,000 samples. The image sizes are chosen to align
with the pre-trained unconditional diffusion models, specifically for sizes 256 × 2564, and
512× 512 pixels5.

3github.com/openai/improved-diffusion, CIFAR-10 L-hybrid
4github.com/openai/guided-diffusion
5huggingface.co/lowlevelware/512x512_diffusion_unconditional

https://github.com/openai/improved-diffusion
https://github.com/openai/guided-diffusion
https://huggingface.co/lowlevelware/512x512_diffusion_unconditional_ImageNet
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Compressed ImageNet [149]: In the context of the DiffAttack [22], we leverage the Com-
pressed ImageNet dataset [165], as this attack has been optimized and previously assessed in
other studies for adversarial robustness. The attack involves downsampling the input image
from 256 × 256 to 224 × 224 pixels. To meet the required image size of 256 × 256 pixels
for DM reverse steps, we employ zero-padding to the left and bottom of the image.

5.4.2 Evaluation Metrics

To comprehensively evaluate the efficacy of our approach, we employ a diverse set of stan-
dard metrics commonly utilized in detection scenarios. These metrics serve as quantitative
measures, offering insights into the robustness and accuracy of the proposed method. In
particular, we use the following metrics: area-under-curve (AUC), average precision (AP),
true negative rate (TNR), false negative rate (FNR), true positive rate (TPR), false positive
rate (FPR), precision, recall, and F1.

5.4.3 Training Procedure

In algorithm 2, we outline the training procedure for the adversarial detector. The initial
step involves generating both adversarial and benign datasets (see in section 5.4.1). Then,
we apply the transformation, using DM, to all data samples. Note that this procedure neces-
sitates the use of specific dimensions, such as 32× 32, 256× 256, and 512× 512 pixels, as
the pre-trained DM is designed to process images of these sizes. The resulting transformed
images are used for training the classifier C, employing either ResNet-50, originally pre-
trained on ImageNet, or ResNet186, originally pre-trained on CIFAR-10. Throughout the
training of the classifier, we maintain the respective image sizes, except for the transformed
images of 256× 256 pixels, which are randomly cropped to the dimensions of 224× 224 to
align with previous work. We pre-process the data accordingly: I) During training, the im-
ages fed into the network are randomly cropped and horizontally flipped with a probability
of 0.5. II) During testing, the images are center-cropped.

5.4.4 Results and Discussion

This subsection offers a comprehensive analysis of the results from the proposed approach.
We delve into a detailed discussion of the performance evaluation, with a specific focus on
addressing a fundamental question: Can the proposed methodology effectively distinguish
between instances classified as under attack and those labeled as benign across various
image resolutions?

6huggingface.co/edadaltocg/resnet18_cifar10

https://huggingface.co/edadaltocg/resnet18_cifar10
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Algorithm 2 Training of the adversarial detector.
Require: Benign dataset Xb, Adversarial dataset Xa
Ensure: Trained classifier C
1: Generate transformed dataset Xtf using the pre-trained diffusion model
2: Split Xtf into training set Xtrain and test set Xtest
3: Initialize ResNet-50 model C
4: Train C using Xtrain
5: Evaluate C using Xtest
6: return C

In table 5.1, we conduct a comparative analysis of our method against various adver-
sarial defenses, encompassing supervised learning (i.e. adversarial training), and input pu-
rification as principal components. Our method aligns with the supervised learning model
category, which usually is determined as the first proof-of-concept. For our evaluations, we
employ AA and PGD attacks, considering their prominence in related work and the ongoing
debate on their efficacy in assessing the robustness of DM-based defenses [74]. Supervised
learning (SL) methods typically serve as an initial benchmark to assess the capabilities of a
method for a specific learning task, often yielding superior results compared to alternative
approaches. Consequently, different evaluation metrics are employed, leading to nuanced
comparisons. However, it is essential to note that other methods may have distinct focuses,
such as evaluating robustness during test-time [20], resilience against unseen threats [71],
or flexible to adaptive attacks [31]. Due to the divergent focuses, evaluations are often
constrained to low-resolution datasets, such as CIFAR-10.

Turning our attention to a higher resolution dataset, ImageNet, in table 5.2 we observe
that, apart from SL methods, the defense performance decreases when concentrating on
static defense mechanisms without accounting for unseen threats. Notably, while multiLID
[86] and SD [85] represent straightforward defense strategies, CD-VAE [153] emerges as a
more intricate method by using the common information per class extracted from a GAN.

Furthermore, we provide an extensive examination of the ImageNet dataset, exploring
various adversarial attacks. In this analysis, we aim to assess the generalizability of the
employed method presented in table 5.3. This involves assessing its performance across
various attacks and varying the hyperparameter ϵ sizes when applicable. Additionally, we
consider DiffAttack, a novel distance metric-based attack meticulously optimized for the
compressed ImageNet dataset and known for its invisible perturbations. Continuing the
evaluation, we extend the same rigorous procedure to blackbox attacks, to gain insights into
the method’s resilience across various adversarial scenarios. Remarkably, our approach
consistently demonstrates promising detection outcomes, showing its efficacy in mitigating
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(a) Identification of with-box attacks. (b) Identification of blackbox attacks.

Figure 5.3. Identification. The classifier for whitebox attacks has trouble distinguishing
PGD and AA, but also DF. Benign examples can be clearly distinguished from attacked
ones. The classifier for blackbox attacks can clearly distinguish the data transformations of
each attack method.

diverse types of attacks.
This variation of methods, attacks, and datasets ensures a comprehensive evaluation of

method performance across different scales and contexts. Nevertheless, we observe that
adversarial examples, characterized by subtle pixel changes, impact the DM transformation
(see 5.5.3). This influence extends to the DM’s reverse process, leading to the emergence
of identifiable and learnable patterns.

5.5 ABLATION STUDY

In this section, we present an ablation study to evaluate the pattern capabilities derived from
the transformation (inverse and reverse steps of DDIM). Our study focuses on investigating
the following questions: I) How many reverse steps are required for uncovering the adver-
sarial examples? II) Can these adversarial examples be identified as a unique fingerprint,
and what are the transferability properties?

5.5.1 Impact of the Diffusion Reverse Steps

In DDPM architecture, the reverse process is notorious for its computational demands. By
default, we set the reverse steps to 1000 steps. However, in this subsection, we analyze the
impact of changing the number of reverse steps on the model’s performance. Results shown
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in table 5.4 indicate that reducing the number of steps leads to a decline in accuracy. TNR
and FPR are inversely proportional. On the other hand, if we set T = 2000, doubling the
number of reverse steps only yields a marginal improvement in accuracy. This implies that
the standard parameter (T = 1000) for reverse steps is appropriate.

Table 5.4. The relationship between denoising steps T and model accuracy. T = 1000 is
the default value.

Attack Steps ϵ ACC AP TNR FNR TPR FPR
PGD 2000 1/255 96.1 99.53 95.9 3.7 96.3 4.1

1000 1/255 93.15 98.32 91.3 5.0 95.0 8.7
750 1/255 88.75 96.41 92.2 14.7 85.3 7.8
500 1/255 80.3 89.88 82.8 22.2 77.8 17.2
250 1/255 52.95 47.51 7.7 1.8 98.2 92.3

5.5.2 Identification and Transferability Capability Evaluation

In this section, our focus centers on investigating the transferability capabilities inherent
in our method. To that end, we pose the following questions: Can the discerning iden-
tification of each attack be reliably accomplished through the utilization of a multilabel
classifier? Furthermore, does the transferability of our approach persist when confronted
with unfamiliar data originating from other attacks?

In our pursuit of addressing the identification question, we embark on an exploration
of the efficacy of our approach applied to the ImageNet dataset. As shown in fig. 5.3a,
we carefully create and analyze the confusion matrix, focusing specifically on whitebox
attacks. The results of this identification process show significantly high accuracy scores
for benign data. However, noticeable performance degradation is observed when dealing
with PGD, AA, and DF attacks. Expanding our study to blackbox attacks, the confusion
matrix shown in fig. 5.3b reveals identification results with very high accuracy scores. This
thorough analysis not only explores howwell our methodworks on ImageNet but also shows
its strength when facing various types of attacks.

Lastly, we investigate the transferability capabilities of the binary classifier. Adversar-
ial examples have the transferability property, which makes them more strong. A unique
fingerprint would show that after the transformation, the transferability capabilities would
be hampered.

Additionally, we analyze the transferability capabilities from one attack to another, while
also augmenting the training dataset with diverse attacks. In fig. 5.4, the detector is trained
on FGSM, PGD, AA (1/255), DF, and CW datasets, smaller epsilon sizes transfer better to
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Figure 5.4. Transferability of a binary classifier trained on whitebox attacks (ϵ = 1/255;
without Masked PGD) and tested on all other datasets plotted on the x-axis.

larger ones. This augmentation helps to cover more attacks. The transferability to the same
attacks but with a larger ϵ size is high. In contrast, the transferability towards unforeseen
attacks is very low. Theoretically, the detector would rely on a huge amount of data but
could be still bypassed because this detector is static.

Impact of higher Image Resolutions

In table 5.5, we present a comparative analysis of image resolutions, specifically 224 and
512 pixels. To the best of our knowledge, our proposed method is pioneering, presenting the
initial results in adversarial detection for an image resolution of 512 pixels. The variability
in detection accuracy across different image resolutions seems to be minimal. Nevertheless,
it is noticeable that detection accuracy tends to increase with higher image resolution.
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Table 5.1. CIFAR-10. The table displays the classification accuracy of our method along
with a comparison to various types of adversarial defenses, including Adversarial Train-
ing (AT), Input Purification (IP), Supervised Learning (SL), and Auxiliary Network (AN).
Attack methods are AA and PGD with ϵ = 4/255; and AA∗ and PGD∗ with ϵ = 8/255.

Method Type Attack ACC AUC TNR Astd Arob

AT-DDPM-ℓ∞ [110] AT AA 76.08 - - 88.87 63.28
AT-EDM-ℓ∞ [142] AT 82.13 - - 93.36 70.91
RaWideResNet-70-16 [104] AT 82.17 - - 93.27 71.07
Visual Prompting [20] AT 46.16 - - 57.57 34.75
RDC [21] IP 83.23 - - 93.16 73.24
DiffPure [102]
WRN-28-10 IP 79.83 - - 89.02 70.64
WRN-70-16 IP 80.68 - - 90.07 71.29

HEDGE [147] IP AA 79.62 - - 89.16 70.07
IP PGD 79.11 - - 89.16 69.04

AID Purifier [59] IP, AN 70.42 - - 88.28 52.56
Mao et.al. [94] 64.21 - - 60.67 67.79
multiLID [86] SL, AN AA 96.43 99.37 94.11 99.86 99.93

SL, AN PGD 93.93 97.94 92.86 92.86 95.22
SDWB [85] SL, AN 97.25 99.93 95.14 99.54 95.08
SDBB [85] SL, AN 95.53 99.74 90.99 100 91.01
CD-VAE [153]
KD (R(x)) SL, AN - 99.30 96.56 - -
LID (R(x)) SL, AN - 97.57 87.54 - -
M-D (R(x)) SL, AN - 99.79 99.13 - -

Ours SL, AN AA 97.40 99.73 97.51 97.54 97.32
Ours SL, AN PGD 95.40 99.03 96.11 96.08 94.81
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Table 5.2. ImageNet with 224 pixels. The table displays the classification accuracy of
our method along with a comparison to various types of adversarial defenses, including
Adversarial Training (AT), Input Purification (IP), Supervised Learning (SL), and Auxiliary
Network (AN). Attack methods are AA and PGD with ϵ = 4/255; and AA∗ and PGD∗ with
ϵ = 8/255. We refer to other epsilon sizes of our proposed method on the other table 5.3.

Method Type Attack ACC AUC TNR Astd Arob

Swin-L [80] AT AA 69.24 - - 78.92 59.56
Conv-Next-L [80] AT 68.25 - - 78.02 58.48
DiffPure [102]
ResNet-50 IP PGD 54.36 - - 67.79 40.93
WRN-50-2 IP 57.78 - - 71.16 44.39
DeiT-S IP 58.41 - - 73.63 43.18

multiLID [86] SL, AN AA* 99.46 99.98 99.29 98.91 99.64
multiLID [86] SL, AN PGD* 89.29 95.45 89.46 97.93 89.11
SDWB [85] SL, AN AA 97.12 99.71 96.75 97.51 96.75
SDBB [85] SL, AN 83.27 83.27 59.25 91.04 59.25
CD-VAE [153]
KD (R(x)) SL, AN PGD - 100 96.56 - -
LID (R(x)) SL, AN - 97.38 87.54 - -
M-D (R(x)) SL, AN - 99.77 99.13 - -

Ours SL, AN AA 95.75 99.63 94.0 94.0 97.5
Ours SL, AN PGD 99.1 99.96 99.7 99.7 98.54
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Table 5.3. The table presents the classification accuracy on the ImageNet dataset. We use
the pre-trained ResNet-18 model on ImageNet. *Compressed Imagenet [149]. The attacks
are generated on a batch size of 50.

Attack ϵ AUC ACC AP Astd Arob TNR FNR TPR FPR Prec Rec F1

Whitebox attacks

FGSM 1/255 99.3 96.3 99.48 95.7 96.9 95.7 3.1 96.9 4.3 95.75 96.9 96.32
FGSM 2/255 99.96 99.15 99.97 99.0 99.3 99.0 0.7 99.3 1.0 99.0 99.3 99.15
FGSM 4/255 99.88 98.65 99.87 98.7 98.6 98.7 1.4 98.6 1.3 98.7 98.6 98.65
FGSM 8/255 100 99.95 100 100 99.9 100 0.1 99.9 0.0 100 99.9 99.95
PGD 1/255 99.09 93.15 98.32 91.3 95.0 91.3 5.0 95.0 8.7 91.61 95.0 93.27
PGD 2/255 99.84 98.2 99.92 98.7 97.7 98.7 2.3 97.7 1.3 98.69 97.7 98.19
PGD 4/255 99.96 99.1 99.97 99.7 98.5 99.7 1.5 98.5 0.3 99.7 98.5 99.09
PGD 8/255 100 99.75 100 99.8 99.7 99.8 0.3 99.7 0.2 99.8 99.7 99.75
Masked PGD 1 100 99.75 99.84 99.8 99.7 99.8 0.3 99.7 0.2 99.8 99.7 99.75
AA 1/255 99.69 96.3 99.55 96.2 96.4 96.2 3.6 96.4 3.8 96.21 96.4 96.3
AA 2/255 99.95 98.65 99.95 99.2 98.1 99.2 1.9 98.1 0.8 99.19 98.1 98.64
AA 4/255 99.63 95.75 99.58 94.0 97.5 94.0 2.5 97.5 6.0 94.2 97.5 95.82
AA 8/255 99.93 98.65 99.93 98.9 98.4 98.9 1.6 98.4 1.1 98.89 98.4 98.65
DF - 98.5 93.3 98.59 93.0 93.6 93.0 6.4 93.6 7.0 93.04 93.6 93.32
CW - 95.93 88.85 95.84 87.6 90.1 87.6 9.9 90.1 12.4 87.9 90.1 88.99
DiffAttack* - 100 99.9 100 99.8 100 99.8 0.0 100 0.2 99.8 100 99.9

Blackbox attacks

Square 2/255 98.5 93.3 98.59 93.0 93.6 93.0 6.4 93.6 7.0 93.04 93.6 93.32
Square 4/255 98.67 96.0 98.92 97.3 94.7 97.3 5.3 94.7 2.7 97.23 94.7 95.95
Square 8/255 99.82 98.4 99.84 99.2 97.6 99.2 2.4 97.6 0.8 99.19 97.6 98.39
Bandits 0.05 100 99.65 100 99.3 100 99.3 0.0 100 0.7 99.3 100 99.65
NES 0.05 99.86 98.1 99.85 97.9 98.3 97.9 1.7 98.3 2.1 97.91 98.3 98.1

Table 5.5. Evaluation of various image resolutions on the ImageNet dataset.

Attack Size ϵ AUC ACC AP Astd Arob TNR FNR TPR FPR Prec Rec F1

PGD 224× 224 1/255 99.09 93.15 98.32 91.3 95.0 91.3 5.0 95.0 8.7 91.61 95.0 93.27
512× 512 1/255 99.81 97.95 99.8 97.4 98.5 97.4 1.5 98.5 2.6 97.43 98.5 97.96
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5.5.3 Diffusion Model Transformations and Fourier Transformations

In this section, we investigate the reconstructed images by the Fourier transformation, i.e.
fig. 5.5 and fig. 5.6. Adversarial examples detection in supervised manners in the Fourier
domain is already heuristic proven in [85].

We transform every sample from the spatial domain to the 1D frequency domain, re-
ducing it to a 1D Power Spectrum. This method is formed by a Discrete Fourier Transform
followed by an azimuthally average. The transformation can be substantially optimized by
employing the Fast Fourier Transform. Notice that after applying the transformation, we
use only the power spectrum. A small shift after the first transformation can be recognized,
as shown in fig. 5.6a. Therefore, we apply the inverse and reverse process several times and
analyze it after each transformation with the FFT analysis. To this end, all FFT spectrums
almost totally overlap after applying the recursive transformation process several times.

Figure 5.5. 1D power spectrum statistics from each sub-data for DiffAttack [22] on
ImageNet-Compressed dataset [149].
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(a) n: 1. (b) n: 2.

(c) n: 3. (d) n: 4.

(e) n: 5. (f) n: 6.

Figure 5.6. 1D power spectrum statistics from each sub-data ImageNet set for each attack
method. The more often the transformation is recursively applied, the more the power-
spectrum is overlapping.
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5.6 LIMITATIONS

The limitations of our investigation relies mainly on the Diffusion Model’s (DM) architec-
ture. Hence, we can sum up the limitations in the following two points:

• Interpretability: Understanding the inner workings of DMs subject of current research
[19, 75]. This lack of interpretability might make it difficult to trust or fine-tune the
model for specific applications.

• Trade-off between speed and quality: DMs might need to trade off between the speed
of generating results and the quality of those results. Adjusting parameters for faster
generation may lead to a compromise in image quality and therefore harder to find
the adversarial patterns.

• Defensemechanism: The objective of this study is to demonstrate themisalignment in
the learned diffusion model’s manifold. While we can identify adversarial examples,
this alone does not suffice to classify it as a robust defense mechanism. The reason
being that this approach lacks adaptability during test-time when faced with changes
introduced by an attacker.

5.7 SUMMARY

In this work, we introduce an innovative approach that utilizes diffusion models to trans-
form both adversarial and benign examples, subsequently employing these transformations
to train a classifier. Our method unveils compelling evidence suggesting that adversarial
examples do not belong to the learned manifold of the diffusion model (DM), highlighting
its potential to uncover adversarial examples. We provide empirical evidence for this hy-
pothesis and show that our proposed transformation acts as a reliable tool for uncovering
adversarial perturbed samples and their fingerprints.

The evaluation of our proposed defenses involves the utilization of attack methods based
on Projected Gradient Descent (PGD) or AutoAttack (AA), among others, as well as black-
box attacks on the challenging ImageNet dataset up to an image size of 512×512 pixels.
Various experiments show the effectiveness and the generalization of the method across dif-
ferent attacks and image sizes. Nonetheless, it is important to acknowledge its role as a
complementary defense rather than a standalone solution. This is due to its limitations in
countering adaptive defenses capable of dynamic adjustments during test-time, as well as
the constraint in the transferability to unseen threats, similar to purification approaches.

We believe that our study contributes valuable insights into the fields of adversarial ro-
bustness of DMs and also explores the learned manifolds of DMs. The evaluation of our
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proposed defenses involves the utilization of attack methods based on Projected Gradient
Descent (PGD) or AutoAttack (AA), among others, as well as blackbox attacks on the chal-
lenging ImageNet dataset up to an image size of 512 × 512 pixels. Various experiments
show the effectiveness and the generalization of the method across different attacks and
image sizes.





Chapter 6

Conclusion

This thesis proposes several approaches to investigate the threat “adversarial examples” in
computer vision. In this final chapter, we summarize the main findings, and propose some
interesting directions for future work.

6.1 Summary

This thesis starts with explaining deep learning as a crucial part of modern methods used in
various computer vision projects. The widespread use of this technology is because it can
independently learn unique features from a specific training dataset, specifically within the
given problem area, as seen in tasks like image classification.

Our contribution focuses on analyzing adversarial example, in particular, we investigate
different detection methods to distinguish between benign and adversarial attacked images.
Originally, Goodfellow et al. [46] developed an adversarial attack (called FGSM) to fool
image classifiers. Later, several whitebox attacks followed, such as BIM, PGD, DeepFool,
C&W, and AutoAttack to list some of them.

Driven by the motivation to understand this problem, in our 2nd chapter, we analyze
adversarial attacks through the lens of the Fourier domain. We decide to use whitebox at-
tacks, which have knowledge about the attacked classifier and would be the strongest attack
scenario. The results of our empirical evaluations show strong evidence that the widely used
AutoAttack scheme for benchmarking the adversarial robustness of image classifier mod-
els on low-resolution data might not be a suitable setup in order to generalize the obtained
results to estimate the robustness in practical vision applications. Even for lower choices
of the perturbations size, AutoAttack still appears to modify target images beyond reason-
able class boundaries. Additionally, the resolution of the benchmark images should not be
neglected. On higher resolutions, AutoAttack detection is even more promising. Since Au-
toAttack is an ensemble of four attacks and the first attack is based on the gradient-based

107
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PGD, which attacks most images, because only the unsuccessful attacked images are handed
to the next attack method. On the other hand, DeepFool and C&W detection becomes more
difficult to detect. The larger image size leverages the attack to find a more minimal pertur-
bation. Moreover, the complexity of the datasets, such as a high number of classes, makes
the detection through the Fourier lens more difficult.

In chapter 3, we introduce a simple light-weight detector, which leverages recent find-
ings on the relation between networks’s local intrinsic dimensionality (LID) and adversarial
attacks. Based on the re-interpretation of the LID measure and several simple adaptations,
we surpass the state-of-the-art on adversarial detection by significant margin and reach al-
most perfect detection results. Hence, we revisit the MLE estimate of the local intrinsic
dimensionality which has been used in previous works on adversarial detection. An anal-
ysis of the extracted LID features and their theoretical properties allows us to redefine an
LID-based feature using unfolded local growth rate estimates that are significantly more
discriminative than the aggregated LID measure. We have shown outstanding results across
different attacks and variety of epsilons. Moreover, we modified the LID so that the log
features are trained by the logistic regression which lead to tremendous results as well. We
believe that our approach have a potential to apply to many other related machine learning
tasks. At this end, we show the transfer capabilities by comparing multiLID features trained
on logistic regression and random forest on different attack methods.

In chapter 4, we leverage the idea to design an anti-pattern, which should be able to
neutralize the adversarial examples across the dataset, since an attack minimal perturbate
an image. This idea is derived from the field of natural language processing (NLP), where
researchers in that field use the term “prompting”. In computer vision, it means that small
parts of an image is covered by an prompt and results in higher classification accuracy. We
present as first visual prompting to improve adversarial robustness of a fixed, pre-trained
model at test time. Compared to conventional adversarial defenses, visual prompting al-
lows us to design universal i.e., data-agnostic) input prompting templates, which have plug-
and-play capabilities at test time to achieve desired model performance without introducing
much computation overhead. Although visual prompting has been successfully applied to
improvingmodel generalization, it remains elusive whether and how it can be used to defend
against adversarial attacks. We explore this issue and demonstrate that the standard vanilla
VP approach lacks effectiveness in countering adversarial attacks, primarily due to the lim-
itations of a universal input prompt when facing targeted adversarial perturbations unique
to each sample. To address this limitation, we introduce a novel visual prompt technique
called Class-wise Adversarial Visual Prompting (C-AVP). This method involves generating
class-specific visual prompts, allowing us to harness the advantages of ensemble prompts
while also optimizing their interactions to enhance the model’s robustness. Our experimen-
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tal results clearly indicate the superiority of C-AVP over the traditional VP method. We
observe a significant improvement in standard accuracy by a factor of 2.1 and a robust ac-
curacy improvement of 2 times. In addition, when compared to traditional test-time defense
mechanisms, C-AVP offers a remarkable 42-fold acceleration in inference time.

Finally in chapter 5, we have conducted an in-depth investigation into the effective dis-
tinction between adversarial examples and benign samples, presenting convincing evidence
that adversarial instances do not belong to the learnedmanifold of the diffusionmodel (DM).
Our novel approach involves utilizing the DM to transform both adversarial and benign
examples, and then leveraging these transformations to train a classifier. The underlying
hypothesis is that adversarial samples exist outside the DM’s learned data manifold, re-
gardless of the specific attack mechanism. To validate our hypothesis, we employed an
evaluation framework that incorporates various attack methods, including Projected Gradi-
ent Descent (PGD) and AutoAttack (AA), as well as blackbox attacks on the challenging
ImageNet dataset. Our experiments demonstrate that our approach achieves remarkable de-
tection accuracy, outperforming traditional defection algorithms. However, it is important
to note that our approach is not without limitations. Specifically, it lacks the essential prop-
erties of adaptive defenses that dynamically adapt during testing, making it unsuitable as
a standalone defense mechanism. Moreover, we observe limitations in transferability to
unseen threats, similar to purification approaches. Despite these limitations, our paper con-
tributes valuable insights into the realms of adversarial robustness of DMs and the explo-
ration of their learned manifolds. While our approach has limitations, it provides valuable
insights adversarial examples do not belong of the DM’s learned manifolds, paving the way
for future research in this area.

6.2 Future Work

Throughout this thesis, we have stressed the importance of the trustworthiness of deep learn-
ing classification models For the threat, adversarial examples, we can apply the following
scheme: We generate real and malicious samples (adversarial examples or synthetic gener-
ated data), extract features of both data and train a classifier. This approach is supervised
and is only effective on known malicious methods. First we discuss, the future work of
adversarial robustness and then of importance of the detection of synthetic data.

In this section, we discuss the future work for each detection method regarding adver-
sarial examples. In the section 1.3, we describe our selection of adversarial attacks. Note
that adversarial attacks are diverse: Adversarial attacks come in many forms, including but
not limited to, whitebox, blackbox, transferable, targeted, and non-targeted attacks to men-
tion few of the properties. Each type of attack targets different vulnerabilities in machine



110 6.2. Future Work

learning models, making it difficult to design a single detector that can effectively counter
all of them. In the following, we discuss our investigations and direct to probable future
work:

• SpectralDefense: With this detection method, we have analyzed adversarial exam-
ples in the Fourier domain, especially AutoAttack (AA) fromRobustBench. We could
show that most AA is optimized towards CIFAR-10 and on other datasets the Fourier
analysis depicts even better learnable features for binary classification. However,
there are still open questions about attacks which would generate adversarial exam-
ples in different frequencies. In our experiments, we could see that, adversarial ex-
amples are a mid frequencies problem. This is a result of the mechanics of CNNs
in regards to image data. CNNs are very good at learning the low frequencies of a
dataset, while high frequencies are considered as less informative for CNNs. It seems
that adversarial attacks tend to place adversarial examples on the transition from low
to high frequencies. Jia et al. [62] explored the effectiveness of adversarial examples
in low, mid and high bands. Low bands outperforming in their experiments best, but
these perturbations are more visible in spatial domain. SpectralDefense needs to be
adaptive to detect adversarial examples at different frequencies at test time to close
the attack surface. Event though, on larger image sizes SpectalDefense becomes in-
effectively on DeepFool and C&W attack and further research could be done towards
this direction.

• Visual prompting: Visual prompting is successful to improve detection systems or
downstream pre-trained models to other tasks. In our work, we investigated if we
can defeat adversarial examples with visual prompting at test-time. We tested our ex-
periments only on a small-scale dataset CIFAR-10 with 32 × 32 pixels. The biggest
obstacle was that the visual prompt’s parameter size is very limited to find the trade-off
between defeating the adversarial example and keep clean accuracy. It would be also
interesting if on larger images and therefore a larger prompt size might improve the
results. We do not believe that replacing class-wise prompts with a universal prompt
and adding an additional learnable layer, which introduces more parameters, is bene-
ficial. This is because adversarial training involves training the entire model, which
inherently has greater capacity to learn. Moreover, there could be another option
to potentially further improve the clean accuracy. Recently, in the field of backdoor
defenses, Liu et al. [82] are able to introduce a defense callsed Non-Adversarial Back-
door (NAB), where they are able to outperform previous defenses in regards to less
suffering on the clean accuracy. Backdoors are poisoned data which are used during
training a machine learning model and later during inference are triggered by certain
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samples to cause misclassification. The benign data does not affect the model’s ac-
curacy, while the backdoor triggers the classifier’s prediction a wrong label. It could
be an interesting direction to adapt this approach for our method. We fine-tune the
pre-trained classifier by utilizing NAB for adversarial examples and later fine-tune
the visual prompt for hopefully achieving higher clean accuracy.

• multiLID: This detection method is the modification of the local intrinsic dimension-
ality investigated by Xingjun [91], which led to detection improvement as long as we
train our detector for each adversarial attack separately. The transferability to other at-
tacks is still expandable. Our attempts to train a detector by using samples from other
attacks failed by the loss of the overall detection accuracy. This is still an open issue
for fundamental research, e.g. one rejected paper from Liu et al. [79] suggests to a
new building block for DNNs to treat each adversarial examples category differently.

• DiffusionModel’sManifold: Diffusion models (DMs) have gained notable attention
due to their effective approximation of data distributions, leading to advanced gener-
ative outcomes. Adversarial attacks are known for deceiving classifiers and changes
the class predictions. The question at hand is whether images subjected to adversarial
attacks also fit within the learned manifold of the DM. Our experiments show that
adversarial attacked images do not belong to the learned manifold. Since generative
models relies on a huge amount of data, these data can be acquired either to use pre-
vious generative models to generate a dataset or crawl the data from the world wide
web. We observe a potential risk when utilizing crawled images for training a DM
that are vulnerable to attacks on the World Wide Web. Such attacks could impact the
Diffusion model’s manifold. Therefore, we direct to new methodologies to robustify
the diffusion model’s manifold against adversarial examples.

When we reflect our detection methods, we were training on a specific type of adversarial
examples in supervised manners and our detector sorts out or neutralizes the input before
reaching the classifier. This means that our detectors were mostly successful against the
known threat.

In terms, of new unseen attacks, our detector methods suffer heavily by the accuracy. We
encountered by testing the transferability of to other attack methods, but still does not lead
to convincing results. These approaches heavily rely on supervised manners. Therefore, we
think that larger detection models and more data would be needed to cover more cases. At
the end, they might not be successful against unforeseen attack methods.

Recently, Nie et al. [102] introduced a new defense paradigm – “DiffPure” – that purifies
images with a DM. Instead of detecting and sorting out malicious input, all input images are
purified by the reverse process of diffusion models. DiffPure can handle many unforeseen
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attack methods and we think that could be one possible direction for future adversarial ex-
amples defenses. This method needs to find the trade-off between purification and keeping
original image information. We also think that this research direction could be more robust
against the transferability of different kind of current known attacks and could be an alter-
native to adversarial training. It remains unclear whether the whitebox attacks commonly
used for adversarial training are the most effective for evaluating DiffPure’s robustness. We
think that new adversarial attack design needs to be investigated to elaborate on DiffPure’s
robustness. However, due to the nature of the underlying architecture of DMs, this method
lacks of inference speed. The adversarial examples attack independencemotivates for future
work in this direction.

In this thesis, we have neglected a realistic scenario in the wild is to have patch-wise
adversarial attacks instead of manipulating an image on a global viewpoint, i.e. [50], where
only a quadratic area of an image is adversarial manipulated. A patch could be printed
on a t-shirt and therefore a person wearing this t-shirt is invisible for a CCTV camera in a
private area. It would be interesting to assess our multiLID on patch-wise attacked images,
since we only have used global whitebox attacks so far. In addition, patch-wise attacks have
been shown to be effective on other architectures beyond traditional CNNs, such as vision
transformers (ViT) [39]. Due to the nature ViT the input will be patchified and a global
attack will be destroyed, while CNNs always take the whole image as once as an input. On
the other hand, the adversarial patch is not necessarily destroyed.

At this end, analyzing adversarial examples is complex, as it involves analyzing intri-
cate defense algorithms and security properties. Additionally, the transferability property of
adversarial examples enhances the effectiveness of weaker blackbox adversarial examples,
further complicating the assessment of defense mechanisms. If a model is robust against
one adversarial attack, it does not mean, it is robust against others. In recent years, research
has revealed that a shift in defense paradigms, i.e. diffusion models, can enhance state-
of-the-art defense mechanisms against known attack methods. This shift also prompts the
development of new attack methods.



Bibliography

[1] A , M., P , J. C., . Combating adversaries with anti-adversaries. In
AAAI (2022).

[2] A , L., B , J., B , A., E , S. M., F , T., H , M. E.,
R , M., N , X. V. High intrinsic dimensionality facilitates ad-
versarial attack: Theoretical evidence. IEEE Transactions on Information Forensics
and Security 16 (2021), 854–865.

[3] A , L., C , O., F , T., G , S., H , M. E., K ,
K.- ., N , M. Estimating local intrinsic dimensionality. In SIGKDD (New
York, NY, USA, 2015), Association for Computing Machinery, p. 29–38.

[4] A , M., C , F., F , N., H , M. Square attack: a
query-efficient black-box adversarial attack via random search. In ECCV (2020).

[5] A , A., C , N., . Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. ICML (2018).

[6] A , A., E , L., I , A., K , K. Synthesizing robust adversar-
ial examples. In ICML (2018), vol. 80, pp. 284–293.

[7] A , M., C , M. The role of local dimensionality measures in
benchmarking nearest neighbor search. Information Systems (2021).

[8] B , H., J , A., S , S., I , P. Visual prompting:
Modifying pixel space to adapt pre-trained models. arXiv:2203.17274 (2022).

[9] B , A., C , D., M , P. Dimensionality reduction as a de-
fense against evasion attacks on machine learning classifiers. arXiv abs/1704.02654
(2017).

[10] B , B., R , F. Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition 84 (2018), 317–331.

113



114 Bibliography

[11] B , A., . Proper network interpretability helps adversarial robustness in
classification. In ICML (2020).

[12] B , T., M , B., . Language models are few-shot learners. NeurIPS
(2020).

[13] B , S., K , B., L , B., V , P., S , D. Anomalous instance
detection in deep learning: A survey. EEE Symposium on Security and Privacy (3
2020).

[14] C , N., . Towards evaluating the robustness of neural networks. In IEEE
Symposium on S&P (2017).

[15] C , N., W , D. Adversarial examples are not easily detected: Bypass-
ing ten detection methods. In Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security (2017), ACM, pp. 3–14.

[16] C , N., W , D. Magnet and ”efficient defenses against adversarial
attacks” are not robust to adversarial examples, 2017.

[17] C , N., W , D. A. Adversarial examples are not easily detected: By-
passing ten detection methods. AISec (2017).

[18] C , Y., R , A., S , L., L , P., D , J. C. Unlabeled
data improves adversarial robustness. NeurIPS (2019).

[19] C , H., L , O., G , M., P , V., S , A., I , M., M ,
I., W , L. The hidden language of diffusion models. arXiv preprint
arXiv:2306.00966 (2023).

[20] C , A., L , P., Y , Y., C , P.-Y., L , S. Visual prompting for ad-
versarial robustness. In ICASSP (2023), IEEE, pp. 1–5.

[21] C , H., D , Y., W , Z., Y , X., D , C., S , H., Z , J. Robust
classification via a single diffusion model. ICLR (2024).

[22] C , J., C , H., C , K., Z , Y., Z , Z., S , Z. Diffusion models
for imperceptible and transferable adversarial attack. ICLR (2023).

[23] C , P.-Y. Model reprogramming: Resource-efficient cross-domain machine learn-
ing. arXiv:2202.10629 (2022).

[24] C , T., L , S., . Adversarial robustness: From self-supervised pre-training
to fine-tuning. In CVPR (2020).



Bibliography 115

[25] C , Z., L , Q., . Towards robust neural networks via close-loop control. ICLR
(2021).

[26] C , P., L , I., H , F. A downsampled variant of ima-
genet as an alternative to the cifar datasets, 2017.

[27] C , J., R , E., K , Z. Certified adversarial robustness via ran-
domized smoothing. In ICML (2019), PMLR, pp. 1310–1320.

[28] C , J., T , J. An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation 19 (1965), 297–301.

[29] C , G., V , J., S , H., C , M. Iclr. arXiv preprint
arXiv:2210.11427 (2022).

[30] C , F., A , M., S , V., D , E., F , N.,
C , M., M , P., H , M. Robustbench: a standardized adversarial
robustness benchmark. NeurIPS Datasets and Benchmarks (2020).

[31] C , F., . Evaluating the adversarial robustness of adaptive test-time defenses.
ICML (2022).

[32] C , F., H , M. Minimally distorted adversarial examples with a fast adap-
tive boundary attack. In ICML (2020).

[33] C , F., H , M. Reliable evaluation of adversarial robustness with an en-
semble of diverse parameter-free attacks. In ICML (2020), PMLR.

[34] D , J., D , W., S , R., L , L.-J., L , K., F -F , L. Imagenet: A
large-scale hierarchical image database. In CVPR (2009), Ieee, pp. 248–255.

[35] D , P., N , A. Diffusion models beat gans on image synthesis.
NeurIPS 34 (2021), 8780–8794.

[36] D , Y., F , Q.-A., Y , X., P , T., S , H., X , Z., Z , J. Benchmark-
ing adversarial robustness on image classification. In CVPR (2020), pp. 321–323.

[37] D , Y., P , T., S , H., Z , J. Evading defenses to transferable adversarial
examples by mitigating attention shift. CVPR (2018).

[38] D , Y., P , T., S , H., Z , J. Evading defenses to transferable adversarial
examples by translation-invariant attacks. In CVPR (2019), pp. 4312–4321.



116 Bibliography

[39] D , A., B , L., K , A., W , D., Z , X., U -
, T., D , M., M , M., H , G., G , S., . An

image is worth 16x16 words: Transformers for image recognition at scale. In ICLR
(2021).

[40] D , R., K , M., K , J. Watch your up-convolution: Cnn based
generative deep neural networks are failing to reproduce spectral distributions. CVPR
(2020), 7887–7896.

[41] E , G. F., G , I., . Adversarial reprogramming of neural net-
works. ICLR (2018).

[42] E , I., E , K., F , E., K , T., L , B., P , A., R ,
A., S , D. Robust physical-world attacks on deep learning models. arXiv:
Cryptography and Security (2017).

[43] F , L., L , S., . When does contrastive learning preserve adversarial robust-
ness from pretraining to finetuning? NeurIPS (2021).

[44] F , R., C , R. R., S , S., G , A. B. Detecting adversarial
samples from artifacts. arXiv abs/1703.00410 (2017).

[45] G , Y., . Reverse engineering of imperceptible adversarial image perturba-
tions. ICLR (2022).

[46] G , I. J., S , J., S , C. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572 (2014).

[47] G , S., R , S.-A., W , O., S , F., C , D. A., M ,
T. A. Improving robustness using generated data. NeurIPS 34 (2021), 4218–4233.

[48] G , K., M , P., . On the (statistical) detection of adversarial ex-
amples. arXiv:1702.06280 (2017).

[49] G , J., J , X., J , P., Y , W., L , X., M , A., X , Y., H , A., K , A.,
L , Z., . A survey on transferability of adversarial examples across deep neural
networks. arXiv preprint arXiv:2310.17626 (2023).

[50] G , J., T , V., Q , Y. Are vision transformers robust to patch-wise pertur-
bations? ECCV (2021).

[51] G , T., D -G , B., . Badnets: Identifying vulnerabilities in the machine
learning model supply chain. arXiv:1708.06733 (2017).



Bibliography 117

[52] H , P., P , F.-J., K , M., K , J. Spectraldefense: Detect-
ing adversarial attacks on cnns in the fourier domain. In IJCNN (2021).

[53] H , D., D , T. Benchmarking neural network robustness to
common corruptions and perturbations. ICLR (2019).

[54] H , D., G , K. Early methods for detecting adversarial images.
ICLR (2016).

[55] H , J., J , A., A , P. Denoising diffusion probabilistic models. NeurIPS
33 (2020), 6840–6851.

[56] H , M. E. Local intrinsic dimensionality i: An extreme-value-theoretic founda-
tion for similarity applications. In Similarity Search and Applications (Cham, 2017),
C. Beecks, F. Borutta, P. Kröger, and T. Seidl, Eds., Springer International Publish-
ing, pp. 64–79.

[57] H , M. E. Local intrinsic dimensionality ii: Multivariate analysis and distri-
butional support. In Similarity Search and Applications (Cham, 2017), C. Beecks,
F. Borutta, P. Kröger, and T. Seidl, Eds., Springer International Publishing, pp. 80–
95.

[58] H , M. E., K , H., N , M. Generalized expansion dimension. In
IEEE 12th International Conference onDataMiningWorkshops (2012), pp. 587–594.

[59] H , D., L , E., R , W. Aid-purifier: A light auxiliary network for boost-
ing adversarial defense. Neurocomputing 541 (2023), 126251.

[60] I , A., E , L., A , A., L , J. Black-box adversarial attacks
with limited queries and information. ICML (2018).

[61] I , A., E , L., M , A. Prior convictions: Black-box adversarial
attacks with bandits and priors. ICLR (2018).

[62] J , S., M , C., Y , T., Y , B., D , S., Y , X. Exploring frequency
adversarial attacks for face forgery detection. In CVPR (2022), pp. 4103–4112.

[63] J , S., K , M. Spectral distribution aware image generation. In AAAI
(2021).

[64] K , Q., . Stable neural ode with lyapunov-stable equilibrium points for de-
fending against adversarial attacks. NeurIPS (2021).



118 Bibliography

[65] K , D. R., R , M. Finding nearest neighbors in growth-restricted met-
rics. In ACM Symposium on Theory of Computing (2002).

[66] K , E. Adversarially trained neural policies in the fourier domain. In ICML
(2021).

[67] K , A., H , G., . Learning multiple layers of features from tiny
images. arXiv (2009).

[68] K , A., S , I., H , G. E. Imagenet classification with
deep convolutional neural networks. In NeurIPS (2012), F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds., vol. 25, Curran Associates, Inc.

[69] K , A., S , I., H , G. E. Imagenet classification with deep
convolutional neural networks. NeurIPS 25 (2012), 1097–1105.

[70] K , A., G , I., . Adversarial examples in the physical world.
ICLR (2016).

[71] L , C., S , S., F , S. Perceptual adversarial robustness: Defense
against unseen threat models. arXiv preprint arXiv:2006.12655 (2020).

[72] L , B., P , A., B , C. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles. In NeurIPS (2017).

[73] L , K., L , K., L , H., S , J. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. NeurIPS 31 (2018).

[74] L , M., K , D. Robust evaluation of diffusion-based adversarial purification.
ICCV (2023).

[75] L , S., L , G., K , H., K , J., U , Y. Diffusion models with grouped latents
for interpretable latent space. In ICML 2023 Workshop on Structured Probabilistic
Inference {\&} Generative Modeling (2023).

[76] L , X., L , F. Adversarial examples detection in deep networks with convolu-
tional filter statistics. In ICCV (2017), pp. 5775–5783.

[77] L , X. L., L , P. Prefix-tuning: Optimizing continuous prompts for genera-
tion. IJCNP-AACL (2021).

[78] L , J., N , L. L., X , K. Secure machine learning against adversarial
samples at test time. EURASIP Journal on Information Security 2022, 1 (2022), 1.



Bibliography 119

[79] L , A., T , S., L , X., C , X., H , L., T , Z., S , D., T , D.
Towards defending multiple adversarial perturbations via gated batch normalization,
2021.

[80] L , C., D , Y., X , W., Y , X., S , H., Z , J., C , Y., H , Y., X , H.,
Z , S. A comprehensive study on robustness of image classification models:

Benchmarking and rethinking. IJCV (2023).

[81] L , J., Z , W., Z , Y., H , D., L , Y., Z , H., Y , N. Detec-
tion based defense against adversarial examples from the steganalysis point of view.
CVPR (2018), 4820–4829.

[82] L , M., S -V , A., Y , X. Beating backdoor attack at its
own game. In CVPR (2023).

[83] L , Z., L , Q., L , T., W , Y., W , W. Feature distillation: Dnn-oriented
jpeg compression against adversarial examples. CVPR (2019), 860–868.

[84] L , Z., L , P., W , X., T , X. Deep learning face attributes in the wild.
In ICCV (December 2015).

[85] L , P., H , P., S , D., K , M., K , J. Detecting au-
toattack perturbations in the frequency domain. In ICML Workshop on Adversarial
Machine Learning (2021).

[86] L , P., K , M., K , J. Unfolding local growth rate estimates for
(almost) perfect adversarial detection. VisAPP (2022).

[87] L , P., S , D., K , M., K , J. Is robustbench/autoattack a
suitable benchmark for adversarial robustness? In The AAAI Workshop on Adversar-
ial Machine Learning and Beyond (2022).

[88] L , P.-H., C , P.-Y., Y , C.-M. On the limitation of local intrinsic dimension-
ality for characterizing the subspaces of adversarial examples. ICLRw (2018).

[89] L , S. M., L , S.-I. A unified approach to interpreting model predic-
tions. In NeurIPS (2017), pp. 4765–4774.

[90] M , C., W , B., X , S., F , Y., Z , Y., Z , X., L , Z. Effective and ro-
bust detection of adversarial examples via benford-fourier coefficients. Mach. Intell.
Res. abs/2005.05552 (april 2022).



120 Bibliography

[91] M , X., L , B., W , Y., E , S. M., W , S., S , G.,
S , D., H , M. E., B , J. Characterizing adversarial subspaces using
local intrinsic dimensionality. ICLR (2018).

[92] M , A., M , A., S , L., T , D., V , A. Towards deep
learning models resistant to adversarial attacks. ICLR (2018).

[93] M , A., S , L. A brief introduction to adversarial examples. https:
//gradientscience.org/intro_adversarial. Accessed: 2023-09-14.

[94] M , C., C , M., . Adversarial attacks are reversible with natural super-
vision. In ICCV (2021).

[95] M , D., C , H. Magnet: a two-pronged defense against adversarial exam-
ples. Conference on Computer and Communications Security (2017).

[96] M , J. H., G , T., . On detecting adversarial perturbations. ICLR
(2017).

[97] M , J., K , C.-Y., . Rethinking randomized smoothing for adversarial
robustness. arXiv:2003.01249 (2020).

[98] M , R., H , A., A , K., P , Y., C -O , D. Null-text
inversion for editing real images using guided diffusion models. In CVPR (2023),
pp. 6038–6047.

[99] M -D , S.-M., F , A., F , P. Deepfool: a simple and
accurate method to fool deep neural networks. In CVPR (2016), pp. 2574–2582.

[100] N , P., H , S., . Cross-modal adversarial reprogramming. InWACV
(2022).

[101] N , A. Q., D , P. Improved denoising diffusion probabilistic mod-
els. In ICML (2021), PMLR, pp. 8162–8171.

[102] N ,W., G , B., H , Y., X , C., V , A., A , A. Diffusion
models for adversarial purification. ICML (2022).

[103] O , Y., F , E., R , J., N , Z., S , D., N , S., D , J. V.,
L , B., S , J. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. In NeurIPS (2019).

https://gradientscience.org/intro_adversarial
https://gradientscience.org/intro_adversarial


Bibliography 121

[104] P , S., X , W., C , C., H , M., L , K., D , R., P , M., M -
, J., C , D. H. Robust principles: Architectural design principles for ad-

versarially robust cnns. BMVC (2023).

[105] P , A., S , M. Universal adversarial perturbations and image spam
classifiers, 2021.

[106] Q -C , J., S , M., L , N. D., S , A.
Dataset shift in machine learning. Mit Press, 2009.

[107] R , A., K , J. W., H , C., R , A., G , G., A , S., S ,
G., A , A., M , P., C , J., . Learning transferable visual models
from natural language supervision. In ICML (2021), PMLR, pp. 8748–8763.

[108] R , A., S , J., . Certified defenses against adversarial
examples. ICLR (2018).

[109] R , J., B ,W., B , M. Foolbox: A python toolbox to benchmark
the robustness of machine learning models. arXiv abs/1707.04131 (2018).

[110] R , S.-A., G , S., C , D. A., S , F., W , O., M , T.
Fixing data augmentation to improve adversarial robustness, 2021.

[111] R , L., W , E., K , J. Z. Overfitting in adversarially robust deep
learning. In ICML (2020), PMLR, pp. 8093–8104.

[112] R , J., D , S., H , T., F , A. Towards the detection of diffusion
model deepfakes. arXiv preprint arXiv:2210.14571 (2022).

[113] R , R., B , A., L , D., E , P., O , B. High-
resolution image synthesis with latent diffusion models. In CVPR (2022), pp. 10684–
10695.

[114] R , J., H , L. G., O , L. S., A , I. B., S , R.,
G , E. Decoupling direction and norm for efficient gradient-based l2 adver-
sarial attacks and defenses. In CVPR (2019).

[115] R , O., D , J., S , H., K , J., S , S., M , S., H , Z.,
K , A., K , A., B , M., B , A. C., F -F , L. ImageNet
Large Scale Visual Recognition Challenge. IJCV 115, 3 (2015), 211–252.

[116] S , T., S , C., B , T. Improving robustness against common cor-
ruptions with frequency biased models. In ICCV (2021).



122 Bibliography

[117] S , H., I , A., . Unadversarial examples: Designing objects for robust
vision. NeurIPS (2021).

[118] S , H., S , M., . Denoised smoothing: A provable defense for pretrained
classifiers. NeurIPS (2020).

[119] S , P., K , M., C , R. D.-G. Protecting classifiers
against adversarial attacks using generativemodels. arXiv preprint arXiv:1805.06605
1 (2018).

[120] S , G. K., G , P. Defending against adversarial attacks by
leveraging an entire gan. arXiv preprint arXiv:1805.10652 (2018).

[121] S , A., N , M., . Adversarial training for free! In NeurIPS (2019).

[122] S , M., B , S., B , L., R , M. K. A general framework
for adversarial examples with objectives. ACM Transactions on Privacy and Security
22, 3 (jul 2019), 1–30.

[123] S , C., H , C., . Online adversarial purification based on self-supervision.
ICLR (2021).

[124] S , K., Z , A. Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2015).

[125] S , C., M , W. J., Y , B. Hierarchical interpretations for neural
network predictions. In ICLR (2019).

[126] S -D , J., W , E., M , N., G , S. Deep un-
supervised learning using nonequilibrium thermodynamics. In ICML (2015), PMLR,
pp. 2256–2265.

[127] S , J., M , C., E , S. Denoising diffusion implicit models. ICLR
(2020).

[128] S , Y., K , T., N , S., E , S., K , N. Pixeldefend:
Leveraging generative models to understand and defend against adversarial exam-
ples. ICLR (2017).

[129] S , C., Z , Y., C , W., W , Q., L , Y., L , T., H , B., T ,
X. Towards lightweight black-box attack against deep neural networks. NeurIPS 35
(2022), 19319–19331.



Bibliography 123

[130] S , C., Z , W., S , I., B , J., E , D., G , I.,
F , R. Intriguing properties of neural networks. ICLR (2013).

[131] S , C., Z , W., S , I., B , J., E , D., G , I.,
F , R. Intriguing properties of neural networks. In ICLR (2014).

[132] T , S., . Robustart: Benchmarking robustness on architecture design and
training techniques. arXiv preprint arXiv:2109.05211 (2021).

[133] T , S., K , F., T , N. Dynamic defenses and the transferability
of adversarial examples. In IEEE 4th International Conference on Trust, Privacy and
Security in Intelligent Systems, and Applications (TPS-ISA) (2022), IEEE, pp. 276–
284.

[134] T , F., B , D. Adversarial training and robustness for multiple pertur-
bations. NeurIPS 32 (2019).

[135] T , F., C , N., B , W., M , A. On adaptive attacks to
adversarial example defenses. NeurIPS (2020).

[136] T , Y.-Y., . Transfer learning without knowing: Reprogramming black-box
machine learning models with scarce data and limited resources. ICML (2020).

[137] T , Y., S , I. On the structural sensitivity of deep convolutional net-
works to the directions of fourier basis functions. CVPR (2019), 51–60.

[138] W , J. Adversarial examples in physical world. In IJCAI (2021), pp. 4925–4926.

[139] W , R., X , K., . On fast adversarial robustness adaptation in model-agnostic
meta-learning. In ICLR (2021).

[140] W , X., H , K. Enhancing the transferability of adversarial attacks through
variance tuning. In CVPR (2021), pp. 1924–1933.

[141] W , Z., B , J., Z , W., W , W., H , H., C , H., L , H. Dire for
diffusion-generated image detection. ICCV (2023).

[142] W , Z., P , T., D , C., L , M., L , W., Y , S. Better diffusion models
further improve adversarial training. ICML (2023).

[143] W , B., M , P., . Adversarial examples detection and analysis
with layer-wise autoencoders. IEEE International Conference on Tools with Artifical
Intelligence (2020).



124 Bibliography

[144] W , E., K , Z. Provable defenses against adversarial examples via the
convex outer adversarial polytope. In ICML (2018), PMLR, pp. 5286–5295.

[145] W , E., R , L., K , J. Z. Fast is better than free: Revisiting adversarial
training. In ICLR (2020).

[146] W , B., C , J., C , D., H , X., G , Q. Do wider neural networks really help
adversarial robustness? In NeurIPS (2021), A. Beygelzimer, Y. Dauphin, P. Liang,
and J. W. Vaughan, Eds.

[147] W , B., P , H., S , L., G , J., Z , S., L , Z., C , D., H , X., L , W.
Attacking adversarial attacks as a defense. arXiv preprint arXiv:2106.04938 (2021).

[148] X , C., C , Z., J , K., W , J., N , W., L , M., A , A., L , B.,
S , D. Densepure: Understanding diffusion models towards adversarial ro-

bustness. arXiv preprint arXiv:2211.00322 (2022).

[149] X , A. Pytorch playground, 2017.

[150] X , C., W , Y., . Feature denoising for improving adversarial robustness. In
CVPR (2019).

[151] X , K., X , Y., Z , Z., C , K., N , R. Patchzero: Defending
against adversarial patch attacks by detecting and zeroing the patch. InWACV (2023),
pp. 4632–4641.

[152] Y , C.-H. H., T , Y.-Y., . Voice2series: Reprogramming acoustic models
for time series classification. In ICML (2021), PMLR.

[153] Y , K., Z , T., Z , Y., T , X., T , D. Class-disentanglement and
applications in adversarial detection and defense. NeurIPS 34 (2021), 16051–16063.

[154] Y , L., Z , Z., S , Y., H , S., X , R., Z , Y., Z , W., C ,
B., Y , M.-H. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys 56, 4 (2023), 1–39.

[155] Y , P., . Ml-loo: Detecting adversarial examples with feature attribution.
AAAI (2019).

[156] Y , X., L , J., Z , H., Y , X., Z , P. Improving the transferability
of adversarial examples via direction tuning. INS (2023).

[157] Y , S., X , K., . Adversarial robustness vs model compression, or both? ICCV
(2019).



Bibliography 125

[158] Y , D., L , R. G., S , J., C , E. D., G , J. A fourier perspective
on model robustness in computer vision. NeurIPS (2019).

[159] Y , J., H , S. J., . Adversarial purification with score-based generative
models. In ICML (2021), PMLR.

[160] Z , S., K , N. Wide residual networks. In BMVC (2017).

[161] Z , D., Z , T., . You only propagate once: Accelerating adversarial
training via maximal principle. NeurIPS (2019).

[162] Z , G., Z , Y., . Fairness reprogramming. NeurIPS (2022).

[163] Z , H., Y , Y., . Theoretically principled trade-off between robustness and
accuracy. ICML (2019).

[164] Z , J., C , Z., Z , H., X , C., L , B. {DiffSmooth}: Certifiably
robust learning via diffusion models and local smoothing. In 32nd USENIX Security
Symposium (2023), pp. 4787–4804.

[165] Z , Q., L , X., C , Y., S , J., G , L., H , Y., X , H. Beyond im-
agenet attack: Towards crafting adversarial examples for black-box domains. ICLR
(2022).

[166] Z , Y., C , X., J , J., L , S., D , K. Text-visual prompting for effi-
cient 2d temporal video grounding. CVPR (2023).

[167] Z , Y., Y , Y., . How to robustify black-box ml models? a zeroth-order
optimization perspective. ICLR (2022).

[168] Z , Y., F , X., X , Z., J , X., D , A., P , M., B , B.,
R , F. Clawsat: Towards both robust and accurate code models. Inf. Sci. 632

(2021), 130–143.

[169] Z , Y., F , X., X , Z., J , X., D , A., P , M., B , B.,
R , F. Why adversarial reprogramming works, when it fails, and how to tell the
difference. Information Sciences 632 (2023), 130–143.


	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Glossary
	List of Figures
	List of Tables
	Introduction
	Computer Vision and Artificial Intelligence
	Classification
	Threat Model: Adversarial Examples
	Contribution
	Publications
	Thesis Organization

	Detecting Adversarial Images in the Fourier-Domain
	BACKGROUND
	Preliminaries
	Related Work

	CONTRIBUTIONS
	METHOD
	Problem Definition
	Definition of the Fourier Transform
	Analysis of Adversarial Samples in Frequency Space
	Detecting Adversarial Samples in the Frequency Domain
	Measuring Adversarial Detection

	EXPERIMENTS
	Experimental Setup
	Datasets
	Evaluation of Attack Success Rates
	Results

	ABLATION STUDY
	Black- / WhiteBox Defense Properties
	AutoAttack's Transferability
	Transferability of other Attack Methods
	Analyzing on all Layers on all Architectures and Datasets
	Comprehensive Study on Vanilla Classification Models
	Comprehensive Study on Adversarial Trained Classification Models
	AutoAttack: Hyperparameter and Datasets

	LIMITATIONS
	SUMMARY

	Enhancing Adversarial Detection through Local Growth Rate Analysis
	BACKGROUND
	Preliminaries
	Related Work

	CONTRIBUTION
	METHOD
	Problem Definition
	Revisiting Local Intrinsic Dimensinality - multiLID

	EXPERIMENTS
	Experimental Setup
	Datasets
	Attack Methods
	Results

	ABLATION STUDY
	Impact of non-linear Classification
	Feature Importance
	Investigation of the multiLID Features
	Impact of the Number of Neighbors
	Impact of the Number of Neighbors and Attack Strength .
	Attack Transferability

	LIMITATIONS
	SUMMARY

	Visual Prompting for Adversarial Robustness
	BACKGROUND
	Preliminaries
	Related Work

	CONTRIBUTIONS
	METHOD
	Problem Defintion
	Adversarial Visual Prompting

	EXPERIMENTS
	Experiment Setup
	Universal Adversarial Visual Prompt
	Class-wise Adversarial Visual Prompt
	C-AVP outperforms conventional Visual Prompting
	Prompting regularization Effect in (C-AVP)
	Class-wise Prediction Error Analysis

	LIMITATIONS
	SUMMARY

	Manifold Mismatch: Misalignment of Adversarial Examples with the Learned Space of the Diffusion Model
	BACKGROUND
	Prelimineries
	Related Work

	CONTRIBUTION
	METHOD
	Problem Definition
	Prelimaries
	Method Details

	EXPERIMENTS
	Datasets
	Evaluation Metrics
	Training Procedure
	Results and Discussion

	ABLATION STUDY
	Impact of the Diffusion Reverse Steps
	Identification and Transferability Capability Evaluation
	Diffusion Model Transformations and Fourier Transformations

	LIMITATIONS
	SUMMARY

	Conclusion
	Summary
	Future Work

	Bibliography

