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Abstract

The interstellar medium (ISM) of the Milky Way is in a constant state of motion.

Between the large scale motions of galactic dynamics and the turbulence within giant

molecular clouds (GMCs), the evolution of the ISM is guided by its underlying motions.

The large scale dynamics perturb the diffuse warm neutral medium (WNM) of the

Milky Way, starting the cascade of the formation of clouds and stars. In this thesis we

make use of hydrodynamical simulations to explore the impact dynamics has on various

quantities. The first part of this thesis focuses on the collisions of giant molecular clouds,

exploring how star formation rates change with collisions. We verify the stabilitiy of

“clumps” within our simulations and relating these properties to the alignment of the

magnetic and velocity fields within our simulations. The second part of this thesis

zooms out, looking at the structure of the Milky Way itself. We present a new, realistic

model for the gravitational potential of the Milky Way and test out how reliable the

axisymmetric assumption is when used in kinematic distance estimates.
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Zusammenfassung

Das interstellare Medium (ISM) der Milchstraße befindet sich in einem ständigen Bewe-

gungszustand. Von den großräumigen Bewegungen der galaktischen Dynamik bishin

zu den Turbulenzen in den Riesenmolekülwolken (GMCs), wird die Entwicklung des

ISM durch die zugrunde liegenden Bewegungen gesteuert. Die großräumige Dynamik

stört das diffuse warme neutrale Medium (WNM) der Milchstraße und setzt die Kaskade

der Wolken- und Sternbildung in Gang. In dieser Arbeit nutzen wir hydrodynamische

Simulationen, um die Auswirkungen der Dynamik auf verschiedene Größen zu unter-

suchen. Der erste Teil dieser Arbeit konzentriert sich auf die Kollisionen von Riesen-

molekülwolken und untersucht, wie sich die Sternentstehungsraten bei Kollisionen än-

dern. Wir überprüfen die Stabilität von ”Klumpen” in unseren Simulationen und set-

zen diese Eigenschaften mit der Ausrichtung der Magnet- und Geschwindigkeitsfelder

in unseren Simulationen in Beziehung. Der zweite Teil dieser Arbeit zoomt heraus

und betrachtet die Struktur der Milchstraße selbst. Wir stellen ein neues, realistisches

Modell für das Gravitationspotential der Milchstraße vor und testen, wie zuverlässig die

Annahme von Achsensymmetrie ist, wenn sie für kinematische Entfernungsschätzun-

gen verwendet wird.
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Chapter 1

Introduction

“Life goes on and on and on. Keep moving forward

as long as the road stretches ahead! Keep describing

as long as the color persists! Keep shouting as long as

the voice endures! We’ll walk on!
—Halyosy, Steppër

All things within this universe are in constant motion. From the smallest atoms to

the largest galaxy, everything experiences a force causing it to move. The interstel-

lar medium (ISM) is no exception this rule. It is sculpted across all scaled by many

forces: gravity causing it form elegant spiral arms and filaments in which stars are born;

feedback from stars and supernovae creating large holes in which thermal energy can

dissipate into the cosmos; and magnetic fields gently guiding the ISM where it needs to

go.

The first indications of the ISM were observed by Nicolas-Claude Fabri de Peiresc

in 1610, where with a refractor telescope he noted the diffuse nature of the Orion

Nebula (M42), with the first publication by Johann Baptist Cysat of Lucerne in 1619

with comparisons to a comet seen in previous years. Since then, M42 was added to the

Messier catalogue and has become a frequent source to study (Hillenbrand & Hartmann,

1998), leading to the discover of the Orion Molecular Complex (Menon, 1958; Tucker

et al., 1973), connecting other existing nebulae in the region. The molecular cloud

discovered would prove to be a great laboratory for exploring processes within the ISM.

In this thesis we aim to explore the dynamical processes within the ISM and discuss the

impact they have on both theoretical and observational quantities.

1
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1.1 Interstellar Medium

1.1.1 Phases of the ISM

The ISM is very diverse environment, consisting gas and dust at various temperatures

and density (Girichidis et al., 2020). In its simplest form, the ISM can be described as a

series of phases in which the gas can exist. The first of which was a model proposed by

Field (1965) where the ISM can be described as two distinct phases. Assuming atomic

hydrogen (H I) as the constituent gas, the gas phase can be split into a cold, dense phase

called the cold neutral medium (CNM), and a warm, diffuse phase called the warm

neutral medium (WNM).

The CNM exists at temperatures of T ∼ 50−100 K and number densities n = 20−50
cm−3, whilst the WNM has higher temperatures of T ∼ 6000 − 104K and an order

magnitude lower density, n = 0.2 − 0.5 cm−3 (Wolfire et al., 2003; Girichidis et al.,

2020). Under the Field model, the two phases exist in a pressure equilibrium. Gas

existing with temperatures and densities between these regions are thermally unstable.

If unstable towards the CNM, unstable gas will cool via collisional excitation of fine

structure lines of metals, such as C II or O I, or via recombination of electrons onto

dust grains (Wolfire et al., 2003). Conversely, the gas unstable towards the WNM is

heated by the photoelectric effect from dust grains in the ISM, high energy photons and

particles such as X-rays and cosmic rays, or by the photoionisation of carbon (C
C+).

The two phase model proved to be rather restricting due to the presence of su-

perheated gas caused by supernovae, increasing gas temperatures up to T ∼ 106 K or

higher. A three-phase model was developed by McKee & Ostriker (1977) to describe

the warm components of the ISM. At T ∼ 104 K, atomic hydrogen will ionise into H+.

For ionized gas with similar densities to the WNM, a phase called the warm ionised

medium (WIM) is formed when the WNM gas is ionized by photoionisation or by

collisional ionisation (Draine, 2011). Energy injection by supernovae causes the gas to

reach temperatures of T ∼ 106 K and really diffuse, with densities of n ∼ 10−2 cm−3

forming the hot ionized medium (HIM). Here, the HIM maintains a state collisional

ionisation equilibrium, where there is a balance between the collisional ionisation equi-

librium and radiative cooling by recombination. At these temperatures, the cooling

timescale for radiative cooling is significantly longer than that of the WIM due to how

diffuse the HIM, tcool ∝ n−1, resulting in the persistence of the HIM.
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H2 formation and destruction

On the much colder end of the spectrum, clouds of molecular hydrogen (H2) form

with the CNM. The formation of molecular hydrogen is crucial process, not only for

the formation of molecular clouds but also for subsequent star formation. The direct

path way to form molecular hydrogen would be:

H + H H2 + γ

however, due to the low collisional time scales and low probability of emission from the

collision, the reaction is not high enough to be the main mechanism for H2 formation in

the ISM (Latter & Black, 1991). Additionally, pathways involving ion-neutral reactions

also have low reaction rates, with the additional likelihood of the ions, H− and H+
2 ,

being lost due to photodetatchment and photodissociation respectively (Glover, 2003).

Though, H2 formation is still possible with the presence of dust in the ISM. H atoms

can be adsorbed onto the surface of dust grains via van der Waals forces, providing

a formation site for the atoms to form H2 (Gould & Salpeter, 1963; Hollenbach &

Salpeter, 1971). The timescale of H2 formation with the Milky Way’s ISM is:

tform,H2 ≃ 1
3 × 10−17n

≃ 109n−1 yr. (1.1)

Considering molecular gas forms at densities at n > 102 cm−3, this gives arise to forma-

tion timescales of at least 10 Myr. This formation timescale can shorten to ∼ 3 Myr in

the presence of supersonic shocks (Glover & Mac Low, 2007a,b), whilst turbulence can

also alter formation timescales (Micic et al., 2012). This indicates that the dynamics

within the CNM also influence the process of H2 formation (see Padoan et al., 2016;

Hu et al., 2021).

Just as H2 can be formed, it can be destroyed back into its atomic components.

There are two main processes involved when considering the destruction of molecular

gas:

• Collisional dissociation - This occurs when H2 collides with either H2, He or

free electrons within the ISM with energies much greater than the dissociation

energy of H2 (4.5 eV). This requires the gas to be of a temperature of T> 2000 K

to achieve this affect. This only tends to apply in specific environments such as

molecular outflows from AGN and star forming regions (e.g Flower et al., 2003).

H2 + H H + H + H

• Photodissociation - This can occur at much lower temperatures T << 1000 K.

The process involves a two step process called spontaneous radiative dissociation.
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The process begins with a H2 molecule absorbs a UV photon of energy between

11.1 eV and 13.6 eV, exciting one of the electrons to a higher energy states (B 1Σg

or C 1Πu). The electron then radiatively decays to a ground state. This results in

either a vibrationally excited H2 molecule (85% of reactions) or complete dissoci-

ation of the molecule (15% of reactions) (Stecher & Williams, 1967; van Dishoeck

& Black, 1988).

H2 + γ H + H

The photodissociation process is more relevant for the context of molecular clouds due

to the lower temperatures and higher densities present. Due to the narrow energy band

needed for photodissociation, the process is subject to self-shielding, resulting in more

H2 being destroyed at lower column densities (Draine & Bertoldi, 1996). The column

density at which molecular hydrogen is fully self-shielded is given by:

N ≃ 1020G0n
−1 cm−2 (1.2)

where G0 is the radiation field in Habing units (Habing, 1968). This effect becomes

important once column densities exceed N ∼ 1014 cm−2 (Draine & Bertoldi, 1996).

1.1.2 Molecular clouds
Giant molecular clouds (GMCs) are the host for star forming environments within

galaxies, forming the densest parts of the ISM. These clouds tend to exist at tem-

peratures between 10 and 100K with number densities n> 100 cm−3 (Girichidis et al.,

2020). The boundary of these objects are marked by the transition between atomic and

molecular gas due to the level self-shielding present, as discussed previously.

Observing clouds

In observational context, a direct observation of H2 is not possible. This is due to the

the temperatures needed for H2 to emit being higher than the temperature of GMCs

(T ∼ 500 K for excitement of the first rotation level of H2). A tracer therefore needs

to be used to used to trace H2. CO is the next abundant tracer with a small dipole

moment that is easily excited, with the first transition at T = 5.52 K. A known factor

can be used to convert between the column densities of the two molecules:

XCO = NH2

ICO
(1.3)

where ICO is the intensity of the CO emission (Bolatto et al., 2013). This factor is

generally assumed to be a constant but simulations and observations have shown that
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this can vary (Tielens & Hollenbach, 1985; Wolfire et al., 2010; Kohno & Sofue, 2024).

The extent of a GMC is often defined by the extent of CO emission however, like H2,

CO is susceptible to photodissociation due to the interstellar radiation field (ISRF).

The self-shielding effect for CO are not strong in comparison H2 due to the lower

column densities of CO present. Therefore, the derived size of the GMC is smaller in

comparison to the actual extent of H2 (Smith et al., 2014). Alternatives to CO emission

include dust extinction measurements due to the dust being needed in H2 formation

(e.g Lombardi et al., 2014; Green et al., 2019), and C+ being used as a tracer for CO

dark due to its presence in the CO formation and destruction process (Glover & Smith,

2016).

GMC formation

After the formation of H2, further accumulation of molecular gas is needed to form a

molecular cloud and reach the column densities required for self-shielding of H2. The

formation of molecular clouds is an ongoing topic of research with many theories for

their formation being proposed. Here, we highlight three mechanisms which can be

split into two groups, “bottom-up” GMC formation and “top-down” GMC formation

(Chevance et al., 2020).

The bottom-up approach is the approach of where smaller clouds form first and

combine to form larger clouds. The first method providing this model is the coagu-

lation model by Oort (1954) in where smaller atomic clouds, formed by thermal in-

stabilities, undergo cloud-cloud collisions forming a larger cloud in the process (Tasker

& Tan, 2009) At some point, the column densities within the cloud are high enough

to enable self-shielding, allowing the transition from atomic to molecular gas and be-

coming molecular cloud. The cloud can then continue to accrete matter via collisions

reaching much larger masses until the accretion is halted by the onset of star formation

(Klessen & Glover, 2016).

The alternate bottom-up approach is via colliding flows. In this model, flows of

warm atomic hydrogen collide together, becoming thermally unstable and rapidly cool-

ing. At some point a cloud forms at the intersection, reaching densities high enough

for self-shielding to occur and form molecular hydrogen (Heitsch et al., 2006; Inoue

& Inutsuka, 2012).

Both these bottom-up approaches provide the necessary quantity of low-mass clouds

but struggle to reproduce the GMC Mass function at the high-mass end M > 106 M⊙.

The top-down approach attempts to account for the high-mass end of the GMC

mass function (Chevance et al., 2020). The ISM itself can be prone to the gravitational

instabilities within the disk of galaxies (Dobbs et al., 2014). Self-gravitating fragmen-
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tation can occur in environments with higher surface densities in comparison to the

average for the disk, such as spiral arms. These instabilities can produce clouds with

large masses (upwards of 106 M⊙), however the low mass end can only be formed once

stars are formed and stellar feedback disrupts the larger cloud.

GMC structure

GMCs tend to have be on the order 10s-100s pc in size containing masses between 102

M⊙ in smaller clouds, to 107 M⊙ in the largest of clouds (Blitz, 1993; Oka et al., 2001;

Schulz, 2012; Roman-Duval et al., 2010).

Observations have found filamentery structure present within these clouds with large

clumps forming at the intersections of these filaments (e.g Hanawa et al., 1993; Kainu-

lainen et al., 2017, for Orion A). Kinematic studies of GMC found that they are highly

turbulent (Reynold’s numbers 108), with flows being highly supersonic (M > 10) (Heyer

& Dame, 2015). Larson (1981) noted that the velocity dispersion of these turbulent

clouds follow a power law relation with respect to the size of the cloud in question,

σ ∝ L0.34, linking to his earlier work regarding a similar power law scaling for turbu-

lence in the rest of the ISM (Larson, 1979). The turbulence present within a cloud can

be quantified with a power spectrum or second order structure function as follows:

σ2
∆(τ) =< |v(r) − v(r + τ)|2 > (1.4)

where τ is the displacement from position r. σ2
∆ is often proportional to τβ−2 where

β is some power. For isotropic and incompressible Kolmogorov turbulence, β = 11
3 in

3D or β = 8
3 . When analysing kinematic data of GMC, observers find that the structure

function of GMCs follows a power law, however β can vary between ∼ 2 and ∼ 3.1
suggesting some degree of compressiblity within the clouds.(Stutzki et al., 1998; Heyer

& Brunt, 2004; Schneider et al., 2011; Monaci et al., 2023).

Due to the filamentary structure of clouds, most of the matter present in GMCs

exists within dense “clumps”. Probability density functions (PDF) of the density of

observed clouds follow a log-normal distribution, with a power law tail towards high

densities (e.g Schneider et al., 2013). The log-normal distribution is consistent with a

turbulent medium as seen from simulations of turbulent boxes (e.g Federrath, 2015)

whilst the power law tail is attributed to the gravitational collapse of clumps (Klessen,

2000).

The collapse of these clumps puts into question the stability of GMCs and how they

are supported against gravitational collapse. There are two theories propose an answer

to this:
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• Gravoturbulent support - Turbulence within GMC counteracts the global collapse

of the cloud, placing it in virial equilibrium. However, the turbulence causes over-

densities to form and, when dense enough to contain a Jeans massMJ of material,

undergo gravitational collapse (Klessen, 2000; Mac Low & Klessen, 2004). The

virial parameter is defined as:

αvir ≡ 3σ2
vRGMC

5GMGMC
(1.5)

where σv is the velocity dispersion of the cloud, and MGMC and RGMC are the

mass and size of the GMC respectively (Bertoldi & McKee, 1992). A value of

αvir ≲ 2 indicates self-gravitation, with most clouds of M > 105 M⊙ having

αvir ∼ 1. Despite this, the turbulence present plus other physics such as magnetic

fields can keep the prevent of the collapse of the overall clouds (Kauffmann et al.,

2013).

• Hierarchical collapse - In this model (Vázquez-Semadeni et al., 2019), the tur-

bulence present is not sufficient to support the GMC over long time scales due

to the continued accretion of matter onto the cloud from the surrounding dif-

fuse medium. This combined with the high density and cold temperatures of

the cloud allow for the GMC to quickly exceed its Jeans mass. The resulting

infall of the cloud induces further, more chaotic, turbulence into the cloud creat-

ing more gravtionally collapsing clumps in the process. The timescales in which

these clumps collapse at are significantly shorter than that of the cloud average

(Krause et al., 2020) resulting a nested body of collapsing matter, where with each

collapse’s matter is accreting onto the next, smaller collapsing region.

Cloud lifetimes

The inevitable collapse of a GMC will eventually result in the cloud being either con-

verted into stars or the cloud being dispersed by the stellar feedback from the newly

formed stars (Rahner et al., 2017, 2019; Jeffreson & Kruijssen, 2018). Only a few

percent of the mass of a GMC will be converted into stars (Krumholz & Tan, 2007;

Leroy et al., 2017; Krumholz et al., 2019).

Surveys of GMCs in external galaxies as well as clouds in the Milky Way estimate the

lifetimes of these clouds to be ∼ 10 Myr (Murray, 2011; Kruijssen et al., 2019; Zabel

et al., 2020). If the collapse of a GMC was only opposed by the thermal pressure, the

cloud will collapse on timescale similar to the freefall timescale:

tff =
√

3π
32Gρ

∼ 3 Myr
(

n

102 cm−3

)−1/2
. (1.6)
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For typical densities of GMCs, tff ∼ 3 Myr (Girichidis et al., 2020) which is almost

an order of magnitude lower than the lifetimes of GMCs estimated from observations.

This suggests there is some level of additional support provided within the cloud that

slows down the collapse of the GMC, such as turbulence and magnetic fields, with

turbulence being the biggest support against collapse (Krumholz & Tan, 2007; Crutcher

et al., 2010; Klessen & Glover, 2016).

The depletion of molecular gas within the ISM of a galaxy happens on a much a

longer timescale than the lifetimes of GMCs. The depletion timescale, defined as the

molecular gas mass of a galaxy divided by the star formation rate (SFR), is on the order

of a few Gyrs (Bigiel et al., 2008; Leroy et al., 2008). This indicates that the existence

of GMCs are a short lived phase of the ISM, only converting a small fraction of its

gas mass into stars (based on star formations effeciencies, Chevance et al., 2020) before

being dissipated by the stars forming within.

1.1.3 Star formation
The turbulent structure of GMCs allow for the formation of clumps which exist at

densities and temperatures higher and colder than the cloud average, respectively. At

such high densities, the Jean’s length of a given gas clump is significantly smaller than

that of the cloud itself. A cloud is referred to as Jeans unstable if a perturbation to

hydrostatic equilibrium of the cloud results in gravitational collapse (Jeans, 1902). By

balancing thermal energy against gravitational energy, the characteristic Jeans length λJ

is obtained (for a spherical cloud):

λJ =
(
πc2

s

Gρ

)1/2
∼ 2.2 pc

(
cs

0.2 kms−1

)(
n

102 cm−3

)−1/2
(1.7)

and the Jeans mass MJ:

MJ = 4π
3
ρ
(
λJ

2

)3
∼ 34 M⊙

(
cs

0.2 kms−1

)3( n

102 cm−3

)−1/2
(1.8)

where cs is the gas sound speed, ρ and n are the cloud’s mass and number density

respectively. These create a criterion where if the cloud is smaller than its Jeans length,

R < λJ, or equivalently if the mass of inside of a Jean length exceeds that of the

Jeans mass, M > MJ, the cloud is unstable and will undergo gravitational collapse

(Bodenheimer, 2011).

For densities and temperatures of clumps, n ∼ 105 cm−3 and T 10K, the given re-

sulting Jeans lengths and masses are on the order of ∼ 6 pc and ∼ 1 M⊙ respectively

(Krause et al., 2020). This indicates that only a few solar masses of material is needed
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to undergo gravitational collapse and form stars. The freefall timescale tff is signif-

icantly shorter for clumps than GMC, with tff ∼ 0.1 Myr (Hoyle, 1953). As such,

the collapsing GMC is likely to fragment into smaller collapsing clumps, only stopping

once the gas no longer behaves isothermally.

When looking at the star formation rate of the Milky Way with respect to the freefall

time of the gas clouds within the Galaxy, there is a clear difference between the ob-

served Galactic SFR and the SFR implied by freefall, with a difference on the order

2 magnitudes in difference, SFRMW 1 M⊙ yr−1 vs SFRff ∼ 200 M⊙ yr−1 (McKee &

Williams, 1997; Chomiuk & Povich, 2011; Leroy et al., 2012). This implies that for

the Milky Way, the star formation efficiency (SFE) is on the order 1%. Defining the

SFE, ϵ as the ratio between the gas mass turned into stars M∗ and total matter in the

GMC MGMC,

ϵ = M∗

M∗ +MGMC
. (1.9)

In GMCs within the Milky Way and nearby galaxies, the ϵ varies between 0.3% and 3%

at at GMC scales (Krumholz & Tan, 2007; Leroy et al., 2017; Krumholz et al., 2019),

and increases to 3% - 6% within dense subregions within the cloud. The low SFEs can be

explained by “fast and inefficient star formation” (Chevance et al., 2020). Due to short

timescales needed to form stars t ∼ 1 Myr (Palla & Stahler, 1999; Elmegreen, 2007;

Hartmann et al., 2012), the onset of feedback from the newly formed stars occurs on

timescales smaller than that of freefall time of the GMC causing the GMC to disperse

before more stars can form (Kruijssen et al., 2019; Chevance et al., 2022).

1.2 Galactic dynamics
The ISM of a galaxy is shaped by the mutual gravitational attraction between the gas,

existing stars and the underlying dark matter, along with motions induced by super-

novae, stellar feedback and magnetic fields. To understand the impact this has on the

processes within the ISM discussed previously, a understanding of the sources of mo-

tion needs to be established. Here we discuss the role of galactic dynamics within the

galactic ISM.

1.2.1 Gravitational force

At the largest scales, gravitational force is the most dominant force in shaping the ISM.

Each object within the galaxy experiences a gravitational attraction under Newton’s
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inverse square law of gravity. The force between two objects is given by

F21 = Gm1m2

|x2 − x1|3
(x2 − x1) (1.10)

whereG is the gravitational constant,m1 andm2 are the masses of the two objects and x1

and x2 are the vector positions of the two objects. Since a galaxy contains on the order

of 100 billions stars alone, the contributing force of each object δF can be summed

together:

F(x) =
∑

δF = Gm
∑ x′ − x

|x′ − x|3
δm(x′). (1.11)

Each mass element δm can be described as a volume with constant density, δm(x) =
ρ(x)dx3. Putting this back into equation 1.11:

F(x) = Gm
∫ x′ − x

|x′ − x|3
ρ(x′)d3x′ (1.12)

giving a description of the gravitational force as function of the mass density of the

galaxy, removing the discretisation of individual stars. (Binney & Tremaine, 2008).

The gravitational potential Φ is defined as the work done W per unit mass needed

to take an object from a position infinity to x. This gives:

Φ(x) = W

m
= 1
m

∫ x

∞
F(x′) · d3x′ = −G

∫ ρ(x′)
|x′ − x|

d3x′ (1.13)

creating a relation between the potential of the galaxy and its density profile. By consid-

ering the gravitational flux through a unit sphere and applying the divergence theorem,

we obtain Poisson’s equation:

∇2Φ = 4πGρ, (1.14)

a differential equation form of equation 1.13. This equation provides the basis for

calculating potential of a galaxy based on its mass density; a parameter which can be

modelled from observations (Bovy & Rix, 2013; McMillan, 2017; Nitschai et al., 2021).

1.2.2 Velocity curves
The core parameter these models need to match is the circular velocity curve of the

galaxy, vc(R). The circular velocity is defined as the velocity at which a particle needs

to remain in a circular orbit at a given radius R.

v2
c = r|F(r)| = r

dΦ
dr

= GM(R)
r

(1.15)

Assuming circular motion within a galaxy, the circular velocity curve can be ap-

proximated by the rotation curve of the galaxy. There are multiple methods to obtain
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Figure 1.1. Circular-velocity curve of the Milky Way from different tracers. In grey

is the rotation curve from Sofue et al. (2009), obtained from H I (Burton & Gordon,

1978; Fich et al., 1989) and CO (Clemens, 1985) tangential velocities, CO and H II

regions (Blitz et al., 1982; Fich et al., 1989) and carbon star kinematics (Demers &

Battinelli, 2007). In red and blue are the circular velocities obtained from maser par-

allaxes (Reid et al., 2014) and parallaxes of Classical Cepheids with Gaia (Mróz et al.,

2019) respectively. (Adapted from Mróz et al., 2019, .)

rotation curves depending if one is looking at the Milky Way or at nearby galaxies. For

nearby galaxies, the main method is to measure the spectral Doppler shifts of gas tracers

such as H I (Roberts & Whitehurst, 1975; Walter et al., 2008; de Blok et al., 2008), H II

and optical (Williams et al., 2021; Emsellem et al., 2022), and molecular lines such as

CO (Lang et al., 2020). The line-of-sight velocity vLOS gives only a component of the

total circular velocity of a galaxy if the galaxy is not edge on, where vLOS = vc sin (i)
and i is the inclination angle. In the case of a (near) face-on galaxy, i ∼ 0◦, the ro-

tation curve is not obtainable. This approach eventually lead to the discovery of the

Tully-Fisher relation, a power law relation which relates the luminosity of a galaxy to

its circular velocity (Tully & Fisher, 1977; Sakai et al., 2000).

Within the Milky Way, slightly different approaches need to be taken since we lie

within the Galaxy. The closer proximity of the gas within the Milky Way and higher

resolution of the gas kinematics allows for gas to exist with different line-of-sight ve-

locities along a given galactic longitude l. This, combined with uncertainties involved

in determining distances to gas clouds, makes it difficult for a rotation curve to be easily
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established using the average vLOS used for other galaxies. A work around is to assume

the maximum velocity along a given line-of-sight, known as the terminal velocity vterm,

exists at the tangent point; the point where a circle of radius R0 sin (l) is tangential

to a straight line going starting from the Sun at radius R0 in the direction of l. This

is traced by the maximum |vlsr(l)| in the longitude-velocity lv diagrams. Assuming

complete circular motions the circular velocity curve can be obtained by:

vc(R) = |vterm(l)| + v0| sin (l)| (1.16)

where v0 is the circular velocity of the Galaxy at solar position R0. This approach

works well within the inner parts of the galaxy, constraining the velocity curve for R <

R0. Like with external galaxies, this method uses gas kinematic data in H I (Burton &

Gordon, 1978; Fich et al., 1989; McClure-Griffiths & Dickey, 2007) and CO (Clemens,

1985).

The rotation curve can also be obtained from stellar and maser kinematics. The

distance to the objects is determined either via parallax approaches for maser sources

(used in Reid et al., 2014) and luminous red giant stars stars (by Eilers et al., 2019), or

the period-luminosity relation for Cepheid variable stars (used by Mróz et al., 2019).

The constrained distance allows for the calculation of the tangential velocity with respect

to the sky via proper motion estimates. The heliocentric line-of-sight velocity of the

object vh is constrained from spectrographic data of stars (Majewski et al., 2017) or

spectral lines such as methanol and CO for maser sources (Reid et al., 2014). The

kinematic data is transformed into the reference frame of the local standard of rest

(LSR):

vLSR = vh + U⊙ cos (b) cos (l) + V⊙ cos (b) sin (l) +W⊙ sin (b) (1.17)

where (U⊙, V⊙,W⊙) is the velocity components of the Sun with respect to the LSR.

With the proper motion and vLSR, further modelling with methods, such as Jean’s

modelling (Binney & Tremaine, 2008) and maximising likelihood functions, the ro-

tation curve for the Milky Way can be constrained from 4 kpc up to 200 kpc from the

Galactic centre (Bhattacharjee et al., 2014).

The rotation curve of the Milky Way and different galaxies resulted in one of the

most controversial discoveries being made. When comparing the mass estimates im-

plied from the rotation curve of galaxies to that from luminosity profiles, there is a large

difference between the two (Bosma, 1978; Rubin et al., 1980; Begeman et al., 1991).

The expected rotation curve based on the luminosity profiles would have decreased with

galactic radius, however it remained fairly constant. This provided the foundations for

the work on dark matter and paved the way for cosmological simulations (Ostriker &

Peebles, 1973; Ostriker et al., 1974).
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Resonances

Stars within a potential, whilst on average follow a circular orbit, do experience a level of

radial oscillation. This arises when a star experiences any motion outwith the azimuthal

direction. The orbital path makes a rosette shaped, referred to as loop orbits (Binney

& Tremaine, 2008). For a given star with a given angular momentum and energy, the

orbit can be decomposed into two components: a small circular orbit with a diameter

equal to the extent of the radial oscillation, and a large circular orbit around the galaxy

at a radius Rg, where Rg is the guiding centre and is defined by the radius at which

the centre of the smaller orbit is located. The frequency of the smaller orbit, and by

extension the radial oscillation, is called the epicyclic frequency and is defined as:

κ2(Rg) =
(
R
dΩ2

dR
+ 4Ω2

)∣∣∣∣
Rg

(1.18)

where Ω = vc/R is the angular velocity of a star within a potential.

If we consider a m−fold perturbation rotating with a pattern speed Ωp in an ax-

isymmetric potential, the resonances are defined as:

m(Ωp − Ω) = nκ. (1.19)

Co-rotation occurs when n = 0 and is the resonance at which a star rotates with same

angular velocity as the perturbation itself. n = ±1 gives rise to the Lindblad resonances

where positive n defines the inner Lindblad resonance, the point where a star overtakes

the perturbation and interacts with the perturbation at a frequency equal to the epicyclic

frequency, κ. Conversely, negative n defines the outer Lindblad resonance, the point

where the star is slower than perturbation but still experiences the perturbation at a

frequency equal to the epicyclic frequency.

These resonances are crucial in the formation of non-axisymmetric structure within

galaxies due to being the points at which energy is exchanged between the stars and gas,

and the underlying galactic potential (Binney & Tremaine, 2008; Sellwood, 2011).

1.2.3 Potential models
The underlying potential of a galaxy can contain a few components, such as bars, disks

and dark matter halos. Each component covers different scales and can have different

shaped depending on their density profile. By treating the matter inside galaxies as a

collisionless particle system, any component in a galaxy that is in a steady state must

suffice the collisionless Boltzmann equation (Binney & Tremaine, 2008):

∂f

∂t
+

3∑
i=0

vi
∂f

∂xi

− ∂Φ
∂xi

∂f

∂vi

= 0 (1.20)
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where f(x,v, t) is the distribution function of the matter in a galaxy in 6-dimensional

phase space (x,v) at a given time t. By integrating the distribution function in velocity

space, we obtain the spatial density of matter in the galaxy ν(x) which is equivalent

to a mass density ρ (for modelling dark matter halos) or stellar number density n. By

multiplying the collsional Boltzmann equation with powers of v (Eqn. 1.20), the Jeans

equations are obtained:
∂ν

∂t
+

3∑
i=1

∂(νvi)
∂xi

= 0 (1.21)

∂(νvj)
∂t

+
3∑

i=1

∂(νvivj)
∂xi

+ ν
∂Φ
∂xj

= 0 (1.22)

ν
∂(vj)
∂t

+
3∑

i=1
νvi

∂(vj)
∂xi

= −ν ∂Φ
∂xj

−
3∑

i=1

∂(νσ2
ij)

∂xi

(1.23)

Equation 1.21 is the continuity equation and equations 1.22 & 1.23 are the force equa-

tions with the latter being a re-write of the former to make analogies to the Eular’s

equation of motion for fluid flow. Here, vi is the mean velocity or first moment of the

distribution function, vivj is the second moment, and σ2
ij = vivj − vivj is the velocity

dispersion tensor.

These equations plus Poisson’s equation (Eqn. 1.14) provide the framework for

Jeans modelling in which many potentials have been developed and parameterised to

describe the potentials of galaxies. Most notable are the dark matter halos of galaxies

inferred from observations and simulations.

Dark Matter Halos

To describe the flat rotation curves observed caused by dark matter, various density

profiles for the dark matter halo were proposed in the later half of the the 20th century.

The first of these models was by Jaffe (1983), proposing ρ ∝ r−2(r+ rs)−2 where rs is a

scale length to fit of light profiles of Virgo cluster elliptical galaxies. This was dubbed as

as an improvement and, at the time, was ”better than existing models”, such as the light

profile of de Vaucouleurs (1948). This started the spherical double power law family

of spherical potentials which have the general form of:

ρ(r) = ρ0

(r/a)α(1 + r/a)β−α
(1.24)

where ρ0 is the normalising density, a is the scale length and α and β are the power laws

of the profile. Most dark matter halos can be described with 1 < α < 1.5 and β ≃ 1.5
(Binney & Tremaine, 2008). Some specific values of α and β have unique names and

provide analytical solutions to Poisson’s equation.
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Figure 1.2. The density profile of the dark matter halo discussed in section 1.2.3. In

black are the halo potentials discussed by the double power law profile (Eqn. 1.24) with

ρ0 and a being the normalising density and scale radius respectively. The blue lines

represent the Einasto profile (Eqn. 1.26) with ρ0 = ρ−2 and a = r−2 being the density

and radius where the slope of the profile is equal to −2.

• Jaffe - α = 2, β = 4: The original double power law relation from Jaffe (1983).

• Hernquist - α = 1, β = 4: A developed alternative to the Jaffe model by Hern-

quist (1990) based on the mass profiles and dynamics of elliptical galaxies.

• Dehnen - β = 4: A family of potential-density pairs with free choice of α between

values 0 and 3 presented by Dehnen (1993). The base density profile is given by:

ρ = (3 − α)M
4π

a

rα(r + a)4−α
(1.25)

where M is the mass of the halo in question.

• Navarro, Frenk and White (NFW) - α = 1, β = 3: A profile developed from

cosmological simulations with N-body dynamics and smoothed particle hydro-

dynamics by Navarro et al. (1995).

These profiles are very similar in shape with only the steepness of their slopes changing

(see figure 1.2). Each profile provides a fit to a sample of galaxy halos and with the free

parameters of (Eqn. 1.24), most spherically shaped galactic halos can be modelled.

An alternative to the double power law spherical model for halos is the Einasto

(1969) profile. This profile is an exponential profile with power law function inside the
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exponent:

ρ(r) = ρ−2 exp
[−2
α

{(
r

r−2

)α

− 1
}]

(1.26)

where ρ−2 and r−2 is the density and radius respectively where ρ(r) ∝ r−2. The profile is

similar in shape to the others discussed in this section but has the advantages of only one

free parameter, α, and takes on different shapes depending on the value. The values

of α can vary between 0.12 and 0.25 based on halo concentrations in cosmological

simulations (Gao et al., 2008).

This profile has shown to fit density profiles of dark matter in halos in simulations

(Navarro et al., 2004) and has proven to be a better fit to rotation curves of galaxies

(Chemin et al., 2011). Of recent years, the Einasto has been adapted to model the

contraction of dark matter halos (Cautun et al., 2020; Correa Magnus & Vasiliev, 2022;

Wang et al., 2022).

Disks

The modelling of stellar disks within galaxies follows on naturally from the modelling

of elliptical galaxies and by extension dark matter halos. The de Vaucouleurs profile

for elliptical galaxies is a generalisation for the Sérsic profile to described stellar light

profiles of galaxies with Sérsic index n=4 (Sérsic, 1963). The relation is given by:

I(R) = I0 exp
(

− kR1/n
)

(1.27)

where I is the intensity observed and k is a constant. When looking at galaxies with

disks, it was found that the intensity follows an exponential decay I(R) ∝ e−kR, equiv-

alent an Sérsic index of n = 1 (de Vaucouleurs, 1959). Since the light intensity of a

galaxy is proportional to its stellar density, it would imply the the stellar disk of a galaxy

follows a similar relation; ρ(R) ∝ e−kR.

The first models relating this property to galactic dynamics was by Freeman (1970)

where, using the light profiles of 36 disk galaxies, derived an expression for the rotation

curve from the idea of exponential disk. The disk density can be approximated in some

cases by a razor-thin disk:

ρ(R, z) = Σ(R)δ(z) (1.28)

where Σ is the surface density and δ(z) is a Dirac delta function. This results in a

potential of:

Φ(R, z) = −2πGe−k|z|J0(kR) (1.29)

where k is some constant and J0 is the Bessel function of first kind and 0th order.

Whilst this approximation works, in reality galaxies are 3 dimensional objects with

some thickness in their disks.
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In the context of the Milky Way, Gilmore & Reid (1983) showed that the thickness

of the Galactic disk follows two exponential profiles, one associated with young stellar

population, referred to as the thin disk, and the older stellar population, referred to as

the thick disk and is described by:

ρ(R, z)d = Σ0e
−R/Rd

(
α0

2z0
e−|z|/z0 + α1

2z1
e−|z|/z1

)
(1.30)

where Rd is the disk scale length, z0 and z1 are the scales heights of the thin and thick

disks, and α0 and α1 are constants such that α0+α1 = 1. This has been shown to be quite

an effective potential to describe the stellar disk of the Milky Way from observation of

stars across the galaxy (Jurić et al., 2008; Bovy & Rix, 2013; Widmark et al., 2022).

For the gas disk, a steeper profile is needed in the vertical direction due to how

the gas is concentrated in the midplane. McMillan (2017) proposed the use of a sech2

profile for the thickness of the gas disk based on the 3D H I maps of the Milky Way

from Kalberla & Dedes (2008). Modifying the disk potential of Dehnen & Binney

(1998) to reflect the sech2 profile, we get:

ρ(R, z)d = Σd

zd

exp
(

− R

Rd

− Rm

R

)
sech2(z/2zd) (1.31)

where is Rd is the gas disk scale length, zd is the gas disk scale height and Rm is a term

to enforce a decrease in the gas density towards the galactic centre to reflect the lower

gas density present with R < 4 kpc (Dame et al., 1987). This additional component

to the Galactic potential contributed by the gas disk helps explain the vertical motions

observed in stars at larger heights above the disk (McMillan, 2017).

Whilst these thicker disks provide realistic density profiles for galactic disks, the

potential Φ cannot be obtained analytically via Poisson’s equation. Instead, numerical

methods are required to calculate the potential, details of which will be discussed in

chapter 2.

Bars and perturbations

So far the potentials we have discussed have been are either spherically symmetrical or

axisymmetric around the z-axis. However, observations have shown numerous galaxies

break these symmetries with up to 45% of galaxies containing a bar (Aguerri et al.,

2009), and ∼ 60% of galaxies in the local universe are either irregular or spiral shaped

in nature (Loveday, 1996).

The bars of galaxies are an elongated shaped region at the centre of some galaxies

where the stars are typically intermediately aged or older (tage > 2 Myr) (Neumann

et al., 2020). The formation of bars within galaxies is relatively unknown process how-

ever two processes have been proposed:
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• Orbit trapping - stars in highly elliptical, eccentric orbits aligning their orbits

within the centres of galaxies, resulting box orbits within galactic centres (Lynden-

Bell, 1979; Polyachenko & Shukhman, 2015, 2020).

• Standing cavity wave - instabilities in the galactic disk cause a cavity to open

between the galactic centre and the co-rotation radius creating a standing wave

in the region. This generates swing amplification causing a positive feedback

loop, increasing the density of stars within the bar. Eventually an inner Lindblad

resonance forms, halting the feedback loop and stabilising the bar (Toomre, 1981;

Sellwood & Evans, 2001).

In either case of formation mechanism, cosmological simulations have shown a galaxy

has increased likelihood of having a bar with increasing stellar to dark matter mass ratio

in the centre of galaxies (Rosas-Guevara et al., 2020; López et al., 2024).

The elongated ellipsoid shape of a bar typical has an axis ratio of 3:1 (Athanassoula

et al., 1990) and being notably thicker than the disk itself. This allows for the bar poten-

tial to be modelled as a triaxial shaped distribution, allowing for the use of “squashed”

spherical power-law distributions, such as the one in Binney et al. (1991) where:

ρ(a) = ρ0

(
a

a0

)−α

(1.32)

where a =
√
x2 + (y2 + z2)/q2

m. The shaping parameter qm is what turn the spherical

power law distribution into an elongated, triaxial one, where qm = 1 returns a spherical

distribution. This works for more simplistic models, however observations of both the

Milky Way’s bar (Wegg & Gerhard, 2013; Wegg et al., 2015), and external galaxies

(Kuijken & Dubinski, 1995; Merrifield & Kuijken, 1999; Chung & Bureau, 2004) as

well as simulations (Combes & Sanders, 1981; Athanassoula, 2005) show that bars can

take on a boxy-peanut/X-shaped profile. Modelling these profiles are difficult in nature

but made-to-measure models of the Milky Way’s by Portail et al. (2017) and analytical

analogues (Wegg et al., 2015; Coleman et al., 2020; Sormani et al., 2022b) have provide

dynamicists multiple profiles to explore bar potentials of galaxies.

The other type of perturbation that is often explored and modelled are the spi-

ral arms of galaxies. Grand design spiral galaxies, whilst only making up ∼ 10% of

galaxies, act as a great laboratory for spiral arm perturbations. Typically they contain

an even number of spiral arms which is equivalent to a m-order perturbation where

m = 2, 4, 6 . . . . The spiral arms in these galaxies are believed to form from either the

rotation of their bars (Buta et al., 2009) or from interactions with companion galaxies,

such in the case for M51 (Dobbs et al., 2010; Tress et al., 2020a, 2021).
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For flocculent galaxies, the spiral arms are less regular and are believed to be a

result of instabilities within the disks of these galaxies. The mechanism behind these

instabilities is not fully known though two theories are proposed for the mechanism.

Density wave theory is one mechanism developed by Lin & Shu (1964) describes the

spiral arm perturbation as quasi-steady state perturbation in which a standing wave is

formed between the Lindblad resonances, amplifying the structure between forming a

long lasting overdensity in the both the gas and stellar distributions, similar to that of

bar formation. This theory requires a dynamically cold outer disk, and hot inner disk

which is very a specific set of conditions which is not always achieved. The alternative

is perturbations caused by overdensities, small mergers, and grooves in the phase space

of galaxies, all of which can create spiral patterns (Goldreich & Lynden-Bell, 1965;

Toomre, 1990; De Rijcke & Voulis, 2016), however these perturbations would decay

quickly.

The spiral arms in these galaxies tend to follow a logarithmic spiral pattern where

for a given spiral arm ϕ = 1/k ln (R/a) where k and a are constants. Turning this into

shaping function for an m−order perturbation within an axisymmetric disk:

f(R) = m

tan (i)
ln R

Ra

(1.33)

where i is the pitch angle of the spiral shape and Ra is the radius where the spiral crosses

the x−axis. Considering a rotating spiral arm model, the potential can be decomposed

into two parts Φ = Φ0 + Φ1 where Φ0 are the axisymmetric terms of the potential and

Φ1 is the spiral perturbation. Following density wave theory, spiral arms would rotate

through a galaxy with a fixed pattern speed Ωs. Relaying this to the potential gives:

Φ1(R, ϕ, t) = Φa(R)ei(mϕ−Ωst−f(R) (1.34)

where Φa is some axisymmetric potential and f(R) is the shaping function, like the

logarithmic spiral. Different spiral arm profiles have been explored over the years,

some of these include the sinusoidal spiral arm modal of Cox & Gómez (2002) and

Gaussian profiled spiral arms (Junqueira et al., 2013; Li et al., 2022). The shaping

function has been explored as well, with multiple papers by Reid et al. mapping masers

to the spiral arms of the Milky Way (Reid et al., 2014, 2016, 2019) and mapping to

stellar density maps from Gaia (Eilers et al., 2020).

All the potentials discussed in this section provide the base work to our model of

the Galactic potential, details of which are discussed in 4.
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1.3 About this thesis
In this thesis we aim to explore how the dynamics of the ISM impact on both direct and

derived quantities. Within this chapter we have had a brief overview of the processes

involved within GMCs as well as the larger scale galactic dynamics. We continue our

overview by discussing the numerical techniques used as part of this thesis in chapter 2.

It is shown in both simulations and many observation the cloud-cloud collisions are

regular occurrence within galaxies (Tasker & Tan, 2009; Dobbs et al., 2015; Fukui et al.,

2021). In chapter 3 we look into how the collisions of GMCs impact subsequent star

formation within said clouds. We perform a suite of MHD simulations to allow for the

comparison between star formation rates, virial state of clumps/cores within the clouds

and the resulting alignment between magnetic and velocity fields. Our parameter space

covers a range of collisional velocity, initial magnetic field inclinations and effective

resolution within the simulations.

Assumptions made about the dynamics of gas within the Milky Way can lead to

large deviations from true values. This is the topic of chapter 4 where we explore

how reliable the assumption circular motion within the Galaxy is for kinematic distance

estimate. We present a new analytic model for the gravitational model for the Milky

Way making use of existing models to describe the centre of the Galaxy, as well as

using constraints from observations to parameterise our analytic models. Making use

of 2D isothermal hydrodynamics simulations, we simulate the gas of the Milky Way;

gradually introducing non-axisymmetric components of our potential (such as the bar

and spiral arms) to induce radial motions into the gas. From there we place an observer

within the simulation to calculate distance to the gas cells within the simulation via the

kinematic distance method. We generate longitude-error maps from the data to give

observers constrains on where kinematic distances are reliable within the Galaxy.

Lastly we conclude the thesis with an overview of our findings in chapter 5, with

additional discussion on future works being developed from these results.



Chapter 2

Numerical methodology

“I have learned so much since then, years have gone

by. My mistakes have become experience points. I

wonder if I have evolved like you?”

—PinocchioP, The Pokémon inside my heart

Within this thesis, we have made use of the numerical hydrodynamics code AREPO

in order simulate the environments within the Galactic ISM (Springel, 2010a). In ad-

dition, AREPO was integrated with Action-based Galaxy Modelling Architecture (AGAMA)

for the Galactic scale dynamics introduced in chapter 4 (Vasiliev, 2019). In this chapter,

we go into the base physics behind these codes and provide an insight into how these

codes operate. We further discuss details on how the two codes are interfaced together.

2.1 AREPO, moving-mesh hydrodynamics

2.1.1 Overview of hydrodynamics
Most processes in the ISM involve the dynamics of atomic and molecular gas. As such,

the gas is best described as fluid following the conservation laws of hydrodynamics.

Here, a choice of reference frame needs to be made in order to describe the system; a

Eularian frame of reference in which an observer is positioned at a specific point within

the system as it evolves, or a Lagrangian frame of reference where the observer moves

with the flow of the fluid.

In the Eularian reference frame, the conservation laws for an ideal, inviscid adiabatic

fluid are as described as follows:

• Conservation of mass
∂ρ

∂t
− ∇ · (ρv) = 0 (2.1)

21
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where ρ is the density of the fluid and v is the flow velocity of fluid.

• Conservation of momentum

ρ
(∂v
∂t

− (v · ∇)v
)

= −∇P + ρF (2.2)

where P is the fluid pressure and F is any external forces acting on the system,

such as gravity or momentum injection from supernovae.

• Conservation of energy

∂ϵ

∂t
+ v · ∇ϵ = −P∇ · v + L (2.3)

where ϵ is the energy density of the system and L are all the additional heating

and cooling terms that can arise in the system, such as time-dependent chemistry

and feedback from stars. The energy density is defined in its base form as the

total energy contributions from thermal and kinetic energy:

ϵ = eth + |v|2

2
. (2.4)

The thermal energy of the system, eth, is obtained from the ideal gas law:

P = (γ − 1)ρeth (2.5)

where γ is the adiabatic index of the gas, typically with γ = 5
3 for an monoatomic

gas.

In order to obtain the Lagrangian form of these equations, the comoving derivative

needs to be used:
D
Dt

= ∂

∂t
− v · ∇. (2.6)

Applying this to the hydrodynamic equations (Eqn. 2.1-2.3) we can obtain the corre-

sponding equations in the Lagrangian frame. These are:

Dρ
Dt

= −ρ∇ · v, (2.7)

ρ
Dv
Dt

= −∇P + ρF, (2.8)

and
Dϵ
Dt

= −P∇ · v + L. (2.9)

These equations assume the gas is inviscid and not magnetised. These equations can

be modified to account for viscosity or the presence magnetic fields within the gas (see

3.2.1 for details on magneto-hydrodyanmics, MHD). Addtionally, these equation only
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Figure 2.1. Projection of hydrodynamic blast wave using the AMR code Athena++.
Left hand panel shows the blast wave with a uniform grid, middle panel shows it with

AMR and the right hand panel shows the levels of refinement. (Figure credit: Stone

et al., 2020)

hold if there are no discontinuities in the system, otherwise the integral form of these

equations must be used to obtain any results.

These equations, whilst can describe a lot of systems, can only be solved in analyti-

cally in a select few systems, such as a steady-state, incompressible flow, resulting in the

need for numerical approaches to solve these equations. Many hydrodynamical codes

have been developed to simulate these systems and usually fall into one of two types;

grid/mesh codes and smooth particles dynamics (SPH) codes.

Grid/mesh codes

Grid codes follow the Eularien approach to hydrodynamics by constructing a fixed

grid or mesh where the hydrodynamical quantities of the gas are stored in each grid

cell, subdividing and discretizating the simulation domain. The codes then update

the quantities in each cell with each timestep by treating each cell interface as a local

Riemann problem; treating each interface as a discontinuity and numerically solving

the fluxes across them.

Some codes allow for the further discretization of the cells called refinement. This

process splits the cells into 2n subcells based on certain criterion, where n is the number

of dimensions of the system. Density thresholds are a typical criterion for refinement,

however location, velocity thresholds and other criterion can also be used to activate

refinement. Conversely, grid cells can merge together in a process called derefinement.

Codes that are able to refine and derefine during the simulation are referred to as adap-

tive mesh refinement (AMR) codes. Examples of these codes include Ramses (Teyssier,

2002) and Athena++ (Stone et al., 2020). An example of blast wave in Athena++ can

be found in figure 2.1 where the levels of refinement used can be seen.
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AMR codes have the advantage of being able to resolve shocks and discontinuities

due to the nature of using Riemann solvers for solving across cell faces. Additionally,

obtaining projections and slices of the system are easier to obtain due to the presence

of the grid. However due to the finite resolution and sqaure/cubic nature of the grid,

artifacts in the system can arise. These can propagate through the system producing

results that may be unphysical.

Smooth particle hydrodynamics

Smooth particle hydrodyanmics (SPH) is a Lagrangian approach to solving the hy-

drodynamical equations in which hydrodynamical quantities are mapped to particles,

first developed for astronomical simulations by Lucy (1977) and Gingold & Monaghan

(1977). The approach makes use of a kernel summation interpolant in which a given

quantity F is smoothed and mapped onto a particle with:

Fs(r) =
∫
F (r′)W (r − r′, h)dr′ (2.10)

where Fs is the smoothed quantity and W is a the kernel in which the given quantity

is smoothed across a length h (smoothing length) with
∫
W (r)dr = 1. The kernel used

is typically some kind of Gaussian or Gaussian-like profile, for example a cubic spline

approximation where W (r, h) = w( r
2h

):

w3D(q) = 8
π


1 − 6q2 + 63, 0 ≤ q ≤ 1

2

2(1 − q)3, 1
2 < q ≤ 1

0. q > 1
(2.11)

An example of the smoothing kernel can be seen figure 2.2.

Descritising equation 2.10 for N particles in a system and treating ∆ri ∼ mi

ρi
given

that each particle has a mass and density associated with it, we obtain:

Fs(ri) ≃
N∑

j=1

mj

ρj

FjW (ri − rj, h). (2.12)

This provides the basis for converting the Lagrangian equations of hydrodynamics for

a SPH system. After the particles have the quantities needed for the simulation, the

simulation is evolved in a manner similar to N-body simulations where the acceleration

on each particle is calculated, the velocity is advanced by a timestep according to the

acceleration, and finally the particle moves position due to it updated velocity.

SPH, due to its simplicity, easily conserves mass, momentum, energy and entropy

really well. Additionally, SPH is Galilean invarient. The resolution of the system

follows the density of system by construction, where more particles are present in denser
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Figure 2.2. An example of a particle distribution around a central SPH particle i. All

black particles within the kernel radius kh contribute to the fluid quantities of particle i.

All white particles fall out of the kernel and do not contribute. The shape of the kernel

W is shown on the x− y axis. (Figure credit: Liang et al., 2019)

regions of the simulation. This allows for density contrasts to be resolved well. In an

astronomical setting, SPH codes can be coupled to N-body codes easier to further

incorporate gravitational forces experienced in astronomical simulations.

Where SPH struggles is resolving shocks, in which in a shocked system increases in

entropy. An artificial viscosity needs to be added in the momentum and energy conser-

vation equations in order to allow for the increase in entropy. This additional viscosity

causes much higher dissipation within the system, additional entropy in systems that

conserve entropy (e.g. sheer flows) and has no physical motivation for its existence. The

particle nature of SPH means that the particles can ”jiggle” due to repulsion present by

pressure gradients in the simulation. This adds a level of noise that is not present in

grid based codes.

Many SPH codes have been developed for astrophysical contexts such as Gadget
(Springel, 2005a; Springel et al., 2021), GIZMO (Hopkins, 2015) and Gasoline (Wadsley

et al., 2004, 2017).

2.1.2 Details of AREPO

A third type of hydrodynamical code comes in the form of moving-mesh codes. Moving-

mesh codes are mix of the two previous methods; descritising a simulation domain into
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Figure 2.3. The generation of a Voronoi tesselation from a Delaunay triangulation

with the circumcircles and circumcentres as the red circles and points respectively. The

left plot depicts an example Delaunay triangulation with the vertices (mesh-generating

points) in blue. The middle and right plots show the resulting Voronoi tesselation from

the Delaunay triangulation (red dashed lines in middle plot).

cells like an a grid code and allows them to move with the flow of gas in a manner

similar to SPH codes. We make use of such a code called AREPO in this thesis. AREPO is

a cosmological MHD code which uses a Voronoi tesselation as the mesh for the simu-

lation (Springel, 2010a; Pakmor et al., 2011; Weinberger et al., 2020). The advantage

of using a moving-mesh code is that it allows for Galilean invariant system that is still

able to treat shocks without the need of artificial viscosity.

The initial conditions of an AREPO provide the structure for the initial tesselation.

Similar to SPH, a set of particles are assigned with fluid quantities and are used as

the mesh-generating points for the Voronoi tesselation. This involves constructing a

Delaunay triangulation, a type of mesh that consists of only triangles where the mesh-

generating points are located at the vertices of the triangles. The circumcircle of a

given triangle within the triangulation does not contain additional mesh generation

points. The vertices of the Voronoi tesselation lie at the centre of the circumcircles

and connecting the vertices results in the Voronoi tesselation (see figure 2.3).

Once the tesselation is established, the simulation evolves as follows. For each

timestep ∆t:

1. The fluid quantities of each cell are computed based on the conserved quantities

of the hydrodynamic equations; density from conservation of mass, velocity from

conservation of momentum, and pressure from conservation of energy.

2. The gradients of each fluid quantity are computed and velocities are assigned to
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each mesh-generating point based on the gradients.

3. The fluid quantities are evolved by treating each Voronoi cell interface as a Rie-

mann problem by computing fluxes through the interfaces, similar to AMR codes.

4. Finally, the mesh-generating points move accordingly with their velocity for the

timestep.

The cell sizes are adaptive by nature in which they can get smaller as mesh-generating

points get closer, however further refinement and derefinement based on the mass of

the cell or by other criterion is possible. For refinement, a new mesh generating point is

inserted beside the existing one inside the cell. The Voronoi cell is then split in half and

the conserved quantities for each cell are calculated based on the volume of the new re-

fined cells. Similarly, derefinement is achieved by removing the mesh-generating point

and having the surrounding cells receiving the conserved quantities from the derefined

cell.

Many other forms of physics can be included into AREPO such as self-gravity, exter-

nal potentials, chemistry, supernova and stellar feedback. These all allow for the explo-

ration of many types of systems. These includes cosmological boxes with Illustris
(Vogelsberger et al., 2014) and IllustrisTNG (Pillepich et al., 2018; Springel et al.,

2018) suit of simulations, individual galaxies (Smith et al., 2014; Tress et al., 2020a;

Whitworth et al., 2023), clouds and star forming regions (Clark et al., 2019; Jones et al.,

2023), and evolving supernovae (Pakmor et al., 2013; Pais et al., 2018).

2.2 AGAMA, gravitational dynamics library

2.2.1 Treatment of gravity in simulations
Gravity is one of the most important forces that all objects within the universe experi-

ence. In the context of astrophysics, the gravitational force is a crucial force in defining

the motions of astronomical objects. It is necessary that the treatment of gravity is

correct within simulations.

The most accurate way of obtaining the gravitational forces acting on an object is

with direct N-body summation, in which the forces acting on the object are calculated

with respect to all other objects within the simulation. The force acting on a given

object i in a system of N objects is given by:

Fi =
N∑

j=1
j ̸=i

Gmimj(rj − ri)
|rj − ri|3

, (2.13)
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where mi and ri are the mass and vector positions respectively, and G is the gravita-

tional constant. Two-body (N = 2) systems can easily be computed analytically, whilst

systems with more bodies require simplifications and/or numerical methods to solve.

One such simplification is the restricted three-body problem in which one of the par-

ticles in a N = 3 system is considered as massless and orbits around the system. This

can be used to determine the orbit of stars located on the outskirts of a stellar system

(Szebehely, 1967; Henon, 1997; Valtonen & Karttunen, 2006).

The direct summation approach presented in Equation 2.13 can be very computa-

tionally intensive when N > 103 particles due to the O(N2) calculation that is required

to compute the forces on all the particles. Approaches have been introduced to ease

computation to O(N) or O(N lnN).

• Tree code, O(N lnN) - A method developed by Barnes & Hut (1986) in which

the simulation domain is split into an octree (quadtree in 2D); nested regions of

2x2x2 cubes (2x2 squares) creating a tree-like structure with a single particle being

potentially at the bottom. The force each particle experience is a combination of

direct N-body force of all particles within the same region and treating regions

further away as a single particle with the total mass of that region as its mass and

centre-of-mass as its position.

• Particle mesh, O(Ngrid lnNgrid) & O(Nparticles) - This method takes the particle

distribution of the system and maps it into a density grid using a window function,

similar manner to SPH, where:

ρgrid,i = 1
h3

N∑
j=1

mpart,jW (xpart,j − xgrid,i) (2.14)

where grid and part refer to the grid cell and particle respectively, and h is the

length of a grid cell. W is a window function in which maps the mass to a number

of cells depending on the form of W ; this can be either n3 cells nearest to the

particle where n = 1, 2 or 3. Making use of Poisson’s equation (Eqn. 1.14) and

integrating, the gravitational potential can be described as a convolution between

the density and the Green’s function, g:

Φ(x) = −
∫ Gρ(x′)

|x′ − x|
dx′ =

∫
g(x′ − x)ρ(x′)dx′ = g ∗ ρ. (2.15)

The Fourier transform of a convolution is the product of the Fourier transforms of

each function in the convolution. Using this property, the gravitational potential

in Fourier space can be calculated by using the density Fourier transform:

Φ̃(k) = −4πG
k2 ρ̃(k). (2.16)
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The forces then acting on each particle can the be calculated by Fourier trans-

forming the Fourier potential Φ̃ and differentiating the resulting potential.

AREPO makes use of both approaches when computing self-gravity within the system.

When both approaches are used in a simulation, tree code is used for short range

range interactions whilst the particle mesh approach is used for long range interactions

(Springel, 2010a; Weinberger et al., 2020).

In systems where the gravitational potential remains rather constant, or can be ap-

proximated by an analytic expression, the potential can be precomputed prior to the

simulation running. This requires significantly less computation, making the calcula-

tion of the acceleration an O(N) calculation instead. In chapter 4 we implement this

technique for the Milky Way potential making use of the gravitaional dynamics library

AGAMA.

2.2.2 Constructing potentials with AGAMA
AGAMA, action based galaxy modeling architecture, is a galaxy dynamics and modelling

library in C++ and Python developed by Vasiliev (2019). The code provides a toolbox

to explore the dynamics and potentials of galaxies making use of multiple methods to

do so.

The primary method in the code is the calculation of potentials. AGAMA provides

many of the standard potentials used in galactic dynamics as discussed in 1.2, such as

Plummer, NFW and Dehnen potentials. A complete list of available potential profiles

can be found in the AGAMA documentation (Vasiliev, 2018). Additionally, a user-defined

density or potential function describing the potential can be used. The “potential fac-

tory” framework of the code allows the user to define a potential, return an C++/Python

class object which can be used to obtain quantities of the potential such as local density,

potential and forces, enclosed and total masses, and orbital periods of test particles.

The potential is generated in one of three ways: analytic solution, multipole expan-

sion (Multipole) or cylindrical Fourier expansion (CylSpline). The analytic solution

is the simplest approach and quickest to compute of the methods, making use of the

previously described list of standard potentials, however this only applies to potentials

with both a analytic form for both the density profile and potential profile. If there is

only a density profile or there is no analytic function, one of the expansions are required.

Multipole expansion

The multipole expansion approach to calculate the potential is recommended for sys-

tems that are spheroidal in shape (e.g an Einasto (1969) potential for dark matter halos).
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The multipole expansion approach is a standard method to evaluating the potential

(Binney & Tremaine, 2008, Chapter 2.4). This allows for the potential at a given point

to be expressed as a summation of spherical harmonics:

ρ(r, θ, ϕ) =
∞∑

l=0

+l∑
m=−l

ρl,m(r)Y m
l (θ, ϕ) (2.17)

and

Φ(r, θ, ϕ) =
∞∑

l=0

+l∑
m=−l

Φl,m(r)Y m
l (θ, ϕ) (2.18)

where ρl,m and Φl,m are the expansion coefficient of the density and potential functions

respectively and Y m
l are the spherical harmonics. The spherical harmonics used here

are product of the normalised associated Legendre polynomials, P̃m
l (x) with x = cos (θ)

and trigonometric functions of mϕ:

Y m
l (θ, ϕ) =

√
4πP̃m

l (cos θ) trigmϕ, (2.19)

trigmϕ =


0, m = 0

√
2 cosmϕ, m > 0

√
2 sin |m|ϕ m < 1

.

The coefficients of the expansions, fm
l = {ρl,m,Φl,m}, can be found by exploiting the

orthogonality of the spherical harmonics; multiplying each side of equation 2.17 &

2.18 by the complex conjugate and integrating over all solid angles:

fl,m(r) =
∫ π

0

∫ 2π

0
f(r, θ, ϕ)Y m

l (θ, ϕ)Al,mdϕdθ (2.20)

where f is either the density or potential function, ρ or Φ, and Al,m is a normalising

coefficient. Each coefficient is a function of radius r and is computed on a logarithmic

radial grid spanning the domain of the potential. Poisson’s equation can be used to

obtain the potential coefficients Φl,m from the density coefficients by integrating in r as

the ϕ and θ dependence were eliminated in the previous step. This is achieved by:

Φl,m = − 4πG
2l + 1

[
r−1−1

∫ r

0
ρl,m(r′)r′l+2dr′ + rl

∫ ∞

r
ρl,m(r′)r′1−ldr′

]
. (2.21)

Typically these kinds of expansions require the maximum l to be between 4 and

8 for most spherical shaped systems, and with certain symmetries the coefficients can

automatically be set to 0 saving computational time. However this becomes more com-

putationally expensive with highly flattened systems, requiring much higher maximum

of l (for example, l = 0..36 in Holley-Bockelmann et al., 2005). A different approach is

then required to save computation as the spherical harmonic approach due to the scaling

of O(ngrid × 2l2). AGAMA provides this with either the disk ansatz approach of Kuijken

& Dubinski (1995) (not used in this thesis) or with cylindrical Fourier expansions in R

and z.
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CylSpline - cylindrical Fourier expansion

The Fourier expansion approach to calculating the potential is an alternative to the

multipole expansion when the potential is flattened, for example disk and bar potentials.

For a given function f(R, z, ϕ) where f can be either density ρ or potential Φ, its Fourier

expansion in cylindrical coordinates is:

f(R, z, ϕ) =
∞∑

m=0
fm(R, z) exp(imϕ) (2.22)

where fm is the Fourier expansion coefficient of order m. Since the expansion occurs

in the azimuthal angle ϕ, the expansion allows for more detailed variation of potential

in z direction needed for modelling flat-shaped potentials. The coefficients fm(R, z)
are computed by Fourier transforming f(R, z, ϕ) in azimuth. The coefficients are eval-

uated in a double logarithmic grid in R and z with quintic spline interpolation used to

compute points in between, similar to the of the radial grid of the multipole expansion.

The elimination of the azimuthal dependence makes solving Poisson’s equation easier,

allowing for the computation of the potential coefficients Φm(R, z) from the density

coefficients ρm(R, z):

Φm(R, z) = −G
∫ ∞

−∞

∫ ∞

0
ρm(R′, z′)Ξm(R, z,R′, z′)dR′dz′. (2.23)

Here Ξm is the Green’s function in cylindrical coordinates. Within AGAMA, this is eval-

uated as:

Ξm =



1
π

√
RR′Qm−1/2

(
R2+R′2+(z−z′)2

2RR′

)
, if R > 0, R′ > 0

1√
R2+R′2+(z−z′)2

, if R = 0 or R′ = 0, and m = 0,

0, otherwise

(2.24)

where Q is the Legendre function of the second kind.

With the need of a second dimension needed to compute coefficients, Fourier

expansion method is computationally more expensive than the multipole expansion,

O(ngrid,r ×ngrid,z ×m). However, the ability to resolve variations in the potential in the

z direction can be crucial in some disk and bar models due to the exponential nature of

their height (for example, the disks in McMillan, 2017). A clear example of how the

grids are sampled with multipole expansion and cylindrical Fourier expansion can be

seen figure 2.4.

AGAMA allows for the combination of different potentials to form a composite poten-

tial. These composites can contain all 3 descriptions of calculating a potential, useful for

including the various components needed for a complete galactic potential. We make

use of these composite potentials in chapter 4 to establish the potential of simulation.
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Figure 2.4. An illustration indicating the grid that is formed with the multipole expan-

sion (red dots) and cyldrical Fourier expansion (blue crosses) in the R, z-place. Both

grids have 8 grid points in the radial direction, 5 angular point within the multipole

expansion (equivalent to lmax = 8), and 8 grid points in the z direction for the Fourier

expansion. (Figure credit: Vasiliev, 2019).

2.2.3 Interfacing AGAMA into AREPO
In order to explore the dynamics of a Milky Way-like Galaxy in chapter 4, an in-

terface was developed between AGAMA and AREPO. The interface interacts with the

EXTERNALGRAVITY framework of AREPO to adjust the acceleration the gas experiences.

The two steps involved are as follows:

1. At the beginning of the simulation, load the potential. The potential is read

from files that contain either the parameters to go into the analytical functions

in AGAMA via the “potential factory”, or loads the complete grid of expansion

coefficients. This returns an Agama potential object, containing the composite

potential needed for the simulation.

2. When AREPO makes a call to the EXTERNALGRAVITY framework to update the

acceleration, a call to the potential object produced in the previous step is made.

This returns the value of the potential Φ and the acceleration a = −∇Φ at the

position of the gas cell. These values are updated and the simulation is advance by

the corresponding timestep ∆t. This step is repeated for each cell and timestep

as needed.

This interface is adaptable to any potential provided the corresponding parameter

and/or expansion coefficient file exists, allowing for simulations of different types of

galaxies to be explored. The code to the interface can be found at the GitHub repository
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for AGAMA1.

1https://github.com/GalacticDynamics-Oxford/Agama

https://github.com/GalacticDynamics-Oxford/Agama




Chapter 3

Star formation induced by cloud-cloud

collisions

“Find a reason to sing. If I were to sing with you, I

wouldn’t feel alone for the first time.”

—Halyosy, Connecting

This work presented in this chapter is based on the paper Hunter et al. (2023) which

has been published in the Monthly Notices of the Royal Astronomical Society (MN-

RAS) in 2023. I am the first author of the paper and conducted all the simulation and

data analysis present within the paper and this chapter. The paper was primarily written

by myself with feedback and insight from co-authors and referees. Specifically, Simon

Glover provided text on how the chemical network present within the simulations is

constructed, details of which can be found in appendix A.1.

Abstract
Collisions between giant molecular clouds (GMCs) are one of the pathways for massive

star formation, due to the high densities created. However the enhancement of the star

formation rate (SFR) is not well constrained. In this study we perform a parameter

study of cloud-cloud collisions, and investigate how the resulting SFR depends on the

details of set-up. Our parameter study explores variations in: collision speed; magnetic

field inclination (with respect to the collisional axis); and resolution, as defined by the

number of cells per Jeans length. In all our collision simulations we find a factor of

2-3 increase in the SFR compared to our no collision simulation, with star formation

beginning sooner with a) high collisional velocities, b) parallel orientation between the

magnetic field and collision axis, c) and lower resolution. The mean virial parameter

of high density (and thus possible star-forming) gas increases with collisional velocity,

35
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but has little variation with magnetic field inclination. The alignment of the velocity

and magnetic field remains uniform in low density environments but becomes more

perpendicular with increasing density, indicating the compression of the magnetic field

by collapsing gas. Comparing the trends in the SFR with other GMC collision studies,

we find good agreement with studies that account for the gravitational boundedness

of the gas in their star formation algorithm, but not with those that simply form stars

above a prescribed density threshold. This suggests that the latter approach should be

used with caution when modelling star formation on resolved cloud scales.

3.1 Introduction
Giant molecular clouds (GMCs) are large regions of gravitationally bound gas that exist

within galaxies. These clouds typically span 1–100 pc in size and contain on the order

∼ 104–106M⊙ of molecular gas, giving them typical hydrogen densities of ∼100 cm−3

(Blitz, 1993; Roman-Duval et al., 2010). GMCs have temperatures of ∼ 10 − 30 K,

a factor of 2-10 times lower than the temperature of the surrounding Cold Neutral

Medium (CNM) component of the interstellar medium (ISM). Due to their low tem-

peratures and molecular nature, the main observational tracers of GMC properties are

dust continuum emission and molecular line emission (from e.g. CO/HCN/N2H+),

which are used to observe GMCs within the Milky Way as well as in nearby galaxies

(Fukui et al., 1999; Dame et al., 2001; André et al., 2010; Leroy et al., 2021).

Embedded within these GMCs are cooler dense clumps, the more massive of which

are often observed as Infrared Dark Cloud (IRDCs). These clumps are accepted to

be the precursor to star formation (Tan et al., 2014) due to their temperatures of 10-

20 K (Chira et al., 2013) and higher number densities of nH2 = 104 − 106cm−3 (Motte

et al., 2018). Each clump will likely form a cluster of stars due to further fragmentation

and their relatively large mass reservoir (102–105M⊙) (Motte et al., 2018). Despite

many observations of these clumps, the process by which these clumps form is not fully

understood. Some theoretical models have been proposed that explain how a GMC can

fragment and further collapse; such as turbulence (Krumholz & McKee, 2005a), stellar

and supernova feedback (Wareing et al., 2017) and converging gas flows, i.e collisions

(Scoville et al., 1986; Wu et al., 2017).

Numerical simulations of galactic disks have shown that GMC collisions are a re-

curring event due to the quasi-2D geometry of the distribution of dense molecular gas

in most disk galaxies along with the differential rotation created by the gravitational

potential of the galaxy (Tasker & Tan, 2009). Estimates of the mean time between

collisions range from ∼ 20% (Dobbs et al., 2015) to ∼ 50% (Sun et al., in prep.) of the
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orbital period of the clouds around the centre of the galaxy. Although this is a factor

of a few longer than recent observational estimates of cloud lifetimes – between 10-30

Myr (Chevance et al., 2020) – it nevertheless implies that GMC collisions should be

relatively common events. This is supported by the many observations of cloud colli-

sions found within the Milky Way; for instance, Fukui et al. (2021) identify ∼50 GMCs

that are candidates to be the product of cloud-cloud collisions (CCCs). However, col-

lisions are not limited to the disks of galaxies. Cloud collisions have been observed in

the Small and Large Magellanic Clouds (SMC and LMC) (Fukui et al., 2019; Tokuda

et al., 2019; Neelamkodan et al., 2021) and theorised to occur with extreme collisional

velocities in the centre of the Milky Way (Sormani et al., 2019). In the case of the

SMC and LMC, these clouds collide as a result of large scale HI flows caused by the

tidal interactions of these satellite galaxies (Fukui et al., 2017). As for the centre of

the galaxy, Sormani et al. (2019) argues the gas flow caused by the galactic bar crashes

into the Central Molecular Zone, a ring of molecular gas surrounding the Milky Way

nucleus, providing the ideal conditions for clouds to collide.

A variety of GMC collision simulations have been performed to explore various

topics: such as observational signature of collisons (e.g. Haworth et al., 2015); trig-

gering of high-mass star formation (e.g. Takahira et al., 2014; Balfour et al., 2015);

and enhancement of the star formation rate, in both non-identical GMC collisions (e.g.

Habe & Ohta, 1992) and identical GMC collsions (e.g. Wu et al., 2017; Liow & Dobbs,

2020; Tanvir & Dale, 2020). Habe & Ohta (1992) and Takahira et al. (2014) show

that the collision of a smaller cloud with a larger cloud creates a cavity and compression

layer in which densities are reached that are high enough for high-mass stars to form.

This is consistent with observations, for example of the Gum 11 cloud in the Carina

Nebula Complex by Fujita et al. (2021), where CO observations indicate the presence

of colliding clouds with a cavity, and with a massive star, HD92206, in close proximity

to the compressed layer.

However, while there is general agreement that cloud-cloud collisions should en-

hance star formation, there is little agreement on how much the star formation rate is

increased by a cloud-cloud collision. Recent simulations by Tanvir & Dale (2020) and

Liow & Dobbs (2020) find that the star formation rate increases by a factor of two or

less for collisions with relative velocities vrel ≤ 20 km s−1, typical of the majority of

mergers that we expect to occur in a Milky-Way type spiral galaxy (Skarbinski et al.,

2022). On the other hand, Wu et al. (2017) find an order of magnitude increase in the

star formation rate for a collision with a relative velocity of 10 km s−1. The cause of the

substantial discrepancy between the Wu et al. (2017) results and the results of the other

cloud collision simulations is unclear, as the simulations differ in both their numerical
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approach1 and their initial conditions. In particular, Wu et al. (2017) include a mag-

netic field in many of their simulations, while the other studies consider only the purely

hydrodynamical case.2 It is therefore not clear whether the difference in outcomes of

these studies is a consequence of the different initial conditions adopted, or instead is a

consequence of the choice of numerical approach.

In this chapter, we attempt to improve our understanding of the effect of collisions

on the star-formation rate in magnetised clouds by performing a series of simulations

of cloud collisions with different relative velocities and magnetic field orientations using

a state-of-the-art MHD code – the AREPO moving-mesh code (Springel, 2010b) – and

a sophisticated treatment of the microphysics of the gas (see Clark et al. 2019 and our

Appendix A.1) and the formation of stars (see Wollenberg et al. 2020 and Section

3.2.3). Importantly, for our fiducial case, we adopt the same initial conditions as in

Wu et al. (2017; hereafter, W17), allowing us to directly assess whether the large boost

in the star formation rate that they find in their study is due to their choice of initial

conditions or to their numerical approach.

The structure of our paper as follows. In Section 3.2 we discuss the numerical ap-

proach taken, the initial conditions used for each simulation and how the star formation

is implemented. In Section 3.3 we present our results from the simulation, with a fo-

cus on the structure of the GMC, the star formation rate and the virial parameter of

the cloud. We conclude with a comparison of our results to other literature results in

Section 3.4 and a summary of our findings in Section 3.5.

1Liow & Dobbs (2020) and Tanvir & Dale (2020) use smoothed particle hydrodynamics (SPH) and

model star formation with sink particles, while Wu et al. (2017) use an Eulerian grid code and model star

formation with star particles. Both SPH studies adopt an isothermal equation of state, whereas Wu et al.

(2017) employ a more realistic treatment of the heating and cooling that can occur during the collision,

based on the microphysics of the interstellar medium.
2Other potentially important differences include the choice of initial cloud mass and relative velocity.

Tanvir & Dale (2020) consider an initial relative velocity of 10 km s−1, as in W17, but simulate much

smaller clouds, with masses of only 104 M⊙, compared to ∼ 105 M⊙ in W17. Liow & Dobbs (2020)

carry out simulations for a wide range of cloud masses, including one that is within a few percent of

the W17 value, but only consider relative velocities vrel ≥ 20 km s−1, significantly higher than the case

studied in W17.
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3.2 Methodology

3.2.1 Numerical magnetohydrodynamics
We make use of the AREPO moving mesh code to simulate the gas dynamics and star

formation of colliding GMCs (Springel, 2010b). The code solves the equations of

magnetohydrodynamics (MHD) (Pakmor & Springel, 2013),

∂ρ

∂t
+ ∇ · (ρv) = 0 , (3.1)

∂ρv
∂t

+ ∇ · (ρv ⊗ v + ptot1 + B ⊗ B) = −ρ∇Φ , (3.2)

∂ρe

∂t
+ ∇ · [v(ρe+ ptot) − B(v · B)] = Q̇+ ρ

∂Φ
∂t

, (3.3)

∂B
∂t

+ ∇ · (B ⊗ v − v ⊗ B) = 0 , (3.4)

where ρ, v and B are the density, velocity and magnetic field strength of a given cell.

Here, 1 is the identity matrix. The total pressure is the sum of the thermal and magnetic

pressures, ptot = pgas+ 1
2 |B|2. The total energy per unit mass is e = eth+ 1

2v2+Φ+ 1
2ρ

|B|2,
where eth is the thermal energy per unit mass. An adiabatic equation of state is adopted

where pgas = (γ − 1)ρeth with γ = 5/3. Heating and cooling of the gas due to chemical

changes and radiative processes is accounted for with the term Q̇, which is discussed in

more detail in Section 3.2.2.

The equations are solved on a tessellated Voronoi mesh in which the mesh gener-

ating points are able to follow the gas flow using a Harten-Lax-van Leer discontinu-

ity (HLLD) solver. This allows AREPO to act as a quasi-Lagrangian MHD code. The

Voronoi mesh is adaptive: cells can be refined or de-refined by adding or removing

mesh-generating points, respectively. The divergence-free constraint on the magnetic

field, ∇·B = 0, is enforced by the using the MHD solver provided in AREPO (Pakmor &

Springel, 2013). Here, additional source terms are added to Equations 3.2-3.4 follow-

ing the scheme introduced by Powell et al. (1999) combined with a hyperbolic Dedner

cleaning (Dedner et al., 2002). This minimizes any effect that a diverging magnetic

field may create.

The gravitational term is due to the self-gravitation of the gas and any sink particles

present within the system (see below). AREPO solves Poisson’s equation,

∇2Φ = 4πGρ , (3.5)

via a tree-based algorithm similar to the one used in the GADGET-2 code (Springel,

2005b), where G is the gravitational constant. The algorithm treats each cell as if the



40 Methodology

mass is at a point in the centre of the cell with a degree of gravity softening. The

softening length for the gas is adaptive and is given as εgas = 2rcell, where the rcell is the

radius of a sphere with the same volume as the Voronoi cell. The minimum softening

length for both the gas and sink particles is 40.02 AU. Further information on sink

particles will be discussed in Section 3.2.3.

3.2.2 Chemical network
For our simulations we make use of a modified version of the chemical network de-

veloped by Gong et al. (2017), which itself is an improved version of prior networks

developed by Nelson & Langer (1999) and Glover & Clark (2012). It includes a simpli-

fied treatment of the chemistry of H, C, and O and allows us to follow the evolution of

the abundances of the main low temperature gas coolants (CO, C, O, and C+) with high

accuracy, but low computational cost. A comprehensive description of the network can

be found in Gong et al. (2017), and full details of the modifications we have made to

it are described in Appendix A.1. Radiative heating and cooling of the gas are mod-

elled using a detailed atomic and molecular cooling function, most recently described

in Clark et al. (2019).

To treat the effects of H2, C and CO self-shielding as well as shielding by dust, we

make use of the TREECOL algorithm (Clark et al., 2012). It uses information stored in

the gravitational tree structure to compute a 4π steradian map of the column densities

of each of these species plus dust around each Voronoi cell. These maps are then used

to determine how the interstellar radiation field (ISRF) reaching the cell is attenuated

by self-shielding and dust absorption.

In all of our simulations, we adopt elemental carbon and oxygen abundances given

by Sembach et al. (2000). Following Draine (1978), we set the strength of the inter-

stellar radiation field (ISRF) to G0 = 1.7 in Habing (1968) units. Finally, we adopt a

value of ζH = 3 × 10−17 s−1 for the cosmic ray ionisation rate of atomic hydrogen.

3.2.3 Star formation
To simulate star formation, we make use of sink particles (henceforth sinks) to represent

forming star clusters (Bate et al., 1995; Federrath et al., 2010). We follow the sink

creation protocol outlined in Wollenberg et al. (2020). To summarise, the following

conditions must be satisfied in order for a sink to be created:

a) The cell must have a density greater than a threshold density ρc = 1.991×10−16 g

cm−3. This threshold has been motivated by the work of Jones et al. (2023), who
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demonstrate that only collapsing – and thus actively star-forming – gas can reach

such densities in such a set-up. Prole et al. (2022) show that provided that the sink

particles form within the collapsing regime, the star formation rate is insensitive

to the exact choice of the threshold density. Note that while we could insert sink

particles at lower densities, this reduces the efficiency of the algorithm, as it needs

to check more candidates for sink creation. Also, this would increase the chance of

converting gas to sinks, that while currently bound, may be subsequently disrupted

via further interactions with the large-scale flows.

b) The gas flow within the accretion radius of the sink (racc = 187 AU, corresponding

to the Jeans length at the threshold density for a temperature of 10 K) must be

converging. We ensure this by requiring convergence of both the velocity field

(∇ · v < 0) and the acceleration field (∇ · a < 0).

c) The sink-forming region must be situated within a local minimum of the gravi-

tational potential.

d) The cell must not lie within a distance r < racc of an existing sink particle.

e) The region within racc must be gravitationally bound, i.e |Egrav| > 2(Etherm +Ekin)
where Egrav is the gravitational energy, and Etherm and Ekin are the thermal and

kinetic energies, respectfully.

If all of these criteria are met, the gas cell is converted into a sink that inherits its

mass and momentum. This sink is able to interact gravitationally with the surrounding

environment and is also able to accrete further gas onto itself. Any Voronoi cells with

ρ > ρc within a distance r < racc of a sink are potentially eligible for accretion. However,

gas is only accreted from the cell if it is gravitationally bound to the sink. Provided this

is the case, enough gas is removed from the cell to reduce its density to ρc, although

the total amount removed at each time-step is capped at 90% of the cell’s initial mass,

for reasons of numerical stability. Following the accretion, any properties of the cell

that depend on its mass are updated. It should be noted that the sinks formed do not

contribute to the magnetic field of the system (i.e |Bsink| = 0). Given the size of our

sink particles, and the density at which they are introduced, it is clear that they cannot

be interpreted as individual stars, but rather as small-N protostellar systems. Also,

given that there is no feedback from the young stars in our cloud, any star formation

efficiencies reported in this chapter should be considered as upper limits – our sink

particles record the mass that is capable of going into stars (i.e., trapped in potential

wells), in accordance with the above star formation model.
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3.2.4 Initial conditions

In this chapter we adopt the initial conditions provided in W17, which were motivated

by observations of GMCs. The simulations are initialised within a (128 pc)3 domain

of molecular gas with a mean molecular weight µ = 2.33 and a helium to hydrogen

fraction of 0.1. Two spherical clouds of radius RGMC = 20 pc are placed into the

domain with their centres separated by (x, y, z) = (2RGMC, b, 0) where b = 0.5RGMC

(see Figure 3.1). Each cloud is initialised with a mass of MGMC = 9.3 × 104 M⊙ and

an initial temperature of 15 K by randomly distributing 2 million mesh generating

points uniformly which constructs our initial cells, achieving an initial mass resolution

of 0.0465 M⊙. This results in a hydrogen nucleon density of n = 80.2 cm−3 within

the clouds where n = ρ
(1+4AHe)mp

with AHe = 0.1 being the helium to hydrogen fraction

and mp being the mass of a proton. Surrounding the clouds is a region of warmer

molecular gas with n = 7.14 cm−3 and a temperature of T=150 K. The clouds are not

initially in thermal pressure equilibrium with the surrounding material. However, with

an initial thermal to gravitational energy ratio ofEtherm/Egrav = 0.0066, the clouds are

significantly gravitationally bound against thermal pressure, and hence any loss of mass

into the low density surrounding medium is small.

A uniform magnetic field of |B| = 10 µG in magnitude is set across the whole

domain of the simulation. This results in an Alfvén velocity of vA = 2.06 km s−1 for

each cloud and a mass-to-flux ratio that is 6 times greater than the critical value for

both clouds (Glassgold & Langer, 1974), making them magnetically supercritical. The

angle θ is the magnetic field inclination from the x-axis in the x-y plane and is varied

between simulations to investigate whether the orientation of the magnetic field affects

the star formation rate. (see Table 3.1).

We give the two clouds initial velocities of v = +vrel/2 and v = −vrel/2 for the

clouds starting at negative and positive x, respectively, so that they will later collide at

a relative velocity v = vrel. We carry out simulations with a range of different vrel,

so that we can investigate how different collision strengths impact the star formation

rate. We also include one case where vrel = 0 km s−1 (simulation 2), to allow us to

investigate what happens in the absence of a collision.3 Full details of the velocities

used can be found in Table 3.1. Along with the collisional velocity, a turbulent velocity

field is also applied to each cloud. The turbulence applied is purely solenoidal and has

a 3D velocity dispersion of σ = 3.46 km s−1. This follows a scaling law of P (k) ∝ k−4.

3Note that even in this case, the clouds will eventually collide due to their mutual gravitational at-

traction. However, this will occur on a timescale > 10 Myr, much longer than the period simulated

here.
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Figure 3.1. Surface density plot of the initial positions of the clouds.
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Table 3.1. Initial conditions that are altered between simulations.

Simulation θ vrel Cells per

(◦) (km s−1) Jeans length

1 60 10 8

2 60 0 8

3 60 5 8

4 60 15 8

5 0 10 8

6 30 10 8

7 90 10 8

8 60 10 4

9 60 10 16

For the velocity field within each cloud the turbulence induced is both supersonic and

super-Alfvénic, where M = σ/cs = 11.6 and MA = σ/vA = 1.68 respectively. The

turbulence induced allows for each cloud to be in virial equilibrium, with the kinematic

to gravitational energy ratio for each cloud being Ekin/Egrav = 0.499.
We also investigate the effect of varying the number of cells per local Jeans length

(hereafter referred to as the Jeans refinement parameter, JR). To do this we adopt Jeans

refinement as our main cell refinement criterion in AREPO. Cells are refined by adding

additional mesh generating points whenever D > λJ/JR, where D is the effective di-

ameter of the cell (i.e. the diameter of a sphere with the same volume as the mesh cell).

We adopt JR = 8 as our default value for the Jeans parameter, but also investigate the

behaviour of runs with JR = 4 and JR = 16, as detailed in Table 3.1.

We run the simulations as far as practical to establish a trend in the star formation

history. The end time varies due to the adaptive timestep of the simulation, between 3

and 4 Myr. In the presence of close interacting objects, such as binaries, the timestep

reduces significantly thus slowing the simulations progression.

3.3 Results

3.3.1 Star formation rate
Each simulation results in a different star formation history. For an example, in Fig-

ure 3.2 it can be seen that the systems evolve differently, creating unique structures.

As a result, varying numbers of sink particles form in the simulations, as shown by the
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Figure 3.2. Column density plots of all simulations at t = 2.40 Myr. The green dots

within the plot represent the sink particles that have formed.

green dots in Figure 3.2. To investigate this difference quantitatively, we look at the

star formation rate of each of the simulations.

The star formation rate is calculated as:

ṀSFR = ∆M
∆t

(3.6)

where ∆M is the difference in the mass of the sinks between the start and end of a time

step of length ∆t. These are calculated for each output snapshot available in all nine

simulations. The results from these calculations are presented in Figure 3.3 along with

the total mass that has gone into star particles.

Figure 3.3 shows that there is a clear difference in the time taken for stars to begin

forming in the different runs, with a spread in onset times of ∼ 0.7 Myr between the

most extreme cases. Looking in more detail at the results from the individual runs, we

see that changing the collisional velocity has the greatest impact on the time required for

star formation to begin. Stars start to form sooner in simulations with high collisional
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Figure 3.3. Top: Evolution of the mass in sink particles as a function of time in all nine

simulations. Bottom: Star formation rate as a function of time in all nine simulations.
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velocity than in simulations with low or zero collisional velocity. This behaviour is likely

due both to the time it takes for large-scale shocks to form in the colliding clouds, and

also to the density enhancement produced by these shocks. Faster collisions produce

stronger shocks and hence larger density enhancements.4 Therefore, higher density

star-forming regions with shorter free-fall times are formed with increased collision

velocity.

The orientation of the magnetic field has a smaller effect on the time required for

star formation to begin. We see a clear difference in behaviour between the case with

the magnetic field orientated parallel to the collisional axis, which forms stars after

∼ 1.5 Myr, and the runs with other magnetic field orientations, in which the onset of

star formation is delayed by ∼ 0.25 Myr. The earlier star formation observed when

the magnetic field is parallel to the collisional axis is a result of the magnetic field not

hindering the compression of the gas along the x-axis. This allows the shocked gas to

reach the densities required for the first sinks to be created more rapidly compared to

the other magnetic field orientations (see also Appendix A.2). This delayed behaviour

agrees well with that of the strong By simulation of Dobbs & Wurster (2021).

Finally, regarding the Jeans refinement variation, a higher resolution tends to delay

the onset of star formation. This is likely due to the more highly resolved turbulent

velocity field resulting in more disruption of the star-forming gas. This results in the gas

being unable to be fully bound, delaying star formation. However, it should be noted

that the difference of the onset of star formation between the JR = 8 and JR = 16
cases is small, of the order of ∼ 0.2 Myr, which is about the free-fall time of a dense

core.

It is also informative to look at how the dense gas fraction – defined here as the

fraction of the gas above a density of 104 cm−3 with common observational definitions

(e.g. Lada et al., 2010) – varies as a function of time in the different simulations. We

illustrate this in the bottom three panels of Figure 3.4 and as expected, dense gas is pro-

duced more rapidly as we increase the collision velocity, confirming our suspicion that

the differences we observe in the timing of the onset of star formation are largely due

to the differing amount of time it takes to compress the gas. Changing the orientation

of the magnetic field also changes the dense gas fraction, with an appreciably higher

fraction produced when the magnetic field is aligned with the axis of the collision. It is

also apparent that there is an offset of around 0.5–1.0 Myr between the time taken to

produce dense gas at 104 cm−3 and the onset of star formation. The offset reduces when

4Recall that for an isothermal shock, the strength of the density enhancement scales as the square of

the Mach number. Although our model GMCs are not isothermal, the equilibrium temperature of the

molecular gas varies only weakly with temperature, and so the isothermal result remains a useful guide.
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we consider higher density gas fractions. This offset is easily understood as a conse-

quence of our definition of “dense” gas, and the fact that the density threshold for sink

particle creation is significantly higher than the value we use in our definition of dense

gas. At n = 104 cm−3, the gravitational free-fall time of the gas is ∼ 0.5 Myr, and so we

would expect gas close to this density to require around this long to collapse to stellar

densities (in reality) or the sink creation density (in the simulations).5 The offset we see

between the appearance of “dense” gas and the formation of stars therefore corresponds

to the one to two free-fall times required for gas at this density to collapse sufficiently

to form stars.6

From Figure 3.4 we observe significant variation of the gas fractions at early timesteps

prior to the steady evolution of the gas density. Most of these variations are transient

features in which denser gas forms due to the collision but is dispersed due to pressure

gradients briefly forming. For the two lower density thresholds, we also see that there

is a small fraction of gas above the threshold present at the beginning of the simulation.

This results from the uneven distribution of mesh points within the initial conditions,

which results in a certain amount of scatter in the starting densities of the cells.

The role of the collisions in driving the increase in the dense gas fraction and bring-

ing about the onset of star formation can also be seen clearly if we examine how the

dense gas fraction varies as a function of cloud separation, defined as the distance be-

tween the centres of mass of the two clouds. We see that most of the simulated clouds

follow very similar tracks in this diagram, with substantial quantities of dense gas be-

coming apparent only once the cloud separation is less than ∼ 25 pc, i.e. once the

collision is significantly advanced. The two exceptions are the clouds with vrel = 0 and

5 km s−1, which start to develop dense gas while at clearly larger separations, partic-

ularly in the vrel = 0 km s−1 run. These two runs are also the ones that produce the

lowest dense gas fractions at any given time and that form the least number of stars.

Our results are therefore consistent with the idea that in these runs, star formation is

driven primarily by the collapse of the individual clouds, with the interaction between

them playing little role, while in the simulations with higher vrel, the collision between

the clouds plays a much more substantial role in influencing the star formation rate.

5Note that in a pure free-fall collapse, the time taken to collapse from 104 cm−3 to our sink creation

density of ∼ 108 cm−3 is two orders of magnitude longer than the time taken from collapse from ∼
108 cm−3 to stellar densities.

6In the absence of pressure, we would expect the gas to collapse within a single free-fall time. In

reality, however, the non-negligible magnetic pressure and kinematics of the gas inevitably delays the

collapse (See Sect. 3.3.2). Finally, even once we account for this offset, it is clear that not all of the dense

gas that forms in the simulations goes on to form stars. Instead, the star formation efficiency in gas of

this density is typically only a few tens of percent.
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Figure 3.4. Fraction of gas above the specified density threshold in all nine simulations,

plotted as a function of time. The thresholds are indicated in the top-left corner of each

panel and are n > 103cm−3, 104cm−3, 105cm−3 and 106cm−3 from top to bottom. We see

that increasing the collisional velocity increases the amount of gas above the threshold

for all values of the threshold, but that the effect is much stronger for the higher density

thresholds.
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.

Figure 3.6 shows that the star formation rate in each simulation follows a similar

trend from the point when sinks first form. For a brief period after the first sinks form,

the SFR in the runs with vrel > 0 km s−1 is as much as an order of magnitude larger

than in the run with vrel = 0 km s−1, in which the clouds do not collide. However,

the difference between the runs quickly decreases, and for the majority of the time

covered by our simulations, the SFR in the cloud collision runs is only a factor of 2–3

larger than in the zero velocity run. This behaviour agrees well with the enhancement

in the star formation rate found by Liow & Dobbs (2020) and Tanvir & Dale (2020)

for collision velocities below 20 km s−1. However, it is substantially smaller than the

order of magnitude increase found by W17 despite the similarity between our initial

conditions and theirs. To help us better understand the origin of this difference in

results, we look in the next section at the virial parameter of the clouds and clumps

formed in the simulations.

3.3.2 Impact on the virial parameter
In the previous section, we showed that although the cloud collision increases the star

formation rate of our colliding clouds compared to the case with no collision, the mag-

nitude of the increase is much smaller than the order of magnitude found by W17.

This difference in outcome from their simulations cannot be a consequence of the ini-

tial conditions, as we use the same initial conditions as in their study, and hence must

be a consequence of the difference in numerical approaches. As we discuss in more
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all simulations. Bottom: Star formation rate normalised to vrel = 0 km s−1 star formation
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detail in Section 3.4, one of the main differences between our two studies is the algo-

rithm we use to identify star-forming gas. W17 form stars stochastically in gas above a

fixed density threshold, with no consideration given to whether or not the gas is grav-

itationally bound, whereas we use a sink particle based approach in which stars form

only in regions that are verifiably bound and collapsing. To understand whether this

algorithmic difference can explain the difference in outcome, we explore how the virial

parameter of the gas varies on different scales within our set of simulations.

The virial parameter η provides an insight into how bound the star-forming region

is by comparing the gravitational energy against all other energy contributions. We

adapt the definition provided in Bertelli Motta et al. (2016) to include magnetic energy

as a factor which counteracts gravitational collapse (Eqn. 3.7).

η = 2(Ekin + Etherm + Emag)
|Egrav|

(3.7)

We chose to include the magnetic energy in this calculation as the gas we are con-

sidering has a density below the sink formation threshold and does not exist near sinks.

It should be noted that the magnetic energy is not accounted for in the energy check of

the sink creation protocol.7

In order to make the comparison between the simulations we perform this analysis

on the snapshots that are ∼1 Myr after the formation of the first sink particle in each

simulation. Note that this corresponds to a different physical time in each simulation,

but should allow us to compare the clouds when they are at a similar stage in their

evolution.

The regions used to determine the virial ratio are chosen by using the local minima

of the potential. These are identified as part of the flux calculations within the MHD

code and are stored within the outputs. After identification, we then compute the Jeans

length for the gas located at the potential minimum. For the purposes of this analysis, we

want to avoid potential minima that have already formed stars, so that we can measure

the virial ratio accurately without worrying about the confounding effect of the sink

particles.8 We therefore remove from consideration any minima that are located within

two Jeans lengths of a sink particle. We next select all gas cells lying within a single Jeans

length of the identified minimum and compute the total gravitational, kinetic, magnetic

and thermal energies of this set of gas cells. The gravitational energy, Egrav, is calculated

7In cases where the magnetic energy is high enough in the sink formation region to prevent collapse,

we would also expect it to halt the infall of the gas, i.e. independent of the energy check, the region will

fail condition (b) of the sink creation protocol and hence will not be converted into a sink.
8As sink particles selectively remove the most bound gas, the virial ratio in the remaining gas will

inevitably be higher than it would be in the same region if the sink were not present.
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via a direct N-body approach,

Egrav = −
N∑

i=1

N∑
j=i+1

Gmimj

∆rij

(3.8)

wheremi andmj are the masses of the ith and jth cells, respectively, ∆rij is the separa-

tion between the cells and N is the total number of cells within the selected region. The

kinetic, magnetic and thermal energies, Ekin, Emag and Etherm, are calculated as follows:

Ekin = 1
2

N∑
i=1

miv
2
i , (3.9)

Emag = 1
8π

∑
i

|Bi|2∆Vi , (3.10)

Etherm =
∑

i

miethi
, (3.11)

where mi is the mass of cell i, vi is the velocity of the cell relative to the potential

minimum considered, |Bi| is the magnetic field strength of the cell, ∆Vi = mi/ρi is the

approximate cell volume where ρi is the cell density, and ethi
is the thermal energy per

unit mass of the cell.

The number densities associated with the local minima of the potential cover a

wide range of values. For the purpose of this analysis we focus on a range of associated

hydrogen nuclei number densities from n = 100 cm−3 to 106 cm−3. Our motivation

for adopting a lower limit of 100 cm−3 is to ensure that are selecting regions associated

with the cloud and not the surrounding inter-cloud medium. The upper limit is chosen

to match the density threshold for star formation used in W17. We split the data into

four bins of 1 dex in density starting at 102-103 cm−3.

In Figure 3.7, we show the ratio of each of the different components of the energy

(thermal, magnetic, kinetic) to the gravitational energy as well as the averaged virial

parameter for the hydrogen nuclei number density n bin considered for varying col-

lisional velocity. The error bars indicate the full range of values of each parameter in

each bin, i.e. the range from the minimum to the maximum value of the parameter.

Upon first inspection we note that the virial parameter is considerably greater than

1 in almost all of the regions we consider. This would imply that they are not gravi-

tationally bound and thus unable to form stars at this point as a result. While this is

likely true for some regions, particularly in our lower density bins, it should also be

noted that we are considering only a single Jeans length from the potential minimum,

and therefore we would expect to recover η ∼ 1 for this region even if the kinetic and

magnetic energies were zero.9 Since these components are not zero, it is unsurprising

9We do not recover exactly one because the density and temperature are not constant within the

selected region.
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Figure 3.7. From the top down: The average a) thermal to gravitational energy ratio,

b) magnetic to gravitational energy ratio, c) kinetic to gravitational energy ratio, and d)

virial parameter for different collisional velocities vrel at 1 Myr after first sink formation.

The error bars indicate the full range of values obtained. Each density bin is indicated

with the corresponding bracket annotation with the separation of the points for ease of

reading. The points within a bracket are for the same density bin but are offset in the

figure for clarity.
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that we recover η ≫ 1 for most of these regions, even the ones that will later form

stars. In practice, all that this means is that the radius of the region that will ultimately

collapse is greater than a single Jeans length, owing to the additional support provided

by the turbulent motions and the magnetic field. Nevertheless, this does provide a clear

demonstration of the difficulties involved in identifying star-forming regions based on

the properties of individual gas cells, as is the case when applying for example a simple

density threshold, since ultimately the answer to the question of whether or not this gas

will collapse and form stars depends not only on its own properties but also those of

the surrounding gas cells.

For the purposes of the comparison we are making here, we look for differences

in the parameters between the simulations considered, and in particular for any gen-

eral trends. For the ratio of Etherm to Egrav, we do not see a clear trend with collision

velocity: the ratio increases with increasing vrel in some density bins, but decreases or

remains constant in other density bins. However, we observe a consistent increase in

the ratios of Emag to Egrav and Ekin to Egrav with increasing vrel in all density bins.

This is then reflected in the behaviour of the virial parameter, which also increases with

increasing vrel at all densities. This behaviour is a consequence of an increase in the

turbulent motion of the dense molecular gas as the clouds collide with higher veloci-

ties. This directly increases the kinetic energy, but also results in additional tangling

of the magnetic field, which increases the magnetic field strength and magnetic energy.

These motions generally act against gravitational collapse and as a result fewer regions

become gravitationally bound and star-forming, leading to a smaller increase in SFR

than anticipated by W17.

We have repeated the same analysis for the simulations with differing initial mag-

netic field inclinations (Fig. 3.8). Once again, we find that the ratio of Etherm to Egrav

is substantially less than one in our lowest density bin and of order unity in the other

bins. In the lowest density bin, we also observe a decrease in the average value of this

ratio with increasing inclination angle. A reason for this could be that the gravitational

energy calculated for these densities in the θ = 0◦ simulation is higher due to compact-

ness. The regions considered for this density bin exist on the outer parts of the clouds

and visual inspection of the density maps shows more ‘flaring’ at the edges for greater

magnetic field inclinations than for θ = 0◦ (see also Figures A.1 and A.2). We see no

clear trend in the value of the ratio with magnetic field inclination angle in the other

density bins. As for the magnetic and kinetic to gravitational energy ratios, we find

the values of these ratios to be similar across the different inclinations within a given

density bin. This in turn results in the virial ratio being constant across all magnetic

field orientations for each density bin.
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magnetic field
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3.3.3 Flow alignment to magnetic field
The movement of gas within a magnetic field causes that field to be dragged, distorting

the magnetic field in the process. The compression of the field lines causes the flow of

gas to slow down as the magnetic field resists the flow. However, this only applies if

the direction of flow is not parallel to the magnetic field. The flow remains unhindered

if it is parallel to the magnetic field. Examining the alignment between the flow and

the magnetic field can therefore tell us something about the degree to which the field is

influencing the motion of the gas.

For this purpose, we define the alignment as the dot product of the velocity and

magnetic fields normalized by the magnitude of the fields, in other words:

Alignment = v · B
|v||B|

(3.12)

This yields the cosine of the angle between the magnetic field and the flow velocity for

each Voronoi cell, which has values ranging from −1 to 1, with the extremes meaning

the fields are parallel whilst a value of 0 means the fields are perpendicular. This cor-

responds to unrestricted and fully restricted flow by the magnetic fields, respectively.

In Figures 3.9 & 3.10, we explore how the field alignment varies between our four

density bins in runs with different relative velocities and magnetic field inclinations. In

each case, the count of the points at each alignment is normalized by the total number

of points within the relevant density bin. The analysis is carried out using the same

snapshots as in Section 3.3.2.

In low density regions (102 − 104 cm−3), we find a distribution of alignments similar

to what we would expect for a fully random distribution (indicated in Figures 3.9 & 3.10

by the black dashed line). In the highest collision velocity runs (vrel ≥ 10 km s−1), there

is a slight skew in the distribution of alignments that we have traced to a similar skewness

in the distribution of alignments in the initial conditions (See Fig. 3.11). Similarly, in

the runs with θ = 0◦ and θ = 90◦, we also see a clear imprint of the initial conditions,

with a preference for parallel alignments in the run with θ = 0◦ and for perpendicular

alignments in the run with θ = 90◦. Overall, there is little indication that the field plays

a significant dynamical role in the low density gas.

At higher gas densities (104 − 106 cm−3), we no longer see any clear imprint of the

initial conditions. The distribution of alignments close to 0.0 becomes very similar

to what we would expect for a fully random distribution. However, there is a clear

deficit of alignments close to −1 and +1 that becomes more pronounced as the density

increases. In other words, in dense gas, the gas flow is predominantly perpendicular

to the field, rather than parallel to it. This behaviour is consistent with our expecta-

tions for magnetically supercritical gas: the flow of gas perpendicular to the magnetic
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Figure 3.9. Weighted histogram of the velocity and magnetic field alignment for dif-

fering collisional velocities at 1 Myr after first sink formation. Each subplot represents

a different density bin. The black dashed line represents the distribution we would ex-

pect if the alignment is random.
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Figure 3.11. Cumulative distribution of the initial alignment of the simulations at t = 0
Myr. Top: Varying collisional velocity. Bottom: Varying magnetic field inclination. The
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of the data assuming a Gaussian distribution of alignments. Points in the top-left and

bottom-right quadrants are indicative of a skewed distribution.



Discussion 61

field compresses and strengthens the field, while the flow of gas along the field lines

leaves the field strength unaltered, resulting in a field alignment that becomes increas-

ingly perpendicular as the compression continues. This behaviour has been seen in

other simulations (such as Soler & Hennebelle, 2017) and is a result of velocity field

convergence, ∇ · v < 0 (Boldyrev, 2006; Matthaeus et al., 2008).

One further important take away from these results is that in the densest gas, there

are only minor differences in the field alignment between the different runs, consistent

with a picture in which the small-scale behaviour of the field in dense regions is pri-

marily determined by the local velocity field and not by the large-scale details of the

collision.

3.4 Discussion

3.4.1 Comparison with W17
Our simulations demonstrate that rapid collisions between clouds lead to an earlier

onset of star formation than in clouds that collide slowly or not at all. However, the

way in which star formation proceeds once the process has set in is remarkably similar

in all of our simulations. Note we find a persistent enhancement of a factor of 2–3 in the

star formation rate in our colliding clouds compared to our vrel = 0 km s−1 control run.

The earlier onset of star formation and the increase in the star formation rate due to

the collision are similar to the results reported by W17 for the same initial conditions.

Contrary to W17, we find a only a very weak dependence of the SFR on the collisional

velocity, vrel.

It is worthwhile considering possible methodological reasons for this difference.

Aside from our use of a different magnetohydrodynamical code (Wu et al. use ENZO,

we use AREPO), our simulations differ from those of W17 in two main respects: our star

formation algorithm and our treatment of chemistry and cooling.

Star formation protocol

In our simulations we make use of sink particles as our representation of stars/protostellar

systems, which are able to continue accreting after forming (see Sect 3.2.3). In contrast,

W17 make use of star particles that are formed stochastically with a fixed efficiency per

free-fall time in gas cells on the finest level of refinement in their simulation that satisfy a

suitably chosen criterion. In their “density-regulated” models, this criterion is a simple

density threshold: star formation is permitted only in gas denser than nth = 106 cm−3.
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In their “magnetically-regulated” models, on the other hand, star formation is permit-

ted only in cells that are magnetically supercritical, although their adoption of a fixed

star particle mass also acts as an effective density threshold, preventing stars from form-

ing in cells less dense than 3.55 × 105 cm−3 in most of their “magnetically-regulated”

runs. Notably, W17 do not require the gas flow to be converging or the gas to be

gravitationally bound in order for it to be eligible to form stars.

A final difference between the treatment of star formation in the two approaches

is that the star particles formed in the W17 simulations have a fixed mass from the

moment that they form, whereas our sink particles can continue to accrete mass as they

age. W17 argue that fixing the star particle mass is a way of approximately accounting

for the effects of stellar feedback, but a comparison between our runs and those of W17

shows that we actually recover much lower star formation rates, by around an order of

magnitude, even without this restriction. Similar to the studies by W17, we also do

not take stellar feedback into account in this set of simulations. Neglecting supernovae

is justified because our computation covers a period of only a few Myr after the onset

of star formation (see Figure 3.6), which is shorter than the time required for the first

supernovae to occur (Kippenhahn et al., 2012). Ignoring stellar winds and radiation

is also justified at early times, but is less valid once the total stellar mass exceeds a few

hundred solar masses, as at this point we would expect to have formed at least a few stars

massive enough to start ionising their surroundings and driving strong stellar winds.

Nevertheless, the importance of these forms of feedback for gas removal depends very

much on the properties of the star cluster and its parental cloud (e.g. Rahner et al.,

2017; Haid et al., 2018; Rahner et al., 2019), and it is unclear how much impact they

would have in our simulated clouds.

We also note that our main results do not depend on this simplification. The dif-

ference between the star formation rates in the different runs becomes apparent very

early on, long before stellar feedback from massive stars could possibly play a role in

the evolution of the clouds, and so even if we were to have terminated our simulations

at the point that the first massive star forms in each case, we would have come to the

same conclusions. Finally, the neglect of feedback from protostellar outflows likely does

affect the star formation rate at all times in the simulation. However, previous numer-

ical studies have shown that the impact of this form of feedback is always negative: it

reduces the star formation rate by a factor of around 2–3 compared to models that do

not account for it (see e.g. Federrath, 2015; Hu et al., 2022). Its absence from our

simulations therefore cannot explain the discrepancy between our results and those of

W17.

We have assumed that the impact of stellar feedback on the star formation rate is
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always negative. This is a good approximation on the scales of individual star-forming

clouds (Grisdale et al., 2017), but on larger scales it is possible that feedback could in

some circumstances be positive, triggering the compression of gas and the onset of star

formation somewhere else in the galaxy (Shore, 1981). However, exploring the effect

of feedback on these scales lies far outside of the scope of this thesis.

The simplest explanation for the difference between our study and the results of

W17 is the different star formation criteria applied in the two approaches. W17 moti-

vate their adoption of a simple density or mass-to-flux ratio threshold on the grounds of

the limited resolution of their simulations (smallest cell size ∆x = 0.125 pc), which does

not make them confident that they can resolve the small scale structure of the gas well

enough to apply a more complicated criterion. Our spatial resolution is much better

in gravitationally collapsing regions, thanks to the Jeans refinement criterion, with our

minimum cell size becoming as small as ∼ 10−4 pc shortly before sink particle forma-

tion. We therefore do a much better job of resolving the structure of the dense gas and

can easily distinguish between dense gas that is gravitationally bound and star-forming

and dense gas that is not gravitationally bound. Since there is evidence that a significant

fraction of the dense gas produced in the collisions is not gravitationally bound, as we

have already seen in Section 3.3.2, it is therefore unsurprising that we recover much

smaller star formation rates than in the W17 simulations, but that are much more in

line with the results found by other studies using a sink particle based approach (Tanvir

& Dale, 2020; Dobbs et al., 2020).

The sink particle studies mentioned here do differ in their sink protocols. All studies

include a sink creation density threshold and require the sink-forming cell (or particle)

to lie at a potential minimum. Whilst this study and Liow & Dobbs (2020) have a

similar protocol (this study having a higher sink creation density threshold), Tanvir &

Dale (2020) do not have either a gas convergence or a boundedness check in their sink

creation protocol. Instead, they opt for further constraints on where sinks form that

required that the sink-forming gas is not tidally interacting with other sinks, and that it

is capable of undergoing free-fall collapse before interacting with another sink.

The lower density threshold of Liow & Dobbs (2020) could conceivably result in

more sink particles forming than in our simulation, but the factor by which the SFR is

enhanced should be unaffected provided the threshold density is consistent in simula-

tions with and without collision. The same argument can be made for Tanvir & Dale

(2020): we would again expect their comparison of star formation rates between col-

liding and non-colliding runs to be meaningful, since their protocol is consistent across

the simulations.

The differences in the sink creation protocol has scope to yield significant differences
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in the SFR enhancement across the studies, yet it has not. This suggests that the active

accretion onto sink particles limits the enhancement in the SFR with GMC collisions

in comparison to fixed mass star particles.

That all said, we stress that this remains merely our most plausible hypothesis for

the difference in outcomes. To confirm this would require us to carry out simulations

similar to the ones presented here but using exactly the same star formation prescription

as in W17 as well as simulations with the same initial conditions as Tanvir & Dale (2020)

and Liow & Dobbs (2020), a task which is outside of the scope of our current study.

It should also be noted that the use of star particles in the context of molecular

cloud/GMC-scale star formation is uncommon. Previous works looking at colliding

clouds or flows mostly use a sink particle based prescription for star formation (for

example Tanvir & Dale 2020; Dobbs et al. 2020; Dobbs & Wurster 2021). A star

particle approach is more commonly used in galaxy-scale and larger simulations where

individual GMCs are at best barely resolved. On these scales the justification for a

probabilistic approach to star formation is acceptable as the gravitationally-bound cores

within GMCs are not resolved and the GMCs themselves are not necessarily gravita-

tionally bound (e.g., see Dobbs et al., 2011).

Treatment of chemistry and cooling

Although we consider the difference in the star formation algorithm to be the most

likely cause of the difference between our results and those of W17, it is worthwhile

examining whether the difference in our chemical and thermal treatment may also play

a role here. As previously mentioned, in our simulations, we use a modified version

of the Gong et al. (2017) chemical network, together with the atomic and molecular

cooling function described in Clark et al. (2019). On the other hand, W17 make

use of the GRACKLE library (Smith et al., 2017). The chemical networks provided in

GRACKLE allow one to model the non-equilibrium chemistry of hydrogen (including

H2 formation and destruction), but do not account for the chemistry of metals such as

carbon or oxygen. To account for heating and cooling due to metals, GRACKLE uses a

table-based approach: the relevant rates are interpolated from a set of tables in which

the rates are given as a function of density, temperature and (optionally) metallicity.

GRACKLE includes several sets of tables computed using the CLOUDY photodissociation

region (PDR) code (Ferland et al., 1998), but also allows the user to supply their own.

W17 make use of this latter option, using a set of cooling tables generated by Wu et al.

(2015) using the PyPDR code (Bruderer, 2019).

The impact of this difference in approach can be seen if we compare the temper-

ature distribution of the dense gas in our simulations (shown in Figure 3.12) with the
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of the clouds and the dotted vertical line is the density above which we consider the gas

to be dense. The impact of vrel on the temperature distribution is small, owing to the

short cooling time of the gas.
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temperature distribution of the star-forming gas in the W17 simulations (shown in their

figure 6). We find that most of the dense gas in our simulations has a temperature in the

range 5 < T < 20 K, with a small tail in the distribution extending up to ∼ 100 K. We

also find that there is no clear difference in the temperature distribution of the dense gas

between the colliding (vrel > 0 km s−1) and the stationary (vrel = 0 km s−1) clouds. On

the other hand, W17 recover a somewhat broader temperature distribution, covering

the range 10 < T < 40 K in their non-colliding runs and extending up to ∼ 100 K

in the colliding runs. This broader temperature distribution may be a consequence of

the stronger UV field adopted in their calculation – they assume G0 = 4, compared

to G0 = 1.7 here – or may be due to some other aspect of the way in which cooling

is treated in the two sets of simulations. Whatever the reason, it is clear that the dif-

ference in temperature distributions cannot explain the different star formation rates

recovered in the simulations: the dense gas in our simulations is colder on average than

that that in the W17 models and hence has less thermal support, meaning that it should

be more likely to form dense regions and then stars, rather than less likely. Figure 3.13

demonstrates this point by showing the temperature-density distribution of the gas in

the simulations with vrel = 0 km s−1 and vrel = 15 km s−1 at the snapshot just before

sink formation. We see that the phase diagram is similar in both simulations, although

there is more dense gas in the run with vrel = 15 km s−1. If the difference between the

simulations were due solely to the difference in the temperature distributions, we would

expect to find a higher SFR in our simulations than in W17, which is the opposite of

what we actually see.

3.4.2 Do cloud collisions trigger star formation?

There is growing observational evidence, summarized recently by Fukui et al. (2021),

that the formation of massive stars is often associated with molecular clouds that show

signs of having undergone a cloud-cloud collision. This suggests that collisions are

generally the cause of the formation of the massive stars, i.e. that they would not have

formed in the absence of the collision. Unfortunately, observational studies of this issue

have an obvious drawback: they can only tell us what did happen, not what would have

happened had the situation been different. Simulations, on the other hand, allow us to

directly compare the outcome with or without a collision, or with different parameters

for the collision, enabling us to better understand the extent to which the collision

actually triggers star formation.

In the work presented here, we have insufficient dynamical range to follow the for-

mation of individual stars, and so we cannot directly address the question of whether
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the collision makes massive star formation more likely. However, we can explore the

more general question of whether star formation overall is triggered by the collision

between our simulated clouds. Here, the lesson of the simulations is somewhat mixed.

It is clear from the fact that star formation occurs in our vrel = 0 km s−1 control run that

the cloud collision is not required in order for the clouds to begin forming stars, i.e. the

collision does not trigger star formation in the sense that the clouds would otherwise

remain starless. That said, the fact that star formation begins earlier in the colliding

clouds and proceeds at a slightly higher rate are both indicative of the collision having

a positive effect overall on the star formation efficiency of the cloud. It is possible that

this enhancement of star formation would eventually be lost if we were to simulate the

clouds for a much longer period. Conversely, it is also possible that the difference in

efficiency would persist, particularly if the cloud lifetime is short. Ultimately, resolving

this will require simulations that follow the evolution of the clouds for much longer

periods that cover the long-scale collapse of the cloud, beyond the initial collision, and

that also accounts for the stellar feedback processes responsible for dispersing them.

However, this is outside of the scope of our current study.

3.5 Conclusions
In this chapter we presented the results of a series of simulations of the collision of

two magnetised molecular clouds with mean hydrogen nuclei number densities n ∼
80 cm−3 embedded in a warm, diffuse intercloud medium. In our simulations, we

varied the relative velocity of the clouds, the inclination of the magnetic field relative

to the collision axis, and the level of Jeans refinement adopted, and investigated the

impact that these variations have on the resulting star formation rate. We found that

that the different conditions caused star formation to occur at different times but that

once star formation had begun, the subsequent evolution of the star formation rate

was very similar in all of the simulations. Colliding clouds appear to form stars at a

faster rate than clouds that do not collide, suggestive of some degree of triggering of

star formation, but the difference in the star formation rates is around a factor of two

to three, in line with the results reported by Tanvir & Dale (2020) but much smaller

than the order of magnitude increase found by Wu et al. (2017).

We further investigated the virial parameter of regions of gas around potential min-

ima in our simulations, and how these virial parameters depend on the collisional ve-

locity between the clouds. We found that the virial parameters in the potential minima

were higher for the higher collisonal velocities, especially in the high-density, post-

shocked gas, with higher amounts of turbulence in the dense gas. Although the higher
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collision velocity simulations are found to create more high denisty gas, our analysis

demonstrates that much of this gas is not gravitationally bound, which explains why the

correlation between collision velocity and star formation rate is so weak.

Software: AREPO (Springel, 2010b), NUMPY (Harris et al., 2020), MATPLOTLIB

(Hunter, 2007), ASTROPY (Astropy Collaboration et al., 2013, 2018)



Chapter 4

Reliability of kinematic distances

“Even though science has come so far, I can barely

help others with it. I wonder how far it is to where

you are?”

—Kasamura Tota, To those who I cherish

This chapter contains works present in the paper Hunter et al. (2024) which has

been submitted to the journal Astronomy and Astrophysics (A&A) and is currently in

the reviewing process at time of writing. I am the first author of this paper and have

constructed the potential presented within the paper, carried out the simulations and

data analysis present, and primarily wrote the paper with feedback and suggestions from

all co-authors. The third author, Jan Beckmann, carried out the initial version of the

parameter study which contributes to the final version of it as presented in appendix B.2.

The fourth author, Eugene Vasiliev, provided the script and data needed to produce

figure 4.4.

Abstract

Obtaining reliable distance estimates to gas clouds within the Milky Way is challenging

in the absence of certain tracers. The kinematic distance approach has been used as

an alternative, derived from the assumption of circular trajectories around the Galactic

centre. Consequently, significant errors are expected in regions where gas flow deviates

from purely circular motions.

We aim to quantify the systematic errors that arise from the kinematic distance

method in the presence of a Galactic potential that is non-axisymmetric. We investigate

how these errors differ in certain regions of the Galaxy and how they relate to the

underlying dynamics. We perform 2D isothermal hydrodynamical simulation of the

69
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gas disk with the moving-mesh code AREPO, adding the capability of using an external

potential provided by the AGAMA library for galactic dynamics. We introduce a new

analytic potential of the Milky Way, taking elements from existing models and adjusting

parameters to match recent observational constraints.

We find significant errors in the kinematic distance estimate for gas close to the Sun,

along sight lines towards the Galactic centre and anti-centre, and significant deviations

associated with the Galactic bar. Kinematic distance errors are low within the spiral

arms as gas resides close to local potential minima and the resulting line-of-sight veloc-

ity is close to what is expected for an axisymmetric potential. Interarm regions exhibit

large deviations at any given Galactic radius. This is caused by the gas being sped up or

slowed down as it travels into or out of the spiral arm. We are able to define ‘zones of

avoidance’ in the lv-diagram, where the kinematic distance method is particularly un-

reliable and should only be used with caution. We report a power law relation between

the kinematic distance error and the deviation of the project line-of-sight velocity from

circular motion.

4.1 Introduction
Accurate distance measurements are essential for many fields of astronomy and as-

trophysics (e.g. Carroll & Ostlie, 2017). Whereas high-precision astrometric data are

readily available within the Milky Way for the stellar component (see, e.g., Gaia data

release DR3, Gaia Collaboration et al. 2023), obtaining reliable distance estimates for

the gaseous component, i.e. for the various phases of interstellar medium (ISM, see

e.g., Tielens, 2005; Draine, 2011) is much more challenging. Estimating distances to

molecular clouds is important for understanding their properties, formation and evo-

lution (Molinari et al., 2014) and their ability to form stars (Klessen & Glover, 2016).

The same is true for the atomic and ionised components of the ISM.

Accurate 3D maps of the gas distribution in the Solar Neighbourhood have been

constructed by combining precise parallax measurements of stars from Gaia and pho-

tometric measurements of reddening to the same stars (Lallement et al., 2019; Leike

et al., 2020; Zucker et al., 2021). However, this approach is currently feasible only

for a limited volume of a few kpc around the Sun. Reliable distances to clouds further

away can be obtained from parallax measurements of molecular maser emission from

high mass star-forming regions (Reid et al., 2014, 2019), but this approach is time-

consuming and cannot be applied to large surveys containing thousands of clouds.

A widely used method to estimate distances to the ISM out to tens of kpc from

the Sun is the kinematic distance (KD) method. This method allows one to derive the
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distance to a molecular cloud from its line-of-sight (LOS) velocity. Historically, it was

developed by van de Hulst et al. (1954) and Oort et al. (1958), who used it to derive

the first face-on maps of atomic hydrogen in the Milky Way from 21-cm spectral line

observations. The same approach has since been applied several times to produce face-

on maps of the neutral and molecular gas in the Milky Way (e.g. Nakanishi & Sofue,

2003, 2006; Levine et al., 2006; Soler et al., 2022) and the associated star-formation

rate surface density (Elia et al., 2022).

A key assumption of the KD approach is that the gas is in purely circular motion

around the Galactic centre. Significant errors in the KD distance estimations arise if

there are deviations from circular motions. Wenger et al. (2018) recently compared

kinematic and parallax distances for a sample of 75 Galactic high mass star-forming

regions, most of which are at distances d < 10 kpc, and found that indeed kinematic

distances usually overestimate the distance by ∼ 20% and have errors of order 50%.

Errors arising from deviations from circular motions can be broadly divided into

two categories: (i) random fluctuations around the average streaming motions that do

not change the average velocity (e.g., a turbulent velocity dispersion); (ii) systematic

changes in the streaming velocity due to non-axisymmetric features such as spiral arms

and the Galactic bar.

Reid (2022) studied the effects of random motions on the KD distances and found

that a velocity dispersion of ∼ 7 km s−1, representative of turbulent motions in giant

molecular clouds, can lead to significant (> 10%) errors in the KD distance for true

distances d ≲ 5 kpc, and can also lead to systematic biases of ∼ 20% despite the ran-

dom motions having zero mean around the underlying circular motions. Sofue (2011)

quantified the expected distribution of uncertainties from random motions as a func-

tion of position in face-on maps of the Galaxy, finding that small Galactic longitudes

are more heavily affected (see their Figure 9).

A number of authors have investigated the effects of streaming motions due to spiral

arms using simplified models of the Milky Way. Gómez (2006) used 2D hydrodynam-

ical simulations with a simple externally imposed two-armed spiral pattern to compare

KD with true distances, and found that errors can be large at the position of the spiral

arms. Baba et al. (2009) employed self-consistent N-body + hydrodynamical simu-

lations with a live stellar potential, and found that transient and recurring spiral arms

can drive strong non-circular motions, meaning that KD distances can produce errors

as large as 4-6 kpc near spiral arms. Also using hydrodynamical simulations, Ramón-

Fox & Bonnell (2018) found that streaming motions can produce systematic offsets of

∼ 1 kpc, errors of ∼ 2 kpc, and that the results are sensitive to the assumed spiral arm

perturbations. Some works have tried to correct the KD method to account for the sys-
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tematic non-circular motions due to spiral arms and bar, but the results are affected by

large uncertainties in the gas streaming motions arising from these components (Foster

& MacWilliams, 2006; Pohl et al., 2008).

The goal of this chapter is to quantify the KD uncertainties caused by streaming

motions due to spiral arms and the bar as a function of position in the Galaxy using

a much more accurate Milky Way model than previous work, and therefore construct

maps of the expected systematic uncertainties that can provide useful guidance as to

when the KD method should be considered reliable and when it should be avoided.

To do this, we construct a realistic model of the Galactic gravitational potential that

includes state-of-the-art constraints on the Galactic bar, Galactic disk, dark matter halo

and spiral arms, and run 2D hydrodynamical simulations using this potential. We then

compare actual and kinematic distances in the model, paying particular attention to the

inner regions of the Galaxy dominated by the bar and to the regions around the spiral

arms.

After a brief discussion of the context of this study in Section 4.1, we introduce

our new analytic description of the Milky Way potential and its various components

in Section 4.2. We briefly describe our numerical approach and the implementation

of the new potential in the AGAMA frameworks combined with AREPO in Section 4.3.

Our main findings are presented in Section 4.4, and their implications and limitations

discussed in Section 4.5. Finally, we summarise and conclude in Section 4.6.

4.2 Galactic potential
We introduce a new gravitational potential for our Milky Way-like simulation in order

to investigate how non-axisymmetric perturbations affect kinematic distance estimates.

The potential comprises of many components, each providing structure in different

parts of the Galaxy, as detailed in the following sections.

The corresponding circular-velocity curves are shown in Figure 4.1, and the total

midplane density profile of our potential, ρgal, is shown in Figure 4.2.

4.2.1 Components of the potential

Supermassive black hole Sgr A⋆

The potential of the central supermassive black hole, Sgr A⋆, is represented by a Plum-

mer (1911) model:

ΦSgrA⋆ = −GMSgrA⋆

√
r2 + b2

, (4.1)
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where G is the gravitational constant, the mass MSgrA⋆ = 4.154 × 106 M⊙ is taken from

GRAVITY Collaboration et al. (2019), r is the spherical Galactic radius and the scale

radius b is set to 0.1 pc to avoid a singularity in the potential.

Nuclear star cluster

The cluster of stars around Sgr A⋆ also contributes to the potential within the core of

the Galaxy, dominating in the innermost few pc. In our model, the NSC follows a

flattened Dehnen (1993) density profile as given in Chatzopoulos et al. (2015, see their

Equation 17):

ρNSC = (3 − γ)MNSC

4πq
a0

aγ(a+ a0)4−γ
, (4.2)

where

a(R, z) =
√
R2 + z2

q2 . (4.3)

The parameters γ = 0.71, q = 0.73, a0 = 5.9 pc andMNSC = 6.1×107M⊙ are taken from

their best-fitting model. Here R refers to the Galactic radius in cylindrical coordinates.

We note from our circular-velocity curve (Fig. 4.1) we see little contribution to the

overall potential from Sgr A⋆ and the NSC. This is due to these components being

most dominant in the inner most 100 pc of the galaxy making it difficult to compare

against observational rotation curves and terminal velocities. However, we do include

these components for the sake of completeness.

Nuclear stellar disk

For the NSD surrounding the nuclear region, we adopt the parameterisation from the

Jeans modelling analysis of Sormani et al. (2020) based on data from the APOGEE

survey (Majewski et al., 2017; Ahumada et al., 2020) and the 86 GHz SiO maser

survey of Messineo et al. (2002, 2004, 2005). The density of this component can be

written as:

ρNSD = ρ1 exp
[

−
(
a

R1

)n1]
+ ρ2 exp

[
−
(
a

R2

)n2]
(4.4)

where a is as defined in Equation (4.3) but with q = 0.37, and where n1 = 0.72,
n2 = 0.79, R1 = 5.06 pc, R2 = 24.6 pc, ρ1/ρ2 = 1.311 and ρ2 = 153 × 1010 M⊙

kpc−3, which follows model 3 of Sormani et al. (2020). As shown in Figure 4.1, this

component dominates between the inner ∼20 pc and ∼300 pc of the Galaxy. We

opt this model over the more recent model of Sormani et al. (2022a) as the density

profile of Sormani et al. (2020) is available in a closed, analytical form. This difference

only affects the inner most ∼300 pc of the simulation which is only a minor impact in

comparison to the larger scale of the whole Galaxy.
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Galactic bar

The Galactic bar dominates much of the potential within the inner ∼5 kpc of the

Galaxy. The most realistic model for this component is the made-to-measure (m2m)

model from Portail et al. (2017). It is constrained using red giant stellar density mea-

surements and kinematics from multiple surveys across the entire bar region. Here we

make use of the analytical approximation of this model presented by Sormani et al.

(2022b), who provide density functions to describe the X-shaped box/peanut bar and

the long bar. We reiterate the functions used and their parameters here to have a

complete description of our potential in this chapter:

ρbar = ρbar,1 + ρbar,2︸ ︷︷ ︸
bar

+ ρbar,3︸ ︷︷ ︸
long bar

. (4.5)

The first component of Equation (4.5) corresponds to the X-shaped component of the

observed boxy-peanut shape of the bar (Wegg & Gerhard, 2013). To describe this, we

use a modified form of Equations 9 and 10 of Coleman et al. (2020) and Freudenreich

(1998), respectively:

ρbar,1(x, y, z) = ρ1sech (am)

×
[
1 + α

(
e−an

+ + e−an
−
)]
e

−
(

r
rcut

)2

, (4.6)

where

a =


[(

|x|
x1

)c⊥

+
(

|y|
y1

)c⊥
] c∥

c⊥
+
(

|z|
z1

)c∥


1

c∥

, (4.7)

a± =

(x± cz

xc

)2
+
(
y

yc

)2
 1

2

, (4.8)

r =
(
x2 + y2 + z2

) 1
2 . (4.9)

Here, α = 0.626 defines the strength of the X-shape whilst c = 1.342 defines the slope

of the X-shape in the x − z plane. The scale lengths x1 = 0.49 kpc, y1 = 0.392 kpc,

z1 = 0.229 kpc, xc = 0.751 kpc and yc = 0.469 kpc, shape the bar along with the shaping

parameters c⊥ = 2.232 and c∥ = 1.991. The X-shape of the bar trails off with power

law exponents with powers m = 0.873 and n = 1.94 with an additonal cutoff radius at

rcut = 4.37 kpc. The density profile is normalised to ρ1 = 3.16 × 109 M⊙ kpc−3.

The second and third component of ρbar describe the ellipsoid shape of the bar,

which we split into short (ρ2) and long (ρ3) bar components. Both components follow
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Table 4.1. Parameters for components 2 and 3 of the bar potential

Parameter Value

Component 2 Component 3

ρi [M⊙ kpc−3] 0.5 × 109 174.305 × 1011

xi [kpc] 5.364 0.478
yi [kpc] 0.959 0.297
zi [kpc] 0.611 0.252
Ri,in [kpc] 0.558 7.607
Ri,out [kpc] 3.19 2.204

a modified version of Equation 9 of Wegg et al. (2015):

ρbar,i(x, y, z) = ρi e
−a

ni
i sech2

(
z

zi

)

× e
−
(

R
Ri,out

)ni,out

e
−
(

Ri,in
R

)ni,in

, (4.10)

where i = {2, 3} and

ai =
[(

|x|
xi

)c⊥,i

+
(

|y|
yi

)c⊥,i
] 1

c⊥,i

, (4.11)

R =
(
x2 + yz

) 1
2 . (4.12)

We summarise the parameters used for the components 2 and 3 of the bar in Ta-

ble 4.1. The total mass contained within the bar is Mbar = 1.83 × 1010 M⊙.

Galactic disk -- axisymmetric components

The disk potential of our model takes the form of two exponential disk components

with a hole in the centre, introduced to make room for the bar. We adopt a modified

version of Equation 3 of McMillan (2017) using an exponential vertical profile. We

obtain

ρdisk(R, z) = Σ1

2h1
exp

(
− R

Rd,1
− Rcut

R
− |z|
h1

)

+ Σ2

2h2
exp

(
− R

Rd,2
− Rcut

R
− |z|
h2

)
, (4.13)

where Σ1 = 1.3719 × 103 M⊙ pc−2, Rd,1 = 2 kpc, z1 = 300 pc, Σ2 = 9.2391 × 102

M⊙ pc−2, Rd,2 = 2.8 kpc, z2 = 900 pc, and Rcut = 2.4 kpc. The inner cutoff radius

Rcut, scale lengths Rd and surface density normalizations Σ are obtained by fitting our

model to the circular-velocity curves of Eilers et al. (2019) and Mróz et al. (2019) as
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shown in Figure 4.1, whereas the scale heights h are fixed to the values from McMillan

(2017), which are, in turn, obtained from SDSS star counts by Jurić et al. (2008).

The parameterisation of the disk keeps the scale height fixed across all Galactic radii

for simplicity, despite observations indicating the scale height decreases towards the

Galactic centre. For example, h(R = 4kpc) ∼ 180pc for the thick stellar disk (Wegg

et al., 2015).

In order to better represent the vertical acceleration towards the midplane of the

Galaxy (for z < 400 pc), we also include two gas disks in the potential, which we take

from McMillan (2017) without any further adjustments:

ρgas(R, z) = Σ1

4z1
exp

(
− Rm,1

R
− R

Rd,1

)
sech2(z/2z1)

+ Σ2

4z2
exp

(
− Rm,2

R
− R

Rd,2

)
sech2(z/2z2) , (4.14)

where Σ1 = 53.1 M⊙ pc−2, Rd,1 = 7 kpc, z1 = 85 pc, and Rm,1 = 4 kpc represents the

thick H I disk, whilst Σ2 = 2.18 × 103 M⊙ pc−2, Rd,2 = 1.5 kpc, z2 = 45 pc, and Rm,2 =
12 kpc represents the thinner H2 disk. Note that the gas disk in the hydrodynamical

simulations in this chapter is not self-gravitating and does not contribute to the potential;

instead, these two gas disks are included as static components of the potential. It should

also be noted that the gas disk potential does not contain a spiral perturbation, as we

are interested in how the stellar potential affects the gas distribution in the simulations.

Galactic disk -- spiral arms

To generate the spiral arms of the Galaxy, we introduce a perturbation to the stellar

disk in the following manner:

ρspiral(R, z, ϕ) = ρdisk(R, z) · αR
2

R2
0
S(R, ϕ). (4.15)

Here the perturbation strength increases quadratically with radius in order for the spiral

arms to be strong enough in the outer regions of the Galaxy. The strength factor,

α = 0.36, is set such that the spiral arm strength is 18% of the disk density at solar

radius, R0 = 8.179 kpc. This amplitude is almost two times stronger than the 10%

suggested by Eilers et al. (2020) for the Milky Way. However, we note from our tests

that a density perturbation of 10% is not strong enough to generate spiral arms in our

simulations (see Appendix B.1).

For the shaping function, S, we make use of a logarithmic spiral arm potential with

the width of the arm having a Gaussian profile. We take a modified form of Equation
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Figure 4.3. The strength of the spiral arms at solar circle, R = 8.179 kpc, as a function

of azimuth. Shown is the strength of the spiral arms in black, as well as the fm1,γ1 and

fm2,γ2 components in blue and red respectively.

8 of Junqueira et al. (2013):

S(R, ϕ) =
2∑

k=1

{
exp

(
−R2

σ2
sp

[
1 − fmk,γk

(R, ϕ)
])

− exp
(

−R2

σ2
sp

)
I0

(
−R2

σ2
sp

)}
,

(4.16)

where

fm,γ(R, ϕ) = cos
(
m(ϕ+ γ) − m

tan(i)
ln
(
R

Ra

))
, (4.17)

and i = 12.5◦ and Ra = 9.64 kpc, m1 = m2 = 2, γ1 = 139.5◦ and γ2 = 69.75◦.

σsp = 5 kpc is the width parameter of the spiral arm which corresponds to a physical

width of 1.082 kpc perpendicular to the spiral arm. The second term in Equation (4.16)

is used to normalise the spiral arm potential such that the monopole component is

zero. Here, I0 is the modified Bessel function of the first kind and of zeroth order.

This resulting potential is a superposition of two pairs of m = 2 spiral arms with equal

amplitude (Li et al., 2022). We note that the spiral arm potential does not have an

m = 4 pattern due to the unequal angular separation between spiral arms. We opt for

this kind of pattern as it allows for the angular separation to be adjusted as needed as

the spiral arms of the Milky Way are not fixed to 90◦ in angular separation (Reid et al.,

2019). The shape and intensity of the spiral arms at R = 8.179 kpc is shown in Figure

4.3.
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Figure 4.4. Enclosed mass profile of our fiducial potential (black), compared to the

constraints from dynamical modelling of satellite galaxies (magenta: Correa Magnus &

Vasiliev 2022, green: Cautun et al. 2020) and streams (blue: Vasiliev et al. 2021, red:

Koposov et al. 2023).

Dark matter halo

The dark matter halo component follows a spherical Einasto (1969) profile:

ρdm(r) = ρ0 exp
[

−
(
r

a

)1/n]
. (4.18)

The density normalisation, ρ0, is determined by using the total mass of an Einasto

potential:

M = 4π ρ0 a
3 nΓ(3n) , (4.19)

where the total mass is M = 1.1 × 1012 M⊙, the Einasto index is n = 4.5 and Γ
is the gamma function. The scale radius a is related to the half mass radius rs by

a ≈ rs (3n − 1/3)−n. In this case, the half mass radius is rs = 96 kpc giving a scale

radius of a = 0.88 pc. These parameters are optimized to simultaneously fit the circular-

velocity in the inner region of the Galaxy and its mass distribution at larger distances

determined from dynamical modelling of satellite galaxies and stellar streams (Cautun

et al., 2020; Correa Magnus & Vasiliev, 2022; Vasiliev et al., 2021; Koposov et al.,

2023) (see Figure 4.4).

4.2.2 Comparison with observations
The parameters of the fiducial potential were optimized to satisfy a variety of recent

observational constraints, as described below.
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Axisymmetric components

We begin with the Galactic circular-velocity curve, as illustrated in Figure 4.1 for dif-

ferent radial bins. The black line represents our total circular-velocity curve from the

axisymmetrised potential, vc = (R∂Φ0/∂R)1/2, with the colored lines indicating the

contributions from individual components based on the choice of parameters outlined

above. Here the axisymmetrised potential is obtained from the monopole, m = 0,
component of the potential in which has been approximated by a Fourier or multipole

expansion (see Sect. 4.3.2). The resulting circular-velocity curve does not contain per-

turbations from the spiral arms nor contains the higher order terms needed to describe

the full potential of the bar.

We make use of recent measurements of circular velocity data from Eilers et al.

(2019), obtained from red giant star observed with APOGEE, WISE and Gaia, and

from Mróz et al. (2019), obtained from Cepheid variable stars with Gaia. Both are in a

reasonable agreement with each other and provide a coverage of Galactocentric radius

of 4 ≲ R ≲ 25 kpc. For coverage within the solar circle, R < R0, we make of use of the

terminal velocities measurements from H I and CO observations (Clemens, 1985; Fich

et al., 1989; Burton & Liszt, 1993; McClure-Griffiths & Dickey, 2007). We compare

the peaks of the resulting longitude-velocity (lv) diagrams from our hydrodynamical

simulations with the corresponding terminal velocity measurements of the Milky Way,

as discussed in detail in Section 4.4. Here we opt to compare terminal velocities in the

lv diagram instead of the circular-velocity/rotation curves within the inner most R < 4
kpc, as rotation curves obtained from observations in this region will include deviations

due to the non-axisymmetric nature of the bar (Chemin et al., 2015). These deviations

are not present in our axisymmetrised circular-velocity curve.

We consider the surface density of the disk as a function of Galactocentric radius, as

well as the vertical acceleration at two different heights above and below the midplane to

verify our potential is consistent with result derived from observations off the midplane.

For the surface density of the disk and vertical acceleration at |z| = 1.1 kpc we make use

of data presented in Bovy & Rix (2013) from SEGUE data of G-type dwarf stars. For

vertical accelerations closer to the midplane at |z| = 400 pc, we make use of the data

presented in Widmark et al. (2022) obtained from modelling the vertical oscillations

(“phase spiral”) in Gaia EDR3. Figure 4.5 shows how our potential compares to the

observations in these aspects. We also include the MWPotential2014 model from Bovy

(2015) for comparison.
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Figure 4.5. The top plot shows the surface density as a function of galactocentric radius

as derived from our model (black line) with comparison to that derived from Bovy

(2015). The red points are the measured values for the Milky Way from Bovy & Rix

(2013). The bottom plot shows the vertical acceleration at |z| = 400 pc (dashed blue

line) and |z| = 1.1 kpc (solid red line). The two colours of data points represents the

vertical acceleration at different scale height with the blue points being at |z| = 400 pc

(Widmark et al., 2022) and the red points at |z| = 1.1 kpc (Bovy & Rix, 2013).
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Table 4.2. Location of resonances of the non-axisymmetric components of the poten-

tial.

Resonance ILR In 4:1 CR Out 4:1 OLR

(kpc) (kpc) (kpc) (kpc) (kpc)

Bar 1.02 3.45 6.08 8.24 10.14

Spiral arms 2.36 6.50 10.07 13.06 15.89

Notation of resonances: ILR = Inner Lindblad, In 4:1 = inner 4:1, CR = corrotation,

Out 4:1 = outer 4:1, OLR = outer Lindblad

Non-axisymmetric components

Our potential has two rotating non-axisymmetric components, the bar and the spi-

ral arms. We chose the pattern speeds of the bar and the spiral arms as Ωbar =
−37.5 km s−1 kpc−1 (e.g. Sormani et al., 2015b; Sanders et al., 2019; Li et al., 2022;

Clarke & Gerhard, 2022) and Ωspiral = −22.5 km s−1 kpc−1 (Li et al., 2022), respec-

tively. We checked the consistency of these values by running a small parameter study

with our potential to generate longitude-velocity lv diagrams and comparing them to

the spiral arm tracks presented in McClure-Griffiths et al. (2004), Reid et al. (2016)

and Reid et al. (2019). For the sake of simplicity, we consider both non-axisymmetric

components to experience solid body rotation. See Appendix B.2 for the full details

of the parameter study. The resonances for the potential can be found in Table 4.2

and are illustrated in the frequency curves of Figure 4.6. We find that for the pattern

speeds we use, the outer Lindblad resonance of the bar coincides with corotation of the

spiral arms at ∼ 10.1 kpc. The outer 4:1 resonance of the bar lies close to solar circle

at ∼ 8.2 kpc.

4.3 Numerical simulations

Here we briefly describe the numerical methods used to simulate the dynamical evolu-

tion of the ISM in our Milky Way analog.



Numerical simulations 83

0 2 4 6 8 10 12
R [kpc]

0

20

40

60

80

100

Fr
eq

ue
nc

y 
[k

m
 s

1  k
pc

1 ]

± 0/2
± 0/4

bar

spiral

Figure 4.6. Frequency curve as a function of Galactic radius. The solid black line

is the rotational frequency curve of the potential, whereas the dashed and dot-dashed

lines are rotional frequency plus or minus 0.25 and 0.5 times the epicyclic frequency,

κ0(R) =
√

(2Ω/R)d(R2Ω)/dR. The horizontal blue and red lines are the pattern speed

of the bar and the spiral arms, respectively. The vertical dashed and dot-dashed lines
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4.3.1 Numerical hydrodynamics
We solve the equations of hydrodynamics with the moving-mesh code AREPO (Springel,

2010a). For isothermal gas in two dimensions these are

∂Σ
∂t

+ ∇ · (Σv) = 0 , (4.20)

∂Σv
∂t

+ ∇ · (Σv ⊗ v) = −∇P − Σ∇Φ , (4.21)

where Σ, v, and P are gas surface density, velocity and pressure, respectively. The sim-

ulations are two-dimensional. The pressure is related to the density via the equation of

state, P = c2
sΣ, with the sound speed adopted as cs = 10 km s−1. The external potential

Φ is given by our model for the Galactic potential, as explained in the next section; for

ease of interpretation, we do not include the gas self-gravity, star formation or stellar

feedback in our models. Note that by choosing a relatively large value for cs, we are im-

plicitly accounting for some of the turbulent support of the gas disk, something that in

reality would be provided by stellar feedback (Mac Low & Klessen, 2004; Krumholz &

McKee, 2005b; McKee & Ostriker, 2007; Klessen & Glover, 2016). This assumption

is justified in this case as our focus is on how the large scale dynamics impact kinematic

distance estimates and not on the impact by turbulent motions.

AREPO constructs a Voronoi tesselation, in which the mesh generating points are
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Figure 4.7. The relation between cellsize and density within our simulation. The

cellsize in this case is the size of a square with the same area as the cell.

able to flow with the gas in the simulation, resulting in a quasi-Lagrangian approach to

modeling the flow properties. We make use of an exact Riemann solver for isothermal

flows, and the mesh can refine and derefine with the addition and removal of mesh

generating points. This occurs when the mass of a given cell is a factor ∼2 larger or

smaller than the cell target mass for the simulation (Mtarget = 2500 M⊙). The cell will

either split or merge with another with addition or removal of a mesh generating point.

For further details of the code base we use, see e.g. Tress et al. (2020a,b). We achieve a

minimum cellsize of ∼ 40 pc. Figure 4.7 illustrates how our cell size varies with density.

The vertical spread seen at low cellsizes is a result of the minimum surface area of the

cell being reached, which is set to 6 pc2. This creates a limit on how small our cells

can become by not allowing cells smaller than two times the minimum surface area to

refine further.

4.3.2 External Galactic potential

AREPO allows one to include an external gravitational potential in the simulation, but the

Galactic potential described in Section 4.2 is significantly more complex than the few

built-in analytic models. Instead, it is provided by the AGAMA library for stellar dynam-

ics (Vasiliev, 2019), which, among other features, contains a powerful framework for

constructing and evaluating arbitrarily complex potentials (including time-dependent

features such as a rotating bar with a varying amplitude and/or pattern speed). We

created an interface between the two codes that make it possible to use any potential

implemented in AGAMA as an external potential in AREPO (in addition to self-gravity of
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Table 4.3. Expansion used for each component of the potential. When present, spiral

arms are represented by a separate CylSpline potential, since they rotate with a dif-

ferent pattern speed than the bar.

Component Expansion type

Sgr A* Multipole
NSC Multipole
NSD Multipole
Bar CylSpline (1)

Stellar disk CylSpline (1)

Gas disk CylSpline (1)

Spiral arms CylSpline (2)

DM halo Multipole

the simulated system, if the latter is turned on). Moreover, a very similar interface is

provided for the GADGET-4 code (Springel et al., 2021), which shares a common ances-

try with AREPO; both interfaces, as well as the script for generating the Galactic potential

from this study, are available in the latest version of AGAMA.

The Galactic potential consists of two general-purpose expansions: Multipole for

spheroidal density components, and cylindrical Fourier series (CylSpline) for disk-

like components. Each of the two expansions is constructed from the sum of several

density components, as detailed in Table 4.3; the mathematical details of these potential

expansions can be found in the appendix of the AGAMA documentation (Vasiliev, 2018).

4.3.3 Initial conditions
The initial conditions of our simulations are simple. We set up the surface density of

the gas following an exponential profile similar to Equation 4.14:

Σ(R) = Σ1 exp
(

− Rm,1

R
− R

Rd,1

)

+ Σ2 exp
(

− Rm,2

R
− R

Rd,2

)
, (4.22)

where the parameters for this gas disk are the same as those used for the gas disk poten-

tial (See Sect. 4.2.1). We extend this gas disk toR ∼ 30 kpc at which point we reduce the

density significantly to prevent artifacts caused by periodic boundary conditions com-

promising the Galaxy itself. For simplicity, we initialise the simulation with 250000

mesh generating points distributed uniformly across a (75 kpc)2 box. The mesh is then

relaxed with the meshrelax method within Arepo to reach our target mass of 2500 M⊙
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in which cells are refined or derefined according to the refinement/derefinement cri-

terion mentioned previously. There is no hydrodynamics present in the meshrelax

process and as such the gas is fixed until the process is complete.

The velocity of the gas is initialised to be the circular-velocity of the axisymmetric

terms of the potential, vc = (R∂Φ0/∂R)1/2, which follows the same circular-velocity

curve as Figure 4.1. The non-axisymmetric components of the bar and spiral arms

are introduced linearly and gradually over the course of 150 Myr to avoid transients,

as is customary in this type of simulations (e.g. Li et al., 2022), making use of the

time-dependent Evolving potential framework of AGAMA.

4.4 Results

4.4.1 The gas response
In order to test kinematic estimates properly, the simulation box needs to be rotated

such that the bar is in a similar position with respect to the Sun’s position as it is for

the Milky Way. For each simulation output, we rotate the system so that the angle

between the bar major axis and the Sun-Galactic centre line is 28◦ (Bland-Hawthorn

& Gerhard, 2016). The Sun-Galactic centre distance is assumed to be R0 = 8.179 kpc

(GRAVITY Collaboration et al., 2019). For each simulation we generate an lv diagram

assuming the Sun moves with a velocity equal to its circular-velocity in the x direction,

vx = vc(R0) = 229 km s−1, and has no other velocity components. We compare the

structures in the resulting lv diagrams with the spiral arm tracks of Reid et al. (2016,

2019) and McClure-Griffiths et al. (2004), as illustrated in Figure 4.8. For the analysis

presented in this Section, we select the system at 441 Myr. It is very similar to the

observations in the lv diagram, and the simulation at this point has been advanced for

long enough that the non-axisymmetric components of the potential have had enough

time to interact with the gas. The resulting density maps can be found in Figure 4.9.

From Figure 4.8 we find clear peaks in lv diagram that are associated with the spiral

arms generated from the underlying potential. The spiral arms generally trace the

spiral arm tracks of McClure-Griffiths et al. (2004), Reid et al. (2016) and Reid et al.

(2019) in the regions outwith the galactic centre (|l| > 50◦). Towards the galactic centre,

comparing the spiral arms becomes difficult due to the perturbations generated by the

bar. Some features are match, however there are features present in the lv diagram that

do not match with any track and vice versa.

Comparing the terminal velocities we find our simulation mostly fall within what is

expected for the Milky Way, with the exception of two zones; one at 10◦ < l < 30◦ and
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Figure 4.8. Longitude-velocity maps of the simulation observed from the Sun’s posi-

tion (placed at the origin of the overlayed coordinate system in Figure 4.9). The bar

major axis is rotated by 28 degrees from the line of sight. Overlayed blue dashed lines

are the spiral arm tracks of Reid et al. (2016, 2019) and McClure-Griffiths et al. (2004).

The green points are the terminal velocities from H I and CO observations. Top: Full

diagram. Bottom: Zoom in between l = −60◦ & +60◦ with the left plot only taking

gas into account that lies within R = 6 kc from the centre and with the right one only

considering gas further out.
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the other at −20◦ < l < −10◦. The LOS velocities are higher than that of the terminal

velocities at these angles. This is a result of the steepness of the circular-velocity curve

at around 3 kpc being relatively steep in comparison to similar potentials (See Li et al.,

2022). This is a result of an overlap between the bar and stellar disk potentials in at this

radii causing a slight overdensity at this point. Tracing these regions high LOS velocity

regions to a position, these regions are located in the low density environment around

the bar.

As expected, the potential of the bar strongly influences gas dynamics in the central

region of the Galaxy. The gas here follows the typical x1 orbits, a family of orbits

elongated parallel to the major axis of the bar (Contopoulos & Grosbol, 1989), until

it is shocked at the end of the bar, after which it flows inwards on nearly radial orbits.

Eventually, the gas stabilises into x2 orbits, forming a ring of material at 220 pc from

the centre of the Galaxy. This ring is the equivalent of the Central Molecular Zone

(CMZ) and is consistent with the larger end of estimates for the Milky Way’s CMZ

(e.g. Henshaw et al., 2023).

Outside of the bar region (R > 5 kpc), the gas forms a clear spiral pattern. It is

rather complex and has two main components: a two-arm spiral caused by the rotation

of the bar, and the four-arm structure created by the spiral component of the potential

described in Section 4.2. These two pattern rotate at different angular speeds, Ωbar =
−37.5 km s−1 kpc−1 and Ωspiral = −22.5 km s−1 kpc−1 respectively, so they periodically

interfere with each other. We plot the polar decomposition of the density map in

the bottom plot of Figure 4.9 to better illustrate the spiral patterns. Here, a straight

line would be consistent with a logarithmic spiral. We observe two gradients of spiral

structure: the underlying spiral arm structure from the potential (blue dotted), and

an m = 2 spiral being generated by the bar (green dashed) with an estimated pitch

angle of 6.5◦ near the OLR of the bar. We note that the pitch angle value of the bar-

generated pattern depends on the sound speed of the gas, as can be understood from

the dispersion relation of spiral density waves in the tight-winding limit (e.g. Binney &

Tremaine, 2008). Whilst there are linear trends in the plot, there are deviations from

the underlying spiral arm structure. These occur at the point where the two components

intercept at R ∼ 11 kpc and at around the spiral arm crossing point, Rcross = 9.64 kpc,

where the deviation is a bridging feature between the spiral arm and the bar induced

spiral arm.

We extract the exact structure with the filament finding package FILFINDER (Koch &

Rosolowsky, 2015). This package identifies structures from a 2D image using mor-

phological techniques. Not only does the package provide the spines of the extracted

structure, it also provides the masks of the extracted regions. We overlay the extracted
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spines in light blue in the bottom plot of Figure 4.9 and we use the masks to contrast

the density of the simulation in the x− y projection (Figure 4.9, top).

4.4.2 Kinematic distance estimates
The kinematic distance is calculated based on the assumption of purely circular orbits

within the Milky Way. First, a rotation curve vc(R) is assumed. Then the Galactocentric

radius of a given object is calculated by:

R = R0 sin(l) vc(R)
v0 sin(l) + vlos

, (4.23)

where l is the Galactic longitude of the object, vlos is its line-of-sight velocity, andR0 and

v0 are the Galactic radius and circular-velocity of the Sun, respectively. For consistency,

we use the circular-velocity curve generated by our potential as our rotation curve, as

shown in Figure 4.1. BecauseR appears on both sides of Equation (4.23), it is estimated

through an iterative process.

The kinematic distance to the object is then obtained by

dk = R0 cos l ±
√
R2 − (R0 sin l)2 , (4.24)

It is possible for the kinematic distance estimate to return an undefined answer as a

result of the argument inside the square root being less than zero. This occurs when

v2
los > v2

term − 2v0(vlos − vterm) sin l , (4.25)

where vterm is the terminal velocity along a given Galactic longitude and is given by:

(Burton & Gordon, 1978)

|vterm| = vc(R) − v0| sin(l)|. (4.26)

In other words, the kinematic distance is indefinite when the observed vlos is not

possible (e.g. too high) under the assumed rotation curve vc(R). In this case, the argu-

ment of the square root of Equation (4.24) is set to zero, which is equivalent to placing

the object at the tangent point for a given l, where R = R0 sin(l). This is also equivalent

to setting the velocity to the terminal velocity for a given l.

Equation (4.24) can give two answers when observing inside the solar circle, re-

sulting in the well-known kinematic distance ambiguity. For the sake of simplicity, we

resolve the ambiguity by selecting the kinematic distance closest to the true distance

value. The first plot of Figure 4.10 of shows the kinematic distance map of of our

simulation. The kinematic distance map is not a smooth distribution with increasing

radius from the Sun. We find deviations from the true values (second part of Figure
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Figure 4.9. The top plot is the x − y density projection of our simulation at t = 441
Myr with the mask of overdensities from FILFINDER highlighting the spiral structure. The

bottom figure is the polar decomposition of the density map of the top figure focusing

on the region with Galactocentric radius 6 < R < 20 kpc. The blue dotted lines are

the positions of the spiral arms according to the second half of Equation (4.17). The

green dashed lines are the spiral arms generated by the rotation of the bar, with a pitch

angle of 6.5◦ around the outer Lindblad resonance, R = 10.14 kpc. The light blue lines

indicate the spiral arm pattern extracted with FILFINDER.
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4.10) close to the perturbations caused by the spiral arms and the bar. We also observe

quite large deviations close to l = 0◦ and l = 180◦. This arises due to trigonometric

effects: as l tends towards 0◦ or 180◦, the value for the Galactic radius, R, obtained from

Equation 4.23 becomes undefined as both sin(l) and vlos tend to 0. These deviations

are highlighted better in the third plot of Figure 4.10, where we map the relative er-

ror between the kinematic distance and the true distance. What stands out is the large

relative error in the solar neighbourhood close to the spiral arm perturbations. Large

errors can also be observed at the end of the bar, where the gas flows on x1 orbits.

To see if the kinematic distances tend to be over- or underestimated, we look at the

probability density distribution of the relative kinematic distance error, (dk−dtrue)/dtrue,

where dtrue is the true distance to a given object. In Figure 4.11 we plot the distribution

for a given annulus around the Sun to illustrate how true distance affects kinematic

distance errors. For objects within 500 pc of the Sun, the kinematic distance estimate

is highly unreliable and exhibits a bimodal error distribution. This bimodality peaks

at ∼ −100% and ∼ +75%. Beyond 500 pc from the Sun the distribution of errors

becomes more centrally peaked at 0 with increasing radius. Kinematic distance errors

less than −1 are a result of the kinematic distance being negative. These unphysical

values are normally disregarded, however, we include them here in our analysis for

completeness.

When computing kinematic distances, observers typically avoid lines of sight within

±15◦ from the direction towards the Galactic centre and ±20◦ of the anti-centre due

to high errors in these line of sights. (e.g. Anderson et al., 2012; Balser et al., 2015;

Wenger et al., 2018). As mentioned previously, the trigonometric effects as l → 0◦ or

180◦ can drastically impact the kinematic distance estimate. On top of this, the Galactic

bar also impacts estimates towards the centre due to the high level of asymmetry in the

potential.

To give a more conclusive idea about which lines of sight to avoid, we compute the

absolute kinematic distance error and plot the median and absolute median deviation

(MAD) as a function of Galactic longitude in Figure 4.12. The results are split into

separate annuli around the Sun’s position, as with Figure 4.11, showing that the error

in the kinematic distance remains high at distances closer to the Sun with some varia-

tion with Galactic longitude. We define a line of sight of avoidance for an annulus as

the line of sight where more than 20% of cells have an absolute kinematic distance error

greater than 27%. Our choice of this value is motivated by the study of Wenger et al.

(2018), who quantify the uncertainty in the kinematic distance inferred using the Brand

& Blitz (1993) rotation curve (their method A) or the Reid et al. (2014) rotation curve

(their method B) due to uncertainties in e.g. the solar Galactocentric radius and orbital
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Figure 4.10. Estimated and real distance maps in the simulation. The black lines indi-

cate the spiral arm pattern extracted with FILFINDER. The top plot shows the kinematic

distance maps as estimated with Eq. (4.24). The middle plot is the map of the true

distances to the gas cells. The relative error between the kinematic and true distance is

shown in the bottom plot.
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Figure 4.12. The black line represents the median absolute relative kinematic dis-

tance error along the line-of-sight of a given Galactic longitude. Each plot represents a

sampling annulus centred on the Sun. The blue shaded region is the median absolute

deviation (MAD) of the error. The red shaded regions represent the Galactic longi-

tudes where more than 20% of the cells along the line-of-sight have a relative kinematic

distance error of 27% or more.

velocity, the measured rotation curve, etc. The average absolute kinematic distance

error they find when considering both models is 27%. For lines of sight and locations

where the systematic error for most points is less than this value, the kinematic distance

method should be reliable. On the other hand, if a large fraction of points have system-

atic errors that exceed this value, this is a good indication that the kinematic distance

method will not provide reliable results.

The lines of sight that should be avoided are shown in red in Figure 4.12. For

objects within 500 pc of the Sun, 99.5% of the full range of Galactic longitude should

be avoided. This fraction remains above 56% out to 5 kpc, but drops to 14% and 16% for

the 5 − 10 kpc annulus and the 10 − 20 kpc annulus, respectively. This suggests that the

kinematic distance estimate is accurate for distances beyond 5 kpc from the Sun under

our criterion for line of sight avoidance, but that for closer distances it should be used

with great care.
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4.4.3 Location of kinematic distance errors
So far we can see that velocity perturbations generated by the non-axisymmetric com-

ponents of the potential can produce highly inaccurate kinematic distance estimates

along most lines of sight for objects close to the Sun. This now poses the question:

where can one reliably use kinematic distances?

Back in Figure 4.10 we show the map of kinematic distance errors of our simulation

with the density peaks extracted with FILFINDER overlayed onto the maps. The peaks lie

close to the regions of low value for the kinematic distance error. However, this only

applies to the spiral arm features, i.e. peaks outside of the bar region, from inspection.

To further analyse this, we split the Galaxy into two regions: the bar region (R < 6 kpc)

and the disk region (R ≥ 6 kpc).

Bar region

For the bar region, we employ the mask generated by FILFINDER to identify the over-

densities from our simulations and applying them to the kinematic distance error map

(Figure 4.10), splitting the data into overdense regions and underdense regions. We plot

the PDF of each region, respectively, and compare their distributions (Figure 4.13).

From visual inspection, we see that both distributions peak at around 0, with the

underdense regions’ distribution slightly wider than the overdense regions. Since the

distribution is non-Gaussian, we look at the difference between quantiles to under-

stand the width of the distributions. The difference between the upper and lower 20%
quantiles is 0.14 for overdense region, whilst it is wider with a value of 0.22 for the

underdense region. Similarly, the values are 0.29 and 0.39 for the upper and lower

10% quantiles, and 0.50 and 0.61 for the 5% quantiles respectively. This suggests that

outside of the overdense regions there is a higher probability of a large error and, by

consequence, an increased probability of obtaining an incorrect distance via the kine-

matic distance method. Going from our analysis of the error as function Galactic lon-

gitude (Figure 4.12), this result is not too much of a surprise given that much of the

bar’s influence is lies within l = ±30◦ which is typically a line-of-sight of avoidance for

all distances away from the Sun.

Disk region

As we have done previously, we split the kinematic distance maps of the disk region

into spiral arm regions and interarm regions and plot the corresponding distributions

of each. In this case we apply this to everything outside of R = 6 kpc.
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Figure 4.13. Probability distributions of the systematic kinematic distance errors within

the overdensities in the bar region (blue) and the underdensities in the bar region (red).
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Figure 4.14. Probability distributions of the systematic kinematic distance errors within
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Table 4.4. Summarised values of the statistics between the different regions. Quantile

difference indicates the difference between upper and lower percent quantile, for ex-

ample 20% means the difference between the upper and lower 20% quantile.

Region Median Quantile difference

20% 10% 5%

Overdense bar 0.001 0.14 0.3 0.5

Underdense bar -0.018 0.22 0.39 0.61

Spiral arms 0.001 0.1 0.17 0.26

Interarm 0.004 0.1 0.2 0.39

From Figure 4.14 we find similarly shaped distributions in the errors for the Galactic

disk as we did for the bar region. Once again we have the distribution peaking at 0 for

both spiral and interarm regions, with a a wider distribution in the interarm regions.

Looking at the ranges between quantiles, the ranges are more similar between the spiral

arm and interarm region. The difference between the upper and lower 20% quantiles is

0.1 for both regions. For the difference in the 10% quantiles the ranges are 0.17 and 0.2

for the spiral arm and interarm regions respectively. Similarly it is 0.26 and 0.39 for the

5% qunatile difference. Although the difference in the quantiles are similar between the

regions, the interarm regions has a wider distribution. This indicates that the interarm

regions of the Galaxy have a higher probability of an incorrect kinematic distance,

similar to that for the underdense regions of the bar though with a lower probability of

a larger associated error. The narrower distribution of errors of the spiral arm region

is a rather reassuring fact, because it implies that the kinematic distance method is

more reliable in the regions of the Galaxy where most of the dense gas and subsequent

star-forming regions are found. We look into the dynamics causing this result in the

subsequent subsection.

It should be noted that in both overdense regions there is not much skewness in

the distribution and, as such, there is no clear way to indicate whether if the kinematic

distance would be under- or overestimated. We summarise the statistics generated from

the systematic kinematic distance error distributions in Table 4.4.

4.4.4 Relation to the velocity deviation
The key parameters that are needed for kinematic distance methods are the LOS ve-

locity of the object and a rotation curve for the Milky Way. As mentioned previously,

the Milky Way is not axisymmetric and as such there are deviations away from the

rotation curve velocities. Quantifying the correlation between these deviations and the
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Figure 4.15. Comparison of rotation curve against the average azimuthal velocity (black

solid and dashed line respectively). The red and blue lines are the rotation curve from

Brand & Blitz (1993) and Reid et al. (2014).

systematic kinematic distance errors can give an insight into how the velocity impacts

the kinematic distance estimates.

The deviations from rotation curve can be seen in the radial profile of the azimuthal

velocity of the gas. We illustrate this in Figure 4.15 where in the inner most 3 kpc

we observed deviations up to 70 km s−1. Between 3 kpc and 10 kpc there are small

deviations from the rotation curve, on the order of few km s−1, due to perturbations of

the spiral arms in our system. We include the rotation curve from Brand & Blitz (1993)

and the universal rotation curve of Persic et al. (1996) with the updated parameter from

Reid et al. (2014) as comparison to other rotation curves used in kinematic distance

estimates.

We compute the line-of-sight velocity of our simulations and map it to the face

down Milky Way view at the top of Figure 4.16. The non-axisymmetric perturbations

of the potential are apparent here. Towards the bar region, we observe a sharp tran-

sition across the Galactic centre (as expected from the lv diagram of Figure 4.8), with

perturbations of the spiral arms appearing as displacements in the contours in compar-

ison to the middle plot of Figure 4.16; the LOS velocity maps for an axisymmetric

potential. When we look at what we expect from an axisymmetric potential, the tran-

sition towards the Galactic centre is not as strong and the contours of the line-of-sight

velocity towards the outer Galaxy are smoother. When we subtract the two maps, we

find that the largest deviations occur at the bar region with differences on the order of

100 km s−1. Outside the bar region we find the line-of-sight velocity difference to be
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close to zero along the spiral arms of the Galaxy. Gas experiences an acceleration or de-

celeration as it flows into or out of the spiral arm, respectively as shown in Figure 4.17.

This can cause shocks causing the gas to get denser as it leaves the potential minima, as

in the case for two of our spiral arms. Additionally, the perturbations caused by the bar

can also shock the gas and causes further perturbations. In our case, at around R = R0,

both the bar generated spiral and two of the spiral arms overlap creating large peaks in

density. However, unlike the other two spiral arms, the peak in density for these occur

just before passing the potential minima of the spiral arm potential.

All of this results in the largest deviations from the rotation curve to occur in the

interarm regions which in turn causes shifts in the estimated kinematic distances, in-

creasing their systematic error within these regions (see Figure 4.10).

Given how large deviations of the line-of-sight velocity occur in the same regions

where the systematic kinematic distance errors are highest, we look at the correlation

between the velocity deviation and the distance error. In Figure 4.18 we plot the 2D

probability density function of the absolute values of the relative error against the veloc-

ity deviation from those expected for a pure axisymmetric potential and find a positive a

correlation between the two parameters. This correlation can be described by a power-

law with slope α = 0.92.

4.5 Discussion

4.5.1 Implications
From our analysis, we find that kinematic distance estimates are most unreliable close to

the Sun and along Galactic longitudes towards the Galactic (anti-)center. Additionally,

there is a higher deviation within interarm regions than within spiral arms. This implies

that clouds within underdense regions of the galaxy are more likely to have an incorrect

distance estimate from the kinematic distance method.

An observational study carried out by Wenger et al. (2018) compared the distance

estimates obtained by the parallax method to those obtained with the kinematic distance

method. By treating the parallax distance as the true distance, they found an average

distance deviation of +20 ± 40% for their entire sample (see their Table 4). This sug-

gests that the kinematic distances are systematically overestimated within their sample.

Comparing to our work, we find that our distance estimates tend to only over- or un-

derestimated by a few percent on average but with a significantly large spread within

our systematic errors. Since our simulations do need contain any additional velocity

perturbations, such as turbulence, the errors we find are a lower bound estimate.
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Figure 4.16. The top plot illustrates LOS velocity map of the simulation. Similarly,

the middle plot shows the map of the LOS velocity derived from the base axisymmetric

potential. The last plot shows the difference between simulation and axisymmetric LOS

velocities; top plot minus the middle plot.
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Figure 4.17. The azimuthal profile of the difference between azimuthal and circular

velocity (top) and the surface density (bottom) near solar circle, R = 8.18 kpc. The

vertical dashed lines are the potential minima of the underlying spiral arm potential.

Rotation of the system is from right to left.
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Figure 4.18. 2D probability density function of the relative error in the kinematic

distance against the difference between the simulation and axisymmetric LOS velocities.

The red dashed line is a power law with slope of 0.92.

Table 4.5. Kinematic distances and errors of five sources.

Source l d†
p d†

k dk (d†
k − d†

p) (dk − d†
p)

(degrees) (kpc) (kpc) (kpc) /d†
p /d†

p

M17 15.03 1.97 2.33 1.10 0.18 -0.44

W49N 44.20 10.93 11.52 11.15 0.05 0.02

NML Cyg 80.80 1.6 1.33 1.32 -0.17 -0.18

AFGL 2789 94.60 3.49 5.48 3.21 0.57 -0.08

G240.31+00.07 -163.84 7.11 5.75 9.17 -0.19 0.29
†Distance from Wenger et al. (2018).

To help give an idea as to what implications this has for the observations, we generate

a longitude-distance map of our kinematic distance errors in Figure 4.19. We overplot

some of the known sources of Wenger et al. (2018) to give an indication as to where

real sources would lie on the map, treating parallax distance estimates as true distances.

When comparing the errors we calculate to those obtained from observations (Choi

et al., 2014; Wenger et al., 2018), assuming the parallax distance dp as the true distance,

we find that in some instances the errors are similar, within a factor of two. However, in

others they are vastly different. For example, the error associated with AFGL 2789 has

an error on the order of −8% in our system but is around ∼ 50% from observations.

AFGL 2789 is located within the Perseus spiral arm (Oh et al., 2010) which is consistent

with our finding that objects within spiral arms tend to have lower errors. However, the

observational result would indicate that the object is located more towards an interarm

region.
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Figure 4.19. Map of the kinematic distance error as a function of Galactic longitude and

true distance. The contours are placed at 0,±0.1,±0.3,±0.5,±1,±1.5 and ±2. The

green lines indicate the spiral arms extracted with FILFINDER. Overplotted in orange are

a selection of known sources using parallax distances as true distances (Wenger et al.,

2018).

4.5.2 Caveats
There are a few limitations to bear in mind when considering the maps of kinematic

distance errors derived from our simulations. First, as mentioned in Sect. 4.3, the

simulations performed here are 2D dimensional. This corresponds to the assumption

that the gas in our simulation is integrated vertically, along the z-axis. The acceleration

of the gas due to the potential is computed as if the gas lies in the midplane of the

Galaxy (z = 0). This completely neglects the 3D structure of the Galaxy and vertical

motions present within the gas. This additional component will impose changes to

Equations (4.23) and (4.24) with the introduction of additional cos (b) terms. With

the perturbations induced by the potential, the gas can also experience changes in the

z-component of the velocity as it travels in and out of a spiral arm. This will impact

the LOS velocity of the gas and the resulting kinematic distance. However, quantifying

the size of this effect is beyond the scope of this chapter.

Second, the simulations presented here are idealised with only isothermal hydro-

dynamics and an external galactic potential. We note that the adopted value of cs =
10 km s−1 implies that we use an effective sound speed, which includes a strong turbulent

component providing additional support of the gas disk (Mac Low & Klessen, 2004;

Krumholz & McKee, 2005b; McKee & Ostriker, 2007; Klessen & Glover, 2016). Be-

sides a self-consistent treatment of stellar feedback, more realistic models should include
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time-dependent chemistry (e.g. Glover et al., 2010a). Altogether, we would expect the

sound speed to vary across the Galaxy, causing the structure of the Galaxy to alter. In-

deed, parameter studies with different sound speeds have shown that spiral arms tend

to get wider with increasing cs (Li et al., 2022), whereas the size of the CMZ becomes

smaller (Sormani et al., 2015a, 2023).

The spiral arm potential we present in this chapter is not an exact match to the spiral

arm pattern of the Milky Way. It is well noted that the spiral arm shape of the Milky

Way is not regular, with differences in phase angles between spiral arms and pitch angle

changes along the spiral arm (see Reid et al., 2016, 2019). These irregularities are

hard to model when constructing the potential so approximations are required. Here,

we keep the pitch angle of the spiral arms the same and try to account for the change

in phase angle with the two pairs of Gaussian shaped spiral arms (see Sect. 4.2.1).

Additionally, perturbations generated by the interaction with orbiting satellite galaxies

can impact the velocity space of the Galaxy, creating wave-like oscillations throughout

the Galaxy (Khanna et al., 2019). These differences in structure will make some of the

kinematic distance estimates in our simulation very different from what they would be

for the Milky Way, as illustrated in Section 4.5.1.

Turbulent motions induced by physics such as self-gravity, stellar and supernova

feedback would contribute to the velocity dispersion of the system. The effects of self-

gravity can add an additional ∼ 2−5 km s−1 to the velocity dispersion for axisymmetric

systems but can be as high as ∼ 10 km s−1 for non-axisymmetric systems such as the

one presented in this chapter (Wada et al., 2002). Despite this, supernova feedback

is believed to give the largest contributions to the velocity dispersion on large scales,

potentially producing a velocity dispersion of as much as ∼ 10 km s−1 across hundreds

of parsecs Lu et al. (2020). This can result in the line-of-sight velocity deviating from

the values derived here by a similar amount, causing kinematic distance estimates to

deviate further from the true value.

Kinematics distance are normally computed with one of two Galaxy rotation models,

the rotation curve of Brand & Blitz (1993) and the universal rotation curve of Persic

et al. (1996) with updated parameters from Reid et al. (2014). Both of these rotation

curves have been obtained from the gas within the Milky Way; the former making use

of HII regions and HI tangent point data, whilst the latter makes use of maser parallaxes.

We do see differences between the rotation curves presented in these papers and our

values, since our potential is modelled based on the rotation curves from stellar data,

as shown in Figure 4.15 (Mróz et al., 2019; Eilers et al., 2019). There is a difference

on the order of up to ∼ 10 km s−1 between the rotation curve within the disk of the

Galaxy, and larger deviations within the inner most 3 kpc. An investigation into how



106 Conclusions

these differences in the standard rotation curves can impact kinematic distance is beyond

the scope of this thesis, but does warrant future investigation.

4.6 Conclusions
In this chapter, we have presented a realistic analytic potential for the Milky Way. It

contains density profiles for all major mass component of the Galaxy. These are the

supermassive black hole in the very center, the nuclear stellar cluster and nuclear stellar

disk, the Galactic bar, the Galactic disk, which we split into axisymmetric components

for field stars and gas and a spiral arm component for the field stars only, and finally

an extended dark matter halo that dominates the potential at large distances. These are

introduced and fitted to the observational constraints, such as the rotation curve and the

terminal velocities, in Section 4.2.

We also described how the new analytic potential is implemented in the moving-

mesh code AREPO within the AGAMA framework of potential libraries, as outlined in

detail in Section 4.3. We made use of 2D hydrodynamic simulations to investigate

how robustly the axisymmetric assumption holds for kinematic distance estimates. For

this, we place an observer at R0 = 8.178 kpc with the bar angled at 28◦, generate

kinematic distance estimates to each of the gas cells present within our simulations and

compute the systematic errors for each, (dk − dtrue)/dtrue. As discussed in Section 4.4

we found that the errors are high close to the Sun, with values reaching >50% on average

for any sources with 1 kpc. Along with proximity, we found that errors also reach these

values when viewing towards the Galactic centre and anti-centre, l = 0◦ and l = 180◦,

respectively.

When considering both Galactic longitude and distance, there are certain lines-of-

sight that result in higher errors in addition to those previously mentioned for specific

distance ranges. We identify these regions as zones of avoidance for the application of

the kinematic distance method. We also compare our results with the distance estimates

of some well-studied molecular clouds and find in general good agreement (Section 4.5).

In summary, the extraction of the velocity perturbations in our simulation has al-

lowed us to determine what impact the potential has on systematic errors in the kine-

matic distance estimate. We find that within the spiral arms of the Galaxy, the kinematic

distance errors are low as the gas lies within the local potential minima. Consequently,

the line-of-sight velocity of the gas is close to what is expected for the axisymmetric

version of our potential. We expect clouds within the spiral arms of the Milky Way to

have low systematic kinematic distance errors. Conversely, the interarm regions present

the largest deviation in both the kinematic distance and the line-of-sight velocity for
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a given Galactic radius. This is caused by the gas being sped up or slowed down as

it travels into or out of the spiral arm. Additionally, we discovered a power law rela-

tion between the systematic kinematic distance error and the difference between the

line-of-sight velocity and the projected circular-velocity.

We conclude that the assumption of axisymmetry for the kinematic distance method

can result in large systematic deviations depending on where a source is situated within

the Milky Way. These deviations can alter derived values that depend on distance and,

as such, the corresponding systematic errors should be accounted for in these derived

values.

The interface between AGAMA and AREPO/GADGET-4 codes, along with the scripts for

constructing the potential from Section 4.2 and for running N-body simulations with

these codes in the external potential, are included in the AGAMA repository1.

1https://github.com/GalacticDynamics-Oxford/Agama

https://github.com/GalacticDynamics-Oxford/Agama




Chapter 5

Conclusion and future plans

”Words become a song and once again run through

the world for your sake. Entrust your intentions to

that voice and, right now, thoughts and feelings will

resound.”
—Ryo, ODDS&ENDS

Throughout this thesis we have explored the topic of dynamics within the interstellar

medium. Here, we have made use of hydryodynamical simulations throughout the

thesis to test how motions can affect quantities of the ISM.

In chapter 1 we provided an overview of the ISM, detailing the thermal phases

present and thermo-chemistry involved in H2 formation. Following that we discuss

the formation, destruction and properties of giant molecular clouds, and providing de-

tails on the subsequent star formation after the collapse of GMCs. In that chapter we

zoom out to the Milky Way and galaxies as whole with an overview of galactic dynam-

ics. We discuss the gravitational forces at play, how the potential is constrained from

observations, and the analytic models used by dynamicists when modelling galaxies.

We introduce the numerical techniques that were used as a part of this thesis in

chapter 2. The first part of this chapter was dedicated to numerical hydrodynamics.

We provided a brief overview of the physics involved in hydrodynamics as well as

the common approaches to solving the hydrodynamic equations, both in Eularian and

Lagrangian reference frames. In that section we introduce the cosmological MHD code

AREPO, a quasi-Lagrangian moving-mesh code that we make use of for our cloud and

galaxy simulations.

Also in chapter 2, we look into how gravity is accounted for in simulations, explor-

ing the numerical methods used to compute gravitational forces within simulations,

including direct N-body, tree-code, particle mesh and potential expansions. The gravi-
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tational dynamics library AGAMA was introduced in this section, detailing how potentials

are computed from density distributions. The interface between AGAMA and AREPO was

discussed in that section.

Chapter 3 introduced the topic of cloud-cloud collisions. We perform a series of

MHD simulations of colliding GMCs, performing a parameter space study in the pro-

cess. A range of velocities, magnetic field inclinations with respect to the collision axis,

and effective resolution are explored. We find that overall, collisions increase the SFR

by factor of ∼ 2 − 3 in comparison to our stationary simulation. We observe an earlier

onset of star formation within these clouds in our simulations with higher collisional

velocity, when the initial magnetic field orientation is parallel to the direction of the

collision, and when the resolution of the simulation is lowered. The difference between

the earliest to latest onset of star formation is on the order of a few freefall times of a

dense clump, ∆t = 0.7 Myr.

When looking at the mean virial parameter for dense gas within our simulation, we

find that the virial parameter increases with collisional velocity which is consistent with

the increase of turbulent motions within the gas as well as tangling of the magnetic field

within the simulation. The variation in magnetic field inclination has little effect on the

virial parameter. When we investigate the alignment between magnetic and velocity

fields, we find the fields align in the lower density medium n ∼ 103 − 104 cm−3 and

become increasingly perpendicular with higher densities. This is consistent with the

idea of gravitational collapse compressing magnetic field lines. Lastly we compare our

SFRs to those of similar simulations in the literature, with a slight focus on the order of

magnitude increase observed by Wu et al. (2017). We find that star formation protocols

that account for the boundness of gas, like in our simulations, are in agreement with

the factor of ∼ 2 − 3 SFR increase.

In chapter 4 we look at the Milky Way’s ISM at the scale of the Galaxy itself and

test the valditiy of kinematic distance estimates. We construct a new analytic potential

for the Milky Way, inclusive of non-axisymmetric components of the Galactic bar and

spiral arms. The potential is generated from a mix of existing models and parame-

terising density distributions to quantities derived from observations (such as rotation

curves and mass profiles). We initialise the potential with the framework present in

AGAMA. We perform a simple 2D isothermal hydrodynamical simulation of the Galac-

tic disk with only the potential of the Galaxy being the additional physics present in the

simulation.

From our simulations we obtain structure in lv-diagrams comparable to the spiral

arm imprint on the observed lv-diagrams. By placing an observer at solar circle, R0 =
8.179 kpc, we compute the kinematic distance to each gas cell within our simulation.
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The kinematic distance approach works on the crucial assumption that gas within the

Milky Way moves on circular orbits. However, with the introduction of a triaxial bar

and bisymmetric spiral arms, we find that the kinematic distances become unreliable in

some part of the Galaxy. We define galactic longitudes l where the kinematic distance

is unreliable for a given distance range (referred to as a zone of avoidance). These

typically are towards the Galactic centre and anti-centre due to trigonometric effects,

however additional zones appear the closer a gas cell is to the Sun’s position. For an

object less than 1 kpc away, the kinematic distance estimate is highly unreliable. The

structure of the ISM also has an impact which correlates with the accuracy of kinematic

distance estimates. Gas lying within overdensities generated by the bar and spiral arms

often have more accurate kinematic distances in comparison to underdense regions (like

the interarm region). We also find a correlation between the kinematic distance error

and the deviation of the projected line-of-sight velocity from circular motion, following

a power law with power α = 0.92. Finally we compare our results to some observed

sources present in (Wenger et al., 2018), identifying how the kinematic distance errors

differ between using our potential and the Milky Way itself.

Looking forward, the simulations explored in this thesis provide a starting point for

future work to be carried out, if not already so. As mentioned in chapter 3, the densities

reached by cloud-cloud collisions can allow for high-mass stars to for; a technically

challenging process due to the large luminosities present with their formation (Takahira

et al., 2014; Balfour et al., 2015; Motte et al., 2018). Due to the scales involved in our

simulations, we are unable to resolve the formation of individual stars, however the

clumps present can provide the initial conditions for simulations at smaller scales. By

extracting and averaging densities, velocity and magnetic fields radially, a simple set of

initial conditions can be provided for such follow up simulations (Oliva et al. in prep.).

The potential developed in chapter 4 can be used as an external potential for much

more complicated simulations, including physics such as self-gravity, stellar and super-

nova feedback, magnetic fields and cosmic rays. Under the ECOGAL collaboration the

potential developed is currently being used to explore such simulations. One of the

papers will explore if the external potential has any consequence on the structure of

the ISM when in the presence of self-gravity (Göller et al. in prep.), whilst the another

explores the how cosmic rays are distributed in the Galaxy under the influence of the

potential (Kjellgren et al. in prep.) We hope that the potential developed will continue

to be used, and the kinematic distance error maps developed chapter 4 will allow for

observers to account for systematic errors when using the kinematic distance method.





Appendix A

Additional information for Chapter 3

A.1 Chemical network
The reactions included in our chemical network are summarized in Tables A.1 and

A.2. Our network is based on the one presented by Gong et al. (2017; hereafter, G17),

but also includes several reactions not included in their network, denoted in the tables

as “Not in G17”. In addition, for some reactions we have adopted a different rate

coefficient from the one listed in G17; these are also indicated in the Table, with the

note “Different rate”. Reactions with no attached note are treated exactly the same as

in G17. Below, we discuss the rationale for the differences between our network and

the original G17 network. For the most part, these differences are to make the network

more robust when applied to physical conditions outside of the range considered by

G17 and have little impact on its behaviour in the typical photodissociation region

(PDR) conditions that were the main focus of their study.

Table A.1. List of collisional chemical reactions included in our chemical network

No. Reaction Notes Refs.

1 H + e− → H+ + e− + e− Janev et al. (1987)

2 H+ + e → H + γ Ferland et al. (1992)

3 He+ + H2 → H+
2 + He Barlow (1984)

4 He+ + H2 → H+ + H + He Barlow (1984)

5 H2 + e− → H + H + e− Not in G17 Trevisan & Tennyson (2002)

6 H2 + H → H + H + H Different rate Mac Low & Shull (1986),

Lepp & Shull (1983), Martin

et al. (1996)

Continued on next page
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Table A.1 – continued from previous page

No. Reaction Notes Ref.

7 H2 + H2 → H + H + H2 Different rate Martin et al. (1998), Jacobs

et al. (1967)

8 H+
2 + H2 → H+

3 + H Different rate Linder et al. (1995)

9 H+
2 + H → H2 + H+ Karpas et al. (1979)

10 H+
3 + e− → H + H + H McCall et al. (2004)

11 H+
3 + e− → H2 + H McCall et al. (2004)

12 He + e− → He+ + e− + e− Not in G17 Janev et al. (1987)

13 He+ + e− → He + γ Different rate Hummer & Storey (1998),

Badnell (2006)

14 C+ + H2 → CHx + H Wakelam et al. (2010), Gong

et al. (2017)

15 C+ + H2 + e− → C + H + H Wakelam et al. (2010), Gong

et al. (2017)

16 C + H2 → CHx + γ Not in G17 Prasad & Huntress (1980)

17 C + H+
3 → CHx + H2 Vissapragada et al. (2016)

18 C+ + e− → C + γ Different rate Badnell (2006), Badnell et al.

(2003)

19 C + e− → C+ + e− + e− Not in G17 Voronov (1997)

20 O+ + H → O + H+ Stancil et al. (1999)

21 O + H+ → O+ + H Stancil et al. (1999)

22 O+ + H2 → OHx + H Gong et al. (2017)

23 O+ + H2 + e → O + H + H Gong et al. (2017)

24 O + H+
3 → OHx + H2 Stancil et al. (1999)

25 O + H+
3 + e− → H2 + O + H Stancil et al. (1999)

26 C+ + OHx → HCO+ Gong et al. (2017)

27 C + OHx → CO + H Zanchet et al. (2009)

28 CHx + He+ → C+ + He + H Not in G17 Prasad & Huntress (1980),

Tsang & Hampson (1986)

29 CHx + H → H2 + C Wakelam et al. (2010)

30 CHx + O → CO + H Wakelam et al. (2010)

31 OHx + H → O + H2 Not in G17 Tsang & Hampson (1986),

Tsang & Hampson (1986)

32 OHx + O → O + O + H Carty et al. (2006)

33 OHx + He+ → O+ + He + H Wakelam et al. (2010)

Continued on next page
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Table A.1 – continued from previous page

No. Reaction Notes Ref.

34 CO + H+
3 → HCO+ + H2 Kim et al. (1975)

35 CO + He+ → C+ + O + He Different rate Petuchowski et al. (1989)

36 CO + H → C + OHx Not in G17 Mitchell (1984)

37 HCO+ + e− → OHx + C Not in G17 Geppert et al. (2005)

38 HCO+ + e− → CO + H Geppert et al. (2005)

39 Si+ + e− → Si + γ Different rate Nahar (2000)

40 Si + e− → Si+ + e− + e− Not in G17 Voronov (1997)

Table A.2. List of grain surface, cosmic ray and photochemical reactions included in

our chemical network

No. Reaction Notes Refs.

41 H + H + gr → H2 + gr Different rate Hollenbach & McKee (1979)

42 H+ + e− + gr → H + gr Different rate Weingartner & Draine (2001)

43 C+ + e− + gr → C + gr Different rate Weingartner & Draine (2001)

44 He+ + e− + gr → He + gr Different rate Weingartner & Draine (2001)

45 Si+ + e− + gr → Si + gr Different rate Weingartner & Draine (2001)

46 H + cr → H+ + e− Glassgold & Langer (1974)

47 H2 + cr → H+
2 + e− Glassgold & Langer (1974)

48 H2 + cr → H + H+ + e− Not in G17 McElroy et al. (2013)

49 H2 + cr → H + H Not in G17 McElroy et al. (2013)

50 He + cr → He+ + e− McElroy et al. (2013)

51 C + cr → C+ + e− McElroy et al. (2013)

52 CO + cr + H → HCO+ + e− Gong et al. (2017)

53 C + γcr → C+ + e− Heays et al. (2017)

54 CO + γcr → C+ + e− Heays et al. (2017)

55 Si + γcr → Si+ + e− Heays et al. (2017)

56 C + γ → C+ + e− Heays et al. (2017)

57 CHx + γ → C + H Gong et al. (2017),Heays et al.

(2017)

58 CO + γ → C + O Heays et al. (2017)

59 OHx + γ → O + H Gong et al. (2017),Heays et al.

(2017)

60 Si + γ → Si+ + e− van Dishoeck (1988)

Continued on next page
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Table A.2 – continued from previous page

No. Reaction Notes Ref.

61 H2 + γ → H + H Draine & Bertoldi (1996)

The primary cosmic ray ionization rate of atomic hydrogen is a free parameter in

our chemical model and the value we select for this in our simulations is discussed in

the main text. The total (primary plus secondary) rate for H (reaction 46), as well as

the total cosmic ray ionization rates of H2, He, C, CO and Si (reactions 47–55) are

scaled relative to this value using scaling factors derived from the cited references.

Reactions in our network that are not in G17

Reactions 5, 12, 19 & 40

These reactions – the collisional dissociation of H2 by electrons and the collisional ion-

isation of He, C and Si – were neglected by G17 because they are unimportant at

typical PDR temperatures. However, they can become important in hot shocked gas

with T ≫ 104 K and we include them to ensure that the chemical network behaves

reasonably at these high temperatures.

Reaction 16

The formation of CHx – a pseudo-molecule that represents light hydrocarbons such as

CH, CH2, CH+ etc. – by radiative association of atomic carbon and H2 is neglected by

G17 because it is a slow process and in typical Milky Way conditions is unimportant

compared to CHx formation via the reaction of C and H+
3 (reaction 17). However, the

abundance of H+
3 , and hence the rate of reaction 17, depends sensitively on the cosmic

ray ionisation rate, and so reaction 16 can become important in conditions where this

is much smaller than the typical Milky Way value.

Reaction 28

In neutral gas, this reaction is unimportant compared to reaction 29. It is included here

to ensure that an appropriate loss route exists for CHx in very highly ionized gas. For

the rate coefficient, we use the value given by McElroy et al. (2013) for the reaction

CH + He+ → C+ + He + H,

which comes originally from Prasad & Huntress (1980).
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Reaction 31

This reaction is unimportant compared to reaction 32 at temperatures lower than

500 K, but quickly becomes dominant at higher temperatures, given a sufficient sup-

ply of hydrogen atoms. It is therefore not important in typical PDR conditions but

can become important in shocks. For the rate coefficient, we adopt the value given by

McElroy et al. (2013) for the reaction

OH + H → O + H2,

which is based on Tsang & Hampson (1986).

Reaction 36

This reaction has a substantial activation energy (E/k ∼ 78000 K) and is therefore

unimportant in typical PDR conditions. However, it can become important in hot,

shocked gas. In particular, we have found that if strong shocks occur in gas with high

AV, CO can persist in the gas up to artificially high temperatures of > 104 K if this

reaction is not included.

Reaction 37

As G17 note in their appendix A, the destruction of HCO+ is dominated by the reaction

HCO+ + e− → CO + H (reaction 38 above). However, although CO and H are the

most likely products of the dissociative recombination of HCO+, roughly 8% of the

time this process instead yields C and OH (Geppert et al., 2005). We include this

outcome here for completeness.

Reactions 48 & 49

Although interactions between high energy cosmic rays and H2 molecules primarily

produce H+
2 ions (reaction 47), a small fraction of the time the outcome can instead

be a hydrogen atom, a proton and an electron (reaction 48) or two hydrogen atoms

(reaction 49). These outcomes were neglected by G17 but we include them here for

completeness.
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Reactions with different rate coefficients

Reactions 6 & 7

We use the same low density limits for the rates of these reactions as in G17, and

the same expression for the H2 critical density. However, we use slightly different

expressions for the high density limits: G17 follow Lepp & Shull (1983) and Shapiro

& Kang (1987) for reactions 6 and 7, respectively, whereas we use the expression given

by Martin et al. (1996) for the high density limit of reaction 6 and adopt a value 8 times

smaller than this for reaction 7, following Jacobs et al. (1967). At densities below the H2

critical density (n ∼ 104 cm−3), we therefore recover the same behaviour as in G17, and

we also find good agreement between the different treatments in hot (T > 6000 K), high

density gas. The only significant difference comes in cool dense gas, where the Lepp &

Shull (1983) expression over-estimates the H2 collisional dissociation rate. However,

given the small size of this rate at these temperatures, this difference is likely only of

minor importance.

Reaction 8

We adopt the rate coefficient for this reaction given in Stancil et al. (1998), which is their

fit to cross-section data from Linder et al. (1995). G17 also cite Linder et al. (1995)

as the source of their rate coefficient, but their expression is ∼27% larger than the one

given in Stancil et al. (1998). The source of this discrepancy is unclear. However, in

practice it is unlikely to be important as this reaction is never the rate-limiting step for

the formation of H+
3 .

Reaction 13

G17 assume case B for the radiative recombination of He+ and use a reaction rate co-

efficient from Glover et al. (2010b) that is a fit to the values tabulated by Hummer &

Storey (1998). Our treatment differs from this in two respects. First, in addition to

radiative recombination, we also account for dielectronic recombination of He+, using

a rate coefficient from Badnell (2006). Second, although we assume the on-the-spot

approximation applies, we do not assume pure case B recombination for He+, which

would be valid only in a gas consisting of pure helium. Instead, we follow Osterbrock

(1989) and account for the fact that some of the photons produced during the recom-

bination of He+ are absorbed by atomic hydrogen rather than He. (A more detailed

discussion of how this is done can be found in Glover & Jappsen 2007).



Chemical network 119

Reaction 18

As in G17, we adopt a rate coefficient for C+ recombination that is the sum of two con-

tributions: one corresponding to radiative recombination, taken from Badnell (2006),

and one corresponding to dielectronic recombination, taken from Badnell et al. (2003).

In the expression that they use for the dielectronic recombination rate, G17 retain only

the first three terms, which is sufficient at low temperatures but which leads to inaccu-

racies at high temperatures (T ≫ 104 K). In our implementation of this rate, we instead

retain all of the terms from the expression given by Badnell et al. (2003).

Reaction 35

G17 adopt a temperature-independent rate for this reaction from Anicich & Huntress

(1986), whereas we adopt the temperature-dependent value proposed by Petuchowski

et al. (1989). In practice, there is very little difference between these two values at

typical PDR temperatures.

Reaction 39

G17 adopt a rate coefficient for this reaction that they credit to McElroy et al. (2013)

but that derives originally from Pequignot & Aldrovandi (1986). However, this fit is

formally valid only in the temperature range 10 < T < 1000 K. Moreover, it only

accounts for the contribution from radiative recombination, and not the dielectronic

recombination term that dominates at high temperatures. We adopt instead a rate

from Nahar (2000) that accounts for both processes.

Reaction 41

G17 adopt a constant value of 3×10−17 cm3 s−1 for the rate coefficient for this reaction.

We instead adopt the rate coefficient given in Hollenbach & McKee (1979), which

depends on the temperatures of both the gas and the dust grains.

Reaction 42--45

We follow G17 in that we use the reaction rate coefficients given in Weingartner &

Draine (2001) for the recombination of H+, C+, He+ and Si+ ions on grain surfaces

(reactions 42–45), multiplied by a factor of 0.6 to better match the results of Wolfire

et al. (2008). These rate coefficients depend primarily on the parameter

ψ = G
√
T

ne
, (A.1)
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where G is the local value of the interstellar radiation field in Habing (1968) units

and ne is the electron number density. One important way in which our treatment

differs from G17 is in our treatment of these rate coefficients for low values of ψ.

The expressions given in Weingartner & Draine (2001) are stated to be valid only for

ψ > 100 K1/2 cm3 and applying them unaltered when the value of ψ is smaller than

this yields recombination rates that are significant over-estimates of the true values. To

avoid this, we simply assume that the rates in gas with ψ < 100 K1/2 cm3 are the same

as those in gas with ψ = 100 K1/2 cm3 (c.f. figure 3 in Weingartner & Draine 2001).

The other main difference between our treatment and that in G17 is that we multiply

the grain surface recombination rates by an additional factor of exp(−T/34000). This is

to ensure that the recombination rates fall rapidly to zero in very hot gas, in conditions

where we expect that in reality the dust would be quickly destroyed by sputtering. This

modification would not be necessary if we were using a more sophisticated treatment of

dust evolution that accounted for this effect (see e.g. McKinnon et al., 2017), but this is

a topic for future work.

A.2 Post-collision magnetic field
Here we illustrate how the magnetic field is warped in the process of the collision of

the clouds. Figures A.1 & A.2 show images of the magnitude and z-component of the

magnetic field, respectively, which have been convolved with the x-y components of

magnetic field via line integral convolution (LIC) (Cabral & Leedom, 1993). This is

done to give indication of the direction of the magnetic field in the x-y plane.

We noted in Section 3.3.1 that an early onset of star formation is observed for a

magnetic field inclination of θ = 0, i.e. a field that is initially parallel to the collision axis.

In this case, the magnetic field is not compressed during the collision and hence does not

hinder the collision process. This can be seen clearly in the central panels of Figures A.1

& A.2, where the pattern of the map generated by the LIC lies predominantly parallel

to the x-axis. Only at the site of the collision is the magnetic field distorted, owing to

the local collapse of the gas.
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Figure A.1. Maps of the magnetic field strength of the simulations carried out at t =
2.40 Myr. Line integral convolution (LIC) is used on the map to indicate the direction

of the magnetic field in the x-y plane.
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Figure A.2. Same as figure A.1 but for the z component of the magnetic field



Appendix B

Additional information for Chapter 4

B.1 Spiral arm strength
We perform some additional simulations to determine the ideal our spiral arm strength

factor α in Equation 4.15. We test three different strengths for our spiral arm tests,

α = 0.204, 0.408, 0.612 which correspond to a peak density contrast of 10%, 20% and

30% respectively. We present the resulting simulations in Figure B.1.

The 10% density contrast, consistent with Eilers et al. (2020), gives arise to fainter

spiral arms with the spiral arms generated by the rotation of the spiral arm dominating

much of the structure outside of the bar. With increasing spiral arm strength, the

spiral arms in the simulation become stronger but also narrower due to the shape of the

underlying spiral arm potential.

In order to avoid the spiral arms becoming too narrow we opt to use a value of

α = 0.36 which gives a spiral arm strength of ∼ 17% of the stellar disk density at solar

circle R = 8.179 kpc.

B.2 Parameter study
We perform a simple parameter study with the potential to understand how varying

certain parameters impacts the lv diagram. This involves multiple simulations with

the changed parameters. The parameters we consider are number of spiral arms (n),

pitch angle of the spiral arms (i), spiral arm pattern speed (Ωspiral) and bar pattern speed

(Ωbar). The values considered are indicated in Table B.1. We consider two sets of

parameter studies, one for each spiral arm number, in which we vary one of the other

parameters and keep all other fixed to the fiducial values. Our fiducial parameters are

based on the same parameters in Li et al. (2022). This allows us to investigate how each

123
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Figure B.1. The density maps of simulations of differing spiral arm strength at t = 441
Myr. The strength of the spiral arm pertibation increase from 10% to 30% stellar disk

density at R = 8.179 kpc from top to bottom.
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individual parameter alters the lv diagram and later to vary the parameters to obtain

an appropriate approximate match between the observed spiral arms and those in our

simulations in lv space.

We present the lv diagrams of our parameter study in Figures B.2 & B.3. The

first thing that stands out between the figures is the number of filamentary structures

in the lv diagram away from the centre of the galaxy, most notably the feature that

goes between two spiral arms in the region of ∼ −50◦ to ∼ −130◦ that is present in the

n = 4 set but not in the n = 2 set. At positive galactic longitudes, we find the expected

additional spiral arms with the n = 4 set. We find that two of the arms in this region of

the lv diagram lie very close to each other for the n = 4, appearing to have split from

a spiral arm in the same region in lv space in the n = 2 set.

From the first column of both figures we see that pitch angle has little impact on

the shape of the spiral arms in lv space outside the central region. However, within the

central 60◦, differences can be seen between lv diagrams. Here some features move to-

wards the Galactic centre in lv space with increasing pitch angle though not all features,

with those associated with the bar’s rotation remaining fixed in position.

The spiral arm pattern speed has a larger impact as the corresponding resonances for

the spiral arms end up changing with pattern speed. This in turn causes the spiral arms

to become more apparent with increasing pattern speed beyond the central region of

the lv diagram. Additionally, the features associated with the spiral arms tend towards

0 km s−1 in lv space. Within the inner most 60◦ of the Galaxy, the structure here

also moves similarly to how it does with pitch angle, moving towards the galactic with

increasing pattern speed, however the features here that move are different to those with

increasing pitch angle suggesting these are resonance features from the spiral arms.

Similar to the spiral arm pattern speed, changes to bar pattern speed gives arise

to different positions for the resonances of the bar, with them moving inward towards

R = 0 kpc with increasing pattern speed (see Fig. 4.6). In the lv diagram we see an effect

similar to that of the spiral arm pattern speed. Here we see the spiral arms generated

by the bar moving towards 0 km s−1 in lv space, however the broadening of the features

does not happen in this case.

It should be noted for all lv diagrams presented in this section have been selected to

have approximately the same phase angle between the bar and spiral arms. This means

that whilst each snapshot will has similar phase angle between bar and spiral arms, they

will be at different stages in evolution. We select snapshots as close as possible in time

late into the systems’ evolution (t > 381 Myr), however there is a range of 147 Myr

within the snapshots selected.

In all cases, the resulting lv diagrams are similar enough that altering one parameter
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Table B.1. Parameter values considered

Parameter Values Unit

n 2, 4

i 10, 12.5∗, 15, 17.5 [◦]

Ωspiral −17.5, −20, −22.5∗, −25 [km s−1 kpc−1]

Ωbar −36.25, −37.5∗, −38.75, −40 [km s−1 kpc−1]

∗ Fiducial values.

within the constraints of our parameter range does not induce large deviations. How-

ever, an exact match to the spiral arm models of McClure-Griffiths et al. (2004), Reid

et al. (2014) and Reid et al. (2019) requires more sophisticated modeling that is beyond

the scope of this paper.
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Figure B.2. Longitude velocity diagrams of our parameter study with n = 2 spiral arms

with similar phase angle between the spiral arm potential and the bar. Left column is

where we vary the pitch angle. The middle and right columns are the variation in spiral

arm pattern speed and bar pattern speed respectively.
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Figure B.3. Same as Figure B.2 but with the n = 4 spiral arms subset.
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