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THEMA

Seit wir in den Nachthimmel blicken, haben wir uns über die Beschaffen-
heit von Planeten innerhalb und außerhalb unseres Sonnensystems Gedanken
gemacht. Die Beobachtungen der letzten drei Jahrzehnte haben eine atember-
aubende Vielfalt von Exoplaneten in Bezug auf ihre Größe, Temperatur und
Zusammensetzung offenbart. Von den Tausenden von bekannten Exoplaneten
kannnur eine kleineHandvoll direkt abgebildetwerden. Diese seltenen Systeme
bieten eine einzigartige Gelegenheit, ihre Atmosphären mit hoher Präzision
und breiter Wellenlängenabdeckung zu charakterisieren. Um diese Planeten
beobachten zu können, müssen sie genügend Wärme von ihrer Entstehung
bewahren, um durch ihre thermischen Emission beobachtbar zu sein. Dazu
müssen spezielle, kontrastreiche Bildgebungsverfahren eingesetzt werden, um
das schwache Signal des Begleiters von dem nahen Stern zu trennen, den er
umkreist. Nur junge, riesige Exoplaneten sind jung und hell genug, um direkt
beobachtet werden zu können. Ihre relative Jugend ermöglicht es uns, ihre
heutige Zusammensetzung mit demMechanismus in Verbindung zu bringen,
durch den sie entstanden sind.

In dieser Arbeit stelle ich die Instrumente und Methoden vor, die zur
Beobachtung und Charakterisierung solcher direkt abgebildeten Exoplaneten
verwendet werden, und wende sie auf das ReferenzsystemHR 8799 an. Die
Entwicklung des Analysemoduls petitRADTRANS ermöglicht die schnelle An-
passung vonModellen an spektroskopische Daten mit Hilfe von bayes’schen
Verfahren. Wir verwenden das Analysemodul um das JWST Early Release
Science Target WASP-39 b, einen heißen Exoplaneten mit der Masse des Sat-
urn, zu untersuchen. WASP-39 b hat eine Atmosphäre, die reich anMetallen
ist, und die Entdeckungen von CO2 und photochemisch erzeugtem SO2 wer-
den bestätigt. Durch den Vergleich von drei verschiedenen Algorithmen zur
Nachbearbeitung von Hochkontrastbildern werden die Auswirkungen der zur
Extraktion der Spektren eines Exoplaneten verwendeten Datenverarbeitung-
stechniken auf die Fähigkeit, auf atmosphärische Eigenschaften zu schließen,
untersucht. Es hat sich gezeigt, dass die Berücksichtigung der Korrelation zwis-
chen denWellenlängen der spektroskopischenMessungen entscheidend ist, um
unverfälschte Parameterschätzungen zu erhalten. Nach der Entwicklung der
Werkzeugefür die Datenanalyse undModellierung werden die Atmosphären
der vier Planeten vonHR 8799 systematisch charakterisiert. Mit Hilfe neuer
VLTI/GRAVITY-Beobachtungen und einer breiten Palette von Archivdaten
erstellen wir die bisher vollständigsten Spektren dieser Objekte. Die Planeten
werdenmit dem petitRADTRANSAnalysemoduls sowiemit selbstkonsistenten
radiativ-konvektiven Gleichgewichtsrastern angepasst. Die Eigenschaften der
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effektiven Temperatur, der Oberflächenschwere, des Radius, der Metallizität,
des Kohlenstoff-Sauerstoff-Verhältnisses, der Masse und der bolometrischen
Leuchtkraft werden für alle vier Planeten abgeleitet. Ihre Atmosphären sind
sehr metallreich und weisen ein stellares bis superstellares C/O-Verhältnis auf.
Zukünftige Studien werden notwendig sein, um diese atmosphärischen Eigen-
schaften mit ihrer Entstehungsgeschichte in Verbindung zu bringen, aber es
ist klar, dass diese rätselhaften Planeten in den kommenden Jahren ein Ziel für
weitere Beobachtungen bleiben werden.



SUMMARY

As long as we have gazed at the night skywe havewondered about the nature
of planets both within our Solar System and beyond. The last three decades of
observations have revealed a staggering diversity of exoplanets in terms of their
size, temperature, and composition. Out of the thousands of known exoplanets,
only a small handful can be directly imaged. These rare systems present a unique
opportunity to characterise their atmospheres with high precision and broad
wavelength coverage. In order to observe these planets, theymust retain enough
heat from their formation to be observable in thermal emission, using dedicated
high-contrast imaging techniques to separate the faint signal of the companion
from the nearby star which it orbits. Only young, giant exoplanets are bright
enough to be directly observable. Their relative youth enables us to tie their
present-day composition back to the mechanism via which they formed.

In this thesis, I present the tools and methods used to observe and char-
acterise such directly imaged exoplanets and apply them to the benchmark
systemHR 8799. The development of the petitRADTRANS retrieval module
allows for the rapid fitting of models to spectroscopic data in a Bayesian frame-
work. This retrieval method is applied to the JWST Early Release Science target
WASP-39 b, a hot, Saturn mass exoplanet. WASP-39 b is found to have an
atmosphere enriched in metals, and the detections of CO2 and photochemi-
cally produced SO2 are confirmed. By comparing three different high-contrast
imaging post-processing algorithms, the impacts of data processing techniques
used to extract an exoplanet’s spectrum on one’s ability to infer atmospheric
properties are explored. Accounting for the correlation between wavelength
channels of spectroscopic measurements is found to be critical to producing un-
biased parameter estimates. Having developed the data analysis and modelling
framework, the atmospheres of the four HR 8799 planets are systematically
characterised. Using newVLTI/GRAVITY observations, together with a broad
range of archival data we compile the most complete spectra of these objects to
date. The planets are fit using the petitRADTRANS retrieval framework, as well
as using self-consistent radiative-convective equilibrium grids. Bulk properties
of effective temperature, surface gravity, radius, metallicity, carbon-to-oxygen
number ratio, mass, and bolometric luminosity are inferred for all four planets.
Their atmospheres are found to be highly metal-rich, with stellar-to-superstellar
C/O ratios. Future study will be necessary to link these atmospheric properties
to their formation history, but it is clear that these enigmatic planets will remain
a target of further observations for years to come.
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“There is a single general space, a single vast immensity which we may
freely call Void; in it are innumerable globes like this on which we live and
grow. This space we declare to be infinite; in it are an infinity of worlds
of the same kind as our own. For there is no reason nor defect of nature’s
gifts, either of active or passive power to hinder the existence of other worlds
through space, which is identical in natural character with our own space.”

Giordano Bruno, 1584

INTRODUCTION



1. INTRODUCTION

The study of planetary systems goes back nearly as far as recorded history.
Most of this time was spent studying a small subset of all planetary systems, also
known as the Solar System planets. After the Copernican revolution of the 16th

century made our small place in the vast cosmos apparent, we began to wonder
about the worlds beyond our own. Is our Solar System unique? Is there other
life in the universe?

Planetary science took off in earnest with the advent of the telescope, al-
lowing for the observation of moons, rings, and atmospheric features. The
complexity of our neighbours soon became apparent, from the endless storms
of Jupiter to the scarred landscape of Mars. It was soon realised that the atmo-
spheres of the Solar System were entirely unlike our own. The rocky planets
span from the thin Martian atmosphere, barely clinging onto its dusty surface
to the dense, acidic furnace of Venus. The diversity of these atmospheres, even
for seemingly similar planets, is extraordinary, and so astronomers have spent
the last two centuries measuring the composition, dynamics, and weather of
our nearest neighbours.

For the last thirty years, we have been able to peer farther than ever before,
and have begun the exploration of extrasolar worlds. As telescopes have grown
in size and sensitivity, we can begin to make the same measurements of these
distant planets as we made of Mars and Jupiter over the past century. From the
first tentative signs of the presence of an atmosphere to the detailed characteri-
sation performed today, our understanding of these atmospheres has developed
rapidly. We are just now able to measure some exoplanet properties with similar
precision to that of Solar System measurements. The more we unveil about
these atmospheres, the more diversity we find, and it will be the task of the next
years and decades to truly answer those early questions about our place among
the stars.

In this thesis, Iwill continue the line of study that has captured our collective
imaginations for millennia. This introduction will provide the reader with the
necessary background and context for this work. In particular, I highlight
the instruments and techniques used to obtain the data, the origins of the
planets under investigation, and the links betweenobservations and atmospheric
models. The rest of this work details the development of novel techniques for
atmospheric characterisation, the careful validation of assumptions often made
about our data, and the application of both to a benchmark system of four
directly imaged exoplanets: HR 8799.
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2. A BRIEF OVERVIEW OF EXOPLANETS

The field of exoplanet research has seen an explosion of activity over the past
thirty years. Campbell et al. (1988) claimed the first detection of an exoplanet
using the radial velocity measurement technique, though the signal-to-noise
ratio (S/N) of their observations was too low to confirm the detection. A few
years later,Wolszczan&Frail (1992) found three super-earth exoplanets orbiting
a pulsar by observing variations in the pulsar timing. Finally, it was in 1995 that
Mayor &Queloz (1995) detected and confirmed 51 Peg b, the first exoplanet
orbiting a main-sequence star, thus ushering in the era of exoplanet research.

Since then, over 5600 exoplanets have been detected through various means.
The field has evolved in numerous directions, trying to answer questions about
the formation history of these objects, their atmospheric composition and
dynamics, and the population level trends. In the long term, the questions of
habitability remain open, and we continue to wonder whether or not we are
alone in the cosmos.

2.1. Detection Methods

Due to their small size and relatively cool temperatures, exoplanets are chal-
lenging to observe. Nevertheless, a suite of techniques for their detection and
characterisation have been developed, the most widely-used of which I sum-
marise here. Additional techniques, such as the use of gravitationalmicrolensing
to identify widely separated companions or high-resolution spectroscopy to
characterise the atmospheres of hot Jupiters, have also provided significant in-
sight into the exoplanet population but are not directly relevant to this work.
These and other methods have been thoroughly reviewed in the literature, such
as in reviews byWright & Gaudi (2013), Fischer et al. (2014) or Kaushik et al.
(2024).

2.1.1. Radial velocity

The radial velocity technique relies on the Doppler shift of the stellar spec-
trum induced by the gravitational pull of the planet on the host star. As the
planet orbits the host star, the star itself is pulled by the gravitational attraction
of the planet. This reflex motion causes a Doppler shift in the light emitted by
the host star, red-shifting the light as the star moves away from the observer, and
blue-shifting as it moves towards the observer. The period of the signal is thus
the same as the period of the planet, with a signal strength proportional to the
gravitational force exerted on the star by the planet. This is the same Doppler
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I Introduction

technique used to characterise binary star systems. When applied to exoplanets,
the key challenge is achieving the precision necessary to detect the small signals
induced by low-mass exoplanets on the much more massive host star. Indeed,
we see this bias reflected in the planets detected through this technique, where
the easiest targets are high-mass planets on short period orbits around low-mass
host stars.

We can quantify this picture. Consider a planet ofmass Mp orbiting around
a star of mass M⇤ with period T . We must also account for the orbital eccen-
tricity e, which changes the separation of the planet and star, as well as the
inclination angle between the orbital plane and the observer plane, i. The RV
semi-amplitude K can be calculated as

K =

 
2⇡G

T

!1/3
Mp sin i

⇣
Mp + M⇤

⌘2/3
1

�
1 � e2�1/2 , (2.1)

whereG is Newton’s gravitational constant. Due to the inclination angle, it is
only possible to measure the mass up to a factor of sin i.

Early RV instruments achieved precisions of 10 m s�1 or so – enough to
detect hot Jupiter type planets. Advances in instrumentation have improved the
precision of RV instruments by orders of magnitude, with current generation
instruments aiming for precisions approaching 1 cm s�1 at which point the
dominant noise source is typically stellar activity. Nevertheless, such precision
is required to identify earth-like exoplanets.

2.1.2. Transits

While the RVmethod enabled the first exoplanet discoveries, it has been
the transit method, particularly with theKepler and TESS missions, that has
led to the detection of thousands of new planetary systems. Transmission spec-
troscopy, led by the use of the Hubble Space Telescope (HST ) and James Webb
Space Telescope (JWST ), has become the standard method for atmospheric
characterisation. An exoplanet transit occurs when the planet passes directly
between the host star and the observer, thus blocking a fraction of the host
star’s light. As with the RV technique, larger planets on shorter period orbits
are easier to detect with this method: they obscure more of the stellar light,
transit more frequently, and are more likely to have a favourable geometry.

To first order, the transit depth�F/F is proportional to the area of the star
covered by the area of the planet:

�F

F
/

 
Rp

R⇤

!2

, (2.2)
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A BRIEF OVERVIEW OF EXOPLANETS

where F is the flux emitted by the star and �F is the change in the flux due to
the planet transiting the star. and R⇤ and Rpl are the stellar and planetary radii
respectively. Thus to measure the planet radius, in principle all that needs to be
done is to measure the brightness of the star in and out of transit. Needless to
say, many other considerations impact this simple model. Stars are not uniform
disks: limb darkening, spots, flares, and stellar variability can all impact the
shape of the light curve during transit. Planets can cross the star at an oblique
angle or only partially transit the host star. Transits are chromatic, and the
depth depends on the wavelength of light due to absorption in the atmosphere.
This chromaticity is critical for enabling transmission spectroscopy.

All of these additional complexities still donot outweigh the power of transit
measurements. With sufficiently precise data and careful modelling, most of
this complexity can be mitigated. This leaves obtaining precise measurements
as the primary challenge. Transit observations generally fall into one of two
categories: a survey observation or a characterisation observation. Surveys are
designed to observe a given sample of stars and identify any transit events. This
builds up the statistics necessary to understand exoplanet demographics and
identify promising candidates for follow-up characterisation. These surveys
can be ground-based, such as the HAT (Bakos et al., 2002), WASP (Pollacco
et al., 2006) and KELT (Pepper et al., 2007) surveys, but the majority of transit
discoveries have come from space-based survey missions, in particular from
Kepler and TESS .Kepler was designed to observe a single field of around 105

stars for a period of several years, with sufficient precision to identify planets
of 1 R� or smaller (Borucki et al., 2010). TESS took a different approach,
observing nearly the full sky at a regular cadence to detect transiting planets
around nearby, bright stars (Ricker et al., 2014; Stassun et al., 2018). Combined,
these two missions have discovered over 3100 confirmed exoplanets.

Characterisation observations generally use larger telescopes and are focused
on obtaining high-precision measurements. The goal of these observations is
typically to determine the chemistry and thermal structure of the target’s at-
mosphere using transmission spectroscopy. Even without spectroscopy, transit
observations in combination with RVmeasurements provide critical insight
into the composition and structure of exoplanets. With precise radii from the
transit observations and masses derived from radial velocity measurements,
the density of the planet can be inferred (e.g., Baines et al., 2007; Valencia
et al., 2007; Agol et al., 2021). Rocky planets have densities similar to that of
Earth at around 5 g cm�3, while hydrogen-dominated gas planets have densities
more comparable to that of Jupiter or Saturn, the latter of which has a density
< 1 g cm�3. Intriguingly, many exoplanets lie comfortably between these two
bounds, which can be explained by large water fractions or by large hydrogen
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I Introduction

envelopes around a rocky core (Otegi et al., 2020; Mousavi-Sadr et al., 2023).
At the other end of the spectrum, some exoplanets have densities approaching
10 g cm�3, well above that of pure iron. While the measurement uncertainties
are large, it is clear that the diversity of exoplanet compositions is larger still
than what we find in our own Solar System.

Transmission spectroscopy

The same geometry that allows us to detect transiting exoplanets makes
them favourable for spectroscopic characterisation. While before we assumed
that the planet was a simple disk obscuring the host star, in reality, the at-
mosphere of the planet appears as a thin limb around the disk of the planet’s
interior. The atmospheremay be optically thin or thick at different wavelengths,
depending on the composition, impact of aerosols, and pressure. It is typically
only a small fraction of the planet radius, and thus the signal due to the atmo-
sphere is even smaller than the transit signal itself, requiring relative photometric
precision on the order of 100 ppm or less.

We can calculate the typical signal strength of the transmission spectra, a
technique pioneered in Seager & Sasselov (2000). Consider an atmosphere in
hydrostatic equilibrium and obeying the ideal gas law, with a scale height H,

H =
kbT

µg
. (2.3)

This scale height depends on the thermal energy kbT , where kb and T are the
Boltzmann constant and temperature, the surface gravity g, and the compo-
sition, which determines the mean molecular weight µ. We can consider the
impact that the addition of n scale heights to the planet radius has on the transit
depth.

�I

I
⇡

⇣
Rp + nH

⌘2

R
2⇤

�
R

2
p

R
2⇤
, (2.4)

⇡ 2nRpH

R
2⇤
. (2.5)

As we are concerned with measuring the absorption spectrum, we must de-
termine how the scale height H varies as a function of wavelength �. Fortney
(2005) shows that the optical depth ⌧ in the line-of-sight geometry of a transiting
planet can be computed as a function of wavelength and altitude z:

⌧(�, z) = �(�)n(z)
q

2⇡RplH, (2.6)
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A BRIEF OVERVIEW OF EXOPLANETS

for absorber cross section�(�), scale height H, and n(z) = n0 exp(�z/H) is the
volume density at altitude z of the primary absorber. We can define a value of
⌧eq where a solid disk of radius Rpl + zeq is the same as that of the absorption
radius of the planet with its translucent atmosphere. The authors find this
boundary occurs at ⌧eq ⇡ 0.56. We can then invert equation 2.6 to find the
atmospheric height z(�), which combined with the planet radius yields the
planetary radius as a function of wavelength:

z(�) = H log

0
BBBBBBB@

Xabs�abs(�)Pref

⌧eq

s
2⇡Rpl

KbTµg

1
CCCCCCCA . (2.7)

Here Xabs is the volume mixing ratio of the absorber with cross section�abs(�),
Pref is the pressure where z = 0. As before kb and T are the Boltzmann constant
and temperature, g is the surface gravity, and µ is the mean molecular weight.
This shows that although the cross section is in the logarithmic term, its orders-
of-magnitude variation with wavelength leads to contributions to z(�) on the
order of the scale height.

Transmission spectroscopy has opened the doors to understanding the com-
position and dynamics of these worlds. Charbonneau et al. (2002) obtained the
first measurement of an exoplanet atmosphere, detecting the sodium doublet
at 589.3 nm in the atmosphere of HD 209458 b. Since then HD 209458 b
has served as a benchmark for hot Jupiter atmospheres; it was among the first
exoplanets observed in thermal emission with Spitzer as it passed behind its
host star (Deming et al., 2005), and to have been observed using broad wave-
length infrared spectroscopy (Richardson et al., 2007). Sing et al. (2016) placed
HD 209458 b in context with other hot Jupiters, compilingHST and Spitzer
measurements from the UV to the infrared to form a spectral sequence. They
identified systematic trends in the depth of the water absorption feature as a
function of effective temperature, forming a continuum from hot, clear atmo-
spheres to cooler cloudier atmospheres. This work was expanded byMansfield
et al. (2021), who produced a similar spectral sequence for hot Jupiters in ther-
mal emission, finding evidence for compositional diversity as well as trends in
atmospheric opacity sources as a function of temperature. A new era of trans-
mission spectroscopy began with the observation ofWASP-96 b with JWST,
an Early Release Observation of the telescope (Radica et al., 2023). With un-
precedented precision and wavelength coverage, JWST opens new windows
into the atmospheres of hot Jupiters and enables the characterisation of worlds
that were previously inaccessible.

While ‘easy’ to study due to their short periods and large atmospheric scale
heights, hot Jupiters are not the only class of planets studied in transmission.
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From ultra-hot Jupiters on extremely short orbits, such as WASP-121 b (Delrez
et al., 2016; Mikal-Evans et al., 2023) to cool and cloudy sub-Neptunes (Krei-
dberg et al., 2014) to rocky planets (Lim et al., 2023), each class of exoplanet
provides novel insight into the diversity of potential atmospheres.

2.1.3. Direct imaging

While transit and radial velocity measurements rely on the influence of
a planet on its star to infer planet properties, direct imaging allows for the
collection of photons from the planet itself. This is obviously a challenging
prospect: planets are intrinsically small and dim and are located near very bright
stars. Thus the challenge of direct imaging is to reduce the glare of the host star
to be able to view light emitted from the planet. Todate, it has only beenpossible
to observe thermal emission from young planets that have retained some of
the heat from their formation. This requirement necessarily implies that the
directly imaged planet population is young, as after a few hundred million years
most planets have cooled off too much to be detectable. Upcoming surveys
with JWST may allow for the detection of older, colder targets (Carter et al.,
2024).

The first direct detection was made in 2005, when Chauvin et al. (2005)
detected the companion 2M 1207 b (also known as TWA 27 b). Orbiting
a brown dwarf, 2M 1207 b is a ⇠5 MJup planet on a 55 au orbit. This initial
discovery already demonstrated the difficulty in drawing the line between brown
dwarfs and giant exoplanets. They are spectrally similar, with similar masses
and compositions. Nevertheless, for the purposes of this thesis, I will call any
object under the 13MJup deuterium burning threshold which orbits a central
object that undergoes some fusion process a planet.

Following the discovery of 2M1207b, roughly 20 systems of directly imaged
planets have been identified. These systems vary greatly in the number of planets
per system, the planet-star separations, and the exoplanet compositions. Of
the directly imaged planets, a few systems stand out as benchmarks. The HR
8799 system hosts four super Jupiters orbiting an AV/F0 host star. It was first
discovered byMarois et al. (2008), andwill be covered extensively in Chapter IV.
The � Pictoris system has been an object of interest for several decades, as it
was the first system to have a spatially resolved circumstellar disk (Smith &
Terrile, 1984). With improvements to instrumentation, Lagrange et al. (2010)
identified one giant planet in the system, and later identified a second inner
companion by coupling radial velocity, astrometry, and direct interferometric
measurements (Lagrange et al., 2020). These two systems span typical direct
imaging properties. The coldest, outermost planet of the HR 8799 system, HR
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Figure 2.1: A family portrait of some of the directly imaged exoplanets. In order
from left to right, top to bottom: 2M 1207 (Chauvin et al., 2005), PDS 70 b, c
(Keppler et al., 2018), YSES 1 b, c (Bohn et al., 2020), 51 Eridani b (Macintosh
et al., 2015), COCONUTS-2 b (Zhang et al., 2021), HR 8799 b, c, d, e (Marois
et al., 2010), HD 95086 b, (Rameau et al., 2013), HIP 65426 b (Carter et al.,
2023),  Andromedae b (Bonnefoy et al., 2014a), GJ 504 b (Kuzuhara et al.,
2013), � Pictoris b (Quanz et al., 2010), AF Leporis b (Mesa et al., 2023), and
HD 106906 b (Daemgen et al., 2017).
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8799 b, has a temperature of around 950 K, though it is somewhat different
in its spectral shape compared to field brown dwarfs of the same temperature.
At the other end of the spectrum, � Pictoris b has a mass of nearly 10MJup and
a temperature of about 1600 K, and is a close analogue of mid-L type brown
dwarfs.

Even with only a small handful of targets compared to the abundance of
transiting exoplanets, direct imaging has proven to be a rich opportunity to
explore exoplanet atmospheres and planet demographics. For recent reviews of
the subject, see Currie et al. (2023a), Chauvin (2024) and Zurlo (2024).

2.2. Exoplanet demographics

The most obvious and fundamental question in exoplanet demographics is
‘How many exoplanets are there?’ This deceptively simple question requires
some careful thought. Gaudi et al. (2021) and Zhu & Dong (2021) review
this question, and exoplanet demographics in general with greater depth, but I
highlight a few key features of the exoplanet population here.

Many stars are host to more than one planet, and the number and character
of the planets within a system often seem to be correlated. We can rephrase our
question in a few ways. First, we can ask ‘What is the average number of planets
hosted by a star?’ This is simply the total number of planets Np, corrected for
observational biases, divided by the number of stars N⇤.

N̄p =
Np

N⇤
. (2.8)

Equally informatively, we can phrase the question as ‘What fraction of stars
host at least one planet?’ In this phrasing, we ignore planet multiplicity and
divide the number of planetary systems Ns by the number of stars,

N̄s =
Ns

N⇤
. (2.9)

It is still observationally challenging to determine both Np and Ns. Consider
the observational biases present in different detection methods. RV searches
are most sensitive to close in, massive planets with low inclinations relative to
the star-planet-observer plane. Thus we are insensitive to systems that contain
small planets on wide orbits. Similar biases are present in transit surveys, due to
the sensitivity to larger radii planets on short period orbits. Direct imaging and
gravitational microlensing have nearly inverse biases: both are more sensitive
to larger planets on wide period orbits. Direct imaging in particular is so far
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Figure 2.2: Left: Planet radius as a functionof orbital period. Different coloured
markers indicate the detection methods used for discovery. Right: Period-
mass diagram. Data is taken from the NASA Exoplanet Archive, https://
exoplanetarchive.ipac.caltech.edu/.

insensitive to planets smaller than ⇠1MJup, and can only observe young plan-
ets, which may have different system architectures than older systems. Even
interpreting N⇤ can be surprisingly difficult: many stars are likely unresolved
binaries, which may not be apparent from photometric observations with small
telescopes such asKepler and TESS . Stellar binarity is also likely to influence
the planet formation process, and will therefore produce different demograph-
ics than the single star population (Moe & Kratter, 2021). Finally, the choice
of stars observed also introduces biases. Many surveys are designed to select
low-activity FGK stars, which allow for easier detection of exoplanets, but may
not be representative of the overall exoplanet population. Likewise, due to the
relatively larger signal, transit observations are most sensitive for M-dwarf stars.
While M-dwarfs are the most common stellar type, their lowmass and high UV
activity may result in different exoplanet populations than for higher mass stars.

With all of these caveats (andmore) considered, it is still possible to estimate
N̄p and N̄s for restricted regions of parameter space. In Figure 2.2, we present
the current state of exoplanet discovery: over 5600 confirmed exoplanets as
of writing. This figure shows the relationships between the planet radius and
orbital period. Some of the observed features are physical, such as the radius
gap between Neptune and Jupiter sized planets, as well as the hot-Neptune
desert at short orbital periods. However, the dearth of planets at small radii and
large orbital separations is largely due to the lack of sensitivity to that region of
parameter space. Using similar data, Zhu &Dong (2021) estimate N̄p using a
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Bayesian framework, finding that ‘N̄p = 1.23 ± 0.06 for planets with radii in
the range of 1–20 RJup and orbital periods of up to 400 days.’ Kepler planets are
often found in multiplanet systems, with planets in the same system behaving
as ‘peas-in-a-pod’, sharing similar radii and clustered orbits (Weiss et al., 2018).
The notable exception to this is hot Jupiters, which are more likely to reside in
single planet systems.

Directly imaged planets occupy a relatively niche region of parameter space.
With young ages and wide orbits, they are inherently distinct from the old,
compact systems readily detected with transit surveys. Many efforts have been
made over the years to observe both statistically representative samples, as well as
targeted searches around starsmore likely to host detectable planets. Thedeepest
of these surveys were accomplished with extreme adaptive optics assisted high-
contrast imagers situated on 8–10 m telescopes. In particular, the SPHERE
infrared survey for exoplanets (SHINE) (Desidera et al., 2021; Vigan et al., 2021)
and Gemini Planet Imager Exoplanet Survey (GPIES) (Nielsen et al., 2019)
placed strong constraints on the occurrence rates of young, giant planets. When
combined with RV surveys, they broadly estimate that ⇠20% of sun-like stars
host giant exoplanets between 10-100 au, with higher mass stars more likely to
host massive, widely separated companions. Currie et al. (2023a) provides a
summary of direct imaging survey efforts, discussing how our understanding of
this population has developed through improvements in instrumentation and
survey design.
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The primary challenge of directly imaging exoplanets is not the faintness
of the companion, but rather the overwhelmingly bright light of the host star.
Thus high-contrast imaging (HCI) techniques are required to extract the com-
panion signal from the glare of the host star. Even in thermal emission where
the exoplanet spectral energy distribution (SED) is at a maximum, the exoplanet
signal can be more than a factor of 104 fainter than that of the star. For an
earth-like planet in reflected light, the contrast between the star and planet can
be more than 1010. This becomes increasingly challenging at small angular
separations: the closer to the core of the stellar point-spread function (PSF),
the more difficult it is to distinguish the two signals. Thus the field of HCI is
largely dedicated to developing instrumentation and data processing techniques
to minimise the host star signal while amplifying the companion signal.

3.1. Instrumentation

The second generation of planet finding instruments such as the Spectro-
Polarimetric High-Contrast Exoplanet Resarch instrument (SPHERE) (Beuzit
et al., 2008, 2019), the Gemini Planet Imager (GPI) (Larkin et al., 2014) and
the Subaru Coronagraphic Extreme Adaptive Optics instrument (SCExAO)
have enabled the regular detection and characterisation of young super Jupiter
companions. These instruments were designed to reach contrasts of some
⇠10�6 at 200mas separation from the host star. To achieve this they are located
at 8m to 10m observatories equippedwith extreme adaptive optics systems and
coronagraphs, and are operated to take advantage of differential imaging post-
processing techniques. They often consist of both imaging cameras and integral
field spectrographs (IFS), the latter of which enable the detailed characterisation
of companions. Figure 3.1 shows the contrast curves for these and other similar
instruments. These curves show for a given separation the maximum contrast
between the host star and planet for which a 5� detection could be made.

3.1.1. Adaptive optics

The first problem that must be solved when pushing to small angular sepa-
rations is atmospheric turbulence. In seeing-limited conditions, the wavefront
is highly distorted by the atmosphere. When time-averaged by a detector, the
randommotions of the PSF result in a smeared observation with a full width at
half maximum (FWHM) on the order of 1”. In the diffraction limit, a 10 m
telescope has a resolution of about 30 mas. When trying to image a companion
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Figure 3.1: Contrast curves of current and future high contrast instruments.
Each curve indicates the separation and contrast at which a 5� detection can
be obtained. Reproduced with permission from Follette (2023), see Figure16
for details of how each contrast curve is computed.
at small angular separations, it is thus critical to apply adaptive optics corrections
both to confine the light of the host star to a smaller angular region, but also that
of the companion, ensuring that the faint signal is spread over a smaller detector
region, which ensures it remains above the noise floor of the detector. Current
extreme AO systems can routinely reach Strehl ratios (the ratio between the
peak of the observed PSF and an ideal Airy pattern at the diffraction limit of
the telescope) of ⇠90% in the H-band. To achieve this, several sub-systems are
required: a wavefront sensor (WFS) which measures the aberrations due to
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atmospheric turbulence, a real-time computer (RTC) which computes the ap-
propriate corrections for the wavefront, and a deformable mirror (DM), which
can change shape to correct for the distortions in the wavefront. Reviews of
AO systems can be found in Davies & Kasper (2012) or Milli et al. (2016). In
this section I will outline the fundamental operating principles and architecture
of a modern extreme AO system.

The WFS measures the distortion of the wavefront by the atmosphere.
This must be done at high spatial resolution across the FoV of the telescope,
and at sufficient speed to correct for rapid changes in atmospheric turbulence.
The speed and spatial resolution of WFS are limited by the amount of light
available from a reference star (or laser guide star). As it is presently unfeasible
to directly measure the phase of light in the near-IR or visible, phase variations
must be computed from fluctuations in the intensity. Two technologies have
emerged as the most common solutions this problem: the Shack-Hartmann
WFS (SHWFS), and the PyramidWFS. A more complete description of these
and other wave front sensors can be found in Rousset (1999). The SFHWS uses
a lenslet array in the pupil plane to sample the incident wavefront. For a planar
wavefront, all of the projected images of a point source will be centered in the
focal plane. If the wavefront at a given lenslet is shifted in phase, the position of
the projected image will then be shifted in the focal plane. By measuring this
displacement, a correction can be calculated by the RTC and sent to the DM.
The ‘extreme’ label of extreme AO systems refers to the density of actuators
available to manipulate the DM: the higher the actuator density, the higher the
order of control available, although this comes at increasing the computational
cost to determine the correction. The full control cycle occurs at a rate of
around 1 kHz for corrections in the near-IR. For a pyramidWFS, a pyramidal
prism is located at a focal plane in the optical path. Each face of the prism
projects a unique pupil image through a series of lenses onto a detector. The
flux measured in each pupil image can then be related back to the wavefront
error. This method is more sensitive to low-order aberrations than the SHWFS,
which is particularly important for coronagraphic imaging.

AO systems can allow for nearly diffraction limited imaging in the near
IR, and as the technology develops the corrections will improve and can be
applied to shorter wavelengths. However, they are only able to correct for
distortions introduced prior to the WFS, and are not sensitive to non-common
path aberrations throughout the remaining optical path. This leaves systematic
residuals in the AO corrected images, commonly known as quasi-static speckles,
or simply as speckles. These speckles vary slowly over time relative to the length
of an observation, but are highly structured, thus complicating the detection
of faint point sources in the image. To surpass this limitation, further post-
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Figure 3.2: Example of the working principle of a Lyot coronagraph, made
using hcipy. The top row shows a the optical path of a star passing through a
Lyot coronagraphic setup, the bottom row also includes a companion with one
tenth the brightness of the primary source. All images are on the same colour
scale, with arbitrary units of intensity. From left to right we see the image as
determined by the telescope PSF, in this case a simple circular aperture. A Lyot
mask blocks out the central light of the PSF. The beam then passes through an
apodizer at the pupil plane, which masks out residual starlight. Finally, on the
right we see the image as projected onto a detector, with the core of the stellar
PSF reduced in intensity, but allowing the companion light to pass through.

processing of the data is required.

3.1.2. Coronagraphs

Coronagraphs are optical elements used to block the on-axis light of the
central star and transmit the off-axis light of a companion signal. Various designs
have been introduced over the years, from the simple opaque focal planemask of
Lyot (1931) to modern apodizing phase plates optimised for a specific telescope
pupil. Galicher & Mazoyer (2024) provides an overview of the theory and
design of coronagraphic optics, which I will briefly explore here.

The most basic design for a coronagraph is that of Lyot (Lyot, 1931), an
example of which I show in Figure 3.2. In this setup, the light from the telescope
is focused onto an opticalmaskwhich blocks out the core of the PSF. Further on
in the beam at the pupil plane an apodizing mask is inserted, further removing
scattered light and increasing the contrast. The final image is then focused
onto the detector plane, with the core of the PSF greatly reduced in intensity,
but off axis light allowed to pass through unfiltered. This design requires very
precise positioning of the stellar PSF onto the initial mask, and so it is highly
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sensitive to the AO correction available. In addition, realistic telescope pupils
do not produce clean circular Airy rings, and so the effectiveness of the design is
further compromised. To mitigate these effects, there were several subsequent
developments of focal plane coronagraphs (Zurlo, 2024).

Four quadrant phase-mask (4QPM). As the name implies, each quadrant
of the focal plane receives a ⇡ phase shift, resulting in destructive interference of
the host star, which is centred at the intersection of the four quadrants. Off axis
light is simply phase shifted, but as it only passes through one quadrant is not
destructively interfered. This type of coronagraph, together with a Lyot mask is
available on JWST.

Vector vortex coronagraphs. Similar to the 4QPM, this coronagraph induces
a phase shift at the focal plane. However, this design can induce a nearly con-
tinuous variation as a function of position angle, producing deeper contrast at
small inner working angles (Mawet, 2007; Mawet et al., 2007).

Modern coronagraph designs are typically inserted in the pupil plane, mod-
ifying the phase of the wavefront to interfere the stellar signal but allow off axis
light to pass through. These designs are further optimised for an individual
telescope pupil geometry. By acting at the pupil plane, they are less sensitive
to the precise positioning of the stellar PSF. These areApodizing Phase Plate
(APP) (Carlotti, 2013; Carlotti et al., 2014) or Vector APP (Doelman et al.,
2021) designs, which are effective across a broad wavelength band and have high
throughput, while being optimised for extreme contrast at small inner working
angles. These are highly flexible designs that can produce nearly arbitrary dark
regions around the central PSF, depending on the observing requirements. AO
performance remains the limiting factor, but vector APP designs have been
shown to reach raw contrasts of 10�4 (Doelman et al., 2021).

3.1.3. Integral Field Spectrographs

While imaging is the ideal tool for the detection of exoplanets in thermal
emission, spectroscopic observations are necessary if we want to precisely char-
acterise their atmospheres. While this can be achieved using traditional long
slit spectroscopy (e.g., Snellen et al., 2014), most high contrast instruments
are instead equipped with Integral Field Spectrographs (IFS). These instru-
ments record spectra at different positions throughout the field of view, and
can then be combined to produce a data cube with two spatial axis and one
wavelength axis. While various optical designs can be used to achieve this, the
most common design is the use of a lenslet array which samples the telescope
image, and projects each image onto a slit for dispersal, thus providing a spectra
at each lenslet location. The SPHERE instrument is one example of such an
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Figure 3.3: Left: detector image acquired by the SPHERE IFS. Each vertical line
is a spatially separated, low resolution spectrum. The central star is obscured by
a coronagraph, resulting in better sensitivity to companions at small separations.
Right: a single frame of the resulting datacube, where each ‘spaxel’ (spatial pixel)
would now have an additional axis of wavelength. The quasi-static speckles
dominate the noise within the AO control ring. The four bright spots are
known as satellite spots, and are used for centring the image.

instrument, and an example of the dispersed, spatially resolved spectra as well
as a single frame of the resulting data cube can be seen in Figure 3.3. These
instruments exist across a broad range of spectral resolutions and bandwidths,
though most high-contrast instruments are designed to capture low-resolution
(R< 100) spectra in the near-infrared. For additional contrast sensitivity, IFS
instruments can be equipped with the same adaptive optics and coronagraphs
as imaging instruments, resulting in excellent performance at small angular
separations. The addition of spectral information can also aid in the detection
of exoplanets through techniques such as molecular mapping (e.g. Hoeijmakers
et al., 2018; Cugno et al., 2021; Patapis et al., 2022).

3.2. Data processing

Even with the use of AO and coronagraphic instruments, high-contrast
data are typically still dominated by stellar speckles. These speckles vary slowly
with time, and cannot simply be averaged out over the course of an observation.
Therefore, more sophisticated methods are required for the removal of the re-
maining stellar PSF. Thesemethods fall under the broad category of differential
imaging, andmake use of some varying data component to distinguish between
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the stellar and planetary signals.

3.2.1. Reference differential imaging

Reference differential imaging (RDI) utilises the stability of a telescope
PSF over time. In an ideal case, the stellar PSF can be measured by observing a
reference star of similar brightness and subtracting the reference from the science
target, leaving only the companion signal and residual noise. Unfortunately,
the PSFs are rarely similar enough for this to function in such a straightforward
fashion. Changes from imperfect AO correction, thermal effects, and variations
in the optical path all lead to changes in the PSF both during the course of
an observation and between observations. These can be partially mitigated
by building a library of reference PSFs, building a model through the use of
principal component analysis or similar techniques, and fitting this model to
the science data for subtraction. Nevertheless, RDI typically remains in the
domain of space telescopes, which have no atmosphere to distort the incoming
wavefront and can be extremely thermally stable over time.

A recent, notable exception to this is SPHERE’s so-called ‘star-hopping’
mode, pioneered byWahhaj et al. (2021). When observations are taken in this
mode, the telescope rapidly nods between the science target and a nearby refer-
ence target, leaving the adaptive optics control loop closed following an initial
acquisition. This results in a series of science and reference images obtained
nearly simultaneously, ensuring similar conditions in both the atmosphere and
optical path. Compared to other image processing methods, these observations
obtained a contrast sensitivity 2 magnitudes deeper between 100 mas and 300
mas.

3.2.2. Angular differential imaging

The most commonHCI post-processing technique is angular differential
imaging (ADI), first introduced byMarois et al. (2006). In this technique, the
derotator used to keep an observed field stable on a detector as the earth rotates
is disconnected. This allows the field to rotate as the telescope tracks the target
over the course of an observation. By keeping the host star fixed at the centre of
the field, the PSF remains stable while a companion rotates around the centre
of the frame. Thus in every frame, the planet will appear in a different position.
The frames can be median combined, producing an average PSF, with only a
negligible contribution from the companion at any position. This average PSF
is then subtracted from every frame, which can then be derotated and added,
resulting in an averaging of the residual noise and the stacking of the companion
signal.
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3.2.3. Spectral differential imaging

Spectral differential imaging (SDI) (Racine et al., 1999) functions simi-
larly to ADI. The PSF size depends on the wavelength of light. Thus as the
wavelength increases, the speckle pattern expands radially outward, while the
companion remains fixed in place. Equivalently, each frame can be rescaled such
that the speckle pattern remains in a fixed position, while the companion shifts
position throughout the frames. As with ADI, a median PSF image can then
be determined and subtracted from each frame, leaving residual noise and the
companion signal, which can be added to boost the signal. Recently Ruffio et al.
(2023) extended this approach to jointly fit the stellar signal and companion
signal directly to JWST/NIRSpec detector images rather than to extracted 1D
spectra, finding that this approach dramatically improves the contrast sensitivity,
particularly at small separations.

3.2.4. Modern processing algorithms

All of the previously mentioned data processing approaches have been
dramatically improved over time. Using IFS data, ADI and SDI approaches are
often combined, while ADI+RDI approaches have seen some use in processing
data taken using JWST (Carter et al., 2023). Broadly speaking, most processing
algorithms now fall under one of three categories.

Speckle subtraction These approaches inherit from early ADI work. They
typically rely on principal component analysis (PCA) or a similar ap-
proach to learn the features of the stellar PSF, and use these features to
produce a model which can be subtracted from the science images. This
model canbebuilt using the science frames themselves, or froma library of
reference PSFs. The references can include both spatial variation as with
ADI imaging, as well as spectral variation as with SDI. LOCI (Lafrenière
et al., 2007;Maire et al., 2012;Marois et al., 2014), PCA (Amara&Quanz,
2012) and KLIP (Soummer et al., 2012; Pueyo, 2016) are all examples of
this approach.

Inverse methods This approach uses a likelihood minimisation algorithm
to fit a model of the background and companion PSF to the data. Ul-
timately, this produces a maximum likelihood estimate of the contrast
and uncertainty at every location in the image. Some algorithms, such
as ANDROMEDA (Cantalloube et al., 2015) first perform PSF subtraction
before fitting the model, others such as PACO (Flasseur et al., 2018, 2020)
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jointly fit a noise model and the planet signal.

Machine learning The last approach uses supervisedmachine learning to
infer the presence of a companion. This requires a large training dataset,
and typically perform inference on small patches of pixels throughout
the field of view to build a detection map for the entire image. So far
such approaches show promise for the detection of exoplanets, but have
not yet been used to measure the companion flux, which is a necessary
component for further characterisation.

Cantalloube et al. (2020a) performed a systematic comparison of these different
algorithms to compare their ability to detect unseen companions. I will explore
the use of such algorithms in Chapter III, focusing instead on how they impact
the characterisation of exoplanets via their systematic effects on the extracted
spectra.

3.3. Optical interferometry

While high contrast imaging allows us to observe exoplanets at 100 mas or
so from their host star, the angular resolution available is still fundamentally
limited by the telescope diameter. Optical interferometry provides an avenue to
increase the sensitivity to exoplanets at much smaller separations, as the angular
resolution is determined by the longest baseline available in the interferometer.
Michelson & Pease (1921) was the first to use interferometry to measure the
radius of a star, but itwasn’t for another 50 years that the technologywas suitably
mature for Labeyrie (1975) to use two telescopes with sufficient stability to
measure the angular size of Vega. Since these early observations, various facilities
have been built to regularly perform optical and infrared interferometry. For
example, the Very Large Telescope Interferometer (VLTI) has a a maximum
baseline of 134 m when using the 8 mUnit Telescopes (UTs), resulting in an
angular resolution of around 5 mas in the K-band, as compared to 50 mas for
any one of the 8 m telescopes in the diffraction limit. For this thesis, I make use
of spectra obtained using VLTI/GRAVITY instrument, taking advantage of
the high spatial resolution.. As it is impractical to build a monolithic telescope
of equivalent diameter, this remains the best option for high angular resolution
observations for the foreseeable future.

A more thorough treatment of fundamental interferometric theory can be
found in Haniff (2007), upon whose work we will build our theoretical frame-
work. Roddier & Lena (1984) also introduce considerations of the atmosphere
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and the impact of practical optical systems on the production andmeasurement
of interferometric fringes on a detector. In this section I introduce fundamental
interferometric theory, as well as the details of the GRAVITY instrumental
design.

3.3.1. Theory

An interferometer functions by passing the light emitted by some source
through a pair of apertures, resulting in an fringe pattern caused by the construc-
tive and destructive interference of the light waves. This pattern is sensitive to
both the geometry of the interferometer and that of the emission source. In the
most simple case, we can consider the double slit experiment of Young (1804),
where a point source a emits monochromatic, plane-parallel radiation along the
z axis, and passes through a screen with two pinhole apertures separated by a
baseline B. The fringe pattern caused by summing the spherical waves emitted
from the pinholes is then measured on a screen located at a distance z1 from the
aperture plane. This geometry is outlined in Figure 3.4. The amplitude of the
electromagnetic wave ~E at point x as a function of the diffraction angle ↵ can
be computed from the sum of the spherical waves emitted from the pinholes

~E (↵) =
E0

r1
e

ikr1 =
E0

r2
e

ikr2 , (3.1)

=
2E0

z1
e

ik(r1+r2)/2 cos (k (r1 � r2) /2) . (3.2)

The distance from the i
th pinhole to point x is ri, where r1 ⇡ r2 ⇡ z1, and the

optical path difference (OPD) is defined as (r1 � r2), which for small angles is
approximately ↵B. The intensity is the square of this amplitude,

I = |E(↵)|2 . (3.3)

We cannowdefine the visibilityV as the contrast between the peaks and troughs
of the fringe pattern

V = Imax � Imin

Imax + Imin
. (3.4)

The visibility is one of the key observables of interferometry, and is sensitive to
the geometry of the emission source. The second key observable is the phase
of the fringes, that is the position of the central fringe with respect to the zero-
optical-path-difference location.

This formalism can be extended to a more realistic interferometric setup,
accounting for the position of the emission source relative to the apertures, the
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Figure 3.4: The geometric setup of the double slit experiment. The interference
of the waves induced by the linear combination of the emission from the two
slits results in a characteristic fringe pattern. The amplitude of the fringe at
position x is determined by the optical path difference (r1 � r2), which can be
determined from the baseline B and angle ↵.

geometry, coherence and bandwidth of the emission source, and the physical
size and shape of the sub apertures. To address these, we adopt the framework of
temporal and spatial coherence functions. These functions allow us to reframe
our observables in terms of the correlations of the electric field from the source.
The temporal coherence function Vt(⌧)measures how correlated the electric
fields along the emitted wave are in time at a fixed location. In particular, we are
interested in the time-average of this quantity, as we are integrating over time
when taking a measurement
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⌘
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Importantly, by theWeiner-Khinchin theorem, this coherence function is equal
to the Fourier transform of the spectral energy distribution of the emission
source, B (!), where! is the frequency of the emission. Therefore, measure-
ment of the correlation of the electric field at a point over time provides us
with a means to obtain the emission spectrum of an astronomical source via an
inverse Fourier transform of Vt (⌧)

Vt (⌧)
Vt (0)

=

R
B (!) e

�i!⌧
d!

R
B (!) d!

. (3.6)

This also allows us to define a coherence time, which determines the maxi-
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mum time delay that can separate different measurements. The coherence time
depends directly on the bandwidth of the observed spectrum�!: a broad band-
widthmeasurementwill have a shorter coherence time than a narrowbandwidth
observation. The coherence time is thus defined as

tch ⇡ 2⇡/�!. (3.7)

The spatial coherence function measures the correlations at a fixed time
across varying location.

⌦
E
⇤ �~r1, t1

� ⇥ E
�
~r2, t2

�↵
= V

�
~r1 � ~r2, t1 � t2

�
= V

�
~⇢, 0

�
. (3.8)

Analogous to the temporal coherence function, the spatial coherence function
is related to the sky brightness by its Fourier transform by the Cittert-Zernike
theorem

Vr

�
~⇢
�

Vr (0)
=

R
I
�
~↵
�

exp
⇣
�2⇡i

⇣
~↵·~⇢
�

⌘⌘
d↵

R
I
�
~↵
�

d↵
. (3.9)

If we consider on-sky coordinates ↵ and �, as well as the reciprocal coordinates
u and v in Fourier space which are sampled by the interferometer baselines, we
can rewrite equation 3.9 in a more practical way

Vr (u, v) =

R R
I (↵, �) exp (�2⇡i (u↵ + v�)) d↵d�

R R
I (↵, �) d↵d�

. (3.10)

Thus by thoroughly sampling the uv plane by appropriate choices of baseline
separations and orientations, an inverse fourier transform of the measurements
will reconstruct the source brightness distribution.

To summarise: via measurements of fringe visibility at different times and
different locations, we can calculate the spatial and temporal correlations of the
emitted radiation. Applying inverse Fourier transforms, we can determine the
source structure and spectrum, which are the key quantities of interest for most
astrophysical signals. In practice, we will also need to account for the impact of
the atmosphere on the impinging wavefront, as well as the transfer function of
the optical system used in the interferometer. These effects can be mitigated
through careful instrumental design, discussed further in the next section, as
well as by careful calibration using both internal sources and well-characterised
astrophysical signals.
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Figure 3.5: Schematic of a single baseline of VLTI/GRAVITY. THE VLTI
components (shown in red boxes) are shared between the VLTI instruments,
while theGRAVITY specific components are shown in blue boxes. Reproduced
with permission from Gravity Collaboration et al. (2017).

3.3.2. VLTI/GRAVITY design

While the basic principles of interferometry are relatively straightforward,
actually constructing an instrument sensitive enough to observe exoplanets
is highly challenging. Modern interferometric systems have been enabled by
developments in adaptive optics, allowing for diffraction-limited signals from
large telescopes, real time control loops enabling the measurement and control
of the fringe pattern, and low-noise infrared detectors with fast enough readout
times such that the signal remains coherent. The optical and mechanical design
of GRAVITY can be found in Gravity Collaboration et al. (2017), and we will
summarise the key components of the instrument here. A schematic of the
instrument is provided in Figure 3.5.

GRAVITY is a fibre-fed, K-band interferometric spectrograph that can
coherently combine light from the four 8 mUTs or the four 1.8 m Auxiliary
Telescopes (ATs) located at the VLT. It has the capability to operate in either
single or dual field mode. In the latter mode, one of the fields is centred on a
bright reference star in order to obtain a strong signal for wavefront sensing and

25



I Introduction

Figure 3.6: VLTI/GRAVITY science fringes for HR 8799 e, combining all 6
UT baselines.

fringe tracking, while the second field is centred on the faint science target for
longer integrations. In single field mode the reference and science targets are
the same.

VLTI

The main components of the VLTI are shared by the different interfero-
metric instruments available at the facility. These consist primarily of the AO
system and the delay lines. The AO system functions as in the case of high
contrast imaging, splitting off shorter wavelength light from the reference star
and passing it to a wavefront sensor. This sensor then measures the aberration
of the wavefront on timescales of ms, and applies the appropriate corrections
to a deformable mirror. With ideal correction, this allows for a near-diffraction
limited image to be passed through the remainder of the instrument, and is
particularly important for increasing the amount of light that is able to be passed
into the single mode fibres. It also increases the coherence time, allowing for
practical interferometric measurements.

Once the beam has been corrected by the AO system, it is passed through
the delay lines which compensate for the OPD between the telescope mirrors.
As the OPDmust be identical to within the wavelength of interest, the delay
lines can position the mirrors to 5 nm precision over a 180 m distance, and
allows the OPD to remain stable over the course of an observation as it slowly
varies due to the earth’s rotation.
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Beam combiner instrument

Following the delay lines the signal is passed to the beam combiner in-
strument. The goal of this instrument is to combine the light from the four
telescopes, track and control the fringes of the reference star and thus integrate
the science signal on the spectrograph. The fringe tracking correction is applied
by tip-tilt-piston and lateral pupil control mirrors prior to coupling the beam
to the optical fibers. The beam is then split, separating the reference phase and
science star light, as well as separating the light between the fringe tracker and
science spectrometer. Once split, the beams are coupled to the single mode
fibres, which transport the light to the integrated optics system. This is an
optical chip that introduces phase delays into each beam to sample the fringes,
and combines each of the six baselines available from the four telescopes. The
resulting outputs are then passed to the spectrometer where the light dispersed
and spread over the detector. An example of the science fringes observed with
VLTI/GRAVITY are included in Figure 3.6.
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4. PLANET FORMATION

Like the stars they orbit, exoplanets are composed of material from the
nebula in which they were born. Clearly planets both within our Solar System
and without exhibit an incredible diversity of size, orbital configuration and
composition, raising questions about the processes that led to such diversity. Is
there a universal pathway to form planets? Do giant and terrestrial planets form
in the same fashion? These - andmany other questions - require careful study of
both the circumstellar disks in which the planets form, as well as the processes
of accretion and evolution that shape the final products of planet formation.
In this section I will outline the environment in which planets are born, as well
as the processes through which they form.

4.1. Circumstellar disks

Circumstellar disks, also known as protoplanetary disks, form during the
collapse of the molecular gas cloud in the process of star formation. By conser-
vation of angular momentum and internal friction, the cloud forms a rotating
disk of gas and dust. The disks generally have masses of only a small fraction
of their host star (⇠10%), and have radial extents from tens to hundreds of au.
While they vary in structure and composition, they are composed primarily of
molecular gas, with ⇠ 1% of the disk mass found in dust. Young Stellar Objects
(YSOs) are classified based on their spectral energy distribution, as a proxy for
their evolutionary state Lada (1987). Class 0 objects are prestellar cores, and
appear as cold blackbodies. Over time the protostar collapses and heats up,
becoming a Class 1 object with an optically thick envelope. As the envelope
is expelled, the young star dominates the spectral energy distribution of the
source, and the remaining gas collapses into the circumstellar disk. T Tauri
stars with a circumstellar disks are the prototypes for this class of objects. These
disks inherit material from the initial molecular cloud, but undergo significant
processing during the disk lifetime, for instance from heating from the central
star, adiabatic compression from the collapse of the gas cloud or from radiation
from the local stellar environment.

Over the last decade, observations of planet-forming disks have shifted from
inferring the presence of a disk through its infrared emission to the detailed char-
acterisation of substructure on . 10 au scales. The Atacama Large Millimeter
Array (ALMA) has spearheaded these observational efforts, providing some
of the first measurements of disk substructure in the sub-millimetre around
HL Tau (ALMA Partnership et al., 2015). The Disk Substructures at High
Angular Resolution Project (DSHARP) extended this, with measurements
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Figure 4.1: 1.25 mm (240 GHz) ALMA observations of bright circumstellar
disks, observed as part of the DSHARP survey. Reproduced with permission
from Andrews et al. (2018).

of disk substructure in bright, nearby protoplanetary disks, finding that such
substructures are a universal feature of these disks (Andrews et al., 2018). Fig-
ure 4.1 shows the 1.25 mm (240 GHz) continuum emission of the DSHARP
survey, highlighting the variety of morphologies present in the disks. These
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observations highlight the necessity to include the impacts of substructure on
planet formation: simple models with smooth density profiles are clearly not
reflective of the disk population.

Substructures such as rings and gaps can both impact the planet formation
process or be shaped by the presence of an unseen planet nearby. For example,
due to viscous coupling the disk gas orbits at a sub-keplerian velocity. However,
larger pebbles are not well-coupled to the gas and will follow keplarian orbits,
leading to a speed differential between the pebbles and gas. Thus the pebbles
experience aerodynamic drag from the gas, causing them to lose angular mo-
mentum and drift inward. Pressure bumps, such as in a ring, can stall this drift
and cause a pileup of pebbles, leading to an overdensity that could trigger planet
formation. Perhaps surprisingly however, most of the observed substructure
occurs at separations far wider than the observed population of young, giant
planets (Desidera et al., 2021; Nielsen et al., 2019). It thus remains to be seen
how to link the large gas disks to the known exoplanet population.

In addition to the substructure observations in the disk continuum emis-
sion, ALMAhas also pushed the boundaries in our understanding of disk chem-
istry. TheMolecules with ALMA at Planet-forming Scales (MAPS) program
examined ⇠50 molecular emission lines in 5 well-characterised disks (Öberg
et al., 2021). Prior to the ALMA observations, the simple picture of disk chem-
istry used by the exoplanet community was the model of Öberg et al. (2011).
This work explored the concept of snowlines in disks. As the disk midplane
temperature decreases with separation, various species will condense out of
the gas phase, changing the relative carbon-to-oxygen number ratios (C/O ra-
tio) of both the gas and the solids in the disk. With high spatial resolution
ALMA observations, it is clear that the distribution of molecules varies greatly
both throughout a single disk, as well as between disks, as shown in Figure 4.2.
Eistrup et al. (2018) use 1Dmodels to show that not only do these molecular
abundances vary spatially, but also in time as the disk evolves and ultimately
disperses. As planets inherit their composition from the disks in which they
form, it is critical to determine where the planet forming material originates,
and how the chemistry of the gas and dust accreting onto the planet changes
over time.

In addition to the disk emission observations from ALMA, scattered light
observations in the visible to near-infrared from instruments such as VLT/-
SPHERE have revealed the structure of protoplanetary disks at small separa-
tions. These observations are sensitive to the scattering polarisation of dust
at the surface of disks, typically at much smaller spatial scales than possible
even with ALMA. Inner disk cavities appear to be a universal feature of Group
I sources (Maaskant et al., 2013), following the classification of Meeus et al.
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Figure 4.2: Zeroth moment maps for a selection of molecules for each of the
disks observed as part of the MAPS survey. The small horizontal bar in the
bottom right of each panel provides a 20 au scale, while the beam size is indicated
in the bottom left. Reproduced with permission fromÖberg et al. (2021).

(2001). In these disks the inner rim is located at a few tens of au from the host
star, and is directly illuminated by it, leading to the far infrared excess from disk
thermal emission. Conversely, Group II sources have shown less evidence for
wide cavities and are fainter in scattered light (Garufi et al., 2017a). Nevertheless,
in high spatial resolution imaging, morphological features in the dust appear to
be universal, though not always directly correlated to gas phase features seen in
ALMA images (Garufi et al., 2017b).

Protoplanetary disks are complex systems that evolve rapidly over their
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⇠10Myr lifetimes. Their composition and dynamics determine the outcomes
of planet formation, which in turn shape the substructure and chemistry present
in the disks. Armitage (2020) provides a classic introductory text on the topic.
More recent and in depth reviews include that of Zhao et al. (2020), who
provides detail on the early phases of disk formation. Zurlo et al. (2023) and van
derMarel (2023) present the observational perspective on disks, emphasising the
contributions of near infraredhigh-contrast imaging andALMAsub-millimetre
imaging respectively. A more theoretical approach focusing on dust formation
and evolution is given by Birnstiel (2023), while Öberg et al. (2023) discusses
general disk chemistry.

4.2. Formation mechanisms

Having set the stage by introducing the environment in which planets
form, we can now turn our attention to the actual processes of planet forma-
tion. This is a complex topic, meeting at the intersection of hydrodynamics,
thermodynamics and chemistry. Broadly speaking, planets are thought to be
formed through either a ‘bottom-up’ or ‘top-down’ pathway. Each of these
mechanisms produces different types of planets, and can be favoured under
different conditions. One of the primary goals of exoplanet science is being
able to determine the formation mechanism for a given planet or planetary
system, drawing a line through the planet’s formation and evolution through
to its present-day architecture and atmospheric state. For the purposes of this
thesis we are primarily concerned with gas giant exoplanets, and so will focus
our examination of planet formation on how to form such objects. As part
of a larger series on the composition, mineralogy, and evolution of exoplanets,
Mordasini & Burn (2024) provide a review of the observational constraints and
state-of-the-art of formation modelling. In the same series, Zhang (2024) goes
into more depth on the chemical environment of the protoplanetary disk in
which the planets form.

4.2.1. Gravitational Instability

Gravitational instability (GI) is the ‘top-down’ formation pathway for ex-
oplanets. In this scenario, giant planets form in a manner similar to stars, as a
self-gravitating gas cloud fragments and collapses, ultimately forming a massive
planet (e.g. Perri & Cameron, 1974; Cameron, 1978; Mizuno, 1980). This
model was largely discarded for Solar System planets due to its failure to explain
the similarity of their core masses, but was revived in the context of exoplanets
by Boss (1997, 1998). This mechanism requires that the circumstellar disk
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becomes unstable, following the Toomre criterion (Toomre, 1964)

cs⌦

⇡G⌃
< Qcrit ⇡ 1. (4.1)

Here, cs is the speed of sound,⌦ is the orbital frequency at a specified separation,
and ⌃ is the local surface density. The critical value Qcrit has been determined
through numerical simulations, and found to be approximately 1 for the forma-
tion of ⇠Jupiter mass fragments (Raymond &Morbidelli, 2022, and references
therin). The Toomre criterion is similar to other stability conditions, balancing
the gravitational forces with the pressure of the system. It differs in its addi-
tional consideration of shear forces in a viscous, rotating disk, which provides
additional support which the gravitational forces must overcome.

Satisfying this condition for instability is a necessary, but not sufficient
condition for disk fragmentation. Gammie (2001) demonstrates the importance
of cooling in the process of fragmentation. As the gas collapses, it will heat
up, increasing the pressure and resisting further collapse. Only with sufficient
cooling can the cloud complete its collapse and form a protoplanet. The cooling
timescale is a function of both the temperature T and the optical depth of the
gas, ⌧. Rafikov (2005) estimates the cooling timescale as
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⌃ and cs are the disk surface density and sound speed as above, and � is the
adiabtic index of the gas. The optical depth can be determined from the opacity
of the disk , ⌧ = ⌃/2. In their analysis of the effect of the cooling timescale
on disk fragmentation, Rafikov (2005) finds that GI is strongly disfavoured in
inner disk regions at < 1 au, probable at around 10 au, and difficult at 100 au,
due to the low surface densities at these separations, though the details depend
on the specifics of the disk mass, opacity and temperature structure. They find
that the mass of the fragment can be estimated as
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Here, � ⇡ 2⇡h is the length scale of the unstable mode for disk height h, a is the
separation in au, µ is the mean molecular weight relative to atomic hydrogen,
and M⇤ is the stellar mass in units of solar masses M�. For typical values of these
parameters, this results in relatively high mass fragments, on the order of 5MJup

or greater.
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Nero & Bjorkman (2009) explore the effects of local cooling timescales to
determine whether the observed giant exoplanet population could be formed
through GI. Their estimate of the cooling timescale is roughly an order of mag-
nitude faster than that of Rafikov (2005), which means it is significantly easier
for disk fragmentation to occur. They find that all of the giant planets would
require large disk masses to be formed by GI. For the HR 8799 planets, they
find that only the outermost planet could have formed in its present location via
GI, though leaving open the possibility of migration from farther out. Indeed a
few years later, Baruteau et al. (2011) find that massive, widely separated giant
planets rapidly migrate inward on timescales of 104 years.

While this model provides a reasonable explanation for the formation of gi-
ant, widely separated exoplanets, it struggles to capture the details of the broader
exoplanet population. Population synthesis models based on this formation
pathway struggle to reproduce the overall exoplanet demographics: terrestrial
and neptune mass planets are far more common than would be expected by GI
alone. This model also requires very large disk masses, which are at the extreme
end of the observed disk population. Finally, it primarily produces planets at
wide separations. Even with rapid migration, it is challenging to produce the
compact system architectures commonly observed in transiting andRV systems.

Schlaufman (2018) quantifies a boundary between GI and the core accre-
tion mechanism. Data show a higher occurrence rate of giant planets around
metal-rich stars if the planets form via core accretion (Fischer & Valenti, 2005).
Schlaufman (2018) show that objects > 10MJup do not follow this trend, and
thus must have formed via GI, while objects below that bound follow the host-
star metallicity trend, and are therefore more likely to have formed via core
accretion.

4.2.2. Core Accretion

Due to the challenges of GI in explaining both the Solar System planets
and the broader exoplanet population, core accretion has become the preferred
model of planet formation. This is the ‘bottom-up’ approach to planet forma-
tion. In this model, planets form by the gradual accumulation of pebbles and
larger bodies known as planetesimals, until sufficient mass is reached that the
protoplanet can start to accrete and maintain a hydrogen-helium envelope (e.g.
Armitage, 2018; Raymond &Morbidelli, 2022; Drążkowska et al., 2023).

The canonical picture of core accretion was first outlined in Pollack et al.
(1996). In their work, they simulate how a disk composed of gas and plan-
etesimals will evolve over time, and in particular how they will accrete into
a planet. They account for some degree of accretion physics: planetesimals
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will enrich the planet envelope and core with metals, and will deposit energy
into the planet, increasing its temperature. They identify three phases of the
accretion process. First, planetesimals rapidly accrete. Their trajectories are
governed largely by gravity rather than aerodynamic drag, and so the mutual
attraction of planetesimals on similar orbits leads to gravitational focusing, ef-
fectively increasing their collisional cross section area. After the collision of
two planetesimals into a larger body, its gravitational influence grows, further
attracting nearby planetesimals. This phase is also known as runaway planetes-
imal accretion, and will continue until the local reservoir of planetesimals is
depleted. As the velocity dispersion of the planetesimals increases to the order
of the escape velocity, a new phase of growth begins, with the growth rate now
proportional to M

�1/3. Thus the growth rate of larger objects decreases relative
to smaller protoplanets, resulting in roughly equal mass bodies. This phase is
known as oligarchic growth, with these larger bodies ultimately forming the
cores of planets. Due to their gravitational region of influence, the oligarchs will
be separated by ⇠5-10 mutual Hill radii. During this phase, gas will begin to be
accreted by the protoplanets as well. Once a critical threshold is reached where
the gas mass is equal to the solid mass, the final phase of runaway accretion
begins. This phase sees approximately exponential growth in the planet mass
due to gas accretion, drawing from the disk reservoir. For numerical reasons,
Pollack et al. (1996) did not explore the end state of this process. Subsequent
works have found that this process is limited by the availability of material from
the disk, as well as the thermodynamics of the accretion process, but it remains
difficult to identify how this process turns off sufficiently early to form Saturn-
mass planets (Raymond & Morbidelli, 2022). During this phase the planet
will continue to accrete some remaining planetesimals which can be ablated
by the planet envelope, and will contribute to the enhanced metallicity of the
planet’s atmosphere and core. While this simple framework is conceptually
appealing, Ida & Lin (2004) noticed that the actual accretion rate of oligarchs
outside of snowlines is very low, resulting in growth timescales longer than the
disk lifetime. Given the observed population of exoplanets at wider separations,
a mechanism for faster protoplanetary growth was required.

The pebble accretion mechanism postulates that rather than forming pro-
toplanetary cores via the collision of large (102 � 103 km) planetesimals, they
can be formed through the accumulation of smaller mm to cm sized grains and
pebbles. This also avoids the problem of forming large planetesimals from dust
and pebbles, which tend to fragment rather than coagulate at sizes of 1 cm or
larger (Zsom et al., 2010). It was first recognised by Ormel & Klahr (2010) that
the accretion radius for such small pebbles onto a protoplanet is much larger
than the radius at which planetesimals can be accreted. This was more fully
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explored in Lambrechts & Johansen (2012). They show that the entire region
of the disk exterior to a protoplanet can act as a reservoir for pebbles: due to the
aerodynamic drag between the gas on a sub-keplerian orbit and the keplerian
pebbles, the pebbles lose angular momentum and rapidly drift inward. This
provides a large flux of pebbles into the accretion radius of the protoplanet,
which can then be efficiently accreted, growing the core to the critical mass
within the disk lifetime. This growth continues until the ‘pebble isolation mass’
is reached, at which point the pressure bump induced by the gap opened by
the protoplanet traps pebbles outside of its accretion radius, and only gas can
continue to accrete onto the planet. Lambrechts & Johansen (2014) expand
this to show that pebbles can grow efficiently near snowlines where volatiles
sublimate into the solid phase, which can also induce pressure bumps which
further enhance the pebble surface density. This mechanism doesn’t entirely
do away with planetesimals however: protoplanets smaller than ⇠500 km do
not accrete pebbles efficiently, and therefore some large protoplanets must be
present in the disk to begin the pebble accretion process (Liu et al., 2019).

Of course, planets do not remain stationary in the disk. Bitsch et al. (2015,
2019) discuss the impact of migration through the disk on the outcome of
planet formation driven by pebble and planetesimal accretion. They show that
planetesimal accretion is slower than the migration timescale through the disk
and the disk lifetime itself, while pebble accretion can build planets fast enough
to avoid catastrophic migration into the star. Likewise, the pebbles also change
as they drift through the disk. As pebbles drift inward, they can evaporate as
they cross snowlines, locally enriching the gas in volatiles (Bitsch &Mah, 2023;
Danti et al., 2023). The remaining small, refractory grains drift more slowly
and pile up, leading to a similar enhancement in the dust-to-gas ratio of the disk.
Both of these factors then contribute to the observed metal rich compositions
of both giant exoplanets and the inner regions of circumstellar disks.

All of these formation scenarios are complicated by the fact that they oc-
cur in three dimensional circumstellar disks, with substructures determined
between the interplay between (magneto)-hydrodynamics, radiative transfer,
and N-body gravitation. In an effort to produce a more realistic picture of the
accretion processes, Morbidelli et al. (2014) explored the hydrodynamics of ac-
cretion accounting for realistic heating and cooling, showing that gas accretion
onto the planet is largely from the vertical direction, with most of the material
spiralling outward from the planet in the circumplanetary disk (CDP). Szulágyi
et al. (2014) uses this same model to show that in the limit of low viscosity,
these 3D accretion flows produce lower growth rates than initially predicted in
Pollack et al. (1996).
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4.3. Evolution

Once a planet has formed, it begins the long process of radiating away the
internal heat stored during the accretion process. As planets, by definition, are
not massive enough to sustain nuclear fusion, in the absence of stellar irradia-
tion they will monotonically cool over the course of their lifetime. Due to their
similar internal structure, brown dwarf evolutionary models such as those of
Chabrier et al. (2000), Baraffe et al. (2003) or Saumon &Marley (2008) have
provided the basis for giant planet evolutionary models, and in turn inherit
much of their physical basis from models of stellar evolution. These models
compute Te↵ as a function of time, for various masses and initial entropies.
Based on assumptions of atmospheric physics and internal structure, an emis-
sion spectrum can be calculated, and the radiative power measured, leading
to a gradual decrease in the effective temperature with each time step. These
models generally account for absorption from commonmolecular species, some
parameterisation of clouds or dust absorption, and determination of radiative
and convective zones in the atmosphere by stability considerations and mixing
length theory.

The goal of these models is to be able to determine any two of the following
four properties, given the other two: mass, age, effective temperature, and radius.
As colour-magnitude diagrams for browndwarfs effectively trace their evolution
in temperature over time, such evolutionary models should also capture the
observed changes in colour and spectra with temperature . Most prominently is
the transition betweenL-type andT-type browndwarfs (Kirkpatrick et al., 1999;
Kirkpatrick, 2005). This transition occurs between 1200 K – 1400 K, where
the colour of the brown dwarfs suddenly appears muchmore blue, breaking the
trend of gradually reddening through the L-dwarf sequence. This transition is
though to be caused by two factors: as the temperature decreases, silicate clouds
sink beneath the photosphere as the condensation point occurs at higher and
higher pressures for the same temperature, and methane absorption becomes a
significant component of the spectra as it becomes thermodynamically favoured
over CO at cooler temperatures.

More recent evolutionary models such as Phillips et al. (2020) andMorley
et al. (2024) extend the parameter space to cooler temperatures, use temperature-
pressure profiles and chemistry derived from self-consistent radiative-convective
equilibriummodels, and use either state-of-the-art cloud models or account for
reddening via a separate mechanism (discussed further in Tremblin et al., 2015,
2016, 2017; Phillips et al., 2020).

Of course, these models rely heavily on understanding what the initial
conditions are. These conditions are typically formulated in terms of the interior
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entropy, or equivalently the amount of energy stored in the planet’s interior
following the formation process. Two extreme cases are usually considered,
known as hot-start and cold-start. More realistic is a ‘warm-start’ case, existing
somewhere between the two extremes. In the hot-start case, the planet must
form via the rapid accretion of material, without time to radiate and cool.
Conversely, a cold-start case, typically associated with a GI formation pathway,
requires a slower accumulation of material, without the addition of significant
energy to the interior of the planet. These assumptions have been explored
by following the thermodynamics of accreting material in 3D simulation of a
planet in a core accretion scenario, for example in Szulágyi &Mordasini (2017).
In this work, the authors find that a significant fraction of the energy of the
infalling gas is radiated away in an accretion shock on the planet envelope and
the circumplanetary disk, resulting in cooler initial conditions than assumed
for a true hot-start. This shock is also the source of H↵ emission observed in
accreting protoplanets such as PDS 70 b and c (Haffert et al., 2019). Ultimately,
a hotter object will cool more rapidly, and so after a few hundred million years,
the two extreme scenarios become indistinguishable.

In order to constrain these scenarios, precise bolometric luminosities of very
young objects with knownmasses and radii must be determined - unfortunately
for directly imaged planets, it is difficult to precisely measure any of these param-
eters. Long term astrometric monitoring or radial velocity measurements are
necessary for accurate dynamical mass estimates, and broadwavelength coverage
must be obtained tomeasure the temperature. Unless the object is transiting, an
independent radius estimate is nearly impossible. Finally, age estimates depend
largely on inferring the age of the star, either by activity indicators or through
membership in a young moving group. Such measurements have only been
made for a small handful of targets, and so further measurements are necessary
in order to understand the initial conditions for evolutionary models, which in
turn inform our understanding of the planet formation mechanism.
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A planet’s atmosphere is among its most characteristic features. They are a
common, though not ubiquitous property of the Solar System planets, though
even the absence of an atmosphere tells a story of a planets formation and
evolution through time. For terrestrial worlds, the atmosphere maintains the
surface temperature, interacts with oceans and the interior, and is the location of
ever-changing weather patterns. For gas giant planets, the atmosphere is nearly
our only window into their interior. This thin skin at the outer reaches of the
planet wholly shapes the observable thermal emission, and the patterns of the
clouds and gasses determine the visible light reflected to us. Beyond a planet’s
mass and radius, the atmosphere is the only feature we have to characterise the
planet’s composition, temperature, dynamics and evolutionary history. It is
therefore of critical importance to understand the physical processes that shape
these dynamical systems, and in turn how the atmosphere shapes what we can
observe.

In this section I will outline our current understanding of atmospheric
physics focusing on gas giant planets. Zhang (2020) provides a comprehensive
review of this subject, providing detail well beyond the scope of this work. I
begin with howwe learn about the atmospheres, those of the planets in our own
Solar System as well as those of brown dwarfs, the cousins of directly imaged
exoplanets. These observations then inform our model of the interior of gas
giant planets, working from the interior out to the atmosphere, with particular
attention paid to the atmospheric chemistry, and how this ultimately impacts
calculations of thermal emission spectra. I will discuss modelling frameworks
commonly used in the exoplanet community, building to the core problem
of this thesis: how do we go backwards from measuring the spectrum of an
exoplanet to inferring its atmospheric properties?

5.1. Solar System observations

The Solar System is divided between the rocky, inner planets, and gaseous
worlds of the outer Solar System. Amongst the gas giants we see great diversity,
from the enormous mass of Jupiter, to the low density of Saturn, to the frozen
ice giants of Uranus and Neptune. Sánchez-Lavega et al. (2023) reviews the
observations and models of the atmospheres of these worlds, while Miguel &
Vazan (2023) provides an in depth exploration of their interior structure.

As with exoplanets, most of our understanding of these worlds has come
from remote sensing observations, that is telescope observations of reflected
sun light and thermal emission directly from the planets, such as the images of
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Figure 5.1: Simultaneous observations of Jupiter observed in the thermal
infrared, visible, and ultraviolet. International Gemini Observatory/NOIR-
Lab/NSF/AURA/NASA/ESA, M.H.Wong and I. de Pater (UC Berkeley) et
al.
Acknowledgments: M. Zamani

Jupiter shown in Figure 5.1. Unlike exoplanets, we have also sent orbiters and
probes to make in-situ measurements of these planets. The earliest missions to
pass by these planets were theVoyager probes on their Grand Tour of the Solar
System, launched in 1977 (Kohlhase & Penzo, 1977). The images obtained
during their flybys of the gas giants revolutionised our understanding of these
objects and captured the public imagination. For Jupiter, we could view the
clouds and storms with unprecedented detail. Magnetic fields around Uranus
were detected for the first time, and were oriented nearly 90° from its rotation
axis. Using its radiometer and infrared spectrometer, Voyager 2 also found an
anomalously low heat flux fromUranus compared to the other three planets.
The wind speeds and storms were measured for all of the planets, showcasing
just how dynamic and variable these objects are. More importantly than any
single discovery, theVoyagermissions highlighted the importance of comparison
between the planets to understand their similarities and differences.

More recently, missions such asGalileo (Johnson et al., 1992),Cassini (Mat-
son et al., 2002), and Juno (Bolton et al., 2017) have enabled the most precise
measurements of the gas giant atmospheres to date. Galileo provided the first
in-situ atmospheric compositionmeasurements by dropping a probe into the at-
mosphere at 6.5° north latitude and 4.4 ° west longitude. The probe descended
through the atmosphere for nearly an hour, reaching a pressure of over 20 bar,
and finding unexpectedly low abundances of water. The Cassini Grand Finale
provided similar direct measurements of Saturn’s upper atmosphere using mass
spectroscopy, finding that CH4, H2O and NH3 must be entering the upper
atmosphere from its rings (Yelle et al., 2018; Serigano et al., 2020, 2022) While
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not the first to make such measurements, Junomade precise measurements of
the gravitational moments of Jupiter, effectively probing changes in its shape
and density from a homogeneous sphere. These measurements showed that
Jupiter’s core is likely dilute, contrary to contemporary models which gener-
ally divided the planet into clear, compositionally distinct layers. All of these
novel measurement approaches highlight the importance of the Solar System
planets for our understanding of the internal structure and composition of gas
giant planets: such measurements are completely inaccessible for the exoplanet
population.

Even with the advent of space missions, much of our understanding of the
Solar System is still derived from telescope observations. The critical parameters
necessary to describe an atmosphere are its temperature and its composition.
The earliest recorded temperaturemeasurement of the gas giantswere byMenzel
et al. (1926), who found the temperature of Jupiter to be between 120 K,
reasonably close to the modern estimate of Te↵ = 88 K, as derived from the
bolometric luminosity

Lbol = 4⇡r
2
p
�T

4
e↵ , (5.1)

where rp is the planet radius and � is the Stefan-Boltzmann constant. As is
apparent on Earth, the temperature varies significantly throughout the atmo-
sphere, and so a more detailed model is required. Using data from the Voyager
flyby, Seiff et al. (1998) measured the vertical thermal profile of the upper atmo-
sphere of Jupiter, finding a strong temperature inversion above the tropopause
at around 0.1 bar, where the temperature reaches a minimum at 120 K. Below
the tropopause, the atmosphere closely follows an adiabat: that is to say a parcel
of air that ismoved upward or downward through the atmosphere is only heated
or cooled by its adiabatic expansion or compression as the surrounding pressure
varies.

More recent probes have enabled the characterisation of the thermal of
Jupiter and Saturn’s atmospheres with an unprecedented level of precision.
Using the mid-to-far infrared instrument CIRS on board Cassini, Fletcher et al.
(2009) are able tomeasure the temperature as a function of pressure and latitude
for both Jupiter and Saturn. They obtain direct temperature measurements
from 1 bar up to 0.001 bar, and see clear temperature differences between the
Northern and Southern hemispheres, with stronger seasonal variation apparent
in Saturn. More recently Fletcher et al. (2023) used the MIRI/MRS on board
JWST to determine the thermal structure, composition and seasonal variation
in the Northern hemisphere of Saturn. They identify a strong banded structure
visible in the mid infrared, together with and abundance of dynamical phe-
nomena such as seasonal vortexes, cyclones, and both eastward and westward
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jets.
The distant, frozen worlds of Uranus andNeptune display sharply different

characteristics than Saturn or Jupiter. Their lowermass and volatile rich compo-
sition suggest that they were unable to undergo runaway gas accretion, perhaps
forming later than the inner two gas giants, after much of the protosolar gas
disk had dispersed (Helled et al., 2020a). However, there remain many open
questions about their formation and present day conditions. Uranus appears
to be in thermodynamic equilibrium with the incident solar radiation, while
Neptune exhibits a significant internal heat source. Stranger still is the obliquity
of Uranus rotational axis, potentially caused by a giant impact (Rogoszinski &
Hamilton, 2021). At 98� to its orbital planet, its poles receive more direct sun-
light than the equator, driving strong seasonal variations. It was long thought
that the atmosphere of Uranus was less dynamic than that of Neptune, which
has strong visible vortexes and bands, while the Voyager images of Uranus ap-
peared nearly featureless. More recent ground-based observations have found
strong tropospheric circulation in Uranus’ atmosphere (Molter et al., 2019).
From the Voyager flybys, low order gravitational moments for both planets were
measured. To fit these data, models find that both planets likely have interiors
dominated by volatiles, with compositional gradients between the deep interior
and the atmosphere, though the details of their internal structure remain con-
troversial (Helled et al., 2011; Helling et al., 2019; Helled et al., 2020a). Their
atmospheres show temperature gradients consistent with a dry adiabat, though
again the lack of data allows for solutions ranging from sub- to super-adiabatic
temperature gradients (Guillot, 1995).

The composition of the gas giant planets is reasonably well understood.
Jupiter and Saturn are the most massive planets in the Solar System (318M�
and 95M� respectively), and both are nearly solar in composition, primarily
composed of hydrogen and helium. Both show some enhancement of their
metal abundances, (around 3⇥what is found in the sun for Jupiter, and 10⇥ for
Saturn). Chemical inventories have been taken for both atmospheres, detecting
chemical species such as CH4, NH3, PH3, H2S, isotopologues such as HD
and CH3D, and noble gasses including argon, krypton, and neon (Taylor et al.,
2007). Due to their cold temperatures, water condenses out of the atmosphere
and thus does not impact the reflection or emission spectra. Measurements of
the planet metallicities are therefore driven by measurements of the methane
abundance, which is the primary carbon bearing species in the atmosphere.
Visually both planets are dominated by their clouds. Jupiter is covered in com-
plex bands of clouds and storms, with the Great Red Spot its most prominent
feature. The colouration of the bands is thought to vary, as pristine, white
aerosol material is brought to the upper atmosphere by convective upwelling,
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before mixing with photochemically produced material from the interaction of
the atmosphere and solar UV radiation.

In contrast to the inner two gas giants, Uranus and Neptune are both com-
posed of around 80% volatiles by mass. Due to strong compositional gradients,
their atmospheres remain dominated by hydrogen and helium, with methane as
the primary trace gas (Helled et al., 2020b,a). The atmospheres are too cold for
water to occur in the gas phase. Instead, H2S has been tentatively detected in the
atmospheres of both planets, and although ammonia is expected to be present at
these low temperatures, no detections have been made. These differences even
within the Solar System highlight the diversity of structure and composition
that can be expected in the exoplanet population.

Even without being able to spatially resolve them, such observations of
our nearest neighbours inform our understanding of exoplanets, and the same
techniques can be applied to distant systems. From these Solar System examples,
we now have most of the observational pieces of the puzzle. We must turn
towards brown dwarfs in order to fill in the rest of the gaps before putting
everything together in a consistent theoretical framework.

5.2. Brown dwarf observations

Without a bright host star complicating observations, brown dwarfs pro-
vide excellent, easily observable analogues of the directly imaged exoplanet
population. The study of these objects has developed alongside that of exoplan-
ets, following the first incontrovertible brown dwarf discovery in the 1990s by
Nakajima et al. (1995). They share similar masses and compositions, and share
a similar formation mechanism to planets formed via GI. With a population
in the thousands, it is also possible to measure statistical trends. Helling &
Casewell (2014) provide a thorough overview of these objects, andMarley &
Robinson (2015) outlines the modelling approaches used to characterise their
atmospheres.

Like stars, brown dwarfs are classified by their spectral type (Kirkpatrick
et al., 1999; Kirkpatrick, 2005). The L-dwarfs cover a temperature range from
around 2300 K down to 1300 K, where the J-K colour begins to rapidly change.
At this point the T-dwarf sequence begins, extending down to around 500
K. The coldest brown dwarfs are the Y-dwarfs, of which only a small number
of nearby objects have been characterised to date. Figure 5.2 shows the SpeX
spectral standards for the L and T dwarfs. These objects are used as benchmarks
for defining the spectral types, thoughmore recent examinations of these objects
have shown that some of themmay be poor choices as benchmarks due to their
young age or for being potentially unresolved binaries or otherwise peculiar
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Figure 5.2: SpeX brown dwarf spectral standards from L0 to T8. The spectral
type tracks the effective temperature, from⇠2300K for an L0 dwarf to⇠500K
for a late T-dwarf. The spectral features are shaped by molecular and aerosol
absorption. Water and carbon monoxide produce the large spectral features in
warmer objects, while water and methane dominate the colder objects. Clouds
reduce the amplitude of the molecular features and redden the spectra.

objects (e.g. Burgasser et al., 2004; Burgasser et al., 2006).
The spectral sequence tracks the effective temperature of the L-dwarfs. As

the temperature decreases, the objects become increasingly red in colour. This
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Figure 5.3: J-K colour magnitude diagram. The J-band magnitude roughly
tracks effective temperature, while the J-K colour axis is a proxy for changes
in the clouds and chemistry. The L/T transition occurs where the J-K colour
suddenly becomes more blue due to changes in the clouds and chemistry of
the atmospheres. All magnitudes are in the MKO system. The colour of the
points indicates spectral type, from early L (orange) to late T (light blue). Data
obtained from The UltracoolSheet at http://bit.ly/UltracoolSheet.

is partly due to the shift in the peak of the blackbody emission, but is also
affected by the presence of clouds in the atmosphere. At temperatures below
⇠ 1600 K, silicates such as enstatite (MgSiO3) and forsterite (Mg2SiO4) can
condense out of the gas phase and form cloud layers (e.g. Helling & Casewell,
2014). These aerosol species have absorption features in themid infrared, which
were directly observed using the Spitzer Space Telescope (Cushing et al., 2006;
Suárez &Metchev, 2022, 2023). Other refractory species, such as metallic iron,
also condense out at similar temperatures, leading to multiple cloud layers at
different altitudes in the atmospheres. These clouds are thought to be one
of the causes of the sudden change in colour that marks the transition to T-
dwarfs, seen in Figure 5.3. As the silicates condense out at roughly a constant
temperature, for cooler objects this means that they will condense at a higher
pressure (lower altitude) than in a hotter object. If the object is cold enough,
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this condensation pressure will be below the photosphere, and the clouds will
no longer impact the emission spectrum.

Given that the brown dwarfs cannot sustain fusion, theywill inevitably cool
over time. Thus the L and T sequence doesn’t only track temperature, but age.
There are clear degeneracies here, as a heavier object will cool more slowly than a
less massive object. Borrowing from the vernacular of the stellar community, it
is common to refer to the hottest L dwarfs as ‘early-type’ objects, and T dwarfs
as ‘late-type’ objects. This is complicated by the change in surface gravity with
time. As the brown dwarf cools, it will contract. As mass is conserved, but the
radius decreases, the surface gravity will also increase over time. Low-surface
gravity is therefore though to indicate young ages. Determining the surface
gravity from the spectra alone is challenging. Objects in binary systems, where
a dynamical mass can be estimated from the orbits, are important benchmarks
for calibrating models.

The chemical composition of a brown dwarf depends on the interstellar
environment in which it was born. Forming like stars, brown dwarfs generally
lack pathways to the highlymetal enriched atmospheres present in the exoplanet
population Chabrier et al. (2014); Maldonado & Villaver (2017). While the
environment determines the overall elemental abundances available in the at-
mosphere, the chemical species present depend strongly on the temperature of
the object. L-dwarf spectral shapes are dominated in the near infrared by water
and carbon monoxide (Kirkpatrick et al., 1999; Burrows et al., 2001). Many
other molecular and atomic species, have also been detected from their absorp-
tion signatures. Refractory species, such as TiO or FeH are more thermally
stable, and so are visible in the coolest stars and hottest brown dwarfs. H2O
and CO are the dominant species in the mid L range, producing the spectral
shape characteristic of this class of object. T-dwarfs are identifiable by their
CH4 absorption, a species which only becomes thermodynamically favoured at
colder temperatures (. 1000K) (Kirkpatrick et al., 1999).

JWST has opened a new window into the atmospheres of ultracool dwarfs.
With its unprecedented sensitivity, it has been able to provide detailed character-
isation of the coldest y dwarfs (Luhman et al., 2024), planetarymass objects have
been characterised with both high resolution and broad wavelength coverage
(Miles et al., 2023; Manjavacas et al., 2024), and it is now not only possible to
identify atomic andmolecular features, but isotopologues as well (Barrado et al.,
2023). The full extent to which JWST will transform our understanding of
these objects is not yet clear, but it is apparent that there remain many lessons
to be learned from high precision characterisation.

Between the cold Solar System giant planets and the isolated brown dwarfs,
we are ready to put the pieces together and develop our physical model of these
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objects and their atmospheres. Gas giant planets have a complicated interior
structure that is the result of their formation history and differentiation over
time (Miguel & Vazan, 2023). Models of their interiors must describe this
structure while remaining consistent with their measured masses and radius,
and will provide the lower boundary conditions for the atmosphere. Deep
in the atmosphere of the giant planets the temperature structure follows an
adiabatic profile, while the upper atmosphere is more strongly influence by
heating from the sun. Their composition can vary greatly, affecting both the
observed colours and spectra of the planets. Clouds are an ubiquitous feature
of their atmosphere, where clouds of a given species will condense out of the
gas phase at a consistent temperature. From brown dwarfs we understand the
library of chemical species that we must consider, as well as the clouds that are
present throughout different layers of the atmosphere. Our atmospheric model
should account for the absorption of these molecular and aerosol species, as
well as their distribution throughout the atmosphere, ultimately producing
emission spectra that should reproduce the brown dwarf spectral templates,
given appropriate choices of parameters.

5.3. Structure, interior and dynamics

Let us know explore the structure of gas giant planets from the inside out,
following the review Miguel & Vazan (2023) as a guide for this topic. Giant
planets are self-gravitating spheres composed primarily of hydrogen and helium.
This can be modelled as a self-gravitating fluid under hydrostatic equilibrium:
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P is the pressure, the gravity g = Gm/r2, T is the temperature, and rT the
temperature gradient, which depends on the process that dominates the energy
transport. The local luminsity is L while S is the specific entropy. The time
coordinate is t.

The temperature gradient is determined by the heat transport mechanism.
In the simplest case, we can treat the temperature profile as adiabatic, apart
from the outermost radiative layer. For an adiabatic profile the specific entropy
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S is constant in across the layers, @S/@r = 0, perhaps driven by convection
which can homogenise the composition over time. For this model, the compo-
sition must also remain constant throughout the interior. For an adiabat, the
temperature gradient is

rad =

 
@ log T

@ log P

!

ad
=

(� � 1)
�
, (5.6)

where � is the adiabatic index, which is the ratio of the heat capacity of amaterial
at constant pressure to the heat capacity at constant volume. For an ideal
diatomic gas, � = 7/5. Non-adiabatic models can account for mass transport
and mixing, multiple convective cells, and convective-conductive heat transport
(e.g., Vazan et al., 2015).

In addition to the equations of hydrostatic equilibrium, and equation of
state (EOS) is required. This is one of the largest sources of uncertainty in
interior models due to the extreme pressures and temperatures involved, as well
as themix ofmaterials that are present in the giant planet interiors. Considering
an object composed of purely hydrogen and helium, the high pressures deep in
the interior will lead to the phase transition of hydrogen into a metallic fluid.
The helium may not be miscible with the hydrogen fluid, and so will form a
stratified layer surrounding the hydrogen core (Stevenson& Salpeter, 1977; Bry-
goo et al., 2021). The EOS for hydrogen-heliummixtures have been numerically
computed, and the results compared to lab experiments. Nevertheless, even for
simple compositions there is significant variation betweenmodels. The addition
of ices and rockymaterial adds further complication. It remains unclearwhether
thesematerials could form a solid core, or would be fully mixed into themetallic
hydrogen. There are likely compositional gradients throughout the interior of
the giant planets (Wahl et al., 2017; Debras & Chabrier, 2019). This has two
main impacts on providing the boundary conditions for the atmosphere: first,
that much of the heavy elements (including helium) will be sequestered deeper
in the planet, so the atmospheric metallicity is not representative of the bulk
metallicity. Second, these compositional gradients can inhibit convection, and
therefore the heat transfer within the planet and ultimately the luminosity at
the bottom of the atmosphere.

Although planetary atmospheres are highly dynamic, the assumption of hy-
drostatic equilibrium remains valid as the horizontal motion of the atmosphere
dominates over vertical transport. The fundamental equation set for describing
an atmosphere is composed of a continuity equation, a momentum equation,
an energy equation, an equation of state, an equation of radiative transfer, and
a series of transport equations for chemical species. For a full global circulation
model, we might be interested in solving the primitive equations, which are the
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simplification of the full Navier-Stokes fluid equations under hydrostatic bal-
ance. Zhang (2020) provides an exploration of these dynamical fluid equations
and their application to atmospheric models. Marley & Robinson (2015) also
reviews the atmospheres of brown dwarfs and giant planets from a theoretical
perspective.

To a first approximation, we can consider the atmospheres of brown dwarfs
and giant planets as 1-dimensional, thus greatly simplifying the computational
complexity. The atmospheres vary much more greatly as a function of altitude
than of latitude or longitude. This approximation is especially useful for self-
luminous objects without significant irradiation, where the internal heat flux
at the bottom of the atmosphere is thought to be uniform across the planet.
The atmosphere can be composed of both convective and radiative regions.
Convective regions follow a temperature profile determined by equation 5.6.
The temperature gradient of radiative regions depends on the local net flux Frad,
the local temperature, and the opacity of the layer. For simplicity, considering
the Rosseland mean opacity R

rrad =

 
@ log T
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A region is convectively stable if the Schwarzschild criterion is satisfied,
rrad < rad, or equivalently
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Here, for stability against convection the negative temperature gradient as a
function of altitude must be less than gravity g divided by the local heat ca-
pacity at a constant pressure (cp). The radiative convective boundary (RCB)
occurs where rrad = rad. In the approximation that the atmospheric opacity
is grey (has no wavelength dependence), PRCB ⇡ g/R. There can be multiple
convective layers in the atmosphere, due to the varying opacity as a function
of altitude (Burrows et al., 1997; Mukherjee et al., 2022). For example, clouds
may condense at a particular altitude, giving rise to a dramatic increase in the
opacity, and thus changing whether the Schwarzschild criterion is satisfied or
not.

If the entire atmosphere experiences strong convection such that themixing
timescale is shorter than the timescale for chemical reactions, its composition
will be homogenised,mixingmaterial upward from thebottomof the convective
layer (Fegley & Lodders, 1996; Noll et al., 1997). Conversely, if the chemical
timescale is faster than the mixing timescale, the atmosphere will be in a state of
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local thermodynamic equilibrium (LTE), and the chemical abundances will be
determined by the temperature, pressure, and available elements. If there are
multiple convective regions separated by radiative regions, it should be expected
to have a different composition, as the upper convective layer cannot draw
material from deep within the atmosphere (Mukherjee et al., 2022).

5.4. Chemistry

The chemistry of the atmosphere depends on the available elements, the
temperature structure, dynamic processes that mix material vertically and hor-
izontally, and additional radiation sources that can induce photochemical re-
actions. In the most simple case, we can consider an atmosphere in chemical
equilibrium. In such a case, the only variables necessary to consider are the
elemental abundances, the temperature, and the pressure. As this is a local equi-
librium, we can divide up the atmosphere into independent layers, each with a
temperature and pressure. Equilibrium occurs when the Gibbs free energyG is
minimised, where

G(P,T ) = U + PV � TS = H � TS . (5.9)

G is a function of pressureP and temperatureT and volumeV . U is the internal
energy of the system and S is the entropy. H is the enthalpy, whereH = U+PV .

Solving for equilibrium therefore is simply a matter of minimisingG. A
widely used implementation for this was introduced in the Chemical Equilib-
rium and Applications (CEA) program (Gordon &McBride, 1994), which
directly descends from early analytical and computational work from Zeleznik
& Gordon (1960). I outline the CEA method here. The Gibbs energy for a
chemical species depends on its chemical potential µ and the quantity of the
species in moles n. For N species, the Gibbs energy per unit mass g is

g =

NX

i=1

µini. (5.10)

We must apply additional constraints on the problem, such as mass conserva-
tion. In the general formulation using Lagrange multipliers � to apply such
constraints, we must minimiseG
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where b
0
j
is the atomic mass mixing ratio per unit mass of total reactants, which

must be conserved.

b j =

lX

j

ai jn j, (5.12)

whereai j is the number ofmoles of element jper species i, and sob j is the atomic
massmixing ratio calculated from the abundance of the reactionproducts. Thus
the mass conservation condition is
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Taking the derivative ofG, together with the mass conservation constraint and
applying the minimisation condition
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The required thermodynamic data for the chemical potentials at the relevant
pressures and temperatures must be determined through lab measurements.

This procedure is complicated by the inclusion of condensible species.
Species must be tested to determine if it is favourable for them to occur in
the condensed phase or remain in the gas phase, by determining which phase
minimises the Gibbs free energy
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Here the subscripts c and g refer to the condensed and gas phases respectively.
R is the ideal gas constant, where n is the number of moles of reaction products,
whilen j is the number ofmoles of reactant j. Solving thisminimisationproblem
can be achieved iteratively. In the CEA code, a Newton-Raphson solver is used.
In practice, attentionmust be paid to parts of parameter space that can introduce
numerical issues: phase triple points, condensing species, ions, and species with
very low abundance.

5.4.1. Disequilibrium processes

Chemical disequilibrium can be thought of as any process by which the
chemical abundances are shifted away from their LTE values. This can occur
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when the timescales of other processes, such as convection or photochemistry
become shorter than the chemical reaction timescales that drive the mixture
towards equilibrium. Such disequilibrium processes have been used to explain
observed chemical abundances in both brown dwarfs and exoplanets (e.g., Feg-
ley &Lodders, 1996;Marois et al., 2008;Mukherjee et al., 2024) This highlights
the challenges of calculating chemical abundances out of equilibrium: rather
than simply needing the chemical potentials and minimising the Gibbs free
energy, we now need to consider the forwards and backwards reaction rates
of every reaction in a complex chemical network. Measuring these reaction
rates requires careful laboratory work, especially at conditions far from standard
atmospheric conditions on earth. Numerically calculating all of the reactions
is also computationally intensive, though not intractable. However, there are
simple cases which can provide reasonable approximations of a full disequi-
libriummodel, particularly when the timescales of the rate-limiting reaction
involved are known such as in the H2O–CO–CH4 sub-network Prinn & Bar-
shay (1977); Zahnle &Marley (2014). Consider an atmosphere undergoing
strong convection. This process mixes the atmosphere, dredging up material
from deep in the atmosphere and lofting it upwards. The typical assumption
made is that this transport of material can be modelled as a diffusion process,
parameterised by the eddy diffusion coefficient Kzz, which describes the ver-
tical mixing strength (e.g. Prinn & Barshay, 1977; Allen et al., 1981; Zahnle
& Marley, 2014; Mukherjee et al., 2022). The timescale associated with this
mixing is the time it takes for material to be mixed over one scale height of the
atmosphere, H. In hydrostatic equilibrium,

H =
kbT

µg
, (5.16)

for temperature T , mean molecular mass µ and gravity g. kb is the Boltzmann
constant. The eddy diffusion coefficient has dimensions [L]2/[T], so we can
define a mixing timescale tm as

tm =
H

2

Kzz
. (5.17)

The chemical timescale tc will depend on the reactions under consideration,
and will be a strong function of pressure and temperature. Generally, tc will
be shorter at higher temperatures and higher pressures. We can equate the
two timescales to determine where in the atmosphere vertical mixing begins
to dominate over the chemical reaction timescale, homogenising the chemical
abundances above this altitude.
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This conceptual picture faces difficulties when we consider the different
structures and mixing processes in an atmosphere. There may be multiple con-
vective regions, separated by radiative regions, all of which may have different
mixing strengths. Even within a given region, there is no a priori reason why
Kzz should be constant with altitude. Mukherjee et al. (2022) explores this in
depth. They self-consistently determine Kzz profiles as a function of pressure
for a variety of atmospheric temperatures and compositions. They show that
properly accounting for variations in mixing changes not only the chemical
abundances, but the thermal structure of the atmosphere, and finding that their
models better fit the observations of Miles et al. (2020) than a constant Kzz
model. Other theoretical studies explore how vertical mixing should vary with
other parameters such as surface gravity (Moses et al., 2013), or metallicity (Soni
& Acharyya, 2023). Lee et al. (2023, 2024) have even coupled a simple chemi-
cal kinetics model with a full global circulation model in order to determine
accurate chemical abundances when atmospheric dynamics are accounted for.

Photochemistry

Vertical mixing is not the only source of nonequilibrium atmospheric chem-
istry. Stars emit high-energy radiation that canphotodissociatemolecules, which
can then recombine in novel ways. For example, H2S is the dominant sul-
phur species in equilibrium chemistry at typical temperatures of exoplanets
(⇠1000K). Recent observations have instead detected absorption from SO2,
which is significantly less abundant in equilibrium (Tsai et al., 2023; Powell
et al., 2024). Instead, the H2S is oxidized into SO2, as the photodissociation
of water by the stellar UV radiation leads to the production of OH radicals.
Similar theoretical studies have shown the impact of both carbon and sulphur
photochemistry on the atmospheres of planets under a variety of irradiation
conditions (Zahnle et al., 2016; Tsai et al., 2021).

5.5. Emission spectra

With a model for the thermal structure and chemistry, calculating the emis-
sion spectrum becomes an exercise in radiative transfer. To zeroth order, all ob-
jects with a finite temperature emit radiation as a blackbody, following Planck’s
law

B�(�,T ) =
2hc

2

�5
1

ehc/�kbT � 1
, (5.18)

for wavelength � and temperature T . h is Planck’s constant, c is the speed
of light and kb is the Boltzmann constant. The thermal structure of the at-
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mosphere provides sources of radiation at a range of temperatures, while the
chemistry determines which species contribute as opacity sources, creating spec-
troscopic features that result in deviations from blackbody emission. While
absorption due to molecular features is the most important contributor to
the spectral shape, atomic line absorption and emission, collisionally induced
absorption (CIA), aerosol opacity, Rayleigh scattering and other effects must
all be accounted for. In this section we will outline the physics of absorption
and emission that shape the observed spectra of directly imaged exoplanets and
brown dwarfs, following the review of Marley & Robinson (2015).

5.5.1. Radiative transfer

At this point, the goal is to calculate the absorption, emission, and scattering
of light as it passes through the atmosphere of an exoplanet, using the tools
of radiative transfer. Buglia (1986) extensively covers the topic, and I will use
their approach, together with that of Marley & Robinson (2015) to assemble
the necessary concepts for understanding radiative processes in a self-luminous
atmosphere.

The transfer of energy through the atmosphere has two primary effects.
The first, and most obvious result, is the emission of light from the top of
the atmosphere. The second, but equally important result is the transfer of
energy within the atmosphere itself. To simplify the problem, we can consider
the case of a plane-parallel atmosphere. For a thin layer of the atmosphere,
radiation can flow from the immediate layers above or below, and the layer
under consideration can absorb or scatter the incoming light, or emit light itself.
The net flux, Fnet is thus simply the combination of the upwards flux, F

+ and
the downward flux F

�

Fnet = F
+ � F

�. (5.19)

The net flux will either heat or cool the layer, depending on the sign. The net
heating rate q is found from the gradient of the flux with pressure

q =
g

cp

dFnet

dP
. (5.20)

To determine the thermal structure, we are so far concerned only with the
bolometric flux, which determines the heating and cooling of the atmosphere.

To determine the emission spectrum however, we must consider the spec-
trally resolved equation of radiative transfer,

µ
dI⌫

d⌧⌫
= I⌫(⌧nu, µ, �) � S ⌫(⌧nu, µ, �). (5.21)
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The primary quantity of interest here is I⌫, the spectral radiance. The coordinate
system we use here is in units of ⌧⌫, the frequency dependent optical depth
in the vertical direction, can be found from the opacity k⌫ and density of the
absorber, d⌧⌫ = �k⌫⇢dz. S ⌫ is the source function, representing the total
energy (per frequency) added to the beam. µ is the zenith angle, and � is the
azimuthal angle; the atmosphere is plane-parallel but light can enter a layer at
an angle and be scattered in a different direction.

The source function describes all of the sources of radiation in the atmo-
sphere. This can include emission of thermal radiation from the atmosphere
itself, incident stellar radiation, and scattering of light into the beam. These
are the first, second and third terms on the right hand side of equation 5.22
respectively. We can write a general form of S ⌫ as

S ⌫(⌧⌫, µ, �) = (1 � !⌫)B⌫(T (⌧⌫)) (5.22)

+
!⌫
4⇡

⇣
F
⇤
⌫e
�⌧/µ⇤

⌘
p⌫ (⌧nu, µ, �,�µ⇤, �⇤) (5.23)

+
!⌫
4⇡

Z 2⇡

0

Z 1

�1
I⌫(⌧nu, µ, �)p⌫ (⌧nu, µ, �,�µ, �) dµ0d�0. (5.24)

!⌫ is frequency-dependant single scattering albedo. In the first term B⌫ is the
Planck function, whereT (⌧⌫) is the atmospheric temperature profile. This term
defines the radiation emitted by the atmosphere into the beam. In the second
term, F

⇤
⌫ is the incident stellar flux, and p⌫ is the scattering phase function,

determining the flux of star light from the top of the atmosphere down. The
last term is the scattering term from angles µ0, �0 into the beam at an angle µ, �.
With the source term defined, it is now possible to solve the integro-differential
equation 5.21, though boundary conditions at the top and bottom of the
atmosphere are still required. One example of a bottom boundary condition is
supplied byMarley & Robinson (2015), originally fromMihalas (1970):

I⌫(⌧nu,bot, µ, �) = B⌫(T (⌧nu,bot)) + µ
dB⌫

d⌧⌫
|⌧⌫,bot
, (5.25)

where the gradient term allows some flux from deeper in the interior.
At the top of the atmosphere we must consider both the upwelling flux F

+
⌫

and the downwelling, F�⌫ . These are simply found by appropriately integrating
over the angle dependence of I⌫:

F
+
⌫ =

Z 2⇡

0

Z 1

0
I⌫(⌧nu, µ, �)µdµd�, (5.26)

F
�
⌫ =

Z 2⇡

0

Z 0

�1
I⌫(⌧nu, µ, �)µdµd�. (5.27)
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Figure 5.4: Impact of molecular absorption from H2O and CO in an atmo-
spherewith a non-inverted thermal profile, for varying quantities of each species.

We will explore how to numerically solve the RTE in chapter II.
One key insight to take from this introduction are that the emission spec-

trum depends heavily on the temperature gradient within the atmosphere. In
optically thick regions deep in the atmosphere, the upwelling and downwelling
fluxes are, to first order, equal. By the boundary conditions of a self-luminous
atmosphere, the downwelling flux is 0 at the top of the atmosphere, and only the
upwelling flux contributes, passing through cooler regions of gas which impart
absorption features onto the emission from deeper regions. This implies that
the observed absorption features provide information about the atmospheric
temperature structure. Indeed, the shape of the features is sensitive to the tem-
perature difference between layers. Wavelengths with strong opacity become
optically thick at lower pressures, while wavelengths with weak opacities are
more transparent, providing a window to deeper, hotter regions of the atmo-
sphere (if there are no thermal inversions present). This is key to interpreting
atmospheric features, providing information on the abundance of an absorber,
its location in the atmosphere, and the temperature structure of the atmosphere
itself.

5.5.2. Absorption and emission lines

Absorption and emission lines are are the result of transitions in the energy
states of molecules. At the temperatures involved in exoplanet atmospheres,
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these are typically transitions in the coupled rotational-vibrational states of
molecules and atoms. The energy of the transitions determines the frequency
of the emitted or absorbed light. Transitions in only the vibrational state, with
a constant rotational state are referred to as Q branch transitions, while the R
and P branches occur for �J = +1 and �J = �1 respectively, where J is the
rotational quantum number. The strength of the line depends on the number
of molecules populating the initial and final energy states.

Consider a linewith a central position ⌫0, strength S = S (T ) and line shape
function f (⌫ � ⌫0). The opacity k⌫ is then

k⌫ = S f (⌫ � ⌫0), (5.28)

normalised such that
Z 1

�1
f (⌫ � ⌫0)d⌫ = 1. (5.29)

The line strength depends on the number of molecules populating the initial
state that transition to the final state E“, which depends on the temperature

S (T ) = S 0
Q(T0)
Q(T )

exp
"

E
00

kb

 
1
T0
� 1

T

!#
1 � exp (�hc⌫0/kbT )
1 � exp (�hc⌫0/kbT0)

. (5.30)

Here, Q is the internal partition function for the rotational and vibrational
states, which can be determined through laboratory measurements or via ab
initio quantum chemical calculations.

It is important to remember that the actual structure of the observed ab-
sorption features is built from the superposition of many lines. Even for a single
transition, there will be different contributions from different regions of the
atmosphere. The result of this is that we observe absorption features if the tem-
perature gradient is positive, i.e. the temperature increases with pressure, and
emission features if the temperature gradient is inverted (increasing temperature
with decreasing pressure). The energy of every photon absorbed by a molecule
will ultimately be reemitted at a later time, though in a random direction. With
an isothermal temperature structure of an atmosphere in LTE, this absorption
and reemission would be equal throughout the atmosphere, due to Kirchoff’s
law, and there would be no spectroscopic features visible. With a temperature
gradient however, spectroscopic features will emerge. If colder gas lies above
warmer gas, light emitted at the wavelength of the absorption features, but only
part of the light will be reemitted upward, reducing the flux in this region, and
forming an absorption feature. Conversely, with hotter gas lying above colder
gas, more light will be emitted due to the higher thermal energy, resulting in an
emission feature.
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Line broadening

Absorption lines are broadened by a variety of processes, all of which con-
tribute to the overall shape of an observed spectrum. Due to Heisenberg’s
uncertainty principle �E�t & h̄/2, even well-defined lines have a finite width
determined by the lifetime of the transition, known as the natural broadening
of the line. If the lifetime of the transition from the higher state to the lower
state is given by the decay rate �, the line profile fN follows a Lorentzian shape:

fN(⌫ � ⌫0) =
�/4⇡2

(⌫ � ⌫0)2 + (�/4⇡2)2 . (5.31)

This width is typically very narrow compared to other sources of line broaden-
ing.

As the molecules of the gas move back on forth relative to the observer due
to thermal motion, this will introduce Doppler shifts. This results in the line
shape fD

fD(⌫ � ⌫0) =
1
↵D

r
ln 2
⇡

exp
0
BBBB@�

ln 2(⌫ � ⌫0)2

↵2
D

1
CCCCA , (5.32)

where↵D is theHalfWidthHalfMaximum (HWHM) induced by theDoppler
motion for temperature T and molecular massm

↵D =
⌫0

c

r
2 ln 2

kbT

m
. (5.33)

Pressure broadening is an important consideration, particularly due to the
range of pressures present in an atmosphere. This is typically modelled as a
pressure dependent Lorentzian profile, fL

fL(⌫ � ⌫0) =
1
⇡

↵L

(⌫ � ⌫0)2 + ↵2
L

, (5.34)

where the Lorentzian HWHM is

↵L = �P

✓
T0

T

◆n

. (5.35)

for a width parameter �, and temperature dependence parameter n, both associ-
atedwith amolecular line list. Figure 5.4 demonstratesmolecular absorption for
a simple atmosphere model. In this toy model we include no additional sources
of opacity and only four pressure levels, with the temperature decreasing with

58



ATMOSPHERIC PHYSICS

decreasing pressure. Due to the low spectral resolution and high density of lines
for H2O and CO, the individual lines are generally not observed, but rather
smear together to form broad features that define the characteristic shapes of
near infrared spectra.

Realistic line shapes must account for broadening from various sources.
The Voigt profile fV is the result of the convolution of Doppler and pressure
broadening

fV (⌫ � ⌫0) =
↵L

⇡3/2

Z 1

�1

exp
⇣
�y

2
⌘

(⌫ � ⌫0 � ↵Dy)2 + ↵2
L

dy. (5.36)

Strong lines, such as the sodium doublet, require specialised treatment to
model their wing profiles. Such work has been discussed in Allard et al. (2016,
2019) for sodium and potassium.

Opacity databases

Given the complexity of both measuring and calculating molecular line
lists for the nearly infinite array of chemical species, various databases have
been developed to provide these line lists. These databases store line lists in
various formats, compiling lab measurements from a variety of sources, as well
as providing comparisons between lab measurements and quantum chemical
calculations. The most widely used databases in the study of exoplanet atmo-
spheres are Exomol Tennyson & Yurchenko (2012) and HITRAN/HITEMP
Gordon et al. (2022), which has a history dating back over 50 years (McClatchey,
1973).

5.5.3. Continuum gas opacities

In addition to molecular line absorption, other processes can result in the
absorption and scattering of light. These states typically have broad features
compared to the narrowmolecular transitions.

Collisionally induced absorption

CIA is induced by the inelastic scatter of two molecules in a gas, which
can, at close separation, by regarded as a single molecule (Hartmann et al.,
2018). These collisions occur on very short timescales, so by the Heisenberg
uncertainty principle the energy spectrum is very broad. In the atmospheres
of directly imaged planets, the two primary constituents are H2 and He, so
H2–H2 andH2–Hemust be accounted for (Richard et al., 2012; Karman et al.,
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Figure 5.5: Impact of H2–H2 and H2–He CIA on a simple atmosphere with
no molecular absorption.

2019). He–He collisions are already sufficiently rare to not significantly impact
the spectral shape, and remaining CIA absorption is negligible.

Bound-Free

Bound-free opacity sources are caused by the ionisation of a bound electron
by an incident photon. These transitions typically require either high tempera-
tures or another source of high energy photons, transferring h⌫ � I of energy
from the photon to the electron in the process, where I is the binding energy
of the electron. The photon scattering cross section is 0 below the ionisation
threshold, then rapidly reaches a maximum at the ionisation energy, before
slowly decaying with increasing photon energy. Chapter 23 of Shu (1991)
provides a derivation of the cross section for a for an electron with a primary
quantum number n around a hydrogen-like atom with nuclear charge Z,

�b f = n
�5 8⇡

3
p

3

Z
4
mee

10

ch̄
3(h⌫)3

gb f (⌫); h⌫ > I, (5.37)

whereme and e are the electron mass and charge, h andh̄ are Planck’s constant
and the reduced Planck’s constant, and gb f is a slowly varying, order-unity
Gaunt factor that corrects for the breakdown of the Born approximation near
the ionisation threshold.
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Due to the energies required for ionisation, this opacity source is more
common either deep within the atmosphere of a self-luminous object, or in
the upper atmosphere of a highly irradiated exoplanet. Nevertheless, it can
contribute as a significant opacity source, particularly fromH and H

�. As there
are a variety of ionisation states, bound-free provides a continuum scattering
source. Approximating this as entirely frequency dependent, the opacity can
be estimated as

̄b f = 4.34 ⇥ 1025 gb f

t
Z(1 + X)

⇢

g/cm3

✓
T

K

◆�7/2
cm2 g�1, (5.38)

where gb f is the Gaunt factor for bound-free transitions and t is an additional
correction factor. In the classical limit gb f = 1 Z and X are the mass fractions
of hydrogen and metals respectively.

Free-Free

Free-free transitions occur during the inelastic scattering of an electron or
photon. In the case where a free electron scatters off a charged part a photon is
emitted via bremsstrahlung. If a photon scatters off a charged particle, some
of the photon energy can be absorbed by the particle. Photons can also scatter
inelastically off atoms, exciting an electron into a higher energy state. The
strength of the free-free absorption cross section is derived in Chapter 14 of Shu
(1991) by determining the total rate of emission of a thermal bath of electrons
and equating that to the luminosity through Kirchoff’s law to find the specific
emissivity j⌫ for opacity ⌫:

j⌫ = 4⇡⌫B⌫(T ). (5.39)

Equating to find ⌫,
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where ⇢ is the density, Zie is the ion charge, n(Zi) is the ion number density and
ne is the electron number density. g f f is theGaunt factor for free-free scattering.
The remaining variables are as in equation 5.37.

Due to their abundance, the important species to consider in self-luminous
atmospheres are H, H2, H�2 and H�. As with the bound-free opacity, the
free-free opacity can be estimated using a grey approximation as

̄ f f = 3.68 ⇥ 1022
g f f (1 � Z)(1 + X)

⇢

g/cm3

✓
T

K

◆�7/2
cm2 g�1. (5.41)
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5.5.4. Clouds and condensation

The final important opacity source in an atmosphere is that of the clouds.
Like gas continuum opacities, clouds tend to produce broad spectral features
rather than sharp lines, though some cloud compositions do induce identi-
fiable spectral features. When we refer to clouds, there are several different
constituents that we may be referring to, that all fall under the broad umbrella
of aerosols. The first is clouds produced similarly to water clouds on earth, that
is by adiabatic cooling and condensation. In reality, such clouds are far more
complicated: convection is not a requirement for condensation, and conden-
sate species such as MgSiO3 have no corresponding gas phase species, but form
through surface reactions once conditions are thermodynamically favourable.
If the particles are produced via photochemistry, they are usually referred to
as hazes. On terrestrial planets, surface dust or salt spray from the oceans can
loft additional aerosols into the atmosphere. Regardless of the mechanism, all
of these aerosols add sources of continuum absorption and scattering opacity
to the atmosphere, and for simplicity I will use the terms clouds and aerosols
interchangeably. A full discussion of cloud physics in sub-stellar atmospheres
is beyond the scope of this work, and we refer to the reviews of Helling et al.
(2008b); Helling (2019).

The red colour of mid to late L-dwarfs has been attributed to clouds since
their initial discovery. The early models developed by Ackerman & Marley
(2001) and Helling et al. (2001); Helling &Woitke (2006) underpin the state-
of-the-art today. These models follow two distinct paradigms for the cloud
formationprocess. In theAckerman&Marley (2001) picture (hereafterAM01),
clouds form when the pressure and temperature of the atmosphere are suffi-
ciently cool for a species to condense out of the gas form. Due to vertical mixing,
parameterised byKzz, the cloud particles are lofted upward into the atmosphere.
A sedimentation fraction parameter fsed is introduced, which determines the
settling strength of the cloud particles, competing with the vertical mixing. The
balance between the vertical mixing and sedimentation determine the mean
particle size in each layer of the atmosphere above the condensation point, as
larger particles settle faster than smaller particles. A log-normal distribution is
typically used to describe the width of the particle size distribution about the
mean. Thus the total mole fraction of species qt = qv + qc (the sum of the
vapour and condensate mole fractions) can be found by solving the differential
equation

Kzz
@qt

@z
� fsedw⇤qc = 0, (5.42)

wherew⇤ is themass-weighted sedimentation velocity. The impact of thismodel
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on a simple atmosphere is shown in Figure 5.6, highlighting the strong and
broad opacity of the clouds.

In contrast to the AM01, the Helling & Woitke (2006) approach uses a
parameterised microphysical approach, forming clouds at the top of the atmo-
sphere before they settle downward. Small condensation nuclei are lofted high
into the atmosphere, which super-saturated condensible species can nucleate
onto. On rapid timescales these initial cloud seeds will grow, forming larger
cloud particles with heterogeneous composition. As the particles grow, they
will sink deeper into the atmosphere, where the change in temperature will
process the grains. At sufficient temperatures, the grains will evaporate back
into the gas phase and the cycle can repeat.

Both of these models rely on the condensation of species from the gas phase
into solids or liquids, relying on known condensation curves (e.g. Visscher
et al., 2010). Upon condensation, the species are removed from the gas phase,
changing the bulk composition and spectral features. The formation of cloud
particles will also be limited by the least available component. These composi-
tional changes will lead to gas phase composition that are not indicative of the
bulk composition, leading to changes of 15%–30% in the observed C/O ratio
(Burrows & Sharp, 1999; Fonte et al., 2023; Calamari et al., 2024).

Barstow (2020) performed a systematic comparison of these parametric
models for transiting exoplanet to determine how cloud modelling choices
impact parameter inference. Fortunately, the resulting models were in good
qualitative agreement, and atmospheric parameters such as theH2Oabundance
were robust to the cloud model choice. On the other hand, this demonstrates
the difficulty in directlymeasuring the cloudproperties themselves and in testing
different cloud models.

However, even these cloudmodels represent a simplification of the complex
processes that underpin condensation and grain growth. Gao et al. (2020)
and Powell et al. (2019); Powell & Zhang (2024) use the Community Aerosol
and Radiation Model for Atmospheres (CARMA) microphysical model to
explore what compositions can be expected in exoplanet atmospheres, and
how they should be distributed throughout the atmosphere. While this work
focuses onhot-Jupiter planets rather than self-luminous objects, it highlights the
complexity of cloud formation. Due to differences in the surface energies, only
some cloud species are likely to nucleate, while other have a strong energy barrier
to nucleation. Thus they find only certain compositions to be likely at a given
temperature. For example, at L-dwarf temperature ranges Mg2SiO4 is likely to
be the dominant source of aerosol opacity. Not only does CARMA explore
the nucleation and surface chemistry during the cloud formation process, but
determines the particle size distribution throughout the clouds. This is one of
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Figure 5.6: Impact of a silicate cloud on an emission spectrum for different fsed,
following the model of AM01.

themajor differences between themicrophysicalmodels, which predict complex,
bimodal particle size distributions, and parametric models, which often us a
broad log-normal distribution. As the cloud optical properties depends strongly
on the particle size, accurately modelling this distribution is critical to correctly
modelling cloud absorption and scattering.

In addition to the distribution of clouds throughout the atmosphere, their
optical properties must also be considered in order to determine their impact
on observed spectra. Cloud particles are of approximately the same size as the
wavelengths of light observed in the near infrared, and thus scatter light in
theMie regime. Mie scattering assumes that the particles are spherical, which
may or may not be a reasonable approximation. The distribution of hollow
spheres (DHS)model (Min et al., 2005) extends this scattering approach to non-
spherical particles. To determine the scattering amplitude and direction forMie
scattering, the Maxwell equations must be solved in the presence of a spherical
particle with permittivity ✏1 and permeabilityµ1, surrounded by amediumwith
✏ and permeability µ, subject to boundary conditions at the interface between
the particle and the environment, boundedness at the coordinate origin, and
that the wave asymptotes at infinity to a diverging spherical wave. This is a
classic optics problem, discussed in texts such as Bohren &Huffman (1998).
A full derivation of the solution is beyond the scope of of this work, but there
are a few key insights to keep in mind from the solutions. In the limit that the
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Figure 5.7: Complete emission spectral model of exoplanet atmospheres. This
example incorporates the impact of molecular absorption, CIA opacity and
cloud absorption and scattering for an objects with internal temperatures be-
tween 600 K and 1200 K, or roughly covering spectral types from the mid
T-dwarfs to early L-dwarfs.

particle is much smaller than the wavelength of light, the solution reduces to
that of Rayleigh scattering, which is proportional to ��4. If the particle size
and wavelength are of similar length, then in the Mie scattering regime forward
scattering is preferred, with larger particles forward scattering more strongly.

5.5.5. Summary

Having developed a model that incorporates all of the different sources of
opacity and follows a physically motivated temperature profile, we can put all
of the pieces together and calculate the emission spectrum of an exoplanet at-
mosphere using petitRADTRANS (pRT) (Mollière et al., 2019), with the results
shown in Figure 5.7. The spectra computed for this example use the parame-
terised pressure-temperature profile of Guillot (2010), which for our parameter
choice approximates an adiabat deep in the atmosphere with a radiative zone on
top. The chemistry is determined using a table of pre-computed equilibrium
abundances for each pressure and temperature point, with additional axes of
metallicity ([M/H]=0.5) and C/O (C/O=0.55). We included silicate and iron
clouds using the AM01 scheme. The point of this exercise is to emphasise how

65



I Introduction

all of the different atmospheric parameters interact with each other to create the
complex observed spectra. This highlights the two different approaches to mod-
elling these atmospheres. There are physics-based models, which incorporate
as many processes as possible to the best extent of our knowledge in order to
predict from a priori calculations what the observed spectra should be. This is
known as the forwardmodelling approach, and includes both self-consistent 1D
models and global circulation models, which we will discuss briefly in Sections
5.6 and 5.7 respectively. The second approach is to rely on the observations,
and optimise model parameters to fit the data in order to develop a physical
understanding of the mechanisms driving the spectral features. This approach
is the topic of the remainder of this thesis.

5.6. Self-consistent models

Unfortunately, it is not possible to simulate in 3D the full complexity of
all of the physical processes present in an atmosphere. With scales of microm-
eters in the condensation nuclei of clouds to global circulation patterns, and
timescales ranging from rapid chemical reactions to slow variation in incident
stellar radiation over time, a complete atmospheric model is currently infeasible.
For all classes of models then, simplifications must be made.

A widely used class of models used to study brown dwarf and directly
imaged exoplanet atmospheres is 1D, radiative-convective equilibrium (RCE)
models. Such models which solve for the atmospheric structure in RCE and
simultaneously apply some kind of chemical modelling are usually called self-
consistent. Fromobservations the full disk of the objects appear as point sources,
integrating over any variation in their surface features. While dynamical pro-
cesses are important, they are secondary to the bulk planet temperature and
composition. In comparisons to observed spectra, models generated using the
1D approximation reproduce the data with a high degree of accuracy. This is a
limited approximation: with sufficiently precise data, a variable surface (such as
seen for Jupiter in Figure 5.1) produces a disk-integrated spectra that cannot be
fully captured by a single 1Dmodel (e.g. Vos et al., 2023).

The advantage of such models is that very few parameters are required
as inputs, and these are often directly related to observables. The effective
temperature Te↵ , surface gravity log g and radius R are universally required.
Different models approach clouds with different methods. Some, such as the
recent Sonora BobcatMarley et al. (2021) models neglect condensation entirely,
focusing on reproducing objects where condensation is expected to play less of
a role in shaping the spectrum. Conversely, the ATMOmodels Phillips et al.
(2020) do not include clouds, but incorporate a parameter �ad that adjusts the
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slope of the adiabatic temperature profile, which can act to produce a more
isothermal temperature profile, reducing the amplitude of spectral features and
generally reddening the spectrum. This reduced temperature gradient allows for
good fits to L-dwarf near-infrared spectra without the need for incorporating
condensation. The reddening of the near-infrared is generally interpreted as
evidence for clouds (e.g., Cushing et al., 2008; Faherty et al., 2016; Charnay
et al., 2018). Different cloud prescriptions, often based on either Ackerman &
Marley (2001) or Helling &Woitke (2006) are incorporated into many models,
with the strength of the cloudiness parameterised by fsed or a similar parameter.
There is a vast array of available models, each incorporating slightly different
implementations of physical processes, using different line lists, and covering
different regions of parameter space. These include ATMO (Tremblin et al.,
2016; Phillips et al., 2020; Petrus et al., 2023), BT-Settl (Allard et al., 2003;
Allard et al., 2012), DRIFT-PHOENIX (Hauschildt & Baron, 1999; Helling et al.,
2008a), EGP (Burrows et al., 1996; Burrows & Volobuyev, 2003; Marley et al.,
2006; Saumon &Marley, 2008) and its successor, the Sonora series (Marley
et al., 2021; Karalidi et al., 2021; Morley et al., 2024; Mukherjee et al., 2024),
Exo-REM (Baudino et al., 2015; Charnay et al., 2018) which are computed using
PICASO (Mukherjee et al., 2023), and petitCODE (Mollière et al., 2015, 2017).

5.7. Global circulation models

Global circulation models (GCMs) represent a different approach to mod-
elling atmospheres. Rather than assuming 1D atmosphere, GCMs model the
complex hydrodynamics of a 3D atmosphere. Assumptions are required in
other aspects to ensure computational feasibility. Typically only the primitive
equations are solved, rather than the full system of Navier-Stokes equations;
as phrased by Showman & Kaspi (2013), the GCM ‘assumes that dynamics
introduces only small perturbations of the density, entropy, and pressure from a
specified reference state, which we here take to be isentropic.’ Radiative transfer
is often simplified to a grey or double-grey model, rather than performing the
computations at high spectral resolution. Some form of a simplified chemical
model is typically used, and clouds were often only post-processed into the
results, rather than being included self-consistently. State-of-the-art GCMs
such as Tan & Showman (2021a,b) and Lee et al. (2023, 2024) have made great
strides in incorporating dynamically active clouds and chemistry, as well as
using higher resolution radiative transfer. The advantage of GCMs is that they
produce spatially resolved, time variable models of an atmosphere. This allows
for the exploration of the complex dynamical phenomena present in a real atmo-
sphere, from equatorial jets to zonal winds. Post-processing the GCM outputs
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Figure 5.8: GCM results for a rapidly rotating sub-Jupiter mass object at 0.1
bar, detailing the spatial variation in temperature, outgoing longwave radiation,
condensate mass fraction and condensate vapour fraction. Reproduced with
permission from Lee et al. (2024).

to produce hemisphere-averaged emission spectra allows for the investigation of
variability, with the ability to link the variable emission directly to the physical
phenomena driving the changing flux. This is key to explaining recent studies
of variable brown dwarfs (Buenzli et al., 2012; Vos et al., 2018; Zhou et al., 2020,
e.g.), and will be necessary in the near future for exploring the variability of
directly imaged exoplanets. Figure 5.8 shows a recent GCMmodel of a brown
dwarf from Lee et al. (2024), showcasing how the atmospheric dynamics and
cloud properties vary spatially over the surface, ultimately leading to changes in
the observed flux.

5.8. The inverse problem

With a thorough understanding of the thermal structure, composition, dy-
namics, and cloud distribution of an atmosphere, it is relatively straightforward
to numerically perform the radiative transfer calculations required to compute
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an emission spectrum. In astronomy we are faced with the inverse problem: we
can observe the spectrum of an astrophysical object, and then need to deter-
mine the physical processes that produce it. This is a common problem across
disciplines, with well-studiedmethods. While the fundamentals of atmospheric
physics are reasonably well-understood, backing out the atmospheric state from
an observed spectrum is non-trivial. Such inverse problems are often ill-posed,
without a guarantee of the existence, uniqueness or stability of a solution. In
the study of exoplanet atmospheres, techniques are borrowed from planetary
science and earth observation, such as those presented in Rodgers (2000). If
a Bayesian statistical framework is used to infer the atmospheric state from
the observed spectrum, we refer to this procedure as an atmospheric retrieval.
Developing an atmospheric retrieval framework and applying it to emission
spectra of directly imaged planets is the primary focus of this work.
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6. OUTLINE

At this point, all of the tools necessary to understand this thesis have been
introduced. I will make use of high-contrast imaging data of young, giant exo-
planets in order to characterise their atmospheric properties. Their atmospheres
inherit their composition from the disk in which they form. While it is still
unclear the exact mechanism by which they form it is hoped that improving our
understanding of their atmospheres will provide insight into their formation
and evolutionary history.

The goal of this thesis is to develop and apply such an atmospheric retrieval
framework to determine the atmospheric state of exoplanets. In Chapter II
I outline the retrieval package, and apply it in a case study for a well-studied
transiting planet, WASP-39 b as part of the JWST Transiting Early Release
Science program (Nasedkin et al., 2024). Chapter III examines the impact of
data analysis choices on our ability to infer atmospheric parameters (Nasedkin
et al., 2023). Finally, in Chapter IV I apply the retrieval and data analysis
tools to the benchmark system of HR 8799 to systematically characterise the
atmospheres of the four companions (Nasedkin et al., 2024).
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This chapter has been adapted from Nasedkin et al. (2024) and Welbanks
et. al (2024, in prep.). I am the first author of Nasedkin et al. (2024) and
the primary developer of the petitRADTRANS retrieval module described
in this chapter. I have contributed a set of retrievals of WASP-39 b to the
JWST Early Release Science program for a retrieval comparison study led
by Luis Welbanks. The pRT retrievals are discussed in this chapter.

“Nature is written in that great book which ever is before our eyes, but we
cannot understand it if we do not first learn the language in which it is
written.”

Galileo Galilei, 1623

ATMOSPHERIC RETRIEVALS WITH
PETITRADTRANS



7. PETITRADTRANS

petitRADTRANS (pRT) is a fast radiative transfer code used for computing
emission and transmission spectra of exoplanet atmospheres (Mollière et al.,
2019), combining a Fortran back end with a Python-based user interface. It
is widely used in the exoplanet community with 260 refereed citations in the
literature at the time of writing and has been benchmarked against numerous
similar tools, including many listed in MacDonald & Batalha (2023). The spec-
tra calculated with pRT can be used as a forward model for fitting spectroscopic
data using Monte Carlo techniques, commonly referred to as an atmospheric
retrieval Madhusudhan & Seager (2009).

Atmospheric retrievals are a cornerstone of exoplanet atmospheric charac-
terisation. pRT provides a powerful and user-friendly tool for researchers to
fit exoplanet spectra with a range of built-in or custom atmospheric models.
Various thermal structures, chemistry and cloud parameterisations, and opacity
calculation methods can be combined and used to perform parameter estima-
tion andmodel comparison for a given atmospheric spectrum. The Retrieval
module combines the Radtrans forward modelling class with a nested sampler
(Skilling, 2004) via a likelihood function to perform an atmospheric retrieval.
The new retrieval module combines fast forward modelling with nested sam-
pling codes, allowing for atmospheric retrievals on a large range of different
types of exoplanet data. In this chapter I will outline the implementation details
the spectroscopic calculations as originally published inMollière et al. (2019,
2020)1. The novel Retrieval module implementation is presented in Sec-
tion8. Finally in Section9 I will present an application of the retrieval technique
to the hot Jupiter WASP-39b.

7.1. Radiative transfer

In Section5.5 the fundamental problem of radiative transfer was stated.
Crucially, pRT is not a self-consistent model, and so the temperature structure is
parameterised independently of the radiation transfer, and so it is not necessary
to calculate the heating and cooling in the atmosphere due to radiation. This
simplifies the problem to computing the top-of-atmosphere emission spectrum.
While pRT can calculate spectra in both transmission and emission geometries,
we will focus on the emission spectrum implementation here. There are two

1For detailed descriptions of the actual use of pRT, links to the publicly available source
code, and documentation the complete available functionality, see https://petitradtrans.
readthedocs.io
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methods implemented for solving the radiative transfer in an atmosphere di-
vided into discrete pressure layers, with a temperature assigned to each layer.
The first method uses a simplified statement of the radiative transfer problem,
neglecting the scattering term from equation 5.21. This approximation signif-
icantly reduces the computation time, and is valid when redder-than-optical
wavelengths are considered (where Rayleigh scattering is negligible) and when
clouds are not a significant source of opacity in the atmosphere. The second
implementation uses the method of Feautrier (1964), and iteratively solves for
the scattering source function. It is this second method that will be described
here, though the full implementation is detailed in Mollière (2017).

The fundamental coordinate that we will use for solving the radiative trans-
fer equation is the frequency-dependent optical depth, ⌧⌫.

⌧⌫ =

Z
⌫⇢dz. (7.1)

Recalling that in Section 5.21 we had defined ↵⌫ = ⌫⇢ for opacity ⌫, we can
rewrite ⌧⌫ in the vertical direction as an integral of the density ⇢ and pressure P

⌧vert
⌫ =

Z
⌫
g

dP, (7.2)

which we generalise to an arbitrary zenith angle ✓, where µ = cos ✓,

⌧⌫ (✓) =
⌧vert
⌫

µ
. (7.3)

Consider now the differential equations for the inward I
+ and outward I

�

pointing intensity, for an arbitrary source function S .

dI
+

d⌧
= S � I

+, (7.4)

dI
�

d⌧
= � �

S � I
�� . (7.5)

We can rewrite these to simplify the equations, defining IJ and IH as a linear
combination of I

+ and I
� such that

IJ =
1
2

�
I
+ + I

�� , (7.6)

IH =
1
2

�
I
+ � I

�� . (7.7)
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With these definitions, equation 7.4 becomes

dIJ

d⌧
= �IH , (7.8)

dIH

d⌧
= S � IJ . (7.9)

Taking the second derivative with respect to ⌧,

d
2
IJ

d⌧2 = IJ � S . (7.10)

This is a diffusion equation, which automatically provides a high-enough order
to correctly solve for the intensity in the diffusive limit when discretised for
numerical applications.

At this point we need to specify the boundary conditions on the problem.
We will consider only the planetary radiation field, as the radiation of any inci-
dent light can be linearly combined with the planetary solution. Thus at the top
of the atmosphere, there should be no radiation entering the planet atmosphere,
and therefore

I
+ (P = 0, ✓) = 08✓. (7.11)

At the bottom of the atmosphere the radiation field is assumed to be diffusive,
and therefore

I
+ (P! 1, ✓) = I

� (P! 1, ✓) .8✓. (7.12)

Rephrasing these boundary conditions for IJ , we find

dIJ (0)
d⌧

= IJ(0), (7.13)

dIJ (P! 1)
d⌧

= 0, (7.14)

In order to solve these equations, we must discretise them. In pRT, we use
a log-spaced pressure grid of N layers. Rewriting equation equation 7.10 in
discrete form and dropping the subscript J for brevity,

�
⇣

Ii+1�Ii

⌧i+1�⌧i

⌘
�

⇣
Ii�Ii�1
⌧i�⌧i�1

⌘

⇣
⌧i+1+⌧i

2

⌘
�

⇣
⌧i+⌧i�1

2

⌘ + Ii = S i. (7.15)

In somewhat more compact notation,

MIJ = S (7.16)
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From equation 7.15 we see that the i
th term is coupled only to the i+1 and i�1

terms. Together with the decomposition of the radiation stream, this is among
the key innovations of the Feautrier method. The matrix M can be expressed as
a block tridiagonal matrix, which has favourable properties for solving equation
7.16, such as the tridiag solver of Press et al. (1992).

M =

2
66666666666666666666666666666666664

b1 c1 0 . . . 0

a2 b2 c2
. . .

...

0
. . . . . . . . . 0

...
. . . aN�1 bN�1 cN�1

0 . . . 0 aN bN

3
77777777777777777777777777777777775

(7.17)

Using such a solution for IJ , we can now calculate IH from equation 7.9.
Having calculated IJ and IH , we must now calculate the top-of-atmosphere

emission spectrum in the z direction, which is defined as perpendicular to the
plane-parallel atmosphere

F⌫ =

Z 2⇡

0
I⌫n · ezd⌦. (7.18)

which, in terms of IH is

F⌫ =

Z 2⇡

0

Z ⇡/2

�⇡/2
I⌫(P = 0) cos(✓) sin(✓)d�d✓, (7.19)

= 2⇡
Z 1

�1
I⌫(P = 0)µdµ, (7.20)

= �4⇡
Z 1

0
IH(P = 0)µdµ. (7.21)

The mean intensity can be likewise calculated using IJ

J⌫ =

Z 1

0
IJ(P)dµ. (7.22)

In practice equations 7.19 and 7.22 are only evaluated at a small number (3) of
µ points, chosen through Gaussian quadrature. As most of the flux is concen-
trated in the vertical direction, this does not significantly reduce the accuracy
when compared to 16 quadrature points. pRT includes additional numerical
approaches to reduce the computation time of the radiative transfer calcula-
tions, notably accelerated lambda integration and Ng acceleration, which are
discussed inMollière (2017).
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7.2. Correlated-k

The correlated-k (c-k) method is a computationally efficient approximation
of a full line-by-line (lbl) radiative transfer calculation, originally introduced by
Goody et al. (1989) and Lacis & Oinas (1991). For a given spectral resolution,
the c-k method achieves a factor of⇠100–1000 speed-up compared to an equiv-
alently accurate lbl calculation. The errors introduced by the approximation are
on the order of 1% when compared to high resolution lbl calculations binned
to the same resolution.

Gas opacities are typically complicated functions of frequency, with the
absorption strength varying by orders of magnitude between the line cores and
wings. However, the opacities are also highly structured, with each line having a
similar shape. The important insight of the c-k method is that when integrating
opacities to compute an optical depth in a small frequency window, the order of
integration is not important. Therefore the absorption coefficient strengths can
be reordered into a cumulative frequency distribution, which is a much simpler
function to integrate than the opacity function. We can write this cumulative
distribution function f (ki) for a narrow frequency window by discretising the
opacity k onto a grid. Within the frequency window, the distribution is then
obtained by counting the number of points that fall into each k bin. Thus for
the i

th bin and for M spectral sub-intervals

f (ki) =
1

⌫2 � ⌫1

MX

j

������
�⌫ j

�ki

������ W(ki, ki + �ki), (7.23)

whereW(ki, ki + �ki) is a tophat function on the domain [ki, ki + �ki]. This
function is constrained to the range [0, 1], which means that the cumulative
frequency distribution increments define the fraction of the frequency interval
for which the absorption coefficient falls into the i

th bin. We call this increment
�gi = f (ki)�ki. Thus we can formally define g as a function of the absorption
coefficient.

g(kn) =
nX

i

f (ki)�ki. (7.24)

This transformation is defined to be monotonic and bijective, with an inverse

kn(g) = g
�1(kn). (7.25)

In comparison to the original opacity spectrum, this function is smooth and
monotonic, and can be easily numerically integrated on a coarse grid in g space
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- 16 points are used to define the g grid in pRT. Goody et al. (1989) present a
formal proof of the validity of this transformation in the limits of strong and
weak lines. The coefficients k for coordinates g can be tabulated as functions of
pressure and temperature for individual gas species, thus allowing for the rapid
computation of the radiative transfer.

Combining the c-k opacities of multiple species requires mixing the distri-
butions in g space. Mollière (2017) introduced a method to mix the species by
sampling the g distributions to determine their statistical properties in order to
combine them. However, this approach meant that the radiative transfer calcu-
lation was non-deterministic, with a scatter of about 1% around the expected
result. In order to overcome this, I implemented a method to fully combine
two k-distributions similar to that of Amundsen et al. (2017), resulting in both
faster computation times and a deterministic outcome. For computational
efficiency, we only combine species that contribute more strongly than 1% the
strength of the strongest absorber in each frequency bin.

The goal is now to combine the opacities of Nspec gas phase species, for
N⌫ frequency points and NP pressure points. The opacity k⌫ of each species is
stored on a grid of Ng points in g space, We define a combined grid gc as our
coordinate, weighted by the intervals in g space �g,

gc

⇣
(i � 1) · Ng + j

⌘
= �gi�g j. (7.26)

where i and j are the indices counting the points in the saved g grid. The
indices of the left hand side are chosen such that the new coordinate grid is also
monotonic, containing i ⇥ j points. This grid is then normalised by the sum of
gc, such that it is normalised to the interval [0,1].

Consider now the calculation of the new k⌫ for a single point in pressure-
frequency space. The opacities are combined in sequence: the first two species
are combined, then the opacity of the third species is combined with the opacity
of the mixture of the first two species. Thus we will take the general approach
of combining two arbitrary opacity distributions k1 and k2, we can be applied
recursively in order to mix multiple species. We also drop the ⌫ subscript as this
process can be iterated over every frequency interval. Using the same sorting
approach to ensure the correct placement of the opacities on thegc grid, defining
the combined opacity kc as the sum of the two input opacities

kc

⇣
(i � 1) · Ng + j

⌘
= k1(i) + k2( j). (7.27)

The resulting array of opacities is sorted by the g coordinate using a mergesort
algorithm (Olagnon, 2011). This produces a cumulative distribution function
of the opacity kc with i⇥ j points in g space. The combined opacity distribution
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Figure 7.1: Comparison between a ground truth atmospheric model computed
at a spectral resolution of 106, and models calculated using binned c-k tables
in blue, and models calculated using downsampled line-lists in red. The top
panel shows the spectra at each resolution. The bottom panel shows the RMS
difference between the binned spectra and the ground truth spectrum binned
post-computation to the lower resolution bins. The c-k approach much more
accurately reproduces the ground truth spectrum than the downsampling ap-
proach.

is linearly interpolated back to the original g gridwithNg points, and the process
is repeated for every species, pressure, and frequency. Compared to the previous
method, this approach resulted in a ⇠5⇥ improvement in the computational
speed and ensured that the c-k mixing is fully deterministic.

The final component of speeding up the calculation of spectra using the c-k
approach is appropriately binning the spectrum. While it is easy to bin a high-
resolution spectrum to lower resolution, for example by taking the mean flux
in each low-resolution interval, this process still requires the computationally
expensive step of calculating the high resolution spectrum. To avoid this, we use
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the exo-k package of Leconte (2021) which calculates lower spectral resolution
c-k tables from higher-resolution tables. These lower resolution inputs can then
be used in the radiative transfer calculations, requiring fewer computations. The
author provides a formal proof for the validity of this process, demonstrating
that it does not result in a loss of accuracy. They also show that this method
compares favourably to the widely used approach of downsampling a high-
resolution line-by-line list to a lower resolution, which was validated using tests
in pRT. Taking a spectrum computed using an lbl approach with a resolution of
106, we calculated the difference between spectra computed using both the c-k
method at various resolutions and using lbl spectra downsampled by various
factors, shown in Figure7.1.

7.3. Opacity sources

pRT can compute spectra either using line-by-line (lbl) calculations, or using
correlated-k (c-k) tables for defining the opacities ofmolecular species. Opacities
at high resolution are mostly calculated from the most complete and up-to-date
line lists found in the ExoMol Tennyson & Yurchenko (2012); McKemmish
et al. (2016); Polyansky et al. (2018a); Chubb et al. (2021) and HITEMP Roth-
man et al. (2010a); Hargreaves et al. (2020); Gordon et al. (2022) data bases,
using the method described in Mollière et al. (2015). Correlated-k tables can be
calculated from these high resolution opacities (Mollière et al., 2019) or down-
loaded in pRT format already from the Exomol website (Chubb et al., 2021).
Contribution by pRT users is another source of the opacity database. A full list
of the available species and sources is maintained in the pRT documentation.

7.4. Thermal structure

As pRT does not compute the thermal structure self consistently with the
radiative transfer and chemistry, parametric models must be used. While it is
possible to arbitrarily define the temperature for each pressure level (or indeed
for users to define their own temperature pressure-profiles), pRT includes several
profiles commonly used in the literature for ease of use. These are included in
the physics sub-package, and can be combined with different chemical and
cloud setups.

Isothermal

The simplest possible temperature structure is a constant temperature
throughout the atmosphere. As noted previously, in the case of an emission
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spectrum, this would produce only a blackbody curve. However, transmission
spectra are often only sensitive to a narrow region of the atmosphere at low
pressures, and an isothermal approximation is reasonable. Even with the advent
of broad wavelength JWST transmission spectra, an isothermal atmosphere
may still be preferred for its simplicity over a more complex model.

Madhusudhan and Seager 2009

Madhusudhan & Seager (2009) define a parametric temperature pressure
profile, where the temperatures Ti at different pressures Pi are both free param-
eters. They define the profile as

P0 < P < P1 : P = P0e
↵1(T�T0)�1

, (7.28)

P1 < P < P3 : P = P2e
↵2(T�T2)�2

, (7.29)
P > P3 : T = T3, (7.30)

(7.31)

where ↵1 and ↵2 are also a free parameters. In their work, �1 = �2 = 0.5. This
can be solved to find the temperature for every pressure. Beginning with finding
the boundary temperatures,

P > P3 : T = T3, (7.32)

P2 < P < P3 : T2 = T3 �
(log P3 � log P2)1/�2

↵2
, (7.33)

P1 < P < P2 : T1 = T2 +
(log P1 � log P2))1/�2

↵2
, (7.34)

P0 < P < P1 : T0 = T1 �
(log P1 � log P0))1/�1

↵1
. (7.35)

We can then compute the full temperature profile

P > P3 : T = T3, (7.36)

P1 < P < P3 : T =
(log P � log P2)1/�2

↵2
+ T2, (7.37)

P0 < P < P1 : T =
(log P � log P0)1/�1

↵1
+ T0. (7.38)

In practice, the version of this profile implemented in pRT is somewhat more
flexible, and can compute the boundary temperatures as long as four tempera-
tures at four pressures are defined.
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The goal of this profile was to provide a data-driven framework for fitting
the temperature profile, using as few parameters as possible while still being
able to capture a diversity of shapes. The structure of the profile was motivated
by physics: at high pressures the atmosphere becomes optically thick, and so
a retrieval on the spectrum can only be sensitive down to the deepest layer of
the atmosphere before the atmosphere is fully opaque. This layer sets T3, and
the lack of a deep adiabatic structure does not significantly impact the observed
spectrum. In the optically thin regions of the atmosphere, the profile must
be flexible enough to capture the diversity of temperature profiles, from those
following an adiabat to the inverted profiles of hot and ultra hot Jupiters. This
requires at least two curves to describe such an inversion. By freely retrieving
both the pressure and the temperature at that location, this profile parameterises
both the strength and location of an inversion, if it is present.

Guillot 2010

The profile of Guillot (2010) is an analytic model, used to calculate the
thermal structure of irradiated planets:

T
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where Tirr =
p

2Tequ and ⌧ = P ⇥ IR/g. Tequ is the equilibrium temperature
of an irradiated body, Tint is the intrinsic temperature of the planet and g is the
surface gravity. IR is the mean infrared opacity, and � is the ratio between the
optical and infrared opacities. With only four physically motivated parameters,
the Guillot profile manages to capture much of the same structure as the Mad-
husudhan & Seager profile, ranging from a Eddington (1930) profile where the
temperature always decreases with decreasing pressure to inverted atmospheres
as observed in highly irradiated planets.

Line 2015 Spline

A spline temperature profile defines the temperature at N points through-
out the atmosphere, and interpolates between these points to fully define the
temperature structure (Line et al., 2015). TheN temperature points are equidis-
tantly spaced throughout the atmosphere in log-pressure space. We implement
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both a linear interpolation method and a Piecewise Cubic Hermite Interpolat-
ing Polynomial using the scipy.interpolate. PchipInterpolator func-
tion. This cubic interpolationmethod was chosen to minimise the temperature
overshoot or undershoot between nodes, effectively minimising the curvature
of the entire profile.

Mollière 2020

Mollière et al. (2020) introduce a physically motivated temperature profile,
split into three distinct altitude regions.

We begin with the photosphere region, which is the central of the three tem-
perature profile components (the other two lying at lower or higher altitudes).
Here, the temperature follows an Eddington profile, as in the first term of the
Guillot profile in Equation 7.39. Rather than calculating ⌧ as a function of an
opacity parameter and the surface gravity, we parameterise ⌧ as a function of
pressure:

⌧ = �P
↵, (7.40)

where � and ↵ are independent parameters. Together with Tint, this part of the
profile is defined by these three parameters.

The upper atmosphere is defined as the region above ⌧ = 0.1. At pressures
lower than this level, four points equidistant in log P are defined. At ⌧ = 0.1
the temperature is fixed to that of the Eddington profile from the middle re-
gion. The remaining temperature points are free parameters of the model. For
self-luminous atmospheres, these points are subject to the constraint that the
temperature decreases with altitude (Kitzmann et al., 2020). The temperature
profile is then interpolated from a cubic spline between the three points. To-
gether with the central region, a total of 6 parameters are necessary to describe
the temperature profile.

The lower region of the atmosphere is defined as a moist adiabat, up to the
radiative-convective boundary, found using Equation 5.8. The moist adiabatic
gradient is calculated as part of the equilibrium chemistry table, and thus this
region of the profile is consistent with the chemistry model. At pressures deeper
than the radiative-convective boundary, the temperature profile is forced onto
this adiabatic gradient.

Zhang 2023

Finally, Zhang et al. (2023) recently introduced anovel P-Tparameterisation.
The atmosphere between 103 bar and 10�3 bar is divided up into six layers,
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equidistant in log pressure. The temperature at the bottom of the atmosphere
(Tbot) a free parameter. For the remaining layers, the temperature gradient
d log T/d log P

���
i
rather than the temperature itself are the model parameters.

The temperature profile is then found by interpolating the gradient to the full
pressure grid, and integrating to find the temperature at each pressure.

T0 = TBot, (7.41)

Ti+1 = exp
 
log Ti +

�
log Pi+1 � log Pi

�
 

d log T

d log P

!

i

!
. (7.42)

The atmosphere is isothermal above 10�3 bar. The key development of this
profile was how it incorporated the results of radiative-convective equilibrium
models into a retrieval framework, through careful prior selection. This is
accomplished by fitting for the gradient of the temperature with respect to
pressure, as opposed to directly retrieving the temperature as in the spline
profile. By defining the priors such that the gradients must be similar to those
expected from an RCE solution, this enforces physical results in a data-driven
framework.

7.5. Chemistry

Two approaches to parameterising chemical abundances are included in
pRT. The so-called ‘free chemistry’ approach assumes that the mass fraction of
each species is vertically constant, and its value can be arbitrarily defined. In
principle this method can be extended to arbitrary chemical profiles, simply
requiring that the abundance of each species is specified at each discrete pressure
level rather than as a single value. This approach is commonly used in remote
sensing of solar system atmospheres, where the spectral resolution is high and
measurements are very precise. With the abundance of moderate resolution
data from JWST and the construction of ELT class telescopes, such approaches
may soon be necessary for the interpretation of brown dwarf and exoplanets

In the second approach, equilibrium and disequilibrium chemistry can
be interpolated from a pre-computed grid on-the-fly. These methods are in-
cluded in the chemistry.pre_calculated_chemistry subpackage of pRT.
The underlying equilibrium chemistry grid was computed using easyChem
(Mollière et al., 2017), which is a Python-wrapped clone of the CEA code of
Gordon &McBride (1994). The grid is composed of 100 equidistant temper-
ature points between 60 K and 4000 K, 100 log-equidistant pressure points
in

h
10�8, 1000

i
bar, 20 C/O points between 0.1 and 1.6, and 40 metallicity
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points between -2 and 3 (in units of [Fe/H] with respect to solar). The metal-
licity scales all elemental abundances by a factor of 10[Fe/H], after which the
oxygen abundance is scaled by the C/O parameter. The reactant species used to
compute the equilibrium chemistry table were H, H2, He, O, C, N, Mg, Si, Fe,
S, Al, Ca, Na, Ni, P, K, Ti, CO, OH, SH, N2, O, SiO, TiO, SiS, H2O, C2, CH,
CN, CS, SiC, NH, SiH, NO, SN, SiN, SO, S2, C2H, HCN, C2H2 (acetylene),
CH4, AlH, AlOH, Al2O, CaOH, MgH, Mg, OH, PH3, CO2, TiO2, Si2C,
SiO2, FeO, NH2, NH3, CH2, CH3, H2S, VO, VO2, NaCl, KCl, e-, H+, H-,
Na+, K+, PH2, P2, PS, PO, P4O6, PH, V, FeH, VO(c), VO(L), MgSiO3(c),
SiC(c), Fe(c), Na2S(c), KCL(c), Fe(L), SiC(L), MgSiO3(L), H2O(L), H2O(c),
TiO(c), TiO(L), TiO2(c), TiO2(L), H3PO4(c), and H3PO4(L), where (c) in-
dicates solid condensates and (L) indicates liquid condensate species. Using a
Gibbs minimisation approach, the equilibrium abundances of each species was
calculated, and the abundances of the most common species were stored in the
lookup table, these include H2, He, CO, H2O, HCN, C2H2 (acetylene), CH4,
PH3, CO2, NH3, H2S, VO, TiO, Na, K, SiO, e-, H-, H, and FeH. The mean
molecular weight is also stored, as is the local moist adiabatic temperature gra-
dient, rad. Chemical disequilibrium is implemented using a quench pressure
approximation, modelling the impact of strong vertical mixing. At pressures
lower than the specified quench pressure, the abundances of CO, H2O and
CH4 remain constant.

These two approaches can be combined. The chemical equilibriummodel
can be used to calculate the abundances of one set of species, while a separate
set can have their abundances defined by the user. This allows for a flexible
approach where some species may not be expected in equilibrium, but may
nevertheless play an important role in contributing to the opacity.

7.6. Clouds

Clouds are a key source of continuum opacity in exoplanet atmospheres,
and several cloud parameterisations are included in pRT.

Grey cloud deck

The simplest implementation is that of a grey cloud deck. This model is
parameterised only by the cloud top pressure, below which the atmosphere is
opaque. Such a model is typically used in transmission geometries, which are
sensitive to a relatively narrow dynamic range in pressure, though several recent
studies have detected cloud optical features inmid infrared transmission spectra
(e.g. Grant et al., 2023; Dyrek et al., 2024).
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Power law cloud

A somewhat more realistic model for the cloud opacity  is to scale the
opacity as a function of wavelength.

 = 0

 
�

�0

!�
, (7.43)

where�0 = 0.35µm. This opacity is added to anyRayleigh scattering calculated
in the atmosphere. For � = �4, this follows the same wavelength dependence
as Rayleigh scattering.

Fixed particle radius cloud

As an intermediatemodel between a fully parametric approach and aphysics-
motivated paradigm, a cloud can be defined by its mass fraction abundance
and mean particle radius at every pressure layer within the atmosphere. Most
commonly this would be used to define a log-normal particle size distribution
centred on a mean particle radius that remains constant with altitude. The
cloud optical properties can then be determined by defining a composition and
particle geometry for the cloud.

Ackerman-Marley 2001

For a more physically motivated cloud model, pRT includes the clouds
model of Ackerman &Marley (2001), as introduced in Section 5.5.4. A variety
of common cloud species are included, where the cloud species determines both
the optical properties of the clouds and the condensation pressure. This con-
densation pressure is calculated from the intersection of the (partial) pressure-
temperature profile with the saturation vapor pressure curve of the condensate
species. An arbitrary cloud base pressure can also be set, reflecting uncertainties
in the modelling of the cloud formation process. Multiple cloud species can
be included, with independent fsed values for each. The cloud mass fraction
at the base of the cloud can be determined either from equilibrium chemistry
condensation, or as an independent parameter. The cloud mass fraction of the
i
th species Xi is then usually parameterised such that the mass fraction decreases
with decreasing pressure:

Xi(P) = Xi,0

 
P

P0

! fsed

. (7.44)

In the standard setup, a log-normal particle size distribution is used to determine
the particle sizes about themean size determinedbybalancing the verticalmixing
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and sedimentation velocity. However, a Hansen (1971) size distribution has
also been included, the implementation of which is presented in Section 24.D.

Arbitrary continuum opacities

Finally, an arbitrary source of continuum opacity can be defined, where the
opacity must be calculated as a function of pressure and wavelength. This
allows for a fully flexible implementation of a cloud or continuum opacity
model.

Patchy clouds

Any of these cloud models can be used as part of a patchy cloud model. In
pRT, this is typically implemented as a mix between a clear atmosphere column
and a cloudy atmosphere column, though it is also possible tomix columnswith
different cloud opacities. In either case, the combination of the two columns is
achieved from adding the weighted flux of each column Fa and Fb, weighted
by a patchiness fraction fp

F = fpFa + (1 � fp)Fb. (7.45)

Such patchy clouds have been found to be an important part of fitting sub-stellar
atmospheres (e.g., Vos et al., 2023).

7.6.1. Adaptive mesh refinement

The adaptive mesh refinement (AMR) scheme originally introduced in
Mollière et al. (2020) has been significantly updated to improve computational
performance. Fundamentally, the procedure remains the same: in the regions
where clouds are located, the resolution of the pressure grid is increased in order
to better resolve the sharp change in opacity caused by condensation, without
requiring the computational expense of computing the radiative transfer on a
dense pressure grid throughout the atmosphere. The main change in the new
approach is that for a given number of cloud layers in the atmosphere, defined
by the number of cloud species included, the final pressure grid is guaranteed
to have a fixed length. This means that pRT no longer needs to update the size
of internal arrays for opacities, temperatures, and other parameters for each
iteration in a retrieval.

86



8. RETRIEVALS

Unfortunately for atmospheric physicists, exoplanets are too far away to
measure the atmospheric state directly. Instead, we obtain measurements of
the emission or transmission spectrum, whose properties are inherently tied to
the atmospheric state. The problem is to take this spectroscopic measurement,
and invert it in order to obtain the atmospheric state that produced it. This
procedure is generally referred to as an ‘atmospheric retrieval’, and inherits
its techniques from earth and solar system science, such as those described in
Rodgers (2000). In a trivial case, we can image that the spectrum ~F is linearly
determined by a forward modelM applied to an atmospheric state vector ~x

~F =M~x. (8.1)

Clearly, all we need to do to solve the inverse problem is to invert the matrixM
such that

M�1 ~F = ~x. (8.2)

While this is an easy problem to state, actually solving it in practice can be
very challenging. Consider the addition of an uncertainty term~e, so that

~F =M~x + ~e. (8.3)

Already, the problem can no longer be trivially inverted, and indeed there is
no guarantee that a solution exists. At this point, we must rely on techniques
to find approximate solutions to the problem. Most of these techniques rely
on minimising some likelihood function between the forward model and the
observations. Many procedures exist for achieving this, from least-squares min-
imisation, through to optimal estimation (Rodgers, 1976; Twomey et al., 1977;
Rodgers, 2000), Markov Chain Monte Carlo methods (Metropolis et al., 1953;
Hastings, 1970), and nested sampling Skilling (2004). These techniques have
been widely applied to the study of exoplanet atmospheres. Non-exhaustively,
retrieval methods with applications to exoplanet atmospheres have been de-
scribed in Madhusudhan & Seager (2009); Madhusudhan & Seager (2011);
Benneke & Seager (2012); Lee et al. (2013); Line et al. (2014); Blecic et al.
(2016); Mollière et al. (2020); Cubillos & Blecic (2021); MacDonald & Lewis
(2022); Chubb &Min (2022) and Blain et al. (2024). For a more complete list,
MacDonald & Batalha (2023) catalogue retrieval codes that are available as of
2023.

The choice of method depends on the specific problem at hand. Opti-
mal estimation methods perform well in the limit of abundant, high precision

87



II Atmospheric Retrievals with petitRADTRANS

data. However, they rely on the linearisation of the forward model, and assume
that the posterior can be described using a multivariate gaussian distribution.
MCMC methods are widely used (e.g. Madhusudhan & Seager, 2011), but
suffer from the curse of dimensionality. It is also difficult to compare different
models fit using a standard MCMC approach. Nested Sampling methods were
designed to resolve these problems, providing estimates of the posterior prob-
ability distribution and the Bayesian evidence, which can be used to perform
model comparison while also reducing the computational runtime when com-
pared to standardMCMCmethods. Buchner (2023) provides a review of the
motivation and implementation of such nested sampling methods.

We can recast the inverse problem into a Bayesian formalism, which lends
itself well to interpretation of the results. Consider Bayes theorem for some
parameters ~✓i, data ~D and model Mi

P(~✓i|~D,Mi) =
P(~D|~✓i,Mi)P(~✓i|Mi)

P(~D|Mi)
. (8.4)

We refer to P(~✓i|~D,Mi) as the posterior probability distribution of the parame-
ters ~✓i given the data. This directly tells us what the probability is that a model
parameter falls within some range, based on the data. P(~✓i|Mi) is the prior prob-
ability distribution, which can be used to constrain the problem. P(~D|~✓i,Mi) is
termed the likelihood. This term is generally what must be computed in order
to calculate the posterior probability distributions, and can be interpreted as
the probability of observing the data given the current set of parameters are true.
By varying the parameters and keeping the data constant, we can explore the
likelihood space and fill in the posterior distribution. Lastly P(~D|Mi) ⌘ Z is
the Bayesian evidence. It serves to normalise the posterior probability distribu-
tion, and does not rely on a particular parameter choice, but rather the choice
of the model under investigation. Equivalently, it is the likelihood marginalised
over the parameters. This provides a means to perform the likelihood ratio
test between two models in order to determine which one is favoured over the
other. This is the idea behind the widely-used ‘Bayes-factors’. The ratioZ1/Z2
between two models is the odds ratio of model 1 compared to model 2, where
a ratio greater than 1 indicates that model 1 is more likely than model 2. The
Bayes factor is the log of this ratio. Kass & Raftery (1995) and Benneke &
Seager (2013) provide similar interpretations of the Bayes factor in terms of�,
which reflects the probability that the model preference occurs through ran-
dom chance. As a rule-of-thumb, a log10 �Z = 2 is decisive evidence, roughly
equivalent to a 5� detection.

In terms of solving the inverse atmosphere problem, our goal is now to a)
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measure the posterior probability distributions of our model parameters, and
b) calculate the Bayesian evidence so that we can performmodel comparison.
In order to do this, we must iterate through many variations of the parameters
✓, and calculate the likelihood for each sample. The core of the problem is
therefore to define the likelihood function, which when integrated over the
parameters will produce the evidenceZ, and when minimised will provide the
best-fit parameter values to describe the data.

8.1. Likelihood functions

The likelihood function provides a measurement of how well the data
fits a model, given a fixed set of parameters. In practice it is more convenient
to work with the log-likelihood function, which can be numerically easier to
minimise. A natural example of such a log-likelihood is the �2 function. Given
the assumption that the data D are independent and normally distributed with
uncertainties�, we can compare to a model S :

�2 =
X

i

(Di � S i)2

�2
i

. (8.5)

This can be interpreted as a distance between the data and the model, weighted
by the uncertainties. A better fit to the data will result in a lower �2 value,
tending towards the number of data points, and sominimising the �2 will result
in the best fit to the data. We can generalise the �2 to account for correlated
uncertainties, represented by the covariance matrix C. For a k-dimensional
multivariate normal distribution, the joint probability distribution of the i

th

term is

P~D(Di) =
exp

⇣
1
2 (Di � S i)T C�1 (Di � S i)

⌘

q
(2⇡)N det(C)

. (8.6)

We can find the log-likelihood by taking the log of the probability distribution.
Up to a normalisation constant,

L =
⇣
~D � ~S

⌘T

C�1
⇣
~D � ~S

⌘
. (8.7)

In pRT, the model S is an emission or transmission spectrum calculated on-the-
fly based on a set of input parameters, whileD andC are the input spectroscopic
data and uncertainties being fit. However, we may need to estimate the uncer-
tainties as part of the model fitting procedure, as the error bars provided from
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instrumental measurements do not always reflect the statistical properties of
the data. The second term which falls out naturally from considering the log of
the joint multivariate probability distribution allows uncertainties to vary as a
free parameter, acting to penalise overly large uncertainties.

�2 logL =
⇣
~D � ~S

⌘T

C�1
⇣
~D � ~S

⌘
+ log

h
(2⇡)k det (C)

i
, (8.8)

where k is the dimensionality of the data vector ~D.

8.2. Nested sampling

With a likelihood function defined, it is now possible to evaluate it in order
to calculate posterior distributions and estimate the evidence (Buchner, 2023).
The procedure of nested sampling (Skilling, 2004) is as follows.

Initialisation. During the initialisation phase, N points are drawn from
the prior volume. These are collectively known as live points. The likeli-
hood is calculated for each live point.

Likelihood-restricted prior sampling. Following the calculation of the like-
lihoods, the point with the lowest likelihood is dropped, becoming a dead
point. A new sample is drawn with the condition that the new likelihood
must be greater than the remaining minimum likelihood. This ensures
that the sample will be drawn from a smaller region of the prior volume,
decreasing roughly as 1/N for each dead point.

Iteration. This process repeats. For each iteration, the likelihood thresh-
old increases, and thus the prior volume sampled by the current set of live
points decreases exponentially, as Vi = (1 � 1/N)i.

Termination. The termination condition is typically based on the con-
vergence of the evidence estimate,Z. The contributions to the evidence
become smaller as the volume shrinks, as the contributionZi = �ViLi.
Once the evidence contributions become sufficiently small, the algorithm
can terminate. The Bayesian evidence can be computed as the sum of the
likelihoods multiplied by their respective volume contributions:

Z =
X

i

�ViLi. (8.9)

90



RETRIEVALS

Thus we have obtained both the Bayesian evidence estimate which we
can use to performmodel comparison as well as the posterior probability dis-
tributions of the parameters obtained through the sampling process. Both
MultiNest (Feroz &Hobson, 2008; Feroz et al., 2009, 2019; Buchner et al.,
2014) and Ultranest (Buchner et al., 2014; Buchner, 2019) samplers are avail-
able in pRT, with both offeringMPI implementations that allow for easy par-
allelisation. While Ultranest is recommended due to its improved accuracy
in estimating the evidence, and is generally a more modern approach to nested
sampling, testing has shown that Multinest remains faster for the problem of
exoplanet atmospheres.

While a general nested sampling algorithm is described above, most re-
trievals in pRT will rely on the Multinest implementation, as wrapped by
pyMultinest (Buchner et al., 2014). The innovation of this method is in
how it determines the restricted region for drawing subsequent live points.
Multinest improves upon ellipsoidal nested sampling (ENS), introduced by
Mukherjee et al. (2006). In standard ENS, an ellipsoid is drawn around the
remaining likelihood points, and the subsequent sample drawn from within
the enclosed volume in prior space. In Multinest, multiple ellipsoids can be
drawn, which allows for the easy enclosure of multiple modes in posterior space.
The details of this procedure, including how the ellipsoids are determined and
how parameters are drawn from the enclosed volume (which may include over-
lapping ellipsoids) is described in Feroz et al. (2009). The authors later improve
upon this method by defining importance nested sampling (INS), (Feroz et al.,
2019). In INS, the unknown underlying probability distribution is analytically
approximated and reweights the samples. (Feroz et al., 2019) expand on this for
multi-ellipsoidal sampling, demonstrating that using all previous sample draws,
including discard points, results in a better estimate of logZ This method
improves the computational efficient of Multinest, and provides an order of
magnitude more accurate error estimate for the same computational cost.

8.3. The pRT retrieval module

The retrieval module combines the atmosphericmodel of pRTwith a nested
sampling algorithm in order to infer the posterior distributions of atmospheric
parameters and to estimate the Bayesian evidence to performmodel compar-
ison1. The general outline of the retrieval module is shown in Figure8.1. A
brief summary of the retrieval module is given in Nasedkin et al. (2024), which
I expand upon here.

1Examples and documentation are available at https://petitradtrans.readthedocs.
io/en/latest/content/retrieval_examples.html
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The module is subdivided into different submodules. Datasets, priors and
other retrieval hyper parameters are set through the RetrievalConfig class,
while the modelsmodule includes a range of complete atmosphericmodels that
can be fit to the data. Users can also define their own model function, either by
making use of temperature profiles from the physicsmodule and chemistry
parameterisations from the chemistrymodule or by implementing their own
forward model. Multiple datasets can be included into a single retrieval, with
each dataset receiving its own Radtrans object used for the radiative transfer
calculation where some or all forwardmodel parameters may be shared between
the different data sets. This allows for highly flexible retrievals where multiple
spectral resolutions, wavelength ranges and even atmospheric models can be
combined in a single retrieval. All of these components are wrapped into the
retrievalmodule, which initialises the retrieval, runs the sampling algorithm
and generates output files. In this SectionI will present the key features of each
of these modules.

RetrievalConfig

The RetrievalConfig class is the primary class a user will interact with
when setting up a retrieval. When initialising the class a user will supply meta-
data for the retrieval, such as a name to identify it. Multiple Data objects can
be associated with a single RetrievalConfig object, as often data is obtained
frommultiple different instruments before being jointly fit during the retrieval.
Both emission and transmission spectra can be added, as well as broadband
photometric data.

Following the addition of the data, parameters must be initialised. The
parameters are stored in a dictionary of Parameter objects. Each Parameter
has a name that will be used in the model_generating_function. They can
take on either a fixed value, or be treated as a free parameter in the retrieval. For
free parameters, a priormust be defined. In the context of Multinest, the prior
is a transformation between a unit hypercube and physical parameter space. For
each sample, Multinest draws random parameter values on the interval [0,1],
which are then passed as input to the prior transformation functions. To define
a uniform prior over an interval [a,b], the prior function f (x)would simply be

f (x) = a + (b � a)x. (8.10)

A Gaussian priorN(µ,�, x)with mean µ and standard deviation�, which can
be used to inform the retrieval based on previous measurements, would take
the form of an inverse complementary error function,

N(µ,�, x) = µ + �
p

2 erfc�1 [2(1 � x)] , (8.11)
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petitRADTRANS
RadTrans

retrieval

RetrievalConfig

Data

Models

Retrieval

chemistry

physics

Load opacities

Compute Radiative Transfer

Setup Retrieval I/O

Configure parameters and priors

Load spectroscopic data

Store spectral data and uncertainties

Convolve models to data

Calculate chi square

Combine input PT profile, chemistry and clouds

Calculate emission/transmission spectrum


Calculate molecular abundances

Calculate temperature profile

Instantiate retrieval

Run nested sampling

Generate output files and figure

Access retrieval outputs for further analysis

Figure 8.1: pRT program flow. The Radtrans class is the fundamental object in
pRT, loading and storing opacities and calling the Fortran routines to calculate
the radiative transfer. The retrieval module contains the classes used to
perform an atmospheric retrieval. The retrieval inputs and parameters are set up
in the RetrievalConfig object. Spectroscopic data is stored in a Data object.
Associated with each Data object is a model_generating_function, which
can be found in the modelsmodule or written independently. These functions
return the wavelength and spectrum of the calculated model, which can be
compared to the data. The Retrieval class reads in a RetrievalConfig
object and its associated Data objects, initialises and runs a nested sampling
retrieval, and generates output files and plots.

where

erfc�1 [erfc(x)] = x, (8.12)

and

erfc(x) =
2p
⇡

Z 1

x

e
�t

2
dt = 1 � erf(x), (8.13)

that is, inverse of the cumulative normal distribution function transforms from
uniformly to normal distributed random variables. Such priors are included in
pRT. Careful choice of priors is critical for reliable results, and is the subject of in-
vestigation in its own right. It is recommended to experimentwith prior choices,
ensuring that retrieval results are robust to such variation, or to determine how
informative priors are impacting the inferred posterior distributions.
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The RetrievalConfig class contains dedicated functions to setting up
the parameters for chemical and cloud abundances. Instead of specifying pa-
rameters for each species individually, it is possible to define a list of species to
include in the retrieval, and set whether the retrieval should be run using free
chemistry or (dis)equilibrium chemistry. A combination of free and disequilib-
rium chemistry can also be used. Likewise for clouds, the user can specify the
cloud species, whether the cloud should condense at its equilibrium location
or have a freely retrieved base pressure, and whether the abundance should be
determined from scaling the equilibrium abundance or be a freely retrieved
parameter.

Finally, variousplottingparameters canbedefined in theRetrievalConfig
object. These parameters can determine wavelength ranges and units to plot,
which parameters should be included in corner plots, ranges of pressure and tem-
perature to plot, and more. If the default plots are insufficient, the Retrieval
class provides access to the matplotlib figure and axes objects, which can
then be adjusted outside of pRT.

Data

The Data class is the primary object where spectroscopic or photometric
data is stored. Input data can be either emission or transmission spectra, the
only constraint is that the units of the input data and the model must match.
Either standard 1� Gaussian uncertainties can be used, or a full covariance
matrix can be read in.

Many critical parameters must be defined for each Data object. This allows
for a highly flexible retrieval framework: each dataset included in the retrieval
could use an entirely unique atmospheric model, including different opacity
choices (lbl or c-k), different binning, different scale factors or offsets and more.
The data_resolution argument should be used to define the spectral res-
olution of the data based on the instrumental line spread function, which is
most often not the same as the ��/� as stored in the input file. The calculated
model will be convolved with a Gaussian kernel with this width, before being
binned to the wavelength bins of the data. The model will be calculated at a
spectral resolution specified by the model_resolution parameter, which will
bin either the c-k or lbl opacities prior to computing the model to reduce the
runtime. A scale factor can be applied to either the data points, the uncertain-
ties, or both. Likewise, an offset can be applied to the data to calibrate between
different datasets. A separate approach can also be used to retrieve uncertainties,
by fitting for a free parameter b, following the approach of Line et al. (2015):

�T =
p
�2 + 10b. (8.14)
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We calculate the total uncertainty for each wavelength�T bin from the nominal
uncertainty� and the inflation factor 10b.

For photometric data, a transformation function must be supplied to com-
pute the band-averaged photometry from the model spectrum. This is usually
the transmission function of a filter. By default, pRT checks if the name of the
Data object corresponds to a filter available from the SVO Filter Profile Service
(Rodrigo et al., 2012; Rodrigo & Solano, 2020).

Often datasets will overlap in their wavelength ranges, and typically the
same model will be used to fit both datasets. In such a case, an external_
radtrans_reference can be supplied, where the Radtrans object associated
with one dataset is used to provide the model for calculating the log likelihood
for the other. This reduces the total number of model computations in a
retrieval, and avoids redundantly calculating the samewavelength rangemultiple
times for each set of parameters.

Models

The modelsmodule contains functions that take a Radtrans object and a
set of parameters, and outputs the wavelength grid and calculated emission or
transmission spectrum. The built-in models are typically distinguished by the
thermal profile used, as each temperature profile model requires substantially
different parameters. The chemistry is flexible, using the chemistrymodule
to define abundances using free chemistry, (dis)equilibrium chemistry, or some
combination of the two. Likewise the cloud prescriptions are highly general,
and the model function will automatically determine the cloud model to use
based on the supplied parameter set. Once the temperature profile, chemical
abundances, and cloud structure have been defined, these are passed to the
Radtrans object, which calculates the resulting spectrum. Themodel function
must be calculated for each Data object associatedwith the RetrievalConfig.

Retrieval

All of the above classes are combined in the Retrieval class. In this class
the Multinest or Ultranest parameters such as the number of live points are
supplied. The full log-likelihood function is defined in this class. It loops over
eachData object associatedwith theRetrievalConfig object, computing the
spectrum using the model_generating_function and calculating the log-
likelihood with respect to each dataset. These log-likelihoods are subsequently
summed together to determine the cumulative log-likelihood of the model
compared to all of the datasets. Additional priors can be applied here, such as
the likelihood penalty on the curvature in a spline temperature profile (Line
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et al., 2014). Having defined the priors and the likelihood function, the sampler
can then iterate through the parameter space, ultimately producing estimates
of the Bayesian evidence and the posterior probability distribution, which can
be marginalised over each parameter in order to determine the 1D posterior
distributions.

Following the completion of the retrieval, the Retrieval object can be set
to evaluatemode, and used to plot widely used diagnostic plots, examples
of which are included in Section 9. An summary output file is also generated,
which includes metadata about the parameters and datasets used in the retrieval,
as well as the median and best-fit parameter results. Many functions are built
into the Retrieval class to aid in the analysis of a retrieval. These include
functions to calculate and store the best-fit spectrum. The �2, as well as reduced
�2 variations of any of these spectra can be calculated through comparisons
to the data. The mass-fraction or volume-mixing-ratio abundances of a given
sample, or the entire set of posterior samples, can be computed. Full API
documentation of the features of the Retrieval class is available online.
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9. CASE STUDY: WASP-39 B

The best way to understand the mechanics of an atmospheric retrieval
analysis is by example. WASP-39 b is a hot Saturn-like planet that has been
extensively studied as part of the JWST Transiting Early Release Science (ERS)
program. As a contribution to that work, pRT retrievals will included as part
of a forthcoming retrieval comparison analysis in Welbanks et al. (in prep).
Various retrieval codes were benchmarked against each other and against results
from self-consistent forward models and GCMs in order to produce a robust,
model independent portrait of this planet. In this SectionI will present the
results of the pRT retrievals of WASP-39 b, emphasising the key features of the
retrieval module.

9.1. Background and previous work

WASP-39 b was discovered by Faedi et al. (2011). Using a combination of
theWASP survey photometry, together with photometric followup from the
LCOGT3 Faulkes Telescope North and spectroscopic radial velocity followup
using the SOPHIE instrument at the OST, they determined that WASP-39
b is an inflated, Saturn mass planet with a radius Rpl = 1.27 ± 0.04 RJup and
a mass of Mpl = 0.28 ± 0.03 MJup, resulting in an extremely low density of
0.14± 0.02 ⇢J. The period of the planet is about 4 days, resulting in an equilib-
rium temperature of 1116+33

�32 K. The system is between 6-13 Gyr in age, with a
stellar radius of R⇤ = 0.895±0.23R�. The extremely low densitymeans the at-
mosphere ofWASP-39 b has a very large scale height, making it highly amenable
to transmission spectroscopy observations. Subsequent broad band transit
observations reinforced these planet parameters (Maciejewski et al., 2016b,a).
Observations of the Rossiter-McLaughlin effect showed that the orbit of the
planet is nearly perfectly aligned with the rotation of the host star (i = 0� ± 11�
(Mancini et al., 2018). Shortly after its discovery, transmission spectra were
obtained using HST (Fischer et al., 2016) and VLT/FORS2 (Nikolov et al.,
2016); a cloud-free atmosphere is identified, and both sodium and potassium
alkali lines are detected in the near infrared.

The combination of a large scale height and a clear atmosphere led toWASP-
39b being selected as one of the JWST Transiting ERS targets. The goal of the
ERS obervations of WASP-39 b was to obtain high S/N across the full JWST
wavelength range to enable the most robust atmospheric characterisation of a
transiting exoplanet todate. To that end, itwas observedwithNIRSpec/PRISM
(Rustamkulov et al., 2023b), NIRISS/SOSS (Feinstein et al., 2023), NIRCam
(Ahrer et al., 2023), NIRSpec/G395H (Alderson et al., 2023) and the MIR-
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I/LRS (Powell et al., 2024). Combined, these instruments cover wavelengths
from0.5–14µm,with spectral resolutions ranging fromR = 100–3000. These
observations were not without challenges. The NIRSpec/PRISM observations
were saturated between 0.9–1.5 µm. While it was possible to recover a trans-
mission spectrum in this region, it was of significantly lower quality than the
remainder of the spectrum. Where instruments have overlapping wavelength
ranges, there were often significant (⇠200 ppm) offsets between them, which re-
quired additional calibration to remove. However, even with the steep learning
curve of acquiring and processing the spectra using new instruments and tools,
the combined spectrum ofWASP-39 b is one of the most comprehensive and
precise spectra obtained to date, which has already altered our understanding
of these atmospheres.

Perhaps themost surprising result of theERSobservationswas the detection
of SO2 in both the near (Tsai et al., 2023) and mid infrared (Powell et al.,
2024), though these detections were anticipated by photochemical calculations
by Polman et al. (2023). This was the first detection of a sulphur bearing
molecule in an exoplanet atmosphere. SO2 is not expected from assumptions
of equilibrium chemistry, but rather must be photochemically produced, in the
net reaction H2S + H2O + �!SO2 + 3H2. Beyond the novel photochemistry,
CO2 was robustly detected for the first time in an exoplanet atmosphere (JWST
Transiting Exoplanet Community Early Release Science Team et al., 2023),
demonstrating the importance of broad wavelength coverage. A full range of
modelling approaches has been used to analyse these objects, including self-
consistent RCE models, GCMs, and retrievals (Constantinou et al., 2023;
Constantinou &Madhusudhan, 2024). From the measurements of H2O, CO
and CO2 abundances, these models generally agree on a sub-stellar C/O ratio
around 0.3, and a metallicity of around 10⇥ solar, noting that WASP-39 itself
is solar in composition.

9.2. Data

In this retrieval analysis, we use the full wavelength range available to study
the atmosphere of WASP-39b using the pRT retrieval package. However, the
data are highly inhomogenous in spectral resolution, and there are knownoffsets
between different instruments, and even between different detectors in the same
instruments. To mitigate this, a synthesised spectrum has been produced by
the ERS team. This spectrum combines the observations from all of the JWST
instruments, binning them to a constant spectral resolution. The regions of the
PRISM spectrum that are saturated are masked out. A full description of the
data synthesis project will be described in a forthcoming publication by Carter
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Figure 9.1: WASP-39 b transmission spectra as observed using the full set of
JWST instruments. The raw spectra from each instrument have been binned
to a constant spectral resolution, and offsets between the instruments have
been applied. Using a series of test retrievals, the uncertainties have been fit for,
finding moderately inflated uncertainties compared to the raw observations.
Note that for transmission spectra, absorption features are upward, producing
larger transit depths.

et al. (in prep). Offsets are fit for between each of the datasets, taking NIRISS
SOSS O1 as the reference instrument. Using fits to grids of self-consistent
models, the uncertainties are estimated as a free parameter, finding that the
uncertainties should be inflated relative to the raw uncertainties produced by
the JWST pipeline. The synthesised data are presented in Figure9.1.

9.3. Retrieval setup

For retrievals of WASP-39 b, a fiducial model was agreed upon to provide a
foundation for comparing different retrieval codes. This setup specified that in
addition to H2 and He, the atmosphere should be composed of H2O, Na, K,
CO,CO2, SO2, H2S, CH4, NH3, HCNandC2H2. The temperature structure
should be non-isothermal. The clouds should consist of an opaque cloud deck,
together with an optically thin haze layer. A cloud patchiness parameter should
be retrieved to determine which fraction of the terminator region is covered
by these two cloud components. One of the planet radius or the reference
pressure should be specified, and the other allowed to vary. To implement this
prescription in pRT, we used the temperature-pressure profile of Guillot (2010),
as in equation 7.39. Our cloud model consisted of a grey cloud deck where
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Parameter Prior

R⇤ [R�] 0.9324

Pref [bar] 0.01

log g[cm/s2] U (2.0, 5.5)

Rpl [RJup] U (0.8, 1.6)

Tint [K] U (100, 1100)

Tequ [K] U (100, 1100)

�Guillot 10
⇣
�(x/2)2/2)

⌘

log IR [cm2 g�1] U (�3, 1)

log Pcloud[bar] U (�8, 3)

log 0 [cm2 g�1] U (�4, 10)

log �Scat U (�20, 2)

fcloud U (0, 1)

log Xi U (�12.0,�0.3)

Table 9.1: Priors for the fiducial free chemistry WASP-39 b retrieval setup.
U(a, b) denotes uniform priors with bounds a and b, andN (µ,�) denotes a
normal distribution centred at a mean µwith standard deviation�. Xi is the
mass fraction abundance of the i

th species.

the cloud top pressure was retrieved as a free parameter, and the haze model
as described by equation 7.43, where both 0 and �Scat are free parameters.
The reference pressure of the atmosphere was fixed to 0.01 bar, and we freely
retrieved both the planet radius and log g. The priors used for the free chemistry
and disequilibrium retrievals are included in tables 9.1 and 9.2 respectively.

For the chemically consistent retrievals we used 4000 live points, and a
sampling efficiency of 0.8. For the free chemistry retrievals, we used 1000 live
points, as this was deemed sufficient from retrieval comparison testing. We used
the c-k opacities at a model resolution of R=300. We performed validation
retrievals, comparing the R=300 opacities to R=1000, finding that there were
no significant changes to the posterior distributions. We convolved the model
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Parameter Prior

R⇤ [R�] 0.9324

Pref [bar] 0.01

log g[cm/s2] U (2.0, 5.5)

Rpl [RJup] U (0.8, 1.6)

Tint [K] U (100, 1100)

Tequ [K] U (100, 1100)

�Guillot 10
⇣
�(x/2)2/2)

⌘

log IR [cm2 g�1] U (�3, 1)

[M/H] U (�1.5, 3.0)

C/O U (0.05, 1.55)

log Pquench[bar] U (�8, 3)

log Pcloud[bar] U (�8, 3)

log 0 [cm2 g�1] U (�4, 10)

log �Scat U (�20, 2)

fcloud U (0, 1)

log XSO2 U (�12.0,�0.3)

Table 9.2: Priors for the fiducial disequilibrium WASP-39 b retrieval setup.
U(a, b) denotes uniform priors with bounds a and b, andN (µ,�) denotes a
normal distribution centred at a mean µwith standard deviation�.

with the line spread function for each instrument, before binning it to the
wavelength bins provided by the data synthesis team.

9.4. Free chemistry

For the free chemistry retrievals, the mass fraction abundance of each trace
species was retrieved as a free parameter. We included H2-H2 and H2-He col-
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Figure 9.2: Retrieved spectra for WASP-39 b for a free chemistry model (blue),
and a disequilibriummodel (red). The light shading indicates the 3� spread of
the retrieved models, the dark shading is the 1� interval.

lisionally induced absorption and Rayleigh scattering fromH2 and He. Our
sources of line opacities were H2O (Polyansky et al., 2018b), CO2 (Yurchenko
et al., 2020), SO2 (Underwood et al., 2016), CO (Rothman et al., 2010b),
NH3 (Coles et al., 2019), C2H2 (Chubb et al., 2020), H2S (Azzam et al., 2016),
HCN (Barber et al., 2014), CH4 (Yurchenko et al., 2017), Na (Piskunov et al.,
1995; Allard et al., 2019), and K (Piskunov et al., 1995; Allard et al., 2016). Fig-
ure 9.2 presents the retrieved spectrum ofWASP-39 b as compared to the JWST
data. In general the data are well reproduced: the average transit depth is consis-
tent, andmost of the absorption features (primarily due toH2O,CO2 andCO)
are well fit. 1 and 3� intervals are included in the figure, and we find that the
models are generally consistent with the data; for the free retrieval, the reduced
�2 is 1.05. While our fiducial model uses the temperature profile of Guillot
(2010), in the region of the atmosphere to which the transmission spectrum is
sensitive, we find that it closely follows an isothermal temperature profile. This
is apparent in Figure9.3, where the atmosphere in the free chemistry retrieval is
isothermal above ⇠10�2 bar. In comparisons to an identical retrieval run using
an isothermal profile, the Guillot (2010) model is not favoured by the Bayes
factor. However, we found that there was no preference for this profile over
the use of an isothermal temperature profile. At 768±28K, the atmospheric
temperature in the terminator region is found to be cooler than the equilibrium
temperature of the planet.

We find a bulk metallicity of [M/H]= 1.5 ± 0.3, or approximately 32⇥
solar. Using the water, CO and CO2 abundances we find C/O= 0.2 ± 0.1.
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Molecule log VMR � log10Z

H2O �1.52 ± 0.237 …

CO �2.1 ± 0.607 …

CO2 �3.08 ± 0.256 …

CH4 �9.09 ± 1.89 …

H2S �3.47 ± 0.678 1.4

SO2 �4.79 ± 0.238 9.3

NH3 �9.67 ± 1.69 …

HCN �9.22 ± 2.03 …

Na �2.83 ± 0.68 …

K �5.14 ± 0.775 …

[M/H] 1.5, 0.3 …

Table 9.3: Volume mixing ratios from the full data, free chemistry retrieval.

The planet is cloudy, with 86± 5% cloud coverage and a log cloud top pressure
of �2.5 ± 3.5 bar. While the spectral features of water and CO2 are clear, we
test for the significance of the detections of SO2 and H2S, finding that SO2 is
robustly detected with a log10 Bayes factor of 9.3 and a log volumemixing ratio
of �4.8 ± 0.2 , and H2S is tentatively detected with a log10 Bayes factor of 1.4
and an abundance of �3.5 ± 0.7. The volume mixing ratios of each species are
included in Table 9.3.

In addition, we also performed retrievals on each instrument individually,
without accounting for any offsets or error inflation. In general, the individual
retrievals were in excellent agreement, with the exception of the retrieval using
only the NIRCam data, which found a sub-solar metallicity of 0.9 ± 1. The
water volume mixing ratio was also generally consistent with the full retrieval
volume mixing ratio of �1.5 ± 0.2. However, the MIRI/LRS retrieval did not
show any evidence of water, instead finding a significant quantity of methane.

In our fiducial setup we retrieve both the planet radius and surface gravity,
fixing the reference pressure to 0.01 bar. We also explored the impact of fixing
these three parameters to theirmeasured value or leaving themas free parameters.
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Figure 9.3: Thermal profile of the terminator region of WASP-39 b for the free
chemistry retrieval (blue) and the disequilibrium chemistry retrieval (red). The
dark shading indicates the 1� confidence interval of the temperature profile,
while the light shading indicates the 3� confidence interval. The colour satura-
tion is weighted by the averaged transmission contribution function (dashed
line), indicating the region of the atmosphere to which the transmission spec-
trum is sensitive.

Regardless of the combination used, the retrieved parameter values were broadly
consistent with the known values, though allowing the radius to be retrieved
generally resulted in a larger radius than measured from the white light curve.
The inferred metallicity and C/O ratios were found to be consistent to within
the measured uncertainties.
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Figure 9.4: WASP-39 b transmission contribution function of the best-fit dis-
equilibrium chemistry model. There is little sensitivity of the transmission
spectrum to pressures higher than 10�2 bar, consistent with an opaque cloud
deck located in that region.

9.5. Chemical disequilibrium

In addition to the free retrievals, we ran a series of disequilibrium chemistry
retrievals using pRT. Our disequilibrium chemistry model uses an equilibrium
chemistry table computed using easyChem (Mollière et al., 2017), interpolating
along axes of metallicity, C/O, pressure and temperature. CO-H2O-CH4 dise-
quilibrium is parameterised as a quench pressure, above which themass fraction
abundances become vertically constant, analogous to the homogenization of
abundances caused when the vertical mixing timescale is smaller than the chem-
ical reaction timescale (Zahnle &Marley, 2014). As SO2 is photochemically
produced, it is included as a freely retrieved species, which is required to fit the
absorption feature at 4.2 µm. For these retrievals, we use 4000 live points and a
sampling efficiency of 0.8. As with the free retrievals, we use the (Guillot, 2010)
temperature profile, and the same set of opacity sources.

We performed disequilibrium retrievals from 1–12 µm, using precomputed
offsets and error inflation. The overall goodness-of-fit was marginally better
than the free retrievals, with �2/⌫ =1.04. We find that by the Bayes factor, the
disequilibriummodel is strongly favoured over the free chemistry model, with
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Figure 9.5: Posterior probability distributions for theWASP-39 b disequilib-
rium chemistry retrieval.

log10 = 5.5. The disequilibrium model finds a slightly warmer temperature
of 820 ± 38K in the isothermal region of the atmosphere as compared to the
free chemistry retrieval. The temperature profile also transitions to an adiabatic
profile at lower pressures. By averaging the transmission contribution function
shown in Figure9.4 over wavelength, we find that there is some sensitivity of
the transmission spectrum to the adiabatic temperature gradient at around
10�2 bar. The median retrieved [M/H] is 1.14 ± 0.10, which is compatible
with estimates from self-consistent model grids (Alderson et al., 2023; Powell
et al., 2024). The inferred C/O is 0.350 ± 0.046. The planet is 76 ± 5%
covered in clouds: including a grey cloud with a poorly constrained location
(log Ptop = �2.6 ± 3.6), as well as an enhanced Rayleigh scattering slope:
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log 0 = �0.50 ± 0.35, �scat = �1.24 ± 0.22. We detect photochemically
produced SO2 with a log volume mixing ratio of �5.0 ± 0.2. The quench
pressure is found to be high up in the atmosphere (log Pquench = �4.6 ± 2.4,
indicating that the atmosphere is essentially in equilibrium. However, without
a good parameterisation of photochemistry, we cannot properly interpret the
chemical state of the upper atmosphere. The full set of retrieved parameters are
presented in Figure9.5.

9.6. Impacts data selection

Retrieving on each instrument individually highlights which parameters
are constrained by specific regions of parameter space. We performed free chem-
istry retrievals on each instrument, and list the retrieved volume mixing ratios
(VMRs) in Table 9.4. Retrieving on subsets of the data leads to relatively consis-
tent results, with the metallicity typically ranging from 10-40⇥ the solar value,
depending on which combination of data is used. The metallicity inferred
using only NIRCam is significantly outlying from the rest of the individual
instrument retrieval, at [M/H]= �1 ± 1 . Individual chemical abundances
estimates vary greatly depending on whether a given instrument covers a partic-
ular molecular band or not. For example, the NIRCam and NIRSpec/G395H
instruments find only minimal traces of CO, while NIRSpec/PRISM and the
MIRI/LRS identify it as among themost abundant species, despite CO opacity
only contributing weakly between 5–6 µm in the LRS band. This highlights
the importance of broad wavelength coverage when performing retrievals, and
it is only with the full wavelength coverage that reliable abundance estimates
can be made for a wide array of molecular species.

9.7. Degenerate parameterisations

It is crucial to understand how parameter choices impact retrieval results,
particularly in the case where parameters are degenerate. Consider the surface
gravity log g and the planet radius Rpl, which are defined at a reference pressure
Pref . Rpl and Pref are fully degenerate. Setting the Pref deeper in the atmosphere
will result in a smaller radius. The surface gravity and planet radius are coupled
through the definition of surface gravity g via

g =
GMpl

R
2
pl

. (9.1)

In principle, the planet radius is well defined by measurement of the white light
curve measurement of the planetary transit, though this measurement does not
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Figure 9.6: Corner plot comparing the impact of freely retrieving any of the
three degenerate parameters of log g, Rpl and Pref . The black dashed lines
indicate the fixed values used.

Figure 9.7: Scatter plot of the variation in retrieved [M/H] due to the choice
in keeping the three degenerate parameters of log g, Rpl and Pref fixed or free.
The colour scheme is as in 9.6.
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specify the pressure at which the radius is defined.
In order to test the impact of keeping these parameters, a series of retrievals

was run, covering all permutations of keeping these parameters fixed or free.
Figure 9.6 shows the results of these retrievals. Most retrievals find a surface
gravity of log g = 2.72±0.05, slightly higher than themeasured value of 2.6294
from combining measurements of the planetary mass and radius. Conversely,
if both the planet radius and pressure are fixed, the retrieved surface gravity is
lower than the measured value, suggesting that a reference pressure of 0.01 may
be too high in the atmosphere for the measured white light radius.

The retrieved radii forWASP-39 b are consistently larger than the measured
white light value, falling into two groups at around 1.30 RJup and 1.34 RJup. The
radius measurements are more precise in cases where the reference pressure is
fixed, and all of the cases with a fixed reference pressure favour the measurement
of 1.30 RJup. If the reference pressure is allowed to vary, the distribution is again
bimodal. The more precise measurements are found by fixing the planet radius,
and prefer values deeper in the atmosphere, around 0.3 bar. Overall, none of
the retrieved posterior distributions are fully compatible with the measured
surface gravity and radius. This may be due to additional degeneracies in the
parameter space, such as the location of the cloud deck deep in the atmosphere.

While the retrieved values may be statistically discrepant from other mea-
surements, the overall variation is small, and ultimately only has a minor impact
on other retrieved parameters. Figure 9.7 shows how the inferred metallicity
varies with keeping log g, Rpl and Pref fixed or free. In all cases, the metallicity
measurements are compatible to within 1�, though the inferred metallicity is
anti-correlated with log g. These parameter degeneracies were proposed as an
explanation for why the metallicity found by free retrievals is somewhat higher
than found by self-consistent grids. The most compatible results are achieved
by freely retrieving log g and Rpl, log g and Pref , or all three parameters. This
experiment highlights the care thatmust be takenwhen defining retrieval setups,
as the outcomes depend on the priors used.

9.8. Cloud modelling choices

Other studies have indicated the presence of silicate clouds in the transmis-
sion spectrum of hot Jupiter atmospheres. With temperatures of ⇠800 K in
the terminator, silicate clouds are expected to be deep below region to which
theWASP 39 b transmission spectrum is sensitive. However, other species such
as KCl or Na2S may condense at such temperatures. We perform retrievals on a
combination of NIRSpec/PRISM andMIRI/LRS data to obtain the broad
wavelength coverage required to assess cloud properties, using a treatment of
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clouds based on Ackerman &Marley (2001). We compared these clouds, using
physically measured optical constants, to the fiducial grey cloud model with an
enhanced haze slope. The disequilibrium chemistry model with a Guillot PT
profile was used.

Cloud � log10Z

Fiducial 0

KCl -2

SiO2 -3.2

MgSiO3 -9.7

Table 9.5: Bayes factors for different
cloud compositions, comparing the
Ackerman &Marley (2001) model
to the fiducial cloud model for the
petitRADTRANS disequilibrium
chemistry retrievals.

For this set of retrievals we com-
pared the impact of different cloud pa-
rameterisations, trying to determine if
a) this choice can impact the inferred
chemistry and thermal structure, and
b) if we can identify the cloud compo-
sition as in Grant et al. (2023). We
compared the patchy grey cloud with
an enhanced scattering slope model as
used in the free retrievals to patchy
Ackermann-Marley clouds Ackerman &
Marley (2001). This model is based on
the settling of cloud particles as a func-
tion of their size, with a log Kzz parame-
termeasuring the strength of verticalmix-
ing, and an fSED parameter that is used
to set the sedimentation rate. We also re-
trieve a�LN , which sets the width of the
log-normal particle size distribution. For these clouds, we use the optical con-
stants associated with different compositions and particle geometries in order
to determine if we can measure the cloud composition, specifically comparing
crystalline MgSiO3, SiO2, Na2S and KCl. The clouds condense out of the gas
phase at the intersection of their condensation curves and the retrieved temper-
ature profile. The Bayes factors for the different cloud compositions are listed
in table 9.5. We found no evidence indicating that the clouds are composed
of one of these species, and the grey cloud model with an enhanced scattering
slope was strongly favoured by the Bayes factor (> 5�). In addition to the
retrievals performed on the combined PRISM and LRS datasets, we performed
an additional comparison using the full, combined dataset with precomputed
offsets and error inflation. Again, no evidence for silicate clouds was found.

9.9. Summary

While pRTwas already a widely used tool in the exoplanet community, the
development of the pRT retrieval package has enabled fast, easy characterisation
of a diverse array exoplanet atmospheres. The use of a highly flexible approach
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combined with the computational efficiencies found in the use of c-k opaci-
ties and nested sampling ensure that pRT is prepared to deal with the current
surfeit of data available from observatories such as JWST. Using these retrieval
techniques, I was able to characterise the atmosphere of the benchmark hot
Saturn, WASP-39 b. The results found through this method were consistent
both with other retrieval codes and with self-consistent models. The metal rich
atmosphere with a lowC/O ratio was confirmed, as was the robust detection of
CO2 and SO2. Novel cloud modelling comparisons were performed, finding
that unlike other transiting planets such as WASP-17 b, a patchy grey cloud
model with an enhanced haze scattering slope provides the best fit to the ob-
served spectrum. Going forward, further developments of the retrieval package
may include reduced computation time, 3D atmospheric structures, and fits to
time variable data, bringing our understanding of exoplanet atmospheres ever
closer to that of the dynamic worlds of our own solar system.

We gratefully acknowledge contributions to petitRADTRANS from Eleonara Alei, KaranMolaverdikhani, Sam

de Regt, Francois Rozet, Aaron David Schneider, Tomas Stolker, NickWogan andMantas Zilinskas. In addition,

huge thanks to Luis Welbanks and the Transiting ERS team, and in particular the retrieval model synthesis team.

It’s been a pleasure to open the black box of retrievals working on this project, and hopefully it will provide an

excellent template for future characterisation work.
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This chapter has been reproduced from Nasedkin et al. (2023). I am
the first author of that work, supervised by Paul Mollière. The other
coauthors provided suggestions on how to use the various data processing
tools and provided comments on the manuscript.

“We succeeded in taking that picture [from deep space], and, if you look at
it, you see a dot. That’s here. That’s home. That’s us.”

Carl Sagan, 1994

IMPACTS OF HIGH-CONTRAST
IMAGE PROCESSING ON

ATMOSPHERIC RETRIEVALS.



Abstract

Many post-processing algorithms have been developed in order to better
separate the signal of a companion from the bright light of the host star, but
the effect of such algorithms on the shape of exoplanet spectra extracted from
integral field spectrograph data is poorly understood. The resulting spectra
are affected by noise that is correlated in wavelength space due to both optical
and data processing effects. Within the framework of Bayesian atmospheric
retrievals, we aim to understand how these correlations and other systematic
effects impact the inferred physical parameters. We consider three algorithms
(KLIP, PynPoint, and ANDROMEDA), optimising the choice of algorithmic pa-
rameters using a series of injection tests on archival SPHERE and GPI data
of the HR 8799 system. The wavelength-dependent covariance matrix was
calculated to provide a measure of instrumental and algorithmic systematics.
We perform atmospheric retrievals using petitRADTRANS on optimally ex-
tracted spectra to measure how these data processing systematics influence the
retrieved parameter distributions. The choice of data processing algorithm and
parameters significantly impact the accuracy of retrieval results, with the mean
posterior parameter bias ranging from 1 to 3� from the true input parameters.
Including the full covariance matrix in the likelihood improves the accuracy
of the inferred parameters, and cannot be accounted for using ad hoc scaling
parameters in the retrieval framework. Using the Bayesian information criterion
and other statistical measures as heuristic goodness-of-fit metrics, the retrievals
including the full covariance matrix are favoured when compared to using only
the diagonal elements.
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10. INTRODUCTION

The field of high contrast imaging (HCI) has advanced dramatically over
the last two decades. From the first detection of 2M 1207 b (Chauvin et al.,
2005) to the ongoing large surveys such as GPIES (Nielsen et al., 2019) and
SHINE (Desidera et al., 2021; Langlois et al., 2021; Vigan et al., 2021), we have
seen improvements in instrumentation, adaptive optics and data processing that
have led to the discovery of numerous new exoplanets. Such surveys have estab-
lished the rarity of giant, widely separated companions, finding that < 10% of
high-mass stars have planetarymass companions between 10-100 AU.However,
much of this work has remained focussed on tfhe detection of new companions
at higher contrast ratios and smaller angular separations. The spectroscopic
characterisation of known planets has seen less dedicated effort - to date there
has not been a uniform survey of known objects to present a homogeneous
sample of spectroscopic measurements. This can lead to systematic discrepan-
cies between measurements made with different instruments, and challenges
in fitting datasets with different spectral resolutions (Xuan et al., 2022). Such
biases may impact the conclusions made from population studies, such as the
exploration of the C/O ratios of the directly imaged planet population inHoch
et al. (2023). Individual characterisation efforts have nevertheless led to intrigu-
ing findings: measurements of water and carbon monoxide abundances in the
HR8799 planets (Konopacky et al., 2013; Lavie et al., 2017;Wang et al., 2020a),
precise constraints on the C/O ratio and metallicity of � Pictoris b (Gravity
Collaboration et al., 2020), measurements of isotope ratios Zhang et al. (2021)
and the detection of a dusty envelope around PDS 70 b and c (Wang et al., 2021;
Benisty et al., 2021).

This characterisation work remains challenging. Extensive post-processing
is required to extract the faint signal of the target. Even in the most careful
analysis systematic biases usually remain fromboth instrumental and processing
effects. Integral field spectrograph (IFS) measurements introduce correlated
noise as a function of wavelength due to pixel cross talk, interpolation effects
and imperfect adaptive optics correction (speckles). Greco & Brandt (2016)
provide amethod for empirically estimating the correlation from IFS data. They
demonstrated that accounting for such correlations is necessary when analysing
exoplanet atmospheres, and failing to do so leads to biased and overconfident
posterior distributions on measured parameters. Efforts such as the Exoplanet
Imaging Data Challenge (Cantalloube et al., 2020a) explored the detection
abilities of a suite of HCI algorithms but a systematic algorithmic comparison
for spectral characterisation has not yet been performed.

Most post-processing techniques are based onAngular Differential Imaging
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III Impacts of data processing on retrievals.

(ADI) (Marois et al., 2006, 2008), where the telescope is pupil stabilised and
the field is allowed to rotate. This provides differential motion of the planet
over the course of the observations and allows for the removal of stellar speckles
by derotating and stacking the resulting images. Ongoing development of this
method has been largely driven by the goals of increasing sensitivity at small
angular separations. To this end, different algorithms have been developed to
maximise the information available in imaging datasets, leveraging spatial and
spectral information in order to separate the faint planet signal from the bright
host star. Kiefer et al. (2021) explored how different approaches impact the
signal-to-noise (S/N) of IFS observations, but did not examine the impact of
the processing on the extracted spectral shape.

The use of atmospheric retrievals to study directly imaged planets is rela-
tively new, with only a small but growing selection of targets being subject to
such an analysis (e.g. Lee et al., 2013; Lavie et al., 2017; Mollière et al., 2020;
Gravity Collaboration et al., 2020; Brown-Sevilla et al., 2023; Whiteford et al.,
2023). While the effects of systematics are well understood for transmission
spectroscopy using HST (Ih &Kempton, 2021), with significant efforts extend-
ing this to JWST (Barstow et al., 2015; Rocchetto et al., 2016; Lacy & Burrows,
2020), the impact of systematic uncertainties in ground-based high-contrast
data on atmospheric retrievals has not been thoroughly explored. Even in the era
of JWST, understanding systematics is critical to interpreting model fits to data.
Ground-based observations will remain a key component of this understanding
due to their higher spectral and angular resolution that cannot yet be achieved
from space.

In this work we explore the systematic effects introduced through high-
contrast data processing on the retrieval of atmospheric parameters. The details
of our example datasets used are described in Section 11. Section 12 outlines
our methods, exploring the different algorithm tested in Section 12.1, together
with the measurement and interpretation of the covariance matrix in Sections
12.2 and 12.4. We determined the optimal parameters for spectral extraction
through the injection and recovery of synthetic companions into the data in
Section 13. The results of our retrieval comparisons are described in Section 14,
while the implications and limitations of these results are discussed in Section
15.
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11. OBSERVATIONS

While the first goal of our study is to demonstrate the effects that post-
processing algorithms can have on inferred atmospheric parameters for general
high-contrast spectroscopy, we still had to select demonstration datasets. We
chose GPI and SPHERE observations of the well-known four-planet system
in HR 8799 (Marois et al., 2008, 2010), where discrepancies between GPI
and SPHERE datasets, covering the same wavelength range, had already been
noted (Lavie et al., 2017; Mollière et al., 2020). HR 8799 has seen extensive
photometric and spectroscopic observing campaigns, (e.g. Konopacky et al.,
2013; Zurlo et al., 2016; Lavie et al., 2017; Greenbaum et al., 2018; Gravity
Collaboration et al., 2019; Mollière et al., 2020; Wang et al., 2020a; Ruffio et al.,
2021; Wang et al., 2023). The importance of this system, together with the
abundance of high contrast data frommultiple instruments make it an ideal
object of study for our purposes. As a benchmark target, the companions have
luminosity and spectra typical of this class of low surface gravity object and are
representative of the current directly imaged exoplanet population.

SPHERE

TheSPHEREdatawere takenduring the commissioning runof the SPHERE
instrument (Beuzit et al., 2008, 2019) in 2014, and were originally presented
in Zurlo et al. (2016). It remains the best YJH band spectrum of HR 8799
to date in terms of signal-to-noise and spectral resolution. IFS frames in the
YJH band were taken with a series of both 60 s and 100 s integrations, using
pupil-stabilised observations to allow for ADI post-processing. Total field rota-
tions of 15.37° and 29.65° were observed for the 60 s data cube and for the 100
s data cube, respectively. To compensate for the difference in exposure time,
we multiply each 60 s exposure by a factor of 100/60, in order to process the
data as a whole. We rereduced the SPHERE data using the pipeline described
in Vigan (2020): details of which are described in Appendix 16.A.

GPI

The GPI (Macintosh et al., 2014) observations of HR8799 were originally
published in Greenbaum et al. (2018) and were taken on 17 November 2013,
18 November 2013, and 19 September 2016 for the K1, K2, and H bands
respectively. As with the SPHERE data, the telescope was pupil-stabilised to
take advantage of ADI post-processing. These were reduced using the standard
GPI reduction pipeline (version 1.4.0). The median seeing of the observations
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OBSERVATIONS

was 0”.97; the observing conditions aremore thoroughly described in Ingraham
et al. (2014). While data were taken in the H, K1, and K2 bands of GPI, we
only considered the H band observations due to the low S/N of the K-band
observations. The observations from both GPI and SPHERE are summarised
in Table 11.1.

11.1. Data preprocessing

In order to reduce the systematic variation between the datasets, we first
rereduced the data with up-to-date pipelines. For both the SPHERE and GPI
datasets, we then preprocess the IFS cubes using the Vortex Image Processing
(VIP) library in order to select the optimal frames for further ADI processing.
The cube_detect_badfr_correlation function computes the similarity
between each frame and a reference frame in order to identify frames that are
outliers when compared to the rest of the sequence. We choose the frame which
maximises the mean similarity of all frames as the reference frame, and remove
the most different 12% of frames from each the SPHERE and GPI datasets.
Such variation in the data is typically due to changing observing conditions,
introducing effects into the data such as the low-wind effect Milli et al. (2018)
or the wind-driven halo Cantalloube et al. (2020b) This threshold is sufficient
to remove frames which are significantly outlying and visually show differences
when compared to the a typical frame. This leaves 69 ADI frames for the
SPHERE dataset, and 51 for the GPI H-band dataset.

11.2. Stellar model for flux extraction

In order to obtain the absolute flux of the companions we use a model
of the stellar spectrum to flux-calibrate the contrast measurements. HR8799
is an F0+VkA5mA5 C star (Gray et al., 2003a) located 41.3 ± 0.2 pc (Gaia
Collaboration et al., 2018). Stellar photometry of HR 8799 fromWISE and
2MASS is used to fit model stellar spectrum (Cutri et al., 2021, 2003). We
exclude data points beyond 5 µm so that the fit is not impacted by the infrared
excess from the debris disk (Su et al., 2009; Faramaz et al., 2021). Using the
species package (Stolker et al., 2020), we fitted a BT-Nextgenmodel to the
photometry within our wavelength range of interest. The best-fit model has
parameters of Te↵= 7200 K, log g = 3.0 and [Fe/H] = 0.0, slightly cooler than
the models used in previous studies (Zurlo et al., 2016; Greenbaum et al., 2018).
The full set of stellar parameters is listed in table 11.2. This spectrum is nor-
malised to a 10 pc distance. Themodel is convolved to the instrumental spectral
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Table 11.2: Stellar properties of HR 8799 A.

HR 8799

Parameter Value Note

↵ [J2000] 23h 07m 28.7157s ± 0.0685s [1]

� [J2000] +21° 080 03.302100 ± 0.079900 [1]

µ↵ [mas/yr] 108.301 ± 0.168 [1]

µ� [mas/yr] �49.480 ± 0.152 [1]

!̄ [mas] 24.2175 ± 0.0881 [1]

d [pc] 41.2925 ± 0.1502 [1]

RV [km s�1] �12.60 ± 1.4 [2]

Spectral Type F0+VkA5mA5 C [3]

Te↵[K] 7200 ± 50 [4]

log g [cgs] 3.0 ± 0.25 [4]

[Fe/H] [dex] 0.0 ± 0.2 [4]

R⇤ [R� ] 1.496 ± 0.0054 [4]

L⇤ [L� ] 5.230 ± 0.0498 [4]

C/O 0.54+0.12
�0.09 [5]

Notes. [1] Gaia Collaboration et al. (2018). [2] Gontcharov (2006). [3] Gray
et al. (2003a). [4] BT-NextGen best-fit to photometry (Hauschildt et al.,
1999). [5] Wang et al. (2020a).
HR 8799 is a � Boötis star, for further discussion see Mollière et al. (2022).

resolutions and binned to the instrumental wavelength channels to allow for
spectrophotometric calibration of contrast measurements.

In order place measurements of planet properties in context it is also nec-
essary to understand the properties of the host star. Wang et al. (2020a) used
HARPS observations to directly measure the C and O abundances of the star,
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finding a C/O ratio of 0.54+0.12
�0.09. HR 8799 is a � Boötis star, known to be

depleted in iron (Gray & Corbally, 2002). Consistent with this, the authors fit
Fe i and Fe ii lines, finding a metallicity of [Fe/H] = �0.52 ± 0.08. Both of
the carbon and oxygen abundances were measured to be consistent with solar
composition, suggesting that the iron metallicity is not representative of the
bulk stellar composition, and that our BT-NextGen is still applicable. At the
low spectral resolution considered in this study the metallicity does not signifi-
cantly impact the SED of the star and variations in its measurement will not
affect the calculation of the results, though will ultimately impact the context –
and thus interpretation – of planetary metallicity measurements.
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12. ADI DATA PROCESSING

The atmospheric properties of directly imaged exoplanets are presently
accessible only through their thermal emission. For directly imaged planets,
these spectra are usually obtained through low to moderate resolution IFS
instruments equipped with coronagraphic optics. IFS data is complex, with
a large array of systematic and random noise effects imprinted onto the data.
Cross talk between neighbouring pixels due to optical effects (Antichi et al.,
2009; Larkin et al., 2014) and scattered light can introduce correlations in
wavelength space. Once the data has been reduced from raw detector frames to
data cubes, quasi-static stellar speckles – light of the host star scattered by the
telescope optics – is the dominant noise source (Marois et al., 2005, 2008). ADI
processing is used to remove the stellar PSF and speckle noise, taking advantage
of the stability of the PSF over time (Marois et al., 2006). ADI exploits the
rotationof theplanet through the frame,whichproduces a signal that is different
from the stellar speckles, which remain fixed in position. By derotating and
stacking the images, the residual speckles following post-processing are averaged
out, while the planet signal is enhanced. The stability assumption is notwithout
flaws, as the PSF varies due to thermal variation in the telescope, short and long-
term atmospheric changes and more (Milli et al., 2016), but in practice it is
robust enough to allow for planet detection. Obtaining an exoplanet spectrum
is generally achieved by applying an ADI algorithm to each spectral channel
on a 4D cube of IFS data. Modern ADI processing is more sophisticated than
simply derotating and stacking the images, but the algorithms generally fall into
three broad categories:

Speckle subtractionmethods attempt to directly subtract the residual stellar
speckles from each frame of the image cube. The planet signal is then measured
either through aperture photometry or through fitting amodel of the PSF to the
signal and minimising the residuals. This is the most commonly used method,
and includes algorithms such as (Template) Locally Optimised Combination of
Images (LOCI and TLOCI, Lafrenière et al. 2007; Maire et al. 2012; Marois et al.
2014), low rank plus sparse decomposition (LLSG, Gomez Gonzalez et al. 2016)
and various implementations of principal component analysis (PCA) based
methods, including Karhunen-Loève Image Projection (KLIP, Soummer et al.
2012) and Standardised Trajectory Intensity Mean (STIM, Pairet et al. 2019).
SuchPCA-basedmethods construct an ordered library of principal components
of the data: low orders describe the most important components of the stellar
PSF, while higher orders describe high frequency noise. By building a library
to describe the host star PSF, it can be more effectively subtracted from each
frame before stacking the images, improving the S/N of the companion.
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Inverse methods such as ANDROMEDA (Mugnier et al., 2009; Cantalloube
et al., 2015), PACO (Flasseur et al., 2018) and TRAP (Samland et al., 2021) use
likelihood minimisation to directly estimate the position and contrast of pro-
posed signal at each point in the field. To do this, a parameterised forward
model of the companion signature is fit to the data, and the parameters are
optimised through a likelihood minimisation process. This yields a statistical
interpretation of the residuals, and provides confidence region estimates that
provide a metric for detection significance, under varying assumptions of the
noise properties of the data.

Finally, supervisedmachine learningmethods (GomezGonzalez et al., 2018;
Hou Yip et al., 2019; Gebhard et al., 2022) are trained on large sets of data with
injected targets and learn how to identify the presence of a companion in an
image. These methods typically only produce a binary maps where a planet
is either detected or not, and do not measure the strength of the planet signal.
Thus these methods have not generally been used for exoplanet characterisation.

12.1. Post-processing algorithms

We chose to compare three widely used ADI techniques in order to de-
termine the impact of such post-processing on the spectral shape and noise
properties of the extracted exoplanet spectrum. In order to compare a diverse
range of techniques we chose to use KLIP and PynPoint, which are different
flavours of PCA-based speckle subtraction methods, and Andromeda, which
is an inverse method. As our goal is to understand the impact of systematic
effects, we chose these algorithms for their broad community use, typifying
the effects likely present in existing work. A more complete examination of
the diversity of algorithms, including spectral differential imaging (SDI) and
ADI+SDI algorithms will be explored using a larger set of data in a forthcoming
publication based on Phase 2 of the Exoplanet Imaging Data Challenge.

In order to assess our choice of algorithm, we compared extractions of
known injected spectra at different positions and contrasts in order to optimise
the parameter selection for extracting the true spectrum. In this section we
present the specific steps we took to reduce SPHERE and GPI datasets of
the HR 8799 system using each of these algorithms. While a wide range of
parameters were explored, Table 12.1 summarises the parameter choices used in
this analysis for each algorithm.
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KLIP

KLIP is a PCA-based speckle subtraction algorithm, described in Soummer
et al. (2012); Wang et al. (2015) and Pueyo (2016). A Karhunen-Loève trans-
form of an optimised combination of reference images is used to define the basis
of eigenimages, onto which the science frames are projected. Often this set of
reference images is derived from the science observations, but in principle can be
any representative measurements of the PSF. Mathematically, this is equivalent
to building the basis of principal components. This projection is subtracted
from the science frames in order to produce the final residual image. A forward
model of the PSF is then injected in order to measure the position and contrast
of a detected companion.

Our choice of KLIP parameters is guided by Pueyo (2016) and Greenbaum
et al. (2018). For this study, we use KLIP in ADI mode. Comparison tests
showed that the full ADI+SDI mode provided modest increases in S/N at
low contrasts, but the overall shape of the spectrum remained similar. We set a
region around the proposed location of the planet extending 13 pixels radially in
each direction, and 18° on either side of the planet. The flux overlap parameter
is used to set the aggressiveness of the subtraction, using a value of 0.1. Fixing
these parameters may result in sub-optimal spectral extraction, particularly at
very small separations where the rotational movement of the planet through
the frame is small. However, we are primarily concerned with the overall trends
in the spectral extractions and noise properties across different tools, and do
not attempt to fine tune each algorithm for each individual injections.

We use the pyKLIP astrometric measurement tools to compute the location
of each target within the field of view, which is used to provide our initial
estimate for the planet position for each of the algorithms we consider. The
extracted spectrum is highly sensitive to the inferred companion position, and so
we use the KLIP astrometry as the location for all three algorithms. Pueyo (2016)
outlines the procedure to extract the spectrum from KLIP processed data using
the forwardmodel extraction tool. For each target at eachwavelength, a forward
model is generated from the unsaturated PSF obtained during the observation.
KLIP processing is then applied to subtract the stellar PSF and measure the
contrast of the companion. This is converted into a flux measurement using
the BT-NextGenmodel of the host star spectrum from Section 11.2.

PynPoint

PynPoint is a Python package designed for high contrast imaging data
processing(Amara & Quanz, 2012; Stolker et al., 2019). The standard PSF
subtraction method used in the package is based on full-frame PCA.We pro-
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cess each wavelength channel of the IFS data independently, filtering for bad
pixels and running ADI-PCA on each stack of images. In contrast to KLIP,
which builds a model of principal components in a local region near the planet,
PynPoint builds its PC library from the full available field of view. The central
0.”12 of each frame is masked out, due to the large residuals close to the host
star.

Following the PSF subtraction, a PSF model with negative flux is injected
at the position of the planet of interest, which is known from previously com-
puted KLIP astrometry. The PSF model for the planet is simply the stellar PSF,
which is either derived from satellite spots (for GPI data) or from unocculted
observations of the host star (for SPHERE data). The position and magnitude
of the negative planet are iteratively fit to the data using a simplex minimisation
routine to minimise the �2 between the PSF model and the data. The minimi-
sation is considered within an aperturewith a radius of 4 pixels around the
proposed location of the planet. The iteration continues until a tolerance of
0.01 is reached for both the planet position and contrast in magnitude units.
We allow the planet position to vary by up to 3 pixels (offset) from the initial
estimate from pyKLIP astrometry. This produces a best-fit value of the position
and contrast-magnitude of the planet. While we allowed the number of princi-
pal components used to vary from 1 to 25, we found that the extraction quality
degraded substantially after 15 components, which sets the upper bound we
present in this work. This is then converted frommagnitude to contrast, and
multiplied by the BT-NextGen stellarmodel of Section 11.2 to find the absolute
flux of the planet.

Andromeda

ANDROMEDA (ANgular DiffeRential OptiMal Exoplanet Detection Algo-
rithm) is a maximum likelihood estimation algorithm for ADI data, and esti-
mates the position and flux of point sources within the field of view (Mugnier
et al., 2009; Cantalloube et al., 2015). We run the VIP implementation of the al-
gorithm on each wavelength channel independently, and combine the extracted
contrast and standard deviation to build the planet spectrum. ANDROMEDA be-
gins by high-pass filtering the data to remove large spatial scale structure from
each data frame. This step induces signal loss, and we chose a value of 0.3 for
the filtering fraction parameter, leading to a ⇠20% energy loss as in Figure 1 of
Cantalloube et al. (2015). We calculate the oversampling parameter for each
wavelength channel to ensure the sampling is constant across wavelength, and
additionally use this parameter to determine the outer working angle, which is

126



ADI DATA PROCESSING

Parameter Value

pyKLIP

nPC 1 � 25

flux_overlap 0.1

highpass True

maxnumbasis 150

mode ADI

PynPoint

nPC 1 � 15

merit Gaussian

aperture 4 px

tolerance 0.01

cent_size 0.”12

offset 2 px

ANDROMEDA

filtering_frac 0.35, 0.30

min_sep 0.45 �/d, 0.25 �/d

width 0.8 �/d, 1.2 �/d

iwa 2.0 �/d, 1.0 �/d

owa 60/S , 45/S

opt_method lsq

Table 12.1: Parameters used for each of the algorithms considered. Parame-
ters that were not varied were set based on previously reported values in liter-
ature (Pueyo, 2016; Greenbaum et al., 2018; Cantalloube et al., 2015). For
ANDROMEDA, the first column of parameters was used for the SPHERE
data, and the second column for the GPI data. The oversampling parameter S

is defined in eqn. 12.1. Further information about each of these parameters is
available in the documentation of each package. 127
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provided in �/D. The oversampling parameter, S is defined to be

S =
�

2�pxD
(12.1)

for pixel scale�px, telescope diameter D and wavelength �.
Internally to ANDROMEDA pairs of images are chosen such that they are

as close together in time as possible to preserve speckle self-similarity, while
still ensuring movement of the proposed companion in order to avoid self-
subtraction. This is done on an annular basis, as the motion of the planet
depends on the separation from the host star. A scaling factor � is fit using
a least squares method to ensure that the mean of the intensity distribution
of both images in the pair is equal. Using the assumption that the residual
noise is white and Gaussian, ANDROMEDA then can perform a likelihood test to
identify the presence of a companion, by minimising the difference between
the residuals and a model of the companion signal.

Among the outputs of this algorithm are a contrast map, where each pixel
represents the contrast of the planet if it was centred on that pixel, and a standard
deviationmap, specifying the uncertainty associatedwith each contrast estimate.
This is different from the output of a speckle-subtraction algorithm, where the
flux of an object must be estimated through aperture photometry or via fitting
a PSF model to the residuals. To extract the spectrum, we sum the S/N map
along the wavelength axis, and identify the maximum S/N pixel in a 10 pixel
box around the known position of the planet. We then use this location to
measure the contrast and standard deviation as a function of wavelength.

12.2. Spectral covariance estimation

Both high contrast imaging and IFS observations present challenges when
deriving robust uncertainty estimates, as correlations are naturally present in
the data. Due to aberrations in the telescope optics, imperfect correction for
atmospheric turbulence from the adaptive optics systems, and imperfect stellar
PSF subtraction, speckles from the stellar PSF are the dominant noise source
for AO assisted, high-contrast datasets (Marois et al., 2006). These speckles
move radially as a function of wavelength, scaling with the size of the stellar PSF.
This induces a correlation between wavelength channels, as a speckle will take
several channels of movement to pass over a pixel at a fixed separation. Crosstalk
– light from a single lenslet in the lenslet array diffracting into neighbouring
channels – will also couple these channels. Finally, as noted in Ruffio et al.
(2021), additional correlation can be introduced through the interpolation
of the 4D (�, t, x, y) spectral cube during reconstruction from the detector
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images. This interpolation to a fixed wavelength grid guarantees the correlation
of the noise in the IFS cubes, as noise in neighbouring detector pixels will be
interpolated to build the IFS spaxels.

Greco & Brandt (2016) demonstrate the necessity of accounting for these
correlated errors when retrieving physical properties from IFS data. If these cor-
relations are not accounted for, they find that the retrieved confidence intervals
are both artificially small and unreliable, often excluding the true parameter
values at > 95% confidence. This was reinforced by Ih & Kempton (2021),
where they explored the impact of correlated noise on atmospheric retrievals
for transiting planets, finding that the assumption of non-correlated noise leads
to biased posteriors and overfitting of the data.

Measuring noise correlation

Greco & Brandt (2016) introduce a procedure for empirically measuring
the correlation in IFS datasets, and demonstrated the importance of including
the full covariance matrix when fitting IFS spectra. In this work we extend
their method by measuring the spectrum of injected planets and the resulting
covariance, as opposed to the parameterised noise instance used in their work.
This allows us to explore how the noise properties vary across instruments and
over different post-processing methods. For each PSF-subtracted dataset we
compute the average correlation within a 6 pixel wide annulus centred at the
separation of the companion of interest. As in their work, we find that the
correlation matrix does not depend strongly on the width of this annulus. The
companion itself is masked out, leaving only residual noise. Such an annulus
is chosen in order to maintain consistent noise properties in the sample of
pixels: in general the noise varies more strongly with radius than with position
angle. Work such as Gebhard et al. (2022) explores choosing more a more
representative sample of pixels to describe the noise at the location of the planet,
but such methods are computationally expensive, and we see little azimuthal
asymmetry in the residuals shown in Figure 11.1.

Within the annulus, we compute the elements of the correlation matrix,
 i j as

 i j =

D
IiI j

E

qD
I

2
i

E D
I

2
j

E =
Ci jp
CiiC j j

, (12.2)

where hIii is the mean pixel intensity in the i
th spectral channel, andCi j is the

covariance between the two channels.
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Estimating uncertainties

In order to compute the covariance matrix from the correlation matrix, we
must know the diagonal, or uncorrelated elements of the covariance matrix.
Several methods of measuring the photometric uncertainty were considered.
We estimate the uncorrelated error in each wavelength channel by combining
the photometric uncertainty of the stellar PSF,�star,with the residual noise at
the location of the planet,�residual. We include the stellar uncertainty because
near the edges of the bands in which spectra are observed, the filter transmission
drops and atmospheric absorption increases, resulting in an increase in the
uncertainty on the host star photometry. To measure the uncertainty on the
stellar photometry we measure the standard deviation of the background in
an annulus far from the stellar PSF in each wavelength channel, and use this
to calculate the signal to noise. This represents an optimistic estimate of the
stellar uncertainty, as we are unable to monitor photometric variability due to
atmospheric conditions over the course of the observation, which represents
the dominant source of uncertainty for the stellar photometry. To measure the
uncertainty on the planet photometry we take the standard deviation of the
residuals in an annulus at the separation of the companion, masking out the
planet itself.

The histograms of Figure 11.1 show that the assumption of Gaussian errors
across the entire frame is inconsistent with the noise, and would underestimate
the tails of the distribution. Pairet et al. (2019) demonstrate that a Laplacian
provides a better fit to the tails of the residual distribution than a Gaussian,
while Mawet et al. (2014) shows that the residuals tend to follow a Student-
t distribution. We find that a Student-t distribution best matches the full
frame residuals. However, as the likelihood function for a general Student-t
distribution is not analytic, and a Gaussian distribution accurately captures the
residuals to 2.15�, we continued to follow the standard practice of defining
uncertainties as the Gaussian standard deviation. Taking KLIP as an example,
the best fit Student-t distribution has 1.75 DoF, a mean of 2.23 ⇥ 10�8 and a
width t = 5.29 ⇥ 107. At the point where the Gaussian distribution intersects
the Student-t distribution, 89% of the residuals are enclosed, compared to 97%
if the residuals were Gaussian distributed. We also note that, relative to the
speckle subtraction algorithms, ANDROMEDA shows an excess of 10� outliers
in the residuals, leading to difficulties in distinguishing between true positives
and false positives, consistent with the findings of Cantalloube et al. (2020a).
The long tails of these distribution add additional noise to each frame and need
to be accounted for the detection of planet candidates in order to avoid false
positives. However, for a known companion where we are concerned with
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inferring physical parameters to within 1-2� confidence intervals, accounting
for the 90% of the noise that is contained within the Gaussian fit to the residuals
is sufficient for defining the uncertainties.

Thus the total uncorrelated uncertainty for the i
th wavelength channel is

given as:

Cii = �
2
i,star

 
fi,pl

fi,star

!2

+ �2
i,residual

. (12.3)

The method described here provides an empirical estimate of the covariance
of the noise after high-contrast image processing. However, as it relies on mea-
surements of mean pixel intensities in a residual image, it is only applicable for
speckle-subtraction methods. As ANDROMEDA produces an estimate of planet
contrast at each pixel location, rather than residual noise following PSF sub-
traction, this method cannot be directly applied to the processed ANDROMEDA
frames. An example of such a frame is shown in Figure 11.1, where highly
structured noise is visible in the frame. The noise pattern is highly correlated
through wavelength space, and indeed would lead to very strong residual corre-
lation. Rather than applying the procedure for measuring the covariance matrix
for ANDROMEDA, we instead rely on the estimate of the standard deviation that
is also provided by the algorithm, that is also measured during the likelihood
minimisation.

Figure 12.1 shows the results of computing the correlation matrix for both
the KLIP and PynPoint reductions. There is a strong, narrow correlation com-
ponent along the diagonal with a width of around 2-3 pixels, with a weaker
correlation extending out to 10 pixels in width. In the SPHERE data, the
correlation decreases in the water absorption features at 1.15 µm and 1.4 µm.
The KLIP data typically displays stronger correlations than the PynPoint re-
ductions. This difference may be because the pyKLIP implementation of the
KLIP algorithm uses only the most correlated frames from the PSF library to
build the PSF model, which introduces an additional source of correlation in
the data.

12.3. Bias correction

PCAmethods tend to see increased self-subtraction as the number of prin-
cipal components increases, naturally leading to poorer extractions at as the
number of components increases Lagrange et al. (2010) Therefore we also con-
sidered an empirical estimate of the uncertainty by injecting and recovering a
sample of planets in an annulus at the location of the planet. The standard
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deviation of the recovered spectra provide a measure for the uncertainty due to
planet position and variation in the effectiveness of the post-processing. This
can also be used as a method to correct for bias introduced by self-subtraction
caused by the post-processing algorithm: by comparing the recovered spectra
to the known input, a scaling factor can be computed. This can then be used to
mitigate the self-subtraction induced by the PCA processingMarois et al. 2014;
Gerard &Marois 2016; Ruffio et al. 2017. We found that when applying such
a bias correction, the �2 between the injected and recovered spectra was often
worse than that of the nominal spectral extraction. As the noise properties are
not truly azimuthally symmetric, the average bias correction does not provide a
good correction for any individual planet location, particularly at the relatively
faint contrasts considered in this work. Any improvement in the spectral ex-
traction is dominated by the both the changes to the shape of the spectrum
introduced by the data processing and the random noise of the measurement.
Therefore we choose not to include bias correction as a step in our post pro-
cessing, and do not include uncertainty from injection and recovery tests in our
error estimate. The finding that bias correction can reduce the accuracy of the
spectral extraction is surprising, and warrants further investigation into where
this widely used technique should be applied. We leave such a study to future
work.

12.4. Impact of covariance on retrieved parameters

In the previous section we discuss how to measure a covariance matrix for
IFS data. Here we explore how the covariance impacts Bayesian inference, that
is, when estimating the parameters of the model used to explain the observa-
tions. Greco & Brandt (2016) demonstrated how failing to include the full
covariance matrix when fitting atmospheric models to IFS data results in overly
confident and biased parameter estimates. In 14.1 we expand their work to
higher dimensional models using atmospheric retrievals, but first we want to
pedagogically understand how the covariance is linked to the posterior prob-
ability distributions. We subsequently show how the precision of a posterior
parameter estimate depends on the ratio between the length scale of the cor-
relation in the data and the length scale over which the parameter introduces
changes in the model spectra. If this ratio is larger than unity, the posterior
width decreases relative to the case without correlation. If the ratio is about
unity the posterior width will increase.

Consider a toy model, where the data y is given by a simple sine function
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Figure 12.1: Correlation matrices for each dataset for HR 8799 e, with the
GPI H-band data shown in the top row and the SPHERE YJH data on the
bottom. Following the processing using KLIP (left) or PynPoint (right), we
calculate the correlation and covariance matrices as described in Section 12.2.
The correlation is computed as in Equation 12.2. TheGPI data is more strongly
correlated than the SPHERE data, particularly following the KLIP processing.
The SPHERE data shows structure similar to the correlation matrix, with the
correlation width following the shape of the water absorption spectrum.

with period T and offset D:

yi = sin (2⇡xi/T ) + D. (12.4)

In the context of atmospheric parameters, we can think of this model as the first
term of a Fourier series, which can be used to describe an atmospheric spectrum
to arbitrary precision if extended to a high enough order. While the variation in
the spectrum due to physical parameters is more complicated than this model,
we can view an offset in the toy model as a change in the overall flux, while a
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change in the period would be reflected in the spectral shape, such as the near
infrared water features.

The period and offset were arbitrarily chosen to be 30 and 0 respectively.
Assuming that this toy model describes an observed experimental setup, we
construct a synthetic dataset containing a total of 300 points, with x-coordinate
values from 1 to 300, that is, ten periods. We applied different noise models
to these toy data, and used nested sampling as implemented in MultiNest
(Feroz & Hobson, 2008; Feroz et al., 2009; Feroz et al., 2019) to retrieve the
value of the period parameters T and D. Such nested sampling algorithms
improve on MCMC techniques to sample large parameter spaces efficiently,
gradually restricting the sampling volume to regions of high likelihood. They
are also robust to multimodal posterior probability distributions, and provide
an estimate for the Bayesian evidence,Z, as well as the posterior distributions
and maximum likelihood fit.

We use the Matérn 3/2 kernel (Rasmussen &Williams, 2005) to describe
the covariance of our dataset:

C3/2 (d)i j = �i� j

0
BBBBB@1 +

p
3di j

`

1
CCCCCA exp

0
BBBBB@
�
p

3di j

`

1
CCCCCA . (12.5)

This is a model of for the correlation between two points separated by distance
di j, where we can adjust characteristic correlation length scale through the corre-
lation length parameter, `. As ` decreases, the correlation matrix becomes more
diagonal, while as ` increases the data becomes more strongly correlated across
broad scales. The strength of the correlation is determined by the uncertainty
on each point (�i), which we set to a constant value of 0.5 for each data point.

In Figure 12.2, we show three instances of the correlation matrix for ` =
10�4, 10�2 and 10�1 , ranging from uncorrelated to strongly correlated noise.
Plotted in gray is the noise-less data, and the coloured lines show noise instances
drawn from each of the three correlation matrices. For the diagonal case (` =
10�4), we see that the data are randomly scattered around the true model. With
no correlation, we see true, univariate Gaussian noise. As the correlation scale
increases to ` = 10�2, we see that the data appear smoother, and the variations
occur on larger spatial scales than in the case without any correlation. Finally,
with ` = 10�1, we see that the data are offset from the ground truth, but do
not have any small-scale scatter. This is the impact of covariance on the data: as
the correlation length increases, every point is more strongly determined by the
initial random draw any other point (effectively there are less points, as there
are less independent measurements). In summary, we observe high frequency
variation due to noise if the correlation length is small. In this case the mean
of the data, parameterised by parameter D should be accurately and precisely
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inferred. As the correlation length increases, the scatter of the mean D across
multiple draws increases, but we see less small-scale variation, allowing a better
estimate of the period, T .

Wenote here that theMatérn 3/2 kernel is only onemodel for the covariance,
and is not perfectly suited for IFU data. Amore robustmodel (such as described
in Greco & Brandt 2016) would incorporate both a broad correlation term and
a diagonal Gaussian term to the correlation matrix, which would introduce
small-scale scatter in the data, even with a large correlation scale. Nevertheless,
this is a suitable toy model to explore how changing the correlation length scale
impacts parameter estimation.

To determine the impact on parameter inference, we vary the correlation
matrix across a range of ` values from 10�4 to 100, and use pyMultiNest
(Buchner et al., 2014) with 400 live points to fit the true model, accounting
for the covariance in the likelihood. We did not perturb the toy dataset by
with an error model as defined by the covariance matrix, so we run noise-free
retrievals. This is equivalent to running multiple inferences where the data are
perturbed by draws from the covariancematrix and averaging over the posteriors
of each inference. We set uniform priors on the period P(!) = U(0, 100)
and offset P(D) = U(�10, 10). The results are not sensitive to the choice of
number of live points (nlive >> nparam) or priors. The upper right panel of
Figure 12.2 shows the ratio between the width of the posterior distribution
for this parameter and the width of the distribution in the case of univariate
Gaussian noise (i.e. no correlation). We observe that as the correlation length
scale approaches the length scale of the sine function (the period) the width
of the posterior increases: the correlation introduces variations in the data on
the scale of the period, making it difficult to estimate the parameter. This is the
effect described in Greco & Brandt (2016), where accounting for the covariance
matrixwhenfitting atmosphericmodels increases the posteriorwidth. However,
as the correlation scale continues to increase to scales larger than the period,
we see that the posterior width decreases to values lower than in the case of
uncorrelated noise. As is visible in the data in the left panel, without small scale
variations to introduce uncertainty in the period, it becomes easier to estimate
this parameter, at the cost of increased uncertainty in the estimate of the offset
parameter D.

Effects of ignoring covariance

It is often the case that the full covariance matrix is not used when perform-
ing atmospheric retrievals, and we wanted to explore the impact of using only
the diagonal terms when fitting a model to correlated data. Figure 12.3 shows
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the best-fit reduced �2 as a function of the ratio between the period and the
correlation length scale, as in the right panel of Figure 12.2. For each `, we
perform an ensemble of 25 retrievals using Multinest in order to reduce the
scatter and to measure the uncertainty in the �2 due to the variation between
individual noise instances. In this case, the data are perturbed by draws from
the covariance matrix, in order to test the impact of using the incorrect covari-
ance in the likelihood when the data are correlated. We define ⌫ as the number
of data points (300) minus the number of parameters (2). This procedure is
repeated using both the full covariance matrix,C, in the likelihood, as well as
using only the diagonal elements of the matrix - that is, we assume that the data
are uncorrelated. We find that the reduced �2 is a useful metric if the covariance
is properly accounted for. If the data are correlated and an only the uncorrelated
uncertainties are used in the likelihood then the reduced �2 will be underes-
timated, and the scatter of the �2 increased. Often a �2/⌫ < 1 is interpreted
either as overfitting of the data or overestimation of the uncertainties. However,
we demonstrate here that for nparam < ndata a �2/⌫ < 1 can be interpreted as an
underestimation of the correlation of the data.

Applicability to atmospheric retrievals

We expect similar effects to be present in atmospheric retrievals with corre-
lated data. Parameters that affect model spectra on wavelength scales smaller
than the correlation scale may be retrieved to higher precision than expected if
the uncertainties were uncorrelated, while parameters that are sensitive at ap-
proximately the correlation length scale will have larger posterior uncertainties.
As seen in Figure 12.1, the correlation length can be a appreciable fraction of the
total data, particularly in the case of the KLIP reduction ofGPI data. Large scale
correlations in the data can introduce offsets in the average flux measurement,
which can lead to inconsistencies between datasets from different instruments
or measured during different epochs. Correlations on moderate scales can alter
the spectral shape, in turn impacting parameter estimates. For example, the
surface gravity is particularly sensitive to the shape of the H-band, and changes
to the shape of this band will lead to biased estimates. Thus for IFS data it is
critical to account for the covariance matrix when fitting models to the data, in
order to correctly capture the noise structure imprinted onto the signal.
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Figure 12.3: The best fit �2/⌫ as a function of the ratio between the correlation
length scale (proportional to 1/`) and the period, T . The �2 was computed for
fits of equation 12.4 to data perturbed by draws from the covariance matrix,
varying the correlation length scale. For each `, 25 Multinest retrievals were
run in order to compute the uncertainty on the �2, shown as the shaded region
around the mean. In blue, the covariance is properly accounted for in the
likelihood, while in orange only the diagonal of the covariance is used in the
likelihood. In order for the reduced �2 to be a useful metric, the covariance
must be properly accounted for.
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13. INJECTION TESTING

In order to best extract a true signal, wewant to optimise the data-processing
parameters. However, without knowledge of the ground truth spectrum, it is
unclear how these parameters should be tuned a priori. By injecting fake com-
panions with a known spectrum, applying the post-processing, and comparing
the extracted spectrum to the input we can then optimise the parameters, and
use this setup to extract the true planet signal. In particular, we try to optimise
the choice of the number of principal components used in PSF subtraction for
KLIP and PynPoint as a function of the separation. This injection-extraction
study also provides us with a metric for comparing the three algorithms de-
scribed in Section 12.1.

Using the pyKLIP injection tool we injected companions into both the
SPHERE and GPI HR 8799 datasets. The normalised stellar PSF was used
both as a model for the planet PSF and to scale the bulk contrast of the in-
jected companion. The spectrum was convolved with a gaussian kernel to the
instrumental resolving power, and binned to the instrumental wavelength grid
using the rebin_give_width function available in petitRADTRANS, which
accounts for non-uniform bin sizes as the number of pixels per instrumental
resolution element varies with wavelength. Only a single planet was injected at
a time before the data processing, which was repeated for each planet position
in order to avoid potential contamination from nearby signals. We injected
the companions at varying positions into both the SPHERE and GPI datasets,
with a spectrum generated using petitRADTRANS as described in Section 14.
These were positions representative of the known separations of the inner three
companions. Planets were injected at position angles from 120° to 240° from
the location of HR 8799 e in 30° increments, and between 300 – 800 mas in
100 mas steps. This process was repeated for the SPHERE YJH and the GPI
H-band datasets at mean contrasts from 10�7 to 10�4.

Once the data were prepared, we ran each of the three data processing al-
gorithms on each injected dataset, spanning a range of algorithmic parameters.
While we could not exhaustively study the effect of each parameter, we chose
to focus on the impact of the number of principal components used during
PSF subtraction in order to optimise the spectral extraction. Other parame-
ters, such as the flux_overlap parameter in KLIP, or the filtering fraction in
ANDROMEDA were set based on suggested values from previous studies (Zurlo
et al., 2016; Cantalloube et al., 2015) or from qualitative examination of the
post-processed data. Several parameters, such as thetolerance and merit
parameters of PynPoint were chosen to ensure accurate extractions within
reasonable computation time. Various geometric parameters, such as the inner
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and outer working angles together with the width parameter in ANDROMEDA,
or the subsection and annuli parameters of KLIPwere set based on recom-
mendations from the documentation1, and ensuring that the region under
consideration would contain the entirety of the planet signal, extending to at
least twice the FWHM of the signal. A full table of parameter choices for each
algorithm is given in Table 12.1.

13.1. Choice of goodness-of-fit metric

We considered several goodness-of-fit metrics with which to determine
the optimal extraction, including the signal-to-noise ratio (S/N), the relative
discrepancy (e) and reduced �2 (�2/ndata). We take the median of each metric
across the five different position angles where planets were injected. We exclude
spectra that are over 20� discrepant from the input, or that display strong
outliers with contrast > 2 ⇥ 10�5, though the results are robust to including
the outlying data. Each of these metrics identified different optimal spectra.

ThemeanS/N always identified the spectra processed using the largest num-
ber of components as optimal. However, the resulting spectra do not correctly
retrieve the shape of the input spectrum, because they typically overestimate
the flux, so we did not consider this metric further.

We define the mean relative discrepancy e between a measured flux ~s and
known input spectrum ~̄s as

e = 1 � 1
N

�������

NX

i

si

s̄i

�������
. (13.1)

To identify the best fit spectrum we simply find the minimum value of this
function. In contrast to the �2 or other distance metrics, the discrepancy is is
invariant of the magnitude of the measured quantity, and so provides a metric
to compare spectra injected at different contrasts.

The�2 is a standardmetric formeasuring the similarity of distributions, but
can also favour measurements with overestimated uncertainties. The �2 value
between the extracted spectrum swith covarianceC and the known injected
spectrum s̄was calculated for each post-processed dataset as

�2 = (s � s̄)T C�1 (s � s̄) . (13.2)

We present �2/ndata, dividing by the number of wavelength channels ndata to
allow for a more straightforward comparison between instruments. We do not

1https://pyklip.readthedocs.io/en/latest/fm_spect.html
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Figure 13.1: Typical spectral extractions for injected planets located at sepa-
rations of 600 mas. These spectra are representative of the HR 8799 planets
with (Fp/F⇤ ⇠ 2 ⇥ 10�6). The injections into the SPHERE data are shown
on the top panel, the GPI on the bottom. Each injected planet was positioned
150° from HR 8799 e. Extractions for each algorithm are plotted, with the
best fit spectrum (�2) and 1� error bars from the diagonal of the covariance
matrix highlighted by the shaded region. The faint lines show the variation in
the extractions using different numbers of principal components.

subtract the degrees of freedom from the number of data points as is typical
when computing the reduced �2, as principal components are not free param-
eters in a statistical sense, thus making the definition of degrees of freedom
challenging.

13.2. Optimising spectral extractions

We present in Figure 12.4 the map of �2/ndata (left) and mean relative
discrepancy (right) as a function of both separation and number of principal
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Figure 13.2: Best-fit discrepancy (eqn. 13.1) as a function of input contrast
at 400 mas. The top panel shows the results for injections into the SPHERE
data cube, while the bottom is for GPI. The injections were repeated at three
position angles, and the uncertainty presented is the standard deviation of these
measurements.

components used, taking themedian across the injections at different parallactic
angles. Extracted spectra for typical injected fake companions are shown in
Figure 13.1. The precision and accuracy of our spectral measurements depends
strongly on the separation, visible in the variation of the both metrics. There
is strong position-dependent variation in the shape of the extracted spectra,
including cases where the injected companion is not detected in any wavelength
channel, as well as cases where the peak contrast is overestimated by a factor of
2. Examining Figure 11.1, we see that beyond about 400 mas from the host star
the noise properties are relatively unstructured, while at 400 mas and closer the
GPI data is dominated by the residual speckle noise. Such a trend is also present
in the SPHERE data, though the speckle dominated regime extends out to
only 300 mas. This transition in the underlying noise properties together with
the greater angular displacement at wider separations results in the improved
detections at wider separations. This can be disguised by the �2 metric, where
large uncertainty estimates at small separations can result in a better �2/ndata,
while the mean relative discrepancy provides a clearer trend as a function of
separation. When using �2/ndata as the goodness-of-fit metric, we find that
both KLIP and PynPoint favour low numbers of principal components.
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Such results depend strongly on both the dataset, the reduction used, and
the choice of metric. The SPHERE extractions are universally better than the
GPI, largely due to the brightness of the injected spectra in the Y and J bands,
the smaller inner working angle and pixel scale, and the longer integration
time. PynPointmost strongly favours low numbers of principal components,
across both metrics and at all separations. However, when we consider the
relative discrepancy between the input and extracted spectra, and find that the
number of PCs components favoured is much higher than when using the �2,
particularly for KLIP. These spectra may more closely match the shape of the
input spectra, but may also underestimate the uncertainties, leading to them
being disfavoured by the �2. While the shape of the spectrum does depend on
the number of components used, it ismore strongly dependent on the particular
location in the frame where it is injected.

Each algorithm displayed its own trends in the quality of its spectral ex-
tractions. KLIP produced smooth spectra, with systematics that were relatively
consistent in shape over the full range of principal components used. How-
ever, it struggled to recover the brightest sources accurately, reproducing the
over-subtraction effect described in Pueyo (2016). In contrast, PynPoint and
ANDROMEDA performed worse at fainter contrasts, as demonstrated in Figure
13.2. The PynPoint spectra are more dominated by random scatter than by
systematic variation, reflected in the typically diagonal correlation matrices.
ANDROMEDA produced some of the best overall fits, but struggled to achieve the
correct flux calibration, both over- and under-estimating the flux in different
cases. For the bright injection case, PynPoint consistently performed the best,
producing the lowest �2 values for each dataset and separation. KLIP struggled
to extract the brightest spectra, over-subtracting the planet signal at the red
end of the SPHERE data. This effect was more severe when larger numbers of
principal components were used. However, KLIP also displayed a tendency to
over-estimate the flux of the signals injected into the GPI data. ANDROMEDAwas
able to accurately extract the high S/N SPHERE injection, but systematically
underestimated the flux in the GPI data.

The best fit of each algorithm performs relatively well at extracting the true
spectrum, with typical best-fit reduced �2/ndata values approaching 1. Depend-
ing on the injected position angle and separation, the �2 for the same algorithm
at the same separation can vary by a factor of ⇠10, with typical standard devi-
ations on the order of 10–100 depending on the dataset and algorithm. This
variation in extraction suggests that injection recovery tests to measure and
correct for algorithm throughput, such as detailed in Greenbaum et al. (2018),
may introduce additional biases depending on the precise positioning of the
injected companions. In our reproduction of this method, we find that it does
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not provide better�2 values, and can introduce spurious wavelength-dependent
signals. This variation is separation-dependent and impacts the extraction less
strongly at wider separations, outside the speckle noise regime.

These results point to differences in the approach to data analysis required
between detection and characterisation efforts. High numbers of principal
components tend to whiten the noise and improve the detection significance,
potentially allowing the discovery of fainter companions. However, this comes
at the cost of reduced photometric accuracy, which is critical when attempting
to recover the physical atmospheric parameters. For both speckle subtraction
methods, low numbers of principal components produce the most accurate
spectral extractions, though the precise number of components will depend on
the brightness of the companion in question.
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Atmospheric retrievals provide a useful, data-driven tool for exploring the
properties of exoplanet atmospheres. Retrieval results are dependant on the
quality of the input data and the assumptions made about both the data and
the model. For our investigation below we have two primary aims:

1. Exploring the impact of high-contrast image processing on the inferred
atmospheric parameters through retrievals on synthetic data.

2. Characterising how correlated noise influences the fits of the synthetic
data. With a known ground truth, we can explore how the use of the
covariance matrix can help mitigate the impact of systematic effects intro-
duced by the data processing.

To this end, we use a representative selection of optimised spectral extractions
as described in Section 13. We choose to use the model injected at 600 mas,
and positioned 150° rotated fromHR 8799 e, combining both the SPHERE
YJH and GPI H-band datasets. The best extracted spectrum as measured by
the relative discrepancy were chosen as the baseline inputs to the retrievals.
This represents a realistic, though challenging spectrum on which to perform
atmospheric retrievals. For validation we also explored a set of retrievals on
different locations and choice of extraction, finding that while the precision
often varies with the S/N of the extracted spectrum, the overall trends of our
results are reproducible. In contrast to Greco & Brandt (2016), these retrievals
explore the full impact of IFS data processing on the spectra, as opposed to
using data synthesised from a parametric estimate of the covariance. In contrast
to their use of a 3-parameter BT-Settlmodel, we use an⇠8 parameter forward
model in order to understand the cumulative impacts of data post-processing on
the inferred atmospheric parameters in the context of high-dimension on-the-fly
retrievals. Such retrievals are highly flexible, and are more likely to try to fit
spurious data features than more physically motivated fits from self-consistent
grids.

Atmospheric model

The models we use in our atmospheric retrieval setup are computed using
petitRADTRANS (Mollière et al., 2019), a fast, open-source radiative transfer
code with which we can calculate the emission spectrum of an atmosphere 1.
In this framework, the atmosphere of a planet is divided up into pressure bins.

1https://petitradtrans.readthedocs.io/
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Temperature and chemical structures are calculated and applied to each bin, and
radiative transfer using the correlated-k method for the opacities (Goody et al.,
1989; Lacis & Oinas, 1991) is performed to calculate the emission spectrum.
The correlated-k opacities are binned from their native spectral resolving power
of 1000 to a user-supplied model resolution using the exo-k package (Leconte,
2021), improving the computation time of the retrieval. A wavelength binning
of at least twice the data resolution is used for the models, in order that the
binned model spectrum is Nyquist sampled. This spectral model is convolved
with a Gaussian kernel with the width of the instrumental spectra resolution
and then binned to the wavelength grid of the input data for the retrieval using
the rebin_giv_width function. At the spectral resolutions considered in this
work, the effects of the convolution and binning on the spectrum can dominate
the spectral shape over data processing effects. For this reasonwe ensured thatwe
use the same convolution and binning procedure during the spectral injections
as during the retrieval. However, future work should investigate incorporating
better instrumental models and wavelength dependent kernels into retrieval
frameworks.

Our baseline model uses a Guillot temperature profile (Guillot, 2010) and
freely retrieved chemical abundances. This profile is a simple analytical model,
constructed to estimate the thermal structure of irradiated planets:
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where Tirr =
p

2Tequ and ⌧ = P ⇥ IR/g. Tequ is the standard equilibrium
temperature of an irradiated body, g is the surface gravity. P is the atmospheric
pressure, divided up into a total of 80 log-spaced layers from 103 bar to 10�6 bar.
The remainder of the parameters are as in Guillot (2010): Tint is the intrinsic
internal temperature of the planet, IR is the mean infrared opacity, and � is
the ratio between the optical and infrared opacities. All of these parameters are
freely retrieved, rather than being derived from the opacities in each atmospheric
layer.

This provides a simple but flexiblemodel for theP-Tprofile, and is themodel
used to generate the injected spectrum. By setting the irradiation temperature to
low values the Guillot model can reproduce the general shape of typical directly
imaged planet temperature profiles. Setting the equilibrium temperature Tequ
to zero provides the limiting case of the Eddington profile (Eddington, 1930).
Together with the planet radius, log g, and the chemical abundances this model
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Parameter Prior Input

Guillot, Free Chemistry

log g U (2.0, 5.5) 4.0

Rpl N
⇣
1.0 Rjup, 0.2 Rjup

⌘
1.0 Rjup

Tint U (300 K, 2000 K) 750 K

Tequ U (0 K, 300 K) 100 K

� N (1, 0.2) 0.5

log IR U (�3.0, 1.0) -1.0

log XH2O U (�7.0, 0.0) -1.5

log XCO U (�7.0, 0.0) -2.0

Table 14.1: Priors for retrieval setup. U(a, b) denotes uniform priors with
bounds a and b, andN (µ,�) denotes a normal distribution centred at a mean
µwith standard deviation�. The final column indicates the true values of the
spectrum injected into the IFS cubes.

uses a total of 8 parameters. The only included sources of line opacities are
H2O from the ExoMol data base (Chubb et al., 2021; Tennyson & Yurchenko,
2012) and CO from HITEMP (Rothman et al., 2010a). Both Rayleigh scattering
in an H2 and He dominated atmosphere and collisionally induced absorption
between H2-H2 and H2-He are included as continuum opacity sources. The
priors used for all parameters in the retrieval are presented in table 14.1.

Retrieval setup

pyMultiNest is used to generate samples and determine both the posterior
parameter distributions and theBayesian evidence of the retrieval (Buchner et al.,
2014). This is a Python wrapper for the MultiNest sampler and likelihood
integration method of Feroz &Hobson (2008). For all of the retrievals we use
4000 live points to thoroughly explore the parameter space, and a sampling
efficiency of 0.8, as recommended in the pyMultiNest documentation for
parameter estimation. We compute negative log likelihood, the value of which
is minimised in order to find the best-fit set of parameters. Acrossmany samples,
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Dataset �2/ndata logL BIC dm

KLIP,C 0.69 2692 -5289 2.35

KLIP, diag(C) 0.41 2656 -5218 3.29

PynPoint,C 1.72 2646 -5220 5.63

PynPoint, diag(C) 1.43 2641 -5208 9.60

Andromeda, diag(C) 0.39 2650 -5266 4.62

Gaussian, diag(C) 1.06 2651 -5267 2.21

Noise Free, diag(C) 0.06 2686 -5336 1.69

Table 14.2: Summary of retrievals run on synthetic data. We compare best
fit reduced �2/ndata, the (negative) log likelihood which includes the covari-
ance weighting term of equation 14.2, the Bayesian Information Criterion of
equation 14.3 and the Mahalanobis dM from equation 14.4. Retrievals were
performed on data processed with each algorithm, both using the full and diag-
onal only terms of the covariance matrix. Toy models using univariate Gaussian
scatter about the input and no scatter are also included, with the uncertainties
defined as diag(C) from the KLIP data.

this provides a measurement of the posterior probability distribution of model
parameters given the data. Under the assumption ofGaussian distributed errors,
the log likelihood function takes the form of a simple �2 likelihood distribution.
Using the covariance matrixC of the data from Section 12.2 with elementsCi j,
we compute the log likelihood function logL, which is the log-probability of
measuring the observed spectrum S given a forward model F. A normalisation
term is included which allows for a varying covariance matrix or uncertainty
for each dataset and penalises samples with higher uncertainties. Thus our
likelihood function is computed as:

�2 logL = (S � F)T C�1 (S � F) + log (2⇡ det (C)) . (14.2)

Goodness-of-fit metrics

In a retrieval on real exoplanet datawithout a ground truth value to compare
to, we must turn to different metrics in order to determine which retrieval best
describes the underlying spectrum. Table 14.2 lists �2 values of each best fit, as
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well as the minimum negative log likelihood as computed in Equation 14.2 and
the Bayesian Information Criterion (BIC,Wit et al. (2012)). Typically when
performing model comparison in a Bayesian framework, we would turn to the
Bayes factor in order to reject the null hypothesis. However, when comparing
the impact of different data reductions on the retrieval outcomes, the Bayes fac-
tor as computed through the nested sampling evidence estimate is insufficient,
as not all of the free parameters are included in the sampling process or in the
prior volume, namely the those related to the post-processing algorithms. This
would bias the evidence estimate, which depends on the choice of priors and
thus the overall prior volume. A full treatmentwould requiremarginalising over
these algorithmic parameters, and computing a forward model of the planet
signal in the IFS data. At the present time, such a joint approach is computa-
tionally infeasible. Ruffio et al. (2019) andWilcomb et al. (2020) demonstrate
that this is possible given a linear model of the starlight, the planet signal and
the residuals, which can be optimised and analytically marginalised over to
determine posterior distributions. However, this approach loses information
on the continuum shape of the spectrum, and relies on moderate-to-high spec-
tral resolution to infer physical quantities. The atmospheric model is also not
computed on the fly, and instead relies on a precomputed grid, limiting the
parameter space available for exploration.

Therefore, instead of the Bayes factor, we rely on the BIC as a summary
statistic:

BIC = k log n � 2 logLmax (14.3)

for k free parameters and n data points. This formulation allows us to account
for the free parameters of the atmosphericmodel, as well as the parameters of the
data processing, wherewe add one parameter for each principal component used
during PSF subtraction. Unlike the Bayes factor, the BIC is only a heuristic for
model comparison, and differences in the BIC cannot be treated as a metric for
statistical significance. Nevertheless, models with a lower BIC can be considered
more strongly favoured. As the BIC depends on the likelihood, this also means
we cannot directly compare retrievals which include or neglect the off-diagonal
terms of the covariance matrix. Bayes factors and the BIC estimate whether
a certain forward model is favoured when compared to another one, whereas
turning covariance on or off corresponds to changing the functional form of the
likelihood function. It is, therefore, not a question of forward model selection.
Thus no single summary statistic can determine the overall goodness-of-fit of
the retrieval.

The �2/ndata statistic is useful for understanding the impact of varying the
covariance and quantifying the similarity of the model to the spectrum, while
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the BIC is useful for heuristically evaluating the goodness-of-fit, accounting for
possible over-fitting from the addition of extra parameters. In general however,
we cannot directly compare the likelihood or the BIC when comparing the
cases including the covariance to those using only the diagonal of the matrix
with the usual motivation of model selection. Adding or neglecting the co-
variance does not correspond to a different forward model choice, instead it
is equivalent to using a correct or incorrect functional form of the likelihood
function. Therefore, assuming that the covariance is correctly measured, it
is always better to include the full matrix in the likelihood in order to make
statistically robust statements about the data. Thus even though the reduced
�2 of the covariance case may be larger than that with only the diagonal, it
still provides a more honest analysis of the data. It is also not surprising if the
�2 increases if the covariance is added, since a Gaussian distribution defined
by a covariance matrix with non-zero off-diagonal elements will always have
a higher information content (e.g. Rodgers, 2000). As discussed in Section
12.4, including the covariance may either increase or decrease the width of the
parameter posteriors.

For comparing retrieval results that include or neglect the covariance matrix
we make use of the Mahalanobis distance dM (Mahalanobis, 1936), to quantify
the absolute distance between the posterior probability distributions P(✓ | ~x)
with means ~µ and covariance S , and the true parameter values ~̂✓:

dM(~̂✓, P(✓ | ~x)) =
q

(~̂✓ � ~µ)TS �1(~̂✓ � ~µ). (14.4)

This provides a metric for the overall accuracy of the retrieval when the true
input parameters are known.

Finally, for this work we use the median parameter values and associated
spectra as our point of comparison as opposed to the maximum likelihood fit.
We find that although the spectrum generated by the median parameter values
is a worse fit (by definition) than the best fit spectrum, the median parameters
are a more accurate measurement of the input parameters.

14.1. Outline of retrievals

We performed three main tests to answer address the central theme of this
paper:

1. Comparing retrievals on spectra extracted using different post processing
algorithms.
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2. Comparing retrievals that either include or ignore the covariance matrix
in the likelihood function.

3. Testing if a lack of correlation information can be accounted for using
additional ad-hoc data-processing parameters in the retrieval.

Our primary retrieval results are summarised in Table 14.2. In Section 14.2
we compare the cases of data that has been processed with KLIP, PynPoint
and ANDROMEDA, both with and without the use of the covariance matrix from
Section 12.2. As a benchmark, we also include a retrieval using the nominal
input spectrum, perturbed with draws from a Gaussian distribution, where
the covariance is given by the diagonal of the KLIP covariance matrix. This
represents how the data would appear without systematics from HCI data
processing and without the correlations introduced by the instrument optics.
We also include a retrieval using the same uncertainties as in the Gaussian case,
but without scatter about the input spectrum to validate our retrieval method
and choice of goodness-of-fit metrics. For the sake of brevity, we refer to these
as the ‘Gaussian’ and ‘noise-free’ cases respectively. We explore the impact of
incorporating the covariance matrix in the retrieval framework in Section 14.3,
using the KLIP, Gaussian and noise-free cases. Section 14.5 explores whether we
can account for ignorance of the covariance in the data by introducing scaling
factors and offsets in the retrieval.

Validation

Toverify the validity of our results, we also ran a series of validation retrievals
to test the sensitivity of our results to the choice of datasets, priors, and models.
We ran retrievals on each dataset independently, as well as with broad and tight
priors. Neither dataset was able to retrieve the parameters as precisely as the
combined retrievals. The posterior distributions and fits were insensitive to our
choice of priors. We ran additional retrievals using a spline temperature profile,
as a proxy for our model not truly matching the underlying data. With 5 spline
nodes, we were able to retrieve the log g, Rpl, Tint and the water mass fraction
to the same precision and accuracy as using the Guillot profile used to generate
the data, thus concluding that the retrievals are flexible enough to account for
some degree of imperfect model assumptions.

14.2. Impact of algorithm selection on retrievals

The largest variation in the extracted spectrum is due to the choice of post-
processing algorithm, so our first aim is to explore how these differences in the
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(a)

(b) (c)

Figure 14.2: Results of retrievals comparing each of the three data processing
algorithms. a: Posterior distributions for retrievals from each data processing
algorithm. Contours are plotted for 2DGaussian 1,2 and 3� levels, correspond-
ing to 36%, 86% and 99% confidence intervals, and the ground truth value is
marked in black. The text labels correspond to the KLIP retrieval. b: Median-fit
spectrum from retrievals on each algorithm, with the covariance (other than
for ANDROMEDA). c: P-T Profiles for each retrieval. The shaded region indicates
the 68% confidence region for the retrieved profile.
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data lead to differences in the inferred parameters. In Figure 14.2, we compare
the best fit results from each of the retrievals run on data processed using KLIP,
PynPoint and ANDROMEDA to the ground truth spectrum injected into the IFS
data. All three processing tools provide reasonable fits to the input spectrum,
and share trends in the shape of their residuals, though KLIP provides the
overall best reproduction of the input spectrum. The retrieved spectra tend
to fit the input better at higher flux values, where the S/N is greater. Figure
14.2a shows the posterior distributions of most parameters; regardless of the
retrievals setup the absolute uncertainties on all of the retrieved parameters
are large. This highlights the importance having high S/N inputs to obtain
precise constraints, as well as broad wavelength coverage to have sensitivity
to a wide range of parameters. Not included in the plot are Tequ, � and the
COmass fraction, none of which are constrained in any retrieval. For widely
separated planets, Tequ is small and has little impact on the shape of the pressure
temperature profile. As such, the Guillot profile is effectively reduced to the
Eddington term, which does not depend on �. Finally, there are no strong
CO features present in the wavelength range considered in the injected planets.
Thus we do not expect any of these parameters to impact the spectrum enough
to be constrained by this retrieval. We neglect these unconstrained parameters
when calculating the distance dM .

KLIP performs the best of the three algorithms; accurately fitting the spec-
trum and retrieving the input parameters, measured from the �2/ndata and dM

respectively, as presented in table 14.2. PynPoint performs somewhat worse
again, though the GPI data suffers from two outlying data points, and the
measured uncertainties are generally smaller than for the KLIP or ANDROMEDA
extractions. The physical interpretation of the PynPoint is significantly differ-
ent than that of KLIP or ANDROMEDA: the inferred mass from the median log g

and planet radius is more than a factor of 10 smaller when using the PynPoint
parameters. This highlights the need for feedback between modelling and
data analysis, as well as for comparison both between different data analyses
and different models. This strongly impacts the measurement of log g, which is
sensitive to the shape of the H-band. Finally ANDROMEDA fails to reprocuce the
input spectrum well, but recovers the input parameters more accurately than
PynPoint, though confidently excluding the true planet radius.

We find that for all of the retrieval setups, the median parameter values
provide a better estimation of the true input parameters than the single maxi-
mum likelihood fit. For KLIP, we find that the median internal temperature
estimate of 724 ± 260 K accurately, if imprecisely measure the true value of
750 K. However, the best fit value of 498 K is strongly biased from the true
value, as are the remaining parameters. We therefore continue using only the
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median parameter estimates, rather than the maximum likelihood fits.
The goodness-of-fit metrics provide a mechanism to select between the dif-

ferent retrievals. We find that all of themetrics favour the KLIP retrieval, though
noting that the reduced �2 for ANDROMEDA is smaller, but does not account for
the covariance. Based on the variation in the BIC and the Mahalabois distance,
the effect that the algorithm choice has on the retrieved parameters is significant.
Interpreting the Mahalabois distance as standard deviations from the truth,
ANDROMEDA and PynPoint are 2.3 and 3.3 standard deviations less accurate
than KLIP respectively. The trend of the BIC follows that of dM , favouring
KLIP, followed by Andromeda and then PynPoint. As the ground truth is not
generally known, this reinforces the use of the BIC or a similar metric (such as
the Bayes factor) as a robust metric for selecting between models, even when
the data is also varied.

None of the retrievals retrieve the true input pressure temperature profile
to within 1�, as is evident from Figure 14.2c. However, in the region where the
emission contribution is located, the retrieved PT profiles share a similar slope
to the true input, at slightly higher temperatures. Such discrepencies highlight
the importance of broad wavelength coverage in atmospheric retrievals, where
the spectrum can probe different pressure, and thus temperature, layers of the
atmosphere.

Effects of principal component optimisation

We also compare how the number of principal components used in the data
processing impacts the retrieval results. This effect is more apparent at lower
S/N so for this particular case we choose an injection at 400 mas, extracting
the spectra with KLIP. Figure 14.3 highlights the impact that the choice of
the number of PCs has on the precision of the posterior distributions. We
compared the optimal extraction (6PCs for GPI and 8 for SPHERE) to an
extraction using 25 PCs for each dataset. While both extractions retrieve the
input parameters with similar accuracy, the optimised extraction is significantly
more precise in its measurement of the planet radius.

14.3. Impacts of including the covariance in retrievals

While the choice of algorithm produces most of the difference in the spec-
tral shape, we also consider how including the covariance into the log-likelihood
calculation of the retrieval impacts the retrieved spectrum and inferred parame-
ters. To understand this, we compare a KLIP retrieval with and without the use
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Figure 14.3: Corner plot comparing the retrieved parameter distributions for
two different KLIP reductions. In light blue, the input spectrum was optimised
using the relative discrepancy metric (Figure 12.4), while in dark blue an arbi-
trary extractionwas chosen for each of the SPHERE andGPI datasets, reflecting
a non-optimal parameter selection.

of the covariance matrices, and how these results compare to the Gaussian and
noise-free cases.

The right panel of Figure 14.1 shows each of these datasets compared to
the true input model, while Figure 14.4 shows the posterior distributions, best
fits and PT profiles. We find that our retrievals reproduce the results of Greco
& Brandt (2016): incorporating the covariance matrix improves the accuracy
of the retrieval, at the cost of lower precision. Including the covariance matrix
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(a)

(b) (c)

Figure 14.4: Results of retrievals using KLIP, comparing each the cases of com-
puting the likelihood using the full covariance matrix (blue), the diagonal ele-
ments only (yellow) and using truly Gaussian scattered data (red). a Posterior
distributions for retrievals from KLIP. Contours are plotted for 2DGaussian
1,2 and 3� levels, corresponding to 36%, 86% and 99% volume regions, and
the ground truth value is marked in black. The text labels correspond to the
retrieval including the covariance matrix. b: Median spectrum for the KLIP
retrieval with covariance, as well as for the Gaussian (yellow) and noise free cases
(green). c P-T Profiles for KLIP, Gaussian, and noise-free retrievals. The shaded
region indicates the 68% confidence region for the retrieved profile.
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Figure 14.5: Posterior distributions for retrievals in the ‘Noise-free’ case. The
nominal uncertainties are from diag( ~C) of the KLIP extraction, and were scaled
by factors from 0.1 to 10. The titles list the uncertainties for the 10x case.
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reduced the posterior bias for all parameters. However, the diag( ~C) case was
able tomore accurately retrieve the input PT profile, even though the parameter
distributions were more discrepant from the true input parameters.

Quantitatively, including the covariance improved the dM by 1 compared
to the diag( ~C), approaching the Gaussian measurement of 2.21. As in Section
12.4, the �2/ndata is underestimated. This is also reflected by the BIC, which
favours the inclusion of the covariance matrix over both the diag( ~C) case and
the Gaussian case. In the KLIP extraction of the GPI data, there is rather broad
covariance, which is easier to fit, as demonstrated by the toy model of 12.4.

Within the pressure range probed, all of the retrievalsmeasure similar slopes,
and correct temperatures to within 2�, with the noise-free and diag( ~C) cases
most accurately retrieveing the input profile. The correlation between atmo-
spheric parameters ofTint and IR in Figure 14.4a shows thedifficulty in inferring
atmospheric properties, and explains the inability of the retrievals to perfectly
infer the temperature structure. For the KLIP data, the inclusion of the covari-
ance matrix in the log-likelihood improves the accuracy of the constraint on
both parameters.

We repeated this experiment using the PynPoint extractions. Consistent
with the KLIP results, we find that including the covariance improves the accu-
racy of the retrieval, at a marginal cost to the precision of the retrieved parame-
ters.

14.4. Relation between measurement and posterior pre-
cision

With the nominal uncertainties, the noise-free case can reproduce the input
data to within 1� across the entire wavelength range. However, at the level of
precision of these measurements none of the retrievals are able to put strong
constraints on any of the measured parameters, though this would be improved
with more precise spectroscopic measurements. Using the noise-free case, we
explored how the measurement precision affects the posterior precision by
scaling the uncertainties by factors from 0.1 to 10, shown in Figure 14.5.

In all cases, the parameters are accurately retrieved, and the posterior pre-
cision increases as the uncertainties decrease. In the nominal case, the mean
S/N per channel is 5 in the SPHERE wavelength range and 3 in the GPI-H
band. With this precision and wavelength coverage, even in the optimistic case
of no scatter in the data the internal temperature can only be constrained to
within ±223K. This improves to ±26K if the S/N is improved by a factor of
10: while low S/N may be sufficient for accurate retrievals, high S/N is required
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Dataset �2/ndata logL log10Z BIC dM

KLIP,C 0.69 2692 1166 -5289 2.35

KLIP, diag(C) 0.41 2656 1149 -5218 3.29

Offset GPI 0.42 2657 1147 -5214 3.29

Offset SPH 0.36 2659 1148 -5218 3.40

Scale GPI 0.51 2666 1152 -5233 4.48

Scale SPH 0.56 2659 1149 -5218 3.93

Scale GPI Err. 1.07 2684 1158 -5268 4.52

Scale SPH Err. 0.70 2660 1150 -5220 4.73

Scale Both. 1.15 2684 1158 -5263 4.54

10b Both. 0.43 2567 1148 -5210 3.41

GPI Only,C 0.51 1320 571 -2596 0.62

SPHOnly,C 1.00 1373 593 -2698 2.75

Table 14.3: Summary statistics for KLIP retrievals, including retrieved param-
eters to account for systematic biases. log10Z is the Bayesian evidence, the
difference of which is the Bayes factor between two models. “Scale” indicates a
multiplicative factor applied to the specified dataset, while ”Offset” indicates
an additive term.

to precisely measure the physical parameters. This finding complements Figure
14.3, highlighting that the main impact of the principal component optimi-
sation is to improve the precision of the posterior distributions, as the choice
of PCs impacts the precision of the spectroscopic measurement. Our choice
of metrics are also validated, as the noise-free case is favoured by every metric
(when comparing to diagonal only cases).

14.5. Mitigation using nuisance parameters

One challenge to the interpretation is the suggestion of overfitting by the
reduced �2 values. A �2/ndata < 1 suggests overfitting, although it can also
be interpreted as overestimated uncertainties, or underestimated correlation
(which effectively translates into overestimated uncertainties as well). The
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retrievals both with and without covariance on the KLIP dataset both have
�2/ndata < 1. As the number of parameters is much lower than the number of
data points and is identical to the ground truth model, this suggests that the
uncertainty of the KLIP data is overestimated. In this section we explore the
use of various parameterisations to account for systematics in the data, such as
including offsets or scaling factors in the retrievals. As all of these comparisons
use the same data, and additional parameters are properly included in the prior
volume, we can now use the Bayes factor from Table 14.3 to quantitatively
select the best model. We refer to Table 2 of Benneke & Seager (2013) for our
interpretation of the Bayes factor: log�ZH2,H1 > 10 is strong evidence in
favour of model H2 over H1.

Beginning with offsets, we fix one dataset and allow the other dataset to
float, with a uniform prior of U(�10�14W/m2/µm, 10�14W/m2/µm). We
find that while allowing for offsets may marginally improve the fit to the data
(�2

SPH, o↵set/ndata<�2
KLIP, diag(C)/ndata), it does not improve the accuracy or pre-

cision of the posteriors (dM > dM,KLIP, diag(C)), and is not favoured by the Bayes
factor or BIC.

Next, we multiply one dataset and its corresponding uncertainties by a
scaling factor (U(0.5, 2.0)), fixing the remaining dataset. We find that a scaling
factor of 0.73±0.05 for theGPI dataset is somewhat favoured by the Bayes factor
(� log10Z = 3), though the posterior precision and accuracy is somewhat
reduced. Scaling the SPHERE data did not significantly improve the fit, and is
not favoured by the Bayes factor.

This result is emphasised when we scale only the uncertainties for each of
the datasets. We ran three retrievals: scaling the uncertainties of each dataset
and fixing the other, or scaling both datasets with independent scaling factors
simultaneously. To avoid hitting the prior boundaries, the scaling factor is given
a uniform prior ofU(0.05, 2.0). We find that a scaling factor of 0.28±0.04
is favoured (� log10Z = 9) for the GPI dataset in both retrievals where the
uncertainties are allowed to float, while allowing the SPHERE uncertainties to
float does not change the fit. This implies that the either the KLIP uncertainties
for the GPI dataset are underestimated, or that the correlation is not correctly
accounted for, as described in Section 12.4. Allowing the uncertainties to float
improves the fit compared to the retrieval using only the diagonal components
of the covariance matrix, but is still disfavoured compared to the retrieval using
the full matrix.

Line et al. (2015) introduces a different parameterisation to scale the uncer-
tainties and reduce overfitting. Using a parameter b, the uncertainty on the i

th

wavelength bin is inflated as:

s
2
i
= �2

i
+ 10b, (14.5)
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where �i is the uncertainty on that bin. This will only allow for an increase
in the size of the error bars, and allows us to account for model uncertainties
and missing physics, rolling the additional uncertainty into the marginalised
posterior parameter distributions. The prior range on b is set from -36 to -
26: this encompasses the suggested range from Line et al. (2015) such that
0.01 ⇥ min(�2) < 10b < 100 ⇥ max(�2). We retrieve b independently for
each dataset used in the retrieval. Using this formalism, we find that the b

parameterised retrieval is disfavoured compared to the KLIP retrievals, both
with and without the use of the covariance matrix. Likewise, the dM measured
for this case (3.41) suggests amarginal decrease in accuracy relative to the baseline
retrievals. This suggests that the extra parameters used to fit the b parameter are
not justified to help resolve the problem of overfitting of the spectrum. As this
formalism can only inflate the uncertainties, it is unsurprising that it cannot
correct for the overestimated GPI uncertainties as shown by the scaling factor
retrievals and the small reduced �2 values.

We conclude that scaling factors and offsets are inadequate for accounting
for systematic offsets in the data due to the data processing and correlated noise.
While allowing the uncertainties to float was marginally favoured by the Bayes
factor compared to the diag( ~C) KLIP retrieval, it was still strongly disfavoured
compared to the retrieval using the full covariance matrix. Alternative methods,
such as Gaussian process regression (Wang et al., 2021; Xuan et al., 2022) may
be able to overcome these limitations and allow for the characterisation of
systematics in a Bayesian framework.

14.6. Limitations

This work reflects many of the best practices used in both data analysis and
atmospheric retrievals, but remains an optimistic assessment of our ability to
infer both accurate and precise physical parameters. Additional sources of bias
are inevitably present in the data, such as the differences in spectra arising from
different reduction pipelines as shown in appendix 16.A and from the process
of building the 3D cubes from the 2D detector frames. Exoplanet data relies
heavily on precise photometry, yet the host star which is used as a calibration
source is obscured behind the coronagraph during the observations, making
temporal monitoring of the PSF challenging. Finally, we use the same model
for both injection and as the basis of the retrieval, ultimately ignoring many
key physical processes present in real exoplanets. Even with these limitations,
we remain optimistic about the prospects for retrievals to characterise directly
imaged exoplanets, particularly in the era of high precision, broad wavelength
spectroscopy as enabled by VLTI/GRAVITY, JWST, and the ELTs.
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Based on our comparison of high contrast imaging algorithms, it is clear
that systematic variations are a more significant contribution to uncertainty
than random errors for directly imaged exoplanet spectra. Such variations
often lead to spectral correlation of the data, and knowledge of the length scale
and strength of said correlation is crucial to accurate interpretation of of the
data. We used the methods of Greco & Brandt (2016) to compute covariance
matrices for IFS data, and demonstrated that correlations in the data can both
increase or decrease the posterior width of model parameters, depending on
whether the parameter is sensitive to wavelength scales greater or less than the
correlation scale. Using injection testing, we optimise our choice of algorithm
parameters. We find that using only the S/N as a metric to determine the
quality of spectral extraction does not produce optimal extractions. Instead,
data processing parameters should be tuned using injection testing, with careful
consideration of what goodness-of-fit metric should be used. Using the mean
relative discrepancy, we optimised the number of principal components used
in PSF subtraction in order to optimally extract the companion spectrum. Of
course the number of principal components used in PSF subtraction is not
the only source of systematic biases during spectral extraction: the precision
of the astrometric solution, choices in processing both the science frames and
the unsaturated PSF frames and the details of parameter choice all introduce
biases on a similar level to the number of principal components, and must be
independently optimised.

Each algorithm considered performed best under different conditions: the
contrast, separation, observing conditions and data volume all impact which
algorithmproduces the optimal extraction. Caremust be taken as the parameter
choices that lead to the most sensitivity in order to detect companions are often
different than the parameters required to robustly extract the spectrum in order
to characterise the planets. During independent comparisons such choices led to
statistically significant differences in both the shape and overall flux calibration
of the extracted spectra. Without a priori knowledge of the spectrum, it is
therefore necessary to compare multiple independent measurements in order
to determine the underlying spectral shape.

By performing atmospheric retrievals on data processed using different al-
gorithms we show that the variation between different data reductions is larger
than the statistical posterior uncertainty. Model choice is highly dependant on
data quality and quantity, and Bayesian comparisons should be performed to de-
termine whether model complexity is suitable given the data. The ideal solution
is to fully understand and correct for systematics during the data processing,
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with broad data coverage and high spectral resolution. When comparingmodels,
statistical tools such as the BIC or the Bayes factor should be used with care, and
only when the free parameters are fully incorporated into the retrieval process to
account for their impact on the prior volume and posterior distribution. In such
a Bayesian framework, we find that the median parameter values are accurate
measurements of the true input parameters, but that the maximum likelihood
values are often strongly biased. Even using the median values, the difference in
retrieved parameters from different data processing tools is significant, and can
lead to dramatically different astrophysical interpretations. Retrievals should be
performed on multiple data reductions to ensure that the retrieved parameters
are robust to such variation.

We used the Mahalanobis distance, dM to measure the distance between
the true input parameters and the posterior distributions. Using this metric,
we found that accounting for the covariance in the likelihood function of a
retrieval framework can help mitigate correlations in the data, but not entirely
resolve them. Compared to using only the diagonal terms using the full matrix
will reduce the bias in all parameters, at the cost of slightly decreased precision,
reproducing the results of Greco&Brandt (2016). When the data are correlated
including the covariance is necessary to make meaningful statistical statements
about models fitting the data. In all cases, including the full covariance matrix
leads to improved accuracy of the inferred planet parameters. When testing
the use of scaling factors and offsets to try to correct for these systematic biases
we found worse results than when relying on the covariance matrix. Thus we
recommend that the covariance matrix always be published along with IFS data
of exoplanets.

The systematic biases of the spectral extractions fundamentally limit the
accuracy with which we can understand exoplanet atmospheres, with effects
that can be much more significant than the statistical posterior precision. One
solution to the issues discussed in this work is to acquire higher quality data.
Nevertheless, it will remain important to measure the covariance and to under-
stand systematic effects imparted by data processing.

We would like to thank the anonymous referee for their insightful and detailed report, which substantially

improved the quality of this manuscript. In addition we’d like to thank Alice Zurlo and Alex Greenbaum
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species, pyMultiNest, Python, numpy, astropy, phot_utils, matplotlib, and scicomap.
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16. APPENDICES

16.A. SPHERE Data Reduction

We begin the process of extracting planetary spectra by applying a range
of pre-processing steps, hereafter referred to as the data reduction stage. Dark
frames, detector flats and IFS flats are subtracted from the data. The spectral
positions of each slice and the wavelengths are calibrated. Bad pixels and cross
talk are corrected, and the science frames are background subtracted. ND
filter transmission profiles are applied to stellar flux observations taken at the
beginning and end of the ADI sequence observations. To centre the science
frames, the satellite spots are used where available. If available, satellite spots
are used to calibrate the wavelength centre of each channel. These frames have
anamorphism corrected and are shifted to a common centre, and are output as
a set of files with dimensions of (x, y, �).

For SPHERE data, we compare the results of using the standard SPHERE
Data Center pipeline for the reduction to that of Vigan (2020). Recent updates
to the pipeline have shown discrepancies in the wavelength solution for YJH
data, however as this is only applicable to data taken in the satellite spot mode.
Lacking satellite spots, we instead rely on the standard ESOwavelength solution,
and remain unaffected by the changes.

As it is challenging to inject fake companions into the raw detector frames
for an IFS, we instead use the extracted spectrum of HR 8799 e for our compar-
ison. The raw frames were processed using both pipelines, and post-processed
using KLIP in order to extract the planetary spectrum.

Figure 16.1 shows the results of this extraction. While qualitatively similar,
the wavelength solutions are different between the pipelines, and both the
location and amplitudeof the 1.3µmfeature disagree. Finally, there is significant
discrepancy between the shapes of the spectra in the H band. Without a clear
metric for selecting a reduction pipeline, we choose to use the most up-to-
date implementation of Vigan (2020) due to its ease of use and Python-based
interface.
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Figure 16.1: For the SPHERE data we compare the standard SPHEREData
Center data reduction (red) to the VLT-SPHERE pipeline described in Vigan
(2020) (blue). As planets cannot be injected into the raw data, we compare the
spectrum of HR 8799 e as extracted with KLIP, where each measurement in
the figure represents a different number of principal components used in the
spectra extraction.
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“Finally, let us have our imagination represent a wonderfully strange object
such as a burning sun as if it were from up close. In one glance we broad
lakes of fire lifting their flames up to the sky, raging storms whose fury
redoubles the violence of the former, dense vapours that choke the fire and,
raised by the force of the winds, constitute dark clouds which in turn crash
down in fiery showers of rain.”

Immanuel Kant, 1755

FOUR-OF-A-KIND? SYSTEMATIC
CHARACTERISATION OF THE

HR8799 PLANETS WITH
VLTI/GRAVITY



Abstract

With four companions at separations from16 to 71 au,HR8799 is a unique
target for direct imaging, presenting an opportunity for a comparative study of
exoplanets with a shared formation history. Combining new VLTI/GRAVITY
observations obtained within the ExoGRAVITY program with archival data,
we performed a systematic atmospheric characterisation across all four planets.
We explored different levels of model flexibility to understand the temperature
structure, chemistry, and clouds of each planet using both petitRADTRANS
atmospheric retrievals and fits to self-consistent radiative–convective equilib-
riummodels. Using Bayesian model averaging to combine multiple retrievals (a
total of 89 across all four planets), we find that the HR 8799 planets are highly
enriched in metals, with [M/H]&1, and have stellar to superstellar atmospheric
C/O ratios. The C/O ratio increases with increasing separation from 0.55+0.12

�0.10
for d to 0.78+0.03

�0.04 for b, with the exception of the innermost planet, which has
a C/O ratio of 0.87 ± 0.03. Such high metallicities are unexpected for these
massive planets, and challenge planet-formationmodels. By retrieving a quench
pressure and using a disequilibrium chemistry model, we derive vertical mix-
ing strengths compatible with predictions for high-metallicity, self-luminous
atmospheres. Bayesian evidence comparisons strongly favour the presence of
HCN in HR 8799 c and e, as well as CH4 in HR 8799 c, with detections at
> 5� confidence. All of the planets are cloudy, with no evidence of patchiness.
The clouds of c, d, and e are best fit by silicate clouds lying above a deep iron
cloud layer, while the clouds of the cooler HR 8799 b are more likely composed
of Na2S. With well-defined atmospheric properties, future exploration of this
system is well positioned to unveil further details of these planets, extending our
understanding of the composition, structure, and formation history of these
siblings.
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17. INTRODUCTION

Directly imaged exoplanets provide an ideal laboratory for understand-
ing the formation and evolution of planetary systems. These young systems
provide unique insight into widely separated companions (& 10 au): by di-
rectly measuring their emission spectra, we can peer into regions of their atmo-
spheres inaccessible through other techniques. While spectroscopically similar
to their brown dwarf cousins, these young, low-surface-gravity exoplanets dis-
play unique spectral shapes and colours (Faherty, 2018), indicative of differences
in their chemistry, clouds, and formation history (Marley et al., 2010, 2012;
Charnay et al., 2018).

The HR 8799 system is a benchmark target for directly imaged exoplanets,
containing four planets (Marois et al., 2008, 2010), an inner debris disc (Boc-
caletti et al., 2023), and an outer Kuiper-belt-like disc (Su et al., 2009). This is
among the best-studied systems of exoplanets, with a wide range of photometric
and spectroscopic data. The spectroscopic data cover the near-infrared region
(1–4 µm) at varying spectral resolution, while the photometric data extend out
to 15 µm with the recent addition of JWST/MIRI observations (Boccaletti
et al., 2023). Most of these studies, together with extensive modelling work,
have tried to answer the following main questions:

1. How did the HR 8799 system form?

2. What are the dynamics of the system? Is it stable, and how do the planets
and disc interact?

3. What are the atmospheres of each planet made of, and how have they
evolved through time?

In the present work, we attempt to directly answer question (3), which has
implications for question (1). Using Bayesian atmospheric retrievals (e.g. Mad-
husudhan, 2019) as well as fits to 1D self-consistent models, we infer the atmo-
spheric properties of each of the four planets. To date, the only comprehensive
retrieval study of all four of the HR 8799 planets was by Lavie et al. (2017).
New, high-precision K-band spectra obtained with the VLTI/GRAVITY as
part of the ExoGRAVITY program (Gravity Collaboration et al., 2019; Lacour
et al., 2020), together with updated atmospheric models and opacity databases,
provide motivation and the means to perform a systematic reanalysis of this
system.

With effective temperatures in the range of 1000–1400 K, the HR 8799
planets sit in the middle of the L/T transition (Kirkpatrick et al., 1999). This
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spectral transition is marked by changes in chemistry between L- and T-type
objects, fromCO-dominated carbon chemistry in the hotter objects tomethane
chemistry as the temperature falls below ⇠1300 K. While this transition is well
established for brown dwarfs, detections of CH4 in exoplanets remain elusive:
there have been tentative detections in the atmosphere of HR 8799 b (Barman
et al., 2015; Ruffio et al., 2021), but the only convincing detections have come
from JWST observations of cool, transiting exoplanets (Bell et al., 2023; Mad-
husudhan et al., 2023) and the coldest directly imaged exoplanets, such as 51
Eridani b (Brown-Sevilla et al., 2023; Whiteford et al., 2023). This ‘missing
methane’ is thought to be driven by convective upwelling in the atmospheres,
dredging material from deeper, hotter regions of the atmosphere where CO
is more favoured by equilibrium chemistry (Fegley & Lodders, 1996). Precise
constraints on the abundance of both CO and CH4 would allow better con-
straints on this vertical mixing, which is typically parameterised by the vertical
diffusion coefficient Kzz.

The sharp change in colour in the L/T transition is thought to be caused by
the sinking of silicate clouds through the atmosphere, as the cloud base shifts
deeper as the effective temperature decreases (Burrows & Sharp, 1999). Once
the cloud base sinks below the photosphere, the impact of the cloud opacity
is increasingly removed from the spectrum, causing the blueward shift charac-
teristic of T dwarfs as the effective temperature falls below 1300 K. Following
the mid-infrared observations with Spitzer/IRS (Cushing et al., 2006, 2008),
Suárez &Metchev (2022) identified a trend in the silicate absorption feature at
9 µm as a function of temperature. The strength of this absorption feature was
found to correlate positively with the near-infrared colour for L dwarfs, which
is often used as a proxy for cloudiness. The HR 8799 planets lie comfortably
below the temperature at which silicate clouds are expected to occur entirely
below the photosphere, yet their red colour and near-infrared spectral shape are
thought to be clear hallmarks of thick silicate cloud coverage (Mollière et al.,
2020). However, Line et al. (2015) and Suárez&Metchev (2023) find that these
clouds are not only sensitive to temperature, but also to surface gravity, which
plays a role in determining the size and therefore settling speed of the aerosol
particles. As young, giant exoplanets still retain significant heat from formation,
their atmospheres remain inflated due to low surface gravity, which will in turn
result in cloud properties that are unique to this class of object; observations of
VHS 1256 b (Miles et al., 2023) remain the only spectroscopic observations of
a silicate feature in a directly imaged planet. Burningham et al. (2021) and Vos
et al. (2023) use atmospheric retrievals to identify the detailed structure and
composition of the clouds, providing for the first time evidence to support the
use of particular cloud compositions in these substellar atmospheres.
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The mechanism through which four super-Jupiter planets can form in a
single system is unclear. The presence of both an inner and an outer debris disc
implies that the planets formed within a circumstellar disc; that is to say they
did not form like stars. However, it is still unclear whether these objects formed
through gravitational instability (GI) (Bodenheimer, 1974; Adams et al., 1989)
or via core accretion (Pollack et al., 1996). Evolutionary models (Saumon &
Marley, 2008) suggest that the current temperatures of the planets suggests hot-
start boundary conditions for their evolution, which is more typically associated
with GI (but also see Mordasini et al., 2017). GI models, such as that of Helled
& Bodenheimer (2010), find that the amount of heavy elements accreted by the
planets should be small, implying nearly stellar compositions for all four planets.
Likewise, current composition estimates suggest that the planets share a C/O
ratio with their host star (Hoch et al., 2023), but may be slightly enriched in
metals, leading to tension with the predictions of the GI models.

In addition to understanding the formation mechanism, Mollière et al.
(2022) present a framework through which we can infer the conditions of the
formation environment from measured atmospheric parameters. However,
these authors, and many others (e.g. Eistrup et al., 2018; Cridland et al., 2019,
2020; Turrini et al., 2021; Pacetti et al., 2022), demonstrate that this is not
a straightforward task. The Öberg et al. (2011) model links the planet C/O
ratio to the location of formation relative to snow lines in the disc. This model
provides a simplified view through which we can understand the impact of
disc conditions on the outcomes of planet formation, but the complex and
time-evolving physics and chemistry of discs and forming planets make solving
the inverse problem challenging. Nevertheless, the best hope for linking the
atmospheric properties back to the protoplanetary disc is to infer robust atmo-
spheric elemental abundances and link these to interior models to determine
the bulk planetary composition (Guillot, 2005; Fortney et al., 2011), thereby de-
termining what disc conditions could lead to the diversity of planet-formation
outcomes.

While new data and modelling techniques are beneficial, interpreting such
model–data comparisons for exoplanet spectra is far from trivial. Multiple
techniques must be studied simultaneously to paint a consistent portrait of
these worlds. Biases in inferred planet parameters are a common challenge in
direct-imaging analyses: fits to emission spectra often find unphysically small
radii that are inconsistent with evolutionary tracks (Marley et al., 2012). Re-
trievals using free molecular abundances tend to find higher C/O ratios than
when disequilibrium chemistry models are considered (Lavie et al., 2017; Wang
et al., 2020a), possibly due to additional oxygen sequestered in refractory clouds
(Fonte et al., 2023). The inferred effective temperatures (Te↵) of each planet
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can vary by hundreds of kelvin, within a region of parameter space where the
chemical timescales can vary by orders of magnitude over tens of kelvin (Zahnle
&Marley, 2014). Complicating matters further are the known discrepancies
between spectral measurements (such as between SPHERE and GPI in the H-
band; see Mollière et al., 2020), leading to uncertainties in both the shape and
overall flux calibration of the spectra that are not reflected in the formal uncer-
tainties. Attempting to address this problem, Nixon et al. (2023) demonstrate
the use of Bayesian model averaging (BMA), which can be used to combine
the posterior distributions of multiple models, allowing some degree of model
uncertainty to be formally incorporated into the inferred parameter uncertain-
ties. Finally, Greco & Brandt (2016) and Nasedkin et al. (2023) demonstrate
the importance of properly accounting for the covariance in low-resolution IFS
data— a thorough treatment of IFS data is necessary to ensure meaningful and
unbiased posterior probability distributions.

Manyof thequestions of chemistry and formationwill be addressed through
the use of the various instruments aboard JWST. This telescope will open new
observational windows, extending out to the mid-infrared, and allow new char-
acterisation methods, such as molecular mapping of the system (Patapis et al.,
2022). Simultaneous measurements of CO and CH4 features between 3 and
5µm will allow constraints to be placed on the vertical mixing in the atmo-
sphere, and more precise estimates of the C/O and metallicity. Nevertheless,
ground-based observations remain crucial: the innermost companion will re-
main challenging to measure spectroscopically without a coronagraph; across
most of its spectra, HR 8799 e is below the 2 ⇥ 10�5 contrast threshold at 300
mas obtained in Ruffio et al. (2023).

The present study provides a comprehensive examination of the atmo-
spheres of the HR 8799 companions, making use of new, high-S/N observa-
tions obtained with VLTI/GRAVITY, together with a combination of retrieval
methods and self-consistent modelling. We present further context and back-
ground information on the HR 8799 system in Section 18. The data used in
this work are described in Section 19, while the details of the petitRADTRANS
(pRT) forward model are described in Section 20, with the self-consistent mod-
els introduced in Section 20.7. The results of the atmospheric retrievals and
self-consistent grid fits are presented in Section 21. We discuss the limitations
of this study, additional work to validate our results, and the implications of
our findings in Section 22. The appendices contain details of the data and data
analysis (24.A, 24.B), model validation (24.C), implementation details (24.D),
and tables of the complete set of retrieval results (24.E).
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18. THE PLANETARY SYSTEM OF HR 8799

While HR 8799 is one of the most well studied exoplanetary systems (as
seen in Figure 18.1), there remains significant disagreement in the literature
both with respect to the spectroscopic measurements and the inferred planet
properties. In general, these super Jupiters all host very cloudy atmospheres,
with significant impacts of disequilibrium chemistry. The spectra of these
planets show characteristics of low surface gravity and have been classified at the
L/T transition, though the variability typical of these objects has not yet been
observed in the companions. The composition of the companions is generally
found to be moderately enriched compared to the host star, and while H2O
and CO are the dominant absorbers, the C/O ratio estimates vary significantly
between models. The measurements of the bulk planet properties discussed in

Figure 18.1: HR 8799 planets as imaged in the H-band with the Gemini/GPI
IFU, originally published in Greenbaum et al. (2018). The IFU cube was
processed using KLIP, and the image is mean combined along the spectral axis.
HR 8799 b is outside the field of view of GPI.
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this section, together with the results of this work are compiled in Tables 18.1,
18.2, 18.3, and 18.4 for planets b, c, d, and e respectively.

18.1. HR 8799 A: The host star

HR 8799 A is an A5V (Gehren, 1977; Cannon & Pickering, 1993) to
F0+VkA5mA5 (Gray et al., 2003b) type star, host to four detected planets and
an inner and outer debris disc (Su et al., 2009). It was one of the first identified �
Doradas pulsators (Kaye et al., 1999; Zerbi et al., 1999), and has been classified as
a � Boötis star (Sadakane, 2006; Moya et al., 2010) due to its depletion of heavy
elements in the atmosphere. Due to this depletion, the [Fe/H] of HR 8799 A is
measured to be subsolar, with measurements ranging from�0.47± 0.10 (Gray
& Kaye, 1999; Sadakane, 2006) to between �0.32 ± 0.1 and �0.12 ± 0.1, de-
pending on the inclination angle (Moya et al., 2010). TESS photometry allowed
the measurement of this inclination angle, finding a core rotation period of
⇡0.7 days, which combined with v sin i and stellar radius measurements would
result in a preliminary stellar inclination of ⇡28° (Sepulveda et al., 2023), and
would favour the higher metallicity case presented byMoya et al. (2010). Using
high resolution spectroscopy from the LBT/PEPSI and HARPS instruments,
Wang et al. (2020a) found a very subsolar iron metallicity of �0.52 ± 0.08, but
found the relative carbon (C/H= 0.11±0.12) and oxygen (O/H= 0.12±0.14)
abundances to be consistent with solar as is characteristic of � Boötis stars. The
derived C/O ratio from their measurements was 0.54+0.12

�0.09. For this work, we
use a BT-Nextgen stellar model as fitted in Nasedkin et al. (2023) with best-
fit parameters of Te↵= 7200 K, log g = 3.0, and [Fe/H] = 0.0, slightly cooler
than the models used in previous studies (Zurlo et al., 2016; Greenbaum et al.,
2018). However, this temperature is in line with Sepulveda & Bowler (2022),
though based on their dynamical mass estimate of the host star and the radius
measurement of Baines et al. (2012) they find a higher surface gravity of 4.28.

Most indicators place the HR 8799 system between 25 and 60Myr in age.
Using the debris disc as evidence, Zuckerman & Song (2004) and Rhee et al.
(2007) estimate an age of 30 Myr. Zuckerman et al. (2011) identified HR 8799
as ‘a likely member of the ⇠30Myr old Columba Association’, thus providing
an age and an association of stars with a shared formation history to which we
can compare HR 8799 and its companions. However, using asteroseismology
Moya et al. (2010) found that an age of ⇠1 Gyr or greater is also compatible
with their measurements. While we continue to use the standard ⇠30Myr age
for the system, we acknowledge that there remains some uncertainty in the age
and activity of the host star.
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Table 18.1: Summary of literature and derived planet properties for HR 8799 b.

Ref. Clouds M log g Teff R [M/H] C/O log Lbol/L�h
MJup

i
[cgs] [K]

h
RJup

i

B11a Slab 0.1�3.3 3.5 ± 0.5 1100 ± 100 0.63 � 0.92 … … �5.1 ± 0.1

C11 Thick 5�15 4 � 4.5 800 � 1000 … … … …

G11 Slab 1.8 4 1100 0.69 … … …

M11 Power law 2�12 3.5 � 4.3 750 � 850 … … … …

M12 AM01 26 4.75 1000 1.11 0 … �4.95 ± 0.06

L13 Slab 16+5
�4 5.0+0.1

�0.2 900+30
�60 0.66+0.07

�0.04 … 0.96 �5.1 ± 0.1

B15 Slab … 3.5 1000 … … 0.55 � 0.7 …

B16 ER4 … 3.4 � 3.8 1100 � 1200 0.6 � 0.7 0.5 … …

L17 Mie … 4 ± 0.1 a320 ± 20 1.08 ± 0.02 … 0.92±0.01 …

W21b BT-Settl … 4.8+0.4
�0.8 1423.3+212.6

�278.4 … … … …

R21c Slab … 3.1+0.03
�0.03 1180+14

�14 … 0 0.578+0.004
�0.005 …

Best A \ B
d AM01 6.0+0.3

�0.3 4.10+0.03
�0.04 942+12

�13 1.11+0.03
�0.03 0.96+0.08

�0.08 0.78+0.03
�0.04 �5.08+0.04

�0.04

BMA A \ B
e AM01 6.0+0.4

�0.3 4.10+0.03
�0.04 942+12

�15 1.10+0.03
�0.03 0.96+0.08

�0.08 0.78+0.03
�0.04 �5.08+0.04

�0.04

A \ B
f AM01 6.0+0.3

�0.3 4.10+0.06
�0.06 936+22

�34 1.11+0.08
�0.08 1.1+0.1

�0.2 0.73+0.04
�0.04 �5.08+0.06

�0.06

Grids Various 4.6 � 6.0 3.5 � 4.5 850 � 1100 0.73 � 1.2 > 0.7 0.3 � 0.55 �5.14 to �5.28

Notes on clouds: both the ‘Thick’ and ‘Slab’ clouds are based on Burrows et al. (2006), and are vertically
extended throughout the atmosphere above a base pressure, with a decaying mass fraction, though the slab
clouds account for a greater range of aerosol opacities. The ‘Power law’ clouds parameterise the vertical
extent and position using a power law, and fix the base pressure to the location at 2300 K. ‘AM01’ clouds
balance the cloud sedimentation and vertical mixing to determine the particle size, and use the sedimentation
fraction to determine the vertical extent. ‘ER4’ is the Exo-Rem4model from Bonnefoy et al. (2016). ‘Mie’
clouds do not use physical optical constants, but directly fit for mie scattering parameters. The ‘BT-Settl’
cloud model is based on radiation hydrodynamical simulations that solve for the diffusion and mixing of
aerosol particles (Allard et al., 2012).
References: B11a: Barman et al. (2011); C11: Currie et al. (2011); G11: Galicher et al. (2011); M11:
Madhusudhan et al. (2011); M12: Marley et al. (2012); L13: Lee et al. (2013); B15: Barman et al. (2015);
B16: Bonnefoy et al. (2016); L17: Lavie et al. (2017); W21: Wang et al. (2021); R21: Ruffio et al. (2021).
a Only Tint, a model parameter, is reported.
b W21 used high resolution spectroscopy, and did not infer masses or radii, using masses of 7.2 ± 0.7MJup
for the inner three planets and 5.8 ± 0.5 MJup for HR 8799 b. A radius of 1.2 ± 0.1 RJup was used for all
planets.
c R21 uncertainties were limited by the coarseness and boundaries of their model grid.
d Single best retrieval parameters.
e Bayesian model averaged parameters from group A \ B.
f Unweighted average parameters from group A \ B.

18.2. Photometric studies

The HR 8799 system has been the subject of extensive photometric char-
acterisation, from the red-optical out to the mid-infrared with JWST/MIRI.
The outer three companions were originally detected in Marois et al. (2008),
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with HR 8799 e following inMarois et al. (2010). Many photometric studies
(e.g. Lafrenière et al., 2009; Fukagawa et al., 2009; Metchev et al., 2009; Currie
et al., 2011; Bergfors et al., 2011; Galicher et al., 2011; Soummer et al., 2011;
Skemer et al., 2012; Currie et al., 2012; Esposito et al., 2013; Skemer et al., 2014;
Currie et al., 2014; Maire et al., 2015; Rajan et al., 2015; Petit dit de la Roche
et al., 2019; Biller et al., 2021; Boccaletti et al., 2023) have identified the com-
panions as L/T transition objects, with near-infrared colours compatible with
more extended clouds than L-dwarfs of similar temperatures. This is generally
explained as a result of the young age and low surface gravity, where the lower
gravity allows the condensate particles to remain aloft above the photosphere at
lower temperatures. Even in the earliest studies, disequilibrium chemistry was
used as an explanation for the drop in the continuumflux due toCOabsorption
at 4 µm (Currie et al., 2011; Janson et al., 2010).

In addition to the four known companions there have been many searches
for a fifth companion, interior to HR 8799 e. Thompson et al. (2023) used
long time baseline astrometry and deep L’ imaging with Keck/NIRC2 to search
for this hypothesised companion, finding that an additional companion fits
both the astrometry and photometry better than a four planet solution, but
does not result in a significant detection. For now, we only examine the four
confirmed companions further.

Bonnefoy et al. (2016) explores the implications of the near-infrared pho-
tometry for all four of the companions, comparing them to spectrally similar
field objects from the SpeX PRISM library. Empirically, the HR 8799 planets
are much more red in colour than field dwarfs of similar spectral type. They
also show that using the dereddening coefficients for corundum (Al2O3), iron
(Fe), enstatite (MgSiO3), and forsterite (Mg2SiO4) fromMarocco et al. (2014),
the colours of the companions more closely match those of field dwarfs. How-
ever, they cannot quantitatively distinguish the chemical composition of the
clouds, which requires mid-infrared spectroscopic observations of condensate
absorption features (Burningham et al., 2021; Miles et al., 2023).

Marley et al. (2012) and Bonnefoy et al. (2016) use estimates of the sur-
face gravity and radius from spectroscopic fits to constrain the overall mass
and luminosity of the planets, which they in turn compared to planetary evo-
lution models, such as those of Baraffe et al. (2003) and Saumon & Marley
(2008). With self-consistent, radiative equilibriummodels, the planet radius is
often difficult to fit, with the radius underestimated by over 30% compared to
expectations from the evolutionary models (e.g. Bonnefoy et al. 2016).
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Table 18.2: Summary of literature and derived planet properties for HR 8799 c

Ref. Clouds M log g Teff R [M/H] C/O log Lbol/L�h
MJup

i
[cgs] [K]

h
RJup

i

C11 Thick 7�17.5 4 � 4.5 1000 � 1200 … 0 … �4.7 ± 0.1

G11 Slab 1.1 3.5 1200 0.97 … … �4.7 ± 0.1

M11 Power law 3 � 11 4.0 � 4.3 950 � 1025 … … … �4.7 ± 0.1

M12 AM01 8 � 11 4.1 ± 0.1 950 ± 60 1.32 � 1.39 0 … �4.90 ± 0.1

K13 … 3 � 7 3.5 � 4.0 1100 ± 100 1 � 1.5 … 0.65 ± 0.1 …

B16 ER4 … 3.8 � 3.9 1200 1.0 0.5 … …

L17 Mie … 4.5 ± 0.1 a960 ± 20 1.25 ± 0.02 … 0.55±0.01 …

G18 Various … 3.5 � 4.0 1100 � 1350 0.7 � 1.2 … … �4.58 to �4.82

W20 Deck … 3.97+0.03
�0.03 1054+7

�5 1.47 ± 0.02 … 0.58+0.06
�0.06 �4.59 ± 0.004

W20b Deck … 3.95+0.04
�0.12 1102 ± 2 1.20 … 0.39+0.06

�0.06 �4.69 ± 0.0002

W21c BT-Settl … 5.4+0.1
�0.2 1474.4+24.4

�36.3 … … … …

R21d Slab … 3.63+0.03
�0.02 1200+⇤�14 … 0 0.562+0.004

�0.005 …

W23 AM01 … 4.17+0.41
�0.47

e1421+92
�72 1.01+0.09

�0.08
f 0.51+0.40

�0.43 0.67+0.12
�0.15 …

Best A \ B AM01 8.5+0.4
�0.4 4.26+0.02

�0.03 1158+11
�12 1.10+0.01

�0.01 1.27+0.06
�0.06 0.66+0.01

�0.01 �4.71+0.02
�0.02

BMA A \ B AM01 8.5+0.4
�0.5 4.26+0.02

�0.03 1159+11
�12 1.10+0.01

�0.01 1.27+0.05
�0.06 0.66+0.01

�0.01 �4.71+0.02
�0.02

A \ B AM01 8.6+0.4
�0.4 4.25+0.04

�0.14 1159+24
�76 1.10+0.23

�0.03 1.2+0.1
�0.1 0.63+0.05

�0.02 �4.70+0.03
�0.03

Grids Various 1.24�10.3 3.5�4.5 1100�1200 0.8 � 1.31 > 1.0 0.3 � 0.8 �4.65 to �4.72

References: C11: Currie et al. (2011); G11: Galicher et al. (2011); M11: Madhusudhan et al. (2011); M12:
Marley et al. (2012); L13: Lee et al. (2013); K13: Konopacky et al. (2013); B16: Bonnefoy et al. (2016); L17:
Lavie et al. (2017); G18: Greenbaum et al. (2018); W20: Wang et al. (2020a); W21: Wang et al. (2021); R21:
Ruffio et al. (2021); W23:Wang et al. (2023).
a Only Tint, a model parameter, is reported.
b W20 compared using strong and weak radius priors to enforce physicality.
c W21 used high resolution spectroscopy, and did not infer masses or radii, using masses of 7.2 ± 0.7MJup
for the inner three planets and 5.8 ± 0.5 MJup for HR 8799 b. A radius of 1.2 ± 0.1 RJup was used for all
planets.
d R21 uncertainties were limited by the coarseness and boundaries of their model grid.
e W23 report the temperature at 3.3 bar rather than the effective temperature.
f The metallicity of W23 was found by averaging the retrieved C/H and O/H ratios.

18.2.1. Variability

Young brown dwarfs are known to be highly variable (Radigan et al., 2014;
Vos et al., 2019, 2023). L/T transition objects display stronger photometric
variability – up to 30% – , though this amplitude is rare outside of the transition
regime (Radigan, 2014). However, as we view the HR 8799 system nearly pole
on, it is difficult to see the effects of rotational variation, in addition to the
technical challenges of observing variability with high-contrast imaging instru-
ments. Apai et al. (2016) and Biller et al. (2021) have placed upper limits on the
photometric variability of the two outermost HR 8799 planets: 10% for b and
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25% for c. Wang et al. (2022) used the Subaru/CHARIS instrument to attempt
to monitor H-band variability in HR 8799 c and d, placing upper limits of 10%
and 30% respectively. The atmospheric turbulence, stellar contamination, and
significant post-processing required to measure the innermost companion has
so far prevented measurements of variability for HR 8799 e.

18.2.2. Orbital dynamics

Within the context of directly imaged exoplanets, theHR8799 companions
orbit relatively near to their host star, from a projected separation of 16 au
for e out to 71 au for b. Astrometric monitoring has allowed for the precise
characterisation of the orbits of the companions, demonstrated in such studies
as Wang et al. (2018b); Brandt et al. (2021) and Thompson et al. (2023). Using
such orbital fitting techniques, Zurlo et al. (2022) inferred dynamical masses
for each of the companions. While they explore a range of models, we use
the fit assuming the planets are in a near-resonant 8:4:2:1 configuration and a
host star mass of 1.47 M�. This model produced results typical of the range
of models explored; the mass estimates for each companion are: e = 7.6 ± 0.9
MJup, d = 9.2 ± 0.1 MJup, c = 7.7 ± 0.7 MJup, and b = 5.8 ± 0.4 MJup. These
dynamical mass estimates, as well as those of Brandt et al. (2021), are broadly
consistent with mass estimates from evolutionary models, assuming hot start
conditions (Marley et al., 2012). Further astrometric analysis of the GRAVITY
data will be examined in a forthcoming paper from Chavez et al. (in prep).

18.3. Spectroscopic characterisation

In addition to the multitude of photometric observing campaigns, the spec-
troscopic characterisation of the HR 8799 planets has traced the development
of dedicated exoplanet instrumentation, from long-slit spectrographs (Janson
et al., 2010) to high-contrast integral field spectrographs (IFS) (Ingraham et al.,
2014; Zurlo et al., 2016) to fibre-fed high resolution spectrometers (Wang et al.,
2021). These observations cover a broad swath of wavelength ranges and spec-
tral resolving powers, leading to often conflicting photometric calibration and
inferred atmospheric parameters. In particular the H-band spectra as observed
with SPHERE (Zurlo et al., 2016), GPI (Greenbaum et al., 2018) andCHARIS
(Wang et al., 2022) display different flux peaks and different H-band shapes.
As several atmospheric parameters such as log g and the water abundance are
strongly impacted by the shape of this band, they have remained challenging to
measure.

Many results for individual planets have been presented in the literature.
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Table 18.3: Summary of literature and derived planet properties for HR 8799 d

Ref. Clouds M log g Teff R [M/H] C/O log Lbol/L�h
MJup

i
[cgs] [K]

h
RJup

i

C11 Thick 5�17.5 3.75 � 4.5 1000 � 1200 … 0 … �4.7 ± 0.1

G11 Slab 6 4.0 1100 1.25 … … …

M11 Power law 3 � 11 3.5 � 4.2 850 � 1000 … … … …

M12 AM01 8 � 11 4.1 ± 0.1 1000 ± 75 1.33 � 1.41 0 … �4.80 ± 0.09

B16 ER4 … 4.4 � 4.5 1200 � 1300 0.9 � 1.1 0.5 … …

L17 Mie … 4.2 ± 0.2 a1420 ± 10 0.96 ± 0.05 … 0 …

G18 Various … 3.5 � 4.0 1100 � 1600 0.65 � 1.4 … … �4.58 to �4.82

W21b BT-Settl … 5.1+0.3
�0.4 1558.8+50.9

�91.4 … … … …

R21c Slab 3.7+0.03
�0.03 1200+⇤�14 … … 0 0.551+0.004

�0.005 …

Best A \ B AM01 9.19+0.08
�0.07 4.18+0.04

�0.03 1177+21
�21 1.26+0.05

�0.06 1.2+0.2
�0.1 0.61+0.03

�0.04 �4.63+0.04
�0.04

BMA A \ B AM01 9.19+0.08
�0.07 4.18+0.06

�0.04 1179+31
�28 1.26+0.06

�0.08 1.2+0.2
�0.2 0.60+0.04

�0.06 �4.62+0.05
�0.04

A \ B AM01 9.20+0.09
�0.08 4.19+0.07

�0.04 1179+38
�36 1.25+0.06

�0.09 1.2+0.4
�0.3 0.55+0.12

�0.10 �4.61+0.05
�0.05

Grids Various 8.2�9.9 3.5�4.5 1200�1300 0.97�1.21 > 0.0 0.2 � 0.55 �4.59 to �4.65

References: C11: Currie et al. (2011); G11: Galicher et al. (2011); M11: Madhusudhan et al. (2011);
M12: Marley et al. (2012); B16: Bonnefoy et al. (2016); L17: Lavie et al. (2017); G18: Greenbaum et al.
(2018); W21: Wang et al. (2021); R21: Ruffio et al. (2021).
a Only Tint, a model parameter, is reported.
b W21 used high resolution spectroscopy, and did not infer masses or radii, using masses of 7.2± 0.7MJup
for the inner three planets and 5.8 ± 0.5MJup for HR 8799 b. A radius of 1.2 ± 0.1 RJup was used for all
planets.
c R21 uncertainties were limited by the coarseness and boundaries of their model grid.

HR 8799 b was first explored in Bowler et al. (2010) with Keck/OSIRIS, where
they identify an L5-T2 spectral type, moderate levels of cloudiness and potential
impacts of disequilibrium chemistry. Barman et al. (2011) added additional
H-band OSIRIS observations, and inferred the low temperature, low surface
gravity, and low CH4 abundance of HR 8799 b through the triangular shape
of the H-band feature. They also suggest that higher metallicity grids, up to
10⇥ solar, may be able to better fit the data and provide more plausible radii
than their solar metallicity models. This data was augmented with additional
wavelength coverage in the K band in Barman et al. (2015), where they claim
simultaneous detections of H2O, CO, and tentatively CH4. Oppenheimer
et al. (2013) obtained low resolution spectra for all four planets in the Y, J and
H bands using the Project 1640 instrumentation suite at the Palomar Hale
Telescopes, and thus providing the only additional measurement for HR 8799
b. However these spectra are very low S/N, and are significantly discrepant
from subsequent measurements.

Janson et al. (2010) were the first to spectroscopically explore HR 8799 c,
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using the VLT/NACOL-band spectrometer. While they were limited in the
available S/N, they still discussed the impact of disequilibrium chemistry on
the overall shape of the spectrum, finding that there was strong CO absorption
beyond 4 µm. These L-band observations were later succeeded by LBT/ALES
observations (Doelman et al., 2022; Liu et al., 2023), where low resolution
spectra at moderate S/N were obtained for the c, d, and e planets. Konopacky
et al. (2013) presented the first conclusive evidence of CO and water absorption
lines in a directly imaged exoplanet through K-band observations of HR 8799
c using Keck/OSIRIS, measuring the C/O ratio to be slightly above the stellar
value at 0.65+0.10

�0.05. The Gemini/GPI instrument provided the first spectra ob-
tained using a coronagraphic instrument in Ingraham et al. (2014), measuring
both the c and d planets in the H and K bands. This was followed up with
additional post-processing using KLIP (Soummer et al., 2012; Pueyo, 2016) in
Greenbaum et al. (2018), where HR 8799 e was also detected. All three of the
planets were found to best match mid-to-late L-type spectra, with HR 8799
c being most consistent with an L6 dwarf. Consistent with the photometric
models, they found HR 8799 c to have a temperature between 1100 K and
1300K, with a log g around 4.0. As with the photometry, the self-consistent
models they used to infer the planet properties struggled to obtain radius esti-
mates consistent with predictions of evolutionary models. Wang et al. (2021)
use high resolution spectroscopy to measure the rotation of c, d, and e, finding
an upper limit of 14 km/s for c, and measurements of 10.1+2.8

�2.7 km/s for d and
15.0+2.3

�2.6 km/s for e. Wang et al. (2023) combine several of these datasets and
perform a retrieval analysis to constrain the composition of HR 8799 c, finding
[C/H] = 0.55+0.36

�0.39, [O/H] = 0.47+0.31
�0.32, and C/O = 0.67+0.12

�0.15. These results
depended strongly on the details of the forward model used in the retrieval, and
the [C/H] parameter could vary from 0.55 to 0.95, while the [O/H] from 0.47
to 0.80, though they all represent significant enrichment compared to the host
star abundances. These results are also significantly discrepant from those of
Wang et al. (2020a), who found elemental abundance ratios for HR 8799 c of
[C/H] = 0.16+0.12

�0.13, [O/H] = 0.13+0.08
�0.08, and C/O = 0.58+0.06

�0.06, though they also
found that enforcing strong mass priors led to both the metallicities and C/O
ratio being subsolar. Ruffio et al. (2019); Ruffio et al. (2021) andWang et al.
(2021) explore HR 8799 c using moderate and high resolution spectroscopy
respectively. Both works characterise the dynamics of the planets, with Ruffio
et al. (2021) measuring the radial velocities for planets b, c, and d, finding them
to be �9.1 ± 0.4 km/s, �11.1 ± 0.4 km/s, and �11.6 ± 0.8 km/s respectively,
placing important constraints on the allowed orbits for the planets. They also
confirm the presence of water and CO, but are unable to significantly detect
CH4, which was consistent with the results of Wang et al. (2018a).
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Table 18.4: Summary of literature and derived planet properties for HR 8799 e

Ref. Clouds M log g Teff R [M/H] C/O log Lbol/L�h
MJup

i
[cgs] [K]

h
RJup

i

B16 ER4 … 3.7 � 4.1 1200 � 1300 0.9 � 1.0 0.5 … …

L17 Mie … 3.8 ± 0.3 a1230 ± 30 1.2 ± 0.1 … 0 …

G18 Various … 3.5 � 4.0 1100 � 1650 0.6 � 1.4 … … �4.58 � �4.75

M20 AM01 4.81+8.78
�3.33 4.00+0.46

�0.52 1154+49
�48 1.12+0.09

�0.09 0.48+0.25
�0.29 0.60+0.07

�0.08 …

W21b BT-Settl … 3.7+0.3
�0.1 1345.6+57.0

�53.3 … … … …

Best A\B AM01 7.5+0.6
�0.6 4.20+0.06

�0.06 1172+29
�27 1.14+0.05

�0.05 1.9+0.1
�0.1 0.88+0.02

�0.02 �4.71+0.05
�0.06

BMAA\B AM01 7.5+0.7
�0.7 4.20+0.06

�0.06 1161+33
�34 1.12+0.05

�0.05 1.9+0.1
�0.2 0.88+0.02

�0.02 �4.72+0.06
�0.06

A\B AM01 7.5+0.7
�0.7 4.3+0.1

�0.1 1198+41
�77 1.05+0.15

�0.08 1.8+0.3
�0.4 0.84+0.06

�0.07 �4.71+0.07
�0.08

Grids Various 1.07�8.8 3.5�4.5 1100�1400 0.75�1.24 > 1.0 > 0.55 �4.70 � �4.78

References: B16: Bonnefoy et al. (2016); L17: Lavie et al. (2017); G18: Greenbaum et al. (2018);
M20: Mollière et al. (2020); W21: Wang et al. (2021);
a Only Tint, a model parameter, is reported.
b W21 used high resolution spectroscopy, and did not infer masses or radii, using masses of 7.2 ± 0.7
MJup for the inner three planets and 5.8 ± 0.5MJup for HR 8799 b. A radius of 1.2 ± 0.1 RJup was used
for all planets.

The first reliable spectroscopic measurements of HR 8799 d and e were
published by Zurlo et al. (2016). These were obtained using the VLT/SPHERE
instrument, and were the first YJH band observations of the inner two planets,
and remain the highest quality observations in this band. Together with the
modelling work in Bonnefoy et al. (2016), they classify both planets as L6-L8
dusty dwarfs, and confirm that only thick cloudmodels based on the Exo-REM
self-consistent modelling code provide reasonable fits to the data, finding effec-
tive temperatures of 1200 K, log g in the range of 3.0-4.5, and metallicities of
0.5 for both planets. Compared to previous modelling work of Madhusudhan
et al. (2011) and Barman et al. (2011), the Exo-REMmodels provided better
fits to the data, due to improvements in the opacity databases, cloud treatments,
and the inclusion of disequilibrium chemistry. Subsequent SPHERE observa-
tions, such as those in Wahhaj et al. (2021) have maintained consistent spectral
shapes with these earlier observations. The Gravity Collaboration et al. (2019)
performed the first interferometric observations of an exoplanet, measuring
the K-band spectrum of HR 8799 e. HR 8799 e was detected as well, and they
performed atmospheric analyses on all three planets using the full spectra at
1–2.5 µm. They found that the spectrum of HR 8799 d has a substantially
different shape than the other two planets, but that all three shared supersolar
metallicities and effective temperatures around 1100 K.
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18.4. Retrieval studies

Atmospheric retrievals (e.g. Madhusudhan & Seager, 2009; Benneke &
Seager, 2012; Waldmann et al., 2015; Burningham et al., 2017; Mollière et al.,
2019) are widely used to solve the inverse atmosphere problem, inferring planet
properties such as the thermal structure, chemical composition, and cloud prop-
erties from spectroscopic observations. The HR 8799 planets are among the
first directly imaged planets to have retrieval methods applied to their spectra.
Lee et al. (2013) performed the first retrieval study of HR 8799 b, using the
spectrum published of Barman et al. (2011). This pilot study explored various
levels of cloudiness, particle sizes, and compositions, finding that the planet is
likely cloudy, with relatively large particle sizes (1.5µm) and a supersolar metal-
licity. They note the long-standing degeneracies between the cloud level and
the planet radius, making it difficult to distinguish between different levels of
cloudiness in themodels. The first systematic characterisation of all four planets
was performed in Lavie et al. (2017) using the HELIOS-Retrieval package,
with the key goal of constraining the composition of all four planets using the
data of Zurlo et al. (2016). After fitting formolecular abundances, they infer the
elemental C/H and O/H ratios for each planet, finding oxygen enrichment for
b, c, and e, and carbon enrichment for b and c. They find a strongly superstellar
C/O ratio for b of 0.9, a stellar value for c, but were unable to constrain the ratio
for the inner two planets. While previous works on HR 8799 e were limited
due to a lack of high S/N K-band data, Mollière et al. (2020) made use of the
GRAVITY spectrum obtained in Gravity Collaboration et al. (2019), together
with the SPHERE data of Zurlo et al. (2016) and the GPI data of Greenbaum
et al. (2018). Using the pRT retrieval framework and a novel temperature profile,
they inferred a highly cloudy atmosphere, implementing clouds with multiple
scattering. They infer modest enrichement of [M/H]=0.48+0.25

�0.29 and a C/O
ratio of 0.60+0.07

�0.08. Finally, Wang et al. (2020a) andWang et al. (2023) both per-
form pRT retrieval studies ofHR 8799 c. The latter study is unique in including
high resolution data in the retrieval framework, allowing precise measurements
of the elemental abundance ratios, finding modest enrichment of both carbon
and oxygen.

18.5. Self-consistent atmospheric modelling

Motivated by the considerable volume of observations, extensive theoretical
modelling work has been performed to better understand the physics of the at-
mospheres of the HR 8799 planets and similar substellar objects. Brown dwarf
atmospheres saw extensive 1Dmodelling efforts (e.g. Chabrier et al., 2000; Al-
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lard et al., 2001; Burrows et al., 2006; Saumon &Marley, 2008), driven largely
by the need to trace the evolution of these continuously cooling objects over
time. These studies demonstrated the necessity of accounting for silicate clouds
in the atmospheres of L/T dwarfs, used to explain the red colour of these objects
in the near infrared. Applied specifically to the young, low-gravity companions,
Madhusudhan et al. (2011) developed one of the first models specifically for the
HR 8799 companions to constrain their mass and age. They identify forsterite
and iron as being the important contributors to the clouds, and infer planetary
ages between 10 and 150Myr, consistent with stellar measurements. Marley
et al. (2012) provides a deep review of the state of modelling of the atmospheres
of the HR 8799 planets, further developing the model of Saumon &Marley
(2008). They find masses and ages for the planets consistent with the stellar
properties, and that the companions share approximately consistent properties
with L/T dwarfs of similar effective temperatures and surface gravities. Using
the cloud model of Ackerman &Marley (2001, hereafter AM01), they infer an
fsed parameter of 2, implying that the clouds are moderately extended through-
out the atmosphere. More recent self consistent models such as petitCODE
(Mollière et al., 2015), ATMO (Tremblin et al., 2015; Phillips et al., 2020; Petrus
et al., 2023), Exo-REM (Charnay et al., 2018), and Sonora (Marley et al. (2021);
Karalidi et al. (2021); Morley et al. in prep) have been developed specifically to
understand the thermal structure and clouds of directly imaged planets. There
remain degeneracies between reddening and damping of spectral features via
continuumopacity sources and through reductions in the temperature gradient,
hypothesised to be due to diabatic convection (Tremblin et al., 2019).

Zahnle &Marley (2014) provide an in-depth exploration of the impacts
of disequilibrium chemistry on cool, self-luminous atmospheres, providing
predictions for the CO, CH4, and NH3 abundances as a function of vertical
mixing and effective temperature, identifying the key transition between CH4
and CO dominated chemistry at around 1100 K. Moses et al. (2016) uses a
disequilibriummodel including photochemistry to predict the chemical com-
position for a range of surface gravities and effective temperatures, and provides
column abundance predictions for HR 8799 b, finding that the CO abundance
should dominate over CH4, assuming a solar composition. Soni & Acharyya
(2023) extend this to superstellar metallicities and vertical mixing strengths,
using the constraints on the CO and CH4 abundances from Barman et al.
(2015) to infer a vertical mixing strength of log Kzz 2 [7, 10] for the 10⇥ solar
metallicity case. To better understand the planet structure, Thorngren et al.
(2016) derive amass-metallicity relationship. As themass of the object increases,
the metallicity tends to decrease, consistent with predictions of core accretion
formation, as heavier objects accrete and retain more H2 and He relative to a
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lower mass object. From their relationship, they predict that a 6 MJup planet
should have a Zpl/Z⇤ ratio of between 3 to 5 (in a 68% confidence interval).

In addition to the 1Dmodelling efforts, global circulation models (GCMs)
of self-luminous, substellar objects, such as those of Showman & Kaspi (2013);
Tan & Showman (2021a,b) have been developed. These 3Dmodels allow for
the exploration of atmospheric dynamics, longitudinal variations, and time vari-
ability. Recent observations are beginning to validate these 3Dmodels: Suárez
et al. (2023) finds that brown dwarfs are cloudier when viewing the equator,
which is consistent with the cloudiness predictions of rapidly rotating brown
dwarfs in Tan & Showman (2021b). Likewise, the prediction of patchy clouds
in the photosphere region leading to variability (Showman & Kaspi, 2013)
seems to match the observations of high variability in low-gravity atmospheres
with silicate clouds (Vos et al., 2023).

18.6. Formation

With four massive planets on wide orbits, HR 8799 provides a unique
system with which to test formation scenarios. In general, these fall under the
categories of either gravitational instability models (e.g. Perri &Cameron, 1974;
Cameron, 1978; Adams et al., 1989; Laughlin & Rozyczka, 1996; Boss, 1997),
where the planets formvia the direct collapse of the gas into a substellar object, or
core accretion (Pollack et al., 1996; Bodenheimer et al., 2000), where a dense core
of heavy material grows slowly until it is massive enough to experience runaway
accretion and gather an extended hydrogen-helium envelope. GI models tend
to produce larger planets on wider orbits with solar compositions, while core
accretion scenarios form closer-in planets on more circular orbits, with the
possibility of greater metal enrichment. Dodson-Robinson et al. (2009) tested
bothof these scenarios forHR8799, finding thatwhile core accretionmaybetter
explain the near-orbital resonances of the system, it struggled to form planets
on such wide orbits (beyond 30 au), and could not rule out the possibility of
direct gravitational collapse. Similarly, Nero & Bjorkman (2009) find that while
HR 8799 bmay have formed through gravitational instability, it is unlikely that
disc fragmentation could have formed the inner three companions.

In addition to constraints from the mass and location of the companions,
the present-day planet composition provides insight into the formation and
evolution history. The template for this was developed in Öberg et al. (2011),
demonstrating how the C/O ratio in the gas and dust varies as a function of
position in the disc, which would in turn impact the outcome of the formation
process. Eistrup et al. (2018) extended thismodel to include time evolution, and
Mollière et al. (2022) presented a framework to link the measured planet prop-
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erties to the disc environment in a Bayesian framework, which allows testing the
effect of various formation assumptions. However, due to the uncertainty in the
atmospheric measurements, combined with the many outstanding questions
in formation modelling, this link remains tenuous.

Thedifferent formation scenarios can lead to dramatically different amounts
of energy retained in the planet following the formation process. So-called
‘hot-start’ models result in young planets retaining the gravitational potential
energy as internal heat, to be radiated and cooled over time (Marley et al., 2007;
Mordasini et al., 2017). This scenario is typically associated with formation due
to gravitational instability. In cold-start scenarios, often tied to core-accretion
models, this energy is radiated away by accretion shocks as the gas flows from the
circumstellar disc onto the forming planet, resulting in a lower internal energy
(Mordasini et al., 2012; Szulágyi &Mordasini, 2017). This is a useful, though
simplifiedpicture of planet formation. Additional complication comes from the
energetics of the accretion shock during core accretion, where different radiative
efficiencies can lead to different initial entropies of the forming planet (Marleau
et al., 2017). These shock-resolvingmodels find typical internal energies that are
an order of magnitude higher than in typical cold-start scenarios (Marleau et al.,
2019), thus lying somewhere between the hot and cold start scenarios. Over
time, all of these scenarios converge to the same cooling rate, though precise
mass and luminosity estimates can distinguish between the two scenarios for
the first ⇠100 Myr (Baraffe et al., 2003; Saumon & Marley, 2008). Current
measurements of planet masses, temperatures, and radii generally favour hot or
warm start models, but can only definitely exclude the coldest initial conditions,
such as the cold-start models of Marley et al. (2007). The hot-start models of
Baraffe et al. (2003) led to predictions of 7 MJup for the inner three planets, and
5MJup for HR 8799 b, which are approximately consistent with the current
dynamical mass estimates of Zurlo et al. (2022). Using the hot-start model of
Saumon &Marley (2008), Marley et al. (2012) finds that the radii of all of the
planets should be slightly larger than 1Rjup, and that even assuming very cold
initial conditions the planet radii should never fall below 1Rjup, though this
claim did not account for significantly nonsolar composition.

Finally, HR 8799 is home to both an inner and outer debris disc, imaged
with Spitzer (Su et al., 2009), Herschel (Matthews et al., 2014), JWST (Boc-
caletti et al., 2023), and ALMA in the millimeter (Wilner et al., 2018). The
inner debris disc has a temperature of around 150 K and is confined to within
10 au, while the cold outer debris disc is analagous to the Kuiper belt in our own
Solar System (Geiler et al., 2018), but at a much wider separation (90–300 au).
The structure of the outer disc appears to be sculpted by an additional gravita-
tional component, though it is unclear whether this is due to HR 8799 b or an
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additional unseen companion (Contro et al., 2015; Faramaz et al., 2021). The
inner disc has been detected in thermal emission (Su et al., 2009) and resolved
using MIRI coronagraphic imaging (Boccaletti et al., 2023). Modelling efforts
have placed tentative limits of ⇠ 1MJup on the allowed mass of companions
interior to HR 8799 e (Goździewski &Migaszewski, 2018).
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19. OBSERVATIONS

While the new GRAVITY spectra represent the best available K-band ob-
servations of the HR 8799 system, additional data are required to constrain
planetary properties such as surface gravity and C/O ratio. We combine pub-
lished datasets across a wide wavelength range from a variety of sources in order
to present the most complete possible picture of this system. Archival pho-
tometric data of the companions are also included in our analysis, the details
of which can be found in appendix 24.A. Also included in appendix 24.A is
the stellar photometry used in fitting the BT-Nextgenmodel, with which the
companion contrastmeasurements are flux calibrated. In this sectionwe present
a brief overview of the spectroscopic datasets included in the retrieval analysis,
with the key observational parameters listed in Table 24.4. All of the observa-
tional data, together with the complete set of retrievals results is available on
Zenodo1.

19.1. GRAVITY data

In Figure 18.2wepresent newVLTI/GRAVITYobservations ofHR8799 e,
together with the first interferometric observations of d, c, and b taken as part of
theExoGRAVITYproject (Lacour et al., 2020), underESOprogramID1104.C-
0651. GRAVITY is a K-band spectroscopic interferometer that combines light
from either the four 8 m Unit Telescopes (UTs) of the VLT, or the 1.8-m
Auxiliary Telescopes (Gravity Collaboration et al., 2017). With baselines of
up to 134 m, GRAVITY provides unprecedented spatial resolution, allowing
for the detection of companions close to their host stars and the measurement
of relative astrometry with a precision of few tens of µas. All observations of
the HR8799 system were obtained using the UTs, with the dual-field mode of
GRAVITY. The medium resolution mode was used, which offers a resolution
of R⇠500 over a nominal wavelength range of 2.0 to 2.4 µm.

Two different strategies were used for the observations and data-reduction.
Observations of HR 8799 e at all dates, except on 2 dates (11 November 2019
and 02 July 2023) were obtained using the on-axis strategy, in which a 50/50
beam-splitter is used to separate the field to between the science and fringe-
tracking channels of GRAVITY. In this mode, observations with the science
channel pointing at the location of the planet are interleaved with observations
obtained with the fibre pointed at the central star. The on-star observations
are then used to calibrate both the interferometric phase and amplitudes. This

1https://zenodo.org/records/10914429
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is similar to the observations reported in Nowak et al. (2020). The second
strategy is the dual-field/off-axis strategy, in which the roof-mirror is used to
split the field. The use of the roof-mirror is required to observe planets at larger
separation, because the field of view of the beam-splitter does not reach these
targets. In this case, the metrology zero point is calibrated using observations
of the dedicated calibrator HD 25535, and the interferometric amplitude us-
ing an on-axis observation of the central star, typically done at the end of the
observation sequence. This strategy is similar to the observation of Sgr A* by
GRAVITY Collaboration et al. (2020).

The data-reduction was performed using the tools developed for the Exo-
GRAVITY large program2. The main steps of the reductions are as follows:

1. All data are first reduced with the GRAVITY pipeline (Lapeyrère et al.,
2014), up to the ‘astroreduced’ data product, which keeps individual
DITs separated.

2. For the on-axis observations, the phase reference is extracted from the
on-star observations and subtracted from the on-planet observations. For
the off-axis observations, this phase-reference is extracted from the obser-
vations of the binary-calibrator HD 25535. In both cases, the amplitude
reference is taken using the on-star observations.

3. The stellar light (also called stellar speckle) is subtracted from the reduced
data by fitting a fourth-order polynomial in wavelength multiplied by the
amplitude reference. The astrometry of the planet is then extracted from
the observations.

4. The contrast spectrum is then extracted using a model that also takes
into account the residual starlight, and the planet astrometry previously
extracted.

This procedure yields a contrast spectrum for each planet, at each observa-
tion date. The spectrum extraction, which consists entirely of linear operations
on the complex coherent flux, also propagates the errors reported by the pipeline
as covariance matrices. These covariance matrices allow for correlations over the
wavelength channels and between the real and imaginary parts of the coherent
flux. However, it should be noted that the GRAVITY pipeline does not report
such covariances, and so the extraction code starts with fully diagonal covariance
matrices.

For eachplanet, all the available spectra are then combinedusing a covariance-
weighted combination. The final contrast spectrumC = (c�1 , c�2 , . . . , c�n

)T

2https://gitlab.obspm.fr/mnowak/exogravity

191

https://gitlab.obspm.fr/mnowak/exogravity


IV Characterisation of the HR 8799 planets

and its associated covariance matrixW arre given by:

W =

2
666664
X

t

Wt
�1

3
777775
�1

(19.1)

C = W ·
2
666664
X

t

Wt
�1 ·Ct

3
777775 , (19.2)

whereCt andWt represent the contrast spectrum and its associated covariance
matrix on a given observing date t.

The contrast spectra are then converted to fluxes using a model of the stellar
flux. For HR 8799, we used a BT-Nextgen model fit to the near infrared
photometry, the details of which are more thoroughly discussed in Section 18.1
and are based on Nasedkin et al. (2023).

The faintest companion, HR 8799 b, was detected with a mean S/N of 3.4
per wavelength channel. HR 8799 c was observed with a mean S/N of 27.5 per
channel, while HR 8799 d and HR 8799 e had a mean S/N ⇡ 20 and S/N ⇡
10 respectively. These observations were taken over a 5 year period. With
the 50 microarcsecond astrometric precision of GRAVITY, this will allow the
detection of planet–planet orbital perturbances within a few years (Covarrubias
et al., 2022), and we leave such analysis to future work.

19.2. Archival data

In addition to the new GRAVITY spectra, we also include archival data
covering a broad wavelength range, presented in Fig. 19.1. Mollière et al. (2020)
noted that the SPHERE (Zurlo et al., 2016) and GPI (Greenbaum et al., 2018)
data are inconsistent with each other in the H-band. In order to reduce sys-
tematic variation and to account for correlations, we rereduce the data with
up-to-date pipelines, and reprocesses the datasets optimally as described in
Nasedkin et al. (2023) using KLIP (Soummer et al., 2012; Pueyo, 2016). How-
ever, in order to best extract the planet signal we use KLIP in ADI+SDI mode,
in comparison to ADI only mode as described in the previous study. Both
the reprocessed SPHERE and GPI spectra can be found in Figs. 24.1 and
24.2. In total, our dataset includes nearly 400 data points for each planet:
Nb = 297, Nc = 391, Nd = 387, Ne = 388.

19.2.1. SPHERE

Two sets of VLT/SPHERE (Beuzit et al., 2008, 2019) data are considered
in this study: the first was taken during the commissioning run of the SPHERE
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instrument on 12 August 2014, and was originally published in Zurlo et al.
(2016). This is still the deepest SPHERE observation of HR 8799 covering the
full YJH range, but due to the orientation of the field of view does not include
HR8799 c. This dataset was reprocessed as inNasedkin et al. (2023) using KLIP
in ADI+SDI mode, and we extract spectra and covariance matrices for both the
e and the d companions. The second SPHEREdataset was published in Flasseur
et al. (2020), who processed the dataset using the PACO-ASDI algorithm and
were able to extract a spectrum for HR 8799 c in addition to d and e.

Additional SPHERE observations, such as presented in Biller et al. (2021)
or Wahhaj et al. (2021) are available. However, in the case of Biller et al. (2021)
the observations of the host star used for photometric calibration that were
taken before and after the science observations are of insufficient S/N. While
we attempted to calibrate the companion spectra using the satellite spots, this
was unreliable. Finally, these observations only cover the Y and J bands, and lack
the overlap with the GPI H-band spectrum, which is important for ensuring
compatibility across instruments. Therefore we continue with only the datasets
of Zurlo et al. (2016) and Flasseur et al. (2020).

19.2.2. GPI

Gemini/GPI (Macintosh et al., 2014) observations of HR8799, originally
published in Greenbaum et al. (2018), were taken on 17 November 2013, 18
November 2013, and 19 September 2016 for the K1, K2 and H bands respec-
tively. These were reduced using the standard GPI reduction pipeline (version
1.4.0), and reprocessed with KLIP using the samemethods as the SPHERE data.
As the new GRAVITY observations supersede the GPI data in the K-band, we
only consider the GPI H-band data for this work.

19.2.3. CHARIS

Subaru/CHARIS (Groff et al., 2015, 2017) observations of HR 8799 c,
d, and e were presented inWang et al. (2020a) andWang et al. (2022). These
observations cover 1.2–2.4 µm range at low resolution. Wang et al. (2022)
primarily examined these data for temporal variability, while here we combine
the full two nights of observations in order to obtain the highest precision
spectrum for each of the three planets. We take the mean spectrum for both
nights, and add the errors in quadrature, dividing by the square root of the
number of observations (i.e. by

p
2) to obtain a spectrum for each planet.
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19.2.4. ALES

Doelman et al. (2022) presented L-band observations of HR 8799 c, d,
and e obtained using the LBT/ALES instrument (Skemer et al., 2015). These
supersede the VLT/NACO L-band observations of HR 8799 c of Janson et al.
(2010), and are the first L-band spectra of HR 8799 d and e. These data also
include covariance matrices, estimated using the analytic method of Greco &
Brandt (2016).

19.2.5. OSIRIS

Archival Keck/OSIRIS (Larkin et al., 2006) data taken between 2009
and 2010 is included for HR8799b, as published in (Barman et al., 2011).
HR 8799 b falls outside the field of view of most high-contrast-imaging IFUs,
soOSIRIS is joined only byGRAVITY inmeasuring the near infrared spectrum
of the planet. With an unbinned spectral resolution of R⇡4000, and an integra-
tion time of 2700s in the H-band and 1800s in the K-band, when binned to a
spectral resolution of R⇡60 the OSIRIS data achieves a per-channel S/N com-
parable to or better than that of the GRAVITY observations. As the OSIRIS
data were not taken using standard ADI observing modes, we did not attempt
any rereduction or reprocessing of the archival data, apart from rescaling the
flux and uncertainty by the currentGaia distance estimate of 41.2925pm0.15
pc (Gaia Collaboration, 2020).

We also include the K-band spectra of Konopacky et al. (2013) (Figure 2 of
that work). As published, this spectrum is not flux calibrated, and so we always
fit for a flux-scaling term. For HR 8799 b and c, these K-band spectra allow us
to explore the impact of different measurements on the retrieved atmospheric
parameters, and to determine if our methods can reproduce the results of earlier
work.

More recent observations of the HR 8799 planets using OSIRIS have been
explored in Ruffio et al. (2021), but these spectra are continuum subtracted,
requiring a somewhat different modelling framework than the rest of the data
considered in this work. As such we do not fit these data, but we do use them
as an additional check on the robustness of our fits when examining the best-fit
models at higher resolution.
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20. ATMOSPHERIC MODELLING

The forward models of our atmospheric retrieval setup were computed
using pRT version 2.7 (Mollière et al., 2019), a fast, open-source radiative transfer
codewithwhichwe calculate the emission spectrum of a planetary atmosphere1.
Our fiducial setup was based on that of Mollière et al. (2020), used to retrieve
the atmospheric properties of HR 8799 e, though substantial improvements to
the code have been made and are detailed further in Nasedkin et al. (2024). We
explore a wide range of model parameterisations, summarising the parameters
and prior distributions used inTable 20.1. Aswe consider several thermal profile
parameterisation, we compare their prior distributions separately in Table 20.2.

To allow for both a data-driven and physically motivated approach, we
retrieved either log g andRpl with uniformpriors orRpl and Mpl, withGaussian
priors set by the dynamical mass estimates of Zurlo et al. (2022) and broad
Gaussian priors centred at 1.1 RJup, in line with estimates from evolutionary
models (Marley et al., 2012).

As the computational cost of a retrieval varied greatly between the planets,
it was unfeasible to run every model for every planet. As our primary point of
comparison we explored the different temperature profile parameterisations for
each planet, and ran both disequilibrium and free chemistry retrievals for each
planet. Due to its low computational run time, we ran additional models for
HR 8799 e, focusing on different cloud parameterisations.

20.1. Thermal structure

We compared a set of four temperature structures in our model comparison
in order to distinguish the amount of model flexibility justified by the data and
the impact of the temperature structure on other retrieved atmospheric param-
eters. While the thermal structure of these self-luminous objects is thought to
be well-understood from 1D and 3D atmospheric models, this comparison will
validate these predictions using an independent, data-driven methodology. At
the same time, using the best physical understanding of the thermal structure
may help constrain other parameters with greater accuracy and precision; it
is necessary to compare both approaches to ensure consistent results. For all
different temperature profiles we computed an effective temperature after the
spectrum computation, by integrating F� over wavelength and applying the
Stephan-Boltzmann law. To do this, we integrated a low resolution spectrum
from 0.8 to 250 µm. The lower limit is set by the wavelength coverage of the

1https://petitradtrans.readthedocs.io/
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Table 20.1: Retrieval prior; temperature profile priors are included in Table
20.2. N(µ,�),U(low, high).

Parameter Prior

log g U (2.5, 5.5)

Radius [RJup] U (0.7, 2.0)

N (1.1, 0.1)

Mass [MJup] N
⇣
µM, dyn,�M, dyn

⌘

log PQuench [log bar] U (�6.0, 3.0)

[M/H] U (0.5, 2.5)

C/O U (0.1, 1.6)

�LN U (1.05, 3.0)

fsed U (0.0, 10.0)

log Kzz U (5.0, 13.0)

log Eq. Cloud Scaling U (�2.5, 2.5)

log CloudMass Fracs. U (�6.5, 0.0)

log Cloud PBase U (�6.0, 3.0)

log Mass Fracs. U (�7.0, 0.3)

data; the optical band is unconstrained and leads to unrealistically large un-
certainty on the effective temperature. The long wavelength limit is set by the
wavelength coverage of the opacity databases.

20.1.1. Spline profile

To allow the data to fully determine the temperature profile of the atmo-
sphere, we used a Piecewise Cubic Hermite Interpolating Polynomial as imple-
mented in the scipy.interpolate. PchipInterpolator function. Fol-
lowing the prescription of Line et al. (2015), we penalised curvature in the
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temperature profile by adding an additional term to the likelihood function,

log p(T) =
1

2�

N�1X

i=1

(Ti+1 � 2T + Ti�1)2 � log (2⇡�) . (20.1)

This is the additional penalty term, which we found by taking the sum of the
discrete second derivative of the temperature profile. An additional hyperpa-
rameter, �, was also included, with an inverse gamma distribution prior. If � is
large, (disfavoured by the prior), then the data truly demands strong curvature
in the profile, while if � is small, the data favours smoother profiles. Following
Line et al. (2015), we set the parameters of the prior distribution on � based on
the work of Lang & Brezger (2004); Rahman (2005) and Jullion & Lambert
(2007):

��1 (�) =
�↵

� (↵)

 
1
�

!↵+1

exp
 
��
�

!
, (20.2)

for fixed ↵ and � parameters given in Table 20.2. We repeated the retrievals and
varied the number of nodes in the profile, which allowed us to use a Bayes factor
comparison to determine the allowable level of complexity. This also allowed
us to explore how the pressure-temperature profile can compensate for the
presence of clouds by reducing the temperature gradient in the photospheric
region.

20.1.2. Guillot profile

The Guillot (2010) (G10) profile is a simple analytical model, constructed
to estimate the thermal structure of irradiated planets:
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where Tirr =
p

2Tequ and ⌧ = P ⇥ IR/g. Tequ is the equilibrium temperature
of an irradiated body, Tint is the intrinsic temperature of the planet, and g is
the surface gravity. IR is the mean infrared opacity, and � is the ratio between
the optical and infrared opacities. While these parameters can be physically
interpreted, we treat them as nuisance parameters that control the shape of the
profile, rather than self-consistently linking them to the chemical opacities. As
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the HR 8799 planets are widely separated, Tirr is small, and thus the profile
reduces to an Eddington (1930) profile, which corresponds to keeping only the
first term on the righthand side of Equation (20.3).

20.1.3. Mollière profile

Introduced in Mollière et al. (2020) (M20), this is a physically motivated
temperature profile, split into three distinct regions in altitude.

Themiddle level of the atmosphere contains the photosphere. In this region
the temperature profile follows an Eddington profile, as in the first term of the
Guillot profile in Equation 20.3. However, for this profile we parameterise the
opacity ⌧ as a function of pressure (P):

⌧ = �P
↵ (20.4)

and retrieve parameters of log � and ↵, together with Tint, as in the G10 profile.
The upper atmosphere is defined as the region above ⌧ = 0.1. Above

this level, four pressure points are defined, equidistant in log P. The deepest
pressure point, at ⌧ = 0.1 is fixed to the temperature of the Eddington profile
of the middle atmospheric region, while the remaining temperature points
are freely retrieved parameters, subject to the constraint that the temperature
decreases with altitude (Kitzmann et al., 2020), as inversions are not expected
in self-luminous objects. The temperature profile is then interpolated from a
cubic spline between the three points. Combined with the Eddington profile
parameters, this results in a total of 6 parameters to describe the temperature
profile.

The base of the atmosphere is defined as a moist adiabat, up to the radiative-
convective boundary. This boundary occurs when the temperature gradient of
the Eddington profile is Schwarzchild unstable:

dT

dr
<

T

P

dP

dr

 
1 � 1

�ad

!
. (20.5)

The moist adiabatic gradient is a function of the temperature, pressure, and
chemical composition, and as such is interpolated from the disequilibrium
chemistry table, discussed further in Section 20.2.2. Once the atmosphere is
unstable to convection, the temperature profile is forced onto the moist adiabat.

20.1.4. Zhang profile

Zhang et al. (2023) (Z23) introduced a novel P-T parameterisation, incorpo-
rating the results of radiative-convective equilibriummodels into the retrievals
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via careful prior selection. This is accomplished by fitting for the gradient of
the temperature with respect to pressure, as opposed to directly retrieving the
temperature as in the spline profile. The prior locations and widths of the gra-
dients were determined by empirically measuring the temperature gradients in
self-consistent radiative-convective models, thus providing a means to enforce
the physics of these models in a retrieval framework. The atmosphere between
103 bar and 10�3 bar was divided up into six layers, equidistant in log pressure.
The temperature at the bottom of the atmosphere (Tbot) was freely retrieved.
For the remaining layers, d log T/d log P

���
i
were retrieved as free parameters.

The temperature profile was then found by interpolating the gradient to the
full pressure grid, and integrating to find the temperature at each pressure.

T0 = TBot (20.6)

Ti+1 = exp
 
log T j +

�
log Pi+1 � log Pi

�
 

d log T

d log P

!

i

!
(20.7)

The atmosphere was isothermal above 10�3 bar.

20.2. Chemistry

Understanding the atmospheric chemistry of the HR8799 planets is one of
the key goals of this work. We compared a simplified disequilibrium chemistry
model to a free chemistry retrieval with vertically constant abundances. We
primarily used opacities from the ExoMol database (Tennyson & Yurchenko,
2012; Chubb et al., 2021), and include H2O (Polyansky et al., 2018b), CO
(Rothman et al., 2010a), CH4 (Yurchenko et al., 2017), CO2 (Yurchenko et al.,
2020), NH3 (Coles et al., 2019), HCN (Barber et al., 2014), H2S (Azzam et al.,
2016), PH3 (Sousa-Silva et al., 2015), FeH (Wende et al., 2010), Na (Allard et al.,
2019), K (Allard et al., 2016), SiO (Barton et al., 2013), TiO (McKemmish
et al., 2019), and VO (McKemmish et al., 2016).

20.2.1. Free chemistry

In the free chemistry retrievals, we assumed a vertically constant mass frac-
tion for each species, and retrieved the log mass fraction abundance (log Xi for
each of H2O, CO, CH4, CO2, HCN, H2S, NH3, FeH, Na, and K), subject
to the constraint that the sum of the mass fractions is less than one. Due to
the lack of spectroscopic data in in the Y and J bands, we did not retrieve FeH,
Na or K for HR 8799 b in the free retrievals to reduce the number of free
parameters. The hydrogen and heliummass fractions were calculated by using
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the solar abundances (0.766 for H2, 0.234 for He), and multiplying by one
minus the sum of the retrieved mass fractions (1 � ⌃iXi). The set of molecules
included covers the most abundant trace species in the atmosphere, and in an
atmosphere with strong vertical mixing in the photosphere the assumption of a
vertically constant abundance is reasonable for H2O, CO, and CH4, though
other species, such as FeH, have been found to have nonvertically constant
abundances (Rowland et al., 2023). To measure the significance of a detection,
we performed a ‘leave-one-out’ retrieval, and calculated the Bayes factor be-
tween the complete retrieval and the retrieval when excluding a single chemical
species. This comparison was performed using the Zhang temperature profile
and clouds condensing at their equilibrium saturation condition. While the
detection significant may vary with different setups, this setup is representative
of typical retrievals, and ensures consistent comparisons.

To determine the bulk properties of [M/H] and C/O for the free retrievals,
we converted the retrieved mass fraction abundances to volume mixing ratios.
[M/H] is defined as the ratio the planetary elemental abundances from the
measurements of H2O, CO, CH4, CO2, NH3, and H2S to the solar elemental
abundances. The C/O ratio was likewise found from the number ratio of the
carbon and oxygen atoms in the same set of molecular species.

20.2.2. Interpolated (dis)equilibrium

The disequilibriummodel used a grid of equilibrium chemical abundances
interpolated along dimensions of pressure and temperature, as well as [M/H]
and C/O, which were freely retrieved parameters. The metallicity parameter
scaled all of the elemental abundances, while the C/O scaled only the oxygen
abundance. Initial test retrievals used a prior range of [-1.5,1.5], but the high
metallicity demanded by the data led to the choice of a prior range of [-0.5,2.5]
for the retrievals included in this work. The model of disequilibrium chemistry
of the CO, CH4, H2O system was based on transport-induced quenching, re-
sulting in a vertically constant abundance above a given pressure. This (log)
quench pressure was one of the retrieved parameters. The equilibrium abun-
dances used to build the grid were computed using easyChem (Mollière et al.,
2017), which minimises the Gibbs free energy for the system at a given pressure,
temperature, and atomic composition. We included all of the species listed in
Section 20.2 as opacity sources, though 95 species are included in equilibrium
chemical network used to determine the molecular abundances. For the alkali
metals we used the wing profiles of Allard et al. (2016, 2019).
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20.3. Clouds

We considered three cloud parameterisations in this work. The first was
based of the model of Ackerman &Marley (2001), where cloud particles are
lofted into the atmosphere through eddy diffusion (Kzz), and settle back down
with a speed proportional to the parameter fsed. We retrieved each of these
parameters independently, together with �LN, which is the width of the log-
normal particle size distribution.

While these parameters determine the structure of the clouds, we also deter-
mined the cloud opacity through the use of cloud optical constants for different
cloud compositions, allowing us to differentiate between compositions, grain
structure (amorphous or crystalline), and whether the particle shapes are spher-
ical or based on the distribution of hollow spheres (DHS). In addition to the
standard log-normal particle sized distribution used with AM01 clouds, we
incorporated the Hansen (1971) particle size distribution, which has been pro-
posed to be a more accurate representation of the particle size than a log-normal
distribution. Instead of �ln, we retrieved the mean effective width bh. The
details of how these parameters shape the distribution, together with how they
were incorporated into the AM01 model are described in Appendix 24.D.

We tested a range of cloud compositions, including MgSiO3 (both crys-
talline and amorphous particle shapes), Mg2SiO4, Fe, Al2O3, KCl, and Na2S,
as well as several combinations of these compositions. Each cloud composition
had a mass fraction abundance at the cloud base that could either be scaled
from an equilibrium value or freely retrieved, together with a unique fsed, which
allowed for different vertical extents for different cloud compositions.

Nominally, the cloud base occurs at the intersection of the cloud conden-
sation curve and the temperature pressure profile. However, for our second
parameterisation we included the cloud base pressure as a freely retrieved pa-
rameter, to determine if the clouds form where expected in the atmosphere. We
followed the derivation of AM01 andMollière et al. (2017) to obtain the cloud
abundance throughout the atmosphere. The abundance of the cloud species
Xi was defined at this base pressure P0, and decreases with altitude to the power
of fsed:

Xi(P) = Xi,0

 
P

P0

! fsed

. (20.8)

At pressures higher than P0, the cloud is not condensed, and thus Xi = 0.
Finally, we also tested a simple grey cloud deck, where the cloud top pressure

was freely retrieved, and the cloud acts as a source of opacity at the base of the
photosphere.
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For each of these models we could retrieve a cloud patchiness fraction, fc.
In this setup, we first calculated the usual cloudy spectrum, ~S cd. We then turned
off the cloud opacity sources, and calculated another clear atmosphere spectrum,
~S cl. We then combined the two spectra, weighted by fc:

~S = fc~S cd + (1 � fc)~S cl. (20.9)

This approach divides the atmosphere into only clear and cloudy components.
Other approaches, such as those of Vos et al. (2023) or McCarthy et al. (2024)
have different patchiness fractions for different cloud layers, allowing for dif-
ferent degrees of cloudiness. Our approach reduces the number of parameters
and is simple to implement in a retrieval framework, but future work should
explore the patchiness of individual layers of clouds in the atmosphere.

20.4. Retrieval setup

We used the pyMultiNest (Buchner et al., 2014) wrapper of MultiNest
(Feroz &Hobson, 2008; Feroz et al., 2019) as the basis for our nested sampling
routine, as testing showed that it runs significantly faster than the UltraNest
sampler, which may provide more accurate estimates of the Bayesian evidence.
For all retrievals we used 4000 live points to ensure dense posterior sampling
and coverage of the parameter space. We set the sampling efficiency to 0.05,
and used constant efficiency mode in order to reduce computation time. Com-
parisons to retrievals using 4000 live points and a sampling efficiency of 0.8
without constant efficiency showed that this choice does not bias the posterior
estimates, and that the importance nested sampling evidence estimate is of suffi-
cient precision for model comparison. The (logZ) evidence tolerance was set
to 0.1, ensuring precise estimates of the evidence and ensuring convergence of
the retrievals.

20.5. Retrieval ranking

Considering the number and range of models run, we must devise a system
to systematically evaluate the quality of the retrieval. A true Bayesian approach
would be to exclusively use the Bayes factor to evaluate the model fits. How-
ever, without well-defined prior odds for each model, we cannot quantitatively
account for the prior probability of a given model. For example, based on the
current understanding of these objects, the prior probability of a clear atmo-
sphere model should be less than that of a cloudy model, but there is no clear
way of assigning an objective probability. Instead we subjectively grouped some
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models into a ‘low odds’ category. While these are useful for validating our as-
sumptions about the planets and testing the inclusion of different datasets, they
should not contribute significantly to a final combined parameter estimate. We
further sorted the retrievals a posteriori, creating in total three tiers of retrieval
results, illustrated in Fig. 20.1. We focused our overall analysis on a subset of
retrievals that are both plausible models, use consistent datasets, and produce
physically reasonable results.

Group A

0.9RJ<Rp 
1MJ<M<22MJ

Group B
“Reasonable” P(M)

subjective model 

prior probability

Group C
All Retrievals

A ∩ B

Figure 20.1: Illustration of how
retrievals are grouped in this
work. Group A retrievals are
selected based on having physi-
cally plausible posterior distribu-
tions. GroupB retrievals aremod-
els that are subjectively chosen to
have a ‘reasonable’ prior probabil-
ity. Group C includes the entire
set of retrievals run in this work.

GroupA: This set of retrievals is defined
as those with physically reasonable poste-
rior values. Based on evolutionary mod-
els, it is expected that the HR 8799 planets
have radii greater than 1 RJup. Even high-
mass, cold brown dwarfs over 1 Gyr in age
are found to have minimum radii of ⇠0.88
RJup, with the minimum radius increasing
with increasing metallicity (Burrows et al.,
2011). Thus we exclude from group A any
retrievals with amedian retrieved radius less
than 0.9 RJup. We additionally enforce that
the mass estimate should be broadly con-
sistent with the dynamical mass estimates:
the median retrieved mass must be greater
than 1MJup and less than 22MJup, approx-
imately double the highest dynamical mass
estimate of any of the planets (Zurlo et al.,
2022). The exact positioning of these cuts
does not significantly impact the results.

Group B: this set of retrievals includes
those thatwe consider to have a highpriormodel probabilityP(M); equivalently
we are assigning a model prior probability P(M) = 0 to those models that we
believe do not describe these atmospheres well. Specifically, we exclude models
with a clear atmosphere, those with with poorly parameterised temperature
profiles used during validation studies (e.g. retrievals using only 2 nodes to
define a spline temperature profile), and those using data inconsistent with our
fiducial dataset. Thus while the retrievals using OSIRIS data for HR 8799 c are
highly ranked by the Bayes factor, we exclude them from our analysis and from
the BayesianModel Average, as the Bayes factor is only a relevant metric when
comparing like datasets. Likewise, a clear atmosphere would require a diabatic
temperature profile to explain the reddening of the emission spectra, which we
do not include in the retrievals and therefore the clear models are unlikely to be
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physically meaningful. As the Bayes factors are weighted heavily towards the
best retrievals, a weighted posterior distribution effectively reduces to that of
Group A.

Group C : the complete set of retrievals included in this work, regardless
of prior or posterior likelihood. As the full set of retrievals includes highly
unrealistic atmosphericmodels by design, we donot present combinedposterior
distributions, but only explore specific comparison retrievals used to validate
different model assumptions. Ultimately we found that all of the retrievals fall
into group A, universally finding reasonable estimates for the planet masses and
radii.

The best set of retrievals is the intersection of groups A and B (indicated by
A\ Bwhen used to refer to a particular retrieval), which are retrievals that have
physically plausible posterior values, and whose model we believe is a reasonable
representation of the atmosphere. Tables 24.5 to 24.8 list the complete set of
retrieval results, classifying the individual retrievals by group and sorting by the
Bayes factor. We turn toKass&Raftery (1995) for an interpretation of theBayes
factor in terms of frequentist statistical significance. Thus a � log10Z > 1
is considered substantial evidence, and � log10Z > 2 is considered strong
evidence, equivalent to > 5� significance. Table 2 of Benneke & Seager (2013)
present a similar, albeit slightly more conservative interpretation of the Bayes
factor, with a similar threshold of log10Z = 2.1 for ‘strong’ evidence in favour
of one hypothesis over another, equivalent to 3.6� significance.

20.6. Bayesian model averaging

We used the techniques of BayesianModel Averaging (BMA) in order to
combine estimates of a single parameter over a range of models, following the
review of Fragoso et al. (2018). This has recently been applied to exoplanet
spectroscopy in Nixon et al. (2023), demonstrating that these methods provide
more realistic posterior uncertainties. They highlight that to naively use BMA,
the use of multiple duplicate models must be avoided to avoid the repeated
contribution of that model to the average. As we do not have any identical
models in our retrieval suite, BMA remains a valid approach.

Consider Bayes theorem for the i
th model Mi for data ~D, with parameters

~✓i:

P(~✓i|~D,Mi) =
P(~D|~✓i,Mi)P(~✓i|Mi)

P(~D|Mi)
. (20.10)

We are interested in obtain a joint posterior probability distribution P(~✓|~D,M)
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for the subset of parameters ~✓ that are shared between the set of models. From
each model we require posterior probability distribution P(~✓i|~D,Mi), the likeli-
hoodP(~D|~✓i,Mi), and the evidenceP(~D|Mi) ⌘ Z =

R
P(~D|~✓i,Mi)P(~✓i|Mi)d~✓i.

We then assume a prior probability distribution over the full set ofmodels under
consideration, and therefore each model has an associated prior probability
P(Mi). The choice of this prior probability should reflect the prior knowledge
of the system under consideration. For example, the prior probability of a clear
atmosphere model should be lower than that of a cloudy atmosphere model for
the HR 8799 planets. However, quantifying this degree of certainty is highly
subjective. We choose instead to use an uninformative prior distribution across
N models for each planet:

P(Mi) =
1
N
. (20.11)

This allows the data to determine which models should be favoured based on
the evidence.

Considering allmodels in the range 1 toN, the posteriormodel probabilities
given the data are

P(Mi|~D) =
P(~D|Mi)P( ~Mi)

P
N

j=1 P(~D|Mj)P(Mj)
. (20.12)

The marginal posterior distribution for a single parameter ✓ present in all of the
models is thus

P(✓|~D) =
NX

j=1

P(✓|~D,Mj)P(Mj|~D). (20.13)

This combined posterior distribution folds in both the uncertainty from the
data and prior distributions, but from the model uncertainty as well, providing
a more robust estimate of the overall uncertainty on the inferred parameter.

20.7. Self-consistent forward modelling

In order to ensure that the retrieval results are robust and insensitive to
the details of pRT, we fit each of the planet’s spectra using several grids of 1D
self-consistent models: ATMO (Phillips et al., 2020; Petrus et al., 2023), Sonora
Bobcat, Cholla ,and Diamondback (Marley et al., 2021; Karalidi et al., 2021),
Morley et al. (in prep), Exo-REM (Charnay et al., 2018), and petitCODE
(Mollière et al., 2015, 2017). Thesemodels represent the current state-of-the-art

206



ATMOSPHERIC MODELLING

in both cloudy and cloud-free self-consistent 1Dmodels. The boundaries and
intervals of each of these grids is presented in Table 20.3.

20.7.1. ATMO

We used an up-to-date grid of ATMO of models from Petrus et al. (2023),
which in turn is based on prior versions fromTremblin et al. (2015) and Phillips
et al. (2020). ATMO is a clear atmosphere model, based on the hypothesis that
diabatic convection (Tremblin et al., 2016, 2017), not clouds, are responsible
for the reddening of the near-infrared spectra of directly imaged exoplanets
and brown dwarfs. This convection is instigated by disequilibrium chemical
processes that reduce the temperature gradient, thus reddening the atmosphere.
In ATMO, this is parameterised through an effective adiabatic index �ad, which
modifies the temperature gradient. The inclusion of this parameter meant that
ATMO is the only clear atmosphere grid that produced a reasonable fit to the
spectra of the HR 8799 companions.

20.7.2. Exo-REM

TheExoplanetRadiative-convectiveEquilibriumModel (Exo-REM,Baudino
et al. (2015); Baudino et al. (2017)) is a self-consistent model used to study di-
rectly imaged exoplanets and brown dwarfs (Charnay et al., 2018), but has also
been extended to lower mass transiting planets (Blain et al., 2021). It imple-
ments a cloud microphysics model by combining AM01 with the timescale
approach of Rossow (1978), which allows it to reproduce the L-T brown dwarf
spectral sequence as a function of effective temperature. Bonnefoy et al. (2016)
used this grid to explore the atmospheres of the HR 8799 companions, find-
ing atmospheres mildly enriched in metals ([M/H]=0.5) and well constrained
effective temperatures. However, they developed a set of custom grids that
implement detailed cloud properties to model the atmospheres, which are likely
more suited to the HR 8799 planets than the more general publicly available
grid.

20.7.3. Sonora

The newly developed suite of Sonora models are designed to model the
spectra and evolution of substellar atmospheres, covering the L-T-Y spectral
sequence (Marley et al., 2021). Sonora comes in several flavours, implementing
equilibrium chemistry in Sonora Bobcat (Marley et al., 2021), disequilibrium
chemistry in Sonora Cholla (Karalidi et al., 2021), and cloudy atmospheres in
Sonora Diamondback (Morley et al., 2024). Like Exo-REM and ATMO, the
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Sonora models are a 1D, radiative-convective equilibriummodel that couples
hydrostatic and thermochemical equilibrium temperature structure with a
radiative transfer scheme to compute the atmospheric emission spectrum.

Sonora Bobcat and Cholla did not fit the HR 8799 spectra at all, validating
the necessity of cloudy (or similar) atmospheric models. Thus we continued
only with the cloudy Sonora Diamondback models in order to interpret the
HR 8799 atmospheres. While similar to Exo-REM in implementing clouds,
Diamondback currently fixes the C/O ratio to a solar value of 0.458 (Lodders
et al., 2009), preventing the measurement of this parameter, and potentially
leading to biases in the remaining parameters.

20.7.4. petitCODE

petitCODE is a radiative-convective and chemical equilibrium code used
to compute the structures and spectra of exoplanet atmospheres (Mollière et al.,
2015, 2017). We used the cool-cloudy and hot-cloudy grids computed for
Stolker et al. (2020), spanning temperatures from 500-850 (cool-cloudy) and
1000-2000 K (hot-cloudy). The code setups are based on the work presented
in Samland et al. (2017); Linder et al. (2019). Both grids implement the cloud
model described in Ackerman & Marley (2001). While the cool grid only
assumes Na2S and KCl clouds, and the hot grid adds Mg2SiO4 and Fe clouds.

20.7.5. Grid Fits

We performed Bayesian fits using species to interpolate the grids (Stolker
et al., 2020), and MultiNest to sample the parameter space. 400 live points
were used for these fits, with uniform priors on all parameters covering the grid
ranges as described in Table 20.3, and an additional Gaussian prior on the planet
mass. We fit for covariance width and strength for all IFS datasets following
the method of Wang et al. (2020b), as the empirical covariance matrices cannot
be incorporated in species, other than for GRAVITY data. Fitting for the
covariance parameters was universally favoured by the Bayes factor, and thus
we only present the full fits. Consistent with the expectations of Greco &
Brandt (2016) and Nasedkin et al. (2023), including these parameters also
tended to broaden the posterior distributions, though posterior widths remain
far narrower than the variation between the models.

In addition to the Bayesian fits, we performed a simple �2 minimisation
over each grid to avoid potential issues with interpolating the spectra along the
different parameter axes. Using this framework, we identify the single best-fit
spectra, as presented in Table 21.2.
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Table20.3:Self-consistentgrid
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07

Figure 21.1: Best-fit temperature profiles and spectra for the group A \ B

retrievals. From top to bottom are HR 8799 b, c, d, and e.

Based on both the atmospheric retrievals and the self consistent grid fits,
the HR 8799 planets share enriched atmospheres, with stellar-to-superstellar
C/O ratios. The properties of each atmosphere for subsets of the ensemble
of retrievals are summarised in tables 18.1–18.4 for planets b–e, respectively.
These tables also contain ranges of plausible parameter values for each planet
based on the aggregate of the self-consistent models, while Fig. 20.2 shows the
distributions for a subset of the key parameters. These estimates are synthesised
from the results of the Bayesian fits and the �2 minimisation, rejecting solutions
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IV Characterisation of the HR 8799 planets

Figure 21.2: [M/H] posterior distributions for all retrievals in group A \ B.
From left to right are the distributions for b, c, d, and e. The vertical line
indicates solar metallicity. Model keys are as in tables 24.5–24.8, and are sorted
by the Bayes factor from top to bottom.

with unphysical masses and radii. The full results of the grid fits are found in
Table 21.1 for the Bayesian fits and Table 21.2 for the single-best �2 fits. In these
tables, an index is assigned to each retrieval, with the format planet.group.index,
which serves as the retrieval identifier throughout the text.

Nearly 100 retrievals were performed for this analysis across the four com-
panions in order to derive robust constraints on primary planetary properties.
The aggregate results of the Bayesianmodel average of group A\B retrievals are
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Figure 21.3: C/O posterior distributions for all retrievals in group A\ B. From
left to right are the distributions for b, c, d, and e. The vertical line indicates
stellar C/O. Model keys are as in tables 24.5–24.8, and are sorted by the Bayes
factor.

presented in Fig. 20.2, with the best fit models for the same sample of retrievals
compared to the data in Fig. 21.1. Overall we find consistently good fits for all
four planets, with best-fit �2/⌫ < 2 for each planet. The self-consistent grid-fits
incorporate additional physical processes and require fewer free parameters
than the retrievals, making them less flexible. The additional processes, such as
radiative-convective equilibrium, chemistry, and cloud physics act as narrow
priors on the bulk atmospheric parameters. While the lack of flexibility leads to
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IV Characterisation of the HR 8799 planets

Figure 21.4: Te↵ posterior distributions for all retrievals in groups A\ B. From
left to right are the distributions for b, c, d, and e. The vertical line indicates
1000K.Model keys are as in tables 24.5–24.8, and are sorted by the Bayes factor.

worse fits when compared to retrievals, the fits of multiple self-consistent grids
still result in mutually consistent results. Notably, petitCODE gives consistent
parameter estimates even though it is strongly disfavoured by the goodness-of-fit
metrics.

Both the pRT retrievals and the self-consistent grid fits show that all of the
atmospheres are strongly enriched in metals, finding median [M/H]&1.0 for
each planet. This is driven by the carbon and oxygen abundances as measured
through H2O and CO, and particularly through the CO absorption feature at
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Figure 21.5: Grid fits from Exo-REM, Sonora Diamondback, ATMO and
petitCODE. ALES data for HR 8799 d is scaled by the overall best-fit scaling
parameter (Exo-REM, 1.18). Fits are the single best-fit �2 model from the grid.

2.3 µm. The C/O ratios decrease with decreasing separation from 0.78 ± 0.04
in HR 8799 b to 0.60 ± 0.05 for HR 8799 d, with HR 8799 e breaking the
trend with carbon rich C/O ratio of 0.87± 0.02. In addition to water and CO,
HCN is confidently detected inHR 8799 c and e, while CH4 is detected inHR
8799 c.

We find that cloudy atmospheres are universally favoured over clear at-
mospheres. Extended silicate clouds, together with an iron cloud deck are the
preferredmodels for the three inner planets, with the coolerHR8799 b showing
evidence for Na2S clouds.

The retrievals found masses, radii, and surface gravities consistent with
evolutionary models. By construction, these formGroup A of our retrievals.
In general, retrieving the planet radius is challenging: the radius of directly
imaged exoplanets is commonly underestimated by both retrievals and grid fits
(e.g. Bonnefoy et al., 2016). These unphysical solutions are found in several of
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IV Characterisation of the HR 8799 planets

Table 21.2: Grid-fit �2 results

Planet Model �2 Te↵ log g [M/H] fsed C/O �ad Radius

[K] [cgs] [RJup]

b ATMO 744 1000 4.5 0.6 … 0.3 1.05 1.00

Diamondback 879 1100 3.5 0.5 2.0 0.458 … 1.07

Exo-REM 510 850 3.5 0.5 … 0.55 … 1.05

petitCODEa 968 850 3.5 1.4 2.0 … … 0.79

c ATMO 2162 1200 4.5 0.6 … 0.3 1.01 0.97

Diamondback 3900 1200 3.5 0.5 2.0 0.458 … 1.08

Exo-REM 1868 1100 3.5 1.0 … 0.8 … 1.22

petitCODE 7374 1200 3.5 0.3 3.0 0.55 … 1.09

db ATMO 943 1300 3.0 0.6 … 0.55 1.01 0.94

Diamondback 1336 1200 3.5 0.5 1.0 0.458 … 1.12

Exo-REM 936 1200 3.0 1.0 … 0.55 … 1.12

petitCODE 2254 1200 4.0 0.0 1.5 0.55 … 1.21

e ATMO 669 1300 4.0 0.6 … 0.55 1.03 0.81

Diamondback 819 1200 3.5 0.5 2.0 0.458 … 1.02

Exo-REM 623 1100 3.5 1.0 … 0.8 … 1.15

petitCODE 1136 1400 4.0 0.3 4.5 0.55 … 0.74

Notes
All values presented are the single best-fit value according to the �2. All of the models share a
similar number of parameters, which are listed in Table 20.3. Additional parameters for data
scaling and covariance fitting are shared between all models.
a for HR 8799 b, the petitcode-cool-cloudy grid was used rather than the petitcode-
hot-cloudy grid.
b the fits for HR 8799 d included a scaling parameter for the ALES data.

the grid fits, while nearly every retrieval finds plausible values of the mass and
radius. The small radius is often compensated for by adjusting the temperature,
metallicity, or cloud properties. Nevertheless, in all cases the most favoured
retrieval produced masses consistent with dynamical mass measurements and
radii consistent with evolutionary models. In the group A \ B retrievals that
used dynamical mass priors, the retrieved mass estimate is within 1� of the
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dynamical mass for b, d, and e, with the posterior width consistent with the
prior width which. For HR 8799 c the retrieved mass is moderately higher than
the dynamical mass estimate at 8.5 ± 0.5MJup compared to the dynamical mass
of 7.7±0.7MJup. However, if the dynamical mass is not used as a constraint and
log g is freely retrieved, the resulting mass estimate is found to be much larger
than the dynamical mass estimate, highlighting the importance of including
additional constraints in a retrieval framework. The estimate of the effective
temperature of each planet is consistent with previous findings, with e, c, and d
sharing temperatures around 1100K, andbbeing cooler at around 950K.While
we do not perform a comparison to spectral templates due to the inferred high
metallicity, low surface gravity, and potential complications from the viewing
angle of the planets, we find that the spectral types found in Bonnefoy et al.
(2016) remain a good description of the four planets. HR 8799 d and e are
similar to late-L type brown dwarfs, consistent with their inferred effective
temperature. HR 8799 c is more likely fit by an early-T spectral type as it is a
few kelvin cooler than e and d and is beginning to show spectral features from
CH4. At 950 KHR 8799 b is solidly in the T dwarf regime.

In this section, we present the measured properties for each of the four
planets individually. Following that, in Section 21.5 we present a detailed dis-
cussion of the results and challenges of comparing different thermal structures,
chemistry and cloud parameterisations, and data inclusion.

21.1. HR 8799 b

For HR 8799 b we included the GRAVITY and OSIRIS spectra, together
with the full set of photometry, allowing the OSIRIS data to float as the pub-
lished data are not flux calibrated. For the grid fits we included additional
parameters to describe the covariance of the OSIRIS data.

HR 8799 b is the coldest and lowest mass planet in the HR 8799 system.
The best estimate of these parameters via Bayesian averaging of group A \ B

retrievals finds an effective temperature of 942+12
�16 K and a mass of 6.0+0.4

�0.3 MJ,
driven by the use of the dynamical mass estimate of Zurlo et al. (2022) as a prior.
The radius is slightly inflated compared to Jupiter, with (Rpl = 1.10+0.03

�0.03);
combining the mass and radius estimates leads to log g = 4.10+0.03

�0.04. This is
consistent with the Bayesian grid fits, though the single-best �2 fits found both
lower (log g = 3.5) and higher (log g=4.5) solutions. The Bayesian averaged
results (for group A \ B) are driven by a single retrieval, with a � log10Z
of 4 relative to the next best retrieval. This single best retrieval uses the Z23
temperature profile and free chemistry, finding a metallicity of 0.96+0.08

�0.08 and a
C/O of 0.78+0.03

�0.04.
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IV Characterisation of the HR 8799 planets

The grid fits find temperatures between 850 K�1100 K, with the single
best fit, found using Exo-REM, finding Te↵ = 850 K. Using the Bayesian
fit, Exo-REM is again the most favoured model by the Bayes factor, and finds
Te↵ = 862+21

�6 K and a radius of 1.19+0.03
�0.03RJup, consistent with expectations

from evolutionarymodels (e.g.Marley et al., 2012). TheATMOand SonoraDi-
amondback models finds a somewhat higher temperature and a smaller radius,
but are disfavoured by the Bayes factor. petitCODE is divided into cool-
cloudy and hot-cloudy grids, with the cool grid extending up to 850 K, and
the hot grid beginning at 1000 K. As the effective temperature of HR 8799 b
likely falls between these grids, it poorly fit the data, although the remaining pa-
rameters of log g and fsed are compatible with the other self-consistent models.

Figure 21.2 shows the variation of themetallicity across the differentmodels
considered. We see that strong enrichment solution is almost always found,
particularly by models preferred by the Bayes factor. The degree of enrich-
ment does not systematically vary between disequilibrium and free chemistry
retrievals. All of the self-consistent models favour high metallicity solutions,
reaching the upper bounds of the grid in all cases.

Similarly to themetallicity, theC/O ratio is shown for the different retrievals
in Fig. 21.3 and Te↵ in 21.4. The C/O ratio is generally constrained to between
0.6 and 0.8. However, for free chemistry retrievals, the inferred C/O ratio only
indicates the gas-phase composition. Additional oxygen is sequestered in the
silicate clouds: accounting for this sequestration would result in a lower C/O
ratio. Among the grid fits, shown in Fig. 21.5, the C/O ratio shows more
variation, ranging from the lower bound of the ATMO grid at 0.3 to 0.55 from
Exo-REM. The best fit models from Exo-REM are consistent with the stellar
value of 0.54, and additional data covering the near infrared water features
is likely necessary to improve these constraints. From Fig. 21.6 we find that
both the free retrieval and disequilibrium retrievals display similar trends in the
retrieved chemical abundances, finding that nearly 10% of the atmosphere is CO
by mass, while water has a lower abundance of around 1% by mass. The best-fit
free retrieval finds systematically lower abundances for both of these species
compared to the best-fit disequilibrium retrieval. H2S and CH4 are found to be
the next most abundant species in both the disequilibrium and free chemistry
retrievals. However, even though their abundances are constrained by the
posterior distribution, there is no evidence for their detection when comparing
between the full free chemistry retrieval (b.AB.1) and retrievals without these
species (b.A.0 and b.A.2). The b.AB.1 retrieval uses the Z23 temperature profile,
free chemistry, and clouds condensing at their equilibrium position. This same
setup is used for b.A.0 and b.A.2, apart from the exclusion of CH4 and H2S
respectively. While the inferred CH4 abundance of log XCH4 = �5.0 ± 0.4 is
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compatible with Barman et al. (2015), there is no statistical evidence to support
the detection.

In order to compare the cloud composition for HR 8799 b, we considered
a set of retrievals using the same temperature structure (M20) and cloud pa-
rameterisation, and vary the cloud optical properties and condensation curve.
We found that Na2S clouds are preferred over silicate, iron, and KCl clouds
(� log10Z � 2). Patchy clouds were also explored, but no evidence was found
for patchiness, regardless of cloud composition. At the temperature of HR
8799 b silicate clouds are expected to occur below the photosphere, with Na2S
or KCl clouds becoming the primary aerosol opacity source. This result is
likely driven by the condensation temperature of Na2S rather than the opti-
cal properties; unlike silicate clouds which have strong absorption features in
the mid-infrared, crystalline Na2S is featureless out to 15 µm, apart from a
characteristic scattering slope.

21.2. HR 8799 c

In our standard retrieval setup, we included data from SPHERE, GPI,
CHARIS, GRAVITY, and ALES for HR 8799 c. We omitted the OSIRIS data,
as it overlaps nearly completely with the GRAVITY data, is not flux calibrated,
and requires either binning to lower resolution to be fit with the c-k opacity
tables, or the use of the higher-resolution line-by-line opacities to fit the full
resolution data, dramatically increasing computation time. Nevertheless, we
performed several retrievals incorporating the OSIRIS data rather than the
GRAVITY data to determine how this choice impacts the retrieved chemistry
and clouds, and to determine if we can reproduce the findings of Konopacky
et al. (2013). Overall, HR8799 c proved challenging to fit: many retrieval setups
either required farmoremodel computations before convergence than the other
three planets, or failed to converge entirely. The grid-fits for HR 8799 c also
displayed the greatest variation between models.

Like HR 8799 b, the group A \ B retrievals of HR 8799 c are dominated
by a single retrieval, with � log10Z = 2 compared to the next best retrieval.
This retrieval used the Z23 temperature profile and free chemistry, and requires
high-altitude silicate clouds (log Pbase = �3.4± 1.8 bar). The inferred effective
temperature of 1159+11

�12 K is consistentwith the range of temperatures found by
the self-consistent grids, which spans from 1100 K to 1200 K, with the Bayesian
fits averaging around ⇠ 1200 K. The retrieved mass (8.5+0.4

�0.5 MJup) is slightly
higher than the dynamical mass estimate, though radius (1.10 ± 0.01 RJup)
is compatible with evolutionary models, and from these we derive a log g of
4.26+0.02

�0.03. The grid-fits also found plausible radii, favouring values slightly
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IV Characterisation of the HR 8799 planets

Figure 21.6: Mass fraction abundance profiles as a function of pressure in the
atmospheres ofHR8799b, c, d, and e. The solid lines indicate themedian values
of the most favoured disequilibrium retrieval for each planet, with the shaded
region indicating the 90% confidence interval. The circular markers show the
median values for each species from the most favoured free chemistry retrieval,
with the error bars indicating the 90% confidence interval. The position along
the pressure axis is arbitrary. The minimummass fraction allowed in the free
retrievals was 10�7.

larger than 1 RJup. All of the self-consistent models found temperatures of
1100�1200 K, and log g between 3.5 and 4.5. From the single-best �2 fits, the
ATMOmodel found a log g of 4.5, while the remaining models find a lower
solution of 3.5.

As with the other HR 8799 planets the retrievals favour highly enriched
solutions, finding [M/H] = 1.27+0.05

�0.05. The disequilibrium chemistry retrievals
find slightly lower metallicities than the free chemistry retrievals, with the most-
favoured disequilibrium retrieval finding a metallicity of 1.05 ± 0.04. The data
for HR 8799 c are highly discrepant in the H band (Figure 19.1), with the
CHARIS data and photometry being around 50% brighter than the SPHERE
and GPI data. As the metallicity is highly sensitive to the amplitude of the J, H,
and K band peaks, such discrepancies need to be resolved in the data to ensure
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reliable measurement of this parameter. All of the grid-fit solutions require high
metallicity and are limited by the grid boundaries. The C/O ratios between
the Bayesian fits and the �2 minimisation are consistent, typically favouring
stellar to slightly substellar C/O. The retrievals present a more consistent pic-
ture, with most retrievals favouring a mildly super-stellar C/O ratio, with the
average group A \ B C/O of 0.60+0.02

�0.01. The most favoured free chemistry
retrieval for HR 8799 c find water and CO abundances consistent with most
favoured disequilibrium retrieval. The free retrieval also finds an extremely
high HCNmass fraction of log XHCN = �2.54 ± 0.05, orders of magnitude
higher than the predictions from equilibrium chemistry. This finding is strongly
favoured by the Bayes factor, with log10Z = 30 in favour of including HCN
(c.AB.3 over c.A.8), with both retrievals using the Z23 temperature profile and
clouds condensing at their equilibrium locations. The detection of HCNwas
largely driven by the ALES data; the wavelength dependence of the detection
is discussed further in Section 20.2. If HCN is excluded, the overall metallic-
ity is also increased, mostly due to a 3 dex increase in the H2S abundance to
log XH2S = �2.38 ± 0.06. While this solution is disfavoured, the higher H2S
abundance is more compatible with the equilibrium chemistry predictions.
High resolution spectroscopy is likely required to precisely characterise the sul-
phur and nitrogen elemental abundances, and determine reliable abundances
for these trace species. Although the CH4 abundance is relatively low, with
log XCH4 = �4.3 ± 0.06, it is precisely constrained and detected with high
confidence, � log10Z = 11.5 (c.AB.3 over c.A.6).

HR 8799 c is host to a highly cloudy atmosphere. The most favoured
retrieval finds high altitude (log PMgSiO3 = �3.4±1.8 bar)MgSiO3 cloudwith
a mass fraction of log XMgSiO3 = �4.7 ± 1.2, together with a deep iron deck.
The vertical mixing strength for the clouds is log Kzz = 8.0±0.9, while the fsed
for both the silicate and iron clouds are compatible, with values between 5-6.
Cloud composition could not be robustly determined for HR 8799 c, due to
difficulties in retrieval convergence. However, we find that crystalline MgSiO3
clouds (c.AB.5) provide a better fit by the �2, and are favoured by the Bayes
factor over patchy amorphousMgSiO3 (c.AB.8), both using the M20 profile
and disequilibrium chemistry. The use of patchy cloud layers may improve this
fit, allowing individual layers to impact the spectrum independently, but this
would come at the cost of substantially increasing the number of parameters
to fit the continuum shape. The crystalline morphology provide a marginally
better fit to the MIRI photometric data, but spectroscopic characterisation of
the silicate feature is likely necessary to robustly distinguish these cases.

We ran a disequilibrium and free chemistry retrieval using the OSIRIS data
in place of the GRAVITY data to check for consistency and to determine if we
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could reproduce the findings of Konopacky et al. (2013). In order to use the
correlated-k method of pRT, we binned the OSIRIS data by a factor of 4 to a
spectral resolving power of R ⇠ 1000. We find that a high metallicity solution
is still found using these data, with effective temperatures, and surface gravi-
ties consistent with the GRAVITY retrievals. For the disequilibrium retrieval,
the C/O ratio is found to be significantly higher than any of the GRAVITY
retrievals, as well as the free chemistry OSIRIS retrieval. While the free retrievals
using the GRAVITY data find a slightly higher metallicity overall, the OSIRIS
data finds a slightly higher CH4 abundance of �3.81 ± 0.09, as well as a much
higher H2S abundance. Overall, we find that the main findings of metal-rich
atmospheres are reproducible regardless of whether we use the GRAVITY or
OSIRIS data, and confirm the detection of water and CO in the atmosphere of
HR 8799 c.

21.3. HR 8799 d

For HR 8799 d we included all available spectroscopic data as described in
Section 19, but include a scaling factor for the ALES data set as otherwise it
is incompatible with NACO photometric observations. This shifts the mean
L-band flux of HR 8799 d to a similar magnitude as e and c.

Unlike HR 8799 b or c, d is well fit by a broad selection of models, and
no single retrieval dominates the Bayesian average of figure 20.2. All of the
preferred models (� log10Z < 2) used disequilibrium chemistry and the M20
or Z23 temperature profiles. Using the Bayesian average, the retrieved effective
temperature is 1179+31

�28 K, compatible with the ranges found by the grid fits,
whichfindTe↵ from1150K–1300K.Theplanetmass (9.2±0.1 MJup) is tightly
constrained by the dynamical mass prior, which in turn allowed for precise
measurement of the planet radius (1.26 ± 0.07 RJup) and log g (4.18 ± 0.05).
This surface gravity is consistent with the estimates from the Bayesian grid fits,
but is significantly higher than the 3.0-4.0 range found by the �2 fits. The
self-consistent fits find marginally smaller radii than the retrievals, generally
between 1.1 and 1.2 RJup.

The metallicity of HR 8799 d is consistent with HR 8799 b and c, with
[M/H] = 1.2± 0.2. While most grid-fit solutions also favoured high-metallicity
atmospheres, the Bayesian fit with the ATMOmodel find a solution consistent
with solar metallicity, though the radius was inconsistent with evolutionary
models (0.926 ± 0.004 RJup). The best fit Exo-Rem model find a metallicity
of 0.78±0.03, a radius of 1.168 ± 0.006 RJup and an effective temperature of
1155±5 K. The C/O ratio is always found to be consistent with the stellar
value, with retrievals finding C/O = 0.60+0.04

�0.06. The grid-fits are also typically
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consistent with stellar, though the best fit Exo-Remmodel found a substellar
C/O ratio of 0.2.

Patchy clouds are marginally disfavoured by the Bayes factor, and the patch-
iness is poorly constrained, finding fcloud = 0.45 ± 0.3. The most favoured
solutions require either amorphous or crystallineMgSiO3 or crystallineMgSiO3,
with a marginal preference for the amorphous structure. Each of these com-
positions displays slightly different near infrared slopes, shown in Figure 22.1.
However, such a slope can be induced by various sources of continuum opacity
that may not be fully accounted for in the retrieval. Thus mid-infrared obser-
vations of the silicate absorption features are necessary to robustly constrain
the composition and particle geometry. There is no preference for a free cloud
base pressure compared to the equilibrium position, suggesting that the AM01
model is sufficient to describe the clouds in this atmosphere.

While the disequilibrium retrievals are favoured over the free chemistry re-
trievals, there is excellent agreement between the freely retrieved abundances and
the disequilibrium chemical profiles. Water and CO are both highly abundant,
and the freely retrieved abundances agree with the disequilibrium profiles to
within 1�. No other species are both highly abundant and well constrained, so
we do not perform leave-one-out retrievals to test for their presence. However,
even at low abundances the freely retrieved CH4 abundance is compatible with
the disequilibrium profile.

21.4. HR 8799 e

The measurements of HR 8799 e largely reinforce existing literature values.
The single most favoured retrieval, which also dominates the group A\ B, used
free chemistry and the Z23 temperature profile, together with a cloud base
calculated using equilibrium condensation. This lead to similar results as for
HR 8799 c and d, and is consistent with the results of the grid fits. An effective
temperature of 1138+30

�22 K is retrieved, compatible to within the uncertainties
of the grid-fits, which found a temperature range of 1100 K to 1200 K. The
mass posterior was determined by the dynamical mass prior, as was the planet
radius, finding Mpl = 7.5+0.6

�0.6 and Rpl = 1.13+0.05
�0.05 respectively. This leads to a

log g of 4.18+0.06
�0.05, slightly higher than the self-consistent estimates of 3.5–4.0.

The overall best self-consistent model by the �2 was Exo-Rem, which finds an
effective temperature of 1100K, a radius of 1.15 RJup, and a somewhat low log
g of 3.5. ATMO is the most favoured self-consistent model when using the
Bayesian framework, though it found an unphysically small radius and higher
temperature than other models. HR 8799 e is the only companion for which
theMIRI photometry is not convincingly fit, as seen below in figure 22.5. Every
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model underestimated the flux beyond 10 µm relative to the measurements,
though this may be due to contamination from the host star or inner disc
(Boccaletti et al., 2023).

Compared to the other three planets, HR 8799 e is found to have an even
more metal rich atmosphere, with [M/H]=1.9+0.1

�0.2. Metallicities >1 were a
universal feature of the retrievals for e. Thiswas reinforcedby the grid-fits, which
uniformly find strong enrichment, running into the upper grid boundaries.
Free chemistry retrievals are always preferred over the disequilibrium retrievals;
from these we found the group A \ B C/O ratio is 0.87+0.02

�0.02. As the free
chemistry retrieval C/O ratio only accounts for the gas-phase abundances, there
is additional oxygen sequestered in the silicate clouds that could reduce the C/O
ratio. However, the most favoured disequilibrium retrieval finds a similar value
of 0.83±0.02, suggesting thatHR8799 e is somewhat of an outlier compared to
the other three planets. Using a similar setup toMollière et al. (2020) (e.AB.11),
we find C/O=0.78+0.03

�0.03. The grid fits tend to find C/O ratios compatible with
the stellar value, though the overall best fit Exo-Remmodel also finds a higher
value of 0.8.

In addition to the water and CO rich atmosphere, HCN is found to be
highly abundant, with log XHCN = �2.26 ± 0.11. This detection is strongly
favoured by the Bayes factor, with log10Z = 7.5. As with HR 8799 c and
shown in Fig. 24.5, this detection was driven by using the HCN opacity to
fit the ALES spectrum, though changes to the shape in the H and K-bands
also provide a slightly better fit as well. This is slightly enriched compared to
equilibrium chemistry predictions, but is expected for a metal rich planet with a
relatively high C/O ratio (Giacobbe et al., 2021), and can be produced through
photochemical reactions (Moses et al., 2013). In contrast, the presence of CH4
is poorly constrained.

As with HR 8799 c and d, the most favoured retrieval for e favours silicate
clouds with a deeper iron deck, both condensing at their equilibrium locations,
with no preference for patchy clouds. A broad range of disequilibrium retrievals
(e.AB.7–11) found consistent cloud properties, with condensation at the equi-
librium location preferred, with a silicate abundance lower than predicted by
equilibrium chemistry (between 10⇥ to 100⇥ less than equilibrium), and iron
abundances consistent with equilibrium. Individual fsed parameters for the
silicate and iron clouds were not required, with variations in the Bayes factor
driven more by the choice of patchiness and temperature profile.
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21.5. Impacts of modelling choices

While we examined the primary atmospheric characteristics of each of the
four HR 8799 planets, it is crucial to understand how the choice of model im-
pacts these measurements. As described in Section 20, we performed retrievals
using a broad selection of thermal structures, chemical parameterisations, and
cloud models, each of which we is examined in detail below.

21.5.1. Thermal structure

For each planet we performed retrievals using four different temperature
profile parameterisations. The Z23 profiles is used in themost favoured retrieval
for three of the four planets, while for HR 8799 d there is equal evidence for
the Z23 andM20 profiles. The Guillot profile is found to be the second most
preferred profile for HR 8799 c and e, while the spline profile using six nodes
is strongly disfavoured by the Bayes factor. In Figure 21.7 we compare the
retrieved and self-consistent temperature profiles for HR 8799 e. We find that
there is excellent agreement between nearly all of the retrievals in the photo-
sphere region, as well as with the best-fit Exo-Rem temperature profile. There
is little variation in the photosphere region between the disequilibrium and
free chemistry models. Only one model - the spline profile with free chemistry
- found a profile more similar to that of the clear ATMO profile, though it is
strongly disfavoured by the Bayes factor compared to the other free chemistry
retrievals. The spline profile is the only profile that does not explicitly assume
an adiabat deep in the atmosphere or rely on assumptions from self-consistent
models, and so we cannot fully rule out the diabatic profiles of Tremblin et al.
(2015). The bulk atmospheric properties are also reasonably consistent across
the different temperature parameterisations. While there are statistically signifi-
cant variations in the C/O ratio between the different parameterisations, they
remain broadly consistent between 0.7 and 0.9.

Although the spline profile is disfavoured by the retrievals, it is a useful
parameterisation to determine the amount of flexibility required by the model,
and to explore the known degeneracies between the atmospheric thermal struc-
ture and clouds Tremblin et al. (2015, 2016). We performed a series of retrievals
on HR 8799 b, varying the number of nodes in the spline profile and observing
how the retrieved profile changes with the increased flexibility. We repeated this
test for both a clear atmosphere model and an model with clouds condensing
at the equilibrium base pressure. We find no significant differences in the tem-
perature profiles between the clear and cloudy atmospheres. For HR 8799 b,
the Bayes factor favours retrievals with three or four nodes in the spline profile.
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Figure 21.7: Temperature profiles for HR 8799 e. In blue are temperature
profiles from disequilibrium retrievals, while in red are free chemistry retrievals.
The shaded regions indicate 90% confidence intervals. Also included are the
temperature profiles from the best fit self-consistent models.

Fewer nodes mean the profile cannot be accurately modelled, while more nodes
add additional parameters without improving the fit to the spectra.

21.5.2. Chemistry

For all four planets we performed retrievals using a grid derived from an
equilibrium chemistry solver with disequilibriumH2O-CO-CH4 quenching,
as well as free chemistry retrievals where we directly retrieved the mass-fraction
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abundance of various species. Fig. 21.6 shows the abundance profiles from the
best fit disequilibrium and free chemistry retrievals for each planet. Both types
of retrievals produce consistent metallicities and C/O ratios for each planet:
overall there is excellent agreement in the water and CO abundances, which
are the primary opacity sources in these atmospheres. Only HR 8799 b shows
statistically significant discrepancy between the two methods for these species,
with the free retrieval finding a slightly lowermetallicity than the disequilibrium
retrieval. Even for trace species, the free retrievals and disequilibrium retrievals
are largely compatible, though only a few species have statistically significant
detections in the free retrievals.

The strongest trace species detections are HCN in HR 8799 c and e, at
abundances far higher than predicted by the equilibrium model. HR 8799
b also has a well constrained H2S measurement, though it is not statistically
significant. CH4 is significantly detected in the atmosphere of HR 8799 c,
demonstrating that with sufficient S/N and wavelength coverage, it is possible
to constrain abundances at below 10�4 by mass. The free chemistry detection
of CH4 is at a moderately higher abundance than in the best fit disequilibrium
model. While it is likely also present in the cooler atmosphere of b, additional
wavelength coverage or higher S/N observations are required for a significant
detection. For HR 8799 c, we include in Figures 24.4 and 24.5 in the appendix
comparisons between the HR 8799 c data and models both with and without
the contribution of CH4 andHCN opacity, demonstrating the impact of these
species on the spectral shape. While the HCN detection is driven primarily
by the low flux of the ALES data, there is a significant change in the H-band
shape, as well as a slight change in the peak amplitude of the K-band. As the
ALES data are relatively low S/N, additional H and L band data should be
obtained to confirm this detection. However, the CH4 detection is driven
by modest improvements in the fit throughout the K-band. Several abundant
species predicted by the equilibriumnetwork are not confidently detected by the
free chemistry retrievals, such as CO2, NH3, and H2S. Additional wavelength
coverage or higher spectral resolutionmay allow for the characterisation of such
species.

If we take the averaged free retrieval results at face value, we can derive
elemental abundance ratios for each of the four planets, using a similar method
to calculating themetallicity. Taking the volumemixing ratios of eachmolecular
species, we can count the total number of C, N, O, and S atoms, and calculate
the ratio relative to the planetary hydrogen abundance. Thus for example

C/H =
XCO + XCO2 + XCH4 + XHCN

XH2 + 2XH2O + 2XH2S + XHCN + 4XCH4 + 3XNH3

, (21.1)
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where all abundances are measured in number fraction. These ratios are then
normalised to the solar values from Asplund et al. (2009).

In Fig. 21.8, we present the elemental abundance ratios for each of the
four planets. We find that most elements are enhanced relative to solar for all
four planets. HR 8799 b appears depleted in nitrogen relative to the other
planets, likely due to the nondetection of NH3, which will require observations
of the 10 µm feature to characterise. The HCN detections in HR 8799 c and e
tightly constrain the nitrogen enhancement, though these planets still appear
less enriched in nitrogen than in carbon or oxygen, though this is again likely due
to additional nitrogen stored inN2 andNH3, whose opacities are inaccessible at
these wavelengths. The sulphur elemental ratio is poorly constrained for all of
the planets apart fromHR 8799 b, which has a precise - though not statistically
significant - constraint on theH2S abundance. HR8799 b appears sulphur rich,
while the remaining planets appear consistent with the solar value, or slightly
depleted in sulphur, though this is largely due to a lack of measured chemical
species.

The C/O ratio is a key consideration for planetary atmospheres. How-
ever, measuring the atmospheric C/O ratio and linking it to the bulk planet
composition is far from trivial. Lodders & Fegley (2002) and Lodders (2003)
explore the chemistry and condensation of substellar atmospheres, identifying
the condensation sequence of refractory species throughout these atmospheres,
finding that at typical L-dwarf temperatures there will be silicate clouds in the
photosphere region. Fonte et al. (2023) demonstrate how oxygen is sequestered
in silicate clouds and other refractory species. This was followed by the recent
work fromCalamari et al. (2024), who calculate the bulk planet C/O ratio from
the atmospheric ratio, finding that the median sequestration of oxygen due to
this condensation is 17.8+1.7

�2.3%. They also identify a relation between the bulk
and observed C/O ratio:

(C/O)obs ⇡
(C/O)bulk

1 � 0.371 (C/O)bulk
. (21.2)

Solving for (C/O)bulk, we find that for HR 8799 e, with an observed C/O
ratio of 0.88+0.02

�0.02, should have a bulk C/O ratio of 0.66, much closer to the
stellar value of 0.54. Likewise, HR 8799 d has the lowest observed C/O ratio of
0.61+0.03

�0.04, which translates to a modestly substellar bulk C/O ratio of 0.50. In
general, this relation reduces the variation between the four planets, and brings
the planetary C/O ratio more in line with the known stellar value.

While both chemistry models are compatible, they also share similar biases.
The free chemistrymodelmeasures the gas phase abundance in the photosphere,
and is primarily impacted by the atmosphere above the silicate clouds. Con-
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versely, the underlying equilibrium model does remove oxygen from the gas
phase due to condensation, though the additional flexibility in the cloud param-
eterisation means that it is only exactly correct for fsed = 1. By parameterising
disequilibrium via fixing the chemical abundances above a quench point, the
model may lose this sensitivity, and therefore measures the abundances of CO,
H2O, and CH4 in a similar fashion to the free chemistry model. Thus the
C/O ratio as inferred by both models will be strongly impacted by the oxygen-
depleted region above the silicate clouds, leading to over-estimates of the C/O
ratio. Throughout this work we present these measurements, but we note that
the adjustment introduced by Calamari et al. (2024) is likely a more accurate
estimate of the bulk planet composition.

In addition to the elemental ratios, we also computed Zpl/Z⇤ , which allows
us to directly compare our metallicities to literature values, such as those of
Thorngren et al. (2016). We converted the metallicity [M/H] of each atmo-
sphere to Zpl using the methods of Thorngren & Fortney (2019), adapting for
our own notation:

10[M/H] =
1 + Y/X

⇣
Z
�1
pl � 1

⌘ ⇣
µZ

µH

⌘ , (21.3)

where X, Y , and Z are the solar hydrogen, helium and metal mass fractions
and µ is the mean molecular weight of the metal content of the atmosphere.
Rearranging and substituting in the measured atmospheric metallicity [M/H],
we find:

Zpl =

0
BBBBBBB@1 +

1 + Y/X

10[M/H]
⇣
µZ

µH

⌘
(Z/H�)

1
CCCCCCCA

�1

. (21.4)

We take the same assumptions as Thorngren & Fortney (2019), taking µZ to
be 18, assuming most of the metal content is in water, µH to be 1 for atomic
hydrogen, and Y/X to be 0.3383 as in Asplund et al. (2009). As the metallicity
of HR 8799 A is near solar, Z⇤/H is taken to be the solar value of Z/H� =
1.04 ⇥ 10�3. To normalise to the stellar metallicity we follow Thorngren et al.
(2016) and calculate the Z⇤ as

Z⇤ = 0.014 ⇥ 10Fe/H. (21.5)

For HR 8799, we used solar metallicity to calculate Fe/H, but refer to the
discussion in Section 18.1.

Disequilibrium chemistry has long been thought to play a key role in shap-
ing the composition of the HR 8799 atmospheres (e.g. Marois et al., 2008).
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With well-constrained chemical abundances, we can start to place limits on the
strength of vertical mixing that drives this disequilibrium. The quench pressure
we retrieve is defined as the level below which (in pressure) the abundances of
H2O, CO, and CH4 become vertically constant. This parameterises dynamical
mixing that homogenises the upper layers of the atmosphere. More rigorously,
the quench point is defined as the point at which the chemical timescale tchem
and the mixing tmix are equal. Following Zahnle &Marley (2014), the mixing
timescale is defined through the ratio of the local atmospheric scale height H to
the vertical eddy diffusion coefficient, Kzz:

tmix =
H

2

Kzz
. (21.6)

The chemical timescale depends on the reaction rates involved. Considering
the CO–CH4 reaction chain, Zahnle &Marley (2014) derive a timescale at the
quench point (tq) for CO. For strong mixing, pulling frommaterial at depths
below the point where the atmosphere is 1000 K, they find the timescale well
described by an Arrhenius relation for quench pressure p in bar, metallicitym,
wherem = 10[M/H], and temperature T in kelvin:

tq1 = 1.5 ⇥ 10�6
p
�1

m
�0.7 exp (42000/T ) s. (21.7)

For weak mixing, and therefore drawing from low temperatures with little CO,
the timescale is found to be

tq2 = 40p
�2 exp (25000/T ) s, (21.8)

Combining the two, the total chemical timescale is defined as:

tCO =

 
1

tq1
+

1
tq2

!�1

, (21.9)

which will favour the lower of the two values tq1 and tq2. Equating the mixing
and CO reaction timescales, we can infer the strength of vertical mixing in the
atmospheres of the HR 8799 planets:

Kzz =
H

2

tCO
, (21.10)

where the scale height is defined as

H =
kBT

µg
, (21.11)
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Table 21.3: Quench pressures, vertical mixing parameters, and
sedimentation fractions for the HR 8799 planets.

Planet log Pq Kzz q Kzz, AM01 fsed

[bar] [cm2/s] [cm2/s] MgSiO3 Fe

b 1.7+0.2
�0.2 2.9+0.6

�0.7 8.6+0.8
�1.0 1.1+0.3

�0.3 4+2
�1

c 2.3+0.1
�0.1 6.3+0.3

�0.5 9.2+0.4
�0.4 3.3+0.3

�0.3 6+2
�2

d 1.0+0.6
�0.7 4.8+0.9

�1.3 9.2+0.7
�0.9 2+4

�1 6+2
�2

e 2.1+0.4
�1.2 5.9+0.9

�0.6 8.6+0.7
�0.8 1.4+0.4

�0.3 6+2
�3

Notes
Measured from the group A \ B retrievals, providing median
and ±34% confidence regions.

for temperatureT , surface gravityg, meanmolecularmassµ, and theBoltzmann
constant kB. In order to calculate these quantities for the HR 8799 planets, we
take Te↵ as a representative temperature to calculate the timescales and scale
height, g as the measured surface gravity, and µ as the average mean molecular
weight of the atmosphere. As Kzz is exponential in temperature, the choice
of what temperature to use strongly influences the measured value. Using the
temperature at the quench pressure, typically deep in the atmosphere, results
in unphysically strong vertical mixing, with log Kzz ⇡ 20. A more thorough
analysis could try to measure the vertical mixing as a function of temperature
throughout the atmosphere, but the current data quality is of insufficient reso-
lution or S/N for such measurements. Thus we treat Te↵ as a representative
temperature with which to determine the vertical mixing strength. We include
the results of these calculations, together with the retrieved Kzz used to parame-
terise the AM01 clouds in Table 21.3.

The quench pressure is well constrained in the Bayesian average of group
A\B retrievals for all fourplanets; the values ofwhich are listed inTable 21.3. All
of the planets quench below the photosphere, with d quenching at the highest
altitude, around 10 bar. Including only the disequilibrium retrievals in the
Bayesian average of group A\ B, we derived Kzz from the quench pressure. We
then turn to Soni&Acharyya (2023) for a comparison, who provide predictions
for CH4 and CO abundances for varying Kzz, Te↵ , and log g across a range of
metallicities. For our measured Te↵ and CH4 abundances, we should expect
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log Kzz of around 6 for the warmer three companions, regardless of whether we
use the measured CO or CH4 abundance. For HR 8799 b a much lower value
(less than ⇠ 2) is expected, assuming a 10⇥ solar metallicity. Our inferred Kzz
values for c, d, and e are compatiblewith this prediction, finding logKzz between
5 and 6. For HR 8799 b we also measure weak mixing, with log Kzz = 2.9+0.6

�0.7,
which is again compatible with the predictions of Soni & Acharyya (2023).
These measurements from the quench pressure are also inconsistent with the
parameter used in the AM01 clouds, which require stronger vertical mixing
of log Kzz ⇠ 9. This discrepancy is perhaps not surprising: 3D modelling
predicts that Kzz should vary with altitude throughout the atmosphere, and
the larger cloud particles likely respond to the atmospheric motion differently
than the gas phase constituents. Ultimately, more precise constraints on the
thermal structure and chemical abundances, as well as trace species detections
are necessary to derive amore precise verticalmixing strength. Furthermodelling
work is also necessary to provide a more physically motivated transport model
than a vertically constant eddy diffusion coefficient.

21.5.3. Clouds

For the inner three planets, we find the most favoured solution is an opti-
cally thin silicate cloud lying above a deeper, optically thick iron cloud deck. In
our standard setup, the clouds were parameterised as in AM01, with the clouds
condensing at the intersection of their condensation curve and the temperature
profile, with their extent determined by fsed. The cloud mass fraction was
allowed to scale from equilibrium. In totally free retrievals, the cloud abun-
dances, locations, and vertical extentswere all free parameters of themodel. This
decouples the clouds from both the chemistry and the atmospheric thermal
structure, allowing them to fit the spectral shape, but in potentially nonphysical
configurations. In this framework the cloud extent was then parameterised as in
AM01, determined by fsed and Kzz. Using this setup we find an optically thin
silicate cloud lying above a compact iron cloud, while the AM01 setup finds an
iron cloud that extends high above the silicate cloud. Depending on the choice
of other parameters, either the free cloud base or the equilibrium base can be
preferred by the Bayes factor. HR 8799 e free chemistry retrievals strongly
favour the equilibrium condensed clouds, while the disequilibrium retrievals
favour the free cloud base setup. However, in general the clouds condensing
at equilibrium are the most favoured setup for each planet. Without broad
wavelength coverage and high spectral resolution to probe a high dynamic range
in pressure, it is difficult to robustly distinguish between the different potential
cloud structures.

234



RESULTS

There is a marginal preference for clouds parameterised using a Hansen
(1971) particle size distribution over a log-normal distribution (e.AB.20 over
e.AB.25, � log10Z = 0.7), though this was only compared for HR 8799 e
using the Z23 profile, and assuming the clouds condense at their equilibrium
saturation location. In this case ah is calculated from fsed and Kzz, and a lower
fsed for the MgSiO3 cloud was retrieved than with the log normal distribution
( fSED,Hansen = 1.18 ± 0.20). The effective distribution width parameter, bh

was found to be 0.016, which is narrower than the distributions found by
Burningham et al. (2021).

In general our clouds are comparable to those of Burningham et al. (2021)
and other similar studies (e.g. Mollière et al., 2020; Vos et al., 2023; Balmer et al.,
2023). Burningham et al. (2021) find a combination of MgSiO3, SiO2, and
Fe clouds provides the best-fit model to an ultracool field dwarf, 2MASSW
J2224438–015852. TheMgSiO3 clouds in their model are located at 10�3 bar
with a maximum optical depth of ⌧ = 0.3 at 1 µm and an effective particle
radius of ⇠ 0.04 µm. The SiO2 clouds are slightly deeper, at 10�2 bar, and
are optically thick at 1 µm. This is the same location where we findMgSiO3
clouds condensing in the atmospheres of HR 8799 c, d, and e. The iron cloud
is found to be deep in the atmosphere, though with an extended structure, with
some contribution at the same altitude as the silicate clouds. While we did not
fit for a three cloud model, the similar locations and optical depths of these
clouds suggests similar structures between the objects, even though they differ
in effective temperature by hundreds of kelvin.

Figure 21.10 highlights how the difference in particle radius contribute to
the difference in the wavelength dependence of the cloud optical depth. The
cloud particle radius in the AM01 model is a function of many atmospheric
factors, including the temperature, mixing strength, fsed, and particle number
density. We see that changes in the particle radius are correlated with changes in
both the temperature and the particle density. Luna &Morley (2021) explore
the impact of particle size and composition on the spectral signatures of clouds
in young brown dwarfs in the mid-infrared, finding that small particle sizes will
lead to visible features in the planetary spectrum. However, we see in Figure
21.10 that the particle sizes in regions of the atmospheres with significant cloud
mass fraction tend to be larger (> 1 µm), and that there are no indications of
deep cloud absorption features in the mid-infrared, even though silicate clouds
are present in the atmosphere. Small silicate particles should produce deeper
absorption features, which are not observed in the mid-infrared, suggesting that
the impact of the small mean particle size in the upper atmosphere does not
contribute strongly to the cloud opacity.

Due to the different slopes in the near-infrared opacity as a function of
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wavelength, as shown in Figure 22.1, there is some sensitivity to different com-
positions and particle geometries. This can explain the mild preference for
amorphous MgSiO3 clouds in certain like-for-like retrieval comparisons. In
reverse, the lack of features leads to a preference for Na2S clouds in HR 8799 b.
Performing additional tests on HR 8799 e, we find that Mg2SiO4 (e.AB.14) are
mildly disfavoured by the retrievals, and Al2O3 (e.AB.24) clouds are strongly
disfavoured, though this is again more likely from their condensation location
rather than from the impact of aerosol spectral features. Observations of the
silicate absorption features at 10 µmwould allowmore precise measurement of
this wavelength dependence, and in turn place better constraints on the cloud
structure and composition.
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IV Characterisation of the HR 8799 planets

Figure 21.9: Cloud properties for HR 8799 e, showing the optical depth due
to clouds as a function of pressure (colour map), with the ⌧ = 0.3 and ⌧ = 1.0
contours highlighted by the dashed lines. The solid lines indicate the mass
fraction abundance of the MgSiO3 and Fe clouds in blue and red respectively.
Left: Cloud properties e.AB.13, using a freely retrieved cloud base pressure and
abundances. Right: The same, but forCase e.AB.2, which uses the equilibrium
condensation to determine the location of the cloud base. The abundances
are determined using equilibrium chemistry, and retrieving a scaling factor,
(log S Fe = 0.0 ± 1.1, log S MgSiO3 = �0.8 ± 1.0).

Figure 21.10: Effective particle radii as a function of altitude for silicate (blue)
and iron (red) clouds. The solid lines indicate the radii for Case e.AB.13, which
used a free cloud base pressure and abundance, while the dashed lines are for
Case e.AB.2, which used equilibrium condensation and scaled equilibrium
abundances. The horizontal lines indicate the cloud base pressure. The green
line indicates the temperature profile. The shaded regions indicate unphysical
particle sizes where the opacity contribution is set to 0.
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22. DISCUSSION

22.1. Highly enriched atmospheres

While some enrichment is expected in giant planets formed through core
accretion, metallicities of nearly 100⇥ the stellar value are far beyond the expec-
tations for planets with masses larger than that of Jupiter. Having transformed
the atmospheric metallicities from the retrievals to Zpl/Z⇤ using equations 21.4
and 21.5, we can compare the HR 8799 planets to the broader population. Fig-
ure 22.2 shows how the inferredmetallicities of theHR8799 system compare to
those of other directly imaged planets, and to a fit from Thorngren et al. (2016)
derived from a sample of transiting exoplanets. The HR 8799 planets are clear
outliers amongst the directly imaged planets, whose metallicities were taken
from the literature. We again used equations 21.4 and 21.5 to convert from a
measurement of [M/H] to Zpl/Z⇤ . Where stellar metallicities are not available,
we assumed a metallicity [Fe/H]=0. Only the 2 MJup planet Af Lep b has a
comparable degree of enrichment to the HR 8799 planets (Zhang et al., 2023).
However, they are comparable to hot Jupiters observed in transmission, such
as WASP 39 b (Rustamkulov et al., 2023a). Looper et al. (2008) and Stephens
et al. (2009) demonstrate how high metallicity atmospheres facilitate condensa-
tion, in turn leading to the strong reddening seen in a subset of L dwarfs. The
retrieval of highly metal rich and very cloudy atmospheres is consistent with
this picture from brown dwarfs. Further supporting the high [M/H] retrievals
are their consistency with the self-consistent grids, which always favour their
upper limits.

Tovalidate these findings, weperformed a series of test retrievals forHR8799 e,
fixing the metallicity to solar composition, and compared cases where [M/H] is
fixed to values between 0.0 and 2.0 in steps of 0.5 dex. Figure 22.3 shows the
best fit spectra from each of these retrievals, showing the clear differences in the
J, H, and K bands between the different metallicity cases that are unable to be
compensated for by varying other atmospheric parameters. We find that the
cases of [M/H] = 1.5 and 2.0 are strongly favoured over the cases between 0.0
and 1.0, with solar composition disfavoured at � logZ > 10. The remaining
atmospheric parameters also significantly varied between the different retrievals:
the C/O ratio increases with increasing [M/H], maintaining a relatively con-
stant abundance of H2O in the atmosphere while allowing the CO abundance
to increase. This combines with the decreasing fsed, increasing the cloudiness
of the planet to dampen the stronger molecular features at high metallicity. A
more thorough treatment of the condensation and chemistry in the retrieval
framework are likely necessary to accurately infer both of these parameters.
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IV Characterisation of the HR 8799 planets

Figure 22.1: Cloud absorption (left) and scattering (right) opacities for different
condensate compositions and structure, for 1-µmparticles. Dark blue indicates
MgSiO3, light blue is Mg2SiO4. Solid (dashed) lines are for crystalline (amor-
phous) substances. The solid red (green) line is for crystalline iron (Na2S).

The spectra shown in Figure 22.3 show that the retrieved metallicity is
strongly dependant on both the height of the J, H, and K band peaks, as well
as the shape of these features. However, the J bands is only covered by the
low-resolution SPHERE data, with relatively poor S/N, and different instru-
ments measure significantly different flux in the H band. Without compatible
measurements in this spectral regime, robust conclusions about the metallicity
are hard to draw. Additional constraints can be obtained from other wavelength
regions; Lodders & Fegley (2002) find that the CO2 abundance scales propor-
tionally to [M/H]2. With strong features between 3 and 4 µm, as well as in the
mid-infrared, future observations should be able to place robust constraints
on this parameter. Section 22.4 discusses the potential of JWST to make such
observations.

Finally, we performed independent comparisons to themoderate resolution
OSIRIS spectra presented in Ruffio et al. (2021). Following their methods, we
used the parameters of the single best-fit disequilibriummodels for HR 8799 b,
c, and d to compute a high spectral resolution using line-by-line opacity lists.
We convolved this model to the OSIRIS instrumental spectral resolution, and
binned the model to the OSIRIS wavelength grid. The resulting spectra was
multiplied by the atmospheric transmission function provided by Ruffio et al.

240



DISCUSSION

Figure 22.2: Metallicities of the exoplanet planet population. In blue are tran-
siting planets, adapted from Thorngren et al. (2016) (dark blue). In red are
directly imaged planets, with references listed below. Indicated with stars are
the HR 8799 planets as measured in this work. The grey line indicates the fit
by Thorngren et al. (2016).
Notes: � Pic b (Gravity Collaboration et al., 2020); PDS 70 b (Wang et al.,
2021); 51 Eri b (Whiteford et al., 2023); VHS 1256 b (Hoch et al., 2022); HIP
65426 b (Petrus et al., 2021);  And b (Bonnefoy et al., 2014b; Wilcomb et al.,
2020); YSES 1 b (Zhang et al., 2021) AB Pic b (Palma-Bifani et al., 2023); AF
Lep b (Zhang et al., 2023); GJ 504 b (Bonnefoy et al., 2018); HD 95086 b (Des-
grange et al., 2022); Ross 458 c (Burgasser et al., 2010); DH Tau b (Patience
et al., 2012); HN Peg b (Leggett et al., 2008; Suárez et al., 2021); CT Cha b
(Schmidt et al., 2008); GQ Lup b (Demars et al., 2023).

(2021). The continuum was measured by high-pass filtering the spectrum, and
was subsequently subtracted from the model. We fit a scaling factor between
the model and the OSIRIS data and computed the resulting �2. This exercise
was repeated, setting the metallicity of the model to solar. For HR 8799 c and
b we find that the high metallicity model provides a better fit to the OSIRIS
data than the solar model, with the caveat that fixing the metallicity during the
retrieval may result in a better fit than setting it a posteriori, without changing
other atmospheric parameters. For HR 8799 d the high metallicity model is
only a marginally better fit than the solar metallicity model. In general, the fits
from the GRAVITY and remaining archival data provide reasonable fits to the
R⇡ 4000OSIRIS data, of similar quality to the fits displayed in Ruffio et al.
(2021), and are included in the appendix in Figure 24.3.
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22.2. Impacts of data selection

Given the inhomogeneity in the data in terms of spectral resolution, S/N,
observing strategy and more, we performed a series of retrievals to examine
the impact of different datasets on the retrieval results. We first performed
retrievals using only the GRAVITY data to determine the constraining power
of this new dataset. We found that using only the GRAVITY data we could
rule out clear atmosphere solutions at � logZ > 7 (e.g. e.A.31 over e.A.32),
using the Z23 profile and disequilibrium chemistry. Using only the GRAVITY
observations for HR 8799 e, we could obtain estimates of the metallicity (2 ±
0.3), effective temperature (1143+38

�32 K), and C/O ratio (0.71+0.08
�0.2 ), which are

broadly consistent with the results from the combined dataset. We obtain
similarly reliable estimates for b (b.A.32), but using only the GRAVITY data
for d (d.A.12) and c (c.A.11), resulted in significantly lower metallicities. All of
these retrievals use the same setup of the Z23 profile, disequilibrium chemistry,
and silicate and iron clouds condensing at their equilibrium saturation point.
Given the higher spectral resolution and S/N of the GRAVITY data, this leads
to the conclusion that solutions to the full retrievals are largely driven by the
fits to the GRAVITY spectra. The C/O ratios for d and b are also incompatible
when using only the GRAVITY data, finding substellar values for both planets.

Conversely, we also performed retrievals that exclude theGRAVITY spectra.
For HR 8799 e (e.A.33) and d (d.A.13), we find that the retrieved parameters
again broadly agree with the retrieval including the GRAVITY data. Thus even
if the retrievals are dominated by the GRAVITY data, the conclusions we draw
are robust even when excluding the GRAVITY spectra.

22.3. Formation

The formation mechanism of the HR 8799 planets has seen much debate
since their discovery: simply put, how can one form four such massive planets
in the same system? The C/O ratio and metallicity are the best formation
tracers observed to date in these planets. Nevertheless, neither gravitational
instability nor core accretion scenarios have been ruled out. The high degree of
enrichment in these objects would seem to suggest a core accretion formation
scenario. However, Wang (2023) finds that even for [M/H]=0.5, approximately
100 earth masses of solids are required to enrich the atmosphere of HR 8799 e.
With the even higher metallicities measured in this work, this number would
increase, and it is unclear if it is possible to have nearly 1000 earth masses of
metals available in a protoplanetary disc and accreted with high efficiency. Wang
(2023) additionally find that late accretion of planetesimals would require less
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material to result in a similar degree of enrichment, potentially only requiring a
few hundred earth masses of solids to achieve the high metallicities of all four
planets, though this material should quickly settle out of the atmosphere.

All four companions have stellar C/O ratios or higher, and the C/O ratio in
this system varies with separation, decreasing fromb to d, before a sharp increase
in the C/O ratio for the innermost planet. Super-stellar C/O ratios have been
tied to core-accretion formation together with pebble drift and evaporation
(Schneider & Bitsch, 2021b,a; Mollière et al., 2022). A pathway to significant
metal enrichment was found by Bitsch &Mah (2023), though it predicts that
the CO rich pebbles should evaporate near the CO iceline, which is outside the
radius of even HR 8799 b. Planetesimal accretion cannot be ruled out either:
if large amounts of solids, with near-stellar composition, are accreted, more
metal-rich planets will have C/O ratios that approach the stellar value. This
is consistent with the trends in metallicity and C/O between the b, c, and d
planets, though e remains an exception. Such a transition could be explained
by the outer three planets, particularly d, trapping water ice and preventing
these solids from reaching the innermost planet. Some combination of these
mechanisms could explain both the atmospheric enrichment and the trends in
the C/O ratio: for example, early enrichment from evaporating pebbles could
lead to the high planetary metallicities, while late accretion of planetesimals
could then drive the C/O ratio down towards the solar value. Alternatively,
Chen et al. (2024) demonstrate that the opening of gaps in a protoplanetary
disc can significantly alter the composition of the gas and ices available to accrete
onto forming planets, and it seems likely that substructure induced by the four
HR 8799 planets would strongly impact their eventual composition.

With effective temperatures well over 1000 K and radii significantly larger
than that of Jupiter, the coldest initial condition scenarios ofMarley et al. (2007)
can be excluded. Beyond this constraint, themasses, luminosities, and radii seem
largely consistentwith a broad range of potential evolutionary tracks (e.g. Baraffe
et al., 2003; Saumon &Marley, 2008; Mordasini et al., 2017). Further work to
measure more formation tracers is clearly necessary to unravel this system. Mid-
infrared spectroscopic observations could characterise the NH3 abundance,
at least in HR 8799 b, as well as the debris disc observed in Boccaletti et al.
(2023). Higher spectral resolution could enable the measurement of carbon
isotopes (e.g. as well as place better constraints on the metallicity of each of
these atmospheres). Such measurements, combined with dedicated formation
models of giant planets outside the water iceline, are necessary to determine
whether these four planets share a formation pathway, or whether there were
different mechanisms impacting different regions of the protoplanetary disc.
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22.4. Predictions for JWST

The high spectral resolutionmodes of JWSTmay allow us to verify themea-
surements made in this work, particularly through observation of CO2, CO,
and CH4 features in the near infrared and the silicate absorption features near
10 µm. To this end, we present the range of model predictions in these wave-
length regions at the spectral resolution of the JWST instruments, for NIRSpec
in figure 22.4 and for the MIRI/MRS in figure 22.5. The comparisons to the
MIRI photometry shown in figure 22.5 demonstrate the typical degree of com-
patibility between themodels and the data in thesemid-infraredwavelengths. In
the NIRSpec/G395H wavelength range we see significant discrepancy between
models for the same planet in the amplitude of the CO2 feature at 3.8 µm, as
well as the CH4 feature at 3.3 µm and the CO lines between 4.5 and 5 µm.
These observations will also be able to confirm the presence of HCN in the
atmospheres of HR 8799 c and e. Precise measurement of these features should
provide robust constraints on the metallicity of these objects, verifying the
degree of enrichment found via the ground-based observations. While silicate
clouds are preferred in the retrieval comparison, none of the models show signs
of deep silicate absorption features near 10 µm, but spectroscopic observations
are required to validate these models. Mid-infrared observations will be particu-
larly valuable for HR 8799 b, and will allow the clear detection of ammonia. If
combined with a chemical model to determine the ratios of NH3:HCN:N2,
this will allow for the measurement of the N/O ratio, which can also be used
as a formation diagnostic (Turrini et al., 2021; Pacetti et al., 2022). Recently
Ruffio et al. (2023) demonstrated the potential for high-contrast imaging with
NIRSpec; even without the use of a coronagraph it should be possible to obtain
flux calibrated, moderate resolution spectroscopy of HR 8799 b, c, and d using
the NIRSpec IFU through a combination of forward modelling and reference
differential imaging. In the case where the planet signal is unable to be separated
from that of the host star, Patapis et al. (2022) demonstrated that it will be
possible to at least identify trace species through molecular mapping in the
mid-infrared, though this will be unable to characterise the broad wavelength
features of the silicate clouds.
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IV Characterisation of the HR 8799 planets

Figure 22.4: Predictions for NIRSpec/G395H based on most favoured disequi-
librium (solid) and free chemistry (dashed) retrievals, together with the best-fit
self-consistent models from each grid.
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Figure 22.5: Predictions for MIRI/MRS based on the most favoured disequi-
librium (solid) and free chemistry (dashed) retrievals, together with the best-fit
self-consistent models from each grid.
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23. CONCLUSIONS

After more than 15 years of study, the HR 8799 planets remain mysteri-
ous, though increasing data quality is allowing us to peer deeper into these
atmospheres than ever before. We present new K-band spectra from the VLTI/-
GRAVITY, which together with a large set of archival data form the basis of
the our atmospheric analysis. Using petitRADTRANS retrievals and fits to self-
consistent grids, we inferred the atmospheric properties of all four companions,
with reasonable agreement between the two methods. Our results are broadly
consistent with the literature in terms of effective temperature, mass, surface
gravity, and radius for all four planets. The use the dynamical mass as a prior in
the retrievals when determining log g allows us to reliably retrieve physically
reasonable planet radii.

We find that all four planets are strongly enriched in metals, though there
is still discrepancy between different models in constraining the precise value.
This was validated by running retrievals using different temperature profiles and
chemical models, and comparing to self-consistent grids. Further self-consistent
modelling is necessary, particularly to extend model grids out to high metallici-
ties. The C/O ratio is stellar to superstellar for all four planets. It decreases from
the outermost planet to HR 8799 d, while HR 8799 e has a higher C/O ratio
than the other companions. We confidently detect HCN in HR 8799 c and
e, at abundances far higher than predicted by equilibrium chemistry; though
this detection is largely driven by low-S/N data from LBT/ALES. CH4 is also
confidently detected in HR 8799 c for the first time. From the disequilibrium
chemistry retrievals, H2S appears to be a highly abundant species in all of the
planets, but higher S/N and spectral resolution are required for a confident
detection in a free retrieval framework. Using our retrieved quench pressure and
chemical abundances, we are able to derive a vertical mixing strength, finding
Kzz values compatible with high-metallicity predictions from Soni & Acharyya
(2023). The mixing strength is stronger for the warmer planets, at log Kzz ⇡ 6,
and is lower for HR 8799 b with log Kzz ⇡ 2.

All of the planets are highly cloudy. For the inner three planets, these clouds
are composed of silicate clouds lying above the photosphere, and deep, dense
iron clouds forming the base of the photosphere. Cooler than the other three
planets, the most favoured model for HR 8799 b requires Na2S clouds. All of
the planets have effective temperatures consistent with literature values, with
HR 8799 b still unique in its lower temperature and mass compared to its
siblings.

We emphasise the use of robust model comparison in this work: while
it may be difficult to present precise measurements of certain properties, the
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use of multiple methods and models allows us to draw a robust portrait of
each of these atmospheres. We also note that our conclusions rely on data
with significant incompatibilities, particularly in the H-band flux. While we
performed extensive analysis to mitigate the influence of any individual dataset,
further observations are required to obtain reliable spectroscopicmeasurements
in the near-infrared. While the HR 8799 planets share many similarities, much
like our own Solar System there are differences in their atmospheric properties,
which require further study.

We would like to thank Quinn Konopacky, Alice Zurlo, Alex Greenbaum, Beth Biller, Olivier Flasseur,

DavidDoelman, and Pengyu Lui for providing the archival datasets used in this work. We are also grateful toGilles

Loupe andMalavika Vasist for providing helpful suggestions on how to implement the spline temperature profile.

Thanks as well to Daniel Thorngren for providing the model for calculating the planet metallicity Z. Finally, we

are grateful to our anonymous reviewer for their thorough and insightful report. SL acknowledges the support of

the French Agence Nationale de la Recherche (ANR), under grant ANR-21-CE31-0017 (project ExoVLTI).

J.J.W., A.C., and S.B. acknowledge the support of NASA XRP award 80NSSC23K0280. G.-D.M. acknowledges

the support of the DFG priority program SPP 1992 “Exploring the Diversity of Extrasolar Planets” (MA 9185/1)

amd from the Swiss National Science Foundation under grant 200021_204847 “PlanetsInTime”. Parts of this

work have been carried out within the framework of the NCCR PlanetS supported by the Swiss National Science

Foundation. This work is based on observations collected at the European Southern Observatory under ESO

programme1104.C-0651. This publicationmakes use ofVOSA,developedunder the SpanishVirtualObservatory

project supported by the Spanish MINECO through grant AyA2017-84089. VOSA has been partially updated

by using funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant

Agreement nº 776403 (EXOPLANETS-A). Software used: petitRADTRANS, pyKLIP, species, VIP-HCI,

pyMultiNest, phot_utils, Python, numpy, matplotlib, astropy, sympy and Aspro.

249



24. APPENDICES

24.A. Data logs

Table 24.1: Near infrared stellar Photometry of
HR8799, using apparent flux normalised to 10 pc, re-
trieved from the Spanish Virtual Observatory (Bayo
et al., 2008).

Filter � Flux Ref.

[µm] [erg/s/cm2/Å]

2MASS J 1.235 2.198 ± 0.055 ⇥ 10�12 S06

2MASS H 1.662 8.754 ± 0.145 ⇥ 10�13 S06

2MASS Ks 2.159 3.433 ± 0.057 ⇥ 10�13 S06

WISEW1 3.353 6.840 ± 1.367 ⇥ 10�14 W10

WISEW2 4.603 2.316 ± 0.166 ⇥ 10�14 W10

Notes
References: S06 Skrutskie et al. (2006); W10Wright et al.
(2010);

24.B. Reprocessing of the SPHERE and GPI datasets

To resolve the known discrepancies in the H-band flux between the archival
SPHERE and GPI datasets, we reprocessed each using KLIP (Soummer et al.,
2012; Pueyo, 2016), ANDROMEDA (Cantalloube et al., 2015) and PynPoint
(Amara & Quanz, 2012; Stolker et al., 2019). We optimised the choice of
algorithm parameters through a series of injection/extraction tests into each
dataset, as in Nasedkin et al. (2023). Using two different goodness-of-fit metrics
on injections representative of the true companion contrast and separation, we
choose the number of principal components used in the PSF subtraction in
order to extract the companion spectra with minimal bias. Figures 24.1 and
24.2 shows the extracted spectra for each of HR 8799 c, d, and e, for SPHERE
and GPI respectively, compared to published literature spectra from Zurlo et al.
(2016), Greenbaum et al. (2018), and Flasseur et al. (2018). As the goodness-
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Table 24.2: Photometric data for HR 8799 b and c.

Instrument/Filter m Ref.

HR 8799 b

Keck/NIRC2.H 18.05 ± 0.09 C12

Keck/NIRC2.Ks 17.03 ± 0.08 M10

Keck/NIRC2.Ms 16.05 ± 0.3 G11

Paranal/NACO.Lp 15.52 ± 0.1 C14

Paranal/NACO.NB405 14.82 ± 0.18 C14

Paranal/SPHERE/IRDIS.B_J 19.78 ± 0.09 Z16

Paranal/SPHERE/IRDIS.D_H23_2 18.08 ± 0.14 Z16

Paranal/SPHERE/IRDIS.D_H23_3 17.78 ± 0.1 Z16

Paranal/SPHERE/IRDIS.D_K12_1 17.15 ± 0.06 Z16

Paranal/SPHERE/IRDIS.D_K12_2 16.97 ± 0.09 Z16

Subaru/CIAO.z 21.22 ± 0.29 C11

JWST/MIRI.F1065C 13.54 ± 0.04 B23

JWST/MIRI.F1140C 13.64 ± 0.07 B23

JWST/MIRI.F1550C 13.49 ± 0.25 B23

HR 8799 c

Keck/NIRC2.H 17.06 ± 0.13 C12

Keck/NIRC2.Ks 16.11 ± 0.08 M10

Keck/NIRC2.Ms 15.03 ± 0.14 G11

Paranal/NACO.Lp 14.65 ± 0.11 C14

Paranal/NACO.NB405 13.97 ± 0.11 C14

Paranal/SPHERE/IRDIS.B_J 18.6 ± 0.13 Z16

Paranal/SPHERE/IRDIS.D_H23_2 17.09 ± 0.12 Z16

Paranal/SPHERE/IRDIS.D_H23_3 16.78 ± 0.1 Z16

Paranal/SPHERE/IRDIS.D_K12_1 16.19 ± 0.05 Z16

Paranal/SPHERE/IRDIS.D_K12_2 15.86 ± 0.07 Z16

JWST/MIRI.F1065C 12.97 ± 0.18 B23

JWST/MIRI.F1140C 13.59 ± 0.26 B23

JWST/MIRI.F1550C 11.88 ± 0.23 B23

Notes:
References: C12 Currie et al. (2012); M10 Marois et al. (2010);
G11 Galicher et al. (2011); C14 Currie et al. (2014); Z16 Zurlo et al.
(2016); C11 Currie et al. (2011); B23 Boccaletti et al. (2023). 251
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Table 24.3: Photometric data for HR 8799 d and e.

Instrument/Filter m Ref.

HR 8799 d

Keck/NIRC2.H 16.71 ± 0.24 C12

Keck/NIRC2.Ks 16.09 ± 0.12 M10

Keck/NIRC2.Ms 14.65 ± 0.35 G11

Paranal/NACO.Lp 14.55 ± 0.14 C14

Paranal/NACO.NB405 13.87 ± 0.15 C14

Paranal/SPHERE/IRDIS.B_J 18.59 ± 0.37 Z16

Paranal/SPHERE/IRDIS.D_H23_2 17.02 ± 0.17 Z16

Paranal/SPHERE/IRDIS.D_H23_3 16.85 ± 0.16 Z16

Paranal/SPHERE/IRDIS.D_K12_1 16.2 ± 0.07 Z16

Paranal/SPHERE/IRDIS.D_K12_2 15.84 ± 0.1 Z16

JWST/MIRI.F1065C 12.98 ± 0.14 B23

JWST/MIRI.F1140C 12.98 ± 0.17 B23

JWST/MIRI.F1550C 11.88 ± 0.23 B23

HR 8799 e

Keck/NIRC2.Ks 15.91 ± 0.22 C12

Keck/NACO.Lp 14.49 ± 0.21 M10

Keck/NACO.NB405 13.72 ± 0.2 C14

Paranal/SPHERE/IRDIS.B_J 18.4 ± 0.21 Z16

Paranal/SPHERE/IRDIS.D_H23_2 16.91 ± 0.2 Z16

Paranal/SPHERE/IRDIS.D_H23_3 16.68 ± 0.21 Z16

Paranal/SPHERE/IRDIS.D_K12_1 16.12 ± 0.1 Z16

Paranal/SPHERE/IRDIS.D_K12_2 15.82 ± 0.11 Z16

JWST/MIRI.F1065C 12.52 ± 0.26 B23

JWST/MIRI.F1140C 12.52 ± 0.23 B23

JWST/MIRI.F1550C 11.01 ± 0.42 B23

Notes:
References: C12 Currie et al. (2012); M10 Marois et al. (2010);
G11 Galicher et al. (2011); C14 Currie et al. (2014); Z16 Zurlo et al.
(2016); C11 Currie et al. (2011); B23 Boccaletti et al. (2023).
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of-fit metrics favoured the KLIP extractions, we used these as the basis of our
retrieval analysis.

Figure 24.1: KLIP and ANDROMEDA extractions from SPHERE for HR 8799 c,
d, and e compared to the spectra published in Zurlo et al. (2016) and Flasseur
et al. (2018).

24.C. Retrieval validation

Extensive validation of the pRT retrieval module was performed as part of
this work. Following updates described in Nasedkin et al. (2024), we verified
that the results ofMollière et al. (2020) could be reproduced. We independently
tested updates to the c-k mixing implementation, the adaptive mesh refinement
implementation, updated opacity sources for H2O and CO, bug fixes for con-
vergence onmultiple scattering in the clouds, the inclusion of photometric data,
the inclusion of scaling factors on the SPHERE and GPI datasets, including
or excluding the GPI K-band spectra, updates to each of the SPHERE, GPI,
and GRAVITY datasets, different prior widths and the number of live points
used in the retrieval. All of the posterior distributions were fully consistent to
within 2�with most falling well within 1� of the published results, apart from
the inclusion of new epochs of GRAVITY data, which led to a significantly
higher retrieved metallicity ([M/H]=1.1 ± 0.32) and an fsed of 5 ± 2.6.

We verified several model assumptions through retrievals that only include
the GRAVITY datasets, or the GRAVITY data and photometry. We find
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Figure 24.2: KLIP and ANDROMEDA extractions fromGPI forHR 8799 c, d, and
e compared to the spectra published in Greenbaum et al. (2018)

that the GRAVITY data alone could not distinguish between clear and cloudy
models (� log10Z < 1), while cloudy models were strongly favoured once the
broad wavelength coverage of the photometry was included (� log10Z > 10).

Models that use the dynamical mass estimates as priors for calculating the
surface gravity were marginally favoured over those that freely retrieve log g and
Rpl, but that the posteriors parameter distributions were generally consistent,
with Tint and Rpl showing the greatest discrepancy. Using the dynamical mass
as a prior and setting a Gaussian prior on the radius led to more reasonable
estimates of the radius ofHR8799 e (0.97±0.04) compared to the free retrieval
(0.79 ± 0.05). However, the composition of the planet and the degree of
cloudiness did not vary significantly between the two models.

Using the full dataset for HR 8799 b, we verified that retrievals including
scattering clouds are strongly favouredover thosewithout scattering (� log10Z >
10). Without scattering, both the temperature and composition ([M/H] and
C/O) are significantly discrepant from retrievals that include scattering clouds.

24.D. Using the Hansen distribution with EDDYSED

The EddySed cloud model from Ackerman & Marley (2001) is imple-
mented in pRT, and is the most physically motivated model incorporated to
date. Typically, it assumes a log-normal particle size distribution, where the
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Figure 24.3: Comparison of best-fit disequilibrium models to OSIRIS data
from Ruffio et al. (2021). From top to bottom is HR 8799 b, c, and d. In
blue are the best-fit disequilibrium models, with the spectra generated using
high-resolution line-by-line opacities, before being convolved, binned, and
normalised for comparison. In orange is the same, but with the metallicity set
to 0.

Figure 24.4: Comparison of best-fit disequilibriummodels (black) of HR 8799
c to the data, with residuals shown in the bottom panel. In blue are the same
spectra, but without opacity contributions from CH4 .
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Figure 24.5: Comparison of best-fit disequilibriummodels (black) of HR 8799
c to the data, with residuals shown in the bottom panel. In blue are the same
spectra, but without opacity contributions fromHCN.

geometric particle radius will vary throughout the atmosphere as a function of
the vertical diffusion coefficient Kzz and the sedimentation fraction fsed. Here,
we substitute the log-normal particle size distribution with the Hansen distri-
bution, originally introduced in Hansen (1971), and rederive the calculation
for the particle radius as a function of Kzz and fsed.

We begin with a review of the EddySed model: the distribution of the
number of particles as a function of particle radius, n(r) is approximated as a
log-normal distribution with width�g and characteristic geometric radius rg.

n(r) =
N

r

p
2⇡ log�g

exp

0
BBBBBB@�

log2
⇣
r/rg

⌘

2 log2 �g

1
CCCCCCA , (24.1)

N is the total number of cloud particles.
The goal of the EddySed model is to calculate rg for each layer in the

atmosphere, given Kzz and fsed. It balances the upwards vertical mixing, param-
eterised by Kzz and the particle settling velocity, v f

v f = w⇤

 
r

rw

!↵
. (24.2)

Here w⇤ is the convective velocity scale. We note that rw 6= rg. rw is the radius
at which the particle settling velocity equals the convective velocity scale:

w⇤ =
Kzz

L
, (24.3)
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where L is the convective mixing length. Since w⇤ is known, and v f can be
found analytically as in Ackerman &Marley (2001); Podolak (2003), a linear fit
can be used to find both ↵ and rw.

With both of these quantities known, we follow AM01 and define fsed as:

fsed =

R 1
0 r

3+↵
n(r)dr

r
↵
w

R 1
0 r3n(r)dr

(24.4)

For the log-normal distribution, one finds:
Z 1

0
r
�
n(r)dr = Nr

�
g exp

 
1
2
�2 log2 �g

!
(24.5)

Which we can then use to solve for rg:

rg = rw f
1/↵
sed exp

 
�↵ + 6

2
log2 �g

!
(24.6)

In order to use the Hansen distribution, we must recalculate the total num-
ber of particles N, and integrate the distribution for fsed. We note here that the
Hansen distribution is parameterised by the effective radius, r̄, rather than the
geometricmean radius. In this derivationwe do not correct for this difference in
definition, as both act as nuisance parameters in the context of an atmospheric
retrieval.

We start by giving the Hansen distribution in full:

nHansen(r) =
N (r̄ve)(2ve�1)/ve

� [(1 � 2ve) /ve]
r

(1�3ve)/ve exp
 
� r

r̄ve

!
(24.7)

In Hansen (1971), the authors use the parameters a and b to denote the mean
effective radius and effective variance, which we write as r̄ and ve respectively.
These differ from the simple mean radius and variance by weighting them by
the particle area, as the cloud particle scatters an amount of light proportional
to its area. Thus:

r̄ =

R 1
0 r⇡r

2
n(r)dr

R 1
0 ⇡r2n(r)dr

(24.8)

and

ve =

R 1
0 (r � r̄)2

r
2
n(r)dr

r̄2
R 1

0 ⇡r2n(r)dr

(24.9)
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As in EddySed, we fit for the settling velocity, which will provide us with
↵ and rw, which we can use to find fsed, as in 24.4. However, we must now
integrate the Hansen distribution. We find that:

Z 1

0
r
�
nHansen(r)dr =

v
�
e (ve� + 2ve + 1)

⇣
1
r̄

⌘��
�
⇣
� + 1 + 1

ve

⌘

⇣
�ve + v

�+3
e + 1

⌘
�
⇣
1 + 1

ve

⌘ (24.10)

We can then use Eqns. 24.4 and 24.10 to solve for r̄:

r̄ =

0
BBBBBB@

fsedr
↵
w

v
�↵
e

⇣
v

3+↵
e
� ve + 1

⌘
�
⇣
1 + 1

ve

⌘

(ve↵ + 2ve + 1)�
⇣
↵ + 1 + 1

ve

⌘

1
CCCCCCA

1
↵

. (24.11)

Thus for a given Kzz, fsed, and ve, we can find the effective particle radius for
every layer in the atmosphere.

However, in order to compute the cloud opacity, we still require the total
particle count. For a volume mixing ratio of a given species, �i, we can integrate
n(r) to find N:

N =
�i�

r̄3ve � 1
�

(2ve � 1)
(24.12)

24.E. Complete retrieval results

We include in the text abridged tables that present key parameters of interest.
The complete set of inferred parameters for every retrieval is available online.

Legend: Chemistry/Profile/Clouds/Data/Info.

• Chemistry: (D)isequilibrium or (F)ree.

• Profile: (M)olliere, (Z)hang, (G)uillot or (S)pline(NNodes).

• Clouds: Clear (CLR); (f)ree or (eq)uilibrium condensation location,
(species)_(cd/am)_(P)atchy_(h)ansen. ‘*’ indicates fsed was retrieved in-
dependently for each cloud species.

• Data: -(not included) or (only included). O indicates OSIRIS data was
used in place of GRAVITY data.

• Info: ‘-’ indicates not included. ‘mr’ indicates mass and radius were used
as parameters instead of log g and radius.

In the text, models will be referred to as planet.group.index.
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Table 24.4: Spectroscopic Observation Log.

Planet Instrument Date � �/�� �PA Seeing Airmass DIT NEXP Ref.

[µm] [°] [as], Med. Min. [s]

b GRAVITY 2019-11-11 2.0�2.4 500 … 0.98 1.54 8x100 3 …

GRAVITY 2021-08-26 2.0�2.4 500 … 0.88 1.48 8x100 3 …

GRAVITY 2021-08-27 2.0�2.4 500 … 0.86 1.45 8x100 2 …

OSIRIS 2009-07-22 2.0�2.4 60 … … 1.0 900 30 B11

OSIRIS 2009-07-23 1.5�1.8 60 … … 1.0 900 30 B11

OSIRIS 2009-07-30 1.5�1.8 60 … … 1.0 900 30 B11

OSIRIS 2010-07-11 2.0�2.4 60 … … 1.0 900 30 B11

OSIRIS 2010-07-13 1.5�1.8 60 … … 1.0 900 30 B11

c GRAVITY 2019-11-11 2.0�2.4 500 … 1.01 1.62 8x100 3 …

GRAVITY 2021-08-26 2.0�2.4 500 … 1.04 1.50 8x100 3 …

GRAVITY 2021-08-27 2.0�2.4 500 … 1.00 1.45 8x100 2 …

GRAVITY 2022-08-19 2.0�2.4 500 … 0.64 1.54 4x100 10 …

GRAVITY 2023-07-02 2.0�2.4 500 … 0.75 1.45 4x100 6 …

SPHERE 2015-07-04 0.9�1.6 30 16.4 1.43 1.44 … 46 F20

CHARIS 2018-09-01 1.2�2.4 19 202.24 0.47 1.0 20 1201 W22

CHARIS 2018-09-02 1.2�2.4 19 206.55 0.42 1.0 20 1253 W22

GPI 2016-09-19 1.5�1.8 45 20.93 0.97 1.61 60 60 G18

ALES 2019-09-18 2.8�4.2 35 85.64 0.8-1.1 1.02 3.934 1300 D22

OSIRIS 2010-2011 1.97�2.38 4000 … … … 600 33 K13

d GRAVITY 2019-11-09 2.0�2.4 500 … 0.85 1.63 8x60 4 …

GRAVITY 2019-11-11 2.0�2.4 500 … 1.14 1.70 8x100 3 …

GRAVITY 2021-08-26 2.0�2.4 500 … 0.96 1.54 8x100 3 …

GRAVITY 2021-08-27 2.0�2.4 500 … 1.18 1.48 8x100 2 …

GRAVITY 2022-09-15 2.0�2.4 500 … 0.67 1.54 4x100 12 …

SPHERE 2014-08-12 0.9�1.6 30 29.65 0.87 1.43 100 32 Z16

SPHERE 2014-08-12 0.9�1.6 30 15.37 0.87 1.43 60 48 Z16

CHARIS 2018-09-01 1.2�2.4 19 202.24 0.47 1.0 20 1201 W22

CHARIS 2018-09-02 1.2�2.4 19 206.55 0.42 1.0 20 1253 W22

GPI 2016-09-19 1.5�1.8 45 20.93 0.97 1.61 60 60 G18

ALES 2019-09-18 2.8�4.2 35 85.64 0.8-1.1 1.02 3.934 1300 D22

e GRAVITY 2018-08-28 2.0�2.4 500 … 0.67 1.44 10x100 7 G19

GRAVITY 2019-11-09 2.0�2.4 500 … 0.84 1.55 8x60 3 M20

GRAVITY 2019-11-11 2.0�2.4 500 … 1.15 1.47 8x100 3 M20

GRAVITY 2021-08-26 2.0�2.4 500 … 0.66 1.50 8x100 2 …

GRAVITY 2021-08-27 2.0�2.4 500 … 0.67 1.47 8x100 2 …

GRAVITY 2021-09-27 2.0�2.4 500 … 0.82 1.55 4x100 6 …

GRAVITY 2023-07-02 2.0�2.4 500 … 0.75 1.46 4x100 6 …

SPHERE 2014-08-12 0.9�1.6 30 29.65 0.87 1.43 100 32 Z16

SPHERE 2014-08-12 0.9�1.6 45 15.37 0.87 1.43 60 48 Z16

CHARIS 2018-09-01 1.2�2.4 19 202.24 0.47 1.0 20 1201 W22

CHARIS 2018-09-02 1.2�2.4 19 206.55 0.42 1.0 20 1253 W22

GPI 2016-09-19 1.5�1.8 45 20.93 0.97 1.61 60 60 G18

ALES 2019-09-18 2.8�4.2 35 85.64 0.8-1.1 1.02 3.934 1300 D22

Notes
References: B11: Barman et al. (2011); K13: Konopacky et al. (2013); Z16: Zurlo et al. (2016); G18:
Greenbaum et al. (2018); G19: Gravity Collaboration et al. (2019); F20: Flasseur et al. (2020); M20:
Mollière et al. (2020); W22: Wang et al. (2022)
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Table 24.5: Abridged retrieval results HR 8799 b

Index Model B.F. �2/⌫ TE↵ log g [M/H] C/O Radius log L/L� Mass

[K] [cgs] [RJup ] [MJup ]

b.A.0 F/Z/eq*FeMg_am/ALL/-CH4/ 0 1.46 948+11
�14 4.11+0.03

�0.04 0.94+0.08
�0.08 0.78+0.03

�0.04 1.1+0.03
�0.03 �5.06+0.04

�0.04 6+0.3
�0.4

b.AB.1 F/Z/eq*FeMg_am/ALL/ 0 1.47 942+12
�13 4.1+0.03

�0.04 0.96+0.08
�0.08 0.78+0.03

�0.04 1.11+0.03
�0.03 �5.08+0.04

�0.04 6+0.3
�0.3

b.A.2 F/Z/eq*FeMg_am/ALL/-H2S/ 0 1.49 958+13
�15 4.1+0.03

�0.04 1.1+0.2
�0.1 0.83+0.03

�0.04 1.1+0.03
�0.03 �5.05+0.04

�0.04 5.9+0.4
�0.4

b.A.3 F/S1/eqMg_am/ALL/ -2 1.48 977+11
�10 4.18+0.04

�0.04 1.25+0.1
�0.1 0.89+0.02

�0.03 1.01+0.02
�0.02 �5.07+0.03

�0.03 6+0.4
�0.4

b.A.4 F/S2/eqMg_am/ALL/ -4 1.50 970+14
�13 4.17+0.04

�0.04 1.2+0.1
�0.1 0.87+0.03

�0.03 1.02+0.02
�0.02 �5.08+0.04

�0.04 5.9+0.4
�0.4

b.A.5 F/S1/CLR/ALL/ -4 1.53 985+11
�11 4.18+0.04

�0.04 1.43+0.08
�0.09 0.92+0.02

�0.02 1.01+0.02
�0.02 �5.06+0.03

�0.04 6+0.5
�0.5

b.AB.6 D/M/eqNa_P/ALL/ -4 1.52 931+21
�23 4.12+0.05

�0.05 1.16+0.08
�0.08 0.73+0.02

�0.02 1.09+0.06
�0.04 �5.07+0.06

�0.06 6+0.3
�0.3

b.AB.7 D/M/eqNa/ALL/ -4 1.50 966+17
�19 4.19+0.04

�0.04 0.95+0.07
�0.07 0.78+0.02

�0.03 1.0+0.05
�0.04 �5.05+0.05

�0.05 6+0.3
�0.3

b.AB.8 F/Z/f*FeMg_am/ALL/ -4 1.48 944+10
�10 4.15+0.03

�0.03 0.97+0.08
�0.08 0.78+0.03

�0.04 1.04+0.02
�0.02 �5.11+0.03

�0.03 5.9+0.4
�0.3

b.A.9 F/S3/CLR/ALL/ -4 1.49 962+13
�12 4.17+0.04

�0.04 1.1+0.1
�0.1 0.85+0.03

�0.04 1.02+0.02
�0.02 �5.09+0.04

�0.04 6+0.4
�0.5

b.A.10 F/S2/CLR/ALL/ -4 1.52 962+15
�14 4.17+0.04

�0.04 1.2+0.1
�0.1 0.87+0.03

�0.04 1.02+0.03
�0.03 �5.09+0.04

�0.04 5.9+0.5
�0.5

b.AB.11 F/Z/f*FeMg_cd/ALL/ -4 1.48 942+11
�11 4.15+0.03

�0.03 0.94+0.08
�0.08 0.77+0.04

�0.04 1.05+0.02
�0.02 �5.11+0.03

�0.03 5.9+0.3
�0.3

b.A.12 F/S3/eqMg_am/ALL/ -4 1.51 965+12
�13 4.17+0.04

�0.04 1.1+0.1
�0.1 0.85+0.03

�0.04 1.02+0.02
�0.02 �5.09+0.04

�0.03 6+0.4
�0.4

b.AB.13 D/M/eq*FeMg_am/ALL/ -6 1.54 944+11
�10 4.06+0.03

�0.03 1.11+0.08
�0.08 0.72+0.02

�0.02 1.17+0.03
�0.03 �5.03+0.04

�0.04 6+0.3
�0.3

b.A.14 F/S4/CLR/ALL/ -6 1.49 966+13
�12 4.17+0.04

�0.04 1.15+0.1
�0.1 0.86+0.03

�0.04 1.02+0.02
�0.02 �5.09+0.04

�0.04 6+0.4
�0.5

b.A.15 F/S4/eqMg_am/ALL/ -6 1.52 968+13
�12 4.17+0.04

�0.04 1.15+0.1
�0.09 0.86+0.03

�0.03 1.02+0.02
�0.02 �5.08+0.04

�0.04 6+0.4
�0.4

b.AB.16 D/M/eq*FeMg_cd/ALL/ -6 1.55 911+14
�13 4.05+0.04

�0.04 1.16+0.08
�0.08 0.73+0.02

�0.02 1.18+0.04
�0.04 �5.09+0.04

�0.04 6+0.3
�0.3

b.AB.17 D/M/eq*FeMg_am_P/ALL/ -7 1.55 941+12
�12 4.07+0.03

�0.03 1.08+0.08
�0.09 0.73+0.02

�0.02 1.16+0.03
�0.03 �5.05+0.04

�0.03 6+0.3
�0.3

b.AB.18 D/Z/eq*FeMg_am/ALL/ -7 1.57 934+10
�10 4.06+0.03

�0.03 1.06+0.06
�0.07 0.73+0.02

�0.02 1.17+0.03
�0.03 �5.05+0.03

�0.03 6+0.3
�0.3

b.A.19 F/S5/CLR/ALL/ -7 1.50 955+13
�14 4.16+0.04

�0.04 1.1+0.1
�0.1 0.84+0.04

�0.05 1.03+0.02
�0.02 �5.09+0.04

�0.04 6+0.4
�0.5

b.A.20 F/S5/eqMg_am/ALL/ -7 1.51 958+13
�14 4.17+0.03

�0.04 1.09+0.1
�0.1 0.84+0.03

�0.04 1.03+0.02
�0.02 �5.09+0.04

�0.03 6+0.4
�0.4

b.AB.21 D/M/eqKCl/ALL/ -8 1.56 906+12
�13 4.08+0.03

�0.03 1.22+0.08
�0.08 0.7+0.02

�0.02 1.13+0.03
�0.03 �5.13+0.04

�0.04 6+0.2
�0.3

b.A.22 F/S6/CLR/ALL/ -9 1.50 960+13
�13 4.17+0.04

�0.04 1+0.1
�0.1 0.83+0.04

�0.05 1.03+0.02
�0.02 �5.09+0.04

�0.04 6+0.4
�0.4

b.AB.23 D/Z/f*FeMg_am/ALL/ -9 1.53 954+45
�59 4.17+0.03

�0.03 1.22+0.06
�0.06 0.76+0.01

�0.02 1.02+0.02
�0.02 �5.1+0.08

�0.1 5.9+0.3
�0.3

b.A.24 F/S6/eqMg_am/ALL/ -9 1.49 928+17
�15 4.01+0.04

�0.04 0.82+0.07
�0.07 0.63+0.05

�0.05 1.21+0.04
�0.04 �5.03+0.04

�0.04 5.8+0.4
�0.4

b.AB.25 D/S4/eq*FeMg_am/ALL/ -10 1.53 867+75
�45 4.03+0.03

�0.03 1.13+0.07
�0.07 0.67+0.03

�0.04 1.21+0.03
�0.03 �5.15+0.1

�0.1 6+0.3
�0.3

b.A.26 F/S7/CLR/ALL/ -10 1.52 964+13
�15 4.17+0.04

�0.04 1.1+0.1
�0.1 0.85+0.04

�0.04 1.02+0.02
�0.02 �5.09+0.04

�0.04 6+0.4
�0.4

b.AB.27 D/M/fNa/ALL/ -11 1.56 918+46
�57 4.13+0.03

�0.03 1.18+0.06
�0.06 0.7+0.02

�0.02 1.07+0.03
�0.02 �5.1+0.09

�0.1 6+0.2
�0.3

b.A.28 F/S8/CLR/ALL/ -11 1.52 955+14
�14 4.16+0.04

�0.04 0.98+0.1
�0.1 0.79+0.05

�0.1 1.03+0.03
�0.03 �5.1+0.04

�0.04 6+0.4
�0.4

b.A.29 F/S9/CLR/ALL/ -12 1.52 965+13
�12 4.18+0.04

�0.04 0.95+0.1
�0.09 0.57+0.2

�0.1 1.02+0.02
�0.02 �5.09+0.04

�0.04 6.1+0.4
�0.4

b.A.30 F/S0/CLR/ALL/ -21 1.84 1020+12
�12 4.24+0.04

�0.04 1.92+0.04
�0.06 0.97+0.005

�0.005 0.93+0.02
�0.03 �5.08+0.04

�0.04 5.8+0.5
�0.5

b.A.31 F/S0/eqMg_am/ALL/ -21 1.83 1022+13
�11 4.24+0.04

�0.04 1.93+0.04
�0.06 0.97+0.004

�0.005 0.93+0.02
�0.02 �5.08+0.04

�0.04 5.8+0.5
�0.5

b.A.32 D/Z/eq*FeMg_am/Gr/ -948 0.74 891+30
�27 4.18+0.07

�0.07 1.4+0.3
�0.4 0.42+0.1

�0.2 0.99+0.08
�0.08 �5.3+0.09

�0.1 5.8+0.3
�0.3

Notes
All values presented are the median values from the fits, with uncertainties given as the ±34.1% percentiles.
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Table 24.6: Abridged retrieval results HR 8799 c

Index Model B.F. �2/⌫ TE↵ log g [M/H] C/O Radius log L/L� Mass

[K] [cgs] [RJup ] [MJup ]

c.A.0 F/Z/eq*FeMg_am/O-Gr/mr 0 1.72 1145+14
�15 4.27+0.03

�0.04 0.95+0.1
�0.1 0.6+0.09

�0.1 1.06+0.03
�0.03 �4.75+0.03

�0.03 8+0.5
�0.5

c.A.1 D/M/eq*FeMg_cd/O-Gr/mr -1 1.83 1207+11
�10 4.34+0.03

�0.03 1.89+0.06
�0.06 0.87+0.005

�0.006 0.99+0.02
�0.02 �4.73+0.03

�0.03 8.2+0.5
�0.5

c.AB.2 F/Z/eq*FeMg_am/ALL/mr -430 2.88 1158+12
�12 4.26+0.02

�0.03 1.27+0.06
�0.06 0.66+0.01

�0.01 1.1+0.01
�0.01 �4.71+0.02

�0.02 8.5+0.4
�0.4

c.AB.3 F/G/f*FeMg_am/ALL/mr -432 2.87 1173+18
�8 4.26+0.02

�0.02 1.3+0.06
�0.06 0.67+0.01

�0.01 1.09+0.01
�0.01 �4.71+0.03

�0.02 8.3+0.4
�0.4

c.AB.4 F/Z/f*FeMg_am/ALL/mr -435 2.91 1173+5
�6 4.28+0.02

�0.02 1.27+0.05
�0.07 0.67+0.01

�0.01 1.07+0.01
�0.01 �4.71+0.01

�0.01 8.5+0.4
�0.4

c.AB.5 D/M/eq*FeMg_cd/ALL/mr -443 2.93 1057+14
�13 4.05+0.02

�0.02 1.05+0.04
�0.04 0.62+0.01

�0.01 1.4+0.03
�0.03 �4.69+0.03

�0.03 8.6+0.3
�0.4

c.A.6 F/G/f*FeMg_am/ALL/-CH4/mr -444 3.02 1191+40
�12 4.28+0.02

�0.02 1.2+0.06
�0.06 0.7+0.01

�0.01 1.07+0.01
�0.01 �4.69+0.05

�0.02 8.4+0.3
�0.3

c.AB.7 D/S4/eq*FeMg_am/ALL/mr -464 3.10 1198+21
�23 4.29+0.02

�0.02 1.02+0.03
�0.03 0.6+0.01

�0.01 1.08+0.01
�0.01 �4.67+0.03

�0.04 8.8+0.3
�0.3

c.A.8 F/G/f*FeMg_am/ALL/-HCN/mr -465 3.14 1197+45
�33 4.27+0.03

�0.04 1.36+0.05
�0.06 0.69+0.01

�0.01 1.1+0.05
�0.03 �4.62+0.06

�0.05 8.7+0.2
�0.2

c.AB.9 D/M/eq*FeMg_am_P/ALL/mr -468 3.25 1099+15
�16 4.14+0.03

�0.03 1.1+0.05
�0.05 0.61+0.01

�0.01 1.28+0.04
�0.05 �4.72+0.03

�0.03 8.9+0.4
�0.4

c.AB.10 D/Z/f*FeMg_am/ALL/mr -478 3.38 1145+9
�7 4.23+0.02

�0.02 1.18+0.03
�0.03 0.62+0.01

�0.009 1.16+0.01
�0.01 �4.69+0.02

�0.01 8.8+0.3
�0.3

c.A.11 D/Z/eq*FeMg_am/Gr/mr -2678 0.84 1234+18
�17 4.29+0.04

�0.03 0.79+0.1
�0.2 0.69+0.02

�0.02 1.01+0.03
�0.03 �4.66+0.04

�0.03 7.6+0.4
�0.4

Notes
All values presented are the median values from the fits, with uncertainties given as the ±34.1% percentiles.

Table 24.7: Abridged retrieval results HR 8799 d

Index Model B.F. �2/⌫ TE↵ log g [M/H] C/O Radius log L/L� Mass

[K] [cgs] [RJup ] [MJup ]

d.AB.0 D/M/eq*FeMg_am/ALL/mr 0 1.42 1177+21
�21 4.18+0.04

�0.03 1.2+0.2
�0.1 0.61+0.03

�0.04 1.26+0.05
�0.06 �4.63+0.04

�0.04 9.19+0.08
�0.07

d.AB.1 D/Z/f*FeMg_am/ALL/mr 0 1.39 1139+38
�19 4.13+0.02

�0.02 1.3+0.1
�0.1 0.6+0.03

�0.04 1.34+0.03
�0.03 �4.6+0.06

�0.03 9.2+0.07
�0.07

d.AB.2 D/M/eq*FeMg_am_P/ALL/mr -1 1.47 1220+10
�10 4.25+0.02

�0.02 1.1+0.1
�0.1 0.49+0.04

�0.04 1.16+0.02
�0.02 �4.58+0.03

�0.03 9.2+0.09
�0.09

d.AB.3 D/M/eq*FeMg_cd/ALL/mr -1 1.47 1220+10
�9 4.25+0.02

�0.02 1.1+0.1
�0.1 0.49+0.04

�0.04 1.16+0.02
�0.02 �4.58+0.03

�0.03 9.21+0.09
�0.09

d.AB.4 F/G/f*FeMg_cd/ALL/mr -3 1.43 1194+18
�15 4.18+0.02

�0.02 1.5+0.2
�0.2 0.68+0.03

�0.04 1.26+0.02
�0.03 �4.58+0.03

�0.03 9.2+0.07
�0.07

d.AB.5 F/G/f*FeMg_am/ALL/mr -3 1.42 1196+20
�17 4.18+0.03

�0.02 1.5+0.2
�0.2 0.67+0.03

�0.04 1.26+0.03
�0.04 �4.58+0.03

�0.03 9.2+0.07
�0.07

d.AB.6 F/Z/eq*FeMg_am/ALL/mr -4 1.46 1146+13
�13 4.17+0.02

�0.02 1.6+0.2
�0.1 0.67+0.04

�0.05 1.27+0.03
�0.03 �4.62+0.03

�0.03 9.19+0.07
�0.07

d.AB.7 D/Z/eqMg_am/ALL/mr -4 1.47 1150+21
�16 4.17+0.04

�0.03 0.95+0.1
�0.1 0.5+0.04

�0.04 1.27+0.05
�0.06 �4.67+0.04

�0.04 9.18+0.07
�0.07

d.AB.8 D/Z/eq*FeMg_am/ALL/mr -5 1.49 1166+19
�16 4.21+0.03

�0.03 0.98+0.1
�0.1 0.48+0.04

�0.04 1.22+0.05
�0.05 �4.66+0.04

�0.04 9.19+0.07
�0.06

d.AB.9 D/Z/eq*FeMg_am/ALL/ -6 1.50 1158+22
�30 4.5+0.3

�0.3 1.3+0.3
�0.3 0.48+0.04

�0.04 1.23+0.08
�0.06 �4.61+0.05

�0.06 20.70+19
�10

d.AB.10 F/Z/f*FeMg_am/ALL/mr -6 1.44 1157+30
�16 4.16+0.01

�0.01 1.7+0.1
�0.1 0.64+0.04

�0.04 1.29+0.02
�0.02 �4.57+0.04

�0.03 9.22+0.05
�0.05

d.AB.11 D/S4/eq*FeMg_am/ALL/mr -12 1.51 1198+21
�20 4.24+0.03

�0.04 0.71+0.2
�0.1 0.34+0.07

�0.06 1.17+0.05
�0.04 �4.62+0.04

�0.04 9.19+0.07
�0.07

d.A.12 D/Z/eq*FeMg_am/Gr/mr -2276 0.79 1172+19
�18 4.18+0.03

�0.03 2+0.2
�0.2 0.78+0.02

�0.03 1.25+0.04
�0.04 �4.61+0.04

�0.04 9.19+0.08
�0.08

d.A.13 D/Z/eq*FeMg_am/-Gr/mr -3498 1.03 1162+28
�28 4.22+0.04

�0.04 0.46+0.7
�0.7 0.31+0.1

�0.1 1.19+0.06
�0.06 �4.68+0.06

�0.06 9.2+0.08
�0.08

Notes
All values presented are the median values from the fits, with uncertainties given as the ±34.1% percentiles.
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Table 24.8: Abridged retrieval results HR 8799 e

Index Model B.F. �2/⌫ TE↵ log g [M/H] C/O Radius log L/L� Mass

[K] [cgs] [RJup ] [MJup ]

e.A.0 F/Z/eq*FeMg_am/ALL/-CH4/mr 0 1.23 1139+21
�20 4.18+0.05

�0.05 1.9+0.1
�0.1 0.88+0.01

�0.02 1.13+0.05
�0.05 �4.73+0.05

�0.05 7.5+0.6
�0.6

e.AB.1 F/G/eq*FeMg_am/ALL/mr 0 1.22 1172+27
�29 4.2+0.06

�0.06 1.8+0.1
�0.2 0.88+0.02

�0.02 1.1+0.05
�0.05 �4.71+0.06

�0.05 7.5+0.7
�0.7

e.AB.2 F/Z/eq*FeMg_am/ALL/mr 0 1.23 1134+24
�20 4.18+0.05

�0.05 1.9+0.1
�0.1 0.87+0.02

�0.02 1.14+0.05
�0.05 �4.74+0.06

�0.05 7.5+0.6
�0.6

e.AB.3 F/G/fMg_am/ALL/mr -1 1.22 1206+27
�23 4.24+0.05

�0.05 1.8+0.1
�0.2 0.88+0.02

�0.02 1.06+0.03
�0.03 �4.67+0.05

�0.05 7.6+0.7
�0.7

e.AB.4 F/G/fFe/ALL/mr -2 1.22 1203+30
�28 4.24+0.05

�0.05 1.8+0.1
�0.2 0.89+0.02

�0.02 1.07+0.03
�0.04 �4.69+0.06

�0.05 7.6+0.7
�0.6

e.AB.5 F/G/grey_P/ALL/mr -3 1.23 1261+18
�18 4.35+0.05

�0.06 1.7+0.2
�0.3 0.89+0.02

�0.03 0.94+0.04
�0.03 �4.64+0.04

�0.05 7.6+0.7
�0.7

e.AB.6 F/G/f*FeMg_am/ALL/mr -3 1.23 1214+22
�23 4.25+0.04

�0.04 1.8+0.1
�0.2 0.89+0.02

�0.02 1.05+0.03
�0.03 �4.69+0.04

�0.04 7.5+0.6
�0.6

e.AB.7 F/S4/eq*FeMg_am/ALL/mr -6 1.26 1202+19
�20 4.28+0.05

�0.05 1.8+0.1
�0.2 0.9+0.02

�0.03 1.01+0.03
�0.03 �4.7+0.05

�0.05 7.6+0.8
�0.7

e.AB.8 D/M/eqFeMg_cd_P/ALL/mr -6 1.32 1215+19
�18 4.31+0.05

�0.05 2.1+0.2
�0.3 0.83+0.01

�0.02 1.0+0.03
�0.03 �4.68+0.04

�0.05 7.9+0.7
�0.7

e.AB.9 D/Z/eq*FeMg_cd/ALL/mr -7 1.27 1084+27
�23 4.09+0.06

�0.06 1.3+0.1
�0.1 0.77+0.03

�0.03 1.29+0.06
�0.07 �4.82+0.06

�0.05 7.9+0.7
�0.7

e.AB.10 D/M/eq*FeMg_cd_P/ALL/mr -7 1.32 1215+17
�18 4.31+0.05

�0.05 2.1+0.2
�0.3 0.83+0.01

�0.02 1.0+0.03
�0.03 �4.68+0.05

�0.05 7.9+0.6
�0.7

e.AB.11 D/M/eq*FeMg_cd/ALL/mr -7 1.28 1106+33
�28 4.11+0.08

�0.06 1.3+0.2
�0.1 0.78+0.03

�0.03 1.26+0.07
�0.09 �4.82+0.07

�0.06 7.9+0.7
�0.7

e.A.12 F/Z/eq*FeMg_am/ALL/-HCN/mr -8 1.30 1148+24
�23 4.15+0.06

�0.05 1.91+0.07
�0.1 0.87+0.02

�0.02 1.17+0.06
�0.06 �4.73+0.06

�0.06 7.5+0.7
�0.6

e.AB.13 D/Z/f*FeMg_am/ALL/mr -9 1.33 1187+50
�30 4.26+0.04

�0.04 2+0.3
�0.3 0.83+0.02

�0.02 1.08+0.03
�0.03 �4.69+0.07

�0.06 8.1+0.6
�0.6

e.AB.14 D/Z/eq*FeMg2/Gr/mr -9 1.35 1170+26
�27 4.26+0.06

�0.06 1.3+0.2
�0.2 0.76+0.02

�0.03 1.06+0.05
�0.05 �4.77+0.05

�0.06 7.8+0.7
�0.7

e.AB.15 F/Z/f*FeMg_am/ALL/mr -10 1.29 1143+12
�18 4.19+0.05

�0.05 1.99+0.05
�0.05 0.86+0.02

�0.02 1.09+0.03
�0.03 �4.73+0.04

�0.04 7+0.6
�0.7

e.A.16 D/Z/eqFeMg_am/ALL/Fe-H15mr -10 1.37 1202+20
�17 4.32+0.05

�0.05 1.5+0
�0 0.76+0.02

�0.02 0.99+0.03
�0.03 �4.73+0.05

�0.05 7.8+0.7
�0.7

e.A.17 D/Z/eqFeMg_am/ALL/Fe-H20mr -10 1.33 1179+29
�28 4.25+0.06

�0.06 2.0+0
�0 0.82+0.01

�0.01 1.08+0.07
�0.07 �4.77+0.06

�0.05 8+0.6
�0.6

e.A.18 D/M/grey_P/ALL/mr -10 1.38 1245+16
�16 4.36+0.05

�0.05 1.5+0.1
�0.1 0.63+0.02

�0.02 0.95+0.03
�0.03 �4.68+0.04

�0.04 8+0.8
�0.8

e.AB.19 D/M/eq*FeMg_am/ALL/mr -11 1.33 1206+21
�22 4.3+0.05

�0.05 2.1+0.2
�0.4 0.83+0.01

�0.02 1.02+0.05
�0.04 �4.69+0.05

�0.06 8.1+0.6
�0.6

e.AB.20 D/Z/eq*FeMg_am_h/ALL/mr -11 1.33 1129+29
�27 4.15+0.06

�0.05 1.4+0.2
�0.1 0.78+0.03

�0.03 1.21+0.06
�0.06 �4.77+0.07

�0.07 7.9+0.6
�0.6

e.AB.21 D/M/grey_P/ALL/mr -11 1.37 1245+15
�15 4.34+0.05

�0.07 1.5+0.1
�0.1 0.63+0.02

�0.02 0.97+0.06
�0.03 �4.64+0.08

�0.06 8+0.8
�0.8

e.A.22 D/Z/eqFeMg_am/ALL/Fe-H10mr -11 1.41 1208+21
�19 4.29+0.05

�0.05 1.0+0
�0 0.69+0.02

�0.02 0.98+0.03
�0.03 �4.72+0.05

�0.05 7.3+0.7
�0.6

e.A.23 D/Z/eqFeMg_am/ALL/mr -11 1.36 1209+20
�17 4.32+0.04

�0.05 1.7+0.7
�0.3 0.79+0.03

�0.05 0.99+0.03
�0.03 �4.72+0.05

�0.05 7.9+0.6
�0.7

e.AB.24 D/Z/eqAl2O3/ALL/mr -11 1.34 1235+17
�14 4.36+0.04

�0.05 2.3+0.1
�0.3 0.82+0.01

�0.01 0.94+0.03
�0.03 �4.73+0.04

�0.04 7.9+0.7
�0.7

e.AB.25 D/Z/eq*FeMg_am/ALL/mr -11 1.36 1207+19
�17 4.32+0.04

�0.04 2.1+0.3
�0.6 0.81+0.01

�0.06 0.99+0.03
�0.03 �4.72+0.04

�0.05 8+0.6
�0.6

e.AB.26 D/Z/eq*FeMg_am/ALL/ -12 1.36 1224+21
�22 4.8+0.2

�0.2 2+0.3
�0.3 0.76+0.05

�0.03 0.96+0.03
�0.03 �4.78+0.06

�0.06 19.91+13
�7

e.AB.27 F/G/grey/ALL/mr -12 1.37 1245+58
�31 4.24+0.06

�0.06 2.05+0.09
�0.08 0.91+0.02

�0.02 1.04+0.04
�0.04 �4.6+0.09

�0.07 7.4+0.8
�0.8

e.AB.28 D/S4/eq*FeMg_cd/ALL/mr -12 1.27 1093+27
�24 4.08+0.05

�0.05 1.4+0.1
�0.1 0.78+0.02

�0.03 1.3+0.05
�0.05 �4.73+0.06

�0.06 7.8+0.7
�0.7

e.A.29 D/Z/eqFeMg_am/ALL/Fe-H05mr -17 1.49 1217+20
�18 4.29+0.05

�0.05 0.5+0
�0 0.52+0.03

�0.04 0.97+0.03
�0.03 �4.71+0.04

�0.05 7.1+0.7
�0.6

e.A.30 D/Z/eqFeMg_am/ALL/Fe-H00mr -26 1.58 1227+17
�16 4.29+0.05

�0.05 0.0+0
�0 0.21+0.02

�0.02 0.95+0.03
�0.03 �4.72+0.04

�0.05 6.9+0.6
�0.6

e.A.31 D/Z/eq*FeMg_am/Gr/mr -2294 0.72 1173+31
�28 4.24+0.06

�0.06 1.8+0.4
�0.5 0.85+0.02

�0.04 1.06+0.06
�0.05 �4.71+0.07

�0.07 7.5+0.7
�0.7

e.A.32 D/Z/CLR/Gr/mr -2301 0.79 1339+36
�38 4.3+0.07

�0.07 0.65+0.2
�0.2 0.71+0.05

�0.07 0.94+0.06
�0.05 �4.53+0.08

�0.08 6.9+0.8
�0.6

e.A.33 D/Z/eq*FeMg_am/-Gr/mr -3496 1.88 1143+38
�32 4.17+0.08

�0.08 2+0.3
�0.4 0.71+0.08

�0.2 1.15+0.09
�0.09 �4.79+0.08

�0.09 7.5+0.7
�0.7

Notes
All values presented are the median values from the fits, with uncertainties given as the ±34.1% percentiles.
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25. SUMMARY

25.1. Retrieval development

pRT has grown to be among the most popular tools for modelling exoplanet
spectra, with 260 refereed citations in the literature at time of publication.
With the introduction of the retrieval package, pRT’s capabilities have been
expanded to meet the developing needs of the community. Through the use of
nested sampling, correlated-k opacities, and a highly flexible retrieval framework,
pRT is well positioned to serve as a characterisation tool for the high precision
observations enabled by modern observatories.

This was demonstrated via application toWASP-39 b, an exemplary target
for characterisationwith JWST. Thefindings of significantmetal enrichment (&
10⇥ solar) and a subs-stellarC/O ratiowere confirmed. The primary trace gasses
of the atmosphere are H2O and CO, with statistically significant detections of
H2S (> 3�) and SO2 (� 5�). Patchy clouds in the terminator region were
identified, with no significant evidence for clouds composed of KCl, SiO2 or
MgSiO3. This work will form part of a retrieval comparison project, exploring
howmodelling choices impact inferences of atmospheric parameters.

25.2. Importance of data processing

Following the development of the retrieval package, a key consideration
was understanding how data processing choices impact one’s ability to infer
atmospheric properties. We compared the KLIP, PynPoint and ANDROMEDA
post-processing algorithms for high-contrast IFS data. The hyperparameters of
each algorithm were optimised through injection and recovery testing, which
highlighted the importance of tailoring the post-processing for unbiased spectral
extraction, rather than simply maximising the S/N of the extracted spectrum.
The noise properties imparted from the post-processing were unique to each
algorithm. We therefore empirically measured the covariance matrix for each
extracted spectrum and incorporated the covariance matrix into the likelihood
function of the pRT retrieval.

Through a series of retrieval tests on synthetic data, we explored how the
inferred parameters depend on the choice of data processing algorithm and
the use of the covariance matrix. We found that the spectra extracted by each
algorithm could result in significant variations in the posterior distributions.
As such, injection testing should be used to verify that the spectral extraction is
minimally biased, and retrievals should be run on multiple extractions in order
to ensure consistent results. Replicating the results of Greco & Brandt (2016),
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we found that if the covariancematrix is not included in the likelihood function,
the inferred posterior distributions will be both biased and overconfident. It is
therefore critical to either empirically measure the covariance matrix, or to fit
for the covariance matrix as part of the retrieval itself.

25.3. New insight into the HR 8799 planets

Using the pRT retrieval package, we performed a systematic characterisation
of the HR 8799 planets. Using new VLTI/GRAVITY observations, together
with data reprocessed using the methods of Chapter III, we compiled the most
comprehensive spectra of these objects to date. A series of retrievals were ran for
each planet, exploring different parameterisation of the thermal structure, chem-
istry and clouds. Using BayesianModel Averaging techniques, these retrievals
were combined in a statistically robust fashion, producing robust estimates
of key planet properties. We validated the retrievals through comparisons to
self-consistent grid fits, finding that both approaches led to compatible findings.

All of the HR 8799 planets are enriched in metals, by factors of 10 to 60
times solar. The C/O ratio is stellar-to-superstellar for all four of the planets.
As known from previous studies, the primary trace gasses in the atmospheres
of the HR 8799 planets are water and CO, but we were also able to detect
HCN at > 5� in HR 8799 c and e, as well as CH4 at > 5� in HR 8799 c.
Using a quench pressure approximation andmixing length theory, we were able
to derive measurements of the vertical mixing strength that were compatible
with literature predictions, finding relatively weak vertical mixing is required
to drive the disequilibrium chemistry. While fitting the planet radius is often
challenging when using emission spectra, the broad wavelength coverage and
dynamical mass priors enabled the retrieval of radii consistent with predictions
from evolutionarymodels. The atmospheres of all four planets are likely cloudy,
showing damped absorption features and red colours. Silicate clouds provide
the best fits for HR 8799 c, d, and e, though the resulting models do not display
the silicate absorption feature near 10 µm as expected for this class of L/T
transition object. HR 8799 b is better fit by an Na2S cloud, which is also
predicted by equilibrium chemistry for objects of similar effective temperatures
(950 K).

25.3.1. Formation

Having precisely measured their atmospheric properties, we can turn again
to the question of how theHR8799planets formed. It remains unclearwhether
this system formed by gravitational instability or core accretion. Indeed, with
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four super-Jupiter planets in the same system, it is unclear how representative
this system is of the directly imaged exoplanet population as a whole.

We can consider the evidence for each formation pathway. While in general
planets formed through GI are expected to have a composition closer to that of
stars, it remains possible that the particular properties of the HR 8799 system
may enable this pathway. A high metallicity disk, as required to produce the
metal rich planets, would lead to faster cooling timescales due to the increased
opacity, as demonstrated by Rafikov (2005). From that work, for gravitational
instability to occur at 100 au, “the disk has to possess at least ⌧ ⇡ 2 (marginally
optically thick), Tmin ⇡ 20 K, ⌃min ⇡ 25 g cm�2, L & 10�2

L� and Ma &
0.1M� at 100 au”. While these are relatively extreme properties with respect to
the average protoplanetary disk, HR 8799 is also an extreme system in terms
of its mass. At the absolute minimum, there is 0.03M� of material stored in
the four known companions. This means that even if the accretion efficiency
of the HR 8799 planets was significantly higher than the . 10% efficiency
expected in the solar system (e.g. Eriksson et al., 2022), the mass of the disk
was likely sufficient to be gravitational unstable. We can take this pathway one
step farther, using equation 15 of Rafikov (2005) (equation 4.3 of this thesis).
With a 10% accretion efficiency the disk mass between 15-70 au would have
been at least 0.3M�. If the disk had an above-average metallicity, the opacity
due to molecular and dust absorption is also likely to be high. Freedman et al.
(2014) calculates the Rosseland mean opacity for varying metallicity and gas
temperatures and pressures. At 100 K and a metallicity of 3⇥ solar, R might
be ⇠ 1.5⇥ greater than a solar composition gas, rising to more than a factor of
2 at 300 K. Combining this into equation 4.3, we can calculate the fragment
mass for a 1.5M� host star, at a separation of 68 au. Even assuming only a small
increase in f (⌧) from 1 to 1.5 and assuming that the mean molar mass reflects
a solar composition µ = 2.3, the fragment mass could still be as small as 2.5
MJup. All of the HR 8799 planets fall above this threshold, suggesting that disk
fragmentation is a possible pathway for their formation.

Conversely, Bitsch&Mah (2023) demonstrate a pathway tometal rich giant
planets via pebble accretion. In their model, dust and small pebbles that are
coupled to the gas flow will accrete onto a protoplanet during the runaway gas
accretion phase without being trapped by the pressure bump induced by the
planet. In this model, they find that giant planets can accrete far more metals
than expected from themass-metallicity relationship of Thorngren et al. (2016),
thus potentially explaining the discrepancy between the HR 8799 system and
the general directly imaged population.

Clearly more work is required to disentangle these potential formation
pathways. Mollière et al. (2022) present a tool to infer the formation location
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SUMMARY

of exoplanets given their atmospheric properties and assuming a model of the
disk chemistry and evolution. This should be applied to the HR 8799 planets,
but equally important are the development of forward models adequate to
perform such an inference for a system as complicated as the HR 8799 planets.
The interactions of all four planets with the disk and with each other must be
accounted for. Only with such a complete model can we make robust estimates
of the properties of the disk that gave birth to this enigmatic system.
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26. OUTLOOK

26.1. Future pRT development

While pRT is a state-of-the-art exoplanet modelling tool (particularly with
the recent release of pRT3), there remain many avenues through which to im-
prove the code further. The first goal is to improve the computational efficiency
of the retrieval package. This will permit faster and easier retrievals at the cur-
rent level of model complexity as a routine characterisation tool. Perhaps more
importantly it will enable increases in retrieval complexity, both for fitting
higher data with higher precision, spectral resolution, and broader wavelength
coverage, as well as increases in model complexity through 3D treatments of
atmospheres and incorporating time-dependent phenomena. 3D retrievals have
already been demonstrated byMacDonald & Lewis (2022) and Chubb &Min
(2022). As JWST begins to explore the variability of exoplanet and brown
dwarf atmospheres, it will become necessary to build such time-dependence
into the retrieval framework in order to interpret how atmospheric properties
vary over time and spatial location. Faster retrievals can enable the inclusion
of additional physics into the models. This could allow for the coupling of
the chemistry and thermal structure, potentially enabling fully self-consistent
models within a retrieval framework. In the other direction, it could also enable
the rapid exploration of a high dimensional parameter space, allowing for a truly
data-driven approach to model fitting. Both of these approaches would provide
unique insight into the structure of exoplanet and brown dwarf atmospheres.

One path to follow in the pursuit of increased computational efficiency is
the use of autodifferentiable code. This approach has been demonstrated by
Kawahara et al. (2022), whomakeuse of theJAX library to produce aGPU/TPU
accelerated where the entire spectral model is automatically differentiable. This
approach could allow for rapid retrievals, making use of gradient descent meth-
ods, as well as nested sampling methods such as JAXNS, which has been demon-
strated to be far faster than Multinest or similar existing methods (Albert,
2020).

Other machine learning approaches are also likely to result in dramatic
improvements in computational speed. Vasist et al. (2023) incorporate pRT into
a neural posterior estimation framework. Once a model is trained, the runtime
of the actual retrieval where the model is fit to the data is negligible. While
there is still computational expense in training the variety of models required,
additional developments in this field may enable easier model generalisation.
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26.2. Direct imaging with JWST

In the immediate future, JWST presents the best opportunity to charac-
terise both transiting and directly imaged planets. While WASP-39 b is the
exemplar transiting planet, VHS 1256 b has shown the power and challenges
of broad wavelength, high spectral resolution observations (Miles et al., 2023;
Petrus et al., 2024). These spectra are filled with molecular and isotopologue
absorption lines, with detailed information about the thermal structure and
direct observations of aerosol absorption features.

26.2.1. The Direct Imaging Spectral Community Survey

PIs: Niall Whiteford, Evert Nasedkin, Polychronis Patapis & Ioannis Argyriou.

While the detailed characterisation of individual planets or systems is key
to interpreting their atmospheric properties, unravelling trends in planet forma-
tion, cloud formation and structure, and atmospheric chemistry will require
a population level analysis. Such an analysis is also necessary to determine the
cause of empirical trends, such as the colour differences between brown dwarfs
and young, giant exoplanets. While similar, it has become clear that there are
many spectral – and therefore physical – differences between these exoplanets
and their brown dwarf cousins (Currie et al., 2023b). Differences in the surface
gravity between young planets and brown dwarfs are thought to drive the diver-
gence in near-infrared colour, through changes to their temperature structure,
chemical state, and cloud properties (Tsuji & Nakajima, 2003). This requires
measurement of H2O, CO, and CH4 molecular lines from 1–5 µm, together
with silicate cloud absorption near 10 µm.

The unique wavelength coverage and spectral resolution of JWST enable
the observation of these critical spectroscopic features which are inaccessible
from the ground. We therefore proposed a JWST GO program, the Direct
Imaging Spectral Community Survey (DISCO) to systematically study the at-
mospheric properties of both the directly-imaged exoplanets and brown dwarf
populations as a function of effective temperature and surface gravity. Spec-
troscopic observations from 1 to 28 µmwill allow us to unravel the enigmatic
‘L/T transition’ and understand the empirical differences between the two
populations. By covering a temperature range from ⇠ 800 K to 2200 K, the
observations will target fundamental atmospheric transitions: the onset and
evolution of clouds, as well as stark changes in carbon chemistry (Zahnle &
Marley, 2014). The sample covering this range in temperature and spectral type
is shown in figure 26.1, highlighting the representative nature of our brown
dwarf comparison objects and the anomalous colours of the young exoplanets.
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V Characterisation of the HR 8799 planets

Figure 26.1: Colour–magnitude diagram of near-IR colours, outlining the L
to T sequence of field brown dwarfs (Dupuy & Liu, 2012; Dupuy & Kraus,
2013; Liu et al., 2016; Best et al., 2018, 2020b,a) with the DISCO exoplanet
and brown dwarf samples highlighted. Three distinct regions of the parameter
colour space are covered with our sample: (1) L type, (2) the L/T transition, and
(3) T type. These objects, across the 3 sub-samples, will allow us to study why
exoplanets are systematically redder in colour (larger J-K mag, not extinction)
than brown dwarfs at the same luminosity, and our observations will link these
near-IR colours to mid-IR spectral features. The broad wavelength coverage of
our survey will link these empirical trends to physical processes by measuring
cloud properties and chemical states as they evolve across the sequence.
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Such a program would address key open questions in atmospheric physics, but
will also contextualise these objects and their place in the stellar formation story,
distinguishing lowmass stars from bona fide planets. Specifically, the DISCO
survey would

1. Transform our understanding of the chemistry and clouds that shape the
spectral signatures of sub-stellar atmospheres as a function of tempera-
ture.

2. Unravel the underlying processes that drive the divergent atmospheric
evolution of directly-imaged exoplanets from brown dwarfs.

3. Facilitate improvements to the next generation of atmospheric and planet
formation models with better understanding of fundamental properties.

4. Be the first broad wavelength spectral library of directly imaged exoplan-
ets.

While this proposal has not (yet) been accepted, we firmly believe that a system-
atic survey such as this is necessary to answer fundamental questions about the
atmospheric physics and formation history of directly imaged exoplanets.

26.3. Closing

We live in the most exciting of times to study the atmospheres of exoplanets.
Having looked beyond the wanderers of our own solar system, we are now able
to explore the vast array of worlds in our local neighbourhood and beyond, with
each new discovery raising further questions. The current and next generation
of observatories will expand our capabilities further, pushing to smaller and
colder planets in the pursuit of finding somewhere else like home. We can only
achieve this by overcoming monumental technical challenges, and it is through
the continuous development of techniques such as those described in this thesis
that we can achieve these goals.
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ABBREVIATIONS

4QPM 4 Quadrant Phase Mask
ADI Angular differential imaging

ALES Arizona Lenslets for Exoplanet Spectroscopy
ALMA Atacama Large Millimeter Array

ANDROMEDA ANgular DiffeRential OptiMal Exoplanet Detection Algorithm
AO Adaptive optics
APP Apodizing Phase Plate
AT Auxiliary Telescope, VLT

BMA Bayesian model averaging
C/O Carbon-to-oxygen number ratio
c-k correlated-k

CHARIS Coronagraphic High Angular Resolution Imaging Spectrograph
CIA Collision induced absorption
CPD Circumplanetary disk
CSD Circumstellar disk
DM Deformable mirror
ELT Extremely Large Telescope
EOS Equation of state
ERS Early Release Science

FHWM Full width at half maximum
GCM Global circulation model

GI Gravitational Instability
GPI Gemini Planet Imager
HAT Hungarian Automated Telescope
HCI High-contrast imaging
HST Hubble Space Telescope
IFS Integral field spectrograph

JWST James Webb Space Telescope
KELT Kilodegree Exoplanet Little Telescope
KLIP Karhunen-Loève Image Processing

lbl line-by-line
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LBT Large Binocular Telescope
LTE Local thermodynamic equilibrium
mas milliarcsecond

MIRI Mid-Infrared Instrument (JWST)
NS Nested sampling

OPD Optical path difference
PCA Principle component analysis
PSF Point-spread function
RCE Radiative-convective equilibrium
RDI Reference differential imaging
RTC Real time computer
RTE Radiative transfer equation
RV Radial velocity
S/N Signal to noise ratio
SED Spectral energy distribution
SDI Spectral differential imaging

SPHERE Spectro-Polarimetric High-Contrast Exoplanet Research
TESS Transiting Exoplanet Survey Satellite
UT Unit Telescope, VLT
VLT Very Large Telescope

WASP Wide Angle Search for Planets
WFS Wavefront sensor
YSO Young stellar object
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