
INAUGURAL-DISSERTATION

zur
Erlangung der Doktorwürde

der

GESAMTFAKULTÄT FÜR MATHEMATIK, INGENIEUR- UND

NATURWISSENSCHAFTEN
der

RUPRECHT-KARLS-UNIVERSITÄT

HEIDELBERG

vorgelegt von

Subhash Chandra Pujari (M.Sc.)
aus Nainital

Tag der mündlichen Prüfung:

Neural Patent Classification
beyond

Title and Abstract:
Leveraging Patent Text and Metadata

Supervisor: Prof. Dr. Michael Gertz

Abstract

Intellectual property violations involve substantial litigation and license costs, because of
which patent search is of utmost importance. Over the years, patent corpora have amassed
millions of patents, making manual searches impractical. Patent classification techniques
help domain experts to search and analyze patents. On submission to an examination office,
a patent application is assigned with labels from pre-defined patent taxonomies, e.g., Coop-
erative Patent Classification (CPC) and International Patent Classification (IPC). CPC/IPC
classification helps to route patent applications to the correct department and assists in
performing prior art searches. In addition to CPC/IPC classification, we address the clas-
sification task associated with the Patent Landscape Study (PLS), a process that allows
organizations to search patents, categorize them by custom labels, and analyze them to
derive crucial insights. This thesis significantly contributes to the improvement of patent
classification systems by addressing the key challenges described below.

Most of the existing CPC classification datasets provide only limited texts of the in-
cluded patents and are, therefore, insufficient for our experiments. In response to this issue,
we release a CPC classification dataset that includes the full texts of patents. Further, the
unavailability of open-source datasets is a major bottleneck for the automation of PLS. To
address this challenge, we curate, enrich, and release three open-source datasets from two
diverse domains.

Despite CPC/IPC classification being a hierarchical multi-label classification task, most
prior neural network models have not considered the hierarchical taxonomy when design-
ing model architectures and have often predicted labels only for a single level. We make
a major contribution with our memory-efficient model architecture, which shares a single
transformer-based language model across multiple classification heads, one for each label
in the taxonomy, and uses hierarchical links in the model architecture. We demonstrate
that the proposed technique consistently outperforms baselines, particularly for infrequent
labels.

Our analysis shows that the sentences and abstracts of patents are often duplicated,
illustrating the relevance of the full texts of patents to perform classification. However,
transformer-based language models that take 512 or 4,096 tokens as input are insufficient
for patents, which contain 12.5k tokens on average. Motivated by these factors, we make a
major contribution with our document representation technique, which combines truncated
section text embeddings using vector summation, performing better than baselines. In
addition, we propose a sentence ranker and demonstrate that the extractive summarization
techniques effectively select informative sentences for patent classification.

Unlike CPC/IPC classification, in the case of PLS, the CPC/IPC labels are known dur-
ing inference. As a major contribution, we enrich the document representation by combin-
ing CPC/IPC labels with patent text to predict PLS-oriented categories, often representing
concepts different from CPC/IPC labels. To demonstrate the broader applicability of the
proposed technique, we apply it to a similar task: classifying research publications into
target categories using text and author-provided keywords as input.

Zusammenfassung

Mit Verletzungen des geistigen Eigentums sind hohe Prozess- und Lizenzkosten verbun-
den, was die Patentsuche so eminent wichtig macht. Im Laufe der Jahre haben sich Millio-
nen Patente in Patentkorpora angesammelt, was eine manuelle Suche erschwert. Verfahren
zur Patentklassifikation unterstützen Sachkundige bei der Suche und Analyse von Paten-
ten. Nach Einreichung beim Patentamt wird einem Patentantrag Klassen aus vordefinierten
Patenttaxonomien zugeordnet, zum Beispiel die gemeinsame Patentklassifikation (CPC)
oder die internationale Patentklassifikation (IPC). Diese CPC-/IPC-Klassifikation hilft dabei,
den Patentantrag an die richtige Abteilung weiterzuleiten und eine Recherche zum Stand
der Technik durchzuführen. Neben der CPC-/IPC-Klassifikation beschäftigen wir uns mit
der Klassifikationsaufgabe, die mit der Patentanalyse (Patent Landscape Study, PLS) verk-
nüpft ist, einem Prozess, der es Unternehmen ermöglicht, relevante Patente zu suchen, zu
kategorisieren und zu analysieren. Diese Dissertation leistet einen maßgeblichen Beitrag
zu besseren Patentklassifikationssystemen, indem wir die im Folgenden beschriebenen zen-
tralen Herausforderungen angehen.

Ein großes Hindernis für die Automatisierung der PLS ist die fehlende Verfügbarkeit
von öffentlich zugänglichen Datensätzen. Dieses Problem adressieren wir, indem wir drei
öffentlich zugängliche Datensätze aus zwei unterschiedlichen Domänen kuratieren, erweit-
ern und veröffentlichen. Darüber hinaus liefern die meisten vorhandenen Datensätze zur
CPC-/IPC-Klassifikation nur einen Ausschnitt der Patente, sie kommen daher für unsere
Experimente nicht infrage. Mit Verweis auf dieses Problem veröffentlichen wir einen CPC-
Klassifikationsdatensatz mit den vollständigen Patenttexten.

Auch wenn es sich bei der CPC-/IPC-Klassifikation um ein hierarchisches Klassifika-
tionsproblem mit mehreren Klassen pro Dokument handelt, berücksichtigen die meisten
früheren Arbeiten bei der Gestaltung der Modellarchitektur nicht die hierarchische Tax-
onomie und sagen Labels auch häufig nur für eine einzelne Ebene vorher. Mit unserer spe-
ichereffizienten Modellarchitektur leisten wir einen wesentlichen Beitrag. Diese nutzt für
mehrere Klassifikations-Heads — einen für jede Klasse in der Taxonomie — ein einziges
Transformer-basiertes Sprachmodell und implementiert hierarchische Beziehungen in der
Modellarchitektur. Wir zeigen, dass das vorgeschlagene Verfahren kontinuierlich besser
als existierende Referenzysteme abschneidet, vor allem bei selteneren Klassen.

Unsere Analyse zeigt, dass die Sätze und Abstracts oft doppelt vorhanden sind, was
auf die Redundanz der Patenttexte zurückzuführen ist. Darüber hinaus sind Transformer-
basierte Modelle, welche Kontextgrößen von 512 oder 4.096 haben, unzureichend für
Patente, die durchschnittlich 12.500 Tokens enthalten. Dies hat uns motiviert, mit einem
Verfahren für eine bessere Dokumentendarstellung einen wichtigen Beitrag zu leisten, in-
dem wir Textembeddings aus gekürzten Abschnitten erstellen und diese mittels Vektorad-
dition kombinieren. Zudem schlagen wir ein Satzpriorisierungssystem vor, das die infor-
mativsten Sätze für die Darstellung von Dokumenten auswählt. Wir zeigen, dass die ex-
traktiven Zusammenfassungstechniken effektiv dabei sind, informative Sätze für die Paten-
tklassifizierung zu identifizieren.

Anders als bei der CPC-/IPC-Klassifikation sind bei der PLS die CPC-/IPC-Klassen bei
der Inferenz bekannt. Ein wichtiger Beitrag für die bessere Darstellung von Dokumenten
ist die Kombination von CPC-/IPC-Klassen mit Patenttext. So prognostizieren wir PLS-
orientierte Kategorien, die oft andere Konzepte als die CPC-/IPC-Klassen darstellen. Um
die breitere Anwendbarkeit des vorgeschlagenen Verfahrens zu demonstrieren, setzen wir
es bei einer ähnlichen Aufgabe ein: für die Klassifikation von Forschungspublikationen
in Zielkategorien unter Verwendung von Text und vom Autor bereitgestellten Schlüssel-
wörtern als Eingabe.

Acknowledgment

During my enriching journey pursuing my Ph.D. at Heidelberg University and the Bosch
Center for Artificial Intelligence, I found immense pleasure and invaluable learning expe-
riences. Foremost, my deepest gratitude goes to my supervising professor, Michael Gertz.
Under his mentorship, I delved deeper into the realm of natural language processing and
gained insights into the practical usability and application of my research. Professor Gertz
provided timely and crucial feedback, even amid the busiest periods, shaping my research
and guiding its trajectory. Our insightful discussions enabled me to critically analyze my
work, laying the foundation for the future course of action.

I extend equal thanks to Jannik Strötgen and Annemarie Friedrich, my advisors at
Bosch, who played a pivotal role in my academic growth. Their guidance nurtured my
understanding of the research process, helped identify key research gaps, and enhanced my
scientific writing. Our weekly meetings and asynchronous communications were consis-
tently fruitful, and I appreciate the time and effort they invested in shaping my research.

A special acknowledgment goes to the fellow PhDs of the BCAI-AIR3 team, including
Hendrik Schuff, Stefan Grünewald, Sophie Henning, Youmna Ismaeil, Mingyang Wang,
and Timo Schrader. Our stimulating discussions during lunch and coffee breaks enriched
my research experience. Their contribution extended beyond discussions, as they also pro-
vided valuable proofreading and feedback on the final drafts of my thesis. I am equally
grateful to Clint Sebastian and David Schoenleber from BCAI-AII for their feedback and
support in proofreading. I want to thank the BCAI-AIR3 team members, including Lukas
Lange, Heike Adel, Dragan Milchevski, Daria Stepanova, Trung-Kien Tran, Mohamed
Gad-Elrab, and Evgeny Kharlamov, who provided diverse perspectives and constructive
feedback on paper drafts and conference presentations, which were instrumental in refin-
ing my research.

I appreciate the Ph.D. students from the Data Science Group at Heidelberg University:
John Ziegler, Satya Almasian, and Dennis Aumillier. Our discussions during my visit were
enlightening, and your responsiveness to my queries was invaluable.

I sincerely thank my coauthors, Mark Giereth, Fryderyk Mantiuk, and Tim Tarsi, for
their substantial contributions in improving our research papers. I also thank Patrick Fievet
from the World Intellectual Property Organization (WIPO) for his assistance on WIPO
datasets. Special recognition goes to Ulrich Klinger from Bosch for his dedicated effort in
the labeling process for the Injection Valve dataset and to Axel Grzesik, Christian Höppler,
and Franz Grzeschniok for their support in the patent filing and code release process within
Bosch.

Beyond the academic realm, I owe a debt of gratitude to my family and friends. My
parents’ unwavering encouragement and support have been a constant throughout my pur-
suits. Finally, I extend my deepest thanks to my wife, Sunita, whose continuous support
was a pillar of strength, especially during the challenging times of the COVID-19 pan-
demic, keeping me motivated and focused on my work.

Contents

1 Introduction 1
1.1 Motivating Patent Classification . 2
1.2 Outline, Challenges, and Contributions . 5
1.3 Research Publications, Datasets, and Code Repositories 8

2 Background 11
2.1 Patent . 11

2.1.1 Examination Process . 11
2.1.2 Patent Fields . 13
2.1.3 Patent Taxonomies . 16

2.2 Use Cases and Tasks . 17
2.3 Model Initialization, Training, Validation, and Selection 19
2.4 Text-Based Representation . 22

2.4.1 Non-Neural Text Representation 22
2.4.2 Neural Text Representation: Pre-BERT 23
2.4.3 Neural Text Representation: BERT 26

2.5 Graph-Based Representation . 27
2.6 Classification Model . 29

2.6.1 Non-Neural Classifiers . 29
2.6.2 Multilayer Perceptron . 31
2.6.3 Hierarchical Classification Models 32

2.7 Evaluation Metrics . 35

3 Conceptual Model for Document Classification 37
3.1 Conceptual Model . 38
3.2 Classification Pipeline . 39

3.2.1 Pipeline Structure . 39

Contents xii

3.2.2 Domain-Specific Document Models 41

3.2.3 Domain-Independent Document Model 44

3.2.4 Data Model for Representation Methods 46

4 Datasets and Analysis 49
4.1 Motivation and Contributions . 49

4.2 Related Datasets . 52

4.3 USPTO-70k . 53

4.3.1 USPTO Data Dump . 53

4.3.2 Dataset Creation Process . 55

4.3.3 Corpus Statistics . 59

4.3.4 Summary for USPTO-70k . 62

4.4 Patent Landscaping Datasets . 62

4.4.1 Injection Valves Dataset . 63

4.4.2 Ritonavir and Atazanavir . 63

4.4.3 Corpus Statistics . 65

4.5 Analyzing Association Between CPC/IPC Labels and PLS-Oriented Target
Labels . 67

4.6 Analyzing Duplicate Texts in Patents . 70

4.7 Conclusions . 75

5 CPC Classification using Transformers 77
5.1 Motivation and Contributions . 78

5.2 Related Work . 80

5.3 Model Architecture . 82

5.3.1 Overview . 82

5.3.2 Document Representation . 84

5.3.3 Classification Models . 84

5.4 Experimental Setup . 85

5.4.1 Dataset . 85

5.4.2 Evaluation Metrics . 85

5.4.3 Hyperparameters . 86

5.4.4 Baselines . 86

5.5 Results . 87

5.5.1 Classification Performance . 88

5.5.2 Coverage . 89

5.5.3 Error Analysis . 90

5.6 Conclusions . 91

xiii Contents

6 Efficient Neural Full-Text Patent Representations 93
6.1 Motivation and Contributions . 94

6.2 Related Work . 97

6.3 Patent Representations . 100

6.3.1 Field-Based Representation . 100

6.3.2 Sentence-Based Representation 101

6.3.3 Token-Based Representation . 106

6.4 Experimental Setup . 106

6.5 Results . 108

6.5.1 Performance for Field-Based Representations 108

6.5.2 Performance for Sentence-Based Representations 111

6.5.3 Performance for Token-Based Representations 117

6.6 Conclusions . 118

7 Neural Representations for Patent Landscape Study 119
7.1 Motivation and Contributions . 119

7.2 Related Work . 122

7.3 Methodology . 123

7.4 Experimental Setup . 126

7.5 Results . 128

7.5.1 Baseline with PLS-Oriented Categories 129

7.5.2 Comparison of Patent Embeddings 130

7.5.3 Comparison with the Baselines . 132

7.5.4 Minimum Training Instances . 133

7.5.5 Summary of Results . 133

7.6 Out-of-Domain Evaluation: Classifying PubMed Articles by COVID-19
Categories . 133

7.6.1 Related Work . 134

7.6.2 Methodology . 135

7.6.3 Experimental Setup . 136

7.6.4 Results . 138

7.7 Conclusions . 139

8 Summary and Outlook 141
8.1 Summary and Conclusion . 141

8.2 Outlook and Discussion . 143

Contents xiv

List of Figures 147

List of Tables 151

Bibliography 153

Chapter 1

Introduction

Millions of digitized documents are added to document collections every year, making
manual searches infeasible. However, the availability of open-source and proprietary search
systems allows users to express their informational needs as search queries and retrieve
relevant documents. Web search platforms such as Google Search and Bing index web
pages and provide access through a search interface.1 In addition to webpage searches,
specialized search platforms also exist for specific document collections. Patent archives
are one such document collection.

Patents are business critical because, if granted by the examination office, a patent
confers exclusive rights on the inventors and restricts competitors from using the invention
for monetary gain. Intellectual property infringement by a competitor also invites legal
action. Analyzing stock and patent infringement data for the United States from 1984 to
1999, Bessen and Meurer (2008) found that by the late 1990s, the cost of infringement was
over $16 billion per year, and the average legal cost of an infringement was half a million
dollars. Due to their high monetary value, business organizations safeguard their patent
portfolios and keep track of inventions registered by competitors, a task that is enabled by
the application of patent search and analysis methods. Thus, patent search and analysis is
not only a challenging research area but also highly relevant in practical terms due to the
importance of this field for business.

Several open-source and proprietary systems are available for patent search, for ex-
ample, Google Patent Search2, Patbase3, which allows keyword-based search through its
primary user interface. However, it is infeasible to formulate a search query in specific
search scenarios. For instance, when searching and categorizing documents relevant to a
certain technical category during the patent landscape study process, a domain expert will
often use keyword-based search queries to identify and categorize patents. For broad tech-
nical categories, e.g., “methods for understanding and encoding human natural language”,

1https://www.google.com/ http://www.bing.com [last accessed December 10, 2023]
2https://patents.google.com/ [last accessed December 10, 2023]
3https://www.patbase.com/ [last accessed December 10, 2023]

https://www.google.com/
http://www.bing.com
https://patents.google.com/
https://www.patbase.com/

1. Introduction 2

it is infeasible for a domain expert to develop an extensive list of keywords (Giczy et al.,
2022). Furthermore, the search query must be updated as the terminology used in the do-
main evolves. Moreover, using an extensive list of keywords can result in a high proportion
of false positives in the result set.

In such scenarios, a document classification system could be helpful (Manning et al.,
2008, page 253). A typical document classification system incorporates a model that learns
the classification task with a few labeled examples as input. During inference, it takes a
document as input and maps it to a set of labels representing pre-defined domain concepts
or topics. Later, these labels can be used for retrieval to identify and filter documents
relevant to a user’s information needs. In addition to facilitating document searches, a
labeled document collection also assists in analysis. For example, Mahlia et al. (2020) study
technological trends in biodiesel production techniques by categorizing patents into five
categories, such as catalysts and pre-treatment methods, and then performing an analysis.
For many years, patent categorization was performed manually, requiring a massive effort
on the part of domain experts, but automatic document classification systems have now
been adopted to replace or support manual patent labeling processes (Larkey, 1998; Lee
and Hsiang, 2019; Zaheer et al., 2020; Choi et al., 2022; Yücesoy Kahraman et al., 2023).

Patents exhibit some peculiar characteristics that must be considered and leveraged
when developing patent classification techniques. For instance, patents vary widely in doc-
ument length compared to other document types, such as research publications and news-
papers. For example, US7296968B24 is described in only four pages whereas US1022496-
1B25 comprises more than 490 pages. Furthermore, the hierarchical structure of existing
patent taxonomies can be leveraged to develop automatic classification models that learn
to predict concepts at different levels of granularity (see Figure 2.3, page 15). In this the-
sis, we analyze patents and describe some key characteristics and challenges associated
with patent analysis and search. Based on our analysis, we propose novel classification
techniques and evaluate them on classification tasks in the context of crucial patent use
cases.

In Section 1.1, we discuss further motivations for this thesis by describing key patent
use cases that involve classification tasks. In Section 1.2, we provide details on the key
challenges and contributions in this area of research and outline the thesis. Finally, in Sec-
tion 1.3, we provide information on research publications, datasets, and code repositories
published in connection with this thesis.

1.1 Motivating Patent Classification

An invention is a novel and non-obvious idea that can be realized as a process, system, or
design. To obtain exclusive rights over an invention, an inventor submits a patent applica-
tion, which is usually drafted by a patent attorney, to the examination office. A patent ap-

4https://patents.google.com/patent/US7296968B2 [last accessed December 10, 2023]
5https://patents.google.com/patent/US10224961B2 [last accessed December 10, 2023]

https://patents.google.com/patent/US7296968B2
https://patents.google.com/patent/US10224961B2

3 1. Introduction

plication comprises four main textual fields: title, abstract, claims, and description. The
title indicates the high-level topic of the invention, while the abstract provides a concise
summary. The claims field specifies the invented process or system, and the description
section elaborates on the details of the invention and the background work that led to it.

In addition to these text fields, a set of labels is associated with a patent where the labels
are taken from a pre-defined patent taxonomy. Over the years, patent examination offices
have devised patent taxonomies that contain important domain concepts.6 The Interna-
tional Patent Classification (IPC)7 and the Cooperative Patent Classification (CPC)8 are the
two predominant patent taxonomies. These taxonomies contain labels representing key do-
main concepts, which are arranged in a hierarchical structure. Further, a label description
is associated with each label and describes the concept. Depending on their hierarchical
level, CPC labels are arranged in five hierarchical categories: “section”, “class”, “sub-
class”, “group”, and “subgroup”. The labels at the first, second, third, and fourth levels are
categorized into “section”, “class”, “subclass”, and “group”, respectively. The labels in the
fifth level and below belong to the “subgroup” category. Although the patent taxonomies
define essential concepts, a domain concept may not have a one-to-one mapping in the la-
bel set. For instance, the “computers and office machinery” category might overlap with
multiple CPC labels corresponding to typewriters, computing devices, storage devices, and
printers. In such cases, domain experts may define a novel domain-specific taxonomy. For
example, Inaba and Squicciarini (2017) propose a novel taxonomy of concepts relevant to
the Information and Communication Technologies field.

According to Alberts et al. (2011), patent search and analysis processes are particularly
relevant to two key user groups. The first is made up of professionals in patent examination
offices, such as patent examiners and analysts, who primarily use patent search tools to
classify patent applications into a set of CPC/IPC labels and identify relevant prior art. The
second comprises professionals within business organizations who use patent search and
analysis processes for various applications, such as studying research and business trends
and identifying potential patent infringements by their competitors.

In this thesis, we define conceptual models, release datasets, perform analyses, and
propose novel document classification techniques that will benefit users in business-critical
patent use cases. Below, we discuss key patent use cases and how classification techniques
can reduce manual effort in each case.

• CPC/IPC classification: On submission to the examination office, a patent is as-
signed a set of labels taken from the CPC/IPC taxonomy, which facilitates the as-
signment of the application to the appropriate department within the examination
office (Krier and Zaccà, 2002). The assigned CPC/IPC labels also assist in search
and analysis tasks. For example, when performing a search by using a query to

6https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/classification
[last accessed December 10, 2023]

7https://www.wipo.int/classifications/ipc/en/ [last accessed December 10, 2023]
8https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html [last accessed December

10, 2023]

https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/classification
https://www.wipo.int/classifications/ipc/en/
https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html

1. Introduction 4

identify relevant patents, the CPC/IPC labels can be used as an additional filter to
reduce the number of false positives returned by the search. The CPC/IPC classifica-
tion task was performed manually for many years before the introduction of machine
learning-based automated classification systems (Larkey, 1999).

• Patent landscape study: A Patent Landscape Study (PLS) provides a snapshot of
patents relevant to a specific field. Typically, the findings of a PLS are published
as a report providing insights that help investors, corporations, research institutions,
and policymakers make informed decisions.9 A typical PLS consists of three steps:
search, classification, and analysis (Abood and Feltenberger, 2018). In the first step,
a domain expert defines the scope of the PLS, formulates a search query, and iden-
tifies relevant patents using patent search systems. In the second step, the relevant
patents are categorized into PLS-oriented labels representing concepts such as tech-
nical fields, products, and processes. Finally, the labeled dataset is analyzed to draw
out essential insights, which are then documented in a PLS report. A patent clas-
sification system is utilized in the first and second steps of a PLS. In the first step,
a binary classifier can help classify candidate patents into relevant and non-relevant
categories. In the second step, a multi-label classifier can help to predict a set of
PLS-oriented labels for a patent.

• Patent alert: Each week, thousands of new patents are published by patent examina-
tion offices across the globe, making it challenging for inventors to identify relevant
patents.10 A patent alert system can be helpful in this regard. In a typical patent
alert generation system, a user registers for periodic patent updates, which contain a
subset of newly registered patents shortlisted based on a user-provided search query
11. Domain experts generally aim to ensure that they are notified about critical inven-
tions. They make extensive use of keywords and CPC/IPC labels as search queries
to maximize the retrieval of relevant patents. However, a query with a broader scope
may result in many non-relevant patents being mistakenly identified as relevant. In
this case, a patent classification system trained with a few labeled examples can help
reduce the number of false positives returned by the search.

• Prior art search: In a patent examination office, a patent is granted after the pro-
posed invention is examined against novelty and non-obviousness as two of the main
criteria (Franzosi, 2000). To assess this, a patent examiner evaluates the invention
by comparing it with prior art, which includes patent and non-patent documents such
as research publications, technical reports, and blog posts. This task bears similarity
to the document-to-document retrieval task, and a document representation devised
and trained for CPC/IPC classification might find an application in a document-to-
document retrieval task (Shalaby and Zadrozny, 2019).

9https://www.ipcheckups.com/patent-landscape-analysis-overview/ [last accessed December 10,
2023]

10https://bulkdata.uspto.gov/ [last accessed December 10, 2023]
11https://minesoft.com/pairalerts/ [last accessed December 10, 2023]

https://www.ipcheckups.com/patent-landscape-analysis-overview/
https://bulkdata.uspto.gov/
https://minesoft.com/pairalerts/

5 1. Introduction

The patent classification models developed in this thesis primarily target and evaluate
the CPC/IPC classification and patent landscape study use cases. However, the document
representation methods and classification models proposed in this thesis may also be valu-
able in patent alert and prior art search scenarios.

1.2 Outline, Challenges, and Contributions

In the previous section, we briefly discussed business-critical patent use cases involving
classification tasks that can be addressed using classification techniques. Here, we detail
the main challenges addressed in each chapter and the contributions made by this thesis.

Chapter 2: Background. In Chapter 2, we provide the context for our work by dis-
cussing key patent classification use cases and tasks in detail. Further, we describe the
text- and graph-based representation methods and the neural and non-neural classification
models that serve as building blocks for the document classification techniques described
in the subsequent chapters.

Chapter 3: Conceptual Model for Document Classification. The document classifi-
cation model is incorporated into a business solution as one of the components. A major
engineering challenge is to adapt the classification pipeline for new use cases and incorpo-
rate novel classification techniques. To achieve this, we propose a conceptual model for a
classification pipeline that provides a unified view to stakeholders and allows them to make
crucial decisions regarding system design.

Chapter 4: Datasets and Analyses. One of the most significant challenges involved
in the development and evaluation of patent classification models is the lack of labeled
datasets. To the best of our knowledge, this thesis presents the first benchmark for patent
landscape study classification using natural language processing (NLP) technology. As
a significant contribution of this thesis, we curate and release three datasets from two
diverse domains (mechanical and biochemical) and use them to evaluate the classification
models in the context of patent landscape study (Pujari et al., 2022b). Furthermore, most
of the previous work on CPC/IPC classification only utilizes titles, abstracts, and claims
as patent fields, omitting the more detailed description section because of the efficiency
reasons (Li et al., 2018a; Lee and Hsiang, 2019; Zaheer et al., 2020). To facilitate research
on long-text representation methods in general and patent representation with full texts
of patents in particular, we release a CPC classification dataset in which each instance
contains the full text of patent, allowing the evaluation of document representation methods
in Chapter 6 (Pujari et al., 2022a). As the characteristics of the dataset influence the design
of the document representation methods and help us interpret the model outcomes, we
perform a crucial analysis of duplicate texts. We find that abstracts are often reused across
patents. In a few instances, we find that the sentences are also duplicated within and
across patents. The analysis of duplicate text detailed in this chapter constitutes a further

1. Introduction 6

contribution and motivates the document representation techniques described in Chapter 6,
which utilize a limited set of the most informative text elements.

Chapter 5: CPC Classification using Transformers. Although the CPC/IPC is a hi-
erarchical taxonomy, most previous works have addressed it using flat classification ap-
proaches that only predict leaf-level labels. We find that a recent hierarchical non-neural
approach, namely TwistBytes (Benites, 2019), performs comparably to a flat neural ap-
proach based on the ULMFiT contextual language model (Hepburn, 2018) evaluated on
the hierarchical classification task (Remus et al., 2019). TwistBytes is a local classifier per
node (LCN) based approach that trains multiple classifiers, one for each label, and uses
hierarchical links during prediction. Further, transformer-based classifiers perform better
in various NLP tasks (Craswell et al., 2020). However, it is infeasible to train a neural LCN
classifier with a transformer-based language model for text representation due to memory
constraints.

To overcome these challenges, a significant contribution of this thesis is the develop-
ment of a novel memory-efficient model architecture, namely Transformer-based Multi-
task Model (TMM). The TMM consists of multiple classification heads, one for each label,
which predict whether a label applies to an input representation. Further, the classification
heads share a common transformer-based language model for text representation. The pro-
posed model outperforms multiple neural (Li et al., 2018a; Lee and Hsiang, 2019; Huang
et al., 2019) and non-neural baselines (Benites, 2019). In addition, we propose a hier-
archical variant called the Transformer-based Hierarchical Multi-task Model (THMM).
The THMM leverages hierarchical taxonomy links to transfer representation from the head
corresponding to a parent label to the heads corresponding to its children. Based on a
comprehensive analysis, we demonstrate that the hierarchical links in the THMM improve
performance—particularly at the third level, which contains many infrequent labels (Pujari
et al., 2021a).

Pre-trained models perform better on a task if the text used for pre-training has higher
proximity with the target domain (Sung et al., 2019). Being pre-trained on scientific text,
the vocabulary for SciBERT (Beltagy et al., 2019) has higher overlap with patent termi-
nology than the vocabulary of Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2019), which was pre-trained on English Wikipedia and BookCor-
pus (Zhu et al., 2015). We achieved better performance with SciBERT and, for this reason,
used it for text representation in our experiments.

Chapter 6: Efficient Neural Full-Text Patent Representations. Leveraging the full
texts of patents poses computational challenges for text representation methods, especially
transformer-based models that take 512 or 4096 tokens as input (Devlin et al., 2019; Belt-
agy et al., 2019, 2020; Zaheer et al., 2020). In our analysis in Chapter 4, we discover
that, on average, patents contain around 12.5k tokens (see Figure 4.5, page 61). However,
BERT-based models allow a maximum sequence length of 512 tokens, and the maximum
sequence length for models employing sparse-attention mechanisms, such as Longformer

7 1. Introduction

(Beltagy et al., 2020), BigBird (Zaheer et al., 2020), is 4096 tokens. In addition, our analy-
sis of duplicate text in Chapter 4 reveals the redundant nature of patent texts. Furthermore,
in their evaluation of long text representation methods, Park et al. (2022) found that a clas-
sifier based on Longformer is inefficient, and for some datasets, it performs worse than a
BERT-based baseline.

Considering these factors, we propose an efficient data-driven approach that identifies
the subset of the most informative text elements (e.g., fields, sentences, and tokens) for
patent representation. Our approach is based on the hypothesis that the redundancy of the
information within a patent means that it can be represented using a subset of the most
informative text elements, such that adding more elements does not enhance classifica-
tion accuracy. For efficiency reasons, we continue with the SciBERT model fine-tuned in
Chapter 5 and generate embeddings for texts corresponding to the patent fields and sen-
tences without further fine-tuning the SciBERT parameters. As a significant contribution
of Chapter 6, we propose an approach that combines the embeddings from section texts
using vector summation, which achieves the best performance in the CPC classification
task (Pujari et al., 2022a). As a further contribution, we propose a novel sentence ranker
that computes a score based on the similarity of a sentence to the descriptions of CPC la-
bels, the position of a sentence within the patent section, and the relative importance of
the corresponding patent section text when evaluated with the classification task. With
comprehensive evaluations, we show that extractive summarization is effective in select-
ing a subset of the most informative texts for neural representation in the context of patent
classification.

Chapter 7: Neural Representations for Patent Landscape Study. The classification
task in the context of PLS differs from CPC/IPC classification as it is performed over
patent applications and grants. Therefore, the CPC/IPC labels are known during inference.
The CPC/IPC labels represent crucial domain concepts, and incorporating them into the
document representation may improve classification performance. As a significant contri-
bution of Chapter 7, we propose a neural computational model that combines patent text
and CPC/IPC label information and performs robustly across heterogeneous patent land-
scape study datasets when compared to both neural and non-neural baselines (Pujari et al.,
2022b). Furthermore, we showcase the applicability of the proposed techniques to classifi-
cation settings other than patents through our participation in Task 5 of the BioCreative VII
challenge, which focuses on predicting COVID-19-related class labels for PubMed articles
(Chen et al., 2021b). This demonstrates that despite our focus on patents, our proposed
methods are robust and can be applied in other settings with similar characteristics (Pujari
et al., 2021b).

Chapter 8: Conclusions and Future Work. In Chapter 8, we discuss our main findings,
the research outcomes, and their implications for the field of information retrieval and
natural language processing. We discuss the significance of our work in advancing state-
of-the-art patent classification methods and highlight its limitations, acknowledging areas
where further improvements can be made.

1. Introduction 8

1.3 Research Publications, Datasets, and Code
Repositories

Parts of the research described in this thesis have been published in peer-reviewed venues,
accompanied by datasets and code to facilitate the reproducibility of experiments. In the
following, we provide details on the research publications, code repositories, and released
datasets produced in connection with this thesis.

Publications. The work in this thesis primarily relates to the following peer-reviewed
articles (ordered by publication date).

[1] Subhash Chandra Pujari, Annemarie Friedrich, and Jannik Strötgen. 2021. A
Multi-task Approach to Neural Multi-label Hierarchical Patent Classification Using
Transformers. In Proceedings of the 43rd European Conference on Information Re-
trieval (ECIR ’21).

The classification model architecture and evaluations in Chapter 5 are based on this
work.

[2] Subhash Chandra Pujari, Tim Tarsi, Jannik Strötgen, Annemarie Friedrich. 2021.
Team RobertNLP at BioCreative VII LitCovid Track: Neural Document Classifica-
tion Using SciBERT. In Proceedings of the BioCreative VII Challenge Evaluation
Workshop.

The out-of-domain evaluation performed in Chapter 7, which demonstrates the ap-
plicability of our methods to domains other than patents, is based on this work. The
author supervised Tim Tarsi during this work, and Tim contributed to data clean-
ing and analysis. The final evaluations and analyses mentioned in the paper were
performed by the author.

[3] Subhash Chandra Pujari, Fryderyk Mantiuk, Mark Giereth, Jannik Strötgen, and
Annemarie Friedrich. 2022. Evaluating Neural Multi-Field Document Representa-
tions for Patent Classification. In Proceedings of the 12th International Workshop on
Bibliometric-enhanced Information Retrieval (BIR ’22) co-located with 44th Euro-
pean Conference on Information Retrieval (ECIR ’22).

Part of this research was conducted in the context of Fryderyk Mantiuk’s bache-
lors thesis, which was co-supervised by the author. However, the final experiments,
evaluations, and additional analyses mentioned in the paper were performed by the
author. The experiments and results from this work are mentioned in Chapter 6.

[4] Subhash Chandra Pujari, Jannik Strötgen, Mark Giereth, Michael Gertz, and An-
nemarie Friedrich. 2022. Three Real-World Datasets and Neural Computational
Models for Classification Tasks in Patent Landscaping. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, (EMNLP ’22).

9 1. Introduction

This work presents the datasets (discussed in Chapter 4) and neural network model
architecture (discussed in Chapter 7) used to address the classification task in the
PLS context. The injection valve dataset was created within Robert Bosch GmbH12

and is annotated by Ulrich Klinger, an expert in injection valve-related technologies.
Mark Giereth contributed to the initial data cleansing process.

Published Code. Implementations of the proposed classification techniques, evaluations,
and analyses are publicly available on GitHub under open source software license:

• Implementation of TMM and THMM models (see Section 5.3).
URL: https://github.com/boschresearch/hierarchical_patent_classification_ecir2021
[last accessed December 10, 2023]

• Implementation of document representation to evaluate field text for patent represen-
tation (see Section 6.3).
URL: https://github.com/boschresearch/multifield_patent_classification_bir2022 [last
accessed December 10, 2023]

• Implementation of neural network model for classification in the PLS context (see
Section 7.3).
URL: https://github.com/boschresearch/pls_benchmark_emnlp2022 [last accessed De-
cember 10, 2023]

Released Datasets. We provide the following links to the USPTO-70k and PLS classifi-
cation datasets.

• We release the USPTO-70k dataset for the evaluation of CPC classification tech-
niques. Unlike previous datasets (Li et al., 2018a; Abdelgawad et al., 2019), each
instance in the dataset comprises the full text of the patent. Thus, the released dataset
is crucial for research on long-text classification methods. The USPTO-70k dataset
is described in Chapter 4 and is used for evaluation in Chapter 5 and Chapter 6.
URL: https://zenodo.org/record/6992298 [last accessed December 10, 2023]

• We release the three patent landscape study datasets described in Chapter 4 and used
for evaluation in Chapter 7.
URL: https://github.com/boschresearch/pls_benchmark_emnlp2022/tree/main/patent_ls
[last accessed December 10, 2023]

12https://www.bosch.de/ [last accessed December 10, 2023]

https://www.bosch.de/

1. Introduction 10

Chapter 2

Background

In this thesis, we propose novel document representation methods and classification model
architectures that build on the key concepts defined in the current chapter. In this chap-
ter, we provide a brief overview of classification models and representation techniques and
mention key references, particularly those in the field of patent classification. Subsequent
chapters provide detailed discussions of work based on the key concepts used in the respec-
tive chapters.

In Section 2.1, we provide a brief overview of the patent examination process, key
patent taxonomies, and the structure and content of a typical patent. A description of
different patent analysis use cases and associated tasks is provided in Section 2.2. In Sec-
tion 2.3, we provide an overview of the process of selecting, initializing, training, and vali-
dating a document classification model. The document representation techniques proposed
in Chapters 6 and 7 build on the text and graph-based representation methods described
in Sections 2.4 and 2.5, respectively. The classification model architecture introduced in
Chapter 5 is inspired by the neural and non-neural classification model architectures dis-
cussed in Section 2.6. In Section 2.7, we describe the evaluation metrics used to evaluate
the performance of patent classifiers in hierarchical and non-hierarchical patent classifica-
tion tasks in Chapters 5, 6, and 7.

2.1 Patent

In this section, we describe a typical patent examination process followed by a description
of the content and structure of a patent document, which is accompanied by details about
patent taxonomies.

2.1.1 Examination Process

During the examination process, an invention is documented in a patent application sub-
mitted to an examination office, where it is evaluated against different criteria, resulting

2. Background 12

Patent

Bibliographic
data

Title

Abstract

Claims

Description

Technical field

Background

Contents of the
invention

Brief description of the
drawings

Detailed description

Problems

Means for solving
problems

Effects of the invention

IPC/CPC

Application No.

Filed date

Applicant

...

Figure 2.1: The structure of a typical patent based on Lim and Kwon (2016).

in acceptance or rejection. Acceptance results in a patent grant, allowing the inventors to
make commercial use of the invention within the jurisdiction of the patent office. Promi-
nent patent offices include the United States Patent and Trademark Office (USPTO)1, the
European Patent Office (EPO)2, the China National Intellectual Property Administration
(CNIPA)3, and the Japanese Patent Office (JPO).4 Since a patent grant is valid only within
the relevant patent office’s geographical boundaries, separate applications for the same
invention are filed in patent examination offices across the globe to ensure broader applica-
bility (Carsten Fink and Zhou, 2016).

Here, we summarize a typical patent examination process within the USPTO based on
the details provided by Marco et al. (2019). On submission to an examination office, a
patent is labeled with a set of labels taken from a pre-defined taxonomy so that it can be
forwarded to the correct department and examiner within the examination office. The first
step is to evaluate the application for completeness. Next, an examiner evaluates whether
the application contains claims targeting a single invention or whether they target multiple
inventions. Further, the novelty and non-obviousness of the application are evaluated—
these are the two main criteria based on which an application might be accepted or rejected.
Even if the application is rejected, there remains the possibility of re-submission once the
objections raised by the patent examination office have been addressed.

1https://www.uspto.gov/ [last accessed December 10, 2023]
2https://www.epo.org/ [last accessed December 10, 2023]
3https://english.cnipa.gov.cn/ [last accessed December 10, 2023]
4https://www.jpo.go.jp/e/ [last accessed December 10, 2023]

https://www.uspto.gov/
https://www.epo.org/
https://english.cnipa.gov.cn/
https://www.jpo.go.jp/e/

13 2. Background

2.1.2 Patent Fields

The structure of a typical patent document is shown in Figure 2.1. A patent contains the
specifications of an invention described across different textual fields at various levels of
granularity. A typical patent template is comprised of four textual fields (Lim and Kwon,
2016), which are defined as follows:

• The title provides high-level information on the topic of an invention. Unlike research
publications, the titles of patents are often duplicated, such that the same title might
appear in several different patents. In Section 4.6, our analysis shows that some
titles, such as “tire” and “bottle”, appear across thousands of patents.

• The abstract concisely summarizes an invention and allows the reader to quickly
assess its relevancy. However, like titles, patent abstracts are not always unique:
the same abstract might be associated with multiple patents (see Section 4.6). As
abstracts do not have legal significance, they are written incautiously, and therefore,
information from additional fields is crucial for the comparison of nuances.

• The claims section contains a set of claims which constitute a detailed specification
of an invention. The claims section is the only patent section with legal significance
and can be challenged with litigation in the case of infringement. Due to these le-
gal implications, claims are often written using non-standard terminology, with the
main aim being to broaden the scope of an invention. In a commonly observed pat-
tern, disclosure of a system in a patent might describe its functionality or usage,
and for this reason, ambiguous and abstract terminology may be used. For example,
US20050089604A15 for the invention of an ice cream chip refers to it as “An edi-
ble crisp unitary pastry having a double-curvature and having a planar longitudinal
axis and a planar latitude axis perpendicular to the longitudinal axis”. Such use of
non-standard terminology makes it challenging to determine whether two terms refer
to the same invention. Although the claims section contains the complete specifica-
tion of an invention, the use of non-standard terminology makes it difficult to use the
associated information and compare two similar inventions. For this reason, claims
are often interpreted based on the description field rather than just the claims field.

• In addition to claims, the description field provides detailed information about the
invention and its background. The description field consists of additional sub-fields:
technical field, background, brief summary, drawing description, and detailed
description. Among these different sub-fields, the detailed description field is the
longest and consists of more than 9k tokens on average (see Figure 4.5d, page 61).

In addition to the content fields, metadata information is associated with a patent, pri-
marily so that records can be managed within patent examination offices. Details on meta-
data fields can be found in the documentation for preparation of a patent application as

5https://patents.google.com/patent/US20050089604A1 [last accessed December 10, 2023]

https://patents.google.com/patent/US20050089604A1

2. Background 14

Title

Inventor

Application
Number

CPC

Abstract

Publication
Number

Publication
Date

Applicant

Figure 2.2: The bibliographic information for an example USPTO patent with the pub-
lication number “US 2022/0092440 A1”. The document in the figure is the
published version of a patent application under review.

provided by the European Patent Office.6 The major metadata fields within a patent are
marked in Figure 2.2 with “US 2022/0092440 A1”7 application as example and are de-
scribed as follows:

• Applicant and inventors: The applicant field specifies the name of the organization
that is filing an invention, whereas the names of the individual contributors are men-
tioned as inventors. An organization or an inventor might be referred to with different
names in applications both within and across patent offices, thus leading to the prob-
lem of name ambiguity (Haak et al., 2012).

• Application date and publication date: The date on which a patent application is
filed at the examination office is referred to as the application date. In contrast,
the publication date refers to the date on which the examination office publishes an
application for public access.

• Publication number: After reviewing a patent application, the examination office as-
signs it a publication number as a unique identifier. A publication number comprises
a country code, a document number, and a kind code. The country code indicates
the region where a patent will be valid if granted. The document number is a unique
identifier for a patent. The kind code indicates the current state of a patent document.

6https://www.epo.org/en/legal/guide-epc/2022/ga_c4.html [last accessed December 10, 2023]
7https://patents.google.com/patent/US20220092440A1/en [last accessed December 10, 2023]

https://www.epo.org/en/legal/guide-epc/2022/ga_c4.html
https://patents.google.com/patent/US20220092440A1/en

15 2. Background

ROOT

A

A61

A61B

A61B5/00 A61B8/00

A61B5/0035 A61B8/0055

F

F02B

F02B

F02B29/00

F02B29/04

F02B29/0406

Subclass

Class

Section

Main
Group

Subgroup

Figure 2.3: An example showing the hierarchical structure of the Cooperative Patent Clas-
sification (CPC) scheme.

Kind codes with the prefix “A”, for example, A1 or A2, denote different versions of
the patent application, whereas documents with the kind code prefix “B” are patent
grants. The publication number shown in Figure 2.2 contains “US” as the country
code, “2022/0092440” as the document number, and “A1” as the kind code.

• Family number: Related patent applications filed within the same or different exam-
ination offices are linked by the same family number identifier. The EPO defines two
types of patent families: the first is referred to as a simple patent family and con-
tains the same invention, while the second is known as an extended patent family and
contains similar inventions.8

• CPC/IPC labels: The example application shown in Figure 2.2 contains labels from
both the Cooperative Patent Classification (CPC)9 and International Patent Classifi-
cation (IPC)10 schemes, both of which are pre-defined patent taxonomies. The patent
taxonomies contain labels that represent concepts occurring across patents, which
are arranged in a hierarchical structure such that labels at a higher level represent
coarse concepts, whereas those at the lower levels represent fine-grained concepts
(Figure 2.3). More details on these taxonomies are provided in the following section.

• Citations: In addition to the metadata information given on the first page of a patent,
a patent is linked to the relevant prior art. Alcácer et al. (2009) found that crucial cita-
tions are not mentioned during patent submission and are later added by the examiner
during the examination process.

8https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/patent-families.
html [last accessed December 10, 2023]

9https://www.cooperativepatentclassification.org/cpcSchemeAndDefinitions/table [last accessed
December 10, 2023]

10https://www.wipo.int/classifications/ipc/en/ [last accessed December 10, 2023]

https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/patent-families.html
https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/patent-families.html
https://www.cooperativepatentclassification.org/cpcSchemeAndDefinitions/table
https://www.wipo.int/classifications/ipc/en/

2. Background 16

F
F02
F02B

Section
Class

Subclass

F02B29
F02B29/04
F02B29/0406

Main Group

Subgroups

Engines characterized by provision
for charging or scavenging

Cooling of air intake supply
Layout of the intake air

cooling or coolant circuit

Mechanical Engineering

Combustion Engines

Internal-Combustion Piston Engines

Figure 2.4: An example of the Cooperative Patent Classification (CPC) scheme showing
the different hierarchical levels, an example label for each level, and associated
label descriptions.

2.1.3 Patent Taxonomies

A patent taxonomy contains labels representing key concepts occurring across inventions
so that the most relevant labels can be assigned to each patent; these labels can later be used
for search and analysis. Over the years, patent examination offices have devised classifica-
tion schemes to represent knowledge and organize records within the examination office.
Two popular pre-defined patent taxonomies are the International Patent Classification (IPC)
and the Cooperative Patent Classification (CPC) taxonomies. The CPC taxonomy was in-
troduced in 2013 and extends the existing label set of the IPC taxonomy with an additional
set of fine-grained labels (Degroote and Held, 2018).

The CPC and IPC taxonomies follow hierarchical structures, with labels arranged at
different levels. Labels at higher levels represent coarser concepts, while those at lower
levels represent finer-grained concepts. Figure 2.3 shows an example of the hierarchical
structure of the CPC taxonomy, which contains labels categorized into five groups based
on hierarchical level. The first-level group is referred to as “Section” and contains nine
labels. The second and third-level groups are referred to as “Class” and “Subclass” and
contain 136 and 674 labels, respectively. The fourth-level group is referred to as the “Main
Group”, whereas the labels in the fifth level and below belong to the “Subgroup” category.
The “Main Group” and “Subgroup” categories contain 9.8k and 250k labels, respectively.

A textual description accompanies each label in the CPC taxonomy. Figure 2.4 gives
an example of labels at different levels of granularity and their respective descriptions.
Upon analyzing these descriptions, we observe that the description of a child label provides
additional information to the concepts defined by the parent label.

While the CPC taxonomy contains more than 260k labels in total, there may be cases
in which a domain concept does not have a one-to-one match with a label in the CPC
label set. In such scenarios, domain experts may create a new taxonomy with labels rep-
resenting novel domain concepts. For example, Inaba and Squicciarini (2017) propose a
novel taxonomy consisting of 13 subcategories representing concepts relevant to the field
of information and communication technologies.

17 2. Background

Receive the patent application
and perform the examination

formality (KIPO)

Request Classification
(KIPO)

Grant interim-IPC
(Service Agency)

Request for correction
(Service Agency)

Accept/Return
(KIPO)

accurate

inaccurateConfirm Classification
(Examiner)

Confirm Classification
(Examiner)

Start Examination
(Examiner)

Figure 2.5: The IPC labeling process within the Korean Intellectual Property Office
(KIPO) as illustrated by Lim and Kwon (2016).

2.2 Use Cases and Tasks

The patent classification problem is encountered in a variety of patent use cases (Krestel
et al., 2021), the most important of which can be defined as follows:

CPC/IPC Classification. The CPC/IPC classification use case involves assigning labels
from a pre-defined patent taxonomy (Section 2.1.3) to a newly submitted application in the
examination office. The typical IPC labeling process is shown in Figure 2.5, which is based
on Lim and Kwon (2016). The assigned labels serve two primary purposes: identifying
the correct department for evaluating a patent and filtering out irrelevant patents during
searches.

The CPC/IPC classification process is predominantly manual, and both the research
community and patent examination offices have made continuous efforts to automate it
(Fall et al., 2003; Li et al., 2018a; Lee and Hsiang, 2019). Compared to other patent
use cases, one factor that facilitates the development of machine learning solutions for
CPC/IPC classification is the availability of a large open-source labeled dataset.11 For this
reason, the CLEF-IP (Piroi and Hanbury, 2017) and NTCIR (Lupu et al., 2017) challenges
include IPC classification among their tasks.

As discussed in Section 2.1.3, the CPC/IPC labels are distributed across five level-
based categories. However, label distribution for the two lower-most label groups is quite
skewed. Therefore, most previous works predict labels at the third level of the class hier-

11https://patentsview.org/download/data-download-tables [last accessed December 10, 2023]

https://patentsview.org/download/data-download-tables

2. Background 18

archy, i.e., the subclass group; this includes the task setup for the CLEF-IP 2011 challenge
(Piroi et al., 2011). In addition, CPC/IPC classification has been predominantly addressed
using flat classification approaches in which class labels are predicted for a single level of
the hierarchy, usually at the third level for CPC/IPC taxonomy (Fall et al., 2003; Li et al.,
2018a; Abdelgawad et al., 2019; Lee and Hsiang, 2019; Althammer et al., 2021a). This
thesis formulates the CPC/IPC classification problem as a hierarchical multi-label classifi-
cation task and evaluates classification models’ ability to predict labels across levels. The
CPC/IPC classification task is defined as follows:

Definition 2.1 (CPC/IPC Classification Task). Given a hierarchical taxonomy C, and the
training data set {〈d(i), C(i)

d 〉}ni=1, the CPC/IPC classification task estimates a function for
mapping a document d(i) to a set of CPC/IPC labels C(i)

d , where C(i)
d ⊆ C.

As the CPC/IPC taxonomies are hierarchical and multiple labels from the same level
can be assigned to a document, the CPC/IPC classification task is a hierarchical multi-label
classification task. Further, as each label at the second or lower level is linked to a parent in
the level above, the CPC/IPC classification task imposes the condition that the respective
ancestors should also be contained in the output set for each predicted label. Next, we
discuss the PLS use case and the associated tasks.

Patent Landscape Study (PLS). For certain business scenarios, an organization must
study the intellectual property (IP) landscape within a field (Toole et al., 2020) or in relation
to an invention.12 Knowledge of the patent landscape helps an organization to maintain its
strategic position in terms of IP artifacts that assist business decisions, for example, the
decision on whether to invest in a certain technology. A Patent Landscape Study (PLS)
determines the intellectual property landscape and comprises of three main steps: patent
search, categorization, and analysis. As a preliminary step, a domain expert defines the
motivation behind the PLS and carves out its scope. Once the scope has been defined, the
domain expert identifies patents relevant to the PLS, querying open source or proprietary
search systems using keywords and CPC/IPC labels. The patent search step is iterative, as
the domain expert often reformulates the search query based on the search results. In the
second step, the retrieved documents are labeled with labels from a user-defined taxonomy.
It may be that both the search and categorization steps are performed together, in which case
a domain expert formulates a label-specific search query, and all the documents retrieved
with the search query are categorized using the given label (Toole et al., 2020). Once
the patent search and categorization process is complete, the domain expert analyzes the
labeled dataset to generate a PLS report that provides crucial business insights.

Previous works on automating the PLS process have focused on the first step, which
involves identifying the patents most relevant to the PLS (Abood and Feltenberger, 2018;
Choi et al., 2022). In contrast, we focus on the second step of the PLS process, which

12https://www.wipo.int/publications/en/details.jsp?id=230&plang=EN [last accessed December
10, 2023]

https://www.wipo.int/publications/en/details.jsp?id=230&plang=EN

19 2. Background

involves categorizing the retrieved patents into user-defined categories. The patent classi-
fication task in the context of PLS differs from the CPC/IPC classification task in that the
document corpus for the PLS task comprises patent applications and patent grants labeled
with a set of CPC/IPC labels. Therefore, the associated CPC/IPC labels can be incorporated
into a document representation, expanding the scope of possible document representation
techniques compared to CPC/IPC classification. The PLS classification task can be defined
as follows:

Definition 2.2 (PLS Classification Task). Given the training dataset {〈d(i), C(i)
d , L

(i)
d 〉}ni=1,

estimate a function for mapping a document, d(i), which comes with a set of CPC/IPC
labels, C(i)

d , to a set of PLS-oriented categories, L(i)
d .

When performing a PLS, domain experts define a set of PLS-oriented categories based
on the relevant field of study. For example, in the case of a PLS performed for the drug
atazanavir, the categories included disease names (e.g., “Cancer”, “Hepatitis”) as target
categories.13 PLS classification is a multi-label task since multiple labels can be assigned
to one patent. One of the major bottlenecks in the development of PLS classification tech-
niques is the unavailability of a labeled dataset. In Chapter 4, we address this issue by
releasing three new PLS datasets. Next, we look into the steps involved in a typical process
of training a classifier.

2.3 Model Initialization, Training, Validation, and
Selection

In this section, we discuss the key concepts associated with document classification. Given
a taxonomy as a set of labels L and a document corpus D, document classification is the
task of assigning a set of labels Ld ⊂ L to a document d ∈ D represented as hθ : D → L,
where L is the set of target labels. The function hθ is referred to as the document classi-
fication model, where θ is a set of trainable parameters, learned using labeled examples
during the model training process. Apart from the trainable parameters, certain parameters
are pre-specified during model initialization and are referred to as hyperparameters.

As shown in Figure 2.6, a typical document classification model consists of two compo-
nents: a document representation method and a classification model (Minaee et al., 2021).
A document representation method g(d) maps a document d to an n-dimensional feature
vector, x. The vector x is also referred to as a document representation. A document
consists of content and metadata elements at different levels of granularity, which can be
used to generate a representation of the document and are referred to as semantic entities
by Ingwersen (1994). We refer to them as semantic elements. In this thesis, we propose
document representation techniques that build on methods representing semantic elements

13https://www.wipo.int/publications/en/details.jsp?id=265&plang=EN [last accessed December
10, 2023]

https://www.wipo.int/publications/en/details.jsp?id=265&plang=EN

2. Background 20

... |L|

Figure 2.6: The document classification model consists of two components. As the first
component, the document representation method g(d) maps a data object d to
an n-dimensional feature vector x. Next, the classification model hθ(x) maps
x to an output label vector lpred.

3. Model Initialization
4. Train the model with 5. Evaluate performance on

the validation set

6a. Change
hyperparameters

6b. Continue training

6c. Stop Training

2. Preprocessing

7. Evaluate performance on
test set

1. Take
Preliminary
Decisions

Figure 2.7: The step-by-step process to initialize, train, validate, and select a classification
model, based on Zhang et al. (2021) and Goodfellow et al. (2016).

as a bag-of-words, sequence, or graph, some of which are discussed in Sections 2.4 and
2.5.

A classification model takes a document representation as input and generates an |L|-
dimensional label vector lpred as output (Minaee et al., 2021). The ith value in lpred signifies
the prediction score of a model for predicting the ith label in the label set L. Thus, the
set of predicted labels, L̂d, is determined by selecting all labels with a prediction score
exceeding a pre-defined threshold value. In Section 2.6, we provide details on the various
classification models that inspired the model architectures described in the later chapters.

The performance of a classification model is evaluated using classification-specific
evaluation metrics that take the set of true labels, Ld, and predicted labels, L̂d, as input
and compute a score (Minaee et al., 2021). The evaluation metric mimics the real-world
scenario in which the trained machine-learning model might be used and is pre-specified
before starting model training. Various classification-specific evaluation metrics are dis-
cussed in Section 2.7; these are used to evaluate the classification techniques described in
the later chapters. A typical process of initializing, training, validating, and selecting a
classification model depicted in Figure 2.7 is primarily based on Goodfellow et al. (2016)
and Zhang et al. (2021) and is described as follows:

21 2. Background

1. Preliminary decisions: Before starting the training process, a researcher makes some
preliminary decisions. Based on the non-functional requirements for the target ap-
plication and the available computation hardware, the researcher decides on a model
architecture and the first set of hyperparameters. In the case of neural network mod-
els, the loss function and optimization algorithm are also decided at this point. The
specifics for these are defined in Section 2.6. The evaluation metrics and the stopping
criteria for halting the training process are also defined at this stage. In addition, the
training, validation, and test splits are defined; these are later used to train the model
and evaluate its generalization capability on unseen examples.

2. Pre-processing: Next, the documents in the three data splits are pre-processed and
mapped to data objects based on a document model. The pre-processed training,
validation, and test splits are represented as (Dtrain, Y train), (Dval, Y val), and (Dtest,

Y test), respectively.

3. Model initialization: The document classification model is initialized using the initial
set of hyperparameters, which were decided on in Step 1. The model parameters are
initialized with random values or with a pre-specified distribution.

4. Model training: Next, the document classification model is trained using the training
set (Dtrain, Y train).

5. Model validation: The performance of the trained model is evaluated on the vali-
dation set using the evaluation metrics selected in Step 1, and hyperparameter and
model checkpoints are saved.

6. A neural network model will be trained multiple times on the same training dataset; a
single training cycle is referred to as a training epoch. At the end of a training epoch,
the control may proceed in one of three ways:

(a) Restart training: Based on the model’s performance on the validation set, the
researcher may initialize a new model with a different set of hyperparameters
and restart training.

(b) Stop training: At this point, the training process might be halted based on pre-
defined stopping criteria. Early stopping is one of the most widely-used stop-
ping criteria: the training process stops if the model prediction on the validation
set does not improve for k epochs (Friedrich et al., 2020).

(c) Continue training: After each epoch, the model is evaluated on the validation
dataset, and the training continues if the stopping criterion has not been satis-
fied.

7. Model selection: Once the training process stops, the researcher can select the best
model based on the performance of the classification model on the validation set
and evaluate it on the unseen test dataset. The evaluation is performed using the
evaluation metrics selected in Step 1.

2. Background 22

In this section, we discussed the key concepts associated with the document classifi-
cation task and then detailed the initialization, training, validation, and model selection
processes. Next, we discuss the text representation methods that will later be used in the
proposed document representation techniques and baselines.

2.4 Text-Based Representation

As discussed in the previous section, the first step in the document classification pipeline
maps a document to a feature vector provided as input to the classification model. The
vector can be generated with textual content and associated metadata. Here, we describe
some commonly used text representation methods. Based on the improved performance of
methods using Bidirectional Encoder Representations from Transformers (BERT) (Devlin
et al., 2019) in various NLP tasks at the Text Retrieval Conference, Craswell et al. (2020)
divide text representation methods into two groups: pre-BERT and BERT era methods.
In Section 2.4.1, we discuss non-neural text representation techniques, whereas pre-BERT
and BERT-based neural text representation methods are described in Sections 2.4.2 and
2.4.3, respectively.

2.4.1 Non-Neural Text Representation

As a simple measure of term importance, term frequency counts the number of occurrences
of a term within a document. In a corpus with huge variation in document length, term
frequency is normalized with the count of terms within a document (Manning et al., 2008,
page 117). In Equation 2.1, ft,d is the frequency of a term t in a document d, and the
denominator represents the document length.

tf(t, d) :=
ft,d∑
t′∈d ft′,d

(2.1)

Term frequency ignores the corpus-level statistics for a term, and therefore, the impor-
tance of a term in the corpus is not known. For example, a less frequent term might be more
informative than one appearing in most of the documents in the corpus. To account for the
corpus-level statistics of a term, Sparck Jones (1988) define a term statistic referred to as
inverse document frequency (IDF), which is shown in Equation 2.2. Given the document
collection D, the denominator represents the document count for a term t, i.e., the number
of documents in which a term t appears.

idf(t,D) := log
|D|

|{d ∈ D : t ∈ d}|
(2.2)

The product of term frequency and inverse document frequency accounts for the impor-
tance of a term within a document and the corpus, and the resulting term vector is referred
to as the TF-IDF vector (Equation 2.3).

23 2. Background

tfidf(t, d,D) := tf(t, d) · idf(t,D) (2.3)

Due to its ability to represent long text, the TF-IDF approach has been actively used for
patent classification (Fall et al., 2003; Benites et al., 2018). Further, in a recent evaluation,
Galke and Scherp (2022) found that TF-IDF-based text classification methods are strong
baselines.

2.4.2 Neural Text Representation: Pre-BERT

Although efficient, term-count-based feature vectors ignore crucial sequence information
and represent the text as a sparse vector of size equal to the term vocabulary. Moreover, they
ignore term semantics. Word embedding algorithms capture term semantics and generate
representations based on local and global contexts. Here, we describe the key methods for
generating word embeddings, then detail widely-used techniques for representing complete
sequences: methods based on Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN).

Word Embeddings. Deerwester et al. (1990) propose an approach for learning word rep-
resentations from a document-wide context using latent semantic analysis (LSA). The pro-
posed algorithm learns a latent representation of terms and documents by first representing
the corpus as a document-term matrix and then determining term-topic and document-topic
vectors by applying matrix factorization. The word2vec model learns word representations
based on the local context for a word (Mikolov et al., 2013a). Further, word2vec-based
techniques have achieved better results on the sentence completion task (Zweig and Burges,
2011) than state-of-the-art methods, including the LSA-based approach (Deerwester et al.,
1990).

The word2vec algorithm is a key development in natural language processing, as it
provides a mechanism for efficiently learning word representations with two variants of
the auxiliary tasks (Mikolov et al., 2013a). The first variant, the continuous bag of words
(CBoW) model, learns word embeddings by predicting the center word using the neighbor-
ing words in its left and right contexts as input. In contrast, a second variant, the skip-gram
model, learns word representations by predicting the neighboring words with the center
word as input. However, word2vec suffers from the out-of-vocabulary issue and can only
represent words present in the vocabulary. To some extent, the out-of-vocabulary issue is
addressed by the fastText algorithm, which breaks a word into multiple subwords and learns
a representation for each subword (Bojanowski et al., 2017). In such cases, the embedding
for a word is determined by taking the sum of all the subword embeddings.

Word2vec and fastText provide non-contextualized representations that ignore the cur-
rent context of a word. For example, the word “apple” has a single representation, inde-
pendent of its reference to a technology company or a fruit. For this reason, word2vec and
fastText embeddings are also referred to as non-contextualized embeddings.

2. Background 24

FFN

the
quick
fox

jumps
over
the

dog
lazy

Apply the convolution
filters of size 2 and 3 to

generate the feature
map.

Max-pooling operation to
pick a single maximum

value from the feature map
to create the feature vector.

The feature vector is passed
through the feed-forward

neural network to predict the
probability corresponding to

each label.

Figure 2.8: Text classification model using a convolutional neural network for feature ex-
traction, based on Kim (2014).

Here, we list a few related works in which word embeddings are used for patent clas-
sification and retrieval. Risch and Krestel (2018) train word2vec embeddings using texts
from 5M patents and generate a patent classification representation using gated recurrent
units (Cho et al., 2014). Hofstätter et al. (2019) propose an approach that combines the
document-wide context and the local-window context to learn a word representation for
the patent retrieval task.

In the context of text classification, we are interested in aggregating token embeddings
in sequence to generate a sequence representation. A simple and less effective method
is to take an average of all token embeddings (Iyyer et al., 2015). For text classification,
a widely accepted method for representing a sequence is to apply convolutional neural
networks (Kim, 2014) or recurrent neural networks (Zhou et al., 2016), or its variants, to
a sequence of word embeddings. These two types of neural networks are defined in the
following.

Convolutional Neural Networks (CNNs). Convolutional Neural Networks (CNNs) were
found to have extensive utility in the field of computer vision (Krizhevsky et al., 2012) be-
fore being applied to text classification (Kim, 2014). A typical CNN-based image classifi-
cation model consists of multiple CNN layers arranged as a cascade. However, the model
architecture proposed by Kim (2014) consists of a single CNN layer and is described in
the following. A convolution layer consists of several filters. Each filter has a defined filter
width, which refers to the number of words to which the convolution operation is applied to
generate a real-valued output. A convolution filter is applied over the input sequence with
a fixed length stride, generating a feature map from which the maximum value is selected
with the max-pooling operation. Since the convolution layer consists of multiple filters,

25 2. Background

multiple feature values are generated, one corresponding to each filter. These are referred
to as feature vectors. Figure 2.8 shows an example of a CNN layer with two filters of
filter widths 2 and 3, which generates a two-dimensional output feature vector. However,
in practice, a CNN layer consists of hundreds of filters. The feature vector is provided as
input to the feedforward neural network that predicts the probability distribution over class
labels. Targeting the CPC classification task, Li et al. (2018a) propose a model architecture
similar to Kim (2014). In Chapter 5, we experiment with a CNN-based architecture con-
sisting of a CNN layer that extracts features from a sequence of token embeddings. Next,
we look into recurrent neural networks trained on the next token prediction task.

Recurrent Neural Networks (RNNs) and Their Variants. A language model provides
the joint probability of tokens appearing within a text sequence, {x1, x2, ..., xT}. Based on
the Markov assumption, Equation 2.4 provides the joint probability for a sequence where
the probability of occurrence of the token xt is conditioned on the previous n − 1 tokens;
this is also referred to as an n-gram model (Zhang et al., 2021, page 302).

P (x1, ..., xT) :=
T∏
t=1

P (xt|xt−1, xt−2, ..., xt−(n−1)) (2.4)

There are two main problems with such a probabilistic model. First, the number of
parameters increases exponentially with an increase in vocabulary size. Second, no prior
information exists for out-of-vocabulary terms.

Recurrent neural networks (RNNs) address these issues with a model architecture that
incorporates a hidden state variable to keep track of previous tokens, as shown in Equa-
tion 2.5 (Elman, 1990). The hidden state ht is a function of the input vector xt and the
hidden state ht−1, parameterized with the matrices Wh and Uh and the vector bh. Here,
σh(.) is the non-linear activation function, e.g., tanh. The output vector ot is computed by
multiplying the parameter matrixWo to the hidden state ht.

ht := σh(Whxt +Uhht−1 + bh)

ot := Woht + bo
(2.5)

RNNs suffer from the vanishing gradient problem, which means that the parameter up-
dates for a longer sequence become insignificant as the gradient value becomes too low. To
address this issue, Hochreiter and Schmidhuber (1997) propose a long short-term memory
(LSTM) architecture that consists of a memory cell to hold a value for an arbitrary time in-
terval. The flow of information to and from the memory cell is controlled using three gates:
input, output, and forget. Cho et al. (2014) propose a similar but simplified solution, which
they call gated recurrent units (GRUs). For certain use cases, e.g., text classification, it can
be assumed that both the left and right contexts for the tokens are known. Therefore, a rep-
resentation can be generated using both contexts with bi-directional RNNs (Schuster and

2. Background 26

Paliwal, 1997). RNNs variants are often used for text representation in the context of patent
classification tasks, for which LSTM is a popular choice (Grawe et al., 2017; Shalaby et al.,
2018; Hu et al., 2018) and GRUs is sparingly used (Risch and Krestel, 2019).

2.4.3 Neural Text Representation: BERT

Recurrent models are inherently sequential as the computation of the current state ht is
a function of the previous step ht−1, an operation that cannot be parallelized. It is also
challenging to capture the long-range dependencies between input tokens. Vaswani et al.
(2017) address these issues with transformer architecture that uses the attention mechanism
instead of recurrence and computes the contextualized representation based on the attention
weights corresponding to all other tokens in the sequence; this is also referred to as the full-
attention mechanism. Since the recurrence operation is not involved, the key computation
steps are expressed as a set of matrix operations, which can be parallelized.

A transformer consists of multiple attention units or attention heads, each of which
computes the representation of input tokens using the scaled-dot product operation. This
is performed using three matrices WQ, WK , and W V , referred to as trainable query, key,
and value matrices. An input embedding corresponding to the ith token is multiplied with
WQ, WK , and W V to generate query (qi), key (ki) and value (vi) vectors, respectively. To
compute the attention weight aij , first, a dot product is computed between the query vector
qi and the key vector, kj (corresponding to the i-th and j-th tokens, respectively), which is
then normalized with the dimension of the key vectors

√
dk and finally passed through a

softmax function. Representing the query, key, and value vectors as matrices Q, K, and V ,
in which the i-th row corresponds to the i-th token, the attention function can be defined as
follows:

Attention(Q,K, V) := softmax
(
QKT

√
dk

)
V (2.6)

As depicted in Equation 2.6, the representation of a token is computed by taking the
attention-weighted sum of all the other tokens in the sequence. The three trainable matri-
ces in each attention head capture different relationships between input tokens. The final
representation is generated by concatenating the outputs from all the attention heads, as
shown in Equation 2.7. Here, WO is the parameter matrix, and [...] represents the vector
concatenation operation.

MultiHeadAttention(Q,K, V) := Concat[head1; · · · ; headn]WO

with: headi := Attention(QWQ
i , KW

K
i , V W

V
I)

(2.7)

Devlin et al. (2019) take the encoder part of the encoder-decoder architecture proposed
by Vaswani et al. (2017) and propose a language model that is trained on masked-token

27 2. Background

t

v

Figure 2.9: The next node selection step for node2vec, based on Grover and Leskovec
(2016), depends on the search bias αpq(t, v) parameter which determines the
weight for an edge based on the shortest distance between the previous node t
and neighbors of the source node v (Equation 2.8).

prediction and next-sentence prediction tasks. The proposed model architecture is called
Bidirectional Encoder Representation from Transformers (BERT) and is pre-trained with
BookCorpus (Zhu et al., 2015) and English Wikipedia text. The vocabulary corresponding
to a pre-trained model depends on the training dataset used, and therefore, BERT is non-
ideal for patent-related tasks. For this reason, we use SciBERT (Beltagy et al., 2019), a
BERT variant that is pre-trained on PubMed articles and computer science publications
and thus has a vocabulary more similar to patents as compared to BERT.

In the context of a classification task, a representation can be generated for the input text
by performing the following steps. As a first step, the input text is tokenized. The token
sequence is truncated if its length is more than the maximum allowed sequence length.
Two special tokens, [CLS] and [SEQ], are added at the beginning and end of the sequence,
respectively, while keeping the sequence length less than or equal to the maximum allowed
sequence length value. Next, the sequence is provided as input to the pre-trained language
model, which maps tokes to embeddings. The embeddings are passed through multiple
stacked transformer layers. The output of the final hidden layer for the [CLS] token is
usually used as a sequence representation (Lee and Hsiang, 2019). In this thesis, the method
ef (.) denotes the sequence embedding generation process, where the subscript f refers to
the case when the pre-trained language model parameters are fine-tuned.

2.5 Graph-Based Representation

A document consists of content and metadata semantic elements arranged at different levels
of granularity, with the document being the highest-level semantic element (Ingwersen,
1994). The content and metadata elements can be represented as a corpus-level graph in
which the nodes correspond to the semantic elements, and the edges represent the implicit
or explicit relations between them. Representations for the semantic elements can then be
learned with graph embedding techniques.

2. Background 28

For example, TextGCN (Yao et al., 2019) represents words and documents as graph
nodes linked by a co-occurrence relation, from which it can learn an embedding for docu-
ments and words. However, when evaluated on text classification tasks, Galke and Scherp
(2022) found that graph-based text representation techniques are less effective than pre-
trained transformer models.

In addition to the content semantic elements, metadata information across documents
can also be represented using graphs. For example, the CPC labels associated with patents
in a patent corpus can be represented as a graph in which the nodes represent the CPC labels
and a pair of nodes are connected with an undirected link representing the co-occurrence
relation, i.e., the relation constituted by the two CPC labels occurring in the same patent.
A graph embedding method can then be applied to learn a label representation.

Chen et al. (2020) provide an extensive survey of graph embedding methods and list
DeepWalk (Perozzi et al., 2014) and node2vec (Grover and Leskovec, 2016) as two key
methods that learn node embeddings by first performing multiple random-walks to generate
node sequences which are then provided as input to the word2vec algorithm. However, the
two algorithms differ in the random walk strategies they apply. DeepWalk favors a depth-
first sampling (DFS) strategy, traversing nodes further away from the source node, whereas
node2vec traverses nodes with both DFS and breadth-first sampling (BFS) strategies.

Node2vec generates a sequence of nodes with multiple random walks (Grover and
Leskovec, 2016). The hyperparameter number of walks defines the number of random
walks originating from each node in the graph. In contrast, the walk length parameter con-
trols the number of nodes traversed in a random walk. Node2vec defines hyperparameters,
p and q, that control the traversal strategy (BFS or DFS) for selecting the next hop.

Given t and v as the previous and source (current) nodes, respectively, the next hop
from the neighboring nodes is selected with Equation 2.8, where dtx is the shortest path
distance between the previous node t and the neighbors of v. As seen in Figure 2.9, the
edge weights are calculated with Equation 2.8, which represents the search bias αpq(t, v)

when identifying the next hop. The unnormalized transition probability is given as πvx =

αpq(t, x) · wvx, where wvx is the weight for the edge (v, x).

αpq(t, v) :=

1
p
, if dtx = 0

1, if dtx = 1
1
q
, if dtx = 2

(2.8)

As per Equation 2.8, a lower value of p favors the previously traversed node as the
next hop, whereas a lower value of q tends to result in the selection of nodes further away
from the source, thus favoring the DFS strategy. In Chapter 7, we generate CPC/IPC label
embeddings by applying the node2vec algorithm over the undirected label co-occurrence
graph and incorporating them into patent representation (see Section 7.3). The label co-
occurrence graph consists of CPC/IPC labels as nodes, and two labels are connected if they
both occur in one patent.

29 2. Background

2.6 Classification Model

A classification model takes a feature vector as input and maps it to a label vector, repre-
senting the probability distribution corresponding to target labels. In this thesis, we are in-
terested in parametric models, which consist of a set of parameter variables that determine
the labels for an input feature vector and are learned during the model training process.
Here, we discuss the details of non-neural and neural classification models often used in
patent classification tasks.

2.6.1 Non-Neural Classifiers

Here, we provide a brief overview of two key non-neural classification models: Logistic
Regression and Support Vector Machines. Logistic regression is a simple and interpretable
classification model that separates the positive and negative classes with a linear decision
boundary. Logistic regression has long been used as a tool for statistical analysis (Truett
et al., 1967; Priyadarshini et al., 2021) and mentions of the model can be found in early
textbooks on the analysis of medical data (Pearl, 1924). However, because the logistic re-
gression’s decision function is restricted to a space of linear functions, it has been followed
by the development of more sophisticated classification models, such as Support Vector
Machines (Cortes and Vapnik, 1995). Below, we discuss the key concepts of both of these
models.

Logistic Regression. Logistic regression is a classification model that represents the de-
cision boundary between the positive and negative classes as a linear function (Ng, 2022,
page 8). For an input vector x, a value is predicted by first taking a dot product between x
with the parameter weight vector θ and then mapping the dot product to a value between 0
and 1 with the sigmoid function. Given that the values across feature vectors are within the
same range, the weight value θj represents the importance of feature xj when performing
the classification. The decision function is as follows:

hθ(x) :=
1

1 + e−θTx
(2.9)

The model weights are learned with the training set. The weight update step for the
jth parameter is represented in Equation 2.10, where (y(i) − hθ(x(i)))x

(i)
j is the error term,

and α is the learning rate, a hyperparameter that controls the weight updates (Ng, 2022,
page 12).

θj := θj + α(y(i) − hθ(x(i)))x
(i)
j (2.10)

2. Background 30

Equation 2.10 is for the stochastic gradient descent algorithm that randomly picks one
example, computes the gradient, and updates the model weights (Ng, 2022, page 13). In
practice, the mini-batch gradient descent algorithm, which computes the gradient for m
examples at a time, is commonly used; it results in smoother gradient updates and is more
efficient.

Support Vector Machines. Logistic regression has several key issues. First, due to
the possibility of multiple decision boundaries existing between the data points from two
classes, there is no precise mechanism for picking the optimal one. Second, logistic re-
gression can only estimate a linear decision boundary and performs poorly in cases of non-
linear decision boundaries. Support Vector Machines (SVM) address these issues using the
following mechanisms (Cortes and Vapnik, 1995).

First, instead of a separating hyperplane, an SVM has a separation region bounded by
margins on either side. The hyperplane is at the center of the separation region, equidistant
from the two margins. The separation region is estimated by solving the optimization prob-
lem that maximizes the distance between the hyperplane and the margins and minimizes
the classification error, thus enabling the SVM to estimate the optimal hyperplane (Cortes
and Vapnik, 1995). The optimization function defines a parameter controlling the number
of support vectors (Cortes and Vapnik, 1995). The decision function predicts a value in the
range [−1,+1] and is represented by Equation 2.11.

f(x) := Sgn(
∑
i

αiyi(x · xi) + b) (2.11)

Here, xi is the feature vector, yi is the target value, and αi is the value of the trainable
parameter for the ith training instance. The value of αi is determined during the optimiza-
tion step. The method Sgn(.) determines the sign of the output value. A value of f(x) > 0

predicts a positive class, else the negative class is predicted. The data points in the train-
ing dataset that are on the margin of the decision boundary are important as they mark the
boundary of the separation region and are referred to as support vectors.

Further, unlike logistic regression, SVMs can learn a non-linear decision boundary.
The feature vector is mapped to a high-dimensional space to learn the non-linear decision
boundary, assuming that transformed vectors might be linearly separable (Cortes and Vap-
nik, 1995). The decision and objective functions involve a dot product between two very
high-dimensional feature vectors, which is computationally infeasible (for more details,
see Cortes and Vapnik (1995)). To address this issue, an SVM uses the kernel function
K(.) to represent the dot product as a function of the corresponding vectors in the original
space, such that Φ(x) · Φ(xi) = K(x,xi). With this change, the decision function takes
the following form:

31 2. Background

Input Layer

Hidden Layer

Output Layer

Figure 2.10: A multilayer perceptron architecture based on Zhang et al. (2021).

f(x) := Sgn(
∑
i

αiyiK(x,xi) + b) (2.12)

The shape of the non-linear decision boundary depends on the kernel method and is
therefore decided a priori. A feedforward neural network can estimate an arbitrary shape
decision boundary, as discussed in the next section.

2.6.2 Multilayer Perceptron

Multilayer Perceptron (MLP) models generalize the idea of the perceptron (Rosenblatt,
1958) to a multilayer, fully connected neural network architecture (Zhang et al., 2021,
Ch. 5). Figure 2.10 shows an example of an MLP architecture: a two-layer network. The
input layer does not perform any computation and has a dimension equal to that of the
feature vector x. The other two layers consist of multiple computation units, each with its
own parameter vector and activation function. A computation unit gets a vector from the
previous layer as input, computes its dot product with the parameter vector, and applies the
activation function to generate a numeric output. The output of a neural layer is a vector
that gets a value from each computation unit. The details of the operation of the hidden and
output layers are as follows.

Equation 2.13 represents the computation step for the hidden layer of MLP in Fig-
ure 2.10. In the context of a document classification task, x is the document representation,
W (1) and b(1) are the weights and biases for the hidden layer, σ(.) is the activation function,
and h is the output of the hidden layer. ReLU is commonly used as an activation function
for hidden layers, as it mitigates the vanishing gradient problem (Zhang et al., 2021, page
185).

2. Background 32

h := σ(W (1)x+ b(1))
(2.13)

The output from the hidden layer is provided as input to the output layer. Equation 2.14
shows this computation step. Here, W (2) and b(2) are the output-layer weights and biases,
and sigmoid(.) is the sigmoid activation function applied to each computation unit in the
output layer. In the context of patent classification tasks, the ith value of the output vector
oi corresponds to the prediction probability of label li ∈ L.

o := sigmoid(W (2)h+ b(2)) (2.14)

As with logistic regression, the optimal parameter values are estimated by iteratively
applying an optimization algorithm that computes the gradient of loss and adjusts the model
weights. However, the output of a neural network is computed by applying multiple vector
operations and functions, and therefore, the gradient computation is not straightforward.
The neural network parameters are updated with the backpropagation mechanism, in which
the computation graph is traversed in the reverse order, from output to input. At each step,
gradients are computed by employing the chain rule from calculus (for details, see (Zhang
et al., 2021, page 181)).

2.6.3 Hierarchical Classification Models

The classification models discussed above are categorized as flat classification approaches,
in which the labels from one level of the hierarchy, often the leaf labels, are predicted.
However, the CPC/IPC classification task is inherently hierarchical as it involves predicting
labels at different levels. In this case, a hierarchical classifier that predicts labels across
the hierarchy might perform better by learning to predict labels representing concepts at
varied levels of granularity. Silla and Freitas (2011) categorized hierarchical classification
approaches into two main categories: the local classifier per level approach (LCL) and
the local classifier per node approach (LCN). An LCL approach trains a classifier for each
level in the class hierarchy. Given the example taxonomy illustrated in Figure 2.11, an LCL
approach trains three classifiers, one for each level. In contrast, an LCN approach trains a
classifier for each label in the taxonomy.

TwistBytes. TwistBytes is a non-neural LCN-based approach that trains a classifier for
each label in the taxonomy (Benites, 2019). Further, it employs the sibling strategy to train
a label-specific classifier that filters training instances that have the label or its siblings
as the target. For example, given the taxonomy shown in Figure 2.11, when training a
classifier for label “A43B” only instances containing either “A43B” or its siblings, “A43C”,
as target labels are considered.

33 2. Background

0.60A

0.55A43 0.30A44

0.52A43B 0.51A43C -A44B -A44C

A43

A

A44

A43B

Figure 2.11: The example shows CPC labels up to the third level of the hierarchy. Each
label has an associated prediction score based on the prediction of the cor-
responding label-specific classifier. A label is predicted if the prediction for
the parent label exceeds a pre-defined threshold. In this case, “A44B” and
“A44C” are not predicted as the prediction score for the parent “A44” is less
than the pre-defined threshold of 0.50.

The tree is traversed from top to bottom when predicting labels for an input representa-
tion. A label-specific classifier predicts whether the label applies to an input representation
at each hop. Further, for level two and below, a label is predicted if the prediction score for
the parent label exceeds a pre-defined threshold. When predicting labels for the taxonomy
shown in Figure 2.11 with a prediction threshold value of 0.50, TwistBytes does not predict
labels “A44B” and “A44C” because the prediction score for the parent, “A44”, is less than
the pre-defined threshold.

Hierarchical Multi-label Classification Network (HMCN). Wehrmann et al. (2018)
propose a neural LCL-based model architecture that trains a classification head for each
level in the class hierarchy and a global classification head that predicts probability distri-
bution for all the labels in the taxonomy. The final prediction probability is a weighted sum
of predictions from the level-specific and global heads. For the sample taxonomy shown
in Figure 2.11, an HMCN model would train four classification heads: one level-specific
classification head for each level and a global classification head. The model architecture
for the taxonomy of Figure 2.11 is shown in Figure 2.12.

A level-specific classification head consists of two dense layers. The first dense layer
has a ReLU activation, whereas the second dense layer has a sigmoid output predicting
probabilities corresponding to all labels in the level. The classification head correspond-
ing to the first level takes the feature vector x as input. For each subsequent level, the
hidden state of the first dense layer from the classification head of the previous layer is
concatenated with x and provided as input. The input for the global classification head is
generated by concatenating the hidden state of the classification head corresponding to the
lower-most level to the feature vector x.

lpred := ((1− β)× (lpred1 ; lpred2 ; lpred3))⊕ (β × lpredG) (2.15)

2. Background 34

Two-layer MLP where
the first hidden layer

has a ReLU activation
and the output layer

has a sigmoid
activation.

Vector concatenation
operation

One-layer MLP with a
sigmoid activation.Vector summation

operation

Figure 2.12: Hierarchical Multi-label Classification Network (HMCN) architecture, based
on Wehrmann et al. (2018).

The final prediction lpred is a weighted sum of level-specific predictions, lpred1 , lpred2 , and
lpred3 , and predictions from the global classification head, lpredG , weighted with parameter β
as shown in Equation 2.15. The semicolon (;) and ⊕ represent the vector concatenation
and summation operations, respectively.

Hierarchical Attention-based Recurrent Neural Network (HARNN). Huang et al.
(2019) propose a hierarchical classifier similar to HMCN, which consists of multiple hier-
archical attention-based memory (HAM) units, one for each level. As a first step, the doc-
ument text is represented with a BiLSTM layer that provides an embedding corresponding
to each token, whereas the labels in the taxonomy are represented as level-wise matrices,
one for each level. HAM takes BiLSTM-based token representations, a level-wise label
matrix, and representation from HAM in the previous level as input and computes a level-
wise prediction P h

L based on attention score between the text representation and level-wise
label matrix, where h is a hierarchical level. The output of the HAM corresponding to the
lower-most level is passed through a feedforward network to compute global prediction PG
for all the labels in the hierarchy. The final prediction for a label is the weighted sum of the
corresponding prediction scores in P h

L and PG.

35 2. Background

2.7 Evaluation Metrics

We now discuss the evaluation metrics that capture different aspects of a classifier’s perfor-
mance, such as precision, and can be useful for determining its usability for an application.
Given a set of true labels Ld and predicted labels L̂d, we are interested in true positive, false
negative, and false positive sets computed with set operations Ld∩ L̂d, Ld \ L̂d, and L̂d \Ld,
respectively. The numbers of instances in true positive, false negative, and false positive
sets are referred to as TP , FN , and FP , respectively.

Precision, Recall, and F1-score. Precision, recall, and F1-score are commonly used
evaluation metrics for evaluating classification tasks and are described in the following
based on Davis and Goadrich (2006). In the context of a classification task, a precision
score evaluates the ability of the classification model to make a precise judgment, i.e., by
predicting fewer false positive labels (Dogan et al., 2019). Instead of making a precise
judgment, in certain cases, we aim to maximize the prediction of relevant labels, i.e., to
maximize true positives even if doing so increases false positives. For example, when per-
forming a patent landscape study to identify all patents relevant to an invention, a domain
expert intends to minimize false negatives, as missing relevant patents from competitors
might lead to litigation. Recall is an important metric in such situations. It is defined as the
ratio of correctly predicted labels to the actual label count (Equation 2.16).

Precision :=
TP

TP + FP

Recall :=
TP

TP + FN

(2.16)

Considering these definitions of precision and recall scores, we find that one can be
improved by impacting the other. In a multi-label patent classification setting, recall could
be maximized by predicting more labels than the average label count value. However, such
a prediction strategy would lead to poor precision. Similarly, precision could be maximized
by limiting the number of predicted labels. An appropriate balance between the precision
and recall is desirable and is provided by the Fβ-score (Fβ) defined in Equation 2.17. The
β parameter controls the influence of precision and recall. The precision and recall scores
are balanced by giving equal weights to precision and recall with a β value of 1, referred to
as the F1-score (Equation 2.17).

Fβ-score := (1 + β2) · Precision ·Recall
β2 · (Precision+Recall)

F1-score := 2 · Precision ·Recall
Precision+Recall

(2.17)

2. Background 36

Macro-F1. When referring to the F1-score, we often refer to the micro-F1, which is the
average of F1-scores over all the instances in the dataset. In the case of an unbalanced
dataset, the micro-F1 score can be improved by predicting labels corresponding to the ma-
jority classes. Often, for a large taxonomy such as the CPC taxonomy (Section 2.1.3), the
labels corresponding to less frequent classes are more informative than those correspond-
ing to more frequent classes, which may reflect the appearance of generic concepts in most
documents. Opitz and Burst (2019) propose the macro-F1 score metric, which computes
the average of F1-scores over all the classes (Equation 2.18).

macro-F1 :=
1

|L|
∑

class∈L

F1class (2.18)

Hierarchical Evaluation Metrics. The pre-defined patent taxonomies are hierarchical
in structure (Section 2.1.3). A hierarchical classifier may predict correct labels at a higher
level, but we cannot be confident that it will predict lower-level, fine-grained labels. Fur-
ther, a flat classifier (a classifier predicting labels at a particular hierarchy level) can make a
partially correct prediction. The hierarchical evaluation metric captures a classifier’s ability
to make a partially correct prediction. Silla and Freitas (2011) propose hierarchical evalu-
ation metrics to determine the performance of classification models when predicting labels
across levels. In this case, Ld contains all true labels, including ancestors, and L̂d consists
of all predicted labels and their respective ancestors. For example, with flat evaluation met-
rics, a classifier predicting {A43B} for {A43C} as a true label results in a precision score
of 0, whereas with a hierarchical evaluation metric predicting {A,A43, A43B} for the true
value set {A,A43, A43C} results in a precision score of 0.66.

Chapter 3

Conceptual Model for Document
Classification

The document classification techniques developed in this thesis are primarily evaluated for
the patent classification task. However, we intend to ensure their applicability for other do-
mains and document types. To achieve this, we propose a conceptual model that represents
key components and their relationships. A conceptual model provides a unified view of the
classification system, allowing for easy comparison and adaptation for tasks and use cases
other than patent classification.

Maass and Storey (2021) emphasized that conceptual modeling is crucial when design-
ing and developing systems involving a machine learning component, citing the follow-
ing reasons. Firstly, by providing a unified view, conceptual models enable discussions
between professionals, such as business analysts, data scientists, data engineers, and de-
velopers. Secondly, conceptual models help stakeholders to make crucial design decisions
by representing key elements, including quality attributes. Thirdly, conceptual models can
represent key machine learning algorithms and their influence on performance indicators
and quality attributes.

To conceptualize business solutions involving machine learning components, Nalchigar
and Yu (2020) propose the Goal-oriented Requirements Engineering for Machine Learning
(GR4ML) framework.1 Using the GR4ML framework, we describe a conceptual model for
document classification in Section 3.1. We further expand a few of the components of the
conceptual model to define a classification pipeline that can, with minor modifications, be
adapted to perform multiple classification tasks (Section 3.2).

1http://www.cs.toronto.edu/~soroosh/gr4ml_introduction.html [last accessed December 10,
2023]

http://www.cs.toronto.edu/~soroosh/gr4ml_introduction.html

3. Conceptual Model for Document Classification 38

Document Model
+doc_id
+field_1
+field_2
...

data
source

data pipeline

Document Classification Model
[DIDM]

Document
 Classification Model

+type: Classification Model
+input: Document Model Instance
+output: list of tuples (label, score)
+usageFrequency: per instance

Which labels are relevant for an input document?

Document
Categorization

Strategic Goal

D

Q

input to

answers

generates

Business
VIew

Analytics
View

Data
Preparation
View

decision goal

question goal

business goal

Actor

Insight

composition

answers

desire

Legend for business view

Q

D

Legend for analytics
design view

analytics goal

evaluates

generates indicator

Legend for data preparation
view

input/output

data flow

Entity
+primary key
+attribute

precision

recall

F1-score

B
B

Actor

Figure 3.1: Conceptual model based on GR4ML (Nalchigar et al., 2021) for a business
analytics use case involving a document classification task.

3.1 Conceptual Model

The GR4ML conceptual modeling framework (Nalchigar and Yu, 2020) can be used to
represent three perspectives on the document classification process: business, analytics,
and data preparation. Figure 3.1 depicts a conceptual model for document classification,
which is comprised of these three views, as described in the following.

Business View. An organization invests in a business analytics solution to achieve its
strategic objectives. Within the GR4ML framework, the strategic objectives are represented
as business goals in the business view, which are then mapped to one or more decision
goals. These decision goals enable an organization to make certain decisions that can help
them achieve corresponding business goals. The decision goals are further mapped to a set
of question goals, which are answered using the insight element instance generated by the
analytics view.

Business goals represent strategic business objectives and are use-case specific. For in-
stance, when automating the CPC classification process, one of the central business objec-
tives for a patent examination office is to reduce the manual effort expended to assign new
applications to the appropriate departments (Krier and Zaccà, 2002). In contrast, patent
landscape studies are primarily motivated to draw crucial insights by analyzing patents

39 3. Conceptual Model for Document Classification

within a field, for which patent categorization is an important pre-step (Abood and Fel-
tenberger, 2018).

In both cases, a domain expert has to decide to assign a set of labels to patents as one
of the tasks. This decision-making step is represented as the decision goal in Figure 3.1.
This decision goal is then mapped to a question goal, which is answered with the insight
generated from the analytics view. For the examples discussed above, it is essential to
know which labels are most relevant to an input patent.

Analytics View The analytics view encompasses the analytical components of a business
solution, such as algorithms, models, and indicators. The algorithms and models are
applied to a data instance based on a defined document model to generate an insight for
the business view. In the context of document classification, the document classification
model is a crucial component of the analytics view. This takes a document model object as
input and generates label scores as insight. Since multiple document classification models
may be applicable to a given task setting, the optimal model is selected according to its
performance in terms of key performance indicators and quality attributes. Figure 3.1
depicts precision, recall, and F1-score as indicators for evaluation, which are discussed in
Section 2.7.

Data Preparation View. The data preparation view comprises three main components:
a document model, a data processing pipeline, and a data source. The document model
represents the structure of an input document and may vary across document types. A data
object based on a document model is provided as input to the document classification
model in the analytics view. The data processing pipeline is an abstraction of the data
processing step that generates an instance of a document model from the data source,
e.g., a database, file system, or web API.

3.2 Classification Pipeline

The document classification pipeline described in the previous section abstracts several
crucial components. We extend the conceptual model by expanding some of the compo-
nents and defining crucial data models to enable its applicability for multiple domains using
diverse representation methods.

3.2.1 Pipeline Structure

The overall pipeline is depicted in Figure 3.2 and is divided into three parts. The first
part of the pipeline consists of use-case-specific components. As a first step, the dataset
is loaded from the data source to create an object of Domain-Specific Document Model
(DSDM) that contains information specific to a document type. In Section 3.2.2, we define
the specifications for the Patent Document Model (PDM), which represents the structure

3. Conceptual Model for Document Classification 40

mapper_PubMedDM_to_DIDM

mapper_PDM_to_DIDM

DIDM

PDM_instance

PubMedDM_instance

mapper_DIDM_to_DocRepDM

Document Representation
Method

Classification Model

DIDM

DocRepDM

Tokenizer

DocRepDMPDM

PubMedDM

Document Model

Instance Method/Model

Legend

<<instance of>> <<instance of>>

<<instance of>>

<<instance of>>

1. Use case specific
components

2. Document representation
method specific components

3. Classification model specific
components

Figure 3.2: Extending the document classification pipeline so that it can be applied
for multiple document classification tasks with minor adaptations (Sec-
tion 3.2.1). The patent document model (PDM) and PubMed document model
(PubMedDM) are defined in Section 3.2.2, the domain-independent document
model (DIDM) is defined in Section 3.2.3, and the data models for document
representation methods (DocRepDM) are described in Section 3.2.4.

and content of a typical patent. Further, to emphasize the applicability of the pipeline for
other domains and document types, we adapt the pipeline for the classification of PubMed
articles on different categories of COVID-19 topics in Chapter 7. Thus, in addition to
PDM, we define a document model for PubMed articles, which is henceforth referred to as
PubMedDM (Section 3.2.2).

The DSDM instance is mapped to a Domain-Independent Document Model (DIDM)
instance using a mapper function specific to the DSDM type. For the examples shown in
Figure 3.2, mapper_PDM_to_DIDM and mapper_PubMedDM_to_DIDM are map-
pers for PDM and PubMedDM instances, respectively. DIDM is intended to represent a
document as a generic data model, such that once a DIDM instance is created, the re-
maining operations can be applied regardless of the domain and document type. In Sec-
tion 3.2.3, we define the DIDM by considering the common structural patterns that occur
across DSDMs.

As depicted in Figure 3.2, the second part of the pipeline consists of components spe-
cific to a document representation method. First, mapper_DIDM_to_DocRepDM maps
a DIDM instance to an object based on DocRepDM, a data model specific to the docu-
ment representation method. With a DocRepDM object as input, the tokenizer generates
an output that can be provided as input to the document representation method.

For example, with BERT as the document representation method, we map a DIDM
instance to a DocRepDM instance, which consists of text and max_length as attributes.

41 3. Conceptual Model for Document Classification

Next, with the DocRepDM instance as input, the sequence tokenizer generates a tokenized
sequence of the length specified by the max_length attribute. Finally, the tokenized se-
quence is provided as input to BERT.

When adding a new document representation method to the catalog, the correspond-
ing mapper_DIDM_to_DocRepDM, DocRepDM, and tokenizer need to be updated as
well. In Section 3.2.4, we discuss a few types of DocRepDM which are relevant to the
document representation techniques discussed in the subsequent chapters. We define a few
crucial attributes for DocRepDM that can be further extended based on the requirements.

The third part of the pipeline consists of a classification model as the only component
that maps the document representation output to a vector of prediction scores correspond-
ing to the target labels. The output of a document representation method should adhere
to the interface definition of a classification model. For example, in a typical BERT-based
classifier, the text sequence is represented as a single vector, which is provided as input
to the feedforward neural network (Devlin et al., 2019). In contrast, a label-based classi-
fication technique generates multiple vector representations for the input text, which are
provided as input to the label-specific classification heads (Mullenbach et al., 2018).

3.2.2 Domain-Specific Document Models

A previous paper by Kimura and Shaw (1984) introduced a document model independent
of the storage medium and presentation view. The World Wide Web Consortium (W3C)
proposed a Document Object Model (DOM)2 to represent Hypertext Markup Language
(HTML) and Extensible Markup Language (XML) documents. The W3C’s DOM repre-
sents the hierarchical structure of these document types with the document object at its
root. Further, the Unified Modeling Language (UML)3 is often used to depict the structure
of a document in terms of entities and their relationships (Morbach et al., 2008). In con-
trast, to address event and entity search as an application, Spitz et al. (2020) represent a
document corpus as a hypergraph in which the nodes correspond to different element types
(e.g., document, passage, sentence, or tokens) and are connected with a co-occurrence rela-
tion. Giereth (2013) proposes a semantic document model targeting visual patent analysis
as an application. We want to represent hierarchical document structures in the context of
patent classification such that the information can be aggregated bottom-up to generate a
document representation and find a document model similar to DOM appropriate for this.
Next, we describe the patent document model before discussing the specifications of the
PubMed document model.

Patent Document Model. The Patent Document Model (PDM) represents the informa-
tion contained in a typical patent document and is based on the patent document structure
defined by Lim and Kwon (2016), which depicts a common application format agreed

2https://www.w3.org/TR/DOM-Level-2-Core/ [last accessed December 10, 2023]
3https://www.omg.org/spec/UML/2.0 [last accessed December 10, 2023]

https://www.w3.org/TR/DOM-Level-2-Core/
https://www.omg.org/spec/UML/2.0

3. Conceptual Model for Document Classification 42

patent
+id
+title
+abstract
+claims
+description
+bib_info
+citations
+images

abstract
+name
+text
+position_doc

figure
+id
+data
+position_doc

claims
+name
+text
+position_doc

description
+name
+text
+position_doc

bib_info
+applicant
+inventor
+app_num
+pub_num
+family_num
+pub_date
+CPC_labels
+IPC_labels
+user_def_labels

citation
+id
+data

title
+name
+text
+position_doc

label
+id
+name
+description
+level
+parent

taxonomy
+name
+version
+labels

passage
+text
+position_doc
+pos_parent

sentence
+text
+position_doc
+pos_parent

token
+text
+position_doc
+pos_parent

Figure 3.3: A patent document model showing different elements for a typical patent based
on Lim and Kwon (2016).

upon by different patent offices.4 The PDM represents the hierarchical structure of a patent
document, with the patent entity at its root (Figure 3.3). It contains instances of title,
abstract, claims, description, passage, sentence, token, figure, bib_info, and citation.
The title, abstract, claims, description, passage, sentence, and token entities represent
textual information. In contrast, the figure entity represents the figures within the patent.
A figure description is associated with each of the figures. The bib_info entity represents

4https://www.epo.org/applying/online-services/online-filing/auxiliary/patxml/caf.html [last
accessed December 10, 2023]

https://www.epo.org/applying/online-services/online-filing/auxiliary/patxml/caf.html

43 3. Conceptual Model for Document Classification

the patent metadata, and the citation entity represents the patented and non-patented prior
art referenced within a patent.

The title entity represents the title of a patent, while the abstract, claims, and de-
scription entities represent the other three main sections of a patent. Each of these has
name, text, and position_doc attributes. The name attribute represents the name of a
section, text represents its textual content, and position_doc represents its position within
the document relative to the other sections. Additionally, abstract, claims, and descrip-
tion contain instances of passage, sentence, and token entities that occur in the same
order in the hierarchical document structure. Each of the three entities, passage, sentence,
and token, has text, position_doc, and pos_parent attributes. An additional attribute,
pos_parent, represents the position of an instance among its siblings of the same type.

In addition to textual content, a patent may contain figures depicting the details of the
proposed system or process. These figures are represented as instances of the figure entity,
which has id, position_doc, data, and fig-desc attributes. Id uniquely identifies a figure
within the patent, position_doc represents its position relative to other figures in the patent,
data represents the associated image data, whereas fig-desc represents a textual description
of the figure.

Furthermore, a patent might refer to patents or non-patent prior art, represented as in-
stances of the citation entity. The citation entity consists of two attributes, id and data,
where id is a unique identifier within the document and data represents the metadata asso-
ciated with cited work, e.g., title, author names, and publication date.

Above, we described the document model for a typical patent, which can be adapted
for patent classification tasks and datasets. For example, the USPTO-70k dataset described
in Section 4.3 consists of brief-summary, detail-desc, and fig-desc as additional fields,
instead of description. We therefore adapt PDM by replacing the description field with
three of its sub-fields. Similarly, a PDM for the PLS classification task consists of a list of
PLS-oriented categories as an additional metadata attribute.

PubMed Document Model. To show the applicability of the proposed classification
techniques to document types other than patents, we evaluate their application to the classi-
fication of PubMed articles (see Section 7.6). As discussed, the classification pipeline can
be adapted for a specific use case by defining an appropriate DSDM and a corresponding
mapper function, given that the document representation method and classification models
are still valid for the new task setting.

When defining the PubMed Document Model (PubMedDM) based on the dataset pro-
vided for Task 5 of the BioCreative VII challenge (Chen et al., 2021b), we add title and
abstract as content fields. Further, journal, keywords, and publication type (pub_type)
are added as metadata attributes (Figure 3.4). The proposed document model can be further
adapted for a task or dataset related to PubMed articles.

3. Conceptual Model for Document Classification 44

patent
+id
+title
+abstract
+journal
+pub_type
+keywords

abstract
+name
+text
+position_doc

title
+name
+text
+position_doc

passage
+text
+position_doc
+pos_parent

sentence
+text
+position_doc
+pos_parent

token
+text
+position_doc
+pos_parent

Figure 3.4: Document model for a typical PubMed instance within the LitCovid dataset
(Chen et al., 2021c).

3.2.3 Domain-Independent Document Model

As discussed, DIDM represents the information within a document independent of do-
main and document type, such that once a DSDM instance is mapped to a DIDM instance,
the remaining operations can be applied to it independent of its type. DIDM represents
the common information observed in the templates of different document types. Looking
through the DSDMs discussed in Section 3.2.2, we find that both consist of multiple con-
tent fields containing paragraphs, sentences, and tokens in a hierarchical structure. Further,
multiple metadata elements are associated with a document. Based on the common content
and structural patterns observed across document types, we propose the DIDM depicted in
Figure 3.5 and described in the following paragraphs.

According to Ingwersen (1994), a document consists of semantic entities arranged at
different levels of granularity, which can be aggregated into a representation. To avoid
confusion with the term "entity" as used in NLP and knowledge management, we refer to
these semantic entities as "semantic elements". Our DIDM defines the semantic element
as the main entity type. The semantic element has seven attributes: id, id_doc, type,
data, data_type, parent_id, and ml_feature.

The id attribute uniquely identifies a semantic element instance in the corpus, whereas
id_doc identifies it uniquely within the document. The type attribute represents the type

45 3. Conceptual Model for Document Classification

semantic element
+id
+id_doc
+type
+data
+data_type
+parent_id
+ml_feature

content element
+id
+id_doc
+type
+data
+data_type
+parent_id
+ml_feature
+name
+position_doc
+pos_parent

metadatadocument

field

passage

sentence

token

<<type of>>

<<type of>>

<<type of>>

<<type of>>

<<type of>>
<<type of>>

<<type of>>

<<contains>>

<<contains>>

<<contains>>

<<contains>>

<<contains>>

figure
+id
+id_doc
+type
+data
+data_type
+parent_id
+ml_feature
+name
+position_doc
+pos_parent
+fig_desc

citation

<<type of>>

<<contains>>

<<contains>>

<<type of>>

Figure 3.5: The Domain-Independent Document Model (DIDM) represents the key struc-
tural patterns observed across multiple document types, e.g., patents and re-
search publications.

of a semantic element (defined below). The data attribute represents the associated data,
and the corresponding data type information is represented by the data_type attribute.
Finally, the information within a semantic element and its context can be embedded as a
vector represented by the ml_feature attribute. In a non-neural classifier, the ml_feature
attribute is referred to as the "feature vector", whereas in a neural network model, it is
referred to as "embedding".

A document contains multiple instances of semantic elements arranged in a hierar-
chical structure, which occurs in a linear order within the document, information captured
by position_doc and pos_parent attributes. The parent-child relationships between the
semantic elements are captured with the parent_id attribute, which links a semantic ele-
ment to its parent.

The DIDM categorizes semantic elements into four types: document, content ele-
ment, metadata, or citation, as shown in Figure 3.5. The document type is at the root of

3. Conceptual Model for Document Classification 46

the document tree and contains instances of field, figure, metadata, and citation as child
nodes.

Instances of content element represent the document’s content and have three addi-
tional attributes: name, position_doc, and pos_parent. The name attribute represents
the name or title associated with the content element, while the position attributes, posi-
tion_doc and pos_parent, denote the position of a content element instance relative to
other instances of the same type in the document or to its siblings (i.e., child nodes of the
same parent).

Although physically, the semantics elements are arranged sequentially, logically, it can
be represented as a tree with document element at its root. The document text is structured
with one or more sections and subsections containing passages, sentences, and tokens in
a hierarchical order. Sections and subsections are represented with the field entity, while
passages, sentences, and tokens are represented with the passage, sentence, and token
entities, respectively. In addition to the content element types discussed above, a document
might contain figures, represented as instances of the figure entity, with the additional
attribute fig_desc.

Metadata, including labels, keywords, the publication date, and the authors’ names,
might be associated with a document to enable searching and management of the document
corpus, which is represented as the metadata entity. Labels and keywords may indicate the
main topic of a document and may, therefore, be relevant to classification tasks. Informa-
tion about other documents referred to within the document being modeled is represented
by the citation entity, which has the same attributes as the semantic element. Metadata
for these other documents are provided by the data attribute in the citation entity.

U c = F ∪ P ∪ S ∪ T ∪ I
U = U c ∪M ∪ Z

(3.1)

We represent different entities within a document as a set of semantic elements U , con-
taining instances of content element, metadata, and citation, represented as sets U c, M ,
and Z, respectively (Equation 3.1). Furthermore, U c contains instances of field, passage,
sentence, token, and image, represented as sets F , P , S, T , and I , respectively.

3.2.4 Data Model for Representation Methods

According to Ingwersen (1994), a document is composed of semantic elements arranged at
different levels of granularity. When generating a document representation, we can select a
subset of semantic elements from set U and use them to represent a document. For exam-
ple, we might create a document representation by using only a subset of sentences from
the document. This can be done by creating an instance of DocRepDM, which represents
the input for a document representation method. Here, we define a few of the DocRe-
pDM types crucial for the document representation techniques discussed in the subsequent
chapters.

47 3. Conceptual Model for Document Classification

DocRepDM

DocRepDM_Seq
+text
+max_length

DocRepDM_Seq_Label
+text
+max_length
+source_labels

DocRepDM_Chunks
+chunks

DocRepDM_Chunks_Label
+chunks
+source_labels

Chunk
+text
+max_length
+position

Label_DocRepDM
+name
+description
+ml_feature

<<contains>>

<<contains>>

<<contains>>

<<contains>>

<<type of>>
<<type of>>

<<type of>>
<<type of>>

Figure 3.6: Different types of DocRepDM and associated data models.

The majority of text representation methods take a tokenized sequence as input. How-
ever, we must consider situations where a text representation method expects chunks of
text instead of a sequence. For example, in Chapter 6, we experiment with text represen-
tation methods, which select top-k most informative sentences in a document based on a
ranking method and then use them to generate a representation. We define two data models
based on the document representation methods discussed, which are DocRepDM_Seq and
DocRepDM_Chunks.

The DocRepDM_Seq data model represents the input to a document representation
method that takes a sequence as input and has two attributes text and max_length (Fig-
ure 3.6). The text attribute is the text to be tokenized, and the max_length attribute
corresponds to the maximum length of the tokenized sequence. The document representa-
tion methods used in Chapter 5, which generate a sequence representation using SciBERT,
takes an instance of DocRepDM_Seq as input (see Section 5.3).

DocRepDM_Chunks represents the input to a document representation method that
takes a list of text chunks as input. DocRepDM_Chunks has chunks as only attribute,
which is a list of Chunk instances (Figure 3.6). Chunk has text, max_length, and po-
sition as attributes, where text is the text associated with the text chunk, max_length
is the maximum allowed length for the tokenized sequence, and position corresponds to
its position among the chunks in the text of the original document. The document rep-
resentation techniques in Chapter 6 employing embeddings from texts corresponding to
the selected fields and sentences are examples of methods that take an instance of DocRe-
pDM_Chunks as input (see Section 6.3).

In addition to the textual information, metadata may be associated with a document,
which can be leveraged to generate a representation. For example, in the context of the
PLS classification task, during inference, CPC/IPC labels are associated with a patent,

3. Conceptual Model for Document Classification 48

which can be leveraged to predict PLS-oriented categories as “target labels” (see Defini-
tion 2.2, page 19). The CPC/IPC labels and PLS-oriented categories are associated with
two different taxonomies, and we refer to CPC/IPC labels as “source labels”. Similarly, for
the task of classifying PubMed articles into COVID-19 categories, we can refer to author-
provided keywords associated with a PubMed article as “source labels”, which are known
during inference (see Section 7.6).

Considering the use cases discussed above, we append source_labels attributes to
DocRepDM_Seq and DocRepDM_Chunks to create DocRepDM_Seq_Label and DocRe-
pDM_Chunks_Label, respectively. The source_labels attribute is a list of instances of
type Label_DocRepDM, where the Label_DocRepDM data model has two attributes:
text and ml_feature. The text represents the textual description of a source label in-
stance, whereas ml_feature is its vector representation. Further types of DocRepDM can
be added based on task setting and the associated document representation method. The
document representation methods proposed for the PLS classification that combines em-
beddings for the textual fields with the CPC/IPC label embeddings takes an instance of
DocRepDM_Chunks_Label as input (see Section 7.3). In contrast, the best-performing
approach for the task of classifying PubMed articles to COVID-19 categories takes an in-
stance of DocRepDM_Seq_Label as input (see Section 7.6).

In this chapter, we introduced a conceptual model for document classification. We
expanded it further to define the classification pipeline that consists of components and
document models that could be adapted for a use case or classifier. We defined domain-
specific data models for patents and PubMed articles and drew commonalities across these
two data models to define the domain-independent document model. Further, we proposed
components and data models specific to the document representation methods. The con-
ceptual model proposed in this chapter enables us to use the techniques defined in the later
chapters in similar task settings with a few minor adaptations.

Chapter 4

Datasets and Analysis

This thesis aims to develop classification techniques for addressing the patent classification
task in different application scenarios. However, the unavailability of adequate datasets is
one of the major bottlenecks for the design and evaluation of classifiers targeting patent
classification tasks. In this chapter, we address this challenge and present several datasets
that have been made publicly available as important contributions to the research com-
munity (Sections 4.3 and 4.4). Further, we present in-depth analyses of our datasets in
Section 4.5 and Section 4.6, which enhanced our understanding of their characteristics and
potential challenges for different classifier setups.

The first analysis of the PLS classification datasets determined the association between
CPC/IPC labels and PLS-oriented target categories. The output of the analysis was used
to interpret results, assuming that for a dataset with a higher association, the document
representation techniques using CPC/IPC information work better for the PLS classification
task (see Definition 2.2, page 19). Chapter 7 validates this assumption with an in-depth
evaluation. The second analysis revealed the duplicate nature of patents’ texts. It motivated
the document representation techniques proposed in Chapters 6 and 7, which use the full
texts of patents for CPC/IPC and PLS classification tasks.

4.1 Motivation and Contributions

The unavailability of adequate datasets hinders the development of efficient and effective
patent classification methods. This chapter introduces the novel datasets used in the later
chapters to evaluate and compare various classification techniques that rely on different
document representation methods and classification models. Finally, each dataset is ana-
lyzed to derive characteristics that support the selection of a suitable document representa-
tion technique for a certain task and the interpretation of model output.

Previous works tackling patent classification tasks with neural network models have
primarily used the title, abstract, and claims as patent fields while leaving out the more

4. Datasets and Analysis 50

elaborate description section due to the computational reasons (Li et al., 2018a; Lee and
Hsiang, 2019; Althammer et al., 2021a). However, it is difficult to judge the importance of
various sections and their impact on classification performance. To the best of our knowl-
edge, no comprehensive study has yet been published on the role played by different patent
sections and associated sentences when performing patent classification. To perform such
a study and evaluate text representation methods over the full texts of patents, we curate
and release the USPTO-70k dataset. This dataset contains the full texts of 70,000 patents
and corresponding field information for each instance, along with the associated subclass
labels (Section 4.3).

The PLS classification task differs from the CPC/IPC classification task (see Defini-
tion 2.1, page 2.1) such that a training instance contains an additional set of PLS-oriented
categories as well as CPC/IPC labels. When testing the classification model with the test
set, the CPC/IPC labels are known and can thus be incorporated into a document represen-
tation, whereas the unknown PLS-oriented categories are predicted as target labels. Manual
labeling requires considerable time and effort from domain experts, and therefore, to the
best of our knowledge, no dataset exists for the PLS classification task. Work by Richter
and MacFarlane (2005) addressed a related task with patent alert generation as an appli-
cation, but the dataset was not released as the algorithm was developed for a proprietary
system. The lack of labeled datasets is a significant roadblock when developing classifiers
for the PLS classification task. To address this issue, we release three PLS datasets from
two diverse domains (Section 4.4).

The first dataset, InjVal, contains patent families labeled with categories describing
types of injection valves and related technologies. The patents in the InjVal dataset were
labeled by an in-house domain expert in Robert Bosch GmbH1, a patent attorney with over
30 years of experience in injection valves and related IP management who has performed
the classification task weekly for the past 25 years. The other two datasets are enriched ver-
sions of two smaller document collections from the World Intellectual Property Organiza-
tion (WIPO), which were created during real-world PLSs on HIV drugs, namely Ritonavir2

(Rito) and Atazanavir3 (Atz) (Section 4.4).

The datasets were analyzed to derive dataset characteristics. There were two main rea-
sons for this. First, the dataset characteristics help facilitate the interpretation of evaluation
results for the proposed classification models and baselines. Second, certain dataset char-
acteristics support the design and selection of specific document representation techniques.
For example, as abstracts are written incautiously and are often duplicated across patents,
we were motivated to include additional patent fields in the document representation. We
performed a basic statistical analysis of the USPTO-70k and PLS datasets, followed by two
detailed analyses.

1https://www.bosch.de/ [last accessed December 10, 2023]
2https://www.wipo.int/publications/en/details.jsp?id=230&plang=EN [last accessed December

10, 2023]
3https://www.wipo.int/publications/en/details.jsp?id=265&plang=EN [last accessed December

10, 2023]

https://www.bosch.de/
https://www.wipo.int/publications/en/details.jsp?id=230&plang=EN
https://www.wipo.int/publications/en/details.jsp?id=265&plang=EN

51 4. Datasets and Analysis

The first analysis is relevant to the PLS classification task and determined the asso-
ciation between CPC/IPC labels and PLS-oriented target categories (Section 4.5). We
hypothesized that a classifier exploiting CPC/IPC information would perform better for
datasets with higher association between CPC/IPC labels and PLS-oriented categories. To
test this, we calculated and analyzed Pointwise Mutual Information (PMI) (Church and
Hanks, 1990) for each CPC/IPC label and PLS-oriented category pair for each of the three
PLS datasets. Further, we evaluate the CPC/IPC-based document representation in Sec-
tion 7.5.

The second analysis revealed the issue of duplicate text within and across documents
(Section 4.6). We found that abstracts within the USPTO-7M dataset are often reused
across patents, which motivated us to consider text fields other than just titles and ab-
stracts when addressing patent classification tasks. Additionally, the same sentence may
be reused multiple times within or across documents, indicating potential information re-
dundancy in patent text. As a result, adding more text may not improve the performance of
a classifier. Based on this finding, we hypothesize that a classifier can achieve optimal clas-
sification performance with limited but informative text elements. Chapter 6 builds on this
hypothesis and proposes efficient document representation techniques that achieve optimal
model accuracy with limited text elements (see Section 6.3).

Contributions. The main contributions described in this chapter are summarized as fol-
lows:

• We release the USPTO-70k dataset in which the full text of the patent is associated
with each instance together with the corresponding field information (Section 4.3).
This enables us to evaluate efficient document representation techniques that use the
full texts of patents in Chapter 6.

• Furthermore, we release three datasets from two diverse domains (Section 4.4),
based on which document representation methods are developed and evaluated in
Chapter 7. This targets the third step of a PLS process, i.e., classifying patents into
user-defined PLS-oriented categories.

• We provide a methodology for the determination of the association between CPC/IPC
labels and PLS-oriented categories for a dataset (Section 4.5). This facilitates the se-
lection of suitable document representation techniques for the PLS classification
task.

• The analysis of duplicate text, which includes abstracts and sentences, shows that
the information within a patent document is redundant (Section 4.6). This find-
ing motivates document representation techniques (proposed in Chapter 6) that use
limited yet informative text elements.

4. Datasets and Analysis 52

4.2 Related Datasets

Datasets for CPC/IPC Classification. WIPO-alpha is one of the first open-source datasets
to have been used over the years for evaluating patent classifiers (Fall et al., 2003). The
CLEF-IP 2011 challenge led to the release of a multilingual IPC classification dataset,
which includes a test set divided into three parts containing 1000 instances each for three
languages: English, German, and French (Piroi et al., 2011). The complete CLEF-IP
dataset of 1.5M patents can be used as a training set. Targeting the patent classification
for CPC taxonomy, Li et al. (2018a) propose a CNN-based classifier and trained it us-
ing a dataset containing 2M patents from the United States Patent and Trademark Office
(USPTO), which they referred to as USPTO-2M. The USPTO-2M dataset contains train-
ing instances from 2006 to 2014, whereas the test set contains patents from 2015. Li et al.
(2018a) evaluate classifiers using title and abstract as input. The USPTO-2M dataset was
also used by Lee and Hsiang (2019) to evaluate a BERT-based classifier with title + ab-
stract or first-claim as input. The USPTO-2M dataset does not contain the complete text
of the patent documents and is, therefore, unsuitable when the goal is to experiment with
the full texts of patents. Recently, Suzgun et al. (2022) released a patent dataset related to
multiple natural language processing tasks, including CPC classification.

Datasets for Patent Landscape Studies. While some recent works have released datasets
targeting the first step of the PLS process (Abood and Feltenberger, 2018; Choi et al., 2022),
i.e., the document relevance classification task, to the best of our knowledge, no suitable
datasets exist for training a patent classification model in the context of PLS classifica-
tion task (see Definition 2.2, page 19). Giczy et al. (2022) released a dataset consisting
of seed and anti-seed patents, which is used for exploring and filtering relevant candidate
documents. Richter and MacFarlane (2005) study classification for a patent alert system in
the biochemical domain, which is similar to classification in PLS, but the dataset was not
publicly released.

Datasets for Patent Prior-art Search. During patent evaluation, examiners create search
reports that map claims within an application to relevant passages in prior art. This infor-
mation is used to determine the status of a patent application. For example, based on infor-
mation from search reports Risch et al. (2020a) released a dataset that maps claims to prior
art passages. The prior art search use case and the associated task were the focus of the
patent retrieval task during the CLEF-IP 2011 challenge (Piroi et al., 2011), and the dataset
released at that time has been used in many subsequent works on patent retrieval (Magdy
and Jones, 2011; Andersson et al., 2016; Hofstätter et al., 2019; Althammer et al., 2021b).
Kang et al. (2020) provide a detailed survey of recent patent prior art search methods.

Datasets for Patent Summarization. Sharma et al. (2019) provide a patent summariza-
tion dataset that summarizes the description section with the abstract as the target text.
However, since abstracts are less carefully written and are often duplicated (Section 4.6),

53 4. Datasets and Analysis

the use of abstracts as patent summary texts might not provide sufficient information for
classification.

Summary. Looking through recent works relevant to CPC classification, we find that they
use datasets that contain limited patent text and are unable to answer the crucial question
of whether the performance of a neural network classifier can be improved with additional
text (Li et al., 2018a; Lee and Hsiang, 2019; Althammer et al., 2021a). With this thesis,
we release the USPTO-70k dataset, which contains patent instances with the full texts of
patents (Section 4.3). The lack of adequate datasets is also a blocker to the development
of multi-label classification techniques in the context of PLS. To enable the automation of
PLS, we release three datasets targeting PLS classification (Section 4.4).

4.3 USPTO-70k

As discussed in the previous section, recent neural methods have been evaluated using lim-
ited patent text, and the impact of additional text on the performance of classifiers is not
well studied. Therefore, to enable research on the development of efficient patent classifi-
cation methods using the full texts of patents, we curate and release the USPTO-70k dataset
sampled from the USPTO data dump of 7M patents. Unlike previous CPC classification
benchmark datasets (Li et al., 2018a; Lee and Hsiang, 2019), USPTO-70k contains the full
texts of patents together with the corresponding subclass labels for each patent instance.
This allows us to experiment with different text element types, e.g., sections, passages,
sentences, and tokens (see Section 6.5).

The USPTO data dump is an export of a relational database and includes tables cor-
responding to different patent fields. As of 01/04/2020, the USPTO data dump contained
approximately 7M patents. The complete dataset is referred to as USPTO-7M. In the fol-
lowing, we provide details of the database tables for the USPTO data dump, information
on the USPTO-70k dataset creation process, and the details of statistical analyses for patent
text and CPC labels.

4.3.1 USPTO Data Dump

The United States Patent and Trademark Office (USPTO) provides open-source access to
patent grants through the USPTO bulk dataset.4 The bulk dataset is an export of a MySQL
database in which the data is normalized into multiple tables, with patent being the main
table as shown in Figure 4.1. The MySQL documentation5 describes the key datatypes in
MySQL: varchar, mediumtext, int, and date. A row within the patent table stores biblio-
graphic information corresponding to a unique patent document. All other tables link to

4https://patentsview.org/download/data-download-tables [last accessed December 10, 2023]
5https://dev.mysql.com/doc/refman/8.0/en/data-types.html[last accessed December 10, 2023]

https://patentsview.org/download/data-download-tables
https://dev.mysql.com/doc/refman/8.0/en/data-types.html

4. Datasets and Analysis 54

patent

+uuid: varchar(32) (PK)
+number: varchar(64)
+date: date
+title: mediumtext
+abstract: mediumtext

brf_sum_text

+uuid: varchar(32) (PK)
+patent_id: varchar(20)
+text: mediumtext

detail_desc_text

+uuid: varchar(32) (PK)
+patent_id: varchar(20)
+text: mediumtext

claim

+uuid: varchar(32) (PK)
+patent_id: varchar(20)
+text: mediumtext
+dependent: varchar(512)
+sequence: int(11)

draw_desc_text

+uuid: varchar(32) (PK)
+patent_id: varchar(20)
+text: mediumtext
+sequence: int(10)

cpc_current

+uuid: varchar(32) (PK)
+patent_id: varchar(20)
+cpc_section: varchar(10)
+cpc_class: varchar(20)
+cpc_subclass: varchar(20)
+cpc_group: varchar(20)

Figure 4.1: Entity-relationship diagram for USPTO bulk dataset showing different tables.
Patent is the main table; other tables link to it through patent_id as a foreign
key attribute.

patent using patent_id as a foreign key. USPTO periodically releases a new version to
add recent patent grants to the data dump.6

Patent Text. Representing the bibliographic information for a patent document, the patent
table contains five main attributes: id, number, date, title, and abstract. A patent can be
uniquely identified with either an id or a number attribute, where the id is a randomly gen-
erated unique string, and the number corresponds to the publication number of the patent.
The date attribute specifies the date on which a patent was granted. The title and ab-
stract attributes represent information corresponding to the title and abstract of a patent,
respectively.

Each claim within a patent document is stored as a separate row in the claim table,
which contains patent_id, text, dependent, and sequence as its four main attributes. As
a foreign key attribute, patent_id links a claim to the corresponding patent in the patent
table. Claims within a patent occur in a particular sequence, and the sequence information
is captured by the integer-valued sequence attribute in the claim table. As an ordered
pair, the patent_id and sequence attributes uniquely identify a claim in the claim table.
As discussed in Section 2.1.2, a claim can be one of two types: a dependent claim or an
independent claim. For a dependent claim, the dependent attribute stores a list of claims

6https://patentsview.org/release-notes [last accessed December 10, 2023]

https://patentsview.org/release-notes

55 4. Datasets and Analysis

on which the given claim depends, whereas the value for the dependent attribute is NULL
in the case of an independent claim.

The textual data from the description section is divided into three tables: brf_sum_te-
xt, draw_desc_text, and detail_desc_text. The details for each of the three tables are
as follows:

• The brf_sum_text table stores textual information for subsections that are usually
placed at the beginning of a description section, e.g., the field of invention, inven-
tion summary, and background. It contains patent_id and text as the two main
attributes. As a foreign key, the patent_id attribute links a row to a specific patent
in the patent table. The text attribute represents the textual data corresponding to
the brief-summary subsection.

• Patents often contain drawings that are accompanied by a textual description. The
draw_desc_text table stores textual descriptions of the drawings associated with a
patent and contains patent_id, text, and sequence as its three main attributes. As
a foreign key, the patent_id links the drawing description to a patent in the patent
table. The text attribute represents the textual data for a drawing description. As
drawings within a patent are positioned in a specific sequence, the sequence infor-
mation is represented as the sequence attribute in the draw_desc_text table. Similar
to the claims table, a row in the draw_desc_text table can be uniquely identified by
a combination of patent_id and sequence attributes.

• With patent_id and text as its two main attributes, the detail_desc_text table
stores textual data found within the “Detailed Description” subsection.

CPC Labels. The cpc_current table stores information about the CPC labels for a patent
in the patent table. When assigning labels to a patent, the usual practice is for an examiner
to select labels from the fifth level and below, i.e., subgroup labels. The cpc_current table
contains patent_id, cpc_section, cpc_class, cpc_subclass, and cpc_group as attributes.
As multiple CPC labels can be associated with a patent document, cpc_current divides the
CPC label information into multiple rows. When retrieving the CPC labels corresponding
to a patent, the cpc_current rows are aggregated for the corresponding patent_id.

4.3.2 Dataset Creation Process

USPTO-70k is sampled from the USPTO-7M dataset using our Python implementation,
which predominantly relies on Pandas.7 Pandas contains data structures for representing
tabular data and provides methods with similar functionality to standard SQL operations8,
e.g., SELECT or GROUP BY. Figure 4.2 depicts the step-by-step process described in the
following paragraphs.

7https://pandas.pydata.org/ [last accessed December 10, 2023]
8https://pandas.pydata.org/docs/getting_started/comparison/comparison_with_sql.html

[last accessed December 10, 2023]

https://pandas.pydata.org/
https://pandas.pydata.org/docs/getting_started/comparison/comparison_with_sql.html

4. Datasets and Analysis 56

number
...

...

USPTO-
7M

patent_id title abstract
...

...

number cpc_subclass
... ...

... ...

patent_id labels
... ...

... ...

title
...

...

abstract
...

...

date
...

...

patent_id title abstract
...

...

labels
...

...

up sampling

50,625

Join tables over
patent_id

Step 3: Upsampling

Step 1: Temporal Sampling

Step 2: Adding Target Labels

...

...

...

...

...

50k

patent_id fig-desc
... ...

... ...

patent_id
...

...

text
...

...

sequence
...

...

patent_id claims
... ...

... ...

patent_id text
... ...

... ... patent_id text
... ...

... ...

patent_id title abstract

...

...

claims brief-
summary

... ...

... ...

detail-desc fig-desc

... ...

... ...

Temporal
filtering

labels

...

...

cpc_current

brief_sum_text

claim

draw_desc_text

detail_desc_text

patent

GroupBy over
patent_id followed

by text
concatenation

Step 4: Adding Additional Content Fields

patent_id
...

...

text
...

...

sequence
...

...

50,625

number renamed to
patent_id

GroupBy
over

patent_id

Join tables over
patent_id

Figure 4.2: The process for creating the training split for the USPTO-70k dataset. A simi-
lar process is followed to create the validation and test splits, in which case the
oversampling step (i.e., Step 3) is skipped.

57 4. Datasets and Analysis

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

year

2k

6k

10k

in

st
an

ce
s

train
dev
test

Figure 4.3: Distribution by year for the USPTO-70k dataset. The patents in the training
set are from the years 2006 to 2017, the validation set contains instances from
2018, and the test set contains instances from 2019.

G0
6F

H0
4L

Y1
0T

H0
1L

H0
4N

H0
4W

A6
1K

A6
1B

G0
6Q

Y1
0S

G0
1N

G0
2B

H0
4B

C0
7D

G0
6K

G0
6T

H0
4M

Y0
2E

G1
1C

Y0
2T

G1
1B

C0
7K

C1
2N

H0
5K

A6
1F

G0
2F

Y0
2P

G0
1R

A6
1M

G0
9G

H0
1M

C0
8L

B0
1D

H0
1R

C0
7C

G0
3G B4
1J

B2
9C

B8
2Y

B0
1J

B6
0R

G0
1S

Y0
2D

G0
3F

E2
1B

A6
1N

H0
1J

H0
3K

B6
5D

C0
8G

H0
2M

H0
5B

H0
2J

Y0
2B

C1
2Q

B3
2B

C2
3C

A6
3B

F1
6H

Y0
2A

G0
7F

C0
8F

C0
9K

H0
4R

F2
1V

C0
8K

B6
0K

G0
3B

G0
5B

C0
9D

A6
1L

H0
1Q

B6
2D

G1
0L

G0
1C

F0
2D

H0
3M H0
4J

H0
2K

B6
0W

B6
5H

F2
1Y

B2
3K

B6
0L

C0
1B

G0
1B

F0
1D

F0
5D

B2
9L

F0
2M

A0
1K

H0
3F

G0
8B

A6
3F

A6
1Q

H0
1S

C0
4B

F1
6L

C0
2F

H0
4Q

subclass

2k

4k

6k

in

st
an

ce
s

Figure 4.4: CPC distribution for the top 100 CPC labels in the USPTO-70k dataset.

Step 1: Temporal Sampling. A temporal dataset split creates a realistic setup in which
models predict labels for newer patents based on older data, similar to the approach taken by
D’hondt et al. (2014). This process assigns documents from 2006–2017 to the training set,
2018 to the validation set, and 2019 to the test set. The training set contains 50,000 patents,
while the validation and test sets contain 10,000 patents each, for a total count of 70,000
(Figure 4.3). Next, the rows from the patent table are filtered using the 70k patent_id
values. The output of Step 1 contains three columns corresponding to patent_id, title,
and abstract.

Step 2: Adding a Target Column. Each row selected in Step 1 is accompanied by a
unique patent_id value. Using the patent_id values, Step 2 filters the corresponding
rows from the cpc_current table. Since the CPC information for a patent is distributed
across multiple rows, the CPC labels corresponding to each patent are determined by per-
forming a GROUP BY operation on the patent_id attribute for the filtered rows. The CPC
classification techniques proposed in this thesis are evaluated for CPC labels up to the third
level of the CPC taxonomy. Therefore, we determine CPC labels for patents up to the third
level, i.e., subclass labels, and add them as the “labels” column in the tables corresponding
to the training, validation, and test sets. The labels within the “labels” column represent the
target labels for the CPC classification task.

4. Datasets and Analysis 58

total labels average labels
per patent

level 1 2 3 1 2 3

training 9 128 630 1.49 1.69 1.98
validation 9 126 575 1.56 1.84 2.25
test 9 127 573 1.56 1.89 2.32

Table 4.1: CPC label statistics for the USPTO-70k dataset showing the total labels and
an average number of labels per instance for three hierarchical levels: section,
class, and subclass, represented as 1, 2, and 3, respectively, in the table.

Step 3: Oversampling. The CPC labels suffer from a label sparsity problem, with many
infrequent labels situated in the long tail of the CPC distribution; Figure 4.4 shows the
distribution of the top 100 CPCs. The label sparsity problem is addressed by oversampling
the least frequent labels. This is achieved by adding patents carrying infrequent labels, such
that each label occurs at least ten times in the training set. After oversampling, all labels
have at least ten instances in the training set. The oversampling operation is performed on
the training set, adding 625 more instances. The validation and test splits are not changed,
and thus, the initial distribution is kept the same. As shown in Table 4.1, the total number
of labels at the leaf node, i.e., the subclass level, is 630 for the training set, 575 for the
validation set, and 573 for the test set.

Step 4: Adding Additional Content Fields. The first three steps generate tabular data
with four columns, and two of these columns correspond to the title and the abstract as
the only content fields. Such a dataset is sufficient for training a classifier that takes the
title and abstract as input. However, with this work, we aim to generate classification
methods for long multi-field documents, for which we need a dataset that provides the full
texts of patents and the corresponding field information. Therefore, in Step 4, we enrich
the output of Step 3 with the content from four USPTO tables: claim, detail_desc_text,
draw_desc_text, and brf_sum_text.

A row in the detail_desc_text and brf_sum_text tables corresponds to a unique
patent. Since both tables contain information for all 7M patents, we first filter the relevant
rows and then JOIN them to the Step 3 output using the patent_id attribute.

The claim and draw_desc_text tables distribute a patent text across multiple rows.
To merge information from these tables, the relevant rows are first filtered and grouped
using the patent_id attribute. Next, a two-column table is created with a patent_id as
the first and second columns, containing the concatenated text from the rows for each of
the patent_id groups. Such a table is created for both claim and draw_desc_text and
merged to the Step 3 output with a JOIN operation on patent_id. The final output is an
eight-column table saved in an easy-to-use Comma-Separated Variable (CSV) format. We
described the patent document model (PDM) in Section 3.2.2 that represents the structure
of a typical patent. PDM can be extended for the USPTO-70k dataset by adding entities

59 4. Datasets and Analysis

corresponding to the subsections of description. We can initialize the patent instances
using the extended PDM and USPTO-70k.

4.3.3 Corpus Statistics

This section describes the statistical characteristics of patent documents with regard to
the distributions associated with patent texts and target labels for the USPTO-70k dataset.
Further, labels are categorized into groups based on the use of taxonomy levels, broad
technological fields, and label frequency as grouping criteria. Later chapters evaluate clas-
sifier performance over different label groups corresponding to three group types (see Sec-
tion 6.3). Later in this section, we describe the token- and sentence-level distributions of
patent texts, which reveal that patents are generally quite long and show significant varia-
tion in document length.

Label Statistics. There is one label occurring in the validation set that does not have
any associated training instances. In the test split, there are seven such labels. The CPC
statistics are shown in Table 4.1. The average number of labels per patent is around 1.5 at
the first level of the hierarchy and up to 2.32 at the leaf level, with the latter increasing from
1.8 in 2014 to 2.3 in 2019.

Label Grouping. The following label groupings are created to better understand a clas-
sification model’s performance across different dimensions, such as label frequency, tax-
onomy levels, and topics.

Grouping by Label Frequency. The less frequent labels typically capture fine granu-
lar information and are thus often more informative than the more frequent labels. Previous
works have evaluated the performance of models for these less frequent labels in a few-shot
setting. However, there is no standard threshold for what constitutes a minority class in
few-shot text classification. For example, MIMIC-III (Johnson et al., 2016), EURLEX57K
(Chalkidis et al., 2019), and AMAZON13K (Lewis et al., 2004) have few-shot categoriza-
tion thresholds of 5, 50 and 100, respectively. Therefore, instead of sticking to a single
value as a measure of a few-shot category, four frequency-based label groups are defined
with a label frequency range of 0 to 10, 11 to 50, 51 to 100, and 101 or more, respectively.
Frequency-based label groups are used in Section 6.5 to compare the performance of pro-
posed document representations to baselines in a few-shot setting. The top-most part of
Table 4.2 shows the number of labels within each group.

Grouping by Level. Hierarchy-based groups are created by using the hierarchical
taxonomy information to divide the labels into groups based on the hierarchical level at
which they appear. Since the USPTO-70k dataset contains labels from the first three levels
of the CPC taxonomy, three label-based groups are created with 9, 128, and 630 labels,
respectively (see the middle part of Table 4.2).

Grouping by Technical Field. Within the CPC taxonomy, the highest-level labels are
referred to as section labels and represent nine topics at the highest granularity. To evaluate

4. Datasets and Analysis 60

Grouping Grouping Definition Count (subclass) # Instances
Criterion Identifier total=630

1-10 fi ≤ 10 114 1,085
Label 11-50 10 < fi ≤ 50 238 5,079
Frequency 51-100 50 < fi ≤ 100 91 5,897

100+ 100 < fi 187 47,486

Count (all labels)
total=767

1 Level 1 CPC taxonomy 9 50,625
Level 2 Level 2 CPC taxonomy 128 50,625

3 Level 3 CPC taxonomy 630 50,625

Count (all labels)
total=767

A Human Necessities 100 8,157
B Performing Operations; 199 18,167

Transporting
C Chemistry; Metallurgy 103 10,474
D Textiles; Paper 44 6,791

Section E Fixed Constructions 38 2,390
F Mechanical Engineering; 119 15,591

Lightning; Heating;
Weapons; Blasting

G Physics 93 20,458
H Electricity 56 20,206
Y General Tagging 15 9,360

Table 4.2: Distribution of labels within three label groups for the USPTO-70k dataset.

the performance of a classifier on different topics, the CPC labels are grouped into nine
technical groups, where a group contains all the subclass labels as an indirect child of a
section label (see bottom-most part of Table 4.2). When comparing different topic groups,
we find that Group B contains the largest number of labels, followed by Group F. Group
Y comprises only 15 general tagging labels for new technologies or general tagging labels
for cross-sectional technologies.

For the USPTO-70k dataset, texts from patent fields are analyzed at the sentence and
token levels. In the following paragraphs, we provide detailed analyses of the distribution
of sentences and tokens.

Token Distribution. The field text is tokenized to a sequence of word-piece tokens using
the SciBERT tokenizer (Beltagy et al., 2019). Figure 4.5 shows the count of word-piece
tokens in different fields. The title contains very few tokens, followed by the abstract
and fig-desc. The claims field contains more word-piece tokens than the title, abstract

61 4. Datasets and Analysis

5 10 15 20 25
tokens

2k

4k

6k

8k

in
st

an
ce

s mean: 11.72
std: 5.72

(a) title

0 50 100 150 200 250
tokens

2k

4k

6k

8k

in

st
an

ce
s

mean: 132.63
std: 49.49

(b) abstract

1k 2k 3k
tokens

2k

4k

6k

8k

in

st
an

ce
s

mean: 1295.09
std: 1216.11

(c) claims

10k 20k 30k 40k
tokens

2k

4k

6k

8k

in

st
an

ce
s mean: 9421.0

std: 14851.56

(d) detail-desc

2k 4k 6k 8k
tokens

2k

4k

6k

8k

in

st
an

ce
s mean: 1882.99

std: 3488.02

(e) brief-summary

500 1k 1.5k 2k
tokens

2k

4k

6k

8k

in

st
an

ce
s mean: 387.19

std: 583.01

(f) fig-desc

Figure 4.5: Token distribution for different patent fields in the USPTO-70k dataset.

field-name training-set validation-set test-set

total number of instances 50,625 10,000 10,000
invention summary missing 5,836 1,428 1,413
background of invention missing 3,888 845 855
technical-field missing 28,304 5,111 5,008

Table 4.3: Statistics showing the number of patents for which the subfields of brief-
summary are missing in USPTO-70k.

1 2 3 4 5 6 7 8
sentences

1k

10k

20k

30k

in

st
an

ce
s mean: 3.53

std: 2.04

(a) abstract

0 10 20 30 40
sentences

2k
4k
6k
8k

10k

in

st
an

ce
s mean: 17.44

std: 12.18

(b) claims

0 200 400 600 800 1000
sentences

2k
4k
6k
8k

10k

in

st
an

ce
s

mean: 249.19std: 296.13

(c) detail-desc

0 25 50 75 100125150175
sentences

2k
4k
6k
8k

10k

in

st
an

ce
s

mean: 48.01std: 57.64

(d) brief-summary

0 10 20 30 40 50 60 70
sentences

2k
4k
6k
8k

10k

in

st
an

ce
s mean: 16.08

std: 20.93

(e) fig-desc

Figure 4.6: Sentence distribution for different patent fields in the USPTO-70k dataset.

4. Datasets and Analysis 62

or fig-desc fields. With approximately 1.8k word-piece tokens, brief-summary is very
concise compared to the elaborate detail-desc field, which has approximately 9.5k tokens
on average (Figure 4.5). The brief-summary field contains several subfields. The statistics
in Table 4.3 show that these subfields are not present in all the patents. Therefore, we
concatenate the corresponding text instead of considering the subfields separately.

Sentence Distribution. A document representation can be generated by aggregating in-
formation at the sentence level; when doing so, it is important to know the distribution of
sentences within a field and the document. As a pre-processing step, each patent field is
tokenized using the NLTK sentence tokenizer.9 Figure 4.6 shows the sentence distribution
for different patent fields. Similar to the token statistics, the detail-desc is found to be
the longest field with a mean sentence count of 249, whereas abstract is the shortest field
containing 3.5 sentences on average. When aggregating the average number of sentences
across fields, we find that a patent contains more than 300 sentences on average.

4.3.4 Summary for USPTO-70k

We provide details of the step-by-step process for creating the USPTO-70k dataset (Sec-
tion 4.3.2), followed by analyses of CPC labels and patent text (Section 4.3.3). The
USPTO-70k dataset was created from the larger USPTO data dump (described in Sec-
tion 4.3.1). Each instance within the USPTO-70k dataset contains the full text of a patent
and the corresponding field information and is labeled with a set of subclass labels. Analy-
sis of label frequency reveals a skewed label distribution in which a large number of labels
are associated with very few patents. Based on this observation, CPC labels are grouped
into four frequency-based label groups that assist the comparison of different document rep-
resentation techniques and classification models for various frequency-based groups (see
Section 6.5). Further, our analysis of tokens and sentences shows that the patent documents
are very long and vary widely in document length. The next section provides information
on the dataset creation process for Patent Landscape Study datasets.

4.4 Patent Landscaping Datasets
In contrast to the CPC/IPC classification task, the PLS classification task expects the train-
ing instances to be labeled with labels taken from the CPC/IPC taxonomy (see also Defi-
nition 2.2, page 19). As such labels are likely to be informative, they can be incorporated
into a document representation to predict the labels in the target taxonomy. This section
introduces three new datasets, Injection Valve (InjVal), Ritonavir10 (Rito), and Atazanavir11

9https://www.nltk.org/api/nltk.tokenize.html [last accessed December 10, 2023]
10https://www.wipo.int/publications/en/details.jsp?id=230&plang=EN [last accessed December

10, 2023]
11https://www.wipo.int/publications/en/details.jsp?id=265&plang=EN [last accessed December

10, 2023]

https://www.nltk.org/api/nltk.tokenize.html
https://www.wipo.int/publications/en/details.jsp?id=230&plang=EN
https://www.wipo.int/publications/en/details.jsp?id=265&plang=EN

63 4. Datasets and Analysis

(Atz), for the PLS classification task. These datasets are taken from two diverse domains,
namely mechanical systems (InjVal) and biochemistry (Rito and Atz). Detailed descrip-
tions for each of the datasets are provided in the following sections.

4.4.1 Injection Valves Dataset

In the InjVal dataset, patent families are labeled with categories describing types of in-
jection valves and related technologies. The dataset was provided by an industrial col-
laborator; a domain expert working for Robert Bosch GmbH12 has performed the patent
classification process weekly for the past 25 years. Each week, a candidate set of patents
is generated by an alert system that filters new incoming patents using a CPC-based search
query. The domain expert identifies relevant patents in the candidate set and categorizes
them into a technical target category. Since most of these patents are for mechanical sys-
tems, the domain expert often refers to the figures while determining a patent’s relevance
to a technical category.

The 9,465 patent families are labeled with 16 different target labels, e.g., “Exhaust
Line Injector”, “Water Injection”, indicating which injector components or injection types
are used in the patents. Most of these patents are from the Japanese and German Patent
Offices, but the dataset also includes US patents (Figure 4.9a). The corresponding English
machine-translated text for each field is added using PatBase API.13 The dataset covers a
broad domain (5,068 CPC labels) and corresponds to a broad-scope PLS.

4.4.2 Ritonavir and Atazanavir

These two labeled datasets are derived from two publicly available PLSs that were per-
formed by the World Intellectual Property Organization (WIPO) on Ritonavir (Rito) and
Atazanavir (Atz), two drugs developed for the treatment of HIV infections and AIDS. The
motivation for these studies, both conducted in 2011, was to track the development of the
drug manufacturing process as well as the compositions and usage of these drugs since the
filing of the first patents. In contrast to InjVal, these two datasets contain patent families
within the narrow scope of a patent.

Dataset Creation Process. The WIPO studies were conducted iteratively. First, a keyword-
based search yielded a list of relevant patents, which was then further refined using relevant
CPC labels. Using a forward-backward citation search, some additional patents were iden-
tified and added to the dataset. Each study provides a spreadsheet-like overview with meta-
information about the search and patents. For instance, labels assigned to the patents can
be used to train a classifier for the PLS classification task. These labels have been carefully
assigned by WIPO professionals during search (for Rito) and post-hoc with the support

12https://www.bosch.de/ [last accssed 10 December, 2023]
13https://www.patbase.com [last accessed December 10, 2023]

https://www.bosch.de/
https://www.patbase.com

4. Datasets and Analysis 64

Unique Avg. # Labels
Dataset # Instances Labels Per Instance

InjVal 9,465 16 1.01
Rito 781 7 1.35
Atz 640 8 2.14

Table 4.4: Target label statistics of PLS datasets.

of text mining software14 (in the case of Atz). By analyzing the descriptions within the
reports, we select subsets of these labels as PLS target labels for our experimental studies.

The main goal of the WIPO studies was to provide an article-style report, but the under-
lying data has been released as a spreadsheet. The Atz data, as provided by WIPO, contains
the title and an abstract by Derwent15, together with the first claim. The Rito data only
lists title, abstract, and claims. As part of our contribution, a structured full-text dataset
is derived from the information provided by WIPO by adding additional information from
PatBase16, which is released in an easy-to-use Comma-Separated Values (CSV) format.
The full-text dataset includes the title, abstract, (all) claims, description text, CPC labels,
patent number, family number, and publication date information.

Target Labels. The Rito dataset consists of 781 patents labeled with seven distinct target
labels. These correspond to broad categories that have been assigned during a search by
carefully choosing queries based on the combination of keywords (such as disease names
or chemical compositions) with CPC classes. These categories include Methods of Treat-
ing HIV, Combination, and Prodrug, which relate to methods of administering the drug.
The remaining four categories (Pharmaceutical Composition, Derivatives, Synthesis, and
Crystalline Forms, and Stabilized Forms) define the form, composition, and derivatives of
Ritonavir.

The Atz dataset consists of 640 patents and eight target labels, which are the names of
the types of disease for which treatment is described in the patent, e.g., Cancer, Kaposi, and
Herpes. While HIV is the primary indication for Atazanavir, medical professionals have
administered the drug for other indications, and we select the subset of patents describing
non-HIV indications, defining the target task as identifying the corresponding (non-HIV)
disease. Among the target labels, Cancer is the most frequent, followed by Autoimmune-
Inflammatory.

While both Atz and Rito focus on HIV-related drugs, the two PLS tasks are qualitatively
different: Rito divides patents by technology, whereas Atz divides patents by application.
As shown in Table 4.4, the average label per instance value is greater than 1, indicating a
multi-label classification setting. The number of target classes for InjVal is twice that of the

14https://www.thevantagepoint.com/6-products/thomson-data-analyzer.html [last accessed
December 10, 2023]

15https://www.clarivate.com/derwent/solutions/derwent-world-patent-index-dwpi [last accessed
December 10, 2023]

16https://www.patbase.com [last accessed December 10, 2023]

https://www.thevantagepoint.com/6-products/thomson-data-analyzer.html
https://www.clarivate.com/derwent/solutions/derwent-world-patent-index-dwpi
https://www.patbase.com

65 4. Datasets and Analysis

Por
t F

ue
l In

jec
tor

Dire
ct

Inj
ect

or
So

len
oid

Pie
zoe

lec
tric

 Ac
tua

tor
s fo

r In
jec

tor
s

Fue
l R

ail

Pie
zoe

lec
tric

 Cera
mic M

ate
ria

l

Dire
ct

Inj
ect

or
Pie

zo

Ex
ha

ust
 Lin

e I
nje

cto
r

Natu
ral

 Gas
Inj

ect
or

(NGI)

Wate
r In

jec
tio

n

High
 Pr

ess
ure

 Pip
e

Othe
r In

jec
tor

s (
SE

V)

Dua
l In

jec
tio

n

Pu
mp I

nje
cto

r C
om

bin
ati

on

Pie
zoe

lec
tric

 Ac
tua

tor
 Sp

rin
g

Air I
nje

cti
on

 Va
lve

Bi-Fu
el-

Inj
ect

or
0

1000

2000

3000

in

st
an

ce
s

(a) Injection-Valve

Com
bin

ati
on

s

Pro
dru

g

Ph
arm

ace
uti

cal
 Com

po
siti

on
s

Deri
va

tiv
es

Meth
od

s o
f Tr

ea
tin

g H
IV

Sy
nth

esi
s a

nd
 Crys

tal
line

 Fo
rm

s

Sta
bili

zed
 Fo

rm
s0

100
200
300
400

(b) Ritonavir

Can
cer

Auto
im

mun
e -

 In
fla

mmato
ry

Neu
rol

og
ic

Hep
ati

tis
C Vi

rus IBD
Ka

po
si

Herp
es

Se
rin

e P
rot

ea
se

Inh
ibit

or
0

100

200

300

(c) Atazanavir

Figure 4.7: Label distributions of PLS-oriented categories in three PLS datasets.

Field InjVal Rito Atz

abstract 104 ± 43 60 ± 35 56 ± 34
claims 358 ± 346 1215 ± 1051 1231 ± 948
description 2121 ± 1171 11579 ± 8800 16401 ± 10245

Table 4.5: Token counts for PLS datasets: Mean and standard deviation by dataset and
textual field.

Rito and Atz datasets, and label distributions are highly skewed in all three datasets (see
Figure 4.7). As shown in Figure 4.7, Atz is more balanced than the Rito dataset, where the
most infrequent label in Rito has just seven instances.

4.4.3 Corpus Statistics

The characteristics of a dataset naturally affect the performance of classification models.
To allow for a better interpretation of our experimental results, a statistical analysis of the
datasets is performed.

Token Counts. The text for all patent fields is tokenized using the NLTK whitespace tok-
enizer, and average token counts are shown in Table 4.5. The abstracts in InjVal are longer
compared to those of Rito and Atz, which have longer claims and description sections.
High variation can be seen in the token count, particularly within the description sections
for Rito and Atz.

Publication Date. The publication date of a patent family is the earliest publication date
among its family members. Figure 4.8 shows the time range for the three PLS datasets
(InjVal, Rito, and Atz) using the publication date of the earliest family member. The patents
within the InjVal dataset (Figure 4.8a) are spread across approximately 100 years (1920 -
2019), with a majority of them being from the last 50 years. In contrast, the WIPO datasets

4. Datasets and Analysis 66

19
20

19
26

19
30

19
34

19
36

19
39

19
51

19
52

19
53

19
54

19
55

19
56

19
57

19
58

19
59

19
61

19
62

19
64

19
65

19
66

19
67

19
68

19
69

19
70

19
71

19
72

19
73

19
74

19
75

19
76

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

year

0

100

200

300

400

in

st
an

ce
s

(a) Injection-Valve

19
89

19
91

19
92

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

year

0
20
40
60
80

in

st
an

ce
s

(b) Ritonavir

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

year

0
20
40
60
80

100

in

st
an

ce
s

(c) Atazanavir

Figure 4.8: Instances per year for PLS datasets. The InjVal dataset is for a much longer
time horizon (around 100 years) than the Rito and Atz datasets.

JP DE US W
O EP CN KR FR GB IT RU AU CA BR SE NL AT SU BE CH DD FI TW PT ES PL HU AR DK

patent office

0
500

1000
1500
2000
2500
3000
3500
4000

in

st
an

ce
s

(a) Injection-Valve

W
O US EP CA AU JP CN DE BR IN KR M
X HK IL ES ZA TW AT AR CL NZ NO DK RU PL PT TH PE EA HU SI AP CO HR CY M
Y SG CZ TR UA UY SK EC M
A RS GB TN VN BG CR

patent office

0

100

200

300

400

500

600

700

in

st
an

ce
s

(b) Ritonavir

W
O US EP JP CA AU CN DE BR IN M
X HK KR ES IL TW ZA AR RU CL NZ AT PL DK EA PT NO TH SI PE HR GB CY SG AP UA UY HU RS CO EC TR M
A M
Y VN CR SE M
K NL TN

patent office

0

100

200

300

400

500

600

in

st
an

ce
s

(c) Atazanavir

Figure 4.9: Count of patent offices for the three PLS datasets.

67 4. Datasets and Analysis

Dataset Documents Unique Labels Labels Per Instance

InjVal 9465 5068 6.42
Rito 781 3543 26.87
Atz 640 3171 31.18

Table 4.6: CPC/IPC statistics for the PLS datasets.

(Figure 4.8b, 4.8c) have a narrow timeline of roughly 20 years (16 and 22 years for Atz and
Rito, respectively).

Patent Office / Original Language. To safeguard business interests, an organization may
file an invention across multiple different patent offices around the globe (Carsten Fink and
Zhou, 2016). The multiple patent filings are associated with a common patent family iden-
tifier. Figure 4.9 shows the distribution of published patents across different jurisdictions.
It is interesting to note that most of the publications for the InjVal dataset (Figure 4.9a)
are filed in Japan (JP) and Germany (DE), two primary hubs of industrial innovation. The
WIPO datasets (Figure 4.9b, 4.9c) contain high numbers of worldwide filings (WO), with
the United States (US) as the second most popular choice for filing a patent. This differ-
ence in jurisdiction indicates the document’s language: most of the documents within the
InjVal dataset are in non-English languages, which is not the case for the WIPO datasets.
The majority of the patents (68%) in InjVal consist of machine-translated text.

CPC Labels. Table 4.6 shows the CPC statistics for the three PLS datasets. The patents
in the WIPO datasets have a higher number of labels than those in the InjVal dataset. The
InjVal dataset contains only one patent with a CPC count of more than 50, whereas Rito
and Atz contain 13 and 18 such patents, respectively. In addition, the numbers of unique
CPC labels within the WIPO datasets are relatively high compared to the InjVal dataset,
given the relatively smaller sizes of the datasets.

4.5 Analyzing Association Between CPC/IPC Labels and
PLS-Oriented Target Labels

Before selecting a document representation technique for a classification task, it is crucial
to determine the dataset characteristics that might influence a classifier’s performance for
a given document representation technique. For PLS datasets, one such characteristic is
the association between the CPC/IPC labels and the PLS-oriented target labels, which can
influence the performance of document representation methods in the PLS classification
task, depending on whether or not the document representation method uses CPC/IPC label
information. Here, we hypothesize that classifiers exploiting CPC/IPC information will
perform better in cases of higher association. To capture the association between a pair of
CPC/IPC labels and a target label, we calculate the Pointwise Mutual Information (PMI)

4. Datasets and Analysis 68

(Church and Hanks, 1990) for each CPC/IPC-target pair. In this section, an analysis is
performed on the three datasets as described in the following.

Comparing Association between CPC/IPC and PLS-oriented Labels. The PMI value
is calculated between each CPC/IPC and PLS-oriented label pair and analyzed to deter-
mine the CPC/IPC and target label association for each of the three datasets. As the first
analysis, the PMI values for pairs of top-25 CPC/IPC labels and PLS-oriented target labels
are computed. The underlying assumption is that if a CPC/IPC label is essential for a target
label, it is also essential for the dataset, as it plays a vital role in identifying the target label
in the CPC classification task.

In addition, a domain expert can use the analysis in Figure 4.10 to understand the associ-
ation between CPC/IPC and PLS-oriented labels. The label names and associated CPC/IPC
label descriptions are more interpretable in the case of the InjVal dataset. Here, we consider
a few examples of high-association pairs. The Piezoelectric Actuator Spring label shows
a high association with F16F1/0217 and F16F1/02818, which have descriptions containing
the text “Springs made of steel ...”. Similarly, the Heat Pressure Pipe label shows a high
association with F16L19/028319, which has a description including the text “... Pipe ends
provided with collars or flanges ...”.

Figure 4.10 shows the PMI values for target labels and top-25 CPC/IPC labels for all
three datasets. In InjVal (Figure 4.10a), many CPC/IPC-target pairs have very high PMI
values, considerably higher than in the other two datasets. For Rito (Figure 4.10b), fewer
CPC/IPC-target pairs show high PMI values compared to Atz (Figure 4.10c).

Variation of PMI Scores for Top-k. Apart from looking into the association between
pairs of CPC/IPC and target labels, the mean PMI value is analyzed for the top-k CPC/IPC
labels for three datasets and is shown in Figure 4.11. The InjVal dataset shows a much
higher mean PMI score across the top-k CPC/IPC label counts than the WIPO datasets.
Among the WIPO datasets, Rito’s mean PMI score is higher than that of Atz.

Summary. The analysis above shows that the InjVal dataset exhibits a higher association
between CPC/IPC and target labels than Rito and Atz. Of the two WIPO datasets, Rito
shows a higher association than Atz. In Section 7.5, these characteristics will be used to
better interpret results when evaluating and comparing different classification methods that
use CPC/IPC document representation techniques.

17https://www.uspto.gov/web/patents/classification/cpc/html/cpc-F16F.html#F16F1/02 [last
accessed December 10, 2023]

18https://www.uspto.gov/web/patents/classification/cpc/html/cpc-F16F.html#F16F1/028 [last
accessed December 10, 2023]

19https://www.uspto.gov/web/patents/classification/cpc/html/cpc-F16L.html#F16L19/0283
[last accessed December 10, 2023]

https://www.uspto.gov/web/patents/classification/cpc/html/cpc-F16F.html#F16F1/02
https://www.uspto.gov/web/patents/classification/cpc/html/cpc-F16F.html#F16F1/028
https://www.uspto.gov/web/patents/classification/cpc/html/cpc-F16L.html#F16L19/0283

69 4. Datasets and Analysis

F0
2B

29
/0

0

F0
2B

33
/0

2

F0
2B

7/
06

F0
2D

19
/0

64
2

F0
2D

19
/0

66

F0
2D

19
/0

69
4

F0
2D

19
/1

0

F0
2D

21
/1

0

F0
2M

26
/1

9

F0
2M

35
/0

2

F0
2M

35
/0

24

F0
2M

35
/1

02
55

F0
2M

37
/0

8

F0
2M

43
/0

4

F0
2M

51
/0

4

F0
2M

57
/0

2

F0
2M

57
/0

27

F0
2M

59
/3

6

F0
2M

59
/4

66

F0
2M

63
/0

03
5

F0
2M

69
/0

2

F1
6F

1/
02

F1
6F

1/
02

8

F1
6L

19
/0

28
3

H0
1L

41
/0

53
6

CPC/IPC

Air Injection Valve
Bi-Fuel-Injector

Direct Injector Piezo
Direct Injector Solenoid

Dual Injection
Exhaust Line Injector

Fuel Rail
High Pressure Pipe

Natural Gas Injector (NGI)
Other Injectors (SEV)

Piezoelectric Actuator Spring
Piezoelectric Actuators for Injectors

Piezoelectric Ceramic Material
Port Fuel Injector

Pump Injector Combination
Water Injection

ta
rg

et
 la

be
l

0

1

2

3

4

5

6

7

8

(a) InjVal

A0
1N

1/
02

A0
1N

43
/7

2

A0
1N

43
/7

8

A6
1K

31
/4

53

A6
1K

33
/2

4

A6
1K

35
/1

4

A6
1K

38
/5

0

A6
1P

33
/0

2

C0
7C

21
3/

00

C0
7D

21
7/

22

C0
7D

24
3/

00

C0
7D

24
3/

04

C0
7D

27
7/

22

C0
7D

27
7/

28

C0
7D

27
7/

30

C0
7D

27
7/

36

C0
7D

29
5/

08

C0
7H

15
/2

6

C0
7K

14
/0

0

C0
7K

17
/0

2

C1
2N

15
/8

5

G0
1N

21
/7

8

G0
1N

25
00

/0
4

G0
1N

33
/5

43

G0
1N

33
/6

8
CPC/IPC

Combinations

Derivatives

Methods of Treating HIV

Pharmaceutical Compositions

Prodrug

Stabilized Forms

Synthesis and Crystalline Forms

ta
rg

et
 la

be
l

0

1

2

3

4

5

6

7

8

(b) Ritonavir

A6
1K

20
39

/5
25

6

A6
1K

38
/2

15

A6
1K

38
/5

7

C0
7D

20
7/

10

C0
7D

20
9/

60

C0
7D

22
5/

00

C0
7D

24
5/

00

C0
7D

24
5/

02

C0
7D

24
5/

04

C0
7D

27
7/

22

C0
7D

27
7/

24

C0
7D

30
9/

12

C0
7D

51
3/

22

C0
7K

5/
02

C0
7K

5/
06

03
4

C0
7K

5/
06

16
5

C0
7K

5/
06

2

C0
7K

5/
08

C0
7K

5/
08

04

C0
7K

5/
08

1

C0
7K

5/
08

12

C0
7K

5/
08

3

C0
7K

5/
10

C0
7K

5/
12

C1
2N

27
40

/1
62

34

CPC/IPC

Autoimmune - Inflammatory

Cancer

Kaposi

Neurologic

IBD

Herpes

Hepatitis C Virus

Serine Protease Inhibitor

ta
rg

et
 la

be
l

0

1

2

3

4

5

6

7

8

(c) Atazanavir

Figure 4.10: The association between the top-25 CPC/IPC labels and PLS-oriented cate-
gories is calculated using Pointwise Mutual Information (PMI).

4. Datasets and Analysis 70

4.6 Analyzing Duplicate Texts in Patents

Within a patent, information is distributed across multiple sections where a section text
might provide an invention summary or a detailed specification, depending on the role
associated with a section. For example, the abstract summarizes an invention, whereas
the claims section provides a detailed specification. Since different sections convey infor-
mation about the same invention, the text might be redundant or even duplicated across
sections. Therefore, the performance of a classifier might not be improved by providing
additional field text if the text contains redundant information.

As the same information can take multiple textual forms, identifying similar or near-
duplicate text pairs is a challenging research problem (Bayardo et al., 2007; Feng and Deng,
2021). Some of the methods for identifying similar texts include: the shinglings-based
method (Broder, 1997), the minhash algorithm (Broder et al., 1998), the locality-sensitive
hashing (Gionis et al., 1999), and the Siamese network (Reimers and Gurevych, 2019).
The reuse of text within and across documents is typical for patents. Therefore, we are
interested in exact duplicates rather than the identification of near-duplicate text pairs when
analyzing patent texts. We analyze patent texts from abstracts and sentences for duplicates
and report our findings in the following.

Given a set of text chunks, we can determine duplicates by mapping each text chunk
to a numerical hash value by using a standard hash function provided by the programming
language and then counting the number of occurrences of a hash value. In this case, we use
the built-in function from Python, which converts the input text to an integer value.20 Since
the release of version 3.4, Python has used the SipHash algorithm (Aumasson and Bern-
stein, 2012), which provides a better security guarantee against hash table collisions.21 If a
hash value occurs more than once, we can assume that the corresponding text is duplicated.

The titles, abstracts, and sentences are analyzed for duplicates. The analysis of dupli-
cate titles and abstracts is performed using the USPTO-7M dataset to determine multiple
occurrences of an abstract across patents. A sentence-level duplicate analysis is infeasible
with the USPTO-7M dataset as it contains billions of sentences. Therefore, a sentence-level
analysis is performed using the USPTO-70k dataset, which analyzes the occurrence of a
sentence within and across documents. Below, we discuss the outcome of this analysis.

Duplicate Title and Abstract. By analyzing abstracts in the USPTO-70k dataset, we
find that about 17% of the patents contain an abstract that is duplicated in at least one
other patent, i.e., it appears as an abstract in at least one other patent. Figure 4.12 shows
the duplicate count and the count of abstracts for each duplicate count value. As can be
seen in Figure 4.12, approximately 380k abstracts occur in two patents, and one abstract
is duplicated in 504 patents.

20https://docs.python.org/2/library/functions.html#hash [last accessed December 10, 2023]
21https://peps.python.org/pep-0456/ [last accessed December 10, 2023]

https://docs.python.org/2/library/functions.html#hash
https://peps.python.org/pep-0456/

71 4. Datasets and Analysis

10 100 200 500 1000
top-k CPC/IPC labels

2

3

4

5

6

m
ea

n
PP

M
I

InjVal
Atz
Rito

Figure 4.11: Mean Pointwise Mutual Information (PMI) values for top-k labels. The Inj-
Val dataset has much higher PMI values than the WIPO datasets. Of the two
WIPO datasets, Rito has higher PMI values than Atz.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 45 46 47 48 49 51 53 60 62 66 69 70 72 76 85 88 12
8

12
9

19
5

50
4

duplicate count

100k

200k

300k

400k

ab

st
ra

ct
s

Figure 4.12: Number of abstracts corresponding to the duplicate count values for the
USPTO-7M dataset.

By analyzing titles, we find that they are crafted with minimal word usage, e.g., “Tire”,
“Bottle”, “Chair”, often with the intention of strengthening the claim over an invention.
Table 4.7 shows the most frequent titles and their counts, demonstrating that some of the
titles are used within thousands of patents. Through this analysis, we find that for 36% of
patents, the title associated with a patent appears in at least one more document.

CPC Mismatch Between Documents with Same Abstracts. The analysis above reveals
that abstracts are often reused across patents. Since a set of CPC labels represents the topic
of a document, it might be interesting to check the number of cases in which patents with
the same abstract are labeled with a different set of CPC labels—this is referred to as CPC
mismatch. The analysis reveals a lesser chance of CPC mismatch between patents with
abstracts having lower duplicate counts than those with abstracts having higher duplicate
counts. For example, in 6% of the cases, patents with abstracts having a duplicate count of
two show a CPC mismatch, whereas for a duplicate count of three, the proportion of such
instances is 9%. Although these are small proportions, the occurrence of CPC mismatches

4. Datasets and Analysis 72

Title Count

Semiconductor device 6955
Bottle 5307
Image Forming Apparatus 5119
Chair 4134
Display Device 4082
Container 3903
Electrical Connector 3070
Liquid Crystal Display Device 2755
Golf Club Head 2455
Display Screen or Portion thereof with Graphical User Interface 2427
Electronic Device 2399
Semiconductor Memory Device 2387
Mobile Phone 2348
Tire Tread 2339
Shoe Upper 2308
Tire 2069
Display Screen with Graphical User Interface 1970
Semiconductor Device and Method of Manufacturing the same 1915
Connector 1888
Shoe 1850

Table 4.7: Duplicate titles count for top-20 titles for USPTO-7M.

A:H
um

an
 ne

ces
siti

es

B:Pe
rfo

rm
ing

 op
era

tio
ns;

 ...

C:Che
mistr

y;
meta

llur
gy

D:Te
xti

les
; p

ap
er

E:F
ixe

d c
on

str
uct

ion
s

F:M
ech

an
ica

l e
ng

ine
eri

ng
; ..

.

G:Ph
ysi

cs

H:El
ect

ric
ity

Y:G
en

era
l ta

gg
ing

 ...

section

0.05

0.10

0.15

0.20

0.25

pe
rc

en
ta

ge
 o

f d
up

lic
at

es

Figure 4.13: Percentage of patents with duplicate abstracts for different technical fields
where a technical field corresponds to the first level labels of the CPC taxon-
omy. The statistics are computed for the USPTO-7M dataset.

indicates that abstracts are often written less carefully than other sections of patents and
motivates us to look beyond titles and abstracts as input.

Topical Distribution of Duplicate Abstracts. To determine whether the tendency to du-
plicate abstracts is more prominent in particular technical fields or is the same irrespective
of the technical field, we perform a topical analysis determining the proportion of dupli-
cate abstracts within a domain. A topic-based analysis is performed, with the top-level
CPC labels representing the nine technical categories. Figure 4.13 shows the percentage

73 4. Datasets and Analysis

19
76

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

year

0.05

0.10

0.15

0.20

0.25

pe
rc

en
ta

ge
 o

f d
up

lic
at

es

Figure 4.14: Temporal distribution shows the percentage of patents with a duplicate ab-
stract out of the total number of patents published in a year for USPTO-7M.

de
scr

ipt
ion

bri
ef-

de
sc

fig
-de

sc

ab
str

act
cla

im
s

field

0.05

0.10

0.15

0.20

0.25
pe

rc
en

ta
ge

 o
f d

up
lic

at
es

Figure 4.15: Percentage of duplicate sentences for each patent field in USPTO-70k.

of patents with duplicate abstracts for particular technical categories. The analysis re-
veals that in certain technical fields, inventors tend to reuse the abstract more often than
they do in other fields. For example, the section labels “A” and “C”, representing “Human
Necessities” and “Chemistry; metallurgy”, respectively, show a higher percentage of du-
plicates, whereas the label “F”, representing the category of “mechanical engineering”, has
the lowest percentage of duplicate abstracts.

Temporal Distribution of Duplicate Abstracts. Figure 4.14 plots the percentage of
patents with duplicate abstracts versus the total number of patents granted in a year. This
temporal analysis of duplicate abstracts shows an interesting trend: the tendency to reuse
abstracts has increased in recent years. In particular, since 2011, a high proportion of new
patents (20% or more) have contained a duplicate abstract, whereas in the initial years
(1976 - 91), only 7% or fewer patents had duplicate abstracts.

Analysis of Duplicate Sentences. In addition to duplicate abstracts, patents often con-
tain sentences that are reused within or across documents. To understand the extent to
which sentences are duplicated within and across patents, we analyzed 23M sentences
within the USPTO-70k dataset.

A patent attorney drafts the patent application describing an invention, often using text
that is similar or exactly the same as text in the same or other patents. The claims section
is the only section that can be challenged with litigation, and therefore, the other sections

4. Datasets and Analysis 74

SUMMARY

According to an embodiment of the invention, a data storage system has a first storage
channel, a first controller coupled to the first storage channel, a first storage device
coupled to the first storage channel, a second storage channel, a second storage device
coupled to the second storage channel, and a switch coupled to the first storage channel
and the second storage channel. The switch separates the first storage channel from the
second storage channel in a first state and connects the first storage channel and the
second storage channel in a second state.

According to another embodiment of the invention, a data storage system, comprises a
first storage channel, a first controller coupled to the first storage channel, a first storage
device coupled to the first storage channel, a second storage channel, a second controller
coupled to the second storage channel, a second storage device coupled to the second
storage channel, a third storage channel coupled to the first controller and the first
storage device, a fourth storage channel coupled to the second controller and the second
storage device, and a switch coupled to the first storage channel and the second storage
channel. The switch separates the first storage channel from the second storage channel
in a first state and connects the first storage channel and the second storage channel in a
second state.

According to yet another embodiment of the invention, a data storage system comprises
a first storage channel, a first storage device coupled to the first storage channel, and a
switch coupled to the first storage channel. The switch is coupled to an interface to
couple to a second storage channel that is coupled to a second storage device. The switch
separates the first storage channel from the second storage channel in a first state and
connects the first storage channel and the second storage channel in a second state.

Figure 4.16: Example of a sentence appearing multiple times within US6983343B2. As
shown in the figure, it is repeated three times within the summary (a sub-
section of the description). The same sentence also appears in the abstract
section.

are written less carefully and contain relatively higher percentages of duplicate sentences.
Figure 4.15 shows the proportion of duplicate sentences in each field. The percentage of
duplicates is highest in the abstract field, followed by detail-desc, whereas the claims
section contains the lowest proportion of duplicate sentences.

Further, we checked the proportion of duplicated sentences within and across docu-
ments. Analyzing 23M sentences, we found that 15% of sentences are duplicated in the
corpus. In 36% of cases, a sentence is reused within the same document, and in 64% of
instances, a duplicate sentence occurs across multiple documents. Figure 4.16 shows an in-
stance where a sentence is used three times in consecutive paragraphs within the summary
field. Furthermore, the sentence also appears in the abstract of the same patent.

In some instances, even though a duplicate sentence seems to be a technical system
specification, it is repeated multiple times across patents, some of which belong to different
applicants. For example, the sentence below is duplicated in as many as 700+ patents.

“ In the latter scenario, the remote computer may be connected to the user’s computer
through any type of network, including a local area network (LAN) or a wide area network
(WAN), or the connection may be made to an external computer (for example, through the
internet using an internet service provider). ”

75 4. Datasets and Analysis

2 3 7 21
0

5

10

15

20

25

in

st
an

ce
s

Injection Valve

2 3 4 5 20
duplicate count

0

5

10

15

20

25

Ritonavir

2 3 4 5 8
0

5

10

15

20

25

Atazanavir

Figure 4.17: Duplicate abstract count for PLS datasets.

Analyzing Duplicate Abstracts in PLS Datasets. In the PLS datasets, 48, 109, and 90
instances in InjVal, Atz, and Rito do not have unique abstracts. As shown in Figure 4.17,
the InjVal dataset contains seven abstracts that occur in at least two documents, whereas
in the case of Rito and Atz, the number of such abstracts is 20 and 25, respectively. Some
abstracts in InjVal and Rito occur up to 20 times (Figure 4.17).

We see two possible reasons for the higher number of duplicate abstracts in the Rito
and Atz datasets compared to InjVal. First, by referring to Figure 4.10b and 4.10c, it
can be concluded that the majority of patents in Rito and Atz are labeled with “A” and
“C” category CPC/IPC labels, which have high duplicate abstract counts (Figure 4.13).
By contrast, most instances in the InjVal dataset contain CPC/IPC labels belonging to the
“F” category (Figure 4.10a), which has the lowest proportion of duplicates among all the
Section labels (Figure 4.13). Secondly, the Rito and Atz datasets include patents relating
to a very narrow scope concerning research and development around a single invention,
which increases the potential for similar patents to be added with duplicate abstracts.

Summary. The analysis of duplicate texts reveals that the problem is prevalent across
datasets and motivates us to use additional patent fields or even the full texts of patents for
classification.

4.7 Conclusions

One of the major roadblocks for the development of patent classification models is the
unavailability of appropriate datasets. Addressing that, we release USPTO-70k and three
PLS datasets. Each instance in the USPTO-70k dataset contains the full text of the patent,
and USPTO-70k is used to evaluate the CPC classification models in Chapters 5 and 6. The
PLS classification models proposed in Chapter 7 are evaluated using three PLS datasets (see
Section 7.5). Furthermore, we analyzed patent text to detect duplicates and found that sen-
tences are often reused within and across patents. Additionally, the same abstract might

4. Datasets and Analysis 76

appear in multiple patents. Our analysis of duplicate text indicates the redundant nature
of patent texts and motivates the document representation methods proposed in Chapters 6
and 7. Finally, by analyzing the association between CPC/IPC labels and PLS-oriented cat-
egories, we find that the InjVal dataset has a higher association between them than the two
WIPO datasets. This finding helps us interpret the results for the document representations
that use CPC/IPC labels in Section 7.5.

Chapter 5

CPC Classification using Transformers

Although the CPC/IPC classification task is a hierarchical multi-label classification prob-
lem, most previous works using neural network architecture have proposed flat classifiers
that predict leaf-level labels, usually at the third level of the taxonomy (Li et al., 2018a; Lee
and Hsiang, 2019; Zaheer et al., 2020). On the other hand, TwistBytes (Benites, 2019), a
hierarchical local classifier per node (LCN) approach that trains a non-neural classifier for
each label in the taxonomy and predicts labels top-down performs better than the neural
baselines when evaluated on the task of classifying the text of German ’blurbs’ (Remus
et al., 2019). A neural LCN-based approach using a transformer-based language model
may perform better than a flat classifier on a hierarchical classification task. However,
training multiple transformer-based classifiers in parallel is infeasible because of the high
memory requirements. Addressing this issue, we propose a memory-efficient model archi-
tecture that trains multiple classification heads, one for each label in the taxonomy. The
classification heads share a single transformer-based language model. Further, we use the
hierarchical taxonomy structure in model architecture to improve prediction for labels at
the lower levels of the taxonomy.

In Section 5.1, we highlight the challenges associated with the application of a neu-
ral LCN approach when using a transformer-based language model (Devlin et al., 2019;
Beltagy et al., 2020; Zaheer et al., 2020) for text representation. The limitations of the
current state-of-the-art patent classification approaches and other hierarchical methods are
discussed in Section 5.2. The architectural details for TMM and THMM are described in
Section 5.3. The proposed techniques are compared against neural and non-neural base-
lines (Section 5.5) using the experimental setup defined in Section 5.4.

5. CPC Classification using Transformers 78

5.1 Motivation and Contributions

Predefined patent taxonomies, for example, the Cooperative Patent Classification (CPC)
scheme (see Section 2.1.3), arrange labels in a hierarchical taxonomy structure, such that
the labels representing coarse-grained concepts are at higher levels of the hierarchy, whereas
those representing fine-grained concepts are at the lower levels. Although CPC/IPC classi-
fication is a hierarchical multi-label classification task, most previously-developed models
have ignored the hierarchical structure when defining the model architecture and predicted
labels for only a single level of the class hierarchy, mainly at the third level of the taxonomy
(Li et al., 2018a; Lee and Hsiang, 2019). Such classification techniques are referred to as
flat classifiers by Silla and Freitas (2011). We hypothesize that a hierarchical classifier that
learns concepts at each level of the hierarchy will perform better than a flat classifier when
evaluated on a hierarchical classification task. Even if misclassification occurs at a lower
level when using this kind of classifier, correct prediction at a higher level may improve
prediction accuracy. Furthermore, the use of hierarchical links in the model architecture
can improve prediction at lower levels (Benites, 2019; Wehrmann et al., 2018).

Silla and Freitas (2011) categorized hierarchical classifiers into three main groups: Lo-
cal Classifiers per Level (LCL), Local Classifiers per Node (LCN), and global classifiers.
An LCL approach trains a classifier for each level of the class hierarchy that predicts the
labels within a level. In contrast, an LCN approach trains a classifier for each label in the
taxonomy. A global approach predicts all the labels in the taxonomy across levels.

Benites (2019) propose a non-neural LCN-based approach for training a classifier for
each label in the taxonomy. It takes a TF-IDF feature vector as input and has been shown
to outperform a flat neural approach (Hepburn, 2018) based on the ULMFiT contextual
language model (Howard and Ruder, 2018) when evaluated on the task of classifying the
text of German ’blurbs’ (Remus et al., 2019). Further, as a state-of-the-art patent classifi-
cation model, a flat classifier (Lee and Hsiang, 2019) representing text with a transformer-
based language model (Devlin et al., 2019) exhibited superior performance when compared
to a CNN-based classifier (Li et al., 2018a) that used non-contextualized word embed-
dings (Mikolov et al., 2013b). Inspired by the success of Benites (2019), and Lee and
Hsiang (2019), our objective is to create an LCN-based neural classifier that incorporates
a transformer-based language model for text representation. Such a neural model archi-
tecture would include multiple classifiers, one for each label in the taxonomy, and use a
transformer-based language model for text representation. However, given the high mem-
ory requirements for a transformer-based model, the parallel training of multiple label-
specific classifiers is infeasible. Thus, we see a need for an innovative memory-efficient
approach.

Combining the benefits of the approaches taken by Benites (2019), and Lee and Hsiang
(2019), in this chapter, we propose a novel memory efficient model architecture, namely the
Transformer-based Multi-task Model (TMM). TMM trains a classification head for each la-
bel in the taxonomy, and all classification heads share a single transformer-based language
model for text representation. Further, motivated by the hypothesis that learning from a

79 5. CPC Classification using Transformers

ROOT

A B

A43 A44 B23B41

A43B A43C A44CA44B B41FB41J B23QB23D

Figure 5.1: Example of CPC taxonomy showing the hierarchical structure up to the sub-
class labels, i.e., the third level of the taxonomy.

parent task might benefit a child task, we transfer the hidden state of the corresponding
parent head to those of its children. This hierarchical variant of TMM is referred to as the
Transformer-based Hierarchical Multi-task Model (THMM).

Our approach is the first to combine powerful transformer-based language models with
an intrinsically hierarchical algorithm for patent classification. The evaluations are per-
formed with the USPTO-70k (see Section 4.3) and WIPO-alpha (Section 5.4.1) datasets.
Evaluation of the proposed approach shows that it performs better than both neural (Li
et al., 2018a; Lee and Hsiang, 2019; Huang et al., 2019) and non-neural baselines (Benites,
2019). Comparing THMM and TMM, we find that by using hierarchical links, THMM
makes better predictions at lower levels, which contain many infrequent labels.

Contributions. We make two main contributions in this chapter, which can be summa-
rized as follows:

• We propose a novel neural LCN approach that efficiently trains multiple classifica-
tion heads using a shared transformer-based language model for text representation,
referred to as the Transformer-based Multi-task Model (TMM) (see Section 5.3).
The proposed architecture combines the advantages of powerful document embed-
dings generated by a pre-trained language model with the gains that can be achieved
by localizing decisions.

• In addition, we propose a hierarchical variant that transfers the learned representa-
tion from the parent head to the heads corresponding to its children (see Section 5.3).
Further, an in-depth analysis demonstrates that the proposed model strongly outper-
forms previously developed models, achieving much higher classification accuracy
at the lower levels of the hierarchy and for infrequent labels.

5. CPC Classification using Transformers 80

5.2 Related Work

Prior works on patent datasets are discussed in Section 4.2, whereas those on patent rep-
resentation methods are reviewed in Sections 6.2 and 7.2. Here, we discuss the key clas-
sification model architecture applied for patent classification. Further, we look into some
recent works on hierarchical text classification.

Gomez and Moens (2014) provide a detailed survey of various patent classification
techniques. Prior non-neural works have used a large variety of classification models in-
cluding Winnow (D’hondt et al., 2013, 2014), Naive Bayes (Lim and Kwon, 2016), Support
Vector Machines (Chen and Chang, 2012), k-Nearest Neighbors (Gomez, 2019), and Lo-
gistic Regression (Gomez, 2019). The neural network classifiers primarily use feedforward
neural networks that take a patent representation as input and generate prediction scores
corresponding to each label in the taxonomy (Li et al., 2018a; Lee and Hsiang, 2019; Za-
heer et al., 2020; Choi et al., 2022). For example, Lee and Hsiang (2019) propose a tech-
nique that takes the truncated patent text as input, generate a sequence representation using
BERT (Devlin et al., 2019), and pass it through feedforward neural networks, fine-tuning
BERT model weights in the training process.

In the ALTA shared task on patent classification (Mollá and Seneviratne, 2018), an ap-
proach training separate SVM classifiers per node using simple n-gram and POS-tag based
features (Benites et al., 2018) performed comparably to a flat neural approach (Hepburn,
2018) based on the ULMFiT contextual language model (Howard and Ruder, 2018). The
work of Li et al. (2018a), based on Kim (2014) and optimized by Abdelgawad et al. (2019),
proposes a convolutional neural network (CNN) based approach which predicts IPC codes
at the subclass level and uses the non-contextual word2vec embeddings (Mikolov et al.,
2013b). Further, neural work on patent classification employs graph-convolutional net-
works using word embeddings inferred from a word-document co-occurrence graph (Tang
et al., 2020).

The CPC/IPC classification models proposed in this chapter are compared to the hi-
erarchical neural classifier HARNN (Huang et al., 2019), a global neural classification
approach predicting labels across the hierarchy. HARNN is one of the first neural hierar-
chical approaches that was evaluated on the CPC classification dataset. HARNN generates
a document embedding by aggregating token embeddings initialized with word2vec us-
ing a BiLSTM and feeds it through a hierarchical attention-based memory unit that learns
different attention weights per category. The final prediction combines hidden local and
global information (see Section 2.6.3). Hierarchical patent classification has also been ad-
dressed as a sequence generation problem using an attention-based neural model (Risch
et al., 2020b).

Our approach (Pujari et al., 2021a) differs from prior work for the following reasons.
First, instead of predicting labels at a single hierarchical level (Abdelgawad et al., 2019;
Benites et al., 2018; Lee and Hsiang, 2019; Li et al., 2018a), we model predictions across
the label taxonomy. Second, we use the hierarchical taxonomy structure and connect heads
corresponding to those of their children, unlike the flat classification model architectures

81 5. CPC Classification using Transformers

(Lee and Hsiang, 2019; Li et al., 2018a). Third, we used contextualized embeddings for
text representation instead of using non-contextualized embeddings (Li et al., 2018a; Huang
et al., 2019; Risch et al., 2020b).

Below, we describe some key approaches that train level-specific neural classifiers and
apply them for tasks other than patents. Similar to our work, Peng et al. (2018) propose a
CNN-based model in which the hierarchy of labels is leveraged by regularizing the deep
architecture with dependencies among labels. Kowsari et al. (2017) and Wehrmann et al.
(2018) address neural hierarchical text classification by training level-wise classifiers and
chaining predictions from the top down in a single hierarchical model. In contrast, Baner-
jee et al. (2019) and Shimura et al. (2018) train separate classifiers for each level and use
transfer learning, initializing the lower level classifier using the parameters learned at the
higher level. Banerjee et al. (2019) train a binary classifier for a parent label and use its
parameters to initialize a classifier for the child labels. Shimura et al. (2018) fine-tune a
CNN-based model to predict labels at a certain level, and the parameters corresponding to
the CNN filters are transferred to initialize layers at the lower level. Xu et al. (2021) en-
hance Wehrmann et al. (2018) by using horizontal and vertical correlation between labels,
i.e., correlations between labels both within and across levels. Contrary to the level-based
approaches described above, we propose a model architecture similar to the local classi-
fier approach in which multiple classification heads are trained, one corresponding to each
label in the taxonomy. The classification heads share a common language model for text
representation. Further, we leverage the hierarchical taxonomy links by transferring rep-
resentation from the classification head for the parent to the heads corresponding to its
children.

Above, we discussed the key methods with high relevance to our proposed approach.
Next, we look into some of the recent hierarchical classification approaches, which show a
huge variation in their methodologies. Meng et al. (2019) and Shen et al. (2021) suggest
weakly-supervised hierarchical classification approaches. Given a few user-provided seeds,
Meng et al. (2019) propose a system that generates pseudo-documents and uses them to
bootstrap a neural hierarchical classifier which includes an LSTM-based language model.
Shen et al. (2021) propose an approach in which a label is assigned based on the output
of a pre-trained entailment model for document text, with label description as input. The
process is performed from the top down, checking entailment only for the children of labels
that were found to be important in the level above.

Some works on hierarchical classification use label co-occurrence statistics (Zhou et al.,
2020; Chatterjee et al., 2021). Zhou et al. (2020) compute the priors for labels conditioned
on their parents and use them as edge weights of hierarchical taxonomy links to encode
the label hierarchy using Bidirectional Tree LSTMs (Li et al., 2018b) and GCNs (Kipf
and Welling, 2017). Chatterjee et al. (2021) propose a hierarchical model for situations in
which the label hierarchy is unknown. They project labels in a hyperbolic space, as this
can better capture hierarchical relations and use a loss that minimizes the distance between
co-occurring labels.

5. CPC Classification using Transformers 82

Few methods encode the hierarchical taxonomy using GCNs and leverage it to enrich
text representation during training (Chen et al., 2021a; Wang et al., 2022a). Chen et al.
(2021a) encode text using CNNs and encode labels using GCNs. Further, they align text
and label embeddings using a loss that minimizes the distance between text embeddings
and positive labels and penalizes short distances to negative labels. Wang et al. (2022a) en-
rich the text encoder with hierarchical taxonomy information during training by employing
contrastive learning.

Rivas Rojas et al. (2020) address hierarchical classification as a sequence-to-sequence
prediction task, predicting a label at a level in each step. Similarly, Huang et al. (2022)
model hierarchical classification as a generative task in which labels are predicted one
level at a time, and label dependency is used across different levels. For this, they use path-
augmented attention by focusing on labels that are within the path of the label predicted
in the previous step. Jiang et al. (2022) use BERT to learn label embeddings through the
masked label prediction task, a method similar to the masked token prediction task (Devlin
et al., 2019). The attention mask restricts attention to the parent and child labels in the
hierarchy.

Inspired by adversarial learning techniques (Makhzani et al., 2016), Deng et al. (2021)
use a discriminator to maximize the mutual information between a label and the actual text
and minimize it for text corresponding to a randomly picked sample of the mini-batch.
Wang et al. (2021) propose a concept routing approach similar to CapsNet (Sabour et al.,
2017), in which the top keywords from the document are picked as concepts.

Few recent approaches apply soft prompting to incorporate label information into doc-
ument representations (Chen et al., 2022; Wang et al., 2022b). Chen et al. (2022) propose
a method that uses a label-specific soft prefix prompt vector, which incorporates the hierar-
chical structure of the taxonomy. Wang et al. (2022b) introduce an input template with slots
for soft prompt vectors corresponding to each hierarchical level, in which a level-specific
vector is aggregated using the graph attention network.

5.3 Model Architecture

Here, we provide an overview of the TMM model architecture (Section 5.3.1), followed
by specific details on document representation (Section 5.3.2) and the classification model
(Section 5.3.3).

5.3.1 Overview

A classification pipeline consists of two main parts: a document representation method
and a classification model. Following previous neural and non-neural classifiers (Li et al.,
2018a; Lee and Hsiang, 2019), we use patent title and abstract as inputs to the classifier.
As a first step, a distributed representation is created for the textual input using a pre-trained
transformer-based language model and provided as input to the classification model. The

83 5. CPC Classification using Transformers

embedding

for CLS

Transformer-based pre-trained neural language model (e.g., BERT)

<CLS> t1 t2 t3 ... tn <SEP>

sequence embedding 𝑥

embedding

for t1

embedding

for t2

embedding

for tn

...

head for A

head for A43 head for A44

head for A43B head for A43C head for A44B head for A44C

softmax

softmax softmax

softmax softmax softmax softmax

CNN

Option 1: CLS as

sequence embedding
Option 2: sequence

embedding computed

by CNN component

added in THMM

Figure 5.2: Model architecture for the Transformer-based Hierarchical Multi-task Model,
corresponding to the left subtree of the sample taxonomy shown in Figure 5.1
with root at node “A”.

classification model trains a binary classifier for each label in the taxonomy, predicting
whether an instance (i.e., a patent) belongs to the respective category or not. The ensemble
of classifiers is trained in a multi-task setup and uses a single underlying SciBERT neural
language model (Beltagy et al., 2019) to create document representations. SciBERT has
been trained on a corpus of scientific publications and is thus closer to the patent domain
than BERT (Devlin et al., 2019), which was trained on English-language Wikipedia and
BookCorpus (Zhu et al., 2015) text.

In the terminology of multi-task learning, each of these classification heads addresses
one task. Hence, each label-specific binary classifier constitutes a classification head in
the multi-task-based neural network architecture. In other words, the Transformer-based
Multi-task Model (TMM) consists of a single transformer model with n heads, where n
corresponds to the number of labels in the hierarchy. Hard parameter sharing is used for
the transformer model (and for optional CNN layers) (Ruder, 2017). In addition, each
classification head has its own set of parameters.

We hypothesize that the classification head at the higher level captures coarse infor-
mation on a document’s topic, whereas the classification head at the lower level captures
fine-grained information. The lower-level tasks may benefit from receiving additional se-
mantic information from a parent classification head. To achieve this, the TMM architec-
ture is extended to link the network components corresponding to parent and child nodes.
The extended TMM version is called the Transformer-based Hierarchical Multi-task Model
(THMM).

5. CPC Classification using Transformers 84

5.3.2 Document Representation

Similar to prior works on neural patent classification (Li et al., 2018a; Huang et al., 2019;
Lee and Hsiang, 2019), the title and abstract fields of a data object based on the patent
document model (see Section 3.2.2) are provided as input to a patent classifier. The ex-
periments are performed with two types of document representation. In the first case, the
embedding for the [CLS] token from the last transformer layer of SciBERT is used as a
document representation (see Section 2.4.3). However, the [CLS] token was designed for
the next sentence prediction task, and it is unclear how effective its embedding is when rep-
resenting long sequences, as in our case. Hence, the second option is to consider the entire
sequence. In this case, an embedding is generated for each token in the sequence. Next,
the token embeddings are provided as input to a CNN layer, which computes a position-
invariant feature vector (right/dotted path in Figure 5.2). Further details on text representa-
tion methods are provided in Section 2.4.2.

As discussed in Section 3.2, the classification pipeline takes an instance of the domain-
specific document model, PatentDM in this case, and maps it to an instance of the domain-
independent document model, which is finally mapped to a instance of the data model that
is specific to the document representation method. The document representation meth-
ods described here take an instance of DocRepDM_Seq as input, which has text and
max_length as attributes (see Section 3.2.4). For the experiments performed in this chap-
ter, the text corresponds to the concatenated text of title and abstract whereas the maxi-
mum sequence length value is specified as max_length.

5.3.3 Classification Models

We now provide a comprehensive overview of the architectural details of the classification
models. An independent head is created for each label that takes document representation x
as input, which corresponds to the [CLS] token embedding or the CNN’s output. Each head
consists of two dense layers with ReLU activation followed by a two-dimensional dense
output layer that produces logits. The classification is performed by applying a softmax
operation to the output logits.

Working on the assumption that a representation learned in the parent head might im-
prove the performance of the child head, we propose a hierarchical variant of TMM that
transfers the intermediate representation from the parent head to the child head and is re-
ferred to as the Transformer-based Hierarchical Multi-task Model (THMM). As in TMM,
each classification head computes the logits for the binary decision using two fully con-
nected dense layers. However, in THMM, the first hidden layer of the classification head
for ci also takes into account the logits h3

cj
taken from the final (third) dense layer of the

head corresponding to ci’s parent cj . It computes a hidden representation h1
ci

by performing
a linear transformation on the concatenation (;) of the sequence embedding x and h3

cj
. If ci

does not have a parent in the taxonomy, the input to its classification head is x. Further, b1ci

85 5. CPC Classification using Transformers

and b2ci are the basis vectors corresponding to the hidden states h1
ci

and h2
ci

, respectively,
whereas b3ci is the basis vector corresponding to the output logit vector h3

ci
.

h1
ci

:=

{
φ(W 1

ci
(h3

cj
;x) + b1ci) if there is a cj with parent(ci, cj) = true

φ(W 1
ci
x+ b1ci) if parent(ci, ROOT)

(5.1)

h2
ci

:= φ(W 2
ci

(h1
ci

) + b2ci) h3
ci

:= W 3
ci

(h2
ci

) + b3ci (5.2)

As in TMM, the hidden representation h1
ci

is passed through two further dense layers
and mapped to a two-dimensional logit vector h3

ci
. This serves as input to a softmax layer

that predicts whether label ci applies to the instance. We use binary cross-entropy loss to
train our models and weigh all “tasks” equally.

5.4 Experimental Setup

The proposed models and baselines are evaluated on a CPC and an IPC dataset, as described
in Section 5.4.1. This is followed by a description of evaluation metrics (Section 5.4.2),
the specification of hyperparameters for the proposed model (Section 5.4.3), and baselines
(Section 5.4.4).

5.4.1 Dataset

The models are evaluated on the USPTO-70k and WIPO-alpha datasets. The USPTO-70k
dataset (see Section 4.3) contains about 70,000 patents. Each patent instance contains the
full text of the patent and is labeled with labels taken from the third level of the CPC
taxonomy (see Figure 2.3, page 15), i.e., subclass labels. The WIPO-alpha dataset contains
about 46,000 training instances and 29,000 test instances (Fall et al., 2003). The patent
documents were published between 1998 and 2002, with test instances sampled randomly.
There are 602 labels in the training set and 576 labels in the test set at the subclass level. As
there is no pre-existing split, we sample the validation set from the training set by selecting
20% of the data points at random. There are 22 labels with instances in the test set but none
in the training set at the subclass level. The IPC code in the dataset is defined according
to the seventh edition of the IPC, which labels each patent with a main IPC code and a set
of secondary IPC codes. Unlike prior work by Abdelgawad et al. (2019), which considers
only the main IPC code and benchmarks models in a single-label flat classification setting,
we consider all IPC codes in a hierarchical multi-label classification setting.

5.4.2 Evaluation Metrics

Unlike previous works, which have predominantly used micro-average precision, recall,
and F1 scores (Li et al., 2018a; Huang et al., 2019; Lee and Hsiang, 2019), we compute

5. CPC Classification using Transformers 86

macro scores to better evaluate classifiers’ performance on less-frequent labels. To evaluate
the capability of a classifier to make a partially correct classification, we use the hierarchi-
cal evaluation metrics defined in Section 2.7. In the case of hierarchical evaluation metrics,
the true label set consists of labels across the hierarchy. To evaluate a partially correct
prediction, the ancestors of the predicted labels are also added to the predicted label set
before calculating the evaluation score. We calculate micro- and macro-average scores for
the precision, recall, and F1 metrics. The micro-average score captures the performance of
a classifier across all test instances, whereas the macro-average score is an average of eval-
uation scores across labels. Thus, macro-average scores capture the ability of a classifier to
perform well in a class-imbalance scenario.

5.4.3 Hyperparameters

The models are implemented in Python using TensorFlow 2.01 and Keras (Chollet et al.,
2015). Further, the HuggingFace Transformers library (Wolf et al., 2019) is used to inte-
grate SciBERT (Beltagy et al., 2019) into the model architecture. For efficiency reasons,
the word-piece tokenized input sequences generated by a text concatenation of title and
abstract are truncated to a maximum length of 256 tokens. As illustrated in Figure 4.5 on
page 61, this covers the complete input text for almost all instances in the USPTO (and also
for WIPO-alpha, not shown).

Due to high computation cost, the hyperparameters are fine-tuned on 5k randomly se-
lected instances. The following hyperparameters achieve the best performance across two
benchmark datasets for the proposed TMM and THMM models. All dense layers have a
hidden size of 256 and use ReLU activations. Model training is performed with a learn-
ing rate of 10−5, a dropout rate of 0.25 across layers, and a batch size of 64. The CNN
variant largely follows the architecture used in Li et al. (2018a): a word-piece token em-
bedding is generated by summing up the weights for the last four SciBERT layers, which
are concatenated to generate an input tensor. Next, the CNN layer applies a convolution
operation over the input tensor, with varying kernel sizes of {2, 3, 4, 5}, each capturing a
location-invariant n-gram feature. In contrast to Li et al. (2018a), an extra kernel of size
two is added to capture bigrams.

5.4.4 Baselines

We compare our models to a wide range of non-neural and neural classifiers, the details of
which are provided below.

Non-neural. The TwistBytes system (Benites, 2019) constitutes a competitive non-neural
baseline (see Section 2.6.3). The system is implemented using scikit-learn2 and learns one

1https://www.tensorflow.org [last accessed December 10, 2023]
2https://github.com/globality-corp/sklearn-hierarchical-classif ication [last accessed December

10, 2023]

https://www.tensorflow.org
https://github.com/globality-corp/sklearn-hierarchical-classification

87 5. CPC Classification using Transformers

support vector classifier (see Section 2.6.1) per node. During prediction, the model only
tests for the presence of labels if the respective parent’s score is positive. Finally, the set
of predicted labels is filtered using a threshold of -0.25, based on Benites (2019). Further
details on the TwistBytes algorithm are provided in Section 2.6.3.

Neural. The performance of the proposed models is compared with three neural base-
lines, the details of which are provided in Section 2.6. The hyperparameters for each of
these three approaches are specified below.

HARNN. The hyperparameter setting for HARNN is as proposed by Huang et al.
(2019): each document uses a 100-dimensional word2vec model trained on the training and
validation data, using 256 and 512 as the hidden sizes in the BiLSTM and for each fully
connected layer, respectively. Local and global information are combined using a regula-
tion parameter α with a value of 0.5. To establish a fair comparison with the other mod-
els, the prediction threshold is tuned for macro-performance by setting it to 0.15 for both
datasets. HARNN-orig (Huang et al., 2019) uses a prediction threshold of 0.5. HARNN is
described in detail in Section 2.6.3.

flat-*. In addition, we provide results for simplified versions of our model, which only
predict labels for the leaf level and infer ancestors during post-processing. First, flat-CNN
corresponds to DeepPatent (Li et al., 2018a), which uses a CNN with kernels of sizes {3,
4, 5} and 512 filters on top of SciBERT. The outputs of all CNN layers are flattened and
concatenated, resulting in a 1,536-dimensional document embedding. The details of CNNs
are provided in Section 2.4.2. Second, flat-CLS is based on PatentBERT (Lee and Hsiang,
2019), using SciBERT’s 768-dimensional [CLS] embedding directly as document embed-
ding. The feature vectors of flat-CNN and flat-CLS are subsequently fed into a multi-layer
perceptron (see Section 2.6.2) with two dense layers, applying sigmoid activation to each
logit. For both models, the dense layers have a size of 512, the learning rate is set to 10−5,
the dropout rate is 0.25, and the batch size is 64.

Runtime. Training the TwistBytes model takes 1 to 1.5 hours, whereas HARNN model
training takes 10 to 12 hours. Training the transformer-based models takes 300 hours, much
longer than either the TwistBytes or HARNN models. Each of the models is trained on a
single Nvidia Tesla V100 GPU. The early stopping is employed if the macro-F1 score on
the validation set does not improve for five epochs.

5.5 Results

The performance of the proposed models is compared against the baselines, and the re-
sults are shown below. Similar tendencies can be observed when analyzing the results for
the USPTO-70k and WIPO-alpha datasets. The proposed model performs better than the
baselines, especially at the lower levels of the hierarchy and for less frequent labels.

5. CPC Classification using Transformers 88

macro-avg. micro-avg.
Model P R F1 P R F1

TwistBytes (Benites, 2019) 42.3 20.3 25.7 65.1 53.4 58.7
HARNN-orig (Huang et al., 2019) 35.5 12.6 17.0 78.1 48.1 59.5
HARNN (Huang et al., 2019) 29.2 28.1 26.7 51.9 67.9 58.8

flat-CNN (Li et al., 2018a) 48.6 27.2 33.0 71.8 55.2 62.4
TMM-CNN 41.2 36.0 36.6 63.9 63.6 63.7
THMM-CNN 41.2 36.4 36.9 64.9 63.4 64.1

flat-CLS (Lee and Hsiang, 2019) 48.1 25.6 31.6 74.0 54.6 62.8
TMM-CLS 48.5 31.3 36.2 70.9 61.1 65.6
THMM-CLS 42.6 36.7 37.7 66.6 63.3 64.9

Table 5.1: Classification results on USPTO test set comparing the performance of the pro-
posed models (TMM/THMM) against the flat neural (flat-CLS/flat-CNN), hier-
archical neural (HARNN), and hierarchical non-neural (TwistBytes) baselines.

5.5.1 Classification Performance

Tables 5.1 and 5.2 show the results obtained for the USPTO and WIPO-alpha datasets,
respectively. The following conclusions can be drawn from these results. First, neural
models generally perform better than the non-neural TwistBytes system, with SciBERT-
based models outperforming HARNN. The proposed models achieve much higher recall
while maintaining high precision. When tuning HARNN for F1, as in the original work
(Huang et al., 2019), high micro-P can be achieved at the cost of lower recall, especially
in the macro evaluation.3 This implies that the original model focuses on the easy cases
of highly frequent labels. Tuning HARNN for macro-scores changes the precision-recall
trade-off in the micro-setting and improves macro-F1, but the model still does not approach
the performance of transformer-based models.

With the exception of the macro-P of flat-CNN on USPTO, the CLS-based models out-
perform their CNN-based counterparts. However, the CLS-based models achieve the best
results in terms of micro- and macro-F1 on both datasets. These observations indicate that
there is no need to aggregate additional information from the sequence using a CNN layer.
In most cases, adding hierarchical links between classification heads in TMM increases
recall at the expense of precision. When comparing THMM-CLS with TMM-CLS on both
datasets, we found that the former does better in terms of macro-F1, while the latter has
slightly higher micro-F1; this indicates that adding the links helps, especially for less fre-
quent labels.

Finally, the flat strategy leads to good precision but is not competitive in terms of re-
call, demonstrating that such models struggle to activate all relevant classifications to the
required extent. Hence, our experiments confirm that when optimizing for a good trade-off
between micro- and macro-average performance, hierarchical multi-label classification for
patents is best approached using a fully hierarchical model.

3We double-checked the surprisingly low macro-scores of HARNN-orig and decided to present results
for a HARNN model tuned for macro-performance as well.

89 5. CPC Classification using Transformers

macro-avg. micro-avg.
Model P R F1 P R F1

TwistBytes (Benites, 2019) 45.6 26.4 30.8 62.6 57.0 59.7
HARNN-orig (Huang et al., 2019) 08.9 02.1 02.7 75.7 24.8 37.3
HARNN (Huang et al., 2019) 20.6 26.9 20.6 37.3 65.2 47.4

flat-CNN (Li et al., 2018a) 46.6 34.8 38.2 70.7 57.8 63.6
TMM-CNN 40.8 40.0 38.9 63.6 68.4 65.9
THMM-CNN 37.7 41.3 38.0 62.0 68.6 65.1

flat-CLS (Lee and Hsiang, 2019) 50.3 32.8 37.7 73.7 59.8 66.0
TMM-CLS 46.2 37.6 39.9 68.2 67.9 68.0
THMM-CLS 40.9 42.4 40.5 65.1 69.8 67.4

Table 5.2: Classification results for the WIPO-alpha test set, comparing the performance
of the proposed models (TMM/THMM) against flat neural (flat-CLS/flat-CNN),
hierarchical neural (HARNN), and hierarchical non-neural (TwistBytes) base-
lines.

Figure 5.3 shows an increase in macro-F1 for TMM and THMM compared to the base-
lines, which is primarily a result of higher recall (not shown). Adding hierarchical links
(i.e., THMM rather than TMM) results in better predictions, mainly at level 3. Hence, the
overall increase in F1 is a result of improved classification at the lower levels, and the clas-
sification of finer-grained labels benefits from the passing on of hierarchical information.

5.5.2 Coverage

The number of labels at the subclass level varies strongly across instances, from a single
category to 20 or more, with a tendency for more recent patents to have more labels. There-
fore, it is challenging to output the right number of categories per instance in this task (Fall
et al., 2003). To evaluate the ability of classifiers to predict an adequate number of labels at
a certain level, we analyze the number of labels predicted by each classifier at each level.
Figure 5.3 breaks down the average number of labels predicted by the level of the hierarchy
for USPTO (WIPO-alpha shows similar tendencies). At the top level of the hierarchy, all
models predict roughly the same number of labels as in the true label set. However, at
levels 2 and 3, TwistBytes and the flat models predict markedly fewer labels. The TMM
and THMM models alleviate this effect. While HARNN-orig strongly under-predicts the
number of labels, the version of HARNN optimized for macro-F1 over-predicts the number
of labels, indicating that tuning either version of this model is problematic. Next, we report
the number of test instances for which a model did not make any prediction at a particular
level (“No Prediction” in Table 5.3). This count is much lower for the TMM and THMM
models, showing that hierarchical models can often make predictions at intermediate levels,
even if the fine-grained class is unclear.

5. CPC Classification using Transformers 90

Avg. Labels Predicted No Prediction False Positives
level 1 2 3 1 2 3 # inst. hops

gold 1.56 1.89 2.32 0 0 0 0.0 0.0

TwistBytes (Benites, 2019) 1.65 1.51 1.56 147 891 1,575 3,788 4.17±1.77
HARNN-orig (Huang et al., 2019) 1.36 1.17 1.02 116 1,134 2,466 2,341 4.08±1.79
HARNN (Huang et al., 2019) 2.29 2.62 2.82 0 12 148 6,380 4.12±1.79

flat-CNN (Li et al., 2018a) 1.31 1.45 1.67 512 512 512 4,198 4.38±1.69
TMM-CNN 1.75 1.98 2.01 1 42 228 5,236 4.22±1.69
THMM-CNN 1.68 1.92 2.04 5 55 232 5,282 4.17±1.69

flat-CLS (Lee and Hsiang, 2019) 1.26 1.39 1.61 570 570 570 3,916 4.28±1.72
TMM-CLS 1.59 1.68 1.71 13 125 476 4,114 4.19±1.72
THMM-CLS 1.61 1.84 2.03 8 66 204 5,046 4.22±1.68

Table 5.3: Analysis of coverage for USPTO dataset. No Prediction: number of test in-
stances with no predicted labels at a given level. False Positives (error analy-
sis): average # hops between false positives and nearest true labels at the third
level.

1 2 3
level

0.0

0.2

0.4

0.6

0.8 USPTO

1 2 3
level

0.0

0.2

0.4

0.6

0.8 WIPO
TwistBytes
HARNN
flat-CLS
TMM-CLS
THMM-CLS

Figure 5.3: Classification performance: macro-average F1 by hierarchy level.

5.5.3 Error Analysis

In hierarchical classification tasks, misclassifications are not all the same. For example, in
the case of subclass labels, misclassification of a non-sibling label is a worse problem than
misclassification of any of the sibling labels. Thus, we analyze misclassifications in terms
of the minimum number of hops between the predicted label and any of the true labels. A
classifier with a shorter average minimum hop distance is considered better than one with
a longer average minimum hop distance. With reference to the example CPC taxonomy
shown in Figure 5.1, when considering A43B as a true label, predicting B41F is worse
than predicting A43C because A43C is a sibling of A43B; i.e., both A43B and A43C are
successors of A43, and therefore, have higher semantic proximity to A43C than B41F. In
the CPC taxonomy tree, the labels A43C and B41F are two and six hops away from A43B,
respectively.

Table 5.3 shows the average number of hops between false positives and true labels at
level 3. The column titled # inst. denotes the number of test instances with at least one
false positive label. In general, the incorrect predictions produced by all models seem to be

91 5. CPC Classification using Transformers

at similar distances from the nearest true label and are usually within the correct section of
the taxonomy. Again, the flat approach activates completely incorrect labels more often.

5.6 Conclusions

We propose a novel Transformer-based Multi-task Model (TMM) for hierarchical patent
classification. The strength of our architecture lies in integrating the highly effective local-
classifier-per-node concept of traditional hierarchical classification algorithms with a large-
scale, pre-trained neural-transformer-based language model. This integration is computa-
tionally feasible due to our innovative multi-task-based architecture. We have shown that
this model architecture strongly outperforms models developed in previous work on hier-
archical text classification. Furthermore, it exhibits better coverage when predicting labels
for test instances and improved performance when predicting less frequent labels. Fur-
thermore, the hierarchical links in the THMM architecture improve performance for the
infrequent labels at the lower level of the hierarchy.

For the models discussed in this chapter, the input text is limited to only the title and
abstract fields of each patent. In the next chapter, we propose approaches for incorporating
additional texts into the document representation, which are evaluated on the CPC classi-
fication task with THMM. Further, Chapter 7 enriches the document representation with
additional CPC/IPC label information and evaluates it on multi-label PLS classification
task with TMM.

5. CPC Classification using Transformers 92

Chapter 6

Efficient Neural Full-Text Patent
Representations

In the previous chapter, we used SciBERT for text representation, which provides seman-
tically rich representation. However, due to the quadratic time complexity associated with
the full-attention mechanism (Vaswani et al., 2017), SciBERT takes limited input text,
much shorter than a typical patent’s length. In addition, transformer-based models with
a longer context length than BERT, e.g., Longformer (Beltagy et al., 2020), CogLTX (Ding
et al., 2020), and ToBERT (Pappagari et al., 2019), are found to be inefficient when evalu-
ated on long text classification task by Park et al. (2022). Furthermore, parts of texts in a
patent are redundant as the information on an invention is described at different levels of
granularity across sections, which is further revealed with our analysis. We find that the
abstracts and sentences are often duplicated within and across patents (see Section 4.6).
Based on these aspects, in this chapter, we experiment with different document representa-
tion techniques, which efficiently generate a patent representation by selecting a subset of
the most informative text elements (e.g., tokens, sentences, sections) from the full text of a
patent.

Targeting patent classification as a use case, in Section 6.1, we underline the need for
efficient patent classification techniques. In Section 6.2, we discuss the limitations of cur-
rent state-of-the-art text representation techniques, particularly ones that are used for patent
representation. Based on the identified research gaps, we propose document representation
methods that first identify a subset of the most informative text elements and then generate
a patent representation with the associated texts (Section 6.3). In Section 6.5, the proposed
methods are evaluated and compared against the baselines on the CPC/IPC classification
task using the experimental setup defined in Section 6.4.

6. Efficient Neural Full-Text Patent Representations 94

6.1 Motivation and Contributions

As discussed in Section 5.5, the Transformer-based Multi-task Model (TMM) and its hi-
erarchical variant the Transformer-based Hierarchical Multi-task Model (THMM) outper-
form neural (Li et al., 2018a; Lee and Hsiang, 2019; Huang et al., 2019) and non-neural
(Benites, 2019) baselines in the CPC/IPC classification task (see Definition 2.1, page 18) by
using SciBERT with concatenated text from title and abstract as input. However, although
it is effective for shorter texts, the maximum sequence length constraint makes SciBERT
non-ideal for patent classification tasks. The quadratic computational complexity restricts
the input sequence length to 512 tokens, which is approximately 5% of the average length
of a typical patent, which contains 12.5k tokens on average (see Figure 4.5, page 61).

Addressing the limitations of pre-trained language models such as BERT, some recent
techniques, including Reformer (Kitaev et al., 2020), Longformer (Beltagy et al., 2020),
BigBird (Zaheer et al., 2020), and CogLTX (Ding et al., 2020), introduce mechanisms for
handling much longer input sequences. In the context of a classification task, most of these
techniques divide a longer sequence into smaller text chunks, generate an embedding for
each chunk, and aggregate the chunk embeddings to form a document-level representation.
Even though the input for these models can be much longer than the input for SciBERT,
these models fall short of accommodating the full texts of patents. For example, the max-
imum allowed input length for Longformer is 4096 tokens, which is approximately 33%
of the average number of tokens in a typical patent. Furthermore, higher sequence lengths
result in higher memory and computation costs. In a recent evaluation, Park et al. (2022)
found that classifiers based on Longformer (Beltagy et al., 2020), CogLTX (Ding et al.,
2020) or ToBERT (Pappagari et al., 2019) are highly inefficient, and in some cases their
classification performance is worse than that of the BERT-based baseline.

The discussion so far indicates a trade-off between a classifier’s efficiency and the maxi-
mum input length it permits. A classifier that accepts shorter input lengths is more efficient.
However, it may miss any crucial semantic information that might be present in the ignored
text. In contrast, incorporating additional text may lead to a performance gain but may, at
the same time, lead to an increase in computation cost. Because of this, the majority of
neural and non-neural patent classification approaches only consider title, abstract, and
claims as patent fields, leaving out the more detailed and elaborate description field (Li
et al., 2018a; Lee and Hsiang, 2019; Zaheer et al., 2020). Furthermore, the patent text is
often truncated for efficiency reasons.

In addition to computational complexity, text redundancy is another factor that moti-
vates our research on efficient patent representation methods that use limited yet informa-
tive text. The analysis in Section 4.6 shows that texts are often duplicated within and across
patents. Furthermore, various patent sections describe the same invention at different levels
of granularity and thus introduce redundancy across sections. Because text within a patent
is often duplicated and redundant, we hypothesize that the total information within a patent
is limited such that the core idea of an invention can be represented with a patent represen-

95 6. Efficient Neural Full-Text Patent Representations

tation method that uses the most informative text chunks, a subset much smaller than the
full texts of a patent.

Referring back to the conceptual model of the classification pipeline discussed in Sec-
tion 3.2, we find that the patent document model (PDM) represents a typical patent. An
instance of PDM can be mapped to an instance of the domain-independent document model
(DIDM). The metadata, figures, citations, and content elements (representing patent text)
are referred to as semantics elements, and all the semantic elements within a document
are represented as U (see Equation 3.1, page 46). Since the information within a patent is
limited, we can achieve optimal classification performance with limited texts taken from
the most informative semantic elements in U by using an effective selection method.

The document representation techniques proposed in this chapter do not consider meta-
data for the CPC classification task, as they can introduce bias, be ambiguous, or be only
partially known. For example, the inventors’ and assignees’ names are often found to have
discrepancies in filings and are often ambiguous (Haak et al., 2012). Additionally, crucial
citations are typically unknown during the filing of the application and later added by the
patent examiner (Alcácer et al., 2009). Also, we do not consider figures in the current scope
of the thesis.

Ignoring metadata, citations, and figures, we are left with four types of content ele-
ments, field, passage, sentence, and token, which are arranged at four levels of granularity
within the hierarchical structure of a DIDM (see Figure 3.5, page 45). In this chapter,
we evaluate document representation techniques that rank semantic elements according to
their importance, select a subset of the most informative semantic elements, and generate
a document representation using the corresponding text. Later in this chapter, our experi-
ments evaluate the proposed document representation techniques and validate the hypothe-
sis (Section 6.5). We pose the following questions to aggregate a document representation
from limited yet informative semantic elements.

• Given a patent document as a collection of semantic elements arranged at different
levels of granularity (e.g., tokens, sentences, paragraphs, and sections), at which level
of granularity should we select them to achieve better performance?

• Given the level of granularity for selecting semantic elements, how should we rank
them effectively to achieve the desired performance with a minimal subset of ele-
ments?

• Given the level of granularity and a technique to rank semantic elements, how many
semantic elements should we select to obtain the desired classification performance,
such that adding more semantic elements only achieves a marginal gain or even a
decrease in classification performance?

This chapter evaluates document representation methods by aggregating information at
three levels of granularity: field, sentence, and token. Here, fields correspond to the sec-
tions and subsections within a patent. Passages are not considered for document represen-
tation because passages in patents can be extremely long and often incorrectly delimited.

6. Efficient Neural Full-Text Patent Representations 96

Further, depending on the data source, passage boundaries may not be explicitly marked,
thus making it challenging to identify them. All the experiments in this chapter were per-
formed on the CPC classification task with the USPTO-70k dataset (see Section 4.3).

We evaluate document representation methods using the texts corresponding to the
patent fields by considering patent fields individually or in combination. The field em-
beddings are combined in order of the informativeness of the fields, which is determined
based on the classification accuracy achieved using the field text.

When considering sentences as a source of semantic information, the subset of the
most informative sentences is determined based on sentence scores assigned by a sen-
tence ranker. We propose a novel sentence ranker pos-field_label-dense that computes
sentence score based on the dot-product similarity between the sentence embedding and
label description embeddings, the importance of the field to which a sentence belongs,
and the position of the sentence within the field. The classification performance of the
top-ranked sentences is compared against the sentence rankers associated with extractive
summarization techniques, PacSum (Zheng and Lapata, 2019) and RankSum (Joshi et al.,
2022). Section 6.3 provides details on different sentence ranking methods.

Patent representations are generated using neural and non-neural techniques for the
texts of fields and sentences. In the case of neural methods, we apply the SciBERT model,
fine-tuned on the CPC classification task in Section 5.5, for generating embeddings for
texts corresponding to patent fields and sentences without further fine-tuning. Since the
SciBERT parameters are not fine-tuned in the process, the training time is much less as
compared to the classifiers from Chapter 5, thus making the training process efficient. A
non-neural representation is generated using TF-IDF (see Section 2.4.1). The neural and
non-neural representations are then provided as input to the THMM (see Section 5.3) and
TwistBytes (Benites, 2019) models, respectively.

In addition, we evaluate representation by selecting the most informative key phrases
from a document. First, we extract a set of key phrases using TextRank (Mihalcea and
Tarau, 2004), then concatenate the top key phrases and use the concatenated text to generate
a document representation Mihalcea and Hassan (2005).

By evaluating the performance of document representation techniques that select the
most informative semantic elements across granularity levels, we find that optimal perfor-
mance can generally be achieved with a subset of the most informative semantic elements.
Further, in line with the findings of Xue and Croft (2009), we find that brief-summary is
the most informative field. However, it should be noted that Xue and Croft (2009) targeted
the patent retrieval task using non-neural methods. Next, by comparing the neural and
non-neural document representations considering patent fields, sentences, and tokens, we
find that neural representation combining the SciBERT-based field embeddings using vec-
tor summation achieves the best performance. Further, the pos-field_label-dense sentence
ranker proposed in this chapter performs better or comparable to the top baseline sentence
ranking methods. The main contributions of this chapter are thus as follows:

97 6. Efficient Neural Full-Text Patent Representations

• We propose a novel approach that combines patent field embeddings using vector
summation and performs better than the neural and non-neural baseline, including
the best-performing classifier from Chapter 5 that apply THMM with the SciBERT
representation for concatenated text from title and abstract as input.

• We propose a novel sentence ranker for efficient patent classification that ranks
a sentence based on its semantic similarity to label descriptions, the position of the
sentence within the field, and the importance of the field to which the sentence be-
longs. Our analysis shows that the extractive summarization techniques are effective
in selecting informative texts for neural representation in the context of patent clas-
sification.

• We demonstrate that providing informative texts to a classifier can improve the
classification accuracy on the CPC classification task without further fine-tuning
the pre-trained language model.

6.2 Related Work

While we mainly focused on patent classification models in Section 5.2, in this section,
we discuss methods used to represent text in key prior works, particularly in the context
of patent classification. Depending on text representation methods, we categorize the prior
patent classification works into three groups: bag-of-words (BoW), pre-transformer neural
methods, and transformer-based neural methods.

BoW methods compute a feature vector using term statistics, for example, term count
(Larkey, 1999) and ignore the sequence information in a text. Most BoW-based patent
classification techniques only use the abstract to compute the feature vector (Krier and
Zaccà, 2002; D’hondt et al., 2013; Tran and Kavuluru, 2017), with the exception of Benites
et al. (2018), which use the full text of a patent.

Comparing the application of different text representation methods to various text clas-
sification tasks, Galke and Scherp (2022) identify TF-IDF-based classifiers as a strong
baseline (see Section 2.4.1). However, most recent deep learning methods for patent classi-
fication (Li et al., 2018a; Lee and Hsiang, 2019; Zaheer et al., 2020) are not compared to a
TF-IDF-based baseline, despite the fact that it is particularly important for patents as it can
accommodate the full texts of patents. The evaluation performed in this chapter includes a
comparison with a TF-IDF-based baseline that takes the full texts of patents as input.

Neural patent classification methods developed in the pre-transformer era typically rep-
resent the patent text as a sequence of non-contextualized embeddings, e.g., word2vec
(Mikolov et al., 2013a), and generate a sequence representation using CNNs (Li et al.,
2018a; Abdelgawad et al., 2019), LSTM (Shalaby et al., 2018), GRUs (Risch and Kres-
tel, 2019), or a combination of CNNs with BiLSTM (Hu et al., 2018). The text from the
patents’ title, abstract, and claims is the primary choice for representation, with some ex-
ceptions (Abdelgawad et al., 2019; Hu et al., 2018). Abdelgawad et al. (2019) used the first

6. Efficient Neural Full-Text Patent Representations 98

1,500 tokens from patents for representation, whereas Hu et al. (2018) considered the first
150 tokens each from the abstract, claims, and description sections.

The third category of methods includes patent classification techniques developed fol-
lowing the phenomenal success of BERT (Devlin et al., 2019) and other transformer-based
language models (Liu et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020), which use self-
attention (Vaswani et al., 2017) or sparse attention (Child et al., 2019) to represent tokens
in the sequence. In the context of the CPC/IPC classification task, the work of Lee and
Hsiang (2019) was the first to use BERT for the patent classification task, achieving better
performance than Li et al. (2018a). Althammer et al. (2021a) performed domain-adaptive
pre-training of BERT and SciBERT models over patent text and found that SciBERT per-
formed better for the CPC classification task. Although effective for patent classification,
SciBERT can accommodate only 512 tokens as input. To address this challenge, Zaheer
et al. (2020) propose BigBird, a sparse attention-based language model, which can take
4096 tokens as input. Their evaluation of the CPC classification task showed that BigBird
performs better than RoBERTa (Liu et al., 2019). Comparing multiple transformer-based
language models, Roudsari et al. (2022) found that the XLNet (Yang et al., 2020) performs
best on patent classification tasks.

In addition to the underlying transformer model, another important consideration in
patent classification is which patent fields should be used as input to the model. Li et al.
(2018a) evaluated the use of title and abstract or only claims as input to BERT, finding
that using only claims as input resulted in better performance. Consequently, Althammer
et al. (2021a) also used claims in their experiments. Zaheer et al. (2020) provided the
concatenated text of the title, abstract, and claims as input to the language model. Due
to non-standard terminology, claims are often interpreted with reference to the patent’s
description. Therefore, unlike previous works, we experiment with the description section
in addition to the title, abstract, and claims sections. We differ from the past transformer-
based techniques on patent classification in the following aspects. Firstly, we make use of
transfer learning by using the SciBERT model fine-tuned on the CPC classification task in
Section 5.5. Secondly, we consider the full text of a patent as a candidate when selecting
sentences by using the sentence rankers and generating a patent representation. Li et al.
(2022) apply contrastive learning to learn patent embedding from claims text.

Apart from the text representation methods used for patent classification, in the follow-
ing, we review some works that aim to represent text much longer than the maximum length
limit for BERT. Yang et al. (2016) propose a document representation technique that uses
a hierarchical attention mechanism, first encoding the sentence-level information and then
aggregating it at the document level, with both levels using BiGRUs as an encoder. The
representations for sentences and documents are generated by aggregating words and sen-
tence embeddings. This is done using context vectors, against which the attention weights
are computed with the assumption that important words and sentences will be more simi-
lar to the context vector. Longformer (Beltagy et al., 2020) was one of the first models to
use sparse attention to represent longer sequences. It uses the attention mechanisms at two
levels. First, within a fixed-size window, all tokens attend to each other. Second, a few se-

99 6. Efficient Neural Full-Text Patent Representations

lected tokens, one in each window, attend to each other globally, thus capturing long-range
dependencies. BigBird (Zaheer et al., 2020) differs slightly from Longformer as it enables
a few more randomly selected tokens that mutually attend to each other as well as the lo-
cal and global attention heads. With a special focus on long-text classification, Dai et al.
(2022) propose an approach that first generates segment embeddings using RoBERTa, then
passes these through two stacked transformer layers, and finally aggregates them to gener-
ate a representation with a max pooling operation. Chalkidis et al. (2022) propose a model
architecture with several layers of segment-wise and cross-segment transformer blocks, in
which a segment-wise block processes each segment independently, and a cross-segment
block computes attention between the segment-level tokens, i.e., the [CLS] token of each
segment, across segments in the previous layer.

Dong et al. (2023) provide a detailed survey of long-text representation methods in
the context of four NLP tasks, including text classification. They find that most methods
perform three key steps— truncation, chunking, and selection—to determine the input for
text representation methods. The methods discussed above use truncation or chunking to
decide the input sequence. However, in both cases, the maximum text limit allowed is much
less than the average length of a typical patent text. Further, our evaluation in Section 4.6
demonstrates that the patent text is often duplicated. For these reasons, we explore methods
of identifying and selecting the most informative text elements.

Over the years, several techniques have been evaluated for the selection of key text el-
ements from a document as a pre-step for classification. A study by Ker and Chen (2000)
was one of the first to apply text summarization strategies in the context of text classi-
fication. Kolcz et al. (2001) experiment with several text summarization strategies, for
example, by considering the title, the first paragraph, and the paragraph with the most key-
words. Ko et al. (2002) select sentences based on their similarity with the document’s title
and the importance of terms within the sentence text. Following their work on TextRank
(Mihalcea and Tarau, 2004), Mihalcea and Hassan (2005) represent a document as a graph
with sentences as nodes. They use page-rank-based centrality criteria to identify the key
sentences in a document and use them to generate a TF-IDF feature vector. Over the years,
several other works have applied text summarization as a feature selection strategy when
used with a term-count-based feature vector (Hulth and Megyesi, 2006; Jiang et al., 2009;
Anguiano-Hernández et al., 2010). In a related work, de Souza et al. (2021) use abstractive
and extractive summarization to generate associated subgroup labels’ descriptions from in-
put patent text. They evaluate the output using the ROUGE set of metrics (Lin, 2004) to
check whether the model can generate a text matching the CPC/IPC label descriptions.

Employing the concept of working memory (Baddeley, 1983), Ding et al. (2020) pro-
pose CogLTX, a BERT-based method, which selects key text chunks from the document for
representation. In their analysis, Park et al. (2022) found CogLTX and Longformer (Belt-
agy et al., 2020) to be highly inefficient in terms of long-text classification benchmarks,
compared to BERT and simple BERT-based baselines that combine the embedding of the
first 512 tokens to that of keywords selected using TextRank (Mihalcea and Tarau, 2004).

6. Efficient Neural Full-Text Patent Representations 100

Based on duplication analysis of patent texts (see Section 4.6), the evaluation performed
by Park et al. (2022), and the success of extractive summarization as a feature extraction
method, we propose methods for the selection of the most informative text elements and
use the corresponding texts for neural and non-neural patent representation. We propose a
novel sentence ranker that ranks sentences based on their position within patent fields, the
informativeness of the corresponding patent fields as determined based on the classifica-
tion performance of fields’ texts, and the semantic similarity between sentences and label
descriptions. We demonstrate the applicability of extractive summarization techniques for
neural representation in the context of patent classification. The best performance in the
CPC classification task is achieved with our proposed approach of combining SciBERT-
based field embeddings using vector summation. In this chapter, we take a data-driven
approach by employing a simple model architecture, using the most informative texts for
patent representation, and employing the SciBERT model that is fine-tuned on the CPC
classification task in the previous chapter without performing any further fine-tuning. Next,
we describe the various patent representation methods proposed in this chapter.

6.3 Patent Representations

In Section 6.1, we hypothesized that optimal classification performance could be reached
by using the text corresponding to the most informative semantic elements, e.g., fields,
sentences, and tokens. Based on this hypothesis, here we define techniques for ranking
semantic elements and propose document representation methods that are evaluated on the
CPC classification task, as detailed in Section 6.5.

The classification pipeline discussed in Section 3.2 maps an instance of patent docu-
ment model (PDM) to an instance of domain-independent document model (DIDM), which
is further mapped to a data model instance that is specific to the document representation
method (DocRepDM). The document representation methods described in this section take
an instance of DocRepDM_Chunks as input (see Section 3.2.4). A mapper function maps
a DIDM instance to the instance of DocRepDM_Chunks by selecting the texts from fields
or sentences. DocRepDM_Chunks has chunks as an attribute, which is a list of Chunk
instances, each of which has text, max_length, and position as attributes. In the current
context, text corresponds to the text for a field or a sentence, max_length is the length at
which the text is truncated to generate an input sequence, and position is the relative posi-
tion of the text chunk among its siblings, e.g., position of a sentence among other sentences
within a field or a document. Next, we look into the details of the proposed document
representation methods.

6.3.1 Field-Based Representation

As discussed, given a set of fields F within a document, the task is to determine the field
subset F ∗ ⊆ F that achieves optimal classification performance in the CPC classifica-
tion task. For neural methods, the field embeddings are pre-computed using the SciBERT

101 6. Efficient Neural Full-Text Patent Representations

model, which has already been fine-tuned on the CPC classification task (see Definition 2.1,
page 18) in Chapter 5. Previous works showed that in the context of the CPC/IPC classifi-
cation task, the initial text of a field is more informative than the text in the later part (Guyot
et al., 2010; Wu et al., 2010; Verberne and D’hondt, 2011; Li et al., 2018a). Therefore, we
truncate the field text to the maximum sequence length value before generating a field em-
bedding. The field embeddings are generated using the process defined in Section 2.4.3.
The field text is truncated to a maximum sequence length of 512 tokens and passed through
the SciBERT model. The final hidden state corresponding to the [CLS] token is taken as
field embedding. Next, the field embeddings are evaluated separately or in combination for
the CPC classification task. The relative importance of a field is determined based on the
performance of the corresponding field embeddings in the CPC classification task. Finally,
the field embeddings are combined in decreasing order of importance using vector summa-
tion or concatenation, and the resultant vector is evaluated on the CPC classification task.
Such a representation is more efficient than the text representation method used in the pre-
vious chapter since the SciBERT weights are not fine-tuned. A non-neural representation
is generated using TF-IDF with concatenated fields’ texts as input. The SciBERT-based
embedding for a patent and its TF-IDF vector are evaluated in combination with THMM
and TwistBytes (Benites, 2019), respectively.

6.3.2 Sentence-Based Representation

Given a set of sentences S, we aim to determine a subset S∗ which consists of the most
informative sentences, such that S∗ ⊆ S and p ≤ n. Since patent documents contain
redundant information, we assume that optimal classification performance can be achieved
with a p value much lower than the average number of sentences within patents.

One approach to the determination of S∗ is to define a sentence ranker that scores and
ranks the sentences in S. The sentence ranker assigns a score to each sentence based on
its importance, and the top p sentences with the highest scores are selected as input for the
classifier. This approach allows us to focus on the most informative sentences and disregard
redundant and uninformative texts.

The sentence selection step discussed above is similar to the sentence extraction step
in an extractive summarization task that assigns a score to each sentence and selects the
top-ranked sentences as a document summary (El-Kassas et al., 2021). Leveraging this
commonality with extractive summarization techniques and drawing inspiration from the
prior work on using extractive summarization for feature extraction (Mihalcea and Hassan,
2005; Hulth and Megyesi, 2006; Anguiano-Hernández et al., 2010), we experiment with
sentence rankers based on the unsupervised extractive summarization algorithms PacSum
(Zheng and Lapata, 2019) and RankSum (Joshi et al., 2022). These algorithms are well-
suited for the patent classification task as they can handle extremely long documents, are
efficient, and do not alter the sentence text during extraction.

Furthermore, unlike Sharma et al. (2019), we opt for unsupervised methods instead of
using abstracts as patent summaries for two reasons. First, as discussed in Chapter 4,

6. Efficient Neural Full-Text Patent Representations 102

abstracts are often written less cautiously than other sections and are prone to duplication,
which may result in the loss of fine-grained invention details (see Section 4.6). Second,
we have already experimented with abstracts and now seek more information from other
patent fields—including the description field, which is often ignored in patent classification
tasks. Once we determine the set S∗, we can generate a document representation using
either neural or non-neural methods.

When generating a document representation using neural methods, we first map each
sentence si in S∗ to an embedding si using a process similar to the generation of a field
embedding (see Section 2.4.3). We then use the vector mean of the sentence embeddings
as the document representation xS∗ . The resulting document representation is provided as
input to the THMM model. In the current setting, the SciBERT parameters are also fixed,
and the sentence embeddings are pre-computed, resulting in an efficient training process.

In a non-neural setting, we concatenate sentences from S∗ to generate a text for each
document in the training set. Then, we compute the term statistics for the TF-IDF model
and use it to generate a feature vector for each document in the dataset. Finally, we provide
these feature vectors as input to TwistBytes (Benites, 2019).

We evaluate a diverse set of sentence rankers that capture various notions of sentence
importance. The pac-sum ranker is based on PacSum (Zheng and Lapata, 2019), while
the other four evaluated baseline rankers (pos-doc, saliency, keyword, and lda) are based
on RankSum (Joshi et al., 2022). We propose two novel sentence rankers: pos-field and
label-sim. The pos-field ranker ranks a sentence based on its position within a field and the
importance of the field. In contrast, the label-sim ranker ranks a sentence based on the se-
mantic similarity between the sentence and label descriptions. We find that a marginal gain
in performance is achieved with a hybrid ranker pos-field_label-dense that combines the
sentence scores from the pos-field and label-sim rankers. Details on the various sentence
rankers are provided below.

Semantic Sentence Graph (pac-sum). Zheng and Lapata (2019) propose a sentence
ranker that represents each document as a semantic graph in which the nodes correspond to
the sentences in the document. To achieve this, each sentence is first represented as an em-
bedding using a pre-trained language model that is fine-tuned for a sentence similarity task.
In the context of patent classification, we generate sentence embeddings using a SciBERT
model, which has been fine-tuned for the CPC classification task (as discussed in Sec-
tion 5.3). Specifically, given a pair of sentences si and sj , their corresponding embeddings
are denoted as si and sj , respectively. The similarity score between the two sentences,
denoted as eij , is computed by taking the dot product of their embeddings as follows:

eij := sTi sj (6.1)

The similarity scores for all the sentence pairs are represented as a similarity matrix E.
Further, the similarity scores are normalized as shown in Equation 6.2, and finally, the

103 6. Efficient Neural Full-Text Patent Representations

negative values in matrix E are set to 0. The hyper-parameter β controls the threshold for
the similarity score value.

eij := eij − [min(E)− β(max(E)−min(E))] (6.2)

The position-augmented degree centrality for a sentence si is computed as follows (Zheng
and Lapata, 2019):

centrality(si) := λ1
∑
1≤j<i

eij + λ2
∑
i<j≤n

eij (6.3)

For a given sentence si, the contributions to the degree centrality from the sentences
appearing before and after it are weighted with different weighing parameters λ1 and λ2,
respectively. Next, we describe the four sentence rankers associated with RankSum (Joshi
et al., 2022).

Position of a Sentence within a Document (pos-doc). Using the position-based ranking
scheme from RankSum (Joshi et al., 2022), the sentences appearing earlier in a patent are
ranked higher. With pos-doc, the sentence set S∗ is determined by selecting the first p
sentences from the document.

Sentence Saliency (saliency). The saliency-based sentence ranker proposed by Joshi
et al. (2022) considers a document as a cluster of sentence embeddings and assumes that
the cluster centroid represents the core idea of the document. Accordingly, the importance
of a sentence is determined based on the shift of the centroid upon removing the sentence.
Specifically, the larger the shift of the centroid, the more important the sentence is deemed
to be.

Given a set S of sentences for a document, the centroid vector cS is computed by
taking the mean of all the sentence embeddings corresponding to the sentences in S. For
a sentence sj , the centroid vector cS\{sj} is computed by first removing the sentence sj
from S and then determining the mean of all the embeddings corresponding to sentences
in S \ {sj}. The sentence score is computed by first taking the dot product between cS and
cS\{sj}, and then scaling it to a value between 0 and 1. Finally, the resulting similarity value
is subtracted from 1 to obtain the sentence score. As previously mentioned, the saliency
ranker assumes that a sentence is more important if the similarity between cS\{sj} and cS
is lower.

Keyword Count for a Sentence (keyword). Joshi et al. (2022) propose a keyword-based
sentence ranker that builds on the assumption that key phrase extraction methods such as
TextRank (Mihalcea and Tarau, 2004) identify the most important key phrases and rank
them in terms of their importance. Specifically, the ranker computes a score for each sen-
tence based on the number of key phrases it contains. Sentences with higher key phrase
counts are ranked higher. In cases where two sentences have the same number of key

6. Efficient Neural Full-Text Patent Representations 104

phrases, the sentence rank is determined based on their relative positions within the docu-
ment, with sentences appearing earlier in the document being ranked higher.

LDA-based Representation for Sentences and Documents (lda). Joshi et al. (2022)
propose a sentence ranker based on Latent Dirichlet Allocation (Blei et al., 2003, LDA) that
first trains an LDA model on the training set, then represents each document and sentence
as LDA topic vectors, and finally computes the Euclidean distance between the sentence
and document vectors to determine sentence score. To compute a document vector, the
tokenized text of the document is passed through the LDA model. For each sentence, a
sentence vector is computed by taking the mean of the topic vectors corresponding to the
words within the sentence. The sentence score is determined by calculating the Euclidean
distance between the sentence and document vectors, then scaling the distance to a value
between 0 and 1, and subtracting the scaled distance value from 1. The LDA-based ranker
assumes that the smaller the distance between a sentence and the document vector, the more
important the sentence is. Next, we describe the novel sentence rankers proposed in this
chapter in the context of patent classification.

Position within a Field and Field Importance (pos-field). As discussed, the pos-doc
ranker is based on the assumption that sentences appearing earlier in a document should
be ranked higher in importance. Such a ranking scheme assigns a lower rank to sentences
appearing later in the document, even if they are located within an important field. For
example, even though we found that the claims field is more informative than the detail-
desc field (Section 6.5.1), sentences within claims are ranked lower by the pos-doc ranker
as they appear later in a patent. As shown in Figure 6.4f, the claims field is almost ignored
when selecting the top-50 sentences using the pos-doc ranker. To boost the scores for
sentences belonging to more important fields, we introduce a novel sentence ranker based
on two assumptions:

• Given a sentence pair (si, sj), a sentence appearing earlier in a field is ranked higher
than the one appearing later, i.e., rpos_field(si) > rpos_field(sj), if si.pos_parent <
sj.pos_parent. The method rpos_field(.) gives the rank of a sentence, and pos_parent
represents the position of a sentence within the field as a parent (see Figure 3.5,
page 45). Since we do not consider passages, sentences have fields as parents. The
condition is valid for sentences across fields. For example, a sentence at position one
in the abstract is ranked higher than those at position two or higher in the abstract
or any other fields.

• In cases where si.pos_parent = sj.pos_parent, sentence rank is determined based
on the field importance score, such that sentences appearing in a more important field
are ranked higher. The method fi(.) takes a sentence as input and provides a field
importance score for the corresponding field to which a sentence belongs, such that
the field that performs better in the classification task is assigned a higher importance
score. Thus, for a condition si.pos_parent = sj.pos_parent ∧ fi(si) > fi(sj), the

105 6. Efficient Neural Full-Text Patent Representations

rank for sentence si is higher than the rank for sentence sj . For example, given that
the brief-summary has higher importance than the abstract, the rank for a sentence
at position two in the brief-summary is higher than for the sentence at position two
in the abstract.

Sentence and Label Similarity (label-sim). The rankers discussed so far use sentence
position and relevance to the document’s topic as ranking criteria. Targeting the text sum-
marization task, Peyrard (2019) identifies informativeness as another crucial criterion for
sentence importance. A label description describing an important domain concept is as-
sociated with each CPC label. Thus, the informativeness of a sentence can be determined
based on its similarity to label descriptions.

The label-similarity ranker assumes that a sentence is informative if it is semanti-
cally similar to any of the label descriptions. Earlier in the section, we discussed steps
to compute embeddings for sentences in S∗, which are represented as a matrix S∗ of size
|S∗|×dimSciBERT , where dimSciBERT is the size of a sequence embedding computed with
SciBERT. The label embeddings are computed by passing the label description through
SciBERT as an input sequence and taking the last hidden state of the [CLS] token as a se-
quence embedding. In this case, we use a SciBERT model fine-tuned for the CPC classifi-
cation task, as detailed in Section 5.3. In addition, since the subgroup labels, i.e., levels five
and below, represent concepts at the lowest level of the hierarchy, we compute a label em-
bedding for all subgroup labels, represented as a matrix Csg with size |Csg| × dimSciBERT

where Csg is the set containing all CPC subgroup labels. The label-similarity scores are
computed as follows:

M := S∗CT
sg (6.4)

The valuemij at the ith row and the jth column inM corresponds to the similarity score
between the ith sentence and the jth label. For the ith sentence, the label-sim score is equal
to the maximum value in the ith row, i.e., the maximum similarity value of the sentence to
any of the label descriptions. Thus, when using the label-sim ranker, a sentence is ranked
higher if it has higher semantic similarity to any of the label descriptions.

Random Ranker (random-ranker). To understand how well a sentence ranker can iden-
tify important sentences, we compare each ranker to a random ranker (random-ranker) as
a baseline. A random-ranker selects sentences at random from a document. Since most of
the sentences within a patent contain information about the proposed invention, we assume
that a random selection will also provide relevant sentences sufficient for classification.
Thus, an effective sentence ranking algorithm should perform better than a random-ranker.

Hybrid Ranker. Our analysis indicates that label-dense and pos-field select sentences
from different parts of patents and perform better than the random-ranker (Section 6.5).
We combine these two rankers by assigning equal weights to scores from pos-field and

6. Efficient Neural Full-Text Patent Representations 106

label-dense, which we refer to as pos-field_label-dense. In addition, we combine pos-doc
and label-dense, which we refer to as pos-doc_label-dense.

6.3.3 Token-Based Representation

Like field- and sentence-based representation learning, a token-based representation is gen-
erated by identifying the most important tokens within a document and then generating a
document representation using a TF-IDF model. We assume that tokens appearing in key
phrases are important and indicate the document’s topic. Similar to the keyword ranker, the
key phrases within a document are identified using TextRank (Mihalcea and Tarau, 2004).
For each document in the training, validation, and test sets, the key phrases are extracted us-
ing TextRank. Comparing BoW representation methods, Galke and Scherp (2022) find that
the TF-IDF weighted representation works better than a representation generated by aver-
aging Glove-based token embeddings (Pennington et al., 2014). Next, a text is generated
for each document by sorting key phrases in order of importance and then concatenating
the associated text. An analysis is performed by tokenizing the concatenated text and se-
lecting k tokens provided as input to a TF-IDF model. The term statistics for the TF-IDF
model are determined using text corresponding to the documents in the training set. The
TF-IDF model is then used to generate a vector for each document within the training,
validation, and test sets. The TF-IDF vector is provided as input to TwistBytes (Benites,
2019). The evaluation results are discussed in Section 6.5. In this case, we experiment only
with the non-neural TF-IDF representation and the TwistBytes model since the sequence
information is unavailable.

6.4 Experimental Setup

Dataset and Evaluation Metrics. The evaluations are performed using the USPTO-70k
dataset that contains about 50,000 training instances and 10,000 instances each for valida-
tion and test set, respectively (see Section 4.3). Each instance has six text fields: title, ab-
stract, claims, brief-summary, detail-desc, and fig-desc. Further, each instance is labeled
with CPC labels as target classes. The document representation techniques are evaluated on
the CPC classification task using the hierarchical evaluation metrics defined in Section 2.7.
In the case of hierarchical evaluation metrics, the true label set consists of labels across the
hierarchy. To evaluate a partially correct prediction, the ancestors of the predicted labels are
also added to the predicted label set before calculating the evaluation score. Specifically,
we compute the macro and micro average scores for hierarchical precision, recall, and F1.
The micro-average score is computed over all the instances in the test set and provides an
overall estimate of a model’s performance. The macro-average score is an average of the
performance over all the labels, thus evaluating a model’s ability to perform better in a
class-imbalance scenario.

107 6. Efficient Neural Full-Text Patent Representations

Hyperparameters. Below, we define the hyperparameters for the text representation
methods, sentence rankers, and classification models.

Text Representation. We use SciBERT to pre-compute the field and sentence embed-
dings of dimensionality 768. The SciBERT model has already been fine-tuned for the CPC
classification task with title and abstract as input, as discussed in Section 5.5. The texts
for fields and sentences are represented as TF-IDF vectors of dimensionality 70k. Most
patent sections exceed the 512-token limit imposed by SciBERT (see Figure 4.5, page 4.5).
The maximum input length is set to 512 tokens for all sections where this is the case. In
patent sections that only require shorter sequences, the maximum input length is reduced
for efficiency reasons. For the title and abstract sections, for example, we use the max-
imum sequence length values of 64 and 256, respectively. The details on the process of
generating sequence embedding from a BERT-based model are provided in Section 2.4.3.

Sentence Rankers. Following Zheng and Lapata (2019), the hyperparameters for the
pac-sum algorithm, λ1, λ2, and β, are set to values of -2, 1, and 0.6, respectively. For the
lda ranker, we train an LDA-topic model with a topic size of 100. The label embeddings
for the label-sim ranker are computed using the SciBERT model that is fine-tuned for the
CPC classification task as described in Section 5.5, and each of the label embeddings is of
dimension 768.

Classification Model. The experiments are performed with THMM using the set of
hyperparameters defined in Section 5.4.3. Since SciBERT model weights are not fine-tuned
during training, a learning rate of 10−3 is used. All models are trained for a maximum of
100 epochs with early stopping, i.e., the training stops if the macro-F1 for the validation
set does not increase for 10 epochs.

Baselines. Below, we define the baselines against which the proposed classifiers are com-
pared.

Non-Neural. Unlike the approach in Chapter 5, where the TwistBytes model (see Sec-
tion 2.6.3) is used with just the title and abstract as input, here analysis is performed by
adding field texts in order of their importance. We use the same parameter values defined
by Benites (2019): a decision function threshold value of -0.25 and TF-IDF vectors of
dimension 70k.

Neural. As a neural baseline, we chose the best-performing THMM model from Sec-
tion 5.5, i.e., THMM with ef (t + a). Here, the method ef (.) represents the process of
generating an embedding for an input sequence, and the subscript “f ” denotes that the
model weights are fine-tuned during training (see Section 2.4.3). In addition, we compare
different document representations to one generated from all the field embeddings (THMM
with xF) and sentence embeddings (THMM with xS).

Runtime. The TwistBytes model takes four to six hours to train when provided with
the full texts of patents. Since the sentence and field embeddings are pre-computed, only
the parameters corresponding to the classification model, i.e., THMM, are learned during

6. Efficient Neural Full-Text Patent Representations 108

training. Here, the training process takes 20 to 24 hours, as compared to 300 hours when
fine-tuning the SciBERT parameters during training. Each of the models is trained on a
single Nvidia Tesla V100 GPU. The early stopping is employed if the macro-F1 score on
the validation set does not improve for seven epochs.

6.5 Results

Working with the hypothesis that a limited number of the most informative semantic el-
ements are sufficient for optimal classification performance, we described document rep-
resentation techniques in Section 6.3. Here, we evaluate the performance of the proposed
techniques on the CPC classification task.

6.5.1 Performance for Field-Based Representations

In Section 6.3.1, we discussed methods for generating field embeddings and aggregating
them to a document representation. As the first step, the relative importance of field em-
beddings is determined based on the performance of field text when evaluated on the CPC
classification task. Next, a representation is generated by combining field embeddings us-
ing vector summation and concatenation.

Informativeness of Individual Fields. To assess the contribution of different fields to
informativeness with regard to document classification, we use one field at a time, generate
a document representation, and evaluate it on the CPC classification task. We find that
the brief-summary is the most informative field in terms of overall performance, show-
ing a high score across metrics and clearly outperforming models leveraging abstract and
claims (see top-most part of Table 6.1). Unlike detail-desc, brief-summary often includes
a summary of the invention and precise details on its technical field, which may be a possi-
ble reason for its higher informativeness compared to other patent fields. As title contains
a few terms describing an invention with absolute brevity, a document representation based
on title can identify some labels with high precision but only has a low recall. A sim-
ilar conclusion can be drawn for fig-desc, as it contains particular domain-related terms.
Further, the claims field has legal implications and is specific to an invention. In contrast,
abstracts are not legally binding and cannot be challenged with litigation. Thus, abstracts
are often drafted broadly and imprecisely, partially explaining the limited usefulness of this
section for classification tasks like ours; abstract results in a high recall score but lower
precision.

Performance when Combining Fields. We aim to achieve optimal classification perfor-
mance with a subset of fields, such that adding more fields results in only a marginal gain
or even a decrease in performance. The fields are combined according to their informa-
tiveness to generate a document representation (Table 6.1). With both vector summation

109 6. Efficient Neural Full-Text Patent Representations

and concatenation, we see an increase in the micro-F1 score when adding more field em-
beddings; however, the gain is marginal with concatenation. When comparing macro-F1
scores, a marginal gain (for summation) or decrease in performance (for concatenation)
can be seen when adding additional embeddings to bs and a. For summation, the rela-
tive gain in macro-F1 resulting from the incorporation of a to bs is 4.1%, whereas when
further incorporating the additional four field embeddings the relative increase in macro-
F1 is just 2.1% (see bottom-most part of Table 6.1). A similar conclusion can be drawn
for TwistBytes, in which case classification performance improves when the text from ab-
stract is added, but adding more fields decreases macro-F1. Furthermore, for TwistBytes,
the micro-F1 score gradually increases when text from additional fields is added. These ob-
servations lead us to conclude that optimal macro-F1 can be reached with brief-summary
and abstract, such that adding more patent fields may only lead to a marginal gain or to a
decrease in the macro-F1 score.

Comparison of Best-Performing Configuration to Baseline Systems. First, we note
that TwistBytes using TF-IDF-based representations of the complete document text has a
higher micro-F1 score than the THMM with ef (t + a)), i.e., the best-performing model
from Chapter 5. This demonstrates that there is relevant information in the additional text
and motivates us to combine multi-field embedding into a single neural document repre-
sentation using an effective aggregation technique. Table 6.1 shows the evaluation results
comparing the field-level document representation to the baselines (TwistBytes with full-
text and THMM with ef (t+a)). The proposed approach of combining the field embeddings
with vector summation (THMM with t⊕ a⊕ cl⊕ dd⊕ bs⊕ fd) outperforms both base-
lines in terms of macro-F1 and micro-F1 scores. When comparing to THMM with ef (t+a),
we see much improvement in precision with a slight dip in recall. The proposed approach
performs better across all three micro-average scores, i.e., precision, recall, and F1.

Performance by Label Frequency. Table 6.2 shows the results of our best performing
approach (THMM with t⊕a⊕ cl⊕ dd⊕ bs⊕ fd) and baselines for different frequency-
based groups (Table 4.2). We find that our approach works better overall, and in particular,
for the most infrequent label set, i.e., for a set consisting of labels with counts lower than
10, the macro-F1 is 44% better than for THMM with ef (t + a). The performance of the
non-neural TwistBytes model is strong for more frequent labels but poor for infrequent
labels.

Analysis of Field Embeddings by CPC Level, Label Frequency, and Domain. Here,
we report a fine-grained analysis of model performance for three label groupings (see Ta-
ble 4.2, page 60), focusing on macro-F1. The results are depicted in Figure 6.1. Overall,
models using the brief-summary field perform better than those using all other fields across
all label-grouping settings and excel in cases of infrequent labels.

Level Hierarchy. On analyzing the level group results in Figure 6.1, we observe that
at level 1, performance is quite similar across fields, including title and fig-desc. However,

6. Efficient Neural Full-Text Patent Representations 110

macro-avg. micro-avg.

Model doc-rep P R F1 P R F1

THMM bs 47.8 32.3 36.6 70.4 59.9 64.7
THMM a 39.6 30.0 32.6 66.1 59.8 62.8
THMM cl 41.1 27.5 31.0 67.5 58.0 62.4
THMM dd 42.5 25.1 29.9 66.9 54.1 59.8
THMM fd 38.9 20.1 25.0 65.7 49.3 56.3
THMM t 35.6 19.5 23.6 62.8 49.0 55.0

THMM ef (t+ a) 42.6 36.7 37.7 66.6 63.3 64.9

TB tfidf(bs) 46.3 24.5 30.2 68.9 58.9 63.5
TB tfidf(bs+ a) 46.8 24.8 30.6 69.5 59.5 64.1
TB tfidf(bs+ a+ cl) 46.6 24.6 30.1 69.9 60.1 64.6
TB tfidf(bs+ a+ cl + dd) 45.4 23.4 28.7 69.8 60.8 65.0
TB tfidf(bs+ a+ cl + dd+ fd) 45.5 23.5 28.9 69.8 60.8 65.0
TB tfidf(bs+ a+ cl + dd+ fd+ t) 45.5 23.6 28.9 69.9 60.9 65.1

THMM bs;a 45.6 33.3 36.9 68.7 62.1 65.2
THMM bs;a; cl 45.1 33.3 36.6 69.9 61.8 65.6
THMM bs;a; cl;dd 45.4 31.7 35.6 69.8 62.3 65.9
THMM bs;a; cl;dd;fd 45.7 32.3 35.8 69.7 62.3 65.8
THMM bs;a; cl;dd;fd; t 46.6 32.0 36.1 69.9 62.3 65.9

THMM bs⊕ a 46.7 34.8 38.1 69.6 63.1 66.2
THMM bs⊕ a⊕ cl 47.0 34.9 38.3 70.2 63.4 66.6
THMM bs⊕ a⊕ cl⊕ dd 47.5 34.8 38.6 70.6 64.1 67.2
THMM bs⊕ a⊕ cl⊕ dd⊕ fd 48.4 34.7 38.7 70.7 64.4 67.4
THMM bs⊕ a⊕ cl⊕ dd⊕ fd⊕ t 48.6 35.0 38.9 70.2 65.0 67.5

Table 6.1: Model performance for different document representation inputs. The operators
(+), (⊕), and (;) correspond to text concatenation, vector summation, and vector
concatenation, respectively, for the USPTO-70k dataset.

1 2 3
level

0.0

0.5

f1
-m

ac
ro

1-10 11-50 51-100 100+
label-group

0.0

0.5

A B C D E F G H Y
section

0.0

0.5

f1
-m

ac
ro

title
abstract
claims
detail-desc
brief-desc
fig-desc

Figure 6.1: Macro-f1 distribution across three label groups that are based on the hierar-
chical level of the taxonomy (top-left), the instance count for a label in the
training set (top-right), and the section label category it belongs (bottom), i.e.,
labels in the first level of the CPC taxonomy (see Table 4.2, page 60).

111 6. Efficient Neural Full-Text Patent Representations

macro-avg.
model doc-rep group P R F1

TB tfidf(bs+ a+ cl + dd+ fd+ t) 1-10 1.80 00.7 0.90
TB tfidf(bs+ a+ cl + dd+ fd+ t) 11-50 31.7 11.7 16.0
TB tfidf(bs+ a+ cl + dd+ fd+ t) 51-100 63.6 23.4 32.0
TB tfidf(bs+ a+ cl + dd+ fd+ t) 100+ 64.6 40.8 47.8

THMM ef (t+ a) 1-10 11.1 7.1 7.5
THMM ef (t+ a) 11-50 31.4 25.9 26.2
THMM ef (t+ a) 51-100 45.9 39.7 40.9
THMM ef (t+ a) 100+ 56.8 48.5 51.4

THMM bs⊕ a⊕ cl⊕ dd⊕ fd⊕ t 1-10 13.1 10.7 10.8
THMM bs⊕ a⊕ cl⊕ dd⊕ fd⊕ t 11-50 43.5 27.1 31.0
THMM bs⊕ a⊕ cl⊕ dd⊕ fd⊕ t 51-100 57.4 37.0 43.2
THMM bs⊕ a⊕ cl⊕ dd⊕ fd⊕ t 100+ 64.2 46.3 52.5

Table 6.2: Macro scores for the best-performing model and baselines for different
frequency-based groups, which contains labels based on their instance count
in the training set of the USPTO-70k dataset (see Section 4.3).

for more fine-grained labels, especially at level 3, the brief-summary is more informative
than other field embeddings.

Frequency-based Groups. For the high-frequency label group, we see similar perfor-
mance for abstract, claims, and brief-summary. However, for labels with fewer instances,
the performance for brief-summary is noticeably better.

Section/Domain. Using brief-summary consistently leads to better results across dif-
ferent sections, as does abstract to a lesser degree (Figure 6.1). However, in the case
of D, H, and Y as label groups, the relative gain in performance with brief-summary is
marginal compared to abstract. Here, D, H, and Y represent the section labels (labels in
the first level of the CPC taxonomy) with the descriptions “Textiles; Paper”, “Electricity”,
and “General Tagging of New Technological Categories...”, respectively.

Summary. The experiments identify brief-summary as the most informative patent field
and vector summation as the most effective aggregation technique when aggregating field
information. Neural models outperform their non-neural counterparts, especially in cases
of infrequent labels. Further, we find that optimal performance can be reached by using a
subset of the most informative fields for both neural and non-neural classifiers. Conversely,
incorporating additional field information leads to a marginal gain or, in some cases, a
decrease in classification performance.

6.5.2 Performance for Sentence-Based Representations

In this section, we evaluate the effectiveness of different sentence rankers when identifying
a subset of sentences for the CPC classification task. For a given sentence ranker, we ex-
periment with different values of the parameter p, i.e., the number of selected sentences, to

6. Efficient Neural Full-Text Patent Representations 112

10 20 30 40 50 60 70 100 150
sentences (p)

20

25

30

35

40
m

ac
ro

-F
1

THMM with xS

random-ranker
pos-doc
keywords
saliency
lda
pacsum
pos-field
label-dense

(a) macro-F1

10 20 30 40 50 60 70 100 150
sentences (p)

50

55

60

65

70

m
icr

o-
F1

THMM with xS

random-ranker
pos-doc
keywords
saliency
lda
pacsum
pos-field
label-dense

(b) micro-F1

10 20 30 40 50 60 70 100 150
sentences (p)

random-ranker

pos-doc

keywords

saliency

lda

pacsum

pos-field

label-dense

se
nt

en
ce

 ra
nk

er
s

27.4 31.5 32.7 34.2 34.5 35.3 36.1 36.3 36.5

35.7 36.9 37.0 38.0 38.2 38.4 37.7 37.1 37.0

35.3 36.0 36.0 36.6 36.1 36.2 36.9 37.1 36.8

31.3 32.6 33.1 33.2 33.9 33.9 34.5 35.1 35.7

21.0 25.5 27.5 29.3 30.7 31.4 31.9 33.1 34.8

30.9 32.0 33.4 34.0 34.6 34.9 35.5 35.2 35.8

37.6 38.1 38.5 38.3 38.9 38.7 38.1 38.1 36.8

32.5 35.4 36.3 37.2 37.5 37.8 37.2 37.7 37.7 22

24

26

28

30

32

34

36

38

(c) macro-F1

Figure 6.2: Performance of sentence rankers in the CPC classification task for different
values of p on the validation set, using THMM with xS

∗ for USPTO-70k.

determine the optimal p value for patent classification. This evaluation is performed on the
validation set, and later, we analyze the relative positions of sentences selected with differ-
ent sentence ranking methods, thus revealing the sentence selection processes of different
sentence rankers. Based on this analysis, we propose a hybrid approach that combines
different sentence rankers. Finally, we compare the performance of the best-performing
sentence ranker and classifier pair against neural and non-neural baselines on the test set.
In the following text, the classification performance of a sentence ranker signifies the clas-
sification performance of the texts selected by using the sentence ranker.

Determining the Number of Sentences Sufficient for Optimal Classification Perfor-
mance. The results of the analysis are shown in Figure 6.2. The horizontal lines in Fig-
ure 6.2a and 6.2b show the performance of THMM with xS as a baseline, where xS is

113 6. Efficient Neural Full-Text Patent Representations

a document representation that is generated by combining all sentence embeddings using
the vector mean. With a sentence ranker, the sentence set S∗ is determined by selecting
p sentences from set S and aggregating the corresponding sentence embeddings to form
a document representation xS∗ . Given the classification model THMM, a set of sentence
rankers are compared based on the performance of xS∗ for different values of p.

By comparing different sentence rankers to THMM with xS or random-ranker as base-
lines, we find that three sentence rankers, pos-field, pos-doc, and label-sim, perform con-
sistently better than the random-ranker in terms of both macro- and micro-F1 scores. Com-
pared to THMM withxS , it is found that the performance of these three rankers is equivalent
or comparable when p ≥ 40. In general, pacsum, lda, and saliency rankers perform poorly
compared to random-ranker. The overall macro-F1 score of the keyword ranker is better
than that of the random-ranker ranker, whereas in terms of micro-F1, the keyword ranker
is better for lower p values.

In Figures 6.2a and 6.2b, it can be seen that for higher p values pos-field, pos-doc, label-
sim, and keyword approach the performance achieved when considering all the sentences
in the document S. Also, adding more sentences helps improve the performance of the
three worst-performing rankers, pacsum, lda, and saliency. The performance of these three
rankers shows an upward trend with a gradual increase in p, and their macro-F1 approaches
THMM with xS . Even the random-ranker approaches high performance comparable to pos-
field with just 150 sentences, which is much less than the average sentence count for patents
(more than 300 sentences per patent). However, it is evident that for lower values of p, an
effective sentence ranking method can identify informative sentences.

Figure 6.2c shows the numeric values for macro-F1 scores plotted in Figure 6.2a. Look-
ing through Figure 6.2c and focusing on three best-performing rankers, pos-field, pos-doc,
and label-sim, it can be observed that optimal performance can be achieved with just 40-
60 sentences. Among all the sentence rankers, the pos-field ranker performs best with 50
sentences.

Analysis of Relative Sentence Position. A sentence ranker assigns a score to each sen-
tence within a document. When selecting the top-ranked sentences as input to a classifier,
it is important to know which part of the document and patent fields the sentences belong
to. To achieve this, we determine the position of sentences within the document, then ana-
lyze the distribution of sentence positions for different patent fields, and finally analyze the
positions of the top-50 sentences selected with a ranker. This analysis reveals that similar
classification performance can be achieved with a diverse set of sentence rankers that prefer
sentences from varied sentence positions.

As a first step, we plot the distribution of sentence positions for different patent fields.
Patents vary considerably in length; therefore, sentence positions are normalized by di-
viding a sentence position value by the sentence count for the document to which the
sentence belongs. For example, for a sentence sj , its position in the document is repre-
sented by the attribute sj.position_doc, and the normalized position value is calculated
as sj.position_doc/|S|, which takes a value between 0 and 1 (refer to DIDM defined in

6. Efficient Neural Full-Text Patent Representations 114

0.0 0.2 0.4 0.6 0.8 1.0
relative sentence position

2k

4k

6k

8k
se

nt
en

ce
 c

ou
nt

mean = 0.011
std = 0.011

(a) abstract

0.0 0.2 0.4 0.6 0.8 1.0
relative sentence position

10k
20k
30k
40k
50k

se
nt

en
ce

 c
ou

nt

mean = 0.141
std = 0.138

(b) brief-summary

0.0 0.2 0.4 0.6 0.8 1.0
relative sentence position

4k

8k

12k

16k

se
nt

en
ce

 c
ou

nt

mean = 0.178
std = 0.129

(c) fig-desc

0.0 0.2 0.4 0.6 0.8 1.0
relative sentence position

10k

30k

50k

70k

se
nt

en
ce

 c
ou

nt

mean = 0.556std = 0.241

(d) description

0.0 0.2 0.4 0.6 0.8 1.0
relative sentence position

10k

20k

30k

40k

se
nt

en
ce

 c
ou

nt

mean = 0.966
std = 0.035

(e) claims

Figure 6.3: Distribution of sentence positions for different patent fields for USPTO-70k.

Section 3.2.3). Figure 6.3 shows the distribution of sentence positions. The abstract (Fig-
ure 6.3a), brief-summary (Figure 6.3b), and fig-desc (Figure 6.3c) fields are located within
the first 40% of the sentences in a document, whereas sentences associated with the claims
section appear in later parts of a document, usually within the last 10% of the sentences
in the document. The sentences within the detail-desc field take a wide range of position
values (Figure 6.3d).

We analyzed performance on the validation set and found that optimal classification
performance can be achieved with just 50 sentences. Here, we analyze the relative position
of sentences selected with different sentence rankers. As a random-ranker assigns the same
score to all sentences within the document and selects the sentences at random, it produces
a uniform distribution of sentence positions (Figure 6.4a). For the three worst-performing
sentence rankers, pacsum (Figure 6.4e), lda (Figure 6.4d), and saliency (Figure 6.4c), the
distribution of sentence positions is similar to that of a random-ranker (Figure 6.4a), in
which case sentences in abstract and brief-summary are assigned lower weights.

Comparing position-based rankers, we find that pos-doc selects sentences from the
initial part of a document (Figure 6.4f), primarily from abstract and brief-summary. In
contrast, pos-field (Figure 6.4h) gives preference to sentences appearing earlier in a field
and selects sentences across fields. When compared to pos-doc, it is found that the sen-
tences within the claims field are preferred by the pos-field ranker. Similarly, the keywords
ranker gives higher priority to the sentences in claims that contain crucial terms defining an
invention (Figure 6.4b). By looking into Figure 6.4g, we find that the label-dense sentence
ranker picks important sentences from abstract, brief-summary, and claims. Also, it is
able to identify sentences in detail-desc, which have a higher semantic similarity with the
CPC/IPC label descriptions.

115 6. Efficient Neural Full-Text Patent Representations

0.0 0.2 0.4 0.6 0.8 1.0
relative sentence position

2k

6k

10k

14k

se
nt

en
ce

 c
ou

nt

(a) random-ranker

0.0 0.2 0.4 0.6 0.8 1.0
relative sentence position

4k

12k

18k

se
nt

en
ce

 c
ou

nt

(b) keywords

0.0 0.2 0.4 0.6 0.8 1.0
relative sentence position

2k

6k

10k

14k

se
nt

en
ce

 c
ou

nt

(c) saliency

0.0 0.2 0.4 0.6 0.8 1.0
relative sentence position

2k

6k

10k

14k
se

nt
en

ce
 c

ou
nt

(d) lda

0.0 0.2 0.4 0.6 0.8 1.0
relative sentence position

2k

6k

10k

14k

se
nt

en
ce

 c
ou

nt

(e) pacsum

0.0 0.2 0.4 0.6 0.8 1.0
relative sentence position

10k

30k

50k

70k

se
nt

en
ce

 c
ou

nt

(f) pos-doc

0.0 0.2 0.4 0.6 0.8 1.0
relative sentence position

2k

6k

10k

14k

se
nt

en
ce

 c
ou

nt

(g) label-sim

0.0 0.2 0.4 0.6 0.8 1.0
relative sentence position

10k

30k

50k

70k

se
nt

en
ce

 c
ou

nt

(h) pos-field

0.0 0.2 0.4 0.6 0.8 1.0
relative sentence position

10k

30k

50k

70k

se
nt

en
ce

 c
ou

nt

(i) pos-doc_label-sim

0.0 0.2 0.4 0.6 0.8 1.0
relative sentence position

10k

30k

50k

70k

se
nt

en
ce

 c
ou

nt

(j) pos-field_label-sim

Figure 6.4: Distribution of sentence positions for top-50 sentences extracted from the
USPTO-70k validation set by various sentence rankers.

Performance with Hybrid Rankers. Our analysis identifies pos-field, pos-doc, and
label-sim as the three best-performing sentence rankers, and later while analyzing sen-
tence positions, we find that each of them selects sentences from different parts of a docu-
ment (Figure 6.4). Thus, we might achieve better classification performance by combining
the scores assigned by these rankers to select informative sentences. We propose two hy-
brid rankers combining label-sim with two position-based rankers, pos-doc and pos-field,
which are referred to as pos-field_label-sim and pos-doc_label-sim, respectively (further
details are provided in Section 6.3.2). In this case, a sentence score is computed by giving
equal weights to the sentence scores from the two rankers.

6. Efficient Neural Full-Text Patent Representations 116

10 30 50 70 100 150
sentences (p)

20

25

30

35

40
m

ac
ro

-F
1

TwistBytes + full-text

THMM with xF
THMM with ef(t + a)

THMM with xS

(a) macro-F1 for TwistBytes with
TF-IDF vector generated from S∗.

10 30 50 70 100 150
sentences (p)

50

55

60

65

70

m
icr

o-
F1

TwistBytes + full-text
THMM with xF

THMM with ef(t + a)
THMM with xS

(b) micro-F1 for TwistBytes with
TF-IDF vector generated from S∗.

10 30 50 70 100 150
sentences (p)

20

25

30

35

40

m
ac

ro
-F

1

TwistBytes + full-text

THMM with xF
THMM with ef(t + a)

THMM with xS

(c) macro-F1 for THMM with xS
∗

10 30 50 70 100 150
sentences (p)

50

55

60

65

70

m
icr

o-
F1

TwistBytes + full-text
THMM with xF

THMM with ef(t + a)
THMM with xS

random-ranker
pos-doc
pos-field
label-dense
pos-doc_label-dense
pos-field_label-dense

(d) micro-F1 for THMM with xS
∗

Figure 6.5: Performance of sentence rankers with different values of p using neural (see
THMM in Section 5.3) and non-neural (TwistBytes based on Benites (2019))
classification models and the USPTO-70k test set. TwistBytes takes a TF-
IDF vector as input generated by concatenating sentences from S∗. THMM is
used with xS∗ computed as a vector mean over embeddings corresponding to
sentences in S∗.

We see a small gain in the macro-F1 score when combining sentence scores from mul-
tiple top-performing sentence rankers (Figures 6.5a and 6.5c), whereas the micro-F1 score
remains almost unchanged (Figures 6.5b and 6.5d). In addition, by comparing sentence
positions, we find that if pos-doc (Figure 6.4f) scores are enriched using label-sim (Fig-
ure 6.4g), the sentence extractor selects informative sentences appearing later in the docu-
ment (Figure 6.4i). Similarly, when looking through Figure 6.4j and comparing sentence
positions for pos-field_label-sim to those for pos-field (Figure 6.4h), we find that pos-
field_label-sim picks informative sentences from the later parts of the abstract, brief-
summary, and claims fields.

Comparison with Baselines. We select the best-performing ranker, i.e., pos-field_label-
sim, and compare the performance of neural (THMM with xS

∗) and non-neural (TwistBytes
with TF-IDF vector generated from S∗) classifiers to the baselines for different values of
the parameter p. When comparing micro-F1 scores, the sentence-based neural classifier
(THMM with xS∗) performs consistently better than THMM with ef (t + a) for all values
of p ≥ 20 (Figure 6.5d), and exhibits comparable performance in terms of the macro-F1

117 6. Efficient Neural Full-Text Patent Representations

50 500 1k 1.5k 2k 3k
tokens

20

25

30

35

40
m

ac
ro

-F
1

TwistBytes + full-text

THMM with xF

THMM with ef(t + a)

THMM with xS

(a) macro-F1 for TwistBytes.

50 500 1k 1.5k 2k 3k
tokens

50

55

60

65

70

m
icr

o-
F1

TwistBytes + full-text
THMM with xF

THMM with ef(t + a)
THMM with xS

(b) micro-F1 for TwistBytes.

Figure 6.6: Classification performance for top-k tokens with TwistBytes (Benites, 2019)
and tfidf(.) for the USPTO-70k test set.

score for 50 ≤ p ≤ 70 (Figure 6.5c). Comparing the non-neural classifiers, we find that the
sentence-based non-neural classifier performs consistently better than TwistBytes with the
full texts of patents as a baseline for macro-F1 and shows comparable performance when
evaluated for micro-F1 with p ≥ 30 (Figures 6.5a and 6.5b). Although the performance of
pos-field_label-sim is not better than the best-performing model from this chapter (THMM
with t⊕a⊕ cl⊕ dd⊕ bs⊕ fd), still, we demonstrate the potential of extractive summa-
rization techniques in selecting informative texts for neural representation in the context of
patent classification.

6.5.3 Performance for Token-Based Representations

As discussed in Section 6.3.3, a set of key phrases is extracted, arranged in order of impor-
tance, and concatenated. The concatenated text is tokenized using a white-space tokenizer,
and k tokens are selected to generate a TF-IDF vector. In the current section, we perform
an analysis by varying the value of parameter k and determining the performance of a
non-neural classifier, TwistBytes with tfidf(.) (see Section 2.4.1), in the CPC classifica-
tion task. As shown in Figure 6.6a, the macro-F1 score increases with an increase in k,
reaches the maximum value for 1k tokens, and gradually converges to the performance of
TwistBytes with the full texts of patents. On the other hand, the micro-F1 score increases
gradually and tends to show optimal classification performance for a token count value of
1.5k or more (Figure 6.6b). For both macro- and micro-F1 scores, we can conclude that by
determining the most important tokens in a document using TextRank, optimal classifica-
tion performance can be reached using a subset of tokens rather than considering the full
texts of patents.

6. Efficient Neural Full-Text Patent Representations 118

{b
s}

{b
s,a

}

{b
s,a

,c}

{b
s,a

,c,d
}

{b
s,a

,c,d
,fd

}

{b
s,a

,c,d
,fd

,t}

fields

20

25

30

35

40
m

ac
ro

-F
1

TwistBytes + full-text

THMM with xF

THMM with ef(t + a)

THMM with xS

THMM
TwistBytes

(a) macro-F1 for different sets of fields.

10 30 50 70 100 150
sentences

20

25

30

35

40

m
ac

ro
-F

1

TwistBytes + full-text

THMM with xF

THMM with ef(t + a)

THMM with xS

THMM
TwistBytes

(b) macro-F1 for different values of p, i.e.,
number of selected sentences, for pos-
field_label-sim ranker.

50 500 1k 1.5k 2k 3k
tokens

20

25

30

35

40

m
ac

ro
-F

1

TwistBytes + full-text

THMM with xF

THMM with ef(t + a)

THMM with xS

TwistBytes

(c) macro-F1 for different values k, i.e., number
of selected tokens.

Figure 6.7: Distribution of macro-F1 scores on aggregating information at three levels of
granularity (field, sentence, and token).

6.6 Conclusions

One of the pertinent questions in the context of patent classification is whether we need
the complete texts of patents or whether we can achieve optimal classification performance
with only a subset of text elements. Taking a data-driven approach, we answer this ques-
tion by evaluating document representation techniques that consider a subset of the most
informative fields, sentences, and tokens. Our analysis demonstrates that a subset of the
highest-ranked semantic elements can be sufficient to achieve optimal classification per-
formance with an effective ranking mechanism (Figure 6.7). We propose a novel sentence
ranker, pos-field_label-dense, that performs comparably to the top sentence rankers as-
sociated with baseline extractive summarization techniques. Further, we show that the
extractive summarization techniques are effective in the task of selecting informative texts
for generating neural representations in the context of patent classification. Furthermore,
the best performance on the CPC classification task is attained by aggregating the field em-
beddings using vector summation. The proposed patent representation is further enriched
with CPC/IPC labels in the next chapter and evaluated on the PLS classification task.

Chapter 7

Neural Representations for Patent
Landscape Study

In contrast to the CPC/IPC classification task (see Definition 2.1, page 18), in the PLS clas-
sification task, semantically rich CPC/IPC labels are associated with a patent, and these
can be exploited to improve classification accuracy. Moreover, the evaluations in Chap-
ter 6 demonstrated that a document representation generated by taking a vector sum of
field embeddings is the best approach for CPC classification. Building on the findings of
Chapter 6, in this chapter, we explore methods that combine patent text and CPC/IPC labels
for generating patent representations for the PLS classification task. We demonstrate that
the proposed neural computation model performs robustly across PLS datasets.

In Section 7.1, we discuss motivations for document representation techniques that in-
corporate CPC label information and patent text in the context of the PLS classification
task. In Section 7.2, we highlight the limitations of prior work on PLS, based on which
we propose novel neural computation models in Section 7.3. We describe the experimental
setup in Section 7.4 and evaluate the proposed techniques on the PLS classification task
with the PLS datasets (see Section 4.4) in Section 7.5. Additionally, we evaluate a similar
technique for a multi-label classification task—classifying PubMed articles into a set of
categories relating to COVID-19 (Chen et al., 2021b)—to demonstrate the applicability of
the proposed approach to documents other than patents (Section 7.6).

7.1 Motivation and Contributions

Patent Landscape Studies (PLS) are critical business applications that provide crucial in-
sights into the patent landscape for a particular invention or field, enabling organizations,
policymakers, and investors to make informed decisions (Cockburn and Macgarvie, 2009).
A PLS typically involves three steps: patent search, categorization, and analysis. During
the patent search step, a domain expert uses proprietary or open-source search systems, of-

7. Neural Representations for Patent Landscape Study 120

ten with keywords and CPC labels as search queries, to identify patents within the scope of
the PLS. This is followed by the categorization step, in which a domain expert manually or
semi-automatically assigns patents to PLS-oriented categories. Finally, the labeled dataset
is analyzed to generate a PLS report, which provides insights into key players and their
patent portfolios (see Section 2.2).

Previous works on automating the PLS process have primarily focused on the first step,
i.e., the identification of relevant documents (Abood and Feltenberger, 2018; Giczy et al.,
2022; Choi et al., 2022). In contrast, in this chapter, we focus on the patent categorization
step, which involves assigning a set of user-defined PLS-oriented categories to a patent that
is already labeled with a set of CPC/IPC labels. Moreover, the techniques developed for
PLS classification may be appropriate for application in other use cases, such as patent alert
generation systems (Richter and MacFarlane, 2005). The PatBase system provides func-
tionality to register for periodic patent alerts using keywords and CPC/IPC labels, which
may result in a large number of false positives.1 A patent relevance classification similar
to classification in the PLS context might help to reduce the number of false positives pro-
duced by the patent alert system. In Section 2.2, we discussed the PLS use case and the
associated patent classification task, referred to as the PLS classification task (see Defini-
tion 2.2, page 19).

In Chapters 5 and 6, we explored techniques for patent classification that target the CPC
classification problem using only the patent text. In Chapter 5, we introduced a transformer-
based multi-task model (TMM) and its hierarchical variant (THMM), both of which were
evaluated on the CPC classification task using the patent title and abstract as input (see
Section 5.3). Additionally, our analysis in Section 4.6 revealed that titles and abstracts are
often duplicated across patents, which motivated the document representation techniques
proposed in Chapter 6. In Chapter 6, we found that a classifier applying the THMM model
performs best when provided with a document representation generated by summing all
field embeddings (see Section 6.5.1).

The document representation techniques introduced in the previous chapters did not
consider metadata. This was because metadata can introduce bias, be ambiguous, or be
only partially known in the context of CPC classification. For example, the inventors and
assignee names associated with a patent may introduce bias and are often ambiguous (Haak
et al., 2012). Additionally, crucial citations are typically unknown during the filing of
the application and later added by the patent examiner (Alcácer et al., 2009). However,
in the case of PLS classification, the CPC labels for a document are known and can be
incorporated into a document representation (see Section 2.2). By employing the label
descriptions in the label_dense sentence ranker and evaluating the top-selected sentences
on the classification task (see Section 6.5.2), we can conclude that they comprise crucial
domain information, which can be further utilized for the PLS classification task.

In Chapter 6, we found that a document representation generated by summing up all
field embeddings achieves the best performance. Inspired by this finding and building on

1https://minesoft.com/minesoft-alerts/ [last accessed October 12, 2023]

https://minesoft.com/minesoft-alerts/

121 7. Neural Representations for Patent Landscape Study

the work of Choi et al. (2022), we conduct experiments with a combination of text- and
label-based feature vectors. We start by exploring different techniques for representing
CPC labels and subsequently evaluate the representation generated by combining the best-
performing CPC embeddings with the patent-text embedding.

We generate patent text embeddings using SciBERT (Beltagy et al., 2019) for the
patents’ title and abstract, claims, and description. Additionally, we compare different
approaches for generating CPC/IPC label embeddings based on a label co-occurrence graph
and by using texts corresponding to label descriptions of CPC labels (see Section 2.1.3).
A label co-occurrence graph is generated by exploiting the implicit co-occurrence relation
between the CPC/IPC labels. A co-occurrence graph consists of CPC/IPC labels as nodes,
and two nodes are connected with an undirected edge if the corresponding labels co-occur
in a patent. Next, we apply node2vec on a CPC/IPC co-occurrence graph to generate graph-
based label embeddings (see Section 2.5). Further, a label description is associated with
each CPC/IPC label that can be used to generate embedding or TF-IDF feature vector (see
Figure 2.4, page 16). In Section 7.3, we describe different methods of generating CPC/IPC
label embeddings that are used in our experiments. The representations for a patent text
and corresponding CPC/IPC labels are combined using vector concatenation.

We evaluate the proposed techniques against neural and non-neural baselines, and the
evaluation results are discussed in Section 7.5. Our experiments show that the TF-IDF-
based representation of the label description outperforms the neural text- and graph-based
representations. Furthermore, among the dense representation methods, the graph-based
representation is superior to the text-based representation. Similar to the findings in Sec-
tion 6.5.1, we observe that using all textual fields improves performance. Finally, we ob-
serve that our approach of combining patent text embeddings with graph-based CPC/IPC
embeddings leads to a robust method that consistently outperforms all baselines across
three PLS datasets. Our analysis of the performance of classifiers trained with varying
training instance counts also demonstrates that 200-300 instances are sufficient to train a
PLS classifier.

To further highlight the significance of metadata such as pre-assigned labels in docu-
ment classification tasks, we conduct an out-of-domain evaluation on a related task: label-
ing research publications using categories relating to COVID-19, i.e., Task 5 of the BioCre-
ative VII challenge (Chen et al., 2021b). Each publication consists of title and abstract
as text fields, and pub_type, journal, and keywords as metadata. By comparing different
metadata, we find that the representation based on keywords performs best when used with
TMM. Like the best-performing approach for PLS classification, the best performance is
achieved by generating a document representation that combines keywords with the pub-
lication text. Examining the statistics provided by the task organizers, we observe that the
proposed classifier outperforms the baseline by 13% in relative terms and is superior to
75% of submissions made during the challenge (Section 7.6).

7. Neural Representations for Patent Landscape Study 122

Contributions. In summary, the main contributions of this chapter are as follows:

• We propose a neural computation model for the PLS classification task that exhibits
robust performance across all three PLS datasets.

• We demonstrate the applicability of our proposed approach to an out-of-domain eval-
uation: classifying PubMed into COVID-19-related categories. This demonstrates
that classification techniques primarily developed for patents can also be applied out-
side of patents in a similar task setting.

7.2 Related Work

Prior works on classification models were discussed in Section 5.2, whereas Section 6.2
discussed previous works on document representation methods in general and patent rep-
resentation in particular. This chapter proposes classification techniques in the context of a
PLS. These techniques generate a patent representation by incorporating CPC label infor-
mation and patent text. Below, we discuss the key related works in this context.

PLS has applications in a variety of fields, such as gene therapy (Picanço-Castro et al.,
2020), blockchain (Clarke et al., 2020), research on advances in CO2 utilization tech-
nologies (Norhasyima and Mahlia, 2018), and analysis of biodiesel production techniques
(Mahlia et al., 2020). The number of patents included may vary according to the scope
of the PLS. For example, Dumet et al. (2019) restricted their study to 37 patent families,
whereas Clarke et al. (2020) included thousands of blockchain-related patents.

We are aware of several works which aim to automate the first step of the PLS process.
Lee and Lee (2019) propose a methodology for performing a PLS that uses a vector space
model to identify relevant novel inventions. Abood and Feltenberger (2018) first identify
relevant patents by expanding a seed list, performing forward and backward traversal on
the patent citation graph, and restricting the candidate patents by using relevant CPC labels.
They then train a classifier using one-hot embeddings of references and CPC codes and an
embedding of the patent abstract using word2vec and an LSTM to predict whether a patent
is relevant to a PLS. Similarly, for a PLS in the artificial intelligence domain, Giczy et al.
(2022) propose a classifier that concatenates the LSTM output for abstracts and claims to
the citation embedding. Choi et al. (2022) employ a model architecture that is more similar
to our own, using a transformer to embed abstracts and the graph neural network diff2vec
(Rozemberczki and Sarkar, 2018) to embed CPC labels. In contrast to these works, we
target the second step of the PLS process, categorizing a set of retrieved documents into
business- or application-oriented categories.

In the classification (Richter and MacFarlane, 2005; Benites et al., 2018) and clustering
(Vlase et al., 2012) contexts, non-neural count- and TF-IDF-based feature vectors reflect-
ing IPC, inventor, and assignee information have been proposed. For CPC classification,
Niu and Cai (2019) index label descriptions, retrieve them using the input text as a query,

123 7. Neural Representations for Patent Landscape Study

and generate an input representation concatenating a vector containing BM25 scores corre-
sponding to the label descriptions to the BERT-based sequence representation. Fang et al.
(2021) compute embeddings on the basis of graphs constructed from word co-occurrence,
inventor, and assignee information and combine them using attention-based sums. In con-
trast, we decided to restrict our study to content-based features, as using inventor and as-
signee information might introduce biases that contradict the goal of a PLS. For example,
an organization that is predominantly involved in mobile technologies ventures into auto-
mobile research. In that case, the classifier will have an inherent bias toward labels related
to mobile technologies labels when using the organization’s name as input, irrespective of
the patent’s content.

Another related research direction is that of using label embeddings for the target label
to generate label-specific representation (Mullenbach et al., 2018; Dong et al., 2020; Cai
et al., 2020; Liu et al., 2021). This is usually done by computing attention weights between
label embeddings and embeddings corresponding to the sentences or tokens in the input
sequence. Next, the attention weights are used to combine embeddings corresponding to
sentences or tokens to generate label-specific representations, which are then used for pre-
dicting labels individually. The methods proposed by related work mainly differ in their
choices of label and text representation techniques. The input text has been represented
using CNNs (Mullenbach et al., 2018), BiLSTMs (Xiao et al., 2019; Vu et al., 2020), and
BERT (Dong et al., 2020; Cai et al., 2020; Liu et al., 2021). Due to the effectiveness of
BERT for representing text semantics, some recent work uses it to represent label descrip-
tions (Liu et al., 2019; Dong et al., 2020; Xiong et al., 2021). In these studies, the label
descriptions are provided as input to BERT and generate label embeddings, which are then
used to weigh the tokens to generate label-specific input representations. Also, Cai et al.
(2020) leverage the hierarchical taxonomy structure and use a graph convolutional network
(Kipf and Welling, 2017) to represent labels. A few of these methods use randomly initial-
ized parameters as label embeddings, which are learned jointly with the model parameters
during training (Mullenbach et al., 2018; Xiao et al., 2019; Vu et al., 2020). In contrast to
the related work described above, in the content of PLS, the CPC/IPC labels provide infor-
mative descriptions and are known during inference. Therefore, we can directly incorporate
them into the document representation.

7.3 Methodology

Our evaluation in the previous chapter demonstrates that the best performance is achieved
by the document representation combining all field embeddings using vector summation. In
the PLS classification task context, the CPC/IPC labels are known and can be incorporated
into a document representation. This section introduces computational models that predict
PLS-oriented categories by generating a document representation that combines the text of
patents with their associated CPC labels, as shown in Figure 7.1.

7. Neural Representations for Patent Landscape Study 124

...
label embedding

generation method

... ...

vector
summation

vector
concatenation

Figure 7.1: Generating a patent representation x for the PLS classification task.

To understand the classification process, we refer to Section 3.2, which describes the
specifics of the classification pipeline. As a first step, an instance of the patent document
model is mapped to an instance of the domain-independent document model, which is then
mapped to an instance of DocRepDM specific to the document representation method. The
proposed patent representation method takes an instance of DocRepDM_Chunks_Label
as input, which is comprised of field texts as chunks and CPC/IPC labels as source_labels
(see Section 3.2.4). Each Label_DocRepDM instance in source_labels contains the tex-
tual description of a CPC/IPC label as text attribute and associated embedding as ml_fea-
ture attribute. Next, we define the methodology for generating a patent representation from
an instance of DocRepDM_Chunks_Label.

Neural Text Representations. Following the process similar to the field-based represen-
tation proposed in Section 6.3, we use SciBERT model and generate three text embeddings:
ef (t+ a) using the concatenated text of the title and abstract, ef (cl) using the claims text,
and ef (desc) using the text of the description text. The method ef (·) represents the process
for generating a sequence embedding using a transformer-based language model, fine-tuned
for the CPC classification task (see Section 5.5). For brevity, we refer to the embeddings
ef (t + a), ef (cl), and ef (desc) as ta, cl, and desc, respectively. Based on the finding of
Section 6.5, we generate a patent text representation by combining the field embeddings
using a summation operation (⊕).

CPC Label Embeddings. As discussed above, each of the source_label instances has
text and ml_feature attributes. The associated information about CP/IPC labels can be
used to generate a patent representation. We experiment with four different ways of em-

125 7. Neural Representations for Patent Landscape Study

1

2

1

1

Generate
Graph node2vec

...

...

...

...

Figure 7.2: A co-occurrence graph is generated based on the co-occurrence relation be-
tween CPC/IPC labels in the document set D, which is provided as input to
the graph-based representation method, i.e., node2vec, to generate label em-
beddings.

bedding knowledge about the CPC labels associated with a patent document, which are
described as follows:

• cpcmultihot: The simplest embedding consists of a multi-hot encoded vector with
each dimension indicating the presence of one CPC label, referred to as cpcmultihot.

• cpctext: The label description associated with a CPC/IPC label represents an impor-
tant domain concept (see Figure 2.4, page 16). It contains crucial semantic informa-
tion, which can be leveraged to enrich a patent representation. In this case, a label
description is passed through SciBERT, and the representation corresponding to the
last hidden state of the [CLS] token is considered a label embedding. The SciBERT
model is fine-tuned for the CPC classification task with concatenated text from ti-
tle and abstract as input (see Section 5.5). As discussed above, source_labels is
a list of Label_DocRepDM instances, which, in the current setting, represent the
CPC/IPC labels in a patent. The ml_feature attribute in a Label_DocRepDM in-
stance represents the corresponding CPC/IPC label embedding. A 768-dimensional
representation is generated by averaging all the label embeddings corresponding to
the CPC labels associated with a patent, which we refer to as cpctext.

• cpctf.idf : The CPC label descriptions contain important domain-specific keywords,
and this information can be captured with TF-IDF vectors. As the first step, the term
statistics are computed with descriptions corresponding to all the subgroup labels
(see Figure 2.4, page 16). The source_labels attribute is a list of Label_DocRepDM
instances, representing CPC/IPC labels in a patent, and the text attribute in La-
bel_DocRepDM represents the corresponding label description. The label descrip-
tions corresponding to the CPC labels associated with a patent are concatenated and
provided as input to the TF-IDF model, thus generating a 140k-dimensional TF-IDF
feature vector referred to as cpctf.idf .

• cpcgraph: When representing the CPC/IPC labels as a co-occurrence graph, we as-
sume that the frequently co-occurring labels have higher proximity in semantic space

7. Neural Representations for Patent Landscape Study 126

than the less frequent ones. The process of creating a co-occurrence graph and gen-
erating graph embeddings is depicted in Figure 7.2, whereas the specifics of the
node2vec algorithm are discussed in Section 2.5. In a co-occurrence graph, the nodes
correspond to the labels in the CPC/IPC taxonomy. A pair of nodes are connected
if the corresponding labels occur within a patent. Further, an edge weight indicates
the number of such co-occurrences. The co-occurrence graph is provided as input to
a node2vec algorithm, which generates an embedding for each node and, thus, for
each CPC/IPC label (see Section 2.5). Similar to cpctext, a document-level represen-
tation is generated by taking the mean of all the label embeddings corresponding to
the CPC labels associated with a patent, which is referred to as cpcgraph.

Classification Model. We use the Transformer-based Multi-task Model (TMM) described
in Section 5.3 as the classification model in the proposed architecture. The model takes as
input either the CPC-label embeddings, the text-based embeddings, or a combination of
both obtained through vector concatenation (;). The TMM model uses one classification
head for each label, and each head contains three dense layers. The final dense layer for
each head has a binary softmax output that predicts whether or not a label applies to an
input document.

7.4 Experimental Setup

This section describes the experimental setup used to evaluate various classifiers on the
PLS classification task. We provide details about the datasets, evaluation metrics, hyperpa-
rameters, and baselines used in our experiments.

Datasets. We evaluate our PLS classifiers on three datasets from two diverse domains,
biochemical and mechanical, as described in Section 4.4. The two World Intellectual Prop-
erty Organization (WIPO) datasets, Atz and Rito, and the InjVal dataset exhibit different
characteristics in terms of scope, patent offices, publication years, patent language, and
number of labels, as discussed in Section 4.4. The target labels in the WIPO datasets have
an average count well above one. In contrast, in InjVal, the average count is approximately
equal to one. This difference indicates multi-label and single-label classification settings,
respectively.

For evaluation, each dataset is split into two parts. The heldout set contains 15% of the
total instances and is never seen during model fine-tuning and development. The remaining
85% of the data are used for 5-fold cross-validation. In each fold, three folds are used for
training, one for tuning the models, and one as the validation set. Finally, each model is
evaluated on the heldout set, and the mean and standard deviation values are reported for
these five evaluations.

127 7. Neural Representations for Patent Landscape Study

Evaluation Metrics. Unlike CPC/IPC classification, PLS classification for the three PLS
datasets is a flat classification problem (Silla and Freitas, 2011). In a flat classification
setting, macro- and micro-average scores are calculated for precision, recall, and F1-score
(see Section 2.7). The micro-average score is computed over all the instances in the test set
and provides an overall estimate of a model’s performance. The macro-average score is an
average of the performance over all the labels, thus evaluating a model’s ability to perform
better in a class-imbalance scenario.

Hyperparameters. We define the hyperparameters for the classification model (TMM)
and graph embedding algorithm below.

TMM. We iteratively optimize the learning rate, hidden layer, and batch size and arrive
at the following hyperparameter values. With optimization, we find optimal corpus-specific
learning rates of 1e-5, 3e-5, and 5e-5 for InjVal, Rito, and Atz, respectively. Also, it is
found that the hidden layer size of 50 for all dense layers in the classification heads and
a batch size of 4 work well across datasets. We use a dropout rate of 0.25, the same as
for the CPC classification task in Section 5.4.3. The models are trained for a maximum of
50 epochs with early stopping if the macro-F1 for the validation set does not increase for
seven epochs.

Node2Vec. By merging the CPC/IPC co-occurrence graphs for the three datasets, we
produce a unified co-occurrence graph that consists of 9.5k nodes and 500k edges. This
subgraph is provided as input to the node2vec algorithm, generating label embeddings of
dimension 128. The p and q parameters determine whether the next hop is selected from
neighboring or non-neighboring nodes (see Section 2.5). We set the p and q values to 1,
giving equal weightage to both these cases. For computational efficiency, we perform 10
random walks with a maximum length of 50.

Baselines. We compare our approach against the following state-of-the-art neural and
non-neural classifiers:

TMM with ta. As a neural baseline, we use the setup proposed in Chapter 5 for multi-
label classification with TMM as the classification model. A document representation is
generated by concatenating the title and abstract and providing the result as input to a
SciBERT model, represented as ef (t+ a) or ta.

SVM. Benites et al. (2018) achieved competitive results with an SVM (see Section 2.6.1)
ensemble-based approach in the context of the ALTA 2018 shared task on multi-label IPC
classification (Mollá and Seneviratne, 2018). The 140k-dimensional feature vector for the
complete document text, i.e., t+ a+ cl+ desc, comprises TF-IDF values for 70k character
n-grams (3- to 6-chars) and 70k word n-grams (1- to 2-grams).

7. Neural Representations for Patent Landscape Study 128

Dataset Label Key phrases

InjVal Exhaust Line Injector exhaust line injector ; line injector
InjVal Bi-Fuel-Injector bi-fuel-injector ; bi-fuel injector
InjVal Water Injection water injection
InjVal Piezoelectric Actuator Spring piezoelectric actuator spring
InjVal Fuel Rail fuel rail
InjVal Dual Injection dual injection
InjVal Direct Injector Piezo direct injector piezo
InjVal Port Fuel Injector port fuel injector
InjVal Direct Injector Solenoid direct injector solenoid
InjVal Air Injection Valve air injection valve
InjVal Piezoelectric Actuators for Injectors piezoelectric actuators for Injectors ; piezoelectric actuator
InjVal Pump Injector Combination pump injector combination ; pump injector
InjVal Other Injectors (SEV) other injector
InjVal Piezoelectric Ceramic Material piezoelectric ceramic material ; piezoelectric ; ceramic
InjVal Natural Gas Injector (NGI) natural gas injector ; gas injector
InjVal High Pressure Pipe high pressure pipe ; high pressure

Rito Pharmaceutical Compositions pharmaceutical compositions ; composition ; pharmaceutical
Rito Synthesis and Crystalline Forms synthesis and crystalline forms ; crystalline form ; synthesis
Rito Stabilized Forms stabilized form
Rito Methods of Treating HIV methods of treating hiv ; hiv
Rito Prodrug prodrug
Rito Derivatives derivatives
Rito Combinations combination

Atz Autoimmune - Inflammatory autoimmune ; inflamatory ; autoimmune - inflammatory ;
autoimmune-inflammatory ; autoimmune inflammatory

Atz Cancer cancer
Atz Kaposi kaposi
Atz Neurologic neurologic
Atz IBD ibd ; inflammatory ; bowel disease ; inflammatory bowel disease
Atz Herpes herpes
Atz Hepatitis C Virus hepatitis ; hepatitis c virus ; c virus
Atz Serine Protease Inhibitor serine protease inhibitor ; protease inhibitor ; inhibitor

Table 7.1: PLS-oriented categories and associated key phrases.

Runtime. Each model is trained on a single Nvidia Tesla V100 GPU, with early stop-
ping if the macro-F1 score on the validation set does not improve for five epochs. The
transformer-based models take 20 to 24 hours to train for the WIPO datasets, whereas the
InjVal dataset takes 70 to 80 hours. In contrast, the models which only use metadata infor-
mation can be trained in one to two hours.

7.5 Results

In Section 7.3, we introduced various content and label embedding methods for represent-
ing patent text and CPC labels. Here, we evaluate the patent representations on the PLS
classification task to identify a patent document representation that works robustly across
PLS datasets. We analyze the performance of different embeddings when considered in-

129 7. Neural Representations for Patent Landscape Study

macro-avg. micro-avg.
Dataset Model P R F1 P R F1

InjVal search with key phrases on full-text 20.85 23.31 16.41 31.03 24.38 27.30
InjVal search with label name on full-text 17.70 7.52 9.30 51.41 6.32 11.26
InjVal search with label name on title + abstract 14.94 4.04 6.01 71.43 3.12 5.99
InjVal our best (TMM with ta⊕ cl⊕ desc; cpcgraph) 74.30 66.40 67.70 84.20 84.40 84.30

Rito search with key phrases on full-text 25.67 76.03 34.38 27.48 93.63 42.49
Rito search with label name on full-text 23.39 42.24 28.24 36.52 68.15 47.56
Rito search with label name on title + abstract 18.68 5.88 7.06 20.37 7.01 10.43
Rito our best (TMM with ta⊕ cl⊕ desc; cpcgraph) 64.40 49.50 53.90 70.70 65.10 67.70

Atz search with key phrases on full-text 49.11 86.51 56.71 42.53 83.58 56.38
Atz search with label name on full-text 51.24 60.88 51.27 59.71 61.19 60.44
Atz search with label name on title + abstract 55.21 11.05 17.11 89.29 12.44 21.83
Atz our best (TMM with ta⊕ cl⊕ desc; cpcgraph) 72.20 63.26 66.20 75.64 70.90 73.20

Table 7.2: Comparing performance using a simple baseline of searching label names or
associated key phrases in the document text vs. our more sophisticated robust
approach.

dividually or in combination and compare them to the neural and non-neural baselines.
Finally, we perform an ablation study to determine the minimum number of training in-
stances required to train a PLS classifier (Section 7.5.4).

7.5.1 Baseline with PLS-Oriented Categories

As the exact details of the manual categorization process for the WIPO datasets are un-
known, we experimented with a simple baseline that searches for PLS-oriented category
names or associated key phrases in the document text. Table 7.1 shows PLS-oriented cat-
egories and associated key phrases, while the results of the simple baseline are shown in
Table 7.2.

Although the simple baseline results in a high recall for Atz and a relatively high recall
for Rito, precision is rather low, highlighting the need for a more robust PLS classification
method. For InjVal, an extremely low recall indicates a document creation process with
rare or no use of category names or associated key phrases.

Based on our analysis, we conclude that for Atz, the domain expert likely extensively
used the label name or associated key phrases to determine a document’s relevance to a
label. However, despite being supported by NLP technology, as reported in the patent
landscape report2, we assume that the patent professional applied their domain expertise
when labeling documents. For the InjVal dataset, we know that the domain expert primarily
used IPC codes and associated figures within a patent document to determine its relevance.

2https://www.wipo.int/edocs/pubdocs/en/patents/946/wipo_pub_946_2.pdf [last accessed
December 10, 2023]

https://www.wipo.int/edocs/pubdocs/en/patents/946/wipo_pub_946_2.pdf

7. Neural Representations for Patent Landscape Study 130

7.5.2 Comparison of Patent Embeddings

We assess the efficacy of CPC-label and text embeddings on the PLS classification task,
individually or in combination with other embeddings.

Performance of Text Embeddings. The upper section of Table 7.3 displays the results
of various combinations of text embeddings. Incorporating both cl and desc consistently
improves the performance for the InjVal dataset. While adding cl yields mixed outcomes
for Rito and Atz, combining all three text embeddings generally produces favorable results,
with the exception of the macro-F1 score for Atz. This aligns with the findings presented
in Section 6.5, demonstrating that a document representation generated by combining all
field embeddings using vector summation yields the best performance.

Performance of CPC-label Embeddings. The middle portion of Table 7.3 displays the
results obtained using various CPC-label embeddings. Among these, SVM + cpctf.idf
produces the highest macro- and micro-F1 scores for InjVal and Rito. Across datasets,
embeddings from patent text exhibit superior performance compared to the best-performing
model using only CPC information (SVM + cpctf.idf), with one exception: for Rito, where
the macro-F1 achieved using SVM + cpctf.idf outperforms that reached using TMM + ta.

Among the more sophisticated CPC label feature vectors, TF-IDF with concatenated
label descriptions (cpctf.idf) performs the best, in terms of macro-F1, across all datasets.
Furthermore, upon comparing the neural label embeddings across datasets, it can be ob-
served that graph-based embeddings (cpcgraph) consistently outperform description-based
embeddings (cpctext).

Finally, to demonstrate that there is no one-to-one mapping between target labels and
CPC labels in the PLS datasets, the performance of the multi-hot encoded vector cpcmultihot
is evaluated as a sanity check. For InjVal, a high micro-F1 score with cpcmultihot indicates
that CPC/IPC labels were used in the dataset creation process; however, the macro-F1 score
is lower than it is for other CPC-label embeddings. While cpcmultihot is informative, its
performance can be enhanced using more sophisticated CPC-label embeddings.

In Section 4.5, we analyzed the association between CPC/IPC labels and PLS-oriented
categories by computing Point-wise Mutual Information (PMI) scores (Church and Hanks,
1990) for each CPC/IPC label and PLS category pair. We then analyzed and compared
the PMI values for the three PLS datasets. This analysis was motivated by the hypothesis
that a document representation method utilizing CPC-label embeddings would perform
better for a dataset with a higher association between CPC/IPC labels and PLS-oriented
categories. The analysis of PMI scores revealed that there is a stronger association between
CPC/IPC labels and PLS-oriented categories in InjVal compared to the other two datasets.
Furthermore, the findings presented in Table 7.3 indicate that the CPC-label embeddings
perform better for the InjVal dataset than the other two PLS datasets, thereby confirming
the hypothesis.

131 7. Neural Representations for Patent Landscape Study

InjVal Rito Atz
Model macro-F1 micro-F1 macro-F1 micro-F1 macro-F1 micro-F1

Benites et al. (2018): SVM 61.4±2.1 74.1±4.3 51.1±6.8 58.2±2.5 65.4±1.8 71.9±2.5

Pujari et al. (2021a): TMM with ta 65.2±2.1 79.2±1.3 44.3±4.0 66.0±3.0 62.1±2.2 70.6±1.1

TMM with ta⊕ cl 66.1±2.0 82.0±0.8 39.3±5.1 64.5±1.8 64.7±1.8 71.3±2.1

TMM with ta⊕ cl⊕ desc 66.2±4.9 82.2±1.7 49.1±6.9 66.3±1.9 62.6±4.0 71.2±2.6

TMM with cpcmultihot 49.8±3.7 77.8±0.9 17.3±2.5 42.0±8.0 23.8±5.3 39.9±5.2

TMM with cpctext 54.7±2.8 73.8±0.5 28.1±1.9 60.5±2.5 37.0±3.5 47.9±1.5

TMM with cpcgraph 58.6±1.7 76.5±0.7 35.2±5.5 62.9±1.9 44.2±3.2 50.8±3.8

TMM with cpctf.idf 60.4±1.9 75.9±0.8 39.2±6.0 60.5±3.9 44.4±2.5 52.8±2.2

SVM with cpctf.idf 63.0±1.2 76.7±1.4 45.2±5.4 61.4±2.1 50.1±1.9 58.6±1.2

TMM with ta⊕ cl⊕ desc; cpctf.idf 66.6±0.5 83.9±0.4 46.4±5.7 65.1±2.6 63.4±2.8 71.1±1.1

TMM with ta⊕ cl⊕ desc; cpcgraph 67.7±2.5 84.3±0.5 53.9±6.6 67.7±3.2 66.2±1.8 73.2±2.1

Table 7.3: Comparison of text-based and CPC-based embeddings. Benites et al. (2018)
use TF-IDF-based vectors for title, abstract, description, and claims.

macro-avg. micro-avg.
Dataset Model P R F1 P R F1

InjVal Benites et al. (2018): SVM 64.0±3.8 69.7±7.1 61.4±2.1 61.7±7.0 93.8±2.3 74.1±4.3

InjVal Pujari et al. (2021a): TMM with ta 68.8±3.5 65.2±1.9 65.2±2.1 78.8±1.3 79.6±1.5 79.2±1.3

InjVal TMM with ta⊕ cl⊕ desc; cpcgraph 74.3±6.7 66.4±1.6 67.7±2.5 84.2±0.8 84.4±0.6 84.3±0.5

Rito Benites et al. (2018): SVM 46.6±13.0 69.9±4.6 51.1±6.8 43.1±3.3 90.1±2.3 58.2±2.5

Rito Pujari et al. (2021a): TMM with ta 58.5±5.0 42.2±4.6 44.3±4.0 67.8±2.9 64.3±3.9 66.0±3.0

Rito TMM with ta⊕ cl⊕ desc; cpcgraph 64.4±6.9 49.5±6.5 53.9±6.6 70.7±2.6 65.1±4.9 67.7±3.2

Atz Benites et al. (2018): SVM 66.7±7.8 70.0±5.9 65.4±1.8 65.2±6.4 81.0±4.4 71.9±2.5

Atz Pujari et al. (2021a): TMM with ta 68.6±1.4 59.7±4.0 62.1±2.2 73.0±2.6 68.8±4.4 70.6±1.1

Atz TMM with ta⊕ cl⊕ desc; cpcgraph 72.2±3.9 63.3±1.5 66.2±1.8 75.6±4.1 70.9±1.9 73.2±2.1

Table 7.4: Comparison of our best-performing approach to the non-neural and neural base-
lines.

Performance When Combining CPC-label and Text Embeddings. When combining
CPC embeddings with the patent text embeddings and using TMM, cpcgraph outperforms
cpctf.idf (see bottom-most part of Table 7.3). While cpcgraph is directly trained as a dense
embedding, combining cpctf.idf with the TMM model is not straightforward due to its high
dimensionality. For scalability reasons, the cpctf.idf embedding is down-projected from
140k to 768 dimensions using a linear layer and then integrated into the TMM model. We
hypothesize that this dimensionality reduction is responsible for the drop in performance.
It can be concluded that a combination of all patent text field embeddings and cpcgraph,
i.e., TMM with ta⊕ cl⊕ desc; cpcgraph, is most effective for the PLS classification task
across datasets.

7. Neural Representations for Patent Landscape Study 132

50200 500 1000 2000
samples

0
10
20
30
40
50
60
70
80
90

sc
or

e

mean F1-micro with 4.8k samples = 84.3

mean F1-macro with 4.8k samples = 67.7

f1-macro
f1-micro

(a) InjVal

50 100 200 300
samples

0
10
20
30
40
50
60
70
80
90

sc
or

e

mean F1-micro with 400 samples = 67.7

mean F1-macro with 400 samples = 53.9

f1-macro
f1-micro

(b) Ritonavir

50 100 200 300
samples

0
10
20
30
40
50
60
70
80
90

sc
or

e
mean F1-micro with 325 samples = 73.2
mean F1-macro with 325 samples = 66.2

f1-macro
f1-micro

(c) Atazanavir

Figure 7.3: The classification performance of the best-performing model, i.e., TMM with
ta ⊕ cl ⊕ desc; cpcgraph, for varying numbers of training instances. As can
be seen, the optimal classification performance is achieved with 200 to 300
instances.

7.5.3 Comparison with the Baselines

Table 7.4 shows that our best-performing approach (TMM with ta⊕ cl⊕desc; cpcgraph)
outperforms the baselines in terms of macro- and micro-F1 scores across the three datasets.
The SVM model by Benites et al. (2018) excels in recall, but our method achieves much
higher precision and, hence, higher macro- and micro-F1 scores. Note that the prediction
threshold of the SVM model is optimized to maximize macro-F1 on the validation set.

By comparing TMM with ta to the neural baseline, we find that adding information
from additional text fields and CPC embeddings improves performance. This finding is
further supported by the fact that abstracts are often duplicated across patents (see Sec-
tion 4.6); this is particularly likely to be the case when performing a PLS within a narrow
field, for example, in relation to a specific invention. Therefore, it is of paramount impor-
tance to use additional textual content fields.

The proposed approach consistently outperforms the baselines across three datasets in
terms of micro- and macro-F1 due to balanced precision and recall scores. We suggest that
the proposed approach provides a robust method that may be used as a basis for future work
and for real-world PLS classification tasks.

133 7. Neural Representations for Patent Landscape Study

7.5.4 Minimum Training Instances

Motivated by the high cost of manual labeling by domain experts, we perform a study
to determine the minimum number of training instances required to train a classification
model that has acceptable performance with unseen data. Figure 7.3 shows macro-F1 and
micro-F1 scores over different training sizes where the training instances were randomly
sampled. Across datasets, an acceptable micro-F1 performance can be achieved with a
training size of between 200 to 300 instances. On Rito and Atz, near-optimal micro-F1
is achieved with a training size of 200 instances. On the InjVal dataset, a training size of
300 leads to a micro-F1 of around 70, compared to the maximum micro-F1 score of 84.3
achieved with the complete dataset of 4.8k instances. These results illustrate that with as
few as 200 instances systems can be developed that already have significant value for patent
professionals. However, the lower macro-F1 score indicates insufficient performance for
infrequent target labels; if this approach is applied in cases where target labels are infre-
quent, further research is needed to ensure high performance with minimal training data.

7.5.5 Summary of Results

We experimented with four different CPC label representations and found that the TF-IDF-
based feature vector performs best by capturing crucial information using domain-specific
keywords. Across three datasets, the best performance is achieved using a document rep-
resentation that combines the best-performing patent text embedding with graph-based la-
bel representation. Further, we show that acceptable classification performance can be
achieved with only 200-300 training instances. In the following, we evaluate the proposed
classification technique on a similar task, that of classifying PubMed articles in the Lit-
Covid dataset into categories relating to COVID-19 (Chen et al., 2021c).

7.6 Out-of-Domain Evaluation: Classifying PubMed
Articles by COVID-19 Categories

The document representations proposed in Section 7.3 are evaluated on the PLS classifica-
tion task in Section 7.5, where it is shown that a classifier’s performance can be improved
using a document representation that combines CPC labels and patent text. To demonstrate
the applicability of the proposed approach beyond the context of patents, we evaluate it on
a similar task: classifying PubMed articles to seven COVID-19-related categories. Specif-
ically, we participated in Task 5 of the BioCreative VII challenge (Chen et al., 2021b), the
objective of which was to automate the labeling of articles in the LitCovid document col-
lection (Chen et al., 2021c). LitCovid is a corpus containing articles related to COVID-19,
and automated labeling can facilitate the discovery of relevant articles.

Task 5 of the BioCreative challenge provides a dataset consisting of title and abstract
as text fields for each publication, as well as metadata such as pub_type, journal, and key-

7. Neural Representations for Patent Landscape Study 134

words. We experimented with various techniques using publication text and metadata to as-
sign seven categories to COVID-19-related articles. The seven categories are “Treatment”,
“Mechanism”, “Prevention”, “Case Report”, “Diagnosis”, “Transmission”, and “Epidemic
Forecasting”, The task setting was similar to that described by Sadat and Caragea (2022), in
which the labels corresponding to a classification scheme provided by the Association for
Computing Machinery (ACM) were predicted, with a research publication as input. They
model this as a multi-task learning problem, with two classification heads predicting ACM
labels and author-provided keywords. We see two problems with their approach. Firstly,
the author-provided keywords belong to a dynamic taxonomy since authors can add new
keywords with a submission. Secondly, the same concept might be represented by more
than one keyword. For example, “severe acute respiratory syndrome coronavirus 2” and
“sars-2” refer to same indicator as “SARS-CoV-2”.3

Like CPC labels, keywords are an essential source of semantic information, and in-
corporating them into a document representation may improve classification performance.
Preliminary experiments revealed that metadata encoded as multi-hot vectors are generally
informative, and among them, the multi-hot representation of author-provided keywords
performs best. Based on our assessment of the shortcomings of Sadat and Caragea (2022),
we represent an instance by combining the SciBERT (Beltagy et al., 2019) embeddings
for title + abstract and concatenated text for keywords using vector concatenation (Fig-
ure 7.4). We observe that the best-performing classifier utilizes the Transformer-based
Multi-task Model (TMM) proposed in Chapter 5 as the classification model. Compared
to the ML-Net baseline (Du et al., 2019) provided by the task organizers, our proposed
model performs better across all labels, improving macro-F1 by 13% in relative terms. Ad-
ditionally, our system performs comparably to the third quartile (Q3) of both macro- and
micro-F1 scores, indicating that it outperformed approximately 75% of competing submis-
sions. This result demonstrates that even though our system was initially developed for
patent classification, it is also effective in the biomedical domain on a task for classifying
PubMed articles.

7.6.1 Related Work

The shared task dataset is taken from the LitCovid database (Chen et al., 2021c), a col-
lection of PubMed articles relating to COVID-19 research. LitCovid is updated every
day, with new documents being added with manually labeled categories. In addition, the
task organizers provided ML-NET (Du et al., 2019) as a baseline, which uses a BiLSTM
and ELMo for classifying biomedical documents. Using a transformer model pre-trained
on the biomedical domain text, i.e., BioBERT (Lee et al., 2020), Gutierrez et al. (2020)
demonstrated improved topic classification performance over the LitCovid dataset com-
pared to BERT (Devlin et al., 2019). In a similar task, Sadat and Caragea (2022) propose
a multi-task classification approach that predicts categories for scientific documents and

3https://en.wikipedia.org/wiki/Category:SARS-CoV-2 [last accessed December 10, 2023]

https://en.wikipedia.org/wiki/Category:SARS-CoV-2

135 7. Neural Representations for Patent Landscape Study

Metadata type # of unique labels Avg. per instance

pub_type 50 1.5
journal 4,251 1.0
keywords 35,766 4.2

Table 7.5: Statistics for the metadata fields in the LitCovid dataset.

...

vector
concatenation

...

concatenate
keywords text

Figure 7.4: The document representation x is generated by combining the title and ab-
stract embeddings ta with keyword text embedding kSciBERT created with a
SciBERT-based text representation method ef (.).

user-provided keywords. We take an approach different from Sadat and Caragea (2022)
and incorporate the keywords directly into the document representation.

7.6.2 Methodology

The classification process follows a two-step approach. A publication is mapped to an n-
dimensional feature vector; this is then provided as input to the classification model, which
predicts a prediction score for each label. The LitCovid dataset provides title and abstract
as content fields and pub_type, journal, and keywords as metadata. We explore different
techniques for generating the feature vector by experimenting with metadata embeddings
either alone or combined with the publication-text embedding.

To generate a publication-text embedding, we concatenate the title and abstract fields
and input them to SciBERT (Beltagy et al., 2019). The sequence embedding generation
process is denoted by the method ef (.) and is described in Section 2.4.3, and the resulting
embedding is denoted as taSciBERT .

For the metadata, pub_type, journal, and keywords are possible sources of informa-
tion with which to generate a representation. We define the embeddings corresponding to
the metadata as follows:

7. Neural Representations for Patent Landscape Study 136

• As each article can only appear in a single journal, journal is encoded as a one-hot
vector, jone−hot.

• Since multiple pub_type values (e.g., ”Journal Article”, ”Randomized Controlled
Trial”, or ”Research Support Non-U.S. Gov’t”) might be associated with a document,
pub_type is represented as a multi-hot encoded vector, pmulti−hot. The instances in
the dataset are associated with 50 different publication types.

• A document might contain multiple author-provided keywords. Hence, keywords
are represented as a multi-hot encoded vector, kmulti−hot. Users are free to add any
text as keywords, and this results in a relatively large vocabulary and, thus, a sparser
feature vector as compared to jone−hot and pmulti−hot. Therefore, kmulti−hot is down-
projected to 768 using a linear layer.

• The keyword vocabulary contains terms that refer to the same entity or are seman-
tically similar, information which is not captured by kmulti−hot. Moreover, the set
of keywords is dynamic so that an author can add new keywords for their publica-
tion. For this reason, in addition to a multi-hot vector, we compute kSciBERT by first
concatenating keywords and then passing the concatenated text through a SciBERT
model.

As with the PLS document representation methods, we experiment with individual em-
beddings and a representation generated by concatenating the embeddings using the semi-
colon operator (;). As discussed in Section 3.2, the classification pipeline takes an instance
of the domain-specific document model, PubMedDM in this case, maps it to a domain-
independent document model, which is finally mapped to an instance of the data model that
is specific to a document representation method. Here, the best-performing document rep-
resentation method (taSciBERT ; kSciBERT) takes an instance of DocRepDM_Seq_Label
as input. DocRepDM_Seq_Label has text, max_length, and source_labels as attributes,
which hold the values for concatenated text from title and abstract, maximum sequence
length, and author-provided keywords, respectively (see Section 3.2.4). The document rep-
resentation process is depicted in Figure 7.4. The architecture of our classification model
is similar to the Transformer-based Multi-task Model (TMM) introduced in Chapter 5 and
used earlier in this chapter for PLS classification (Section 7.3).

7.6.3 Experimental Setup

Below, we define the experimental setup and provide details on the evaluation metrics,
hyperparameters, and baselines.

Dataset. The shared task dataset comprises 24,960 training instances and a validation set
of 6,239 instances. During the evaluation process, the participating teams’ submissions are
assessed on a blind test set of 2,500 instances with unknown target labels. The evaluation of

137 7. Neural Representations for Patent Landscape Study

Label-based

macro-avg. micro-avg.

P R F1 P R F1

TMM with pmulti−hot 46.2 29.1 31.7 59.1 39.7 47.5
TMM with jmulti−hot 59.6 33.4 41.5 70.6 45.9 55.6
TMM with kmulti−hot 61.3 42.0 49.6 71.3 51.3 59.7
TMM with kSciBERT 69.7 49.4 57.7 78.3 57.8 66.5

Table 7.6: Results for metadata-based document representations.

the submissions on the test set generates task statistics. To fine-tune the model parameters
and select the best-performing model with early stopping, we split the training data into
a training set containing 22,464 instances and a validation set with a size of 2,496. The
validation set is employed to assess the submitted runs.

Evaluation Metrics. As classifying PubMed articles is a flat classification task similar
to PLS classification, we evaluate the classifier’s output using precision, recall, and F1 as
evaluation metrics. For each evaluation metric, we compute both micro- and macro-average
scores (see Section 2.7). The micro-average score is computed over all the instances in the
test set and provides an overall estimate of a model’s performance. The macro-average
score is an average of the performance over all the labels, thus indicating a model’s perfor-
mance for infrequent class labels as well.

Hyperparameters. The vector dimensions for pmulti−hot, jone−hot, and kmulti−hot are
equal to the respective number of possible values, resulting in sizes of 50, 4251, and
35,766, respectively (Table 7.5). The best-performing document representation concate-
nates taSciBERT and kSciBERT , resulting in a 1536-dimensional vector. We use a learning
rate of 1e-5, dropout rate of 0.25, and a batch size of 64. Each of the models is trained on a
single Nvidia Tesla V100 GPU. Also, we apply early stopping if the macro-F1 score on the
validation set does not improve for five epochs. The transformer-based models take 100 to
120 hours to train, whereas the models using only metadata information can be trained in
one to two hours.

Baseline. The task organizers provide ML-Net (Du et al., 2019) as a baseline. To repre-
sent the document text, ML-Net uses an ELMo (Peters et al., 2018) to generate a sequence
of token embeddings, which are then aggregated using a BiLSTM (Schuster and Paliwal,
1997) and an attention layer to form a document vector. Finally, the classification model
predicts the label score and label count for a document vector and then uses these values to
predict the target label set.

7. Neural Representations for Patent Landscape Study 138

macro-avg. micro-avg.

P R F1 P R F1

Mean 86.7 80.1 81.9 89.7 86.2 87.8
Task Std 6.0 7.9 7.0 5.4 4.8 4.3
Statistics Q1 84.6 75.5 76.5 88.0 84.5 85.4

Median 88.4 83.9 85.3 91.1 88.4 89.3
Q3 90.8 85.6 86.7 92.5 89.7 90.8

Baseline (ML-Net) Du et al. (2019) 83.6 73.1 76.6 87.6 81.4 84.4
Models TMM with taSciBERT 85.7 86.1 85.6 91.2 88.9 90.0

TMM with taSciBERT ;kmulti−hot 84.7 87.3 85.4 89.3 90.2 89.7
TMM with taSciBERT ;kSciBERT 89.0 84.8 86.6 92.2 88.6 90.3

Table 7.7: Comparing different versions of the best-performing model to baseline and task
statistics.

7.6.4 Results

First, we evaluate the performance of different metadata embeddings in classifying the
publications into COVID-19-related categories, and then we combine the best-performing
metadata embedding with the publication-text embedding, i.e., taSciBERT .

Comparing Metadata and Publication-Text Embeddings. Table 7.6 reports our results
on the validation set when using one document representation vector at a time. We find that
among the metadata, keywords are most informative with regard to the classification task
and that the SciBERT-based embedding outperforms the multi-hot encodings.

Comparison with the Baselines. Table 7.7 reports results on the blind test set using the
shared task statistics provided by the task organizers. The last three rows show the results
of our submissions with three different document representation settings, which are defined
as follows:

• taSciBERT is generated by embedding the title and abstract with SciBERT.

• taSciBERT ;kmulti−hot is generated by concatenating the SciBERT-encoded title and
abstract with the multi-hot encoded keyword vector.

• taSciBERT ;kSciBERT is generated by concatenating the SciBERT-encoded title and
abstract with the SciBERT-encoded keywords embedding.

Among the different representation techniques, taSciBERT ;kSciBERT performs best on the
blind test set, achieving a score that is on par with the Q3 statistics for the task, meaning
that it is better than roughly 75% of the systems submitted for the challenge. In addition,
we observe that all our submitted runs perform better than the ML-Net baseline (Du et al.,
2019).

139 7. Neural Representations for Patent Landscape Study

Summary. We participated in Task 5 of the BioCreative VII challenge and proposed a
model architecture consisting of TMM as a classification model and a document represen-
tation combining the publication’s text and keywords, which performed much better than
the baseline system. This evaluation demonstrates the applicability of the approach we
propose for PLS in a classification setting other than patents.

7.7 Conclusions

To promote research on automating patent landscape studies, we compare various neural
and non-neural methods using input representations encompassing patent texts and CPC
information. As a result, we propose a competitive neural patent classification model that
harnesses both patent text and CPC label information and demonstrates robust performance
across all three datasets. We discovered that acceptable performance in terms of micro-F1
can be achieved with as few as 200 to 300 training instances, highlighting the practical
applicability of the proposed approach. To enhance performance for infrequent classes,
future research could explore the integration of our methods with active learning and few-
shot techniques. We demonstrate the applicability of our approach in a similar task setting
other than patents by evaluating it on the task of assigning COVID-19 categories to PubMed
articles.

7. Neural Representations for Patent Landscape Study 140

Chapter 8

Summary and Outlook

This thesis introduces novel patent classifiers that address the challenges associated with
patents. The proposed techniques aim to reduce the manual effort required to perform
patent categorization tasks in various business-critical use cases. Here, we summarize the
key challenges, highlight our contributions, and discuss the limitations of our work.

8.1 Summary and Conclusion

In this thesis, we focus on two patent classification tasks: CPC classification and PLS
classification (see Definitions 2.1 and 2.2, page 18), with potential for the application of
this work to other patent use cases, such as prior art search and patent alert systems. We
curate and release datasets for both tasks, which we utilize to conduct crucial analyses that
inform the design of novel document representation methods and classification models. In
this regard, we summarize our main contributions as follows:

(1) Conceptual Model for Classification. One of the requirement engineering chal-
lenges is to adapt the classification pipeline for new use cases and novel classification
techniques by expending minimal effort. A conceptual model can be valuable when de-
signing and adapting a business solution that has a machine learning system as one of the
components (Maass and Storey, 2021). A conceptual model offers stakeholders a unified
system perspective, illustrating different components and their interactions. As one of the
main contributions of this thesis, in Chapter 3, we propose a conceptual model for docu-
ment classification based on the GR4ML framework (Nalchigar et al., 2021). Further, we
expand this conceptual model by defining a classification pipeline that can be adapted to
various classification tasks and novel document representation methods.

(2) Patent Classification Datasets. To the best of our knowledge, no dataset currently
exists for the PLS classification task. As one of our significant contributions, we curate

8. Summary and Outlook 142

three datasets for PLS from two diverse domains (see Section 4.4). Two of these datasets
are based on PLSs conducted by the World Intellectual Property Organization (WIPO),
which we have further curated and enriched with additional fields obtained from PatBase.1

The third dataset, Injection Valve, consists of patents that were labeled by a domain expert
over the course of 25 years. Furthermore, the existing datasets (Li et al., 2018a; Lee and
Hsiang, 2019) for CPC classification only utilize a limited number of patent fields, namely
the patent’s title, abstract, and claims, excluding the more detailed description section.
As another of our major contributions to open-source datasets, we release the USPTO-70k
dataset to enable CPC classification research using the full texts of patents (see Section 4.3).

(3) Analysis on Duplicate Patent Text. Patents possess a unique characteristic whereby
text chunks, such as sentences and paragraphs, can be duplicated within and across docu-
ments. To the best of our knowledge, no concrete studies have analyzed the duplication of
text in patents. As a significant contribution of Chapter 4, we analyze duplicate sentences
and abstracts. We find that 15% of the sentences in the USPTO-70k dataset are duplicated
within and across patents, whereas 17% of the abstracts in the USPTO-7M dataset are du-
plicated (see Section 4.6). This analysis of duplicate text emphasizes the redundant nature
of patents and motivates us to explore patent representation techniques that select a subset
of the most informative semantic elements for representation.

(4) Transformer-Based Hierarchical Multitask Model. Although CPC classification
is a hierarchical task, previous works have predominantly treated it as a flat classifica-
tion task, often focusing on predicting labels at the third level of the hierarchy (Li et al.,
2018a; Lee and Hsiang, 2019; Zaheer et al., 2020). However, a hierarchical classifier that
learns to predict labels at different granularity levels may perform better in hierarchical
classification tasks. In this context, we draw inspiration from a non-neural hierarchical
classification technique based on the local classifier per node approach (Benites, 2019).
This technique involves training a classifier for each label in the taxonomy and utilizing the
hierarchical taxonomic information for prediction. However, training such a model with
a classifier for each label using a transformer-based language model is infeasible due to
memory constraints. To address this issue, as one of our significant contributions, we pro-
pose a memory-efficient local classifier per node approach called the Transformer-based
Multitask Model (TMM). TMM utilizes a shared transformer-based language model for
text representation and trains a classification head for each label (see Section 5.3). The
proposed technique outperforms a variety of neural and non-neural baselines (Li et al.,
2018a; Lee and Hsiang, 2019; Huang et al., 2019; Benites, 2019). Furthermore, we intro-
duce a hierarchical variant of TMM, the Transformer-based Hierarchical Multitask Model
(THMM). THMM leverages the hierarchical links in the taxonomy to transfer the learned
representation from a parent head to the heads corresponding to its children. Our analysis
demonstrates that THMM performs better for less frequent labels at the lower levels of the
CPC taxonomy due to these hierarchical links.

1https://www.patbase.com/express/login.asp [last accessed December 10, 2023]

https://www.patbase.com/express/login.asp

143 8. Summary and Outlook

(5) Efficient Patent Representation Using Full Patent Text. Patents are known for their
extensive length, which poses a challenge for text representation techniques, particularly
for transformer-based models that restrict input length to 512 tokens, such as BERT (Devlin
et al., 2019). Moreover, our analysis of duplicate text underscores the redundant nature of
the patent text. Therefore, in Chapter 6, we propose document representation techniques
that address these challenges by selecting a subset of the most informative text elements
and then utilizing them to generate a document representation using a transformer model
(see Section 6.3). As a significant contribution, we propose a document representation
technique that combines patent fields in order of their informativeness, as determined by
the performance of the corresponding text field on the CPC classification task. The training
process is efficient as the SciBERT model fine-tuned over the CPC classification task in
Chapter 5 is further used to generate text embeddings without any further fine-tuning of
SciBERT parameters. Additionally, we introduce a novel sentence ranker designed to select
the most informative sentences from a patent. Our evaluation demonstrates that optimal
classification accuracy can be achieved by utilizing a subset of the most informative text
elements (e.g., fields, sentences, and tokens).

(6) Neural Representations for Patent Landscape Study. Patent Landscape Studies
present a unique document classification scenario in which a training instance is labeled
with CPC/IPC labels and PLS-oriented categories. The labels in the two label sets are taken
from two different taxonomies. When testing the model, the CPC/IPC labels are known and
can be utilized to enrich document representation and predict PLS-oriented categories as
target labels. Our experiments demonstrate that incorporating CPC label information im-
proves prediction accuracy, and the proposed technique exhibits robust performance across
diverse PLS datasets (see Section 7.5). Furthermore, we demonstrate the applicability of
the proposed technique in domains other than patents through our evaluation of an out-of-
domain classification of PubMed articles into seven categories relating to COVID-19 (see
Section 7.6).

8.2 Outlook and Discussion

Above, we have highlighted the most important contributions of this thesis to automating
the patent classification problem and addressing key challenges. However, it is essential to
acknowledge that the problem is far from being completely solved. In this section, we will
discuss the limitations of our work, other existing challenges that have not been addressed,
and potential future directions to explore.

(1) Applying LLMs for Patent Classification. Brown et al. (2020) propose the Genera-
tive Pre-trained Transformer model version 3 (GPT-3) with 175 billion parameters, which
is trained with 570 GB data filtered from the Common Crawl dataset.2 They demonstrate

2https://commoncrawl.org/ [last accessed December 10, 2023]

https://commoncrawl.org/

8. Summary and Outlook 144

that when scaled to hundreds of billions of parameters and trained with a large amount of
text data, the large language models (LLMs) acquire the ability to perform considerably
better in unseen task settings in zero-shot and few-shot scenarios, even outperforming fine-
tuned models in some cases. To further enhance the ability of GPT-3 to follow instructions,
Ouyang et al. (2022) train a version of the GPT-3 model on human-generated instruction us-
ing Reinforcement Learning from Human Feedback (RLHF) technique (Christiano et al.,
2017). They showed that the power of LLMs could be harnessed without further fine-
tuning the model. This is achieved with in-context learning, a method that invokes the
task-specific capabilities of a model when a task description, a few examples, and an input
text are provided as prompts.

However, the applicability of in-context learning in a multi-label setting with long text
documents is limited for the following reasons. First, the few-shot in-context learning is
infeasible due to the limited context length of the input prompt for LLMs. Patents contain
12.5k tokens on average (see Figure 4.5, page 61), and the CPC/IPC taxonomy consists
of more than 600 subclass labels (see Section 2.1.3). Second, evaluating each document
text and label description for entailment, similar to Shen et al. (2021), might incur consid-
erable costs when hundreds of labels are involved, e.g., the CPC/IPC classification task.
Nevertheless, we find a few possible research directions for using LLMs for multi-label
classification, as described below.

Pu et al. (2023) show that summaries generated using LLMs are comparable to or better
than the human annotators. Further, with our evaluation in Section 6.5.2, we find that the
extractive summarization methods effectively identify the most informative sentences from
patents for the classification task. Given the redundant nature of texts in patents and the
ability of LLMs to effectively identify informative document text, we see the possibility
of employing LLMs for efficient classification of long text by performing summarization
before inference. As another related research direction, the LLMs can be employed for data
augmentation, particularly for class imbalance scenarios (Wang et al., 2023).

However, model fine-tuning is possible in relatively smaller models. Following the suc-
cess of GPT-3 and its variants, Meta AI3 released an open-source Large Language Model
Meta AI (LLaMA) model in three different variants, which primarily differ in the num-
ber of parameters as 7B, 13B, and 70B, respectively (Touvron et al., 2023). Unlike the
LLaMA-70B and GPT-3 models, it is feasible to fine-tune the LLaMA-7B and LLaMA-
13B models on a single Nvidia A100 GPU using Parameter-Efficient Fine-Tuning (PEFT)
methods, such as Low-Rank Adaptation (Hu et al., 2021), and Quantized Low-Rank Adap-
tation (Dettmers et al., 2023).

(2) Label-Based Document Representation. CPC/IPC labels play a crucial role in rep-
resenting important domain concepts, and their descriptions provide valuable information
associated with each label. In Chapter 6, label embeddings derived from the CPC/IPC la-
bel descriptions are used to select the most important sentences from a patent, whereas, in

3https://ai.meta.com/ [last accessed December 10, 2023]

https://ai.meta.com/

145 8. Summary and Outlook

Chapter 7, CPC/IPC label information is directly incorporated into the document represen-
tation, alongside the patent text, to predict PLS-oriented categories. In the first case, we use
the target label description to select informative sentences from a document. In contrast,
in the second case, the CPC/IPC embeddings are generated using sequence- and graph-
based representation methods and incorporated into the document representation to predict
PLS-oriented categories. Thus, incorporating CPC/IPC label information into document
representation is an important research direction for CPC/IPC and PLS classification tasks
(Niu and Cai, 2019).

(3) Few-Shot and Zero-Shot Classification. Following previous works targeting the
CPC classification task, we evaluate the ability of the classifier to predict labels up to the
third level of the hierarchy. This task reflects the process of pre-classification by which
patent applications are assigned to the correct department within the examination office.
However, the CPC/IPC class hierarchy extends to the fourth level and below, and these
lower levels consist of a relatively high number of labels compared to the first three levels.
The fourth level alone contains more than 10k labels, whereas the subgroup category, which
includes labels from the fifth level and below, contains over 250k labels. These two label
sets provide an ideal test bed for few-shot and zero-shot classification settings in which the
training set contains very few or no training examples for a label.

The THMM model architecture described in Chapter 5 is defined for labels up to the
third level of the CPC taxonomy. To predict labels at the fourth level, we can extend the
THMM architecture using a local classifier per level approach for the labels in the fourth
level. On the other hand, since most labels at the fifth level have very few or no labeled
examples, exploring generative models for extreme multi-label classification might be a
beneficial direction for further research (Zhang et al., 2023).

(4) Non-standard Terminology in Patents. Patent attorneys often employ a significant
amount of non-standard terminology when writing patent text, particularly text for the
claims field, with the intention of expanding the scope of inventions and obscuring informa-
tion. For example, in the patent US20050089604A14, an invention related to an ice cream
chip is described as "An edible crisp unitary pastry having a double-curvature and having a
planar longitudinal axis and a planar latitude axis perpendicular to the longitudinal axis".
Such use of non-standard terminology poses challenges when linking semantically similar
multi-word terms and comparing inventions that employ diverse terminology. In this thesis,
we employ SciBERT for text representation. SciBERT is a BERT variant pre-trained on the
scientific text and exhibits a higher vocabulary overlap with patent terminology than BERT.
Another important next step would be to link semantically similar multi-word terms. We
consider this an important area for future research, as addressing this issue could improve
the performance of patent retrieval and classification methods (Lyu et al., 2018; Nordquist
and Meyers, 2022).

4https://patents.google.com/patent/US20050089604A1 [last accessed December 10, 2023]

https://patents.google.com/patent/US20050089604A1

8. Summary and Outlook 146

(5) Long-Text Representation. Transformer-based language models generally perform
better than the neural and non-neural text representation techniques that existed before the
introduction of the transformer technique by Vaswani et al. (2017). The key transformer-
based text representation methods can be grouped into three broad categories based on
sequence length. The first group comprises methods that use the full-attention mechanism
with a restricted input length of 512 tokens (Devlin et al., 2019; Liu et al., 2019). By
employing sparse attention, the techniques comprising the second group can represent se-
quences of up to 4k tokens (Beltagy et al., 2020; Zaheer et al., 2020). The third group
comprises techniques capable of representing sequences of arbitrary length during infer-
ence (Bertsch et al., 2023). Given the wide range of available options, evaluating their
computational efficiency and classification accuracy is crucial to guide their applicability
for a patent classification task.

(6) Temporal Characteristics of Patent Text and Taxonomy. As domain terminology
evolves and the association between terms and labels changes over time, it is necessary to
update classifiers. The USPTO-70k dataset, introduced in Chapter 5, aims to mimic the
real-world setting with temporal data splits (see Section 4.3). However, it is essential to
note that the experimental setting differs from the intended usage in the examination office,
where patent applications and grants are added to the document collection on a weekly
basis. When targeting real-world usage, it is crucial to evaluate the impact of concept drift
on a classifier’s performance (D’hondt et al., 2014).

As the domain evolves, the set of associated concepts changes, and therefore, labels are
often added to or dropped from the label set; this necessitates adaptation of the classifica-
tion model architecture.5 Therefore, in addition to evaluation metrics, another important
evaluation criterion for CPC classification is the robustness of classification model archi-
tectures to changes in the target label set. Compared to flat classification approaches (Li
et al., 2018a; Lee and Hsiang, 2019), the TMM model can better adapt to a change in tax-
onomy. TMM consists of multiple classification heads, one for each label in the taxonomy.
This means that if the taxonomy changes, the heads corresponding to the affected labels
can be added or removed from the model.

Chapter Summary. With this thesis, we significantly contribute towards addressing the
critical research challenges associated with patent classification tasks performed in business-
critical applications. We curate and release new patent datasets and analyze data to identify
critical challenges associated with patent classification. In addition, we propose novel clas-
sification methods that generate a document representation using both the patent text and
label information and leverage the hierarchical taxonomy structure. We are optimistic that
the proposed techniques can be successfully applied to other domains and document types
by adapting the proposed classification pipeline with a few minor modifications.

5https://www.uspto.gov/web/patents/classification/cpc/html/cpc-notices-of-changes.html [last
accessed December 10, 2023]

https://www.uspto.gov/web/patents/classification/cpc/html/cpc-notices-of-changes.html

List of Figures

2.1 The structure of a typical patent based on Lim and Kwon (2016). 12

2.2 The bibliographic information for an example USPTO patent with the pub-
lication number “US 2022/0092440 A1”. The document in the figure is the
published version of a patent application under review. 14

2.3 An example showing the hierarchical structure of the Cooperative Patent
Classification (CPC) scheme. 15

2.4 An example of the Cooperative Patent Classification (CPC) scheme show-
ing the different hierarchical levels, an example label for each level, and
associated label descriptions. 16

2.5 The IPC labeling process within the Korean Intellectual Property Office
(KIPO) as illustrated by Lim and Kwon (2016). 17

2.6 The document classification model consists of two components. As the first
component, the document representation method g(d) maps a data object d
to an n-dimensional feature vector x. Next, the classification model hθ(x)

maps x to an output label vector lpred. 20

2.7 The step-by-step process to initialize, train, validate, and select a classifi-
cation model, based on Zhang et al. (2021) and Goodfellow et al. (2016). . . 20

2.8 Text classification model using a convolutional neural network for feature
extraction, based on Kim (2014). 24

2.9 The next node selection step for node2vec, based on Grover and Leskovec
(2016), depends on the search bias αpq(t, v) parameter which determines
the weight for an edge based on the shortest distance between the previous
node t and neighbors of the source node v (Equation 2.8). 27

2.10 A multilayer perceptron architecture based on Zhang et al. (2021). 31

List of Figures 148

2.11 The example shows CPC labels up to the third level of the hierarchy. Each
label has an associated prediction score based on the prediction of the cor-
responding label-specific classifier. A label is predicted if the prediction
for the parent label exceeds a pre-defined threshold. In this case, “A44B”
and “A44C” are not predicted as the prediction score for the parent “A44”
is less than the pre-defined threshold of 0.50. 33

2.12 Hierarchical Multi-label Classification Network (HMCN) architecture, based
on Wehrmann et al. (2018). 34

3.1 Conceptual model based on GR4ML (Nalchigar et al., 2021) for a business
analytics use case involving a document classification task. 38

3.2 Extending the document classification pipeline so that it can be applied
for multiple document classification tasks with minor adaptations (Sec-
tion 3.2.1). The patent document model (PDM) and PubMed document
model (PubMedDM) are defined in Section 3.2.2, the domain-independent
document model (DIDM) is defined in Section 3.2.3, and the data models
for document representation methods (DocRepDM) are described in Sec-
tion 3.2.4. 40

3.3 A patent document model showing different elements for a typical patent
based on Lim and Kwon (2016). 42

3.4 Document model for a typical PubMed instance within the LitCovid dataset
(Chen et al., 2021c). 44

3.5 The Domain-Independent Document Model (DIDM) represents the key
structural patterns observed across multiple document types, e.g., patents
and research publications. 45

3.6 Different types of DocRepDM and associated data models. 47

4.1 Entity-relationship diagram for USPTO bulk dataset showing different ta-
bles. Patent is the main table; other tables link to it through patent_id as
a foreign key attribute. 54

4.2 The process for creating the training split for the USPTO-70k dataset. A
similar process is followed to create the validation and test splits, in which
case the oversampling step (i.e., Step 3) is skipped. 56

4.3 Distribution by year for the USPTO-70k dataset. The patents in the training
set are from the years 2006 to 2017, the validation set contains instances
from 2018, and the test set contains instances from 2019. 57

4.4 CPC distribution for the top 100 CPC labels in the USPTO-70k dataset. . . 57

4.5 Token distribution for different patent fields in the USPTO-70k dataset. . . 61

4.6 Sentence distribution for different patent fields in the USPTO-70k dataset. . 61

4.7 Label distributions of PLS-oriented categories in three PLS datasets. 65

149 List of Figures

4.8 Instances per year for PLS datasets. The InjVal dataset is for a much longer
time horizon (around 100 years) than the Rito and Atz datasets. 66

4.9 Count of patent offices for the three PLS datasets. 66

4.10 The association between the top-25 CPC/IPC labels and PLS-oriented cat-
egories is calculated using Pointwise Mutual Information (PMI). 69

4.11 Mean Pointwise Mutual Information (PMI) values for top-k labels. The
InjVal dataset has much higher PMI values than the WIPO datasets. Of the
two WIPO datasets, Rito has higher PMI values than Atz. 71

4.12 Number of abstracts corresponding to the duplicate count values for the
USPTO-7M dataset. 71

4.13 Percentage of patents with duplicate abstracts for different technical fields
where a technical field corresponds to the first level labels of the CPC tax-
onomy. The statistics are computed for the USPTO-7M dataset. 72

4.14 Temporal distribution shows the percentage of patents with a duplicate ab-
stract out of the total number of patents published in a year for USPTO-7M. 73

4.15 Percentage of duplicate sentences for each patent field in USPTO-70k. . . . 73

4.16 Example of a sentence appearing multiple times within US6983343B2. As
shown in the figure, it is repeated three times within the summary (a sub-
section of the description). The same sentence also appears in the abstract
section. 74

4.17 Duplicate abstract count for PLS datasets. 75

5.1 Example of CPC taxonomy showing the hierarchical structure up to the
subclass labels, i.e., the third level of the taxonomy. 79

5.2 Model architecture for the Transformer-based Hierarchical Multi-task Model,
corresponding to the left subtree of the sample taxonomy shown in Fig-
ure 5.1 with root at node “A”. 83

5.3 Classification performance: macro-average F1 by hierarchy level. 90

6.1 Macro-f1 distribution across three label groups that are based on the hierar-
chical level of the taxonomy (top-left), the instance count for a label in the
training set (top-right), and the section label category it belongs (bottom),
i.e., labels in the first level of the CPC taxonomy (see Table 4.2, page 60). . 110

6.2 Performance of sentence rankers in the CPC classification task for different
values of p on the validation set, using THMM with xS

∗ for USPTO-70k. . 112

6.3 Distribution of sentence positions for different patent fields for USPTO-70k. 114

6.4 Distribution of sentence positions for top-50 sentences extracted from the
USPTO-70k validation set by various sentence rankers. 115

List of Figures 150

6.5 Performance of sentence rankers with different values of p using neural
(see THMM in Section 5.3) and non-neural (TwistBytes based on Ben-
ites (2019)) classification models and the USPTO-70k test set. TwistBytes
takes a TF-IDF vector as input generated by concatenating sentences from
S∗. THMM is used with xS∗ computed as a vector mean over embeddings
corresponding to sentences in S∗. 116

6.6 Classification performance for top-k tokens with TwistBytes (Benites, 2019)
and tfidf(.) for the USPTO-70k test set. 117

6.7 Distribution of macro-F1 scores on aggregating information at three levels
of granularity (field, sentence, and token). 118

7.1 Generating a patent representation x for the PLS classification task. 124
7.2 A co-occurrence graph is generated based on the co-occurrence relation

between CPC/IPC labels in the document set D, which is provided as input
to the graph-based representation method, i.e., node2vec, to generate label
embeddings. 125

7.3 The classification performance of the best-performing model, i.e., TMM
with ta⊕ cl⊕ desc; cpcgraph, for varying numbers of training instances.
As can be seen, the optimal classification performance is achieved with 200
to 300 instances. 132

7.4 The document representation x is generated by combining the title and
abstract embeddings ta with keyword text embedding kSciBERT created
with a SciBERT-based text representation method ef (.). 135

List of Tables

4.1 CPC label statistics for the USPTO-70k dataset showing the total labels
and an average number of labels per instance for three hierarchical levels:
section, class, and subclass, represented as 1, 2, and 3, respectively, in the
table. 58

4.2 Distribution of labels within three label groups for the USPTO-70k dataset. 60

4.3 Statistics showing the number of patents for which the subfields of brief-
summary are missing in USPTO-70k. 61

4.4 Target label statistics of PLS datasets. 64

4.5 Token counts for PLS datasets: Mean and standard deviation by dataset and
textual field. 65

4.6 CPC/IPC statistics for the PLS datasets. 67

4.7 Duplicate titles count for top-20 titles for USPTO-7M. 72

5.1 Classification results on USPTO test set comparing the performance of
the proposed models (TMM/THMM) against the flat neural (flat-CLS/flat-
CNN), hierarchical neural (HARNN), and hierarchical non-neural (Twist-
Bytes) baselines. 88

5.2 Classification results for the WIPO-alpha test set, comparing the perfor-
mance of the proposed models (TMM/THMM) against flat neural (flat-
CLS/flat-CNN), hierarchical neural (HARNN), and hierarchical non-neural
(TwistBytes) baselines. 89

5.3 Analysis of coverage for USPTO dataset. No Prediction: number of test
instances with no predicted labels at a given level. False Positives (error
analysis): average # hops between false positives and nearest true labels at
the third level. 90

6.1 Model performance for different document representation inputs. The op-
erators (+), (⊕), and (;) correspond to text concatenation, vector summa-
tion, and vector concatenation, respectively, for the USPTO-70k dataset. . . 110

List of Tables 152

6.2 Macro scores for the best-performing model and baselines for different
frequency-based groups, which contains labels based on their instance count
in the training set of the USPTO-70k dataset (see Section 4.3). 111

7.1 PLS-oriented categories and associated key phrases. 128
7.2 Comparing performance using a simple baseline of searching label names

or associated key phrases in the document text vs. our more sophisticated
robust approach. 129

7.3 Comparison of text-based and CPC-based embeddings. Benites et al. (2018)
use TF-IDF-based vectors for title, abstract, description, and claims. 131

7.4 Comparison of our best-performing approach to the non-neural and neural
baselines. 131

7.5 Statistics for the metadata fields in the LitCovid dataset. 135
7.6 Results for metadata-based document representations. 137
7.7 Comparing different versions of the best-performing model to baseline and

task statistics. 138

Bibliography

Louay Abdelgawad, Peter Kluegl, Erdan Genc, Stefan Falkner, and Frank Hutter. Opti-
mizing Neural Networks for Patent Classification. In Proceedings of the European Con-
ference on Machine Learning and Knowledge Discovery in Databases, Part III (ECML-
PKDD ’19), pages 688–703. Springer, 2019.

Aaron Abood and Dave Feltenberger. Automated Patent Landscaping. Artificial Intelli-
gence Law, 26(2):103–125, 2018.

Doreen Alberts, Cynthia Barcelon Yang, Denise Fobare-DePonio, Ken Koubek, Suzanne
Robins, Matthew Rodgers, Edlyn Simmons, and Dominic DeMarco. Introduction to
Patent Searching. In Current Challenges in Patent Information Retrieval, volume 29 of
The Information Retrieval Series, pages 3–43. Springer, 2011.

Juan Alcácer, Michelle Gittelman, and Bhaven Sampat. Applicant and Examiner Citations
in U.S. Patents: An Overview and Analysis. Research Policy, 38(2):415–427, 2009.

Sophia Althammer, Mark Buckley, Sebastian Hofstätter, and Allan Hanbury. Linguistically
Informed Masking for Representation Learning in the Patent Domain. In Proceedings
of the 2nd Workshop on Patent Text Mining and Semantic Technologies (PatentSemTech
’21) co-located with the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’21), 2021a.

Sophia Althammer, Sebastian Hofstätter, and Allan Hanbury. Cross-Domain Retrieval in
the Legal and Patent Domains: A Reproducibility Study. In Proceedings of the 43rd
European Conference on Advances in Information Retrieval (ECIR ’21), pages 3–17.
Springer, 2021b.

Linda Andersson, Mihai Lupu, João R. M. Palotti, Allan Hanbury, and Andreas Rauber.
When is the Time Ripe for Natural Language Processing for Patent Passage Retrieval? In
Proceedings of the 25th ACM International Conference on Information and Knowledge
Management (CIKM ’16), pages 1453–1462. ACM, 2016.

Bibliography 154

Emmanuel Anguiano-Hernández, Luis Villaseñor Pineda, Manuel Montes-y-Gómez, and
Paolo Rosso. Summarization as Feature Selection for Document Categorization on Small
Datasets. In Proceedings of the 7th International Conference on Advances in Natural
Language Processing (IceTAL ’10), pages 39–44. Springer, 2010.

Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash: A Fast Short-Input PRF. Cryp-
tology ePrint Archive, Paper 2012/351, 2012. URL https://eprint.iacr.org/2012/351.
[last accessed August 16, 2023].

Alan David Baddeley. Working Memory. Philosophical Transactions of the Royal Society
of London. B, Biological Sciences, 302(1110):311–324, 1983.

Siddhartha Banerjee, Cem Akkaya, Francisco Perez-Sorrosal, and Kostas Tsioutsiouliklis.
Hierarchical Transfer Learning for Multi-label Text Classification. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics (ACL ’19), pages
6295–6300. ACL, 2019.

Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling Up All Pairs Simi-
larity Search. In Proceedings of the 16th International Conference on World Wide Web
(WWW ’07), pages 131–140. ACM, 2007.

Iz Beltagy, Kyle Lo, and Arman Cohan. SciBERT: A Pretrained Language Model for
Scientific Text. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP ’19), pages 3613–3618. ACL, 2019.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The Long-Document
Transformer. CoRR, abs/2004.05150, 2020.

Fernando Benites. TwistBytes - Hierarchical Classification at GermEval 2019: Walking the
Fine Line (of Recall and Precision). In Proceedings of the 15th Conference on Natural
Language Processing (KONVENS ’19). German Society for Computational Linguistics
& Language Technology, 2019.

Fernando Benites, Shervin Malmasi, and Marcos Zampieri. Classifying Patent Applica-
tions with Ensemble Methods. In Proceedings of the Australasian Language Technology
Association Workshop (ALTA ’18), pages 89–92, 2018.

Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew R. Gormley. Unlimiformer:
Long-Range Transformers with Unlimited Length Input. CoRR, abs/2305.01625, 2023.

James E Bessen and Michael J Meurer. The Private Costs of Patent Litigation. In Proceed-
ings of the 2nd Annual Conference on Empirical Legal Studies Paper. Boston University
School of Law, 2008.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation. Journal
of Machine Learning Research, 3:993–1022, 2003.

https://eprint.iacr.org/2012/351

155 Bibliography

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov. Enriching Word
Vectors with Subword Information. Transactions of the Association for Computational
Linguistics, 5:135–146, 2017.

Andrei Z. Broder. On the Resemblance and Containment of Documents. In Proceedings
of the Compression and Complexity of Sequences 1997, pages 21–29. IEEE, 1997.

Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-Wise
Independent Permutations (Extended Abstract). In Proceedings of the 13th Annual ACM
Symposium on the Theory of Computing (STOC ’98), pages 327–336. ACM, 1998.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
Models Are Few-Shot Learners. In Proceedings of the 34th International Conference on
Neural Information Processing Systems (NIPS ’20). Curran Associates Inc., 2020.

Linkun Cai, Yu Song, Tao Liu, and Kunli Zhang. A Hybrid BERT Model That Incorpo-
rates Label Semantics via Adjustive Attention for Multi-Label Text Classification. IEEE
Access, 8:152183–152192, 2020.

Mosahid Khan Carsten Fink and Hao Zhou. Exploring the Worldwide Patent Surge. Eco-
nomics of Innovation and New Technology, 25(2):114–142, 2016.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis, and Ion Androutsopoulos.
Large-Scale Multi-Label Text Classification on EU Legislation. In Proceedings of the
57th Conference of the Association for Computational Linguistics, Volume 1: Long Pa-
pers (ACL ’19), pages 6314–6322. ACL, 2019.

Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond
Elliott. An Exploration of Hierarchical Attention Transformers for Efficient Long Doc-
ument Classification. CoRR, abs/2210.05529, 2022.

Soumya Chatterjee, Ayush Maheshwari, Ganesh Ramakrishnan, and Saketha Nath Jagar-
lapudi. Joint Learning of Hyperbolic Label Embeddings for Hierarchical Multi-label
Classification. In Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume (ACL ’21), pages 2829–2841.
ACL, 2021.

Fenxiao Chen, Yun-Cheng Wang, Bin Wang, and C.-C. Jay Kuo. Graph Representation
Learning: A Survey. APSIPA Transactions on Signal and Information Processing, 9:
e15, 2020.

Bibliography 156

Haibin Chen, Qianli Ma, Zhenxi Lin, and Jiangyue Yan. Hierarchy-aware Label Seman-
tics Matching Network for Hierarchical Text Classification. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Processing, Volume 1: Long Papers
(ACL-IJCNLP ’21), pages 4370–4379. ACL, 2021a.

Lei Chen, Houwei Chou, and Xiaodan Zhu. Developing Prefix-Tuning Models for Hierar-
chical Text Classification. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing: Industry Track (EMNLP ’22), pages 390–397. ACL,
2022.

Qingyu Chen, Alexis Allot, Robert Leaman, Rezarta Islamaj Dogan, and Zhiyong Lu.
Overview of the BioCreative VII LitCovid Track: Multi-label Topic Classification for
COVID-19 Literature Annotation. In Proceedings of the 7th BioCreative Challenge
Evaluation Workshop. (biocreative.bioinformatics.udel.edu), 2021b.

Qingyu Chen, Alexis Allot, and Zhiyong Lu. LitCovid: An Open Database of COVID-19
Literature. Nucleic Acids Research, 49(D1):D1534–D1540, 2021c.

Yen-Liang Chen and Yuan-Che Chang. A Three-Phase Method for Patent Classification.
Information Processing and Management, 48(6):1017–1030, 2012.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating Long Sequences
with Sparse Transformers. CoRR, abs/1904.10509, 2019.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
Properties of Neural Machine Translation: Encoder-Decoder Approaches. In Proceed-
ings of the 8th Workshop on Syntax, Semantics and Structure in Statistical Translation
(SSST-8 ’14), pages 103–111. ACL, 2014.

Seokkyu Choi, Hyeonju Lee, Eunjeong Park, and Sungchul Choi. Deep Learning for Patent
Landscaping using Transformer and Graph Embedding. Technological Forecasting and
Social Change, 175:121413, 2022.

Francois Chollet et al. Keras, 2015. URL https://github.com/fchollet/keras. [last
accessed December 10, 2023].

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep Reinforcement Learning from Human Preferences. In Proceedings of the
31st International Conference on Neural Information Processing Systems (NIPS ’17),
page 4302–4310. Curran Associates Inc., 2017.

Kenneth Ward Church and Patrick Hanks. Word Association Norms, Mutual Information,
and Lexicography. Computational Linguistics, 16(1):22–29, 1990.

https://github.com/fchollet/keras

157 Bibliography

Nigel S. Clarke, Björn Jürgens, and Victor Herrero-Solana. Blockchain Patent Landscap-
ing: An Expert Based Methodology and Search Query. World Patent Information, 61:
101964, 2020.

Iain M. Cockburn and Megan J. Macgarvie. Patents, Thickets and the Financing of
EarlyStage Firms: Evidence from the Software Industry. Journal of Economics & Man-
agement Strategy, pages 729–773, 2009.

Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Machine Learning, 20
(3):273–297, 1995.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M. Voorhees.
Overview of the TREC 2019 Deep Learning Track. CoRR, abs/2003.07820, 2020.

Xiang Dai, Ilias Chalkidis, Sune Darkner, and Desmond Elliott. Revisiting Transformer-
Based Models for Long Document Classification. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pages 7212–7230. ACL, 2022.

Jesse Davis and Mark Goadrich. The Relationship between Precision-Recall and ROC
Curves. In Proceedings of the 23rd International Conference on Machine Learning
(ICML ’06), page 233–240. ACM, 2006.

Cinthia Mikaela de Souza, Magali R. G. Meireles, and Paulo Eduardo Maciel de Almeida.
A comparative study of abstractive and extractive summarization techniques to label
subgroups on patent dataset. Scientometrics, 126(1):135–156, 2021.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and
Richard A. Harshman. Indexing by Latent Semantic Analysis. Journal of American
Society on Information Sciences, 41(6):391–407, 1990.

Bart Degroote and Pierre Held. Analysis of the Patent Documentation Coverage of the
CPC in Comparison with the IPC with a Focus on Asian Documentation. World Patent
Information, 54:S78–S84, 2018.

Zhongfen Deng, Hao Peng, Dongxiao He, Jianxin Li, and Philip Yu. HTCInfoMax: A
Global Model for Hierarchical Text Classification via Information Maximization. In
Proceedings of the 2021 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies (NAACL-HLT ’21),
pages 3259–3265. ACL, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient
Finetuning of Quantized LLMs. CoRR, abs/2305.14314, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational

Bibliography 158

Linguistics: Human Language Technologies (NAACL-HLT ’19), Volume 1 (Long and
Short Papers), pages 4171–4186. ACL, 2019.

Eva D’hondt, Suzan Verberne, Cornelis H. A. Koster, and Lou Boves. Text Representations
for Patent Classification. Computational Linguistics, 39(3):755–775, 2013.

Eva D’hondt, Suzan Verberne, Nelleke Oostdijk, Jean Beney, Cornelis H. A. Koster, and
Lou Boves. Dealing with Temporal Variation in Patent Categorization. Information
Retrieval, 17(5-6):520–544, 2014.

Ming Ding, Chang Zhou, Hongxia Yang, and Jie Tang. CogLTX: Applying BERT to
Long Texts. In Proceedings of the 34th International Conference on Neural Information
Processing Systems (NIPS ’20). Curran Associates Inc., 2020.

Rezarta Islamaj Dogan, Sun Kim, Andrew Chatr-aryamontri, Chih-Hsuan Wei, Donald C.
Comeau, Rui Antunes, Sérgio Matos, Qingyu Chen, Aparna Elangovan, Nagesh C.
Panyam, Karin Verspoor, Hongfang Liu, Yanshan Wang, Zhuang Liu, Berna Altinel,
Zehra Melce Hüsünbeyi, Arzucan Özgür, Aris Fergadis, Chen-Kai Wang, Hong-Jie Dai,
Tung Tran, Ramakanth Kavuluru, Ling Luo, Albert Steppi, Jinfeng Zhang, Jinchan Qu,
and Zhiyong Lu. Overview of the BioCreative VI Precision Medicine Track: Mining
Protein Interactions and Mutations for Precision Medicine. Database Journal of Biolog-
ical Databases Curation, 2019:bay147, 2019.

Yanru Dong, Peiyu Liu, Zhenfang Zhu, Qicai Wang, and Qiuyue Zhang. A Fusion Model-
Based Label Embedding and Self-Interaction Attention for Text Classification. IEEE
Access, 8:30548–30559, 2020.

Zican Dong, Tianyi Tang, Junyi Li, and Wayne Xin Zhao. A Survey on Long Text Modeling
with Transformers. CoRR, abs/2302.14502, 2023.

Jingcheng Du, Qingyu Chen, Yifan Peng, Yang Xiang, Cui Tao, and Zhiyong Lu. ML-Net:
Multi-label Classification of Biomedical Texts with Deep Neural Networks. Journal of
the American Medical Informatics Association, 26(11):1279–1285, 2019.

Christophe Dumet, Jérémy Pottier, Valérie Gouilleux-Gruart, and Hervé Watier. Insights
Into the IgG Heavy Chain Engineering Patent Landscape as Applied to IgG4 Antibody
Development. mAbs, 11(8):1341–1350, 2019.

Wafaa S. El-Kassas, Cherif R. Salama, Ahmed A. Rafea, and Hoda K. Mohamed. Auto-
matic Text Summarization: A Comprehensive Survey. Expert Systems with Applications,
165:113679, 2021.

Jeffrey L. Elman. Finding Structure in Time. Cognitive Science, 14(2):179–211, 1990.

Caspar J. Fall, A. Törcsvári, K. Benzineb, and G. Karetka. Automated Categorization in
the International Patent Classification. SIGIR Forum, 37(1):10–25, 2003.

159 Bibliography

Lintao Fang, Le Zhang, Han Wu, Tong Xu, Ding Zhou, and Enhong Chen. Patent2Vec:
Multi-view Representation Learning on Patent-Graphs for Patent Classification. World
Wide Web, 24(5):1791–1812, 2021.

Weiqi Feng and Dong Deng. Allign: Aligning All-Pair Near-Duplicate Passages in Long
Texts. In Proceedings of the 2021 International Conference on Management of Data
(SIGMOD ’21), pages 541–553. ACM, 2021.

Mario Franzosi. Novelty and Non-Obviousness: The Relevant Prior Art. Journal of World
Intellectual Property, 3:683, 2000.

Annemarie Friedrich, Heike Adel, Federico Tomazic, Johannes Hingerl, Renou Benteau,
Anika Marusczyk, and Lukas Lange. The SOFC-Exp Corpus and Neural Approaches to
Information Extraction in the Materials Science Domain. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics (ACL ’20), pages 1255–
1268. ACL, 2020.

Lukas Galke and Ansgar Scherp. Bag-of-Words vs. Graph vs. Sequence in Text Classifi-
cation: Questioning the Necessity of Text-Graphs and the Surprising Strength of a Wide
MLP. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics, Volume 1: Long Papers (ACL ’22), pages 4038–4051. ACL, 2022.

Alexander V Giczy, Nicholas A Pairolero, and Andrew A Toole. Identifying Artificial
Intelligence (AI) Invention: A Novel AI Patent Dataset. The Journal of Technology
Transfer, 47(2):476–505, 2022.

Mark Giereth. An Architecture for Visual Patent Analysis. PhD thesis, University of
Stuttgart, 2013. URL http://elib.uni-stuttgart.de/opus/volltexte/2013/8021/. [last
accessed December 10, 2023].

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity Search in High Dimensions
via Hashing. In Proceedings of 25th International Conference on Very Large Data Bases
(VLDB ’99), pages 518–529. Morgan Kaufmann Publishers Inc., 1999.

Juan-Carlos Gomez. Analysis of the Effect of Data Properties in Automated Patent Classi-
fication. Scientometrics, 121(3):1239–1268, 2019.

Juan-Carlos Gomez and Marie-Francine Moens. A Survey of Automated Hierarchical
Classification of Patents. In Professional Search in the Modern World, pages 215–249.
Springer, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.

Mattyws F. Grawe, Claudia A. Martins, and Andreia Gentil Bonfante. Automated Patent
Classification Using Word Embedding. In Proceedings of the 16th IEEE International
Conference on Machine Learning and Applications (ICMLA ’17), pages 408–411. IEEE,
2017.

http://elib.uni-stuttgart.de/opus/volltexte/2013/8021/

Bibliography 160

Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Networks. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD ’16), pages 855–864. ACM, 2016.

Bernal Jimenez Gutierrez, Jucheng Zeng, Dongdong Zhang, Ping Zhang, and Yu Su. Doc-
ument Classification for COVID-19 Literature. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 3715–3722. ACL, 2020.

Jacques Guyot, Karim Benzineb, and Gilles Falquet. myClass: A Mature Tool for Patent
Classification. In Proceedings of the International Conference of the Cross-Language
Evaluation Forum (CLEF’10). CEUR-WS.org, 2010.

Laurel L. Haak, Martin Fenner, Laura Paglione, Ed Pentz, and Howard Ratner. ORCID: A
System to Uniquely Identify Researchers. Learned Publishing, 25(4):259–264, 2012.

Jason Hepburn. Universal Language Model Fine-tuning for Patent Classification. In Pro-
ceedings of the Australasian Language Technology Association Workshop (ALTA ’18),
pages 93–96. ACL, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computa-
tion, 9(8):1735–1780, 1997.

Sebastian Hofstätter, Navid Rekabsaz, Mihai Lupu, Carsten Eickhoff, and Allan Hanbury.
Enriching Word Embeddings for Patent Retrieval with Global Context. In Proceedings of
the 41st European Conference on Advances in Information Retrieval (ECIR ’19), pages
810–818. Springer, 2019.

Jeremy Howard and Sebastian Ruder. Universal Language Model Fine-tuning for Text
Classification. In Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics, Volume 1: Long Papers (ACL ’2018), pages 328–339. ACL, 2018.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models.
CoRR, abs/2106.09685, 2021.

Jie Hu, Shaobo Li, Jianjun Hu, and Guanci Yang. A Hierarchical Feature Extraction Model
for Multi-Label Mechanical Patent Classification. Sustainability, 10:1–22, 2018.

Wei Huang, Enhong Chen, Qi Liu, Yuying Chen, Zai Huang, Yang Liu, Zhou Zhao, Dan
Zhang, and Shijin Wang. Hierarchical Multi-label Text Classification: An Attention-
based Recurrent Network Approach. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management (CIKM ’19), pages 1051–1060.
ACM, 2019.

Wei Huang, Chen Liu, Bo Xiao, Yihua Zhao, Zhaoming Pan, Zhimin Zhang, Xinyun Yang,
and Guiquan Liu. Exploring Label Hierarchy in a Generative Way for Hierarchical Text

161 Bibliography

Classification. In Proceedings of the 29th International Conference on Computational
Linguistics (COLING ’22), pages 1116–1127. ACL, 2022.

Anette Hulth and Beáta Megyesi. A Study on Automatically Extracted Keywords in Text
Categorization. In Proceedings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Computational Linguistics
(COLING-ACL ’06). ACL, 2006.

Takashi Inaba and Mariagrazia Squicciarini. ICT: A New Taxonomy Based on the Interna-
tional Patent Classification. OECD Science, Technology and Industry Working Papers,
2017.

Peter Ingwersen. Polyrepresentation of Information Needs and Semantic Entities: Ele-
ments of a Cognitive Theory for Information Retrieval Interaction. In Proceedings of
the 17th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’94), pages 101–110. ACM/Springer, 1994.

Mohit Iyyer, Varun Manjunatha, Jordan L. Boyd-Graber, and Hal Daumé III. Deep Un-
ordered Composition Rivals Syntactic Methods for Text Classification. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (ACL-IJCNLP ’15),
Volume 1: Long Papers, pages 1681–1691. ACL, 2015.

Ting Jiang, Deqing Wang, Leilei Sun, Zhongzhi Chen, Fuzhen Zhuang, and Qinghong
Yang. Exploiting Global and Local Hierarchies for Hierarchical Text Classification. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP ’22), pages 4030–4039. ACL, 2022.

Xiao-yu Jiang, Xiao-Zhong Fan, Zhi-Fei Wang, and Ke-Liang Jia. Improving the Perfor-
mance of Text Categorization Using Automatic Summarization. In Proceedings of the
2009 International Conference on Computer Modeling and Simulation (ICCMS ’09),
page 347–351. IEEE Computer Society, 2009.

Alistair Johnson, Tom Pollard, Lu Shen, Li-wei Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Celi, and Roger Mark. MIMIC-III, a
Freely Accessible Critical Care Database. Scientific Data, 3:160035, 2016.

Akanksha Joshi, Eduardo Fidalgo, Enrique Alegre, and Rocío Alaíz-Rodríguez. RankSum -
An Unsupervised Extractive Text Summarization Based on Rank Fusion. Expert Systems
with Applications, 200:116846, 2022.

Dylan Myungchul Kang, Charles Cheolgi Lee, Suan Lee, and Wookey Lee. Patent Prior Art
Search Using Deep Learning Language Model. In Proceedings of the 24th Symposium
on International Database Engineering and Applications (IDEAS ’20), pages 1–5. ACM,
2020.

Bibliography 162

Sue J. Ker and Jen-Nan Chen. A Text Categorization Based on Summarization Technique.
In Proceedings of the ACL-2000 Workshop on Recent Advances in Natural Language
Processing and Information Retrieval: Held in Conjunction with the 38th Annual Meet-
ing of the Association for Computational Linguistics, page 79–83. ACL, 2000.

Yoon Kim. Convolutional Neural Networks for Sentence Classification. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP
’14), pages 1746–1751. ACL, 2014.

Gary D. Kimura and Alan C. Shaw. The Structure of Abstract Document Objects. In Pro-
ceedings of the Second ACM-SIGOA Conference on Office Information Systems (COCS
’84), pages 161–169. ACM, 1984.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convo-
lutional Networks. In Proceedings of the 5th International Conference on Learning
Representations (ICLR ’17). OpenReview.net, 2017.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The Efficient Transformer.
In Proceedings of the 8th International Conference on Learning Representations (ICLR
’20). OpenReview.net, 2020.

Youngjoong Ko, Jinwoo Park, and Jungyun Seo. Automatic Text Categorization using
the Importance of Sentences. In Proceedings of the 19th International Conference on
Computational linguistics (COLING ’02). ACL, 2002.

Aleksander Kolcz, Vidya Prabakarmurthi, and Jugal Kalita. Summarization as Feature
Selection for Text Categorization. In Proceedings of the 10th International Conference
on Information and Knowledge Management (CIKM ’01), page 365–370. ACM, 2001.

Kamran Kowsari, Donald E. Brown, Mojtaba Heidarysafa, Kiana Jafari Meimandi,
Matthew S. Gerber, and Laura E. Barnes. HDLTex: Hierarchical Deep Learning for Text
Classification. In Proceedings of the 16th IEEE International Conference on Machine
Learning and Applications (ICMLA ’17), pages 364–371. IEEE, 2017.

Ralf Krestel, Renukswamy Chikkamath, Christoph Hewel, and Julian Risch. A Survey on
Deep Learning for Patent Analysis. World Patent Information, 65:102035, 2021.

Marc Krier and Francesco Zaccà. Automatic Categorisation Applications at the European
Patent Office. World Patent Information, 24(3):187–196, 2002.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. In Proceedings of the 25th International Confer-
ence on Neural Information Processing Systems (NIPS ’12), pages 1106–1114. Curran
Associates Inc., 2012.

Leah S. Larkey. Some Issues in the Automatic Classification of U.S. Patents. In Working
Notes for the AAAI-98 Workshop on Learning for Text Categorization, 1998.

163 Bibliography

Leah S. Larkey. A Patent Search and Classification System. In Proceedings of the 4th ACM
Conference on Digital Libraries (DL ’99), pages 179–187. ACM, 1999.

Changyong Lee and Gyumin Lee. Technology Opportunity Analysis Based on Recombi-
nant Search: Patent Landscape Analysis for Generation. Scientometrics, 121(2):603–
632, 2019.

Jieh-Sheng Lee and Jieh Hsiang. PatentBERT: Patent Classification with Fine-Tuning a
Pre-Trained BERT Model. CoRR, abs/1906.02124, 2019.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho
So, and Jaewoo Kang. BioBERT: A Pre-Trained Biomedical Language Representation
Model for Biomedical Text Mining. Bioinformatics, 36(4):1234–1240, 2020.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A New Benchmark Col-
lection for Text Categorization Research. The Journal of Machine Learning Research,
5:361–397, 2004.

Huahang Li, Shuangyin Li, Yuncheng Jiang, and Gansen Zhao. CoPatE: A Novel Con-
trastive Learning Framework for Patent Embeddings. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management (CIKM ’22), page
1104–1113. ACM, 2022.

Shaobo Li, Jie Hu, Yuxin Cui, and Jianjun Hu. DeepPatent: Patent Classification with
Convolutional Neural Networks and Word Embedding. Scientometrics, 117(2):721–744,
2018a.

Zuchao Li, Shexia He, Jiaxun Cai, Zhuosheng Zhang, Hai Zhao, Gongshen Liu, Linlin Li,
and Luo Si. A Unified Syntax-aware Framework for Semantic Role Labeling. In Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP ’18), pages 2401–2411. ACL, 2018b.

Sora Lim and Yongjin Kwon. IPC Multi-label Classification Based on the Field Func-
tionality of Patent Documents. In Proceedings of the 12th International Conference on
Advanced Data Mining and Applications (ADMA ’16), pages 677–691. Springer, 2016.

Chin-Yew Lin. ROUGE: A Package for Automatic Evaluation of Summaries. In Text
Summarization Branches Out, pages 74–81. Association for Computational Linguistics,
2004.

Naiyin Liu, Qianlong Wang, and Jiangtao Ren. Label-Embedding Bi-directional Attentive
Model for Multi-label Text Classification. Neural Processing Letters, 53(1):375–389,
2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Opti-
mized BERT Pretraining Approach. CoRR, abs/1907.11692, 2019.

Bibliography 164

Mihai Lupu, Atsushi Fujii, Douglas W. Oard, Makoto Iwayama, and Noriko Kando. Cur-
rent Challenges in Patent Information Retrieval, chapter Patent-Related Tasks at NTCIR,
pages 77–111. Springer, 2017.

Xiangru Lyu, Xueqiang Lyu, Fanshu Sun, and Zhian Dong. Patent Domain Terminology
Extraction Based on Multi-Feature Fusion and BiLSTM-CRF Model. In Proceedings
of the 4th conference on Fuzzy Systems and Data Mining (FSDM ’18), volume 309 of
Frontiers in Artificial Intelligence and Applications, pages 495–500. IOS Press, 2018.

Wolfgang Maass and Veda C. Storey. Pairing Conceptual Modeling with Machine Learn-
ing. Data & Knowledge Engineering, 134:101909, 2021.

Walid Magdy and Gareth J. F. Jones. A Study on Query Expansion Methods for Patent
Retrieval. In Proceedings of the 4th Workshop on Patent Information Retrieval (PaIR
’11), pages 19–24. ACM, 2011.

T.M.I. Mahlia, Z.A.H.S. Syazmi, M. Mofijur, A.E. Pg Abas, M.R. Bilad, Hwai Chyuan
Ong, and A.S. Silitonga. Patent Landscape Review on Biodiesel Production: Technology
Updates. Renewable and Sustainable Energy Reviews, 118:109526, 2020.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey.
Adversarial Autoencoders. CoRR, abs/1511.05644, 2016.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Infor-
mation Retrieval. Cambridge University Press, 2008.

Alan Marco, Joshua Sarnoff, and Charles deGrazia. Patent Claims and Patent Scope. Re-
search Policy, 48:103790, 2019.

Yu Meng, Jiaming Shen, Chao Zhang, and Jiawei Han. Weakly-Supervised Hierarchical
Text Classification. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (AAAI-IAAI-
EAAI ’19), pages 6826–6833. AAAI Press, 2019.

Rada Mihalcea and Samer Hassan. Using the Essence of Texts to Improve Document Clas-
sification. In Proceedings of the International Conference Recent Advances in Natural
Language Processing 2005. INCOMA Ltd., 2005.

Rada Mihalcea and Paul Tarau. TextRank: Bringing Order into Text. In Proceedings of the
2004 Conference on Empirical Methods in Natural Language Processing (EMNLP ’04),
pages 404–411. ACL, 2004.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word
Representations in Vector Space. In Proceedings of the 1st International Conference on
Learning Representations (ICLR ’13), 2013a.

165 Bibliography

Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Dis-
tributed Representations of Words and Phrases and their Compositionality. In Proceed-
ings of the 26th International Conference on Neural Information Processing Systems -
Volume 2 (NIPS ’13), pages 3111–3119. Curran Associates Inc., 2013b.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam Chenaghlu,
and Jianfeng Gao. Deep Learning–Based Text Classification: A Comprehensive Review.
ACM Computing Surveys, 54(3), 2021.

Diego Mollá and Dilesha Seneviratne. Overview of the 2018 ALTA Shared Task: Clas-
sifying Patent Applications. In Proceedings of the Australasian Language Technology
Association Workshop (ALTA ’18), pages 84–88, 2018.

Jan Morbach, Ri Hai, Birgit Bayer, and Wolfgang Marquardt. Document Models. In Col-
laborative and Distributed Chemical Engineering. From Understanding to Substantial
Design Process Support - Results of the IMPROVE Project, volume 4970 of Lecture
Notes in Computer Science, pages 111–125. Springer, 2008.

James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng Sun, and Jacob Eisenstein. Ex-
plainable Prediction of Medical Codes from Clinical Text. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-HLT ’18), Volume 1 (Long Papers),
pages 1101–1111. ACL, 2018.

Soroosh Nalchigar and Eric Yu. Designing Business Analytics Solutions. Business and
Information Systems Engineering, 62(1):61–75, 2020.

Soroosh Nalchigar, Eric Yu, and Karim Keshavjee. Modeling Machine Learning Require-
ments From Three Perspectives: A Case Report from the Healthcare Domain. Require-
ments Engineering, 26(2):237–254, 2021.

Andrew Ng. CS229 Lecture Notes. Stanford, 2022.

Muyao Niu and Jie Cai. A Label Informative Wide & Deep Classifier for Patents and Pa-
pers. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP ’19), pages 3436–3441. ACL, 2019.

Sean Nordquist and Adam Meyers. On Breadth Alone: Improving the Precision of Ter-
minology Extraction Systems on Patent Corpora. In Proceedings of the Natural Legal
Language Processing Workshop 2022, pages 1–11. ACL, 2022.

R.S. Norhasyima and T.M.I. Mahlia. Advances in CO2 Utilization Technology: A Patent
Landscape Review. Journal of CO2 Utilization, 26:323–335, 2018.

Juri Opitz and Sebastian Burst. Macro F1 and Macro F1. CoRR, abs/1911.03347, 2019.

Bibliography 166

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob
Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. Training Language Models to Follow
Instructions with Human Feedback. In Proceedings of the 36th International Conference
on Neural Information Processing Systems (NIPS ’22), volume 35, pages 27730–27744.
Curran Associates Inc., 2022.

Raghavendra Pappagari, Piotr Zelasko, Jesús Villalba, Yishay Carmiel, and Najim Dehak.
Hierarchical Transformers for Long Document Classification. In Proceedings of the
2019 IEEE Workshop on Automatic Speech Recognition and Understanding Workshop
(ASRU ’19), pages 838–844. IEEE, 2019.

Hyunji Hayley Park, Yogarshi Vyas, and Kashif Shah. Efficient Classification of Long
Documents Using Transformers. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics, Volume 2: Short Papers (ACL ’22), pages
702–709. ACL, 2022.

Raymond Pearl. Introduction to Medical Biometry and Statistics. Nature, 113:563–564,
1924.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao Bao, Lihong Wang, Yangqiu Song,
and Qiang Yang. Large-Scale Hierarchical Text Classification with Recursively Regu-
larized Deep Graph-CNN. In Proceedings of the 2018 World Wide Web Conference on
World Wide Web (WWW ’18), pages 1063–1072. ACM, 2018.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global Vectors
for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP ’14), pages 1532–1543. ACL, 2014.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online Learning of Social
Representations. In Proceedings of the 20th ACM International Conference on Knowl-
edge Discovery and Data Mining (SIGKDD ’14), pages 701–710. ACM, 2014.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep Contextualized Word Representations. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (NAACL-HLT ’18), Volume 1 (Long
Papers), pages 2227–2237. ACL, 2018.

Maxime Peyrard. A Simple Theoretical Model of Importance for Summarization. In Pro-
ceedings of the 57th Conference of the Association for Computational Linguistics (ACL
’19), Volume 1: Long Papers, pages 1059–1073. ACL, 2019.

167 Bibliography

Virginia Picanço-Castro, Cristiano Gonçalves Pereira, Dimas Tadeu Covas, Geciane Sil-
veira Porto, Aglaia Athanassiadou, and Marxa Leão Figueiredo. Emerging Patent Land-
scape for Non-Viral Vectors Used for Gene Therapy. Nature Biotechnology, 38(2):151–
157, 2020.

Florina Piroi and Allan Hanbury. Evaluating Information Retrieval Systems on European
Patent Data: The CLEF-IP Campaign, pages 113–142. Springer, 2017.

Florina Piroi, Mihai Lupu, Allan Hanbury, and Veronika Zenz. CLEF-IP 2011: Retrieval in
the Intellectual Property Domain. In CLEF 2011 Labs and Workshop, Notebook Papers,
volume 1177 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

Ekta Priyadarshini, G. Raj Gayathri, Samuel E Chakravarthy, Mohanakrishnan Vidhya, and
W.Abitha Memala. Analysis of Heart Disease Using Statistical Techniques. Journal of
Physics: Conference Series, 1770, 2021.

Xiao Pu, Mingqi Gao, and Xiaojun Wan. Summarization is (Almost) Dead. CoRR,
abs/2309.09558, 2023.

Subhash Chandra Pujari, Annemarie Friedrich, and Jannik Strötgen. A Multi-task Ap-
proach to Neural Multi-label Hierarchical Patent Classification Using Transformers. In
Advances in Information Retrieval - 43rd European Conference on IR Research, ECIR
2021, Virtual Event, March 28 - April 1, 2021, Proceedings, Part I, volume 12656 of
Lecture Notes in Computer Science, pages 513–528. Springer, 2021a.

Subhash Chandra Pujari, Tim Tarsi, Jannik Strötgen, and Annemarie Friedrich. Explainable
Prediction of Medical Codes from Clinical Text. In Proceedings of the BioCreative VII
Challenge Evaluation Workshop, 2021b.

Subhash Chandra Pujari, Fryderyk Mantiuk, Mark Giereth, Jannik Strötgen, and An-
nemarie Friedrich. Evaluating Neural Multi-Field Document Representations for Patent
Classification. In Proceedings of the 12th International Workshop on Bibliometric-
enhanced Information Retrieval (BIR ’22) co-located with 44th European Conference
on Information Retrieval (ECIR ’22), volume 3230 of CEUR Workshop Proceedings,
pages 13–27. CEUR-WS.org, 2022a.

Subhash Chandra Pujari, Jannik Strötgen, Mark Giereth, Michael Gertz, and Annemarie
Friedrich. Three Real-World Datasets and Neural Computational Models for Classifica-
tion Tasks in Patent Landscaping. In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP ’22), pages 11498–11513. ACL,
2022b.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP ’19), pages 3982–3992. ACL, 2019.

Bibliography 168

Steffen Remus, Rami Aly, and Chris Biemann. GermEval 2019 Task 1: Hierarchical Classi-
fication of Blurbs. In Proceedings of the 15th Conference on Natural Language Process-
ing, (KONVENS ’19), pages 280–292. German Society for Computational Linguistics &
Language Technology, 2019.

Georg Richter and Andrew MacFarlane. The Impact of Metadata on the Accuracy of Au-
tomated Patent Classification. World Patent Information, 27(1):13–26, 2005.

Julian Risch and Ralf Krestel. Learning Patent Speak: Investigating Domain-Specific Word
Embeddings. In Proceedings of the 13th IEEE International Conference on Digital In-
formation Management (ICDIM ’18), pages 63–68. IEEE, 2018.

Julian Risch and Ralf Krestel. Domain-Specific Word Embeddings for Patent Classifica-
tion. Data Technologies and Applications, 53(1):108–122, 2019.

Julian Risch, Nicolas Alder, Christoph Hewel, and Ralf Krestel. PatentMatch: A Dataset
for Matching Patent Claims & Prior Art. CoRR, abs/2012.13919, 2020a.

Julian Risch, Samuele Garda, and Ralf Krestel. Hierarchical Document Classification as
a Sequence Generation Task. In Proceedings of the ACM/IEEE Joint Conference on
Digital Libraries (JCDL ’20), pages 147–155. ACM/IEEE, 2020b.

Kervy Rivas Rojas, Gina Bustamante, Arturo Oncevay, and Marco Antonio Sobre-
villa Cabezudo. Efficient Strategies for Hierarchical Text Classification: External
Knowledge and Auxiliary Tasks. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics (ACL ’20), pages 2252–2257. ACL, 2020.

Frank Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain. Psychological review, 65 6:386–408, 1958.

Arousha Haghighian Roudsari, Jafar Afshar, Wookey Lee, and Suan Lee. PatentNet: Multi-
Label Classification of Patent Documents using Deep Learning based Language Under-
standing. Scientometrics, 127(1):207–231, 2022.

Benedek Rozemberczki and Rik Sarkar. Fast Sequence-Based Embedding with Diffusion
Graphs. In Complex Networks IX, pages 99–107. Springer, 2018.

Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural Networks. CoRR,
abs/1706.05098, 2017.

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic Routing between Cap-
sules. In Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems (NIPS ’17), page 3859–3869. Curran Associates Inc., 2017.

Mobashir Sadat and Cornelia Caragea. Hierarchical Multi-Label Classification of Scientific
Documents. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing (EMNLP ’22), pages 8923–8937. ACL, 2022.

169 Bibliography

Mike Schuster and Kuldip K. Paliwal. Bidirectional Recurrent Neural Networks. IEEE
Transactions on Signal Processing, 45(11):2673–2681, 1997.

Marawan Shalaby, Jan Stutzki, Matthias Schubert, and Stephan Günnemann. An LSTM
Approach to Patent Classification based on Fixed Hierarchy Vectors. In Proceedings of
the 2018 SIAM International Conference on Data Mining (SDM ’18), pages 495–503.
SIAM, 2018.

Walid Shalaby and Wlodek Zadrozny. Patent Retrieval: A Literature Review. Knowledge
and Information Systems, 61(2):631–660, 2019.

Eva Sharma, Chen Li, and Lu Wang. BIGPATENT: A large-scale dataset for abstractive
and coherent summarization. In Proceedings of the 57th Conference of the Association
for Computational Linguistics (ACL ’19), Volume 1: Long Papers, pages 2204–2213.
ACL, 2019.

Jiaming Shen, Wenda Qiu, Yu Meng, Jingbo Shang, Xiang Ren, and Jiawei Han. Taxo-
Class: Hierarchical Multi-Label Text Classification Using Only Class Names. In Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL-HLT ’21), pages
4239–4249. ACL, 2021.

Kazuya Shimura, Jiyi Li, and Fumiyo Fukumoto. HFT-CNN: Learning Hierarchical Cat-
egory Structure for Multi-label Short Text Categorization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing (EMNLP ’18), pages
811–816. ACL, 2018.

Carlos N. Silla and Alex A. Freitas. A Survey of Hierarchical Classification across Different
Application Domains. Data Mining Knowledge Discovery, 22(1–2):31–72, jan 2011.
ISSN 1384-5810.

Karen Sparck Jones. A Statistical Interpretation of Term Specificity and Its Application in
Retrieval, page 132–142. Taylor Graham Publishing, GBR, 1988.

Andreas Spitz, Dennis Aumiller, Bálint Soproni, and Michael Gertz. A Versatile Hyper-
graph Model for Document Collections. In Proceedings of the 32nd International Con-
ference on Scientific and Statistical Database Management (SSDBM ’20), pages 7:1–
7:12. ACM, 2020.

Chul Sung, Tejas Dhamecha, Swarnadeep Saha, Tengfei Ma, Vinay Reddy, and Rishi
Arora. Pre-Training BERT on Domain Resources for Short Answer Grading. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP ’19), pages 6071–6075. ACL, 2019.

Bibliography 170

Mirac Suzgun, Luke Melas-Kyriazi, Suproteem K. Sarkar, Scott Duke Kominers, and Stu-
art M. Shieber. The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured,
and Multi-Purpose Corpus of Patent Applications. CoRR, abs/2207.04043, 2022.

Pingjie Tang, Meng Jiang, Bryan (Ning) Xia, Jed W. Pitera, Jeffrey Welser, and Nitesh V.
Chawla. Multi-Label Patent Categorization with Non-Local Attention-Based Graph
Convolutional Network. In Proceedings of the 34th AAAI Conference on Artificial Intel-
ligence (AAAI ’20), pages 9024–9031, 2020.

Andrew A. Toole, Nicholas A. Pairolero, Alexander V. Giczy, James Q. Forman, Jesse
Frumkin, David B. Orange, Anne Thomas Homescu, Steve Melnick, Christyann Pul-
liam, Matthew Such, Kakali Chaki, Eric Nilsson, Ying Yu Chen, Vincent M. Gonzales,
Ben M. Rifkin, and Christian Hannon. Inventing AI: Tracing the Diffusion of Artificial
Intelligence with U.S. Patents. Technical report, United States Patent and Trademark
Office, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and
Efficient Foundation Language Models. CoRR, abs/2302.13971, 2023.

Tung Tran and Ramakanth Kavuluru. Supervised Approaches to Assign Cooperative Patent
Classification (CPC) Codes to Patents. In Proceedings of the 5th International Con-
ference on Mining Intelligence and Knowledge Exploration (MIKE ’17), pages 22–34.
Springer, 2017.

J Truett, Jerome Cornfield, and William B. Kannel. A Multivariate Analysis of the Risk
of Coronary Heart Disease in Framingham. Journal of Chronic Diseases, 20 7:511–24,
1967.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Proceedings
of the 31st International Conference on Neural Information Processing Systems (NIPS
’17), pages 5998–6008. Curran Associates Inc., 2017.

Suzan Verberne and Eva D’hondt. Patent Classification Experiments with the Linguistic
Classification System LCS in CLEF-IP 2011. In Proceedings of the International Con-
ference of the Cross-Language Evaluation Forum (CLEF’11). CEUR-WS.org, 2011.

Mihai Vlase, Dan Munteanu, and Adrian Istrate. Improvement of K-Means Clustering
Using Patents Metadata. In Proceedings of the 8th International Conference on Ma-
chine Learning and Data Mining in Pattern Recognition (MLDM ’12), pages 293–305.
Springer, 2012.

Thanh Vu, Dat Quoc Nguyen, and Anthony N. Nguyen. A Label Attention Model for
ICD Coding from Clinical Text. In Christian Bessiere, editor, Proceedings of the 29th

171 Bibliography

International Joint Conference on Artificial Intelligence (IJCAI ’20), pages 3335–3341.
International Joint Conferences on Artificial Intelligence Organization, 2020.

Xuepeng Wang, Li Zhao, Bing Liu, Tao Chen, Feng Zhang, and Di Wang. Concept-Based
Label Embedding via Dynamic Routing for Hierarchical Text Classification. In Pro-
ceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, Volume
1: Long Papers (ACL-IJCNLP ’21), pages 5010–5019. ACL, 2021.

Yue Wang, Dan Qiao, Juntao Li, Jinxiong Chang, Qishen Zhang, Zhongyi Liu, Guannan
Zhang, and Min Zhang. Towards Better Hierarchical Text Classification with Data Gen-
eration. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings
of the Association for Computational Linguistics: ACL 2023, pages 7722–7739. ACL,
2023.

Zihan Wang, Peiyi Wang, Lianzhe Huang, Xin Sun, and Houfeng Wang. Incorporating
Hierarchy into Text Encoder: a Contrastive Learning Approach for Hierarchical Text
Classification. In Proceedings of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers) (ACL ’22), pages 7109–7119. ACL,
2022a.

Zihan Wang, Peiyi Wang, Tianyu Liu, Binghuai Lin, Yunbo Cao, Zhifang Sui, and Houfeng
Wang. HPT: Hierarchy-aware Prompt Tuning for Hierarchical Text Classification. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP ’22), pages 3740–3751. ACL, 2022b.

Jonatas Wehrmann, Ricardo Cerri, and Rodrigo C. Barros. Hierarchical Multi-Label Clas-
sification Networks. In Proceedings of the 35th International Conference on Machine
Learning (ICML ’18), pages 5225–5234. PMLR, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew.
HuggingFace’s Transformers: State-of-the-art Natural Language Processing. CoRR,
abs/1910.03771, 2019.

Chih-Hung Wu, Yun Ken, and Tao Huang. Patent Classification System Using a New
Hybrid Genetic Algorithm Support Vector Machine. Applied Soft Computing, 10(4):
1164–1177, 2010.

Lin Xiao, Xin Huang, Boli Chen, and Liping Jing. Label-Specific Document Represen-
tation for Multi-Label Text Classification. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP ’19), pages 466–475. ACL,
2019.

Bibliography 172

Yijin Xiong, Yukun Feng, Hao Wu, Hidetaka Kamigaito, and Manabu Okumura. Fusing
Label Embedding into BERT: An Efficient Improvement for Text Classification. In Find-
ings of the Association for Computational Linguistics (ACL-IJCNLP ’21). ACL, 2021.

Linli Xu, Sijie Teng, Ruoyu Zhao, Junliang Guo, Chi Xiao, Deqiang Jiang, and Bo Ren.
Hierarchical Multi-label Text Classification with Horizontal and Vertical Category Cor-
relations. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing (EMNLP ’21), pages 2459–2468. ACL, 2021.

Xiaobing Xue and W. Bruce Croft. Automatic Query Generation for Patent Search. In
Proceedings of the 18th ACM Conference on Information and Knowledge Management
(CIKM ’09), pages 2037–2040. ACM, 2009.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and
Quoc V. Le. XLNet: Generalized Autoregressive Pretraining for Language Understand-
ing. CoRR, abs/1906.08237, 2020.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J. Smola, and Eduard H.
Hovy. Hierarchical Attention Networks for Document Classification. In Proceedings
of the 2016 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (NAACL-HLT ’16), pages 1480–
1489. ACL, 2016.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph Convolutional Networks for Text Clas-
sification. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence and 31st
Innovative Applications of Artificial Intelligence Conference and 9th AAAI Symposium
on Educational Advances in Artificial Intelligence (AAAI-IAAI-EAAI ’19), pages 7370–
7377. AAAI Press, 2019.

Selen Yücesoy Kahraman, Türkay Dereli, and Alptekin Durmuşoğlu. Forty Years of Au-
tomated Patent Classification. International Journal of Information Technology & Deci-
sion Making, pages 1–32, 2023.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr
Ahmed. Big Bird: Transformers for Longer Sequences. In Proceedings of the 34th
International Conference on Neural Information Processing Systems (NIPS ’20). Curran
Associates Inc., 2020.

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep Learning.
CoRR, abs/2106.11342, 2021.

Ruohong Zhang, Yau-Shian Wang, Yiming Yang, Donghan Yu, Tom Vu, and Likun
Lei. Long-tailed Extreme Multi-label Text Classification by the Retrieval of Generated
Pseudo Label Descriptions. In Findings of the Association for Computational Linguis-
tics: EACL 2023, pages 1092–1106. ACL, 2023.

173 Bibliography

Hao Zheng and Mirella Lapata. Sentence Centrality Revisited for Unsupervised Summa-
rization. In Proceedings of the 57th Conference of the Association for Computational
Linguistics (ACL ’19), Volume 1: Long Papers, pages 6236–6247. ACL, 2019.

Jie Zhou, Chunping Ma, Dingkun Long, Guangwei Xu, Ning Ding, Haoyu Zhang, Pengjun
Xie, and Gongshen Liu. Hierarchy-Aware Global Model for Hierarchical Text Classifi-
cation. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics (ACL ’20), pages 1106–1117. ACL, 2020.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu, Hongyun Bao, and Bo Xu. Text
Classification Improved by Integrating Bidirectional LSTM with Two-dimensional Max
Pooling. In Proceedings of the 26th International Conference on Computational Lin-
guistics (COLING ’16), pages 3485–3495. ACL, 2016.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Anto-
nio Torralba, and Sanja Fidler. Aligning Books and Movies: Towards Story-Like Visual
Explanations by Watching Movies and Reading Books. In Proceedings of the 2015 IEEE
International Conference on Computer Vision (ICCV ’15), pages 19–27. IEEE, 2015.

Geoffrey Zweig and Chris J.C. Burges. The Microsoft Research Sentence Comple-
tion Challenge. Technical Report MSR-TR-2011-129, Microsoft Research, December
2011. URL https://www.microsoft.com/en-us/research/publication/the-microsoft-
research-sentence-completion-challenge/.

https://www.microsoft.com/en-us/research/publication/the-microsoft-research-sentence-completion-challenge/
https://www.microsoft.com/en-us/research/publication/the-microsoft-research-sentence-completion-challenge/

	Introduction
	Motivating Patent Classification
	Outline, Challenges, and Contributions
	Research Publications, Datasets, and Code Repositories

	Background
	Patent
	Examination Process
	Patent Fields
	Patent Taxonomies

	Use Cases and Tasks
	Model Initialization, Training, Validation, and Selection
	Text-Based Representation
	Non-Neural Text Representation
	Neural Text Representation: Pre-BERT
	Neural Text Representation: BERT

	Graph-Based Representation
	Classification Model
	Non-Neural Classifiers
	Multilayer Perceptron
	Hierarchical Classification Models

	Evaluation Metrics

	Conceptual Model for Document Classification
	Conceptual Model
	Classification Pipeline
	Pipeline Structure
	Domain-Specific Document Models
	Domain-Independent Document Model
	Data Model for Representation Methods

	Datasets and Analysis
	Motivation and Contributions
	Related Datasets
	USPTO-70k
	USPTO Data Dump
	Dataset Creation Process
	Corpus Statistics
	Summary for USPTO-70k

	Patent Landscaping Datasets
	Injection Valves Dataset
	Ritonavir and Atazanavir
	Corpus Statistics

	Analyzing Association Between CPC/IPC Labels and PLS-Oriented Target Labels
	Analyzing Duplicate Texts in Patents
	Conclusions

	CPC Classification using Transformers
	Motivation and Contributions
	Related Work
	Model Architecture
	Overview
	Document Representation
	Classification Models

	Experimental Setup
	Dataset
	Evaluation Metrics
	Hyperparameters
	Baselines

	Results
	Classification Performance
	Coverage
	Error Analysis

	Conclusions

	Efficient Neural Full-Text Patent Representations
	Motivation and Contributions
	Related Work
	Patent Representations
	Field-Based Representation
	Sentence-Based Representation
	Token-Based Representation

	Experimental Setup
	Results
	Performance for Field-Based Representations
	Performance for Sentence-Based Representations
	Performance for Token-Based Representations

	Conclusions

	Neural Representations for Patent Landscape Study
	Motivation and Contributions
	Related Work
	Methodology
	Experimental Setup
	Results
	Baseline with PLS-Oriented Categories
	Comparison of Patent Embeddings
	Comparison with the Baselines
	Minimum Training Instances
	Summary of Results

	Out-of-Domain Evaluation: Classifying PubMed Articles by COVID-19 Categories
	Related Work
	Methodology
	Experimental Setup
	Results

	Conclusions

	Summary and Outlook
	Summary and Conclusion
	Outlook and Discussion

	List of Figures
	List of Tables
	Bibliography

