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Zusammenfassung

In dieser Dissertation befassen wir uns mit dem makroskopischem Grenzwert von Modellen

von scharfen Grenzschichten, welche eine Näherung eines Modells von Komura, Shimokawa

und Andelman (2006) zur Untersuchung von Musterbildung auf Zellmembranen basierend

auf chemischen und mechanischen Wechselwirkungen in biologischen Membranen ist.

Wir führen das zugehörige Minimierungsproblem auf ein nicht-lokales isoperimetrischen

Problem zurück, für welches wir sub- und superkritische Regime für die relative Stärke

der lokalen und nicht-lokalen Wechselwirkungen finden. Unter Benutzung der Autoko-

rrelationsfunktion erhalten wir eine asymptotische Entwicklung der zugeörigen Energie

bezüglichen des Längenparameters bis zur ersten Ordnung. Wir berechnen den Γ–Limes

des Energiefunktionals im subkritischen Regime, sowie den Γ–Limes für das reskalierte

Energiefunktional im kritischen Regime. Weiterhin zeigen wir höhere Regularität für die

Autokorrelationsfunktion für hinreichend reguläre Gebiete zusammen mit Formeln für

dessen Ableitungen ausgewertet am Ursprung.





Abstract

In this thesis, we derive a macroscopic limit for a sharp interface version of a model

proposed by Komura, Shimokawa and Andelman (2006) to investigate pattern formation

due to competition of chemical and mechanical forces. The problem is reformulated as a

non-local isoperimetric problem, for which we identify sub- and supercritical parameter

regimes in terms of the relative strength of the competing local and non-local interactions.

Using the Autocorrelation Function, we find an asymptotic expansion of the energy

in terms of the length scale parameter up to first order and derive the Γ–limit in the

subcritical regime, and the Γ–limit of the rescaled energy in the critical regime. Concerning

the analysis of the Autocorrelation Function, we show that regularity near the origin is

inherited from the regularity of the corresponding set and present formulas for higher

derivatives at the origin.
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1. Introduction

We consider the family of nonlocal isoperimetric problems

Eγ,ε(Ω) := Per(Ω)− γ

εn+1

�
Rn

K( z
ε
)

�
Tn

|χΩ(x+ z)− χ
Ω(x)| dx dz, (1.1)

where Ω ⊂ Tn is a set of finite perimeter and where Tn, n ≥ 2, is the n–dimensional unit

flat torus. Here, γ > 0 is a fixed parameter and K is a radially symmetric kernel with

certain integrability conditions. This class of problems appears in mathematical models

of complex materials (such as pattern formation in biological membranes, see Chapter

3), diblock copolymers (see [CP10, JP17]) and cell motility (see [CMM20]). We derive

various results concerning the asymptotic behaviour of Eγ,ε as ε→ 0 such as compactness

properties and Γ–convergence.

The family of functionals (1.1) is a more general sharp interface version of a model proposed

in [KSA06] for the investigation of structures which arise due to competing diffusive and

mechanical forces. In particular, it is relevant for the modelling of formation of so called

lipid rafts in cell membranes. These are complex nanostructures made up of lipids, proteins,

and cholesterol and are believed to be responsible for many biological phenomena such as

transmembrane signaling and cellular homeostasis (see e.g. [SI97, LL15, RS05, SP13]).

We comment on the relation between the diffuse and sharp interface model in Chapter 3.

This thesis is concerned with the asymptotic behaviour of Eγ,ε as ε→ 0. More precisely

we compute the Γ–limit of the family Eγ,ε under suitable assumptions on K. We identify

two parameter regimes (sub– and supercritical) with respect to γ and show that the

limit problem is the isoperimetric problem (with modified prefactor) in the subcritical

regime. In the supercritical regime, we show that minimising sequences of Eγ,ε always

have unbounded perimeter. After rescaling, the energy has more subtle compactness and

non-compactness properties in the critical regime. We will derive sufficient conditions for

compactness and non-compactness and compute the Γ–limit in the criticial regime if the

energy is rescaled by 1
ε
(see Chapter 5).

Our main observation is that both the perimeter and the non–local term in (1.1) can

be represented in terms of the (symmetrised) Autocorrelation Function introduced in

Chapter 4:

cΩ(r) :=

 
Sn−1

�
Tn

χ
Ω(x+ rw)χΩ(x) dx dH n−1(w). (1.2)

The formulation of the energy in terms of the Autocorrelation Function (Theorem 5.6)
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reveals the separation in sub- and supercritical regimes in terms of γ, and that the

competing effects of the local and non-local parts of the energy (concentration versus

oscillation) only appear in the zeroth order. For more details on the Autocorrelation

Function, see Chapter 4.

Related Literature The Γ–convergence of (1.1) has been considered in different setups.

In [Peg21], the author studied the stability of large mass minimisers of (1.1) in Rn (see

also [MP22, GMP22]) and established the Γ–convergence in the subcritical regime under

more restrictive assumptions on the kernel K, namely that K ≥ 0. The ideas involve

sharp estimates of the non–local term by the classical perimeter for the lower bound

and the pointwise convergence of the non–local term proved in [D0́2] (see also [BBM01])

for the upper bound. Apart from the different underlying geometry, we will relax the

assumption of non–negativity of the kernel and recover their Γ–convergence result. We

note that because of the aforementioned relaxation, a major challenge arises in the control

of the non-local term. Lower bounds are more delicate since the control by the perimeter

usually is achieved by estimating the integral of the difference quotient pointwise within

the non-local term. If the kernel is allowed to have negative values, this estimate no longer

provides a lower bound. We deal with this issue by reformulating the energy in terms of

the Autocorrelation Function and shifting the desired control in terms of the perimeter to

the Autocorrelation Function. This reformulation results in working with the integrated

kernel (rather than the kernel itself) and allows us to relax the non-negativity.

The Γ–convergence of (1.1) in the special case where K is the solution to the Helmholtz

equation on domains with different boundary conditions was considered in [MW23]. Their

techniques are based on PDE arguments and they require the family of kernels to be

solutions of the Helmholtz equation, whereas our techniques work for a larger class of

kernels and are based on decay estimates. In particular, we recover the Γ–convergence

result and are able to extend it to kernels which are given by K + (−∆)
s
2K = δ0 for any

1 < s ≤ 2 (see Lemma A.14).

Different classes of kernels in isoperimetric problems, where the non–local term has the same

scaling as the local one (see (1.9)), were considered e.g. in [CN20, MW23, MS19, RW00].

Representing the energy in terms of the Autocorrelation Function and exploiting its

fine properties has been proposed for a similar family of energies in [KS23]. There, the

Autocorrelation Function was used to derive a second order expansion for the perimeter

functional. However, the family of kernels is subject to different conditions and converge

monotonically to a measurable function with certain integrability properties, whereas

our family of kernels is assumed to form an approximation of the identity. Due to

the highly singular nature of the considered kernels near the origin, our techniques

require more information about the regularity of the Autocorrelation Function. Due

to the aforementioned monotone convergence, higher regularity of the Autocorrelation

Function is not required in [KS23]. For this purpose, we show regularity properties of the
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Autocorrelation Function for higher order derivatives for a dense class of sets (see Lemma

2.18).

Lastly, non–local isoperimetric problems of the form (1.1) have also been considered in

the mathematical literature in many different models, e.g. sharp interface variants of the

Ohta-Kawasaki model where the non–local term is a Coulomb or Riesz type interaction

(see [AFM13, ACO09, CP10, CS13, Cri18, GMS13, GMS14, JP17, MS14]). We note that,

contrary to our energy, in these models the non-local term does not have the same scaling

as the perimeter functional (see (1.9)).

Outline of thesis We will briefly describe how this thesis is organised. After the

introduction in Chapter 1, in Chapter 2 we collect preliminary results concerning the

Flat Torus Tn and subsets of it, in particular sets with smooth boundary and sets with

finite perimeter. We also define the space of bounded variations on Tn and collect useful

density results and compactness properties. In Chapter 3 we describe the biological setup

and corresponding models in detail. We will look into diffuse and sharp interface models

describing pattern formation processes in biological membranes and how these models are

related. In Chapter 4 we introduce the Autocorrelation Function. Most interesting to us

is the connection of the geometry of subsets of Tn and the regularity of the corresponding

Autocorrelation Function. We will prove multiple regularity properties and derive formulas

for higher derivatives at 0 as these values play a key role in the analysis concerning non-

local isoperimetric problems. We will also compute Autocorrelation Functions for specific

sets. In Chapter 5, we examine the asymptotic behaviour of the non-local isoperimetric

energy Eγ,ε as ε → 0. We will find two parameter regimes with respect to γ (sub- and

supercritical) with vastly different asymptotic behaviour such as compactness. In the

critical regime, we derive sufficient conditions on rescalings of the energy for compactness

and non-compactness. In addition, we compute the Γ–limit for the rescaled energy 1
ε
Eγ,ε

in the critical regime. Building on the computations in Chapter 4, we will then compute

the energy for certain configurations. Auxiliary results and complicated computations are

moved to the Appendix.

1.1. Statement of Results

In this section, we give the precise formulation of our setting and main results. Throughout

this article, we assume n ∈ N with n ≥ 2. Concerning the energy functional Eγ,ε, we

are interested in the minimisation problem in case of prescribed volume fraction. We

introduce the class of admissible functions

A :=
{
Ω ∈ BVn : |Ω| = θ

}
(1.3)
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for some fixed parameter 0 < θ < 1, where BVn denotes the set of all sets in Tn with

finite perimeter (see Definition 2.14). We also fix the function K : Rn −→ R and define

Kε(z) :=
1
εn
K( z

ε
). We recall the energy functional

Eγ,ε(Ω) := Per(Ω)− γ

ε

�
Rn

Kε(z)

�
Tn

|χΩ(x+ z)− χ
Ω(x)| dx dz, (1.4)

if Ω ∈ A, and Eγ,ε(Ω) = +∞ else. The kernel K is subject to the following conditions:

(H1) K is radial.

(H2) |z| K(z) ∈ L1(Rn).

(H3)

�
Rn\Br(0)

K(z) dz ≥ 0 for all r > 0.

By a slight abuse of notation we also write K(z) = K(|z|). The imposed conditions

(H1)–(H3) are different from the conditions imposed on the family of kernels considered

in [D0́2] (see also [Peg21] and [MW23, Theorem 1.2]): although our family of kernels

arises as L1–dilates of K, we relax the assumption of the non–negativity of Kε by (H3). A

kernels that satisfy (H3) but also has negative values is e.g.

K(z) =
sin(|z|)
|z|n+1

(sin(|z|)
|z|

− cos(|z|)
)
. (1.5)

As Eγ,ε is the difference of two positive terms with the same scaling (see (1.9)), uniform

control of the energy of a sequence of shapes in general does not a priori lead to control

of the perimeter. However, we identify the critical parameter

γcrit :=
nωn

2ωn−1

( �
Rn

|z| K(z) dz

)−1

(1.6)

such that for 0 ≤ γ < γcrit the perimeter is controlled by the energy, while the perimeter

is not controlled for γ > γcrit.

Theorem A (Compactness and non–compactness) Suppose K satisfies (H1) – (H3).

a) Compactness: Let 0 ≤ γ < γcrit. Then for any sequence Ωε ∈ BVn with

supεEγ,ε(Ωε) < ∞ there exists Ω ∈ A and a subsequence (not relabeled) such

that |Ω△ Ωε|
ε→0−−→ 0.

b) Non–compactness: Let γ ≥ γcrit. Then there exists a sequence Ωε ∈ A such that

supεEγ,ε(Ωε) < ∞, but there is no Ω ∈ A such that |Ω △ Ωε|
ε→0−−→ 0 for any

subsequence.
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Theorem A is a special case of Theorem 5.10 and Theorem 5.12. It identifies the subcritical

parameter regime 0 ≤ γ < γcrit and the supercritical parameter regime γ ≥ γcrit. We

learn that the local term dominates in the subcritical regime, while in the supercritical

regime the destabilising effect of the non–local interaction takes over. The failure of

compactness is reflected in uniform lower bounds of the energy and the behaviour of

minimising sequences:

Corollary A Suppose K satisfies (H1) – (H3).

a) Let 0 ≤ γ ≤ γcrit. Then Eγ,ε ≥ 0 for every ε > 0.

b) Let γ > γcrit. Then there exists a sequence Ωε ∈ A such that

Eγ,ε(Ωε)
ε→0−−→ −∞.

Moreover, lim inf
ε→0

Per(Ωε) = ∞ for any such sequence.

We note that in the critical case γ = γcrit, the family of energies Eγcrit,ε does not have

the compactness property even though it is bounded from below. This is due to the fact

that 0 ≤ Eγcrit,ε(Ω) → 0 for polytopes, which are able to approximate any shape of finite

perimeter (see Lemma 2.16). In this case, higher order effects play a role and therefore

the energy Eγ,ε needs to be rescaled. We will elaborate on the rescaled functional further

down.

As explained in the introduction, we are interested in the limiting behaviour of minimising

sequences as ε→ 0. We show that the family of non–local energies Γ–converges to a local

energy functional:

Theorem B (Γ–convergence) Suppose that K satisfies (H1) – (H3). Let 0 ≤ γ ≤ γcrit.

Then Eγ,ε
Γ−→ Eγ,0 with respect to the L1–topology, where

Eγ,0(Ω) :=

 (1− γ
γcrit

) Per(Ω) if Ω ∈ A,

+∞ else.

In particular, for every measurable set Ω we have:

a) Liminf inequality: For every sequence of measurable sets Ωε ⊂ T
n such that

|Ω△ Ωε|
ε↘0−−→ 0 we have Eγ,0(Ω) ≤ lim inf

ε→0
Eγ,ε(Ωε).

b) Limsup inequality: There is a sequence of measurable sets Ωε ⊂ T
n such that

|Ω△ Ωε|
ε↘0−−→ 0 and lim sup

ε→0
Eγ,ε(Ωε) ≤ Eγ,0(Ω).
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Theorem B is a special case of Theorem 5.18. Although the non–local term leads to a

reduction of the interfacial cost by a factor of γ
γcrit

in the subcritical regime, the limit

problem is simply the isoperimetric problem with a suitably modified prefactor.

As we have seen in Theorem A, the energy Eγ,ε loses compactness if γ ≥ γcrit. To restore

compactness, we choose γ = γε depending on ε and rescale the functional suitably. By a

rescaling, we mean a function R ∈ C0(R+) such that R(ε)
ε↘0−−→ +∞.

Theorem C (Compactness and non-compactness for rescaled energy) Suppose K satisfies

(H1)–(H3) and let R be a rescaling.

a) Let γε > 0 such that lim infε→0(1 − γε
γcrit

)R(ε) > 0. Let Ωε ∈ BVn such that

lim supε→0R(ε)Eγε,ε(Ωε) < ∞. Then there exists Ω ∈ A and a subsequence (not

relabeled), such that |Ω△ Ωε| → 0.

b) Let γε > 0 such that γcrit < lim infε→0 γε ≤ lim supε→0 γε < ∞. Then there exists

Ωε ∈ A such that R(ε)Eγε,ε(Ωε)
ε↘0−−→ −∞.

Theorem C is a combination of Theorem 5.16 and Theorem 5.15 (see also Lemma 5.17).

It provides a sufficient condition under which assumptions there exist rescalings of the

energy functional Eγ,ε such that compactness is restored in the critical regime γε ∼ γcrit.

In contrast, the supercritical regime cannot be rescaled to restore compactness.

In case of the rescaling R(ε) = 1
ε
we have the following Γ–convergence result in two

dimension, if in addition the second moment of K is finite.

Theorem D (Γ–convergence for rescaled energy) Let n = 2, γε > 0 and assume that
1
ε
(1 − γε

γcrit
)

ε↘0−−→ σ > 0. Suppose K satisfies (H1)–(H3) and has finite second moment.

Then 1
ε
Eγε,ε

Γ−→ E
(1)
0 in the L1–topology, where

E
(1)
0 (Ω) :=

σ Per(Ω) if Ω ∈ A,

+∞ else.

In particular, for every measurable set Ω we have:

a) Liminf inequality: For every sequence of measurable sets Ωε ⊂ T
n such that

|Ω△ Ωε|
ε↘0−−→ 0 we have E

(1)
0 (Ω) ≤ lim inf

ε→0

1
ε
Eγ,ε(Ωε).

b) Limsup inequality: There is a sequence of measurable sets Ωε ⊂ T
n such that

|Ω△ Ωε|
ε↘0−−→ 0 and lim sup

ε→0

1
ε
Eγ,ε(Ωε) ≤ E

(1)
0 (Ω).
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Theorem D is stated and proved in Theorem 5.21.

In the physical relevant dimension n = 2, the minimiser of the limit problems in Theorem

B and Theorem D is known (see [CS06, Theorem 4.1]). Up to translation and rotation, it

is given by Ω ⊂ T2 being a ball (or the complement of a ball) if

min{θ, 1− θ} < 1

π
, (1.7)

and by a single laminate otherwise. If equality holds (1.7), both ball (or its complement)

and laminate are minimisers. The isoperimetric problem in higher dimensions are (to my

awareness) an open problem (see e.g. [Ros05]).

We note that the main theorems also hold without the assumption of a fixed volume

fraction, i.e. for the admissible class of functions A = BVn. The proofs in this case can be

repeated almost verbatim. Moreover, the choice of the unit flat torus in contrast to flat

tori with side length ℓ > 0 is justified by the scaling of the energy Eγ,ε. Most interesting to

us is the limiting behaviour of Eγ,ε as ε→ 0 and due to the scaling of the energy, we can

without loss of generality consider the unit flat torus. More precisely, let Tn
ℓ := Rn/(ℓZ)n

and define

E(ℓ)
γ,ε[v] :=

�
Tn

ℓ

|∇v| − γ

εn+1

�
Rn

K( z
ε
)

�
Tn

ℓ

|v(x+ z)− v(x)|
|Tn

ℓ |
dx dz (1.8)

for all v ∈ BV (Tn
ℓ , {0, 1}). Here, we identify the set Ω with its characteristic function

v := χ
Ω for notational convenience. Let u ∈ BV (Tn, {0, 1}) and define the rescaled

function uℓ ∈ BV (Tn
ℓ , {0, 1}) via uℓ(x) := u(x

ℓ
). Then

E(ℓ)
γ,ε[uℓ] = ℓn−1Eγ,ℓ−1ε[u]. (1.9)

Thus, the limiting behaviour ε→ 0 as well as the subsequent analysis can be reduced to

the case of the unit flat torus.

Main theorems concerning the Autocorrelation Function The arguments to prove the

main theorems A – D all rely on a reformulation of the energy functional Eγ,ε in terms of

the Autocorrelation Function introduced in Chapter 4. More precisely, we mostly work

with the following reformulation (see Theorem 5.6):

Eγ,ε(Ω) =
(
1− γ

γcrit

)
Per(Ω) + 2γ

� ∞

0

Φε(r)[c
′
Ω(r)− c′Ω(0)] dr (1.10)

where cΩ denotes the Autocorrelation Function and Φ arises via radial integration of K
(see (5.15)). Higher regularity of the Autocorrelation Function near the origin is of great

interest as the kernel Φε forms an approximation of the identity, relating the asymptotic

behaviour of Eγ,ε to higher derivatives of cΩ at 0. As was shown in [Gal11, KS23] (see also
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Theorem 4.7), regularity properties of the Autocorrelation Function is tightly connected to

the geometry of the corresponding set. The following Theorem is proven in two dimensions

for the class BV ∞
2 of sets with sufficiently regular boundary (see Definition 2.17).

Theorem E (Higher regularity of the Autocorrelation Function) Let Ω ∈ BV ∞
2 . Then

there exists R > 0 such that cΩ ∈ C∞((0, R]) and

c′′Ω(0) = 0, c′′′Ω(0) =
1

4π

�
∂Ω

κ2 dH 1,

where κ : ∂Ω −→ R denotes the curvature of Ω.

Theorem E is a combination of Theorem 4.10, Corollary 4.12 and Corollary 4.15. The fact

that c′′Ω(0) = 0 for the dense class of sets BV ∞
2 allows us to control possible singularities

arising in the higher order convergence in the proof of Theorem D. Moreover, we will see

that there exist non smooth sets for which c′′Ω > 0 (e.g. polygons, see Section 4.4.4) and

c′′Ω(0) = +∞ (e.g. sets with a cusp, see Section 4.4.5).

Strategy of the proofs In the following we give an overview of the strategies of the

proofs for the main theorems. Central to our proofs is the formulation of the energy in

terms of the symmetrised Autocorrelation Function (see Theorem 5.6). At this stage, the

radial symmetry of the kernel is crucial and the prefactor ε−1 of the non–local term ensures

that the weight in the reformulation is an approximation of the identity. This implies

that the limiting behaviour of the energy only depends on the Autocorrelation Function

near the origin and the weight Φ associated to the kernel K (rather than the kernel itself),

which allows us to treat kernels which also have negative values (see Hypothesis (H3)). As

ε→ 0, the reformulation of the energy in terms of the Autocorrelation Function allows for

a splitting into behaviour near the origin (which is controlled since the Autocorrelation

Function is sufficiently regular) and far from the origin (which is small since the weight

Φε is an approximation of the identity).

The compactness results in Theorem A and C are shown by a sharp lower bound in terms

of the perimeter functional (see Corollary 5.7) and the compact embedding of BV in

L1, while the non-compactness results are shown by construction of highly oscillating

laminates (see Lemma 5.11). The lower bounds in Theorem B and D follow from sharp

estimates of the Autocorrelation Function and its derivatives. The upper bound requires

higher regularity of the Autocorrelation Function near the origin in order to pass to the

limit.

To prove Theorem E, we observe that the Covariogram near the origin can be computed

by integrals of the corresponding graph representation (see Theorem 4.10). In case of a

sufficiently smooth boundary, all the functions involved in this computation are smooth,

which transfers to the regularity of the Covariogram. In order to pass to the limit r → 0
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for higher derivatives of the Autocorrelation Function, we explicitly compute the integrals

involved and relate the Covariogram back to the Autocorrelation Function using the

Co-Area Formula (see Corollary 4.12 and Corollary 4.15).

1.2. Notation

We denote n-dimensional Euclidean space with Rn, the space of vectors with integer entries

with Zn and the natural numbers (starting with 1) with N. We denote the standard Inner

Product and the corresponding norm by

x · y :=
n∑

i=1

xiyi, |x|2 := x · x for all x, y ∈ Rn. (1.11)

We denote the ball of radius ρ > 0 and centre x ∈ Rn by Bρ(x) := {y ∈ Rn : |x− y| < ρ},
and the unit sphere by Sn−1 := ∂B1(0). We denote the standard basis ofRn by {e1, . . . , en}
and the positive real numbers by R+. We denote the Lebesgue measure of a Lebesgue

measurable set Ω ⊂ Rn by |Ω| and by dx, dy etc. depending on the context. We denote

the surface measure (or n− 1 dimensional Hausdorff measure) by H n−1. We denote the

volume of the unit ball in Rn by ωn and σn := nωn for its surface area.

We denote the n-dimensional flat torus by Tn := R
n/Zn. We denote Qn := [0, 1)n for

its primitive cell. Without distinction in notation, we identify Qn–periodic functions in

R
n with functions defined on Tn. We denote the unit Haar measure of a measurable

set Ω ⊂ Tn by |Ω| and by dx, dy etc. depending on the context. We denote the ball of

radius ρ > 0 and centre x ∈ Tn by Bρ(x) := {y ∈ Tn : |x− y| < ρ} where |x− y| is the
Riemannian distance. For more details and notational conventions, see Section 2.1.

We write A ≲ B if there exists a universal constant C > 0, such that A ≤ CB. We denote

O for the Landau symbol. Given two sets A,B ⊂ X, we define the symmetric difference

A△B := (A \B)∪ (B \A). We say that a sequence of sets Ωε converges in L
1 to a set Ω,

if |Ωε △ Ω| ε↘0−−→ 0.
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2. Preliminaries

In this chapter, we collect preliminary results necessary for the analysis concerning the

Autocorrelation Function in Chapter 4 and the non-local isoperimetric energy Eγ,ε in

Chapter 5. In Section 2.1, we introduce and discuss the flat Torus Tn and its geometry.

In Section 2.2, we study functions of bounded variation defined on Tn. Of particular

interest are sets of finite perimeter (see Definition 2.14) since they form the domain of the

energy Eγ,ε.

2.1. Flat Torus

In this section, we will collect preliminary results describing the topology and geometry

of the flat torus.

Definition 2.1 We define Tn := Rn/Zn.

Since Rn is a Lie group and Zn acts smoothly, freely and proper on Rn, the flat torus

T
n itself is an orientable smooth closed manifold with a unique smooth structure (with

respect to the canonical projection Rn −→ T
n). Moreover, Tn itself is a Lie group with

the canonical group action

[x] + [y] = [x+ y] for all x, y ∈ Rn. (2.1)

As such, there exists a unique normed Haar measure (denoted dx, dy etc.). The flat torus

is a flat and closed space with Lie algebra g = Rn. In fact, all tangent spaces are identical,

namely TxT
n = R

n for all x ∈ Tn, thus we identify the set of all smooth vector fields

on Tn with the space C∞(Tn,Rn). We denote the primitive cell by Qn ∼= [0, 1)n ⊂ Rn.

Since all chart transitions are given by the identity, the smooth structure of Tn and Rn

are identical. With standard abuse of notation, we use the same notation for geometric

structures on Tn as for Rn, meaning that x · y will be used as notation for the Riemannian

metric and |x|2 = x ·x. Further, given x ∈ Tn, we write x = rw =: exp0(rw) for r > 0 and

w ∈ g with |w| = 1, where exp0 : g −→ T
n denotes the exponential map at the identity.
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We define ∇f as the unique vector field defining the gradient, i.e. the vector field satisfying

∇Xf = ∇f ·X for all X ∈ C∞(Tn,Rn), (2.2)

where ∇X denotes the Lie derivative along X. We define the divergence of a smooth

vector field F ∈ C∞(Tn,Rn) via the canonical volume form dx (which is induced by the

Riemannian metric) as the unique function ∇ · F ∈ C∞(Tn) satisfying

(∇ · F ) dx := ∇F (dx), (2.3)

where ∇F is denotes the Lie derivative along F of n-forms. Using the Leibniz rule

∇F (φ dx) = ∇F (φ) dx + φ∇F (dx) we obtain via Stoke’s Theorem and d(dx) = 0 the

following integration by parts formula:

�
Tn

(∇ · F )φ dx = −
�
Tn

F · ∇φ dx. (2.4)

2.1.1. Sets with Smooth Boundaries

In this section, we will discuss subsets of the flat torus with smooth boundary. As this

class of sets will only be discussed in dimension n = 2, we will restrict to that case. We

will define a notion of curvature of a smooth set immersed in T2. The procedure to define

curvature is well known. However, due to the need to find the Jacobian of the Gauß map

later (see Lemma 4.14) we will give the definition in detail and in such a way that it is

compatible with our setup.

Definition 2.2 Let Ω ⊂ Tn be open. Then Ω has a smooth boundary if ∂Ω ⊂ Tn is a

smooth immersed submanifold.

We will define the curvature κ : ∂Ω −→ R of a set Ω ⊂ T
2 with smooth boundary in

the following way. Let ν ∈ C∞(∂Ω,R2) ∼= C∞(∂Ω,TT2) be the Gauß map. Using the

Riemannian structure on T2 we find a decomposition

TT2 = T∂Ω⊕ N∂Ω, (2.5)

where N∂Ω denotes the normal bundle. In particular, we have for the image of the Gauß

map ν(x) ∈ Nx∂Ω. Moreover, the rotation operator •⊥ on R2 induces an (orientation

dependent) isomorphism T∂Ω ∼= N∂Ω via

(x, τ) 7−→ (x,−τ⊥), (x,n) 7−→ (x,n⊥). (2.6)
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Let I ⊂ R and let γ ∈ C∞(I,T2) be a regular curve such that γ(I) ⊂ ∂Ω with differential

Dsγ : TsI −→ Tγ(s)∂Ω. (2.7)

Let TsI be spanned by the positive normed vector field ∂
(s)
t , i.e. TsI = ⟨∂(s)t ⟩. Since γ is

regular, we find

γ̇(s) := (Dsγ)(∂
(s)
t ) = α(γ(s)) ν⊥(γ(s)) for some α ∈ R \ {0}. (2.8)

We note that D•γ : TI −→ T∂Ω ↪→ TT2 and thus we find γ̇ : I −→ T∂Ω. Again, we find

the differential

Dsγ̇ : TsI −→ Tγ̇(s)(T∂Ω) ∼= Nγ(s)∂Ω, (2.9)

where T(T∂Ω) ∼= N∂Ω via the canonical identification

(γ̇(s), (γ(s), τ)) 7−→ (γ(s),−τ⊥), (γ(s),n) 7−→ (γ̇(s), (γ(s),n⊥)). (2.10)

Now, if Dsγ̇ = 0, then κ(γ(s)) = 0. Otherwise, since the vector spaces involved are 1

dimensional, we find a unique constant κ ∈ R such that

−γ̈⊥(s) := −(Dsγ̇)
⊥(∂

(s)
t ) = α(γ(s))κ(γ(s)) ν(γ(s)). (2.11)

In that way, we can define the signed curvature κ : ∂Ω −→ R via a partition of unity on

segments of ∂Ω which are given by curves as described above.

Definition 2.3 Let Ω ⊂ T
2 be open with smooth boundary. We define the (signed)

curvature κ : ∂Ω −→ R as the unique value κ satisfying (2.11).

We note that this notion of curvature is extrinsic, meaning it depends on the ambient

space T2 and its orientation.

2.2. Functions of Bounded Variation on the Torus

In this section, we will define the space of functions with bounded variation and collect

properties of this space e.g. several density, representation and compactness properties.

Definition 2.4 Let w ∈ Sn−1 and f ∈ L1(Tn). We define the directional variation
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along w of f via

Vw[f ] := sup
{ �

Tn

f(x)∇wφ(x) dx : φ ∈ C∞(Tn), ∥φ∥L∞(Tn) ≤ 1
}
. (2.12)

The definition of BV (Tn) differs slightly from the definition of BV (Rn) in that there is

no support condition for test functions in the former. This is due to compactness of Tn as

a topological space. Also, to be more precise, one should write w ∈ g such that |w| = 1.

As g = Rn, we will not differ in notation.

Given a smooth function f ∈ C∞(Tn), the directional variation is given by

Vw[f ] =

�
Tn

|∇wf(x)| dx for all w ∈ Sn−1. (2.13)

Indeed, we first note that given φ ∈ C∞(Tn) such that ∥φ∥L∞(Tn) ≤ 1, integration by

parts yields �
Tn

f(x)∇wφ(x) dx ≤
∣∣ �
Tn

f(x)∇wφ(x) dx
∣∣

=
∣∣ �
Tn

∇wf(x)φ(x) dx
∣∣

≤
�
Tn

|∇wf(x)| dx.

(2.14)

(2.15)

(2.16)

On the other hand, define the function g(x) := − sgn(∇wf(x)), where sgn: R −→ R is

given by sgn := 2χR+ − 1. Also, let ηk ∈ C∞(Tn) be a Dirac sequence (see Lemma A.1)

and define gk := g ∗ ηk. Then gk ∈ C∞(Tn) and gk → g in L1(Tn) as k → ∞. In addition,

we obtain ∥gk∥L∞(Tn) ≤ 1 using Young’s convolution inequality. So the family {gk}k is

admissible and we compute

�
Tn

f(x)∇wgk(x) dx = −
�
Tn

∇wf(x) gk(x) dx
k→∞−−−→

�
Tn

|∇wf(x)| dx, (2.17)

from which (2.13) follows. We will also consider the total variation of a function f ∈
L1(Tn):

Definition 2.5 Let f ∈ L1(Tn). We define the total variation of f via

V [f ] := sup
{ �

Tn

f(x) (∇ · φ)(x) dx : φ ∈ C∞(Tn,Rn), ∥φ∥L∞(Tn,Rn) ≤ 1
}
. (2.18)

If V [f ] < ∞, then we say the function f is of bounded variation, and we denote

f ∈ BV (Tn).
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To be more precise, one should assume that φ is a smooth vector field on Tn. As a

reminder, since TxT
n = R

n for all x ∈ Tn, we identify the smooth vector fields on Tn

with the space C∞(Tn,Rn).

Similar to the directional variation, one can show that

V [f ] =

�
Tn

|∇f(x)| dx for all f ∈ C∞(Tn). (2.19)

The following theorem shows that derivatives of BV functions are Radon measures.

Theorem 2.6 Let f ∈ BV (Tn). Then there exists a Radon measure µ : B(Tn) −→ [0,∞]

and a µ–measurable function ν : Tn −→ R
n, such that |ν| = 1 for µ–almost–every x ∈ Tn,

and

�
Tn

f(x) (∇ · φ)(x) dx = −
�
Tn

φ(x) · ν(x) dµ for all φ ∈ C∞(Tn,Rn). (2.20)

As a quick reminder: a Radon measure µ is a measure defined on the Borel–σ–Algebra

B(Tn), which is locally finite (i.e. for every x ∈ Tn there exists an open set x ∈ U such

that µ(U) <∞) and inner regular, i.e. it holds

µ(U) = sup{µ(K) : K ⊂ A, K is compact} for every open set U ⊂ Tn. (2.21)

Proof: Define the functional Tf : C
∞(Tn) −→ R via

⟨Tf , φ⟩ := −
�
Tn

f(x) (∇ · φ)(x) dx for all φ ∈ C∞(Tn). (2.22)

Then Tf is a linear operator and continuous with respect to ∥ · ∥L∞(Tn,Rn). In particular

by definition of the variation ∥Tf∥ = V [f ]. Using the Theorem of Stone–Weierstraß

componentwise, we find that C∞(Tn,Rn) ⊂ C0(Tn,Rn) is dense, and we can extend the

linear operator Tf to all of C
0(Tn). The statement then follows by the Riesz Representation

Theorem (see [ADPM11, Appendix A.2]). ■

Corollary 2.7 Let f ∈ BV (Tn) and w ∈ S
n−1. Then there exists a Radon measure

µ : B(Tn) −→ [0,∞] and a µ–measurable function ν : Tn −→ R
n, such that |ν| = 1 for

µ–almost–every x ∈ Tn, and

�
Tn

f(x)∇wφ(x) dx = −
�
Tn

(ν · w)φ dµ for all φ ∈ C∞(Tn). (2.23)
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Proof: Follows directly from Theorem 2.6. ■

Both Theorem 2.6 and Corollary 2.7 state that the derivatives of functions f ∈ BV (Tn)

are Radon measures. We will denote these measures with ∇wf := (ν · w)µ and ∇f := νµ

so that the following integration by parts formulae hold:

�
Tn

f(x)∇wφ(x) dx = −
�
Tn

φ d∇wf for all φ ∈ C∞(Tn),

�
Tn

f(x) (∇ · φ)(x) dx = −
�
Tn

φ · d∇f for all φ ∈ C∞(Tn,Rn).

(2.24)

(2.25)

Also, with slight abuse of notation, we write

V [f ] =

�
Tn

|∇f |, Vw[f ] =

�
Tn

|∇wf |. (2.26)

We will now continue to establish several useful properties of the space BV when it comes

to L1–convergence.

Lemma 2.8 Let fk ∈ BV (Tn) and f ∈ L1(Tn) such that fk → f in L1(Tn). Then

V [f ] ≤ lim inf
k→∞

V [fk], Vw[f ] ≤ lim inf
k→∞

Vw[fk] for all w ∈ Sn−1. (2.27)

Proof: Let w ∈ Sn−1 and φ ∈ C∞(Tn) with ∥φ∥L∞(Tn) ≤ 1. Since

lim inf
k→∞

�
Tn

fk(x)∇wφ(x) dx ≤ lim inf
k→∞

Vw[fk], (2.28)

we obtain from fk → f in L1(Tn)

�
Tn

f(x)∇wφ(x) dx = lim
k→∞

�
Tn

fk(x)∇wφ(x) dx ≤ lim inf
k→∞

Vw[fk]. (2.29)

An analogue argument works for the total variation. ■

Lemma 2.9 Let f ∈ BV (Tn). Then there exists a sequence fk ∈ C∞(Tn), such that

fk → f in L1(Tn) and

V [fk]
k→∞−−−→ V [f ], Vw[fk]

k→∞−−−→ Vw[f ], for all w ∈ Sn−1. (2.30)

Proof: Let ηk ∈ C∞(Tn) be the Dirac sequence as in Appendix A.1 and define fk := f ∗ηk.
Then fk ∈ C∞(Tn) for all k ∈ N and fk → f in L1(Tn), so it remains to prove that
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the variations converge. Let w ∈ Sn−1 and φ ∈ C∞(Tn) such that ∥φ∥L∞(Tn) ≤ 1. We

compute �
Tn

fk(x)∇wφ(x) dx =

�
Tn

f(x)∇w(ηk ∗ φ)(x) dx ≤ Vw[f ]. (2.31)

Together with Lemma 2.8 we obtain

Vw[f ] ≤ lim inf
k→∞

Vw[fk] ≤ lim sup
k→∞

Vw[fk] ≤ Vw[f ], (2.32)

so convergence holds. An analogue argument works for the total variation. ■

The proof of Lemma 2.9 shows that convolution with a smooth Dirac sequence is compatible

with the weak topology of BV (Tn). However, the space C∞(Tn) is not dense in the space

BV (Tn) with respect to the norm

∥f∥BV (Tn) := ∥f∥L1(Tn) + V [f ] for all f ∈ BV (Tn). (2.33)

Indeed, using (2.19) we have ∥φ∥BV (Tn) = ∥φ∥W 1,1(Tn) for all φ ∈ C∞(Tn) and by

definition we know that C∞(Tn) is dense in W 1,1(Tn) with respect to ∥ · ∥W 1,1(Tn) (see

also e.g. [Heb99, Theorem 2.4]). However χBr(0) ∈ BV (Tn) \W 1,1(Tn) and thus cannot

be approximated strongly by smooth functions.

Using the compact embedding for Sobolev spaces W 1,1(Tn) −→ L1(Tn) we obtain the

following compactness result:

Theorem 2.10 Let fk ∈ BV (Tn) such that supk ∥fk∥L1(Tn) + V [fk] < ∞. Then there

exists f ∈ BV (Tn) and a subsequence (not relabeled) such that fk → f in L1(Tn).

Proof: Using Lemma 2.9 we find gk ∈ C∞(Tn) such that

∥fk − gk∥L1(Tn) + |V [fk]− V [gk]| <
1

k
for all k ∈ N. (2.34)

Together with (2.19) we thus obtain supk ∥gk∥W 1,1(Tn) < ∞. Using the Theorem of

Rellich-Kondrachov (see Theorem A.3) we find f ∈ L1(Tn) such that after a selection of

a subsequence (not relabeled) we have gk → f in L1(Tn). Using (2.34) we obtain fk → f

in L1(Tn). Furthermore, using Lemma 2.8 we find

V [f ] ≤ lim inf
k→∞

V [fk] <∞ (2.35)

by assumption, showing that f ∈ BV (Tn). ■

The following proposition was taken from [Gal11] and adapted to the geometry of the

torus:
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Proposition 2.11 Let 0 < r < 1
2
, w ∈ Sn−1 and f ∈ L1(Tn). Then

1

r

�
Tn

|f(x+ rw)− f(x)| dx ≤ Vw[f ], lim
r→0

1

r

�
Tn

|f(x+ rw)− f(x)| dx = Vw[f ].

(2.36)

As a reminder, we use the notation rw := exp0(rw), where exp0 : g −→ T
n is the

exponential map at the identity. A more precise notation would be x+ rw = expx(rw),

where we used that Tn is a an Abelian group. We chose to keep the notation as in e.g.

[KS23].

Proof: We will first consider f ∈ C∞(Tn). We use Hadamard’s lemma to compute

|f(x+ rw)− f(x)| ≤ r

� 1

0

|∇wf(x+ trw)| dt. (2.37)

Integrating with respect to x yields after an application of Tonelli’s theorem

1

r

�
Tn

|f(x+ rw)− f(x)| dx ≤
� 1

0

�
Tn

|∇f(x+ trw) · w| dx dt (2.13)= Vw[f ]. (2.38)

By density, this inequality is valid for all f ∈ L1(Tn), which establishes the first statement.

Let us now turn our attention to the second statement: let ηk ∈ C∞(Tn) be a Dirac

sequence (see Lemma A.1) and define fk := f ∗ ηk. We use Fatou’s lemma and Young’s

convolution inequality to deduce

Vw[fk] =

�
Tn

|∇wfk(x)| dx ≤ lim inf
r→0

�
Tn

|fk(x+ rw)− fk(x)|
r

dx

≤ lim inf
r→∞

�
Tn

|f(x+ rw)− f(x)|
r

dx.

(2.39)

(2.40)

Using the lower semicontinuity of Vw with respect to the L1–convergence (see Lemma 2.8)

we obtain

Vw[f ] ≤ lim inf
k→∞

Vw[fk] ≤ lim inf
r→∞

�
Tn

|f(x+ rw)− f(x)|
r

dx, (2.41)

which shows the claim. ■

Corollary 2.12 Let f ∈ BV (Tn). Then

V [f ] =
1

2ωn−1

�
Sn−1

Vw[f ] dH n−1(w). (2.42)
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Proof: Let us first consider f ∈ C∞(Tn). Then we compute

�
Sn−1

Vw[f ] dH n−1(w) =

�
Tn

|∇f(x)|
�
Sn−1

∣∣ ∇f(x)
|∇f(x)|

· w
∣∣ dH n−1(w) dx

A.10
= 2ωn−1

�
Tn

|∇f(x)| dx (2.19)
= 2ωn−1V [f ].

(2.43)

(2.44)

The statement then follows by density of smooth functions (see Lemma 2.9). ■

Functions of bounded variation in general have very low regularity as the notion of

derivative is very weak. However, it is still strong enough to allow for the following version

of the Coarea formula:

Theorem 2.13 Let f ∈ BV (Tn) and define Et := {x ∈ Tn : f(x) > t} for all t ∈ R.
Then

V [f ] =

�
R

Per(Et) dt, (2.45)

where Per(Et) := V [χEt ].

Proof: We separate the proof in multiple steps. We will first show that the integrand is

measurable and proceed by showing the statement for smooth functions. The general result

will be dealt with via density. We denote D := {φ ∈ C∞(Tn,Rn) : ∥φ∥L∞(Tn,Rn) ≤ 1}.

Step 1: The Integrand is measurable. The set Et is measurable since f is measurable.

Thus, the function (x, t) 7−→ χ
Et(x) is measurable in Tn × R. Let φ ∈ D. Then

(x, t) 7−→ χ
Et(x)(∇ · φ)(x) is measurable in Tn ×R and hence

t 7−→
�
Tn

χ
Et(x)(∇ · φ)(x) dx (2.46)

is an R measurable function by Fubinis Theorem. As C∞(Tn,Rn) is separable (see [RF10,

Section 12.3]), we find an at most countable and dense set D′ ⊂ D with respect to uniform

convergence. We obtain that

t 7−→ Per(Et) = sup
φ∈D′

�
Tn

χ
Et(x)(∇ · φ)(x) dx (2.47)

is the supremum of at most countably many R measurable functions. Hence t 7−→ Per(Et)

is an R measurable function.

Step 2: Upper bound in (2.45). We note that

�
R

Per(Et) dt =

�
R

sup
φ∈D

{ �
Et

(∇ · φ)(x) dx
}
dt ≥ sup

φ∈D

{ �
R

�
Et

(∇ · φ)(x) dx dt
}

(2.48)
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On the other hand, by definition we have

V [f ] = sup
φ∈D

�
Tn

f(x)(∇ · φ)(x) dx. (2.49)

Thus, comparing the preceding lines we aim to show that

�
Tn

f(x)(∇ · φ)(x) dx =

�
R

�
Et

(∇ · φ)(x) dx dt for all φ ∈ D. (2.50)

Notice that due to Stokes Theorem

�
Tn

(∇ · φ)(x) dx = 0 for all φ ∈ D. (2.51)

We observe that

χ
Et(x) =

1 for all t < f(x),

0 for all t ≥ f(x),
χ
Et(x)− 1 =

 0 for all t < f(x),

−1 for all t ≥ f(x).
(2.52)

and thus obtain for x ∈ Tn

f(x) =


� f(x)

0

dt =

� ∞

0

χ
Et(x) dt if f(x) > 0,

−
� 0

f(x)

dt =

� 0

−∞
χ
Et(x)− 1 dt if f(x) ≤ 0.

(2.53)

We now compute for an arbitrary φ ∈ D with Fubini’s Theorem

�
R

�
Tn

χ
Et(x)(∇ · φ)(x) dx dt =

� ∞

0

�
Tn

χ
Et(x)(∇ · φ)(x) dx dt

+

� 0

−∞

�
Tn

χ
Et(x)(∇ · φ)(x)− (∇ · φ)(x) dx dt

=

�
Tn

(∇ · φ)(x)
� ∞

0

χ
Et(x) dt dx

+

�
Tn

(∇ · φ)(x)
� 0

−∞
χ
Et(x)− 1 dt dx

=

�
Tn

(∇ · φ)(x) f(x) dx,

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

which was the claim.

Step 3: The statement for smooth functions. Due to step 2 it remains to show the reversed
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inequality. Let f ∈ BV (Tn) ∩ C∞(Tn). We define m : R −→ R via

m(t) :=

�
Tn

(1− χ
Et)|∇f(x)| dx for all t ∈ R. (2.59)

By definition m is a non-decreasing function and thus is differentiable almost everywhere.

Furthermore 0 ≤ m ≤ V [f ]. By monotone convergence we obtain

V [f ] = lim
t→∞

m(t) = lim
t→∞

m(t)−m(−t) =
�
R

m′(t) dt. (2.60)

Our goal is to show that Per(Et) ≤ m′(t) for almost every t ∈ R. To do so, let t ∈ R such

that m is differentiable in t. Let h > 0 and define the cut-off function η : R −→ R via

η(s) =


0 for all s < t,

s−t
h

for all t < s < t+ h,

1 for all s > t+ h.

for all s ∈ R. (2.61)

Then η is Lipschitz continuous and η′ = 1
h
χ
(t,t+h). We obtain for any φ ∈ D via the chain

rule

−
�
Tn

η(f(x)) (∇ · φ)(x) dx =

�
Tn

η′(f(x))∇f(x) · φ(x) dx

=
1

h

�
Et\Et+h

∇f(x) · φ(x) dx

≤ 1

h

�
Et\Et+h

|∇f(x)| dx

≤ m(t+ h)−m(t)

h
.

(2.62)

(2.63)

(2.64)

(2.65)

Taking the limit h→ 0 we obtain

−
�
Et

(∇ · φ)(x) dx ≤ m′(t) (2.66)

and thus Per(Et) ≤ m′(t).

Step 4: Conclusion. We choose fk ∈ BV (Tn) ∩ C∞(Tn) such that fk → f in L1(Tn) and

V [fk] → V [f ] as k → ∞ (see Lemma 2.9). We define Ek
t := {x ∈ Tn : fk(x) > t}. Using

Step 3 we obtain with Fatou’s Lemma

V [f ] = lim
k→∞

V [fk] ≥ lim inf
k→∞

�
R

Per(Ek
t ) dt ≥

�
R

lim inf
k→∞

Per(Ek
t ) dt. (2.67)

Thus, we aim to show lim infk→∞ Per(Ek
t ) ≥ Per(Et) for almost all t ∈ R. We observe
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that with Tonelli’s Theorem

�
R

�
Tn

|χEk
t
(x)− χ

Et(x)| dx dt =
�
Tn

�
R

|χEk
t
(x)− χ

Et(x)| dt dx

=

�
Tn

|fk(x)− f(x)| dx k→∞−−−→ 0.

(2.68)

(2.69)

Thus χEk
t
→ χ

Et in L1(Tn) for almost every t ∈ R. The claim now follows from the

lower-semicontinuity of the Perimeter Functional (see Lemma 2.8). ■

2.2.1. Sets of Finite Perimeter

In the analysis concerning the Autocorrelation Function in Chapter 4 we need to work

with sets Ω ⊂ T
n rather than functions f ∈ BV (Tn). In particular, in order to avoid

strong oscillations at the boundary, we introduce a class which we will work with later

when it comes to higher regularity of the Autocorrelation Function.

Definition 2.14 Let Ω ⊂ T
n. We call Ω a set of finite perimeter, if χΩ ∈ BV (Tn).

We define the set

BVn := {Ω ⊂ Tn : χΩ ∈ BV (Tn)}. (2.70)

If Ω ∈ BVn, we define Per(Ω) := V [χΩ].

Using Gauß’ Theorem, one can show that every set Ω ⊂ Rn with smooth boundary is an

element of BVn and in addition

Per(Ω) = H n−1(∂Ω), (2.71)

where H n−1 is the n − 1 dimensional Hausdorff measure (constructed similarly to the

Euclidean version). However, there exist open sets U ∈ BVn such that H n−1(U) = +∞.

The following lemma shows that sets with smooth boundary can approximate sets in BVn.

Lemma 2.15 Let Ω ∈ BVn. Then there exist Ωk ∈ BVn such that:

a) Ωk is open for all k ∈ N.

b) |Ωk| = |Ω| for all k ∈ N.

c) ∂Ωk is smooth for all k ∈ N.

d) |Ωk △ Ω| k→∞−−−→ 0.

e) Per(Ωk)
k→∞−−−→ Per(Ω).
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Proof: We adapt the proof [Leo13, Lemma 1.15] to the geometry of the Torus.

Step 1: Generating appropriate smooth sets. Let φk ∈ C∞(Tn) be a Dirac sequence (see

Lemma A.1) and define wk := χ
Ω ∗ φk. Then wk ∈ C∞(Tn), 0 ≤ wk ≤ 1, wk → w in

L1(Tn) and ∥∇wk∥L1(Tn,Rn) → Per(Ω).

Let 0 < t < 1 and fix k ∈ N. We define the sets Ωk,t := {x ∈ Tn : wk(x) > t}. Then Ωk,t

is open by the regularity of wk, and using Sard’s Theorem (see Theorem A.8) we obtain

that ∂Ωk,t is smooth for almost all 0 < t < 1. We note that {∂Ωk,t}t is pairwise disjoint

and by definition

∥wk − χ
Ω∥L1(Tn) ≥

�
Ωk,t\Ω

|wk(x)− χ
Ω(x)| dx+

�
Ω\Ωk,t

|wk(x)− χ
Ω(x)| dx

=

�
Ωk,t\Ω

wk(x) dx+

�
Ω\Ωk,t

|wk(x)− 1| dx

≥ t|Ωk,t \ Ω|+ (1− t)|Ω \ Ωk,t|.

(2.72)

(2.73)

(2.74)

Thus |Ω△ Ωk,t| → 0 as k → ∞ for every 0 < t < 1.

To obtain convergence of the perimeter, we first use the Coarea Formula (see Theorem

2.13) and then Fatou’s Lemma to obtain

Per(Ω) = lim
k→∞

V [wk] = lim
k→∞

�
R

Per(Ωk,t) dt ≥
� 1

0

lim inf
k→∞

Per(Ωk,t) dt. (2.75)

However, due to the lower semicontinuity of the Perimeter Functional (see Lemma 2.8)

we obtain

0 ≤
� 1

0

lim inf
k→∞

Per(Ωk,t)− Per(Ω) dt ≤ 0, (2.76)

and thus lim infk→∞ Per(Ωk,t) = Per(Ω) for almost all t ∈ (0, 1). Choosing suitable k ∈ N
and 0 < t < 1, we obtained a sequence Ωk ∈ BVn such that assertions a), c) and d) and e)

hold. It remains to modify this sequence to ensure assertion b).

Step 2: Correcting mass deficit. Using Lemma A.7 we find x, x′ ∈ ∂Ω such that

lim
r→0

|Ω ∩Br(x)|
|Br(x)|

= lim
r→0

|Ω ∩Br(x
′)|

|Br(x′)|
=

1

2
. (2.77)

For i ∈ N we now define

Di := (Ω ∪B 1
i
(x)) \B 1

i
(x′) ⊂ Tn. (2.78)

Then |Di △ Ω| i→∞−−−→ 0 and

Per(Di) ≤ Per(Ω) + Per(B 1
i
(x)) + Per(B 1

i
(x′))

k→∞−−−→ Per(Ω). (2.79)
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From the lower semicontinuity of the Perimeter Functional (see Lemma 2.8) we therefore

obtain Per(Di)
i→∞−−−→ Per(Ω). As in Step 1 we now construct Di,j ∈ BVn such that

Di,j ∈ BVn is open for all i, j ∈ N, ∂Di,j is smooth for all i, j ∈ N and

|Di △Di,j|
j→∞−−−→ 0, Per(Di,j)

j→∞−−−→ Per(Di) for all i ∈ N. (2.80)

If |Di,j| = |Ω|, then we are done. If not, then we have two cases to consider:

• Assume |Di,j| > |Ω|. By our choice of x we know that there exists i∗ ∈ N such that

|E ∩B 1
i
(x)| > 1

4
|B 1

i
(x)| for all i ≥ i∗. (2.81)

We also observe that by construction from Step 1 (as mollification changes the

support slightly, see Lemma A.2) that there exists j∗(i) ∈ N such that

B
( 4
5
)
1
n 1

i

(x) ⊂ Di,j for all j ≥ j∗. (2.82)

We define

Ei,j := Di,j \Bri,j(x), (2.83)

where ri,j > 0 is chosen such that |Bri,j(x)| = |Di,j| − |Ω| > 0. We observe that

|Ei,j| = |Ω| and we aim to show that ri,j ≤ (4
5
)

1
n
1
i
for i, j sufficiently large, since in

that case Ei,j has a smooth boundary. Indeed, for i > i∗ we estimate.

|Di| = |Ω|+ |B 1
i
(x) \ Ω| − |Ω ∩B 1

i
(x′)|

= |Ω|+ |B 1
i
(x)| − |Ω ∩B 1

i
(x)| − |Ω ∩B 1

i
(x′)|

(2.81)
< |Ω|+ |B 1

i
(x)| − 1

4
|B 1

i
(x)| = |Ω|+ 3

4
|B 1

i
(x)|.

(2.84)

(2.85)

(2.86)

Now, for 0 < δ < 4
5
− 3

4
, using (2.80), there exists j̄∗(i) ∈ N such that

∣∣|Di,j| − |Di|
∣∣ < δ|B 1

i
(x)| for all j > j̄∗. (2.87)

And therefore

∣∣|Di,j| − |Ω|
∣∣ ≤ ∣∣|Di,j| − |Di|

∣∣+ ∣∣|Di| − |Ω|
∣∣ < (δ + 3

4
)|B 1

i
(x)| < 4

5
|B 1

i
(x)|, (2.88)

which in turn implies the desired bound ri,j ≤ (4
5
)

1
n
1
i
for i > i∗ and j > max{j∗, j̄∗}.

• Assume |Di,j| < |Ω|. By our choice of x′ we know that there exists i∗ ∈ N such that

|E ∩B 1
i
(x′)| < 3

4
|B 1

i
(x′)| for all i > i∗ − 1. (2.89)
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Analogous to the previous case, we find j∗, j̄∗ ∈ N such that

Fi,j := Di,j ∪Bri,j(x
′) (2.90)

is correcting the mass deficit similarly to Ei,j in the previous item for i > i∗ and

j > max{j∗, j̄∗}.

Step 3: Conclusion. We are now in the position to select a sequence Ωk ∈ BVn with the

desired properties. Let k ∈ N. We define

ik := 1 + max{i∗, i∗, k}, jk := 1 + max{j∗(ik), j∗(ik), j̄∗(ik), j̄∗(ik), k}, (2.91)

and

Ωk :=


Dik,jk if |Dik,jk | = |Ω|,

Eik,jk if |Dik,jk | > |Ω|,

Fik,jk if |Dik,jk | < |Ω|.

(2.92)

Then {Ωk}k satisfies all the assertions a) – e). ■

The second step of the proof of Lemma 2.15 provides an algorithm how to adjust approxi-

mating sets such that the masses are the same. Analogously, we find that polytopes are

dense in BVn similar to sets with smooth boundaries.

Lemma 2.16 Let Ω ∈ BVn. Then there exist Ωk ∈ BVn such that:

a) Ωk is open for all k ∈ N.

b) |Ωk| = |Ω| for all k ∈ N.

c) Ωk is a polytope for all k ∈ N.

d) |Ωk △ Ω| k→∞−−−→ 0.

e) Per(Ωk)
k→∞−−−→ Per(Ω).

As a reminder, a set P ⊂ Tn is a polytope, if the canonical projection to the primitive

cell is a polytope in Rn. An equivalent characterisation is as superlevel sets of continuous

piecewise affine functions, as every polytope in Rn is given by the superlevel set of an

affine function.

Proof: We use the notation from the proof of Lemma 2.15 except for the definition of

Ωk,t. Instead, using Lemma A.4, we find a piecewise affine linear function vk ∈ C0(Tn)

such that

∥vk − wk∥W 1,1(Tn) <
1

k
for all k ∈ N. (2.93)
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x

Figure 2.1.: Smoothing process used in the proof of Lemma 2.18
.

We define Ωk,t := {x ∈ Tn : vk(x) > t}. Then Ωk,t is a polytopal domain and the remaining

assertions follow analogously to the proof of Lemma 2.15. ■

Even though sets with smooth boundary are a dense class of sets in BVn, the boundaries

are still allowed to have high oscillations. This effect might be problematic later in

the analysis concerning the Autocorrelation Function (see Section 4.3). Thus, we will

introduce a class of sets which do not have high oscillations in the boundary.

Definition 2.17 We define

BV ∞
n :=

{
Ω ∈ BVn : Ω is open, ∂Ω is smooth, and ν−1({w}) has finitely

many connected components for all w∈Sn−1

}
. (2.94)

In this thesis, we will primarily work with the space BV ∞
2 as it is only involved in the

computations concerning the Autocorrelation Function in two space dimensions (see

Section 4.3). The conditions defining the space BV ∞
2 ensure that the boundary does not

have high oscillations. It also allows us to reduce computations of the Autocorrelation

Function of the corresponding set through local graph representations (see Lemma 4.10).

A useful property of the space BV ∞
2 is its density in BV2.

Lemma 2.18 Let Ω ∈ BV2. Then for every ε > 0 there exists Ωε ∈ BV ∞
2 , such that

|Ωε| = |Ω|, |Ωε △ Ω|+ |V [χΩ]− [χΩε ]| < ε. (2.95)

Proof: Using Lemma 2.16, it suffices to show that every polytope Ω ⊂ T
2 can be

approximated as in (2.95). We construct a set in Ωε ∈ BV ∞
2 with the desired properties.

We note that Ω has a smooth boundary except in its finitely many vertices. Without loss

of generality we can also assume that Ω is connected, else repeat the below argument son

each connected component of Ω.

Step 1: Smoothing of vertex. Let m > 0 and define f : R −→ R via f(x) := m|x| for all
x ∈ R. We choose φ ∈ C∞

c (R) such that supp(φ) = [−1
2
, 1
2
], φ ≥ 0, ∥φ∥L1(R) = 1 and
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φ(y) = φ(−y) for all y ∈ R. In addition, we define φε(y) :=
1
ε
φ(y

ε
) for all y ∈ R and the

convolution

fε(x) := m

�
R

|x− y|φε(y) dy for all x ∈ R. (2.96)

Then fε ∈ C∞(R), fε(x) = f(x) for all |x| ≥ ε
2
and fε is strictly convex. Moreover, we

compute

∥f ′ − f ′
ε∥L1(R) = 2

� ε
2

0

∣∣∣∣1− � x

− ε
2

φε(y) dy +

� ε
2

x

φε(y) dy

∣∣∣∣ dx
≤ ε+ 2

� ε
2

0

� y

0

φε(y) dx dy ≲ ε,

(2.97)

(2.98)

where we used Fubini’s Theorem in the last line. Thus ∥f − fε∥W 1,1(R)
ε↘0−−→ 0.

Step 2: Construction of Ωε. We will use the function fε from Step 1 to smooth vertices.

Let V be the finite set of vertices of Ω. Let x ∈ V be a vertex and let δ > 0 be sufficiently

small. Since the set Ω is assumed to be connected, the set Ω∩Bδ(x) can be represented by

the epigraph of the function f(x) = m|x|. Then we define Ω̃ε := Ω outside ∪x∈VΩ ∩Bδ(x)

and Ω̃ε ∩ Bδ(x) as the epigraph of fε from Step 1 (pulled back accordingly) for ε > 0

sufficiently small. Due to the convergence fε → f in W 1,1 we have

∣∣|Ω| − |Ω̃ε|
∣∣+ |Per(Ω)− Per(Ω̃ε)| ≲ ε. (2.99)

Since Ω̃c
ε has non-empty interior, we can find a ball Bε ⊂ Ω̃c

ε such that for ε sufficiently

small |Bε| =
∣∣|Ω| − |Ω̃ε|

∣∣. The set Ωε := Ω̃ε ∪Bε now satisfies the desired assertions. ■
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3. Biological Model

In this chapter, we will take a closer look at mechanochemical models describing pattern

formation in biological membranes. We will compare certain diffuse and sharp interface

variants, the physical and mathematical model assumptions and in which way these models

are related or approximated. In order to do so, we make the following defintion.

Definition 3.1 Let F : L1(Tn) −→ R ∪ {+∞}. We define the domain of F via

dom(F ) := {u ∈ L1(Tn) : F [u] <∞}. (3.1)

We call F a Diffuse Interface Model if dom(F ) ⊂ W 1,2(Tn). We call F a Sharp

Interface Model if dom(F ) ⊂ BV (Tn, {0, 1}). If F is a sharp interface model, we write

F (Ω) := F [χΩ] for all Ω ∈ BVn.

As is already indicated in the notations section, sharp interface models are typically

functionals acting on sets rather than functions.

This chapter is organised as follows. In Section 3.1 we will discuss the biological setup and

the relevant concepts of the situations we aim to model. In Section 3.2 we describe what

we mean by a mechanochemical model by exploring chemical and mechanical energies

and combining them suitably. In Section 3.3 we will compare diffuse and sharp interface

models qualitatively and quantitatively.

3.1. Biological Setup

We are interested in finding fine scale patterns in biological systems, specifically the

formation of so called lipid rafts in membranes of vesicles or cells. These are complex

nanostructures made up of certain lipids, proteins and cholesterol and are believed to be

responsible for many biological phenomena such as transmembrane signaling and cellular

homeostasis (see e.g. [SI97, LL15, RS05, SP13]).

Lipids (or more precisely phospholipids) are organic molecules that are insoluble in water,

but soluble in polar fluids. Most types are amphipathic, meaning that one spatial end of

the molecule is hydrophilic, the other hydrophobic. More precisely, they consist of a polar
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head group and two hydrophobic tails usually made up of fatty acids. Due to their shape

and amphipatic nature, lipids spontaneously group together and form closed structures

like micelles and lipid bilayers in aqueous environments (see [AJL+02]).

On the one hand, having formed a closed structure, lipid bilayers act as a barrier from

the inside to the outside as it is impermeable to most hydrophilic molecules. On the

other hand, single lipid molecules can move freely around within the bilayer. Being

only nanometres thick, this property makes them behave like 2D fluids and gives certain

lipids (like e.g. sphingolipids) the possibility to group together due to attractive forces

(like e.g. the van der Waals forces) holding them together to form domains, called raft

domains. They can be thought of as transient phase separation in the fluid bilayer, where

sphingolipids are more concentrated. Another mechanism to form raft domains comes

from a mutual effect of the proteins imbedded in the membrane and the bending of the

membrane, i.e. both the simultaneous influence of mechanical and chemical interactions

(see [PYG06, HZ01]).

Experiments show that these domains form fine scale patterns. In [RKG05], a vesicle

adhered to a solid substrate with a lipid bilayer membrane composed of sphingomyelin,

cholesterol and dioleoylphosphatidylcholine (DOPC) is considered. They observe a fine

scale pattern formation in regions in which the vesicle was not adhered. From an

initially homogeneous mixture they describe a phase separation into DOPC which in

time transforms from periodically organised laminates that become unstable to hexagonal

array of circular domains which appear to be stable. In addition, the shape of the vesicle

changes as well and simultaneously the width of the pattern. The authors of [RKG05] also

describe a second experiment where a large circular domain made up of sphingomyelin

evolves into an organised stripe pattern over time which appearing to be stable. Similar

observations were made e.g. in [PYG06, KG10, SMNT17].

In summary, fine scale patterns are observed in a lipid bilayer that change simultaneously

with the shape of the vesicle itself. The experiments show periodically organised stripe

pattern or hexagonally organised circular patterns. Our aim is to model the situation at

hand with the following physical assumptions:

• The lipid bilayer is modeled as a 2D immersed surface in R3.

• The membrane consists of a binary mixture.

• The lipid bilayer behaves like a 2D fluid, the binary mixture is able to diffuse.

3.2. Mechanochemical Models

Mechanochemical models describe phenomena in which chemical and mechanical forces

are driving the system. We will present several models and briefly describe the physical
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interpretation. We will proceed by combining these models and describe certain approxi-

mations thereof to derive the energy model Eγ,ε analysed in Chapter 5. We will restrict

to energy models as these are the most relevant in this thesis.

Phase separation energies Cahn–Hilliard type models describe chemical phase sepa-

ration processes and concentration effects of binary mixtures and are generally of the

form

CH[f ] :=

�
U

W(ϕ) +
b2

2
|∇ϕ(x)|2 dx, (3.2)

where U ⊂ Rn is a reference domain, W : R −→ R is a so called double well potential, and

b > 0 is parameter related to line tension. The double well potential describes chemical

interaction while the gradient contribution is a regularisation term, making oscillations

energetically less favourable. To have a well-defined energy, the argument has at least to

be of class W 1,2, thus energy models of this type are diffuse interface models.

Mathematically, the function W usually satisfies the following conditions:

• W ∈ C0(R).

• There exist a1, a2 ∈ R, a ̸= b, such that W(a1) = W(a2) = 0 and W(x) > 0

otherwise.

• W is non degenerate at ±∞.

Non degeneracy usually comes in the following forms:

• Growth Condition: 1 + |x|q ≲ W(x) for some q > 0.

• lim inf
x→±∞

W(x) > 0.

By redefining the arguments f 7−→ f−a1
a2−a1

, we can without loss of generality assume that

a1 = −1 and a2 = +1. We will refer to ±1 as the pure phases.

The Direct Method of the Calculus of Variations ensures the existence of a minimiser

u of class W 1,2 since the energy is convex in the highest order of derivatives. Also, the

properties on W drive the minimiser of CH to be close to the pure phases ±1. However,

since the minimiser is of class W 1,2, jump discontinuities cannot occur. Thus there is a

transition layer between the phases u ≈ −1 and u ≈ +1.

Bending energies In the context of biology, bending energies were introduced in [Can70]

to explain the non-convex shape of red blood cells (see also [Hel73]). Examples of such

energies are Helfrich type energies. These are energies of 2D immersed smooth surfaces in

R
3 and are of the form

Hel(Σ) := κ

�
Σ

(H −H0)
2 dH 2 + κ′

�
Σ

K dH 2, (3.3)
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where H denotes the mean curvature of Σ and K the Gauß curvature of Σ and κ, κ′ > 0

are bending moduli. The parameter H0 is called spontaneous curvature. Using the

Gauß–Bonnet Theorem, the second term in the energy can be written as

�
Σ

K dH 2 = 2πχ(Σ), (3.4)

where χ(Σ) denotes the Euler Characteristic of Σ, i.e. a topological quantity. Since we are

only interested in immersed sets which do not have a topological defect (i.e. χ(Σ) = 0),

we will omit the second term in the energy and only work with the mean curvature

contribution.

Mathematically, Helfrich type energies are hard to deal with, especially if H0 ̸= 0. In

particular, it is hard to find strictly positive lower bounds. While in the case H0 = 0 there

is a lower bound (which is given by 4π), in general there is not a strictly positive lower

bound available if H0 ̸= 0. Moreover, if H0 ≠ 0, then the energy lacks and invariances and

semi-continuity properties. In particular, the functional is not lower semi-continuous with

respect to weak convergence (see [GeB93]) and not conformally invariant (see [MS20]).

Coupling mechanical and chemical interactions: Combining the above mentioned

models is not an easy task as they operate on two different domains: the Cahn-Hilliard

type energies act on sufficiently regular functions, while the Helfrich type energies act on

sufficiently smooth sets. One way to overcome this difficulty is to reformulate the Helfrich

type energies to act on sufficiently smooth functions by means of localisation. By using a

representation as a graph via a function h : U −→ R, we find that at z = h(x, y) we have

2H(z) =
(1 + h2x)hyy + (1 + h2y)hxx − 2hxhyhxy

(1 + |∇h|2) 3
2

=
∆h√

1 + |∇h|2
−
hxxh

2
x + hyyh

2
y + 2hxhyhxy

(1 + |∇h|2) 3
2

.

(3.5)

(3.6)

Assuming small gradients and reducing to the linear contribution, we obtain an approxi-

mation of the form

H(z) ≈ 1

2
∆h(x, y). (3.7)

Using this approximation, the Helfrich energy can be formally approximated as follows:

H̃el(h) = κ

�
U

(∆h−H0)
2 dx. (3.8)

We are now in the position to combine chemical and mechanical energies by virtue of

adding their contributions CH+H̃el. As of now, the variable for the chemical energy and

the variable for the mechanical energy are not coupled. This will be dealt with by setting
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H0 = Λϕ, where Λ ∈ R is a coupling constant. This results in

MC[ϕ, h] =

�
U

W(ϕ) +
b2

2
|∇ϕ|2 + κ

4
(∆h)2 − Λ2ϕ2 + Λϕ∆h dx. (3.9)

We will call models of this type mechano–chemical models. Furthermore, we will call the

variable ϕ the order variable, and the variable h the displacement variable.

In the literature, there are multiple different energies similar to MC in various aspects.

In [Tan96], the corresponding gradient flow is solved numerically with a curved reference

domain U and concludes that the coupling as performed above strongly influences the

formation of protrusions in the membrane. More recent asymptotic analysis was conducted

in [EH21] (see also [EHS22]) on curved surfaces. Further application of mechano chemical

models can be found in the study of Diblock copolymers (see e.g. [RW00]).

The experiments conducted in [RKG05] are considered in [KSA06] and analyse a mechano-

chemical model of the form (see also [LA87])

E [ϕ, h] =
�
a4
4
ϕ4 +

a2
2
ϕ2 − µϕ+

b

2
|∇ϕ|2 + σ

2
|∇h|2 + κ

2
|∆h|2 + Λϕ∆h dx, (3.10)

where a4 > 0 for stability purposes, a2 > 0 is proportional to temperature, µ > 0 denotes

the chemical potential and σ > 0 the surface tension of the membrane. In [KSA06]

the authors performed a linear stability analysis and concluded that in the parameter

regime Λ2 > bσ, the homogenuous system becomes unstable and might lead to fine-scale

patterns. More specifically, they conclude that the model predicts a change from striped

to hexagonal patterns by increasing the line tension b, or decreasing the coupling constant

Λ2 (see also [HG96]).

3.3. Comparison of Sharp and Diffuse Interface Models

Under additional physical assumptions on the system, namely that the elastic stress

relaxes much faster than the typical time scale of diffusion, the dependence of h in the

mechano-chemical energies can be removed. In [FHLZ16], the authors worked with a

reformulation of the energy model in (3.10). Using the Euler–Lagrange equation δE
δh

= 0,

they reformulated the energy E in terms of the order parameter only. The resulting energy

is non-local (as it involves a solution operator to an elliptic equation) and is given by

Fq,ε[u] =
1

ε

�
T2

W (u) + (1− q)ε2|∇u|2 − u2 + u(1− ε2∆)−1u dx, (3.11)
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where the non-linear terms are absorbed in the double well potential W and the effective

parameters are given in terms of the physical parameters via

q = 1− σb

Λ2
, ε2 =

κ

σL2
. (3.12)

To develop some intuition for the non-local energy Fq,ε, we perform a formal expansion of

the non-local term which reveals

u(1− ε2∆)−1u = u2 + ε2u∆u+ ε4u∆2u+O(ε6). (3.13)

Using integration by parts, we find an approximate energy for the non-local energy Fq,ε

by a local energy functional

F̃q,ε[u] =
1

ε

�
T2

W (u)− qε2|∇u|2 + ε4|∆u|2 dx (3.14)

for which it was shown that there exists q̃∗ > 0 sucht that F̃q,ε
Γ−→ c̃q Per in the L2

topology for all q < q̃∗ (see [CDMFL11, CSZ11]). So the non-local energy Fq,ε behaves

qualitatively like the local energy functional F̃q,ε.

In order to find a sharp interface variant of Fq,ε we can use an approximation of the local

contribution in terms of the Perimeter functional. More precisely, in the Modica–Mortola

theory there is a connection between diffuse and sharp interface energies in the framework

of Γ–convergence, namely (see [CS06, Mod87])

�
Tn

1

ε
W (u) + (1− q)ε|∇u|2 dx Γ−→ cW,q

�
Tn

|∇u| (3.15)

in the L1 topology as ε→ 0, where

cW,q = 2
√

1− q

� 1

−1

√
W (s) ds. (3.16)

Naively, this would suggest to correspondingly replace the local diffuse interface term

in Fq,ε by its sharp interface counterpart as in (3.15). In particular, we note that for K
being the Fundamental Solution to the Helmholtz equation, namely

K −∆K = δ0 in Rn, (3.17)

Fq,ε in (3.11) is a corresponding diffuse interface model of the non-local isoperimetric

energy

Eγ,ε(Ω) := Per(Ω)− γ

εn+1

�
Rn

K( z
ε
)

�
Tn

|χΩ(x+ z)− χ
Ω(x)| dx dz (3.18)

analysed in Chapter 5. Here, we identified the function u ∈ BV (T2, {±1}) with the set
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Ω ∈ BV2 via Ω 7−→ u = 2χΩ − 1. The energy Fq,ε has been considered in [FHLZ16]

where it was shown that there exists q̄ > 0, such that Fq,ε Γ–converges to a constant

multiple of the perimeter functional (a sharp interface model) for all 0 < q < q̄. We note

that the results of [FHLZ16] do not contain a characterisation or estimation of q̄, nor the

constant appearing in their Γ–limit. This is due to a non-linear interpolation inequality

shown in [CDMFL11], which has no explicit description of the constants involved (see

also [CSZ11]).

Our main result (see Theorem B) is similar to that of [FHLZ16] in that we find two

regimes for a parameter related to the relative strength of the non–local interaction (for

our energy γ, in [FHLZ16] it is q), and the limit problem in the subcritical regime is the

isoperimetric problem. The interpretation is the same as in [FHLZ16], namely in the

subcritical parameter regime, fine scale pattern formation does not occur in contrast to

experimental results (e.g. stripe patterns or hexagonal array of balls, see [RKG05, KG10]).

The analysis of the energy Eγ,ε suggest that fine scale patterns occur in the supercritical

regime (see Section 5.4.2), but for fixed ε > 0, since in the supercritical regime high

oscillations are preferred. This leads to a failure of compactness and to an asymptotically

unbounded energy.

Furthermore, our result shows that quantitatively, the sub- and supercritical regimes of

the diffuse and sharp interface models differ. In particular, the critical value qcrit of the

corresponding sharp interface model (using the relations (3.15) and (3.16)) is given by

qcrit = 1−
(
2γcrit

� 1

−1

√
W (s) ds

)−2

. (3.19)

For K as in (3.17), we can explicitly compute the corresponding critical value of the sharp

interface model and it is given by γcrit = 1 (see Lemma A.13). However, one cannot equate

the parameter qcrit with the corresponding critical value q̄ (the threshold for Γ–convergence)

in [FHLZ16]. Indeed, for a suitable double well potential with ∥W∥L∞(−1,1) <
1
16

we would

obtain qcrit < 0. This shows, that q̄ = qcrit cannot hold, since the result of [FHLZ16]

shows that q̄ > 0. This is probably due to the fact that the sharp interface model neglects

effects which might occur due to non–linearity (i.e. the double well potential W ) such

as asymmetry, compressibility of the chemical substance, or behaviour at infinity or the

vanishing order at the roots. In particular, the interpolation inequality used in [FHLZ16]

in order to show q̄ > 0 only works for double well potentials W which have quadratic

roots and superquadratic growth (see also [CSZ11, Section 3]). The sharp interface model

does not contain information about the double well potential W other than the quantity� 1

−1

√
W (s) ds, which is unrelated to the aforementioned properties.
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4. Autocorrelation Function

In this chapter, we introduce and study the Covariogram and the Autocorrelation Function

of measurable subsets of the flat Torus Tn. Our interest is its application to non-local

isoperimetric problems motivated by [KS23] (see also [BKMC23]) and in particular to

the models with periodic boundary conditions described in Chapter 3. For a measurable

subset Ω ⊂ Tn we define its Covariogram CΩ : T
n −→ R via

CΩ(x) := |Ω ∩ (Ω + x)| for all x ∈ Tn. (4.1)

In [Gal11] (see also [Mat86]), the author studied the same quantity in the Euclidean

setting. Namely, given a measurable set Ω ⊂ Rn with finite measure, the Covariogram

CΩ : R
n −→ R is given by

CΩ(z) := |Ω ∩ (Ω + z)| for all z ∈ Rn, (4.2)

where | · | denotes the Lebesgue measure on Rn. It is shown for example that CΩ is

a Lipschitz function if and only if Ω is a set of finite perimeter (with estimates of the

Lipschitz constant in terms of the perimeter of Ω) and the inequality

|CΩ(z)− CΩ(z
′)| ≤ CΩ(0)− CΩ(z − z′) for all z, z′ ∈ Rn. (4.3)

This inequality essentially shows that the Lipschitz continuity and the regularity of the

Covariogram only depend on the behaviour of CΩ in z = 0. Applications of the Covariogram

can be found e.g. in convex geometry (see [MRS93, Nag93, AB15, Bia02, EL11, Wil17]),

the theory of random sets (see [MC70, Gal11, EL11]) and non-local isoperimetric problems

(see [KS23, BKMC23]).

This chapter is organised as follows: In Section 4.1 we will define the Covariogram and

the Autocorrelation Function and collect basic properties. In Section 4.2 and Section

4.3 we will take a closer look into regularity properties of the Covariogram and the

Autocorrelation Function and show that the behaviour of CΩ and cΩ at the origin is tightly

related to the geometry of Ω. In particular, in Section 4.2 we will show that CΩ and cΩ

are Lipschitz functions if and only if Ω ∈ BVn (see Theorem 4.7). Moreover, we derive

a formula for the second derivative. In Section 4.3 we proceed with higher regularity

properties in dimension n = 2. More precisely, we will show that CΩ and cΩ are smooth
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functions around the origin if Ω ⊂ T2 is sufficiently smooth (see Theorem 4.10) and find

c′′Ω(0) = 0, c′′′Ω(0) =

�
∂Ω

κ2 dH 1, (4.4)

where κ : ∂Ω −→ R denotes the curvature. Finally, we will discuss some explicit examples

in Section 4.4, building upon techniques developed in the prior sections. This includes

balls, laminates and polytopes. With these explicit results, we are able to show that

Ω 7−→ c′′Ω(0) in contrast to the lower derivatives is neither upper-, nor lower semicontinuous

with respect to L1–convergence (see Lemma 4.19).

4.1. Covariogram and Autocorrelation Function of

Measurable Sets

We will shortly recall the setup. The precise definitions can be found in Chapter 2. Let

n ∈ N with n ≥ 2 and define Tn := Rn/Zn the n–dimensional flat torus endowed with

the unit Haar measure (denoted by | · | or dx, dy etc.). We denote the surface measure

with H n−1. We also define translates of sets by

A+ z := {x+ z : x ∈ A} for all A ⊂ Tn, z ∈ Tn. (4.5)

We also define ωn to be the measure of the unit ball in Rn and σn = nωn the measure of the

unit sphere. We start by defining the Covariogram of a set and its (radially symmetrised)

Autocorrelation Function:

Definition 4.1 Let Ω ⊂ Tn be measurable. We define the Covariogram CΩ : T
n −→ R

via

CΩ(x) := |Ω ∩ (Ω + x)| for all x ∈ Tn. (4.6)

We define the (radially symmetrised) Autocorrelation Function cΩ : R −→ R via

cΩ(r) :=
1

σn

�
Sn−1

CΩ(rw) dH n−1(w) for all r ∈ R. (4.7)

We note, that the Covariogram of a set Ω ⊂ Tn can be represented in terms of convolution:

Let u := χ
Ω, then CΩ = u ∗ Iu, where I denotes the reflection operator and ∗ the

convolution. Note that cΩ is generally not a periodic function.

As alluded to in the the introduction, the Covariogram and therefore the Autocorrelation
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Function have full space analogues. We will denote thesm by

CΩ(z) := |Ω ∩ (Ω + z)|, cΩ(r) :=

�
Sn−1

CΩ(rw) dH n−1. (4.8)

For a set Ω ⊂ Tn with diam(Ω) < 1, there exists a representative Ω̂ ⊂ Rn. Due to the

geometry of Tn and Rn, we find

CΩ(x) = CΩ̂(x) for all x ∈ Tn sufficiently close to 0,

cΩ(r) = cΩ̂(r) for all 0 < r ≪ 1.

(4.9)

(4.10)

Most of the following results are inspired by [Gal11] (see also [KS23]) and carry over to

CΩ and cΩ analogously. For the theory, we will mostly consider the the Covariogram and

Autcorrelation Function defined on Tn and get back to the full space analogues when it

comes to explicit calculations in Section 4.4.

The following properties are immediate from the definition:

Proposition 4.2 Let Ω ⊂ Tn be measurable. Then:

a) 0 ≤ CΩ(x) ≤ CΩ(0) = |Ω| for all x ∈ Tn.

b) CΩ(x) = CΩ(−x) for all x ∈ Tn.

c) ∥CΩ∥L1(Tn) = |Ω|2.

d) CΩ is a uniformly continuous function.

Proof: a) follows from Hölders inequality and b) from a simple transformation. c) follows

from the Theorem of Tonelli. To prove d), observe that for x, y ∈ Tn and u := χ
Ω, we

have

|CΩ(x)− CΩ(y)| ≤
�
Tn

u(z) |u(z + x)− u(z + y)| dz

≤ ∥u− u( · + (x− y))∥L1(Tn).

(4.11)

(4.12)

The uniform continuity then follows from the fact, that ∥f − f( · + h)∥L1(Tn) → 0 as

h→ 0 for every function f ∈ L1(Tn). ■

Similar results are true for the Autocorelation Function:

Proposition 4.3 Let Ω ⊂ Tn be measurable. Then:

a) 0 ≤ cΩ(r) ≤ cΩ(0) = |Ω| for all r ∈ R.
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b) cΩ(r) = cΩ(−r) for all z ∈ Tn.

c) cΩ is a uniformly continuous function.

Proof: Follows directly from the definition of cΩ and Proposition 4.2. ■

The next lemma deals with trivial extensions of measurable sets and their effect on the

Covariogram.

Lemma 4.4 Let Ω ⊂ Tn be measurable. Let Ω̄ := Ω×Tk ⊂ Tn+k. Then

CΩ̄(z̄) = CΩ(z) for all z̄ = (z, z′) ∈ Tn+k. (4.13)

Proof: We compute for all z = (z, z′) ∈ Tn+k via Fubini

CΩ̄(z̄) =

�
Tn+k

χ
Ω×Tk(z̄ + x̄)χΩ×Tk(x̄) dx̄

=

�
Tn+k

χ
Ω(z + x)χΩ(x)χTk(z′ + x′)χTk(x′) d(x, x′)

=

�
Tk

�
Tn

χ
Ω(z + x)χΩ(x) dx dx

′ = CΩ(z),

(4.14)

(4.15)

(4.16)

as claimed. ■

4.2. Global Regularity Properties

In this section, we will take a closer look into the regularity of the function CΩ and cΩ

and its connection to the geometry of Ω. In [MRS93] it was shown that under certain

smoothness conditions of the boundary of a set, the covariogram CΩ of a convex body

Ω is smooth, and they also present formulas for the first and second derivatives in this

case. In [Gal11], the author showed that CΩ is Lipschitz if and only if Ω is a set of finite

perimeter. In [KS23] this was also shown for CΩ and cΩ.

A formal argument to connect sets of finite perimeter and the Covariogram comes from

the representation as convolution. In particular, as CΩ = χ
Ω ∗ IχΩ, we formally obtain

∇wCΩ = ∇w
χ
Ω ∗ IχΩ. (4.17)

40



Young’s Convolution Inequality now yields

∥∇wCΩ∥L1 ≤ ∥∇w
χ
Ω∥L1∥χΩ∥L1 ≤ Per(Ω), (4.18)

formally obtaining a uniform bound of the gradient independent of w ∈ Sn−1, and therefore

Lipschitz continuity of CΩ. The following proposition shows that the Lipschitz continuity

of the Covariogram and the Autocorrelation Function only depends on the behaviour at

the origin.

Proposition 4.5 Let Ω ⊂ Tn be measurable. Then the following inequalities hold:

a) |CΩ(x)− CΩ(y)| ≤ CΩ(0)− CΩ(y − x) for all x, y ∈ Tn.

b) |cΩ(s)− cΩ(t)| ≤ cΩ(0)− cΩ(s− t) for all s, t ∈ R.

Proof: Let x, y ∈ Tn. Without loss of generality we can assume that CΩ(x) ≥ CΩ(y). We

use Lemma A.5 to obtain

CΩ(x)− CΩ(y) = |Ω ∩ (Ω + x)| − |Ω ∩ (Ω + y)|

≤ |Ω + y| − |(x+ Ω) ∩ (y + Ω)|

= |Ω| − |Ω ∩ ((y − x) + Ω) | = CΩ(0)− CΩ(y − x).

(4.19)

(4.20)

(4.21)

Assertion b) then follows directly from a). ■

With the preceding proposition, we will focus now on the bahaviour at the origin. The

following formula is due to Matheron [Mat86] (see also [Gal11]).

Lemma 4.6 Let Ω ⊂ Tn be measurable. Then

CΩ(0)− CΩ(z) =
1

2

�
Tn

|χΩ(x)− χ
Ω(x+ z)| dx for every z ∈ Tn,

cΩ(0)− cΩ(r) =
1

2σn

�
Sn−1

�
Tn

|χΩ(x+ rw)− χ
Ω(x)| dx dH n−1(w) for all r ∈ R.

Proof: Since the integrand only takes the values 0 and 1 we obtain

�
Tn

|χΩ(x)− χ
Ω(x+ z)| dx =

�
Tn

|χΩ(x)− χ
Ω(x+ z)|2 dx

= CΩ(0)− 2CΩ(z) + CΩ(0),

(4.22)

(4.23)
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which was the first claim. The second assertion follows by definition of the Autocorrelation

Function. ■

We recall that Ω ∈ BVn if χΩ ∈ BV (Tn). The following theorem provides a characterisa-

tion of the space BVn in terms of the Covariogram.

Theorem 4.7 Let Ω ⊂ Tn be measurable. Then the following is equivalent:

a) Ω ∈ BVn.

b) lim
r↘0

CΩ(rw)− CΩ(0)

r
exists and is finite for all w ∈ Sn−1.

c) CΩ is a Lipschitz function.

In addition

∥∇CΩ∥L∞(Tn,Rn) =
1

2
sup

w∈Sn−1

Vw[χΩ] ≤
1

2
V [χΩ]. (4.24)

Proof: Let w ∈ Sn−1. Then we derive from Lemma 4.6 and Corollary 4.8

lim
r↘0

CΩ(0)− CΩ(rw)

r
=

1

2
lim
r↘0

�
Tn

|χΩ(x)− χ
Ω(x+ rw)|
r

dx =
1

2
Vw[χΩ]. (4.25)

So the limit exists and is finite for all w ∈ Sn−1 if Vw[χΩ] is finite for all w ∈ Sn−1, which

in turn is equivalent to Ω being a set of finite perimeter (see Corollary 4.8). This shows

the equivalence of a) and b).

To show the equivalence to c), let x, y ∈ Tn such that x ̸= y. Then we find r > 0 and

w ∈ Sn−1 such that x− y = rw (or more precisely x− y = exp0(rw)). We compute

|CΩ(x)− CΩ(y)|
4.5

≤ CΩ(0)− CΩ(y − x)

4.6
=

1

2

�
Tn

|χΩ(z)− χ
Ω(z + y − x)| dz

=
r

2

�
Tn

|χΩ(z)− χ
Ω(z + rw)|
r

dz

4.8

≤ r

2
Vw[χΩ] ≤

|x− y|
2

sup
w∈Sn−1

Vw[χΩ],

(4.26)

(4.27)

(4.28)

(4.29)

which shows that CΩ is a Lipschitz function (see Corollary 2.12). The equivalence as well

as the formula (4.24) then follow from (4.25). ■

We remark that the restriction to lines Cw
Ω : R −→ R, which is given by Cw

Ω (r) := CΩ(rw)

for some fixed w ∈ Sn−1, has Lipschitz constant 1
2
Vw[χΩ], which is a byproduct of the

proof of Theorem 4.7. Moreover, a combination of Theorem 4.7 and Rademacher’s
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Theorem shows that the Covariogram CΩ (as well as the Autocorrelation Function cΩ)

are differentiable almost everywhere.

Since the Autocorrelation Function is an even function, we will treat it as a function

defined on R+. If it comes to regularity properties we will denote

c′Ω(0) := lim
r↘0

cΩ(r)− cΩ(0)

r
(4.30)

as the right–derivative.

Corollary 4.8 Let Ω ⊂ Tn be a set of finite perimeter. Then

a) lim
r↘0

CΩ(rw)− CΩ(0)

r
= −1

2
Vw[χΩ] for all w ∈ Sn−1.

b) ∥c′Ω∥L∞(R+) = −c′Ω(0) =
1

n

ωn−1

ωn

Per(Ω).

Proof: Assertion a) is shown in (4.25). Since c′Ω exists almost everywhere, we obtain from

Proposition 4.5 for almost every r > 0

|c′Ω(r)| = lim
h↘0

∣∣cΩ(r + h)− cΩ(r)

h

∣∣ ≤ lim
h↘0

cΩ(0)− cΩ(h)

h
= −c′Ω(0). (4.31)

Thus it remains to calculate c′Ω(0). We compute for r > 0

cΩ(r)− cΩ(0)

r
=

1

σn

�
Sn−1

CΩ(rw)− CΩ(0)

r
dH n−1(w)

r↘0−−→ − 1

2σn

�
Sn−1

Vw[χΩ] dH n−1(w)

= − 1

n

ωn−1

ωn

V [χΩ],

(4.32)

(4.33)

(4.34)

where in the last line we used Corollary 4.8 and σn = nωn. ■

We have seen that sets of finite perimeter imply Lipschitz regularity of the Covariogram.

Formally, this was expected from the computations (4.17) and (4.18). We can expand

these formal computations to obtain

∇v∇wCΩ = ∇w
χ
Ω ∗ I∇w

χ
Ω (4.35)

and again with Young’s Convolution Inequality

∥∇v∇wCΩ∥L1 ≤ ∥∇w
χ
Ω∥L1∥∇v

χ
Ω∥L1 ≲ Per(Ω)2. (4.36)
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Therefore, the derivative of the Covariogram itself is expected to have a notion of weak

differentiability. We end this section by proving that this is indeed the case.

Lemma 4.9 Let Ω ∈ BVn and w ∈ Sn−1. Then ∇wCΩ ∈ BV (Tn) ∩ L∞(Tn) and

∇v∇wCΩ = −∇v
χ
Ω ∗ I∇w

χ
Ω for all v ∈ Sn−1, (4.37)

where I denotes the reflection operator.

As a reminder, given two Borel measures µ, ν : B(Tn) −→ [0,∞], the convolution measure

µ ∗ ν is defined via duality:

�
Tn

φ d(µ ∗ ν) =
�
Tn

φ(x+ y) dµ(x) dν(y) for all φ ∈ L∞(Tn). (4.38)

Proof: Let φ ∈ C∞(Tn). Since Ω is a set of finite perimeter, we know from Theorem 4.7

that ∇wC ∈ L∞(Tn). We compute for v ∈ Sn−1 with Corollary 2.7 and Fubini’s Theorem

�
Tn

∇wCΩ(x)∇vφ(x) dx = −
�
Tn

χ
Ω(y)

�
Tn

χ
Ω(x+ y)∇v∇wφ(x) dx dy

=

�
Tn

χ
Ω(y)

�
Tn

∇vφ(x− y) d∇w
χ
Ω(x) dy

= −
�
Tn

�
Tn

φ(x+ y) dI∇v
χ
Ω(y) d∇w

χ
Ω(x)

= −
�
Tn

φ d[∇w
χ
Ω ∗ I∇v

χ
Ω].

(4.39)

(4.40)

(4.41)

(4.42)

By definition of the variation we obtain

Vv[∇wCΩ]
(4.41)

≤ Vw[χΩ]Vv[χΩ]
2.12

≤ V [χΩ]
2 <∞ for all v ∈ Sn−1. (4.43)

Corollary 2.12 shows that ∇wCΩ ∈ BV (Tn) and formula (4.37) follows from the computa-

tions above. ■

We note that higher regularity cannot be expected globally as the Coavariogram and the

Autocorrelation Function of a single laminate S := (0, θ) × Tn−1 ⊂ T
n is not smooth,

even though S ∈ BV ∞
2 (see Section 4.4.3).

4.3. Local Regularity Properties

We will now focus on the case n = 2. As we have seen in Theorem 4.7 and Lemma

4.9, regularity of the set ∂Ω is connected to the regularity of the Covariogram and the

44



Ω + rw
Ω

Ω△ Ωrw

Figure 4.1.: Construction of the cuboids Qi in Step 1 of the proof of Theorem 4.10.

Autocorrelation Function. We will now proceed by showing that they are smooth near the

origin, if ∂Ω is sufficiently smooth. We will do so by localising the boundary in such a way

that it is representable by a smooth graph. The Covariogram then is given by integrals

of differences of smooth functions, which itself is smooth. As a reminder, we define (see

Definition 2.17)

BV ∞
2 :=

{
Ω ∈ BV2 :

Ω is open, ∂Ω is smooth, and ν−1({w}) has finitely
many connected components for all w∈S1

}
, (4.44)

which is a dense class of sets in BV2 (see Lemma 2.18).

Theorem 4.10 Let Ω ∈ BV ∞
2 . Then there exists R > 0 such that cΩ ∈ C∞((0, R]).

Proof: We denote Ωz := Ω + z. Then we have CΩ(z) = |Ω ∩ Ωz|. Let r > 0 and w ∈ S1.

Then

CΩ(0)− CΩ(rw) = |Ωrw \ Ω| = |Ω \ Ωrw| =
1

2
|Ω△ Ωrw|, (4.45)

where △ denotes the symmetric difference. Since CΩ(0) = |Ω| by Proposition 4.2 it hence

remains to calculate |Ω△ Ωrw| and its dependence on r. We will do this is multiple steps:

Step 1: Localisation. Since Ω has a smooth boundary, for every x ∈ ∂Ω there exists rx > 0,

such that (possibly after rotation) ∂Ω ∩B4rx(x) is representable as a graph of a smooth

function. So we find an open covering

∂Ω =
⋃

x∈∂Ω

∂Ω ∩Q3rx(x). (4.46)

Since ∂Ω is compact, we find a finite subcovering, i.e. N ∈ N, xi ∈ ∂Ω and ri > 0 such

that

∂Ω =
N⋃
i=1

∂Ω ∩Q3ri(xi), (4.47)

where Qt(y) denotes a cube of sidelength t with centre y. We define Qi := Qri(xi). Let
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Ui ⊂ R open and fi ∈ C∞(Ui) such that (possibly after rotation) we have ∂Ω ∩ Qi =

graph(fi). Without loss of generality we can assume fi ≥ 1, f ′
i is a monotone function

(due to the assumption on ν as Ω ∈ BV ∞
2 ), and Ui = [−Ri, Ri]. Also, after refining

and changing from cubes to cuboids, without loss of generality we can assume that

the family of cuboids {Qi}i is pairwise essentially disjoint (see Figure 4.1). We define

R := 1
4
min{r1, . . . , rN , 18}.

We note that Ω△ Ωrw ⊂
⋃
Qri(xi) for all 0 < r < R. To see this, we first observe that

for every x ∈ ∂Ωrw there exists x̄ ∈ ∂Ω, such that x = x̄+ rw. Thus, x ∈ Br(x̄) ⊂ BR
2
(x̄).

Likewise, for every y ∈ ∂Ω there exists ȳ ∈ ∂Ωrw such that y ∈ BR
2
(ȳ). Now, let

x ∈ Ω△Ωrw and define Rx := sup{r > 0 : Br(x) ⊂ Ω△Ωrw}. Using the above arguments,

we have Rx < R for all x ∈ Ω△ Ωrw. Thus

Ω△ Ωrw ⊂ (∂Ω +BR(0)) ∪ (∂Ωrw +BR(0)) ⊂
N⋃
i=1

Qri(xi), (4.48)

as claimed. Thus, we find

|Ω△ Ωrw| =
∣∣(Ω△ Ωrw) ∩

N⋃
i=1

Qi

∣∣ = ∣∣ N⋃
i=1

(Ω△ Ωrw) ∩Qi

∣∣ = N∑
i=1

|(Ω△ Ωrw) ∩Qi|.

(4.49)

Step 2: Regularity via Graph representation. We will now focus on a fixed cube Qi. By

definition, Ωrw ∈ BV ∞
2 and by construction we have ∂Ωrw ∩Qi = graph(f

(rw)
i ), where

f
(rw)
i (x) :=


fi(x+ rw1) + rw2 if no rotation is needed,

fi(x+ rw2) + rw1 if clockwise rotated,

fi(x− rw2) + rw1 if counter clockwise rotated,

for all x ∈ Ui.

We note that by definition of R, the functions f (rw) are also defined on [−Ri, Ri] since the

domain of fi is at least [−2Ri, 2Ri] (see (4.46)). Depending on w, we find the following

possible cases:

• f
(rw)
i < fi in Ui. Then we compute (see Figure 4.2 b))

|(Ω△ Ωrw) ∩Qi| =
� Ri

−Ri

fi(x)− f
(rw)
i (x) dx. (4.50)

• f
(rw)
i > fi in Ui. Then we compute (see Figure 4.2 b))

|(Ω△ Ωrw) ∩Qi| =
� Ri

−Ri

f
(rw)
i (x)− fi(x) dx. (4.51)
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a) b)

1
2
|Ω△ Ωre2|

x∗i
x

fi(x)
fi(x+ r)

1
2
|Ω△ Ωre2|

fi(x)
fi(x) + r

Figure 4.2.: Covariogram localised in in Qi. a) shows horizontal displacement, b) shows
vertical displacement.

• There exists xi∗(rw), x
∗
i (rw) ∈ Ui, such that xi∗(rw) < x∗i (rw), fi(x) < f

(rw)
i (x)

for all x ∈ [−Ri, xi∗(rw)] and f
(rw)
i (x) < fi(x) for all x ∈ [x∗i (rw), Ri]. Then we

compute (see Figure 4.2 a))

|(Ω△ Ωrw) ∩Qi| =
� xi∗(rw)

−Ri

f
(rw)
i (x)− fi(x) dx

+

� Ri

x∗
i (rw)

fi(x)− f
(rw)
i (x) dx.

(4.52)

(4.53)

• There exists xi∗(rw), x
∗
i (rw) ∈ Ui, such that xi∗(rw) < x∗i (rw), f

(rw)
i (x) < fi(x)

for all x ∈ [−Ri, xi∗(rw)] and fi(x) < f
(rw)
i (x) for all x ∈ [x∗i (rw), Ri]. Then we

compute (see Figure 4.2 a))

|(Ω△ Ωrw) ∩Qi| =
� xi∗(rw)

−Ri

fi(x)− f
(rw)
i (x) dx

+

� Ri

x∗
i (rw)

f
(rw)
i (x)− fi(x) dx.

(4.54)

(4.55)

The number of w ∈ S1 for which xi∗(rw) < x∗i (rw) are finite. This can only happen if

there exists an open interval in Ui such that f ′
i is constant in that interval (in other words,

the part of ∂Ω described by fi is flat).

Moreover, these values are characterised by the equation fi(x+ rw1) + rw2 = fi(x). Using

the Implicit Function Theorem, xi∗(rw) depends smoothly on rw. Thus the right-hand

side depends smoothly on r and w in every case (4.50) – (4.54).

Step 3: Conclusion. Using the four cases in the previous step, we find four corresponding

regimes in S1:

Si1 := {w ∈ S1 : (4.50) holds}, Si2 := {w ∈ S1 : (4.51) holds},

Si3 := {w ∈ S1 : (4.52) holds}, Si4 := {w ∈ S1 : (4.54) holds}.

(4.56)

(4.57)
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We note that Si1, . . . , Si4 are independent of r for all 0 < r < R. Indeed, in case (4.50)

we find that

fi(x+ rw1) + rw2 < fi(x) for all x ∈ [−Ri, Ri]. (4.58)

Using the Mean Value Theorem, we that (4.58) is equivalent to

f ′
i(ζr(x)) < −w2

w1

for all x ∈ [−Ri, Ri], (4.59)

where ζr(x) ∈ [−Ri, Ri]. Due to the monotonicity of f ′
i , it suffices that either f ′

i(−Ri) or

f ′
i(Ri) satisfies this condition, which is now independent of r. Thus Si1 is independent of

r. Similarly, this holds for Si2 (with reversed sign in (4.58)).

In case (4.52), we first note that by the Implicit Function Theorem xi∗(rw) = x∗i (rw) for

almost all 0 < r < R and w ∈ S1 and xi∗ is a smooth function of r and w (inequality only

occurs for flat parts of ∂Ω). Moreover, as solution to the equation f(x+rw1)+rw2 = f(x),

we compute using the Implicit Function Theorem

x′i∗(rw) = − f ′
i(xi∗(rw) + rw1) + w2

f ′
i(xi∗(rw) + rw1)− f ′

i(xi∗(rw))
for all 0 < r < R. (4.60)

Due to the monotonicity of f ′
i , the function r 7−→ xi∗(rw) is monotonic and using Lemma

A.16 also convergent as r → 0. Thus, the set Si3 is independent of r. Similar reasoning

shows that Si4 is independent of r.

In summary we obtain

cΩ(r)− cΩ(0) =

 
S1

CΩ(rw)− CΩ(0) dH 1(w)

=
1

2

 
S1

N∑
i=1

|(Ω△ Ωrw) ∩Qi| dH 1(w)

=
1

2σ2

N∑
i=1

4∑
j=1

�
Sij

|(Ω△ Ωrw) ∩Qi| dH 1(w).

(4.61)

(4.62)

(4.63)

Since the right-hand side is smooth for 0 < r < R, we find that cΩ is smooth. ■

We improve on the argument before to show the following:

Lemma 4.11 Let Ω ∈ BV ∞
2 and w ∈ S1. Then

( d

dr

)2

CΩ(rw)
∣∣∣
r=0

= 0. (4.64)
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Proof: Without loss of generality we choose w = e2. We use the notation as in the proof

of Theorem 4.10. As before, we write

CΩ(re2)− CΩ(0) =
1

2
|Ω△ Ωre2| =

1

2

N∑
i=1

|(Ω△ Ωre2) ∩Qi|, (4.65)

We first note that the only cases i ∈ {1, . . . , N} that contribute to ( d
dr
)2CΩ(rw) are those

which need rotation for a graph representation. Indeed, if the graph representation does

not need rotation, we compute (see Figure 4.2 b))

|(Ω△ Ωre2) ∩Qi| =
∣∣∣�

Ui

fi(y) + r − fi(y) dy
∣∣∣ = r|Ui|. (4.66)

Deriving twice with respect to r yields a trivial contribution.

We note that the graph representation requires rotation if and only if there exists x ∈
∂Ω∩Qi, such that x ∈ ν−1(±e1), or equivalently x ∈ (ν⊥)−1({±e2}). Using the assumption

Ω ∈ BV ∞
2 , we know that there exist only finitely many such cubes Qi independently of r.

In this situation we have the following cases to consider:

Case 1: f ′
i = 0. This means this section of ∂Ω is flat. Thus we compute |(Ω△Ωre2)∩Qi| = 0.

Case 2: f ′
i does not change sign. This means that fi is either strictly increasing, or strictly

decreasing. If fi is strictly increasing, then fi(x) < fi(x+ r) for any x ∈ Ui. We compute

|(Ω△ Ωre2) ∩Qi| =
� Ri

−Ri−r

fi(y + r) dy +

� Ri−r

−Ri

fi(y + r)− fi(y) dy

+

� Ri

Ri−r

fi
(
(Ri − r) + r

)
− f(y) dy

=

� Ri−r

−Ri−r

fi(y + r) dy −
� Ri

−Ri

fi(y) dy + rfi(Ri)

= rfi(Ri).

(4.67)

(4.68)

(4.69)

(4.70)

Deriving twice with respect to r gives a trivial contribution for right shift. For left shifts

we note that fi(x− r) < fi(x) for any x ∈ Ui. We compute

|(Ω△ Ωre2) ∩Qi| =
� −Ri+r

−Ri

fi(y) dy +

� Ri

−Ri+r

fi(y)− fi(y − r) dy

+

� Ri+r

Ri

fi(Ri)− f(y − r) dy

=

� Ri

−Ri

fi(y) dy −
� Ri+r

−Ri+r

fi(y − r) dy + rfi(Ri)

= rfi(Ri).

(4.71)

(4.72)

(4.73)

(4.74)
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Deriving twice with respect to r gives a trivial contribution for left shifts. In the situation

in which fi is strictly decreasing, the overall signs in the computations above change and

again, deriving twice yields a trivial contribution.

Case 3: f ′
i changes sign. Since f ′

i is assumed to be monotone, that means either fi is

strictly convex or strictly concave. We note that there exists a unique x̄i ∈ Ui such that

f ′
i(x̄i) = 0. This value corresponds to the value Xi ∈ (ν⊥)−1({±e2}), where •⊥ denotes

counter clockwise rotation.

As the curvature κ is extrinsic (meaning it depends on the orientation of T2), we need to be

careful about the rotations to obtain the graph representation. Without loss of generality,

we assume that all representations in terms of graphs are obtained by counter-clockwise

rotations. In that case, the Covariogram is always computed by a left shift. In addition,

we note the following:

• If κ(Xi) > 0 and Xi ∈ (ν⊥)−1({+e2}), then fi is concave and thus f ′′
i (x̄i) < 0.

• If κ(Xi) > 0 and Xi ∈ (ν⊥)−1({−e2}), then fi is convex and thus f ′′
i (x̄i) > 0.

• If κ(Xi) < 0 and Xi ∈ (ν⊥)−1({+e2}), then fi is convex and thus f ′′
i (x̄i) > 0.

• If κ(Xi) < 0 and Xi ∈ (ν⊥)−1({−e2}), then fi is concave and thus f ′′
i (x̄i) < 0.

Using the Implicit Function Theorem we find xi ∈ C∞(Ui) such that fi(xi(r) + r) =

fi(xi(r)). Assume fi is concave, we compute (see Figure 4.2 a))

|(Ω△ Ωre2) ∩Qi| =
� x∗

i (r)

−Ri−r

fi(y + r) dy −
� x∗

i (r)

−Ri

fi(y) dy

+

� Ri

x∗
i (r)

fi(y) dy −
� Ri−r

x∗
i (r)

fi(y + r) dy

=

� x∗
i (r)+r

−Ri

f(y) dy −
� x∗

i (r)

−Ri

f(y) dy

+

� Ri

x∗
i (r)

f(y) dy −
� Ri

x∗
i (r)+r

f(y) dy

= 2

� x∗
i (r)+r

x∗
i (r)

f(y) dy.

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

Deriving twice yields and using Lemma A.18 yields

( d

dr

)2

|(Ω△ Ωre2) ∩Qi|
r↘0−−→ 0, (4.80)

In the case when fi is convex, we find with a similar computation

|(Ω△ Ωre2) ∩Qi| = −2

� x∗
i (r)+r

x∗
i (r)

f(y) dy, (4.81)
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and as before a trivial contribution to the second derivative.

Thus, in all cases, the contribution to the second derivative of the Covariogram CΩ are

trivial in the limit r ↘ 0 and the claim follows. ■

Corollary 4.12 Let Ω ∈ BV ∞
2 . Then c′′Ω(0) = 0.

Proof: Using Theorem 4.10 we know cΩ is smooth near the origin. Using Lemma 4.11

and the Dominated Convergence Theorem we find for r → 0

c′′Ω(r) =
1

σ2

�
S1

( d

dr

)2

CΩ(rw) dH 1(w)
r→0−−→ 0, (4.82)

which concludes the proof. ■

Third derivative of the Autocorrelation function In what follows we compute the

third derivative of the Autocorrelation Function for smooth sets. As we have seen in the

section before, the only contributions to the derivatives of the Autocorelation Function is

at points tangential to the normal vector, i.e. elements of (ν⊥)−1({w}). We use the same

procedure to obtain the following result:

Lemma 4.13 Let Ω ∈ BV ∞ and w ∈ S1. Then( d

dr

)3

CΩ(rw)
∣∣∣
r=0

=
1

2

�
(ν⊥)−1({w})

|κ| dH 0, (4.83)

where ν : ∂Ω −→ S
1 denotes the Gauß map and κ : ∂Ω −→ R denotes the curvature.

Proof: Without loss of generality we choose w = e2. We use the notation as in the proof

of Theorem 4.10 and Lemma 4.11. As we have seen in the proof of Lemma 4.11, the

only cases that have a non-trivial contribution to the third derivative are ν = ±e1 (i.e.

w ∈ (ν⊥)−1(e2)). Thus, we need to analyse the contributions of the form

|(Ω△ Ωre2) ∩Qi| = 2

� x∗
i (r)+r

x∗
i (r)

fi(y) dy if fi is concave,

|(Ω△ Ωre2) ∩Qi| = −2

� x∗
i (r)+r

x∗
i (r)

fi(y) dy if fi is convex,

(4.84)

(4.85)

where x∗i ∈ C∞(Ui) such that fi(x
∗
i (r)+ r) = fi(x

∗
i (r)). We note that there exists a unique

x̄i ∈ Ui such that f ′
i(x̄i) = 0 (since flat parts of the boundary have already been dealt
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with in the first case of the proof of Lemma 4.11). Thus, using Lemma A.19, we obtain

( d

dr

)3

|(Ω△ Ωre2) ∩Qi|
r→0−−→ −1

2
f ′′
i (x̄i) if fi is concave,( d

dr

)3

|(Ω△ Ωre2) ∩Qi|
r→0−−→ 1

2
f ′′
i (x̄i) if fi is convex.

(4.86)

(4.87)

Since f ′
i(x̄i) = 0, we have κ = f ′′(x̄i). As described in the proof of Lemma 4.11 in Case 3,

we therefore obtain ( d

dr

)3

|(Ω△ Ωre2) ∩Qi|
r→0−−→ −1

2
|κ|, (4.88)

from which the claim follows. Note that the negative sign comes from the difference

CΩ(0)− CΩ(rw) in (4.45). ■

To derive the quantity c′′′Ω(0) from Lemma 4.13, we integrate over all directions w ∈ S1 and

we aim to use the Coarea Formula to relate integrals over (ν⊥)−1({w}) and S1 back to Ω.

For this reason, we need the Jacobian of the outer unit vector ν. As a reminder, given a

smooth map f : M −→ N between two smooth manifolds, the Jacobian Jacf (x) : M −→ R

is defined via

Jacf (x) := det(Dxf Dxf
∗)

1
2 for all x ∈M, (4.89)

where Dxf : TxM −→ Tf(x)N denotes the differential map and •∗ the adjoint.

Lemma 4.14 Let Ω ⊂ T2 be smooth and let ν : ∂Ω −→ S
1 be the outward normal vector.

Then

Jacν(x) = Jacν⊥(x) = |κ(x)| for all x ∈ ∂Ω. (4.90)

Proof: By definition, the curvature κ : ∂Ω −→ R is defined as the unique constant such

that (see Definition 2.3)

γ̈(0) = κ(x) ν⊥(x), (4.91)

where γ ∈ C∞((−ε, ε), ∂Ω) is a parametrisation of ∂Ω around x for some ε > 0 sufficiently

small, i.e. γ(0) = x and |γ̇| = 1. We note that without loss of generality γ̇(0) = ν⊥(x).

For details, see Section 2.1.1. Using the Chain Rule we find

κ(x) ν⊥(x) = κ(γ(0)) ν(γ(0))⊥ = (D0γ̇)(∂t)

= D0(ν
⊥ ◦ γ)(∂t) = (Dγ(0)ν

⊥)(D0γ(∂t))

= (Dxν
⊥)(γ̇(0)) = (Dxν

⊥)(ν⊥(x)).

(4.92)

(4.93)

(4.94)
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Thus, we find that ν(x)⊥ is an eigenvector of Dxν
⊥ with eigenvalue κ(x) and thus

Jacν⊥(x)
2 = κ(x)2 (4.95)

as claimed. Since the inverse operator to •⊥ is given by −•⊥ we find

Jacν(x)
2 = det(Dxν Dxν

∗) = det(Dxν
⊥Dxν

⊥∗
) = Jacν⊥(x)

2 (4.96)

as claimed. ■.

With this formula at hand, we are able to obtain the following result concerning the third

derivative of the Autocorrelation Function.

Corollary 4.15 Let Ω ∈ BV ∞
2 . Then

c′′′Ω(0) =
1

4π

�
∂Ω

κ2 dH 1, (4.97)

where κ : ∂Ω −→ R denotes the curvature.

Proof: Using Lemma 4.13 we find

c′′′Ω(r) =
1

σ2

�
S1

( d

dr

)3

CΩ(rw) dH 1(w)

r↘0−−→ 1

σ2

�
S1

( d

dr

)3

CΩ(0) dH 1(w)

=
1

2σ2

�
S1

�
ν−1({w})

κ(x) dH 0(x) dH 1(w)

=
1

2σ2

�
∂Ω

|κ(x)| Jacν⊥(x) dH 1(x)

=
1

4π

�
∂Ω

κ2 dH 1,

(4.98)

(4.99)

(4.100)

(4.101)

(4.102)

where we used the Coarea Formula (see Theorem A.9), Lemma 4.14 and σ2 = 2π. ■

We note two interesting facts about this formula. First, in Lemma 4.17 it is shown that

for a polytope Ω ⊂ T2 there exist a ≥ 0 and b, d > 0 such that

cΩ(r) = ar2 − br + d for all 0 < r ≪ 1. (4.103)

Deriving three times we obtain c′′′Ω(0) = 0, matching the result of Corollary 4.15 even

though Ω ̸∈ BV ∞
2 . However, in Section 4.4.5 it is shown that c′′′Ω2R,R

(0) does not exist for
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n cBR(0)(r)

2 2R2 arccos( r
2R
)− r

2

√
4R2 − r2

3 π
12
(4R + r)(2R− r)2

4 2πR4 arccot
(

2R+r√
4R2−r2

)
− π

24
r
√
4R2 − r2(10R2 − r2)

5 π2

480
(2R− r)3(3r2 + 18rR + 32R2)

Figure 4.3.: Explicit expressions of the Autocorrelation Funtion of BR for 0 < r < 2R for
dimensions 2 ≤ n ≤ 5.

the cusp domain Ω2R,R := BR(−Re1) ∪BR(Re2), even though there only exists one point

on ∂Ω2R,R which has a cusp. Moreover, the quantity

�
∂Ω2R,R

κ2 dH 1 =
4π

R
(4.104)

exists and is finite but does not match c′′′Ω2R,R
(0).

4.4. Examples

We will now discuss some explicit examples of Autocorrelation Functions. We note that

in most cases, we cannot compute cΩ(r) for all r > 0 since the symmetrisation for large r

is too complicated to compute. Thus, some sections will compute cΩ, knowing that in

most cases cΩ(r) = cΩ(r) for 0 < r ≪ 1 (see (4.9)).

4.4.1. Single Ball

In this section, we will compute the autocorrelation function of a single ball of radius

R > 0. Due to symmetry we have cBR(0)(r) = CBR(0)(ren). We compute for 0 < r < 2R

via Tonelli’s Theorem

cBR(0)(r) = |BR(0) ∩BR(ren)| =

∣∣∣∣∣∣
 |x′|2 ≤ R2 − x2n

|x′|2 ≤ R2 − (xn − r)2


∣∣∣∣∣∣

=

� r
2

r−R

|Bn−1√
R2−(xn−r)2

(0)| dxn +
� R

r
2

|Bn−1√
R2−x2

n

(0)| dxn

= 2

� R

r
2

|Bn−1√
R2−x2

n

(0)| dxn

(4.105)

(4.106)

(4.107)
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= 2ωn−1

� R

r
2

(R2 − xn)
n−1
2 dxn

= 2ωn−1R
n

� 1

r
2R

(1− t2)
n−1
2 dt,

(4.108)

(4.109)

where Bn−1
ρ (0) := {x′ ∈ Rn−1 : |x′| < ρ}. Solving this integral involves the Hypergeometric

Function 2F1. However, higher derivatives can be computed explicitly: for 0 < r < 2R we

have

c′BR(0)(r) = −21−nωn−1(4R
2 − r2)

n−1
2

c′′BR(0)(r) = 21−n(n− 1)ωn−1r(4R
2 − r2)

n−3
2

c′′′BR(0)(r) = 21−n(n− 1)ωn−1(4R
2 − r2)

n−5
2 (4R2 − (n− 2)r2)

c
(iv)
BR(0)(r) = 21−n(n− 3)(n− 1)ωn−1r((n− 2)r2 − 12R2)(4R2 − r2)

n−7
2

c
(v)
BR(0)(r) = −21−n(n− 3)(n− 1)ωn−1(4R

2 − r2)
n−9
2

× ((n− 4)(n− 2)r4 − 24(n− 4)r2R2 + 48R4)

(4.110)

(4.111)

(4.112)

(4.113)

(4.114)

(4.115)

We note that the Autocorrelation Function is a polynomial of degree n for odd dimensions

n ∈ 2N+ 1.

4.4.2. Annulus

In this section, we compute the Autocorrelation Function of an annulus. For this purpose,

let 0 < ρ < R be fixed and define Aρ,R := BR(0) \ Bρ(0) ⊂ Rn. Similar to the previous

section, we will stick to the Euclidean case and since annulli are radially symmetric, we

have cAρ,R
(r) = CAρ,R

(re1). As two balls with different radii are interacting now, we need

to compute different lense segments along r. Thus, we recall the volume for a lense element

n cBR(0)(0) c′BR(0)(0) c′′BR(0)(0) c′′′BR(0)(0) c
(iv)
BR(0)(0) c

(v)
BR(0)(0)

2 πR2 −2R 0 1
2R

0 − 3
8R3

3 4
3
πR3 −πR2 0 π

2
0 0

4 1
2
π2R4 −4π

3
R3 0 πR 0 − 3π

4R

5 8
15
π2R5 −π2

2
R4 0 π2

2
R2 0 −3π2

4

Figure 4.4.: Higher derivatives of the autocorrelation of balls of radius R for 0 < r < 2R
for dimensions 2 ≤ n ≤ 5 evaluated at 0.
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a)

b)

Figure 4.5.: Setup of Annulus for different ratios of the radii. The point represents re1
and the red line is at x =

√
R2 − ρ2. a) shows 2ρ < R, b) shows 2ρ > R.

of a circle with radius R and triangular height d (see (4.109))

L(R, d) = ωn−1R
n

� 1

d
R

(1− t2)
n−1
2 dt for all 0 < d < R. (4.116)

There are two cases to consider based on the ratio of the two circles. A big ratio assures

that the inner circle of Aρ,R + re1 is not crossing both components of ∂Aρ,R at the same

time.

The case R > 2ρ: In this situation, the inner circle of Aρ,R + re1 is not crossing both

components of ∂Aρ,R at the same time. We have the following cases:

• For 0 < r < 2ρ we have (see the first picture of Figure 4.5 a))

cAρ,R
(r) = cBR

(r)− |Bρ(0)| − |Bρ(re1)|+ cBρ(r) = cBR
(r) + cBρ(r)− 2|Bρ|.

(4.117)

• For 2ρ < r < R− ρ we have (see the second picture of Figure 4.5 a))

cAρ,R
(r) = cBR

(r)− |Bρ(0)| − |Bρ(re1)| = cBR
(r)− 2|Bρ|. (4.118)

• For R− ρ < r <
√
R2 − ρ2, we have (see the third picture of Figure 4.5 a))

cAρ,R
(r) = cBR

(r)− 2
(
|Bρ(0)| − L(ρ, R

2−ρ2+r2

2r
− r) + L(R, R

2−ρ2+r2

2r
)
)
. (4.119)

The conditions on r ensure that the centre of the translated annulus is to the left of

the red line (see the third picture of Figure 4.5 a)).

• For
√
R2 − ρ2 < r < R + ρ, we have (see the fourth picture of Figure 4.5 a))

cAρ,R
(r) = cBR

(r)− 2
(
L(ρ, r − R2−ρ2+r2

2r
) + L(R, R

2−ρ2+r2

2r
)
)
. (4.120)
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The conditions on r ensure that the centre of the translated annulus is to the right

of the red line (see the fourth picture of Figure 4.5 a)).

• For r > R + ρ we have

cAρ,R
(r) = cBR

(r). (4.121)

The case R < 2ρ: This situation is more complicated to compute as the inner circle of

Aρ,R + re1 is crossing both components of ∂Aρ,R at the same time.

• For 0 < r < R− ρ we have (see the first picture of Figure 4.5 b))

cAρ,R
(r) = cBR

(r)− |Bρ(0)| − |Bρ(re1)|+ cBρ(r) = cBR
(r) + cBρ(r)− 2|Bρ|.

(4.122)

• For R− ρ < r <
√
R2 − ρ2 we have (see the second picture of Figure 4.5 b))

cAρ,R
(r) = cBR

(r) + cBρ(r)− |Bρ(0)|+ 2L(ρ, R
2−ρ2+r2

2r
− r)− 2L(R, R

2−ρ2+r2

2r
)

(4.123)

The conditions on r ensure that the centre of the translated annulus is to the left of

the red line (see the second picture of Figure 4.5 b)).

• For
√
R2 − ρ2 < r < 2ρ, we have (see the third picture of Figure 4.5 b))

cAρ,R
(r) = cBR

(r) + cBρ(r)− 2L(ρ, r − R2−ρ2+r2

2r
)− 2L(R, R

2−ρ2+r2

2r
)
)
. (4.124)

The conditions on r ensure that the centre of the translated annulus is to the right

of the red line (see the third picture of Figure 4.5 b)).

• For 2ρ < r < R + ρ, we have (see the fourth picture of Figure 4.5 b))

cAρ,R
(r) = cBR

(r)− 2
(
L(ρ, r − R2−ρ2+r2

2r
) + L(R, R

2−ρ2+r2

2r
)
)
. (4.125)

• For R + ρ < r < 2R we have

cAρ,R
(r) = cBR

(r). (4.126)

4.4.3. Laminate

In this section, we will compute the autocorrelation function of a laminate on the torus,

since laminates are no sets of finite perimeter in Rn. Let 0 < θ < 1 and define S :=

T
n−1 × (0, θ) ⊂ Tn. We remark that in order to compute cΩ, we can assume 0 < θ < 1

2

since cSc(r) = 1− 2θ + cS(r).
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Figure 4.6.: Graphs of cAρ,R
(blue) and c′Aρ,R

(orange) with R = 3 and a) ρ = 1, b) ρ = 2.

We first observe that by definition of S we have CS(z) = CS(zn) for all z ∈ Tn. Thus, in

order to compute cS(r), we only need to compute CS(ren), which is given by

CS(ren) =


θ − r for all 0 < r − ⌊r⌋ < θ,

0 for all θ < r − ⌊r⌋ < 1− θ,

r − (1− θ) for all 1− θ < r − ⌊r⌋ < 1,

(4.127)

We define g : Bn−1
1 −→ S

n−1 ∩Hn
+ via g(ξ) :=

√
1− |ξ|2. Using the symmetry CS(z) =

CS(−z) (see Proposition 4.2) and the formula for integration over graphs, we obtain

cS(r) =
1

σn

�
Sn−1

CS(rw) dH n−1(w)

=
2

σn

�
Sn−1∩Hn

+

CS(rw) dH n−1(w)

=
2

σn

�
Bn−1

1

CS(rξ, r
√

1− |ξ|2)√
1− |ξ|2

dξ.

(4.128)

(4.129)

(4.130)

Since CS(z) = CS(zn) for all z ∈ Tn, we derive from the radial symmetry

cS(r) =
2σn−1

σn

� 1

0

ρn−2CS(r
√
1− ρ2en)√
1− ρ2

dρ

=
2σn−1

σn

� π
2

0

sinn−2(α)CS(r cos(α)en) dα.

(4.131)

(4.132)
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We will now turn to the explicit computation regarding CS(r cos(α)en).

� π
2

0

sinn−2(α)CS(r cos(α)en) dα

= Remθ(r) +

⌊r⌋−1∑
k=0

� acos( k
r
)

acos( k+θ
r

)

sinn−2(α)(θ − r cos(α)) dα

+

⌊r⌋−1∑
k=0

� acos( k+1−θ
r

)

acos( k+1
r

)

sinn−2(α)(r cos(α)− (1− θ)) dα

(4.133)

(4.134)

(4.135)

where we introduced

Remθ(r) :=



� acos(
⌊r⌋
r

)

0

sinn−2(α)(θ − r cos(α)) dα for all 0 < r − ⌊r⌋ < θ,

� acos(
⌊r⌋
r

)

acos(
⌊r⌋+θ

r
)

sinn−2(α)(θ − r cos(α)) dα for all θ < r − ⌊r⌋ < 1− θ,

� acos(
⌊r⌋
r

)

acos(
⌊r⌋+θ

r
)

sinn−2(α)(θ − r cos(α)) dα

+r

� acos(
⌊r⌋+1−θ

r
)

0

sinn−2(α) cos(α) dα

−(1− θ)

� acos(
⌊r⌋+1−θ

r
)

0

sinn−2(α) dα

for all 1− θ < r − ⌊r⌋.

Solving these integrals explicitly involves the Hypergeometric Function 2F1 (different

representations of these integrals are given in Lemma A.11 and Lemma A.12). However,

we see that cS is an affine linear function near the origin, i.e. for all 0 < r < θ we compute

cS(r) = Remθ(r) =
2σn−1

σn

� π
2

0

sinn−2(α)CS(r cos(α)en) dα

=
2σn−1

σn

� π
2

0

sinn−2(α) (θ − r cos(α)) dα

= θ − r
2σn−1

σn

� π
2

0

sinn−2(α) cos(α) dα

= θ − 2σn−1

σn(n− 1)
= θ − 2

ωn−1

nωn

,

(4.136)

(4.137)

(4.138)

(4.139)

where in the last line we used the identity nωn = σn. As n = 2 is the physical relevant

dimension in the modelling in Chapter 3, we explicitly write down the autocorrelation

function for the derivative c′S. We remark that cS is smooth except for r ∈ N ∪ (θ +N) ∪
((1− θ) +N).
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Lemma 4.16 Let 0 < θ < 1 and S := (0, θ)×Tn−1. Then cS ∈ C0,1(R+) and for almost

all r > 0:

π

2
c′S(r) = Rem′

θ(r) +
θ

r

(1
r
− ⌊r⌋√

r2 − ⌊r⌋2
)

+
1

r

⌊r⌋−1∑
k=0

−
√
r2 − k2 −

√
r2 − (k + 1)2 +

√
r2 − (k + θ)2 +

√
r2 − (k + 1− θ)2,

where

Rem′
θ(r) :=

1

r



θ⌊r⌋√
r2−⌊r⌋2

−
√
r2 − ⌊r⌋2 for all 0 < r − ⌊r⌋ < θ,

θ⌊r⌋√
r2−⌊r⌋2

−
√
r2 − ⌊r⌋2

+
√
r2 − (⌊r⌋+ θ)2

for all θ < r − ⌊r⌋ < 1− θ,

θ⌊r⌋√
r2−⌊r⌋2

−
√
r2 − ⌊r⌋2

+
√
r2 − (⌊r⌋+ θ)2

+
√
r2 − (⌊r⌋+ 1− θ)2

for all 1− θ < r − ⌊r⌋ < 1.

a) b)
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Figure 4.7.: Graphs of a) cS and b) c′S with n = 2 and θ = 1
2
. The asymptote in a) is θ2.

4.4.4. Polytopes

In this section, we will analyse the behaviour of the autocorrelation function of polyhedral

domains in Rn and Tn near the origin. In fact, we will see that for a polyhedral domain

P ⊂ Rn, the autocorrelation functions cP is a polynomial of at most degree n near the
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origin. Likewise, for a polyhedral domain P ⊂ T
n we will see that cP is a polynomial

of at most degree n. The following result is known in the full space setting for convex

polytopes in dimensions n = 2 (see [Nag93, GZ98, EL11]) and was proven in [BKMC23,

Lemma 3.3]. As a reminder, a closed set Ω ⊂ Tn is said to be a polytope, if the restriction

of its canonical embedding to Qn is a polytope in Rn.

Lemma 4.17 (Autocorrelation function for polytopes) Let Ω ⊂ Tn be a polytope. Then

there exists 0 < R < 1 and a2, . . . , an ∈ R with a2 ≥ 0 such that

cΩ(r) = |Ω| − r
ωn−1

nωn

V [χΩ] +
n∑

j=2

ajr
j for all 0 ≤ r < R. (4.140)

p
Rp

Ω

Figure 4.8.: The quantity Rp (and therefore R) ensures that the vertices of Ω△ Ωrw do
not intersect faces which are not adjacent to them.

Proof: In the previous section we have shown that (4.140) holds for laminates with

a2, . . . , an = 0. Since the only polytopes which do not have corners are trivial extensions

of polytopes, we can without loss of generality assume that Ω has at least one corner (see

Lemma 4.4). We denote the set of corners of Ω by C. We define

R :=
1

2
min

{
min
p∈C

Rp,min
p,q∈C
p ̸=q

dist(p, q)
}
> 0, (4.141)

where for any p ∈ C we set

Rp := sup
{
ϱ > 0 : Bϱ(p)∩Ω and Bϱ(p)∩Ωc have

only one connected component

}
> 0. (4.142)

Let r > 0, w ∈ Sn−1 and let Ωrw := Ω + rw. Then

CΩ(0)− CΩ(rw) = |Ωrw \ Ω| = |Ω \ Ωrw| =
1

2
|Ω△ Ωrw|, (4.143)

where △ denotes the symmetric difference. Since CΩ(0) = |Ω| by Proposition 4.2 it hence

remains to calculate |Ω△ Ωrw| and its dependence on r.

We assume that w /∈ S, where S ⊂ Sn−1 is the negligible set of vectors which are tangential

to any of the (finitely many) faces of Ω. By the choice of R, the number of faces N of
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Ω
Ωrw

T
(1)
rw

Ω△ Ωrw

T
(1)
rw T

(1)
rw

T
(2)
rw T

(3)
rw

Figure 4.9.: Construction of the trapezoids T
(i)
rw .

Ω△ Ωrw is then is independent of r ∈ (0, R) and independent of w. Furthermore, since a

face of Ω and the corresponding face of Ωrw are parallel, there exist convex trapezoids

T
(1)
rw , . . . T

(N)
rw ⊂ Tn with pairwise disjoint interiors such that (see Figure 4.9)

Ω△ Ωrw =
N⋃
i=1

T (i)
rw for all 0 < r < R, w ∈ Sn−1 \ S. (4.144)

Each of these convex trapezoids T
(i)
rw , i ∈ {1, . . . , N} is determined by a system of linear

inequalities

T (i)
rw = {x ∈ Tn : A(i)[x] ≤ b(i), A(i)[x+ rw] ≤ b(i)}, (4.145)

where for x, y ∈ Tn we denote x ≤ y if and only if xj ≤ yj mod 1 for every j ∈ {1, . . . , n}
and for some matrices A(i) ∈ R2N×n and vectors b(i) ∈ T2N . By a slicing argument there

exist d
(i)
1 (w), . . . , d

(i)
n (w) ∈ R such that (see Figure 4.9)

|T (i)
rw | =

n∑
k=1

d
(i)
k (w) r

k. (4.146)

More precisely, for x = (x1, x
′), due to the linear systems defining T

(i)
rw in (4.145), there

exist at most 2N intervals Im1 = [qleftm1
(x′, rw), qrightm1

(x′, rw)], where qleftm1
and qrightm1

depend

in an affine way on x′ and rw, and convex polytopes Km1 ⊂ Tn−1 such that

|T i
rw| =

2N∑
m1=1

�
Km1

�
Im1

dx1 dx
′ =

2N∑
m1=1

�
Km1

qrightm1
(x′, rw)− qleftm1

(x′, rw) dx′. (4.147)

The integrand is now a polynomial in r of degree 1 and the set of integration is again

a convex polytope of the form (4.145) (reduced in dimension, with different matrices

A(i) and b(i)). Iteratively, we obtain in the l-th step convex polytopes Km1,...,ml
and a

polynomial pm1,...,ml
of degree l such that

|T i
rw| =

2N∑
m1=1

· · ·
2N∑

ml=1

�
Km1,...,ml

pm1,...,ml
(xl+1, ..., xn, rw) d(xl+1, ..., xn). (4.148)
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The algorithm terminates after n steps and leaves a polynomial in r of degree n as

described in (4.146). Combining the above identities we obtain

CΩ(rw)
(4.143)
= CΩ(0)−

1

2
|Ω△ Ωrw|

= |Ω| − 1

2

N∑
i=1

|T (i)
rw | = |Ω| − 1

2

N∑
i=1

n∑
k=1

d
(i)
k (w)rk

(4.149)

(4.150)

for all r ∈ (0, R). Averaging with respect to w then yields

cΩ(r) = |Ω|+
n∑

j=1

ajr
j for all 0 ≤ r < R (4.151)

for some a1, . . . , an ∈ R. Corollary 4.8 shows that a1 = −ωn−1

nωn
Per(Ω). To obtain the

estimate of the coefficient a2, we observe that c′′Ω(0) = 2a2. Corollary 4.8 now yields

2a2 = c′′Ω(0) = lim
h↘0

c′(h)− c′(0)

h
≥ 0 (4.152)

as claimed. ■

As the proof of Lemma 4.17 only involves local arguments, the statement is also true in

the full space setting. Meaning that cΩ is a polynomial of degree at most n for polytopes

Ω ⊂ Rn. However, the reverse of statement is not true, since the Autocorrelation Function

of e.g. balls in odd dimensions is also a polynomial of degree n.

In the case n = 2, the coefficient a2 in Lemma 4.17 can be determined explicitly. We

note that the coefficient a2 for convex polytopes was considered in [EL11]. With our

methods, we are able to compute a2 for simple polytopes. Reducing the computation of

the Autocorrelation Functions of (generally non-convex) polygons to convex trapeziums

(or in other words, from the vertices to the edges) allows us to compute the coefficient

c′′Ω(0) = 2a2 in this generality. As a reminder, a polygon is called simple, if the boundary

does not intersect itself.

Corollary 4.18 Let Ω ⊂ T
2 be a simple polygon. Let {ϑ(i)

1 , . . . ϑ
(i)
Ni
} ⊂ (0, 2π) be the

interior angles. Then

c′′Ω(0) =
1

2π

N∑
i=1

Ni∑
j=1

1 + (π − ϑ
(i)
j ) cot(ϑ

(i)
j ). (4.153)

Proof: We adapt the notation as in the proof of Lemma 4.17 and write w = (w1, w2) =
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a) b)

T

ℓ

rϖ rϖ Trϖ

ℓ

Figure 4.10.: Setup and notation for the deficit ϖ.

(cos(α), sin(α)). In particular, we find that

CΩ(rw) = |Ω| − 1

2

N∑
i=1

|T (i)
rw |. (4.154)

In order to compute the desired quantity, we thus have to compute the volume of the

trapeziums T
(rw)
i in (4.154). Let i ∈ {1, . . . , N}. The edge corresponding to T

(rw)
i has two

interior angles ϑ
(l)
i , ϑ

(r)
i ∈ (0, 2π). Since Ω is assumed to be simple, these angles do not

change with α. In the following, we will omit the index notation and just denote

T := T
(rw)
i , ϑl := ϑ

(l)
i , ϑr := ϑ

(r)
i . (4.155)

We compute (see Figure 4.10 b))

|T | = |rw2|
ℓ+ (ℓ− rϖ(α, ϑl, ϑr))

2
= rℓ|w2| −

r2

2
|w2|ϖ(α, ϑl, ϑr), (4.156)

where ℓ denotes the length of the base edge and ϖ is the deficit of the side length of the

base line. Depending on ϑl and ϑr there are multiple cases to consider. We compute these

cases in the Appendix. Using Lemma A.6 we find that

1

2π

� 2π

0

|w2|ϖ(α, ϑr, ϑl) dα =
1

2π
(1 + (π − ϑr) cot(ϑr))

+
1

2π
(1 + (π − ϑr) cot(ϑl)).

(4.157)

(4.158)

Plugging into (4.154) and (4.156) proves the claim. ■

As with Lemma 4.17, the formula presented in Corollary 4.18 is also true for the full

space analogue cΩ, since the proof only involved local arguments. Using Lemma 4.17 and

Corollary 4.18 we can explicitly compute the Autocorrelation Function for polytopes near

the origin for n = 2. As with previous examples, we will use the full space analogue cΩ

(see (4.9)).
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Rectangles and non-simple polygons Given a rectangle Pa,b = (0, a)× (0, b) ⊂ R2, we

compute

|Pa,b| = ab, Per(P ) = 2(a+ b), ϑ =
3π

2
, (4.159)

and thus

cPa,b
(r) = ab− 2

π
(a+ b)r +

1

π
r2 for all 0 < r ≪ 1. (4.160)

This can be verified geometrically as

CPa,b
(rw) = (a− rw1)(b− rw2)

= ab− (bw1 + aw2)r + w1w2r
2 for all 0 < r ≪ 1, 0 < α <

π

2
.

(4.161)

(4.162)

where w = (w1, w2) = (cos(α), sin(α)). Integrating with respect to α and using the

symmetry of Pa,b yields (4.160).

An example of a non-simple polytope is given by P̃a,b := Pa,b ∪ (Pa,b + (a, b)). A simple

geometric verification shows that

CP̃a,b
(rw) = 2CPa,b

(rw) + r2w1w2 for all 0 < r ≪ 1, 0 < α <
π

2
, (4.163)

where w = (w1, w2) = (cos(α), sin(α)). Thus we obtain

cP̃ (r) = 2cPa,b
(r) +

2

2π

� π
2

0

r2 sin(α) cos(α) dα

= 2ab− 4

π
(a+ b)r +

2

π
r2 +

1

π
r2

= 2ab− 4

π
(a+ b)r +

3

π
r2,

(4.164)

(4.165)

(4.166)

which is not in accordance with the formula given in Corollary 4.18.

Regular polytopes For a regular polytope ΞN ⊂ R2 with N edges the, interior angles

are given by ϑ = πN−2
N

. Using Lemma 4.18 we compute

c′′ΞN
(0) =

1

2π

N∑
j=1

1 + (π − πN−2
N

) cot(πN−2
N

) =
N

2π
+ cot(π(1− 2

N
))

=
N

2π
− N

2π
+

2π

3N
+O( 1

N3 ) =
2π

3N
+O( 1

N3 )

(4.167)

(4.168)
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where we used the Laurent expansion

cot(π(1− x)) = − 1

πx
+
πx

3
+O(x3). (4.169)

Thus, for N → ∞ we obtain

c′′ΞN
(0)

N→∞−−−→ 0. (4.170)

Semicontinuity of the second derivative In what follows, we show that the mapping

Ω 7−→ c′′Ω(0) is neither lower-, nor upper semi continuous with respect to L1–convergence.

We are now in the position to do so due to the insights obtained in this section. The

lack of semi-continuity for the second derivative is different to lower order derivatives,

as Ω 7−→ cΩ(0) is continuous, and Ω 7−→ c′Ω(0) is upper semi continuous with respect to

L1–convergence.

Lemma 4.19

a) There exist Ωk,Ω ∈ BVn such that |Ωk| = |Ω| and

lim inf
k→∞

c′′Ωk
(0) < c′′Ω(0). (4.171)

b) There exist Ωk,Ω ∈ BVn such that |Ωk| = |Ω| and

c′′Ω(0) < lim sup
k→∞

c′′Ωk
(0). (4.172)

Proof: Using Lemma 4.4, it suffices to show the statement for n = 2.

To disprove lower semi continuity, let Ω := Pa,b = (0, a) × (0, b). Then Pa,b ∈ BV2 and

(4.160) yields c′′Pa,b
(0) = 2

π
. Using Lemma 2.18, we find Pk ∈ BV ∞

2 such that |Pk| = |P |
and Per(Pk)

k→∞−−−→ Per(P ). Using Corollary 4.12 we find that c′′Pk
(0) = 0 and thus

c′′P (0) =
2

π
> 0 = lim inf

k→∞
c′′Pk

(0). (4.173)

To disprove upper semi continuity, we choose the laminate Ω := S = (0, 1
2
)× (0, 1) and

Ωk := (0, 1
2
− 1

k
)× (0, 1

2
(1
2
− 1

k
)−1). Then |Ωk| = |Ω| and using (4.160) and Lemma 4.16 we

obtain

lim sup
k→∞

c′′Pk
(0) =

2

π
> 0 = c′′S(0). (4.174)

Altogether, the claim follows. ■

66



4.4.5. Two Balls

In this section, we will take a look at the set Ωd,R := BR(−d
2
e1) ∪BR(

d
2
e1) ⊂ R2, where

R, d > 0. We aim to compute CΩd,R
and cΩd,R

for the whole parameter range d ≥ 2R, as

• Ωd,R has a smooth boundary for d > 2R,

• Ωd,R has a cusp at the origin for d = 2R,

As we will see, the regularity of the autocorrelation function is linked to the regularity of

the boundary. Singular points such as cusps and corners will show an effect on the second

and third derivative. We recall the volume for a lense element of a circle with radius R

and triangular height z (see (4.109))

L(R, z) = ωn−1R
n

� 1

z
R

(1− t2)
n−1
2 dt

n=2
= R2 arccos( z

R
)− z

√
R2 − z2 for all 0 < z < R.

(4.175)

(4.176)

The triangular height z in our scenario can be computed from the Cosine Theorem for

Triangles and is given by (see Figure 4.11)

z =

√
r2 + d2 − 2drw1

2
. (4.177)

The ratio of d and R will determine for what range of r the lense segment will be included

in CΩd,R
and cΩd,R

. We write w = (w1, w2) = (cos(α), sin(α)) ∈ S1. Due to the symmetry

of Ωd,R we can reduce the computation to the range 0 < α < π
2
. Further, we find that

CΩd,R
(rw) = 2CBR(0)(rw) for all arccos( r

2+d2−4R2

2rd
) < α <

π

2
. (4.178)

Thus, in what follows, we assume arccos( r
2+d2−4R2

2rd
) =: α∗(r) < α < π

2
. We call α∗ the

transition angle.

The case d > 4R.

• For 0 < r < 2R we have

CΩd,R
(rw) = 2CBR(0)(re1). (4.179)

• For 2R < r < d− 2R we have

CΩd,R
(rw) = 0. (4.180)
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α

d

r
2z

Figure 4.11.: Setup and notation for Ωd,R. The gray circle represent Ωd,R, the brown
circles denote Ωd,R + rw.

• For d− 2R < r < d+ 2R we have

CΩd,R
(rw) = 2L(R,

√
r2+d2−2drw1

2
). (4.181)

• For r > d+ 2R we have

CΩd,R
(rw) = 0. (4.182)

The case 2R < d < 4R.

• For 0 < r < d− 2R we have

CΩd,R
(rw) = 2CBR(0)(re1). (4.183)

• For d− 2R < r < 2R we have

CΩd,R
(rw) = 2CBR(0)(re1) + 2L(R,

√
r2+d2−2drw1

2
). (4.184)

• For 2R < r < d+ 2R we have

CΩd,R
(rw) = 2L(R,

√
r2+d2−2drw1

2
). (4.185)

• For r > d+ 2R we have

CΩd,R
(rw) = 0. (4.186)

The case d = 2R. We observe that the transition angle in this case is given by

α∗(r) = arccos( r
2d
).

• For 0 < r < 2R we have

CΩd,R
(rw) = 2CBR(0)(re1) + 2L(R,

√
r2+d2−2drw1

2
) (4.187)
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• For 2R < r < 4R we have

CΩd,R
(rw) = 2L(R,

√
r2+d2−2drw1

2
). (4.188)

• For r > 4R we have

CΩd,R
(rw) = 0. (4.189)

Lack of regularity of Autocorrelation Function for cusp domain We note that Ωd,R ∈
BV ∞

2 for all d > 2R, and thus the function cΩd,R
is smooth near r = 0. However, due

to a cusp at z = 0, the set Ω2R,R is not a set with a smooth boundary. Non-smooth

boundaries have an effect on the second derivative of the Autocorrelation Function (e.g.

if Ω is a polygon, see Section 4.4.4). In this paragraph, we show that the cusp produces a

singularity for c′′Ω2R,R
as r ↘ 0. For notational convenience, we write d = 2R.

With the computations above, we find that

cΩd,R
(r) = 4

� α∗(r)

0

L(R,

√
r2+d2−2dr cos(α)

2
) dα + 2cBR(0)(r) for all 0 < r < 2R. (4.190)

However, the first summand is (in contrast to the second summand) not twice differentiable

in r = 0. To see this, we use the Leibniz Integral Rule to obtain

d

dr

� α∗(r)

0

L(R,

√
r2+d2−2dr cos(α)

2
) dα

= α′
∗(r)L(R,R)− 0 +

� α∗(r)

0

d

dr
L(R,

√
r2+d2−2dr cos(α)

2
) dα

=

� α∗(r)

0

2R cos(α)− r

2

√
4rR cos(α)− r2

4R2 − 4rR cos(α) + r2
dα.

(4.191)

(4.192)

(4.193)

Deriving again with respect to r we obtain with the Leibniz Integral Rule

d

dr

� α∗(r)

0

2R cos(α)− r

2

√
4rR cos(α)− r2

4R2 − 4rR cos(α) + r2
dα

=

� α∗(r)

0

16(r2 +R2)R2 cos2(α)− 8(r2 + 4R2)rR cos(α) + r4 + 8r2R2

2
√

4Rr cos(α)− r2 (4R2 − 4rR cos(α) + r2)3/2
dα.

(4.194)

(4.195)

Now, we find that

L′′(r, R, α) :=
16(r2 +R2)R2 cos2(α)− 8(r2 + 4R2)rR cos(α) + r4 + 8r2R2

2
√

4Rr cos(α)− r2 (4R2 − 4rR cos(α) + r2)3/2

=
1√
r
O(1)

r↘0−−→ +∞,

(4.196)

(4.197)
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and consequently using Fatou’s Lemma

lim inf
r↘0

( d

dr

)2
� α∗(r)

0

L(R,

√
r2+d2−2dr cos(α)

2
) dα

≤
� π

2

0

lim inf
r↘0

χ
(0,α∗(r))(α)L

′′(r, R, α) dα = +∞.

(4.198)

(4.199)

Hence c′′Ωd,R
(0) = +∞.
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5. Non-local Isoperimetric Problem

In this chapter we aim to derive an asymptotic expansion as ε → 0 of a non-local

isoperimetric problem of the following form:

Eγ,ε(Ω) = Per(Ω)− γ

ε

�
Rn

Kε(z)

�
Tn

|χΩ(x+ z)− χ
Ω(x)| dx dz, (5.1)

where Ω ⊂ T
n, γ > 0 and Kε : R

n −→ R with suitable conditions. As described in

Chapter 3, the quantity Eγ,ε is an energy model approximating models to describe pattern

formation in bio membranes. The regime ε→ 0 corresponds to a macroscopic limit.

The key idea to rewrite Eγ,ε in terms of the Autocorrelation function leads to the following

representation formula:

Eγ,ε(Ω) =
(
1− γ

γcrit

)
Per(Ω) + 2γ

� ∞

0

Φε(r)[c
′
Ω(r)− c′Ω(0)] dr, (5.2)

where cΩ denotes the Autocorrelation function introduced in Chapter 4 and Φε : R+ −→ R

arises from Kε and inherits asymptotic behaviour as well as integrability properties from

Kε. The constant γcrit is explicitly known in terms of the interaction kernel Kε. Together

with the properties derived for the Autocorrelation Function, this representation gives

already crucial insights in the behaviour of the energy:

a) The functional Eγ,ε is linear in the space of Autocorrelation functions.

b) The competition of the local and non-local term takes places only in the first order,

since the non-local term in (5.2) is non-negative.

c) Using integration by parts, higher order terms in the expansion of Eγ,ε correspond

to the derivatives of cΩ evaluated at 0.

This chapter is organised as follows. We will first state the assumptions on the parameters

entering (5.1) and then show the reformulation (5.2). In [Section02] we will investigate

pointwise properties of the energy as well as compactness. In the third section, we prove

Γ–convergence results in different parameter regimes. In the last section, we compute

explicit examples building on computations in Chapter 4.

Given k ∈ N and a measurable function f : Rn −→ R, we define the k-th moment of f via

mk[f ] :=

�
Rn

|z|kf(z) dz. (5.3)
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Motivated from the biological model discussed in Chapter 3, we will consider family of

functions of the form Kε(z) =
1
εn
K( z

ε
), where K : Rn −→ R is given, and we pose the

following assumptions on the kernel K:

(H1) K is radial. (Radial Symmetry)

(H2) m1[K] <∞. (Finite First Moment)

(H3)

�
Rn\Br(0)

K(z) dz ≥ 0 for all r > 0. (Essential Repulsiveness)

With slight abuse of notation, we write K(z) = K(|z|) and mk = mk[K]. We also introduce

the associated quantity

γcrit :=
nωn

2ωn−1

m−1
1 =

nωn

2ωn−1

( �
Rn

|z| K(z) dz

)−1

, (5.4)

which is finite by (H2). We will quickly comment about the assumptions on the family of

kernels.

ad (H1) Radial symmetry assures that the model is isotropic, meaning that there is no

preferred direction in the described system. Apart from the physical interpretation,

there are two more reasons to include this assumption, namely the kernel in the

derivation of the model from Chapter 3 is radially symmetric. The second reason

being the radial symmetry of the perimeter functional.

ad (H2) Having a finite first moment allows for an estimate of the non-local term in terms of

the variation with the same scaling. More precisely, it allows roughly speaking for

an estimate of the form

�
Rn

K(z)

�
Tn

|χΩ(x+ z)− χ
Ω(x)| dx dz

=

�
Rn

|z|K(z)

�
Tn

|χΩ(x+ z)− χ
Ω(x)|

|z|
dx dz ≲ Per(Ω)m1[K],

(5.5)

(5.6)

which scales correctly with the local term. In contrast, assuming e.g. K ∈ L1(Rn)

results in a non compatible estimate since the (optimal) isoperimetric inequality

yields

�
Rn

K(z)

�
Tn

|χΩ(x+ z)− χ
Ω(x)| dx dz ≲ |Ω| ∥K∥L1(Rn)

≲ Per(Ω)
n

n−1∥K∥L1(Rn),

(5.7)

(5.8)

which scales differently than the local term.

ad (H3) Assumption (H3) is a generalisation of non-negativity. The competing effect of the

local and non-local term exists only if it is a difference of two positive quantities,
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which is assured by (H3) as it guarantees that Φ in the reformulation is nonnegativ.

Moreover, the associated quantity γcrit is non-negative (see Lemma 5.6).

We will now rigorously define the energy functional Eγ,ε.

Definition 5.1 Let K : Rn −→ R be measurable. Let γ, ε > 0 and let 0 < θ < 1. We

define the class of admissible sets A := {Ω ∈ BVn : |Ω| = θ} and the energy functional

Eγ,ε : L
1(Tn) −→ R ∪ {±∞} via

Eγ,ε[u] :=


V [u]− γ

ε

�
Rn

Kε(z)

�
Tn

|u(x+ z)− u(x)| dx dz if u = χ
Ω, Ω ∈ A,

+∞ else.

We note that Eγ,ε is a sharp interface model since dom(Eγ,ε) ⊂ A ⊂ BVn. Moreover, using

(5.5) – (5.6), the energy is well-defined assuming the hypothesis (H1) – (H3). Therefore

we write Eγ,ε(Ω) = Eγ,ε[χΩ]. If Ω ∈ A we can reformulate the energy as

Eγ,ε(Ω) = Per(Ω)− γ

ε

�
Rn

Kε(z)

�
Tn

|χΩ(x+ z)− χ
Ω(x)| dx dz. (5.9)

We remark that the following methods do not rely on the mass constraint, meaning that

all the forthcoming results are also true if we set A = BVn. We end this section by noting

that the hypothesis lead to an interaction kernel that forms an approximation of the

identity.

Proposition 5.2 Assume K satisfies (H1) – (H3). Let ηε : R
n −→ R be given by

ηε(z) :=
1

m1

|z|
ε

Kε(z) for all z ∈ Rn. (5.10)

Then the family {ηε}ε forms an approximation of the identity.

Proof: We note that after the transformation z 7−→ εz we obtain

∥ηε∥L1(Rn) =
1

m1

�
Rn

|z| |K(z)| dz <∞ (5.11)

by (H2). Also, by definition and again after the transformation z 7−→ εz we obtain

�
Rn

ηε(z) dz =
1

m1

�
Rn

|z| K(z) dz = 1. (5.12)
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Tightness of {ηε}ε follows from Fatou’s Lemma. More precisely, let δ > 0. Then we obtain

with (H2)

lim sup
ε→0

�
Bδ(0)

|ηε(z)| dz =
1

m1

lim sup
ε→0

�
Bδ/ε(0)

|z| |K(z)| dz

≤ 1

m1

�
Rn

lim sup
ε→0

|z| |K(z)|χBδ/ε(0)(z) dz = 0.

(5.13)

(5.14)

Altogether {ηε}ε forms an approximation of the identity. ■

5.1. Reformulation in terms of Autocorrelation Function

For the subsequent analysis it is convenient to the radially integrated kernel Φ instead of

the kernel K, where

Φ(r) := σn

� ∞

r

ρn−1K(ρ) dρ =

�
Rn\Br(0)

K(z) dz for all r > 0. (5.15)

We define Φε(r) :=
1
ε
Φ( r

ε
). We collect some basic properties of Φ which follow from our

assumptions on K:

Proposition 5.3 Assume K satisfies (H1) – (H3) and let Φ as in (5.15). Then

a) Φ ≥ 0.

b) lim
r→0

rΦ(r) = lim
r→∞

rΦ(r) = 0.

c) Φ ∈ L1(R+) and

� ∞

0

Φ(r) dr =

�
Rn

|z| K(z) dz.

Proof: By definition of Φ and (H3) we have Φ ≥ 0 and

Φ′(r) = −σnrn−1K(r) for all r > 0. (5.16)

By definition of Φ and assumption (H2) we have

|RΦ(R)| ≤ σnR

� ∞

R

ρn−1|K(ρ)| dρ ≤ σn

� ∞

R

ρn|K(ρ)| dρ R→∞−−−→ 0. (5.17)

Moreover, we observe that

Rρn−1|K(ρ)|χ(R,∞)(ρ) ≤ ρn|K(ρ)| for all ρ > 0. (5.18)
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Thus, the conditions to apply Fatou’s Lemma are satisfied (since the right-hand side is

integrable by (H2)) and we obtain

lim sup
R→0

RΦ(R) ≤
� ∞

0

lim sup
R→0

Rρn−1|K(ρ)|χ(R,∞)(ρ) dρ = 0, (5.19)

which concludes the proof of b). Integrating by parts we get for 0 < ϱ < R <∞

σn

� R

ϱ

rnK(r) dr
(5.16)
= −

� R

ϱ

rΦ′(r) dr = −rΦ(r)
∣∣∣∣R
ϱ

+

� R

ϱ

Φ(r) dr. (5.20)

Using b) in the limits ϱ→ 0 and R → ∞, as well as the Dominated Convergence Theorem

yields assertion c). ■

We note that with the help of Proposition 5.3 c) we can represent the quantity γcrit from

(5.4) in terms of Φ in the following way:

γcrit =
nωn

2ωn−1

∥Φ∥−1
L1(R+). (5.21)

In particular γcrit > 0. Moreover, the assumptions on the kernel K now imply that the

dilated family Φε forms an approximation of the identity:

Corollary 5.4 Assume K satisfies (H1) – (H3) and let Φε as in (5.15). Let φε : R −→ R

be given by

φε(r) :=
Φε(r)

∥Φ∥L1(R+)

χ
R+(r) for all r ∈ R. (5.22)

Then the family {φε}ε forms an approximation of the identity.

Proof: Follows from Proposition 5.2 and Proposition 5.3. ■.

We are now in the position to rewrite the non-local term in Eγ,ε in terms of the symmetrised

Autocorrelation Function and the integrated kernel Φ.

Lemma 5.5 Assume K satisfies (H1) – (H3) and let Φε as in (5.15). Then

1

ε

�
Rn

Kε(z)

�
Tn

|χΩ(x)− χ
Ω(x+ z)| dx = −2

� ∞

0

Φε(r) c
′
Ω(r) dr for all Ω ∈ BVn.

(5.23)
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Proof: Since u only takes values in {0, 1} we have with Proposition 4.2

1

ε

�
Rn

Kε(z)

�
Tn

|χΩ(x)− χ
Ω(x+ z)| dx dz

=
1

ε

�
Rn

Kε(z)

�
Tn

|χΩ(x)− χ
Ω(x+ z)|2 dx dz

=
2

ε

�
Rn

Kε(z)

[�
Tn

|χΩ(x)|2 dx−
�
Tn

χ
Ω(x)χΩ(x+ z) dx

]
dz

=
2

ε

�
Rn

Kε(z) [CΩ(0)− CΩ(z)] dz

=
2σn
ε

� ∞

0

rn−1Kε(r) [cΩ(0)− cΩ(r)] dr,

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

where in the last line we switched to polar coordinates. Let 0 < ϱ < R <∞. Noting that

cΩ is Lipschitz (see Corollary 4.8), we integrate by parts to obtain

2σn
ε

� R

ϱ

rn−1Kε(r) [cΩ(0)− cΩ(r)] dr

(5.16)
= −2

� R

ϱ

(Φε)
′(r) [cΩ(0)− cΩ(r)] dr

= −2Φε(r) [cΩ(0)− cΩ(r)]

∣∣∣∣R
ϱ

− 2

� R

ϱ

Φε(r) c
′
Ω(r) dr.

(5.29)

(5.30)

(5.31)

Using again Corollary 4.8 we obtain

|Φε(r) [cΩ(0)− cΩ(r)]| ≲ rΦε(r) Per(Ω) for all r > 0. (5.32)

Thus the boundary terms in (5.31) vanish in the limit ϱ→ 0 and R → ∞ by Proposition

5.3 b). The claim follows from the Dominated Convergence Theorem and the computations

above. ■

With this reformulation at hand we derive the following representation formula of the

Energy Eγ,ε:

Theorem 5.6 Let γ > 0 and suppose K satisfies (H1)–(H3). Let Φε as in (5.15). Then

Eγ,ε(Ω) =
(
1− γ

γcrit

)
Per(Ω) + 2γ

� ∞

0

Φε(r) [c
′
Ω(r)− c′Ω(0)] dr for all Ω ∈ BVn.

(5.33)

Proof: Acoording to Corollary 4.8 we have −c′Ω(0) = ∥c′Ω∥L∞(R+) =
ωn−1

nωn
Per(Ω). Since
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Φε ∈ L1(R+) (see Proposition 5.3 c)) we obtain

(
1− γ

γcrit

)
Per(Ω) + 2γ

� ∞

0

Φε(r) [c
′
Ω(r)− c′Ω(0)] dr

=
(
1− γ

γcrit

)
Per(Ω) + 2γ

� ∞

0

Φε(r) c
′
Ω(r) dr

+ 2γ
ωn−1

nωn

Per(Ω)

� ∞

0

Φε(r) dr

=
(
1− γ

γcrit

)
Per(Ω) + 2γ

� ∞

0

Φε(r) c
′
Ω(r) dr +

γ

γcrit
Per(Ω)

= Per(Ω) + 2γ

� ∞

0

Φε(r) c
′
Ω(r) dr

5.5
= Eγ,ε(Ω),

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

as claimed. ■

An immediate consequence is a lower bound on the energy Eγ,ε in terms of the perimeter

functional:

Corollary 5.7 Let γ > 0 and suppose K satisfies (H1)–(H3). Then

(
1− γ

γcrit

)
Per(Ω) ≤ Eγ,ε(Ω) for all Ω ∈ BVn. (5.39)

Proof: According to Corollary 4.8 we have c′Ω(r)− c′Ω(0) ≥ 0 for all r > 0. Since Φε ≥ 0

for all ε > 0, the claim follows from Theorem 5.6. ■

We note that the left-hand side is non-negative as long as 0 < γ < γcrit, which will be

helpful later for the proofs of the compactness (see Theorem 5.10) and the liminf inequality

in the Γ–convergence results (see Theorem 5.18 and Theorem 5.21).

We next use the reformulation of the energy Eγ,ε to show that the lower bound in Corollary

5.7 is asymptotically optimal.

Proposition 5.8 Let γ > 0 and suppose K satisfies (H1)–(H3). Then

Eγ,ε(Ω)
ε↘0−−→

(
1− γ

γcrit

)
Per(Ω) for all Ω ∈ A. (5.40)

Proof: Using (5.28) and the transformation r 7−→ εr, the non-local term can be rewritten

as

1

ε

�
Rn

Kε(z)

�
Tn

|χΩ(x+ z)− χ
Ω(x)| dx dz = 2σn

� ∞

0

rn−1K(r)
cΩ(0)− cΩ(εr)

ε
dr. (5.41)

77



We note with the help of Corollary 4.8

∣∣∣rn−1K(r)
cΩ(0)− cΩ(εr)

ε

∣∣∣ ≲ rnK(r) Per(Ω), lim
ε→0

cu(0)− cu(εr)

ε
= −r c′u(0). (5.42)

Using the Dominated Convergence Theorem and Corollary 4.8 we obtain

1

ε

�
Rn

Kε(z)

�
Tn

|u(x+ z)− u(x)| dx dz

ε↘0−−→ −2c′Ω(0)

� ∞

0

rnK(r) dr = − 1

γcrit
Per(Ω).

(5.43)

(5.44)

Using Theorem 5.6 proves the claim. ■

We remark that Proposition 5.8 was proven in [BKMC23, Proposition 4.4] under the

additional assumption that Ω is a polytope. Thus Proposition 5.8 improves the statement

in [BKMC23].

Corollary 5.9 Suppose K satisfies (H1)–(H3) and let Φε as in (5.15). Then

� ∞

0

Φε(r) [c
′
Ω(r)− c′Ω(0)] dr

ε↘0−−→ 0 for all Ω ∈ BVn. (5.45)

Proof: Follows immediately from Theorem 5.6 and Proposition 5.8. ■

5.2. Compactness and Non-Compactness of the Energy

Functional

In this section, we collect compactness and non-compactness properties of the energy

functional Eγ,ε. To allow for a more general class of parameters, we will now consider

γ = γε. In summary, we will show that:

• Eγε,ε is compact if lim supε→0 γε < γcrit.

• Eγε,ε is not compact, if γcrit < lim infε→0 γε ≤ lim supε→0 γε <∞.

• If γcrit < lim infε→0 γε ≤ lim supε→0 γε <∞, then there does not exist a rescaling R,

such that R−1(ε)Eγε,ε is compact.

These results identify sub- and supercritical parameter regimes for the functional Eγ,ε.

The failure of compactness is reflected in the representation formula from Theorem 5.6
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(see also Corollary 5.7)

Eγ,ε(Ω) =
(
1− γ

γcrit

)
Per(Ω) + 2γ

� ∞

0

Φε(r) [c
′
Ω(r)− c′Ω(0)] dr for all Ω ∈ BVn.

(5.46)

If γ < γcrit, then the energy is non-negative and more importantly is bounded from

below by the perimeter functional and therefore inherits compactness properties from the

compact imbedding of BV into L1 (see Theorem 2.10). If γ > γcrit, then the energy is

potentially negative and oscillations are preferred as in those situations the energy now

decreases.

The most interesting case to us is the critical case γε ∼ γcrit as there potentially exist

rescalings to restore compactness. Of the highest importance is the connection of rescalings

R and the factor governing the local term 1− γε
γcrit

. However, in some cases, the choice

of the interaction kernel K does not allow for the existence of a rescaling to restore

compactness (at least not under the assumptions (H1) – (H3), see Lemma 5.17).

We will first look at the subcritical case.

Theorem 5.10 Let γε > 0 and assume lim supε→0 γε < γcrit. Suppose K satisfies (H1)–

(H3). Let Ωε ∈ BVn such that lim supε→0Eγε,ε(Ωε) <∞. Then there exists Ω ∈ A and a

subsequence (not relabeled), such that |Ω△ Ωε| → 0.

Proof: Without loss of generality we can assume Ωε ∈ A, otherwise the energy would be

asymptotically unbounded. Let 0 < 2δ < γcrit − lim supε→0 γε. By passing to a convergent

subsequence (not relabeled), we can assume that γε + δ < γcrit for ε > 0 sufficiently small.

Thus by Corollary 5.7 we obtain

0 <
δ

γcrit
Per(Ωε) ≤

(
1− γε

γcrit

)
Per(Ωε)

5.7

≤ Eγε,ε(Ωε). (5.47)

Again, passing to a subsequence (not relabeled) we find Per(Ωε) ≲ 1. Using the compact

embedding of BV into L1 (see Theorem 2.10) finishes the proof. ■

The case of constant sequences γε = γ < γcrit was proven in [BKMC23, Theorem 2.1].

The non-compactness results will mostly rely on the construction of a sequence Ωε ∈ A
such that there does not exist an L1 convergent subsequence. The following lemma will

provide a suitable candidate by constructing oscillating laminates (see Figure 5.1).

Lemma 5.11 Let 0 < θ < 1. Let S := (0, θ) ×Tn−1 ⊂ Tn. Let Sk := kS for all k ∈ N.
Then:
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Figure 5.1.: Construction of sequence of oscillating laminates.

a) |Sk| = θ for all k ∈ N.

b) Per(Sk) = 2k for all k ∈ N.

c) There does not exist an L1 convergent subsequence.

Proof: The first two assertions are trivial. To show the third assertion, we assume there

exists a subsequence (not relabeled) and v ∈ L1(Tn, {0, 1}), such that χSk
=: vk → v in

L1 as k → ∞. Then ∥v∥L1(Tn) = θ. We note that vk ⇀
∗ θ in L∞ as k → ∞ (see [BD98,

Example 2.7]) and thus

∥vk − v∥L1(Tn) =

�
Tn

vk(x) dx+

�
Tn

v(x) dx− 2

�
Tn

vk(x) v(x) dx

k→∞−−−→ 2θ − 2θ2 ̸= 0,

(5.48)

(5.49)

a contradiction. ■

With the help of Lemma 5.11 we will now show non-compactness in the supercritical

regime.

Theorem 5.12 Let γε > 0 and assume γcrit < lim infε→0 γε ≤ lim supε→0 γε <∞. Suppose

K satisfies (H1)–(H3). Then there exists Ωε ∈ A such that lim supε→0Eγε,ε(Ωε) <∞, but

there does not exist an L1–convergent subsequence of Ωε.

Proof: The assumptions on the sequence γε imply that there exist γ∗, γ
∗, ε0 > 0, such

that

γcrit < γ∗ < γε < γ∗ <∞ for all 0 < ε < ε0, (5.50)
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which in turn implies for all Ω ∈ BVn (with Theorem 5.6)

Eγε,ε(Ω) ≤
(
1− γ∗

γcrit

)
Per(Ω) + 2γ∗

� ∞

0

Φε(r)[c
′
Ω(r)− c′Ω(0)] dr for all 0 < ε < ε0.

(5.51)

Using the sequence from Lemma 5.11 and Corollary 5.9, we obtain

� ∞

0

Φε(r)[c
′
Sk
(r)− c′Sk

(0)] dr
ε↘0−−→ 0. (5.52)

Hence, for all k ∈ N there exists ε̄(k) such that

� ∞

0

Φε(r)[c
′
Sk
(r)− c′Sk

(0)] dr <
1

k
for all 0 < ε < ε̄(k). (5.53)

For 1
2
min{ 1

k+1
, ε̄(k + 1), ε0} ≤ ε ≤ 1

2
min{ 1

k
, ε̄(k), ε0}, we choose Ωε = Sk. Then there

does not exist an L1–convergent subsequence (see Lemma 5.11) and

Eγ,ε(Ωε)
(5.51)

≤
(
1− γ∗

γcrit

)
Per(Ωε) + 2γ∗

� ∞

0

Φε(r)[c
′
Ωε
(r)− c′Ωε

(0)] dr

γcrit<γ∗
≤ 2γ∗

� ∞

0

Φε(r)[c
′
Ωε
(r)− c′Ωε

(0)] dr
(5.53)

≤ 2γ∗

k
≲ 1,

(5.54)

(5.55)

from which the claim follows. ■

Under the assumption of (H1) – (H3), the condition lim supε→0 γε <∞ cannot be omited

since otherwise the parameter γε might change the scaling of the non-local term, e.g.

γε =
γ
ε
(see also (5.5) – (5.7)).

Theorem 5.10 identifies the subcritical parameter regime 0 ≤ γ < γcrit and the supercritical

parameter regime γ > γcrit. We learn that the local term dominates in the subcritical

regime, while in the supercritical regime the destabilising effect of the non–local interaction

takes over. The failure of compactness is reflected in uniform lower bounds of the energy

and the behaviour of minimising sequences:

Corollary 5.13 Let γε > 0 and suppose that K satisfies (H1) – (H3).

a) Let lim supε→0 γε ≤ γcrit. Then there exists ε∗ > 0, such that Eγε,ε ≥ 0 for every

0 < ε < ε∗.

b) Let γcrit < lim infε→0 γε ≤ lim supε→0 γε <∞. Then there exists a sequence Ωε ∈ A
such that

Eγε,ε(Ωε)
ε↘0−−→ −∞. (5.56)

Moreover lim inf
ε→0

Per(Ωε) = ∞ for any sequence such that (5.56) holds.
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Proof: Assertion a) follows directly from Proposition 5.7. In order to show assertion b)

we use the notation as in the proof of Theorem 5.12. Then Per(Ωε)
ε↘0−−→ +∞ and

Eγ,ε(Ωε)
(5.51)

≤
(
1− γ∗

γcrit

)
Per(Ωε) + 2γ∗

� ∞

0

Φε(r)[c
′
Ωε
(r)− c′Ωε

(0)] dr

(5.53)

≤
(
1− γ∗

γcrit

)
Per(Ωε) +

2γ∗

k
,

(5.57)

(5.58)

from which the claim follows since γ∗ > γcrit. In order to prove the necessity of a sequence

with unbounded perimeter, we argue by contradiction: assume that (after selection of

a subsequence) Per(Ωε) ≲ 1, then −1 ≲ Eγ,ε[uε] by Proposition 5.7, which contradicts

(5.56). ■

Before we turn to the critical parameter regime, we define what we mean by a rescaling

function:

Definition 5.14 Let R ∈ C0(R+). R is called a Rescaling, if R ≥ 0 and R(ε)
ε↘0−−→ ∞.

We have seen in Theorem 5.12 that the energy functional does not have compactness

properties in the supercritical regime. The following lemma shows that there does not

exist a rescaling to restore compactness.

Theorem 5.15 Let R be a rescaling and let γε > 0 such that γcrit < lim infε→0 γε ≤
lim supε→0 γε <∞. Suppose K satisfies (H1)–(H3). Then there exists Ωε ∈ A such that

R(ε)Eγε,ε(Ωε)
ε↘0−−→ −∞.

Proof: We use the notation as in the proof of Theorem 5.12. Then Per(Ωε)
ε↘0−−→ +∞ and

Eγ,ε(Ωε)
(5.51)

≤
(
1− γ∗

γcrit

)
Per(Ωε) + 2γ∗

� ∞

0

Φε(r)[c
′
Ωε
(r)− c′Ωε

(0)] dr

(5.53)

≤
(
1− γ∗

γcrit

)
Per(Ωε) +

2γ∗

k
.

(5.59)

(5.60)

We will construct a subsequence of Ωε to ensure divergence to −∞. In particular, for

every ε > 0 we find δε > 0 such that

R(ε)
(
1− γ∗

γcrit

)
Per(Ωδ) >

1

ε
for all 0 < δ < δε. (5.61)

Now, let ε̄ := 1
2
min{ε, δε}, then choosing the subsequence Ω̄ε := Ωε̄ provides a sequence

with the desired properties. ■
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We will now shift our focus to the critical regime γε ∼ γcrit.

Theorem 5.16 Let R be a rescaling and let γε > 0 such that lim infε→0(1− γε
γcrit

)R(ε) > 0.

Suppose K satisfies (H1)–(H3). Let Ωε ∈ BVn such that lim supε→0R(ε)Eγε,ε(Ωε) < ∞.

Then there exists Ω ∈ A and a subsequence (not relabeled), such that |Ω△ Ωε| → 0.

Proof: By assumption there exists σ > 0 such that for ε > 0 sufficiently small we have

σ < (1− γε
γcrit

)R(ε). Using Corollary 5.7 we obtain

σ Per(Ωε) ≤ R(ε)
(
1− γε

γcrit

)
Per(Ωε) ≤ R(ε)Eγε,ε(Ωε). (5.62)

Passing to a subsequence (not relabeled) we find Per(Ωε) ≲ 1. Using the compact

embedding of BV into L1 (see Theorem 2.10) finishes the proof. ■

We will end this section that there does not always exist a rescaling in the critical regime

to restore compactness:

Lemma 5.17 Let R be a rescaling. Suppose K satisfies (H1)–(H3) and additionally assume

that supp(K) is compact. Then there exists Ωε ∈ A such that lim supε→0 R(ε)Eγcrit,ε(Ωε) <

∞, but there does not exist an L1-convergent subsequence of Ωε.

Proof: We use the notation as in the proof of Theorem 5.12. Then Per(Ωε)
ε↘0−−→ +∞

and Theorem 5.6 yields

Eγcrit,ε(Ωε) = 2γcrit

� ∞

0

Φε(r)[c
′
Ωε
(r)− c′Ωε

(0)] dr. (5.63)

Since Ωε is a sequence of laminates, there exists Rε > 0 such that c′Ωε
(r) = c′Ωε

(0) for all

0 < r < Rε. With this at hand, we construct a subsequence of Ωε to ensure Eγcrit,ε(Ωε) = 0

for all ε > 0. Thus, the energy is bounded and as a subsequence of Ωε, there does not

exist a converging subsequence (see also Lemma 5.11).

Since K has compact support, so does Φ. Thus we can choose 0 < δ ≪ 1 such that

supp(Φδ) ⊂ [0, Rε). Hence for every ε > 0 we find δε > 0 such that

� ∞

0

Φδ(r)[c
′
Ωε
(r)− c′Ωε

(0)] dr = 0 for all 0 < δ < δε. (5.64)

Now, let ε̄ := 1
2
min{ε, δε}, then choosing the subsequence Ω̄ε := Ωε̄ provides a sequence

with the desired properties. ■
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All the non-compactness results relied on carefully chosen oscillations and Lemma 5.11

to either bound the energy, or make it diverge to −∞. However, laminates are no sets

of finite perimeter in Rn. In order to still achieve non-compactness in the full space

setting, we instead use annuli Aρ,R := BR(0)\Bρ(0). In particular, choosing ρn = Rn− θ
ωn
,

we have |Aρ,R| = θ, Per(Aρ,R) = σn(R
n−1 + ρn−1), but Aρ,R does not have a convergent

subsequence as R → ∞. The techniques to prove non-compactness in the full space setting

carry over from the periodic setting.

5.3. Asymptotic Expansion as ε→ 0

This section deals with the asymptotic expansion of the energy functional Eγ,ε as ε→ 0.

We will use the framework of Γ–convergence to show asymptotic behaviour.

As was seen in the last section, we can only hope to find a reasonable limit functional

in the subcritical and critical parameter regime. While the subcritical regime does not

require rescaling, the choice of the rescaling in the critical regime has a crucial effect on

the asymptotic behaviour of the energy functional.

As a reminder, given a Banach space X, we say that a sequence Fε : X −→ R ∪ {±∞}
ΓΓΓ–converges to F : X −→ R ∪ {±∞} as ε→ 0, if the following conditions hold:

• Liminf–inequality: For every x ∈ X and every sequence xε ∈ X with xε → x it

holds

lim inf
ε→0

Fε(xε) ≥ F (x). (5.65)

• Limsup–inequality For every x ∈ X there exists a sequence xε ∈ X, such that

xε → x and

lim sup
ε→0

Fε(xε) ≤ F (x). (5.66)

In that case, we denote Fε
Γ−→ F . We will start with the subcritical regime:

Theorem 5.18 Let γε > 0 and assume γ∗ := lim supε→0 γε < γcrit. Suppose K satisfies

(H1)–(H3). Then Eγε,ε
Γ−→ (1− γ∗

γcrit
) Per in the L1-topology.

Proof: Liminf inequality: By Theorem 5.10 we can assume without loss of generality that

Ωε,Ω ∈ A and |Ωε △ Ω| → 0. The assumptions on γε imply

0 < 1− γ∗

γcrit
= lim inf

ε→0
1− γε

γcrit
, (5.67)
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and thus by the lower semicontinuity of the perimeter and Theorem 5.7

0 ≤
(
1− γ∗

γcrit

)
Per(Ω) =

(
1− γ∗

γcrit

)
Per(Ω) =

(
lim inf
ε→0

1− γε
γcrit

)
Per(Ω)

≤
(
lim inf
ε→0

1− γε
γcrit

)(
lim inf
ε→0

Per(Ωε)
)

≤ lim inf
ε→0

(
1− γε

γcrit

)
Per(Ωε)

≤ lim inf
ε→0

Eγε,ε(Ωε).

(5.68)

(5.69)

(5.70)

(5.71)

Limsup inequality: The case Ω ̸∈ A is trivial, so let Ω ∈ A. We choose the constant

recovery sequence Ωε = Ω. Let δ > 0, then there exists εδ > 0 such that for all 0 < ε < εδ

Eγε,ε(Ω) =
(
1− γε

γcrit

)
Per(Ω) + 2γε

� ∞

0

Φε(r)[c
′
Ω(r)− c′Ω(0)] dr

≤
(
1− γ∗

γcrit
+ δ

)
Per(Ω) + 2γcrit

� ∞

0

Φε(r)[c
′
Ω(r)− c′Ω(0)] dr,

(5.72)

(5.73)

where we used Theorem 5.6 in the first line. The non-local term on the right-hand side

vanishes as ε→ 0 by Corollary 5.9 and thus we obtain

lim sup
ε→0

Eγε,ε(Ω) ≤
(
1− γ∗

γcrit

)
Per(Ω) + δ Per(Ω). (5.74)

Since δ was arbitrary, the limsup inequality follows. ■

The result of Theorem 5.18 in case of a constant sequence γε = γ ≤ γcrit was shown in

[BKMC23].

5.3.1. Higher Order Expansion

In this section, we will restrict ourselves to the case n = 2. Similar to the introduction of

the function Φ in (5.15) due to an integration by parts, we need an integrated kernel for

convergence in higher orders of the energy Eγ,ε. Thus we introduce

Ψε(r) :=
1

ε
Ψ( r

ε
), Ψ(r) :=

� ∞

r

Φ(ρ) dρ for all r > 0. (5.75)

Similar to Proposition 5.3 and Corollary 5.4 we collect properties of the function Ψ and

the family {Ψε}ε.

Proposition 5.19 Assume K satisfies (H1) – (H3) and assume additionally m2 <∞. Let

Φ as in (5.15) and Ψ as in (5.75). Then
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a) Ψ ≥ 0.

b) lim
r→0

rΨ(r) = lim
r→∞

rΨ(r) = 0.

c) Ψ ∈ L1(R+) and

� ∞

0

Ψ(r) dr =
1

2

�
Rn

|z|2K(z) dz.

Proof: Assertion a) follows from Φ ≥ 0 (see Proposition 5.3 a)). Before we will show the

remaining assertions, we note that the assumption m2 <∞ improves upon the properties

of Φ shown in Proposition 5.3, namely

lim
r→∞

r2Φ(r) = 0,

� ∞

0

rΦ(r) dr =
1

2

�
Rn

|z|2K(z) dz. (5.76)

To see the first claim, we observe that

r2Φ(r) = σn

� ∞

r

r2ρn−1K(ρ) dρ ≤ σn

� ∞

r

ρn+1K(ρ) dρ
r→∞−−−→ 0, (5.77)

where in the last line we used m2 <∞. Now we obtain for 0 < r < R <∞ via integration

by parts � R

r

ρΦ(ρ) dρ =
1

2
ρ2Φ(ρ)

∣∣∣∣R
r

+
σn
2

� R

r

ρn+1K(ρ) dρ. (5.78)

Using the Dominated Convergence Theorem in the limits r → 0 and R → ∞ (since

m2 <∞) as well as (5.77) yields

� ∞

0

ρΦ(ρ) dρ =
σn
2

� ∞

0

ρn+1K(ρ) dρ =
1

2

�
Rn

|z|2K(z) dz. (5.79)

Now we can show the remaining assertions. First, we notice that

RΨ(R) =

� ∞

R

RΦ(ρ) dρ ≤
� ∞

R

ρΦ(ρ) dρ
R→∞−−−→ 0. (5.80)

Moreover, as Ψ(0) = ∥Φ∥L1(R+) <∞, we have rΨ(r)
r→0−−→ 0. Lastly, let 0 < r < R <∞.

Then using integration by parts

� R

r

Ψ(ρ) dρ = ρΨ(ρ)

∣∣∣∣R
r

+

� R

r

ρΦ(ρ) dρ. (5.81)

Using the Dominated Convergence Theorem in the limits r → 0 and R → ∞ yields

� ∞

0

Ψ(ρ) dρ =

� ∞

0

ρΦ(ρ) dρ =
1

2

�
Rn

|z|2K(z) dz, (5.82)

as claimed. ■
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Corollary 5.20 Assume K satisfies (H1) – (H3) and additionally m2 <∞. Let Ψε as in

(5.75). Let ψε : R −→ R be given by

ψε(r) :=
Ψε(r)

∥Ψ∥L1(R+)

χ
R+(r) for all r ∈ R. (5.83)

Then the family {ψε}ε forms an approximation of the identity.

Proof: Follows from Proposition 5.19. ■

Using the just proven properties of Ψ, we are able to prove the following Γ–convergence

result for the rescaled energy functional 1
ε
Eγε,ε in the critical regime.

Theorem 5.21 Let γε > 0 and assume 1
ε
(1 − γε

γcrit
)

ε↘0−−→ σ > 0. Suppose K satisfies

(H1)–(H3) and additionally m2 <∞. Then 1
ε
Eγε,ε

Γ−→ σ Per in the L1–topology.

Proof: Liminf inequality: Using Theorem 5.16 we can assume without loss of generality

that Ωε,Ω ∈ A and |Ωε △ Ω| → 0. Let 0 < δ < σ
2
. Then there exists ε∗ > 0 such that for

all 0 < ε < ε∗ we have

0 < σ − δ <
1

ε

(
1− γε

γcrit

)
. (5.84)

Thus by the lower semicontinuity of the perimeter and Theorem 5.7 we obtain

0 < (σ − δ) Per(Ω) ≤
(
lim inf
ε→0

1

ε

(
1− γε

γcrit

))
Per(Ω)

≤
(
lim inf
ε→0

1

ε

(
1− γε

γcrit

))(
lim inf
ε→0

Per(Ωε)
)

≤ lim inf
ε→0

1

ε

(
1− γε

γcrit

)
Per(Ωε)

≤ lim inf
ε→0

1

ε
Eγε,ε(Ωε).

(5.85)

(5.86)

(5.87)

(5.88)

Rearranging the terms leads to

σ Per(Ω) ≤ δ Per(Ω) + lim inf
ε→0

1

ε
Eγε,ε(Ωε). (5.89)

Since δ > 0 was arbitrary, the liminf inequality follows.

Limsup inequality: The case Ω ̸∈ A is trivial. We first focus on the case Ω ∈ A ∩BV ∞
2

and choose the constant recovery sequence Ωε = Ω. Since Ω ∈ BV ∞
2 , there exists R > 0
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such that cΩ ∈ C∞((0, 2R]) (see Theorem 4.10). We use Theorem 5.6 to obtain

1

ε
Eγε,ε(Ω) =

1

ε

(
1− γε

γcrit

)
Per(Ω) +

2γε
ε

� ∞

0

Φε(r)[c
′
Ω(r)− c′Ω(0)] dr (5.90)

and claim that the non-local term converges to 0.

We split the non-local term as follows

1

ε

� ∞

0

Φε(r)[c
′
Ω(r)− c′Ω(0)] dr =

1

ε

� R

0

Φε(r)[c
′
Ω(r)− c′Ω(0)] dr

+
1

ε

� ∞

R

Φε(r)[c
′
Ω(r)− c′Ω(0)] dr

=: Iε + Jε,

(5.91)

(5.92)

(5.93)

and estimate both integrals seperately. Using the regularity of the Autocorrelation

Function, we can integrate by parts to obtain

Iε = −
[
Ψε(r)[c

′
Ω(r)− c′Ω(0)]

]R
0
+

� R

0

Ψε(r)c
′′
Ω(r) dr

= Ψε(R)[c
′
Ω(R)− c′Ω(0)] +

� R

0

Ψε(r)c
′′
Ω(r) dr

ε→0−−→ 0 + ∥Ψ∥L1(R+)c
′′
Ω(0) = 0,

(5.94)

(5.95)

where Ψε is defined in (5.75) and in the last line we used Corollary 5.20 and Corollary

4.12. For the quantity Jε we use the fact that m2 <∞ by assumption and (5.79) to obtain

|Jε| ≤ 2Per(Ω)
1

ε

� ∞

R
ε

Φ(r) dr ≤ 2Per(Ω)

R

� ∞

R
ε

rΦ(r) dr
ε→0−−→ 0. (5.96)

Altogether we obtain

lim sup
ε→0

1

ε
Eγε,ε(Ω) ≤ lim sup

ε→0

1

ε

(
1− γε

γcrit

)
Per(Ω) = σ Per(Ω), (5.97)

which was the claim. For general sets Ω ∈ A we use a diagonal sequence. More precisely:

there exists a sequence of smooth sets Ωk ∈ A ∩BV ∞
2 such that (see Lemma 2.18)

|Ωk △ Ω| k→∞−−−→ 0, |Per(Ωk)]− Per(Ω)| k→∞−−−→ 0. (5.98)

By the computations above we have 1
ε
Eγε,ε(Ωk)

ε↘0−−→ σ Per(Ωk) for any k ∈ N. Hence, for

all k ∈ N there exists ε∗(k) such that

|Eγε,ε(Ωk)− σ Per(Ωk)| <
1

k
for all 0 < ε < ε∗. (5.99)
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For 1
2
min{ 1

k+1
, ε∗(k + 1)} < ε < 1

2
min{ 1

k
, ε∗(k)} we choose Ωε = Ωk. Then

|Ωε △ Ω| ε→0−−→ 0, |Per(Ωε)− Per(Ω)| ε→0−−→ 0, Eγε,ε(Ωk)
(5.99)

≤ σ Per(Ωk) +
1

k
,

(5.100)

from which the limsup inequality follows. ■

We note that the liminf inequality in the Γ–convergence result does not require higher

moments of the kernel due to the pointwise estimate shown in (5.62). The higher moment

condition is needed in the proof of the limsup inequality only. Moreover, a significant

change occurs in the limsup inequality as the constant sequence in general cannot be

used as a recovery sequence, one example being polygons. Indeed, repeating the same

computations for a polytope P ⊂ T2 as in (5.91)–(5.96), we find that

Eγε,ε(P )
ε↘0−−→ σ Per(P ) + 2γcrit∥Ψ∥L1(R+)c

′′
P (0) > σ Per(Ω), (5.101)

where we used Corollary 4.18.

5.4. Energy Computations

In this section, we discuss several examples. Important for the modelling is the fundamental

solution K of the Helmholtz equation K −∆K = δ0. We will mainly restrict to the case

n = 2, where the Helmholtz kernel is given by K(z) = 1
2π
K0(|z|), where K0 : R+ −→ R+

is the Modified Bessel Function of the second kind (see Appendix Lemma A.14).

In what follows we will use the notation Rem to denote a remainder term which is

vanishing as ε→ 0 based on the decay of the interaction kernel K. More precisely, using

the notation of the proof of Theorem 5.21, we denote

Rem = Jε =

� ∞

R

Φε(r)[c
′
Ω(r)− c′Ω(0)] dr ≲ 2Per(Ω)

� ∞

R
ε

Φ(r) dr, (5.102)

of which the asymptotic behaviour as ε → 0 is only dependent on the decay of Φ and

therefore only dependent of K.

5.4.1. Energy of Balls

Building upon computations in Section 4.4.1, and using Proposition 5.8 and Theorem

5.21, we obtain for 0 < ρ < 1 and 0 < ε≪ 1

Eγ,ε(Bρ) = 2πρ
(
1− γ

γcrit

)
+ ε2

γ

ρ

γsec
γcrit

+Rem, (5.103)
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where Rem is the remainder term as described in (5.102). Here, the constant γsec in the

second order is given by

γsec :=
π

6

m3

m1

. (5.104)

5.4.2. Energy of Laminates

For general laminates S ⊂ Tn with N components we know that c′S(r)− c′S(0) = 0 near

r = 0 (see (4.136) – (4.139)). Thus the energy can be computed to be

Eγ,ε(S) =
(
1− γ

γcrit

)
2N +Rem . (5.105)

In particular, there do not occur higher order contributions in the ε–expansion.

Evenly spaced laminates: As we have seen in Section 5.2, multiple stripes are preferred

to a single stripe in the supercritical regime γ > γcrit. Moreover, if in addition K ∈ L1(Rn),

then we observe that

Eγ,ε(Ω) ≥ −γ
ε

�
Rn

Kε(z)

�
Tn

|χΩ(x+ z)− χ
Ω(x)| dx dz ≥ −2γ

ε
∥K∥L1(Rn), (5.106)

and thus is bounded from below.

In Lemma 4.16 we computed the Autocorrelation Function for a single laminate for

n = 2. Thus, given the volume fraction 0 < θ < 1, the parameters ε, γ > 0 and the

interaction kernel K, we can explicitly compute the energy of a single laminate with

the help of Theorem 5.6 even in the supercritical regime. In addition, we are able to

compute the energy of k evenly spaced laminates through dilation. More precisely, let

S := (0, θ) ×T ⊂ T
2 be a single laminate, we can dilate Sk := kS to have k laminates

which have volume fraction θ. Inserting in the energy functional, we obtain

Eγ,ε(Sk) = kEγ,kε(S). (5.107)

In that case, the function Fγ,ε,θ : k 7−→ kEγ,kε(S) might attain its minimum. In order to

find the minimum, we find critical points through the equation F ′
γ,ε,θ = 0. We obtain

1

2

d

dk
Fγ,ε,θ(k) =

d

dk
k
[
1 + γ

� ∞

0

Φkε(r) c
′
S(r) dr

]
= 1 + γ

� ∞

0

Φkε(r) c
′
S(r) dr + kγ

� ∞

0

c′S(r)
d

dk
Φkε(r) dr

= 1 + γ

� ∞

0

c′S(r)
d

dk

[
kΦkε(r)

]
dr.

(5.108)

(5.109)

(5.110)
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Figure 5.2.: Values of Eγ,ε(Sk) for the Helmholtz kernel K −∆K = δ0 (with γcrit = 1) for
different values of γ and fixed ε = 1

2
. The different values are a) γ = 1

2
, b)

γ = 1, c) γ = 2, d) γ = 4.

We compute

d

dk

[
kΦkε(r)

]
=

d

dk

[1
ε
Φ( r

kε
)
]
=

1

ε
Φ′( r

kε
)
(
− r

k2ε

)
= − 1

kε

r

kε
Φ′( r

kε
) = −(idΦ′)kε(r) = σ2(id

2K)kε(r).

(5.111)

(5.112)

Inserting in the above computations shows

1

2

d

dk
Fγ,ε,θ(k) = 1 + γσ2

� ∞

0

c′S(r)(id
2K)kε(r) dr

!
= 0. (5.113)

Rearranging the terms we obtain the criticality condition:

� ∞

0

r2K(r) c′S(kεr) dr = − 1

2πγ

We observe that, under the additional assumption that K is a continuous function, for

every γ > γcrit there exists t = kε such that the criticality condition holds. Indeed, we

compute � ∞

0

r2K(r) c′S(tr) dr
t↘0−−→ − 2

π

� ∞

0

r2K(r) dr = − 1

2πγcrit
,

� ∞

0

r2K(r) c′S(tr) dr
t→∞−−−→ 0,

(5.114)

(5.115)

where we used [KS23, Proposition 2.4 (vi)] in last line. After the transformation r 7−→ r
t

we find that the integral is continuous with respect to t, so the claim follows with the

Intermediate Value Theorem.

In summary, given ε > 0 and γ > γcrit, we find k∗ > 1 through the criticality condition such

that Sk∗ is a better competitor than Sk for every k ∈ N. In particular, the interpretation

for Eγ,ε as a biological model described in Chapter 3 is that fine scale patterns form in

the supercritical regime.

5.4.3. Energy of Polytopes

As we have seen in the proofs of Proposition 5.8 and Theorem 5.21, the methods relied

on the smoothness of the Autocorrelation Function near r = 0. Even though polytopes
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are not in the class BV ∞
2 , Lemma 4.17 shows that the corresponding Autocorrelation

Function is smooth. Thus the calculations and estimates carry over and we obtain for a

polytope P ⊂ T2:

Eγ,ε(P ) =
(
1− γ

γcrit

)
Per(P ) + εγ∥Ψ∥L1(R+)c

′′
P (0) + Rem (5.116)

where Ψ ∈ L1(R+) is given in (5.75) and Rem is a remainder term depending on the

decay of K. Apart for laminates, the quantity c′′P (0) is positive (see Corollary 4.18).

Polygons as recovery sequences: It is worth noting that due to the fact that c
(k)
P (0) = 0

for all k ≥ 3 (see Lemma 4.17) there is no higher order contribution in the ε–expansion.

In spite of this, polytopes do not make good candidates for recovery sequences for higher

order convergence.

To see this, assume γε > 0 such that 1
ε2
(1− γε

γcrit
)

ε↘0−−→ σ > 0, which would correspond to a

next order rescaling (compare to Theorem 5.21). Let Ω = Bρ(0) with ρ <
1
8
and consider

ΞN to be a regular polytope with N edges such that (see Figure 5.3)

|ΞN | = |Ω|, Per(ΞN)
N→∞−−−→ Per(Ω). (5.117)

For this demonstration, we additionally assume K = χ
B1(0), which satisfies (H1)–(H3) and

m3 <∞. Then supp(Φ) ⊂ [0, 1] and we compute for all 0 < r < 1

Φ(r) = π(1− r2), ∥Φ∥L1 =
2π

3
,

Ψ(r) =
π

3
(r3 − 3r + 2), ∥Ψ∥L1 =

π

4
,

(5.118)

(5.119)

(5.120)

where Ψ is as in (5.75). Moreover we compute

γcrit =
3

4
, γsec =

π

10
, (5.121)

where γsec is as in (5.104).

The quantity RN from (4.141) will be important for our computations as it determines in

which range the Autocorrelation Function cΞN
is a polynomial. Since ΞN is convex, we

find that RN is given by the length of an edge. We find that

|ΞN | = NRNhN , (5.122)

where hN is the height of one of the identical isoceles triangles. Using trigonometry we
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ϑ
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Figure 5.3.: Setup and notation for ΞN .

1

π

r

Φ(r)
Ψ(r)

Figure 5.4.: Plots of the functions Φ and Ψ corresponding to K = χ
B1 .

obtain tan(ϑ
2
) = hN

RN/2
and thus

|ΞN | = NRNhN =
N

2
R2

N tan(ϑ
2
) =⇒ R2

N =
2|ΞN |
N

cot(ϑ
2
). (5.123)

Using the Laurent Series of the cotangent and plugging in ϑ = πN−2
N

we obtain that

RΞN
=

√
2π|ΞN |
N

+O( 1
N2 ). (5.124)

Moreover, the quantity c′′ΞN
(0) is given by (see (4.170))

c′′ΞN
(0) =

2π

3N
+O( 1

N3 ). (5.125)

We are now in the position to compute the energy of the polytopes ΞN . Using Lemma

4.17 we obtain for 0 < ε <

√
2π|Ω|
N

< RN

1

ε2

� ∞

0

Φε(r)[c
′
ΞN

(r)− c′ΞN
(0)] dr =

1

ε2

� ε

0

Φε(r)[c
′
ΞN

(r)− c′ΞN
(0)] dr

=
c′′ΞN

(0)

ε2

� ε

0

rΦε(r) dr

=
∥Ψ∥L1(R+)

ε
c′′ΞN

(0) =
π2

6Nε
+

1

Nε
O( 1

N2 ).

(5.126)

(5.127)

(5.128)

Due to the constraint on ε, the optimal choice for the parameters is Nε =
√
2π|Ω| =

√
2πρ,
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from which we obtain

1

ε2

� ∞

0

Φε(r)[c
′
ΞN

(r)− c′ΞN
(0)] dr =

π

6
√
2ρ

+O( 1
N2 ). (5.129)

In the limit ε↘ 0 (which in turn makes N → ∞) we obtain

Eγε,ε(ΞN)
ε↘0−−→ σ Per(Ω) + 2γcrit

π

6
√
2ρ

= σ Per(Ω) +
3π

12
√
2ρ

> σ Per(Ω) +
1

80ρ
, (5.130)

where the right-hand side corresponds to the energy of a ball given in (5.103).

5.4.4. Energy of Annuli

In Section 4.4.2, we have computed the full space Autocorrelation Function of an annulus

Aρ,R := BR(0) \Bρ(0). As the Autocorrelation Function of Aρ,R is tightly connected to

the Autocorrelation Function of BR and Bρ, we aim to derive a formula of the energy of

an annulus in terms of the energy of the corresponding balls. We are using the following

representation formula of the energy:

Eγ,ε(Ω) = Per(Ω)− γ

�
Rn

K(z)

�
Rn

|χΩ(x+ z)− χ
Ω(x)| dx dz

= Per(Ω) + 2γ

� ∞

0

Φε(r) c
′
Ω(r) dr.

(5.131)

(5.132)

Using the explicit formula for the Autocorrelation Function of the annulus, we compute

� ∞

0

Φε(r) c
′
Aρ,R

(r) dr =

� 2ρ

0

Φε(r) c
′
Bρ
(r) dr +

� 2R

0

Φ(r) c′BR
(r) dr

+ 2

� R+ρ

R−ρ

Φε(r)
d

dr

[
L(ρ, R

2−ρ2+r2

2r
− r)− L(R, R

2−ρ2+r2

2r
)
]
dr,

(5.133)

(5.134)

where L(R, d) is defined in (4.116). We compute

d

dr
L(ρ, R

2−ρ2+r2

2r
− r) =

r2 +R2 − ρ2

2r3

×
√

(r −R− ρ)(ρ− r −R)(r −R + ρ)(r +R + ρ),

d

dr
L(R, R

2−ρ2+r2

2r
) =

r2 −R2 + ρ2

2r3

×
√

(r −R− ρ)(ρ− r −R)(r −R + ρ)(r +R + ρ).

(5.135)

(5.136)

(5.137)

(5.138)
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Thus

d

dr

[
L(ρ,R

2−ρ2+r2

2r
− r)− L(R, R

2−ρ2+r2

2r
)
]

=
R2 − ρ2

r3

√
(r −R− ρ)(ρ− r −R)(r −R + ρ)(r +R + ρ).

(5.139)

(5.140)

Altogether we obtain for the non-local term

� ∞

0

Φε(r) c
′
Aρ,R

(r) dr =

� 2ρ

0

Φε(r) c
′
Bρ
(r) dr +

� 2R

0

Φε(r) c
′
BR

(r) dr

+ 2(R2 − ρ2)

� R+ρ

R−ρ

Φε(r)

√
(r −R− ρ)(ρ− r −R)(r −R + ρ)(r +R + ρ)

r3
dr.

Hence the energy of an annulus can be computed by

Eγ,ε(Aρ,R) = Eγ,ε(Bρ) + Eγ,ε(BR)

+ 4γ(R2 − ρ2)

� R+ρ

R−ρ

Φε(r)

√
(r −R− ρ)(ρ− r −R)(r −R + ρ)(r +R + ρ)

r3
dr.
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6. Conclusion

In this thesis, we analysed the Autocorrelation Function (see Chapter 4) and the non-local

isoperimetric energy (see Chapter 5)

Eγ,ε(Ω) = Per(Ω)− γ

ε

�
Rn

Kε(z)

�
Tn

|χΩ(x+ z)− χ
Ω(x)| dx dz.

We have seen that the geometry of a set Ω ⊂ T
n is deeply connected to regularity

properties of the corresponding Autocorrelation Function cΩ. In particular, smoothness of

the boundary implies smoothness of cΩ near the origin (see Theorem 4.10), and we have

established formulae for derivatives of the Autocorrelation Function at the origin (see

Corollary 4.8, Corollary 4.12 and Corollary 4.15, see also Lemma 4.11, Corollary 4.18).

Using the Autocorrelation Function, we reformulated the energy functional Eγ,ε as (see

Theorem 5.6)

Eγ,ε(Ω) =
(
1− γ

γcrit

)
Per(Ω) + 2γ

� ∞

0

Φε(r)[c
′
Ω(r)− c′Ω(0)] dr,

which provided crucial insight to establish an asymptotic expansion as ε→ 0. We found

a parameter γcrit which seperated sub- and supercritical regimes in which the energy

showed different compactness properties. In particular, in the subcritical regime γ < γcrit,

the energy functional is compact, in the supercritical regime γ > γcrit, the energy is not

compact (see Section 5.2). In addition, we derived the Γ–limits in the subcritical regime

(see Theorem 5.18), and for the rescaled energy in the critical regime (see Theorem 5.21).

We compared the diffuse energy model Fq,ε to the sharp interface analogue Eγ,ε and

explained in which way they can be seen as mechano-chemical models describing pattern

formation processes in biological membranes (see Section 3.2). We found that the models

share qualitative behaviour in that there exist sub- and supercritical parameter regimes

with respect to the relative strength of the non-local interaction, i.e. the parameters q

and γ. However, they are quantitavely different as the regimes do not match for both

energy models (see Section 3.3).
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A. Appendix

Lemma A.1 There exists a Dirac sequence ψε ∈ C∞(Tn), i.e. the sequence has the

following properties:

a) supp(ψε) = Bε(0) for all 0 < ε < 1
2
.

b) supε ∥ψε∥L1(Tn) ≲ 1.

c)

�
Tn

ψε(x) dx = 1 for all 0 < ε < 1
2
.

d) For every r > 0 and δ > 0 there exists ε0(r, δ) > 0, such that

�
Tn\Br(0)

|ψε(x)| dx < δ for all ε < ε0. (A.1)

Proof: Let ψ ∈ C∞
c (Rn) be the standard convolution kernel

ψ(x) :=

exp( 1
1−|x|2 ) for all x ∈ B1(0),

0 else.
(A.2)

Define the dilated kernel ψε(x) :=
1
εn
ψ(x

ε
) for all x ∈ Rn. Then supp(ψε) = Bε(0) and

thus for ε < 1
2
we find supp(ψε) is compactly embedded into Qn. Thus there exists a

periodic extension of ψε to R
n and therefore we find ψε ∈ C∞(Tn) for all 0 < ε < 1

2
. The

claimed assertions follow as in the Euclidean case. ■

As usual for Dirac sequences, having f ∈ Lp(Tn) for 1 ≤ p <∞, it holds f ∗ ηk → f in

Lp(Tn) as k → ∞ (see [Gra08, Section 1.2.4]).

Lemma A.2 Let f, g ∈ L1(Tn). Then supp(f ∗ g) ⊂ supp(f) + supp(g).

Proof. The proof is motivated by [Rud91, Theorem 6.35 and Theorem 6.37].
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Let x ∈ Tn and define

Kx := supp(f) ∩ (x− supp(g)) = {y ∈ Tn : y ∈ supp(f) and x− y ∈ supp(g)}. (A.3)

We find that

(f ∗ g)(x) =
�
Tn

f(y) g(x− y) dy =

�
Kx

f(y) g(x− y) dy for all x ∈ Tn. (A.4)

Assume x /∈ supp(f) + supp(g), that is there do not exist zf ∈ supp(f) and zg ∈ supp(g)

such that x − zf = zg. Thus Kx = ∅ and (f ∗ g)(x) = 0. Hence supp(f ∗ g) ⊂
supp(f) + supp(g) as claimed. ■

Theorem A.3 The inclusion mapping ι̇ : W 1,1(Tn) −→ L1(Tn) is a compact operator.

Proof: Follows from [Heb99, Theorem 2.9] since Tn is a closed Riemannian manifold. ■

Lemma A.4 Let f ∈ C∞(Tn). Then there exists C > 0 such that for all k ∈ N there

exists an affine linear function fk ∈ C0(Tn) such that

∥f − fk∥W 1,1(Tn) ≤
C

k
∥f∥W 1,1(Tn). (A.5)

Proof: As f ∈ C∞(Tn) there exists a representative F ∈ C∞(Rn) which is Qn periodic,

i.e.

F (x+ z) = F (x) for all x ∈ Rn, z ∈ Zn. (A.6)

We now use a finite element approximation of F : let σ0 ⊂ Rn be the unit simplex (with

affine independent vertices {0, e1, . . . , en}). Then through periodic refinement we obtain a

family of subdivision T k such that for σk ∈ T k we have diam(σk) ≤ diam(σ0)
k

. We can now

apply [BS94, Theorem 4.4.20] to obtain an affine linear function Fk ∈ C0(Qn) such that

∥F − Fk∥W 1,1(Qn) ≲
1

k
∥F∥W 1,1(Qn), (A.7)

where the constant depends on n and diam(σ0). By the choice of the subdivisions, the

function Fk can be extended periodically to Rn, and thus can be identified with an affine

linear function fk ∈ C0(Tn). Using (A.7) we find

∥f − fk∥W 1,1(Tn) = ∥F − Fk∥W 1,1(Qn) ≲
1

k
∥F∥W 1,1(Qn) =

1

k
∥f∥W 1,1(Tn), (A.8)
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Figure A.1.: Subdivisions T k for Qn.

which proves the claim. ■

Lemma A.5 Let A1, A2, A3 ⊂ Tn be measurable. Then

|A1 ∩ A2| − |A1 ∩ A3| ≤ |A2 \ A3| ≤ |A2| − |A2 ∩ A3|. (A.9)

Proof: The proof is motivated by [Gal11, Proposition 5].

Since A1 ∩ A2 ∩ A3 ⊂ A1 ∩ A3 and A1 ∩ A2 ∩ A3 ⊂ A1 ∩ A2 we obtain

|A1 ∩ A2| − |A1 ∩ A3| ≤ |A1 ∩ A2| − |A1 ∩ A2 ∩ A3| = |(A1 ∩ A2) \ (A1 ∩ A2 ∩ A3)|.

(A.10)

The claim follows from the inclusion (A1 ∩ A2) \ (A1 ∩ A2 ∩ A3) ⊂ A2 \ A3. ■

Lemma A.6 Let ϑl, ϑr ∈ (0, 2π). Let ϖ( · , ϑl, ϑr) : (0, 2π) −→ R be as in (4.156). Then

1

2π

� 2π

0

| sin(α)|ϖ(α, ϑl, ϑr) dα

=
1

2π
(1 + (π − ϑr) cot(ϑr)) +

1

2π
(1 + (π − ϑr) cot(ϑl)).

(A.11)

(A.12)

Proof: The deficit function is dependent on the relation between ϑr and ϑl (see Figure

A.2). Due to the geometry, the deficit itself separates into (see Figure 4.10 a))

ϖ(α, ϑl, ϑr) = ϖl(α, ϑl) +ϖr(α, ϑr). (A.13)

Due to reflectional symmetry and the fact c′′Ω = c′′Ωc , the cases to consider reduces to

the following six cases. Moreover, we only need to consider π < α < 2π. We adapt the
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Figure A.2.: Different cases depending on acute or obtuse angles.

notation as in the proof of Lemma 4.18 and write w = (w1, w2) = (cos(α), sin(α)) ∈ S1.

• 0 < ϑl ≤ π
2
and 0 < ϑr ≤ π

2
: We compute for the left deficit

ϖl(α, ϑl) =

0 for all π < α < π + ϑl,

w1 +
|w2|

tan(ϑl)
for all π + ϑl < α < 2π.

(A.14)

We compute for the right deficit

ϖr(α, ϑr) =

−w1 +
|w2|

tan(ϑr)
for all π < α < 2π − ϑr,

0 for all 2π − ϑr < α < 2π.
(A.15)

• 0 < ϑ
(l)
i ≤ π

2
and π

2
< ϑ

(r)
i ≤ π: We compute for the left deficit

ϖl(α, ϑl) =

0 for all π < α < π + ϑl,

w1 +
|w2|

tan(ϑl)
for all π + ϑl < α < 2π.

(A.16)

Using − tan(π − x) = tan(x) we compute for the right deficit

ϖr(α, ϑr) =

−w1 +
|w2|

tan(ϑr)
for all π < α < 2π − ϑr,

0 for all 2π − ϑr < α < 2π.
(A.17)
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• 0 < ϑ
(l)
i ≤ π

2
and π < ϑ

(r)
i ≤ 3π

2
: We compute for the left deficit

ϖl(α, ϑl) =

0 for all π < α < π + ϑl,

w1 +
|w2|

tan(ϑl)
for all π + ϑl < α < 2π.

(A.18)

Using − tan(π − x) = tan(x) we compute for the right deficit

ϖr(α, ϑr) =

0 for all π < α < π + ϑr,

w1 − |w2|
tan(ϑr)

for all π + ϑr < α < 2π.
(A.19)

• 0 < ϑ
(l)
i ≤ π

2
and 3π

2
< ϑ

(r)
i ≤ 2π: We compute for the left deficit

ϖl(α, ϑl) =

0 for all π < α < π + ϑl,

w1 +
|w2|

tan(ϑl)
for all π + ϑl < α < 2π.

(A.20)

Using − tan(2π − x) = tan(x) we compute for the right deficit

ϖr(α, ϑr) =

0 for all π < α < 3π − ϑr,

w1 − |w2|
tan(ϑr)

for all 3π − ϑr < α < 2π.
(A.21)

• π
2
< ϑ

(l)
i ≤ π and π

2
< ϑ

(r)
i ≤ π: We compute for the left deficit

ϖl(α, ϑl) =

0 for all π < α < π + ϑl,

w1 +
|w2|

tan(ϑl)
for all π + ϑl < α < 2π.

(A.22)

Using − tan(π − x) = tan(x) we compute for the right deficit

ϖr(α, ϑr) =

−w1 +
|w2|

tan(ϑr)
for all π < α < 2π − ϑr,

0 for all 2π − ϑr < α < 2π.
(A.23)

• π
2
< ϑ

(l)
i ≤ π and π < ϑ

(r)
i ≤ 3π

2
: We compute for the left deficit

ϖl(α, ϑl) =

0 for all π < α < π + ϑl,

w1 +
|w2|

tan(ϑl)
for all π + ϑl < α < 2π.

(A.24)

Using − tan(π − x) = tan(x) we compute for the right deficit

ϖr(α, ϑr) =

0 for all π < α < π + ϑr,

w1 − |w2|
tan(ϑr)

for all π + ϑr < α < 2π.
(A.25)
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In any case, integrating over all 0 < α < 2π results in

1

2π

� 2π

0

|w2|ϖ(α, ϑr, ϑl) dα = − 1

π

� 2π

π

sin(α) (ϖr(α, ϑr) +ϖl(α,ϖl)) dα

=
1

2π
(1 + (π − ϑr) cot(ϑr))

+
1

2π
(1 + (π − ϑr) cot(ϑl)),

(A.26)

(A.27)

(A.28)

from which we obtain the claim. ■

A.1. Geometric Relations

Lemma A.7 Let E ∈ BVn. Then

lim
r→0

|E ∩Br(x)|
|Br(x)|

=
1

2
for H n−1 almost every x ∈ ∂E. (A.29)

Proof: Follows from [Mag12, Remark 15.3 and Corollary 15.8]. ■

Theorem A.8 Let f : Tn −→ R be smooth. Then

|{x ∈ Tn : Dxf = 0}| = 0. (A.30)

Proof: See e.g. [BJ82, Chapter 6] and [GP74, Chapter 1.7]. ■

As a reminder, given two smooth manifolds M,N and a smooth map f : M −→ N , we

define the Jacobian via

Jacf (x) := det(Dxf Dxf
∗)

1
2 for all x ∈M. (A.31)

Theorem A.9 Let k ∈ N0 and n ∈ N. Let M be a compact Riemannian manifold

of dimension n + k and N be a compact Riemannian manifold of dimension k. Let

F ∈ C∞(M,N). Then for all φ ∈ L1(M)

�
M

φ JacF dH n+k =

�
N

( �
F−1({y})

φ(x) dH k(x)
)
dH n(y). (A.32)
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Proof: See [BZ88, Theorem 13.4.2 and Corollary 13.4.6]. ■

A.2. Integral Identities

Lemma A.10 Let v ∈ Sn−1. Then

�
Sn−1

|v · w| dH n−1(w) = 2ωd−1, (A.33)

where ωd := |{x ∈ Rd : |x| < 1}|.

Proof: Using the invariance under rotations of the Hausdorff measure, we have

�
Sn−1

|v · w| dH n−1(w) =

�
Sn−1

|en · w| dH n−1(w). (A.34)

Let Bn−1 := {x ∈ Rn−1 : |x| < 1}. Then we can parametrise the sphere via φ± : B
n−1 −→

S
n−1, x 7−→ (x,±

√
1− |x|2). Using the formula for parametrised areas, we obtain

�
Sn−1

|wn| dH n−1(w) = 2

�
Bn−1

√
1− |x|2

√
1 +

|x|2
1− |x|2

dx = 2ωn−1, (A.35)

as claimed. ■

Lemma A.11 Let r > 0, k ∈ N and 0 < θ < 1. Then

� acos( k
r
)

acos( k+θ
r

)

sinn−2(α) dα =
1

rn−2

� k+θ

k

(r2 − z2)
n−3
2 dz. (A.36)

Proof: We substitute z = cos(α) to obtain

� acos( k
r
)

acos( k+θ
r

)

sinn−2(α) dα =

� acos( k
r
)

acos( k+θ
r

)

(1− cos2(α))
n−2
2 dα

=

� k
r

k+θ
r

(1− z2)
n−2
2

−1√
1− z2

dz

=

� k+θ
r

k
r

(1− z2)
n−3
2 dz

=
1

rn−2

� k+θ

k

(r2 − z2)
n−3
2 dz,

(A.37)

(A.38)

(A.39)

(A.40)
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as claimed. ■

Lemma A.12 Let r > 0, k ∈ N and 0 < θ < 1. Then

� acos( k
r
)

acos( k+θ
r

)

sinn−2(α) cos(α) dα =
1

rn−1

� k+θ

k

t(r2 − t2)
n−3
2 dt

=
r−(n−1)

n− 1

[
(r2 − k2)

n−1
2 − (r2 − (k + θ)2)

n−1
2

]
(A.41)

(A.42)

Proof: We substitute z = cos(α) to obtain

� acos( k
r
)

acos( k+θ
r

)

sinn−2(α) cos(α) dα =

� acos( k
r
)

acos( k+θ
r

)

(1− cos2(α))
n−2
2 cos(α) dα

=

� k
r

k+θ
r

(1− z2)
n−2
2 z

−1√
1− z2

dz

=

� k+θ
r

k
r

(1− z2)
n−3
2 z dz

=
1

rn−1

� k+θ

k

z(r2 − z2)
n−3
2 dz.

(A.43)

(A.44)

(A.45)

(A.46)

Now substituting u = 1− z2 yields

1

rn−1

� k+θ

k

z(r2 − z2)
n−3
2 dz = − 1

2rn−1

� r2−k2

r2−(k+θ)2
u

n−3
2 du

=
r−(n−1)

n− 1

[
(r2 − k2)

n−1
2 − (r2 − (k + θ)2)

n−1
2

]
,

(A.47)

(A.48)

as claimed. ■

A.3. Interaction Kernels

In the following section we present some examples of admissible kernels. As described in

Chapter 3, the kernel satisfying K −∆K = δ0 is relevant for mechano-chemical models.

Lemma A.13 Let K ∈ L1(Rn) be the unique solution to K −∆K = δ0. Then

�
Rn

|z| K(z) dz =
√
π Γ(n+1

2
) Γ(n

2
)−1 (A.49)
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and the associated critical value γcrit = 1.

Proof: We first note that the equation can be solved explicitly with Fourier methods.

More precisely

FK(ξ) :=

�
Rn

K(z) e−2πiz·ξ dz =
1

1 + (2π)2|ξ|2
for all ξ ∈ Rn. (A.50)

Since the Fourier transform is an injective map F : L1(Rn) −→ C0
b (R

n), the solution K is

unique. Since K̂ is radial, so is K and thus (H1). Employing polar coordinates, K solves

K(r)− n− 1

r
K′(r)−K′′(r) = 0 for all r > 0. (A.51)

Substituting K(r) := r1−
n
2 g(r), we obtain

r2g′′(r) + rg′(r)− (r2 + (n
2
− 1)2)g(r) = 0 for all r > 0. (A.52)

This is the modified Bessel equation. The unique decaying solution is given by g = Kn
2
−1,

where Kν denotes the decaying modified Bessel function of the second kind of genus ν ≥ 0,

i.e.

Kν(r) =

� ∞

0

cosh(νt) e−r cosh(t)dt for all r > 0. (A.53)

Altogether, we obtain

K(z) = a|z|1−
n
2Kn

2
−1(|z|) for all z ∈ Rn, (A.54)

where a = (2π)−
n
2 such that ∥K∥L1(Rn) = 1. Since Kν ≥ 0 for all ν ≥ 0, it follows (H3).

The identity (A.49) and (H2) follow from [GR15, p.676]. ■

Fractional versions of the Helmholtz equations also produce admissible kernels.

Lemma A.14 Let s ∈ (1, 2) and let K(s) ∈ L1(Rn) be the unique solution to

K(s) + (−∆)
s
2K(s) = δ0 in Rn. (A.55)

Then K(s) satisfies (H1) – (H3).

Proof: We first note that the equation can be solved explicitly with Fourier methods.
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More precisely

FK(s)(ξ) :=

�
Rn

K(s)(z) e−2πiz·ξ dz =
1

1 + (2π)s|ξ|s
for all ξ ∈ Rn. (A.56)

Since the Fourier transform is an injective map F : L1(Rn) −→ C0
b (R

n), the solution of

(A.55) is unique. Since K̂(s) is radial, so is K(s) and thus (H1). Using [MW21, Lemma 1.2]

we obtain that K(s) ≥ 0 and |K(s)(r)| ≲ r−n−s for r ≥ 1 which directly yield both (H2)

and (H3). ■

The following family of kernels (so called Bessel kernels) are taken from [Peg21].

Lemma A.15 Let α, κ > 0 and Bα,κ ∈ L1(Rn) be the unique solution to

(id− κ∆)
α
2 Bα,κ = δ0 in Rn. (A.57)

Then Bα,κ satisfies (H1) – (H3) and the associated critical value is given by

γcrit =
1

2

√
π

κ

Γ(α
2
)

Γ(1+α
2
)

Γ(1 + n
2
)2

Γ(1+n
2
)2
. (A.58)

Proof: See [Peg21, Proposition 3.10]. ■

A.4. Graph Representation for Autocorrelation Function

Let R > 0 and f ∈ C∞([−2R, 2R]), such that (f ′)−1({0}) = {x̄}. Without loss of

generality, we can assume f ′′(x̄) ̸= 0, since otherwise we may look at the function

fε(x) := f(x) + ε
2
(x − x̄)2 and then take the limit ε → 0. We assume there exists

x ∈ C∞((0, R]) such that f(x(r) + r) = f(x(r)) for all r ∈ (0, R].

Lemma A.16 Let f , x and x̄ be as described above. Then f ′(x(r))
r→0−−→ 0 and x(r)

r→0−−→ x̄.

Proof: We use a Taylor expansion of f to deduce

0 = f(x(r) + r)− f(x(r)) = rf ′(x(r)) +O(r2), (A.59)

from which we obtain f ′(x(r))
r→0−−→ 0 since f and x are smooth. Since by assumption

(f ′)−1({0}) = {x̄}, the claim follows. ■

The following limit will be useful in the computations to come.

108



Lemma A.17 Let f , x and x̄ be as described above. Then

f ′(x(r))

r

r↘0−−→ −1

2
f ′′(x̄). (A.60)

Proof: We define

Y := lim
r↘0

f ′(x(r))

r
. (A.61)

We intend to use l’Hospital’s Lemma to compute Y . We note that by the Implicit Function

Theorem

x′(r) = − f ′(x(r) + r)

f ′(x(r) + r)− f ′(x(r))
for all 0 < r < R. (A.62)

We compute using a Taylor Expansion

(f ′(x(r)))′

r′
=
f ′′(x(r))x′(r)

1
= −f ′′(x(r))

f ′(x(r) + r)

f ′(x(r) + r)− f ′(x(r))

= −f ′′(x(r))
f ′(x(r)) + rf ′′(x(r)) +O(r2)

rf ′′(x(r)) +O(r2)

= −f ′′(x(r))
[f ′(x(r))

r

1

f ′′(x(r)) +O(r)
+ 1

]
.

(A.63)

(A.64)

(A.65)

Using Lemma A.16 we find Y = −Y − f ′′(x̄), which means Y = −1
2
f ′′(x̄). ■

For notational convenience, we will define the function F : (0, R] −→ R via

F (r) := 2

� x(r)+r

x(r)

f(y) dy for all r ∈ (0, R). (A.66)

We note that integrals of this form appear in the analysis of cΩ and its derivatives as in

(4.75) and subsequent proofs.

Lemma A.18 Let F as in (A.66). Then

F ′′(r)
r↘0−−→ 0. (A.67)

Proof: We write f ′ = f ′(x(r)) etc. We note that x(r) → x̄ as r → 0 by Lemma A.16. We
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use a Taylor expansion of f to deduce

F ′′(r) =
2r2[(f ′)3f ′′′ − (f ′)2(f ′′)2] + r3[(f ′)2f ′′f ′′′ + (f ′)3f ′′′′ − 2f ′(f ′′)3]

r3(f ′′)3 +O(r4)
+O(r)

= 2
(f ′)2

r

f ′f ′′′ − (f ′′)2

(f ′′)3 +O(r4)
+ f ′f

′f ′′f ′′′ + (f ′)2f ′′′′ − 2(f ′′)3

f ′′ +O(r4)
+O(r)

(A.68)

(A.69)

Applying Lemma A.16 and Lemma A.17 proves the claim. ■

Lemma A.19 Let F as in (A.66). Then

F ′′′(r)
r↘0−−→ −1

2
f ′′(x̄). (A.70)

Proof: We write f ′ = f ′(x(r)) etc. We note that x(r) → x̄ as r → 0 by Lemma A.16. We

use a Taylor expansion of f to deduce

F ′′′(r) =
6r3(f ′)2(f ′′)4 + 6r4f ′(f ′′)5 + r5(f ′′)6 + f ′O(r5)

r5(f ′′)5 +O(r6)
+O(r)

= 6
(f ′)2

r2
(f ′′)4

(f ′′)5 +O(r)
+ 6

f ′

r

(f ′′)5

(f ′′)5 +O(r)
+

f ′′

1 +O(r)
+ f ′ O(1)

1 +O(r)
O(r).

(A.71)

(A.72)

Applying Lemma A.16 and Lemma A.17 we obtain

F ′′′(r)
r↘0−−→ 6

(
− 1

2
f ′′(x̄)

)2 1

f ′′(x̄)
+ 6

(
− 1

2
f ′′(x̄)

)
+ f ′′(x̄) = −1

2
f ′′(x̄) (A.73)

as claimed. ■
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List of Symbols

N Set of positive integers starting from 1

Z
n Set of n-dimensional vectors with integer entries

R
n Euclidean space

ei Standard unit vector in Rn

R+ Positive real numbers

T
n Unit Flat Torus

Qn Primitive cell of Tn

TxX Tangent space of X at x

TX Tangent bundle of X

NxX Normal space of X at x

NX Normal bundle of X

Br(x) Ball or radius r with centre x

S
n−1 Unit sphere in Rn

x · y Standard scalar product in Rn, Riemannian metric in Tn

|x− y| Distance between x and y

B(X) Borel σ–Algebra of X

|Ω| Measure of a set

H n−1 n− 1 dimensional Hausdorff measure

A+ z {a+ z : a ∈ A}
A△B Symmetric difference of two sets

ωn Measure of unit ball in Rn

σn Hausdorff measure of unit sphere in Rn

χ
Ω Indicator function of a set Ω

Lp(X) Lebesgue space

W 1,p(X) Sobolev space

∥f∥Lp(X) Lp norm of f

∥f∥W 1,p(X) Sobolev norm of f

C0(X) Space of continuous functions

C∞(X) Space of smooth functions

C∞(X,Rn) Space of smooth vector fields

C∞
c (Rn) Space of smooth functions with compact support

BV (X) Space of functions with bounded variation

BVn Sets of finite perimeter in Tn

BV ∞
n Smooth sets of finite perimeter in Rn (see Definition 2.17)

A Class of admissible functions for non-local isoperimetric problem

∇wf Directional derivative along w

∇f Gradient of f
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∇ · F Divergence of a vector field F

Dxf Differential of a map between two manifolds

Jacf Jacobian of f

Vw[f ] Directional variation of f along w

V [f ] Variation of f

Per(Ω) Variation of χΩ

f ∗ g Convolution of f and g

O Landau symbol

A∗ Adjoint of A

v⊥ Counter clockwise rotated vector, (v1, v2)
⊥ = (v2,−v1)

ν Gauß map

x⊥ Counter clockwise rotation of x

expx Exponential map at x

CΩ Covariogram of a set Ω in Rn

cΩ Autocorrelation Function of a set Ω in Rn

CΩ Covariogram of a set Ω in Tn

cΩ Autocorrelation Function of a set Ω in Tn

Eγ,ε Non-local isoperimetric energy

K Integration kernel in non-local isoperimetric energy

Φ,Ψ Integrated kernels (see (5.15) and (5.75) respectively)

γcrit Critical parameter of non-local isoperimetric energy (see (5.4))

mk[K] k-th moment of K
A ≲ B It exists C > 0 such that A ≤ CB

Fε
Γ−→ F Fε converges in the sense of Γ–convergence to F
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[BJ82] T. Bröcker and K. Jänich. Introduction to differential topology. Cambridge

University Press, Cambridge-New York, 1982. Translated from the German

by C. B. Thomas and M. J. Thomas.
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