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Summary 

Chronic kidney disease (CKD) affects more than 10% of the world’s population and 

causes millions of deaths annually. Organ fibrosis is the main driver of the pathology 

underlying CKD, myofibroblasts are the cellular correlate of disease progression and 

TGF-β is considered as a master regulator of the underlying molecular processes. 

Despite progress in understanding the disease, there is no specific treatment available, 

and current diagnostic indicators neither facilitate early detection of CKD nor correlate 

with actual renal damage. Therefore, there is an urgent need for more time-sensitive 

biomarkers and a better understanding of diseases progression to provide the basis 

for new treatment options. 

The aim of this thesis was to provide detailed mechanistic insights into CKD 

progression. To study fibrosis progression, a cellular model was used, consisting of 

human kidney derived PDGFRβ+ mesenchymal cells stimulated with TGF-β. Initial 

characterization of the model aligned with existing knowledge in the literature, 

indicating morphological and transcriptional changes along with increased ECM 

accumulation.  

Following this, time-resolved multi-omics data, including transcriptomics, proteomics, 

phosphoproteomics and secretomics were acquired.  The findings revealed previously 

proposed biomarkers and drug targets for kidney fibrosis, shown at all omics levels. 

These include SERPINE1, CCN2, CDH11, and integrins, alongside novel factors like 

LTBP2 and ADAM12, that have not been studied in the context of kidney fibrosis yet. 

Proteins like carboxypeptidase CPA4, with unknown implications in fibrosis, require 

further investigation to demonstrate their potential as therapeutic target or marker. 

In addition, an integrative analysis approach was employed, using mechanistic 

modeling combined with footprint methods to estimate transcription factor (TF), kinase 

and phosphatases activities. TFs implicated in fibrosis were identified and 

experimentally validated using siRNA knock-down. This underscored the role of E2F1, 

FLI1 and NR4A1 in modulating fibrosis and ECM deposition. Nevertheless, further 

exploration is needed to elucidate the role of these TFs in collagen gene regulation 

and ECM accumulation during fibrosis. 

Furthermore, mechanistic modeling generated new hypotheses regarding pathway 

dynamics over time in the fibrotic context. Overall, this integrative approach contributes 

to a deeper understanding of the molecular mechanisms driving kidney fibrosis, 
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offering potential biomarkers and therapeutic targets for clinical translation. 

Additionally, the dataset generated serves as a valuable resource for further research 

in the field of CKD. 
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Zusammenfassung 

Chronische Nierenerkrankungen (CKD) betreffen mehr als 10% der Weltbevölkerung 

und verursachen jährlich Millionen von Todesfällen. Die Organfibrose ist die 

Hauptursache für die der CKD zugrunde liegende Pathologie, Myofibroblasten sind 

das zelluläre Korrelat der Krankheitsprogression und TGF-β gilt als Hauptregulator der 

zugrunde liegenden molekularen Prozesse. Trotz neuer Erkenntnisse im Bereich der 

Nierenfibrose gibt es keine spezifische Behandlung, und die derzeitigen 

diagnostischen Indikatoren erleichtern weder die Früherkennung von CKD noch 

korrelieren sie mit der tatsächlichen Nierenschädigung. Daher besteht ein großer 

Bedarf an zeitnahen Biomarkern und einem besseren Verständnis des 

Krankheitsverlaufs, um die Basis für neue Behandlungsmöglichkeiten für Patienten zu 

schaffen. 

Ziel dieser Arbeit war es, detaillierte mechanistische Einblicke in das Fortschreiten von 

CKD zu gewinnen. Zur Untersuchung des Fortschreitens von Fibrose wurde ein 

zelluläres Modell verwendet, das aus PDGFRβ+ mesenchymalen Zellen der 

menschlichen Niere besteht, die mit TGF-β stimuliert wurden. Die anfängliche 

Charakterisierung des Modells stimmte mit dem vorhandenen Wissen in der Literatur 

überein und zeigte morphologische und transkriptionelle Veränderungen zusammen 

mit einer erhöhten ECM-Akkumulation.  

Anschließend wurden zeitaufgelöste Multi-omics-Daten, einschließlich 

Transkriptomics, Proteomics, Phosphoproteomics und Sekretomics, erfasst.  Die 

Ergebnisse enthüllten zuvor vorgeschlagene Biomarker und „Drug Targets“ für 

Nierenfibrose, die auf allen Omics-Ebenen nachgewiesen wurden. Dazu gehören 

SERPINE1, CCN2, CDH11 und Integrine sowie neue Faktoren wie LTBP2 und 

ADAM12, die im Zusammenhang mit Nierenfibrose noch nicht untersucht wurden. 

Proteine wie die Carboxypeptidase CPA4, deren Bedeutung für die Fibrose unbekannt 

ist, müssen weiter untersucht werden, um ihr Potenzial als therapeutisches Ziel oder 

als Marker zu demonstrieren. 

Darüber hinaus wurde ein integrativer Datenanalyseansatz verwendet, bei dem 

mechanistische Modellierung mit Footprint-Methoden kombiniert wurde, um die 

Aktivitäten von Transkriptionsfaktoren (TF), Kinasen und Phosphatasen 

abzuschätzen. Dabei wurden TFs, die an der Fibrose beteiligt sind, identifiziert und 

anschließend durch siRNA-Knockdown Experimente validiert. Darunter wurde die 
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Rolle von E2F1, FLI1 und NR4A1 bei der Modulation von Fibrose und ECM-

Ablagerungen unterstrichen. Dennoch sind weitere Experimente erforderlich, um die 

genaue Rolle dieser TFs bei der Regulierung von Kollagenen und der ECM-

Akkumulation während der Fibrose zu klären. 

Darüber hinaus hat die mechanistische Modellierung neue Hypothesen zur Dynamik 

der Signalwege im Laufe der Zeit im fibrotischen Kontext hervorgebracht. Insgesamt 

trägt dieser integrative Ansatz zu einem besseren Verständnis der molekularen 

Mechanismen bei, die der Nierenfibrose zugrunde liegen, und bietet potenzielle 

Biomarker und therapeutische Ziele für die klinische Umsetzung. Außerdem dient der 

erzeugte Datensatz als wertvolle Ressource für die weitere Forschung auf dem Gebiet 

der CKD. 
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1. Introduction 

1.1. Chronic Kidney Disease (CKD) 

Chronic kidney disease (CKD) has a prevalence of approximately 10% worldwide 

(Edeling et al., 2016; Kim et al., 2022; Sziksz et al., 2015; Yamashita & Kramann, 

2024). Especially in developed countries, CKD and other fibroproliferative diseases 

have arisen as a major public health problem (Nitta, 2015; Rockey et al., 2015). CKD 

is characterized by the excessive accumulation of extracellular matrix (ECM) and its 

subsequent replacement of functional tissue. The main producers of this ECM are 

fibroblasts and myofibroblasts which are activated during the course of the disease 

(Kim et al., 2022). 

Most commonly diabetes mellitus and hypertension are the underlying causes of CKD 

(Mihai et al., 2018). The onset of CKD can also be caused by other factors including 

autoimmune disorders (like Lupus), long-term infections and chronic inflammation 

(Edeling et al., 2016; Kim et al., 2022). In general, persistent injury or stress of 

endothelial and epithelial cells can lead to the onset of the disease. The trans-

differentiation of different cell types to myofibroblasts and their proliferation is essential 

in the progression of CKD as myofibroblasts are the major source of ECM (Kendall & 

Feghali-bostwick, 2014). Depending on the cell type from which the myofibroblasts 

originate, the phenotypes and signaling pathways may also differ (Prakash & Pinzani, 

2017). 

As the kidney consists of a variety of structures and cell types, each with distinct 

functions, there are categories of renal fibrosis based on the affected structures (J. 

Park et al., 2018; Rockey et al., 2015). Therefore, glomerulosclerosis describes fibrosis 

in the glomerulus, tubulointerstitial fibrosis is used for fibrosis of the proximal and distal 

tubules, while perivascular fibrosis describes the fibrosis around the vasculature (Kim 

et al., 2022).  

While the filtering capacity of the kidneys (defined by estimated glomerular filtration 

rate, eGFR) decreases with age even in healthy individuals (Xu et al., 2020), the 

disease is defined by a reduced eGFR or albuminuria (abnormal leaking of plasma 

albumin into the filtrate) (Edeling et al., 2016; Kim et al., 2022). Based on these 

parameters, disease progression can be tracked and classified into five stages (Table 
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1), with kidney failure defined as a eGFR < 15 mL/min/1.73m2 and an increased 

albuminuria  (Himmelfarb & Ikizler, 2019; Kim et al., 2022; Rasmussen et al., 2019; 

Yan et al., 2021).  

Table 1 CKD classification based on estimated glomerular filtration rate (eGFR). Adjusted after 
(Cañadas-Garre et al., 2018, 2019) 

CKD Stage  eGFR [mL/min/1.73m2]  Terms 

1  ≥ 90  Normal or high 
2  60-89  Mildly decreased 
3a  45-59  Mildly to moderately decreased 
3b  30-44  moderately to severely decreased 
4  15 - 20  Severely decreased 
5  < 15  Kidney failure 

     

As clinical symptoms only appear after irreversible damage to kidney function, CKD is 

rarely diagnosed in its early stages and often, by the time of diagnosis, the progression 

to kidney failure is inevitable (Mihai et al., 2018). This is aggravated by the fact that 

there is no specific treatment for the disease. To compensate for reduced kidney 

function, patients have to undergo lifelong dialysis or kidney transplantation, resulting 

in life-altering consequences (Edeling et al., 2016). 

Even though several inhibitors of fibrosis, inflammation and oxidative stress-related 

pathways have shown to be effective in animal models, there is no clinically approved 

treatment for CKD in humans yet. There are several reasons for this. On the one hand, 

simple cellular and animal models rarely represent physiological complexity of fibrotic 

diseases in humans. To study kidney fibrosis in animal models, researchers often focus 

on a single pathway using genetically modified organisms or induce kidney injury 

aggressively by mechanical stress or chemical compounds (e.g. Ischemia-reperfusion 

injury (IRI) and Unilateral ureteral obstruction (UUO)). Moreover, results obtained from 

most animal models are irrelevant as studies are too short and fibrosis is often reversed 

in these models when the stimulus is gone, those they do not sufficiently replicate the 

normal disease progression, nor its defining characteristic of being chronic. On the 

other hand, promising anti-fibrotic therapies are not tested or have failed due to long, 

time-consuming and expensive clinical trials that are lacking adequate tools to assess 

fibrosis progression and regression and therefore resulting in equivocal end-points 

(Prakash & Pinzani, 2017). 

Patients only present with clinical symptoms after irreversible damage to kidney 

function, by which point disease reversal is almost impossible and life-altering 

consequences are inevitable. Therefore, CKD is rarely diagnosed in early stages and 
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ultimately patients will suffer from kidney failure (Mihai et al., 2018; Walraven & Hinz, 

2018). However, it has been shown that early diagnosis could have a major impact in 

slowing down disease progression. The gold standard for diagnosing CKD is based on 

eGFR and kidney biopsies. Each of them has several drawbacks. eGFR, derived by 

measuring serum creatine, is influenced by sex, age, ethnicity, muscle mass as well 

as diet and is only informative after 50% of the kidney function is already lost (Cañadas-

Garre et al., 2018; Devarajan, 2010; Rodríguez-Ortiz et al., 2018). Biopsies are 

invasive, painful and can be biased by sampling variability (Devarajan, 2010). 

Other biomarkers which could give information about kidney injury, can be influenced 

by co-existing chronic diseases and are understudied in patients with CKD. Studies 

that have investigated biomarkers for acute kidney injury (AKI, characterized by kidney 

injury up to three months, thereafter CKD), defined AKI based on elevated serum 

creatine levels, which is largely dependent on the above mentioned variables (Alpern 

et al., 2013; Himmelfarb & Ikizler, 2019). The same is true for CKD biomarkers. 

Furthermore, some markers are not tissue specific or occur during the physiological 

wound healing response (Walraven & Hinz, 2018). 

1.1.1. Cellular Mechanisms Underlying CKD 

In the following section, cellular components of the kidney and their implications in 

renal fibrosis will be summarized. Additionally, the complex communication and 

interplay between different cell types and the changing ECM will be described (Adler 

et al., 2019; Yamashita & Kramann, 2024). 

 

Figure 1 Fibrotic processes in the kidney. In response to tissue injury, wound healing is initiated, 

facilitated by cellular crosstalk and supported by tissue resident mesenchymal cells. Continuous injury 

fosters a pro-inflammatory environment, causing the transition of epithelial cells to a mesenchymal-like 

phenotype driven by EMT and thereby loss if the epithelial function. This change in metabolism and 
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phenotype leads to activation of latent TGF-β and thereby activation of mesenchymal cells (like pericytes 

and fibroblasts) that differentiate into myofibroblasts. Activated myofibroblasts in turn, due to the 

persistent stimulus, produce excess amounts of ECM components. Endo-MT leads to loss of endothelial 

integrity, in parts driven by detachment of pericytes. In general, it is a viscous cycle driven by cell-cell 

interactions and change in microenvironment that ultimately result in loss of physiological kidney 

architecture and function. Modified after (Friedman et al., 2013) and (Mullins et al., 2016). 

Tissue Resident Pericytes, Fibroblasts and Myofibroblasts 

Resident mesenchymal cells expressing PDGFRβ, including pericytes and fibroblasts, 

are essential in maintaining the kindey’s basement membrane and its overal 

architecture, ensuring tissue homeostasis (Kim et al., 2022; Kramann & Humphreys, 

2014). Pericytes and fibroblasts also regulate oxygen transport and produce renin and 

erythropoietin (EPO), renal hormons that become deregulated in CKD patients leading 

to complications such as anemia and hypertension (Kim et al., 2022; Zeisberg & Kalluri, 

2015). Stimulation with growth factors, either secreted by other cells or via autocrine 

signaling, results in differentiation of pericytes and firboblasts, which are the main 

progenitors of myofibroblasts (proven by genetic lineage tracing and omics 

approaches) (Kramann & Humphreys, 2014; Kuppe et al., 2021; Yamashita & 

Kramann, 2024).  

Many studies focus on activated myofibroblasts (showing an increased expression of 

e.g. α-smooth muscle actin (α-SMA), collagens type I, III, V, periostin (POSTN), 

tenascin-C (TNC), fibronectin (FN)), as their abundance can be indicative for the 

progression of the functional decline (Schnieder et al., 2016; Zeisberg & Kalluri, 2015). 

Since myofibroblast numbers seem to correlate with epithelial injury and epithelial cell 

loss, it has long been argued that epithelial cells transdifferentiate into myofibroblasts 

(Kendall & Feghali-bostwick, 2014; Kim et al., 2022). However, there are other studies 

that challenge this view (Kramann et al., 2018; Kuppe et al., 2021). Myofibroblasts are 

the main effector cells that are secreting ECM components including collagens, 

fibronectin and glycosaminoglycans (Kim et al., 2022). The initial role of this process 

is to support tissue repair, after which apoptosis of myofibroblasts is induced (Figure 1) 

(Kim et al., 2022). However, in the context of fibrosis, this leads to ECM accumulation 

as there is persistent injury, inflammation, and an inhibition of myofibroblast apoptosis. 

Pericyte-to-myofibroblast differentiation, and the therefore decreasing number of 

vasculature-associated pericytes drives one of the hallmarks of acute kidney injury to 

CKD progression which is loss of integrity of the mircovasculature (capilary 

rarefaction). Therefore, the inhibition of pericyte-to-myofibroblast differntiation provides 
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a potential target for treatment of renal fibrosis (F. C. Chang et al., 2012; Friedman et 

al., 2013; Kramann & Humphreys, 2014; Mullins et al., 2016). 

Epithelial and Endothelial Cells 

The kidney contains specialized epithelial and endothelial cells. In general, endothelial 

cells line the microvasculature in the kidney, forming the filtration barrier in the 

glomerulus. There, they merge from afferent to efferent arterioles (Kim et al., 2022; 

Yamashita & Kramann, 2024). Epithelial cells are arranged in a single layer in the 

Bowman’s Capsule, to the Loop of Henle and the collecting duct controlling 

reabsorption (Eaton, 2012; Kim et al., 2022). Upon injury, both endothelial and 

epithelial cells contribute to to the wound healing response and fibrosis by secreting 

factors stimulating mesenchymal cells and recruiting immune cells. Additionally, they 

acquire a mesenchymal-like phenotype via Endo-MT and EMT, respectively (Figure 1) 

(Friedman et al., 2013).  

Tissue damage can be caused by a variety of factures such as high levels of glucose 

or free fatty acids like in diabetes, toxins, oxidative stress or physical stretch (Edeling 

et al., 2016). As a result of ongoing injury, epithelial cells undergo apoptosis, necrosis, 

autophagy, mitotic catastrophe (e.g. G2/M cell cycle arrest) or oncosis which leads to 

the recruitment of immune cells (Gewin et al., 2017; Ke et al., 2017). The immune 

response is initiated to clear the dead cells and help in wound healing. Another result 

of epithelial cell apoptosis is peritubular capillary rarefaction, increased hypoxia and 

oxidative stress (Gewin et al., 2017). This can lead to the release of hypoxia-inducible 

factor-1alpha, thereby initiating dedifferentiation of proximal tubule cells and ECM build 

up resulting in a vicious cycle as a result of which endothelial and epithelial cell loss 

lead to functional decline (Edeling et al., 2016). 

Immune Cells 

Different immune cells and their interactions with renal resident cells are known to 

influence kidney fibrosis. Neutrophils are thought to be among the first cells that 

activate other innate immune cells like macrophages (Sziksz et al., 2015; Van Linthout 

et al., 2014). Further immune cells involved in fibrosis e.g. by TGF-β secretion are 

eosinophils and macrophages (Van Linthout et al., 2014). One of the proposed targets 

for therapy of renal fibrosis is to inhibit the differentiation of monocytes into 

macrophages (Chana et al., 2003; Yamashita & Kramann, 2024). Studies have shown 
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that there is an increase of pro-inflammatory macrophages (M1) that drives fibrosis by 

secreting ROS, inflammatory cytokines and pro-fibrotic MMPs and thereby regulating 

differentiation of resident cells in the kidney (e.g. via TGF-β, PDGF, galnectin3, IL-1, 

IL-4, IL-10, IL-13, TNF-α) (Kim et al., 2022; Van Linthout et al., 2014; Yamashita & 

Kramann, 2024). In turn, renal cells like myofibroblasts also secrete factors that control 

macrophage activity such as macrophage colony stimulating factor (M-CSF). 

Moreover, it has been shown that depletion of macrophages leads to reduced or 

enhanced fibrosis. This goes to show that CKD is more complex than we currently 

understand and further research is needed (Adler et al., 2019). 

1.1.2. Molecular Mechanisms Underlining CKD 

TGF-β as Master Regulator of CKD 

The TGF-β superfamily does not only contain three isoforms of TGF-β, but also seven 

bone morphogenic protein (BMP) isoforms and activins. Serine and threonine kinase 

receptors that bind TGF-β and BMP are the starting points for signal transduction 

(Figure 2). The canonical signaling leads to phosphorylation of SMADs which are 

forming protein complexes that are translocated into the nucleus for regulation of 

transcription. While TGF-β leads, via SMAD2/3/4 activation, to transcription of fibrotic 

target genes (such as  α-SMA, type I collagen, and tissue inhibitor of matrix 

metalloproteinases), BMP binding induces phosphorylation of SMAD1/5/8 and, e.g. 

induced by BMP7 counteracting the pro-fibrotic effects of TGF-β (Kim et al., 2022; C. 

H. Park & Yoo, 2022). During normal tissue homeostasis, the effects of TGF-β and 

BMP balance each other out. Cells developed additional control mechanisms such as 

the transcription of SMAD7, induced by TGF-β, that counteracts SMAD3 activity. 

Unfortunately, these control mechanisms are lost in fibrosis further driving disease 

progression (Kim et al., 2022). 

TGF-β originates from cells that either secrete it or release it from the ECM. For 

instance, activated myofibroblasts secrete TGF-β in an autocrine fashion, thereby 

forming a positive feedback loop (C. H. Park & Yoo, 2022). 

A non-canonical response initiated by TGF-β is the MAP kinase pathway by activation 

of Ras and signaling via MEK1/2 and subsequently ERK1/2. This leads to SMAD2 

phosphorylation and expression of target genes as described above (C. H. Park & Yoo, 

2022).  
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Ubiquitinoylation of TRAF4/6, resulting from interaction with the TGF-β receptor, also 

leads to activation of SMAD2/3 via the p38/JNK pathway. In addition, c-Jun and AP-1, 

transcription factors implicated in fibrosis, are phosphorylated by p38/JNK (C. H. Park 

& Yoo, 2022).  

Inhibition of fibroblast apoptosis and enhanced proliferation are the result of activation 

of PI3K/AKT signaling that can also be targeted by TGF-β signaling.  

A crucial factor in cell motility is the remodeling of the cytoskeleton which is regulated 

by RhoA GTPases. This pathway can also be resulting from TGF-β stimulation, leading 

to myofibroblast differentiation (C. H. Park & Yoo, 2022). 

 

Figure 2 TGF-β and BMP induced signaling mechanisms. Signal transduction is initiated by TGF-
β/BMP binding and drives different pathways. A) The canonical pathway is based on SMAD proteins 
controlling transcription of pro-fibrotic target genes. B) Signaling via MAPK, p38/JNK, PI3K/Akt and 
RhoA GTPase are considered non-canonical response to TGF-β stimulation. Taken from (C. H. Park & 
Yoo, 2022).  

As a central regulator of fibrosis, it seems apparent to target TGF-β in order to treat 

fibrotic diseases, and hence development in this direction is ongoing. However, drug 

treatments based on this approach were not successful so far due to undesired side 

effects (Henderson et al., 2020; Meng et al., 2016; C. H. Park & Yoo, 2022). This might 

be contributed to the roles of TGF-β in other biological contexts such as inflammation 

and cancer (Zhao et al., 2020). For example, treatment with LY2382770 or 

fresolimumab, antibodies blocking TGF-β did not lead to an improved kidney function 
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in the case of diabetic nephropathy or focal segmental glomerulosclerosis (FSGS) (Kim 

et al., 2022; Yamashita & Kramann, 2024).  

So far, only two drugs are approved for the treatment of pulmonary fibrosis: Pirfenidone 

(PFD) and nintedanib (Nin). Therefore, there was a lot of interest to test them for renal 

fibrosis, however with mixed outcomes. The specific function of PFD is not entirely 

understood but is associated with inhibition of production as well as activity of TGF-β 

(Cho & Kopp, 2010). PFD is currently also tested in clinical trials for the treatment of 

kidney fibrosis where it has been shown to slow down kidney function decline in 

patients with diabetic kidney disease or FSGS (Henderson et al., 2020; Kim et al., 

2022; Yamashita & Kramann, 2024). Affected pathways by Nin are VEGF, FGF, PDGF 

as well as lymphocyte-specific protein tyrosine kinase and Src nonreceptor kinase 

signaling. The inhibited pathways are of therapeutic interest as all of them are involved 

in fibrosis (Bigaeva, Stribos, et al., 2020). So far, this compound has not been 

investigated in clinical trials for kidney fibrosis (Yamashita & Kramann, 2024). Even 

though there are clinical trials ongoing, no specific treatment for kidney fibrosis has 

been approved to this date (Yamashita & Kramann, 2024). 

Integrin Mediated Signaling 

In humans, there are 24 known integrin family members forming α–β heterodimers of 

transmembrane protein complexes (Kim et al., 2022; Nolte et al., 2020). Integrin 

signaling plays a central role in processes including cell adhesion, migration, 

proliferation, differentiation as well as apoptosis (Henderson et al., 2020; Kim et al., 

2022).  As TGF-β is deposited in the ECM in a latent form via binding to latency 

associated peptide (LAP), the conformational change excreted by mechanical force 

applied by integrin-expressing cells, triggers the further release of TGF-β. Integrins 

involved in this process include αvβ1/β3/β5 (myofibroblasts/fibroblasts), αvβ6 

(epithelial cells), and αvβ8 (by recruiting MMPs) (Henderson et al., 2020; Kim et al., 

2022). This integrin-mediated TGF-β accumulation further drives the vicious cycle of 

fibrosis and therefore provides an additional therapeutic target (Henderson et al., 

2020).  

Furthermore, integrins are implicated in assembly of extracellular fibrous structures 

(Kim et al., 2022). The expression of integrin subunits is cell-type dependent, hence 

the cellular responses can differ as well as the processes driven by integrin signaling. 

For instance, activation of myofibroblasts is reduced by decreased cell-ECM signaling 
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as mediated by integrins. Studies have also shown that inhibition of integrins 

associated with binding of basement-membrane components aggravated renal 

fibrosis, while deletion of integrins involved in binding of interstitial matrix components 

improved kidney fibrosis (Henderson et al., 2020; Kim et al., 2022). While there are 

ongoing clinical trials to test inhibitors of different integrins, they are mostly focused on 

treating pulmonary fibrosis (Henderson et al., 2020). Targeting integrin-mediated 

signaling provides valuable treatment options for fibrosis. However, further 

investigation, including improved and more targeted therapeutics delivery are needed.  

Mechanosensitive Mechanisms 

In response to changes of the microenvironment, there are cytoskeletal adaptation that 

are implicated in yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-

binding motif (TAZ) signaling in fibroblasts. In the nucleus, YAP/TAZ bind to e.g. Runt-

related transcription factor (RUNX) and TEA domain family member (TEAD) and 

control expression of fibrotic target genes associated with myofibroblast differentiation 

and TGF-β signaling. Due to the importance of these co-activators, therapeutically 

targeting them could provide promising results (Kim et al., 2022; Piersma et al., 2015). 

Reactivation of Developmental Mechanisms 

Key developmental pathways, such as Wnt, Notch and Hedgehog, are activated 

initially as a wound healing response but are also implicated in fibrosis (Edeling et al., 

2016). For instance, the Wnt/β-catenin pathway is involved in EMT, differentiation of 

myofibroblasts and immune cell invasion by upregulation of MMP7. This 

metalloproteinase promotes a positive feedforward loop by further upregulating β-

catenin and MMP7 levels (Kim et al., 2022). 

Angiotensin II / RAAS Pathway 

Especially important for the kidney is the renin-angiotensin-aldosterone system 

(RAAS) as it is central in controlling the water as well as sodium concentrations and 

the expression of Vasopressin. Thereby, the permeability and constriction of 

vasculature in the kidney are controlled by this mechanism. The deregulation of RAAS 

was shown to be implicated in myofibroblast differentiation and immune cell invasion. 

A common treatment for renal diseases (to inhibit RAAS signaling) is the use of 
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angiotensin II receptor blockers as increased angiotensin II promotes profibrotic 

pathways including TGF-β, NFκB and Wnt. NFκB/TNF-α signaling is implicated in 

immune response and inflammation (Kim et al., 2022). 

1.1.3. CKD Diagnosis 

The “Golden” Standard 

CKD diagnosis and prognosis in clinics mainly rely on eGFR and albuminuria, as 

readouts for renal (filtration) function and damage, and biopsies. Since there is no 

targeted therapy for CKD available, fibrosis cannot be reversed and lost kidney tissue 

cannot be fully regenerated. It is therefore crucial to detect CKD early on in order to 

prevent or slow down disease progression. However, eGFR, albuminuria and biopsy 

have limitations as diagnostic tools which I will summarize in the following paragraphs 

(R. Huang et al., 2023; Yan et al., 2021). Additionally, I will list a few of the many 

proposed biomarkers, especially suggeted for early disease diagnosis. 

 

As a result of hyperfiltration, the ability of the kidney to take over the function of lost 

nephrons (filtering units), eGFR gains predictive power only when 50% of renal function 

is lost (Cañadas-Garre et al., 2018; Devarajan, 2010; Rodríguez-Ortiz et al., 2018). 

This compensatory hypertrophy takes over the clearance of plasma factors, and 

maintains normal levels of plasma creatinine and urea (used to calculate eGFR). As 

already mentioned in the initial part of the introduction, these factors are heavily biased 

by several variables such as age, gender, ethnicity, muscle mass and other 

medications (Devarajan, 2010).  

Albuminuria, proteinuria and microalbuminuria are all terms that are used to describe 

the abnormal presence of albumin in the urine which can be a measure for kidney 

damage. Similar to eGFR, albuminuria is present in the urine once significant damage 

has already occurred. Moreover, the predictive power of this marker has been 

questioned (Devarajan, 2010; Rodríguez-Ortiz et al., 2018).  

 

A more invasive approach for diagnosis and determination of CKD stage involves 

biopsy. Besides pain and discomfort experienced by the patients, biopsies are also 

susceptible to sampling variability and not sensitive to early disease progression 

(Prakash & Pinzani, 2017; Yan et al., 2021).  
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Potential New Biomarkers 

Newer markers for renal function include beta trace protein (BTP), and β2-

microglobulin (B2M). BTP catalyses prostaglandin H2 to D2 conversion and is also 

used as a marker for cerebrospinal fluid leakage. B2M, as part of the major 

histocompatibility class I molecule, is found in nearly all nucleated cells. Since both are 

proteins with low molecular weight, they pass the endothelial barrier in the glomeruli 

but are reabsorbed in the proximal tubules. While they can also be measured in the 

serum, increased levels in the urine are indicative for the tubular damage. Compared 

to serum creatinine (used to calculate eGFR), both proteins are less affected by factors 

like age, gender and ethnicity and therefore could be used in combination with eGFR 

or used to develop newer eGFR equations (Lousa et al., 2021).  

 

A kidney tubule specific protein, uromodulin (UMOD), is one of the most abundant 

glycoproteins in the urine under physiological conditions. Genetic studies have shown 

its association with hereditary autosomal-dominant tubulointerstitial kidney disease. It 

has further been highlighted as a biomarker for tubular injury, where its levels 

decreased in the urine and serum of patients (Lousa et al., 2021). Interestingly, it could 

be used as an early biomarkers to differentiate healthy form early stage CKD patients 

(Lousa et al., 2021; Yan et al., 2021). Other examples of markers that could be used 

in combination are neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury 

molecule-1 (KIM-1) as well as N-acetyl-β-D-glucosaminidase (NAG). However, the use 

of NGAL, KIM-1 and NAG as biomarkers showed conflicting results that could be 

attributed to different causes of CKD, requiring more research to demonstrate their 

importance and suitability (Lousa et al., 2021; Yan et al., 2021). 

 

Information about the inflammatory state of renal tissue can gained with markers such 

as interleukin-6 (IL-6), tumor necrosis factor (TNF-α) and soluble TNF receptors 

(sTNFR1 and 2). Their increase has been linked to renal function decline and poor 

outcomes (Lousa et al., 2021; Mariani et al., 2018, 2023; Yan et al., 2021).  

 

Matrix metalloproteinases (MMPs) are enzymes that reshape the ECM, but also cleave 

other molecules like adhesion molecules and growth factors. A well-known MMP in 

regards to fibrosis is MMP-9, which is expressed in the kidney in low concentrations 

but increases upon injury. As a result, also urine levels of MMP-9 raise. Similarly, 
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enhanced MMP-2 levels are present in the urine of patients with renal fibrosis. Even 

though both show potential as biomarkers for CKD progression, further studies are 

needed to evaluate their role in the disease (Yan et al., 2021). 

 

ECM remodeling, collagen turnover and increased deposition are a hallmark of fibrosis. 

Therefore, it is interesting to monitor their changes with disease progression or in 

response to treatment. Collagen maturation and crosslinking, for deposition, is 

achieved by peptidase cleavage. So in the case of Col I formation, a PRO-C1 peptide 

is cleaved off. When Col I fibers are degraded by MMP-2, 9 or 13, the C1M peptide is 

released. Such peptides get released from formation/degradation of other collagens 

as well and can be measured in the blood or urine. In a study led by Rasmussen et al., 

they investigated the change of blood and urine fragments indicative for collagen 

formation and degradation. Their findings could be used to identify subgroups of 

patients with differences in collagen turnover. Nevertheless, further studies, especially 

with a higher number of patients, are necessary to confirm their findings and help 

understand the information such measurements could provide (Rasmussen et al., 

2019). A limitation of using collagens or collagen turnover as a readout of disease 

progression, is that collagens are not specific to the kidney and results could be 

affected by other comorbidities. 

Expression of periostin (POSTN), another ECM protein and mesenchymal marker, is 

increased in fibrosis. The positive feed-back loop of POSTN and TGF-β further drives 

a pro-fibrotic environment. In patients with type 2 diabetes, it is proposed as a 

promising early biomarker to predict diabetic nephropathy, as increased levels of 

POSTN are secreted via the urine (Yan et al., 2021). 

 

I have not mentioned microRNAs (miRNAs) in the context of fibrosis yet, as there are 

contradicting data especially when it comes to the role of miRNAs as biomarkers. 

miRNAs are generally involved in a variety of cellular processes like proliferation and 

differentiation. This is achieved by binding to complementary regions of mRNA targets 

and thereby suppressing translation. Some miRNAs, like mir-16 and mir-451-5p, could 

be involved in downregulation of IL-6 and MMP-9 levels and therefore play a role in 

fibrosis. However, to show the potential of miRNAs as biomarkers, more evidence is 

needed (Yan et al., 2021). 
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Omics studies in the recent years have led to a panel of peptides that can be detected 

in the urine. The panel is known under CKD273, as it contains 273 peptides, among 

which are many collagens, that have been validated in several studies to allow 

diagnosis of CKD. This provides a valuable tool for diagnosis and even has been 

shown to allow earlier detection as well as patient stratification of CKD e.g. in the case 

of diabetic nephropathy (Lousa et al., 2021).  

Additionally, there are non-invasive imaging methods available, which however, have 

their own limitations. Examples are further summarized e.g. in Klinkhammer and Boor 

(2023) (Klinkhammer & Boor, 2023). To conclude, there are several biomarkers, kits 

and peptide panels available that show potential in being applied in the clinics in the 

next decades, but more research is needed to get them to this point. Most likely not a 

single biomarker but rather a combination of biomarkers will be used to address 

currently unmet needs.  

1.1.4. CKD Treatments 

As already mentioned in earlier sections, currently, there are no effective drug 

treatments available for CKD. However, patients are commonly given the following 

medications that have been shown to delay the progression of the illness at different 

rates and with varying efficiency (Himmelfarb & Ikizler, 2019; R. Huang et al., 2023). 

Well-known examples are glucagon-like peptide-1 (GLP-1) receptor agonists and 

sodium-glucose cotransporter 2 (SGLT-2) inhibitors. GLP-1 receptor agonists have 

been shown to reduce risk of albuminuria as well as CKD progression with their 

antioxidant, anti-inflammatory and antifibrotic actions. SGTL-2 inhibitors show glucose-

lowering effects and, in the case of kidney disease, may work to reduce hyperfiltration 

and hypertension (Himmelfarb & Ikizler, 2019). Other treatments, including Renin-

angiotensin system (RAS) blockers, endothelin-1 blockers, vasopressin receptor 2 

antagonists and non-steroidal anti-mineralocorticoids help in controlling blood 

pressure, suppress inflammation and oxidative stress (Himmelfarb & Ikizler, 2019; R. 

Huang et al., 2023). 

 

In previous sections, I highlighted potential targeted approaches to provide treatment 

for kidney disease patients, like inhibition of monocyte-to-macrophage transition, 

differentiation of kidney resident mesenchymal cells to myofibroblasts, and TGF-β 

signaling, as central regulator of fibrosis. Other approaches include targeting of CTGF 
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using antibodies, activation of NRF2, inhibition of micro RNAs or galectin-3 antagonists 

(R. Huang et al., 2023), however with varying outcomes further emphasizing the 

complexity of CKD treatment.  

 

CKD is driven by a sophisticated network of pathways, including intricate cell-cell and 

cell-matrix interactions. Additionally, it often coexists with different underlying 

conditions that create a profibrotic microenvironment. The problem of translating 

research outcomes of in vitro and in vivo studies into clinical practice and bringing 

treatment options to patients has been persistent so far (Yamashita & Kramann, 2024). 

This might only be overcome by improving our understanding of underlying disease 

mechanisms, dissecting the role of various cell types and the changing ECM as well 

as their interactions. Therefore, it is crucial to investigate the responses of the renal 

and immune cells to a variety of stimuli and understand their role in the context of CKD. 

Moreover, investigations of cellular cross talks are needed to understand the interplay 

of different cells types, also with respect to the changes in the microenvironment. It is 

essential to bringing different experimental models together, including cell culture 

based, organoids, ex vivo studies, and animal models, and exploiting each of their 

strengths. Correlating findings generated by these studies with clinical data and 

insights from human studies like the Joslin Kidney Study (Dom et al., 2021; Dubin & 

Rhee, 2020; Kobayashi et al., 2022; Krolewski et al., 2017; Niewczas et al., 2019; 

Satake et al., 2021), Kidney Precision Medicine Project (KPMP) (de Boer et al., 2021; 

El-Achkar et al., 2024; Lake et al., 2021; Mariani et al., 2023), and Nephrotic Syndrome 

Study Network (NEPTUNE) (Lake et al., 2021; Lassé et al., 2023; Mariani et al., 2018; 

Pandey & Loscalzo, 2023; Reznichenko et al., 2021), we can hope to bridge the gaps 

in knowledge and pave the way for more effective treatment options for patients 

suffering from CKD. Enhanced understanding of kidney disease mechanisms can aid 

in dissecting patient heterogeneity, facilitating targeted therapy for (at least) a subset 

of patients. Moreover, it can help to identify a biomarker signature for reliable readouts 

of disease progression and treatment response, as well as surrogate end points 

(Henderson et al., 2020). 
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1.2. Extracellular Matrix (ECM) 

In multicellular organisms, the extracellular matrix (ECM) provides a fundamental 

meshwork of proteins that serves several functions. While it is essential for tissue 

architecture and cell polarity, the ECM also provides bio-mechanical and bio-chemical 

cues that are involved in how the cell senses its environment (Naba et al., 2016; 

Ricard-Blum, 2011). Thereby, the ECM is implicated in controlling processes such as 

cell migration, proliferation and differentiation (Naba et al., 2016; Ricard-Blum, 2011). 

To advance our understanding of ECM components, mass spectrometry (MS) studies 

have been essential. This has led to identification of roughly 270 core matrisome 

proteins that can be divided into proteoglycans (like biglycan (BGN), decorin (DCN), 

and serglycan (SRGN)), collagens and glycoproteins (such as fibronectin (FN1), 

elastin, laminin and fibrillins) (Naba et al., 2015, 2016). 

In the kidney, the basement membrane consists mainly of laminin and Col IV and 

provides structural support for endothelial and epithelial cells, while the interstitial 

matrix provides a scaffold for myofibroblasts and fibroblasts (Kim et al., 2022).  

Migration of immune cells, fibroblasts and other resident renal cells is essential during 

the process of wound healing, which is supported by the ECM (Henderson et al., 2020). 

In fibrosis, the normal functional tissue is replaced by extracellular scar tissue. In CKD, 

this ultimately leads to loss of renal function and end stage renal failure (Kim et al., 

2022).  

Stimulated e.g. by growth factors like TGF-β, either secreted by other cell types or 

made available through remodeling of the ECM, differentiation of cells into 

myofibroblasts and their activation results in remodeling of the ECM (Kim et al., 2022). 

Not solely the abundance of ECM changes over the progress of renal fibrosis, but also 

its molecular composition, stiffness, pH and cellular components (Kim et al., 2022). 

Excessive deposition of extracellular matrix constituents, such as collagen and 

fibronectin, leads to scarring of the tissue and increased stiffness of the 

microenvironment through formation of aligned fibrillar structures (Edeling et al., 2016; 

Kim et al., 2022). Alterations in mechano-transduction further drive the profibrotic 

phenotype, promoting myofibroblast differentiation, EMT and Endo-MT as well as 

immune cell recruitment (Edeling et al., 2016; Henderson et al., 2020; Kim et al., 2022). 

Additionally, the tissue environment turns more acidic as there are increasing 

concentrations of Lactate dehydrogenase (LDH), due to tissue injury (freed up by dead 

cells), leading to an increase in lactic acid and, in turn, to activation of latent TGF-β 
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(Henderson et al., 2020; Kim et al., 2022). Therefore, LDH could be a possible early 

biomarker of fibrosis (Kim et al., 2022). Moreover, the cells undergo metabolic changes 

which are required for proliferation and collagen synthesis including enhanced aerobic 

glycolysis and altered fatty acid oxidation, in contrast to reduced oxidative 

phosphorylation (Henderson et al., 2020; R. Huang et al., 2023; Kim et al., 2022).  

1.2.1. Collagens 

Among core matrisome components including glycoproteins and proteoglycans, 

collagens are the most abundant proteins (Naba et al., 2016). In humans, there are 28 

genes that encode collagens, that can be roughly divided into fibrillar (type I, II, III) and 

non-fibrillar types (An et al., 2016; Ricard-Blum, 2011). Collagens are synthesized as 

procollagens and later undergo extensive posttranslational modifications including 

hydroxylation, glycosylation and sulfation as well as cleavage my proteinases like A 

Disintegrin And Metalloproteinase with Thrombospondin motifs (ADAMTS), Bone 

Morphogenetic Protein-1 (BMP-1) and lysyl oxidases for maturation and cross-linking 

(Ricard-Blum, 2011). Especially in the context of tissue homeostasis, wound healing 

and fibrosis, the degradation of collagen via matrix metalloproteinases (MMPs) plays 

a central role (An et al., 2016; Naba et al., 2016; Rasmussen et al., 2019; Ricard-Blum, 

2011). 

Collagens and bioactive fragments generated by collagen cleavage interact with cell 

surface receptors and thereby participate in guiding processes including cell growth, 

differentiation, migration, development, angiogenesis and tissue repair (Ricard-Blum, 

2011). In the context of CKD, a recent study further investigated collagen turnover 

profiles of CKD patients in stages 2 - 5 and a healthy reference group (Rasmussen et 

al., 2019). The study monitored collagen synthesis and degradation fragments found 

in the urine and serum and thereby demonstrated that subgroups of patients 

dependent on disease severity/stage can be identified using the proposed collagen 

turnover profiles. For instance, in patients at a moderate disease stage, markers of 

collagen degradation were higher than in patients with an advanced disease stage 

(Rasmussen et al., 2019). This provides evidence that the molecular mechanisms 

change over the course of fibrosis progression. 

It has long been believed that the scarring is irreversible and permanent while recent 

papers have pointed to the fact that the scar tissue could regress under certain 

circumstances (Rockey et al., 2015). Effector cells would have to be eradicated and 



  Introduction 

17 

the balance between synthesis and degradation of the matrix restored. Nevertheless, 

the aim of current treatments for CKD focuses on eliminating initial triggers (Rockey et 

al., 2015), like lowering the blood pressure or managing diabetes and blood glucose 

levels. The problem that I see in the case of CKD is, that, as the disease progresses, 

functional units of the kidney are lost and are replaced by fibrotic scar tissue. Given 

the complexity of the renal architecture and its diversity of highly specialized cells, 

additional measures are necessary to replace the lost endothelial and epithelial cells. 

1.2.2. Accelerated ECM Deposition in Cellular Systems with Macro Molecular 

Crowding Agents 

Deposition of ECM and collagen fibril formation are long processes. To study fibrosis 

in vitro, deposition of ECM can be accelerated using a so-called scar-in-a-jar model. 

This model uses macromolecular crowing (MC) agents that limit the available 

extracellular space and thereby support protein folding and complex stabilization with 

required enzymes. As a result, there is enhanced conversion of pro-collagen I to 

collagen I, improved assembly of collagen fibers, and stabilization of ECM components 

(Chen et al., 2009; Coentro et al., 2021; Hinz & Lagares, 2021; Rønnow et al., 2020).  

This set-up has proved particularly valuable, especially in the context of microscopy-

based high-throughput screens to evaluate drug effects on the ECM, as demonstrated 

by Khan et al. who used a combination of Ficoll with different molecular weights (Khan 

et al., 2023), that I also applied in this thesis. 

1.3. Omics Techniques 

The human genome contains 20 000 to 25 000 genes, leading to a variety of 100 000 

transcripts. Protein synthesis and post-translational modifications yield more than 1 

million protein species (Virág et al., 2020). Omics is a term used to measure molecules 

in a high-throughput way. For instance, genomics methods like whole-exome 

sequencing (WES) and whole-genome sequencing (WGS) are used to provide a 

holistic view of the genome of a species. In the context of kidney fibrosis, genome 

sequencing is not widely used as only approximately 10% of end-stage renal disease 

in adults is associated to inherited kidney disease and hence 90% of cases cannot be 

explained by genetic variances (Saez-Rodriguez et al., 2019). Furthermore, epigenetic 

changes can be investigated using epigenomics which includes ChIP-seq (chromatin 
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immunoprecipitation sequencing) to identify TF binding and histone modifications, 

bisulfite sequencing to study DNA methylation, and ATAC-seq (Assay of Transposase 

Accessible Chromatin Sequencing) to assess the chromatin accessibility 

(Lindenmeyer et al., 2021). 

Monitoring RNAs was becoming popular by the availability of microarrays which was 

soon replaced by RNA sequencing. Transcriptomics, with expanded (and theoretically 

whole) genome coverage, has provided new insights and discoveries. Currently, single 

cell RNA sequencing is used more and more often. This technique is especially useful 

to investigate the mRNA expression profiles in tissues with heterogenous cell 

populations, including the kidney (Kuppe et al., 2021). However, single cell RNA 

sequencing (seq) is still more expensive than transcriptomics and cannot provide full 

transcript coverage. Additionally, the spatial information is lost, which could be 

informative especially in the context of cell-cell interactions. This gap could be covered 

by combining single cell RNA seq with spatial transcriptomics, which is an approach 

that is currently gaining popularity. In general, information generated by 

transcriptomics and related techniques is limited due to the discrepancy between 

transcript number and protein abundance as well as activity (Lindenmeyer et al., 2021; 

Saez-Rodriguez et al., 2019).  

 

Mass spectrometry (MS) techniques facilitated the high-throughput analysis of the 

cellular proteome, including protein abundance, post-translational modifications, and 

protein-protein interactions (Lindenmeyer et al., 2021). The proteome provides further 

information such as response to environmental factors and signaling mechanisms that 

are not always immediately translated into gene expression and mRNA abundance 

changes, especially in dynamic processes. Activity and post-translational modifications 

as well as binding to different molecules can only be addressed in a high-throughput 

manner using MS. However, currently available untargeted techniques are heavily 

biased towards the most abundant proteins and therefore do not cover the entire 

proteome. This could be overcome by applying targeted proteomics (Saez-Rodriguez 

et al., 2019). In the context of kidney diseases, proteomics applications have already 

facilitated identification of new biomarkers and signatures (e.g. CKD273 (Argilés et al., 

2013; Cañadas-Garre et al., 2019; Rodríguez-Ortiz et al., 2018; Verbeke et al., 2021)) 

and characterization of fibrillar glomerulopathy (Saez-Rodriguez et al., 2019). One 

example includes the proposed predictive biomarkers for diabetic kidney disease 
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progression. For this, 17 proteins described as the “kidney risk inflammatory signature” 

(KRIS), were shown to be associated with renal failure development, including 6 

members of the TNFR superfamily (Niewczas et al., 2019). 

Moreover, by studying metabolomic changes, we are gaining further insights into 

disease mechanisms, providing new treatment options and early detection of CKD 

(Lindenmeyer et al., 2021). 

 

Since omics measurements result in a huge amount of data, there are approaches to 

compress data including functional analysis to generate an overview of biological 

processes (like pathways) that are changing, driven by the measured factors (Saez-

Rodriguez et al., 2019). Another approach involves network-based analysis, including 

protein-protein interaction (PPI) and gene regulatory networks (GRN). Those networks 

use the measured factors/biomolecules as nodes and depict interactions as edges. In 

the case of a PPI, the edges are based on physical interactions. As we know it from 

literature, there are factors like proteins that are involved in several biological 

processes and signaling pathways, such as p53. Such factors might represent nodes 

in a network with high connectivity (Lindenmeyer et al., 2021). 

 

Even though omics methods, and especially the integration of several methods, could 

help gain further information on kidney disease, there are still many challenges 

remaining. Sample generation, data collection and storage are a few of the challenging 

aspects, limiting the potential to integrate generated data. Currently, there are efforts 

taken to overcome such burdens e.g. by generating standard operating procedures for 

sample and data collection and analysis as provided by the KPMP (Lindenmeyer et al., 

2021). 

Additionally, integration of omics data with other relevant data, including patient history, 

kidney function measurements and treatment regimens will be necessary to provide a 

holistic overview and link the molecular findings to relevant clinical phenotypes. In the 

NEPTUNE study cohort, for instance, not only omics of biopsy samples are acquired 

but also blood and urine samples, all supplemented with histopathological scoring and 

morphometry. NEPTUNE also provides longitudinal data due to comprehensive follow 

ups (Lindenmeyer et al., 2021). It is anticipated that such comprehensive integration 

of data will provide better patient stratification due to increased understanding of 

disease mechanisms. This, in turn, will result in more effective clinical study design, 
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targeting a subset of patients and improve diagnostics as well as personalized 

medicine (Henderson et al., 2020; Lindenmeyer et al., 2021). 
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2. Aims and Objectives 

Despite progress in understanding CKD and even though several inhibitors of fibrosis, 

inflammation and oxidative stress related pathways have shown to be effective in 

animal models there is no clinically approved anti-fibrotic treatment for CKD yet 

(Prakash & Pinzani, 2017; Yamashita & Kramann, 2024). In absence of effective 

treatments, to compensate for reduced kidney function, patients have to undergo 

dialysis or kidney transplantation (Edeling et al., 2016).  

Even if we were able to provide anti-fibrotic therapies that reverse fibrosis, it is still 

unlikely that the lost functional units of the kidney would regenerate (Yamashita & 

Kramann, 2024). On the other hand, it has been shown that early diagnosis could have 

a major impact in slowing down disease progression (Zürbig et al., 2019). Clinical 

symptoms only appear after irreversible damage of kidney function. Therefore, CKD is 

rarely diagnosed in early stages and ultimately patients will suffer from kidney failure 

(Mihai et al., 2018; Walraven & Hinz, 2018). Current diagnostic indicators of the 

molecular processes do not facilitate early detection, have limitations, and are not 

correlating with actual renal damage.  

 

Based on these information, the following goals were set: 

• One of the aims of this study was to establish a cellular fibrosis model and use 

an unbiased approach to study the change of molecular signatures and the 

effect on ECM deposition over time.  

• Another goal was to identify potential targets that could provide new treatment 

options.  

• Additionally, I aimed to propose potential biomarkers that could be taken further 

into clinical trials and might facilitate early diagnosis or correlate with disease 

progression. 
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3. Materials and Methods 

3.1. Materials 

3.1.1. Mammalian Cell Culture 

The human kidney PDGFRβ+ cells was provided by the Kramann lab (Kuppe et al., 

2021). Cells were cultured in DMEM 31885 (Gibco) supplemented with 5% (v/v) fetal 

bovine serum (Gibco) at 5% CO2 and 37°C. 

3.1.2. Cell Culture Reagents 

Table 2 Cell culture reagents. The supplier, identifier and working concentration are stated for the cell 
culture reagents used in this thesis. 

Reagent Supplier Identifier 
Working 
concentration 

DMEM (Dulbecco's Modified Eagle 
Medium) 1 g/L D-glucose, L-
Glutamine, 110 mg/L Sodium 
Pyruvate 

Gibco 31885  

DMEM (Dulbecco's Modified Eagle 
Medium) 1 g/L D-glucose, no 
glutamine, no phenol red 

Gibco 11880  

FBS (Fetal Bovine Serum) Gibco A5256701 5% (v/v) 

L-Glutamine solution 
Sigma Life 
science 

G7513  

Ficoll® PM 770 kDa Sigma-Aldrich F2878 18.75 g / 500 ml 

Ficoll® PM 400 kDa Sigma-Aldrich F4375 12.5 g / 500 ml 

Recombinant Human TGF-beta 1 
Protein 

R&D systems 240-B-010 10 ng/ml 

BSA (Bovine Serum Albumin) Sigma-Aldrich A2153  

L-Ascorbic Acid 2-phosphate 
(magnesium salt hydrate) 

Cayman 
Chemical 
Company 

16457 500 µM 

Trypsin-EDTA 0.05% Gibco 25300-054  

AmbionTM Nuclease-Free Water, 
DEPC-Treated 

Life Technologies 
Corp. 

AM9906  

DMSO (Dimethyl sulfoxide) Sigma-Aldrich D2438  

ScreenFect® Dilution Buffer ScreenFect S-2001  

ScreenFect® siRNA ScreenFect S-4001  
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3.1.3. Drugs 

Table 3 Drugs used for cell culture. For each drug compound tested (reagent), the supplier and 
identifier are shown. 

Reagent Supplier Identifier 

Dextromethorphan Sigma Aldrich D2531 

Pirfenidone Sigma Aldrich P2116 

Nintedanib Sigma Aldrich SML2848 

LY2109761  MedChemExpress HY-12075  

3.1.4. Buffers and Solutions 

Table 4 Buffers. Listed are Buffers and solutions that were used for immunofluorescence fixation, 
staining and washing as well as for western blotting and mass spectrometry.  

Solution Source Composition 

Phosphate Buffered 
Saline (PBS) 

Media kitchen, EMBL 2.7 mM KCl  
1.4 mM KH2PO4  
4.8 mM Na2HPO4   
137 mM NaCl in ddH2O   
pH 7.4, autoclaved 

4% PFA fixation buffer self-generated 16% PFA diluted in 10X PBS + ddH2O 

Triton X-100 
permeabilization buffer 

self-generated 1% Triton X-100 (v/v) in 10X PBS --> 
diluted 1:10 in ddH20 

PierceTM RIPA Buffer Thermo Scientific, 
REF#89900 

with complete mini EDTA-free protease 
inhibitors (Roche) 

Sample buffer 2X self-generated 200 mM Tris-HCL   
25% glycerol (v/v)   
11.25% SDS (v/v)   
325 mM DTT   
0.0125% (w/v) bromphenol blue, pH 6.8 

NuPAGE MOPS SDS 
running buffer (20X) 

Thermofisher 
Scientific NP0001 

Diluted to 1X buffer with ddH2O 

Western blot transfer 
buffer 10X 

self-generated 2.9% Glycin (w/v)  
5.8% Trizma Base (w/v)  
0.5% BSA (w/v) in ddH2O 

Western blot transfer 
buffer 1X 

self-generated 10X Transfer buffer diluted to 1X  
with ddH2O   
20% Methanol (v/v)   
0.1% SDS (v/v)  

1X TBS-T western blot 
wash buffer 

self-generated 10X TBS (ThermoScientific, 
#J60764.K2) diluted to 1X with ddH2O   
0.2% Tween 

Western blot blocking 
buffer 

self-generated 1X TBS-T   
5% BSA (w/v) 

1% SDS buffer self-generated 1% SDS   
50 mM HEPES   
DEPC-treated water 

100% TCA 
(Trichloroacetic acid) 

self-generated TCA and ddH2O 

continued on the next page 
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proteomics lysis buffer generated by PCF 100 mM Tris-HCl pH 8.5  
7 M Urea  
1% Triton   
5 mM Tris(2-carboxyethyl)phosphin-
hydrochlorid   
30 mM chloroacetamide   
10 U/ml DNaseI (Sigma-Aldrich)   
1 mM magnesium chloride   
1 mM sodium orthovanadate   
phosphoSTOP phosphatase inhibitors 
(Sigma-Aldrich)   
complete mini EDTA-free protease 
inhibitors (Roche) 

Protein digestion buffer generated by PCF 100 mM Tris-HCl pH 8.5  
1% sodium deoxycholate (Sigma-
Aldrich)  
5 mM Tris(2-carboxyethyl)phosphin-
hydrochlorid   
30 mM chloroacetamide 

IMAC loading solvent generated by PCF 70% acetonitrile  
0.07% TFA 

3.1.5. Oligonucleotides 

3.1.5.1. Primers 

Table 5 Primers. Primers used for RT-qPCR are shown in the table below with their corresponding 
sequences and order number. 

Gene Primer name Sigma number Primer sequence 5‘→3‘ 

GAPDH 

GAPDH_F 
8820603596-
000010 

CATGAGAAGTATGACAACAGCCT 

GAPDH_R 
8820603596-
000020 

AGTCCTTCCACGATACCAAAGT 

E2F1 

E2F1_F1 
8820713358-
000310 

ACGTGACGTGTCAGGACCT 

E2F1_R1 
8820713358-
000320 

GATCGGGCCTTGTTTGCTCTT 

SMAD1 
SMAD1_F1 

8820713358-
000430 

CTCATGTCATTTACTGCCGTGT 

SMAD1_R1 
8820713358-
000440 

TATTCGCTGTGTCTTGGAACC 

HNF4G 
HNF4G_F2 

8820713358-
000370 

TTGCAGGTTCAGTCGGCAAT 

HNF4G_R2 
8820713358-
000380 

TTTCATTCCCGCTCTAAAACACT 

FLI1 
FLI_F1 

8820713358-
000390 

CCAACGAGAGGAGAGTCATCG 

FLI_R1 
8820713358-
000400 

TTCCGTGTTGTAGAGGGTGGT 

continued on the next page 
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NR4A1 
NR4A1_F1 

8820755574-
000010 

GGACAACGCTTCATGCCAGCAT 

NR4A1_R1 
8820755574-
000020 

CCTTGTTAGCCAGGCAGATGTAC 

BHLHE40 
BHLHE40_F1 

8820713358-
000190 

GACGGGGAATAAAGCGGAGC 

BHLHE40_R1 
8820713358-
000200 

CCGGTCACGTCTCTTTTTCTC 

SERPINE1 
SERPINE1_F1 

8820713358-
000070 

AGTGGACTTTTCAGAGGTGGA 

SERPINE1_R1 
8820713358-
000080 

GCCGTTGAAGTAGAGGGCATT 

SPHK1 
SPHK1_F2 

8820713358-
000130 

GGCTGCTGTCACCCATGAA 

SPHK1_R2 
8820713358-
000140 

TCACTCTCTAGGTCCACATCAG 

ID3 

ID3_F 
8820713358-
000150 

GAGAGGCACTCAGCTTAGCC 

ID3_R 
8820713358-
000160 

TCCTTTTGTCGTTGGAGATGAC 

ID2 

ID2_F 
8820713358-
000170 

AGTCCCGTGAGGTCCGTTAG 

ID2_R 
8820713358-
000180 

AGTCGTTCATGTTGTATAGCAGG 

SMAD7 

SMAD7_F2 
8820713358-
000250 

GGACAGCTCAATTCGGACAAC 

SMAD7_R2 
8820713358-
000260 

GTACACCCACACACCATCCAC 

IGFBP3 

IGFBP3_F1 
8820713358-
000270 

AGAGCACAGATACCCAGAACT 

IGFBP3_R1 
8820713358-
000280 

GGTGATTCAGTGTGTCTTCCATT 

COL1A1 

collagen I – 
FW 

8812680987 0030 CAGCCGCTTCACCTACAGC 

collagen I_Rev 8812680987 0040 TTTTGTATTCAATCACTGTCTTG 

COL1A2 
COL1A2_F4 

8820713358-
000050 

GAGCGGTAACAAGGGTGAGC 

COL1A2_R4 
8820713358-
000060 

CTTCCCCATTAGGGCCTCTC 

fibronectin 

fibronectin – 
FW 

8812680987 0050 GGAGAATTCAAGTGTGACCCTCA 

fibronectin – 
Rev 

8812680987 0060 TGCCACTGTTCTCCTACGTGG 

Col3 
COL3fwd  GGAGCTGGCTACTTCTCGC 

COL3rev 
8814570718-
000140 

GGGAACATCCTCCTTCAACAG 

vimentin 
vimentin fwd  CCAGGCAAAGCAGGAGTC 

vimentin rev  GGGTATCAACCAGAGGGAGT 

aSMA/ 
ACTA2 

α – SMA_FW 8812680987 0010 CCGACCGAATGCAGAAGGA 

α – SMA_Rev 8812680987 0020 ACAGAGTATTTGCGCTCCGAA 
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3.1.5.2. siRNAs 

Table 6 siRNAs. This list contains information about siRNAs with their respective targets and 
sequences. 

Target 
gene 

ENSEMBL 
Sense siRNA 
sequence 5’-3’ 

Antisense siRNA 
sequence 5’-3’ 

siRNA 
ID 

SMAD1 
ENSG000001
70365 

CCAAUAGCAGUUAC
CCAAAtt 

agGGUUAUCGUCAAU
GGGUUU 

s8395 

SMAD1 
ENSG000001
70365 

GGAUAAAGUUCUUA
CUCAAtt 

gaCCUAUUUCAAGAA
UGAGUU 

s8396 

SMAD1 
ENSG000001
70365 

CAGUCUAUGAGCUU
ACAAAtt 

ctGUCAGAUACUCGAA
UGUUU 

s8394 

E2F1 
ENSG000001
01412 

AGAUCUCCCUUAAG
AGCAAtt 

agUCUAGAGGGAAUU
CUCGUU 

s2234
54 

E2F1 
ENSG000001
01412 

GGACCUUCGUAGCA
UUGCAtt 

gtCCUGGAAGCAUCG
UAACGU 

s4406 

BHLHE40 
ENSG000001
34107 

CGAACAUCUCAAAC
UUACAtt 

ggGCUUGUAGAGUUU
GAAUGU 

s1628
2 

FLI1 
ENSG000001
51702 

CAAACGAUCAGUAA
GAAUAtt 

gtGUUUGCUAGUCAU
UCUUAU 

s5266 

FLI1 
ENSG000001
51702 

ACAGCUAUAUGGAC
GAGAAtt 

gtUGUCGAUAUACCU
GCUCUU 

s5267 

HNF4G 
ENSG000001
64749 

GGGCUAAGCGAUCC
AGUAAtt 

ttCCCGAUUCGCUAGG
UCAUU 

s6701 

NR4A1 
ENSG000001
23358 

GCACCUUCAUGGAC
GGCUAtt 

gtCGUGGAAGUACCU
GCCGAU 

s6678 

COL1A1 
ENSG000001
08821 

GCGAUGACGUGAUC
UGUGAtt 

caCGCUACUGCACUA
GACACU 

s3275 

COL1A1 
ENSG000001
08821 

CAAUCACCUGCGUA
CAGAAtt 

tgGUUAGUGGACGCA
UGUCUU 

s3277 

COL1A1 
ENSG000001
08821 

AGGUUUCAGUGGUU
UGGAUtt 

tcUCCAAAGUCACCAA
ACCUA 

s3276 

Neg9  UACGACCGGUCUAU
CGUAGtt 

CUACGAUAGACCGGU
CGUAtt 

s4442
46 

ID2 
ENSG000001
15738 

ccCUGGAAGUCAACC
UCGACU 

ggGCUACUCGGACGA
UAUGUU 

s7108 

ID3 
ENSG000001
17318 

GGAAGGUGACUUUC
UGUAAtt 

gtCCUUCCACUGAAAG
ACAUU 

s7112 

GM130/GO
LGA2 

ENSG000001
67110 

GGUUCACAUUCAGA
CCAUAtt 

gtCCAAGUGUAAGUC
UGGUAU 

s5942 

SMAD2 
ENSG000001
75387 

GGCUGUAAUCUGAA
GAUCUtt 

gtCCGACAUUAGACUU
CUAGA 

s8397 

FN1 
ENSG000001
15414 

GCCCGGUUGUUAUG
ACAAUtt 

ttCGGGCCAACAAUAC
UGUUA 

s5323 

 
 
 
 
 

    

http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s8395
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s8396
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s8394
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s223454
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s223454
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s4406
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s16282
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s16282
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s5266
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s5267
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s6701
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000123358
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000123358
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s6678
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s3275
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s3277
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s3276
http://bluegecko.embl.de/cgi-bin/mtc?query_type=genes&query=ENSG00000115738
http://bluegecko.embl.de/cgi-bin/mtc?query_type=genes&query=ENSG00000115738
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s7108
http://bluegecko.embl.de/cgi-bin/mtc?query_type=genes&query=ENSG00000117318
http://bluegecko.embl.de/cgi-bin/mtc?query_type=genes&query=ENSG00000117318
http://bluegecko.embl.de/cgi-bin/view_siRNA_page.pl?query=s7112
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3.1.6. Antibodies and Fluorescent Dyes 

3.1.6.1. Primary Antibodies and Fluorescent Dyes for Immunofluorescence and 

Western Blot 

Table 7 Primary Antibodies. The table contains information about target, host, supplier, identifier, 
fixation used (for IF staining) and dilution of primary antibodies used in this thesis, either for 
immunofluorescence staining or western blot. 

Target Host Supplier Cat. No. IF Fixation 
IF 

Dilution 
WB 

Collagen Type I 
Antibody 

rabbit 
polyclonal 

Rockland 
600-401-
103-0.5 

PFA 1:500  

Anti-Collagen, 
Type I antibody 

mouse 
monoclonal 

Sigma 
C2456-
.2ML 

PFA 1:300  

Anti-Actin, α-
Smooth Muscle 
antibody 

mouse 
monoclonal 

Sigma 
A5228-
100uL 

PFA 1:100  

Vimentin 
Antibody 

rabbit 
polyclonal 

Proteintech 
10366-1-

AP 
PFA 1:100  

Anti-Actin, α-
Smooth Muscle 
antibody - FITC 

mouse 
monoclonal 

Sigma 
F3777-
.2ML 

PFA 1:100  

anti-GFP 
rabbit 

polyclonal 
Origene TP401 PFA 1:500  

phospho-
SMAD2 
(Ser465/Ser467
) (E8F3R) 

rabbit 
monoclonal 

Cell 
Signaling 

#18338   1:1000 

Phospho-
SMAD2 
(Ser465/467) 

rabbit 
polyclonal 

Merck 
AB3849-

I 
  1:500 

SMAD2 
rabbit 

polyclonal 
Proteintech 

12570-1-
AP 

  1:1000 

Anti-alpha 
smooth muscle 
Actin antibody 
[1A4] 

mouse 
monoclonal 

Abcam ab7817 MeOH 
1:200 
and 

1:1000 
 

Tubulin-α AB-2 
mouse 

monoclonal 
Thermo 
Scientific 

MS581   1:10000 

Anti-Collagen I 
antibody 

rabbit 
polyclonal 

Abcam AB34710   1:2000 

Anti-HA tag 

rabbit 
polyclonal 
to HA tag - 

ChIP 
Grade 

Abcam ab9110 PFA 1:500  

Anti-GM130 mouse 
BD 

biosciences 
610823 PFA 1:500  

Phalloidin Alexa 
Fluor 647 

 Invitrogen A22287 PFA 1:200  

continued on the next page 
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CNA35-GFP  
Protein 

expression 
core facility 

 PFA 1:250  

Hoechst 
H33342 

 Sigma B2261 PFA/MeOH 1:1000  

3.1.6.2. Secondary Antibodies for Immunofluorescence and Western Blot 

Table 8 Secondary Antibodies. Information about secondary antibodies, either for 
immunofluorescence staining or western blotting, is depicted in this list. 

Target Host Supplier Cat. No. 
IF 

Fixatio
n 

IF 
Dilutio

n 
WB 

Anti-mouse 
IgG secondary 
antibody, 
Oregon green 
488 

goat 
Thermo 
Fisher 

Scientific 
O-11033 PFA 1:400  

Anti-rabbit-IgG 
AlexaFluor 488 

goat 
Molecular 

Probes 
A11008 PFA 1:400  

Anti-rabbit 
AlexaFluor 647 

goat Invitrogen A21245 PFA 1:400  

Anti-mouse 
Peroxidase 

rabbit Sigma A9044   1:8000 

Anti-rabbit 
Peroxidase 

goat Sigma A0545   
1:1600

0 

3.1.7. RNA Isolation and RT-qPCR Reagents 

Table 9 RNA isolation and RT-qPCR reagents. Kits and reagents used for RNA isolation and RT-
qPCR are listed in this table with their respective supplier and identifier. 

Reagent Supplier Identifier 

Total RNA Purification Kit Norgen Biotek Corp. 17200 

RNeasy® Mini Kit Qiagen 74104 

RNase-Free DNase Set Qiagen 79256 

DTT (DL-Dithiothreitol) solution  Sigma-Aldrich 3483-12-3 

Ethanol Merck 100983  

Random Hexamer Primers Invitrogen by Thermo Fisher Scientific N8080127 

RNaseOUTTM Recombinant 
Ribonuclease Inhibitor 

Invitrogen by Thermo Fisher Scientific 10777019 

dNTP mix, 10 mM each Thermo Scientific R0193 

SuperScriptTM IV Reverse 
Transcriptase 

Invitrogen by Thermo Fisher Scientific 18090200 

SuperScriptTM III Invitrogen by Thermo Fisher Scientific 18080093 

SYBRTM Green PCR Master Mix 
Applied Biosystems by Thermo Fisher 
Scientific 

4309155 

RNaseZap™ RNase 
Decontamination Solution 

Thermo Fisher Scientific AM9780 
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3.1.8. Other Reagents 

Table 10 Reagents. Additional reagents that were not used for cell culture are summarized in this list. 

Reagent  Source  Identifier 

Agarose  Sigma-Aldrich  A-9539 

Agarose Low-Gelling Temperature  Sigma-Aldrich  A9414 

Ampicillin  Sigma-Aldrich  A-9393 

Bovine Serum Albumin (BSA) Sigma-Aldrich  A2153 

Dimethyl sulfoxide (DMSO)  Sigma-Aldrich  D2438 

DL-Dithiothreitol (DTT)  Sigma-Aldrich  D0632 

EDTA-Free Protease Inhibitor Cocktail (PIC) Roche 1.84E+09 

Ethanol Merck 1.00983 

Ethylenediaminetetraacetic acid (Na2EDTA) Merck Millipore 324503 

Glycerine VWR 56-81-5 

Glycine Merck 1.04201 

Hoechst 33342 Thermofisher Scientific H21492 

Kanamycin Sigma-Aldrich  K-0254 

Methanol Merck 322415 

Milk powder Frema  -  

Oligofectamine 2000 Transfection reagent Thermofisher Scientific 12252011 

Paraformaldehyde (PFA)  Thermofisher Scientific 50-980-491 

Precision plus protein prestained standard marker Bio-Rad 1610394 

Sodium Chloride (NaCl) Merck 1.06404 

Sodium Dodecyl Sulfate (SDS) 20% Solution Bio-Rad 1610418 

Sodium Hydroxide (NaOH) Merck  Merck 1.06498 

SYBRTM Gold Nucelic Acid Gel Stain Thermofisher Scientific S11494 

SYBRTM Safe DNA Gel Stain Thermofisher Scientific S33102 

Trichloroacetic acid (Tris-HCl) Merck 1.0081 

Triton X-100  Sigma-Aldrich  T8787 

Trizma base Sigma-Aldrich  T1503 

Tween-20  Sigma-Aldrich  P7949 

3.1.9. Laboratory Machines 

Table 11 Laboratory Machines. Laboratory machines are listed in the table below. 

Machine Source  

StepOne Real-Time PCR system Thermo Fisher Scientific 

QuantStudio 6 Flex 
Applied Biosystems by Life 
Technologies 

T100 Thermal Cycler Bio-Rad Laboratories  

Centrifuge 5417R Eppendorf 

Centrifuge 5408R Eppendorf 

Vortex-Genie 2 Scientific Industries  

Mini-Centrifuge ROTILABO®  Carl Roth 

Analytical balance TE124S-OCE Sartorius 

Tilt/roller mixer RS-TR05 Phoenix Instruments 

ThermoMixer C Eppendorf 

Scale VWR 

Rotary shake neoLab 
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Azure 280 Western blot imaging system Azure Biosystems 

ChemiDoc TM Touch Imaging System  Bio-Rad 

Tissue culture incubator Binder 

Thermo Scientific Heraeus® BBD6220 incubator Thermo Scientific 

Water bath GFLR 

Electroporesis chamber  EMBL Heidelberg workshops 

Magnetic stirring hotplate MR3001 K Heidolph 

Mini Trans-blot Cell Blotting system  Bio-Rad 

Mini Trans-blot Cell system  Bio-Rad 

Nanodrop 8000 Spectrophotometer Thermo Scientific 

Protein Gel Electrophoresis XCell SureLock 
System 

Thermo Fisher Scientific 

Infinite M1000 pro plate reader Tecan 

3.1.10. Equipment  

Table 12 Equipment. Cell culture dishes and plates as well as other equipment are summarized in this 
table with the respective supplier and ifentifier. 

Cell culture dishes / plates Supplier Identifier 

NuclonTM Delta Surface 96-well plate  Thermo Scientific 167008 

NuclonTM Delta Surface 24-well plate  Thermo Scientific 142475 

NuclonTM Delta Surface 6-well plate Thermo Scientific 140675 

NuclonTM Delta Surface 10 cm dish Thermo Scientific 150350 

NuclonTM Delta Surface 15 cm dish Thermo Scientific 168381 

Glass bottom imaging plate 96-well Zell-Kontakt 5241 

Glass bottom imaging plate 24-well Cellvis P24-1.5H-N 

Millipore® Stericup® Vacuum Filtration 
System 

Millipore  S2GPU05RE 

Cool Cell freezing container Corning CLS432004 

Cryotubes  Thermo Scientific 363401 

MicroAmpTM Fast Optical 96-Well Reaction 
Plate 

Applied Biosystems by Life 
Technologies  

4346906 

MicroAmpTM Optical Adhesive Film Thermo Fisher Scientific 4311971 

Applied Biosystems™ MicroAmp™ Optical 
384-Well Reaction Plate with Barcode 

Applied Biosystems by Life 
Technologies  

4343814 

PCR strips of 8 tubes 0-2 ml Ratiolab 8610040 

3.1.11. Microscopes 

Table 13 Microscopes. The widefield and confocal microscopes used in this study are stated with their 
corresponding sources. 

Miroscope Source 

Automated widefield screening microscope Molecular Devices IXM IXM 

Confocal high-throughput Microscope LSM 900 Zeiss  

Confocal microscope Nikon A1 Nikon 
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3.1.12. Software 

Table 14 Software. The table contains software used and states the sources for each software. 

Software Source 

Adobe Acrobat Adobe Systems Incorporated, San Jose, USA 

Adobe Illustrator Adobe Systems Incorporated, San Jose, USA 

APE A plasmid Editor M. Wayne Davis, Jorgensen lab, Utah, USA 

CellProfiler Broad Institute, Cambridge, USA 

Cytoscape Institute of Systems Biology, Seattle, USA 

Fiji ImageJ 
Johannes Schindelin, Max Planck Institute of Molecular Cell 
Biology and Genetics, Dresden, Germany and others 

Mendeley Desktop Elsevier, Amsterdam, Netherlands 

Microsoft Office Microsoft Corporation, Redmond, USA 

R 4.2.3 and 4.3.3 Comprehensive R Archive Network (CRAN) 

StepOne Software v2.3 Thermo Fisher Scientific 

QuantStudio™ Real-
Time PCR Software v1.3 

Thermo Fisher Scientific 
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3.2.  Methods 

3.2.1. Cell Biology 

Cell Lines and Reagents 

The human kidney PDGFRβ+ mesenchymal cells were cultured in low glucose DMEM 

growth medium supplemented with 5% FBS. They were kept at 37°C and 5% CO2 in 

a humidified incubator and regularly passaged when required, on average three times 

a week. The cells were regularly tested for mycoplasma and scored negative. 

Cell Freezing 

The initial vial received from the Kramann lab was passaged for 10 days before vials 

were frozen for further experiments. At 70% confluency, cells were washed with 0.5% 

Trypsin-EDTA solution (e.g. 1 ml per 10 cm2 dish) and then incubated with fresh 0.5% 

Trypsin-EDTA solution at 37°C for 3-5 min until cells detached but before they started 

forming clumps. After neutralizing the enzyme activity with DMEM containing 5% FBS, 

cells were centrifuged at 300 g for 5 min. The cell pellets were subsequently 

resuspended in cell freezing medium (90% FBS with 10% DMSO) and aliquoted in 1 

ml cryotubes. After 24 h in a freezing container at -80°C, the cells were then kept in 

liquid nitrogen tanks for long-term storage. 

Plating Cells 

The cells were thawed and cultured for 5-7 days before the start of an experiment. 

After trypsinization, the cells were centrifuged at 300 g for 5 min before plated for 

experiments. Initial experiments were performed to determine the cell number for 

plating to achieve the appropriate confluency for the intended plate format and culture 

time. To determine the cell number, the cells were counted using a hemocytometer 

and plated as indicated in the table below. The column “Culture time” describes the 

time from seeding of the cells until the end of the experiment, while the experimental 

time starts 24 h after cells have been seeded.  
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Table 15 Plate formats and corresponding cell numbers seeded. The cell number seeded per well 
is shown for the different plate formats used and culture times. Additionally, the culture volume per dish 
is shown. 

Plate format 
Culture time 

[hours] 
Experimental 
time [hours] 

Seeding cell 
number/well 

Culture 
volume [ml] 

10 cm dish 120 96 0.490 * 106 10 

6-well plate 120 96 0.060 * 106 2 

24-well plate 120 96 0.015 * 106 0.5 

24-well plate 96 72 0.020 * 106 0.5 

24-well plate 72 48 0.025 * 106 0.5 

24-well plate 48 24 0.050 * 106 0.5 

24-well plate 24 0-12 0.075 * 106 0.5 

96-well plate 120 96 0.0022 * 106 0.2 

96-well plate 96 72 0.0027 * 106 0.2 

96-well plate 72 48 0.0042 * 106 0.2 

96-well plate 48 0-24 0.0047 * 106 0.2 

 

For the multi-omics and time point experiments, the medium of all wells was changed 

24 hours after plating the cells. The day after cell seeding, the treatment of the longest 

time point was started (e.g. 96 h). In the 96 h condition, the medium of the control 

samples (96 h ctrl) was changed to low glucose DMEM, without phenol red and 

supplemented with 1% L-Glutamine, a mixture of Ficoll 70 and 400 as well as 500 µM 

ascorbic acid (ctrl condition containing molecular crowding). The same medium was 

used for the TGF-β treated samples, with the addition of 10 ng/ml TGF-β1. The medium 

of all the other conditions was changed to DMEM (phenol red-free) without FBS and 

supplemented with 1% L-Glutamine. 

The following day, the medium was changed in the 96 and 72 h probes to 

DMEM+Ficoll+L-Glutamine+ascorbic acid (ctrl) and +TGF-β (TGF-β), while the 

medium of all other wells was changed to DMEM+L-Glutamine. In summary, the 

medium was changed every 24 h and the treatments were arranged so that all samples 

could be fixed/harvested for the intended downstream steps. 

siRNA Transfections 

The day before siRNA transfections, cells were plated as described in Table 15 and the 

previous section. On the day of the siRNA treatment, the cells were at 40-50% 

confluency.  

For the transfection, the ScreenFect®siRNA protocol  was used with the supplied 

reagents. For one well of a 24-well plate (1 reaction), 1 µl of ScreenFect®siRNA 

reagent was mixed with 39 µl of the recommended Dilution Buffer. In parallel, 0.17 µl 
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of siRNA stock solution (30 µM) were used, resulting in 5 pmol siRNA per well and 

mixed with 39 µl of Dilution buffer. Both reactions were mixed properly before 

combining the solutions with 10 rapid pipet strokes. After a 20 min incubation at room 

temperature, 420 µl of fresh DMEM (without FBS) was added. The cell medium was 

discarded before adding the total siRNA transfection suspension. For experiments in 

6-well plates, the corresponding protocol proposed by the manufacturer was used. 5-

6 hours after the transfection, the medium was changed to DMEM + 5% FBS and cells 

were cultured for the intended time.  

For experiments in which knock-downs and TGF-β treatment (+ corresponding ctrls) 

were performed, the cells were cultured for 48 h in DMEM+5% FBS after siRNA 

transfection and before starting the TGF-β treatments. Afterwards, the medium was 

changed every 24 h to the TGF-β containing medium or the control (Ficoll). The cells 

were fixed/harvested at the corresponding time points (not all at once). 

Nucleic Acid Handling 

Primers delivered by Thermo Fisher arrived in a dried form and where therefore 

centrigued before resuspension in appropriate amounts of DEPC treated water to yield 

100 µM stock solutions. Working solutions (10 µM) were generated by 1:10 dilutions 

and were used for RT-qPCR experiments.  

For siRNA transfection, siRNAs were ordered also in dried form. After centrifugation, 

they were resuspended in appropriate amounts of nuclease free water to yield 30 µM 

stock solutions (e.g. 5 nM of siRNA + 166.66 µl of water). All reagents were stored at 

-20°C when not in use. 

Drug Treatments 

The day before drug treatments, the cells were plated as described previously (Table 

15). On the day of the treatment, the cells had a confluency of about 50%. As a control, 

DMSO was added to the media containing the mixture of Ficoll 70 and 400 as well as 

500 µM ascorbic acid. The same media (without DMSO), was supplemented with TGF-

β and/ or Nintedanib (Nin), Pirfenidone (PFD),  LY2109761 (LY), Dextromethorphan 

(Dex) (Table 3) and treatment was performed for 48 or 96 h before cells were fixed for 

imaging. 
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Immunofluorescence Assays 

Immunofluorescence staining of structures and proteins of interest was performed with 

different antibodies and fluorescence dyes and different protocols. In general, cells 

were seeded on either 96-well plates with glass bottom (Zell-Kontakt) or 24-well plates 

with glass bottom and treated according to the experimental conditions described 

before. Before fixation, the cell medium was aspirated, cells were washed once with 

PBS and then fixed with 4% PFA fixation buffer containing 1:1000 Hoechst for 10-15 

min at room temperature.The cells were consequently washed 3x with PBS and were 

directly used for or stored at 4°C until the start of the immunofluorescnec staining.. 

Extracellular Immunofluorescence Staining  

For extracellular staining, which I mostly used to visualize the ECM, the cells were not 

permeabilized. Instead the cells were stained with the primary antibody anti-Col1 

antibody (Rockland, 1:500 in PBS) for 1-1.5 h at room temperature. After 3x washes 

with PBS, the cells were further incubated with fluorescently labelled secondary 

antibodies in PBS for 30-45 min at room temperature. After the last 3 washes with PBS, 

the cells were kept in fresh PBS and either stored at 4°C or directly imaged. 

Since the new batches of anti-Col1 antibody from Rockland did not work, the GFP-

labeled dye CNA35 (produced in house, 1:250 in PBS) which directly binds to fibrillar 

collagen, was employed for the validation experiments (section 4.4, starting at page 

115). For this, the cells were incubated after the fixation and washed at room 

temperature for 1-1.5 h. The cells were then washed 3x with PBS and directly used for 

imaging or stored at 4°C before imaging. Since the siRNA transfection resulted in a 

higher number of autofluorescent cells in the 488 channel, the cells were stained with 

an anti-GFP antibody followed by a secondary antibody conjugated to Alexa 647.  

Intracellular Immunofluorescence Staining  

For visualization of intracellular proteins (like GM130), the cells were permeabilized 

after the fixation for 15 min at room temperature with 0.1% Triton X-100. After this, 

cells were incubated with the primary antibody solution. Washing and secondary 

antibody staining steps were performed as described in the previous paragraph.   
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3.2.2. Microscopy 

Wide-field Microscopy 

Imaging of high-throughput experiments was performed with the Molecular Devices 

IXM microscope, an automated wide-field screening microscope. In general, 36 fields 

of view were acquired per well with a CFI P-Apo 20x Lambda/ 0.75 objective. All 

channels of interest were acquired per field of view, with the first channel (Hoechst / 

DAPI-5060C-NTE-ZERO Ex: 377/50-25 Em: 477/60-25) for the nuclear signal. Based 

on the nuclear signal, an off-set was set for the ECM signal either being in the GFP 

channel (GFP-3035D-NTE-ZERO Ex:472/30-25 Em: 520/35-25) for CNA35 staining or 

other channels if a secondary antibody labelled with another fluorophore was used 

(Cy3-4040C-NTE-ZERO Ex:531/40-25 Em: 593/40-25, TXRED-4040C-NTE-ZERO 

(mcherry) Ex:562/40-25 Em: 624/40-25, Cy5-4040C-NTE-ZERO 6 Ex:28/40-25 Em: 

692/40-25). 

Confocal Microscopy  

The confocal microscopes Nikon A1 and LSM 900 (Zeiss) have been used for sample 

inspection and visualization. However, only images acquired by the LSM 900 were 

included in this thesis. Hence, I focused on providing information of the latter. 

Especially for visualization of changes of the cell cytoskeletons (actin and vimentin 

fibers), Z-stacks were acquired covering the entire cell thickness. For this, the 

parameters and number of Z-stacks was kept constant. Following filters and objectives 

were used in the experiments: Objective Plan-Apochromat 20x/0.8 M27 air 

(FWD=0.55mm), Lasers: 405 nm – 5 mW, 488 nm – 10 mW, 640 nm – 5 mW, confocal 

detectors: Gallium Arsenide Phosphid-PMT (GaAsP-PMT) for fluorescence and 

standard PMT as transmission detector, Filters: EX BP 385/30 for DAPI/Hoechst, EX 

BP 469/38 for FITC/Alexa Fluor 488, EX BP 631/33 for Cy5, QBS 405+493+575+653, 

EM QBP 425/30+514/30+592/25+709/100. 

3.2.3. Image Analysis of Wide-Field Microscopy Images  

Image inspection (i.e., background fluorescence, cellular autofluorescence, image 

quality assessment, etc.) was conducted using Image J (Schindelin et al., 2012). For 

analysis, including nuclei segmentation, counting of nuclei as well as quantification of 
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fluorescent signal of immunofluorescence staining, CellProfiler (Stirling et al., 2021) 

pipelines were developed. Subsequent downstream analysis was executed in R (R 

Core Team, 2021).  

Nuclei Count and Immunofluorescence Intensity Measurements with CellProfiler 

An example of the used CellProfiler pipeline and parameters for the analysis of the 

collagen wide-field images are shown in the appendix (CellProfiler Pipeline, page 

XXXV). The following is a brief description of the essential steps of the pipeline with 

the corresponding CellProfiler modeule names in italics. In a first step, the acquired 

images were loaded into CellProfiler (Images). Using a consitent file naming scheme, 

the image files were assigned to the different channels (NamesAndTypes), e.g. 

channel “C01.ome” as Nuclei or “C02.ome” as Collagen. Nuclei were seqmented using 

an intensity based thresholding , including an object size filter (IdentifyPrimaryObjects). 

In the following step, nuclei segmentation results were saved for quality assessment 

(ConvertObjectsToImage and SaveImages). For the Collagen/ECM staining (or other 

stainings like for GM130), the fluorescence was measured using the 

MeasureImageIntensity  module. The resulting data were exported to a spreadsheet 

as CSV files (ExportToSpreadsheet). The code was executed on a virtual desktop 

computer at EMBL (jupyterhub.embl.de). 

Further Analysis Steps Using R 

All further analysis steps were performed in R, using the above CellProfiler 

measurements as input. The column names of the CellProfiler output table are given 

in italics. After import of concatenated CellProfiler CSV files, the well and position 

information of each image was extracted from FileName_Collagen. Based on this 

information, the treatments were assigned (time point, +/- TGF-β, siRNA treatment, 

etc.). The Intensity_TotalIntensity_Collagen values were multiplied by 65535 (in order 

to rescale to the original 16 bit value range) followed by cover slip background 

subtraction (value of cover slip background (MEAN_BG_65535, measured using Fiji 

ImageJ) times total area of image (Intensity_TotalArea_Collagen)). Based on the 

unstained control, the autofluorescence of the cells was calculated per cell and 

subtracted from all other images corresponding to the cell number. Additionally, 

subtraction of another value, “non-fibrillar Col I/ECM staining” was performed. In the R 

script this was called “unspecific antibody binding”. This step was included as the cover 
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slip background in the unstained (secondary antibody only) controls was usually lower 

than in the stained images. Hence, correction for any unspecific or non-fibrillar Col 

I/ECM binding of the primary antibody or fluorescent dye was conducted. The resulting 

intensity values per image were then normalized to the nuclei number of each image. 

Images with nuclei number lower than 20 nuclei (sometimes higher like 30 nuclei) were 

excluded for further analysis. The decision on taking a nuclei number cut off, was 

based on the fact that images with hardly any nuclei were often out of focus, or the 

fluorescent intesity was not correlating with actual cell number (e.g. when the intensity 

was influenced by dust particles in the area of interest). In the annex, I included figures 

for each experiment showing the normalized fluorescence per cell on the y-axis versus 

the nuclei number on the x-axis as a quality inspection and initial overview of the data. 

The data frames of the different replicates were subsequently merged and used to 

calculate ratios between the selected samples. 

 

To show the difference between ECM deposition of one condition versus the other (e.g. 

TGF-β treated versus control), ratios were calculated (TGF-β divided by control) per 

respective replicate. More specifically, for the experiments including determination of 

cell numbers and comparison of experimental set-up A vs B, exactly the above-

mentioned calculation was used, where, in the case of the cell number experiment, the 

Col I intensity per cell of the TGF-β stimulated sample was divided by the mean of the 

Col I per cell for the control sample, for each cell number and time point separately. 

 

Following calculation of ratios was used for the TGF-β response curve and treatments 

with drug compounds as well as siRNA treated samples. Taking the example of siRNA 

treatments, I normalized the ECM staining calculated per cell for each sample treated 

with the siRNA to the ECM per cell of the siNeg9 (non-targeting siRNA) control by 

subtraction and then calculated the ratio by division, as follows: 

ratio =
ECM/cell(siRNA) − ECM/cell(siNeg9)

ECM/cell(siNeg9)
 

This was done for control and TGF-β treated samples, always normalized to the siNeg9 

control (without TGF-β) sample, separately per plate/biological replicate. Additionally, 

I calculated the ratio between the TGF-β treated samples and therefore divided the 
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siRNA + TGF-β treated samples by the siNeg9 + TGF-β samples. For statistical 

analysis, t-test was used to indicate statistically significant differences. 

 

For more detailed analysis of Col I deposition over time (Results section 4.2.2), I 

applied a linear mixed model, accounting for the factors treatment (TGF-β or control), 

time (time points 0, 12, 24, 48, 72 and 96 h) and their interaction as fixed effects, as 

well as random effects based on the applied experimental design, i.e., the factor plate 

(biological replicate).  

sqrt_mean_intensity ~ condition ∗ time + (1 | plate)  

First, I duplicated the values of the 0 h time point, as there is no 0 h TGF-β treatment. 

Shown by the graphical representation of the model matrix, generated with the 

ExploreModelMatrix R package (Soneson et al., 2020)(Figure 3), there is a fitted value 

for the control condition at 0 h (intercept that changes for each plate). Another 

parameter is conditionTGF (TGF-β treatment). At the 0 h time point the fitted value is 

the sum of intercept and the conditionTGF coefficient. Time is a further parameter 

which is determined for each time point (time12h, time24h, etc.). Moreover, there is an 

interaction term for time and condition (conditionTGF:time12h, conditionTGF:time24h, 

etc.). For instance, as a result of the additive model that I used, the treatment effect of 

e.g. TGF-β at 12 h is represented by the sum of the intercept, conditionTGF, time12h 

and the interaction of conditionTGF and time12h, represented as 

conditionTGF:time12h. The average intensity of Col I per cell for all images acquired 

under each condition was calculated, for each technical and biological replicate. 

Examining the residuals, I decided to transform the previously calculated averages of 

the Col I per cell values using square root transformation which resulted in the quality 

graphs below (Figure 3). 
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Figure 3 Graphical representation of model matrix and residuals. A) Model matrix representation. 
B) Residual plot showing relatively constant variance across fitted values. X-axis depicts fitted values 
vs model residuals on the y-axis. C) Normal Q-Q and D) density plots to inspect normal distribution of 
residuals. 

Subsequently, analysis of variance was performed using type III sum of squares 

followed by a post hoc test (as stated in results 4.2.2) to show significant differences 

between factor levels. For visualization, the sqrt_mean_int data were normalized per 

plate by subtraction of the values from the 0 h time point. The resulting data points 

were plotted and the predicted values of the model were added via a line (Figure 25). 

3.2.4. Biochemistry 

Cell Lysis and Sample Preparation 

For cell lysis, the cells were washed two times with ice-cold PBS and then lysed in 

PierceTM RIPA buffer (Thermo Scientific) supplemented with a proteinase inhibitor 

cocktail for 5 min on ice. The lysates were subsequently centrifuged at 14000 g for 15 

min at 4ºC. The supernatants were taken and used for further analysis or frozen at -

80ºC until use. Protein samples were mixed with 2x sample buffer and incubated at 

98ºC for 5 min. 
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SDS-PAGE and Western Blot 

The protein samples were loaded on pre-cast NuPAGETM 4-12% Bis-Tris Gels 

(Invitrogen Thermofisher Scientific). As markers either PageRule TM Plus Prestained 

Protein Ladder (Thermo Scientific, Lot# 01114357, Product#26619) and/or Prestained 

Protein Marker MW 10-180 kDa (Proteintech, Cat No PL00001, Lot 39000001) were 

loaded to determine the molecular weight of the target proteins. The gels were then 

run using NuPAGE® MOPS running buffer (Life Technologies, LOT 1904556, REF 

NP001) at 90-100 V for 130 min. 

The transfer of proteins to PVDF membranes (pore size 0.45 µM, Merck, Millipore), 

was performed after the membranes were activated in methanol. For the transfer, the 

sandwiches (including sponges, Whatman papers, PVDF membrane and SDS-PAGE 

gels) were transferred into a Mini-Protean II cell gel system (Bio-Rad) filled with 

Transfer buffer and kept in the cold room for the time of the transfer (1.5 h at 100 V). 

Subsequently, the membranes were incubated in blocking buffer (TBS-T with BSA and 

milk powder) for 1 h at room temperature. Between each of the following steps, the 

membranes were washed 3x with TBS-T buffer, 5-10 min each. The membranes were 

either incubated at room temperature for 1 h or at 4ºC over night with the primary 

antibodies (Table 7). The secondary antibodies (Table 8) were HRP-coupled and used 

for incubation of membranes for 45 min at room temperature. For visualization of the 

target proteins, the membranes were treated with chemiluminescence substrate 

(Pierce® ECL Plus Western Blotting Substrate, Thermofisher Scientific) according to 

the manufacturer’s instructions. The Azure 280 (Biozym) or Biorad imager were used 

for image acquisition. Protein bands were quantified with Fiji ImageJ. All bands were 

normalized to the corresponding loading control. Additionally, the resulting values were 

taken to calculate the ratio of phosphorylated SMAD2 vs SMAD2 protein abundance.   

RNA Isolation, Quantification and Purity Measurement 

Except for the multi-omics experiment, the RNeasy kit (Qiagen) was used to extract 

RNA from the cultured cells. Therefore, the protocol provided by the manufacturer was 

followed, except for the DNase treatment step, where half of the recommended 

concentration was used (as initial experiments have shown that this resulted in 

sufficient digestion of DNA with the used amount of input material). RNA concentration 

and purity were measured with the Nanodrop 8000 Spectromphotometer using the 

absorbance measurements at 260 nm and ratio between 260 and 280 nm. The read-
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outs were then used for adjusting RNA concentrations for the following step. In 

between steps, samples were stored at -20°C for short term storage or -80°C for long 

time storage. 

Reverse Transcription 

Total RNA (300 – 500 ng) was used for reverse transcription. In initial experiments 

(Results section 0 and 0), reverse transcription was performed using SuperScript III, 

while SuperScript IV was used for the validation experiments (Results section 4.4) as 

stated in the manufacturer’s protocol. cDNA was generally diluted 1:10 after reverse 

transcription and used for RT-qPCR. 

RT-qPCR 

For the RT-qPCR experiments, there were differences between initial and validation 

experiments. For the initial experiments, a master mix was prepared with a total volume 

of 15 µl per reaction, containing 0.5 pmol/µl of each of the primers (forward and 

reverse), 10 µl of the Sybr Green mix and the rest water (3 µl). Based on optimization 

experiments for quantification of fibronectin mRNA levels, only one fourth of the 

fibronectin primer concentrations were used. Therefore, more water was added to the 

reaction to yield the same volume as other reactions. Primers are shown in Table 5. 

Then, 5 µl of the 1:10 diluted cDNA was added. Three technical replicates were 

prepared in a 96-well plate that was centrifuged before samples were measured in the 

StepOne Real-Time PCR machine. This was done using the manufacturer’s 

instructions with following selections: experimental type ‘Standard curve’, reagent type 

‘SYBR® Green reagents’, including melt curve, ‘Standard 2 h’, and ‘cDNA’. The 

program ran roughly 2 hours, including a 10 min hot start phase at 95°C, 40 cycles 

consisting of i) 15 sec denaturation at 95°C, ii) 1 min for primer annealing and template 

extension at 60°C, followed by iii) the melt curve generation. Initial analysis was 

performed with the StepOne Software v2.3. 

For later experiments (Results section 4.4), the reactions were prepared in 384 well 

plates. Therefore, two master mixes were prepared. One master mix contained the 

primers (1 µl each) with 3 µl Sybr Green mix per reaction. The second master mix 

contained 2 µl of Sybr Green mix, 2 µl of water and 1 µl of 1:10 diluted cDNA per 

reaction. For each condition, I prepared 3 to 4 technical replicates. Samples were run 
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at the QuantStudio 6 Flex according to manufacturer’s instructions and analysed using 

QuantStudio Real-Time PCR Software v1.3.  

RT-qPCR Analysis 

Technical replicates were removed if they were outliers (only if standard deviation was 

> 0.5 and if it was obvious that the sample is an outlier). The 2-ΔΔCT method (Livak & 

Schmittgen, 2001) was applied for analysis. In short, the average CT value of technical 

replicates was then normalized (by subtraction) to the average CT value of the 

housekeeping gene (GAPDH), this was done for each sample respectively (for 

instance: ΔCT1 = CT control target – CT control GAPDH; ΔCT2 = CT TGF-β target – 

CT TGF-β GAPDH). For calculating the difference in expression of mRNA abundance 

between the e.g. TGF-β treated sample and the control sample, the GAPDH-

normalized CT value of the control was subtracted from the GAPDH-normalized CT 

value of the TGF-β treated sample resulting in the ΔΔCT value (such as ΔΔCT = ΔCT2 

– ΔCT1). mRNA expression was generally stated as percentages, so that the control 

was always set to 100% as calculated by 2-ΔΔCT times 100 (e.g. percentage of fold-

change = 2-ΔΔCT * 100).  

To determine the statistical significance of the difference of mRNA expression of target 

genes induced by TGF-β treatment, statistical analysis of initial experiments was 

performed by using t-test against µ = 100 (control condition) for each gene and each 

time point separately.  

For later experiments (Results section 4.4), the initial steps were the same. However, 

the sample to which each other ΔCT value was compared to was the siNeg9 control 

sample at 48 h post siRNA transfection. This was done to investigate the change of 

mRNA expression over time across the different conditions.  

For the statistical analysis, a t-test was performed initially. This was done to compare 

samples at the last time point (96 h post siRNA transfection) plotted in the heatmap 

(Figure 53). Therefore, a t-test was conducted between the 96 h siRNA control and the 

96 h siNeg9 control, as well as for the 96 h siRNA TGF-β and the 96 h siNeg9 TGF-β 

samples, respectively, to compare the untreated versus the TGF-β treated samples 

with each other and check the relevance of the knock-down of the siRNA targets in the 

presence and absence of TGF-β.  

This was followed up by anova and post hoc tests for selected comparisons. For 

instance, one of the questions was to see whether the expression of COL1A1 mRNA 
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changes upon knock-down of a target gene in the presence and absence of TGF-β 

treatment compared to the control knock-down with siNeg9. Therefore, an anova was 

performed with testing the significance of the percentage of the fold-change 

(percentage) based on siRNA-based knock-down (siRNA) and ± TGF-β treatment 

(treatment). 

percentage ~ siRNA ∗ treatment  

Especially when the interaction term of siRNA and treatment were significant, I followed 

up with a Tukey post hoc test of the model presented above to show the significance 

of the different interactions. To note, there seem to be more siNeg9 samples. However, 

for each biological replicate, controls treated with siNeg9 were generated, that were 

then loaded onto each plate. Since the sample samples were loaded as references 

samples on different plates used for RT-qPCR, there are more technical replicates of 

the siNeg9 samples, which explains the higher number of data points in the graphs in 

the annex of this thesis. 

3.2.5. Multi-omics Experiment 

Experimental Set-up 

For the multi-omics experiment, including the imaging of Col I deposition over time, 

first, one vial of cells per day was thawed at four consecutive days, for the four 

biological replicates. Cells were cultured 6 days in DMEM + 5% FBS before they were 

plated at a 30-40% confluencey for the experiment.  

For imaging, 0.015 mio cells were seeded per well of 24 well plates. Four biological 

replicates (plate A-D) were generated, by setting up the experiments at 4 consecutive 

days). Culture volume per plate was 0.5 ml. For the transcriptomics samples, 0.06 mio 

cells were seeded per well of a 6 well plate, again on three consecutive days and kept 

in 2 ml medium.  Protoemics and phosphoproteomics samples were generated from 

0.49 mio cells seeded in 10 cm dishes (8 ml culture volume), two dishes per condition. 

For this, four biological replicates were generated on four consecutive days. The 

supernatants of these plates were used for secretomics in the end (more detail in the 

following paragraphs). 
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In general, the day after seeding, the media of all samples of one replicate was 

changed to DMEM without FBS. Except for the sample with the longest treatment time 

point (96 h), the media was changed to phenol free DMEM without FBS but with Ficoll 

(mixture of Ficoll 70 and 400) and 500 µM ascorbic acid for the control condition. The 

later media containing Ficoll and ascorbic acid was further supplemented with 10 ng/ml 

TGF-β for the TGF-β treated samples. On the second day after seeding, the media of 

all samples was changed again. The still untreated samples were changed to DMEM 

without FBS, while media containing Ficoll and ascorbic acid was added to the 96 and 

72 h samples and media containing Ficoll, ascorbic acid and TGF-β was added to TGF-

β treated samples (72 and 96 h) after removing the old medium. So the media was 

changed every 24 h, with every day staring another treatment so that at the last day, 

all samples could be either fixed for imaging or collected for the corresponding omics 

measurements. 

For imaging, the samples were fixed for 15 min with 4% PFA at room temperature, 

before they were washed and stained as explained in 3.2.1 decribing 

immunofluorescence staining of extracellular Col I. The other samples were processed 

as described in following sections. 

RNA Sequencing 

RNA Isolation 

The cell culture supernatants were removed and the cells were washed once with PBS. 

For cell lysis (Cell Lysate Preparation from Cells Growing in a Monolayer) and RNA 

isolation, the Total RNA Purification Kit (Norgen Biotek Corporation, Product #17200) 

was used and procedures were carried out as described in the manufacturer’s protocol. 

Additionally, the On-Column DNA Removal Protocol was performed with the Norgen’s 

RNase-Free DNase I Kit (Product # 25710).  

RNA Quality Control 

The quality of the RNA samples was assessed with the Agilent Bioanalyzer with the 

RNA 6000 Nano Assay kit and following the manufacturer’s instructions. This step was 

performed with the help of Ferris Jung from the Genomics Core Facility, EMBL 

Heidelberg. For each sample, 300 ng of RNA were used and the volume was adjusted 

to 50 µl.  



  Materials and Methods 

46 

Library Preparation 

Ferris Jung prepared the libraries on a Beckman Coulter Automated Workstation 

Biomek i7 Hybrid (MC + Span-8). Therefore, an automated version of the NEBNext® 

Ultra™ II Directional RNA Library Prep Kit was used, following section 1 - Protocol for 

use with NEBNext Poly(A) mRNA Magnetic Isolation Module. An adaptor dilution of 1 

to 20 was used, the samples were individual barcoded using unique dual indices during 

the PCR using 13 PCR cycles as per the manufacturer’s protocol. The individual 

libraries were quantified using the Qubit HS DNA assay as per the manufacturer’s 

protocol. Therefore, 1 µl of sample in 199 µl of Qubit working solution were used. The 

DNA HS Assay kit together with the Agilent Bioanalyzer was used to assess the quality 

and molarity of libraries. The latter was necessary to equimolarly combine the 

individual libraries into one pool for sequencing. 

Sequencing 

The pooled samples were loaded and sequenced by Ferris Jung on an Illumina 

NextSeq 2000 platform (Illumina, San Diego, CA, USA) using a P3 50 cycle kit, a read-

length of 72 bp single-end reads and 650 pM final loading concentration. 

Analysis  

Sequencing reads were aligned by Jonathan Landry, Genomics Core Facility, EMBL 

Heidelberg, using STAR (version 2.7.9a) with default parameters on GRCh38. The 

gene count tables were produced during the alignment (--quantMode GeneCounts) 

using the annotation GRCh38.93. Following steps were carried out by me with the 

support of Mira Burtscher, with initial help of Martin Garrido-Rodriguez. ENSEMBL IDs 

were translated into gene symbols using the org.HS.eg.db R package. Data were 

filtered to exclude low expressed genes and normalised using TMM (Trimmed mean 

of M-values) + CPM (counts per million), by using the function calcNormFacots 

(calculating normalisation factors, as certain genes have higher read counts that need 

to be accounted for) and cpm of the edgeR R package (Smyth et al., 2018). 

After principal component analysis and further investigations, the replicate A of the 24 

h control sample was excluded due to an experimental error. Differential expression 

analysis was performed using edgeR, including multiple testing correction (BH) 

resulting in adjusted p-values. As differentially expressed genes, I considered genes 
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with an adjusted p-value < 0.05 and absolute log2 fold-change of > log(2) as 

significantly altered in expression. For visualisation of data, I used the statistical 

language R. 

Mass Spectrometry 

Sample Lysis for Whole Proteome and Phosphoproteome 

On-plate cell lysis of samples cultured in 10 cm dishes was performed with 500 µl 

proteomics lysis buffer. The lysates were stored at -80°C before further processing by 

Jennifer Schwarz from the Proteomics Core Facility who performed further sample 

preparation, data acquisition and MS database search.  

Sample Preparation and Labeling for Whole Proteome and Phosphoproteome 

The samples were processed in the Proteomics Core Facility of EMBL Heidelberg by 

Jennifer Schwarz following the protocols described in Potel et al. (2018) for preparation 

and phosphopeptide enrichment (Potel et al., 2018). The frozen samples were thawed 

and sonicated with an unltrasonic sonifier (Branson) three times for 10 sec with 

intervals of cooling the samples on ice for 60 sec (continuous pulse, 50% duty cycle) 

until the viscosity was reduced. By centrifuging the samples at 17000 g at 8°C for 10 

min, any residual cell debris was removed. The supernatants were harvested and 

supplemented by 1% benzonase (Merck Millipore) followed by incubation at RT for 1 

h. Methanol/chloroform precipitation was performed. Therefore, 1 volume of sample 

was supplemented with 4 volumes of methanol, 1 volume of chloroform and 3 volumes 

of ultrapure water. After centrifugation at 4000 g for 15 min, the upper layer was 

removed. Then, 3 volumes of methanol were added to the rest of the samples and the 

samples were centrifuged again. After removal of the liquid phase, the protein 

precipitate was left to dry before the proteins were resuspended in digestion buffer. 

Subsequently, trypsin was added in a 1:50 ratio (w/w) and was incubated over night at 

room temperature for digestion of proteins. The digestion was stopped by addition of 

1% TFA (final concentration). Precipitation of the sodium deoxycholate was performed 

at room temperature for 15 min after which the samples were centrifuged for 10 min at 

17000 g at room temperature. Desalting of the supernatant was performed using the 

Oasis HLB 96-well plates 30 µM (Waters). Desalting buffer A contained MS-grade 

water (Chemsolute) with 0.1% formic acid and buffer B consited of 80% acetonitrile 
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(Chemsolute) in MS-grade water with 0.1% formic acid. Using a vacuum centrifuge, 

the eluted peptides were dried. 

Posphopetides were enriched by first taking up the peptides in IMAC loading solvent. 

Before further proceding with phosphopeptide enrichment, a small aliquot of samples 

was used for full proteome analysis. The rest of the samples were enriched using an 

UltiMate 3000 RSLC LC system (Dionex) and ProPac IMAC-10 column 4 x 50 mm, 

P/N 063276 (Thermo Fisher Scientific). The peptides were then eluted with 0.4% 

dimethylamine (Sigma-Aldrich) for labelling with TMT16plex (Thompson et al., 2019) 

Isobaric Label Reagent (Thermo Fisher) in accordance with the manufacturer’s 

protocols. Therefore, 0.8 mg reagent was dissolved in 42 µl of 100% acetonitrile and 

4 µl of stock was added and incubated for 1 h at room temperature. Subsequently, the 

reaction was quenched with 5% hydroxylamine for 15 min at room temperature. 

Sampes wre then combined for further sample clean up using an OASIS® HLB 

µElution Plate (Waters). Using high-pH reversed-phase fractionation on an Agilent 

1200 Infinity high-performance liquid chromatography system, including a Gemini C18 

column (3 µm, 110 Å, 100 x 1.0 mm, Phenomenex), the labelled phosphoproteome 

and full proteome were separated into 48 fractions along with the LC separation that 

were then pooled into 12 fractions. The pooled fractions were dried using vacuum 

centrifugation and were subsequently reconstituted in 10 µl of 1% fromic acid with 4% 

acetonitrile. The samples were stored at -80°C before the LC-MS/MS analysis. 

Whole Proteome and Phosphoproteome Data Acquisition 

The UltiMate 3000 RSLC nano LC system (Dionex) fitted with a trapping cartridge (µ-

Precolumn C18 PepMap 100, 5 µm, 300 µm i.d. x 5 mm, 100 Å) and an analytical 

column (nanoEase™ M/Z HSS T3 column 75 µm x 250 mm C18, 1.8 µm, 100 Å, 

Waters) was coupled to a Orbitrap Fusion™ Lumos™ Tribrid™ Mass Spectrometer 

(Thermo). With a constant flow of 0.05% trifluoroacetic acid at 30 µl/min, peptides were 

concentrated on the trapping column for 6 minutes. Then, peptides were eluted via the 

analytical column using a binary solution system at a constant flow rate of 0.3 µl/min. 

Solvent A consisted of 0.1% formic acid in water with 3% DMSO and solvent B 

contained of 0.1% formic acid in acetonitrile with 3% DMSO. The percentage of solvent 

B was increased as follows: from 2% to 4% in 4 min, to 8% in 2 min, to 25% in 64 min, 

to 40% in 12 min, to 80% in 4 min, followed by re-equilibration back to 2% B in 4 min 

(for the phosphoproteome). For the full proteome analysis, the steps were as follows: 
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from 2% to 8% in 4 min, to 28% in 104 min, to 40% in 4 min, to 80% in 4 min, followed 

by re-equilibration back to 2% B in 4 min. 

The peptides were injected into the Fusion Lumos applying a Pico-Tip Emitter 360 µm 

OD x 20 µm ID; 10 µm tip (New Objective) and a defined spray voltage of 2.4 kV. The 

capillary temperature maintained at 275°C. Full mass scan was acquired with mass 

range 375 to1400 m/z for the phosphoproteome (375 to 1500 m/z for the full proteome), 

in profile mode in the orbitrap with resolution of 120000. The filling time was set at 

maximum of 50 ms for the full proteome with a limitation of 4 x 105 ions. Data 

dependent acquisition (DDA) was done with the resolution of the Orbitrap set to 30000, 

with a fill time of 110 ms for the phosphoproteome (94 ms for the full proteome) and a 

limitation of 1 x 105 ions. For this, normalized collision energy of 34 was applied. MS2 

data was acquired in profile mode. Fixed first was mass was set 110 m/z. 

Whole Proteome and Phosphoproteome MS Database Search 

The acquired data were processed using MSFragger v3.8 (Kong et al., 2017), 

searching against the homo sapiens Uniprot proteome database (UP000005640, 

ID9606, 20594 entries, release October 2022) including common contaminants and 

reversed sequences. Fixed modifications that were included are Carbamidomethyl (C) 

and TMT16 (K). Variable modifcations were set as Acetyl (protein N-term), Oxidation 

(M) and TMT16 (N-term), and for the phosphoproteome phosphorylation of STY sites 

was considered. For the MS1 and MS2 scans a mass error tolerance of 20 ppm was 

set. Additional parameters included the use fo trypsin as protease, allowing for a 

maximum of two missed cleavages; a minimum peptide length of seven amino acids; 

at least two unique peptides were required for a protein identification. The false 

discovery rate on peptide and protein level was set to 0.01. 

Sample Collection and TCA Precipitation for Secretome  

The supernatants of the samples were collected and spun down at 300 g for 5 min at 

4°C to remove any cells. Afterwards, the supernatants were transferred to new falcon 

tubes and snap frozen. Until further processing, the samples were stored at -80°C.  

To enrich the proteins for further down stream analysis, TCA precipitation was used. 

Therefore, all the samples were transferred to 1.5 ml Eppendorf tubes. One part of ice-

cold TCA (250 µl) was added to four parts (1 ml) of protein sample. The samples were 

vortexed and incubated on ice for 20-30 min. Subsequently, the samples were 
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centrifuged at 10000 g for 20 min at 4°C. Taking care not to disrupt the pellet, the 

supernatant was aspirated and the pellets were washed with 500 µl ice-cold 10% TCA. 

After vortexing and centrifugation at top speed at 4°C for 20 min, the pellets were 

further washed with 1 ml ice-cold acetone (stored at -20°C) to residual TCA. Then, the 

samples were vortexed and centrifuged at top speed at 4°C for 30 min. Afterwards, the 

supernatant was carefully removed and the samples were pooled for the last wash with 

acetone. Before dissolving the samples in 25 µl 1% SDS buffer, the pellets were left 

on ice to dry.  

Protein Quantification and Normalization  

To determine the concentration of the protein samples, the Pierce BCA Protein assay 

kit was used. Initially, the working reagent was prepared with 50 parts of BCA reagent 

A and 1 part of BCA reagent B. The diluted BSA standards were prepared as described 

by the manufacturer protocol (0, 25, 125, 250, 500, 750, 1000, 1500, 2000 µg/ml BSA 

concentration). Using the microplate procedure (plate), 25 µl per well of each prepared 

BSA standard solution was transferred in triplicates. Furthermore, 2 ml of the 1% SDS 

buffer was added per well of the BSA standards. Then, 2 µl of TCA precipitated 

samples were added per well in triplicates. 200 µl of the working reagent were then 

added to each well. The plate was covered and shaken for 1 min. Subsequently, the 

samples were incubated at 37°C for 30 min. After cooling the samples down to room 

temperature, the samples were measured using TECAN (562 nm absorbance). The 

average absorbance of the blank standard measurements was subtracted from all 

other values and a standard curve was established to determine the concentration of 

the samples of interest. Dilutions were made of the samples to yield an equal amount 

of protein across the samples. 

Sample Preparation of Secretome Samples 

The samples were further processed by Mandy Rettel, Proteomics Core Facility, EMBL 

Heidelberg, who also carried out the data acquisition and MS Database search. For 

the sample preparation including SP3 and TMT labeling, the reduction of disulphite 

bridges in cysteine containing proteins was first performed using 10 mM dithiothreitol 

in 50mM HEPES (pH 8.5) at 56°C for 30 min. The reduced cysteines were then 

alkylated with 20 mM 2-chloracetamide in 50 mM HEPES (pH 8.5) for 30 min at room 

temperature, in the dark. Sample preparation was conducted using the SP3 protocol 
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(Hughes et al., 2014, 2019) and addition of trypsin (sequencing grade, Promega) in an 

enzyme to protein ratio of 1:50. The digestion was incubated over night at 37°C. On 

the subsequent day, the peptide recovery was perforemd in a two-step collection. First, 

the supernatant of the overnight digestion was transferred on magnet to a new tube 

(first elution). Followed by a wash of beads in 50 mM HEPES buffer, the supernatant 

(second elution) is combined on magnet with the first elution in the new tube. 

Peptide labelling was done using TMT11plex (Werner et al., 2014) Isobaric Label 

Reagent (ThermoFisher) following the instructions of the manufacturer. For this, 

samples were combined and cleaned using an OASIS® HLB µElution Plate (Walters). 

Offline high pH reverse phase fractionation was perforned out using an Agilent 1200 

Infinity high-performance liquid chromatography system, equipped with a Gemini C18 

column (3 μm, 110 Å, 100 x 1.0 mm, Phenomenex) (Reichel et al., 2016).    

Secretome Data Acquisition 

An UltiMate 3000 RSLC nano LC system (Dionex) fitted with a trapping cartridge (µ-

Precolumn C18 PepMap 100, 5 µm, 300 µm i.d. x 5 mm, 100 Å) and an analytical 

column (nanoEase™ M/Z HSS T3 column 75 µm x 250 mm C18, 1.8 µm, 100 Å, 

Waters). Trapping was carried out with a constant flow of 0.05% trifluoroacetic acid at 

30 µl/min onto the trapping column for 6 min. Afterwards, peptides were eluted via the 

analytical column with a consistent flow of solvent A (0.1% formic acid, 3% DMSO in 

water) at 0.3 µl/min and increasing percentage of solvent B (0.1% formic acid, 3% 

DMSO in acetonitrile). The outlet of the analytical column was directly coupled to a 

Fusion Lumos (Thermo) mass spectrometer using the Nanospray Flex™ ion source in 

positive ion mode. 

The peptides were introduced into the Fusion Lumos via a Pico-Tip Emitter 360 µm 

OD x 20 µm ID; 10 µm tip (CoAnn Technologies). For this, an applied spray voltage of 

2.4 kV was used. Theerfore, capillary temperature was set at 275°C. Full mass scan 

was acquired with mass range 375-1500 m/z in profile mode in the orbitrap with 

resolution of 120000. The filling time was set at maximum of 50 ms with a limitation of 

4 x 105 ions. Data dependent acquisition (DDA) involved quadrupole isolation at 0.7 

m/z, with the resolution of the Orbitrap set to 30000, a fill time of 94 ms and a limitation 

of 1 x 105 ions. A normalized collision energy of 36 was applied and MS2 data was 

acquired in profile mode. 
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Secretome MS Database Search 

First, raw files were converted to mzML format using MSConvert from Proteowizard 

(version 3.0.22129), and peak picking from the vendor algorithm. Afterweards, files 

were searched with MSFragger v3.7 (Kong et al., 2017) in Fragpipe v19.1 against the 

Swissprot Homo sapiens database (20,594 entries), which also contained common 

contaminants and reversed sequences. The standard settings of the Fragpipe TMT11 

workflow were used and modifications such as Carbamidomethyl (C) and TMT11 (K) 

(fixed modification), Acetyl (Protein N-term), Oxidation (M), and TMT11 (N-term) 

(variable modifications) were included into the search parameters. For the full scan 

(MS1) a mass error tolerance of 10 ppm and for MS/MS (MS2) spectra of 0.02 Da was 

set. Furthermore, just like mentioned above, parameters including Trypsin (as protease 

with max. two missed cleavages) and a min. peptide length of 7 amino acids were set. 

The false discovery rate on peptide and protein level was set to 0.01. 

Analysis of Whole Proteome and Phosphoproteome 

The initial analysis of MS data was performed by Frank Stein from the Proteomics Core 

Facility, EMBL Heidelberg. Further analysis was supported by Mira Burtscher and 

Martin Garrido-Rodriguez. Initially, raw data files of FragPipe (Kong et al., 2017) were 

processed using R. Peptide spectral matches (PSMs) with a phosphorylation 

probabilty > 0.75 were taken for further analysis. For the whole proteome, only proteins 

with 2 unique peptides were taken for further analysis. Naming of the phosphopeptides 

includes * behind phosphorylated amino acids and the numbers 1-3 indicating the 

number of phosphorylation sites. The names are precided with gene symbols 

(translated from uniprot identifiers to make them comparable to transcriptomics data). 

Gene symbols, peptide sequence (with *) and number of phosphorylation sites are 

concatenated to generate a unique phosphopeptide ID. For all PSMs sharing the same 

phosphopeptide ID all raw TMT reporter ion intensities were summed. Phosphorylation 

intensities were further normalized to the input data (whole proteome), per replicate 

and condition. First, ‘vsn’ normalisation and imputation of missing values using the 

‘knn’ method were performed followed by batch effect removal (between biological 

replicates/different MS runs) using ‘removeBatchEffects’ from the limma R package 

(Ritchie et al., 2015). Differential expression analysis was conducted using ‘lmFit’ of 

the limma R package. This was done separately for the input (whole proteome), 

phospho- and the normalized phosphoproteomics (phosphoproteomics normalize to 
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input) data. Hits were described as differentially expressed genes with an absolute 

log2 fold-change > log(1.5) and an adjusted p-value < 0.05. 

Analysis of Secretome 

Initial analysis of MS data was performed by Frank Stein from the proteomics core 

facility, EMBL Heidelberg. For the secretomics data, Frank Stein processed the raw 

output files of FragPipe (Kong et al., 2017) using the R programming language (ISBN 

3-900051-07-0). Contaminants were filtered out (except for albumin, which was later 

removed by me). Translation of uniprot identifiers to gene symbols was performed to 

keep the naming consistent with the transcriptomics data. Only proteins with at least 2 

unique peptides and that showed up in at least two out of three biological replicates 

were considered for further analysis. This resulted in 2188 proteins quantified. Further 

analysis was conducted by me with support of Mira Burtscher and initial help from 

Martin Garrido-Rodriguez. The log2 transformed raw TMT reporter ion intensities were 

‘vsn’ normalized using the vsn R package (Huber et al., 2002) and missing values were 

imputed using ‘knn’. This was further followed up by batch effect correction using the 

limma package function ‘removeBatchEffects’ (Ritchie et al., 2015). Differential 

expression analysis was performed using the limma package, and differentially 

expressed genes, were considered as hits if they had an adjusted p-value < 0.05 and 

absolute log2 fold-change of > log(1.5). Furthermore, the data were filtered for genes 

that are secreted or part of the extracellular matix. Hence, the data were filtered based 

on the MSigDB gene sets NABA_MATRISOME (M5889) and 

NABA_MATRISOME_ASSCIATED (M5885) (not performed for the principal 

component analysis). Additionally, I included following proteins that were neither part 

of the Naba matrisome nor the associated factors but were annotated as secreted or 

secreted via extracellular vesicles (Information provided by Uniprot): MARCKS, 

CDH11, NRP2, SDC4, TFPI, CPA4, and CACHD1. For visualisation of data, I used the 

statistical language R. 

3.2.6. Function Analysis of Omics Data 

Using MSigDB and decoupleR (Badia-i-Mompel et al., 2022), pathway enrichment 

analysis was performed, supported by Mira Burtscher. First, the species was specified 

as “Homo Sapiens” and the MSigDB “HALLMARK” gene set was chosen. All 
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differentially expressed genes, not just hits, were used as input. Pathway activity was 

inferred using the ‘wmean’ function of the decoupleR package.  

3.2.7. Heatmaps of Omics Hits  

Heatmaps of hits, defined as adjusted p-value < 0.05 and absolute log2 fold-change > 

log(1.5) for proteomics and secretomics while log(2) was used as a threshold for the 

transcriptomics data, were generated using the ‘Heatmap’ function of the 

ComplexHeatmap R package. More specifically, I selected hits that were shared in at 

least two of the three omics modalities. Since phosphoproteomics data show 

phosphorylation and not necessarily abundance of proteins, I generated a separate 

heatmap of the top 50 deregulated phosphopeptides.  

3.2.8. Comparison of Omics Data to Single-Cell RNA Seq Data 

Supplementary information of Kuppe et al. (2021) was used to link single-cell RNA 

sequencing data of CKD and healthy individuals to the acquired data set of this thesis. 

Thererfore, a supplementary table was used which included the specificity scores of 

analysed genes calculated by Kuppe et al., for each cell type 

(41586_2020_2941_MOESM4_ESM.xlsx, Human_PDGFBplus_Level_2_Specifi 

sheet). The top 7% of genes specific for myofibroblasts were filtered based on a 

specificity score threshold that we defined as > 0.2. This resulted in 1650 genes, that 

were then compared to the dataset of this thesis (Kuppe et al., 2021). 

3.2.9. Footprint Analysis for Inference of TF and Kinase/Phosphatase Activity 

For inference of TF and kinase/phosphatase activities, the decoupleR package (Badia-

i-Mompel et al., 2022) was used in combination with the DOROTHEA database 

(Garcia-Alonso et al., 2019) to obtain TF-target interactions (with the confidence levels 

of A, B or C). The phosphosite-enzyme interactions were obtained from the OminpathR 

package (Türei et al., 2016). All differentially expressed transcripts and phosphosites 

were used as input for the respective activity inference. For this, the ‘wmean’ fucntion 

was used (calculating the mean of log2 fold-changes of i.e. targets of a TF and adding 

weight based on whether the interaction is activating or inhibiting). 
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3.2.10. Clustering and Correlation of Omics Data 

Clustering 

Clustering of omics modalities was performed on the hits (as defined above based, on 

the log2 fold and adjusted p-value thresholds) the ‘cclust’ function of the cclust R 

package. For the clustering the ‘euclidean’ distance was chosen, where cluster means 

are the centroids. The algorithm was defined as ‘neuralgas’.  

Correlation 

For correlation of omics modalities (excluding phosphoproteomics), the top 10% of 

differentially expressed features per omics modality were selected. Using the Hmisc R 

package’s function ‘rcorr’, a correlation matrix with Pearson correlation coefficients was 

generated and plotted using the ‘corrplot’ function from the corrplot R package.   

3.2.11. Network Modeling 

Following steps were performed by Mira Burtscher with input from me. For inference 

of signaling processes, the CARNIVAL algorithm combined upstream perturbation 

information (e.g. TGF-β stimulation) with measurements of downstream factors (e.g. 

TF activities) and a causal prior knowledge network (PKN) (A. Liu et al., 2019). For 

kinase/phosphatase and TF activity estimation, they are calculated using a footprinting 

method (Dugourd & Saez-Rodriguez, 2019). COSMOS extends CARNIVAL to 

multimodal datasets (Türei et al., 2016). All the network analyses were performed using 

the CARNIVAL method (ref to Liu et al.) as implemented in CORNETO 

(https://github.com/saezlab/corneto). 

Prior Knowledge Parsing 

The PKN contains the signed and directed protein-protein interactions (PPI) (node A 

leads to in-/activation of node B) that are then used to model signaling interactions 

between measurements and e.g. TGF-β input by minimizing an objective function in 

an integer linear programming (ILP) optimization.  

In this study, we used a prior knowledge network which was provided as part of the 

OmnipathR package via the ‘import_all_interactions’ function. This initial PKN was 

filtered for trusted resources and interactions with a valid consensus signal. 

https://github.com/saezlab/corneto
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Additionally, the core of the TGF-β signaling module was fixed to guide the optimisation 

(enforce TGF-β to SMAD1-5, support TGFβ to MAPK1, MAPK14, AKT1 and PI3K) 

following Park and Yoo (2022) (C. H. Park & Yoo, 2022). The final PKN (42 k 

interactions) was obtained by filtering for nodes which were measured in one of the 

omics modalities obtained as part of this study. 

Input Node Filtering 

As input nodes for the optimisation, TGF-β was used as upstream perturbation as well 

as the top transcription factors (maximum absolute enrichment score > 3, p-value < 

0.03) and kinases/phosphatases (maximum absolute enrichment score > 3, p-value < 

0.03) from the activity estimation analysis and the hits of the secretomics dataset.  

Secreted proteins were filtered for 'M5889' and 'M5885' MSIGDB terms to ensure that 

they are indeed related to secretion processes. This list was manually extended with 

COL1A1, COL5A1, SERPINE2, SPARC, ITGB1, VIM, JUP, ACTA1, HSPG2, LOXL2, 

TNC, TGFBI, IGFBP3, IGFBP7, LTBP2, TAGLN, CCN2, LRATD2, MRC2, FN1, FBN1, 

BGN, ADGRG1, MMP2, ITGA11, AMIGO2, ADAM12, CPA4, DCDC2, PLEKHG4 and 

ITGB1BP1 which were significantly deregulated in the secretomics experiment and 

reported to be secreted before. The number of input nodes has been chosen to find an 

acceptable compromise of computational cost and information content for the network 

modeling step.   

Optimization 

In total, we computed four subnetworks inferred based on different timepoints and input 

modalities as shown in Figure 41 to account for the time-resolved nature of the obtained 

data.  

To start the optimisation, TGF-β was taken as upstream input node of early affected 

enzymes (36 TFs, 22 kinases and phosphatases). This network was combined with a 

second network connecting the set of early affected enzymes (36 TFs, 22 kinases and 

phosphatases) and early secretomics hits (54 proteins). This combination represents 

early signaling events stimulated by TGF-β treatment which then lead to altered protein 

secretion up to 24 hours (early network). This ealry network contained 127 nodes and 

156 edges. 

To model assumed autostimulatory function of secreted factors, we modelled later 

signaling processes by inferring a first network between secreted proteins included in 
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the early network (43 proteins) and enzymes affected at a later timepoint (between 24 

h and 96 h, 59 proteins). As last step, this network was combined with a fourth 

subnetwork connecting later affected enzymes with late secretomics hits (72 proteins), 

resulting in 160 nodes and 202 edges.   

All in all, these combined networks result in one early and one late network describing 

the response of human derived resident PDGFRβ+ mesenchymal cells to TGF-β in a 

multimodal manner.  

Clustering, Cluster Comparison and Cluster Enrichment 

To obtain a more detailed understanding of biological processes at the network level, 

a clustering analysis was performed. All edges identified for the early and late network, 

respectively, were extracted and a fast and greedy clustering algorithm on the resulting 

graph was applied. Thereafter, a cluster-specific enrichment analysis, as described 

before, was carried out and all nodes related to the identified processes were extracted 

to gain mechanistic insights. 

We performed a cluster-specific enrichment analysis using ReactomePA 

package (Gillespie et al., 2022). All nodes per cluster of the result network were used 

as input. As background, all proteins were included after differential expression 

analysis for the network-level enrichments. In the ‘enrichPathway’ function, the 

organism was specified as "Human", minGSSize was set to five and maxGSSize was 

determined as 500. For identification of significant pathways, the result for pathways 

were enriched with at least two detected genes and with a significance cutoff of 0.01 

after multiple testing correction. 
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4. Results 

4.1. Rationale and Characterization of Cellular Fibrosis Model 

4.1.1. Selection of Cellular Model 

As myofibroblasts are one of the major drivers of kidney fibrosis, I decided to dissect 

how mesenchymal cells, like pericytes and fibroblasts, differentiate into myofibroblasts. 

Therefore, I obtained human kidney-derived PDGFRβ+ cells, comprising different 

mesenchymal cells, from the lab of Prof. Dr. med. Rafael Kramann (Kuppe et al., 2021). 

To study a profibrotic response, I decided to stimulate the cells with TGF-β, a master 

regulator of fibrosis (Edeling et al., 2016; Meng et al., 2016; Sziksz et al., 2015; Van 

Linthout et al., 2014; Zhou et al., 2020). 

Furthermore, a simple cellular model has the advantage, compared to patient-derived 

material, that it is not limited to the availability of human tissue, which is often a limiting 

factor. Additionally, a cellular model can be easily perturbed and therefore different 

compounds could be tested. 

4.1.2. Model Characteristics 

In the following section, I outlined initial experiments in which I characterized the cell 

lines response to TGF-β stimulation. Key objectives included observing the alterations 

in cell morphology, evaluating changes in expression of fibrotic genes at the mRNA 

level and assessing the deposition of extracellular matrix over time. 

Extracellular Matrix Dynamics 

Assuming that activated myofibroblasts are the main source of ECM, I examined 

whether the ECM deposition of the used cell line would be altered upon stimulation 

with TGF-β. In our lab, we are accelerating the ECM deposition by adding 

macromolecular crowding to the culture media, a mixture of neutral 70 and 400 kDa 

Ficoll (Chen et al., 2009; Coentro et al., 2021; Khan et al., 2023). Initially, I assessed 

the changes in ECM deposition using antibody staining of extracellular Collagen 1 

(Col I) (Figure 4). 
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Based on the findings of previous experiments conducted in the lab with normal human 

lung fibroblasts (Khan et al., 2023), we expected a significant difference in ECM 

deposition of TGF-β treated cells compared to control cells after 48 h. My results 

indeed showed a significant difference between TGF-β treated and control cells on 

extracellular Col I synthesis (Figure 4d), affirming the suitability of the used cellular 

system to study fibrosis. 

 

Figure 4 Immunofluorescence images of extracellular Col I at 48 h post TGF-β treatment and 
quantification. The day after cell seeding, media was changed to either DMEM + Ficoll + ascorbic acid 
+ 0.5 FBS (control) or + TGF-β for the treated condition. A, B) Widefield microscopy images were 
acquired with the Molecular Devices IXM. Immunofluorescence staining of extracellular Col I and nuclei 
(Hoechst 33342) are shown 48 h after the medium change for the A) control and B) TGF-β treated 
condition. Blue arrows highlight fibrillar collagen. Scale bar = 100 µm. C) Data overview of 
immunofluorescence signal (Col I staining) after background subtraction and normalization to the cell 
number (Count_Nuclei) resulting in the values Col1_per_cell shown on the y-axis versus the 
Count_Nuclei on the x-axis. Each dot stands for individual images of the biological replicates (plates), 
blue dots depict control samples and purple dots TGF-β treated samples. Here, images with less than 
50 nuclei were excluded from the analysis. D) The y-axis shows the FC_intensity values, calculated as 
fluorescence intensity (Col1_per_cell) of the TGF-β treated samples divided by the mean of the control 
treated samples. The median values for each sample are shown by the bars, dashed lines stand for the 
control sample used as reference in the t-test. TGF-β treatment resulted in increased Col I deposition. 
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Morphological Changes 

The transition of mesenchymal cells to activated myofibroblasts entails morphological 

alterations. Using microscopy read-outs, I therefore tested whether the cells showed 

any morphological changes and expression of typical markers like alpha-smooth 

muscle actin (α-SMA, ACTA2), vimentin or an increased production of ECM (Hinz & 

Lagares, 2021; Walker et al., 2019). 

Initially, I tested different fixation methods (PFA, methanol) and staining techniques. 

Even without TGF-β treatment, some of the PDGFRβ+ cells, consisting of several 

mesenchymal cell types, showed a more intense staining for α-SMA. Nevertheless, the 

overall expression of α-SMA remained low, with no discernible increase upon TGF-β 

stimulation (data not shown). Additionally, while the cells were vimentin positive, I did 

not see an enhancement in fluorescent signal upon TGF-β treatment. Nevertheless, 

the vimentin fibers were aligned and more pronounced after 48 h of TGF-β stimulation 

in contrast to the control condition with shorter fibers (Figure 5). 

Moreover, visualization of the actin cytoskeleton, using phalloidin, revealed an 

increase in actin stress fibers and notable changes in cell morphology post TGF-β 

treatment. Upon TGF-β treatment for 48 h, the cells showed more pronounced fibers 

that were locally and globally organized when compared to the control where the fibers 

were more unorganized on the multicell scale (Figure 5).  

 

Figure 5 Morphological changes following 48 h of TGF-β treatment. Sum Z-projections of confocal 
images acquired at the Zeiss LSM 900 depict morphological alternations. Cells were seeded on day 0, 
media changed 24 h after to DMEM + 0.5% FBS + Ficoll for the control (A-C), and the same media 
supplemented with 10 ng/ml TGF-β for the treatment condition (D-F). Shown are images taken of the A, 
D) nuclei stained with Hoechst 33342, B, E) vimentin staining and C, F) phalloidin staining for actin 
filaments (highlighted by blue arrows). Scale bar: 50 µm. TGF-β treatment showed no effect on vimentin 
expression or structure, but led to more stress fibers. 
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Fibrotic Marker Gene Expression 

To elucidate the transcriptional regulation underlying TGF-β-induced fibrosis, I used 

RT-qPCR to assess marker genes like COL1A1, ACTA2, VIM, FN1 (F. C. Chang et 

al., 2012; Edeling et al., 2016; Kendall & Feghali-bostwick, 2014; Kramann & 

Humphreys, 2014; Lotz-Jenne et al., 2016; Sziksz et al., 2015; Zeisberg & Kalluri, 

2015). 

Examination of different time points was conducted to determine the optimal time frame 

for analysis. Figure 6 illustrates the mRNA expression changes of TGF-β treated 

samples compared to control at each time point for individual genes. At 8 h, there was 

no significant change of any of the tested genes. The mRNA expression of VIM did not 

change over time while there was a significant increase of COL1A1 mRNA expression 

upon stimulation with TGF-β after 24 h. Moreover, ACTA2 mRNA expression levels 

increased, however, not significantly. These data collectively suggested a profibrotic 

response of the cells to TGF-β. 

 

Figure 6 mRNA expression changes over time following TGF-β treatment. RT-qPCR quantification 
of fibrotic marker genes (ACTA2, COL1A1, FN1 and VIM) at various time points (8, 24, 48, 72 h) post 
TGF-β stimulation. Data were acquired and normalized as described in the methods section 3.2.4. In 
short, the CT values were normalized to the respective GAPDH CT values. Treated samples were then 
further normalize to the non-treated samples for each time point respectively. The percentage was 
calculated using the 2-∆∆CT times 100 to obtain the percentages. The time post TGF-β treatment is shown 
on the x-axis, the mRNA expression levels as described above, on the y-axis. Bars denote the average 
values of two independent biological experiments with two technical replicates, while individual values 
are depicted as dots. Control treated samples, were normalized to 100% indicated by the dashed line, 
to which a t-test was performed.  
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4.1.3. Establishing Experimental Design and Time Points 

Upon recognizing the variability in initial experiments regarding ECM deposition, I 

directed my efforts towards optimizing experimental parameters for consistency and 

reproducibility. Moreover, determining the most relevant time points for investigating 

the underlying mechanisms of the cellular system to a profibrotic stimulus became 

more prominent. 

Furthermore, leveraging the cells for multi-omics analysis was deemed valuable to 

systematically explore mRNA and protein-level changes, as well as alterations in 

secreted factors, as crucial extracellular signaling molecules. However, to use 

secretomics as a read-out, I had to eliminate the inference of proteins from the fetal 

bovine serum (FBS) in the media. FBS, containing various growth factors, could 

potentially influence signaling, thereby elevating background signals. Consequently, 

an adjusted protocol without FBS during the TGF-β treatment period was tested. In the 

following section, I will describe the tested variables like cell number, media change 

after 24 h and 48 h and different time points, in more detail.  

TGF-β Response Curve 

Additionally, I assessing whether a different concentration of TGF-β used would be 

more suitable for the experimental set-up. Therefore, I treated cells with different 

concentrations of TGF-β for 48 h and compared the resulting ECM deposition, through 

immunofluorescence staining, to the control. All of the tested concentrations yielded a 

significantly higher expression of extracellular Col I (Figure 7). After consultation with 

our collaborators, that use the cells as well, we decided to stick with 10 ng/ml TGF-β.  
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Figure 7 Quantification of immunofluorescence staining of the extracellular Col I for different 
concentrations (ng/ml) of TGF-β. Quantification of fluorescence intensity (FC_intensity), representing 
the immunofluorescence staining of the extracellular Col I, expressed by cells 48 h at the control 
condition (blue) or after TGF-β treatment (purple). Each dot stands for individual images of the biological 
replicates (plates). The x-axis shows the different concentrations of TGF-β tested. Images with less than 
25 nuclei were excluded for the analysis. The y-axis shows the FC_intensity values, calculated as 
fluorescence intensity (after background correction and normalization to nuclei number) of the ctrl (0 ng) 
subtracted from all images. The result was further divided by the value of the ctrl (0 ng) condition. The 
median values for each sample are shown by the bars, dashed lines stand for the control sample used 
as reference in the t-test. All concentrations of TGF-β used yield a significant increase of extracellular 
deposited Col I. 

Cell Number Determination 

To establish optimal cell densities for subsequent experiments, different cell numbers 

were seeded per well of a 24-well plate. Subsequently, cells were treated at various 

time points, and fluorescence signal, indicative of extracellular Collagen 1 build-up, 

was analyzed following TGF-β treatment compared to control (Figure 8).  

In Figure 8, it is shown that the Col I intensity generally increases with increasing cell 

number seeded, this is true for the control and the TGF-β treated conditions. However, 

when plotting the Col I per cell (normalized to the nuclei number), it became apparent 

that more cells did not produce more Collagen over all. Since cells were overgrowing 

in more densely seeded wells, there were also more autofluorescent cells. Based on 

these results and considering factors such as overgrowth and autofluorescence, the 

following cell numbers were fixed for each time point: 15k for 96 h, 20k for 72 h, 25k 

for 48 h, 50k for 24 h, and 75k for less than 24 h.  
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Figure 8 Change of immunofluorescence-stained extracellular Col I and Col I per cell across 
various nuclei numbers seeded and time points. Different cell numbers, depicted on the x-axis, were 
seeded for ± TGF-β treatment for 6, 12, 24, 48, 72 and 96 h. A, B) The y-axis shows the fluorescent 
signal after background correction for the extracellular Col I per image, for A) control (blue) and B) TGF-
β treated (purple) samples at the different time points tested. C, D) On the y-axis, Col I signal normalized 
to the nuclei number is depicted for C) control (blue) and D) TGF-β treated (purple) samples at 6 – 96 h 
post treatment. While the fluorescence increases with more cells, this increase is not linear and results 
in less Col I produced per cell in wells with a denser cell population. 
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Figure 9 Analysis of extracellular Col I immunofluorescence-staining following TGF-β treatment 
at various cell numbers. The fluorescent intensity corresponding to the extracellular Col I per cell in 
TGF-β treated samples is normalized to the respective control conditions for each time point (6, 12, 24, 
48, 72, and 96 h) and cell number. This means that after background correction, and exclusion of images 
with less than 30 nuclei, the average fluorescence intensity per cell of the control samples was 
subtracted from the TGF-β treated samples. The results were further divided by the average values of 
the control samples leading to the FC_intensity, shown on the y-axis. Cell number and treatment 
conditions (ctrl or TGF-β treated) are shown on the x-axis for each time point. The different shapes 
represent distinct biological replicates and the individual points depict the individual images taken for 
each condition (ctrl = blue, TGF-β = purple). Points from ctrl and TGF-β treated samples are shown in 
different shapes.  
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Figure 10 Immunofluorescence images of extracellular Col I at 48 and 98 h and different cell 
numbers seeded. Different cell numbers were seeded in 24 well plates. The following day, medium 
was changed either to DMEM + Ficoll + ascorbic acid (control) or + TGF-β for the treatment conditions. 
Staining of extracellular Col I and nuclei (Hoechst 33342) are shown for 48 h (5, 25, 50 k cells seeded) 
and 96 h (5, 15, 50 k cells seeded). Blue arrows highlight fibrillar collagen. Treatment with TGF-β 
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induced more Col I deposition with more Col I in conditions with higher cell numbers. Scale bar = 100 
µm.  

Fibrotic Response Over Time in Different Experimental Set-ups 

Furthermore, alternative experimental set-ups were explored (Figure 11). Initially, I 

seeded different cell densities for the various time points and started treating all 

samples at the same time. Then I would harvest the samples accordingly. However, in 

the experimental set-up B, I seeded the same cell number for all of the samples at the 

same time. The day after seeding, I changed the medium of the samples with the 

longest treatment to medium containing molecular crowding agents and ascorbic acid 

for the control and the same media + TGF-β for the treatment. The media of all other 

conditions was changed to DMEM without FBS.  

 

Figure 11 Illustration of experimental set-up A and B. In set-up A, the cells were seeded at the same 
time, however, at different cell densities according to the time of treatment. At the next day, the treatment 
± TGF-β was started, and samples were harvested after 12, 24, 48, 72 and 96 h. In contrast to this, in 
the experimental set-up B, cells were seeded at the same density. On the next day, the treatment of the 
longest time point (96 h) was started, followed by treatment of the next time point (72 h) at the 
consecutive day, and so on. Samples for the different treatment conditions were then harvested all at 
the same day. Down-stream read-outs involved image acquisition and analysis of deposited Col I and 
morphological changes. In addition, the mRNA expression of fibrotic marker genes and relevant 
signaling proteins was assessed using RT-qPCR and western blotting. 
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Changes in Extracellular Collagen I 

Both experimental set-ups revealed significant differences in extracellular Col I 

deposition as early as 12 hours post-TGF-β treatment, with deposition increasing over 

time, particularly evident in set-up B (t-test) (Figure 12), where all samples underwent 

the same background correction. The advantage of set-up B was that the cells were 

seeded all at the same time and on the same plate which resulted in the same 

background subtraction of all samples and direct comparison between the time points.  

 

Figure 12 Analysis of extracellular Col I post-TGF-β treatment at various time points and different 
experimental set-ups. Immunofluorescence staining of extracellular Col I following treatment with TGF-
β is compared and normalized to the respective control condition at designated time points (12, 24, 48, 
72 and 96 h). Condition is indicated on the x-axis while the y-axis shows the FC_intensity (calculated as 
in the previous graph). Dots are color coded based on treatment (ctrl as blue, and TGF-β as purple). 
The bars indicate the median and individual data points denote the results from individual images taken. 
For set-up A, one biological replicate was tested, while set-up B involved two independent biological 
replicates. T-test was used to determine statistically significant differences between TGF-β and ctrl 
treated samples per time point. 

Changes in mRNA Expression of Fibrotic Marker Genes 

Furthermore, I analyzed the changes of fibrotic marker genes which varied over time 

in the two experimental set-ups. In Figure 13, one can see that the expression of 

vimentin (VIM) did not change much in the TGF-β treated conditions compared to the 

controls at each time point or over time and there was no difference between the 

experimental set-up A and B. On the other hand, the mRNA expression of the other 

genes tested increased with TGF-β treatment. It was also shown that ACTA2 mRNA 

expression varied across the tested time points and in the two experimental set-ups. 
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Additionally, I want to note that the expression of COL5 increased in the experimental 

set-up A while it stayed constant over time in the set-up B. 

 

Figure 13 Comparison of fibrotic marker gene mRNA expression changes in different 
experimental set-ups. RT-qPCR quantification of fibrotic marker genes (ACTA2, COL1A1, COL5, FN1 
and VIM) at various time points (12, 24, 48, 72 and 96 h) post TGF-β stimulation. Data were acquired 
and normalized as described in the methods section 3.2.4 Figure 6. The x-axis shows the time post 
TGF-β treatment, the y-axis the mRNA expression. Bars denote the average values of independent 
biological replicates with two technical replicates, while individual values are depicted as dots. Control 
treated samples, were normalized to 100 % indicated by the dashed line, on which a t-test was 
performed. The upper part of the figure shows the data of three biological replicates (A1-A3) for the 
experimental set-up A. The lower part of this figure summarizes the result of experiments with the set-
up B, including six independent biological replicates (B1-B6). 

Morphological Differences 

I was intrigued to determine the onset of morphological changes induced by the TGF-

β stimulation and wanted to know whether the effect is sustained over time. Therefore, 

I investigated these alterations using phalloidin staining to visualize the cells 
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cytoskeleton. In the figure below (Figure 14), images taken from the experimental set-

up B are shown as there all the samples were on the same plate and could be acquired 

with the same conditions. While the cytoskeleton appeared relatively relaxed in the 

control condition, cells treated with TGF-β showed an increase of stress fibers over 

time, this was definitely prominent after 48 h, whereas at earlier time points the 

inspection of images showed a heterogenous distribution of cells with stress fibers. 
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Figure 14 Morphological changes over time and with TGF-β treatment. Sum Z-projections of 
confocal images acquired at the Zeiss LSM 900 show immunofluorescence-stained cells at 0, 12, 24, 
48, 72 and 96 h after ± TGF-β treatment with the experimental set-up B. Cells were seeded on day 0, 
and media of the longest treatment time point was changed to DMEM + Ficoll for the control condition, 
the same media + TGF-β for the treatment condition. Additionally, media of all other wells was changed 
to blank DMEM. The day after, the media was changed for all conditions as the day before, with the 
exception of the 72 h time point for which the treatment was started at that day. This continued until the 
cells were fixed at the last day and stained with Hoechst 33342 for nuclear staining and phalloidin for 
the staining of the actin cytoskeleton. Scale bar: 50 µm. Blue arrows highlighting examples of actin 
stress fibers. 
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Timely Dynamics of SMAD2 Phosphorylation 

In an effort to capture early signaling responses, and since phosphorylation of proteins 

is an important factor in signal transduction, I wanted to add phosphoproteomics to the 

study. Initially, I examined the canonical downstream signal of TGF-β, SMAD2 and its 

phosphorylation (Friedman et al., 2013; Meng et al., 2016; Sziksz et al., 2015; Tie et 

al., 2022). Antibody validation for western blotting was performed, assessing SMAD2 

phosphorylation at time points 24, 48, and 72 hours (Figure 15). The results 

demonstrated that TGF-β induced phosphorylation of SMAD2 across all tested time 

points. In the bar plot, the signals for phospho-SMAD2 (p-SMAD2) and SMAD2 were 

normalized to the loading control α-tubulin and normalized p-SMAD2 was further 

correlated to the SMAD2 signal. 

The phenol free condition in the blot below refered to the DMEM used, which was 

without phenol red. This sample was just included because I wanted to see whether 

there was an effect on the signaling, as I wanted to use phenol free medium for imaging 

and the omics experiments.  
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Figure 15 Analysis of SMAD2 phosphorylation and expression changes upon treatment with 
TGF-β for 24, 48 and 72 h. A) Western blots showing chemiluminescent signal of plots stained with 
phospho-SMAD2 (p-SMAD2) and SMAD2 antibodies and α-tubulin as loading control. Cells were 
treated ± TGF-β for the respective time points and loaded onto two gels in parallel. One membrane was 
used for staining with p-SMAD2 antibody and α-tubulin (after sodium azide treatment), while the second 
membrane was used to assess the change of SMAD2 protein expression through staining with an 
antibody against SMAD2. Following sodium azide treatment to deactivate the HRP activity of previous 
SMAD2 staining, the membrane was then stained for α-tubulin. B) Bar plots represent the change of 
chemiluminescence signal, corresponding to the respective staining, per time point. First, values for p-
SMAD2 and SMAD2 were normalized to the loading controls. The resulting values for p-SMAD2 staining 
were then normalized to the respective signal for SMAD2. These results are depicted on the y-axis. The 
treatments are shown on the x-axis (ctrl in black, TGF-β in grey). In summary, stimulation with TGF-β 
increased the phosphorylation of SMAD2. 

I further assessed the timeframe for SMAD2 phosphorylation following TGF-β 

treatment. The analysis was the same as above and showed that already 2 min after 

TGF-β treatment, phosphorylation of SMAD2 increased when compared to the control 

at that time (Figure 16).  
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Figure 16 Analysis of SMAD2 phosphorylation and expression changes upon treatment with 
TGF-β after 2 min to 96 h. A) Western blots showing chemiluminescent signal of plots stained with 
phospho-SMAD2 (p-SMAD2) and SMAD2 antibodies and α-tubulin as loading control. Cells were 
treated ± TGF-β for the respective time points and loaded onto two gels in parallel. One membrane was 
used for staining with p-SMAD2 antibody and α-tubulin (after sodium azide treatment), while the second 
membrane was used to assess the change of SMAD2 protein expression through staining with an 
antibody against SMAD2. Following sodium azide treatment to deactivate the HRP activity of previous 
SMAD2 staining, the membrane was then stained for α-tubulin. Notably, since the signal for TGF-β 
treated samples at 1, 3, 6 and 12 h was overexposed in the first plot, right underneath the bands with a 
lower exposure are shown. B) Bar plots represent the change of chemiluminescence signal, 
corresponding to the respective staining, per time point. First, values for p-SMAD2 and SMAD2 were 
normalized to the loading controls. The resulting values for p-SMAD2 staining were then normalized to 
the respective signal for SMAD2. These results are depicted on the y-axis. The treatments are shown 
on the x-axis (ctrl in black, TGF-β in grey). Notably, the stimulation with TGF-β led to an increased 
phosphorylation of SMAD2 at all time points. 

Replicating the previous experiments, one can see that already at the earliest time 

points tested, the phosphorylation of SMAD2 was increased, sustained over time and 

the highest at 30 min (Figure 17).  
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Figure 17 Analysis of SMAD2 phosphorylation and expression changes upon treatment with 
TGF-β after 30 sec to 96 h. A) Western blots showing chemiluminescent signal of plots stained with 
phospho-SMAD2 (p-SMAD2) and SMAD2 antibodies and α-tubulin as loading control. Cells were 
treated ± TGF-β for the respective time points and loaded onto two gels in parallel. One membrane was 
used for staining with p-SMAD2 antibody and α-tubulin (after sodium azide treatment), while the second 
membrane was used to assess the change of SMAD2 protein expression through staining with an 
antibody against SMAD2. Following sodium azide treatment to deactivate the HRP activity of previous 
SMAD2 staining, the membrane was then stained for α-tubulin. B) Bar plots represent the change of 
chemiluminescence signal, corresponding to the respective staining, per time point. First, values for p-
SMAD2 and SMAD2 were normalized to the loading controls. The resulting values for p-SMAD2 staining 
were then normalized to the respective signal for SMAD2. These results are depicted on the y-axis. The 
treatments are shown on the x-axis (ctrl in black, TGF-β in grey). Increased phosphorylation of SMAD2 
resulted from stimulation with TGF-β at almost all time points (except after 1 min). 

4.1.4. Investigating Drug Effects on Extracellular Matrix Accumulation 

To show the potential of the used cellular system for drug discovery purposes, I tested 

a few compounds that are used for the treatment of other fibrotic diseases. Two FDA 

approved drugs for the treatment of pulmonary fibrosis are Pirfenidone (PFD) and 

Nintedanib (Nin) (Bigaeva, Cavanzo, et al., 2020). The function of PFD is not entirely 

understood but is associated with inhibition of production as well as activity of TGF-β 

(Cho & Kopp, 2010). 
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Affected pathways by Nin are VEGF, FGF, PDGF as well as lymphocyte-specific 

protein tyrosine kinase and Src nonreceptor kinase signaling. The inhibited pathways 

are of therapeutic interest as all of them are involved in fibrosis (Bigaeva, Stribos, et 

al., 2020). 

 

However, in the used cellular model, neither PFD nor Nin showed a decrease of 

extracellular Col I deposition after 48 h in the presence or absence of TGF-β (Figure 18, 

Figure 19). Only treatment with 0.05 μM and 0.5 µM PFD combined with TGF-β 

significantly decreased extracellular Col I deposition after 96 h when compared to the 

DMSO + TGF-β condition (Figure 18).  

 

Figure 18 Assessing effects of Pirfenidone (PFD) on the accumulation of extracellular Col I over 
time. The day after cell seeding, the cells were treated with different concentrations of PFD (0.05, 0.5, 
5, 50, 500 µM) either with or without TGF-β. Immunofluorescence staining after 48 (A) and 96 h of 
treatment was done for extracellular Col I. B) After background correction, the immunofluorescence 
signal of the DMSO control was first subtracted from all images. Subsequently, the values were divided 
by the signal of the DMSO control to result in the FC_intensity, plotted on the y-axis. This was done for 
each time point separately. The treatment and concentration of PFD used are indicated on the x-axis. 
Dots are color coded based on treatment (ctrl as blue, and PDF treated in grey). The bars indicate the 
median and individual data points denote the results from individual images taken. One to three 
biological replicates (plates) were tested for each condition. T-test was used to determine statistically 
significant differences between the PFD treated and DMSO samples per time point. This was also done 
separately for all TGF-β treated samples.  
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Figure 19 Assessing effects of Nintedanib (Nin) on the accumulation of extracellular Col I over 
time. The day after cell seeding, the cells were treated with different concentrations of Nin (0.1 and 1 
µM) either with or without TGF-β. Immunofluorescence staining after 48 (A) and 96 h of treatment was 
done for extracellular Col I. B) After background correction, the immunofluorescence signal of the DMSO 
control was first subtracted from all images. Subsequently, the values were divided by the signal of the 
DMSO control to result in the FC_intensity, plotted on the y-axis. This was done for each time point 
separately. The treatment and concentration of Nin used are indicated on the x-axis. Dots are color 
coded based on treatment (ctrl as blue, and PDF treated in grey). The bars indicate the median and 
individual data points denote the results from individual images taken. One to three biological replicates 
(plates) were tested for each condition. T-test was used to determine statistically significant differences 
between the Nin treated and DMSO samples per time point. This was also done separately for all TGF-
β treated samples.  

Alternatively, I tested LY2109761 (LY), a TGF-β receptor type I/II (TβRI/II) dual 

inhibitor. Only when using 20 µM, the drug led to a reduction of extracellular Col I in 

the samples without TGF-β when compared to the DMSO treated control (Figure 20). 

Nevertheless, in the TGF-β treated conditions, co-treatment with LY resulted in 

significant decrease of deposited Col I when compared to the TGF-β treated DMSO 

condition.  
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Figure 20 Quantification of effects by different concentrations of LY210976 (LY) on the 
accumulation of extracellular Col I after 48 h. The day after cell seeding, the cells were treated with 
different concentrations of LY (2, 5, 20 µM) either with or without TGF-β. A) Immunofluoresence staining 
48 h post treatment was done for extracellular Col I. B) After background correction, the average 
immunofluorescence signal of the DMSO control was first subtracted from all images. Subsequently, 
the values were divided by the signal of the DMSO control to result in the FC_intensity, plotted on the 
y-axis. The treatment and concentration of LY used are indicated on the x-axis. Dots are color coded 
based on treatment (ctrl as blue, and LY treated in grey). The bars indicate the median and individual 
data points denote the results from individual images taken. The experiment included one biological 
replicate (plate). T-test was used to determine statistically significant differences between the LY treated 
and DMSO samples. This was also done separately for all TGF-β treated samples.  

Additionally, I treated the cells with Dextromethorphan (Dex), a drug that showed up 

as a hit in my colleague’s screen (Khan et al., 2023), leading to reduced Col I secretion 

in normal human lung fibroblasts (NHLF). Treatment with Dex showed the same 

potential in reduction of extracellular Col I deposition in our cellular model (Figure 21). 

Dex treatment resulted in both conditions, with and without TGF-β, in a significant 

reduction of deposited Col I after 48 and 96 h compared to the respective controls. 
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Figure 21 Quantification of extracellular Col I accumulation over time post Dextromethorphan 
(Dex). The day after cell seeding, the cells were treated with 10 µM of Dex and additionally either with 
or without TGF-β. Immunofluorescence staining 48 (A) and 96 h post treatment was done for 
extracellular Col I. B) After background correction, the average immunofluorescence signal of the DMSO 
control was first subtracted from all images. Subsequently, the values were divided by the signal of the 
DMSO control to result in the FC_intensity, plotted on the y-axis while the treatment is shown on the x-
axis. Dots are color coded based on treatment (ctrl as blue, and Dex treated in black). The bars indicate 
the median and individual data points denote the results from individual images taken. The experiment 
included two to four biological replicates (plates). T-test was used to determine statistically significant 
differences between the Dex treated and DMSO samples. This was also done separately for all TGF-β 
treated samples. 
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4.2. Multi-omics Insights into Cellular Responses and Pathways 

4.2.1. Motivation for and Experimental Set-up of Multi-omics Experiments 

CKD is a disease that is driven by genetic, molecular and environmental factors. To 

further dissect the underlying mechanisms of a complex disease like CKD/kidney 

fibrosis and especially the contribution of the used cellular model to the pathology, I 

decided to provide a comprehensive view of the molecular mechanism. Aiming to use 

an unbiased approach and to integrate multiple read-outs, I chose to generate a multi-

omics dataset. The read-outs involved whole RNA sequencing, proteomics including 

full proteomics (of the cell lysates), phosphoproteomics and secretomics (proteomics 

of the cell culture supernatants). Moreover, as established in previous sections, 

changes in the ECM were assessed using immunofluorescence staining of 

extracellular Col I.  

Additionally, to understand the timely dynamics of the profibrotic signaling, cells were 

treated with TGF-β at the following time points 5 min, 1, 12, 24, 48, 72, and 96 h. 

All data presented in the following section were generated from three to four biological 

replicates with the following set-up (set-up B in previous sections): Cells were plated 

at 30-40% confluency, which would lead to a confluency of roughly 90% at the 

collection point (after 5 days). The cells were grown for 18 h in the plates before 

changing the medium to 0% FBS-containing medium on day 1. Treatment for the 

longest duration (96 h), also began on day 1. On day 2, I started with the treatment for 

72 h, and so forth. In general, the medium was changed every 24 h. 

As controls, I collected control samples at each time point as well as an untreated 0 h 

control that was cultured in medium without molecular crowding and ascorbic acid 

(unlike treated and other control samples). At the end of the experiment, samples were 

either fixed (for imaging) or harvested for the omics experiments (Figure 22). 
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Figure 22 Set-up for multi-omics experiment. Cells were plated on day 0 at 30-40% confluency. At 
day 1, the medium of all conditions was changed to DMEM without FBS and Ficoll, except for the 96 h 
time point, where the medium was changed to DMEM containing Ficoll and ascorbic acid for the control. 
The latter medium was also used for the treatment condition and contained 10 ng/ml TGF-β. The media 
was generally changed every 24 h. On day 2, the 72 h treatment started. All samples of one biological 
replicate were harvested at the last day for the omics read-outs or fixed for the imaging of extracellular 
Col I. In general, three biological replicates were generated for transcriptomics and secretomics while 
four replicates were generated for proteomics, phosphor-proteomics and the imaging read-out. 

4.2.2. Extracellular Matrix Dynamics 

In addition to the multi-omics experiment, I investigated the effects of TGF-β treatment 

on extracellular matrix deposition through immunofluorescence staining of Col I. 

Therefore, I set up four biological replicates (plates) with two technical replicates each 

for multiple time points treated with and without TGF-β. Figure 23 shows representative 

images of the increase of extracellular Col I at the time points tested. 

 

After image analysis with CellProfiler and rigorous background correction, including 

non-fibrillar Col I/ECM staining and autofluorescence subtraction (see Annex Figure 

64), first, I calculated the fold-change between the samples stimulated with TGF-β and 

the respective controls. While the change of the control was set to 1, the average fold-

change of the treated samples rangeed from 1.33 at 12 h, 1.57 at 24 h, 1.91 at 48 h, 

1.92 at 72 h, to 2.47 at 96 h (Figure 24). Using a t-test, the increase of Col I post TGF-

β treatment was shown to be significant at all time points compared to the respective 

control. 

To further examine the increase of ECM over time, I normalized all samples to the 

respective 0 h control, per plate. In this case, the value of the 0 h control was subtracted 

from all images, and later divided by the 0 h control so that the 0 h ctrl is set to 0. In 

this graph (Figure 24 B), the increase of ECM in the controls is also visible at the different 

time points. 
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Figure 23 Immunofluorescence staining of deposited Col I over time. Widefield microscopy images 
were acquired with the Molecular Devices IXM. Staining of the extracellular Col I and nuclei stained with 
Hoechst 33342 are shown for the control and TGF-β treated samples over time (0 – 96 h). Scale bar = 
100 µm. 
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Figure 24 Temporal dynamics of extracellular Col I depicting fold-changes between A) TGF-β and 
control, B) alongside comparison to the baseline (0 h). Each of the data points represents the fold-
change calculated for A) TGF-β treated sample compared to the corresponding controls at each of the 
time points, and B) each data point against the 0 h control. The data are presented for individual time 
points and biological replicates (plates A-D, denoted by distinct shapes). Control sample values are 
denoted in blue, while TGF-β treated samples are represented in purple. Statistical analysis was 
conducted utilizing the t-test. Notably, the fold-change between TGF-β stimulated samples and controls 
increased with time, while there is also an increase in deposited Col I in the control samples as time 
progresses. 



  Results 

84 

To further analyze the changes of ECM over time and assess the differences between 

the samples statistically, I used a mixed linear model. While accounting for fixed effects 

like treatment (condition), time and their interaction, I also included the between-plate 

variability as random effects. 

 

In general, the extracellular Col I deposition changed significantly over time and with 

TGF-β treatment (Table 16). More specifically, I asked myself at which time points there 

was a significant difference between TGF-β treated samples compared to the 

respective controls. The difference of deposited Col I was not significant between the 

12 h control and TGF-β treated samples. Nevertheless, from the 24 h time point 

onwards, the post hoc test of the model indicated a significant increase of Col I 

deposition in the TGF-β stimulated samples when compared to the respective controls 

at each time point (Table 17). This effect was consistent across biological replicates, 

indicating robustness and reproducibility. 

Based on previous experiments, I hypothesized that the accumulation of Col I would 

increase over time. While the early time points 12, 24, and 48 h were not significantly 

different from the 0 h time point, the later time points 72 and 96 h were (Figure 25, Table 

17). However, the control samples largely grouped together, including the 12 h TGF-β 

time point. Only the 48 h, 72h and 96 h time point were significantly different from each 

other. Additionally, treatment with TGF-β for 12 and 24 h did not lead to a significant 

increase of deposited Col I when compared to the last control time points, 72 and 96 h.  

While the TGF-β treated samples, 12 and 24 h, as well as 24 h and 48 h grouped 

together, the 72 and 96 h samples post TGF-β treatment are significantly different from 

the other time points. Even though the biological replicates B and C show consistently 

higher per cell intensity (as shown by the intercept, Figure 65) than plates A and D, the 

increase due to TGF-β treatment appeared constant for all biological replicates within 

one time point (Figure 25). 

Overall, these results showed the suitability of the used cellular model to study one of 

the most widely used phenotypic read-outs for fibrosis and the importance that TGF-β 

plays in the profibrotic response of the cells.   
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Figure 25 Temporal dynamics of TGF-β induced Collagen I deposition in cultured cells. Cells were 
cultured in glass-bottom 24 well-plates with four biological replicates (plate A-D, indicated by different 
shapes) with two technical replicates each. Cells were treated ± TGF-β for durations ranging from 0 to 
96 h. Using CellProfiler 4.2.6, the intensity values for the Col I staining and nuclei count were obtained 
from the imaging data. After background correction (including subtraction of non-fibrillar Col I/ECM 
staining and cell autofluorescence correction), the Col I intensity values of each image were normalized 
to the corresponding cell number to result in the Col I intensity per cell. For statistical analysis, the mean 
was calculated for each sample, the data were square root transformed and the resulting sqrt_mean_int 
values for the 0 h time points were duplicated for the TGF-β condition. A mixed linear model (formula = 
sqrt_mean_int ~ condition*time + (1 | plate)) was applied for statistical analysis of the increase of 
deposited Col I in both control as well as TGF-β treated conditions over time. Shown are square root 
transformed mean Col I per cell (sqrt_mean_int) on x-axis, with the y-axis displaying the time. Shape of 
individual data points depict the two technical replicates per biological replicate (plate), and colors stand 
for the ctrl (blue) and treatment with TGF-β (purple). More specifically, for visualization, the data were 
normalized to the predicted value at the 0 h time point, done separately per plate. The predicted values 
(also normalized to the values at 0 h), are indicated by the line, separately for the control (blue) and 
TGF-β samples (purple). 

Table 16 ANOVA analysis of Deviance Table (Type III Wald chisquare tests).  

Response: sqrt_mean_int      
 

Chisq  Df  Pr(>Chisq) 

(Intercept)      37.814  1  7.783e-10 *** 

condition        0.000  1  1 

time            52.276  5  4.734e-10 *** 

condition:time  79.919  5  8.727e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Table 17 Post hoc test of linear mixed model for pairwise comparisons between conditions and 
time points. For each condition and time, the estimated marginal means (emmeans, average response 
variable value across all levels of factors) together with the confidence intervals (lower confidence level 
and upper confidence level (CL)) are shown. The group column provides grouping labels based on 
significant differences between means.  

condition   time  emmean  lower.CL  upper.CL  .group 

TGF         0h  1670  -128  3469  a 

ctrl        0h  1670  -128  3469  a 

ctrl        48h  1970  143  3798  ab 

ctrl        24h  1985  158  3813  abc 

ctrl        12h  1992  164  3819  abc 

ctrl        72h  2272  445  4100    bcd 

TGF         12h  2310  482  4138    bcd 

ctrl        96h  2334  506  4162      cd 

TGF         24h  2456  628  4284        de 

TGF         48h  2719  892  4547          e 

TGF         72h  3107  1280  4935            f 

TGF  96h  3513  1686  5341           g 

Degrees-of-freedom method: kenward-roger  

Confidence level used: 0.95  

Conf-level adjustment: sidak method for 12 estimates  

P value adjustment: sidak method for 66 tests  

significance level used: alpha = 0.05  

 

4.2.3. Multi-omics Read-outs 

Transcriptomics 

In transcriptomics, we identified a total of 14939 genes, with roughly 2880 differentially 

expressed genes (absolute log2 fold-change > log(1.5), adjusted p-value < 0.05, over at 

least one time point) post TGF-β treatment. Opting for a more stringed log2 fold-

change cut-off of 2, resulted in 1442 differentially expressed genes (roughly 10% of all 

identified genes). 

The PCA plot (Figure 26) showed a clear separation between treated and control 

samples and a time dependent effect. Early time points, 5 min (0.08 h) and 1 h cluster 

together with the 0 h point. Notably, there was an outlier in the transcriptomics data 

(24 h ctrl, rep A) which I excluded for analysis as this was caused by an error while 

performing the experiment. 
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Figure 26 Principal component analysis (PCA) plots per omics modality. PCA scatter plots of 
dimensions PC1 and PC2. Samples are color coded by treatment, blue for control samples and purple 
for TGF-β treated samples. The various shapes indicate the treatment time. Included were 3 to 4 
biological replicates. 

Proteomics 

I hypothesized that fibrosis, and the aberrant accumulation of ECM and secretion of 

signaling molecules, are influenced by mechanisms that are not only dependent on 

transcriptional regulation but can be driven by factors like protein abundance changes 

and alterations in signaling pathways, e.g., induced by differences in post-translational 

modifications (Mullenbrock et al., 2018). Therefore, I had a further look into the 

proteomics and phosphoproteomics of cell lysates and cell culture supernatants 

(thereafter referred as secretomcis).  

Proteomics and Phosphoproteomics of Cell Lysates 

To link the findings further to the signaling mechanisms, we performed quantitative 

MS/MS analysis of protein lysates of cells stimulated with and without TGF-β for the 

beforementioned time points. 5% of the cell lysates were taken as a full proteome input, 

and 95% were used for the IMAC phosphopeptide enrichment, followed by high pH 

reverse phase fractionation and quantitative MS/MS.  

For the proteomics data, 7024 proteins were identified with 196 proteins being 

differentially regulated (absolute log2 fold-change > log(1.5), adjusted p-value < 0.05) 

when comparing TGF-β versus the control treatment at each time point separately.  
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In phosphoproteomics, 17255 phosphosites were identified resulting in 15186 

phosphosites when mapped to the proteomics data of the whole cell lysates. This 

represents 794 differentially expressed phosphosites in the phosphoproteomics and 

231 when normalized to the proteins measured in the full proteome runs. 

 

In general, the PCA plots (Figure 26) indicated a separation between treated and control 

samples over time. Especially in the PCA plot for the proteomics data one can see that 

the early time points like 5 min (0.08 h) and 1 h cluster together with the 0 h time point, 

as already seen for the transcriptomics results. Whereas most of the variance of the 

phosphoproteomics data and Input norm Phospho (phosphoproteomics normalized to 

the full proteome) is explained by the biological replicates (PC1). 

Secretomics - Proteomics of Cell Culture Supernatants 

On the one hand, I wanted to look at secretomics to identify potential biomarkers that 

could later on be assessed in the blood or urine of patients. On the other hand, it was 

evident that mesenchymal cells would secrete factors that further drive the profibrotic 

environment and thereby perform autocrine signaling as well as stimulating other cells 

that additionally promote the profibrotic environment. Therefore, to establish a 

coherent dataset, I collected cell culture supernatants of the plates used for 

proteomics. 

 

Combined analysis of the secretomics spectra resulted in the identification of 2187 

proteins, 219 of which were significantly differently expressed (absolute log2 fold-

change > log(1.5), adjusted p-value < 0.05) after TGF-β treatment. We further filtered 

the data based on entries of the MSigDB gene sets NABA_MATRISOME and 

NABA_MATRISOME_ASSOCIATED and ended up with roughly 80 differentially 

expressed proteins in at least one time point after manual annotation (we added 

MARCKS, CDH11, NRP2, SDC4, TFPI, CPA4, CACHD1).  

Unlike for the other omics, we did not measure the secreted proteins after 0.08 and 1 

h post TGF-β treatment. In the PCA plot (Figure 26), the 0 h time point was clearly 

separated from the other clusters. As already described for the other omics modalities, 

the control samples were separated from the TGF-β treated samples. Additionally, the 

time dependent effect was visible. 
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Summary and Overview of Multi-Omics Data 

One approach to link the findings obtained from the multi-omics experiment was to look 

for similar patterns and similarly regulated pathways/factors that were shared across 

the omcis modalities. Therefore, I will summarize them in this section. 

Increase of Significantly Deregulated Factors Over Time 

The analysis showed that the number of significantly affected proteins or genes 

(absolute log2 fold-change > log(1.5), adjusted p-value < 0.05) increased over time in 

all the data modalities (Figure 27), indicating a time dependent effect of the TGF-β 

treatment.  

More specifically, at the 5 min (0.08 h) time point of the transcriptomics data (rna), no 

genes were significantly deregulated whereas at 1 h post TGF-β stimulation, 98 genes 

were significantly deregulated. The number of differentially expressed transcripts 

increased over time with 470 at 12 h, 676 at 24 h, 624 at 48 h, 767 at 72 h, and 950 at 

96 h. 

While there were no differentially regulated proteins at 5 min and 1 h post TGF-β 

treatment, 11 proteins were up-/down-regulated at the 12 h time point, 35 at 24 h, 77 

at 48 h, 123 at 72 h, and 181 proteins after 96 h. Interestingly, at 5 min 2 phosphosites 

were deregulated upon treatment with TGF-β followed by 29 phosphosites at 1 h. At 

the 12 h time point, with 2 phosphosites there were less phosphosites significantly 

deregulated than at 1 h. This number, however, increased again over time with 13 sites 

at 24 h, 26 at 48 h, 54 at 72 h, and 176 at 96 h. 

Looking at the secretomics data, one can see that there were 23 differently expressed 

proteins after 12 h of stimulation with TGF-β, increasing to 22 at 24 h, 42 at 48 h, 51 

at 72 h, and 58 proteins at 96 h post TGF-β treatment. 
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Figure 27 Summary of number of hits over time per omics modality. The number of hits (absolute 
log2 fold-change > log(1.5), adjusted p-value < 0.05), up (red) and down (blue) regulated genes is shown 
on the y-axis per time, depicted on the x-axis. This was done per omics modality (transcriptomics = rna, 
secretomics, proteomics, input_phospho = phosphoproteomics normalized to proteomics of the whole 
cell lysates, and phospho = phosphoproteomic).   
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Figure 28 Volcano plot. Volcano plot with the log2 fold-change on the x-axis and adjusted p-value (-
log10(adj.P.Val)) on the y-axis. In red, significantly upregulated factors with an absolute log2 fold-change 
> log(1.5) are shown. Blue dots represent significantly downregulated. This is displayed for each omics 
modality and per time point measured. In general, there is an increase of significantly deregulated 
factors among all modalities and with time. 

Functional Analysis Indicates Pro-Fibrotic Response 

In Figure 29, using MSigDB and decoupleR (Badia-i-Mompel et al., 2022), it can be 

seen that treatment of TGF-β induced profibrotic pathways like TGF-β signaling, 

epithelial to mesenchymal transition (EMT), and hypoxia, starting from 12 h 

onwards in three omics modalities including transcriptomics, proteomics and 

secretomics. In contrast, anti-inflammatory pathways like Interferon α and γ response, 

were initially upregulated at 5 min in the transcriptomics data but were then 

continuously downregulated. From 72 h post TGF-β treatment, the mentioned 

interferon pathways were also downregulated in proteomics and secretomics. Another 

downregulated pathway that was shared among omics modalities was the fatty acid 

metabolism starting from 12 h onwards on proteomics and additionally transcriptomics 

at some time points. 

Induced by TGF-β treatment, TNFα signaling via NF-κB was upregulated at 1 h post 

TGF-β treatment in proteomics and transcriptomics, whereas it stayed upregulated 

until 72 h in proteomics. Other pathways that were upregulated upon TGF-β stimulation 
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at the tested time points and across the omics modalities were Myogenesis (in 

proteomics, secretomics and RNA-seq at 12 to 72 h, and in proteomics alone at 96 h), 

Coagulation (in proteomics, secretomics and RNA-seq at 24 h, in proteomics and 

secretomics at 48 and 72 h, in proteomics alone at 96 h), Angiogenesis (in 

proteomics, secretomics and RNA-seq at 24 and 72 h, in proteomics only at 12, 48 and 

96h), and Apical junction (in proteomics, secretomics and RNA-seq at 48 to 96 h, in 

RNA-seq and proteomics at 24h, at proteomics alone at 12 h). 

Interestingly, cholesterol homeostasis was only downregulated in the 

transcriptomics data at 24 and 72 h and in transcriptomics and proteomics at 96 h. 

Furthermore, Oxidative phosphorylation was downregulated in proteomics and at 

some time points secretomics, starting 24 h after TGF-β treatment. 

Additionally, the E2F targets pathway was downregulated in RNA-seq and proteomics 

after 72 h, and is downregulated in secretomics at 96 h post TGF stimulation. At 96 h, 

the G2M checkpoint pathway was deregulated in transcriptomics. In line with this was 

the increase of p53 pathway that was upregulated starting at 48 until 96 h after TGF-

β treatment in transcriptomics.  



  Results 

93 

 

Figure 29 Functional analysis over time and for all omics modalities. A selection of pathways that 
are shared between the omics modalities is shown for the different time points. The color and shape of 
each dot depicts the modality: input_phospho = yellow triangle, protomics = blue dot, RNA 
(transcriptomics) = red star, secretomics = green square. 
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Multi-Omics Hits 

In my thesis, I aimed to highlight secreted proteins that also were significantly regulated 

in other omics modalities. As already mentioned, I focused on secreted proteins 

because they have a great potential to serve as biomarkers as those could be 

potentially measured in the blood or urine of patients.  

The heatmap below summarizes overlapping hits that showed up in at least two out of 

the three omics modalities, at one or more time points, as significantly deregulated 

(absolute log2 fold-change > log(1.5) (log(2) for transcriptomics), adjusted p-value < 

0.05). White cells in the heatmap indicate that the corresponding genes/proteins were 

not significantly deregulated at the respective time point. I did not include the 

phosphoproteomics in there as the number and overlap of hits was low. For readability 

of the heatmap, I divided it into two figures (Figure 30, Figure 31). Since the hits were 

roughly divided into three cluster, I generated one heatmap with cluster two (Figure 30) 

and another heatmap with cluster one and three (Figure 31). Cluster one contained 

factors which expression was mainly downregulated upon treatment with TGF-β. 

Factors which expression was upregulated over time are summarized in cluster two. 

In cluster three, the factors were strongly upregulated over time.  

Factors, which expression was upregulated in transcriptomics, proteomics and 

secretomics included TGFBI, SERPINE, IGFBP3, LTBP2, TNC, AMIGO2, LMCD1, 

ADAM12, COL4A1, BGN, MMP2, HTRA1, FBN1, COL5A1, CDH11 in cluster three, 

and TGFB1, MMP14, PLXDC2, CACHD1, THBS1, HMCN1, NRP2, SPARC, 

SERPINE2, COL7A1, MRC2, IGFBP7, SEMA3C, PTK7, MARCKS, CSPG4, COL4A2, 

CCN2, LTBP3, CTHRC1, CRIP2, GPC4, PXDN, and COL6A2 in cluster two. TFPI, 

MX1 as well as CPA4 were downregulated (cluster one). In the proteomics and 

transcriptomics data, factors such as PADI2, ITGA11, CA3, SLC29A1, COL1A1, FN1, 

ITGAV, TNS1, JUP, CMPK2 showed up as upregulated hits while factors like OAS3, 

OAS1, OAS2, MX2, STARD5 and DCDC2 were downregulated. 

SRFP2, POSTN, GDF6, IL11, GREM1, INHBA, ADAM19, MMP11 and ADAMTS7 

were significantly upregulated in the secretomics as well as transcriptomics data but 

showed no significant change in proteomics. Notably, COL1A2 was significantly 

downregulated in the last time point of the secretomics data but upregulated over time 

in the transcriptomics data. Similarly, expression of COL18A1 was decreased at the 

last time point in the secretomics data but upregulated in the proteomics and 

transcriptomics data.  
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Figure 30 Heatmap of overlapping and upregulated factors defined as hits in at least two 
modalities across the time points tested. Heatmap summarises factors that are significantly 
upregulated in at least two out of the three omics modalities (secretomics, proteomics, transcriptomics 
= rna). Significant upregulation is defined as log2 fold-change > log(1.5 (or 2 for transcriptomics)) and 
adjusted p-value < 0.05, and is illustrated by red for upregulated factors and blue for downregulated 
factors. Non-significantly deregulated values are shown in white. 
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Figure 31 Heatmap of overlapping factors defined as hits in at least two modalities across the 
time points tested. Heatmap summarises factors that are significantly deregulated in at least two out 
of the three omics modalities (secretomics, proteomics, transcriptomics = rna). Significant deregulation 
is defined as absolute log2 fold-change > log(1.5 (or 2 for transcriptomics)) and adjusted p-value < 0.05, 
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and is illustrated by red for upregulated factors and blue for downregulated factors. Non-significantly 
deregulated values are shown in white. 

Similar to the graph above, the heatmap below (Figure 32), summarizes significantly 

deregulated phosphosites, which were divided into four clusters. Cluster one includes 

factors that were downregulated. In comparison to this, cluster two contains hits that 

were only significantly downregulated after 96 h of TGF-β treatment. In cluster three, 

factors that were upregulated over time or at the last time point are shown, while cluster 

four highlights hits that were upregulated at earlier time points. 

When comparing these hits to the other data modalities, some hits were shared, for 

instance CDK18, PTK2B, PARD3B, PPL and CRB2 were also significantly 

downregulated in the transcriptomics data, however, mostly from earlier time points 

on. Of note, EPHB2, which phosphorylation was decreased upon treatment with TGF-

β, showed a significantly higher mRNA expression. TNS1, a protein that is essential in 

myofibroblast differentiation, showed an upregulated mRNA expression and 

phosphorylation (Bernau et al., 2017). The same was true for ADAM12 (Nakamura et 

al., 2020; Sobecki et al., 2022), a disintegrin metalloprotease, which was further 

upregulated in the proteomics data.  
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Figure 32 Heatmap of phosphoproteomic hits over time. This heatmap summarizes the top 50 
phosphosites that are significantly deregulated in the phosphoproteomics data (normalized to total 
proteomics). Significant deregulation is defined as absolute log2 fold-change > log(1.5)adjusted p-value 
< 0.05, and is illustrated by red for upregulated factors and blue for downregulated factors. Non-
significantly deregulated values are shown in white. Furthermore, the factors were divided into four 
clusters. 
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Having a closer look into which secretomics hits were part of which pathway, I am 

highlighting a few hits (absolute log2 fold-change > log(1.5), adjusted p-value < 0.05) 

here. One of the pathways that was upregulated already at early time points after TGF-

β treatment, was epithelial to mesenchymal transition. Many of the factors involved 

in this pathway were dysregulated in the secretomics data including BGN, 

CCN2/CTGF, CDH11, COL4A2, COL4A1, COL5A1, FBN1, GREM1, HTRA1, IGFBP3, 

MMP14, POSTN, SERPINE1/PAI1, SERPINE2, SPARC, TGFBI, and TNC. 

Furthermore, several relevant metalloproteases, due to their ECM regulatory function, 

showed a change in protein abundance post-TGF-β treatment, e.g., ADAM12, HTRA1, 

MMP2, and MMP14. Additionally, core matrisome glycoproteins such as FBN1, 

HMCN1, IGFBP3, IGFBP7, POSTN, SPARC, THBS1, and TNC, as well as 

proteoglycans like BGN and HSPG2 and collagens including COL4A1, COL4A2, and 

COL5A1 were increased upon stimulation with TGF-β.  

 

Having a closer look into the expression of COL1A1, it was downregulated in the 

secretomics data while it was upregulated in the proteomics and transcriptomics, with 

increasing log2 fold-change over time (Figure 30), COL1A1 was not shown in the 

secretomics samples in the heatmap above since it did not meet the filtering criteria 

and was only significantly deregulated in proteomics from 24 h onwards. Therefore, 

the expression changes are summarized in the heatmap below (Figure 33). 

 

Figure 33 Log2 fold-change of COL1A1 in the different omics modalities over time. Over time, the 
log2 fold-change calculated between TGF-β treatment and control at each time point is shown for each 
data modality. While expression of COL1A1 is increased in the transcriptomics data, significantly 
increased in the proteomics data, it is downregulated in the secretomics data. 
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4.3. Activity Inference and Mechanistic Modeling 

In my thesis, we applied COSMOS (Dugourd et al., 2021), a tool developed in the Saez 

group to extract mechanistic insights from complex datasets like multi-omics data. By 

using prior knowledge and the omics data generated in this study, it added another 

layer to connect and systematically interpret the obtained data by inferring causal links 

between the data modalities.  

4.3.1. Activity Inference of Transcription Factors and Kinases/Phosphatases 

Arguing that the changes of mRNA abundance and phosphorylation can be explained 

by modified activities of TFs and kinases/phosphatases, I initially inferred the activity 

of transcription factors based on known target gene expression changes. This can be 

compared to pathway inference, where differential expression of factors that are 

involved in a pathway are used to determine the activity of that pathway. Similarly, 

changes in phosphorylation of peptides were as a proxy for kinase and phosphatase 

activities (Dugourd et al., 2021; Dugourd & Saez-Rodriguez, 2019). 

Transcription Factor Activity Inference 

The following heatmap (Figure 34) depicts the most active and inactive TFs over time, 

based on the changes of target transcripts in TGF-β treated samples in relation to their 

respective controls. These include TFs, whose function was well characterized in 

fibrosis e.g. SMAD4, SRF, TEAD4 and ETS1, as well as TFs, whose activity increase 

over time as summarized in cluster five.  

In cluster four, TFs exhibited peak activity at 1 h post TGF-β treatment followed by a 

decline, examples include KMT2A, NFKB1, and SMAD1. TFs, whose activity was 

lowest at 1 h but then increased over time are shown in cluster three, for instance 

HIF1A, NR2F2, and STAT4. Cluster two comprises TFs, whose activity was reduced 

over time by TGF-β stimulation. The initial peak in activity of TFs in cluster one, should 

be taken with care as there were no significant differentially expressed transcripts 

(when setting log2 fold-change and adjusted p-value cut-offs) at that time (5 min). TFs 

in this cluster showed a reduced activity over time, similar to cluster two, e.g. GLI1, 

E2F4, and STAT2. 
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Figure 34 Transcription factor and kinase/phosphatase activity inference. Left: The activity of 
transcription factors (TFs) was inferred based on the mRNA expression changes of down-stream 
targets. Right: The deregulation of phosphosites was taken as a proxy for kinase and phosphatase 
activity. More active TFs and kinases/phosphatases are shown in red while more inactive ones are 
highlighted in blue. 

Based on the activity profile, I chose six transcription factors for validation, as I saw 

their potential as modulators of fibrosis. Assuming that an inhibition of the initial activity 

of the selected TFs would lead to a reduction in ECM and a change in target genes. 

The following figure summarizes the target genes two of the selected transcription 

factors (Figure 35). The depicted target genes were differentially expressed genes taken 

from the transcriptomics data. In red, hits that were upregulated are shown while blue 

indicates a decrease of mRNA expression. To bring an example, target genes of 

SMAD1 included ID2 and ID3, which were initially upregulated. Based on these 

findings, the activity of SMAD1 at 1 h post-TGF-β treatment was upregulated while its 
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activity decreased over time. Validation of selected TFs is shown in Results section 

4.4. 

  

Figure 35 Differential target genes of SMAD1 and E2F1. Predicted downstream targets of SMAD1 
(left) and E2F1 (right) are shown across the time points. The log2 fold-change of the genes is plotted on 
the x-axis against the -log10(P.Value) on the y-axis. Grey dots depict genes that are not significantly 
deregulated, blue dots indicate that these genes are significantly ‘deactivated’ by E2F1, while red 
highlights ‘activated genes’. 

Kinase/Phosphatase Activity Inference 

Similar as for the activity inference of TFs, I used the phosphorylation of peptides as 

proxy for kinase and phosphatase activity. The activity of following kinases and 

phosphatases is illustrated in the heatmap above (Figure 34). 

In cluster one, kinases which activity was decreased over time are shown. Cluster two 

and three contain kinases which activity was generally decreased but peaked at one 

or the other time point. Cluster five includes kinases that showed an increased activity 

over time while cluster four shows kinases which activity peaked at 1 h post-TGF 

treatment.  

4.3.2. Selection of Time Points for Early and Late Network 

To represent the changes over time, we decided to generate two networks, one that 

summarized the signaling network of the early response to TGF-β and a second 

network for the late responses that included the output of the early network as input to 

understand possible feedback mechanisms. However, to decide which time points 

should be included in either network, I performed clustering of hits and correlation of 

the data modalities, described in more detail in this section. 
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Clustering of Significantly Deregulated Features (Hits) Per Omics Modality 

Using Neural Gas clustering, I examined the distribution of significantly deregulated 

features (hits, absolute log2 fold-change > log(1.5), adjusted p-value < 0.05) per omics 

modality. Even though two clusters were suggested for all modalities, as evaluated 

based on the elbow method, I divided the data into four clusters, as I saw that this 

represented the data better. 

I divided the transcriptomics data into four clusters (Figure 36), with the first and third 

cluster containing genes that showed an increased abundance over time, whereas the 

increase of factors in cluster one was less steep. A similar pattern can be seen for 

cluster two and four, in which there was a decrease of mRNA abundance of factors 

contained in the clusters over time. The number of factors in each cluster varied, with 

1053 factors in cluster one, 436 in cluster two, 179 in cluster three and cluster four 

containing 1285 differentially regulated transcripts. 

 

Figure 36 Clustering of significantly deregulated transcripts. A) Elbow method for graphical 
representation of optimal number of clusters. B) The median log2 fold-change for each cluster and time 
point are shown with lines representing the trend of log2 fold-change (y-axis) over time (x-axis). C) Each 
subplot represents a single cluster and lines depict the log2 fold-change per factor included in the 
cluster. Points and lines are color coded for each cluster. 

Looking at the clusters for the proteomics data (Figure 37), cluster one contained 

proteins with decreased expression over time while expression of factors in cluster two 

was increased over time. The average decrease in abundance changes of proteins in 

cluster three was visible at earlier time points than in cluster one. Similar to cluster two, 
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the factors in cluster four showed an increased expression over time which was 

however observed earlier on and generally resulted in a higher log2 fold-change than 

of factors in cluster two. Since there were less hits in the proteomics data, the clusters 

generally contained less features. Therefore, 62 proteins were contained in cluster 

one, and 111 in cluster two. Cluster three included 12 factors, while 28 factors were 

taken into account for cluster four. 

 

Figure 37 Clustering of significantly deregulated proteins in the proteomics dataset. A) Elbow 
method for graphical representation of optimal number of clusters. B) The median log2 fold-change for 
each cluster and time point are shown with lines representing the trend of log2 fold-change (y-axis) over 
time (x-axis). C) Each subplot represents a single cluster and lines depict the log2 fold-change per factor 
included in the cluster. Points and lines are color coded for each cluster. 

For secretomics (Figure 38), there were also four clusters, two of which showed an 

increased expression of proteins, namely cluster one and two. Whereas there was a 

steep increase of expression of factors contained in cluster two that was visible already 

12 h post TGF-β treatment and afterwards rather stayed constant over time, there was 

a slow increase of expression of proteins in cluster one. Proteins in cluster three 

showed generally a decrease in expression over time. Cluster four contained proteins 

which expression was first increasing and then decreasing after 24 h of treatment, 

however the behavior of individual factors may differ from the average change. The 

number of features per cluster was as follows: 84 features in cluster one, 14 in cluster 

two, 95 for cluster three and in cluster four there were 42 proteins included. 
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Figure 38 Clustering of significantly deregulated proteins in the secretomics dataset. A) Elbow 
method for graphical representation of optimal number of clusters. B) The median log2 fold-change for 
each cluster and time point are shown with lines representing the trend of log2 fold-change (y-axis) over 
time (x-axis). C) Each subplot represents a single cluster and lines depict the log2 fold-change per factor 
included in the cluster. Points and lines are color coded for each cluster. 

For clustering of the phosphoproteomics data, I used the data that was abundance 

corrected using the full proteome data (Figure 39). The 75 factors of cluster one showed 

a general decrease in expression over time. Cluster two contained 42 factors that 

generally showed a decreased expression after 1 h of TGF-β treatment, and increased 

expression at the 24 h time point and then a decline in abundance over the later time 

points. While an increased log2 fold-change was observed for factors in cluster three 

1 h post TGF-β treatment, the abundance of factors decreased until 24 h after TGF-β 

treatment and stayed at a constant log2 fold-change over time. Cluster three contained 

31 factors whereas 106 factors were contained in cluster four. The latter showed that 

factors in this cluster generally show an increased phosphorylation over time. 
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Figure 39 Clustering of significantly deregulated factors in the phosphoproteomics dataset. A) 
Elbow method for graphical representation of optimal number of clusters. B) The median log2 fold-
change for each cluster and time point are shown with lines representing the trend of log2 fold-change 
(y-axis) over time (x-axis). C) Each subplot represents a single cluster and lines depict the log2 fold-
change per factor included in the cluster. Points and lines are color coded for each cluster. 

Correlation of Omics Modalities 

Furthermore, the correlation of abundance changes across different data modalities 

was examined, excluding the phosphoproteomics as data mapping sites to genes blurs 

the signal and phosphorylation changes were not correlated with abundance changes. 

Therefore, I generated the graphical representation of the correlation matrix below 

(Figure 40) with the top 10% variable features per omics modality. The 0.08 h 

transcriptomics (rna) data generally exhibited anti-correlation with other time points 

and modalities. Conversely, at the 1 h transcriptomics time point, the most significant 

correlation was observed with the 12 h proteomics and secretomics data. Subsequent 

transcriptomics data (from 12 to 96 h) demonstrated strong correlation with proteomics 

and secretomics data, particularly at time points ranging from 12 to 96 h.  

The 0.08 h and 1 h proteomics data displayed strong correlation with each other but 

exhibited weaker correlation with other time points and data modalities. Conversely, 

longer time points exhibited robust correlation with each other and with other data 

modalities. With the exception of the 12 h and 96 h secretomics data, which displayed 

weaker correlation, the remaining data demonstrated consistent correlation across 

time points and modalities. 
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Figure 40 Correlogram representing Pearson correlation coefficients computed between time 
points and omics modalities. Correlation coefficients are colored according to the value, ordered 
based on omics modality and time of treatment (with TGF-β). 

4.3.3. Network Set-up and Comparisons 

In the previous section of this thesis, the changes of mRNA transcripts and 

phosphosites were taken as a proxy for activity of TFs and kinases/phosphatases, 

respectively. In this section, the top 30% of deregulated TFs and 

kinases/phosphatases were used as inputs for generating the network, offering a good 

balance of model size and complexity. A network modeling analysis allows for the 

generation of an integrated model of signaling upon TGF-β treatment spanning all 

obtained modalities. To account for time-dependent effects, I chose to separate the 

data into an early and a late response. 

Based on the observations gained from clustering of the data and correlation matrix, I 

defined the time points for the early network to be as follows: 0.08, 1 and 12 h for the 

TFs and kinases/phosphatases as well as 12 and 24 h for the secretomics hits. The 

late network comprised 24 to 96 h of TFs and kinases/phosphatases and 48 to 96 h of 

the secretomics hits.  

Since I initiated the fibrotic response with TGF-β, we took it as upstream starting node 

to model the early network. I hypothesized that stimulation with TGF-β leads to 

changes in activity of TFs and kinases/phosphatases, as intermediate mediators, that 
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further drive expression changes of secreted proteins. For the late network, TGF-β and 

the early secretomics hits were used as input, being linked to changes of TFs and 

kinases that further drive the expression of late secretomics hits (Figure 41). 

COL1A1 was not included in the network initially, as it was not a hit in the secretomics. 

However, based on the imaging data, that showed a clear increase of extracellular Col 

I over time, we included it as one of the hits in the secretomics data that was used for 

the network. The following data were the result of an optimized mechanistic network 

that Mira Burtscher generated. 

 

Figure 41 Graphical representation of network set-up. For the early network, TGF-β stimulation 
serves as the primary input to the network, triggering signaling cascades involving transcription factors 
(TFs), kinases and phosphatases, which induce changes in the early secretome. Subsequently, for the 
late network, accounting for autocrine signaling, the early secreted factors, alongside TGF-β stimulation 
were included. Induced by the upstream signals, activities of TFs, kinases and phosphatases resulting 
in alterations of secreted factors. Thereby, the networks describe the interplay between TFs, 
kinases/phosphatases and secreted factors, initiated by TGF-β stimulation. 

In general, there were a similar number of edges and nodes in the networks. The 

network for the early signaling contained 127 nodes with 156 edges, whereas the late 

network had 160 nodes and 202 edges. 

Pathway enrichment analysis of both networks, using the Reactome database, 

resulted in the figure below (Figure 42). While most of the pathways were more 

significantly enriched in the late network, the following pathways were more significant 

in the early network including signaling by interleukins, diseases of signal transduction 

by growth factor receptors and second messengers, PIP3 activates AKT signaling, 

Intracellular signaling by second messengers, and signaling by GPCRs. Among the 

most important pathways, as shown by the enrichment analysis, were Signaling by 

receptor tyrosine kinases, signaling by interleukins, extracellular matrix organization, 

signaling by TGFB family members, signaling by NTRKs and ECM proteoglycans.  
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Figure 42 Pathway enrichment analysis comparing the early vs late network. Pathways are 
depicted on the y-axis, while the -log10(qvalue) is represented on the x-axis. The qvalue reflects the 
adjusted p-value (FDR) for multiple hypothesis testing. The intercept at the x-axis marks the threshold 
set at -log10(0.01), corresponding which is 2 in the graph. Size of the dots indicates the number of nodes 
found in each pathway, while the color distinguishes whether the data belongs to the early or the late 
network. 

Early Network 

To further dissect the information contained in these mechanistic networks, I employed 

fast & greedy clustering of the networks. For the early network, we defined six clusters 

(Figure 43). Pathway enrichment was then performed for each cluster and the most 

significant pathways are shown in Figure 43. 

The most significant pathways of the first cluster included Extra-nuclear estrogen 

signaling, Interleukin-4 and Interleukin-13 signaling as well as Signaling by receptor 

tyrosine kinases. Cluster two contained factors that were enriched for the pathways 

Degradation of the extracellular matrix, Extracellular matrix organization, Interleukin-4 

and Interleukin-13 signaling, Regulation of CDH11 Expression and Function, Signaling 

by receptor tyrosine kinases and Transcriptional regulation by RUNX3. 

Macroautophagy, Selective autophagy, and KEAP1-NFE2L2 pathway were enriched 

in cluster three. In cluster four, the pathways Signaling by NTRKs, Signaling by NTRK1 

(TRKA), Nuclear Events (kinase and transcription factor activation) as well as Signaling 

by Receptor Tyrosine Kinases were enriched. Cluster five contained factors that were 

included in Degradation of the extracellular matrix, Extracellular matrix organization, 

CTLA4 inhibitory signaling and RAF activation. Whereas the pathways Pre-NOTCH 

Expression and Processing, Pre-NOTCH Transcription and Translation, and 

Transcriptional regulation by RUNX3 were significantly enriched in cluster six. 
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Figure 43 Early network with clustering of nodes and pathway enrichment analysis performed 
per cluster. Pathways are depicted on the y-axis, while the -log10(qvalue) is represented on the x-axis. 
The qvalue reflects the adjusted p-value (FDR) for multiple hypothesis testing. The intercept at the x-
axis marks the threshold set at -log10(0.01), corresponding which is 2 in the graph. Size of the dots 
indicates the number of nodes found in each pathway, while the color distinguishes whether the data 
belongs to the early or the late network. 
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Late Network  

Since the late network contained more nodes and edges, we divided the data into 8 

clusters (Figure 44). Cluster one exhibited enrichment in pathways such as Hemostasis, 

Cellular Senescence, Platelet activation, signaling and aggregation, Extracellular 

matrix organisation, Degradation of the extracellular matrix, Signaling by TGFB family 

members, Signal transduction by L1 along with Signaling by Receptor Tyrosine 

Kinases. Cluster two comprised factors enriched in pathways related to Platelet 

activation, signaling and aggregation, Extracellular matrix organization, signaling by 

BMP, Signaling by TGFB family members along others. In cluster three, enrichment 

was observed in pathways associated with Post-translational protein phosphorylation, 

Signaling by Interleukins, Signal transduction by L1, Signaling by Receptor Tyrosine 

Kinases, and Interleukin-6 family signaling. Cluster four was characterized by 

enrichment in pathways such as RHO GTPase Effectors, Hemostasis, Platelet 

activation, signaling and aggregation and Signaling by Receptor Tyrosine Kinases. 

Cluster five demonstrated involvement in pathways including Extracellular matrix 

organization, Degradation of the extracellular matrix, Regulation of beta-cell 

development, Formation of axial mesoderm, RUNX3 regulates WNT signaling. 

Pathways notably enriched in cluster 6 included Signaling by Interleukins, Zygotic 

genome activation (ZGA), Signaling by Receptor Tyrosine Kinases, Regulation of beta-

cell development Formation of axial mesoderm, as well as Regulation of gene 

expression by Hypoxia-inducible Factor. In cluster seven, there was no significant 

enrichment observed in any pathway, as set by our threshold for the qvalue of -

log10(0.01). Finally, cluster eight was notably enriched in pathways such as 

Extracellular matrix organization, Degradation of the extracellular matrix, Signaling by 

TGFB family members, and Collagen degradation.  
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Figure 44 Late network with clustering of nodes and pathway enrichment analysis performed per 
cluster. Pathways are depicted on the y-axis, while the -log10(qvalue) is represented on the x-axis. The 
qvalue reflects the adjusted p-value (FDR) for multiple hypothesis testing. The intercept at the x-axis 
marks the threshold set at -log10(0.01), corresponding which is 2 in the graph. Size of the dots indicates 
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the number of nodes found in each pathway, while the color distinguishes whether the data belongs to 
the early or the late network. 

The pathways Degradation of the extracellular matrix, Extracellular matrix organization 

and Signaling by Receptor Tyrosine Kinase were significantly enriched in clusters of 

the early as well as the late networks. In both, the early and late network, pathway 

activity enrichment for ECM organisation and degradation included SP1 and predicted 

downstream targets (Figure 45). Utilizing prior knowledge, SP1 targets genes, as 

identified by the network, were found to encompass NABA matrisome core and 

associated factors, thereby demonstrating enrichment for the aforementioned 

pathways. 
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Figure 45 Examples from Networks. Shown are examples for SP1, SMAD1 in the early and late 
networks and E2F1 for the late network. The colors are representing the different modalities, green for 
secreted factors, blue for kinases/phosphatases, purple for TFs and grey as factors imputed by prior 
knowledge. The ellipse shape are factors which expression/activity is downregulated while squares 
indicate factors that are upregulated.  
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4.4. Validation of Multi-omics Hits 

4.4.1. Setting up the siRNA Transfection Protocol 

Initially, I tested a siRNA transfection protocol used in our lab to assess its suitability 

for the cells used and establish the concentration of siRNA needed for the knock-down. 

Therefore, I chose to knock-down GM130 (GOLGA2), a cis-Golgi matrix protein. 

Targeting this protein, gave the advantage that I knew that the siRNAs should work, 

as they have been widely used in our lab. Additionally, I was able to assess the knock-

down at the protein level using an image-based read-out. As SMAD2 is integral of the 

canonical signaling pathway induced by TGF-β, I further chose to treat cells with 

siSMAD2 in order to assess the knock-down using western blot analysis.  

Knock-down of GM130 

I assessed the knock-down of GM130 48 h and 72 h post siRNA transfection. The 

plates for each time point were imaged separately. In Figure 46, it is shown that the 

knock-down was already visible after 48 h and was still present at 72 h post siRNA 

treatment. The experiment also showed that the lowest amount of siRNA tested yielded 

a knock-down that led to a significant reduction in protein when compared to the 

corresponding siNeg9 control. 
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Figure 46 GM130 protein expression changes upon siGM130 transfection. A, B) Widefield images 
of nuclear and GM130 immunofluorescence staining of cells treated with siNeg9 (control siRNA) or 
siGM130 for A) 48 h and B) 72 h. Scale bar = 100 µm. C) Change of protein expression (FC_intensity) 
calculated per image as follows: Intensity of images of cells treated with siGM130 minus intensity of 
empty vector treated samples divided by empty vector treated samples at 48 h and 72 h post siRNA 
transfection. D) Changes of protein expression (FC_intensity) calculated per image as follows: Intensity 
of images of cells treated with siGM130 minus intensity of siNeg9 treated samples divided by siNeg9 
treated samples. Colors represent siRNA treatment (grey = empty vector, blue = siNeg9, orange = 
siGM130), dots depict individual images. The x-axis shows combination of siRNA and concentration 
(pmol, per well of a 24 well plate) of siRNA used. The dashed line shows the intercept for the control 
group, the bars stand for median intensity change of each sample. n = 1. For statistical analysis, t-test 
was used. In summary, all concentrations of siGM130 tested resulted in a significant decrease of GM130 
protein expression (shown via immunofluorescence staining) at 48 and 72 h post-siRNA treatment.   

Knock-down of SMAD2 

Furthermore, the siSMAD2 treatment led to a reduction in SMAD2 abundance and a 

reduced signal for the phospho-SMAD2, after 48 h as well as 72 h of siRNA treatment 

(Figure 47). Importantly, this experiment was conducted using 6 well plates, not like in 

the knock-down experiment for GM130, where a 24 well plate was used. Hence the 

concentration of siRNA used was adjusted. 
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Figure 47 Western blot analysis of SMAD2 and phospho-SMAD2 protein expression after 
siSMAD2 knock-down. A) Western blot showing protein expression by staining of phospho-SMAD2, 
SMAD2 and the respective loading controls (alpha-tubulin) for each sample. Cells were treated, in a 6 
well plate, with different concentrations of siNeg9 (control) and siSMAD2 for 48 to 72 h. B) Quantification 
of phosphor-SMAD 2 signal normalized to SMAD2 abundance (each normalized to the respective 
loading control), per time and sample. n = 1. Knock-down of SMAD2 lead to the expected 
downregulation of SMAD2 and phospho-SMAD2 protein expression after 48 and 72 h of siSMAD2 
treatment.  

Together, this data showed that the used protocol for siRNA treatment resulted in 

significant decrease of target genes that was maintained for the time points of interest. 

4.4.2. Setting up the Experimental Protocol to Test Target Gene Involvement in 

ECM Deposition 

My strategy was to knock-down genes of interest, aiming to test their effect on 

downstream targets. The hypothesis was that targeting hits identified in our multi-omics 

experiment could reveal modulators of ECM regulation, particularly relevant in the field 

of fibrosis. Furthermore, I aimed to assess the effect of the knock-down on ECM 
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deposition followed by subsequent TGF-β treatment. Therefore, the experimental 

protocol included a media change 48 h post-siRNA treatment, to control medium 

containing macromolecular crowding and ascorbic acid and with additional TGF-β for 

the treatment condition. After another 48 h of TGF-β treatment (in total after 96 h post-

siRNA treatment), the cells were fixed and stained with CNA35, a fluorescent dye 

binding to fibrillar collagen (Figure 48). An imaging based-read-out was used to assess 

the effect on the ECM deposition. 

Moreover, I isolated mRNA at 48, 72 and 96 h post siRNA treatment and checked 

whether the mRNA abundance decreased upon the knock-down. In addition to that, I 

assessed the mRNA abundance changes of proposed down steam targets. The aim 

of this was to gain further information of how the knock-down influenced the ECM. 

 

Figure 48 Experimental set-up for validation experiments using siRNA treatment. The cells were 
seeded at day 0. The day after, cells were transfected with the control siNeg9 and siRNAs against genes 
of interest. 6 h post transfection, the media was changed to new DMEM + 5 % FBS. After another 48 h, 
the first samples were taken for mRNA isolation while the treatment ± TGF-β 

Knock-down of COL1A1 

To start, I used siCOL1A1 treatment. To investigate the knock-down efficiency, I 

isolated mRNA at 48, 72 and 96 h post siRNA treatment and tested whether the mRNA 

abundance decreased upon the knock-down. In Figure 49, the effect of the siCOL1A1 

treatment is shown, leading to a significant decrease of COL1A1 mRNA over time with 

all the siRNAs used (siCOL1A1_75, siCOL1A1_76, siCOL1A1_77). Additionally, the 

COL1A1 abundance increased over time in the siNeg9 treated cells and was 

significantly increased by TGF-β stimulation (Figure 50). Moreover, the expression of 

other genes, including E2F1, ID2, ID3 and SMAD1 were assessed to see whether there 

might be a feedback loop involved. 
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The imaging data, at the last time point (96 h post siRNA treatment and after 48 h of 

TGF stimulation), generally showed that ECM deposition was decreased in the 

siCOL1A1 conditions (Figure 50). The reduction of ECM was significant for the control 

samples, except for siCOL1A1_77, as well as for the TGF-β treated samples. In Figure 

50A, the fold-change of fluorescence intensity per cell, correlating with the staining of 

the ECM signal normalized to the cell number, was calculated compared to the siNeg9 

ctrl samples. In Figure 50B, the fold-change of siCOL1A1 + TGF-β treated samples was 

calculated in comparison to the siNeg9 + TGF-β stimulated samples. Both graphs 

indicate that, while ECM deposition was increased upon stimulation with TGF-β, the 

deposition was significantly decreased upon siRNA knock-down, with all three siRNAs 

tested for COL1A1.  

 

Figure 49 Change of mRNA expression levels at 48, 72 and 96 h post siCOL1A1 treatment. mRNA 
was isolated from cells transfected with three different siRNAs against COL1A1 at 48, 72, 96 h post 
siRNA transfection, correlating to 0, 24, 48 h treatment ± TGF-β. Expression levels of genes of interest 
are shown on the y-axis, that were calculated using the 2−ΔΔCT method. In short, CT values are first 
normalized to GADPH, then normalized to the siNeg9 ctrl at 48 h. Then the 2−ΔΔCT value is multiplied by 
100 to obtain the resulting mRNA levels. Expression of COL1A1 (and other genes of interest) are shown 
over time, upon siNeg9 treatment (dashed lines), treatment with siCOL1A1 (continuous lines), and at 
control (blue) and TGF-β (violet) conditions. While TGF-β treatment leads to increase in COL1A1 mRNA 
expression levels, the abundance of transcripts is significantly decrease upon the knock-downs with 
siCOL1A1. n = 4. Code provided by Mira Burtscher was the starting point for this plot. 
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Figure 50 Quantification of immunofluorescent staining of the ECM upon siCOL1A1 knock-down. 
Quantification of fluorescence intensity (FC_intensity), correlating to ECM/CNA35 staining, expressed 
by cells 96 h post siRNA transfection ± 48 h TGF-β stimulation. Three siRNAs against COL1A1 were 
tested (grey) and compared to the siNeg9 controls (black). Each dot represents individual images of two 
biological replicates. The siRNAs are shown on the x-axis. The y-axis shows the FC_intensity, calculated 
as follows: A) Per-cell fluorescence intensity (after background correction and autofluorescence 
subtraction) of the siNeg9 ctrl was subtracted from all images. The result was further divided by the 
value of the siNeg9 ctrl condition. B) This time, the values of TGF-β treated samples were compared, 
siCOL1A1 treated samples vs siNeg9 resulting in the illustrated FC_intensity_TGF. The median values 
for each sample are shown by the bars, dashed lines stand for the control sample used as reference in 
the t-test. Summarizing, the siCOL1A1 treatment resulted in a decrease of deposited ECM. 

Knock-down of FN1  

Another siRNA that I tested was targeting FN1. Using qPCR, I showed that the knock-

down was efficient and maintained over the tested time points. Surprisingly, while the 

effect of the knock-down on COL1A1 mRNA expression was not significant (Figure 51, 

two-way Anova Table 24), the ECM deposition was significantly increased after siFN1 

treatment (Figure 52).  
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Figure 51 Change of mRNA expression levels at 48, 72 and 96 h post siFN1 treatment. mRNA was 
isolated from cells at 48, 72, 96 h post siRNA transfection with siNeg9 and siFN1, correlating to 0, 24, 
48 h treatment ± TGF-β. A) Expression levels of genes of interest are shown on the y-axis, that were 
calculated using the 2−ΔΔCT method. In short, CT values are first normalized to GADPH, then normalized 
to the siNeg9 ctrl at 48 h. Then the 2−ΔΔCT value is multiplied by 100 to obtain the resulting mRNA levels. 
Expression of FN1 and COL1A1 are shown over time, upon siNeg9 treatment (dashed lines), treatment 
with siFN1 (continuous lines), and at control (blue) and TGF-β (violet) conditions. While TGF-β treatment 
leads to increased FN1 and COL1A1 mRNA expression levels, the abundance of COL1A1 transcripts 
is not significantly changed upon knock-down with siFN1 (B). n = 2 for 48 and 96 h, n = 1 for 72 h. Code 
provided by Mira Burtscher was the starting point for this plot. 

 

Figure 52 Quantification of immunofluorescence staining of the ECM upon siFN1 knock-down. 
Quantification of fluorescence intensity (FC_intensity), representing the CNA35 staining of the ECM, 
expressed by cells 96 h post siRNA transfection ± 48 h TGF-β treatment. Each dot stands for individual 
images of three biological replicates, siNeg9 treated samples are shown in black, grey dots depict 
samples treated with siFN1. Samples treated with the different siRNAs are indicated on the x-axis. The 
y-axis shows the FC_intensity, calculated as follows: A) Per-cell fluorescence intensity (after 
background correction and autofluorescence subtraction) of the siNeg9 ctrl was subtracted from all 
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images. The result was further divided by the value of the siNeg9 ctrl condition. B) This time, the values 
of TGF-β treated samples were compared, siFN1 treated samples vs siNeg9, resulting in the illustrated 
FC_intensity_TGF. The median values for each sample are shown by the bars, dashed lines stand for 
the control sample used as reference in the t-test. Knock-down of FN1 resulted in significantly more 
ECM deposited. 

4.4.3. Knock-down of Transcription Factors for Evaluating Their Involvement in 

Fibrosis 

For validation, I focused on transcription factors (TFs) that showed an increased 

activity 1 h post TGF-β treatment, inferred based on their target gene expression 

changes, as mentioned in section 4.3.1. 

Gene expression analysis after TF Knock-down 

Again, I isolated mRNA at the time points 48, 72 and 96 h post siRNA treatment, 

correlating to 0, 24 and 48 h after treatment ± TGF-β and monitored how the mRNA 

expression of the genes of interest and other target genes changed. Additionally, I 

tested a second set of siRNAs for E2F1 and FLI1, and a third siRNA for SMAD1. I am 

summarizing the changes of the last time point in the heatmap below (Figure 53). For 

more information (across all time points tested), please have a closer look into the 

Annex (Figure 77 - Figure 81).  

Looking at the siSMAD1 treatment (96 h after transfection), a significant decrease of 

SMAD1 mRNA was visible for all the siRNAs tested, showing that the knock-down 

worked. This was true for the TGF-β treated and the control samples compared to the 

respective siNeg9 treatments. Another question that I wanted to answer, was whether 

knock-down of SMAD1 would affect COL1A1 expression. For the first siSMAD1 tested, 

COL1A1 expression was significantly decreased in the siSMAD1 + TGF-β treated 

sample when compared to the respective siNeg9 + TGF-β control at the same time 

point. The effect on COL1A1 abundance changes upon treatment with the second 

siSMAD1 were not significant while there was a significant increase of COL1A1 mRNA 

for the third siRNA tested (siSMAD1_C), in the control as well as the TGF-β treated 

sample. All three siRNAs against SMAD1 induced a significant decrease in ID2 and 

ID3 levels, proposed downstream targets (Figure 35), upon co-stimulation with TGF-β, 

whereas there was rather an increase of both factors in the control samples (-TGF-β), 

which ws significant for siSMAD1_C. ID3 mRNA expression was significantly 

downregulated using siSMAD1_B, without TGF-β. 
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Knock-down of E2F1 was successfully confirmed by both siRNAs used (Figure 53). The 

first siRNA for E2F1 lead to a significant increase of COL1A1 mRNA in the non-TGF-

β condition. However, no significant increase of COL1A1 expression was measured in 

the other conditions. A proposed downstream target of E2F1, SERPINE1/PAI1, was 

significantly upregulated upon siE2F1 treatment with all of the tested siRNAs and at all 

conditions. The decreased mRNA expression of ID2 and ID3 was significant for both 

siRNAs tested in the conditions with TGF-β (Figure 53). Interestingly, E2F1 knock-down 

lead to reduced SMAD1 mRNA with the first siE2F1 but did not result in significant 

deregulation with the second siE2F1. 

Another TF, which effects I wanted to test on downstream targets is FLI1. FLI1 knock-

down led to a significant decrease in FLI mRNA expression with both siRNAs targeting 

FLI1. For the first siFLI1 tested, there was a significant increase of COL1A1 expression 

observed in the non-TGF-β treated sample. However, this effect was not replicated 

using the second siRNA against FLI1. The only significant effect of the second siRNA 

tested was on the mRNA expression of ID3, which was increased upon KD of FLI1, in 

the control and TGF-β treated samples (not-tested for the first siFLI1). 

Except for the significant increase of SERPINE1 (non-TGF-β treatment) and SMAD7 

(with TGF-β treatment), siNR4A1 treatment did not result in any significant effect on 

other genes tested (Figure 53). 

Treatment with siHNF4G led to a significant decrease in HNF4G mRNA levels, further 

resulting in increased mRNA expression of BHLHE40 and decreased E2F1 mRNA 

abundance. Additionally, knock-down of HNF4G resulted in significantly decreased 

COL1A1 expression in TGF-β treated samples as well decreased SPHK1 mRNA 

levels. Significant increase of FLI1 mRNA expression of non-TGF-β stimulated cells 

was a further result of HNF4G knock-down.  

The knock-down of siBHLHE40, another TF tested, resulted in a significant decrease 

of BHLHE40 mRNA levels. Treatment with siBHLHE40 and TGF-β led to a significant 

increase of COL1A1 mRNA levels and a significant decrease of SMAD1 mRNA levels 

(Figure 53). However, increased mRNAs abundances of ID2 and SMAD7 resulted from 

knock-down of BHLHE40 (without TGF-β). 

Notably, the expression of SMAD1, E2F1, FLI1, HNF4G and NR4A1 all increased over 

time and were unchanged upon treatment with TGF-β. Whereas the mRNA abundance 

of BHLHE40 increased over time but was further raised by TGF-β stimulation (Figure 

77 - Figure 81). 
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Figure 53 Heatmap summarizing log fold-changes of mRNA expression levels at 96 h post siRNA 
transfection compared to the siNeg9 at 96 h. The upper heatmap depicts the data obtained for the 
first set of siRNAs tested while the lower heatmaps represents data obtained from validations using an 
additional set of siRNAs for selected target genes. The mRNA expression levels (2−ΔΔCT value after 
normalisation to corresponding CT values for GAPDH and the siNeg9 at 48 h post siRNA transfection) 
were used to calculate the average log fold-changes (logFC) between the combination of siRNAs of 
interest compared to the siNeg9 at 96 h. For each combination of siRNA and gene, there are two cells. 
The lower cell stands for the logFC of the siRNA treated control sample compared to the siNeg9 treated 
control. The upper cell shows the fold-change of the TGF-β treated samples, siRNA vs siNeg9. Violet 
indicates an increase in mRNA expression, while blue stands for decreased values. The x-axis shows 
the genes tested, the y-axis the siRNAs used. A t-test was performed to compare the percentages 
between siRNAs of interest and siNeg9. Code for this graph was initially provided by Sarah Kaspar and 
then adjusted by me.  

Effect of TF Knock-down on ECM Deposition 

Besides testing the mRNA expression of the selected TFs, Col I and possible target 

genes, I investigated the effect of the KDs on the ECM deposition, by staining fibrillar 

collagen with CNA35 and imaging at the last time point (96 h after siRNA transfection 

± 48 h TGF-β treatment) (Figure 54, Figure 55). 
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The first siRNA that I tested for SMAD1 (siSMAD1a), had a significant impact on the 

ECM deposition, leading to less ECM in the control as well as the TGF-β treated 

samples. To confirm the effect, I tested a second siRNA (siSMAD1b) which led to an 

increase in the deposited ECM. A third siRNA (siSMAD1c) showed no effect on the 

ECM deposition when compared to the siNeg9 ctrl but led to a significant increase of 

ECM relative to siNeg9 TGF-β treated samples (Figure 54A, Figure 55A). 

Both siRNAs used for the knock-down of E2F1 resulted in a significant increase of 

ECM in the control as well as TGF-β treated conditions (Figure 54B, Figure 55B). While 

siFLI1 treatment had no significant effect on the ECM deposition in the ctrl samples, it 

resulted in a significantly higher signal in the samples with TGF-β stimulation for both 

siRNAs tested (Figure 54D, Figure 55D). 

Other TFs, for which I tested only one siRNA are NR4A1, HNF4G and BHLHE40 

(Figure 54C, Figure 55C). The knock-down of NR4A1, for example, showed a significant 

increase of ECM in the ctrl treated samples compared to the siNeg9 ctrl. In Figure 54C, 

however, when the TGF-β and siNR4A1 treated samples were normalized to the 

siNeg9 ctrl sample and then compared to the siNeg9 TGF-β treated sample, the 

difference was not significant. The TGF-β and siNeg9 stimulated samples, however, 

compared to the siNeg9 TGF-β treated sample, led to an increase in ECM deposition 

that was significant. Knock-down of HNF4G on the other hand, did not yield a 

significant change in ECM deposition in ctrl samples, but led to a significant decrease 

of ECM deposition under TGF-β conditions. A significant increase of ECM was 

observed in all conditions treated with siBHLHE40. 
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Figure 54 Quantification of immunofluorescence staining of the ECM post siRNA treatment. 
Quantification of fluorescence intensity (FC_intensity), representing the CNA35 staining of the ECM, 
expressed by cells 96 h post siRNA transfection ± 48 h TGF-β treatment. Each dot stands for individual 
images of two to three biological replicates, siNeg9 treated samples are shown in black, grey dots depict 
samples treated with the siRNAs of interest. The x-axis summarizes the samples. The y-axis shows the 
FC_intensity values, calculated as fluorescence intensity (after background correction, autofluorescence 
subtraction and normalisation to nuclei number) of the siNeg9 ctrl subtracted from all images. The result 
was further divided by the value of the siNeg9 ctrl condition. The median values for each sample are 
shown by the bars, dashed lines stand for the control sample used as reference in the t-test. ECM 
deposition changes after knock-down of A) SMAD1, B) E2F1, C) NR4A1, HNF4G and BHLHE40, and 
D) FLI1. Statistical analysis was performed using t-test. 

 



  Results 

127 

 

Figure 55 Quantification of immunofluorescence staining of the ECM post siRNA treatment in 
the TGF-β treated conditions. Quantification of fluorescence intensity (FC_intensity), representing the 
CNA35 staining of the ECM, expressed by cells 96 h post siRNA transfection ± 48 h TGF-β treatment. 
Each dot stands for individual images of two to three biological replicates, siNeg9 treated samples are 
shown in black, grey dots depict samples treated with the siRNAs of interest. The x-axis summarizes 
the samples. The y-axis shows the FC_intensity values, calculated as fluorescence intensity (after 
background correction, autofluorescence subtraction and normalisation to nuclei number) of the 
samples treated with the siRNA of interest and TGF-β, were normalized to the samples treated with 
siNeg9 and TGF-β. The median values for each sample are depicted by the bars, dashed lines stand 
for the control sample used as reference in the t-test. ECM deposition changes after knock-down of A) 
SMAD1, B) E2F1, C) NR4A1, HNF4G and BHLHE40, and D) FLI1. T-test was performed for statistical 
analysis. 
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5. Discussion 

5.1. Initial Experiments Highlight the Fibrotic Response of the 

Cellular Model to TGF-β 

I was aiming to set up a cellular model to study the mechanisms of fibrosis. First, I 

planned to investigate whether the cellular model shows a profibrotic response when 

stimulated with TGF-β, a major driver of fibrosis. ECM deposition, by activated 

myofibroblasts, and replacement of functional tissue is one of the major read-outs of 

kidney fibrosis. Therefore, I first examined the ECM deposition post TGF-β stimulation 

in the presence of macromolecular crowding, as already successfully applied in the lab 

(Khan et al., 2023). Following a 48 h exposure to TGF-β, ECM deposition was notably 

increased (Figure 4), measured by immunofluorescence staining of extracellular Col I, 

a major component of the ECM (Karsdal et al., 2017).  

 

Previous studies have indicated that differentiation into myofibroblasts involves 

morphological changes, increased expression of α-SMA and stress fiber formation (F. 

C. Chang et al., 2012; Edeling et al., 2016; Hinz & Lagares, 2021; Kramann et al., 

2015; Sziksz et al., 2015; Zeisberg & Kalluri, 2015). The α-SMA antibodies tested in 

this project, showed a generally low expression of α-SMA. Only a few cells expressed 

a higher level of α-SMA. This could be explained by the heterogeneity of the used 

cellular system, comprising PDGFRβ+ cells, including tissue resident pericytes and 

fibroblasts. However, the treatment with TGF-β did not increase the abundance of α-

SMA in the cells or the population of cells expressing α-SMA. Moreover, the expression 

of α-SMA alone is not a reliable marker to identify myofibroblasts but rather the 

colocalization of α-SMA and F-actin containing stress fibers. Therefore, I tested 

staining of stress fibers using phalloidin. The data showed F-actin staining and stress 

fibers in the control conditions which could be explained by the fact that fibroblastic 

cells express F-actin stress fibers in culture, due to the stiff surfaces they are cultured 

on (Hinz & Lagares, 2021). Nevertheless, the stress fibers expressed by TGF-β 

stimulated cells were more pronounced (Figure 5), and were further locally and globally 

organized. In contrast, while the cells were vimentin positive, TGF-β stimulation did not 

lead to an increase of vimentin nor to any significant morphological changes. Initially, 
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I chose vimentin as it is often used in literature as a marker for activated myofibroblasts 

(Edeling et al., 2016; Lotz-Jenne et al., 2016; Zeisberg & Kalluri, 2015). However, it is 

also discussed that vimentin usually fails to discriminate myofibroblasts from 

endothelial and smooth muscle cells and might not be a suitable marker to use, at least 

not on its own (Hinz & Lagares, 2021). 

 

To further test the fibrotic response to TGF-β, I assessed the mRNA expression of 

fibrotic marker genes. In initial experiments, there was a trend towards increased 

expression of ACTA2, FN1, and VIM which was, however, not significantly higher in 

the TGF-β treated samples compared to the respective control samples (Figure 6). 

Nevertheless, a significantly higher COL1A1 mRNA expression was induced by TGF-

β at 24, 48 and 72 h post treatment.  

In summary, the data highlight the fibrotic response of the used cellular model to TGF-

β treatment, and show that the cells adjusted their morphology as well as increased 

expression of COL1A1 mRNA and protein.  

5.2. Optimized Experimental Conditions 

With regards to using multi-omics read-outs, I tested different experimental set-ups 

and optimized the protocol so that it can be used for the intended purpose. This meant 

that I had to get rid of the FBS used in the medium as it would lead to background 

signal in the MS runs for secretomics. Furthermore, the growth factors in the FBS could 

influence the signaling mechanisms, that I aimed to study in my project.  

First, the TGF-β concentration was revised (Figure 7). While all concentrations used 

resulted in a significant increase of extracellular Col I, when compared to the untreated 

condition, I decided to stick with the 10 ng/ml as previously employed. Despite the 

common usage of 5 ng/ml or even 1 ng/ml TGF-β in several studies (Hinz & Lagares, 

2021), 10 ng/ml are also used by the Kramann lab, who utilize this cellular system as 

well. Hence, the decision was taken to keep obtained data comparable. 

 

In a study led by Zi et al. (2011), they showed that HaCaT cells (keratinocytes) 

stimulated with a TGF-β dose, that was less than a certain threshold, had almost no 

signaling response. Furthermore, they suggest that the concentration of molecules of 

TGF-β per cell determines whether the cells show a transient or a sustained long-term 

signaling response. They highlight that this could influence cell fate decisions like EMT, 
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migration or cell growth arrest (Zi et al., 2011). While the response to TGF-β can vary 

across cell types, this study highlights the effects of TGF-β depending on the dose 

used, meaning how many molecules of TGF-β are available per cell and whether the 

stimulation is persistent.  

It was not within the scope of my project to determine the TGF-β molecules per cell. 

However, it raised the question whether I could further improve the cellular assay and 

the cells’ response to TGF-β by optimizing the cell number. In general, the data showed 

that the fluorescence intensity increased with more cells, or more specifically, with 

more cells seeded (Figure 8Figure 7). This was true for the control and the treated 

samples, whereas the fluorescence intensity was higher in the TGF-β treated samples 

(Figure 8, Figure 9). Of note, especially for the 6 and 12 h time points, there seemed to 

be a drop of fluorescence intensity with a higher cell number seeded (Figure 8). This 

was due to cells overgrowing. When normalizing the Col I intensity values to the cell 

number per image, in some cases, it seemed that the resulting Col I intensity values 

decreased with increasing number of cells seeded (Figure 8 c, d).  

To compare the effect of TGF-β treatment at each time and for each cell number 

seeded, I showed the FC_intensity, where the Col I per cell values were normalized to 

the corresponding control (for each cell number seeded separately, Figure 9). 

Generally, after 24 h of treatment with TGF-β, the difference between ctrl and treatment 

was increasing.  

The decision to select the cell numbers, as described in results section 4.1.3, was 

based on the aspects above. On the one hand, I selected conditions where the 

difference of deposited Col I between control and TGF-β treated samples was 

significant and as high as possible. So, if the cells were seeded too sparsely, less 

fibrillar collagen was deposited. On the other hand, there were limitations for the 

imaging read-out. If too many cells were seeded, cells became too dense and either 

detached (often seen in the control condition) or overgrew (Figure 10). Moreover, more 

cells became autofluorescent, or by overgrowing were in a different focal plane, which 

led to false positive signals. The autofluorescence could have been due to apoptosis 

(Levitt et al., 2006). 

 

In parallel, I planned the multi-omics experiment and was becoming aware that, to 

reduce the batch effect, it would be best to harvest all time points and samples of one 

biological replicate at the same time. To explore the potential impact of different 
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experimental set-ups on the cells’ response, I compared the previously used set-up (A) 

and an alternative set-up (B), where all samples were harvested simultaneously (Figure 

11). 

Set-up B provided the advantage of comparing all samples as they have been cultured 

in one plate (Figure 12), which was especially advantageous for the imaging data 

(supplementary Figure 62). In both set-ups, there was a significant increase of 

extracellular Col I in the TGF-β treated conditions when compared to the control at the 

corresponding time point.  

Moreover, RT-qPCR quantification of fibrotic marker genes, showed that in both set-

ups the expression of the tested genes increased post TGF-β stimulation (Figure 13). 

Notably, the number of biological replicates was higher for the set-up B which makes 

the changes significant, while the t-test did not show significance for most of the genes 

in set-up A. 

Additionally, the morphological changes of the F-actin stress fibers, using phalloidin 

staining, have been shown for set-up B (Figure 14). As previously discussed, the cells 

in the control conditions also expressed actin stress fibers. However, after stimulation 

with TGF-β, the fibers became more intense, longer and globally organized. While this 

effect might not have been so prominent 12 h post TGF-β treatment, it was visible after 

24 h.  

 

Since the morphological modifications, alterations in mRNA expression and Col I 

deposition take time, I sought to explore more immediate responses to changes of the 

signaling pathways. Moreover, in order to incorporate relevant time points for 

phosphoproteomics, as a vital component of the signaling cascade and cellular 

response to TGF-β, I investigated the phosphorylation of a key downstream target, 

SMAD2 (Friedman et al., 2013; Meng et al., 2016; Sziksz et al., 2015; Tie et al., 2022). 

Even short stimulation with TGF-β, for instance 30 sec or 2 min, increased 

phosphorylation of SMAD2 (Figure 15, Figure 16, Figure 17). This effect persisted until the 

last time point (96 h) (Figure 16, Figure 17). 

 

Based on these findings, I chose to include multiple time points for the multi-omics 

experiments. This decision was driven by several objectives. To start with, I aimed to 

resolve the early mechanisms underlying fibrosis, as gaining insights into early stages 

could potentially facilitate identification of therapeutic targets or inform strategies for 
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slowing down disease progression. Conversely, fibrosis is a long process, requiring 

investigation beyond the immediate response. As a consequence, I hypothesized that 

studying the time resolved response of the used cells would lead to valuable insights 

into the dynamic mechanisms underlying fibrosis. Combined with the multi-omics read-

outs, this would result in a deeper understanding of fibrosis mechanism and 

progression. 

This idea was supported by other studies that applied a time-resolved read-out and 

provided comprehensive insights by doing so. D’Souza et al. (2014), for instance, 

propose that a temporal regulation of proteins may be responsible for the context-

dependent effects of TGF-β in their tested cellular system, keratinocytes (D’Souza et 

al., 2014). 

5.3. Testing of Anti-fibrotic Compounds Show Cell Specific 

Response 

To further highlight the relevance of the cellular system used in this study, I examined 

the effect of anti-fibrotic compounds including FDA approved drugs that are used in 

treatment of other fibrotic diseases. I chose Pirfenidone (PFD) and Nintedanib (Nin), 

as they are used as standard of care of IPF worldwide (Collins & Raghu, 2019; Khan 

et al., 2023; Walraven & Hinz, 2018). Even though treatment with PFD and Nin does 

not cure fibrosis, these compounds have shown to slow the rate of lung function 

decline. Moreover, their potential to treat other fibrotic diseases was further tested in 

smaller clinical trials also for kidney fibrosis (Cho & Kopp, 2010; Klinkhammer et al., 

2017). 

Proposed mechanisms of action of PFD included inhibition of the TNF-α translation 

and GLI transcription factor activity (Didiasova et al., 2015; Khan et al., 2023). 

Pathways affected by Nin are VEGF, FGF, PDGF as well as lymphocyte-specific 

protein tyrosine kinase and Src nonreceptor kinase signaling. The inhibited pathways 

are of therapeutic interest as all of them are involved in fibrosis (Bigaeva, Stribos, et 

al., 2020). 

The concentrations used in my experiments were based on previous publications (Bon 

et al., 2019; Cannito et al., 2017; Cho & Kopp, 2010; Cui et al., 2020; Khan et al., 2023; 

Lehtonen et al., 2016; Nakayama et al., 2008; Sheu et al., 2019; Stahnke et al., 2017). 

However, in the used cellular model, neither PFD nor Nin showed a decrease of 
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extracellular Col I deposition after 48 h in the presence or absence of TGF-β (Figure 18, 

Figure 19). Only treatment with 0.05 and 0.5 µM PFD (the lowest concentrations tested) 

significantly decreased extracellular Col I deposition after 96 h (Figure 18). As previously 

mentioned, phenotypes and signaling pathways of myofibroblasts might differ 

depending on the cell type they originate from. As an example, there are several 

studies that hint towards an anti-fibrotic potential in lung fibroblasts or animal models 

of pulmonary fibrosis. Nevertheless, the promising anti-fibrotic effects of PFD observed 

did not reflect the performance in human renal fibroblasts or an ex-vivo model of human 

PCKS, as shown by Bigaeva et al. (2020). Moreover, in clinical trials of patients with 

diabetic kidney disease and focal segmental glomerulosclerosis, use of PFD did not 

show a prevention of proteinuria or GFR (Bigaeva, Cavanzo, et al., 2020). Adversely, 

there is even a case report showing that PFD could lead to kidney injury (Kanbay et 

al., 2019).  

It was also shown by Bigaeva et al. (2020), in human PCKSs, that Nin has an effect in 

preventing fibrosis onset rather than reversing fibrosis (Bigaeva, Stribos, et al., 2020). 

Other sources have applied pre-incubation with anti-fibrotic compounds prior TGF-β 

treatment (Hinz & Lagares, 2021). Even though it might be interesting to repeat the 

experiments with stimulation of anti-fibrotic compounds prior to incubation with TGF-β, 

I did not do this as my goal was rather focused to understand how to inhibit the already 

existing fibrotic effects of TGF-β stimulation.   

Since I wanted to see how the used cellular model would respond to other anti-fibrotic 

stimuli, I further tested LY2109761 (LY), a dual inhibitor of TGF-β receptor type I/II, as 

it had been shown to decrease the fibrotic response in murine precision-cut kidney 

slices (Luangmonkong et al., 2018; Melisi et al., 2008; Stribos et al., 2017). In an 

experiment, I showed that treatment with the highest concentration tested (20 µM) led 

to a significant reduction of ECM deposition in the control samples compared to the 

untreated control (Figure 20). In comparison, 48 h treatment with LY in the presence of 

TGF-β resulted in a significantly lower ECM deposition for all concentrations tested. 

Finally, I tested a compound that showed promising results in decreasing extracellular 

Col I deposition in normal human lung fibroblasts, illustrated by my colleague (Khan et 

al., 2023). Dextromethorphan (Dex), led to a significant reduction of ECM also in the 

cellular system applied in my project, in the presence of TGF-β as well as its absence 

(Figure 21). This effect was visible already after 48 h and was even more prominent 

after 96 h, further supporting its anti-fibrotic effects. The anti-fibrotic effects of Dex are 
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not fully understood yet, but Khan et al. (2023) propose that Dex leads to accumulation 

of Col I in the ER and an inhibited transport to the extracellular space.  

In summary, I showed the relevance of the used cellular model to study fibrotic 

mechanisms induced by TGF-β stimulation and its application to screen for anti-fibrotic 

compounds. 

5.4. Dynamic Fibrotic Response of Cellular Model Represented at 

Multiple Scales 

5.4.1. Increased Deposition of Extracellular Col I Over Time and upon 

Stimulation with TGF-β 

The immunofluorescence staining of Col I showed increased accumulation of ECM 

over time upon incubation with molecular crowding and ascorbic acid (Figure 23, Figure 

24). After initial inspection of the data and statistical analysis with t-test (Figure 24), I 

opted for using a linear mixed model (as described in the methods section 3.2.3). This 

approach provided the advantage to investigate the effect of time, treatment and their 

interaction on the deposited Col I per cell while accounting for biological replicates as 

random effects (Piepho et al., 2003, 2004).  

For the model, I decided to use the average per cell intensity of the Col I staining 

calculated for each sample. The reasoning behind this was, that even though the cells 

showed different densities across the images acquired for each sample, the media 

they are cultured in was the same. Therefore, the signaling factors secreted by the 

cells leading to autocrine signaling should have been distributed in the media. 

Additionally, my set-up averaged the response of the cells across the population. Since 

the cellular model contained different subpopulations of PDGFRβ+ cells, I opted to 

study the average response of the population to the treatment. 

Other models, for which I used all images or even took the cell number into 

consideration, led to similar results. Consequently, I decided to run the model with the 

(square root transformed) mean values for each sample of the Col I per cell value. 

Additionally, after investigation of model residuals (Figure 3), I transformed the Col I per 

cell values using square root transformation to stabilize the variance and achieve 

normal distribution of model residuals, which is a prerequisite for anova (Piepho, 2009). 

It is important to note that there was no 0 h TGF-β treatment and therefore I duplicated 

the values of the 0 h ctrl for the statistical analysis of the model. This adjustment was 
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necessary to optimize the model matrix (Figure 3). As a result, the Anova showed no 

significant main factor effect for the TGF-β condition at the 0 h time point (Table 16). 

Notably, the influence of time is significant as well as the interaction between time and 

condition (treatment). 

While deposited Col I was significantly different between the untreated control at 0 h 

and the later control time points (72 and 96 h), there was no significant increase of 

ECM when comparing the different time points of the conditions incubated with 

molecular crowding and ascorbic acid (control conditions) (Table 17). This suggested a 

time-dependent increase of extracellular Col I, independent of external TGF-β 

stimulation but influenced by treatment with molecular crowding and ascorbic acid. 

On the contrary, 24 h of TGF-β treatment resulted in a significant increase of 

extracellular Col I when compared to the respective control sample at 24 h. 

Additionally, over time the difference of deposited Col I was increasing and is 

significant between the tested time points treated with TGF-β (Figure 25, Table 17). 

Therefore, continuous TGF-β might exert a persistent influence on the ECM 

accumulation. 

 

Additionally, when looking at the cell number, one could see that the cell number 

decreased with the later time points (Figure 64). Especially for the longer time points, 

the cell number was smaller in the TGF-β treated samples when compared to the 

respective controls. On the one hand, this can be explained by the fact that the cells 

were under starvation, since I did not add FBS over the treatment period. However, 

after the day of seeding, all samples have been kept under starvation. Therefore, one 

could conclude that the ascorbic acid and macromolecular crowding led to a switch in 

the cell cycle, or a fibrotic response that involved differentiation and halted proliferation. 

This effect could have been induced, on the one hand, by the macromolecular 

crowding agents, which boost the deposition of ECM. The changes of the matrix 

stiffness, variations in composition of matrix proteins and interaction of those with cell 

surface receptors regulate many cellular events, including proliferation and cell 

differentiation (An et al., 2016; Henderson et al., 2020). On the other hand, ascorbic 

acid is added to the medium as it is a cofactor required for various collagen-modifying 

enzymes, for instance prolyl and lysyl hydroxylases, thereby facilitating Collagen and 

ECM maturation (Hinz & Lagares, 2021).  
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In the TGF-β conditions, this effect was supplemented by the profibrotic effects that 

TGF-β exerts. As indicated in Figure 29, pathways like E2F targets and G2M checkpoint 

were downregulated with p53 pathway being upregulated post TGF-β treatment at the 

later time points and across omics modalities. This could be indicative of induction of 

cellular senescence. 

In summary, the data represent a time dependent effect of TGF-β and reflect the 

profibrotic response of the cells.  

5.4.2. Dynamic Fibrotic Response of Cellular Model Represented at the Multi-

omics Scale 

Consistent with the imaging data and previous experiments, the analysis of the multi-

omics data revealed a clear separation between control and TGF-β treated cells shown 

in the principal component analysis (PCA) and across the tested omics modalities 

(Figure 26). However, most of the variance of the phosphoproteomics data could be 

explained by the batch effect. This suggested a profound effect of TGF-β on the 

changes at the molecular profile of the cells which was also supported by the increase 

of differentially expressed factors at all omics modalities over time (Figure 27, Figure 28). 

Notably, a higher proportion of significantly differentially expressed transcripts (10% of 

mRNAs measured), as set by the log2 fold-change and adjusted p-value cut-offs, 

compared to proteomics (1.5 - 5%) was observed. This indicated that transcriptional 

regulation played a major role in the response of TGF-β treatment. However, changes 

on the transcriptional level are not fully transferable to alterations in protein abundance. 

This discrepancy was also evident in the volcano plot (Figure 28), where numerous 

mRNAs were annotated as hits with often higher log2 fold-changes than in the 

proteomics data. The obvious difference of the abundance changes across the omics 

modalities could be attributed to feedback loops or buffering effects (Kusnadi et al., 

2022; Y. Liu et al., 2016; Timmers & Tora, 2018). What is meant with this is that protein 

expression levels are dependent on several factors that are far beyond changes on 

transcript levels. The most obvious explanation might be that there is a temporal delay 

on protein synthesis which can be influenced by factors like the mRNA sequence (e.g. 

influenced by codon composition or internal ribosome entry sites), or translation 

modulators (e.g. binding of proteins/micro-RNAs to regulatory elements). When 

looking at the data, one can see a delayed response, i.e. TGF-β signaling pathway that 

was upregulated 1 h post TGF-β treatment in the transcriptomics data but only became 
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more active in the proteomics and secretomics data after 12 h (Figure 29). However, 

the delay in protein synthesis cannot be the full explanation. By regulating the protein’s 

half-life and abundance for example by degradation or via transport/export of proteins 

this effect could be further explained (Y. Liu et al., 2016). Nevertheless, further 

investigations are needed to confirm this hypothesis.  

Another layer that is not necessarily dependent on the protein abundance is the activity 

of proteins and signaling molecules which can be regulated via post translational 

modifications (PTMs). This was one of the main reasons why I included the 

phosphoproteomics, as I argued that understanding this critical aspect of signaling 

would facilitate a better understanding of disease mechanisms.  

Under steady state conditions, it is assumed that the relative protein and/or mRNA 

levels remain relatively stable over time (Lassé et al., 2023; Y. Liu et al., 2016). The 

data showed that the cells stimulated with TGF-β did not reach a steady state yet, 

which was indicated by the increasing hit number over time and did not reach a plateau 

96 h post TGF-β treatment (Figure 27). 

 

I hypothesized that enrichment of pathways that are observable at multiple omics 

layers would provide a comprehensive overview of the molecular mechanisms that 

drive the profibrotic response of the cells when stimulated with TGF-β. Therefore, I 

initially examined pathways that are differentially regulated across the measured 

modalities (Figure 29). Using MSigDB and decoupleR (Badia-i-Mompel et al., 2022) I 

showed that treatment of TGF-β induced profibrotic pathways such as EMT (Kendall 

& Feghali-bostwick, 2014; Walker et al., 2019), TGF-β (Yan et al., 2021), Hypoxia 

(Eddy, 2014; Gewin et al., 2017; Sziksz et al., 2015), and TNF-α (Dom et al., 2021; 

Granata et al., 2016; Mariani et al., 2018, 2023; Rinschen & Saez-Rodriguez, 2021), 

which were expected and previously linked to fibrosis. On the other side, pathways that 

exert an anti-fibrotic effect like Interferon α and γ were upregulated at 0.08 h post TGF-

β in transcriptomics and secretomics, followed by downregulation at later time points 

(Inagaki et al., 2003; Oldroyd et al., 1999; Vu et al., 2019). The initial upregulation of 

those pathways can be explained by the fact that all differentially regulated factors (not 

just the ones that were defined as hits) were included in the pathway enrichment 

analysis. Notably, at the earliest time point, there were no hits (according to our log2 

fold-change and p-value cut-off) detectable (Figure 27, Figure 28).   
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Other pathways that have been previously associated with fibrosis include 

Angiogenesis (Hinz & Lagares, 2020; Rasmussen et al., 2019), and Coagulation (Van 

Linthout et al., 2014). As already discussed, pathways that are involved in cell cycle 

regulation, like E2F targets, G2/M checkpoint (Gewin et al., 2017; Li et al., 2016), and 

p53 pathway (C. E. Higgins et al., 2019; S. P. Higgins et al., 2018; Samarakoon et al., 

2013), may indicate the transition of the cells towards a senescent phenotype. 

Moreover, recent studies have shown the implication of p53 and the interaction with 

SMAD, leading to a TGF-β induced PAI-1/SERPINE1 transcription involving ROS 

generation (S. P. Higgins et al., 2018; Samarakoon et al., 2013). Additionally, 

Myogenesis, a pathway involved in fibroblast differentiation showed increased activity 

over time (Meran & Steadman, 2011). 

Furthermore, the data showed the deregulation of metabolic pathways, previously 

linked to fibrosis. Fatty acid metabolism and oxidative phosphorylation exhibited similar 

trends as both pathways were downregulated in the proteomics data and additionally 

in secretomics or transcriptomics. In contrast, glycolysis was upregulated at 48 h and 

72 h in proteomics and/or secretomics, however, this hardly passed the cut-off that I 

set for the enrichment score (data not shown). Previous studies described the effect of 

dysregulated glycolysis in experimental models of fibrosis, including kidney fibrosis, 

and that by inhibiting glycolysis, reduction of ECM accumulation could be yielded 

(Henderson et al., 2020; Lassé et al., 2023; Zhou et al., 2020). Moreover, it was 

proposed that upregulated glycolysis could compensate for reduced fatty acid 

oxidation during kidney injury, thereby enhancing progression of fibrosis (Henderson 

et al., 2020).  

 

Aiming to identify biomarkers and possible drug targets, I had a further look into factors 

that changed significantly across the omics modalities (Figure 30, Figure 31, Figure 32). 

Validating my approach, some of the hits have already been proposed as biomarkers 

for fibrotic diseases. Of particular interest for me were hits measured in the secretomics 

dataset as those have the potential to serve as biomarkers detectable in blood or urine 

and thereby providing a valuable diagnostic and prognostic tool for kidney fibrosis. One 

of the hits is Tenascin-C (TNC), an extracellular matrix glycoprotein, which is produced 

by fibroblasts and, in an autocrine fashion, promotes the activation and proliferation 

(R. Huang et al., 2023; Moita et al., 2022). Cadherin-11 (CDH11), another hit in my 

study, was previously proposed as a non-invasive biomarker for kidney fibrosis (R. 
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Huang et al., 2023; Schmidt et al., 2021). Additionally, CDH11 might serve as a 

therapeutic target for lung fibrosis (Schneider et al., 2012). Both factors exhibited 

upregulation over time in the data set in all omics layers, except phosphoproteomics. 

Furthermore, biglycan (BGN), involved in collagen cross-linking showed increased 

expression during progressive renal scarring (Coleman et al., 2019). More precisely, 

the soluble biglycan was proposed as a biomarker for inflammatory renal diseases 

(Hsieha et al., 2014) and has been shown to be useful to monitor the function in liver 

cirrhosis patients (Genovese et al., 2014). The potential of latent transforming growth 

factor-β (TGF-β) binding protein-2 (LTBP2), another factor that was increased in the 

data, as prognostic blood biomarker has been shown recently for IPF as it might give 

insights into the differentiation of lung fibroblasts to myofibroblasts (Arif et al., 2023; 

Enomoto et al., 2018; Zou et al., 2021). 

 

Besides biomarkers, the expression of numerous extracellular matrix core and 

associated proteins was changed, accompanied by proteases that are known to 

regulate ECM deposition and degradation, as mentioned in the results section. One 

such protease, carboxypeptidase A4 (CPA4), was found to be downregulated upon 

TGF-β stimulation in the dataset. Although its function in fibrosis remains poorly 

understood, its association to different cancer types has been demonstrated, where 

overexpressed CPA resulted in enhanced EMT and migration (Fu et al., 2019; Gao et 

al., 2020; Shao et al., 2020; F. Zhang et al., 2019). I hypothesized, that CPA4 could 

mediate an anti-fibrotic effect, either directly or through regulation of intermediate 

factors participate in remodeling of the ECM. My attempts to overexpress it in the 

cellular system have not been successful yet but it would be interesting to assess 

whether overexpression of CPA4 would result in a reduced ECM deposition. 

 

Surprisingly, collagens were not upon the most regulated proteins in our secretomics 

data. This could be attributed to post-translational modifications such as hydroxylation, 

glycosylation or extensive crosslinking, which may render them undetectable or 

exclude them form analysis (Zhou et al., 2020). The more post-translational 

modifications are included in the analysis of Mass spectrometry data, the more likely it 

is to wrongly assign peptides. Additionally, I assumed that due to the use of 

macromolecular crowding in the media, most of the secreted collagens were quickly 

deposited. This assumption was supported by my imaging data that clearly showed an 
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increase of deposited Col I over time (Figure 23, Figure 24, Figure 25). Additionally, the 

proteomics data, including cell lysates and the ECM, showed a significant increase of 

COL1A1 and other Collagens, similar to the transcriptomics data (Figure 33). 

 

While focusing on factors that were shared across omics modalities, I may have 

overlooked factors that could serve as relevant drug targets, captured only in one of 

the datasets. Additionally, the log2 fold-change thresholds used may have led to 

neglecting factors that are essential in fibrosis progression but whose effect was not 

necessarily driven by changes in abundance. Factors such as COL1A1 and BMP1, 

though deregulated in the dataset, did not meet the log2 fold-change threshold set, 

explaining their absence from the heatmap (Figure 30, Figure 31). 

Notably, I was missing out on other factors that might have been secreted but were not 

measured via proteomics techniques such as secreted micro or long non coding RNAs, 

which however, could have been measured in the transcriptomics data. For example, 

when looking at the top 20 loading vectors for the first PC of the principal component 

analysis for the transcriptomics data (supplementary Figure 66), there was a long 

intergenic non-protein coding RNA (LINC01711) that contributed to the separation 

between control and TGF-β treated samples. LINC01711 has just recently been shown 

to promote TGF-β induced invasion in one of the central nervous system’s most 

aggressive and malignant tumors (GBM) (Shree et al., 2023). Therefore, it might be 

interesting for future studies to have a look at the data that I generated. To support the 

transcriptomics data and identify non-protein biomarkers for the blood or urine, it would 

have been interesting to enrich RNAs of the cell culture supernatants and send them 

for sequencing. 

Nevertheless, the data highlighted proteins that have been proposed as drug targets 

for fibrotic diseases, including the recent focus on a disintegrin and metalloprotease 

12 (ADAM12) which becomes upregulated in fibrogenic cells (Arif et al., 2023; Sobecki 

et al., 2022). Therefore, it was suggested as a target in a vaccination-based 

immunotherapy approach, where cytotoxic CD8+ T cells were directed to attack 

collagen producing cells expressing ADAM12. Research indicates that ADAM12 

vaccination reduced collagen staining in livers of mice and even prevented fibrosis in 

the lungs of mice that received the vaccine as a prophylactic (Sobecki et al., 2022). 

Conversely, significantly more cardiac fibrosis was observed in ADAM12 knock-out 

mice possibly due to enhanced focal adhesion and TGF-β signaling (Nakamura et al., 
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2020). Of note, the role of ADAM12 in the kidney has not been extensively studies yet 

(Wozniak et al., 2021). In line with literature, my data showed that expression of 

ADAM12 was upregulated in transcriptomics, proteomics and secretomics (Figure 31) 

and its phosphorylation was enhanced (Figure 32). Therefore, it would be interesting to 

further investigate how ADAM12 is involved in kidney fibrosis. 

SERPINE1, also called Plasminogen Activator Inhibitor-1 (PAI-1), is involved in ECM 

remodeling and is associated with increased fibrosis, also in the kidney (Ghosh & 

Vaughan, 2012; Moita et al., 2022; Samarakoon et al., 2013; Sciences et al., 2017; 

Shindo et al., 2018; Vaughan et al., 2017; Zhou et al., 2020). Studies have also shown 

that SERPINE1 is a marker for cellular senescence, which plays a significant role in 

driving fibrosis. Targeting SERPINE1 provides a promising strategy for therapeutics to 

reduce ECM deposition and slow down kidney fibrosis progression (Walraven & Hinz, 

2018; Wang et al., 2021). Other hits that showed up in this study and have been 

previously proposed as drug targets include FN1, MMP2, ITGB5, ITGAV, TNC and 

CCN2 (Figure 30, Figure 31) (Moita et al., 2022; Samarakoon et al., 2013). 

 

As mentioned in the results section, there were only a few hits that were shared 

between the phosphoproteomics data and other data modalities. Besides the shared 

hits, I will now highlight a few hits of interest from the phosphoproteomics data (Figure 

32). Some factors that were upregulated at early time points were heat shock protein 

beta-1 (HSPB1), also known as HSP27, and inositol 1,4,5-trisphosphate receptor, type 

1 (ITPR1) (Figure 32). HSPB1 was already linked to cell motility (Hoffman et al., 2022), 

EMT, chronic tubulointerstitial fibrosis (Vidyasagar et al., 2008), and 

hyperphosphorylation which induces actin stress fiber formation (Choi et al., 2016). 

Regarding kidney fibrosis, overexpression of HSPB1 has been associated with 

decreased expression of fibrotic marker genes, pro-inflammatory signals and oxidative 

stress, when overexpressed, thereby excreting an anti-fibrotic effect (X. Zhang et al. 

2021). Valles et al. (2003) investigated the expression of HSPB1 in 22 patients with 

uretero-pelvic junction (UPJ) obstruction (that are occlusions in the urinary tract, at the 

base of the kidney) (Vallés et al., 2003). The authors found that UPJ obstructions 

showed tubulointerstitial fibrosis and that the duration of obstruction correlated with 

HSPB1 expression. In subsequent studies, they demonstrated the protective role of 

HSPB1 in reducing fibrosis (Vidyasagar et al., 2012). Although, ITPR1 can regulate 
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senescence in the liver, and thereby may regulate glucose homeostasis (Ziegler et al., 

2021), its implications in fibrosis remain poorly understood.  

Another protein that showed significant increase of phosphorylation at different sites, 

however at later time points, was Tensin-1 (TNS1). In human autosomal dominant 

polycystic kidney disease (ADPKD) tissue, the protein expression of TNS1 was 

significantly decreased compared to healthy control samples (C. Huang & Lo, 2023). 

In contrast, another study described the increased expression of TNS1 upon TGF-β 

stimulation and its essentiality in TGF-β induced myofibroblast differentiation and ECM 

deposition (Bernau et al., 2017).  

 

In summary, the profibrotic response of the cells was represented at all omics layers, 

by an increase of profibrotic pathways and a decrease of anti-inflammatory pathways. 

Moreover, my approach identified previously proposed biomarkers and drug targets, 

including factors that have not yet been studied in the context of kidney fibrosis. 

Additionally, the phosphoproteomics data might provide valuable insights into kidney 

fibrosis progression. However, a deeper and more targeted approach is needed to 

extract further information.  

5.4.3. Multi-omics Results Linked to Single-Cell Data of CKD 

Two of the major questions in the field of chronic kidney disease are: i) What is the 

origin of myofibroblasts that are producing the excess of ECM, and by understanding 

this, ii) could we find drug targets to provide new treatment options for patients? Single 

cell sequencing methods have provided an instructive tool to investigate this further 

and showed that the majority of ECM producing cells in the kidney stem from resident 

PDGFRβ+ pericytes and fibroblasts (Kuppe et al., 2021).  

In this project, I used a cell culture model based on human kidney derived PDGFRβ+ 

cells, and induced a fibrotic response using TGF-β. I argue that the dynamic data that 

I generated, provide a thorough characterization of this model, and that the model is a 

valuable tool to further investigate the molecular response of myofibroblast precursor 

cells to fibrotic stimuli, which could also involve mechanistic or oxidative stress and 

stimualtion with other growth factors. An additional application of the used cellular 

system could be to test perturbations, and a combination thereof, to further investigate 

important factors in the context of fibrosis but also test new and approved drug 

compounds. 
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In order to further demonstrate the validity of my ideas, together with Mira Burtscher, 

we compared the obtained data to single cell RNA sequencing data of Kuppe et al. 

(2021). Therfore, we used the supplementary table including the specificity scores of 

analysed genes for each cell type, calculated by Kuppe et al. (2021) 

(41586_2020_2941_MOESM4_ESM.xlsx, Human_PDGFBplus_Level_2_Specifi 

sheet). The top 7% of genes specific for myofibroblasts were filtered based on a 

specificty score cut-off that we defined as > 0.2 (Figure 56B). This resulted in 1650 

genes, that were then compared to my dataset. In the volcano and bar plot (Figure 

56C,D), one can see that there was an increase of deregulated genes over time in all 

multi-omics data that were also expressed in myofibroblasts of CKD patients. 

This demonstrates that the treatment with TGF-β initiated a cellular response, leading 

to differentiation towards myofibroblasts over time, which is biologically relevant in the 

context of kidney disease. 

 

Figure 56 Comparison to myofibroblast specific genes. A) Heatmap illustrating the specificity of 
genes expressed in different cell types. B) Specificity score (x-axis) versus number of genes (y-axis) 
plotted for genes expressed in myofibroblasts. Cut-off taken at 0.2 C) Volcano plot showing filtered 
myofibroblast specific genes expressed in the dataset generated in this study D) Boxplot summarizing 
deregulated genes (absolute log2 fold-change > log(1.5) and adjusted p-value < 0.05, upregulated 
genes in red, downregulated genes in blue) among the myofibroblasts specific genes. Code for analysis 
and figure generated by Mira Burtscher and modified by me. 
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5.5. Causal Inference of Omics Data Using Mechanistic Modeling 

of fibrotic response 

With the previous discussion sections I wanted to highlight that the fibrotic response to 

TGF-β involves not only the activation of a singular pathway, but rather the 

dysregulation of a bigger signal transduction network, leading to altered cellular 

behavior thereby directing disease context. How the cells sense, integrate and transmit 

information is especially important in a complex disease like kidney fibrosis. With the 

aim to further understand the molecular mechanisms of fibrosis, I included footprint-

based activity estimation of TFs and kinases/phosphatases based on changes in the 

transcriptomics and phosphoproteomics data, and used those as signaling nodes in a 

mechanistic network generated using COSMOS (Causal Oriented Search of Multi-

Omics Space) to connect the estimated activities and abundance changes of secreted 

factors (Dugourd et al., 2021; Dugourd & Saez-Rodriguez, 2019). I argued that, by 

using these methods, I would be able to link the datasets and provide functional 

insights by identifying causal pathways through integration of prior knowledge to 

connect the observed changes (Szalai & Saez-Rodriguez, 2020). 

5.5.1. Activity Inference of TFs and Kinases/Phosphatases Shows Fibrotic 

Mechanisms and New Players 

To prepare for the causal network analysis to identify mediators of fibrosis, I used the 

decoupleR R package to infer the activity of TFs and kinases/phosphatases (Badia-i-

Mompel et al., 2022). These signaling molecules have the potential to modulate the 

expression of proteins and thereby contribute to fibrotic phenotypes. Here, I will 

address not only the changes in activity of TFs and kinases/phosphatases (Figure 34) 

but also the alterations in abundance (Figure 71) and explain the reasons behind their 

omission as significant findings (hits) in the previous sections. 

 

Among the top regulated TFs was SMAD4 which is known to be implicated in the 

canonical TGF-β signaling pathway (Hinz & Lagares, 2020; Tie et al., 2022). But 

SMAD4 did not show up as a hit, neither in the transcriptomics nor proteomics data as 

its abundance did not change significantly (Figure 71Figure 71). Therefore, I 

hypothesized that the activity changes of SMAD4 may not be driven by changes in 

abundance but rather by e.g. changes of posttranslational modifications, interaction 
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with other proteins or localization (e.g. from cytoplasm to nucleus). SMAD4 was not 

measured in the phosphoproteomics, hence I cannot make a definite statement about 

phosphorylation changes. 

Interestingly, the activity of a mixed lineage leukemia protein 1 (MLL1), encoded by the 

gene KMT2A, increased from 5 min onwards. It has previously been shown that 

dysregulation of the menin/MLL1 pathway contributes to renal fibrinogenesis (Jin et al., 

2022). KMT2A is another factor that was deregulated at the transcriptome, proteome 

and phosphoproteome level but did not pass the significance cut-offs (Figure 71).   

Furthermore, one can see an upregulation of transcriptional enhancer factor TEF-3 

(TEAD4) and serum response factor (SRF) activity, which are implicated in the 

signaling with the transcriptional co-activators yes-associated protein 

(YAP)/transcriptional co-activator with PDZ-binding motif (TAZ). The latter are 

mechanosensitive co-activators that regulate cell-ECM mechano-transduction, 

meaning that increased ECM stiffness promotes the nuclear transport of YAP/TAZ 

which bind to TEAD4 and SRF and thereby contribute to production of ECM proteins 

and profibrotic signaling pathways such as TGF-β, TNS1 and Wnt (Bernau et al., 2017; 

Hinz & Lagares, 2020; Kim et al., 2022). Looking at the data, TEAD4 mRNA abundance 

was not significantly deregulated, considering the absolute log2 fold-change > log(1.5) 

and adjusted p-value < 0.05. Furthermore, it was not detected in the proteomics data, 

which could be attributed to its low expression levels. While expression of SRF was 

only significantly upregulated (considering the absolute log2 fold-change cut-off < 

log(2) and adjusted p-value < 0.05) at 12 h post TGF-β treatment in the transcriptomics 

data set, its abundance did not change significantly in the proteomics and 

phosphoproteomics data.  

Given the insights from previous studies, which underscore the importance of Gli1+ 

cells in injury-induced organ fibrosis (Black et al., 2019; C. E. Higgins et al., 2021; 

Kramann, 2016; Kramann et al., 2013, 2015), it was unexpected to observe 

downregulated activity of GLI1 over time. Despite this, it is important to mention that 

GLI1 abundance on mRNA level was significantly increased between 12 – 48 h post 

TGF-β treatment, aligning with existing literature.  

The abundance changes of factors like FOXA1, E2F1 and HIC1 were only measured 

in transcriptomics and phosphoproteomics but the proteins were not measured in 

proteomics. Due to the enrichment of phosphopeptides for the phosphoproteomics, 

also peptides of less abundant proteins could be measured. Nevertheless, factors that 



  Discussion  

146 

only showed up in phosphoproteomics data but not in the proteomics data of the cell 

lysates were excluded from downstream analysis as we could not normalize them to 

changes in protein abundance. Notably, the estimated alteration of activity of FOXA1, 

E2F1 and HIC1 showed a similar pattern when compared to the mRNA expression 

changes (Figure 34, Figure 71).  

 

According to the data, PTK2, the focal adhesion kinase 1, was one of the kinases which 

activity was increased at all time points measured (Figure 34). This kinase has been 

shown to be implicated in fibrinogenesis by participating e.g. in integrin signal 

transduction and MAPK signaling (Lagares & Kapoor, 2013). Looking at the mRNA 

and protein expression levels, the abundance did not change significantly (Figure 71).  

Casein Kinase 2 Alpha 1 and 2 (CSNK2A1, CSNK2A2), genes which encode catalytic 

subunits of the tetrameric casein kinase II (CK2), were shown to be upregulated in 

diabetic mouse models. Furthermore, inhibition of the kinases demonstrated 

amelioration of renal fibrosis in mice (Borgo et al., 2021). In my dataset, the kinase 

subunits demonstrated increased activity early on. While CSNK2A1 activity was 

downregulated at 12 h, CSNK2A2 maintained its increased activity. Neither of both 

kinase subunits showed a significant change of mRNA or protein abundance over time. 

Interestingly, a recent study demonstrated the potential of a small molecule inhibitor of 

CK2, CX-4945, in reducing liver fibrosis by inhibiting the activation of HSCs (hepatic 

stellate cells, which, together with activated portal fibroblasts, constitute more than 

90% of the cells in experimental models of liver fibrosis that contribute to collagen 

production) (Fan et al., 2023). In light of these findings, combined with the fact that 

these catalytic subunits exhibited early activity, it was valid to assume that CK2 might 

have an important role in activation of the cells that I used. Therefore, it would be 

interesting to test the effect of CK2 inhibition in the context of kidney fibrosis in the 

human-derived PDGFRβ+ cells with the protocol that I applied earlier in my project 

(results section 4.1.4). 

 

To highlight one of the SMAD independent pathways induced by TGF-β signaling, I am 

focusing on the activation of Rho GTPases and their effector kinases Rho coiled-coil 

kinases (ROCK) 1 and 2, players that are further involved in mechano-transduction 

(Walraven & Hinz, 2018). Linking it to the phosphoproteomics hits and activated TFs 

from before, studies already demonstrated that ROCK and actin-regulated MKL1/SRF 
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activation result in the TNS1 expression that might be involved in driving differentiation 

of myofibroblasts and ECM deposition (Bernau et al., 2017). These findings are 

supported by another study that showed the prevention of myofibroblast differentiation 

and ECM deposition in lung fibroblasts and precision cut lung slices resulting from the 

inhibition of ROCK1 and 2 (Wu et al., 2021). In this study, ROCK1 and ROCK2 both 

displayed reduced activities, unexpectedly (Figure 34). While ROCK1 mRNA and 

protein abundance increased gradually over time following TGF-β stimulation, it did not 

meet the log2 fold-change and adjusted p-value thresholds mentioned before (Figure 

71). In contrast to this, ROCK2 expression decreased, with significance observed only 

at the 96 h mark in the transcriptomics data. It would be interesting to further investigate 

the discrepancies of my data with literature, to understand whether there are cell-type 

dependent effects and to further understand the role of ROCK1 and ROCK2 in the 

context of the used cellular system of this study. 

 

In summary, the footprint-based methods estimated altered activity of TFs and 

kinases/phosphatases that were mostly not detected as hits in the multi-omics 

approach since those factors did not meet the selection criteria such as absolute log2 

fold-change > log(1.5), an adjusted p-value < 0.05, and occurrence as hits across 

different omics modalities. Therefore, my observations underscore the estimated 

potential of footprint methods in enhancing our understanding by providing activity 

inferences of essential signaling molecules, such as TFs and kinases/phosphatases, 

based on changes of downstream targets. However, it is crucial to acknowledge that 

these tools are inherently biased by the prior knowledge used, since well-studied 

pathways and factors are favored, thereby overlooking less-well investigated factors 

(Garrido-Rodriguez et al., 2022; Hishikawa et al., 2018). Therefore, I decided to 

validate a set of TFs to confirm the results obtained using footprint analysis and find 

possible modulators of kidney fibrosis. BHLHE40, NR4A1, E2F1, SMAD1, FLI1 and 

HNF4G all showed an increased activity at 1 h post TGF-β treatment (Figure 34). Based 

on this observation and initial screening of literature, I argued that inhibiting these TFs 

could influence ECM deposition, given their potential fibrogenic role. The data of the 

validations of section 4.4.3 will be discussed in 5.6.2. 
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5.5.2. Multi-omics Network to Study Mechanisms of Fibrosis 

For further integration of the data, we generated two networks, one for the early 

mechanisms (Figure 72) and one for the late (Figure 73) to consider the temporal and 

multimodal information contained in the dataset. The separation of time points into 

early and late network was based on observations of the data, clustering and 

correlation of datasets for the different time points. 

 

The rationale behind clustering hits rather than the most variable features stemmed 

from the fact that in the phosphoproteomics data, the lines depicting average log2 fold-

change per cluster did not meet the threshold of log(1.5), and most features were not 

significantly deregulated (data not shown). For clustering of the hits, only two clusters 

were suggested (up and downregulated features) (Figure 36, Figure 37, Figure 38, Figure 

39). However, I wanted to assess the changes of genes and proteins over time to 

decide which time points to include in either of the two networks (early vs late) and 

therefore opted for four clusters to capture temporal changes better. This supported 

the selection of time points for network inclusion (early vs late). 

In addition to clustering, correlation analysis of datasets was performed (Figure 40). 

Correlation of the top 10% variable features per omics and hits yielded very similar 

results. Considering both approaches and the obtained results, I selected 0.08, 1, and 

12 h for TFs and kinases/phosphatases, as well as 12 and 24 h for secretomics data 

for inclusion in the early network. The rationale behind this decision was that signaling 

and protein expression might delay the secretion, hence setting the cut-off at 24 h for 

the secretomics hits. For the late network, time points 24 to 96 h for TFs and 

kinases/phosphatases, and 48 to 96 hours for secretomics were included.  

 

For the network, we used all transcripts measured to filter the prior knowledge for 

genes that are expressed in the used cellular system to generate a context specific 

network. The final networks actually consist of two networks each. In round one, to 

generate the first subnetwork, the upstream inputs (TGF-β, TGF-β & early secreted 

factors) were linked to downstream measurements (TFs, kinases/phosphatases). In 

round two, the TFs and kinases/phosphatases were used as upstream input and 

secreted factors as downstream measurements. In the post processing, a final network 

was generated based on both rounds. 
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These steps resulted in an early and a late network (Figure 41), where the nodes 

constitute TFs, kinases/phosphatases and secreted factors and the edges represent 

the relationship between these factors, in our case labelled as “activators”/“inhibitors”. 

Additionally, we added COL1A1 as an enriched secreted factor. Even though COL1A1, 

based on the log2 fold-change and adjusted p-value thresholds, was not a hit in the 

secretomics, we included it as the imaging data clearly showed an increase of 

deposited Col I. In general, there are more nodes and edges in the late network than 

in the early network. This is in line with my expectations and previous sections of this 

thesis, showing that the number of hits per omics increase over time (Figure 27). Directly 

downstream of TGF-β in the early network are SMAD1, 3, 4, 5 and MAPK1, as we 

constrained the PKN to enforce SMAD3 and 4 as well as MAPK1 downstream of TGF-

β. In the late network, downstream of TGF-β is paired box protein PAX8. 

Initially, I was surprised by the results as I expected to see pathways as we are used 

to see in text books such as SMAD2, 3, 4 complex formations, translocation into the 

nucleus and initiation of transcription. But in the network generated in this study the 

shortest connection was displayed. Nevertheless, I did not expect SMAD1 and 5 as 

they are associated with BMP signaling which is antagonistic to TGF-β signaling 

(Massagué, 2012; Matsubara et al., 2015; Pannu et al., 2007; Wei et al., 2020) (more 

to this in a later section).  

 

The nodes of each network were used to perform pathway enrichment analysis using 

the Reactome Pathway Database. Besides pathways that were expected, including 

signaling by receptor tyrosine kinases and TGF-β family members, or extracellular 

matrix organisation and degradation, I was surprised by the appearance of the 

pathways axon guidance and nervous system development (Figure 42). However, by 

looking into the nodes that were contained in the later pathways, there were several 

collagens (COL5A1, COL6A2, COL4A2), MMP2, integrins (ITGB1, ITGA2), and factors 

involved in MAPK singaling as well as signaling by receptor tyrosine kinases (MAP2K1, 

MAPK1, PTK2, MET, EGFR, AKT1, PIK3CA, PRKACA, RAC1, RHOA, ROCK1, 

ROCK2, YAP1, RPS6KA1, SRC, CREB1, LAMB1, LAMC1). In general, most of the 

pathways have a stronger significance in the late network as there are generally more 

factors that are taken into account due to the higher number of nodes. Nevertheless, 

the pathways with a stronger significance in the early network comprise signaling by 

interleukins, AKT signaling activated by PIP3, intracellular signaling by second 
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messengers, diseases of signal transduction by growth factor receptors and second 

messengers as well as signaling by GPCR.  

A possible explanation might be that the pathways highlighted in the early network 

could represent the immediate response to TGF-β stimulation whereas the late 

network might capture better the mechanisms associated with fibrosis. In the context 

of fibrosis, pathways like ECM organization and degradation might become more 

prominent.  

 

To further analyze and interpret each of the networks, we preformed clustering of the 

networks, and subsequent pathway enrichment analysis (Figure 43, Figure 44). For 

instance, the more prominent interleukin signaling in the early network could be 

explained by factors involved in Interleukin-4 and -13 signaling. Additionally, pathways 

that are important in development but become reactivated in renal injury involve Notch, 

Wnt and hedgehog (Edeling et al., 2016). Linking to this, pre-NOTCH expression and 

processing/transcription and translation showed up as enriched pathways in the early 

network. Interestingly, regulation of CDH11 expression and functions was shown to be 

enriched, linking to CDH11 which was a hit in all data modalities (Figure 31).           

Supporting my hypothesis that the cells become senescent with time, the clustering of 

the late network showed enrichment of factors involved in cellular senescence. Another 

factor that is relevant in fibrosis is oxidative stress (Gewin et al., 2017; Rockey et al., 

2015; Sziksz et al., 2015), involving hypoxia-inducible factor 1-alpha (HIF1A, with 

upregulated activity at 96 h in Figure 34) and shown by the enrichment of the pathway 

regulation of gene expression by hypoxia-inducible factor. Interestingly, there was 

signaling by BMP enriched in one cluster, which was mainly driven by BMPR1A, 

SMAD1, SMAD4 and SMAD5. 

In general, clustering methods are not very robust and sometimes predicted pathways 

change when clustering methods change. Nevertheless, pathways such as 

degradation of the extracellular matrix, extracellular matrix organization and signaling 

by receptor tyrosine kinase were robustly detected as enriched in both, the early and 

late networks, even if the clustering methods changed. One of the reasons for the 

enrichment of ECM regulating pathways could be e.g. SP1 which was a node with 

many edges especially to ECM regulating enzymes and matrisome proteins (Figure 45).  
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Even though network generation tools offer valuable options to generate testable 

hypotheses, thereby advancing our understanding of complex diseases such as CKD, 

the results should be interpreted cautiously. From my point of view, a significant 

limitation of these methods lies in the inherent bias coming from prior knowledge. This 

research bias stems from certain well-studied biological contexts, such as cancer, and 

a small subset of extensively investigated proteins (e.g. p53). Therefore, it is easier to 

link the functions of these factors than of understudied proteins and pathways. At the 

network level, this means that a minority of extensively studied proteins drive the 

majority of interactions and often exhibit multifunctionality, potentially biasing 

interpretations (Garrido-Rodriguez et al., 2022). On the contrary, this could also 

highlight their intricate importance in regulating different pathways. Another example 

is that the functions of only 5% of known phosphorylations in human cells are 

understood, even though the contributions of phosphorylation events are essential in 

cellular signaling. Moreover, over 90% of these known phosphorylation events involve 

a selected group of well-examined kinases (Needham et al., 2019). In summary, these 

approaches are limited to our current knowledgebase and only provide an 

approximation of the reality. 

5.6. Observations form Validation Experiments 

5.6.1. Optimized siRNA Transfection Protocol Resulted in Efficient Knock-down 

of Target Genes 

After confirming that the siRNA transfection protocol and reagents worked in the 

cellular model, by knock-down of GM130 and SMAD2 (Figure 46, Figure 47), I aimed to 

investigate the impact of target gene knock-downs on ECM deposition. For this RT-

qPCR read-outs and immunofluorescence staining were used. Since new batches of 

anti-Col I antibody and other antibodies that I tried did not work, I utilized CNA35, a 

fluorescently labelled dye that binds fibrillar collagen (Baues et al., 2020; Klinkhammer 

& Boor, 2023; Krahn et al., 2006). However, due to increased autofluorescence, most 

likely coming from the stress induced by the siRNA transfection, an additional anti-GFP 

antibody (secondary 647) staining was employed to mitigate the signal stemming from 

autofluorescent (apoptotic) cells. In parallel, the mRNA expression levels of siRNA 

target genes and their downstream targets were monitored.  
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Initially, knock-down of COL1A1 was performed to optimize the protocol for further 

validation experiments. Assuming that the protein levels of target genes were efficiently 

downregulated at 48 h, I started the treatment with or without TGF-β and kept the cells 

under treatment for further 48 h. This set-up was chosen as changes in ECM deposition 

could be assessed after 48 h of TGF-β treatment. As expected, treatment with 

siCOL1A1, using three different siRNAs, resulted in significant decrease of COL1A1 

mRNA levels and decreased ECM deposition shown by immunofluorescence staining 

(Figure 50). 

Given the integral part of FN1 for collagen assembly into the ECM (Kendall & Feghali-

bostwick, 2014; Moriya et al., 2011), I did not expect to see an increased COL1A1 

mRNA expression and an increase of deposited ECM upon knock-down of FN1, which 

was further boosted by TGF-β treatment (Figure 51, Figure 52). However, it has also 

been previously shown that knock-out in liver of mice resulted in an increased collagen 

production, TGF-β activity and liver fibrosis (Kendall & Feghali-bostwick, 2014; Moriya 

et al., 2011).  

To conclude, knock-down and subsequent TGF-β stimulation effectively maintained 

reduced mRNA and protein expression, while TGF-β stimulation induced increased 

COL1A1 mRNA and protein expression. 

5.6.2. Observations from TF Validations 

In order to identify factors potentially modulating ECM deposition, I selected a set of 

TFs estimated to display an upregulated activity 1 h post TGF-β treatment (Figure 34). 

I argued that these factors, besides established factors like SMAD4 and SRF, might 

influence the cells response to fibrotic stimuli such as TGF-β. By manipulating these 

factors, I could study their potential impact on ECM position. Based on these findings 

and initial literature research, I shortlisted the following TFs: Mothers against 

decapentaplegic homolog 1 (SMAD1), Transcription Factor E2F1, Friend leukaemia 

integration 1 transcription factor (FLI1), Nuclear Receptor Subfamily 4 Group A 

Member 1 (NR4A1), Hepatocyte nuclear factor 4-gamma (HNF4G) and Class E basic 

helix-loop-helix protein 40 (BHLHE40) for validation.  

 

I confirmed the knock-down with RT-qPCR to monitor whether the mRNA expression 

of the selected TFs decreased upon siRNA treatment (Figure 53). This was the case for 

all of them. In general, the mRNA expression of all tested TFs increased over time 
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(siNeg9 treated samples), however, only BHLHE40 significantly increased with TGF-β 

treatment (Figure 81), being in line with previous findings, while knock-down led to a 

significant reduction in expression levels over time (Figure 53). To assess the potential 

fibrogenic effect of the selected TFs, I monitored the mRNA expression levels of 

COL1A1. The upregulation of COL1A1 mRNA upon TGF-β treatment was visible in all 

experiments, as anticipated by initial RT-qPCR and imaging-based experiments (Figure 

53, Figure 81, Figure 54, Figure 55).  

 

While I summarized the effects of the knock-down at the last time point on the different 

genes tested, in the heatmap (Figure 53), I took a closer look into the data to assess 

the effect of interactions between siRNA and TGF-β treatment on the expression of 

COL1A1 mRNA levels and therefore used anova (Figure 77 - Figure 81 , Table 18 - Table 

23). This was performed for the last time point (96 h of siRNA ± 48 h TGF-β treatment). 

No Effect of HNF4G and BHLHE40 on COL1A1 mRNA Expression Levels but 

Opposing Effects on ECM Accumulation 

In contrast to the t-test results (Figure 53), siHNF4G and siBHLHE40 treatment exerted 

no significant effect on COL1A1 mRNA expression, neither in the control nor TGF-β 

treated conditions, using the anova (compared to the corresponding siNeg9 samples) 

(Table 21, Table 22).  

Comparing these data to the immunofluorescence staining of ECM, siBHLHE40 

treatment induced a significantly higher deposition of ECM, which was further boosted 

by stimulation with TGF-β (Figure 54, Figure 55). These data indicate, that BHLHE40 

might not regulate COL1A1/ECM deposition on the transcriptional level but might 

influence factors that control it. On the contrary, treatment with siHNF4G only led to a 

significant decrease of deposited ECM in the TGF-β treated condition when compared 

to the siNeg9 + TGF-β condition.  

To date there is not much known about the role of HNF4G in the context of kidney 

fibrosis. A study on the PDGFR-β activation on renal mesenchymal cells mentioned 

HNF4G as a TF which expression is downregulated in a CKD patient’s cohort (Buhl et 

al., 2020). Even though it would be interesting to further investigate the effect of 

HNF4G, especially since siRNA treatment led to a reduced ECM deposition in my 

assay, I did not follow up on this TF due to time limitations. 
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My hypothesis for BHLHE40, which is involved in cell cycle control (Kiss et al., 2020), 

stemmed from a paper highlighting the impact of circadian control on collagen 

homeostasis (J. Chang et al., 2020). Additionally, BHLHE40 was found in my early 

network (Figure 57), predicted to inhibit ID1 which would inhibit periostin (POSTN), a 

secreted ECM protein and marker for myofibroblasts (Kuppe et al., 2021). I postulated, 

that by BHLHE40 knock-down, more ID1 would be present leading to less POSTN and 

hence less ECM deposition, since it could be affected by loss of POSTN that is involved 

in cross-linking of the ECM. Additionally, the protein was shown to be involved in cell 

adhesion, migration, differentiation and renal fibrosis (François & Chatziantoniou, 

2018). Since the opposite was observed in initial experiments, and due to time 

constrains, I did not further validate BHLHE40. Nevertheless, it would be interesting to 

follow up on initial experiments, especially since there could be an effect when 

extending the time of the experiment and assessing the changes of ECM at a later time 

point. 

 

Figure 57 Zoom in on BHLHE40 with up- and downstream nodes in the early mechanistic 
network. The colors are representing the different modalities of the nodes, green for secreted factors, 
purple for TFs and grey as factors imputed by prior knowledge. The ellipse shape are factors which 
expression/activity is downregulated while squares indicate factors that are upregulated.  

Knock-down Inhibition of FLI1 Resulting in Increased COL1A1 mRNA and ECM 

The knock-down of FLI1 with the first siRNA (siFLI1a) resulted in a significant increase 

of COL1A1 mRNA expression in the TGF-β treated samples compared to the siNeg9 

+ TGF-β but not with the second siRNA tested (Figure 53, Figure 80, Table 20). For the 

first siRNA, however, the distribution of data points for the FLI1 knock-down was high 

and the uneven distribution of sample numbers (between siFLI1 and siNeg9 treated 

samples) suggests the need to increase the number of replicates to make a definite 

statement (Figure 80). The same is true for the second siRNA tested. Both siRNAs 

tested for FLI1 led to a significant increase of deposited ECM in the TGF-β treated 

samples (Figure 54, Figure 55). These data suggest that FLI1 might exert an antifibrotic 



  Discussion  

155 

effect that gets inhibited upon knock-down, leading to more COL1A1 mRNA and an 

increased ECM deposition. 

 

Having a closer look at the activity estimation of FLI1, it exhibited a bimodal behavior, 

being decreased at 0.08, 48 and 96 h, while increased at 1, 24 and 72 h (Figure 34). 

Similarly, its abundance changed with time of TGF-β treatment (Figure 71). On 

proteomics level, FLI1 abundance decreased at 0.05, and 12 h and increased at 1, 48, 

72 and 96 h, however, with no log2 fold-change bigger than log(1.5). Despite none of 

the log2 fold-change values passed the cut-off in the transcriptomics data, the mRNA 

expression of FLI1 also varied across time with an increased expression at 24 and 72 

h and a decreased expression at 1 h. 

The involvement of FLI1 has been shown for a number of diseases, including cancer 

and fibrosis. Deficiency of FLI1 is implicated in activation of fibrotic pathways as FLI1 

is a natural inhibitor of collagen genes (Kendall & Feghali-bostwick, 2014; Mikhailova 

et al., 2023). Therefore, I expected an increase of COL1A1 mRNA expression and 

ECM upon inhibition of FLI1 via siRNA treatment, which was confirmed in my 

experiments (Figure 53), thereby further validating my model. In the early network, FLI1 

proposetly regulated NOTCH1 and EWSR1 (Figure 58). This hypothesis, however, 

needs to be validated experimentally. 

 

Figure 58 Zoom in on FLI1 with up- and downstream nodes in the early mechanistic network.  
The colors are representing the different modalities of the nodes, green for secreted factors, blue for 
kinases/phosphatases, purple for TFs and grey as factors imputed by prior knowledge. The ellipse 
shape are factors which expression/activity is downregulated while squares indicate factors that are 
upregulated.  
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Validation of SMAD1 leading to unexpected fibrotic response 

Interestingly, knock-down of SMAD1 with the first siRNA significantly reduced the 

COL1A1 mRNA expression, in the TGF-β treated samples compared to the 

corresponding siNeg9 controls (Figure 53, Figure 78, Table 18). The second siRNA 

targeting SMAD1, did not result in a significant change of COL1A1 mRNA expression, 

which can be attributed to a too low number of samples tested. I did not follow up 

further on this siRNA as I realized that it has an off-target effect on SMAD5 (Figure 76).  

 

This was also the reason why I tested a third siRNA, which, to my surprise, led to a 

significant increase of COL1A1 mRNA levels in the samples stimulated with TGF-β 

compared to the corresponding siNeg9 samples.  

Consistent with the RT-qPCR data, the ECM significantly decreased upon treatment 

with siSMAD1a, especially when comparing the TGF-β treated condition to the siNeg9 

TGF-β condition. On the contrary, siSMAD1_c treatment led to a significant increase 

of deposited ECM in the TGF-β treated condition (Figure 54, Figure 55).  

To confirm either effect, an additional siRNA needs to be tested. Nevertheless, the 

data showed the importance of SMAD1 in the fibrotic response of the used cellular 

model. To further understand how COL1A1 expression and ECM deposition is 

regulated by the tested transcription factors, I monitored how other downstream targets 

and interactors of SMAD1 were influenced and if knock-down of possible interactors 

might have shown a similar effect. As ID2 and ID3 are proposed downstream targets 

of SMAD1, the mRNA expression of these factors was also assessed in this study. ID2 

abundance was significantly decreased upon siSMAD1 + TGF-β (first and third siRNA 

tested) treatment compared to the siNeg9 + TGF-β samples while there was no 

significant effect on ID3 expression when using the first siSMAD1 but a significant 

decrease of ID3 upon siSMAD1_C + TGF-β treatment (Table 18). To investigate an 

anticipated additive effect of inhibiting SMAD1, ID2 and ID3, I conducted double and 

triple knock-downs with siRNAs targeting ID2, ID3 and the initial siRNA against 

SMAD1. Preliminary data hinted towards an effect of ID2 and ID3 knock-down leading 

to decreased COL1A1 mRNA expression levels. However, double and triple knock-

downs did not result in a further decrease of COL1A1 mRNA abundance (n = 1, data 

not shown). 
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Besides the estimated increased activity of SMAD1 at 1 h, it also showed an increased 

activity at 96 h post TGF-β treatment and a decreased activity at 12 and 48 h (Figure 

34). On mRNA level (Figure 71), SMAD1 abundance decreased with increasing time of 

TGF-β treatment. However, this was only significant at the 96 h time point and did not 

pass the log2 fold-change cut-off at any time. In the proteomics data, its abundance 

increased but was not significant at any time point nor passed the log2 fold-change 

threshold. 

 

In the literature, activation of SMAD1/SMAD5, e.g. by BMP-7, the ‘inhibitor of TGF-β’, 

is known to inhibit the SMAD3 and ERK dependent gene transcription, thereby exerting 

an anti-fibrotic effect (C. H. Park & Yoo, 2022). However, while canonical TGF-β 

signaling via SMAD2/SMAD3 does not involve SMAD1, TGF-β can also activate other 

pathways that lead to a fibrogenic response. It has been previously shown, for 

instance, that there is a CCN2-dependent pathway (CCN2 is one of our top 

upregulated hits in 3 out of 4 omics modalities used in this study) that induced 

phosphorylation of SMAD1 and ERK1/2 and requires the CCN2/β3 integrin protein 

complex to do so. The mentioned study demonstrated that blockage of CCN2 

suspended collagen mRNA and protein levels induced by TGF-β, thereby suggesting 

the contribution of a CCN2/ανβ3 integrin/Src/Smad1 axis to the pro-fibrotic TGF-β 

signaling (Nakerakanti et al., 2011; Pannu et al., 2007). It would be interesting to further 

examine the importance of this pathway in the used cellular system. As described in 

the early network generated in this study, proposing TGF-β induced SMAD1 regulation 

leading to changes of CCN2 (CTGF), would be in line with parts of the feedback loops 

described in the study of Nakerakanti et al. (2011) (Nakerakanti et al., 2011) (Figure 

59Figure 45). Alternatively, the effect of SMAD1 on ECM deposition could be controlled 

via other means, or could be a time-dependent effect e.g. as demonstrated in the late 

network (Figure 45).  Further experiments and a deeper literature research are needed 

to come up with a relevant hypothesis and confirm the effect of siSMAD1 knock-down 

on ECM deposition. 
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Figure 59 TGF-β/SMAD1/CCN2 positive feedback loop. Model proposed by Nakerakanti et al. (2011) 
for the positive loop between TGF-b/Smad1 and CCN2 (taken from Nakerakanti et al., 2011). 

Inhibition of NR4A1 and E2F1 Leading to Increased COL1A1 mRNA and ECM via 

Similar Means? 

For the NR4A1 knock-down, the post hoc table showed that the difference between 

siNR4A1 + TGF-β treated samples and siNeg9 + TGF-β treated samples was 

significant (Table 23). However, also there it would be best to increase the number of 

replicates as the interaction term is not significant in the anova table. A similar effect 

was seen in the E2F1 knock-down samples, where the interaction term suggested a 

significant increase of COL1A1 mRNA expression in the control samples compared to 

the siNeg9 controls (Table 19). For the second siRNA targeting E2F1 used, the samples 

showed a high distribution as well, leading to no significant differences when compared 

to the siNeg9 samples, neither in the untreated nor the TGF-β treated conditions (Figure 

77). While knock-down of E2F1 resulted in an enhanced ECM deposition, with both 

siRNAs and with as well as without TGF-β treatment, the siNR4A1 treatment only 

slightly increased the deposition of ECM (Figure 54, Figure 55). 

 

E2F1 activity was estimated to be increased at 0.08 to 24 h post TGF-β treatment but 

is decreased at 96 h (Figure 34). The transcriptomics data showed a non-significant 

decrease of E2F1 abundance over time. In comparison to this, the activity if NR4A1 

was inferred as constantly active with a peak at 1 h after TGF-β stimulation. Except for 

the increased mRNA abundance of NR4A1 in the transcriptomics data at 1 h, which 
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was not significant, it showed a decreased abundance over time with no change in the 

proteomics data. 

 

NR4A1 involvement in fibrosis was previously demonstrated by regulating TGF-β 

signaling through AKT- and HDAC-dependent mechanisms and in the context of 

myofibroblast activation in mice (Devos et al., 2023; Kuppe et al., 2021; Meng et al., 

2016). However, due to the minor effect of NR4A1 knock-down on ECM deposition and 

COL1A1 mRNA expression, I did not follow up on this TF. 

 

Unexpectedly, E2F1 knock-down with both siRNAs led to a significantly increased 

mRNA expression of SERPINE1 (PAI1), an inhibitor of ECM degradation (Bergheim et 

al., 2006) (Figure 53, Table 19). E2F1 has been previously shown in the context of fibrosis 

in other diseases like liver fibrosis. In Denechaud et al. (2017), it has been shown that 

E2F1-/- mice developed liver fibrosis (Denechaud et al., 2017). In contrary to this, Liao 

et al. (2021), demonstrated that TGF-β induced human cardiac fibroblasts showed 

upregulated E2F1 expression. Moreover, they demonstrated that knock-down of E2F1 

led to decreased cell differentiation and suppressed COL1A1 expression (Liao, Xie, et 

al., 2021). Additional experiments are needed to evaluate the importance of E2F1 on 

abundance changes of COL1A1 to further test whether E2F1 affects the ECM 

deposition via direct transcriptional regulation or via modulating the activity of 

downstream targets that are relevant for the increased ECM. One possible way of 

regulating the turnover/degradation of the deposited ECM could be by controlling the 

expression of factors like SERPINE1, or, as suggested by the network, by controlling 

HIC1 and FOXM1/ROCK1 (Liao, Qi, et al., 2021). 
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6. Conclusion and Outlook 

In this study, a comprehensive investigation of the dynamic, pro-fibrotic molecular 

response of PDFGRβ+ cells, the main precursors of myofibroblasts, to TGF-β was 

provided. After initial experiments that validated the suitability of the cellular system for 

this purpose, the cells were used for multi-omics analysis, including transcriptomics, 

proteomics, and phosphoproteomics. In all omics modalities, pro-fibrotic pathways and 

factors were shown to be enriched, while anti-inflammatory pathways were 

downregulated. Moreover, already known biomarkers for CKD and other fibrotic 

diseases were identified, further validating the approach. Additionally, the changes on 

deposited Col I and ECM were investigated over the course of the multi-omics 

experiment, showing a significant increase upon stimulation with TGF-β and 

accumulating over time.  

 

Furthermore, advanced computational tools like footprint analysis were applied to gain 

further information on deregulated TFs and kinases/phosphatases, which inferred 

activities changed despite the fact that many factors did not show alterations in mRNA 

or protein expression levels post TGF-β treatment. While integration of the different 

omics modalities into an early and late mechanistic network supported the validity of 

earlier analysis, it also provided testable hypothesis to advance the understanding of 

kidney fibrosis. 

 

Validation experiments focused on TFs, whose activity was estimated to be increased 

1 h post TGF-β treatment, and therefore were identified as potential regulators of the 

fibrotic response. These TFs included BHLHE40, HNF4G, FLI1, SMAD1, NR4A1, and 

E2F1. Besides assessment of TF and downstream target gene expression, the effect 

of the siRNA treatment on deposited ECM, as a central part of fibrosis, was evaluated.  

Reduced FLI1 expression led to increased COL1A1 mRNA expression and ECM 

deposition confirming the previously anticipated anti-fibrotic role of FLI1. BHLHE40 and 

HNF4G, based on the data, might not control the mRNA expression of COL1A1 but 

rather the expression of factors that modulate ECM deposition via other means as 

knock-down of BHLHE40 resulted in increased ECM deposition while siHNF4G 

treatment led to a reduction showing their importance in ECM homeostasis. While there 

was a significant increase of COL1A1 mRNA expression via siRNA treatment targeting 
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NR4A1 or E2F1, the effect on ECM deposition was minor in the case of NR4A1 

inhibition but led to a stronger increase of upon knock-down of E2F1. For SMAD1 

knock-down, I observed both, an increase and decrease of COL1A1 mRNA expression 

and ECM deposition, depending in the siRNAs used.  

Therefore, further experimental validations are needed to confirm the effects and 

dissect the mechanisms of ECM deposition in this cellular model. Understanding this 

could provide a deeper insight and facilitate identification of potential therapeutic 

targets and treatment options for preventing or halting the progression of fibrosis.  

 

To further highlight the value of this cellular model, like easy access (compared to 

human tissue samples) and possibility to perturb the system, I conducted treatment 

with known anti-fibrotic compounds. However, not all of them showed the expected 

decrease in ECM which could be attributed to the experimental set-up or further 

highlighting the importance to understand the fibrotic mechanism of myofibroblasts 

arising from different tissues and possibly even different origins. Therefore, the cellular 

model offers a valuable tool to further investigate the effect of different compounds on 

cellular signaling and ECM deposition and could also be used to test combinatorial 

therapies. Additionally, it would be interesting to test other factors that induce a fibrotic 

response like induction of hypoxia, mechanical stress or stimulation with other growth 

factors such as PDGFRβ. 

 

Additionally, single cell RNA expression profile of myofibroblasts derived from CKD 

patients was compared to the data that I generated. Thereby, an increase in 

deregulated genes over time in multi-omics data was shown, which were also 

expressed in myofibroblasts of CKD patients, further demonstrating the relevance of 

the cellular response to TGF-β treatment in driving differentiation towards 

myofibroblasts, which is crucial in the context of fibrosis. This could be taken further by 

mapping my data to different stages of fibroblast/myofibroblasts and inferring cell-cell 

crosstalk with other cell types in the kidney.  

 

To conclude, the data provided valuable insights into the molecular mechanisms of 

kidney fibrosis and ECM deposition, proposing potential biomarkers as well as 

therapeutic targets and advancing our understanding of disease pathogenesis. 
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Nevertheless, further research is needed to validate identified targets and explore 

novel therapeutic interventions.  

 

To add further weight to the findings of this project, it would be interesting to investigate 

the effect of proposed modulators of ECM in mouse models or human precision-cut 

kidney slices. This would add valuable insight on the effect on ECM deposition, cellular 

crosstalk and fibrosis progression in a more physiological context. Clinical relevance 

of proposed drug targets and biomarkers could be further assessed by integration of 

data obtained from longitudinal studies that track disease progression over time. In the 

case of CKD, an example of such a study is the Nephrotic Syndrome Study Network 

(NEPTUNE) (Lake et al., 2021; Mariani et al., 2023). For this multi-center prospective 

study, data on e.g. medical history, medication, eGFR and RNA sequencing are 

collected over time from patients suffering from proteinuric kidney diseases (Lake et 

al., 2021; Mariani et al., 2023). Overall, development of effective therapies will require 

integrated efforts of scientists, clinicians and industry partners to address the complex 

challenges of fibrotic diseases. The results of the current PhD thesis provide one piece 

of the basis for such efforts.  
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Annex for Chapter 4.1 Rationale and Characterization of the cellular 

model 

 

Figure 60 Col I per cell vs nuclei number per TGF-β concentration used and biological replicate. 
Data points are representative of each image acquired, colors depict the condition (blue = control (ctrl), 
purple = TGF-β treated). On the x-axis the nuclei number (Count_Nuclei) per image is depicted, 
including images with > 25 nuclei. The y-axis represents fluorescence intensity (Col I staining) 
normalized to the nuclei number. Data are shown after background subtraction, for each concentration 
of TGF-β (0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100 ng/ml). A – H indicate the different biological replicates. 
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Figure 61 Col I per cell vs nuclei number per time point and biological replicate. Data points are 
representative of each image acquired, colors depict the condition (blue = control (ctrl), purple = TGF-β 
treated). On the x-axis the nuclei number (Count_Nuclei) per image is depicted, including images with 
> 30 nuclei. The y-axis represents fluorescence intensity (Col I staining) normalized to the nuclei 
number. Data are shown after background subtraction, per time point (6, 12, 24, 48, 72, 96 h). A – E 
indicate the different biological replicates/plates. 
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Figure 62 Col I per cell vs nuclei number per time point and biological replicate comparing 
experimental set-up A vs B. Data points are representative of each image acquired, colors depict the 
condition (blue = control (ctrl), purple = TGF-β treated). On the x-axis the nuclei number (Count_Nuclei) 
per image is depicted, including images with > 30 nuclei. The y-axis represents fluorescence intensity 
(Col I staining) normalized to the nuclei number. Data are shown after background subtraction, per time 
point (0, 12, 24, 48, 72, 96 h). For set-up B, two plates were imaged (B, B2). For set-up A, a separate 
plate per time point was imaged. 
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Figure 63 Col I per cell vs nuclei number per drug treatment and biological replicate. Data points 
are representative of each image acquired, colors depict the condition (blue = control (ctrl), purple = 
TGF-β treated). On the x-axis the nuclei number (Count_Nuclei) per image is depicted, including images 
with > 20 nuclei. The y-axis represents fluorescence intensity (Col I staining) normalized to the nuclei 
number. Data are shown after background subtraction, for each condition. A – G indicate the different 
biological replicates/plates. 
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Annex for Chapter 4.2 Multi-omics Insights into Cellular Responses 
and Pathways 

 

Figure 64 Extracellular Col I per cell versus cell number over time and ± TGF-β stimulation. Cells 
were cultured in glass-bottom 24 well-plates with four biological replicates (plate A-D) with two technical 
replicates each. Cells were treated ± TGF-β for durations ranging from 0 to 96 h, and subsequently fixed 
with PFA. Nuclear visualization was achieved with Hoechst staining, while the extracellular Col I was 
visualized using an anti-Col I antibody. Images of 36 positions per well were acquired using the wide 
field microscope Molecular Devices IXM. Initial assessment of nuclei number and intensity 
measurement, correlating with the Col I staining, was performed using CellProfiler 4.2.6. Background 
correction and subtraction of the cell autofluorescence were followed by normalizing the resulting 
intensity values to the cell number to obtain the Col I signal per cell (Col1_per_cell shown on the y-axis). 
Images with less than 20 nuclei were excluded from the analysis. The resulting data are plotted per 
biological replicate per time point against the cell number. Data points depict individual images, color 
coded for ctrl (blue) and TGF-β treated (purple). Over time, the Col I per cell intensity is increasing, and 
further influenced by TGF-β stimulation. 
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Figure 65 Col I per cell intensity values of each image transformed using square root 
transformation, per time and condition. Data points depict individual images, color- and shape-coded 
for plates (biological replicates). Over time, the Col I per cell intensity is increasing, and further influenced 
by TGF-β stimulation. However, there is a variance based on biological replicates. 

 

 

Figure 66 Loading values for principal components and abundance changes over time in 
transcriptomics data. The top 20 loading values for the first two principal components A) PC1 and B) 
PC2 from the principal component analysis are illustrated, alongside C) the corresponding abundance 
changes (log2FC) over time in the transcriptomics data.  
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Figure 67 Loading values for the principal components and abundance changes over time in 
proteomics data. The top 20 loading values for the first two principal components A) PC1 and B) PC2 
from the principal component analysis are illustrated, alongside C) the corresponding abundance 
changes (log2FC) over time in the proteomics data.  

 

 

Figure 68 Loading values for the principal components and abundance changes over time in 
secretomics data. The top 20 loading values for the first two principal components A) PC1 and B) PC2 
from the principal component analysis are illustrated, alongside C) the corresponding abundance 
changes (log2FC) over time in the secretomics data.  
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Figure 69 Loading values for the principal components and in phosphoproteomics data. The top 
20 loading values for the first two principal components upper) PC1 and lower) PC2 from the principal 
component analysis are illustrated for the phosphoproteomics data that were normalized to the 
proteomics of the cell lysates.  
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Figure 70 Abundance changes over time of loading values for PCA components in 
phosphoproteomics data. The abundance changes (log2FC) over time of top 20 loading values for 
first two principal components are illustrated for the phosphoproteomics data that were normalized to 
the proteomics of the cell lysates. Considering that none of the changes were either significant nor met 
the log2 fold-change thresholds, all of the cells are color coded based on the up or downregulation of 
the phosphor-site, unlike in the previous graphs, where white cells were representative for values that 
did not meet the log2 fold-change and/or adjusted p-value cut-offs. 
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Annex for Chapter 4.3 Multi-omics Insights into Cellular Responses 

and Pathways 

 

Figure 71 Heatmap of abundance changes of TFs and kinases/phosphatases shown in results 
section 4.3.1. Abundance changes (log2 fold-changes) of TFs (left) and kinases/phosphatases (right) 
are shown over time on mRNA and protein level. 
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Figure 72 Early network. Colors are representing the different modalities, green for secreted factors, 
blue for kinases/phosphatases, purple for TFs, grey as factors imputed by prior knowledge. The ellipse 
shape are factors which expression/activity is downregulated while squares indicate factors that are 
upregulated. 
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Figure 73 Late network. Colors are representing the different modalities, green for secreted factors, 
blue for kinases/phosphatases, purple for TFs, grey as factors imputed by prior knowledge. The ellipse 
shape are factors which expression/activity is downregulated while squares indicate factors that are 
upregulated. 
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Annex for Chapter 4.4. Validation of Multi-omics Hits 

Quality Assessment Figures of Immunofluorescence Stainings 

 

Figure 74 Fluorescence intensity vs nuclei number per time and siRNA concentration. Data points 
are representative of each image acquired, colors depict the siRNA used (grey = empty vector, blue = 
siNeg9, orange = siGM130). On the x-axis the nuclei number (Count_Nuclei) per image is depicted, with 
a cut-off at > 60 nuclei. The y-axis represents fluorescence intensity (GM130 staining) normalized to the 
nuclei number. Data are shown after background subtraction, for each concentration of siRNA and the 
time post siRNA transfection. n = 1. 
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Figure 75 Fluorescence intensity vs nuclei number per siRNA and plate at 96 h. Data points are 
representative of each image acquired, colors depict the treatment (blue = control, purple = TGF-β 
treated). On the x-axis the nuclei number (Count_Nuclei) per image is depicted, with a cut-off at > 20 
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nuclei. The y-axis represents fluorescence intensity (Col I staining) normalized to the nuclei number. 
Data are shown after background subtraction, for each siRNA used, 96 h post siRNA transfection, for 
each biological replicate separately. n = 2-3. 

 

Figure 76 Off-target of second siRNA targeting SMAD1. The second siRNA used to target SMAD1 
had an off-target effect on SMAD5. (source bluegecko.embl.de ) 
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Figures for RT-qPCR Data Over Time 

 

Figure 77 Change of mRNA expression levels at 48, 72 and 96 h post siE2F1 treatment. mRNA 
was isolated from cells transfected with two different siRNAs against E2F1 (a, b) at 48, 72, 96 h post 
siRNA transfection, correlating to 0, 24, 48 h treatment ± TGF-β. Expression levels of genes of interest 
are shown on the y-axis, that were calculated using the 2−ΔΔCT method. In short, CT values are first 
normalized to GADPH, then normalized to the siNeg9 ctrl at 48 h. Then the 2−ΔΔCT value is multiplied by 
100 to obtain the resulting mRNA levels. Expression of genes of interest are shown over time, upon 
siNeg9 treatment (dashed lines), treatment with siE2F1 (continuous lines), and at control (blue) and 
TGF-β (violet) conditions. Overview of all read-outs is provided for A) the first siRNA (siE1F1_a) and the 
B) second siRNA (siE2F1_b) tested against E2F1. C-F) A closer look at the mRNA expression levels at 
the last time point (96 h post siRNA transfection) are shown for C) COL1A1, D) ID2, E) ID3 and F) 
SERPNE1 upon treatment with siE2F1_a. For treatment with siE2F1_b, the corresponding expression 
levels are highlighted in G-J, G) COL1A1, H) ID2, I) ID3, J) SERPINE1. 
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Figure 78 Change of mRNA expression levels at 48, 72 and 96 h post siSMAD1 treatment. mRNA 
was isolated from cells transfected with three different siRNAs against SMAD1 (a, B, C) at 48, 72, 96 h 
post siRNA transfection, correlating to 0, 24, 48 h treatment ± TGF-β. Expression levels of genes of 
interest are shown on the y-axis, that were calculated as in the previous graph. Expression of genes of 
interest are shown over time, upon siNeg9 treatment (dashed lines), treatment with siSMAD1 
(continuous lines), and at control (blue) and TGF-β (violet) conditions. Overview of all read-outs is 
provided for A) the first siRNA (siSMAD1_a), the B) second siRNA (siSMAD1_B), and the C) third siRNA 
(siSMAD1_C) tested against SMAD1. D-F) A closer look at the mRNA expression levels at the last time 
point (96 h post siRNA transfection) are shown for D) COL1A1, E) ID3, and F) ID2 upon treatment with 
siSMAD1_a. For treatment with siSMAD1_B, the corresponding expression levels are highlighted in G) 
for COL1A1, H) for ID2, and I) for ID3. The expression levels of J) COL1A1 and K) ID3 are shown for 
the treatment with siSMAD1_C. 

 

Figure 79 Change of mRNA expression levels at 48, 72 and 96 h post siHNF4G treatment. mRNA 
was isolated, from cells transfected with siRNAs, at 48, 72, 96 h post transfection, correlating to 0, 24, 
48 h treatment ± TGF-β. Expression levels of genes of interest are shown on the y-axis (calculated as 
previously described) for siNeg9 treatment (dashed lines), treatment with siHNF4G (continuous lines), 
and at control (blue) and TGF-β (violet) conditions. A) Overview of all read-outs is provided. A closer 
look into target gene expression 96 h post siHNF4G treatment is shown for B) COL1A1 and C) SPHK1. 
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Figure 80 Change of mRNA expression levels at 48, 72 and 96 h post siFLI1 treatment. mRNA was 
isolated from cells transfected with two different siRNAs against FLI1 (a, b) at 48, 72, 96 h post siRNA 
transfection, correlating to 0, 24, 48 h treatment ± TGF-β. Expression levels of genes of interest are 
shown on the y-axis (calculated as previously described) for siNeg9 treatment (dashed lines), treatment 
with siFLI1 (continuous lines), and at control (blue) and TGF-β (violet) conditions. Overview of all read-
outs is provided for A) the first siRNA (siFLI1_a) and the B) second siRNA (siFLI1_b) tested against 
FLI1. C-E) A closer look at the mRNA expression levels at the last time point (96 h post siRNA 
transfection) are shown for C) COL1A1, D) IGFBP3, and E) ID2 upon treatment with siFLI1_a. For 
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treatment with siFLI1_b, the corresponding expression levels are highlighted F) for COL1A1 and G) for 
IGFBP3. 

 

Figure 81 Change of mRNA expression levels at 48, 72 and 96 h post siBHLHE40 or siNR4A1 
treatment. mRNA was isolated, from cells transfected with siRNAs, at 48, 72, 96 h post transfection, 
correlating to 0, 24, 48 h treatment ± TGF-β. Expression levels of genes of interest are shown on the y-
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axis (calculated as previously described) for siNeg9 treatment (dashed lines), treatment with target 
siRNA (continuous lines), and at control (blue) and TGF-β (violet) conditions. Overview of all read-outs 
is provided for the treatment with A) siBHLHE40 and B) siNR4A1. Target gene expression 96 h post 
siBHLHE40 treatment is shown for C) COL1A1, D) ID2 and E) SMAD7. F) For siNR4A1, the expression 
changes of COL1A1 96 h after siRNA transfection are shown. 

Anova and Post Hoc Tables for RT-qPCR Data 

Table 18 Anova and post hoc results of RT-qPCR data obtained from siSMAD1 treated samples. 

Anova siSMAD1a | gene COL1A1 | 96 h    

 Df Sum.Sq Mean.Sq F.value Pr..F.  

siRNA           1 40476.49 40476.49 19.74902 0.000146  

treatment       1 745031.6 745031.6 363.5108 8.36E-17  

siRNA:treatment 1 21530.1 21530.1 10.50482 0.003253  

Residuals       26 53288.15 2049.544    

       

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj   

siSMAD1-siNeg9 -91.8292 -134.304 -49.3544 0.000146   

TGF-ctrl 315.1786 281.1987 349.1585 3.01E-14   

siSMAD1:ctrl-siNeg9:ctrl -24.8558 -105.024 55.31192 0.829801   

siNeg9:TGF-siNeg9:ctrl 341.968 291.2654 392.6705 3.11E-14   

siSMAD1:TGF-siNeg9:ctrl 183.1653 102.9976 263.3331 7.08E-06   

siNeg9:TGF-siSMAD1:ctrl 366.8237 286.656 446.9915 9.11E-12   

siSMAD1:TGF-siSMAD1:ctrl 208.0211 106.6161 309.4262 3.66E-05   

siSMAD1:TGF-siNeg9:TGF -158.803 -238.97 -78.6349 6.04E-05   

       

Anova siSMAD1a | gene ID3 | 96 h    

 Df Sum.Sq Mean.Sq F.value Pr..F.  

siRNA           1 2209.021 2209.021 6.836708 0.017548  

treatment       1 22368.33 22368.33 69.22783 1.39E-07  

siRNA:treatment 1 4664.238 4664.238 14.43537 0.001313  

Residuals       18 5816.012 323.1118    

       

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj   

siSMAD1-siNeg9 -22.4996 -40.5781 -4.42116 0.017548   

TGF-ctrl 63.77279 47.66986 79.87572 1.39E-07   

siSMAD1:ctrl-siNeg9:ctrl 10.19421 -24.1999 44.5883 0.835885   

siNeg9:TGF-siNeg9:ctrl 81.6058 56.20408 107.0075 2.17E-07   

siSMAD1:TGF-siNeg9:ctrl 26.41231 -7.98178 60.8064 0.169376   

siNeg9:TGF-siSMAD1:ctrl 71.41159 37.0175 105.8057 8.04E-05   

siSMAD1:TGF-siSMAD1:ctrl 16.2181 -25.2627 57.69894 0.691104   

siSMAD1:TGF-siNeg9:TGF -55.1935 -89.5876 -20.7994 0.001335   

       

Anova siSMAD1a | gene ID2 | 96 h    

 Df Sum.Sq Mean.Sq F.value Pr..F.  

siRNA           1 14731.95 14731.95 3.350955 0.097087  

treatment       1 565130 565130 128.5455 4.97E-07  
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siRNA:treatment 1 18180.86 18180.86 4.135451 0.069388  

Residuals       10 43963.43 4396.343    

       

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj   

siSMAD1-siNeg9 -65.5501 -145.337 14.23675 0.097087   

TGF-ctrl 401.828 322.8594 480.7965 4.97E-07   

siSMAD1:ctrl-siNeg9:ctrl 7.269873 -147.66 162.1994 0.998871   

siNeg9:TGF-siNeg9:ctrl 464.2451 320.8083 607.6819 8.70E-06   

siSMAD1:TGF-siNeg9:ctrl 325.875 170.9455 480.8045 0.000363   

siNeg9:TGF-siSMAD1:ctrl 456.9752 302.0457 611.9047 2.01E-05   

siSMAD1:TGF-siSMAD1:ctrl 318.6051 152.9785 484.2317 0.00074   

siSMAD1:TGF-siNeg9:TGF -138.37 -293.3 16.55939 0.083822   

       

Anova siSMAD1b | gene COL1A1 | 96 h    

 Df Sum.Sq Mean.Sq F.value Pr..F.  

siRNA           1 18213.38 18213.38 1.064127 0.310521  

treatment       1 713919.4 713919.4 41.71113 3.90E-07  

siRNA:treatment 1 658.7527 658.7527 0.038488 0.845789  

Residuals       30 513474 17115.8    

       

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj   

siSMAD1-siNeg9 71.83633 -70.3838 214.0565 0.310521   

TGF-ctrl 289.8112 198.1674 381.4549 3.90E-07   

siSMAD1:ctrl-siNeg9:ctrl 85.4982 -182.289 353.285 0.821121   

siNeg9:TGF-siNeg9:ctrl 293.0257 163.1301 422.9214 5.54E-06   

siSMAD1:TGF-siNeg9:ctrl 351.2002 83.41343 618.987 0.00644   

siNeg9:TGF-siSMAD1:ctrl 207.5275 -60.2592 475.3143 0.173917   

siSMAD1:TGF-siSMAD1:ctrl 265.702 -90.0319 621.4359 0.199439   

siSMAD1:TGF-siNeg9:TGF 58.17446 -209.612 325.9612 0.934112   

       

Anova siSMAD1b | gene ID2 | 96 h    

 Df Sum.Sq Mean.Sq F.value Pr..F.  

siRNA           1 2940.642 2940.642 11.18201 0.002228  

treatment       1 7391.357 7391.357 28.10619 9.94E-06  

siRNA:treatment 1 4990.959 4990.959 18.97849 0.000142  

Residuals       30 7889.392 262.9797    

       

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj   

siSMAD1-siNeg9 -28.8649 -46.4937 -11.2361 0.002228   

TGF-ctrl 29.4885 18.12884 40.84816 9.94E-06   

siSMAD1:ctrl-siNeg9:ctrl 8.739697 -24.4537 41.93309 0.889983   

siNeg9:TGF-siNeg9:ctrl 38.33664 22.23547 54.4378 2.16E-06   

siSMAD1:TGF-siNeg9:ctrl -28.1328 -61.3262 5.060548 0.119581   

siNeg9:TGF-siSMAD1:ctrl 29.59694 -3.59645 62.79033 0.09396   

siSMAD1:TGF-siSMAD1:ctrl -36.8725 -80.9674 7.222301 0.127022   

siSMAD1:TGF-siNeg9:TGF -66.4695 -99.6629 -33.2761 3.78E-05   
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Anova siSMAD1b | gene ID3 | 96 h    

 Df Sum.Sq Mean.Sq F.value Pr..F.  

siRNA           1 23353.08 23353.08 67.65291 3.51E-09  

treatment       1 219149.4 219149.4 634.8668 9.66E-22  

siRNA:treatment 1 21029.11 21029.11 60.92045 1.04E-08  

Residuals       30 10355.69 345.1896    

       

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj   

siSMAD1-siNeg9 -81.3431 -101.54 -61.1459 3.51E-09   

TGF-ctrl 160.5686 147.554 173.5833 4.61E-14   

siSMAD1:ctrl-siNeg9:ctrl -4.15346 -42.1829 33.87593 0.990703   

siNeg9:TGF-siNeg9:ctrl 178.7309 160.2839 197.1779 4.61E-14   

siSMAD1:TGF-siNeg9:ctrl 20.19809 -17.8313 58.22748 0.482754   

siNeg9:TGF-siSMAD1:ctrl 182.8844 144.855 220.9138 4.29E-13   

siSMAD1:TGF-siSMAD1:ctrl 24.35155 -26.1675 74.87064 0.563516   

siSMAD1:TGF-siNeg9:TGF -158.533 -196.562 -120.503 1.36E-11   

       

Anova siSMAD1c | gene COL1A1 | 96 h    

 Df Sum.Sq Mean.Sq F.value Pr..F.  

siRNA           1 196765.8 196765.8 14.69945 0.000488  

treatment       1 1139339 1139339 85.1147 5.11E-11  

siRNA:treatment 1 59448.25 59448.25 4.441101 0.042114  

Residuals       36 481893.4 13385.93    

       

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj   

siSMAD1_C-siNeg9 161.9736 76.29315 247.654 0.000488   

TGF-ctrl 337.541 263.3396 411.7424 5.09E-11   

siSMAD1_C:ctrl-siNeg9:ctrl 72.94306 -87.9664 233.8525 0.617913   

siNeg9:TGF-siNeg9:ctrl 293.0257 179.2456 406.8059 2.34E-07   

siSMAD1_C:TGF-siNeg9:ctrl 544.0298 383.1204 704.9393 4.24E-10   

siNeg9:TGF-siSMAD1_C:ctrl 220.0827 59.1732 380.9921 0.004003   

siSMAD1_C:TGF-siSMAD1_C:ctrl 471.0868 274.0137 668.1598 1.06E-06   

siSMAD1_C:TGF-siNeg9:TGF 251.0041 90.09465 411.9136 0.000922   

       

Anova siSMAD1c | gene ID3 | 96 h    

 Df Sum.Sq Mean.Sq F.value Pr..F.  

siRNA           1 2887.847 2887.847 9.22323 0.004426  

treatment       1 271945.4 271945.4 868.5415 8.45E-27  

siRNA:treatment 1 5732.47 5732.47 18.30841 0.000133  

Residuals       36 11271.81 313.1058    

       

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj   

siSMAD1_C-siNeg9 -19.6226 -32.7266 -6.51862 0.004426   

TGF-ctrl 164.9077 153.5593 176.256 0   

siSMAD1_C:ctrl-siNeg9:ctrl 8.023913 -16.5856 32.63342 0.816111   
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siNeg9:TGF-siNeg9:ctrl 178.7309 161.3294 196.1325 0   

siSMAD1_C:TGF-siNeg9:ctrl 131.4618 106.8523 156.0713 0   

siNeg9:TGF-siSMAD1_C:ctrl 170.707 146.0975 195.3165 0   

siSMAD1_C:TGF-siSMAD1_C:ctrl 123.4379 93.29753 153.5783 2.29E-12   

siSMAD1_C:TGF-siNeg9:TGF -47.2691 -71.8786 -22.6596 5.07E-05   

Table 19 Anova and post hoc results of RT-qPCR data obtained from siE2F1 treated samples. 

Anova siE2F1a | gene COL1A1 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 15271.16 15271.16 8.028083 0.008785 

treatment       1 830068.2 830068.2 436.3685 8.95E-18 

siRNA:treatment 1 2588.172 2588.172 1.360608 0.25402 

Residuals       26 49457.67 1902.218   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siE2F1-siNeg9 56.40472 15.48495 97.3245 0.008785  

TGF-ctrl 332.6797 299.9438 365.4155 3.00E-14  

siE2F1:ctrl-siNeg9:ctrl 79.62546 2.392799 156.8581 0.041514  

siNeg9:TGF-siNeg9:ctrl 341.968 293.1217 390.8142 3.04E-14  

siE2F1:TGF-siNeg9:ctrl 375.1519 297.9193 452.3846 2.38E-12  

siNeg9:TGF-siE2F1:ctrl 262.3425 185.1098 339.5752 5.28E-09  

siE2F1:TGF-siE2F1:ctrl 295.5265 197.834 393.2189 5.14E-08  

siE2F1:TGF-siNeg9:TGF 33.18399 -44.0487 110.4166 0.645285  

      

Anova siE2F1a | gene ID2 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 1.876218 1.876218 0.00396 0.950517 

treatment       1 33234.56 33234.56 70.1468 1.27E-07 

siRNA:treatment 1 219.8132 219.8132 0.463951 0.504453 

Residuals       18 8528.143 473.7857   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siE2F1-siNeg9 -0.65572 -22.5473 21.23584 0.950517  

TGF-ctrl 77.73446 58.23514 97.23379 1.27E-07  

siE2F1:ctrl-siNeg9:ctrl 6.441736 -35.2067 48.09015 0.971239  

siNeg9:TGF-siNeg9:ctrl 81.6058 50.84641 112.3652 3.39E-06  

siE2F1:TGF-siNeg9:ctrl 73.85263 32.20422 115.501 0.000481  

siNeg9:TGF-siE2F1:ctrl 75.16407 33.51565 116.8125 0.000398  

siE2F1:TGF-siE2F1:ctrl 67.41089 17.18102 117.6408 0.006641  

siE2F1:TGF-siNeg9:TGF -7.75317 -49.4016 33.89524 0.95164  

      

Anova siE2F1a | gene ID3 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 319.4707 319.4707 0.048944 0.829364 

treatment       1 736461.9 736461.9 112.8278 9.12E-07 

siRNA:treatment 1 142.8153 142.8153 0.02188 0.885348 

Residuals       10 65273.09 6527.309   
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Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siE2F1-siNeg9 -9.65292 -106.872 87.56643 0.829364  

TGF-ctrl 458.7131 362.4909 554.9353 9.11E-07  

siE2F1:ctrl-siNeg9:ctrl -3.1989 -191.979 185.5809 0.999946  

siNeg9:TGF-siNeg9:ctrl 464.2451 289.469 639.0212 5.07E-05  

siE2F1:TGF-siNeg9:ctrl 448.1382 259.3584 636.9179 0.000133  

siNeg9:TGF-siE2F1:ctrl 467.444 278.6642 656.2238 9.31E-05  

siE2F1:TGF-siE2F1:ctrl 451.3371 249.523 653.1511 0.00022  

siE2F1:TGF-siNeg9:TGF -16.107 -204.887 172.6728 0.993369  

      

Anova siE2F1a | gene SERPINE1 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 185069 185069 76.01301 5.50E-06 

treatment       1 225101.4 225101.4 92.45545 2.27E-06 

siRNA:treatment 1 46511.79 46511.79 19.10369 0.001397 

Residuals       10 24347.01 2434.701   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siE2F1-siNeg9 232.3326 172.957 291.7083 5.50E-06  

TGF-ctrl 253.6034 194.8367 312.3701 2.27E-06  

siE2F1:ctrl-siNeg9:ctrl 115.8597 0.564529 231.1549 0.048823  

siNeg9:TGF-siNeg9:ctrl 153.7695 47.02688 260.5121 0.006053  

siE2F1:TGF-siNeg9:ctrl 502.575 387.2798 617.8702 5.41E-07  

siNeg9:TGF-siE2F1:ctrl 37.90977 -77.3854 153.205 0.749707  

siE2F1:TGF-siE2F1:ctrl 386.7153 263.4596 509.971 1.15E-05  

siE2F1:TGF-siNeg9:TGF 348.8055 233.5103 464.1007 1.60E-05  

      

Anova siE2F1b | gene COL1A1 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 84138.95 84138.95 5.858727 0.020991 

treatment       1 782741.4 782741.4 54.50351 1.47E-08 

siRNA:treatment 1 1275.014 1275.014 0.088781 0.767546 

Residuals       34 488284.3 14361.3   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siE2F1-siNeg9 115.421 18.5131 212.3288 0.020991  

TGF-ctrl 287.0433 208.028 366.0585 1.47E-08  

siE2F1:ctrl-siNeg9:ctrl 129.6293 -52.5046 311.7633 0.237974  

siNeg9:TGF-siNeg9:ctrl 293.0257 174.8416 411.2098 6.37E-07  

siE2F1:TGF-siNeg9:ctrl 394.2383 212.1044 576.3723 7.90E-06  

siNeg9:TGF-siE2F1:ctrl 163.3964 -18.7376 345.5304 0.091758  

siE2F1:TGF-siE2F1:ctrl 264.609 35.74646 493.4716 0.018248  

siE2F1:TGF-siNeg9:TGF 101.2126 -80.9213 283.3466 0.448142  

      

Anova siE2F1b | gene ID2 | 96 h   
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 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 10411.09 10411.09 40.73559 2.76E-07 

treatment       1 9444.917 9444.917 36.95522 6.80E-07 

siRNA:treatment 1 1650.048 1650.048 6.456159 0.01579 

Residuals       34 8689.629 255.5773   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siE2F1-siNeg9 -40.6008 -53.5285 -27.673 2.76E-07  

TGF-ctrl 31.53097 20.99012 42.07181 6.80E-07  

siE2F1:ctrl-siNeg9:ctrl -24.4373 -48.7345 -0.14017 0.048257  

siNeg9:TGF-siNeg9:ctrl 38.33664 22.57057 54.1027 9.32E-07  

siE2F1:TGF-siNeg9:ctrl -18.4276 -42.7247 5.869536 0.190771  

siNeg9:TGF-siE2F1:ctrl 62.77395 38.4768 87.07109 2.80E-07  

siE2F1:TGF-siE2F1:ctrl 6.009705 -24.5212 36.54056 0.95077  

siE2F1:TGF-siNeg9:TGF -56.7642 -81.0614 -32.4671 1.99E-06  

      

Anova siE2F1b | gene ID3 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 1432.704 1432.704 2.218128 0.145617 

treatment       1 240837.8 240837.8 372.8676 6.69E-20 

siRNA:treatment 1 13560.08 13560.08 20.99385 5.94E-05 

Residuals       34 21960.84 645.9071   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siE2F1-siNeg9 -15.0614 -35.613 5.490303 0.145617  

TGF-ctrl 159.2211 142.464 175.9782 0  

siE2F1:ctrl-siNeg9:ctrl 31.27449 -7.35145 69.90043 0.147411  

siNeg9:TGF-siNeg9:ctrl 178.7309 153.6671 203.7947 0  

siE2F1:TGF-siNeg9:ctrl 117.3337 78.70774 155.9596 8.44E-09  

siNeg9:TGF-siE2F1:ctrl 147.4564 108.8305 186.0824 3.15E-11  

siE2F1:TGF-siE2F1:ctrl 86.05918 37.52331 134.5951 0.000182  

siE2F1:TGF-siNeg9:TGF -61.3972 -100.023 -22.7713 0.000767  

      

Anova siE2F1b | gene SERPINE1 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 682433.4 682433.4 853.0213 1.62E-12 

treatment       1 524904.1 524904.1 656.1144 7.63E-12 

siRNA:treatment 1 200359.4 200359.4 250.4432 2.10E-09 

Residuals       12 9600.23 800.0192   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siE2F1-siNeg9 413.0476 382.2342 443.8611 9.37E-13  

TGF-ctrl 362.2513 331.4379 393.0648 4.72E-12  

siE2F1:ctrl-siNeg9:ctrl 189.24 129.8613 248.6188 3.40E-06  

siNeg9:TGF-siNeg9:ctrl 138.4437 79.06499 197.8225 8.20E-05  

siE2F1:TGF-siNeg9:ctrl 775.299 715.9202 834.6777 5.54E-13  
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siNeg9:TGF-siE2F1:ctrl -50.7963 -110.175 8.582432 0.103441  

siE2F1:TGF-siE2F1:ctrl 586.0589 526.6802 645.4377 4.14E-12  

siE2F1:TGF-siNeg9:TGF 636.8552 577.4765 696.234 2.15E-12  

 

Table 20 Anova and post hoc results of RT-qPCR data obtained from siFLI1 treated samples. 

Anova siFLI1a | gene COL1A1 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 63182.47 63182.47 17.99572 0.000248 

treatment       1 924277.2 924277.2 263.2539 4.05E-15 

siRNA:treatment 1 2475.171 2475.171 0.704982 0.408769 

Residuals       26 91285.28 3510.972   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siFLI1-siNeg9 114.7302 59.13761 170.3228 0.000248  

TGF-ctrl 351.0512 306.5772 395.5253 3.43E-14  

siFLI1:ctrl-siNeg9:ctrl 92.02202 -12.9043 196.9484 0.100874  

siNeg9:TGF-siNeg9:ctrl 341.968 275.6067 408.3292 6.30E-13  

siFLI1:TGF-siNeg9:ctrl 479.4063 374.48 584.3326 9.42E-12  

siNeg9:TGF-siFLI1:ctrl 249.9459 145.0196 354.8723 3.61E-06  

siFLI1:TGF-siFLI1:ctrl 387.3843 254.6618 520.1068 1.01E-07  

siFLI1:TGF-siNeg9:TGF 137.4383 32.512 242.3647 0.006873  

      

Anova siFLI1a | gene ID2 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 467.6677 467.6677 1.681409 0.211115 

treatment       1 32703.29 32703.29 117.5784 2.53E-09 

siRNA:treatment 1 296.3599 296.3599 1.065505 0.315634 

Residuals       18 5006.527 278.1404   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siFLI1-siNeg9 10.35248 -6.42079 27.12575 0.211115  

TGF-ctrl 77.11065 62.17031 92.051 2.53E-09  

siFLI1:ctrl-siNeg9:ctrl 18.59359 -13.3173 50.50452 0.379023  

siNeg9:TGF-siNeg9:ctrl 81.6058 58.03802 105.1736 7.03E-08  

siFLI1:TGF-siNeg9:ctrl 83.71718 51.80625 115.6281 3.95E-06  

siNeg9:TGF-siFLI1:ctrl 63.01222 31.10128 94.92315 0.000145  

siFLI1:TGF-siFLI1:ctrl 65.12359 26.63756 103.6096 0.000785  

siFLI1:TGF-siNeg9:TGF 2.111376 -29.7996 34.02231 0.997592  

      

Anova siFLI1a | gene IGFBP3 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 13722.84 13722.84 3.27228 0.108065 

treatment       1 43733.44 43733.44 10.42846 0.012069 

siRNA:treatment 1 2885.706 2885.706 0.688111 0.430862 

Residuals       8 33549.3 4193.662   
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Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siFLI1-siNeg9 67.63342 -18.5842 153.8511 0.108065  

TGF-ctrl 120.7386 34.52097 206.9563 0.012069  

siFLI1:ctrl-siNeg9:ctrl 36.61887 -132.706 205.9435 0.897123  

siNeg9:TGF-siNeg9:ctrl 89.72407 -79.6006 259.0487 0.38444  

siFLI1:TGF-siNeg9:ctrl 188.372 19.0474 357.6967 0.030233  

siNeg9:TGF-siFLI1:ctrl 53.1052 -116.219 222.4298 0.751523  

siFLI1:TGF-siFLI1:ctrl 151.7532 -17.5715 321.0778 0.079922  

siFLI1:TGF-siNeg9:TGF 98.64796 -70.6767 267.9726 0.313215  

      

Anova siFLI1b | gene COL1A1 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 7260.288 7260.288 0.399652 0.53176 

treatment       1 843253 843253 46.41795 1.05E-07 

siRNA:treatment 1 7687.466 7687.466 0.423166 0.520005 

Residuals       32 581328.9 18166.53   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siFLI1-siNeg9 38.10587 -84.6742 160.8859 0.53176  

TGF-ctrl 306.096 214.5812 397.6109 1.05E-07  

siFLI1:ctrl-siNeg9:ctrl -1.10501 -232.063 229.853 0.999999  

siNeg9:TGF-siNeg9:ctrl 293.0257 159.6821 426.3694 7.17E-06  

siFLI1:TGF-siNeg9:ctrl 370.3425 139.3845 601.3005 0.000727  

siNeg9:TGF-siFLI1:ctrl 294.1307 63.17277 525.0887 0.008232  

siFLI1:TGF-siFLI1:ctrl 371.4475 73.28203 669.6129 0.009992  

siFLI1:TGF-siNeg9:TGF 77.31675 -153.641 308.2747 0.801223  

      

Anova siFLI1b | gene IGFBP3 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 2485.909 2485.909 0.425354 0.526573 

treatment       1 2762.86 2762.86 0.472742 0.504801 

siRNA:treatment 1 224.5693 224.5693 0.038425 0.847872 

Residuals       12 70131.92 5844.327   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siFLI1-siNeg9 24.92945 -58.3537 108.2126 0.526573  

TGF-ctrl 26.28146 -57.0017 109.5646 0.504801  

siFLI1:ctrl-siNeg9:ctrl 17.43663 -143.053 177.9266 0.987814  

siNeg9:TGF-siNeg9:ctrl 18.78864 -141.701 179.2786 0.98487  

siFLI1:TGF-siNeg9:ctrl 51.21091 -109.279 211.7009 0.78061  

siNeg9:TGF-siFLI1:ctrl 1.352014 -159.138 161.842 0.999994  

siFLI1:TGF-siFLI1:ctrl 33.77428 -126.716 194.2643 0.922124  

siFLI1:TGF-siNeg9:TGF 32.42226 -128.068 192.9123 0.930173  

  



  Annex 

XXXII 

Table 21 Anova and post hoc results of RT-qPCR data obtained from siBHLHE40 treated 
samples. 

Anova siBHLHE40 | gene COL1A1 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 6845.935 6845.935 3.730343 0.064402 

treatment       1 843121.3 843121.3 459.416 4.75E-18 

siRNA:treatment 1 1339.775 1339.775 0.730042 0.400674 

Residuals       26 47715.26 1835.202   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siBHLHE40-siNeg9 -37.7655 -77.9581 2.426957 0.064402  

TGF-ctrl 335.2852 303.1312 367.4392 3.00E-14  

siBHLHE40:ctrl-siNeg9:ctrl -21.0587 -96.9187 54.80133 0.870888  

siNeg9:TGF-siNeg9:ctrl 341.968 293.9899 389.946 3.02E-14  

siBHLHE40:TGF-siNeg9:ctrl 287.4955 211.6355 363.3555 5.50E-10  

siNeg9:TGF-siBHLHE40:ctrl 363.0266 287.1666 438.8866 3.33E-12  

siBHLHE40:TGF-siBHLHE40:ctrl 308.5542 212.5981 404.5103 1.58E-08  

siBHLHE40:TGF-siNeg9:TGF -54.4724 -130.332 21.38757 0.225057  

      

Anova siBHLHE40 | gene ID2 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 10638.19 10638.19 37.07685 9.40E-06 

treatment       1 39736.06 39736.06 138.4905 6.90E-10 

siRNA:treatment 1 168.8152 168.8152 0.588365 0.452996 

Residuals       18 5164.607 286.9226   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siBHLHE40-siNeg9 49.37528 32.33926 66.41129 9.40E-06  

TGF-ctrl 84.99846 69.82408 100.1728 6.90E-10  

siBHLHE40:ctrl-siNeg9:ctrl 43.15541 10.7446 75.56621 0.007081  

siNeg9:TGF-siNeg9:ctrl 81.6058 57.66883 105.5428 8.90E-08  

siBHLHE40:TGF-siNeg9:ctrl 137.201 104.7901 169.6118 3.01E-09  

siNeg9:TGF-siBHLHE40:ctrl 38.4504 6.039589 70.8612 0.016968  

siBHLHE40:TGF-siBHLHE40:ctrl 94.04555 54.95664 133.1345 1.26E-05  

siBHLHE40:TGF-siNeg9:TGF 55.59515 23.18435 88.00596 0.000682  

      

Anova siBHLHE40 | gene SMAD7 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 4235.129 4235.129 4.715241 0.055034 

treatment       1 167079.4 167079.4 186.0202 8.69E-08 

siRNA:treatment 1 1171.53 1171.53 1.304339 0.280031 

Residuals       10 8981.788 898.1788   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siBHLHE40-siNeg9 35.14607 -0.91736 71.2095 0.055034  



  Annex 

XXXIII 

TGF-ctrl 218.4879 182.7944 254.1814 8.73E-08  

siBHLHE40:ctrl-siNeg9:ctrl 53.6311 -16.3966 123.6588 0.152464  

siNeg9:TGF-siNeg9:ctrl 234.3322 169.4992 299.1653 3.15E-06  

siBHLHE40:TGF-siNeg9:ctrl 250.9933 180.9656 321.0209 3.40E-06  

siNeg9:TGF-siBHLHE40:ctrl 180.7011 110.6734 250.7288 6.53E-05  

siBHLHE40:TGF-siBHLHE40:ctrl 197.3622 122.4994 272.2249 5.42E-05  

siBHLHE40:TGF-siNeg9:TGF 16.66104 -53.3666 86.68872 0.883755  

Table 22 Anova and post hoc results of RT-qPCR data obtained from siHNF4G treated samples. 

Anova siHNF4G | gene COL1A1 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 2714.393 2714.393 1.474852 0.235497 

treatment       1 800905.1 800905.1 435.1678 9.26E-18 

siRNA:treatment 1 6917.182 6917.182 3.758417 0.06347 

Residuals       26 47851.73 1840.451   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siHNF4G-siNeg9 -23.7802 -64.0302 16.46972 0.235497  

TGF-ctrl 326.7833 294.5834 358.9833 3.00E-14  

siHNF4G:ctrl-siNeg9:ctrl 14.18134 -61.7871 90.14974 0.955462  

siNeg9:TGF-siNeg9:ctrl 341.968 293.9213 390.0146 3.02E-14  

siHNF4G:TGF-siNeg9:ctrl 280.2262 204.2578 356.1946 9.70E-10  

siNeg9:TGF-siHNF4G:ctrl 327.7866 251.8182 403.755 3.35E-11  

siHNF4G:TGF-siHNF4G:ctrl 266.0448 169.9516 362.1381 2.68E-07  

siHNF4G:TGF-siNeg9:TGF -61.7418 -137.71 14.22663 0.141766  

      

Anova siHNF4G | gene SPHK1 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 366.6757 366.6757 18.04778 0.002806 

treatment       1 26984.94 26984.94 1328.199 3.52E-10 

siRNA:treatment 1 264.0235 264.0235 12.99524 0.006933 

Residuals       8 162.5356 20.31694   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siHNF4G-siNeg9 -11.0556 -17.0566 -5.05448 0.002806  

TGF-ctrl 94.84187 88.84081 100.8429 6.73E-10  

siHNF4G:ctrl-siNeg9:ctrl -1.6743 -13.4599 10.11132 0.966774  

siNeg9:TGF-siNeg9:ctrl 104.2231 92.4375 116.0087 1.44E-08  

siHNF4G:TGF-siNeg9:ctrl 83.78632 72.0007 95.57195 5.12E-08  

siNeg9:TGF-siHNF4G:ctrl 105.8974 94.1118 117.6831 1.33E-08  

siHNF4G:TGF-siHNF4G:ctrl 85.46063 73.675 97.24625 4.40E-08  

siHNF4G:TGF-siNeg9:TGF -20.4368 -32.2224 -8.65118 0.002402  
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Table 23 Anova and post hoc results of RT-qPCR data obtained from siNR4A1 treated samples. 

Anova siNR4A1 | gene COL1A1 | 96 h   

 Df Sum.Sq Mean.Sq F.value Pr..F. 

siRNA           1 17451.86 17451.86 8.795745 0.006395 

treatment       1 925157.9 925157.9 466.2801 3.95E-18 

siRNA:treatment 1 2567.137 2567.137 1.293838 0.265716 

Residuals       26 51587.25 1984.125   

      

Post hoc tukey multiple comparisons of means, 95% family-wise confidence level 
 diff lwr upr p adj  

siNR4A1-siNeg9 60.29762 18.50616 102.0891 0.006395  

TGF-ctrl 351.2184 317.7853 384.6516 3.00E-14  

siNR4A1:ctrl-siNeg9:ctrl 37.17144 -41.7065 116.0493 0.575543  

siNeg9:TGF-siNeg9:ctrl 341.968 292.0812 391.8547 3.06E-14  

siNR4A1:TGF-siNeg9:ctrl 425.3918 346.5139 504.2697 2.38E-13  

siNeg9:TGF-siNR4A1:ctrl 304.7965 225.9186 383.6744 3.64E-10  

siNR4A1:TGF-siNR4A1:ctrl 388.2203 288.4468 487.9938 3.14E-10  

siNR4A1:TGF-siNeg9:TGF 83.4238 4.545907 162.3017 0.035283  

 

Table 24 Anova and post hoc results of RT-qPCR data obtained from siFN1 treated samples 
(n=2). 

Anova siFN1 | gene COL1A1 | 96 h    

 Df Sum.Sq Mean.Sq F.value Pr..F.  

siRNA           1 34331    34331    1.119 0.3497    

treatment       1 346017 346017 11.281 0.0283  

siRNA:treatment 1 577      577      0.019 0.8976    

Residuals       4 122687    30672                     
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CellProfiler Pipeline 

CellProfiler Pipeline: http://www.cellprofiler.org 
Version:5 
DateRevision:426 
GitHash: 
ModuleCount:11 
HasImagePlaneDetails:False 
 
Images:[module_num:1|svn_version:'Unknown'|variable_revision_number:2|show_wi
ndow:False|notes:['To begin creating your project, use the Images module to compile 
a list of files and/or folders that you want to analyze. You can also specify a set of 
rules to include only the desired files in your selected folders.']|batch_state:array([], 
dtype=uint8)|enabled:True|wants_pause:False] 
    : 
    Filter images?:Custom 
    Select the rule criteria:and (extension does istif) 
 
Metadata:[module_num:2|svn_version:'Unknown'|variable_revision_number:6|show_
window:False|notes:['The Metadata module optionally allows you to extract 
information describing your images (i.e, metadata) which will be stored along with 
your measurements. This information can be contained in the file name and/or 
location, or in an external file.']|batch_state:array([], 
dtype=uint8)|enabled:True|wants_pause:False] 
    Extract metadata?:Yes 
    Metadata data type:Text 
    Metadata types:{} 
    Extraction method count:3 
    Metadata extraction method:Extract from file/folder names 
    Metadata source:File name 
    Regular expression to extract from file name:--W(?P<WellNum>.*)--
P(?P<PosNum>.*)--.*--.*--.* 
    Regular expression to extract from folder name:(?P<Date>[0-9]{4}_[0-9]{2}_[0-
9]{2})$ 
    Extract metadata from:All images 
    Select the filtering criteria:and (file does contain "") 
    Metadata file location:Elsewhere...| 
    Match file and image metadata:[] 
    Use case insensitive matching?:No 
    Metadata file name:None 
    Does cached metadata exist?:No 
    Metadata extraction method:Extract from file/folder names 
    Metadata source:File name 
    Regular expression to extract from file name:^(?P<RootImageName>.*)--T.*$ 
    Regular expression to extract from folder name:(?P<Date>[0-9]{4}_[0-9]{2}_[0-
9]{2})$ 
    Extract metadata from:All images 
    Select the filtering criteria:and (file does contain "") 
    Metadata file location:Elsewhere...| 
    Match file and image metadata:[] 
    Use case insensitive matching?:No 
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    Metadata file name:None 
    Does cached metadata exist?:No 
    Metadata extraction method:Extract from file/folder names 
    Metadata source:Folder name 
    Regular expression to extract from file name:^(?P<Plate>.*)_(?P<Well>[A-P][0-
9]{2})_s(?P<Site>[0-9])_w(?P<ChannelNumber>[0-9]) 
    Regular expression to extract from folder 
name:(?P<RootFolder>.*)[\\/](?P<Year>.*)[\\/](?P<Experiment>.*)[\\/](?P<Date>.*)[\\/](
?P<Well>.*)[\\/](?P<Position>.*)$ 
    Extract metadata from:All images 
    Select the filtering criteria:and (file does contain "") 
    Metadata file location:Elsewhere...| 
    Match file and image metadata:[] 
    Use case insensitive matching?:No 
    Metadata file name:None 
    Does cached metadata exist?:No 
 
NamesAndTypes:[module_num:3|svn_version:'Unknown'|variable_revision_number:
8|show_window:False|notes:['The NamesAndTypes module allows you to assign a 
meaningful name to each image by which other modules will refer to 
it.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] 
    Assign a name to:Images matching rules 
    Select the image type:Grayscale image 
    Name to assign these images:DNA 
    Match metadata:[] 
    Image set matching method:Order 
    Set intensity range from:Image metadata 
    Assignments count:2 
    Single images count:0 
    Maximum intensity:255.0 
    Process as 3D?:No 
    Relative pixel spacing in X:1.0 
    Relative pixel spacing in Y:1.0 
    Relative pixel spacing in Z:1.0 
    Select the rule criteria:and (file does contain "C01.ome.tif") 
    Name to assign these images:Nuclei 
    Name to assign these objects:Cell 
    Select the image type:Grayscale image 
    Set intensity range from:Image metadata 
    Maximum intensity:255.0 
    Select the rule criteria:and (file does contain "C02.ome.tif") 
    Name to assign these images:Collagen 
    Name to assign these objects:Nucleus 
    Select the image type:Grayscale image 
    Set intensity range from:Image metadata 
    Maximum intensity:255.0 
 
Groups:[module_num:4|svn_version:'Unknown'|variable_revision_number:2|show_wi
ndow:False|notes:['The Groups module optionally allows you to split your list of 
images into image subsets (groups) which will be processed independently of each 
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other. Examples of groupings include screening batches, microtiter plates, time-lapse 
movies, etc.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] 
    Do you want to group your images?:No 
    grouping metadata count:1 
    Metadata category:None 
 
IdentifyPrimaryObjects:[module_num:5|svn_version:'Unknown'|variable_revision_nu
mber:15|show_window:False|notes:[]|batch_state:array([], 
dtype=uint8)|enabled:True|wants_pause:False] 
    Select the input image:Nuclei 
    Name the primary objects to be identified:Nuclei 
    Typical diameter of objects, in pixel units (Min,Max):30,200 
    Discard objects outside the diameter range?:Yes 
    Discard objects touching the border of the image?:Yes 
    Method to distinguish clumped objects:Shape 
    Method to draw dividing lines between clumped objects:Intensity 
    Size of smoothing filter:0 
    Suppress local maxima that are closer than this minimum allowed distance:10 
    Speed up by using lower-resolution image to find local maxima?:No 
    Fill holes in identified objects?:After both thresholding and declumping 
    Automatically calculate size of smoothing filter for declumping?:No 
    Automatically calculate minimum allowed distance between local maxima?:No 
    Handling of objects if excessive number of objects identified:Continue 
    Maximum number of objects:500 
    Use advanced settings?:Yes 
    Threshold setting version:12 
    Threshold strategy:Global 
    Thresholding method:Minimum Cross-Entropy 
    Threshold smoothing scale:1.0 
    Threshold correction factor:1.0 
    Lower and upper bounds on threshold:0.0,1.0 
    Manual threshold:0.0 
    Select the measurement to threshold with:None 
    Two-class or three-class thresholding?:Two classes 
    Log transform before thresholding?:No 
    Assign pixels in the middle intensity class to the foreground or the 
background?:Foreground 
    Size of adaptive window:50 
    Lower outlier fraction:0.05 
    Upper outlier fraction:0.05 
    Averaging method:Mean 
    Variance method:Standard deviation 
    # of deviations:2.0 
    Thresholding method:Minimum Cross-Entropy 
 
ConvertObjectsToImage:[module_num:6|svn_version:'Unknown'|variable_revision_n
umber:1|show_window:False|notes:[]|batch_state:array([], 
dtype=uint8)|enabled:True|wants_pause:True] 
    Select the input objects:Nuclei 
    Name the output image:NucleiObjectImage 
    Select the color format:Color 
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    Select the colormap:Default 
 
SaveImages:[module_num:7|svn_version:'Unknown'|variable_revision_number:16|sh
ow_window:False|notes:[]|batch_state:array([], 
dtype=uint8)|enabled:True|wants_pause:False] 
    Select the type of image to save:Image 
    Select the image to save:NucleiObjectImage 
    Select method for constructing file names:From image filename 
    Select image name for file prefix:Nuclei 
    Enter single file name:OrigBlue 
    Number of digits:4 
    Append a suffix to the image file name?:No 
    Text to append to the image name: 
    Saved file format:jpeg 
    Output file location:Same folder as image| 
    Image bit depth:8-bit integer 
    Overwrite existing files without warning?:Yes 
    When to save:Every cycle 
    Record the file and path information to the saved image?:No 
    Create subfolders in the output folder?:No 
    Base image folder:Elsewhere...| 
    How to save the series:T (Time) 
    Save with lossless compression?:Yes 
 
MeasureImageQuality:[module_num:8|svn_version:'Unknown'|variable_revision_num
ber:6|show_window:False|notes:[]|batch_state:array([], 
dtype=uint8)|enabled:True|wants_pause:False] 
    Calculate metrics for which images?:Select... 
    Image count:1 
    Scale count:1 
    Threshold count:1 
    Select the images to measure:Collagen, Nuclei 
    Include the image rescaling value?:No 
    Calculate blur metrics?:Yes 
    Spatial scale for blur measurements:20 
    Calculate saturation metrics?:No 
    Calculate intensity metrics?:No 
    Calculate thresholds?:No 
    Use all thresholding methods?:No 
    Select a thresholding method:Otsu 
    Typical fraction of the image covered by objects:0.1 
    Two-class or three-class thresholding?:Two classes 
    Minimize the weighted variance or the entropy?:Weighted variance 
    Assign pixels in the middle intensity class to the foreground or the 
background?:Foreground 
 
MeasureObjectSizeShape:[module_num:9|svn_version:'Unknown'|variable_revision_
number:3|show_window:False|notes:[]|batch_state:array([], 
dtype=uint8)|enabled:True|wants_pause:False] 
    Select object sets to measure:Nuclei 
    Calculate the Zernike features?:No 
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    Calculate the advanced features?:No 
 
MeasureImageIntensity:[module_num:10|svn_version:'Unknown'|variable_revision_n
umber:4|show_window:False|notes:[]|batch_state:array([], 
dtype=uint8)|enabled:True|wants_pause:False] 
    Select images to measure:Collagen 
    Measure the intensity only from areas enclosed by objects?:No 
    Select input object sets: 
    Calculate custom percentiles:No 
    Specify percentiles to measure:10,90 
 
ExportToSpreadsheet:[module_num:11|svn_version:'Unknown'|variable_revision_nu
mber:13|show_window:False|notes:[]|batch_state:array([], 
dtype=uint8)|enabled:True|wants_pause:True] 
    Select the column delimiter:Comma (",") 
    Add image metadata columns to your object data file?:Yes 
    Add image file and folder names to your object data file?:No 
    Select the measurements to export:Yes 
    Calculate the per-image mean values for object measurements?:No 
    Calculate the per-image median values for object measurements?:No 
    Calculate the per-image standard deviation values for object measurements?:No 
    Output file 
location:Elsewhere...|/g/pepperkok/tuechler/Experiments_2022/CP_outputs/NT22_00
2 
    Create a GenePattern GCT file?:No 
    Select source of sample row name:Metadata 
    Select the image to use as the identifier:None 
    Select the metadata to use as the identifier:None 
    Export all measurement types?:No 
    Press button to select 
measurements:Image|ImageQuality_PowerLogLogSlope_Collagen,Image|ImageQua
lity_PowerLogLogSlope_Nuclei,Image|Intensity_TotalIntensity_Collagen,Image|Inten
sity_TotalArea_Collagen,Image|PathName_Collagen,Image|PathName_Nuclei,Imag
e|Metadata_Well,Image|Metadata_Year,Image|Metadata_FileLocation,Image|Metada
ta_PosNum,Image|Metadata_Date,Image|Metadata_Experiment,Image|FileName_C
ollagen,Image|FileName_Nuclei,Image|Count_Nuclei,Nuclei|Number_Object_Numbe
r 
    Representation of Nan/Inf:NaN 
    Add a prefix to file names?:No 
    Filename prefix:MyExpt_ 
    Overwrite existing files without warning?:Yes 
    Data to export:Image 
    Combine these object measurements with those of the previous object?:No 
    File name:\g<RootImageName>_image.csv 
    Use the object name for the file name?:No 
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