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Zusammenfassung:
Das BASE (Baryon Antibaryon Symmetry Experiment) Experiment, welches sich am Antiproton
Entschleuniger Komplex des CERN befindet, testet die Gültigkeit der CPT-Invarianz mit Bary-
onen durch Vergleiche der Ladungs-zu-Masse Verhältnisse und der g-Faktoren von Protonen und
Antiprotonen. Beide Messungen basieren auf dem Vergleich der freien Zyklotronfrequenz bzw.
der Larmorfrequenz der in einer Penningfalle gefangenen Teilchen. Diese Arbeit beschreibt das
Design, die Implementierung sowie die Charakterisierung eines supraleitenden magnetischen
Shim- und Abschirmungssystems welches das gefangene Teilchen von externen Änderungen
des Magnetfelds abschirmt und die Möglichekeit bietet, das Magnetfeld sowie seine ersten bei-
den Ableitungen zu verändern. Mit Hilfe dieses Systems kann die quadratische Inhomogenität
B2 ≈ 100 mT

m2 des magnetischen Feldes, welche in der letzten g-Faktor Messung die dominante
Unsicherheit darstellte, eliminiert werden, was eine Messung des Antiproton g-Faktors auf
100 p.p.t. Level ermöglicht. Des Weiteren können systematische Effekte direkt untersucht
werden indem absichtlich eine Inhomogenität des Magnetfelds herbeigeführt wird. Die erhöhte
Homogenität des Magnetfelds erlaubt erstmals die Möglichkeit der Verwendung von kohärenten
Anregungsmethoden bei der Messung der Larmorfrequenz des gefangenen Teilchens wodurch
die Sättigungsverbreiterung im Profil der g-Faktor Resonanz verringert und die beobachtete
Inversion erhöht werden können.

Abstract:
The BASE (Baryon Antibaryon Symmetry Experiment) experiment, located at CERN’s Antipro-
ton decelerator, tests CPT-invariance by comparing the charge-to-mass ratios and g-factors of
protons and antiprotons at high precision. Both measurements rely on the comparison of the
particle’s free cyclotron and Larmor frequencies in a high-precision Penning trap. This thesis
describes the successful design, implementation and characterization of a superconducting
magnetic shimming and shielding system which shields the trapped particle from magnetic
field fluctuations induced by the noisy environment of the experiment hall and provides the
possibility to tune the magnetic field as well as its first two derivatives. With the help of
this system the quadratic inhomogeneity B2 ≈ 100 mT

m2 of the magnetic field, which was the
dominant uncertainty in the last g-factor measurement was eliminated, which paves the wave
for a measurement of the antiproton g-factor at the 100 p.p.t. level. In addition, the shimming
system provides the possibility to directly study systematic shifts by introducing magnetic field
inhomogeneities on purpose. Finally, the increased homogeneity of the magnetic field creates
the novel possibility to use coherent excitation techniques for the measurement of the trapped
particle’s Larmor frequency which reduces the power broadening in the g-factor resonance.
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1 Introduction

1.1 Theoretical Motivation

The Standard Model of particle physics (SM) [1] can considered to be one of the greatest successes
of modern physics. It predicted the existence and properties of the W and Z bosons [2, 3], the
top quark [4, 5], the gluon [6–9] as well as the unification of the electromagnetic and weak force
[10]. With the discovery of the Higgs boson [11, 12] 50 years after its prediction [13, 14] all
particles predicted by the Standard Model have been found. Despite this overwhelming success,
the Standard Model has it’s limitations. First of all, the Standard Model does not describe gravity
and no indication of the graviton, which is the hypothetical force carrying boson of gravity
in quantum gravity theories, has been found. In addition, the Standard Model can not explain
how the mass of neutrinos arises. The observation of neutrino oscillations [15] indicates, that
at least two out of the three neutrino flavors need to have mass [16]. The interaction with the
Higgs field, which gives mass to the fermions, requires left- and right-handed versions of said
fermion to exist, however, no right-handed neutrinos have ever been observed. Alternatively,
neutrinos could be Majorana perticles, however, in that case neutrinoless ββ-decay, which so
far has not been observed, should be possible [17].
Given that the Standard Model is a local and Lorentz-invariant quantum field theory with a
positive-definite hermitian Hamiltonian that preserves micro-causality, the combined conju-
gation of charge, parity and time (CPT-symmetry) [1] should conserve the laws of physics
and matter and antimatter should be perfect mirror images of each other [18, 19]. Thus, the
Standard Model predicts that matter and antimatter should have been created in equal amounts
during baryogenesis, however, the observable universe is dominated by matter and no hints
of the missing antimatter can be observed [20]. The observed asymmetry between matter and
antimatter can be characterized using the asymmetry parameter η which is defined as the ratio
between baryon number NB , antibaryon number NB̄ and photon number Nγ [21]:

η =
NB −NB̄

Nγ
= 6.14(25)× 10−10. (1.1)

Furthermore the ΛCDM-model requires the existence of dark matter, which interacts only
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gravitationally with ordinary matter, to describe the formation and large-scale structure of
galaxies [22] in addition to dark energy which is required to describe the accelerated expansion
of the universe [23]. Measurements of the Planck collaboration [24] indicate the energy content
of the universe to be made up of approximately 69% dark energy, 26% and only 5% baryonic
matter.
In order to tackle this observed baryon asymmetry, Andrei Sakharov proposed three condition
that are required to produce matter and antimatter at different rates [25]. These conditions –
called Sakharov conditions – are:

1. Baryon number violation:
In order for matter and antimatter to be produced at different rates, a process that violates
baryon number conservation has to exist. In general, interactions within the Standard
Model conserve that baryon number and while hypothetical exceptions exist [26], no
such process has ever been observed.

2. CP-symmetry violation:
Even in case that a process that favored the creation of baryons over antibaryons existed,
CP-symmetry would predict an equivalent process favoring the creation of antimatter
over matter at the same rate to exist. While the Standard Model allows for CP-violation
and indirect [27] and direct [28, 29] CP-violation has been discovered, the amount of
CP-violation is not sufficient to explain the observed imbalance of matter and antimatter,
given the limits on baryon number violation.

3. Interaction out of thermal equilibrium:
The matter producing processes have to happen outside of thermal equilibrium, as a
system in thermal equilibrium with baryon number B = 0 would stay at B = 0 and no
baryon asymmetry could be created. Given the expansion of the universe, this condition
is fulfilled as well.

Note that in case CPT violation is allowed the second and third conditions are no longer required
[30, 31].
Motivated by interactions in string theories that lead to spontaneous breaking of Lorentz
invariance [32], Alan Kostelecký and Don Colladay developed an extension of the Standard
Model which allows for Lorentz-violation and CPT-violation [33, 34]. This effective field theory –
called Standard Model extension (SME) – introduces Lorentz-violating terms and corresponding
coupling coefficients into the Standard Model and studies the effects these new interactions
would have on experimental observations. The SME therefore does not introduce new particles
and does not explain the origin of these interactions but rather provides the framework to
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constrain the effects new theories containing spontaneous Lorentz-symmetry breaking would
have on the interactions of the existing Standard Model particles. By comparing experimental
results to the effects introduced in the SME framework, limits on the magnitude of the coupling
coefficients can be given [35]. To date, no coefficient with a significant deviation from zero has
been observed.

1.2 CPT tests with antimatter

1.2.1 Prediction and discovery of antimatter

In 1928, Paul Dirac published the Dirac equation which combined special relativity with the
Schrödinger equation and succesfully predicted the magnetic moment of the electron [36].
While Dirac initially could not explain the arising negative energy solutions, he later published
a follow-up paper predicting the existence of the positron [37], the antimatter conjugate of
the electron with the same mass and opposite charge. In 1932, the positron was observed in
cosmic radiation for the first time [38]. Initially, it was believed that matter and antimatter had
to behave exactly the same under charge conjugation (C), parity inversion (P) or time reversal
(T) [18, 19]. In 1957, the Wu experiment demonstrated however, that P-symmetry was violated
in the β-decay of Co-60 [39]. Later in was shown that the combination of charge conjugation
and parity reversal (CP-symmetry) was not conserved in the decay of neutral kaons [27–29].
By comparing the fundamental properties of matter particles with their antimatter conjugates,
CPT-symmetry can be experimentally tested to high precision.

1.2.2 Creation of antimatter in the laboratory

Given the high energy required for the production of baryonic antimatter, research is limited
by the availability of particle accelerators with high enough energy to create antiprotons.
The first antiproton [40] was created at the Bevatron in 1955 and in 1956 discovery of the
antineutron followed [41]. The mass of both particles matched the mass of their respective
matter counterparts while the charge and magnetic moment had the same magnitude but
opposite sign. The next big milestone in antimatter research was the creation of antimatter
nuclei [42] at CERN’s Proton Synchrotron. In 1982 the low energy antiproton ring (LEAR) [43],
a dedicated storage ring for antimatter research, started operation at CERN.

1.2.3 First low-energy measurements at LEAR

At LEAR, the TRAP collaboration managed to demonstrate the feasibility to study antimatter at
low energies by demonstrating the ability to slow [44], trap [45] and cool [46] antiprotons in a
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Penning trap for the first time, thus establishing many techniques that are still used in high-
precision antimatter Penning trap measurements today. In 1990, TRAP managed to measure to
compare the charge-to-mass ratio of the proton and antiproton using clouds of 100 particles at
a fractional uncertainty of 40 p.p.b. [47], which corresponded to an improvement of more than
a factor 1000 compared to earlier measurements. Additionally, this measurement set new limits
for the antiproton’s lifetime. In 1996, the uncertainty was improved by a further factor of 40
by comparing the cyclotron frequencies of a single proton and a single antiproton in the same
magnetic field [48]. Given the opposite charge of the particles, this measurement requires a
change of polarity of the trapping fields which introduces systematic shifts in case the magnetic
field at the location of the proton and antiproton differ due to slight differences in trapping
voltage. In order to overcome this limitation, a final charge-to-mass comparison was conducted
at a fractional precision of 90 p.p.t. [49] by comparing the charge-to-mass ratio between an
antiproton and an H−-ion which can be trapped in the same potential.
Another milestone was the creation of nine antihydrogen atoms by passing the antiprotons
cycling in LEAR through Xe gas, which allowed the creation of electron-positron pairs in
collisions between the antiprotons and the Xe atoms [50]. In addition, scientists at KEK observed
that antiprotons survived in liquid helium for extended periods of time [51], which lead to
increased interest in the study of antiprotonic helium systems which consist of a helium atom
in which one of the electrons is replaced with an antiproton. In conjunction with the history
of successful experiments with antimatter at low energies as well as the new possibility of
antihydrogen spectroscopy experiments, the Antiproton decelerator (AD) [52] was built at
CERN.

1.2.4 Measurements at the Antiproton decelerator

The first milestone achieved at the AD was the production of cold antihydrogen by the ATHENA
and ATRAP collaborations [53, 54]. These experiments created cold antihydrogen by trapping
antiprotons and positrons in a nested Penning trap. After mixing the clouds, the dominant
binding mechanism occurs in three-body collisions between an antiproton and two positrons
which can lead to a final state in which one positron ends up bound to the antiproton while
the other positron carries away the excess energy [55]. In 2021, the AEgIS collaboration [56]
managed to demonstrate the formation of a pulsed beam of cold antihydrogen via a charge-
exchange reaction between Rydberg positronium and trapped antiprotons [57]. Given the
successful creation of antihydrogen, the ALPHA collaboration subsequently demonstrated the
confinement [58], spectroscopy [59, 60] and laser-cooling [61] of neutral antihydrogen. Using
the location of antihydrogen annihilation after the magnetic trap was ramped down, ALPHA
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was able confine the ratio of the gravitational mass to the inertial mass of antihydrogen to
values below 75 [62]. In 2023, a more precise measurement [63] measured the gravitational
acceleration of antimatter aḡ = (0.75± 0.13(statistical + systematic)± 0.16(simulation))g,
where g = 9.81 m

s2
. In addition, two more collaborations plan to probe the gravitational behavior

of antimatter. The GBAR experiment [64] attempts to trap positively charged antihydrogen
ions which can be sympathetically cooled to low temperatures by coulomb interaction with
laser-cooled beryllium ions. By ionizing the trapped antihydrogen ion, a cold and neutral
antihydrogen atom is created. Due to its lack of charge, this particle is no longer confined by
the electrostatic fields of the trap and its behavior in the gravitational field of the earth can be
studied. In contrast, AEgIS plans to study the effect of gravity using a Moire deflectometer.
In addition to the research conducted on antihydrogen, multiple experiments were conducted
on other antimatter systems. Following up on the observations at KEK [51] the ASACUSA
collaboration managed to conduct two-photon laser spectroscopy on antiprotonic helium and
determined the antiproton-to-electron mass ratio in 2016 [65]. Given the successful measure-
ments of the TRAP collaboration at LEAR, a follow-up experiment – ATRAP – was established
at the Antiproton decelerator. After the successful resolution of single spin flips of a trapped
proton [66], the ATRAP collaboration published a new measurement of the antiproton’s mag-
netic moment [67], which improved earlier uncertainties by a factor of 680. Later, the BASE
collaboration improved this value by a further factor of 3000 [68]. In addition BASE compared
the charge-to-mass ratio of the proton and antiproton at a fractional precision of 16 parts-per-
trillion [69] in 2022. Currently two experiments, PUMA [70] and BASE-STEP [71], are working
on the implementation of a transportable antiproton trap. The PUMA experiment plans to
transport trapped antiprotons to CERN’s ISOLDE facility [72] where exotic nuclei are injected
into the trap and neutron halos [73] are studied. In contrast, BASE-STEP is designed in a way
that not only allows loading of antiprotons into the trap but rather provides the possibility to
transfer the trapped antiprotons from the transportable trap to different experiments. This would
open the way for non-destructive antimatter research independent of access to the Antiproton
decelerator.
In addition to the laboratory test on baryonic antimatter outlined above, the Alpha Magnetic
Spectrometer (AMS) [74, 75] which is located on the International Space Station (ISS) is looking
for antimatter in cosmic rays. Given the comparably easy access to positrons via the β+ decay
of NA-22, comparisons between the properties of electrons and positrons have been conducted
in the past [76]. Furthermore, comparison between the anomalous frequency of muons and
antimuons [77] expand the tests of CPT symmetry in the leptonic sector.
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This thesis describes the design, successful implementation and characterization of a supercon-
ducting magnetic shimming and shielding system. Following the theoretical motivation and
introduction of CPT-test with antimatter given above, the first chapter introduces the physics
of the Penning trap and gives an overview over the main systematic shifts. Next, an overview
over the BASE experiment and the techniques for the comparison of the charge-to-mass ratio
and g-factor of the proton and antiproton are given. The 4th chapter introduces the principle
and design of the magnetic shimming and shielding system that was implemented in the BASE
experiment. Chapter 5 introduces the measurement techniques in the precision trap which
serve as the basis for an antiproton g-factor measurement and are necessary for the characteri-
zation of the magnetic shimming and shielding system in chapter 6. Chapter 7 describes the
characterization of the Analysis trap which is required in a g-factor campaign to resolve the
spin state of the trapped particle. Chapter 8 discusses the impact of the magnetic shimming
and shielding system in the context of future charge-to-mass ratio and g-factor measurement
campaigns and gives an outlook on novel measurement techniques enabled by the shimming
and shielding system.
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2 Penning trap theory

Measurements of the fundamental properties of charged particles at the highest precision rely
on non-destructive observation at extended measurement times. It is therefore necessary to
confine the studied particle to a small highly homogenous region. In case of charged particles
electric fields can be used to interact with the ions and trap them. As a consequence of Maxwell’s
equations, the divergence of any electrostatic potential Φ(x, y, z) vanishes in charge-free space:

∆Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0. (2.1)

Thus, the static potential has no local minima and no point at which a charged particle would
be confined in all directions exists (Earnshaw’s theorem [78]). To overcome this fundamental
limitation, two approaches exist:

• Radio frequency ion traps combine electrostatic potentials with time-dependent potentials
to create a ponderomotive force that confines particle in a harmonic potential in all spacial
directions. These traps, first proposed by Paul in 1953 [79], have widespread applications
in trapped ion quantum computing [80] and laser spectroscopy in the absence of magnetic
fields [81]. Radio frequency ion traps have high selectivity with respect to the charge-to-
mass-ratio of particles that can be trapped and provide the possibility to trap positive and
negative particles in the same field.

• Penning traps combine a static magnetic field that provides radial confinement with an
electrostatic potential that confines particles along the symmetry axis of the trap [82].
Penning traps provide the possibility to trap charged particles of vastly different charge-
to-mass ratios, however, positive and negative charged particles can not be trapped at the
same time.

2.1 The ideal Penning trap

Ideal Penning traps use a rotationally symmetric electrostatic quadrupole potential Φ(z, ρ)
to confine particles of charge q and mass m along the trap axis. The potential is created by
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z0

r0
B V0

Figure 2.1: Cross-section through the electrodes of a hyperbolic Penning trap. By applying a
voltage V0 between the ring electrode and the endcap electrodes, charged particles
are trapped along the axial direction. The magnetic field B along the trap axis
provides confinement in the radial direction.

two rotated hyperbolic endcap electrodes and a hyperboloid ring electrode which follow the
equipotential lines. Figure 2.1 shows a cross-section through the electrodes of a hyperbolic
Penning trap. The derivation of the eigenfrequencies of a charged particle in a hyperbolic
Penning trap follows [83].
In case the trap axis is aligned with the z axis of the coordinate system, the potential is given by:

Φ(z, ρ) =
V0
2d2

(︃
z2 − ρ2

2

)︃
(2.2)

with ρ =
√︁
x2 + y2, C2 =

1

2d2
and d = z20 +

r20
2
.

ρ describes the radial distance from the trap’s symmetry axis, d is a characteristic distance
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depending on the trap geometry and C2 characterizes the scaling of the potential for a given
voltage V0. This potential causes particles with opposite charge of V0 to be repelled from the
endcaps, which leads to trapping in the axial direction. In order to overcome the repelling
component in the radial direction, a homogeneous magnetic field is superimposed in parallel to
the trap’s symmetry axis. The total force F(x) experienced by a particle of charge q and mass
m is given by the Lorentz force:

F(x) = q (E(x) + ẋ×B) = q (−∇Φ(x) + ẋ×B) . (2.3)

By introducing the axial frequency

ωz =

√︃
2qV0
m

C2 (2.4)

and the free cyclotron frequency

ωc =
qB

m
, (2.5)

the equations of motion can be written as:

ẍ− ωcẏ −
1

2
ω2
zx = 0, (2.6)

ÿ + ωcẋ− 1

2
ω2
zy = 0, (2.7)

z̈ + ω2
zz = 0. (2.8)

The axial motion is solved by a harmonic oscillation with frequency ωz . The motion in the radial
direction can be solved by introducing the variable u = x+ iy and combining Eqs. (2.6) and
(2.7) into a single equation:

ü+ iωcu̇− 1

2
ω2
zu = 0. (2.9)

Inserting the Ansatz u(t) = e(−iωt+φ) yields the frequencies

ω+ =
1

2

(︂
ωc +

√︁
ω2
c − 2ω2

z

)︂
(2.10)

called modified cyclotron frequency, and

ω− =
1

2

(︂
ωc −

√︁
ω2
c − 2ω2

z

)︂
≈ ω2

z

2ωc
(2.11)

15



called magnetron frequency. Note that the sign of ωc determines the signs of ω+ and ω− and
thus defines the direction of the rotation. Due to its experimental importance the terms modified
cyclotron frequency and cyclotron frequency are used interchangeably and refer both to the
modified cyclotron frequency. The frequencyωc =

qB
m is denoted as the free cyclotron frequency.

The general solution to Eq. (2.9) is thus given by

u(t) = R+e
(−iω+t+φ+) +R−e

(−iω−t+φ−) (2.12)

= R+ cos (ω+t+ φ+) +R− cos (ω−t+ φ−)− i [R+ sin (ω+t+ φ+) +R− sin (ω−t+ φ−)] .

(2.13)

Separating the real and imaginary parts finally yields the solutions of the equations of motion:

x(t) = R+ cos (ω+t+ φ+) +R− cos (ω−t+ φ−) , (2.14)

y(t) = − [R+ sin (ω+t+ φ+) +R− sin (ω−t+ φ−)] , (2.15)

z(t) = Rz cos (ωzt+ φz) . (2.16)

Figure 2.2 shows the trajectory of a charged particle in a Penning trap. Note that the frequency
ratios were chosen in a way that makes the individual eigenmotions visible.
In case the magnetic field is not strong enough to overcome the radial repulsion introduced
by the quadrupole potential, the radicands in Eqs. (2.10) and (2.11) are imaginary and the
radial eigenfrequencies ω+ and ω− become complex valued. In this case, x(t) and y(t) contain
components that grow exponentially over time and a trapped particle would be lost by hitting
the walls of the trap. The maximum ring voltage Vmax that still provides stable trajectories is
thus given by:

Vmax =
1

4C2

q

m
B2. (2.17)

Vmax depends on the charge-to-mass ratio q
m and thus can be used to remove contaminants

with smaller charge to mass ratio than the desired species.

There are several relations between the eigenfrequencies of a trapped particle:
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Magnetron

AxialMod. Cyclotron

Particle trajectory q > 0

B

Figure 2.2: Trajectory of a charged particle in a Penning trap. The frequency ratio ω− = 1
8ωz =

1
40ω+ was chosen in a way to clearly show the individual eigenmotions. The axial
motion is superimposed on the magnetron orbit to show the oscillation along the
trap axis.
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ω+ + ω− = ωc, (2.18)

2ω+ω− = ω2
z , (2.19)

ω2
+ + ω2

z + ω2
− = ω2

c . (2.20)

Of these, the Brown-Gabrielse invariance theorem [82], given by Eq. (2.20), is of highest impor-
tance as it is insensitive to an elliptically deformed potential and misalignment of the trap with
respect to the magnetic field.

The amplitudesR−, R+ andRz of the individual eigenmotions depend on the respective energies
E−, E+ and Ez :

E− =
1

2
mω2

−R
2
− − 1

4
mω2

zR
2
− ≈ −1

4
mω2

zR
2
−, (2.21)

Ez =
1

2
mω2

zR
2
z, (2.22)

E+ =
1

2
mω2

+R
2
+ − 1

4
mω2

zR
2
+ ≈ 1

2
mω2

+R
2
+. (2.23)

Note that in case of the magnetron motion an increase in radius leads to a decrease of the total
energy as the magnetron frequency is small compared to the axial frequency and the increase in
kinetic energy is not enough to compensate the loss of potential energy. Rewriting the system
of harmonic oscillators by the Hamiltonian

H = ℏω+

(︃
n+ +

1

2

)︃
+ ℏωz

(︃
nz +

1

2

)︃
− ℏω−

(︃
n− +

1

2

)︃
(2.24)

provides the possibility to express the total energy in terms of the principal quantum numbers
n+, nz and n−. Figure 2.3 shows the energy levels as a function of the principal quantum
numbers for the BASE precision trap.

2.2 The real Penning trap

Hyperbolic Penning traps provide highly harmonic electrical potentials but are difficult to
manufacture and provide no easy axial access to the trap center. Therefore many experiments
[84, 85] that require the adiabatic transport of trapped ions use cylindrical Penning traps
consisting of multiple stacked cylindrical electrodes. These electrodes are easy to machine and
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Figure 2.3: Energy levels of a particle trapped in a Penning trap. The relative levels are not
drawn to scale. As the magnetron motion has negative energy, increasing n− leads
to a decrease in total energy.

the open endcaps provide easy access for particle loading, interaction with lasers and transport
between traps in a multi-trap setup. Given the azimuthal symmetry of the system, determination
of the potential Φ(z, ρ) is easiest by solving the Laplace equation in cylindrical coordinates:

∆Φ(z, ρ) =
1

ρ

∂

∂ρ

(︃
ρ
∂Φ(z, ρ)

∂ρ

)︃
+
∂2Φ(z, ρ)

∂z2
= 0. (2.25)

Using the ansatz Φ(z, ρ) = Z(z) ·R(ρ) yields the two differential equations

ρ2
∂2R(ρ)

∂ρ2
+ ρ

∂R(ρ)

∂ρ
− ρ2k2R(ρ) = 0 (2.26)

∂2Z(z)

∂z2
+ k2Z(z) = 0 (2.27)

which are linked by the separation parameter k. Equation 2.26 is a modified Bessel equation
and the radial components of the potential are thus described by the modified Bessel functions
R(ρ) = I0(kρ). The axial component given by eq. 2.27 is solved by Z(z) = A(k) sin(kz) +

B(k) cos(kz). If the origin is placed at one end of the trap and it is assumed that the potential
at both ends of the trap stack vanishes, all B(k) have to vanish. Additionally, A(k) vanishes at
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the ends of the endcaps only if kπ is an integer multiple of the total trap length Λ. The general
solution to eq. 2.25 is thus given by

Φ(z, ρ) =
∞∑︂
n=1

An sin(knz)I0(knρ) with kn = n
π

Λ
. (2.28)

The coefficients An are determined by the boundary conditions, i.e. the potential on the trap
electrodes. In order to calculate An, the potential at the trap radius R is expanded in terms of
orthogonal functions. Using the orthogonality relation

2

Λ

Λ∫︂
0

sin
(︂
n
π

Λ
z
)︂
sin
(︂
m
π

Λ
z
)︂
dz = δn,m with n,m ∈ N (2.29)

An can be determined by multiplying both sides of eq. 2.28 with sin
(︁
n π
Λz
)︁

and integrating over
the length of the trap stack:

Λ∫︂
0

Φ(z,R) sin(knz)dz =
Λ

2
I0(knR)An. (2.30)

Figure 2.4 shows a cross-section through the electrodes of the BASE precision trap as well as
the electrical potential on the trap axis close to the typical working point.
The potential Φ(z,R) on the trap radius is given by the voltages Vi applied to the N individual
electrodes and interpolated linearly in the gaps between electrodes. If zi,s and zi,e denote the
start and end coordinates of the i-th electrode respectively, the integral over the boundary can
be split it into multiple integrals over the N electrodes and N − 1 gaps:

Λ∫︂
0

Φ(z,R) sin(knz)dz =
N∑︂
i=1

Vi

zi,e∫︂
zi,s

sin(knz)dz

⏞ ⏟⏟ ⏞
Electrodes

+
N−1∑︂
i=1

zi+1,s∫︂
zi,e

[︃
Vi +

Vi+1 − Vi
zi+1,s − zi,e

(z − zi,e)

]︃
sin(knz)dz

⏞ ⏟⏟ ⏞
Gaps

.

(2.31)
By shifting z → z + Λ

2 the trap center is located at z = 0 and the potential is given by:

Φ(z, ρ) =
2

Λ

∞∑︂
n=1

[︄(︄
V1 cos(knz1,s)− VN cos(knΛ)

kn
+

N−1∑︂
i=1

Vi+1 − Vi
zi+1,s − zi,e

sin(knzi+1,s)− sin(knzi,e)

k2n

)︄

× I0(knρ)

I0(knR)
sin

(︃
kn(z +

Λ

2
)

)︃]︃
. (2.32)
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Figure 2.4: Schematic cross-section of the BASE precision trap. The trap consists of multi-
ple cylindrical electrodes. During precision measurements the endcaps (blue) are
grounded. Applying a negative voltage VR to the ring electrode (red) traps positively
charged particles in the trap center. The voltage VC = TR · VR applied to the
correction electrodes (green) causes higher order components in the expansion of
the electrical potential around the trap center to vanish. The red line shows the axial
potential for parameters close to the typical operating point (VR = −4.76V and
TR = 0.883).
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All traps in the BASE experiment are 5-electrode traps (N = 5) with constant distance d
between electrodes and are typically operated with grounded endcaps (V1 = V5 = 0). In
order to determine the influence of the voltage V3 = VR applied to the ring electrode and
V2 = V4 = VC applied to the correction electrodes, eq. 2.32 is expanded in of powers of zp

around the trap center. By introducing the dimensionless tuning ratio (TR)

TR =
VC
VR

(2.33)

the potential can be expressed in terms of the ring voltage VR and the coefficients Cj =

Ej +TRDj :

ΦR(z) = (E2z
2 + E4z

4 + E6z
6 + O(z8)) VR

+ ΦC(z) = (D2z
2 + D4z

4 + D6z
6 + O(z8)) VR · TR

= Φ(z) = (C2z
2 + C4z

4 + C6z
6 + O(z8)) VR

(2.34)

In the case of constant distance d between electrodes and grounded endcaps (V1 = V5 = 0) the
coefficients on the trap axis (ρ = 0) are given by

Ej =
2

Λ

∞∑︂
n=1

[︃
sin(knz3,s)− sin(knz2,e)

k2nd

× 1

I0(knR)

kjn
j!

sin
(︂π
2
(n+ j)

)︂]︄
(2.35)

Dj =
2

Λ

∞∑︂
n=1

[︃
sin(knz2,s)− sin(knz1,e) + sin(knz4,s)− sin(knz3,e)

k2nd

× 1

I0(knR)

kjn
j!

sin
(︂π
2
(n+ j)

)︂]︄
(2.36)

Cj =
2

Λ

∞∑︂
n=1

[︃
sin(knz3,s)− sin(knz2,e) + TR [sin(knz2,s)− sin(knz1,e) + sin(knz4,s)− sin(knz3,e)]

k2nd

× 1

I0(knR)

kjn
j!

sin
(︂π
2
(n+ j)

)︂]︄
. (2.37)

The coefficients Ej and Dj depend solely on the trap geometry and describe how the axial
potential changes with the voltages applied to the ring and correction electrodes. The coefficients
Cj depend on the trap geometry as well as the tuning ratio and determine the axial frequency
as well as the magnitude of systematic shifts. To first order the axial frequency depends only
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Figure 2.5: Red: Electrode length to trap radius ratios that produce an orthogonal trap (D2 = 0).
Blue: Electrode length to trap radius ratios that produce an orthogonal trap (TR4 =
TR6). In case the ratio between the electrode distance d and the trap radius R is
d
R = 140 µm

4.5mm ≈ 0.031, the trap is orthogonal and compensated if LR
R = 0.291 and

LC
R = 0.784 are chosen. In this case, the tuning ratio is approximately TR = 0.881

.

on C2 = E2 + TR · D2. For experimental purposes, it is desirable that the axial frequency
is independent of the tuning ratio. This property is called orthogonality and corresponds to
D2 = 0. In order to suppress systematic shifts due to the axial energy of the trapped particle,
higher order coefficients (C2, C6, . . . ) should be as close to zero as possible. By choosing a
tuning ratio TRj = −Ej

Dj
, the coefficient Cj can be tuned to 0. A trap is called compensated if

TR4 = TR6 and thus C4 and C6 can be tuned to 0 for one simultaneous tuning ratio.
In order to design a trap that is both orthogonal and compensated, the length of the ring electrode
LR and the length of the correction electrodes LC have to be chosen accordingly. Figure 2.5
shows the ratios LR

R and LC
R at which a 5-pole trap with grounded endcaps is orthogonal or

compensated for d
R = 140 µm

4.5mm . Note that these ratios change with the ratio d
R between the

inter-electrode distance d and the trap radius R. In the case of R = 4.5mm and d = 140 µm
the trap is orthogonal and compensated for LR = 1.31mm and LC = 3.53mm. The optimal
tuning ratio in this case is TR ≈ 0.881.
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2.3 Systematic shifts

Even though great care is taken in the design of the BASE Penning traps, patch potentials and
manufacturing tolerances can cause higher power coefficients to appear in the expansion of the
axial electric potential described by Eq. (2.34). Under normal experimental conditions, uneven
coefficients C2n−1, n ∈ N are strongly suppressed due to the symmetry of the trap. Presence
of higher order contributions to the axial potential or the magnetic field cause the particle’s
eigenfrequencies to shift with the energies of the individual eigenmodes. Calculations of these
systematic shifts are for example given by [82] and [86] and the relevant results are presented
here. Note that [82] and [86] use dimensionless coefficients Cj in the expansion of the axial
potential

Φ(z) =
∑︂

∞
j=0

Cj
2dj

zj =
∑︂

∞
j=0Cjz

j (2.38)

and thus the results need to be translated to the Cj coefficients according to

Cj =
Cj
2dj

. (2.39)

Additionally, it is convenient to treat the systematic shifts as a function of the energies in the
different eigenmodes rather than the radii. The relative shifts of the eigenfrequencies caused by
higher order contributions of the electrostatic potential are given by:

⎛⎜⎜⎜⎜⎝
∆ω+

ω+

∆ωz
ωz

∆ω−
ω−
∆ωL
ωL

⎞⎟⎟⎟⎟⎠ =MC4

⎛⎜⎝E+

Ez

E−

⎞⎟⎠+MC6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E2
+

E2
z

E2
−

E+Ez

E+E−

EzE−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+O(C8). (2.40)

Introducing Ω = ωz
ω+

, approximating ωc = ω+ + ω− ≈ ω+ and using Eqs. (2.18 - 2.20), the
corresponding matrices are given by:
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MC4 =
1

qV0

C4

C2
2

⎛⎜⎜⎜⎜⎝
3
4Ω

4 −3
2Ω

2 −3Ω2

−3
2Ω

2 3
4 3

−3Ω2 3 3

0 0 0

⎞⎟⎟⎟⎟⎠ , (2.41)

MC6 =
1

q2V 2
0

C6

C3
2

⎛⎜⎜⎜⎜⎝
−15

16Ω
6 −45

16Ω
2 −45

4 Ω
2 45

8 Ω
4 −45

4 Ω
4 −45

2 Ω
2

45
16Ω

4 15
16

45
4 −45

8 Ω
2 −45

2 Ω
2 45

4
45
8 Ω

4 45
8

15
2 −45

2 Ω
2 −45

2 Ω
2 45

2

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎠ . (2.42)

Note that the Larmor frequency is not shifted by electrostatic inhomogeneities.

Magnetic inhomogeneities can be treated equivalently to the electrostatic imperfections by
expanding the axial magnetic field as

B(z) =
∑︂

∞
j=0Bjz

j . (2.43)

The magnetic inhomogeneities cause the strength of the magnetic field to change in the radial
direction and thus the magnetic field experienced by the particle depends on its radial energies.
In addition, the interaction of the magnetic moment associated with the trajectory of the trapped
particle and the magnetic field inhomogeneities creates an additional force in the axial direction
which changes the axial frequency. The shifts of the individual eigenfrequencies are given by

⎛⎜⎜⎜⎜⎝
∆ω+

ω+

∆ωz
ωz

∆ω−
ω−
∆ωL
ωL

⎞⎟⎟⎟⎟⎠ =MB2

⎛⎜⎝E+

Ez

E−

⎞⎟⎠+MB4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E2
+

E2
z

E2
−

E+Ez

E+E−

EzE−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+O(B6) (2.44)

with the matrices
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MB2 =
1

mω2
z

B2

B0

⎛⎜⎜⎜⎜⎝
−Ω2 1 2

1 0 −1

2 −1 −2

−Ω2 1 2

⎞⎟⎟⎟⎟⎠ (2.45)

and MB4 =
3

2

B4

B0

1

m2ω4
z

⎛⎜⎜⎜⎜⎝
Ω4 Ω4 4Ω4 −4Ω2 −8Ω2 8Ω4

−2Ω2 0 −8 2 8 −8

4Ω2 1 4 −8 −8 8

Ω4 Ω4 4Ω4 −4Ω2 −8Ω2 8Ω4

⎞⎟⎟⎟⎟⎠ . (2.46)

Note that the relative shift of the Larmor frequency is equal to the relative shift of the modified
cyclotron frequency.
In case the gradient B1 of the magnetic field does not vanish at the position of the particle, the
magnetic moments associated with the magnetron and cyclotron motions create an additional
force that shifts the particle along the trap axis. These shifts are calculated in [87] and can be
written as ⎛⎜⎜⎜⎜⎝

∆ω+

ω+

∆ωz
ωz

∆ω−
ω−
∆ωL
ωL

⎞⎟⎟⎟⎟⎠ =MB1

⎛⎜⎝E+

Ez

E−

⎞⎟⎠ (2.47)

with

MB1 =
1

mω2
z

B2
1

B2
0

⎛⎜⎜⎜⎜⎝
−1 0 1

0 0 0

0 0 0

−1 0 1

⎞⎟⎟⎟⎟⎠ . (2.48)

Even in case no electrostatic or magnetic inhomogeneities are present at all, relativistic correc-
tions lead to shifts of the characteristic frequencies which are once again given by⎛⎜⎜⎜⎜⎝

∆ω+

ω+

∆ωz
ωz

∆ω−
ω−
∆ωL
ωL

⎞⎟⎟⎟⎟⎠ =MR

⎛⎜⎝E+

Ez

E−

⎞⎟⎠ (2.49)
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with

MR = − 1

mc2

⎛⎜⎜⎜⎜⎝
1 1

2 −Ω2

1
2

3
8 −1

4Ω
2

−Ω2 −1
4Ω

2 1
4Ω

2

2
9

1
2 −Ω2

⎞⎟⎟⎟⎟⎠ . (2.50)

Under typical conditions, C4 and C6 can be tuned close to 0, such that the related shifts are
small. Therefore, the main concerns regarding systematic shifts are caused by inhomogeneities
of the magnetic field. In order to overcome the limitations these shifts impose on the precision
with which the frequencies can be measured, one of the following measures needs to be taken:

• All measurements need to be carried out with particles that have similar energies in their
eigenmodes.

• The energies of the individual eigenmodes have to be determined for each measurement
and the related shifts have to be corrected.

• The size of the systematic shifts has to be decreased by decreasing the inhomogeneous
components of the magnetic field.

Chapters 3.4 and 3.5 give a more detailed overview of the main systematic uncertainties in past
measurements of the antiproton charge-to-mass ratio [69] and the antiproton g-factor [88]. This
work covers the implementation of a magnetic shimming and shielding system that provides
the possibility to tune B2 in the precision trap close to 0 which eliminates the main systematic
uncertainty in the measurement of the g-factor.

2.4 Asymmetric potential contributions

While the influence of higher order coefficients Cj in the expansion of the electrostatic potential
Φ(z) =

∑︁∞
j=0Cjz

j has been studied in detail [82, 86] for even coefficients, the odd coefficients
are often neglected as they are close to 0 if the particle is located in the center of the trap. The
process of determining the electrostatic center of the trap is called asymmetry compensation
and is described in sections 5.5 and 7.2 of this thesis work. In this chapter, the systematic shifts
that arise in case the particle is not tuned to the center of the trap are discussed. Under the
assumption, that the trap has perfect axial symmetry, changing the ring voltage V0 or tuning
ratio TR will not move the particle along the axial direction. In order to shift the location of
the potential minimum, an asymmetric voltage has to be applied to the correction electrodes.
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Similarly to the tuning ratio TR, which describes the fraction of the ring voltage which is
applied to the correction electrodes, the offset ratio OR describing the difference between
the voltages VCorr,left and VCorr,right on the correction electrodes. Instead of describing the
potential using the voltages V0, VCorr,left and VCorr,right, the potential is characterized by the
following parameters:

Ring voltage : V0 (2.51)

Tuning ratio : TR =

VCorr,right+VCorr,left

2

V0
(2.52)

Offset ratio : OR =
VCorr,right − VCorr,left

V0
. (2.53)

Thus, the TR is given by the mean voltage on the correction electrodes, while the OR depends
on the difference between the correction electrode voltages. The overall potential is fully
described by V0, TR and OR and is given by:

ΦR(z) = (E0 + E1z
1 + E2z

2 + E3z
3 + O(z4)) V0

+ ΦC(z) = (D0 +D1z
1 + D2z

2 + D3z
3 + O(z4)) V0 · TR

+ ΦF(z) = (F0 + F1z
1 + F2z

2 + F3z
3 + O(z4)) V0 ·OR

= Φ(z) = (C0 + C1z
1 + C2z

2 + C3z
3 + O(z4)) V0

. (2.54)

Due to the symmetry of the trap electrodes, all odd coefficients Ej and Dj as well as the even
coefficients Fj vanish in the trap center, however, once the particle is shifted out of the center
this is no longer the case.

In order to determine the tuning ratio TR and offset ratio OR which are required to shift
the particle by a distance zmin out of the trap center, the coefficients Ej(zmin), Dj(zmin)

and Fj(zmin) are determined by expanding Eq. (2.32) around zmin. Figures 2.6a - 2.6d show
Ej(zmin), Dj(zmin) and Fj(zmin) up to 4th order.
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Figure 2.6: Potential coefficients Ej(zmin), Dj(zmin) and Fj(zmin) up to fourth order. In the
trap center (zmin = 0) the odd coefficients Ej , Dj as well as the even coefficients Fj

vanish.

Given the symmetry of the trap electrodes, the odd Ej , Dj coefficients as well as the even Fj

coefficients are suppressed. As the coefficients change slowly with zmin, a first approximation
for the location zmin of the potential minimum can be given by using the coefficients in the
trap center. Given that the orthogonal design of the BASE traps, D2 is small compared to E2

and C2 is approximately independent of the tuning ratio:

zmin ≈ − C1

2C2
≈ − F1

2E2
×OR = 2.73mm×OR. (2.55)

In order to determine the exact TR and OR that shift the particle by zmin, the first derivative
of the potential needs to vanish at zmin which corresponds to C1(zmin) = 0. We thus require:

C1(zmin) = E1(zmin) +D1(zmin)× TR+ F1(zmin)×OR = 0. (2.56)
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Given that we have two free parameters in TR and OR, we can additionally force C4 to vanish:

C4(zmin) = E4(zmin) +D4(zmin)× TR+ F4(zmin)×OR = 0. (2.57)

We denote the combination of TR and OR which causesC4 to vanish as TR4 and OR4. Solving
the system of linear equations results in:

TR4(zmin) = − F1(zmin)E4(zmin)− E1(zmin)F4(zmin)

F1(zmin)D4(zmin)−D1(zmin)F4(zmin)
(2.58)

OR4(zmin) = −E1(zmin) +D1(zmin)× TR4(zmin)

F1(zmin)
. (2.59)

Figures 2.7a and 2.7b show the required TR4 and OR4 as a function of the desired offset zmin.
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Figure 2.7: Tuning ratio (left) and offset ratio (right) required to shift the particle by zmin out
of the trap center if C4 is tuned to 0 at the location of the potential minimum. The
required offset ratio scales approximately linearly with the desired offset zmin.

The asymmetric voltage required to move the particle out of the trap center causes odd coef-
ficients C3, C5, ... to appear in the expansion of the potential around the location of the new
minimum zmin, which cause additional shifts of the eigenfrequencies with the trapped particle’s
eigenenergies. Due to the axial anharmonicity C3 of the axial potential, the axial frequency ωz

shifts with the axial energy Ez . This shift is for example given in [89] and [90] and, translated
to the Cj parameters used in the BASE experiment, yields:

∆ωz

ωz
= − 1

qV0

15

16

C2
3

C3
2

Ez = − 1

mω2
z

15

8

C2
3

C2
2

Ez. (2.60)

Note that the systematic shift related to C3 always leads to a reduction in axial frequency with
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increasing axial energy Ez and does not depend on the sign of C3 which is to be expected as
the asymmetric potential always pulls the particle into the direction of less curvature.
Additionally, given that the potential is asymmetric, the particle’s oscillation is no longer
symmetric around the potential minimum zmin, but the mean position z̄ depends on C3 as well
as the axial energy. The shift ∆z = z̄ − zmin is given in [90] and translated into the BASE
parameter convention results in:

∆z = z̄ − zmin = − 1

mω2
z

3

2

C3

C2
Ez. (2.61)

This shift leads to a change in the modified cyclotron frequency ω+ as a function of the axial
energy Ez which is given by:

∆ω+

ω+
=
B1∆z

B0
= − 1

mω2
z

3

2

C3

C2

B1

B0
Ez. (2.62)

In order to verify the magnitude of these shifts, numerical simulation were conducted in Python.
The potential was extended by a C3 term, the equation of motion was transformed into of
a proton in the potential was solved by numerical integration. Figures 2.8a - 2.8d show the
simulated scaling of the axial frequency and mean location shift for different parameters C3 and
axial temperatures Tz . The frequency and position shifts determined from numerical simulations
agree well with theory.

31



1.0 0.5 0.0 0.5 1.0
C3 ( 1

m3 ) 1e7

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000
z z
 - 

1

(a)

0 20 40 60 80 100
Tz (K)

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

z z
 - 

1

(b)

1.0 0.5 0.0 0.5 1.0
C3 ( 1

m3 ) 1e7

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

z (
m

m
)

(c)

0 20 40 60 80 100
Tz (K)

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040

z (
m

m
)

(d)

Figure 2.8: Relative shift ∆νz
νz

of the axial frequency and mean position ∆z for different anhar-
monicitiesC3 and axial temperaturesTz . The blue points show the result of numerical
simulations whereas the black lines show the theoretic predictions according to Eqs.
(2.60) and (2.61).

In addition to the axial component,C3 also changes the radial component of the potential. Given
that the potential hast to satisfy Laplace’s equation, the redial component of the anharmonicity
Φ3(z, ρ) created by C3 is fully determined by C3 and is given by:

Φ3(z, ρ) = V0C3

(︃
z3 − 3

2
ρ2z

)︃
. (2.63)

The potential also depends on the radial position ρ of the particle, which changes with the
radial energies E+ and E−. The radial term creates an additional force in the axial direction
which depends in the radius ρ. Thus, a change in radius shifts the position of the particle in the
magnetic field gradient B1, until the additional force is balanced by the force µB1 due to the
magnetic moment associated with the radial motion. Given that the radial magnetic moment is
dominated by the cyclotron motion, this shift is dominated by the cyclotron energy E+ and
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leads to a shift of the axial frequency ωz given by:

∆ωz

ωz
=

3

2

1

mω2
z

C3

C2

B1

B0
E+. (2.64)

Under typical experimental conditions, the particle is tuned to the center of the trap and C3

vanishes. In this case the tuning ratio which maximizes the signal-to-noise ratio approximately
corresponds to the conditions under which C4 is tuned to 0. However, in the presence of the
additional C3 shift outlined in Eq. (2.60), the dependence of ωz on the axial energy Ez is no
longer minimized if C4 = 0 but rather if the combined term vanishes:

3

2
C4C2 −

15

8
C2
3C

2
2 = 0. (2.65)

In order to maximize the signal-to-noise ratio, the tuning ratio has to be chosen such, that

12C4C2 − 15C2
3 = 0. (2.66)

We denote the tuning- and offset ratios that maximize the signal-to-noise ratio as TR3 and
OR3. For each shift zmin, the required combination of TR3 and OR3 can be determined by
solving the following system of equations:

C1(TR3,OR3) = 0 (2.67)

12C4(TR3,OR3)C2(TR3,OR3)− 15C2
3 (TR3,OR3) = 0. (2.68)

Inserting OR3(zmin) = −E1(zmin)+D1(zmin)TR3

F1(zmin)
leads to a quadratic equation in TR3 which

can be solved analytically. One of the solutions has to be rejected since it corresponds to
conditions under which C2 is strongly suppressed near the trap center. Figures 2.9a and 2.9b
show the tuning and offset ratios TR4 and OR4, which correspond to C4 = 0 as well as TR3

and OR3, which result in 12C4C2 − 15C2
3 = 0.
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Figure 2.9: Comparison between the tuning and offset ratios TR4 and OR4 which correspond
to C4 = 0 (black) as well as TR3 and OR3 which result in 12C4C2 − 15C2

3 = 0
(red). In both cases, the offset ratios are practically identical and change linearly with
the desired offset zmin. The tuning ratio TR3 which maximizes the signal-to-noise
ratio shows stronger scaling with the offset compared to TR3, which corresponds to
C4 = 0.

After a tuning ratio scan, the signal-to-noise ratio is maximized, which results in a residual C4

term:

C4(TR3) =
5

4

C2
3

C2
. (2.69)

Figures 2.10a - 2.10d show the scaling of C2, C3, C4 and C6 as a function of the particle position
zmin in the trap. Given that C2 shows no strong scaling with zmin and C3 scales linearly, the
residual C4 scales approximately quadratically with zmin. It is therefore crucial to correct
measurements conducted outside of the trap center for the residual C4 and C6 in addition to
the C3 shift outlined above.
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Figure 2.10: Scaling of the parameters C2, C3, C4 and C6 as a function of the particle position
zmin. The black line shows the parameters if the tuning ration and offset ratio are
chosen such that C4 = 0, whereas the red line shows the conditions corresponding
to maximum signal-to-noise ratio (12C4C2 − 15C2

3 = 0). After the signal-to-noise
ratio is maximized in a tuning ratio scan, the residual C4 and C6 terms lead to
systematic shifts which have to be considered if measurements are conducted
outside the trap center.

In order to determine the significance of the shifts outlined above in the context of charge-to-
mass ratio and g-factor measurements, the shift of the free cyclotron frequency νc and Larmor
frequency νL in the presence of a C3 have to be studied. Given that the odd coefficients E3 and
D3 are small, the strength of C3 depends mainly on F3 and the applied offset ratio OR. If the
offset ratio OR is applied and the signal-to-noise ratio is maximized in a tuning ratio scan, C4

and the residual C4 are given by:
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C3 = F3 ×OR (2.70)

C4 =
5

4

C2
3

C2
=

5

4

F 2
3

C2
×OR2. (2.71)

These parameters lead to a dependence of the cyclotron frequency νc and Larmor frequency νL
on the particles eigenenergies. Given that the ratio R of charge-to-mass ratios is measured by
measuring the ratio of free cyclotron frequencies in the same potential, R is only shifted if the
individual cyclotron frequency measurements are conducted at different temperatures. Thus
the shifts are strongly suppressed under experimental conditions. In contrast, given that the
g-factor is determined by measuring the ratio of Larmor- and cyclotron frequencies, shifts of the
cyclotron frequency do not cancel. Given that the Larmor frequency depends on the average
magnetic field the particle experiences during the measurement, shifts due to the shift of the
average position zmin cancel in case both particles are measured at the same eigenenergies.
However, shifts of the free cyclotron frequency due to C3 and the residual C4 term cause the
observed cyclotron frequency to deviate from the true cyclotron frequency which causes a
systematic shift that has to be accounted for.

36



3 The BASE Experiment

3.1 The Antiproton decelerator

The Antiproton decelerator (AD) [52] is a particle decelerator located at CERN, that delivers low
energy antiprotons to the connected experiments. It was built as a successor to the Antiproton
Accumulator (AA) and the Antiproton Collector (AC) who formed the Antiproton Accumulator
Complex (AAC) and provided particles to the Proton–Antiproton Collider (Spp̄S) and the Low
Energy Antiproton Ring (LEAR). In 1983, the UA1 and UA2 experiments located at the Spp̄S

discovered the W and Z bosons [2, 3]. In contrast to the AA and the AC, the AD is able to
decelerate antiprotons and distributes low-energy antiprotons to multiple experiments [56, 64,
70, 91–93]. Figure 3.1 provides an overview over the Antiproton decelerator facility.

Figure 3.1: Overview of the Antiproton decelerator (AD) facility located at CERN. The AD (outer
ring) provides initial deceleration from 3.5GeV to 5.3MeV. The smaller ELENA
ring splits the beam received from the AD into 4 bunches, further decelerates the
antiprotons to an energy of 100 keV and distributes the individual bunches to the
experiments.
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In order to create antiprotons, a bunch of approximately 1013 protons is accelerated to an energy
of 26GeV in CERN’s Proton Synchrotron (PS). This bunch is focused on a water-cooled iridium
rod and antiprotons are created by pair production. A magnetic horn focuses and injects the
bunch of 3.5GeV antiprotons into the AD. During the deceleration to an energy of 5.3MeV,
the particles are cooled using stochastic cooling and electron cooling. After the deceleration
cycle of around 120 s has finished, the bunch of approximately 3× 107 antiprotons is ejected
from the AD using fast kicker magnets.
Since 2021, the Extra Low Energy Antiproton (ELENA) ring provides a 2nd stage of deceleration
[94]. Each bunch received from the AD is split into 4 smaller bunches of approximately 5× 106

antiprotons which are decelerated further to an energy of 100 keV. After the 13 s deceleration
cycle, each bunch can be ejected to a different experiment which allows operation in parallel.
Thanks to the reduced energy of the individual bunches, the more efficient degrader foils [95]
can be used which results in a net increase of available protons due to higher trapping efficiency.

3.2 The BASE apparatus

3.2.1 Vacuum and superconducting magnet

The BASE zone is located in the center of the Antiproton decelerator hall. A superconducting
magnet system consisting of one main solenoid and twelve shimming coils houses the cryogenic
stage consisting of the Penning traps, detection circuits [96] and filters [93]. Two cryostats, each
consisting of a combination of a liquid nitrogen (LN2) and liquid helium (LHe) vessel, are located
on either side of the superconducting magnet and cool the cryogenic stage to temperatures
close to 4K. This reduces noise on the electronic components, increases the vacuum inside the
trap can as residual gas freezes out on the walls and enables the application of superconducting
detection systems as well as the realization of the magnetic shimming and shielding system
described in the thesis. Multiple beam monitors are located in the upstream side of the cryogenic
stage and provide the possibility to steer the antiproton beam onto the degrader window [95].
Figure 3.2 shows a schematic of the experimental apparatus.
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Figure 3.2: Drawing of the BASE apparatus. The Penning traps are located in the center of the
superconducting magnet and connected to two cryostats, cooling the experiment to
temperatures close to 4K. The experimental assembly is mounted in the magnet using
Kevlar strings to decouple the trap stack vibrationally from the boiling cryoliquids.

The Penning traps as well as the most sensitive electronic components, including the precision
trap cyclotron resonator, are located in a metal cylinder machined out of high purity oxygen free
copper (OFHC). A thin degrader foil provides a vacuum-tight window that allows antiprotons
to enter the trap can. After assembly of the trap stack, the trap can is pumped to a vacuum of
typically around 5× 10−7mbar and the evacuated trap can is placed in the superconducting
magnet. After cooling the experiment to cryogenic temperatures, the residual gas in the trap
can freezes out on the walls which provides the excellent vacuum conditions on the order of
1× 10−18mbar [97] necessary to trap antiprotons for years [98]. In addition to the trap stack,
the trap can contains an electron gun which provides the possibility to load electrons which,
thanks to their high cyclotron frequency, lose energy via synchrotron radiation and provide
sympathetic cooling during antiproton catching. Additionally, the electron gun is used to trap
protons during commissioning measurement runs by ionizing hydrogen atoms frozen out on
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the degrader window.

3.2.2 Trap stack

The BASE trap stack consists of four cylindrical Penning traps which each serve a dedicated
purpose. Unless otherwise stated, all electrodes are manufactured out of high-purity oxygen-
free copper (OFHC) and are coated with an inner layer of 7 µm of silver and an outer layer of
8 µm gold. In the course of this work, the trap stack was redesigned to provide larger spacial
separation between the precision trap and the analysis trap which are described below. This
reduces the influence of the strong magnetic bottle created by the ferromagnetic ring electrode
of the analysis trap on the field gradients in the precision trap and reduces systematic shifts of
the frequencies measured in the precision trap. Figures 3.3a and 3.3b show the old trap stack
used in the 2017 g-factor campaign as well as the redesigned version currently in use. Compared
to the 2017 version, the high-voltage electrodes were shrunk in order to provide the possibility
to add additional electrodes between the precision trap and the analysis trap without increasing
the total length of the trap stack. Overall, the redesign of the trap stack increased the distance
between the precision trap and the analysis trap by 2.5 cm, which reduces the effect of the
analysis traps ferromagnetic ring electrode on the magnetic field in the center of the precision
trap.

40



Reservoir

Trap

Precision

Trap

Analysis

Trap

Cooling

Trap

(a)

Reservoir

Trap

Precision

Trap

Analysis

Trap

Cooling

Trap

(b)

Figure 3.3: Comparison between the BASE Penning trap stack used in the 2017 g-factor run
(top) and the modified trap stack currently in use (bottom). Compared to the 2017
configuration, the high-voltage electrodes were shrunk in order to add additional
electrodes between the precision trap and the analysis trap. This decreases the
influence of the ferromagnetic ring electrode of the analysis trap on the field gradients
in the precision trap without increasing the total length of the trap stack.

In addition to the four Penning traps described below, the trap stack contains two sets of ”high-
voltage electrodes” called HV-Static (HVS) and HV-Pulse (HVP). In order to load antiprotons,
electrons are trapped in the reservoir trap where they rapidly cool via synchrotron radiation.
HV-Static, located downstream of the reservoir trap is charged to a high negative potential.
Next, the antiproton bunch delivered by the AD in injected and HV-Pulse located upstream of
the reservoir trap is switched to a high negative voltage. This traps the antiprotons between
the high voltage electrodes where they cooled sympathetically via interaction with the trapped
electrons.
Reservoir trap
The reservoir trap [98] is located between the two sets of high-voltage electrodes and is identical
in design to the precision trap. It is used for catching and storing of antiprotons, protons and
H−-ions for extended periods of time. In case the particle used to conduct experiments is lost,
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a new particle can rapidly be extracted from the reservoir trap. Additionally, the reservoir of
trapped antiprotons provides the possibility to conduct high-precision measurements outside
the beamtime of the antiproton decelerator, which decreases magnetic field noise created by
operation of the AD as well as the other experiments and makes high-precision measurements
possible in the first place. During antiproton operation, a mixed cloud of antiprotons and
H−-ions is trapped. The voltage supplies of the reservoir trap are backed up by batteries, which
protect the system against power cuts. BASE has demonstrated the ability to trap antiprotons
for more than 400 d in the past. The reservoir trap is equipped with an axial detector which
provides the possibility to monitor and cool the cloud of antiprotons. Cooling of the radial
modes is achieved via sideband coupling (see chapter 5.2.1).
Given the excellent vacuum conditions in the trap can, no loss of trapped antiprotons and
protons due to collisions with rest gas have been observed so far. By continuously monitoring
the reservoir of trapped antiprotons, a direct experimental lower limit on the lifetime τp̄ of
the free antiproton can be given [97]. Using additional data acquired during the 2017 charge-
to-mass-ratio campaign, the lower limit on the directly constrained antiproton lifetime was
improved to τp̄ > 26.15 years [99].
Precision trap
The precision trap is located downstream of the static high-voltage electrode and is used
for the measurement of the particle’s free cyclotron frequencies. The precision trap has an
inner diameter of 9mm and consists of a 1.34mm long ring electrode and 3.56mm long
correction electrodes on either side. The lengths are chosen such that the trap is orthogonal
and compensated in order to suppress systematics (see chapter 2.2).
In order to detect the axial frequency of a trapped particle, the precision trap is equipped with a
tunable superconducting axial detector [96] with a resonance frequency of typically 650 kHz

and quality factor on the order of Q = 30 000. A varactor diode provides the possibility to
change the parallel capacitance of the detector and thus detector can be tuned to match its
frequency to the axial frequencies of antiprotons as well as H−-ions oscillating in the same
electrostatic potential which suppresses systematic shifts during the measurement of the proton-
to-antiproton charge-to-mass ratio (see chapter 3.4). In order to further suppress shifts created
by inhomogeneities of the magnetic field, a superconducting shimming and shielding system
was implemented in the course of this work (see chapters 4 and 6).
In addition to the axial detector, the precision trap is equipped with a tunable cyclotron detector
which provides the possibility to observe a trapped particle’s modified cyclotron frequency
directly via resonant excitation [100]. The cyclotron detector is used to resistively cool the
cyclotron temperature of trapped particles below the sideband-limit T+,SB = ν+

νz
Tz ≈ 300K

(see section 3.3.2). Under typical conditions, the cyclotron detector has a cooling time constant
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of approximately 90 s, thus requiring cooling cycles of several minutes. Both detectors are
equipped with a feedback loop as described in section 3.3.3 to further reduce their temperatures.
Lastly, a spin flip coil provides the possibility to irradiate trapped particles with radio-frequencies
close to the Larmor frequency in order to drive spin flips as described in chapter 3.5.
Analysis trap
The analysis trap is located downstream of the precision trap and is used to detect the spin
state of trapped particles [101, 102]. It is a five-pole trap with an inner diameter of 3.6mm

and ring and correction electrodes of 0.4mm and 1.4mm length, respectively. In order to
create the strong magnetic bottle necessary to couple the trapped particles spin state to it’s
axial frequency (see chapter 3.5), the ring electrode is manufactured out of VACOFLUX 50 [103]
which deforms the magnetic field close to the center of the analysis trap and creates a magnetic
bottle of approximately B2,AT 272(22)

kT
m2 .

A feedback-cooled axial detector is used to determine the trapped particle’s axial frequency.
Due to the strong dependency of the axial frequency on the particle’s cyclotron temperature,
observation of the axial frequency is only possible, if the particle’s cyclotron temperature does
not change [104]. Therefore, the analysis trap is not equipped with a cyclotron detector as the
particle’s movement through the thermal Boltzmann distribution would cause the axial dip to
vanish. For the same reason, measurement of the radial frequencies via sideband coupling is
impossible.
In order to detect the radial frequencies, the analysis trap is equipped with a radial excitation
coil that can be used to irradiate the particle until a change in axial frequency can be observed.
In order to reduce noise driving cyclotron transitions, the radial excitation coil is bandpass
filtered and grounded using cryogenic switches as long as no excitation is applied. An additional
spin flip coil witch is filtered but not switched [105] is used to provide the high power necessary
to drive spin state transitions in the analysis trap.
Cooling trap
In order to reduce cooling times and increase the sampling statistics, a dedicated cooling trap
was implemented in the experiment. With an inner diameter of 3.6mm a 0.42mm long ring
electrode and 1.38mm long correction electrodes, the design of the cooling trap is nearly
identical to the analysis trap. However, the cooling trap features only a slightly ferromagnetic
ring electrode creating a weak magnetic bottle of B2,CT = 42 kT

m2 .
In addition to an axial detector, the cooling trap features a tunable cyclotron detector which can
be used to resistively cool the trapped particles cyclotron motion. The cyclotron temperature
couples to the axial frequency via the weak magnetic bottle and can be observed in real time.
Once the particle is cold, the cyclotron detector is detuned and the particle’s random walk
through the thermal distribution stops. By cooling and observing the particle’s cyclotron
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temperature in the same trap, it is no longer necessary to shuttle the particle between the
precision trap and the analysis trap which leads to faster cooling cycles. Additionally, the
cyclotron detector in the cooling trap has a lower temperature, higher Q-factor and – given the
smaller trap radius – couples stronger to the particle. Considering all these improvements, it
is estimated that the thermalization time is on the order to seconds instead of minutes and a
particle with a cyclotron temperature cold enough for single spin flip detection can be prepared
within minutes compared to multiple hours which are required when the particle is thermalized
on the PT cyclotron resonator.

3.3 Frequency measurements

High-precision frequency measurements build the basis for charge-to-mass-ratio and g-factor
measurements in Penning traps. Given the effort that is necessary to prepare a single particle in
the trap stack and the number of measurement cycles required to accumulate enough statistics,
it is absolutely crucial to measure the particle’s eigenfrequencies non-destructively.

3.3.1 Axial frequency measurements

A particle of mass m and charge q, oscillating with axial frequency νp = 1
2π2

√︂
2 q
mC2V0, can

be modeled as a series LC-circuit oscillating at νp = 1

2π
√

lpcp
using the particle’s equivalent

capacitance cp = 1
ω2
p

q2

D2 and its equivalent inductance lp = mD2

q2
[106]. The effective electrode

distance D depends on the design of the trap electrodes and the signal pickup [107]. The
impedanceZp(ν) of the particle’s equivalent series LC-circuit vanishes at the particle’s resonance
frequency. By connecting a high-Q parallel RCL-detector [96] with impedance Zd(ν) in parallel,
the particle’s axial frequency can be determined by measuring the Nyquist-Johnson noise over
the combined system’s impedance Z(ν). Figure 3.4a shows the particle trap with the connected
detection system. Using the Boltzman constant kB and the temperature T of the detection
circuit, the thermal voltage noise density ep produced by the impedance Z(ν) can be calculated
as

ep(ν) =
√︁
4kBT Re(Z(ν)). (3.1)

The shape of the noise density spectrum is fully determined by the real part Re(Z(ν)) of
the impedance [108], which provides a way to measure the trapped particle’s axial frequency
non-destructively and in thermal equilibrium with the detection circuit.
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(a)

Rp C L

cp

lp

(b)

Figure 3.4: (a): A particle oscillating in the trap induces image currents in the trap electrodes.
The voltage drop over the RCL detection circuit is amplified by a cryogenic low-noise
amplifier and processed by a fast Fourier Transform spectrum analyser [96]. (b):
Equivalent circuit of the particle-detector system in thermal equilibrium. The particle
properties are represented by a series LC-circuit which is in parallel with the parallel
RLC-circuit representing the detector.

Given the detector’s effective parallel resistance Rp, its inductance L and its capacitance C , the
frequency-dependent impedance Z(ν) of the particle-detector-system, as shown in Fig. 3.4b,
can be calculated using Kirchhoff’s circuit laws:

1

Z
=

1

Zd
+

1

Zp
=

1

Rp
+

1

iωL
+ iωC +

1

iωlp +
1

iωcp

. (3.2)

By introducing the detection circuit’s resonance frequency ω0 =
1√
LC

, its quality factor Q =

Rp

ω0L
and the damping constant γ =

Rpq2

mD2 , the total impedance can be written as

Z =
Rp(ν

2
p − ν2)2

(ν2p − ν2)2 + [ Q
νν0

(ν20 − ν2)(ν2 − ν2p) +
γ
2πν]

2
(3.3)

+i
[
RpQ
νν0

(ν20 − ν2)(ν2 − ν2p)
2 + γ

2πRpν(ν
2 − ν2p)]

(ν2p − ν2)2 + [ Q
νν0

(ν20 − ν2)(ν2 − ν2p) +
γ
2πν]

2
.

Dropping the imaginary part and further simplification finally yields:

Re(Z) =
Rp

1 +

[︃
Q
ν0

(ν20−ν2)(ν2−ν2p)+
γ
2π

ν2

ν(ν2−ν2p)

]︃2 . (3.4)
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Figure 3.5: Simplified amplifier chain. For sufficiently large amplification G1 the signal-to-noise
ratio is independent of the noise components e2 created by the later amplifiers, the
single-sideband converter and the spectrum analyser.

In order to determine the parameters of the lineshape, knowledge of the noise density close to
the resonator and particle frequency is sufficient. Therefore, the noise signal over the detection
circuit is fed into a single sideband down-converter (SSB), which shifts the noise spectrum by a
known frequency νSSB towards lower frequencies. This shift cuts off frequency components
containing no information about the particle-resonator-system and reduces the necessary
sampling rate νS to resolve the noise spectrum with a fast Fourier Transform spectrum analyser
(FFT). The SSB, FFT and further amplifiers in the detection chain add white noise components
e2 to the spectrum which introduce a background noise level to the signal given by eq. (3.4).
The signal-to-noise ratio (SNR) is defined as the ratio between the noise density on top of the
resonator and the background noise density. In order to decouple the SNR from the noise
created by the components of the detection chain, a cryogenic low-noise amplifier with gain G1

and input noise density e1 is used as a first stage. Figure 3.5 shows a simplified model of the
detection chain in which the components of the detection chain are modeled as an amplifier
with input noise density e2 and gain G2. Assuming a coupling factor κ between the voltage
noise density ep of the particle-detector circuit and the amplifier chain, the measured voltage
noise density S is given by

S =
√︂

((e2pκ
2 + e21)G

2
1 + e22)G2. (3.5)

For sufficiently high gain G1, the noise density e2 can be neglected and the SNR is, to first order,
determined by the thermal noise ep(ν) of the particle-detector circuit and the input noise e1 of
the first amplifier stage.
Introducing the resonator noise level n1 ≈

√︁
4kBTRpκ2G2

1G
2
2 and the background noise level

n0 =
√︁

(e21G
2
1 + e22)G

2
2, the observed noise spectrum S can parametrized in terms of experi-

mentally observable quantities:
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S(ν) =

⌜⃓⃓⃓
⎷ n21

1 +

[︃
Q
ν0

(ν20−ν2)(ν2−ν2p)+
γ
2π

ν2

ν(ν2−ν2p)

]︃2 + n20 (3.6)
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Figure 3.6: Noise spectrum of a particle tuned to the resonator frequency for typical parameters
used in the BASE precision trap. At the particle frequency νp, the noise is shorted to
the background noise floor.

Figure 3.6 shows the observable lineshape for typical parameters used in the BASE precision
trap. At ν = νp the denominator in Eq. (3.6) diverges and S(ν) has a minimum. The width of
the dip feature is defined as the difference between the frequencies at which S(ν) has dropped
to n1√

2
and can be calculated by solving

⃓⃓⃓⃓
⃓
Q
ν0
(ν20 − ν2)(ν2 − ν2p) +

γ
2πν

2

ν(ν2 − ν2p)

⃓⃓⃓⃓
⃓ = 1. (3.7)

While fourth-order polynomials have analytic solutions, Eq. (3.7) can be simplified using the
fact that Q

ν0
(ν20 − ν2)(ν2 − ν2p) is small compared to γ

2π 0
ν2 if the particle is tuned to resonance

with the resonator (ν0 = νp). Solving

0 =
γ

2π
ν2 ± ν(ν2 − ν2p) (3.8)

yields four solutions. Two of the solutions appear at negative frequencies and carry no physical
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information, which leaves the solutions

ν1/2 =

√︃
γ2

16π2
+ ν2p ± γ

4π
. (3.9)

The dip-width ∆ν = ν2 − ν1 =
γ
2π of a particle centered on the resonator is therefore deter-

mined by the damping constant γ =
Rpq2

mD2 and depends on the particle’s properties m and q,
the geometry of the trap and the pickup line D, and the resonator parameters Rp = 2πνQL.

3.3.2 Radial frequency measurements

In order to measure the radial eigenfrequencies of a trapped particle, sideband coupling between
the radial mode and the axial oscillation can be utilized [109]. In order to couple a radial
motion to the axial motion, a quadrupole drive close to the radial-axial sideband frequency is
irradiated. By choosing the negative cyclotron sideband frequency νSB,+ = ν+ − νz or the
positive magnetron sideband frequency νSB,− = νz + ν−, energy is continuously transported
back and forth between the radial mode and the axial mode which is in thermal contact with the
axial resonator. This leads to an equalization of the radial and axial quantum numbers n± and
nz . The transport of energy corresponds to a modulation of the respective oscillation amplitudes
with the Rabi frequency

Ω =
qE0

2m
√
ωzω±

, (3.10)

which depends on the amplitude E0 of the coupling-field gradients. During experimental
operation, the precise sideband frequency is not known a priory and the irradiated frequency
νrf = νSB,± + δ is detuned by a small amount δ from the true sideband frequency. In this case,
the modulation frequency of the amplitudes is given by the modified Rabi frequency

Ω′ =
√︁
Ω2 + δ2, (3.11)

which depends on the amplitude of the drive as well as the detuning from the true sideband
frequency.
For small detunings, the modulation of the axial amplitude in the time domain leads to the
appearance of two dips in the axial Fourier spectrum. In case of the modified cyclotron motion,
these dips appear at the frequencies

νl,+ = νz −
(︃
Ω′ + δ

2

)︃
and νr,+ = νz +

(︃
Ω′ − δ

2

)︃
, (3.12)

whereas in case of magnetron-axial sideband coupling the position of the two dips is given by
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νl,− = νz −
(︃
Ω′ − δ

2

)︃
and νr,− = νz +

(︃
Ω′ + δ

2

)︃
. (3.13)

By measuring the positions νl and νr of the sidebands during radial excitation at a drive
frequencies νrf,± and known axial frequency νz , the modified cyclotron frequency ν+ is given
by

ν+ = νrf,+ + νl + νr − νz (3.14)

and the magnetron frequency can be determined as

ν− = νrf,− + νz − νl − νr. (3.15)

Figure 3.7 shows the axial spectrum with and without application of the cyclotron-axial sideband
drive.
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Figure 3.7: Red: Axial frequency spectrum if no drive is applied. The particle shorts the noise of
the resonator at the axial frequency νz . Black: Once the resonant sideband drive is
switched on, the axial dip vanishes and two dips separated by the Rabi frequency Ω
appear at νz ± Ω

2

The uncertainty with which νz , νl and νr can be determined depends on the signal-to-noise
ratio (SNR) and the width ∆ν of the dip, which are parameters of the axial detection system.
Feedback cooling provides the possibility to reduce the width of the dips in the axial spectrum
at the cost of reduced signal-to-noise ratio (see section 3.3.3).
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Given the hierarchy ν+ > νz ≫ ν− of the eigenfrequencies, the magnetron frequency typically
does not need to be measured and can be approximated using Eq. (2.19) during calculation of
the free cyclotron frequency νc via the invariance theorem ν2c = ν2+ + ν2z + ν2−. Additionally,
given that the modified cyclotron frequency is approximately 50 times larger than the axial
frequency, the uncertainty of νc is dominated by the uncertainty in the determination of ν+. In
order to overcome the resolution limit imposed by the dip width in the spectrum of the axial
detector, direct observation of the modified cyclotron frequency on the cyclotron detector can
be used.
By irradiating the particle directly on the modified cyclotron frequency, it’s modified cyclotron
radius is increased and the particle induces strong image currents in the cyclotron detector which
result in a peak at the modified cyclotron frequency. The width of the peak feature is determined
by the utilized window function and the spectrum acquisition time and typically on the order
of 200-300mHz. Figure 3.8 shows a peak spectrum acquired during the characterization of the
superconducting coil system.
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Figure 3.8: Peak spectrum created by an excited particle on the cyclotron resonator. The width
of the peak feature is determined by the window function. After excitation to high
cyclotron energies, the position of the peak is shifted by relativistic effects and
coupling to the magnetic bottle which leads to drifts as the particle cools.

Note that the excitation necessary to create the peak feature significantly heats the particle’s
cyclotron temperature and thus leads to shifts of the modified cyclotron frequency due to
relativistic effects and coupling to the residual magnetic bottle present in the precision trap.
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Figure 3.9: Schematic of the feedback loop (red). The signal from the detector is amplified, phase
shifted and fed back to the detector.

In order to correct for these shifts, the cyclotron energy E+ after excitation has to be known.
By simultaneously acquiring an axial spectrum, E+ can be determined using Eq. (2.45) and
the modified cyclotron frequency ν+,0 at vanishing cyclotron energy can be calculated. By
improving the quality of the cyclotron detector [100], the energy required to resolve a clean
peak feature can be reduced. Additionally, interaction with the cyclotron resonator causes the
ion to oscillate at a frequency different than it’s natural frequency which pulls the position of
the peak towards the frequency of the cyclotron resonator [110]. A detailed description of the
relevant systematic shifts in the peak method is given in [104].

3.3.3 Feedback loops

In order to study systematic effects and reduce the preparation time of cold particles for single
spin flip detection, the temperature of the superconducting axial and cyclotron resonator systems
can be modified via application of electronic feedback [111, 112]. Part of the signal is picked up,
phase shifted and attenuated and fed back to the detector. Figure 3.9 shows a schematic of a
feedback loop.
In case the resonator has a temperature T0 before feedback is applied, the temperature TFB

after application of feedback depends on the total gain GFB of the feedback loop and is given
by

TFB = T0(1 +GFB). (3.16)
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Depending on the chosen phase, the feedback can either be positive (G > 0), which increases
the effective temperature TFB or negative (G < 0), which reduces the temperature. Changing
the temperature of the resonator changes its effective resistance as well. Thus, changing the
resonator temperature via feedback leads to change in the cooling time constant τ ∝ 1

γ given
by

τFB = τ(1−GFB). (3.17)

This change of cooling time constant leads to a change in the width γ
2π of the dip on the axial

resonator given by Eq. (3.9). Figure 3.10 shows the axial spectrum with and without negative
feedback being applied.

20 10 0 10 20
Frequency - 649140 Hz (Hz)

85

80

75

70

65

60

55

Am
pl

itu
de

 (d
B V

pk
)

Figure 3.10: Axial spectrum of a particle in case no feedback is applied (black) and with negative
feedback (red). Application of positive feedback increases the noise level as well as
the width of the dip feature.

Typically, the temperature of the axial detectors can be reduced by a factor of six before noise
introduced in the feedback loop starts to dominate.

3.3.4 Electronics and FFT chain

Detection of the trapped particle’s eigenfrequencies relies on the precise measurement of small
image currents induced by the oscillating particle in the trap electrodes. As the eigenfrequencies
depend on the applied axial potential, all traps electrodes are biased using high-precision power
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supplies by Stahl-electronics which provide voltages between ±14V and show fluctuations
below the 10−7 level [113]. Low-pass filter stages at room temperature and in the cryogenic
section further suppress noise coupling to the trap electrodes. The radiofrequency required
for particle manipulation is provided by frequency generators which are locked to a common
10MHz rubidium clock. A switch matrix grounds the radiofrequency lines in case no drive
is applied and routes the signal through different filters depending on the applied frequency.
These filters prevent the undesired excitation by parasitic frequency components close to the
trapped particle’s eigen- and sideband frequencies. In addition, cryogenic switches decouple
the radial excitation coil in the analysis trap in case no drive is applied. This suppresses noise
driving cyclotron transitions in the analysis trap.
In order to detect the particle’s eigenmotions, cryogenic detection circuits are used (see chapter
3.3.1). The image currents induced by the particle in the trap electrodes result in a voltage drop
over a high-impedance resonant circuit and are amplified by a cryogenic amplifier stage. Room
temperature amplifiers further increase the signal which is then down-converted to frequencies
in the order of 50-100 kHz using a single-sideband down converter from Stahl-electronics.
The resulting signal is then analyzed using a Stanford Research Systems SR780 FFT analyzer
[114] which is locked to the rubidium clock. Figure 3.11 shows a schematic overview over the
components in the signal chain.
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Figure 3.11: Overview over the main components in the signal chain for one axial detector. The
trapping voltages are provided by high-precision voltage supplies and filtered to
suppress fluctuations. Radiofrequency drives are created by function generators
locked to a 10MHz rubidium clock. A switch matrix connects the drive signals to
bandpass filters suppressing frequency components outside of the desired excitation
frequency. The image currents created by the particle in the trap electrodes are
picked up by a superconducting detection circuit, amplified and down-converted
to frequencies between 50-100 kHz. A SR780 Signal Analyzer is used to create the
Fourier spectrum of the signal.

3.4 Measurement of the proton-to-antiproton charge-to-mass
ratio

Comparison between the charge-to-mass ratio q
m of the proton and antiproton relies on the

measurement of the respective particle’s free cyclotron frequency

νc =
1

2π

q

m
B (3.18)

in a common magnetic field B. Assuming CPT symmetry holds, the ratio R =
( q
m)

p

( q
m)

p̄

= −νc,p
νc,p̄

between the charge-to-mass ratios of the proton and antiproton is expected to be −1.
In order to ensure that systematic shifts caused by voltage offsets and drifts are suppressed as
far as possible, it is desirable to measure the free cyclotron frequencies of both particles in the
same potential. As Penning traps do not provide the possibility to simultaneously trap particles
of opposite charge, the free cyclotron frequencies of an antiproton and a H− ion are compared
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and the resulting ratio is corrected using the mass-ratio mH−
mp

of a H− and a proton:

mH−

mp
= 1 + 2

me

mp
− E1

mpc2
− E2

mpc2
+ αH−

B2
0

mpc2
= 1.001 089 218 753 80(3). (3.19)

The mass of an H− ion is dominated by the mass of the proton with small corrections due to
the rest mass me of the bound electrons [115–118], the electron affinity E1 [119] and binding
energy E2 [120] of the electrons and a correction due to the ion’s polarizibility in the strong
magnetic field of the BASE magnet. Table 3.1 summarizes the magnitude of the individual
corrections as well as their contribution to the relative uncertainty of the H−-to-proton mass
ratio Rtheo.

Correction Abs. value Rel. uncertainty
2me
mp

0.00108923404299(2) 0.02 p.p.t.
− E1

mpc2
-0.00000000080381(2) 0.02 p.p.t.

− E2
mpc2

-0.00000001449306 < 1× 10−18

αH−
B2

0
mp

0.00000000000769(2) 0.02 p.p.t.

Table 3.1: Magnitude of the corrections to the H−-to-proton mass ratio and their respective
contributions to the relative uncertainty. The relative uncertainty of the H−-to-proton
mass ratio is at the level of 0.03 p.p.t. and therefore about a factor 500 below the
statistical uncertainty of the charge-to-mass ratio measurement campaign carried out
in 2017.

The resulting relative uncertainty of the ratio R is 0.03 p.p.t. and thus around a factor 500 below
the statistical uncertainty of the 16 p.p.t. charge-to-mass ratio measurement campaign carried
out in 2017 [69].
Due to the slight mass difference between the antiproton and the H− ion, their axial frequencies
differ by approximately 350Hz. In order to measure their free cyclotron frequencies, the
particles’ respective axial frequencies have to match the frequency of the axial detection circuit.
In past measurements [121], this was achieved by adjusting the trapping potential to tune the
respective axial frequency to the frequency of the axial detection system. However, changing
the axial potential could result in a slight difference ∆z of the particles’ equilibrium positions
which leads to a change ∆B = ∆zB1 in the average magnetic field due to the residual B1 term.
In order to eliminate this source of systematic errors, the trap was equipped with a tunable
axial detector which provides the possibility to match the detectors resonance frequency to the
axial frequencies of the respective particles without change of the axial potential. In addition,
a multilayer magnetic shielding system [122] was implemented, providing protection against
external fluctuations of the magnetic field caused by activity in the Antiproton decelerator
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hall. Lastly, the stiff connections mounting the cryogenic stage in the superconducting magnet
were replaced by Kevlar strings. This decouples the trap stack mechanically from the boiling
cryoliquids which cause vibrations tilting the symmetry axis of the trapping potential with
respect to the magnetic field.
The ratio R is measured by extracting an antiproton and an H− ion from the reservoir trap into
electrodes further downstream. The upstream particle is moved into the precision trap and its
free cyclotron frequency is determined using either sideband coupling or direct detection of the
modified cyclotron frequency via resonant excitation (see chapter 5.2). Once the free cyclotron
frequency of the upstream particle has been determined, the particle is parked in an electrode
located between the precision trap and the reservoir trap and the downstream particle is moved
into the precision trap. Once again, the free cyclotron frequency is measured and the particles
are moved back into the initial configuration. This sequence is repeated and yields two datasets
νc,p̄ and νc,H− which each consist of multiple Gaussian sub-distributions depending on the
environmental conditions during the measurement [69]. Figure 3.12 shows the measurement
scheme outlined above.
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a)

b)

Figure 3.12: a) An antiproton (downstream, red) and an H− ion (upstream, blue) are extracted
from the mixed cloud stored in the reservoir trap. The upstream particle is stored in
an electrode between the precision trap and the reservoir trap while the cyclotron
frequency νc,p̄ of the antiproton is measured. b) The antiproton is moved towards
the analysis trap and stored in one of the transport electrodes while the cyclotron
frequency νc,H− of the H− ion is measured in the precision trap. In order to test
for systematic shifts introduced due to the transport, the measurement sequence is
repeated with two particles of the same kind.

Given that the environmental conditions in the antiproton decelerator hall change depending
on operation of the AD and other experiments, outliers caused for example by movement of the
ferromagnetic crane are removed using robust block stability and median absolute deviation
filters. In order to account for drifts of the magnetic field between the measurements of νc,p̄,k
and νc,H−,k, both datasets are combined into a common cyclotron frequency dataset νc using
the ratioR as a free multiplicative parameter. Next this combined dataset is split into sub-groups
νc,k representing windows of constant experimental parameters typically covering a time span
between 1.5 h and 4 h. A polynomial p(t) of order q is fit to the sub-group νc,k and Rk is
determined by maximizing the log-likelihood function. The uncertainty σRk of each sub-group
is estimated using Cramer-Rao bounds and the final result R is given as the weighted arithmetic
mean of the entire acquired data set. The influence of polynomial order q, sub-group length
and filter criteria was studied and the robustness of this data evaluation approach was verified
using Monte-Carlo simulations.
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Even in case both the antiproton and the H− ion are measured in the same potential, changes
in the temperatures of the particles’ eigenmotions can lead to systematic shifts that are not
identical between both particles. The main contributions to this shift are given by the residual
magnetic bottle B2 present in the precision trap and relativistic shifts. The associated shifts are
given by Eq. (2.45) and Eq. (2.50) and the experimentally measured ratio RExp between the free
cyclotron frequencies scales with the temperature difference ∆Tz between the particles:

RExp = Rtheo

(︃
1 +

(︃
1

4π2mν2z

B2

B0
− 1

2mc2

)︃
kB∆Tz

)︃
. (3.20)

Under the conditions present in the BASE experiment, the relative shift of the ratio due to the
residual magnetic bottle is on the order of

∆RExp

RExp
=

kB
4π2mν2zB0

B2∆Tz =
262.48p.p.t.

T
m2K

B2∆Tz. (3.21)

Given the residual magnetic bottles of 267(2) mT
m2 and −89.4(6) mT

m2 present in the 2017 and
2018/2019 data acquisition campaigns, these shifts are on the order of 70p.p.t.

K and −23.5p.p.t.
K

respectively.
Relativistic effects are present even in case of a perfectly harmonic trapping potential and
homogenous magnetic field and result in a shift on the level of

∆RExp

RExp
= − kB

mc2
ν+
νz

∆Tz =
4.25p.p.t.

K
∆Tz. (3.22)

In order to minimize the influence these shifts have on the final result, great care has to be
taken to ensure that both particles are measured at the same axial temperature. Therefore,
the axial temperature is measured multiple times during each charge-to-mass ratio campaign
and identical particles are compared to ensure that no systematic shifts are introduced by the
measurement sequence. Using the superconducting shimming system implemented in the
course of this thesis, the main systematic caused by the uncertainty in the axial temperature
similarity can be eliminated by tuning B2 close to zero.

3.5 Measurement of the magnetic moment

The g-factor describes the proportionality between a particle’s spin S and it’s magnetic moment
µS. Using the nuclear magneton µN = eℏ

2mp
, the magnetic moment is given by

µS = gµN
S

ℏ
. (3.23)
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In case of point-like spin 1
2 particles, the Dirac equation predicts g to be exactly 2, however,

additional effects explained by hadronic and weak interaction contributions result in an anoma-
lous magnetic moment that deviates from the predicted value. In case of the electron g-factor,
analytic calculation of the anomalous magnetic moment is possible using Feynman diagrams up
to 8th order in the fine structure constant α [123] and numerical calculations up to 10th order
exist [124]. In contrast, due to the internal substructure of the proton no convincing theory
predicting its spin exists [125] and theoretical calculations are not possible.
In order to measure the g-factor of the antiproton, a single particle is placed in the strong
magnetic field B of a Penning trap which leads to a splitting ∆E = 2µSB of energy levels
depending on the orientation of the magnetic moment with respect to the magnetic field:

∆E = 2µSB = 2gµN
|S|
ℏ
B = gµNB. (3.24)

The Larmor frequency νL = ∆E
2πℏ describes the associated frequency that drives transitions

between the two possible spin states. Thus, g can be determined by measuring νL in a known
magnetic fieldB. By measuring the free cyclotron frequency νc = 1

2π
e
mp
B in the same magnetic

field, g can be expressed as the ratio of the Larmor frequency νL and the free cyclotron frequency
νc:

g =
∆E

µNB
=

2πℏνL
µNB

= 2
νL
νc
. (3.25)

The non-distructive measurement of the free cyclotron frequency νc is a routine in state-of-
the-art Penning-trap experiments and described in chapter 5.2. In contrast, the determination
of the Larmor frequency νL is challenging as the νL precession is not associated with any of
the eigenmotions of the trapped particle and can thus not be detected using image currents.
By superimposing a strong axial magnetic bottle B2

(︂
z2 − ρ2

2

)︂
onto the magnetic background

field, the continuous Stern-Gerlach effect creates an additional axial potential component
ΦBottle(z) = µSB2(z) acting on the particle. Depending on the orientation of the particle’s
spin with respect to the magnetic field, this potential can either be confining or deconfining. The
effective potential experienced by the particle is therefore given by the sum of the electrostatic
potential and the potential ΦBottle(z) = µS(B0 ±B2z

2) due to the magnetic bottle. Solving
the axial equation of motion yields the modified axial frequency νz,SF which depends on the
spin state and is slightly shifted from the axial frequency νz of a particle without spin:

59



νz,SF =
1

2π

√︄
2qV0
mp

C2 ±
g

2

2µN
mp

B2 = νz

√︃
1± g

µN
4π2mpν2z

B2 (3.26)

≈ νz

(︃
1± g

2

µN
4π2mpν2z

B2

)︃
= νz ±

∆ν ′z
2

(3.27)

with

∆νz,SF = g
µN

4π2mpνz
B2 ≈

g

2

hν+
4π2mpνz

B2

B0
= 172(8)mHz. (3.28)

In addition to spin flips, the strong magnetic bottle couples the energy of the radial modes
to the axial frequency. Expressing the radial energies E+ = hν+

(︁
n+ + 1

2

)︁
and E− =

−hν−
(︁
n− + 1

2

)︁
in terms of the radial quantum numbers n+ and n−, the overall shift ∆νz

of the axial frequency can be given in terms of the radial quantum numbers n+ and n− and the
spin state quantum number mS = ±1

2 :

∆νz =
hν+

4π2mνz

B2

B0

(︃(︃
n+ +

1

2

)︃
+
ν−
ν+

(︃
n− +

1

2

)︃
+
g

2
mS

)︃
. (3.29)

Under typical conditions, the axial frequency in the analysis trap is around νz = 675 kHz and
thus a jump of the axial frequency associated with a spin flip (∆mS = 1) in the magnetic bottle
B2 = 272(12) kT

m2 is around ∆νz,SF = 172(8)mHz. Note that this shift is more than a factor
650 lower than the shift for an electron oscillating at the same axial frequency in the same
magnetic bottle. Shifts of the axial frequency due to a change ∆n− = ±1 are suppressed by
a factor ν−

ν+
≈ 1

1500 and are thus negligibly small with ∆νz,n− = 0.040(2)mHz. In contrast, a
change of the cyclotron quantum number ∆n+ = ±1 leads to a change in axial frequency of
∆νz,n+ = 62(3)mHz. It is therefore crucial to ensure that the cyclotron quantum number n+
does not change significantly during the determination of the Larmor frequency, as a change in
axial frequency due to a spin flip can not be distinguished from changes induced by fluctuation
in the cyclotron quantum number.
The cyclotron transition rate χ+ of a particle itself scales linearly with the cyclotron quantum
number n+ and can be calculated using first-order transitions in a quantum mechanical oscillator
driven by radial electric field noise with spectral power density SE [104]:

ζ+ =
q2n+
4πmν+

SE(ν+). (3.30)

The cyclotron transition rate scales linearly with the cyclotron quantum number n+ ∝ E+. In
order to achieve the high axial frequency stability necessary to resolve spin flips it is therefore
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important to prepare a particle with low cyclotron energyE+. In order to increase the cyclotron
temperature acceptance it is crucial to reduce the spectral power density SE(ν+) coupling to
the cyclotron motion as much as possible. In addition, increasing the cyclotron frequency by
increasing the strength of the magnetic field in the center of the trap has the potential to reduce
the cyclotron transition rate and leads to higher axial frequency stability. One possible approach
to maximize the magnetic field at the particle’s position is the development of an analysis trap
containing two ferromagnetic correction electrodes which create an inverted magnetic bottle
in the center of the trap [126]. In this configuration, the magnetic field has a maximum at the
position of the particle and thus the cyclotron transition rate is decreased compared to the
conventional setup using a ferromagnetic ring electrode.
The following sections outline different measurement techniques that have been applied for the
measurement of the (anti)proton g-factor.

3.5.1 Single-trap method

In order to measure the free cyclotron frequency νc as well as the Larmor frequency νL in a
single trap, a strong magnetic bottle needs to be superimposed on the axial magnetic field. The
large B2 coefficient leads to a significant energy dependence of the particle’s eigenfrequencies
in the trap. As the particle is in thermal contact with the axial detection circuit and its axial
energy constantly samples the Boltzmann distribution, the techniques that were used for the
determination of the free cyclotron frequency in the homogenous magnetic field of the precision
trap can not be used in the strong magnetic bottle of the analysis trap. Under typical conditions,
the strong magnetic bottle causes the Larmor frequency to shift by 5.9 kHz

K . Sideband coupling
of the axial and cyclotron motions causes the cyclotron energy to move through a Boltzmann
distribution of 300K and thus corresponds to a linewidth of multiple 100 kHz.
Since that particle exchanges energy with the axial resonator on timescales given by the
resonator’s cooling time constant τ ≈ 50ms, its axial energy follows a Boltzmann distribution
and the probability that the likelihood has axial energy Ez is given by:

p(Ez) =
1

kBTz
e
− Ez

kBTz . (3.31)

The width of this distribution is determined by the temperature Tz of the axial detection circuit.
Given the strong magnetic bottle B2, any change in the axial energy Ez leads to a shift of
the modified cyclotron frequency according to Eq. (2.44). The observed modified cyclotron
frequency ν ′+ is thus not constant but shifted by an exponential distribution from the cyclotron
frequency ν+ at vanishing axial energy. The probability density distribution of ν ′+ is given by
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p(ν ′+) = Θ(ν ′+ − ν+)
1

∆ν+
e
−

(ν′+−ν+)

∆ν+ (3.32)

with the Heaviside function Θ and the characteristic width

∆ν+ =
ν+

4π2mν2z

B2

B0
kBTz. (3.33)

For positive B2, the probability to observe a cyclotron frequency below ν+ is zero. For frequen-
cies above ν+, the probability follows an exponential distribution with a width ∆ν+ given by
the temperature Tz of the axial resonator and the strength B2 = 272(12) kT

m2 of the magnetic
bottle. Under typical conditions, ∆ν+ is around 9300Hz, thus it is not possible to observe the
free cyclotron frequency ν+ directly via sideband coupling or resonant excitation. Instead, ν+
is measured by irradiating the particle with different radiofrequencies νrf close to ν+. As long
as νrf is below ν+, the random walk of the particle’s modified cyclotron frequency ν ′+ is never
resonant with the drive frequency νrf and thus the cyclotron quantum number will not change.
As soon as νrf is above ν+, the particle’s motion through the thermal Boltzmann distribution
will cause its cyclotron frequency ν ′+ to momentarily be in resonance with the drive and thus the
cyclotron quantum number n+ will change. As the particle is in the strong magnetic bottle of
the analysis trap, the change in cyclotron energy leads to a change in axial frequency according
to Eq. (3.29). As a change of the cyclotron quantum number n+ is only possible when the
particle’s modified cyclotron frequency ν ′+ momentarily coincides with the drive frequency,
the axial frequency scatter is proportional to the distribution of modified cyclotron frequencies
given by Eq. (3.32). By changing the drive frequency until the scatter of the axial frequency is
maximized, the modified cyclotron frequency ν+ at vanishing axial energy can be determined.
The measurement of the Larmor frequency follows the same principle as the measurement of
the modified cyclotron frequency given that the average magnetic field the particle experiences
depends on the strength of the magnetic bottle B2 and the axial energy E+. Therefore, spinflips
can not only be driven by irradiating directly at the Larmor frequency νL, but also at higher
frequencies. The axial frequency scatter Ξz depends on the background stability ΞBG of the
axial frequency as well as the additional scatter ΞSF induced by spinflips [101]:

Ξz =
√︂

Ξ2
BG + Ξ2

SF =
√︂
Ξ2
BG + pSF∆ν2z,SF . (3.34)

By measuring the axial frequency stability Ξz at a known background stability ΞBG, the spin
flip probability pSF can be determined for different drive frequencies. As long as the drive
frequency νrf is below the Larmor frequency νL, the particle’s random motion through the
thermal Boltzmann distribution never brings its momentary Larmor frequency ν ′L into resonance
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with the drive. Once the drive frequency is above the Larmor frequency, spin flips become
possible and the axial frequency scatter rises. In contrast to measurements of the cyclotron
frequency, the spin state can only change between two states whereas the change of cyclotron
quantum number is not bound. Compared to excitation of the modified cyclotron frequency,
the added axial frequency scatter due to spin flips is therefore bounded and measurement of
the Larmor frequency takes significantly more time. Note that due to the incoherent drive, the
maximum theoretically achievable spin flip probability is 50%. Under experimental conditions,
the maximum observed spin flip probability depends on the strength and duration of the drive as
well as the coupling of particle to the axial detection circuit and needs to be carefully optimized
to provide sufficiently high contrast without broadening the Larmor resonance too far. A more
detailed description of the lineshapes is given by Brown [127]. Figures 3.13a and 3.13b show the
antiproton cyclotron and Larmor resonances measured in the BASE analysis trap [88].

(a) (b)

Figure 3.13: The strong magnetic bottle present in the BASE analysis trap convolves the axial
temperature distribution into the cyclotron and Larmor resonance curves. The
width of the distributions is determined by the axial temperature and the strength
of the magnetic bottle. (a) The axial frequency scatter increases rapidly once the
drive frequency is above the modified cyclotron frequency ν+,AT of a particle with
negligible axial energy. (b) Once the drive frequency is above the Larmor frequency
νL,AT of a particle with negligible axial energy, the spin flip probability increases
up to a maximum of 50%.

In order to measure the g-factor using the single trap technique, a particle with low cyclotron
energy is prepared in the precision trap by bringing it into contact with a detection circuit
resonating at the modified cyclotron frequency. By shuttling the particle into the analysis trap
and observing the axial frequency, the cyclotron temperature of the particle can be determined.
The cooling process is repeated until a particle with sufficiently low cyclotron temperature is
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extracted into the analysis trap and thus background scatter of the axial frequency is sufficiently
low. As a first step, the magnetron mode of the particle is cooled in the analysis trap. Next,
the cyclotron frequency νc,1 is measured by scanning the cyclotron resonance curve until
the axial frequency scatter increases and the steep onset located at ν+ is clearly resolved. In
order to measure the Larmor frequency, first the axial background frequency stability ΞBG

for a drive frequency below νL is measured. Next, the drive frequency is scanned over the
Larmor resonance and the spin flip probability pSF for different drive frequencies is determined
using Eq. (3.34). As in the case of the modified cyclotron frequency, the Larmor frequency is
determined from the position of the center of the steep onset. Finally, the cyclotron frequency
νc,2 is measured a second time and the g-factor is calculated according to Eq. (3.25) using
the arithmetic mean νc = νc,1+νc,2

2 of the individual cyclotron measurements to account for
linear drifts in the magnetic field during the measurement of the Larmor frequency. Since
both the cyclotron frequency νc as well as the Larmor frequency νL are determined from the
steep increase of the axial frequency scatter once the irradiated radio-frequency is above νc
or νL respectively, the final uncertainty is determined by the ability to resolve the onset of
the respective spectra. Due to the strong magnetic bottle present in the analysis trap, the
noise driven random walk of the particle’s magnetron radius leads to a change of the average
magnetic field the particle experiences and thus washes out the steep onset of the resonance
lines. In order to quantify the effect of the random walk on the final uncertainty of the g-factor,
Monte-Carlo simulations of the magnetron random walk were run and the mean frequency
during the simulated walk was compared to the frequency extracted from the measurements.
Using the single trap scheme outlined above, six individual measurements of the antiproton
g-factor were carried out during weekend- or night-shifts between 20th February 2016 and 5th
March 2016 the antiproton g-factor was determined to a fractional precision of 800 p.p.b. [88].

3.5.2 Double-trap method

Measurements of the g-factor in a single trap are limited by the strong magnetic bottle required
to detect spin flips of the trapped particle. In order to overcome these systematic limitations
it is desirable to measure the free cyclotron frequency νc and the Larmor frequency νL in a
homogenous magnetic field where shifts of the frequencies due to the energies E+, Ez and E−

of the eigenmotions are strongly suppressed. A rather intuitive approach is the separation of
the measurement procedure into two distinct traps [128]. The precision trap, which has a very
homogenous magnetic field and was used for the preparation of a cold particle in the single
trap scheme is now used to measure the cyclotron and Larmor frequencies whereas the analysis
trap is used for spin state detection only. Given the residual magnetic bottle of typically less
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than 3 T
m2 present in the precision trap, the width of the cyclotron and Larmor resonances due

to the Boltzmann distribution of the axial temperature is reduced by a factor of approximately
100 000 and becomes negligible. On the other hand, separation of the spin flip excitation and
detection means that the axial frequency scatter in the analysis trap can no longer be monitored
while the spin flip drive is applied. Instead, the spin state is determined by resolving single spin
flips in the analysis trap.
In order to determine the spin state of a particle in the analysis trap, an initial measurement
of the particle’s axial frequency νz,AT,1 is taken. Next, a strong radio-frequency drive at the
particle’s Larmor frequency νL,AT is applied, the spin is flipped with probability pSF ≈ 50%

and the axial frequency νz,AT,2 after Larmor excitation is measured. If the spin did not flip, the
axial frequency difference ∆νz,AT = νz,AT,2 − νz,AT,1 will be close to zero. In case a spin flip
occurred, however, the axial frequency will be shifted by ±∆νz,SF = ±172(8)mHz. Assuming
that the axial background frequency scatter is described by a normal distribution N (µ, σ) with
mean µ = 0 and standard deviation σ = ΞBG, the probability to observe a frequency shift of
∆νz,AT is given by the probability density

p(∆νz,AT ) =(1− pSF )N (0,ΞBG) (3.35)

+ pSF p↑N (−∆νz,SF ,ΞBG)

+ pSF (1− p↑)N (∆νz,SF ,ΞBG).

The first line in Eq. (3.35) corresponds to the case that no spin flip occurs whereas the second
and third line correspond to a spin flip from ↑⇒↓ and ↓⇒↑ respectively. The black line in Fig.
3.14 shows a plot of the probability density for pSF = 0.5, p↑ = 0.5 and a background frequency
scatter of ΞBG = 50mHz whereas the colored lines indicate the individual subdistributions.
This choice of pSF and p↑ corresponds to the typical case where spin flips are driven incoherently
in the analysis trap without any information of the initial spin state. In order to determine the
initial spin state from a measurement of ∆νz,AT , the observed frequency shift ∆νz,AT needs
to be assigned to one of the three subdistributions contributiong to Eq. (3.14). By choosing a
threshold value ∆νTh observations of ∆νz,AT are categorized as follows:

• |∆νz,AT | < ∆νTh: In case the absolute change in axial frequency is below the threshold
value, it is assumed that no spin flip occurred and the Larmor drive did not change the
spin. In this case, no information over the spin state before application of the Larmor
drive can be gained.

• ∆νz,AT ≤ −∆νTh: In case the axial frequency jumps by more than ∆νTh towards lower
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Figure 3.14: Probability density to observe an axial frequency jump ∆νz in case spin flips are
driven at 50% spin flip probability and the initial spin state is undetermined. Once
a change |∆νz,AT | ≥ ∆νTh is observed, it is assumed that a spin flip occurred and
thus the initial spin state can be reconstructed. The optimal threshold ∆νTh,opt

minimizes the probability to misidentify the observed frequency jump and lies at
the frequency at which the values of the central and shifted distributions are equal.
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frequencies, it is assumed that a spin transition ↑⇒↓ was driven by the Larmor excitations.
Thus the particle initially had to be in the spin ↑ state.

• ∆νz,AT ≥ ∆νTh: If a jump of more than ∆νTh towards higher frequencies is observed,
the associated spin transition is assumed to be ↓⇒↑ and thus the particle initially was in
the ↓ spin state.

The error rateETh to assign the wrong spin state transition from a single observation of ∆νz,AT

can be calculated by integrating the individual sub distributions over the range of observations
∆νz,AT for which the wrong spin state would be applied. By minimizingETh with respect to the
chosen threshold value, the optimal threshold value ∆νTh,opt in case that no prior knowledge
of the spin state is available (p↑ = p↓ = 0.5) can be determined:

∆νTh,opt =
∆νz,SF

2

(︃
1 + 2

(︃
ΞBG

∆νz,SF

)︃)︃
ln

(︃
2

pSF
− 2

)︃
. (3.36)

This choice coincides with the intuitive approach to choose the threshold such that the central
density and the shifted densities have the same value at ∆νTh. Under typical conditions of
ΞBG ≈ 65mHz the ideal threshold value is ∆νTh,opt = 103mHz which corresponds to a
probability P (|∆νz| ≥ ∆νTh,opt) = 48.4% to observe a spin flip and an error rate ETh in
determining the initial spin state from a single observation of ETh = 12.8%. Multiple spin
flips can be driven in the analysis trap and a Bayesian model can be applied to determine the
initial spin state with increased accuracy [102].
In order to measure the (anti)proton g-factor using two traps, a particle with low cyclotron
energy is prepared by bringing it into thermal contact with the cyclotron detector in the precision
trap. After letting the particle interact with the cyclotron detector for multiple cooling time
constants τ , it is moved to the analysis trap and the cyclotron temperature is determined by
measuring the axial frequency. Once a particle with sufficiently low cyclotron temperature is
found, the Larmor drive is applied in the analysis trap until a jump |∆νz,AT | in axial frequency
above a chosen initialization threshold ∆νz,i is observed. By increasing ∆νz,i, the probability
P (|∆νz| ≥ ∆νz,i) to observe a spin flip is reduced, however, the initialization error rate Ei

decreases as well. Under typical axial frequency stability of ΞBG ≈ 65mHz choosing an
initialization threshold of 190mHz leads to an initialization error rate of less than 0.1%. Once
a particle with known spin state is prepared, it is moved into the precision trap and its free
cyclotron frequency νc,PT,1 is measured using sideband coupling of the axial and modified
cyclotron mode. Note that this heats the cyclotron temperature to T+ = ν+

νz
Tz ≈ 300K. Next,

the particle is irradiated with a radiofrequency νrf,PT close to the Larmor frequency νL,PT in
the precision trap and the free cyclotron frequency νc,PT,2 is measured a second time. In order
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to determine if the applied radiofrequency lead to a spin flip, the spin state after application of
the drive has to be determined in the analysis trap as described above. Since the determination
of the spin state with high fidelity requires low cyclotron temperature, the particle has to
be cooled again. Depending on the noise conditions in the analysis trap and the associated
cyclotron temperature suitable for single spin flip detection, the preparation of a cold particle
takes between 90min (BASE-Mainz) and 48 h (BASE-CERN). Once a cold particle is detected in
the analysis trap, its spin state is analyzed using the scheme outlined above. Figure 3.15 shows
the individual steps of the measurement scheme outlined above.
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a)

c)

b)

e)

mS = +1/2

mS = -1/2

mS = +1/2

mS = ?

Initialize spin state

Measure νc,PT,1

d)

Measure νc,PT,2

Irradiate νrf

Determine new spin state
Cooling

mS = ?

Figure 3.15: Double-trap measurement scheme of the (anti)proton g-factor: a) A cold particle is
prepared in the precision trap and its spin state is initialized in the analysis trap. b)
The particle is moved to the precision trap and its free cyclotron frequency νc,PT,1

is measured. c) The particle is irradiated with a radiofrequency νrf,PT close to the
Larmor frequency in the precision trap. d) The free cyclotron frequency νc,PT,2 is
measured a second time to account for linear drifts. e) The particle is moved to the
analysis trap and the spin state after irradiation in the precision trap is determined.
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Figure 3.16: Proton g-factor resonance consisting of 450 measurements in the double trap of
the BASE-Mainz experiment [129]. The spin flip probability is maximized if the
ratio νrf,PT

νc,PT
between the irradiated radiofrequency νrf,PT and the free cyclotron

frequency νc,PT is equal to g
2 .

The probability to flip the spin is maximized if the irradiated radiofrequency νrf,PT is equal to
the Larmor frequency νL,PT = g

2νc,PT in the precision trap. Thus, the value of g
2 =

νL,PT

νc,PT
can

be determined by measuring the spin flip probability pSF as a function of the ratio νrf,PT

νc,PT
. The

free cyclotron frequency νc,PT is determined by averaging the measurements νc,PT,1 and νc,PT,2

before and after application of the radiofrequency. Figure 3.16 shows the g-factor resonance for
a proton consisting of 450 data points measured in the double-trap setup located in Mainz [129].
Using this novel approach, the proton g-factor was determined by the BASE-Mainz experiment
with a fractional uncertainty of 3.3 p.p.b. [129]. In a later measurement campaign [130],
this result was improved to a fractional uncertainty of 300 p.p.t. In this modified scheme,
systematic shifts due to temporal fluctuations of the magnetic field and the particle temperature
are suppressed as νL and νc are measured at the same time. Additionally, the g-factor resonance
was measured at a lower drive power which no longer saturates the spin flip probability
and a new cyclotron detector was implemented leading to faster cooling times and a higher
sampling rate. Nevertheless, the final uncertainty of the updated measurement is dominated
by the statistical uncertainty caused by the long cooling times required to prepare particles at
temperatures low enough for single spin flip detection.
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3.5.3 Two-particle method

Given the long cooling times of typically 48 h necessary to prepare an antiproton with a
cyclotron temperature suitable for single spin flip detection in the BASE-CERN experiment, a
novel technique utilizing two particles was implemented in the 2017 antiproton g-factor run.
The general measurement scheme is equivalent to double-trap method described in chapter
3.5.2, however, instead of using the same particle to measure the free cyclotron frequency νc,PT

and the Larmor frequency νL,PT , two particles are used. This approach exploits the fact that the
measurement of the spin flip probability after irradiation with the radiofrequency νrf,PT does
not heat the cyclotron temperature T+ of the particle. Thus, as long as the cyclotron detector in
the precision trap is detuned during the irradiation with νrf,PT , the particle’s cyclotron mode is
not heated and no cooling is required. In the two particle scheme, one particle – called Larmor
particle – is used to probe spin flips and thus needs to be cooled to low cyclotron temperatures
T+ providing single spin flip resolution. A second particle – called cyclotron particle – is used
to measure the cyclotron frequency. Measurement of νc,PT heats the cyclotron temperature
T+ of the particle, however, since the cyclotron particle is not used for spin state detection no
subthermal cooling of the cyclotron particle is required.
In order to measure the antiproton g-factor, two particles are extracted from the reservoir trap
and stored in the precision and analysis trap respectively. As a first step, the cyclotron particle
located in the precision trap is stored in a transport electrode upstream and the Larmor particle
is moved from the analysis trap to the precision trap. As in the single particle double-trap
method, the Larmor particle is thermalized by interaction with the cyclotron detector until a
cold particle with axial frequency stability suitable for single spin flip detection is found in the
analysis trap. Next, the Larmor particle’s spin state is initialized by driving spin flips in the
analysis trap until a large jump is observed. Once the spin state is initialized, the cyclotron
particle is moved into the precision trap and the free cyclotron frequency νc,PT,1 is measured
using sideband coupling of the axial and modified cyclotron modes. Next the cyclotron detector
in the precision trap is detuned and the cyclotron particle is parked in the upstate transport
electrode. The Larmor particle is moved into the precision trap and the radio-frequency νrf,PT

is irradiated. Note that this does not heat the cyclotron temperature of the Larmor particle and
thus – in contrast to the single particle double-trap method – no cooling is required and the
Larmor particle is directly moved into the analysis trap. Next, the cyclotron particle is moved
back into the precision trap and the free cyclotron frequency νc,PT,2 is measured a second time.
In order to determine if the irradiation with νrf,PT lead to a change of the Larmor particle’s
spin state, spin flips are driven in the analysis trap and the spin state after irradiation in the
precision trap is recovered as described in chapter 3.5.2. Given the observed mean heating rate
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of less than 17mK per cycle, up to 75 measurements can be conducted before the particle has
to be cooled again. Figure 3.17 shows the individual steps of the measurement scheme outlined
above.
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Figure 3.17: Two particle measurement scheme of the antiproton g-factor: a) The Larmor particle
(blue) is thermalized in the precision trap and its spin state is initialized in the
analysis trap. b) The cyclotron particle (red) is moved into the precision trap and
its free cyclotron frequency νc,PT,1 is measured. c) The Larmor particle is moved
into the precision trap and a radio-frequency νrf,PT close to the Larmor frequency
in the precision trap is irradiated. d) The Larmor particle is moved to the analysis
trap and the free cyclotron frequency νc,PT,2 is measured a second time using the
cyclotron particle. e) The spin state of the Larmor particle after irradiation with
νrf,PT in the precision trap is determined.
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As in the two trap measurement scheme, the g-factor is determined by measuring the spin
flip probability pSF as a function of the ratio νrf,PT

νc,PT
. However, given that different particles

are used for the determination of νL,PT and νc,PT , the free cyclotron frequency can not be
measured while the radio-frequency drive is applied. Given the residual magnetic gradients
in the precision trap of B1,PT = 71.2(4) mT

m and B2,PT = 2.74(22) T
m2 present in the 2017

antiproton g-factor run, differences in the axial and cyclotron temperatures of the Larmor and
cylotron particle lead to systematic shifts of the measured ratios νrf,PT

νc,PT
which translates into a

shift of the final g-factor. Given that the free cyclotron frequency is measured while the particle
is sideband coupled to the axial detector, the cyclotron temperature T+,c of the cyclotron particle
is significantly higher than the cyclotron temperature T+,L of the cold Larmor particle. The
resulting temperature difference ∆T+ = T+,c−T+,L = 356(27)K leads to a relative shift of the
final g-factor of +0.22(2) p.p.b. due to a change in axial equilibrium position caused by B1,PT

and +0.12(2) p.p.b. due to a change in radial position in the magnetic bottle B2,PT . In order
to characterize a possible difference in axial temperature Tz caused by additional noise added
during irradiation of the radio-frequency νrf,PT , the detector noise level was observed during
measurements with and without application of the Larmor drive. In case the spin flip drive
was applied, the observed noise level was increased by 0.355(36) dB. To give a conservative
estimate it is assumed that the increased noise level couples to the input stage of the resonator
and thus increases the axial temperature of the Larmor particle by ∆Tz = 0.68K which causes
the Larmor particle to experience a different average magnetic field. The resulting uncertainty
in Larmor frequency is given by Eq. (2.45) and leads to the dominant systematic uncertainty of
0.97(7) p.p.b. A detailed description including all systematic shifts is given in [68].
Figure 3.18 shows the g-factor resonance measured in the BASE-CERN double trap in 2017. In
order to ensure a good contrast in the spin flip probability between resonant and off-resonant
drive, the Larmor frequency was driven at high amplitude which leads to significant saturation
in the g-factor resonance.
Using the novel two particle method, the antiproton g-factor was determined with a fractional
precision of 1.5 p.p.b in 2017. The main contribution of 0.97 p.p.b to the uncertainty is given by
the possible difference of the axial temperatures of the two particles. The residual magnetic
bottleB2,PT present in the precision trap causes the free cyclotron frequency νc and the Larmor
frequency νL to be measured in different mean magnetic fields in case the particles mean squared
amplitudes differ. In the course of this work, a magnetic shimming system was implemented
which provides the possibility to tune B2,PT close to zero, thus eliminating the dependency of
the free cyclotron frequency νc and the Larmor frequency νL on the particles’ respective axial
energies.
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Figure 3.18: Antiproton g-factor resonance measured using two particles in the BASE-CERN
double trap [68]. In order to ensure good contrast between resonant and off-resonant
drive, spin flips were driven at high power in the precision trap and the resonance
was saturated on purpose.
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4 Magnetic shimming and shielding system

4.1 Motivation

In order to gain control over the main systematic uncertainties of frequency measurements
in Penning traps, a superconducting shimming and shielding system was implemented in the
experiment. This system consists of four coils which are wrapped around the trap can. Three
shimming coils provide tunability of the coefficients B2, B1 and B0 in the expansion of the
magnetic field B(z) = B0 +B1z+B2z

2 + . . . around the center of the precision trap at z = 0

while the 4th coil is wound in a length to diameter ratio that provides good shielding against
homogeneous fluctuations of the magnetic background field [131]. The three shimming coils are
wound in a way that each of the coils has a large transfer function for one of the parameters B2,
B1 or B0 while the transfer function for the other two parameters is small. Figure 4.1 shows
the shimming coil system and the self-shielding coil (SSC) on the trap can.
All coils are equipped with a quench resistor RQ which provides the possibility to locally heat
part of the superconducting wire above it’s critical temperature causing any current flowing in
the coil to decay. Additionally, the three shimming coils can be loaded via loading joints located
on both sides between the quench heater and the coil. Figure 4.2 shows the schematic setup of
the coils. A detailed explanation of the loading procedure is given in section 4.6.

4.2 Calculation of the coil transfer functions

All coils of the shimming and shielding system are made up of one or more tightly wound
solenoids of constant radius. For this reason, the transfer functions of each coil can be calculated
by adding the transfer functions of the individual solenoids, taking account of the direction of
winding. The magnetic flux density B(z, ρ) at an axial distance z and radial distance ρ from the
coil center can be expressed with the help of the complete elliptic integrals K(k), E(k) and
Π(n, k) of the first, second and third kind:
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Figure 4.1: Position of the B2 coil (red), B1 coil (green), B0 coil (blue) and the SSC (yellow) on the
trap can. Different shades of the same color indicate a reversal of winding direction.
The center positions of the Reservoir trap (RT), Precision trap (PT), Analysis trap
(AT) and Cooling trap (CT) are indicated. The shimming and shielding system is
centered around the Precision trap.

IQ RQIL

RL

RL

Persistent
joint

Coil

Figure 4.2: Schematic setup of the shimming coils. Thick lines indicate superconducting wires.
By running the quench current IQ through the quench resistor RQ, which is in
thermal contact with the superconducting wire, part of the coil is heated above the
critical temperature, and becomes non-persistent (dashed line). The shimming coils
are equipped with loading joints which can be used to apply an external loading
current IL to charge the coils. The heat dissipation in the parasitic loading resistances
RL limits the maximum current that can be loaded without quenching part of the
coil.
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K(m) =

π
2∫︂

0

1√︁
1−m2 sin2(θ)

dθ, (4.1)

E(m) =

π
2∫︂

0

√︂
1−m2 sin2(θ)dθ, (4.2)

Π(n,m) =

π
2∫︂

0

1

(1 + n sin2 θ)
√︁

1−m2 sin2(θ)
dθ. (4.3)

The axial and radial magnetic flux density components Bz(z, ρ) and Bρ(z, ρ) created by a
current I running through a tightly wound solenoid with n windings, radius R and length L
are given by [132]:

Bρ(z, ρ) =
µ0nI

πL

√︄
R

ρ

[︃
g2 − 2

2k
K(g2) +

E(g2)

g

]︃ζ+
ζ−

, (4.4)

Bz(z, ρ) =
µ0nI

4πL

√︄
1√
Rρ

[︃
ζg

(︃
K(g2) +

R− ρ

R+ ρ
Π(h2, g2)

)︃]︃ζ+
ζ−

. (4.5)

The permeability of free space is given by µ0, ζ± = z ± L
2 , h2 = 4Rρ

(R+ρ)2
and g2 = 4Rρ

(R+ρ)2+ζ2

are geometry dependent parameters and [f(x)]ab = f(a)− f(b).
On the symmetry axis Bρ(z) vanishes and Bz(z) becomes

Bz(z) =
µ0nI

2L

⎛⎝ z + L
2√︂

R2 + (z + L
2 )

2
− z − L

2√︂
R2 + (z − L

2 )
2

⎞⎠ . (4.6)

The transfer functions at position z0 can be determined by comparing the Taylor expansion
coefficients Bz(z) =

∑︁∞
n=0

1
n!

∂nBz(z)
∂zn

n
of Eq. (4.6) with their respective terms in the field

expansion Bz(z) =
∑︁∞

n=0Bn(z − z0)
n. Figure 4.3 shows a cross section through the coil

system. Table 4.1 gives an overview over the design parameters (Radius r, Offsets zOff from
the trap center, Lengths L and Number of windings n of the subcoils) and transfer functions at
the trap center B0

I ,
B1
I ,

B2
I , . . . of the 3 shimming coils and the SSC.

Figures 4.4a - 4.4c show the transfer functions of the shimming coils at different positions along
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1 cm SSC

B1 coil

B2 coilB0 coil

Figure 4.3: Cross section through the B2 coil (red), B1 coil (green), B0 coil (blue) and the SSC
(yellow). Different shades of the same color indicate a reversal of winding direction.

Coil r [mm] zOff [mm] L [mm] n B0
I [TA ] B1

I [ T
mA ] B2

I [ T
m2 A

]
B2 coil 38.575 −19.125, 0, 19.125 15.3, 22.95, 15.3 102, −153, 102 −359× 10−9 0 1.87

B1 coil 39.075 −19.5, 19.5 5.55, 5.55 37, 37 0 26× 10−3 0

B0 coil 39.575 0 72.75 485 5.67× 10−3 0 −1.6

SSC 40.075 0 70.2 468 5.52× 10−3 0 −1.65

Table 4.1: Design parameters of the shimming and shielding coil system. Negative windings
indicate a reversal of the winding direction. The parameters were given to the full
precision used in the calculations of the transfer function and inductances, however,
given that the coils were wound by hand and on top of each other, it is expected that
the physical system deviates from the design values.
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the trap axis. Both the B2 and the B1 coil show a large transfer function for the parameter
they are designed to change, while in the chosen design the transfer function for the other two
parameters vanishes. The number of windings was chosen based on finite-element simulations
of the residual field inhomogeneities in the PT caused by the ferromagnetic ring electrode of
the AT. An estimate for the achievable loading current was determined in an earlier work [133].
The B0 coil is wound as a single solenoid and thus has a large transfer function for both B2 and
B0. This design was chosen over a setup with two solenoids in Helmholtz configuration to have
a second solenoid which provides partial self-shielding. Using multiple self-shielding solenoids
with different length-to-diameter ratios provides the possibility to run different combinations
of coils with slightly different self-shielding characteristic and increases robustness against
misalignment and uncertainties in the winding process as well as effects of mutual inductance
with the main coil of the BASE magnet.
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Figure 4.4: (a) B0 transfer function as a function of axial position. (b) B1 transfer function as a
function of axial position. (c) B2 transfer function as a function of axial position. (d)
Combination of field expansion parameters that can be compensated with currents
less than 250mA. The colored plane at ∆B0 = 0 indicates the region in which ∆B2

and ∆B1 can be tuned without changing B0.

4.3 Calculation of inductances

In order to calculate the shielding provided by different coil geometries, the coils self- and
mutual inductances must be known. The self-inductance L of a coil relates the change ∆I of
current running in the coil to the change ∆Φ of the magnetic flux through the coil:

L =
∆Φ

∆I
. (4.7)

This relation is symmetric, meaning that a change in current I causes a change in magnetic flux
Φ through the coil and any change in magnetic flux through a coil induces a corresponding
current in the coil. In case the system consists of multiple coils C1, . . . ,Cn, the flux Φj through
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L1 L2

R1 R2

d

z1
z2

Figure 4.5: The mutual inductance between two coils only depends on their lengths L, radii R,
their relative distance d and number of windings n.

coil Cj can change not only when the current Ij through Cj changes, but also when any of
the other coils Ck experiences a change in current Ik. The mutual inductance Mjk describes
the change ∆Φi in flux through coil Cj caused by a change in current Ij through coil Cj. The
total change in flux ∆Φ1, . . . ,∆Φn through each coil can thus be written as the product of the
mutual inductance matrix M and the change in current ∆I1, . . . ,∆In through each coil:

⎛⎜⎜⎜⎜⎝
∆Φ1

∆Φ2

...
∆ΦN

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
M11 M12 . . . M1N

M21
. . . M2n

... . . . ...
MN1 . . . . . . MNN

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∆I1

∆I2
...

∆IN

⎞⎟⎟⎟⎟⎠ . (4.8)

Note that M is symmetric (Mjk = Mkj) and that the diagonal elements of M contain the
self-inductances of the coils (Mjj = Lj). The individual elements Mjk of M depend only the
physical parameters of the coils Cj and Ck and their alignment towards each other. Figure
4.5 shows the geometrical parameters relevant for the calculation of the mutual inductance
between two coils.
The derivation of the mutual inductance between two coaxial coils with lengths L1 and L2,
radii R1 and R2, windings n1 and n2 and relative distance d is given by Cohen [134] and only
the main steps are outlined here.

The mutual inductanceMLoop between two coaxial current loops with radiiR1 andR2 separated
by a distance d is given by the integrals over the two current loops:
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MLoop = µ0

2π∫︂
0

2π∫︂
0

R1R2 cos(ϕ1 − ϕ2)

r(ϕ1, ϕ2)
dϕ1dϕ2. (4.9)

The distance r(ϕ1, ϕ2) between the infinitesimal elements along the loop is given by

r(ϕ1, ϕ2) =
√︂
R2

1 +R2
2 + d2 − 2R1R2 cos(ϕ1 − ϕ2). (4.10)

Replacing the integral over both angles with an integral over the difference of the angles ψ and
using symmetry of the cosine, Eq. (4.9) can be rewritten as:

MLoop = 4πµ0

π∫︂
0

R1R2 cos(ψ)√︁
R2

1 +R2
2 + d2 − 2R1R2 cos(ψ)

dψ. (4.11)

In order to calculate the mutual inductance Mj,k between the coils, MLoop is integrated over
the windings of both coils:

M = 4πµ0
n1
L1

n2
L2

z1+
L1
2∫︂

z1−L1
2

z2+
L2
2∫︂

z2−L2
2

MLoopdz1dz2. (4.12)

Integration over z1 and z2 is straight forward and – as expected – the resulting mutual inductance
M depends only on the distance d between the coil centers and not on the absolute positions z1
and z2 of the coil centers:

M = 4πµ0
n1
L1

n2
L2

π∫︂
0

(R1R2)
2 sin2(ψ)

R2
1 +R2

2 − 2R1R2 cos(ψ)

⎡⎣√︄R2
1 +R2

2 +

(︃
d+

L1

2
+
L2

2

)︃2

− 2R1R2 cos(ψ)

+

√︄
R2

1 +R2
2 +

(︃
d− L1

2
− L2

2

)︃2

− 2R1R2 cos(ψ)

−
√︄
R2

1 +R2
2 +

(︃
d+

L1

2
− L2

2

)︃2

− 2R1R2 cos(ψ)

−
√︄
R2

1 +R2
2 +

(︃
d− L1

2
+
L2

2

)︃2

− 2R1R2 cos(ψ)

⎤⎦dψ.

(4.13)

By defining c1 = d+ L1
2 + L2

2 , c2 = d− L1
2 − L2

2 , c3 = d+ L1
2 − L2

2 and c4 = d− L1
2 + L2

2
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the integrals in Eq. (4.13) can be brought to a common form

Vn =

π∫︂
0

(R1R2)
2 sin2(ψ)

R2
1 +R2

2 − 2R1R2 cos(ψ)

√︂
R2

1 +R2
2 + c2n − 2R1R2 cos(ψ)dψ (4.14)

and the mutual inductance can be written as

M = 4πµ0
n1
L1

n2
L2

(V1 + V2 − V3 − V4) . (4.15)

The full derivation of the solution of Eq. (4.14) is given in [134] and only the final form will be
given here. By introducing the parameters

k2n =
4R1R2

(R1 +R2)2 + c2n
, (4.16)

k′2n = 1− k2n, (4.17)

and sin2(θn) =
(R2

1 −R2
2) + c2n(R1 −R2)

2

(R2
1 −R2

2) + c2n(R1 +R2)2
(4.18)

as well as the incomplete elliptic integrals K ′(θ,m) and E′(θ,m) of first and second kind

K ′(φ,m) =

φ∫︂
0

1√︁
1−m2 sin2(α)

dα, (4.19)

E′(φ,m) =

φ∫︂
0

√︂
1−m2 sin2(α)dα. (4.20)

Vn can be expressed as

Vn =− (R2
1 −R2

2)cn
[︁
K(kn)

(︁
K ′(θn, k

′
n)− E′(θn, k

′
n)− E(kn)K

′(θn, k
′
n)
)︁]︁

+
c4n − (R2

1 − 6R1R2 +R2
2)c

2
n − 2(R2

1 −R2
2)

2

3
√︁
(R1 +R2)2 + c2n

K(kn)

+
2(R2

1 +R2
2)− c2n

3

√︁
(R1 +R2)2 + c2nE(kn)−

π

2

√︂
(R2

1 −R2
2)

2c2n. (4.21)

In case the radii of the coils are equal (R1 = R2) or two ends of the coils coincide (cn = 0),
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some of the expressions in Eq. (4.21) vanish or diverge:

1. R1 = R2 = R and c ̸= 0

In case the radii of the coils are equal but the ends do not coincide, the parameters in Eqs.
(4.16 - 4.18) become k2n = 0, k′2n = 1, and sin2(θn) = 0. In this case Vn is given by:

Vn =
c4n + 4R2c2n

3
√︁
4R2 + c2n

K(kn)

+
16R4 − c4n

3
√︁
4R2 + c2n

E(kn). (4.22)

2. R1 ̸= R2 and c = 0

In case the radii of the coils are different but the ends coincide, the parameters are
0 < k2n < 1, 0 < k′2n < 1, and sin2(θn) = 1. Therefore the terms containing the
incomplete elliptic integrals vanish and Vn becomes:

Vn =
−2(R2

1 −R2
2)

2

3(R1 +R2)
K(kn)

+
2(R2

1 +R2
2)

3
(R1 +R2)E(kn). (4.23)

3. R1 = R2 = R and c = 0

If the radii of the coils are equal and the ends coincide, the parameters become k2n =

1, k′2n = 0, and sin2(θn) becomes undefined. However, the terms containing the (in-
complete) elliptic integrals K ′(kn, θn), E

′(kn, θn) and K(kn) vanish and Vn simplifies
to:

Vn =
8R3

3
. (4.24)

The total mutual inductance between two shimming coils can be calculated by summing the
mutual inductances between the individual subcoils taking account of the winding directions.
Table 4.2 shows the mutual inductances between the three subcoils of the B2-coil and the two
coils of the B1-coil.
The matrix element corresponding to the total mutual induction between two shimming coils in
Eq. (4.8) is the sum of mutual inductances between the subcoils. Given the design parameters
listed in Tab. 4.1, the mutual inductance matrix M of the shielding and shimming coil system is
given by:
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B2 coil left B2 coil center B2 coil right
B1 coil left 0.47mH −0.26mH 0.07mH

B1 coil right −0.07mH 0.26mH −0.47mH

Table 4.2: Mutual inductance between the subcoils of the B2 and B1 shimming coils. The total
mutual inductance between the two coils is given by the sum of all values in the table.

M =

⎛⎜⎜⎜⎜⎝
2.30 0 1.04 0.97

0 0.42 0 0

1.04 0 13.39 12.95

0.97 0 12.95 13.03

⎞⎟⎟⎟⎟⎠mH. (4.25)

4.4 Calculation of shielding factors

The Antiproton Decelerator (AD), which is used to supply the experiments with low energy
antiprotons, uses dipole and quadrupole magnets to define the trajectory of the antiprotons
during deceleration. The magnetic field which is required to prevent the antiprotons from
hitting the wall of the AD’s vacuum chambers changes with the energy of the antiprotons.
Therefore, the current in the AD’s bending magnets changes with a period of roughly 120 s. This
change in current also changes the magnets’ far fields which causes the cyclotron frequency in
the precision trap to fluctuate by up to 10Hz peak-to-peak per deceleration cycle [122]. The
influence of the AD can be partially mitigated by synchronizing the measurement sequence to
the deceleration cycle of the AD, however, high-precision measurements require these external
fluctuations to be shielded. Gabrielse and Tan suggested placing a superconducting coil which
counteracts external fluctuations of the magnetic field around the trap can [131]. The following
derivation of shielding factors is outlined in [131].
In case a superconducting coil with self-inductance L is wound around the trap can, a homo-
geneous change of the external magnetic field Bext along the symmetry axis of the coil will
change the magnetic flux Φ =

∫︁
A

BextdA through the coil. Note that the flux surface A is given

by the product of the cross-section πr2 and the number of windings of the individual subcoils,
taking the direction of winding into account. Using Eq. (4.7) we can calculate the induced
current I that counteracts the change in magnetic flux:

I =
Φ

L
=

∫︁
A

BextdA

L
=
A

L
Bext. (4.26)

Given that the shielding coil is superconducting, the induced current I will continue to flow
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Figure 4.6: Inverse shielding factor at the center of a single air-core solenoid for different length
to diameter ratios l

d . At l
d ≈ 0.876 homogeneous external fluctuations are shielded

completely.

indefinitely. This current produces a magnetic flux density BCoil at the position of the particle
that depends on the transfer function g = ∆BCoil

I of the coil. The total change of the magnetic
flux density ∆B at the location of the particle is given by

∆B = Bext −BCoil = Bext − gICoil = Bext − gBext
A

L
= Bext

(︃
1− gA

L

)︃
(4.27)

and thus external fluctuations are reduced by the inverse shielding factor S−1 = 1− gA
L . Figure

4.6 shows the inverse shielding factor at the center of a solenoid for different length to diameter
ratios l

d . At a ratio l
d ≈ 0.876 the solenoid shields external homogeneous fluctuations of the

magnetic field completely.
In case there are multiple coils involved, calculation of the shielding factor is more complicated.
When the external magnetic field changes, currents are induced in all coils and the mutual
inductances Mjk between the coils start to play a role. The currents I1, . . . , IN in the individual
coils can be determined by solving:
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⎛⎜⎜⎜⎜⎜⎝
M11 M12 . . . M1n

M21
. . . M2n

... . . . ...
Mn1 . . . . . . MNN

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
I1

I2
...
IN

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
A1

A2

...
AN

⎞⎟⎟⎟⎟⎠Bext. (4.28)

Once the currents are known, the magnetic flux density created by the coil system can be
calculated by adding the contributions of the individual coils. If the transfer functions g1, . . . , gN
of the individual coils are written as a vector g, the change in flux density ∆B experienced by
the particle is given by:

∆B = Bext − g⊺I = Bext − g⊺M−1ABext = Bext(1− g⊺M−1A). (4.29)

In this case, the inverse shielding factor S−1 is given by:

S−1 = (1− g⊺M−1A). (4.30)

Table 4.3 shows the inverse shielding factor S−1 as well as the shielding factor S of all possible
coil configurations. The highlighted rows indicate the configurations in which all coils are
active (shimming and shielding) or only the SSC is active (shielding only). The system was
designed to provide good shielding in both of these cases. Note that the high shielding factors
given in Tab. 4.3 will not be achieved in the physical realization of the system since multiple
assumptions which were necessary for the calculation of the mutual inductances and shielding
factors are not valid in the experiment:

1. The wire used to wind the coils has a finite diameter (150 µmwhich causes the mutual- and
self-inductances to be different from the ones that were calculated using the approximation
of a continuous current sheet.

2. Fitting the coil system with quench heaters and placing the persistent joints outside of the
high field region requires additional wire which is not accounted for in the calculations.

3. The coils are wound on top of each other using PTFE tape to fixate the coils and Kapton
sheets to separate them and provide a flat surface to wind the next layer on. For the
purpose of designing the system, it was estimated that this increases the diameter by
1mm per layer.

4. Given the distance between the BASE coil system and other sources of magnetic field
in the AD hall it can be assumed that the external fluctuations of the magnetic field are
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B2 coil B1 coil B0 coil SSC S−1 S
inactive inactive inactive inactive 1 1

active inactive inactive inactive 1.0004 0.999 963

inactive active inactive inactive 1 1

inactive inactive active inactive −0.010 351 1 −96.6082

inactive inactive inactive active 4.722 77× 10−5 21 174

active active inactive inactive 1.000 04 0.999 963

active inactive active inactive 0.000 229 08 4365.29

active inactive inactive active 0.011 536 4 86.6822

inactive active active inactive −0.010 351 1 −96.6082

inactive active inactive active 4.722 77× 10−5 21 174

inactive inactive active active −0.014 034 8 −71.2514

active active active inactive 0.000 229 08 4365.29

active active inactive active 0.011 536 4 86.6822

active inactive active active −0.002 866 13 −348.902

inactive active active active −0.014 034 8 −71.2514

active active active active −0.002 866 13 −348.902

Table 4.3: Shielding factors of all possible coil configurations. The highlighted configurations
correspond to the two main modes of operation the system was designed for.

homogeneous over the length of the coil system, however, they are not necessarily aligned
along the axis of the coil system. Given that the shielding system only compensates the
component along the trap axis, external fluctuations in the radial direction can change the
misalignment between the electric and magnetic field of the trap which leads to higher
order shifts.

4.5 Monte-Carlo simulations of the coil system

The coil system in wound by hand of the outside of the trap coil and thus it is expected
that the lengths and positions of the individual subcoils deviate from the design values. In
order to estimate the expected deviations of the transfer functions and shielding factors of the
implemented system from the values calculated in sections 4.2 - 4.4, Monte-Carlo simulations
of the system were carried out. For each subcoil, the position, length, radius and number of
windings were varied by drawing from independent Gaussian distributions and the transfer
functions, mutual inductances, shielding factors and coupling constants were calculated. Given
the accuracy with which the position on the outside of the trapcan could be determined, the
standard deviation of the position was set to 1mm, whereas length and radius were chosen
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to have a standard deviation of 0.5mm given the estimated flatness of the Kapton sheets on
which the coils were wound. The number of windings was simulated with a standard deviation
of 1 winding to account for counting errors. The whole system was simulated 1000 times and
the distributions of the calculated parameters were plotted. The distributions of the transfer
functions as well as the mutual inductances and inverse shielding factors of the B2 coil the
B0 coil and the SSC roughly follow Gaussian distributions as the relative errors on the design
parameters are low. However, the shielding factors as well as the coupling constants depend on
the relative distances and differences in the inductances of the coils. Therefore small deviations
in the characteristics of one coil can have a large influence on the shielding factor and coupling
constant. Figures 4.7a and 4.7b show the distributions of the B2 transfer function of the B2 coil
as well as the coupling factor between the B0 coil and the SSC.
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Figure 4.7: (a) The distribution of the simulated B2 transfer function of the B2 coil roughly
follows a Gaussian distribution as small deviations from the design value result
in small deviations of the transfer function. (b) The coupling factor k(B0, SSC)
between the B0 coil and the SSC has to be below 1 and can not be approximated by
a Gaussian distribution.

In order to quantify how much deviation between the measured parameters and the design
values is to be expected given the uncertainties in manufacturing, the mean and standard
deviation of the simulated parameters was determined. Table 4.4 summarizes the results of the
Monte-Carlo simulations for the transfer functions and inverse shielding factors. The relative
deviation between the design value µDesign and simulation result is given by dividing the mean
µMC of the simulated parameter by the design value. The relative uncertainty is given by as
the ratio of simulated standard deviation σMC and simulated mean µMC . Matrices 4.31 and
4.32 give the mean and standard deviation of the mutual inductance matrix MMC and coupling
matrix kMC respectively.
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Parameter µDesign µMC σMC
µMC

µDesign

⃓⃓⃓
σMC
µMC

⃓⃓⃓
B2(B2 coil) [ T

m2 A
] 1.87 1.86 0.14 0.994 0.08

B1(B2 coil) [ mT
mA ] 0 0.32 4.18 - 13

B0(B2 coil) [mT
A ] −3.6× 10−4 −0.001 0.058 3.37 48

B2(B1 coil) [ T
m2 A

] 0 −7× 10−4 0.041 - 62

B1(B1 coil) [ mT
mA ] −26.00 −25.97 0.68 0.998 0.03

B0(B1 coil) [mT
A ] 0 3× 10−4 0.02 - 84

B2(B0 coil) [ T
m2 A

] −1.60 −1.60 0.03 1.0001 0.018

B1(B0 coil) [ mT
mA ] 0 −0.08 3.16 - 79

B0(B0 coil) [mT
A ] 0 0 0 0 0

B2(SSC) [ T
m2 A

] 0 0 0 0 0

B1(SSC) [ T
mA ] 0 0 0 0 0

B0(SSC) [mT
A ] 0 0 0 0 0

Table 4.4: Comparison between the design parameters and the results of the Monte-Carlo
simulations.

MMC =

⎛⎜⎜⎜⎜⎝
2.3(1) 0.0(4) 1.03(7) 0.97(7)

0.00(4) 0.42(2) 0.00(5) 0.00(6)

1.03(7) 0.00(5) 13.4(3) 12.8(3)

0.97(7) 0.00(6) 12.9(3) 13.04(3)

⎞⎟⎟⎟⎟⎠mH. (4.31)

kMC =

⎛⎜⎜⎜⎜⎝
1(0) 0.00(4) 0.19(2) 0.18(2)

−0.00(4) 1(0) −0.00(2) 0.00(2)

0.19(2) 0.00(2) 1(0) 0.97(2)

0.18(2) 0.0(2) 0.97(2) 1(0)

⎞⎟⎟⎟⎟⎠ . (4.32)

4.6 Loading scheme

In order to compensate the residual inhomogeneities B2 and B1 in the precision trap, it is
necessary to load current into the B2 and B1 coil. Once loaded, the current in the superconducting
coils keeps flowing and only changes if the magnetic flux through the coil changes (inductive
change) or the coil is quenched (external change). Note that all external changes of current
require the coil to be quenched. If a loading current IL is applied to the loading joints while the
coil is persistent, the current can either bypass the coil (IB) or flow through the field-creating
part of the coil (IC ). However, any fraction of the loading current IC flowing through the
field-creating part causes a change in magnetic flux through the coil and thus results in an
induced current II = IC of the same magnitude flowing in the opposite direction. The net
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Figure 4.8: Applying a loading current IL to a persistent coil does not change the current
through the coil as any current IC flowing through the field-creating part induces a
current II of same magnitude in the opposite direction. Therefore, the net current
in the field-creating part of the coil is IC − II = 0 and the current in the quench
branch IB + IC = IL is equal to the full loading current.

current flowing in the field-creating part of the coil is therefore IC − II = 0 and the whole
loading current IL = IB + IC bypasses the field-creating part of the coil. Figure 4.8 shows the
currents in case the coil is persistent. Thick lines indicate superconducting wires. For the sake
of clarity, components present in Fig. 4.2 that are irrelevant to the process are not shown.
Loading a coil with a persistent current requires multiple steps which are outlined below and
shown in Fig. 4.9a - 4.9d:

1. The quench current IQ ≈ 5mA is applied and power is dissipated in the quench resistor
RQ = 120Ω. Part of the quench branch of the superconducting coil is raised above the
critical temperature and becomes resistive adding the small resistance RW in the coil
branch bypassing the field-creating part.

2. Immediately after applying the loading current IL, an opposite current that counteracts
the change in magnetic flux through is induced in the coil. This current decays over the
resistive part of the wire with time constant τ = L

R . After a short time, the whole loading
current flows through the coil and the magnetic flux through the coil has changed.

3. After current flows through the coil, the quench current IQ is removed and the coil
becomes persistent again. The loading current keeps running through the coil in order to
conserve the magnetic flux.

4. Once the coil is persistent, the flux in the coil is conserved. If the external loading current
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is removed, flux conservation keeps the current through the coil constant and the circuit
is closed through the superconducting bypass.

IQ

IQ

RQ

IQ

IL RW Coil

(a) The quench current IQ dissipates power in
the quench heaterRQ and warms up part of
the superconducting wire above its critical
temperature. This creates a small resistance
RW in the superconducting coil.

IQ

IQ

RQ

IQ

IL

IL

IL IL

IL

ILRW Coil

(b) Applying a loading current to the coil ini-
tially creates an induced current of same
magnitude in the opposite direction, how-
ever, this current decays over RW with a
time constant τ = L

R and after a short time
the full loading current flows through the
coil.

IQ RQIL

IL

IL IL

IL

ILCoil

(c) After removing the quench current and mak-
ing the coil persistent, flux conservation
keeps the current flowing through the field-
creating part of the coil.

IQ RQIL

IL

IL

ILIL Coil

(d) After the external loading current is re-
moved, the current flowing in the coil is
conserved and the system can be decoupled
from the outside to reduce noise.

Figure 4.9: Coil loading scheme: (a) Apply quench current. (b) Apply loading current. (c) Remove
quench current. (d) Remove loading current.

In case that multiple persistent coils are present, loading is not as simple as outlined above as
the mutual inductance between the coils causes an inductive change of the current in coil Cj

when coil Ck is loaded externally. The straight forward approach to circumvent this problem is
quenching all coils simultaneously, applying the loading currents and unquenching all coils
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together. However, when this loading scheme is applied in the experiment, the combined power
dissipation of all quench currents running simultaneously heats part of the field-producing
branch of the coil above its critical temperature. As a result, no persistent path exists between
the two loading joints and the loading current dissipates further power in the superconducting
coil. Even if the quench currents are removed, any current flowing through the coil decays over
the resistive wires in the field-creating path and no current is loaded in the coil. In order to
reliably load the desired currents into the system the coils are loaded and quenched in series. The
change in current in each coil is therefore described by a series of inductive changes according
to Eq. (4.8) and external changes which set the current in a coil to the external current. The
loading sequence typically used to load the B2 coil is outlined below:

1. All coils are quenched to start the loading sequence from a defined state.

2. The quench currents are removed from the B1 coil, the B0 coil and the SSC to reduce the
thermal load in the system.

3. The B2 loading current is applied and the flux through the coils changes. This causes
current to be induced in the B0 coil and the SSC.

4. The B2 quench current is removed and the B2 coil becomes persistent.

5. The B2 loading current is removed and loading of the B2 coil is finished.

6. The B1 coil is quenched and any current that was inductively loaded in the B1 coil decays.

7. The B1 quench current is removed and the B0 coil and the SSC are quenched simultane-
ously. After this step, no current flows in either the B0 coil or the SSC.

Table 4.5 summarizes the timings and currents of the sequence outlined above. The B0 coil and
SSC are quenched after the B1 coil since residual currents in the B1 coil have practically no
influence on the loaded B2 and B0 values.
The real currents loaded into the coils after the sequence has finished can be calculated using
a series of flux-conserving and flux-changing steps. When a subset Cquenched of the coils is
quenched, the currents through these coils are given by the externally applied loading currents
or 0 in case of the SSC). If this process causes a change ∆Iquenched in the currents through
the quenched coils Cquenched, the magnetic flux through the persistent coils Cpersistent would
change according to Eq. (4.8):

∆Φpersistent =MLoad∆Iquenched. (4.33)
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t[s] IB2,Q[mA] IB1,Q[mA] IB0,Q[mA] ISSC,Q[mA] IB2,L[mA] IB2,L[mA] IB2,L[mA]

0 5 5 4 5 0 0 0

30 5 0 0 0 0 0 0

60 5 0 0 0 100 0 0

70 0 0 0 0 100 0 0

100 0 0 0 0 0 0 0

150 0 5 0 0 0 0 0

170 0 0 4 5 0 0 0

190 0 0 0 0 0 0 0

Table 4.5: Loading sequence used to load the B2 coil with 100mA. Initially, the B2 coil is loaded
and the B0 coil and SSC are charged up inductively. Afterward the other coils are
quenched sequentially in order to keep the thermal load small. Given their large
mutual inductance, the B0 coil and the SSC have to be quenched simultaneously.

MLoad is the mutual inductance matrix containing only the rows corresponding to the persistent
coils and only the columns corresponding to the quenched coils. MLoad therefore describes
the change of flux through the persistent coils changes by a change in current through the
quenched coils. Given that the flux through persistent coils can not change (see Fig. 4.8),
currents ∆Ipersistent are induced in the persistent coils such that the overall change in flux
through the persistent coils is conserved:

Mpersistent∆Ipersistent +MLoad∆Iquenched = 0. (4.34)

Mpersistent is the mutual inductance matrix containing only the rows and columns of the
persistent coils as any induced change of current in a quenched coil decays rapidly. The induced
current changes ∆Ipersistent are therefore given by

∆Ipersistent = −M−1
persistentMLoad∆Iquenched. (4.35)

Figure 4.10 shows the normalized currents flowing in the individual coils as a function of time
for the sequence that was typically used to load the B2 coil. When the loading current is applied
to the B2 coil, mutual inductance causes currents to be induced in the B0 coil and the SSC. In
order to ensure that only the B2 coil carries current, the B0 coil and the SSC are quenched
simultaneously once B2 is loaded. Quenching the B0 coil and the SSC changes the flux through
the B2 coil and thus, some of the loaded current is lost and once the scheme is finished only
approximately 96% of the applied current is expected to be loaded into the B2 coil.
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Figure 4.10: B2 coil loading sequence: (a) Applied quench currents as a function of time. For
the sake of clarity, the plots have bees shifted slightly to avoid overlapping. (b)
Currents flowing in the individual coils as a function of time. When loading current
is applied to the B2 coil, currents are induced in the B0 coil and the SSC. After the
B2 coil is loaded, the other coils are quenched sequentially in order for the inductive
currents to decay.
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4.7 Experimental realization of the coil system

The shimming coils are wound out of 150 µm diameter superconducting niobium-titanium
(Nb-Ti) wire. To prevent shorts and to provide a flat surface for winding, an insulating Kapton
layer was placed between the different layers of the shielding system. Once wound, each coil
was fixed in place with PTFE tape. In order to provide enough space to fit the coils with loading
joints and to close the coils with a persistent joint, multiple meters of spare wire were left on
either side of each coil.
Once a shimming coil was wound, it was equipped with loading joints. These joints are necessary
to change the current through the shimming coils. The loading joints are realized by winding
the bare Nb-Ti wire around a 1mm thick low-resistance OFHC copper wire. The general design
is outlined in [133] and the main manufacturing steps are described below:

1. The insulating varnish is removed along an approximately 3 cm long stretch of the spare
wire on either side of the coil.

2. The bare wire is cleaned using Acetone and Isopropyl alcohol.

3. An approximately 5 cm long piece of 1mm thick high-purity OFHC copper wire is
prepared and cleaned using Acetone and Isopropyl alcohol.

4. The bare Nb-Ti wire is wound in a helix around the OFHC wire.

5. A thin (250 µm/500 µm) copper wire is cleaned and tightly wound around the OFHC wire.
This presses the Nb-Ti wire against the thick OFHC wire.

6. The joint is fixed by covering the assembly in solder. Figures 4.11a and 4.11b show the
loading joint before and after fixation by soldering.

7. A long piece of OFHC wire is soldered to the loading joint.

8. The loading joint is wrapped in PTFE tape to prevent shorts and protect the joint

9. The joint is fixed on the trap can with PTFE tape.

10. The long piece of OFHC wire is inserted in a PTFE sleeve and wrapped around the trapcan
to provide good thermal contact. This prevents power dissipated by the loading current
in the low-resistance wires connecting the 4K stage to the 77K stage from heating up
the loading joint.
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11. One loading joint is grounded on the trap can while the other is fitted with long 250 µm
thick Manganin wire to connect the loading joint to the 77K stage in the experimental
apparatus.

(a) (b)

Figure 4.11: (a) Loading joint before fixation by soldering. A tightly wrapped copper helix
presses the Nb-Ti wire against the OFHC wire. (b) The joint is fixed by covering
the assembly in solder.

In order to allow current to flow persistently once loaded, the coil has to be closed with a
persistent joint. The persistent joints were manufactured using the technique developed in
[133]. A summary of the individual steps is given below:

1. The last 3 cm of each wire are cleaned using sandpaper to remove the insulating varnish.

2. The ends are cleaned using acetone and isopropyl alcohol to remove grease.

3. The ends are pulled through a metal ferrule until about 2 cm of wire are visible.

4. The wires are fixed in the ferrule by filling it with solder.

5. The protruding ends are cleaned with Acetone and isopropyl alcohol again.

6. The wires are twisted tightly around each other and the last 5mm of this twisted pair is
cut to provide a clean spot for welding.

7. The wires are spot welded under inert atmosphere using a PUK U5 spot welder (2%
power at 1ms welding time).

8. The resulting weld is cleaned using acetone and isopropyl alcohol.
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Figure 4.12: Image of a persistent joint after spot welding. The shiny ball forms a superconduct-
ing connection between the twisted pair of NbTi wire. In order to protect the joint,
the joint is retracted into the ferrule filled with solder and wrapped in PTFE tape.

9. The joint is examined under a microscope. Figure 4.12 shows an image of a persistent
joint. If the welding spot looks stained or breaks easily under mechanical stress the joint
is assumed to be resistive, the wire is cut behind the ferrule and the process is started
again from 1.

10. If the joint looks good, the solder in the ferrule is reheated and the twisted wire is pulled
back into the ferrule to protect the welding spot.

11. In the final assembly, the persistent joints were guided out of the region of high magnetic
field and fixed to the mechanical support of the trap can. Figure 4.15 shows the location
of the persistent joints in the experimental assembly. The coil system and quench heaters
are covered by tightly wound copper braid to ensure good thermalization.

All coils were equipped with quench heaters providing the possibility to locally quench part of the
superconducting coil. The quench heaters are realized by wrapping part of the superconducting
NbTi coil wire around a 120Ω resistor. The resistor is then wrapped in PTFE tape, fitted with
250 µmManganin wires and fixed to the trap can with multiple layers of Kapton sheets providing
thermal insulation between the quench heater and the trap can. Figure 4.13 shows a quench
heater before it is wrapped in PTFE tape and fixed to the trap can.

99



Figure 4.13: Part of the superconduction wire of the coil is wrapped around a 120Ohm resistor.
By running current through the resistor, the superconducting wire is heated above
its critical temperature and the coil is locally quenched.
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The quality of the manufactured joints was tested in a cryogenic assembly driven by a Gifford-
McMahon cryocooler (Sumitomo SRDK-408D2). Figure 4.14 shows a schematic cross section
through the test setup. The coil under test (green) is attached to the cryocooler, pumped to a
pressure of and cooled down to approximately 5K. A NVE AA002 GMR sensor (yellow) is placed
close to the center on the axis of the test coil and connected to a voltmeter. The loading joints
(blue) and quench heater (red) are connected to independent current supplies. An excitation coil
(orange), wound on the 77K heat shield of the assembly, provides the opportunity to change
the magnetic flux through the test coil.
In order to test if the persistent joint is superconducting, the test coil is quenched an excitation
current IExc is applied to the excitation coil. Next, the quench current is taken away, the quench
heater is given time to cool down and the excitation current is removed. Removing the field
created by the excitation coil changes the flux through the test coil and thus induces a current
in the test coil. In case the superconducting joint works, the induced current keeps flowing
and creates a magnetic field at the position of the GMR sensor which results in an output
voltage VGMR, Loaded. Next, the test coil is quenched and the output voltage VGMR, Quenched of the
GMR sensor is compared to VGMR, Loaded. In case the output voltages changes significantly after
quenching, current was flowing in the coil and thus the joint is superconducting.
The loading joints are tested in a very similar manner by applying the scheme outlined in
chapter 4.6. As a first step, the coil is quenched by running current through the quench heater.
Once part of the test coil has lost superconductivity, an external loading current ILoad is applied
and creates a magnetic field at the position of the GMR sensor. The output voltage VGMR, Quenched

is measured and the quench current is taken away. Once the coil has been given sufficient time
to cool down and become superconducting, the loading current can be taken away without
changing the current through the coil. By measuring the output voltage VGMR, Persistent of the
GMR sensor and comparing it with VGMR, Quenched, the fraction of the current that has been
persistently loaded into the coil can be determined.
The maximum current that can be loaded into the coil is limited by the performance of the
loading joints as well as the persistent joint. Given that spot welding NbTi significantly reduces
the critical current density in the join region [135], the maximum current that can flow through
the persistent joint without quenching it varies from joint to joint. Additionally, the maximum
loading current is limited by the resistance RL and the thermal anchoring of the loading joints.
As long as the external loading current ILoad is applied, it dissipates the power P = ILoadRL in
the loading joints. If the thermal connection between the loading joints and the trap can is bad,
the loading joints are heated above the critical temperature of the NbTi wire and the coil stays
locally quenched even if no quench current is applied. In this case, the current running through
the test coil decays over these resistive parts of the coil as soon as the external loading current
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Figure 4.14: Schematic cross-section through the cryogenic setup used to test the manufacturing
process. Joints can be tested by loading the superconducting coil inductively with
an external solenoid or by direct loading via the loading joints. A GMR sensor
located in the center of the test coil measures the magnetic field and can be used to
determine if the test coil is persistent.

is taken away.
One way to overcome the limitations introduced by the residual resistance of the loading joints is
to reduce the amount of energy E = PtLoad that is deposited in the loading joints by decreasing
the time tLoad during which the loading current is applied. Typical maximum loading currents
that could be applied to the loading joints for extended periods of time were of the order of
3A, however, due to saturation of the GMR sensor it was not possible to determine if the full
current was loaded persistently. These values are comparable to the maximum loaded current
of 2.5A quoted in [133] that was used to design the coils.
First test of the system in the superconducting magnet of the experiment showed that the
performance that was observed in the cryogenic test setup could not be reproduced. Quenching
the coils and applying an external loading current caused a significant change in the magnetic
field, however, no current could be loaded into the coils. Given that applying the loading current
did not change the resistance over the loading joints, we conclude that the joints were not
heated above the critical temperature and the maximum current was limited by the persistent
joint. Since the critical current density depends on the temperature as well as the magnetic field
a second system was wound and fitted with enough wire on both ends of the coil to move the
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Figure 4.15: Position of the shielding system and the persistent joints in the final assembly. The
persistent joints are moved out of the region of high magnetic field.

persistent joint out of the region of high field. Figure 4.15 shows the location of the persistent
joints in the experimental assembly. The NbTi wires connecting the joints with the coils are
guided on the surface of the experimental assembly and are covered by tightly wound copper
braid to ensure good thermalization.
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5 Precision trap measurements

The precision trap provides an environment in which frequencies can be measured at low
uncertainty as the homogeneous fields strongly suppress systematic shifts. In order to compare
the charge-to-mass ratios of two particles, their free cyclotron frequencies νc,1 = 1

2π
q1
m1
B0 and

νc,2 = 1
2π

q2
m2
B0 are measured in the common magnetic background field B0 present in the

precision trap. In case the particles have similar eigenenergies their radii are identical and the
particles probe a common magnetic field. In this case, the ratio

R =

q1
m1
q2
m2

=
νc,1
νc,2

(5.1)

does not depend on the magnetic background field. Charge-to-mass ratio measurements thus
require a good understanding of the particles’ temperatures and higher order coefficients in the
expansion of the magnetic and electric fields which lead to systematic shifts.
In case the g-factor of the proton or antiproton are measured, the Larmor frequency νL and the
free cyclotron frequency νc have to be determined in a common magnetic field and g

2 is given
by

g

2
=
νL
νc
. (5.2)

By determining both νc and νL in the highly homogenous precision trap, systematic effects that
lead to broadening of the respective lineshapes are suppressed [127]. However, given the high
harmonicity of the fields in the precision trap, the spin state of a particle can not be determined
in the precision trap and thus the determination of the Larmor frequency νL requires a second
trap, called Analysis trap (see chapters 3.5 and 7). Compared to measurements in a single trap
[88], application of this multi-trap scheme [68] lead to a reduction in the uncertainty of the
antiproton magnetic moment by more than a factor 500.
The final uncertainty for charge-to-mass ratio measurements thus depends on the ability to
resolve the free cyclotron frequency νc at high precision. For g-factor measurements, the free
cyclotron frequency νc as well as the Larmor frequency νL need to be determined. Therefore, it
is crucial to understand and minimize the influence of systematic shifts caused by imperfections
of the electrostatic and magnetic fields in the precision trap.
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5.1 Axial frequency determination

As outlined in chapter 3.3.1, the axial frequency νz is measured using a superconducting
cryogenic detection circuit [96]. All traps in the BASE experiment are equipped with an axial
detector which cools the axial motion of the particle. Typically, the axial frequency of the
particle is tuned to be in resonance with the frequency of the detection circuit, however, a
novel detection scheme using a detuned particle was theorized and experimentally tested in the
course of this thesis.

5.1.1 Dip-based detection

In order to detect the axial frequency of a trapped particle, the ring voltage is changed such that
the particle’s axial frequency νz matches the resonance frequency ν0 of the detection circuit.
In this case, the particle shorts the thermal noise spectrum of the resonator and the resulting
spectal noise density S(ν) is given by Eq. (3.6). By introducing the resonator width ∆ν0 =

ν0
Q

and the dip width ∆νz =
γ
2π , the equation can be rewritten as

S(ν) =

⌜⃓⃓⃓
⎷ n21

1 +

[︃
1

∆ν0
(ν20−ν2)(ν2−ν2p)+∆νzν2

ν(ν2−ν2p)

]︃2 + n20. (5.3)

In order to determine the particle’s axial frequency, Eq. (5.3) is fitted to the log. axial spectrum
acquired with the spectrum analyzer. The signal in each frequency bin follows a log. chi-
distribution with the number of the degrees of freedom depending on the averaging time
and span of the spectrum. Nevertheless, the spectra are fit using robust least-squares fitting
algorithms which yield a fit scatter well below the uncertainty introduced by systematic shifts.
Figure 5.1 shows a typical axial spectrum.
In the presence of magnetic inhomogeneities and anharmonicities of the electrostatic field
created by the trap electrodes, the axial frequency depends on the energy of the trapped
particle’s eigenmodes. The anharmonicity of the magnetic field is characterized by the higher
order terms C3, C4, ... in the expansion of the electrostatic potential around the minimum

Φ(z) = (C0 + C2z
2 + C3z

3 + C4z
4 + ...)× V0. (5.4)

Given the symmetric design of the trap, odd coefficients are strongly suppressed and the main
contributions to the energy dependency of the particle’s frequency are given by C4 and C6.
Under ideal conditions the tuning ratio applied to the correction electrodes can be chosen such,
that C4 and C6 vanish simultaneously. However, in case the tuning ratio deviates from the
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Figure 5.1: Typical dip spectrum of a particle in the precision trap. At its axial frequency νz ,
the particle shorts the noise of the resonant detection circuit to the background
noise level. The width ∆ν = γ

2π =
Rpq2

2πmD2 of the dip is determined by the cooling
time constant γ and depends on charge q and mass m of the particle, the parallel
resistance Rp of the detection circuit and the effective electrode distance D which
depends on the trap geometry and the coupling of the electronic readout to the trap.
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ideal value, C4 and C6 no longer vanish. The change of C4 and C6 with the tuning ratio is
characterized by the geometry dependent parameters D4 and D6 as described in chapter 2.2.
Combining the calculated values of D4 = −1.3× 109 1

m2U
and D6 = 6.76× 1013 1

m4U
with Eq.

(2.40) provides the possibility to calculate the systematic shift ∆νz of the axial frequency with
the energies Ez and E+ in case the tuning ratio deviates by ∆TR from the ideal tuning ratio.
Given that ∆TR is typically optimized to less than 1× 10−5 and the axial temperature is on
the order of 10K, the related shifts are on the order of:(︃

∆νz
νz

)︃
D4

=
3

2

1

4π2mν2z

D4

C2
Ez∆TR = 0.62

1

eVU
Ez∆TR ≈ 5× 10−9. (5.5)

In addition, the frequency detection chain consisting of the single-sideband down-converter
and the FFT can introduce a systematic shift that has to be characterized directly by measuring
the output on the FFT for a known input signal.
Beside the systematic shifts outlined above, fitting the line shape to the noise spectrum introduces
a statistical uncertainty. The uncertainty of the fitted axial frequency depends on the width of
the dip feature, the bin width, the signal-to-noise ratio, which describes the difference between
the resonator noise level and the dip noise level, and the noise on the line shape which is a
function of the averaging time. In case the FFT span and averaging time are kept constant, the
statistical fit uncertainty is determined by the physical parameters of the trap and resonator
system which are hard to modify and place a lower bound on the statistical uncertainty.

5.1.2 Dispersive peak based detection

Detection of spinflips in the Analysis trap require the resolution of small changes in the trapped
particle’s axial frequency. In the following section, a novel approach for the detection of changes
in the axial frequency of a trapped particle is presented, which circumvents the limits imposed
by the dip width and SNR and provides the possibility to determine a particles spin-state at low
averaging times, thus increasing the cyclotron temperature acceptance for high-fidelity spin-
state detection [102], which drastically reduces the particle preparation time by sub-thermal
resistive-cooling [88].
Equation (5.3) describes the lineshape for a particle centered on the resonator. However, Eq.
(5.3) also applies in the case of a cold particle which is detuned from the resonator. Figure
(5.2) shows the lineshape for different particle frequencies at constant resonator frequency. At
ν = νp the noise spectrum is shorted to the background noise level n0, however, the interaction
between the impedance of the particle and the impedance of the detector results in a noise peak
close to the particle frequency. Just considering the impedance aspects of this system, the noise
level on top of this peak is independent of the detuning and is given by the top noise level n1.
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The noise-floor level is defined by the resonator background noise level at the peak frequency.
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Figure 5.2: Lineshape for different resonator-particle-detunings ∆f at a constant resonator
frequency. Maximum and minimum of the dispersive feature are independent of
detuning.

For large enough detunings ∆ν, the lineshape can be described as the undisturbed resonator
and a narrow dispersive feature created by the particle. Figure 5.3 shows this dispersive feature
for a constant particle frequency and varying resonator-particle-detuning.

4 2 0 2 4 6
Frequency - 639645 (Hz)

100

95

90

85

80

75

70

Si
gn

al
 (d

B V
pk

)

 = 0 Hz
 = 10 Hz
 = 20 Hz
 = 50 Hz
 = 100 Hz

Figure 5.3: Lineshape for different resonator-particle-detunings ∆ν at a constant particle fre-
quency. Increasing the detuning decreases the peak’s width and causes it to move
closer to the dip at the particle frequency.

The position of the maxima can be calculated by minimizing the denominator in Eq. (3.6) which
is equivalent to solving:

Q

ν0
(ν20 − ν2)(ν2 − ν2p) +

γ

2π
ν2 = 0. (5.6)

Since ν appears only in even powers this equation can be solved and yields the following peak
positions:
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ν1/2 =

⌜⃓⃓⎷1

2

(︃
ν20 + ν2p +

γν0
2πQ

)︃
±
√︄

1

4

(︃
ν20 + ν2p +

γν0
2πQ

)︃2

− ν20ν
2
p . (5.7)

Given that γ0ν0
2πQ is small compared to ν20 and ν2p , approximate solutions can be obtained:

ν1/2 ≈

√︄
1

2
(ν20 + ν2p)±

√︃
1

4
(ν20 + ν2p)

2 − ν20ν
2
p (5.8)

≈
√︃

1

2
((ν20 + ν2p)± (ν20 − ν2p)) (5.9)

≈ 1

2
((ν0 + νp)± (ν0 − νp)). (5.10)

As expected, ν1 ≈ ν0 corresponds to the resonator peak while ν2 ≈ νp corresponds to the
dispersive feature close to the particle’s axial frequency. Figure 5.4 shows the difference between
the peak frequency νPeak and the true particle frequency νp as a function of the detuning ∆ν

for typical conditions. The peak frequency approaches the particle frequency with increasing
detuning asymptotically. For large detunings, changes in the particle’s axial frequency are
therefore transferred directly to the peak frequency ∆νPeak. Therefore, changes in the peak
frequency be used to detect changes in the particle’s axial frequency ∆νz .
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Figure 5.4: Difference between the peak frequency fPeak and the true particle frequency fp as
a function of the detuning ∆f for typical conditions.

Calculating the -3 dB width of the peak analytically is possible since 4th order polynomials
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have analytic solutions, however, calculation of the analytic solution is limited by the machine
precision and a numerical calculation is more efficient. Since spectra are usually fit in log-units,
the FWHM of the log-peak feature is used to characterize the peak width. Figure 5.5 shows the
log-FWHM of the dispersive feature as a function of the detuning ∆ν for typical conditions. As
the detuning increases, the damping the resonator imposes on the particle vanishes and the
width of the dispersive feature decreases.
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Figure 5.5: FWHM of the dispersive peak as a function of the detuning ∆f for typical conditions.
Note that since fitting is done in log. units, this width does not correspond to the -3
dB width.

Due to the finite acquisition time, the experimentally observed lineshape Sexp(ν) is however
influenced by the window function w(t) applied to the measured time series. Using the convo-
lution theorem, the experimentally observed noise spectrum Sexp(ν) can be calculated as the
convolution of the theoretical power spectral density S2(ν) and the squared Fourier transform
W 2(ν)of the window function:

Sexp(ν) =

⌜⃓⃓⃓
⎷ ∞∫︂

−∞

S2(ν)W 2(ν − ν ′)dν ′. (5.11)

Depending on the choice of w(t), the shape of the observed noise spectrum changes. Typically,
a Hann window is used, which provides good frequency selectivity as well as a suppression of
more than 30 dB of the first sidelobes compared to the central maximum. Figure 5.6 shows a
Hann window in both time and frequency domain, normalized such that the equivalent noise
bandwidth of the window is 1. Thus this window is scaled to conserve noise power rather than
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on-bin amplitude. The full-width-at-half-maximum (FWHM) of the window in the frequency
domain depends on the acquisition time tSpectrum and is given by FWHM = 1.4382

tSpectrum
[136].
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Figure 5.6: Left: Hann window w(t) in the time domain. Right: Hann window W 2(ν) in the
frequency domain.

Convolving the dispersive peak feature with a Hann window has two effects: The peak power
is distributed over multiple bins and thus the overall height of the peak is reduced. Figure 5.7a
shows the maximum of the convolved dispersive feature as a function of the particle-resonator
detuning for typical parameters. By subtracting the resonator noise level at the peak frequency
from this maximum, the theoretical SNR can be calculated. Since the resonator background
level initially drops faster than the peak noise level, the SNR increases. Once the particle is
far-detuned, the resonator background level stays constant and the SNR drops as the peak
noise level decreases. Figure 5.7b shows the noise level of the convolved dispersive feature as a
function of the particle-resonator detuning for typical parameters. Note that, in case the particle
frequency is close to the resonator frequency, the dispersive feature corresponds to one half of
the resonator lineshape and thus the definition of the SNR used in Fig. 5.7b is questionable at
best.
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Figure 5.7: Left: Noise level of the dispersive peak feature. With increasing detuning ∆f , the
noise level of the convolved dispersive feature decreases. Right: Signal-to-noise
ratio of the dispersive peak feature. Initially, the resonator background noise level
drops faster than the peak noise level and the SNR increases. Once the particle is
far detuned, the resonator noise level is constant and the SNR drops with the peak
noise level.

Convolution with the window limits the minimal width of the peak to the width of the window.
Figure 5.8 shows the width of the log. lineshape as a function of the particle-resonator detuning
for the convolved and unconvolved lineshape. In both cases, the height of the peak feature is
defined as the difference between the peak noise level and the resonator noise level at the peak
frequency.
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Figure 5.8: Width of the dispersive peak feature as a function of the detuning ∆ν. Convolution
with the window function limits the width of the peak feature to the width of the
window, which is given by the acquisition time tSpectrum = 16 s.
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Using the scaling predicted by Cramer-Rao-Bound theory, a figure of merit FitFOM describing
the relative scatter of the fitted peak frequency can be calculated:

FitFOM ∝ SNR√
W

. (5.12)

Figure 5.9 shows the normalized figure of merit for different detunings. The expected fit scatter
is minimal for detunings between 250Hz and 500Hz as further detuning leads to a reduction
in SNR while the width of the peak feature is limited to the width of the window.
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Figure 5.9: Scaled fit scatter as predicted by Cramer-Rao-Bound theory for single spectra ac-
quired at tSpectrum = 16 s. Initially, the fit scatter drops fast as the peak feature
moves off the resonator, which causes an increase in SNR and a decrease in width.
Once the particle is far detuned the dispersive feature’s width is limited by the width
of the Hann window and the decrease in SNR causes the fit scatter to rise.

In order to quantify the expected scatter of the fitted particle frequency, multiple Monte-Carlo
simulations were run for different particle-resonator detunings. Using fits to a particle tuned to
the resonator frequency, parameters for the noise levels n1 and n0 as well as the parameters
γ and Q were determined. These parameters were used to calculate the expected linear noise
densityLSD and samples were created by drawing from a log-Rayleigh distribution [137]. These
spectra simulate measurements with an acquisition time tspectrum = 16 s and no averaging.
Since fitting the convolved lineshape is computationally unfeasible, the unconvolved lineshape
given by Eq. (5.3) was fitted to these samples and the scatter of the fitted particle frequency
was compared for different detunings. Additionally, a log-Hann peak was fitted to the data,
since for large enough detunings the lineshape is determined by the window function. The
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initial parameters for the lineshape fit were given by the parameters used to generate the
samples while the initial parameters for the Hann peak fit were calculated using the convolved
lineshape. The fitted parameters were filtered using a 3σ Grubbs filter [138] and only fits for
which all parameters were valid were accepted. Figure 5.10 shows the standard deviation of the
filtered fitted particle frequency for 1000 fits at each detuning for both fit functions. For small
detunings, the unconvolved lineshape is a good approximation of the experimentally observed
lineshape while the Hann peak yields a high fit scatter. At higher detunings, convolution with
the window function changes the height and width of the dispersive peak feature. Therefore,
the unconvolved lineshape is no longer a suitable description of the observed spectrum and
fitting the Hann window to the data yields a more stable result. At the ideal detuning of around
300Hz - 700Hz, fitting the Hann window outperforms the fit scatter of a lineshape fit to a
particle centered on the resonator i.e. at ∆ν = 0.

0 500 1000 1500 2000 2500
 (Hz)

10 2

10 1

Lineshape
Hann peak

Figure 5.10: Standard deviation of the fitted frequency for different particle-resonator detunings
∆ν. In the ideal detuning range from 300Hz - 700Hz, the fit scatter of the Hann
peak fits becomes minimal. The drop in simulated fit scatter for lineshape based fits
between 400Hz and 900Hz is a result of the increase in rejection rate.

Apart from the fit scatter, the number of failed or rejected fits is important since a high rejection
rate increases the measurement time required to achieve statistical significance and indicates,
that the fitted lineshape might not describe the observed feature correctly. Figure 5.11 shows the
rejection rate as a function of the particle-resonator detuning ∆ν for an unconvolved lineshape
fit and a Hann peak fit, given that the fits were initiated with ideal parameters derived from the
theoretical lineshape. For small detunings the rejection rate of the lineshape based fits increases
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sharply as the unconvolved lineshape can not reconcile the decreased peak height with the
resonator background.
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Figure 5.11: Rejection rate of the fitted frequency as a function of the particle-resonator detun-
ings ∆ν. In the ideal detuning range from 300Hz - 700Hz, the rejection rate of
fiting the Hann window to the data is around 5%. Once windowing effects have a
strong influence on the observed lineshape, fitting the unconvolved lineshape no
longer produces robust estimates of the parameters.

The results from these simulations can be compared to the scaling of the fit scatter predicted
by Cramer-Rao-Bound theory. Figure 5.12 shows the filtered standard deviation of the fitted
peak frequency together with the fit scatter scaling predicted by Cramer-Rao-Bound theory (see
Fig. 5.9). The theoretical values were scaled such that the minimum of the theoretical scaling is
equal to the minimum of the observed fit scatter. It is notable, that the observed ideal detuning
is higher than the detuning predicted by Cramer-Rao-Bound theory, however, the slope for
detunings above 700Hz is correctly reproduced. One possible explanation for this behaviour
might be the fact that samples were not drawn from a Gaussian distribution but a log. Rayleigh
distribution. This might cause the width to appear with a power different than in the case of a
Gaussian distribution, which results in a different scaling for small detunings where the width
is not yet limited by the window function.
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Figure 5.12: Comparison between the fit scatter predicted by Cramer-Rao-Bound theory for
gaussian peaks (orange) and the fit scatter observed in non-averaged simulated
spectra at tspectrum = 16 s(blue). The simulated fit scatter becomes minimal at
detunings higher than predicted by Cramer-Rao-Bound theory.

During the commissioning of the upgraded trap system, the determination of the axial frequency
with the dispersive detection scheme described above was attempted, however, initial results
indicated vastly increased fit scatter compared to the standard dip-based detection scheme and
further investigations on the experimental implementation were postponed in favor of faster
commissioning of the trap system.

5.2 Cyclotron frequency determination

Both charge-to-mass ratio measurements as well as g-factor measurements require the precise
measurement of the trapped particle’s free cyclotron frequency νc. The invariance theorem
[127] provides the possibility to calculate the free cyclotron frequency in case the particles
eigenfrequencies ν+, νz and ν− are known:

νc =
√︂
ν2+ + ν2z + ν2−. (5.13)

The relative uncertainty of νc is given by

∆νc
νc

=

(︃
ν+
νc

)︃2 ∆ν+
ν+

+

(︃
νz
νc

)︃2 ∆νz
νz

+

(︃
ν−
νc

)︃2 ∆ν−
ν−

(5.14)

and thus ∆νc
νc

is dominated by the relative uncertainty ∆ν+
ν+

of the modified cyclotron frequency,
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whereas ∆νz
νz

and ∆ν−
ν−

are suppressed by a factor
(︂
νz
νc

)︂2
and

(︂
ν−
νc

)︂2
, respectively. Therefore, the

modified cyclotron frequency ν+ needs to be measured with highest precision. The following
sections describe different methods for the measurement of ν+.

5.2.1 Sideband coupling

The simplest method for the measurement of the modified cyclotron frequency ν+ in the
precision trap utilizes a sideband coupling drive that couples the modified cyclotron motion
to the axial motion of the particle [82, 109]. By irradiating the particle with a frequency
νrf ≈ ν+ − νz , energy is continuously exchanged between the axial and modified cyclotron
mode of the particle. The rate at which this transfer of energy occurs is called Rabi frequency
Ω and depends on the resonant Rabi frequency Ωres as well as the detuning δ = νrf − νSB,+

between the irradiated radio-frequency νrf and the true sideband frequency νSB,+ = ν+ − νz :

Ω =
√︁
Ω2
res + δ2. (5.15)

In the presence of the near-resonant radio-frequency drive, the particle oscillates with the
modified frequency ω′ = ωz − δ

2 which, in conjunction with the transfer of energy between
the axial and cyclotron mode, causes sideband dips to appear in the axial noise spectrum of
the particle. The combination of the axial amplitude modulation and frequency shift due to
the radio-frequency field leads to an avoided crossing of the sideband frequencies which is
displayed in figure 5.13.
The positions νR and νL of the upper and lower sideband dips are given by:

νR,L = νz −
δ

2
± Ω

2
. (5.16)

Note that the sum νR + νL = 2νz − δ does not depend on the Rabi frequency and can thus be
used to determine the detuning δ in case the axial frequency νz is known. Subsequently, the
modified cyclotron frequency ν+ can be calculated as:

ν+ = νSB + νz = (νrf − δ)+ νz = νrf +(νL+ νR− 2νz)+ νz = νrf + νL+ νR− νz. (5.17)

In order to measure the modified cyclotron frequency ν+, first the axial frequency νz is measured.
Next, the particle is irradiated with a known radio-frequency νrf close to the axial-cyclotron
sideband frequency νSB and the position of the sidebands dips νL and νR in the noise spectrum
of the particle on the resonator is measured. Using Eq. (5.17), the modified cyclotron frequency
can be calculated. The sideband coupling used in the above described technique causes the
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Figure 5.13: Position of the sideband dips as a function of the detuning δ = νrf − νSB be-
tween the radio-frequency and the axial-cyclotron sideband frequency. The radio-
frequency field leads to an avoided crossing. By measuring the position of both
sidebands, the detuning between the radio-frequency drive and the sideband fre-
quency can be determined.
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sidebands to be measured at an increased temperature T+ = ν+
νz
Tz compared to the axial

frequency νz which results in a systematic shift dominated by the residual magnetic bottle B2.
In case the Tz and B2 are known, the measured frequency can be corrected using Eqs. (2.45)
and (2.50). Additionally, given that the method is based on the measurement of sidebands in the
axial spectrum of the particle, the overall achievable precision is limited by the same effects
that limit the measurement of the axial frequency, for example the width of the dips in the axial
spectrum.

5.2.2 Peak detection

In order to overcome the limitations associated with the sideband method, a technique for the
direct measurement of the modified cyclotron mode is implemented in the BASE experiment. A
superconducting resonator with a resonance frequency close to the particle’s modified cyclotron
frequency is connected to the trap. By using a varactor diode, the capacitance of the resonant
circuit can be varied and the resonance frequency of the detector can be matched to the particle’s
modified cyclotron frequency or be detuned on purpose to prevent energy exchange between
particle and detector. Given the large effective electrode distance for the pickup of the modified
cyclotron motion, the dip created by the particle at the cyclotron motion is to narrow to be
detected in the noise spectrum of this detector. In order to detect the particle’s modified cyclotron
frequency ν+, its modified cyclotron motion is excited to energies on the order of eV which
causes the particle’s modified cyclotron radius to increase. The excited particle induces strong
image currents in the trap electrodes which are amplified by the high quality detection circuit
and result in a peak on the noise spectrum of the resonator. Figure 5.14 shows a typical peak
spectrum.
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Figure 5.14: After excitation of the modified cyclotron mode, the particle induces image currents
in the electrodes which lead to a peak in the spectrum of the cyclotron resonator.
The signal to noise ratio of the peak depends on the cyclotron energy of the particle,
however, excitation to high energies results in significant shifts of the modified
cyclotron frequency ν+,exc.

In order to measure the modified cyclotron frequency using the peak method, first the axial
frequency νz is measured. Next, the modified cyclotron frequency of the particle is excited
by applying a short excitation pulse directly at the particle’s modified cyclotron frequency.
Depending on the duration and strength of this pulse, the particle’s cyclotron energy is increased
to E+,exc which results in the appearance of a peak in the noise spectrum of the cyclotron
resonator. Typically, E+,exc is chosen in the order of single eV such that the peak is clearly
visible while systematic shifts due to relativistic effects and the residual magnetic bottle B2 are
kept small. Next, spectra of the axial dip at νz,exc and the cyclotron peak at ν+,exc are acquired
simultaneously. By comparing νz,exc and νz the excitation energy E+,exc can be determined
using Eqs. (2.45) and (2.50) in case B2 is known. Using the known value of E+,exc, the modified
cyclotron frequency ν+ at negligible energy can be determined using the same equations. Since
the particle is not oscillating freely, but is damped by the detection circuit, the frequency of
oscillation ν ′+ is shifted with respect to the free oscillation frequency ν+ due to interaction with
the resonator. This shift is for example given in [69] and modifies the frequency according to:

ν ′+ = ν+ +
1

4

1

2πτ+

∆νR(ν+ − νR)

(ν+ − νR)2 + (∆νR
2 )2

. (5.18)
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The resonator shift thus depends on the cooling time constant τ+ and width∆νR of the resonator
as well as the detuning ν+ − νR between the modified cyclotron frequency and the resonance
frequency of the cyclotron resonator.

5.2.3 Phase sensitive detection methods

In the course of the PhD thesis of Matthias Borchert [99], the first steps towards the imple-
mentaion of phase-sensitive detection methods [109, 139] BASE experiment were taken. The
following section will give a short overview over the measurement principle and advantages
of phase-sensitive measurement techniques. A detailed description of the implementation in
BASE is given in [99]. The statistical uncertainty ∆νSNR of the sideband method as well as
the peak method described before are limited by the signal to noise ratio which – given the
incoherent nature of noise – typically scales as ∆νSNR ∝ 1√

TAvg
. Thus a tenfold increase

in precision requires the observation time to be increased by a factor of 100. In contrast, the
phase ∆ϕ = 2πνTAvg the particle accumulates during its oscillation increases linearly with the
phase evolution time. Thus, if the initial phase ϕ0 and final phase ϕ1 after TAvg are known, the
particle’s frequency can be determined as:

νPhase =
ϕ1 − ϕ0
2πTAvg

. (5.19)

The associated uncertainty consequently scales as:

∆νPhase =

√︁
∆ϕ21 +∆ϕ20
2πTAvg

. (5.20)

In case the phase scatters∆ϕ1 and∆ϕ0 are independent ofTAvg , the uncertainty in the measured
frequency reduces linearly with the averaging time. In practice, the scatter of the final phase will
not be independent for example due to dephasing effects caused by magnetic inhomogeneities.
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Figure 5.15: Measurement scheme for phase sensitive readout of the modified cyclotron fre-
quency. First, the modified cyclotron motion (blue) is excited and the phase is
initialized. Next, the phase evolves freely for the averaging time TAvg . Afterward,
the phase of the axial (red) and modified cyclotron motion (blue) are exchanged and
the axial phase ϕ1 is read out. The modified cyclotron frequency can be determined
by measuring the final phase for different averaging times TAvg .

Figure 5.15 shows the amplitude of the modified cyclotron and axial motion during a phase
measurement sequence. In order to measure the modified cyclotron frequency using phase-
sensitive detection methods, the particle’s cyclotron mode is excited using an external drive.
This imprints a constant phase ϕ0 determined by the external drive onto the modified cyclotron
motion of the particle. Afterward, the drive is switched off and the phase evolves freely for
a time TAvg . In order to read out the phase, the cyclotron motion is imprinted onto the axial
motion by irradiating the particle on an axial-cyclotron sideband for a time t = π

Ω which
corresponds to a complete exchange of cyclotron and axial energy. The duration of this pulse,
called π-pulse, depends on the Rabi frequency Ω. Using the fact that these pulses, apart from a
constant offset, exchange the phase between the axial and cyclotron motion [109], the phase
ϕ1 can be read out by acquiring an FFT spectrum. Due to the constant offset created by the
phase-exchange pulse, the resulting frequency can not be directly calculated using Eq.(5.19), but
rather needs to be determined by measuring the slope ∆ϕ1

∆TAvg
of the final phase ϕ1 for different

averaging times TAvg :

νPhase =
1

2π

∆ϕ1
∆TAvg

. (5.21)
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5.3 Magnetron frequency determination

Given the strong suppression of the magnetron frequency νz in the invariance theorem, precise
measurements of the magnetron frequency are less important. Typically, the magnetron fre-
quency can be estimated to sufficient precision in case the axial frequency νz and the modified
cyclotron frequency ν+ are known:

ν− =
ν2z
2ν+

. (5.22)

This relationship, however, only holds in case the trap is not misaligned with respect to the
magnetic field and the trap is perfectly cylindrical. In case the exact magnetron frequency ν−
needs to be known, sideband coupling on the upper axial-magnetron sideband νSB = νz + ν−

can be applied. The measurement scheme is equivalent to the case of sideband coupling between
modified cyclotron frequency and axial frequency, however, given that the upper sideband
needs to be irradiated, the magnetron frequency is given by:

ν− = νrf + νz − νL − νR. (5.23)

Note that since the upper sideband is irradiated, the avoided crossing of the magnetron motion
looks mirrored to the one of the modified cyclotron motion shown in figure 5.13. By comparing
the magnetron frequency calculated according to Eq. (5.22) with the directly measured mag-
netron frequency provides the possibility to determine the misalignment of the trap stack with
respect to the magnetic field [127].

5.4 Tuning ratio optimization

In order to measure a trapped particles axial frequency in the BASE precision trap, it is brought
into contact with an axial detection circuit described in chapter 3.3.1. Non-harmonic contri-
butions to the electrostatic trapping potential cause the particle’s axial oscillation frequency
to depend on its axial energy Ez . To first order, the dependency of the axial frequency on the
axial energy Ez is given by

νz(Ez) = νz,0 ×
(︃
1 +

3

4

1

qV0

C4

C2
2

Ez

)︃
= νz,0 × (1 + αzEz) (5.24)

as described by Eq. (2.40). The constant αz depends on the anharmonicity C4 and describes
how strong the axial frequency depends on the axial energy Ez .
As the particle is continuously exchanging energy with the resonator circuit, it’s axial frequency
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Figure 5.16: Calculated lineshape for different couplings between the axial frequency νz and
the axial energy Ez . Higher order contributions to the axial trapping potential lead
to a dependency of the axial frequency νz(Ez) = νz,0 × (1 + αzEz) on the axial
energy Ez . As the particle is in thermal contact with the axial detection circuit, it’s
axial energy constantly changes during the acquisition of an axial spectrum. The
resulting signal to noise ratio of the dip feature depends on the coupling strength
α.

continuously changes. Given that the axial cooling times is typically on the order of 50ms, the
particle’s axial energy can not be assumed to be constant during the acquisition of an axial
spectrum. The observed spectral power density S2

obs(ν) is thus given by a convolution of the
momentary spectral power density S2(ν,Ez) given by Eq. (3.6) and the thermal Boltzman
distribution p(Ez) =

1
kBTres

e
Ez

kBTres :

S2
obs(ν) =

∞∫︂
0

S2(ν,Ez)p(Ez)dEz. (5.25)

Figure 5.16 shows the convolved spectral noise density Sobs(ν) under typical conditions for a
resonator temperature of Tres = 4K and different values of αz .
For high values of α, the particle’s random walk through the thermal Boltzmann distribution
leads to a significant random walk of the particle’s axial frequency during the acquisition of an
axial spectrum. Thus, the dip feature moves and the SNR decreases. In order to maximize the
signal to noise ratio and suppress these systematic shifts, it is crucial to minimize α by tuning
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Figure 5.17: Signal-to-noise ratio (SNR) as a function of the applied tuning ratio (TR). At the
ideal tuning ratio, the SNR is maximized as the dependency of the particle’s axial
frequency on it’s axial temperature is strongly suppressed. The red line shows a fit
of Eq. (5.26) to the data.

C4 close to 0. Figure 5.17 shows the signal-to-noise ratio (SNR) as a function of the applied
tuning ratio (TR).
Typically, an analytic approximation for the dependency of the SNR which is derived by
expanding Eq. (5.25) around the minimum, is used to determine the ideal tuning ratio:

SNR(TR) = SNRmax − 10 log10

(︃
TR− TRideal

A
+ 1

)︃
. (5.26)

Near the ideal tuning ratio TRideal, the particle’s axial frequency does not depend on it’s axial
temperature (α ≈ 0) and the SNR is maximized. The slope A with which the SNR decreases
depends on the temperature of the axial resonator.

5.5 Asymmetry compensation

Under ideal conditions, the center of the trapping potential coincides with the geometric center
of the trap. However, cooldown of the system and loading of particles can lead to patch potentials
located on the surfaces of the electrodes which cause an assymmetry in the potential and shift
the particle out of the center in case symmetric voltages are applied to the two correction
electrodes. In order to compensate for these patch potentials, an offset voltage VOff is applied
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to one of the correction electrodes. Given this asymmetric application of the offset voltage
the ideal tuning ratio changes with the chosen offset voltage and the offset ratio used in the
experiment is defined as

OR =
VOff

VRing
. (5.27)

Eq. (2.34) can be modified to include the non-symmetric potential terms ΦOff introduced by the
offset voltage:

ΦR(z) = ( E2z
2 + E4z

4+ O(z5)) VR

+ ΦC(z) = ( D2z
2 + D4z

4+ O(z5)) VR · TR
+ ΦOff(z) = (F1z + F2z

2 + F3z
3 + F4z

4+ O(z5)) VR ·OR

= Φ′(z) = (C ′
1z + C ′

2z
2 + C ′

3z
3 + C ′

4z
4+ O(z5)) VR.

(5.28)

Given that F2 is small compared to C2, the location of the modified axial potential’s axial
minimum is approximately given by

zmin ≈ − F1

2C2
×OR = 2.81mm×OR. (5.29)

For typical ring voltages used in the BASE experiment, this corresponds to a transfer function
of zmin(VOff ) ≈ ±5.85 µm

10mV × VOff . The sign depends on which correction electrode the offset
voltage is applied. Note that if the trap is orthogonal (D2 ≈ 0), the transfer function does not
depend on the tuning ratio.
In order to determine the particle’s axial frequency, Φ′(z) is expanded around zmin. Given that
F4 =

1
2D4 in a symmetric trap, the tuning ratio needs to be adjusted as well. Requiring C ′

4 = 0

yields the modified tuning ratio

TR′ = −E4 + F4 ×OR

D4
= TR− F4

D4
×OR = TR− 1

2
OR. (5.30)

Figure 5.18 shows the calculated value of C ′
2 as a function of the applied offset voltage ratio in

case the tuning ratio is kept static (TR = 0.877 432) or adjusted according to Eq. (5.27).
Figure 5.19 shows the optimized tuning ratio as a function of the applied offset ratio. For typical
offset ratios, the ideal TR can be approximated well by a linear function. Fitting the optimized
tuning ratios yields the line of best fit

TRideal(OR) = 0.853 53(21)− 0.549(12)×OR. (5.31)
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Figure 5.18: Calculated C2 value for different offset ratios OR applied to one of the correction
electrodes. In case of a symmetric trap, the absolute value of C2 is minimized.

This relationship can be used to determine a starting point for manual tuning ratio optimization
in case the particle is shifted along the trap axis.
In order to determine the offset voltage VOff that compensates the patch potentials and
symmetrizes the trap, the offset voltage which minimizes the C2 coefficient after the tun-
ing ratio has been optimized has to be determined. As seen by in the calculations above,
this corresponds to the case of a symmetric trapping potential. Figure 5.20 shows the mea-
sured C2 value as a function of the applied offset ratio. A quadratic fit to the data yields the
ideal offset ratio of ORideal = 0.012 49(3) which corresponds to an ideal offset voltage of
VOff,ideal = −0.060 09(14)V at a typical ring voltage of VR = −4.810 140V.

5.6 Determination of axial temperature

The temperature of the axial detector can be determined by measuring the axial frequency
scatter after the cyclotron motion is excited to different energies. If a resonant drive at the
modified cyclotron frequency is irradiated on the particle, the particle’s cyclotron radius ρ+(t)
increases linearly with time [69]:

ρ+(t) = ρth cos(ϕ) +
qAdrive

2mω+
t (5.32)
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Figure 5.19: Optimized tuning ratio for different offset voltages VOff applied to one of the
correction electrodes. A quadratic fit to the data yields the ideal offset voltage
VOff,ideal = −0.060 09(14)V.
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Figure 5.20: Measured C2 value for different offset ratios OR applied to one of the correction
electrodes. A quadratic fit to the data yields the ideal offset voltage VOff,ideal =
−0.060 09(14)V.

128



x

y

ρ+,th

ρdrive

ρ+,exc

ϕ

Figure 5.21: Radial position of the particle’s mod. cyclotron motion. The initial radius ρ+,th

depends on the temperature of the cyclotron mode. Applying a resonant drive
shifts the initial distribution by ρdrive. The final radius ρ+,exc depends on the initial
radius ρ+,th, the shift ρdrive induced by the drive and the phase difference between
ρ+,th and ρdrive.

The initial radius ρth follows a Rayleigh distribution which is determined by the temperature of
the cyclotron detector. The finial radius depends on the phase difference ϕ between the initial
phase and the drive. The electric field amplitude Adrive leads to a linear increase in the radius
ρdrive which shifts the initial Rayleigh distribution to higher radii. The final radius ρ+,exc after
excitation thus follows a random distribution which causes the particle’s modified cyclotron
energy E+,exc after excitation to scatter. Figure 5.21 shows a schematic of the radii involved in
the excitation scheme.
The residual magnetic bottle present in the precision trap couples the modified cyclotron
energy E+,exc after excitation to the axial frequency νz . To first order, the scatter σ(νz) of the
axial frequency is proportional to the scatter σ(E+,exc) of the modified cyclotron energy after
excitation. By integrating the shifted distribution of radial positions over the phase ϕ0 and
initial radii the distribution of final energies E+,exc can be determined. The standard deviation
σ(E+,exc) of the corresponding distribution of radial energies E+,exc depends on the initial
thermal energy E+,th = kBT+ and the energy Edrive added by the resonant drive. A detailed
derivation is given in [99] and yields:
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σ(E+,exc) =

√︄
1 +

1

2

E+,th

Edrive
×
√︁
E+,thEdrive ≈ (1 +

1

4

E+,th

Edrive
)×

√︁
E+,thEdrive. (5.33)

In order to determine the initial temperature T+, the axial frequency scatter is measured for
different excitation energies Edrive. First, the particles cyclotron motion is thermalized via
sideband coupling to the axial detector. Next, the axial frequency is determined, the particle is
excited and the axial frequency after excitation is determined. This sequence is repeated and
the excitation strength is varied.
The excitation energy Edrive for a given drive setting is determined by comparing the axial
frequency before and after excitation. In case the tuning ratio is optimized and C4 ≈ 0, the
excitation energy Edrive can be determined from the observed axial frequency shift ∆νz using
Eq. (2.45).

Edrive =
∆νz
νz

1
4π2mν2z

B2
B0

− 1
mc2

. (5.34)

Figure 5.22 shows the axial frequency scatter σ(νz) as a function of the average excitation
energy E+,exc determined from the observed axial shifts and assuming a background magnetic
field B2 = 105mT. By fitting the approximation of Eq.(5.33) to the data, the average initial
cyclotron temperature

T+ =
E+

kB
= 622(38)K. (5.35)

can be determined. Given that the equilibrium temperature after sideband coupling the axial
and cyclotron mode is given by T+ = ν+

νz
Tz , the temperature of the axial detection system is

given by

Tz =
νz
ν+
Tz = 13.62(82)K. (5.36)

5.7 B1 measurements

The B1 coefficient of the magnetic field expansion given by Eq. (2.43) can be measured directly
by comparing the trapped particle’s cyclotron frequency at different positions along the trap
axis. The particle is shifted in z-direction by applying an offset voltage to one of the correction
electrodes and adjusting the tuning ratio to locally compensate C4 and C6 which maximizes the
SNR. Using Eq. 2.32, the location of the potential minimum can be calculated for a given Offset
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Figure 5.22: Axial frequency scatter σ(νz) as a function of the cyclotron energy E+. By fitting
Eq. (5.33) to the measured data, the energy E+,th after thermalization with the
axial detector can be determined. This fit yields T+ = E+

kB
= 622(38)K, which

corresponds to an axial temperature of Tz = νz
ν+
Tz = 13.62(82)K.

voltage VOff and tuning ratio TR. Figure 5.23 shows the particle’s position along the trap axis
for different offset voltages after the SNR has been maximized. Note that for the offset voltages
scanned in the dataset shown in Fig. 4 the particle position z(∆V ) is to first order linear with
respect to changes of the offset voltage.
At each position, the axial frequency νz and modified cyclotron frequency ν+ are measured
and the free cyclotron frequency νc is calculated. Figure 5.24 shows the measured cyclotron
frequency for seven different positions along the trap axis.
Fitting a straight line to the data yields for the B1 background value:

B1 = 2π
m

q

∆νc
∆z

= 25.27(10)
mT

m
. (5.37)

While shifts of the particles eigenfrequencies caused by B1 are somewhat suppressed, given
that the average field the particle experiences over its oscillation does not change with B1,
knowledge of the B1 coefficient is still important. On the one hand, the magnetic moment
associated with the cyclotron mode creates an additional force in the B1 gradient which moves
the particle along the magnetic field ∆z and thus leads to a shift B = ∆z ×B1 which changes
the free cyclotron frequency. On the other hand voltage drifts after particle transport may cause
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Figure 5.23: Particle position in the precision trap as a function of applied offset voltage. For
small deviations from the compensated trap (VOff = −60mV) the change of position
along the trap axis is proportional to the change in offset voltage and the particle
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Figure 5.24: Measured free cyclotron frequency νc as a function of the particle’s position along
the trap axis. B1 changes the magnetic field along the trap axis which leads to
a change in free cyclotron frequency. A straight line (red line) fit yields B1 =
25.27(10) mT

m .

132



the particles position to change slightly for some time while the electrode voltages settle. In
case two particles are moved into the precision trap from different directions and not enough
settling time is given after the transport has finished, the particles might be located at different
positions along the trap axis and thus might experience slightly different magnetic fields. At
the measured background gradient of B1 = 25.27(10) mT

m this causes a relative shift of

B1

B0
≈ 25.27 mT

m

1.944T
= 13.0× 10−6 1

m
= 13

p.p.t.
µm . (5.38)

In order to suppress this shift, either great care has to be taken to ensure that enough time is
given for all voltages to settle and particle positions are independent of the transport direction
and history or B1 has to be tuned close to 0.

5.8 B2 measurements

Measurement of the B1 coefficient show that the magnetic field in the precision trap changes
linearly around the trap center and higher field expansion terms do not play a role on length
scales that can be probed by shifting the particle along the trap axis. B2 is therefore measured
by exciting the particles cyclotron energy E+ and measuring the associated shifts of the mod-
ified cyclotron frequency ν+ and the axial frequency νz simultaneously. If the trap is well
compensated (C4 = C6 = 0), the shift of the modified cyclotron frequency ∆ν+ experienced
by protons and antiprotons is dominated by relativistic effects and shifts due to B1 and B2:

∆ν+ = ν+

(︄
− 1

mc2
− 1

4π2mν2z

(︃
B1

B0

)︃2

− 1

4π2mν2z

(︃
νz
ν+

)︃2 B2

B0

)︄
E+ (5.39)

B1 can be determined before the measurement using the method outlined above. Solving the
shift of the axial frequency

∆νz = νz

(︃
− 1

2mc2
+

1

4π2mν2z

B2

B0

)︃
E+ (5.40)

for E+ and inserting the result into Eq. (5.39), results in an equation for B2 that only depends
on the ratio ∆νz

∆ν+
of the axial and cyclotron frequency shifts:

B2 =
2π2B2

0ν
3
zν+ − ∆νz

∆ν+

(︁
c2ν2+B

2
1 + 4π2ν2+ν

2
zB

2
0

)︁
B0c2νzν+ + ∆νz

∆ν+
B0c2ν2z

. (5.41)

For a typical B2 measurement, the particle is first excited to a reference cyclotron energy of
typically 8.5 eV and 33 s FFT spectra of the axial dip and the cyclotron peak are acquired. Next,
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Figure 5.25: Axial and modified cyclotron frequency shifts for 5 different excitation energies.
For a known value of B1, the slope ∆νz

∆ν+
= −3.060(64) depends on B2.

the particle is excited to a different excitation energy typically ranging approximately from
4 eV to 14 eV and 33 s FFT spectra of the excited axial dip and the cyclotron peak are taken.
By comparing the frequency shifts between the excitation and reference energy, the ratio of
shifts ∆νz and ∆ν+ are determined. Typically this measurement scheme is repeated for 5
different excitation energies and measurements are repeated 3 times for each energy. Including
cooling and excitation, a typical B2 measurement takes around 28min. Figure 5.25 shows the
measured shifts of the axial and modified cyclotron frequencies for 6 repetitions at 5 different
excitation energies. Due to the initial cyclotron energy of the particle, the energy after burst
excitation scatters around the expected values and the datapoints are distributed along the ∆νz

∆ν+

line. Outliers are cleaned by setting fixed boundaries for the maximum and minimum accepted
shifts.
Fitting the slope ∆νz

∆ν+
= −3.060(64) and using the background value of B1 = 25.27(10) mT

m

results in a B2 value of

B2 = 103.50(23)
mT

m2 . (5.42)
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5.9 B4 measurements

In addition to the frequency shift’s caused by the B1 and B2 terms, magnetic inhomogneities of
the for B(z) = B4z

4 cause the ideal tuning ratio to depend on the trapped particle’s cyclotron
energy E+. Using the derivation of the magnetic dipole moment µz ≈ − q

m
E+−E−

ω+
associated

with the radial motion given in [87], the overall axial potential Φtotal experienced by the particle
no longer depends only on the electrostatic potential described by the Cj term in Eq. (2.34) but
also has a contribution due to the magnetic inhomogeneities. The resulting potential Φtotal once
again can be expanded around z = 0 which yields expansion coefficients C̃j which depend on
the electrostatic expansion coefficients Cj and Dj as well as the magnetic inhomogeneities:

Φtotal =
∑︂

∞
j=0 (qVRCj − µzBj) z

j =
∑︂

∞
j=0C̃jz

j . (5.43)

In order for Φtotal to be harmonic, the C̃j need to vanish. In the case of

C̃4 = C4qVR − µzB4 =
(︂
E4 + T̃RD4

)︂
qVR − µzB4, (5.44)

the adjusted tuning ratio T̃R can be chosen such that C̃4 vanishes:

T̃R = −E4

D4
+

µzB4

qVRD4
= TR− q

m

B4

ω+qVRD4
(E+ − E−) . (5.45)

By measuring the dependency of the ideal tuning ratio on the cyclotron energy

∂T̃R

∂E+
= − q

m

B4

ω+qVRD4
. (5.46)

B4 can be determined as

B4 = −mω+VRD4
∂T̃R

∂E+
≈ −B0qVRD4

∂T̃R

∂E+
. (5.47)

In order to resolve ∂T̃R
∂E+

the tuning ratio is optimized as described in 5.4 at different cyclotron
energies E+. The cyclotron energy for each TR optimization is determined by measuring the
axial frequency in a known B2 before and after excitation of the cyclotron mode. Figure 5.26
shows the ideal tuning ratio as a function of the cyclotron energy E+.
A linear fit to the data yields ∂T̃R

∂E+
= 5.4(3)× 10−6 1

eV . Combining this result with the value
of D4 = −1.30× 109 1

m4 obtained from potential theory using Eq. (2.32) and a background
magnetic field of B0 = 1.945T yields a value of
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Figure 5.26: Optimized tuning ratio as a function of the radial excitation energy E+. The
quartic magnetic inhomogeneity B4 causes the ideal tuning ratio to change with
the cyclotron energy E+. A linear fit to the data yields B4 = −66(3)× 103 T

m4 .

B4 = −66(3)× 103
T

m4 . (5.48)

Given the suppression of cyclotron frequency shifts by additional orders Ω = νz
ν+

systematic
shifts related to B4 are of secondary concern for frequency measurements in the precision trap.

136



6 Characterization of the coil system

6.1 Transfer functions

In order to measure the transfer functions of the individual shimming coils, the respective coil
is loaded and B0, B1 and B2 are measured as a function of the loaded current. As long as the
loaded current stays below the critical current density of the persistent joint B0, B1 and B2

change proportionally with the current. In case a higher loading current is applied, current in
the coil decays until the current density in the persistent joint drops below the critical current
density and the change in field therefore plateaus.

6.1.1 B2 coil

Figures 6.1a - 6.1c show the shift of the B2, B1 and B0 coefficients created by the B2 coil as a
function of the loaded current. Note that for the calculation of the B2 value the measured B1

values were used. Fitting a straight line to the data allows the determination of the respective
transfer functions. Note that for B2, only values for loading currents below 150mA were used
in the fit. Table 6.1d summarizes the measured and theoretical transfer functions of the B2 coil
as well as the adjustment of the theoretical values due to the loading scheme.
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Figure 6.1: (a) B2 transfer function. (b) B1 transfer function. (c) B0 transfer function. (d)
Summary of the calculated and measured transfer functions of the B2 coil. The 2nd
line indicates the theoretical values adjusted for the losses due to the loading scheme.

Figure 6.1a shows that the B2 coefficient changes linearly with the applied loading current up
to a loading current of approximately 250mA. For loading currents above 250mA, the change
in B2 continues to increase, however, heat induced residual resistance leads to a partial decay
of the loaded current and the slope decreases. Using the previously measured background value
of B2 = 103.50(23) mT

m2 , the loading current IB2,comp necessary to tune B2 to 0 is given by

IB2,comp ≈
B2

∆B2
∆I

≈
103.50 mT

m2

1.538 T
m2 A

≈ 67.3mA. (6.1)

and lies way below the maximum loading current of 250mA.
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6.1.2 B1 coil

Similarly to the B2 coil, loading the B1 coil causes shifts of the B2, B1 and B0 coefficients.
Given that it was quickly discovered that the persistent joint of the B1 coil does not support
loading currents above approximately 250mA and the B1 transfer function is expected to
be small compared to the background B1, these measurements were done by continuously
applying the loading current with all coils quenched. Figures 6.2a - 6.2c show the measured B2,
B1 and B0 coefficients as a function of the current applied to the B1 coil.
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Figure 6.2: (a) B2 transfer function. (b) B1 transfer function. (c) B0 transfer function. (d)
Summary of the simulated and measured transfer functions of the B1 coil.

Table 6.2d summarizes the fitted transfer functions as well as the design values and the results
of the Monte-Carlo simulations.
The B1 transfer function is roughly 94% of the expected value. This deviation is larger than
one would expect given the assumptions on the errors of the coil parameters, however, the
Monte-Carlo simulations do not take the additional wire necessary to connect the coil to the
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loading joints into account. Given that this wire is located only on one side of the coil, it is
reasonable to assume that the parasitic wire has a large influence on the B1 coefficient.
Given the measured transfer function of the coil, the required current IB1,Comp to compensate
the background B1 is

IB1,comp ≈
B1

∆B1
∆I

≈ 25.27 mT
m

24.4 mT
mA

≈ 1.04A. (6.2)

With the maximum current IB1,Max = 250mA that was successfully loaded into the B1 coil,
we expect to be able to tune B1 to

B1,Min ≈ B1,Background −
B1

I
× IB1,Max ≈ 25.27

mT

m
− 24.4

mT

mA
× 250mA ≈ 19.17

mT

m
.

(6.3)
Given that shifts due to B1 are of secondary concern and can be suppressed by carefully
excluding voltage drifts on the trap electrodes, we do not expect B1 to limit the planned
antiproton g-factor measurement on the 100 p.p.t level.

6.2 Loading scheme

As described in chapter 4.6, loading the coils requires heating part of the superconducting
wire above its critical temperature by dissipating power in a quench resistor. The dissipated
energy needs to be high enough to heat the superconducting wire of the associated coil above
its critical temperature, but not high enough to quench part of the other coils. In the ideal case,
the quench current quenches the associated coil after a short time and once the quench current
is removed, the coil quickly becomes superconducting again. At the same time, the current has
to be high enough to ensure that the quenching procedure is independent of the history of the
applied quench and loading currents, i.e. the quenching behavior should not change between
different attempts. In order to ensure good thermal decoupling and minimize crosstalk between
the different coils, the quench heaters are spatially separated and isolated from the trapcan by
multiple layers of Kapton sheet.
In order to characterize the minimum required quench currents, loading current is run through
the coil that is being optimized and the quench current is slowly increased while monitoring the
free cyclotron frequency. Once the quench current is high enough to quench the coil, current is
forced through the field creating path and the free cyclotron frequency jumps. In case the SSC
quench current is optimized, the loading current is applied to the B0 coil which causes current
to be induced in the SSC which partially shields the change of the free cyclotron frequency
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Figure 6.3: B0 transfer function of the B0 coil as a function of the B0 quench current IQ. For
quench currents below 4mA the B0 coil is not quenched and no current can be
loaded. Once the quench current is high enough to quench the coil, the transfer
function no longer depends on the quench current.

created by the B0 coil. Increasing the SSC quench current over the minimum amount required
to quench the SSC causes the current in the SSC to decay and the shielding vanishes. By plotting
the transfer functions of the coils over their respective quench currents, the minimum current
required to quench the coil can be determined from the position of the change in the transfer
function. Figure 6.3 shows the non-persistent transfer function of the B0 coil as a function of
the applied quench current. Once the quench current is increased to 4mA, the loading current
is forced through the field creating path and the transfer function changes.
During further testing it became apparent that it was not possible to simultaneously quench
three of the four coils without quenching the forth coil. Even though the quench heaters were
thermally decoupled, the power dissipated by the currents running through the 3 quench heaters
heats part of the fourth coil above its critical temperature and all coils become quenched. In
general, decreasing the quench currents on the three quenched coils might be possible and
settings that leave the fourth coil persistent might exist, however, under such conditions the
system would be operated close to the boundary between persistent and quenched state and
would therefore be susceptible to external conditions and loading history. In order to reliably
load a current into a single coil, the loading scheme described in chapter 4.6 was implemented
and the coils were loaded sequentially while the other coils were persistent. Due to the mutual
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Coil B2 coil B1 coil B0 coil SSC
Minimum quench current 5mA 5mA 4mA 5mA

Table 6.1: Minimum quench current required to quench the individual coils. Note that due to
parasitic coupling, it is not possible to quench three coils while keeping the fourth
coil persistent if these currents are used.
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Figure 6.4: MeasuredB2 coefficient after each of 10 independent loading attempts. The measured
B2 values after each loading are in good agreement within their errorbars.

inductance between the coils, changing the current in one coil leads to a change in the currents
flowing in all coils and an additional quench sequence is necessary after loading in case these
induced currents are undesirable. In order to ensure that the loading scheme is independent
of the history of applied quench and loading currents, sufficient time has to be given for
thermalization. A full sequence consisting of loading and quenching thus takes around 190 s.

6.3 Reproducibility of B2 loading

In order to reliably tune the B2 coefficient to zero, it is important to know how much the loaded
current varies between individual loadings. To test the reproducibility, the coil is loaded with
100mA multiple times and the B2 coefficient is measured as described in chapter 5.8. Figure
6.4 shows the respective measured B2 coefficient after each of 10 loading attempts.
No trend is visible in the data and calculating the mean and standard deviation yields
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B̄2 = −53.21(46)
mT

m2 ± 1.3
mT

m2 (6.4)

Given that the standard deviation includes the uncertainties of the loading current supply, the
loading process and the B2 measurement, a conservative estimate of the reproducibility of
the loading procedure can be given by assigning the whole uncertainty to the loading process.
Subtracting the background value B2 = 103.50(23) mT

m2 yields the relative uncertainty σ of the
loaded B2 value:

σ =

⃓⃓⃓⃓
⃓⃓ 1.3 mT

m2(︂
−53.21(46) mT

m2 − 103.50(23) mT
m2

)︂
⃓⃓⃓⃓
⃓⃓ = 9.28(3)× 10−3 (6.5)

We therefore expect to be able to tune B2 to less than 9.28(3)× 10−3 × 103.50 mT
m2 = 0.96 mT

m2

reliably. Compared to the 1.5 p.p.b. measurement of the , this reduces the B2 coefficient by a
factor of approximately 2900 and thus causes the contributions of B2 to the error budget to
become negligible.

6.4 Stability

Additional to being able to reliably tune B2 to zero it is important to verify that loaded current
does not decay with time. In order to constrain the decay time of the current, the B2 coil is
loaded once with −100mA and B2 is continuously measured. Figure 6.5 shows the measured
B2 value as a function of time.
Over the course of more than 35 h no change in B2 could be observed. Thus, we conclude that
the current loaded into the B2 coil does not decay on timescales that correspond to the typical
filling cycle of the experiment.

6.5 Shielding factors

In order to measure the shielding factors of the coil system in different configurations, a
Helmholtz coil was wound around the outer housing of the BASE superconducting magnet.
Figure 6.6a and 6.6b show the position of the Helmholtz coil as well as its measured transfer
function at the position of the particle if no shielding coils are active. Note that the bore of the
solenoid is not located in the center and thus the symmetry axis of the Helmholtz coil does not
coincide with the trap axis.

143



0 10 20 30 40

t (h)

150

200

250

300

350

400

B
2

(m
T

m
2

)

Figure 6.5: Measurement of the B2 value as a function of time after loading the B2 coil with
−100mA. Over the course of more than 35 h no significant decay of the loaded B2

value can be observed.
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Figure 6.6: (a) Location of the Helmholtz coil wound on the BASE solenoid. The coil axis and
trap axis are parallel, but offset by approximately 9.5 cm. (b) At the location of the
particle the Helmholtz coil has a transfer function of 22.5(4) µT

A .

If one or more superconducting coils are active, changes of the magnetic field created by the
Helmholtz coil will be partially shielded and the transfer function will change. The shielding
factor S is given by the ratio of the unshielded transfer function and the shielded transfer
function. The transfer functions were estimated by measuring the modified cyclotron frequency
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Active coils ∆B
∆I S Stheo

B2, B1 and B0 23.2 µT
A 1 1

B2, B1 and B0 0.61 µT
A 37.82 4365.29

B2, B1 and SSC 0.61 µT
A 37.75 86.6822

B2, B1, B0 and SSC 0.43 µT
A 54.59 −348.902

Table 6.2: Transfer function of the Helmholtz coil for different shielding coil configurations and
their associated shielding factors. If all coils are active, the shielding is most efficient,
however, all shielding factors are well below the theoretically calculated ones.

of a trapped particle for different currents in the Helmholtz coil. Table 4.3 summarizes the
transfer functions ∆B

∆I of the Helmholtz coil for different shielding coil configurations. The B2

coil and the B1 coil are not quenched to reduce the thermal load on the system.
Both theB0 coil as well as the SSC reduce the shift of the magnetic field created by the Helmholtz
coil by a factor of approximately 38. If both the B0 coil and the SSC are active at the same
time, the shielding factor increases to around 55. In all cases, the measured shielding factors
are below the values predicted by theory, which is to be expected as the wires used to guide
the persistent joints out of the region of strong magnetic field add parasitic resistance to the
system and the symmetry axis of the shielding coil system is offset from the symmetry axis of
the Helmholtz coil.

6.6 Mutual inductances

In order to make precise predictions of the loaded currents and associated transfer functions for
a given loading scheme, knowledge of the mutual inductance matrix is required. In order to
measure the mutual inductance between two coils, all other coils are quenched and one coil is
loaded with initial current I1 = ILoad. If the loaded coil is quenched, magnetic flux conservation
causes a current I2 = Iind to be induced in the second persistent coil. The magnitude of this
current can be calculated using Eq. (4.8) and is given by:

I2 =

⃓⃓⃓⃓
M21

M22
I1

⃓⃓⃓⃓
. (6.6)

By removing the quench current on the first coil and quenching the second coil, the current can
be swapped back to the first coil. As the mutual inductance matrix is symmetrical, the current
in the first coil after n swapping cycles is given by:

I1(n) =

(︃
M2

21

M11M22

)︃n

ILoad = (k2)nILoad with k =
M21√
M11M22

. (6.7)
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Figure 6.7: Measured magnetic field as a function of current swapping cycles for current in the
B0 coil (red) and the SSC (blue). Each time the current is swapped from one coil
to the other, the current is reduced by a factor k. Thus, the shift in magnetic field
created by a coil decreases with k2n.

In order to demonstrate this technique, current was swapped between the B0 coil and the SSC
as both coils possess a large B0 transfer function and thus the loaded current can be determined
to sufficient accuracy by measuring the shift in modified cyclotron frequency. During these
measurements, the B2 coil was quenched while the B1 coil was kept superconducting to
limit the heat load on the system. Given the antisymmetric design of the B1 coil, its mutual
inductance with the B0 coil and the SSC is expected to vanish. By approximating the free
cyclotron frequency with the modified cyclotron frequency, the magnetic field at the position
of the particle can be approximated as B = 2πm

q ν+. Figure 6.7 shows the measured magnetic
field as a function of the number of current swaps for current in the B0 coil and the SSC.
By fitting

B(n) = B0 +∆B(k2)n (6.8)

to the data, the coupling constant k can be determined. Table 6.3 summarizes the best fit
parameters for current in the B0 coil and the SSC. For both fits, the background magnetic field
B0 as well as the coupling constant k are in good agreement within their error bars. The initial
shift ∆B depends on the current in the coils and their respective transfer functions and is thus
not expected to be the same for both data series.
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B0 ∆B k2 k

B0 coil 1.944 272 32(7)T 0.020 51(6)mT 0.9364(3) 0.9676(1)

SSC 1.944 272 20(10)T 0.0196(1)mT 0.9368(4) 0.9679(2)

Table 6.3: Best fit parameters for fitting the shift of the magnetic field as a function of swapping
cycles between the B0 coil and the SSC.

Using the calculated mutual inductance matrix given by Eq. (4.25) in chapter 4.3, the coupling
constants k between any two coils can be calculated and expressed as a matrix:

k =

⎛⎜⎜⎜⎜⎝
1 0 0.187 0.178

0 1 0 0

0.187 0 1 0.981

0.178 0 0.981 1

⎞⎟⎟⎟⎟⎠ . (6.9)

The rows correspond to the B2 coil, B1 coil, B0 coil and SSC respectively and thus the matrix
element k34 describes to the calculated coupling factor between the B0 coil and the SSC. The
measured value reveals that the experimental coupling factor deviates significantly from the
theoretical value. As the real coils are wound out of wire with finite thickness, parasitic coupling
between the coils might be present and the coils might be rotated or shifted with respect to
each other, the deviation of experimental and theoretical value is not surprising. The mutual
inductance between different pairs of coils can be measured analogously, however, given that
the B2 coil and the B1 coil possess a small B0 transfer function, the current in these coils has
to be determined by measuring the shift in B2 or B1 respectively.

6.7 Impact on measurements of the cyclotron frequency ratio

The main systematic limitation on past measurements of the antiproton g-factor was caused by a
possible difference in axial temperature between the particle used to measure the free cyclotron
frequency and the particle used to probe the Larmor frequency. In order to characterize the
impact of the coil system on the measurement of the g-factor, the free cyclotron frequency of a
particle with high axial temperature is compared to the free cyclotron frequency of a particle
with low axial temperature in the same field. The measurement is done by thermalizing the
particle on the axial resonator and subsequently measuring its modified cyclotron frequency
via sideband coupling. By changing the temperature of the axial resonator via feedback cooling,
particles of different temperature can be compared. Figure 6.8 shows the measured cyclotron
frequency ratio R between a hot and a cold particle as a function of the B2 coefficient. The B2

coefficient causes the average magnetic field that the trapped particle experiences to change with
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Figure 6.8: Ratio of the free cyclotron frequency of particles at different temperatures as a
function of the B2 coefficient in the precision trap. The B2 coefficient caused by the
residual magnetic bottle causes the ratio to shift if particles of different temperatures
are compared. If B2 is tuned close to 0, free cyclotron frequency shifts due to the
axial energy are strongly suppressed and the measured free cyclotron frequency is
identical for hot and cold particles.

its axial amplitude. Thus, the modified and free cyclotron frequencies depend on the particles
axial temperature. The size of this systematic shift is mainly determined by the B2 coefficient
and is given by Eq. (2.44). Tuning B2 close to zero causes this shift to vanish and reduces the
systematic uncertainty associated with the uncertainty in axial temperature. Therefore, even in
case the particles have different axial temperatures, the ratio is not shifted. The good agreement
between the measured cyclotron frequencies of two protons at different axial temperatures,
demonstrates the possibility to measure
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7 Analysis trap measurements

The determination of a particle’s g-factor relies in the measurement of the particle’s free
cyclotron frequency νc and its Larmor frequency νL in a common magnetic field B0. The free
cyclotron frequency is accessible by measuring the eigenfrequencies of the particle in a Penning
trap [82], however, no eigenmotion associated to the Larmor frequency exists. The continuois
Stern-Gerlach effect couples the trapped particles spin state to its axial frequency by introducing
a strong quadratic inhomogeneity B2. The shift ∆νz,SF in axial frequency caused by a change
in the particles spin state is given by

∆νz,SF =
g

2

hν+
4π2mpνz

B2

B0
(7.1)

and depends on the strength ob the magnetic bottle B2. Under the conditions in the BASE
analysis trap (B2 ≈ 272(22) kT

m2 , B0 = 1.214 62(8)T, νz ≈ 650 kHz) ∆νz,SF is on the order
of 172mHz. At the same time, the strong magnetic bottle leads to significant shifts of the
particle’s eigenfrequencies as the magnetic field the particle probes during its trajectory strongly
depends on the energies E+, Ez and E− of the individual modes. The shifts in the observable
eigenfrequencies are outlined in chapter 2.3. Given that axial frequency fluctuations on the
order of 172mHz have to be resolved in order to determine the spin state of the trapped particle,
the dependence of the axial frequency on the radial modes is of highest importance.
Under typical conditions, the shift ∆νz,E+ of the axial frequency νz caused by the particle’s
radial energies E± is given by Eq. (2.45):

∆νz,E± =
1

4π2mpνz

B2

B0
|E±| ≈ 800

kHz

eV
|E±| = 70

Hz

K
T±. (7.2)

In order to resolve axial frequency jumps of ∆νz,SF = 172mHz, the radial energies have to be
constant on a level of approximately 200 neV which requires excellent shielding of the particle
against electronic background noise which could couple to the radial motions. In the following
chapter the necessary characterization steps required to achieve the high axial frequency
stability required to achieve single spin flip resolution are outlined. After characterization of
the trap in the initial cooldown, it was discovered that the radial excitation coils required to
drive spin state transitions at high power were broken. After the excitation coils were repaired
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during an experiment maintenance cycle, single spin flips were observed at high fidelity paving
the way for a (anti)proton g-factor measurement at the 100 p.p.t. level.

7.1 Axial frequency determination

7.1.1 Systematic shifts

The strong magnetic bottle present in the analysis trap causes significant shifts of the axial
frequency νz with the particle’s magnetron and cyclotron energies E− and E+. In order to
understand the scale of the shifts and the associated difficulty in the determination of the correct
trapping parameters it is instructive to calculate the typical range of frequency shifts one has
to expect. In case the particle is thermalized by the cyclotron detector of the precision trap
which typically has a temperature on the order of 9K, its cyclotron energy E+ is sampled from
a Boltzmann distribution

p(E+) =
1

E+,typical
e

(︃
− E+

E+,typical

)︃
. (7.3)

with a characteristic width of E+,typical = kBT+ ≈ kB6K. During transport from the high
magnetic field B0,PT in the precision trap to the comparably lower magnetic field B0,AT of the
analysis trap, the effective cyclotron energy of the particle is reduced by a factor of B0,PT

B0,AT
= 1.6.

Therefore, the particle’s axial frequency in the analysis trap follows a Boltzmann distribution
with a characteristic width of

∆νz,E+,typical ≈ 70
Hz

K
× 6K× ≈ 420Hz. (7.4)

In addition to the shift caused by the cyclotron energy, the magnetic moment associated with
the magnetron energy E− is coupled to the axial frequency as well. Given that the magnetron
energy can be cooled to temperatures T− = ν−

νz
Tz < 50mK by coupling the magnetron motion

to the axial detection system at temperature Tz ≈ 5.4K in the analysis trap, the typical width
due to the Boltzmann distribution of the magnetron energy E− is given by:

∆νz,E−,typical ≈ 70
Hz

K
× ν−
νz

5.4K ≈ 7Hz. (7.5)

However, transport of the particle between the precision trap and the analysis trap temporarily
exposes the particle to conditions where the electrostatic potential is flat (C2 ≈ 0). Under
these conditions, the magnetron frequency is undefined which can lead to a significant heating
and an increase in magnetron radius. This transport heating can cause axial frequency shifts
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of multiple hundred Hz which requires extensive cooling in the analysis trap (see Ch. 7.6).
Under experimental condition particles are typically found in a frequency range of up to several
kHz which, together with the uncertainty of the ideal tuning ratio caused by uncertainties
in the manufacturing tolerances, current leaks, calibration offsets and patch potentials, leads
to a parameter space that is too large to scan using dip detection techniques in case the trap
parameters are initially unknown.

7.1.2 Parametric resonance

The systematic shifts described in section 7.1.1 cause the axial frequency in the analysis trap to
depend on the energies E+ and E− of the radial motions. Therefore, as long as the particle’s
cyclotron and magnetron energies are unknown, no straight forward relation between the axial
frequency νz and the ring voltage V0 exist. Additionally, the smaller geometry and ring voltage
compared to the precision trap causes manufacturing tolerances as well as offset voltages,
patch potentials and current leaks to create a larger relative uncertainty on the ideal trapping
parameters. Given that the frequency window in which a particle produces a clear dip signal is
given by the width of the resonator and typically on the order of 30Hz scanning the typical
width of possible axial frequencies due to the thermal distribution of the cyclotron mode requires
approximately 1.5 kHz

30Hz = 300 spectra. Furthermore, as the magnetic field in the analysis trap has
a significant B4 component, the ideal tuning ratio depends on the radial energies as well. Given
the smaller diameter, the axial frequency shows a strong scaling

(︁
∆νz
∆TR

)︁
PT

= 220 mHz
mUK × T±

compared to
(︁

∆νz
∆TR

)︁
PT

= 32 mHz
mUK × T± in the precision trap. Thus the tuning ratio typically

needs to be optimized up to 500 µU to produce a clear dip. For typical ring voltages on the order
of −0.76V and tuning ratios of 0.81 the voltage applied to the correction electrodes is on the
order of −0.62V. Given that offset voltages of up to ±100mV have been observed in the past,
optimization of the tuning ratio on a level of 500 µU requires 200mV

0.62V
0.81

500µU ≈ 500 spectra at
each ring voltage. Scanning the whole parameter space using dip scans thus corresponds to the
acquisition of typically 15 000 spectra and is not feasible given that the spectrum acquisition
time in case of a not optimized dip signal is on the order of tens of seconds. Instead, parametric
resonance [140] can be utilized to determine the combination of V0 and TR that centers the
particle on the resonator at maximum SNR. In this measurement scheme, an axial drive at
frequency νD = 2νR equal to twice the resonator frequency νR is applied, a TR is chosen
and V0 is swept over the region of interest. In case the particle oscillates at an axial frequency
νz ≈ νR, the drive can excite the particle’s axial motion parametrically and the particle’s axial
amplitude increases. The excited particle induces strong image currents in the trap electrodes
and becomes visible as a peak signal on the axial detector. This signal is orders of magnitude

151



658700 658800 658900 659000 659100
 (Hz)

90

80

70

60

50

Si
gn

al
 (d

B V
pk

)

 VRing = -0.761228 V
 VRing = -0.761588 V

Figure 7.1: Frequency spectrum in case the particle’s axial frequency is equal to half of the drive
frequency which causes it’s axial motion to be excited parametrically (red). In case
the particle’s axial frequency is not resonant with the parametric drive, the particle
is not excited and no peak is visible on the resonator.

above the resonator background and thus can be easily detected even if axial spectra are
acquired at a span of 400Hz, averaged and read out at a rate faster than the 2 s acquisition time
corresponding to a full spectrum. Figure 7.1 shows the signal in case the particle is excited
parametrically and in case that the particle’s axial frequency does not match the condition for
parametric resonance.
The range over which the particle is excited depends on the strength of the applied drive. For
high drive strengths, the particle can be excited over a wide range of V0 and TR combinations
and little information is gained. By carefully optimizing the drive’s power, the window in which
the particle is parametrically excited can be narrowed down to values of V0 and TR close to
the ones corresponding to a compensated trap with axial frequency νz = νR. Depending on
the direction in which the applied TR deviates from the ideal tuning ratio, the sign of C4 will
change. Once excited, the presence of a C4 term causes the particle to stay excited for a range
of different V0 values. The range over which the particle stays in resonance with the applied
drive depends on the drive strength, the sign of C4 as well as the direction in which V0 is varied.
In case the drive strength has been carefully optimized, the correct tuning ratio can thus be
determined by minimizing the range over which parametric resonance can be observed. Figure
7.2 shows the maximum signal as a function of the ring voltage V0 for different tuning ratios
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Figure 7.2: Maximum signal as a function of the applied ring voltage for different tuning ratios.
For a tuning ratio of 0.809 185 (brown) the response to the parametric drive is
symmetric and limited to a narrow range of ring voltages indicating that the applied
tuning ratio is close to the ideal tuning ratio.

varied from 0.801 185 to 0.819 185 in steps of 2 mU. The ring voltage is swept in both directions.
For a tuning ratio of 0.809 185 the response to the parametric drive is symmetric and limited to
a narrow range of ring voltages, indicating that the applied tuning ratio is close to the ideal
tuning ratio.
By carefully characterizing the response as a function of the applied drive strength a parametric
detection scheme can be implemented that allows the quick determination of the required TR
and ring voltage after the particle was rethermalized on the PT cyclotron resonator.

7.2 Asymmetry compensation

Similar to the precision trap, an offset compensation measurement is conducted in order to
compensate for contact voltages, manufacturing tolerances, calibration offsets, current leaks
and patch potentials located on the electrodes. Note that since the analysis trap has a different
geometry the shift ∆z of the particle position along the trap axis with the offset ratio OR is
given by

∆zmin = 1.20mm×OR (7.6)
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which at a typical ring voltage of −0.762 58V corresponds to a shift of

∆zmin = −1.57
mm

V
× VOff . (7.7)

Figures 7.3a and 7.3b show C2 and the ideal TR as a function of the offset ratio.
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Figure 7.3: (a) C2 value as a function of the offset ratio. An offset ratio of 0.0849(6) maximizes
C2 and corresponds to a symmetric trap. At a typical ring voltage of −0.762 58V
this corresponds to an offset voltage of 63.9(4)mV on the downstream correction
electrode. (b) Ideal tuning ratio as a function of the offset ratio. Compared to the
measurements in the precision trap the linear approximation of the ideal tuning
ratio is worse as higher order terms in the expansion of the potential created by the
correction electrode start to play a role.

Initially, the trap is tuned to symmetric conditions and the particle is located in the center of
the ring electrode. However, in the final experiment the particle will be shifted to the center of
the magnetic bottle in order to suppress systematic shifts.

7.3 Determination of the modified cyclotron frequency

The strong magnetic bottle present in the analysis trap causes a trapped particle’s axial νz to
depend on its cyclotron energyE+. Therefore, the particle’s modified cyclotron frequency ν+ can
not be determined via sideband coupling to the axial detector in the analysis trap as the particle
would move through a Boltzmann distribution with a temperature of T+ = ν+

νz
Tz ≈ 150K

which corresponds to a typical frequency width of more then 10 kHz. If the sideband drive
was applied, the particle’s axial frequency would immediately jump which causes the sideband
frequency to change and thus the applied sideband drive would become off-resonant. Instead,
the modified cyclotron frequency is driven directly which causes the cyclotron quantum number
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Figure 7.4: Standard deviation of the axial frequency scatter as a function of the drive frequency.
The drive is swept over the cyclotron resonance in the analysis trap. The strong
magnetic bottle causes the axial frequency νz to depend on the cyclotron energy and
thus the axial frequency scatter increases in case the sweep window is above the
cyclotron frequency cut ν+ corresponding to a particle with negligible axial energy.

n+ to change in case the drive frequency is above ν+. This change in n+ causes the axial
frequency to change. By sweeping the drive frequency over the particle’s cyclotron resonance,
ν+ can be determined by resolving an increase in the scatter of the particle’s axial frequency.
The observed axial frequency scatter is given by

σ(∆νz) =
√︂
σ(∆νz,Background)2 + σ(∆νz,Drive)2. (7.8)

The scatter introduced by the drive depends on the drive amplitude as well as the lineshape of
the cyclotron resonance [127].
Figure 7.4 shows the axial frequency scatter as a function of the drive sweep window center in
case the modified cyclotron mode is swept within 10 s over a span of 2000Hz.
For drive frequencies below the cyclotron frequency cut, the observed axial frequency scatter cor-
responds to the background scatter σ(∆νz,Background) and depends on the particle’s cyclotron
temperature. Once the sweep window includes frequencies above the cyclotron frequency cut
ν+, the drive can change the trapped particle’s cyclotron quantum number n+, which causes a
change in the axial frequency and increases the axial scatter. The uncertainty with which the
modified cyclotron frequency can be determined depends on the width of the drive’s sweep
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window. If only a rough determination is required, a wide sweep span of more than 1 kHz

width can be used whereas usage of a narrow sweep window allows precise resolution of the
frequency cut including dynamics caused by the particle’s magnetron random walk [88].

7.4 Magnetic field measurement

The magnetic bottle present in the analysis trap is strong enough to be measured directly by
measuring the particle’s free cyclotron frequency for different positions along the trap axis.
Using the parameters obtained during asymmetry compensation, the particle is shifted along
the trap axis and the cyclotron frequency is determined as described in section 7.3. Given
the strength of the magnetic bottle, ν+ was measured using a sweep window with a width of
2 kHz, the magnetron frequency was estimated as ν− = ν2z

2ν+
and νc was calculated according

to the invariance theorem νc =
√︂
ν2+ + ν2z + ν2−. The uncertainty of νc is determined by the

resolution at which ν+ is measured. Finally, B(z) is calculated using B(z) =
2πmp

q νc(z).
Figure 7.5 shows the magnetic field as a function of the particle position along the trap axis.
Measurements in which the cyclotron frequency could not be clearly resolved or which showed
significant deviations from the expected cyclotron frequency were rejected. The presence of
these outliers is a topic of future studies, however, the behavior could not be reproduced in
subsequent measurements.
By fitting a parabola to the data, the strength and center of the magnetic bottle can be determined
as well as the background magnetic field B0. Given the measured date, the center of the
magnetic bottle seems to be shifted by 24(8) µm towards the upstream direction from the center
determined by the asymmetry compensation. By applying an offset voltage of −48.9mV to the
downstream correction electrode, the particle is shifted into the center of the magnetic bottle.
The fit yields a background magnetic field in the center of the magnetic bottle of

B0,AT = 1.214 62(8)T. (7.9)

The strength of the magnetic bottle is given by

B2,AT = 272(22)
kT

m2 , (7.10)

which is in good agreement with previous values. A more precise value of B2 can be obtained
by determining the axial frequency jump in case of a spin flip (see chapter 7.9.2).
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Figure 7.5: Magnetic field as a function of the axial position of the particle. The center of the
magnetic bottle is shifted by 24(8) µm towards the upstream direction from the
center determined by the asymmetry compensation. In the center of the magnetic
bottle, the background field is B0,AT = 1.214 62(8)T and the magnetic bottle has a
strength of B2,AT = 272(22) kT

m2 .
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7.5 B4 measurement and tuning ratio optimization

The ferromagnetic ring electrode that is used to create the strong magnetic bottle in the analysis
trap distorts the magnetic field. Given the symmetry of the ring electrode odd terms in the
expansion of the magnetic field around the minimum of the magnetic bottle are suppressed.
However, a significantB4 term is present which causes the ideal tuning ratio T̃R to be a function
of the radial energies E+ and E−. Given that the magnetron mode can be sideband-cooled to
low temperatures in the precision trap, T̃R mainly depends on the cyclotron energy E+. As
described in Eq. (5.47) B4 is approximately given by

B4 ≈ −B0qVRD4
∂T̃R

∂E+
= −B0qVRD4

∂T̃R

∂νz

∂νz
∂E+

. (7.11)

Due to the strong magnetic inhomogeneity in the analysis trap, the axial frequency and ideal
tuning ratio change with the cyclotron energy E+ of the particle. Therefore, the combination
of the ring voltage VR and tuning ratio T̃R which center the particle on the resonator with
high SNR have to be determined after each rethermalization. Once VR and T̃R are known,
the particle temperature can be determined. In case the cyclotron temperature is above the
cutoff temperature set for the efficient detection of single spin flips, the particle needs to be
rethermalized on the cyclotron detector in the PT. This process, called cold particle search
(CPS) is repeated until a cold particle is found. Expressing Eq. (7.11) in experimentally relevant
quantities yields:

B4 ≈ −B0qVRD4
∂T̃R

∂E+
= −B0qVRD4

∂T̃R

∂νz

∂νz
∂E+

= −B0qVRD4
∂T̃R

∂VR

∂VR
∂νz

∂νz
∂E+

. (7.12)

The dependency of the axial frequency on the ring voltage ∂νz
∂VR

= −413(3) Hz
mV in the analysis

trap is easy to measure and thus

∂VR
∂νz

=
1
∂νz
∂VR

= −2.42(2)
µV
Hz

(7.13)

is well known. Additionally, the values of B0 and B2 in the analysis trap are known and thus
∂νz
∂E+

is given by Eq. (7.14):

∂νz
∂E+

=
1

4π2mpνz,0

B2

B0
. (7.14)

In order to determine the value of ∂T̃R
∂VR

, particles at different cyclotron temperatures have to
be loaded in the analysis trap and the tuning ratio T̃R has to be optimized. Figure 7.6 shows
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Figure 7.6: Optimal tuning ratio T̃R as a function of the ring voltage VR that centers the particle
on the resonator. As the ring voltage VR and tuning ratio T̃R which center the
particle on the resonator with high SNR both scale approximately linearly with the
particle’s cyclotron energy E+, a linear relationship is expected between VR and
T̃R. A fit to the data yields a slope of ∂T̃R

∂VR
= 0.91(11) 1

V .

the optimized tuning ratio T̃R as a function of the ring voltage VR that centers the particle on
the axial resonator for the four particles that were used in the initial characterization of the
analysis trap.
Under the assumption that both the shifts of the particle’s axial frequency νz as well as the ideal
tuning ratio T̃R are dominated by their first order contributions B2 and B4 respectively, both
shifts scale linearly with E+. The value of ∂T̃R

∂VR
can thus be determined by a linear fit to the

data which yields

∂T̃R

∂VR
= 0.91(11)

1

V
. (7.15)

Inserting the value of D4 = −4.81× 1010 1
m4 obtained from potential theory calculations (see

chapter 2.2) together with the results of Eqs. (7.13), (7.14) and (7.15) into Eq. (7.12) yields

B4 ≈ −qVRD4B2

4π2mpνz

∂T̃R

∂VR

∂VR
∂νz

= 81(12)
GT

m4 . (7.16)

Note that the uncertainty of this value is currently dominated by the uncertainty in the deter-
mination of B2 and ∂T̃R

∂VR
given that the tuning ratio was only optimized for four cold protons.
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Additionally, the measurements were done in the geometric center of the trap which means
that the strength of B2 is slightly different than in the center of the magnetic bottle.
For experimental operation B4 is of secondary importance compared to the relationship ∂T̃R

∂VR
=

0.91(11) 1
V between optimized tuning ratio T̃R and centering ring voltage VR as this line in

TR-VR-space determines how the tuning ratio and the ring voltage have to be varied to find
cold particles in the analysis trap. Given the currently known pairs of T̃R and VR, the line
along which cold particles can be detected at maximum SNR in the analysis trap is given by:

T̃R(VR) = 1.54(8) + 0.91(11)
1

V
× VR. (7.17)

7.6 Magnetron cooling and determination of the axial
temperature

Apart from changes in the cyclotron energyE+ and the spin state, the magnetron mode changes
the axial frequency as well. As described in 7.1.1, the magnetron mode can be sideband-cooled
in the precision trap to temperatures below 50mK and thus the related axial frequency shifts in
the analysis trap are small compared to the shift induced by the cyclotron temperature, however,
the magnetron mode can be heated during transport and by background noise. Due to the shift
of the axial frequency with the magnetron energy, the sideband cooling scheme used in the
precision trap is not applicable in the analysis trap as any significant change in the particle’s
magnetron energyE− leads to a shift of the axial frequency νz which causes the axial-magnetron
sideband to be shifted away cooling drive. Instead the particle is cooled by modulating the
sideband drive over the upper magnetron-axial sideband frequency νSB = νz + ν−. Typically
the sideband frequency is modulated by ±100Hz around the suspected sideband frequency
with a modulation period of 2 s and applied for 10 s. During the modulation, the drive becomes
momentarily resonant with the sideband frequency, which causes the magnetron mode to
exchange energy with the axial resonator and the axial frequency jumps. After the modulation
is finished, the new axial frequency is determined by comparing the axial spectrum of the
resonator-particle system with a reference spectrum of the resonator in which the particle
is detuned. The particle frequency can be determined by looking for the maximum absolute
difference between the axial spectrum and the reference spectrum to account for the cases in
which the particle is centered on the resonator and creates a dip as well as the cases in which
the particle’s axial frequency does not match the resonator frequency and the particle creates a
dispersive peak feature in the frequency spectrum. Figure (7.7) shows the reference spectrum
as well as the particle spectra at different points in the cooling process.
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Figure 7.7: Axial spectra during the magnetron cooling process in the analysis trap. After each
sweep of the cooling drive over the upper axial-magnetron sideband the magnetron
exchanges energy with the axial detector and the particle’s axial frequency jumps.
The cooling drive frequency is readjusted by comparing the particle spectrum with a
reference spectrum.
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In order to determine when the magnetron mode of the particle is cold, the axial frequency is
monitored during the cooling scheme. The drive thermalizes the particle on the axial detector
and thus the magnetron energy follows a Boltzmann distribution with temperature T− = ν−

νz
Tz .

In case the magnetron mode is cold, |E−| is minimal and thus νz is minimized as well. During
one cooling cycle the minimum frequency νz,cut corresponding to a cold particle is determined
by acquiring typically 15 axial spectra. Fitting the cumulative distribution function of the
thermal Boltzmann distribution

Fνz = Θ(νz − νz,cut)× (1− e

(︂
− |E−|

kBT−

)︂
) = Θ(νz − νz,cut)× (1− e

(︂
− νz−νz,cut

∆νz

)︂
) (7.18)

yields the characteristic width

∆νz =
1

4π2mpνz

B2

B0
kBT− (7.19)

which can be solved for the magnetron temperature

T− =
4π2mpνzB0

kBB2∆νz
. (7.20)

Figure 7.8 shows the cumulative distribution function of 200 axial frequencies acquired during
a magnetron cooling sequence in the analysis trap with strong negative feedback on the axial
resonator. The blue line indicates the best fit of Eq. (7.18) to the data and yields νz,cut =

658 878.98(2)Hz and ∆νz = 6.83(4)Hz.
Inserting∆νz together with the known values ofB0 andB2 into Eq. (7.20) results in a magnetron
temperature of

T−,AT = 95.8(76)mK (7.21)

which corresponds to a temperature

Tz,AT =
νz
ν−
T− = 5.38(43)K (7.22)

of the feedback-cooled axial detection system.

7.7 Determination of the cyclotron detector temperature

Determination of the PT cyclotron detector uses the same principle as described in the previous
chapter. Instead of thermalizing the cyclotron mode using a sideband drive, the particles
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Figure 7.8: Cumulative distribution function of 200 axial frequency samples acquired during a
magnetron cooling sequence in the analysis trap with strong axial feedback. Fitting
Eq. (7.18) to the data yields νz,cut = 658 878.98(2)Hz and ∆νz = 6.83(4)Hz. The
scale ∆νz of the distribution depends on the temperature of the axial detection
system and thus Tz = 5.38(43)K can be determined from the fit.
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modified. cyclotron mode is thermalized directly by shuttling the particle to the precision trap
and tuning the cyclotron detectors frequency to the particles modified cyclotron frequency ν+.
After the particle has been in contact for multiple cooling time constants τ+,PT ≈ 90 s, it is
shuttled to the analysis trap where the strong magnetic bottle couples the cyclotron energy E+

to the axial frequency. Once again, the observed axial frequency νz is given by

νz = νz,cut +
1

4π2mpνz

B2

B0
E+ (7.23)

where νz,cut corresponds to a particle with negligible cyclotron energy E+. Inserting the
Boltzmann distribution of E+ into Eq. (7.23) yields the probability density p(νz) to observe an
axial frequency νz

p(νz) = Θ(νz − νz,cut)×
1

∆νz
e

(︂
− νz−νz,cut

∆νz

)︂
(7.24)

with the characteristic width

∆νz =
1

4π2mpνz

B2

B0
kBT+. (7.25)

The scaling of the characteristic width ∆νz is the same for the magnetron and the modified
cyclotron temperature, however, given that the temperature T− of the modified cyclotron mode
after sideband coupling is suppressed by a factor of ν−

νz
≈ 1

50 assuming that the axial and
cyclotron detector have similar temperatures, the axial frequency shifts after cooling on the PT
cyclotron detector are expected to be larger by approximately a factor of 50 compared to what
is observed during magnetron cooling in the analysis trap. In order to find the particle, the
ring voltage VR and tuning ratio TR are varied along the VR-TR line as described in chapter
7.5. Particles are detected by comparing axial spectra for different VR-TR combinations with a
reference spectrum of the axial resonator. Given that the particle’s axial frequency νz depends
on the ring voltage and the tuning ratio, all observed frequencies are referenced to a common
ring voltage of VR,ref = −0.755V and a reference tuning ratio of TRref = 0.852 950 according
to

νz,ref = νz − (VR − VR,ref )×
∆νz
∆VR

− (TR− TRref)×
∆νz
∆TR

(7.26)

using the measured values of ∆νz
∆VR

= −402 Hz
mV and ∆νz

TRref
= −52 Hz

mU .
Figure 7.9 shows the cumulative distribution function of observed frequencies νz,ref for 34
particles that were detected at a residual of at least 4dBVpk

.
In order to determine the temperature of the feedback cooled cyclotron detector in the precision
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Figure 7.9: Cumulative distribution function of the observed axial frequencies in the analysis trap
after cooling the particle repeatedly on the cyclotron detector of the precision trap.
The blue line indicates the best fit of Eq. (7.27) to the data and yields the characteristic
width ∆νz = 430(24)Hz which corresponds to a temperature T+ = 6.04(59)K of
the cyclotron temperature in the analysis trap.
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trap, the cumulative distribution function of Eq. (7.24) which is given by

Fνz = Θ(νz,ref − νz,cut)× (1− e(−
νz,ref−νz,cut

∆νz
)) (7.27)

is fit to the data and ∆νz = 430(24)Hz is extracted. Inserting this value together with the
known values of B0 and B2 into Eq. (7.25) yields

T+,AT = 6.0(6)K. (7.28)

Note, however, that the effective cyclotron temperature changes when the proton is transported
from the background field B0,PT = 1.944T present in the precision trap to B0,AT = 1.21T.
Thus the observed cyclotron temperature in the analysis trap is underestimated by a factor
B0,PT

B0,AT
and the temperature of the PT cyclotron detector is given by:

T+,PT = T+,AT × B0,PT

B0,AT
= 9.6(9)K. (7.29)

The cyclotron detector is located within the trap can which is cooled to approximately 4.2K by
the liquid helium cryostats. However, the ”electronic temperature” of the detection circuit can
be above the ambient temperature in case external noise – as for example the input noise of the
amplifier circuits – couples to the detector. Feedback cooling provides the possibility to reduce
the ”electronic temperature” up to a certain degree and can help to increase the probability of
extracting a cold particle from the thermal distribution.

7.8 Determination of the ideal averaging time

In order to resolve spin state transitions, the axial background frequency scatter ΞBG has to
be minimized. The BASE Allan deviation, which is defined as the standard deviation of the
difference between subsequent frequency measurements, provides a good measure of ΞBG as a
function of the utilized averaging time tavg .
By averaging for longer durations, the scatter ΞFit introduced by the uncertainty of the fit is
expected to decrease with the square root of the averaging time tavg :

Ξ(tavg)Fit ∝
1√
tavg

. (7.30)

In addition to the fit scatter contribution outlined above, the particle’s axial frequency in the
analysis trap changes as the cyclotron mode undergoes a random walk driven by electrical
background noise. Given that the mean change in cyclotron energy is proportional to the square
root of the averaging time, the random walk contributes to the background scatter as:
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Ξ(tavg)RW ∝
√︁
tavg. (7.31)

Finally, the finite stability of the voltage supplies contributes to the observed fit scatter. Typically,
the Allan deviation of the voltage stability is constant for timescales relevant to the experiment
and thus ΞV is constant.

Ξ(tavg)V = const. (7.32)

The final observed axial frequency scatter ΞBG(tavg) thus is a function of the averaging time
can be modeled as:

ΞBG(tavg) =

√︄(︃
ΞFit√
tavg

)︃2

+ (ΞRW

√︁
tavg)2 + Ξ2

V . (7.33)

The parameters ΞFit, ΞRW and ΞV determine the strength of the individual contributions
outlined above. Figure 7.10 shows the axial Allan deviation for a particle trapped in the Analysis
trap.
A fit of Eq. (7.33) to the data yields ΞFit = 540(30)mHz s0.5, ΞRW = 4.4(2) mHz

s0.5
and ΞV =

0(22)Hz. At the given fit- and random walk scatter contributions, ΞV is negligible and can not
be determined from the BASE Allen deviation.
The ideal averaging time tavg,opt which minimizes the axial frequency scatter is given by
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tavg,opt =
ΞFit

ΞRW
= 123(8) s. (7.34)

Note that the strength of the particles random walk depends on it’s cyclotron temperature T+.
In case a hot particle with a high random walk contribution ΞRW is used, the optimal averaging
time decreases.

7.9 Detection of spin flips

7.9.1 Statistical spin-flip detection

After the characterization steps outlined above, it was attempted to drive spin flips in the
analysis trap. During these measurements it became apparent that the connections to the
spin flip coils were broken. Thus, after the magnetic shimming and shielding system had been
characterized, the experiment was opened and the spin flip lines were successfully repaired.
Given the strong magnetic bottle present in the Analysis trap, the particle’s motion through
the axial Boltzmann distribution causes it’s momentary cyclotron and Larmor frequency to
continuously change. Thus, spin flips can be driven as soon as the particle is irradiated at a
frequency νrf ≥ νL,cut =

g
2νc,cut. The frequencies νL,cut and νc,cut indicate the Larmor- and

free cyclotron frequency at vanishing axial energy. In order to drive and detect spin flips in
the analysis trap, a radiofrequency drive at a frequency νrf is applied and the scatter Ξz of the
particle’s axial frequency is observed. In case the radiofrequency drive flips the particle’s spin
orientation, the axial frequency jump is given by

∆νz,SF =
g

2

hν+
4π2mpνz

B2

B0
= 172(13)mHz (7.35)

using the current values of B0 and B2. This jump of the axial frequency increases the scatter Ξz

of subsequent axial frequency measurements. In case the probability to flip the spin between
two axial frequency measurements in given by pSF , the observed axial frequency scatter Ξz is
given by Eq. (7.35):

Ξz =
√︂

Ξ2
BG + Ξ2

SF =
√︂
Ξ2
BG + pSF∆ν2z,SF . (7.36)

The background scatter ΞBG is determined by measuring the axial frequency scatter in case the
drive frequency νrf is tuned far from the Larmor frequency cut νL,cut. The resulting background
scatter ΞBG includes contributions from fitting, finite stability of the voltage sources and the
particle’s cyclotron random walk as well as possible scatter that is induced by the drive but
not related to spin flips. Figure (7.11) shows the axial frequency scatter for a sequence of axial
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Figure 7.11: Axial frequency scatter in case the radiofrquency drive is detuned from the Larmor
frequency (blue) or resonant with the Larmor frequency (red). In case the drive
is close to the Larmor frequency, spin flips are driven and the axial frequency
scatter increses significantly above the background. Evaluating the scatter yields
ΞSF = 140(16)mHz and ΞBG = 47.7(6)mHz which corresponds to a spin flip
probability of pSF = 58(18)%.

frequency measurements in case the drive frequency is tuned away from the Larmor frequency
cut (blue) and in case spin flips are driven (red).
Using the full amount of available data, the background scatter ΞBG in case the radiofrequency
drive is detuned from the Larmor resonance is given by

ΞBG = 47.7(6)mHz (7.37)

and the axial scatter ΞSF in case the drive is resonant with the Larmor frequency is

ΞSF = 140(16)mHz. (7.38)

Using Eqs. (7.35) and (7.36) finally yields the spin flip probability

pSF =
Ξ2
SF − Ξ2

BG

∆ν2z,SF
= 58(18)%. (7.39)

The uncertainty of the spin flip probability is dominated by the uncertainty of the magnetic
inhomogeneityB2, which during the initial characterization of the trap had a relative uncertainty
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of 8% and has since been measured more precisely. Nevertheless the significant increase in
axial frequency scatter clearly indicates that spin flips were driven.

7.9.2 Single spin flip detection

Instead of resolving spin flips by an increase of the axial frequency scatter, individual jumps of
the axial frequency can be resolved. Compared to statistical spin flip detection, the resolution
of individual spin flips requires a low axial background scatter as a frequency jump of ∆z,SF =

172mHz has to be resolved from a single measurement. In order to resolve single spin flips,
the axial frequency νz,1 is measured, the spin flip drive is applied and the axial frequency
νz,2 after application of the drive is measured. If no spin flip occurred, the frequency shifts
∆νz = νz,2−νz,1 follow a Gaussian distribution centered around 0Hz with a standard deviation
ΞBG. However, in the case that the spin state of the particle was flipped, the resulting frequency
differences are drawn from Gaussian distribution centered around ±∆z,SF , depending on the
initial spin state. The probability density p(∆νz) to observe a frequency shift of ∆νz depends
on the spin flip probability pSF , the background scatter ΞBG and the initial spin state. In case
many spin flips are observed, the probabilities p↑ to find a particle in the spin up state and p↓ to
find the particle in the spin down state are equal and p(∆νz) given by Eq. (3.35) becomes:

p(∆νz) =(1− pSF )N (0,ΞBG) (7.40)

+ 0.5 pSF N (−∆νz,SF ,ΞBG)

+ 0.5 pSF N (∆νz,SF ,ΞBG).

Figure 7.12 shows the probability density of the observed frequency shifts ∆νz during a single
spin-flip measurement sequence in the analysis trap using a proton with a cyclotron temperature
of approximately 80mK. Each axial spectrum is acquired at an averaging time of tavg = 105 s,
corresponding to an averaging time close to the minimum of the BASE ADEV. The blue line
indicates the fitted probability density obtained from a fit to the cumulative distribution function.
The three sub distributions are visible, however, the whole probability density seems to be
shifted towards negative values. The axial frequency shows no strong drift which indicates that
the frequency relaxes back to the equilibrium value while no spin flip drive is applied. In case
this shift proves to be persistent, asymmetric thresholds have to be applied in the single spin flip
detection scheme outlined in chapter 3.5.2, however, the cause shift has yet to be understood
and warrants further investigation regarding its impact on the final spin state identification
procedure.

170



0.3 0.2 0.1 0.0 0.1 0.2 0.3
z (Hz)

0

1

2

3

4

5

p(
z) 

(1 Hz
)

Data
Fit

Figure 7.12: Histogram of the observed frequency differences ∆νz in case a resonant spin flip
drive is applied between the frequency measurements. In case the spin is flipped, the
axial frequency jumps by ±∆z,SF = ±170.8(8)mHz which leads to the two side
distributions next to the central distribution corresponding to the axial frequency
scatter in case no spin is flipped. The blue line shows the fitted probability density
obtained from a fit to the cumulative distribution function of the observed frequency
shifts. The whole distribution is shifted by 50.0(2)mHz towards negative shifts,
however no strong drift is visible in the axial frequency data, indicating that the
shift is caused by the spin flip drive. The exact mechanism leading to the shift has
yet to be understood and is topic of further investigations.

171



0.3 0.2 0.1 0.0 0.1 0.2 0.3
z (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Data
Fit

Figure 7.13: Cumulative distribution function of the observed axial frequency differences in case
a resonant spin flip drive is applied between the frequency measurements. The CDF
increases fastest at the location of the sub distributions corresponding to no spin
flip, a flip from the spin down state to the spin up state and vice versa. The blue line
shows the best fit of the cumulative distribution function of Eq. (7.40) – expanded
by a parameter ∆νz,center accounting for the observed bias towards negative shifts
– to the data and yields ∆νz,center = −50.0(2)mHz, ∆z,SF = 170.8(8)mHz,
ΞBG = 46.3(6)mHz andpSF = 51.0(4)%.

In order to determine the parameters ∆νz,SF , ΞBG and pSF the cumulative distribution function
of Eq. (7.40) is fit to the data. An additional parameter ∆νz,center which shifts the whole
distribution is introduced to account for the bias in the observed data. Figure 7.13 shows the
cumulative distribution function as well as the line of best fit.
The fit yields a shift of the whole distribution by ∆νz,center = −50.0(2)mHz towards negative
frequency shifts. The fitted frequency jump ∆z,SF = 170.8(8)mHz associated with a spin flip
is in good agreement with the predicted value based on measurements of B2 and B0. The fitted
background scatter ΞBG = 46.3(6)mHz is comparable to the previous values observed during
statistical spin flip observation and the spin flip probability pSF = 51.0(4)% indicates that the
spin flip transition was driven at high enough power to be saturated.
By proving the observation of single spin flips at a fidelity comparable to the best conditions
during the 2016 g-factor measurement campaign [102] all prerequisites for a g-factor measure-
ment at significantly improved magnetic field homogeneity in the precision trap have been
demonstrated, paving the way for a (anti)proton g-factor measurement at the 100 p.p.t. level.
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8 Impact on future measurements

The successful demonstration of the ability to tune the magnetic field in the center of the
precision trap enables comparisons of the charge-to-mass ratios and the g-factors of the proton
and antiproton at unpreceded precision. In addition, the ability to cancel the inhomogeneities
of the magnetic field provides the possibility to utilize novel measurement techniques, which
will be discussed in the following.

8.1 Impact on charge-to-mass ratio comparisons

The comparison of the charge-to-mass ratio of the proton and the antiproton relies on the
comparison of the individual particle’s free cyclotron frequencies in a common, homogeneous
magnetic field B0. The ratio R of charge-to-mass ratios is given by:

R =
νc,p̄
νc,p

=

(︁ q
m

)︁
p̄
B0(︁ q

m

)︁
p
B0

=

(︁ q
m

)︁
p̄(︁ q

m

)︁
p

. (8.1)

In case both particles’ free cyclotron frequencies are measured in the same field,R is independent
of B0. In order to suppress shifts of the particle position when the polarity is inverted to change
between a negatively charged antiproton and a positive proton, the antiproton is compared to a
negatively charged H−-ion and the final ratio is corrected by the proton-to-H− mass ratio (see
sec. 3.4).
In the presence of magnetic inhomogeneities, the average magnetic field the particles experience
during the measurement depends on the eigenenergies of the particles. Given the ratio of
eigenfrequencies, the dominant shift of the free cyclotron frequency depends on the shift of the
modified cyclotron frequency which is given by Eq. (2.45). Since the particles are measured in
the same potential, they both experience the same shift and R is only shifted by the difference
∆E in particle energies rather than the absolute value of the eigenenergies. Using Eq. (2.45), the
shift ofR with the residual magnetic bottleB2 present in the precision trap and the temperature
difference ∆Ez is given by:
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∆R

R
=

1

mω2
z

1

B0
×B2 ×∆Ez =

26.2× 10−9

T
m2K

×B2 ×∆Ez. (8.2)

Since B2 and the axial temperature of the particles are continuously observed during a charge-
to-mass ratio measurement campaign, R can be corrected for the shift related to the residual
magnetic bottle described by Eq. (8.2). The uncertainty σ(∆R

R ) of this correction is given by the
uncertainties σ(B2) and σ(∆Ez) of the residual magnetic bottle and the temperature difference:

σ(
∆R

R
) =

1

mω2
z

1

B0
×
√︂
(∆Ezσ(B2))

2 + (B2σ(∆Ez))
2. (8.3)

During the last charge-to-mass measurement campaign [69] B2,SB = −0.267(2) T
m2 and

B2,P eak = −0.0894(6) T
m2 were measured for the sideband and peak measurements respectively.

In chapter 6.3 the ability to reproducibly change B2 by loading the B2-coil was demonstrated
and it was demonstrated experimentally, that this shift can be suppressed by more than a factor
100.

8.2 g-factor measurements

Measurements of the magnetic moment rely on a comparison of the trapped particle’s free
cyclotron frequency νc = 1

2π
q
mB0 and its Larmor frequency νL = 1

2π
g
2

q
mB0 such that g

2 can be
determined via:

g

2
=
νL
νc
. (8.4)

A correct measurement of g
2 thus requires νc and νL to be measured in the same magnetic field.

While νc can be determined via the sideband or peak method outlined in 5.2, determination of
the Larmor frequency requires the resolution of single spin flips in the analysis trap. The spin
state of the particle, however, can only be resolved in case the particle’s cyclotron energy E+ is
small. Given that measurements of the free cyclotron frequency heat the particle’s cyclotron
energy to temperatures of E+ ≈ 300K, a novel measurement scheme using two particles is
typically applied (see 3.5.3). While this method reduces the requirement to cool the particle after
each cyclotron frequency measurement, it has the disadvantage, that νc and νL are no longer
measured simultaneously. In particular, it can not be excluded that the radio-frequency drive
irradiating the particle with the Larmor frequency excites the axial resonator which leads to a
temperature difference ∆Tz = Tz,L − Tz,c between the axial temperature Tz,L of the particle
used to probe the Larmor frequency and the temperature Tz,c of the particle used to measure
the free cyclotron frequency. Given that ν+ and νL have the same scaling with the particle’s
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eigenenergies, the systematic shift of g due to a difference in axial energy Ez is equivalent to
the case of charge-to-mass ratio measurements:

∆g

g
=

1

mω2
z

1

B0
×B2 ×∆Ez =

26.2d− 9
T
m2K

×B2 ×∆Ez. (8.5)

Once again, the related uncertainty of the systematic shift is given by a combination the
uncertainties σ(B2) and σ(∆Ez):

σ(
∆g

g
) =

1

mω2
z

1

B0
×
√︂

(∆Ezσ(B2))
2 + (B2σ(∆Ez))

2. (8.6)

In 2017 the antiproton g-factor was determined with a fractional precision of 1.5 p.p.t. (95%
confidence) [68] using the two particle measurement scheme outlined in 3.5.3. During this
measurement it was observed, that application the Larmor drive lead to saturation of the axial
resonator in the precision trap. Thus it could not be excluded, that the Larmor particle’s axial
temperature Tz,L was up to 0.68(7)K higher than the axial temperature Tz,c of the particle used
to measure the cyclotron frequency. Given the strong magnetic bottle of B2,PT = 2.74(22) T

m2

present in the precision trap, this uncertainty in temperature introduced by the Larmor drive
lead to the dominant systematic uncertainty of 970 p.p.b. Thanks to the redesign of the trap stack
in the course of the thesis, the residual magnetic bottle in the precision trap was reduced toB2 =

103.50(23) mT
m2 . With the help of the implemented superconducting magnetic shimming and

shielding system, the residual magnetic bottle can be further reduced to values close to B2 = 0

which eliminates the main systematic uncertainty present in the last measurement. Alternatively,
the successful implementation of a dedicated cooling trap into the experiment [100] provides
the possibility to rapidly cool particles and thus enables single particle measurement schemes
in which the cyclotron frequency is measured during irradiation with the Larmor drive. In this
measurement scheme, νc and νL are probed simultaneously and therefore are measured at the
same axial temperature by design.

8.3 Coherent spin flip techniques

The increased homogeneity provided by the magnetic shimming and shielding system provides
the possibility to apply novel coherent techniques for the determination of the Larmor frequency.
In case the magnetic field in the precision trap is not homogeneous, the particle experiences
magnetic fields of different strength during its axial oscillation. As a result, the particles oscillates
in and out of resonance and its spin state can change, even if the applied radio-frequency does
not correspond to the Larmor frequency at the background field B0. This causes the Larmor
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resonance to be broadened. A detailed derivation of the shape of the Larmor resonance is given
in [127]. In the presence of a magnetic inhomogeneity, the spin flip probability as thus limited
to 50% and significant power broadening is present in case the spin flip drive is applied for
long times.
By tuning the gradient B1 and the magnetic bottle B2 to values close zeros, the strength of
the magnetic field stays constant during the oscillation of the particle. As a consequence, the
particle’s Larmor frequency does not change with its position and in case a resonant drive is
applied, the particle stays in resonance. The increased homogeneity thus allows for longer
excitation times which reduces the width of the frequency spectrum of the Larmor drive and
leads to a narrower g-factor resonance.
In addition to reduced power broadening, the homogeneous field provides the possibility to
drive spin flips coherently. As soon as the Larmor drive is applied, the two spin states are
coupled and the probability to find the particle in one or the other state changes with the
(modified) Rabi frequency Ω (see 5.2.1):

Ω =
√︁
Ω2
res + δ2. (8.7)

As in case of the sideband coupling between eigenmotions of the particle, Ωres describes the
resonant Rabi frequency which depends on the strength of the drive whereas δ describes the
detuning of the applied drive from the true Larmor frequency. The probability to flip the trapped
particle’s spin state thus becomes a function of time and it is in theory possible to achieve full
inversion of the spin state, thus increasing the contrast in the g-factor resonance. The possibility
to extend the time in which the Larmor drive is applied depends on the leftover inhomogeneities
of the magnetic field as any excitation in the presence of magnetic inhomogeneities leads to a
dephasing which reduces the achievable contrast. In order to minimize the time during which
the drive is applied Ramsey methods can be implemented [141]. In this measurement scheme,
the excitation is limited to two short pulses before and after a time of free evolution.

8.4 Determination of measurement systematics

Characterization of the systematic shifts caused by magnetic and electrostatic inhomogeneities
requires the measurement of frequency shifts as a function of the particle’s eigenenergies. The
strength of these shifts depends on the magnitude of the inhomogeneity, typically parametrized
by the coefficients Bn and Cn as well as the energies E+, Ez and E−. The magnetic shimming
and shielding system improves the determination of systematic effects in multiple ways.
First, the possibility to change B1 and B2 in situ provides the possibility to study the effects
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magnetic inhomogeneities have on measurements directly (see 6.7). Second, the measurement
of the particle’s eigenenergies E+ and E− relies on the observation of frequency shifts in the
presence of magnetic inhomogeneities. By purposely increasing the strength of B1 and B2, the
observed frequency shifts at a certain energy difference can be increased which leads to a lower
uncertainty in the calibration of the energy a drive imparts on the particle.
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9 Conclusion and Outlook

9.1 Summary

The BASE experiment tests CPT-symmetry by comparing the fundamental properties of protons
and antiprotons. The comparison of the charge-to-mass ratio as well as the g-factor of the
proton and antiproton require the measurement of the free cyclotron frequency νc and the
Larmor frequency νL in the common magnetic field B0 of a Penning trap. In order to ensure
high precision, the magnetic field has to be shielded against fluctuations induced from external
sources present in the environment of the experiment. In addition, higher order coefficients
of the magnetic field lead to systematic shifts of the measured frequencies with the particles
eigenenergies. The goal of this thesis was the design, successful implementation and char-
acterization of a superconducting magnetic shimming and shielding system which prevents
fluctuations of B0 due to external sources and provides the possibility to tune the linear and
quadratic inhomogeneities B1 and B2 of the magnetic field. The main results of the thesis are
outlined below:

• The penning trap stack was redesigned to increase spacial separation between the pre-
cision trap and the analysis trap. By decreasing the size of the high-voltage catching
electrodes, the distance between the center of the precision trap and the analysis trap
was increased by 2.5 cm. The increased distance between the traps reduces the strength
of the residual magnetic bottle B2,PT in the precision trap which is caused by the ferro-
magnetic ring electrode of the analysis trap. Compared to the last g-factor measurement
campaign, the residual B2 in the center of the precision trap is reduced from 2.74(22) T

m2

to 103.50(23) mT
m2 .

• A superconducting shimming and shielding system was successfully designed, imple-
mented and characterized. This system suppresses external fluctuation of the magnetic
field by approximately a factor 50 and provides the possibility to conduct frequency
measurements during operation of the antiproton decelerator. In addition, the shimming
system can be charged using an external current which provides the possibility to change
the linear and quadratic inhomogeneities B1 and B2. A loading scheme that allows
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reliable loading was developed and the ability of the system to hold current without
detectable loss for multiple days was demonstrated. By charging the system, B2 can
be tuned to 0 which eliminates the dominant systematic uncertainty of past g-factor
measurements and paves the way for a comparison of the proton and antiproton g-factor
at the 100 p.p.t. level.

• In the course of this thesis, the Penning trap system was recharacterized after the imple-
mentation of the magnetic shimming and shielding system. Protons were successfully
trapped in both the precision trap and the analysis trap, the traps were characterized and
loss-less transport between the traps was established. These measurements paved the way
for the detection of single spin flips which demonstrates the possibility to successfully
measure the (anti)proton g-factor with the upgraded system.

After the successful demonstration of single spin flip detection using protons, the experiment
was connected to the Antiproton decelerator in order to load antiprotons into the reservoir
trap. However, due to the reduced beam energy provided by ELENA, the steering parameters
required to guide the beam into the trap apparatus changed and a novel degrader had to
be implemented. After catching of antiprotons initially was not successful during the 2022
beamtime, the upgraded system was used to measure the proton g-factor in order to prepare the
experiement for the implementation of phase-sensitive measurement methods and characterize
long-term performance of the newly implemented coil system and cooling trap. After the
successful conclusion of the proton g-factor measurement in 2023, antiprotons were successfully
loaded for the first time using the novel degrader system [95]. As of December 2023, the system
is being prepared for a measurement of the antiproton g-factor.

9.2 Outlook

9.2.1 Current measurement campaign

Operation of all critical components was demonstrated during the characterization outlined in
this thesis and the proton g-factor was successfully measured using the upgraded apparatus.
After the successful loading of antiprotons in late 2023 the experiment is prepared to measure
the antiproton g-factor at improved precision in 2023/2024.

9.2.2 Development of persistent joints

In parallel to the g-factor campaign, novel manufacturing techniques for the production per-
sistent joints using superconducting solder as outlined in [135] are tested. The goal of these
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tests is to find a simple yet reliable manufacturing process for superconducting joints with high
critical currents in the presence of strong magnetic fields which would provide the possibility
to further increase the critical current of the B1-coil which could provide the possibility to
compensate the residual B1 in the precision trap completely.

9.2.3 Feasibility studies of a 7-pole trap

In order to tackle electrostatic asymmetries created by manufacturing errors and patch potentials
on the electrodes, feasibility studies on the construction of a 7-pole trap are being conducted. By
using 2 independent sets of correction electrodes and two tuning ratios, C4 and C6 can be tuned
to 0 simultaneously, even in case of voltage offsets or mismatch of the electrode dimensions. This
additional degree of freedom helps to suppress the systematic shifts due to higher order terms
in the expansion of the electrostatic potential (see Eq. (2.40)) which could lead to an increase in
the signal-to-noise ratio of the particle signature in the analysis trap, which corresponds to a
higher spin flip detection fidelity at comparable averaging time.

9.2.4 Design of an analysis trap with inverted magnetic bottle

The resolution of single spin flips in the analysis trap requires the preparation of a particle with
low cyclotron energy E+ as the cyclotron transition rate ζ+ given by Eq. (3.30) is proportional
to the cyclotron quantum number n+. In the typical configuration, the ring electrode is man-
ufactured out of a ferromagnetic alloy, which reduces the magnetic field in the center of the
analysis trap and creates the superimposed magnetic bottle B2 which is required to resolve
spin state transitions. Note, however, that ζ+ depends on modified cyclotron frequency ν+
and thus can be reduced by increasing the modified cyclotron frequency in the center of the
trap. In order to accomplish this goal, a novel analysis trap using two ferromagnetic correction
electrodes was designed. In this configuration, the magnetic field in the center of the analysis
trap is maximized and a magnetic bottle with B2 < 0 is superimposed.

9.2.5 Stabilization of the experimental apparatus

In order to further stabilize the frequency stability of the experimental apparatus, an active
pressure stabilization system is currently developed. During previous measurement campaigns
it was observed that pressure fluctuations can lead to an increased scatter of the particle’s
eigenfrequencies. This system will monitor the pressure in the helium exhaust line and use a
flow controller to actively keep the pressure in the helium exhaust line at a constant pressure.
In addition to the pressure, the temperature near the top of the cryostats is known to have an
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effect of the frequency stability of the experiment. While currently not an active area of work,
active stabilization of the temperature might be implemented in the future.

9.2.6 Implementation of novel measurement methods

In preparation of future charge-to-mass ratio measurement campaigns, the implementation of
phase-sensitive detection methods into the experiment which was in large parts developed in
the PhD thesis of Matthias Borchert [99] is advanced. On long-term timescales, the feasibility
of a direct comparison of g-factors using coupled ions as described in [142] will be studied.

9.2.7 Implementation of a transportable penning trap

Currently, research on baryonic antimatter systems is limited by the required access to a
particle accelerator. However, the operation of said accelerator creates a noisy environment
which complicates high-precision measurements. In order to overcome these limitations, a
transportable trap [71] is currently being commissioned. This project – called BASE-STEP – will
provide the possibility to load antiprotons at the antiproton decelerator. The trapped antiprotons
will be transported out of the accelerator hall and transferred into a high-precision penning trap
system located at an offline laboratory at CERN. Once loss-less transport is established over
short distances, BASE-STEP could deliver antiprotons to experiments located outside of CERN.
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