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2 Introduction 

Intertemporal decision-making is a task that we encounter on a daily basis. We constantly weigh 

options: Should I invest my money in long-term funds or indulge in immediate purchases? Should I eat a 

quick chocolate bar or wait for a nutritious lunch? Should I buy this TV now or wait for a discount? 

These examples demonstrate a pattern whereby a smaller-sooner reward is weighed against long-

term benefits of a delayed option. Intuitively, both the options’ relative value and the delay influence our 

decision-making. For example, if given the choice between winning 10€ now or 15€ in a month, one might 

prefer the larger-later option. However, if given the choice between 10€ now and 15€ in two years, one 

might suddenly choose 10€ now. Then again, if both options are delayed by one more year, i.e. 10€ in one 

year or 15€ in three years, the decision might revert to the larger-later option. Delay Discounting is a 

theoretical account used to describe and quantify behavior in these intertemporal decision-making 

situations. It assumes that motivational values of future outcomes decrease as a function of delay and 

objective value, and that the slope of this devaluation can be modelled and compared between individuals 

(Odum, 2011a). Steeper discounting (i.e. preference for immediate rewards) has been linked to a number 

of mental disorders, including addiction (Amlung et al., 2017, 2019), and to alterations in fronto-striatal 

brain networks (Owens et al., 2019). Therefore, Delay Discounting has emerged as a promising candidate 

pathomechanism and behavioral marker of addiction which may inform development of specialized 

treatments (Bickel et al., 2014). 

Conversely, research on Delay Discounting of aversive rather than rewarding outcomes is 

relatively lacking, although continued consumption despite delayed aversive consequences (e.g. health, 

financial well-being) is a hallmark symptom of addiction (American Psychiatric Association, 2013). This 

dissertation project therefore aimed at investigating to which extent aversive consequences are subject to 

discounting, and whether aversion discounting is a relevant cognitive mechanism involved in pathological 

decision-making leading to addiction. 
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3 Theoretical Background 

3.1 Alcohol Use Disorder 

Substance Use Disorder (SUD) is a chronic relapsing disorder characterized by loss of control, 

craving, tolerance, withdrawal symptoms, and substance intake despite negative consequences such as 

social, financial or health losses (American Psychiatric Association, 2013). A number of substance classes 

such as alcohol, opioids, cannabinoids, stimulants and benzodiazepines have the potential to induce SUD. 

In 2016, the global 12-month prevalence of Alcohol Use Disorder (AUD) was estimated at 283 million 

adults or 5.1% of the adult population, and up to 8.8% of the European population (World Health 

Organization, 2018). Prevalence rates vary substantially depending on the classification system used. The 

most common systems are the International Classification of Diseases (ICD) and the Diagnostic and 

Statistical Manual of Mental Disorders (DSM), with multiple versions in use either currently or until 

recently. Whereas ICD-10 (World Health Organization, 2004), ICD-11 (World Health Organization, 2019) 

and DSM-IV (American Psychiatric Association & American Psychiatric Association, 2009) distinguish 

between alcohol dependence and harmful alcohol use or abuse, the dimensional AUD diagnosis in DSM-5 

(American Psychiatric Association, 2013) aims at encompassing heterogeneous disorders from harmful 

use to severe dependence (Saunders et al., 2019). Concordance rates between the new DSM-5 AUD 

diagnosis with alcohol dependence (ICD-10, ICD-11, DSM-IV) were found to be only moderate 

(Degenhardt et al., 2019; Lago et al., 2016). In addition, the utilization of both DSM-5 and ICD-11 criteria 

results in elevated prevalence rates attributable to the expanded definitions of AUD (Saunders et al., 2019).  

For instance, a recent longitudinal cohort study on Swedish women found lifetime prevalence rates of 

AUD and alcohol dependence varying from 4.0% (ICD-10) to 10.6% (ICD-11) and 14.3% (DSM-5) 

(Lundin et al., 2021). 

Around 4-5% of worldwide mortality is attributable to alcohol use alone (Rehm et al., 2009; World 

Health Organization, 2018). In Europe, AUD ranges at the second place (first place for men) behind 

depression for burden of disease due to mental disorders (Wittchen et al., 2011). Individuals with AUD 

face a relative mortality risk  of 3.38 to 4.57, with disproportionally higher mortality in young individuals 

and women (Roerecke & Rehm, 2013). In addition to AUD, the 2023 World Drug Report estimated a 45% 

increase in prevalence of SUD (excluding alcohol and tobacco) over the last 10 years, with a current 

estimation of 39.5 million individuals suffering from SUD worldwide (United Nations Office on Drugs 

and Crime, 2023). Given the higher prevalence of AUD compared to other SUD, the present work focused 

on AUD. Note that the more general term addiction includes SUD and behavioral addictions such as 

pathological gambling (American Psychiatric Association, 2013) which have been shown to share 

underlying circuits and psychopathology (Grant et al., 2006; Karim & Chaudhri, 2012). Definitions and 
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diagnostic criteria of behavioral addictions are still evolving (Grant & Chamberlain, 2016). In the present 

work, the term addiction is used with reference to SUD including AUD. 

Treatment rates for AUD are low and stagnating at 17.3% worldwide (Mekonen et al., 2021). In a 

large European study, 17.7% of diagnosed AUD patients in primary health care reported “receiving 

professional help” (Manthey et al., 2016). Severe stigmatization of AUD as a character weakness rather 

than a mental disorder makes it difficult for patients to seek help (Schomerus et al., 2011), and even within 

professional healthcare, treatment was found to be impeded by negative attitudes of healthcare 

professionals towards SUD patients (van Boekel et al., 2013). Even among those seeking treatment, 

attrition rates are estimated at 80% in the United States (Loveland & Driscoll, 2014). 

Treatment options include pharmacotherapy and psychotherapy. Cognitive behavioral therapy 

(CBT) integrating addiction-specific components such as Motivational Interviewing or Cue Exposure 

Therapy has demonstrated small but robust effect sizes (Kiyak et al., 2023; Riper et al., 2014).  Similarly, 

effect sizes of pharmacotherapy were shown to be robust but rather small (Bahji et al., 2022; Swift & 

Aston, 2015). Taken together, the combination of high prevalence, substantial disease burden and limited 

treatment success, it becomes evident that better understanding of addiction mechanisms and treatment 

interventions is urgently required. 

 

3.2 Theories of Addiction 

Many psychological and neurobiological models try to explain the onset and continuation of SUD. 

In the DSM-5, SUD is predominantly regarded as a brain disorder: “All drugs that are taken in excess 

have in common direct activation of the brain reward system, which is involved in the reinforcement of 

behaviors and the production of memories.” (American Psychiatric Association, 2013, p. 481). A 

commonality of all substances with addictive potential is their direct effect on dopamine release in the 

brain’s reward system, and a similar underlying psychopathology is assumed for all SUD (Koob & Volkow, 

2016; Volkow et al., 2019). Put simply, these substances act as potent artificial reinforcers, posing a threat 

to the regulation of neural systems underlying reward-driven behavior. Although it has been argued that 

not all substances of addiction directly trigger dopamine release in the brain (Nutt et al., 2015), Volkow et 

al. (2019) illustrated that even cannabinoids and opiates stimulate dopamine release via indirect pathways. 

Some critics have argued that the brain disease model reduces complex socio-economic processes to 

“deterministic” biological circuits, thus reinforcing stigmatization (Hammer et al., 2013; Hogarth, 2020, 

2022). While this debate is somewhat heated and out of the scope of this work, it should be noted that 

addiction-related alterations in the brain’s reward system are well established (Heilig et al., 2021). 

Importantly, there is not just one brain disease model, but several theoretical approaches which will be 

briefly summarized in the next sections. 
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Habit theories are based on classical and operant conditioning (Everitt & Robbins, 2005). Initially, 

drug intake is perceived as purposeful, driven by specific goals. As individuals discover the rewarding 

outcomes of drug use within certain contexts (such as alleviating social anxiety), this behavior becomes 

reinforced through operant conditioning. At this stage, the individual consciously selects drug use as a 

means to attain desired goals. Over time, prolonged drug use triggers classical conditioning, linking 

contextual cues (e.g., social situations) with drug consumption. In the long run, drug use becomes 

progressively compulsive, ignorant towards negative outcomes, and can be involuntarily triggered by 

conditioned cues. In other words, addiction can be understood as a shift from goal-directed to automatic 

behavior. 

Conceptually related to Habit theory, the Incentive Sensitization theory posits a shift between 

pleasure-oriented (“liking”) and compulsive (“wanting”) drug use in the course of addiction (Berridge & 

Robinson, 2016). Unlike habit theory, which construes addiction as learned automatic behavior, incentive 

sensitization theory focuses on motivational changes underlying addiction. Its central assumption is that 

repeated drug exposure leads to conditioned hypersensitivity to drug-related cues, strongly enhancing their 

incentive value. Rather than triggering an automatic behavioral response, drug cues are thought to elicit a 

strong motivational state known as “wanting”. Wanting is characterized as an intense feeling of craving 

which is hard to resist. Over time, drug use becomes a means of satisfying this motivation state even if the 

primary drug effect has long diminished due to tolerance (Bickel et al., 2018) 

Whereas Habit and Incentive Senitization theory are derivatives of behavioral learning theories, 

the Reward Deficiency Syndrome model stems from genetic research. It proposes blunted activity in the 

midbrain dopamine system as a consequence of genetic variation in dopamine receptor genes, resulting in 

anhedonia or understimulation (Blum et al., 1996). Consequently, individuals seek out dopamine-inducing 

activities such as substance use as a compensatory mechanism. Clinical evidence includes prolonged 

amotivation in individuals with remitted stimulant dependency, and blunted ventral striatal activity during 

the anticipation of non-drug rewards in SUD patients (Leventhal et al., 2008; Luijten et al., 2017). More 

recently, a multitude of potential gene variations related to dopamine and other neurotransmitters were 

identified, and effect sizes were found to be minimal (Berggren et al., 2006; Blum et al., 2022). In addition, 

the proposed generalized hypoactivity of the reward system has been challenged both on a theoretical and 

empirical level (Becker et al., 2017; Leyton, 2014). Therefore, the authors of the Reward Deficiency model 

now suggest genetic variations as one of many risk factors (Blum et al., 2022). 

Lastly, dual-system approaches such as the Competing Neurobehavioral Systems Theory have their 

origins in decision-making and behavioral economic research. They posit that decision-making is driven 

by two competing systems, an “impulsive”, limbic and paralimbic reward system, and a “rational”, 

executive frontoparietal control system (Bickel et al., 2018; McClure et al., 2004). A dysregulation of this 
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system towards the impulsive system – either as a consequence of drug use or as a predisposing factor – 

is thought to cause an excessive bias towards immediate rewards such as drug use. Behavioral evidence 

for this account stems from stronger Delay Discounting, i.e. increased preference for immediate rewards, 

in populations with SUD (Amlung et al., 2017). Neuroimaging studies further identified an association 

between excessive discounting with a combination of increased striatal response towards immediate 

rewards and a decreased frontoparietal regulation (McClure et al., 2004). Continued consumption despite 

negative consequence is therefore seen as a consequence of an hyperactive impulse system favoring 

immediate rewards. 

Although the previous section only described a handful of theories, comparable points of reference 

across all theories become clear - the role of reward processes in explaining continued consumption despite 

negative consequences. Recent commentaries emphasize the commonalities between these theories 

(Epstein, 2020; Heilig et al., 2021). Later, this dissertation will aim to embed Delay Discounting as a 

possible pathomechanism, crossing multiple of the aforementioned theories. 

 

3.3 Delay Discounting 

Delay Discounting is defined as a devaluation of future events as a function of the time delay until 

their occurrence (Madden & Johnson, 2010). Delayed Reward Discounting (DRD) in particular is a 

prominent candidate pathomechanism of addiction. Due to the relative ease of measuring DRD, its 

dimensional nature and consistent associations with transdiagnostic psychopathology (Amlung et al., 

2019; Levitt et al., 2022), DRD was suggested as a paradigm for the Research Domain Criteria (RDoC) 

matrix (Lempert et al., 2019). After hundreds of studies, Bickel et al. (2014, p. 518) claimed that DRD “1) 

identifies individuals who are drugdependent, 2) identifies those at risk of developing drug dependence, 

3) acts as a gauge of addiction severity, 4) correlates with all stages of addiction development, 5) changes 

with effective treatment, and 6) may be related to the biological and genetic processes that underlie 

addiction.”. The following sections will provide an overview over DRD and the current state of evidence 

regarding these claims. Thereafter, the putative pathomechanism of Delayed Loss Discounting (DLD) will 

be introduced. 

 

3.3.1 Delayed Reward Discounting 

Intertemporal decision-making has inspired a plethora of behavioral research since the middle of 

the 20th century. At the center has always been the question of why people seem to behave rationally in 

some situations, choosing an objectively larger reward, while in other situations, they exhibit a tendency 

towards seemingly irrational behavior, preferring an objectively smaller reward simply because it is closer 
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in the future. As an example, humans often prefer a smaller-sooner monetary win (e.g. 10€ now) over a 

larger-later win (e.g. 15€ in a year) (Loewenstein, 1988; Rachlin et al., 1991). 

In 1871, the influential economist William Jevons suggested decaying utilities of remote events to 

explain the observation that “a future feeling is always less influential than a present one” (Jevons, 2013, 

p. 72). Another economist, Paul A. Samuelson, brought forward the influential Discounted Utility model, 

whereby intertemporal decisions can be mathematically described as comparisons between discounted 

values: 

𝑈 = 𝛽𝑡𝑢(𝑥)          (𝐸𝑞. 1) 

where U is the time-discounted utility, u is the undiscounted utility of the option x which is 

discounted by an amount-dependent free parameter β scaled by time t. This exponential discount function 

assumes a “rational” constant value ratio between smaller-sooner and larger-later options as they progress 

in time. Importantly, this model was not developed on empirical data, but reflected theoretical assumptions 

in rational choice situations (Samuelson, 1937). 

Discounting functions were first introduced to behavioral data by animal researchers. Mowrer and 

Ullman (1945) suggested an extension of Thorndike’s Law of Effect (Thorndike, 1898) whereby 

immediate consequences, both rewarding and punishing, exert stronger influence on operant conditioning 

than delayed ones. Thereafter, a variety of conditioning experiments in animals modeled the temporal 

decline of reward effectiveness using exponential functions (Ainslie, 1975). Strotz (1955) was the first 

economist to point out myopic preference changes which signify an “irrational” shift from larger-later 

choices towards smaller-sooner choices in the presence of immediate rewards. He theorized about concave, 

hyperbola-like discount functions, leading to a steeper decline of utility in the near future and a bias 

towards immediacy. 

Ainslie and Herrnstein (1981) integrated economic and behavioral lines of research and 

demonstrated preference reversals in pigeons matching with hyperbolic discounting. Mazur (1987), and 

shortly after, Rodriguez and Logue (1988) empirically established the hyperbolic function against other 

discount functions using titrating procedures in pigeons. Rachlin et al. (1991) applied the same principle 

to a monetary decision-making task in humans and confirmed the hyperbolic function, modeling how the 

subjective value of rewards is systematically devalued (discounted) as a function of the delay: 

𝑆𝑉 =
𝑉

1 + 𝜅𝐷
           (𝐸𝑞. 2) 

where SV is the subjective (discounted) value, V is the objective value, κ is a free discounting 

parameter and D is the delay expressed in days. The discounting parameter κ reflects the steepness of the 

discounting curve and therefore the individual degree of short-term preference. By that time, multiple lines 

of work had found considerable inter-individual differences in discounting rates (Frederick et al., 2002; 
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Thaler, 1981), and time preference appeared to be linked to personality traits, career success and 

psychopathology, among others (Ainslie, 1975; Mischel, 1974). In the following, a number of derivatives 

of the original hyperbolic function have been suggested to account for more individual variance. Myerson 

and Green (Myerson & Green, 1995) demonstrated a better model fit using a general hyperbola (also 

known as hyperboloid model) with an additional exponent: 

𝑆𝑉 =
𝑉

(1 + 𝜅𝐷)𝑠
             (𝐸𝑞. 3) 

Where s is a non-linear scaling factor of time and amount. If s < 1, the discounting curve flattens 

as the delay increases, indicating less discounting of outcomes in the far future. This hyperboloid model 

is the mathematical equivalent to exponential discounting with a logarithmic decrease of time perception 

following the Weber-Fechner law (Takahashi et al., 2008). 

Rachlin (2006) suggested to only raise the delay to the s exponent rather than the entire 

denominator: 

𝑆𝑉 =
𝑉

1 + 𝜅𝐷𝑠
             (𝐸𝑞. 4) 

This equates to hyperbolic discounting of time scaled by Steven’s power law (Vincent & Stewart, 

2020). Hyperboloid models (s < 1) have since been established as providing a better fit to human data, 

whereas simple hyperbolic models (s = 1) are sufficient to model behavior of most animals, with the 

possible exception of non-human primates (Vanderveldt et al., 2016). Importantly, hyperboloid models 

allow disentangling between effects of discounting and time perception, whereas hyperbolic models either 

assume objective time perception or ignore subjective time perception, effectively leading to model 

misspecification (Vincent & Stewart, 2020).  

 

3.3.2 Measuring DRD 

A variety of tasks and analysis methods have been developed to assess DRD rates (for a 

comprehensive review, see Madden & Johnson, 2010). All procedures are based on two forced-choice 

intertemporal choice tasks where participants have to decide between a smaller-sooner win (e.g. 5€ now) 

or a larger-later win (e.g. 10€ in a year). The majority of tasks use monetary outcomes, but alternative 

rewards such as health, drug and food rewards are also available (Chapman, 1996; Giordano et al., 2002; 

Odum et al., 2002). Outcomes can be hypothetical, real or potentially real (random trials are selected and 

paid out), but since high correlations have been found between all options, hypothetical outcomes prevail 

(Bickel et al., 2009; Madden & Johnson, 2010). However, note that some of the most frequently cited 

studies supporting equal behavior during real and hypothetical outcomes reported extremely small sample 
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sizes (Johnson & Bickel, 2002) or excluded behavioral data from longer hypothetical delays (Bickel et al., 

2009). 

Intertemporal choice tasks can be either delivered in form of a questionnaire (Kirby, 2009) or a 

computerized tasks which is most common. Presented amounts and delays, and therefore number of trials, 

can either be fixed (Rachlin et al., 1991) or delivered in an adjusting procedure. The most basic adjusting 

procedure is an amount-titrating task where the amount of the immediate option is increased by 50% if 

the participant chooses the delayed option, or vice versa (Du et al., 2002). This is continued for a fixed 

number of trials or until the preference changes, which marks the indifference point, i.e. the amount ratio 

where the participant is indifferent between two options. The adjusting procedure is then repeated for a 

series of delays. Other tasks, predominantly in animal research, adjust for delays while keeping rewards 

constant (Mazur, 1987). More sophisticated techniques estimate individualized discounting models on a 

trial-by-trial basis using Bayesian methods and adapt amounts based on predicted choice probabilities 

(Ahn et al., 2020; Pooseh et al., 2018). 

Based on these tasks, three main indicators of DRD rates can be calculated. In fixed procedures, it 

is possible to obtain the atheoretical percentage of larger-later or sooner-smaller choices. Procedures which 

obtain indifference points for a series of delays allow for using Area Under the Curve (AUC) which 

quantifies DRD rates without assuming a specific discounting model (Odum, 2011a). The last and most 

popular measure of DRD rates is to fit models (such as the hyperbolic model) to the data and derive 

individual discounting parameters such as κ and s (see Eq. 1, Eq. 2). 

 

3.3.3 Delay Discounting as a Construct 

Historically, DRD tasks were developed as a means to understand impulsive behavior such as 

“irrational” economic spending and substance use despite negative consequences. Over the years, the 

construct of impulsivity has been separated into many facets which have proven to be mutually 

independent (Stahl et al., 2014). The ambiguous term impulsivity therefore offers little discriminatory 

power and should not be equated with DRD. Ainslie (1975, p. 463) already commented that the term 

impulsivity can be used to describe both a systematic preference for smaller-sooner rewards and “behavior 

that is simply unpremeditated”. A recent study revealed risk aversion as a confounding factor in DRD, as 

individuals with greater risk aversion tended to favor immediate rewards (Lopez-Guzman et al., 2018). 

This underscores the role of other, “non-impulsive” factors contributing to DRD rates. To accommodate 

the popularity of the term, DRD is often interpreted as a facet of “choice impulsivity”, involving a lack of 

anticipation of the future, as opposed to “action impulsivity”, which is related to habit formation and lack 

of inhibition (Hamilton et al., 2015; Robbins et al., 2012).  
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In the light of moderate to high long-term and measurement-independent reliability of DRD rates, 

Odum (2011a, 2011b) suggested to conceptualize DRD as a trait variable in itself rather than a facet of an 

overarching construct. Kirby (2009) reported a retest-reliability of .71 over one year for his Monetary 

Choice Questionnaire. Prospective cohort studies have found relatively stable DRD rates over time, even 

spanning from adolescence to adulthood (Audrain-McGovern et al., 2009).  

However, the validity and reliability of DRD rates have also been questioned. Popular short-form 

adjusting amount procedures have shown only moderate correlations with long-form procedures, which 

by themselves are not completely reliable (Bailey et al., 2021). Key concerns also arise from the suggested 

modeling procedures: nonsystematic and unexpected intertemporal choice behavior is common across 

intertemporal choice tasks. A meta-analysis estimated the rate of nonsystematic behavior in DRD tasks at 

18% (Smith et al., 2018). Critically, handling of these data is not consistently reported in studies, and an 

influential paper cited 511 times recommended to remove these cases as outliers (Johnson & Bickel, 2008). 

Lastly, discounting rates between different domains, e.g. health and money, were shown to be unrelated, 

which casts doubt on the external validity of monetary discounting (Chapman, 1996; Chapman & Elstein, 

1995). 

Loewenstein and Prelec (1991) extensively studied effects of psychological context factors of 

Delay Discounting. They found significantly reduced DRD rates in sequential decision-making tasks and 

demonstrated verbal framing effects; for example, the same monetary loss is discounted more if it is 

formulated as a (weaker) discount (Loewenstein & Prelec, 1992). Since then, more state-dependent 

cognitive biases have been identified (Lempert & Phelps, 2016). Even order of task presentation was found 

to influence discounting behavior. Participants who started with a reward discounting task discounted both 

rewards and losses more steeply than participants who started with a loss discounting task (Murphy et al., 

2001). Other context factors include cortisol levels, which have been associated with gain/loss-tradeoffs 

in decision-making (Honk et al., 2003), stress, which increases preference for immediate rewards (Fields 

et al., 2014), and hunger (Skrynka & Vincent, 2019). Hormonal influences on DRD rates are implicated 

by changing DRD rates over the course of the female cycle, with stronger DRD during fertile phases and 

in women taking hormonal contraception (Vincent et al., 2023). In conclusion, while Delay Discounting 

is often understood as a trait of decision-making, it is significantly influenced by various state factors. 

 

3.3.4 Neurobiology of Delayed Reward Discounting 

Decision-making during DRD tasks has been found to be associated with activation in widespread 

brain regions. Different analytic strategies have led to two major theoretical approaches of understanding 

neural processing during DRD. Dual systems approaches such as the Competing Neurobehavioral Systems 

Theory described earlier assume separate brain networks underlying impulsive (short-term) and rational 
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(long-term) decision-making, which are typically tested using “smaller-sooner vs. larger-later choices” 

contrasts (Bickel et al., 2014; McClure et al., 2004; van den Bos & McClure, 2013). In contrast, single 

system approaches assume a unitary valuation and decision-making system and often parametrically 

modulate brain activity during decision-making using model-based subjective values of presented options 

(Kable & Glimcher, 2007; Peters & Büchel, 2009). These approaches are not necessarily mutually 

exclusive and have yielded similar activated brain regions during DRD tasks (Scheres et al., 2013; Schüller 

et al., 2019). Prominent networks during intertemporal decision-making include the valuation network 

(ventral striatum and ventromedial prefrontal cortex) and the executive control network (prefrontal and 

parietal cortex regions), but also regions associated with salience such as anterior cingulate cortex and 

insula (de Water et al., 2017; Frost & McNaughton, 2017; Kable & Glimcher, 2009; Scheres et al., 2013; 

Schüller et al., 2019). Steeper DRD (in both healthy and addicted populations) has been consistently 

associated with weaker activation in prefrontal control areas and stronger activation in striatal valuation 

areas during decision-making (Frost & McNaughton, 2017; Owens et al., 2019). However, a recent meta-

analysis compared analysis strategies in fMRI studies of DRD and found no reliable activation pattern 

related to the popular contrast of “smaller-sooner vs. larger-later choices”, instead only finding robust task 

activation during “task > baseline” contrasts and parametric modulations with reward value (Souther et 

al., 2022). Similar to the behavioral domain, methodological differences in DRD tasks and analysis 

strategies may limit the external validity of individual findings and impede the comparison between 

studies. 

 

3.3.5 DRD and Addiction 

Steeper Delay Discounting in addiction is a well-established finding and is thought to reflect the 

devaluation of long-term alternative rewards compared to the immediate reward of drug use (Verharen et 

al., 2020). Within this framing, a relapse is conceptualized as an “impulsive” decision in favor of a short-

term reward (e.g. alcohol) instead of the long-term reward of abstinence (e.g. health) (Robbins et al., 2012). 

A large body of studies has demonstrated that individuals with SUD appear to discount rewards more 

steeply, i.e. have a stronger preference for short-term rewards. A meta-analysis found an omnibus 

correlation of r = .14 between DRD rates and substance-related problems, with comparable effect sizes 

between substances, including alcohol (Amlung et al., 2017). This finding extends to behavioral addiction, 

again with comparable effect sizes (Weinsztok et al., 2021). Smaller and more inconsistent effects (average 

r = .08) were found for cannabis use disorder (Strickland et al., 2021). Regarding obesity, Veillard and 

Vincent (2022) conducted both a correlative meta-analysis and an own experimental study on 381 

participants and found a small effect (r = .15) between DRD rates and BMI in the meta-analysis, but not 

in the experiment. Using Bayesian estimation, they demonstrated extreme levels of study-level 
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heterogeneity contributing to potentially spurious effects. A general observation is that comparisons 

between patients and healthy controls yield stronger effects than continuous associations (MacKillop et 

al., 2011). Strikingly, a large study in 1388 community adults found no association between DRD rates 

and scores in the Alcohol Use Disorder Identification Test (AUDIT), though association with other 

substances and disorders were found (Levitt et al., 2022). Fewer studies investigated DRD of non-

monetary commodities like health or drug rewards and provided evidence for similar associations with 

addiction (Giordano et al., 2002; Odum et al., 2002). 

In addition to cross-sectional associations, many studies investigated longitudinal effects of DRD 

rates on consumption trajectories and treatment outcomes, and vice versa. In a sample of 30 smokers, 

Krishnan-Sarin et al. (2007) found that baseline DRD rates were higher in participants who did not reach 

abstinence within a 4-week cessation program compared to those who reached abstinence (d = 0.73). 

Sheffer et al. (2014) found DRD to be a robust predictor (β = .37) of relapse hazard in a sample of 131 

smokers undergoing a CBT smoking cessation and nicotine replacement program. The effect of DRD was 

found to remain robust when dependence severity, perceived stress and therapy adherence were controlled 

for. A larger (N = 947) prospective cohort study spanning 6 years found a much smaller yet significant 

prediction (β = .08) of smoking levels by baseline DRD rates (Audrain-McGovern et al., 2009). A 

longitudinal cohort study following 2220 adolescents from age 14 to 22 found a similar effect size between 

baseline DRD and cumulative alcohol consumption (r = .09). Conversely, no effect of alcohol 

consumption on DRD was found, suggesting steeper DRD as a trait-like risk factor rather than a 

consequence of alcohol use (Fröhner et al., 2022). Similarly, baseline DRD was found to be associated to 

smoking during a nicotine patch treatment, but the treatment was not found to influence DRD rates 

(Dallery & Raiff, 2007). Nevertheless, not all studies report significant longitudinal effects of DRD on 

substance use. For example, the reverse pattern of the two studies above was found in two opioid-

dependent samples undergoing burprenophine and contingency management treatment. DRD rates were 

found to decrease over the course of all treatments, but no association with treatment outcomes was present 

(Landes et al., 2012). In a sample of 198 adolescent social drinkers, baseline DRD was associated with 

baseline alcohol use, but not predictive of 12-month drinking trajectories (Bernhardt et al., 2017). Two 

studies did not find a predictive effect of DRD rates on any outcome measure in heavy-drinking college 

students undergoing treatment (Dennhardt et al., 2015; Murphy et al., 2012). Exum et al. (2023) conducted 

a systematic review and found that only 47% of studies reported significant associations between DRD at 

baseline and treatment outcomes. They highlighted that only a few studies include dimensional outcome 

measures, and among those that do, significant effects of DRD are not often found. Another important 

insight came from a treatment study in marijuana-dependent patients where the association between DRD 
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and treatment outcome diminished when socio-economic and demographic factors were controlled for 

(Stanger et al., 2012).  

 

3.3.6 Delayed Aversion Discounting 

If reward discounting uniquely combines consistent behavioral and neural effects in addiction research, 

much less attention has been given to temporal discounting of aversive events. This is surprising given the 

very nature of addiction according to clinical criteria: continued consumption despite negative 

consequences (American Psychiatric Association, 2013). Explanations of this symptom include the 

aforementioned learning theories (e.g. automatic behavior ignoring negative consequences), socio-

economic context, drug use as self-punishments and denial (Hogarth, 2020; Pickard & Ahmed, 2016). 

However, much like the benefits of abstinence, most downsides of drug use occur at a delay. Conversely, 

the negative effect of abstinence is immediate (e.g. withdrawal, craving), just like the positive effect of 

drug use. Steep aversion discounting, i.e. devaluation of delayed aversive consequences, would result in 

a preference for larger but delayed aversive consequences. Therefore, if aversive events are subject to 

temporal discounting, a relationship between aversion discounting and addiction could be assumed, even 

more so as neural processing of both rewards and punishment are altered in addiction (Luijten et al., 2017; 

Patel et al., 2013). As aversion discounting is almost exclusively operationalized using the same monetary 

choice tasks as DRD (using losses instead of rewards), the term Delayed Loss Discounting (DLD) will 

subsequently be used. 

Thaler (1981) initiated the comparison between DRD and DLD using monetary decision tasks. 

The author found that losses were devalued less steeply, a phenomenon termed the sign-effect. This effect 

was replicated by subsequent studies (Estle et al., 2006; Loewenstein & Prelec, 1991, 1992), including 

those involving SUD populations (Johnson et al., 2015). Chapman (1996) extended the aversion 

discounting and the sign-effect to health discounting, further noting that monetary losses are as much 

discounted as health losses, a finding later replicated for pain (Harris, 2012) and drug availability (Johnson 

et al., 2015). 

The sign effect does not appear to be limited to quantitative differences in discounting steepness. 

One group conducted two online studies using an intertemporal choice questionnaire with 428 participants 

and reported that only about 60% of participants discount losses as expected, compared to 90% in the 

DRD task. 20-25% of participants did not discount losses at all (i.e. never chose the larger-later loss), 15-

23% discounted losses in a opposite way, i.e. preferring immediate losses with increasing delays (Myerson 

et al., 2017; Yeh et al., 2020). Almost the same numbers were found by a different group (Gonçalves & 

Silva, 2015). Importantly, there were no difference in age, gender and SES regarding these subgroups (Yeh 

et al., 2020) 
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Different explanations have emerged to explain the sign effect. Based on a comparison of model 

parameters in a q-exponential discounting model (a more generalized hyperboloid model), Han and 

Takahashi (2012) suggested that differences in time perception, rather than outcome valuation, underlie 

the sign effect, but without providing a cognitive or mechanistic explanation. Loewenstein (1987) 

emphasized the role of dread, i.e. aversiveness of anticipating future losses, leading to reduced discounting. 

Qualitative evidence for this was provided by Furrebøe (2020) who asked participants which strategies 

they used. She found that most participants decided based on both temporal and monetary information in 

the DRD task, but focused on only one dimension in DLD (either delay or amount). Notably, this was 

especially pronounced in non-discounters, who almost exclusively reported aiming to minimize dread by 

immediately paying losses. The author noted that paying immediate losses is not merely a smaller-sooner 

aversive event; it involves the positive contingency of alleviating dread. Delay-independent aversion 

against waiting was also found to explain additional variance in DLD but not DRD when added as a third 

parameter to a hyperboloid discounting model (Gonçalves & Silva, 2015). 

Whereas the concept of dread focuses on the temporal aspect of anticipating future events, loss 

aversion is defined as a tendency to place greater weight on losses compared to equivalent rewards 

(Kahneman & Tversky, 1979). Significant inter-individual differences and moderators have been found 

for loss aversion (Blake et al., 2021; Mrkva et al., 2020). Chapman (1996) incorporated a  loss aversion 

term into utility functions and was able to eliminate the sign effect in monetary discounting. However, this 

effect was not replicated for health discounting. 

Another common finding is the lack of magnitude effects in DLD. In DRD, discounting is most 

pronounced with small rewards and decreases as reward magnitude increases. In DLD, small losses are 

discounted at the same rate as high losses (Green et al., 2014; Mitchell & Wilson, 2010; Yeh et al., 2020). 

These findings provide evidence for DLD as a qualitatively separate process than DRD. 

Apart from the sign effect, many studies investigated within-subject correlations between DLD 

and DRD, yielding very inconclusive findings (Frederick et al., 2002). Murphy et al. (2001) found a 

moderate correlation of r = .57 between DLD and DRD discounting parameters. Halfman et al. (2013) 

reported correlation coefficients between r = .44 and r = .55 between DRD and DLD depending on age 

group. Mitchell and Wilson (2010) found significant correlations between r = .39 and r = .51 depending 

on outcome magnitudes. Chapman (1996) reported lower correlations (average r = .29) between DRD and 

DLD for both monetary and health discounting. In contrast, recent studies with relatively large sample 

sizes observed no significant correlations between DLD and DRD (Gonçalves & Silva, 2015; Myerson et 

al., 2017; Yeh et al., 2020). Myerson et al. (2017) identified sub-group interactions whereby only those 

participants with expected (positive) DLD showed a moderate correlation of r = .35 between DRD and 

DLD. However, this was not replicated in another study by the same group (Yeh et al., 2020). The use of 
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different comparison parameters (behavioural frequencies, discounting parameters, discounting factors, 

area-under-the-curve) and discounting functions complicates the interpretation of these unclear findings. 

Only few studies have compared neural correlates of DRD and DLD. Bickel et al. (2009) found 

no significant BOLD response differences. However, Xu et al. (2009) noted increased BOLD activity in 

the dorsolateral PFC, posterior cingulate, insula, thalamus, and striatum during DLD. Using dynamic 

causal modeling, Zhang et al. (2018) identified distinct networks for gains and losses, with dorsolateral 

PFC implicated in loss valuation and medial cortical regions in gain valuation. 

Conceptual evidence whether DRD and DLD may be more than different polarities of the same 

process comes from studies investigating the anticipation of monetary rewards and losses. Monetary 

incentive delay (MID) tasks require participants to anticipate rewards, losses and null trials based on 

conditioned cues. A few seconds later, a reaction time task is prompted by another cue (e.g. a flash) and 

participants have to react as quickly as possible to a  obtain the reward/avoid the loss (Kirsch et al., 2003; 

Knutson et al., 2001). Three meta-analyses analyzed neural correlates of MID tasks involving losses. 

Oldham et al. (2018) found  a common activation for both reward and loss anticipation within striatum, 

insula, amygdala and thalamus, and motor areas. Differences between reward and loss were only found 

using a more liberate threshold of p < .005, yielding stronger activation in the ventral striatum, the 

supplementary motor area and the occipital lobe during reward anticipation, and stronger activation in the 

caudate and media-dorsal thalamus during loss anticipation. The meta-analysis by Dugré et al. (2018) only 

analyzed loss MID tasks and did not provide a comparison with reward tasks, but noted subtle differences 

to activation patterns seen in prior reward MID meta-analyses, including activity in the median cingulate 

and ventro-lateral prefrontal regions. The latter finding received support by a meta-analysis conducted on 

only whole-brain studies that directly compared reward and loss MID task and found more activation in 

the inferior frontal gyrus during loss anticipation. Taken together, the findings on MID tasks suggest a 

largely valence-independent salience network. The activation of salience network nodes can be expected 

in decision-making tasks (Frost & McNaughton, 2017). Decision-making involves an instrumental aspect 

similar to MID tasks (reacting to a cue to obtain a desired outcome) and may therefore confound findings 

of non-difference between DRD and DLD such as reported by Bickel et al. (2009). So far, no study has 

attempted to disentangle outcome anticipation and decision-making in an fMRI comparison of DRD and 

DLD. In summary, neural studies currently do not provide much evidence on differences between DRD 

and DLD. 

 

3.3.7 Delayed Aversion Discounting and Addiction 

The literature on the link between DLD and addiction presents few and conflicting findings. In an 

early study, both alcohol-dependent and healthy participants learned button press patterns to gain rewards, 
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rewards paired with immediate shocks, or rewards paired with shocks delayed by 30 seconds. While 

alcohol-dependent individuals generally took longer to learn avoidance of punishment, there was no 

interaction with delay. This suggested a broad disinhibition to avoid aversive consequences when seeking 

rewards among alcohol-dependent individuals (Vogel-Sprott & Banks, 1965). 

In a healthy sample of 33 subjects, a correlation between discounting and alcohol use was only 

observed for delayed losses, but not rewards (Takahashi et al., 2009). A more recent study compared 78 

AUD patients with 51 healthy controls and found steeper DRD and DLD in the AUD group (Bailey et al., 

2018). For nicotine dependence, two studies reported steeper monetary and health DLD in smokers 

compared to non-smokers (Baker et al., 2003; Odum et al., 2002), whereas two studies did not find a 

difference (Johnson et al., 2007; Ohmura et al., 2005). One study reported steeper DLD and DRD rates in 

cocaine-dependent versus healthy participants across commodities (money, health and drug-related 

outcomes), albeit with a stronger effect for rewarding outcomes (Cox et al., 2020). In contrast, Mejìa-Cruz 

and colleagues (2016) compared 77 cocaine-dependent, 44 cannabis-dependent and 40 healthy 

participants and found no differences in DLD. One possible explanation for these inconsistencies is that 

addiction-related studies on DLD focused on group comparisons using rather small sample sizes, and that 

the DLD subgroups mentioned above were not analyzed. No study has investigated neural correlates of 

DLD in individuals with addiction. In conclusion, aversion discounting stands out as a promising yet 

understudied pathomechanism for addiction research. 

 

3.4 Aims and Research Questions 

As previously explained, the role of aversion discounting within addiction remains an open gap in 

the state of knowledge. Filling this gap was the goal of the present dissertation project. As reward 

discounting is robustly associated with addiction, commonalities and differences between Delay 

Discounting of aversive and rewarding consequences were first investigated on a behavioral and neural 

level. The goal was to first elucidate whether aversion discounting is an inherently different process than 

reward discounting, as some differences between DRD and DLD seem to suggest. To this end, the project 

aimed at the development of a novel intertemporal choice task to reliably infer DRD and DLD parameters 

and allow for a systematic comparison of discounting models. This task should then be used to find 

associations between DLD and addiction. The project focused on alcohol use due to the high prevalence 

of AUD. As the literature on Delay Discounting, especially studies on addiction, is often based on small 

sample sizes and intransparent data handling (e.g. exclusion of non-systematic discounting), the project 

aimed at endorsing open science practices by preregistering all studies, publishing raw data and aiming at 

sufficient sample sizes. This also allowed for replication of prior findings such as the association between 

DRD and addiction. 
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Following the literature summarized earlier, five overarching research questions guided the 

project: 

 Q1 Are monetary losses subject to hyperbolic/hyperboloid Delay Discounting? 

 Q2 Are DLD and DRD different cognitive mechanisms, as reflected by dissociable behavioral 

patterns (sign effect, correlation between DRD and DLD, discounting functions, non-

discounting)? 

 Q3 Are dissociable brain regions recruited during DRD and DLD decision-making? 

 Q4 Is steepness of DLD associated with severity of Alcohol Use Disorder and alcohol 

consumption? 

 Q5 Does the neural processing of DLD and DRD differ between Alcohol Use Disorder patients 

and healthy controls? 
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Aim: Delay discounting (DD) has often been investigated in the context of decision
making whereby individuals attribute decreasing value to rewards in the distant
future. Less is known about DD in the context of negative consequences. The aim
of this pilot study was to identify commonalities and differences between reward
and loss discounting on the behavioral as well as the neural level by means of
computational modeling and functional Magnetic Resonance Imaging (fMRI). We
furthermore compared the neural activation between anticipation of rewards and losses.

Method: We conducted a study combining an intertemporal choice task for potentially
real rewards and losses (decision-making) with a monetary incentive/loss delay task
(reward/loss anticipation). Thirty healthy participants (age 18-35, 14 female) completed
the study. In each trial, participants had to choose between a smaller immediate loss/win
and a larger loss/win at a fixed delay of two weeks. Task-related brain activation was
measured with fMRI.

Results: Hyperbolic discounting parameters of loss and reward conditions were
correlated (r = 0.56). During decision-making, BOLD activation was observed in the
parietal and prefrontal cortex, with no differences between reward and loss conditions.
During reward and loss anticipation, dissociable activation was observed in the striatum,
the anterior insula and the anterior cingulate cortex.

Conclusion: We observed behavior concurrent with DD in both the reward and loss
condition, with evidence for similar behavioral and neural patterns in the two conditions.
Intertemporal decision-making recruited the fronto-parietal network, whilst reward and
loss anticipation were related to activation in the salience network. The interpretation of
these findings may be limited to short delays and small monetary outcomes.

Keywords: delay discounting, monetary incentive delay task, reward, aversion, fMRI
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INTRODUCTION

Imagine having to choose between two monetary rewards: win
€50 today or €100 in three months. What would you choose?
Intertemporal choice tasks (ICTs) like these are used to assess
delay discounting (DD), an aspect of decision-making whereby
individuals attribute decreasing value to outcomes in the future
(Gonçalves and Silva, 2015; Myerson et al., 2017; Yeh et al.,
2020). This decrease over time is most commonly described with
a hyperbolic discounting function (Myerson and Green, 1995).
Inter-individual differences in the temporal discounting rates are
associated with economic behavior, but also mental disorders like
substance use disorder (Story et al., 2014; Cruz Rambaud et al.,
2017; Amlung et al., 2019).

Compare the decision above with the following one: Lose
€50 today or €100 in three months. What would you choose
now? It is still an open question whether the cognitive decision-
making process between these potential losses are the same as
in the first example, only in the opposite direction. Therefore,
comparing the behavioral and neural processes between temporal
loss discounting (LD) and temporal reward discounting (RD) was
the main goal of this study.

On a behavioral level, there appear to be inherent differences
between LD and RD. Losses are discounted less steeply than
rewards (Loewenstein and Prelec, 1992; Frederick et al., 2002;
Estle et al., 2006; Mitchell and Wilson, 2010; Green et al., 2014).
In other words, it appears as if losses in the distant future remain
aversive. Not only are losses discounted less steeply, but also less
frequently: around 20% of participants do not discount losses at
all, another 20% exhibit reverse discounting, i.e., gravitating more
towards immediate choices with increasing delay. In contrast,
future rewards are discounted by more than 90% of participants
(Gonçalves and Silva, 2015; Myerson et al., 2017; Yeh et al., 2020).
Another commonly found difference between RD and LD is the
lack of magnitude effects in LD: in RD, very large wins are less
steeply discounted than small wins, whereas for LD it was found
to be constant over a wide range of monetary outcomes (Johnson
and Bickel, 2002; Mitchell and Wilson, 2010; Green et al., 2014;
Yeh et al., 2020).

There also appear to be similarities between both processes.
A stronger tendency to discount future losses has been associated
with substance use disorder (Johnson et al., 2015; Cox et al.,
2020). Different studies report vastly different correlation
coefficients between discounting rates of losses and reward,
ranging from strong to none at all (Chapman, 1996; Mitchell and
Wilson, 2010; Halfmann et al., 2013; Myerson et al., 2017). To
summarize, it remains unclear whether LD and RD represent the
same cognitive process.

This uncertainty translates to the neural underpinnings of
LD and RD, with only very few studies comparing neural
correlates of RD and LD. There is considerable literature only
for the neural correlates of RD: RD typically recruits brain
areas which are related to executive control (frontal and parietal
cortex, supplementary motor area), reward valuation (ventral
striatum, amygdala, orbitofrontal cortex) and salience (insula,
anterior cingulate cortex (Wesley and Bickel, 2014; Owens et al.,
2019). Moreover, steeper RD is associated with altered activity in

regions including the ventral striatum (VS), inferior frontal gyrus,
anterior cingulate and medial PFC (Schüller et al., 2019).

Directly comparing LD and RD, Bickel et al. (2009) reported
no significant differences between BOLD responses in RD and
LD. Xu et al. (2009) reported a stronger BOLD response in
the dorsolateral PFC and the posterior cingulate, the insula, the
thalamus and the striatum during LD trials as compared with
RD trials. Using dynamic causal modeling, the same group found
distinct networks for gains and losses, whereby the valuation
of losses and gains relies more on dorsolateral PFC and medial
cortical regions, respectively (Zhang et al., 2018).

Whereas the neural underpinnings of reward- and aversion-
related discounting have been rarely compared, a large number
of studies have compared other processes that involve both
rewarding and aversive consequences. One of these is reward
and loss anticipation as measured by monetary incentive
delay (MID) tasks (Kirsch et al., 2003; Knutson et al., 2005).
Cognitive processes during this task include the valuation of
possible outcomes and instrumental behavior to obtain a given
outcome. For this task, recent meta-analyses have demonstrated
comparable activation for trials involving losses and rewards, but
also stronger activation in the ventral striatum during reward
compared to loss anticipation (Dugré et al., 2018; Oldham
et al., 2018). Like outcome anticipation, intertemporal decision-
making usually includes an evaluation process and instrumental
approach behavior (see also Scheres et al. (2013)). Therefore,
differences in neural activation between loss and reward decision-
making could be confounded with differences in the motivational
value of the reward or loss as reflected in the activation during
reward and loss anticipation (Algermissen et al., 2021). To this
end, we developed a sequence of decision-making and outcome
anticipation by combining intertemporal choice tasks with a MID
task (Kirsch et al., 2003).This further allowed us to conduct a MID
task with highly salient outcomes which have been chosen by the
participants themselves.

In addition, behavioral modeling of discounting parameters
allowed us to derive subjective values which we could associate
with brain activation during the MID task. During decision-
making, the subjective value of monetary wins is associated with
stronger activation in the MPFC, the VS, the PCC, the ACC and
other regions throughout the frontal and parietal cortex (Sripada
et al., 2011; Schüller et al., 2019).

Most analyses were performed in an exploratory manner. We
focused on investigating differences and correlations between
behavior and neural activation during decision-making between
rewards and losses. We further collected data on self-perceived
impulsivity via the Barratt Impulsivity Scale-15 (Meule et al.,
2011) to investigate its association with delay discounting.
We preregistered seven hypotheses based on the results of an
unpublished pilot study (for further information)1. Hypotheses
included the presence of delay discounting in both reward
and loss conditions, a replication of ventral striatal activation
during reward anticipation, and more ventral striatal activity
during reward anticipation than during loss anticipation.
Furthermore, we hypothesized to see no correlation between

1https://osf.io/cj35t
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behavioral parameters for LD and RD. Lastly, we expected an
association between stronger RD and higher activation during
the anticipation of immediate rewards (compared to delayed
rewards), and an association between stronger LD and reduced
prefrontal activation during decision-making.

METHODS

Sample
We recruited 30 healthy participants from local universities via
social media, public notices and registers of participants from
earlier studies. Eligibility criteria included: absence of acute
severe medical diseases, absence of acute psychiatric disorders,
and MRI suitability. Eligibility criteria were assessed using a
standardized telephone screening protocol. Eligible participants
signed written informed consent prior to the study. There was
no financial compensation, but participants could win money
based on their responses during the experiment. On average,
participants won €15.20 during the study.

The study was approved by the ethics committee of the
Medical Faculty Mannheim, University of Heidelberg (2019-
633N).

Study Procedure
A standardized information sheet was used to explain the
behavioral task before the MRI session. Participants were
informed that they would be compensated based on their
decisions in the behavioral task.

Each participant completed the experiment in the fMRI
scanner. The experiment consisted of two sessions of 32 trials
each. Within each trial, the participant first had to choose between
two monetary options (decision phase) and then respond quickly
enough after an anticipation period to receive the chosen option
(anticipation phase). The trial procedure is described below and
illustrated in Figure 1.

The two sessions were identical in every aspect (amounts to
choose from, order of stimuli) except for valence: participants
had to choose between and anticipate monetary wins in one
session (reward condition) and losses in the other session (loss
condition). The order of the two sessions was counter-balanced
across participants.

Decision Phase (Intertemporal Choice Task): At the
beginning of each trial, participants had to choose between
a smaller immediate or a larger later amount of money to be
received/lost in two weeks. The delay was always fixed at two
weeks to allow for manageable payment. If no choice was made
within 3 seconds, the trial was excluded for analysis. The phase
was followed by a jittered 1-2 sec inter-stimulus interval.

The 32 trial options were calculated for eight fixed amounts
for the immediate option (€1, €1.25, €1.50, €1.75, €2, €2.25, €2.50
and €2.75) and four ratios between the immediate and delayed
options (0.2, 0.4, 0.6, 0.8). For example, the delayed options in
the four trials offering €1 immediately were: €5, €2.5, €1.66, and
€1.25.

Anticipation Phase (Incentive Delay Task): After making a
choice, the chosen amount of money and the chosen delay

(immediate or 2 weeks) were cued for 6 seconds. Subsequently, a
short flash of 50 ms duration prompted the participant to respond
as fast as possible by pressing a button to receive the chosen
outcome. The threshold for a fast response was adaptive for each
trial, targeting a 50% probability of success: starting with 300 ms,
the required reaction time was increased/decreased by 5% after
a slow/fast response. Then the feedback was presented for 1.5
seconds. In case of no or a too slow response, the chosen reward
was replaced with €0, whereas chosen losses were doubled. Lastly,
the jittered inter-trial interval of 1.5 to 5 seconds followed.

For each task, two trials were randomly selected and paid out.
For the trials of the loss discounting experiment, participants
were given a baseline balance of €8.20 for immediate choices
and €10 for delayed choices, from which the selected loss was
subtracted. An equal balance for both choices would have resulted
in a trivial task where the smaller loss would constantly yield a
larger win. We selected different balances so that choosing the
delayed loss would result in a higher win in 50% of trials.

After the MRI session, participants were asked to fill out
the Barratt Impulsivity Scale-15 (BIS-15, German Short Version;
Meule et al. (2011)) and two open questions for each task: 1)
Did you have a strategy (if yes, please describe)? 2) Did you switch
your preference for an immediate or delayed win/loss at a specific
difference between the two amounts? These questions were used
to assess whether we successfully induced discounting of losses
despite the possibility of winning money in both tasks.

Behavioral data extracted from logfiles included individual
trial-wise choices and reaction times during the decision and
anticipation phases.

Behavioral Modeling
We inferred hyperbolic delay discounting models on the
sequence of behavioral choices of each subject (Mazur, 1987;
Davison and McCarthy, 1988), as commonly done in human
research (Mazur, 1987; Davison and McCarthy, 1988; Kirby and
Herrnstein, 1995; Myerson and Green, 1995; Johnson and Bickel,
2002; Ballard and Knutson, 2009; Bernhardt et al., 2019; Ahn
et al., 2020; Croote et al., 2020). Since we have presented only
two delays, robust estimation of discounting models is limited.
Therefore, we did not run model comparisons between different
discounting models and instead applied the commonly used
hyperobic model to remain comparable to other studies. The
model assumes that the internal (subjective) values V of a delayed
choice a2 decline hyperbolically over time, i.e., according to
V(a2) =

(
1

1+ ·κlD

)
r2, where r2 represents the outcome of the

delayed option, κl is a free (discounting) parameter reflecting
the individual tendency of discounting the delayed outcome in
the reward or loss condition (indexed by l), and D represents
the temporal delay. The value of the immediate choice V(a1) is
simply given by the outcome r1 itself.

By connecting these values to behavioral choices in the task
through a probabilistic process, we describe the probability p for

choosing an action ai as p (ai) =
e

1
βl V(ai)

∑
j e

1
βl V(aj)

, where βl describes

the individuals tendency to exploit or explore choices (separately
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FIGURE 1 | Experimental design. Arrows indicate onsets of GLM regressors. Participants had to choose between two losses (red) or two wins (green) within 3
seconds (decision phase). The chosen outcome was then cued for 6 seconds (anticipation phase), after which a short flash (50 ms) occurred. If participants pressed
the button within an adaptive response window (starting with 300 ms), they received the outcome. If not, the win was reduced to €0 (reward condition) and losses
were doubled (loss condition), as presented in the example.

for reward and loss conditions). Parameters were inferred via
maximum likelihood estimation using constrained parameter
optimization (with inbuilt MATLAB routines) and parameter
constraints on βl

∈ [0, 1], and κl
∈ [0,∞).

Furthermore, the (negative) subjective values of chosen
losses were transformed to absolute subjective values for
easier interpretation (so that a higher absolute subjective value
reflects a higher loss).

Behavioral Data Analysis
To evaluate discounting behavior during the decision phase, we
first counted the individual number of discounted choices by
condition, that is, all immediate choices in the reward condition
and all delayed choices in the loss condition. To test the
hypothesis that the frequency of discounted choices increased as
a function of a higher immediate/delayed ratio, we aggregated the
data by obtaining the relative frequency of discounted choices for
each participant, condition and ratio.

Based on these data, we set up a linear mixed model
(LMM, Singmann and Kellen (2019)) to test for the effect
of ratio (between the immediate and delayed options) and
condition on the number of discounted choices. The LMM was
chosen to take into account the hierarchical data structure and
possible interaction effects. Here, the outcome variable was the
relative frequency of discounted choices, with condition (i.e.,
reward/loss) and ratio between immediate and delayed amount
(i.e., 0.2, 0.4, 0.6, 0.8) as fixed effect predictors. Furthermore, we
added a per-participant random intercept, a random slope per
participant for both fixed effects, and the correlation between the
random effects, resulting in the following formula:

Relative _ frequency ∼ condition + ratio
+ (condition + ratio | subject)

Next, we tested whether the behavioral parameters κ and
β from the hyperbolic model were significantly different or
associated between conditions. To this end, paired t-tests and
Pearson’s correlation coefficient were calculated. To rule out
potential bias from non-converging behavioral models, these
statistics were repeated excluding participants without choice
variability in at least one condition. Lastly, correlations between

the model parameters, the number of discounted choices, and
BIS-15 scores were calculated.

To investigate other possible differences between loss and
reward trials, we statistically compared reaction times during
loss and reward trials, both for the decision phase and the
anticipation phase. Here we also took into account the ratio
between monetary options (decision phase) and the reward/loss
magnitude (anticipation phase) as possible predictors of reaction
time. To this end, we fit LMMs to the data of both phases.

For the decision phase, we set up a LMM with the
reaction time during decision-making as outcome variable.
Fixed effect predictors were condition (reward/loss) and ratio
between immediate and delayed amount (i.e., 0.2; 0.4, 0.6, 0.8).
Furthermore, we added a per-participant random intercept, a
random slope per participant for both fixed effects, and the
correlation between the random effects, resulting in the following
formula:

Reaction_time ∼ condition + ratio +
(condition + ratio | subject)

For the anticipation phase, we set up a LMM with the
reaction time after the flash as an outcome variable. Fixed effect
predictors were condition (reward/loss) and outcome magnitude,
which we obtained from the subjective values derived from
the hyperbolic model. A random intercept per participant was
included, resulting in the formula:

Reaction_time ∼ condition +
subjective_value + (1 | subject)

A significance threshold of p < .05 (two-sided) was used for all
behavioral analyses. All behavioral analyses were performed using
R (version 4.1.2). Linear mixed models were fit using the packages
lme4 (Bates et al., 2015). F-statistics and p-values for LMMs were
estimated using the Satterthwaite method as implemented in the
statistical R package lmertest (Kuznetsova et al., 2017).

Brain Imaging
Functional imaging data were acquired using a 3 Tesla Siemens
Magnetom Trio Scanner (Siemens Medical Systems, Erlangen,
Germany) with a 32 channel head coil. Morphological brain
data was assessed by high-resolution 3-dimensional T1-weighted
anatomical images (MPRAGE) (repetition time (TR) = 2300 ms,
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eco time (TE) = 3.03 ms, flip angle = 9◦, field of view
(FOV) = 256 mm, 192 slices, slice thickness = 1.00 mm, voxel
dimension = 1.0× 1.0× 1.0 mm, matrix size = 256× 256).

The individuals blood oxygen level dependent (BOLD) signal
was measured with two 9:36 min T2∗-weighted echo-planar
image (EPI) sequences with 285 volumes (TR = 2000 ms,
TE = 30 ms, flip angle = 80◦, FOV = 192 mm, 28 sagittal slices,
slice thickness = 4.0 mm, 1 mm gap, voxel dimension = 3.00 x
3.00 x 4.00 mm, matrix size = 64 x 64). The behavioral tasks were
presented using the Presentation software package (Version 21.1,
Neurobehavioral Systems, Inc., Albany, CA, United States).

Functional Magnetic Resonance Imaging
Data Analysis
Preprocessing
We used SPM 12 (Wellcome Department of Cognitive
Neurology, London, United Kingdom) implemented
in MATLAB R2019a (MathWorks Inc., Sherborn, MA,
United States) for preprocessing and analysis of functional
images. The first four volumes of functional data were discarded.
Preprocessing included normalization of the anatomical image to
the SPM TPM template, and for the functional images slice-time
correction, realignment to the mean image, co-registration to
the anatomical image, spatial normalization to the SPM TPM
template, rescaling to a resolution of 2 mm × 2 mm × 2 mm,
and spatial smoothing with a 8x8x8 mm Gaussian kernel.

Modeling
For subject-specific first-level analyses, we set up three general
linear models (GLMs). The reward and loss conditions were
modeled as separate sessions within the GLMs described below.
The respective regressors were the same for both sessions and
are illustrated in Figure 1. Regressor onsets were convolved with
the default SPM canonical hemodynamic response function. Six
estimated movement parameters were included as regressors of
non-interest in all models. The following GLMs were specified:

(1). A phase-related GLM was set up to compare task-
related activation between conditions (i.e., loss/reward)
and implicit baseline. Two phase related-regressors of
interest were specified: the decision phase (onset of the
decision phase modeled with the respective reaction time)
and the anticipation phase (onset of the cue during the
anticipation phase modeled with a fixed duration of
6 s). Trials in which the participants failed to choose an
option during the decision phase were excluded from the
regressors of interest by adding two dummy regressors
of non-interests. To account for additional activation
variance of no interest, we added several regressors of no
interest, including the button press during the decision
phase, the flash after the anticipation phase, the button
press after the flash, and the feedback.
The following contrasts were specified to detect activation
related to the reward decision phase (RDec), the loss
decision phase (LDec), reward anticipation (RA) and loss
anticipation (LA):

Decision Phase: RDec > Implicit Baseline; LDec > Implicit
Baseline; RDec > LDec; LDec > RDec.
Anticipation Phase: RA > Implicit Baseline; LA > Implicit
Baseline; RA > LA; LA > RA.

(2). A parametric decision-related GLM was set up to assess
changes in brain activation in response to trial difficulty,
which was operationalized as the difference between the
subjective values (SV) of the immediate and delayed
options. Here, a smaller difference indicates that the
immediate option and the discounted delayed option have
a more similar subjective value, which is considered a
more difficult decision. The subjective value difference
(SV_Diff) was added as a parametric modulator for
the decision phase.
Following contrasts were specified in this model:
Decision Phase: SV_Diffreward > Baseline;
SV_Diffloss > Baseline.

(3). A parametric anticipation-related GLM was set up
to characterize the association between phase-related
activation during the anticipation phase and the internal
value representation of the cued amount of money.
For this purpose, the subjective value of the chosen
option was added as a parametric modulator for the
anticipation phase.
Following contrasts were specified in this model:
Anticipation Phase: SVreward > Baseline; SVloss > Baseline.

(4). A choice-related GLM was set up to compare choice-related
activation within conditions. The regressors were identical
with the first model, with the two phase-related regressors
of interest (decision phase and anticipation phase) being
split into four regressors based on the participant’s choice
for the immediate or delayed option. Participants with
less than 20% discounted choices (6 out of 32 trials) were
excluded from respective contrasts.
The following contrasts were specified in this model:
Decision Phase: Immediate > Delayed, Delayed >
Immediate (separately for reward and loss).
Anticipation Phase: Immediate > Delayed, Delayed >
Immediate (separately for reward and loss).

Linear contrast estimates were then entered into a second-
level random effects model. One-sample t-tests were used to
detect within-group activation. Inferences were conducted on the
whole-brain level with a cluster-corrected significance threshold
of p < 0.05 and a cluster-defining threshold of p < 0.001
uncorrected. We also conducted all contrasts at a family-wise
peak voxel-corrected threshold of p < 0.05. Both cluster-
corrected and peak voxel-corrected p-values are reported in the
(Supplementary Tables 1, 2). The contrasts for the decision phase
(task-related GLM) yielded very large clusters (> 60.000 voxels),
therefore we only report regions which remained significant at
the peak voxel-corrected threshold.

In order to test the hypotheses regarding ventral striatal
activation during reward and loss anticipation, an a priori defined
ROI analysis was conducted for two contrasts of the first model:
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FIGURE 2 | Behavioral results (N = 30). (A) Number of discounted choices per person (reward = immediate choices; loss = delayed choices). (B) Relative frequency
of discounted choices per ratio between immediate and delayed options (means and standard errors of the mean). Gray: means and standard errors of the
subject-wise hyperbolic model predictions. (C): Distribution of κ and β values. (D): Associations of κ and β between conditions. (E): Association between κ

parameters and relative frequency of discounted choices. (F): Associations between reaction time during the anticipation phase and hyperbolic model-derived
subjective values (note: absolute subjective values used for loss condition, “see Behavioral Modeling”).

“Reward > Implicit Baseline” (Hypothesis 2) and “Reward >
Loss” (Hypothesis 3). The mask for the ROI analysis covering
the bilateral nucleus accumbens was based on the automated
anatomical atlas (AAL, Tzourio-Mazoyer et al. (2002)) and
comprised a volume of 9506 mm3 (1189 voxels). Inference for
ROI analyses was conducted with a significance threshold of
p < 0.05 corrected for small volume.

To test for associations between individual discounting
tendency and brain activation during the decision phase,
model-derived discounting parameters (κ) were entered as
covariates of interest in the second level models. Lastly, to
test the hypothesis of stronger RD and higher activation
during the anticipation of immediate rewards (compared
to delayed rewards), the discounting parameter κreward
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was entered as a covariate of interest in the second
level of the choice-related contrast Immediate > Delayed
Reward Anticipation.

RESULTS

Study Population
The study sample consisted of 30 undergraduate university
students (mean age ± SD = 24 ± 3.46 years; range 19 to 33; 14
female) from different fields.

Missing Data
MRI data from two participants had to be excluded due to
an incidental finding and excessive head movement. Behavioral
analyses are reported with N = 30, fMRI analyses with N = 28.

A total of 30 trials (1.56% of all trials) had to be excluded from
further analyses due to no decision within 3s.

Behavior
For the decision phase, the number of discounted choices per
condition is illustrated in Figure 2A. The average number
of discounted choices (out of 32 trials) was 4.93 in the
reward condition and 5.12 in the loss condition (Table 1),
with a correlation of r = 0.47 (p = 0.01) between the
two. Almost a third of all participants (8 in the loss
condition, 9 in the reward condition) never chose the
discounted option. In both conditions, the relative discounting
frequency increased as the ratio between immediate and
delayed options approximated 1, as illustrated by Figure 2B.
This is further confirmed by the statistically significant
effect of ratio (t(29.31) = 5.62, p < 0.001) in the LMM
predicting relative discounting frequency by ratio and condition
(Table 2). In contrast, the effect of condition was not
significant (t(29.05 = 0.03, p = 0.79), indicating no difference
between loss and reward trials with regard to number of
discounted choices.

The descriptive statistics for the behavioral model parameters
κ and β are presented in Table 1 (see also Figure 2C). Paired
t-tests revealed that discounting parameters κ (t(29) = −0.31,
p = 0.76) and choice parameters β (t(29) = 0.16, p = 0.88)
did not differ significantly between conditions. Excluding
participants showing no behavioral variability yielded the same
results (all p > 0.44). Instead, model-derived discounting
parameters κ (r = 0.56, p < 0.01), but not choice parameters
β (r = 0.14, p = 0.46), were significantly correlated between
conditions (Table 1 and Figure 2D). The correlation between
discounting parameters κ did not remain significant after
excluding participants without behavioral variability in at
least one of the two conditions (r = 0.43, p = 0.09,
n = 17).

Correlations between the behavioral model parameters and
number of discounted choices are presented in Table 1.
Discounting parameters κ based on the hyperbolic model were
highly correlated with the number of discounted choices, both for
the loss (r = 0.92, p < 0.001) and the reward condition (r = 0.90;
p < 0.001; Figure 2E). The correlation remained constant after TA
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TABLE 2 | Linear Mixed Model for the effect of condition (Loss = 0, Reward = 1) and ratio between immediate and delayed options (0.2, 0.4, 0.6, 0.8) on relative
frequency of discounted choices during the decision phase (N = 30).

Level Effect Estimate SE t df P 5% CI 95% CI

Group Intercept −0.12 0.03 −3.43 35.36 < 0.01 −0.19 −0.05

Group Condition −0.01 0.03 −0.27 29.05 0.79 −0.07 0.05

Group Ratio 0.57 0.10 5.62 29.31 < 0.01 0.36 0.77

Subject SD (Intercept) 0.13

Subject Intercept*Condition −0.40

Subject Intercept*Ratio −0.92

Subject SD (Condition) 0.13

Subject Condition*Ratio 0.02

Subject SD (Ratio) 0.50

Residual SD 0.14

Estimates are in relative frequencies (0 to 1).

removing data from participants without behavioral variability
(reward: r = 0.89; loss: r = 0.92, both p < 0.001). Taken together,
the hyperbolic discounting parameters were a good indicator of
observed discounting behavior.

No behavioral index of discounting behavior showed a
significant association with any of the subscales nor the total scale
of the BIS-15 (Table 1), indicating no linear relationship between
self-rated impulsivity and observed discounting behavior.

Lastly, there was no effect of condition (reward/loss) on
the reaction times in the decision phase and the anticipation
phase. For the decision phase, the LMM revealed a statistically
significant effect of ratio (t(28.67) = 4.06, p < 0.001)), but
not condition (t(28.99) = −0.97, p = 0.34; Table 3), indicating
slower decision-making in trials with higher ratio between the
immediate and delayed option.

For the anticipation phase, the LMM revealed no significant
effects of condition (t(1852.64) = 0.01, p = 0.99) or subjective
value (t(1856.64) = 0.29, p = 0.77; Table 4). The reaction time
after the flash was therefore unrelated to valence or magnitude, as
illustrated by Figure 2F.

Functional Magnetic Resonance Imaging
Decision Phase
Reward Condition
The phase-related GLM contrast “RDec > Implicit Baseline”
revealed clusters of activation in the visual cortex, the
cerebellum, the anterior insula, the operculum, the primary and
supplementary motor areas, the superior and posterior parietal
cortex, and the anterior cingulate cortex (see Figure 3A and
Supplementary Table 1).

In no brain region was task-related activation significantly
correlated to the individual discounting parameter κreward (phase-
related GLM contrast ‘RDec > Implicit Baseline) ∗ κreward ‘). This
result remained unchanged after excluding participants without
behavioral variability (remaining n = 21).

The choice-related GLM contrasts “Immediate > Delayed
Choices” and vice versa revealed no significant clusters of brain
activation. However, due to the low behavioral variance, data of
only 12 participants were included in this contrast.

The parametric modulation of RDec with the subjective value
difference between immediate and delayed options revealed no
significant clusters of activation.

Loss Condition
The phase-related GLM contrast “LDec> Implicit Baseline”
revealed clusters of activation in the visual cortex, the
cerebellum, the anterior insula, the operculum, the primary and
supplementary motor areas, the superior and posterior parietal
cortex, and the anterior cingulate cortex (see Figure 3B and
Supplementary Table 1).

No brain region showed activation in significant relation
with the individual discounting parameter κloss (phase-related
GLM contrast ‘LDec > Implicit Baseline) ∗ κloss ‘). This
result remained unchanged after excluding participants without
behavioral variability (remaining n = 22).

The choice-related GLM contrasts “Immediate > Delayed
Choices” and vice versa revealed no significant clusters of brain
activation. However, due to the low behavioral variance, data of
only 15 participants were included in this contrast.

The parametric modulation of LDec with the subjective value
difference between immediate and delayed options revealed no
significant clusters of activation.

Reward Condition vs. Loss Condition
There were no significant clusters in the phase-related GLM
contrasts “LDec > RDec” and vice versa. An exploratory
contrast combining loss and reward (‘LDec + RDec > Baseline’)
revealed activation throughout the same regions as during
the individual conditions (Supplementary Figure 1 and
Supplementary Table 3).

Anticipation Phase
Reward Anticipation
In the phase-related GLM contrast “RA > Implicit Baseline,”
significant activation was present in the anterior insula, anterior
cingulate cortex, putamen, pallidum, operculum, cerebellum,
thalamus as well as primary and supplementary motor areas
(see Figure 4A and Supplementary Table 2). Furthermore, the
a priori ROI analysis revealed significant activation in the ventral
striatum (Supplementary Table 2).
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TABLE 3 | Linear Mixed Model for the effect of condition (Loss = 0, Reward = 1) and ratio between immediate and delayed options (0.2, 0.4, 0.6, 0.8) on reaction times
during the decision phase (N = 30).

Level Effect Estimate SE t df P 5% CI 95% CI

Fixed Intercept 1, 043.17 35.58 29.32 28.90 < 0.01 970.40 1, 115.95

Fixed Condition −34.82 35.81 −0.97 26.99 0.34 −108.07 38.42

Fixed Ratio 241.67 59.57 4.06 28.68 < 0.01 119.77 363.57

Subject SD (Intercept) 167.13

Subject Intercept*Condition −0.52

Subject Intercept*Ratio 0.59

Subject SD (Condition) 181.01

Subject Condition*Ratio −0.02

Subject SD (Ratio) 279.04

Residual SD 299.79

Estimates are in milliseconds.

TABLE 4 | Linear Mixed Model for the effect of condition (Loss = 0, Reward = 1) and subjective value of outcome on reaction times during the anticipation phase.
Subjective values of the chosen option were derived from the hyperbolic model (“see Behavioral Modeling”) (N = 30).

Level Effect Estimate SE t Df p 5% CI 95% CI

Fixed Intercept 239.72 3.91 61.32 39.40 0.00 231.82 247.63

Fixed Condition 0.05 3.81 0.01 1, 853.64 0.99 −7.42 7.53

Fixed Subjective Value 0.16 0.53 0.29 1, 857.64 0.77 −0.89 1.20

Subject SD (Intercept) 18.91

Residual SD 46.86

Estimates are in milliseconds.

FIGURE 3 | Brain activation during the decision phase (intertemporal choice task). (A): Reward Decision Phase > Implicit Baseline (B): Loss Decision Phase >

Implicit Baseline. Results displayed at p < 0.5 FWE-corrected for multiple testing.
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FIGURE 4 | Brain activation during the anticipation phase (monetary incentive delay task). (A): Reward Anticipation (RA) > Implicit Baseline. (B): Loss Anticipation
(LA) > Implicit Baseline. (C): RA > LA. (D): LA > RA. Only voxels from significant clusters (cluster-size p < 0.05 corrected for multiple testing and p < 0.001 as
cluster-defining threshold) are displayed.

The parametric modulation of RA with subjective value
revealed three clusters in the anterior insula + striatum, the
cerebellum and the anterior cingulate cortex (Figure 5A and
Supplementary Table 2). In other words, the chance of winning
higher rewards was associated with more activity in salience-
related regions.

The choice-related GLM contrasts “Immediate > Delayed
Choices” and vice versa revealed no significant clusters of brain
activation. However, due to the low behavioral variance, data of
only 12 participants could be included in this contrast.

The choice-related brain-behavior correlation ‘(Immediate >
Delayed) ∗ κreward revealed no significant clusters of activation.

Loss Anticipation
The phase-related GLM contrast “LA > Implicit Baseline”
revealed significant clusters in the anterior insula, anterior
cingulate cortex, putamen, pallidum, operculum, cerebellum,
visual cortex as well as and primary and supplementary motor
areas (Supplementary Table 2 and Figure 4B).

The parametric modulation of LA with subjective value
revealed five clusters associated with the chance of preventing
higher losses: the prefrontal cortex, middle cingulate cortex,
thalamus and precuneus (Supplementary Table 2 and
Figure 5B).

The choice-related GLM contrasts “Immediate > Delayed
Choices” and vice versa revealed no significant clusters of brain
activation. However, due to the low behavioral variance, data of
only 15 participants reward could be included in this contrast.

Reward Anticipation vs. Loss Anticipation
The phase-related GLM contrast “RA >LA” revealed significantly
more activation during RA throughout the prefrontal and
parietal cortex, anterior insula, putamen, anterior cingulate
cortex and motor areas (Supplementary Table 2 and Figure 4C).
The opposite contrast “LA > RA” revealed significantly more
activation during LA in the ventral striatum (Supplementary
Table 2 and Figure 4D).
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FIGURE 5 | Parametric modulation of brain activation during the anticipation phase with hyperbolic model-derived subjective values (“see Behavioral Modeling”).
(A): Brain regions that show more activation during Reward Anticipation (RA) when subjectively higher rewards could be won. (B): Brain regions that show more
activation during Loss Anticipation (LA) when subjectively higher losses could be avoided. Only voxels from significant clusters (cluster-size p < 0.05 corrected for
multiple testing and p < 0.001 as cluster-defining threshold) are displayed.

DISCUSSION

General Discussion
In this study, we aimed to investigate the differences and/or
associations between temporal discounting of losses and rewards
on a behavioral and neural level. We combined an intertemporal
choice task with a monetary incentive delay task in an fMRI
experiment. That is, participants had to choose between two
potentially real losses or rewards in the decision phase of
each trial, and respond quickly to receive the chosen option
in the anticipation phase of each trial. Individual discounting
parameters were estimated based on the hyperbolic discounting
model. Based on these parameters, we were able to obtain
subjective values for the chosen rewards and losses and used these
as parametric modulators in the fMRI models.

Statistical analyses focused on the exploratory comparison of
the behavior and neural activation during the loss and reward
conditions. During the decision phase of the task, we observed
correlated LD and RD behavior and no neural differences
between the loss and reward condition. During the anticipation
phase, the ventral striatum was more strongly activated during
the loss condition, whereas several regions including ACC and
anterior insula were more strongly activated during the reward

condition. Higher subjective losses and rewards were found to be
associated with stronger activation in several regions during the
anticipation phase.

Our a priori-defined analyses regarding correlations between
neural activation and individual discounting parameters
did not yield any significant finding. As discussed further
below, this might be explained by the overall low rate of
discounting behavior.

Comparing Discounting of Rewards and
Losses
We observed discounting of both losses (LD) and rewards (RD):
participants gravitated more towards the discounted option in
trials where the immediate and delayed option were more similar,
i.e., where the ratio between options was closer to 1 (Table 2). The
general discounting frequency in our experiment was low, which
is why key analyses were repeated excluding non-discounters.
However, at least for the loss task, the discounting rates seem
in line with prior literature reporting about 30% non-discounters
(Mitchell and Wilson, 2010; Myerson et al., 2017; Yeh et al., 2020;
Thome et al., 2022).

In general, the observed data in both conditions matched
the pattern predicted by the hyperbolic model (Figure 2B).
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Note that the hyperbolic model was chosen based on the
literature (“see Behavioral Modeling”). With only one delay, it
could not be compared to other models like the exponential or
hyperboloid function. However, hyperbolic κ parameters were
strongly correlated with the number of discounted choices in
both reward (r = 0.90) and loss (r = 0.92) conditions, a result
which remained unchanged after excluding non-discounting
participants. These findings support our hypothesis of some form
of discounting behavior in both conditions.

Contrary to our expectations, we found very similar behavior
during loss and reward trials. The condition had no significant
effect on the number of discounted trials (Table 2). Further,
loss and reward behavior was highly correlated, as reflected
by the correlation between conditions regarding number of
discounted choices (r = 0.47, Table 1) and κ values (r = 0.56,
Figure 2D). The strong correlation between κ values did not
remain significant after excluding non-discounters, yet the effect
size remained comparable (r = 0.46). Power analyses revealed
that our full sample of N = 30 yielded 96% power to detect the
strong correlation of r = 0.55 reported for middle-aged adults
by Halfmann et al. (2013), but only 73% power to replicate the
moderate correlation of r = 0.39 reported by Mitchell and Wilson
(2010). Therefore, the lack of significance after reduction of the
sample size can most likely be attributed to a lack of power.

Like the number of discounted choices, the behavioral
model parameters κ and β did not significantly differ between
conditions. However, prior studies (Chapman, 1996; Engelmann
et al., 2013) reported differences between LD and RD only for
large but not for small delays, matching our data which is only
based on small delays. In addition, post-hoc power analyses
revealed only 48% power to find a small difference of d = 0.3
between RD and LD in our sample. Consequently, our finding of
no behavioral difference should not be generalized to large delays
and small effects.

Another similarity between conditions was found in reaction
times during the decision phase, which were highly variable,
but not related with the reward/loss condition (Tables 3, 4).
Together, this suggests commonalities between cognitive
processes involved in reward and loss discounting, if only for
short delays and small monetary outcomes.

Successful Induction of Loss Perception
The implementation of real losses is not a straightforward
enterprise if participants start with upfront money that can
be won. Using one balance for both immediate and delayed
losses would motivate participants to exploit the immediate
loss to receive more money at the end. Here we tested a
system with different balances for immediate and delayed
losses: In this study, two random choices per condition were
selected and paid out. Chosen losses were subtracted from
a fixed balance if the reaction time during the anticipation
phase task was fast enough and doubled if the reaction time
was too slow. However, this means that participants could
actually win money in the loss condition. By choosing different
balances for the immediate (€8.20) and delayed loss (€10),
we tried to prevent an obvious winning strategy. However,
theoretically participants could always opt for the maximum

win if they followed an optimal strategy. This means that
we could not guarantee that the loss ICT actually induced
a perception of losing money, rather than of potentially
winning more money.

To evaluate our success in inducing a perception of loss
(and consequently loss discounting), participants answered open
questions about their strategy after completing all measurements.
In the reward condition, 24 participants stated an overall
strategy of always choosing the higher win, whereas 12
participants explicitly named a variable strategy based on time
and reward ratio (discounting behavior). In the loss condition,
19 participants stated an overall strategy of always choosing the
smaller loss, with 11 participants naming variable strategies based
on time and reward ratio. Here, a variable strategy could be the
result of both discounting and a win-oriented strategy. However,
only one participant explicitly described choosing the loss that
resulted in the larger win. Notably, 19 participants explicitly used
the word “loss” when talking about their strategy, indicating
a perception of actual losses, rather than absolute wins. Few
studies have investigated LD in the fMRI, and to our knowledge,
none have used real losses. This is understandable, given
the obvious ethical problems of inflicting monetary losses on
participants. Here we tried to mask the “optimal” choice by using
different balances from which immediate and delayed losses were
subtracted. This enabled us to follow up the intertemporal choice
task by means of an incentive delay task with real losses. Taken
together, the quantitative and qualitative results clearly indicate
that the behavioral variance in the loss condition was indeed due
to LD and not win-orientation.

Brain Activation During Intertemporal
Decision-Making
During the decision phase, a pattern of regions related to
networks of salience (e.g., anterior insula and cingulate cortex),
decision-making (e.g., parietal and frontal cortex) and motor
control (e.g., precentral gyrus and SMA) was observed in
both conditions (Figure 3 and Supplementary Figure 1). This
activation pattern closely matches the overlap of three different
discounting tasks against baseline reported by Koffarnus et al.
(2017). In line with the behavioral results, we observed no
significant differences between the loss and reward conditions.
Furthermore, we found no brain-behavior correlation with the
model-derived κ parameters. Again, the low behavioral variability
observed throughout the experiment may have impeded the
statistical comparison of neural discounting processes. Indeed,
the few studies comparing neural correlates of LD and RD have
reported inconsistent results (Bickel et al., 2009; Xu et al., 2009)
which might suggest only subtle differences in neural activity
during LD and RD.

We did not find any evidence for a modulation of brain
activation by the difference between the two subjective values
presented in each trial. Very difficult trials (i.e., trials close to the
indifference point, therefore small difference) have been shown to
elicit more activation in the ACC and dlPFC, than very easy trials
(Monterosso et al., 2007; Koffarnus et al., 2017). Again, this result
may be best explained by the small monetary outcomes and low
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behavioral variability, yielding only few trials with very hard and
very easy choices.

Delay Discounting and Impulsivity
No subscale or total score of the BIS-15 was significantly
associated with discounting behavior. Excessive delay
discounting is associated with “impulsive” behavior such as
obesity and substance use disorders (Story et al., 2014). However,
the term impulsivity is multi-faceted and contains different
constructs with inconsistent associations (Moreira and Barbosa,
2019). Stahl et al. (2014) found no association between delay
discounting and other measures of impulsivity and argue
that “impulsivity” is an umbrella term of limited usability.
The BIS-15 is a common self-rating instrument with weak
associations to discounting at best (Reynolds et al., 2006; de
Wit et al., 2007; Mobini et al., 2007). In conclusion, rather than
reflecting impulsivity, discounting might better be understood as
a construct on its own (Odum, 2011).

Brain Activity During the Anticipation
Phase
The observed activity during the anticipation phase in both
conditions (Figure 4) matches the very typical pattern associated
with motivational salience and monetary incentive delay tasks
(Kirsch et al., 2003; Bjork et al., 2012; Oldham et al.,
2018). The anterior insula and cingulate cortex are thought
to modulate attention and goal-directed behavior towards
context-relevant stimuli. Indeed, activity in these two regions
was furthermore associated with subjective value, indicating
a neuronal reflection of salience increasing with the amount
of money that can be won or lost. In contrast, a study by
Diekhof et al. (2012) found increased striatal response during
the MID in response to an increased subjective value of the
presented outcome. In our study, ventral striatal activation was
surprisingly limited during reward anticipation, as reflected
by the small cluster which only remained significant in the
ROI analysis (Supplementary Table 2). A reason for this
might be our overall experimental design with two tasks
that are known to activate the ventral striatum (Kirsch
et al., 2003; Schüller et al., 2019). In addition to this,
the anticipation task lacked an explicit control condition,
leaving only the implicit baseline contrast with possibly low
residual variance.

Comparing Reward and Loss
Anticipation
Comparing baseline contrasts side by side, activity during
loss anticipation was focused around the same salience
hubs as during reward anticipation (Figure 4). This is
in line with recent meta-analyses suggesting a valence-
independent processing of motivational salience (Dugré
et al., 2018; Oldham et al., 2018). However, a direct contrast
of reward anticipation >loss anticipation and vice versa
revealed differentiated activity during the two conditions
(Figures 4C, D). The aforementioned salience regions and
several clusters throughout the cortex were significantly more

activated during reward trials, whilst loss trials were associated
with more activation in the ventral striatum. The former
effect is less surprising if we take into account the average
subjective value: participants chose smaller losses and larger
rewards (see also Figure 2F). Therefore, reward trials (with an
average win of €4.02) were possibly more salient than loss trials
(with an average loss of €1.89), reflected by more activity on
corresponding brain networks. Indeed, brain regions involved
in evaluating the motivational relevance of states have been
theorized to act as valence-independent salience networks
(Oldham et al., 2018).

Though plausible, this cannot explain the increased ventral
striatal response during loss anticipation. In fact, we were
expecting the opposite, as a recent meta-analysis reported
more ventral striatal activity during reward anticipation
(Oldham et al., 2018). However, given that the incentive
delay task allows the participants to prevent an anticipated
loss, increased activation in a core region of motivational
processing might reflect a higher motivational value of the
prevention of a potential loss compared to a potential win.
Such a response pattern would be predicted by prospect
theory (Kahneman and Tversky, 1979) in the context
of loss aversion.

Limitations
Our study used potentially real rewards and losses, trading
external validity against a low monetary range and no variation
in the delay, due to practical considerations. This combination
probably resulted in a very low discounting rate, and hence
statistical power. Moreover, generalization to large delays and
monetary outcomes is limited. For most participants, the
calculation of discounting parameters relied on few trials,
limiting the reliability of the obtained parameters. Importantly,
the lack of different delays made it impossible to compare
different discounting models, e.g., the hyperbolical and the
hyperboloid function.

Although we demonstrate a successful induction of loss
discounting using real outcomes, this could possibly introduce
a bias of upfront money, which might increase the validity of
the monetary domain and hence reduce discounting (Jiang et al.,
2016). Another possible bias comes from the payment procedure,
where chosen losses were doubled if the anticipation time was
too short. This unproportionally increased the potential loss
associated with the (larger) delayed option.

Lastly, some methodological issues arise from our
combination of an ICT with a MID. The contingency of the ICT
outcome on performance in the MID induced ambiguity, i.e.,
an implicit and changing probability of ∼50% to not receive
the chosen reward or even receive a higher loss. This may
have biased participants to prefer a smaller loss. In addition,
ambiguity may have influenced neural processes during the ICT,
limiting the comparison to neuroimaging studies investigating
pure delay discounting or risky decision-making (Ikink et al.,
2019; Ortiz-Teran et al., 2019). Another limitation is that the
behavioral paradigm was not designed to directly contrast brain
activation during the decision phase and the anticipation phase.
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Therefore, the separation of decision-making and instrumental
behavior is only conceptual, but cannot be backed up by more
intricate statistical analyses.

Future Research
A proper comparison of loss and reward discounting requires
an adaptation of the paradigm with respect to inter- and intra-
individual differences. Delay discounting is a decision-making
process assumed to involve a valuation of options. Comparing
subjective valuation requires comparable subjective values. This
means taking into account global differences between RD and LD
(e.g., magnitude effect, loss aversion) and individual discounting
behavior to create intertemporal decisions with comparable
subjective value. To this end, we recently developed a model-
based framework to evoke predicted responses in RD and LD
(Thome et al., 2022). As a next step, we plan to apply this adaptive
task in the fMRI to allow for more fine-grained analysis of the
neural differences between RD and LD.

CONCLUSION

We found similar behavior in intertemporal choice tasks
involving potentially real losses and rewards. Whilst the overall
discounting rate was low, losses were discounted as frequently as
rewards. There was a considerable correlation (r = 0.56) between
hyperbolic discounting parameters κ during loss and reward
discounting. In line with this finding, brain activation during
reward- and loss-related decision-making were not significantly
different from another. In contrast to that, reward anticipation
recruited more salience-related brain regions like the anterior
insula and the ACC, with the exception of more ventral striatal
activation during loss anticipation. In line with prior research
we demonstrate that brain activation in salience-related regions
during reward and loss anticipation was associated with model-
derived subjective values. Taken together, the general results of
our study seem to support the account that LD and RD rely on
similar or at least overlapping cognitive and neural processes.
However, this similarity is yet to be demonstrated for an extensive
range of delays and monetary outcomes.

DATA AVAILABILITY STATEMENT

The behavioral datasets presented in this study can be found in
online repositories. The names of the repository/repositories and
accession number(s) can be found below: https://osf.io/kmer3/.
The fMRI datasets generated and analyzed during the current
study are available from the corresponding author on reasonable
request.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Ethics Committee of the Medical Faculty
Mannheim, University of Heidelberg (2019-633N). The
patients/participants provided their written informed consent
to participate in this study.

AUTHOR CONTRIBUTIONS

GK, PK, and WS conceptualized the study. MP and PH collected
the data. MP, JT, and GK performed the statistical analyses. MP
wrote the manuscript. All authors contributed to conception and
the design of the study, read, revised, and approved the submitted
manuscript.

FUNDING

This work was funded by the German Research Foundation
(DFG) within the collaborative research center TRR 265
subproject B08 granted to GK, PK, and WHS.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnsys.
2022.867202/full#supplementary-material

REFERENCES
Ahn, W.-Y., Gu, H., Shen, Y., Haines, N., Hahn, H. A., Teater, J. E., et al. (2020).

Rapid, precise, and reliable measurement of delay discounting using a Bayesian
learning algorithm. Sci. Rep. 10:12091. doi: 10.1038/s41598-020-68587-x

Algermissen, J., Swart, J. C., Scheeringa, R., Cools, R., and den Ouden, H. E. M.
(2021). Striatal BOLD and midfrontal theta power express motivation for
action. Cereb. Cortex bhab391. doi: 10.1093/cercor/bhab391

Amlung, M., Marsden, E., Holshausen, K., Morris, V., Patel, H., Vedelago, L., et al.
(2019). Delay discounting as a transdiagnostic process in psychiatric disorders:
a meta-analysis. JAMA Psychiatry 76, 1176–1186. doi: 10.1001/jamapsychiatry.
2019.2102

Ballard, K., and Knutson, B. (2009). Dissociable neural representations of future
reward magnitude and delay during temporal discounting. NeuroImage 45,
143–150. doi: 10.1016/j.neuroimage.2008.11.004

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects
models using lme4. J. Stat. Softw. 67, 1–48. doi: 10.18637/jss.v067.i01

Bernhardt, N., Obst, E., Nebe, S., Pooseh, S., Wurst, F. M., Weinmann, W.,
et al. (2019). Acute alcohol effects on impulsive choice in adolescents.
J. Psychopharmacol. 33, 316–325. doi: 10.1177/0269881118822063

Bickel, W. K., Pitcock, J. A., Yi, R., and Angtuaco, E. J. C. (2009). Congruence of
BOLD response across intertemporal choice conditions: fictive and real money
gains and losses. J. Neurosci. 29, 8839–8846. doi: 10.1523/JNEUROSCI.5319-08.
2009

Bjork, J. M., Smith, A. R., Chen, G., and Hommer, D. W. (2012). Mesolimbic
recruitment by nondrug rewards in detoxified alcoholics: effort anticipation,
reward anticipation, and reward delivery. Hum. Brain Mapp. 33, 2174–2188.
doi: 10.1002/hbm.21351

Chapman, G. B. (1996). Temporal discounting and utility for health and money.
J. Exp. Psychol. Learn. Mem. Cogn. 22, 771–791. doi: 10.1037/0278-7393.22.3.
771

Cox, D. J., Dolan, S. B., Johnson, P., and Johnson, M. W. (2020). Delay and
probability discounting in cocaine use disorder: comprehensive examination
of money, cocaine, and health outcomes using gains and losses at multiple

Frontiers in Systems Neuroscience | www.frontiersin.org 14 July 2022 | Volume 16 | Article 867202

https://osf.io/kmer3/
https://www.frontiersin.org/articles/10.3389/fnsys.2022.867202/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnsys.2022.867202/full#supplementary-material
https://doi.org/10.1038/s41598-020-68587-x
https://doi.org/10.1093/cercor/bhab391
https://doi.org/10.1001/jamapsychiatry.2019.2102
https://doi.org/10.1001/jamapsychiatry.2019.2102
https://doi.org/10.1016/j.neuroimage.2008.11.004
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1177/0269881118822063
https://doi.org/10.1523/JNEUROSCI.5319-08.2009
https://doi.org/10.1523/JNEUROSCI.5319-08.2009
https://doi.org/10.1002/hbm.21351
https://doi.org/10.1037/0278-7393.22.3.771
https://doi.org/10.1037/0278-7393.22.3.771
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-16-867202 July 22, 2022 Time: 14:59 # 15

Pinger et al. Comparing Reward and Loss Discounting

magnitudes. Exp. Clin. Psychopharmacol. 28, 724–738. doi: 10.1037/pha000
0341

Croote, D. E., Lai, B., Hu, J., Baxter, M. G., Montagrin, A., and Schiller, D. (2020).
Delay discounting decisions are linked to temporal distance representations
of world events across cultures. Sci. Rep. 10:12913. doi: 10.1038/s41598-020-
69700-w

Cruz Rambaud, S., Muñoz Torrecillas, M. J., and Takahashi, T. (2017). Observed
and normative discount functions in addiction and other diseases. Front.
Pharmacol. 8:416. doi: 10.3389/fphar.2017.00416

Davison, M., and McCarthy, D. (1988). The Matching Law: A Research Review (S.
ix, 285). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

de Wit, H., Flory, J. D., Acheson, A., McCloskey, M., and Manuck, S. B. (2007).
IQ and nonplanning impulsivity are independently associated with delay
discounting in middle-aged adults. Pers. Individ. Differ. 42, 111–121. doi: 10.
1016/j.paid.2006.06.026

Diekhof, E. K., Kaps, L., Falkai, P., and Gruber, O. (2012). The role of the human
ventral striatum and the medial orbitofrontal cortex in the representation
of reward magnitude – An activation likelihood estimation meta-analysis of
neuroimaging studies of passive reward expectancy and outcome processing.
Neuropsychologia 50, 1252–1266. doi: 10.1016/j.neuropsychologia.2012.0
2.007

Dugré, J. R., Dumais, A., Bitar, N., and Potvin, S. (2018). Loss anticipation and
outcome during the Monetary Incentive Delay Task: a neuroimaging systematic
review and meta-analysis. PeerJ 6:e4749. doi: 10.7717/peerj.4749

Engelmann, J. B., Maciuba, B., Vaughan, C., Paulus, M. P., and Dunlop, B. W.
(2013). Posttraumatic stress disorder increases sensitivity to long term losses
among patients with major depressive disorder. PLoS One 8:e78292. doi: 10.
1371/journal.pone.0078292

Estle, S. J., Green, L., Myerson, J., and Holt, D. D. (2006). Differential effects of
amount on temporal and probability discounting of gains and losses. Mem.
Cogn. 34, 914–928. doi: 10.3758/BF03193437

Frederick, S., Loewenstein, G., and O’Donoghue, T. (2002). Time discounting
and time preference: a critical review. J. Econ. Lit. 40, 351–401. doi: 10.1257/
002205102320161311

Gonçalves, F. L., and Silva, M. T. A. (2015). Comparing individual delay
discounting of gains and losses. Psychol. Neurosci. 8, 267–279. doi: 10.1037/
h0101057

Green, L., Myerson, J., Oliveira, L., and Chang, S. E. (2014). Discounting of delayed
and probabilistic losses over a wide range of amounts. J. Exp. Anal. Behav. 101,
186–200. doi: 10.1901/jeab.2014.101-186

Halfmann, K., Hedgcock, W., and Denburg, N. L. (2013). Age-related differences
in discounting future gains and losses. J. Neurosci. Psychol. Econ. 6, 42–54.
doi: 10.1037/npe0000003

Ikink, I., Engelmann, J. B., van den Bos, W., Roelofs, K., and Figner, B. (2019). Time
ambiguity during intertemporal decision-making is aversive, impacting choice
and neural value coding. NeuroImage 185, 236–244. doi: 10.1016/j.neuroimage.
2018.10.008

Jiang, C.-M., Sun, H.-Y., Zheng, S.-H., Wang, L.-J., and Qin, Y. (2016).
Introducing upfront money can decrease discounting in intertemporal
choices with losses. Front. Psychol. 7:1256. doi: 10.3389/fpsyg.2016.
01256

Johnson, M. W., and Bickel, W. K. (2002). Within-subject comparison of real
and hypothetical money rewards in delay discounting. J. Exp. Anal. Behav. 77,
129–146. doi: 10.1901/jeab.2002.77-129

Johnson, M. W., Bruner, N. R., and Johnson, P. S. (2015). Cocaine dependent
individuals discount future rewards more than future losses for both cocaine
and monetary outcomes. Addict. Behav. 40, 132–136. doi: 10.1016/j.addbeh.
2014.08.011

Kahneman, D., and Tversky, A. (1979). Prospect theory: an analysis of decision
under risk. Econometrica 47, 263–291. doi: 10.2307/1914185

Kirby, K. N., and Herrnstein, R. J. (1995). Preference reversals due to myopic
discounting of delayed reward. Psychological Science 6, 83–89. doi: 10.1111/j.
1467-9280.1995.tb00311.x

Kirsch, P., Schienle, A., Stark, R., Sammer, G., Blecker, C., Walter, B., et al. (2003).
Anticipation of reward in a nonaversive differential conditioning paradigm
and the brain reward system. NeuroImage 20, 1086–1095. doi: 10.1016/s1053-
8119(03)00381-1

Knutson, B., Taylor, J., Kaufman, M., Peterson, R., and Glover, G. (2005).
Distributed neural representation of expected value. J. Neurosci. 25, 4806–4812.
doi: 10.1523/JNEUROSCI.0642-05.2005

Koffarnus, M. N., Deshpande, H. U., Lisinski, J. M., Eklund, A., Bickel, W. K.,
and LaConte, S. M. (2017). An adaptive, individualized fMRI delay discounting
procedure to increase flexibility and optimize scanner time. NeuroImage 161,
56–66. doi: 10.1016/j.neuroimage.2017.08.024

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2017). lmerTest
package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. doi: 10.
18637/jss.v082.i13

Loewenstein, G., and Prelec, D. (1992). Anomalies in intertemporal choice:
evidence and an interpretation. Q. J. Econ. 107, 573–597. doi: 10.2307/2118482

Mazur, J. E. (1987). “An adjusting procedure for studying delayed reinforcement,”
in The Effect of Delay and of Intervening Events on Reinforcement Value, eds
M. L. Commons, J. E. Mazur, J. A. Nevin, and H. Rachlin (Mahwah, NJ:
Lawrence Erlbaum Associates, Inc.), 55–73.

Meule, A., Vögele, C., and Kübler, A. (2011). Psychometrische evaluation der
deutschen barratt impulsiveness Scale – Kurzversion (BIS-15). Diagnostica 57,
126–133. doi: 10.1026/0012-1924/a000042

Mitchell, S. H., and Wilson, V. B. (2010). The subjective value of delayed and
probabilistic outcomes: outcome size matters for gains but not for losses. Behav.
Process. 83:36. doi: 10.1016/j.beproc.2009.09.003

Mobini, S., Grant, A., Kass, A. E., and Yeomans, M. R. (2007). Relationships
between functional and dysfunctional impulsivity, delay discounting and
cognitive distortions. Pers. Individ. Differ. 43, 1517–1528. doi: 10.1016/j.paid.
2007.04.009

Monterosso, J. R., Ainslie, G., Xu, J., Cordova, X., Domier, C. P., and London, E. D.
(2007). Frontoparietal cortical activity of methamphetamine-dependent and
comparison subjects performing a delay discounting task. Hum. Brain Mapp.
28, 383–393. doi: 10.1002/hbm.20281

Moreira, D., and Barbosa, F. (2019). Delay discounting in impulsive behavior: a
systematic review. Eur. Psychol. 24, 312–321. doi: 10.1027/1016-9040/a000360

Myerson, J., and Green, L. (1995). Discounting of delayed rewards: models of
individual choice. J. Exp. Anal. Behav. 64, 263–276. doi: 10.1901/jeab.1995.64-
263

Myerson, J., Baumann, A. A., and Green, L. (2017). Individual differences in delay
discounting: differences are quantitative with gains, but qualitative with losses.
J. Behav. Decis. Mak. 30, 359–372. doi: 10.1002/bdm.1947

Odum, A. L. (2011). Delay discounting: I’m a k, You’re a k. J. Exp. Anal. Behav. 96,
427–439. doi: 10.1901/jeab.2011.96-423

Oldham, S., Murawski, C., Fornito, A., Youssef, G., Yücel, M., and Lorenzetti, V.
(2018). The anticipation and outcome phases of reward and loss processing: a
neuroimaging meta-analysis of the monetary incentive delay task. Hum. Brain
Mapp. 39, 3398–3418. doi: 10.1002/hbm.24184

Ortiz-Teran, E., Ortiz, T., Turrero, A., and Lopez-Pascual, J. (2019). Neural
implications of investment banking experience in decision-making under risk
and ambiguity. J. Neurosci. Psychol. Econ. 12, 34–44. doi: 10.1037/npe0000100

Owens, M. M., Syan, S. K., Amlung, M., Beach, S. R. H., Sweet, L. H., and
MacKillop, J. (2019). Functional and structural neuroimaging studies of delayed
reward discounting in addiction: a systematic review. Psychol. Bull. 145, 141–
164. doi: 10.1037/bul0000181

Reynolds, B., Ortengren, A., Richards, J. B., and de Wit, H. (2006). Dimensions of
impulsive behavior: personality and behavioral measures. Pers. Individ. Differ.
40, 305–315. doi: 10.1016/j.paid.2005.03.024

Scheres, A., de Water, E., and Mies, G. W. (2013). The neural correlates of temporal
reward discounting. Wiley Interdiscip. Rev. Cogn. Sci. 4, 523–545. doi: 10.1002/
wcs.1246

Schüller, C. B., Kuhn, J., Jessen, F., and Hu, X. (2019). Neuronal correlates of delay
discounting in healthy subjects and its implication for addiction: an ALE meta-
analysis study. Am. J. Drug Alcohol Abuse 45, 51–66. doi: 10.1080/00952990.
2018.1557675

Singmann, H., and Kellen, D. (2019). “An introduction to mixed models for
experimental psychology,” in New Methods in Cognitive Psychology, 1. Aufl
Edn, eds D. Spieler and E. Schumacher (New York, NY: Routledge), 4–31.
doi: 10.4324/9780429318405-2

Sripada, C. S., Gonzalez, R., Luan Phan, K., and Liberzon, I. (2011). The neural
correlates of intertemporal decision-making: contributions of subjective value,

Frontiers in Systems Neuroscience | www.frontiersin.org 15 July 2022 | Volume 16 | Article 867202

https://doi.org/10.1037/pha0000341
https://doi.org/10.1037/pha0000341
https://doi.org/10.1038/s41598-020-69700-w
https://doi.org/10.1038/s41598-020-69700-w
https://doi.org/10.3389/fphar.2017.00416
https://doi.org/10.1016/j.paid.2006.06.026
https://doi.org/10.1016/j.paid.2006.06.026
https://doi.org/10.1016/j.neuropsychologia.2012.02.007
https://doi.org/10.1016/j.neuropsychologia.2012.02.007
https://doi.org/10.7717/peerj.4749
https://doi.org/10.1371/journal.pone.0078292
https://doi.org/10.1371/journal.pone.0078292
https://doi.org/10.3758/BF03193437
https://doi.org/10.1257/002205102320161311
https://doi.org/10.1257/002205102320161311
https://doi.org/10.1037/h0101057
https://doi.org/10.1037/h0101057
https://doi.org/10.1901/jeab.2014.101-186
https://doi.org/10.1037/npe0000003
https://doi.org/10.1016/j.neuroimage.2018.10.008
https://doi.org/10.1016/j.neuroimage.2018.10.008
https://doi.org/10.3389/fpsyg.2016.01256
https://doi.org/10.3389/fpsyg.2016.01256
https://doi.org/10.1901/jeab.2002.77-129
https://doi.org/10.1016/j.addbeh.2014.08.011
https://doi.org/10.1016/j.addbeh.2014.08.011
https://doi.org/10.2307/1914185
https://doi.org/10.1111/j.1467-9280.1995.tb00311.x
https://doi.org/10.1111/j.1467-9280.1995.tb00311.x
https://doi.org/10.1016/s1053-8119(03)00381-1
https://doi.org/10.1016/s1053-8119(03)00381-1
https://doi.org/10.1523/JNEUROSCI.0642-05.2005
https://doi.org/10.1016/j.neuroimage.2017.08.024
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.2307/2118482
https://doi.org/10.1026/0012-1924/a000042
https://doi.org/10.1016/j.beproc.2009.09.003
https://doi.org/10.1016/j.paid.2007.04.009
https://doi.org/10.1016/j.paid.2007.04.009
https://doi.org/10.1002/hbm.20281
https://doi.org/10.1027/1016-9040/a000360
https://doi.org/10.1901/jeab.1995.64-263
https://doi.org/10.1901/jeab.1995.64-263
https://doi.org/10.1002/bdm.1947
https://doi.org/10.1901/jeab.2011.96-423
https://doi.org/10.1002/hbm.24184
https://doi.org/10.1037/npe0000100
https://doi.org/10.1037/bul0000181
https://doi.org/10.1016/j.paid.2005.03.024
https://doi.org/10.1002/wcs.1246
https://doi.org/10.1002/wcs.1246
https://doi.org/10.1080/00952990.2018.1557675
https://doi.org/10.1080/00952990.2018.1557675
https://doi.org/10.4324/9780429318405-2
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-16-867202 July 22, 2022 Time: 14:59 # 16

Pinger et al. Comparing Reward and Loss Discounting

stimulus type, and trait impulsivity. Hum. Brain Mapp. 32, 1637–1648. doi:
10.1002/hbm.21136

Stahl, C., Voss, A., Schmitz, F., Nuszbaum, M., Tuscher, O., Lieb, K., et al. (2014).
Behavioral components of impulsivity. J. Exp. Psychol. Gen. 143, 850–886. doi:
10.1037/a0033981

Story, G., Vlaev, I., Seymour, B., Darzi, A., and Dolan, R. (2014). Does
temporal discounting explain unhealthy behavior? A systematic review and
reinforcement learning perspective. Front. Behav. Neurosci. 8:76. doi: 10.3389/
fnbeh.2014.00076

Thome, J., Pinger, M., Halli, P., Durstewitz, D., Sommer, W. H., Kirsch, P., et al.
(2022). A model guided approach to evoke homogeneous behavior during
temporal reward and loss discounting. Front.Psychiatry. 13:846119. doi: 10.
3389/fpsyt.2022.846119

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,
Delcroix, N., et al. (2002). Automated anatomical labeling of activations
in SPM using a macroscopic anatomical parcellation of the MNI MRI
single-subject brain. NeuroImage 15, 273–289. doi: 10.1006/nimg.2001.
0978

Wesley, M. J., and Bickel, W. K. (2014). Remember the Future II:
meta-analyses and functional overlap of working memory and delay
discounting. Biol. Psychiatry 75, 435–448. doi: 10.1016/j.biopsych.2013.
08.008

Xu, L., Liang, Z.-Y., Wang, K., Li, S., and Jiang, T. (2009). Neural mechanism of
intertemporal choice: from discounting future gains to future losses. Brain Res.
1261, 65–74. doi: 10.1016/j.brainres.2008.12.061

Yeh, Y.-H., Myerson, J., Strube, M. J., and Green, L. (2020). Choice patterns
reveal qualitative individual differences among discounting of delayed gains,
delayed losses, and probabilistic losses. J. Exp. Anal. Behav. 113, 609–625. doi:
10.1002/jeab.597

Zhang, Y.-Y., Xu, L., Liang, Z.-Y., Wang, K., Hou, B., Zhou, Y., et al. (2018).
Separate neural networks for gains and losses in intertemporal choice. Neurosci.
Bull. 34, 725–735. doi: 10.1007/s12264-018-0267-x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Pinger, Thome, Halli, Sommer, Koppe and Kirsch. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Systems Neuroscience | www.frontiersin.org 16 July 2022 | Volume 16 | Article 867202

https://doi.org/10.1002/hbm.21136
https://doi.org/10.1002/hbm.21136
https://doi.org/10.1037/a0033981
https://doi.org/10.1037/a0033981
https://doi.org/10.3389/fnbeh.2014.00076
https://doi.org/10.3389/fnbeh.2014.00076
https://doi.org/10.3389/fpsyt.2022.846119
https://doi.org/10.3389/fpsyt.2022.846119
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1016/j.biopsych.2013.08.008
https://doi.org/10.1016/j.biopsych.2013.08.008
https://doi.org/10.1016/j.brainres.2008.12.061
https://doi.org/10.1002/jeab.597
https://doi.org/10.1002/jeab.597
https://doi.org/10.1007/s12264-018-0267-x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


Study 1  

39 
 

Study 1: Supplementary Material 

 

Figure S1. Brain activation during the decision phase (intertemporal choice task). Reward Decision 

Phase + Loss Decision Phase > Baseline 

 

Tables S1, S2, S3: Due to table size and format, please download from 

https://www.frontiersin.org/articles/10.3389/fnsys. 2022.867202/full#supplementary-material 

 

https://www.frontiersin.org/articles/10.3389/fnsys.%202022.867202/full%23supplementary-material


Study 2 

40 
 

5 Study 2 

Title: A Model Guided Approach to Evoke Homogeneous Behavior During Temporal Reward and Loss 

Discounting 

 

Published in: Frontiers in Psychiatry, 13:846119. 

Authors: Janine Thome1,2, Mathieu Pinger3, Patrick Halli3, Daniel Durstewitz1, Wolfgang H. Sommer4, 

Peter Kirsch3,5 & Georgia Koppe1,2  

 

1Department of Theoretical Neuroscience, Central Institute of Mental Health Mannheim, Medical 

Faculty Mannheim, University of Heidelberg 
2Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical 

Faculty Mannheim, University of Heidelberg 
3Department of Clinical Psychology, Central Institute of Mental Health Mannheim, Medical Faculty 

Mannheim, University of Heidelberg 
4Department of Psychopharmacology, Central Institute of Mental Health Mannheim, Medical Faculty 

Mannheim, University of Heidelberg 
5Department of Psychology, University of Heidelberg 

 

 



ORIGINAL RESEARCH
published: 21 June 2022

doi: 10.3389/fpsyt.2022.846119

Frontiers in Psychiatry | www.frontiersin.org 1 June 2022 | Volume 13 | Article 846119

Edited by:

Andreea Oliviana Diaconescu,

University of Toronto, Canada

Reviewed by:

Maree Hunt,

Victoria University of Wellington,

New Zealand

Rebecca J. Sargisson,

University of Waikato, New Zealand

*Correspondence:

Janine Thome

janine.thome@zi-mannheim.de

Georgia Koppe

georgia.koppe@zi-mannheim.de

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Computational Psychiatry,

a section of the journal

Frontiers in Psychiatry

Received: 30 December 2021

Accepted: 18 May 2022

Published: 21 June 2022

Citation:

Thome J, Pinger M, Halli P,

Durstewitz D, Sommer WH, Kirsch P

and Koppe G (2022) A Model Guided

Approach to Evoke Homogeneous

Behavior During Temporal Reward

and Loss Discounting.

Front. Psychiatry 13:846119.

doi: 10.3389/fpsyt.2022.846119

A Model Guided Approach to Evoke
Homogeneous Behavior During
Temporal Reward and Loss
Discounting

Janine Thome 1,2*†, Mathieu Pinger 3†, Patrick Halli 3, Daniel Durstewitz 1,

Wolfgang H. Sommer 4, Peter Kirsch 3,5 and Georgia Koppe 1,2*

1Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg

University, Mannheim, Germany, 2Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical

Faculty Mannheim, Heidelberg University, Mannheim, Germany, 3Department of Clinical Psychology, Central Institute of

Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, 4 Institute for Psychopharmacology,

Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, 5 Institute of

Psychology, Heidelberg University, Heidelberg, Germany

Background: The tendency to devaluate future options as a function of time, known

as delay discounting, is associated with various factors such as psychiatric illness and

personality. Under identical experimental conditions, individuals may therefore strongly

differ in the degree to which they discount future options. In delay discounting tasks,

this inter-individual variability inevitably results in an unequal number of discounted trials

per subject, generating difficulties in linking delay discounting to psychophysiological and

neural correlates. Many studies have therefore focused on assessing delay discounting

adaptively. Here, we extend these approaches by developing an adaptive paradigm

which aims at inducing more comparable and homogeneous discounting frequencies

across participants on a dimensional scale.

Method: The proposed approach probabilistically links a (common) discounting function

to behavior to obtain a probabilistic model, and then exploits the model to obtain a formal

condition which defines how to construe experimental trials so as to induce any desired

discounting probability. We first infer subject-level models on behavior on a non-adaptive

delay discounting task and then use these models to generate adaptive trials designed

to evoke graded relative discounting frequencies of 0.3, 0.5, and 0.7 in each participant.

We further compare and evaluate common models in the field through out-of-sample

prediction error estimates, to iteratively improve the trial-generating model and paradigm.

Results: The developed paradigm successfully increases discounting behavior during

both reward and loss discounting. Moreover, it evokes graded relative choice frequencies

in line with model-based expectations (i.e., 0.3, 0.5, and 0.7) suggesting that we

can successfully homogenize behavior. Our model comparison analyses indicate

that hyperboloid models are superior in predicting unseen discounting behavior

to more conventional hyperbolic and exponential models. We report out-of-sample

error estimates as well as commonalities and differences between reward and loss

discounting, demonstrating for instance lower discounting rates, as well as differences

in delay perception in loss discounting.
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Thome et al. Model-Based Induction of Homogeneous Behavior

Conclusion: The present work proposes a model-based framework to evoke graded

responses linked to cognitive function at a single subject level. Such a framework may

be used in the future to measure cognitive functions on a dimensional rather than

dichotomous scale.

Keywords: temporal discounting, loss discounting, design optimization, reward discounting, computational

modeling, computational psychiatry

INTRODUCTION

Evaluating and deciding between alternative outcomes available
at different points in time forms one critical aspect of human
decision making (1). Outcomes which lie in the distant future are
typically devaluated in this context, a phenomenonwidely known
as temporal or delay discounting (1–3).

Devaluation of future outcomes is per se a rational choice
strategy as time comes at a cost (2, 4–6), however, some forms
of temporal discounting as well as overly steep discounting
may result in non-optimal and potentially harmful choices. For
instance, it has been argued that steeper (hyperbolic) delay
discounting may explain why individuals choose a cigarette
now over a long-term healthy life, that is, why they prefer
a smaller immediate over a delayed larger reward [(7–9); for
overviews see (10, 11)].

In line with this argument, individuals with impulsive
disorders and addiction show steeper discounting of future
rewards such as monetary gains [for overviews see (12–
15)]. Moreover, steeper discounting does not only differentiate
between addiction disorders and healthy individuals, but it
also predicts entry into drug use as well as therapy outcome
(16, 17), and has accordingly been described as a behavioral
biomarker of addiction and its treatment (18). Alterations in the
discounting of future monetary losses are less well investigated
which is surprising given that “continued use despite aversive
consequences” is a primary symptom of addiction (19). In any
case, understanding the neurobiological mechanisms underlying
both temporal reward and loss discounting is therefore of
particular clinical concern in the addiction field.

The common way to assess temporal (reward) discounting is
the intertemporal choice task (ICT), in which an individual is
presented with a series of trials and asked to choose between an
immediate smaller vs. a delayed larger reward, or between two
options delayed at different time points [(20); for overviews see
(3, 21, 22)]. Immediate choices are then taken as an indicator of

temporal discounting.
Individuals strongly vary in their tendency to discount due

to various factors such as psychiatric illness, but also gender, or
personality traits [(12, 23, 24); for overviews see (25, 26)]. In the

ICT, this inter-individual variability results in an unequal number

of discounted trials per participant, generating difficulties in

linking the temporal discount process to psychophysiological
and neural correlates. For instance, investigating the underlying
neurobiological substrates by comparing differences between
immediate and delayed choices may fall short of statistical power
given highly unbalanced trial types and the high variability

in discounting strength across individuals [e.g., (27–32); for
an overview see (21)]. At times, participants even have to
be excluded from analyses due to not discounting at all
[e.g., (31, 33–45)].

To remedy this problem, delay discounting has often
been investigated within adaptive experimental designs. Earlier
studies have focused on applying titration procedures [originally
introduced by Oldfield (46)] where reward or delay schedules
are adjusted on a trial-by-trial basis depending on the
participant’s choice history in order to find the points at
which immediate and delayed choices are displayed with
equal probability, the so called ‘indifference points’ (since at
these points the participant is indifferent toward either choice
[e.g., (7, 9, 20, 27–29, 37, 47–51)]).

More recently, several behavioral model-based approaches
have been proposed which aim at adapting the ICT trials to the
individual so as to elicit (more) comparable levels of discounting
and assess discounting more efficiently (31, 32, 36, 43, 52–
56). Ordinarily these approaches make the assumption that the
devaluation of future outcomes follows a hyperbolic curve such
that the perceived outcome values monotonically decrease with
increasing delay. Consequently, there are unique points on this
curve where the perceived value of a delayed larger outcome
and an immediate smaller outcome intersect, that is, where
immediate and delayed outcome values are equal, corresponding
to the individual’s indifference points.

While some of these approaches infer discount parameters
with a remarkably low number of trials [e.g., (36, 57)], their
primary goal lies in the efficient inference of subject-wise
discounting parameters and/or in determining inter-individual
indifference points. The latter are then used to contrast neural
activation toward “hard” as compared to “easy” adaptive
trials (i.e., trials close to vs. far from the indifference point)
(58), or to compare immediate and delayed responses with
comparable frequency at the indifference points. However,
since discounting is described by a continuous monotone
function, it may in principle be interesting to study the
neural response not only at the indifference point of a
subject at which we expect a 0.5 discounting probability
[see also (59, 60)]. By parametrically mapping the individual
discounting curves onto behavioral probabilities comparable
across subjects, we may construe experimental trials which allow
us to examine discounting behavior and its neural correlates
dimensionally. At the same time, by constructing customized
trials for a given discounting probability, we may create
more homogeneous experimental conditions on the behavioral
discounting continuum, and thereby increase statistical power

Frontiers in Psychiatry | www.frontiersin.org 2 June 2022 | Volume 13 | Article 846119

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Thome et al. Model-Based Induction of Homogeneous Behavior

needed to compare discounting behavior at different levels (e.g.,
low, medium, and high).

Another caveat of the model-based approaches is that they
almost exclusively rely on the hyperbolic discounting model
(with one exception (53)), and thus depend on the implicit
assumption of this model being ‘true’, or at least on it accounting
for a substantial proportion of intra-individual variability.
However, studies primarily focusing on comparing the goodness-
of-fit of different discounting functions have suggested that
this may not be the case [(53); see also (38, 49, 61–63)],
such that multiple alternatives to the hyperbolic model have
been proposed [(53); see also (5, 27, 64–69)]. Adaptive design
procedures may therefore benefit from taking into accountmodel
comparison results.

Here, we propose a generic framework which generates
individualized experimental trials based on a proposed model,
and subsequently evaluates a variety of models in order to create
an adaptive experimental (discounting) paradigm (following
the pre-registered protocol: https://doi.org/10.17605/OSF.IO/
PMWXB). In contrast to previous studies, our framework
provides a formal condition to generate trials which are expected
to elicit graded discounting probabilities on a dimensional scale.
Models are selected based on out-of-sample estimates of the
prediction error (70), such that we can report how well the tested
models perform at predicting unseen data. We also extend the
paradigm to loss discounting. The proposed framework may be
transferred to generate experimental paradigms tailored to the
assessment of other cognitive or emotional functions.

MATERIALS AND METHODS

Study Design
The designed temporal discounting paradigm went as follows:
Participants were asked to solve an ICT in two separate runs. The
ICTs consisted of both reward discounting and loss discounting
trials presented within alternating blocks (see Figure 1A). The
behavioral choices on the first run (referred to as “run A” in the
following) were used to infer subject-level behavioral discounting
models. These models were employed to generate the trials of
the second run (referred to as “run B”; see also Figure 1B).
Trials in run B were generated so as to elicit immediate
choice probabilities (and correspondingly relative discounting
frequencies) of 0.3, 0.5, and 0.7 in each participant. The
probabilities were selected to obtain three behavioral gradings
of low, medium, and high discounting probabilities. High and
low discounting probabilities reflect “easy,” while 0.5 probabilities
reflect “hard” trials in analogy to previous studies. In principle
though, the probabilities are arbitrarily tunable.

This paradigm was assessed online and optimized in a series
of experiments. After collecting data on one experiment (i.e.,
run A and run B), several alternative discounting models were
separately inferred on the two runs and their ability to predict the
behavior of the opposing run was assessed. The current model
was then used to adjust and improve trials of run A, or a superior
model was selected to update the trial-generating process for the
successive experiment (see Figure 1B).

Run A

Individuals were instructed to choose between a smaller
immediate or a larger later reward or loss. The magnitude of
the delayed rewards and losses, as well as the delay duration was
varied across trials. Each trial comprised a decision phase of up
to 10 s (otherwise self-paced), as well as visual feedback of the
selected choice and an inter-stimulus-interval of 1 s each.

In the initial experiment (exp 1), the delays were set toD= {2,
7, 30, 90, 180} days and the delayed outcomes to r2 = +/–{2, 5,
10, 20} £ (UK) for the reward and loss condition, respectively,
following frequently used delays and delayed outcomes in
previous studies (47, 71). Immediate outcomes were selected
which - according to the hyperbolic discounting model - were
expected to elicit an equal probability for immediate and delayed
choices at different hypothetical discounting parameter values
κ = {0.01, 0.1, 0.2, 0.6}, that is, to generate trials at the
corresponding indifference points (see Equation 3 for details,
where β was fixed to 1). Run A in exp 1 thus comprised 5
(delays) × 4 (delayed outcomes) × 4 (discounting parameters)
× 2 (conditions: reward and loss) = 160 trials. Reward and loss
trials were presented in blocks of 40 trials each. The trial order
within blocks was fully randomized.

Run B

After completing run A, behavioral discounting models were
inferred on the behavioral choices of each participant. We set out
with the perhaps most commonly applied discounting model, the
hyperbolic model, widely applied to study human choice in the
ICT [e.g., (8, 9, 20, 36, 37, 44, 72–74)]. The model assumes that
the values V for the delayed options a2 are discounted according
to a hyperbolic function, that is, according to

V(a2|sj) =

(

1

1 + κ · D

)

r2, (1)

while the values for the immediate options a1 correspond to the
actual outcomes, V(a1|sj) = r1 (temporal delay D = 0
at this point). Here, the state sj indexes the reward (s1) or loss
(s2) condition, κ captures the inter-individual discounting degree
(where high values indicate strong discounting), D the temporal
delay, and ri the actual outcome for the respective choice (i = 1
= immediate, i = 2 = delayed). We further refer to the factor
in front of r2 which captures the devaluation strength as the
discount factor.

While the majority of studies infer κ by fitting a sigmoid
function to the behavioral performance under this model via least
squares [see e.g., (31, 38, 43, 62, 63, 74)], we use the sigmoid to
link the discount model to immediate choice probabilities and
infer parameters via maximum likelihood estimation [see also
(36, 75–80)]. The probability of an immediate choice a1 at any
time t is given by

p
(

a1
∣

∣sj
)

=
1

1+ eβ(V(a2|sj)−V(a1|sj))
, (2)

where β indicates the tendency to exploit (β → ∞) or explore
(β → 0) choices (81), and p(a2|sj) = 1– p(a1|sj). This sigmoid
is akin to a psychometric function used in psychology to map
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(differences in) stimulus intensity on to behavioral response
probabilities, where here, we map differences in subjective values
to the probability of an immediate response. Models were
inferred (online) with constrained parameter optimization (using
optimize.minimize() from the SciPy library, https://scipy.org/
citing-scipy/, and κ ǫ [0, 10] and β ǫ [0, 100]).

The benefit of linking a sigmoid function to immediate choice
probabilities is that we can rearrange Equation 2 and explicitly
solve for immediate outcomes which elicit a predetermined
choice probability in a given participant. Defining p1: = p(a1|sj)
as the probability for the immediate choice (the one we want
to adjust), and inserting the model values (Equation 1) into
Equation 2, then rearranging for immediate outcomes r1, we
obtain the condition

r1 = V(a2|sj) +
log

(

p1
1 −p1

)

β

=

(

1

1 + κ · D

)

r2 +
log

(

p1
1 −p1

)

β
(3)

for the hyperbolic model (defined for 0 < p1 < 1). Intuitively,
at p1 = 0.5, that is, if we want to induce an equal probability
for an immediate and delayed option (to e.g., generate trials
at the indifference points), the right part of Equation 3
drops such that the immediate value (and correspondingly the
immediate reward) becomes equal to the discounted value.
Increasing/decreasing immediate choice probability above/below
0.5, on the other hand, results in increasing/decreasing the
immediate outcome. The condition in the middle further
holds for all models which only differ in their expression
of the discounted value. Note that we rearranged Equation
2 to solve for the immediate reward given an immediate
choice probability p1 (see also Figures 1C,D for an illustration
of the method’s operating principle). One may however also
apply this approach to solve for the appropriate delay (see
Supplementary Methods S1 and Supplementary Figure S1).

Trials of run B were generated using this condition (Equation
3). Three trial types were defined, namely trials which were
expected to evoke immediate choice probabilities of p1 =

{0.3, 0.5, 0.7}, corresponding to trials in which we expected
participants to mainly choose the delayed option (with p1 = 0.3),
choose both options with equal probability (p1 = 0.5), or mainly
choose the immediate option (with p1 = 0.7). Note that in the
reward task p1 also corresponds to the discounting probability
(as the immediate choice corresponds to the discounted choice)
while for loss, the discounting probability is equal to p2 = 1 – p1
(as the delayed choice corresponds to the discounted choice).

For each choice probability, each delay D, and each delayed
outcome r2 (as used in run A), immediate outcomes were thus
determined according to the inferred subject specific model
parameters κ and β . The initial run B thus comprised 5 (delays)×
4 (delayed outcomes) × 3 (choice probabilities) × 2 (condition:
reward and loss)= 120 trials.

Note that a few parameter constellations could result
in atypical trials with (1) negative immediate reward
(corresponding to losses in reward trials) or positive immediate

loss (corresponding to rewards in loss trials), (2) equal immediate
and delayed reward/loss, or (3) larger immediate compared to
delayed reward or smaller immediate compared to delayed
loss. To avoid these trials, immediate outcomes were adjusted
by iteratively increasing/ decreasing the delay durations by 1
until these cases were dissolved, or the minimum or maximum
delay was reached. If still not dissolved, negative immediate
rewards or positive immediate losses were set to 1 or -1 penny,
while immediate rewards/losses which were equal to delayed
rewards/losses were reduced/increased by 1 penny, respectively.
All choice outcomes were hypothetical.

For the successive experiments, delays, outcomes, and
discounting models were adapted to optimize the paradigm in
agreement with the interim results (see section “RESULTS”).

Sample
Healthy participants were recruited to participate in the
online study via the Prolific website (https://www.prolific.co/).
Eligibility criteria included age 18–65 and current residency in
the United Kingdom (UK). Participants received £7.50 per hour
as compensation for study participation. In total, 200 participants
took part in the study (see Supplementary Table S1). Data were
collected in batches of 50 individuals each. After each batch,
the developed paradigm was evaluated and adjusted in line with
the interim results and the proposed framework (see Figure 1B).
Specifically, batch 1 and 2 were combined into one experiment
(exp 1, N = 100), batch 3 represents the second experiment (exp
2, N = 50) and batch 4 represents the third experiment (exp 3, N
= 50). Individuals were excluded from further analyses in case of
not completing the first run, not completing the second run, or
not responding to more than 10% of the trials during each run.

Data Collection and Online Setup
The online study was programmed in JavaScript using the open-
source package “jsPsych” (82) and was hosted on a custom
virtual server using a Linux-Apache-PHP-MySQL stack (see
Supplementary Figure S2). Model parameter inference and trial
generation of run B was written in Python. All code needed for
the setup and execution of the study can be found here: https://
github.com/MathieuPinger/discounting-online.

Participants entered the study through a link on the Prolific
website. Participant IDs were randomly generated for data
storage. Additionally, a separate password-protected database
associated each participant with a Prolific internal ID to ensure
a study completion checkup.

After completing the consent form, participants filled
out sociodemographic information (age, gender, education,
employment, country of current residency). Subsequently, run
A was presented, after which participants completed the alcohol
use disorder identification questionnaire (AUDIT; (83)) and the
short version of the Barratt-Impulsiveness-Scale (BIS-15; (84)).
During this time, subject-level behavioral models were inferred
on data from run A, and used to generate trials for run B which
was presented immediately after the questionnaires.

The study was approved by the ethics committee
of the Medical Faculty Mannheim, University of
Heidelberg (2019-633N).
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FIGURE 1 | Illustration of the intertemporal choice task (ICT) and proposed paradigm adaptation framework. (A) Schematic illustration of the ICT. Subjects were faced

with a series of binary choice trials between an immediate and a delayed outcome. The absolute value of the delayed outcome was always higher. Reward and loss

trials were presented within alternating blocks of 40 trials each. (B) Paradigm development framework. Subjects perform an ICT with equal trials across subjects (run

A). The task is used to infer subject-level parameters based on a proposed underlying behavioral model. These parameters are used to generate individualized trials

designed to elicit relative immediate choice frequencies of 0.3, 0.5, and 0.7 of run B (schematically displayed as red, green, and blue, respectively), and to generate

behavioral predictions along with other common discounting models. By comparing observed and predicted behavior in run B, the task underlying model is either

updated, or trials of run A are optimized to improve parameter inference. The procedure may be repeated until no further improvement is observed. (C, D) Illustration

of method’s operating principle. (C) Immediate choice probability p(aimm) (cf. Equation 2) as a function of the difference between immediate (V imm ) and delayed (Vdel)

value for β = 0.1 (red), and β = 0.4 (blue). The indifference point where V imm = Vdel is at 0. If V imm > / < Vdel, immediate choice probability is below/above 0.5. β

regulates the steepness of the curve and thus the sensitivity toward differences in values. Lower β values require larger value differences (x-axis) to obtain a

comparable probability (y-axis). (D) Discounted value (y-axis) for different delays (x-axis) for two hypothetical discount parameter values (κ = 0.05 in gray and κ =

0.005 in black). The colored dots represent the method’s selected immediate rewards ( = V imm ) at a given delay for the different induced immediate choice

probabilities 0.3 (red), 0.5 (orange), and 0.7 (yellow). The distances between immediate values (colored dots) and delayed values (discounting curve) is constant

across all delays to ensure equally induced probabilities across delays (see graph (C)). This also indicates that for subjects with different κ’s, the reward and value

ratios will vary. The left graph depicts selected rewards for a hypothetical β = 0.1 and the right graph for β = 0.4. While β regulates discounted value of the delayed

reward Vdel, κ regulates the distance of the selected immediate reward around Vdel with higher β resulting in smaller differences, making the differentiation between

the two more difficult (that is, requiring higher sensitivity).

Data Analysis
Behavioral Models and Model Parameters

The initial experiment was conducted with the most
frequently used delay discounting model in human
research, the hyperbolic discounting model (see Equation
1). The model was compared with several other proposed
models in the field. These models differ in the assumption
of how an individual devaluates the delayed outcome
(see Equation 1). For completeness, the compared
models include

• The hyperbolic model (20, 85), where V(a2|sj) =
(

1
1 + κ · D

)

r2, with κ ǫ [0,∞).

• The exponential model (68), where V(a2|sj) = κDr2, with
κ ǫ [0, 1], implying that the perceived value of a delayed
outcome is discounted exponentially scaled by the individual
discounting rate κ .

• The quasi-hyperbolic model [also known as the beta-delta
model; (5, 69)], where V(a2|sj) = γ κDr2, for D > 0, with
γ , κ ǫ [0, 1], where the exponential discounting of the delayed
outcome is additionally modulated by a second linear discount
parameter γ .

• The hyperboloid model (27, 65), where V(a2|sj) =
1

(1 + κ · D)s
r2, with κ ǫ [0, ∞) and s ǫ [0, 1], similar to the

hyperbolic discountingmodel, only that the discounting factor
is scaled by an additional parameter s.
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• The modified hyperboloid model (20, 86), where V(a2|sj) =
1

(1 + κ · Ds)
r2, with κ ǫ [0, ∞) and s ǫ [0, 1], which is a

slight modification of the hyperboloid model, suggesting that s
solely scales the delay and thus may account for differences in
perceived time.

• The double-exponential model (87), where V(a2|sj) =

(wκ1
D + (1−w)κ2

D)r2, withw, κ iǫ [0, 1], which is inspired by
the evidence that choices result from the competition between
two neurobiological systems (referred to as valuation and
control) scaled by their own decay rates (κ1 and κ2), each
contributing by a factor w and 1 – w, respectively, and,

• The constant-sensitivity model (64), where V(a2|sj) =

exp(−( κ · D)δ) r2, with κ , δ > 0. This model accounts
for decision heuristics by including the κ parameter as an
indicator of impatience, and δ reflecting time sensitivity.
Note that this model differs from model (3) in terms of
parameter constraints.

Models were compared by inferring each model on each
experimental run (A and B) and condition (reward and loss) of
each participant and using the inferred parameters to assess the
out-of-sample prediction error (PE) on the respective contrary
run (i.e., predicting behavior in B when inferring models on A
and vice versa). The PE here was defined as 1–p̂j, where p̂j =
1
T

∑T
t p(at|sj), i.e., is defined as the average over the predicted

probabilities of observed choices per condition j. For simpler
interpretability, only p̂j is reported.

Note that the predicted probability will depend on trial
difficulty where more difficult choices (i.e., trials closer to the
indifference point of a subject), should by definition be predicted
with a lower probability. We thus do not expect an average
predicted probability close to 1 in either run. Particularly in
run B, where by condition we generate trials eliciting immediate
choice probabilities of 0.3, 0.5, and 0.7, the expected prediction
should lie around (0.7 + 0.5 + 0.7)/3 = 0.63 (see also
Supplementary Figure S5 right), and may slightly deviate due to
slight trail adjustments (see Section Run B) or to using a model
not used for trial generation.

Behavioral Variables and Data Analysis

Temporal discounting was measured by assessing the frequency
of discounted choices for each run, each condition, and each
manipulated (immediate choice) probability (cf. p1), as well as
the median reaction time (RT) for these conditions. Individuals
which discounted in < 5% of all trials were defined as “non-
discounters.”

We further assessed subjective impulsivity by averaging across
all items of the BIS-15 (i.e., BIS-total), as well as across items
related to the three sub-scales, namely attentional impulsivity
(i.e., the difficulties to focus attention or concentrate), motor
impulsivity (i.e., acting without thinking), and non-planning
impulsivity (i.e., lack of future orientation), respectively (84). We
also assessed abusive or harmful alcohol consumption by the
alcohol use disorders identification test (AUDIT; (83)).

Model parameters and behavioral variables such as
discounting parameters, choice frequencies, as well as (absolute)
deviations between observed and expected choice frequencies,

were compared via t-tests for paired or unpaired samples (i.e.,
for comparisons between conditions and runs vs. comparisons
between experiments; please note, absolute deviations were used
when comparing experiments) in case of normally distributed
variables, or nonparametric Wilcoxon signed-rank tests for
paired and Wilcoxon rank-sum tests for unpaired samples
in case of normality violation. Variables were correlated via
Pearson’s or Spearman’s correlation coefficient, respectively. The
number of discounters vs. non-discounters across experiments
was compared via Chi-square tests for equal and Fisher’s exact
test for unequal sample sizes. Statistical significance was set to
p < 0.05 (two-tailed) for all tests. Individuals repeating either
option in more than 95% of all trials during run A, making it
difficult to obtain valid parameter estimates, were removed from
analyses on run B where deemed necessary (explicitly mentioned
in the Results Section). Individuals with extreme discounting
parameters κ > 2 were removed from all analyses related to this
parameter.

RESULTS

Experiment 1
Two separate batches of 50 individuals each were collected for
exp 1. After collecting the first sample (N = 50), we observed a
minor bug in the paradigm code which resulted in the generation
of run B trials with equal immediate and delayed outcomes. These
trials occurred in < 1.2% of all trials (around 2–3 trials in 24
participants). We thus immediately collected a second sample (N
= 50) with this bug fixed and removed the afore-mentioned trials
from the first sample in the behavioral measures analyses. Two
individuals were excluded from further analyses since they had>

30% missing values in one condition. Exp 1 thus included N =

98 individuals.
As reported in multiple other studies [e.g., 31, 33–35, 38–40],

we observed a high percentage of individuals, namely 58%, which
showed no temporal discounting in at least one condition of the
initial run A (see Figures 2A,B). This was particularly evident
for the loss discounting condition which yielded 53% of non-
discounters (see Figure 2B; non-discounters being defined as
individuals which discounted in < 5% of all trials, cf. Behavioral
Variables and Data Analysis).

After adapting the experimental trials to the individual
participants in run B, we observed a considerable reduction
in non-discounters (from 26 to 13% in the reward, and from
53 to 42% in the loss condition), and a significant increase
in the frequency of discounted choices in both reward (Z =

5.06, p < 0.001; see Figure 2A), and loss (Z = 4.85, p <

0.001; see Figure 2B) conditions. This was accompanied by
a significant increase in the inferred discount parameters κ ,
signaling higher discounting (reward: Z = 2.83, p = 0.005, loss:
Z = 4.57, p < 0.001).

The observed choice frequencies in run B, moreover, aligned
with the experimentally manipulated probabilities. That is, the
frequency of immediate choices increased in response to trials
with p1 = 0.7 compared to p1 = 0.5 (reward: Z = 5.43, p < 0.001;
loss: Z = 4.91, p < 0.001), and to trials with p1 = 0.5 to p1 =

0.3 (reward: Z = 6.21, p < 0.001; loss: Z = 3.72, p < 0.001).
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FIGURE 2 | Results of experiment 1. (A) Left: Percentage of discounted choices in run A (gray) and run B (magenta) for reward condition. Right: Histograms over

relative frequency of immediate choices in run A (gray) and run B (magenta) for reward condition. Asterisks indicate significant differences. (B) Same as A for loss

condition with run B displayed in green. (C) Mean and standard deviation of observed relative frequency of immediate choices for the experimentally evoked

probabilities p1 = {0.3, 0.5, 0.7} (x-axis) in run B (individuals with >95% or <5% immediate choices were removed, N = 28 or 29% in reward, N = 52 or 53% in loss

condition). (D) Mean and standard deviation of median reaction time (RT; y-axis) for p1 = {0.3, 0.5, 0.7.} trials (x-axis) in run B for reward (magenta) and loss (green)

conditions. (E) Histograms over discounting parameter κ of the hyperboloid model for both loss and reward conditions, displayed at different resolutions and bin

widths.

However, the observed choice frequencies deviated significantly
from the model expectations w.r.t. all three trial types in the
loss condition (p1 = 0.3: Z = 6.52, p < 0.001; p1 = 0.5: Z =

5.63, p < 0.001; p1 = 0.7: Z = 4.27, p < 0.001), as well as for
p1 = 0.7 in the reward condition (Z = 3.35, p < 0.001; other
comparisons p > 0.05). This was somewhat due to individuals
who consistently chose only one option showing no behavioral
variation in general (concerningN = 28 in the reward andN = 52
in the loss condition). After removing these individuals from the
analysis, the mean of the choice frequency distributions moved
closer to the model expectations (see Figure 2C), although still
significantly deviating for p1 = 0.7 in the reward (Z = 3.35, p <

0.001) and for p1 = 0.3 in the loss condition (Z = 2.21, p= 0.027;
all other p’s> 0.05).We did not observe an increase in RT toward
p1 = 0.5 trials (defined as “hard” trials in the field) as compared to
the other two trial types (amounting to “easy” trials here; reward:
p’s > 0.329; loss: p’s > 0.290; see also Figure 2D).

In conclusion, the first experiment indicated that by applying
the condition in Equation 3, we were able to reduce the number
of non-discounters and evoke higher discounting frequencies.
We could also show that for individuals which generally showed
behavioral variation in run A, the observed immediate choice
frequencies on average largely centered around the model
expectations in run B. However, the standard deviation of these
choice frequencies was rather high. Also, RT’s did not reflect a
clear separation between ‘hard’ and ‘easy’ trials (see Figure 2D).

Two possible (non-exclusive) explanations may account for
these findings. First, the hyperbolic model may not have
captured the entire systematic data variation, such that the
model predictions and thus the generated model-based (run
B) trials were somewhat biased. In fact, the hyperbolic model

performed worse in predicting (out-of-sample) behavior than
several other tested models (see Supplementary Figure S3),
achieving a prediction of only 0.55 for both reward and loss (as
compared to predictions > 0.7, see Supplementary Figure S3).
Second, going one step back, trials in run A may not have evoked
enough behavioral variability to infer valid model parameters
required to generate subject specific trials. Since the percentage of
discounted choices during run A was rather low for both reward
and loss conditions (Figures 2A,B), and we obtained a higher
behavioral model agreement after excluding individuals with
low behavioral variability from analysis (Figure 2C), the second
explanation seemed rather likely. A poor (hyperbolic) model fit
could therefore also be due to a poor selection of run A trials.
As an initial step to further improve the paradigm, we thus first
focused on improving trials of run A to promote valid parameter
inference, before altering the underlying trial-generating model.

Modification

Trials of run A were initially generated by using common delays
and delayed outcomes found in the literature and finding the
indifference points to these values, given a set of hypothetical
discounting parameters κ (cf. Section Run A). To improve this
run, we now focused on generating trials which more closely
matched the actually observed discounting parameters and
behavior in run B (since we observed more discounting in this
run). We observed a bimodal κ distribution, with the majority
of individuals being characterized by κ ’s ranging between 2.6
× 10−11 and 3, and a few above 7 (see Figure 2E left). The
dominance of the left mode indicates that most participants
were characterized by rather low discounting rates (see also
Figures 2A,B), and, in particular, far lower than the ones used for
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FIGURE 3 | Results of experiment 2. (A) Percentage of discounted choices in run A for experiment (exp) 1 and exp 2 for reward (left) and loss (right) discounting.

Asterisks indicate significant differences. (B) Empirical distribution of the relative frequency of immediate choices for reward (left) and loss (right) conditions in run A of

exp 1 (gray) and exp 2 (colors). (C) Relative frequency of immediate choices (y-axis) in run B of exp 2 as a function of experimentally manipulated probabilities (x-axis)

for reward (magenta) and loss (green) conditions (individuals without behavioral variability were removed, N = 2 for reward, N = 14 for loss condition). (D) Empirical

distributions of the relative frequency of immediate choices in run B for trials with immediate choice probability 0.3 (top), 0.5 (middle) and 0.7 (bottom), as also

indicated by the gray line. Reward condition is displayed left, loss right, exp 1 in gray and exp 2 in color. (E) Average over median reaction times (RT) for the three

experimentally manipulated immediate choice probabilities for reward (magenta) and loss (green) conditions. (F) Average predicted (out-of-sample) probability of

observed responses p̂j (y-axis) for reward and loss conditions (x-axis) for different models. (G) Inferred scaling parameters s of the modified hyperboloid model for

reward and loss discounting conditions.

the initial run generation (cf. Run A). Run A was thus modified
to better represent the left mode of the actually observed κ

distribution (see Figure 2E for a high resolution of the true κ

distribution). Around half the sample was characterized by a κ

< 0.2 (reward: N = 67; loss: N = 62). Of these, 20 participants
in the reward and 16 participants in the loss condition exhibited
κ ’s between 0.01 and 0.2, 17 participants in the reward and
16 participants in the loss condition ranged between 0.001 and
0.01, and 20 participants in the reward and 21 participants in
the loss condition were characterized by κ ’s < 0.001 (among
which 10 in the reward and 16 participants in the loss condition
were characterized by κ ’s < 0.00001; see Figure 2E). To cover
this range of the parameter distribution, we updated the set of
hypothetical discounting parameters in run A (cf. Section Run
A) to κ = {0.00001, 0.001, 0.01, 0.6}.

We further exchanged the shortest delay (2 days delay) with
a long delay (365 days delay) as longer delays additionally
encourage discounting (cf. Equation 3) such that the new set of
delays was set to D = {7, 30, 90, 180, 365}. Lastly, we removed
the lowest delayed outcome and replaced it by a higher delayed
outcome such that the new set of delayed rewards and losses was
r2 =+/–{5, 10, 20, 50}£.

Experiment 2
Fifty individuals completed exp 2 with altered trials of run
A. In run A of exp 2, compared to exp 1, we observed
a considerably lower percentage of non-discounters in the
reward condition (N = 2, that is, a drop from 26% to 4%;
OR = 8.67, p < 0.001), as well as in the loss condition (N
= 14, a drop from 53% to 28%; OR = 2.91, p = 0.005)
(see also Figure 3A). The average percentage of discounted
choices also significantly increased in run A of exp 2 compared
with run A of exp 1, for both reward and loss conditions
(reward: Z = 6.58, p < 0.001; loss: Z = 3.93, p < 0.001; see
Figures 3A,B). In fact, for the reward condition it amounted to
51%, renderingmore optimal conditions for parameter inference.
In the loss task, this percentage remained lower, however, with
around 26%. In both conditions, we furthermore observed a
significant increase in RT compared with exp 1 (reward Z
= 4.47, p < 0.001; loss: Z = 4.26, p < 0.001), suggesting
that choices became more difficult, closer to the indifference
points of each participant. We conclude that by model based
adaptation of run A, we were able to reduce the number
of non-discounters and increase behavioral variability within
participants (see also Figures 3A,B).
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FIGURE 4 | Results of experiment 3. (A) Relative number of non-discounter in run A across experiments for reward (left) and loss (right) conditions. (B) Relative

frequency of immediate choices (y-axis) in run B of exp 3 as a function of experimentally manipulated probabilities (x-axis) for reward (magenta) and loss (green)

conditions (individuals without behavioral variability were removed, N = 0 for reward, N = 10 for loss condition). (C) Empirical distributions of the relative frequency of

immediate choices in run B for trials with immediate choice probability 0.3 (top), 0.5 (middle) and 0.7 (bottom), as also indicated by the gray line. Reward condition is

displayed left, loss right, exp 2 in gray and exp 3 in color. (D) Average relative frequencies of immediate choices per subject across the three experimentally

manipulated immediate choice probabilities. (E) Average over median reaction times (RT) for the three experimentally manipulated immediate choice probabilities for

reward (magenta) and loss (green) conditions. (F) Average predicted (out-of-sample) probability of observed responses p̂j (y-axis) for reward and loss conditions

(x-axis) for different models averaged over run A and B. (G) Hypothetical discounting curves in the modified hyperboloid model for κ = 0.01, r1 = 10, and different

values of scaling parameter s.

Regarding run B, the observed immediate choice frequencies
in the reward condition centered around the model expectations
(see Figure 3C; reward: p1 = 0.3: Z = 0.50, p = 0.615; p1 = 0.5:
Z = 1.46, p = 0.145; p1 = 0.7: Z = 0.09, p = 0.923), while still
significantly deviating in the loss condition (p1 = 0.3: Z = 4.93,
p < 0.001; p1 = 0.5: Z = 4.55, p < 0.001; p1 = 0.7: Z = 3.22,
p = 0.001). Nonetheless, for both reward and loss conditions,
the absolute deviations between expected and observed relative
immediate choice frequencies were lower in exp 2 compared with
exp 1 (statistically significant for reward: p1 = 0.3: Z = 2.64, p =
0.008; p1 = 0.5: Z = 1.67, p = 0.096; p1 = 0.7: Z = 2.65, p =

0.008; and loss: p1 = 0.5: Z = 2.24, p = 0.025; see Figure 3D),
suggesting an improvement in the proposed paradigm. However,
many non-discounters remained in the loss condition of run B
(N = 14, Figure 3D).

Given that run A now rendered better conditions for
parameter inference, we next focused on evaluating and
improving the paradigm underlying model. For this, we inferred
several discounting models suggested by the literature on run
A and run B separately (cf. Section Behavioral Models and
Model Parameters) and assessed their ability to predict the
behavior in the opposing run, that is, inferring parameters

on run A and predicting behavior in run B and vice versa.
The two experimental runs thus allowed us to assess an
estimate of the out-of-sample PE which is less biased and
preferred over in-sample estimates (70, 88), commonly used
in the field [e.g., (38, 61, 89)]. Figure 3F shows the model
comparison results averaged over predictions in both runs. The
hyperboloid and the modified hyperboloid model outperformed
all other models in both reward and loss conditions, with
a slight preference for the modified hyperboloid model (20,
86). On average, the modified hyperboloid model predicted
responses successfully with 0.71 probability in the reward, and
0.72 probability in the loss condition. In contrast, the most
commonly used hyperbolic and exponential models performed
comparatively poorly (exponential model: p̂reward = 0.64, loss
p̂loss = 0.58, hyperbolic model: p̂reward = 0.61, p̂loss = 0.57;
see also Figure 3F and Supplementary Figure S6). These results
held true when evaluating a weighted PE where the response
probability was averaged over predictions for immediate and
delayed choices (ensuring that predictions were not only good
in predicting a dominant response, sometimes referred to as
the majority class, see Supplementary Figure S4). Note that
the hyperboloid models also outperformed the exponential
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FIGURE 5 | Cross-experimental results. (A) Correlations of the percentage of immediate choices between run A and run B for the reward condition (1st plot), and the

loss condition (2nd plot), and between reward and loss conditions within run A (3rd plot), and run B (4th plot). (B) Same as in (A) only with the discount factor

evaluated at delay D = 30 for the hyperboloid model. (C) Same as in (B) for the hyperbolic model.

and hyperbolic models on predicting the data of exp 1
(see Supplementary Figure S3).

Evaluating the parameters of the modified hyperboloid model
(cf. Behavioral Models and Model Parameters) also revealed
some interesting insights into behavior. The additional scaling
parameter s distinguishing this model was extremely reliable,
observed in terms of a high correlation in s between runs (for
reward: r = 0.44, p = 0.001; for loss: r = 0.44, p = 0.001) and
conditions (run A: r= 0.26, p= 0.064; run B: r= 0.24, p= 0.091),
and pointing toward a trait like scaling of delay. Apart from that,
s was higher in the reward compared with the loss condition (Z
= 3.43, p < 0.001; see Figure 3G).

Modification

Following these results, we updated the paradigm to now
generate trials of run B according to the modified hyperboloid
model (20, 86). The lower values in the scaling parameter s
observed for the loss condition effectively reduce discounting (by
shrinking the delay duration). To further encourage discounting
in the loss task, we therefore also exchanged the shortest delay (7
days delay) with a long delay (3 years) in the loss condition only.
The new set of delays for the loss condition was set to D = {30,
90, 180, 365, 1095}.

Experiment 3
Fifty individuals completed exp 3 with altered trials of run A
in the loss condition and an altered trial-generating discounting

model for run B (now using the modified hyperboloid
model).

In run A, we observed a slight reduction in the number of
non-discounters compared with exp 2, with 0 non-discounters
observed in the reward and 10 non-discounters observed in the
loss condition, although this was statistically not significant (p
> 0.875; see Figure 4A). The average frequency of discounted
choices did also not significantly differ in run A of exp 2
compared with run A of exp 3, neither for the reward (Z = 1.08,
p = 0.277), nor for the loss condition (Z = 0.33, p = 0.740). We
observed an average of 48% discounted choices in the reward and
27% in the loss condition in exp 3.

In run B, we also observed a slight, but statistically not
significant reduction in the number of non-discounters (reward:
N = 2 or 4%; loss: N = 12 or 24%). The observed immediate
choice frequencies again increased with increasing model
expectations (i.e., from 0.3 to 0.5, and from 0.5 to 0.7) both on
average (all p’s < 0.001), as well as (largely) on a single subject
level (see Figures 4B,D). For the reward condition, the observed
frequencies seemed to moreover center around the model-based
expectations (see Figure 4B; p1 = 0.3: Z = 0.88, p = 0.378; p1 =
0.5: Z = 1.23, p = 0.221; p1 = 0.7: Z = 0.37, p = 0.712), while
still deviating significantly for the loss condition (see Figure 4B;
p1 = 0.3: Z = 4.27, p < 0.001; p1 = 0.5: Z = 3.60, p < 0.001;
p1 = 0.7: Z = 3.31, p < 0.001). The absolute deviations between
observed and expected immediate choice frequencies were again
lower than those in exp 1, indicating choice frequencies were
more consistent with model expectations (statistically verifiable
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for reward p1 = 0.7: Z= 2.67, p= 0.008; loss p1 = 0.3: Z= 2.05, p
= 0.040; p1 = 0.5: Z= 1.89, p= 0.059), but remained comparable
to those in exp 2 (that is, no significant differences were observed,
p’s> 0.2; see also Figure 4C). In contrast to exp 1 and 2, RTs were
however more in line with theoretical expectations by which RT
increases toward “harder” trials (see Figure 4E and Figure 3E in
comparison). Individuals responded slower to reward trials close
to the indifference point (i.e., p1 = 0.5) as compared to trials
far from the indifference point (p1 = 0.7: Z = 3.20, p = 0.001;
p1 = 0.3: Z = 1.70, p = 0.089). Although this was statistically
not verifiable for the loss condition (p’s > 0.237), a qualitatively
consistent picture was observed (see Figure 4E).

The out-of-sample based model comparison analysis
suggested once more that the hyperboloid models outperformed
all other tested models in both the reward and loss conditions
(see Figure 4F; hyperboloid model p̂reward = 0.64 and p̂loss =
0.68, modified hyperboloid model p̂reward = 0.65 and p̂loss =

0.68). Similar to exp 2, the hyperbolic and exponential models
performed rather poorly, particularly in the loss condition
(hyperbolic model p̂reward = 0.58 and p̂losst = 0.53, exponential
model p̂reward = 0.62 and p̂loss = 0.52). Once more, the scaling
parameter s was lower in the loss compared with reward
condition in run B (Z = 3.17, p= 0.002).

Joint Analysis of Experiments 1, 2, and 3
Lastly, we investigated correlations between behavioral variables
and model parameters across all three experiments to gain a
deeper understanding of involved mechanisms during reward
and loss discounting. First of all, there was amoderate correlation
between the immediate choice frequencies of run A and B
(reward: r = 0.24, p = 0.001, loss: r = 0.42, p < 0.001,
see Figure 5A) suggesting at least some reliability in delay
discounting processes as assessed in terms of choice frequency.
Second, there was a considerable (expected negative) correlation
between loss and reward (run A: r = −0.59, p < 0.001, run B: r
=−0.22, p= 0.002, see Figure 5A), suggesting commonalities in
the processing of reward and loss discounting.

In agreement with these results, the discount factor of the
modified hyperboloid model (evaluated at delay D = 30) was
highly correlated across runs and conditions (see Figure 5B). We
observed a considerable correlation between run A and run B
(reward: r= 0.6, p< 0.001; loss: r= 0.65, p< 0.001), and between
reward and loss conditions (run A: r= 0.53, p< 0.001, run B: r=
0.35, p< 0.001). The correlations assessed on the discount factors
were even higher than when assessed on the choice frequencies
(Z’s> 3.24, p’s< 0.001). Discounting parameters κ were similarly
correlated across runs (reward: r= 0.43, p< 0.001; loss: r= 0.48,
p < 0.001) and conditions (run A: r = 0.37, p < 0.001; run B: r
= 0.46, p < 0.001), although significantly less so (Z’s > 1.97, p’s
< 0.024), with exception of the correlation between conditions
during run B (Z = 1.21, p= 0.112).

In contrast, the discount factor of the hyperbolic model
(evaluated at delayD= 30) did not correlate across runs (reward:
r = 0.03, p = 0.698; loss: r = 0, p = 0.991, see Figure 5C).
It correlated moderately between reward and loss conditions
of run B (r = 0.24, p < 0.001), but not run A (r = 0.03, p
= 0.633). The correlations observed for the hyperbolic model

were therefore also significantly lower than the ones observed for
the hyperboloid model (Z’s > 3.33, p’s < 0.001). A qualitatively
similar picture held true when evaluating the discount parameter
κ which is proportional to the discount factor in the hyperbolic
model. These results suggest that cognitive processes related to
delay discounting were only captured reliably in the superior
model, that is, the model with superior prediction performance.
Note that the scaling parameter s of the hyperboloid model was
also reliable, that is, correlated across reward and loss conditions
(run A: r= 0.19, p= 0.006, run B: r= 0.25, p< 0.001), and across
runs (reward: r = 0.31, p < 0.001; loss: r = 0.26, p < 0.001).

We also observed several differences between reward and
loss conditions. The discount parameters κ and the scaling
parameters s, were higher in the reward compared with the loss
condition (κ run A: Z = 5.72, p < 0.001; κ run B: Z = 2.71, p <

0.001; s run A: Z = 1.99, p= 0.046; s run B: Z = 5.53, p < 0.001),
while the discount factor was lower in the reward condition (run
A: Z = 7.05, p < 0.001; run B: Z = 5.53, p < 0.001). Note though
that despite the parameter constraints on scaling parameter s, we
did observe moderate correlations between s and κ in the reward
condition (run A: r = −0.31, p < 0.001; run B: r = −0.31, p <

0.001), suggesting slight issues with parameter identifiability.
W.r.t. subjective reports, we did not observe any associations

betweenmodel parameters and subjective reported impulsivity or
alcohol use behavior (p’s > 0.147). We did also not observe any
correlations between subjective reports and the discount factors
of the hyperbolic model (all p’s > 0.105). Exploratory analyses
revealed a weak negative association between the loss discounting
factor of the modified hyperboloid model (evaluated at D = 30)
in run A and impulsivity (BIS-total: r = −0.15, p = 0.037), and
between the loss discounting factor of the modified hyperboloid
model in run B and alcohol use behavior (AUDIT-total: r =

−0.14, p= 0.044; see Supplementary Figure S7).

DISCUSSION

A long-standing problem with the experimental measurement
of cognitive functions based on group statistics is that an
identical experimental trial presented to different subjects may
elicit very different levels of functioning due to high inter-
individual variability [(90–94); see also (95)]. This aggravates
the reliable measurement of cognitive mechanisms and limits
the comparability of results between subjects. For example, the
same aversive stimulus in a fear conditioning paradigm can lead
to very different degrees of fear association across individuals
(93, 94). To remedy this problem, a common approach is to
adapt experimental conditions such as stimulus intensities to the
subject, making the experimental condition more comparable
and less heterogenous across individuals (94, 96). Similarly, in
delay discounting, the extent of discounting behavior is known
to vary widely between subjects [(97, 98); for review see (25,
26)]. In an ICT, adjusted experimental settings for delays and
outcome values per subject are therefore required to map a
similar magnitude of discounting between subjects (31, 32, 36, 43,
53, 54), whereby poorly adaptive or non-adaptive experimental
designs may even lead to subjects entirely not discounting. This
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may result in the exclusion of these subjects from further analyses
[similar to conditioning paradigms (94)]. Here, we attempt
to address this problem and propose a general approach to
tailor experimental trials to the single subject. The underlying
idea of this approach is that by modeling behavior as being
probabilistically generated by the experiment and the cognitive
function of interest, we can use the model to alter experimental
components so as to align behavior. Besides reducing variance
between subjects within an experimental condition, the proposed
approach offers an additional advantage to current adaptive
designs. It allows to generate trials associated with the entire
range of discounting probabilities thus enabling to measure
graded levels of discounting behavior. Both the model and the
experimental components are optimized in an iterative process.
We apply the proposed approach here to reward and loss
delay discounting.

Our experimental paradigm is divided into two runs, run A
and run B, which both consist of an identically structured delay
discounting task which differs only in the prompted outcomes
and delays (but could also be extended to other tasks and
processes). From the behavioral results of run A, we infer subject-
level models that probabilistically explain each participant’s
behavior. The modeled behavioral probabilities are then used to
design (that is, solve for) experimental trials of run B to elicit
discounting behavior with a predetermined probability. Here, we
chose trials that, according to the applied model, should elicit a
probability for the discounted option of 0.3, 0.5, and 0.7, although
the approach principally allows for an arbitrary grading. The
behavior in run B was then in turn used to (i) optimize run
A based on the current model and (ii) evaluate and adjust the
model-by-model comparison analyses. We tested the protocol in
three sequential experiments.

Overall, we were able to significantly reduce the number of
individuals showing no behavioral discounting. In addition, we
were able to largely induce graded levels of discounting behavior
on a single subject level. That is, the observed frequency of
immediate choices in both the reward and the loss condition
increased within participants with increasing immediate choice
probability predicted by the behavioral model. In the reward task,
this choice frequency was not only graded, but on average also
consistent with the specific model expectation.

The match between model expectation and behavior
improved across the successive experiments. In the first
experiment we observed that the participants’ behavior in run
B was graded with respect to the predetermined probabilities,
although the actual deviation from these probabilities was rather
high.We also observed a high number of non-discounters in both
conditions. By model-based adjustment of run A trials, we were
able to drastically reduce this number in experiment 2, an issue
commonly reported in the delay discounting literature, whereby
studies report various rates of non-systematic discounting
behavior ranging from 7% up to 50% of the investigated samples
(31, 35–45, 89). In addition, the adjustments led to higher
behavioral variability within participants, rendering better
conditions to validly infer model parameters in run A. This in
turn resulted in lower deviations between observed behavior
and model predictions in run B of exp 2. Our procedure

therefore successfully generated graded response conditions with
lower variance, that is, higher behavioral homogeneity within
conditions of exp 2.

After systematic model comparison analyses, we then
additionally adjusted the underlying trial-generating model in
the 3rd (and last) experiment. Again, we observed significantly
smaller behavioral deviations from model predictions within run
B of exp 3 compared to run B of exp 1. The deviation was
comparable to that of exp 2. The total number of non-discounters
further decreased on a descriptive level, although this was not
confirmed statistically. In contrast to exp 2 (see Figure 3E),
reaction times of exp 3 (see Figure 4E), however, were more in
line with theoretical expectations by which reaction times close to
the indifference point, that is, close to difficult choices, are slower
compared with easy choices.

Interestingly, one of the most commonly applied models, the
hyperbolic model, performed among the worst in predicting out-
of-sample behavior (see also Supplementary Figure S6). With
a correct prediction probability of on average p̂reward = 0.57
and p̂loss = 0.55 (evaluated across all runs and experiments,
see Supplementary Figure S5 left), it performed only marginally
above chance level. Overall, the hyperboloid models provided
the highest prediction probability, averaged across experiments.
The modified hyperboloid model was able to correctly predict
behavior on average with 0.68 probability in the reward and
0.71 in the loss condition (see Supplementary Figure S5 left).
It particularly excelled at predicting behavior in run A while
staying close to the theoretical expectation in run B (see
Supplementary Figure S5 right), as observed for several other
models as well.

As most studies in the field do not report out-of-sample
prediction errors (9, 21, 38, 41, 44, 49, 61, 63, 72, 74, 99–101),
or report predicted log-likelihood (40), or predicted accuracies
(54), which may be far above the predicted probabilities reported
here, and since the prediction error depends on trial difficulty
(i.e., on how close trials are to the indifference point and therefore
on the precise experimental manipulation, cf. Section Behavioral
Models and Model Parameters), the obtained values are difficult
to compare. However, the results are in line with the few studies
who have considered the modified hyperboloid model and have
shown its superiority [(49, 61–63, 100); but see also (44)], and
which show that the hyperbolic model is not a comparably good
fit (61–63, 100).

The modified hyperboloid model is characterized by an
additional free parameter s which scales the delay period
in the discount factor (cf. Section Behavioral Models and
Model Parameters) analogous to a psychophysiological power
function [(9); see also (102)]. The power law, originating from
psychophysics, describes the relationship between the intensity of
a stimulus and the perceived magnitude increase in the sensation
induced by the stimulus, which is modulated exponentially by
a parameter, here s (102). In the present investigation, as often
observed, s on average was smaller than 1 (38, 49, 61, 62),
indicating a flattening of the discounting curve (cf. Figure 4G).
This indicates that delay durations may not be perceived
similarly, that is, objectively, across participants as indicated
by e.g., the hyperbolic and exponential models, but there is

Frontiers in Psychiatry | www.frontiersin.org 12 June 2022 | Volume 13 | Article 846119

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Thome et al. Model-Based Induction of Homogeneous Behavior

additional inter-individual variability w.r.t. delay perceptions.
This is in line with studies indicating that time perception plays a
significant role in delay discounting [(103–107); see also (108)].

This scaling parameter s, as well as the discount parameter
κ , moreover differed significantly between the reward and the
loss condition. Both parameters were on average lower in the
loss condition. Since the scaling parameter s was restricted
between 0 and 1 [see also (109, 110)], smaller values here
lead to a shrinking of the objectively experienced delay and
thus to a lower degree of devaluation. Small κ values in
the hyperboloid model similarly cause the discount factor to
approach 1 such that effectively devaluation decreases. The fact
that we found differences in both parameters, together with the
fact that the hyperboloid model was superior to the hyperbolic
at predicting the data, suggests that lower κ values alone were
not sufficient to capture the weaker devaluation process observed
in the loss condition. One may therefore speculate whether
lower s values during loss discounting may be associated to
a subjectively shorter perception of delays in this condition.
Note though that this interpretation should be evaluated with
caution since we observed a moderate correlation between s and
κ in the reward condition. While a previous study evaluating
the modified hyperboloid model did not find differences in
the scaling parameter s between discounted rewards and losses
(49), while others did not explicitly compare the parameters
between tasks (38, 61, 62), the obtained results are in line with
the frequent observation of lower discounting rates during loss
discounting, also termed “sign-effect” [see also (41, 111); for an
overview see (112)]. This sign-effect was also reflected in the
lower frequency of discounted choices for the loss condition
as compared to the reward condition observed for all runs
and experiments despite explicitly prolonging delays for this
condition (see Supplementary Results S2.1–S2.3).

Interestingly, the discount factor of the modified hyperboloid
model was significantly related to subjective measurements:
Subjectively reported impulsive behavior, as well as alcohol
use behavior was negatively related to the discount factor,
indicating that stronger temporal discounting was related to
higher impulsivity andmore alcohol use behavior.While this is in
line with studies linking stronger discounting behavior to higher
impulsivity as well as increased alcohol use behavior [(113–117);
for an overview see (26, 118, 119)], other studies did not provide
evidence for a direct link (120–122).

A crucial difference between our framework and other
adaptive designs is that previous studies were mainly interested
in the two-level comparison between hard and easy trials,
i.e., trials close and far from the indifference point (31, 32,
43, 52, 54), or interested in choices around the indifference
points [e.g., (31, 32, 43)]. By providing a formal condition
for trial generation, our approach in contrast allows a more
highly resolved and targeted grading of discounting probabilities.
This includes the assessment of hard and easy trials, that is,
trials with discounting probability 0.5 vs. discounting probability
unequal to 0.5, as well as any other selected discounting
probability on the probability measure (i.e., between 0 and
1). By inducing graded behavior, one presumably induces
graded levels of cognition and associated neuronal responses.

This facilitates the identification of brain regions or networks
which co-vary with discounting probabilities, resolving the
neural response at a finer scale and thus providing stronger
evidence of the underlying neuronal mechanism (123–127).
In addition, from a statistical point of view, generating more
homogeneous experimental conditions across different levels
of discounting behavior within subjects, should increase the
statistical power needed to detect (differences in) the associated
brain responses (128–130).

While most studies to date continue to focus on reward
(rather than loss) discounting, we provide a general framework
which is easily transferable to other scenarios. Although our
approach did not work as well for the loss condition, that is,
the average discounting frequency deviated somewhat from the
model expectation, we did observe graded choice frequencies in
response to the three experimentally manipulated levels for both
reward and loss conditions. This (and even finer) gradation at the
within subject level could be particularly helpful when studying
the neurobiological underpinnings of a cognitive process, by
providing a dimensional mapping from experimental trial to
discounting probabilities.

Beyond that, many previous studies have focused on
addressing the question of which discounting model best fits
empirical data and how to adapt experimental trials to the
individual. However, these studies mostly focused either on
model comparisons [e.g., (38, 40, 49, 61, 72, 74, 89)], or onmodel-
based trial adaptation [(31, 32, 36, 43, 54); but see (53)], but
not on both. The latter is important though, since the success
of model-based trial adaptation should naturally depend on the
suitability of the model (see also Supplementary Figure S5). To
our knowledge, only one study performed both model selection
and design optimization simultaneously (53), selectingmodels on
a subject-specific (as compared to group) level (which comes with
its own advantages and disadvantages). However, this study as
well as the other model comparison studies have mainly selected
models based on in-sample error estimates [(9, 21, 38, 41, 44, 49,
61, 63, 72, 74, 99–101); but see also (40, 54)]. In-sample errors are
susceptible to under-estimation of the PE due to e. g. overfitting,
whereas out-of-sample errors represent more conservative and
unbiased estimates (70, 88). They thus do not allow to quantify
how well the models actually work at predicting unseen data
(70). On the other hand, the studies focusing on adaptive designs
have mainly focused on the hyperbolic model [e.g., hyperbolic
only: (31, 32, 43, 54)], which performed particularly poorly in
other studies [e.g., (53)], and yielded poor predictions as well as
unreliable parameter estimates here.

One caveat of comparing multiple models as done in the
present study is that it requires a sufficient number of trials. Other
adaptive approaches which are often tuned to a single model have
focused on optimizing efficiency and require a lower number of
trials. A lower number of trials with equal reliability is desirable
as it exerts less experimental burden on the participant. Overall,
the applied number of trials varies highly between adaptive
studies though, ranging from 5, ∼10 and 98 trials in more
recent approaches (31, 36) up to over 300 trials in more classical
titration procedures [e.g., (32, 40, 43, 44, 47–50, 54, 89, 131, 132);
with an average of around 95 trials (+/−77)]. The exact trial
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numbers may depend on subject specific parameters, and on
how many delays and outcomes are applied. In an appealing
Bayesian framework, Pooseh et al. (32) performed simulation
analyses investigating the number of iterations necessary for
parameter estimates to converge to their true values. Their results
illustrate the dependency on the true parameter values and
indicate that the classic amount adjusting method converges after
20–200 iterations (with high variance). Their Bayesian approach
on the other hand starts to converge after around 50 trials
for both κ and β evaluated on experimental data (32). Using
adaptive design optimization [ADO; (36, 53)], recent studies
demonstrated remarkable efficiency in measuring κ with high
reliability in <10 trials, although the β parameter is inferred less
reliably and likely requires more trials. Having now established
a suitable model for our parametric method, one could perhaps
improve the proposed framework by combining run A with one
of these more efficient methods to further reduce the number of
trials necessary in run A.

An interesting observation of the present study is that
we noticed a high agreement in the discount factor of the
hyperboloid model between both experimental runs and
between reward and loss conditions. This agreement suggests
that temporal discounting may be reliably measured (and
may bear similarities in the processing of loss and reward)
and is consistent with (the significantly) lower correlation of
behavioral frequencies. In contrast, in the commonly used
hyperbolic model, the relation between discount factors across
runs (and partly across conditions), as well as the associations
to discounting relevant measures such as impulsivity and
alcohol use, vanished. On the one hand, this suggests that
poorer behavioral models may provide more unreliable
and biased parameter estimates, potentially also explaining
difficulties in reproducibility between studies [see also e.g.,
(133) restricted reliability for hypothetical monetary outcomes;
see also (36)]. On the other hand, it also shows that using
appropriate behavioral models in combination with adaptive
designs may even improve the valid and reliable measurement
of cognitive function (superior to for instance behavioral
frequencies). Especially considering the reproducibility
crisis in psychological experiments [for overviews see (134–
138)], such approaches could prove particularly beneficial
[see also (139)].

Finally, we also address several limitations of the current
study. First, our sample was highly dominated by women (with
N = 145 women and N = 51 men). Although we found no
differences in discounting behavior between women andmen (cf.
Supplementary Table S2), we cannot exclude that our findings
generalize better to women. Second, although the proposed
framework performed well within the reward condition, many
non-discounters remained in the loss condition. It is unclear
whether this may be attributed to yet suboptimal run A trial
settings, inadequate to identify each participant’s indifference
point, or whether there is a true proportion of individuals in
the population who do not exhibit loss discounting. The latter
is not unlikely, as other studies with different settings have also
found constant high rates of non-discounters (31, 33–35, 38, 40).

However, it is also possible that the delays used in the current
experiment were simply not long enough to tempt participants
to discount future losses, masking the true proportion of non-
discounters in the population. Future studies that explore the
relationship of non-discounting to other subjective factors such
as risk aversion, punishment sensitivity, reward sensitivity,
preference uncertainty, and temporal uncertainty, or that
systematically examine other trial settings, may help shed light on
this question and reveal potential alternative discounting “styles.”

We also recognize that even in the reward condition,
where choice frequencies on average matched well with model
expectations, the behavioral variation was quite high. This could
either be due to natural noise in the behavioral process, or
that the true behavior generating model was not amongst the
tested set. We cannot exclude that there is another model
that describes the data better and would potentially further
reduce the observed variation [see also 53]. For example, there
is evidence that temporal discounting also depends on the
tendency to avoid risks, often referred to as risk aversion
(32, 40, 52, 73). Lopez-Guzman et al. (40) could for instance
show that by inferring the individual’s risk attitude on an
independent task and adding it as an additional parameter
to the discounting function, they could account for more
behavioral variance in a temporal discounting task. It may also
be reasonable to assume that individual participants are best
described by different models (53), although inferring models
on the single subject level limits comparability of associated
neurobiological correlates.

CONCLUSION

The present work proposes a model guided framework to
evoke graded responses linked to cognitive function at a single
subject level. Such a framework may be used in psychology,
neuroscience, or psychiatry in the future to (a) measure
cognitive function on a dimensional rather than dichotomous
scale, (b) homogenize behavior across participants, (c) test
the validity of a behavioral model, or (d) investigate the
causal differences underlying heterogeneous behavior, which
may benefit the investigation of cognitive mechanisms [see
e.g., (140)]. Importantly, temporal discounting is a fundamental
process underlying decision making and largely comparable
between species (13). Given that similar decay functions of
reward delay discounting have been observed in humans and rats
(141), application of the here proposed adaptive experimental
design to appropriate behavioral animal models may significantly
enhance insights to the circuitry and molecular underpinnings
of various neuropsychiatric disorders (142). Future studies are
needed to assess whether our approach is suitable to dissolve
discounting behavior onmore than three levels, that is, on amore
fine-grained dimensional spectrum of behavioral probabilities.
We also propose a more general approach to create adaptive
experimental designs based on the combination of behavioral
models and model selection techniques. Our framework was
tested in the context of temporal reward and loss discounting.
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It may however be generalized to other cognitive functions by
using similar models which map actions probabilistically to an
underlying cognitive process.
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Study 2: Supplementary Material 

S1 Methods 
S1.1 Generating trials by varying delays across subjects. 

Eqn. (3) in the main manuscript may be rewritten as 𝑉2 = 𝑟1 +
log(

1−𝑝1
𝑝1

)

𝛽
, where 𝑟1  is the immediate 

outcome, 𝑝1  is the (desired) immediate choice probability, and 𝑉2  is the discounted value, implicitly 
containing the delay and the discount parameter. If we insert 𝑉2, defined by the respective model, we may 
solve for the adaptive delay given a set of immediate and delayed outcomes, model parameters, and desired 
immediate choice probabilities. For instance, inserting 𝑉2 of the hyperbolic model, yields ( 1

1+𝜅𝐷
)𝑟2 = 𝑟1 +

log(
1−𝑝1
𝑝1

)

𝛽
, from which we can derive   

𝐷 = ((
𝑟1
𝑟2
+
log(1 − 𝑝1)

𝛽𝑟2
−
log(𝑝1)

𝛽𝑟2
)

−1

− 1) (
1

𝜅
), 

as trial generating condition, where D is the delay, and 𝜅 and 𝛽 are model parameters. 

 

 
Fig S1. Illustration of method’s operating principle when solving for delay rather than immediate outcome. In this 
example, the immediate reward was set to 5, and the delayed reward to 6. The 3 lines correspond to hypothetical 𝜅 values of 
.01 (light gray), .005 (gray), and .001 (dark grey). Colored dots mark the respective delays selected for each theoretical 𝜅 to 
obtain immediate choice probabilities of .5 (red), .6 (orange), .7 (yellow), and .8 (green). The left graph corresponds to subjects 
with 𝛽=.2 and the right to 𝛽=.4 (i.e., high sensitivity). To obtain similar discounting probabilities for subjects with different 𝜅 
values (with same 𝛽), delays are selected such that the discounted value is equal across subjects (i.e., lies on a horizontal line). 
𝛽 tunes the difference between immediate and discounted outcomes, shifting the dots on the curves (i.e., discounted values) to 
the left. For larger 𝛽, shorter delays are necessary to discriminate between outcomes, consistent with higher sensitivity.  
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S2 Results 
S2.1 Experiment 1 
The frequency of discounted choices was lower in loss as compared to reward discounting in run A 
(Z=6.07, p<0.001), as well as run B (Z=3.59, p<0.001).   
 
S2.2 Experiment 2  
The frequency of discounted choices was lower in loss as compared to reward discounting in run A 
(Z=5.89, p<0.001), as well as run B (Z=4.14, p<0.001).  
 
S2.3 Experiment 3  
The frequency of discounted choices was lower in loss as compared to reward discounting in run A 
(Z=4.99, p<0.001), as well as run B (Z=3.14, p=0.002). 
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Table S1. Socio-demographic and subjective reports. 

   Exp 1  Exp 2  Exp 3 

      N=98   N=50   N=50 

age (mean/SD)   32.44 11.55  31.38 9.79  31.86 9.24 

gender (N) female  65   37   43  

 male  32   12   7  

 diverse  1   1   0  

education (N) primary  0   1   0  

 alevel  44   16   12  

 gcse  6   6   1  

 undergrad  32   15   25  

 grad  15   12   11  

 phd  1   0   1  

AUDIT-total   5.58 5.15  4.4 3.52  4.56 4.19 

BIS-total   31.34 6.99  30.86 7.02  31.22 6.14 

BIS-non-planning  11.29 3.19  10.6 3.41  10.9 2.84 

BIS-motor   14 4.34  9.92 2.87  10.3 2.35 

BIS-attentional     10.23 2.78   10.34 2.91   10.02 2.39 

Legend. AUDIT = Alcohol Use Disorder Identification Test, BIS = Barratt Impulsiveness Scale; Exp = experiment; gcse = 
general certificates of secondary education  
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Table S2. Socio-demographic information across experiments with respect to gender (binary) 

  female  male test-statistic 
    N=145   N=51 Z p 
age (mean/SD)  31.49 12.09  33.94 9.89 1.09 0.275 
run A         
% non-discounter  46.89   49.02    
% non-discounter reward  16.55   13.73    
% non-discounter loss  46.89   41.18    
reward imm choice freq (mean/SD)  37.21 25.21  32.98 26.09 0.88 0.381 
loss imm choice freq (mean/SD)  80.53 16.94  84.72 22.83 0.39 0.693 
reward explo-exploitan (mean/SD)  11.69 26.81  9.76 29.72 1.04 0.299 
reward discounting par 
(median/perc)  0.02 [0.01,0.14]  0.01 [0.004,0.13] 0.87 0.382 
reward scaling par (mean/SD)  0.57 0.38  0.60 0.37 0.49 0.618 
loss explo-exploitan par (mean/SD)  27.36 42.04  28.49 42.9339 0.78 0.433 
loss discounting par (median/perc)  0.002 [<0.001,0.03]  0.007 [<0.001,0.02] 0.79 0.424 
loss scaling par (mean/SD)  0.52 0.35  0.53 0.36 0.19 0.845 
run B         
% non-discounter   44.14   39.22    
% non-discounter reward  13.10   3.92    
% non-discounter loss  39.31   37.25    
reward imm choice freq (mean/SD)  42.96 24.53  50.04 27.25 1.74 0.081 
loss imm choice freq (mean/SD)  71.92 30.19  68.76 28.94 0.72 0.469 
reward explo-exploitan (mean/SD)  10.17 24.58  9.88 26.31 0.33 0.739 
reward discounting par 
(median/perc)  0.01 [0.001,0.05]  0.02 [0.004,0.09] 0.28 0.781 
reward scaling par (mean/SD)  0.65 0.37  0.65 0.36 0.01 0.995 
loss explo-exploitan par (mean/SD)  33.68 43.65  30.75 44.87 0.19 0.844 

loss discounting par (median/perc)  
9.5x10-

5 [<0.001,0.04]  0.004 [<0.001,0.04] 0.35 0.725 
loss scaling par (mean/SD)   0.43 0.39   0.5 0.37 1.18 0.238 

Legend. discount = discounting; explo = exploration; exploit = exploitation; imm = immediate; freq = frequency; par = 
parameter; SD = standard deviation; perc = percentile (25% - 75%); % = percentage 
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Fig. S2. Illustration of online paradigm technical information flow. 
Upper left: The reward and loss discounting paradigm was programmed in JavaScript using the open-source package 'jsPsych'.  
Lower left: Exemplary reward discounting trial prompting the participant to either press ‘q’ or ‘p’, if she/he wants to win £5 
today (blue) or £10.20 in 7 days (red). Upper right: The experiment was hosted on a custom virtual server using Linux-Apache-
PHP-MySQL. Lower right: Model inference on data from run A and trial generation for run B was realized on the custom 
virtual server using self-written Python scripts. Data was stored on the open-source data management system MySQL.  
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Fig. S3. Model comparison for experiment 1. Average predicted (out-of-sample) probability of observed responses �̂�𝑗 (y-
axis) for reward and loss conditions (x-axis) for different models averaged over run A and B. Choice behavior of run B was 
predicted based on model parameters inferred on run A and vice versa. Choice behavior of the reward discounting condition 
was predicted by the hyperbolic model with  �̂�𝑟𝑒𝑤𝑎𝑟𝑑=.55, by the exponential model with �̂�𝑟𝑒𝑤𝑎𝑟𝑑=.66, by the quasi-hyperbolic 
model with  �̂�=.68, by the hyperboloid model with  �̂�𝑟𝑒𝑤𝑎𝑟𝑑=.67, by the modified hyperboloid model with  �̂�𝑟𝑒𝑤𝑎𝑟𝑑=.67, by the 
double-exponential model with  �̂�𝑟𝑒𝑤𝑎𝑟𝑑 =.68, and by the constant-sensitivity model with �̂�𝑟𝑒𝑤𝑎𝑟𝑑=.60 (in order of legend). 
Choice behavior of the loss discounting condition was predicted by the hyperbolic model with  �̂�𝑙𝑜𝑠𝑠=.55, by the exponential 
model with  �̂�𝑙𝑜𝑠𝑠=.72, by the quasi-hyperbolic model with  �̂�𝑙𝑜𝑠𝑠=.73, by the hyperboloid model with  �̂�𝑙𝑜𝑠𝑠=.72, by the 
modified hyperboloid model with  �̂�𝑙𝑜𝑠𝑠=.72, by the double-exponential model with  �̂�𝑙𝑜𝑠𝑠=.73, and by the constant-sensitivity 
model with �̂�𝑙𝑜𝑠𝑠=.57.  
  
 

 
Fig. S4. Model comparison for experiment 2. Average predicted (out-of-sample) probability of observed responses �̂�𝑗 (y-
axis) for reward and loss conditions (x-axis) for different models averaged over run A and B. Choice behavior of run B was 
predicted based on model parameters inferred on run A and vice versa. Choice behavior of the reward discounting condition 
was predicted by the hyperbolic model with  �̂�𝑟𝑒𝑤𝑎𝑟𝑑=.6, by the exponential model with �̂�𝑟𝑒𝑤𝑎𝑟𝑑=.62, by the quasi-hyperbolic 
model with  �̂�=.66, by the hyperboloid model with  �̂�𝑟𝑒𝑤𝑎𝑟𝑑=.69, by the modified hyperboloid model with  �̂�𝑟𝑒𝑤𝑎𝑟𝑑=.7, by the 
double-exponential model with  �̂�𝑟𝑒𝑤𝑎𝑟𝑑=.68, and by the constant-sensitivity model with �̂�𝑟𝑒𝑤𝑎𝑟𝑑=.64 (in order of legend). 
Choice behavior of the loss discounting condition was predicted by the hyperbolic model with  �̂�𝑙𝑜𝑠𝑠=.54, by the exponential 
model with  �̂�𝑙𝑜𝑠𝑠=.55, by the quasi-hyperbolic model with  �̂�𝑙𝑜𝑠𝑠=.58, by the hyperboloid model with  �̂�𝑙𝑜𝑠𝑠=.62, by the 
modified hyperboloid model with  �̂�𝑙𝑜𝑠𝑠=.63, by the double-exponential model with  �̂�𝑙𝑜𝑠𝑠=.59, and by the constant-sensitivity 
model with �̂�𝑙𝑜𝑠𝑠=.58.  
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Fig. S5. Model comparison across all experiments. Left: Average predicted (out-of-sample) probability of observed 
responses �̂�𝑗 (y-axis) for reward and loss conditions (x-axis) for different models averaged over run A and B. Choice behavior 
of run B was predicted based on model parameters inferred on run A and vice versa. Choice behavior of the reward discounting 
condition was predicted by the hyperbolic model with  �̂�𝑟𝑒𝑤𝑎𝑟𝑑=.57, by the exponential model with �̂�𝑟𝑒𝑤𝑎𝑟𝑑=.64, by the quasi-
hyperbolic model with  �̂�=.66, by the hyperboloid model with  �̂�𝑟𝑒𝑤𝑎𝑟𝑑 =.67, by the modified hyperboloid model with  
�̂�𝑟𝑒𝑤𝑎𝑟𝑑=.68, by the double-exponential model with  �̂�𝑟𝑒𝑤𝑎𝑟𝑑=.67, and by the constant-sensitivity model with �̂�𝑟𝑒𝑤𝑎𝑟𝑑=.59 (in 
order of legend). Choice behavior of the loss discounting condition was predicted by the hyperbolic model with  �̂�𝑙𝑜𝑠𝑠=.55, by 
the exponential model with  �̂�𝑙𝑜𝑠𝑠=.64, by the quasi-hyperbolic model with  �̂�𝑙𝑜𝑠𝑠=.65, by the hyperboloid model with  �̂�𝑙𝑜𝑠𝑠=.71, 
by the modified hyperboloid model with  �̂�𝑙𝑜𝑠𝑠=.71, by the double-exponential model with  �̂�𝑙𝑜𝑠𝑠=.66, and by the constant-
sensitivity model with �̂�𝑙𝑜𝑠𝑠=.56. Right: Same as left separated for predictions on run A and run B. When predicting run B 
based on models inferred on run A, all models perform below and close to the upper bound given by the theoretical expectation 
(horizontal grey line). When predicting behavior in run A based on models inferred on run B, the hyperboloid models show the 
highest prediction performance, while the common hyperbolic model performs particularly poorly.  
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Fig S6. Investigation of model bias. The figure displays the deviation between observed relative immediate choice frequencies 
and induced immediate choice probabilities (y-axis), as a function of observed immediate choice probabilities (y-axis) in 
experiment 2 (grey) and experiment 3 (black), averaged across reward and loss conditions. The experiments differ w.r.t to 
whether choice probabilities were induced via the hyperbolic (experiment 2) or the modified hyperboloid (experiment 3) 
models. Descriptively, observed deviations are closer to 0 in experiment 3 indicating a lower bias in the induction of behavior 
for the modified hyperboloid model and thus indicating higher model validity. Statistically, we see a marginal difference within 
the .5 trail condition (p=.06).  
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Fig S7. Correlation between subjective reports and discount factor of the modified hyperboloid model across all 
experiments. Left: Negative association between the discount factor (loss, run A) and impulsivity (BIS-total: r=-0.15, 
p=0.037). Right: Negative association between the discount factor (loss, run B) and alcohol use (AUDIT-total: r=-0.14, 
p=0.044).  
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Abstract 

Background: Delay Discounting refers to the devaluation of future outcomes over time and has been 

linked to problematic alcohol and substance use. Prior studies show modest yet consistent associations 

between problematic alcohol use and delayed reward discounting (DRD). This study aims to replicate 

these correlations and expand the scope to include delayed loss discounting (DLD). Additionally, it 

explores the potential confounding influence of socioeconomic status (SES). 

Methods: We collected data from 341 moderately-drinking participants (mean alcohol consumption = 

27.92g/day) in a cross-sectional online study. DRD and DLD were measured using an intertemporal choice 

task. Questionnaires encompassed problematic alcohol use (AUDIT), education and income, among 

further exploratory measures of past and present SES, quantity-frequency of drinking, and impulsivity. 

Results: We found a correlation (r = .15) between DRD, but not DLD, and alcohol use. SES indicators 

were negatively associated with both DRD (education) and alcohol use (education, income). The partial 

effect of DRD on alcohol use remained significant after accounting for SES, explaining 1.5% of variance 

in AUDIT scores. Impulsivity was not associated with either DRD or DLD, but with alcohol use (r = .36). 

Conclusions: We replicated a small but robust association between alcohol use and DRD, but not DLD. 

DRD explained incremental variance in AUDIT scores above and beyond several potential confounding 

variables. Given the small effect sizes, investigation of more complex relationships between alcohol use, 

DRD and SES may require larger sample sizes. 
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Introduction 

Reward Discounting, Addiction and Socioeconomic Status 

Numerous studies have established a link between Delayed Reward Discounting (DRD) and alcohol use 

disorder (AUD), demonstrating that individuals with more AUD symptoms and higher drinking levels 

tend to favor short-term rewards in monetary intertemporal choice tasks (MacKillop et al., 2011; Amlung 

et al., 2017). Consequently, DRD has been proposed as a behavioral marker of addiction and a potential 

target for therapeutic interventions (Bickel et al., 2014; Story et al., 2014). 

However, steep DRD could also be a rational behavior in response to limited resources, when waiting for 

a delayed reward is not feasible (Becker and Mulligan, 1997). This might explain why lower 

socioeconomic status (SES), such as low education and income, is associated with steeper DRD (de Wit 

et al., 2007; Reimers et al., 2009; Green et al., 2014; Tunney, 2022). Some studies suggest a causal link 

between income and DRD, as hypothetical income declines are associated with increased DRD rates 

(Bickel et al., 2016; Mellis et al., 2018), demonstrating that DRD reflects more than impulsivity traits. 

Individuals with low SES not only discount rewards more steeply, but also have a higher risk of AUD and 

mental disorders (Jenkins et al., 2008; Grant et al., 2015; Beard et al., 2019). Moreover, their risk for 

alcohol-related harm is disproportionally higher when compared to individuals with higher SES and equal 

drinking levels. This alcohol harm paradox may be partly explained by an increased incidence of aversive 

experiences and mental health problems among socioeconomically deprived individuals, leading to 

alcohol consumption as a coping mechanism (Lee et al., 2013; Probst et al., 2020; Shuai et al., 2022). 

Notably, subjective measures of SES have been shown to have a stronger link to alcohol use and 

psychological well-being compared to objective measures, underscoring the relevance of subjective 

perceptions of SES (Adler et al., 2000; Ishii, 2015; Garza et al., 2017; Ishii, Eisen and Hitokoto, 2017; 

Najdzionek et al., 2023). 

In summary, experiencing socioeconomic hardship increases both DRD rates and the vulnerability for 

AUD. Existing studies on the association between DRD and alcohol use often lack statistical power to 

address this potential confound, or do not systematically incorporate SES as an additional predictor. 

Additionally, many studies are limited to clinical populations that have already experienced significant 

socioeconomic consequences due to AUD. 

Delayed Loss Discounting and AUD 
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Decisions about alcohol consumption involve assessing both the positive and negative consequences. 

Therefore, high-risk drinkers may devaluate both benefits of abstinence and long-term harms of drinking. 

However, research on alcohol use and Delayed Loss Discounting (DLD) is scarce. In a study of 33 

students, DLD was moderately linked to alcohol consumption frequency (Takahashi et al., 2009). Bailey 

et al. (2018) and Gerst et al. (2017) found that individuals with AUD discount future losses more than 

healthy controls. Those who steeply discount rewards also tend to discount losses (DeHart et al., 2020; 

Thome, Pinger, Halli, et al., 2022). However, Myerson et al. (2017) found significant associations between 

AUD and DRD, but not DLD. Interestingly, in a prior exploratory analysis in a healthy sample, we 

observed the opposite pattern (Thome, Pinger, Halli, et al., 2022). However, evidence from larger samples 

with problematic alcohol use is lacking. 

 

Aims and Hypotheses 

Here we aim to address two key questions related to DRD and its association with AUD. Firstly, we seek 

to investigate to which degree the relationship between DRD and alcohol use is confounded by 

socioeconomic status (SES) with the objective to determine whether DRD contributes additional 

explanatory power to alcohol use after accounting for socioeconomic influences. We pursued a varied 

sample of individuals with moderate to heavy drinking patterns. This methodology allows for statistical 

models to explore quantitative effects among high-functioning individuals exhibiting high drinking 

quantities. 

Secondly, we aim to investigate a potential relationship between alcohol use and the discounting of 

aversive consequences. For this, we employed a previously established DLD task (Thome et al 2022), 

using financial losses at different time points. 

Hypotheses and methods were preregistered (https://aspredicted.org/ac46k.pdf). We hypothesized to 

replicate the positive association between alcohol use (measured by AUDIT scores) and DRD steepness 

(H1) and extend this to DLD steepness (H2). Furthermore, we hypothesized that SES (yearly income and 

education) is negatively associated with DRD (H3) and AUD severity (H4). Lastly, we hypothesized that 

controlling for these SES diminishes the association between DRD and alcohol use (H5). 

 

 

 

 

https://aspredicted.org/ac46k.pdf
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Materials and Methods 

Sample 

Participants used personal computers at home and were recruited in June 2022 via the online participant 

platform Prolific (https://www.prolific.co). Eligibility criteria were filtered using Prolific’s custom 

prescreening tools and included age 18-65, current residency in the UK and minimum weekly alcohol 

consumption of 10 alcohol units. Participants received £9 per hour as compensation and provided informed 

consent prior to the study. The ethics committee of the Medical Faculty Mannheim, University of 

Heidelberg (2019-633N), approved the study. 

A priori power analysis determined a required sample size of 311 participants for 80% power to replicate 

the correlation of r = .14 between DRD and alcohol use found in a recent meta-analysis (Amlung et al., 

2017). We targeted a sample size of 350 participants. 

Study Materials 

Delay Discounting of Rewards and Losses 

Participants completed an intertemporal choice task developed by our group (Thome, Pinger, Halli, et al., 

2022), making decisions between hypothetical monetary rewards (reward condition, 96 trials) or losses 

(loss condition, 96 trials). Each choice involved an immediate smaller outcome and a delayed larger 

outcome, with varying delays (D = {7, 30, 90, 180, 365, 109} days), immediate reward/loss magnitudes 

(ra1), and delayed reward/loss magnitudes (ra2 = {5, 10, 20 50} £UK). Immediate magnitudes (ra1) were 

determined a priori through a computational model solving for magnitudes for a range of hypothetical 

discounting parameters and predicted choice probabilities. We could show that this procedure, compared 

to other fixed-trial procedures as in Rachlin et al. (1991), samples sufficient variance in behavior across a 

broad range of plausible discounting rates (for details, see Thome, Pinger, Halli, et al., 2022, and Thome, 

Pinger, Durstewitz, et al., 2022). 

 

The 96 trials of each condition were randomized and split into two blocks of 48 trials each. 

Reward and loss blocks were presented in alternating order, starting randomly with either condition. 

Within each trial, the two options were randomly presented on the left and the right side of the screen. 

Participants indicated their choices by pressing either “Q” (for the left option) or “P” (for the right option) 

within 10 seconds of stimulus presentation. The chosen option was then highlighted for one second, 

followed by a fixation cross for another second. After each block, participants were allowed to take a break 

for a self-chosen duration. 

https://www.prolific.co/
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Self-report measures 

Problematic alcohol use was assessed using the Alcohol Use Disorder Identification Test (AUDIT, 

Saunders et al., 1993). To enhance standardization, the term "a drink" was replaced with "a standard unit", 

accompanied by a visual aid retrieved from the UK Department of Health and Social Care (2020). Using 

the Daily Drinking Questionnaire (DDQ; Collins et al., 1985), participants reported average standard units 

of alcohol consumed on each day of the week over the past three month. 

 

Assessment of income was based on gross income in the last twelve months, including earnings from all 

sources of income, separately for personal and household level. Income was assessed using levels from 

“less than £10,000” to “more than £250,000”, using £10,000 increments up to £100,000, and thereafter in 

£50,000 increments (Diemer et al., 2013). Education was assessed as the highest level of education 

according to the International Standard Classification of Education (ISCED) levels adapted for the UK 

(Schneider, 2013), ranging from 0 (“no formal education”) to 8 (“doctoral degree or higher”). Education 

of primary and secondary (if applicable) caregivers during adolescence was assessed using the same levels. 

Subjective adolescent financial well-being was measured using the single-item question “Please rate your 

family's or household's financial wellbeing during your adolescence” and a Likert scale with 5 steps (“not 

at all well-off”, “not very well-off”, “average”, “somewhat well-off” and “very well-off”). Subjective SES 

was measured using the MacArthur scale, a visual 10-step ladder representing relative societal standing 

including education, income and occupation (Adler et al., 2000).  

 

Impulsivity was measured using the short-form Barratt-Impulsiveness-Scale (BIS-15; Spinella, 2007). 

 

Data Collection and Study Procedure 

The online study was programmed in JavaScript using the open source package jsPsych, version 6.2 (de 

Leeuw, 2015) and was hosted on a custom virtual server using a Linux-Apache-PHP-MySQL stack (see 

Thome et al., 2022 for details). Participants entered the study through a link on the Prolific website. After 

completing the consent form and filling out sociodemographic information, participants received an 

introduction into the intertemporal choice tasks, including six example trials. After finishing the the task, 

participants completed the remaining questionnaires. 
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Data Analysis 

Data Preprocessing 

Data from participants who completed less than 80% of the discounting trials within one condition, who 

displayed stereotypical key press patterns (only pressing “Q” or “P”) or who had average reaction times 

below 500ms in the discounting trials were excluded from all analyses. Data exclusion was preregistered. 

Sum scores were calculated for the AUDIT, the BIS-15 and the DDQ. Education and income were treated 

as continuous variables. To this end, the character-based income levels (e.g., “£10,000-20,000”) were 

transformed into numerical values by using mid-points of each income category, (£15,000 for the example 

above). The ISCED education categories were treated as a Likert scale. Educational levels of primary and 

secondary caregivers during adolescence were averaged to obtain single-value parental education levels. 

Intertemporal decision-making was investigated using discounting frequencies and hyperboloid model 

parameters. To this end, hyperboloid discounting models were inferred on the behavioral choices of each 

participant (see Thome, Pinger, Durstewitz, et al., 2022; Thome, Pinger, Halli, et al., 2022 for details). 

The modified hyperboloid model (Mazur, 1987; Rachlin, 2006) posits that the values 𝑉 for the delayed 

choices 𝑎2 are discounted according to 

𝑉(𝑎2) =
1

1 + 𝜅 ⋅ 𝐷𝑠
𝑟2           (1) 

while the values for the immediate options 𝑎1 correspond to the actual outcomes, 𝑉(𝑎1) = 𝑟1. Here, 𝜅 

indexes the individual discounting parameter, 𝑠 represents an individual temporal scaling parameter, 𝐷 

the temporal delay in days, and 𝑟1 and  𝑟2 are the immediate and delayed outcomes, respectively. Values 

were translated into immediate choice probabilities via a sigmoid function  

𝑝(𝑎1|𝑉) =
1

1 + 𝑒𝛽(𝑉(𝑎2)−𝑉(𝑎1))
,           (2) 

where 𝛽 indicates the disposition to exploit (𝛽 →  ∞) or explore (𝛽 →  0) choices (Sutton & Barton, 

2018), and 𝑝(𝑎2) = 1 − 𝑝(𝑎1). Parameters were then inferred via maximum likelihood estimation (see 

also Ahn et al., 2020; Thome et al., 2022), implemented via optimize.minimize() from the SciPy library 

in Python, with constraints κ ϵ [0, 1000] and β ϵ [0.01, 2]). Separate discounting and scaling parameters 

were inferred for DRD and DLD trials. 

This resulted in three indices of discounting behavior: 
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1.) Hypotheses were tested using natural log-transformed κ parameter obtained from hyperboloid 

model (see above) after adding a constant of 0.0001 to account for zero-values. Higher log(κ) 

values indicate steeper discounting. 

2.) The discounting factor 𝑑𝑓 ≔  
1

1+𝜅⋅𝐷𝑠 ∈ [0, 1] at delay 𝐷 = 365 days was used as an exploratory 

measure. Lower discounting factors indicate steeper discounting. 

3.) Frequency of discounted choices relative to all completed trials was used as an exploratory 

behavioral measure. Discounted choices were defined as immediate choices in the reward 

condition and delayed choices in the loss condition. 

 

Hypothesis Testing 

All data were analyzed using R, Version 4.2.1 (R Core Team, 2022). Hypothesis testing was conducted 

with two-tailed tests (α = 0.05). 

The predictive effects of DRD (H1) and DLD (H2) on problematic alcohol use were assessed through 

simple linear regressions with AUDIT sum scores as the dependent variable and log(κR) for DRD or log(κ 

L) for DLD as the independent variables. Predictive effects of SES on DRD (H3) and problematic alcohol 

use (H4) were tested through multiple linear regressions, using education and personal income as 

independent variables and log(κR) and AUDIT scores as dependent variables, respectively. Confounding 

effects of SES on the association between DRD and problematic alcohol use (H5) were tested through 

hierarchical linear regression. Personal income and education were introduced as dependent variables, 

followed by log(κR) in a subsequent step. F-tests were used to test whether the addition of log(κR) 

explained significantly more variance than SES alone. 

Exploratory Analyses 

Pearson correlation coefficients were obtained for pairwise combinations of all variables. 

Regression models for hypothesis testing were repeated for the two exploratory measures of DRD and 

further socioeconomic variables significantly associated with both delay discounting and alcohol use. 

We examined gender effects via t-tests on AUDIT scores, DDQ scores, discounting, impulsivity, 

education, and income. Additionally, we employed a multiple regression model with log(κR), gender 

(dummy-coded with 0 = female, 1 = male), their interaction as independent variables, and AUDIT scores 

as the dependent variable. 
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Participants with a relative discounting frequency below 5% in the intertemporal choice tasks were defined 

as non-discounters. T-tests were conducted to compare discounters and non-discounters with respect to 

age, impulsivity, alcohol use, income and education. 

Results 

Sample Description and Missing Data 

A total of 347 participants completed the online study. Due to technical problems, data from six 

participants could not be retrieved from the server, therefore, the final sample size is N = 341. Table 1 and 

Table 2 provide descriptive statistics of all variables. On average, participants had an AUDIT score of 

11.76 and have been drinking 24.43 alcohol units per week or 27.92g/day of alcohol within the 3 months 

precluding the study. Average alcohol consumption by weekday is illustrated in Figure 1. The sample was 

balances with respect to gender (170 female participants = 50%). The majority of participants reported 

being employed (65.7%) or self-employed (14.7%), while 4.4% were retired, 4.1% were students, 7.3% 

were unemployed and 3.8% used alternative self-descriptive terminology. 

No participants had to be excluded based on reaction times or key press patterns in the delay discounting 

tasks. One participant exceeded the exclusion criteria of more than 20% missing trials in the loss condition. 

Due to few missing data entries, participants with missing data points were excluded from analyses with 

the missing variable. 

Preregistered Hypotheses 

Pearson correlation coefficients between the five variables preregistered for hypothesis testing are given 

in Table 3.  

H1: DRD and Problematic Alcohol Use. We found a small but significant positive correlation between 

the DRD parameter log(κR) and AUDIT sum scores (r = .15, p = .01, Figure 2). Linear regression revealed 

a significant prediction of AUDIT scores by log(κR) (R2 = .023, F(1, 339) = 7.81, p < .01). 

H2: DLD and Problematic Alcohol Use. The correlation between the DLD parameter log(κL) and AUDIT 

sum scores was not significant (r = .09, p = .10, Figure 2), therefore no linear regression was computed. 

H3: DRD and SES. We found a significant negative correlation between the DRD parameter log(κR) and 

level of education (r = -.19, p < .01), but not between log(κR) and yearly personal income (r = -.10, p = 

.07). Linear regression revealed a significant prediction of log(κR) by education (R2 = .031, F(1, 339) = 

12.04, p < .01). 
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H4: SES and Problematic Alcohol Use. AUDIT sum scores were significantly and negatively correlated 

with both level of education (r = -.15, p < .01) and yearly personal income (r = -.12, p = .03), with the 

latter two also showing a significant intercorrelation (r = .26, p < .01). Employing both education and 

income as independent variables and AUDIT scores as dependent variable in a multiple regression, only 

education remained a significant predictor (β = -0.11, t(327) = -2.03, p = .04). The fitted model accounted 

for 2.6% of variance in AUDIT scores (R2 = .026, F(2, 327) = 4.43, p = .01, see Table 4). 

 

H5: DRD, SES and Problematic Alcohol Use. When the DRD parameter log(κR) was included as an 

independent variable after testing education and income alone, the extended model explained significantly 

more variance in AUDIT sum scores than the simpler model (Delta R2 = .015, Total R2 = .041, F(3, 326 

= 5.16), p = .02, see Table 4). In addition, log(κR) remained the only significant predictor of AUDIT scores 

(β = 0.13, t(326) = 2.27, p = .02). 

 

Exploratory Analyses 

Secondary measures of DRD, Alcohol Use and SES 

Pairwise correlations between all measures of alcohol consumption, delay discounting, SES and 

demographic variables are given in Appendix S1. 

In addition to the tested hypotheses, subjective SES and age were found to be significantly associated with 

AUDIT scores and log(κR) (Appendix S1). Additionally, all three indices of DRD (log(κR), relative 

frequency of discounted choices, discounting factor at one-year delay) were highly intercorrelated, as well 

as the two measures of alcohol use (AUDIT, DDQ). Therefore, the regression models used to test H4 and 

H5 were repeated for these secondary measures. To this end, we ran two-step hierarchical regressions with 

AUDIT or DDQ as dependent variable, education with subjective SES or age as first-level independent 

variables, and discounting factor, relative discounting frequency or log(κR) as second-level independent 

variables. Results are provided in Appendix S2. All measures of DRD remained significant predictors of 

alcohol use when controlling for SES. However, when age and education were entered as first-step 

predictors, 7.1% of variance in AUDIT scores could be explained (F(2, 338) = 13, p < .01), with both 

predictors reaching significance. The addition of log(κR) accounted for an additional 0.7% of variance, but 

did not reach statistical significance (F(1,337) = 2.40, p = .12). 
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Loss Discounting 

The three indices of DLD (log(κL), relative frequency of discounted choices, discounting factor at one-

year delay) were highly intercorrelated (see Appendix S1). Small but significant correlations were present 

between DRD and DLD (e.g., r = .25 between log(κR) and log(κL)). In contrast to DRD, no measure of 

DLD was significantly correlated with any of the socioeconomic or alcohol-related variables.  

On average, DLD was less steep than DRD, as indicated by lower discounting frequencies (46.88% in 

DRD vs. 25.08% in DLD). Importantly, 29.7% of participants were non-discounters in the DLD condition, 

compared to only 2.9% of participants in the DRD condition. Paired t-tests revealed that non-DLD-

discounters did not differ in age, alcohol use, impulsivity, education, income from other participants 

(Appendix S3). Lastly, when we excluded non-discounters from the correlation analysis for H2 to rule out 

a possible sub-group effect, the association between log(κL) and AUDIT sum scores remained non-

significant (r = .07, p = .31). 

Adolescent SES 

In contrast to measures of momentary SES (income, education, subjective SES), we found no significant 

correlations between adolescent SES (subjective adolescent SES, average parental education) and alcohol 

use or delay discounting. 

Impulsivity 

BIS-15 sum scores were weakly correlated with indices of DRD (e.g., for log(κR): r = .17, p < .01), 

education (r = -.25, p < .01), personal income (r = -.19, p < .01), subjective SES (r = -.29, p < .01), and 

moderately correlated with AUDIT sum scores (r = .36, p < .01). 

Gender 

On average, women had significantly lower AUDIT scores, drinking quantities and personal income 

(Appendix S4). Women and men did not differ significantly with respect to log(κR) and log(κL). Upon 

visual inspection, the association between log(κR) and AUDIT scores appeared higher in men (r = .25, 

p < .01) than in women (r = .05, p = .55) (Figure 3). However, the difference in correlation coefficients 

was not significant when applying Fisher’s z-transformation (z = 1.91, p = .056). A multiple regression 

revealed a significant main effect of gender (t = 2.98, p < .01), but no significant interaction between 

gender and log(κR) (t = 1.79, p = .07). Regarding log(κL), neither the correlation within the male (r = .14, 

p = .08) nor in the female subsample (r = .06, p = .47) reached significance, and there was no significant 

difference in correlation coefficients (z = .73, p = .46). 
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Discussion 

Our study sought to elucidate the complex relationship between delay discounting, socioeconomic status 

(SES), and the severity of problematic alcohol use. Namely, we investigated 1) the influence of SES on 

the association between Delayed Reward Discounting (DRD) and problematic alcohol use, and 2) the 

relationship between Delayed Loss Discounting (DLD) and problematic alcohol use. Our findings 

revealed that DRD, but not DLD, accounted for a certain proportion of AUDIT scores. However, the small 

size of this effect does not endorse the practicality of a DRD task as a biomarker for precision medicine 

approaches in addressing AUD. 

DRD, Problematic Alcohol Use and SES 

Consistent with our hypotheses and previous research, our findings revealed significant associations 

between DRD, alcohol use and SES. The small, yet significant positive correlations between log(κR) and 

AUDIT (r = .15) and weekly drinking quantity (r = .11) replicate the meta-analytic effects of r = .14 

between DRD and AUDIT and r = .11 between DRD and drinking quantity (Amlung et al., 2017). Our 

findings also confirmed the expected negative association between DRD and education. Contrary to prior 

findings (Amlung and MacKillop, 2014), income was not related to DRD. Yet, both income and education 

correlated negatively with AUDIT scores. Education notably emerged as the stronger predictor of alcohol 

use, which replicates the main finding from a large UK-based survey (Beard et al., 2019). 

In addressing our first research question, we discovered that DRD significantly contributes to explaining 

alcohol use, even after accounting for education and income. This finding remained robust in exploratory 

models using various measures of DRD and alcohol use, and accounting for subjective SES. However, 

when education and age were accounted for in an exploratory model, DRD did not explain additional 

variation. Older and more educated individuals reported lower problematic alcohol use and discounted 

rewards less steeply. As a recent meta-analysis did not find a systematic association between DRD and 

age (Seaman et al., 2020), this effect should be carefully confirmed in a subsequent study. Taken together, 

our results suggest that the link between DRD and alcohol use is not entirely confounded by SES. 

Lately, there has been a burgeoning debate regarding the validity of DRD as a construct in addiction 

research (Bailey et al., 2021; Exum et al., 2023, but see also Martínez-Loredo, 2023; Stein et al., 2023). 

Responding to the methodological recommendations brought up in this debate, we employed a fixed-trial 

intertemporal choice task which samples behavior across a sufficiently large variety of decisions, and 

report several measures of DRD/DLD. Importantly, we developed and validated our task using out-of-

sample prediction estimates in a prior study (Thome, Pinger, Halli, et al., 2022) and found that the 
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modified hyperboloid model predicts behavior better than other discounting models, but not perfectly 

(prediction probability of 0.68 in DRD and 0.71 in DLD). In the present study, hyperboloid model 

parameters and behavioral frequencies seem to yield the same results, supporting the robustness of our 

findings. 

Our results reinforce the need to critically evaluate the predictive power of DRD in relation to potential 

confounders. Due to small effect sizes (DRD explained 1.5% of variance when education and income were 

controlled for), even larger sample sizes would be needed to disentangle the complex relationship between 

DRD and alcohol use when more potential confounders are addressed.  

Adolescent SES showed no substantial association with alcohol use or delay discounting. This contrasts 

with previous findings linking addiction and monetary decision-making to socioeconomic hardship in 

childhood and youth (Hardaway and Cornelius, 2014; Tunney, 2022). The questions we utilized (parental 

education and subjective SES during adolescence) might be susceptible to biased memory or may not 

encompass all dimensions of adolescent SES. 

DLD and Problematic Alcohol Use 

Contrary to our expectations (H2), neither the Delayed Loss Discounting (DLD) parameter log(κL) nor the 

two other measures of DLD showed a significant correlation with problematic alcohol use or drinking 

quantity. As in our earlier study (Thome, Pinger, Halli, et al., 2022), we observed a large percentage 

(29.7%) of participants who almost never chose the larger-later loss, compared to only 2.9% of participants 

who almost never chose the smaller-sooner reward. These non-discounters did not differ significantly from 

“regular” discounters in education, income, age, drinking level or impulsivity, and their exclusion did not 

change the overall result. Taken together, we did not find any evidence that DLD is a relevant predictor 

of problematic alcohol use. However, this does not rule out a potential link between discounting of 

aversive consequences in other modalities (such as health). Arguably, negative consequences of alcohol 

cannot be reduced to monetary losses only, psychologically aversive outcomes such as craving, 

withdrawal and health problems may play a greater role. Therefore, using monetary DLD to measure 

flawed decision-making in addiction may not be entirely valid. While the same problem applies to 

monetary DRD, studies show moderate correlations between various reward discounting forms (e.g., 

money, health) and both hypothetical and real rewards. DLD lacks such evidence due to ethical or 

scalability issues in studying aversive consequences. 
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Impulsivity and Delay Discounting 

Delay discounting is commonly subsumed under the construct of impulsivity. However, some authors 

have criticized impulsivity as an arbitrary umbrella term for only loosely related processes (Stahl et al., 

2014). A popular solution to this issue is to interpret DRD as a facet of “impulsive choice” as compared 

to “impulsive action” etc. (McCarthy et al., 2016). Based on the weak correlations between BIS-15 scores 

and DRD rates in our study, we agree that delay discounting and impulsivity should not be used 

synonymously. Interestingly, BIS-15 scores were more strongly associated with alcohol use than any other 

variable (r = .36). 

  

Gender Differences 

We found no significant main effects of gender on DRD or DLD, but a main effect on AUDIT scores and 

drinking quantities. Visual inspection of the data suggested that the relationship between DRD and AUDIT 

scores is driven by male individuals, as indicated by a correlation coefficient of r = .25 for men compared 

to r = .05 for women (Figure 3). However, neither the difference in correlation coefficients nor the 

interaction between gender and DRD reached significance. Therefore, this observation warrants 

confirmation in a study with higher power. 

An early meta-analysis by Silverman (2003) suggested a small advantage for women in Delay of 

Gratification, whereas a later review by Weafer and de Wit (2014) concluded that women tend to discount 

rewards more steeply than men. In contrast, a recent meta-analysis reported steeper DRD and higher 

internet addiction rates among male participants (Cheng et al., 2021). Interestingly, two studies observed 

male-specific associations between DRD and AUD (Myerson et al., 2015) and expectations for alcohol 

analgesia (Ferguson et al., 2022), aligning with our observations. 

Women have lower rates of AUD and seek treatment less frequently, therefore being less represented in 

AUD research (Agabio et al., 2017). Notably, prominent meta-analyses by Amlung et al. (2017) and 

MacKillop et al. (2011) did not investigate gender differences. Our exploratory analysis suggest that 

gender differences should be considered in studies investigating dysregulated decision-making and AUD. 

Strengths and Limitations 

Using an online experiment, we were able to collect data from a sufficiently large sample to achieve 80% 

power for replication of the main effects. The sample can best be described as moderate drinkers with 

weekly drinking quantities (mean 24.43 alcohol units per week or 27.92g/day) and AUDIT scores (mean 

11.76) above commonly reported thresholds for risky drinking (AUDIT > 10, weekly consumption of > 
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14 units). Female participants averaged 20.80 alcohol units per week (or 23.8 g/day), exceeding the WHO 

threshold of 20g/day for low risk drinking in women. In contrast, male participants consumed 28.1 alcohol 

units per week (or 32.1 g/day), below the WHO threshold of 40 g/day for low-risk drinking in men. Figure 

1 reveals a pattern of weekend drinking for most participants. Our data, lacking diagnostic criteria, allow 

conclusions about the association between delay discounting and alcohol use rather than addiction 

specifically. In addition to that, the study sample is biased towards highly educated (61.3% university 

degree) and employed (80.4%) participants. Taken together, this possibly reduced our ability to detect 

strong socioeconomic effects. On the other hand, many DRD studies are confined to heavily affected 

patient groups, despite only a minority of individuals with alcohol use disorder seeking treatment. Our 

study therefore allows for the important exploration of DRD's influence on high-functioning heavy 

drinkers, contributing significantly to the field. Nonetheless, the absence of longitudinal data limits our 

ability to establish causal relationships between DRD and alcohol use. 

Data availability 

Raw data, analysis scripts and a codebook of all variables are publicly available at https://osf.io/85k3h/. 

All code needed for the setup and execution of the online study is available at 

https://github.com/MathieuPinger/discounting-online/tree/main/Discounting_AUD_Socioeconomic. 
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Note. SD = Standard Deviation, SE = Mean Standard Error, AUDIT = Alcohol Use Disorders Identification Test, DDQ = Daily Drinking 
Questionnaire, SES = Socioeconomic Status, BIS-15 = Barratt Impulsiveness Scale (Short Version). 

Table 1         
Descriptive Statistics (Numeric)         

Variable N Mean SD SE Min Max Skew Kurtosis 

Age 341 43.48 11.90 0.64 19.00 65.00 -0.19 -0.89 
Education 341 4.31 1.57 0.08 1.00 7.00 -0.40 -1.04 
AUDIT 341 11.76 6.06 0.33 0.00 39.00 1.04 1.70 
DDQ (8g Alc. Units per Week) 341 24.43 18.48 1.00 0.00 91.00 1.50 2.28 
Income Personal (£) 330 28000.00 22846.79 1257.67 5000.00 175000.00 2.24 8.11 
Income Household (£) 329 53541.03 39586.26 2182.46 5000.00 250000.00 2.09 6.48 
No. of Household Members 341 2.60 1.25 0.07 1.00 7.00 0.88 0.72 
Subjective SES 341 5.53 1.63 0.09 1.00 10.00 -0.33 -0.31 
Adolescent Well-Being 341 1.77 0.93 0.05 0.00 4.00 0.11 -0.32 
Avg. Parental Education 318 2.43 1.73 0.10 0.00 7.00 0.55 -0.63 
BIS-15 341 30.65 6.65 0.36 16.00 52.00 0.30 0.02 
Reward Discounting 
Rel. Discounting Frequency 341 46.88 18.54 1.00 0.00 100.00 -0.17 0.07 
β 341 0.89 0.68 0.04 0.00 2.00 0.52 -1.17 
s 341 0.49 0.37 0.02 0.00 1.00 0.02 -1.48 
log(κ) 341 -3.44 3.40 0.18 -9.21 6.91 0.63 0.81 
Discounting Factor 341 0.57 0.31 0.02 0.00 1.00 -0.38 -1.10 
Loss Discounting 

Rel. Discounting Frequency 340 25.08 22.20 1.20 0.00 100.00 0.53 -0.61 
β 340 1.11 0.78 0.04 0.00 2.00 0.04 -1.73 
s 340 0.30 0.38 0.02 0.00 1.00 0.83 -0.91 
log(κ) 340 -5.99 3.77 0.20 -9.21 6.91 1.07 0.54 
Discounting Factor 340 0.77 0.30 0.02 0.00 1.00 -1.24 0.34 
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Table 2 

Descriptive Statistics (Categorical) 
Variable Categories N % 

Gender Female 170 49.9 

 
Male 171 50.1 

Employment Employed 224 65.7 

 
Self-Employed 50 14.7 

 
Retired 15 4.4 

 
Student 14 4.1 

 
Unemployed 25 7.3 

 
Other 13 3.8 
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Table 2         
Means, standard deviations, and correlations with confidence intervals for the variables used in hypothesis testing.  

Variable AUDIT log(κ) - 
Reward 

log(κ) –  
Loss 

Personal 
Income     

              
AUDIT             
              
log(κ) - 
Reward .15**    

    
  [.04, .25]    

    
      

    
log(κ) –  
Loss .09 .25**   

    
  [-.02, .19] [.15, .35]   

    
      

    
Personal 
Income -.12* -.10 .00  

    
  [-.22, -.01] [-.20, .01] [-.10, .11]  

    
      

    
Education -.15** -.19** -.07 .26**     
  [-.25, -.05] [-.29, -.08] [-.17, .04] [.16, .36]     
      

    
Note. Values in square brackets indicate the 95% confidence interval for each correlation. * p < .05. ** p < .01. 
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Table 3  
Hierarchical Regression results using AUDIT sum scores as the criterion. 
  

Predictor b 
b 

95% CI 
[LL, UL] 

beta 
beta 

95% CI 
[LL, UL] 

sr2  
sr2  

95% CI 
[LL, UL] 

r Fit Difference 

Step 1 
(Intercept) 14.45** [12.51, 16.40]        

Education -0.45* [-0.88, -0.01] -0.11 [-0.23, -0.00] .01 [-.01, .04] -.14*   
Personal 
Income -0.00 [-0.00, 0.00] -0.09 [-0.20, 0.02] .01 [-.01, .03] -.12*   

        R2   = .026*  
        95% CI[.00,.07]  

Step 2          
(Intercept) 14.79** [12.83, 16.74]        
Education -0.36 [-0.80, 0.08] -0.09 [-0.20, 0.02] .01 [-.01, .03] -.14*   
Personal 
Income -0.00 [-0.00, 0.00] -0.08 [-0.19, 0.03] .01 [-.01, .02] -.12*   

log(κR) 0.22* [0.03, 0.42] 0.13 [0.02, 0.23] .02 [-.01, .04] .15**   
        R2   = .042** ΔR2   = .015* 

        95% CI[.01,.08] 95% CI[-.01, .04] 
          

 
Note. b represents unstandardized regression weights. beta indicates the standardized regression weights. sr2 represents the semi-partial correlation 
squared. r represents the zero-order correlation. LL and UL indicate the lower and upper limits of a confidence interval, respectively. 
* indicates p < .05. ** indicates p < .01
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Figures 

 

Figure 1. Average self-report drinking quantities over the course of the last 3 months as assessed by the 

Daily Drinking Questionnaire (DDQ). For easier interpretation, UK alcohol units (= 8g) were 

transformed into grams per day. 

 

 

Figure 2. Associations between hyperboloid discounting parameters log(𝜅) and AUDIT sum scores in 

the reward (N = 341) and loss (N = 340) condition. Higher log(𝜅) indicates steeper discounting. Note. * 

p < .05, ** p < .01. 
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Figure 3. Associations between hyperboloid discounting parameters log(𝜅) and AUDIT sum scores in 

the male (N = 171) and female (N = 170) sub-groups. Higher log(𝜅) indicates steeper reward 

discounting. * p < .05, ** p < .01.  
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Study 3: Supplementary Material 

Table S1                  
Means, standard deviations, and correlations of all variables               
Variable M SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1. log(κR) -3.44 3.4                               

2. Disc.Factor (Reward) 0.57 0.31 -.71**                             

      [-.76, -.66]                             

3. Rel. Frequency of Reward 
Discounting 46.88 18.54 .68** -.84**                           

      [.62, .73] [-.87, -
.81]                           

4. log(κL) -5.99 3.77 .25** -.30** .38**                         

      [.15, .35] [-.39, -
.20] 

[.29, 
.47]                         

5. Disc.Factor (Loss) 0.77 0.3 -.21** .35** -
.41** 

-
.87**                       

      [-.31, -.11] [.26, 
.44] 

[-.50, 
-.32] 

[-.89, 
-.84]                       

6. Rel. Frequency of Loss 
Discounting 25.08 22.2 .27** -.39** .45** .84** -

.85**                     

      [.17, .37] [-.48, -
.30] 

[.36, 
.53] 

[.80, 
.87] 

[-.87, 
-.81]                     

7. AUDIT 11.76 6.06 .15** -.13* .14** 0.09 -0.06 0.1                   

      [.04, .25] [-.23, -
.03] 

[.03, 
.24] 

[-.02, 
.19] 

[-.17, 
.04] 

[-.01, 
.20]                   

8. DDQ (8g Alcohol Units / 
week) 24.43 18.48 .12* -0.1 0.09 -0.01 -0.01 0.06 .68**                 

      [.02, .23] [-.21, 
.00] 

[-.02, 
.19] 

[-.11, 
.10] 

[-.11, 
.10] 

[-.05, 
.16] 

[.62, 
.74]                 

9. Education 4.31 1.57 -.19** .13* -
.18** -0.07 0.07 -0.08 -

.15** -0.1               

      [-.29, -.08] [.03, 
.24] 

[-.28, 
-.08] 

[-.17, 
.04] 

[-.04, 
.18] 

[-.19, 
.02] 

[-.25, 
-.05] 

[-.20, 
.01]               

10. Income Personal 28000 22846.79 -0.1 .14* -
.15** 0 0.01 0.02 -.12* -0.06 .26**  
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Variable M SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

      [-.20, .01] [.03, 
.24] 

[-.25, 
-.04] 

[-.10, 
.11] 

[-.10, 
.12] 

[-.09, 
.13] 

[-.22, 
-.01] 

[-.17, 
.05] 

[.16, 
.36]             

11. Income Household 53541.03 39586.26 -0.05 .12* -.12* -0.01 0.04 -0.01 -.13* -.12* .28** .65**           

      [-.15, .06] [.01, 
.22] 

[-.22, 
-.01] 

[-.12, 
.10] 

[-.07, 
.15] 

[-.12, 
.10] 

[-.23, 
-.02] 

[-.23, 
-.01] 

[.17, 
.37] 

[.58, 
.71]           

12. Subjective Socioeconomic 
Status 5.53 1.63 -.19** .21** -

.26** -0.06 0.1 -0.09 -.14* -.11* .30** .43** .55**         

      [-.29, -.08] [.10, 
.31] 

[-.36, 
-.16] 

[-.16, 
.05] 

[-.00, 
.21] 

[-.19, 
.02] 

[-.24, 
-.03] 

[-.22, 
-.01] 

[.20, 
.40] 

[.33, 
.51] 

[.47, 
.62]         

13. Adolescent Socioeonomic 
Status 1.77 0.93 -0.07 0.04 -0.06 0.01 -0.04 0.03 -0.06 -0.08 .14* 0.09 .20** .20**       

      [-.18, .03] [-.07, 
.14] 

[-.16, 
.05] 

[-.09, 
.12] 

[-.14, 
.07] 

[-.07, 
.14] 

[-.16, 
.05] 

[-.18, 
.03] 

[.03, 
.24] 

[-.02, 
.19] 

[.10, 
.31] 

[.09, 
.30]       

14. Average Parental 
Education 2.43 1.73 -0.08 0.08 -0.07 0.05 0.02 0.01 -0.07 -.12* .23** .11* .12* .13* .38**     

      [-.19, .03] [-.03, 
.19] 

[-.18, 
.04] 

[-.06, 
.16] 

[-.09, 
.13] 

[-.10, 
.12] 

[-.18, 
.04] 

[-.22, 
-.01] 

[.12, 
.33] 

[.00, 
.22] 

[.01, 
.23] 

[.02, 
.24] 

[.28, 
.47]     

15. BIS-15 30.65 6.65 .17** -.17** .17** 0.07 -0.05 0.08 .36** .15** -
.25** 

-
.19** 

-
.25** 

-
.29** -0.06 -0.09   

      [.06, .27] [-.27, -
.07] 

[.07, 
.28] 

[-.04, 
.18] 

[-.16, 
.06] 

[-.03, 
.19] 

[.27, 
.45] 

[.05, 
.25] 

[-.35, 
-.15] 

[-.29, 
-.09] 

[-.35, 
-.14] 

[-.38, 
-.19] 

[-.16, 
.05] 

[-.20, 
.02]   

16. Age 43.48 11.9 -.20** .12* -.12* -0.1 0.05 -0.07 -
.22** 0.02 0 0.03 -0.06 0 -

.21** 
-

.24** 
-

.22** 

      [-.30, -.09] [.01, 
.22] 

[-.23, 
-.02] 

[-.21, 
.00] 

[-.05, 
.16] 

[-.17, 
.04] 

[-.32, 
-.12] 

[-.09, 
.13] 

[-.11, 
.10] 

[-.08, 
.14] 

[-.17, 
.05] 

[-.10, 
.11] 

[-.31, 
-.11] 

[-.34, 
-.13] 

[-.32, 
-.11] 

Note. M and SD are used to represent mean and standard deviation, respectively.              
Values in square brackets indicate the 95% confidence interval for each correlation.              
* indicates p < .05. ** indicates p < .01.                
AUDIT = Alcohol Use Disorders Identification Test, BIS-15 = Barratt Impulsiveness Scale (Short Version)           
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Table S2.1 
  
Regression results using AUDIT as the criterion and Education and the Reward Discounting Factor as predictors 
  

Predictor b 
b 

95% CI 
[LL, UL] 

beta 
beta 

95% CI 
[LL, UL] 

sr2  
sr2  

95% CI 
[LL, UL] 

r Fit Difference 

(Intercept) 14.31** [12.43, 16.18]        

Education -0.59** [-1.00, -0.18] -0.15 [-0.26, -
0.05] .02 [.00, .06] -.15**   

        R2   = .023**  
        95% CI[.00,.06]  
          

(Intercept) 15.34** [13.24, 17.44]        

Education -0.53* [-0.94, -0.12] -0.14 [-0.24, -
0.03] .02 [-.01, .05] -.15**   

Reward 
Discounting 

Factor 
-2.24* [-4.33, -0.14] -0.11 [-0.22, -

0.01] .01 [-.01, .04] -.13*   

        R2   = .036** ΔR2   = .013* 
        95% CI[.01,.08] 95% CI[-.01, .04] 
          

 
Note. b represents unstandardized regression weights. beta indicates the standardized regression weights. sr2 represents the semi-partial 
correlation squared. r represents the zero-order correlation. LL and UL indicate the lower and upper limits of a confidence interval, respectively. 
* indicates p < .05. ** indicates p < .01. 
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Table S2.2 
  
Regression results using AUDIT as the criterion and Education and Relative Frequency of Reward Discounting as predictors 
 
  

Predictor b 
b 

95% CI 
[LL, UL] 

beta 
beta 

95% CI 
[LL, UL] 

sr2  
sr2  

95% CI 
[LL, UL] 

r Fit Difference 

(Intercept) 14.31** [12.43, 16.18]        

Education -0.59** [-1.00, -0.18] -0.15 [-0.26, -
0.05] .02 [.00, .06] -.15**   

        R2   = .023**  
        95% CI[.00,.06]  
          

(Intercept) 12.18** [9.48, 14.89]        

Education -0.51* [-0.92, -0.10] -0.13 [-0.24, -
0.02] .02 [-.01, .04] -.15**   

Rel. 
Frequency 
of Reward 

Discounting 

0.04* [0.00, 0.07] 0.12 [0.01, 0.22] .01 [-.01, .04] .14**   

        R2   = .036** ΔR2   = .013* 
        95% CI[.01,.08] 95% CI[-.01, .04] 
          

 
Note. b represents unstandardized regression weights. beta indicates the standardized regression weights. sr2 represents the semi-partial 
correlation squared. r represents the zero-order correlation. LL and UL indicate the lower and upper limits of a confidence interval, respectively. 
* indicates p < .05. ** indicates p < .01. 
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Table S2.3 
  
Regression results using AUDIT as the criterion and Education, Subjective Socioeconomic Status and log(kR) as predictors 
  

Predictor b 
b 

95% CI 
[LL, UL] 

beta 
beta 

95% CI 
[LL, UL] 

sr2  
sr2  

95% CI 
[LL, UL] 

r Fit Difference 

(Intercept) 15.88** [13.35, 18.41]        

Education -0.47* [-0.90, -0.04] -0.12 [-0.23, -
0.01] .01 [-.01, .04] -.15**   

SSS -0.38 [-0.79, 0.03] -0.10 [-0.21, 
0.01] .01 [-.01, .03] -.14*   

        R2   = .033**  
        95% CI[.00,.07]  
          

(Intercept) 15.97** [13.45, 18.49]        

Education -0.41 [-0.84, 0.02] -0.11 [-0.22, 
0.01] .01 [-.01, .03] -.15**   

SSS -0.32 [-0.73, 0.10] -0.09 [-0.20, 
0.03] .01 [-.01, .02] -.14*   

log(kR) 0.20* [0.01, 0.40] 0.11 [0.01, 0.22] .01 [-.01, .04] .15**   
        R2   = .045** ΔR2   = .012* 
        95% CI[.01,.09] 95% CI[-.01, .04] 
          

 
Note. b represents unstandardized regression weights. beta indicates the standardized regression weights. sr2 represents the semi-partial 
correlation squared. r represents the zero-order correlation. LL and UL indicate the lower and upper limits of a confidence interval, respectively. 
* indicates p < .05. ** indicates p < .01. 
SSS = Subjective Socioeconomic Status 
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Table S2.4 
  
Regression results using DDQ scores (= average weekly 8g alcohol units over the last 3 months) as the criterion and Education and log(kR) as 
predictors 
  

Predictor b 
b 

95% CI 
[LL, UL] 

beta 
beta 

95% CI 
[LL, UL] 

sr2  
sr2  

95% CI 
[LL, UL] 

r Fit Difference 

(Intercept) 29.36** [23.61, 35.12]        

Education -1.14 [-2.40, 0.11] -0.10 [-0.20, 
0.01] .01 [.00, .04] -.10   

        R2   = .009  
        95% CI[.00,.04]  
          

(Intercept) 30.36** [24.55, 36.18]        

Education -0.91 [-2.18, 0.37] -0.08 [-0.18, 
0.03] .01 [-.01, .02] -.10   

log(kR) 0.59* [0.00, 1.17] 0.11 [0.00, 0.22] .01 [-.01, .03] .12*   
        R2   = .021* ΔR2   = .011* 

        95% CI[.00,.06] 95% CI[-.01, .03] 
          

 
Note. b represents unstandardized regression weights. beta indicates the standardized regression weights. sr2 represents the semi-partial 
correlation squared. r represents the zero-order correlation. LL and UL indicate the lower and upper limits of a confidence interval, respectively. 
* indicates p < .05. ** indicates p < .01. 
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Table S2.5 
  
Regression results using AUDIT scores as the criterion and Education, Age and log(kR) as predictors 
  

Predictor b 
b 

95% CI 
[LL, UL] 

beta 
beta 

95% CI 
[LL, UL] 

sr2  
sr2  

95% CI 
[LL, UL] 

r Fit Difference 

(Intercept) 19.17** [16.24, 22.10]        

Age -0.11** [-0.16, -0.06] -0.22 [-0.32, -
0.12] .05 [.00, .09] -.22**   

Education -0.59** [-0.99, -0.19] -0.15 [-0.26, -
0.05] .02 [-.01, .05] -.15**   

        R2   = .071**  
        95% CI[.03,.13]  
          

(Intercept) 19.06** [16.13, 21.98]        

Age -0.10** [-0.16, -0.05] -0.20 [-0.31, -
0.10] .04 [-.00, .08] -.22**   

Education -0.53* [-0.94, -0.13] -0.14 [-0.24, -
0.03] .02 [-.01, .05] -.15**   

log(kR) 0.15 [-0.04, 0.34] 0.08 [-0.02, 
0.19] .01 [-.01, .02] .15**   

        R2   = .078** ΔR2   = .007 
        95% CI[.03,.13] 95% CI[-.01, .02] 
          

 
Note. b represents unstandardized regression weights. beta indicates the standardized regression weights. sr2 represents the semi-partial 
correlation squared. r represents the zero-order correlation. LL and UL indicate the lower and upper limits of a confidence interval, respectively. 
* indicates p < .05. ** indicates p < .01. 
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Table S3 

T-tests of selected variables between DLD non-discounters (n = 101, defined as <5% discounting) and DLD discounters (n = 

239) 

 

Mean 

(Non-Disc.) 

Mean 

(Disc.) 
Difference t df p 

Age 43.80 42.94 0.86 0.64 210.31 .523 

AUDIT 12.07 11.03 1.04 1.45 190.74 .148 

BIS-15 30.83 30.25 0.58 0.75 194.91 .456 

Education 4.33 4.26 0.07 0.39 189.70 .694 

Income Personal 29,206.01 24,895.83 4,310.18 1.81 254.32 .071 

Note. AUDIT = Alcohol Use Disorders Identification Test, BIS-15 = Barratt Impulsiveness Scale (Short Version) 
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Table S4 

T-tests of selected variables between male (n = 171) and female (n = 170) subgroups 

 

Mean 

(Male) 

Mean 

(Female) 
Difference t df p 

AUDIT 10.96 12.56 -1.59 -2.44 338.76 .015* 

DDQ 23.75 32.07 -8.32 -3.71 322.72 < .001*** 

BIS-15 30.42 30.88 -0.46 -0.64 327.66 .524 

Education 4.32 4.30 0.01 0.08 336.75 .936 

Income Personal 22,826.09 32,928.99 -10,102.91 -4.14 308.90 < .001*** 

log(κL) -5.88 -6.09 0.22 0.53 336.87 .597 

log(κR) -3.49 -3.39 -0.09 -0.25 338.07 .802 

Note. AUDIT = Alcohol Use Disorders Identification Test, DDQ = Daily Drinking Questionnaire, BIS-15 = Barratt Impulsiveness Scale 
(Short Version) 
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8 General Discussion 

8.1 Summary of the Study Results 

8.1.1 Study 1: Comparing Discounting of Potentially Real Rewards and Losses by Means of 

Functional Resonance Imaging 

The first study investigated decision-making during a monetary intertemporal choice task in 30 

healthy participants. Using a rather basic fixed-amount procedure, the study served as a baseline 

comparison between DRD and DLD both on a behavioral and neural level and informed the subsequent 

studies. 

Two novelties were employed: Firstly, decision-making was separated from outcome anticipation 

by combining a fixed-amount monetary ITC task with a MID task. This allowed for a relatively unbiased 

comparison of neural activity during decision-making in DRD and DLD and potentially eliminated the 

confounding differences between reward and loss anticipation (Oldham et al., 2018). Secondly, potentially 

real outcomes were used, rather than hypothetical outcomes as in most studies, as no study has compared 

real and hypothetical DLD. In the presented study, qualitative and behavioral data suggest that the 

induction of loss perception in the DLD task was successful, enabling a comparison between DRD und 

DLD in an ecologically valid manner. This however comes at the cost of reducing the span of temporal 

delays, thus not allowing for a comparison of discounting models. 

Behavior in DRD and DLD was significantly correlated, yielding effect sizes at the upper end of 

those reported in the literature (r = .56 for hyperbolic κ parameters). Interestingly, a substantial group of 

non-discounting participants was present in both DRD and DLD, and no influence of task condition on 

behavior was found. Therefore, the commonly observed sign effect was not present in this study, which 

could be due to small monetary amounts and short delays. No difference in decision-related brain activity 

between DRD and DLD was observed. Decision-making elicited activity in fronto-parietal brain areas 

commonly associated with the executive control network. No difference of brain activity during immediate 

and delayed choices was observed, challenging the Competing Neurobehavioral Systems Theory 

described earlier. Regarding the overarching research questions of this dissertations, the first study 

replicated that monetary losses are subject to Delay Discounting (Q1), but did not provide information on 

the underlying discounting function. There was no evidence for dissociable behavioral patterns (Q2) or 

dissociable brain activity for DLD and DRD (Q3). Taken together, the study provided evidence for similar 

processes underlying DRD and DLD. 
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8.1.2 Study 2: A Model Guided Approach to Evoke Homogeneous Behavior During Temporal 

Reward and Loss Discounting 

The second study aimed at thoroughly comparing DRD and DLD in 198 healthy participants, using 

a novel adaptive intertemporal choice task. The task was implemented in a custom full-stack web 

framework developed by the author of the dissertation project. Behavior was sampled in two experimental 

runs: in the first run, participants performed a fixed-amount task sampling a wide array of possible 

monetary amounts and delays. After the first run, participants completed surveys. Meanwhile, a server-

based script inferred individual behavioral models and generated individualized trials with predicted 

choice probabilities for the second run. This procedure is unique and differs from other adaptive Delay 

Discounting tasks which adapt parameters on a trial-by-trial basis (Ahn et al., 2020; Pooseh et al., 2018). 

In contrast to these trial-by-trial procedures, the new paradigm enables calculation of out-of-sample 

prediction errors to compare behavioral models. The online setting further enabled a series of three 

experimental iterations, each modifying the procedure based on the results of the last one. An influential 

commentary by Bailey et al. (2021) recently criticized the use of short and adaptive discounting tasks 

which do not sample a wide range of behavior and do not allow for a falsification of the assumed 

discounting model. The presented procedure offers a promising new alternative. 

The study provides strong evidence in favor of hyperboloid models, with a slight advantage for the 

modification suggested by Rachlin (2006) whereby the scaling parameter s is only raised to the delay 

component. Importantly, the same winning model was found in DRD and DLD, indicating similar 

behavioral patterns. The study replicated both the sign effect (less DLD than DRD) and a percentage of 

DLD-non-discounters (24% in the last experiment) almost exactly matching the numbers observed by 

previous studies (Myerson et al., 2017; Yeh et al., 2020). Similar to Study 1, the moderate correlations of 

DRD and DLD (r = .53 in the first run, r = .35 in the second run) again point towards similar behavioral 

patterns. The significant negative correlation between AUDIT scores and DLD discount factors in the 

second run (r = -.14), but not DRD, should be interpreted with caution, as the distribution of AUDIT scores 

demonstrates a heavy floor effect. Note that discount factors present an opposite polarity to other measures 

of discounting, i.e. a higher discount factor indicates less discounting. 

The variation in effects between the first and second run could be explained by the moderate 

reliability and accuracy of all DRD parameters. Overall, the between-run correlation of inferred discount 

factors was r = .60 for DRD and r = .65 for DLD, indicating significant inconsistencies in choice behavior. 

Indeed, a substantial prediction error remained throughout all experiments, and hyperboloid models were 

able to predict choice behavior with 68% (DRD) and 71% (DLD) probability. Crucially, using the 

hyperbolic model reduced prediction accuracies to 57% (DRD) and 55% (DLD), and inferred hyperbolic 

discount factors did not correlate between the first and second run. Similarly, the correlation coefficients 
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between DRD and DLD obtained from the hyperbolic model were significantly lower than those from the 

hyperboloid model (r = .03 in the first run, r = .24 in the second run). As explained earlier, the literature 

provides very inconsistent correlations between DRD and DLD. Study 2 clearly demonstrates that 

measures of Delay Discounting are only moderately reliable, and that model selection has a large influence 

on effect sizes. The hyperbolic model, on which a majority of findings in the literature is based on, 

performed especially weakly. Combined with small sample sizes, inconsistent findings are readily 

explained. Regarding the overarching research questions of the project, Study 2 provided rich evidence on 

the best fitting discounting function for DLD (Q1) as well as differences and similarities between DLD 

and DRD behavior patterns (Q2). Limited and exploratory evidence also hinted at an association between 

DLD and alcohol use (Q4), but note the low variance in AUDIT scores. 

 

8.1.3 Study 3: The Association between Reward and Loss Discounting, Socioeconomic Status and 

Alcohol Use 

The third study applied the previously developed web-framework to a sample of 347 moderate-to-

heavy drinking participants. The sample size provided sufficient power to find small correlations between 

Delay Discounting and alcohol use, as present in the literature. The aim was to 1.) replicate the association 

between problematic alcohol use and DRD, 2.) expand the scope to DLD and 3.) investigate the potential 

confounding influence of socioeconomic status (SES) on these associations. The study revealed a 

significant correlation between DRD and alcohol use consistent with previously reported effect sizes 

(r = .15). Importantly, DRD remained a significant predictor when accounting for a variety of SES, 

explaining 1.7% of incremental variance. However, the study findings indicates that a number of factors 

(education, age and gender) should be considered in future studies, which would necessitate even larger 

sample sizes.  

In this study, DLD did not emerge as a significant predictor of alcohol use, neither was it 

significantly associated with any sociodemographic or socioeconomic measure. Importantly, a bias 

stemming from the 29% DLD-non-discounters could be excluded. Similar to Study 2, a moderate 

association between DRD and DLD could be observed (r = .35 for discount factors). 

In summary, the study replicates the findings of Study 2 and provides robust evidence against an 

association between DLD and alcohol use (Q4). 

 

8.1.4 Evaluation of Research Questions 

Taken together, the presented studies demonstrated a systematic and time-dependent devaluation 

of future losses (Q1) and replicated common patterns of DRD and DLD, namely, the sign effect and a 

substantial proportion of non-discounting in DLD. Apart from these differences, DRD and DLD rates 
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appeared to be consistently correlated with moderate effect sizes, and the same modified hyperboloid 

model predicted behavior in both tasks most successfully (Q2). Importantly, the moderate reliability of 

discounting parameters (Study 2) sets a natural upper boundary for correlations between DRD and DLD. 

In addition, no differences in brain activity during DRD and DLD tasks were found (Q3). In the light of 

these findings, despite differences in behavioral patterns, it can be argued that DRD and DLD share more 

commonalities than differences, and rely on the same underlying neuro-cognitive processes. The 

difference between DRD and DLD appears to be driven by more shallow DLD and non-discounters, who 

did not differ from other participants in any analyzed measure.  

DLD was not found to be a predictor of either quantity of alcohol use or severity of alcohol-related 

problems in a large and varied sample (Q4). Therefore, the continuation of the DLD paradigm in form of 

an fMRI study with AUD patients was discarded, and Q5 will not be followed. Note that this project did 

not realize a comparison of DLD in AUD patients versus in healthy controls. A small difference cannot be 

ruled out completely, as group comparisons in extreme groups typically yield larger effect sizes than 

dimensional analyses. However, the goal of this work was to investigate DLD as a possible 

pathomechanism. If a behavioral construct does not explain significant variance in alcohol use despite 

efforts to maximize measurement accuracy (Study 2), variance in the dependent variable and statistical 

power (Study 3), it is difficult to argue in favor of resource-intensive patient and fMRI studies.  

Two possible conclusions can be drawn: Either aversion discounting is simply not a relevant 

pathomechanism in addiction, or aversion discounting is a relevant pathomechanism, albeit inadequately 

operationalized as monetary DLD. The following sections will examine both directions in more detail. 

First, an integrated theory of Delay Discounting (both DRD and DLD) as a functional pathomechanism 

will be presented. Then, the question of operationalization will be further examined. Despite a plethora of 

research on associations between Delay Discounting and addiction, the mechanistic role of discounting in 

addiction, i.e., what the mechanism "actually does", is rarely addressed. To qualify for a pathomechanism, 

the precise psychopathological function of Delay Discounting needs to be delineated, in other words, a 

causal theory is needed. The claim that Delay Discounting is a behavioral marker of virtually all aspects 

of addiction (Bickel et al., 2014) and many other disorders (Amlung et al., 2019) hints at a lack of such a 

specific and testable theory. Insufficient theory building encourages vague hypotheses, weak 

operationalization and arbitrary interpretation of results (Oberauer & Lewandowsky, 2019). The 

Competing Neurobehavioral Systems Theory (Bickel et al., 2018) of addiction posits an overactive 

impulsive valuation system which is correlated with increased Delay Discounting. Overall, the meta-

analytic evidence for the fundamental assumption of this theory is weak (Schüller et al., 2019; Souther et 

al., 2022), and the theory does not explain how the proposed neurobehavioral systems become 
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dysregulated. Therefore, the next section attempts to delineate how and when Delay Discounting (both of 

positive and negative consequences) could function as a mechanism in addiction. 

 

8.2 A Mechanistic Model of Delay Discounting 

Reward Discounting is posited only as a predisposing factor rather than a gauge of severity and a 

behavioral marker of all stages of addiction, including treatment success, as claimed by Bickel et al. (2014). 

Steep DRD results in a choice bias in favor of smaller-sooner rewards due to devaluation of larger-later 

rewards. This may arguably not be relevant once an alcohol use pattern has manifested into a pathological 

AUD. At this juncture, the subjective incentive value of drug use is not a small immediate reward weighed 

against larger later rewards anymore, but instead a very large immediate reward. This is a central 

assumption of the Incentive Sensitization theory (Berridge & Robinson, 2016) and receives support from 

neurobiological alterations in the valuation system of humans and animals facing drug cues (Ray & Roche, 

2018; Schultz, 2011), as well as clinical observations of subjective craving as an early symptom of 

addiction (Morgenstern et al., 2016). Abstinence and especially withdrawal further increase subjective 

drug reward values due to negative emotional states (Nesse & Berridge, 1997; Verharen et al., 2020). 

Intuitively, the finding of increased DRD rates (for both monetary and substance rewards) in heroin- and 

nicotine-dependent individuals undergoing withdrawal (Field et al., 2006; Giordano et al., 2002) does not 

necessarily reflect an increased devaluation of delayed rewards, but could be due to an upvaluation of 

immediate rewards during an acute negative state. 

However, the choice bias of DRD does fill a theoretical gap during the onset of addiction. 

According to all major theories, a necessary step to develop addiction is learning the positive value of drug 

consumption in specific contexts (e.g., anxiety reduction). Mechanisms such as operant conditioning 

subsequently amplify the likelihood of selecting drug use in similar situations. However, while many 

individuals learn at least some positive associations with alcohol over time, not all progress to AUD. This 

phenomenon is not completely explained by habit formation or incentive sensitization. In these initial 

stages, individuals with pronounced DRD may tend to favor the immediate value offered by drug use more 

frequently due to discounting alternative options (e.g., meditation, sports, socializing) perceived to require 

more time. Consequently, this pattern could result in repeated consumption and thus increased 

reinforcement. Therefore, susceptibility of developing a vicious circle may be increased for individuals 

with steeper DRD. This model is supported by the observation that DRD rates seem to predict future 

substance use, but not vice versa (Fröhner et al., 2022), and higher DRD rates in individuals with a family 

history of addiction (Rodriguez-Moreno et al., 2021). It would also deliver an explanation why DRD rates 

do not consistently predict treatment outcomes (Exum et al., 2023). 
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Within this model, a prominent role for aversion discounting would not be assumed. At the onset 

of the addiction circle, negative consequences of drug use are not imminent nor expected. For instance, 

drinking a few cans of beer to fend off anxiety would not lead to any health consequences and probably 

not even to a hangover. Therefore, abstaining from drinking is not a minor aversive option weighed against 

future negative consequences. As the vicious circle progresses, future negative consequences become 

increasingly imminent, yet abstaining from drinking also becomes more aversive for multiple reasons. 

Again, withdrawal and craving increase the aversive value of abstaining from drug use. In later stages, 

compromised mental well-being and socio-economic stability as a consequence of addiction may further 

diminish the subjective aversive value of drug consumption, as individuals have “less to lose” (Pickard & 

Ahmed, 2016; Verharen et al., 2020). Consequently, abstaining from consumption becomes a highly 

aversive immediate option weighed against future adverse events. Therefore, aversion discounting is not 

expected to be influential during either early or late stages of addiction. 

The proposed model is in line with the presented studies and previous findings, as it provides a 

causal explanation for both small effects of DRD and a lack of consistent DLD effects. Moreover, the 

model does not rely on inherent differences between neuro-cognitive processes involved in DRD and DLD, 

but rather on different mechanistic functions in the psychopathology of addiction. Lastly, the model 

seamlessly integrates with existing theories of addiction. It fills open gaps in theories centered around 

learning processes without conflicting with currently debated models of habit formation (Ersche et al., 

2016) and goal-directed behavior under negative states (Hogarth, 2020). The same holds true for reward 

deficiency theories, as steep DRD could interact with or follow from blunted dopaminergic responses, 

thus forming a related risk factor for addiction. Moreover, if later stages of addiction result in a decline in 

the dopamine-driven incentive value of alternative rewards, the significance of DRD would be further 

diminished, as the subjective value of larger-later rewards from abstinence diminishes. Instead of 

contrasting contradictory theories against each other or suggesting a completely new theory, the model 

demonstrates an integration of existing theories. Not every observed association with addiction requires 

its own causal theory for the development of addiction. 

 

8.2.1 Methodological Considerations and Future Perspectives 

The second possible conclusion from the presented study is that aversion discounting could play a 

role in addiction but is not adequately represented by monetary DLD. The first limitation stems from the 

use of monetary outcomes. Although financial losses are certainly among the aversive consequences of 

addiction, other domains such as health or social life may be more prominent. However, given that 

discounting rates in other domains such as health and pain are comparable to or lower than those for 

monetary losses (Chapman, 1996; Harris, 2012), it is unlikely that the absence of effects is solely 
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attributable to the monetary DLD task utilized in the presented studies. Nevertheless, discounting rates in 

different domains are only moderately correlated (Chapman & Elstein, 1995), and the discounting of other 

aversive consequences in addiction remains an open question. 

The second limitation pertains to the complexity of decision-making in real-life situations. In 

contrast to discounting paradigms, actual decisions in addiction involve both rewarding and aversive 

outcomes at different delays and probabilities. Drugs offer an immediate, certain and strong reward paired 

with uncertain negative future consequences. Drinking alcohol to deal with stress has a quick and reliable 

positive effect, but one may not know whether this single drinking occasion will lead to negative 

consequences, and if so, when and how likely that would happen. In the same example, abstinence would 

be immediately and certainly aversive, whereas its future benefits remain ambiguous and uncertain. 

Research has historically concentrated on separate discounting of delays and probabilities (Kyonka 

& Schutte, 2018; Odum et al., 2020), which have been robustly identified as distinct and largely 

uncorrelated processes (Mitchell & Wilson, 2010; Yeh et al., 2020). Additionally, dissociable activation 

between Probability and Delay Discounting has been observed in the posterior cingulate cortex (Peters & 

Büchel, 2009; Weber & Huettel, 2008). However, recent studies have attempted to combine Delay and 

Probability Discounting into one paradigm and revealed that both dimensions appear to interact in a 

multiplicative (rather than additive) fashion (Białaszek et al., 2020; Cox & Dallery, 2016). A number of 

studies have stressed that even pure Delay Discounting tasks involve implicit ambiguity and risk, therefore 

an explicit operationalization of these dimensions might lead to a unifying model (Epper & Fehr-Duda, 

2012; Ikink et al., 2019). 

Neuroscientific investigations support this notion. Experiments with non-human primates have 

revealed distinct yet interacting neural populations encoding delayed reward value and uncertainty 

processing (O’Neill & Schultz, 2010). It has been proposed that a conflation of value and uncertainty 

signals serves as a pathomechanism in addiction decision-making (Schultz, 2011). Human fMRI studies 

have further underscored this by demonstrating shared substrates for subjective value signals across 

discounting modalities (probability, delay, effort) in the medial prefrontal cortex and ventral striatum 

(Miedl et al., 2012; Seaman et al., 2018). In summary, behavioral and neural findings strongly indicate 

dissociable yet interacting processes associated with the evaluation of different aspects of decision-making 

components. If aversive consequences are subject to more subtle and complex discounting processes 

involving gain-loss trade-offs as described above, pure DLD tasks may not capture them. Therefore, as a 

direct continuation of this dissertation’s project, a model-based task to predict complex decision-making 

in combined delay and probability discounting is currently under development. That is, participants will 

have to decide between immediate-certain (e.g. “lose 5€ now with 100% probability) and later-uncertain 

rewards and losses (e.g. “lose 10€ in 1 year with 70% probability”). 
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As a last note, the symptom of “continued consumption despite negative consequences” could be 

explained without any discounting at all. It could be simpler, such as a difference in the estimation of 

outcome probabilities and delays. For instance, an individual anticipating meditation to be swift and 

effective might opt for meditation over drinking, while another who perceives meditation as time-

consuming, challenging to learn, and occasionally ineffective might choose drinking instead. In this 

scenario, the mechanism would involve the estimation of expectations rather than discounting. Likewise, 

one person may assess that alcohol results in swift and highly likely negative health consequences, while 

another might highlight well-known individuals who have never experienced alcohol-related issues 

despite drinking. The fundamental mechanism in this context would be outcome evaluation rather than 

discounting. 

 

8.2.2 Clinical Implications 

As evidenced by most psychiatric classification systems such as the Diagnostic and Statistical 

Manual of Mental Disorders (DSM-5), diagnosis and treatment of mental health problems is traditionally 

based on categorical definitions of disorders that root in observable symptoms. For instance, the DSM-5 

splits addictions into nine substance categories and gambling disorder, with other putative behavioral 

disorders still missing (American Psychiatric Association, 2013). Consequently, recommendations for and 

development of evidence-based therapy largely rely on these categories (Chambless & Hollon, 1998). In 

recent years, the validity of diagnostic categories has been questioned, and underlying transdiagnostic 

processes have come under the spotlight (Hayes et al., 2020; Schaeuffele et al., 2021). For instance, 

neurobiological, epidemiological and behavioral research suggests common underlying processes within 

substance-based and behavioral addictive disorders (Grant & Chamberlain, 2016). In 2008, RDoC was 

proposed as a framework of fundamental mechanisms for investigating mental health and advancing 

treatment modalities. RDoC aimed to identify underlying brain circuits across disorders using behavioral, 

biological and genetic markers (Cuthbert, 2022; Insel et al., 2010). Within these developments, Delay 

Discounting has been a popular target mechanism to improve understanding and treatment of addiction 

(Lempert et al., 2019). As this dissertation has attempted to integrate Delay Discounting as a functional 

mechanism within existing theories, does Delay Discounting cater towards mechanism-based addiction 

treatment? 

First, it needs to be acknowledged that evaluation of short- and long-term consequences of 

behavior is already a core concept of cognitive behavioral therapy. In fact, behavioral analysis 

systematically weighs future consequences of behavior (such as drug use) against each other to understand 

vicious circles and develop alternatives (Abbruzzese & Kübler, 2013). In addiction therapy, negative and 

positive consequences of drug use and abstinence are assessed using a 4-field schema (Lindenmeyer, 2016; 
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Mann et al., 2006). This begs the question whether more research on Delay Discounting can contribute 

further advantages to the current addiction therapy. A straightforward translation from research to practice 

would involve precisely evaluating temporal delays (and probabilites) of future outcomes when applying 

behavioral analysis. This would prompt explicit decision-making between outcomes at different delays 

and probabilities, enabling the use of other cognitive techniques to modify behavior. However, the 

evidence for a direct manipulation of Delay Discounting and its influence on therapy outcomes is mixed 

(Exum et al., 2023; Scholten et al., 2019). 

Following the integrative model of Delay Discounting suggested earlier, specific Delay 

Discounting-oriented interventions may be an ideal target during initial steps of addiction therapy, e.g. 

detoxification treatment. In this stage, it would be expected that devaluation of future outcomes plays a 

minor role compared to the excessive overvaluation of drug rewards and incentive sensitization to drug 

cues. However, over longer periods of abstinence, assuming that craving and the associated overvaluation 

of drug rewards diminish (Wang et al., 2013), Delay Discounting of rewards might become a fruitful target 

to support long-term abstinence, especially in patients with steep DRD. For instance, interventions could 

target the anticipated delay and effect of alternatives to drug use in situations of acute stress, i.e. 

emphasizing that these strategies can be quick and rewarding. Interestingly, even Delay Discounting of 

aversive consequences could prove to be a useful target in such a long-term rehabilitation setting. Patients 

who have experienced negative consequences of addiction and who excessively discount future events 

could be more vulnerable to relapsing. However, longitudinal data and improved methodology are 

necessary to evaluate a clinical relevance of aversion discounting beyond the findings reported in this 

dissertation. 

 

8.2.3 Final Remarks 

The first conceptual study on discounting of aversive consequences noted that “studies […] fail to 

indicate any characteristic common to the alcoholic” (Vogel-Sprott & Banks, 1965). Sixty years later, it 

can be concluded that addiction is a highly complex process wherein no single variable can explain more 

than a fraction of variance in the development and continuation of AUD (Whelan et al., 2014). What holds 

true from Vogel-Sprott and Bank’s statement is that Delay Discounting does not qualify as a “characteristic 

common to the alcoholic”, i.e. a behavioral marker of addiction (Bickel et al., 2014). With its small effect 

sizes, Delay Discounting of rewards should be considered as one among many risk factors, and Delay 

Discounting of aversive consequences might be an even smaller one, if relevant at all. Future studies will 

need to clarify whether more intricate decision models can better encapsulate the various facets of 

addiction. 
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