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Introduction

Technological change is one of the main drivers of long-term economic growth, and

economists have identified the introduction of new technologies as a key factor for

increasing productivity (Romer, 1990; Jones and Liu, 2024). Since the invention

and widespread availability of the Internet, rapid advances in digitalisation have

increased productivity and enabled new business models, contributing to economic

growth. In recent years, artificial intelligence (AI) has continued to push the

boundaries of what machines can do, and the question of how this technology affects

the economy and labor markets, in particular, is gaining importance (Brynjolfsson

et al., 2018; Agrawal et al., 2019). The development of new AI technologies has

been rapid, and a particularly striking example is the introduction of ChatGPT

in 2022. This new technology based on large language models gained 1 million

active users in just 5 days and continues to grow rapidly (Marr, 2023). AI and large

language models are now so prevalent that they are considered general-purpose

technologies (Eloundou et al., 2023).

As with previous waves of rapid technological change, there is a widespread

fear of technological unemployment caused by the automation effects of digitali-

sation. Large-scale unemployment is predicted when machines become better at

performing tasks where humans previously held an advantage, and AI is pushing

these boundaries even further (Kessler, 2023). Most of these concerns start with the

tasks humans perform in their jobs and the number of tasks AI can (potentially)

1
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perform. In labor economics, this is modeled theoretically and has been labeled

the task-based approach (Autor et al., 2003; Acemoglu and Autor, 2011). In a

production process that uses capital and labor as inputs to produce goods or services,

the inputs are divided to perform different sets of tasks. The division of tasks

between capital and human labor depends on various factors - the technological

feasibility of automating a given task being one of them.

Task-based models are the theoretical background for the three empirical essays

in this thesis. In each essay, I investigate different aspects of the labor market

impacts of digitalisation. The focus is on artificial intelligence and how its impact

compares to the impact of robots, which represent an established automation

technology. Robots are a technology that has been heavily deployed since the late

1990s and that primarily automates routine manual tasks in manufacturing (Graetz

and Michaels, 2018). Yet, the empirical evidence on the overall employment effects

of robots remains mixed. Some studies show that robots increase employment and

make adopting firms more productive (Koch et al., 2021). Others find negative

employment effects on a regional level (Acemoglu and Restrepo, 2020).

In contrast to robots, AI is a more recent technology that potentially affects dif-

ferent tasks. While robots primarily focus on routine manual tasks, AI technologies

can automate and complement human labor in a wide range of tasks. One of these

tasks is decision-making, where AI systems analyze huge quantities of information

to ultimately guide or automate human decision-making (Agrawal et al., 2019).

With the availability of generative AI, it can even perform creative tasks such as

generating pictures and videos or composing music. Overall, there are abundant

examples that show how AI can automate tasks but also complement human labor

and make it more productive. While the tasks performed by robots are relatively

clearly defined, it is more difficult to gauge the tasks affected by AI. While there is

an automation component, AI also complements human labor in a wide range of

tasks and introduces completely new tasks. One example is prompt engineering,

a task that did not exist before the introduction of AI chatbots.
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The question of which tasks, occupations, and workers are affected by AI and

robotics lies at the heart of all three essays in this thesis.

The first essay investigates the aggregate employment and wage effects of AI

and robotics in Germany. The second zooms in on the effect of AI and robotics

on the task content of occupations and individual worker careers. The third essay

investigates the impact of basic and advanced digital technologies on job quality

and employer-provided training.

In the second chapter of this thesis, which is joint work with Christina Gathmann,

we use patent data to develop new measures for the advancement of AI and robots

and study their impact on employment and wages in Germany at the firm and

local labor market level. We find that patenting in robots and AI technologies

increases over time, with robots taking off in the early 2000s and AI starting to

expand around 2015. For German firms, we find that those in industries more

exposed to AI experience negative employment effects. In contrast, robot exposure

decreases low-skill employment but increases medium- and high-skill employment.

AI positively affects wages, while robot exposure is associated with lower wages.

Next, we analyze the impacts of AI and robot exposure on local employment and

wages using a shift-share design for German districts. At the local level, we find

negative employment effects for AI, which are strongest for medium-skilled workers,

confirming the hypothesis that AI affects workers higher up on the skill distribution.

Robots have a small positive overall effect on local employment, but they also

negatively affect the employment of low-skill workers.

Compared to the growing number of studies on the aggregate employment and

wage effects of AI and robots, the impact on the actual tasks performed at work

and the outcomes of individual workers are relatively less studied. In the third

chapter, which is joint work with Christina Gathmann and Erwin Winkler, we

contribute to answering this complex question by zooming in on how AI and robots

affect the task content of occupations. We use the same patent-based measures of

AI and robot exposure as in the previous section and combine them with survey

data on tasks performed at work as well as with administrative employment records
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of workers. We find that AI and robots differ substantially in their impact on

the task content of jobs. Robot exposure mainly decreases the share of routine

(manual) tasks. AI, in contrast, shifts the task content from non-routine abstract

tasks towards routine tasks. This happens within occupations and is strongest for

low- and medium-skilled workers in manufacturing. Next, we link our measure to

individual-level data from Germany and show how AI and robots affect workers.

We find that exposure to AI increases the likelihood of switching jobs, resulting in

decreased days employed and a small negative effect on wages. The job changes

mainly occur within the same 2-digit industry. Robot exposure, in turn, decreases

the likelihood of job switches and makes worker careers more stable.

As shown in the first two essays, AI and robot exposure affect the task content

of occupations, individual worker careers, and aggregate employment and wages

at the level of firms and local labor markets. Yet, new digital technologies affect

not only the number of jobs and the wages paid to workers but also the quality

of jobs. Compared to the number of studies focusing on the quantity of jobs,

the quality of jobs receives relatively little attention. Yet, it is an increasingly

important topic to study as it is directly related to employee well-being, health,

and productivity (OECD, 2023).

In the fourth chapter of this thesis, I study the impact of digitalisation on job

quality and employer-provided training in Germany. Using novel data that com-

bines an employer-employee survey with administrative records and occupation-level

measures for digitalisation, I differentiate between the impact of basic digital tech-

nologies, such as computers and computer-controlled machines, and that of advanced

digital technologies, such as AI and machine learning. AI exposure is associated

with better working conditions, while exposure to basic digital technologies is asso-

ciated with worse working conditions. The same pattern applies to participation in

employer-provided training. Exposure to AI increases the propensity to participate

in further training, whereas exposure to basic digital technologies reduces it.

I further show that participating in employer-provided training can mitigate

some of the negative effects of basic digital technology exposure and that the
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negative effects are stronger in firms that invest in digital technologies. This

highlights the role of firms in technology adoption decisions and opens up the scope

for employee-centric personnel management to counter potential negative effects.

In the following, I will introduce each chapter in more detail.

1.1 Labor Market Effects of AI and Robotics

The second chapter investigates the impact of AI and robot exposure on employment

and wages in Germany. This effect is analyzed at two different levels: at the firm

level and then at the level of local labor markets.

We develop a new measure for the advancement of AI and robots based on

patent data from the European Patent Office. To create this measure, we first

perform Natural Language Processing steps on the text of patents to classify them

into AI or robot technologies. Next, we use a probabilistic mapping (Lybbert and

Zolas, 2014) to map them to industries where they are used. This step allows us to

estimate the effects of patenting on technology users and not only on inventors.

Combining the patent-based measures with administrative data on German

plants between 1993 and 2021, we investigate how increased exposure to AI and

robots affects employment and wages. The data allows us to disentangle further

the effects on workers of different skill and age groups.

At the plant level, we find negative employment effects of AI that are mostly

driven by medium- and high-skill employment. For robots, we find negative employ-

ment effects for low-skilled workers but positive effects for medium- and high-skilled

workers. The wage effects of AI are positive for all skill groups, while robot exposure

is associated with lower wages.

In the next step, we aggregate the administrative data at the district level

and investigate the effects of AI and robot exposure on local labor markets. To

do so, we employ a shift-share design that uses the advancement in patenting as

a shift in the technology frontier, which is attributed to districts based on their

industry-employment structure in the base year 1993 (Bartik, 1993; Autor et al.,

2013; Acemoglu and Restrepo, 2020). For robots, we find a positive effect on
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employment but a small negative effect on wages. AI has negative overall effects

on both employment and wages. We next investigate heterogeneous effects by skill

level and find that robots negatively affect the employment of low-skilled workers

but have positive effects on medium-skilled workers. AI has negative employment

effects on both low- and medium-skilled workers.

Our study provides a new way to estimate the AI exposure of industries and

local labor markets in Germany, which contributes to the literature on patent-based

technology measures (Griliches, 1990; Moser, 2005, 2013; Mann and Püttmann,

2023; Webb, 2020; Autor et al., 2024; Prytkova et al., 2024). Using our measures,

we contribute to the recent but growing literature on the labor market impacts of

AI. By including robot exposure in our analysis, we can show that there are notable

differences in the labor market effects of the two technologies. This highlights

that predictions of the automation effects of AI can not be drawn from previous

technologies such as robots.

1.2 AI and the Task Content of Occupations

The second essay of this thesis continues to explore the effects of AI and robots

on the labor market in a different dimension. While the number of studies on the

aggregate economic effects of AI and robots is growing, there is still relatively little

evidence on how those changes affect the task content of occupations.

In the task-based model, every occupation is composed of a set of tasks that

humans perform and that technology can complement or automate (Autor et al.,

2003; Acemoglu and Autor, 2011). However, measuring changes in the task content

of occupations is challenging due to data limitations and the inherent flexibility

and heterogeneity of jobs. To investigate these changes for Germany, we combine

the patent-based AI and robot exposure measures introduced in the previous

section with additional data. We use a survey on tasks performed on the job and

administrative records on individual worker employment spells.

This unique combination of data allows us to structure our analysis in two

steps. First, we investigate how the task content of occupations changes over
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time depending on the exposure to AI and/or robots. Second, we investigate

how worker careers are affected by technology exposure, for example, if higher

exposure to AI leads to lower job stability.

We find that AI and robot exposure differ in their impacts on tasks. AI exposure

leads to a shift from non-routine abstract tasks to more routine tasks. This is in line

with the hypothesis that AI enables ’smarter’ machines that can now perform more

non-routine tasks, whereas human operators are performing more routine supervision

or complementary tasks. For robots, we can confirm the findings of previous studies

that they automate manual routine tasks and, therefore, shift the task content

of occupations in robot-exposed industries to more non-routine tasks. The task

shifts occur mainly within narrowly defined occupations within manufacturing and

services and are stronger among low- and medium-skilled workers.

Next, we investigate how AI and robot exposure affect individual worker careers.

We find that AI exposure is associated with a higher job-switching probability,

leading to fewer days employed and a small negative effect on cumulative earnings

over 5 years. Workers who change their jobs tend to do so within the same 2-digit

industry as their original job. For robots, in turn, we can confirm a finding of an

earlier study (Dauth et al., 2021) that exposure to robots decreases job mobility as

workers are less likely to change employers or occupations. Employees in industries

that are more exposed to robots are more likely to stay in their jobs and industries.

Overall, we find that industry-level technology exposure influences both the task

content of occupations and the mobility behavior of employees. There are notable

differences between AI and robots, as they affect different tasks.

1.3 Digital Technologies, Job Quality and
Employer-provided Training

In the third essay of this thesis, I analyze the impact of digital technologies on

job quality and employer-provided training utilizing a comprehensive set of linked

employer-employee survey data coupled with administrative records from Germany

and occupational digitalisation measures. Job quality is an increasingly important
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Employer-provided Training

topic, and digitalisation can have wide-ranging consequences for employees. For

example, the introduction of new technologies can lead to stress for employees

and decrease their well-being (Tarafdar et al., 2007; Ragu-Nathan et al., 2008;

Ayyagari et al., 2011; Gerdiken et al., 2021). At the same time, automation of

dangerous tasks can improve job quality (Green, 2012; Gunadi and Ryu, 2021;

Gihleb et al., 2022). Therefore, the ex-ante effect of digitalisation on working

conditions and job quality is unclear.

I compare the impacts of two different technology classes, basic and advanced

digital technologies. Basic technologies refer to computers and computer-controlled

machines (Dengler and Matthes, 2018) while advanced technologies cover AI and ma-

chine learning (Felten et al., 2018; Brynjolfsson et al., 2018). To estimate the effects

of digital technologies on working conditions, participation in employer-provided

training, and further outcomes related to subjective well-being, I use models with a

rich set of controls on the employer and employee level as well as establishment and

year fixed effects to account for unobserved differences across employers and time.

I find differential impacts of digital technologies. Advanced digital technologies,

such as AI and machine learning, are generally associated with positive outcomes

in job quality. Specifically, workers exposed to these technologies report better

working conditions and more opportunities for professional development through

employer-provided training. This suggests that advanced technologies may augment

human capabilities, enrich job roles, and enhance autonomy at work. In contrast,

exposure to basic digital technologies negatively correlates with job quality. Workers

highly exposed to these technologies experience worse working conditions and

lower training participation. Notably, these adverse effects are more pronounced

among older and male workers, indicating a demographic disparity in how digital

transformations affect the workforce.

The role of employer-provided training emerges as an element in mediating

the impacts of digitalisation. My analysis indicates that participation in training

can alleviate some of the negative effects associated with high exposure to basic

digital technologies by equipping workers with the necessary skills to adapt to
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new technologies and changes in job tasks. This enhancement of skills helps in

building resilience against technostress and automation anxiety. The findings

of this essay highlight the importance of employers investing not only in digital

technologies but also in enhancing their training and development programs. This

dual strategy is essential to ensure that workers are prepared to meet the demands

of increasingly complex job roles and to maintain high job quality in the face

of rapid technological changes.
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Labor Market Effects of Artificial Intelligence and Robotics1

The Fourth Industrial Revolution has dramatically improved the technical capabili-

ties of artificial intelligence (AI), enabling machines to perform and learn tasks at

human-like levels of capability in domains including translation and visual image

recognition (Pratt, 2015; Schwab, 2016). Improvements in underlying techniques

such as machine- or deep learning open up new possibilities for applications in

AI, which may be used in a wide variety of industries (Brynjolfsson et al., 2018).

Similarly, robots have been diffusing in the economy, and further advances in AI

could act as a catalyst for robots to become smarter, less dependent on human

guidance, and, thereby, more efficient. There is widespread belief that AI and

AI-enhanced robots will reshape the way we work and live.

Yet, we still have a very limited understanding of how AI impacts the labor

market. This paper asks how the evolution of AI and robots has affected employment,

skill demand, and wages in Germany. A key challenge in answering this question is

how to measure the advancement and diffusion of AI and robotics in the economy.

We use patent data from Europe to capture the evolution of the knowledge

frontier over the past three decades. Patents are useful to measure the advances in
1This chapter is joint work with Christina Gathmann. We thank Christian Dustmann, Albrecht

Glitz, Terry Gregory, Michael Stops, Eduard Storm, and participants at the AI conference of IZA
and Institute for the World Economy, DIW, CESifo, DFG Priority Program ‘Labor Markets in a
Globalized World’, EEA, EALE, the ELMI conference on ‘Skills for the Future’, University of
Duisburg-Essen, University of Trier, IZA Summer School and Verein für Socialpolitik for helpful
comments and suggestions. We are grateful to Jongoh Kim for excellent research assistance.
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emerging technologies and are often used as proxies for innovation.2 Griliches (1990)

and Moser (2005, 2013) provide thorough discussions of the benefits and limitations

of using patent data. Patents provide rich information on how and where the knowl-

edge frontier advances in specific technologies. Firms can make use of the shifting

technological frontier by adopting the new knowledge in their production processes.

We build our measures using data from the European Patent Office together

with text mining and natural language processing to find patents related to AI and

robotics. We then link the patents to the industries that can use them by applying

a probabilistic concordance scheme developed by Lybbert and Zolas (2014).3 The

new patent-based measures enable us to track the technological frontier of robotics

and AI in detailed industries and within industries over time. We use robotics

patents both to validate our patent-based approach and to compare the results

in the labor market to those of AI.

We then assess the labor demand and wage effects of AI and robotics, combining

our patent-based measures with administrative social security records from Germany.

Our analysis is performed at the firm level4 and for the local labor market. The

firm level identifies the net effect of AI and robots on adopting and non-adopting

firms in exposed industries. The local labor market approach, in turn, quantifies the

impact of AI and robot exposure on the local economy, including reallocation and

spillover effects. The two levels of analysis rely on different identifying assumptions,

which increases the confidence that the estimates we obtain are indeed causal.

We have five main results. First, we find that AI reduces overall employment

in exposed industries. Second, we find a small positive wage effect for employed

workers. These two results together indicate that AI has so far largely been

an instrument of automation with only modest productivity gains. Third, the
2Patents are exclusive rights of use for novel solutions to technical problems. In exchange

for these exclusive rights, all patent applications are published, revealing technical details of the
invention.

3Lybbert and Zolas (2014) match keywords from the description of patents to keywords
extracted from the definition of industries in SITC and ISIC codes. Then, they construct a
probability match of IPC/CPC code classes to industries based on the amount of keyword matches
obtained.

4To be precise, our data is at the level of plants. We will use ’plant’ and ’firm’ interchangeably
in the following.
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results of AI stand in sharp contrast to those of robots. Firms exposed to robots

actually experience small positive employment effects together with very small wage

reductions. Fourth, AI also reduces employment at the local level, suggesting that

the displacement effects in exposed industries are not compensated by employment

growth in other industries. Moreover, the negative employment effects of AI are

visible in manufacturing but also in the service sector.

Finally, we investigate the skill bias of the new technologies. AI replaces workers

higher up the skill distribution as employment declines, esp. for medium-skilled

workers. Firms also reduce their demand for high-skilled workers in industries

exposed to AI, but they get absorbed by the local economy. Robots, in contrast,

replace low-skilled workers but increase the demand for medium- and high-skilled

employees. These results indicate that robots exhibit a clear skill bias, while AI

does not seem to decrease employment in the middle of the skill distribution.

We contribute to the literature in at least three ways. First, we provide new

measures of how new digital technologies like robotics and AI have affected work-

places. Many studies have used broad measures such as firms’ R&D expenditure or

investments in information and communication technologies (ICT) (Bloom et al.,

2014; Bresnahan et al., 2002; Caroli and van Reenen, 2001). Yet, such broad mea-

sures make tracking of specific digital technologies like AI inherently difficult. Other

studies use direct measures on specific technologies such as the number of robots

installed in broad industries (Graetz and Michaels, 2018; Acemoglu and Restrepo,

2020; Dauth et al., 2021) or by firms (Koch et al., 2021; Acemoglu et al., 2020;

Dixon et al., 2021; Bonfiglioli et al., 2020). The drawback is that these measures

are available for a limited set of technologies and, in the case of robots, only for a

small number of industries. Our measures allow characterizing the evolution of two

path-breaking technologies for a broad set of industries over three decades.

A third approach uses occupation-level measures constructed from information

on tasks performed on the job. Earlier research relied on experts (Frey and Osborne,

2017) or crowd workers (Brynjolfsson et al., 2018) to assess the potential of digital

technologies for replacing labor. Very recently, authors have combined patent data
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with information on tasks performed on the job to quantify the automation potential

of digital technologies (Felten et al., 2019; Webb, 2020). These measures provide

a snapshot of how automation could replace tasks and possibly occupations in

the future. Yet, because these measures are cross-sectional, they can tell us little

about the dynamics of the digital transformation. Most importantly, these measures

are silent about the potential of digital technologies to enhance productivity or

create new tasks and occupations.

There are advantages and disadvantages to our patent-based measures of tech-

nological advances compared to investments in ICT capital, robot installations,

the routine task share, or the automation potential of occupations. Our measure

is broad and likely to contain measurement error in classifying patent texts. The

probabilistic mapping of patents to industries might introduce additional impreci-

sion 5. We also need to assume that patents are useful when implemented in the

production process. All these should bias us against finding an impact on the labor

market. An advantage of our approach is that we impose no ex-ante assumptions on

whether these technological advances reduce or increase labor demand. Moreover,

patent-based measures closely track the actual technology frontier, which varies

across detailed industries depending on the production technology and evolves

dynamically over time. Finally, we can validate our measures by comparing our

results for robot exposure to the large literature using robot installations at the

industry level as an exposure measure instead.

Closely related to us are studies based on patents, which have long been used

in the innovation literature to proxy innovation (Griliches, 1990) and technology

diffusion (Jaffe et al., 1993). Patent meta-data, such as citation counts or the

location and identity of inventors, has been used frequently (Hall et al., 2001;

Acemoglu et al., 2014; Bell et al., 2018) in innovation research. More recently,

researchers have gone beyond the sheer number of patents and analyzed the actual

text of patent documents (see Bessen and Hunt, 2007, for an early example). Often,

these focus on the industry that produces the knowledge rather than the industry
5Mann and Püttmann (2023) use a similar process of mapping patents to industries of use with

a concordance scheme developed by Silverman (2002).
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that implements that knowledge in its production process (Dechezleprêtre et al.,

2020; Montobbio et al., 2022). Most closely related are studies creating patent-

based measures of automation potentials (Mann and Püttmann, 2023) or digital

technologies more broadly (Prytkova et al., 2024).

Our measures characterize the evolution of two major technologies, AI and

robotics, over time. We make no assumption on how these technologies affect labor:

they may replace some workers but also raise the productivity of other workers or

even result in the reorganization of work and the emergence of new jobs. Hence, our

evidence is not limited to identifying the automation effect of digital technologies. In

addition, our measures go beyond the actual usage of new technologies in industries

but capture the evolving technological frontier. Finally, our measures reflect the

diffusion of digital technologies in Europe, which has experienced a different dynamic

than the United States. Europe, particularly France and Germany, are leaders in

the adoption of robotics technology; at the same time, they lag behind the United

States and China in the development and use of AI technologies.

Our second contribution is to the literature on the effects of digital technologies

on the labor market. Most studies have focused on the diffusion of robots in the

manufacturing sector. The results differ widely, ranging from negative (Acemoglu

and Restrepo, 2020), close to zero (Graetz and Michaels, 2018), or even positive

employment effects (Dauth et al., 2021). Firm-level evidence, in contrast, indicates

that adopters of robotics technology are not only more productive but also grow after

adoption and outperform their competitors within the same industry (Acemoglu

et al., 2020; Alderucci et al., 2021; Benmelech and Zator, 2022; Koch et al., 2021).

The empirical evidence for AI technologies is scarce and shows few links between AI

technology measures, employment, or wages by industry or occupation (Acemoglu

et al., 2022; Bonfiglioli et al., 2023; Albanesi et al., 2023).

Third, we complement previous studies focusing on the effects of technologies

such as AI on tasks in occupations (Brynjolfsson et al., 2018; Felten et al., 2018;

Webb, 2020; Gregory et al., 2019). Recently, Webb (2020) proposed new measures of

time-invariant exposure of occupations to three different technologies: information
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technology, robots, and AI. However, the measure is based on US patent and

occupational data and, therefore, is not easily transferable to European data. Also, it

is a static measure that does not provide time variation. Similarly, Autor et al. (2024)

generate measures of the evolution of new tasks from O*Net to track their impact

on workers’ careers. As for Webb, the proxies for technological change cover the U.S.

and vary at the occupational level, which are not easily transferable to our context.

The paper proceeds as follows. The next section presents our patent-based

measures and explains how we identify AI and robotics patents and link them to

the industries that can use them. Section 2.2 provides some descriptive evidence on

our patent measures and compares them to existing proxy variables, such as data

on robot installation and AI-related job vacancies. In Section 2.3, we introduce

our administrative labor market data from Germany. In section 2.4, we discuss

the empirical strategy for our estimations at the firm level and present results on

the employment and wage effects of AI and robots. In Section 2.5, we investigate

the effects of AI and robots at the local labor market level. We present robustness

checks in Section 2.6 and, finally, conclude in Section 2.7.

2.1 Patent-based Measures of AI and Robotics for Europe

We use patents to measure the technological advances in AI and robotics. Patents

are major innovations in a given technological field containing detailed information

on the additional knowledge or process. Our data covers the universe of patents

filed with the European Patent Office (EPO) between 1990 and 2018. The approach

proceeds in three steps. First, we prepare the data for applying text analysis to

the title and abstract describing each patent. In the second step, we use natural

language processing techniques to identify patents in robotics and AI technologies.

In the final step, we match the identified patents to the industries most likely to

use them in their production process. We now describe each step; more detail

can be found in the data appendix.
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2.1.1 European Patent Data

We use data on all patents granted by the European Patent Office (EPO) between

1990 and 2018, which we extract from the World Patent Statistical Database

(PATSTAT). Important innovations are patented in all major patent offices. Any

invention a firm wants to have protected in the European market will be patented at

the EPO even if the innovation occurred abroad. The patent documents include the

title and abstract of each patent, the name, company, and location of the inventor,

the dates of application, and the grant of the patent. The technical content of

a patent is categorized by its IPC or, more recently, CPC codes, which are very

detailed classifications with several thousand entries. These codes are assigned

by highly specialized experts, the patent examiners.

To identify patents covering innovations in the field of AI or robotics, we analyze

the titles and abstract of a patent.6 Though each patent document includes a

title, abstracts are missing for about 30% of the patent grants. In that case, we

use the IPC/CPC code from the narrow or extended patent family to describe

the technical content of a patent. Using this procedure, we can impute two-

thirds of the missing abstracts.

We then convert all patent abstracts and titles to text corpora using the following

pre-processing steps: we convert all text to lowercase, then remove numbers, special

characters, punctuation, and stop words. Next, we strip the text of any blanks and

white spaces. Finally, we extract word stems and divide the text into tokens.

2.1.2 Identifying Patents in Robotics and AI

We use a combination of patent classification codes (IPC/CPC) and keyword

searches of the patent title and abstract to identify patents related to robotics

and AI. For robots, the technology is clearly defined. The ISO 8373 definition

defines a robot as an “actuated mechanism programmable in two or more axes

with a degree of autonomy, moving within its environment, to perform intended
6Following the patent literature, we do not use the full text of the patent description or claims.

These texts are written by patent lawyers in generic language to increase the protective scope of a
patent.
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tasks”. Robots are further grouped into industrial or service robots based on their

intended application. We identify robotics patents if they belong to the CPC code

B25J9: “Programme-controlled manipulators”; or if they match a keyword search

conducted over the titles and abstracts of all patents.

Unlike robotics, AI is a very broad concept that spans multiple technologies.

We identify AI patents in several steps. First, we use all IPC/CPC codes that are

directly connected to a specific AI technology or sub-field like machine learning,

neural networks, or fuzzy logic using a list of AI-specific IPC/CPC codes from the

World Intellectual Property Organization (2019). An example is code G06N7/046

‘Computer systems based on specific mathematical models - implementation by

means of a neural network’. However, there are only a few IPC/CPC codes for

software or algorithms, and most AI-related inventions are not identified by these

codes. Prominent examples are speech and image recognition, two of the most

important applications of AI. Many AI innovations are instead embedded in patent

applications in other technology fields. One such embedded innovation is level 4

and 5 autonomous driving, which relies heavily on AI-driven image recognition.

As a second step, we conduct a keyword search over the titles and abstracts of all

remaining patents based on a keyword list compiled from the World Intellectual

Property Organization (2019) and Baruffaldi et al. (2020). Examples of keywords

include machine learning, natural language processing, fuzzy logic, or decision tree.7

Appendix figures 2.D.7 and 2.D.8 show patent applications with highlighted

keywords identifying them as robot and AI patents, respectively. The examples

show that patent titles often include specific terms like neural networks, while

the abstract contains more general technological concepts such as artificial intel-

ligence or machine learning.

Overall, we obtain around 11,000 unique robotics patents and 7,000 AI-related

patents. Panel (A) of Figure 2.B.1 shows the evolution of robotics patent grants
7Our keyword list is shorter than the list used in World Intellectual Property Organization

(2019) in order to reduce false positives. Their keyword list includes keywords like network,
algorithm, logic, and boost, which can potentially be found in many patents unrelated to AI
technologies.
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and applications between 1990 and 2018. Robot patents show a first peak in the

mid-1990s and then again in the late 2000s. Patent applications for robotics continue

to grow throughout the whole time period. Panel (B) in Figure 2.B.1 shows that AI

patent grants started to emerge in the mid-1990s but remained low until 2015. Patent

applications for AI technologies shoot up after 2015, especially in 2017 and 2018.

Appendix figure 2.D.9 provides the first descriptive evidence in which sectors of

the economy innovations in AI and robotics occur. We use a mapping of IPC codes

to thirty-five technology classes (following Schmoch, 2008) and aggregate them

to five broad technology classes: Electrical engineering, mechanical engineering,

instruments (e.g., optical instruments, control technology, and medical technology),

chemistry (e.g., pharmaceuticals, biotechnology, food, and materials) and other

(e.g., many consumption goods like furniture, but also civil engineering).

Robotics technology is heavily concentrated in mechanical engineering (see

Panel (A)). In recent years, robotics have become more prevalent in instruments

and others, which points to new applications beyond mechanical engineering and

industrial robots. Panel (B) of Appendix figure 2.D.9 shows that AI technolo-

gies are most prominent in electrical engineering but have recently become more

important in instruments.

2.1.3 Robotics and AI Technologies at the Industry Level

As our ultimate goal is to understand how the diffusion of AI and robotics shifts

the demand for labor, we need to match the patents to the industries where

the technology is used – not where the patent has been developed (see Mann and

Püttmann, 2023). Linking patents to the industries that use them in their production

process is inherently difficult. Measuring the usage of a specific patent within an

industry requires identifying the specific product or service in which the patent is

embedded. Such information is not available. Instead, we treat patents as proxies

of the evolving knowledge frontier in a given technology, which improves existing or

opens up entirely new possibilities in the production of goods and services.
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We use a concordance scheme between CPC codes and 4-digit ISIC industry

codes developed by Lybbert and Zolas (2014) and updated by Goldschlag et al.

(2019) 8. A key advantage over older concordance schemes developed by Kor-

tum and Putnam (1997) or Silverman (2002) is that it can better capture recent

developments in AI and robotics.

Appendix figure 2.D.11 illustrates the connection between technological knowl-

edge embedded in a patent and industries that make use of this knowledge. Starting

from a description of the activities in an industry given by the official classification,

a keyword search matches industries to patents if the industry’s activities share one

or more keywords with the patent description. The result is a list of patents with

their IPC/CPC codes linked to industries producing with the knowledge embedded

in the patent. The match frequency is used to calculate a probabilistic weight for

each industry. The weight is based on Bayes’ rule, taking into account the number

of possible codes and how often a code is matched to an industry. Patents are

then assigned proportionally to industries of use 9.

Appendix table 2.D.1 shows the 4-digit industries with the highest number of AI

patents (in the top panel). AI-related patents are heavily used in the manufacturing

of ICT, but also in machinery, and measuring equipment. Interestingly, AI patents

are also important in the music and film industry (see ISIC codes 5912 and 5920 in

appendix table 2.D.1). The table further reports the share of patent grants in AI

for each industry. The average share of AI patents across all industries is 0.21%,

which indicates that AI has so far contributed only a small share of the overall

patents used in an industry. Yet, most industries with a high number of patents

also have a high share of AI patents. In contrast, among the industries without

any AI patents are many services like real estate, care, tourism, early childhood

education, and farming. The bottom panel of appendix table 2.D.1 shows the
8In contrast to concordance schemes that focus on the industry of innovation (Dorner and

Harhoff, 2018), our walkover identifies the industries in which the new technological opportunities
are potentially used by firms in production.

9The probability weight is also higher for codes strongly linked to particular industries. Matches
with high specificity in a certain technology class likely indicate particularly strong linkages to
certain industries compared to broad innovations that match many different industries.
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industries with the highest number of robotics patents. Not surprisingly, robotic

patents are mostly used in manufacturing – both in absolute number and relative

to the average patent use of 0.32% across all industries.

2.2 Technology Exposure and Technology Use

2.2.1 Defining the Exposure Measure

To study the labor market consequences of the new technologies, we aggregate the

patents into an exposure measure that tells us how much detailed industries are

exposed to new developments in AI and robotics over time. In the first step, we

follow the approach of Mann and Püttmann (2023) and log-transform industry-level

patents in each technology to account for the large differences in patenting activity

across industries. We show below that alternative measures using the raw patent

count or an inverse hyperbolic sine transformation yield very similar results. The

second step is to account for the fact that yearly variations in patent grants will

not reflect the cumulative nature of knowledge creation. Therefore, we calculate

cumulative measures summing patents for four periods: 1990-1998, 1990-2004,

1990-2011, and 1990-2018. The resulting measure is thus defined as follows:

AIi,t =
∑
s∈t

Log(1 + AIPatentsi,s) (2.1)

Robi,t =
∑
s∈t

Log(1 + RobPatentsi,s) (2.2)

where i is the industry applying the patents and t the sub-periods 1990-1998,

1990-2004, 1990-2011, and 1990-2018. The measures in equation (2.1) take on

four values for each detailed industry.

Figures 2.B.2 and 2.B.3 show the distribution of the cumulative patent measure

over 2-digit industries. The figures show the distribution in the last period, hence

depicting the sum of log patents between 1990 and 2018. AI patents are concentrated

in the manufacturing of computers and electrical equipment, followed by various

manufacturing industries. Robots are concentrated in manufacturing, especially

in electronic products and machinery and equipment.
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Our patent measures describe the knowledge frontier in robotics and AI. Yet, our

patent-based measures should not only capture exposure to technological advances;

but also correlate with the actual adoption and diffusion of the technology by

firms in the exposed industry. We next demonstrate that our measures correlate

positively with various proxies for using robots and AI.

2.2.2 Robotics Patents and Robot Installations

Advances in robotics measured by our patent data should increase the likelihood

that firms purchase and install industrial robots in their production. To investi-

gate this, we use data on robot installations from the International Federation of

Robotics (IFR) (International Federation of Robotics, 2020). The IFR data track

the installation and stock of robots in around fifty countries. The dataset contains

the number of robot installations per year in broad industries, most of them in

manufacturing. We use the information on robots installed in Europe to ensure we

have the same geographic coverage as the patent data from the European Patent

Office. Unfortunately, the IFR data only has information on thirteen industries in

manufacturing and six other broad sectors.10 We aggregate our patent measures,

which are available at the 4-digit level, to the 2-digit level and match them to the

IFR classification. We compare the stock of robots in 2018 to the sum of robot

patents until 2018 as defined in equation (2), both measured in logs. Figure 2.B.4

shows a strong positive correlation between our patent measure and robot installa-

tions. Based on the industry classification used by the IFR, there are also industries

where robot patents could potentially be applied according to our measure. Still,

no installations have been recorded in some industries so far. This highlights the

fact that we are approximating the technological frontier with our measures.
10The manufacturing industries are food and beverages; textiles including apparel; wood and

furniture; paper and printing; plastics and chemicals; minerals; basic metals; metal products;
industrial machinery; electronics; automotive; shipbuilding and aerospace; and miscellaneous
manufacturing including production of jewelry and toys. The other broad sectors are agriculture,
forestry and fishing, mining, utilities, construction, education, research and development, and
services. About 30 percent of robots are not classified into one of the nineteen IFR industries
though this share declines over time. Following Acemoglu and Restrepo (2020), we allocate
unclassified robots to industries in the same proportions as in the classified data.
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2.2.3 AI Patents, AI Firm Share and AI Job Vacancies

Obtaining a proxy for whether a firm uses or has adopted AI is much more difficult.

Our first measure uses the number of online job ads that require AI skills to

proxy for the AI activities in firms (see also Acemoglu et al., 2022). Firms that

(want to) adopt AI are likely to require some job profiles like programmers, data

scientists, or engineers who are familiar with AI tools. Firms in industries exposed

to more advances in AI might, therefore, post more vacancies requiring AI skills

if they lack the competencies in-house.

Our data for online job vacancies in Germany come from Lightcast and cover

2021. We identify job ads that require at least one AI skill using the keyword list

from Alekseeva et al. (2021), including search terms such as neural networks, deep

learning, NLP, or machine vision. As there is no reliable industry classification in

the job ads, we use the detailed occupation and the occupation-industry distribution

for Germany to map the job ads to our patent measure.

Panel A of figure 2.B.5 shows a positive correlation between the number of

job ads with at least one AI skill and the number of AI patents granted in 2-digit

industries for Germany. Hence, patents encourage investments in tangible and

intangible capital embodying AI technology and raise the demand for workers

who can use and apply AI technology.

Yet, AI skills in job ads might not capture the actual AI activities of firms very

well either because firms that adopt AI have the competencies in-house (and hence,

do not advertise jobs requiring AI skills); or because they can adopt AI without

hiring additional staff with specialized AI skills. As an alternative proxy, we deduce

the AI activities of all companies in Germany from their websites. The data come

from ISTARI.AI for 2022, a German startup that builds company-level indicators

based on large-scale scraping of company websites combined with a proprietary AI

algorithm. One indicator is the firm’s AI knowledge, which is calculated either based

on direct evidence like actual AI used on the website (e.g., a chatbot for customer

relations); or more indirectly based on AI activities or investments mentioned on the

company website. We calculate the share of firms with AI knowledge among all firms

www.istari.ai
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in a given industry at 3-digit ISIC level and correlate it with our patent measure.

Panel B of figure 2.B.5 again shows a positive correlation between the share of firms

with AI knowledge and the cumulative number of AI patents in an industry.11

2.3 Administrative Plant-level Data

We use administrative data on plants to investigate the labor market consequences

of AI technologies and robotics. The data come from the German Establishment

History Panel (BHP), a 50% random sample of all plants with at least one employee

covered by the social security system in Germany (see Ganzer et al., 2020, for

more details). The social security data cover around 80% of the German labor

force, excluding civil servants, military personnel, and the self-employed. Our

plant sample spans the years from 1993 to 2021. We match our measures of AI

and robot technologies, which vary by detailed industry and year, to the plant

data by the detailed (3-digit) industry.12

We observe the number of employees at each plant, which we can use to

analyze overall employment effects when the industry becomes exposed to AI and

robot technologies. The data include detailed information on the socio-economic

composition of the workforce by age, gender and skill in each plant. We distinguish

three skill groups - low, medium, and high skilled - based on the highest qualification

obtained. High-skilled workers are workers who have graduated from a college or

university. Medium-skilled workers have completed a vocational training program or

obtained the university entrance certificate after high school (Abitur). Low-skilled

workers have lower qualifications or no qualifications at all. In the raw data, the

education variable is missing for about 9% to 37% of the observations depending

on the year. We impute missing education information following Fitzenberger et al.
11A number of industries have a high firm share of AI knowledge but zero AI patents. These

can mainly be attributed to service industries such as business and IT consulting, where patenting
AI is unlikely but that are actively adopting AI tools. Nevertheless, the positive correlation shows
that industries with a high number of patents are also those where a lot of AI-related economic
activity happens.

12We use a crosswalk provided by EU RAMON to convert the ISIC rev. 4 classification of our
patent measures to the European NACE rev. 2 classification, which is equivalent to the German
industry classification (WZ08) at the 3-digit level.
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(2005), which reduces missings to less than 1%. We further distinguish three broad

age groups (20-34, 35-49, and 50-64). We also expect that digital technologies affect

some occupational groups more than others. To analyze who might benefit and

who might lose, we use the information on the occupational structure in the plants

(e.g., the share of simple manual jobs, clerks, technicians, skilled manual labor,

engineers, professionals, and managers) and on the type of employment contracts

used (e.g., fixed-term contract, temporary worker).

Finally, we also observe plant-level wages. As is common in social security

records, wages are right-censored at the highest level of earnings subject to social

security contributions. Wages are imputed based on the imputation procedure

of Gartner (2005). We observe the wage distribution in each plant, which is

characterized by the 25th, 50th, and 75th percentile wage. The wage information is

available for full-time workers, for the three skill groups, and by gender. Appendix

table 2.D.3 reports summary statistics at the plant level.

2.4 AI and Robots: Plant-level Evidence

2.4.1 Estimation Approach at the Plant Level

We start out by analyzing the direct impact of technological innovations in AI and

robotics on employment and wages at the plant level. After merging the exposure

measure at the industry x period level from equation (2.1) to our plant-level data,

we then estimate variants of the following model:

Yfit = βAIPatAI
i,t−1 + βRobPatRob

i,t−1 + γ′Xit + θf + δt + ϵfit (2.3)

where f denotes the plant, i the industry, and t the period (1999-2004, 2005-

2010, 2011-2016 and 2017-2021).

The key independent variables are our two measures of cumulative knowledge

in AI and robotics technology in period t in industry i (PatRob
i,t and PatAI

i,t ). As

the diffusion and adoption of technologies encoded in patents only occur with a

time lag, we allow patents granted between 1990 and 1998 to affect employment
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and wages in the period 1999-2004, while patents from 1990 to 2004 may influence

labor market outcomes from 2005-2010, etc.

The main outcome variables Yfit are plant-level employment (defined as log

employment) and wages (defined as log wages) overall and by skill group. Our

specification includes period fixed effects (δt) to control for aggregate changes

through the business cycle or other aggregate shifts in employment or wages. We

further include firm fixed effects (θf) to control for differences in production, pay

premiums, or management practices that affect wage or employment growth. We

also adjust for firm size differences by controlling for firm employment at the start

of each period. To control for other demand side shocks through trade and other

investments, we further control for ICT investment and net exports at the industry

level. All regressions are weighted by the average employment in the plant over the

sample period. We cluster standard errors at the industry x period level.

The coefficients of interest βAI and βRob reflect how changes in AI or robotics

knowledge shift plant-level employment and wages in the industries most exposed

to the new technology. It is important to note that the coefficients βAI and βRob

combine the direct effect on plants adopting the specific technology and the indirect

effect on non-adopting competitors. Below, we investigate potential reallocation

effects through shifts across industries within the same local labor market.

To identify the causal effects of AI and robotics technologies, we require our tech-

nology measures to be exogenous to employment changes conditional on our control

variables. Demand-side shocks that affect employment and correlate with our tech-

nology measures can lead to endogeneity. Therefore, in the estimation, we control

for industry-level shocks through trade and ICT investments. Another concern is

reverse causality, as firms might adjust their R&D activities in response to changes

in wages or shocks to product demand, for instance. Our estimation controls for firm

fixed effects to adjust for permanent differences in the innovation potential of firms.

Finally, we assign the patent measures to the industries that might use the

innovation, not the industry that produced the patent. Yet, some patents are

produced and used in the same firm or industry, and the production of innovation
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might be influenced by past employment, for instance. Below, we show that excluding

all German patents from our technology measures yields qualitatively similar results.

2.4.2 Employment and Wage Effects at the Plant Level

We start out by estimating the effect of exposure to AI and robots on average plant-

level employment and wages. Our independent variables of technology exposure are

defined at the industry level according to equation (2.1). The dependent variables

are mean employment and wages for each period, measured at the establishment

level. It is important to stress that we estimate net effects that include both firms

that actively adopt AI or robot technologies and firms that do not. Hence, our

estimated effects include direct effects of technology adoption as well as spillover

effects to competitors or suppliers within the same industry.

Table 2.C.1 shows the impact of AI and robots on employment (columns (1)-(3))

and wages (columns (4)-(6)) based on estimating equation (2.3). We first show

the coefficients for each technology in isolation, and then when we control for

both technologies jointly. Establishments in industries with a high exposure to AI

have lower employment, while exposure to robots actually increases employment.

Interestingly, these results emerge only when we control for both technologies

in the estimation, as the exposure measures are positively correlated. The AI

estimate of -0.005 implies that a standard deviation increase in AI exposure would

lead to a decrease in employment of about 1.7%. The magnitude of the robot

effect is smaller as a standard deviation increase in robot exposure would increase

employment by about 1.2%.

Turning to wages, we find that AI exposure is related to wage growth (see

column (6)). The positive wage effect might be either the consequence of changes

in the composition of the workforce (induced by the negative employment effect)

or could indicate an increase in worker productivity.13 For robots, we find a small

negative wage effect once we control for AI exposure (see column (6)), which is

likely to be explained by compositional changes.
13As we do not have individual worker-level data, we cannot estimate wage effects holding the

workforce composition constant to distinguish between the two channels.
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To better understand in which parts of the economy the two technologies shift

employment and wages, we next estimate separate effects for manufacturing and

services. Table 2.C.3 shows that AI exposure is associated with employment declines

in both manufacturing and services, especially once we condition on robot exposure.

However, these effects are not statistically significant at the 10% level. For robots,

we actually find positive employment effects in firms in the manufacturing and

service sectors. The positive wage effects we saw for AI are driven by plants in

the manufacturing sector (see column (3)), while for robots, positive wage effects

are observed in the service sector.

2.4.3 Skill Bias of AI and Robots

Technological change is rarely skill-neutral. Recent technological advances like the

diffusion of computers have been skill-biased, while others, like the replacement

of routine tasks, have been polarizing employment at the expense of medium-

skilled workers. How do robots and AI influence the demand for different skill

groups? To investigate this, we use the number of low-, medium-, and high-skilled

workers in each plant as outcomes.

Figure 2.B.8 plots the results of estimating equation (2.3) controlling for each

technology separately (Panel (a)) and jointly (Panel (b)). The separate estimation

in Panel (a) indicates that both AI and robots reduce employment for low-skilled

workers. However, when accounting for their positive correlation across industries, a

different picture emerges: AI reduces the employment of medium- and high-skilled

workers, while robots actually increase the demand in both skill groups (Panel

(b)). Hence, robots are a skill-biased technology that increases the demand for

medium- and high-skilled workers. AI, in turn, exhibits no such skill bias as the

demand for skilled workers actually declines.

Table 2.C.2 displays the results for employment and wage effects separately for

each skill group. There are negative effects on wages for each skill group, indicating

that the skill premium remains unaffected by the diffusion of robots. In contrast,

wages in plants exposed to AI actually increase for all skill groups.
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2.5 AI and Robotics Technologies: Effects on Local Labor Markets

2.5.1 Estimation Approach at the Local Labor Market

Our evidence so far focuses on the net effect of exposure to technological advances

in AI and robots on adopters and non-adopters operating in the same detailed

industry. Yet, the adoption of new technologies might not only shift business

from non-adopters to adopting firms but also shift jobs between industries. AI

might encourage firms to in- or outsource certain activities to other companies, for

instance. Adopting robots that automate certain activities in firms might free up

labor that can move to the service industry (Dauth et al., 2021; Gregory et al.,

2019). Depending on the labor intensity of the sector that absorbs workers, total

employment might go up or down in the local labor market.

To investigate the potential spillover effects of new technologies, we turn to an

analysis at the local labor market level. To that end, we aggregate the plant-level

data to the district level (there are 400 districts (Kreise) in Germany). Appendix

table 2.D.4 presents summary statistics at the local labor market level. For the

estimation at the local labor market level, we rely on a shift-share design (Bartik,

1993). Shift-share designs have become popular for studying the impact of trade

and technology shocks on local labor markets. In our context, the ‘shift’ variables

are the evolution of AI and robotics technologies as defined in equation (2.1). The

‘share’ variable proxies for how much a local labor market is possibly affected by

the new technologies. We thus characterize each local labor market by its industry

structure in the base year. We chose 1993 as our base year as this is the first year

when reliable labor market data is available for East Germany.

The local exposure to the technological innovations in robots or AI is then

defined as the interaction between initial employment shares in industry i and re-

gion r (‘shares’) and the evolution in AI and robotics technologies in industry

i over time t (‘shift’):

Exposurec
r,t =

I∑
i=1

(
Emp1993

i,r

Emp1993
r

)
∗ Patc

i,t (2.4)
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where r and t indicate the district and time period. Our measures vary both across

local labor markets (‘district’) as well as within districts over time, as new patents

are granted in some industries but not others.

Figure 2.B.7 shows the geographic variation in exposure to robotics and AI

patents where exposure is constructed as the combination of initial industry shares

and the overall growth in patent grants between 1990 and 2018. Most notably,

there is a marked difference between East and West Germany as districts in West

Germany are much more likely to be exposed to both AI and robotics than districts

in East Germany. More districts are exposed to robot technology than AI, which is

to be expected as robots have been used much longer than AI technologies.

Exploiting the panel dimension of our data, we then estimate models of the

following form:

∆Yr,t = βExposurer,t + γ1∆Trader,t + γ2∆ICTr,t + δ′Xr,t + θI + αr + er,t (2.5)

Here, ∆Yr,t are changes in employment and wages in each sub-period. Hence, for the

first sub-period, for instance, the dependent variables are changes in employment

or wages between 1993 and 1998. As before, our main parameter of interest is β,

which captures the impact of exposure to AI and robotics on the local labor market.

αr denotes district fixed effects, which control for a district-specific linear trend

in employment or wages. All other variables are measured as before. Including

region fixed effects implies that the coefficient on the exposure measure (β) in

equation 2.5 is identified from shifts in exposure to the two technologies within a

district while controlling for overall employment trends in the region. Standard

errors are clustered at the district level. For the shift-share design to be valid,

either the employment shares or the shift (here, the growth in patents) must be

exogenous (Goldsmith-Pinkham et al., 2018; Borusyak et al., 2021). It is important

to stress that, in our setting, the growth in knowledge as codified in patents is

measured at the European level. Hence, we consider how AI patents produced and

patented in e.g. Finland impact local labor markets in Germany. In addition, we

estimate the effect for firms using patents in the production of goods and services,
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not for firms producing the patents. It is highly unlikely that the employment

conditions and wage levels of firms using the knowledge codified in a patent have

an impact on the likelihood or timing of patenting an invention in AI or robotics

technology. Both conditions suggest it is reasonable to assume that the shift variable

is exogenous to local labor market conditions of using firms. We show below that

excluding German patents, which eliminates most links between the production

and use of patents, does not affect our results.

A remaining concern of our estimation approach is that there could be differential

labor market shocks in regions with industries that are exposed to greater advances

in robotics and AI than in other regions. A possible concern is that industry-specific

demand shocks might lead to higher usage of AI and robotics in some industries

than others. A carmaker exposed to smart driving technology might implement

electric vehicles faster if there is a negative shock to the production of fuel cars or

some problem in the supply of parts, for instance. To mitigate that concern, we

control for trade flows and investments in ICT in our estimation. In addition, we

also control for district-specific trends in equation (2.5). This allows capturing any

differential trajectories on the labor demand or supply side.

2.5.2 Local Employment and Wages

We estimate equation (2.5), where our dependent variables are changes in employ-

ment or wages between the first and the last year of each sub-period. The key

independent variables are local exposure to AI and robot technologies as defined

by equation (2.4). In all specifications, we control for district characteristics such

as ICT investment and net exports and demographic characteristics such as initial

employment share by gender, age, or skill. We further control for broad (1-digit)

industry employment shares and add district and time (period) fixed effects.

Table 2.C.4 shows the impact of AI and robots for employment (columns (1)-(3))

and wage changes (columns (4)-(6)) in the local economy. As before, we first

estimate the effects separately for each technology. The third specification (in
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column (3) for employment and column (6) for wages) then shows the impact of

AI on the labor market conditional on robot exposure.

AI exposure has reduced employment growth in the local labor market. That

implies that the negative employment effects we saw in exposed industries are not

compensated by workers shifting to other, more labor-intensive sectors. Based

on the specification in column (3), a one standard deviation change in local ex-

posure to AI decreases local employment by around 3 percentage points. Not

only does employment decline, but we also observe a small negative wage effect

that amounts to around 1.3%, as shown in column (6). Robots, in turn, reduce

employment growth in the local labor market, though the effect does not reach

statistical significance. Interestingly, conditional on AI exposure, robots lead to

local employment growth. The effect amounts to a 1.5 percentage point increase

based on a standard deviation change in robot exposure.

An example of a local economy that heavily employs robotics technology and is

also very active in the use and diffusion of AI technologies in production processes

is the automotive industry. There, robots have been heavily used in the actual

production of vehicles, while AI technologies play an important role in the develop-

ment of smart and self-driving vehicles. We could have regional economies with a

weak industrial base but a strong, prosperous service sector. As robots are mostly

used in manufacturing, these regions could be little exposed to robotics technology

but are at the forefront of using AI technologies. The correlation between the

exposure measures in AI and robotics is only around 0.54; as such, we have a lot

of independent variation in each local exposure measure.

2.5.3 Manufacturing versus Services

Are the labor market effects stronger in manufacturing or the service sector? While

robots are more likely to affect employment in the manufacturing sector directly,

spillovers to non-manufacturing employment are expected. While robots are not

used intensively in the service sector, indirect effects on service employment and

wages can be caused by sectoral mobility, sector-specific job creation, or destruction



2. Labor Market Effects of Artificial Intelligence and Robotics 33

by firms. For example, firms could offer services that complement robot adoption in

manufacturing. In contrast, AI technologies might have diffused into both sectors

though the direction of their effect is a-priori unclear. The impact in each sector

depends on at least three factors: how many tasks in each sector are susceptible to

automation through AI technologies; how strong the offsetting forces of increased

productivity and creation of new tasks are; and how attractive the adoption of AI

technologies is in each sector, which depends, among others, on the price of labor.

To investigate this empirically, we re-estimate equation 2.4 where the dependent

variables are now employment or wage changes in manufacturing and services.

Table 2.C.5 shows in the top panel the effects on employment and in the bot-

tom panel the effects on wages.

Both AI and robots replace labor in the manufacturing sector (see columns

(1) and (2), Panel A of table 2.C.5), reflecting their substantial automation po-

tential. Robot exposure decreases local employment by 3.4 percentage points

based on a standard deviation change in exposure. AI exposure reduces local

employment in manufacturing by around 4.4 percentage points. Once we condi-

tion on robot exposure, the effect even increases slightly to about 5 points. The

advancement of both technologies is, therefore, likely to hit areas with a strong

industrial base especially hard.

Columns (4)-(6) also indicate a negative, albeit smaller, effect of AI on the

service sector, while robots have little effect. Hence, both robots and AI seem to

have a stronger effect in the manufacturing sector. Do these results also hold for

wages? The bottom panel of table 2.C.5 shows indeed negative effects on wages

in manufacturing, while there is little effect in the service sector.

2.5.4 Skill Bias of AI and Robots at the Local Level

We saw that industries exposed to robots employ more skilled workers, while

industries exposed to AI demand less skilled workers. Do these effects also emerge

at the local level when individuals can reallocate to other industries? We again
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use our panel specification from equation (2.5) to estimate the employment and

wage effects separately by skill groups.

Table 2.C.6 shows that AI reduces employment growth mostly for medium-

skilled workers. This is illustrated in figure 2.B.10, which plots the impact of a one

standard deviation change in exposure. Panel (a) shows the effect if we control

for each technology separately, while Panel (b) shows their impact conditional on

the other technology. Panel (a) shows that AI exposure leads to a decrease in

medium-skill employment of 3.8 percentage points.

The negative employment effect for high-skilled workers observed at the plant

level in exposed industries vanishes conditional on robot exposure (see column (6)

of table 2.C.6), indicating that high-skilled workers are able to find new jobs in

the local economy. The bottom panel of table 2.C.6 further shows small negative

wage effects for all skill groups, though the decline is strongest and most significant

for low-skilled workers. These negative wage effects indicate that local labor

markets have not experienced sizable productivity gains through the diffusion

of AI into the economy yet.

Robots, in turn, mostly replaced low-skilled workers in exposed firms. The top

panel of table 2.C.6 confirms this result at the local labor market level: robots

primarily automate jobs of low-skilled workers, and these are not easily absorbed

into other industries in the local economy. Again in line with the firm-level evidence,

robots increase the demand for medium-skilled workers (column (6)). Interestingly,

we see little effect on high-skill employment in the local economy though the effect

was positive at the plant level. The difference indicates that plants exposed to

robots seem to satisfy their additional need for high-skilled specialists by luring

them away from other industries in the local economy with little net upskilling

in the region. The bottom panel of table 2.C.6 shows few wage responses once

we condition on AI exposure.

Overall, the evidence at the plant and local labor market level shows that

robots have a strong skill bias. While skilled workers are complements to robots,
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less-skilled workers are substituted. AI, in turn, has no such skill bias as it ap-

pears to mostly reduce the employment of more skilled workers. The negative

firm-level impact for high-skilled workers is compensated by good employment

prospects in other industries.

Our findings paint a nuanced picture of the impact of different digital technologies

on the labor market. Robots, with their strong automation potential for low-skilled

jobs, have different effects than AI technologies, which seem to replace workers

higher up the skill distribution. When discussing the economic consequences

and policy implications of the digital transition, it is therefore important not to

extrapolate from one technology to another.

2.6 Robustness Checks

We conduct a series of robustness checks to provide additional evidence on the

stability of the results we find. First, for our estimation at the firm level, we

use different specifications for our independent variables that capture robot and

AI exposure. Next, we re-estimate equations 2.3 and 2.5 at the firm and district

level while excluding German patents.

To rule out that our results are driven by the definition of our industry-level

technology exposure measures, we estimate equation 2.3 with three alternative

definitions of AI and robot exposure. First, we use the raw count of patents instead

of log-transforming them. The second specification applies the inverse hyperbolic

sine transformation. The third specification uses a log transformation, for which we

add 0.1 to the patent count instead of using log(1 + patents) as before. As shown

in table 2.D.5, the results are qualitatively similar to our main results.

In our main specification of the shift-share instrument, we include all patents

filed at the EPO over the sample period. This also includes patents filed by

German inventors. However, there might be concerns that patenting in Germany is

endogenously related to local labor market conditions, and therefore, the exogeneity

assumption of the shift variable is threatened. To test for this, we construct a

separate measure of exposure to AI and robotics that excludes all patents filed



36 2.7. Conclusion

by German inventors. The share of German patents among all patents filed is

11% for AI and 14% for robotics patents. We drop these patents and continue to

construct the district-level exposure in the same way as before. The results for

firm-level employment and wages are reported in column (4) of table 2.D.5 in the

appendix. The results for district-level employment and wages are reported in table

2.D.6. Running the same set of regressions as previously but using the new exposure

measure, we find that our results are largely robust to excluding German patents.

2.7 Conclusion

We develop new measures for the advancement of robotics and AI technologies in

Europe, applying natural language processing on patent data from the European

Patent Office. Our measures for robotics are strongly correlated with robot instal-

lations but are available for more industries in manufacturing as well as outside

manufacturing compared to existing data on industrial robots. Our measure for

AI technologies shows a positive correlation with the share of firms that have AI

knowledge in a given industry. They are also positively correlated with AI-related

job vacancies. Overall, knowledge in robotics technology has been more prominent

over the 1990-2018 period but has diffused into a small set of industries in Germany.

The patenting of knowledge in AI technologies, in turn, has only picked up since

2015 but has started to diffuse into more industries. We then use our new measures

to explore the labor market consequences of the new technologies. Using panel data

on German establishments, we first investigate effects on the plant level and find

that AI exposure is associated with a decline in overall employment and a small

increase in wages. Robot exposure leads to net zero or positive employment effects

but no corresponding wage increase. The firm level employment and wage effects

differ considerably between workers by skill level. AI leads to decreased employment

at all skill levels, whereas robot exposure leads to a decrease in employment of

low-skilled workers but an increase in employment of medium- and high-skilled

workers. These results are average effects at the industry level, including active



2. Labor Market Effects of Artificial Intelligence and Robotics 37

adopters of new technologies and their competitors. We are, therefore, estimating

the net effects of technology exposure on employment and wages.

Next, we turn to local labor markets as the unit of analysis. Aggregating our

German plant-level data to the district level and using a shift-share approach, we

find that exposure to AI reduces local employment and wages while robots have a

small positive effect on employment and few effects on local wages.

Most importantly, the small average effects mask considerable heterogeneities

across sectors of the economy: employment declines are much more pronounced in

manufacturing than in the service sector. We also investigate what happens if we

control for both types of technologies simultaneously. These conditional estimates

indicate that AI technologies have stronger negative employment effects in manufac-

turing than in services, while districts with high robot exposure see a small increase

in service sector employment and insignificant effects on manufacturing employment.

Finally, we investigate how different skill groups are affected by the new technolo-

gies. The negative employment effects of AI exposure are concentrated on medium-

and low-skilled workers, while the negative wage effects persist for all skill groups.

The diffusion of robotics technology hits low-skilled workers hardest, decreasing

low-skilled jobs but increasing the employment of medium-skilled workers.

Our results for robotics are consistent with earlier evidence using installations

as a direct measure of robot diffusion in manufacturing (Dauth et al., 2021) that

finds negative employment effects with considerable heterogeneities between worker

groups. However, in our setting, increasing employment in services does not

compensate for these negative effects. The consistency of results for the two

measures provides additional support for our approach to proxy the advancement

of digital technologies using patent data. For AI, our approach provides a novel

measure at the industry level over three decades, which complements recent attempts

to quantify the future automation potential at the occupation level. Unlike previous

studies that consider AI and robotics jointly as automation technologies (see Mann

and Püttmann (2023) for example), we find considerable differences in the labor

market effects of the two technologies, especially if we consider differences across skill
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groups. The most likely explanation is that they are used differently in production

and vary in how they substitute for or enhance human labor.
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2.A Details on Construction of Patent Measures

Our data come from the World Patent Statistical Database (PATSTAT), which

contains detailed bibliographical and technical information on all patents filed in

eighty-six countries. The data on patent applications and grants at the EPO contain

a total of about 7 million patent documents, which are identified by 3.5m unique

application ids.14 Of the 7 million documents, 5 million are patent applications,

and about 2 million are patent grants.

To determine whether a patent covers an innovation in the field of AI or robotics,

we analyze the titles and abstracts of patents. Though each patent document

includes a title, abstracts are missing for about 30% of the patent grants (670,000

cases) we extracted. Instead of dropping those patents, we use the concept of patent

families to impute an abstract that describes the technical content of a patent.

A patent family is defined based on patents with the same (detailed or slightly

broader) IPC/CPC code. Each patent belongs to a narrow patent family, which

covers all patents with the same technical content, and also to an extended patent

family of all patents with similar technical content. As the patent classification of

technologies is very detailed, the technical content is very similar, even within an

extended patent family. We first use abstracts from the same narrow patent family

to impute missing abstracts; if that is not successful, we use the extended patent

family instead. Following this procedure, we can impute about 450,000 abstracts,

of which only 45,262 abstracts are based on the extended patent family. We drop

the remaining patents for which we could not impute an abstract.

A patent can be filed at the EPO in one of the three official languages: English,

French, and German. Patents filed in another language need to provide a translation

into one of the official ones. While patent claims are published in all three languages,

abstract and patent description are published in the official language the patent
14The smaller number of unique applications reflects the fact that most patents have multiple

entries in the PATSTAT database, one for the patent application, others for revisions and yet
another for the patent grant if the patenting process was successful.
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was filed in. We restrict attention to documents with an abstract in English as

other languages are not compatible with our keyword search.15

We use a combination of patent classification codes (IPC/CPC) and keyword

searches of the patent title and abstract to identify patents related to robotics and

AI. A patent is then classified as a match for robotics if one or more keyword tokens

match with tokens of the text corpora of titles and abstracts.

As a second step, we conduct a keyword search over the titles and abstracts of

all remaining patents based on a keyword list compiled from the World Intellectual

Property Organization (2019) and Baruffaldi et al. (2020). Examples of keywords

include machine learning, natural language processing, fuzzy logic, or decision

tree.16 The keyword list is pre-processed using the same steps as for the patent

documents. A patent is classified as a match for AI technologies if one or more

keyword tokens match with tokens of the text corpora of titles and abstracts.

Figures 2.D.7 and 2.D.8 in the appendix show examples of a robot and an AI patent

application with highlighted keyword matches in their title and abstract. The

examples show that patent titles often include specific terms like neural networks,

while the abstract contains more general technological concepts such as artificial

intelligence or machine learning.

For robotics, our search yields 14,235 patent documents of which 92% contain one

or more of the keywords and 8% are included based on the CPC code ‘B25J9’. Around

11,000 are actual applications or grants; the remainder contain supplementary

information to existing applications.17 For AI technologies, the combined approach

of codes and keyword search yields 10,311 patent documents, of which 90% contain

one or more of the AI-specific keywords and 10% are included purely on their
15PATSTAT typically records the language of the abstract, but this information is missing for

about 250,000 patent documents. We use natural language processing to identify the language of
the abstract for documents missing that information. We then drop all documents that do not
contain any information in English, which reduces our sample by only 7%.

16Our keyword list is shorter than the list used in World Intellectual Property Organization
(2019) in order to reduce false positives. Their keyword list includes keywords like network,
algorithm, logic, and boost, which can potentially be found in many patents that are unrelated to
AI technologies.

17Such supplementary documents can be corrections to existing applications or supporting
material such as search reports.
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CPC codes. After excluding supplementary documents, we are left with around

7,000 applications and grants.

To provide first descriptive evidence in which sectors of the economy AI and

robotics innovations are patented, we aggregate patents to broader technology

classes. We use a mapping of the more recent IPC codes at the 4-digit level to

thirty-five technology classes developed by Schmoch (2008).18 We then aggregate

the thirty-five technology classes into five broad sectors: Electrical engineering,

Mechanical engineering, Instruments, Chemistry and Other fields. Instruments

include optical instruments, control technology and medical technology. Chemicals

include pharmaceuticals, biotechnology, food and materials. Other includes many

consumption goods like furniture, games but also civil engineering.

18We prefer this classification over the one in Hall et al. (2001) because the latter is much older
and thus less accurate in capturing recent developments in AI and robotics.
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2.B Figures

Figure 2.B.1: Number of Patents in AI and Robotics, 1990-2018

(a) Robotics Patents

(b) AI Patents
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Figure 2.B.2: Cumulative log AI patents by industry
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Figure 2.B.3: Cumulative log robot patents by industry

Figure 2.B.4: Correlation of Robot Stock and Patents

Patents are measured as cumulative sum of log patents until 2018. The stock of robots
is measured in logs in 2018. Both measures are at the level of industries. The industry
classification follows the International Federation of Robotics.
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Figure 2.B.5: Correlation of AI Patents, AI Firms and AI Job Vacancies

(a) AI Skills in Online Job Ads and AI patents

(b) AI firms and AI patents
Patents are measured as cumulative sum of log patents until 2018. Panel a) plots the number
of vacancies that require at least one AI skill per industry (based on online job vacancy data
for Germany in 2021) against our AI patent measure. Panel b) plots the share of firms using
or developing AI at the 3-digit industry level in Germany (based on data on company websites
from Istari.ai in 2022).
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Figure 2.B.7: Regional Cumulative Exposure to AI and Robotics in 2018

(a) AI exposure

(b) Robot exposure
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Figure 2.B.8: Firm Level Employment Effects of AI and Robots by Skill

(a) AI and Robots separately

(b) AI and Robots jointly
The plots depict coefficients estimated according to equation (3). All coefficients
and standard errors are scaled by one standard deviation of the independent
variables.
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Figure 2.B.10: District Level Employment Effects of AI and Robots by Skill

(a) AI and Robots separately

(b) AI and Robots jointly
The plots depict coefficients estimated according to equation (4). All coefficients
and standard errors are scaled by one standard deviation of the independent
variables.
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2.C Tables

Table 2.C.1: Plant-level Employment and Wage Effects

(1) (2) (3) (4) (5) (6)
Employment Employment Employment Wages Wages Wages

AI grants (period) -0.001 -0.005* 0.003*** 0.004***
(0.002) (0.003) (0.001) (0.001)

Robot grants (period) 0.000 0.002** 0.001*** -0.001**
(0.001) (0.001) (0.000) (0.000)

Initial employment Yes Yes Yes Yes Yes Yes
ICT investment Yes Yes Yes Yes Yes Yes
Net exports Yes Yes Yes Yes Yes Yes
Establishment FE Yes Yes Yes Yes Yes Yes
Period FE Yes Yes Yes Yes Yes Yes

Observations 4114689 4114689 4114689 2823570 2823570 2823570

Notes: The table reports estimates from equation (2.3), where the dependent variables are average
log employment or wages in four sub-periods. The AI and robot measures are defined as in
equation (2.1). Controls include initial period employment, ICT investment and net exports.
Regressions are weighted by establishment size. All models include establishment and period fixed
effects. Standard errors are clustered at the industry#period level and are reported in parentheses.
Significance levels: * p<0.10, ** p<0.05, *** p<0.01.
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Table 2.C.3: Plant-level Employment and Wage Effects in Manufacturing and
Services

Panel A: Employment
(1) (2) (3) (4) (5) (6)

Manufacturing Manufacturing Manufacturing Services Services Services

AI grants (period) 0.000 -0.005 0.003 -0.006
(0.003) (0.004) (0.003) (0.005)

Robot grants (period) 0.002** 0.004** 0.005*** 0.009***
(0.001) (0.002) (0.002) (0.003)

Initial employment Yes Yes Yes Yes Yes Yes
ICT investment Yes Yes Yes Yes Yes Yes
Net exports Yes Yes Yes Yes Yes Yes
Establishment FE Yes Yes Yes Yes Yes Yes
Period FE Yes Yes Yes Yes Yes Yes
Observations 353583 353583 353583 3640460 3640460 3640460

Panel B: Wages
(1) (2) (3) (4) (5) (6)

Manufacturing Manufacturing Manufacturing Services Services Services

AI grants (period) 0.003*** 0.005*** 0.002** -0.001
(0.001) (0.001) (0.001) (0.001)

Robot grants (period) 0.000 -0.001*** 0.002*** 0.003***
(0.000) (0.000) (0.001) (0.001)

Initial employment Yes Yes Yes Yes Yes Yes
ICT investment Yes Yes Yes Yes Yes Yes
Net exports Yes Yes Yes Yes Yes Yes
Establishment FE Yes Yes Yes Yes Yes Yes
Period FE Yes Yes Yes Yes Yes Yes
Observations 309330 309330 309330 2427422 2427422 2427422

Notes: The table reports estimates from equation (2.3), where the dependent variables are average log employment or wages in
four sub-periods. The AI and robot measures are defined as in equation (2.1). Controls include initial period employment, ICT
investment and net exports. Regressions are weighted by establishment size. Effects are estimated separately in manufacturing or
services industries. All models include establishment and period fixed effects. Standard errors are clustered at the industry#period
level and are reported in parentheses. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.

Table 2.C.4: District Employment and Wage Effects

(1) (2) (3) (4) (5) (6)
∆ Employment ∆ Employment ∆ Employment ∆ Wages ∆ Wages ∆ Wages

AI grants (period-district) -0.011** -0.018** -0.009*** -0.008*
(0.004) (0.007) (0.003) (0.005)

Robot grants (period-district) -0.002 0.004** -0.003*** -0.001
(0.001) (0.002) (0.001) (0.002)

Net exports Yes Yes Yes Yes Yes Yes
ICT investment Yes Yes Yes Yes Yes Yes
Demographic controls Yes Yes Yes Yes Yes Yes
Industry employment shares Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes
Period FE Yes Yes Yes Yes Yes Yes
Observations 1600 1600 1600 1600 1600 1600

Notes: The table reports estimates from equation (2.5) where the dependent variables are log employment (columns (1) to (3)) or wage changes
(columns (4) to (6)) in four sub-periods. The exposure measures are shift share variables as defined in equation (2.4). Demographic controls
include the share of female workers, the share of high-, medium- and low-skilled workers, the share of young, prime-aged and older workers. All
demographic control variables refer to the first year of the respective sub-period. Industry employment shares are measured at the one-digit
level in the base year. Net exports are measured at the one-digit industry level, adjusted by the total wage bill. ICT investment is measured
per worker at the one-digit industry level. All models include district- and period fixed effects. Standard errors are clustered at the district
level and are reported in parentheses. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.
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Table 2.C.5: District Employment and Wage Effects in Manufacturing and Services

Panel A: Employment
(1) (2) (3) (4) (5) (6)

Manufacturing Manufacturing Manufacturing Services Services Services

AI grants (period-district) -0.027*** -0.032* -0.004 -0.010**
(0.010) (0.019) (0.003) (0.005)

Robot grants (period-district) -0.009*** 0.003 -0.000 0.004*
(0.003) (0.006) (0.001) (0.002)

Net exports Yes Yes Yes Yes Yes Yes
ICT investment Yes Yes Yes Yes Yes Yes
Demographic controls Yes Yes Yes Yes Yes Yes
Industry employment shares Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes
Period FE Yes Yes Yes Yes Yes Yes
Observations 1600 1600 1600 1600 1600 1600

Panel B: Wages
(1) (2) (3) (4) (5) (6)

Manufacturing Manufacturing Manufacturing Services Services Services

AI grants (period-district) -0.007** -0.003 -0.002 -0.003
(0.003) (0.005) (0.001) (0.002)

Robot grants (period-district) -0.003*** -0.003 -0.001 0.000
(0.001) (0.002) (0.001) (0.001)

Net exports Yes Yes Yes Yes Yes Yes
ICT investment Yes Yes Yes Yes Yes Yes
Demographic controls Yes Yes Yes Yes Yes Yes
Industry employment shares Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes
Period FE Yes Yes Yes Yes Yes Yes
Observations 1600 1600 1600 1600 1600 1600

Notes: The table reports estimates from equation (2.5) where the dependent variables are log employment (Panel A) or wage changes
(Panel B) in Manufacturing (columns (1) to (3)) or Services (columns (4) to (6)) in four sub-periods. The exposure measures are shift
share variables as defined in equation (2.4). Demographic controls include the share of female workers, the share of high-, medium- and
low-skilled workers, the share of young, prime-aged and older workers. All demographic control variables refer to the first year of the
respective sub-period. Industry employment shares are measured at the one-digit level in the base year. Net exports are measured at the
one-digit industry level, adjusted by the total wage bill. ICT investment is measured per worker at the one-digit industry level. All
models include district- and period fixed effects. Standard errors are clustered at the district level and are reported in parentheses.
Significance levels: * p<0.10, ** p<0.05, *** p<0.01.
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2.D Additional Results

Table 2.D.1: Top Using Industries of AI and Robotics Patents

ISIC Industry AI Patents % AI Grants in Industry
2620 Computers and peripheral equipment 582 1.49
2640 Consumer electronics 316 4.45
2630 Communication equipment 139 0.55
2817 Office machinery and equipment 138 2.00
2822 Metal-forming machinery and machine tools 74 0.86
2670 Optical instruments and photographic equipment 72 0.25
5912 Motion picture, video and television programme post-production activities 69 0.47
5920 Sound recording and music publishing activities 65 0.24
2651 Measuring, testing, navigating and control equipment 52 0.35
8620 Medical and dental practice activities 40 0.18
ISIC Industry Robotics Patent % Robotics Patents in Industry
2814 Bearings, gears, gearing and driving elements 413 1.80
2822 Metal-forming machinery and machine tools 228 2.63
2651 Measuring, testing, navigating and control equipment 169 1.13
2750 Domestic appliances 148 1.15
2592 Treatment and coating of metals 138 1.89
2811 Engines and turbines 137 0.41
1050 Dairy products 137 4.93
2816 Lifting and handling equipment 117 0.82
2670 Optical instruments and photographic equipment 101 0.36
2620 Computers and peripheral equipment 97 0.24

Notes: The table reports the top ten four-digit industries using AI (top panel) and robotics patents (bottom panel). The second column reports the total number
of patent grants used in the industry during the 1990-2018 period, while the last column reports the share of AI resp. robotics patents to all patents used in the
industry.

Table 2.D.2: Industries with Strongest Growth in AI and Robotics Patents

ISIC Industry Growth in AI Patents
262 Manufacture of computers and peripheral equipment 5.76
264 Manufacture of consumer electronics 3.71
862 Medical and dental practice activities 3.70
263 Manufacture of communication equipment 3.53
267 Manufacture of optical instruments and photographic equipment 3.36
265 Manufacture of measuring, testing, navigating and control equipment; watches and clocks 3.26
592 Sound recording and music publishing activities 3.01
281 Manufacture of general-purpose machinery 2.76
282 Manufacture of special-purpose machinery 2.52
749 Other professional, scientific and technical activities 2.43
ISIC Industry Growth in Robotics Patents
862 Medical and dental practice activities 4.35
267 Manufacture of optical instruments and photographic equipment 3.36
262 Manufacture of computers and peripheral equipment 3.32
325 Manufacture of medical and dental instruments and supplies 3.00
105 Manufacture of dairy products 2.74
360 Water collection, treatment and supply 2.52
310 Manufacture of furniture 2.40
202 Manufacture of other chemical products 2.17
960 Other personal service activities 2.11
201 Manufacture of basic chemicals, fertilizers and nitrogen compounds, plastics and synthetic rubber 2.11

Notes: The table reports the top ten four-digit industries using AI (top panel) and robotics patents (bottom panel). The second column reports the total number
of patent grants used in the industry during the 1990-2018 period, while the last column reports the share of AI resp. robotics patents to all patents used in the
industry.
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Table 2.D.3: Plant Characteristics and Exposure Measures

Obs Mean Std. Dev. Min Max

Outcome variables:
Log Employment 8,321,322 1.4747 .9555 .6931 11.0850
Log Wage 4,972,440 4.1733 .5638 .0091 7.9354

Log Low-skill Employment 8,321,322 .4075 .6447 0 8.9658
Log Medium-skill Employment 8,321,322 1.1882 .9550 0 10.6056
Log High-skill Employment 8,321,322 .2966 .6154 0 10.0408
Log Low-skill Wage 1,478,332 4.0285 .5660 .0102 7.3965
Log Medium-skill Wage 4,469,474 4.1755 .5279 .0099 8.2739
Log High-skill Wage 1,585,626 4.5769 .6043 .0095 8.0878

Exposure Measures:
∆ Log AI Exposure 8,321,322 .8506 3.4321 0 86.6775
∆ Log Robot Exposure 8,321,322 1.3396 6.1234 0 89.3207

Control variables:
Initial Employment 5,580,252 12.0833 94.3619 1 64192
∆ Net exports 8,321,322 .9137 1.3013 0 9.5718
∆ ICT investment 8,321,322 6.78e09 4.04e10 -2.00e10 3.20e11

Notes: The outcome and exposure measures are measured at the plant-period level where plants are
observed in up to four periods. Employment and wage variables are measured as averages per period in
logs. The exposure measures are shift-share variables consisting of two components: the shift variable
denotes the cumulative number of patents in robotics and AI technologies used in a certain industry.
The information on patents is extracted from EPO data using natural language processing techniques.
The share variable is the employment share of an industry in the district in 1993. Control variables are
the initial plant employment in the beginning of each period, net exports and ICT investment. Exports
and ICT capital are measured at the 1-digit industry-period level.
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Table 2.D.4: Local Labor Market Characteristics and Exposure Measures

Obs Mean Std. Dev. Min Max

Outcome variables:
∆ Log Employment 1,600 .0379 .0674 -.3544 .7433
∆ Log Daily Wage 1,600 .0233 .0596 -.2626 .5239

∆ Log Low-skill Employment 1,600 -.0463 .1129 -.7451 .7997
∆ Log Medium-skill Employment 1,600 .0222 .0721 -.4413 .7976
∆ Log High-skill Employment 1,600 .1671 .1183 -.3402 1.1161
∆ Log Low-skill Wage 1,600 .0298 .0708 -.2850 .5477
∆ Log Medium-skill Wage 1,600 .0184 .0541 -.2912 .2462
∆ Log High-skill Wage 1,600 .0078 .0628 -.2756 .4627
Exposure Measures:
∆ Log AI Exposure 1,600 1.9600 1.6582 .1228 14.9378
∆ Log Robot Exposure 1,600 4.8075 3.8214 .1998 32.5569

Control variables:
% High-skilled Workers 1,600 .1068 .0501 .0253 .3726
% Medium-skilled Workers 1,600 .7250 .0549 .4776 .8442
% Low-skilled Workers 1,600 .1399 .0429 .0344 .3012
% Female Employment 1,600 .4907 .0394 .2655 .6357
% Workers aged 20-34 1,600 .2874 .0377 .2007 .4312
% Workers aged 35-49 1,600 .3815 .0438 .2788 .5196
% Workers aged 50-64 1,600 .2596 .0607 .1479 .4314
∆ Net exports 1,600 1.13e10 1.50e10 -5.97e10 1.34e11
∆ ICT investment 1,600 1.179339 .2743092 .7140896 2.673793

Notes: The outcome and exposure measures are measured at the district-period level. Each of the 400
districts is observed in four periods. Changes are calculated as log changes between the first and last
year of each period. The exposure measures are shift-share variables consisting of two components: the
shift variable denotes the cumulative number of patents in robotics and AI technologies used in a certain
industry. The information on patents is extracted from EPO data using natural language processing
techniques. The share variable is the employment share of an industry in the district in 1993. All control
variables are measured at the district-period level and represent employment shares at the beginning of
each period. Additional controls not depicted in the table are employment shares by 1-digit industries at
the district-period level.
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Table 2.D.5: Plant-level Robustness Checks

Panel A: Employment
(1) (2) (3) (4)

Raw counts IHS transformation log(0.1 +) transformation No German patents

AI exposure -0.00078 -0.00391 -0.00047 -0.005
(0.00053) (0.00245) (0.00078) (0.003)

Robot exposure 0.00017 0.00188* 0.00094 0.002*
(0.00012) (0.00096) (0.00058) (0.001)

Initial employment Yes Yes Yes Yes
ICT investment Yes Yes Yes Yes
Net exports Yes Yes Yes Yes
Establishment FE Yes Yes Yes Yes
Period FE Yes Yes Yes Yes
Observations 4114689 4114689 4114689 4114689

Panel B: Wages
(1) (2) (3) (4)

Raw counts IHS transformation log(0.1 +) transformation No German patents

AI exposure 0.00059*** 0.00255*** 0.00025 0.003***
(0.00017) (0.00054) (0.00027) (0.001)

Robot exposure 0.00001 -0.00043* 0.00009 -0.000
(0.00002) (0.00024) (0.00018) (0.000)

Initial employment Yes Yes Yes Yes
ICT investment Yes Yes Yes Yes
Net exports Yes Yes Yes Yes
Establishment FE Yes Yes Yes Yes
Period FE Yes Yes Yes Yes
Observations 2823570 2823570 2823570 2823570

Notes: The table reports estimates from equation (2.3), where the dependent variables are average log employment or wages in four
sub-periods. The table presents alternative definitions of the main independent variables AI and robot exposure. Column (1) uses raw
patent counts, column (2) uses the inverse hyperbolic sine transformation, and column (3) uses a log(0.1 + patents) transformation. In
column (4), patents of German inventors are excluded. Controls include initial period employment, ICT investment and net exports.
Regressions are weighted by establishment size. All models include establishment and period fixed effects. Standard errors are clustered
at the industry#period level and are reported in parentheses. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.

Table 2.D.6: District Employment and Wage Effects - No German patents

(1) (2) (3) (4) (5) (6)
∆ Employment ∆ Employment ∆ Employment ∆ Wages ∆ Wages ∆ Wages

AI grants (period-district) -0.012** -0.017** -0.010*** -0.008*
(0.005) (0.007) (0.003) (0.005)

Robot grants (period-district) -0.003* 0.003 -0.004*** -0.001
(0.001) (0.002) (0.001) (0.002)

Net exports Yes Yes Yes Yes Yes Yes
ICT investment Yes Yes Yes Yes Yes Yes
Demographic controls Yes Yes Yes Yes Yes Yes
Industry employment shares Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes
Period FE Yes Yes Yes Yes Yes Yes
Observations 1600 1600 1600 1600 1600 1600

Notes: The table reports estimates from equation (2.5) where the dependent variables are log employment (columns (1) to (3)) or wage changes
(columns (4) to (6)) in four sub-periods. The exposure measures are shift share variables as defined in equation (2.4). All patents from German
inventors are excluded. Demographic controls include the share of female workers, the share of high-, medium- and low-skilled workers, the
share of young, prime-aged and older workers. All demographic control variables refer to the first year of the respective sub-period. Industry
employment shares are measured at the one-digit level in the base year. Net exports are measured at the one-digit industry level, adjusted by
the total wage bill. ICT investment is measured per worker at the one-digit industry level. All models include district- and period fixed effects.
Standard errors are clustered at the district level and are reported in parentheses. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.
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Figure 2.D.7: Example of a robot patent document
with highlighted keyword matches
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Figure 2.D.8: Example of an AI patent document
with highlighted keyword matches
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Figure 2.D.9: Evolution of Patents by Broad Technology Class
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Notes: The figures show the number of patent grants in Robotics (Panel (A)) and AI (Panel
(B)) in broad technology classes over time.
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Figure 2.D.11: ALP process based on Lybbert & Zolas (2014).
Author’s own depiction.
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Artificial Intelligence and the Task
Content of Occupations 1

Artificial Intelligence (AI) has evolved rapidly and is now applicable in many

domains. The public debate around AI oscillates between fascination with the new

possibilities and fear of its potential dangers. In particular, there is a widespread

concern that the diffusion of AI will sharply reduce the demand for labor.

An emerging literature has started to investigate the employment effects of AI

(e.g., Acemoglu et al., 2022; Alekseeva et al., 2021; Brynjolfsson et al., 2018; Felten

et al., 2018; Mann and Püttmann, 2023; Webb, 2020). Most of the literature finds

few displacement effects and a limited impact on average wages. That does not

mean, however, that AI has not left its mark on the labor market.

Yet, little is known about how AI reshapes the content of jobs. In particular,

which skills actually lose importance, and which tasks become more important with

AI? Moreover, we lack evidence on whether AI has an impact on worker careers

beyond displacement. Given the broad applicability of AI, it is unclear whether

earlier waves of technological change, in particular the diffusion of industrial robots,

can provide any guidance on these questions.

1This chapter is joint work with Christina Gathmann and Erwin Winkler. We are grateful to
Matias Cortes, Daniel Haanwinckel, Markus Nagler, Regina Riphahn, and participants at SOLE,
University of Trier, University of Duisburg-Essen, KU Leuven, the AI conference, and several
workshops for helpful comments and suggestions.
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In the first part of the paper, we ask how AI has shifted the content of jobs and

how this contrasts with the impact of robots. We use individual-level survey data

(BIBB) to characterize the tasks performed on the job; the data have previously

been used to analyze the accumulation of task human capital (Gathmann and

Schönberg, 2010) and technological task changes over time (Spitz-Oener, 2006). The

detailed nature of our task data allows us to track changes in tasks performed on the

job within narrowly defined occupations and industries over more than a decade.

A key challenge is measuring the new technological opportunities of AI tools.

We apply a novel measure, which uses Natural Language Processing on patent

data from the European Patent Office to characterize the evolution of AI and,

for comparison, robots (Gathmann and Grimm, 2023). AI shows features of a

general-purpose technology as it has diffused into many more industries than robots,

which are fairly concentrated in a few industries in manufacturing. Further, our

patent-based measures of robot and AI exposure correlate closely with actual robot

installations and jobs requiring AI skills posted in online job vacancies. Our new

measures have two key advantages over previous indicators: First, our measures

vary across detailed industries using the technologies and within industries over time

to capture the evolving capabilities of AI and robots. Second, our measures quantify

the exposure of industries to the capabilities of AI; we can use them to study their

impact on the task content of jobs, independently of whether the change is related

to automation, productivity enhancement, or the emergence of new work processes.

We then compare the job tasks of workers with similar demographics and working

in the same detailed occupation and broad industry, thereby exploiting variation

in AI exposure by detailed industry and over time. We compare our results to the

task-changing impact of robots. The prior literature indicates that robots replace

routine-intensive jobs and mostly affect low-skilled workers (e.g., Acemoglu and

Restrepo, 2020; Webb, 2020; Dauth et al., 2021). If we find a similar result with

the new patent-based measure of robotics technology, this serves as an important

validity check for our approach. Moreover, there are possibly important interactions

between the two technologies as AI tools can often be used to operate robots, for
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instance. Controlling for robot exposure is therefore important to tease out the

partial effect of AI on the task content of jobs.

Our results show that AI has had a very different effect on the content of

jobs than robots. We find that AI exposure decreases the share of non-routine

tasks and increases the share of routine tasks that workers perform on their jobs.

Zooming in, we find that AI mostly reduces non-routine analytical tasks related to

gathering information, investigating, and documenting. In sharp contrast, robot

exposure decreases routine tasks and increases non-routine tasks. A more detailed

look reveals that robots mostly reduce routine tasks like monitoring machines and

technical processes and producing goods, which appears in line with results in the

literature on robots (e.g., Acemoglu and Restrepo, 2020; Dauth et al., 2021). Both

technologies exhibit a differential dynamic over time: the effects of robots were

strongest in the 2000s but phased out by 2018. We observe the opposite pattern for

AI technologies: AI had few effects on job tasks in 2006, but its impact on job tasks

has grown continuously over time. Interestingly, we find that AI-related changes

in job tasks are strongest for low- and medium-educated workers and for older

workers. Overall, these results are in line with the hypothesis that AI technologies,

in contrast to robots, are substituting for non-routine tasks performed by workers.

In the second part of the paper, we turn to the question of how workers adapted

to the observed task shifts. To study the reallocation of workers across firms,

industries, and occupations in response to the changes initiated by AI, we match

our task measures to administrative social security records of the labor market

careers and earnings of workers in Germany. We find that AI exposure leads to

a small decline in employment and earnings. The decrease in days employed is

driven by employees moving between firms. In particular, we find that this mobility

occurs mainly within broad (2-digit) industries, and employees tend to switch to

firms in industries less exposed to AI, keeping their initial occupation. The increase

in mobility associated with AI exposure is mainly driven by workers with a high

share of analytical tasks. For robots, we find the opposite effect as employees
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exposed to robots experience increased job stability at the initial firm, consistent

with prior evidence for Germany (Dauth et al., 2021).

In addition to a better understanding of the labor market impacts of AI, our

paper contributes to at least three other strands of the literature. First, we make

use of a new measure to identify the impact of AI on labor markets in Germany

based on patent data. Our measure captures advances in AI technologies in using

industries over several decades. Measuring progress in AI technologies is challenging.

Previous attempts have produced cross-sectional measures at the occupational

level of whether a task might be potentially automated by AI (Felten et al., 2018;

Brynjolfsson et al., 2018; Tolan et al., 2021). We see three main advantages of

our measure relative to the occupation-based measures: first, our measures do not

impose assumptions about the automation potential. Second, our measures vary

over time, thus allowing exposure to the knowledge frontier to evolve dynamically

over time. Third, we can use our measures to study how the task content of jobs

actually changes with AI and robots across but also within occupations. Arntz

et al. (2017) demonstrate that expert assessments typically overstate automation

potentials as they do not account for the heterogeneity and shifts in task usage

within occupations. Firms might reshuffle the set of tasks performed in a job or

add new tasks in response to the automation of some tasks. Likewise, workers may

specialize in tasks that cannot be easily automated to avoid displacement.

An alternative approach has used the occurrence of AI skills in online job ads

(Acemoglu et al., 2022; Alekseeva et al., 2021) or the growth of occupations with

AI-related skills (Bonfiglioli et al., 2023) to proxy the adoption and diffusion of AI in

firms. Most closely related to our measure are other patent measures on AI (Mann

and Püttmann, 2023; Dechezleprêtre et al., 2020). Unlike them, we do not restrict

our measure to automation patents but measure advances in AI technologies more

broadly. Our patent-based measures of AI are strongly correlated with online job

ads in using industries. Moreover, our measure for robots shows a strong correlation

with the actual installation of robots in exposed industries.
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By comparing the impact of AI to those of robots, we also contribute to a large

recent literature studying the impact of industrial robots on the labor market (e.g.,

Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020; Dauth et al., 2021; Koch

et al., 2021; Humlum, 2019; Bonfiglioli et al., 2020). The literature has mostly

focused on the impact on employment and wages as well as which workers adjust

to the diffusion of robots. Our study is the first to analyze how robots affect

detailed job tasks. In line with the view that robots are viewed as an automation

technology, we show that it reduces the routine task share in occupations. Yet, it

also increases the analytical task share with few displacement effects indicating that

the replacement effect is largely offset by productivity gains. Moreover, we show

that AI leads to reallocation across firms and industries, while robots actually reduce

job mobility for the average worker. Finally, by analyzing the impact of robots and

AI in parallel, we also capture the interaction between the two technologies, i.e. the

fact that AI may enhance the capabilities of robots and reduce their costs.

Our paper builds on the task-based approach, which considers jobs and oc-

cupations as bundles of tasks, some of which are more prone to be substitutes

or complements with technology than others (e.g., Autor et al., 2003; Acemoglu

and Autor, 2011). It has been shown that routine-biased technological change

has automated routine tasks (e.g., Autor et al., 2003; Spitz-Oener, 2006; Gregory

et al., 2019) and replaced workers in the middle of the wage distribution leading

to a polarization of jobs (e.g., Autor and Dorn, 2013; Goos et al., 2009; Cortes,

2016). While task changes typically occur both between and within occupations

(Spitz-Oener, 2006; Atalay et al., 2018; Consoli et al., 2023, e.g.,), much of the

existing literature on the link between technology and job tasks focuses exclu-

sively on between-occupation changes in tasks. We contribute to this literature

by connecting within-occupation task changes with measures for the technological

advances in artificial intelligence and robots. Doing so provides new insights into

the labor market effects of AI and stresses the importance of within-occupation
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adjustment processes for the debate around automation and technological unem-

ployment. Our results suggest that a focus on between-occupation changes in tasks

misses a substantial share of technology-induced task changes.

Finally, we contribute to the literature on the reallocation effects of technological

change. Most of the literature has focused on adjustments to adopting automation

technologies at the firm level (Bessen et al., 2019; Genz et al., 2021). While Bessen

et al. (2019) find that incumbent workers are more likely to leave their employer

after adoption, Genz et al. (2021) find that incumbent workers in adopting firms

are less likely to leave the firm. We contribute to this strand by quantifying the

effect of AI on those working in the exposed industry and distinguishing between

reallocation across firms, industries, and occupations.

The rest of this paper is structured as follows. The next section outlines our

approach to measuring advances in AI and robotics technologies using patent data.

In section 3.2, we explain how we measure tasks performed on the job and explain our

empirical strategy for estimating the link between AI, robots, and tasks. In section

3.3, we present the results on the link between AI, robots, and task changes. In

section 3.4, we analyze how workers adjust to the changes initiated by AI technologies.

Finally, section 3.5 discusses the implications of our findings and concludes.

3.1 Measuring Advances in AI and Robotics

A key challenge in assessing the impact of AI technologies on the content of jobs

and the labor market more broadly is to find a suitable measure of who is exposed

to AI. Our measures of technological progress in AI and, for comparison, robotics

are based on patent data from the European Patent Office (EPO). Patents are

proxies for technological advances, which have been heavily used in the innovation

literature. We use the universe of patents granted by the EPO between 1990 and

2018. These data include detailed bibliographical and technical information on

all patents filed and granted. In total, we use around 7 million patent documents

that all include the title of the invention, an abstract describing the invention as

well as information on the inventor such as name, company, and location. Many



3. Artificial Intelligence and the Task Content of Occupations 69

patents are filed by non-European inventors who want to protect their innovations

when selling on European markets. Importantly, each patent’s technical content

is classified in the Cooperative Patent Classification (CPC) and is assigned one

or more codes by a patent examiner.

We create a measure of advances in AI and robotics in three main steps. The first

step is to classify patents as AI or robotics patents. For AI, we use a combination

of a search based on AI-specific CPC codes and a keyword-based classification that

uses the patent’s title and abstract as text inputs (see Gathmann and Grimm, 2023,

for more details). We then perform a number of Natural Language Processing tech-

niques, such as stemming, the removal of stop words, and tokenization, to prepare the

text input for the keyword search. AI is often embedded in other inventions because

algorithms and software are often not protected by patents on their own. Patent

protection is granted, however, if the algorithms or software are part of the solution

for a technical problem like image recognition, for example. To capture inventions

that involve AI but are not classified by an AI-specific CPC code, we use a Natural

Language Processing approach and classify AI patents based on keyword matches.

This approach yields around 7000 AI patent applications and grants. Appendix

Figure 3.A.2 shows that patent activity in AI has grown significantly in Europe

since 2015. In addition to AI patents, we also identify patents in robotics which are

mostly identified by the CPC code B25J9 ‘Programme-controlled manipulators’.

The second step is to identify the industries that make use of a patent in their

production of goods or services. It is important to stress that we are not after the

producers of patents (‘innovators’) but after firms in industries that potentially

use the technological innovations protected by patents. Industries that produce a

patent need not be the same as the industries using this technological innovation.

A patent on an AI technology might be filed by a company in the IT sector but

is later used in the manufacturing of machinery or in agriculture, for instance.

For the mapping from CPC codes to industries of use, we employ a probabilistic

walkover developed by Lybbert and Zolas (2014) and updated by Goldschlag et al.
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(2019)2. The walkover allows us to go from CPC codes to 3-digit ISIC industry

codes. Lybbert and Zolas (2014) use the description of industries and the economic

activities performed in them to run a keyword search on the universe of patents

in the PATSTAT database. This identifies patents whose technological content is

closely related to a given industry. Using the CPC codes of the matches obtained in

this search, they calculate the probability that a patent belonging to a specific CPC

code is linked to a specific industry. Based on the frequency of patent-industry

matches, they calculate a probabilistic weight using Bayes’ rule. They hereby take

into account the total number of possible codes and the number of times a code is

matched to an industry. This approach results in a list of patents with their CPC

codes linked to industries producing with the knowledge embedded in the patent.

The final step is to construct a summary measure of the advances in AI. We

consider patents as the cumulative stock of knowledge on AI technologies that is

available to firms for implementation in a given year. We therefore construct

the following measures:

AIj(t−2) =
t−2∑

s=1990
AIPatentsis (3.1)

and likewise for robotics:

Robotsj(t−2) =
t−2∑

s=1990
RobPatentsis (3.2)

where j denotes the industry, s the year of the patent grant and t denotes the

period from 1990 to year t. We follow the literature and give each patent the same

weight (e.g., Mann and Püttmann, 2023).3 We standardize both measures to have

a mean of zero and a standard deviation of one to facilitate the interpretation of

results. For each broad technology, the measure varies both by detailed industry

(3-digit level) and over time.
2See also Goldschlag et al. (2016) for applications of this probabilistic walkover from patents

to industries.
3Weighting by forward patent citations to indicate the importance of an AI patent is not

feasible given the recent nature of patent activity on AI.
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3.2 AI and Tasks Performed on the Job

3.2.1 Data on Tasks Performed on the Job

To analyze how AI affects the tasks workers perform in their jobs, we make use of

the BIBB/BAuA surveys (Hall and Tiemann, 2009; Hall et al., 2014, 2020). The

data have been used previously to analyze task changes over time (Spitz-Oener,

2006) and the impact of task distance on mobility and earnings growth (Gathmann

and Schönberg, 2010). The survey is a repeated cross-section of employees that

has been conducted roughly every six years since 1979. Each survey consists of a

representative sample of individuals ages 15 and older who work at least 10 hours per

week at the time of the interview. We restrict the sample to individuals aged 18-65

years, working full-time (at least 35 hours per week) in dependent employment.

We drop self-employed individuals and civil servants.

To track how AI and robotics shift the task content of jobs, we focus on the

three most recent waves of 2006, 2012, and 2018. We expect there to be little impact

in 2006 but visible changes in the 2012 and 2018 waves 4. The survey contains

the socioeconomic background of the individual including educational background

and age, but also the occupation and detailed industry.

Most importantly, we have detailed information on the tasks performed on the

job. Specifically, the survey elicits whether an individual performs any of seventeen

different tasks. We analyze the detailed tasks and aggregate them into four cate-

gories: routine tasks, non-routine analytical tasks, non-routine interactive tasks,

and non-routine manual tasks. The individual tasks and their classification into the

four groups are as follows:

Routine tasks: Monitoring or operating machines or technical processes; manu-

facturing or producing of goods and products; transporting, storing or shipping;

measuring or quality checks.

Non-routine analytical tasks: Developing, researching or constructing; gathering
4A second reason we focus on the three latest waves is that there were major changes in the

task-related questions between 1999 and 2006.
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information, investigating or documenting; working with computer or tablet; orga-

nizing, planning or preparing work processes (of others).

Non-routine interactive tasks: Buying, procuring or selling; teaching, training or

educating; consulting or informing; promoting, marketing, advertising or PR.

Non-routine manual tasks: Repairing; accommodating, hosting or preparing food;

caring or healing; cleaning, waste disposal or recycling; protecting, securing, guard-

ing or regulating traffic.

For each task, survey participants are asked whether they perform the respective

task ’frequently,’ ’occasionally,’ or ’never’ in their job. Based on the answers, we

compute task shares for each individual task and the four broad task categories.

For each task, we divide whether a task is performed frequently or occasionally

by the total number of all tasks performed (frequently or occasionally). For the

grouped task shares, we take the number of tasks that fall into category c divided

by the total number of tasks performed :

TaskSharec
it =

∑
s∈c Taskist∑

s Taskist

∗ 100 (3.3)

where i denotes the individual worker and s a task. Taskis is equal to one if

the individual performs task s frequently or occasionally; and zero otherwise. The

task share can take on values between 0% and 100% and can be interpreted as

the relative importance of category c in worker i’s job. For example, if worker i

performs a total of four tasks frequently or occasionally, and two of them fall into

the routine manual category, then the routine manual task share equals 50%.

Appendix Table 3.B.1 shows descriptive statistics for the four task variables

in each wave (2006, 2012, and 2018). Over the period from 2006 to 2018, the

routine task share declined by 0.8 percentage points (Panel (a), esp. in the task of

repairing. The analytical task share, in turn, sharply increased by 2.6 percentage

points over the same time period (see Panel (a)), mostly driven by the organization

and coordination of work processes (see Panel (b)).
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3.2.2 Empirical Strategy

We investigate task changes on the job and the role that technological advances

play in the observed task shifts. We first merge our patent-based exposure measures

of advances in AI and robotics technologies to the individual worker sample by

two-digit industry and period. We then estimate variants of the following model:

TaskSharec
ijot = β1AIj(t−2) + β2Robotsj(t−2) + X ′

itγ + tt + λj + θo + ϵijot (3.4)

where TaskShareijot denotes the task share (routine, analytical, interactive, or

manual) of worker i working in industry j and occupation o in survey year t (2006,

2012, or 2018) as defined in equation (3.3). Our main variables of interest are

AIj(t−2) and Robotsj(τ), the cumulative number of AI or robot patents between 1990

and two years prior to the survey (t − 2) in using industry j.5

We include a number of demographic characteristics as control variables Xit:

the education level (college degree, vocational or high school degree, and without a

vocational or high school degree), five age groups (18-25, 26-35, 46-45, 46-55, 56-65),

gender, German nationality. We further control for state fixed effects and wave

dummies tt. As the task content of jobs differs substantially between economic

sectors, we control for 3 broad sectors (manufacturing, service, and primary sector)

or, alternatively, 1-digit industries. All specifications use sample weights and cluster

standard errors at the industry-year level.

3.2.3 Do Tasks Predict Future Exposure?

Rather than technological change shifting job tasks, growing specialization or

outsourcing might actually shift the tasks performed in certain jobs, which in turn

encourages firms to invest in automation or AI adoption. The shift in tasks would

then be the cause rather than the consequence of exposure to AI in a job.

To address concerns about reverse causality, we run a balancing test to determine

whether initial task shares (in 2006) help to predict future exposure to AI or robotics
5We use a time lag to allow for the technology to diffuse into the industry that uses it. The lag

length does not make much difference, as shown in the robustness section below.
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technologies. In Table 3.1, we regress our patent measures between 2006 and 2018

on task shares in 2006. Here, we exploit variations in AI and robot use across

two-digit industries. Columns (1) and (3) show that task shares in 2006 do not

predict future AI (column (1)) or robot (column (3)) exposure. The only exceptions

are a positive correlation between the routine task share and robot patents and a

negative correlation between the interactive task share and AI patents. Both of these

coefficients are marginally statistically significant. In columns (2) and (4), we add

indicators for broad economic sectors to account for the big differences in job tasks

between agriculture, manufacturing, and services. Conditional on the main sector of

activity, there is no meaningful relationship between initial task shares and future

exposure to AI or robots. The F-test shown at the bottom of Table 3.1 highlights

that the null hypothesis that all three coefficients are zero cannot be rejected at

conventional significance levels. These estimates support our notion that job tasks

cannot predict exposure to AI and robots within manufacturing and services.

Table 3.1: Balancing test

AI Exposure (2006-18) Robot Exposure (2006-18)
(1) (2) (3) (4)

Routine tasks (2006) (%) 0.04 -0.02 0.08* 0.00
(0.04) (0.02) (0.04) (0.05)

Analytical tasks (2006) (%) 0.05 -0.00 0.04 -0.03
(0.04) (0.01) (0.03) (0.06)

Interactive tasks (2006) (%) -0.04* 0.00 0.01 0.06
(0.03) (0.02) (0.05) (0.06)

Manufacturing sector 1.14 1.38*
(0.82) (0.74)

Primary sector 0.16 -0.02
(0.20) (0.21)

Adj. R2 0.06 0.11 0.07 0.16
Obs. 56 56 56 56
P(Routine=Analytical=Interactive=0) 0.36 0.74 0.06 0.57

Note: Table reports industry-level regressions of the growth of AI patents between 2006 and 2018 (columns
(1) and (2)) and of robot patents between 2006 and 2018 (columns 3 and 4) on task shares in 2006 and sector
dummies. AI and robot patents are normalized to a mean of zero and a standard deviation of one. Regressions are
weighted by the number of observations in the respective industry in 2006. Robust standard errors in parentheses.
* p<0.10, ** p<0.05, *** p<0.01. The last row shows the p-value of an F test with the null hypothesis that the
coefficients of the routine, analytical, and interactive shares are jointly zero.
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3.3 AI and Changes in Job Tasks

3.3.1 Industry-level Correlations

We start out with simple descriptive evidence relating changes in job tasks to our

patent-based exposure measures at the industry level. Figure 3.1 plots the change

in the routine task share between 2006 and 2018 against the number of AI and

robot patents between 2006 and 2018. We first residualize both variables from

demographics and sector.6 Interestingly, Panel A suggests that AI technologies go

along with an increase in the relative importance of routine tasks. This is in sharp

contrast to the results for robot patents displayed in Panel B of Figure 3.1. Robots

are associated with a decline in the routine task share – as expected from prior

studies on robots (e.g., Acemoglu and Restrepo, 2020; Dauth et al., 2021; Webb,

2020). Panel C and D in Figure 3.1 show the relationship between analytical tasks,

robots, and AI. We again find stark differences: AI technologies actually reduce

analytical tasks, while there is little association for robots.

Appendix Figure 3.A.3 shows corresponding correlations for the group of inter-

active and manual tasks. Industries using AI technologies rely less on interactive

tasks, while industries employing robots see an increasing need for interaction tasks.

For manual tasks, the patterns are more muted: AI exhibits little relationship,

while robots, in line with its potential for automating physical tasks, are associ-

ated with fewer manual tasks in an industry. These industry-level correlations

provide a first hint that AI affects the task content of jobs in fundamentally

different ways than robots.

6Demographic controls include the three education groups, five age groups, gender, and German
nationality. Sector controls are manufacturing, services, and the primary sector.
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Figure 3.1: AI, Robots, and Job Tasks

A: AI and Routine Tasks B: Robots and Routine Tasks

C: AI and Analytical Tasks D: Robots and Analytical Tasks

Note: The figure shows the relationship between changes in task shares between 2006 and 2018
and cumulative AI or robot patent-based knowledge after adjusting for demographics and sectors.
Patent measures are the cumulative number of patents between 1990 and 2018 and are normalized
to have a mean of 0 and a standard deviation of 1. Demographic controls include the share of
three education groups, five age groups, gender, and workers with German nationality. Sector
controls include the manufacturing, service, and primary sector. The size of the circle denotes the
number of employees in the industry in 2006. The figure is restricted to industries with at least
thirty employees in our sample in 2006.
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3.3.2 AI, Robots and Worker-level Tasks

We now turn to the worker level and estimate how exposure to AI and robots affects

individual task shares performed on the job by estimating equation (3.4) controlling

for socio-demographics, occupation (2-digit) and industry (1-digit) fixed effects as

well as year and state dummies. We thus compare workers in exposed industries to in-

dividuals with similar socioeconomic characteristics, working in the same occupation

and industry whose detailed industry is less or not exposed to the new technologies.

Figure 3.2 shows the impact of AI and robot exposure on the tasks performed

by individual workers. Panel A shows that AI increases routine tasks of workers

exposed to AI technologies relative to a worker of the same age, gender, education,

occupation, and sector in a non-exposed industry. In line with the notion that

robots mostly automate repetitive tasks, Panel B shows that the routine share

declines for workers exposed to robot technologies.

In contrast, AI actually decreases analytical tasks, while robots tend to increase

them. Moreover, robots also increase interactive tasks while we see little effect

of AI on interactive tasks. Finally, there is no clear pattern of AI and robots on

purely manual tasks. The individual worker level effects thus confirm the descriptive

patterns at the industry level in Figure 3.1.

Table 3.2 demonstrates that these shifts occur across, but especially within

occupations. The first specification controls only for socioeconomic characteristics

and the broad sector in addition to state and year dummies (column (1)). We

then zoom in on technology-induced task changes within occupations by adding

occupation fixed effects at the 2-digit (column (2)) and 3-digit level (column (3)).

The final specification is the one shown in figure 3.2 above, which includes 2-digit

occupation and 1-digit industry fixed effects. In all specifications, we compare

workers with similar observable characteristics working in the same broad sector

where some are exposed to AI in their detailed industry while others are not.
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Figure 3.2: Technology and Individual Job Tasks

A: AI and Job Tasks B: Robots and Job Tasks

Note: The figure shows point estimates and 95%-confidence intervals of a regression of task shares
on AI and robot exposure, respectively. Controls include 3 education groups (university degree,
vocational degree, less than vocational degree), gender, 5 age groups (18-25, 26-35, 36-45, 46-55,
56-65), a dummy for German nationality, 16 federal state dummies, dummies for manufacturing,
service, and primary sector, year dummies, 2-digit occupation dummies, and 1-digit industry
dummies. Number of observations: 38,480. Standard errors are clustered at industry-year level.

The table supports three key results: First, AI indeed reduces analytical tasks

and increases routine tasks. Second, AI and robots have opposing effects on job

tasks. Third, the observed task shifts with AI are strongest for individuals working

in the same occupation. How important are the observed shifts in tasks? Between

2006 and 2018, the routine share declined by 0.81 percentage points in our data.

The diffusion of robots would then account for a large share of this decline (60

percent). The diffusion of AI would actually largely offset this decline. Similarly,

analytical task shares have overall increased by 1.43 percentage points between

2006 and 2018. Robots would contribute about 15 percent to this increase, while

AI would have slowed down the growth in analytical tasks.

The observed shifts in aggregate task shares raise the question of which specific

tasks change when AI is used in an industry. To investigate this, we use information

on the seventeen detailed tasks available in the survey. We thus re-estimate equation

(3.4) where we now have the probability of performing a detailed task as the depen-

dent variable. The specification is otherwise the same as in column (4) of Table 3.2.

Figure 3.3 shows that within analytical tasks, AI mainly reduces the importance

of gathering information, investigating, or documenting. As AI-assisted tools provide
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Table 3.2: Technology and Individual Job Tasks

Panel A: Routine tasks
(1) (2) (3) (4)

AI Exposure 0.44* 0.58*** 0.35*** 0.65***
(0.24) (0.10) (0.10) (0.11)

Robot Exposure -0.60*** -0.47*** -0.41*** -0.49***
(0.13) (0.07) (0.05) (0.07)

R2 0.20 0.36 0.39 0.36

Panel B: Analytical tasks
AI Exposure -0.33 -0.29** -0.26** -0.48***

(0.41) (0.12) (0.10) (0.14)
Robot Exposure 0.27 0.15** 0.10 0.22***

(0.19) (0.08) (0.06) (0.08)
R2 0.15 0.37 0.40 0.38

Panel C: Interactive tasks
AI Exposure 0.08 -0.11 -0.13 -0.12

(0.19) (0.10) (0.09) (0.10)
Robot Exposure 0.28*** 0.31*** 0.37*** 0.32***

(0.11) (0.06) (0.06) (0.06)
R2 0.15 0.32 0.34 0.32

Panel D: Manual tasks
AI Exposure -0.20 -0.18 0.03 -0.06

(0.32) (0.12) (0.11) (0.12)
Robot Exposure 0.04 0.01 -0.06 -0.05

(0.16) (0.06) (0.06) (0.07)
R2 0.12 0.35 0.39 0.36

Demographic controls X X X X
State dummies X X X X
Year dummies X X X X
Sector dummies X X X
2-digit occupation dummies X X
3-digit occupation dummies X
1-digit industry dummies X

Note: Number of observations: 38,480. Sum of patents from 1990 through t-2
normalized to have mean of 0 and standard deviation of 1. Task shares in year t are
measured in percent. Demographic controls include 3 education groups (university
degree, vocational degree, less than vocation degree), gender, 5 age groups (18-25,
26-35, 36-45, 46-55, 56-65), a dummy for German nationality, and 16 federal state
dummies. Sector controls include dummies for manufacturing, service, and primary
sector. Regressions employ sample weights. Standard errors clustered at industry-year
level in parentheses. * p<0.10, ** p<0.05, *** p<0.01.
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information, they reduce the need to collect and gather information elsewhere. One

example would be a malfunctioning machine where AI can diagnose and possibly

repair the problem, whereas before, the responsible person had to call the service

provider or study a handbook to fix the machine. There are few changes in other

non-routine analytical tasks like working with a computer or tablet or developing,

researching and constructing. AI does not replace the need to use a computer, and

most people using AI have worked with a computer or tablet at their jobs before.

We also found the surprising result that AI increases the routine task share.

Here, Figure 3.3 shows that AI requires more time for monitoring or operating

machines and technical processes, as well as performing quality checks. We call

these ‘high-level’ routine tasks and distinguish them from standard routine tasks.

The standard notion of routine tasks is that they can be easily codified into rules

and eventually taken over by a machine. An example would be a repetitive task

that a worker used to perform in an assembly line, for instance. AI, in contrast,

needs humans to evaluate the process and output of the algorithms. AI will require

more workers to perform such high-level tasks in the future.

Figure 3.3 further shows few effects of AI on interactive tasks but opposing

effects on manual tasks. AI technologies reduce the relative importance of protecting,

securing, guarding, and regulating traffic but seem to increase the time spent on

repairing and fixing things. AI, when built into tools like cameras or other image

recognition tools, can take over some tasks in securing and guarding buildings or

production processes and report issues when problems arise. Yet, human labor

is needed to step in when things go wrong, and AI cannot solve a problem or a

problem with the AI tool itself emerges.

The results for detailed job tasks again demonstrate how different the impacts

of robots and AI are on jobs and workplaces. Figure 3.4 shows the results from

the coefficient for robot exposure for the detailed job tasks. Robots reduce the

need for several routine tasks like monitoring machines or technical processes,

producing goods and services, as well as measuring and performing quality checks

or technical processes. Many of these activities, esp. in manufacturing, can be
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Figure 3.3: AI and Detailed Job Tasks

Note: The figure shows the link between AI patents and the probability of performing a single
task. The dependent variable is a dummy variable (multiplied by 100). Regressions include
demographic controls (3 education groups (university degree, vocational degree, less than vocation
degree), gender, 5 age groups (18-25, 26-35, 36-45, 46-55, 56-65), a dummy for German nationality),
year dummies (2006, 2012, 2018), 2-digit occupation dummies, and 1-digit industry dummies.
Regressions employ sample weights. Standard errors clustered at industry-year level. The lines
reflect 95% confidence intervals.

performed more and more by robots themselves. Yet, robots increase the need for

analytical tasks involving creative work like researching and developing, gathering

information, or documenting. Robots also increase interactive tasks like consulting

and informing, but also customer and client relationships in sales or procurement,

in which humans (still) have a comparative advantage.

The development of AI has dramatically accelerated in recent years, which is

reflected in the fact that AI patents accelerated in Europe after 2015 (see Ap-

pendix figure 3.A.2). As such, we would expect the impact of AI on job tasks

to become stronger over time. To investigate this, we run separate estimations

for 2006 and 2018.
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Figure 3.4: Robots and Detailed Job Tasks

Note: The figure shows the link between robot patents and the probability of performing a single
task. The dependent variable is a dummy variable (multiplied by 100). Regressions include
demographic controls (3 education groups (university degree, vocational degree, less than vocation
degree), gender, 5 age groups (18-25, 26-35, 36-45, 46-55, 56-65), a dummy for German nationality),
state dummies, year dummies (2006, 2012, 2018), 2-digit occupation dummies, and 1-digit industry
dummies. Regressions employ sample weights. Standard errors clustered at industry-year level.
the lines reflect 95% confidence intervals.

Table 3.3 shows that AI had little effect on job tasks in 2006. In contrast, we

see that the automating force of robots reduced both routine and manual tasks in

2006. By 2018, the situation had shifted: AI began to replace analytical tasks and

increased the need for some more routine tasks within occupations. Robots, in turn,

still reduce routine tasks but, by 2018, have no impact on manual tasks. These

results are in line with other studies in which the impact of robots was strongest in

the 2000s, while AI has just started to affect the labor market very recently.

3.3.3 Heterogeneity by Skill and Age

The average effects of AI on job tasks may hide substantial heterogeneities across

workers. Technological change is rarely skill-neutral. The diffusion of computers

and related technologies have been strongly skill-biased in favor of more educated
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Table 3.3: Comparing the Effects across Time

Panel A: Routine tasks
2006 2012 2018

(1) (2) (3) (4) (5) (6)
AI Exposure -0.03 0.46 0.48*** 0.69*** 0.41*** 0.73***

(0.30) (0.33) (0.14) (0.18) (0.15) (0.16)
Robot Exposure -0.42* -0.56* -0.48*** -0.49*** -0.42*** -0.52***

(0.23) (0.29) (0.07) (0.14) (0.06) (0.06)
R2 0.39 0.36 0.40 0.38 0.40 0.37

Panel B: Analytical tasks
2006 2012 2018

AI Exposure -0.41 -0.65* -0.20 -0.33 -0.28* -0.57***
(0.26) (0.37) (0.20) (0.27) (0.15) (0.18)

Robot Exposure 0.49* 0.70** -0.05 0.07 0.10 0.25***
(0.25) (0.30) (0.12) (0.19) (0.06) (0.07)

R2 0.42 0.39 0.40 0.37 0.41 0.38

Panel C: Interactive tasks
2006 2012 2018

AI Exposure 0.33 0.28 -0.35** -0.27 -0.12 -0.14
(0.22) (0.21) (0.16) (0.19) (0.10) (0.09)

Robot Exposure 0.49*** 0.39** 0.52*** 0.40*** 0.32*** 0.30***
(0.17) (0.15) (0.08) (0.10) (0.05) (0.04)

R2 0.36 0.33 0.37 0.35 0.33 0.31

Panel D: Manual tasks
2006 2012 2018

AI Exposure 0.11 -0.10 0.06 -0.10 -0.00 -0.01
(0.13) (0.21) (0.22) (0.30) (0.16) (0.09)

Robot Exposure -0.56*** -0.52*** 0.01 0.02 -0.00 -0.02
(0.12) (0.16) (0.12) (0.16) (0.08) (0.06)

R2 0.39 0.36 0.41 0.37 0.42 0.37

Demographic controls X X X X X X
State FE X X X X X X
Year FE X X X X X X
Sector FE X X X X X
Occupation FE (2-dig) X X X
Occupation FE (3-dig) X X X
Industry FE (1-dig) X X X

Note: Number of observations: 37,202. Sum of patents from 1990 through t-2 normalized to have mean
of 0 and standard deviation of 1. Task shares in year t are measured in percent (0-100). Sector controls
include dummies for manufacturing, service, and primary sector. Time controls include dummies for
survey years (t) 2006, 2012, 2018. Demographic controls include 3 education groups (university degree,
vocational degree, less than vocation degree), gender, 5 age groups (18-25, 26-35, 36-45, 46-55, 56-65),
a dummy for German nationality, and 16 federal state dummies. Regressions employ sample weights.
Standard errors clustered at 2-digit industry-year level in parentheses. * p<0.10, ** p<0.05, *** p<0.01.
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workers (see, e.g. Autor et al., 2003), for instance. Robots mainly seemed to have

automated tasks of low-skilled workers. Is this also true for AI? Some authors

have argued that AI might automate tasks that are typically performed by more

educated workers (see, e.g., Agrawal et al., 2019). Yet, AI might also complement

tasks performed by more skilled workers, thereby increasing their productivity

(Felten et al., 2019; Agrawal et al., 2019).

We investigate whether AI affects the job content of high-skilled workers, i.e.

those with a college degree, differently than less-skilled workers without a college

degree.7 We re-estimate equation (3.4) where we add an interaction effect between

AI and whether a worker is highly skilled or not. Table 3.4 shows that the increase

in routine and the decline in analytical tasks occur mostly for less skilled workers.

High-skilled workers, in turn, see no change in the composition of their job tasks.

Technological change might also affect workers of different ages. Technologies

might make some skills obsolete, which should affect older workers more. Yet, older

workers also have more secure jobs, which might shield them from the disruptive

impact of new technologies. In that case, younger workers might have to adjust

more than older workers. It is also often argued that younger workers are more

flexible in adapting to new technologies, possibly because they are more acquainted

with the skills to use them. In the case of robots, it seemed that, indeed, younger

workers had to shoulder most of the costs of adjustment (Dauth et al., 2021).

We again allow for interaction effects between the exposure to AI and the age

of the worker. Interestingly, Appendix Table 3.B.2 shows few differences in task

shifts related to AI between younger and older workers. AI slightly increases the

interactive task shares for younger workers, while the task shares remain unchanged

for middle-aged workers and slightly decrease for workers above 35 years of age.

7We combine low- and medium-skilled workers as those without a vocational degree make up
only 5% in our sample.
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Table 3.4: Heterogeneity by Skill

Routine task share Analytical task share
(1) (2) (3) (4)

AI 0.46*** 0.76*** -0.34*** -0.54***
(0.11) (0.13) (0.12) (0.17)

AI x High-skilled -0.58** -0.64* 0.44 0.39
(0.29) (0.36) (0.35) (0.42)

R2 0.39 0.37 0.40 0.38

Interactive task share Manual task share
AI Exposure -0.15* -0.15 0.03 -0.07

(0.09) (0.10) (0.13) (0.14)
AI x High-skilled 0.12 0.17 0.03 0.08

(0.23) (0.23) (0.23) (0.25)
R2 0.34 0.32 0.39 0.36

Demographic controls X X X X
State FE X X X X
Year FE X X X X
Sector FE X X X X
Occupation FE (2-dig) X X
Occupation FE (3-dig) X X
Industry FE (1-dig) X X

Note: Number of observations: 37,202. The dependent variables are task shares of
individual i working in occupation o and industry j in year t measured in percent (0-100).
The key independent variables are the cumulative number of AI patents from 1990 to
2018 standardized to have mean zero and standard deviation of one; and an interaction
effect with the highest educational degree of the worker. Sector controls include dummies
for manufacturing, service, and primary sector. Time controls include dummies for
survey years (t) 2006, 2012, 2018. Demographic controls include 3 education groups
(university degree, vocational degree, less than vocation degree), gender, 5 age groups
(18-25, 26-35, 36-45, 46-55, 56-65), a dummy for German nationality, and 16 federal
state dummies. Regressions employ sample weights. Standard errors clustered at
2-digit industry-year level in parentheses. * p<0.10, ** p<0.05, *** p<0.01.

3.3.4 Robustness Checks

Table 3.B.3 reports several robustness checks focusing on the impact on routine

(panels A and B) and analytical tasks (panels C and D). Our patent measure for

AI activity includes patents by German inventors. In firms that produce and use
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a patent, industry-level demand shocks might, therefore, shift job tasks but also

innovation activity. Likewise, a supply shock, like a shortage of engineers, for

instance, might shift both the content of jobs and the potential to innovate and

patent. To address these concerns, we drop all patents filed by inventors residing in

Germany. The resulting measure of AI and robotics is then based solely on patents

invented outside of Germany. As shown in columns (1) and (2) of panels A and C

in table 3.B.3, the exclusion of German patents does not change our results.

One might worry that our results are sensitive to the particular construction of

the AI measure. Instead of the standardized sum of patents, we use the absolute

number of patents (columns (3) and (4)) or the log transformation (columns (5)

and (6) in panels A and C of table 3.B.3. We find qualitatively similar effects on

the routine task share. The positive effect of AI and the negative effect of robots

on routine tasks persists. The same holds true for the analytical task share, where

our robustness analysis largely confirms the same patterns found in the original

specification. The only exception is the coefficient on the analytical task share loses

statistical significance in the log specification with 3-digit occupation dummies.

Similarly, one might be concerned that the time lag between the patent grant and

the actual implementation of the new technology in firms is longer than the two years

we use in our main specification. Columns (1) and (2) of Panels B and D in table

3.B.3 show that our results are very similar if we allow for a five-year lag instead.

AI technologies may also affect how often a task is performed on the job. We use

two alternative definitions of our dependent variables to test for the importance of

the intensive margin. The first one codes the task variable in three categories: zero if

a task is not performed, one if it is performed occasionally, and two if it is performed

frequently. Columns (3) and (4) of Panels B and D in table 3.B.3 show that the

results are virtually unchanged if we exploit the intensive margin of task usage.

The second alternative measure looks at the sub-sample of workers who report

performing a given task and tests whether some tasks are more frequently performed

because of AI. Interestingly, the coefficients show a similar impact on the intensive

margin than overall (see columns (5) and (6) of Panels B and D in table 3.B.3),
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which suggests that AI shifts job tasks both at the extensive margin (more workers

use routine tasks than before) and the intensive margin (more workers perform

routine tasks more frequently). Overall, the results are very robust to alternative

definitions of the task and patent measures or the (potential) endogeneity of patents

granted to German inventors.

3.4 AI and Job Reallocation

Our findings thus far show that AI has changed the task content of jobs for workers.

These effects are typically strongest within detailed occupations. Yet, how do these

observed shifts in job tasks impact the labor market careers of workers?

The task changes we document could occur through several channels. The first

channel works only through actual changes in the task content of jobs with no

impact on the composition of workers holding the jobs. We call this the with-job

adjustment. A second channel would work through the displacement of workers

in jobs with automated tasks. A third channel of adjustment would see workers

switching employers and possibly industries or occupations to reduce their exposure

to the new technologies or to take advantage of new opportunities.

The implications of the three adjustment channels are very different. If the first

channel dominates, policymakers do not need to worry about large-scale job losses

or the costs of sectoral or occupational reallocation. Yet, employers need to worry

about how to adapt the skills of their workforce to adapt to the new tasks required

on the job. In the second scenario, the costs of adaptation are primarily borne

by those who get displaced. Policies might then need to focus more on upskilling

and re-employing displaced workers. In the third scenario, most of the adjustment

occurs through reallocation across firms, industries, or occupations. These might

lead to losses of human capital but also possibly gains by moving to better-paying

firms, for instance. Policy-makers might then provide incentives for reallocation

or job search assistance to identify good job opportunities, for instance.
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3.4.1 Administrative Labor Market Data

To study how workers adjust to the new technologies, we turn to administrative

data from the social security records. The ‘Sample of Integrated Labour Market

Biographies’ (SIAB) is a 2% random sample of the administrative social security

records, which cover about 80% of the German workforce, excluding self-employed,

civil servants, and military personnel. We know the individual’s employment status,

i.e., whether the person is employed, registered as unemployed, or non-employed;

we further have detailed information on the education, occupation, age, gender,

nationality, as well as the daily wage earned. We further have some information

on the establishment, such as the detailed industry, location, establishment size,

and the composition of its workforce.

Starting from an annual panel, we aggregate the data into three broad peri-

ods: 2004-2009, 2010-2015, and 2016-2021. The periods cover the years around

the survey waves 2006, 2012, and 2018, for which we analyzed the task changes

above. We then merge our patent-based measure of AI and robotics technologies

to the administrative data using the 3-digit industry and period as described in

more detail in the next section.

3.4.2 Empirical Strategy

We estimate variants of the following specification:

Yijot = βAIAIjt + βRobRobjt + θo + δt + µj + γXit + ϵijot (3.5)

Yijot is the outcome of worker i employed in occupation (2-digit) o and industry

(3-digit) j in period t where t denotes one of the three periods 2004-2009, 2010-15

and 2016-21. Our main outcomes of interest are employment measured as the

cumulative days employed (in logs), earnings measured as cumulative earnings (in

logs), and job, occupational, or industry mobility measured by an indicator for

switching employer, occupation, or industry during the five-year period.

AIjt and Robjt denote the AI and robot patent exposure in 3-digit industry j in

period t. The measures are calculated as the cumulative number of AI and robot
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patents from 1990 to 2006, 2012, or 2018. Patent measures are standardized to

have a mean of zero and a standard deviation of one.

All control variables in equation (3.5) are measured in the first year of the period

(i.e., 2004, 2010, or 2016), which we denote as the base year. The control variables

include dummies for workers’ 2-digit occupation (θo), 1-digit industry (µj), and time

period (δt). We further include a number of base-year controls Xit at the worker, job,

and firm level. More specifically, it includes the worker’s education level (university

degree, vocational degree, or low-skilled), gender, five age groups (18-25, 26-35,

36-45, 46-55), a dummy for foreign nationality, log base year earnings, firm tenure

(0-2 years, 3-5 years, 6-10 years, more than 10 years), firm size (0-9 employees,

10-99, 100-499, 500-999, 1000-9999, more than 10,000), and federal state dummies.

Equation (3.5) then compares workers with similar demographics and labor

market history who are initially employed in the same 2-digit occupation, 1-digit

industry, and region. The estimation then exploits variation in AI and robot exposure

between 3-digit industries and within 3-digit industries over time to identify the

impact of exposure to AI on employment, earnings, and worker mobility during the

following years. Standard errors are clustered at the 3-digit industry x period level.

3.4.3 Impact on Employment and Earnings

To assess the importance of the displacement effect, we first study the impact of

AI on employment and earnings of individual workers. The outcomes of interest

are cumulative employment and (log) earnings during the five-year period. Table

3.5 shows that workers who are more exposed to AI have lower employment and

earnings over the period than comparable workers in less exposed industries. The

effect is modest, however: a one standard deviation increase in AI exposure would

decrease employment by 0.25% and earnings by 0.27% based on the estimates

in columns (2) and (4), respectively.

These results suggest that most of the adjustment to the new technologies

does – at least for now – not work through the displacement of workers or a

decline in earnings.
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Table 3.5: AI, Robots, Employment, and Earnings

Days employed (in logs) Earnings (in logs)
(1) (2) (3) (4)

AI Exposure -0.26*** -0.25*** -0.21* -0.27**
(0.09) (0.08) (0.12) (0.12) )

Robot Exposure 0.22 0.23 0.39 0.51
(0.15) (0.15) (0.37) (0.38)

Mean Y 735.03 735.03 1188.08 1188.08
R2 0.06 0.06 0.58 0.58
Obs. 1,208,656 1,208,656 1,228,567 1,228,567
Occupation FE No Yes No Yes

Note: All columns control for period, demographics, log base year earnings, state,
tenure, firm size, and 1-digit industry. Standard errors are clustered at the 3-digit
industry x period level.

3.4.4 Worker Reallocation

Rather than through displacement, the reorganization of production processes and

work processes in firms might require some workers to move firms, industries, or

occupations. Yet, firms adopting AI may also need new workers to help implement

or make productive use of the new technology.

Table 3.6 analyzes whether AI (and robot) exposure leads to more or less

reallocation of labor. Our dependent variables are now whether an individual

moves employers, the industry of employment, and or occupation during the period,

between the base year and one of the years within the period.

Column (1) of table 3.6 shows that exposure to AI induces more workers to

switch employers. In line with the previous literature (Dauth et al., 2021), we find

that robots actually reduce worker mobility across firms. The point estimate points

to a modest effect: a one standard deviation increase in AI exposure raises the

probability of moving to a different firm by 0.63 percentage points.

Does the higher job mobility also imply that workers switch occupations?

Column (2) indicates that the answer is no: workers are not more likely to switch

to a different 2-digit occupation if exposed to AI. This result is in line with our

findings from the survey data that most of the task changes occur within the

same 2- and even 3-digit occupation.
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We next turn to sectoral mobility between 3-digit and 2-digit industries. Column

(3) of table 3.6 shows that robots not only reduce firm mobility, but also sectoral

mobility. In contrast, AI has only a modest but not statistically significant effect

on switching one’s 3-digit industry. The next two columns investigate whether

workers are more likely to switch jobs within or between their initial 2-digit industry.

Column (5) shows that most of the job switches shown in column (1) occur within

the same 2-digit industry. Job reallocation might occur from non-adopting firms to

adopting firms within exposed industries or between industries that are more or less

exposed to AI technologies. The results in columns (3) to (5) imply that AI induces

workers to leave their initial industry. The question then is whether individuals

are primarily leaving exposed industries or whether there is churning where some

workers leave industries exposed to AI, and others enter to take advantage of new

job opportunities. Column (6) investigates this using an indicator of whether the

industry switch is to a less exposed industry or not. The estimate is positive,

indicating that worker mobility occurs primarily away from industries that are

exposed to AI and into industries that are less or not exposed to AI. Hence, more

workers seem to move away from firms exposed to AI technology, thus reducing

employment in exposed industries.

Overall, the results in tables 3.5 and 3.6 show that adjustments to AI exposure

occur both through some displacement of workers and workers switching out of

exposed industries into non-exposed industries. Job and sectoral mobility, in addition

to some modest displacement, is thus one important adjustment mechanism to

emerging AI technologies. In contrast, we find little evidence that AI exposure

increases occupational mobility. Most of the adjustment to the new technologies thus

seems to occur through changes in job tasks within the same occupation. Individuals

working in exposed industries see their job content change, while individuals in the

same occupation in non-exposed industries do not see such adjustments.

It is important to stress again the substantial differences in how AI and robots

affect jobs and worker careers. Robots have little displacement effect. Moreover,

robots reduce mobility as employees are more likely to stay with their employer;
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workers are even more likely to remain in their current industry. This result is in

line with Dauth et al. (2021), who show that robot exposure is associated with

increased job stability at the initial employer using a different technology measure

for manufacturing. Thus, adjustment to robots seems to work largely through

changes in the job content of incumbent workers.

Table 3.6: AI, Robots and Worker Reallocation

∆ ∆ Different Different Same Lower AI
Firm Occupation Industry (3-dig) Industry (2-dig) Industry (2-dig) Exposure
(1) (2) (3) (4) (5) (6)

AI Exposure 0.63** -0.13 0.42 0.10 0.53* 1.62***
(0.28) (0.32) (0.33) (0.21) (0.29) (0.41)

Robot Exposure -1.09*** -0.50 -1.21*** -1.16*** 0.07 0.53
(0.23) (0.79) (0.22) (0.21) (0.20) (0.33)

Mean Y 35.61 30.11 23.87 21.44 14.17 8.16
R2 0.13 0.16 0.11 0.11 0.04 0.06
Obs. 1,202,213 1,202,213 1,202,213 1,202,213 1,202,213 1,202,213

Note: All columns control for time window, demographics, log base year earnings, state, tenure, firm size, and 1-digit
industries. SEs clustered at 3-digit industry x year level.

3.4.5 Differences between Occupations

We next investigate in which occupations AI exposure leads to the displacement and

reallocation of workers. We use the average share for routine and analytical tasks

from our survey data to characterize occupations as highly analytical and mostly

routine (using a median split). We merge these task shares with our administrative

data on workers at the 2-digit occupation and period level. We then interact our AI

exposure measure with an indicator of whether an occupation is routine or analytical.

Panel A of table 3.7 suggests that the displacement and reallocation of workers across

firms and industries is stronger in low-routine occupations. Panel B shows that

workers with a high analytical task content are much more likely to switch employers

and industries than workers in occupations with a low analytical task share.

Is the reallocation of workers with low routine or high analytical task shares

beneficial for the worker? Here, we focus on whether workers move to better-paying

firms if they switch employers. We capture better-paying firms by AKM fixed

effects (Abowd et al., 1999), which capture unobservable differences across firms
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like management quality, efficiency, or market position that lead to higher or lower

wages (holding the composition of the workforce constant along observables).

Column (4) of table 3.7 shows two interesting patterns: first, Panel A indicates

that workers in low-routine occupations are more likely to switch to better-paying

firms when exposed to AI in their industry. Hence, the reallocation effect in response

to AI seems to benefit some workers initially employed in occupations with a low

routine share – partially offsetting the displacement observed in column (1) of Panel

A. Second, workers initially employed in occupations with a high analytical share

also seem to benefit from their higher mobility (see Panel B). Most of those workers

are able to switch to better-paying employers (see column (4) of Panel B). Our survey

evidence showed that AI decreases the demand for analytical tasks. Workers who

were initially employed in highly analytical occupations respond to this declining

demand by switching employers and industries – and benefit mostly from it as their

skills are in high demand elsewhere. In contrast, our task data showed that AI

increased the need for high-level routine tasks. This shift, in turn, induces workers

initially employed in low-routine occupations to switch jobs and industries. Some

workers benefit from this move as they are able to find a job at a better-paying firm.

3.4.6 Heterogeneity by Skill and Age

The reallocation of workers across industries raises the question of which employees

actually adjust. We first investigate whether displacement and reallocation effects

differ across high- and low-skilled workers and between workers of different ages.

We thus interact our AI exposure variable with dummies for college education

and age dummies for the age groups 26 to 35 and older than 35. Panel A of table

3.8 shows that displacement effects are concentrated among less-skilled workers

(column (1)). Moreover, less-skilled workers (and, to a lesser extent, high-skilled

workers) are more likely to switch employers when exposed to AI (column (2)).

High-skilled workers are also more likely to switch to a different industry (column

(3)). We find no evidence that less- or high-skilled workers are more likely to move

to better-paying firms (as measured by the firm’s AKM effect).
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Table 3.7: AI, Robots and Reallocation by Task Intensity

(Log) Days ∆ ∆ Higher
Employed Firm Industry (3-dig) AKM Firm

(1) (2) (3) (4)

Panel A: Routine task intensity
AI Exposure -0.27** 0.96*** 0.60* 0.34***

(0.11) (0.33) (0.36) (0.12)
AI x Routine 0.05 -0.62** -0.33 -0.51**

(0.12) (0.28) (0.26) (0.22)

Panel B: Analytical task intensity
AI Exposure -0.05 0.07 -0.89** -0.43*

(0.16) (0.35) (0.43) (0.22)
AI x Analytical -0.23 0.66* 1.55*** 0.58**

(0.15) (0.36) (0.40) (0.23)
Note: All columns control for time window, demographics, log base year earnings,
state, tenure, firm size, and 1-digit industries. High routine (analytical) is a
dummy which equals one if the routine (analytical) task share of the base-year
2-digit occupation is above the median and zero otherwise. SEs clustered at
3-digit industry x year level.

Overall, the results by education indicate that less-skilled workers witness not

only a stronger change in their job content but are also more affected by displacement

and less job stability. High-skilled workers, in contrast, have thus far witnessed

few changes in their job and no displacement effects.

Panel B of table 3.8 reports the results for different age groups. While we saw

no differential changes in the job content between younger and older workers, we

do see substantial differences in displacement and reallocation effects across age

groups. Workers older than 35 years of age see some displacement effects and are

also more likely to switch employers and industries. For younger workers, we see no

displacement effects but some reallocation for workers between the ages of 26 and

35. Most interestingly, workers who switch jobs quite often end up at higher-paying

firms, and this effect is strongest for those above 35 years of age.

Again, these adjustment patterns to AI differ from those reported for robots,

where it was young workers who have borne most of the adjustment costs, while

older workers actually saw their employment stability increase (Dauth et al., 2021).
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Table 3.8: Heterogeneity by Skill and Age

(Log) Days ∆ ∆ (3-dig) Higher
Employed Firm Industry AKM Firm

(1) (2) (3) (4)

Panel A: Education
AI Exposure -0.26** 0.51** 0.22 0.01

(0.11) (0.26) (0.33) (0.08)
AI x High-skilled 0.03 0.29 0.50*** 0.12

(0.12) (0.21) (0.19) (0.11)

Panel B: Age
AI Exposure 0.08 -0.90* -0.91 -1.17***

(0.21) (0.48) (0.60) (0.41)
AI x Ages 26-35 0.23 1.01*** 1.03*** 0.90***

(0.22) (0.27) (0.27) (0.28)
AI x Ages >35 -0.53** 1.82*** 1.52*** 1.41***

(0.27) (0.49) (0.47) (0.45)
Note: All columns control for time window, demographics, log base year earnings,

state, tenure, firm size, and 1-digit industries. SEs clustered at 3-digit industry x
year level.

3.5 Conclusion

We have shown in this paper that AI has already shifted the task content of jobs.

Using a new measure of exposure to AI and robot technologies based on patent

data, we find that AI has decreased the analytical task share in jobs and increased

the need for high-level routine tasks. The impacts on job tasks differ from those

of robots, which have increased the demand for analytical tasks and reduced the

demand for routine tasks. This observation challenges the hypothesis that AI would

continue the trend of previous technologies to predominantly automate routine

tasks, suggesting instead that AI is capable of performing non-routine tasks or

turning them into more standardized processes. Most of the changes occur within

detailed occupations. We also show that the effects of AI on job tasks are more

pronounced for less-skilled workers and have been growing over time.

We then turn to administrative data on worker careers to analyze how workers
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adjust to AI. Our analysis indicates that AI exposure reduces both employment

and earnings though the effects are still small on average. Moreover, AI leads to

significant worker reallocation. More workers switch employers. While we see no

impact on occupational mobility, many more workers switch industries. Workers in

AI-exposed industries tend to move to similar industries that are less exposed to

the new technology. We find that less-skilled and surprisingly older workers exhibit

higher job mobility. However, the higher job mobility is beneficial as some workers,

especially older workers, move to better-paying firms, indicating a better match.

The impacts of AI on the labor market require proactive policy responses. As

workers’ mobility and job-to-job transitions increase, policymakers should facilitate

these transitions. Since the effects are strongest for low—and medium-skilled workers,

developing and implementing training programs to equip them with the necessary

skills to handle new tasks is crucial. For older workers, it is important to encourage

lifelong learning and to create incentives for employers to hire and retain them.

In conclusion, AI profoundly impacts the labor market and reshapes work by

changing the task content of occupations and increasing worker mobility across indus-

tries. While the immediate employment effects are still relatively small, the longer-

term implications for job stability, skill requirements, and worker mobility are signif-

icant. As AI continues to evolve and integrate into more industries and occupations,

ongoing research and policy measures will be important to ensure that the workforce

can successfully navigate and benefit from these technological advancements.
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3.A Figures

Figure 3.A.1: Cumulative Robot Patents by Industry

Note: This figure shows the cumulative number of robot patent grants between
1990 and 2018 across 2-digit industries. The top 3 industries in terms of the number
of patent grants are: Manufacturing of machinery and equipment; manufacturing of
medical, optical, and precision instruments; manufacturing of food and beverages.
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Figure 3.A.2: Evolution of AI and Robot Patents over Time

Note: The figure shows the evolution in the number of robot patents and AI patents
per year between 1990 and 2018.
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Figure 3.A.3: AI, Robots, and Interactive and Manual Tasks

A: AI and Interactive Tasks B: AI and Manual Tasks

C: Robots and Interactive Tasks D: Robots and Manual Tasks

The figure shows the relationship between changes in task shares between 2006 and
2018 and AI and robot patents, respectively, between 2006 and 2018, adjusting for
demographic and sector controls. Patent measures are normalized to have a mean
of 0 and a standard deviation of 1. Demographic controls include the share of three
education groups, five age groups, gender, and workers with German nationality.
Sector controls include the manufacturing, service, and primary sector. The size
of the circle denotes the number of employees in the industry in 2006. The figure
focuses on industries with at least thirty observations in our sample in 2006.
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3.B Tables

Table 3.B.1: Descriptives of Task Groups and Detailed Task Shares

(1) (2) (3) (4)
All years 2006 2012 2018

A: Task Groups
mean/sd mean/sd mean/sd mean/sd

Routine tasks 23.67 23.89 24.04 23.09
(15.09) (15.70) (14.88) (14.63)

Analytical tasks 32.16 31.00 31.93 33.59
(15.26) (15.46) (14.88) (15.31)

Interactive tasks 25.06 25.29 25.14 24.75
(13.07) (13.41) (13.03) (12.74)

Manual tasks 19.11 19.83 18.90 18.56
(14.36) (14.87) (14.09) (14.07)

B: Detailed Tasks
mean/sd mean/sd mean/sd mean/sd

Monitoring/operating machines/technical processes 5.50 5.60 5.57 5.34
(6.58) (6.78) (6.66) (6.28)

Manufacturing/producing of goods/products 3.12 3.25 3.24 2.88
(6.08) (6.68) (5.89) (5.59)

Transporting, storing, shipping 6.36 6.51 6.40 6.16
(7.74) (7.77) (7.73) (7.71)

Measuring, quality checks 8.69 8.53 8.84 8.71
(6.71) (6.85) (6.71) (6.55)

Developing, researching, constructing 3.79 3.66 3.72 3.98
(5.32) (5.25) (5.25) (5.44)

Gathering information, investigating, documenting 9.78 9.52 9.76 10.08
(6.66) (6.69) (6.68) (6.59)

Promoting, marketing, advertising, PR 3.74 3.91 3.72 3.57
(5.54) (5.65) (5.50) (5.46)

Organizing/planning/preparing of work processes (of others) 8.08 7.57 7.93 8.75
(6.39) (6.36) (6.25) (6.50)

Teaching, training, educating 6.49 6.32 6.59 6.57
(6.27) (6.46) (6.13) (6.21)

Consulting, informing 10.54 10.72 10.48 10.40
(6.71) (6.85) (6.77) (6.51)

Buying, procuring, selling 4.30 4.33 4.36 4.22
(5.71) (5.84) (5.72) (5.55)

Working with computer/tablet 10.51 10.25 10.51 10.78
(7.83) (8.20) (7.49) (7.75)

Repairing 5.40 5.73 5.30 5.15
(6.70) (7.21) (6.30) (6.51)

Accomodating, hosting, preparing food 1.53 1.54 1.46 1.59
(3.83) (3.94) (3.78) (3.78)

Caring, healing 2.08 2.29 2.00 1.94
(4.42) (4.93) (4.20) (4.05)

Protecting, securing, guarding, regulating traffic 4.13 4.25 4.05 4.09
(5.77) (5.78) (5.68) (5.85)

Cleaning, waste disposal, recycling 5.97 6.02 6.10 5.79
(7.64) (7.76) (7.67) (7.50)

Note: Number of observations: 37,202. The table shows descriptives on task shares for all years in column (1) and
separately for the years 2006, 2012, and 2018 in columns (2)-(4).
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Table 3.B.2: Heterogeneity by Age

Routine task share Analytical task share
(1) (2) (3) (4)

AI Exposure -0.49 0.12 0.05 -0.39
(0.36) (0.38) (0.31) (0.34)

AI x Ages 26-35 0.47 0.22 -0.40 -0.18
(0.34) (0.34) (0.33) (0.34)

AI x Ages 36-65 1.01*** 0.65 -0.30 -0.07
(0.39) (0.41) (0.34) (0.34)

R2 0.39 0.36 0.40 0.38

Interactive task share Manual task share
AI Exposure 0.75*** 0.70*** -0.32 -0.44

(0.22) (0.25) (0.28) (0.29)
AI x Ages 26-35 -0.71** -0.68** 0.64** 0.64*

(0.27) (0.29) (0.31) (0.33)
AI x Ages 36-65 -0.99*** -0.92*** 0.28 0.33

(0.23) (0.26) (0.30) (0.32)
R2 0.34 0.32 0.40 0.36

Demographic controls X X X X
State dummies X X X X
Year dummies X X X X
Sector dummies X X X X
2-digit occupation dummies X X
3-digit occupation dummies X X
1-digit industry dummies X X

Note: Number of observations: 37,202. The dependent variables are task shares of individual
i working in occupation o and industry j in year t measured in percent (0-100). The key
independent variables are the cumulative number of AI patents from 1990 to 2018 standardized
to have mean zero and standard deviation of one; and an interaction effect with an indicator
for the age group of the worker. Sector controls include dummies for manufacturing, service,
and primary sector. Time controls include dummies for survey years (t) 2006, 2012, 2018.
Demographic controls include 3 education groups (university degree, vocational degree, less
than vocation degree), gender, 5 age groups (18-25, 26-35, 36-45, 46-55, 56-65), a dummy
for German nationality, and 16 federal state dummies. Regressions employ sample weights.
Standard errors clustered at 2-digit industry-year level in parentheses. * p<0.10, ** p<0.05,
*** p<0.01.



102 3.5. Conclusion

Table 3.B.3: Robustness tests

Panel A: Routine Tasks w/o German patents No, patents Log (1+patents)
(1) (2) (3) (4) (5) (6)

AI Exposure 0.34*** 0.64*** 0.76*** 1.40*** 0.02*** 0.03***
(0.09) (0.11) (0.21) (0.23) (0.01) (0.01)

Robot Exposure -0.40*** -0.46*** -0.19*** -0.23*** -0.01*** -0.02***
(0.05) (0.07) (0.02) (0.03) (0.00) (0.00)

R2 0.39 0.36 0.39 0.36 0.39 0.36

5-year lag 3 categories Intensive margin
(7) (8) (9) (10) (11) (12)

AI Exposure 0.35*** 0.64*** 0.33*** 0.70*** 0.35*** 0.65***
(0.09) (0.10) (0.11) (0.13) (0.09) (0.11)

Robot Exposure -0.42*** -0.50*** -0.44*** -0.53*** -0.41*** -0.49***
(0.06) (0.07) (0.07) (0.08) (0.05) (0.07)

R2 0.39 0.36 0.46 0.44 0.39 0.36

Panel B: Analytical tasks w/o German patents No, patents Log (1+patents)
(1) (2) (3) (4) (5) (6)

AI Exposure -0.26*** -0.47*** -0.55** -1.03*** -0.01 -0.02**
(0.10) (0.14) (0.22) (0.31) (0.01) (0.01)

Robot Exposure 0.09 0.20** 0.05 0.10*** 0.00 0.01**
(0.06) (0.08) (0.03) (0.04) (0.00) (0.00)

R2 0.40 0.38 0.40 0.38 0.40 0.38

5-year-lag 3 categories Only intensive margin
(7) (8) (9) (10) (11) (12)

AI Exposure -0.25** -0.46*** -0.22* -0.50*** -0.25** -0.47***
(0.10) (0.14) (0.12) (0.18) (0.10) (0.14)

Robot Exposure 0.10 0.22*** 0.17** 0.31*** 0.10 0.23***
(0.06) (0.08) (0.07) (0.10) (0.06) (0.08)

R2 0.40 0.38 0.48 0.45 0.40 0.38

Demographic controls X X X X X X
State dummies X X X X X X
Year dummies X X X X X X
Sector dummies X X X X X
2-digit occupation dummies X X X
3-digit occupation dummies X X X
1-digit industry dummies X X X

Note: Number of observations: 37,202. Columns (1) and (2) drop patents by German inventors. Columns (3) and (4)
use the absolute number of patents (measured in 100), columns (5) and (6) the sum of log(1+patents) as the main
explanatory variables. Columns (7) and (8) use a 5-year-lag, columns (9) and (10) code the task measure as zero (never),
one (occasional), or two (frequent), and columns (11) and (12) study the intensive margin conditional on performing a
task. * p<0.10, ** p<0.05, *** p<0.01.
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Digital Technologies, Job Quality and
Employer-provided Training 1

Digitalisation and the adoption of artificial intelligence (AI) technologies are funda-

mentally transforming the workplace, marking what many describe as the Fourth

Industrial Revolution. This revolution leverages the power of the internet, smart

sensors, and advanced microchips, enabling unprecedented interactions between

machines and humans (Brynjolfsson and McAfee, 2014). Despite the growing

importance of these technologies, their impact on labor markets, particularly on

job quality, remains under-explored.

In this paper, I investigate the relationship between digital technologies and job

quality for incumbent workers in Germany. Specifically, I examine how exposure to

basic digital technologies (e.g., computers and computer-controlled machines) and ad-

vanced technologies (e.g., artificial intelligence and machine learning) affect working

conditions and participation in employer-provided training. Additionally, I explore

the roles of information and communication technology (ICT) investments and

personnel management in shaping these outcomes. The OECD recently identified

job quality as a key issue (2023), emphasizing the need for a comprehensive under-

standing of working conditions, job satisfaction, and work-life balance. Working
1I thank Christina Gathmann for her advice during this project. I am grateful to Julio Garbers,

Terry Gregory, Alex Yarkin, Joël Machado, Felix Stips, Etienne Bacher, and participants at
workshops and conferences at LISER, the University of Luxembourg, the German Federal Institute
for Employment Research (IAB), and Trier University for valuable comments and suggestions.
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conditions encompass valuable components of job quality like job content and context

(Nikolova and Cnossen, 2020). Job quality can be measured in multiple dimensions,

and the focus on working conditions follows from the job demands-resources model

(Karasek, 1979; Demerouti et al., 2001; de Jonge et al., 2000). In this model, workers

suffer from strain in their jobs when job demands like time pressure outweigh job

resources such as decision autonomy (Bakker and Demerouti, 2007). Additionally, I

investigate components of well-being such as job satisfaction and work-life balance

that are closely related to job quality (Eurofound, 2022; Clark, 2015).

To estimate the effects of digitalisation on job quality, I use the Linked Personnel

Panel (LPP-ADIAB)2, a linked employer-employee survey from Germany, combined

with administrative data covering the years 2012-2018. This dataset includes

detailed information on job quality from employee surveys, firm characteristics and

personnel management practices from employer surveys, and employment records,

including spells, education, wages, and occupations. Each establishment is matched

with data from the IAB Establishment Panel, providing insights into firm size,

age, industry, location, and investment decisions.

I measure digitalisation using cross-sectional data on occupational exposure

to basic and advanced digital technologies. These variables include measures of

occupational susceptibility to computerization (Dengler and Matthes, 2018), routine

task intensity (RTI) (Mihaylov and Tijdens, 2019) as well as exposure to AI (Felten

et al., 2019) and machine learning (Brynjolfsson et al., 2018) 3.

I estimate models at the individual worker level, focusing on working conditions

and participation in employer-provided training. Using regressions with a rich set

of control variables, I exploit the panel dimension of the data by incorporating

year and establishment fixed effects to control for general trends and unobserved

time-invariant characteristics of the employers.
2For a detailed description of the LPP-ADIAB see Broszeit et al. (2017), Kampkötter et al.

(2016) and Ruf et al. (2019).
3Measures like RTI and computer technology are frequently used in the literature as proxies for

automation, primarily in routine tasks (see Autor et al. (2003) for an early example). In contrast,
advanced technologies, such as artificial intelligence, are expected to affect occupations that are
less reliant on routine tasks (Brynjolfsson et al., 2018; Agrawal et al., 2019, 2023).
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My results show that exposure to advanced digital technologies is associated

with improved working conditions and increased participation in employer-provided

training. Conversely, high exposure to basic digital technologies correlates with

worse working conditions and reduced training participation. These effects are

particularly significant for male and older employees, highlighting the varying im-

pacts across different demographic groups. Furthermore, ICT investments amplify

the negative effects of basic technologies but enhance the positive effects of ad-

vanced technologies. Effective personnel management practices, such as regular

employee interviews and feedback mechanisms, are found to mitigate some of the

adverse impacts of digitalisation.

Digitalisation has important effects on job quality as introducing new digital

technologies affects the tasks workers perform in their jobs and the organization

of production (Autor et al., 2003; Acemoglu and Autor, 2011; Acemoglu and

Restrepo, 2019). Automating repetitive or dangerous tasks can improve job quality,

for example, when machines take over physically demanding activities (Green,

2012; Gunadi and Ryu, 2021; Gihleb et al., 2022). Conversely, digitalisation

can have negative effects on job quality by causing stress and automation anxiety,

increasing surveillance, or diminishing the sense of purpose by automating tasks that

employees enjoyed performing (Gerten et al., 2019; Schwabe and Castellacci, 2020;

Nazareno and Schiff, 2021; Dengler and Gundert, 2021; Martin and Hauret, 2022).

The negative effects of technostress are described extensively in the psychological

literature (Tarafdar et al., 2007; Ragu-Nathan et al., 2008; Ayyagari et al., 2011;

Gerdiken et al., 2021). Job quality is also closely related to subjective well-being,

which is naturally important for employees. A large body of literature also documents

a positive relationship between subjective well-being and performance (DiMaria

et al., 2019; Bryson et al., 2017; Judge et al., 2001; Oswald et al., 2015). However,

for firms to fully unlock the productivity potential of new digital technologies,

it is important to restructure work processes (Agrawal et al., 2023), which can

come with a strain on employees’ well-being.
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This study makes several contributions to the existing literature. First, while

most studies on the labor market effects of digitalisation focus on the number of

jobs (Autor et al., 2003; Acemoglu and Autor, 2011; Autor and Dorn, 2013; Goos

et al., 2014), or the automation risk of occupations (Frey and Osborne, 2017; Arntz

et al., 2017), I investigate the relationship between digital technologies and job

quality, exploring the mitigating role of employer-provided training for incumbent

workers. I provide new empirical evidence for Germany, complementing studies

like Giuntella et al. (2023) who find that AI does not negatively impact workers’

mental health, or Arntz et al. (2024) who find that new digital technologies can

have a negative impact on manual workers’ physical health.

Unlike previous literature that centers on the displacement effects of automation

and digitalisation (Acemoglu and Restrepo, 2019, 2020; Dauth et al., 2021; Bessen

et al., 2019), I investigate effects on incumbent workers who remain employed but

experience significant changes in working conditions.

Second, I explicitly compare the impact of basic technologies, such as computers

and computer-controlled machines, with advanced technologies, such as artificial

intelligence and machine learning. In a task-based approach (Autor et al., 2003;

Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2019), different technologies

affect different tasks in production, which leads to distinct effects on occupations

and workers. In addition to the direct displacement effect, digital technologies also

augment human labor in other tasks, reorganize the set of tasks humans perform

on their jobs and change the organization of the production process (see Acemoglu

and Restrepo, 2018; Acemoglu and Restrepo, 2019; Autor et al., 2003; Autor and

Dorn, 2013; Bessen, 2016; Bloom et al., 2014; Lindbeck and Snower, 2000). In

this context, basic digital technologies mostly automate routine tasks (Autor et al.,

2003), increasing demand for complementary interactive tasks. More advanced

technologies such as AI can perform more complex tasks in which humans previously

had a comparative advantage (Brynjolfsson et al., 2018; Agrawal et al., 2019, 2023).

Finally, this paper underscores the dynamic relationship between technology

and labor. It highlights the importance of employer strategies, such as training and
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personnel management practices, in adapting to technological changes. Bartel et al.

(2007), for example, show that IT adoption leads to increasing skill requirements as

the production process is reorganized. One way of dealing with changes in work

processes and the introduction of new technologies is for employers to provide their

employees with further training (Haepp, 2021; Lukowski et al., 2020; Wotschack,

2020). However, Brunello et al. (2023) show that employers could also reduce

training provision after introducing advanced digital technologies if those substitute

for trained workers. I contribute to this literature by incorporating the employer

side in the analysis and providing evidence on how firms and employees adjust

to digital technologies. I show that effective personnel management and targeted

training can mitigate some of the adverse effects of digitalisation, enhancing workers’

resilience to workplace changes.

The remainder of the paper is organized as follows: Section 4.1 introduces and

describes the data used. Section 4.2 presents the empirical strategy, while the

corresponding main results are shown in section 4.3. Additional results are pro-

vided in section 4.4 and a series of robustness checks in section 4.5. Section

4.6 concludes the paper.

4.1 Data

Studying the impact of digitalisation on job quality at an individual worker level

imposes some challenging data requirements. While data on employees alone might

be somewhat informative, many subjective measures can potentially be affected by

firm differences, making adding data on the employer side necessary. In this study,

I combine three different data sources, which are explained in more detail below.

First, I use a linked employer-employee survey to measure working conditions,

training participation, and personnel management. Second, administrative records

provide demographic information and detailed occupational codes and wages for

employees. Third, a set of variables measuring occupational exposure to basic and

advanced digital technologies complements the survey and administrative data.
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4.1.1 Linked Personnel Panel

To analyze job quality and employee training participation, I use the Linked-

Personnel Panel (LPP), which is merged with administrative employment and

establishment records of the Federal Institute for Employment Research (IAB).

The data cover the years 2012-20184.

The LPP is a survey based on the IAB Establishment Panel, which is a large

panel of approximately 16,000 establishments in Germany. From this panel, a

sample of establishments and employees is drawn for the LPP survey. The sample

is stratified by broad occupations, five sectors, and four regions, resulting in an

average of 875 establishments and 7,000 employees across the five survey waves.

Overall, the data is representative of German firms in manufacturing and services

with more than 50 employees. Establishments are sampled repeatedly, and 43% are

included in all waves of the survey, while 85% are included in at least two waves.

In contrast, due to attrition, only 15% of employees appear in all survey waves.

Therefore, they are treated as repeated cross-sections.

The survey provides the primary outcomes of interest related to working con-

ditions and employer-provided training. I build an index for working conditions

that comprises five items, each rated on a scale from 1 to 5. The items included

are decision autonomy, task variety, time pressure, physical effort, and ambient

conditions. They are coded such that a higher value implies better working condi-

tions. The list of items is derived from the literature on job quality and the job

demand-resources model (Bakker and Demerouti, 2007). For example, working

under time pressure to meet tight deadlines is considered a job demand that can

potentially lead to negative health outcomes for workers. At the same time, some

of this can be offset if employees have more autonomy in making decisions and

are more flexible in structuring their workload. Therefore, the item on decision

autonomy can be classified as a job resource. In combination with the other items
4For a detailed description of the LPP-ADIAB see Broszeit et al. (2017), Kampkötter et al.

(2016) and Ruf et al. (2019).
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on working conditions such as physical effort or ambient conditions, the index

captures an important dimension of job quality 5.

In addition, the survey includes a rich set of variables on employee characteristics

that I use as control variables or additional outcomes. One example is wages, which

can be considered as part of the quality of a job as well. However, in this setting, I

do not include a worker’s wage in my measure of job quality; rather, I include it in

the empirical analysis as a control variable. This is because controlling for wages

makes employees more comparable, as high (low) paying occupations might share

common characteristics that are not directly observed in the survey.

One of the main advantages of the LPP is that it covers both the employee and the

employer side. The employer survey focuses on personnel management practices. It

provides additional information on firm characteristics like size, industry, ownership

structure, and collective bargaining agreements, as well as on job characteristics

like performance pay or the possibility of working from home.

The LPP survey is then linked to administrative employment records for each em-

ployee, providing detailed information on occupation, wage, age, gender, education,

qualification, location, and more. Employer-side information can be supplemented

by the Establishment History Panel and the IAB Establishment Panel, which

surveys a broad range of topics. Questions about investments in information and

communication technologies included in the Establishment Panel are especially

relevant to this study. I use these questions to construct a variable measuring

whether a firm invested in ICT equipment the year before the survey. This allows

me to qualify the technology exposure at the employee level, assuming that firms

with ICT investments are adopting more digital technologies.

4.1.2 Measures for Digital Technology Exposure

The digitalisation variables serve as measures for occupational exposure to digital

technologies and can be defined in two broad categories. The first category is basic

digital technologies, which refers to information and communication technologies
5As shown in Eurofound (2022), there exist additional dimensions of job quality, such as

intrinsic job features or job prospects, that are not the focus of this study.
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like computers, computer-controlled machines, and their applications. The second

category is advanced digital technologies, which refer to technologies based on

artificial intelligence that have the potential to affect a wider range of tasks compared

to basic ICT, including decision-making (Agrawal et al., 2019).

I use two different measures to measure occupational exposure to basic digital

technologies. The first one is a measure for computerization and was developed

by Dengler and Matthes (2018). They estimate an automation potential due to

computerization for occupations in Germany based on the database BERUFENET
6. This database includes a comprehensive register of tasks and work activities,

which are subsequently classified based on their susceptibility to computerization.

These tasks are then aggregated at the occupation level. Occupations with a high

share of computer-susceptible tasks are assumed to be at higher risk of automation.

Another approach is to indirectly measure the exposure to computerization and

ICT based on the routine task intensity (RTI) of an occupation, following Autor

et al. (2003). This indirect approach exploits the fact that routine tasks were the

ones most affected by the rise in ICT technologies and computerization, leading to

the decline in employment in routine-intensive occupations (Autor and Dorn, 2013;

Goos et al., 2014). I use a routine task intensity index for European occupations

developed by Mihaylov and Tijdens (2019). Tables 4.A.1 and 4.A.2 in the appendix

show the 10 occupations with the highest and lowest scores for routine task intensity

and computer substitution potential, respectively. It becomes visible that the

occupations with the highest RTI are found in office and administrative work and

a range of manufacturing occupations, representing routine cognitive as well as

routine manual tasks. The top occupations in computer substitution potential

share this fact but are even more focused on manufacturing, with metal-making

and precision mechanics having the highest scores. Occupations with low RTI

and computer substitution scores include engineering, pharmacy, teaching, and

care. These occupations require a combination of non-routine cognitive, non-routine

manual, and interactive tasks.
6The BERUFENET database is a database for occupational tasks and abilities in Germany,

similar to the O*NET database in the U.S.



4. Digital Technologies, Job Quality and
Employer-provided Training 111

To measure occupational exposure to advanced digital technologies, I use two

measures developed by Felten et al. (2018) and Brynjolfsson et al. (2018). They

capture the exposure of occupations to artificial intelligence and machine learning.

The measures share a common approach with the computerization measure of

Dengler and Matthes (2018), starting at the task level to identify which tasks can

potentially be performed by AI and machine learning. Occupational exposure is then

calculated based on the proportion of each task within an occupation 7. Compared

to basic digital technologies, the tasks affected are different and often require higher

skill levels. One example is the automation of prediction tasks, which is one of

the strongest areas of artificial intelligence, as argued by Agrawal et al. (2019).

Tables 4.A.3 and 4.A.4 in the appendix show the top and bottom 10 occupations

for AI exposure and machine learning suitability. Occupations with both high AI

exposure and ML suitability can be found in white-collar work such as accounting,

HR management, or secretaries, as well as in sales and public administration. The

exposure is lowest in occupations with a high share of non-routine manual tasks

such as cleaning services, metalworking, or building construction.

Table 4.1 presents summary statistics for the main outcome and control variables

as well as for the digitalisation measures, which are normalized to a range between

0 and 1 to make them better comparable.

7The measures from Felten et al. and Brynjolfsson et al. are based on US occupational data
(O*NET) and are mapped to German occupations using a crosswalk from isco08 to the kldb2010
classification. Similar crosswalks have been used in Goos et al. (2014) and Sorgner (2017).
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Table 4.1: Summary statistics

Observations Mean Std. Dev. Min Max
Outcome variables:
Working conditions 21,122 17.47 3.27 5 25
Training participation 21,152 0.39 .48 0 1
Job satisfaction 21,157 7.46 1.75 0 10
Sick days 14,959 15.80 23.15 1 230
Well-being 21,038 14.40 5.12 5 30
Work-life balance 9,684 2.24 1.22 1 5
Digitalisation Measures:
Routine Task Intensity 21,176 .4266 .3652 0 1
Computerization 21,176 .5542 .2498 0 1
AI Exposure 21,176 .5359 .2625 0 1
Machine Learning Suitability 21,176 .6883 .1410 0 1
Control variables:
Age 21,176 47.19 10.24 18 67
Male 21,176 0.71 0.45 0 1
Education 21,128 3.38 1.15 1 8
Qualification 21,155 2.42 1.63 1 8
Wage (imputed) 21,124 137.12 85.02 0.42 988.46
Firm size 21,138 3336.79 11630.61 1 65229
Leadership 21,151 0.28 0.45 0 1
Fulltime 21,147 0.86 0.34 0 1

The following figures 4.1 and 4.2 depict the correlation between the main ex-

planatory variables measuring technology exposure and the main outcome variables

working conditions and training participation at the occupational level. In figure 4.1,

occupations with a high share of routine tasks (panel a) and a high risk of computer

substitution (panel b) show a slight negative correlation with the working conditions

index, which seems not to be driven by the size of the occupations observed. On

the other hand, even without controlling for individual factors, exposure to AI and

machine learning shows a positive correlation with the working conditions index

at the occupational level, as can be seen in panels c) and d) of figure 4.1.

Figure 4.2 presents correlations for participation in employer-provided training

and technology exposure. While the observed correlations are less strong than for

the working conditions index, occupations with a high routine task intensity or a

high computer substitution potential have a lower average training participation as
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Figure 4.1: Correlation between digitalisation measures and working conditions

(a) Routine Task Intensity and Working
Conditions

(b) Computers and Working Conditions

(c) AI Exposure and Working Conditions
(d) ML Exposure and Working Condi-
tions

Note: All four graphs in the panel show correlations at the 3-digit occupation level (according
to the kldb2010 classification). Individual observations have been aggregated to 29 occupations.
Occupations with less than 20 workers have been grouped with similar occupations to comply with
data protection rules. Working conditions are measured as averages over time and occupations,
exposure measures are at the occupation level. The size of the markers represents the number of
employees in the occupation.

shown in panels a) and b) of figure 4.2. Turning to advanced technologies, there is

a positive correlation between AI exposure and training participation (see panel c)

of figure 4.2) while the correlation between ML exposure and training participation

is close to zero (see panel d) of figure 4.2).
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Figure 4.2: Correlation between digitalisation measures and training participation

(a) Routine Task Intensity and Training
Participation

(b) Computers and Training Participa-
tion

(c) AI Exposure and Training Participa-
tion

(d) ML Exposure and Training Partici-
pation

Note: All four graphs in the panel show correlations at the 3-digit occupation level (according
to the kldb2010 classification). Individual observations have been aggregated to 29 occupations.
Occupations with less than 20 workers have been grouped with similar occupations to comply with
data protection rules. Training participation is measured as average over time and occupations,
exposure measures are at occupation level. The size of the markers represents the number of
employees in the occupation.

4.2 Empirical Strategy

The empirical strategy builds on employees’ occupational exposure to digital tech-

nologies and the variation in working conditions over time. While the actual usage

of digital technologies is not directly observed at the worker level, I assume that high

occupational exposure increases the likelihood of technology adoption. Establish-

ments also vary in whether they adopt a given technology. I use data on investment

decisions from the IAB Establishment Panel as a proxy for technology adoption
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at the establishment level. Investments in ICTs can be regarded as investments

in basic digital technologies and as laying the foundation for adopting advanced

technologies. Consequently, worker-level exposure is likely to differ between high

and low-adoption firms, even for workers in the same occupation.

The focus of this study is incumbent workers who continue to work at their

employer but can experience changes in working conditions due to a shift in tasks

caused by technological advances. I also observe workers who still perform the

same tasks on their jobs but with changing intensities. Hence, this study does

not aim to estimate the displacement effects of new technologies but rather to

study the effects of digitalisation on currently employed workers. For workers

remaining in their jobs, digital technologies can negatively affect working conditions

by inducing stress and cognitive overload, leading to reduced subjective well-being

and job satisfaction. However, if technology automates dangerous or disliked tasks,

the change in job content could result in positive outcomes and increased worker

well-being. The net effect is an open question ex-ante.

In this setting, variation comes from employees working in different occupations,

which vary in their technology exposure. The advancement of digital technologies

opens up new possibilities for structuring work processes, and the tasks that workers

perform are likely to change. While some occupations are naturally more prone

to digitalisation than others, technology adoption also depends on employers. For

example, employers decide whether to provide their employees with new hardware

or software and whether to assist them in adapting to the new technologies. Besides

this, employers can vary by a range of time-variant or invariant characteristics. I

address the former by including control variables such as firm size and the latter

by including establishment fixed effects. By controlling for all unobserved, time-

invariant differences across firms using fixed effects, I essentially compare employees

in different occupations within the same firm to each other over time. The advantage

of this approach is that it allows for filtering out more of the firm-specific factors

that contribute to working conditions or training participation and, therefore, for

clearer identification of the effect of digitalisation on these outcomes.
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All outcome variables are measured at the individual worker level. Most of these

variables are items from the LPP employee survey, coded from 1 to 5. For the

working conditions, I aggregate them to an index ranging from 5 to 25. The training

variable is a binary response variable, equal to one if the employee participated

in training that year and zero otherwise. The LPP employee section includes self-

reported survey questions on additional outcomes such as job satisfaction, well-being,

and health status. A more objective health measure is the number of individual

sick days per year, which I directly obtain from the social security records.

Using this set of outcomes and the digitalisation measures, I estimate regression

equations of the following form:

yi,o,t,f = β0 + β1digii,o + β2Xi,o,t,f + δestablishmentf + γyeart + ui,o,t,f (4.1)

where yi,o,t,f is either working conditions, training participation, or one of the

additional outcomes of worker i in occupation o, year t, and firm f . digii,o is

one of the four occupation-level digitalisation measures used separately in the

regressions. The coefficient of interest is β1, which captures the impact of a higher

occupational digitalisation exposure on the outcome variable yi,o,t,f . Xi,o,t,f includes

a rich set of control variables such as age, gender, highest qualification, wage,

and whether they work in a leadership position or full-time. These controls are

included to address potential problems of omitted variable bias, which can arise

if there are relevant variables that influence both technology exposure and job

quality but are not included in the model. For example, if more educated employees

are better at adopting new technologies and at the same time more satisfied with

their working conditions, excluding measures of employee education or skill levels

could introduce omitted variable bias.

Other potential threats to identification could arise if working conditions and

technology adoption are endogenous to firms. For example, if larger firms invest more

resources in technology adoption and, at the same time, in programs to improve

job quality for their employees. Then, the estimated effect of digitalisation on

working conditions may be biased. To address this concern, I control for additional
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employer characteristics that vary over time. I incorporate establishment size and

other firm characteristics as control variables in Xi,o,t,f .

Exploiting the panel dimension of the establishment data, I control for a general

time trend in the outcomes by including year fixed effects. Further, I include

establishment fixed effects to control for unobserved firm-specific and time-invariant

characteristics that influence both the implementation of new technologies and

working conditions or training, which can potentially introduce bias. By using

establishment fixed effects, the identifying variation comes from employees in

different occupations at the same establishment. Therefore, the model essentially

uses the changes in outcomes for individuals in different occupations within the

same firm to identify the effect of digitalisation exposure while controlling for any

fixed characteristics of the firm itself. Using establishment fixed effects requires

companies to be in the sample for at least two survey waves. Since attrition is less

problematic for establishments than employees, this requirement is met for around

85% of establishments. I estimate linear probability models with the same set of

control variables and fixed effects for binary outcomes like training participation.

Another potential threat to identification is selection bias if firms that are

investing in ICT technologies are also the ones with the best working conditions.

To investigate this selection bias, I classify firms into investing and non-investing

categories based on information from the Establishment Panel. A firm is considered

investing if it has invested in ICT technologies in the year preceding the LPP survey

and non-investing otherwise. I then estimate similar regressions as in equation

(1) separately for investing and non-investing firms. However, it is important

to acknowledge that splitting the sample into investing and non-investing firms

does not fully address the selection bias. Firms that choose to invest in ICT

may differ systematically from those that do not in ways that also affect working

conditions and training participation. These differences could include factors that

are not fully captured by the available control variables. By splitting the sample,

I aim to provide preliminary insights into how the effects of digitalisation differ

between investing and non-investing firms. While this approach cannot completely
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rule out selection bias, it helps to highlight potential differences in the impact of

digitalisation across different types of firms.

4.3 Results: Working Conditions and Training

This section presents the main results obtained from regressions based on equation

(1). I investigate the effect of technology exposure on job quality, as measured by

the working conditions index, and on participation in employer-provided training.

The results for the working conditions are reported in Table 4.2. All estimations

in columns (1) through (4) consistently incorporate the same control variables

and fixed effects as detailed in the table notes. The main finding is the contrast

between the negative effect of basic digital technologies and the positive effect

of advanced technologies.

As shown in columns (1) and (2), a higher routine task intensity and a higher

computerization score are negatively related to the working conditions index. The

estimated coefficients translate into a decline in the working conditions index of

up to 2.5 points on the scale ranging from 5 to 25 and are statistically significant

at the 5% (column 1) and 1% (column 2) levels. An increase of the computer

substitution potential by one standard deviation leads to a decrease in the work-

ing conditions index of 0.63 points. In contrast, exposure to advanced digital

technologies, such as AI and machine learning, is positively related to the work-

ing conditions scale, exhibiting an increase of up to 4.5 points or 1.2 standard

deviations, based on the AI exposure measure.

Accounting for the observed control variables and the inclusion of establishment

fixed effects, it becomes clear that workers in occupations with higher exposure

to basic digital technologies encounter poorer working conditions, while those in

occupations with greater exposure to advanced digital technologies experience more

favorable working conditions. Other factors correlated with working conditions

include age, qualification, wage, and holding a leadership role, all of which are

positively associated with working conditions.



4. Digital Technologies, Job Quality and
Employer-provided Training 119

Table 4.2: Digitalisation and Working Conditions

Working conditions index
(1) (2) (3) (4)

Basic digital technologies:
Routine Task Intensity -0.508**

(0.226)
Computerization -2.552***

(0.257)
Advanced digital technologies:
AI Exposure 4.565***

(0.325)
Machine Learning Suitability 4.318***

(0.414)
Control variables:
Age 0.010* 0.007* 0.008* 0.009

(0.005) (0.004) (0.004) (0.006)
Male -0.598*** -0.422** 0.136 -0.173

(0.206) (0.174) (0.124) (0.169)
Education 0.205** 0.135 -0.004 0.138

(0.091) (0.089) (0.083) (0.095)
Qualification 0.175*** 0.133*** 0.096*** 0.183***

(0.044) (0.037) (0.034) (0.040)
Wage 0.007*** 0.005*** 0.003*** 0.007***

(0.001) (0.001) (0.001) (0.001)
Firm size 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)
Leadership 0.541*** 0.470*** 0.500*** 0.594***

(0.085) (0.078) (0.079) (0.079)
Fulltime -0.466*** -0.439*** -0.234* -0.373***

(0.147) (0.144) (0.138) (0.133)
Establishment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

R2 0.288 0.304 0.349 0.306
Observations 20974 20974 20974 20974

Notes: All models estimated are OLS with establishment and year fixed effects included. The
working conditions index ranges from 5 to 25. Control variables include age, gender, education,
qualification, wage, establishment size, leadership, and full-time employment. LPP-ADIAB
panel weights are applied. Standard errors are clustered at establishment level and reported
in parentheses. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.
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Next, I investigate the relationship between technology exposure and training

participation. Table 4.3 presents the outcomes of linear probability models, estimat-

ing the association between exposure to digital technologies and the probability of

participating in employer-provided training. Analogous to the working conditions

case, the RTI and computerization effects contrast with those of AI and machine

learning, as indicated by the negative coefficients in columns (1) and (2) and the

positive coefficients in columns (3) and (4).

Employees in occupations with the highest routine task intensity are approxi-

mately 7.2% less likely to participate in training offered by their employer as com-

pared to those with the lowest RTI. A higher computerization risk corresponds to an

even more pronounced decrease in the likelihood of training participation of 22.4%.

In turn, higher AI or machine learning exposure increases the likelihood of participat-

ing in employer-provided training by about 23.9% and 10% on average, respectively.

With respect to other factors influencing training participation, it is apparent that

older employees are less likely to participate in training, while higher qualifications

and wages are positively correlated with training participation. Also, holding a

leadership role is associated with increased training participation.

These results can be interpreted within a skill-based framework, where high-

skilled employees possess a comparative advantage in performing complex tasks

that require additional training. Consequently, these employees exhibit a higher

propensity to receive training. Occupations characterized by a high share of routine

tasks and high computerization scores tend to employ mainly low- and medium-

skilled workers, who are less likely to receive employer-provided training. In contrast,

workers in AI-intensive occupations tend to be more highly skilled and, therefore,

more likely to participate in training programs.

One possible explanation for these findings is that advanced digital technologies,

such as AI and machine learning, necessitate continuous learning and skill devel-

opment, prompting employers to invest more in training for employees exposed to

these technologies. On the other hand, basic digital technologies that automate
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routine tasks may reduce the perceived need for training, as the tasks being auto-

mated typically require lower skill levels. The contrast between training provision

for AI-exposed employees and those exposed to more basic digital technologies

highlights an important consideration in the debate on training initiatives. While

the argument for training high-skilled employees aligns with the notion of leveraging

comparative advantages, there is also an argument for upskilling less-skilled em-

ployees to address skill shortages. However, the results suggest that in the context

of employer-provided training studied here, training initiatives are not specifically

aimed at upskilling lower-skilled workers.

As outlined in the empirical strategy section, the extent to which an employee

is exposed to digital technologies depends not only on their occupation but also

on their employer. While individual technology adoption can not be observed in

my data, I use information from the Establishment Panel on firms’ ICT investment

decisions, which serves as a proxy for establishment-level technology adoption.

Under the hypothesis that firm-level technology adoption increases the likelihood

that employees will work with new technologies, we would expect stronger effects

for employees in investing firms in the regression analysis. In this framework,

ICT investment can be seen as a direct investment in basic digital technologies

as well as an input into adopting more advanced technologies that require a good

IT infrastructure as a basis.
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Table 4.3: Digitalisation and Training Participation

Training participation
(1) (2) (3) (4)

Basic digital technologies:
Routine Task Intensity -0.072*

(0.038)
Computerization -0.224***

(0.039)
Advanced digital technologies:
AI Exposure 0.239***

(0.041)
Machine Learning Suitability 0.101

(0.066)
Control variables:
Age -0.005*** -0.005*** -0.005*** -0.005***

(0.001) (0.001) (0.001) (0.001)
Male -0.034 -0.015 0.010 -0.016

(0.028) (0.028) (0.028) (0.026)
Education 0.032*** 0.026*** 0.021*** 0.031***

(0.008) (0.007) (0.008) (0.008)
Qualification 0.017** 0.014** 0.014** 0.018**

(0.007) (0.007) (0.006) (0.007)
Wage 0.001*** 0.001*** 0.000*** 0.001***

(0.000) (0.000) (0.000) (0.000)
Firm size -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000)
Leadership 0.102*** 0.097*** 0.102*** 0.106***

(0.020) (0.019) (0.019) (0.019)
Fulltime -0.018 -0.016 -0.007 -0.017

(0.027) (0.028) (0.028) (0.025)
Establishment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

R2 0.221 0.226 0.227 0.220
Observations 21003 21003 21003 21003

Notes: All models estimated are linear probability models with establishment and year fixed
effects included. Training participation is one if the employee participated in training in
the respective year and zero otherwise. Control variables include age, gender, education,
qualification, wage, establishment size, leadership, and full-time employment. LPP-ADIAB
panel weights are applied. Standard errors are clustered at establishment level and reported in
parentheses. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.
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Table 4.4: Digitalisation and Working Conditions - ICT Investments

No Investment Invest No Investment Invest No Investment Invest No Investment Invest
Basic digital technologies:
Routine Task Intensity -0.365 -0.601*

(0.227) (0.308)
Computerization -2.031*** -2.815***

(0.360) (0.305)
Advanced digital technologies:
AI Exposure 5.120*** 4.397***

(0.376) (0.431)
Machine Learning Suitability 5.082*** 4.134***

(0.643) (0.453)
Control variables:
Age 0.003 0.011 0.003 0.007 0.002 0.007 0.002 0.010

(0.007) (0.007) (0.007) (0.006) (0.006) (0.006) (0.007) (0.008)
Male -0.907*** -0.492* -0.775*** -0.296 -0.198 0.213 -0.472** -0.095

(0.197) (0.270) (0.191) (0.215) (0.175) (0.149) (0.190) (0.209)
Education 0.220*** 0.181 0.187*** 0.099 0.001 -0.013 0.158** 0.119

(0.071) (0.121) (0.070) (0.118) (0.066) (0.113) (0.066) (0.129)
Qualification 0.092* 0.201*** 0.065 0.151*** 0.044 0.112** 0.102* 0.209***

(0.054) (0.060) (0.054) (0.048) (0.045) (0.044) (0.054) (0.054)
Wage 0.007*** 0.007*** 0.005*** 0.006*** 0.001 0.003*** 0.007*** 0.007***

(0.002) (0.001) (0.002) (0.001) (0.001) (0.001) (0.002) (0.001)
Firm size 0.000*** -0.000* 0.000*** -0.000** 0.000*** -0.000 0.000*** -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Leadership 0.843*** 0.467*** 0.823*** 0.395*** 0.788*** 0.441*** 0.801*** 0.544***

(0.145) (0.124) (0.145) (0.102) (0.139) (0.113) (0.133) (0.108)
Fulltime -0.079 -0.594*** -0.064 -0.564*** 0.143 -0.337** -0.067 -0.496***

(0.260) (0.183) (0.257) (0.168) (0.227) (0.166) (0.262) (0.165)
ICT Investment No Yes No Yes No Yes No Yes
Establishment FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.392 0.278 0.400 0.297 0.456 0.335 0.414 0.294
Observation 4741 13384 4741 13384 4741 13384 4741 13384

Notes: All models estimated are OLS with establishment and year fixed effects included. ICT investment is measured as binary variable and is one if the company invested in
the previous year. Control variables include age, gender, education, qualification, wage, establishment size, leadership, and full-time employment. Standard errors are clustered
at establishment level and reported in parentheses. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.

Table 4.4 reports estimates of regressing the working condition index on tech-

nology exposure at the worker level, conditional on the fact that a firm invests in

ICT. I split the sample into two groups: Employees at firms that invest in ICT and

those that do not. Columns (1), (3), (5), and (7) run regressions for employees

who work at firms without ICT investments, whereas columns (2), (4), (6), and

(8) report coefficients for employees that work at investing firms.

The negative effects of basic digital technologies on working conditions are more

pronounced for investing firms, confirming the hypothesis that ICT investments

foster the adoption of new technologies and, therefore, lead to more pronounced

effects of digital technologies on employees.

For advanced technologies, the effects stay positive but appear smaller in in-

vesting than in non-investing firms. This shows that, at least for basic digital

technologies, the organization of production plays an important role. In firms

that do not invest in ICT, however, employees are less exposed to the negative



124 4.3. Results: Working Conditions and Training

consequences of digitalisation. At the same time, firms are likely to forego potential

productivity gains associated with technology investments.

Table 4.5: Digitalisation and Training Participation - ICT Investments

No Investment Investment No Investment Investment No Investment Investment No Investment Investment
Basic digital technologies:
Routine Task Intensity -0.179*** -0.072**

(0.045) (0.034)
Computerization -0.213*** -0.227***

(0.062) (0.055)
Advanced digital technologies:
AI Exposure 0.202*** 0.271***

(0.053) (0.048)
Machine Learning Suitability -0.093 0.139**

(0.119) (0.057)
Control variables:
Age -0.003*** -0.006*** -0.003*** -0.006*** -0.003*** -0.006*** -0.003** -0.006***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Male 0.031 -0.033 0.057* -0.014 0.073** 0.015 0.039 -0.013

(0.029) (0.031) (0.034) (0.027) (0.032) (0.026) (0.028) (0.028)
Education 0.030*** 0.031*** 0.028*** 0.024*** 0.023** 0.019** 0.033*** 0.029***

(0.011) (0.009) (0.010) (0.009) (0.011) (0.009) (0.011) (0.010)
Qualification -0.014 0.026*** -0.014 0.022*** -0.012 0.021*** -0.010 0.027***

(0.011) (0.009) (0.011) (0.008) (0.011) (0.008) (0.011) (0.009)
Wage 0.000** 0.001*** 0.001** 0.001*** 0.000** 0.000** 0.001*** 0.001***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Firm size 0.000* -0.000 0.000* -0.000 0.000* -0.000 0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Leadership 0.123*** 0.112*** 0.119*** 0.108*** 0.118*** 0.113*** 0.121*** 0.118***

(0.022) (0.022) (0.022) (0.020) (0.022) (0.022) (0.022) (0.022)
Fulltime 0.019 -0.022 0.012 -0.020 0.018 -0.007 0.007 -0.020

(0.033) (0.027) (0.033) (0.027) (0.033) (0.027) (0.033) (0.026)
ICT Investment No Yes No Yes No Yes No Yes
Establishment FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.305 0.234 0.301 0.238 0.301 0.242 0.297 0.233
Observations 4754 13403 4754 13403 4754 13403 4754 13403

Notes: All models estimated are OLS with establishment and year fixed effects included. ICT investment is measured as binary variable and is one if the company invested in the
previous year. Control variables include age, gender, education, qualification, wage, establishment size, leadership, and full-time employment. LPP-ADIAB panel weights are applied.
Standard errors are clustered at establishment level and reported in parentheses. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.

Regarding training participation, as reported in table 4.5, the differences between

investing and non-investing firms are less pronounced, and the initially observed

pattern of results persists. The negative effect associated with a high routine

task intensity is smaller for investing firms, whereas the effect associated with

a higher computerization risk is basically unchanged. In contrast, exposure to

advanced digital technologies positively affects training participation in investing

firms, compared to non-investing firms. For firms that do not invest in ICT, the

effects are smaller in the case of AI exposure or even negative but statistically

not significant in the case of ML exposure.
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4.3.1 Results by Age and Gender

This section investigates the relationship between digital technologies, working

conditions, and training participation across different age groups and by gender.

Age groups are defined as young (18-29), middle-aged (30-49), and older (50 and

above). We would expect differential results, especially by age, as younger workers

are generally perceived to be more flexible and open to learning new skills. There

could also be differences by gender if, for example, women are more flexible in

adopting new skills than men or tend to select into occupations with higher AI

exposure and better working conditions.

As shown in panel A of table 4.A.6 in the appendix, exposure to advanced digital

technologies is associated with better working conditions across all age groups. The

most pronounced effect is observed among middle-aged workers. Conversely, the

negative association between exposure to basic digital technologies and working

conditions is primarily driven by older workers. For this group, the effect is both

negative and statistically significant, with the estimated coefficients being larger

than those for the entire sample.

One explanation for this finding is the hypothesis of technostress, where the

introduction of new technology negatively affects employees’ well-being. While

older employees are more experienced in their jobs and have more task-specific

human capital, they might be less flexible in adjusting to new technologies and

environments than their younger colleagues. The introduction of new technologies

and the accompanying reorganization of work processes could lead to more stress

for older workers than for younger ones.

Exposure to basic digital technologies does not significantly affect working con-

ditions for younger workers. However, higher routine task intensity or a higher

computer automation risk negatively affects middle-aged and older workers. The

coefficient on computerization is greatest for older workers, at -2.64, and sig-

nificant at the 1% level.
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Regarding training participation, panel B of table 4.A.6 in the appendix shows

that younger workers are generally less affected by both basic and advanced tech-

nologies, with most coefficients not reaching statistical significance, except for

increased participation associated with machine learning suitability. On the other

hand, middle-aged and older workers exposed to basic digital technologies are less

likely to participate in training. The effects of advanced digital technologies on

training for these age groups are mixed and less significant.

Overall, advanced digital technologies enhance working conditions for all age

groups, especially middle-aged workers. Basic digital technologies negatively affect

older workers’ job quality, while younger workers show little impact on training

participation from both technology types.

Table 4.A.7 in the appendix shows the results by gender. Female and male work-

ers could react differently to new technologies, leading to gender differences in the

effects of digital technologies on job quality. Another explanation for potential differ-

ences could be occupational sorting, where male and female workers sort into different

occupations with better working conditions and higher AI exposure, or vice versa.

Basic digital technologies negatively impact working conditions for men more

than for women, with men showing stronger negative coefficients for routine task

intensity and computerization. This indicates that women are less affected by the

negative impacts of routine task intensity and computerization on working conditions

compared to their male counterparts. Advanced digital technologies positively affect

working conditions for both genders, with women benefiting slightly more.

Regarding training participation, basic digital technologies reduce training par-

ticipation for both genders, particularly for men. For male workers, exposure

to routine tasks and computerization significantly lowers training participation,

reflecting reduced opportunities or willingness to engage in training when exposed

to these technologies. Women show a positive relationship between advanced

digital technologies and training participation, consistent with the overall sam-

ple, but experience a smaller decline in training participation from basic digital

technologies compared to men.
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These findings suggest that basic digital technologies adversely affect men in

terms of working conditions and training participation. The stronger negative

impact on men could be due to their higher likelihood of engaging in routine and

automatable tasks. In contrast, women seem more resilient to the negative impacts

on working conditions but still experience a decline in training participation due to

basic digital technologies. The positive effects of advanced digital technologies on

job quality and training participation are observed for both genders, with women

particularly benefiting from increased training opportunities. This may reflect

greater openness to learning new skills associated with AI and machine learning

among female workers. One potential caveat to this analysis is that the sample

includes considerably fewer female workers than male workers, which may influence

the generalizability of the findings.

4.3.2 Training and Personnel Management as Mitigating Factors

This section investigates factors that potentially mitigate the negative effects of

basic digital technologies on employees or further enhance the positive effects of ad-

vanced technologies. While the previous sections revealed that digitalisation affects

the likelihood of participating in employer-provided training, this section studies

whether training participation actually mitigates the negative impacts of basic digital

technologies and amplifies the positive effects of advanced digital technologies.

Additionally, I explore the role of employers by analyzing whether specific

personnel management practices mediate the impact of digitalisation on working

conditions and training. The rationale behind this analysis is that employers are

ultimately responsible for the introduction of new technologies and can provide

employees with support to facilitate technology adoption.

4.3.2.1 Employer-provided Training

As shown in section 4.3, digitalisation affects the likelihood of participating in

employer-provided training. The training itself can also serve as a mediating factor
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on the effect of digitalisation on working conditions. This occurs when training

enhances adaptation to new technology and counteracts technostress.

In this section, I present evidence that conditional on participating in employer-

provided training, the negative effects of basic digital technologies on employees

are substantially weaker. Table 4.A.8 shows the results for regressions of working

conditions on digitalisation measures for two groups of employees, those who did

participate in training and those who did not.

The results indicate that for employees who participate in training, the negative

effects of basic digital technologies on working conditions are less pronounced. For

advanced technologies, the effects are similar but slightly weaker, suggesting that

training does not further enhance the positive effects of advanced technologies.

Employer-provided training is a valid strategy to soften negative impacts on

working conditions for exposure to basic digital technologies. However, when

interpreting these results, it is important to take into account that selection into

training is not random. Employees who choose to participate in training may have

unobserved characteristics, such as higher motivation, better baseline skills, or

greater adaptability, which could influence both their likelihood of participating in

training and their ability to cope with new technologies. Therefore, the observed

differences in effects might not be entirely causal and could be partially attributed

to these unobserved factors.

4.3.2.2 Personnel Management

The previous sections showed that exposure to digital technologies influences job

quality, training participation, and other employee-level outcomes. However, it is

important to consider that the impact of these technologies on employees may also

be shaped by their employer’s organizational structure and management approach.

Management is ultimately responsible for making decisions regarding the adop-

tion of new technologies and their integration into work processes. As a result, they

play a crucial role in mitigating any potential negative effects of technologies on

employees. One example of a management practice that could mitigate the adverse
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effects of digitalisation on job quality is conducting regular employee interviews and

implementing mechanisms to incorporate feedback into future decision-making.

I incorporate these management practices as control variables in the regressions

and estimate the effects using the same methodology employed for the previous

analyses. If employee interviews, for instance, can alleviate the negative effects of

digitalisation on job quality, their inclusion in the regressions should reduce the

negative coefficients of basic digital technologies on working conditions.

However, incorporating controls for management practices does not eliminate

the negative effects of basic digital technologies on working conditions and training

participation, as shown in table 4.A.9. Similarly, the positive relationship identified

between advanced digital technologies, working conditions, and training remains

mostly unaffected by the inclusion of management controls. These findings sug-

gest that while management practices such as employee interviews and feedback

mechanisms are important, they are not sufficient to fully counteract the negative

impacts of basic digital technologies. This underscores the need for a comprehensive

approach that includes not only effective management practices but also targeted

interventions aimed at supporting employees in adapting to new technologies.

4.4 Additional Results: Well-being and Health

In addition to the working conditions index, the concept of job quality also incor-

porates more subjective measures (Nikolova and Cnossen, 2020). In this context,

well-being and job satisfaction are important factors (Clark, 2015). Also, low-

quality jobs can be associated with worse health outcomes, especially if the work is

physically demanding or is conducted in strenuous environmental conditions.

Tables 4.A.10 and 4.A.11 in the appendix present the results of regressions

including further outcome variables related to job quality and individual well-being.

These outcomes are job satisfaction, sick days, well-being, and work-life balance.

In line with the findings from the previous sections, the impacts of basic and

advanced digital technologies on job satisfaction diverge. While not all estimates

are statistically significant, panel A of table 4.A.10 illustrates that exposure to
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artificial intelligence or machine learning is associated with higher job satisfaction.

In contrast, basic digital technologies are negatively associated with job satisfaction.

On average, employees with high exposure to basic digital technologies or a high

proportion of routine tasks report lower job satisfaction. Panel B of table 4.A.10

displays estimates related to sick days as a direct measure of an employee’s health

status, which is not self-reported but rather obtained from social security records. A

similar pattern emerges as basic digital technologies correlate with a higher number

of sick days, while increased exposure to advanced digital technologies is associated

with a significantly lower number of sick days. The estimated coefficients are

statistically significant at conventional levels, except for the routine task intensity

measure. This finding further emphasizes the contrasting effects of basic and

advanced digital technologies on employee well-being.

Lastly, table 4.A.11 presents results on self-reported well-being and work-life

balance. These results are less consistent compared to earlier outcomes. For the well-

being measure, none of the estimated coefficients reach statistical significance at the

conventional levels. Considering self-reported work-life balance, exposure to basic

digital technologies is negatively associated with it. Although exposure to machine

learning also shows a negative relationship with work-life balance, the estimated

coefficient is small and fails to reach statistical significance. In contrast, AI exposure

has a positive and statistically significant association with this aspect of job quality.

In summary, these results support the main findings that exposure to basic

digital technologies is related to lower job quality, while advanced digital technologies

are connected to higher job quality. Furthermore, these findings extend to areas

beyond strictly work-related measures, encompassing health and work-life balance.

4.5 Robustness Checks

To assess the robustness of the main results, I conduct a series of additional checks.

First, I estimate the main regressions for different subsets of my sample. As not all

employees are observed in all survey waves, the panel is unbalanced. To determine

whether the effects depend on workers dropping out of the sample, I limit the
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sample to employees and establishments observed for at least two periods. The

results are shown in table 4.A.12. The primary outcomes for working conditions

and training do not change significantly.

Next, I further restrict the sample to include only employees observed in all four

periods. This sample is significantly smaller, with around 3300 to 3400 observations.

Table 4.A.13 shows the results. The estimated coefficient for computerization

remains negative and statistically significant, while routine task intensity no longer

has a significant effect. In contrast, coefficients for advanced digital technologies

remain positive and mostly statistically significant, with magnitudes similar to

those for the full sample.

For the next set of checks, I define the technology exposure variables as binary

rather than continuous variables. I create variables that split technology exposure

at the median such that the variable equals one if the occupational exposure is

above the median and zero otherwise. This binary variable helps characterize

higher exposure to the respective technologies.

Table 4.A.14 in the appendix shows the results. When estimating regressions

with the above-median binary explanatory variables and working conditions and

training as outcomes, the results largely confirm the initial set of regressions.

Basic digital technology exposure above the median is negatively associated with

working conditions and training participation. On the other hand, advanced

digital technology exposure above the median is positively associated with better

working conditions and higher training participation, with the estimated coefficients

reaching statistical significance at the 1% level.

These robustness checks reinforce the main findings. The results indicate that

the observed effects of digital technologies on working conditions and training

participation are consistent across different sample restrictions and definitions of

technology exposure. This adds confidence to the conclusion that basic digital

technologies are generally associated with poorer working conditions and a lower

propensity to participate in employer-provided training, while advanced digital

technologies tend to improve working conditions and increase training participation.
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4.6 Conclusion

This study provides new insights into the impact of digital technologies on job

quality and participation in employer-provided training among incumbent workers in

Germany. The findings highlight the differential effects of basic and advanced digital

technologies, with advanced technologies generally being associated with improved

working conditions and a higher likelihood of participating in employer-provided

training. In contrast, basic digital technologies are associated with poorer outcomes.

Advanced technologies may enhance job quality by automating or assisting

workers in complex tasks. These findings align with the task-based approach, which

posits that advanced technologies can augment human labor in non-routine tasks

(Brynjolfsson et al., 2018; Agrawal et al., 2019). Conversely, high exposure to

basic digital technologies, such as computers and computer-controlled machines,

correlates with poorer working conditions and reduced training participation. This

can be explained by the automation of routine tasks and the resultant stress and

job insecurity. These outcomes support the hypothesis that basic technologies

primarily automate routine tasks (Autor et al., 2003; Acemoglu and Restrepo,

2019), adversely affecting job quality.

My results contribute to the existing literature by providing a nuanced under-

standing of how different types of digital technologies affect job quality. Previous

studies have largely focused on the displacement effects of automation, while this

study highlights the impacts of digital technologies on job quality. The positive as-

sociation between advanced digital technologies and job quality aligns with findings

from other studies on the health effects of AI (Giuntella et al., 2023; Arntz et al.,

2024), while the negative impacts of basic digital technologies reflect concerns raised

in the literature on automation and job displacement (Acemoglu et al., 2020).

The heterogeneous impacts of digital technologies across demographic groups

suggest that male and older employees are particularly vulnerable to the adverse

effects of basic digital technologies. This underscores the need for targeted in-

terventions to support these workers, such as re-skilling programs and initiatives
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to promote lifelong learning. Furthermore, the role of ICT investments in am-

plifying the effects of digital technologies highlights the importance of strategic

investment decisions by firms. Effective personnel management practices, such as

regular employee interviews and feedback mechanisms, can mitigate some of the

adverse impacts of digitalisation, suggesting that firms play an important role in

shaping the outcomes of technological change.

This study has several limitations. First, the largely cross-sectional nature of

the employee data limits the ability to draw causal inferences as selection into

occupations and firms is difficult to address. Although a causal identification

of digital technologies’ effects on job quality and training is challenging in this

empirical setting, the observed patterns align with studies using longitudinal data

such as Arntz et al. (2024). Second, the measures of digital technology exposure

may not capture all dimensions of technological change, such as the quality and

implementation of these technologies. An extension of this work could involve an

event study examining the introduction of new digital technology in a company and

measuring employee-level outcomes in response to the introduction (Hirvonen et al.,

2022; Genz et al., 2021; Bessen et al., 2019; Humlum and Vestergaard, 2024).

Navigating the adoption of new digital technologies poses challenges for both

companies and employees. While successful adoption of new technologies enhances

productivity, it can also alter job content and context, negatively affecting work-

ing conditions and job quality. Acknowledging this dual nature of digitalisation,

both employers and employees could benefit from proactively addressing negative

consequences by providing and participating in additional training and embracing

employee-centric personnel management strategies. This proactive approach is

crucial for ensuring the positive outcomes of digital technology adoption while

mitigating potential downsides for employees.
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4.A Additional Tables

Table 4.A.1: Top and Bottom 10 Occupations for Routine Task Intensity

Panel A: Highest Routine Task Intensity
Occupation Mean Exposure Number of Employees
714 Office clerks and secretaries 0.965 921
721 Occupations in insurance and financial services 0.870 1,076
241 Occupations in metal-making 0.792 216
242 Occupations in metalworking 0.774 1,242
211 Occupations in mining and blasting engineering 0.746 248
292 Occupations in the production of foodstuffs, confectionery and tobacco 0.687 294
221 Occupations in plastic- and rubber-making and -processing 0.640 549
231 Technical occupations in paper-making and -processing and packaging 0.634 172
732 Occupations in public administration 0.624 91
715 Occupations in human resources management and personnel service 0.614 149

Panel B: Lowest Routine Task Intensity
Occupation Mean Exposure Number of Employees
271 Occupations in technical research and development 0.000 504
711 Managing directors and executive board members 0.000 129
531 Occupations in physical security, protection and workplace safety 0.015 284
311 Occupations in construction scheduling, architecture 0.026 123
322 Occupations in civil engineering 0.026 114
321 Occupations in building construction 0.031 212
831 Occupations in education and social work 0.058 147
818 Occupations in pharmacy 0.047 96
821 Occupations in geriatric care 0.047 95
252 Technical occupations in the automotive, aeronautic, aerospace and ship building industries 0.043 455

Training participation is calculated for 3-digit occupations according to the kldb2010 classification.
Occupations with fewer than 20 employees are combined with occupations within the same 2-digit class for data protection reasons.

Table 4.A.2: Top and Bottom 10 Occupations for Computer Substitution Potential

Panel A: Highest Computer Substitution Potential
Occupation Mean Sub Potential Number of Employees
241 Occupations in metal-making 0.933 216
245 Occupations in precision mechanics and tool making 0.863 239
242 Occupations in metalworking 0.845 1,242
211 Occupations in mining and blasting engineering 0.816 248
221 Occupations in plastic- and rubber-making and -processing 0.815 549
261 Occupations in mechatronics, automation and control technology 0.807 70
244 Occupations in metal constructing and welding 0.772 470
411 Occupations in mathematics and statistics 0.769 663
262 Technical occupations in energy technologies 0.751 612
263 Occupations in electrical engineering 0.748 466

Panel B: Lowest Computer Substitution Potential
Occupation Mean Sub Potential Number of Employees
841 Teachers in schools of general education 0.061 110
818 Occupations in pharmacy 0.088 96
322 Occupations in civil engineering 0.094 114
531 Occupations in physical security, protection and workplace safety 0.104 284
831 Occupations in education and social work 0.117 147
321 Occupations in building construction 0.139 212
814 Occupations in human medicine and dentistry 0.150 303
921 Occupations in advertising and marketing 0.182 363
913 Occupations in the social sciences 0.214 181
821 Occupations in geriatric care 0.168 95

Training participation is calculated for 3-digit occupations according to the kldb2010 classification.
Occupations with fewer than 20 employees are combined with occupations within the same 2-digit class for data protection reasons.
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Table 4.A.3: Top and Bottom 10 Occupations for AI Exposure

Panel A: Highest AI Exposure
Occupation Mean AI Exposure Number of Employees
722 Occupations in accounting, controlling and auditing 0.934 506
715 Occupations in human resources management and personnel service 0.897 149
714 Office clerks and secretaries 0.852 921
713 Occupations in business organisation and strategy 0.851 1,447
913 Occupations in the social sciences 0.849 181
311 Occupations in construction scheduling, architecture 0.823 123
611 Occupations in purchasing and sales 0.799 1,033
431 Occupations in computer science 0.794 65
921 Occupations in advertising and marketing 0.785 363
732 Occupations in public administration 0.771 91

Panel B: Lowest AI Exposure
Occupation Mean AI Exposure Number of Employees
541 Occupations in cleaning services 0.083 307
244 Occupations in metal constructing and welding 0.171 470
221 Occupations in plastic- and rubber-making and -processing 0.254 549
241 Occupations in metal-making 0.281 216
211 Occupations in mining and blasting engineering 0.285 248
292 Occupations in the production of foodstuffs, confectionery and tobacco 0.327 294
242 Occupations in metalworking 0.319 1,242
322 Occupations in civil engineering 0.214 114
321 Occupations in building construction 0.219 212
341 Occupations in building services engineering 0.130 104

Training participation is calculated for 3-digit occupations according to the kldb2010 classification.
Occupations with fewer than 20 employees are combined with occupations within the same 2-digit class for data protection reasons.

Table 4.A.4: Top and Bottom 10 Occupations for Machine Learning Suitability

Panel A: Highest ML Suitability
Occupation Mean ML Suitability Number of Employees
722 Occupations in accounting, controlling and auditing 0.899 506
272 Draftspersons, technical designers, and model makers 0.898 481
714 Office clerks and secretaries 0.877 921
721 Occupations in insurance and financial services 0.881 1,076
622 Sales occupations clothing, electronic devices, furniture, motor vehicles 0.833 185
623 Sales occupations selling foodstuffs 0.833 130
611 Occupations in purchasing and sales 0.804 1,033
732 Occupations in public administration 0.795 91
621 Sales occupations in retail trade (without product specialisation) 0.793 210
921 Occupations in advertising and marketing 0.770 363

Panel B: Lowest ML Suitability
Occupation Mean ML Suitability Number of Employees
322 Occupations in civil engineering 0.425 114
321 Occupations in building construction 0.461 212
818 Occupations in pharmacy 0.475 96
341 Occupations in building services engineering 0.516 104
541 Occupations in cleaning services 0.513 307
525 Drivers and operators of construction and transportation vehicles 0.539 250
343 Occupations in building services and waste disposal 0.532 215
821 Occupations in geriatric care 0.557 95
311 Occupations in construction scheduling, architecture 0.565 123
111 Occupations in farming 0.572 46

Training participation is calculated for 3-digit occupations according to the kldb2010 classification.
Occupations with fewer than 20 employees are combined with occupations within the same 2-digit class for data protection reasons.
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Table 4.A.5: Occupations by Average Training Participation

Panel A: Highest Average Training Participation
Occupation Mean Training Participation N Training N No Training N Total
814 Occupations in human medicine and dentistry 0.708 213 88 303
818 Occupations in pharmacy 0.708 68 28 96
831 Occupations in education and social work 0.721 106 41 147
715 Occupations in human resources management and personnel service 0.597 89 60 149
271 Occupations in technical research and development 0.599 300 201 504
841 Teachers in schools of general education 0.670 73 36 110
821 Occupations in geriatric care 0.632 60 35 95
721 Occupations in insurance and financial services 0.568 611 465 1,076
311 Occupations in construction scheduling, architecture 0.545 67 56 123
711 Managing directors and executive board members 0.555 71 57 129

Panel B: Lowest Average Training Participation
Occupation Mean Training Participation N Training N No Training N Total
541 Occupations in cleaning services 0.085 26 281 307
221 Occupations in plastic- and rubber-making and -processing 0.184 101 448 549
242 Occupations in metalworking 0.228 283 959 1,242
631 Occupations in tourism and the sports (and fitness) industry 0.228 34 115 149
511 Technical occupations in railway, aircraft and ship operation 0.220 316 1,120 1,437
292 Occupations in the production of foodstuffs, confectionery and tobacco 0.204 60 234 294
321 Occupations in building construction 0.255 54 158 212
525 Drivers and operators of construction and transportation vehicles 0.248 62 188 250
343 Occupations in building services and waste disposal 0.252 54 160 215
231 Technical occupations in paper-making and -processing and packaging 0.263 45 126 172

Training participation is calculated for 3-digit occupations according to the kldb2010 classification.
Occupations with fewer than 20 employees are combined with occupations within the same 2-digit class for data protection reasons.
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Table 4.A.7: Digitalisation, Working Conditions and Training - by Gender

(1) (2) (3) (4) (5) (6) (7) (8)
Female Male Female Male Female Male Female Male

Panel A: Working Conditions

Basic digital technologies:
Routine Task Intensity 0.929* -1.137***

(0.535) (0.272)
Computerization -0.655 -3.005***

(0.483) (0.277)
Advanced digital technologies:
AI Exposure 4.556*** 4.181***

(0.592) (0.338)
Machine Learning Suitability 6.018*** 3.269***

(0.907) (0.600)
Individual-level Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Establishment FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.393 0.334 0.389 0.350 0.438 0.374 0.420 0.336
Observations 5978 14996 5978 14996 5978 14996 5978 14996

Panel B: Training Participation
Basic digital technologies:
Routine Task Intensity -0.024 -0.124***

(0.042) (0.033)
Computerization -0.250*** -0.223***

(0.073) (0.044)
Advanced digital technologies:
AI Exposure 0.206** 0.248***

(0.102) (0.057)
Machine Learning Suitability -0.024 0.090

(0.126) (0.081)
Individual-level Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Establishment FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.392 0.225 0.397 0.226 0.396 0.228 0.392 0.221
Observations 5987 15016 5987 15016 5987 15016 5987 15016

Notes: All models estimated are OLS with establishment and year fixed effects included. The working conditions index ranges from 5 to 25. Control
variables include age, gender, education, qualification, wage, establishment size, leadership, and full-time employment. LPP-ADIAB panel weights are
applied. Standard errors are clustered at establishment level and reported in parentheses. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.

Table 4.A.8: Digitalisation and working conditions - conditional on training

(1) (2) (3) (4) (5) (6) (7) (8)
No Training Training No training Training No training Training No training Training

Basic digital technologies:
Routine Task Intensity -0.652** -0.022

(0.276) (0.264)
Computerization -2.761*** -1.889***

(0.348) (0.284)
Advanced digital technologies:
AI Exposure 4.628*** 3.850***

(0.359) (0.595)
Machine Learning Suitability 4.025*** 4.266***

(0.538) (0.827)
Individual-level Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Establishment FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.314 0.328 0.328 0.339 0.367 0.376 0.326 0.350
Observations 12579 8383 12579 8383 12579 8383 12579 8383

Notes: All models estimated are OLS with establishment and year fixed effects included. The working conditions index ranges from 5 to 25. Control variables
include age, education, qualification, wage, establishment size, leadership, and full-time employment. LPP-ADIAB panel weights are applied. Standard errors
are clustered at establishment level and reported in parentheses. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.
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Table 4.A.9: Digitalisation, Working Conditions and Training -
Management Controls

(1) (2) (3) (4)
Panel A: Working Conditions
Basic digital technologies:
Routine Task Intensity -0.386*

(0.204)
Computerization -2.399***

(0.246)
Advanced digital technologies:
AI Exposure 4.294***

(0.323)
Machine Learning Suitability 4.106***

(0.437)
Individual-level Controls ✓ ✓ ✓ ✓
Management Controls ✓ ✓ ✓ ✓
Establishment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

R2 0.321 0.335 0.374 0.338
Observations 20866 20866 20866 20866

Panel B: Training Participation
Basic digital technologies:
Routine Task Intensity -0.060

(0.036)
Computerization -0.201***

(0.038)
Advanced digital technologies:
AI Exposure 0.194***

(0.039)
Machine Learning Suitability 0.062

(0.068)
Individual-level Controls ✓ ✓ ✓ ✓
Management controls ✓ ✓ ✓ ✓
Establishment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

R2 0.237 0.240 0.241 0.236
Observations 20895 20895 20895 20895

Notes: All models estimated are OLS with establishment and year fixed effects included. Control
variables include age, education, qualification, wage, establishment size, leadership, and full-
time employment. Management controls include employee interviews, performance pay and a
measure for teamwork. LPP-ADIAB panel weights are applied. Standard errors are clustered at
establishment level and reported in parentheses. Significance levels: * p<0.10, ** p<0.05, ***
p<0.01.
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Table 4.A.10: Digitalisation, Job Satisfaction and Sick Days

(1) (2) (3) (4)
Panel A: Job Satisfaction

Basic digital technologies:
Routine Task Intensity -0.160*

(0.090)
Computerization -0.213

(0.163)
Advanced digital technologies:
AI Exposure 0.295**

(0.145)
Machine Learning Suitability 0.097

(0.201)
Individual-level Controls ✓ ✓ ✓ ✓
Establishment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

R2 0.150 0.149 0.150 0.149
Observations 21008 21008 21008 21008

Panel B: Sick Days
Basic digital technologies:
Routine Task Intensity 3.017

(2.057)
Computerization 6.060**

(2.457)
Advanced digital technologies:
AI Exposure -11.405***

(2.414)
Machine Learning Suitability -6.647***

(2.030)
Individual-level Controls ✓ ✓ ✓ ✓
Establishment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

R2 0.187 0.188 0.195 0.187
Observations 14862 14862 14862 14862

Notes: All models estimated are OLS with establishment and year fixed effects included.
The job satisfaction index ranges from 0 to 10. Control variables include age, education,
qualification, wage, establishment size, leadership, and full-time employment. LPP-ADIAB
panel weights are applied. Standard errors are clustered at establishment level and reported
in parentheses. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.
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Table 4.A.11: Digitalisation, Well-being and Work-life Balance

(1) (2) (3) (4)
Panel A: Well-being

Basic digital technologies:
Routine Task Intensity 0.255

(0.337)
Computerization -0.088

(0.390)
Advanced digital technologies:
AI Exposure -0.015

(0.474)
Machine Learning Suitability 0.110

(0.532)
Individual-level Controls ✓ ✓ ✓ ✓
Establishment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

R2 0.130 0.130 0.130 0.130
Observations 20897 20897 20897 20897

Panel B: Work-life Balance
Basic digital technologies:
Routine Task Intensity -0.203**

(0.086)
Computerization -0.426**

(0.191)
Advanced digital technologies:
AI Exposure 0.311**

(0.153)
Machine Learning Suitability -0.101

(0.166)
Individual-level Controls ✓ ✓ ✓ ✓
Establishment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

R2 0.165 0.166 0.165 0.163
Observations 9613 9613 9613 9613

Notes: All models estimated are OLS with establishment and year fixed effects included.
The well-being index ranges from 5 to 30. The work-life balance index ranges from 1 to 5.
Control variables include age, gender, education, qualification, wage, establishment size,
leadership, and full-time employment. LPP-ADIAB panel weights are applied. Standard
errors are clustered at establishment level and reported in parentheses. Significance
levels: * p<0.10, ** p<0.05, *** p<0.01.
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Table 4.A.12: R1: Working Conditions and Training -
Employees in minimum two waves

(1) (2) (3) (4)
Panel A: Working Conditions

Routine Task Intensity -0.467*
(0.272)

Computerization -2.386***
(0.341)

Advanced digital technologies:
AI Exposure 4.513***

(0.448)
Machine Learning Suitability 4.315***

(0.523)
Individual-level Controls ✓ ✓ ✓ ✓
Establishment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

R2 0.333 0.348 0.391 0.347
Observations 14730 14957 14413 14365

Panel B: Training Participation
Basic digital technologies:
Routine Task Intensity -0.071

(0.053)
Computerization -0.254***

(0.053)
Advanced digital technologies:
AI Exposure 0.229***

(0.061)
Machine Learning Suitability 0.201**

(0.085)
Individual-level Controls ✓ ✓ ✓ ✓
Establishment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

R2 0.221 0.229 0.230 0.222
Observations 14747 14974 14431 14382

Notes: All models estimated are OLS with establishment and year fixed effects included. The
working conditions index ranges from 5 to 25. Employees are observed in two or more survey
waves. Control variables include age, education, qualification, wage, establishment size, leadership,
and full-time employment. Standard errors are clustered at establishment level and reported in
parentheses. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.
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Table 4.A.13: R2: Working Conditions and Training - Employees in four waves

(1) (2) (3) (4)
Panel A: Working Conditions

Basic digital technologies:
Routine Task Intensity 0.268

(0.574)
Computerization -2.079***

(0.582)
Advanced digital technologies:
AI Exposure 4.565***

(0.942)
Machine Learning Suitability 3.832***

(1.267)
Individual-level Controls ✓ ✓ ✓ ✓
Establishment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

R2 0.509 0.518 0.546 0.513
Observations 3412 3445 3292 3279

Panel B: Training Participation
Basic digital technologies:
Routine Task Intensity -0.080

(0.068)
Computerization -0.255**

(0.108)
Advanced digital technologies:
AI Exposure 0.319***

(0.096)
Machine Learning Suitability 0.004

(0.142)
Individual-level Controls ✓ ✓ ✓ ✓
Establishment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

R2 0.301 0.305 0.308 0.308
Observations 3419 3452 3300 3286

Notes: All models estimated are OLS with establishment and year fixed effects included. The
working conditions index ranges from 5 to 25. Employees are observed in all four survey waves.
Control variables include age, education, qualification, wage, establishment size, leadership, and
full-time employment. Standard errors are clustered at establishment level and reported in
parentheses. Significance levels: * p<0.10, ** p<0.05, *** p<0.01.
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Table 4.A.14: R3: Working Conditions and Training - Exposure above median

(1) (2) (3) (4)
Panel A: Working Conditions

Basic digital technologies:
RTI >50pct -0.192

(0.142)
Computerization >50pct -1.220***

(0.114)
Advanced digital technologies:
AI Exposure >50pct 2.085***

(0.201)
ML Suitability >50pct 0.803***

(0.133)
Individual-level Controls ✓ ✓ ✓ ✓
Establishment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

R2 0.293 0.313 0.346 0.303
Observations 22939 22939 22939 22939

Panel B: Training Participation
Basic digital technologies:
RTI >50pct -0.047*

(0.026)
Computerization >50pct -0.098***

(0.021)
Advanced digital technologies:
AI Exposure >50pct 0.119***

(0.031)
ML Suitability >50pct 0.037*

(0.021)
Individual-level Controls ✓ ✓ ✓ ✓
Establishment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

R2 0.217 0.222 0.223 0.217
Observations 22970 22970 22970 22970

Notes: All models estimated are OLS with establishment and year fixed effects included. The
working conditions index ranges from 5 to 25. Control variables include age, education, qualification,
wage, establishment size, leadership, and full-time employment. LPP-ADIAB panel weights
are applied. Standard errors are clustered at establishment level and reported in parentheses.
Significance levels: * p<0.10, ** p<0.05, *** p<0.01.
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