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Abstract

Structured prediction is the task of jointly predicting realizations of multiple coupled
random variables. This statistical problem is central to many advanced applications of
deep learning, including image segmentation and graph node classification. This thesis
presents a two-pronged study of predicting structured discrete data, exploring geometric
aspects and statistical learning. On the geometric side, we first interpret distributions
of independent discrete random variables as points on a product manifold of probability
simplices. We find that this manifold is isometrically embedded into the meta-simplex of
joint probability distributions. This finding illuminates the relationship between inference
dynamics on the product manifold, called assignment flows, and replicator dynamics on
the meta-simplex. The former can be seen as the replicator dynamics of multi-population
games and the constructed embedding formally reduces them to high-dimensional single-
population game dynamics. Based on these geometric insights, we propose two types of
generative models for discrete data by facilitating measure transport through randomized
assignment flows. The first approximates a given energy-based model, while the second is
learned directly from data. Experiments on image segmentation data illustrate the viability
of the proposed method. With regard to statistical learning, we explore current methods
in PAC-Bayesian risk certification and propose a classification approach with favorable
computational properties. Further, we develop a novel PAC-Bayesian risk bound for
structured prediction, which can account for generalization even from a single structured
datum. The lack of independent data is addressed by distilling the coupling structure of
the joint data distribution, given as a Knothe-Rosenblatt rearrangement of a reference
measure, allowing for the use of modern concentration of measure results.
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Zusammenfassung

Strukturierte Vorhersage bezeichnet das Problem, Realisierungen mehrerer gekoppelter
Zufallsvariablen vorherzusagen. Dieses statistische Problem ist von zentraler Bedeutung für
eine Vielzahl komplexer Anwendungen des tiefen Lernens, einschließlich der Bildsegmen-
tierung und Klassifizierung von Graphknoten. Diese Arbeit beleuchtet die strukturierte
Vorhersage diskreter Daten sowohl aus geometrischer Perspektive als auch in Bezug auf
statistisches Lernen. Auf der geometrischen Seite interpretieren wir zunächst Verteilun-
gen unabhängiger diskreter Zufallsvariablen als Punkte einer Produktmannigfaltigkeit
von Simplexen. Wir stellen fest, dass diese Mannigfaltigkeit isometrisch in das Meta-
Simplex multivariater Wahrscheinlichkeitsverteilungen eingebettet ist. Diese Erkenntnis
beleuchtet die Beziehung zwischen Inferenzdynamiken auf der Produktmannigfaltigkeit,
sogenannter Zuweisungsflüsse, und Replikator Dynamiken im Meta-Simplex. Erstere
können als Replikator Dynamiken mehrerer Populationen betrachtet werden, wobei die
konstruierte Einbettung diese formal auf Spieldynamiken einer einzelnen, hochdimension-
alen Population reduziert. Basierend auf diesen geometrischen Einsichten entwickeln wir
zwei generative Modelle für diskrete Daten, die Maßtransport durch Randomisierung von
Zuweisungsflüssen realisieren. Das erste Modell approximiert ein gegebenes Energiemodell,
während das zweite direkt aus Daten gelernt wird. Experimente mit Bildsegmentierungs-
daten veranschaulichen die Anwendbarkeit der vorgeschlagenen Methoden. In Bezug auf
statistisches Lernen explorieren wir aktuelle PAC-Bayessche Methoden und stellen einen
Ansatz für Klassifikationsprobleme vor, der günstige Berechnung erlaubt. Darüber hinaus
entwickeln wir eine PAC-Bayessche Schranke an die Kosten strukturierter Prädiktoren,
welche Generalisierung sogar aus einem einzelnen strukturierten Datum beschreiben kann.
Hierbei wird die Abwesenheit von statistisch unabhängigen Daten durch explizite Extrak-
tion von deren Kopplungsstruktur berücksichtigt. Der Konstruktion liegt die Annahme
einer Datenverteilung zugrunde, die durch Knothe-Rosenblatt Umordnung eines Referenz-
maßes gegeben ist, was moderne Ergebnisse zum Phänomen der Konzentration des Maßes
zugänglich macht.
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1 Introduction

The 21st century has witnessed a new rise of deep learning, evolving from a specialized
topic within statistics to a pervasive subject with applications in diverse fields. This trend
has accelerated in recent years, with advanced generative models for images and natural
language reaching beyond academia to gain broad mainstream appeal and awareness among
the general public. The widespread adoption and evident utility of tools like ChatGPT and
DALL-E – commercial products built around large language models and latent diffusion
models – have also prompted concerns about their societal implications. Issues such as
environmental impacts, the exacerbation of wealth disparities, discrimination through
social biases embedded in data, and fear of job displacement have become increasingly
pressing as these technologies permeate more aspects of daily life.

At the heart of this technological revolution lie impressive feats of engineering, accom-
panied by a large body of theoretical work. For example, a core challenge in training
large models involves reliably predicting effective hyperparameters and the subsequent
performance of large models based on smaller ones [1]. A way to achieve this was proposed
by [217], as a first application emerging from the tensor programs series of theoretical works
[220, 218, 219, 221, 217, 222]. Despite these achievements, fundamental research questions
remain elusive. For instance, the double descent phenomenon [151], a counterintuitive
increase in performance for large models, is at the very core of deep learning and only
beginning to be illuminated in simple scenarios. Breakthroughs in understanding the
mathematical foundations of deep learning could be invaluable, not only for advancing
technical capabilities but also to inform public discourse on the impacts of emerging
technologies and potentially to help steer developments toward more positive outcomes.

A core challenge at the theoretical foundation of deep learning concerns the devel-
opment of statistical learning theories, which can reliably predict the performance of
overparameterized models and guide their training in a principled way. PAC-Bayesian
theory [189, 143, 142] has gained considerable momentum in this field, partly due to the
demonstration of non-vacuous risk certificates for deep classifiers [66]. However, models
dealing with complex modalities such as natural language, graphs, and images are often at
odds with the assumption of independently drawn data – a cornerstone of the most potent
statistical theories.

These domains fall into the category of structured prediction problems, where data
are drawn from the joint distribution of multiple coupled random variables. Take image
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2 CHAPTER 1. INTRODUCTION

segmentation as an example, where labels for all pixels are naturally predicted jointly rather
than separately. If all neighbors of any given pixel are already classified as belonging to one
class, it is likely that the pixel in question also belongs to this class. Modeling image pixels
as nodes of a grid graph, this property of neighbors tending to share the same class is called
homophily, a prevalent property of many real-world graph datasets. For instance, consider
citation graphs such as those in [26], where each node represents an academic publication,
and two nodes are connected if one work is cited in the other. If publications are classified
into fields of study, the citation graph has high homophily. This is because authors are
likely to cite works predominantly in their own field of study. Conversely, graphs in which
neighbors are likely to have different classes are called heterophilic. Citation graphs can
also be heterophilic; for example, if the class to be predicted is the year of publication, the
underlying pattern being that most cited works are not concurrent. Both homophily and
heterophily in graphs are examples of interdependencies between nodes. Thus, formalizing
the label on each node as a random variable, their joint distribution induces complex,
possibly global dependencies.

Similar long-range dependencies are also present in natural language corpora. It is easy
to see that tokens within a sentence or paragraph are coupled. For instance, anaphora,
expressions that refer back to phrases used elsewhere in the text, appear frequently in
natural language [163]. Long-range dependencies within a large corpus are more subtle.
Still, it can be argued that tokens can exhibit dependency at arbitrary distances, even if
the corpus consists of multiple, supposedly independent documents, possibly in multiple
different languages. This interconnectedness arises because natural language is a product
of human culture. For example, a single influential work of literature may not only be
quoted but become part of the perspective of subsequent authors, influencing their writing
in subtle ways. For this reason, working with natural language entails a fine-grained
analysis of statistical dependencies between tokens – the hallmark of structured prediction
problems.

Complex applications like the modeling of natural language serve as motivation for
an in-depth study of structured prediction. However, in this thesis, we do not focus
on application-specific aspects. Our primary objects of interest are joint distributions
of n coupled random variables, with each variable taking values in the discrete set
[c] = {1, . . . , c}. Although somewhat abstract, this formalization captures many aspects of
complex real-world data distributions without introducing a significant notational burden.

1.1 Contribution and Organization

In the first part of this thesis, we develop a geometric formalization and intuition for
structured prediction, focusing in particular on discrete random variables. The distribution
of a discrete variable is interpreted as a point on a geometric domain called probability
simplex. We discuss several related concepts and notations, emerging primarily from the
field of information geometry, in the preliminary section 2.1. The second preliminary
section 2.2 summarizes elements of statistical learning theory, which become relevant in
the second part of this thesis.
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Chapter 3 introduces assignment flows, dynamical systems on the product manifold of
multiple probability simplices with a natural shape relative to the underlying information
geometry. We present a first-principles approach to constructing these systems, contextu-
alizing them relative to probabilistic graphical models and replicator dynamics in game
theory. Assignment flows are a central concept in this thesis and have an intricate link to
structured prediction. Initially, they evolve a state that represents the joint distribution
of independent random variables due to the product structure of the underlying domain.
However, assignment flows also facilitate interaction between different components over
time, which implicitly encodes coupling.

Chapter 4 studies the relationship between factorizing joint distributions and general joint
distributions of possibly coupled random variables. We show that factorizing distributions
form a submanifold, which is isometrically embedded. Building on this, the main result of
Chapter 4 is that, under the constructed embedding of factorizing distributions, assignment
flows transform to replicator dynamics on the meta-simplex of general joint distributions.
We further explicitly compute the shape of interaction, called the payoff function, driving
these replicator dynamics. The results of this chapter clarify the relationship between
assignment flows and established concepts in game theory by painting them as replicator
dynamics on multiple populations. From this perspective, the proposed embedding consti-
tutes a formal reduction of multi-population to single-population replicator dynamics. We
demonstrate the use of this formal reduction, in conjunction with our newly developed
formalism, by transferring established results on the asymptotic behavior of replicator
dynamics from the single-population to the multi-population setting.

Chapter 5 builds on the geometric foundation developed in the previous chapter to pa-
rameterize large classes of joint distributions through assignment flows. The proposed
method leverages randomization to explain how the interaction between components in the
product distribution domain of assignment flows can generate coupling between random
variables. To this end, we propose two distinct flavors of randomization and two methods
of learning joint distributions. The first, described in Section 5.2, is a way to approximate
distributions with a known shape as an energy-based model. A core technical aspect of the
construction concerns differentiable approximation of model entropy. We employ a class
of assignment flows with provable convergence to discrete Dirac measures and, leveraging
this asymptotic behavior, we propose an estimator of model entropy that becomes exact
in the limit of long integration time. In Section 5.3, we use a variant of randomized
assignment flows to learn a generative model directly from data. The resulting model can
be regarded as a continuous normalizing flow and aligns naturally with dequantization,
an approach to modeling discrete data commonly used in conjunction with normalizing
flows. A further similarity to established normalizing flows is the parameterization of
payoff functions driving assignment dynamics, which we choose as a deep neural network.
The network parameters are learned such that assignment dynamics perform measure
transport on the underlying product manifold by applying a recently proposed Riemannian
generalization of flow matching. In contrast to the traditional method of maximizing
data likelihood, which minimizes relative entropy to the target distribution, flow matching
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is a simulation-free alternative with improved computational efficiency. In the setting
of discrete data, where likelihood under the model can no longer be computed directly
by an instantaneous change of variables, we develop an importance sampling approach
for computing likelihood. Experiments on image segmentation datasets demonstrate the
viability of the proposed generative model for discrete data.

Turning to the statistical part of this thesis, we propose a self-certified method for image
classification in Chapter 6. Unlike traditional methods, which evaluate the out-of-sample
performance on held-out test data, self-certified approaches use all available data to simul-
taneously learn classifiers and certify their risk on unseen data from the same distribution.
This is based on the PAC-Bayesian risk certification paradigm, which can achieve non-
vacuous high probability upper bounds on the risk of deep stochastic classifiers. Within
this framework, we construct a hypothesis class of stochastic classifiers based on linearizing
assignment flows. The proposed architecture keeps most parameters deterministic and
employs a data-dependent affine linear transformation of stochastic parameters. By this
construction, classification logits always follow a normal distribution, and we further
propose an efficient numerical method to compute respective moments. Experiments on
two image classification datasets illustrate that the proposed approach is computationally
efficient and on par with current PAC-Bayesian methods in terms of certificate tightness.

In Chapter 7, we explore the PAC-Bayesian approach further, to develop self-certified
methods for structured prediction. Unlike the simpler case of classification, independence
of data cannot be assumed in structured prediction. We argue that this justifies the
need to make assumptions about the data distribution. Consequently, we employ Knothe-
Rosenblatt rearrangement, a particular form of measure transport that exists uniquely
for a wide range of distributions. Our approach leverages the triangular structure of the
Knothe-Rosenblatt transport map to distill the coupling of random variables present in
the joint distribution of data into a Wasserstein dependency matrix. Using this matrix, we
apply modern concentration of measure theory, leading to a moment-generating function
bound. This, in turn, serves as the foundation for constructing a novel PAC-Bayesian
bound for structured prediction that accounts for generalization from a single example.

Chapter 8 concludes the thesis and points out possible directions for future work.

1.2 Background and Related Work

1.2.1 Assignment Flows
This thesis explores methods within the assignment flows paradigm. The underlying
perspective is to regard discrete probability distributions as points on a probability simplex,
conceptualized as a statistical manifold by information geometry [7, 6, 12]. Building on
these notions, [11] introduced assignment flows as dynamical systems on the product
manifold of multiple probability simplices designed to tackle image labeling problems.
Subsequent research has studied fundamental properties of assignment flows, including
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effective numerical integration [225] and asymptotic behavior [227].
In contrast to probabilistic graphical models, assignment flows are smooth processes,

which notably simplifies their integration with deep neural networks. The first step in
this direction was made by [98], who have developed an adjoint integration method that
efficiently learns the parameters driving assignment flows from data. The method can be
categorized as a neural ordinary differential equation [43], albeit carrying a specialized
structure that can help integrate prior knowledge about a problem domain. For example,
[190] devise a segmentation technique for volumetric data acquired via optical coherence
tomography. The approach is a two-stage architecture, combining a deep neural network
for extracting semantic features with an assignment flow that enforces a layer ordering
constraint relevant to the medical application being considered.

In this thesis, we use assignment flows to facilitate measure transport. The closest
related work in this regard is the uncertainty quantification method proposed by [76],
which computes the pushforward of an initial, uncertain state under linearized assignment
flow dynamics. For a comprehensive overview of assignment flows, we refer to [185].

1.2.2 Generative Modelling
The most successful generative models of discrete sequence data [35, 54] are autoregressive,
predominantly employing transformer architectures [211]. The idea of autoregressive
modelling is to divide the complexity of joint data distributions by dividing into a sequence
of next-token probability distributions, conditioned on previous context. This is well-
adapted to the structure of sequence data, including text. However, it is less natural to
model discrete image data autoregressively, because no natural ordering of tokens exists a
priori and choosing an arbitrary order leads to complex, global dependencies in a long
sequence of pixels, obfuscating the original two-dimensionality of the data in the process.
As a result, it is difficult to scale such an approach to larger images, considering the
quadratic memory and compute complexity of transformers in the context length. Very
recently, selective state space models [79] were proposed, adressing this scaling problem of
transformers, but they are still autoregressive models designed for sequence data.

For the image modalities which we focus on in this thesis, an alternative to autoregressive
modelling is modelling the generator of a dynamical system which gradually produces
samples. Intuitively, this distributes the complexity of the joint distribution over an
artificially created time axis, by breaking down the sampling process into multiple iterative
steps. If steps are taken deterministically, the respective class of models is called normalizing
flows [109, 157]. In contrast, stochastic steps are taken by diffusion models [223]. In both
cases, time can be modelled as continuous [194, 43] or discrete [193, 60, 91]. Traditionally,
normalizing flows are trained by maximizing the likelihood of data, thereby minimizing
relative entropy to the data distribution. In contrast, a popular way to train diffusion
models is score matching [195].

Recently, the line between normalizing flows and diffusion models has been blurred.
Partly, this is due to the introduction of the probability flow ODE [194], deterministic
dynamics which produce marginal probabilities matching those of the stochastic diffusion
process. In addition to computational benefits [131], this allows to see diffusion as a
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measure transport process equivalent to a continuous normalizing flow. Conversely, [125]
introduce the flow matching approach for training normalizing flows. This is more efficient
than traditional likelihood maximization, because it avoids costly simulation of sampling
trajectories and their gradients. Additionally, [125] show that a special case of their
construction leads to the probability flow ODE of [194].

In Section 5.3, we propose a generative model of discrete data built on the geometric
principles underlying assignment flows. The proposed model is a normalizing flow on
a Riemannian manifold trained by flow matching. To this best of our knowledge, this
combination was only considered elsewhere in the concurrent work of [196]. However,
both diffusion models and normalizing flows have previously been studied on Riemannian
manifolds [97, 52, 130, 137, 18, 172] and both paradigms have also previously been applied
to discrete data [205, 96, 44].

1.2.3 PAC-Bayesian Theory and Structured Prediction

PAC-Bayesian theory [189, 143, 142] has attracted significant interest in recent years, partly
due to the demonstration of non-vacuous risk certificates for deep classifiers [66, 66, 123].
While several works have explored methods to relax the underlying assumptions of bounded
loss [82, 81] and independent and identically distributed (i.i.d.) data [4], comparatively
little attention has been directed toward structured prediction. An exception is the work
[36], which offers a PAC-Bayesian perspective on the implicit loss embedding framework
[46]. For an overview of PAC-Bayesian theory we refer to [38, 80, 3].

In Chapter 7, we continue a line of research started by [127, 128, 126], which aims
to construct PAC-Bayesian risk bounds for structured prediction that account for gener-
alization from a single structured datum. Instrumental to their analysis is the stability
of inference and quantified dependence in the data distribution. The latter is expressed
in terms of ϑ-mixing coefficients, the total variation distance between data distributions
conditioned on fixed values for a subset of variables. For structured prediction with
Hamming loss, a coupling of such conditional measures can be constructed [68] such that
ϑ-mixing coefficients yield an upper-bound that allows to invoke concentration of measure
arguments [112]. The result is a bound on a moment-generating function, which the
authors employ in a subsequent PAC-Bayesian construction, achieving generalization from
a single datum.

The underlying assumption of these previous works is that data are generated by a
Markov random field (MRF). This model assumption is limiting because the assumed
Markov properties likely do not hold for many real-world data distributions. In addition,
it is challenging to work with MRFs computationally. Exact inference in MRFs is NP-
hard [214], and thus learning, which often contains inference as a subproblem, presents
significant computational roadblocks. Even once an MRF has been found that represents
data reasonably well, numerical evaluation of the PAC-Bayesian risk certificate proposed
in [126] will again be computationally complex.



1.3. BASIC NOTATION 7

1.3 Basic Notation
For vectors v, the exponential function exp(v) and logarithm log(v) apply componentwise.
The symbol ⋄ is used to denote componentwise multiplication of vectors v ⋄ w and of
matrices A ⋄ B. Both vectors and matrices will also sometimes occur in fractions v

w
, A
B

,
which denote componentwise division. Angled brackets ⟨·, ·⟩ denote the standard inner
product on Euclidean spaces and ⟨A,B⟩ = trA⊤B for matrices. Let (X ,Σ) and (X ′,Σ′) be
measurable spaces and let µ, ν be measures on X . Then µ≪ ν denotes absolute continuity
of µ with respect to ν. If A ∈ Σ, this means that ν(A) = 0 implies µ(A) = 0. In this case,
the relative entropy of µ and ν

KL(µ, ν) =
∫

X
µ(x) log dµ

dν (x)dx (1.1)

is well defined due to existence of the Radon-Nikodým derivative dµ
dν , i.e. a density of

µ relative to ν, which is unique up to sets of measure zero. For a measurable function
f : X → X ′, the pushforward measure (on X ′) of µ under f is denoted by f♯µ. For A′ ∈ Σ′,
this is defined by (f♯µ)(A′) = µ(f−1(A′)). For vectors v, w or matrices A, B of suitable
dimension, we denote stacking into block matrices with square brackets[

A B
v⊤ w⊤

]
. (1.2)
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2 Preliminaries

Throughout this thesis, we assume the reader is familiar with established notation and
commonly-used concepts of differential geometry, including Riemannian geometry. For
general reference, we refer to [120, 103].

2.1 Probability Simplex

For any measure space (X ,Σ, λ), let P(X ,Σ, λ) denote the set of probability distributions
with domain X and a density with respect to the base measure λ. In the following, we will
use the shorthand P(X ) = P(X ,Σ, λ) if the σ-algebra Σ and base measure λ are clear
from context. In particular, if X is a Euclidean space, we take Σ as the Borel σ-algebra
and λ as the Lebesgue measure. If X is a finite set, we take Σ = 2X as the power set and
λ as the counting measure. Further, we define

P(X ) = {p ∈ P(X ) : λ(A) > 0 ⇒ p(A) > 0 ∀A ∈ Σ} (2.1)

as the subset of distributions with full support on X .
A large part of this thesis evolves around random variables which take values in a

discrete set [c] = {1, · · · , c} and are governed by a probability distribution p ∈ P([c]).
These discrete distributions can be written as probability vectors listing the c probabilities
pi of singletons {i} ⊆ [c], i ∈ [c] under p. The set of these probability vectors is called
probability simplex

∆c = {p ∈ Rc : p ≥ 0, ⟨p, 1c⟩ = 1} ≡ P([c]). (2.2)

If ∆c is regarded as a subset of its affine hull aff(∆c) = {x ∈ Rc : ⟨x, 1c⟩ = 1}, the relative
interior rint ∆c of ∆c is defined as the interior of ∆c with respect to the subspace topology
of aff(∆c) ⊆ Rc. This set contains discrete distributions with full support

Sc = rint ∆c = {p ∈ Rc : p > 0, ⟨p, 1c⟩ = 1} ≡ P([c]). (2.3)

Information geometry is the study of sets like Sc as statistical manifolds. We will now
successively equip Sc with structure, working up to this notion. For reference on information
geometry, see [7, 12].

9
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Lemma 2.1 (Sc is Topological Manifold) Sc equipped with the subspace topology in
aff(∆c) is a topological manifold.

Proof. The affine hull aff(∆c) is a linear subspace of Rc which is homeomorphic to Rc−1.
Sc is an open subset of aff(∆c) and thus, second-countability of its subspace topology
and the Hausdorff property are inherited from Rc−1. Through the same homeomorphism
between aff(∆c) and Rc−1 restricted to Sc, every point in Sc also has a neighborhood which
is homeomorphic to an open subset of Rc−1.

There are two global charts for Sc which we will frequently return to in the following
chapters.
Definition 2.2 (e-coordinates) Let φe : Sc → Rc−1 be the map

p 7→ φe(p) =
(

log p1

pc
, . . . , log pc−1

pc

)⊤
(2.4)

with inverse φ−1
e : Rc−1 → Sc defined by

θ 7→ φ−1
e (θ) = exp

((
θ
0

)
− ψ(θ)1c

)
(2.5a)

ψ(θ) = log(1 + ⟨exp(θ), 1c−1⟩). (2.5b)

ψ is called log-partition function, φe is called exponential coordinate chart, e-coordinate
chart for short. The coordinates θ ∈ Rc−1 are called exponential coordinates or e-
coordinates.

The right hand side of (2.5a) is the softmax function applied to (θ⊤, 0)⊤. The motivation
behind the term exponential coordinates is that Sc can be seen as an exponential family of
distributions. This means that every p ∈ Sc has a unique representation of the form (2.5).
In this context, θ are called natural parameters.
Definition 2.3 (m-coordinates) Let Dm = {µ ∈ Rc−1 : µ > 0, ⟨µ, 1c−1⟩ < 1} and define
φm : Sc → Dm by

p 7→ φm(p) = (p1, . . . , pc−1) (2.6)

with inverse φ−1
m : Dm → Sc given as

µ 7→ φ−1
m (µ) = (µ⊤, 1− ⟨1c−1, µ⟩)⊤. (2.7)

The map φm is called mixture-coordinate chart, m-coordinate chart for short. The coordi-
nates µ ∈ Dm are called mixture-coordinates or m-coordinates.

The term mixture coordinates is motivated by the fact that Sc is a mixture family of
distributions generated by the extremal points δ{1}, · · · , δ{c} corresponding to unit vectors
in Rc. This means that every point in Sc can be written uniquely as a mixture

Sc ∋ p =
∑
j∈[c]

pjδ{j}, pj > 0,
∑
j∈[c]

pj = 1. (2.8)
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In addition, mixtures of distributions are convex combinations in m-coordinates.
The collection {φe, φm} defines a smooth atlas for Sc, because both transition maps

φe ◦φ−1
m and φm ◦φ−1

e are smooth as functions between open subsets of Rc−1. The smooth
structure determined by this atlas turns Sc into a smooth manifold.

In m-coordinates, a basis for the tangent space at any point p = φ−1
m (µ) ∈ Sc is defined

by {
∂

∂µi

∣∣∣
p

}
i∈[c−1]

,
∂

∂µi
φm(p)j = δji , i, j ∈ [c− 1]. (2.9)

The dual basis {dµi|p}i∈[c−1] of the cotangent space at p satisfies

dµi|p
( ∂

∂µj

∣∣∣
p

)
= δij. (2.10)

In the following chapters, we will usually work with expressions in the ambient space Rc. To
clarify this, regard φ−1

m as a map Rc−1 → Rc and consider the smooth curve t 7→ φ−1
m (µ+ tξ)

for some µ, ξ ∈ Rc−1. Define the tangent vector

v = d

dt
φ−1
m (µ+ tξ)|t=0 = (ξ⊤,−⟨ξ, 1c−1⟩)⊤ ∈ TpRc ≡ Rc (2.11)

along this curve at p = φ−1
m (µ). (2.11) associates every ξ ∈ Rc−1 with a unique v ∈ TpRc

subject to ⟨v, 1c⟩ = 0. This allows to identify the linear subspace

T0Sc = {v ∈ Rc : ⟨v, 1c⟩ = 0} (2.12)

of Rc ≡ TpRc with the tangent space of Sc at p. More precisely, v ∈ T0Sc is identified with
the tangent vector

v ≡
∑

i∈[c−1]
vi

∂

∂µi

∣∣∣
p
. (2.13)

Using this identification, Sc has the trivial tangent bundle

TSc ∼= Sc × T0Sc. (2.14)

We turn to the construction of a Riemannian metric on Sc. Define the log-likelihood vectors

ℓ(µ) = logφ−1
m (µ) ∈ Rc, µ ∈ Dm (2.15)

and the score vectors

∂jℓ(µ) = ∂

∂µj
ℓ(µ), µ ∈ Dm, j ∈ [c− 1]. (2.16)

The Fisher information matrix in m-coordinates is the (c− 1)× (c− 1) matrix with entries

gij = Eφ−1
m (µ)[∂iℓ(µ)∂jℓ(µ)] =

∑
l∈[c]

φ−1
m (µ)l∂iℓ(µ)l∂jℓ(µ)l (2.17a)

= δij
1
µi

+ 1
1− ⟨µ, 1c−1⟩

, i, j ∈ [c− 1]. (2.17b)



12 CHAPTER 2. PRELIMINARIES

We can use this matrix to define a symmetric covariant tensor on Sc, called Fisher-Rao
metric tensor gp : T0Sc × T0Sc → R which acts on a pair of tangent vectors at p by

gp(u, v)
(2.13)=

∑
(i,j)∈[c−1]2

gijdµ
i
( ∑
l∈[c−1]

ul
∂

∂µl

∣∣∣
p

)
dµj

( ∑
l∈[c−1]

vl
∂

∂µl

∣∣∣
p

)
(2.18a)

(2.10)=
∑

(i,j)∈[c−1]2
giju

ivj (2.18b)

(2.17)=
∑

(i,j)∈[c−1]2

(
δij

1
µi

+ 1
1− ⟨µ, 1c−1⟩

)
uivj (2.18c)

= ucvc

1− ⟨µ, 1c−1⟩
+

∑
i∈[c−1]

uivi

µi
(2.18d)

=
〈u
p
, v
〉
, p = φ−1

m (µ). (2.18e)

In (2.18d), we have used that, due to the linear constraint in (2.12), the last entry of v
(resp. u) can be written as

vc = −
∑

i∈[c−1]
vi. (2.19)

Because the Fisher information matrix is symmetric and positive definite, the action on
a pair of tangent vectors (2.18) actually defines a Riemannian metric, called Fisher-Rao
metric on T0Sc.
Definition 2.4 (Fisher-Rao Metric) On the tangent space T0Sc at every p ∈ Sc, the
Fisher-Rao metric is defined by the inner product

⟨u, v⟩p = gp(u, v) =
〈
u

p
, v
〉
, u, v ∈ T0Sc. (2.20)

Note, that the Fisher-Rao metric has a coordinate-independent representation as

⟨u, v⟩p = Ep[(uℓ)(vℓ)] (2.21)

where the action of tangent vectors on ℓ is the directional derivative of each real-valued
log-likelihood component function.

Let {e1, . . . , ec} denote the standard basis of Rc and denote the tangent coordinate
basis of TpRc by {

∂

∂x1 , . . . ,
∂

∂xc

}
. (2.22)

Then {e1, . . . , ec−1} is a basis of the linear subspace aff(∆c) and{
∂

∂x1 , . . . ,
∂

∂xc−1

}
(2.23)

can be identified with a basis of Tp aff(∆c) for any p ∈ aff(∆c). Since Sc is an open
submanifold of aff(∆c), the differential of the inclusion map dı : T0Sc → Tp aff(∆c) is an
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isomorphism at any p ∈ Sc. This identifies (2.23) with a basis of T0Sc. In light of (2.6),
components in this basis coincide with components in m-coordinates.

Let f : Rc → R be a smooth function with restriction f̃ to Sc. Denote the gradient of
f as the covector field

df(p) =
∑
i∈[c]

∂if(p)dxi|p (2.24)

and collect the components of (2.24) in the vector

∂f(p) = (∂1f(p), . . . , ∂cf(p)). (2.25)

The action of (2.24) on a tangent vector v ∈ TpRc which lies in the subspace T0Sc reads

df(p)[v](2.13)=
∑
i∈[c]

∂if(p)dxi|p
( ∑
j∈[c]

vj
∂

∂xj

∣∣∣
p

)
=
∑
i∈[c]

∂if(p)vi (2.26a)

(2.19)=
∑

i∈[c−1]
∂if(p)vi − ∂cf(p)

∑
i∈[c−1]

vi (2.26b)

=
∑

i∈[c−1]
(∂if(p)− ∂cf(p))vi. (2.26c)

Because v is also tangent to Sc, we have df̃(p)[v] = df(p)[v] for any p ∈ Sc. By (2.18b),
the inner product (2.20) with a second tangent vector u ∈ T0Sc reads

⟨u, v⟩p =
∑

(i,j)∈[c−1]2
giju

ivj (2.27)

for components ui, vj , i, j ∈ [c−1] in m-coordinates. As outlined above, these components
of v coincide with the ones in (2.26). The Riemannian gradient of f̃ at p is defined as
the vector u such that df̃(p)[v] matches (2.27) for every v ∈ T0Sc. Comparing (2.26) with
(2.27), the components of u in m-coordinates are found by solving a full-rank linear system.
Inversion of the Fisher information matrix (2.17) gives

g−1 = Diag(µ)− µµ⊤ (2.28)

and we consequently find the Riemannian gradient components (i ∈ [c− 1])

ui =
∑

j∈[c−1]
g−1
ij (∂jf(p)− ∂cf(p)) (2.29a)

=
∑

j∈[c−1]
(δijµi − µiµj)(∂jf(p)− ∂cf(p)) (2.29b)

= µi(∂if(p)− ∂cf(p))− µi
∑

j∈[c−1]
µj(∂jf(p)− ∂cf(p)) (2.29c)

= µi(∂if(p)− ∂cf(p))− µi
∑

j∈[c−1]
µj∂jf(p) + µi∂cf(p)(1− pc) (2.29d)

= µi∂if(p)− µi⟨∂f(p), p⟩. (2.29e)
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Since

uc = −
∑

i∈[c−1]
ui =

∑
i∈[c−1]

µi⟨∂f(p), p⟩ − µi∂if(p) (2.30a)

= ⟨∂f(p), p⟩(1− pc)−
∑

i∈[c−1]
µi∂if(p) (2.30b)

= ⟨∂f(p), p⟩(1− pc)− (⟨∂f(p), p⟩ − pc∂cf(p)) (2.30c)
= pc∂cf(p)− pc⟨∂f(p), p⟩ (2.30d)

we can compute u ∈ T0Sc in the simple vectorized fashion

u = p ⋄ ∂f(p)− ⟨∂f(p), p⟩∂f(p). (2.31)

The expression (2.31) of Riemannian gradients in terms of an ambient function gradient
occurs frequently in the following chapters.
Definition 2.5 (Replicator Operator) For any p ∈ Sc ⊆ Rc, the linear operator
Rp : Rc → T0Sc defined by

Rp[v] = (Diag(p)− pp⊤)v = p ⋄ v − ⟨p, v⟩p, v ∈ Rc (2.32)

is called replicator operator.
In Section 3.2, the replicator operator will be derived in an alternate way, based on

principled modelling of population dynamics. Here, we collect some basic properties. Let
Π0 : Rc → T0Sc denote the projection

Π0v = v − 1
c
⟨v, 1c⟩1c. (2.33)

One easily verifies that

Rp ◦ Π0 = Π0 ◦Rp = Rp, ∀p ∈ Sc. (2.34)

Thus, (2.31) can equivalently be seen as ∂f(p) being projected to T0Sc before applying Rp.
(2.34) also implies that the image of the replicator operator is indeed a subset of T0Sc.
Lemma 2.6 (Inverse of Replicator) For any p ∈ Sc, the replicator operator Rp restricted
to T0Sc is a bijection on T0Sc with inverse defined by

R−1
p [u] = Π0

u

p
. (2.35)

Proof. Let v ∈ T0Sc be in the kernel of Rp. Then 0 = Rp[v] = p ⋄ v − ⟨p, v⟩p implies
v = ⟨p, v⟩1c and, due to v ∈ T0Sc, this gives

v = Π0v = ⟨p, v⟩Π01c = 0 ∈ T0Sc. (2.36)

We directly show the shape of the inverse replicator (2.35). Let v ∈ T0Sc, then

(R−1
p ◦Rp)[v] = Π0

1c
p
⋄Rp[v] = Π0(v − ⟨p, v⟩1c) = Π0v = v. (2.37)
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A central construction in information geometry evolves around two affine connections
on Sc, called m-connection ∇(m) and e-connection ∇(e). At p ∈ Sc with m-coordinates
φm(p) = µ, these connections are defined by the Christoffel symbols

⟨∇(e)
∂i
∂j, ∂k⟩g = Γ(e)

ij,k,
(
Γ(e)
ij,k

)
µ

= Ep
[
∂i∂jℓµ∂kℓµ

]
(2.38a)

⟨∇(m)
∂i
∂j, ∂k⟩g = Γ(m)

ij,k ,
(
Γ(m)
ij,k

)
µ

= Ep
[(
∂i∂jℓµ + ∂iℓµ∂jℓmu

)
∂kℓµ

]
(2.38b)

for i, j, k ∈ [c − 1] using the shorthand ∂i = ∂
∂µi . These connections are constructed

such that m-coordinates and e-coordinates are affine coordinates for m-connection and
e-connection respectively [7, Theorem 2.4]. We call the respective geodesic curves m-
geodesics and e-geodesics. In light of (2.7), m-geodesics t 7→ γm(t) coincide with affine
curves in Rc which intersect Sc on an open subset. In particular, these curves are not
defined in Sc for all times t > 0. In contrast, e-geodesics are defined in Sc for all times.
Lemma 2.7 (e-Geodesic Curves) Let t 7→ γe(t) be the e-geodesic curve with γ(0) = p ∈
Sc and γ̇e(0) = v ∈ T0Sc. Then

γ(1) =
p ⋄ exp v

p〈
p, exp v

p

〉 ∈ Sc. (2.39)

Proof. Let µ = φm(p) and v = (ξ⊤,−⟨ξ, 1c−1⟩)⊤ for ξ ∈ TµRc−1 ≡ Rc−1. We first transform
µ into e-coordinates θ0 and ξ into a tangent vector η in the e-coordinate system. A straight-
forward computation shows

θ0 = (φe ◦ φ−1
m )(µ) =

(
log µ1

pc
, . . . ,

µc−1

pc

)
(2.40a)

η = d(φe ◦ φ−1
m )(µ)[ξ] = ξ

µ
− vc
pc

1c−1. (2.40b)

Let θ1 = θ0 + η such that γ(1) = φ−1
e (θ1). The partition function reads

exp(ψ(θ1)) = 1 + ⟨exp θ1, 1c−1⟩ = 1 +
〈

exp
( ξ
µ
− vc
pc

1c−1
)
,
µ

pc

〉
(2.41a)

= 1
pc

exp
(
− vc
pc

)(
pc exp

(vc
pc

)
+
〈
µ, exp ξ

µ

〉)
(2.41b)

= 1
pc

exp
(
− vc
pc

)〈
p, exp v

p

〉
. (2.41c)

Using (2.5) and (2.41), we find the first c− 1 components of γ(1) as

exp(−ψ(θ1)) exp(θ1) =
pc exp

(
vc

pc

)
〈
p, exp v

p

〉 1
pc
µ ⋄ exp

( ξ
µ
− vc
pc

1c−1
)

=
µ ⋄ exp

(
ξ
µ

)
〈
p, exp v

p

〉 (2.42)

and the last component as

exp(−ψ(θ1)) =
pc exp

(
vc

pc

)
〈
p, exp v

p

〉 . (2.43)
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In particular, for every v ∈ T0Sc and every p ∈ Sc, the endpoint γe(1) is a well-defined
point in Sc. Lemma 2.7 specifies the exponential map relative to the e-connection as

Expp : T0Sc → Sc, v 7→ Expp =
p ⋄ exp v

p〈
p, exp v

p

〉 . (2.44)

The global existence of e-geodesic curves is a useful property with regard to numerical
implementation of algorithms working with state in Sc. In this context, we will frequently
use the following map.
Definition 2.8 (Lifting Map) For p ∈ Sc and v ∈ T0Sc, the lifting map is defined by

expp : T0Sc → Sc, expp(v) = (Expp ◦Rp)(v) = p ⋄ exp(v)
⟨p, exp(v)⟩ . (2.45)

We study basic properties of the lifting map, which will be used repeatedly in the
following chapters.
Lemma 2.9 (Differential of the Lifting Map) For p ∈ Sc and v ∈ T0Sc, the lifting
map has differential

d expp(v) = Rexpp(v). (2.46)

Proof. Let γ : R→ T0Sc be a smooth curve with γ(0) = v and γ̇(0) = u. Then

d
(
expp(v)

)
[u] = d

dt
(

expp(γ(t))
)
|t=0 = d

dt

(
p ⋄ exp(γ(t))
⟨p, exp(γ(t))

)
|t=0 (2.47a)

= p ⋄ exp(v)
⟨p, exp(v)⟩ ⋄ u−

p ⋄ exp(v) ⋄ (⟨p ⋄ exp(v), u⟩1c)
⟨p, exp(v)⟩2 (2.47b)

= expp(v) ⋄ u− expp(v) ⋄
(⟨p ⋄ exp(v), u⟩
⟨p, exp(v)⟩ 1c

)
(2.47c)

= expp(v) ⋄ u− expp(v) ⋄ (⟨expp(v), u⟩1c) (2.47d)
= Rexpp(v)[u]. (2.47e)

Lemma 2.10 (Action Property) For p ∈ Sc and u, v ∈ T0Sc, the lifting map has the
action property

expp(u+ v) = expexpp(u)(v), p ∈ Sc, u, v ∈ T0Sc. (2.48)

Proof. We directly compute

expp(u+ v) = (p ⋄ exp(u)) ⋄ exp(v)
⟨p ⋄ exp(u), exp(v)⟩ =

p⋄exp(u)
⟨p,exp(u)⟩ ⋄ exp(v)〈
p⋄exp(u)

⟨p,exp(u)⟩ , exp(v)
〉 = expexpp(u)(v). (2.49)
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As a function Rc → T0Sc, the lifting map has an invariance under vectors which are
orthogonal to T0Sc. For any v ∈ T0Sc, p ∈ Sc and any α ∈ R, we find

expp(v + α1c) = p ⋄ exp v ⋄ (exp(α)1c)
⟨p, exp v ⋄ (exp(α)1c)⟩

= exp(α)(p ⋄ exp v)
exp(α)⟨p, exp v⟩ = expp(v). (2.50)

In particular, comparison with (2.33) shows

expp = expp ◦Π0, (2.51)

which allows to extend the domain of expp to the entirety of Rc. (2.50) is a useful property
for numerical implementation, because it allows to shift all entries of v such that the
largest is zero, avoiding overflow when evaluating the exponential function. Another useful
property of the lifting map for implementation purposes is its relation to the softmax
function

softmax : Rc → Sc, v 7→ softmax(v) = exp(v)
⟨1c, exp(v)⟩ (2.52)

with numerically stable implementation available in many software libraries. The lifting
map can be written in terms of the softmax function as

expp(v) = p ⋄ exp(v)
⟨1c, p ⋄ exp(v)⟩ = exp(v + log p)

⟨1c, exp(v + log p)⟩ = softmax(v + log p). (2.53)

A simple special case is lifting at the barycenter

1S = 1
c
1c ∈ Sc (2.54)

of Sc which simply reads

exp1S
(v) =

1
c
1c ⋄ exp(v)

1
c
⟨1c, exp(v)⟩ = softmax(v). (2.55a)

The e-exponential map lifts tangent vectors v ∈ T0Sc at p to simplex points Expp(v).
From (2.44), it is clear that Expp(v) is well-defined and lies in Sc for every v ∈ T0Sc. In
addition, Expp : T0Sc → Sc is bijective for every p ∈ Sc with inverse

Exp−1
p : S → T0Sc, p̃ 7→ Exp−1

p (p̃) = Rp log p̃
p
, (2.56)

which we readily verify by

Rp log 1c
p
⋄ Expp(v) = Rp

(
v

p
− log

〈
p, exp v

p

〉
1c
)

(2.34)= Rp
v

p
= v − ⟨1c, v⟩︸ ︷︷ ︸

=0

1c (2.57)

for every v ∈ T0Sc. Since the replicator operator is bijective on T0Sc by Lemma 2.6, the
lifting map expp = Expp ◦Rp is also a bijection and (2.56) allows to easily compute its
inverse

exp−1
p : Sc → T0Sc, p̃ 7→ exp−1

p (p̃) = Π0 log p̃
p

(2.58)
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due to
exp−1

p (p̃) = (R−1
p ◦ Exp−1

p )(p̃) (2.35),(2.56)= Π0
1c
p
Rp log p̃

p
= Π0 log p̃

p
(2.59)

In light of (2.55), this also shows that the inverse of the softmax function on T0Sc reads

softmax−1 : Sc → T0Sc, p̃ 7→ softmax−1(p̃) = Π0 log p̃. (2.60)

2.2 Statistical Learning Theory and Deep Learning

2.2.1 Risk Certification
In the second part of this thesis, we will work on statistical aspects of structured predic-
tion. The central goal is developing a statistical learning theory which assesses model
generalization through tight and computable risk certificates. The following introduction
to the topic is based mainly on [3]. Let ℓ : Y × Y → R be a loss function which compares
elements of a label space Y . We will focus on classification where Y = [c] is a discrete set
of classes and the natural loss function is 01 loss

ℓ01(y1, y2) =
0, if y1 = y2

1, else.
(2.61)

Let X be a metric space and suppose we have access to a sample of m independently
drawn data from an unknown distribution µ on X × Y

Z = ((X1, Y1), . . . , (Xm, Ym)) ∼ µm. (2.62)

For a predictor ϕ : X → Y , mean loss over the sample is called the empirical risk of ϕ

Rm(ϕ) = 1
m

∑
i∈[m]

ℓ(ϕ(Xi), Yi). (2.63)

In classification, the empirical risk with respect to 01 loss is the error rate of ϕ on the
sample. Empirical risk is a tractable surrogate for the intractable risk of ϕ

R(ϕ) = E(X,Y )∼µ[ℓ(ϕ(X), Y )] (2.64)

which measures the performance of ϕ on any data drawn from the unknown distribution
µ, including out-of-sample data. Statistical learning is the task of finding predictors with
low risk. Since the actual model risk is intractable, this is naturally framed as a predictor
with low empirical risk which also generalizes well, i.e. has small generalization gap

R(ϕ)−Rm(ϕ). (2.65)

A first observation to this end is that risk is the expected value of empirical risk under the
draw of the sample

EZ∼µmRm(ϕ) = 1
m

∑
i∈[m]

E(Xi,Yi)∼µℓ(ϕ(Xi), Yi) = 1
m

∑
i∈[m]
R(ϕ) = R(ϕ). (2.66)
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This perspective allows us to view generalization in terms of empirical risk concentrating
on its mean when more independent data are collected. Loosely speaking, the underlying
concentration of measure phenomenon can be summarized as

Stable functions of a large number of independent random variables concentrate
on their mean.

A simple case of concentration of measure is the law of large numbers. If many independent
random variables are given, all following the same probability distribution, their sample
mean converges to the expected value. Under additional stability assumptions, concen-
tration inequalities can make statements about the rate of convergence by bounding the
probability of deviation from the mean. A prominent example is Hoeffding’s inequality.
Theorem 2.11 (Hoeffding’s inequality [93]) Let U1, . . . , Um be independent random
variables, each almost surely taking values in [a, b]. For any τ > 0 it holds

E
[

exp
( τ
m

∑
i∈[m]

Ui − E[Ui]
)]
≤ exp

(
τ 2(b− a)2

8m

)
(2.67)

as well as
P
( 1
m

∑
i∈[m]

Ui − E[Ui] ≥ τ
)
≤ exp

(
− 2τ 2m

(b− a)2

)
. (2.68)

Returning to the question of generalization, assume that the loss ℓ is bounded, i.e.
ℓ ∈ [0, C] for some constant C. This is naturally the case in classification because
ℓ01 ∈ [0, 1]. Define the independent random variables

Ui = R(ϕ)− ℓ(ϕ(Xi), Yi), i ∈ [m] (2.69)

with distribution µ̃ and mean 0. Each Ui takes values in the interval [R(ϕ) − C,R(ϕ)].
Hoeffding’s inequality (2.68) thus gives

PZ∼µm

(
R(ϕ)−Rm(ϕ) > τ

)
= PZ∼µm

(
R(ϕ)− 1

m

∑
i∈[m]

ℓ(ϕ(Xi), Yi) > τ
)

(2.70a)

= PZ∼µm

( 1
m

∑
i∈[m]
R(ϕ)− ℓ(ϕ(Xi), Yi) > τ

)
(2.70b)

= PU∼µ̃m

( 1
m

∑
i∈[m]

Ui > τ
)

(2.70c)

≤ exp
(
− 2τ 2m

C2

)
(2.70d)

To estimate the generalization gap, we can further re-write (2.70) by fixing an error
probability

δ = exp
(
− 2mτ 2

C2

)
(2.71)
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instead of the margin τ , which results in

R(ϕ) ≤ Rm(ϕ) + C

√
log 1

δ

2m (2.72)

with probability at least 1 − δ over the draw of the sample. At this point, we have
achieved a bound on the true, intractable risk R(ϕ), which is easily computable, holds
with arbitrarily high probability, and tightens with rate O(

√
m) as more data are collected.

There were only two assumptions made

• boundedness of the loss function and

• independence of the sample.

In particular, we made no assumption on the distribution of data µ and we did not require
differentiability of the loss function. The biggest problem with this bound is that it is only
valid for a single predictor ϕ, fixed before observing the data Z. At the core of machine
learning is the use of data to find a good predictor, for example through empirical risk
minimization. However, since ϕ needs to be fixed before observing the data, (2.72) does not
apply to predictors which are functions of the data. To illustrate this crucial point further,
consider again the random variables Ui = R(ϕ)− ℓ(ϕ(Xi), Yi) in (2.69) and suppose

ϕ = ϕERM = arg min
ϕ∈H
Rm(ϕ) (2.73)

is the empirical risk minimizer. The conditional distribution of U2 given any fixed value of
U1 = u is no longer the marginal distribution of U2. Changing the condition to U1 = u′ ̸= u
by changing the corresponding value of Z1 = (X1, Y1) also changes ϕERM which in turn
changes the distribution of U2. Thus, the variables U1 and U2 are not independent because
ϕERM is a function of the data. One way to tackle this problem is through a careful study
of the resulting dependency. This is pursued within the hypothesis stability framework [55,
105, 33].

Here, we focus on a different established approach, leveraging uniform convergence.
Define a hypothesis class H of functions ϕp : X → Y parameterized by p ∈ Θ. We will
identify the hypothesis class H with the parameter space Θ through this parameterization
and use the symbols ϕp and p interchangeably to denote hypotheses, i.e. R(ϕp) = R(p).
If we can expand the bound (2.70) to hold simultaneously for all hypotheses in H, this
allows to bound the generalization gap of ϕ̂ selected as a function of the data because all
ϕ̂ ∈ H satisfy

R(ϕ̂)−Rm(ϕ̂) ≤ sup
ϕ∈H
R(ϕ)−Rm(ϕ). (2.74)

This idea of uniform bounds over the hypothesis class is at the core of multiple distinct
approaches to statistical learning theory. In the simplest case, H only contains a finite
number M of hypotheses and (2.70) can be made uniform by a union bound.
Lemma 2.12 (Union bound) Given a finite number of random variables U1, . . . , UM , it
holds

P
(

sup
i∈[M ]

Ui > τ
)

= P
( ⋃
i∈[M ]
{Ui > τ}

)
≤

∑
i∈[M ]

P(Ui > τ). (2.75)
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Returning to (2.70), Lemma 2.12 implies

PZ∼µm

(
sup
ϕ∈H
R(ϕ)−Rm(ϕ) > τ

)
= PZ∼µm

( ⋃
ϕ∈H

{
R(ϕ)−Rm(ϕ) > τ

})
(2.76a)

≤
∑
ϕ∈H

PZ∼µm

(
R(ϕ)−Rm(ϕ) > τ

)
(2.76b)

≤M exp
(
− 2τ 2m

C2

)
(2.76c)

which can be viewed as the statement

sup
ϕ∈H
R(ϕ)−Rm(ϕ) ≤ C

√
log M

δ

2m (2.77)

with probability at least 1 − δ over the draw of the sample, analogous to (2.72). As is
apparent from (2.77), this approach does not work for infinite hypothesis classes. However,
there are different complexity measures for the hypothesis class H which induce uniform
bounds over H. A prominent one is Rademacher complexity relative to the sample Z ∼ µm

R(H, Z) = Eσ∼U({−1,1})m

[
sup
g∈H

1
m

∑
i∈[m]

σiϕ(Xi)
]

Zi = (Xi, Yi). (2.78)

The supremum on the right will be large if H contains a function which separates the
data points Xi according to the binary labeling σ ∈ {−1, 1}m. Rademacher complexity
thus measures the capacity of H to separate the data Xi in expectation over random
binary labeling. If Rademacher complexity is low, but empirical risk minimization still
finds a hypothesis ϕerm ∈ H with low empirical risk, this can be seen as an indication
that the hypothesis class is well-aligned with the data distribution at hand. For loss
functions taking values in the bounded interval [0, C], [188, Theorem 26.5] shows that
with probability at least 1− δ it holds

sup
ϕ∈H
R(ϕ)−Rm(ϕ) ≤ 2R(ℓ ◦ H, Z) + 4C

√
2 log 4

δ

m
. (2.79)

This approach can deal with infinite hypothesis classes and appears to give clear guidance
for learning. If we find a hypothesis class with low Rademacher complexity which contains
elements that fit the training data well, (2.79) guarantees generalization. Accordingly,
by identifying properties of a model which lead to small Rademacher complexity, we
have a principled way of defining effective regularizers. However, with regard to deep
learning, [230, 229] have argued that this perspective can not give a complete picture
of generalization. They compare the behavior of training convolutional neural networks
for image classification between the original dataset and a randomly re-labeled copy of
the data. Without any correlation between data and labels, generalization is impossible.
However, deep networks trained with stochastic gradient descent (SGD) are still able to
achieve vanishing training error, i.e. fit the training data perfectly. Since Rademacher
complexity measures the ability of a model class to fit to random data labelings, this
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observation renders bounds like (2.79) vacuous in deep learning. Further, [230, 229] have
found that (over-)fitting to randomly labeled data does not lead to significant difficulties
in the training process. This indicates that reducing the hypothesis class H in (2.79)
to only those models which can be learned via SGD still does not suffice to achieve a
non-vacuous bound. Analogous arguments hold for related complexity measures such as
Vapnik-Chervonenkis (VC) dimension [210].

2.2.2 PAC-Bayes
The probably approximately correct Bayesian construction, PAC-Bayes for short, is an
alternative way of avoiding the union bound in (2.76). Instead of individual hypotheses
ϕ ∈ H, the PAC-Bayesian construction studies the generalization of stochastic classifiers,
called PAC-Bayes posteriors ρ ∈ P(H). In place of a complexity measure for the hypothesis
space, like VC dimension or Rademacher complexity, the PAC-Bayesian construction
involves the relative entropy KL(ρ, π) between the PAC-Bayes posterior and a reference
measure π ∈ P(H), called PAC-Bayes prior. Although ρ will be an update of π, informed
by observing additional data, PAC-Bayes prior and posterior are not to be confused with
Bayesian prior and posterior. In particular, π and ρ are not connected via a likelihood.
For brevity, we will sometimes refer to π and ρ as just prior and posterior in the following.
The task of PAC-Bayesian risk certification is to bound the expected risk Ep∼ρ[R(p)] of
the posterior. Similar to the above constructions, PAC-Bayesian bounds are built on
concentration of measure results like Hoeffding’s inequality (Theorem 2.11). Other core
ingredients are presented next.

Lemma 2.13 (Markov inequality) For any nonnegative random variable U and any
a > 0 it holds

P (U ≥ a) ≤ E[U ]
a

. (2.80)

Lemma 2.14 (Chernoff bound) For any random variable U and a ∈ R, t > 0 it holds

P (U > a) = P (etU > eta) ≤ e−taE[etU ]. (2.81)

Lemma 2.15 (Donsker and Varadhan’s variational formula [63]) For any measurable
and bounded function h : H → R and any distribution π ∈ P(H), it holds

log Ep∼π[eh(p)] = sup
ρ∈P(p)

[Ep∼ρ[h(p)]−KL(ρ, π)] (2.82)

and the supremum is attained for the Gibbs measure ρ∗ with density

dρ∗

dπ (p) = eh(p)

Eψ∼π[eh(ψ)] . (2.83)

With these preparations, we now recite a PAC-Bayesian theorem of [39] alongside the
proof given in [3].
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Theorem 2.16 (PAC-Bayesian Bound of [39]) Suppose a sample Z = {(Xi, Yi)}i∈[m]
of m independently drawn data and a PAC-Bayesian prior π ∈ P(H) independent of the
sample are given. For any λ > 0, δ ∈ (0, 1) and loss function taking values in [0, C], it
holds simultaneously for all PAC-Bayesian posteriors ρ ∈ P(H)

Ep∼ρ[R(p)] ≤ Ep∼ρ[Rm(p)] + λC2

8m + 1
λ

(
KL(ρ, π) + log 1

δ

)
(2.84)

with probability at least 1− δ over the draw of the sample.

Proof. For fixed hypothesis ϕp ∈ H, consider the random variables Ui = E[ℓ(ϕp(Xi), Yi)]−
ℓ(ϕp(Xi), Yi), i ∈ [m]. These variables are viewed as random, by seeing Zi = (Xi, Yi) as a
random variable following the data distribution. Because draws were independent, the
random variables {Ui}i∈[m] are also independent and we have

1
m

∑
i∈[m]

Ui = R(p)−Rm(p). (2.85)

Since we assumed that the loss function takes values in [0, C], the first variant (2.67) of
Hoeffding’s inequality gives

EZ
[

exp
(
λ[R(p)−Rm(p)]

)]
≤ exp

(
λ2C2

8m

)
(2.86)

for any λ > 0. Taking the expectation of (2.86) with respect to p drawn from the
PAC-Bayes prior distribution and using Fubini’s theorem gives

EZEp∼π
[

exp
(
λ[R(p)−Rm(p)]

)]
≤ exp

(
λ2C2

8m

)
. (2.87)

We now replace the inner expectation by using Donsker and Varadhan’s variational formula
(Lemma 2.15)

EZ
[

exp
(

sup
ρ∈P(H)

λEp∼ρ[R(p)−Rm(p)]−KL(ρ, π)
)]
≤ exp

(
λ2C2

8m

)
. (2.88)

Define the random variable

U = sup
ρ∈P(H)

λEp∼ρ[R(p)−Rm(p)]−KL(ρ, π)− λ2C2

8m . (2.89)

Then (2.88) implies EZ [exp(U)] ≤ 1 and Lemma 2.14 consequently gives

PZ(U > a) ≤ e−aEZ [exp(U)] ≤ e−a (2.90)

for any a ∈ R. If we make the choice e−a = δ, (2.90) implies U ≤ log 1
δ

with probability at
least 1− δ under the draw of the sample. Expanding the definition of U , the statement
U ≤ log 1

δ
becomes

sup
ρ∈P(H)

Ep∼ρ[R(p)−Rm(p)] ≤ λC2

8m + 1
λ

(
KL(ρ, π) + log 1

δ

)
(2.91)

which shows the assertion.
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The bound presented in Theorem 2.16 is not the tightest available PAC-Bayesian result
for bounded loss functions and it will not be used in the following chapters. However, we
recite this theorem here, because its proof by [3] nicely illustrates PAC-Bayesian techniques
without requiring many technical details.

Regarding the numerical evaluation of PAC-Bayesian bounds, key issues are the
definition of prior and posterior distributions and the accurate and efficient computation of
the expected empirical risk Ep∼ρ[Rm(p)], which can be a hard task in practice. We return
to these points in Chapter 6.

Part of the appeal of PAC-Bayesian theory from a deep learning perspective is the
minimal assumptions made. In this case, the only essential assumptions were boundedness
of the loss function, independent draws of the sample from the data distribution and
independence of the prior from the data used in the bound. Note that some works in
PAC-Bayesian theory weaken these assumptions even further [4, 169, 82, 81]. Even in
the comparatively simple case presented here, we did not make any assumptions on the
data-generating distribution, the loss function does not need to be differentiable and any
posterior is permissible, as long as KL(ρ, π) remains well-defined. Note that this relative
entropy between posterior and prior can also be moderate in highly overparameterized
settings. The latter is important in the context of deep learning, because with many more
parameters than training data, even randomly labeled datasets can be fit exactly using
deep classifiers [230, 229] and, contrary to conventional wisdom, these classifiers often do
not suffer from severe overfitting in practice [151].

By leveraging the well-positioned PAC-Bayesian theory for the study of deep learning, a
milestone has recently been achieved: the first non-vacuous risk bounds for deep classifiers
[67, 66, 123]. Subsequent research has also made strides in tightening the available bounds
further [161, 162, 21, 47]. A key insight has proven to be the shift from data-free priors to
data-dependent ones. While [66] employ a fine-grained analysis using differential privacy to
this end, recent works have predominantly opted for the simpler approach of splitting the
available data. The first part of the data, which we will refer to as the training set, is used
to learn π. A separate part, which we call validation set, is used to evaluate the bound.
In particular, the number m of data in Theorem 2.16 refers to the size of the validation
set and expected empirical risk is evaluated on the validation set. Since PAC-Bayesian
bounds hold uniformly for all posterior distributions, no matter how they were learned, all
data can be used to inform ρ. Since high-probability risk bounds are already sufficient
grounds to judge generalization, no separate test data are required in principle.

The shift to focusing on data-dependent priors in PAC-Bayesian methods can be seen
as part of a recent development in which classical assumptions and goals of statistical
learning theory are reevaluated in light of the unique properties of deep learning. For
example, consistency is the property of a learning algorithm to converge in probability
to a best classifier in the hypothesis space as the sample size approaches infinity. Let
Am : Zm → H denote a learning algorithm which learns a hypothesis in the class H from a
sample of size m. Then Am is consistent with respect to H and the data distribution µ if

PZ∼µm

(
R(Am(Z))− inf

h∈H
R(h) > ϵ

)
→ 0 (2.92)

for every ϵ > 0 as m→∞ [132]. A classical result in Vapnik-Chervonenkis (VC) theory
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states that uniform convergence is not only sufficient, but also necessary for consistency
of the empirical risk minimization algorithm [210]. However, more recently, [149] have
expressed doubt that uniform convergence can be able to explain generalization in deep
learning. This discrepancy highlights a change in perspective between classical statistical
learning theory and current deep learning practice. The goal of consistency may be too
ambitious. Given a dataset drawn i.i.d. from an unknown underlying distribution µ, a deep
learning practitioner aims to find a single model which generalizes well – a notably less
ambitious goal than finding an algorithm that returns well-generalizing models with high
probability if the attempt is repeated. Likewise, the focus needs to be confined to a specific
dataset or type of data, rather than on finding an algorithm that universally finds well-
generalizing models for any data distribution, which is the topic of no-free-lunch theorems
[147]. Moreover, since overparameterized deep learning methods can universally achieve
essentially zero training error, particular focus on generalization is required. The way this
is frequently pursued in practice involves a laborious process of trial and error, guided
by the practioners’ intuition, to find an effective combination of network architecture,
training regimen and all involved hyperparameters. There is statistical justification for this
procedure with regard to the stated goal of finding a single hypothesis which generalizes
well. The essential statistical tool is holding out a validation set of data not used for
training. In this case, [104] details how comparing different models based on validation
set performance results in a tight, high-probability risk bound for the selected model.
This is possible because the variety of trained models whose performance is judged on
the validation data is much smaller than the model hypothesis classes specified by all
possible realizations of a deep neural network architecture. Consider holding out 10k
validation data and, as a simple example, recall the union bound certificate (2.77) for
finite hypothesis classes H with cardinality M

sup
ϕ∈H
R(ϕ)−Rm(ϕ) ≤ C

√
log M

δ

2m . (2.93)

Suppose the network architecture, learning rate, dropout rate and weight decay need to be
tuned. If we test 10 values for each hyperparameter, a grid search compares 104 models.
For a validation set of size m = 104 and 0/1 loss bounded by C = 1, the bound (2.93)
reads

sup
ϕ∈H
R(ϕ)−Rm(ϕ) ≤ 0.0263 (2.94)

with probability at least 1 − δ = 0.99, a convincingly tight bound. Moreover, once a
single hypothesis is selected, one still has access to additional held-out test data. The
single-hypothesis analog to (2.93) was presented in (2.72). Assuming 10k additional test
data, we find

R(ϕ∗)−Rmtest(ϕ∗) ≤ 0.0152 (2.95)

with probability at least 1− δ = 0.99 for the single hypothesis ϕ∗ ∈ H selected through
hyperparameter tuning. This validation method allows for arbitrary network architectures
and training procedures, including highly overparameterized models trained with variants
of stochastic gradient descent.



26 CHAPTER 2. PRELIMINARIES

Although bounds like (2.93) or the (more general) ones presented in [104] provide some
statistical justification for the practice of hyperparameter tuning, they merely examine
models after training and do not provide theoretical insight to inform the training procedure
itself. In contrast, PAC-Bayesian bounds hold uniformly for all posterior distributions over
the hypothesis class, allowing the use of the risk certificate as a training objective for the
posterior. Thus, PAC-Bayesian bounds can inform the training procedure and provide
effective regularization to achieve better generalization. However, the tightness of risk
bounds and the selection of a prior are crucial to this end.



3 Assignment Flows

In this chapter, we introduce the assignment flow approach to data labeling on graphs. It
consistutes a geometric mathematical framework with broad applicability to structured
prediction problems in the scope of this thesis. Assignment flows were first proposed
by [11]. For general reference and overview, refer to [185]. Here, we present a broad
perspective which starts with the most general version of assignment flows and is later
specialized for specific problem instances. We start with Section 3.1 on graphical models
and Section 3.2 on replicator dynamics. These sections provide context and motivation for
the assignment flow approach introduced in Section 3.3.

3.1 Graphical Models for Structured Prediction

Modelling complex joint distributions of many interacting variables has long been a core
problem in statistical physics. A prototypical example is the Ising model of ferromagnetism
[100]. Suppose a lattice of n microscopic ferromagnets, each either in state up or in state
down. At lattice site i ∈ [n], a unary energy θ(i)

j ≥ 0 is associated with the ferromagnet
being in state j ∈ [c], c = 2. In addition, along each lattice edge ik ∈ E ⊆ [n]× [n], the
combination of states (j, l) ∈ [c]2 at connected lattice sites is associated with a pairwise
interaction energy θ(ik)

jl , which in the Ising model is zero for matching states and a positive
constant θp > 0 for differing states

θ
(ik)
jl =

0, if j = l,

θp, else.
(3.1)

This local interaction along edges compounds to a complex combinatorial structure of total
system energy. If the system is at thermal equilibrium and has temperature λ > 0, the

27
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probability of finding it in state α ∈ {0, 1}n is governed by the Gibbs distribution1 [116]

pα = 1
Z(θ) exp

(
− 1
λ
Eθ(α)

)
, θ = (θ(1), . . . , θ(n), θp) (3.2a)

Eθ(α) =
∑
i∈[n]

θ(i)
αi

+
∑
ik∈E

θ(ik)
αiαk

(3.2b)

Z(θ) =
∑
α∈[c]n

exp
(
− 1
λ
Eθ(α)

)
. (3.2c)

Even if we have perfect knowledge of system energy for every configuration α ∈ [c]n,
the normalizing constant (3.2c), called partition function is still an intractable quantity
in general, because it is composed of a combinatorial number of summands. Within
the framework provided by probabilistic models like (3.2), the following three tasks are
commonly considered.

MAP Inference Natural point estimates of system state are the modes of the distribution
(3.2). They are found as configurations with minimal energy, called maximum a posteriori
(MAP) estimates. Comparing relative energy between system configurations does not
require knowledge of the partition function. However, MAP estimation is still a hard
problem, because a combinatorial number of configurations need to be compared. In fact,
outside of special problem subclasses, exact solution is NP-hard [30] and approximation of
the solution is exp-APX complete [124].

Probabilistic Inference Beyond point estimates, marginals and other statistics of (3.2),
as well as the ability to draw samples are of interest. These tasks are naturally linked
to quantifying uncertainty. For instance, a physical system at high temperature λ ≫ 0
typically has a large number of configurations with similar probability. It is thus very
uncertain in which state one will observe the system and point estimates are unreliable,
even if all modes are known. In contrast, low temperature 0 < λ ≪ 1 leads to large
discrepancies between the probability of low-energy versus high-energy configurations. It
is thus more likely that the system is found in one of the low-energy states, making point
estimates of low-energy configurations a reliable indicator.

Learning If we do not have knowledge of system energy for each configuration, but
we instead have access to a set of samples from the distribution (3.2), we may make a
parametric ansatz for the energy function like (3.2b) and learn parameters to match the
distribution of samples. Learning is generally a more difficult task than inference. In fact,
repeated inference is usually a part of learning procedures [62, 204].

All three tasks described above are hard combinatorial problems in general. Linear
programming relaxations can be employed for MAP estimation. Instead of looking for an

1If the term energy is meant in a physical sense, the exponent in (3.2a) needs to be scaled by Boltzmann’s
constant, which we omit for simplicity of notation.
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energy-minimizing configuration in the discrete set [c]n, soft assignment of classes [c] to
each of the n variables are encoded as vectors

Wi = (Wi1, . . . ,Wic) ∈ Rc≥0, ⟨Wi, 1c⟩ = 1, i ∈ [n] (3.3)

subject to probability simplex constraints. By additionally associating each edge of the
underlying graph G = (V , E) with pairwise probability distributions

W ik ∈ Rc×c≥0 , ⟨W ik, 1c1
⊤
c ⟩ = 1, ik ∈ E (3.4)

a relaxation of the MAP inference problem is found as the linear program

min
({Wi}i∈[n],{W ik}ik∈E )∈Lloc

∑
i∈[n]
⟨Wi, θ

(i)⟩+
∑
ik∈E
⟨W ik, θ(ik)⟩ (3.5)

where Lloc is called the local polytope which is the subset of vectors in (Rc)n × (Rc×c)|E|

satisfying the respective constraints of (3.3) and (3.4) as well as the marginalization
constraints

W ik1c = Wi, (W ik)⊤1c = Wk, ik ∈ E . (3.6)
The linear program (3.5) is a relaxation of MAP inference, because its feasible set is
enlarged by dropping the integrality constraints

Wi ∈ {0, 1}c, i ∈ [n]. (3.7)

Consequently, even though a solution to (3.5) can be computed in polynomial time [122],
this solution will generally not satisfy (3.7). Therefore, rounding to the nearest integer
solution is required to find a discrete system configuration and it can be shown that the
result of this procedure can be arbitrarily far from the MAP estimate [184, Example 4.5].
Since learning typically involves repeated inference, it is plagued by the same inaccurate
approximation.

Assignment flows build on the perspective of graphical models for structured prediction
problems. In Section 3.3, we will return to the problems of inference and learning posed
above and discuss how assignment flows can work around the computational difficulties
associated with these tasks. We start with a short interlude on population dynamics, which
is a topic typically discussed in the language of game theory.

3.2 Replicator Dynamics
Suppose a large population of players, each using one of c > 0 available strategies. Define
a game as two-player interactions leading to payoff for each player. Let x > 0 denote the
number of players in the population and let xj denote the number of players employing
strategy j ∈ [c]. Assume that xj evolves over time proportional to the expected payoff fj
of strategy j when playing against a random player in the population

ẋj = xjfj. (3.8)
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This assumption was put forward by [199] along with biological motivation. If payoff is
associated with Darwinian fitness, then individuals employing a successful strategy will
replicate at a high rate and their offspring will again be likely to employ the same strategy.
We can now study the evolution of relative frequencies pj = xj

x
in the population

ṗj = ẋj
x
− ẋ

x

xj
x

= pjfj −
ẋ

x
pj = pjfj −

pj
x

∑
l∈[c]

xlfl = pj
(
fj −

∑
l∈[c]

plfl
)

(3.9)

for each strategy j. Suppose the average payoff f : Sc → Rc can be written as a function
of the relative frequencies p ∈ Sc. Vectorization of (3.9) reads

ṗ = Diag(p)f(p)− ⟨p, f(p)⟩p = Rp[f(p)] (3.10)

which is called the replicator equation due to its roots in biological replication mentioned
above.

As a simple example, assume that the payoff results from two-player interactions and
only depends on each players own strategy j ∈ [c] and the strategy l ∈ [c] employed by
their opponent. The game is now characterized by the payoff matrix B ∈ Rc×c which lists
the payoffs for all c2 combinations of strategies in two-player interaction as entries Bjl.
The average payoff of a player with strategy j playing against a random player in the
population reads

fj =
∑
l∈[c]

xl
x
Bjl =

∑
l∈[c]

Bjlpl. (3.11)

Note that payoff in (3.11) is indeed a function of p, no knowledge of xj or x is required to
evaluate fj. The resulting linear fitness replicator dynamics read

ṗ = Rp[Bp]. (3.12)

Dynamical systems with the shape (3.10) evolve a state which represents relative frequencies
of strategies in a population. This state naturally lives in the simplex of discrete probability
vectors

∆c = {p ∈ Rc≥0 : ⟨p, 1c⟩ = 1} (3.13)
which we already saw as relaxation domain of each discrete variable in (3.3). Its relative
interior

Sc = {p ∈ Rc>0 : ⟨p, 1c⟩ = 1} (3.14)
can be regarded as a Riemannian manifold with the Fisher-Rao metric (recall Section 2.1).
This perspective is natural in the context of replicator equations for the following reason.
If players are anonymous, the payoff of two-player interactions does not depend on the
order of players and the payoff matrix B is symmetric. As a result, the payoff Bp can be
written as gradient of the potential

J(p) = 1
2⟨p,Bp⟩ (3.15)

which itself has a nice interpretation as (half) the mean payoff achieved by players in the
population. If (3.14) is seen as Riemannian manifold equipped with the Fisher-Rao metric,
then the replicator dynamics (3.10) precisely generate the Riemannian gradient ascent
flow of (3.15).
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Theorem 3.1 (Proposition 1 of [11]) Let J : Rc → R be a smooth function and
J̃ : Sc → R its restriction to Sc ⊆ Rc. Then the Riemannian gradient of J̃ at p ∈ Sc is
given by

∇pJ̃(p) = Rp[∇J(p)] (3.16)

where ∇J denotes the (Euclidean) gradient of J .

3.3 Assignment Flows

3.3.1 Dynamical Systems on the Assignment Manifold
Equipped with background on graphical models and replicator dynamics, we return to
the structured prediction setting of n coupled discrete random variables, each able to
assume one of c class values. Without restriction of generality, we can associate the
interdependencies of random variables in their joint distribution with a graph G = (V , E).
Each node represents one variable (|V| = n) and an edge between two nodes represents
a dependency to be specified. For instance, a Markov random field is characterized by
conditional independence of random variables, given values for a separating set of variables
in G. The association of a graph in itself does not restrict generality. The conditional
independence structure already present in the joint distribution of a Markov random field
is merely encoded into its adjacency relation on G. If all variables are independent, the
edge set E is empty. At the other extreme, if no conditional independence exists between
any set of variables, the graph G is fully connected.

A particular class of structured prediction problems can be formalized as data labeling
on graphs. Given some data on each graph node, the data labeling task is to infer one of c
classes on each node. More formally, let F be a metric space which acts as domain for
data and let

µLD ∈ P(Fn × [c]n) (3.17)

be a joint distribution of labeled data on G. Data labeling is the task of learning the
conditional distributions

µ(·|x) ∈ P([c]n) (3.18)

given data x ∈ Fn. A comparatively simple case is deterministic data labeling which is
not subject to uncertainty. In this case, each data vector x is deterministically linked to a
labeling α ∈ [c]n and the conditional distributions (3.18) are discrete Dirac distributions
δα, α ∈ [c]n. This means all probability mass is concentrated on a single labeling α, but
α still depends on the data x. Generally, distributions in P([c]n) are high-dimensional,
combinatorial objects. To represent p ∈ P([c]n) as a probability vector, one needs cn entries,
which is typically intractable. For this reason, a core problem of structured prediction is to
parameterize low-dimensional subsets of P([c]n). We return to this fundamental question
in Chapters 4 and 5. The case of deterministically linking data vectors to labelings is
comparatively simple, because discrete Dirac distributions have a simple low-dimensional
representation as n class indices, each in the range [c]. This is still highly non-trivial and
useful in many applications. As an example, consider dense image segmentation. Let
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each image pixel be associated with a node of G and suppose there are c segments to be
found. The data space F can be identified with some color space like the cube [0, 1]3 of
RGB values and a whole image corresponds to a data vector x ∈ Fn. The assumption
of conditional distributions (3.18) being discrete Dirac measures then amounts to the
assumption that each image has a deterministic segmentation. This may not be the case
in situations where the data are ambiguous and multiple segmentations are possible for
one image, but it is still a relatively weak assumption in practice.

Because discrete Dirac measures can be identified with labelings of all nodes, each
with a class in [c], the deterministic data labeling scenario is amenable to relaxation akin
to (3.5). We will keep the interaction along graph edges unspecified for now and only
consider the relaxed domain of probability vectors (3.3) which encode soft class assignment
separately on each node

∆c × · · · ×∆c, (n factors). (3.19)
The set (3.19) can be regarded as a polytope embedded in Rnc generated as convex hull of
extremal points

(eα1 , . . . , eαn), α ∈ [c]n. (3.20)
Thus, we have identified a one-to-one correspondence between discrete Dirac distributions,
labelings of data and extremal points of (3.19)

δα ≡ α ≡ (eα1 , . . . , eαn), α ∈ [c]n. (3.21)

The core idea of assignment flows is to represent inference of discrete Dirac distributions
solving data labeling (3.18) as a gradual process which evolves states on (3.19) toward
extremal points (3.20). This in turn achieves the stated goal of infering discrete Dirac
distributions due to the correspondence (3.21). The guiding design priciple for such
inference dynamics will be to build on replicator equations (3.10). This choice has strong
motivation from multiple angles. First, replicator dynamics have been a topic of intense
research for many years in game theory. Thus, interpretation in game theoretical or
biological terms will provide a natural avenue for better understanding of the constructed
systems. For example, in Chapter 4, we will clarify how the game-theoretical notions of
evolutionary stability and Nash equilibrium fit into the data-labeling picture. Second,
replicator dynamics have a natural shape relative to the information geometry of their
underlying domain as is apparent from the fact that they generate Riemannian ascent
flows (3.15). The Fisher information metric is the Hessian metric [5] of negative entropy

−∇2H(p) = ∇2⟨p, log p⟩ = Diag
(1c
p

)
(3.22)

and since
∇2
p KL(p, p0) = ∇2

(
−H(p)− ⟨p, log p0⟩

)
= Diag

(1c
p

)
, (3.23)

this makes it a measure for how the information content changes between nearby distribu-
tions. Thus, replicator dynamics modify gradient fields derived from an intuition about
(Euclidean) probability vectors in a way which is maximally meaningful to change in the
information content of the evolved probabilistic state.



3.3. ASSIGNMENT FLOWS 33

In Section 3.2, we have seen that the state space of replicator dynamics is naturally
seen as a Riemannian manifold Sc equipped with Fisher-Rao geometry. Since we are now
interested in the case of multiple coupled discrete variables, we define the assignment
manifold

W = Sc × · · · × Sc, (n factors) (3.24)
as the product manifold of n probability simplices Sc. We call elements of W assignment
matrices due to their representation as row-stochastic matrices in the ambient space Rn×c.
The barycenter of W is denoted as

1W = 1
c
1n1⊤

c ∈ W (3.25)

and the tangent space at 1W is identified with the vector space

T0W = {V ∈ Rn×c : V 1c = 0} = (T0Sc)n. (3.26)

W has trivial tangent bundle
TW ≡W × T0W (3.27)

and the product Fisher-Rao metric on T0W at W ∈ W reads

gW (V, U) = ⟨V, U⟩W =
〈
V

W
,U
〉
. (3.28)

For W ∈ W, let RW denote the operator which applies the replicator RWi
separately on

each node i ∈ [n]. Similarly, let

expW (V ), V ∈ T0W (3.29)

denote the map which applies (2.45) separately on each node and re-use the symbol Π0U
to denote the projection of U ∈ Rn×c to T0W . Analogous to (2.51), we have

expW ◦Π0 = expW (3.30)

which allows to extend the domain of expW to Rn×c. Similarly, one easily verifies that

RW ◦ Π0 = Π0 ◦ RW = RW (3.31)

which allows to extend the domain of RW to Rn×c. We will still refer to these objects
as lifting map and replicator operator, respectively. In order to specify interaction along
graph edges, we now define

F : W → Rn×c (3.32)
called payoff or fitness function, such that F (W )i depends on Wj exactly if ij ∈ E . This
finally specifies the dynamical system

Ẇ (t) = RW (t)
[
F
(
W (t)

)]
, W (0) = W0, (3.33)

on W, whose solution is called assignment flow. Note, that assignment flow dynamics
(3.33) for data labeling are the natural result of the following design paradigms.



34 CHAPTER 3. ASSIGNMENT FLOWS

1. Gradual decision-making. The complexity of inference is broken down over time
t by modelling the generator F of a dynamical process which gradually arrives at a
decision.

2. Probabilistic state. At any given time t, the state of decision-making is a soft
assignment of classes to nodes, i.e. a probability vector for each node.

3. Information geometry. Change in the probabilistic assignment state is viewed as
change in information content represented by it.

In particular, (3.33) primarily specifies the language in which inference algorithms are
written, it does not yet express problem-specific considerations and it only restricts
generality by fixing the dimension of the underlying state.

Inkeeping with the goal of infering discrete Dirac distributions, payoff functions need to
be chosen such that (3.33) drives assignment state to extremal points of W . Convergence
and stability of assignment flows were studied by [227]. A central result is the following.
Theorem 3.2 (Theorem 2 of [227]) Let Ω ∈ Rn×n, Ω = Ω⊤ have non-negative en-
tries and positive diagonal entries. Then the assignment flow generated by (3.33) with
linear payoff function F (W ) = ΩW converges to an extremal point of W for almost all
initializations W0.

In practice, convergence of assignment flows to extremal points is observed for many
more general payoff functions. We return to this topic under weaker assumptions in the
game-theoretical framework of Chapter 4. With regard to stability, the same class of
assignment flows also admits a bound on the Lipschitz constant of its flow map. This is
elaborated in Appendix C.1.

The following sections return to the tasks of inference and learning posed in the context
of graphical models in Section 3.1.

3.3.2 Inference by Numerical Integration
Once a payoff function F : W → Rn×c and initialization W0 is specified such that (3.33)
converges to an extremal point of W , inference amounts to numerical integration of (3.33).
In the curved geometry of S, this is best treated using specialized methods [225] in order
to ensure that each numerical iterate satisfies the constraints of W. The key will be to
parameterize (3.33) on the tangent space T0W by using the lifting map. This was done in
[225, Proposition 3.1] which we recite as the following theorem.
Theorem 3.3 (Tangent Space Parameterization) For any initialization W0 and
payoff function F : W → Rn×c, the solution to the initial value problem (3.33) admits the
representation W (t) = expW0(V (t)), t ≥ 0 where V (t) ∈ T0W solves

V̇ (t) = Π0F (expW0(V (t))), V (0) = 0 ∈ T0W . (3.34)

Note that due to the lifting map action property (2.48), the parameterization (3.34)
can equivalently be done at the barycenter

V̇ (t) = Π0F (exp1W
(V (t))), V (0) = exp−1

1W
(W0). (3.35)
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Numerical integration of (3.33) can thus be performed by integrating (3.34) or (3.35) and
lifting the result to the assignment manifold W . Since the latter are ordinary differential
equations in the flat and unbounded vector space T0W , standard methods are applicable.
For example, the explicit Euler method for integrating (3.34) with step-length h > 0 reads

V (t+ h) = V (t) + hΠ0F (expW0(V (t))) (3.36)

which corresponds to the geometric Euler scheme

W (t+ h) = expW0(V (t+ h)) (3.37a)
= expW0(V (t) + hΠ0F (expW0(V (t)))) (3.37b)
= expexpW0 (V (t))(hΠ0F (expW0(V (t)))) (3.37c)
= expW (t)(hΠ0F (W (t))). (3.37d)

This also illustrates the equivalence of (3.34) and (3.35) because for W (t) = exp1W
(V (t)),

W (t+ h) = exp1W
(V (t+ h)) (3.38a)

= exp1W
(V (t) + hΠ0F (exp1W

(V (t)))) (3.38b)
= expexp1W (V (t))(hΠ0F (exp1W

(V (t)))) (3.38c)
= expW (t)(hΠ0F (W (t))) (3.38d)

generates the same geometric Euler iterates on W. The same equivalence also holds for
other numerical integrators, see Appendix C.2 for details.

Under suitable conditions, the result of integrating (3.33) can be rounded to an
extremal point of W after finite time [227]. This inference process identifies a discrete
Dirac measure through the correspondence (3.21). If the desired conditional distribution
(3.18) of labelings given data is not a discrete Dirac measure, an extension of the assignment
flow framework is required. We turn to this more general problem of probabilistic inference
in Chapter 5. We conclude that, in contrast to graphical models, the (point estimate)
inference process defined by assignment flows is numerically tractable with arbitrary
precision if payoff functions can be evaluated efficiently and convergence to extremal
points occurs for the given initialization W0. Under these conditions, the assignment
flow approach simultaneously realizes two aspects of graphical model inference in a single
smooth process. First, coupling between random variables is facilitated through interaction
along graph edges. Second, the dynamical system (3.33) drives soft assignment states to
hard class assignments over time, aided by the underlying Fisher-Rao geometry, which
prevents many vector fields from generating flows with stable limits at non-extremal
boundary points of ∆n

c .

3.3.3 Learning Payoff Functions
A further numerical advantage of the assignment flow approach is its inherent smoothness,
which allows to learn payoff functions from data. This was studied by [98] through the
lense of adjoint sensitivity and by [226] via linearization. Here, we briefly introduce the
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first approach, which is more relevant to the following chapters than the second. As a
starting point, consider m > 0 independently drawn samples

(xk, yk) ∼ µLD, k ∈ [m] (3.39)

each consisting of a data vector xk ∈ F and a labeling yk ∈ [c]n. Assume again that
all conditional distributions (3.18) of labelings given data are discrete Dirac measures.
This ensures that there exists a deterministic relationship between data and labelings to
be learned. Further, suppose we have a way to associate data vectors in F with initial
assignment states W0 ∈ W . Such an association will be discussed in Section 3.3.4. We now
define some set H of functions Fp : W → Rn×c, each uniquely identified by parameters p
in a Euclidean parameter space and some loss function L : W × [c]n → R which measures
the deviation of soft assignments from labelings. Learning a payoff function can then be
written as minimizing the risk

E(x,y)∼µLD

[
L(ψ(W0(x); p), y)

]
(3.40)

where ψ(W0; p) = ψT (W0; p) refers to the flow map ψT : W →W of (3.33) for a fixed time
horizon T > 0, i.e.

ψT (W0; p) = W (T ) (3.41a)
s.t. Ẇ (t) = RW (t)[Fp(W (t))] ∀t ∈ [0, T ], W (0) = W0. (3.41b)

Since we only have access to µLD through samples, we consider the empirical risk counterpart
of (3.40)

1
m

∑
k∈[m]

[
L(ψ(W0(xk); p), yk)

]
. (3.42)

Efficient minimization of the empirical risk (3.42) can be approached through stochastic
gradient methods. To this end, we need to compute the gradient of loss with respect to
parameters. Since evaluation of the loss involves integration of (3.41b) forward in time,
the gradient can in principle be approximated by differentiating a numerical integration
scheme with respect to the parameters. We will call this approach discretize-then-optimize,
because discretization of the ODE (3.41b) proceeds differentiation of the discretized system
for the purpose of optimizing parameters. This approach is easy to implement by using
automatic differentiation software [16]. However, it entails a large memory footprint in
practical applications because the system state v(ti) needs to be saved for all discretization
points, which limits scalability. The problem of computing the gradient in question is
well-known in the context of parameter estimation and optimal control [203] and specialized
methods have been developed to avoid discretize-then-optimize. For simpler presentation,
we will consider the tangent space parameterization (3.34) which evolves on the flat and
unbounded vector space T0W . For fixed initialization W0 ∈ W , define

L̃ : T0W × [c]n → R, (3.43a)
(v, y) 7→ L̃(v, y) = L(expW0(v), y) (3.43b)
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and the tangent flow map

ψ̃T (W0; p) = V (T ) (3.44a)
s.t. V̇ (t) = Π0Fp(expW0(V (t)))] ∀t ∈ [0, T ], V (0) = 0. (3.44b)

Then minimization of the tangent empirical risk

1
m

∑
k∈[m]

L̃(ψ̃(W0(xk); p), yk) (3.45)

is equivalent to minimizing (3.42) by Theorem 3.3. Define the shorthand notation

f(V (t), p) = Π0Fp(expW0(V (t)))]. (3.46)

The following theorem, which has its origin in the theory of parameter estimation and
optimal control, provides an alternative way of computing the desired parameter gradient.
Theorem 3.4 (Theorem 6 of [98]) The gradient of (3.45) is given by

1
m

∑
k∈[m]

∂pL̃(ψ̃(W0(xk); p)) = 1
m

∑
k∈[m]

∫ T

0
dpf(V (t), p)⊤λ(t)dt (3.47)

where dpf denotes the differential of f with respect to p and V (t), λ(t) solve the adjoint
differential equation

V̇ (t) = f(V (t), p), V (0) = 0, (3.48a)
λ̇(t) = −dV f(V (t), p)⊤λ(t), λ(T ) = ∂V L̃(V )|

V=ψ̃(W0(xk);p). (3.48b)

By choosing a quadrature for the integral (3.47), Theorem 3.4 allows to compute the
desired gradient without the need to save system state at all discretization points. This
constitutes an optimize-then-discretize approach, because differentiation in continuous-time
proceeds discretization. In general, the resulting gradient approximation is different from
discretize-then-optimize. However, it has been shown [98, 179] that for particular symplectic
integrators, discretization commutes with optimization, i.e. both orders of operation yield
the same gradient.

An image labeling example is shown in Figure 3.1. Here, the data is modeled by an
assignment flow with shape to be defined in (3.63) and graph adjacency representing local
pixel neighborhoods (3 × 3). Starting from a noisy, high-entropy assignment of pixels
to color prototypes (c = 47), the goal is to learn parameters p such that the state is
driven to a given noise-free assignment after the fixed integration time T = 15. In this
example, parameters are entries of a label interaction matrix B ∈ Rc×c. We initialized B as
identity matrix and performed 100 steps of the Adam optimizer to minimize cross-entropy
between the ground truth assignment and the final state reached by the assignment flow.
This training procedure is memory efficient – for the 256× 256 pixel image in Figure 3.1,

2The original artwork used in Figure 3.1 was designed by dgim-studio / Freepik.
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Figure 3.1: Left: Noisy input assignment of c = 47 colors to the pixels of an image. Center :
Limit of an EGN flow (3.63) with learned interaction in 3× 3 pixel neighborhoods. Right:
Ground truth noise-free color assignment.2

training takes less than a minute on a laptop computer and requires around 1.3GB of
vRAM.

In deep learning, parameterized dynamical systems like the ones defined by parameter-
ized payoff functions Fp : W → Rn×c are known as neural ordinary differential equations
(nODE) [43]. If the vector field defining these systems satisfies a Lipschitz condition,
the classic theorem of Picard-Lindelöf implies that integral curves exist uniquely. As a
result, every point of the domain belongs to a unique integral curve and hence, the flow
map for fixed time T > 0 is invertible. This is the starting point for the construction of
continuous-time measure transport methods of representing complex data distributions,
called continuous normalizing flows (CNF). We return to this topic in Chapter 5.

3.3.4 Examples of Assignment Flows
W-flow The first assignment flow which was contextualized as such is the image labeling
method proposed by [11]. The authors assume that graph nodes are linked to pixels of an
image. Feature vectors

fi ∈ F , i ∈ [n] (3.49)
in a metric feature space F are given for each node. These feature vectors are assumed to
be directly informative for the labeling problem at hand and a metric dF on F is known
which preserves the informative nature of features. For low-level image processing tasks,
these requirements may be satisfied by largely unprocessed data such as color values.
For higher-level semantic tasks, this likely requires preprocessing raw data to extract
informative features. For each class, a prototypical feature vector

f ∗
j ∈ F , j ∈ [c] (3.50)

is selected which ultimately allows to abstract from the feature space F . To this end,
define the distance matrix D ∈ Rn×c which collects pairwise distances

Dij = dF(fi, f ∗
j ), (i, j) ∈ [n]× [c] (3.51)
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between node features and prototypes (3.50). Then the data is abstracted from the feature
space F by lifting distance vectors at the current assignment state

L(W ) = expW (−D). (3.52)

Note the implicit projection of −D to the tangent space T0W in accordance with (3.30).
The states (3.52) are subsequently averaged in each graph neigborhood, defining the
similarity map

Si(L) = meanΩ{Lj : j ∈ Ni}, i ∈ [n]. (3.53)
Here, the mean is weighted by entries of the row-stochastic adjacency matrix Ω. It can
be taken with respect to the Levi-civita connection on W , or alternately with respect to
the e-connection, which is computationally more efficient. The resulting assignment flow
dynamics, called W-flow, read

Ẇ (t) = RW (t)[S(L(W (t)))], W (0) = 1W . (3.54)

S-flow The authors of [182] demonstrated that (3.54) can be parameterized by studying
the time evolution of similarities Si. More specifically, if averaging in (3.53) is relative
to the e-connection on W, then by [182, Proposition 3.6], the W-flow system (3.54) is
equivalent to

Ẇ (t) = RW (t)[S(t)], W (0) = 1W (3.55a)
Ṡ(t) = RS(t)[ΩS(t)], S(0) = S(1W). (3.55b)

In particular, (3.55a) is determined completely by (3.55b), which itself can be defined
independent of (3.55a). This motivates to consider S-flow dynamics

Ṡ(t) = RS(t)[ΩS(t)], S(0) = S0 (3.56)

as assignment flows in their own right. The authors of [182] further show that for symmetric
Ω, (3.56) is the Riemannian ascent flow of the potential

J(S) = 1
2⟨S,ΩS⟩ (3.57)

while W-flows (3.54) admit no such interpretation. Note that (3.57) mirrors the shape of
linear-payoff replicator potentials (3.15) presented in Section 3.2. We return to details of
this relationship in Chapter 4.

EGN Dynamics A property of both (3.56) and (3.54) is that averaging in local neigh-
borhoods only explicitly constitutes interaction between node states. Interaction between
different dimensions of a single node state is implicitly achieved through the geometric
ramifications of simplex constraints on the state. A simple way of explicitly modeling
interaction between dimensions of a single node state is by defining a matrix B ∈ Rc×c

and augmenting the S-flow vector field (3.56) by multiplication of B⊤ from the right

Ẇ (t) = RW (t)[ΩW (t)B⊤], W (0) = W0. (3.58)
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Here and in the following, we again use the symbol W to denote state of assignment flows,
as opposed to the symbol S used in (3.56). This serves to unify notation and to signal
that (3.56) is an assignment flow in its own right, independent of its connection to (3.54)
through the parameterization (3.55). (3.58) is the simplest instance of evolutionary games
on networks (EGN) [133] which is more general than (3.56). To study dynamics like (3.58),
it will be helpful to work with the operator

vecr : Rn×c → Rnc (3.59)

which vectorizes matrices by stacking their rows. Further, define the operators Rv
W , Πv

0
and expv

W which apply to row-vectorized states w = vecr(W ), v = vecr(V )

Rv
w[v] = vecr

(
RW [V ]

)
(3.60a)

Πv
0v = vecr

(
Π0V

)
(3.60b)

expv
w(v) = vecr

(
expW (V )

)
. (3.60c)

Then (3.58) can be written as

ẇ(t) = Rv
w(t)[(Ω⊗B)w(t)], w(0) = vecr(W0). (3.61)

More generally, interaction does not need to be be uniform accross all graph edges. In this
case, we define separate payoff matrices

Bik ∈ Rc×c, ik ∈ E ⊆ [n]× [n] (3.62)

for each edge and combine them to a matrix A ∈ Rnc×nc built from n× n blocks of size
c× c. If ij /∈ E , then the block at position ij is filled with zeros, otherwise, it is B⊤

ik. The
resulting EGN dynamics read

ẇ(t) = Rv
w(t)[Aw(t)], w(0) = vecr(W0). (3.63)

We return to this class of dynamics in Chapter 4.



4 Embedding Assignment Flows

As was already apparent in Chapter 3, assignment flows are closely related to replicator
dynamics. In this chapter, we work to clarify the relationship in more detail.

Evolutionary game theory [95, 177] is an established framework for modeling problems
in diverse areas ranging from mathematical biology [191, 192, 84, 152, 121] to economics
[71, 176]. It assumes a dynamic perspective on games played by a large and well-mixed
population of agents. In this context, the earliest dynamical model of population state is
the replicator equation [199, 186], which has since been generalized in several ways [17, 51]
to accommodate more complex situations.

Since the motivating task of assignment flows is to model interaction of multiple coupled
random variables, the underlying state space is a product manifold of multiple probability
simplices. In game theory, this situation corresponds to multiple populations of agents.
Graph edges encode interaction between populations in the sense that agents randomly
engage in games with opponents from their own population as well as from adjacent
populations. Accordingly, one may call assignment flows multi-population replicator
dynamics.

We will contrast multi-population dynamics with multi-game dynamics. The latter
model agents on a single population that simultaneously play multiple games, earning
cumulative payoff. The state space is a single simplex with dimension growing exponentially
in the number of games. These situations have previously been studied by [87]. In particular,
the autors find that interaction between games occurs whenever the population state is
outside of a specific submanifold. Here, we specify a generalization of this submanifold
and study the structure of resulting interaction, which turns out to be highly relevant to
modelling complex joint distributions.

Our central tool of analysis is an embedding of multiple probability simplices into a
combinatorially large simplex of joint distributions. This is closely related to Segre embed-
dings of projective spaces [77] which play a prominent role in many areas of mathematics
and physics, such as independence models in algebraic statistics [64] and entanglement in
quantum mechanics [19].

Based on this ansatz, we develop a geometric perspective and formalism to study the
relationship between replicator dynamics of multiple populations and multi-game replicator
dynamics. In particular, we demonstrate that the multi-game dynamics of [87] share
a generic payoff structure with multi-population games. The proposed embedding also

41
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constitutes a formal reduction of multi-population dynamics to – much higher-dimensional
– single-population dynamics, which is helpful for theoretical analysis. We demonstrate
this by transferring two results on the asymptotic behavior of replicator dynamics from
the single-population to the multi-population setting.

Note that, between structured prediction with assignment flows and the study of
biological systems, there is a growing need for more powerful dynamical models in emerging
applications. For instance, [212] argue for the use of generalized replicator dynamics to
model interactions in nature – considering multi-player interaction in a multi-game setting.

4.1 Embedding Formalism
Return again to the data labeling perspective introduced in Section 3.3. Direct enumeration
of all cn possible assignments of c classes to n graph nodes allows to frame data labeling
as a single decision between N = cn label configurations. A relaxation of this descision
problem can again be represented on a probability simplex. We call

SN , N = cn (4.1)

the meta-simplex of joint distributions. Relaxation of structured prediction on SN is more
general than relaxation onW . This is because every joint distribution of n coupled discrete
random variables is represented as a single point on SN . The price of this generality
lies in high dimension. If n is large, states in SN are numerically intractable, i.e. can
not be represented as explicit probability vectors within practical memory constraints.
Here, we treat the meta-simplex (4.1) as a means to build geometric intuition on complex
joint distributions, working up to a novel representation of these combinatorial objects in
Chapter 5. To this end, two closely related questions need to be answered.

1. How does the geometry of W relate to the geometry of SN?

2. How do assignment flows on W relate to replicator dynamics on SN?
Answering the first question turns out to provide illuminating perspective on the second.
To this end, we propose an embedding of the assignment manifoldW into the meta-simplex
SN . This is based on the idea that every point W ∈ W can be regarded as marginals of a
factorizing joint distribution of n discrete random variables.

The simplest nontrivial example is the case of two binary random variables X1, X2
with joint distribution p ∈ SN (n = 2, c = 2, N = 22 = 4). The marginal distributions of
X1 and X2 are

p1 =
∑
j∈[c]

p(·, j) ∈ Sc (4.2a)

p2 =
∑
j∈[c]

p(j, ·) ∈ Sc (4.2b)

which we can collect as rows of a matrix

W =
[
p⊤

1
p⊤

2

]
∈ W . (4.3)
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If X1 and X2 are independent, their joint distribution p factorizes into the marginal
distributions (4.2)

p(j, l) = p1(j)p2(l). (4.4)

We now generalize to arbitrary collections of discrete random variables. Let p ∈ SN be
a joint probability distribution of n discrete random variables (X1, . . . , Xn). For simplicity,
we assume each random variable takes values in the same class set [c], although the
following results remain valid in more general scenarios. If p is viewed as a probability
vector, each entry is the probability of a class configuration for the random variables.
To manifest this fact in our formalism, we will use multi-indices γ ∈ [c]n to index p.
More concretely, let γ = (γ1, . . . , γn) ∈ [c]n, then pγ denotes the joint probability of the
configuration (X1 = γ1, . . . , Xn = γn).

Now consider the maps defined componentwise by

T : W → T ⊆ SN , T (W )γ :=
∏
i∈[n]

Wi,γi
for all γ ∈ [c]n (4.5a)

Q : Rn×c → RN , Q(X)γ :=
∑
i∈[n]

Xi,γi
for all γ ∈ [c]n (4.5b)

M : RN → Rn×c, M(x)ij :=
∑

γ∈[c]n : γi=j
xγ for all (i, j) ∈ [n]× [c]. (4.5c)

The particular choice of these maps will be justified by laying out several compatibility
properties which intricately link them to each other and to the geometries of W and SN .
Specifically,

• T represents factorizing joint distributions by their marginals, generalizing (4.4).

• T realizes the concept of enumerating configurations in the sense that the extremal
points of W are bijectively mapped to the extremal points of SN .

• The restriction of M to T inverts T by computing node-wise marginals, generalizing
(4.2). We choose the larger domain RN for M such that it becomes the adjoint
mapping of Q (Lemma 4.4).

The above choice of T is made to interpret the relationship between W and SN ,
answering the first question posed above. This choice is natural from a geometric standpoint,
as the following theorem shows.

Theorem 4.1 (Assignment Manifold Embedding) The map T : W → T ⊆ SN is
an isometric embedding of W equipped with the product Fisher-Rao geometry, into SN
equipped with the Fisher-Rao geometry. On its image T (W) =: T ⊆ SN , the inverse is
given by marginalization

M |T = T−1 : T → W . (4.6)

Proof. A standard argument (Lemma A.1) shows that T : W → T is injective. We check
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that the inverse of T has the shape (4.6).

(MT (W ))i,j =
∑

γ : γi=j

∏
r∈[n]

Wr,γr =
∑

γ : γi=j
Wi,j

∏
r∈[n]\{i}

Wr,γr (4.7)

=
∑

l∈[n]\{i}

∑
γl∈[c]

∏
r∈[n]\{i}

Wr,γr (4.8)

= Wi,j

∑
k1∈[c]

W1,k1

∑
k2∈[c]

W2,k2 . . .
∑
kn∈[c]

Wn,kn (4.9)

= Wi,j

∏
r∈[n]\{i}

∑
γr∈[c]

Wr,γr︸ ︷︷ ︸
=1

= Wi,j. (4.10)

Clearly, all component functions of T and T−1 are smooth. We will now show that T is a
topological embedding, i.e. a homeomorphism with respect to the subspace topology of
T ⊆ SN . Let

Q = Q(T0W) (4.11)

denote the image of T0W under Q. Q is a linear subspace of T0SN because, for any
V ∈ T0W , we have

QV = QΠ0V = Π0QV ∈ T0SN (4.12)

by Lemma A.3. In addition, Lemma A.5 shows kerQ ∩ T0W = {0}, since any matrix
in kerQ has constant row vectors. Thus, the restriction of Q to T0W is injective and
since T0W and Q have finite dimension, Q|T0W is a homeomorphism. The lifting map
at the barycenter is the inverse of the global e-coordinate chart of information geometry
up to a change of basis. In particular, exp1W

: T0W → W and exp1SN
: T0SN → SN are

homeomorphisms. Now let

ψ : T → Q, p 7→ ψ(p) = exp−1
1SN

(p) (4.13)

which is well-defined due to Lemma 4.3 and denote the initial topology of T with respect
to ψ−1 by A. Then T is a homeomorphism of W and T equipped with the topology A
because

T = exp1SN
◦Q|T0W ◦ ψ−1 (4.14)

by Lemma 4.3. It remains to show that A coincides with the subspace topology of T ⊆ SN .
Note that the topology of Q is the subspace topology of Q ⊆ T0SN and recall that
exp1SN

: T0SN → SN is a homeomorphism. For a subset A ⊆ Q we thus have

A ∈ A ⇔ ψ(A) is open in Q (4.15a)
⇔ exp−1

1SN
(A) = B ∩Q for an open set B ⊆ T0SN (4.15b)

⇔ exp−1
1SN

(A) = exp−1
1SN

(A) ∩Q for an open set A ⊆ SN (4.15c)
⇔ A = A ∩ exp1SN

(Q) for an open set A ⊆ SN (4.15d)
⇔ A = A ∩ T for an open set A ⊆ SN . (4.15e)
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This shows that A is the subspace topology of T ⊆ SN and thus, T is a topological
embedding of W into SN .

We compute the rank of T by applying Lemma A.4. Let W ∈ W and V ∈ T0W be in
the kernel of dT |W . Then

0 = dT |W [V ] = T (W ) ⋄Q
[
V

W

]
(4.16)

which implies V
W
∈ kerQ because T (W )γ ̸= 0 for all γ ∈ [c]n. By Lemma A.5 this implies

V = W ⋄ (Diag(d)1n×c) = Diag(d)W (4.17)

for some d ∈ Rn with ⟨d, 1n⟩ = 0. From V ∈ T0W we find

0 = ⟨Vi, 1c⟩ = di⟨Wi, 1c⟩ = di, ∀i ∈ [n] (4.18)

which shows V = 0 by (4.17), i.e. dT |W has full rank. Thus, T is an injective immersion.
It remains to show that T is metric compatible. Suppose W ∈ W and U, V ∈ T0W are

arbitrary. Denoting the Fisher-Rao metric on SN by gSN we get

(T ∗gSN

)
W

(U, V ) = gSN

T (W )(dT |W [U ], dT |W [V ]) (4.19a)

=
〈
dT |W [U ], 1

T (W ) ⋄ dT |W [V ]
〉

(4.19b)
(A.9)=

〈
dT |W [U ], Q

[
V

W

]〉
(4.19c)

=
〈
MdT |W [U ], V

W

〉
. (4.19d)

Note that M is linear, implying dM |p = M for every p ∈ SN . Since M restricted to
T = T (W) is the inverse of T , one has M ◦ T = idW . These two facts imply

M
[
dT |W [U ]

]
= dM |T (W )

[
dT |W [U ]

]
= d

(
M ◦ T

)
|W [U ] = d(idW)|W [U ] = U. (4.20)

Plugging this result back into (4.19d) gives

(T ∗gSN

)
W

(U, V ) =
〈
U,

V

W

〉
= gW

W (U, V ) (4.21)

which shows the assertion.

In view of the expression (4.5a), it is clear that T , the image of W under T , is
precisely the set of rank-1 tensors in SN ⊆ RN ∼= (Rc)n. The introductory example further
clarifies, that T is the set of factorizing joint distributions. Since factorization of the joint
distribution corresponds to independence of random variables, these distributions are the
least informative among all joint distributions with the prescribed marginals.
Proposition 4.2 (Maximum Entropy) For every W ∈ W, the distribution T (W ) ∈ SN
has maximum entropy among all p ∈ SN subject to the marginal constraint Mp = W , with
M given by (4.5c).
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Proof. We use the concepts of m-flat and e-flat submanifolds of information geometry,
which justify applying the Pythagorean relation of information geometry. For details, we
refer to [7]. The feasible set of all distributions with the prescribed marginals reads

{T (W ) + u : Mu = 0} ∩ SN (4.22)

which is an m-flat submanifold of SN . In addition, Lemma 4.3 shows that T is an e-flat
submanifold of SN . Let p = T (W ) + u denote an arbitrary feasible point. By (4.22) and
Lemma 4.4 we have

⟨u,QV ⟩ = ⟨Mu, V ⟩ = 0 (4.23)
for all V ∈ Rn×c. Consider the m-geodesic connecting p with T (W ). It intersects T at
T (W ) and we find

⟨dT |W [V ], u⟩ = ⟨T (W ) ⋄Q
[
V

W

]
, u⟩T (W ) = ⟨Q

[
V

W

]
, u⟩ = ⟨ V

W
,Mu⟩ = 0 (4.24)

by using Lemma A.4. With (4.24), m-flatness of (4.22) and e-flatness of T the prerequisites
for the Pythagorean relation of information geometry [7, Theorem 3.8] are met. Using
the cross-entropy H(p, q) = −⟨p, log q⟩ as well as the relative entropy KL(p, q) = ⟨p, log p

q
⟩

and barycenter 1SN
= 1

N
1, we find

H(T (W )) = H(T (W ), 1SN
)−KL(T (W ), 1SN

)
= logN −KL(T (W ), 1SN

) (4.25)

and consequently

H(p) = H(p, 1SN
)−KL(p, 1SN

) (4.26)
= logN −KL(p, 1SN

) (4.27)
= H(T (W )) + KL(T (W ), 1SN

)−KL(p, 1SN
) (4.28)

(∗)= H(T (W )) + KL(T (W ), 1SN
)−KL(p, T (W ))−KL(T (W ), 1SN

) (4.29)
= H(T (W ))−KL(p, T (W )) (4.30)

by the Pythagorean relation (∗). Therefore H(p) ≤ H(T (W )) with equality only for
p = T (W ) which shows the assertion.

In general, infinitely many joint distributions have the same collection of marginal
distributions W ∈ W . Proposition 4.2 shows that T precisely selects the least informative
one among them. This situation is illustrated in Figure 4.1.

Theorem 4.1 expresses an intricate relationship between the product Fisher-Rao geom-
etry of W and the regular Fisher-Rao geometry of SN . A similar compatibility is found
between the lifting map (2.45) on W and its analog on SN .
Lemma 4.3 (Lifting Map Lemma) Let S ∈ W and V ∈ Rn×c. Then the mappings
T,Q given by (4.5) satisfy

T
(

expS(V )
)

= expT (S)

(
Q(V )

)
, (4.31)

where expS on the left is given by (3.29) and expT (S) on the right naturally extends the
mapping (2.45).
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Figure 4.1: Marginals distributions W = (W1,W2) and two possible conforming joint
distributions. Joint distribution values are scaled by a factor of c for visual clarity. Left:
A randomly generated joint distribution of W1 and W2. Right: The maximum-entropy
joint distribution T (W ) of W1 and W2.

Proof. We have T (exp(V )) = exp(Q(V )) (without subscripts, i.e. applying the exponential
function componentwise), because for any multi-index γ

exp(Q(V ))γ = exp
(
Q(V )γ

)
= exp

( ∑
i∈[n]

Vi,γi

)
(4.32a)

=
∏
i∈[n]

exp
(
Vi,γi

)
=
∏
i∈[n]

(
exp(V )

)
i,γi

(4.32b)

= T (exp(V ))γ. (4.32c)

Let D ∈ Rn×n be a diagonal matrix with nonzero diagonal entries. Then T (DR) ∝ T (R)
for any R ∈ Rn×c because

T (DR)γ =
∏
i∈[n]

(DR)i,γi
=
( ∏
i∈[n]

Dii

)( ∏
i∈[n]

Ri,γi

)
∝ T (R)γ. (4.33)

It follows that

T (expW (V )) ∝ T (W ⋄ exp(V )) (4.32)= T (W ) ⋄ exp(Q(V )) ∝ expT (W )(Q(V )). (4.34)

Because both the first and last term in (4.34) are clearly elements of SN , i.e. strictly
positive vectors summing up ot 1, this implies the assertion.

We will also frequently use the following useful identity connecting Q to marginalization.
Lemma 4.4 (Q Adjoint Lemma) M and Q given by given by (4.5) are adjoint linear
maps with respect to the standard inner product, i.e. for each p ∈ RN and each V ∈ Rn×c

it holds that
⟨p,Q(V )⟩ = ⟨Mp, V ⟩. (4.35)
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Proof. Let p ∈ RN and V ∈ Rn×c, then

⟨p,Q(V )⟩ =
∑
γ∈[c]n

pγQ(V )γ =
∑
γ∈[c]n

pγ
∑
l∈[n]

Vl,γl
=
∑
l∈[n]

∑
j∈[c]

∑
γl=j

pγVl,γl
(4.36a)

=
∑
l∈[n]

∑
j∈[c]

Vl,j
∑
γl=j

pγ
(4.5c)=

∑
l∈[n]

∑
j∈[c]

Vl,j(Mp)l,j (4.36b)

= ⟨Mp, V ⟩. (4.36c)

The central result of this chapter is stated next. It answers the second introductory
question by demonstrating that the embedding T : W → SN maps assignment flows on
W to single-population replicator dynamics on SN by a simple transformation of payoff
functions.
Theorem 4.5 (Multi-Population Embedding Theorem) For any payoff function
F : W → Rn×c, the multi-population replicator dynamics

Ẇ = RW [F (W )], W (0) = W0 (4.37)

on W is pushed forward by T to the replicator dynamics

ṗ(t) = Rp(t)F̂
(
p(t)

)
, p(0) = T (W0), F̂ = Q ◦ F ◦M, (4.38)

on SN .

Proof. We first show that, for any W ∈ W , the differential of T and the replicator operator
are related by

dT |W [RW [X]] = RT (W )Q[X], for all X ∈ Rn×c and W ∈ W . (4.39)

Let γ ∈ [c]n be an arbitrary multi-index. Because of RW [X] ∈ T0W , Lemma A.4 implies

dTγ|W [RW [X]] = Tγ(W )Qγ

[
RW [X]
W

]
= Tγ(W )

∑
i∈[n]

(RW [X])i,γi

Wi,γi

. (4.40)

Due to (RW [X])i,γi
= Wi,γi

(Xi,γi
− ⟨Xi,Wi⟩), the sum can be written as∑

i∈[n]

(RW [X])i,γi

Wi,γi

=
∑
i∈[n]

(
Xi,γi

− ⟨Xi,Wi⟩
)

= Qγ[X]− ⟨X,W ⟩. (4.41)

Additionally using the relation W = M [T (W )] due to (4.6), and applying Lemma 4.4 gives

⟨X,W ⟩ = ⟨X,M [T (W )]⟩ = ⟨Q[X], T (W )⟩. (4.42)

Collecting all expressions, we have

dTγ|W [RW [X]] = Tγ(W )
(
Qγ[X]− ⟨Q[X], T (W )⟩

)
=
(
RT (W )Q[X]

)
γ

(4.43)

which shows (4.39). Now, denoting p = T (W ) ∈ SN we directly establish (4.38)

ṗ = dT (W )[RW [(F ◦M)(p)]] = Rp[(Q ◦ F ◦M)(p)] = Rp[F̂ (p)]. (4.44)
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Intuitively, the structure of F̂ in (4.38) can be seen as follows. The joint population
state p ∈ SN is first marginalized and payoff F (Mp) is computed from the marginal
multi-population state. Theorem 4.5 now shows that when multi-population state W ∈ W
is seen as factorizing joint population state p ∈ SN according to p = T (W ), then the
payoff gained in state W is transformed by Q to induce replicator dynamics of the joint
population state.

In the following, leading examples will be matrix games, i.e. linear payoff functions
that model two-player interactions. Note, however, that Theorem 4.5 applies to arbitrary
nonlinear payoff functions.

Figure 4.2: The embedded submanifold T ⊆ SN . For two marginal distributions, this is
known as the Wright manifold [95, Section 18.8], [40].

4.2 Multiple Populations and Multiple Games
Because both M and Q are linear operators, generalized matrix games on multiple
populations reduce to simple matrix games of the joint population state exactly if the
payoff F is a linear function of the multi-population state. Section 3.3.4 lists S-flows and
EGN as examples of assignment flows which satisfy this criterion. Let

A ∈ Rnc×nc (4.45)

be an arbitrary payoff matrix for the vectorized state. Then by Lemma 4.4 and Theorem 4.5,
the embedded dynamics in T ⊆ SN read

ṗ(t) = Rp(t)[QAQ⊤p(t)], p(0) = T (W0). (4.46)
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Table 4.1 summarizes the scenarios discussed in the following, each special cases of
(4.46) with different payoff matrices A. We only list simple instances of each game for ease
of exposition, making the structure of interaction more immediately apparent.

Table 4.1: Structure of payoff (4.45) for simple instances of different games.

S-Flow EGN Multi-Game
Payoff A = Ω⊗ Ic A = Ω⊗B⊤ A = In ⊗B⊤

In particular, the multi-game dynamics of [87] can also be written as a matrix game in
SN . Given matrices A(i) ∈ Rc×c, i ∈ [n], it is defined by

ṗ(t) = Rp(t)[Ap(t)], p(0) = p0, Aα,β =
∑
i∈[n]

A
(i)
αi,βi

. (4.47)

The following lemma shows that (4.47) has a simple shape within our formalism.

Lemma 4.6 The payoff matrix in (4.47) can be written as A = QAQ⊤ where A denotes
the block diagonal matrix with diagonal blocks A(i).

Proof.

(QAQ⊤)α,β = ⟨eα, QAQ⊤eβ⟩ = ⟨Q⊤eα, AQ
⊤eβ⟩ (4.48a)

=
∑
i∈[n]
⟨eαi

, A(i)eβi
⟩ =

∑
i∈[n]

A
(i)
αi,βi

(4.48b)

In the simplest case, if all single-game payoff submatrices are the same A(i) = B ∈ Rc×c,
then multi-game dynamics have payoff A = In ⊗B⊤ as listed in Table 4.1. It was shown
by [87] that the multi-game dynamics (4.47) do not generally decompose into individual
single-game dynamics, unless the initialization is on the Wright manifold (see Figure 4.2).
The set T ⊆ SN defined by (4.5a) is a generalization of the Wright manifold for n > 2
and Theorem 4.5 generalizes the decomposition of multi-game dynamics to more than two
populations. For p(0) ∈ T , the dynamics (4.47) are the embedded dynamics of

ṡ(t) = Rs(t)[As(t)], s(0) = Mp(0) (4.49)

by Lemma 4.6 and Theorem 4.5. For block diagonal A, (4.49) is a collection of non-
interacting single-game replicator dynamics

Ẇi(t) = RWi(t)[A(i)Wi(t)], Wi(0) = (Mp(0))i, i ∈ [n] (4.50)

in accordance with the findings of [87] for the specific case n = 2.
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4.3 Tangent Space Embedding
Assignment flow evolve in the curved space W and the usual parameterization in ambient
coordinates or m-coordinates of information geometry is subject to simplex constraints.
For this reason, it is desirable in numerical computations to instead parameterize them
in the tangent space T0W, which is a flat and unconstrained vector space. Recall from
Theorem 3.3 that one such parameterization reads

W (t) = exp1W
(V (t)) (4.51a)

V̇ (t) = Π0F (exp1W
(V (t))), V (0) = exp−1

1W
(W0). (4.51b)

With regard to the embedding Theorem 4.5, it turns out that analogous to the
association of assignment matrices W ∈ W with factorizing joint distributions T (W ) ∈ SN ,
Q assumes a corresponding role for tangent vectors in T0W .
Theorem 4.7 (Tangent Space Embedding Theorem) The assignment flow tangent
space dynamics

V̇ = Π0F
(

exp1W
(V )

)
, V (0) = V0 (4.52)

on T0W is pushed forward by Q to the tangent space replicator dynamics

U̇ = Π0F̂
(

exp1N
(U)

)
, U(0) = Q(V0), F̂ = Q ◦ F ◦M (4.53)

on T0SN .

Proof. Denoting U = QV and using the lifting map (Lemma 4.3), we directly compute

U̇ = QV̇ = QΠ0F
(

exp1W
(V )

)
(4.54a)

= Π0QF
(

exp1W
(V )

)
by Lemma A.3 (4.54b)

= Π0QF
(
(M ◦ T )

(
exp1W

(V )
))

by (4.6) (4.54c)

= Π0QF
(
M exp1N

(QV )
)

by Lemma 4.3 (4.54d)

= Π0QF
(
M exp1N

(U)
)

(4.54e)

= Π0F̂
(

exp1N
(U)

)
. (4.54f)

Pushforward via Q thus preserves the shape of (4.52) up to the same fitness function
transformation F̂ = Q ◦ F ◦M from Theorem 4.5.

The set imgQ ⊆ T0SN contains exactly those tangent vectors corresponding to assign-
ments T ⊆ SN via lifting, because T (W ) = T (exp1W

)(V ) = exp1N
(QV ) for any W ∈ W

and V = exp−1
1W (W ) by Lemma 4.3. In particular, U evolves in the linear subspace

img
(
Π0 ◦Q

)
⊆ T0SN . (4.55)
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This linear structure is reason to assume the study of tangent space flows (4.53) is easier
than directly studying assignment flows (3.33) in some situations. In the latter case, the
respective domain T ⊆ SN is the (curved) set of rank-1 tensors in SN .

Several applications have been proposed for the replicator dynamics of Section 4.2
including as a model of human brain functioning [134], collective learning [181], epileptic
seizure onset detection [83], task mapping [135] and collective adaptation [180]. Assignment
flows have been applied recently to the segmentation of digitized volume data under layer
ordering constraints [190] as well as for unsupervised image labeling tasks, employing
spatial regularization [231, 228]. These small sample of examples illustrate that replicator
dynamics can act as powerful data models in diverse applications. In situations where only
partial knowledge about the system is available, system parameters may also be learned
from data as discussed in Section 3.3.3.

4.4 Asymptotic Behavior
A central topic in population dynamics is the study of how the properties of the underlying
game characterized by the payoff function relate to steady states of the dynamical model.
In this section, we describe how

• Nash equilibria (NE) and

• Evolutionarily stable states (ESS)

of multi-population games and their replicator dynamics behave under the embedding
(4.5a). Nash equilibria for multi-population games are population states at which no agent
(in any population) has payoff to gain from unilaterally switching strategies.
Definition 4.8 (Nash Equilibrium) Let W, the closure of W be the set of multi-
population states (n populations, c strategies) and let F : W → Rn×c be the payoff for a
multi-population game. The set of Nash equilibria of F is defined as

NE(F ) = {W ∈ W | ∀i ∈ [n], ∀j ∈ supp(Wi), ∀k ∈ [c] : F (W )i,j ≥ F (W )i,k} (4.56)

Definition 4.8 naturally extends the classic notion of Nash equilibrium to multi-
population games. Nash equilibria are preserved if the multi-population game is embedded
as specified by Theorem 4.5.
Theorem 4.9 (Embedded Nash Equilibria) Let F : W → T0W be a multi-population
game on W and F̂ = Q ◦ F ◦M be the related population game on SN . Then

T
(

NE(F )
)

= NE(F̂ ) ∩ T . (4.57)

Proof. Let W ∈ NE(F ) and let α ∈ supp(T (W )) be arbitrary. Then

F̂ (T (W ))α = (QF (W ))α =
∑
l∈[n]

Fl,αl
(W ) (4.58a)

≥
∑
l∈[n]

Fl,βl
(W ) = F̂ (T (W ))β, ∀ β ∈ [c]n, (4.58b)
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because αl ∈ supp(Wl), ∀l ∈ [n], by Lemma A.2 and W is a Nash equilibrium of F . This
implies T (NE(F )) ⊆ NE(F̂ ) ∩ T . Conversely, let p ∈ NE(F̂ ) ∩ T have shape p = T (W )
and let αl ∈ supp(Wl), ∀l ∈ [n]. Then α ∈ supp(p) by Lemma A.2 and∑

l∈[n]
Fl,αl

(W ) = F̂ (p)α ≥ F̂ (p)β =
∑
l∈[n]

Fl,βl
(W ), ∀ β ∈ [c]n, (4.59)

because p is a Nash equilibrium of F̂ . Choose β ∈ [c]n such that it matches α at all
positions but i ∈ [n]. Then (4.59) implies Fi,αi

(W ) ≥ Fi,βi
(W ) for arbitrary βi ∈ [c] which

shows NE(F̂ ) ∩ T ⊆ T (NE(F )).

Definition 4.10 (Evolutionarily Stable State (ESS)) A multi-population state W ∗ ∈
W is called an evolutionarily stable state (ESS) of a game F : W → Rn×c, if there is an
environment U ⊆ W of W ∗ such that

⟨W −W ∗, F (W )⟩ < 0, ∀W ∈ U \ {W ∗}. (4.60)

This generalization of the classic ESS [191] to multi-population settings is called
Taylor ESS by [177]. A property to recommend Definition 4.10 over the weaker notion of
monomorphic ESS [50] is presented next.
Theorem 4.11 (Embedded ESS) Let F : W → Rn×c be a multi-population game. Then
W ∗ is an ESS of F exactly if there exists an environment U ⊆ T of T (W ∗) such that

⟨p− T (W ∗), F̂ (p)⟩ < 0, ∀ p ∈ U \ {T (W ∗)}, (4.61)

where F̂ = Q ◦ F ◦M denotes the embedded single-population game on SN as specified by
Theorem 4.5.

Proof. Since U ⊆ T and T is continuous, we may write p = T (W ) for W in an environment
M(U) ⊆ W of W ∗. (4.61) then reads

⟨T (W )− T (W ∗), F̂ (T (W ))⟩ = ⟨T (W )− T (W ∗), QF (MT (W ))⟩ (4.62a)
= ⟨M(T (W )− T (W ∗)), F (W )⟩ (Lemma 4.4) (4.62b)
= ⟨W −W ∗, F (W )⟩ (4.62c)

and the last row is strictly smaller than 0 for all W ∈M(U) \ {W ∗} exactly if W ∗ is an
ESS of F according to Definition 4.10.

One useful aspect of Theorem 4.5 is that it formally reduces multi-population replicator
dynamics to single-population ones. This enables us to transfer analysis of e.g. asymptotic
behavior from the single-population to the multi-population setting. We first summarize
standard results on the asymptotic behavior of replicator dynamics derived from a potential
function and refer to [177] for a comprehensive overview.
Theorem 4.12 (Replicators converge to NE) Let Ĵ : Sc → R be a C1 potential such
that the induced payoff function F̂ = Π0∇Ĵ is Lipschitz on Sc. Then for any internal point
p0 ∈ Sc, the replicator dynamics

ṗ(t) = Rp(t)[F̂ (p)], p(0) = p0 (4.63)

converge to a Nash equilibrium.
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Proof. Because F̂ is Lipschitz, forward trajectories of the dynamics (4.63) are unique by
the Picard-Lindelöf theorem. The potential Ĵ is a strict Lyapunov function for replicator
dynamics and unique forward trajectories converge to restricted equilibria [94, 178]. In
general, there may exist restricted equilibria which are not Nash equilibria. In game
theory, this property of replicator dynamics is called a lack of Nash stationarity. However,
no internal trajectory converges to any of these points [28]. The solution trajectories of
(4.63) are internal trajectories because p0 is an internal point and Sc is invariant under all
replicator dynamics with Lipschitz payoff function for finite time. The latter is clear from
the tangent space parameterization of Theorem 3.3.

There is a simple relationship between potential functions in the multi-population and
single-population settings.
Lemma 4.13 (Potential Embedding) If F : W → T0W has potential J , then F̂ =
Q ◦ F ◦M has potential Ĵ = J ◦M .

Proof. For Ĵ(p) = (J ◦M)(p), we directly compute

∇Ĵ(p) = (DM(p))⊤∇J(W ) = (M)⊤ ◦ ∇J(W ) = (Q ◦ ∇J ◦M)(p) (4.64)

by denoting W = M(p) and using Lemma 4.4.

We can now use the embedded potential of Lemma 4.13 and embedded Nash equilibria
of Theorem 4.9 to generalize the findings of Theorem 4.12 to multiple populations.
Theorem 4.14 (Multi-Population Replicators converge to NE) Let J : W → R be
a C1 potential such that the induced payoff function F = Π0∇J is Lipschitz on W. Then,
for any internal point W0 ∈ W, the multi-population replicator dynamics

Ẇ (t) = RW (t)[F (W )], W (0) = W0 (4.65)

converge to a Nash equilibrium.

Proof. Let p(t) = T (W (t)). Then p(t) follows the single-population replicator dynamics
(4.38) by Theorem 4.5 which are induced by the embedded potential Ĵ(p) = J ◦M due to
Lemma 4.13 and start at the interior point T (W0) of SN . By Theorem 4.12, p(t) converges
to a NE of F̂ = Π0 ◦Q ◦F ◦M on SN . Since p(t) = T (W (t)) ∈ T for all times t, the limit
point necessarily lies in the closure of T . Theorem 4.9 then shows the assertion.

By [178, Proposition 3.1] all Nash equilibria satisfy the KKT optimality conditions
for maximizing J subject to simplex constraints. If J is concave, the KKT conditions
are sufficient optimality conditions and thus (4.63) converges to a local maximizer. In
addition, W is a Nash equilibrium exactly if F (W ) lies in the normal cone of the state
space at W [86, 150]. Thus, convergence of (4.63) to a boundary point which is not an
extremal point only occurs if the trajectory reaches the boundary exactly perpendicularly.
For assignment flows, it has been known that convergence to a non-extremal point of W
is an unusual occurrence. In fact, this behavior is not observed at all in the numerical
solution of labeling problems for real-world data. [11] thus conjectured that convergence to
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a non-extremal point only occurs for a null set of initial population states. This was shown
to be true for non-negative, linear fitness functions derived from a quadratic potential [227],
which we recalled as Theorem 3.2. From a game-theoretical perspective, only extremal
points can be ESS under the posed conditions.

Note that the content of Theorem 4.14 is likely known to experts. We present this
construction to illustrate the power of the formalism around Theorem 4.5, providing a
mathematical toolset to reduce the analysis of multi-population replicator dynamics to
single-population ones.
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5 Discrete Joint Distributions

Recall the data labeling scenario described in Section 3.3. Given n data vectors, each from
a metric space F , the task is to infer a distribution of classes on n nodes. More formally,
the central object of interest is the joint distribution

µLD ∈ P(Fn × [c]n) (5.1)

of labeled data. In Section 3.3, we have focused on the conditional distributions

µ(·|x) ∈ P([c]n) ≡ SN (5.2)

of labelings given data under the assumption that a labeling is deterministically associated
with each collection of data vectors x ∈ Fn, restricting µ(·|x) to a discrete Dirac measure.
Here, we go one step further and discuss representation and learning of general distributions
p ∈ SN .

In applications, p may occur as a conditional measure (5.2). This is illustrated in
Figure 5.1. The image on the left depicts an ambiguous subject. Each pixel of the image is
associated with a node of G, carrying the color of the pixel as a feature in some color space
F . The data distribution (5.1) is a distribution of semantically segmented images, i.e. each
class in [c] is a semantic class of image content (cat, lion, background, ...). If (5.2) were
discrete Dirac distributions, each image would have a deterministic semantic segmentation.
In the situation of Figure 5.1 however, the image can not be deterministically segmented,
because there is ambiguity about the displayed subject. Suppose the subject could be cat
or lion with equal probability. Then µ(·|x) is a mixture of two equally weighted discrete
Dirac distributions. We will discuss a specific approach to approximating distributions
similar to this mixture in Section 5.2. Samples from our model are shown as segmentations
in the first row. Even in this comparatively simple case, the distribution p of interest does
not factorize into marginals. Recalling the notions of Chapter 4, there does not exist a
W ∈ W such that p = T (W ). An approximation is the product of marginal distributions
T (Mp). Samples from this distribution are shown in the second row of Figure 5.1. Clearly,
this does not capture the nature of the sought data distribution, because it is unable to
properly represent the dependencies between graph nodes.

1This image was created by DALL-E 2 [166].

57
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Figure 5.1: Image segmentation of an ambiguous subject1(cat or lion with equal probability).
First row: Samples from our approximation of the data distribution p ∈ SN , which couples
subject pixels. Second row: Samples from, the product of marginal distributions T (Mp),
which amounts to a pixel-wise independence assumption and therefore fails to represent
spatial context.

The distribution p ∈ SN of interest may also occur directly as a data distribution,
without associated features. An example are generative models of natural-language text.
Suppose text is tokenized with a vocabulary of size c and consider token sequences of
length n. In practice, n may be called context length in the sense that dependencies
between tokens are only modelled if they occur at distance at most n from each other in a
corpus. The joint distribution of tokens in a context window of size n is a distribution
p ∈ SN . This p is a data distribution of interest with no associated features.

Probabilistic models for context-sensitive decision making and structured prediction
have been a focal point of research during the last decades. Major paradigms for represent-
ing complex probability distributions include Gibbs distributions, probabilistic graphical
models [214, 144] and measure transport using push-forward maps parameterized by neural
networks [173, 109]. In this chapter, we discuss a modelling approach for representation
and learning of complex joint distributions based on assignment flows. As outlined in
Chapter 3, assignment flow approaches combine probabilistic state spaces akin to relaxation
domains of probabilistic graphical models with parameterized dynamical systems akin to
the ones used for measure transport.

Any probability distribution over discrete variables can be represented as a point in
the meta-simplex SN . The embedded submanifold T = T (W) contains all factorizing
distributions. We leverage the geometric understanding of factorizing distributions built
in Chapter 4 to enable efficient parameterization of larger classes of joint distributions
which do not factorize. The basic underlying idea is that T is curved and thus, means of
points in T with respect to m-geometry of SN are mixture distributions which generally
lie outside of T . We summarize the properties of T underlying this construction in the
following lemma.
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Lemma 5.1 (Shape of T ) T is an e-flat submanifold of SN which is non-convex as a
subset of RN .

Proof. The lifting map lemma 4.3 gives

T (exp1W
(V )) = exp1SN

(QV ), ∀V ∈ T0W . (5.3)

Since exp1W
: T0W →W is surjective onto W , (5.3) characterizes T = T (W) as the image

of the linear subspace imgQ ⊆ T0SN under exp1SN
: T0SN → SN . Thus, T is flat in

e-coordinates on SN . The subspace imgQ has dimension at most n(c − 1) because Q
is linear and T0W has dimension n(c − 1). To see that T is not convex, note that the
extreme points of W are bijectively mapped to the extremal points of SN by T . Suppose
T was convex. Then T contains the convex hull of every subset of T . But the convex hull
of the extremal points of SN contains all of SN , contradicting the fact that T has lower
dimension than SN .

Since SN is a convex set, every point of SN can be represented as a mixture of extremal
points. These extremal points in turn correspond to discrete Dirac distributions and all of
them lie in the closure of T . Thus, in principle, every distribution in SN can be represented
as a mixture of points in (the closure of) T . However, such a representation may require a
combinatorial number of mixture components, making it intractable.

To alleviate this issue, we propose to model points p ∈ SN as means over parameterized
continuous distributions T♯ν ∈ P(T ). There are many possible ways of parameterizing
the underlying ν ∈ P(W). Here, we consider two approaches based on measure transport
via assignment flows. The first is a randomized ODE: a distribution over parameters is
learned, each generating a different ODE. The second is a normalizing flow: a deterministic
dynamical system is learned which transports a reference distribution of initial states
over time. In Section 5.1, we introduce both methods. In Section 5.2, we approximate a
given energy-based model by learning a randomized assignment flow. Here, convergence
to discrete Dirac measures is crucial to the underlying entropy approximation and we
restrict the learned dynamics accordingly to ensure convergence. To achieve this restriction,
we work with a randomized ODE approach. In Section 5.3, we turn to the problem of
approximating data distributions which are only accessible through a dataset of samples.
In this case, convergence to discrete Dirac distributions is a second priority and we choose
the normalizing flow approach which restricts the learned vector fields as little as possible.

Over the last decades, a range of variational approximations [22] have been developed
for the problems of inference and parameter learning when modelling joint distributions
of coupled random variables. The most basic one, the so-called (‘naive’) mean-field
approximation [214, Section 5], minimizes relative entropy between a fully factorized
distribution and the intractable target distribution. More advanced structured mean-
field approaches include the well-known Bethe- and Kikuchi approximations and related
algorithms for approximating marginals of the target distribution by belief propagation
[155], [214, Section 4], convexified Bethe approximations [213, 89] and related methods in
statistical physics, like the cavity method [170]. Since our approach is based on a geometric
understanding of factorizing distributions, the mean-field approximation is a natural first
point of comparison.
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We point out that our approach to probabilistic modeling and inference, by convex
combination of extreme points of compact convex sets of probability distributions, is not at
all new in mathematics, but in fact extends far beyond the scenarios with discrete random
variables considered here [65]. However, our approach to constructing these representations
is novel.

5.1 Parameterization of Joint Distributions
Our goal is to model the joint distribution p ∈ SN of n > 0 discrete random variables,
each taking values in [c]. The embedding T : W → SN introduced in Chapter 4 enables to
define q ∈ SN conditioned on an assignment matrix W ∈ W by the identification

q(γ|W ) = T (W )γ, γ ∈ [c]n. (5.4)

We can then make the ansatz

qp(γ,W ) = q(γ|W )νp(W ) (5.5)

for some distribution νp ∈ P(W) parameterized by p. Marginalization yields the model
distribution

qp(γ) =
∫
qp(γ,W )dW =

∫
q(γ|W )νp(W )dW = EW∼νp [T (W )γ]. (5.6)

As was outlined above, the parameterization (5.6) can in principle represent any joint
distribution of discrete random variables. In practice, its representation ability depends
on the chosen parameterization of νp ∈ P(W). Recall the most general definition of
assignment flows with parameterized payoff function

Ẇ (t) = RW (t)
[
Fp

(
W (t)

)]
, W (0) = W0 (5.7)

from Section 3.3 as well as the flow map ψp(W0, t) generated by (5.7). The following
sections describe two parameterizations of νp which build on (5.7).

5.1.1 Randomized Assignment Flows
Suppose we have chosen a parameterized shape of payoff function Fp : W → Rn×c. If the
parameters p are taken to be a random variable with distribution ρ on some parameter
space, this turns ψp(W0, t) into a random variable. We now fix an initialization W0 ∈ W
and define νp ∈ P(W) as the distribution of ψp(W0, t). Since this distribution still varies
over time t > 0, we denote it νp(t).

If we fix a finite integration time 0 < t < ∞, drawing samples from qp amounts to
drawing a set of parameters p ∼ ρ, integrating (5.7) numerically to compute Wt = ψp(W0, t)
and finally drawing a sample γ ∈ [c]n from the categorial distribution T (Wt). In contrast,
if we use infinite integration time t→∞ and we can guarantee that (almost) every draw of
parameters p ∼ ρ generates an integral curve {ψp(W0, t)}t>0 that approaches an extremal
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Figure 5.2: Visualization of 1000 samples from the target distribution (blue point). Each
sample is associated with an embedded integral curve T (W (t)) (4.5a) of the assignment
flow ODE (5.7) on the Wright manifold of factorizing distributions T ⊆ S4. The flow
pushes forward a standard Gaussian reference distribution on the tangent space T0W
at the barycenter (red point), which is lifted to T and transported to extremal points,
corresponding to class configurations via (3.21).

point of W, then the second sampling step becomes trivial due to the correspondence
(3.21) of extremal points with discrete Dirac distributions. A specific choice of payoff
function and parameter distribution which meets these requirements is specified next.
Theorem 5.2 (Convergence of Embedded S-Flow) Let Ω = max(Z+Z⊤, 0)+ϵIn, Z ∈
Rn×n, ϵ > 0, where the entries of Z follow a multivariate normal distribution and
maximization is componentwise. Then the embedded S-flow

ṗ(t) = Rp(t)[QΩMp(t)], p(0) = T (W0) (5.8)

converges to a discrete Dirac measure δγ(Ω) for every draw of Ω and almost every initial-
ization W0 ∈ W.

Proof. For the given shape of Ω, the assumptions of Theorem 3.2 ([227, Theorem 2]) are
met, which guarantees that the solution W (t) of the S-flow (3.56) converges to an integral
solution for almost every initialization W0 ∈ W . Because T bijectively maps the corners of
W to the corners of SN , the assertion then follows from the embedding theorem 4.5.

5.1.2 Continuous Normalizing Assignment Flows
An established method for representing complex multimodal distributions is by applying a
parameterized bijective transformation to a tractable reference measure [173, 109]. The
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flow of an ordinary differential equation is a bijective mapping on its domain by the Picard-
Lindelöf theorem, provided that the driving vector field satisfies a Lipschitz condition.
This is the underlying idea of continuous normalizing flows (CNFs) [43], which employ
vector fields defined by deep neural networks. The state space is usually Euclidean and
the reference distribution is typically chosen as a normal distribution, which justifies the
name ‘normalizing flow’. In order to parameterize a distribution νp ∈ P(W), we can first
define a simple reference measure νn0 ∈ P(W) as the distribution of initializations W0 for
(5.7). To this end, first choose an orthonormal basis of the tangent space T0S and define
the linear map

H : Rn(c−1) → T0W (5.9)
which associates coordinates in this basis with tangent vectors. Now define

ν0 = (exp1W
◦H)♯N0 (5.10)

for standard normal distribution N0 ∈ P(Rn(c−1)). The reference measure νn0 is simple in
the sense that sampling and likelihood evaluation under νn0 are numerically tractable.

After fixed time t > 0, a parameterized model distribution is found as

νp = ψp(·, t)♯νn0 ∈ P(W). (5.11)

The parameters p in (5.11) are not a random variable as in Section 5.1.1. They can be
chosen freely as parameters of a payoff function Fp driving the dynamics (5.7). This
allows for much flexibility in the choice of payoff functions, including deep neural networks.
We call the measure transport approach (5.11) continuous normalizing assignment flows
(CNAF).

Figure 5.2 shows samples from a CNAF as integral curves on T ⊆ SN . It represents a
target distribution (blue) in SN which is the joint distribution of two strongly coupled
binary random variables. The parametrized payoff function Fp of (5.7) is trained in a
stable and efficient way by matching e-geodesic curves on the assignment manifold. Details
of the training procedure will be discussed in Section 5.3.3.

5.2 Approximation of Energy-based Models
As a first application, we consider the approximation of energy-based models. Here, the
probability of every configuration γ ∈ [c]n is given by

pγ = 1
Z∗ exp(−λEγ), Z∗ =

∑
γ∈[c]n

exp(−λEγ). (5.12)

Inverse temperature λ and energy Eγ of each individual configuration is assumed to be
tractable but the partition function Z∗ is intractable, because it contains a combinatorially
large number of summands. We enumerate the energies of all configurations and collect
them in the single vector E ∈ RN . As an instance of (5.12), consider the class of pairwise
graphical models with energy

Eγ =
∑
i∈[n]
⟨pi, eγi

⟩+
∑
ij∈E
⟨eγj

, pijeγi
⟩ pi ∈ Rc, pij ∈ Rc×c (5.13)
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Tying back to the notation of earlier sections, we transform the pairwise term in (5.13) to∑
ij∈E
⟨eγj

, pijeγi
⟩ =

∑
ij∈E
⟨(Q⊤eγ)j, pij(Q⊤eγ)i⟩ = ⟨Q⊤eγ, p

(p)Q⊤eγ⟩ (5.14)

with matrix p(p) ∈ Rnc×nc built from blocks pij ∈ Rc×c, i, j ∈ [n]. Similarly, combining
unary parameters pi into a single vector p(u) ∈ Rnc yields the vectorized form of (5.13)

E = Qp(u) + diag(Qp(p)Q⊤). (5.15)

Suppose one approximates p by a tractable q ∈ SN . This entails minimization of

KL(q, p) =
〈
q, log q

p

〉
= ⟨q, log q⟩ − ⟨q, log p⟩ (5.16a)

= −H(q)− λ⟨q, E⟩+ logZ∗︸ ︷︷ ︸
const

⟨P, 1N⟩︸ ︷︷ ︸
=1

(5.16b)

which mirrors the well-known conjugacy relation [38, Lemma 1.1.3]

log
〈
1SN

, exp(−λE)
〉

= sup
q
−λ⟨E, q⟩ −KL(q, 1SN

). (5.17)

Note that, while KL(p, q) = 0 exactly if p = q, relative entropy is not a symmetric
measure for the difference of both arguments. Thus, the order of arguments in (5.16)
influences the behavior of the approximation. If the model distribution is in the second
argument, the approximation tends to favor covering the mass of p. Each mode will be
covered but possibly not matched very precisely. If the model distribution is in the first
argument as in (5.16), the approximation tends to favor matching the most prominent
modes of p, at the expense of not covering other modes. See [146] for a detailed treatment
of this phenomenon, including generalization to α-divergences. The order of arguments in
(5.16) is not chosen with the goal of inducing mode-seeking behavior. Instead, the choice is
made purely for tractability of the involved quantities. If we switch the order of arguments

KL(p, q) =
〈
p, log p

q

〉
= −H(p)− ⟨p, log q⟩, (5.18)

relative entropy involves the log-likelihood of q in expectation under p, which can not
easily be computed for energy-based models.

Thus, in order to learn q efficiently, we opt to use (5.16) which involves the model
entropy and expected energy as well as their respective gradients. Since the energy of each
individual configuration is tractable, the expected energy of a tractable model is typically
easy to estimate. However, estimating entropy from samples is generally a difficult problem,
which makes tractable entropy a key design criterium for the choice of q. Along this line of
reasoning, the basic mean-field approach is to approximate p by a factorizing distribution
T (W ). The model entropy in (5.16) then simplifies to

−H(T (W )) = ⟨T (W ), log T (W )⟩ = ⟨T (W ), Q logW ⟩ = ⟨W, logW ⟩ (5.19)
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by Lemma 4.4. Because both the barycenter 1SN
of SN and every extremal point of SN is

a factorizing distribution, the mean-field approximation generally works best if either (a)
all configurations have close to the same probability or (b) p is close to a discrete Dirac
distribution. The first scenario is called high temperature regime in statistical physics.
High temperature systems 1≫ λ > 0 are dominated by randomness. Even if all modes of p
were known, they are not reliable indicators of system state due to dominating randomness.
In contrast, the second scenario pertains to systems which are essentially deterministic.
It is the challenging medium or low temperature regime in which a more sophisticated
model is typically required – entailing the problem of entropy estimation.

5.2.1 Energy and Entropy
We now aim to approximate p by qp as defined in (5.6). To parameterize νp ∈ P(W), we
choose the randomized assignment flow approach of Section 5.1.1. The reason for this
choice lies in the necessity to approximate model entropy. To achieve an effective estimator,
we will leverage convergence to discrete Dirac distributions by Theorem 5.2 which is easier
to guarantee for randomized assignment flows as opposed to CNAF (Section 5.1.2).

Expected model energy reads

⟨qp, E⟩ = ⟨EW∼νpT (W ), E⟩ = EW∼νp⟨T (W ), E⟩ (5.20)

which amounts to an expected value of mean field energies. Thus, if mean field energy is
tractable, the empirical energy over samples W ∼ νp is an unbiased estimator of model
energy.

We turn to the more challenging problem of entropy estimation. Typically, estimating
model entropy H(q) from samples is difficult because the support | supp q| = s of q is
large compared to the number m of available samples. The support of p can be arbitrarily
large in principle. In fact, as a prerequisite for the Hammersley-Clifford theorem [34,
Thm. 9.1.10], full support has formal merit in Markov random fields. On the other hand,
many situations of practical interest do not benefit from a model with very large support.
For instance, in image segmentation, most configurations of classes on the pixels of an
image will have very little semantic content. In statistical mechanics, full support is
beneficial to model high temperature systems. However, as mentioned above, the behavior
of these systems is dominated by randomness and they are well-described by a mean field
approximation. In contrast, for the challenging medium or low temperature regime, small
support can result in a good approximation.

Suppose the support size s is small compared to the number m of available samples
{γ(k)}k∈[m] drawn from qp. Denote by

q̂ = 1
m

∑
k∈[m]

δγ(k) ∈ SN (5.21)

the empirical distribution of these samples. A classical analysis by [145] shows that the
plugin estimator

H(q) ≈ H(q̂) = −
∑

γ∈supp(q̂)

q̂γ log q̂γ (5.22)
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has bias

E[H(q̂)]−H(q) = −s− 1
2m +O

( 1
m2

)
(5.23)

which leads to the Miller-Maddows bias correction for known support s.
It was shown that the bias-corrected estimator still only achieves consistency if m≫ s

[156] which is far from the optimal rate of m≫ s/ log s [101]. More advanced approaches
also exist [208, 101, 215, 209] which are likely able to achieve better sample efficiency
relative to the support size s. Note that the support of the model distribution q defined in
(5.6) is typically not known, making it difficult to correct the bias of plugin estimators
according to (5.23) or to judge the effectiveness of estimating entropy in this fashion.

In our experiments, we use the support of the empirical distribution (5.21) as a
surrogate. For the problem instances we tested, relatively small support is observed and
we still achieve good approximation of the target distribution. Thus, for the cases studied
here, the estimator (5.22) with bias correction (5.23) appears sufficient. Note that an
unbiased estimator of entropy from samples exists [148] but is not practical for our use
case, because it entails drawing an indeterminate number of samples.

In order to learn parameters p, we would also like an approximation of −H(q̂) to be
differentiable. Suppose, all samples W k drawn from qp were extremal points of W . Then
T (W k) = δγ(k) ∈ SN for some γ(k) ∈ [c]n. The latter discrete Dirac distribution can
equivalently be written as a unit vector eγ(k) ∈ RN . We then find

−H(q̂) =
〈 1
m

∑
k∈[m]

T (W k), log 1
m

∑
k∈[m]

T (W k)
〉

(5.24a)

=
〈 1
m

∑
k∈[m]

eγ(k), log 1
m

∑
k∈[m]

eγ(k)

〉
= 1
m

∑
k∈[m]

log
( 1
m

∑
l∈[m]

eγ(l)

)
γ(k)

(5.24b)

= − logm+ 1
m

∑
k∈[m]

log
( ∑
l∈[m]

eγ(l)

)
γ(k)

(5.24c)

which motivates the approximation

−H(q̂) ≈ − logm+ 1
m

∑
k∈[m]

log
( ∑
l∈[m]

T (W l)
)
γ(k)

(5.25)

for general samples W l ∈ W, i.e. not necessarily extremal points. The assumption of
samples being extremal points results in sparsity of the sum (5.24b). This is crucial for
the development of numerical methods, because general probability vectors in SN can
not be represented numerically without association of some underlying low-dimensional
quantity. Thus, in order for the entropy approximation (5.25) to become exact, we need
to use parameterized measures νp which concentrate on extremal points of W. This is
ensured by convergence of the transporting assignment flow to extremal points.

Note that T (W l)γ(k) above is a product of n numbers in (0, 1). We thus rewrite the
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summands in (5.25) as

log
( ∑
l∈[m]

T (W l)
)
γ(k)

(4.5a)= log
( ∑
l∈[m]

∏
i∈[n]

W l
i,γ(k)i

)
γ(k)

(5.26a)

= log
∑
l∈[m]

exp
( ∑
i∈[n]

logW l
i,γ(k)i

)
(5.26b)

to avoid numerical underflow problems by leveraging a stabilized implementation of the
logsumexp function. Also note that the right-hand side is differentiable.

Once a suitable approximation of p is found by minimizing (5.16) with respect to p,
the model qp can be used for probabilistic inference. Marginal distributions are easily
estimated via

Mqp = EW∼νp [MT (W )] = EW∼νp [W ]. (5.27)

Further, the expectation of any quantity Qϕ with ϕ ∈ Rnc under the learned model can be
inferred by

Eqp [Qϕ] = ⟨EW∼νp [T (W )], Qϕ⟩ = EW∼νp [⟨W,ϕ⟩]. (5.28)

If no such structure is available, any probabilistic inference task Eqp [f ] can still be ap-
proached by drawing samples {W k}k∈[m] from νp, which correspond to system configurations
{γk}k∈[m] ⊆ [c]n by convergence to extremal points. An unbiased estimator is then given
as

Eqp [f ] ≈ 1
m

∑
k∈[m]

f(γk). (5.29)

5.2.2 Experiments
The introductory example in Fig. 5.1 was produced by approximating a Potts model
[10, 164] on the grid graph of image pixels. This was achieved by randomizing EGN
dynamics (3.63), giving A ∈ Rnc×nc the structure of multi-channel convolution with weights
following a multivariate normal distribution. Suitable moments for this normal distribution
together with a suitable flow initialization s0 are the result of a training procedure which
minimizes (5.16). To this end, a reparameterization trick [107] is applied in conjunction
with the approximation (5.25) and bias correction (5.23) where the unknown support s is
replaced by the empirical support ŝ = | supp q̂| smoothed by the mean entropy of node-wise
assignment. Numerical integration of (3.63) via the simple geometric Euler scheme [225]
(step size 0.1, end time 1.0) is unwound and automatically differentiated by PyTorch [158]
which allows to find a local optimum of parameters by employing the Adam optimizer
[106] with step length 0.01. This experiment demonstrates two aspects of the proposed
methodology. First, learning of randomized assignment flows easily scales to image data,
even if we only use a simple discretize-then-optimize approach to compute stochastic
gradients. Second, even though the distribution of parameters p was not constrained to
guarantee convergence of the dynamics (3.63) to extremal points, this behavior is still
often observed in practice and the entropy approximation (5.25) did result in sufficient
gradient precision for learning.
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We further demonstrate the approximation of energy-based models on a small two-
dimensional Ising model, i.e. a system of binary random variables with nearest-neighbor
interaction on a grid graph, governed by a Gibbs distribution of the form (5.12) with a
corresponding energy function E. These systems are classical ones in statistical mechanics
[159]. They prototypically represent a combinatorially large configuration space and long
range correlation at low temperatures. As a consequence, in the presence of an ‘external
field’ [15], i.e. data defining unary potentials, minimizing energy and probabilistic inference
become computationally difficult, even for moderate problem sizes. Such models initiated
research on image segmentation and Bayesian inference [73, 75] and have been stimulating
research on variational approximations for many years [214, 144]. As a consequence, they
define an ideal testbed for empirical validation of our approach.
G is chosen as a 3× 8 grid graph such that the combinatorial partition function and

true marginals can still be computed by brute force. This allows to give numerical values
for the distance to the combinatorial model in terms of relative entropy via (5.16). The
number of classes is c = 2. Unary energy is chosen as −3.0 for the 0-configuration of nodes
on the left boundary and as 3.0 on the right boundary. All other unary energies are zero.
Pairwise energy is set to pij = 7

10 · (1c1
⊤
c − Ic) for each edge.

We approximate this model by the same training procedure as above with reduced
learning rate 5 · 10−3 over 5k iterations. This takes around 21 minutes on a single desktop
graphics card. To guarantee S-flow convergence via Theorem 5.2, we omit label interaction
as afforded by EGN dynamics (3.63) and instead use S-flow dynamics (3.56) with symmetric
matrix Ω ∈ Rn×n parameterized as Ω = max(Z + Z⊤, 0) + 10−3In and entries of Z ∈ Rn×n

following a multivariate normal distribution. We initialize the distribution of Z centered
at 1

201n1⊤
n and with componentwise variance 10−1. In the early stages of optimization,

samples are not integral due to the finite time horizon, but we observe that the sample
entropy gradually decreases over the course of optimization, making the approximation
(5.25) already close to exact for finite time. Once a model is learned through convergence
to a local minimum, samples are guaranteed to approach extremal points of W for t→∞
by Theorem 5.2. In fact, it was shown in [227] that the same integer limit is also found
by rounding after sufficiently large but finite time t which is relevant for numerical
implementation.

As a baseline, we compute a mean field approximation W ∈ W by parameterizing
W = softmax(V ) and using the Adam optimizer to learn V by minimizing the tractable
form of (5.16). This procedure is repeated for 1k initializations drawn randomly from
a standard normal distribution of V ∈ Rn×c and a model with minimal KL distance is
selected from resulting local optima. The true distribution has multiple modes, of which
mean field approximation can only represent a single one. In contrast, our model is able
to capture the multimodality as is apparent from samples (Fig. 5.3), close approximation
of marginals (Fig. 5.4) and low relative entropy (Tab. 5.1).

In the low temperature regime, the mass of p concentrates around its modes. For
this reason, the proposed model – for which small support is computationally beneficial –
actually becomes more effective at lower temperature. This unusual performance char-
acteristic makes our approach promising in challenging structured prediction scenarios
where mean-field approximation fails to capture the structure of interest.
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Figure 5.3: Samples from approximated Ising model. First row: the mean-field baseline.
Second row: our model. This demonstrates that, unlike the mean-field approximation, our
approach can explore multiple modes in the low-temperature regime.

Figure 5.4: Marginals of the true distribution (left), our approximation via randomized
assignment (middle) and the baseline mean-field approximation (right).

Table 5.1: Summary of Ising model approximation. Relative entropy to the true distribution
is computed by brute-force evaluation of the combinatorial partition function. Entropy
of our model is closely approximated by (5.22) with bias correction (5.23) using m = 1M
integer samples.

Model KL Energy Entropy Marginal Difference
AF (ours) 0.599 -1.98 2.56 0.090
Mean Field 1.974 -1.57 1.60 0.198
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5.3 Approximating Empirical Data Distributions
We now turn to the problem of approximating a distribution p ∈ SN , which does not
have a known form as an energy-based model, but a dataset of m samples {γk}k∈[m],
independently drawn from p is given instead. In this case, the order of arguments in the
relative entropy (5.16) chosen in the previous section

KL(q, p) = −H(q)− ⟨q, log p⟩ (5.30)

is no longer tractable, because it requires unknown log-likelihood under p. However, we
can now estimate

KL(p, q) = −H(p)− ⟨p, log q⟩ = −H(p)− Ep[log q] (5.31)

by replacing the expected value on the right hand side with a mean over samples. This
requires that the model distribution q has a density with respect to the Lebesgue measure
and that log-likelihood of data under the model can be optimized for the purpose of
learning q.

5.3.1 Continuous Normalizing Flows
An established approach to address the issue of constructing models with tractable
likelihood is generative modeling with normalizing flows [167, 109, 157, 173]. Suppose we
are working on a Euclidean domain Rd and want to represent a measure q = (ψp)♯N0 ∈
P(Rd) by pushforward of a reference (normal) distribution N0 ∈ P(Rd) under some
invertible, parameterized transport function ψp : Rd → Rd. By a change of variables [24],
log-likelihood of x ∈ Rd under q can be written as

log q(x) = log p(ψ−1
p (x))− log det dψp(x). (5.32)

To build an effective model, we need ψp to be efficiently differentiable and invertible.
Further, since the goal is to learn complex multi-modal distributions, we seek a class of
functions which has high capacity as a data model subject to these requirements. One
popular direct construction are affine coupling architectures [60]. Here, we focus on the
high-capacity class of invertible mappings on Rd defined through neural ordinary differential
equations (nODEs) [43]. Any Lipschitz function fp : Rd → Rd can be employed to define a
vector field with invertible flow map. Evaluation of the inverse flow map is then performed
efficiently through numerical integration backward in time. The instantaneous change of
variables formula [43, Appendix A] clarifies likelihood computation (5.32) in this scenario,
which we recite as the following theorem.
Theorem 5.3 (Instantaneous Change of Variables) Let x(0) be a random variable
with distribution N0 ∈ P(Rd) and let

ẋ(t) = f(x(t)) (5.33)
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be an ODE defining time evolution on Rd. Let ψ(·, t) : Rd → Rd denote the flow of (5.33)
and qt denote the density of ψ(·, t)♯N0 with respect to the Lebesgue measure on Rd. If f is
uniformly Lipschitz continuous, then

∂

∂t
log qt(x) = − tr

(
df(x)

)
(5.34)

for all t ≥ 0 and x ∈ Rd.
For fixed integration time t > 0, Theorem 5.3 can be used to compute the likelihood of

x ∈ Rd under q = qt ∈ P(Rd) as

log qt(x) = log q0(x(0))−
∫ t

0
tr
(
df(x(τ))

)
dτ (5.35)

where q0 is the density of N0 with respect to the Lebesgue measure on Rd and {x(τ)}τ∈[0,1]
is the unique integral curve of (5.33) with x(1) = x. A way to perform numerical evaluation
of (5.35) is by quadrature of the integral. In order to compute the required integrand
values, we first integrate the trajectory x(t) backward in time, starting from x(1) = x.
After reaching x(0), the log-density of N0 at x(0) is available in closed form. It remains to
find a way of efficiently evaluating the Jacobian trace tr

(
df(x)

)
for general functions f .

In particular, if f is a deep neural network and the underlying space is high dimensional
d≫ 1, exact evaluation of the Jacobian trace is comutationally expensive. To remedy this,
[78] propose to use Hutchinson’s trace estimator [99].
Lemma 5.4 (Hutchinson’s Trace Estimator) Let A ∈ Rd×d and ξ ∈ P(R) be any
distribution with mean zero and unit variance. Then

Ev∼ξd⟨v,Av⟩ = trA. (5.36)

Typical examples for ξ in Lemma 5.4 are standard normal or Rademacher distribution.
Applying Lemma 5.4 to estimate the Jacobian trace yields

Ev∼ξd⟨v, df(x)v⟩ = tr df(x). (5.37)

In practice, if f is a deep neural network, the Jacobian action df(x)v can be computed
efficiently by a backward pass through the network. Only a single sample v ∼ ξd is typically
used to approximate the expected value in (5.37) during training. Note that automatic
differentiation of this estimator with respect to parameters of f is still possible in modern
deep learning software, even though evaluation of (5.37) itself requires a backward pass.
For instance, PyTorch [158] can automatically create a compute graph for backpropagation
through f and subsequently differentiate with respect to parameters by traversing the
graph. This ability is crucial for learning continuous normalizing flows in the described
manner, because both discretize-then-optimize and the adjoint sensitivity method described
in Theorem 3.4 require the respective gradient.

Returning to (5.31), continuous normalizing flows make a parametric ansatz fp for the
vector field in (5.33), usually a deep neural network, and learn p by minimizing

KL(p, qp) = −H(p)− Ep[log qp] ≈ −H(p)− 1
m

∑
k∈[m]

[log qp(xk)] (5.38)
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via stochastic gradient-based methods for a dataset {xk}k∈[m] of independent samples
drawn from the target distribution p. The target distribution entropy H(p) is typically
not known. However, since H(p) does not depend on the parameters p, it can be treated
as a constant when learning qp.

5.3.2 Dequantization
While (5.31) applies to discrete data distributions p ∈ SN in principle, it is not immediately
clear how (5.38) is most effectively optimized in this scenario. If we make the ansatz (5.6)
for qp, log-likelihood reads

log qp(γ) = log EW∼νp [T (W )γ]. (5.39)

Suppose the data distribution of interest contains significant coupling between the variables
of different nodes. A strong model for νp should then concentrate probability mass at
extremal points of W , on distributions with small support. To understand this, return to
the introductory example of Figure 5.1. Subject pixels are strongly coupled – if one of
them is assigned the class cat, it is very likely that all other subject pixels are also assigned
cat. A factorizing distribution T (W ) can only produce samples with this behavior, if W is
essentially an extremal point ofW . This is because factorization into marginals amounts to
independent distributions on each node. Unless T (W ) is already close to deterministic, it
represents weak coupling and noisy samples like in the second row of Figure 5.1. However,
complex target distributions p with large diversity of samples are supported on a large
subset of [c]n. Here, large does not necessarily refer to a large fraction of the full support
size cn, but to a large number relative to the size of a sample batch that can practically be
drawn from νp. The combination of these factors leads to difficult optimization of (5.39).
For any batch (W1, . . . ,Wmb

) ∼ νmb
p of size mb, the probability

Pγ∼p
(
γ ∈

⋃
k∈[mb]

suppT (Wk)
)

(5.40)

is small if Wk are extremal points ofW and mb ≪ | supp p|, leading to poor training signal
in (5.38).

A way around this problem is to approximate discrete data distributions by continuous
ones through dequantization. To this end, choose a latent space Fn and an embedding of
class configurations γ ∈ [c]n as prototypical points f ∗

γ ∈ Fn. Suppose the choice of these
points is fixed before training and associate disjoint sets Aγ ⊆ Fn with class configurations
such that they form a partition of Fn and f ∗

γ ∈ Aγ. We can then define the continuous
surrogate model

ρ =
∑
γ∈[c]n

pγUAγ ∈ P(Fn) (5.41)

which represents p ∈ SN as a mixture of uniform distributions, supported on the disjoint
subsets Aγ. The underlying idea is that

Pρ(Aγ) =
∫
Aγ

ρ(y)dy = pγ

∫
Aγ

UAγ (y)dy = pγ (5.42)
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due to the disjoint support of mixture components in (5.41). Denote a continuous model
distribution by ν ∈ P(Fn). Using Jensen’s inequality, we find

−H(ρ)−KL(ρ, ν) =
∫
ρ(y) log ν(y)dy (5.43a)

=
∑
γ∈[c]n

pγ

∫
Aγ

log ν(y)dy (5.43b)

≤
∑
γ∈[c]n

pγ log
∫
Aγ

ν(y)dy (5.43c)

= −H(p)−KL(p, q) (5.43d)

for the discrete model distribution q defined by

qγ =
∫
Aγ

ν(y)dy = Pν(Aγ). (5.44)

Thus, fitting ν to ρ by maximizing log-likelihood of smoothed data drawn from ρ implicitly
minimizes an upper bound on the relative entropy KL(p, q). In practice, drawing smoothed
data from ρ amounts to adding noise to the prototypes f ∗

γk
∈ Fn of discrete data {γk}k∈[m].

A slightly simpler version of the above construction was first proposed by [201]. The
authors focus on image data which, although originally continuous, are only available
discretized into 8-bit integer color values for efficient digital storage. In this case, the
underlying continuous color imparts a natural structure on the set of discrete classes.
Similar colors are naturally represented as prototypes which are close to each other
with respect to some metric on the feature space Fn. Similarly, it is apparent how to
find low-dimensional Euclidean feature spaces with this structure. The necessity for
dequantization in this setting has been noted by [207] who observe that continuous models
reach artificially high likelihood by concentrating mass close to the discrete prototypical
points. The construction of [201] justifies the previously known heuristic of adding noise
to dequantize data. This has since become common practice for training normalizing
flows on image data [60, 175, 8] and was generalized to non-uniform noise distributions by
[92]. The latter work points out that (5.43) learns a continuous distribution with constant
density on each region Aγ . The authors argue that this is an unnatural target for smooth
model distributions and propose a second, conditional measure transport model for the
noise distribution to be learned jointly.

For more general discrete data, it is still desirable to represent structure on the set
of classes when embedding into a latent space, but this structure may not be apparent
to human eyes. As a remedy, [41] present an approach to learning the embedding jointly
with likelihood maximization. They subsequently define the partition of Fn into subsets
Aγ through Voronoi tesselation. A special case of the dequantization method with direct
connection to assignment flows is given by the choice of Fn = Snc = W. The CNAF
parameterization of ν ∈ P(W) proposed in Section 5.1.2 can be combined with Voronoi
tesselation of W . However, the resulting model distribution

qr
p(γ) = PW∼νp(W ∈ Aγ). (5.45)
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according to (5.44) differs from the ansatz

qp(γ) = EW∼νp [T (W )γ] (5.46)

proposed in Section 5.1, unless all samples W ∼ νp are extremal points of W. Recall
that sampling from the model (5.46) amounts to drawing W ∼ νp and subsequently
drawing a class configuration γ ∼ T (W ). In contrast, drawing a sample from (5.45) can
be performed by rounding W to the nearest extremal point, which itself is identified with
a class configuration γ through (3.21). This is because the region Aγ ⊆ W associated
with the labeling γ is the Voronoi cell with anchor point Mδγ ∈ W . For extremal points
W ∼ νp, T (W ) is a discrete Dirac distribution and thus, all samples drawn from T (W )
match the class configuration γ associated via (3.21). This clarifies that (5.46) is equivalent
to (5.45) if νp is a mixture of Dirac distributions on extremal points of W .

The ability to learn an embedding of class configurations as prototypical points f ∗
γ

in a latent space, thereby representing similarity relations between classes, is central to
the approach of [41]. This motivates the question whether such relationships between
classes can also be learned if, as in our approach, the underlying state space W and
(extremal) points associated with discrete class configurations are fixed. Because points
in Sc have a clear interpretation as categorical distributions, we are able to achieve this
goal by extending the payoff function Fp as follows. For some L > 0, let E ∈ RL×c be a
learnable embedding matrix. The columns of E can be seen as prototypical points in the
Euclidean latent space RL. The action of E on extremal points ej ∈ Sc precisely selects
one of these columns, associating it with the class j ∈ [c]. Learning E now allows to
represent relationships between classes in the latent space RL. Let E : Rn×c → Rn×c denote
the linear operator which applies E node-wise. We now choose a parameterized function
F̃p : RL → RL that operates on RL and define the payoff function

Fp = E⊤ ◦ F̃p ◦ E : W → Rn×c. (5.47)

Learning E jointly with other parameters p amounts to learning class relationships in the
latent space RL.

In order to work within the natural geometry of W established and motivated in
Chapter 3, but simultaneously stay close to the Euclidean state spaces predominantly
underlying CNF methods, we can consider the tangent space dynamics equivalent to
assignment flows (5.7) according to Theorem 3.3. The regions Aγ ⊆ W correspond to
convex cones in the tangent space

Ãγ = {V ∈ T0W : Vi,γi
≥ Vi,j ∀i ∈ [n], j ̸= γi} (5.48)

up to overlap of these sets which has vanishing Lebesgue measure in T0W . A complication
associated with viewing CNAF through this lense is that extremal points of W are at
infinity in the tangent space. This motivates to regard

U (γ) = exp−1
1W

(ϵMδγ + (1− ϵ)1W) ∈ T0W , γ ∈ [c]n (5.49)

corresponding to smoothed extremal points of W for some small smoothing constant
0 < ϵ≪ 1. For every choice of ϵ, the sets (5.48) form a Voronoi tesselation of T0W with
anchor points (5.49).
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5.3.3 Flow Matching
We aim to learn discrete data distributions by CNAF, employing either of the param-
eterizations (5.46) or (5.45). The payoff function Fp will be parameterized as a deep
neural network. To this end, likelihood maximization to optimize the bound (5.43) after
dequantization can be used in principle. The most computationally expensive element
of likelihood maximization is forward and adjoint (backward) simulation of assignment
flow integral curves to evaluate the flow map of (5.7) and its gradient. In order to
compute likelihood and its stochastic gradient at sufficient precision, tens of forward
and backward passes through the payoff function network Fp are typically required [43,
78]. To improve scalability, [125] propose flow matching, a simulation-free alternative to
likelihood-based learning. If we had access to a probability path t 7→ πt ∈ P(T0W) such
that π0 = N0 is a reference distribution and π1 = π represents the target distribution by
p = EV∼π[T (exp1W

(V ))] as well as a vector field u : T0W → T0W whose flow-map pushes
forward N0 to πt for every time t ∈ [0, 1], we could learn the payoff function of (5.7)
by matching the flow generated by u. More concretely, returning to the tangent space
parameterization (3.35) of assignment flows

V̇ (t) = Π0Fp(exp1W
(V )), V (0) = exp−1

1W
(W0), (5.50)

flow matching is a regression task which learns p in (5.50) such that the vector field on
the right hand side matches u at every V ∈ T0W .

Without prior knowledge, flow matching appears intractable, because we do not have
access to a probability path or vector field satisfying these requirements. However, a core
contribution of [125] is that flow matching can be performed by matching conditional vector
fields for each data point. For every γ ∈ [c]n, we can design a conditioned probability path
πt(·|γ) such that π0 = N0 and π1(·|γ) ∈ P(T0W) is a tractable distribution concentrated
close to U (γ). Then the marginal probability path

πt(V ) =
∑
γ∈[c]n

pγπt(V |γ) (5.51)

satisfies π0 = N0 and EV∼π1 [T (exp1W
(V ))] closely approximates p. [125, Theorem 1] now

shows that πt in (5.51) is generated by the vector field

ut(V ) =
∑
γ∈[c]n

ut(V |γ)πt(V |γ)pγ
πt(V ) dV (5.52)

where ut(·|γ) generates the conditional probability path πt(·|γ). Strikingly, [125, Theorem 2]
further shows that, if πt has full support on T0W , the conditional flow matching objective

L̃CFM(p) = Et∼U [0,1],γ∼p,V∼π(·|γ)∥Π0Fp(exp1W
(V ))− ut(W |γ)∥2 (5.53)

has the same gradient with respect to p as the intractable flow matching objective

L̃FM(p) = Et∼U [0,1],V0∼π0∥ψ̇p(W0, t)− ut(ψp(W0, t))∥2. (5.54)
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We can further improve on (5.53) by employing a generalization of flow matching
to Riemannian manifolds [42] directly on W. To this end, conditional vector fields
ut(·|γ) : W → T0W are constructed such that their flow transports the reference distribution
along geodesic curves of W . Recall that e-geodesics on W are curves

Wt = expW0(tV ), t ≥ 0 (5.55)

starting at an initial point W0 in direction V ∈ T0W. For given γ ∈ [c]n, we can define
the conditional vector field ut(·|γ) such that every initial point W0 ∈ W , governed by the
reference distribution

π0 = (exp1W
)♯N0 ∈ P(W) (5.56)

is transported to exp1W
(U (γ)) after time t = 1 along the e-geodesic curve W γ

t uniquely
defined by these requirements. This construction ensures that the pushforward measure
π1 ∈ P(W) generated by the marginal flow map closely approximates the target distribution
through p ≈ EW∼π1 [T (W )]. With V0 = exp−1

1W (W0), the respective geodesic curve reads

W γ
t = expW0(t(U (γ) − V0)) = exp1W

(V0 + t(U (γ) − V0)) (5.57)

and we find the sought conditional vector field along (5.57) by differentiation

ut(W γ
t |γ) = RW γ

t
[U (γ) − V0]. (5.58)

Note that (5.58) still depends on the initial point W0 through V0. Further, (5.58) has the
shape of an assignment flow on W, which suggests to make a corresponding assignment
flow ansatz (5.7) with parameterized payoff function Fp for flow matching. By measuring
discrepancy in the Fisher Rao metric on T0W, we find the Riemannian conditional flow
matching (RCFM) objective

LRCFM(p) = Et∼U [0,1],γ∼p,V0∼N0∥RW γ
t
[Fp(W γ

t )]−RW γ
t
[U (γ) − V0]∥2

W γ
t

(5.59a)
= Et∼U [0,1],γ∼p,V0∼N0∥RW γ

t
[Fp(W γ

t )− (U (γ) − V0)]∥2
W γ

t
(5.59b)

inkeeping with the construction of [42].
Learning assignment flows by minimizing (5.59) is efficient and scalable, because no

simulation of integral curves is required. It also allows for much flexibility in choosing a
reference distribution, because only samples from N0 are required for training.

5.3.4 Likelihood Evaluation
After learning a payoff function Fp through minimization of (5.59), we are able to represent
the target distribution through either of the approaches (5.46) or (5.45) without retraining.
In particular, data likelihood is not available during training and differs between both
approaches. Since in both cases, the learned model is built on a continuous normalizing
flow, we can leverage the methods described in Section 5.3.1 to develop methods for
likelihood computation.
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In the first case, the probability of γ ∈ [c]n under the learned model is

qp(γ) = EW∼νp [T (W )γ]. (5.60)

An unbiased estimator for this quantity is easily found by replacing the expectation with
a mean over samples. However, such an estimate is subject to a rare events problem, like
the one described in Section 5.3.2. νp concentrates close to extremal points of W and thus,
estimating (5.60) by a mean over samples is plagued by most samples yielding essentially
vanishing probability T (W )γ . In order to build a more effective estimator, we thus employ
an importance sampling approach. This builds on the idea that samples are most relevant
if they lie in Aγ . For fixed γ of interest, construct a proposal distribution ζ ∈ P(W) which
has full support but is concentrated on Aγ . Details of such a construction are discussed in
Appendix B. We now re-write (5.60) as

qp(γ) = EW∼νp [T (W )γ] =
∫
νp(W )T (W )γdW (5.61a)

=
∫
ζ(W )νp(W )T (W )γ

ζ(W ) dW (5.61b)

= EW∼ζ

[
νp(W )T (W )γ

ζ(W )

]
. (5.61c)

Replacing the last expectation by a mean over importance samples drawn from ζ yields
an effective estimator. In practice, (5.61) is still prone to numerical underflow in high
dimensions. To remedy this, we focus on the log-likelihood instead. A simple aproach is
using Jensen’s inequality which gives

log qp(γ) = log EW∼ζ

[
νp(W )T (W )γ

ζ(W )

]
≥ EW∼ζ [log νp(W ) + log T (W )γ − log ζ(W )]. (5.62)

It turns out that, for the relatively narrow purpose of avoiding numerical underflow, we
can improve on (5.61), avoiding the Jensen gap. To this end, consider importance samples
{Wk}k∈[m] drawn from ζ. Then the sought estimator of log-likelihood reads

log qp(γ) ≈ log 1
m

∑
k∈[m]

νp(Wk)T (Wk)γ
ζ(Wk)

(5.63a)

= − logm+ log
∑
k∈[m]

exp
(

log νp(Wk)T (Wk)γ
ζ(Wk)

)
(5.63b)

= − logm+ log
∑
k∈[m]

exp
(

log νp(Wk) + log T (Wk)γ − log ζ(Wk)
)
. (5.63c)

This simple trick allows stable numerical evaluation of the estimator (5.61) by leveraging
stabilized implementation of the logsumexp function. Note that

log T (W )γ = log
∏
i∈[n]

Wi,γi
=
∑
i∈[n]

logWi,γi
(5.64)

which is not prone to underflow.
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For the second approach (5.45), likelihood under the model reads

qr
p(γ) = PW∼νp(W ∈ Aγ) = EW∼νp(1Aγ (W )) (5.65)

and we can analogously use the estimator

log qr
p(γ) ≈ − logm+ log

∑
k∈[m]

exp
(

log νp(Wk) + log 1Aγ (Wk)− log ζ(Wk)
)

(5.66)

for importance samples {Wk}k∈[m]. Note the conventions log 0 = −∞ and exp(−∞) = 0
in (5.66).

In both cases, the log-likelihood of importance samples under the learned pushfor-
ward distribution νp is required. If log-likelihood under the reference distribution N0
is tractable, this quantity can be approximated by using the methods established in
Section 5.3.1. Specifically, the instantaneous change of variables formula of Theorem 5.3
represents likelihood under the pushforward distribution νp by likelihood under N0 and
a correction for non-vanishing divergence of the transport vector field (5.35). The latter
can be approximated by combining adjoint integration with Hutchinson’s trace estimator
(Lemma 5.4).

5.3.5 Experiments
Simple Discrete Distributions We learn three simple distributions, each a joint
distribution of two coupled random variables. Histograms of samples from the learned
distributions are shown in Figure 5.5. This experiment serves to illustrate that the
approach (5.6) is able to represent coupled random variables, even though every W ∼ νp
only represents a factorizing distribution T (W ) of uncoupled variables. The simplest
example is the joint distribution of two strongly coupled binary random variables shown
as blue dot in Figure 5.2. Our fit to this target distribution is represented by the right
plot in Figure 5.5, showing the (empirical) frequencies of all cn = 4 class configurations.
For this task, we choose Fp as a linear function (of vectorized state) as in (3.63) for a
densely connected graph. The left two images show results of fitting target distributions on
cn = 912 = 8281 class configurations. Here, we choose Fp as a three-layer neural network
with dense linearities, hidden dimensions (256, 256) and ReLU activation.

Generating Image Segmentations In image segmentation, a joint assignment of
classes to pixels is usually sought conditioned on the pixel values themselves. Here, we
instead focus on the unconditional discrete distribution of segmentations, without regard
to the original pixel data. These discrete distributions are very high-dimensional in general,
with N = cn increasing exponentially in the number of pixels. We perform Riemannian
conditional flow matching on W to learn assignment flows (5.7) which approximate this
discrete distribution via (5.6) or (5.45). To this end, we parametrize Fθ by the UNet
architecture of [56] (details in Appendix D.1) and train on the segmentations of Cityscapes
[49], downsampled to c = 8 classes and resolution 128 × 256, as well as MNIST [118],
regarded as binary c = 2 segmentations of 28× 28 pixel images. We pad binarized MNIST
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Figure 5.5: Histogram of samples from our model fitting the joint distribution of n = 2
discrete random variables. Left and middle: c = 91 classes per variable. Right: c = 2
classes per variable. All three plots show joint distribution probabilities. Clearly, the
model is able to fit multi-modal joint distributions which do not factorize into independent
marginals. The plot on the right is the joint distribution shown as blue dot in Figure 5.2.

data to size 32× 32, in order to make it compatible with spatial downsampling employed
by the chosen UNet architecture. Figure 5.6 shows samples from the learned distribution
of Cityscapes segmentations randomly drawn from our model by rounding each sample
W ∼ νp to the nearest extremal point. Figure 5.7 illustrates the difference between samples
from T (W ) as in (5.6) and rounding W to the nearest extremal point as in (5.45) for our
learned distribution of binarized MNIST digits. During training of the model, we use
ϵ = 0.01 in (5.49) for smoothing of training data. Suppose by drawing a sample W ∼ νp
from the learned model, we match a smoothed extremal point W = exp1W

(Uγ), γ ∈ [c]n
exactly. For MNIST, c = 2 classes are available for each node. When drawing γ̂ ∼ T (W ),
the probability of γ̂i ≠ γi for any given i ∈ [n] due to smoothing (5.49) is ϵ− ϵ/c = 0.005.
Based on this rationale, it is to be expected that on average one in 200 nodes is randomly
assigned a different class from the one found by rounding. Accordingly, the binarized
MNIST samples in Figure 5.7 are expected to contain around 322/200 = 5.12 randomly
flipped pixels in the second row, compared to the first.

Figure 5.6: Left: Random samples drawn from our model trained on discrete Cityscapes
segmentation data (c = 8 classes) at resolution 128×256. Right with blue border: Randomly
drawn training data.
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Figure 5.7: Samples from our model of the binarized MNIST data distribution, learned
via RCFM (5.59). First row: W ∼ νp rounded to the nearest extremal point as in (5.45).
Second row: samples from T (W ) as in (5.46). The number of randomly flipped labels is
dependent on the smoothing (5.49) employed in training (ϵ = 0.01). Details of architecture
and training procedure are listed in Appendix D.1.

Numerical Likelihood Evaluation In general, sampling integrals over high-dimensional
domains is a difficult task. We evaluate the effectiveness of importance sampling approaches
of Section 5.3.4 empirically by plotting the relative error of likelihoods computed from
varying number of importance samples. We perform this experiment on our learned model
of binarized MNIST, making the domain of integration (c − 1)n = 1024 dimensional.
The reference value for the integral is computed from 104 samples. Mean and standard
deviation are evaluated over the first 50 data from the MNIST test set. Based on the
evaluation shown in Figure 5.8, we conclude that on the order of 102 to 103 samples are
required to achieve close likelihood approximation for a single datum.

We further compute the average likelihood of all 104 test data. To reduce computation,
we use only 100 samples per datum, expecting that inaccuracy in likelihood evaluation for
single data averages out in the mean. This assumption is based on the observed variance
in Figure 5.8, independence of test data and the rationale that (5.66) merely numerically
stabilizes the underlying unbiased estimator of (5.65). Further, as is the predominant
practice in prior work [78, 41], we only use a single sample when employing Hutchinson’s
trace estimator (Lemma 5.4). The empirical distribution of likelihood for MNIST test
data is shown in Figure 5.9. The empirical mean and standard deviation are 1.70± 0.05
Bits per dimension.

By subjective comparison of the sample quality in Figure 5.7 our testset likelihood
appears low (high Bits per dimension). For comparison, the closely related continuous
normalizing flow of [78] achieves 0.99 Bits per dimension on MNIST. Our method differs
from [78] in a number of ways, including architecture choice and binarization of MNIST
data. We ascribe the discrepancy between likelihoods primarily to the difference in training
objective. [78] train by likelihood maximization, which serves to minimize relative entropy
to the data distribution (5.38). Our flow matching approach by comparison does not
specifically optimize data likelihood. It is thus to be expected that our model does not
achieve the same likelihood and, by extension, does not fit the data as well in terms of
relative entropy, as likelihood-based methods. However, good sample quality in Figure 5.7
indicates that our model has good fit to the data distribution, it merely does not optimize
for relative entropy in particular. Evaluation of generative models in terms of sample
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Figure 5.8: Convergence of importance sampling the integral (5.65) for our generative
model of MNIST data. Mean and standard deviation are evaluated over the first 50 data
from the MNIST test set.

quality and likelihood has been studied by [201]. The authors conclude that both metrics
can be seen as independent in practice, demonstrating that models can simultaneously
achieve high likelihood and poor sample quality.
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Figure 5.9: Empirical distribution of likelihood (Bits/dim) of MNIST test data. The mean
value is 1.70 Bits/dim, standard deviation is 0.05 Bits/dim.
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6 Certified Classification

In this second part of the thesis, we work toward the development of deep learning
methods for structured prediction which are rooted in statistical learning theory. In
Chapter 7, our discussion will culminate in the development of a new PAC-Bayesian risk
certificate for structured prediction. Here, we start with a simpler classification method
and associated risk certificate, illustrating current PAC-Bayesian methodology in the
process and developing some new methods as well. In particular, we make the following
contributions.

1. We construct a specific PAC-Bayesian hypothesis class of classifiers, built on a
partially-randomized architecture which transforms all stochastic parameters affine-
linearly.

2. We investigate different strategies for computing bounds on the expected empirical
risk that are needed for numerical evaluation of PAC-Bayesian risk certificates and
construct a particularly efficient one for our hypothesis class.

Recall the PAC-Bayesian construction presented in Section 2.2. We assume to have access
to a sample

Z = ((X1, Y1), . . . , (Xm, Ym)) ∼ µm. (6.1)

of m > 0 i.i.d. data drawn from an unknown distribution µ ∈ P(X ×Y). Here, we focus on
image classification, so X is a vector space of images and Y = [c] is the discrete set of c > 0
classes. Working within the statistical learning framework of uniform convergence, the
first step is to define a hypothesis class H of functions ϕp : X → Y , each parameterized by
a unique parameter vector p. We assume the space of these parameters is Rd and identify
H with it. Following the PAC-Bayesian construction, we will strategically construct H
as well as distributions π ∈ P(H) and ρ ∈ P(H), respectively called PAC-Bayes prior
and PAC-Bayes posterior to build a self-certified classification method. This means that,
in contrast to the established approach of evaluating a model’s ability to generalize on
held-out test data, our PAC-Bayesian construction simultaneously learns a (stochastic)
classifier and certifies its risk on unseen data from the same distribution. The certificate
comes in the form of a high-probability upper bound on expected model risk under the
posterior.

83
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6.1 A PAC-Bayesian Classifier
Key to our approach is to restrict π and ρ to a subset of distributions which leave most
components of the parameter vector p deterministic. This is similar to the idea of a Bayesian
last layer [72, 114] operating on features extracted by a deterministic map. Assuming again
the PAC-Bayesian viewpoint, we formalize this idea by partitioning parameter vectors into
a deterministic and a stochastic part

p = (pd, ps) ∈ Rd0 × Rd1 , d0 + d1 = d (6.2)

and structuring π and ρ according to

π = δpd × πs ρ = δpd × ρs πs, ρs ∈ P(Rd1). (6.3)

With regard to PAC-Bayesian risk certification, the only restriction on prior and posterior,
besides the way they are informed by data, is absolute continuity of ρ with respect to π.
This ensures that their relative entropy is well-defined.
Lemma 6.1 (Relative Entropy of Prior and Posterior) Fix a vector of deterministic
parameters pd ∈ Rd0 and let πs and ρs be equivalent measures, i.e. πs ≪ ρs and ρs ≪ πs.
Then ρ = δpd × ρs is absolutely continuous with respect to π = δpd × πs (ρ≪ π) and

KL(ρ, π) = KL(ρs, πs). (6.4)

Proof. Let A be a measurable subset of H with π(A) = 0 and denote by A0 and A1 the
projection of A onto the respective coordinates in the partition (6.2). Then

δpd(A0)πs(A1) = 0 (6.5)

and thus, at least one of the factors needs to vanish. If the first vanishes, this directly
implies ρ(A) = 0. In addition, πs(A1) = 0 implies ρs(A1) = 0 and thus ρ(A) = 0 because
πs and ρs are equivalent measures. It follows ρ≪ π. Because the factors in ρ resp. π are
independent, relative entropy decomposes as

KL(ρ, π) = KL(ρs, πs) + KL(δpd , δpd)︸ ︷︷ ︸
=0

(6.6)

In particular, Lemma 6.1 shows that the chosen structure (6.3) of π and ρ is not a
barrier to PAC-Bayesian risk certification if both distributions of stochastic parameters πs

and ρs have full support and deterministic parameters pd are shared between prior and
posterior.

The second core idea behind our approach is to transform stochastic parameters only
affine-linearly. This ensures that normal distribution of stochastic parameters generates a
normal distribution of class predictions for each input datum. More precisely, suppose
every ϕp ∈ H is composed of ϕ̃p : X → T0Sc and rounding

ϕp(x) = argmaxj∈[c] ϕ̃p(x)j. (6.7)
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The entries of ϕ̃p(x) ∈ T0Sc are called classification logits. If ϕ̃p(x) defines an affine
transformation of stochastic parameters for each x ∈ X and ps is a random variable with
normal distribution, then the classification logits also follow a normal distribution on T0Sc
for each x.

6.1.1 Linearized Assignment Flows
We now describe a particular choice of data-dependent affine transformation which is based
on the linearization of an assignment flow. The core idea is that linear ODEs transform
their initialization affine-linearly for fixed end time. In this section, we assume a fixed set
of parameters, which is later randomized in Section 6.1.2. Initially, assume general EGN
dynamics (3.63) in vectorized form, which read

ẇ(t) = Rv
w(t)[Aw(t)], w(0) = w0 = vecr(W0). (6.8)

By Theorem 3.3, the dynamics (6.8) can be parameterized on the tangent space at w(0)
as

w(t) = expv
w0(v(t)) (6.9a)

v̇(t) = Πv
0Aexpv

w0(v(t)), v(0) = 0. (6.9b)

We now linearize the vector field in (6.9b).
Proposition 6.2 (Linearized Assignment Flow) The system of equations

w(t) = expv
w0(v(t)), (6.10a)

v̇(t) = Πv
0A(w0 +Rv

w0v(t)), v(0) = 0 (6.10b)

approximates (6.8). The initial value problem in (6.10) has the closed-form solution

v(t) = tφ(M)vD, M = tΠv
0ARv

w0 , vD = Πv
0Aw0, (6.11)

where φ : Rnc×nc → Rnc×nc denotes the analytical function

φ(z) = ez − 1
z

(6.12)

with matrix argument.

Proof. Due to (2.46), the vectorized lifting map has the differential

dexpv
w0(v)[u] = Rv

w0u (6.13)

which we use to compute the desired linearization

v̇(t) ≈ Πv
0A
(
expv

w0(v0) + dexpv
w0(v0)[v(t)− v0]

)
= Πv

0A(w0 +Rv
w0v(t)). (6.14)

Since (6.10b) is linear in v, Duhamel’s variation of constants formula [200] yields (6.11).
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We call (6.10) linearized assignment flow (LAF), because it is the result of linearizing
(6.8). Note however, that the system (6.10) defines a nonlinear transformation of w0, which
is parameterized by the linear ODE (6.10b). In addition, LAF classifiers are nonlinear
models due to the dependence of A = Πv

0ARv
w0 on w0. The term LAF has been used

in the literature to refer to similar linearizations of (other) assignment flows [225, 226].
In these works, the observation is put forward that linearizing in the described manner
largely preserves the qualitative behavior of assignment flows in practice. In turn, such
linearizations are easier to study and treat numerically. Their solution can be efficiently
approximated by using Krylov subspace methods and speciallized approaches have been
developed to approximate their gradient with respect to parameters [226]. Note that the
method of risk certification proposed in the following sections works with the linearized
system (6.10) instead of the motivating system (6.8). Thus, the constructed bounds hold
irrespective of how closely (6.10) approximates (6.8).

We briefly describe the concept of Krylov subspace methods to evaluate (6.11). For
0 < k ≤ nc, the linear subspace

Kk = span{vD,MvD,M2vD, . . . ,Mk−1vD} ⊆ Rnc (6.15)

is called Krylov subspace of order k generated by M and vD. For simplicity, we assume
that Kk has dimension k. Arnoldi’s method [9] (Algorithm 1) employs interleaved power

Algorithm 1: Arnoldi’s method
Data: vD ̸= 0 ∈ Rm, M ∈ Rnc×nc, nc > 0, 0 < k ≤ nc
Result: Orthonormal basis Q ∈ Rnc×k of the Krylov subspace (6.15) and upper

Hessenberg matrix Hk ∈ Rk×k satisfying (6.16)
v1 ← vD/∥vD∥;
for j = 1, . . . , k do

w ← Mvj;
for i = 1, . . . , j do

hij ← ⟨w, vi⟩;
w ← w − hijvi;

end
hj+1,j ← ∥w∥2;
vj+1 ← w/h(j+1),j;

end
Hk ← entries hij and Q← columns vj for i, j ∈ [k];

iteration and orthogonalization to construct an orthonormal basis Q ∈ Rnc×k of Kk as well
as an upper Hessenberg matrix Hk = Q⊤MQ ∈ Rk×k such that the Arnoldi relations

MQ = QHk + rke
⊤
k (6.16a)

Q⊤MQ = Hk (6.16b)

hold for rk = hk+1,kvk+1 defined in the last step of Algorithm 1. The power iteration and
orthogonalization can also be performed separately, which we show in Appendix C.3. This
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does not in itself improve numerical stability or reduce computational effort. However,
it can help to simplify practical implementation of Arnoldi’s method, because efficient
and numerically stable QR decomposition for the purpose of orthogonalization is readily
available in many numerical libraries.

Motivated by (6.16), [70] propose the following approximation1

tφ(M)vD ≈ tφ(QHkQ⊤)vD = tQφ(Hk)Q⊤vD (6.17)

where the second equality is clear from the series expansion

φ(QHkQ⊤) =
∞∑
j=0

1
(j + 1)!(QHkQ⊤)j =

∞∑
j=0

1
(j + 1)!QHj

kQ⊤ (6.18)

because Q⊤Q = Ik. In practice, small k ≪ nc suffices to achieve close approximation in
(6.17) and φ(Hk) can be evaluated using standard methods like eigendecomposition. For a
detailed analysis of evaluating matrix functions using Krylov subspaces, we refer to [174].
An important detail of the above Krylov approximation is that Kk is generated by vD,
defined in (6.11) and φ(M) acts on the same vector vD in (6.17). This is crucial to achieve
close approximation. In particular, (6.17) only effectively approximates the action of φ(M)
on vectors. The task of evaluating the action on a matrix needs to be broken down into
separate approximation of the action on each column.

6.1.2 Randomization
We will approach the construction of a randomized classifier by randomizing the ini-
tialization v0 in (6.10b) instead of fixing it to zero. This is conceptually similar to the
case considered in [76] where the authors study pushforward distributions of linearized
assignment flows under uncertain initialization. For arbitrary initialization v0 ∈ T0W , the
linear ODE

v̇(t) = Πv
0A(w0 +Rv

w0v(t)) = Mv(t) + vD, v(0) = v0 (6.19)
has the closed-form solution

v(t) = tφ(M)vD + expm(M)v0, (6.20)

extending (6.11) by a second summand which is linear in v0. We will define a notion of
normal distribution for v0 which is supported on T0W . This has controlled behavior under
affine transformations, but does not have a density with respect to the Lebesgue measure
on Rn×c.
Definition 6.3 (Normal Distribution on T0W) Let µ ∈ T0W and let V ∈ Rnc×n(c−1) be
a matrix such that vec−1(Vi) ∈ T0W for all column vectors Vi, i ∈ [n(c− 1)] of V. Denote
the componentwise standard normal distribution on Rn(c−1) by N n(c−1)

0 . Then we call

N (µ,VV⊤) = (vec−1 ◦V)♯N n(c−1)
0 (6.21)

a normal distribution on T0W with mean µ and (singular) covariance VV⊤.
1The authors of [70] use the approximation (6.17) for the matrix exponential instead of φ, but their

argument applies analogously to other entire matrix functions.
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For the special case n = 1, this also defines a notion of normal distribution on T0Sc.
Definition 6.3 clarifies the formal notation N (µ,VV⊤) in ambient coordinates, where the
covariance VV⊤ is a singular matrix. The relative entropy between two normal distributions
on T0W has a closed form which we compute next. Let P̃ ∈ Rc×(c−1) be a matrix whose
columns are a basis of T0Sc and let P̃ † be a pseudoinverse matrix in the sense that
P̃ †P̃ = Ic−1 and P̃ P̃ †v = v for every v ∈ T0Sc. For example, using the m-coordinate basis,
one can construct

P̃ =
[

Ic−1
−1⊤

c−1

]
∈ Rc×(c−1), P̃ † =

[
Ic−1 0

]
∈ R(c−1)×c (6.22)

which satisfy these constraints. Further, if we orthonormalize the columns of P̃ and let
P̃ † = P̃⊤, then P̃⊤P̃ = Ic−1 is satisfied by orthonormality of columns and P̃ P̃⊤ is the
orthogonal projection operator onto T0Sc, which implies P̃ P̃⊤v = v. Let

P : Rn(c−1) → T0W , P† : T0W → Rn(c−1) (6.23)

be the linear operators which apply P̃ resp. P̃ † node-wise. With abuse of notation, we
also use the symbol P† to denote the respective operator with vectorized argument.
Lemma 6.4 (Relative Entropy of Normal Distributions on T0W) Let p1 =
N (µ1,V1V⊤

1 ) and p2 = N (µ2,V2V⊤
2 ) be normal distributions on T0W in the sense of

Definition 6.3 with full support on T0W. Define the multivariate normal distributions

p̃i = N (P†µi,Σi), Σi = (P†Vi)(P†Vi)⊤, i ∈ {1, 2} (6.24)

on Rn(c−1). Then it holds KL(p1, p2) = KL(p̃1, p̃2).

Proof. Because P̃ P̃ †v = v for every v ∈ T0Sc and the columns of Vi are (vectorized)
tangent vectors in T0W , it holds PP†Vi = Vi. Thus, we can write

pi = P♯N (P†µi,Σi) = P♯p̃i, i ∈ {1, 2} (6.25)

and, since pi was assumed to have full support on T0W, p̃i is a multivariate normal
distribution on Rn(c−1) with full-rank covariance matrix. Denote the density of p̃i with
respect to the Lebesgue measure on Rn(c−1) by ζi : Rn(c−1) → R. Let A ⊆ T0W be a
measurable set and Ã ⊆ Rn(c−1) its preimage under P. Then, due to (6.25), it holds
pi(A) = p̃i(Ã). Further,

∫
A

ζ1(P†x)
ζ2(P†x)dp2(x) =

∫
Ã

ζ1(P†Py)
ζ2(P†Py)dp̃2(y) =

∫
Ã

ζ1(y)
ζ2(y)ζ2(y)dy (6.26a)

=
∫
Ã
ζ1(y)dy = p̃1(Ã) = p1(A) (6.26b)

clarifies the shape of the Radon-Nikodým derivative

dp1

dp2
(x) = ζ1(P†x)

ζ2(P†x) . (6.27)
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Using (6.27), we directly compute

KL(p1, p2) =
∫
T0W

log dp1

dp2
(x)dp1(x) =

∫
T0W

log ζ1(P†x)
ζ2(P†x)dp1(x) (6.28a)

=
∫

Rn(c−1)
log ζ1(P†Py)

ζ2(P†Py)dp̃1(y) =
∫

Rn(c−1)
log ζ1(y)

ζ2(y)dp̃1(y) (6.28b)

= KL(p̃1, p̃2). (6.28c)

Now suppose v0 follows a normal distribution v0 ∼ N (µ0,V0V⊤
0 ) on T0W . Since (6.20)

is an affine transformation of v0, we can easily compute the distribution of v(t) as

v(t) ∼ N (µ(t),V(t)V(t)⊤) (6.29a)
µ(t) = tφ(tΠv

0ARv
w0)Πv

0Aw0 + expm(tΠv
0ARv

w0)µ0 (6.29b)
V(t) = expm(tΠv

0ARv
w0)V0. (6.29c)

Note that (6.29) is indeed a normal distribution on T0W in the sense of Definition 6.3,
because one can show that

φ(tΠv
0ARv

w0) = Πv
0φ(tΠv

0ARv
w0) ∈ T0W (6.30a)

expm(tΠv
0ARv

w0) = Πv
0 expm(tΠv

0ARv
w0) ∈ T0W (6.30b)

by using the series expansions of both matrix functions and Πv
0 ◦ Πv

0 = Πv
0.

6.1.3 Complete Classification Architecture
The LAF construction in Section 6.1.1 does not specify a number of nodes n or graph
adjacency. In image classification, a one-to-one relationship between image pixels and
graph nodes is not necessarily natural because, following the reasoning of Chapter 3, the
class decision being made gradually over time would be modelled on a single simplex Sc.
Here, we propose to raise the level of abstraction by choosing a moderate number n of
nodes in a densely connected graph with learned interaction. The underlying reasoning is
that in a difficult decision process, multiple aspects of the image in question may jointly
constitute reasons to decide for any given class. An intuitive example is the presence or
absence of semantic properties. Suppose we are trying to classify images into categories cat
and dog and suppose we have access to n semantic properties of each image, like specific
types of fur textures or facial features subject to uncertainty. The joint presence or absence
of these properties is informative for the eventual class decision. It may be modelled by
using the methods of Chapter 3, using n binary variables associated with nodes of a densely
connected graph. In practice, we will not extract features indicative of semantic properties
manually, but learn them from data as part of an end-to-end process ϕ̃p : X → T0Sc. For
simplicity, we will also assume that each of these abstract properties can be modelled by a
discrete variable taking values in [c]. After fixing n as a hyperparameter, the process ϕ̃p

consists of the following stages.
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1. Feature extraction. A parameterized function fθ : X → W maps images to an initial
point of (6.8), i.e. x 7→ fθ(x) = w0. We use a residual neural network architecture
of [88] with softmax as a last layer for this purpose.

2. Randomized LAF. An initialization v0 of (6.19) is drawn and the solution (6.20) after
fixed time t > 0 is computed by approximating the required matrix function actions
φ(M)vD and expm(M)v0 through the Krylov subspace method (6.17).

3. Logit decoding. The computed state v(t) ∈ T0W is linearly mapped to T0Sc by a
learned operator P : T0W → T0Sc. In our experiments, we learn this decoding jointly
with feature extraction.

The parameters p of ϕ̃p are comprised of the feature extraction parameters θ, the entries
of A in (6.10b), the logit decoding operator P and the tangent space initialization v0 in
(6.19). Following (6.2), we partition them according to

p = (pd, ps), pd = (θ, A,P), ps = v0. (6.31)

6.2 Risk Certification
For classification, the natural loss function is ℓ01, which counts classification errors and
takes values in {0, 1} ⊆ [0, 1]. The PAC-Bayes-kl inequality is a popular generalization
bound in this case.
Theorem 6.5 (PAC-Bayes-kl Inequality [138]) Let m > 8 denote the size of an
i.i.d. sample from a data distribution and let loss take values in [0, 1]. For a PAC-Bayes
prior π which does not have access to the sample and for all PAC-Bayes posteriors ρ it
holds

kl(Ep∼ρ[Rm(p)],Ep∼ρ[R(p)]) ≤ 1
m

(KL(ρ : π) + log 2
√
m

δ
) (6.32)

with probability at least 1− δ over the draw of the sample.
Here, kl(α, β) denotes the relative entropy of two Bernoulli distributions with probabil-

ities α and β for the respective heads events

kl(α, β) = α log α
β

+ (1− α) log (1− α)
(1− β) . (6.33)

Define the pseudo inverse function in the second argument

kl−1(α, β) = sup {β̃ ∈ [α, 1] : kl(α, β̃) ≤ β} (6.34)

such that (6.32) implies

Ep∼ρ[R(p)] = kl−1
(
Ep∼ρ[Rm(p)], 1

m
(KL(ρ : π) + log 2

√
m

δ
)
)
. (6.35)

Because (6.32) bounds expected risk only implicitly, various relaxations have been developed
[142, 202, 168]. We will use the one proposed by [202], presented next.
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Theorem 6.6 (PAC-Bayes-λ Inequality [202]) Under the conditions of Theorem 6.5
it holds

Ep∼ρ[R(p)] ≤ Ep∼ρ[Rm(p)]
1− λ

2
+

KL(ρ : π) + log 2
√
m
δ

λ
(
1− λ

2

)
m

(6.36)

with probability at least 1− δ over the draw of the sample, for all PAC-Bayes posteriors ρ
and all λ ∈ (0, 2) simultaneously.

Further, [67] note that (6.35) can be evaluated numerically by employing Newton
iterations and [47] show that the gradient of (6.34) can be written in terms of kl−1 itself,
making it amenable to the same numerical approximation. Irrespective of the chosen
method of transforming (6.32) into a risk bound, computing expected empirical risk
Ep∼ρ[Rm(p)] remains a challange. Since kl−1 is a monotone function of its first argument,
an upper bound on expected empirical risk suffices to give risk certificates via (6.32). The
same is true for the relaxation (6.36). A simple way of achieving such a bound is by
drawing M > 0 samples {p(k)}k∈[M ] independently from ρ and using Hoeffding’s inequality
which gives

Ep∼ρRm(p) ≤ 1
M

∑
k∈[M ]

Rm(p(k)) +
√

log 1
δ′

2M (6.37)

with probability at least 1− δ′. An improvement over this simple method is proposed by
[117], which we recite in the slightly refined version of [20].
Theorem 6.7 (Theorem 2.5 of [117]) For samples {p(k)}k∈[M ] drawn independently
from ρ and loss function taking values in [0, 1], it holds

kl
( 1
M

∑
k∈[M ]

Rm(p(k)), Ep∼ρRm(p)
)
≤

log 1
δ′

M
(6.38)

with probability at least 1− δ′ over the draw of samples.
The bound (6.38) is indeed an improvement over (6.37), which can be seen by applying

Pinsker’s inequality kl(α, β) ≥ 2(β − α)2 to recover (6.37) from (6.38). This method
is used in multiple works, including [67] and [162]. However, evaluating the bound is
computationally expensive in practice. This is because a single evaluation of Rm(p(k))
requires a forward pass for each datum used for risk certification. Recently, [21] have
proposed a modification which combats this computational problem. Let {(x(i), y(i))}i∈[m]
denote the set of data used for risk certification, which we call validation set. Further, let
{p(k,i)}k∈[M ],i∈[m] denote mM samples, independently drawn from ρ. Then [21, Theorem 5.1]
shows

Ep∼ρRm(p) = 1
m

∑
i∈[m]

Ep∼ρℓ
01(ϕp(x(i)), y(i)) (6.39a)

≤ 1
mM

∑
k∈[M ]

∑
i∈[m]

ℓ01(ϕp(k,i)(x(i)), y(i)) +
√

log 1
δ′

2mM (6.39b)
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with probability at least 1− δ′. This is based on the observation that
∑
k∈[M ]

∑
i∈[m]

1
mM

ℓ01(ϕp(k,i)(x(i)), y(i)) (6.40)

is a sum of mM independent random variables with expectation Ep∼ρRm(p). Since each
summand is nonnegative and bounded by 1

mM
, Hoeffding’s inequality gives (6.39). The

bound (6.39) improves the rate of decay for expected empirical risk estimation by a factor
of O(m) for the same number of forward passes. Similar to the way Theorem 6.7 improves
over (6.37), (6.39) can also be sharpened.
Theorem 6.8 (Theorem 2 of [20]) For samples {p(k,i)}k∈[M ],i∈[m] drawn independently
from ρ and loss function taking values in [0, 1], it holds

kl
( 1
M

∑
k∈[M ]

Rm(p(k,i)), Ep∼ρRm(p)
)
≤

log 1
δ′

mM
(6.41)

with probability at least 1− δ′ over the draw of samples.
For the stochastic classifier architecture layed out in Section 6.1.3, computational

efficiency can be achieved in an even more effective way, by explicitly computing the
moments of classification logits, which follow a normal distribution. Recall the partition
(6.31) of parameters into deterministic and stochastic subvectors and the shape of PAC-
Bayesian prior and posterior distributions

π = δpd × πs ρ = δpd × ρs πs, ρs ∈ P(Rd1) (6.42)

from (6.3). Lemma 6.1 guarantees that these distributions are suitable within the PAC-
Bayesian risk certification paradigm, provided we keep deterministic parameters fixed
between prior and posterior and that πs is an equivalent measure to ρs. We achieve the
latter by defining both πs and ρs as normal distributions

πs = N (µπs ,Σπs), Σπs = VπsV⊤
πs (6.43a)

ρs = N (µρs ,Σρs), Σρs = VρsV⊤
ρs (6.43b)

with full support on T0W . Using these definitions, Lemma 6.1 shows KL(ρ, π) = KL(ρs, πs).
As noted in Section 6.1.3, we decode classification logits by a linear map

P : T0W → T0Sc (6.44)

and, given v(t) ∈ Rnc computed by integration of the LAF, classification logits are found
as Pv(t). Since v(t) follows the normal distribution (6.29) and P is a linear operator,
classification logits ϕ̃p(x) for each input datum x ∈ X also follow a normal distribution

ϕ̃p(x) ∼ N (Pµ(t), (PV(t))(PV(t))⊤) (6.45a)
µ(t) = tφ(tΠv

0ARv
w0)Πv

0Aw0 + expm(tΠv
0ARv

w0)µ0 (6.45b)
V(t) = expm(tΠv

0ARv
w0)V0 (6.45c)
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on T0Sc. To compute the moments in (6.45), we can use the Krylov subspace method
described in Section 6.1.1. Let P be realized by a matrix with rows pi ∈ Rnc, i ∈ [c]. Then

V(t)⊤pi = V⊤
0 expm(tΠv

0ARv
w0)⊤pi = V⊤

0 expm(tRv
w0A

⊤Πv
0)pi. (6.46)

Crucially, (6.46) clarifies that computing PV(t) requires only c separate applications of
Arnoldi’s method. Note that

expm
([

M tvD
0 0

]) [
v0
1

]
=
[
expm(M) tφ(M)vD

0 1

] [
v0
1

]
(6.47)

by [174, Proposition 2.1], which allows to compute µ(t) by applying Arnoldi’s method only
once, to a slightly larger matrix. In summary, to compute the moments (6.45), feature
extraction needs to be performed once and Arnoldi’s method needs to be applied c + 1
times. In the worst case, this has close to the computational complexity of c+ 1 forward
passes but, depending on the complexity of feature extraction, the practical effort can
be closer to a single forward pass. Define the function ϕ̂(p, ·) = ϕ̃p and let r̂ : T0Sc → [c]
denote the rounding operation in (6.7). Expected empirical risk under the posterior reads

Ep∼ρ[Rm(p)] = 1
m

∑
i∈[m]

∫
ℓ(r̂(ϕ̂(p, x(i))), y(i))dρ(p) (6.48a)

= 1
m

∑
i∈[m]

∫
ℓ(r̂(z), y(i)) d

(
ϕ̂(·, x(i))♯ρ

)
(z) (6.48b)

= 1
m

∑
i∈[m]

E
z∼ϕ̂(·,x(i))♯ρ

[ℓ(r̂(z), y(i))]. (6.48c)

For each i ∈ [m], let {z(k,i)}k∈[M ] be M > 0 samples drawn independently from the normal
distribution ρi = ϕ̂(·, x(i))♯ρ specified in (6.45). Then ℓ(r̂(z(k,i)), y(i)) are mM independent
random variables, taking values in [0, 1] and

E
[ ∑
k∈[M ]

∑
i∈[m]

1
mM

ℓ(r̂(z(k,i)), y(i))
]

= 1
m

∑
i∈[m]

1
M

∑
k∈[M ]

Ez(k,i)∼ρi
ℓ(r̂(z(k,i)), y(i)) (6.49a)

= 1
m

∑
i∈[m]

Ez∼ρi
ℓ(r̂(z), y(i)) (6.49b)

= Ep∼ρ[Rm(p)] (6.49c)

by (6.48). Thus, Hoeffding’s inequality gives

Ep∼ρ[Rm(p)] ≤ 1
mM

∑
k∈[M ]

∑
i∈[m]

ℓ(r̂(z(k,i)), y(i)) +
√

log 1
δ′

mM
(6.50)

with probability at least 1− δ′ over the draw of samples. In contrast to the approach of
Theorem 6.8, drawing M samples {z(k,i)}k∈[M ] does not require any forward passes through
the classifier. Instead, the main computational effort required to evaluate (6.50) lies in
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computing the moments of ϕ̂(·, x(i))♯ρ specified in (6.45) for each datum. As outlined
above, this is bounded by the cost of O(mc) forward passes in the worst case. Thus, by
using the method layed out in Section 6.1.3, we achieve the same bound on expected
empirical risk as (6.39) at the cost of O(mc) forward passes, instead of O(mM).

Due to the comparatively low dimension of the integrand in (6.48), Quasi-Monte-Carlo
(QMC) [57, 58] methods are a promising alternative, with empirical support presented
in [25]. The basic idea is to replace randomly sampled integration points by point sets
with low discrepancy, which often leads to improved convergence rates. A central result on
QMC methods is the Koksma-Hlawka inequality [58, Theorem 3.9] which states that the
integration error of a QMC method is bounded by the discrepancy of the integration points,
multiplied by the variation of the integrand in the sense of Hardy and Krause [85, 113].
Unfortunately, the Hardy-Krause variation is unbounded for indicator functions of many
sets other than axis-aligned hyperrectangles [154, Proposition 24]. This is an obstacle for
the application of QMC methods in the case at hand because, for 0/1 loss function, the
integrand (6.48) is an indicator function of a typically more general set. Thus, further
study is needed to apply QMC methods in the present setting. First, different notions of
variation for multivariate functions, such as the one proposed in [2], with corresponding
generalized Koksma-Hlawka inequality are required. In addition, speciallized methods
need to be developed in order to match the fast rate O(

√
mM) of Monte-Carlo estimators

like (6.50), which leverage the independence structure of individual terms in the empirical
risk.

6.3 Experiments
A common pattern in the practical implementation of PAC-Bayesian risk certification
methods is to split the available data into a training and a validation set [162, 47, 160].
The training set is used to learn a data-dependent PAC-Bayesian prior π, by first training a
deterministic classifier through empirical risk minimization and subsequently randomizing
the learned parameters. The posterior ρ can then be initialized at the prior and further
trained on all available data (including validation data) by minimizing a high-probability
bound on its risk.

As empirical support for the applicability of our self-certified classification approach,
we perform image classification on CIFAR-10 [115] and FashionMNIST [216], following
the above methodology. We choose a graph of n = 50 nodes with dense and symmetric
adjacency matrix Ω. PAC-Bayes prior π and posterior ρ are chosen as distributions with
structure (6.42), implemented in the manner described in Section 6.1.3. Partition of
parameters in deterministic and stochastic subvectors is performed according to (6.43).
Stochastic parameters are randomized LAF initializations following a normal distribution
(6.43). We fix both πs and ρs to have zero mean, i.e. µπs = µρs = 0 ∈ T0W. Prior
covariance Σπs is fixed and defined by

Σπs = VπsV⊤
πs , Vπs = 2PIn(c−1) (6.51)

with an orthogonal basis P for the tangent space T0W as defined in (6.23).
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A validation set of m = 104 data is split off from the predefined training dataset
of CIFAR-10 and FashionMNIST respectively. The remaining training data (40k for
CIFAR-10 and 50k for FashionMNIST) are used to train deterministic parameters by
minimizing empirical risk. To this end, we use stochastic gradient descent with batch size
128, (initial) learning rate 0.01, momentum 0.9 and weight decay 10−3 over 200 epochs
with a cosine annealing schedule [129] and light data augmentation regime as in [224].

Initializing ρ at π, we subsequently train ρs by minimizing the r.h.s. of the bound (6.36).
To this end, we initially fix λ and use cross-entropy as a differentiable surrogate loss. In
order to compute gradients for the moments of ρs, we employ the reparameterization trick
[107] of representing ρs as pushforward of a standard normal on Rn(c−1). For optimization,
we use stochastic gradient descent with learning rate 0.5 and momentum 0.9 over 80 epochs.
To improve training signal, stochastic gradients of expected empirical risk relative to the
surrogate loss are accumulated over a whole epoch.

For final risk certification, we bound expected empirical risk under the posterior relative
to 0/1 loss, by explicitly computing the pushforward ρi = ϕ̂(·, x(i))♯ρ specified in (6.45) for
each validation datum x(i) and employing (6.50) with M = 15. Since increasing M does
not result in significant computational cost when using the described approach, the bound
can easily be improved, but we choose M = 15 to match the statistical guarantee of [162].
The result of this benchmark is summarized in Table 6.1, revealing that our method is
able to achieve strong stochastic classifiers with tightly bounded classification risk.

In order to compare more directly to [162], we additionally train a classifier on CIFAR-
10 with features extracted by the 9-layer CNN of [162] and corresponding simple SGD
training regime (70 epochs, learning rate 0.01, momentum 0.95, dropout rate 0.2) without
data augmentation. The result of this comparison is summarized in Table 6.2, where we use
the term PAC-Bayes by backprop (PBB) to refer to the approach of [162]. Unfortunately,
we were unable to use the larger CNN feature extractors proposed in [162] due to vanishing
gradient issues when training deterministic classifiers. However, training is stable for
ResNet18 features which, by comparison of deterministic CIFAR-10 classification test error
between Tables 6.1 and 6.2, appear much stronger.

Our deterministic classifier performs slightly worse than PBB, likely due to a lack of
hyperparameter tuning. In turn, after optimizing the bound (6.36), our posterior slightly
improves on PBB in terms of expected empirical risk and we achieve a slightly lower bound
on generalization risk. Tightness of the PBB certificate, as measured by the difference
between expected empirical risk of the posterior compared to the risk bound, is slightly
better than ours. We conclude that our method is computationally efficient and able to
achieve empirical performance and risk bounds which are on par with PBB. [162] employ
Theorem 6.7 to bound expected empirical risk, which requires many GPU hours to compute
O(m2M) forward passes. For the datasets at hand, this can be improved by multiple
orders of magnitude through the approach of Theorem 6.8, requiring O(mM) forward
passes for the same statistical guarantee. As outlined above, our model produces a normal
distribution of classification logits for each datum, whose moments can be computed at
computational cost bounded by c forward passes. Thus, bounding expected empirical risk
by (6.50) further improves on direct application of Theorem 6.8, with computational cost
bounded by O(mc) forward passes. For the data at hand, the final compute time required
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Deterministic Prior Posterior Certificate
CIFAR-10 5.78 8.10 5.82 7.53
FashionMNIST 4.74 6.03 4.82 6.44

Table 6.1: Benchmark results of LAF classifiers with ResNet18 features on CIFAR-10 and
FashionMNIST. Out-of-sample error (%) of the deterministic LAF classifier, as well as
expected empirical risks for prior and posterior are evaluated on 10k held-out test data.
The risk certificate is the bound (6.36) on expected posterior risk for optimized λ and
error probability bounded by δ + δ′ = 0.035.

Deterministic Prior Posterior Certificate Tightness
LAF 20.32 22.09 20.63 23.24 2.61
PBB [162] 19.46 21.69 21.61 23.77 2.16

Table 6.2: Benchmark results of LAF classifiers employing the 9-layer CNN features of
[162]. Out-of-sample error (%) of the deterministic LAF classifier, as well as expected
empirical risks for prior and posterior are evaluated on 10k held-out test data. The
risk certificate is the bound (6.36) on expected posterior risk for optimized λ and error
probability bounded by δ + δ′ = 0.035.

to bound expected empirical risk is under 10 seconds on a single GPU.
For posterior training, we use cross-entropy as a differentiable surrogate loss. This

appears problematic because the bound (6.36) only certifies risk w.r.t. bounded loss
functions. [162] address this by modifying cross-entropy to obtain a closely related
bounded loss function which is amenable to risk certification. We do not perform this
modification and therefore do not obtain valid risk certificates for surrogate loss. However,
for classification the bound (6.36) holds for all posterior distributions, regardless of how
they have been computed. Therefore, using unbounded surrogate loss for training does
not touch the validity of risk certificates for the bounded 0/1 loss reported in Tables 6.2
and 6.1. Accordingly, no certificate for surrogate loss is reported.



7 Certified Structured Prediction

In Chapters 4 and 5, we have reasoned about the difficulty of structured prediction
geometrically, by pointing to the combinatorial dimension of SN and constructing lower-
dimensional models to approximate complex joint distributions. Universal feasibility
of such approximations can not be assumed, but the empirical examples presented in
Chapter 5 illustrate viability of the approach for many data distributions of interest in
practical applications.

We now turn to statistical aspects of structured prediction and pose the task of learning
a joint data distribution as composed of learning a structured predictor and constructing
high-probability generalization bounds, like the PAC-Bayesian bounds for classification in
Chapter 6. However, because joint data distributions have rich internal structure which
does not factorize into independent components, the independence assumption underlying
most established PAC-Bayesian bounds does not hold. In some settings, even though data
may still be available in the form of multiple independent draws from a joint distribution,
generalization bounds converge slowly compared to the effort of label aquisition. For
instance, one may expect that pixel-wise segmentation of an image contains rich information
to be exploited in supervised learning. However, a generalization bound like Theorem 6.5,
which converges merely in the number of independent segmented images, is unable to
leverage this effectively. Consider the extreme case of a single, very large segmented image,
depicting content comparable to an entire semantic segmentation dataset. Irrespective of
its size, Theorem 6.5 never predicts generalization of a PAC-Bayesian posterior trained
on this image, because it only constitutes a single draw of data from a complex joint
distribution of many (pixel and label) variables. This construction may appear artificial,
but similar statistical dependencies appear in applications such as graph node classification,
motivating the development of statistical learning theories which account for generalization
from a single example. Addressing this point in particular, [126] presents an analysis
of dependency structure between variables and proves a risk certificate which decays
in both the number of structured examples m and their size d. Refering back to the
example of image segmentation, this amounts to a high-probability bound on the fraction of
misslabeled pixels which decays with the number of labeled pixels observed during training
as opposed to merely the number of segmented images.

Building on this work, we present a novel PAC-Bayesian risk bound for structured
prediction wherein the rate of generalization scales not only with the number of structured
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examples but also with their size. The underlying assumption, conforming to ongoing
research on generative models, is that data are generated by the Knothe-Rosenblatt
rearrangement of a factorizing reference measure. This allows to explicitly distill the
structure between random output variables into a Wasserstein dependency matrix. Our
work makes a preliminary step towards leveraging powerful generative models to establish
generalization bounds for discriminative downstream tasks in the challenging setting of
structured prediction.

Recall from Section 2.2 that the concentration of measure phenomenon is at the core
of statistical learning theory. It posits that a stable function of a large number of weakly
dependent random variables will take values close to its mean [119, 31]. This is relevant
because model risk, the expected loss on unseen data, is the mean of empirical risk under
the draw of the sample which allows to build learning theories on concentration of measure
results.

The popularity of PAC-Bayesian methods is partly due to their minimal assumptions
on the data distribution in classification settings. Nevertheless, we share the sentiment of
previous authors [126] that some assumption on the data-generating process is required in
structured prediction. This is because the distribution of data conditioned on a fixed set
of values for a subset of variables is central to establishing concentration of measure via
the martingale method [111]. Consider again the example of image segmentation. Once
we have fixed a sufficiently large number of pixels to arbitrary values (and class labels),
even a large dataset will not contain an abundance of data which match these values
and thus provide statistical power to learn the conditional distribution. This problem
is well-known in conditional density estimation [206]. As a remedy, we propose to use a
triangular and monotone transport, a Knothe-Rosenblatt (KR) rearrangement [108, 171,
37, 29, 136] of a reference measure as data model. This choice is attractive for multiple
reasons. First, any data distribution which does not contain atoms can be represented
uniquely in this way [23] which should suffice to represent many distributions of practical
interest. In particular, any data distribution which is absolutely continuous with respect to
the Lebesgue measure satisfies this requirement. With regard to conditional distributions,
the KR-rearrangement has the convenient property that conditioning on a fixed value
for a subset of variables can again be represented by KR-rearrangement. We will use
this property in our construction of coupling measures between conditional distributions.
We stress the fact that many established approaches to generative modelling can be seen
as instances of measure transport. For instance, it includes normalizing flows [198, 197,
109, 157, 173], diffusion models [194, 90], generative adversarial networks and variational
autoencoders [32, 74]. While most measure transport models which currently enjoy
empirical success are not KR-rearrangements, we hope that the methods presented here
can lay the foundation of leveraging powerful generative models to build risk certificates
for discriminative downstream tasks.

To this end, we distill relevant structure of the data distribution into a Wasserstein
dependency matrix. Our analysis hinges on state-of-the-art results in concentration theory
[111] which serve to bound moment-generating functions by properties of the Wasserstein
dependency matrix. Finally, we invoke a PAC-Bayesian argument to derive the desired
risk certificate.
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Additional Notation In addition to the basic notation introduced in Section 1.3, we
require the following, more speciallized notions. If x ∈ Zd is a vector, we refer to the
subvector of entries with index in a set I ⊆ [d] as xI . In particular, index sets of interest
will be half-open and closed intervals (i, d] ⊆ [d] and [i, d] ⊆ [d]. Analogously, we will index
the output of vector-valued functions f I and marginal measures µI . For a set B ⊆ Zd, we
denote its complement in Zd by Bc = Zd \ B and for a measure µ on Zd, we denote the
conditional measure given Bc as µ|Bc. If X is a random variable with distribution µ on
Zd and I, J ⊆ [d] are disjoint index sets with I ∪ J = [d], we denote the conditional law of
XI given XJ = xJ as µ(dxI |xJ).

Inkeeping with the notation of Section 2.2, we use the symbols X and Y to respectively
denote an input space and output space. For the structured prediction setting, we assume
that µ is a distribution on Zd = (X ×Y)d. There are two restrictions inherent to this setup.
First, an input is always paired with an output and thus the number of inputs needs to
match the number of outputs. Second, all structured data will be drawn from µ and thus
the size of each structured datum will be the same. Otherwise, X and Y can in principle
be arbitrary sets which admit metrics. For concreteness, think of X = [0, 1] ⊆ R as being a
set of gray values and Y = R containing signed distances from a semantic boundary [153]
in an image with d pixels. In this case, Zd contains all binary segmentations of grayvalue
images.

Given a sample Dm = (X(k), Y (k))k∈[m] drawn from µm, we will again follow the PAC-
Bayesian paradigm and consider stochastic predictors ρ, i.e. measures on a hypothesis space
H of predictors ϕp : X d → Yd as identified with measures on the underlying parameter
space Θ from which p is selected. The goal is to bound expected risk of the posterior ρ

R(ρ) = Ep∼ρ[R(p)], (7.1)

by tractable quantities, such as the expected empirical risk

Rm(ρ,Dm) = Ep∼ρ[Rm(p,Dm)]. (7.2)

We further assume that the loss of structured outputs is the mean of bounded pointwise
loss ℓ : Y × Y → [0, 1]

L(γ(k), y(k)) = 1
d

∑
i∈[d]

ℓ(γ(k)
i , y

(k)
i ). (7.3)

We will invoke a line of reasoning put forward in [111] and propose a novel approach
to structured prediction based on the measure-transport framework outlined in Section 1.
To this end, we first define the following formal notions of stability and dependence. Let σ
be a metric such that Z has finite diameter

∥σ∥ = sup
z,z′∈Z

σ(z, z′) <∞ (7.4)

and let σd(z, z′) = ∑
i∈[d] σ(zi, z′

i) denote the corresponding product metric on Zd.
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Definition 7.1 (Local oscillation) Let f : Zd → R be Lipschitz with respect to σd. Then
the quantities

χi(f) = sup
z,z′∈Zd,z′

[d]\{i}=z[d]\{i}

|f(z)− f(z′)|
σ(zi, z′

i)
, i ∈ [d] (7.5)

are called the local oscillations of f .
The vector of local oscillations gives a granular account of stability. In order to discuss

interdependence of data in a probability space (Zd, µ,Σ), define the Markov kernels

K(i)(x, dy) = δx[i−1](dy[i−1])⊗ µ[i,d](dy[i,d]|x[i−1]), i ∈ [d] (7.6)

as well as K(d+1)(x, dy) = δx(dy) and their action on functions

K(i)f(x) =
∫
f(y)K(i)(x, dy) =

∫
f(x[i−1]y[i,d])µ[i,d](dy[i,d]|x[i−1]) (7.7)

where in the edge case i = 1, the condition on x[i−1] = x{} is removed. It turns out that
the effect of the kernel (7.6) on local oscillations serves to quantify dependence of data
with joint distribution µ.
Definition 7.2 (Wasserstein matrix) For i ∈ [d+ 1], let K(i) denote the Markov kernel
(7.7). A matrix V (i) ∈ Rd×d

≥0 is called a Wasserstein matrix [69] for K(i), if

χk(K(i)f) ≤
∑
j∈[d]

V
(i)
kj χj(f), ∀ k ∈ [d] (7.8)

for any function f : Zd → R which is Lipschitz with respect to σd.
The two concepts defined above will be used in Section 7.2 to construct a moment-

generating function bound via the martingale method.

7.1 Triangular Measure Transport
Suppose a structured output is composed of d > 0 unstructured data in a space Z.
Then the target measure µ of interest is a measure on Zd which does not factorize into
simpler distributions. A popular method of representing complex joint distributions
of interdependent random variables is to define a map Υ: Zd → Zd which transports
a tractable factorizing reference measure νd to the target measure µ, i.e. Υ♯ν

d = µ.
This abstract framework encompasses many generative models such as normalizing flows
[198, 197, 109, 157, 173], diffusion models [194, 90], generative adversarial networks and
variational autoencoders [32, 74]. Here, we focus on transport maps Υ which are monotone
and triangular in the sense that Υ(z)i only depends on the inputs z[i] and each Υ(z[i−1], ·)i
is an increasing function. Such a map is called a Knothe-Rosenblatt (KR) rearrangement
[108, 171, 37, 29, 136]. If both νd and µ have no atoms then the KR rearrangement exists
and is unique [23]. In particular, normal distribution νd and any absolutely continuous
(with respect to the Lebesgue measure) distribution µ meet these criteria. The KR
rearrangement has the useful property that certain conditional distributions have a simple
representation.
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Lemma 7.3 (Lemma 1 of [136]) Let Υ: Zd → Zd be the KR-rearrangement which
satisfies Υ♯ν

d = µ. For arbitrary i ∈ [d], let z[i] ∈ Zk be fixed. Then

µ(dy(i,d]|z[i]) = Υ(i,d](z[i], ·)♯νd−i (7.9)

where z[i] is the unique element of Z i such that Υ[i](z[i]) = z[i].
Recently, numerical realization of KR rearrangements has received attention [13] and

more broadly, a variety of triangular transport architectures exist [59, 60]. However, we
do not focus on numerical considerations in the present theoretical work.

One may wonder if data generated by KR-rearrangement implicitly restricts the choice
of possible input and output spaces X , Y since the monotonicity requirement on Υ can
only be satisfied if the underlying sets are ordered. For what follows, many more general
input and output spaces are still permissible. Suppose, for instance, X = [0, 1]3 contains
RGB color values. By identifying X d = [0, 1]3d, we can still construct KR-rearrangements
and all subsequent results hold analogously.
Lemma 7.4 (Conditioned Transport) Let Υ: Ω→ Ω be a measurable function on a
measurable space (Ω,Σ) and let ν, µ be measures on Ω with Υ♯ν = µ. Let B ∈ Σ be a fixed
set with µ(B) > 0 and A = Υ−1(B) its preimage under Υ. Then

Υ♯(ν|A) = µ|B. (7.10)

Proof. Let S ∈ Σ be arbitrary and let µ̃ = Υ♯(ν|A). Then

µ̃(S) = (ν|A)(Υ−1(S)) = ν(Υ−1(S) ∩ A)
ν(A) (7.11)

as well as
(µ|B)(S) = µ(S ∩B)

µ(B) = ν(Υ−1(S ∩B))
ν(A) . (7.12)

Note that

x ∈ Υ−1(S) ∩Υ−1(B) ⇔ Υ(x) ∈ S ∧ Υ(x) ∈ B (7.13a)
⇔ Υ(x) ∈ S ∩B (7.13b)
⇔ x ∈ Υ−1(S ∩B) (7.13c)

which implies Υ−1(S) ∩Υ−1(B) = Υ−1(S ∩B) and consequently µ̃(S) = (µ|B)(S). Since
S was arbitrary, this shows the assertion.

The following theorem, a generalization of Theorem 2.11, exists in various forms in
the literature. To make this thesis self-contained, we recite the version in [111] which is
used to bound moment-generating functions in Proposition 7.6. Note that we only use
the MGF bound (7.14) in our analysis. However, the concentration inequality (7.15) also
holds analogously under the assumptions of Proposition 7.6 which may be of independent
interest.
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Theorem 7.5 (Azuma-Hoeffding [111, Theorem 4.1]) Let (M (i))i∈[m] be a martingale
difference sequence with respect to a filtration (Σi)i∈[m] of sigma algebras. Suppose that
for each i ∈ [m] there exist Σi−1-measurable random variables A(i), B(i) such that A(i) ≤
M (i) ≤ B(i) almost surely. Then for all λ ∈ R it holds that

E
[

exp
(
λ
∑
i∈[m]

M (i)
)]
≤ exp

(
λ2

8
∑
i∈[m]
∥B(i) − A(i)∥2

∞

)
(7.14)

and consequently, for any t ≥ 0

P
(∣∣∣∣ ∑

i∈[m]
M (i)

∣∣∣∣ ≥ t
)
≤ 2 exp

(
− 2t2∑

i∈[m] ∥B(i) − A(i)∥2
∞

)
. (7.15)

7.2 PAC-Bayesian Risk Certificate
In this section we present a novel PAC-Bayesian risk bound for structured prediction which
combines three main ingredients.
(1) A concentration of measure theorem for dependent data (Theorem 7.6) which builds

on the notion of a Wasserstein dependency matrix;

(2) a simple construction of coupling measures between conditional distributions (Lemma 7.7)
which serves to represent the Wasserstein dependency matrix;

(3) a PAC-Bayesian argument (Theorem 7.9) employing Donsker-Varadhan’s variational
formula in concert with concentration of measure results.
The first theorem summarizes key results from [111] on the concentration of measure

phenomenon for dependent random variables. We have slightly generalized by augmenting
the underlying Doob martingale construction with the inclusion of a set B of bad inputs.
For inputs in this set, data stability requirements do not necessarily hold. We call the
complement Bc = Zd \ B the set of good inputs. The concept of good and bad inputs as
well as related proof techniques were originally proposed by [126]. Here, we incorporate
them into the more general concentration of measure formalism of [111].
Theorem 7.6 (Moment-generating function (MGF) bound for good inputs)
Let B ⊆ Zd be a measurable set of bad inputs. Suppose for each i ∈ [d + 1], V (i) is a
Wasserstein matrix for the Markov kernel K(i) defined in (7.6) on the set of good inputs,
that is

χk(K(i)f̃) ≤
∑
j∈[d]

V
(i)
kj χj(f̃), ∀ k ∈ [d] (7.16)

for all Lipschitz (with respect to σd) functions f̃ : Bc → R. Define the Wasserstein
dependency matrix

Γ ∈ Rd×d, Γij = ∥σ∥V (i+1)
ij (7.17)

Then for all Lipschitz functions f : Zd → R, the following MGF bound holds

Ez∼µ|Bc

[
exp

(
λ(f(z)− Eµ|Bcf)

)]
≤ exp

(
λ2

8 ∥Γχ(f)∥2
2

)
. (7.18)
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Proof. For any i ∈ [d] and x ∈ Zd define

M (i) = EX∼µ[f(X)|Bc, X [i] = x[i]]− EX∼µ[f(X)|Bc, X [i−1] = x[i−1]] (7.19)

with the edge case

M (1) = EX∼µ[f(X)|Bc, X1 = x1]− EX∼µ[f(X)|Bc]. (7.20)

Due to EX∼µ[f(X)|Bc, X = x] = f(x) for x ∈ Bc we have

f − EX∼µ[f(X)|Bc] =
d∑
i=1

M (i). (7.21)

Since the conditions X [i] = x[i] generate a nested sequence of σ-algebras, the quantities
K(i+1)f(x) = Eµ[f(X)|Bc, X [i] = x[i]] are a Doob martingale and (7.19) is a martingale
difference sequence. In order to bound the moment generating function of f , we will bound
every M (i) from above and below and apply the Azuma-Hoeffding theorem 7.5. We have

M (i) = Eµ[f(X)|Bc, X [i] = x[i]]− Eµ[f(X)|Bc, X [i−1] = x[i−1]] (7.22a)
= Eµ[f(X)|Bc, X [i] = x[i]]
− Eµ[Eµ[f(X)|Bc, X [i−1] = x[i−1], Xi]|Bc, X [i−1] = x[i−1]] (7.22b)

=
∫
f(x[i]y(i,d])µ(dy(i,d]|x[i],Bc)

−
∫ ( ∫

f(x[i]u(i,d])µ(du(i,d]|x[i−1], yi,Bc)
)
µ(dy[i,d]|x[i−1],Bc) (7.22c)

by the tower property of conditional expectations. Because µ(dy[i,d]|x[i−1],Bc) is a proba-
bility measure, it holds∫

f(x[i]y(i,d])µ(dy(i,d]|x[i],Bc) =
∫ ( ∫

f(x[i−1]xiu
(i,d])µ(du(i,d]|x[i],Bc)

)
µ(dy[i,d]|x[i−1],Bc)

(7.23)
and we find

M (i) =
∫
µ(dy[i,d]|x[i−1],Bc)

( ∫
f(x[i−1]xiu

(i,d])µ(du(i,d]|x[i],Bc)

−
∫
f(x[i]u(i,d])µ(du(i,d]|x[i−1], yi,Bc)

)
. (7.24)

Now bound A(i) ≤M (i) ≤ B(i) almost surely with

A(i) =
∫
µ(dy[i,d]|x[i−1],Bc) inf

xi∈Bc
i (x[i−1])

( ∫
f(x[i−1]xiu

(i,d])µ(du(i,d]|x[i],Bc)

−
∫
f(x[i]u(i,d])µ(du(i,d]|x[i−1], yi,Bc)

)
(7.25a)

B(i) =
∫
µ(dy[i,d]|x[i−1],Bc) sup

xi∈Bc
i (x[i−1])

( ∫
f(x[i−1]xiu

(i,d])µ(du(i,d]|x[i],Bc)

−
∫
f(x[i]u(i,d])µ(du(i,d]|x[i−1], yi,Bc)

)
(7.25b)
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where Bci (x[i−1]) contains all xi ∈ Z such that there exist x(i,d] ∈ Zd−i with (x[i−1], xi, x
(i,d]) ∈

Bc. Because every realization of a random variable conditioned on Bc is in the set of good
inputs, the difference ∥B(i) − A(i)∥∞ can be written as

sup
x,z∈Bc,x[d]\{i}=z[d]\{i}

∫
f(x[i]u(i,d])µ(du(i,d]|x[i],Bc)−

∫
f(z[i]u(i,d])µ(du(i,d]|z[i],Bc) (7.26)

By seeing this expression in terms of oscillation of the kernel action K(i+1)f , we find

∥B(i) − A(i)∥∞ ≤ ∥σ∥χi(K(i+1)f̃) ≤ ∥σ∥(V (i+1)χ(f̃))i = (Γχ(f̃))i (7.27)

where f̃ : Bc → R is the restriction of f to Bc. The assertion then follows from the
Azuma-Hoeffding theorem 7.5.

An upper bound on the moment generating function will be used in the PAC-Bayesian
argument concluding this section. The function f in question will be the loss of a structured
datum z. Regarding (7.18), our goal is to bound the norm ∥Γχ(f)∥2

2 through properties of
the data distribution. We will use the fact that data is represented by measure transport
to establish such a bound after the following preparatory lemma.
Lemma 7.7 (Coupling from transport) Let νd be a reference measure on Zd and
F,G : Zd → Zd be measurable maps. Define the map (F,G) by

(F,G) : Zd → Zd ×Zd, z 7→ (F (z), G(z)) (7.28)

Then (F,G)♯νd is a coupling of F♯νd and G♯ν
d.

Proof. Let A ⊆ Zd be measurable, then

(F,G)♯νd(A,Zd) = νd((F,G)−1(A,Zd)) = νd(F−1(A)) = F♯ν
d(A) (7.29)

which shows that F♯νd is the first marginal of (F,G)♯νd. An analogous argument for the
second marginal shows the assertion.

By assuming µ to be represented via KR-rearrangement of a factorizing reference
measure, Lemma 7.3 gives an explicit representation of KR-rearrangement for conditional
distributions. From there, we invoke Lemma 7.7 to construct a coupling between conditional
distributions and subsequently follow a line of reasoning put forward in [111] to explicitly
construct Wasserstein matrices for the kernels (7.6) which yield a bound on (7.18) by
Theorem 7.6. This leads to the following proposition.
Proposition 7.8 (Wasserstein dependency matrix from KR-rearrangement)
Let (Zd,Σ, µ) be a probability space with µ = Υ♯ν

d for the KR-rearrangement Υ and a
reference measure νd on Zd. Let each Z be equipped with a metric σ and have finite
diameter ∥σ∥ < ∞. Let f : Zd → R be a Lipschitz function with respect to the product
metric σd. Let B ⊆ Zd denote a set of bad inputs and define the corresponding set
A = Υ−1(B) ⊆ Zd. Let Υ̂ be the unique KR-rearrangement that satisfies Υ̂♯ν

d = νd|Ac



7.2. PAC-BAYESIAN RISK CERTIFICATE 105

and denote Υ̃ = Υ ◦ Υ̂. Suppose there exist constants Lij such that for all x, z ∈ Bc with
x[d]\{i} = z[d]\{i} it holds

Eτ∼ν(i,d]

[
σ(Υ̃(i,d](x̂[i], τ)j, Υ̃(i,d](ẑ[i], τ)j)

]
≤ Lijσ(xi, zi) (7.30)

where x̂[i] and ẑ[i] are uniquely defined through Υ̃[i](x̂[i]) = x[i] and Υ̃[i](ẑ[i]) = z[i]. Then
Γ = ∥σ∥

d
D is a Wasserstein dependency matrix for µ|Bc with

Dij =


0 if i > j ,

1 if i = j ,

Lij if i < j.

(7.31)

Proof. For arbitrary z, z′ ∈ Zd it holds

|f(z)− f(z′)| ≤ χj(f)σ(zj, z′
j), ∀ i ∈ [d] (7.32)

and thus, by summing over all indices we get

|f(z)− f(z′)| ≤ 1
d

∑
j∈[d]

χj(f)σ(zj, z′
j) (7.33)

Let x, z ∈ Zd with x[d]\{i} = z[d]\{i} be given for some i ∈ [d]. Recall the action (7.7)
of Markov kernels K(i+1) is an expected value with respect to conditional distributions
µ(i,d](dy(i,d]|x[i]).

Because νd has no atoms, νd|Ac also has no atoms. Therefore, there is a unique
KR-rearrangement Υ̂ with Υ̂♯ν

d = νd|Ac. Then Υ̃ = Υ ◦ Υ̂ is a KR-rearrangement with

Υ̃♯ν
d = µ|Bc (7.34)

by Lemma 7.4 and we have Υ̃(x̂) = x. Lemma 7.3 implies

µ(i,d](dy(i,d]|Bc, x[i]) = Υ̃(x̂[i], ·)♯νd−i (7.35)

An analogous expression holds for the distribution conditioned on z. We have therefore
found two transport functions pushing the reference measure to the respective conditional
distributions. By Lemma 7.7, a coupling of the conditional distributions is then given by

P [i]
x,z = (Υ̃(i,d](x̂[i], ·), Υ̃(i,d](ẑ[i], ·))♯νd−i (7.36)

Using a change of measure we find

K(i+1)f(x)−K(i+1)f(z)

=
∫
P [i]
x,z(du(i,d], dv(i,d])

(
f(x[i]u(i,d])− f(z[i]v(i,d])

)
(7.37)

=
∫ (

f(x[i]Υ̃(i,d](x̂[i], τ))− f(z[i]Υ̃(i,d](ẑ[i], τ))
)
νd−i(τ) (7.38)

≤ χi(f)
d

σ(xi, zi) +
∑
j∈(i,d]

χj(f)
d

∫
σ
(
Υ̃(i,d](x̂[i], τ)j, Υ̃(i,d](ẑ[i], τ)j

)
νd−i(τ) (7.39)

≤ χi(f)
d

σ(xi, zi) +
∑
j∈(i,d]

χj(f)
d

Lijσ(xi, zi) (7.40)
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which shows

χi(K(i+1)f) ≤ 1
d

(
χi(f) +

∑
j∈(i,d]

Lijχj(f)
)

(7.41)

for good inputs. We have thus found a Wasserstein matrix V (i+1) for K(i+1) with entries

V
(i+1)
ij =


0 if i > j

d−1 if i = j

d−1Lij if i < j

(7.42)

in row i which shows the assertion.

We remark that Γ indeed distills the dependency structure of µ. To illustrate this, let
µ{i} be independent from µ{j} for some i, j ∈ [d]. Then conditioning on a different value
of µ{i} does not change the distribution µ{j}. Thus,

Υ̃(i,d](x[i], τ)j = Υ̃(i,d](z[i], τ)j, ∀ τ ∈ Z(i,d], x[d]\{i} = z[d]\{i}, j ∈ (i, d] (7.43)

and the choice Lij = 0 satisfies (7.30). It directly follows that Γij = 0. The following
theorem is the main result of this chapter.
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Theorem 7.9 (PAC-Bayesian risk certificate for structured prediction) Fix
δ ∈ (0, exp(−e−1)), let µ be a data distribution on Zd with Υ♯ν

d = µ the Knothe-Rosenblatt
rearrangement for a reference measure νd on Zd and fix a measurable set B ⊆ Zd of bad
inputs with µ(B) ≤ ξ. Fix a PAC-Bayes prior π on a hypothesis class H of functions
ϕ : X d → Yd and a loss function ℓ which assumes values in [0, 1]. Define the oscillation
vector χ̃ by

χ̃i = sup
h∈H

χi
(
L(h, ·)

∣∣∣
Bc

)
, i ∈ [d] (7.44)

where L(h, ·)
∣∣∣
Bc

denotes the restriction of L(h, ·) to Zd \ B. Suppose all oscillations
χ̃i are finite, suppose the condition (7.30) is satisfied and denote by D the matrix with
entries (7.31). Then, with probability at least 1 − δ over realizations of a training set
Dm = (Z(k))mk=1 drawn from (µ|Bc)m it holds for all PAC-Bayes posteriors ρ on H that

R(ρ) ≤ Rm(ρ,Dm) + 2∥σ∥
d
∥Dχ̃∥2

√
log 1

δ
+ KL[ρ : π]

2m + ξ. (7.45)

Proof. For any hypothesis h ∈ H, we have

R(h)−Rm(h,Dm) = EZ∼µ[L(h, Z)−Rm(h,Dm)] (7.46a)

= EZ∼µ

[(
L(h, Z)−Rm(h,Dm)

)
1{Z /∈ B}

]
+ EZ∼µ

[(
L(h, Z)−Rm(h,Dm)

)
1{Z ∈ B}

]
(7.46b)

≤ EZ∼µ

[(
L(h, Z)−Rm(h,Dm)

)
1{Z /∈ B}

]
+ ξ (7.46c)

≤ EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm) + ξ (7.46d)

where in (7.46c) we have used that pointwise loss is in [0, 1]. Note that the underlying
distribution of the risk R(h) is µ, while Dm are drawn from µ|Bc. The above inequality
reconciles this such that a concentration argument for the conditional distribution becomes
applicable. For any PAC-Bayes posterior distribution ρ and any β > 0, this implies

R(ρ)−Rm(ρ,Dm) = Eh∼ρEZ∼µ[L(h, Z)−Rm(h,Dm)] (7.47a)
≤ Eh∼ρ

[
EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm)

]
+ ξ (7.47b)

= 1
β

Eh∼ρ
[
β(EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm))

]
+ ξ (7.47c)

≤ 1
β

log Eh∼π

[
exp

(
β(EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm))

)]
+ 1
β

KL[ρ : π] + ξ (7.47d)

by Donsker and Varadhan’s variational formula (Lemma 2.15). Focusing on the first term,
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we find

exp
(
β(EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm))

)
= exp

(
β

m

∑
k∈[m]

(
EZ∼µ|Bc [L(h, Z)]− L(h, Z(k))

))
(7.48a)

=
∏
k∈[m]

exp
(
β

m

(
EZ∼µ|Bc [L(h, Z)]− L(h, Z(k))

))
(7.48b)

Each structured datum Z(k) is drawn independently from µ|Bc. By Proposition 7.8 there
exists a Wasserstein dependency matrix Γ = ∥σ∥

d
D for µ|Bc where D has entries (7.31).

Then it holds

EDm∼(µ|Bc)m

∏
k∈[m]

exp
(
β

m

(
EZ∼µ|Bc [L(h, Z)]− L(h, Z(k))

))

=
∏
k∈[m]

EZ(k)∼(µ|Bc) exp
(
β

m

(
EZ∼µ|Bc [L(h, Z)]− L(h, Z(k))

))
(7.49a)

=
∏
k∈[m]

EZ(k)∼µ|Bc

[
exp

(
β

m

(
EZ∼µ|Bc [L(h, Z)]− L(h, Z(k))

))]
(7.49b)

≤
∏
k∈[m]

exp
(
β2

8m2∥Γχ(L̃(h, ·))∥2
2

)
by Theorem 7.6 (7.49c)

= exp
(
β2

8m∥Γχ(L̃(h, ·))∥2
2

)
≤ exp

(
β2

8m∥Γχ̃∥
2
2

)
. (7.49d)

Define the shorthand

U = EDm∼(µ|Bc)m

[
exp

(
β(EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm))

)]
. (7.50)

By Markov’s inequality it holds

PDm∼(µ|Bc)m

[
exp

(
β(EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm))

)
≥ 1
δ
U
]
≤ δ (7.51)

and combining this with (7.49) we have

exp
(
β(EZ∼µ|Bc [L(h, Z)]−Rm(h,Dm))

)
≤ 1
δ

exp
(
β2

8m∥Γχ̃∥
2
2

)
(7.52)

with probability at least 1− δ over the sample. Using (7.47) we find

R(ρ)−Rm(ρ,Dm) ≤ 1
β

(
log Eh∼π

[1
δ

exp
(
β2

8m∥Γχ̃∥
2
2

) ]
+ KL[ρ : π]

)
+ ξ (7.53a)

= β

8m∥Γχ̃∥
2
2 + 1

β

(
log 1

δ
+ KL[ρ : π]

)
+ ξ. (7.53b)
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Ideally, we would minimize the right hand side with respect to β. However, this would
mean to have β depend on ρ and we thus would not have a uniform bound for all posterior
distributions. Instead, [126] approaches the problem by defining a sequence of constant
(δj, βj)j∈N0 and bounding the probability that the bound does not hold for any sequence
element. Since in the opposite (high-probability) case, the bound holds for all sequence
elements, an optimal one can subsequently be chosen dependent on the posterior. For all
j ∈ N0, define

δj = δ2−(j+1), βj = 2j
√√√√8m log 1

δ

∥Γχ̃∥2
2

(7.54)

which are independent of ρ. Now consider the event Ej that

exp
(
βj(EX∼µ|Bc [ℓ(h,X)]−Rm(h,Dm))

)
≥ 1
δj

exp
(
β2
j

8m∥Γχ̃∥
2
2

)
. (7.55)

By the above argument leading up to (7.52), the probability for Ej under a random sample
of the conditioned data distribution µ|Bc is at most δj. Therefore, the probability that
any Ej occurs is bounded by

P
( ⋃
j∈N0

Ej
)
≤
∑
j∈N0

P(Ej) ≤
∑
j∈N0

δj = δ. (7.56)

Thus, for all posteriors ρ with probability at least 1− δ none of the events (7.55) occurs.
We may therefore select an index j dependent on ρ to obtain a sharper risk certificate
which still holds with probability at least 1− δ over the sample conditioned on the good
set. For a fixed posterior ρ, the optimizer of (7.53b) would be

β∗ = 1
∥Γχ̃∥2

√
8m(log 1

δ
+ KL[ρ : π]). (7.57)

Equating this to (7.55) and rounding down to the nearest integer gives

j∗ =
⌊

1
2 log2

(
1 + KL[ρ : π]

log 1
δ

)⌋
. (7.58)

Denote this number before rounding by r, i.e. j∗ = ⌊r⌋. For any real number r it holds
r − 1 ≤ ⌊r⌋ ≤ r. Therefore

1
2

√√√√1 + KL[ρ : π]
log 1

δ

= 2r−1 ≤ 2j∗ ≤ 2r =
√√√√1 + KL[ρ : π]

log 1
δ

(7.59)

which gives the following bounds on uj∗

1
2

√√√√8m(log 1
δ

+ KL[ρ : π])
∥Γχ̃∥2

2
≤ uj∗ ≤

√√√√8m(log 1
δ

+ KL[ρ : π])
∥Γχ̃∥2

2
. (7.60)
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Likewise, we bound

KL[ρ : π] + log 1
δj∗

= KL[ρ : π] + log 2
δ

+ j∗ log 2 (7.61a)

≤ KL[ρ : π] + log 2
δ

+ log 2
2 log2

(
1 + KL[ρ : π]

log 1
δ

)
− log 2 (7.61b)

= KL[ρ : π] + log 1
δ

+ 1
2 log

(
1 + KL[ρ : π]

log 1
δ

)
(7.61c)

= KL[ρ : π] + log 1
δ

+ 1
2 log

(
log 1

δ
+ KL[ρ : π]

)
− 1

2 log log 1
δ
.

(7.61d)

The assumption δ ≤ exp(−e−1) yields − log log 1
δ
≤ 1 and because x+ 1 ≤ exp(x) for all

x ∈ R, we find

KL[ρ : π] + log 1
δj∗
≤ KL[ρ : π] + log 1

δ
+ 1

2

(
log

(
log 1

δ
+ KL[ρ : π]

)
+ 1

)
(7.62a)

≤ KL[ρ : π] + log 1
δ

+ 1
2
(

log 1
δ

+ KL[ρ : π]
)

(7.62b)

= 3
2
(

log 1
δ

+ KL[ρ : π]
)
. (7.62c)

We can now use the bounds (7.62c) and (7.60) in (7.53b) to bound the expected general-
ization error

R(ρ)−Rm(ρ,Dm) ≤ uj∗

8m∥Γχ̃∥
2
2 + 1

uj∗

(
log 1

δj∗
+ KL[ρ : π]

)
+ ξ (7.63a)

≤ uj∗

8m∥Γχ̃∥
2
2 + 3

2uj∗

(
log 1

δ
+ KL[ρ : π]

)
+ ξ (7.63b)

≤ 1
2∥Γχ̃∥2

√
log 1

δ
+ KL[ρ : π]

2m

+ 3
2∥Γχ̃∥2

√
log 1

δ
+ KL[ρ : π]

2m + ξ (7.63c)

= 2∥Γχ̃∥2

√
log 1

δ
+ KL[ρ : π]

2m + ξ (7.63d)

Note that β∗ would attain the optimal value

R(ρ)−Rm(ρ,Dm) ≤ ∥Γχ̃∥2

√
KL[ρ : π] + log 1

δ

2m + ξ (7.64)

which only differs from the above uniform bound by a factor of two. Finally, recall
Γ = ∥σ∥

d
D where D has entries (7.31).

Note that the generalization gap on the right hand side of (7.45) decays with d. This
accounts for generalization from a single example. In fact, if only m = 1 structured
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example is available, but d≫ 1, Theorem 7.9 still certifies risk. This effect can however
be negated by the norm ∥Dχ̃∥. If structured data contain strong global dependence, then
∥Dχ̃∥ will not be bounded independently of d and thus, in the worst case of ∥Dχ̃∥ ∈ O(d)
the assertion is no stronger than PAC-Bayesian bounds for unstructured data. The same
point was observed in [126].

The measure of the bad set under the data distribution µ is assumed to be bounded
by ξ. This is to account for a small number of data which contain strong dependence. In
order to prevent these bad data from dominating D, thereby negating the decay of the
bound in d as described above, it is preferable to exclude them from the sample, reduce
the sample size m and pay the penalty ξ in (7.45).

To prove Theorem 7.9, we broadly follow the argument put forward in [126]. This
augments typical PAC-Bayesian constructions in the literature by the inclusion of a set
of bad inputs. We first reconcile the data being conditioned on Bc with risk certification
for unconditioned data, leading to the addition of ξ on the right hand side of (7.45). The
model complexity term KL[ρ : π] is due to Donsker and Varadhand’s variational formula.
Subsequently, the moment generating function bound of Theorem 7.6 is instantiated
through the Wasserstein dependency matrix constructed in Proposition 7.8. Markov’s
inequality then gives a pointwise risk bound for fixed value of a free parameter. In order
to optimize this parameter, the bound is made uniform on a discrete set of values through
a union bound.

In Theorem 7.9, we combine the PAC-Bayesian construction of [126] with the more
general concentration of measure theory of [111]. Crucially, concentration of measure
results used in [126] are predicated on the assumption of data generated by a Markov
random field [214, 110]. Our work is more flexible in two major ways.

(1) Our assumption on the data-generating distribution is likely more representative of
real-world data as measure transport models have repeatedly been shown to yield
convincing data generators.

(2) Markov random fields are difficult to handle computationally because inference in
general Markov random fields is NP-hard [214] such that one is forced to learn based
on approximate inference procedures [102, 61, 204].

Our work also allows for more general metrics σ as opposed to the singular choice of
Hamming norm required in [126]. Additionally, the key results of [126] are constructed to
ensure all data drawn from the unconditioned distribution µ are in the good set. This
reduces the probability of correctness 1− δ by mξ. Instead, we assume data drawn from
µ|Bc, effectively reducing the number of available samples by a factor of 1− ξ, but keeping
the probability of correctness high. This allows the set of bad inputs to be used more
effectively as a computational tool in Section 7.3.

Comparing the dependency of (7.45) on d with the respective result in [126], it first
appears as though our bound decays with a faster rate (d instead of

√
d). However, this

will not typically be the case in practice because ∥Dχ̃∥2 grows with rate
√
d in most
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situations. To see this, consider the case of local dependency in the sense that

Lij =
1, if j ∈ Ni ,

0, else
(7.65)

for local neighborhoods Ni ⊆ [d] which contain a fixed number of c elements and let χ̃i = α
for all i ∈ [d] and some constant value α > 0. Then

∥Dχ̃∥2 =
√√√√∑
i∈[d]

(
α|Ni|

)2
= cα

√
d. (7.66)

Clearly, if dependence is localized and the oscillations χ̃ do not decay in d, then ∥Dχ̃∥2
contains a factor that grows with rate

√
d, leading to the same asymptotic rate of (7.45)

already observed in [126].
Note that [126] additionally allows for a set of bad hypotheses BF ⊆ H which do not

conform to stability assumptions. In our construction, this means restricting the bound
(7.44) to oscillations on the set of good hypotheses. We omit this extension for clarity of
exposition, but do not expect it to necessitate major changes to the presented proofs.

Further, [126] considers a large number of applicable orderings for random variables by
introducing a filtration of their index set. This notion is not easily compatible with our
assumption of KR-rearrangement, because triangularity of transport depends on the order
of variables.

7.3 Bounding the Bad Set
With regard to numerical risk certificates, a key technical aspect of Section 7.2 concerns
the quantities Lij in (7.30). Here, we propose a way to use the set of bad inputs as
a computational tool to this end. Suppose we assign arbitrary fixed values to Lij and
subsequently define B ⊆ Zd as the set of inputs on which the condition (7.30) fails. Then
we have fulfilled the prerequisites of Proposition 7.8 by construction and are left with
bounding µ(B). Note that

µ(B) = PZ∼µ(Z ∈ B) = EZ∼µ[1{Z ∈ B}] (7.67)

and the indicator function 1 assumes values in the bounded set {0, 1}. Therefore, Hoeffd-
ing’s inequality gives the following.
Proposition 7.10 (Upper bound on the bad set) Let µ be a data distribution and let
D̃n ∼ µn be a sample of size n. Fix an error probability ϵ ∈ (0, 1). Then

µ(B) ≤ 1
n

∑
Z∈D̃n

1{Z ∈ B}+
√

1
2n log 2

ϵ
(7.68)

with probability at least 1− ϵ over the sample.
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Checking the condition Z ∈ B requires evaluating (7.30) which comes down to finding a
Lipschitz constant for a one-dimensional function. If this is computationally feasible for the
given data model, then the concentration argument (7.68) can be used to bound µ(B) with
high probability. Because (7.68) decays only in the number of structured examples O(

√
n),

it can not be used to show generalization from a single structured example. However,
PAC-Bayesian risk certificates are typically dominated by the KL complexity term in
(7.45) which decays with the size of structured examples as well. Thus, Proposition 7.10
should still be useful in practice.

Note that Proposition 7.10 makes a pointwise statement about a fixed value of Lij
which has limited utility for learning Lij from data. To remedy this problem, we can first
define a discrete set L = (L(k))k∈[l] of candidate matrices and select error probabilities ϵk
for each of the events

µ(B(L(k))) ≥ 1
n

∑
Z∈D̃n

1{Z ∈ B(L(k))}+
√

1
2n log 2

ϵk
(7.69)

such that ∑k∈[l] ϵk = ϵ. Then, by a union bound with probability at least 1− ϵ over the
sample none of the events (7.69) occurs. We have thus constructed a uniform bound
over the set of candidate matrices which allows us to select the one which minimizes the
generalization gap in (7.45).

In order to make this strategy most effictive, domain knowledge on the application
at hand should be applied when constructing candidate matrices and assigning error
probabilities. For instance, the limited empirical findings of [45] on ImageNet [53] indicate
that the majority of natural images contain mostly local signal. In image segmentation,
this is conducive to concentration, because it can lead to many small values in an optimal
Wasserstein dependency matrix. In particular, if dependency decays with distance in the
image domain, one should select configurations L(k) in which L

(k)
ij is small if i is distant

from j in the image domain and allowed to assume larger values if i is close to j in the
image domain.

We give an intuitive interpretation of the relationship between Proposition 7.10 and
Theorem 7.9 as follows. Suppose the majority of samples from a structured data distribution
contain mostly local signal. The locality of signal in samples indicates weak global
dependence of random variables which in turn manifests in small entries of a Wasserstein
dependency matrix. However, a small number of bad data may contain only weak local
signal. For instance, an image in which every pixel has the same value does not give more
information to a learner if it is doubled in size. Even worse, a small (but not null) set of
bad data will dominate the Wasserstein dependency matrix and prevent generalization
that scales with d. Proposition 7.10 thus estimates an upper bound on the likelihood of
bad data under µ which are then excluded from the concentration argument underlying
the bound (7.45).
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8 Conclusion and Outlook

This thesis has studied structured prediction, the problem of jointly predicting realizations
of multiple coupled random variables. It was broadly organized into a first part, focusing
on geometric aspects, and a second part, focusing on statistical aspects.

Chapter 4 layed a geometric foundation by studying the set of factorizing discrete prob-
ability distributions as an embedded submanifold of a meta-simplex which contains all
joint distributions of multiple discrete random variables. This was put into the perspective
of game theory and information geometry and we ultimately found a correspondence
between assignment flows on the embedded submanifold and replicator dynamics with
structured payoff functions on the meta simplex. From a game theoretical viewpoint,
the proposed embedding framework provides a robust mathematical toolset for modeling
complex population interactions. It simplifies analysis by formally reducing the complex
multi-population case to a single-population one.

Building on this geometric understanding of factorizing distributions relative to general
joint distributions, two generative models of discrete data were developed in Chapter 5.
The first, described in Section 5.2, has aimed to approximate a given energy-based model.
Applications are abundant in statistical physics and a core technical question concerned
differentiable estimation of model entropy. The second generative model, described in
Section 5.3, has aimed to approximate joint distributions of discrete random variables
which are only accessible through a dataset of samples. This has lead to the construction
of continuous normalizing assignment flows, which we trained by employing a Riemannian
flow-matching approach. In both cases considered in Chapter 5, the underlying idea was
to parameterize joint distributions p ∈ SN by distributions ν ∈ P(W) supported on the
much lower-dimensional assignment manifold.

Turning to statistical learning, a self-certified image classification approach was proposed
in Chapter 6. The method was built on a linearization of assignment flows and achieved
normal distribution of classification logits with tractable moments. This was leveraged
to gain favorable computational properties within the PAC-Bayesian risk certification
paradigm, by allowing to bound expected empirical risk under the PAC-Bayesian posterior
distribution efficiently and with high probability.

115
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In Chapter 7 the statistical part of the thesis has culminated in a novel PAC-Bayesian
generalization bound for structured prediction. It was argued that a model for the
data-generating distribution is required in this case and the choice of Knothe-Rosenblatt
rearrangement was proposed. This shape of measure transport model allowed to distill
quantities which characterize dependencies in the joint distribution of data, called a
Wasserstein dependency matrix. In turn, state of the art concentration of measure theory
was invoked, ultimately allowing a PAC-Bayesian construction.

8.1 Future Work
The variety of topics and literature touched in this thesis illustrates that structured
prediction is a complex problem domain, stimulating ongoing research on both theory and
applications. Here, we list open questions and future directions which appear as natural
next steps in light of the presented work.

8.1.1 Assignment Flows
In [183], assignment flows are characterized as critical points of an action functional
within a geometric formalism of mechanics. This generalizes an analogous characterization,
previously suggested for replicator dynamics [165] on single populations. The embedding
theorem 4.5 presented in Chapter 4 allows to formally reduce assignment flows to single-
population replicator dynamics, incurring high dimension and structured payoff. A natural
question is whether the characterization proposed in [183] is equivalent to the one of [165]
under this embedding.

A generalized perspective on assignment flows was proposed by [187]. The authors
study a dynamical system on a product of density matrix manifolds called Quantum State
Assignment Flow. Although density matrices can represent entangled states and constitute a
strict generalization of discrete probability measures, the underlying information geometric
framework is broadly analogous. This suggests the possibility of generalizing the embedding
results of Chapter 4 to the density matrix domain.

8.1.2 Generative Models
The approximation of energy-based models by stochastic assignment flows proposed in
Section 5.2 builds on a differentiable estimator for model entropy. However, we have
employed a simple estimator, which is limited by slow convergence for distributions with
large support. A natural direction of future work is to construct similar differentiable
approximations for more advanced entropy estimators.

Flow matching and other methods of learning generative models from discrete data are
currently very active areas of research. An approach which is closely related to the one of
Section 5.3 was concurrently proposed by [196]. The authors model conditional probability
paths of measures ν(t) ∈ P(W) as e-geodesic paths in the exponential family of Dirichlet
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distributions on each simplex. They argue that, by not transporting all probability mass
of the reference measure to a single region Aγ ⊆ W in finite time, decisionmaking is less
compressed into a short time interval, leading to more effective use of model capacity. This
reasoning stimulates the idea of generalizing the approach of Section 5.3 to match paths of
conditional measures on T0W which escape to infinity for t→∞ instead of concentrating
on points U (γ) (defined in (5.49)) after finite time.

8.1.3 Statistical Learning Theory and Deep Learning
We have employed a differentiable surrogate loss in place of 0/1 loss for training PAC-
Bayesian posteriors in Chapter 6. It was pointed out by [48] that, while 0/1 loss has
vanishing gradient and thus provides no useful training signal, expected empirical risk
relative to 0/1 loss does not need to have the same property. In the case of binary
classification and normal distribution of logits, the authors derive a closed form of expected
empirical risk, demonstrating non-vanishing gradients. This technique was developed
further in [47], providing unbiased estimators for c > 2. Since the stochastic LAF classifier
constructed in Chapter 6 produces classification logits following a normal distribution for
each datum, implementing direct minimization of expected empirical risk without surrogate
loss is a natural extension. In addition, direct numerical optimization of the PAC-Bayes-kl
inequality, without a relaxation like (6.36) could further improve the sharpness of risk
certificates.

The PAC-Bayesian generalization bound for structured prediction proposed in Chapter 7
relies on the construction of a Wasserstein dependency matrix. In order to evaluate such
a bound numerically, methods of computing the Lipschitz constants Lij, related to the
transport map through (7.30), need to be developed. From an application perspective, it
would also be beneficial to generalize the proposed approach to other measure transport
methods. This would make it easier to leverage existing foundation models [27] trained on
a broad range of data.

The assumption that data is generated by Knothe-Rosenblatt rearrangement is weak, but
to get access to (an approximation of) this transport map in practice requires learning
a generative model from data. Thus, from a learning theoretical standpoint, the main
limitation of our PAC-Bayesian approach to structured prediction is the lack of general-
ization theory for generative models. For normalizing flows, an asymptotic approach was
proposed in the recent work [14]. Another recent line of work has developed non-vacuous
PAC-Bayesian bounds for the generalization of variational autoencoders [140], generative
adversarial networks [139] and diffusion models [141]. These approaches are promising
but have not yet been scaled to large datasets. If high-probability generalization bounds
for foundation models become available, a further open question is how the slack of these
bounds affects the tightness of bounds on downstream discriminative task risk through
our construction.

The main limitation of current PAC-Bayesian approaches is their strong reliance on
data-dependent priors to achieve tightness. This can also be seen in Chapter 6 where
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expected empirical risk of the prior on test data is already close to the performance
of the posterior. The detailed empirical work [161] examined the role of the prior in
PAC-Bayesian learning. The authors find that, although there is a dependency on the
dataset, the tightest certificates are achieved by using a substantial amount – even the
majority – of all available data for prior learning. This indicates that in order to achieve a
tight certificate which can inform the posterior learning process in a principled way, we
need to have access to a prior that already generalizes well to unseen data. In comparison
with the validation set certificates of [104], all data can be used to learn PAC-Bayesian
posteriors, which underlies the superior explanatory power of the PAC-Bayesian approach.
However, strong reliance on data-dependent priors for tightness still limits the extent to
which PAC-Bayesian bounds can serve as a principled basis for deep learning beyond
validation.
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A Additional Lemmata

Lemma A.1 The mapping T : W → T defined by (4.5a) is injective.

Proof. Let W (1),W (2) ∈ W satisfy T (W (1)) = T (W (2)). Let γ ∈ [c]n be an arbitrary
fixed multi-index. Fix an arbitrary index i ∈ [n] and let α ∈ [c]n match γ at all
positions k ∈ [n] \ {i}. Then T (W (1)) = T (W (2)) implies both T (W (1))γ = T (W (2))γ and
T (W (1))α = T (W (2))α. Division thus gives

W
(1)
i,αi
W

(2)
i,γi

= W
(1)
i,γi
W

(2)
i,αi
. (A.1)

Since W (1),W (2) ∈ W , the entries of row i sum to 1. Using this and the fact that αi ∈ [c]
is arbitrary, we find

W
(2)
i,γi

=
∑
j∈[c]

W
(1)
i,j W

(2)
i,γi

(A.1)=
∑
j∈[c]

W
(1)
i,γi
W

(2)
i,j = W

(1)
i,γi
. (A.2)

Since γi ∈ [c] was arbitrary, this shows W (1) = W (2).

Lemma A.2 For every W ∈ W one has γ ∈ supp(T (W )) if and only if γi ∈ supp(Wi) for
all i ∈ [n].

Proof. We directly compute

supp(T (W )) = {γ ∈ [c]n : T (W )γ > 0} (A.3)
= {γ ∈ [c]n :

∏
i∈[n]

Wi,γi
> 0} (A.4)

= {γ ∈ [c]n : Wi,γi
> 0, ∀i ∈ [n]} (A.5)

= {γ ∈ [c]n : γi ∈ supp(Wi), ∀i ∈ [n]}. (A.6)

Lemma A.3 For any V ∈ Rn×c it holds QΠ0V = Π0QV for the mappings Q,Π0 given by
(4.5b) and (2.33).
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Proof. For arbitrary γ ∈ [c]n, we compute

(QΠ0V )γ =
∑
i∈[n]

(Π0Vi)γi
=
∑
i∈[n]

(
Vi,γi
− ⟨Vi,

1
c
1c⟩
)

= (QV )γ − ⟨V,
1
c
1n×c︸ ︷︷ ︸

=M1S

⟩ (A.7)

and thus, by Lemma 4.4,

QΠ0V = QV − ⟨QV, 1
N

1N⟩1N = Π0QV, (A.8)

which was the assertion.

Lemma A.4 Let γ ∈ [c]n. The differential of T at W ∈ W in direction V ∈ T0W is given
by

dT |W [V ] =
(
dTγ|W [V ]

)
γ∈[c]n

= T (W ) ⋄Q
[
V

W

]
. (A.9)

Proof. Suppose η : (−ε, ε)→W is a smooth curve with η(0) = W and η̇(0) = V , for some
ε > 0. Let γ ∈ [c]n be arbitrary and consider the component Tγ. Then

dTγ|W [V ] = d
dt
Tγ(η(t))

∣∣∣
t=0

= d
dt

∏
i∈[n]

ηi,γi
(t)
∣∣∣
t=0

(A.10a)

=
∑
k∈[n]

η̇k,γk
(0)

∏
i∈[n]\{k}

ηi,γi
(0) =

∑
k∈[n]

Vk,γk

∏
i∈[n]\{k}

Wi,γi
(A.10b)

=
∑
k∈[n]

Vk,γk

Wk,γk

Tγ(W ) (4.5b)= Tγ(W )Qγ

(
V

W

)
. (A.10c)

Because of dT |W [V ] = (dTγ|W [V ])γ∈[c]n the expression in (A.9) directly follows.

Lemma A.5 It holds kerQ = {Diag(d)1n×c : d ∈ Rn, ⟨d, 1n⟩ = 0} as well as rankQ =
nc− (n− 1).

Proof. Let V ∈ kerQ and let γ, γ̃ be two multi-indices which differ exactly at position k
but are otherwise arbitrary. We have (QV )γ = (QV )γ̃ = 0 because V ∈ kerQ. Thus

(QV )γ̃ = Vk,γ̃k
+

∑
i∈[n]\{k}

Vi,γ̃i
= (QV )γ = Vk,γk

+
∑

i∈[n]\{k}
Vi,γi

(A.11)

which implies Vk,γ̃k
= Vk,γk

, i.e. V = Diag(d)1n×c for some d ∈ Rn since k was arbitrary.
Further, it holds

0 = (QV )γ =
∑
i∈[n]

Vi,γi
=
∑
i∈[n]

di = ⟨d, 1n⟩. (A.12)

Thus, we have shown
kerQ ⊆ {Diag(d)1n×c : d ∈ Rn, ⟨d, 1n⟩ = 0}. (A.13)

Conversely, let V be in the right-hand set. Then
(QV )γ =

∑
i∈[n]

Vi,γi
=
∑
i∈[n]

di = ⟨d, 1n⟩ = 0 (A.14)

for all γ ∈ [c]n which shows that (A.13) is an equation. There are (n − 1) linearly
independent vectors d ∈ Rn with ⟨d, 1n⟩ = 0, therefore Q has the specified rank.



B Likelihood under Discrete
Generative Models

For γ ∈ [c]n, consider the tangent vector U (γ) ∈ T0W which corresponds to a smoothed
version of the extremal point Mδγ as defined in (5.49). We will construct a proposal
distribution ζ ∈ P(W) which has full support but is concentrated on the Voronoi cell
Aγ ⊆ W with anchor point Mδγ. To this end, find ζ̃ ∈ P(T0W) such that ζ̃ has full
support but is concentrated on Ãγ = exp−1

1W (Aγ) defined in (5.48). This is equivalent to
the original task by setting ζ = (exp1W

)♯ζ̃.
Let B ∈ Rc×(c−1) be an orthonormal basis of the linear subspace T0Sc ⊆ Rc and let B

be the linear operator which maps coordinates in Rn×(c−1) to tangent vectors in T0W by
applying B node-wise.

We choose ζ̃ = B♯N as a normal distribution in the basis B centered at U (γ) with
variance σ2 > 0 on each coordinate. In order to gain control over how concentrated ζ will
be on Aγ, we compute the probability of Ãγ under ζ̃ as a function of σ2.

Independently for the tangent space of every individual simplex with index i ∈ [n], the
chosen proposal distribution ζ̃i ∈ P(T0Sc) reads

ζ̃i = B♯N
(
B⊤(U (γ))i, σ2Ic−1

)
. (B.1)

Let
D

(γ)
i = {ui ∈ T0Sc : ∥ui − (U (γ))i∥2 ≤ r} (B.2)

denote the ball with radius r > 0 in T0Sc centered at (U (γ))i. For any ui ∈ T0Sc, it holds
BB⊤ui = ui and we have

∥ui − (U (γ))i∥2
2 = ⟨ui − (U (γ))i, ui − (U (γ))i⟩ (B.3a)

= ⟨BB⊤(ui − (U (γ))i), ui − (U (γ))i⟩ (B.3b)
= ⟨B⊤(ui − (U (γ))i), B⊤(ui − (U (γ))i)⟩ (B.3c)
= ∥B⊤ui −B⊤(U (γ))i)∥2

2. (B.3d)

Thus, ui ∈ D(γ)
i exactly if the coordinates B⊤ui lie in the ball

D̂
(γ)
i = {x ∈ Rc−1 : ∥x−B⊤(U (γ))i∥2 ≤ r}. (B.4)
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This allows to view the probability of D(γ)
i under ζ̃i as the probability of D̂(γ)

i under a
normal distribution with variance σ2 centered at B⊤(U (γ))i. By first shifting the mean,
this can be computed as probability of the sphere {x ∈ Rc−1 : ∥x∥2 ≤ r}. Let X be a
standard normal random variable on Rc−1, then the sought probability is

P
ζ̃i

(D(γ)
i ) = P(∥σX∥2

2 ≤ r2) = P
(
∥X∥2

2 ≤
r2

σ2

)
. (B.5)

Since X has normal distribution, ∥X∥2
2 has χ2-distribution and (B.5) can be computed by

evaluating the cumulative distribution function Ψc−1 of χ2 with c− 1 degrees of freedom.
Choose the radius r as the largest radius such that D(γ) ⊆ Ãγ. A simple geometric

argument shows that this radius is

r = ∥U (γ)∥2

√
c

2(c− 1) . (B.6)

We can now set a fixed probability p > 0 for the event that priority samples drawn
from ζ̃ lie within D̂(γ). Since ζ̃ is composed of independent node-wise distributions ζ̃i, we
have p = p̂n for p̂ = P

ζ̃i
(D(γ)

i ). From (B.5), we find σ2 as a function of p by

σ2 = r2
(

Ψ−1
c−1

(
p

1
n

))−1
. (B.7)

In our experiments, we set p = 0.5 for likelihood computation. The above construction
is crucial for robust implementation of the proposed importance sampling scheme in high
dimensions.



C Additional Aspects of Assignment
Flows

C.1 Stability
Theorem C.1 (Lipschitz Bound on AF) Let 0 < T <∞ be a fixed time horizon and
let v(t; v0) denote the integral curve of

v̇(t) = Πv
0Ωexpv

1W
(v(t)), v(0) = v0. (C.1)

Then the map ΨT : T0W → T0W, v0 7→ ΨT (v0) := v(T ; v0) has Lipschitz constant LΨT

bounded by
LΨT

≤ exp
(1

2∥Ω∥2T
)
. (C.2)

The system (C.1) is a parameterization of (6.8) on the tangent space T0W.

Proof. Let s(t) := expv
1W

(v(t)) for t ≥ 0. Then (C.1) gives

ṡ(t) = Πv
0Rv

expv
1W

(v(t))v̇(t) = Rv
s(t)Ωs(t), s(0) = expv

1W
(v(0)) (C.3)

so (C.1) is indeed a parameterization of (6.8) in T0W. We formally apply the explicit
Euler scheme to discretize (C.1). Let

f(v) := v + hΠv
0Ωexpv

1W
(v) (C.4)

denote a single explicit Euler step. Now choose h > 0 such that N = T
h

is an integer and
let

ΦT,h := f ◦ . . . ◦ f = fN (C.5)
denote the approximation of v(T ; v0) computed by the explicit Euler scheme. We first
bound ∥Rp∥2 for arbitrary p ∈ W by using Gerschgorins circle theorem. Each row i of Rp

defines the Gerschgorin disc

Bri
(xi), xi = pi(1− pi), ri =

∑
j ̸=i

pipj = pi(1− pi) (C.6)
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Since pi(1− pi) ∈ (0, 1/4], the union of all discs is contained in (−1/4, 1/2]. This gives the
upper bound

∥Rp∥2 ≤
1
2 . (C.7)

By using this together with ∥Π0∥2 = 1, we find

∥df(v)∥2 = ∥I + hΠv
0ΩRv

expv
1W

(v)∥2 (C.8a)

≤ 1 + h∥Πv
0ΩRv

expv
1W

(v)∥2 (C.8b)

≤ 1 + h

2∥Ω∥2 (C.8c)

which in turn yields

∥dΦT,h(v)∥2 ≤ ∥df(v)∥N2 ≤
(
1 + h

2∥Ω∥2
)N
. (C.9)

For arbitrary c, h ∈ R+, it holds

1 + ch ≤ exp(ch) ⇒ (1 + ch) 1
h ≤ exp(c) (C.10)

thus
∥dΦT,h(v)∥2 ≤ exp

(1
2∥Ω∥2T

)
. (C.11)

By the multivariate mean value inequality, the latter is an upper bound on the Lipschitz
constant of ΦT,h for all h. Let hk := T2−k and define the sequence of functions (ΦT,hk

)k∈N.
All functions in this sequence have Lipschitz constant bounded by (C.11). It remains to
show that this sequence converges uniformly to ΨT .

Because the r.h.s. of (C.1) is smooth, the local truncation error of Euler’s method with
stepsize h is bounded by Ch2 [2, Thm. II.3.1]. Analogous to (C.8) we further compute the
update Lipschitz constant

∥Πv
0ΩRv

expv
1W

(v)∥2 ≤
1
2∥Ω∥2 (C.12)

which by [2, Theorem II.3.6] bounds the global truncation error of Euler’s method as

∥ΦT,h(v0)−ΨT (v0)∥2 ≤ h
2C
∥Ω∥2

(
exp

(1
2∥Ω∥2T

)
− 1

)
∈ O(h) (C.13)

This shows that the sequence (ΦT,hk
)k∈N converges uniformly to ΨT because the pointwise

convergence rate O(h) given in (C.13) is independent of v0. By uniform convergence, the
limit function ΨT also has Lipschitz constant bounded by (C.11) which completes the
proof.

C.2 Numerical Integration
In its most generic form, the assignment flow reads

Ẇ (t) = RW (t)[F (W (t))], W (0) = W0 (C.14)



C.2. NUMERICAL INTEGRATION 141

and fixing an arbitrary point W1 ∈ W , we find the parameterization

W (t) = expW1(V (t)), (C.15a)
V̇ (t) = Π0F (expW1(V (t))), V (0) = exp−1

W1(W0) (C.15b)

in the tangent space at W1 which is equivalent to (C.14) as can be seen by differentiating
W (t) in (C.15a)

Ẇ (t) = RexpW1 (V (t))[V̇ (t)] = RW (t)[V̇ (t)] (C.16a)
= RW (t)[Π0F (expW1(V (t)))] (C.16b)
= RW (t)[F (W (t))] (C.16c)

and comparing initializations

W (0) = expW1(V (0)) = expW1(exp−1
W1(W0)) = W0. (C.17)

Due to the lifting map property, we have

expW (V ) = expexpW1 (exp−1
W1

(W ))(V ) = expW1(V + exp−1
W1(W )). (C.18)

On a single simplex, consider the barycenter p0 = 1Sc . Then

expp0(v) = p0 ⋄ ev

⟨p0, ev⟩
=

1
c
1c ⋄ ev

⟨1
c
1c, ev⟩

= 1c ⋄ ev

⟨1c, ev⟩
= softmax(v) (C.19a)

exp−1
p0 (p) = Π0 log p (C.19b)

The tangent space parameterization at W0 reads

W (t) = expW0(V (t)), V (0) = 0 (C.20a)
V̇ (t) = Π0F (expW0(V (t))) (C.20b)

If, by comparison, we parameterize the same flow in the tangent space at the barycenter,
this reads

W (t) = exp1W
(V 0(t)), V 0(0) = exp−1

1W
(W0) (C.21a)

V̇ 0(t) = Π0F (exp1W
(V 0(t))) (C.21b)

We compare (C.20) with (C.21) and find

exp1W
(V 0(t)) = W (t) = expW0(V (t)) = exp1W

(V (t) + Π0 logW0) (C.22)

by using (C.18) and (C.19b). Thus, at any time t, both parameterzations are related by

V 0(t) = V (t) + Π0 logW0 (C.23)

which is exactly the constant shift compensated by the initialization of V 0(0). Thus, (C.20)
and (C.21) are equivalent foundations of numerical methods for integrating assignment
flows, in the sense that both evaluate numerically to the same vector field at any time t.
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C.3 Arnoldi’s Method
Theorem C.2 (Arnoldi by QR-factorization) Let V = QR, Q ∈ Rnc×k, R ∈ Rk×k be a
QR factorization of the matrix with columns

V =
[
vD MvD · · · Mk−1vD

]
. (C.24)

Then Q and Hk = Q⊤MQ satisfy the Arnoldi relations (6.16) for a vector rk with Q⊤rk = 0
and Hk is an upper Hessenberg matrix.

Proof. We first define the quantities

q = MkvD − QQ⊤MkvD, r = Q⊤MkvD (C.25a)
rk+1,k+1 = ∥q∥2, q = q/∥q∥2 (C.25b)

and note that q is orthogonal to imgQ, because QQ⊤MkvD is the orthogonal projection of
MkvD to img Q. A simple computation shows that

[
V MkvD

]
=
[
Q q

] [R r
0 rk+1,k+1

]
=
[
QR Qr + rk+1,k+1q

]
(C.26)

is a QR decomposition of
[
V MkvD

]
. Then

MQ = MQRR−1 =
[
MvD · · · MkvD

]
R−1 =

[
V MkvD

] [ 0
R−1

]
(C.27a)

(C.26)=
[
QR Qr + rk+1,k+1q

] [ 0
R−1

]
(C.27b)

=
( [

QR Qr
]

+
[
0 rk+1,k+1q

] ) [ 0
R−1

]
(C.27c)

=
[
QR Qr

] [ 0
R−1

]
+
[
0 rk+1,k+1q

] [ 0
R−1

]
(C.27d)

and the right summand has entries( [
0 rk+1,k+1q

] [ 0
R−1

] )
ij

=
∑

l∈[k+1]

[
0 rk+1,k+1q

]
il

[
0

R−1

]
lj

= rk+1,k+1qiR−1
kj δkj (C.28)

because R−1 is an upper triangular matrix. Substituting (C.28) into (C.27) gives

AQQ =
[
QR Qr

] [ 0
R−1

]
+ rk+1,k+1R−1

kk qe
⊤
k . (C.29)

Using the definition of Hk, we find

QHk = QQ⊤AQ = QQ⊤
[
QR Qr

] [ 0
R−1

]
+ rk+1,k+1R−1

kk Q Q⊤q︸ ︷︷ ︸
=0

e⊤
k (C.30)
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which shows
AQ = QHk + rk+1,k+1R−1

kk qe
⊤
k . (C.31)

Thus, Q and Hk satisfy the Arnoldi relations (6.16) with

rk = rk+1,k+1R−1
kk q (C.32)

which is orthogonal to img Q. It remains to show that Hk is an upper Hessenberg matrix.
Let i, j ∈ [k], i > j + 1, then

(Hk)ij
(C.30)=

∑
l∈[k+1]

[
R r

]
il

[
0

R−1

]
lj

(C.33)

and because both R and R−1 are upper triangular matrices, the first factor of each summand
can only be nonzero for i ≤ l and the second factor can only be nonzero if l ≤ j + 1. Thus,
a summand can only be nonzero if i ≤ l ≤ j + 1, showing that Hk is an upper Hessenberg
matrix.
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D Additional Detail of Experiments

D.1 Implementation Details
For the Cityscapes experiment in Section 5.3.5, we employ the UNet architecture of [1]
with attention_resolutions (32, 16, 8), channel_mult (1,1,2,3,4), 4 attention heads, 3
blocks and 64 channels. We trained for 250 epochs using Adam with learning rate 0.0001
and cosine annealing scheduler. Rather than the original c = 33 classes, we only use the
c = 8 class categories specified in torchvision. The same subsampling of classes was used
in the related work [3]. They additionally perform spatial subsampling to 32× 64. Instead,
we subsample the spatial dimensions (NEAREST interpolation) to 128× 256.

For the MNIST experiment in Section 5.3.5, we use the same architecture with
attention_resolutions (16), channel_mult (1,2,2,2), 4 attention heads, 2 blocks and 32
channels. We trained for 100 epochs using Adam with learning rate 0.0005 and cosine
annealing scheduler. We pad the original 28× 28 images with zeros to size 32× 32 to be
compatible with spatial downsampling employed by the UNet architecture.

For the simple distributions in Figure 5.5, we employ a neural network composed of
batch normalization, dense layers and ReLU activation. The sequence of hidden dimensions
for the mixture of Gaussian and Pinwheel distributions is (256, 256). For the coupled
binary variables, we use a linear function Fθ, with no batch normalization or bias. We
trained for 2k steps with batch size 512 using Adam with learning rate 0.0005.

In all experiments, the smoothing constant ϵ of (5.49) is set to 0.01.
All experiments in Sections 5.2.2 and 5.3.5 were run on one of two desktop graphics

cards (1x NVIDIA RTX2080ti, 1x NVIDIA RTX2060super), requiring less than 200
compute hours in total.
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D.2 Additional Samples

Figure D.1: Illustration of Cityscapes segmentation samples drawn from our model. Left
with a black border: random samples generated by our model through integration (5.7)
with random initializations. The remaining plots depict the five training data with smalles
pixel-wise distance to the sample in their respective row.


	List of Publications
	Introduction
	Contribution and Organization
	Background and Related Work
	Assignment Flows
	Generative Modelling
	PAC-Bayesian Theory and Structured Prediction

	Basic Notation

	Preliminaries
	Probability Simplex
	Statistical Learning Theory and Deep Learning
	Risk Certification
	PAC-Bayes


	Assignment Flows
	Graphical Models for Structured Prediction
	Replicator Dynamics
	Assignment Flows
	Dynamical Systems on the Assignment Manifold
	Inference by Numerical Integration
	Learning Payoff Functions
	Examples of Assignment Flows


	Embedding Assignment Flows
	Embedding Formalism
	Multiple Populations and Multiple Games
	Tangent Space Embedding
	Asymptotic Behavior

	Discrete Joint Distributions
	Parameterization of Joint Distributions
	Randomized Assignment Flows
	Continuous Normalizing Assignment Flows

	Approximation of Energy-based Models
	Energy and Entropy
	Experiments

	Approximating Empirical Data Distributions
	Continuous Normalizing Flows
	Dequantization
	Flow Matching
	Likelihood Evaluation
	Experiments


	Certified Classification
	A PAC-Bayesian Classifier
	Linearized Assignment Flows
	Randomization
	Complete Classification Architecture

	Risk Certification
	Experiments

	Certified Structured Prediction
	Triangular Measure Transport
	PAC-Bayesian Risk Certificate
	Bounding the Bad Set

	Conclusion and Outlook
	Future Work
	Assignment Flows
	Generative Models
	Statistical Learning Theory and Deep Learning


	Bibliography
	Additional Lemmata
	Likelihood under Discrete Generative Models
	Additional Aspects of Assignment Flows
	Stability
	Numerical Integration
	Arnoldi's Method

	Additional Detail of Experiments
	Implementation Details
	Additional Samples


