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Summary 
 

Tumors inherit characteristics from their tissue of origin, displaying varied molecular and functional 

features based on their specific progenitor cells. Leveraging this constraint to isolate similarities 

between healthy and tumor cells, I developed ptalign as a means to place tumor cells within a fixed 

healthy lineage trajectory, using healthy stem cell transitions as a template to infer a tumor 

pseudolineage in the absence of lineage tracing. This approach offers several unique benefits: it 

facilitates the transfer of vital contextual information from healthy references to clarify tumor 

processes and enables the comparison of pseudotime expression dynamics across multiple tumors 

to identify stage- or group-specific tumor vulnerabilities. This view of tumor organization through 

the lens of healthy lineage transitions provides valuable context for the development of targeted 

tumor interventions and personalized therapies. 

In this thesis, I demonstrate this approach through a systematic study of glioblastoma 

pseudolineages based in the adult neural stem cell (NSC) lineage. Delineating glioblastoma 

hierarchies into Quiescence-, Activation-, and Differentiation-stage cells revealed the essential role 

of the Quiescence-Activation transition in determining patient outcomes. In healthy NSCs, Wnt 

signaling is a crucial regulator of this transition, and comparing pseudolineage expression dynamics 

at this transition identified the secreted Wnt antagonists SFRP1 and NOTUM as recurrently 

dysregulated in glioblastomas. Reintroducing SFRP1 stalled tumor progression, significantly 

increasing overall survival of tumor-bearing mice by rewiring tumor cell fate to an astrocytic 

pseudolineage. This SFRP1-induced remodeling was reversed with a small molecule inhibitor, 

asserting the lineage potential of tumor astrocytes and challenging prevailing assumptions about 

their plasticity. These findings position SFRP1 as a potent modulator of cell fate with promising 

therapeutic potential, highlighting the advantages of a comparative approach to studying tumor cells 

rooted in the similarities to their healthy counterparts 

ptalign pseudolineages provide a novel view of tumor organization through the lens of healthy 

lineage transitions, uncovering critical vulnerabilities in tumor hierarchies that can be targeted 

through eg. SFRP1 or a combination therapy. Overall, expanding pseudolineage inference to 

additional tumor entities promises to reveal additional vulnerabilities and strategies for their 

exploitation.  
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Zusammenfassung 
 

Tumore erben Merkmale der Gewebe aus denen sie entstehen, z.B. charakteristische molekulare 

und funktionale Ähnlichkeiten zu ihren Vorläuferzellen. Diese Ähnlichkeit zwischen gesunden und 

Tumorzellen dient als Grundlage für ptalign, welches Tumorzellen innerhalb einer konkreten 

Hierarchie gesunder Zellen platziert und dabei Übergänge zwischen definierten Zellstadien nutzt um 

eine Pseudoabstammung (pseudolineage) der Tumorzellen zu erstellen, ohne dafür die genaue 

Abstammung der einzelnen Zellen mittels genetischer Methoden bestimmen zu müssen. Dieser 

Ansatz hat mehrere Vorteile, u.A. ermöglicht er die Übertragung von relevanten Informationen des 

zellulären Kontexts der gesunden Gehirnstamzellen, die der Interpration krebsspezifischer Prozesse 

dient; so werden auch Vergleiche in der pseudotemporalen (pseudotime) Exprimierungsdynamik 

unterschiedlicher Gene in und zwischen unterschiedlichen Tumoren ermöglicht, welche die 

Erfassung von gen- und krebs-spezifischen Prozessen ermöglicht. Diese Sichtweise der 

Tumororganization, gerichtet an der Verhaltens- und Abstammungsdynamik der zellulären 

Hierarchie von gesunden Gehirnstamzellen, bietet wertvollen Kontext für die Entwicklung von 

gezielten Tumorinterventionen und personalisierten Therapien. 

In diesem Werk wende ich diese Sichtweise durch eine systematische Untersuchung von Glioblastom 

pseudolineages, welche auf der zellulären Hierarchie adulter Gehirnstammzellen basieren, an. Durch 

die Gliederung von Glioblastomhierarchien in Phasen der Quieszenz, Aktivierung, und 

Differenzierung zeigte sich, dass der Übergang zwischen Quieszenz zu Aktivierung eine bedeutende 

Rolle für das Überleben von betroffenen Patienten aufweist. In gesunden Gehirnstammzellen ist der 

Wnt-Signalweg ein entscheidender Faktor in der Regulierung dieses Übergangs. Der weitere 

Vergleich der pseudotemporalen Exprimierungsdynamik an diesem Übergang zeigte, dass die 

sezernierten Wnt-Antagonisten SFRP1 und NOTUM in Glioblastomen konsequent dysreguliert 

waren. Die Wiedereinführung von SFRP1 blockierte das Fortschreiten des Tumors und verlängerte 

signifikant das Gesamtüberleben der krebstragenden Mäuse durch das hervorrufen eines 

astrozytenähnlichen Phänotyps. Dieser Phänotyp konnte durch einen niedermolekularen Inhibitor 

rückgängig gemacht werden, was, in Widerspruch zu zur Zeit geltenden Annahmen, die 

Teilungsfähigkeit von Tumorastrozyten bestätigte. Diese Ergebnisse positionieren SFRP1 als einen 

potenten Faktor in der Bestimmung von Differenzierungspotenzial und Schicksal von Krebszellen, mit 

vielversprechendem therapeutischem Potenzial. Zudem werden die Vorteile des Ansatzes, 

Tumorzellen anhand ihrer Ähnlichkeiten zur Zellhierarchie gesunder Gehirnstammzellen zu 

betrachten, bestätigt. 

Insgesamt bieten ptalign pseudolineages eine neue Sichtweise auf die Organisation von 

Krebszellhierarchien, welche kritische Schwachstellen in Tumorhierarchien offenbart, die 

beispielsweise durch SFRP1 oder eine Kombinationstherapie ausgenutzt werden können. Die 

weitere Anwendung von ptalign auf diverse Tumortypen verspricht neue Schwachstellen sowie 

Strategien zu Ihrer therapeutischen Anwendung aufzudecken. 
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1.1 Homeostatic upkeep in the brain: a murine 

model of neurogenesis 

The human brain is a marvel of complexity. It is unfathomable the number of things which have to 

go just right, the trillions and trillions of interconnected parts which act in seamless cohesion just for 

you, dear reader, to scan an inked page and internalize my thoughts within the structures of your 

brain. This act of communication, despite the many caveats associated with it, is made possible due 

to the similar architecture and processes which govern that most complex organ: our brains. This is 

no coincidence, as truly one of the miracles of biology is the reproducible de novo assembly of the 

human brain. Not only do the intricate networks of a myriad of functionally distinct cell types have 

to coordinate all of the complex processes and behaviors that make up the human existence, it has 

to do so while maintaining a degree of plasticity and capacity to repair. This act, effectively changing 

the wheels on a moving car – as the saying goes – is unequally preserved between species, with eg. 

zebrafish able to broadly recover from traumatic brain injury (Kishimoto et al., 2012), while the idea 

that neurogenesis occurs in the mature mammalian brain was regarded as “somewhat heretical” for 

many years (Sanes et al., 2019).  

The discovery of neurogenic neural stem cells (NSCs) residing in the subventricular zone (SVZ) 

(Altman & Das, 1965; Lois & Alvarez-Buylla, 1993; Luskin, 1993) and dentate gyrus (Eriksson et al., 

1998; Van Praag et al., 2002) of adult rodents, held great promise for their targeted modulation to 

improve brain regeneration in mammals. Explant and in vitro cultures of NSCs were rapidly 

established (Gritti et al., 1995; Reynolds & Weiss, 1992; L. J. Richards et al., 1992), along with salient 

markers for their identification (Doetsch et al., 1997, 1999), which cemented their stem properties 

and ability to give rise to various progeny including neurons, astrocytes, and oligodendrocytes 

(Kirschenbaum & Goldman, 1995; Levison & Goldman, 1993; Lois & Alvarez-Buylla, 1993). More 

recently, the reproducible induction of pluripotent stem states in adult cells (Takahashi & Yamanaka, 

2006) ushered the development of organoid technologies (Clevers, 2016; Sato et al., 2009) which 

recapitulate different tissue systems including the human brain (Lancaster & Knoblich, 2014). These 

technologies provide exciting opportunities to study the development and organization of human 

brain tissues, mimicking neurological development to reveal the principles underlying 

neurodegenerative diseases (C. Li et al., 2023) and brain tumor formation (Bian et al., 2018). 

However, insights from these models of neurogenesis are only relevant insofar as they are applicable 

to NSCs in vivo, and as such it remains important to understand the principles governing the 

maintenance and dynamics of the healthy murine adult NSC lineage. 
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1.1.1 Origins and patterning of subventricular zone stem cells 

The present state of any complex system, idea, or object is the result of its development over time. 

To appreciate adult neurogenesis, this means first understanding fetal brain development. The 

majority of murine brain development takes place in the later stages of gestation and continues into 

the postnatal period, requiring in the coordinated generation of millions of precisely arranged cells. 

Neurological tissue generation begins in earnest around gestational day 9 and 10, when neural 

progenitors diverge from the neuroepithelium and convert into radial glia cells. This conversion is 

marked by changes in cell morphology, with radial glia characterized by an elongated apical-basal 

morphology. These cells initially populate the developing neural tube, with an elongated process 

spanning from the ventricular surface to the outer cellular layers of that organ (Sanes et al., 2019). In 

this position, radial glia continuously undergo rapid asymmetric divisions which maintain the stem-

identity of the mother cell while generating a differentiating daughter (Wilcock et al., 2007). 

Important for the layered organization of the brain, these daughter cells will migrate along the radial 

glial process while undergoing additional rounds of symmetric amplifying divisions (Noctor et al., 

2002). Thus the brain develops from the inside out, with eg. the various cortical layers characteristic 

of mammalian brains generated in a temporal order from radial glia which remain at the ventricular 

surface (Sanes et al., 2019). As is generally the case in development, this process is accompanied by 

fate-restriction: while radial glia are initially responsible for generating neurons, spatial and 

temporal cues will redirect them to the generation of astrocytes and oligodendrocytes in a 

phenomenon known as the gliogenic switch (Malatesta et al., 2008). 

The gliogenic switch represents a critical transition in brain development, but nuanced fate 

restriction is already present in earlier populations. For example, different neuronal subtypes will be 

generated at different timepoints, with eg. larger neurons often generated before smaller ones 

(Jacobson, 1977). Regionalization also affects radial glial fates at this stage, with progenitors in the 

medial ganglionic eminence (MGE) producing tangentially-migrating neurons with different 

properties than their cortical counterparts (Corbin et al., 2001). As the brain tissues develop, this 

fate restriction becomes ever more pronounced, with SHH and Wnt signaling already establishing 

fixed domains within ventral and dorsal domains of the developing SVZ (Fiorelli et al., 2015). These 

differences extend into the postnatal SVZ (Fig.1a) and likely underlie the regional differences which 

direct NSC fate toward the generation of specific neuronal subtypes (Lim & Alvarez-Buylla, 2016; 

Tong et al., 2015) (Fig.1b). The specific cues which guide radial glial and indeed NSC fate choice are 

particularly relevant to regenerative therapies, but also play a role in eg. organoid patterning. 
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Figure 1: Patterning of SVZ extends into adulthood. a) volumetric reconstruction of E11.5 and P4 mouse forebrains with 

Lef1-(Wnt) and Gli1-expressing (Shh) progenitors labelled. Image modified from (Fiorelli et al., 2015). b) Distinct neuronal 

subtypes generated by regionally fated NSCs lining the medial, dorsal, or lateral wall of the SVZ. GC: granule cell. Image 

modified from (Conover & Todd, 2017). 

 

In the later stages of brain development, radial glia will undergo symmetric differentiating divisions 

more frequently (Caviness, 2003), leading to the population ultimately exhausting through their 

transformation into astrocytes (Noctor et al., 2008). However, some radial glia will not complete this 

transformation and instead enter a dormant state which allows them to persist as NSCs throughout 

adulthood (Fuentealba et al., 2015; Furutachi et al., 2015). This underscores not only the necessary 

and important role of cellular quiescence in maintaining stem cell capabilities over long periods, but 

also highlights the internal and external signals which direct cellular fate in the adult brain. Perhaps 

unsurprisingly, the transcription factors and niche determinants which regulate these key processes 

of stem cell identity and fate are commonly dysregulated in brain malignancies (Altmann et al., 

2019; Y. Lee et al., 2016; Rajakulendran et al., 2019). Interestingly, the dynamics of fetal 

neurogenesis which are required to rapidly generate numerous progeny stand in stark contrast to 

the principles guiding adult neurogenesis. 

 

1.1.2 The neurogenic adult neural stem cell lineage 

Stem cell behaviors in some fetal tissues exhibit significant differences to their adult counterparts, 

for example in the reduced regenerative capabilities of the skin (K. Liu et al., 2014) and heart (Kara et 

al., 2012). This is also true for NSCs in the postnatal SVZ, which exhibit several key differences to 
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fetal radial glia. Most notable of these is the prominent role of cellular quiescence among adult SVZ 

NSCs. While fetal radial glia undergo continuous rapid divisions, adult NSCs remain in a dormant 

state (where they are often referred to as qNSCs or B-cells) until signaled to activate, for example 

through local niche signals (Basak et al., 2018; Donega et al., 2022). Once activated, NSCs follow a 

division hierarchy similar to radial glia, beginning with an asymmetric division and followed by 

several rounds of transit amplifying divisions (also called the TAP-stage or C-cells) to generate 

neuroblast progeny (Lim & Alvarez-Buylla, 2016; Ponti et al., 2013). This initial stage of NSC 

activation can be followed by a return to quiescence, leaving the cell in the G0 phase of cell cycle 

where it is more likely to reactivate compared to nearby dormant neighbors. This aspect of NSC 

biology could serve to sustain their long-term existence, as a dedicated quiescent population which 

activates in short bursts is less likely to accumulate tumorigenic mutations, and maintains a flexible 

backup pool which can be drawn from eg. in the case of injury (L. Li & Clevers, 2010). This way, fetal 

and adult stem cell dynamics reflect the different goals of these systems, with rapid expansion being 

key to the former while long term stability and persistence characterizes the latter. Another 

important distinction between radial glia and SVZ NSCs is the behavior of their progeny: whereas 

fetal neuroblasts (also called A-cells) migrate along the radial glial process, adult neuroblasts migrate 

ventrally toward the so-called rostral migratory stream (RMS) which they follow to the olfactory bulb 

(OB), where they will ultimately integrate into the existing neuronal circuitry (Sanes et al., 2019) 

(Fig.2). In ageing, SVZ NSCs become markedly more quiescent (Kalamakis et al., 2019) as the 

population declines, resulting in an increased in transit amplifying divisions being required to 

compensate for reduced overall activation levels (Danciu et al., 2023). Thus, while adult NSCs and 

fetal radial glia cells share astroglial features, they exhibit differing lineage dynamics and 

progression, with each being characterized by a distinct frequency of activation and the behavior of 

their progeny. 
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Figure 2: Overview of adult neurogenesis in mice. NSCs line the walls of the lateral ventricle, extending a cilium into the 

ventricle and contacting the blood stream (B-cell). NSCs activate (C-cell) and generate differentiating neuroblasts (C-cell) 

that migrate through the Rostral migratory stream to the Olfactory bulb, where they integrate into different interneuron 

subtypes. Reproduced from (Sanes et al., 2019). 

 

Due to their shared developmental origins as well as morphological and marker features, NSCs are 

considered specialized astrocytes (Doetsch et al., 1999; Kriegstein & Alvarez-Buylla, 2009). 

Consistent with the common parenchymal astrocytes which populate the SVZ niche and other areas 

of the brain, NSCs express classical astrocyte markers such as GFAP and GLAST (Doetsch et al., 

1997) and possess specialized endfeet which contact nearby blood vessels (Mirzadeh et al., 2008). 

Hinting at their privileged status however, NSCs extend a primary cilium to contract the ventricle, 

enabling them to communicate via the cerebrospinal fluid (CSF) (Mirzadeh et al., 2008). These two 

points of contact lend a familiar elongated shape to SVZ NSCs which is reminiscent of radial glia 

(Fig.2). This way, NSCs can sense and integrate regulatory cues from the CSF, and communicate 

within the niche or to more distal regions via the blood stream or SVZ-innervating neurons 

(Freundlieb et al., 2006). NSCs generally organize into a monolayer only a few cell-widths from the 

ventricular surface, in what is a generally hypoxic environment due to the relatively distant access to 

the blood stream (Zhu et al., 2005). This lends NSCs particularly adapted to respond in cases of 

hypoxic injuries such as stroke. 
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While NSCs exhibit strong intrinsic fating, their ability to adapt and respond to brain injury conditions 

is not completely understood. Lineage tracing demonstrated that NSCs activate in injury conditions, 

with several SVZ-derived progeny migrating outside the RMS to the injury site (Llorens-Bobadilla et 

al., 2015; Yamashita et al., 2006). Whether these cells represent an induced fate-switch upon eg. 

injury-induced inflammation, or derive from multipotent progenitors which respond to injury cues 

has important consequences for SVZ-derived tumors such as glioblastomas, though this question 

remains to be resolved. Indeed, lineage tracing demonstrates that while SVZ NSCs majorly generate 

neurons, these cells also produce astrocytic and oligodendrocytic progeny (Lim & Alvarez-Buylla, 

2016). At the time of writing, no study of NSC lineages at single-cell resolution exists, with the 

pervading explanation for NSC lineage potential being due to regionalization of the SVZ (Tong et al., 

2015). Transplantation experiments showcase the strong intrinsic fating of NSCs (Merkle et al., 

2007), suggesting that beyond regional signals alone, NSC fate potential is inscribed in the cellular 

memory eg. through changes to DNA methylation or accessibility (L. P. Kremer et al., 2022) which 

drive unique transcription factor programs (Hirabayashi & Gotoh, 2010). While transplanted or in 

vitro cultured NSCs lose their original identity after some time, neuroblasts faithfully persist their 

specific neuronal fates throughout their migration along the RMS, suggesting that it takes specific 

external triggers to wipe NSC identity. These features of fate-based regionalization and the 

identification of eg. specific multipotent NSC populations can be addressed by scRNA-seq, which has 

seen effective application to SVZ populations. 

 

1.1.3 Neural stem cells at single-cell resolution 

Single-cell RNA-sequencing (scRNA-seq) has facilitated many of the major biological advances made 

during the period of my studies. Compared to bulk sequencing, scRNA-seq enables the precise 

delineation of different cell types without relying on external markers or selection, thus facilitating 

the identification of novel or condition-specific reactive transcriptional states. Briefly, the technique 

builds on the principles established in bulk RNA sequencing, reviewed in (Van Den Berge et al., 

2019), with the critical addition of oligonucleotide sequences which enable the assignment of 

individual sequencing reads to their cell-of-origin. This is usually accomplished through one of two 

ways: addition of a cell barcode in droplet-based scRNA-seq (Macosko et al., 2015), or physical 

separation of individual cell libraries in plate-based scRNA-seq (Hagemann-Jensen et al., 2022; Picelli 

et al., 2014). These methods have different advantages, with droplet-based methods generally 

trading throughput and speed against the better coverage and higher labor costs of plate-based 
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methods. The use of unique molecular identifiers (UMIs), which include oligonucleotide labels to 

facilitate the in silico exclusion of PCR duplicates (Islam et al., 2014; Macosko et al., 2015), 

additionally improves the sensitivity of scRNA-seq data. Overall, scRNA-seq has seen wide adoption 

and commercialization, and presents a robust view of the transcriptional state of a given tissue or 

population. 

The advent of scRNA-seq required the development of novel analysis techniques to make effective 

use of the high-throughput and high dimensional data it generates. These have culminated in several 

established workflows, reviewed in (Amezquita et al., 2020; Heumos et al., 2023; Luecken & Theis, 

2019), and software packages to ease their application (Stuart & Satija, 2019; Wolf et al., 2018). 

These usually comprise various read-quantification (Dobin et al., 2013; Zheng et al., 2017) and 

normalization steps (Ahlmann-Eltze & Huber, 2023), followed by successive dimension reduction 

steps aimed at recovering the underlying biological relationships across the expression state of 

thousands of genes. To this end, uninformative genes are excluded through the selection of highly 

variable genes (Amezquita et al., 2020), followed by linear decomposition into a defined number of 

factors using PCA. These are then used to represent high-dimensional cellular neighborhoods in a 

nearest neighbor graph (KNN) and visualized by embedding eg. in UMAP (McInnes et al., 2020). 

Downstream analysis strategies include differential gene expression (Soneson & Robinson, 2018), 

batch-removal via integration (Haghverdi et al., 2018; Lotfollahi et al., 2022; Tran et al., 2020), and 

trajectory inference via pseudotemporal ordering (Cao et al., 2019; Haghverdi et al., 2016; Setty et 

al., 2019). 

Applied to the adult SVZ, scRNA-seq has revealed the cellular heterogeneity of its constituent 

populations, enabling the robust and precise delineation of the NSC lineage trajectory (Basak et al., 

2018; Carvajal Ibañez et al., 2023; Cebrian-Silla et al., 2021; Kalamakis et al., 2019; L. P. M. Kremer et 

al., 2021; Llorens-Bobadilla et al., 2015; Mizrak et al., 2019; Zywitza et al., 2018). This has highlighted 

key differences in ageing (Kalamakis et al., 2019) and injury (Llorens-Bobadilla et al., 2015) compared 

to homeostasis, revealing the Wnt and interferon signaling pathways as potent modulators of NSC 

activation. Single-cell analysis reaffirmed the close relationship and transcriptomic similarities 

between quiescent NSCs and the dormant niche astrocytes (Kalamakis et al., 2019) consistent with 

their initial designation as B1 and B2-cells, respectively (Doetsch et al., 1999). scRNA-seq 

furthermore elucidated signatures of NSC regionalization through comparative study of dorsal and 

ventral domains of the SVZ (Cebrian-Silla et al., 2021). It is likely that greater understanding of the 

regional determinants of NSC fate can be achieved through multi-omic studies which include eg. 

assessment of transcriptional and epigenetic states for an individual cell, as was recently 
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demonstrated for NSCs and niche astrocytes (L. P. Kremer et al., 2022). These advances share a 

common appreciation for the NSC lineage resolved through state transitions, eg. from dormant 

astrocytes to quiescent NSCs, which is unique to scRNA-seq and enables the quantitative study of 

various factors affecting NSC fate choice and lineage dynamics. 

 

1.1.4 Wnt signaling in neural stem cell state transitions 

From fetal development to adult neurogenesis, the Wnt signaling pathway plays an important role in 

regulating the activation state and population dynamics of NSCs. The role of Wnt in development is 

well established, being conserved across metazoa and intricately linked to fate choice by directing 

symmetry breaking events (Holstein, 2012). This essential role of Wnt signals stems from their ability 

to regulate both cellular diversity and spatial form through two sets of partially overlapping cascades 

known as canonical and non-canonical Wnt signaling, respectively (Loh et al., 2016). Thus Wnt 

signaling plays a central role in body plan determination and the generation of diverse tissues. While 

Wnt signaling activity is decreased in adult tissues, it nevertheless plays a crucial role in the 

maintenance of stem cell pools (Kalamakis et al., 2019; Steinhart & Angers, 2018). Being so 

intricately linked to organ development, it comes as no surprise that tumors are able to derive 

significant advantages through aberrant activation of Wnt signals (Y. Lee et al., 2016; Tan & Barker, 

2018). Understanding these mechanisms, both in health and disease, is essential for therapeutic 

interventions in neuro-regeneration and associated malignancies. 

In mammals, Wnt signaling is comprised of numerous ligands, receptors and co-receptors (Holstein, 

2012) as well as various secreted antagonists. Wnt signals act at short range, generally through a 

lipid-modified ligand which is produced by a secreting cell and binds to its cognate receptor on a 

receiving cell to induce a functional response (Loh et al., 2016). Wnts thus establish local diffusion 

gradients and receiving cells can integrate signals from multiple sources or gradients simultaneously 

in a kind of Wnt-code (Guder et al., 2006) that encodes eg. positional information. This way, Wnt 

signals can spatially polarize a cell, for example determining the orientation of asymmetric divisions 

(Goldstein et al., 2006; Habib et al., 2013), or guiding axon remodeling and synapse formation (Ciani 

& Salinas, 2005). Though understanding the specifics of the Wnt code and the vast combinatorial 

complexity of Wnt signals remains an open challenge, existing studies modulating Wnt signals in 

adult NSCs point to a particular role of secreted Wnt antagonists in regulating cell stage transitions. 

A DKK1 knockout, for example, perturbed NSC dynamics and led to an increased number of 

newborn neurons in aged mice (Seib et al., 2013). A similar effect on hippocampal NSCs was 
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observed through modulation of SFRP3 (Jang et al., 2013), while neutralizing SFRP5 (Kalamakis et 

al., 2019) and inhibiting SFRP1 (Donega et al., 2022) in the SVZ both increased NSC activation rates. 

An equivalent result was observed upon NOTUM inhibition (Mizrak et al., 2020). Together, these 

studies paint a clear picture of the role of secreted Wnt antagonists in modulating NSC activation. 

While it appears that NSCs integrate numerous signals to determine their activation, their precise 

interactions and crosstalk remain to be fully understood. Further exploration of these underlying 

signaling changes and feedback loops holds potential for their exploitation in modulating the 

activation state of NSCs in health and disease. Curiously, it is not Wnt but NOTCH signaling which is 

implicated in the neurogenic gain of stemness, ie. activation, of parenchymal astrocytes. 

 

1.1.5 Emerging evidence on the neurogenic potential of 

astrocytes 

The remarkable variability in brain-regenerative capacity across species starkly contrasts with the 

considerable conservation of organizational and neurogenic principles shared among them. This is 

especially true for mammals, for which many organs are unable to regenerate and instead form a 

dense scar through a process known as fibrosis. In mice, for example, brain injury induces reactive 

astrogliosis (Escartin et al., 2021) and the formation of a fibrosis-like barrier known as the glial scar 

which is generally considered detrimental to effective injury repair (Liuzzi & Lasek, 1987). However, 

other mammals such as the spiny mouse are capable of undergoing scarless regeneration (Gaire et 

al., 2021) even in nervous tissues, for example in response to spinal cord injury (Streeter et al., 

2020). This increased regeneration was linked to the expression of neurogenesis-related genes, 

suggesting that trading reactive astrogliosis for neurogenic programs could entail improved 

regenerative outcomes.  

Given that NSCs are specialized astrocytes and indeed both populations derive from a common 

ancestor, the question of the neurogenic potential of parenchymal astrocytes has garnered 

significant interest. By inhibiting NOTCH1 following brain injury, Magnusson and colleagues found 

that striatal astrocytes entered a neurogenic program (Magnusson et al., 2014) reminiscent of SVZ 

NSCs. This was confirmed in a followup study in (Magnusson et al., 2020) where it was determined 

that neurogenic striatal astrocytes proceed along a differentiation lineage consistent with that of 

SVZ NSCs outlined above. Another group later employed the same inhibition to demonstrate that 

striatal astrocyte-derived neurons effectively integrate into the neuronal circuitry (Dorst et al., 
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2021). This transformation into neurogenic astrocytes was more frequent in the striatum compared 

to other brain regions, though recent studies have unveiled a similar regenerative potential for 

spinal cord astrocytes (Llorens-Bobadilla et al., 2020). While the precise mechanisms and cues which 

enable of astrocytic neurogenesis will undoubtedly be the subject of further study, these results 

pave the way for novel therapies aimed at improving local regeneration across various regions of the 

brain. Together, the ability for common brain astrocytes to enter a stem-like state and contribute to 

neurogenesis frames this process as an important and underappreciated substrate for the 

generation of brain tumors. 

 

1.2 When homeostasis goes awry: the origins and 

pathophysiology of adult human brain tumors 

For all the things that have to go right in the organization and population of an adult human brain, it 

is inevitable that some things go wrong. Given enough time, things begin to change: memories fade, 

senses blunt, networks atrophy, and stem cells exhaust. For some unfortunate souls, this results in 

the malignant transformation of certain cells leading to a tumor. This transformation is particularly 

striking in the adult brain, replacing the highly quiescent homeostatic conditions with a 

developmental-like setting characterized by rapid and repeated cycles of proliferation. In some 

ways, tumor cells have merely lost their programming: they are maladapted machines following 

buggy programs; an infinite while-loop that will consume resources until the system is brought to its 

knees. But in other ways, tumor cells are more than that: they create structures and environments, 

adding a spatial component which necessitates fate asymmetry and communication. They present a 

coordinated front, an organized hierarchy, and follow their programming to develop what is 

ultimately an organ within an organ – all while displacing the sensitive networks and stratified 

structures which preceded them: an irreplaceable loss and one which causes intense suffering. 

 

1.2.1 Clinical guidelines for the classification of gliomas 

Gliomas are a heterogeneous group of brain malignancies with glial origins. Among these, 

glioblastoma is the most common and aggressive form, classified according to the World Health 

Organization of tumors of the CNS (WHO CNS5) as adult-type diffuse glioma (grade IV) that is 
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isocitrate dehydrogenate (IDH)-wildtype (Louis et al., 2021). 

In the United States, glioblastoma accounts for 49.1% of all 

primary malignant CNS tumors and 58.4% of gliomas, making 

it one of the most frequent brain malignancies. Glioblastoma 

incidence varies by age, with tumors 3-fold more likely to 

develop in individuals over 40, and with a median age at 

diagnosis of 65. Males are also 1.65 times as likely to develop 

glioblastomas as females, while genetic risk factors have 

largely failed to materialize (Ostrom et al., 2021). 

Glioblastomas are uniquely lethal among TCGA tumors (Fig.3) 

(J. Liu et al., 2018), reflecting their overall poor prognosis with 

a median overall survival below 15 months and an abysmal 5-

year survival rate of 6.8% (Ostrom et al., 2021). This is despite 

a relatively aggressive standard treatment aimed at maximal 

safe surgical resection followed by daily radio- and 

chemotherapy with temozolomide (TMZ) over six weeks, with 

maintenance TMZ chemotherapy for at least 12 months. 

Notably, patients whose glioblastomas contact the 

subventricular zone experience adverse prognosis (Berendsen 

et al., 2019). Nevertheless, the primary cause of poor survival 

is tumor recurrence, which occurs in at least 85% of patients (Stupp et al., 2005), and for which no 

standard treatment regimen exists. Recent years have seen the introduction of monoclonal 

antibody-based therapies using bevacizumab (Gilbert et al., 2014) or via checkpoint blockade 

(Cloughesy et al., 2019). However, due to the relative inaccessibility of brain tissues, no targeted 

therapies are currently available to patients. Collectively, the survival rate of glioblastoma has not 

significantly improved despite decades of research, and this stagnation will breed tragedy as the 

rapidly ageing populations of developed countries lead to an inevitable uptick in diagnosis. These 

observations motivate the development of novel strategies targeting glioblastoma development, for 

example promoting a molecular view of tumor organization rather than the more traditional 

histopathological methods. 

The heterogeneity of glioblastomas has led to the development diverse tumor classifications which 

have evolved with the technologies for their measurement. Beginning with microarray-based 

transcriptomic profiling in conjunction with the TCGA consortium (Phillips et al., 2006; The Cancer 

Genome Atlas Research Network, 2008; Verhaak et al., 2010), three main transcriptional subtypes 

Figure 3: Kaplan-Meier plots of TCGA 

tumors by cancer type. Survival in years 

(x-axis) is plotted against the proportion 

of surviving patients (y-axis). GBM: 

glioblastoma. Reproduced from (J. Liu et 

al., 2018). Emphasis added. 



13 
 

were proposed: proneural, classical, and mesenchymal. These groups are discussed in more detail 

below. This transcriptomic classification was complemented and reinforced by exome-sequencing 

(Brennan et al., 2013; Ng et al., 2009) which further underscored the genetic heterogeneity of 

glioblastomas and the difficulties in its treatment compared to eg. pediatric tumors with clear driver 

mutations. DNA-methylation-based stratification of glioblastoma patients broadly recapitulated the 

transcriptional subtypes (Sturm et al., 2012), with novel subtypes only identified for IDH-mutant 

tumors (Ceccarelli et al., 2016; Noushmehr et al., 2010). An integrative transcriptomic and 

epigenomic study characterized the oligodendrocyte-lineage factor SOX10 as a master regulator of 

the proneural tumor type, which additionally catalyzes the switch to a mesenchymal-like type (Wu et 

al., 2020). A general approach to methylation-based assessment of glioblastoma subtype has since 

been implemented for aiding clinical diagnosis (Capper et al., 2018), demonstrating the application 

of molecular methods to support clinical decision making. Approaches in this vein will ultimately 

pave the way for precision medicine-based interventions which fully utilize the breadth of insights 

available on the spatial and molecular organization of glioblastomas and other tumors. 

 

1.2.2 Organization and structure of glioblastomas 

The resemblance of the glioblastoma molecular subtypes to various populations of glial cells was 

recognized early on (Phillips et al., 2006; Verhaak et al., 2010). Going from bulk to single-cell profiling 

of glioblastoma cells confirmed this observation, with an early comprehensive transcriptomic study 

delineating a four state model of glioblastoma heterogeneity (Neftel et al., 2019) in line with the 

previous classification into proneural, mesenchymal, and classical subtypes. Consistently, the 

variable contribution of each of the four AC-, MES-, NPC-, and OPC-like states to individual tumor 

samples likely determines its assignment to one of the bulk subtypes. Notably, with the exception of 

the MES-like state the other three cell states are all related to stages of NSC development, 

suggesting these may share organizational principles. These single-cell studies additionally 

highlighted the existence of so-called hybrid states (Neftel et al., 2019; Patel et al., 2014), describing 

cells transitioning between states and providing first evidence for the plasticity of glioblastoma 

hierarchies. Other studies confirmed this view, eg. identifying a transition from quiescent- to more 

proliferative states through tumor progression (L. Wang et al., 2019), or through cells residing on 

different developmentally- (Bhaduri, Di Lullo, et al., 2020; Couturier et al., 2020; Johnson et al., 

2021), injury- (L. M. Richards et al., 2021), or metabolically-driven (Garofano et al., 2021) phenotypic 

axes. Thus, different cell states make up the landscape of any given glioblastoma, and these tumors 
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are characterized by a high degree of compositional variation overall. Better understanding of the 

hierarchy and plasticity of these cell states is critical to understand their specific vulnerabilities, and 

different ex vivo organoid (Jacob et al., 2020) and xenograft models (Linkous et al., 2019) provide an 

opportunity to this end. Alternatively, the development of spatial transcriptomics techniques has 

enabled the high-throughput identification of diverse tumor cell states in patient tissues. 

 

 

Figure 4: Tumor niches comprising the spatial organization of glioblastomas. Environmental factors lead to the 

emergence of diverse tumor microenvironments populated by various tumor cell states interacting with local healthy cells. 

Reproduced from (Prager et al., 2020). 

 

Organized and recurring secondary structures have long been associated with glioblastomas 

(Scherer, 1938), describing the tumor microenvironment and providing insights into additional 

factors affecting glioblastoma organization. These tumors tend to converge on three major 

microenvironmental archetypes: the hypoxic and necrotic tumor core, the perivascular niche, and 

the invasive edge (Hambardzumyan & Bergers, 2015; Prager et al., 2020) (Fig.4). While 

morphological and immunohistological studies described the presence of tumor stem cells in each of 

these environments (Prager et al., 2020), the advent of spatial transcriptomics (Rao et al., 2021) and 

multiplexed FISH (Goh et al., 2020; Janesick et al., 2023) technologies enables the fine-grained 

identification of individual cell states in situ. These studies consistently identify hypoxia as a driver of 
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spatial organization with associated enrichment in MES-like and immune-cell populations 

(Greenwald et al., 2023; Mossi Albiach et al., 2023; Ravi et al., 2022). This is consistent with the SVZ 

NSC niche, where hypoxia promotes cellular quiescence. Indeed, related studies have (Gangoso et 

al., 2021; Mossi Albiach et al., 2023) suggested that the MES-like state, the only non-NSC state, in 

fact represents an AC-like state overlaid with injury-dependent programs reminiscent of reactive 

astrocytes (Mossi Albiach et al., 2023). Spatial transcriptomics confirms the increased presence of 

tumor-associated macrophages, which influence glioblastoma progression (Buonfiglioli & 

Hambardzumyan, 2021), in the perivascular niche (Ruiz-Moreno et al., 2022); while AC-like tumor 

cells are found in the viscinity of endothelial cells consistent with their affinity for vessel-contact in 

the healthy brain (Mossi Albiach et al., 2023). Hypoxic gradients also associate with infiltrating cells 

at the leading edge (Ravi et al., 2022) and negatively affect overall spatial coherence of cell states 

(Greenwald et al., 2023), an observation that extended to methylation disorder noted for certain 

environmental stressors (Johnson et al., 2021). Cells at the leading edge which migrate into the 

healthy tissues exhibit characteristics of migrating CNS-derived cells (Darmanis et al., 2017; 

Greenwald et al., 2023; Varn et al., 2022) and together present significant obstacle to surgical 

resection (Comba et al., 2022), being a prime candidate in tumor recurrence. Collectively, these 

studies demonstrate the complex interplay of cellular states and microenvironmental factors which 

affect tumor organization, with a notable role of conserved states and characteristics of healthy 

NSCs among glioblastoma cells. 

 

1.2.3 Experiments elucidating the origins of glioblastomas 

 

The conserved aspects of glioblastoma cell states and organization in relation to SVZ NSCs makes 

these an attractive candidate tumor cell-of-origin. As human brain tissues are experimentally 

unavailable, the question of tumor origin is tightly coupled to the characteristics of cancer stem cells, 

requiring significant histological or maker overlap (Okonechnikov et al., 2021) to support its 

identification eg. in a mouse model of gliomas. Along this vein, transformation of SVZ NSCs with 

strong genetic driver mutations (Alcantara Llaguno et al., 2009) was found to induce GBM formation. 

This central role of the cell-of-origin in determining tumor phenotype was demonstrated in a 

followup study which induced the same panel of mutations separately in NSCs and OPCs and 

observed the formation of morphologically and transcriptomically distinct tumor subtypes which 

persisted through secondary transplantation (Alcantara Llaguno et al., 2009; Z. Wang et al., 2020) 
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(Fig.5). These results highlight the elevated importance of cell lineage compared to driver mutations, 

consistent with the genetically heterogenous landscape of glioblastomas. Lineage restriction seems 

to determine tumorigenicity, as postmitotic neurons were shown to be recalcitrant to malignant 

transformation (Alcantara Llaguno et al., 2019). However, this study did not assess the ability for 

astrocytes to undergo malignant transformation, a feat which has only been demonstrated in vitro 

(Friedmann-Morvinski et al., 2012) despite their noted role in the generation of lower grade gliomas 

(Holland et al., 2000). Using patient samples, SVZ NSCs were found to harbor low-level driver 

mutations which were found in matched glioblastoma samples (J. H. Lee et al., 2018), an observation 

which was validated in a mouse model. All of these approaches utilized the targeted mutation of 

specific populations, while an unbiased PDX barcoding experiment highlighted an invariant stem cell 

hierarchy rooted in a slow-cycling quiescent population with lineage characteristics consistent with 

neurogenic NSCs (Lan et al., 2017) and astrocytes (see above). Thus, while a definitive cell-of-origin 

remains to be identified, existing evidence points to SVZ NSCs as a likely glioblastoma-initiating 

population. However, it is important to consider the defining role the cell-of-origin has on tumor 

features in light of the regionalization and diversity of NSC populations, as these may explain some 

of the intra-tumoral heterogeneity observed in glioblastomas. Additionally, the recent evidence 

demonstrating the neurogenic capabilities of common brain astrocytes suggests these may have 

been overlooked as a potential tumor cell-of-origin. 

 

 

Figure 5: Emergence of gliomas from progenitor cells. Stage-specific transformation and maturation arrest characterize 

the emergence of various gliomas including glioblastoma, oligodendrocytoma, and astrocytoma. Different cells, such as the 

neuronal progenitor, likely lead to the emergence of related but distinct glioma subtypes. Modified from (Sanai et al., 

2005). 
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1.2.4 On glioblastoma stem cell plasticity 

Cancer stem cells, in the current context referred to as glioma stem cells (GSC), provide a framework 

for understanding the phenotypic plasticity and structured organization of glioblastoma cells (Gimple 

et al., 2019; Lathia et al., 2015). GSCs are typically considered to be highly plastic, de-differentiated 

cells which are able to differentiate into various cellular states depending on external conditions (so-

called “GSC-multiplicity”) (Prager et al., 2020; Suvà & Tirosh, 2020). In turn, recent publications 

present a highly plastic view of glioblastoma hierarchies. For example, the study by (Dirkse et al., 

2019) enumerates a myriad of cell state transitions measured by FACS markers, though these do not 

extend to transcriptomic differences. A related in vitro barcoding approach identified a quasi-linear 

GSC hierarchy with diverse state transitions present at low frequency (Larsson et al., 2021). Another 

study demonstrated that the YAP/TAZ pathway confers stemness properties regardless of the 

molecular subtype (Castellan et al., 2020), an observation in line with marker-based studies which 

demonstrate that glioblastoma cells do not become terminally differentiated in vivo (Galli et al., 

2004). This view presents a deviation from the highly constrained lineages of healthy NSCs and the 

invariant NSC-like stem cell hierarchy measured in (Lan et al., 2017). Indeed, contemporary single-

cell studies of glioma characterize putative GSCs on their cycling activity alone (Couturier et al., 

2020; Neftel et al., 2019; Tirosh et al., 2016; Venteicher et al., 2017), overlooking the foundational 

role of quiescent populations in contributing to tumor growth (Chen et al., 2012; Xie et al., 2022). 

Consequently, highly cycling populations such as NPC-like cells are given the GSC label, while 

astrocytes are regarded as terminally differentiated – thus overlooking their latent stem cell 

potential (see section 1.1.5) and the contribution of eg. radial glia-like populations to tumor 

hierarchies (Bhaduri, Di Lullo, et al., 2020; R. Wang et al., 2020). Unraveling the division hierarchy of 

GSCs and resolving the status of proliferating cells as a permanent or transitioning cell state will have 

important consequences for the targeted eradication of GSCs. 

The tumor propagating potential of GSCs suggests a limited view of GSC plasticity. Like SVZ NSCs (see 

section 1.1.1), GSC-derived tumors exhibit strong intrinsic fating. For example, when cells in a given 

state are used to grow patient-derived xenograft (PDX) tumors, these will recapitulate the diversity 

of cell states observed in the primary tumor (Neftel et al., 2019), suggesting that their lineage 

potential is pre-determined. A similarly constrained plasticity was observed for GSCs isolated in vitro 

(Singh et al., 2004) and mouse models of gliomas with a separate cell-of-origin (Z. Wang et al., 2020). 

Indeed self-renewing capabilities are not equivalent between glioblastoma cell states, as quiescent 

cells exhibit a significantly increased ability to generate secondary tumors compared to neuronal, ie. 

NPC-like, cells (Sabelström et al., 2019). Combined with the reported associations of spatial 
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determinants of glioblastoma cell state (see above), it remains to be determined whether the 

consistent features of secondary tumors are due to intrinsic fating of GSCs or a mutational burden 

which constrains their spatial organization. This question of is also relevant in tumor recurrences 

which are often accompanied by a switch to a proneural subtype (Varn et al., 2022), suggesting that 

the underlying fate-potential of tumor GSCs has changed. Regardless of GSC plasticity, it appears 

that glioblastoma development entails some degree of lineage constraint leading to the clear 

parallels and conserved characteristics of glioblastoma cell states and organization against the SVZ 

NSC lineage. 
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1.3 Lineage constraint exerted by a tumor’s 

memory of its tissue of origin 

Biology operates at scales, and especially in evolution, often what is true for the organism is also 

true for the cell. Here, I want to expound on the notion of lineage constraint which I believe provides 

a useful perspective on tumor lineages when viewed in the context of developmental fate 

restriction, ie. the constrained fate potential of cells at different timepoints in development.  

A frequent analogy for fate restriction is made through the eponymous Waddington’s landscape 

(Waddington, 1957), where the progression of progenitor to differentiated populations is depicted 

through the action of marble rolling down a valley toward differentiated fates: the implication 

obviously being that this represents fate restriction as the marble cannot roll back uphill. However, 

while cellular transdifferentiation events like with the generation of iPSCs (Takahashi & Yamanaka, 

2006) or tumor dedifferentiation (Friedmann‐Morvinski & Verma, 2014) refute this model, it remains 

true in principle. Indeed, the fact that tumors majorly organize by tissue of origin (Hoadley et al., 

2018; Schneider et al., 2017) suggests that tumor dedifferentiation is incomplete, and this is where I 

postulate the action of lineage constraint. 

Just like an organism’s evolutionary history places constraints on its phenotypic variability, so does a 

cell’s developmental history place constraints on its lineage plasticity. I will contextualize some of 

the examples from (J. M. Smith et al., 1985) to demonstrate this point. Take for example nautilus or 

ammonoid shells, which follow a logarithmically coiled shaped (Raup, 1967). The path followed by 

any point on the growing edge of the shell can be described by the simultaneous solution of two 

linear differential equations, making it possible to map the distribution of actually occurring 

morphotypes in the morphospace depicted in (Fig.6). Several caveats apply to this example, but it 

can be clearly observed that nearly all ammonoids fall on the left side of the curved line. This 

distinction is biomechanical (rather than through clear developmental constraint, but the example 

holds), where shells on the right side of the line would be “open” because subsequent coils are not 

in contact. This is inefficient both structurally and in terms of materials, precluding its emergence by 

natural selection, which constrains the ammonoid shell morphospace into a limited set of 

morphotypes. 

 



20 
 

 

 

A more direct example is given by kangaroos, which travel in a series of leaps. Due to the specialized 

nature of their limbs, they are unlikely to evolve adaptations to bipedal running. Thus their 

developmental history of kangaroos places constraints on their future development, preferentially 

selecting morphological changes that make them better at leap-based locomotion. However it is 

possible, if incredibly unlikely that extraordinary reconstruction – such as bipedal gait in kangaroos – 

will take place, and I will revisit this point later. Returning to our metaphor we can, in terms of 

cellular fate, imagine that the cytosolic content and epigenetic configuration inherited by a given cell 

acts as a barrier to differentiation processes outside of a narrow window of predetermined fates. 

Much like kangaroo’s limbs, the cell’s prior developmental history restricts its future potential.  

Tumors too, particularly those arising from adult tissues, inherit the restricted fate potential of their 

predecessors. So how do they overcome this lineage constraint? Here Maynard Smith’s example of 

the sequence of limb loss in tetrapods is appropriate. Writing contemporaneously to the discovery 

of Hox genes, Maynard Smith notes that among the numerous lineages of amphibians, reptiles, 

birds, and mammals which have undergone the evolutionary loss of limbs, this always occurs in a 

distal to proximal sequence (Lande, 1978): some elements (limbs, digits) are always lost before 

others. This is true developmental constraint, unknown to Maynard Smith but caused by premature 

termination of a SHH gradient (Cooper et al., 2014). As loss of the gradient would have 

consequences for the development of the entire limb, the only available configurations are removal 

of digits in the reverse order. This limited accessibility of options is the key to lineage constraint 

experienced during tumor development. As some mutations will not impact the cell, ie. analogous to 

eg. a NOTCH mutation which will not affect digit patterning, tumor driver mutations can only 

emerge in a context-specific manner. Different cells vary chiefly according to cell type, and the 

specific programs active in various cell types determine the context within which lineage constraint 

Figure 6: Ammonoid shell-

shape selection viewed 

through a slice of the shell 

morphospace. 2D density 

map of shell-shape features 

measured in 405 extinct 

ammonoid genera. The W = 

1/D line denotes the point 

where open coiling shells 

diverge from overlapping 

coiling. The location of the 

extant nautilus is indicated. 

Modified from (Raup, 1967). 
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acts, thus resulting in the emergence of tissue specific drivers. In analogy to the key and lock model 

of enzyme activity: it does not matter which key you are holding if the cell has taken away the lock. 

Importantly, this mechanism for lineage constraint does not preclude the random mutation of non-

tissue-specific drivers, simply predicting that these will not be able to confer selective advantage. 

This is consistent with the emergence of low-level driver mutations in healthy tissues (Colom et al., 

2020; J. H. Lee et al., 2018; Simpson Ragdale et al., 2023) which can persist for decades before being 

acted on.  

Lineage constraint furthermore predicts that tumors will tend to fix their tissue-of-origin 

characteristics due to the preference for immediate gains over incremental adaptations. Different 

tissue’s tumors have different proliferation rates (Tubiana, 1989), suggesting that some drivers 

confer a greater fitness advantage in absolute terms. However, tumors will rarely converge on that 

fitness optimum, instead maintaining their tissue characteristics through lineage constraint. Here, I 

find an explanation in Maynard Smith’s example of the evolution of mimicry. Major mutations are 

often involved in the evolution of mimicry (Turner, 1988) because any change to the organism’s 

shape has to trade the potential protective benefits against the cost of disrupted mate recognition 

and courtship behaviors. Similarly, tumors will not tolerate suboptimal intermediate mutations 

which might release the constraint on a strong driver, as these need to confer sufficient advantages 

to not be outcompeted through increased metabolic costs or the risk of immune surveillance. 

Though there are limitations to this model, for example in the fact that tumors are able to mutate 

multiple loci simultaneously, it nevertheless appears to hold – perhaps balanced by other factors. 

This example does, however, reintroduce the notion of extraordinary reconstruction as in the limbs 

of the tree kangaroo. Here, evolution has found a devious way to get around developmental 

constraints, bestowing upon the tree kangaroo a bipedal gait and the ability to climb. Similarly, so 

can tumors overcome lineage constraint in specific cases; and I hypothesize that this means to 

deviate from the expected tissue characteristics is one factor in the development of cancers of 

unknown primary (CUPs) (M. S. Lee & Sanoff, 2020). 

Putting everything together, I combine this idea of lineage constraint with the shared characteristics 

of glioblastoma and the NSC lineage outlined above, to use pseudotime-based lineage abstractions 

to make inferences about glioblastoma hierarchies in the absence of lineage tracing data. These 

ideas are outlined in the following sections. 
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2.1 ptalign facilitates the systematic comparison of 

tumor pseudolineages 

The elucidation of tumor transitions that fuel malignant hierarchies is critical for the identification of 

targeted interventions that can disrupt malignant progression. Unlike the tight regulation of 

differentiation observed in healthy lineages, tumors are characterized by a plastic hierarchy of 

dynamic transitions which are constrained by the memory of their tissue-of-origin (see section 1.3). 

Knowledge of these dynamics provides a convenient surface to devise tailored interventions, but 

their inference by conventional lineage tracing is not feasible in human tissues. This limitation led 

myself and Oguzhan Kaya to conceptualize pseudotime alignment as a means to infer tumor 

dynamics from a snapshot by studying tumor lineages through the lens of healthy stem-cell 

transitions. I developed this approach into ptalign, which leverages a tumor’s memory of its tissue-

of-origin to place malignant cells within a reference pseudotime trajectory (Fig.7), thus elucidating 

tumor dynamics without the need for lineage tracing. ptalign generates what I termed the tumor 

pseudolineage, representing the tumor’s underlying dynamics based on states and transitions 

inferred from the healthy reference. Together, this approach provides a new perspective on tumor 

organization applicable across various tissues, and enables the study of tumor cells transitioning 

lineage stages, which reveal an important surface for therapeutic intervention.  

 

 

Figure 7: ptalign projects tumor cells onto a reference pseudotime. schematic overview of the projection of cells from a 

query dataset (right), here a glioblastoma PDX, onto a reference lineage pseudotime, here of SVZ NSCs (left). Pseudotime-

binned cells are linked to their average position in the UMAP, and scaled pseudotime expression splines of NSC lineage 

markers (SLC1A3, DLL3, and MYT1L) highlight conserved dynamics inferred by ptalign.  
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Tumor pseudolineages can be conceptualized as capturing the compendium of cell states which 

sustain tumor growth. These states can vary across tumors due to differences in developmental 

history or physical environment, necessitating organized hierarchies of distinct cell states which 

sustain the tumor as an organ within an organ. ptalign introduces framework for comparing the 

dynamics of tumor lineages, not only capturing the relative frequency of cell states – aiding in tumor 

stratification and the design of targeted interventions – but also standardizing the comparison of 

cells from diverse tumors by projecting them onto the same reference pseudotime axis. By aligning 

all tumors on a unified axis, ptalign enables direct comparisons between tumor-tumor and tumor-

healthy expression dynamics, which was not previously possible.  

This approach, viewing tumor cells through the lens of healthy lineage dynamics, enables the 

transfer of contextual knowledge from the healthy reference to aid the interpretation of tumor 

dynamics. Building on this framework to compare different tumor pseudolineages, I use ptalign to 

identify potent modulators of essential glioblastoma transitions (see section 2.9.2). Unlike 

conventional pseudotime inference methods, which frequently place cycling cells at the pseudotime 

root and suggest the existence of an unsupported continuously cycling progenitor, ptalign’s 

methodology is rooted in a healthy reference lineage with known state-ordering. This approach 

ensures accurate resolution of tumor cell state transitions, unveiling a rich source of clinical insights. 

The lightweight design, rapid execution, portability, and interpretability of the ptalign algorithm 

additionally enhance its utility and the valuable insights it can provide. In this work, I demonstrate 

these advantages of the ptalign algorithm by assessing (section 2.6), evaluating (section 2.7), and 

modulating (section 2.9) glioblastoma pseudolineages inferred through comparisons to healthy NSCs 

of the adult mouse brain. 

 

2.1.1 On the use of ptalign in resolving glioblastoma 

organization visavis SVZ NSC differentiation 

In this section, I briefly outline the biological context and motivation for the study of glioblastomas 

through the lens of healthy NSC transitions as facilitated by ptalign. The data and insights outlined 

here serve to introduce the datasets necessary to properly document the ptalign algorithm, and are 

otherwise elucidated in greater detail in subsequent sections. 

The ability of ptalign to identify stage transitions is particularly valuable in the study of 

glioblastomas. These tumors are considerably heterogeneous, displaying a variety of cell states 
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(Neftel et al., 2019; Varn et al., 2022; Verhaak et al., 2010) that reflect different developmental 

stages. Few studies have quantified the plasticity of glioblastoma cell hierarchies (Dirkse et al., 2019; 

Lan et al., 2017; Larsson et al., 2021), and transitional states have remained an underappreciated 

aspect of tumor organization. Instead, recent developments have focused on the cancer stem-cell 

hypothesis, identifying and characterizing the so-called gliomas stem-cell (GSC) (Prager et al., 2020) 

and even employing pseudotime-guided approaches to infer a stem-cell hierarchy with the aim of 

identifying its root (Bhaduri, Di Lullo, et al., 2020; Castellan et al., 2020; Couturier et al., 2020). 

However, these studies lend outsized weight to the fact that all cells are born through cell cycle, and 

frequently identify GSCs by cycling activity (Couturier et al., 2020; Neftel et al., 2019; Tirosh et al., 

2016; Venteicher et al., 2017). This perspective overlooks the inherent state plasticity which enables 

various glioblastoma cells to attain stem-cell properties, lending credence to the idea that it is the 

transitions to and from proliferating stages which are key to tumor growth and therapy resistance. 

Thus by employing ptalign to map glioblastomas onto the healthy NSC lineage trajectory, I aim to 

pivot from GSC-centric analysis to a broader examination of the transitions between multiple cell 

states and their role in tumor hierarchies. 

Glioblastomas in the adult brain are thought to emerge from NSCs of the SVZ (Alcantara Llaguno et 

al., 2019; J. H. Lee et al., 2018), which develop along highly constrained lineages in the tightly 

regulated environment of the adult brain (see section 1.1.2) – making them opportune targets for 

ptalign. In the SVZ, these NSCs line the walls of the ventricle, where they integrate signals from the 

CSF and bloodstream, communicating across a complicated network to coordinate homeostatic 

neurogenesis. Most of these NSCs are born in the late embryo and reside in dormant stages, 

remaining in quiescence (Q) until signaled to enter activation (A), upon which they clonally expand 

to produce differentiating (D) progeny which integrate as neurons in different areals of the adult 

brain. Fine-tuning of this process, particularly in injury and aging contexts, remains poorly 

understood, as do the clonal dynamics of NSCs. These transitions through quiescent, activation, and 

differentiation (QAD) stages are conserved across different stem cells, demonstrating similar 

dynamics across brain regions (eg. SGZ), and species (eg. in fetal or organoid models of human brain 

development, see section 2.5). Thus to study glioblastoma organization through the lens of the 

healthy NSC lineage, I compiled an SVZ NSC dataset where pseudotime captures differentiation 

through QAD stages and I could isolate stage-specific genes which enable its transfer between 

models (section 2.2.2). This dataset forms the lineage reference for the ensuing discussion of the 

ptalign algorithm. 
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To facilitate a population-level analysis of glioblastoma organization, I additionally compiled 55 

primary glioblastoma scRNA-seq datasets from the literature, which are documented in section 

2.7.1. These, together with in-house glioblastoma PDX models created and sequenced by Oguzhan 

Kaya and his students (as outlined in (Kaya, 2023)), comprise the tumor query in the following 

sections detailing the ptalign algorithm. 

 

2.1.2 Overview of the ptalign algorithm 

Inspired by the principles of sequence alignment, ptalign adapts this methodology to scRNA-seq 

pseudotime trajectories, aiming to place query (tumor) cells within the best-matching stage of a 

reference (healthy) lineage pseudotime based on gene expression dynamics. ptalign maps tumor 

cells to a corresponding point in the healthy lineage pseudotime by means of an anchor gene set 

which both marks progression through the healthy differentiation trajectory and captures a tumor’s 

memory of its tissue-of-origin (Fig.8). This alignment is achieved by associating the correlation 

dynamics between a query tumor cell and the healthy reference lineage to a given reference 

pseudotime (see section 2.1.3). For example, a query cell exhibiting high correlation to early 

reference pseudotimes will receive a low aligned pseudotime, while a query cell exhibiting high 

correlations to late reference pseudotimes will receive a high aligned pseudotime. This association is 

learned by a multi-layer perceptron (MLP) trained to predict pseudotime from reference-reference 

correlation dynamics. Importantly, multiple tumor samples can be projected into the same reference 

trajectory, facilitating their comparison in that context. Concretely for glioblastomas aligned to a 

healthy SVZ NSC lineage reference (see section 2.7.1), ptalign enables the comparative study of the 

states and transitions which make up tumor pseudolineages.  

 

 

Figure 8: Overview of the ptalign algorithm. Expression dynamics of the anchor genes X, Y, and Z mark progression 

through a reference lineage pseudotime, and pseudotime is assigned for a query tumor cell by determining the best-

matched position in the reference pseudotime according to the expression profile of those anchor genes. 
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Analogous to the uncertain placement of multimapping reads during sequence alignment, ptalign is 

currently not able to resolve tumor dynamics across branching pseudotimes. Moreover, as the cell 

cycle effectively constitutes a branching event in pseudotime, cycling cells are routinely excluded 

from ptalign analysis. Consequently, the suitability of aligned pseudotimes is assessed by a built-in 

permutation model which identifies tumors with unexpected or erroneous dynamics, for example 

having high correlations to both early- and late reference-pseudotimes (see section 2.1.4). This is 

accomplished through dynamic time warping (DTW) to assess the transcriptional similarity between 

aligned and permuted pseudotimes, enabling comparison across permutations or tumors. Taken 

together, this approach presents a fresh perspective on tumor organization, providing a light weight, 

fast, and interpretable means to fix tumors cells’ placement within a reference pseudotime 

trajectory. Details of the ptalign algorithm are laid out in the following sections. 

 

2.1.3 Query-reference correlation dynamics inform aligned 

tumor pseudotimes 

The path to tumorigenesis is inherently stochastic, altering specific expression programs while 

leaving others intact. This phenomenon ensures that each tumor retains a memory of its tissue-of-

origin, moving uphill in Waddington’s landscape yet remaining recognizable based on key 

characteristics (see section 1.3). To harness these insights, I designed ptalign to leverage these 

underlying expression programs to map tumor cells to a corresponding point in the healthy lineage 

pseudotime. This correspondence is determined by matching expression patterns in a curated set of 

pseudotime-predictive anchor genes from the healthy reference lineage. For this purpose, I isolated 

242 QAD genes from the healthy SVZ NSC reference lineage (see section 2.2.2) and used them to 

conduct ptalign pseudotime alignment of the T6 PDX generated by Oguzhan Kaya (Kaya, 2023). 

ptalign employs query-reference correlation dynamics to infer aligned tumor pseudotimes. 

Expression patterns are quantified by calculating the Pearson correlation of a tumor cell’s 

transcriptome against pseudotime-binned (by default n_pt_bins=50) cells from the healthy 

reference (Fig.9a, upper). This way, tumor cells will tend to exhibit higher correlation to either the 

early or late parts of the reference lineage, while very few cells correlate with both (Fig.9a, lower). 

This process generates a query-reference correlation matrix (Fig.9b) which is further processed to 

isolate correlation dynamics at the expense of correlation strength, since the latter varies with the 
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tumor’s history. By conducting row-wise normalization and scaling correlations to a [0, 1] range, I 

improve the resolution of cells transitioning the edges of high-correlation bands and arrive at a 

scale-invariant view of the underlying expression dynamics (Fig.9c) that anchor the tumor’s memory 

of its tissue-of-origin. It is by associating these dynamics to a specific reference pseudotime that 

ptalign makes a prediction for individual tumor cells. 

 

 

Figure 9: Pseudotime alignment by query-reference correlation dynamics. a) Pearson correlations of a query tumor cell 

transcriptome with pseudotime-binned cells from the reference SVZ NSC lineage (top). Correlation dynamics for a single 

cell are depicted, and make up individual columns in the query-reference correlation matrix (inset). Different correlation 

strength in individual anchor gene expression values for the query tumor cell are depicted for two reference pseudotime 

bins (bottom). b) The query-reference matrix of raw Pearson correlation values, ordered by aligned pseudotime for 

visualization purposes, with reference cell states and pseudotimes indicated. c) Matrix from (b) shown with normalization 

procedure to isolate correlation dynamics by squishing row-means and scaling correlations per cell. d) Reference-reference 

correlation matrix (left) used to train a MLP to associate correlation dynamics with pseudotimes, which is used to predict 

aligned pseudotimes based on tumor dynamics (right). e) DTW of aligned pseudotime by MLP-method for query with 

reference lineage pseudotime. Light gray pseudotime bins contain <5 tumor cells each. f) Pseudotime inference from spline 

regression, where smoothed correlation dynamics are used to extrapolate an associated reference pseudotime. Note the 

artefactual increase in the spline curve at late pseudotimes. g) DTW for spline-method aligned pseudotime for query with 

reference lineage pseudotime. h) Comparison of aligned pseudotimes inferred by MLP- or spline-method, respectively. 

 

To associate query-reference correlation dynamics with reference pseudotimes, I employed a 

multilayer perceptron (MLP) regressor or spline regression. The MLP proved most effective, learning 

to predict pseudotimes from the query-reference correlation matrix of the reference dataset alone, 

where pseudotimes are artificially masked from the ‘query’ for assessment (Fig.9d). In practice, this 

network has two internal layers designed around the number of reference pseudotime bins, 

resulting in a compact model with few trainable parameters. I employ a grid search over 

regularization parameters to fine-tune the MLP, opting to forego the conventional train-test split 

and cross-validation. This network robustly and accurately learns to infer pseudotimes from 

correlation dynamics, producing valid estimates for tumor cell pseudotimes as reflected in the 
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consistently high correlations along the matrix diagonal (Fig.9e) in the aligned- and reference-

pseudotime DTW. 

In parallel, I assessed the utility of spline regression to derive aligned pseudotimes, in this case 

smoothing over correlation dynamics to assign aligned pseudotimes based on spline maxima (Fig.9f). 

Spline regression is a numerically simpler model without the black-box characteristics inherent to 

multilayer neural networks such as the MLP, enabling clear association of spline coefficients with 

aligned pseudotime outcomes. In the case of glioblastomas aligned to the SVZ NSC reference, this 

approach produced pseudotimes which resulted in a broader spread DTW compared to the MLP-

derived DTW (Fig.9g), likely due to the tendency for the underlying polynomial basis splines to  skew 

pseudotime estimates towards the lineage extremities (see Fig.9f). Nevertheless, while spline 

regression tends to allocate a disproportionate number of cells to extreme early- or late-

pseudotimes, it provides a generally accurate pseudotime estimate which correlates well with the 

MLP-based model (Fig.9h).  

 

 

Figure 10: Aligned ptalign pseudotimes inform tumor pseudolineages. KDE plots of cell density over pseudotime for 

various tumors. QAD-stage boundaries from the reference lineage and extrapolated to the tumors to assign QAD-stage 

cells, comprising the tumor pseudolineage. Note that different tumors have different pseudolineages, for example QA 

(truncated) and QAD (complete) pseudolineages. Advantages of projecting tumor cells onto the shared pseudotime axis via 

ptalign are indicated on the right. 

 

Having generated an aligned pseudotime for a given tumor, its pseudolineage is determined from 

the relative frequency of cell states in the alignment. This is accomplished by drawing upon the 

contextual knowledge from the healthy reference lineage, where individual cell states occupy 

successive pseudotime increments. Consequently, as a tumor’s aligned pseudotime places it on the 

same pseudotime axis as the reference, I employ a simple thresholding approach to assign tumor cell 

states by transferring the state label from the matched reference pseudotime (Fig.10). Assigning 
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tumor pseudolineages in this manner, I observed no significant differences between MLP- or spline-

based approaches (not shown), instilling confidence in the application of either method to the 

stratification of patients by pseudolineage in a clinical context. 

This way, by capitalizing on the inherent memory of a tumor’s tissue-of-origin to isolate correlation 

dynamics using a pseudotime-predictive anchor gene set from the healthy reference, ptalign maps 

tumor cells onto the verysame healthy lineage pseudotime. By projecting tumors onto a singular 

pseudotime axis, this technique not only facilitates the comparative study of tumor-tumor and 

tumor-healthy expression dynamics, but also enables the transfer of contextual knowledge from the 

healthy lineage (Fig.10). Overall, ptalign's methodology is both standard and scalable, offering a clear 

framework for interpreting results. I additionally employ a permutation approach to quantitatively 

assess the robustness of the dynamics captured by the ptalign pseudotime, which is explored in the 

following section. 

 

2.1.4 A permutation framework determines consistency of 

aligned pseudotimes 

Given the challenge of interpreting tumor dynamics without access to lineage traced ground truth 

data, it is crucial to establish metrics for evaluating ptalign's performance on a given dataset. Thus I 

designed a permutation approach which aims to quantify how well reference lineage dynamics are 

captured by ptalign pseudotimes by using the shape and strength of correlations in the DTW as a 

performance metric (Fig.11a). In this approach, as the optimal query-reference pseudotime 

alignment lies perfectly on the DTW diagonal, I employ the seam carving algorithm to trace and 

compare the optimal correlation path in the DTW between permutations. This metric assesses the 

presence of bona-fide reference dynamics, with high-scoring DTWs consistently exhibiting a shorter, 

narrower matrix traceback. To reduce the influence of gene sets that produce high DTW scores 

without dynamic patterns, I additionally weighted DTW entries by the variance within each row 

(called scale_dtw). By binning the original anchor gene set into equal-sized expression bins and 

calculating a DTW traceback score for aligned pseudotimes, and then repeating the process with 

permuted gene sets (100 times by default) (Fig.11b), I generate an empirical distribution of 

traceback scores from which I derive a permutation p-value (Fig.11c). This approach identifies 

aligned pseudotimes that do not significantly outperform those generated from random gene 

permutations, highlighting instances where the chosen anchor gene set might not effectively capture 

reference lineage dynamics or when presented tumors without clear cell state stratification. This 
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permutation strategy offers a straightforward yet robust means to validate the consistency of 

aligned pseudotimes, employing DTW-based metrics to quantify the reconstructed states and 

transitions observed in the healthy reference lineage. 

 

 

Figure 11: DTW metrics gauge performance in permuted alignments. a) A reference-derived anchor gene set (left) is used 

to determine query-reference correlation dynamics from which an aligned pseudotime is determined by ptalign (center). 

DTW of the aligned vs. reference pseudotimes results in a narrow band of high correlations, which is captured by a matrix 

traceback (right). b) Demonstrating the ptalign permutation strategy through selection of an expression-matched 

permuted gene set (left), from which an aligned pseudotime is determined by ptalign (center), and the associated DTW 

evaluated by matrix traceback (right). This procedure is repeated 100 times by default. c) Permutation DTW traceback 

scores are compared to the original anchor gene DTW traceback to derive an empirical p-value reflecting the consistency of 

a given ptalign pseudotime. 

 

To validate the permutation strategy’s ability to detect defined dynamics, I applied ptalign to a 

cohort of 55 primary glioblastoma single-cell RNA sequencing datasets retrieved from literature (see 

section 2.7.1). Comparing ptalign in this cohort using the SVZ NSC reference lineage and QAD gene 

set with datasets of breast, colon, and lung cancers (Gavish et al., 2023), I observed consistently 

lower permutation p-values in glioblastomas (Fig.12a). This indicates that QAD dynamics were 

specifically detected in glioblastomas and not other tissue types, which is consistent with alignment 

against a reference brain dataset. However, four glioblastomas did not meet the permutation p-

value threshold of 0.05 (Fig.12b), prompting further investigation. Analysis using AUCell scoring 

(Aibar et al., 2017) of QAD gene sets across all 55 glioblastomas showed the four permutation-fail 

tumors to have higher Q-D gene co-correlations and reduced variation in QAD scores per cell 

(Fig.12c-d), suggesting permutation-fail tumors are enriched in mixed state cells and a lack clear cell 
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state stratification. Together, these results demonstrate the efficacy of the ptalign permutation 

strategy in identifying tumors with bona-fide dynamics and isolating those where the dynamics are 

absent or atypical. 

 

 

Figure 12: Reference lineage dynamics assessed by the ptalign permutation p-value. a) Comparing ptalign permutation p-

values among 55 glioblastoma datasets (see section 2.7.1) and other malignancies from breast, colon, or lung, retrieved 

from (Gavish et al., 2023). b) Four glioblastoma samples fail to pass the p-value threshold of 0.05. c) Permutation-fail 

glioblastoma samples are enriched in Q-D-gene co-expression, and exhibit QAD-score variances (d), as measured by AUCell. 

Significance was assessed by t-test. 

 

These results highlight the effective assessment of lineage dynamics by the ptalign permutation 

strategy, identifying tumors that exhibit dynamics consistent with their tissue-of-origin and 

reconstructing their ordering even in the absence of lineage tracing data. This ability to distinguish 

between tumors exhibiting bona-fide dynamics and those with ambiguous cell states provides 

interesting avenues to distinguish novel therapeutically relevant glioblastoma subtypes with distinct 

biological behaviors. Above all, these results emphasize the importance of selecting appropriate 

gene sets for analysis. With this confirmation of the consistency of ptalign pseudotime alignment, I 

next endeavored to compare ptalign pseudotimes to conventional trajectory inference methods. 

 

2.1.5 Benchmarking ptalign against conventional methods by 

pseudotime coherence 

Recognizing the need for further validation against other state-of-the-art pseudotime trajectory 

inference methods, I introduced a comparative metric I call pseudotime coherence which quantifies 

how well different trajectories arrange cells into a cohesive ordering of states and transitions. This 
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metric was necessitated by the absence of ground truth tumor trajectories to benchmark against. 

Instead, by assuming that tumor trajectories comprise cells transitioning through ordered states 

analogous to healthy lineages, pseudotime coherence quantifies the degree to which cells that are 

similar in gene expression are grouped together in pseudotime. In practice, this is achieved by 

determining pairwise distances in pseudotime and across the first 10 principal components (PCs) for 

each cell within a tumor, and evaluating their relationship by Pearson correlation (Fig.13a). The 

resulting pseudotime coherence scores for individual cells are averaged across a tumor to calculate 

an overall score for each tumor sample (Fig.13b). This approach quantifies the inherent property of 

pseudotime to place cells which exhibit similar gene expression profiles in close proximity, thus 

providing a means to compare different trajectories inferred for individual tumor samples. 

 

 

Figure 13: ptalign pseudotimes performance in a coherence benchmark vs. conventional trajectory inference methods. 

a) Schematic overview of the pseudotime coherence metric. Distances in PCA-space and pseudotime are calculated from 

each tumor cell (indicated in blue) to all other tumor cells (indicated in gray). Pearson correlation measures the association 

between these values. b) Per-sample pseudotime coherence is determined by taking the mean of pseudotime coherence 

values per cell. c) Results of benchmarking ptalign pseudotimes against CytoTRACE (left), monocle3 (center), and palantir 

(right) pseudotimes by the pseudotime coherence metric. Scores for individual glioblastomas are indicated by a gray line. 

Statistical significance was assessed by paired t-test. d) CytoTRACE pseudotime compared to the reference pseudotime for 

the healthy SVZ NSC lineage. e) Contrasting pseudotime coherence values in palantir and ptalign, highlighting cell state 

ordering in ptalign (inner pie chart) and the most frequent cell state for consecutive palantir pseudotime bins (outer pie 

chart). 

 

Using the pseudotime coherence metric described above, I benchmarked ptalign pseudotimes 

against three state-of-the-art pseudotime trajectory inference methods: CytoTRACE (Gulati et al., 

2020), monocle3 (Cao et al., 2019), and palantir (Setty et al., 2019). Of these, CytoTRACE employs 

heuristics over the number of expressed genes to place cells within a differentiation trajectory, 

monocle3 leverages a reverse graph embedding to infer detailed branching pseudotime trajectories, 
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and palantir models cell lineage as a probabilistic process to infer branching paths and fate 

probabilities. For each of these algorithms, I generated tumor pseudotimes for glioblastomas in the 

55-tumor cohort (see section 2.7.1) according to the basic usage example in the respective 

documentation. For monocle3 and palantir, which required a root cell to initiate the trajectory, I 

used the earliest-pseudotime cell from the ptalign pseudotime for this purpose. No terminal states 

were set for palantir, allowing the algorithm to automatically determine fate-branches and their 

ordering. In this comparison, CytoTRACE was significantly outperformed by ptalign, with CytoTRACE 

producing lower pseudotime coherence scores for virtually every tumor (Fig.13c). I validated this 

result by examining the distribution of the glioblastoma cell states from (Neftel et al., 2019), which 

were broadly dispersed in CytoTRACE pseudotimes (not shown), thus confirming the effectiveness of 

pseudotime coherence in assessing the degree to which similar cell states occupy similar pseudotime 

increments. Notably, CytoTRACE's heuristic failed in both tumor and healthy brain samples, 

erroneously placing cycling cells, which express a high number of genes, at the end of healthy 

pseudotime trajectories (Fig.13d). Compared to monocle3, I observed significantly higher 

pseudotime coherence for ptalign pseudotimes, with monocle3 occasionally surpassing ptalign in 

specific samples. Conversely, ptalign and palantir showed no significant differences in pseudotime 

coherence (Fig.13c). However, the tendency for palantir to place cycling cells at the pseudotime apex 

and the preponderance of state-switches in successive pseudotime bins (Fig.13e) points to areas of 

further investigation, addressing how transitions between plastic tumor cell states affects their 

arrangement into cohesive pseudotimes. These findings highlight the robustness of ptalign, with the 

permutation module identifying tumors exhibiting the expected dynamics, while the aligned 

pseudotimes resolve cell state dynamics on par with state-of-the-art algorithms. 

 

In sum, these results underscore the unique applications and benefits which are realized through 

ptalign’s approach of aligning tumor cells to a healthy reference lineage. I demonstrate these 

benefits through the assessment (section 2.6), evaluation (section 2.7), and modulation (section 2.9) 

of tumor pseudolineages in a 55-glioblastoma cohort, leading to the development of actionable 

clinical insights for glioblastoma. Importantly, these insights are only discernable through systematic 

assessment of tumor trajectories delineated by ptalign, projecting tumor cells onto the healthy 

reference and facilitating their interpretation in that context.  
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2.2 Pseudotime-based characterization of state 

transitions in the adult SVZ NSC lineage 

To demonstrate the utility of pseudotime-based characterization of healthy stem cell lineages, I turn 

to the adult NSC lineage of the murine SVZ. Neural stem cells in this niche are born during early 

embryogenesis (Fuentealba et al., 2015; Furutachi et al., 2015) and persist into adulthood, sustained 

by self-renewal dynamics and complex interactions within the different populations of the niche (Lim 

& Alvarez-Buylla, 2016). Their organized arrangement near the brain’s ventricles, along with known 

markers that help identify them (Llorens-Bobadilla et al., 2015), makes this population particularly 

amenable to single-cell RNA-sequencing. I provide a detailed overview of SVZ populations and their 

lineage dynamics in section 1.1. Here, I summarize the creation and study of a reference scRNA-seq 

SVZ NSC lineage atlas curated from several published studies. I employ pseudotime-based methods 

to reveal the states and transitions which characterize this SVZ NSC lineage, and compare these to 

human NSC dynamics in section 2.5. This atlas is then used in the ptalign study of glioblastoma 

pseudolineages in section 2.6-2.9.  

 

2.2.1 Assembly and study of a single-cell transcriptomic 

reference SVZ NSC lineage dataset 

Several transcriptomic studies of the SVZ niche at single-cell resolution have been published in 

recent years, see section 1.1.3. Generally, SVZ cells are isolated and FACS used to exclude non-

lineage (eg. oligodendrocyte or microglia) cells, instead enriching NSCs and their progeny (eg. in a 

GLAST/PROM gate (Llorens-Bobadilla et al., 2015)) for further analysis through 10X genomics or 

SmartSeq3 (Hagemann-Jensen et al., 2022) sequencing (Fig.14a). In compiling a reference SVZ NSC 

lineage atlas, I combined three recently-published datasets from the Martin-Villalba lab (our lab) to 

ensure consistency. I retrieved the published count tables from the SVZ single-cell datasets from 

(Kalamakis et al., 2019), (L. P. M. Kremer et al., 2021), and (Carvajal Ibañez et al., 2023). Using the 

available metadata, I retained WT cells from each and used the Seurat (Stuart & Satija, 2019) label 

transfer pipeline to identify various NSC lineage stages in each replicate. I then integrated these 

datasets using the Seurat v4.3 workflow1, revealing NSC lineage stages arranged along a single 

contiguous component (Fig.14b). This was consistent in integrations with other SVZ NSC scRNA-seq 

                                                           
1
 https://satijalab.org/seurat/articles/seurat5_integration  

https://satijalab.org/seurat/articles/seurat5_integration
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datasets (eg. from (Cebrian-Silla et al., 2021)) (not shown). The persistence of a single contiguous 

lineage component suggested the SVZ NSC lineage follows a coherent trajectory, which I isolated 

using the DBSCAN algorithm to better inspect its constituent stages and transitions.  

 

 

Figure 14: An integrated SVZ reference dataset. a) schematic depicting the general SVZ NSC scRNA-seq pipeline, from SVZ 

isolation, cellular dissociation, FACS sorting, and resulting library prep. B) integrated UMAP of WT NSCs from three 10X 

genomics SVZ NSC datasets in (c). Cells are colored by the cell types from (Kalamakis et al., 2019), with non-lineage cells 

colored gray. DBSCAN was used to isolate the main lineage component. c) PCA plots for SVZ NSCs from four datasets, 

colored by cell types in (b). d) PCA of the integrated SVZ NSC lineage, with cell types resolved in (Q)uiescence, (A)ctivation, 

and (D)ifferentiation stages, respectively. e) Expression of SVZ QAD-stage markers in the PCA from (d). 

 

Inspecting the SVZ NSC lineage trajectory, I found that NSC lineage cells from various datasets 

exhibited a consistent shape when projected into the first two principal components (Fig.14c). 

Indeed, PCA loadings from the first and second principal components were highly correlated 

between datasets (not shown). This supports previous observations that the dynamics of SVZ NSCs 

remain stable across different ages, with variations mainly in the frequencies of cell populations 

rather than in transcription (Kalamakis et al., 2019). Further analysis of the integrated datasets 

revealed an ordered arrangement of cell types in the PCA-space, with PC1 capturing differentiation 

status and PC2 relating cycling activity (Fig.14d). The expression of numerous salient lineage markers 

such as ID3, DLL3, and MYT1L (Fig.14e) highlighted the semantic and functional similarities 

between different NSC lineage stages, eg. aNSC1 and aNSC2, supporting a simplified model of NSC 

lineage dynamics through stages of Quiescence, Activation, and Differentiation. 
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2.2.2 An NSC lineage pseudotime through Quiescence, 

Activation, and Differentiation stages 

Next I set out to characterize the stages and transitions which comprise SVZ NSC differentiation 

using pseudotime. To accurately model these dynamics, it was necessary to identify and exclude 

cells in the cell cycle, both for technical reasons related to ptalign (see section 2.1.2), but also due to 

the limitations of conventional pseudotime algorithms in capturing cyclical state-dynamics (Lederer 

et al., 2024; Schwabe et al., 2020). Thus I classified cycling cells by the conventional markers2 and set 

a G2M-score cutoff at 0.1 to assign cells’ cycling status (Fig.15a), which was consistent with 

expression of known cell cycle markers including MKI67, TOP2A, and UBE2C (not shown). I then fit 

a diffusion pseudotime (Haghverdi et al., 2016) from the first two principal components, selecting a 

root cell from one of the corners of the PCA embedding (Fig.15b). This lineage pseudotime revealed 

a smooth lineage trajectory in UMAP (Fig.15c), reflecting state transitions evidenced by the 

expression of ID3, DLL3, and MYT1L (Fig.15d), as above. 

Employing a comparative approach without the exclusion of cycling cells, I observed strong 

agreement in the inferred pseudolineage dynamics (Fig.15e), revealing a consistent and orderly 

progression of NSC stages with defined transitions regardless of cell-cycle status. Comparison with 

other pseudotime inference methods, such as Monocle3 and palantir (see section 2.1.5), highlighted 

similar dynamics (Fig.15f), though Monocle3 predictions deviated for individual datasets. While 

these results showcase the robust inference of stable cell states and transitions across different 

pseudotime algorithms, the flexibility and computational efficiency of diffusion pseudotimes made 

them my preferred method for exploring SVZ NSC lineage dynamics. 

 

                                                           
2
 https://nbviewer.org/github/theislab/scanpy_usage/blob/master/180209_cell_cycle/cell_cycle.ipynb  

https://nbviewer.org/github/theislab/scanpy_usage/blob/master/180209_cell_cycle/cell_cycle.ipynb
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Figure 15: Deriving an SVZ lineage pseudotime. a) scatter plot of cell cycle scoring of SVZ NSC lineage cells. A cycling cell 

cutoff was set at a G2M-score of 0.1. b) Diffusion pseudotime fit to PCA of SVZ NSC lineage cells. Cycling cells were 

excluded from pseudotime inference and are colored gray. The pseudotime root cell is indicated. c) Diffusion pseudotime 

from (b) in the integrated SVZ NSC lineage UMAP. Cycling cells are colored gray. d) Pseudotime expression splines of QAD-

stage markers in the SVZ NSC lineage pseudotime from (c). e) Scatterplot of SVZ NSC lineage pseudotime computed with 

and without the inclusion of cycling cells. f) Comparison of Monocle3 and Palantir pseudotimes for individual SVZ NSC 

replicates, depicted by loess regression against the SVZ NSC lineage pseudotime from (c). 

 

Assuming even sampling of SVZ NSC lineage cells, the relative frequency of cells in stable lineage 

stages (eg. Quiescence) and those transitioning between them reflects the time cells spend in each 

stage. This relationship is captured by pseudotime, which groups transcriptionally similar cells 

together, allowing for the identification of stable lineage stages from the cell-density along 

pseudotime. Using this method, I identified three main stages in the NSC differentiation trajectory, 

termed Quiescence, Activation, and Differentiation, collectively QAD (Fig.16a). This classification 

simplifies the understanding of SVZ NSC lineage dynamics to the transitions between these three 

stages. Indeed, this view of stem cell hierarchy, progressing from a dormant stage through activation 

to differentiation, aligns with how stem cell hierarchies function in various tissue niches (L. Li & 

Clevers, 2010). Here, I identify these lineage stages from pseudotime alone: an important facet 

which enables their re-identification in tumor pseudolineages inferred via ptalign (see section 2.1.3). 

Accordingly, QAD-stage cells arrange neatly in the SVZ NSC lineage UMAP (Fig.16b), consistent with 

marker gene expression and the detailed cell type labels shown in Fig.14. By delineating Activation-

stage and cycling cells in this manner, I reproduce the prior distinction of aNSC1 and aNSC2 stages 

against TAPs. This also applies to the Quiescence stage, which I subset along qNSC1 and qNSC2 lines 

to illuminate differences and transitions between quiescent NSCs (Q) and niche astrocytes (astroQ). 

In sum, the SVZ NSC lineage pseudotime describes NSC differentiation dynamics through the 

transitions between Quiescence, Activation, and Differentiation stages. 
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Figure 16: SVZ NSC lineage through QAD stages and transitions. a) KDE of SVZ NSC lineage cell log-density along 

pseudotime, with QAD-stage increments inferred from cell density-troughs labeled and indicated. b) QAD-stage cells from 

(a) in the SVZ NSC lineage UMAP. Cycling cells are indicated in gray. Inset pie charts indicate the proportion of cells per 

replicate and of QAD-stage cells. Zoom of Q-stage cells depicts the separate clustering of the constituent Q-stages from (a): 

Quiescence and astroQ. c) Schematic depiction of QAD-gene set derivation. A RandomForest model was trained to predict 

pseudotime using 500 random genes 500 times. Feature weights were tracked and the inflection point in the cumulative 

feature weight distribution inferred by the kneedle algorithm (d). e) Selected genes from (d) in a ternary plot 

parameterized by expression level in QAD-stages. Genes which enriched in stage-specific expression were selected and GO-

enrichment carried out (f). 

 

I next set out to compile a pseudotime-predictive gene set capturing NSC lineage stages and 

transitions, for use with ptalign (see section 2.1.3). Comparing expression in QAD-stage cells of the 

NSC lineage atlas revealed that a significant number of genes are regulated during NSC 

differentiation, including key developmental pathways such as BMP, SHH and Wnt. Particularly 

genes involved in the Wnt signaling pathway were differentially regulated during NSC activation, ie. 

at the transition to and from Quiescence; aligning with previous studies (see section 1.1.4). To derive 

an anchor gene set for use in ptalign, I selected pseudotime-predictive candidates from a pool of 

genes exhibiting dynamical expression profiles by repeatedly sampling genes and training a sklearn 

RandomForest (Pedregosa et al., 2011) classifier to predict cell pseudotime bins (Fig.16c). 

RandomForest models are able to learn complex non-linear interactions between features, 

motivating their use over other approaches such as thresholding in DEseq log fold-changes. 

Importantly, RandomForest models assign weights based on the contributions of individual features 

to a classification problem, and I tracked the cumulative feature weights of the sampled genes 

across 500 iterations to select those genes which consistently exhibited high pseudotime predictive 
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power. This was accomplished by the kneedle algorithm (Satopaa et al., 2011) identifying the 

inflexion point in the cumulative distribution of feature weights (Fig.16d). As ptalign uses the anchor 

gene set to infer state-specific dynamics, I additionally subset the predictive genes by their state-

specificity in the SVZ NSC lineage atlas (Fig.16e). To facilitate better generalization to disparate 

tumor datasets, I disallowed the presence of mitochondrial and ribosomal genes in the anchor gene 

set due to their necessary dysregulation in a tumor context. This way, I arrived at a 242-gene 

pseudotime-predictive gene set which enriched for relevant functional properties of QAD stages 

(Fig.16f), paving the way for its use in facilitating the comparison of NSC dynamics in different 

contexts. This gene set is listed in Table 1 and comprises the anchor gene set used in the examples in 

section 2.1 and throughout this work. I did not assess the efficacy of other gene sets in capturing 

NSC lineage dynamics.  

In sum, different SVZ NSC scRNA-seq datasets robustly converge on a coherent lineage trajectory, 

captured here by integration and subset into QAD-stages as depicted above.  
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2.3 Excursion: Tailored Dash apps for collaborative 

analysis of scRNA-seq datasets 

This section serves to showcase several Dash apps I developed to facilitate the collaborative analysis 

of scRNA-seq datasets such as the SVZ NSC lineage atlas described above. The information presented 

in this section departs thematically from the description of NSC lineage dynamics, but having 

introduced the SVZ NSC lineage atlas, the benefits of employing tailored apps to aide in the 

assessment of state-linked gene expression and functional studies via gene set scoring are clearly 

evident. Here, by means of excursion from the main narrative, I introduce two apps I created for the 

purpose of democratizing insights from single-cell datasets. 

 

High throughput methods such as next-generation sequencing brought with them new 

developments in computational biology and bioinformatics which have shaped recent developments 

in the biological sciences. However, these developments simultaneously served to widen the divide 

between different disciplines. As experimental methods delve deeper into painstakingly molecular 

processes and computational analysis leverages increasingly abstract mathematical concepts, 

mastering either discipline requires years of specialized training. This specialization develops skill 

sets which are not always transferrable, hampering collaborations between experimental and 

computational researchers. Thus there is a need to bridge the gap between data generation and 

data analysis to further interdisciplinary understanding and cooperation. 

To address this challenge and enhance crosstalk between experimental and computational 

researchers, I developed several interactive applications using the Dash framework (Plotly 

Technologies Inc., 2024) to analyze complex datasets such as those generated by single-cell RNA 

sequencing (scRNA-seq). The first of these serves to facilitate cluster marker discovery and 

comparison, offering an intuitive interface for identifying and contrasting gene expression profiles 

across cell clusters. My second app streamlines the process of gene-set scoring, enabling users to 

easily assess higher-level cellular processes. Together, these apps exemplify how targeted software 

solutions can mitigate the challenges posed by the interdisciplinary nature of modern biological 

research.  
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2.3.1 Cluster marker discovery and cluster comparison 

The ability to identify and compare markers across different cell clusters is central to understanding 

dynamical processes driving cellular diversity and function. This process is streamlined in my Dash 

app as follows: upon launching the app, users are greeted with a straightforward interface 

prompting the selection of a dataset from a dropdown menu populated with preprocessed datasets 

stored on disk. The first point of interaction, the Annotation tab (Fig.17a), enables users to select 

and annotate relevant cell clusters from a 2D embedding (eg. PCA, UMAP) generated from a user-

friendly plotting interface. This plotting interface enables the log-transformation of features for 

simplified visual interpretation, and enables the simultaneous comparison of up to 9 features 

plotted in a 3x3 grid. The interactive lasso tool provided by the plotly interface facilitates the precise 

selection and marking of clusters and cells for further analysis (Fig.17b), allowing annotations such as 

cell type information to be easily saved and retrieved. 

 

 

Figure 17: Cluster markers Dash app layout and functionality. Interface is comprised of an Annotation tab (a) which 

enables flexible creation of scatterplots visualizing various gene- and metadata. By selecting cells in the UMAP using the 

lasso tool (b), clusters can be selected and annotated, for example in the Cluster Markers tab (c). Genes are scored 

according to expression inside and outside the selected cluster (d), and repeated use of the lasso tool in this interface will 

result in the plotting of selected cluster markers (e). 

 

From the clusters selected and annotated in the Annotation tab, the Cluster Markers tab facilitates 

the discovery of genes enriched within a cluster (Fig.17c). A dropdown menu displays saved 

annotations, allowing for quick selection of clusters for analysis. By default, this dropdown is 

populated by the currently selected cells which are indicated in a small UMAP. Selecting cells or a 

cluster of interest generates an interactive plotly scatterplot showing every gene according to the 
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proportion of cells which express it inside and outside of the selected cluster (Fig.17d). This 

operation is kept performant by preprocessing gene expression in a fine grid mesh overlaid in the 

UMAP which limits the lookup of membership in the selected cells to eg. 100 grid cells compared to 

thousands of individual cells. In this representation, informative genes will associate with specific 

quadrants indicating positive or negative markers. Circling genes in this plot with the lasso tool 

results in rendering their expression UMAPs (Fig.17e), from which salient markers can be extracted. 

The Cluster Compare tab allows for the comparison of markers between clusters, utilizing different 

statistical tests to identify differentially expressed genes. I leverage the scanpy 

sc.tl.rank_genes_groups function to this end, displaying the results in an easily exportable 

table offering a clear overview of potential markers. Clicking on a gene in the table displays its 

expression UMAP, providing immediate visual feedback (not shown). The interactive analysis and 

visualization enabled by this app streamlines the complex process of cluster marker discovery and 

comparison in scRNA-seq datasets. By simplifying data exploration and marker identification, the 

app has proved highly effective at stimulating collaborative dialogue and enabling novel insights into 

the processes being studied. 

 

2.3.2 Geneset scoring and visualization 

My second app bridges the gap between raw gene expression data and functional insights by 

facilitating gene set scoring and visualization in an intuitive manner. Similar to the cluster marker 

app described above, users are prompted to load one of the available datasets. Users can explore 

and select gene sets of interest using a keyword search from the msigdb database (Subramanian et 

al., 2005), which includes collections from Gene Ontology (GO), KEGG, and Reactome, among others 

(Fig.18a). This feature additionally supports custom user-uploaded gene sets (Fig.18b), offering 

flexibility for bespoke analyses. The app utilizes AUCell to calculate gene set enrichment scores. 

AUCell operates on a matrix of ranked gene expressions per cell which are prepared during 

preprocessing for efficient access. Results are visualized on a UMAP plot of the selected dataset, 

thus revealing differentially regulated pathways or conditions (Fig.18c). Unique to this app, genes 

are automatically translated between 1:1 human and mouse orthologs prior to AUCell scoring, 

facilitating the transfer of functional insights from cross-species annotations. This app provides a 

common platform for exploring and interpreting scRNA-seq data through a large body of curated 

gene sets, uncovering the functional dynamics of genes across diverse cellular landscapes. 
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Figure 18: Geneset scoring Dash app layout and functionality. Interface revolves around gene set selection from curated 

msigdb lists (a) or through manual input of custom gene lists (b). AUCell is used to conduct gene set scoring of the supplied 

genes, and the results plotted in the UMAP (c).  

 

In sum, interdisciplinary is the necessary way forward in biological studies, but brings with it a large 

burden of communication. To address this challenge, I developed two Dash apps which bridge the 

gap between complex computational analyses and the practical needs of experimental biologists, 

designing an interface to support effective communication of needs and ideas. By making these 

analyses accessible to researchers without extensive computational backgrounds, my apps serve to 

reduce the time from data acquisition to insight. This efficiency is crucial in a field where the pace of 

data generation has eclipsed the capabilities of traditional analysis methods.  

Internally, Jooa Hooli and I hosted these apps on institute infrastructure, making them accessible to 

all colleagues around the clock. This deployment highlighted the Dash framework's challenges with 

handling large data volumes in HTML elements, a limitation that may be mitigated through client-

side optimizations. Similar frameworks are available in Shiny (Chang et al., 2024) and particularly for 

scRNA-seq datasets through cellxgene (Megill et al., 2021), although I found the latter to not be 

efficient when balancing multiple datasets as these are generally persisted in memory. 

Overall, these apps proved to be invaluable by providing my colleagues a means to gain hands-on 

experience conducting bespoke analyses, thus building their confidence and reasoning regarding 

analytical approaches. These skills undoubtedly accelerated the pace of discovery in latter part of my 

studies. 
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2.4 Canonical Wnt signaling is tightly regulated at 

NSC lineage transitions 

The high degree of stratification and tight regulation of cell identity in adult brains stands in stark 

contrast to the scarcity and plasticity of its constituent stem cells. Extensive research into NSC 

identity and niche maintenance highlights the Wnt signaling pathway as a crucial regulator of stem 

cell behavior in the adult brain. Particularly NSC transitions to and from the Quiescence-stage are 

guided by Wnt signaling which influences fate decisions via changes to the methylome and manages 

NSC activation through localized niche interactions (see section 1.1.4). These properties of Wnt 

signaling make the pathway particularly interesting in the study of adult tumors, where aberrant 

signaling dynamics pave the way for sustained activation and likely play a role in tumorigenesis. For 

these reasons, Oguzhan Kaya and I endeavored to characterize the modulation of Wnt signaling 

modalities along the NSC differentiation trajectory in greater detail.  

 

2.4.1 The TCF-Lef reporter relates canonical Wnt activity in 

FACS and immunohistochemistry 

In order to investigate the role of canonical Wnt signaling within SVZ NSC lineage populations, 

Oguzhan used a TCF-Lef reporter transgenic mouse line (TCF/Lef-H2B::EGFP) that visually 

reports canonical Wnt signaling activity via EGFP fluorescence (Ferrer-Vaquer et al., 2010) (Fig.19a). 

To measure reporter activity along the NSC differentiation trajectory, Oguzhan isolated single cells 

from the striatum, SVZ, RMS, and OB of adult mice via a targeted FACS strategy (Kaya, 2023). These 

data revealed a high degree of Wnt activation in the SVZ astrocytes and NSCs, which together 

constitute the Quiescence stage (Fig.19b). Wnt activity levels were lower in nearby striatal 

astrocytes, highlighting the privileged signaling environment of the SVZ niche. Intriguingly, as cells 

transitioned to Activation and Differentiation stages, marking their migration towards the OB, there 

was a strong reduction in Wnt signaling activity. Upon reaching the OB, where cells will ultimately 

integrate into the existing neuronal circuitry, canonical Wnt activity was restored once more 

(Fig.19c). This observation led us to hypothesize that a switch from canonical to non-canonical Wnt 

signaling accompanies NSC differentiation. Indeed, data from C. elegans suggests that neuroblast 

migration is sustained through non-canonical Wnt signaling activity (Rella et al., 2021). Given their 

propensity to invade distant brain areas, this switch could have significant implications for 
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glioblastoma cells by suggesting that targeted modulation of the canonical to non-canonical Wnt 

switch could affect their migratory potential. Further study of this hypothesis was not feasible due to 

the absence of effective tools for tracking non-canonical Wnt signaling activity in vivo. 

 

 

Figure 19: TCF/Lef Wnt reporter quantifications in the SVZ NSC lineage. a) Reporter construct in transgenic mice used to 

report canonical Wnt signaling activity in the SVZ NSC lineage. b) FACS quantification of TCF/Lef reporter activity in sorted 

SVZ NSC lineage populations. c) Saggital view of an adult mouse brain including LV, RMS, and OB stained with DCX to 

highlight neuroblast migration. d) TCF/Lef reporter activity in DCX stained ENBs recently born in the SVZ (left) and 

migrating along the RMS (right). Note that both populations are EGFP-. e) Highlighting EGFP presence in SOX2+GFAP+ 

NSCs but absence in S100B+ ACs and DCX+ ENBs lining the lateral ventricle. f) ENBs exiting the RMS gradually gain TCF/Lef 

reporter activity as they enter the neuronal areals of the OB. AC: astrocyte; STR: striatum; ENB: early neuroblast; LNB: late 

neuroblast; RMS-OB: rostral migratory stream and olfactory bulb; LV: lateral ventricle; CTX: cortex; CC: corpus callosum; 

DG: dentate gyrus. Figures adapted from (Kaya, 2023). 

 

In addition to the FACS analysis, Oguzhan explored the role of canonical Wnt signaling in NSC lineage 

cells by in vivo imaging of TCF-Lef reporter activity (Kaya, 2023). These images added important 

context to the insights gained from the FACS analysis above, revealing the cell type specific functions 

of canonical Wnt signaling through the generally increased level of Wnt signaling activity in the OB 

(not shown). Tissue imaging furthermore confirmed the stark drop in reporter activity observed in 

ENBs (Fig.19d), with migrating neuroblasts being void of canonical Wnt signaling activity (Fig.19e). 

The resumption of reporter activity in LNBs was also evident (Fig.19f), consistent with their exposure 

to canonical Wnt signals originating from OB neurons (see section 1.1.4).  

The drastic loss and eventual restoration of reporter activity along the NSC differentiation trajectory 

emphasizes the essential role of canonical Wnt signaling in regulating NSC lineage transitions. Given 

the complex nature of the Wnt signaling pathway (see section 1.1.4), it is interesting to speculate 

that related Wnt programs could be involved in the maintenance of the functionally similar long-
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term Quiescence of NSCs and terminal differentiation of OB neurons. However, the reduced levels of 

canonical Wnt activity observed in terminally differentiated striatal astrocytes stand in contrast to 

this assertion. Clearly, canonical Wnt signaling is preferentially activated in the neuronal SVZ NSC 

lineage with important roles in functional stem cell identity, while exerting cell type specific 

functions across other brain areals. Thus, to further elucidate stage-specific determinants of 

canonical Wnt signaling, Oguzhan and I next endeavored to sequence and analyze the TCF-Lef 

reporter NSC lineage at single-cell resolution. 

 

2.4.2 Mapping reporter activity in single-cell transcriptomics 

by plate-based SmartSeq3 

Numerous transcription factors involved in Wnt signaling are lowly expressed, limiting their 

quantification by the usual 10X genomics scRNA-seq approach. Instead, SmartSeq3 (SS3) emerged as 

an attractive alternative due to the increased recovery of low-abundance genes and the added 

ability to reconstruct FACS data in silico by index sorting. Despite the higher costs associated with 

plate-based sequencing methods such as SS3, Oguzhan managed to significantly reduce the cost-per-

cell by miniaturizing the protocol and automating the process with liquid handling systems and 

pipetting robots, cutting the cost per cell by about six-fold. These optimizations and the associated 

protocol are documented in (Cerrizuela et al., 2022; Kaya, 2023). Employing this updated protocol, 

Oguzhan sequenced 1.564 NSC lineage cell transcriptomes from the SVZ and OB of five replicates of 

TCF/Lef-H2B::EGFP reporter mice (Kaya, 2023).  

 

2.4.2.1 Excursion: umicount quantifies nascent and mature transcript counts 

from SmartSeq3 

Complementing Oguzhan’s modifications to the SS3 protocol to increase throughput, I developed a 

method called umicount for quantifying SS3 transcriptomes that accounts for UMIs. This method is 

rooted in HTSeq-count (Anders et al., 2015) and consists of three steps: extracting UMIs from SS3 

FASTQ libraries, aligning the reads post-extraction, and then counting and deduplicating aligned 

reads and UMIs. Initially, the pysam3 FastxFile module is used to traverse SS3 FASTQs, using 

regex to identify UMI-containing reads by the presence of the known SS3 template-switching oligo 

                                                           
3
 https://github.com/pysam-developers/pysam  

https://github.com/pysam-developers/pysam
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(TSO) sequence. Detected UMIs are appended to the read name and the UMI + TSO sequence 

trimmed from the read. Reads are then aligned using standard tools like STAR (Dobin et al., 2013). 

The counting step follows the HTSeq-count implementation4, with exon- and intron-mapping reads 

handled separately, thus allowing for precise quantification of spliced and unspliced reads and 

facilitating RNA-velocity analysis from SS3 data. Additionally, umicount deduplicates UMI counts on 

the fly and reports duplicated counts, enabling eg. troubleshooting via identification of over-cycled 

libraries with a high degree of duplication. This way, umicount reports five measures of gene 

expression, including all combinations of UMI-containing and internal reads at exonic and intronic 

loci. With built-in multithreading capabilities, umicount presents a competitive tool for read 

counting in SS3 libraries, which I employed here to quantify gene expression in the aforementioned 

TCF-Lef reporter transcriptomes. 

The umicount tool is available at github.com/leoforster/umicount and was ported to a buildable CLI 

tool with the help of Jooa Hooli. At the time of publication, the SS3 authors recommend the use of 

zUMIs (Parekh et al., 2018) for SS3 library quantification. umicount is a lightweight tool which solves 

a single problem efficiently using established solutions, but benchmarking of umicount against 

zUMIs remains outstanding largely due to the lack of publically available SS3 datasets to date.  

 

2.4.2.2 Excursion: Populating reconstructed FACS gates with transcriptomic 

annotations 

Using plate-based sequencing methods like SmartSeq3 allows for the mapping of FACS 

measurements to individual cells based on their position on the plate, in a process called index 

sorting. This method enables RNA-protein associations to be reconstructed in silico, enabling a 

comparison between identified cell types from single-cell transcriptomics and their original FACS 

classifications – an innovation I explored here using the TCF-Lef reporter cell transcriptomes 

sequenced by Oguzhan Kaya. In lieu of cell types I used ptalign to assign QAD-stage cells in this 

dataset, simultaneously affording the opportunity to benchmark ptalign on an unseen SVZ NSC 

lineage dataset. Consequently, I fit a NSC lineage pseudotime in the TCF-Lef reporter cells (Fig.20a-b) 

from the familiarly-shaped PCA embedding as described above. ptalign pseudotime alignment of the 

TCF-Lef reporter transcriptomes against the reference SVZ NSC lineage atlas produced a correlation 

matrix clearly stratified by QAD stage cells supported by a highly significant permutation result 

(Fig.20d). A strong concordance of lineage states was evident from the DTW (Fig.20e), and the 

                                                           
4
 https://htseq.readthedocs.io/en/release_0.11.1/count.html  

https://github.com/leoforster/umicount
https://htseq.readthedocs.io/en/release_0.11.1/count.html
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ptalign pseudotime readily recapitulated the dataset-derived pseudotime (Pearson=0.95, Fig.20f). 

Thus, ptalign accurately reconstructed the states and transitions of an unseen SVZ NSC lineage 

dataset, and I next set out to compare the inferred QAD-stage cells in their respective FACS gates 

using the index sorting information. 

 

 

Figure 20: QAD-stage cells in reconstructed FACS gates. a) TCF/Lef SVZ NSC cells from five SS3 plates in PCA with the cell 

types from (Kalamakis et al., 2019) indicated. The SVZ lineage pseudotime for this dataset was inferred by diffusion 

pseudotime from this PCA. b) UMAP embedding of cells from (a) with the lineage pseudotime indicated. Cycling cells are 

excluded from pseudotime inference and are colored in gray. d) ptalign traceback scores from 100 permutations of the 

TCF/Lef reporter cells from (a) aligned against the SVZ NSC lineage reference. The traceback score for the true QAD-gene 

ptalign run is indicated in red. e) DTW of the TCF/Lef reporter cells from (a) ptalign pseudotime and the SVZ NSC reference 

lineage pseudotime. f) Pearson correlation between the ptalign pseudotime and SVZ lineage pseudotime for each of the 

five replicates of TCF/Lef SVZ SS3 cells. g) FACS GLAST-PROM and NCAM1-exclustions (h) gate reconstructed from SS3 index 

sorting, ptalign-derived lineage cell types indicated. Gray lines indicate gate thresholds. i) Selected GO terms from GSEA of 

genes correlated with the GLAST axis from (g). 

 

FACS enables the simultaneous measurement of multiple fluorescent markers to support the sorting 

of individual cells into different populations based on user-defined gates. For the SVZ NSC lineage 

(Llorens-Bobadilla et al., 2015), stem cells are traditionally separated from their progeny based on 

the presence of prominin (PROM1). Similarly, NSC lineage cells are enriched from parenchymal brain 

cells using GLAST (aka. SLC1A3). In the OB, LNBs can be identified by the presence of NCAM1, 

though the gold standard for identifying SVZ NSC progeny in the OB remains genetic lineage tracing, 

eg. in (L. P. M. Kremer et al., 2021). Here, I reconstructed SVZ GLAST-PROM (Fig.20g) and OB NCAM1 

(Fig.20h) FACS gates for TCF-Lef reporter cell transcriptomes and populated these with QAD stages 

inferred by ptalign. These results highlight the preponderance of Differentiation-stage cells in the OB 

and identified several astrocytes with varying NCAM1 levels, suggesting these were incorrectly 
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sorted (Fig.20h). In the SVZ, Activation- and cycling-stage cells appear to exhibit slightly increased 

PROM1 levels while Quiescence-stage cells fall below the PROM1+ gate (horizontal line) (Fig.20g). 

Differentiation- and Activation-stage cells are evidently GLAST-low, while gating on GLAST-high 

cells would exclusively enrich for astroQ cells in the SVZ. These results suggest that while GLAST and 

PROM1 are useful for distinguishing different SVZ NSC lineage populations, careful gating is 

necessary to ensure accurate selection of the intended populations.  

An interesting consequence of the RNA-protein association made possible by index sorting involves 

the classification of reporter-positive cells to find eg. transcriptional determinants of canonical Wnt 

signaling activity. Training a classifier to predict eg. TCF-Lef reporter activity from transcriptomic 

measurements alone would provide a powerful avenue to extrapolate the inference of canonical 

Wnt activation status across datasets and tissues. This possibility was unfortunately not realized in 

the context of this study. Nevertheless, transcriptomic associations for FACS GLAST measurements 

(Fig. 20g) are shown in (Fig.20i), highlighting the otherwise unseen biological signals which are 

encoded in a given FACS gating. 

 

2.4.2.3 Sustained canonical Wnt activity in Quiescent NSCs 

An unequal distribution of reporter-positive cells is evident in the TCF-Lef reporter cell UMAP 

(Fig.21a), and quantifying the proportion of reporter-positive cells by QAD-stage recapitulates the 

stark decline in canonical Wnt activity associated with Activation- and Differentiation-stage cells 

observed previously (see Fig.19). The TCF-Lef reporter is a H2B-EGFP line, meaning EGFP molecules 

are fused to DNA-bound histones via the highly-stable H2B modification (Kaya, 2023). Their 

consistently high reporter activity suggests Quiescence-stage cells exhibit sustained canonical Wnt 

activation (Fig.21b-c), ultimately leading to saturation of available H2B sites which are only diluted 

by division. This assertion is at odds, however, with the rapid decline in reporter activity observed in 

Activation-stage cells, as these will, on average, inherit one H2B-saturated set of chromosomes from 

their (presumably previously quiescent) parent and consequently exhibit EGFP signal. Alternatively, 

the H2B signal points to the existence of separate populations of rarely- or never-cycling 

Quiescence-stage cells, an observation plausibly supported by the different levels of reporter-

positive cells between the Quiescence and astroQ populations (Fig.21b), which are also visible in the 

UMAP (Fig.21a). Thus, more than exhibiting a stage-dependent decline in canonical Wnt signaling, 

investigating reporter activity in scRNA-seq via index sorting reveals that Quiescent cells likely 
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experience sustained Wnt activation while the sharp decline of these signals in Activation could 

point to the existence of a distinct Quiescence progenitor population.  

 

 

Figure 21: Sustained canonical Wnt activity in Quiescence-stage cells. a) UMAP of TCF/Lef Wnt reporter SVZ NSC lineage, 

with Quiescence- and Differentiation-stage cells indicated. b) Proportion of EGFP+ cells from FACS by QAD-stage and 

replicate. Only SVZ replicates were considered. c) Raw FACS intensity by QAD-stage and replicate, indicating enrichment of 

EGFP activity among astroQ cells. 
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2.5 Conserved cell hierarchies between human and 

mouse neurogenesis 

Murine neurogenesis is well-documented while understanding of this process has remained elusive 

in humans. Recent efforts to map human brain development at single-cell resolution (Bhaduri et al., 

2021; Cao et al., 2019; Eze et al., 2021; Zhong et al., 2020) and advances in organoid technologies 

(Bhaduri, Andrews, et al., 2020; C. Li et al., 2023; Velasco et al., 2019) have shed light on the 

processes governing human neurogenesis. Thus, having characterized the mouse SVZ NSC lineage, I 

next set out to leverage human fetal and cortical brain organoid datasets to assess the conservation 

of neurogenic lineage dynamics between humans and mice. 

 

2.5.1 Human brain organoids exhibit a conserved NSC lineage 

pseudotime 

Human brain organoids (HBOs) serve as a practical model of neurogenesis, demonstrating 

developmental processes in vitro (Lancaster & Knoblich, 2014). In this study, they were used to gain 

molecular insights into neurogenesis and to assess their potential as in vitro tumor models. Cortical 

organoids following the unpatterned cortical specification protocol from (Lancaster & Knoblich, 

2014) were obtained from Xiujian Ma and injected with glioblastoma tumor cells by Oguzhan Kaya as 

patient-derived allograft (PDA) tumors (Kaya, 2023) (Fig.22a). Organoids were harvested two weeks 

post injection by Oguzhan and labeled with cell hashing (Stoeckius et al., 2018) to perform 

sequencing of both tumor-infected and healthy cells using the 10X chromium 3’ platform. Then I 

processed cDNA libraries by cellranger and quantified hashtag counts using CITE-seq-count5.  

This organoid dataset was interesting in two respects: providing insights into glioblastoma cell 

growth in vitro, and as a model of human neurogenesis. Thus I set out to isolate the healthy 

organoid cells and their lineage. Over 90% of cells were confidently assigned a hashtag, enabling 

reconstruction of individual organoid populations. I separated healthy from malignant cells by 

transcriptome clustering, detection of the tumor-specific mCherry transgene, and through the 

presence of chromosomal aberrations detected by (inferCNV of the Trinity CTAT Project., 2024) 

(Fig.22b-d). Analysis of these tumor cells is detailed in section 2.6.3. 

                                                           
5
 https://github.com/Hoohm/CITE-seq-Count  

https://github.com/Hoohm/CITE-seq-Count


54 
 

Integrating the healthy cells with a cortical organoid development atlas (Bhaduri, Andrews, et al., 

2020), I traced stage transitions through QAD-stages to map a trajectory from astrocyte- and RG-like 

progenitors to neuronal cell types. Non-lineage cells can arise by chance in some organoids (Pollen 

et al., 2019; Velasco et al., 2019), and were removed by integration with the SVZ NSC reference from 

(Cebrian-Silla et al., 2021) in this case (Fig.22e). The organoid atlas identified a panNeuron 

population which constituted different neuronal subtypes specific to each organoid, eg. with 

inhibitory or excitatory neuronal lineages marked by TH and POU3F2, respectively (Fig.22f). This 

diversity reflects the unpatterned protocol used in organoid generation, contrasting with more 

recent methods that allow for more fine-grained subtype- and region-specification (Quadrato & 

Arlotta, 2017). These results illuminate the subtle differences between human and mouse 

neurogenesis and highlight their organization along QAD stages as identified in mouse SVZ NSCs. 
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Figure 22: NSC lineage dynamics in human brain organoids. a) Schematic representation of human brain organoid PDA 

models, cocultured with T6 tumor cells for two weeks. b) UMAP embedding of tumor and organoid cells, colored by source. 

c) Replicate assignments and copy number variation (CNV) at chromosomes 7,8,10, and 16 were used to distinguish tumor 

and organoid cells. The latter are revisited in Section 2.6.3. d) UMAP embedding of cells from each of the four organoid 

replicates highlights cell type diversity between organoids. e) Off-target non-lineage cells identified by integrating organoid 

cells from (d) with healthy SVZ NSC cells from (Cebrian-Silla et al., 2021). f) UMAP embedding of organoid cells with cell 

types from (Bhaduri, Andrews, et al., 2020) inferred by label transfer. Note that off-target cells form their own cluster. 

Insets depict canonical markers for excitatory and inhibitory genes, highlighting the neuronal diversity in this embedding. g) 

PCA of integrated organoid cells used as a basis for fitting an organoid NSC diffusion pseudotime. The root cell is indicated 

in red. h) Organoid NSC lineage pseudotime plotted in the integrated organoid cell UMAP. i) Pseudotime expression splines 

for SVZ NSC lineage QAD-stage markers, highlighting conserved dynamics between mouse (SVZ NSC reference) and human 

(organoid) NSC lineages. j) DTW of NSC lineage pseudotime in the mouse SVZ NSC lineage reference and the human cortical 

organoids cells from (d). 

 

The components of the CNS are conserved across vast evolutionary distances (Jékely, 2011, 2021), 

suggesting a highly conserved sequence of states and transitions likely underlies their development. 

Thus I used pseudotime analysis to map transitions across QAD stages, providing a basis to compare 

human cortical organoid NSC lineage dynamics to mouse SVZ NSCs. Due to the noted variability of 

neuronal subtypes among organoids, I first combined organoid replicates by integration. 
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Encouragingly, this integrated lineage followed the same V-like shape observed along PC1 and 2 of 

the mouse SVZ NSC datasets (see Fig.14). This suggested that the two models share a common 

differentiation trajectory, and I fit a NSC lineage pseudotime to capture its progression (Fig.22g-h). 

Comparing pseudotime-expression between organoid and mouse NSC lineages revealed conserved 

dynamics throughout Quiescence-, Activation-, and Differentiation-stages as marked by ID1, DLL3, 

and MYT1L, respectively (Fig.22i). Further comparison by DTW (see section 2.1.2) confirmed these 

conserved dynamics (Fig.22j), with the deviation at Quiescence- and Activation-stages likely 

reflecting the different environments in the highly quiescent adult brain and the highly active 

developing organoid. This comparison showcases pseudotime as an effective tool for capturing and 

quantitatively comparing lineage dynamics, validating the use of human cortical organoids as 

neurogenesis models showing remarkable conservation to the mouse NSC lineage hierarchy.  

 

2.5.2 Quiescent cells emerge at low frequency during human 

fetal brain development 

The observation of conserved NSC lineage dynamics in the mouse brain and human cortical 

organoids suggests that fundamental mechanisms governing NSC behavior are shared across 

species. However, the definitive test of these findings lies in comparing in vivo dynamics between 

species. Fortunately, a large volume of single-cell transcriptomes from human cortical brain 

development has been published in recent years (Bhaduri et al., 2021; Cao et al., 2019; Eze et al., 

2021): many of which were curated into a meta-atlas by (Nano et al., 2023). Encompassing around 

600,000 cells across various cortical regions and developmental stages from Carnegie stage 12 to 

gestational week 26, this dataset provides a comprehensive view of human cortical development. 

Thus I set out to evaluate the extent of conservation in NSC lineage dynamics between adult mouse 

SVZ NSCs and human cortical brain development. 

As with cortical organoids above, UMAP indicated the presence of a clear lineage trajectory in the 

cortical development dataset with transitions through astrocyte, RG, and neuronal stages 

corresponding to QAD (Fig.23a). Subgroups of inhibitory and excitatory neurons were readily 

discernible, though their separation by region or individual was not as pronounced as in cortical 

organoids (not shown). Given the strong batch effect across datasets in the meta-atlas, I focused on 

the largest cohort from (Bhaduri et al., 2021) for pseudotime analysis (Fig.23b). PCA embeddings of 

cells from individual developmental timepoints exhibited the familiar V-shape (see above) and 

diffusion pseudotimes fit in this way captured clear transitions between QAD-stages (Fig.23c). 
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Intriguingly, mouse-human pseudotime expression dynamics were clearly conserved for MYT1L and, 

to a lesser extent, for ID3, whereas DLL3 expression was widely promiscuous in the fetal context 

(Fig.23d). This variability might stem from the concurrent presence of different maturation stages 

across brain regions, which were not accounted for in this analysis; or, as DLL3 marks activation-

stage cells, could be a consequence of the incredible rate of growth in the developing brain. These 

observations highlight the conservation of neurodevelopmental states amidst context-dependent 

transcriptional variability, illuminating the careful balance between genes and environment in 

shaping neurogenesis. 

 

 

Figure 23: QAD-stage cell frequencies in human fetal brain development. a) UMAP and cell types of the human cortical 

development meta-atlas from (Nano et al., 2023). b) Proportion of cells from (a) assigned to each cell type from each 

batch. c) Cells from (Bhaduri et al., 2021) highlighted in the UMAP from (a) based on the fetal NSC lineage pseudotime 

inferred from the inset PCA embedding, shown here with GW25 as an example. d) The fetal NSC lineage pseudotime 

captures shared dynamics in the QAD-stage marker genes compared to the SVZ NSC reference lineage, measured here by 

spline regression. UMAP plots of individual gene expression trends are indicated. e) Proportion of QAD-stage assigned cells 

across fetal brain development, from Carnegie stage (CS) 12 to gestational week (GW) 26 and a single postnatal (PN) 

timepoint. Lines represent mean and standard deviation, where available, in QAD-stage cell proportion, as indicated. f) 

Overlap between QAD-stage labels and selected cell types from (a). 

 

QAD-stage cells were clearly present in fetal brains, prompting a quantification of their frequency 

across developmental time. Consequently, I assigned cycling and QAD-stage labels by AUCell-scoring 

of the SVZ-QAD gene set (see section 2.2.2) and observed the expected correspondence with the 

annotated cell types, with Quiescence-stage cells predominantly found in astrocytes and to a lesser 

extent in outer radial-glia (oRG) cells (Fig.23f). This is consistent with the developmental origins of 

cortical astrocytes from oRGs at the gliogenic switch (Sanes et al., 2019), and raises questions about 
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the coupling of state and fate in this population (Weinreb et al., 2020). Notably, Activation- and 

Differentiation-stage cells constituted the majority of the developing cortex, with Quiescence-stage 

cells consistently below 5% across all timepoints (Fig.23e). This is in stark contrast to the pervasive 

presence of Quiescent-stage cells in the adult brain, where astrocytes play particularly important 

roles (see section 1.1.5). These observations underscore the dynamic nature of neurogenesis, where 

the balance between quiescence and activation shifts markedly as the brain matures (Sanes et al., 

2019). Thus while NSC lineage dynamics are conserved across development and adulthood, the 

underlying regulatory mechanisms limit their functional contributions in important ways. As we will 

see (section 2.7.3), these distinctions are pivotal when considering the pathology adult cancers, 

suggesting that comparisons to fetal development could fail to resolve important aspects of 

glioblastoma biology. 
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2.6 Glioblastoma recapitulates NSC lineage stages 

Arising in the highly sensitive and privileged tissues of the adult brain, glioblastomas are one of the 

most lethal adult tumors. For generations, researchers have drawn parallels between glioblastoma 

cells and those of the healthy brain, initially through morphological similarities (Scherer, 1938), and 

later in bulk (Phillips et al., 2006; Verhaak et al., 2010) and eventually single-cell (Couturier et al., 

2020; Johnson et al., 2021; Neftel et al., 2019; Patel et al., 2014; L. M. Richards et al., 2021) 

transcriptomics. However, these comparisons, which often centered on the developmental stages of 

the brain, failed to account for key properties of adult brain stem cells (see section 2.5), for example 

the lack Quiescence-stage cells which are otherwise abundantly present in adult brains. Only 

through the recent availability of cell type resolved transcriptomes of glioblastoma cells and healthy 

adult NSCs in mice, has a deeper examination of the similarities between these two entities become 

feasible. Within this framework, the unbiased barcoding-based experiment (Lan et al., 2017), which 

identifies an invariant glioblastoma hierarchy – characterized by a slow-cycling stem cell which gives 

rise to a rapidly cycling progenitor that ultimately generates differentiated progeny – presents a 

view of glioblastoma organization which is highly consistent with the QAD dynamics I previously 

described for healthy neural stem cells (see section 1.1.2). Against this backdrop, I set out to use 

ptalign to map glioblastoma pseudolineages by direct comparison to the healthy adult mouse NSC 

lineage curated in section 2.2. This analysis highlights the recapitulation of NSC lineage stages by the 

human glioblastoma pseudonymously referred to as T6. This tumor, an IDH-wt glioblastoma from 

an elderly male treated at Universitätsklinikum Ulm, clearly recapitulates NSC lineage dynamics and 

serves as an excellent example of how a tumor retains the memory of its tissue-of-origin.  

Glioblastoma cells in vitro often fail to accurately reproduce the organization and dynamics which 

are characteristic of human glioblastomas in vivo (Prager et al., 2020). To overcome this and 

facilitate the study of diverse glioblastoma cells in vivo, Oguzhan Kaya generated patient derived 

xenograft (PDX) T6 tumors by orthotopic transplantation of glioblastoma cells into the striatum of 

immunocompromised mice (Kaya, 2023). PDX tumors were variably generated from T6 cells in 

untransduced (‘naïve’) or lentivirally transduced (‘reporter’; employing a TCF/Lef-EGFP reporter 

of canonical Wnt activity, see section 2.4.1) conditions. Details of the reporter and insights into 

tumor Wnt-signaling dynamics are detailed in section 2.8 below. On average, mice bearing T6 

tumors reached the humane endpoint around five mpi, upon which Oguzhan isolated tumor cells by 

FACS and produced single-cell transcriptomes by the modified SmartSeq3 (SS3) protocol (Kaya, 

2023). 
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2.6.1 Patient-derived xenograft tumors organize into distinct 

transcriptional states 

In total, Oguzhan processed cells from six separate T6 PDX tumor samples, sequencing a full 384-well 

plate of cells from each sample. These included two naïve and two reporter tumors profiled with the 

modified SS2 protocol, as well as two additional reporter tumors which were profiled by the 

modified SS3 protocol. The improvements brought by the SS3 protocol were readily evident, with 

notably higher gene counts in SS3 cells at a fraction of the sequencing depth (Fig.24a-b). Despite 

rigorous gating in FACS, mouse cells were invariably sequenced with each tumor and had to be 

separated based on their alignment properties (Fig.24c). The remaining tumor cells exhibited 

correlated gene expression among SS3 replicates (Pearson=0.98), with slightly reduced consistency 

observed between SS2 reporter and naïve conditions (Pearson=0.86) (Fig.24d). This could be due to 

PCR biases which are negated by the use of UMIs in SS3, or relates to cell composition bias 

introduced by the HLA-I FACS gating strategy employed for naïve cells (Kaya, 2023) (not shown). 

For these reasons, I focused downstream analyses on the reporter populations alone. 

 

 

Figure 24: Distinct transcriptional states in T6 glioblastoma PDX. a) Mapped reads and detected genes (b) between T6 

PDX replicates from SS3 TCF/Lef reporter as well as SS2 reporter- and naïve conditions. c) FACS sorting of TCF/Lef reporters 

by endogenous mCherry fluorescence (Kaya, 2023) includes low-quality and mouse cells, as indicated here through mouse- 

and human-genome mapping rates per cell. d) High transcriptional congruence in PDX cells isolated from different mice. e) 

UMAP embedding of integrated SS2 and SS3 TCF/Lef reporter cells from T6 PDXs, colored by cell states from (Neftel et al., 

2019) assigned by gene set scoring. f) QAD-stage marker expression in the UMAP from (e). 

 

Applying the meta-module scoring method from (Neftel et al., 2019) on T6 PDXs, I observed tumor 

cells enriched in astrocytic (AC-like) and neuronal progenitor cell (NPC-like) states (Fig.24e), among 
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others. Leveraging SS3 index sorting (see section 2.6.2.1) I noticed a correlation between these 

transcriptional states and physical cell characteristics from FACS: with NPC-like cells generally being 

smaller and AC-like cells larger (not shown), consistent with (Sabelström et al., 2019). The presence 

of these meta-module states echo the NSC lineage progression through QAD stages. An important 

distinction however arises in the view of Neftel and colleagues that NPC-like cells comprise tumor 

stem cells while AC-like cells represent a differentiated population (see section 1.1.5). This view 

mirrors the dynamics of fetal brain development but inverts the roles typically observed in adult 

brain tissues. Notably being one of few in vivo glioblastoma lineage tracing studies, the work by Lan 

and colleagues identified a tumor stem cell hierarchy which closely resembles the QAD stages of the 

adult NSC lineage (Lan et al., 2017). Encouragingly, the QAD-stage markers ID3, DLL3, and MYT1L 

(see Fig.14) distinguish different transcriptional states within glioblastoma (Fig.24f), reinforcing the 

notion that these tumors can be characterized according to the QAD-stages of the healthy adult SVZ 

NSC lineage. 

 

2.6.2 Glioblastoma cells resemble QAD-stages of the NSC 

lineage hierarchy 

Encouraged by the structured arrangement of QAD-stage markers in T6 cells, I conducted a Seurat 

integration of these cells with the TCF-Lef SVZ NSC lineage (Fig.25a-b) from Fig.20. The resulting 

UMAP reaffirmed the conservation of NSC lineage stages and transitions in this glioblastoma: 

revealing tumor cells intermingled with healthy astroQ and Differentiation-stage cells, and otherwise 

connected by a distinct but consistent lineage trajectory in each case (Fig.25c). My attempt to use 

RNA-velocity to resolve tumor dynamics was inconclusive. Instead, I fit a diffusion pseudotime to 

capture the tumor lineage progression (Fig.25d, inset) as I had done previously for the SVZ datasets 

(see Fig.15). This approach, along with AUCell scoring of the QAD gene set from section 2.2.2, 

revealed a clear transition through Quiescence-, Activation-, and Differentiation-stages in the tumor 

UMAP (Fig.25d) which mimicked the integration trajectory. Indeed, by comparing expression levels 

of GLAST and NCAM1 along pseudotime, a clear lineage hierarchy was visible (Fig.25e). These 

results confirm that glioblastomas harbor transcriptionally distinct cells which follow a structured 

lineage trajectory similar to healthy cells. In accordance with the stem cell hierarchy identified by 

Lan and colleagues (Lan et al., 2017), I next cemented NSC lineage dynamics though QAD stages in 

this glioblastoma using ptalign. 
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Figure 25: QAD-stage cells in T6 glioblastoma PDX. a) TCF/Lef SVZ NSC SS3 lineage and T6 glioblastoma cells (b) UMAP, 

combined through integration and visualized in (c) to reveal overlapping cell states. d) T6 glioblastoma UMAP from (b) 

colored by AUCell scoring of QAD-stage genes, with cells colored by their maximum stage-score, where intensity relates the 

difference to the second-highest score. Inset depicts the dataset-derived T6 lineage diffusion pseudotime. e) GLAST and 

NCAM1 UMIs in a rolling window over the T6 lineage diffusion pseudotime from (d). 

 

2.6.2.1 Tumor QAD pseudolineage reconstructed by ptalign 

I inferred a T6 pseudolineage6 by projecting cells into the SVZ NSC lineage atlas, revealing the 

presence of cells across QAD stages (Fig.26a) supported by a highly significant permutation result 

(Fig.26b) and a narrow DTW (Fig.26c) comparable to that of the SVZ datasets (see Fig.9). ptalign 

pseudotimes for individual PDX replicates were consistent with the dataset-derived diffusion 

pseudotime (Fig.26d), suggesting that glioblastomas converge on an optimal pseudolineage 

configuration to support their growth. QAD-stage cells in the T6 pseudolineage (Fig.26e) closely 

match those inferred by gene set scoring above. The QAD-stage markers ID3, DLL3, and MYT1L – 

which are not part of the ptalign QAD gene set – exhibit similar pseudotime expression dynamics 

(Fig.26f) as the reference SVZ NSC lineage atlas (see Fig.20). These results highlight the strong and 

reproducible detection of NSC-like lineage dynamics in this glioblastoma. Compared to conventional 

methods, ptalign demonstrably simplified the detection of lineage dynamics and enabled their 

comparison by resolving stable and transitioning cell stages. 

 

                                                           
6
 Note that these data were used previously to document the ptalign algorithm in section 2.1. 
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Figure 26: QAD-stage cells by ptalign in T6 glioblastoma PDX. a) ptalign correlation heatmap for T6 glioblastoma PDX cells 

(Query) and the SVZ NSC reference lineage (Reference). The aligned pseudotime and QAD-stages are indicated. b) 

Traceback scores for 100 permutations of the pseudotime alignment in (a). The true QAD-gene ptalign traceback score is 

indicated in red. c) DTW of the pseudotime alignment from (a). d) Pearson correlation between dataset-derived T6 lineage 

pseudotime and the ptalign pseudotime from (a) for each of the PDX replicates. e) QAD stages in the SVZ NSC reference 

lineage. f) ptalign pseudotime from (a) in the T6 UMAP. g) UMAP embedding of T6 glioblastoma cells colored by QAD-

stage. Inset pie charts depict proportion of QAD-stage cells and cells per replicate. Cycling cells are excluded from ptalign 

and colored in gray. h) Pseudotime expression dynamics of QAD-stage markers captured by spline regression. i) KDE 

density plot of (Neftel et al., 2019) cell stats from gene set scoring, arranged in pseudotime.  

 

Pseudolineage analysis of the T6 PDXs demonstrates the utility of the study of glioblastoma 

organization through the lens of healthy NSC lineage stages and transitions. However, the placement 

of oligodendrocytic tumor cells, which are absent from the SVZ NSC lineage atlas (see section 2.2), 

remains an open challenge. Based on comparisons to the Neftel meta-modules, ptalign assigns 

higher pseudotimes to OPC-like cells but these are not consistently placed in the Differentiated stage 

(Fig.26g). It is likely that inclusion of additional oligodendrocyte marker genes, for example from the 

OPC-like meta-module, could guide ptalign inference in this case. Nevertheless, the arrangement of 

PDX cells into consistent pseudolineages reveals their inherent organization into defined hierarchies 

which are dissected by ptalign. 

 

2.6.3 Patient-derived allografts highlight intrinsic fating of 

glioblastoma cells 

Tumor pseudolineages in T6 PDXs were highly consistent despite SS2 and SS3 replicates being 

generated years apart. This suggests that the consistent arrangement of cells into distinct 

pseudolineages may be a fundamental characteristic intrinsic to each tumor cell, rather than being a 
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product of the physical environment of the tumor. To explore this hypothesis, I analyzed T6 

pseudolineages in diverse environments on the basis of the human cortical organoids Oguzhan 

injected with T6 glioblastoma cells, ie. the patient-derived allografts (PDAs) from section 2.5.1. 

 

 

Figure 27: Consistent pseudolineages in T6 PDX and PDA glioblastomas. a) T6 glioblastoma cells cocultured with healthy 

cortical organoids from section 2.5.1 in an integrated UMAP and colored by enrichment of AUCell QAD-gene scores. Cycling 

cells are colored gray. b) Traceback score for 100 permutations of pseudotime alignment between T6 PDA cells and the SVZ 

NSC lineage reference. The true QAD-gene traceback score is colored red. c) DTW of the T6 PDA ptalign pseudotime and 

the SVZ NSC lineage reference. d) UMAP embedding of T6 PDA cells colored by ptalign-derived QAD-stage. Inset piecharts 

depict proportion of QAD-stage cells and cells per organoid. e) Barchart of QAD-stage cell proportions in T6 PDX and PDA 

replicates, with standard deviation between replicates indicated. 

 

The precise patterning of human brain organoids is difficult to control, and these often develop into 

tissues resembling disparate brain regions (Pollen et al., 2019; Velasco et al., 2019). Previously, I 

showed that the PDA organoids profiled by Oguzhan in section 2.5.1 exhibit diverse NSC lineage as 

well as non-lineage cell types at different frequencies (see Fig.22). Hence these organoids constitute 

varied environments which could influence tumor growth. Tumor cells from these four PDA 

replicates however reproduced the transcriptomic stages observed in the PDX (see Fig.25), with 

AUCell scoring separating these into QAD-stages (Fig.27a) which were reconstructed by ptalign 

(Fig.27d). The PDA pseudolineages exhibited a clearly significant permutation result and an ideal 

DTW (Fig.27b-c) closely resembling the SVZ lineage comparisons (see Fig.9). Comparing 

pseudolineages inferred for T6 PDA and PDX samples (Fig.27e), these largely agreed except for an 

increased proportion of Activation-stage cells in the PDA which appears to have come at the expense 

of Quiescence-stage cells. This could be explained by the presence of growth factors and other 

chemicals necessary for organoid development which are not present in the adult brain. Taken 

together, this suggests that while external factors can influence the proportion of cells in different 

stages, their fundamental organization into pseudolineages remains consistent, hinting at an 

intrinsic capability of glioblastoma cells to organize into a distinct hierarchy. 
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These results support the idea that a tumor’s developmental history fixes its lineage potential 

through genetic or epigenetic mechanisms which are intrinsically imprinted in every tumor cell. 

Thus, tumor cells invariably establish fixed lineages fated much like healthy stem cells to ultimately 

grow what is functionally an organ within an organ. Consistent with lineage constraint limiting the 

extent to which a tumor can deviate from the memory of its tissue-of-origin (see section 1.3), this 

investigation into the T6 glioblastoma strongly supports the existence of a QAD-stage hierarchy 

mirroring the adult SVZ NSC lineage. This PDA experiment in particular establishes organoid models 

as an effective means to study tumor organization, setting the stage for high throughput screens of 

factors involved in modulating tumor lineages. 

 

In sum, I have demonstrated the efficacy of ptalign pseudolineage analysis on a single human 

glioblastoma, highlighting the conserved stages and transitions to the healthy SVZ. This approach 

enables the transcriptomic profiling of eg. the tumor stem cell hierarchy identified in (Lan et al., 

2017) even in the absence of a genetic lineage tracing. However, the key advantage enabled by 

ptalign remains the projection of tumor samples onto a unified pseudotime axis, enabling the 

comparison of different lineage stages or transitions in that context. I demonstrate this procedure in 

the coming sections, characterizing glioblastoma pseudolineages in a large cohort and conducting a 

comparative study of the functional, clinical, and transcriptional differences which underlie the 

heterogeneity of these tumors. 
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2.7 Insights from pseudolineage inference on 

published primary glioblastoma datasets 

Tumor heterogeneity is a central concept in oncology. This heterogeneity is fixed through a tumor’s 

unique developmental history, leading to a spectrum of intra-tumoral heterogeneity which 

frequently presents a barrier to effective treatment. Glioblastomas in particular are recognized for 

their notable inter-tumoral heterogeneity, with different cell state configurations underlying disease 

progression and patient outcomes. To better understand these complexities, researchers have used 

extensive single-cell and spatial transcriptomics studies to dissect the distinct characteristics of 

individual tumor cells in glioblastomas (see section 1.2). However, these studies rarely reflect on the 

organizational principles which determine how these diverse cell states arise or how they contribute 

to tumor growth.  

These questions are addressed through ptalign, which leverages the tumor’s memory of its tissue-of-

origin to place tumor cells in a reference lineage trajectory. This approach enables the transfer of 

contextual knowledge from healthy cell lineages to better understand the organizational principles 

of tumor cells, including how different cell states emerge and support tumor growth. By applying 

ptalign to place glioblastoma cells within a reference NSC lineage (section 2.1.2), I demonstrated the 

intrinsic fating of glioblastoma cells (section 2.6.3) and identified incompatibilities in their 

comparison to fetal over adult NSC lineages (section 2.5.2). Here, I extend this approach to a larger 

cohort of published glioblastoma scRNA-seq datasets, leveraging the shared pseudotime axis unique 

to ptalign to quantitatively study various features underlying glioblastoma heterogeneity. This 

approach illuminated the essential role of Quiescence-stage cells in glioblastoma organization, 

identifying a distinct set of tumor pseudolineages characterized by diverse patient outcomes. I 

further profiled salient biomarkers for these groups from a conventional methylation assay, 

demonstrating the transfer of insights from ptalign into a clinical setting. Crucially, ptalign facilitates 

the comparison of pseudotime expression dynamics across different tumors or between tumor and 

healthy tissues at scale, illuminating fundamental principles of glioblastoma organization through 

the discovery of potent fate-modulating factors (see section 2.9). These findings are elucidated 

below, and collectively demonstrate the unique advantages of ptalign for understanding and 

targeting heterogeneous tumor entities. 
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2.7.1 ptalign unveils tumor pseudolineages in a primary 

glioblastoma scRNA-seq cohort 

Building on the observations around pseudolineage characterization in a glioblastoma PDX (see 

section 2.6), I next compiled a cohort of 260.399 cells from 86 primary glioblastoma single-cell and 

single-nucleus transcriptomic datasets across 9 studies. These datasets and their sources are 

summarized in (Foerster et al., 2023) (and Fig.28). I applied quality control of mitochondrial content 

and UMI counts, revealing highly reduced numbers of MKI67+ cells in single-nucleus RNA-seq 

samples (Fig.28a-b). This suggests that cycling cells may be lost during snRNA-seq library 

preparation, and I excluded all 19 snRNA-seq samples from downstream analysis such as not to bias 

pseudolineage inference. Following the approach outlined in (Neftel et al., 2019), I excluded non-

malignant clusters by marker expression, then used CNVs from inferCNV to call malignant cells by 

their correlation to the mean malignant cell per sample (Fig.28c), resulting in 136.443 putative 

malignant cells. Finally, I filtered tumors with fewer than 400 cells leaving 55 tumor samples. 

Metadata (Fig.28d) identified most tumors as IDH-wildtype Grade IV glioblastomas, while eg. 

reporting of MGMT methylation status varied (Louis et al., 2021). Tumor samples originated from a 

wide range of brain regions, and though reporting was sparse, appeared to contain more male than 

female samples, consistent with glioblastoma epidemiology (Ostrom et al., 2021). These 55 samples 

comprise a glioblastoma cohort which I used to characterize different aspects of intra-tumoral 

heterogeneity according to their ptalign pseudolineage. 
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Figure 28: External glioblastoma scRNA-seq datasets metadata and QAD-stages. a) MKI67+ cells were detected in 

snRNA-seq glioblastomas at much lower frequency that in scRNA-seq glioblastomas, motivating their exclusion. b) Quality-

control metrics for 51 primary glioblastoma samples. Non-malignant denotes healthy cells, while Mito-high contain 

elevated levels of mitochondrial transcripts and Low-counts denotes cells with low numbers of detected UMIs. c) KDE 

density of tumor cells CNV correlation to an average healthy cell, as described in (Neftel et al., 2019). d) Collated patient 

metadata across studies for tumor diagnosis, IDH mutation status, MGMT-methylation status, location, and sex. e) Top: 

stacked barcharts depicting the proportion of cells assigned to QAD stages and dormant astrocyte (AC)-like cells from 

ptalign pseudotimes, as well as cycling cells (gray), for (n=51) primary GBM scRNA-seq tumors. Bottom: number of cells 

assigned a ptalign pseudotime for each tumor. f) Heatmap of log-transformed p-values from one-way ANOVA test for 

association between named feature and QAD-stage cell proportion. g) Fraction of cycling cells detected in a patient tumor 

decreases with patient age. 

 

I conducted ptalign pseudotime alignment of the 55 glioblastoma cohort with the SVZ NSC reference 

lineage from section 2.2. I note that previous analyses of PDX and PDA pseudolineages (section 

2.6.3) indicated that tumors exhibit fixed lineage potential, suggesting that pseudolineages inferred 

from the glioblastoma cohort should generally be representative of each tumor as a whole. 

Encouragingly, most tumors expressed the majority of SVZ QAD genes (from section 2.2.2), 

suggesting the presence of QAD-stage cells, which were positively identified in the various tumor 

pseudolineages (Fig.28e). Overall, four tumors failed to pass the ptalign permutation threshold 

(discussed in section 2.1.5), likely due to their co-expression of Quiescence- and Differentiation-



69 
 

genes which limited the resolution of QAD dynamics. The remaining 109.101 cells from 51 tumors 

exhibited a broad range of pseudolineage modalities prominently featuring Quiescence- and 

Activation-stage cells with Differentiation-stage cells absent from some tumors. Using ANOVA to test 

for associations between tumor metadata and QAD-stages (Fig.28f) revealed that the few IDH-

mutant samples were enriched in Activation-stage cells (not shown). Patient age was furthermore 

negatively correlated with the proportion of Activation-stage cells (Fig.28g, Pearson=-0.53), 

consistent with tumor lineage constraint acting in the highly quiescent environments of aging brains 

(Kalamakis et al., 2019). Thus, ptalign identifies diverse pseudolineages in glioblastomas that 

recapitulate epidemiological factors which underlie their organization and growth. 

 

 

Figure 29: Glioblastoma organization revealed through 51 tumor pseudolineages. a) UMAP embedding of primary 

glioblastoma cells colored by patient origin. b) Schematic depiction of arbitrary patient samples projected onto the SVZ 

NSC reference pseudotime by ptalign, enabling pseudolineage inference and QAD-stage assignment. c) Ternary plot of 51 

primary glioblastoma datasets from (a) arranged by relative QAD-stage proportions. Inset heatmaps show correlation 

matrices for representative Q, A or D-enriched tumors. Inset ternary depicts QAD geneset scores for SVZ NSC lineage cells 

with associated QAD state labels. Figure panels and legend were adapted from (Foerster et al., 2023). 

 

The utility of ptalign is demonstrated in the above figure, where embedding large cohorts in UMAP 

will invariably cluster cells by their patient origin, thus masking any potential shared biology 

(Fig.29a). Instead, ptalign highlights commonalities between tumors by leveraging the memory of 

their tissue-of-origin to view them through the lens of healthy lineage transitions. Projecting 

individual tumors onto a common cell trajectory in this way (Fig.29b) highlights the differences in 

their underlying biology which contribute to intra-tumoral heterogeneity of glioblastomas. Here, the 

55 glioblastoma pseudolineages reveal a clear progression of Quiescence-, Activation-, and 

Differentiation-stage cells (Fig.29c) which closely follows the SVZ NSC lineage continuum. These 

results support the existence of preferred pseudolineage configurations which are capable of 

sustaining the progression and growth of glioblastomas. Perhaps these pseudolineages exhibit 

survivorship bias over other configurations such as purely Q-D tumors – though such tumors may be 



70 
 

rarer and were not sampled in my glioblastoma cohort. Together, these data support the 

development of pseudolineage-based patient stratification approaches with promising prospects for 

the systematic comparison of gene expression dynamics between tumor groups and against the 

healthy lineage. 

 

2.7.2 QAD stage association with tumor clones by CNV 

Tumors are born by competition, acting as a clonal entity to outcompete their neighbors and acquire 

malignant traits (Colom et al., 2020). Every tumor, however, contains multiple subclones which 

compete for dominance and play a role in stage-progression and metastasis. Thus, to test whether 

tumor pseudolineages arise by a complex hierarchy of tumor cell differentiation or through the 

competition of individual state-biased clones, I investigated state-mixing in individual tumor clones.  

 

 

Figure 30: Limited QAD-stage variability in glioblastoma CNV clones. a) Schematic representation of clone assignment for 

BT368. CNV-events are determined by thresholding inferCNV predictions and used to compare parent vs. child nodes in the 

1st and 2nd split of a CNV-based hierarchical clustering. b) Barchart depicting CNV-clones assigned per tumor. c) Proportion 

of QAD-stage and cycling cells per clone for tumors with 1 and 4 (c), 2 (d), or 3 (e) clones. Piechart size relates relative clone 

size. f) Gene expression in QAD-stage cells from two clones in BT368 (f) and SF11159 (g) as denoted by piecharts. 

Scatterplots depict mean log-normalized expression of pseudobulk QAD-stage cells per clone, for all expressed genes. A
nc

: 

Activation-stage (non-cycling). Figure panels and legend were adapted from (Foerster et al., 2023). 
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Single-cell transcriptomics does not directly measure mutation information, yet in aggregate can 

provide an accurate view of copy-number variations (CNV) present in different cells (Serin Harmanci 

et al., 2020). Here, I used (inferCNV of the Trinity CTAT Project., 2024) to identify tumor clones within 

my glioblastoma cohort, with the aim of comparing QAD-stage bias between clones and assessing 

inter-clonal expression differences which might reveal their origin from different tumor 

microenvironments. CNV calls across tumors exhibited the characteristic gain of chromosome 7 and 

loss of chromosome 10 frequently found in glioblastomas (Louis et al., 2021). To identify 

macroscopic tumor clones, I compared the incidence of high-confidence CNV-events in a hierarchical 

clustering of tumor cells’ inferCNV profiles (Fig.30a). I applied heuristics over the frequency and 

direction of CNV events between parent or child nodes at the first and second split of the 

hierarchical clustering to assign between one and four clones per tumor (Fig.30b). In my 

glioblastoma cohort, I observed multiple QAD stages present in most tumors’ clones (Fig.30c-e). This 

suggests that rather than the competition of individual state-biased clones, glioblastoma 

organization is driven by a hierarchy of differentiating cell states which is maintained even when 

CNV events occur. Clonal evolution is nevertheless necessary for tumor development and 

progression, and might lead to lineage plasticity over time as demonstrated in relapse and 

metastasis (Varn et al., 2022). This notion is consistent with the arguments for lineage constraint 

determining tumor plasticity as laid out in section 1.3.  

To test whether individual tumor clones reflect distinct parts of the tumor environment, reflecting 

eg. infiltrating cells or cells in the tumor core (see section 1.2.2), I compared state-matched gene 

expression profiles among clones individual tumor clones. I observed no significant expression 

differences between QAD-stage cells in different tumor clones (Fig.30f-g), with no clear enrichment 

for genes ranked by expression difference (not shown). Taken together, and in accordance with 

several prior studies (Bhaduri, Di Lullo, et al., 2020; Chaligne et al., 2021; Tirosh et al., 2016; 

Venteicher et al., 2017), these results suggest that CNV is not a major source of intra-tumor 

pseudolineage heterogeneity. 

 

2.7.3 Quiescent and not Differentiated cells are ubiquitous 

across glioblastomas 

Tumor pseudolineages in the glioblastoma cohort were consistently dominated by Activation-stage 

cells, while Differentiation-stage cells appeared only in a subset of tumors (see Fig.28), suggesting 

these are not essential to sustain glioblastoma growth. Quiescence-stage cells, on the other hand, 
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were present in virtually every tumor (Fig.31a), suggesting that, in analogy to the healthy SVZ NSC 

lineage, it is the Quiescence-Activation and not the Activation-Differentiation transition which 

sustains glioblastoma growth. This observation supports the glioblastoma stem cell hierarchy 

proposed in (Lan et al., 2017) and is consistent with the noted role of quiescent cells in repopulating 

tumors upon treatment (Chen et al., 2012; Xie et al., 2022). This view of the glioblastoma lineage 

hierarchy challenges the conventional belief that Differentiation-stage cells constitute tumor stem 

cells while Quiescence-stage cells such as tumor astrocytes constitute a terminally differentiated 

population (Couturier et al., 2020; Neftel et al., 2019; Tirosh et al., 2016; Venteicher et al., 2017). 

These beliefs align with a developmental view of the glioblastoma hierarchy and stem from historic 

associations of stem-like populations with cycling cells (Singh et al., 2004; Verhaak et al., 2010) 

(Fig.31b). However, mounting evidence including the neurogenic potential of common brain 

astrocytes (Magnusson et al., 2014, 2020) as well as tumor cell barcoding (Lan et al., 2017; Larsson et 

al., 2021), phylogenetic reconstruction (Muskovic et al, personal communication), and my own 

analysis of healthy (section 2.2.2) and tumor (section 2.6) transcriptomics, support an adult view of 

the glioblastoma lineage hierarchy. 

 

 

Figure 31: Stem- and Differentiated-cell nomenclature in QAD- and published glioblastoma gene signatures. a) 

Proportion of QAD-stage cells in 51 primary glioblastomas. Piecharts denote proportion of tumors with <5% cells in each 

cell stage. b) Correlation heatmap of QAD-stage cell proportions across 51 primary glioblastomas. c) Fraction of expressed 

genes from Q- and D-stages plotted against G2M score for the six individual replicates of the SVZ NSC reference lineage. d) 

Mean AUCell score per tumor of the stem- and diff-like signatures from (Johnson et al., 2021) subset by QAD-stage. 

Boxplots depict interquartile-range with outliers. e) Comparison of expression levels in Activation-stage cells of 

Quiescence- and Differentiation-biased tumors indicates that DRAXIN is significantly enriched in D-biased tumors. 
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Viewing glioblastoma hierarchy as paralleling the adult NSC lineage clarifies that Differentiation-

stage cells are coupled to cell cycle because they are its product rather than its catalyst. In the SVZ 

NSC lineage, Differentiation genes manifest during cell cycle while Quiescence-stage expression 

programs (Fig.31c), which constitute the stem cell population in this case (Lim & Alvarez-Buylla, 

2016), are shut off prior to cell cycle entry. This notion is supported in glioblastomas by orthogonal 

experiments in (Sabelström et al., 2019) which demonstrate that unlike Quiescence-stage cells, 

Differentiation-stage cells are unable to induce growth of secondary tumors. Taken together, these 

data challenge prevailing assumptions in the gliomas field which assign stem-like status to 

Differentiation-stage cells, exemplified here through gene set scoring of the pan-glioma signatures 

from (Johnson et al., 2021) (Fig.31d). Thus, an updated view of glioblastomas rooted in Quiescence-

stage cells places these cells at the forefront of tumor organization, unveiling novel treatment 

opportunities. This is a prime example of how the direct comparison of GBM and NSC cellular 

hierarchies via ptalign can enhance our understanding of tumor processes by leveraging the wealth 

of contextual knowledge available from NSCs. 

The incomplete presence of Differentiation-stage cells in glioblastomas also presents an opportunity 

for tumor stratification. I used the ubiquitous presence of Activation-stage cells across glioblastomas 

as a means to assess lineage potential by comparing Activation-stage transcriptomic determinants of 

Quiescence- or Differentiation-stage-biased tumor pseudolineages. This revealed the secreted Wnt 

antagonist DRAXIN (Hutchins & Bronner, 2018) as a reliable predictor of tumor pseudolineage 

(Fig.31e), highlighting the pivotal role Wnt signaling plays in regulating tumor cell plasticity and 

supporting its use as a pseudolineage-predictive biomarker. 

 

2.7.4 Patient stratification by glioblastoma pseudolineage 

informs clinical outcomes 

A major axis of variation between glioblastoma pseudolineages exists in the relative frequencies of 

Quiescence- and Differentiation-stage cells. I determined that this distinction is marked by the 

presence of DRAXIN in Activation-stage cells, and next set out to assess its impact on individual 

patient outcomes. Unfortunately, clinical metadata are not frequently published together with 

single-cell datasets, and I instead turned to the clinically annotated cohorts of IDH-wildtype 
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glioblastomas from The Cancer Genome Atlas (TCGA) (Verhaak et al., 2010) and published in (Wu et 

al., 2020) (Fig.32a).  

In total, I compiled 399 glioblastoma samples: 343 from TCGA sequenced by microarray and RNA-seq 

(compiled by Ahmed Sadik), and 56 RNA-seq samples from (Wu et al., 2020). To identify clinical 

correlates of tumor pseudolineage, I aimed to use bulk deconvolution to quantify the contribution of 

QAD-stage cells in each sample. In previous work with bulk samples, Verhaak and colleagues had 

introduced the so-called mesenchymal (Quiescence) and proneural (Differentiation) tumor types but 

failed to identify a significant link to patient survival (Verhaak et al., 2010). I reasoned that this could 

be improved by using the collective single-cell transcriptomes of glioblastoma QAD-stages to direct 

bulk sample deconvolution. Thus I derived a GBM-QAD gene set analogous to the SVZ-QAD gene set 

(section 2.2.2). I selected genes with stage-specific expression among glioblastoma cells and 

screened their stage-specificity in the SVZ NSC lineage atlas (Fig.32b), finally establishing a 271-gene 

GBM-QAD gene set (Table 2) by thresholding in QAD-stage log fold-changes from DEseq. I similarly 

derived a 92-gene cell-cycle gene set. Around one third of the GBM-QAD genes were contained in 

the SVZ-QAD gene set (Fig.32b). Consistently, GBM-QAD stage genes were enriched for functionally 

relevant categories (not shown), supporting their use in the deconvolution of bulk glioblastoma 

samples. 

 

 

Figure 32: Glioblastoma Quiescence signature is predictive of positive patient outcomes. a) Schematic depiction of 

extrapolating scRNA-seq data to fully annotated bulk TCGA samples using a GBM-QAD signature. b) Selected QAD-stage 

enriched genes from glioblastoma samples plotted in a ternary based on their enrichment in QAD-stages of the reference 

SVZ NSC lineage. Inset Venn diagram depicts quantitative overlap between GBM-QAD and SVZ-QAD gene sets. c) Bulk 

glioblastomas nonparametric GBM-QAD scoring by GSVA in 2D-PCA scatterplots of QAD-stage scores, respectively. d) 

Predicted hazards and 90% confidence intervals from a Cox proportional hazards model with age and sex covariates of 

overall survival by bulk GBM-QAD signature score from (b) for overall survival (d) and progression free interval (e), with 
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associated model p-values. A
nc

: Activation-stage (non-cycling); CC, A
c
: cell cycle. Figure panels and legend were adapted 

from (Foerster et al., 2023). 

 

Deconvolution of bulk samples has gained attention since the advent of single-cell RNA-sequencing, 

with numerous methods introduced (reviewed in (Avila Cobos et al., 2020; X. Wang et al., 2019)) to 

enable their retroactive study. However, many of these methods are unable to generalize to the 

multi-modal RNA and microarray glioblastoma samples I compiled from TCGA and (Wu et al., 2020). 

Instead, I leveraged the non-parametric and unsupervised approach implemented in GSVA 

(Hänzelmann et al., 2013) to score tumor samples by GBM-QAD and cycling genes and estimate their 

cell state composition. I compiled GSVA scores for pseudobulk scRNA-seq datasets from my 

glioblastoma cohort and bulk samples that remained after excluding recurrent, treated, or otherwise 

low quality samples. These scores were projected into two dimensions by PCA (Fig.32c) which 

arranged samples according to QAD-stage composition, with a Quiescence-Activation axis in PC1 and 

PC2 capturing Differentiation. Encouragingly, scRNA-seq samples were organized in accordance with 

their ground-truth pseudolineages in this embedding, suggesting that nearby bulk samples would 

similarly cluster by pseudolineage. This approach to bulk deconvolution using non-parametric gene 

set scoring by GSVA presents an effective way to infer pseudolineages from multi-modal tumor 

samples. 

Leveraging the clinical data available from the deconvoluted bulk sample QAD-stage composition in 

a Cox model accounting for patient sex and age revealed a significant association between higher 

Quiescence scores and increased patient survival (Fig.32d). Notably, the protective effects of 

increased Quiescence surpassed the detrimental effects of Activation and cycling, which was also 

evident for progression-free intervals (Fig.32e). Taken together, these data support the stem-like 

properties of Quiescence-stage cells in glioblastoma, highlighting the increased importance of the 

Quiescence-Activation over the Activation-Differentiation transition in sustaining glioblastoma 

growth. Consistently, patients whose tumors comprise a Quiescence-enriched pseudolineage are 

likely to have different disease progression and survival outcomes than patients with a 

Differentiation-enriched tumor, supporting the use of DRAXIN as an actionable biomarker. 
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Figure 33: The Quiescence-Activation transition plays a central role in determining patient outcome. a) GBM-QAD 

signature scores in GSVA PCA overlaid with ptalign QAD-stage piecharts for 51 primary glioblastomas. Four groups of 

glioblastomas enriched (e-) by stage are colored, making up eQ, eA, eQD, and eQD classes. b) Mean proportion of QAD-

stage cells per glioblastoma class among scRNA-seq samples. Error bars denote standard deviation. c) Pairwise overall 

survival for eQ,eA, eQD, and eQD glioblastomas. Comparison color gradients indicate better (+) and worse (-) survival 

quadrants, respectively. d) Pairwise overall survival for eQ,eA, eQD, and eQD bulk glioblastomas. e) Kaplan Meier curves 

depicting progression-free interval for eQD compared to eQ (left) and eAD (right) GBMs. Kaplan Meier significance was 

assessed by log-rank test with patients up to 95th survival percentile included. Figure panels and legend were adapted 

from (Foerster et al., 2023). 

 

I next used the positions of the ground-truth scRNA-seq samples in the GSVA PCA to define four 

reference pseudolineages from which to guide the stratification of bulk patient samples. I assigned 

bulk samples to the nearest reference point using heuristics over the Euclidean distances between 

individual tumors. This way, I delineated four tumor classes each enriched (e-) in the predominant 

stages of their pseudolineage: eQ, eA, eQD, and eAD (Fig.33a). This labeling was supported by cell 

frequencies in scRNA-seq samples (Fig.33b). Consistent with the Cox regression above, evaluating 

patient survival by tumor class revealed that only those comparisons which span the PC1 

Quiescence-Activation axis exhibited significantly different outcomes (Fig.33c), underscoring the 

significance of targeting the Quiescence-Activation transition to achieve positive patient outcomes. 

Indeed, pairwise comparisons of patient survival between tumor classes consistently indicated 

improved outcomes for eQD and eQ tumors (Fig.33d). Intriguingly, while eQD and eQ tumors 

exhibited similar survival outcomes, eQD tumors had significantly improved progression-free 

intervals over eQ tumors (Fig.33e). Thus while a Quiescence-biased pseudolineage generally 

improves prognosis, differentiating between a truncated (eQ) and complete (eQD) tumor 

pseudolineage additionally factors into clinical outcomes. In the case of eQD and eQ tumors, these 

outcomes could relate to functional differences between astrocytic and mesenchymal (MES-like) 

tumor cells which are commonly associated with immune-infiltration (Greenwald et al., 2023; Mossi 

Albiach et al., 2023; Ruiz-Moreno et al., 2022); both of which are considered among Quiescence-
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stage cells in ptalign. Overall, these results demonstrate the utility of pseudolineage inference on a 

cohort of bulk glioblastoma samples, revealing principles of tumor organization which delineate 

patient outcomes and providing a contextual framework for their stratification.  

 

2.7.5 Excursion: Comparison of published glioblastoma gene 

set classifications 

Transcriptomic classification of glioblastoma subtypes has evolved with the technologies for its 

quantification, from initial bulk cohorts measured in (Phillips et al., 2006; Verhaak et al., 2010), to 

methylation subtypes characterized in (Ceccarelli et al., 2016; Noushmehr et al., 2010) and the 

multitude of tumor cell states revealed through single-cell approaches (Garofano et al., 2021; 

Johnson et al., 2021; Neftel et al., 2019; L. M. Richards et al., 2021). Yet many of these studies arrive 

at similar conceptions of glioblastoma archetypes. In my own orthogonal approach, studying 

glioblastoma organization through the lens of the SVZ NSC lineage, I identified a major variation in 

glioblastoma subtypes through the presence of Quiescence- or Differentiation-stage cells (see 

Fig.28). Delineating glioblastoma organization along this axis has clear parallels to the mesenchymal 

and proneural tumors from (Verhaak et al., 2010), while the underlying cell stages are clearly related 

to AC- and NPC-like states from (Neftel et al., 2019) (see section 1.2.2). Thus, to investigate to what 

extent these different views of glioblastoma converge on a coherent set of underlying factors, I 

conducted AUCell scoring of glioblastoma transcriptomic signatures from (Johnson et al., 2021; 

Neftel et al., 2019; L. M. Richards et al., 2021; Verhaak et al., 2010) on the 55 tumors in my 

glioblastoma cohort.  
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Figure 34: Comparison of published glioblastoma gene sets. a) Published glioblastoma gene sets by publication (color) 

arranged by gene set size. b) Correlation heatmap of published glioblastoma gene sets AUCell scores across 51 primary 

glioblastoma scRNA-seq datasets. CC, A
c
: cell cycle.  

 

In addition to the above mentioned signatures from (Verhaak et al., 2010) and (Neftel et al., 2019), I 

analyzed the so-called pan-glioma stem-like, diff-like, and prolifstem-like states from (Johnson et al., 

2021) and the injury- and development-axis from (L. M. Richards et al., 2021). These signatures 

exhibited striking differences in gene set size, going from as few as 50 genes to thousands (Fig.34a). 

Though at this latter end I must question the utility of signatures which encompass a significant 

portion of the human proteome. Nevertheless, correlating AUCell scores across all 109.101 cells 

from my glioblastoma cohort resulted in a broad clustering of three cell state groups corresponding 

to QAD-stages (Fig.34b). This clustering highlighted shared similarities in astrocytic and 

mesenchymal signatures within a combined Quiescence cluster, consistent with the description of 

mesenchymal tumor cells as astrocytic cells affected by the presence of immune cells in their 

immediate environment (Mossi Albiach et al., 2023). Inspecting the Differentiation cluster, I noticed 

that the GBM-QAD Differentiation-stage signature exhibits lower correlation to the oligodendrocytic 

(OPC-like) signature from (Neftel et al., 2019) than Activation-stage signature, suggesting that 

oligodendrocytic tumor cells may be misclassified as Activation-stage cells in ptalign (see section 

2.6.2.1). However, the classification of oligodendrocytic tumor cells may not be accurate, as these 

are only explicitly identified in (Neftel et al., 2019) and their functional or molecular properties not 

fully validated. This is supported by the OPC-like signature otherwise exhibiting broad correlation to 

neuronal signatures and the stem-like signature from (Johnson et al., 2021). This analysis 

furthermore highlights the semantic difficulties associated with the stem-like properties of neuronal 

(Differentiation-stage) cells (see Fig.31), as evidenced by the pan-glioma signatures from (Johnson et 
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al., 2021). Particularly the stem-like signature from (Johnson et al., 2021) correlates with neuronal 

and oligodendrocytic signatures as well as the Activation- and Quiescence-stage signatures, 

undermining the proliferative hierarchy outlined in that study. Taken together, these results 

highlight the convergence of transcriptomic signatures of glioblastoma cell states in three groups 

broadly corresponding to QAD-stages of the SVZ NSC lineage, further supporting the view of 

glioblastoma hierarchies through the lens of healthy lineage transitions as set forth in ptalign. 

 

2.7.6 Methylome-based inference of glioblastoma 

pseudolineages using EPIC array 

Pseudolineage inference on bulk transcriptomic glioblastoma samples from TCGA and (Wu et al., 

2020) guided their separation into four tumor groups stratified by patient outcome. However, this 

approach contrasts with the clinical practice of using methylation arrays for the WHO classification 

of brain tumors (Capper et al., 2018), highlighting a gap between RNA-based patient stratification 

and its clinical implementation. Toward bridging this gap, a related study recently resolved the 

methylome profiles of SVZ lineage (eg. QAD) stages at single-cell resolution (L. P. M. Kremer et al., 

2022) to reveal that various NSC lineage stages exhibit distinct methylation profiles, for example 

between SVZ astrocytes and qNSCs (see section 1.1.5). Combining this result with the noted overlap 

between glioblastomas and the healthy SVZ NSC lineage which is central to this work, I hypothesized 

that differences in QAD-stage proportions could be evident in bulk tumor methylomes. Thus, to 

enable efficient patient stratification and to facilitate the application of tumor pseudolineages in a 

clinical setting, I used 83 glioblastoma samples with matched RNA-seq and methylation data from 

the TCGA and (Wu et al., 2020) cohorts to demonstrate the feasibility of pseudolineage inference 

from tumor methylomes (Fig.35a). 
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Figure 35: Bulk glioblastoma methylomes recapitulate tumor pseudolineages. a) Schematic depiction of gDNA isolation 

and bulk methylation quantification by Illumina 450k and EPIC 850k methylation microarrays. b) Inter-tumoral euclidean 

distances in methylation- and RNA-modalities for selected tumor (left) vs. other tumors; and correlation per tumor (right). 

c) PCA embedding of variable methylation sites in (n=83) glioblastomas with matched methylation and RNA profiling from. 

QAD-stage enrichments are underscored with transparent ellipses. d) PCA of methylation values from in-house PDX 

samples with matched QAD-stage proportions from scRNA-seq depicted in pie charts. e) Hierarchical clustering of variable 

methylation sites recapitulates pseudolineage structure from scRNA-seq depicted in pie charts. 

 

Clustering all 83 methylome- and RNA-matched tumors by their methylation profiles revealed robust 

segregation by tumor pseudolineage. Consistently, comparing pairwise inter-tumoral distances in 

methylation and expression revealed these to be correlated between tumors (Fig.35b). PCA 

embedding of variable methylation sites separated alive and deceased patients on PC1 (not shown), 

while tumors segregated into QAD-stages along PC2-3 (Fig.35c). I additionally observed 

correspondence between bulk methylation profiles and tumor pseudolineage in nine in-house 

glioblastoma samples Oguzhan Kaya processed with the same methylation array technology 

(Fig.35d). Several of these tumors were used to generate PDXs and sequenced by Oguzhan and 

Milica Bekavac (Bekavac, 2022), and are elucidated further in section 2.8.5. Here, hierarchical 

clustering of these tumor methylomes highlighted the close correspondence between bulk 

methylomes and pseudolineages inferred from single-cell transcriptomics (Fig.35e). Together, these 

results reveal methylation as a conserved aspect of tumor biology which exerts a memory of its 

tissue-of-origin and is maintained despite malignant transformation. As methylation classically 

precedes and underlies transcription, the concordance of these modalities is consistent with the 

notion of lineage constraint directing the organization of tumor hierarchies. Further study of the 

methylome differences in developing and adult NSC lineages could provide valuable evidence to 

support a view of glioblastoma organization through adult NSC lineage dynamics. Similarly, the 

analysis of single-cell methylomes from QAD-stage glioblastoma cells is likely to reveal additional loci 

with variable methylation status across the tumor pseudolineage, which could lead to better patient 

stratification and could further illuminate fate-modulating factors which are active in tumor cells. 
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2.7.7 Pseudolineage prediction from bulk methylomes  

Emboldened by the correlation between methylation and expression distances between tumors as 

well as their robust clustering by tumor pseudolineage, I next set out to quantitatively relate tumor 

methylomes to their transcriptomic pseudolineage stratification. Leveraging the 83 bulk 

glioblastoma samples with matched methylome and RNA-seq data, I identified several CpGs which 

clearly correlated with RNA GSVA scores (Fig.36a), and combined these with highly variable CpGs to 

train an sklearn ElasticNet model (Pedregosa et al., 2011) to predict GSVA scores on a 66/33 train-

test split in a grid-search paradigm. An ElasticNet model was selected due to its feature selection 

capabilities, the interpretability associated with a linear model, and the robust performance of 

ElasticNet models in the face of large discrepancies in feature number (here >10.000) over sample 

count. Assessing the performance of the best grid-search model on the test data revealed a mean 

Pearson correlation of 0.70 across QAD- and cycling-stages (Fig.36b). Surprisingly, predictions of 

cycling scores had the lowest accuracy, while the most accurate predictions were made for 

Differentiation- and Activation-scores. This is in contrast to RNA-seq, where signal from cell cycle 

activity consistently dominates the weaker Activation-stage identity (see Fig.32). These results 

nevertheless demonstrate that tumor pseudolineages can be assessed from bulk methylomes, 

opening avenues for their application in patient stratification and disease monitoring. 

 

 

Figure 36: Pseudolineage prediction from bulk methylomes. a) Individual methylation CpGs exhibiting correlation to PC1 

(left) and PC2 (right) of the GBM-QAD GSVA embedding. b) Regression and 90% CI on a (n=28) holdout set for ElasticNet 

predictions on methylation data, compared to RNA-based value from GSVA for GBM-QAD gene sets. Models were trained 

on a (n=55) tumor training cohort. Pearson correlations between truth and prediction are indicated. d) GSVA PCA of 

original GBM-QAD scores and predicted scores from ElasticNet regression in (c). Grey lines connect each original point with 

the position its predicted counterpart lands in the PCA. A
nc

: Activation-stage (non-cycling); A
c
: cell cycle. 
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Transforming ElasticNet GSVA score predictions back into the PCA-space used to stratify 

glioblastomas by tumor class (see Fig.33) highlighted the feasibility of predicting tumor 

pseudolineage from methylation, though predicted and true GSVA scores distributed unevenly in the 

resulting embedding (Fig.36c). I did not assess the classification performance of an ElasticNet aimed 

at predicting tumor class over RNA GSVA score. Nevertheless, this supports the application of an 

additional model to predict tumor class from the ElasticNet output in order to demonstrate clinical 

viability of this approach. This additional model could also access underlying methylome information 

to improve performance. Other interpretable models which could be used in this context include 

RandomForest or nearest-neighbor-based approaches. The use of the methylation-based PCA 

coordinate or weighting by PCA loading to improve predictions presents an interesting avenue for 

further study. Together with the robust clustering of glioblastoma methylomes by pseudolineage, 

these results indicate that tumor methylomes contain clear and sufficient signal for pseudolineage 

inference. The use of ElasticNets to predict RNA GSVA scores in this case serves to demonstrate the 

feasibility of this approach, paving the way for the clinical application of the insights into 

glioblastoma organization which are described in this work. 

 

In sum, glioblastoma pseudolineages represent an effective means to assess heterogenous features 

which contribute to tumor organization and progression. Unlike naïve clustering techniques, a 

pseudolineage-based perspective of glioblastoma heterogeneity places tumors on a shared axis, 

faithfully recapitulating the underlying organizational principles and facilitating their comparison in 

that context. This includes the diversity of pseudolineage stages in CNV clones, the ubiquity of 

Quiescence-stage cells in glioblastomas, and the clinical significance of the Quiescence-Activation 

transition. Through pseudolineage inference on bulk tumor methylomes, I furthermore 

demonstrated the possibility to transfer these insights into the clinics for patient stratification and 

disease monitoring. Together and in light of the noted role of Wnt signaling in regulating it, the role 

of the Quiescence-Activation bears additional scrutiny in order to derive stage-specific interventions 

which can achieve improved patient outcomes. 
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2.8 Aberrant canonical Wnt signaling activity in 

glioblastoma pseudolineages 

The Wnt signaling pathway plays a crucial role in regulating adult neurogenesis (Donega et al., 2022; 

Kalamakis et al., 2019; Seib et al., 2013), and is commonly disrupted in various tumors (Y. Lee et al., 

2016; Steinhart & Angers, 2018), including glioblastomas. This pathway is closely linked to stem cell 

identity in the adult and developing brain, and my own investigation into the dynamics of a 

canonical Wnt reporter in the adult SVZ NSC lineage (see section 2.4) revealed that Wnt signaling is 

tightly regulated at Quiescence-Activation transition in vivo. Remarkably, precisely this Quiescence-

Activation transition was critical for predicting patient outcomes from glioblastoma pseudolineages 

(see section 2.7.4). Considering the otherwise striking parallels between the adult NSC lineage and 

glioblastoma hierarchies, this suggests two possibilities: either Wnt signaling is conserved and 

contributes to the organization of glioblastoma cells into NSC-like hierarchies, or Wnt signaling 

pathways are disrupted and license the extended stem cell identity which fuels glioblastoma growth. 

To explore this hypothesis, Oguzhan Kaya and I turned to the TCF/Lef::EGFP canonical Wnt 

reporter described in section 2.4.1. As the following sections demonstrate, the latter hypothesis 

rings true, with canonical Wnt signaling notably disrupted at the Quiescence-Activation transition in 

glioblastoma pseudolineages. As we will see (in section 2.9), this observation reveals an important 

vulnerability in glioblastoma organization which Oguzhan and I exploited via the targeted 

modulation of Wnt signaling components. This divergence between glioblastoma biology and normal 

neurogenesis is evident already in an in vitro setting. 

 

2.8.1 Glioblastoma cells do not display canonical Wnt activity 

in vitro 

Prior to their use as patient-derived models of glioblastoma organization, Oguzhan cultivated T6 

glioblastoma cells isolated from surgical resection under in vitro conditions (Kaya, 2023). Under 

these conditions, glioblastoma cells form spheres as they self-renew, resembling primary NSCs in 

vitro (Kaya, 2023). However, by transducing T6 cells with the TCF/Lef::EGFP genetic reporter of 

canonical Wnt signaling (Fig.37a), Oguzhan observed that these cells do not display canonical Wnt 

activity in vitro (Kaya, 2023) despite expressing various components of the Wnt signaling pathway 

(not shown). This was true in 2D spheroids (Fig.37b, left) as well as 3D cultures in a collagen matrix 
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(Fig.37b, right). While cells in the former are limited in their differentiation potential, collagen-

embedded cultures exhibit distinct behaviors characteristic of different pseudolineage stages (Kaya, 

2023), suggesting that the observed absence of canonical Wnt signaling activity does not affect the 

emergence of various tumor cell states. However, Wnt3a ligand, a strong simulator of canonical 

Wnt signaling activity (Kaya, 2023), was able to elicit reporter activity (Fig.37b, lower), indicating that 

T6 cells are able to respond to Wnt-dependent stimuli. Interestingly, stimulation by Wnt3a induced 

a migratory phenotype in some collagen-embedded T6 cells (not shown), suggesting that rescuing 

Wnt signaling activity could present a means to elicit coordinated functional changes in glioblastoma 

cells. 

 

 

Figure 37: Glioblastoma cells do not display canonical Wnt activity in vitro. a) Schematic representation of conditions of 

T6 Wnt reporter measurements carried out by Oguzhan (Kaya, 2023). b) Wnt-reporter glioblastoma cells were cultured on 

laminin coated chambers (left; fixed, stained; scale bar, 25μm) or as 3D spheroids in collagen matrix (right; live, unstained). 

Images were acquired 24h post recombinant-Wnt3a treatment. Scale bar, 100μm. C) Wnt-reporter glioblastoma cells 

transplanted into HBOs (left, 10dpi) or mouse brains (right, 5mpi). Scale bars, 100μm. Figure panels and legend were 

adapted from (Foerster et al., 2023). 

 

Contrary to their in vitro counterparts, T6 cells embedded in healthy tissues in PDX and PDA models 

exhibited consistently high levels of Wnt reporter activity (Fig.37c). Considering their diverse 

pseudolineages, this observation supports the notion that Wnt signaling may be involved in directing 

glioblastoma cell fates as in the SVZ NSC lineage. Extending this conclusion to T6 cells in vitro, where 

the ubiquitous presence of growth factors maintains most cells in the Activation stage, would 

explain their lack of canonical Wnt signaling activity in analogy to SVZ Activation-stage cells (see 

section 2.4.1). In this scenario, treating in vitro cultures of glioblastoma cells with Wnt ligands to 

stimulate canonical Wnt activity could phenocopy their transition to Quiescence or Differentiation 

stages where Wnt activity is high in SVZ NSCs (see Fig.19). This hypothesis remains unexplored as 

Wnt-stimulated in vitro cultures of T6 cells were not sequenced in this study. While the targeted 
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modulation of glioblastoma cell fates in this manner presents interesting therapeutic possibilities by 

eg. inducing Quiescence to elicit positive patient outcomes (see section 2.7.4), it does not explain 

the origin of the ligands which induce activation of the pathway in vivo.  

 

2.8.2 Neuronal contacts promote Wnt activity in glioblastoma 

cells 

The diverse environments of human cortical organoids present a unique opportunity to study the 

interactions between healthy and malignant cells which lead to the induction of canonical Wnt 

signaling activity in tumor cells. As described in section 2.5.1, Oguzhan transduced four human 

cortical organoids with T6 Wnt reporter glioblastoma cells, which he then sorted and sequenced by 

10X genomics two weeks post injection. Leveraging Oguzhan’s cell hashing strategy and his 

separation of reporter-positive and negative cells by sequencing lane (Kaya, 2023), I was able to 

reconstruct the fraction of reporter-positive tumor cells in each host organoid. This highlighted a 

high degree of inter-organoid variability in reporter-positive cells, ranging from 10% to 80% across 

replicates (Fig.38a-b). Comparing reporter-positivity to organoid cell type composition revealed a 

clear correlation between Wnt-active tumor cells and the number of neurons present in each 

organoid (Fig.38c). Conversely, I found a negative correlation between Wnt-active tumor cells and 

organoid radial-glia. Repeating this analysis for excitatory and inhibitor neurons only revealed a clear 

association between Wnt-active tumor cells and excitatory neurons, which was inverted for 

inhibitory neurons (Kaya, 2023) (not shown). Intriguingly, Oguzhan noticed that inhibitory neurons 

express several secreted Wnt antagonists including SFRP1 (Fig.38d), suggesting that these cells 

might actively inhibit Wnt activation in nearby tumor cells. Individual PDA tumors exhibited 

consistent Wnt activity levels throughout QAD-stage pseudolineage cells, highlighting their failure to 

regulate Wnt signals at the Quiescence-Activation transition as healthy SVZ NSCs do (Fig.38e). These 

tumors did, however, exhibit small differences in Quiescence-stage cell proportions which anti-

correlated with Wnt activity levels (Fig.38f), suggesting these could be related to Wnt modulation 

from inhibitory neurons. I also noted enriched proportions of reporter-positive cells in the 

Quiescence stage (Fig.38g), recapitulating the link between Wnt and Quiescence observed in SVZ 

NSCs (see Fig.21). Taken together, these results clearly demonstrate a neuronal origin for the 

induction of canonical Wnt signaling activity in glioblastoma cells.  
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Figure 38: Glioblastoma Wnt activity levels depend on the composition and type of nearby healthy cells. a) Schematic 

representation of T6 PDA experiment, injecting T6 TCF/Lef Wnt reporter glioblastoma cells into human cortical organoids 

as described in Section 2.6.3. b) UMAP embedding of T6 PDA cells from EGFP+ and EGFP- conditions as resolved in silico 

by hashtag and sequencing lane. Total proportion of reporter-positive cells per replicate is given by the piecharts below. c) 

Type distribution among healthy organoids cells plotted against proportion of reporter-positive cells in T6 PDA replicates. 

The two major panNeuron and panRG cell types are indicated, the rest are colored gray. d) Proportion of SFRP1-

expressing cells by empirical expression threshold in excitatory and inhibitory neurons from pooled organoids. e) 

Proportion of reporter-positive cells in QAD-stage cells of T6 PDA replicates. f) Relationship between proportion of 

Quiescence-stage cells and T6 PDA replicate reporter-activity. g) Enrichment of Quiescence-stage cell proportion compared 

to the average of QAD-stage reporter-positive cells per T6 PDA replicate. 

 

To elucidate the spatial crosstalk between glioblastoma cells and those of a healthy mouse brain, 

Oguzhan processed several slices of a T6 PDX tumor for spatially resolved transcriptomics (SRT) by 

Resolve Biosciences. A detailed methodology for these experiments is outlined in (Kaya, 2023). This 

technology measures the spatial arrangement of a panel of QAD-stage and mouse cell type specific 

transcripts on the basis of RNA hybridization, which can then be overlaid with fluorescence images 

to extract additional insights (Fig.39a). For a more detailed overview, see (Foerster et al., 2023; Kaya, 

2023). Here, computational analysis of SRT experiments was performed by Valentin Wüst, who 

provided data on segmented and transcript-assigned cells which I used for the subsequent analyses 

presented here and in section 2.9.  
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Figure 39: Spatial transcriptomics confirms pervasive Wnt activation in the presence of healthy neurons. a) Spatial 

transcriptomics (Resolve biosciences) ROI of QAD-stage cells in a T6 PDX brain. Left: striatal section of clustered cells from 

QAD-stages overlaid with DAPI and mCherry immunofluorescence. Tumor transcripts are colored by QAD-stage with a 

white outline; mouse transcripts are colored by cell type. Right: QAD-stage cells’ EGFP fluorescence. Scale bars, 10μm. b) 

Proportion of mouse neuronal transcripts detected from n=6 ROIs for different brain regions, plotted against proportion of 

EGFP+ spots for cells in that same ROI. Errorbars in x- and y- axis denote the standard deviation in the measured quantity 

over (n=6) replicates, though not every region appears in every ROI. A linear model fit to determine the slope coefficient 

between proportion of neural spots and tumor cell EGFP+ spot proportion finds a highly significant positive association. c) 

Proportion of EGFP+ spots by QAD-stage for individual regions with >20 cells among spatial ROIs. Figure panels and legend 

were adapted from (Foerster et al., 2023). 

 

By overlaying the pixel coordinates of transcript spots from the SRT experiment with their EGFP 

fluorescence intensity, I was able to clearly distinguish between reporter-positive T6 cells and the 

healthy mouse cell background (not shown). I assigned segmented tumor cells to QAD-stages based 

on transcript counts in a process similar to the AUCell assignments in section 2.6.2 (see Fig.25). This 

revealed Wnt-active tumor cells distributed across QAD-stages (Fig.39a) and brain regions. 

Comparing the incidence of neuronal transcripts with reporter-positive tumor cells in different brain 

regions confirmed my prior observation (see Fig.38) that tumor cell in proximity to healthy neurons 

engage in canonical Wnt signaling activity (Fig.39b). Due to the limited number of mouse genes 

included in the SRT transcript panel, I was unable to distinguish between excitatory and inhibitory 

neurons in this analysis. Nevertheless, these results highlight the cell type specific interactions which 

are present in different tumor environments. It remains to be explored whether the Wnt signaling 

activity induced by neuronal proximity affects QAD-stage transitions in tumor cells. However, the 

organization of T6 tumors into consistent pseudolineages in PDA and PDX models despite a high 

degree of variation in environment (see Fig.38) and Wnt signaling activity (Fig.39c) suggests that Wnt 

is not essential for stage transitions in glioblastoma. 
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2.8.3 Ventricular outgrowths do not exhibit Wnt activity in 

patient derived xenografts 

The diffuse and infiltrative growth which is characteristic of glioblastomas (Louis et al., 2021) means 

that tumor cells will colonize disparate regions of the brain even in a PDX model. The T6 tumor, for 

example, rarely forms a monolithic tumor core, instead generating tumor cells which migrate eg. 

along the corpus callosum to invade distal regions of the brain (not shown). Thus the local 

environment of individual tumor cells is largely dependent on nearby healthy cells, with one notable 

exception: ventricular growths.  

Infiltrating T6 cells will occasionally reach the ventricle and extravasate to colonize the ventricular 

cavity itself. This process brings with it two important advantages: uninhibited 3D expansion upon 

fleeing the crowded brain parenchyma, and escape from Wnt-inducing signals secreted eg. by 

neuronal cells as demonstrated above (see Fig.38). This leads to large ventricular growths comprised 

solely of tumor cells, which are completely void of canonical Wnt signaling activity (Fig.40a). Both of 

these features of ventricular growths parallel the characteristics of in vitro cultured glioblastoma 

cells (see Fig.37), plausibly explaining the poor prognosis associated with patients bearing ventricular 

tumors (Berendsen et al., 2019).  
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Figure 40: Ventricular growths are void of canonical Wnt signals and enrich in Activation-stage tumor cells. a) 

Immunofluorescence image of a T6 PDX tumor glioblastoma cells (mCherry) as a large ventricular growth in the third 

ventricle. Scale bar, 250μm. Insets highlight tumor cells devoid of Wnt activity, which is regained upon entry to the brain 

parenchyma.b) Wnt-reporter spatial transcriptomics ROI of a ventricular outgrowth. Transcriptomic markers are overlaid 

with DAPI and mCherry immunofluorescence. Tumor transcripts are colored by QAD-stage with a white outline, mouse 

transcripts are colored by cell type. Scale bar, 50μm. c) Contrasting EGFP fluorescence at dorsal- , and lateral-walls of the 

ventricle from (b). Scale bars, 25μm. d) Normalized EGFP-intensity for mouse background (bg.) and tumor cells within (V-

outgr.) and outside (rest) the ventricular growth from (b). Significance was assessed by permutation test. e) Top: large 

ventricular growth in a non-Wnt-reporter spatial transcriptomics ROI with transcripts associated to segmented nuclei to 

assign species and QAD-stage. Red line traces largest extent from LW to LV. Bottom: increasing Differentiation-stage cell 

fraction with distance from ventricle. ENB: early neuroblast; LNB: late neuroblast; STR: striatum; RMS: rostral migratory 

stream; OB: olfactory bulb; AC: astrocyte; CC: corpus callosum; CTX: cortex; SN: septal nuclei; LV: lateral ventricle; CP: 

choroid plexus; DW: dorsal-wall; SW: septal-wall; LW: lateral-wall. Figure panels and legend were adapted from (Kaya, 

2023). 

 

Oguzhan’s SRT experiments included a single Wnt-reporter ventricular growth which provided a 

means to study the organization of this unique tumor environment. I reconstructed QAD-lineage 

stages for cells in this sample (Fig.40b), noting the preference for Quiescence-stage cells to associate 

near the edges of the ventricle, while the ventricular growth itself was comprised of reporter-

negative Activation- and Differentiation-stage cells (Fig.40c-d). This reflects the in vitro–like 

characteristics of the growth, where the high proliferation rate is reminiscent of a developing brain 

(Sanes et al., 2019), highlighting the semantic discrepancies between stem cell nomenclature in 

glioblastomas (see section 2.7.3). As pertains to the adult view of glioblastoma hierarchies, the 

Differentiation-stage cells in the ventricular growth are plausibly related to migrating neuroblasts of 

the SVZ NSC lineage, representing recently-born tumor cells which will exit the growth and invade 

into nearby brain regions. This view is consistent with the migrating tumor cells infiltrating the 

healthy brain parenchyma until their environment instructs their differentiation through canonical 
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Wnt signals, which is likely the case for healthy neuroblasts which migrate to colonize the OB (Rella 

et al., 2021). A second ventricular growth from a non-reporter T6 PDX confirmed these observations 

by organizing along an Activation-Differentiation gradient in the absence of canonical Wnt signaling 

activity (Fig.40e). These results support the notion that Wnt signaling is dispensable for glioblastoma 

organization, with the in vitro-like characteristics of ventricular growths suggesting that aberrant 

Wnt signaling licenses sustained tumor activation and growth.  

 

2.8.4 Tight regulation of Wnt signaling at healthy stage 

transitions is lost in glioblastoma 

Finally, to illuminate the mechanisms of aberrant Wnt signaling in glioblastomas, I compared TCF/Lef 

readouts of canonical Wnt activity in single-cell transcriptomes of T6 PDX and PDA tumors. 

Leveraging the index sorted PDX transcriptomes (see section 2.8.4), I observed reporter-positive cells 

distributed throughout the tumor UMAP, contrary to the clear stage-stratified canonical Wnt 

signaling activity observed in the healthy SVZ NSC lineage (see section 2.4.1). This was confirmed 

through the proportion of reporter-positive cells among individual QAD-stages in PDX and PDA 

tumors (Fig.41a-b), which revealed that the tight regulation of canonical Wnt signaling at the 

Quiescence-Activation transition in vivo was lost in glioblastoma. A similar result was achieved in the 

SRT data, highlighting extensive reporter-activity in Quiescence-, Activation-, and Differentiation-

stage cells (Fig.41c) in contrast to their healthy counterparts (see Fig.19). Indeed, stratified by 

pseudolineage stage, a consistent enrichment of tumor transcripts in reporter-positive cells emerged 

across QAD-stages (Fig.41d) and brain regions (Fig.41e). Thus, T6 glioblastoma is characterized by 

aberrant Wnt signaling at the crucial Quiescence-Activation transition which plays a significant role 

in determining patient outcomes (see section 2.7.4).  
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Figure 41: T6 glioblastoma cells fail to regulate canonical Wnt signaling at the Quiescence-Activation transition. a) 

Schematic depiction of the TCF/Lef reporter constructs used to measure canonical Wnt activity in SVZ NSCs as well as in 

PDX and PDA tumors. Note that the SVZ reporter was H2B-EGFP. mCherry ubiquitously labels tumor cells. b) TCF/Lef 

reporter activity quantified in QAD-stage SVZ NSCs (n=5 replicates of SS3, see Section 2.4.2) and T6 PDX (n=4 replicates of 

SS3, see Section 2.6) and PDA (n=4 replicates of 10X, see Section 2.6.3) cells. Reporter activity was quantified by FACS and 

QAD-stage by scRNA-seq. Errorbars represent standard deviation in the normalized Wnt active cell-proportion. c) Selected 

Q (left), A (center), and D (right) cells in spatial transcriptomics with transcripts overlaid with DAPI and mCherry (top) or 

EGFP (bottom) immunofluorescence. Scale bars, 10μm. d) Mean fraction of EGFP+ spots for mouse and QAD-stage cells in 

n=6 spatial transcriptomics ROIs. e) Proportion of EGFP+ spots by QAD-stage for all regions with >20 cells among spatial 

ROIs. STR: striatum; CC: corpus callosum. Figure panels and legend were adapted from (Kaya, 2023). 

 

The mechanisms which enable glioblastoma cells transitioning the Quiescence-Activation stages to 

retain high levels of canonical Wnt signaling activity, when this same transition is so tightly regulated 

in the healthy lineage, remain to be explored. Closer study of the Wnt-low Activation-stage cells 

from ventricular growths could inform the functional differences which underlie this transition in the 

presence or absence of Wnt signals, however these cells are currently not identifiable from single-

cell transcriptomes alone. This could be remedied in future datasets through targeted surgical 

resection of glioblastoma cells from ventricular growths, or by labeling and sorting these populations 

from a PDX model. Together, these results reinforce the notion that Wnt signaling is tightly related 

to stem cell identity in vivo, while this regulation is lost in order to license the sustained stem cell 

properties which support the growth of brain tumors. Intriguingly, T6 cells exposed to varying 

environments responded with different levels of canonical Wnt signaling activity (see Fig.38) without 

affecting their pseudolineage, suggesting that while cells are capable of responding to external Wnt 

stimuli, they have lost the ability to translate such signals into functional cellular behaviors. Thus, 
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whether Wnt signaling remains a promising target for modulating tumor fate, ie. consistent with the 

induction of migratory phenotypes upon Wnt stimulation in vitro, depends on the prevalence of 

aberrant Wnt signaling dynamics across glioblastoma patients – an endeavor currently limited by the 

time-consuming process of generating Wnt-reporter cell lines. 

 

2.8.5 Excursion: Wnt reporter quantification in diverse patient 

PDXs 

Concurrent to the T6 PDXs, Oguzhan and his student Milica Bekavac generated three additional Wnt-

reporter lines from in-house patient lines: GBM10, T28, and NMA33. Experimental details from the 

generation and sequencing of these lines as well as associated metadata are available in (Bekavac, 

2022). Through imaging xenografted brains from these tumors, Milica identified three distinct 

organizational patterns characterized by infiltrative, cystic, or compact growth (Fig.42a). Each of 

these tumors in turn exhibited reporter-positive cells (Fig.42b, lower), and cells from each were 

sequenced by SS3. Upon their ptalign pseudotime alignment with the SVZ NSC lineage reference 

from section 2.2, I found that two of the three tumors (T28 and NMA33) failed to pass the ptalign 

permutation thresholds (Fig.42c). This may suggest that these samples constitute other brain-

invading entities such as metastases from an as-of-yet undiscovered primary (M. S. Lee & Sanoff, 

2020). These tumors were characterized by low and high levels of reporter activity, respectively, 

pointing to the dynamic role of Wnt signaling in different contexts. Despite their presumed origins 

outside of the brain, these tumors remain a useful cohort against which to contrast insights into 

glioblastoma organization and the disparate roles of Wnt signaling in health and disease. 
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Figure 42: Wnt reporter activity in the growth of three additional glioblastoma PDXs. a) Representative 

immunohistochemistry images of xenograft tumors from (Bekavac, 2022). Coronal sections were taken and stained for 

mCherry, EGFP, and DAPI. b) UMAP embedding of QAD-stage cells in GBM10 (top) and reporter-active cells sorted from 

FACS (lower two). Inset pie charts denote proportion of QAD-stage and reporter-positive cells, respectively. c) Traceback 

scores from 100 permuted ptalign pseudotimes, true QAD-gene traceback score is shown in red. d) Proportion of reporter-

positive cells among QAD-stage cells in (n=1) replicate of the GBM10 tumor. 

 

The GBM10 tumor, however, which had a presentation and morphology very similar to the T6 

tumor, was assigned a significant pseudolineage with clear separation of QAD-stage cells (Fig.42c). 

The GBM10 UMAP contained a particularly clear lineage trajectory through QAD stages, motivating 

its further study to resolve their ordering, for example through RNA velocity. As in T6, GBM10 

Quiescence-stage cells were frequently Wnt-active (Fig.42d), an observation consistent with SVZ 

NSCs (see Fig.21); however, unlike T6, the GBM10 pseudolineage exhibited a drastic reduction in 

reporter-activity at the Quiescence-Activation transition consistent with the healthy SVZ NSC 

lineage. This suggests that Wnt signaling dynamics may be intact in GBM10, however whether and 

how this tumor responds to Wnt stimulation was not assessed in this study. These results 

underscore the heterogeneous nature of glioblastomas, revealing the diverse paths to malignancy 

despite their similar features as determined by lineage constraint. 

 

In sum, glioblastomas tend to be insensitive to canonical Wnt signals, an observation contrary to the 

tight regulation of Wnt signals at the Quiescence-Activation transition in SVZ NSCs. This suggests 

that aberrant Wnt regulation could be one way glioblastomas license the extended stem cell identity 

which fuels their growth. Curiously, tumor cells did respond to stimulation by Wnt signals in vitro, 
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and there is a consistent association between canonical Wnt signals and cellular Quiescence. Indeed, 

tumor cells demonstrate upregulated reporter levels when in the viscinity of healthy neurons, 

though this did not affect their pseudolineage except the relatively minor effect of SFRP1-secreting 

inhibitory neurons on increased Quiescence in one of the T6 PDA replicates. Ventricular growths 

appear to confirm this association between Wnt and Quiescence, though from the opposite end: as 

these growths exhibit neither Wnt signals nor Quiescence-stage cells. The regulatory environment 

and cellular processes which govern the growth and migration within this exceptional organ remains 

to be elucidated. Taken together, contrasting the central role of Wnt signals in regulating stem cell 

identity in vivo, and the loss of associated regulation in the T6 glioblastoma, motivates the targeted 

modulation of Wnt signaling to direct tumor fates, consistent with the external determinants of 

tumor Wnt signals described above. 
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2.9 Directed modulation of glioblastoma 

pseudolineages by intervention in the Wnt 

signaling pathway 

Viewing tumors as cellular hierarchies recapitulating the development of an organ within an organ 

provides important context for understanding the organization and dynamics that drive tumor 

growth and regeneration. In the present case, my pseudolineage-based study of glioblastoma 

hierarchies through the lens of healthy SVZ stem cells revealed the essential role of the Quiescence-

Activation transition in fueling tumor lineages and affecting patient outcomes (see section 2.7.4). 

Building from the healthy SVZ lineage context where Wnt signaling is tightly regulated at this 

transition (see section 2.4), I found its regulation to be disrupted in glioblastomas (see section 2.8.4). 

Despite evidence suggesting that Wnt is dispensable for stage transitions in tumors (see Fig.38), 

lineage constraint maintains that tumors will be able to respond to specific Wnt stimuli regardless if 

parts of the pathway have been compromised. Thus, to disrupt tumor organization and progression, 

Oguzhan Kaya and I leveraged our unique perspective of tumor dynamics to achieve targeted 

modulation tumor pseudolineages by intervening in the Wnt signaling pathway. This approach 

highlights the advantages of understanding tumor organization through the lens of healthy 

transitions, enabling the systematic identification of tumor vulnerabilities and the design of 

treatments targeting them. 

 

2.9.1 Excursion: Consistent tumor pseudolineages despite 

systemic Wnt inhibition by LGK974 

Employing a genetic reporter of canonical Wnt signaling activity in various glioblastoma models (see 

section 2.8), Oguzhan and I repeatedly observed an association between Quiescence-stage tumor 

cells and increased canonical Wnt signaling activity. These cells play an essential role in fueling 

tumor growth and frequently evade targeting by conventional therapies, leading to inevitable 

recurrence (Chen et al., 2012; Xie et al., 2022). Consequently, targeting this population, for example 

by inducing their activation and making them amenable to eradication through conventional 

alkylating agents like temozolomide (TMZ) (Stupp et al., 2005), could lead to more effective and 

lasting treatments. Particularly the T6 tumor exhibited dysregulated signaling by maintaining high 

levels of canonical Wnt activity at the Quiescence exit, in contrast to healthy cells (see section 2.8.4). 
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Thus, Oguzhan and I hypothesized that by inducing a reduction in Wnt signaling activity analogous to 

the strong downregulation observed in healthy cells, these cells might respond by transitioning to 

the Activation-stage. For the T6 tumor, this approach held the added benefit of phenocopying the 

lack of Wnt activity observed in in vitro cultured cells (see Fig.37) and ventricular growths (see 

Fig.40), both of which were composed of Activation-stage cells. To this end, Oguzhan orally 

administered the PORCN inhibitor LGK974, which inactivates Wnt ligands by inhibiting their 

palmitoylation (J. Liu et al., 2013), in T6 PDX mice (Fig.43a). This was followed by sorting and 

sequencing T6 as described previously (see section 2.6). 

 

 

Figure 43: Canonical Wnt inhibition by LGK974 fails to modulate tumor pseudolineages. a) Schematic depiction of the T6 

Wnt reporter PDX experiment with two treatment groups: control and inhibitor. b) Proportion of QAD-stage cells 

measured in three replicates of LGK974-treated and one replicate of control PDXs. Error bars denote standard deviation. c) 

Proportion of EGFP+ cells measured in FACS gating by Oguzhan for a control (top) and inhibitor (bottom) treated sample. 

d) Proportion of EGFP+ cells in sequenced PDXs from (b). These plates may have been gated on GFP activity, invalidating 

this panel. e) UMAP embedding of integrated PDXs from (b), colored by QAD-stage. Cycling cells are depicted in gray. f) Cell 

frequencies by condition measured in a grid mesh overlaid on the UMAP from (e), with the log ratio of control or inhibitor-

treated cells depicted. g) Selected GO-terms from GSEA of genes ranked by enrichment in the inhibitor-specific cluster 

from (f). h) Expression levels of two interferon-related marker genes in the UMAP embedding from (e). 

 

As with previous PDXs, Oguzhan sequenced one plate each of cells from three replicates of inhibitor-

treated and one replicate of Wnt-reporter tumors. These tumor’s pseudolineages were replicated 

between treatments, with the largest difference in Differentiation-stage cells (Fig.43b). While 

Oguzhan observed a reduction in reporter activity in treated animals in FACS (Fig.43c), 

reconstructing FACS measurements in the sequenced cells by index sorting revealed these to have 

consistent levels of reporter activity between conditions (Fig.43d). Thus the reduced frequency of 

Differentiation-stage cells in treated PDXs is not explained by varying levels of Wnt activation. 



97 
 

Integrating cells between replicates revealed the existence of a treatment-specific cluster (Fig.43e-f) 

which indicated that Wnt inhibition induced an interferon-dependent response in tumor cells 

(Fig.43g-h). These results underline my previous conclusions regarding the insensitivity of T6 cells to 

varying levels of Wnt activity, as these will consistently produce identical pseudolineages as seen 

here. While a treatment-specific cluster did emerge, the cells within arranged by QAD-stage and did 

not affect the overall tumor pseudolineage. This could be due to the limited penetrance of the 

LGK974 inhibitor into brain tissues when given orally, leading only to transient or incomplete Wnt 

inhibition at the target site. Overall, these results highlight the inefficiencies associated with broad 

spectrum approach, while the targeted modulation of tumor pseudolineages requires a more precise 

understanding of the state of Wnt signaling in human glioblastomas. 

 

2.9.2 Identification of dysregulated Wnt signaling components 

in ptalign pseudotimes 

Transitioning from macro-level investigations of Wnt reporter activity to a detailed view of individual 

pathway elements, I turned to the systematic comparison of expression dynamics in ptalign 

pseudotimes of my 55-glioblastoma cohort (see section 2.7.1) to identify recurrently dysregulated 

Wnt signaling components. This approach leverages the fact that ptalign pseudotimes, being based 

in the reference lineage pseudotime, reproduce the same underlying dynamics for each aligned 

tumor sample (see section 2.1.3). Consequently, for a given pseudotime, eg. 0.1, reflecting a 

Quiescence-stage cell, different tumor and healthy cells bearing the same pseudotime will exhibit 

similar functional properties and expression. This provides a means to conduct controlled 

comparisons of expression dynamics between individual tumors (tumor-tumor) and to the healthy 

reference (tumor-healthy), which is a unique advantage of ptalign. Here, I employ this approach to 

single out recurrently dysregulated Wnt pathway components by comparing the expression profiles 

of 37 Wnt-pathway genes from the SVZ NSC lineage to the 55-glioblastoma cohort. 
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Figure 44: Differential pseudotime expression dynamics between glioblastomas and SVZ NSCs reveals recurrent 

dysregulation of secreted Wnt antagonists. a) Wnt-signaling genes expressed in SVZ NSCs clustered by their scaled 

expression along pseudotime. b) Splines of scaled FZD5 expression in glioblastoma pseudolineages, with SVZ NSC 

reference expression dynamics in blue. c) MSE and correlation scores for pairs of gene (n=37) and tumor (n=51) compared 

to the SVZ NSC reference expression dynamics for that gene. The top and bottom third of gene pairs, colored in red, was 

used to determine the Wnt dynamics signaling consistency score in (d). e) Boxplot depicting the correlation coefficient for 

Wnt-genes in Quiescence- and Differentiation-biased tumors, respectively. f) Splines of scaled DRAXIN and SFRP1 (h) 

expression in glioblastoma pseudolineages, with SVZ NSC expression dynamics in blue. g). Mean tumor deviation from SVZ 

NSC reference for SFRP1 and DRAXIN expression. Errorbars represent standard deviation. i). Log-normalized expression 

of DRAXIN and SFRP1 (j) in the SVZ NSC lineage UMAP, with cycling cells in gray. k) Kaplan Meier curves depicting overall 

survival for DRAXIN and SFRP1 (l) –low and –high expressing tumors from TCGA GBM and LGG cohorts. Kaplan Meier 

significance was assessed by log-rank test but I noted the wrong p-value. Inset pie charts depict the proportion of tumors 

by glioma grade for each of the high- and low-curves. 

 

Wnt signaling is tightly regulated at SVZ NSC lineage transitions in vivo (see section 2.4.1). 

Consistently, individual Wnt signaling components also exhibit precise regulation, as revealed by the 

cascading landscape of expression (Fig.44a) in the pseudotime-dependent clustering of 37 Wnt-

related genes from the SVZ NSC lineage. I used spline regression to capture pseudotime expression 

dynamics in healthy and tumor cells, demonstrated here with FZD5 (Fig.44b). Then, I fixed the 
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spline-smoothed healthy dynamics and quantified their divergence across the 55 glioblastoma 

samples. Using the correlation distance to quantify difference in direction and the mean squared 

error (MSE) to quantify difference in scale, I compared the frequency of a given gene in the top and 

bottom third of all pairwise divergence estimates (Fig.44c) to compile a pan-tumor Wnt-gene 

dynamics consistency score (Fig.44d). From this analysis, I noticed that Wnt-gene expression 

dynamics in Differentiation-biased tumors were generally better correlated to the healthy reference 

than those of Quiescence-biased tumors (Fig.44e). As every gene disrupted in a truncated (QA) 

pseudolineage is also present in a complete (QAD) pseudolineage, this is unlikely to be due to a 

biased divergence metric. Instead, this result suggests that Wnt signaling is more consistently 

disrupted in Quiescence-biased tumors, perhaps due to the loss of its tight regulation at the SVZ NSC 

Quiescence-Activation transition (see Fig.19). Consistently, the secreted Wnt antagonists SFRP1 and 

NOTUM, which both peak at this transition, exhibited the worst-conserved expression dynamics; 

while DRAXIN, another Wnt antagonist which peaks at the Differentiation-stage, scored among the 

best (Fig.44f-j). These results highlight the selective dysregulation of Wnt antagonists at the 

Quiescence-Activation transition in glioblastomas and identify it as a salient target for therapeutic 

intervention. Supporting this distinction, both SFRP1 and DRAXIN exhibited highly grade-specific 

expression trends, with SFRP1-expression present in LGGs and lost in glioblastomas, while DRAXIN 

was absent in LGGs and present in glioblastomas (Fig.44k-l).  

This unique approach, identifying recurrently dysregulated genes in a cohort of tumors by comparing 

their ptalign expression dynamics to the healthy reference, emerges as a powerful means to identify 

and target specific tumor vulnerabilities. Though currently implemented only in the ad-hoc method 

described above, I will generalize this approach in future work to arrive at statistically sound 

quantitative estimates of expression divergence. Extended to tumor-tumor comparisons this 

approach can unveil differential dynamics which highlight functional properties of the underlying 

tumors, eg. revealing adaptation to hypoxic conditions or drivers of complete vs. truncated tumor 

pseudolineages. Particularly comparing expression dynamics at stage transitions can identify key 

modulators of tumor cell fate, as evidenced by the following experiments of SFRP1-overexpression.  
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2.9.3 Forced expression of secreted Wnt antagonists stalls 

malignant lineage progression 

The Secreted frizzled related protein 1 (SFRP1), which competes to bind and sequester free Wnt 

ligands in the extracellular space, acts as an inhibitor of Wnt signal transmission (Lopez-Rios et al., 

2008). This has several important advantages which make it an attractive candidate for the targeted 

modulation of tumor pseudolineages. Most prominent is the contrast between the relatively high 

expression and precise peak of SFRP1 levels in the Quiescence-Activation transition of healthy SVZ 

NSCs, compared to its very low or entirely absent expression in the 55-glioblastoma cohort (see 

Fig.44h). This is supported by numerous studies across multiple cancer entities (Caldwell et al., 2004; 

Dahl et al., 2007; Joesting et al., 2005; Qu et al., 2013; Shi et al., 2007; Veeck et al., 2006), suggesting 

that loss of SFRP1 – particularly through epigenetic silencing (Baharudin et al., 2020) – is a potent 

factor in the malignant transformation of tumor cells (Yu et al., 2019). Moreover, SFRP1 expression 

levels are closely linked to overall survival in the TCGA cohort (Fig.44l), exhibiting a negative 

correlation with tumor grade. This is consistent with the action of SFRP1 at the crucial Quiescence-

Activation transition which determines patient prognosis (see section 2.7.4). Indeed, inhibition of 

SFRP1 in human (Donega et al., 2022) or neutralization of its nearest paralog SFRP5 in mouse 

(Kalamakis et al., 2019) brains resulted in an Activation-stage shift in affected cells. SFRP1 is also 

related to stem cell identity by its cell type specific demethylation in SVZ NSCs compared nearby 

parenchymal astrocytes (L. P. M. Kremer et al., 2022), suggesting that losing SFRP1 plays a role in 

licensing sustained stem cell identity in tumor cells. This is consistent with my interpretation of the 

dysregulated Wnt-signaling at the Quiescence-Activation transition previously (see section 2.8.4), 

supporting its use as a targeted intervention over eg. LGK974, as SFRP1 acts at a precise transition 

which is regulated by Wnt signaling. Previous data (see section 2.8.2) relating the increased 

proportion of Quiescence-stage cells associated with tumor cells in proximity with SFRP1-

expressing inhibitory neurons moreover suggests that SFRP1 has the capacity to influence tumor 

pseudolineages. For these reasons, Oguzhan and I decided to re-introduce SFRP1 expression at the 

Quiescence-Activation transition by inducing its expression in a Wnt-dependent manner in T6 

glioblastoma cells. 
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2.9.4 SFRP1 overexpression directs tumors to a quiescent, 

astrocyte-like phenotype 

In Wnt-reporter experiments on SVZ NSCs (see section 2.4) and T6 glioblastomas (see section 2.8), 

Quiescence-stage cells consistently exhibited high levels of reporter activity. Consequently, Oguzhan 

and his student Milica generated a TCF/Lef::SFRP1-P2A-EGFP T6 cell line as outlined in 

(Bekavac, 2022; Kaya, 2023) (Fig.45a). Modifying T6 cells in this way did not affect their propagation, 

as they do not exhibit reporter activity in vitro (see section 2.8.1). Oguzhan, with his students Nina 

Stinchcombe and Vuslat Akcay (Kaya, 2023), validated the sensitivity of this construct by Wnt-

stimulation in an ELIZA assay (Fig.45b), demonstrating a ~20-fold increase in SFRP1 levels upon 

Wnt3a treatment. In a PDX model, Wnt-reporter mice began to reach the human endpoint around 

five months post injection (mpi), while SFRP1-OE mice remained symptom free. This continued until 

six mpi, when Oguzhan terminated the experiment solely to maintain comparable groups. By then, 

SFRP1-OE mice had survived significantly longer than their Wnt-reporter counterparts (Fig.45c). To 

investigate the determinants of this improved survival, Oguzhan sorted and sequenced three 

replicates of T6 SFRP1-OE PDX tumors by SS3 (Kaya, 2023). 

Cells from SFRP1-OE tumors were stalled in a dormant astrocyte-like (astroQ) stage. Comparing 

SFRP1-OE to Wnt-reporter tumors revealed a strong shift to the Quiescence stage (Fig.45d), with a 

significant enrichment of astroQ cells in SFRP1-OE tumors (Fig.45e). Consequently, it appeared that 

SFRP1-overexpression had acted on the Quiescence-Activation transition to promote cells’ entry 

into the Quiescence-stage, explaining the improved survival outcomes of the SFRP1-OE mice. I 

observed an increased fraction of cycling cells in the SFRP1-OE tumors, though this could be 

attributed to the slower, smaller SFRP1-OE tumors having a similar number of cycling cells as the 

Wnt-reporter tumors. Comparing between genotypes with DEseq2 highlighted a large number of 

differentially expressed genes which persisted into stage-matched comparisons (not shown). GSEA 

over these genes revealed that induction of SFRP1-induced astrocytic phenotypes was associated 

with IFN-g and IL10 production, as well as other astrocyte-related processes. Consistently, 

downregulated terms included Activation-related processes such as spindle assembly and translation 

(Fig.45f). These results underscore the utility of a perspective informed by lineage constraint, where 

despite T6 tumors exhibiting broad insensitivity to external canonical Wnt signals (see section 2.8.2), 

evidently enough of the Wnt transduction machinery remains present to receive and implement the 

molecular functions of SFRP1. Together, these results demonstrate the fate-modulating potential of 

a single overexpressed protein, shifting the presentation and organization of an entire tumor and 

stalling its constituent cells in the Quiescence-stage. 
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Figure 45: SFRP1 overexpression induces the generation of astrocytic glioblastoma cells. a) Schematic depiction of 

SFRP1overexpressing (OE) construct. mCherry ubiquitously labels tumor cells. b) SFRP1 concentration by ELISA in 

supernatant of cells stimulated with/without WNT3A. Errorbars represent standard deviation in n=3 replicates. c) Kaplan-

Meier curve of mice reaching end point post injection for n=6 mice in control and SFRP1 cohorts. Significance was 

assessed by log-rank test. (*) denotes termination of experiment. d) Proportion of QAD-stage cells identified by ptalign in 

SFRP1-OE cells (n=3 replicates) and control (n=4 replicates). Errorbars represent standard deviation. e) Cell densities along 

ptalign pseudotime by Gaussian KDE. SVZ QAD-stage boundaries are highlighted. f) Selected GSEA enrichments from genes 

ranked by DEseq2 Log fold-change between pseudobulked SFRP1-OE and control. h) Representative immunofluorescence 

images of T6 cells in a control and SFRP1-OE (i) PDX cortex. Scale bars 100μm, in insets 25μm. j) Entire spatial 

transcriptomics ROI depicting similar regions in control and SFRP1-OE (k) PDX brains. Transcripts were associated to 

segmented nuclei to assign species and QAD-stage. Piecharts indicate sum of QAD-stage cells by brain region across ROIs. 

CTX: cortex; CC: corpus callosum; LV: lateral ventricle; V-outgr.: ventricular outgrowth; SN: septal nuclei; STR: striatum. 

Figure panels and legend were adapted from (Foerster et al., 2023). 
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The transcriptomic shift of SFRP1-OE cells was accompanied by simultaneous changes in 

morphological and spatial organization of the tumor. Oguzhan conducted immunohistochemistry 

staining of tumor section to reveal highly penetrant and significantly changed morphologies of 

SFRP1-OE cells, from Wnt-reporter neuron-like cells with isolated processes to large, extensively 

branched, astrocyte-like cells with extensive connections to its neighbors (Fig.45h-i). These results 

were complemented by an additional spatially resolved transcriptomics experiment carried out on 

SFRP1-OE tumors by Oguzhan and processed by Valentin Wüst as previously described (see section 

2.8.2). This revealed Quiescence-stage cells extending to every brain region in SFRP1-OE tumors, 

with the exception of ventricular growths (Fig.45j-k). Taken together, these results present SFRP1 

as a potent modulator of tumor pseudolineages, promoting a sustained and pervasive 

transformation of tumor cells into the Quiescence stage by targeting an essential transition in the 

glioblastoma lineage hierarchy. The therapeutic benefits of such a treatment are evident and 

complement my previous result linking increased Quiescence to positive patient outcomes in 

glioblastoma (see section 2.7.4). However, before speculating about the therapeutic benefits of 

SFRP1, there are two important issues to resolve: whether other tumors respond to SFRP1-OE in a 

consistent manner, and to what extent the secreted nature of SFRP1 affects healthy cells in the 

tumor periphery.  

 

2.9.5 SFRP1 overexpression does not affect healthy cells in an 

allograft model 

Patient-derived allograft models of T6 cells injected into human cortical organoids (see section 2.6.3) 

had proved an effective means to study the effect of tumor environment on its organization. As in 

PDX models, T6 PDA tumors faithfully recapitulated Wnt signaling dynamics which were not present 

under in vitro conditions (see section 2.8.2). Thus, to assess the impact of SFRP1-overexpressing 

tumor cells on the healthy environment, Oguzhan generated SFRP1-OE T6 PDA tumors (Fig.46a) and 

sequenced four replicates of healthy and malignant cell populations two weeks post injection as 

outlined previously (see section 2.5.1).  
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Figure 46: SFRP1 overexpression does not affect healthy cell transcription. a) Schematic representation of T6 PDA SFRP1-

OE experiment, injecting SFRP1-OE cells into human cortical organoids and harvesting 2wpi. b) UMAP embedding of n=8 

replicates of SFRP1-OE T6 PDA cells and healthy organoid cells. Tumor cells as well as major cell types comprising neurons, 

astrocytes, and radial glia (RGs) are indicated. Unknown or uncharacterized cell types are colored gray. c) Proportion of 

organoid cells by cell type for each PDA replicate, with SFRP1 presence indicated. Dots are colored according to the cell 

type colors in (b). d) Proportion of QAD-stage cells from ptalign in n=4 replicates each of control and SFRP1-OE T6 PDA 

cells. Error bars denote standard deviation. e) Mean log-normalized expression for n=4 replicates each of control and 

SFRP1-OE PDA neurons (top), astrocytes (center) and radial glia (bottom), with Pearson correlation between genotypes. f) 

Proportion of cycling cells observed in SFRP1-OE and control replicates each. 

 

UMAP embedding of SFRP1-OE PDA cells revealed the presence of a malignant cell cluster as well as 

multiple cell type clusters (Fig.46b). Healthy Neuronal, Astrocytic, and Radial Glia-like organoid cells 

were detected at similar frequencies between conditions (Fig.46c). As in the T6 PDXs, SFRP1-OE PDA 

tumor pseudolineages were shifted toward the Quiescence-stage (Fig.46d). Though this 

transformation was not as prominent as in the T6 PDXs (see Fig.45), it is nevertheless encouraging to 

see increased numbers of Quiescence-stage cells only two weeks post-treatment. The fact that T6 

PDA pseudolineages per default contained lower numbers of Quiescence-stage cells compared to 

PDXs (see section 2.6.3) further underscores the potency of the SFRP1-OE treatment. However, 

despite its clear effect on tumor cells, I observed no expression differences in healthy cells from 

Wnt-reporter or SFRP1-OE conditions (Fig.46e). This suggests that SFRP1 is only able to execute its 

molecular function in the presence of Wnt signals unique to stem- and stem-like tumor cells. 

Interestingly, while SFRP1-OE PDXs exhibited an increased proportion of cycling cells over their Wnt-

reporter counterparts, I failed to observe this difference in PDA tumors (Fig.46f). As human cortical 

organoids only rarely provide the conditions for tumors to generate ventricular growths, this 
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suggests that the increased cycling cell fraction in SFRP1-OE PDXs could be due to cells from the 

highly proliferative conditions of the ventricular growths.  

 

2.9.6 Ventricular growths enable escape from Wnt-based 

interventions 

Previously documented in section 2.8.3, ventricular growths represent a unique environment in 

glioblastomas: void of Wnt-inducing signals and with the opportunity for 3D expansion inhibited only 

by the fluid pressure of the CSF. These features revealed a significant weakness of Wnt-based 

interventions such as the Wnt-dependent SFRP1-overexpression described above (see section 2.9.3). 

 

 

Figure 47: Spatial transcriptomic assessment of SFRP1-overexpressing PDX brains. a) Zoomed SFRP1-OE spatial 

transcriptomics ROI with QAD-stage cells in two ventricular outgrowths. Transcripts were associated to segmented nuclei 

to assign species and QAD-stage. Scale bar, 10μm. b) Neighborhood enrichment by permutation for segmented cells in 

n=17 Wnt-reporter and n=6 SFRP1-OE spatial transcriptomics ROIs. Cell type enrichments are reported for QAD-stage cells 

with other cell types (rows), with enrichment direction by shape and strength by size while color relates the enrichment 

margin between the largest and second-largest enrichments. 3V: third ventricle; VHC: ventral hippocampal commissure; 

PVT: periventricular nuclei of the thalamus. Figure panels and legend were adapted from (Foerster et al., 2023). 

 

Similar to their counterparts in Wnt-reporter PDXs (see section 2.8.3), ventricular growths in SFRP1-

OE brains organized along distinct pseudolineages even in the absence of canonical Wnt signals 

(Fig.47a). This is consistent with the stable generation of T6 PDA pseudolineages despite varying 

levels of Wnt signaling activity (see section 2.8.2), supporting the notion that tumor organization is 

driven by the population dynamics of tumor cells and depends less on the effects of healthy brain 
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cells in the local microenvironment. This was confirmed through a neighborhood enrichment 

statistic computed by Valentin which indicated there was no significant preference of QAD-stage 

tumor cells to the neighborhoods of various mouse cell types across different brain regions (Fig.47b).  

 

2.9.7 NOTUM overexpression phenocopies the effects of 

SFRP1 

Parallel to the SFRP1-OE experiments outlined above, Oguzhan and I investigated the role of NOTUM 

in modulating tumor pseudolineages due to its recurrent dysregulation in the 55-glioblastoma 

cohort (Fig.48a). Similar to SFRP1, NOTUM is a secreted Wnt antagonist which deacylates free Wnt 

ligands and inhibits their ability to bind their cognate receptor (Kakugawa et al., 2015). Extending 

these functional similarities, like SFRP1, NOTUM has been described as negative regulator of cell 

proliferation (Mizrak et al., 2020), consistent with its expression at the Quiescence-Activation 

transition in SVZ NSCs in vivo (not shown). Thus, Oguzhan generated five and sequenced a single 

replicate of T6 TCF/Lef::NOTUM-P2A-EGFP, so-called NOTUM-OE, tumor cells (Fig.48b).  

 

 

Figure 48: NOTUM overexpression phenocopies the effects of SFRP1. a) Splines of scaled NOTUM expression in 

glioblastoma pseudolineages, with SVZ NSC reference expression dynamics in blue. b) Schematic representation of 

NOTUM-OE PDX construct. c) Kaplan-Meier curve of mice reaching end point post injection for n=6 mice in control and n=5 

in the NOTUM-OE cohort. Significance was assessed by log-rank test. (*) denotes termination of experiment. d) Proportion 

of QAD-stage cells identified by ptalign in NOTUM-OE cells (n=1 replicate) and control (n=4 replicates). Errorbars represent 

standard deviation. e) Mean NOTUM-OE log fold-change against SFRP1-OE DEseq2 log fold-change. Black line indicates 

best fit. Pearson correlation is indicated. 

 



107 
 

NOTUM overexpressing tumors phenocopied the effects of SFRP1 overexpression outlined above. 

Perhaps unsurprisingly, NOTUM-OE mice exhibited extended overall survival compared to Wnt-

reporter PDXs (Fig.48c). This increase in survival did not endure as long as in SFRP1-OE mice, which 

could be due to the leaky expression of the NOTUM overexpression construct (not shown). Assigning 

a NOTUM-OE pseudolineage revealed a substantial increase in Quiescence-stage cells (Fig.48d), 

reflecting their transition to astroQ stages as in SFRP1-OE. Here, NOTUM-OE diverged from SFRP1-

OE tumors, with Differentiation-stage cells entirely absent from the single NOTUM-OE 

pseudolineage. Consistently, comparing differentially expressed genes in SFRP1-OE to those in 

NOTUM-OE PDX revealed that transcriptional changes to Wnt-reporter PDXs were largely conserved 

(Pearson=0.76) (Fig.48e), suggesting that overlapping downstream effectors direct the generation of 

astrocytic tumor cells. Overall, the results from SFRP1- and NOTUM-OE demonstrate that the forced 

expression of Wnt antagonists elucidates strong and lasting disruption of tumor pseudolineages by 

stalling their progression out of the Quiescence stage. This result is particularly striking given the 

insensitivity of T6 pseudolineages to canonical Wnt signals (see section 2.8.2), highlighting that 

despite degenerating parts of the pathway, T6 cells remain sensitive to its targeted modulation by 

individual effectors. To better understand these mechanisms, Oguzhan and I next turned to whole-

genome bisulfite sequencing to assess SFRP1-OE-induced methylation changes. 

 

2.9.8 Astrocytic mouse DMRs are demethylated in SFRP1 

overexpressing glioblastoma cells 

Previously, comparing bulk tumor methylomes from TCGA revealed that the different QAD-stage 

proportions of various tumor pseudolineages were measurable from the methylation status of a 

subset of CpGs (see section 2.7.6). This result was motivated by a parallel study which revealed that 

cell types of the adult SVZ, most prominently astrocytes and NSCs, exhibited divergent methylation 

profiles (L. P. M. Kremer et al., 2022) (see section 1.1.3). As SFRP1-OE resulted in a strong shift to 

Quiescence-biased tumor pseudolineages, Oguzhan and I set out to investigate the methylation 

changes underlying this transition. To this end, three technical replicates of control and SFRP1-OE 

PDX tumors were subjected whole-genome bisulfite sequencing (WGBS) by Oguzhan and his student 

Vuslat Akcay (Akçay, 2023). By mapping these libraries to the human and mouse reference genomes 

using the Bismark pipeline (Krueger & Andrews, 2011), I isolated human-specific reads which I used 

to estimate mean CpG methylation. However, conventional DMR-discovery methods failed to 

identify relevant DMRs in this dataset (not shown), likely due to its sparsity and associated low 
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statistical power. These challenges led me to instead compare T6 cells by their methylation status at 

the published SVZ cell type-resolved DMRs from (L. P. M. Kremer et al., 2022), which I transferred to 

the human genome using liftOver7. 

 

 

Figure 49: SFRP1-OE induces demethylation at specific SVZ astrocyte DMRs. a) Left: scatterplot of mean methylation of 

SVZ cell type DMRs from (L. P. M. Kremer et al., 2022) in SFRP1-OE and control WGBS (n=3 technical replicates each). 

Differentially methylated regions are highlighted by genotype. Right: SVZ cell type DMRs in a Gaussian KDE over the vertical 

axis of the scatterplot. b) Selected SVZ DMR overlapping an NFIB-promotor in SFRP1-OE and control. Points correspond to 

CpG mean methylation between replicates. Lines comprise a 10-CpG methylation moving average. c) Proportion of NFIB+ 

(left) and GFAP+ (right) Quiescence-stage cells among PDXs. Significance was assessed by t-test. d) Mean methylation at 

SFRP1-overlapping DMRs for n=3 technical replicates of control and SFRP1-OE WGBS. e) Number of CpGs detected in 

WGBS for DMRs grouped into those covered by 1, 2-3, or 4+ probes in Illumina EPIC 850k methylation microarray. AC: 

astrocyte; OD: oligodendrocyte. Figure panels and legend were adapted from (Foerster et al., 2023). 

 

SFRP1-OE tumors demonstrated preferential demethylation of astrocytic SVZ DMRs, lending 

additional support to Quiescence-stage shift induced by SFRP1 overexpression. The SVZ lineage 

DMRs from (L. P. M. Kremer et al., 2022) are delineated by cell type and comprise astrocyte-, NSC, 

and oligodendrocyte-specific DMRs, which I had to map to syntenic positions in the human genome 

to enable their assessment in glioblastoma samples. In comparing DMR methylation differences 

between SFRP1-OE and Wnt-reporter WGBS samples, I identified those loci with a methylation 

distance exceeding one standard deviation as hyper- or hypomethylated depending on their 

direction. This revealed a large number of differentially methylated DMRs in SFRP1-OE (Fig.49a, left), 

among which astrocytic SVZ DMRs were enriched among those hypomethylated upon SFRP1-OE 

(Fig.9a, right). Demethylation of these regions classically associates with increased expression of 

nearby genes, providing a clear link to the Quiescence-inducing effects of SFRP1. Consistently, I 

observed that one of the most divergently methylated DMRs overlapped an NFIB promotor 

                                                           
7
 https://genome.ucsc.edu/cgi-bin/hgLiftOver 

https://genome.ucsc.edu/cgi-bin/hgLiftOver
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(Fig.49b). NFIB is the primary transcriptional activator of the astrocyte marker GFAP (Doetsch et 

al., 1999) and is one of the factors used in reprogramming iPSCs into astrocytes (Steele-Perkins et al., 

2005). Expectedly, demethylation of this NFIB promotor was accompanied by an increase in NFIB+ 

and GFAP+ cells in SFRP1-OE tumors (Fig.49c). These results highlight the complete transformation 

of tumor cells towards an astrocytic differentiation status, rewiring transcriptional state and 

remodeling spatial interactions through altered morphology, all while cementing these changes by 

directed demethylation at specific functionally relevant loci. In this vein, I noticed that SFRP1-OE 

induced methylation of the endogenous SFRP1 locus (Fig.49d), suggesting that expression of the 

protein is typically regulated through a feedback loop which was disrupted through the sustained 

transcription of SFRP1 from the synthetic locus. Further study of the effectors of this loop may 

provide valuable insights into the mechanisms of SFRP1 leading to the induction of astrocytic traits 

in tumor cells. Of note, the methylation differences documented here were only visible in WGBS, 

and few SVZ DMRs are measured by more than a handful of sites on the conventional methylation 

array used eg. in TCGA glioblastomas (see section 2.7.6) (Fig.49e). Taken together, the litany of 

cellular changes demonstrated here through the overexpression of a single protein are striking; 

however, lasting elimination of glioblastoma cells will ultimately require their Activation, motivating 

a means to release SFRP1-induced Quiescence. 

 

2.9.9 Treating glioblastoma cells with an SFRP1 inhibitor 

induces their activation 

While increased Quiescence among glioblastoma cells is desirable to achieve increased patient 

survival (see section 2.7.4), eradication of the disease requires their effective elimination. 

Quiescence-stage cells are classically resistant to conventional glioblastoma therapies (Chen et al., 

2012; Xie et al., 2022), which instead target cycling and Activation-stage cells through alkylating 

agents like temozolomide (TMZ). Given these circumstances, a combined therapy employing SFRP1 

overexpression to stall cells in the Quiescence stage, and their coordinated release by SFRP1-

antagonizing signals – thus providing an increased surface for the action of TMZ – presents a 

promising avenue to simultaneously improve patient survival and decrease the remission rate of 

glioblastomas. Short of identifying an Activation-promoting molecule expressed at the Quiescence-

Activation transition in glioblastoma pseudolineages, I endeavored to release cells from the effects 

of SFRP1 by means of the small molecule inhibitor WAY-316606 (WAY) (Bodine et al., 2009). To this 
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end, I teamed up with Jocelyn Tang who generated human cortical organoids and measured the 

response of organoid-injected T6 SFRP1-OE cells to treatment with the WAY inhibitor (Fig.50a).  

 

 

Figure 50: SFRP1 inhibition induces proliferation in an organoid model. a) Schematic representation of the SFRP1 

inhibition experiment, with T6 SFRP1-OE cells injected in organoids in a PDA model as described previously. 2wpi, 

treatment and control cells were subjected to SFRP1-inhibition by WAY-316606. b) Representative immunohistochemistry 

images of proliferating (KI67+) tumor cells (mCherry+) in SFRP1-OE and SFRP1-OE inhibition conditions. c) Estimated 

KI67+mCherry+ cells per mm
3
 from segmented cells in three technical replicates of two treated and untreated 

organoids each. A linear model was used to assess the difference in treatment groups while accounting for the 

pseudoreplication introduced by the technical replicates, achieving a significant difference between SFRP1-inhibition and 

untreated groups. 

 

To measure the response of SFRP1-OE cells to inhibitor treatment, Jocelyn stained fixed PDA 

organoids for MKI67 as a proxy for cycling activity (Fig.50b). As T6 cells endogenously express 

mCherry (see section 2.8.1), Jan Brunken was able to segment tumor cells using Cellpose (Stringer 

et al., 2021) in these images, extrapolating the ratio of MKI67+/mCherry+ double-positive cells 

among tumor cells to estimate a density metric representing cycling tumor cells in both WAY 

inhibitor and control samples. Jocelyn generated three technical replicates each from two PDA 

organoids in treatment and control conditions, and I compared the cycling density metric between 

these conditions by testing for a significant slope in a linear model accounting for variation between 

technical replicates. This model detected a significant effect of the treatment on the density of 

cycling cells (Fig.50c), highlighting that inhibition of SFRP1 induced the simultaneous release of 

tumor cells from the Quiescence-stage. While this experiment confirms the lineage potential of 

astroQ tumor cells, consolidating their role at the base of the tumor hierarchy, their precise lineage 

potential remains to be assessed. Overall, these results pave the way for the future development of 

potent tumor therapies employing the pervasive transformation of tumor cells into the Quiescence 
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stage in combination with their induced shift towards the Activation stage, priming their elimination 

by conventional agents such as TMZ. 

 

In sum, contrary to the insensitivity of T6 cells to broad changes in canonical Wnt signals, for 

example the PDA replicates from section 2.8.2 and the LGK974 experiment above, the SFRP1- and 

NOTUM-overexpression experiments demonstrate that these cells respond in turn to targeted 

modulation of specific parts of the canonical Wnt cascade. This has encouraging consequences for 

therapeutic interventions based on these proteins, as beyond targeting a broad cascade to which the 

tumor has evolved an insensitivity, precision interventions can affect intact parts of the pathway and 

elicit a targeted response. In some lucky scenarios, I might speculate that prior events inducing eg. 

aberrant Wnt signals in glioblastoma cells would sensitize them further to the sustained presence of 

SFRP1, for example if the prior mutations remove a critical feedback loop that tampers the effects 

of SFRP1 under homeostatic conditions. In this vein it is very encouraging to see consistent 

transcriptional changes induced by NOTUM overexpression, suggesting these proteins do indeed 

converge on a shared downstream pathway and paving the way for other or shared effectors which 

might elucidate the mechanisms of their action further. Intriguingly, these effects of the secreted 

Wnt antagonists SFRP1 and NOTUM do not exist in isolation, and indeed similar effects were 

reported in association with SFRP5 and SFRP3 (see section 1.1.4), among others. If these proteins 

do exhibit such a degree of redundancy they will provide a wide therapeutic surface for additional 

Wnt-based interventions of this nature. 
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Above all, cancers are heterogeneous: with every tumor effectively its own disease, it is no surprise 

that this heterogeneity poses significant challenges for treatment and contributes to cancer’s status 

as a leading cause of death worldwide (Ostrom et al., 2021). However, despite their differences, all 

cancers share their relentless drive for growth, which is reflected in the convergent mutation of a 

number of pathways (Futreal et al., 2004). Yet when comparing mutation frequencies across cancers, 

this shared growth imperative comes secondary to their fundamental organization by tissue of origin 

(Hoadley et al., 2018; Schneider et al., 2017). This reveals an essential principle of tumor 

organization, as tumors do not arise in isolation but from pre-existing tissues. Consequently, a 

simplistic interpretation of tumor development solely predicated on fitness maximizing processes 

fails to account for critical aspects of their development. For example, while lung tumors proliferate 

faster than brain tumors, brain tumors mutate different pathways than lung tumors even if these 

mutations would unlock the greater proliferation rate of lung tumor cells. Consequently, other 

forces during tumor development must drive the emergence of tissue-specific mutational profiles. 

The concept of lineage constraint explains these differences (see section 1.3). During development, 

cellular fates are restricted through the subsequent activation and repression of fate-determining 

factors (eg. PAX6, which establishes progenitor domains during brain development (Kikkawa et al., 

2019)), some of which re-emerge at later timepoints to direct subsequent behaviors (eg. PAX6, 

which regulates the survival of adult neurons (Ninkovic et al., 2010)). In this case, rather than 

developing a new factor to direct each cascading fate decision, the cell has cleverly modified other 

parts of the pathway to restrict the action of such factors in a kind of specificity by dependence. 

Hence there’s no use for glioblastomas to mutate eg. KRAS (S. Wang et al., 2022), since the 

substrates targeted by KRAS are not present in a glioblastoma cell. Importantly, this specificity 

stems from the developmental lineage constraints inherent to the tissue from which a given tumor 

originates. The healthy NSCs which develop into glioblastomas do not express relevant parts of the 

KRAS pathway, and so there is nothing to be gained by modifying this pathway for brain tumors. 

This example could be reversed in the case of lung tumors. Thus, tumor heterogeneity is driven by 

lineage constraint, which ensures that tumors inherit and propagate the characteristics of the cells 

they develop from. 

One consequence of this view is that tumors fix their tissue-of-origin characteristics through a 

preference for incremental adaptations. Much like elected politicians, tumors do not have the 

benefit of long-term planning, and while eg. compounding different mutational effects could make a 

KRAS mutation attractive for glioblastoma cells in the long term, the clone which acts this way is 

going to be outcompeted by its neighbors which simply mutate the nearest low hanging fruit. This 
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way, the eternal rat-race of clonal red queen dynamics ensures that incremental fitness advantages 

will be prioritized over long-term transcriptional rewiring, guaranteeing that tumors retain the 

characteristics of their tissue-of-origin. This explains why tumors are classified according to their 

tissue-of-origin, but also highlights the potential of studying tumors to unravel the processes and 

interactions which govern the dynamics of healthy stem cells.  

My contribution to this field lies in the development of ptalign, a pseudotime-alignment approach 

which derives a tumor pseudolineage by projecting tumor cells onto a fixed healthy stem cell lineage 

reference. This method leverages the ideas from lineage constraint to interpret tumor processes 

through the lens of healthy lineage transitions, enabling the study of tumor hierarchies in the 

absence of lineage tracing, and facilitating the comparative study of tumor-tumor and tumor-healthy 

expression dynamics. Here, I employ ptalign to dissect glioblastoma hierarchies into Quiescence, 

Activation, and Differentiation stages inferred from the SVZ NSC lineage hierarchy, ultimately 

conducting a population-level study of the organizational principles governing glioblastoma from a 

55-patient cohort. Comparing between patient pseudolineages, I provide evidence for the 

placement of Quiescence-stage tumor cells at the base of the tumor hierarchy, and reveal the 

Quiescence-Activation transition as a critical modulator of tumor pseudolineages. These insights 

unveil novel therapeutic strategies and I delineate salient biomarkers for their application. Extending 

pseudolineage analysis to the molecular level, I identify critical features of the Wnt signaling 

pathway which are lost in glioblastomas, ultimately revealing the secreted Wnt antagonists SFRP1 

and NOTUM as recurrently dysregulated factors in glioblastoma. By reintroducing these factors I 

achieved a targeted modulation of tumor pseudolineages towards the Quiescence stage, 

demonstrating how specific tumor vulnerabilities are revealed by this approach. Beyond glioma, I 

envision the application of ptalign in a pan-cancer context to reveal therapeutic targets in various 

solid tumors and uncover shared principles underlying stem cell activation which are exploited 

across cancers. 

 

3.1 ptalign enables the systematic comparison of 

malignant and healthy lineages 

ptalign exploits the persistent likeness of tumor cells to their healthy tissue-of-origin to place cells 

within a reference lineage hierarchy. This approach, assigning tumor pseudotimes by fixing a 

reference trajectory topology and determining the optimal placement of query cells within its 
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bounds, presents a novel perspective on tumor lineages. This approach differs from conventional 

pseudotime inference methods which aim at deriving a trajectory that minimizes expression 

differences between neighboring cells (Saelens et al., 2019). These trajectories are ultimately unique 

to each sample and not comparable between tumors, as different populations might be placed at 

the pseudotime root, while trajectories which do capture similar hierarchies might find these 

variably stratified. These issues are resolved in ptalign, as all aligned cells are placed within the same 

reference pseudotime axis while specific pseudotimes in the reference and query trajectories 

represent similar functional cell stages with similar transcriptional profiles. Additionally, while 

conventional pseudotime algorithms are forced to assign every cell a pseudotime value, often 

leading to distinct populations of eg. low-quality or doublet cells in pseudotime, ptalign is able to 

identify out-of-distribution cells and exclude these from the pseudotime alignment. Detecting these 

non-lineage cells is currently accomplished by thresholding on the minimum correlation value in the 

reference-correlations for that cell, a comparison which is not possible in the framework of 

conventional pseudotime inference algorithms. However, both ptalign and conventional methods 

can likely benefit from improved detection of out-of-distribution cells by cluster-aware or gene-

based methods. 

By matching cells in a tumor sample to their counterparts in a healthy reference, ptalign is more 

similar to other pseudotime alignment approaches like tuMap (Alpert et al., 2022). This method 

builds on the idea set forth in cellAlign (Alpert et al., 2018), leveraging a dynamic programming-

based approach to determine the optimal arrangement of pseudo-nodes in a healthy and tumor 

pseudotime to match their pseudotime progression. This idea of ‘matching’ pseudotimes highlights 

the key difference to ptalign, as both cellAlign and tuMap operate on the assumption that an 

optimal tumor pseudotime already exists. Indeed, tuMap itself suggests the use of a tumor 

pseudotime exhibiting an underlying developmental (ie. healthy) structure, motivating the use of 

ptalign to identify such a pseudotime which can be refined through tuMap. In its alignment 

approach, tuMap weights genes by their conservation between healthy and tumor samples – a 

strategy which could be extended to ptalign to improve the selection and generalization of the 

pseudotime anchor gene set. Whereas tuMap will always report an alignment while leaving the user 

to interpret its efficacy through a complicated mapping error, one advantage of ptalign is that 

through the simple statement of its aims of placing tumor cells within a reference lineage hierarchy, 

quantification of the alignment performance is kept simple, straightforward, and interpretable 

through the use of DTW. Moreover, the built-in ptalign permutation module provides a sensitive and 

tractable overview of the method’s performance without requiring the user to understand complex 

transformation functions and dissimilarity landscapes, as in tuMap.  
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One limitation of the ptalign algorithm is its incompatibility with branching pseudotimes. Most 

conventional pseudotime algorithms support the inference of branching pseudotimes (Saelens et al., 

2019), and indeed these capture valuable dynamical processes in complex datasets such as fetal 

development (Cao et al., 2019). However, applied to tumor samples where ground truth lineage 

dynamics are unknown, pseudotime branches can be a means to overcluster the data or introduce 

spurious hierarchies. This is the case in self-contained branching events such as cell cycle, which 

provides a convenient branch-point to erroneously separate the progression prior to and after the 

cell cycle. Given an appropriate reference, ptalign will accurately resolve this progression, however 

the cycling cells themselves are excluded in the analysis. This is consistent with other pseudotime 

alignment methods such as tuMap, which do not support branching pseudotimes. A recently 

proposed method for the alignment of single-cell trajectory trees (Sugihara et al., 2022) tackles the 

branch-matching problem by matching minimum spanning trees using linear alignment, though this 

approach cannot resolve cyclical trajectories. As the problem solved by ptalign can essentially be 

phrased in terms of point matching, distance-based heuristics can likely be applied to extend the 

method to enable the placement of tumor cells in a branched reference trajectory. However, in this 

case problems would arise in the quantification of aligned pseudotimes due to limitations of DTW-

based methods. This limitation could be overcome, however, through the recently described 

application of arboreal matching to compare complex branching trajectories (Do et al., 2019), 

leaving the incorporation of branched pseudotimes in ptalign alignments a possibility for future 

development. 

ptalign uses information from a healthy lineage to fix the tumor topology, but tumor cells are often 

known to be more plastic than their healthy counterparts. For example, in glioblastomas this 

plasticity remains unresolved (Prager et al., 2020), largely speculated from in vitro experiments 

(Castellan et al., 2020; Dirkse et al., 2019; Larsson et al., 2021) and without the benefit of empirical 

lineage traced ground truth datasets. Directed lineage transitions can be inferred using methods like 

RNA-velocity (La Manno et al., 2018) and CytoTRACE (Gulati et al., 2020), providing a means to 

quantitatively address tumor plasticity. However, CytoTRACE was ineffective in adult tissues, 

succumbing to the erroneous placement of cycling cells mentioned above, while recent studies have 

cast doubt on the data processing and modeling assumptions in RNA velocity (Barile et al., 2021; 

Marot-Lassauzaie et al., 2022). One study did identify velocity fields resolving progenitor-to-

differentiated trajectories in glioblastomas (Couturier et al., 2020), though they did not consider 

stage transitions. Actual lineage tracing will be the ultimate test of tumor stem cell plasticity, but 

until then the reference-based approach employed by ptalign at minimum adds the ability to resolve 

and compare ordered stage transitions between tumors, which did not exist previously. 
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Discovering tumor vulnerabilities through pseudotime expression dynamics remains one of the key 

advantages of ptalign. By comparing expression divergence between the 55 glioblastoma cohort and 

the healthy SVZ NSC lineage I was able to identify SFRP1 and NOTUM as recurrently dysregulated 

Wnt signaling modulators, leading to the discovery of their potent ability to arrest pseudolineage 

progression. However, in this analysis I quantified their divergent expression by a tailored ad hoc 

method which is unlikely to scale to large numbers of genes. The challenge with identifying 

recurrently dysregulated genes lies in detecting robust differences in pseudotime expression 

dynamics between groups of tumors (eg. tumor-tumor) or to a healthy reference (eg. tumor-

healthy). I previously explored the use of multiple mixed linear models to provide a grounded means 

to test for differential dynamics between populations, though this approach did not generalize well 

to variable pseudotime expression dynamics. One interesting question for future developments is 

the automatic clustering of genes and samples by expression dynamics. This way, clustering samples 

by their dynamics can reveal group-specific vulnerabilities, while grouping genes by their 

pseudotime-expression likely enables the discovery of upstream regulators analogous to the regulon 

approach in SCENIC (Aibar et al., 2017). Both of these approaches remain broadly unexplored in the 

current study. Perhaps one avenue could leverage a previous generation of methods developed to 

resolve expression dynamics in time-series microarray datasets (Conesa et al., 2006; Ernst et al., 

2005; Paparrizos & Gravano, 2017), though many of these programs have become inaccessible in the 

intermittent years. Overall, how to best characterize pseudotime-dependent expression changes at a 

population level remains an open question (Song & Li, 2021), and future developments in this space 

will have direct application to ptalign. Developing high-fidelity time-series based clustering 

approaches to compare tumor-tumor and tumor-healthy pseudotime expression dynamics remains a 

key area of focus toward realizing the full potential of ptalign. 

Overall, ptalign opens interesting prospects of resolving pseudolineages in a pan-cancer context. 

With the advent of scRNA-seq, studies identifying parallels between healthy and diseased samples 

have multiplied (Couturier et al., 2020; Good et al., 2018; K. S. Smith et al., 2022; Van Galen et al., 

2019), supporting the general action of lineage constraint and providing a basis for their comparison 

by ptalign. Indeed, different tissue tumors could be used to compare the different paths to 

tumorigenesis, for example contrasting Wnt dynamics in colon tumors with the present study of 

glioblastomas. Such an approach provides exciting prospects for the discovery of tissue-specific 

vulnerabilities and gives the added bonus of illuminating organizational principles underlying the 

regulation of diverse tissue stem cell programs. This will require curation of specific domain 

knowledge of various healthy stem cell lineages; however, less curation is required for tumors, with 

the recently published meta atlas of 1000 tumors (Gavish et al., 2023) providing an attractive 



119 
 

resource to probe the existence of shared principles of stem cell activation which are exploited 

across tumor entities.  

 

3.2 Glioblastoma organization viewed through an 

astrocytic NSC hierarchy  

My survey of NSC lineage scRNA-seq datasets revealed a remarkable conservation of neurogenesis 

dynamics regardless of species or ontogeny. This is consistent with the ancient origins of CNS 

specification (Jékely, 2021), as NSC lineage cells from the adult murine SVZ, human fetal brain, or 

cortical organoids uniformly progress through a series of common lineage stages. Indeed, the 

ubiquitous presence of quiescent astrocytes in adults (Kalamakis et al., 2019) compared to their late 

emergence and low frequency during fetal development highlights the key differences between 

developing and mature brains. Combined with the recent evidence that injury conditions can induce 

the activation and subsequent generation of neurons from common parenchymal astrocytes (L. P. 

M. Kremer et al., 2022; Magnusson et al., 2014), glioblastoma origins through a failed attempt at 

regeneration, ie. from transformed neurogenic astrocytes (Mossi Albiach et al., 2023), holds 

significant potential in shaping our understanding of the disease. 

Several key observations motivate the astrocytic origins of glioblastomas. Unlike pediatric tumors 

with defined progenitors (Okonechnikov et al., 2021; K. S. Smith et al., 2022), glioblastomas occur 

throughout the brain (Ostrom et al., 2021). While this is in line with the strong migratory phenotype 

frequently associated with glioblastoma cells, it is also plausibly explained through their local origin 

from common parenchymal astrocytes. Previous studies on mouse models of glioblastoma 

determined SVZ NSCs to be the tumor cell-of-origin (Alcantara Llaguno et al., 2019; J. H. Lee et al., 

2018), and these do likely do contribute to the formation of numerous tumors. However, in the 

drastic conditions introduced in such a tumor model, the first tumors will tend to emerge in the 

most-susceptible population. In the sensitive tissues of the brain, however, the first tumors are 

usually the only tumors which will be observed, suggesting that slow-growing astrocyte-derived 

tumors may be overlooked in this context. Moreover, activated astrocytes produce a neurogenic 

lineage that is similar to SVZ NSCs (Magnusson et al., 2020), but SVZ NSCS, which are more 

frequently cycling than terminally differentiated astrocytes, may accumulate fewer mutations as 

these are cleared through transcription coupled repair mechanisms (Hanawalt & Spivak, 2008; 

Hendriks et al., 2008). As a terminally differentiated astrocyte can persist for decades without 
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activating, this provides substrate for the random degeneration of numerous loci through clock-like 

mutational processes (Alexandrov et al., 2015), which are not cleared through cycling activity. This is 

consistent with the ideas of lineage constraint laid out above, as astrocytes can accumulate 

mutations in key tumorigenic pathways which do not affect their homeostatic function but which 

have devastating consequences when these cells are eventually stimulated to activate. This 

persistence of tumor driver mutations for decades until their transformation upon external stimuli 

supports the emerging view of inflammatory origins of tumorigenesis (Simpson Ragdale et al., 2023). 

Studying glioblastoma organization using ptalign further strengthened these tumor’s origins in adult 

neurogenic lineages. Analysis of tumor pseudolineages in the 55 glioblastoma cohort revealed the 

frequency of Quiescence- and Differentiation-stage cells as a major axis of variation in glioblastomas. 

Only through the contextual knowledge provided by the NSC reference and made available in ptalign 

was I able to subset these tumors into two groups of truncated (QA) and complete (QAD) 

pseudolineages. In analogy to the healthy NSC lineage, these groups reflect the self-renewing or 

differentiating modes of division available to Quiescence-stage NSCs (Obernier et al., 2018), thus 

more closely resembling adult neurogenic lineages compared to their fetal counterparts. Given that 

SVZ NSCs display strong intrinsic fating (Merkle et al., 2007), these different pseudolineages might 

additionally suggest an origin in distinctly-fated NSC populations. Extending this view to astrocytes, 

whose activation potential differs across brain regions (Magnusson et al., 2014), provides an 

interesting avenue to explore glioblastoma heterogeneity; however, whether activated astrocytes 

are able to engage in self-renewing divisions remains to be seen. The noted role of Wnt signaling in 

regulating cellular polarity and division asymmetry (Goldstein et al., 2006; Habib et al., 2013) makes 

it an interesting candidate in the specification of eg. truncated glioblastoma pseudolineages – 

providing additional support for the disrupted pseudolineage hierarchy achieved by SFRP1-

overexpression. Overall, understanding glioblastomas is heavily linked to the study of their healthy 

counterpart, highlighting the potential for ptalign to generate testable hypotheses related to tumor 

organization and hierarchy. 

The ubiquity of Quiescence-stage cells among glioblastoma pseudolineages motivates their targeting 

to disrupt tumor progression. Particularly in their ability to propagate tumors in vivo, Quiescence-

stage cells emerge as ideal GSC candidates (Suvà & Tirosh, 2020), making all the more surprising that 

the field has focused on the stem properties of Differentiation-stage cells and considers Quiescence-

stage cells as a differentiated population (Neftel et al., 2019; Tirosh et al., 2016; Venteicher et al., 

2017). This is a matter of glioblastoma organization viewed through adult vs. developmental NSC 

hierarchies. In the former, Quiescence-stage cells represent the stem population, while in the latter 
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this role is assumed by Differentiation-stage cells. As GSCs ought to be present in every tumor, the 

presence of Differentiation-stage cells in only half of the glioblastoma pseudolineages suggests that 

Quiescence-stage cells, which are ubiquitous across glioblastomas, play an essential role in the 

tumor hierarchy. This notion is reinforced by considering lower grade gliomas (LGGs), which are 

generally agreed to have astrocytic origins (Louis et al., 2021). Given the highly conserved NSC 

dynamics regardless of ontogeny or species outlined above, I find it unlikely that glioblastomas 

developed a separate stem population compared to LGGs. Instead, rather than representing a novel 

stem population, it is likely that the unique ability for glioblastomas to generate neuronal 

Differentiation-stage cells contributes to their poor prognosis through the propensity of these cells 

to infiltrate (Comba et al., 2022) and form connections (Jung et al., 2019; Osswald et al., 2015) in the 

healthy brain tissue. This view of glioblastoma hierarchy is confirmed by the unbiased barcoding 

study in (Lan et al., 2017) which revealed an invariant GSC hierarchy driven by a quiescent 

progenitor, as in adult neurogenesis. Indeed, the cycling-based identification of GSCs is questionable 

when viewed through the lens of the SVZ NSC lineage, where Differentiation genes are upregulated 

during cell cycle although these are clearly the product of the division and not its catalyst. Taken 

together, numerous evidences point to glioblastoma hierarchies recapitulating those of adult 

neurogenesis and reinforce the notion that Quiescence-stage cells make up the GSC population. This 

challenges a view of glioblastoma hierarchy held in the field and underscores the need for novel 

therapeutic strategies which target this population. Importantly, these insights would not have been 

available without the framework of ptalign enabling the functional interpretation of glioblastoma 

pseudolineage stages based on their origins in the healthy SVZ NSC lineage. 

By overexpressing SFRP1 in glioblastoma cells, Oguzhan and I elicited a ubiquitous and robust 

modulation of tumor pseudolineage which effectively arrested cells in the Quiescence-stage. This 

protein was identified by comparing expression dynamics in ptalign pseudotimes of the 55 

glioblastoma cohort, identifying it as a recurrently dysregulated factor in glioblastoma. This is 

consistent with previous literature characterizing epigenetic silencing of SFRP1 in various tumors 

(Baharudin et al., 2020; Yu et al., 2019). Notably, all of these observations are equally relevant for 

NOTUM overexpression. It is surprising that despite the recurrent loss of SFRP1 across 

glioblastomas, cells preserve the ability to respond to SFRP1 stimulation in a manner consistent 

with prior inhibition experiments (Donega et al., 2022) and its expression at the Quiescence-

Activation transition in vivo. This has positive implications for therapeutic interventions targeted at 

stage transitions over individual stages themselves, which are discussed below. Importantly, both 

the fact that SFRP1-overexpressing tumors are able to grow and colonize the entire brain despite 

their Quiescence-stage bias, along with the SFRP1 inhibitor experiment, demonstrate that 
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astrocytic tumor cells can re-enter and populate the tumor hierarchy, supporting their placement as 

the glioma stem cell. Intriguingly, the SFRP1-dependent switch from a complete (QAD) to truncated 

(QA) tumor pseudolineage could be due to a switch from mixed asymmetric and symmetric modes 

of division to a strong bias toward symmetrically self-renewing divisions. The role of Wnt in 

regulating this division behavior through SFRP1 would be consistent with the concomitant increase 

in self-renewing divisions (Bast et al., 2018) and canonical Wnt activity (Kalamakis et al., 2019) in 

aged brains. Better understanding of the mechanisms driving such a switch in facultative stem cell 

behavior could greatly improve the therapeutic surface for targeted modulation of tumor plasticity. 

Likewise, regenerative therapies in the healthy brain can also benefit from these insights. In general, 

employing tumor systems to study healthy stem cell dynamics remains an underappreciated aspect 

of oncology. Particularly due to the lineage constraint active in tumor cells, these can provide a 

detailed picture of essential stem cell processes and the consequences of their aberration (Pertesi et 

al., 2019). Additional lineage tracing experiments will be necessary to elucidate the mechanism of 

the SFRP1-induced shift to Quiescence-biased pseudolineages. Overall, it is enticing to speculate an 

Activation- or Differentiation-inducing effect resulting from the inhibition of DRAXIN, the best 

conserved of the Wnt-modulators assayed by ptalign.  

 

3.3 The interplay of intrinsic and environmental 

Wnt signals directs tumor pseudolineages 

Improved cell type resolution obtained from scRNA-seq motivates deeper understanding of the 

factors contributing to cell fate. Building on previous studies implicating the Wnt signaling pathway 

in the activation of SVZ NSCs (Donega et al., 2022; Mizrak et al., 2020), Oguzhan employed a 

fluorescent TCF/Lef Wnt reporter to study Wnt signaling dynamics in health and disease at single-cell 

resolution (Kaya, 2023); the first study of this kind. This revealed tight regulation of canonical Wnt 

signaling at the Quiescence-Activation transition in vivo, combined with a clear enrichment of 

reporter activity in the Quiescence-stage. Glioblastomas, meanwhile, required external cues to 

initiate canonical Wnt signaling activity and did not alter their pseudolineage characteristics in 

response to reporter levels. This suggests that these tumors have developed an overall insensitivity 

to Wnt signals, a development perhaps necessary to maintain a persistent stem cell state. However, 

tumor cells’ selective and robust response to targeted Wnt modulation via SFRP1 or NOTUM 
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revealed that these had degenerated specific parts of the pathway while leaving others intact, 

providing opportunity for therapeutic exploitation. 

While numerous Wnt-related genes have been documented (Boonekamp et al., 2021), many of 

which exhibit coordinated expression dynamics along the SVZ lineage, the landscape of Wnt-related 

gene expression is much less clear in glioblastomas. This is best exemplified through tumor 

ventricular growths. In Oguzhan’s PDXs, tumor cells are injected into the striatum and eventually 

disperse to colonize the entire mouse brain. This includes cells which hone to the SVZ and 

extravasate to occupy the ventricular cavity, where the absence of nearby healthy cells means their 

lateral expansion in 3D is uninhibited – likely resulting in the poor survival of patients with 

ventricular tumors (Berendsen et al., 2019). As contact with healthy brain cells was the leading 

driver of canonical Wnt signaling activity in glioblastoma cells, the lack of Wnt signals in ventricular 

growths means these most closely resemble the in vitro tumor conditions. This is contrast to 

Quiescence-stage cells, which consistently exhibited increased levels of canonical Wnt signaling 

activity across all measured modalities, suggesting that maintaining cells in a Quiescence-stage 

requires specific Wnt signals. Surprisingly, the contents of the CSF are not sufficient to elicit 

canonical Wnt activity in tumor cells. While it is enticing to speculate that Wnt ligands are absent 

from the CSF, it could as well bias cells towards non-canonical modes of Wnt signaling. Alternatively, 

the CSF is known to contain SHH (Huang et al., 2010), a signaling protein which frequently acts in 

competition to Wnts (Joksimovic et al., 2009; Ouspenskaia et al., 2016), suggesting that ventricular 

growths may be the result of hedgehog-directed pseudolineages. In either case, ventricular growths 

were consistently dominated by Activation-stage cells, recapitulating the morphologies and behavior 

of in vitro cultured glioblastoma cells. In this context, their organization along Activation-

Differentiation gradients might point to ventricular growths as the birth place of glioblastoma cells, 

which then assume a migratory phenotype consistent with Differentiation-stage cells (Rella et al., 

2021). These growths have flown under the radar of recent systematics attempts to characterize 

glioblastoma organization (Bast et al., 2018; Greenwald et al., 2023; Mossi Albiach et al., 2023), 

motivating their further study. Thus, ventricular growths represent a peculiar case of spatially-

constrained tumor pseudolineages which organize along Activation- and Differentiation-stage 

gradients in the absence of canonical Wnt signals. 

Notably, tumor cells responded to endogenous SFRP1 released by healthy neurons. Why they 

retain this ability when SFRP1 was lost in virtually all studied glioblastomas remains a mystery, as it 

leaves tumor cells at the mercy of nearby SFRP1-expressing cells. Perhaps this is an adaptive trait, 

guaranteeing the presence, at low frequency, of Quiescence-stage tumor stem cells. Though why 
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these cells are not simply outcompeted by SFRP1-insensitive clones prior to chemotherapy, when 

they finally become essential (Chen et al., 2012), remains to be elucidated. This tradeoff between 

the insensitivity of tumor cells to broad fluctuations in pathway activity and their sensitive response 

to targeted interventions motivates the detailed study of pseudolineage modulating factors to 

achieve positive patient outcomes. 

 

3.4 Clinical innovations from glioblastoma 

pseudolineages 

I extended pseudolineage inference from single-cell to bulk glioblastoma datasets using GSVA to 

reveal four major tumor groups which affected distinct patient outcomes. These groups were 

characterized by enrichment (e-) in different pseudolineage stages: eQ, eA, eQD, eAD. Here, 

Quiescence-biased (eQ, eQD) groups exhibited better survival outcomes, consistent with their 

slower growth. This is in contrast to the classification by (Verhaak et al., 2010) where proneural 

tumors tended to have the best outcomes. Curiously, proneural tumors in that paper broadly 

correspond to eAD tumors in the present study, which exhibited consistently bad survival outcomes. 

Though the inclusion of LGGs and the reclassification of glioblastomas as solely IDH-wildtype (Louis 

et al., 2021) may explain this discrepancy, it is likely that deconvolution through a single-cell 

reference also improves the detection of distinct glioblastoma signatures. Given the developmental 

view of glioblastoma hierarchies in (Verhaak et al., 2010) and the adult view expounded in the 

current study, it is intriguing to note that in both cases, enrichment in what the authors consider the 

tumor stem cell results in improved patient survival.  

Survival outcomes in the various tumor classes could be related back to functional differences in 

their pseudolineages. While eQ and eQD tumors exhibited the best overall survival with no 

significant difference between the two, the eQD group had a significantly better PFI. It is enticing to 

postulate that this could be due to more dormant astrocytes being present in the eQD group, but I 

did not follow this hypothesis. It is also interesting to note that eQ and eQD tumors comprise the 

prototypical truncated and complete tumor pseudolineage, suggesting that the associated 

differences in stem cell division mode described above could relate to the variations in PFI. Overall, 

survival comparisons between tumor classes revealed the Quiescence-Activation transition as a 

crucial determinant of patient outcomes, highlighting the relevance of Wnt-based interventions to 

disrupt tumor progression.  
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Clustering samples with matched methylation- and RNA-measurements revealed that pseudolineage 

stages are inscribed in tumor methylomes. This was consistent with the stage-specific methylation of 

SVZ NSCs (L. P. M. Kremer et al., 2022) and the broad overlap to the (Verhaak et al., 2010) tumors 

which were observed in (Ceccarelli et al., 2016; Noushmehr et al., 2010). Consistently, the increased 

incidence of Quiescence-stage cells in SFRP1-overexpressing tumors was visible in WGBS tumor 

methylomes, with a clear signal delineated by the SVZ NSC- and astrocyte-DMRs from (L. P. M. 

Kremer et al., 2022). Set against the single-cell methylomes in (Johnson et al., 2021) for which 

“methylation disorder” became the dominant signal over any underlying biology, the approach 

outlined here highlights the importance of contextual knowledge in driving insights into tumor 

processes. Thus, as methylation information is already routinely assessed in the clinic (Capper et al., 

2018) the inference of RNA-based pseudolineages from tumor methylomes demonstrated in this 

study provide a valuable basis for disease monitoring, the design of targeted therapies, or to identify 

patients who are likely to benefit from existing therapies such as SFRP1-induced pseudolineage 

arrest.  

The SFRP1 and NOTUM overexpression experiments demonstrate the efficacy of targeted 

interventions to disrupt tumor pseudolineages. In both cases, tumor cells were arrested in the 

Quiescence-stage and particularly SFRP1-overexpressing mice exhibited a significantly increased 

survival. Encouragingly, SFRP1-overexpression did not elicit transcriptional changes in nearby 

healthy cells, suggesting that the action of SFRP1 may require a particular Wnt signaling 

conformation such as the one characteristic of SVZ stem cells and their malignant counterparts. As 

loss of SFRP1 was characteristic of glioblastomas, it remains to be seen whether SFRP1-

overexpression is effective in LGGs. Similarly, the consistently high expression levels of DRAXIN 

might suggest that its overexpression in LGGs could elicit a similarly potent pseudolineage 

transformation. Regardless how it is used, an effective means of delivering the payload to patient 

tumors, such as through the use of AAVs (L. P. M. Kremer et al., 2021), will have to be devised.  

Using a small molecule inhibitor of SFRP1 highlighted opportunities for transition-targeting 

combination therapies which can improve glioblastoma cell clearing. Quiescence-stage cells present 

a problem for conventional glioblastoma therapy through temozolomide (TMZ) or similar alkylating 

agents which primarily eliminate cycling or Activation-stage cells (Xie et al., 2022). As such, SFRP1-

overexpression alone, while conducive to extending patient lifespan, does not represent an efficient 

means to eliminate the underlying disease. Instead, by first synchronizing cells in the Quiescence-

stage through SFRP1-overexpression and then orchestrating their simultaneous activation through 

SFRP1-inhibition, a much greater killing effect can be achieved through TMZ. Thus by targeting a 
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transition over a concrete cell stage many more cells are cleared by the resulting therapy, hopefully 

leading to improved or lasting remission. The SFRP1 inhibitor experiment however raises additional 

questions about the persistence of the SFRP1-overexpression phenotype. As application of the 

inhibitor is sufficient to induce the activation of tumor cells, this suggests that the effects of SFRP1 

are transient and require persistent presence of the protein to maintain the phenotype. This also 

raises the question of how permanent the astrocyte-like methylation identity of SFRP1-

overexpressing cells is: as methylation changes are generally associated with long-term fate choice, 

these changes might present a barrier to activation through SFRP1 inhibition. These phenomena 

will require additional study into the mechanisms driving SFRP-induced pseudolineage arrest. Taken 

together, this result supports an astrocytic origin for glioblastoma hierarchies by demonstrating the 

stem cell potential of these cells. Overall, the combined application of the robust and specific 

pseudolineage-arresting effects of SFRP1-overexpression with a coordinated activation through its 

inhibition, presents a promising means to affect improved killing via TMZ, ultimately extending 

disease-free survival in patients. 
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Conclusion 
 

 

“The ships hung in the sky in much the same way that bricks don't” 

Douglas Adams, The Hitchhiker’s Guide to the Galaxy 

 

 

Through its clever phrasing, the above quote forces the reader to give pause and consider how two 

things are similar despite that they quite emphatically are not. Observing how things are similar has 

led to remarkable leaps in biology, from Darwin’s observations to Linnaeus’ systematics and 

Mendel’s careful counting. Now, in the molecular age and with the combined efforts of billions of 

transistors at our fingertips, we are more equipped than ever to identify how different any two 

things are. But all of life is remarkably similar, a product of the central dogma and the various 

behaviors it begets. Cancers are no different, and I render Adams’ quote to frame a comparison 

between cancer cells and their healthy counterparts: viewing the two much in the same way they 

aren’t different.  

We classify tumors according to their tissue of origin because they exhibit strong tissue-specific 

characteristics. I posit that this is due to the relatively restricted fate potential of adult cells which is 

faithfully inherited by tumor cells leading to their lineage constraint. Leveraging this constraint to 

isolate similarities between healthy and tumor cells, I developed ptalign as a means to place tumor 

cells within a fixed healthy lineage trajectory, using healthy stem cell transitions to infer a tumor 

pseudolineage in the absence of lineage tracing. By fixing the tumor lineage topology in this way, 

ptalign provides a framework to study tumor processes through contextual knowledge from the 

healthy reference. Notably, placing multiple tumors in the same reference trajectory facilitates the 

comparative study of tumor-tumor and tumor-healthy expression dynamics, providing a novel view 

of tumor organization which proved effective in elucidating tumor vulnerabilities through the 

targeting of lineage transitions. 

In this work, I demonstrated the assessment, evaluation, and modulation of tumor pseudolineages in 

a cohort of 55 primary glioblastoma datasets. This revealed that glioblastomas develop into 

truncated or complete pseudolineages, plausibly reflecting the division characteristics of the cells 
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they derive from. Transferring contextual knowledge from the NSC lineage onto glioblastoma 

pseudolineages provided evidence of tumor organization rooted in adult NSC lineages, challenging 

the commonly held developmental view of their hierarchy. Wnt signaling was identified as a crucial 

regulator of NSCs transitioning from a Quiescent to an Activation state, a transition which also 

played a significant role in glioblastoma prognosis. Comparing pseudotime expression dynamics at 

this transition identified the secreted Wnt antagonist SFRP1 as recurrently dysregulated in 

glioblastomas, motivating its use in the targeted modulation of tumor pseudolineages. 

Reintroduction of SFRP1 directed tumors to a truncated pseudolineage dominated by astrocytic 

tumor cells, significantly improving the survival of tumor-bearing mice. This demonstrates SFRP1 as 

a potent fate-modulating factor in glioblastoma with exciting prospects for its therapeutic 

application, highlighting the advantages of a comparative approach to studying tumor cells rooted in 

the similarities to their healthy counterparts. 

Several key lessons motivate the further development of ptalign and related technologies. Most 

prominently, ptalign demonstrated the efficacy of targeting a lineage transition over conventional 

strategies which prioritize individual cell states. This provides several therapeutically relevant 

benefits, as modulating a transition effectively targets at least two cell states at once and can lead to 

the subsequent restriction of other cell fates in a linear model of tumor hierarchy. Combination 

therapies which utilize this approach to synchronize cell states will synergize well with existing 

therapies targeting individual states, boosting patient outcomes without rendering existing 

strategies obsolete.  

The real strength of ptalign lies in the adaptability of the method to different situations, paving the 

way for a pan-cancer approach to mine countless existing atlas datasets for specific tumor 

vulnerabilities. The unique perspective of tumor organization enabled in ptalign provides a rich 

source of testable hypotheses to interrogate functional aspects of tumor biology. These insights 

serve to elucidate the underlying principles driving tumor organization, laying the groundwork for 

novel treatment strategies and the development of personalized therapies. All told, this approach 

leverages the similarities between cancers and healthy cells to provide important context for 

understanding where they are different: these roles could just as well be reversed, illuminating 

principles of healthy development by learning from cancer.  
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Supplementary Tables 
 

SVZ QAD Geneset 

 

Table 1(i): Quiescence-stage genes derived from the SVZ NSC lineage. These genes are enriched in expression in the 
Quiescence-stage of the SVZ NSC lineage, comprising both qNSCs and niche astrocytes. Together with the SVZ-QAD 
Activation-stage and Differentiation-stage genes, these genes were used to conduct ptalign pseudotime alignment of 
various single-cell glioblastoma datasets.  

ABHD3 ENSG00000158201 FJX1 ENSG00000179431 PCDH7 ENSG00000169851 
ACAA2 ENSG00000167315 FXYD1 ENSG00000266964 PLA2G7 ENSG00000146070 
ACSBG1 ENSG00000103740 GABBR2 ENSG00000136928 PREX2 ENSG00000046889 
ACSL3 ENSG00000123983 GABRB1 ENSG00000163288 RAMP1 ENSG00000132329 
ALDH1L1 ENSG00000144908 GABRG1 ENSG00000163285 RGCC ENSG00000102760 
ALDOC ENSG00000109107 GJB6 ENSG00000121742 S100A1 ENSG00000160678 
APPL2 ENSG00000136044 GPC5 ENSG00000179399 S1PR1 ENSG00000170989 
AQP4 ENSG00000171885 GPR37L1 ENSG00000170075 SCRG1 ENSG00000164106 
ASS1 ENSG00000130707 GRIN2C ENSG00000161509 SDC4 ENSG00000124145 
ATP1B2 ENSG00000129244 GRM3 ENSG00000198822 SERPINE2 ENSG00000135919 
BAALC ENSG00000164929 HAPLN1 ENSG00000145681 SFXN5 ENSG00000144040 
BCAN ENSG00000132692 HEPACAM ENSG00000165478 SLC38A3 ENSG00000188338 
CA2 ENSG00000104267 HOPX ENSG00000171476 SLC39A12 ENSG00000148482 
CAMK2N1 ENSG00000162545 HSPA2 ENSG00000126803 SLC4A4 ENSG00000080493 
CHCHD10 ENSG00000250479 HTRA1 ENSG00000166033 SLC6A11 ENSG00000132164 
CHST1 ENSG00000175264 ID2 ENSG00000115738 SLC7A10 ENSG00000130876 
CHST2 ENSG00000175040 IL33 ENSG00000137033 SLC9A3R1 ENSG00000109062 
CLDN10 ENSG00000134873 KCNK1 ENSG00000135750 SLCO1C1 ENSG00000139155 
CLMN ENSG00000165959 LIMCH1 ENSG00000064042 SLITRK2 ENSG00000185985 
CLU ENSG00000120885 MERTK ENSG00000153208 SMPDL3A ENSG00000172594 
CMTM5 ENSG00000166091 MGLL ENSG00000074416 SPARC ENSG00000113140 
CRYM ENSG00000103316 MGST1 ENSG00000008394 SPARCL1 ENSG00000152583 
CXCL14 ENSG00000145824 MLC1 ENSG00000100427 SREBF1 ENSG00000072310 
DAAM2 ENSG00000146122 MT3 ENSG00000087250 TCF7L2 ENSG00000148737 
DHRS3 ENSG00000162496 MYORG ENSG00000164976 THBS4 ENSG00000113296 
DKK3 ENSG00000050165 NAAA ENSG00000138744 TLCD1 ENSG00000160606 
EDNRB ENSG00000136160 NIM1K ENSG00000177453 TMEM176A ENSG00000002933 
EPHX2 ENSG00000120915 NKAIN4 ENSG00000101198 TMEM229A ENSG00000234224 
EPS8 ENSG00000151491 NTM ENSG00000182667 TRIL ENSG00000255690 
EVA1A ENSG00000115363 NTSR2 ENSG00000169006 TST ENSG00000128311 
F3 ENSG00000117525 OAF ENSG00000184232 TTYH1 ENSG00000167614 
FAM107A ENSG00000168309 PAQR7 ENSG00000182749 VCAM1 ENSG00000162692 
FBXO2 ENSG00000116661 PBXIP1 ENSG00000163346 VEGFA ENSG00000112715 
FGFR3 ENSG00000068078 
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Table 1(ii): Activation-stage genes derived from the SVZ NSC lineage 

ADGRV1 ENSG00000164199 GSX1 ENSG00000169840 NOTCH1 ENSG00000148400 
ANP32B ENSG00000136938 HAT1 ENSG00000128708 NOTUM ENSG00000185269 
ARL4C ENSG00000188042 HELLS ENSG00000119969 NPTX2 ENSG00000106236 
ASCL1 ENSG00000139352 HELT ENSG00000187821 NR4A1 ENSG00000123358 
BTG2 ENSG00000159388 HES6 ENSG00000144485 ODC1 ENSG00000115758 
CCND1 ENSG00000110092 HMGB2 ENSG00000164104 OLIG2 ENSG00000205927 
CDK6 ENSG00000105810 HMGN5 ENSG00000198157 PCNA ENSG00000132646 
CENPM ENSG00000100162 IER2 ENSG00000160888 PPP1R15A ENSG00000087074 
CORO1C ENSG00000110880 JUNB ENSG00000171223 RBM3 ENSG00000102317 
CRLF1 ENSG00000006016 KCNE5 ENSG00000176076 RRM2 ENSG00000171848 
DCTPP1 ENSG00000179958 KLF4 ENSG00000136826 SERF2 ENSG00000140264 
DLL1 ENSG00000198719 LIMA1 ENSG00000050405 SIVA1 ENSG00000184990 
DLL3 ENSG00000090932 LRRFIP1 ENSG00000124831 SLBP ENSG00000163950 
DTL ENSG00000143476 LSM2 ENSG00000204392 SOCS3 ENSG00000184557 
DTYMK ENSG00000168393 LYAR ENSG00000145220 SUMO2 ENSG00000188612 
DUT ENSG00000128951 MCM2 ENSG00000073111 TEAD2 ENSG00000074219 
E2F1 ENSG00000101412 MCM3 ENSG00000112118 TIPIN ENSG00000075131 
EGFR ENSG00000146648 MCM5 ENSG00000100297 TMEM132B ENSG00000139364 
EGR1 ENSG00000120738 MCM6 ENSG00000076003 TNFRSF19 ENSG00000127863 
FABP7 ENSG00000164434 MFNG ENSG00000100060 TPM4 ENSG00000167460 
FOS ENSG00000170345 NBL1 ENSG00000158747 UHRF1 ENSG00000276043 
FOSB ENSG00000125740 NCALD ENSG00000104490 UNG ENSG00000076248 
GADD45G ENSG00000130222 NHP2 ENSG00000145912 WDR89 ENSG00000140006 
GMNN ENSG00000112312 NKD1 ENSG00000140807 ZFP36 ENSG00000128016 
GNL3 ENSG00000163938 NOLC1 ENSG00000166197 

   

Table 1(iii): Differentiation-stage genes derived from the SVZ NSC lineage 

ABRACL ENSG00000146386 FXYD6 ENSG00000137726 PCDH9 ENSG00000184226 
ADARB2 ENSG00000185736 GAD1 ENSG00000128683 PLCL1 ENSG00000115896 
ANKS1B ENSG00000185046 GAD2 ENSG00000136750 PLXNA4 ENSG00000221866 
APP ENSG00000142192 GNG2 ENSG00000186469 PODXL2 ENSG00000114631 
ARX ENSG00000004848 IGFBPL1 ENSG00000137142 RUNX1T1 ENSG00000079102 
BASP1 ENSG00000176788 KIF5C ENSG00000168280 S100A10 ENSG00000197747 
BCL11B ENSG00000127152 LMO3 ENSG00000048540 SCRT1 ENSG00000261678 
C11orf96 ENSG00000187479 LRRC7 ENSG00000033122 SHTN1 ENSG00000187164 
CDK5R1 ENSG00000176749 LY6H ENSG00000176956 SNRPN ENSG00000128739 
CELF4 ENSG00000101489 MAP1B ENSG00000131711 SP8 ENSG00000164651 
CITED2 ENSG00000164442 MEX3A ENSG00000254726 SP9 ENSG00000217236 
CTXN1 ENSG00000178531 MLLT11 ENSG00000213190 SRRM4 ENSG00000139767 
DBN1 ENSG00000113758 MPPED2 ENSG00000066382 ST18 ENSG00000147488 
DCBLD1 ENSG00000164465 MTSS1 ENSG00000170873 STMN2 ENSG00000104435 
DCX ENSG00000077279 MYT1L ENSG00000186487 STMN3 ENSG00000197457 
DLX2 ENSG00000115844 NAV3 ENSG00000067798 STMN4 ENSG00000015592 
DLX5 ENSG00000105880 NOL4 ENSG00000101746 TIAM2 ENSG00000146426 
DPYSL3 ENSG00000113657 NREP ENSG00000134986 TMEFF1 ENSG00000241697 
ELAVL3 ENSG00000196361 NRXN3 ENSG00000021645 TOX3 ENSG00000103460 
ELAVL4 ENSG00000162374 NSG1 ENSG00000168824 TTC9B ENSG00000174521 
ENOX1 ENSG00000120658 NSG2 ENSG00000170091 UCHL1 ENSG00000154277 
FNBP1L ENSG00000137942 PAFAH1B3 ENSG00000079462 ZNF704 ENSG00000164684 
FSCN1 ENSG00000075618 PBX3 ENSG00000167081 
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GBM QAD Geneset 

 

Table 2(i): Quiescence-stage genes derived from glioblastomas. These genes are enriched in expression in the Quiescence-
stage of glioblastomas and the SVZ NSC lineage, and were used in conjunction with the GBM-QAD Activation-stage and 
Differentiation-stage gene sets to enable pseudolineage inference by bulk decomposition of TCGA and Wu et al samples 

ACSS3 ENSG00000111058 GFAP ENSG00000131095 PLA2G5 ENSG00000127472 
ADCYAP1R1 ENSG00000078549 GLIS3 ENSG00000107249 PLCD3 ENSG00000161714 
AGT ENSG00000135744 GPR37 ENSG00000170775 PLTP ENSG00000100979 
AHNAK ENSG00000124942 HEPACAM ENSG00000165478 PON2 ENSG00000105854 
ALDH1L1 ENSG00000144908 HIF3A ENSG00000124440 PROS1 ENSG00000184500 
ALDOC ENSG00000109107 HNMT ENSG00000150540 RAMP1 ENSG00000132329 
AQP4 ENSG00000171885 HOPX ENSG00000171476 RFX4 ENSG00000111783 
ARAP2 ENSG00000047365 HRH1 ENSG00000196639 RGMA ENSG00000182175 
ATP1A2 ENSG00000018625 HSPB8 ENSG00000152137 RHPN1 ENSG00000158106 
ATP1B2 ENSG00000129244 HTRA1 ENSG00000166033 ROM1 ENSG00000149489 
BAALC ENSG00000164929 ID3 ENSG00000117318 SCARA3 ENSG00000168077 
BBOX1 ENSG00000129151 ID4 ENSG00000172201 SDC4 ENSG00000124145 
BDH2 ENSG00000164039 IL33 ENSG00000137033 SFXN5 ENSG00000144040 
C21orf62 ENSG00000205929 ITGA6 ENSG00000091409 SLC1A2 ENSG00000110436 
C3 ENSG00000125730 ITM2C ENSG00000135916 SLC1A3 ENSG00000079215 
CA2 ENSG00000104267 ITPKB ENSG00000143772 SLC25A18 ENSG00000182902 
CCDC80 ENSG00000091986 KCNN3 ENSG00000143603 SLC4A4 ENSG00000080493 
CHI3L1 ENSG00000133048 LAMB2 ENSG00000172037 SMOX ENSG00000088826 
CLU ENSG00000120885 LFNG ENSG00000106003 SPARC ENSG00000113140 
CRB2 ENSG00000148204 LIFR ENSG00000113594 SPARCL1 ENSG00000152583 
CRYAB ENSG00000109846 LIMCH1 ENSG00000064042 SPOCD1 ENSG00000134668 
CSF1 ENSG00000184371 LRIG1 ENSG00000144749 SSPN ENSG00000123096 
CXCL14 ENSG00000145824 MAOB ENSG00000069535 TGFB2 ENSG00000092969 
DHRS3 ENSG00000162496 MGST1 ENSG00000008394 TIMP3 ENSG00000100234 
DKK3 ENSG00000050165 MLC1 ENSG00000100427 TIMP4 ENSG00000157150 
EDNRB ENSG00000136160 MT3 ENSG00000087250 TMEM176A ENSG00000002933 
EFEMP1 ENSG00000115380 NDP ENSG00000124479 TMEM47 ENSG00000147027 
EFHD1 ENSG00000115468 NDRG2 ENSG00000165795 TRIL ENSG00000255690 
ENKUR ENSG00000151023 NMB ENSG00000197696 TRIM47 ENSG00000132481 
F3 ENSG00000117525 NTM ENSG00000182667 TTYH1 ENSG00000167614 
FADS2 ENSG00000134824 NTRK2 ENSG00000148053 TTYH2 ENSG00000141540 
FAM107A ENSG00000168309 PBXIP1 ENSG00000163346 VAMP5 ENSG00000168899 
FAM181A ENSG00000140067 PIFO ENSG00000173947 VCAM1 ENSG00000162692 
FGF1 ENSG00000113578 
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Table 2(ii): Activation-stage genes derived from glioblastomas 

ALKBH2 ENSG00000189046 EXOSC9 ENSG00000123737 MYC ENSG00000136997 
ANP32B ENSG00000136938 FBL ENSG00000105202 NEU4 ENSG00000204099 
APOD ENSG00000189058 FEN1 ENSG00000168496 NFKBIZ ENSG00000144802 
ARC ENSG00000198576 FOSB ENSG00000125740 NR4A1 ENSG00000123358 
ARL4A ENSG00000122644 GINS2 ENSG00000131153 OLIG2 ENSG00000205927 
ATF3 ENSG00000162772 GPATCH4 ENSG00000160818 PCNA ENSG00000132646 
BARD1 ENSG00000138376 HELLS ENSG00000119969 PDGFRA ENSG00000134853 
BEST3 ENSG00000127325 IFRD2 ENSG00000214706 PDLIM1 ENSG00000107438 
BTG2 ENSG00000159388 ITGB3BP ENSG00000142856 PPIH ENSG00000171960 
C11orf24 ENSG00000171067 JAG1 ENSG00000101384 PPP1R15A ENSG00000087074 
CDCA7L ENSG00000164649 JUNB ENSG00000171223 PTBP1 ENSG00000011304 
CENPH ENSG00000153044 KLF2 ENSG00000127528 PYCR1 ENSG00000183010 
CENPK ENSG00000123219 KLF4 ENSG00000136826 RGS16 ENSG00000143333 
CENPU ENSG00000151725 LIMA1 ENSG00000050405 RPA2 ENSG00000117748 
CENPW ENSG00000203760 LYAR ENSG00000145220 SERTAD1 ENSG00000197019 
CKS2 ENSG00000123975 MAFF ENSG00000185022 SLBP ENSG00000163950 
CLSPN ENSG00000092853 MCM2 ENSG00000073111 TIPIN ENSG00000075131 
CSRNP1 ENSG00000144655 MCM3 ENSG00000112118 TMEM132B ENSG00000139364 
DBF4 ENSG00000006634 MCM4 ENSG00000104738 TRIB1 ENSG00000173334 
DLL1 ENSG00000198719 MCM5 ENSG00000100297 TYMS ENSG00000176890 
DUSP6 ENSG00000139318 MCM6 ENSG00000076003 UHRF1 ENSG00000276043 
EGR1 ENSG00000120738 METTL1 ENSG00000037897 UNG ENSG00000076248 
EGR2 ENSG00000122877 MTHFD2 ENSG00000065911 WEE1 ENSG00000166483 
ERF ENSG00000105722 MYADM ENSG00000179820 
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Table 2(iii): Differentiation-stage genes derived from glioblastomas 

ACTL6B ENSG00000077080 FNBP1L ENSG00000137942 RAB3A ENSG00000105649 
ADD2 ENSG00000075340 GAD1 ENSG00000128683 RBFOX2 ENSG00000100320 
AFAP1 ENSG00000196526 GDAP1 ENSG00000104381 REEP1 ENSG00000068615 
ANK3 ENSG00000151150 GDAP1L1 ENSG00000124194 RGMB ENSG00000174136 
ANKS1B ENSG00000185046 GNG2 ENSG00000186469 RNF165 ENSG00000141622 
ARL4D ENSG00000175906 GNG3 ENSG00000162188 ROBO2 ENSG00000185008 
ASPHD1 ENSG00000174939 GPR161 ENSG00000143147 RPS6KL1 ENSG00000198208 
ATL1 ENSG00000198513 HRK ENSG00000135116 SBK1 ENSG00000188322 
B4GALNT1 ENSG00000135454 JPH4 ENSG00000092051 SCN3A ENSG00000153253 
BASP1 ENSG00000176788 KALRN ENSG00000160145 SCN3B ENSG00000166257 
BCL11A ENSG00000119866 KIAA1549 ENSG00000122778 SEZ6 ENSG00000063015 
BEND5 ENSG00000162373 KIF5A ENSG00000155980 SEZ6L ENSG00000100095 
CCNG2 ENSG00000138764 KIF5C ENSG00000168280 SEZ6L2 ENSG00000174938 
CCSAP ENSG00000154429 KLF12 ENSG00000118922 SH3BP5 ENSG00000131370 
CDC42EP3 ENSG00000163171 KLHDC8A ENSG00000162873 SHTN1 ENSG00000187164 
CDK5R1 ENSG00000176749 MAP1B ENSG00000131711 SNAP25 ENSG00000132639 
CELF3 ENSG00000159409 MAPK10 ENSG00000109339 SOBP ENSG00000112320 
CELF4 ENSG00000101489 MEX3A ENSG00000254726 SRRM3 ENSG00000177679 
CEP170 ENSG00000143702 MLLT11 ENSG00000213190 STMN2 ENSG00000104435 
CERS6 ENSG00000172292 MPPED2 ENSG00000066382 STMN4 ENSG00000015592 
CHGB ENSG00000089199 MTURN ENSG00000180354 STXBP1 ENSG00000136854 
CSRNP3 ENSG00000178662 MYT1L ENSG00000186487 SYT1 ENSG00000067715 
CXADR ENSG00000154639 NOL4 ENSG00000101746 THSD7A ENSG00000005108 
DBN1 ENSG00000113758 NOVA2 ENSG00000104967 TMEM178B ENSG00000261115 
DCX ENSG00000077279 NREP ENSG00000134986 TRIM36 ENSG00000152503 
DIRAS1 ENSG00000176490 PAFAH1B3 ENSG00000079462 TTC9B ENSG00000174521 
DLX2 ENSG00000115844 PARP6 ENSG00000137817 TUBB4A ENSG00000104833 
DPYSL3 ENSG00000113657 PDZD4 ENSG00000067840 UCHL1 ENSG00000154277 
DPYSL5 ENSG00000157851 PKIA ENSG00000171033 WDR47 ENSG00000085433 
DUSP26 ENSG00000133878 PLXNA4 ENSG00000221866 ZBTB8A ENSG00000160062 
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Methods 
 

During the course of this thesis work, I performed extensive analysis of multi-modal biological 

datasets, as well as inventing and implementing the ptalign algorithm. While I have attempted to 

motivate and describe my analyses in sufficient detail so as to facilitate their comprehension, the 

inclusion of every minutae was impractical. That is not to speak of the extensive techniques and 

materials which were used by Oguzhan Kaya and his students to enable the underlying wetlab 

experiments. For an in-depth understanding of these procedures and their implementation the 

motivated reader is encouraged to refer to (Foerster et al., 2023), where I have elaborated all 

relevant computational methods. Said publication also contains Oguzhan’s documentation of the 

experimental methods, though additional details are available in (Akçay, 2023; Bekavac, 2022; Kaya, 

2023). 

 

Source code, data files, and raw analysis notebook are, of course, available from the author upon 

reasonable request. 
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Es gibt vieles worauf man stolz sein kann, aber weniges was die eigenen kinder uebertrifft. Ich bin 

zwar noch kindlos; war aber selber auch mal ein kind mit stolzen eltern, Veronika und Jens. Das weis 

ich weil ich irgendwann das handschriftliche babytagebuch meiner mutter uebernommen habe. Ich 

habe nicht viel von ihr, und das buch ist auch nicht lang, aber darin stehen viele niedlichen 

babygeschichten, aufmerksam berichtet und liebevoll aufgefuehrt. Eine sticht besonders heraus: 

 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

|                                                | 

|                                   31.12.1995   | 

|  Heute waren wir im Zoo. Leo war sehr          | 

|  begeistert und nun steht sein Berufswunsch    | 

|  sicher fest: Professor! [...]                 | 

|                                                | 

 

Heute sind es ueber 27 jahre seit diesem zoobesuch, und ich habe diese begeisterung nie verloren! 

Jetzt bin ich dieser vorhersage eine grossen schritt naeher gekommen, ein schritt den ich ohne die 

vielen freunde, familien, und kollegen nie haette bewaeltigen koennen. Aber eine wird immer 

fehlen, denn Veronika starb drei monate nach diesem zoobesuch an einer gehirnblutung. Nun wollte 

ich hier ausnahmsweise die mehrheitliche danksagung alleine dieser erinnerung widmen. Liebe 

mama, ich denke nicht genug an dich, aber ich bin sehr gluecklich dass ich diesen moment meiner 

euphorie auch mit der erinnerung an dich und deiner liebe verknuepfen konnte.  
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