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Abstract

The discovery of functional cancer drivers has traditionally focused on mu-
tations within coding regions of DNA, despite these regions comprising only
about 2% of the entire genome. However, studies have shown that the re-
maining 98% of the genome, known as non-coding DNA or “junk” DNA,
also harbors mutations that can alter gene functionality, most notably the
two hotspot SNVs within the promoter of TERT. Beyond these two SNVs,
however, the catalog of known functional mutations within promoter regions
remains limited. This scarcity can primarily be attributed to existing meth-
ods relying on a singular SNV being observed in a large amount of patients
(i.e. high recurrence) thereby having high statistical power for their detec-
tion. Since the vast majority of SNVs in current datasets do not meet this
criterion and are instead categorized as singletons or lowly-recurrent SNVs,
there is a need for new approaches to identify this underrepresented class of
mutations.

To address this gap, I developed the REMIND-Cancer workflow, which is
a recurrence-agnostic approach designed to identify and prioritize functional
SNVs within promoter regions of protein-coding genes. This workflow, which
follows a filtering-ranking-inspection-validation process, was applied to two
pan-cancer datasets, resulting in the identification of 10 promoter SNVs that
activate their corresponding promoters, as validated in vitro using a luciferase
assay. Aiming to have a translational impact, this workflow was also applied
to two ongoing precision oncology programs as a pilot study to evaluate the
effectiveness of my approach and its computational efficiency.

Broadly, this thesis highlights the importance of identifying functional
mutations within the non-coding genome, beyond those that are highly re-
current, in order to advance personalized oncology.
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Zusammenfassung

Die Entdeckung funktioneller Krebstreiber hat sich traditionell auf Mutatio-
nen in den kodierenden Bereichen der DNA konzentriert, obwohl diese Bere-
iche nur etwa 2% des gesamten Genoms ausmachen. Studien haben jedoch
gezeigt, dass die verbleibenden 98% des Genoms, die als nicht codierende
DNA oder ”Junk”-DNA bekannt sind, ebenfalls Mutationen enthalten, die
die Genfunktionalität verändern können, insbesondere die beiden Hotspot-
SNVs im Promotor von TERT. Abgesehen von diesen beiden SNVs ist der
Katalog der bekannten funktionellen Mutationen in Promotorregionen jedoch
begrenzt. Diese Seltenheit ist in erster Linie darauf zurückzuführen, dass die
vorhandenen Methoden darauf angewiesen sind, dass eine einzelne SNV bei
einer großen Anzahl von Patienten beobachtet wird (d. h. eine hohe Aufkom-
mensrate) und somit eine hohe statistische Aussagekraft für ihre Entdeckung
hat. Da die überwiegende Mehrheit der SNVs in den aktuellen Datensätzen
dieses Kriterium nicht erfüllt und stattdessen als Singletons oder selten aufk-
ommende SNVs eingestuft werden, besteht ein Bedarf an neuen Ansätzen zur
Identifizierung dieser unterrepräsentierten Klasse von Mutationen.

Um diese Lücke zu schließen, habe ich den REMIND-Cancer Arbeitsablauf
entwickelt, einen Aufkommensrate-agnostischen Ansatz zur Identifizierung
und Priorisierung funktioneller SNVs in Promotorregionen von proteinkodieren-
den Genen. Dieser Arbeitsablauf, der Filter-, Priorisierungs-, Inspizierungs-
und Validierungsprozesse beinhaltet, wurde auf zwei Pan-Krebs-Datensätze
angewandt, was zur Identifizierung von 10 Promotor-SNVs führte, die ihre
entsprechenden Promotoren aktivieren, wie in vitro mit einem Luciferase-
Assay validiert wurde. Mit dem Ziel, eine translationale Wirkung zu erzie-
len, wurde dieser Arbeitsablauf auch auf zwei laufende Präzisionsonkologie-
Programme als Pilotstudie angewandt, um die Wirksamkeit meines Ansatzes
und seine rechnerische Effizienz zu bewerten.

Zusammenfassend unterstreicht diese Arbeit die Relevanz, funktionelle
Mutationen innerhalb des nicht-kodierenden Genoms zu identifizieren, die
über die häufig aufkommenden Mutationen hinausgehen, um die personal-
isierte Onkologie voranzubringen.

The above text was translated from English to German using AI-assisted
technology, particularly DeepL (https://www.deepl.com/en/translator).
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1 Introduction to REMIND-Cancer

1.1 Cancer

In 2022, nearly 20 million new cancer cases were diagnosed worldwide with
4.4 million in Europe alone (Ferlay et al., 2024). Cancer also caused approxi-
mately 10 million deaths globally, making it responsible for one in six deaths
(Ferlay et al., 2024) (WorldHealthOrganization, 2024). Despite the common
misconception of cancer as a single disease, it comprises over 200 distinct
types (CancerResearchUK, 2023) each of which may have unique subtypes,
incidence (i.e. number of new cases) rates, mortality (i.e. number of deaths)
rates, therapeutic optionss and patient responses. Consequently, studying
the various types of cancer and their specific characteristics is essential for
developing targeted treatments, improving patient outcomes and advancing
our collective understanding of this complex set of diseases.

Cancer is a heterogeneous disease that arises from alterations or muta-
tions in the DNA of cells, thereby being categorized as a genetic disease.
These changes potentially cause normal cells to become abnormal and grow
uncontrollably, which is similar to Darwinian evolution where abnormal cells
undergo clonal expansion. This implies that these abnormal cells replicate
and create more cells like themselves by outcompeting normal cells.

This cellular transformation from normal to abnormal occurs when DNA
acquires one or more mutations or alterations, which can be caused by a
number of different factors. These factors include genetic predispositions
(i.e. inherited tendencies to develop certain types of cancer), environmental
exposures (e.g. ultraviolet radiation) and lifestyle choices (e.g. smoking,
alcohol consumption, diet) (Panno, 2005).

As these abnormal cells continue to multiply in subsequent generations,
they can form a mass of tissue known as a tumor. If the tumor were to grow
and spread, it can thus invade nearby tissues, disrupt their normal function
and metastasize to other parts of the body. This spread of cancer cells to
other organs or tissues is what often makes cancer particularly dangerous, as
it can affect the function of vital parts of the body.

Mutations inherited from germ cells (sperm and egg) are known as germline
mutations whereas those occurring after conception are termed somatic mu-
tations. Unlike germline mutations, somatic mutations are not inherited by
offspring. Somatic mutations, in particular, are extensively studied for their
role in cell behavior during proliferation and mitosis. Somatic mutations in
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cancer cells are passed to their cellular descendants, forming clones that trace
back to the original mutated cell. If a mutation provides a growth advantage,
it leads to the expansion of mutated cells, fueling cancer progression.

The term mutation encompasses a variety of genomic events. Insertions
or deletions (indels) can result in frame shifts while single nucleotide vari-
ants (SNVs), also known as point mutations or single base substitutions,
involve the substitution of one nucleotide for another. Other mutation types
include inversions (reversal of a DNA segment’s orientation), translocations
(transfer of a DNA segment within or between chromosomes), duplications
(copying of a DNA segment), and deletions (deletion of a DNA segment).
Typically, genomic alterations larger than 50 basepairs (bps) are considered
to be structural variants (SVs) though the size sometimes varies and is some-
what arbitrary in the literature (Mahmoud et al., 2019).

Although various mutation types contribute to cancer, this thesis pri-
marily focuses on the most common type, single nucleotide variants (SNVs)
(Spencer, Zhang, & Pfeifer, 2015).

1.1.0.1 Drivers and Passengers

Though tens of thousands of somatic alterations are within a typical can-
cer genome (McFarland, Korolev, Kryukov, Sunyaev, & Mirny, 2013), only
a small number are considered to drive tumor progression through a selec-
tive advantage (Martincorena & Campbell, 2015). It is estimated that only
about four to five of these mutations, typically referred to as driver muta-
tions, driver events or drivers, are present within a typical cancer genome
(PCAWG Consortium, 2020)(Vogelstein et al., 2013) whereas the other mu-
tations are classically referred to as passenger mutations or passengers. How-
ever, this number of driver events varies depending on the cancer type. For in-
stance, sarcomas, thyroid and testicular cancer each harbor about one driver
mutation per tumor while endometrial and colorectal cancers harbor about
10 driver events (Martincorena et al., 2017).

Though driver events were thought to work individually, recent findings
have shown that drivers can work with other drivers (i.e. driver-driver) and
even other passengers (i.e. driver-passenger) to amplify their oncogenic po-
tential (Saito et al., 2020) (Hanker et al., 2021). This would thus allow weak
and infrequent drivers to display strong effects if in the proper context but
be neutral in another environment (Ostroverkhova, Przytycka, & Panchenko,
2023). Moreover, characterizing a mutation, in a binary sense, to be either

2



a driver or a passenger is not straightforward as some mutations become
drivers at a later stage of cancer evolution, which are referred to as latent
drivers or mini-drivers (Ostroverkhova et al., 2023) (Nussinov & Tsai, 2015)
(Yavuz, Tsai, Nussinov, & Tuncbag, 2023).

Whether acting independently or synergistically, multiple studies have
aggregated lists of driver mutations such as IntOGen (Gonzalez-Perez et al.,
2013), OncoVar (T. Wang et al., 2021), CNCDatabase (E. M. Liu, Martinez-
Fundichely, Bollapragada, Spiewack, & Khurana, 2021), and, most notably,
Catalogue Of Somatic Mutations In Cancer (COSMIC) (Tate et al., 2019)
though more and more mutations are constantly being added to these cata-
logs.

Biologically, driver mutations influence cellular pathways by altering the
functionality of their associated genes. These mutations belong to the broader
category of functional mutations, which affect gene activity. Demonstrating
this functionality can be achieved by introducing a mutation into a model
organism or cell line and directly measuring the resulting changes in activity.
Therefore, observing a statistically significant change confirms the mutation’s
functional activity. Consequently, the discovery of novel functional mutations
constitutes a major goal in modern genetics and genomics studies (Cline &
Karchin, 2011).

1.1.0.2 Non-Coding Region

The discovery of functional cancer drivers has traditionally focused on genes
that directly code for proteins (i.e. coding region) (Khurana et al., 2016)
(Rheinbay et al., 2020). Protein-coding mutations have the ability to alter
the codon that determines the amino acid sequence of a protein and could
be split into three categories: silent (i.e. same amino acid with/without
the mutation), missense/nonsynonymous (i.e. different amino acid after the
mutation), or nonsense (i.e. stop codon is created rather than an amino
acid codon). Notably, the Kirsten rat sarcoma viral oncogene homologue
(KRAS ), arguably the most well-known oncogene and the most common
oncogenic driver in human cancers (L. Huang, Guo, Wang, & Fu, 2021)
(Cox, Fesik, Kimmelman, Luo, & Der, 2014) (Prior, Lewis, & Mattos, 2012),
has a high frequency of protein-coding SNVs. These mutations lead to the
activation of the KRAS protein, resulting in uncontrolled cell division and
growth in cancers such as colorectal, pancreatic, and lung cancer (L. Huang
et al., 2021) (Wood, Hensing, Malik, & Salgia, 2016).
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While the majority of these discoveries have focused on the coding re-
gion of DNA, this region only constitutes about one to two percent of the
human genome. The remaining 98% is non-coding DNA, historically consid-
ered ”junk DNA”. However, our current understanding of this vast region is
limited due to the lack of reliable annotations and lack of effective tools to
analyze these regions (Patel & Wang, 2018) (Weinhold, Jacobsen, Schultz,
Sander, & Lee, 2014) (Khurana et al., 2016) (Lochovsky, Zhang, Fu, Khurana,
& Gerstein, 2015). Despite being understudied, mutations in non-coding re-
gions can disrupt the function of regulatory elements, leading to abnormal
gene expression and contributing to cancer development. These non-coding
regions contain critical regulatory elements, such as enhancers, silencers, and
promoters, which are discussed in the following section. As research ad-
vances, our understanding of non-coding DNA in cancer biology is evolving,
revealing that it is far from “junk” but rather an important component in
the complex regulation of the genome.

1.2 Non-Coding Elements

As mentioned previously, several commonly studied non-coding elements play
crucial roles in gene regulation through the recruitment of regulatory proteins
known as transcription factors (TFs). Within this section, three distinct
non-coding elements will be discussed in detail: enhancers (Section 1.2.1),
silencers (Section 1.2.2) and promoters (Section 1.2.3). Briefly, enhancers
and silencers are relatively short DNA sequences that can modulate gene
transcription from considerable distances by interacting with the promoter
in order to increase or decrease transcription, respectively. Promoters are
also relatively short DNA sequences located near the gene they regulate.
They initiate the transcription process by providing a binding site for RNA
polymerase, which is essential for the start of transcription. Additionally,
promoters can attract other TFs to regulate gene expression more precisely.
Together, these non-coding elements are integral to the intricate regulation
of gene expression, highlighting the complexity of genomic regulation beyond
just the coding sequences.

1.2.1 Enhancers

Enhancers, discovered approximately 40 years ago (Moreau et al., 1981)
(Banerji, Rusconi, & Schaffner, 1981), are DNA sequences that can enhance
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or increase the transcription of one or multiple genes. The genomic position
of these regulatory elements are extremely diverse due to being able to be
upstream or downstream of the transcription start site (TSS), with some
located as far as 100,000 base pairs away from the TSS (Riethoven, 2010).

To help regulate gene activity, enhancers harbor short, evolutionary-
conserved DNA motifs, otherwise known as transcription factor binding sites
(TFBSs) (See Section 1.3), in which TFs are able to bind and help regu-
late gene activity (Shlyueva, Stampfel, & Stark, 2014). Importantly, a single
enhancer can accommodate multiple binding sites for multiple TFs, allow-
ing for a complex network of gene regulation as this enhancer element could
theoretically influence multiple genes.

Research has shown that enhancers can also be involved in long-range
chromatin interactions, forming loops that bring them into close proxim-
ity with their target promoters, despite being distant (Calo & Wysocka,
2013). This looping mechanism is facilitated by protein complexes, particu-
larly the mediator complex (Ramasamy et al., 2023) (Allen & Taatjes, 2015),
which play crucial roles in the spatial organization of the genome and in the
regulation of gene expression. Additionally, enhancers can undergo various
modifications, such as histone acetylation (Pradeepa, 2017) and methylation
(Sharifi-Zarchi et al., 2017), which can further affect their activity and the
accessibility of TFBSs.

1.2.2 Silencers

Silencers, a counterpart to enhancers, act as regulatory DNA elements with
repressive functions, aiming to reduce the activity of linked promoters. Like
enhancers, silencers exhibit position- and orientation-independent actions
(Segert, Gisselbrecht, & Bulyk, 2021) and recruit TFs. However, unlike
enhancers that recruit activators, silencers recruit transcriptional repressors
(Segert et al., 2021). An example of a repressive element binding to a silencer
is the TF Snail, which has been associated with “antilooping” thereby dis-
rupting enhancer-promoter interactions to silence gene expression (Chopra,
Kong, & Levine, 2012).

Despite their discovery nearly 40 years ago (Brand, Breeden, Abraham,
Sternglanz, & Nasmyth, 1985), silencers remain significantly understudied
compared to enhancers (Segert et al., 2021) (Pang, van Weerd, Hamoen, &
Snyder, 2023). However, research into this non-coding element is ongoing
and gaining momentum in the field of genomics (T. Zhang, Li, Sun, Xu, &
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Wang, 2023).

1.2.3 Promoters

A promoter is a region of DNA that initiates and regulates the transcription
of a particular gene. This region serves as the binding site for RNA poly-
merase and other TFs, which are necessary for transcription to begin and
are typically found near the TSS of the gene that they regulate. In general,
the two main types of promoters are the core promoter and proximal pro-
moter, which differ in their functionality. Briefly, the core promoter, which
is located near the TSS, contains essential elements necessary for binding the
basic transcription machinery (i.e. RNA polymerase II and general transcrip-
tion factors) thereby initiating transcription. On the other hand, proximal
promoters lie upstream of the core promoter and contain binding sites for
specific TFs that can activate/enhance or inhibit/repress the transcription
of the associated gene. Within this section, these two classes of promoters
will be described in detail.

1.2.3.1 Core Promoters

The core promoter region of a gene is a short, conserved DNA sequence
in both prokaryotes and eukaryotes that typically ranges from upstream (5’
flanking region) of the TSS to potentially past the TSS and into the first exon
of the gene. In this region, RNA polymerase and other necessary proteins
are able to bind and begin the transcription process to synthesize RNA from
the DNA template, which ultimately leads to the production of mRNA. By
allowing these necessary proteins, otherwise known as general transcription
factors (GTFs), to bind, the core promoter specifically determines the loca-
tion of the TSS and direction of transcription (Andersson & Sandelin, 2020).
GTFs, as well as other regulatory elements within the core promoter (i.e.
TATA-box, initiator), that bind to the core promoter region are detailed in
Section 1.3.1.

Core promoters are typically defined as being within ± 50-100 bp of
the TSS (Roy & Singer, 2015) (Sloutskin, Shir-Shapira, Freiman, & Juven-
Gershon, 2021) and have been observed from bacteria to metazoans (Roy &
Singer, 2015). Common core promoter elements include the TATA box, Intia-
tor (Inr), and TFIIB recognition elements (BRE) that help in the initiation
of transcription. Without a functional core promoter, the entire transcription
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machinery would not properly assemble at the TSS and the transcription of
the subsequent gene would not begin.

1.2.3.2 Proximal Promoters

The proximal promoter is another part of the promoter that modulates the
efficiency and rate of transcription but is not necessary to start transcription.
Similar to the core promoter, TFs bind to this region of DNA but are pri-
marily specific or gene regulatory TFs rather than GTFs. This class of TFs
are further detailed in Section 1.3.2. These DNA-binding TFs can then di-
rectly or indirectly (i.e. through the recruitment of co-activators (Andersson
& Sandelin, 2020)) influence core promoter activity.

Though the typical proximal promoter length ranges between 100 (i.e.
TSS ± 50) to 1,000 (i.e. TSS ± 500) bps long (Le, Yapp, Nagasundaram,
& Yeh, 2019), no length is consistently used as this distance differs between
genes and tissue context (X. Chen, Wu, Hornischer, Kel, & Wingender, 2006).
Currently, there is no universal definition of promoter sequences though sta-
tistical modeling and machine learning approaches have attempted to predict
these exact lengths (Ohler, Harbeck, Niemann, & Reese, 1999) (Umarov &
Solovyev, 2017) (K. Song, 2012) (Le et al., 2019).

1.2.3.3 Annotating Promoters

Determining the specific sequence and subsequent length of a promoter is
important due to the inclusion or exclusion of TFBSs. If incorrectly specified,
a TFBS may be missed completely or not fully recognized, which can thus
drastically affect the expression of its adjacent gene.

Although different promoter databases have been generated such as the
Tissue Specific Promoter Database (TiProD) (X. Chen et al., 2006) and
the Eukaryotic Promoter Database (EPD) (Périer, Praz, Junier, Bonnard,
& Bucher, 2000), verifying the accuracy of these predictions is challenging.
These databases often do not agree with one another due to several reasons
such as diferences in tissue specificity, number of genes included and vari-
ations in gene reference annotation. As a result, studies characterizing the
effects of mutations have stuck to larger, more general definitions of promot-
ers (e.g. TSS ± 500) to be as inclusive as possible (Rheinbay et al., 2020).
This inclusivity helps capture a wider range of potential regulatory elements,
reducing the risk of missing critical TFBSs.
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1.3 Transcription Factors

As previously-noted, TFs are proteins that recognize TFBSs in order to bind
to DNA and therefore regulate the expression of adjacent genes. There are
two primary classes of TFs: general (or basal) TFs and gene-specific regu-
latory TFs. Broadly, general transcription factors (GTFs), otherwise known
as basal TFs, are a part of the transcription pre-initiation complex (PIC), fa-
cilitating the recruitment and positioning of RNA Polymerase II (RNA Poly
II) at the TSS, enabling transcription (Sikorski & Buratowski, 2009). This
transcriptional complex assembles at the core promoter.

On the other hand, gene-specific regulatory TFs are proteins that still
bind to TFBSs but rather than forming the PIC, they modulate the tran-
scription of their target genes directly or by interacting with other regulatory
elements (i.e. enhancers, silencers). Both classes of TFs play important roles
in gene regulation and will be described in more detail below.

1.3.1 General TFs

GTFs are proteins that assist in initiating transcription by helping RNA
Poly II bind to the core promoter region of genes in all eukaryotes. These
six GTFs, namely TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH, along
with RNA Poly II assemble, into the PIC whose formation and function is
critical in regulating transcription (Freiman, 2009) (Sikorski & Buratowski,
2009).

The most important GTF is TFIID, which contains multiple subunits
such as the TATA-binding protein (TBP) and approximately 13 to 14 TBP-
associated factors (TAFs) (Cler, Papai, Schultz, & Davidson, 2009). The
TBP is critical because it recognizes the TATA-box, which is a conserved
sequence (TATAAA 5’ to 3’) located 25-30 base pairs upstream of the TSS in
both eukaryotes and archaea (Burley, 1996). Although TBP alone can bind
to TATA boxes, the inclusion of its associated factors allows the complex
to recognize other TFBSs such as the initiator (Inr) and the downstream
promoter element (DPE) (Akhtar & Veenstra, 2011).

The other GTFs support the binding process in various ways (Cler et al.,
2009) (Freiman, 2009). Briefly, TFIIA structurally stabilizes TFIID binding
to the TATA box and helps recruit TFIID to the promoter if the TATA box
does not exist. TFIIH unwinds the DNA around the TSS to allow chromatin
to be accessible, thus allowing RNA Poly II to access the template strand

8



and begin RNA synthesis. TFIIB binds to both TBP (within TFIID) and
DNA, bridging the interaction between TFIID and RNA Poly II. This TF
also helps in aligning RNA Poly II at the correct start site. Lastly, TFIIF
stabilizes the binding of RNA Poly II to the DNA and TFIIE recruits and
modulates the activity of TFIIH. Together, these GTFs and RNA Poly II
bind to the promoter to initiate the transcription process (Latchman, 1997)
(Figure 1.3.1).

Figure 1: An overview of the pre-initiation complex (PIC) in which general
transcription factors (GTFs) and RNA Polymerase II (RNA Poly II) bind
to the core promoter via the TATA Box in order to initiate the transcription
process. Created with BioRender .com .

1.3.2 Gene-Specific Regulatory TFs

The other class of TFs are known as gene-specific regulatory TFs. Unlike
GTFs, this class of proteins do not participate directly in PIC formation. In-
stead, these TFs modulate the transcription rate of specific genes by binding
to promoters, enhancers, or silencers. With approximately 1,400 to 1,900 to-
tal human TFs (Ignatieva, Levitsky, & Kolchanov, 2015) (Göös et al., 2022)
and only several GTFs, a majority of TFs fall into this category. In typi-
cal nomenclature, this abundantly represented category of TFs is generally
referred to simply as transcription factors while GTFs are specifically desig-
nated as general transcription factors. This thesis will adopt this convention:
unless otherwise specified, any reference to a TF will pertain to a gene-specific
regulatory TF.
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Upon binding to DNA, the impact that a specific TF has on transcrip-
tion is highly variable and context specific (Lambert et al., 2018) though
it is thought that a majority of TFs act by recruiting co-factors (Reiter,
Wienerroither, & Stark, 2017) (Z. Wang et al., 2021). These co-factors do
not necessarily bind to DNA but, instead, modify and influence TF activity
through various mechanisms. The two main types of TF co-factors are co-
activators and co-repressors. Co-activators increase the activity of TFs by
modifying the chromatin structure to make DNA more accessible for tran-
scription or by recruiting RNA Poly II to the core promoter (Näär, Lemon,
& Tjian, 2001). Co-repressors do the opposite and make the DNA less acces-
sible thereby repressing transcription (Perissi, Jepsen, Glass, & Rosenfeld,
2010).

Adding to the complexity of TFs, one key feature of transcriptional regu-
lation is that genes are often regulated by more than one TF (Wagner, 1999)
(M.-J. M. Chen et al., 2012). At times, groups or clusters of very closely
spaced TFBSs occur thereby indicating that these TFs are involved in the
gene’s regulation (Wagner, 1999). Regardless, TFs typically may work in
tandem with many other regulatory elements thus creating a large and com-
plex network of TFs influencing the activity of other TFs as well as regulating
multiple genes.

1.3.3 Detecting Transcription Factor Binding Sites

Understanding TFs and their importance is not possible without first under-
standing their corresponding binding sites or motifs.

Experimentally, motifs can be detected using chromatin immunoprecipi-
tation sequencing assays along with sequencing techniques, which is referred
to as ChIP-seq (Mundade, Ozer, Wei, Prabhu, & Lu, 2014). However,
other methods, such as using gel electrophoresis mobility shift assay (EMSA)
(Hellman & Fried, 2007) (Gurevich, Zhang, & Aneskievich, 2010), System-
atic Evolution of Ligands by EXponential enrichment (SELEX) and protein
binding microarrays (PBMs) are also utilized (Hombach, Schwarz, Robinson,
Schuelke, & Seelow, 2016).

Using these methods of identification, several databases have been cre-
ated to catalog different motifs such as TRANSFAC (Matys et al., 2003),
JASPAR (Fornes et al., 2020), HT-SELEX (Jagannathan, Roulet, Delorenzi,
& Bucher, 2006), and others (Lambert et al., 2018). In these databases, the
specific sequence in which a certain TF could bind is typically displayed in

10



the form of a sequence logo (Schneider & Stephens, 1990), which are nu-
cleotide letters stacked on top of one another for each position in the aligned
sequence, as exemplified in Figure 2. The height of each letter is made pro-
portional to its frequency and normalized for context whereas the letters are
sorted in descending order.

In particular, the JASPAR database (Fornes et al., 2020) is an openly-
accessible resource that curates TFs and their binding profiles in the form of
position frequency matrices (PFMs), which are then used to create a sequence
logo. This database aggregates data across various taxonomic groups and
species, including Homo sapiens, derived from ChIP-seq, SELEX and PBM
experiments. Moreover, JASPAR offers users the option to select from highly
confident TFs, termed JASPAR CORE, or unverified TFs, termed JASPAR
UNVALIDATED, along with their corresponding binding profiles. As of 28
February 2024, the JASPAR CORE database contains 727 unique TFs and
their corresponding sequence logos.

Through the utilization of these plots, the evolutionary conservation of
a particular TFBS could be assessed in which large letters represent a high
propensity of a nucleotide to occur at this position. As TFBSs are well-
conserved, certain mutations, such as SNVs, can disrupt their normal process
by either creating a new binding site for a TF to recognize or by destroying
a pre-existing binding site, thus not allowing the TF to bind. Several studies
have specifically attempted to predict the impact of SNVs on these motifs
through various mechanisms (Yiu Chan, Gu, Bieg, Eils, & Herrmann, 2019)
(Carrasco Pro, Bulekova, Gregor, Labadorf, & Fuxman Bass, 2020) (Fornes
et al., 2018).

1.3.4 Transcription Factor Families

In addition to understanding TFBSs and their detection, another significant
aspect of TFs is the concept of a TF family. A TF family comprises related
TFs sharing common structural traits and typically perform similar functions
in regulating gene expression. These families are grouped based on similari-
ties within their DNA-binding domain (DBD), which is the region of the TF
that specifically binds to the TFBS (Lambert et al., 2018). The number of
TF families within humans is estimated to be around 50 to 100 (Fornes et
al., 2020) (Jolma et al., 2013) but this varies on the individual classification
method used as their is no fully agreed-upon strategy.

Several families, such as the E-twenty six (E26) family and the Nuclear
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Factor kappa-light-chain-enhancer of activated B cells (NF-κB) family, have
been highly implicated in multiple different cancers including prostate can-
cer, colorectal cancer, and melanoma (T. Hsu, Trojanowska, & Watson,
2004)(Dolcet, Llobet, Pallares, & Matias-Guiu, 2005). These two families, in
particular, will be discussed briefly below.

1.3.4.1 E26 (ETS)

The E26 family of proteins, sometimes also known as ETS factors, is consid-
ered one of the largest TF families due to having 28 genes within 12 different
subfamilies (Qian, Li, & Chen, 2022). TFs within this family, such as ETS1,
ETV5, and ELK4, share a highly-conserved DBD, otherwise known as the
ETS domain, that binds to GGA(A or T) (5’ to 3’ direction) motifs in DNA
as exemplified by Figure 2.

Figure 2: Sequence logos of three ETS factors: ETV5, ETS1 and ELK4.
The ETS domain, which is represented by a GGAA or GGAT sequence, is
denoted by the dashed grey box around each plot.

ETS1 is the founding member of the E26 family. It is expressed in differ-
ent cell types and is reported to play a number of different roles in both phys-
iological and pathological conditions (Adler & Wernert, 2012). However, this
TF has been implicated in a number of different cancers, particularly through
its overexpression within breast cancer (particularly the triple-negative sub-
type) (G.-C. Kim et al., 2018), head/neck squamous cell carcinoma (partic-
ularly within the mesenchymal subtype) (Gluck et al., 2019), and prostate
cancer (Adler & Wernert, 2012).

ELK4 has been shown to promote tumorigenesis and tumor progression,
particularly within prostate cancer (Makkonen et al., 2008). Studies have ob-
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served that this TF is overexpressed in prostate cancer samples (S. Edwards
et al., 2005) and is frequently involved in gene fusions, particularly with the
SLC45A3 gene. This fusion is correlated with higher levels of ELK4 ex-
pression and has been shown to promote prostate cancer cell proliferation,
indicating its role in tumor growth (Y. Zhang et al., 2012)(Rickman et al.,
2009). It has additionally been found that in response to stimulation by a
growth factor, ELK4 activates the expression of oncogenes such as EGR1
and FOS (Zhu et al., 2023). However, though the research into ELK4 is
increasing, the role of ELK4 is not fully known as it is dependent on the
cellular context (Zhu et al., 2023).

ETS variant transcription factor 5 (ETV5) has an important role in cell
development, differentiation, proliferation and apoptosis (Sementchenko &
Watson, 2000). Particularly within ovarian cancer, the significant upreg-
ulation of this TF leads to the transcriptional increase of other oncogenes
involved in the resistance of programmed cell death (i.e. cell apoptosis),
formation of new blood vessels (i.e. angiogenesis), migration and invasion
(L. Zhang et al., 2021) (Bullock et al., 2019) (Alonso-Alconada et al., 2014).
ETV5 has also been implicated within colorectal cancer (X. Cheng et al.,
2019) and thyroid carcinoma (Puli et al., 2018).

Though being implicated within cancer, many ETS-family TF, partic-
ularly the likes of ETS1, ELK4, and ETV5, have been used as molecular
targets for clinical treatment studies for precision oncology (L. Zhang et al.,
2021).

1.3.4.2 Nuclear Factor-κB (NF-κB)

Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) is an-
other well-known TF family that actively plays a large role in regulating im-
mune and inflammatory responses, cell proliferation, and survival (Giuliani,
Bucci, & Napolitano, 2018). The activation of this family, however, has been
well-described in the literature, particularly within breast, lung, colorectal,
and pancreatic cancers (Naugler & Karin, 2008) as well as multiple myeloma
(Yu, Lin, Zhang, Zhang, & Hu, 2020), leukemia (Kordes, Krappmann, Heiss-
meyer, Ludwig, & Scheidereit, 2000) and lymphoma (Weniger & Küppers,
2016).

This family consists of five subunits: p50 (derived from p105; encoded
by NF-κB1 gene), p52 (derived from p100; encoded by the NF-κB2 gene),
p65 (otherwise known as RelA; encodes RELA gene), c-Rel (encoded by the
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REL gene) and RelB (encoded by the RELB gene) (Zinatizadeh et al., 2021).
Similar to how ETS-factors share the ETS domain, these proteins share the
highly conserved Rel homology domain (RHD) (Zinatizadeh et al., 2021).

Briefly, NF-κB proteins are located in the cytoplasm where they are kept
inactive by a family of inhibitory proteins called IκB (inhibitor of NF-κB)
(Naugler & Karin, 2008). When cells receive signals such as pro-inflammatory
cytokines (e.g. TNF-α and IL-1β), microbial infections or stress signals
(Pickering & O’Connor, 2007), the IκB kinase (IKK) enzyme complex phos-
phorolates IκB proteins, which leads to their degradation (D’Acquisto, May,
& Ghosh, 2002). As a result, NF-κB proteins are no longer retained in the
cytoplasm and are able to translocate to the nucleus where they can bind to
the promoter and regulate the gene expression of target genes (Naugler &
Karin, 2008) (Solt & May, 2008) (D’Acquisto et al., 2002).

1.3.5 Chromatin Structure

While a TF recognizing the proper TFBS is necessary for binding to DNA,
this alone is not sufficient (Pop et al., 2023). Chromatin structure, in par-
ticular, plays a large role in regulating TF access to DNA. Short segments
of DNA, typically around 147 base pairs in length, wrap around histone pro-
teins to form nucleosomes, which are the basic repetitive units of chromatin
(Richmond & Davey, 2003) (Peterson & Laniel, 2004). These nucleosomes
further compact with multiple nucleosomes stacking to create chromatin
fibers, which then condense and intertwine to form chromosomes. Gener-
ally, nucleosomes are less abundant at certain genomic locations, particu-
larly within regulatory elements such as promoters, resulting in accessible
chromatin (Minnoye et al., 2021). This accessibility allows TFs to bind to
DNA more easily. Conversely, in tightly packed heterochromatin, DNA is
less accessible, making it difficult for TFs to bind.

Given the significant impact of chromatin structure on TF binding, sev-
eral studies have focused on predicting chromatin accessibility both in vitro
and de novo. To detect open chromatin in vitro, DNase I hypersensitive site
sequencing (DNase-seq) and Assay for Transposase-Accessible Chromatin us-
ing Sequencing (ATAC-seq) are among the most commonly used chromatin
accessibility profiling methods (Minnoye et al., 2021)(L. Song & Crawford,
2010).

Briefly, DNase-Seq identifies open chromatin regions by first isolating
cells and extracting nuclei, which are then treated with the DNase I en-
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zyme to cut DNA at regions where the chromatin is open and accessible.
These DNA fragments are then isolated, purified, sequenced, and mapped
back to the reference genome thereby identifying the locations of DNase I
hypersensitive sites, which correspond to open chromatin regions (Cockerill,
2011). Similarly, ATAC-Seq provides insights into chromatin accessibility by
using a transposase enzyme to insert sequencing adapters into open regions
of chromatin (Buenrostro, Wu, Chang, & Greenleaf, 2015). This method is
quicker and requires fewer cells than DNase-seq, making it a popular choice
for studying chromatin dynamics and TF binding.

In contrast, several de novo approaches and tools have been developed
to predict open chromatin regions based on various types of genomic data.
These methods leverage machine learning models, sequence motifs, and epi-
genetic marks to enhance prediction accuracy. For instance, machine learning
algorithms, such as DeepSEA (J. Zhou & Troyanskaya, 2015), are trained on
large datasets of known open chromatin regions to learn sequence features
associated with chromatin accessibility. Additionally, predictive models of-
ten incorporate known sequence motifs for TFBSs and epigenetic marks such
as histone modifications, which are strong indicators of active chromatin.

Integrative approaches that combine multiple types of genomic data, such
as DNA methylation, histone modifications, and chromatin conformation,
provide a more comprehensive and accurate prediction of open chromatin
regions. ChromHMM (Ernst & Kellis, 2012) is a tool that exemplifies this in-
tegrative strategy by utilizing hidden Markov models to segment the genome
into different chromatin states based on combinations of histone modifica-
tions. This tool generates a map of chromatin states, identifying regions that
are likely to be open and accessible for TF binding. ChromHMM works by
using ChIP-seq data as input for various histone modifications and learning
patterns that correspond to distinct chromatin states, such as active pro-
moters, enhancers, or repressed regions (Ernst & Kellis, 2012). These states
are then used to annotate the genome, providing insights into the regulatory
landscape and helping to predict regions of open chromatin with high accu-
racy. Consequently, many studies have used this tool for various annotations
(Trapnell et al., 2014) (Watanabe, Taskesen, Van Bochoven, & Posthuma,
2017) (B. Zhang et al., 2022).
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1.3.6 Predicting TF Activity

TF activity refers to its ability to control the transcription of its correspond-
ing genes. Numerous studies aim to infer TF activity levels based on changes
observed in the expression levels of the TF’s target genes (Badia-i Mompel
et al., 2022) (Trescher & Leser, 2019).

1.3.6.1 decoupleR

A popular tool for predicting TF activities is decoupleR, available in both
Python and R. This unified framework includes 12 computational methods
to infer TF activities solely from bulk RNA-Seq data. Due to the lack of
consensus on the “optimal” algorithm, prior studies have primarily used
methods such as the univariate linear model (ULM), multivariate linear
model (MLM), weighted sum (WSUM), VIPER (Alvarez, Giorgi, & Cali-
fano, 2014), or an aggregation of these tools, known as a consensus approach
(Arriojas, Patalano, Macoska, & Zarringhalam, 2023)(Whitlock, Wilk, How-
ton, Clark, & Lasseigne, 2024)(Perez & Sarkies, 2023), (Hosseini-Gerami et
al., 2023)(Arriojas et al., 2023) (Tudose, Bond, & Ryan, 2023)(Er-Lukowiak
et al., 2023).

Briefly, ULM and MLM both fit linear models to assess TF activity for
each sample. In ULM, the expression of each gene in a sample is treated as
the response variable while the TF-gene weight, which represent the influ-
ence or regulatory strength of the TF on its target genes, is used as the single
predictor. This approach evaluates the effect of each TF independently. In
contrast, MLM fits a linear model using multiple TF-gene weights simulta-
neously as predictors. In both cases, the activity of a TF is represented by
the t-value obtained from the fitted linear model. This t-value is used as the
score indicating the activity level of the TF in this individual sample where
a positive t-value represents an active TF and a negative t-value represents
an inactive TF.

Conversely, the weighted sum (WSUM) approach multiplies each gene
expression value by its associated TF-gene weight. The weighted target fea-
tures are then summed to produce an enrichment score, which is used as the
WSUM estimate. This score is then normalized to reflect the relative activity
of the regulator based on the weighted contributions of its target features.

Lastly, Virtual Inference of Protein-activity by Enriched Regulon analysis
(VIPER) (Alvarez et al., 2014) infers TF activity by analyzing the expression
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patterns of the TF’s target genes, collectively known as its regulon, rather
than relying on the expression level of the TF itself as the previous methods
do. It assesses whether these target genes are collectively upregulated or
downregulated using statistical enrichment analysis to determine if the ob-
served gene expression changes are consistent with activation or repression
of the TF. VIPER then computes a “normalized enrichment score” (NES)
for each TF, reflecting the inferred activity.

1.3.6.2 DoRothEA and Collectri

The decoupleR tool utilizes pre-defined gene regulatory networks that in-
corporate prior biological knowledge of TF-gene interactions. Two primary
databases used for this purpose are DoRothEA (Garcia-Alonso, Holland,
Ibrahim, Turei, & Saez-Rodriguez, 2019) and Collectri (Müller-Dott et al.,
2023).

DoRothEA generated human TF-gene interactions using four strategies:
manually-curated literature resources, ChIP-seq interactions, TFBS predic-
tions on gene promoters, and transcriptional regulatory interactions inferred
from expression data across normal human tissues and cancer types (Garcia-
Alonso et al., 2019). This data is compiled into a table with columns for
the transcription factor name (source), confidence level (A for highest, D
for lowest), gene name (target), and interaction weight (ranging from -1 for
repression to +1 for activation).

Collectri, an extension of DoRothEA curated by the same research lab, in-
corporates only high-confidence TF-gene interactions (DoRothEA confidence
level A) but also includes additional experimental resources and a curated
subset from their text mining method ExTRI, resulting in 43,178 TF-gene
associations corresponding to 1,186 distinct TFs across humans (Müller-Dott
et al., 2023).

In total, both DoRothEA and Collectri contain a large number of TF-
gene interactions, categorized into activators and repressors. As of 21 July
2024, DoRothEA contains 32,275 unique TF-gene interactions (31,637 acti-
vators and 638 repressors) in comparison to Collectri’s 43,178 unique interac-
tions (37,704 activators and 5,474 repressors). In benchmarking evaluations
for transcription factor activity, the DoRothEA study (Garcia-Alonso et al.,
2019) utilized VIPER while the Collectri study (Müller-Dott et al., 2023)
employed the ULM algorithm.
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1.4 Methods to Identify Functional pSNVs

Within this section, a review of the existing literature on the most common
tools used to detect functional pSNVs will be introduced. Generally, these
tools can be split into two distinct categories: recurrence-based approaches
and non-recurrence-based approaches. Here, the term recurrence refers to
identifying a mutation that occurs in multiple samples though this term
could further be characterized into ”highly recurrent” mutations (i.e. being
observed in more than three samples) and ”lowly recurrent” mutations (i.e.
being observed within one to three samples). In contrast, those mutations
that only occur in a single sample are referred to as ”singletons”.

Historically, driver identification has relied on mutations being recurrent,
particularly since this is thought of as a strong signal of positive selection
in cancer cells (Hess et al., 2019) (Miller et al., 2015). The overarching as-
sumption is that if each genomic position has a relatively equal propensity of
being mutated, those positions that harbor a specific mutation within mul-
tiple genomes must be under some type of selective pressure. This concept
is further exemplified by some of the most well-known oncogenes, such as
BRAF (Chapman et al., 2011) (Ascierto et al., 2012) and KRAS, harboring
highly recurrent mutations across multiple cancer types. Following in these
footsteps, several methods to identify functional mutations within the non-
coding region of DNA have attempted to leverage this concept of recurrence.
Several of the most well-known approaches will be detailed below.

1.4.1 Recurrence-based Approaches

FunSeq2 (Fu et al., 2014) is a commonly-used computational framework that
was developed to annotate and prioritize non-coding variants that may have
functional significance by first creating a data context and then using this
data context to prioritize variants within their pipeline. This data context is
built by integrating six key features: functional annotations (i.e. knowledge
of cancer-related genes), prediction of gain-of-function or loss-of function
events, assessment of variants in conserved or non-conserved regions, linking
variants with their target genes, incorporating user annotations, and im-
portantly, identifying recurrent elements from both user-input and publicly-
available cancer datasets. Once this context is built, a scoring algorithm
is then applied to prioritize putative high-impact variants. Through this
methodology, they cite a high predictive power for the detection of recurrent
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somatic regulatory variants.
OncoDriveFML (Mularoni, Sabarinathan, Deu-Pons, Gonzalez-Perez, &

López-Bigas, 2016) also aims to identify and prioritize mutations by esti-
mating a functional impact (FI) score for each mutation. In essence, the
functional impact of all mutations within a specific region (i.e. promoter) is
computed through the use of a number of different annotations (i.e. conser-
vation scores, predicted effect on protein structure) and user-specified algo-
rithms. Then, this impact is compared to a local background distribution in
order to detect regions or exact genomic positions under positive selection,
which is then used as a score for each mutation.

ncDriver (Hornshøj et al., 2018) employs a two-step approach to identify
and prioritize non-coding variants. Initially, it identifies recurrent mutations
(SNVs and indels), and subsequently assesses their significance based on
cancer specificity and conservation. In the first step, mutations are evaluated
to determine if their frequency exceeds expectations, employing a background
mutation rate derived from a binomial distribution, to retain only significant
mutations. In the second stage, prioritization is based on cancer specificity,
local conservation, and global conservation tests.

Lochovsky et al. (Lochovsky et al., 2015) introduced LARVA, a tool
designed to pinpoint highly mutated non-coding regulatory elements by de-
tecting mutations that occur more frequently than anticipated. By contrast-
ing the observed mutation count with a background mutation distribution
modeled as a β-binomial random variable, accounting for various factors like
replication timing, mutations were then ranked and prioritized.

MutSigNC (Rheinbay et al., 2017) is an additional computational method
based upon the MutSig suite of tools (Lawrence et al., 2014) with a goal of
identifying significantly mutated promoters, particularly within breast can-
cer. For each genomic element (i.e. promoter), MutSigNC compares the
observed mutation rate against a patient-specific background mutation rate,
which is modeled by a β-binomial distribution, in order to determine the
significance of this region.

In addition to these tools, other recurrence-based studies include those of
Weinhold et al. (Weinhold et al., 2014), Nik-Zainal et al. (Nik-Zainal et al.,
2016), and Melton et al. (Melton, Reuter, Spacek, & Snyder, 2015).

19



1.4.1.1 Strategy of Recurrence-Based Methods

In summary, recurrence-based methods, such as FunSeq2 (Fu et al., 2014),
OncodriveFML (Mularoni et al., 2016), ncDriver (Hornshøj et al., 2018),
LARVA (Lochovsky et al., 2015), and MutSigNC (Rheinbay et al., 2017), all
have a single guide for detecting functional mutations: if a single base pair
or region of base pairs is mutated more frequently than randomly expected,
the mutation must have been positively selected during tumor progression
(Elliott & Larsson, 2021) (Mart́ınez-Jiménez et al., 2020).

This methodology could be broken down into four distinct steps:

1. Calculate the observed mutation rate within a dataset for their regions
of interest (i.e. promoters).

2. Construct a statistical background model that represents the expected
mutation rate, which is typically done via a binomial, β-binomial, or
Poisson distribution.

3. Compare the two distributions of the observed mutation rate to the
expected mutation rate.

4. If there is a significant difference between these two distributions, then
it could be hypothesized that this position (or region) is positively
selected during tumor progression.

However, determining what should be expected is predicated on having
a reliable background distribution to serve as a null model, which has been
shown to be difficult to estimate (Zhao, Martin, & Gordân, 2022)(Lawrence
et al., 2013). Furthermore, this background model must incorporate the
mutational heterogeneity of different tumor and tissue types as this has a
large effect on driver detection (Lawrence et al., 2013). If the underlying
background model is misspecified, calculations and discoveries of functional
mutations may not necessarily be correct.

Furthermore, this recurrence-based strategy of detecting functional pSNVs
requires high statistical power to produce reliable results. By definition, sta-
tistical power is the probability of rejecting a null hypothesis given that it
is truly false, which, in the context of functional pSNV discovery, is the
probability of correctly identifying a true, functional pSNV. If high statis-
tical power is not achieved, however, this implies that methods are unable
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to discern the difference between truly functional mutations and passenger
mutations (E. Kim et al., 2016).

Consequently, one of the keys of obtaining high statistical power is to in-
crease the sample size in order to have enough samples harboring the event of
interest. The more samples harboring this event (i.e. higher recurrence level)
leads to higher statistical power, which makes the detection of these func-
tional pSNVs possible. Therefore, to reliably detect functional pSNVs, these
recurrence-based methods not only depend on a correctly-specified back-
ground mutation rate but also inherently depend on having a high recurrence
rate.

1.4.2 Singletons and Lowly-Recurrent Events

Though having high statistical power through a high recurrence rate is de-
sirable, the majority of functional events occur at low frequencies (E. Kim et
al., 2016) (Garraway & Lander, 2013) (Rheinbay et al., 2020). This makes
recurrence-based methods statistically underpowered, leaving a significant
blindspot in the identification of functional singletons and lowly-recurrent
mutations.

Rheinbay et al. (Rheinbay et al., 2020) illustrated this effect by comparing
the number of samples harboring a specific pSNV needed to achieve adequate
statistical power across different sample sizes (Figure 3). In a pan-cancer
dataset of 2,278 total samples, it was reported that at least 15 samples need
to harbor a specific pSNV in order achieve a statistical power of 90%, a
threshold commonly used in pSNV detection. In smaller cohorts such as
bladder transitional cell carcinoma (n=23), 6 (26%) of those samples would
need to harbor the same pSNV to reach the same power threshold. The
smallest required recurrence level to achieve sufficient power was 4, which
was calculated for the myeloproliferative neoplasms (Myeloid-MPN; n=23)
cohort, the general myeloid cohort (Myeloid; n=38), and the central nervous
system pilocytic astrocytomas (CNS-PiloAstro; n=89).
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Figure 3: A heatmap showing the minimal frequency needed for cohorts to
obtain at least 90% statistical power. For each cohort, the mutational rate is
displayed as a bar graph whereas the number within each colored box repre-
sents the number of patients required to find a driver. The pan-cancer dataset,
along with the CNS-PiloAstro, Myeloid, Myeloid-MPN, and Bladder-TCC co-
horts, are highlighted in yellow. This figure is a modified version of Figure
4A within Rheinbay et al. (Rheinbay et al., 2020), adapted and reprinted
under the Creative Commons Attribution 4.0 International License.

Given that most mutations are not recurrent enough to meet even this
lenient threshold of four, detecting singletons and lowly-recurrent mutations,
particularly pSNVs, using a recurrence-based approach is unattainable.

This would not be an issue if these types of mutations were inconse-
quential. However, several studies have implicated non-recurrent and lowly-
recurrent mutations as having oncogenic potential (Scholl & Fröhling, 2019)
(Zhao et al., 2022) (E. Kim et al., 2016) (Ostroverkhova et al., 2023) (Nussinov,
Tsai, & Jang, 2019). Consequentially, as these mutation types have been
missed and lie in the ”long tail of infrequent molecular alterations” (Scholl
& Fröhling, 2019), this implies that, from a clinical perspective, many po-
tentially actionable mutations are yet to be discovered.

To address the limitations of recurrence-based approaches, only a few
studies have explored non-recurrence-based methods to identify functional
pSNVs (Zhao et al., 2022). However, these studies typically rely solely on
the binding of specific transcription factors (TFs) or TF families and often
lack experimental validation to support their computational findings. Conse-
quently, non-recurrence-based methods are not only preferred but necessary
to discover a broader range of functional pSNVs, particularly those that are
singletons or lowly-recurrent.
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1.5 In vitro validation via luciferase assays

Luciferase reporter assays are commonly used in biology to measure a pro-
moter’s ability to drive the expression of a reporter gene (Yin, Xiang, & Li,
2005)(Horn et al., 2013)(F. W. Huang et al., 2013). In a dual reporter lu-
ciferase assay system, the promoter region of interest, which may or may not
contain the SNV of interest, is cloned upstream of both the Renilla luciferase
gene and the firefly luciferase gene in a circular plasmid. These plasmids are
then transfected into the target cells, which are allowed to grow for a suffi-
cient amount of time for luciferase expression. A substrate, such as luciferin,
is added to detect and measure luciferase activity, which is measured in rela-
tive light units (RLU). The firefly luciferase activity reflects the experimental
condition while the Renilla luciferase activity serves as an internal control
for normalization, ensuring that variations in transfection efficiency and cell
viability are accounted for (McNabb, Reed, & Marciniak, 2005).

Figure 4: Diagram of a luciferase reporter assay system to detect the effect of
a pSNV. In the wild type configuration (left), the promoter exists in its native
sequence context without the presence of the SNV. Consequently, a specific TF
is unable to bind to the promoter leading to low transcription of the reporter
and low luciferase signal. Conversely, in the mutant configuration (right),
the pSNV is now introduced into the promoter, which now creates a TFBS
allowing a TF to bind. After binding, the TF increases the transcription of
the reporter gene and this high signal is measured. Created with BioRender

.com .
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By measuring the normalized luciferase activity for both the wild type
(WT) promoter sequence (i.e. normal sequence) and the mutant (MUT)
promoter sequence (i.e. pSNV introduced into sequence), it is then possible
to observe the effect that the pSNV has in vitro. An example of a pSNV
leading to the creation of a new TFBS thereby recruiting a new TF and
increasing transcription can be seen in Figure 4.

1.5.1 Known Functional Promoter Mutations

Although there exists a significant blindspot for functional pSNVs within
the literature, there are, however, several well-known pSNVs, which will be
described within this section. In particular, I will initially describe the two
well-known TERT hotspot mutations, followed by pSNVs within CDC20,
RALY and LEPROTL1.

1.5.1.1 TERTC228T and TERTC250T

Independently, Huang et al. (F. W. Huang et al., 2013) and Horn et al.
(Horn et al., 2013) were the first to describe the oncogenic potential of pSNVs
with their discoveries of the highly recurrent TERTC228T (C→T mutation at
chr5:1,295,228) and TERTC250T (C→T mutation at chr5:1,295,250) muta-
tions. These mutations occurred within the core promoter of telomerase
reverse transcriptase (TERT ), which is a catalytic subunit of telomerase.
In order to increase TERT transcription and therefore promote telomerase
activation, both of these point mutations create new TFBSs for the E26-
family TF GABPA, which acts as a ”master regulator” of TERT transcrip-
tion (Yuan, Dai, & Xu, 2020).

Furthermore, both seminal studies found that TERTC228T and TERTC250T

were highly recurrent in their respective studies: Horn et al. (Horn et al.,
2013) found recurrence rates of 46 (27.4%) and 64 (38.1%) of TERTC228T and
TERTC250T pSNVs, respectively, whereas Huang et al. (F. W. Huang et al.,
2013) found a recurrence rate of 27 (39%) and 23 (33%), respectively. Con-
sequentially, these two pSNVs are commonly referred to as hotspot pSNVs.

To functionally validate their findings in vitro, Huang et al. used a lu-
ciferase reporter assay to compare the activities between the WT construct
and the two MUT constructs (i.e. one construct with TERTC228T and the
other with TERTC250T ) independently. These mutations resulted in a 100%
to 300% increase in activity over the WT, depending on the cell lines used
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and were all considered to be statistically significant (p-value < 0.05). Since
their initial discovery, nearly all functional pSNV detection methods (e.g.
FunSeq2 (Fu et al., 2014), OncodriveFML (Mularoni et al., 2016), ncDriver
(Hornshøj et al., 2018)) use the detection of TERTC228T and TERTC250T as
a minimum requirement and common baseline.

1.5.1.2 CDC20G529A

Prior studies have shown that Cell Division Cycle 20 (CDC20 ) is overex-
pressed in various human cancers including that of colorectal cancer and
ovarian cancer (Xi et al., 2022) (Wu et al., 2013) (S. Cheng, Castillo, &
Sliva, 2019). However, Godoy et al. (He et al., 2021) further elucidated how
four distinct mutations, namely CDC20G529A, CDC20G52AA, CDC20G525A,
and the dinculeotide variant CDC20GG528/9AA, all have a functional conse-
quence. Using a recurrence- and window-based approach that defines a back-
ground model to determine frequently-mutated regions, He et al. found that
at least one of these CDC20 pSNVs were present in 26 samples using a 7
bp window (chr1:43824522-43824532), though this slightly differs from the
classical definition of recurrence of one single base pair.

Furthermore, the hotspot mutations in CDC20 were predicted to affect
the binding site for several E26 transformation-specific (ETS) family tran-
scription factors, similar to that of both previously reported TERT pSNVs.
Using a short hairpin RNA (shRNA) to knock down the expression of 6 iden-
tified ETS-family TFs, He et al. observed that ELK4 was the only one that
resulted in a signficant up-regulation. Furthermore, they used the publicly-
available ENCODE (Consortium et al., 2012) dataset to verify the binding
of ELK4 to the CDC20 promoter.

Using the melanoma cell line M14 as well as the kidney cell line HEK293FT
for the in vitro validation of CDC20G529A via luciferase reporter assays, a
slight, statistically-significant upregulation of about 50% in both cell lines
was observed. It should be noted, however, that the specific details (i.e.
number of replicates, specific mean value, specific p-value) of the experiments
were not described in the text or the supplement and this approximation of
their mean upregulation value was gathered from one of their figures.

Godoy et al. (Godoy et al., 2023) similarly identified CDC20G529A through
FunSeq2, which is a recurrent-based approach detailed in a future section (See
Section 1.4). However, upon also using the same cell line (HEK293FT) as He
et al, they observed that this mutation actually decreases the transcriptional
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activity in comparison to the wildtype construct.

1.5.1.3 LEPROTL1C921T

Through the use of the previously-described tool ncDriver (see Section 1.4.1),
Rheinbay et al. (Rheinbay et al., 2017) analyzed 360 primary tumor breast
cancer samples and identified 9 specific elements as having a statistically-
significant increase in mutations. Of these 9 elements, one in particular
was within the promoter of Leptin Receptor Overlapping Transcript Like
1 (LEPROTL1 ), whose overexpression has previously been observed within
endometrial cancer (Boroń, Nowakowski, Grabarek, Zmarz ly, & Op lawski,
2021).

In particular, the LEPROTL1C921T pSNV was identified due to its high
recurrence with 5 samples harboring this specific mutation in their dataset.
Consequently, this pSNV was validated in vitro via a luciferase assay within
the HEK293FT kidney cell line. Their validation efforts, however, observed
LEPROTL1C921T as being functional - though in a negative direction (i.e.
mutant promoter activity is less than the wild type activity) by observing
approximately a 50% decrease in promoter activity when comparing it to the
WT activity.

In addition to the high recurrence status of LEPROTL1C921T within this
particular dataset, additional studies have identified this pSNV as being re-
current in 33 of 302 urothelial bladder cancer samples though no functional
validation was conducted (Jeeta et al., 2019).

1.5.1.4 RALYC927T

In addition to TERTC228T , TERTC250T , CDC20G529A and LEPROTL1C921T ,
other pSNVs have been nominated as being functional but rarely do these
non-coding studies validate these results in vitro through a luciferase reporter
assay or other system.

A notable example of this is of Hayward et al. (Hayward et al., 2017)
when, particularly through the analysis of melanoma samples, multiple non-
coding driver mutations were proposed within the promoters of genes such
as Heterogeneous Nuclear Ribonucleoprotein (RALY ). This gene, which en-
codes the RNA-binding protein Raly, is particularly interesting due to its
overexpression being previously observed in ovarian, lung, bladder, brain, and
breast cancers in addition to multiple myelomas and melanomas (Tsofack et
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al., 2011). This overexpression has led to poorer survival rate and has been
known to promote the invasiveness of cancer cells (Bondy-Chorney et al.,
2017). Though the RALYC927T pSNV was been implicated by this study, no
experimental studies were conducted to validate these computation results
in vitro.

1.5.2 Melanoma and Mutational Signatures

Within their respective original studies, TERTC228T , TERTC250T , CDC20G529A

and RALYC927T were all identified within melanoma samples, which raises the
question as to why this is. One possible hypothesis is that there are certain
mutational processes that only act within certain cancer types, melanoma
being one of them.

Melanoma is a malignant tumor that arises from melanocytes, which are
cells that produce the melanin pigment found in skin, eyes, ears and gastroin-
testinal tract among others (Long, Swetter, Menzies, Gershenwald, & Scolyer,
2023). Melanoma is one of the fastest growing cancer types worldwide with
significantly different incidence rates across the world (Eggermont, Spatz,
& Robert, 2014). For example, there are approximately 25 new melanoma
cases per 100,000 people within the United States of America yearly, which
is slightly less than the 30 new cases per 100,000 per year within Europe. On
the other hand, both Australia and New Zealand have roughly double those
amounts with approximately 60 new cases per 100,000 (Long et al., 2023).

These high incidence rates in warm countries may be partly due to melanoma
being primarily attributed to ultraviolet (UV) radiation exposure (Long et
al., 2023) (Hayward et al., 2017) (Eggermont et al., 2014). UV radiation
exposure mainly affects sun-exposed parts of the body, such as the skin.
Consequently, one subtype of melanoma, which is related to the skin, is re-
ferred to as cutaneous melanoma. The other two distinct melanoma subtypes
are acral melanoma (occurring on the palms of the hands, nails, and soles of
the feet) and mucosal melanoma (occurring within the mucosal epithelium)
(Rabbie, Ferguson, Molina-Aguilar, Adams, & Robles-Espinoza, 2019).

Though there are distinct mutational differences between these three sub-
types (i.e. cutaneous melanoma has an 18-fold higher increase in SNV fre-
quency than mucosal and acral combined (Hayward et al., 2017)), melanoma,
as a whole, is still the most frequently mutated cancer (Hayward et al.,
2017). Previous studies have shown that there is a direct relationship be-
tween UV exposure and melanoma, particularly by enriching the amount of
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C>T/G>A mutations at certain locations (Hodis et al., 2012) (Eggermont et
al., 2014) (Hayward et al., 2017). However, it has been shown that of those
rare melanoma cases that do not have this specific mutation, these lead to
fewer point mutations (Hayward et al., 2017).

The concept of mutational signatures was first introduced in 2013 by
Alexandrov et al. (Alexandrov et al., 2013), aiming to identify common
mutational patterns within the genome. Their analysis encompassed ap-
proximately 7,000 genomes comprising 4,938,362 SNVs and indels combined
across 30 different cancer types. At the time, they identified 21 distinct muta-
tional signatures, particularly focusing on single nucleotide variants (SNVs)
or single base substitutions (SBS). Several SBS signatures are associated
with specific factors such as SBS1 with age, SBS4 with smoking, and SBS7
with ultraviolet light exposure, though many factors remain to be elucidated
(Alexandrov et al., 2013).

Today, there are now 99 SBS mutational signatures according to the Cat-
alog of Somatic Mutations in Cancer (COSMIC) database (Tate et al., 2019).
These signatures are typically defined by their dinucleotide or trinucleotide
context and are denoted only in the 5’ to 3’ direction. Additionally, this
database has further expanded to include patterns within dinucleotide vari-
ants (doublet base substitutions: DBS), indels (small insertions and dele-
tions; ID), copy number variations (CNVs), and structural variants (changes
exceeding 1 kb in length/SV) (Tate et al., 2019).

The aforementioned C>T/G>A mutation is a major component of the
mutational signature Single Base Substitution 7 (SBS7), which has three
distinct ”subsignatures” that are all associated with UV radiation exposure.
SBS7a is typically characterized as a C>T mutation in a TpC dinculeotide
context (i.e. TC>TT / GA>AA) whereas SBS7b is typically characterized
as a C>T mutation but at a CpC dinucleotide context (i.e. CC>CT or
CC>TC / GG>AG or GG>AG), both of which incorporate C>T/G>A
mutation. Lastly, SBS7c is characterized as either a T>C or T>A mutation
in any context.

Specific characterizations according to the COSMIC website of these three
mutational signatures can be seen in Figure
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Figure 5: Mutational signatures of SBS7 as defined by COSMIC (Alexandrov
et al., 2013). Each original mutational signature was downloaded from
https: / / cancer .sanger .ac .uk/ signatures/ sbs

In summary, COSMIC employed 4,938,362 somatic substitutions sourced
from 30 diverse cancer types to generate the plots. Through the utilization
of their tools SigProfiler and SigProfilerExtractor for mutational signature
extraction, 21 distinct mutational signatures were revealed, each associated
with unique samples and validated through lab results across different tiers.
Detailed information can be seen within the supplement of Alexandrov et al.
(Alexandrov et al., 2013).

1.6 Statistical Testing

Of those pSNVs described in Section 1.5.1, the WT activity and MUT activ-
ity were compared using a student t-test, which assumes that both activities
follow a Gaussian distribution.
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A Gaussian or Normal distribution is a fundamental statistical distri-
bution characterized by its mean µ and standard deviation σ. It describes
a symmetric bell-shaped curve where data points are clustered around the
mean, tapering off the further it is away from the center.

The student t-test, commonly known as the t-test, is a parametric statisti-
cal test used to determine if there is a significant difference between the means
of two independent groups that are assumed to be normally distributed. It
is particularly suitable when sample sizes are small and the population stan-
dard deviation is unknown. The t-test can be performed in two variations:
one-sided and two-sided tests. In both cases, the null hypothesis H0 suggests
no difference between the means of the group while the alternative hypothesis
H1 varies. In a two-sided t-test, H1 indicates a statistical difference in either
direction of the distribution while a one-sided t-test specifies a difference in
a singular direction (either positive or negative).

In hypothesis testing, a p-value quantifies the probability of observing the
test statistic if the null hypothesis were to be true. Typically, a p-value less
than or equal to 0.05 indicates strong evidence against the null hypothesis,
suggesting a significant difference between the group means while a large
p-value suggests insufficient evidence to reject the null hypothesis.

In the context of measuring the effect of a pSNV with a luciferase reporter
assay, t-tests have commonly been used (F. W. Huang et al., 2013) (Horn
et al., 2013) (He et al., 2021) (Godoy et al., 2023) to test whether there is
a statistical difference between the wild type and promoter activity. Since
these two groups are independent, it is reasonable to assume that the ’true’
luciferase activity for each group corresponds to a single value from which
the observed data is drawn from. Minor deviations from this point would
then be expected to mirror a normal distribution.

If the aim is to detect only a specific increase in mutant activity compared
to the wild type, conducting a one-sided t-test would be suitable. However,
if any change, whether increase or decrease, is of interest, a two-sided t-test
would be preferable. In both scenarios, rejecting the null hypothesis with a
significant p-value would indicate a statistically significant difference between
the two groups.

1.7 Next-Generation Sequencing (NGS) Techniques

The cost of sequencing a single genome has reduced nearly 50,000 fold (Goodwin,
McPherson, & McCombie, 2016) as of 2016. Moreover, data from the Na-
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tional Human Genome Research Institute (NHGRI) indicates an even greater
reduction from 95,263,072 US Dollars to $525 from September 2001 to May
2022 (Wetterstrand, 2019).

This reduction in price has been primarily attributed to the rise of next
generation sequencing (NGS) technologies, which has also vastly increased
data output. In contrast to traditional Sanger Sequencing (Valencia et al.,
2013), which was at the forefront of sequencing methods for three decades
since its conception in 1977 and only allows for the sequencing of a single
genome at a time, NGS platforms simultaneously sequence millions of DNA
fragments at various lengths (i.e. short read sequencing or long read sequenc-
ing).

Figure 6: The four major steps of us-
ing the Illumina HiSeq Platform for whole
genome sequencing. Image adapted from
Ona, S. (2020) on BioRender .com .

Short read sequencing meth-
ods include that of Illumina
Sequencing, Ion Torrent Se-
quencing, and Pyrosequencing
whereas long read sequencing in-
cludes PacBio Sequencing and
Nanopore Sequencing. In partic-
ular, Illumina’s HiSeq (Caporaso
et al., 2012) platform has been
used within many research insti-
tutes and core facilities, such as
that within the German Cancer
Research Center (DKFZ), Har-
vard Medical School and Johns
Hopkins.

To describe how a sample
is sequenced using Illumina’s
WGS approach, the process be-
gins with fragmenting the DNA
sample into smaller pieces, ap-
proximately 500 base pairs long.
Adapters are then attached to
both the 5’ and 3’ ends of these
fragments. Next, the DNA frag-
ments undergo bridge amplifica-

tion where they are attached to a solid surface and amplified to form clusters
of identical DNA fragments. Subsequently, sequencing-by-synthesis is per-
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formed, during which nucleotides labeled with distinct fluorescent markers
(one color for A, another for G, etc.) are incorporated into the DNA clusters.
The emitted fluorescent signals are captured to determine the nucleotide
sequence of each fragment. Finally, the sequenced reads are aligned to a
reference genome using algorithms such as Burrows-Wheeler Aligner Maxi-
mal Exact Matches (BWA-MEM) to reconstruct the original DNA sequence.
Once the alignment is complete, the reconstructed genome is typically an-
notated with various features, including genes, transcripts, and regulatory
elements. This process can be seen in Figure 6 (L. Liu et al., 2011).

Conversely, Illumina’s HiSeq Platform can also be used for RNA-Seq.
This involves several key steps, which are similar to its WGS approach. Ini-
tially, RNA is extracted from the sample and enriched for mRNA, which
is then fragmented into smaller pieces. Reverse transcription is performed
to generate complementary DNA (cDNA) and thus attach adapters to their
ends, enabling them to bind to the flow cell and be amplified during sequenc-
ing. The cDNA fragments are amplified using PCR to create a cDNA library.
Next, the cDNA library is loaded onto a flow cell where the cDNA fragments
bind to complementary adapter sequences on the flow cell surface. Through
bridge amplification, clusters of identical cDNA fragments are formed. The
flow cells then undergo sequencing-by-synthesis where fluorescently-labeled
nucleotides are incorporated into the cDNA strands. Images of the fluores-
cence emitted by each incorporated nucleotide is then used to determine the
sequence of bases in each cDNA fragment. Finally, that raw sequencing data
is processed to generate high-quality reads (Kumar et al., 2012).

1.8 Precision Oncology

Traditional oncology treatments have relied on aggregate-based decisions de-
rived from population averages obtained from randomized clinical trials in-
volving selected patient groups (Fountzilas, Tsimberidou, Vo, & Kurzrock,
2022). This approach has been the foundation of drug approvals for decades
(Warner et al., 2020). However, given the heterogeneous nature of cancer,
applying a single treatment strategy to all patients with the same type of
cancer can significantly limit treatment effectiveness (Fountzilas et al., 2022)
(Wahida et al., 2023).

To address this issue, precision oncology, also known as personalized
oncology or targeted gene therapy, considers the individual patient’s ge-
nomic biomarkers and predispositions when considering treatment options
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(Fountzilas et al., 2022). The significant rise of precision oncology can be
largely attributed to advancements in NGS technologies (Weymann, Pataky,
& Regier, 2018), which lowers the cost of sequencing an individual genome.
Consequently, individualized genetic information allows for the development
of personalized treatment plans tailored to an individual’s cancer. This ap-
proach improves treatment efficacy, minimizes side effects, guides treatment
decisions and is becoming more cost-effective and accessible as time goes on.

To exemplify its utility, precision oncology has successfully identified spe-
cific subtypes of cancers that can be treated with targeted therapies. For
instance, human epidermal growth factor receptor 2 (HER2)-positive breast
cancer can be effectively treated with targeted treatments (Swain et al.,
2015), as can BRAF mutant melanoma (Chapman et al., 2011), and lung
cancers with alterations in the epidermal growth factor receptor (EGFR),
anaplastic lymphoma kinase (ALK), or ROS1 (C. Zhou et al., 2011)(Shaw
et al., 2013).

However, analysis of non-coding elements has yet to yield many druggable
targets with the exception of the long non-coding RNA MALAT1 (Amodio
et al., 2018). While promoter mutations, most notably in TERT, have been
cited as potential therapeutic targets (Yang et al., 2021)(J. Chen et al., 2021),
treatments have yet to be developed though this has been partially attributed
to the paucity of known non-coding drivers (Rheinbay et al., 2020).

To enable a more individualized approach, many hospitals are now in-
corporating these methods into their clinical trials. For instance, the Na-
tional Cancer Institute (NCI) sponsored the Molecular Analysis for Therapy
Choice trial (NCI-MATCH; Clinical Trials Identifier: NCT02465060), which
was a precision cancer trial from 2015 to 2023, designed to match patients
with advanced solid tumors, lymphoma, or myeloma to appropriate therapies
(O’Dwyer et al., 2023)(Flaherty et al., 2020). NCI-MATCH enrolled roughly
6,0000 individuals whose cancers had progressed on standard treatments or
who had rare cancers with no standard treatment options. 1,567 of these pa-
tients were assigned to separate substudies in which seven of these substudies
showed a positive result (O’Dwyer et al., 2023).

Another significant clinical trial is the Profile-Related Evidence Determin-
ing Individualized Cancer Therapy (I-PREDICT; Clinical Trials Identifier:
NCT02534675) at the University of California, San Diego Moores Cancer
Center and Avera Cancer Institute. In this study, 149 patients with metastatic
cancer were enrolled. Genetic profiling of 236 to 405 genes was performed on
these patients with 83 receiving treatment and being considered for analysis.
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Of these, 73 patients were administered personalized therapy. Although the
trial is still in progress, a key takeaway is the value of NGS technology and
the need to implement personalized precision medicine approaches earlier in
the treatment process (Sicklick et al., 2019).

In addition to these two trials, many other clinical trials, such as the
NCT-MASTER program (Horak et al., 2017), COGNITION (Pixberg et al.,
2022), and INFORM (Van Tilburg et al., 2021), have been created to match
patient-specific and tumor-specific mutations with targeted therapies.

1.9 Reproducibility, Interpretability and Computational
Efficiency

With the continuous increase of available biological data and the development
of bioinformatics tools to analyze it, three major challenges have emerged
within the filed of bioninformatics that must shape how new tools are de-
signed: reproducibility, interpretability and computational efficiency.

1.9.1 Reproducibility

Reproducibility in bioinformatics and in science as a whole is missing (Baker,
2016). It is estimated that only approximately 5.9% to 26% of code stem-
ming from bioinformatics studies can be re-ran to get the originally reported
results (Ioannidis et al., 2009) (Samuel & Mietchen, 2024) (Trisovic, Lau,
Pasquier, & Crosas, 2022), which highlights reproducibility as one of the
most significant challenges facing the field.

Reproducibility can be broken down into three distinct categories: code,
data, and results. Code reproducibility refers to other researchers (i.e. bioin-
formaticians or clinicians) being able to have an up-to-date, working version
of a tool’s codebase. Data reproducibility refers to the original input data of
the tool being documented and verified. Result reproducibility refers to the
that given the code and original input data, the same exact results can be
reproduced.

Code reproducibility involves having clear documentation, version con-
trol, and dependency management systems to facilitate the implementation
and execution of the code in other working environments (i.e. different in-
stitutions, operating systems, etc.). As the results of computational exper-
iments can be highly sensitive to changes in software versions, parameter
settings, and reference annotations, ensuring consistency in these aspects is
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crucial (Wratten, Wilm, & Göke, 2021). Repositories such as GitHub or
GitLab for code sharing and collaboration help ensure that the code is well-
commented and includes instructions for setup and use.

Data reproducibility involves documenting and verifying the original in-
put data used by the tool. This requires detailed metadata, data provenance
information (de Paula, Holanda, Gomes, Lifschitz, & Walter, 2013) and en-
suring that the datasets are accessible and maintained in a stable manner.
Additionally, the versioning of datasets is essential, particularly when running
pipelines, in order to trace original data back to its source and re-perform
any analysis if necessary.

Lastly, result reproducibility means that given the code and the origi-
nal input data, the same exact results can be consistently reproduced. This
involves rigorous testing, validation, and often the use of standardized com-
putational environments to minimize discrepancies.

1.9.2 Interpretability

In addition to reproducibility, bioinformatics tools must also be interpretable
not only for bioinformaticians but also for clinicians who make patient care
decisions, such as those within molecular tumor boards (MTBs). From a
clinical perspective, the widespread adoption of a tool primarily depends
on being able to accurately assess how a result was made (Couckuyt et al.,
2022). Guidelines, such as those proposed by SPIRIT (Chan et al., 2013),
CONSORT-AI (X. Liu et al., 2020) and MI-CLAIM (Norgeot et al., 2020),
have been proposed to support the use of bioinformatic analyses in clinical tri-
als, emphasizing that interpretability and transparency must be considered
from the outset of any project. Furthermore, interpretable bioinformatics
tools facilitate better communication between interdisciplinary teams. Clin-
icians, bioinformaticians, and other healthcare professionals can collabora-
tively evaluate and refine these tools, leading to more accurate and person-
alized patient care.

1.9.3 Computational Efficiency

As the amount of generated biological data increases, the need for tools
and algorithms to process this data in a timely manner is not only pre-
ferred but becoming increasingly more important year by year. Particularly
within an MTB setting where the turnaround time from biopsy to thera-
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peutic decision is short (e.g. 6 weeks), any time saved in tool runtime or
data aggregation can be extremely important, which could allow healthcare
professionals focus more on result interpretation and potential therapeutic
options. Consequently, several studies have cited computational efficiency
as being of one of the biggest challenges of today (Hanussek, Bartusch, &
Krüger, 2021) (Fernald, Capriotti, Daneshjou, Karczewski, & Altman, 2011)
(Kleftogiannis, Kalnis, & Bajic, 2016).

1.10 Datasets

1.10.1 Pan-Cancer Analysis of Whole Genomes (PCAWG)

Following the completion of the Human Genome Project (Collins & Fink,
1995), The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013) was es-
tablished in 2005 with the primary goal of sequencing whole cancer genomes.
TCGA collected and analyzed sequencing data from over 11,000 cancer sam-
ples, primarily focusing on exome sequencing, within 33 different cancer
types. Although the main focus was on variant analysis, other topics such as
gene expression profiling and copy number alterations were also analyzed. A
parallel effort by many of the same TCGA members resulted in the formation
of the International Cancer Genome Consortium (ICGC) (ICGC Consortium,
2010), further expanding global collaboration in cancer genomics research.
The publicly-available data from these projects formed the foundation for
numerous cancer genomics studies (Mart́ınez-Jiménez et al., 2020) (Hoadley
et al., 2018) (Sanchez-Vega et al., 2018) (Alexandrov et al., 2013).

To advance beyond the TCGA and ICGC datasets, the Pan-cancer Anal-
ysis of Whole Genomes (PCAWG) consortium was formed (PCAWG Con-
sortium, 2020). PCAWG aimed to improve genomic analysis by examining
the entire genome, including the non-coding regions of DNA, which has been
largely overlooked. This was achieved by WGS data rather than focusing
solely on the exome and offered three significant advantages over its prede-
cessors.

Firstly, the PCAWG dataset comprised mainly of WGS data rather than
WES data, providing a more holistic view of the genomic landscape of can-
cer. Through this data, specialized working groups focused on specific as-
pects of cancer genomics. Notably, these investigations explored non-coding
somatic drivers which helped elucidate the role of non-coding regions in can-
cer progression (Rheinbay et al., 2020), characterized mutational signatures
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across various resolutions (i.e. single/doublet-base substitutions and small-
insertions-and-deletions) (Alexandrov et al., 2020) and attempted to identify
both coding and non-coding drivers in cancer using computational tools like
DriverPower (Shuai, Gallinger, & Stein, 2020).

Secondly, WGS tumor samples within the PCAWG dataset were only in-
cluded if they were of high quality according to the PCAWG Consortium’s
Technical Working Group (PCAWG Consortium, 2020). Initially, WGS data
from 2,834 donors were collected. After quality assurance measures, 176
samples were excluded and an additional 75 contained minor issues and were
categorized as ”grey-listed” samples (PCAWG Consortium, 2020). The re-
maining 2,583 were labeled as ”white listed” or ”included” and were deemed
to be of optimal quality.

Lastly, all grey and white listed samples underwent reprocessing using
a standardized computational workflow to ensure reliability and mitigate
biases (PCAWG Consortium, 2020). The WGS data from different data
centers was reprocessed via Illumina HiSeq platforms, yielding paired-end
sequencing reads with an average coverage of 38 reads for tumor samples
and approximately 60 reads for control samples (PCAWG Consortium, 2020).
Furthermore, tumor and normal samples were aligned to human genome build
19 (hg19) using the BWA-MEM algorithm. To detect somatic SNVs, three
distinct pipelines (EMBL and DKFZ (Rimmer et al., 2014), Sanger (Jones
et al., 2016) and Broad Institute (Ramos et al., 2015)) were utilized and
aggregated to ensure reliability. The RNA-Seq data were also reanalyzed
by the PCAWG consortium. By having access to the original BAM files
from re-analysis, the gene expression, measured in fragments per kilobase of
transcript per million mapped reads (FPKM), was then quantified for most
patients.

Currently, the PCAWG dataset is publicly-available and could be accessed
within the PCAWG Data Portal: https://dcc.icgc.org/pcawg.

1.10.2 NCT-MASTER

The Molecularly Aided Stratification for Tumor Eradication Research (NCT-
MASTER) program is an ongoing personalized oncology program hosted by
the NCT, DKFZ, and DKTK whose focus is treating young adults with late
stage cancer across all histologies and patients with rare tumors (Horak et al.,
2017). As a personalized oncology program, NCT-MASTER not only gathers
data for research purposes but, more importantly, provides clinically-relevant
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diagnostics and therapeutic options for those enrolled in the trial, many of
whom have been treated previously.

Since the program’s inception in 2017, the NCT-MASTER Molecular Tu-
mor Board (MTB), which consists of biologists, bioinformaticians, clinicians,
and pathologists alike, meets weekly to discuss diagnoses and potential thera-
peutic options on a patient-by-patient basis. A turnaround time from biopsy
to final decision of less than 6 weeks was reported at the time of the primary
research paper in 2017 (Horak et al., 2017). Though originally focused on col-
lecting WES data, WGS samples are now regularly collected. Similar to the
PCAWG project, these WGS samples are primarily sequenced using Illumina
HiSeq platforms and aligned to the human genome using the BWA-Mem al-
gorithm. Tumor samples are paired with matching control samples taken
from either blood or buffy coat. Additionally, RNA-Seq data are aligned
using STAR Version 2.5.3a. Unlike the PCAWG data, which included only
samples from primary tumors, the NCT-MASTER dataset comprises biopsies
from both metastatic sites and primary tumors.

As this is an ongoing precision oncology program, patient data is an-
nonymized, stored internally within the DKFZ cluster system and therefore
cannot be accessed by the general public. Though each patient has a vast
amount of collected data, specific cancer types/cohorts are not available.

1.10.3 COGNITION

The COGNITION (Comprehensive assessment of clinical features, genomics
and further molecular markers to identify patients with early breast cancer
for enrolment on marker driven trials) (Pixberg et al., 2022) trial aims to
identify biomarkers in patients with early breast cancer with a high risk for
relapse. During the pilot phase of this trial, which lasted from April 2019 to
September 2020, 213 patients were deemed to be fit for their study (Pixberg
et al., 2022).

Samples were sequenced via whole genome or whole exome sequencing ap-
proaches approaches and were annotated according to one of the four main
breast cancer subtypes: (1) triple-negative breast cancer (TNBC), (2) hor-
mone receptor-positive/human epidermal growth factor receptor 2-negative
(HR+HER2-), (3) hormone receptor-positive/human epidermal growth fac-
tor receptor 2-positive (HR+HER2+), and (4) hormone receptor-negative/human
epidermal growth factor receptor 2-positive (HR-HER2+). Furthermore,
samples were prepared using TruSeq Nano DNA Kit (Illumina) and were
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sequenced on a HiSeqX or NovaSeq 6000 platform (Illumina) yielding 151 bp
long reads with median 83x coverage. In terms of RNA-sequencing, libraries
were prepared using the TruSeq Stranded mRNA Library Kit (Illumina) and
were paired-end sequenced on an Illumina-patterned flowcell v2.5 generating
101 bp long reads. Sequencing data was further processed and analyzed us-
ing the DKFZ computational pipelines described in Section 1.10.2 (Horak et
al., 2021).

1.11 Aims of the REMIND-Cancer Workflow

Within current cancer research, there is a significant blindspot in the identifi-
cation of activating promoter SNVs (pSNVs), which can be at least partially
attributed to current methods requiring events to be highly recurrent (i.e.
occurring in a large number of samples) in order to be detected. However,
considering that most mutations are either singletons (i.e. only occur in a
single patient sample) or lowly-recurrent, many of these events have been
systematically neglected and thus have not yet been implicated in cancer.

Due to this blindspot, the primary aim of my thesis was to establish a
workflow that identifies, prioritizes and validates in vitro activating pSNVs.
This workflow, otherwise known as the Regulatory Mutation Identification
’N’ Description in Cancer (REMIND-Cancer) workflow, encapsulates multi-
ple aspects, which I will discuss in detail throughout my thesis:

• The creation of the REMIND-Cancer pipeline, which is a computation-
ally efficient framework used to filter, score, and rank sample-specific
pSNVs based on their genomic, transcriptomic, and annotations data

• The creation of pSNV Hunter, which is a data aggregation and vi-
sualization dashboard used to manually investigate pSNVs that have
successfully passed the REMIND-Cancer pipeline

• The selection of candidate pSNVs that I believe are most likely to be
activating within subsequent in vitro validation experiments

Using the results of the in vitro validation experiments conducted by
Sabine Karolus and Dr. Cindy Körner as part of the REMIND-Cancer work-
flow, my work highlights the importance of looking beyond highly-recurrent
mutations, parituclarly within the promoter region, in order to add to the
catalog of known functional mutations.
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2 Introduction to the DREAM Challenge

As a complementary project to the REMIND-Cancer workflow, I also partici-
pated in a three-month bioinformatics challenge where the primary objective
was to detect gene expression in yeast using only promoter sequences through
a neural network.

Consequently, the following chapter will introduce the key concepts re-
lated to this task whereas details on the specific methods used are provided
in Section 3.2. Furthermore, I will then present the results of this challenge
within Section 5.9 while concluding with a discussion about how these re-
sults can have future applications within the REMIND-Cancer computational
pipeline in Section 6.2.

2.1 Predicting Gene Expression From DNA Sequences

The prediction of gene expression given only a DNA sequence has been an
ongoing area of bioinformatics research in recent years (Agarwal & Shen-
dure, 2020) (Kelley, 2020) (Kelley et al., 2018) (Ding, Dixit, Parker, & Wen,
2023), with recent studies specifically focusing on achieving this task using
only short promoter sequences (Vaishnav et al., 2022). Particularly when
using only the promoter where other distal non coding elements (e.g. en-
hancers, silencers) cannot be fully accounted for, this task implicitly involves
identifying TFBSs within the sequence as TFs play a major role in reg-
ulating gene expression. Consequently, a majority of efforts have utilized
machine learning algorithms, particularly neural networks, to address this
sequence-to-expression task (Vaishnav et al., 2022) (Zrimec et al., 2022).
Neural networks have been used because of their ability to model non-linear
relationships, automatically detect and transform useful features, and per-
form non-traditional ML tasks such as image and language processing.

2.1.1 Neural Networks

Neural networks are a general class of non-linear machine learning models
that were originally inspired by how the brain works where neurons (or nodes)
are responsible for the flow of information across the network. These nodes
are arranged in layers, initially starting with the input layer that receives the
data. This input layer is then followed by a number of user-defined hidden
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layers in which data is transformed by mathematical functions (i.e. activa-
tion functions, weights, biases). Outputs from these layers are propagated
forward until it reaches the final output layer where an output is predicted
depending on the task at hand (classification or regression). This approach
is often called deep learning as many hidden layers are included.

The difference between the predicted output and the true output is mea-
sured by a loss function, which is then used to update the weights and biases
of each node to minimize the loss, typically through a process called back-
propagation. Neural networks generate accurate predictions by passing data
through the network (forward pass) and subsequently updating weights to
refine the predictions (backpropagation).

The strength of neural networks lies in their learning phase, where the
weights and biases are refined using optimization techniques such as stochas-
tic gradient descent (SGD) (Robbins & Monro, 1951), Root Mean Square
Propagation (RMSProp) (Hinton, Srivastava, & Swersky, 2012), Adam (Kingma
& Ba, 2014), and Nadam (Dozat, 2016). These methods aim to minimize the
loss function by iteratively adjusting the model’s parameters during train-
ing. This iterative process theoretically reduces the difference between the
predicted outputs and actual targets, though this does not always happen
in practice. Through each iteration or epoch, neural networks automati-
cally construct features and complex structures from high-dimensional data
(Alzubaidi et al., 2021) (LeCun, Bengio, & Hinton, 2015).

Several key factors significantly affect the performance of neural networks,
most notably the network architecture (i.e. how the different layers are or-
ganized), hyperparameters, data quality, and compute resources. In particu-
lar, hyperparameters, such as the learning rate, activation function, and the
number of hidden layers, are not updated by the algorithm and are manu-
ally assigned prior to training (Baydilli & Atila, 2018). Choosing the ”best”
hyperparameter for each of these values has been shown to play a crucial
role in neural network performance (Koutsoukas, Monaghan, Li, & Huan,
2017) (Jaisswal & Naik, 2021) (Bardenet, Brendel, Kégl, & Sebag, 2013).
However, hyperparameter optimization algorithms such as Grid Search, Ran-
dom Search (Bergstra & Bengio, 2012) and Bayesian Optimization (Snoek,
Larochelle, & Adams, 2012) have been proposed to find the best combination
of these parameters given a neural network architecture.
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2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (LeCun et al., 2015) have proven ef-
fective for natural language processing tasks such as sequence-to-expression
(Alipanahi, Delong, Weirauch, & Frey, 2015). Rather than utilizing layers
in which all nodes in one layer are connected to all other nodes in the sub-
sequent layer (i.e. dense layer), CNNs utilize a sliding window approach to
efficiently capture local dependencies within data. By sliding windows or fil-
ters across one-hot encoded nucleotide sequences (i.e. sequences represented
as a two-dimensional vector) and by applying additional normalization layers
(i.e. pooling layers, dropout layers), CNNs can identify important motifs and
patterns that potentially influence gene expression (Figure 7).

Figure 7: An overview of Convolutional Neural Networks (CNNs). Starting
from the left-most image, a promoter sequence is one-hot encoded such that
the sequence is represented by a two-dimensional matrix. A filter (green
box) iteratively slides throughout the one-hot encoded matrix and performs
mathematical operations that result in a smaller matrix, otherwise known as
a feature map. This process is known as a convolution. Finally, a pooling
layer selects values from the feature map to further downsample or reduce the
size of the matrix.

2.1.3 Transformers

Transformers, which are another type of neural network, have been at the
forefront of language-based modeling since its creation in 2017 (Vaswani
et al., 2017). In the context of the sequence-to-expression task, the core
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of the transformer model is the ”self-attention” mechanism, which enables
the model to weigh the importance of different nucleotide sequences within
a DNA strand. Unlike its sequential predecessors such as recurrent neu-
ral networks (RNNs) (Rumelhart, Hinton, & Williams, 1986) and LSTMs
(Hochreiter & Schmidhuber, 1997), transformers are able to capture both
short-term and long-term relationships and dependencies across the entire
genetic sequence while being able to efficiently process sequences in parallel.
Several studies utilize the combination of both transformer blocks (i.e. multi-
ple transformer layers) and convolutional blocks (i.e. multiple convolutional
layers) to accurately predict gene expression given a sequence (Vaishnav et
al., 2022).

2.2 DREAM Challenge: ”Predicting Gene Expression
Using Millions of Random Promoter Sequences”

Each year, the non-profit Dialogue on Reverse Engineering Assessment and
Methods (DREAM) partners with academic researchers and companies in
order to host bioinformatics challenges that are open to the general public.
Specifically, a challenge was hosted in 2022 to predict the gene expression
within yeast using only promoters sequences (Rafi et al., 2023). Within
this specific challenge, billions of promoter sequences within yeast and their
approximate expression were given to participants as training data using a
Gigantic Parallele Reporter Assay (GPRA) developed previously in their lab
(de Boer et al., 2020).

Prior to this challenge, several studies by the organizers as well as other
participants of this challenge have attempted this sequence-to-expression task
albeit with different data. In particular, Vashinav et al. (Vaishnav et al.,
2022) applied two different neural networks, a CNN and a transformer, to do
so and achieved state-of-the-art results at the time using their transformer
model.

With a long-term goal of translating the neural network architecture and
lessons learned to humans at a later time point (Rafi et al., 2023), this chal-
lenge could provide initial insights as to how the REMIND-Cancer workflow
can incorporate neural network approaches into its TFBS detection in the
future given a promoter sequence and a sample’s corresponding RNA-Seq
data.
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3 Methodology

Within this section, the methodologies of the REMIND-Cancer Workflow
(See Section 3.1) and of the DREAM Challenge (See Section 3.2) will be
detailed, with a significant focus on the former.

3.1 REMIND-Cancer Workflow

To recapitulate the aim of the REMIND-Cancer Workflow, my goal was to
identify and characterize activating promoter SNVs in silico, irrespective of
the mutation’s recurrence frequency and driver status. To do so, this ap-
proach follows a filtering-ranking-inspection-validation paradigm in which
somatic SNVs are (1) filtered to focus solely on putative functional muta-
tions, (2) scored and subsequently ranked according to my heuristic scoring
algorithm, (3) manually inspected via pSNV Hunter to assess their selection
for further in vitro validation and (4) validated in vitro by a luciferase assay
(Figure 8).

Figure 8: Overview of the REMIND-Cancer workflow, which follows a
filtering-ranking-inspection-validation paradigm.

To outline the remaining section, the first subsection will detail the datasets
used within this study, namely the PCAWG dataset (See Section 3.1.1.1), the
early onset prostate cancer (EOPC-DE) dataset (See Section 3.1.1.2), the
NCT-MASTER dataset (See Section 3.1.1.3) and finally, the COGNITION
dataset (See Section 3.1.1.5). After explaining the datasets used, the fol-
lowing three subsections will then detail how I reduce the number of pSNVs
through the filtering steps:

• Section 3.1.2.1 details how the promoter region was defined and deter-
mines what SNV is considered a subsequent pSNV
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• Section 3.1.2.2 initially describes JASPAR (Fornes et al., 2020), a
database of curated TFs and their binding profiles, and FIMO (Grant,
Bailey, & Noble, 2011), which is a tool to search for motifs in DNA.
Using these two, I then describe how a relative binding affinity is calcu-
lated for each de novo created or destroyed TFBS and how mutations
are kept for further downstream analysis.

• Section 3.1.2.3 describes how the upregulation of a pSNV’s adjacent
gene expression was identified

The following three subsections will then detail additional features that were
considered, how the REMIND-Cancer prioritization score is computed, two
important quality control measures, and pSNV Hunter :

• Section 3.1.3 details how five additional features, namely recurrence,
presence as a known cancer gene, open chromatin, tumor purity and
allele frequency, were annotated per each pSNV. Unlike the previous
subsections, no filtering or removing of pSNVs takes place during this
time.

• Section 3.1.4 describes how the REMIND-Cancer prioritization score
was computed for sunbsequent candidate ranking and in vitro valida-
tion

• Section 3.1.6 describes the use of two previously-established quality
control measures: DeepPileup (Rheinbay et al., 2020) and Genome-
TornadoPlots (Hong, Thiele, & Feuerbach, 2022)

• Section 3.1.7 describe the main features of pSNV Hunter, which was a
tool created to assist in the selection of candidates for in vitro validation

The remaining subsections will then describe the luciferase assay system
used (Section 3.1.8, the statistical testing employed to determine a significant
upregulation in promoter activity (Section 3.1.9, how mutational signatures
were detected (Section 3.1.10) and lastly, how TF activity is predicted via
decoupleR (Badia-i Mompel et al., 2022), DoRothEA (Garcia-Alonso et al.,
2019), and Collectri (Müller-Dott et al., 2023) (Section 3.1.11).
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3.1.1 Data

The data used within the REMIND-Cancer workflow can be delineated into
two categories: retrospective analysis and prospective analysis. The retro-
spective analysis utilized two datasets, namely PCAWG and retrospective
NCT-MASTER data (i.e. NCT-MASTER data from November 2016 to Oc-
tober 2020), in order to fine tune the pipeline as well as prioritize pSNVs for
subsequent in vitro validation.

Conversely, the prospective analysis also includes two datasets, namely
the COGNITION and prospective NCT-MASTER datasets (i.e. new NCT-
MASTER from 9 January 2023 to 13 March 2023), that were used as pilot
studies to assess the applicability of the REMIND-Cancer workflow to true
clinical trial programs. These two categories of data are detailed below.

3.1.1.1 Pan-Cancer Analysis of Whole Genomes (PCAWG)

Figure 9: Schematic of how the
PCAWG files were aggregated into
a single file for analysis

Both the WGS and RNA-Seq data used
in this study are from an internal ver-
sion of the publicly-available PCAWG
dataset, which can be found at at
https://docs.icgc-argo.org/. This
dataset consists of 2,520 WGS primary
tumor samples of which 1,029 have cor-
responding RNA-Seq data available and
belong to 45 distinct cohorts.

Prior to the analysis of this dataset,
WGS, RNA-Seq, and cohort information
data needed to be matched in order to
fully leverage each patient’s molecular
profile. In particular, the WGS data
did not share the same patient iden-
tifier (PID) as the matching RNA-Seq
data, despite being from the same pa-
tient. Additionally, neither the WGS or
RNA-Seq PIDs matched those in an an-
notation file containing the cohort and
paths to their BAM files. Therefore, sev-
eral preprocessing steps were necessary
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to aggregate these files into a usable format for the REMIND-Cancer work-
low, which is exemplified in Figure 9.

SNV files in variant call format (.vcf) were identifiable by their WGS PID.
Dr. Chen Hong, a former member of the Division of Applied Bioinformatics
at the DKFZ, created a look-up table linking WGS PIDs (blue) to RNA-Seq
PIDs (green). In particular, Dr. Chen Hong created an expression table
where each column represented the genes (originally in ENSMBL format),
each row represented an RNA-Seq sample and each value within the table
represented an FPKM value. After transforming the columns of this table
such that the ENSMBL gene identifier was transformed into gene names, this
allowed for the direct integration of gene expression into the SNV .vcf files
using the gene name as a key.

Furthermore, cohort information in addition to their bam files (purple)
was given for each donor ID and workfile ID, each of which did not match
either the WGS PID or the RNA-Seq PID. Consequently, Dr. Lars Feuerbach
created an additional look-up table that mapped donor IDs to WGS PIDs,
enabling the linkage of WGS PIDs, SNV files, RNA-Seq PIDs, cohort, donor
ID, workfile ID, and BAM file paths (final output). Only the data files of
WGS PIDs within an inclusion list provided by PCAWG were kept, which
ensures optimal quality of the data.

In total, the PCAWG dataset comprise 2,520 total patients, 1,029 of which
have RNA-Seq data available. An overview of the percentage of samples with
and without RNA-Seq data available can be seen in Figure 10 for each cohort.

3.1.1.2 PCAWG: Early Onset Prostate Cancer (EOPC-DE) Co-
hort

As part of the PCAWG project, only the WGS data for the early onset
prostate cancer (EOPC-DE) cohort was made publicly available. However,
within my research division (DKFZ’s Division of Applied Bioinformatics, led
by Prof. Dr. Benedikt Brors), we have access to an internal version of this
cohort’s RNA-Seq data. I integrated this RNA-Seq data with the WGS data
to create a complete cohort that could be analyzed by the REMIND-Cancer
pipeline. Consequently, this EOPC-DE cohort included 56,608 SNVs from
23 unique samples, all of which had corresponding RNA-Seq data available.
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Figure 10: A bar chart representing the percentage of WGS samples with and
without corresponding RNA-Seq data available for the 44 PCAWG cohorts.
The cohort abbreviations and the total number of WGS samples can be seen
on the x-axis whereas the green bar represents WGS samples with RNA-Seq
data available and blue represents only having WGS available (i.e. no corre-
sponding RNA-Seq data).

3.1.1.3 Retrospective NCT-MASTER

The retrospective NCT-MASTER dataset is from a data freeze that contains
samples sequenced from November 2016 to October 2020. This dataset com-
prises 2,378 total WGS samples corresponding to 40,660,325 SNVs. Of these
samples, 1,957 have available RNA-Seq data, which corresponds to 34,172,384
SNVs. Unlike the PCAWG dataset, the WGS and RNA-Seq data were orga-
nized within the same patient folder in the DKFZ cluster system, simplifying
the matching process. Regardless, samples were categorized as being within
17 distinct cohorts and were given to me by Dr. Jennifer Hüllein of the NCT-
MASTER Molecular Tumor Board. Of these 1,957 samples with RNA-Seq
data, 1,718 (88% of samples with RNA-Seq data; 72% of all samples) came
from the primary tumor whereas the remaining came from a metastatic sam-
ple (Figure 11). Additionally, samples within the ”Anderes / Other” cohort
as well as the ”Sarkom / Sarcom” cohort were omitted, which will be ex-
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plained in Section 4.4. Therefore, after determining the dates of the data
freeze and considering only those mutations coming from the primary tumor
with RNA-Seq data available and belonging to a well-defined cohort, 862
(36% of all samples) samples corresponding to 16,501,084 (40% of all SNVs)
remained. To denote these remaining samples and for brevity, I will thus be
calling these analyzable samples.

Figure 11: A bar chart of each cohort representing the percentage of samples
belonging to each of the four unique categories: (1) WGS samples from the
primary tumor with matching RNA-Seq data (dark green), (2) WGS sam-
ples from the primary tumor without matching RNA-Seq data (light green),
(3) WGS samples from a metastatic site with RNA-Seq data (dark orange),
and (4) WGS samples from a metastatic site without RNA-Seq data (light
orange). Only those WGS samples from the primary tumor with RNA-Seq
data (dark green) were completely analyzable by the REMIND-Cancer Work-
flow.

3.1.1.4 Prospective NCT-MASTER

The prospective NCT-MASTER data consists of newly enrolled patients be-
tween 9 January 2023 and 13 March 2023, which encompasses a 9-week pe-
riod. Information regarding these patients was sent to me weekly by Dr.
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Barbara Hutter of the NCT-MASTER MTB.
Each week, new information came via email in a tabular format that con-

tained information such as the unique patient identifier, indication of whether
the sample originated from the primary tumor or a metastatic site and an-
notations by the clinicians among other information. Importantly, however,
specific cohort information was not given within this email. Consequently,
prior to analysis, I manually inspected the clinician comments in order to
assign each sample to one of the 17 cohorts used in the retrospective NCT-
MASTER program. This brought forth multiple challenges, however, which
I describe in detail at a later time in Section 6.1.6.3.

Using the unique patient identifier given in the email, the WGS and RNA-
Seq files for each patient were extracted from the DKFZ cluster system and
combined to create a single file. In total during this 9-week period, 105
samples corresponding to 1,160,518 mutations were extracted for analysis.

3.1.1.5 COGNITION

In addition to the prospective NCT-MASTER dataset, I also received data
from the COGNITION (Pixberg et al., 2022) clinical trial (See Section 1.10.3)
by Dr. Mark Zapatka. Though 213 samples were reported (Pixberg et al.,
2022), only 89 (42%) WGS samples were transferred, all of which had RNA-
Seq data available. Presumably, the remaining 124 (58%) samples were not
provided as they were WES samples and may not include the entire promoter
region.

Of the 89 samples that were given, 63 (71%) had a specifically-labeled
subtype, some subtypes of which had a low sample size. Within the labeling
of these subtypes, HR+ and HR- refers to Hormone Receptor positive and
negative, respectively, whereas HER2+ and HER2- refers to human epider-
mal growth factor receptor 2 positive and negative, respectively. Specifically,
HR+HER2- had 26 samples, TNBC had 24 samples, HR+HER2+ had 9
samples, HR-HER2+ had 4 samples whereas the remaining 26 samples were
unlabeled. Particularly due to low sample size for the HR+HER2+ and HR-
HER2+ subtypes as well as many samples being unlabeled, I considered all
samples to be from the same cohort.

Utilizing the WGS and RNA-Seq data files given to me, I combined the
patient information into a single file where all necessary data was available
(i.e. FPKM, VAF) except for tumor purity, which was thereby set to 0 (or
not available) when computing a prioritization score that will be detailed in
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Seciton 3.1.4.

3.1.2 Filtering Steps

As part of the REMIND-Cancer computational pipeline, three filtering steps,
namely (1) the promoter filter, (2) the TFBS motif and TF expression filter
and (3) the gene expression filter were applied to the datasets described
above. This section will detail how each filtering step was conducted.

3.1.2.1 Promoter Filter

Promoter regions are defined as spanning from 1,000 base pairs upstream
to 500 base pairs downstream of a gene’s canonical transcription start site
(TSS), considerate of the strand. This annotation follows the GRCh37 (hg19)
genome assembly and GENCODE Annotation V19 (Frankish et al., 2019),
which can be downloaded here: https://www.gencodegenes.org/human/

release 19. Only SNVs within a promoter region were used for subsequent
analysis.

3.1.2.2 TFBS Motif and TF Expression Filter

The TFBS motif and TF expression Filter consists of two parts: (1) pre-
dicting the creation and/or destruction of a TFBS and (2) considering the
expression of the corresponding TF.

To determine the impact of a pSNV on the creation or deletion of TFBSs,
the Finding Individual Motif Occurrences (FIMO) (Grant et al., 2011) tool
was utilized to search for specific DNA motifs by comparing them against the
JASPAR (Fornes et al., 2020) database of TFs. Two 15 bp sequence contexts
were considered: the wildtype (WT) sequence, which corresponds to the
natural sequence according to hg19 (e.g. ACACT), and the mutant (MUT)
sequence, which includes the pSNV (e.g. ACTCT for an A>T mutation).

For both WT and MUT sequences, FIMO compares these sequences to
all motifs within the JASPAR database, represented as position frequency
matrices (PFMs), to compute a log-likelihood ratio score for finding the motif
within the given sequence. If the motif has a high ratio score, it is determined
that this TF was found in the given sequence. Consequently, both the WT
and MUT sequences will have a list of found motifs with some motifs present
in both and others unique to only one.
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To determine the creation and/or destruction of a TFBS introduced by
the pSNV, the score of a motif in the MUT sequence is divided by its corre-
sponding score in the WT sequence to obtain a MUT-to-WT ratio (Equation
1). If a score is missing (i.e. the motif is found only in one sequence), a de-
fault score of 1 is used to facilitate the calculation. This MUT-to-WT ratio
is then used to determine TFBS creation and destruction.

RatioMUT/WT =
ScoreMUT

ScoreWT

(1)

where

• ScoreMUT is the score of the motif in the mutant sequence if it exists;
1 otherwise

• ScoreWT is the score of the motif in the wildtype sequence if it exists;
1 otherwise

A TFBS is determined to be created if RatioMUT/WT > 11. Conversely,
a TFBS is predicted to be destroyed if RatioMUT/WT < 1

11
= 0.09. The

rationale behind these thresholds can be found in Section 4.3. Subsequently,
only pSNVs that result in the creation and/or destruction of at least one
TFBS where the corresponding TF also shows detectable expression (i.e.
FPKM > 0) are kept for anaysis.

3.1.2.3 Gene Expression Filter

To identify upregulated genes, the FPKM of the pSNV’s corresponding gene
was zscore normalized relative to the expression of this gene in samples of
the same cohort. The z-score calculation is depicted in Equation 2.

z-score =
x− µgene

cohort

σgene
cohort

(2)

where

• x is the FPKM of the gene

• µgene
cohort is the average (mean) FPKM of the gene within the cohort

• σgene
cohort is the standard deviation of the gene’s FPKM within the cohort
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The rationale for normalizing the FPKM relative to the gene and cohort
could be found in Section 4.2. A zscore greater than 0 would indicate that
the associated gene exhibits elevated expression and is thus kept for further
analysis.

3.1.3 Additional Annotations / Features

The following subsection details the optional features, namely recurrence,
presence within the Cancer Gene Census (CGC) database, chromatin acces-
sibility, tumor purity, and variant allele frequency (VAF), that were added
for each sample-specific pSNV within the REMIND-Cancer workflow.

3.1.3.1 Recurrence

The recurrence of each pSNV was calculated relative to its specific dataset
(i.e. PCAWG pSNV recurrence was calculated only against other PCAWG
pSNVs). Additionally, when calculating recurrence, every WGS sample, re-
gardless of RNA-Seq availability and biopsy location, was considered.

To compute the recurrence of each pSNV, a Python dictionary was em-
ployed as a database to keep track of each mutation. Every line of every WGS
data file was sequentially parsed to extract various details such as chromoso-
mal location, gene name, reference nucleotide and alternate nucleotide. These
details comprised the dictionary key while additional information such as pa-
tient ID, cohort, and expression (if available) were stored as a tuple within
the associated list, forming the value for the key. Therefore, the dictionary
contained keys representing chromosomal locations, gene names, reference
nucleotides, and alternate nucleotides and the corresponding value of each
key stored specific patient information for the entire dataset.

Using this dictionary, I added the mutational recurrence number for each
remaining pSNV, ensuring to track mutations not belonging to the same
patient in the dictionary and having the same alternate nucleotide.

3.1.3.2 Cancer Gene Census Database

To identify whether a pSNV occurs in a known oncogene, the COSMIC Can-
cer Gene Census (CGC) (Sondka et al., 2018) database from November 11,
2020, which includes 723 unique genes, was used. A gene was considered
a known oncogene and thus given a boolean value of ”True” only if it was
listed in this database regardless of its tier classification within COSMIC.
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3.1.3.3 Chromatin Accessibility

I assessed whether each pSNV’s chromosomal location had an open or closed
chromatin state using ChromHMM (Ernst & Kellis, 2012) annotations. These
annotations were derived from Ernst et al.’s universal full-stack model, which
was developed by training a hidden Markov model on over 1,000 datasets
across more than 100 cell types. As a result, each 200 bp interval in the
genome was assigned one of their specific characterizations. Intervals la-
beled as bivalent promoters or containing histone modifications H3K4me1,
H3K4me2, or H3K4me3 were considered to have open chromatin and were
thus assigned a boolean value of ”True” for open chromatin.

3.1.3.4 Tumor Purity

For the PCAWG dataset, an estimate of each sample’s tumor purity was
found within the publicly-available PCAWG data portal. Each sample’s
WGS ID was then matched to its corresponding purity estimate. This purity
estimate was derived from six individual copy number callers, which individ-
ually analyzed the copy number profiles obtained from their WGS data, and
were combined to establish a census purity value for each sample (Gerstung
et al., 2020). Conversely, tumor purity estimates from the NCT-MASTER
(both retrospective and prospective) were provided within a separate data
file that was integrated with their corresponding SNV VCF file. However,
purity estimates from the COGNITION dataset were not available and thus
did not contribute to the prioritization score, which will be detailed in Section
3.1.4.

3.1.3.5 Variant Allele Frequency

The variant allele frequency (VAF), which represents the proportion of se-
quencing reads that support a particular mutation compared to the total
number of reads covering that position, was provided for each pSNV within
the PCAWG dataset. However, for the NCT-MASTER (both retrospective
and prospective) dataset as well as the COGNITION dataset, I manually
calculated this by dividing the number of reads supporting the variant allele
by the total number of reads at that position thus resulting in a fraction
between 0 and 1.
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3.1.4 REMIND-Cancer Prioritization Score and Ranking

To prioritize mutations for in vitro validation, an empirically-calibrated weighted-
sum scoring function was used to compute a prioritization score, which was
then used for subsequent ranking of a sample-specific pSNV. This weighted
sum score took into account the genomic, transcriptomic, and annotationed-
based features that have been described in this section. The specific formula
to calculate the prioritization score can be seen in Equation 3 and Equation
4. The maximum attantainble score for a pSNV was 114 where the minimum
was 0.

Since these prioritization scores are specific to each sample, it is important
to note that the same mutation (i.e. C>T mutation at chr5:1,295,250) will
yield unique scores depending on the sample’s normalized gene expression,
tumor purity, and variant allele frequency. All other features will contribute
equally to the score, as their values will remain identical across samples.

The specific features that were used and their corresponding weights can
be found in Table 1. For recurrence and the number of created/destroyed
TFBSs, a maximum contribution value to the score is given. Additionally, for
tumor purity and variant allele frequency, a boolean feature weight was added
to the prioritization score if the sample met or exceeded the specific threshold
value. Lastly, when scoring both open chromatin at a pSNV position and
presence of the adjacent gene within the CGC list, a fixed weight was added
to the score if the features were “True”.

Prioritization Score =
all features∑

i=1

g(xi, wi,mi, ti) (3)

g(xi, wi,mi, ti) =


wixi mi = ∅ and ti = ∅
min(wixi,mi) mi ̸= ∅ and ti = ∅
wixi mi = ∅, ti ̸= ∅ and xi ≥ ti

0 otherwise

(4)

such that

• Prioritization Score is the prioritization score of a sample-specific pSNV

• xi is feature i’s value (e.g. zscore of 5)
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• wi is feature i’s weight (e.g. normalized FPKM / zscore weight of 5)

• mi is feature i’s maximum value (e.g. maximum value of 25 for the
normalized FPKM / zscore)

• ti is feature i’s threshold (e.g. None for normalized FPKM / zscore)

Table 1: A table consisting of the 7 features considered for the weighted sum
REMIND-Cancer prioritization score. Specifically, ‘Feature Type‘ refers to
one of the three major types (genomic, transcriptomic, and annotations) of
features considered, ‘Feature Name‘ refers to the name/description of the fea-
ture, ‘Weight‘ refers to the weight given during the computation, ‘Maximum‘
refers to the maximum contribution (i.e. max(maximum value noted, xi ×
wi)) that the feature could contribute to the prioritization score (if appli-
cable), and ‘Threshold‘ refers to the threshold needed to contribute to the
prioritization score (if applicable).

3.1.5 Computational Pipeline

The filtering steps described in Section 3.1.2 and the annotations outlined
in Section 3.1.3 were implemented in Python 3.11.0 using libraries such as
Pandas v.2.1.1 (Reback et al., 2020), NumPy v.1.26.1 (Harris et al., 2020),
and SciPy v.1.11.3 (Virtanen et al., 2020). All packages and versions used
can be seen within the publicly-available REMIND-Cancer Computational
Pipeline GitHub Repository page (Abad, Körner, & Feuerbach, 2024d).

At each stage of the process (e.g. gene expression filter, recurrence an-
notation), intermediate results were saved as a JSON file to ensure inter-
pretability and data provenance. This JSON file was continuously updated
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after each step with the filtering/annotation steps as keys and the paths (in-
cluding the PIDs) as values. An example of this workflow is illustrated in
Figure 12.

Figure 12: An outline of the REMIND-Cancer pipeline’s workflow, illustrat-
ing the transfer of information between stages (i.e. from the promoter filter to
the TFBS motif and TF expression filter). The pipeline utilizes a JSON file
to track the patients and mutations that progress to each subsequent phase.

3.1.6 Quality Control Tools

During the inspection phase of the REMIND-Cancer workflow, two quality
control tools, namely DeepPileup (Rheinbay et al., 2020) and GenomeTor-
nadoPlots (Hong et al., 2022), were applied to putative pSNVs to assist in
their selection for in vitro validation.

3.1.6.1 DeepPileup

DeepPileup (Rheinbay et al., 2020) was originally designed by Dr. Lars Feuer-
bach in order to distinguish true signals from potential alignment artifacts
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at individual genomic positions.
By considering all raw sequencing files for each cohort in the form of

binary alignment map (BAM) files from both tumor and normal samples,
two plots are generated. The first plot shows the percentage of samples per
cohort in which the non-reference allele reaches a frequency greater than 25%.
An example of a valid position could be seen in Figure 13a where nearly no
noise (i.e. ∼0% of samples do not reach a minor allele frequency of 25%) is
detected within control samples but signal is detected in a fraction of tumor
samples (e.g. ∼8% of tumor samples in the MELA-AU cohort reach a minor
allele frequency of 25%). Consequently, this position would be considered a
technically valid position.

However, within Figure 13b for a different pSNV, there is an abundance
of signal coming from normal samples, which in many cohorts (e.g. BOCA-
UK) is greater than the signal coming from the tumor sample. Consequently,
this genomic position could be considered to be noisy due to Figure 13b.

Figure 13: The percentage of samples per cohort in which the minor allele
frequency (MAF) is greater than 25% separated by tumor samples and normal
samples. (a) A technically valid genomic position due to being almost no
signal within control samples but signal within tumor samples (b) A noisy
genomic position due to observing signal in both the control and tumor in a
majority of cohorts
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Furthermore, a secondary plot is also generated that shows the percentage
of samples per cohort with two or more variant alleles. For all pSNVs in both
the PCAWG and retrospective NCT-MASTER dataset passing the filtering
steps, both plots were generated.

Though this tool was originally designed by Dr. Lars Feuerbach, I further
expanded this tool by updating the original code to upgrade from Python 2
to Python 3, vastly improving upon its computational efficiency, developing
new forms of visualization, and making this publicly-available for general use
on GitHub (Abad, Körner, & Feuerbach, 2024a).

3.1.6.2 GenomeTornadoPlots

GenomeTornadoPlots (Hong et al., 2022) was used in order to observe po-
tential implications of convergent tumor evolution for specific genes within
the PCAWG dataset. The original GenomeTornadoPlot package allows users
to visualize copy number variations (CNVs), particularly focal deletions and
amplifications, at specific gene locations.

Figure 14: An example of a GenomeTornadoPlot for CDC20 in which 10
focal deletions and 37 amplifications are visualized.

To allow for easy integration into pSNV Hunter, which will be described
in the following section, a wrapper script was created and can be found on
GitHub (Abad, Körner, & Feuerbach, 2024b).
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3.1.7 pSNV Hunter

To assist in the selection of putative pSNVs for functional validation during
the inspection phase, I developed a general-purpose data aggregation and
visualization tool called pSNV Hunter. This tool allows for the examination
of individual pSNVs, enabling users to interactively assess factors such as
adjacent gene expression, specific gene function, recurrence level, expression
levels of transcription factors, sample-specific information, as well as view
quality control plots from DeepPileup and GenomeTornadoPlots.

Additionally, users have the ability to take notes regarding their prefer-
ences or concerns about specific pSNVs and can conveniently extract candi-
dates into a separate CSV file for further analysis. An overview of the most
important aspects of pSNV Hunter along with actual screenshots of the tool
can be seen in Figure 15.

A detailed description of each of these 12 features can be found below:

1. Individual pSNVs can be chosen for comprehensive analysis within a
filterable (e.g. ”only show pSNVs with a recurrence level of at least
5”) and sortable (i.e. sort by prioritization score ranking, sort by gene
name) data table of the remaining pSNVs

2. The expression levels (normalized z-score, FPKM, or natural log) of the
adjacent gene along with the expression of this gene in the rest of the
cohort and in cohorts with recurrent samples, are visualized through
an interactive violin plot.

3. The function of the adjacent gene was extracted from National Center
for Biotechnology Information (NCBI) (Brown et al., 2015) and can be
read in its entirety along with a hyperlink to where this information
came from.

4. Select which of the de novo created or destroyed TFBSs and their
corresponding TFs to analyze further

5. The expression levels (normalized z-score, FPKM, or natural log) of the
selected TF, as well as its expression in the remainder of the cohort,
are depicted using a violin plot.

6. Information regarding the function of the chosen TF, obtained from
NCBI, provides initial insights into its potential roles
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Figure 15: An overview of the 12 most important features of pSNV Hunter.
The different colors of text represent different tabs within pSNV Hunter. For
example, the purple features (2. Gene Expression Violin Plots and 3. Gene
function via NCBI) can be seen within a single tab that’s related to the gene
whereas the teal features (4. Created or Destroyed TFBSs, 5. TF expression
violin plots relative to the different cohorts, and 6. TF function via NCBI)
can be seen in a different tab related to the transcription factors.

61



7. Users can take notes for individual pSNVs that can be exported indi-
vidually or along with the results exported in (12)

8. A sunburst chart visualizes the scoring composition of the selected
pSNV with the inner ring representing the three major scoring cat-
egories (genomic, transcriptomic, and annotations), and the outer ring
detailing specific aspects (e.g., tumor purity under genomic category,
gene expression level under transcriptomic category)

9. The two interactive DeepPileup plots as described in 3.1.6 can be seen
and used for quality control purposes.

10. The GenomeTornadoPlots as described in 3.1.6 can be seen and used
for quality control purposes.

11. Other important (meta)information about the sample can be seen such
as the number of original SNVs in this sample, the number of remaining
pSNVs and cohort information.

12. Users can export a CSV file containing only the pSNVs they find in-
teresting, presented in a readable format.

pSNV Hunter was developed in Python 3.11.0 with both the backend and
frontend constructed using Plotly Dash (Inc., 2015c) version 2.1.14. Plot
generation is facilitated by Plotly (Inc., 2015a) version 5.18.0 while other es-
sential libraries include Dash Bootstrap Components (AI, n.d.) version 1.5.0
and Dash Bio (Inc., 2015b) version 1.0.2. pSNV Hunter is fully-available
online on GitHub (Abad, Körner, & Feuerbach, 2024c).

3.1.8 Luciferase Assay

The in vitro validation of candidate pSNVs was conducted by Sabine Karolus
and Dr. Cindy Körner using a luciferase reporter assay in HEK293FT cells.
The signal obtained from the firefly luciferase was normalized to the Renilla
luciferase signal and the median of all conducted technical replicates was
recorded. Furthermore, the percentage of upregulation (i.e. relative change)
was calculated as the change in normalized signal between the mutant and its
corresponding wildtype vectors in percentage. Further details (e.g. sequences
used, restriction enzymes for subcloning, number of cells per well) can be
found in our pre-print (Abad, Glas, et al., 2024).
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3.1.9 Statistical Testing

The statistical comparison between WT and MUT luciferase activity focused
on the percentage of upregulation using a one-sided t-test with an expected
value of 0. The null hypothesis (H0) states that the mean percentage upreg-
ulated in the mutant is less than or equal to that in the wild type. Therefore,
a significant p-value (i.e., p-value ≤ 0.05) would lead to rejecting the null hy-
pothesis, indicating a positive upregulation in the mutant compared to the
wild type. I conducted this analysis using the SciPy (Virtanen et al., 2020)
version 1.11.3 Python library.

3.1.10 Mutational Signature Detection

The three common UV-induced mutational signatures, namely SBS7a, SBS7b
and SBS7c, were annotated for mutations belonging only to PCAWG’s SKCM-
US cohort. In the case of SBS7a, I determined that a pSNV matched this
signature if the pSNV was a C > T mutation in TpC dinucleotide context
(i.e. TC > TT). For SBS7b, I determined that a pSNV contained this sig-
nature if there was a C>T mutation at a CpC dinucleotide (i.e. CC>CT or
CC>TC) and lastly, a pSNV contained SBS7c if it was either a T>C or T>A
mutation, irrespective of the flanking nucleotides. I conducted this analysis
through the use of Python 3.11.0.

3.1.11 TF Activity Prediction Using DoRothEA, Collectri and
decoupleR

TF activity was predicted using the normalized gene expression (zscore) of
each cohort for the both the PCAWG and NCT-MASTER dataset. In par-
ticular, four methods of decoupleR (1.6.0) (Badia-i Mompel et al., 2022) were
employed: univariate linear model (ULM), multivariate linear model (MLM),
weighted sum (WSUM), and VIPER and the consensus. For each algorithm,
the default hyperparameters were used.

As part of the decoupleR package, both Collectri (Müller-Dott et al.,
2023) and DoRothEA (Garcia-Alonso et al., 2019) could be loaded in directly
within Python 3.11.0 as a Pandas (Reback et al., 2020) dataframe. In total,
Collectri comprised 43,178 unique TF-gene interactions, corresponding to
1,186 unique TFs and 6,692 unique genes. In comparison, only the three
most confident levels (i.e. A, B, and C) of DoRothEA were used, which had
32,275 unique TF-gene interactions, 429 unique TFs and 9,228 unique genes.
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3.1.12 Thesis and Figures

This thesis was written entirely in LaTeX using the publicly-available and
free version of OverLeaf (https://www.overleaf.com/). Graphs, figures,
and tables were generated using either BioRender (https://www.biorender
.com/) or Adobe Illustrator 2024. When applicable, figures were initially
generated using the Plotly (Inc., 2015a) Python library and then refined in
Adobe Illustrator 2024 for improved visualization. Importantly, only cos-
metic adjustments (e.g. color scheme, font sizes, location of legend) were
made with no alterations to specific data values to misguide the reader. Un-
less otherwise noted such as within Figure 3, I generated all figures, graphs,
and tables independently.

3.2 DREAM Challenge

As discussed in Section 2.2, the objective of the ”Predicting Gene Expression
Using Millions of Random Promoter Sequence” 2022 DREAM challenge was
to predict gene expression within yeast using only a small (∼80 bp) pro-
moter sequence, effectively requiring participants to identify TFBSs without
the support of external databases. I individually competed in this chal-
lenge against 292 teams, many of whom had prior experience in sequence-
to-expression modeling. Specific details of the competition are provided
(https://www.synapse.org/Synapse:syn28469146/wiki/617075) whereas
a preprint of this challenge has recently been published (Rafi et al., 2023).

To detail the structure of the challenge, there was no limit on the size of
a team though some teams consisted of entire research labs. Additionally,
each team was given the the training dataset (i.e. CSV file of a sequence and
expression) as well as extra computational power (if needed) in the form of
Google’s tensor processing unit (TPU) access for faster computing.

For the 12 weeks leading up to the final submission date, the project orga-
nizers created a pre-submission leaderboard in which teams could benchmark
their performance against other teams. Importantly, teams did not necesas-
rily have to participate in this phase nor did this count towards the final
ranking during the actual submission. In total, 292 teams participated in
this phase thereby entering the challenge. During this phase, each team
could submit up to five models, which would then be used to predict the
expression on a heldout validation set originating from the final test set.
Teams and their subsequent models were ranked based on two metrics when
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comparing the actual to predicted expression levels: Pearson correlation r2

and Spearman ρ correlation.
After 12 weeks, the final test set in which teams were truly evaluated

on consisted of 71,103 promoter sequence and expression pairs. In addition
to being evaluated on the Pearson and Spearman correlation of these se-
quences, the test set was further divided into small sub-categories such as
those sequences with high expression and sequences corresponding with low
expression. Final rankings were a weighted sum of these measures with a
majority of the scoring weight going to the two main categories of overall
Pearson and Spearman correlation.

3.2.1 Data

Both the training and testing datasets contained the gene expression in yeast
(Saccharomyces cerevisiae) paired with a promoter sequence. Utilizing a data
collection method mirrored in their own previous study (de Boer et al., 2020),
the project organizers inserted 6,739,258 random DNA sequences into pro-
moter constructs and cloned these into low-copy-number vectors containing
yellow fluorescent protein (YFP) and a red fluorescent protein (RFP) to act
as a control. The yeast was grown and the expression was measured by
sorting cells into 18 bins based on the logged YFP/RFP fluorescence ratio
(YFP / RFP). Yeast from each bin were then grown, vectors isolated, and
the promoter sequences were amplified and sequenced. The final data is a
table linking each promoter sequence to its expression level, calculated from
the sorting bins. Additional sequencing details can be found in Rafi et al.
(Rafi et al., 2023).

The promoter expression level for the training data represented the weighted
average of expression bins in which that promoter was observed (weighted
by the fraction of reads in that bin). Therefore, many of the promoters were
only seen in a single bin, which led to many promoters with expression levels
that exactly correspond to an integer (Figure 16a). However, for the test set,
the exact expression, rather than a weighted average, was generated (Figure
16b).

65



Figure 16: Cumulative distributions of the expressions of the training (a) and
test (b) datasets. These images originated from the official DREAM chal-
lenge page: https: / / www .synapse .org/ Synapse: syn28469146/ wiki/

617557 .

During the protoyping and subsequent training of my model, the orig-
inal training set, comprising 6,739,258 random DNA sequences and their
corresponding expressions, was randomly split according to an 80/20 ratio.
Consequently, 5,391,406 sequences were used to train the neural network ar-
chitecture while the remaining 1,347,852 sequences served as a validation set
to assess my model quality.

3.2.2 Pre-processing Strategies

To better simulate the true test set, random noise was introduced to some
of the training data. For each promoter sequence in the training dataset
with an integer gene expression value of x, a random sample was drawn
from a Normal(x, 0.3) distribution. This new value was used to replace
the original integer expression. Other variances were also tested throughout
the challenge, including sampling from a Normal(x, 0.2) or Normal(x, 0.4)
distribution, as well as different distributions such as sampling from a log-
normal, Poisson, and Negative Binomial distribution. All random sampling
was conducted using Python 3.11.0 using NumPy v.1.26.1 (Harris et al.,
2020).
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3.2.3 Transformer Neural Network

For this sequence-to-expression task, a neural network was utilized, featuring
primarily multi-head attention, convolutional, and basic feed-forward layers,
along with additional layers such as batch normalization, dropout, concate-
nation, padding, and flattening. The final architecture comprised 55 distinct
layers with unique hyperparameters, resulting in 1,137,113 trainable param-
eters (weights and biases).

To briefly describe the basic neural network architecture: the input data
was first transformed (one-hot encoded) into a (110, 4) binary matrix, where
each nucleotide corresponds to one of the four columns, and a value of 1
indicates the presence of that nucleotide at a specific position. The reverse
complement of this input sequence was generated and the network was split
into two “tracks,” one handling the sequence in the normal context and
the other handling the reverse complement. Several multi-headed attention
blocks, each comprising a multi-head attention layer followed by an activation
function, dropout layer, normalization layer, convolutional layers, and feed-
forward layers, were applied to each track separately. These two tracks were
then concatenated, followed by additional multi-head attention blocks and
several dense layers, culminating in a final dense layer to produce the output.

The loss function used to adjust the learnable parameters was mean
squared error (MSE) to penalize large errors and Nadam was used as the
final optimizer. The network was trained for 1,000 epochs using computa-
tional resources provided by the challenge (Google Research’s TPUs) and
the epoch corresponding to the lowest validation MSE was used as the best
model weight to account for potential overfitting during training.

The neural network was constructed and trained in Python 3.11 using
Keras 3.3.0 (Chollet, 2015) and Tensorflow 2.16.1 (Abadi et al., 2015).

3.2.4 Hyperparameter Optimization

To select the best hyperparameters, Bayesian Optimization (BO) was em-
ployed with expected improvement (EI) as the acquisition function. The
following hyperparameters were optimized utilizing the following prior dis-
tribution, minimum values and maximum values:

• Learning Rate with a prior of Uniform(0.000001, 0.1); Starting value
of 0.001
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• Dropout Rate with a prior of Uniform(0, 0.5); Starting value of 0.03

• L1 Regularizer weight with a prior of Uniform(0, 1); Starting value of
1e−5

• L2 Regularizer weight with a prior of Uniform(0, 1); Starting value of
1e−4

• Attention Block Dropout Rate with a prior of Uniform(0, 0.5); Start-
ing value of 0

• Number of Convolutional Filters of 256, 512, 1024 or 2048; Starting
value of 256

• Convolutional Kernel Size with a prior of Discrete Uniform(4, 256);
Starting value of 30

After 20 iterations or calls of BO, the best hyperparameters were deter-
mined to be a learning rate of 0.002, dropout rate of 0.023, L1 regularizer
weight of 0, L2 Regularizer weight of 0, attention block dropout rate of 0.034,
256 convolutional filters, and a convolutional kernel size of 64. This algorithm
utilized the Scikit-Optimize 0.8.1 (Head, 2016) package in Python 3.11.0.
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4 Calibrating the REMIND-Cancer Workflow

Within this section, details regarding the rationale and development of the
three REMIND-Cancer filtering steps, namely the (1) promoter, (2) gene
expression, and (3) TFBS motif and TF expression filters, will be pro-
vided in Sections 4.1, 4.2, and 4.3, respectively. Although I provide the
rationale for the default threshold values for each filter, users of the open-
sourced REMIND-Cancer computational pipeline (Abad, Körner, & Feuer-
bach, 2024d) are able to adjust these values tailored to their own analysis if
needed.

Furthermore, the details regarding the inclusion criteria, particularly for
the retrospective and prospective NCT-MASTER datasets, will be explained
in Section 4.4.

4.1 Promoter Filter

As my study’s main focus is on SNVs within the promoter region of protein
coding genes, the promoter filter was implemented first to significantly reduce
the amount of SNVs considered for further analysis. However, determining
the promoter region was a key question that needed to be considered.

In the literature, several promoter databases, such as the Tissue-Specific
Promoter Database (TiProd) (X. Chen et al., 2006) and the Eukaryotic Pro-
moter Database (EPD) (Périer et al., 2000), have been developed for general
use. However, utilizing databases such as these introduce unique challenges
such as needing to make gene-specific (e.g. using Ensembl or GENCODE
TSSs) and tissue-specific assumptions. Even when these assumptions are
met, these databases can have drastically different predictions of the pro-
moter region for the same gene within the same tissue.

Previous studies (Rheinbay et al., 2020) (Fu et al., 2014) (Mularoni et
al., 2016) have addressed this issue by using more general promoter regions,
thereby trading specificity (potentially including regions that are not true
promoters) for increased sensitivity (identifying more potential promoter re-
gions). As my study builds on a previous study (Rheinbay et al., 2020) that
used a promoter region of 500 bp upstream to 500 bp downstream of the TSS,
I chose to be slightly more inclusive. Thus, I defined the promoter region as
1,000 bp upstream to 500 bp downstream of the TSS to include more SNVs
in the analysis.
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Furthermore, as GENCODE v19 (Frankish et al., 2019) was previously
used for TSS annotation (Rheinbay et al., 2020), I also used this conven-
tion. This therefore resulted in 47,970 promoter regions, each of which cor-
responded to a specific gene and are defined as being 1,500 base pairs long
(1,000 bp upstream to 500 bp downstream of the TSS).

4.2 Gene Expression Filter

To detect the aberrant upregulation of a pSNV’s corresponding gene, the
normalization of genes’ expression relative to both the cohort and the gene
itself was deemed necessary due to different tissue types having different
expression profiles.

As an example, consider the previously-implicated gene RALY and its
expression profile within our PCAWG dataset in Figure 17. Here, each cohort
displays a distinct distribution of expression levels, which renders the direct
comparison of expression values between cohorts unreliable.

Figure 17: An example of the differing FPKM levels of RALY within the
different PCAWG cohorts. With different distributions of expression levels,
this renders the comparison of expressions between cohorts unreliable.

After zscore normalization, this theoretically implies that the scores will
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follow a standard normal distribution (i.e. X ∼ Normal(0, 1)). Those pSNVs
corresponding to genes with zscores above 0 implies that the gene is upreg-
ulated relative to other samples within the cohort whereas a negative zscore
implies the opposite (i.e. downregulated relative to other samples within the
cohort). By only keeping those pSNVs with zscores above 0, a semi-stringent
filter is put in place where, theoretically, 50% of the remaining pSNVs with
RNA-Seq data will remain.

4.3 TFBS Motif and TF Expression Filter

To further detect activating pSNVs, the TFBS motif and TF expression filter
was utilized, which follows a multi-step process. As described in Section
3.1.2.2, pSNVs (1) leading to the creation and/or destruction of TFBS(s)
and (2) having that corresponding TF being expressed (i.e. FPKM > 0)
leads to keeping that pSNV for further analysis.

As detailed in Section 3.1.2.2, determining the creation or destruction of
a TFBS involves inputting the WT and MUT sequences into FIMO (Grant
et al., 2011) to identify matching TFs in the JASPAR2020 (Fornes et al.,
2020) database. If a TF is found in either sequence, a binding affinity score
is assigned to that sequence. For example, if a TF is present in the WT
sequence but not in the MUT sequence, it receives a binding affinity score for
the WT sequence but not for the MUT sequence. Thus, a ratio RatioMUT/WT

between a TF’s MUT and WT is computed, which is then used to determine
whether a TF is created or destroyed.

The default ratio threshold for the creation of a TFBS is 11. This
threshold was chosen because of the two TERTC228T and TERTC250T hotspot
pSNVs, which are known to create binding sites for ETS-family TFs such as
GABPA and ELK4. As such, the TERTC228T RatioMUT/WT for GABPA is
11.3 whereas the RatioMUT/WT for ELK4 is 13.2. Similarly, for TERTC250T ,
the RatioMUT/WT for GABPA and ELK4 are 11.3 and 13.2. Due to wanting
to be more inclusive of potentially created TFBSs, a slightly lower threshold
of 11 was decided upon as a creation threshold. Using this creation threshold
of 11, the reciprocal of this (i.e. 1

11
≈ 0.9) was used as the TFBS destruction

threshold.
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4.4 Data Inclusion

The PCAWG and NCT-MASTER datasets contain different types of sam-
ples. PCAWG samples, for instance, are exclusively from primary tumors,
indicated by study abbreviations (e.g., breast cancer = BRCA-US), whereas
NCT-MASTER samples were taken either from the primary tumors or metastatic
sites. This distinction, along with the lack of clinical annotations in the
NCT-MASTER data, was crucial to consider, particularly for normalizing
expression values throughout the REMIND-Cancer pipeline.

Particularly for the NCT-MASTER dataset, all cohorts were considered
for analysis with the exception of the “Anderes / Other” and “Sarkom /
Sarcoma” cohorts. The “Anderes / Other” cohort included unclassified sam-
ples assigned via an annotation file, potentially encompassing samples from
other cohorts and thereby greatly affecting normalized gene expression. The
“Sarkom / Sarcoma” cohort was excluded due to its broad categorization
and heterogeneity, exemplified by having over 50 subtypes in soft tissue sar-
coma alone (Katz, Palmerini, & Pollack, 2018) and each subtype exhibiting
different expression profiles (Sarver, Sarver, Thayanithy, & Subramanian,
2015). This heterogeneity is reflected in the number of samples, with Sarcoma
(n=463) being the most represented cohort, far exceeding Neuroendocrine
(n=98) and Colorectal (n=94), which are the next most populous cohorts.
Further providing evidence of this expression hetereogeneity is the observa-
tion of multi-modal expression distributions within a majority of genes in
sarcoma samples therefore leading to the exclusion of this cohort.

For tumor-type omission, only samples derived from the primary tumor
were included in downstream analysis by the REMIND-Cancer pipeline. Var-
ious studies have investigated and reported transcriptomic differences be-
tween metastatic tumors and their paired primary tumors from the same
patient across various cancer types, typically citing that expression differ-
ences are due to cancer stage and the location where the metastatic sample
was taken (Y. Zhang, Chen, Balic, & Creighton, 2024) (Aftimos et al., 2021)
(Garcia-Recio et al., 2023) (Y. Zhang, Chen, & Creighton, 2023) (Iwamoto
et al., 2019) (Cosgrove et al., 2022). Particularly in NCT-MASTER cohorts
with small sample sizes, such as brain (n=17) or kidney (n=18), having even
one metastatic sample with significantly different expression for a particular
gene will drastically alter the zscores and potentially affect the detectability
of pSNVs corresponding to upregulated genes. Consequently, only samples
from the primary tumor were considered for downstream analysis.
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5 Results

5.1 Overview of the REMIND-Cancer Workflow

To summarize the primary aim of my PhD project, the REMIND-Cancer
Workflow was created to identify and prioritize activating pSNVs using a
recurrence-agnostic approach. In addition to detecting highly-recurrent mu-
tations, I wanted to design a pipeline that also identified often-overlooked
singletons and lowly-recurrent mutations.

In order to do so, sample-specific SNVs from the PCAWG and retro-
spective NCT-MASTER datasets were initially subjugated to three filtering
steps: (1) a promoter filter (see 3.1.2.1), (2) a gene expression filter (see
3.1.2.3) and (3) a TFBS motif and TF expression filter (see Section 3.1.2.2).
pSNVs were thus annotated with features such as recurrence rate, tumor
purity, variant allele frequency, presence within the CGC list, and open chro-
matin (see Section 3.1.3). Using these features combined with each pSNV’s
genomic and transcriptomic information, a prioritization score for their sub-
sequent ranking was then computed (see Section 3.1.4). To gain a holistic
view of individual pSNVs and to assess their validity, pSNV Hunter (see
Section 3.1.7) was used to assist in the manual selection of mutations for
subsequent in vitro validation.

Consequently, this section will present the results of applying this work-
flow to both the PCAWG and retrospective NCT-MASTER dataset sepa-
rately (see Sections 5.2 and 5.3). Through the additional analysis of these
results with pSNV Hunter (see Section 5.4), 22 pSNVs were selected and
validated in vitro (see Section 5.5). Additionally, analyses on UV-induced
mutational signatures (see Section 5.6) and TF activity (see Section 5.7)
were conducted retrospectively. Finally, the viability of this workflow in a
precision oncology setting was assessed through the use of the prospective
NCT-MASTER dataset as well as the COGNITION dataset (See Section
5.8).

5.2 The REMIND-Cancer Workflow on the
PCAWG Dataset

The REMIND-Cancer workflow was first applied to the PCAWG dataset,
which consisted of 2,413 unique samples comprising 19,401,901 total muta-
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tions. 927 (38.4%) of these samples were accompanied by RNA-seq data,
allowing for the analysis of their corresponding 10,924,597 mutations (56.3%
of all mutations). These 927 samples belonged to 24 of the 43 original cohorts
as 19 cohorts did not have corresponding RNA-Seq data.

366,373 mutations (3.4% of all SNVs) were classified as pSNVs through
the promoter filter. Furthermore, 19,250 (0.18% of all SNVs; 5% of all
pSNVs) met the remaining filtering criteria, which included the gene ex-
pression filter as well as the TFBS motif and TF expression filter. These re-
maining 19,250 pSNVs were then annotated with additional features, scored
and subsequently ranked (Figure 18).

Figure 18: Results of the REMIND-Cancer workflow on the PCAWG dataset.
Created with BioRender .com . Adapted from Abad et al. (Abad, Glas, et al.,
2024).

5.2.1 Prevalence of Recurrent and Known Functional pSNVs

Of the 19,250 pSNVs passing the pipeline, only 966 (5%) were recurrent,
many of which were identified in previous studies such as TERTC228T , TERTC250T ,
RALYC927T and CDC20G529A.

28 out of the 97 total TERTC228T instances and 7 out of the 36 total
TERTC250T instances remainined after the conclusion of the pipeline, making
them the two most frequent genomic positions after the conclusion of the
pipeline (Figure 19). These 28 TERTC228T mutations were distributed across
18 cohorts whereas the TERTC250T pSNVs were distributed throughout 6
cohorts. Conversely, a majority of both TERT mutations that did not pass
the pipeline were initially excluded due to the lack of available gene expression
data.
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Figure 19: Scatter plot showing the most frequent genomic positions of
pSNVs that passed the REMIND-Cancer pipeline. Four previously-implicated
pSNVs, namely TERTC228T , TERTC250T , RALYC927T and CDC20G529A, can
be seen.

The previously-implicated RALYC927T pSNV also stood out as the fourth
most common pSNV after the conclusion of the pipeline (Figure 19). Of
the 15 total RALYC927T occurrences, four samples passed the pipeline, all
from the skin cutaneous melanoma (SKCM-US) cohort. Interestingly, the
11 other RALYC927T pSNVs that did not pass the pipeline were observed
either within the same SKCM-US cohort or within the broader Australian
melanoma cohort (MELA-AU), which lacked corresponding RNA-Seq data.
By definition, the MELA-AU cohort included acral and mucosal melanoma
subtypes, in addition to the cutaneous melanoma subtype present in the
SKCM-US cohort.

Despite having a relatively high recurrence rate of 11, only one CDC20G529A

pSNV passed the pipeline (Figure 19). This pSNV was detected in one of
the six samples with matching RNA-Seq data, suggesting that CDC20 ex-
pression was not above the cohort average in the other five samples, thereby
failing the gene expression filter. Similar to RALYC927T , this mutation was
also found within the SKCM-US cohort.

Even when considering only the top 100 highest-ranking sample-specific
pSNVs, 35 of the 54 recurrent mutations belonged to one of these previously
known functional pSNVs. In particular, 26 instances of TERTC228T , 7 in-
stances of TERTC250T , and 2 instances of RALYC927T (Figure 19) were found
within the top 100. While a CDC20G529A pSNV did not rank within the
top 100, it still achieved a rank of 284, placing it within the top 1.5% of all
remaining pSNVs.

A detailed breakdown of the highest-ranking sample-specific scores for
each of these four previously-implicated pSNVs is presented in Figure 20a.
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In these four sunburst charts, the genomic (green), transcriptomic (orange)
and annotation (blue) categories are further divided into the individual com-
ponents that contribute to their prioritization scores.

Figure 20: Overview of four previously-identified pSNVs and the top 100
ranking pSNVs. (a) Sunburst charts displaying the highest-scoring samples
for TERTC228T , TERTC250T , RALYC927T , and CDC20G529A. The general cat-
egories (genomic in green, transcriptomic in orange, and annotations in blue)
are further detailed by their specific components. cTFBS = number of created
TFBSs, dTFBS = number of destroyed TFBSs, CGC = known cancer gene
according to the CGC database, VAF = variant allele frequency. (b) Top 100
ranking pSNVs separated by recurrence status (top) and a heatmap corre-
sponding to the TERTC228T , TERTC250T , and RALYC927T (bottom). Created
with BioRender .com . Adapted from Abad et al. (Abad, Glas, et al., 2024).
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Furthermore, of the 19,250 sample-specific pSNVs passing the pipeline,
18,284 (95%) were singletons with 46 being within the top 100 ranking mu-
tations (Figure 20b). These singletons were primarily within the SKCM-US
cohort with 15 instances within the top 100 followed by bladder urothelial
cancer (BLCA-US) with 5 and 4 within both liver cancer (LIRI-JP) and lung
squamous cell carcinoma (LUSC-US).

5.2.2 86% of Recurrent pSNVs Passing the Pipeline Still Lack
Statistical Power

As introduced in Section 1.4.2, Rheinbay et al. (Rheinbay et al., 2020)
investigated the number of pSNVs needed in each cohort to achieve 90%
statistical power for its detection, given each cohort’s observed mutation rate
and overall sample size. Among all cohorts, the fewest instances required to
reach sufficient power was four, which was observed in the myeloproliferative
neoplasms cohort, the general myeloid cohort, and the central nervous system
pilocytic astrocytomas cohort, as shown in Figure 3.

Using four as a lenient threshold for achieving statistical power, 829 of the
966 (86%) remaining recurrent pSNVs did not exceed this threshold. In par-
ituclar, 612 (73.8%) were recurrent with only one other sample, 138 (16.6%)
with two other samples and 79 (9.5%) with three other samples. Though
technically recurrent, these pSNVs could be considered lowly-recurrent, im-
plying that they would not have the statistical power needed to be detectable
by pre-existing recurrence-based methods.

Conversely, of the 137 sample-specific pSNVs passing this threshold of
four, 40 (29%) corresponded to previously-known pSNVs such as TERTC228T

(n=28), TERTC250T (n=7), RALYC927T (n=4) and CDC20G529A (n=1). The
remaining 97 highly-recurrent pSNVs corresponded to 65 genomic positions,
thereby leaving a substantial blindspot in the detection of functional pSNVs.

5.2.3 ANKRD53G529A is the highest and third highest ranking
pSNV

The recurrent ANKRD53G529A pSNV was identified as achieving the high-
est and third highest ranking pSNV of all PCAWG mutations. Irrespective
of RNA-Seq data availability, this mutation was present within six total
samples, two of which passed the pipeline and the other four of which did
not have RNA-Seq data available. In particular, the highest-ranking pSNV
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ANKRD53G529A was found in the BLCA-US cohort whereas the third highest
ranking pSNV ANKRD53G529A was found in lung adenocarcinoma (LUAD-
US) (Figure 21a).

At the transcriptomic level, both samples harboring this mutation exhib-
ited exceptionally high zscores relative to their cohort with the top ranking
mutation displaying a zscore of 4.49 (Figure 21b) whereas the third rank-
ing mutation had a zscore of 3.42. Additionally, this G/C>A/T pSNV was
predicted to create two new highly conserved binding sites: one for RELA
(Figure 21c) and the other for the STAT1:STAT2 heterodimer. This pSNV
was also located within a region of open chromatin according to ChromHMM
(Ernst & Kellis, 2012) but this gene is not yet a known cancer gene according
to the CGC (Sondka et al., 2018) database.

Furthermore, a GenomeTornadoPlot was generated in order to visually
assess the focal amplifications and deletions of this particular gene relative
to the PCAWG dataset (Figure 21d), revealing a high number of focal ampli-
fications throughout the entire cohort. Given that amplification could con-
tribute to increased expression levels of individual samples and considering
that the highest and third highest ranking ANKRD53G529A pSNVs displayed
relatively normal copy number levels of 3, this may suggest a case of conver-
gent tumor evolution. This pSNV could potentially upregulate ANKRD53
in the abscence of an increased copy number level thereby reinforcing my
interest in validating this pSNV in vitro.

Additionally, due to being highly prioritized in two samples, I wanted to
ensure this position’s biological and technical validity by employing Deep-
Pileup (Figure 21e and 21f). These plots revealed that six PCAWG cohorts
had tumor samples with a minor allele frequency (MAF) greater than 25%
while no normal samples showed noise (Figure 21e). All other PCAWG
cohorts not displayed have undifferentiated samples between the normal
and tumor samples by showing an MAF of 0%. Notably, both of the co-
horts (BLCA-US and LUAD-US) in which ANKRD53G529A was identified in,
showed a positive signal, reinforcing the confidence in this position. Using
a more sensitive threshold of at least two variant alleles, additional signal
from 7 more cohorts were detected, which may indicate subclonal mutations
(Figure 21f) as this mutation is only present in a subset of all cohorts.

Though this specific ANKRD53G529A pSNV was identified as the high-
est ranked and third highest ranked mutation after applying the REMIND-
Cancer workflow to the PCAWG dataset, Irina Glas (Abad, Glas, et al.,
2024) also discovered this mutation prior to the start of my PhD. To as-
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Figure 21: An overview of ANKRD53G529A, which corresponds to the highest
and third highest ranking pSNV. (a) Scoring breakdown of the highest scor-
ing pSNV, which is found within the BLCA-US cohort (b) The zscore (left
y-axis) and FPKM (right y-axis) of the highest scoring sample harboring this
mutation. The red dashed line represents the sample’s (relative) expression
value. (c) Sequence logo plot of the TFBS that this pSNV is predicted to
create through the G¿A mutation. (d) GenomeTornadoPlot of ANKRD53
(e) A DeepPileup plot displaying the percentage of samples with a minor al-
lele frequency above 25% for each cohort. Here, six cohorts, including that
of BLCA-US, are shown to have no signal within control samples but signal
coming from their tumor samples. (f) Using a less stringent criteria, a sec-
ondary DeepPileup plot displaying the percentage of samples with at least two
variant alleles. Adapted from Abad et al. (Abad, Glas, et al., 2024).
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sess its functionality in vitro, this mutation was introduced into a luciferase
reporter assay using the kidney cell line HEK293FT in which a slight 20%
increase in promoter activity was observed when comparing the mutant to
the wildtype construct.

Given that RELA encodes the NF-κB subunit p65, which requires post-
translational activation, Irina conducted further experiments to investigate
the role of p65. Upon activating this TF with TNF-α, promoter activity
increased by 80% compared to the original WT construct, demonstrating
the functionality of this TF, specifically within this context. These findings
collectively suggest that the REMIND-Cancer workflow is effective in prior-
itizing pSNVs that significantly contribute to activation, although their full
impact may depend on additional factors.

5.2.4 Applying the REMIND-Cancer Workflow to the EOPC-DE
Cohort Identifies and Prioritizes MYBC964A

As described in Section 3.1.1.2, the integration of the publicly-available early
onset prostate cancer (EOPC-DE) WGS data with an internal version of each
sample’s corresponding RNA-Seq data resulted in a cohort comprising 56,608
SNVs from 23 unique sample. To assess its effectiveness on a singular cohort,
the REMIND-Cancer pipeline was applied while querying recurrence against
the aforementioned PCAWG dataset as well as other EOPC-DE samples.

The REMIND-Cancer pipeline identified 554 (0.98%) SNVs as being
within promoter regions with 54 pSNVs (0.01% of all SNVs; 9.7% of all
pSNVs) from 17 samples successfully passing the entire pipeline (Figure 22a).

Among these 54 pSNVs, 53 were identified as singletons when com-
pared across the entire PCAWG dataset, including the highest-ranking pSNV
MYBC964A, where MYB has been recognized as a proto-oncogene. Notably,
the sample harboring MYBC964A displayed exceptionally high MYB tran-
scription (z-score of 3.75) (Figure 22b) and was located in a region of open
chromatin. Additionally, this pSNV was predicted to create binding sites for
two forkhead box (FOX) transcription factors, FOXD1 and FOXO3, both of
which showed exceptionally high FPKM values (Figure 22c).
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Figure 22: Overview of the results from applying the REMIND-Cancer work-
flow to the EOPC-DE cohort. (a) Number of mutations and samples per
filtering and annotation step. Created with BioRender .com . (b) The zscore
(left y-axis) and FPKM (right y-axis) of MYB. (c) The zscore (left y-axis)
and FPKM (right y-axis) of FOXD1 (left) and FOXO3 (right). Their cor-
responding logo plots can be seen below the boxplots. (d) The results of the
in vitro validation showing a 63% increase in activity (p-value = 0.021; one-
sided t-test). Adapted from Abad et al. (Abad, Glas, et al., 2024).

Similar to ANKRD53G529A, MYBC964A was validated in vitro via lu-
ciferase assays prior to the start of my PhD by Dr. Dieter Wiechenhan
(Abad, Glas, et al., 2024). In these experiments, using the kidney cell line
HEK293FT, a statistically significant 63% increase (Figure 22d; one-sided
t-test; p-value = 0.021) in luciferase activity was observed between the WT
and MUT constructs, further supporting the effectiveness of my approach in
identifying and characterizing putative activating pSNVs.
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5.3 The REMIND-Cancer Workflow on the
Retrospective NCT-MASTER Dataset

In addition to applying the REMIND-Cancer workflow to the PCAWG dataset,
this was also applied separately to a subset of the NCT-MASTER dataset.
As this program is ongoing, I created a data freeze, which includes data from
November 2016 to October 2020, corresponding to 2,378 samples comprising
40,660,325 SNVs. As detailed in Section 4.4, both the ”Anderes / Other”
and ”Sarkom / Sarcoma” cohort were omitted as well as samples originating
from the metastatic site (Figure 23a).

In doing so, a total of 10,722,278 mutations from 440 samples were used as
input into the REMIND-Cancer pipeline. Through the three filtering steps,
namely the (1) promoter filter, (2) TFBS motif and TF expression filter and
the (3) gene expression filter, this resulted in the scoring and ranking of
6,274 putative pSNVs within 328 patients (Figure 23b), which were spread
throughout 15 distinct cohorts.

5.3.1 Not All Previously-Implicated pSNVs Could Be Analyzed

Within Section 1.5.1, 5 previously-implicated pSNVs were introduced, namely
TERTC228T , TERTC250T , CDC20G529A, LEPROTL1C921T , and RALYC927T .
However, only TERTC228T and LEPROTL1C921T were among the prioritized
pSNVs when applying the REMIND-Cancer workflow to the retrospective
NCT-MASTER dataset.

For the TERTC228T hotspot mutation, only 4 of the 151 instances of
this pSNV remained after the conclusion of the pipeline. However, this was
primarily due to these pSNVs belonging to one of the excluded cohorts (n
= 107; 70.9%) or not having corresponding RNA-Seq data (n = 21; 13.9%),
which automatically excluded 128 (85%) of all TERTC228T pSNVs within the
dataset. Surprisingly, of those 23 TERTC228T pSNVs that were analyzable,
19 of those samples displayed a relatively negative TERT expression (zscore
≤ 0), which resulted in only 4 instances passing the pipeline. However, these
four pSNVs were all highly ranked (position 6, 42, 79 and 106), placing them
within the top 2% of all remaining pSNVs.

Secondly, no instance of TERTC250T remained after the completion of the
pipeline despite this pSNV being observed in 34 samples. However, similar to
that of TERTC228T , many samples harboring TERTC250T were excluded due
to not having an analyzable cohort (n = 22; 65%) or not having RNA-Seq
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Figure 23: Overview of the retrospective NCT-MASTER dataset: (a) In
comparison to the PCAWG dataset, the NCT-MASTER dataset required
additional data preprocessing steps such as the creation of the retrospective
dataset, the removal of the ”Anderes / Other” and ”Sarkom / Sarcoma” co-
horts, and the removal of metastasis samples. (b) Results of applying the
REMIND-Cancer Workflow to the NCT-MASTER dataset. Created with
BioRender .com .

data available (n = 6; 18%). The remaining 6 analyzable TERTC250T pSNVs
had slightly negative normalized expression values and therefore did not pass
the pipeline.

Furthermore, when considering the other three known pSNVs, only one
instance of LEPROTL1C921T was prioritized, which was found within the
Head and Neck cohort. Although only a slight upregulation in its asso-
ciated gene (zscore of 0.6) was observed, this pSNV was observed within
four other samples (in addition to being recurrent with one sample within
the PCAWG dataset), located within a region of open chromatin and was
annotated as being a known cancer gene according to the CGC list. Addi-
tionally, LEPROTL1C921T was predicted to create a single binding site for

83

BioRender.com


the EWSR1::FLI1 TF fusion, which has been identified as being a possible
therapeutic target within sarcoma (Mo et al., 2023).

5.3.2 81 of the Top 100 Ranking pSNVs Did Not Achieve Suffi-
cient Statistical Power

Of all 6,274 pSNVs passing the REMIND-Cancer pipeline, 5,921 (94.3%) were
singletons and 270 (4.3%) were lowly-recurrent with a recurrence statistic less
than 4. Conversely, this small subset of 83 (1.3%) highly-recurrent pSNVs
only occurred within 36 unique genomic positions, further adding to the
ineffectiveness of recurrence-based approaches.

Moreover, when focusing on only the top 100 ranking mutations, 73 were
singletons and 8 were lowly-recurrent. Of these singletons, however, was the
highly-ranked pSNV SCN1BC113T , which was found within the skin cohort
and ranked at the 93rd position placing it within the top 1.5% of all remain-
ing pSNVs. Interestingly, though prior studies have associated high SCN1B
expression in normal tissues rather than cancer tissues (Bon et al., 2016),
this particular skin sample displayed high expression with a zscore of 1.4.

5.3.3 pSNV Hunter Assists in Revealing Other Non-Coding Ele-
ments

After the conclusion of the REMIND-Cancer pipeline, the highest ranking
singleton, which was observed at the fourth highest ranking position, was
identified within the promoter of RP11-672L10.3. Furthermore, other high
ranking mutations were found within the promoters of RP11-672L10.3 (sin-
gleton; rank 10), RP11-532F12.5 (recurrence of 4; rank 17), RP11-296L22.8
(singleton; rank 22), AC097381.1 (recurrence of 7; rank 30), RP11-566K11.4
(singleton; rank 42), RP11-230C9.2 (singleton; rank 47), and AC005625.1
(singleton; rank 48).

However, upon the manual inspection of these mutations with pSNV
Hunter, which displays gene information originally provided by GeneCards
(Stelzer et al., 2016) and the National Center for Biotechnology Informa-
tion (NCBI) (Brown et al., 2015), it was determined that these mutations
occurred in promoter regions of genes that produce long non-coding RNAs
(lncRNAs) rather than protein-coding genes. Although lncRNAs have been
shown to play a causal role in cancer progression (Carlevaro-Fita et al., 2020),
the primary focus of my thesis was to identify pSNVs that may have a di-
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rect and downstream impact on protein production, particularly for clinical
applications. Because lncRNAs cannot be translated into proteins, these
identified pSNVs were thus not considered for further in vitro validation,
which underscores the necessity of using pSNV Hunter as a diagnostic tool
before conducting in vitro validation.

5.4 Selecting pSNV Candidates for in vitro Validation
with pSNV Hunter

The REMIND-Cancer computational pipeline significantly reduces the num-
ber of putative pSNVs through its filtering process, yet a substantial number
still remain. In particular, the PCAWG dataset was reduced from 19.4 million
mutations to 19,250, a 99.9% decrease, and the NCT-MASTER dataset was
similarly reduced by 99.94% from approximately 10.7 million to 6,274 muta-
tions. Despite these reductions, manually inspecting 19,250 + 6,274 = 25,524
pSNVs to ensure their validity prior to in vitro validation is time-consuming
and impractical, even given the assistance of our prioritization score. To ad-
dress this challenge, I developed pSNV Hunter (Abad, Körner, & Feuerbach,
2024c), a multi-purpose data aggregation and visualization tool, designed to
streamline the analysis of pSNVs from the REMIND-Cancer pipeline and
other VCF-formatted files.

While all features of the pSNV Hunter software are detailed in Section
3.1.7, four key functionalities expedited the in vitro selection process: (1)
displaying comprehensive genomic and transcriptomic information for each
pSNV in a tabular format, (2) visualizing gene expression plots for pSNV-
affected genes alongside the expression in recurrent samples and known gene
functions, (3) identifying predicted creation or destruction of TFBSs, and (4)
viewing quality control plots such as DeepPileup. An example of how this
was applied to ANKRD53G529A can be seen in Figure 24.

5.5 In vitro Validation

Utilizing pSNV Hunter, 22 pSNVs (13 from PCAWG; 9 from retrospective
NCT-MASTER) were identified, prioritized, and selected for in vitro vali-
dation (Supplementary Table S1). Of these mutations, 13 were singletons
and 9 were recurrent. Since singletons make up approximately 95% of the
remaining pSNVs within both the PCAWG and NCT-MASTER datasets,
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Figure 24: Screenshots of the pSNV Hunter workflow along with several fea-
tures using ANKRD53G529A as an example.
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there was a deliberate effort to select and validate these often-overlooked
pSNVs to test the ability of my pipeline to not only detect singletons but
rather detect activating singletons.

Additionally, the validation efforts also included the previously-implicated
CDC20G529A (He et al., 2021) (Godoy et al., 2023), RALYC927T (Hayward et
al., 2017) and LEPROTL1C921T (Rheinbay et al., 2017). Although the se-
lected candidates originated from 8 different cancer types (4 from PCAWG
and 4 from NCT-MASTER), the most common was the skin cancer cuta-
neous melanoma (SKCM-US), which 10 pSNVs belonged to, followed by
Skin (n=3).

While no absolute ranking or molecular criteria was used in the selection
process, pSNVs generally shared the following characteristics: high relative
expression, presence of active TFs, location within regions of open chromatin,
and positioning within high-confidence regions without noisy quality control
plots. However, these mutations were not exclusively associated with known
cancer genes according to the CGC list and did not necessarily have extensive
research on their cancer associations.

Although I identified, prioritized and selected these candidate pSNVs, all
in vitro validation efforts were gratefully conducted by Sabine Karolus and
Dr. Cindy Körner of DKFZ’s Division of Molecular Genome Analysis led by
Prof. Dr. Stefan Wiemann.

5.5.1 10 pSNVs (Including ANKRD53G529A and MYBC964A) Lead
to An Increase In Promoter Activity

Of the 22 pSNVs selected using pSNV Hunter, eight showed a significant
increase (p-value ≤ 0.05; one-sided t-test) in promoter activity when com-
paring the wild type (WT) to the mutant (MUT) construct (Figure 25a and
25b). Through the additional inclusion of both the positively-validated re-
current ANKRD53G529A pSNV (see Section 5.2.3) as well as the MYBC964A

singleton (see Section 5.2.4), 10 (10 of 24; 42%) pSNVs were found to lead
to an increase in promoter activity in total.

7 positively validated pSNVs were from the PCAWG dataset whereas the
remaining three were found within the NCT-MASTER dataset. Notably, the
validation rate of pSNVs selected from the PCAWG dataset (47%; 7 of 15) is
higher than that of the retrospective NCT-MASTER dataset (33%; 3 of 9).
These findings suggest that the REMIND-Cancer workflow, which includes
the manual inspection phase via pSNV Hunter, is effective in identifying
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Figure 25: Overview of the eight pSNVs that lead to an increase in promoter
activity. (a) Scatter plot of the average percentage of upregulation (left y-axis)
and fold increase (right y-axis) for each positively validated pSNV. pSNVs
found within the PCAWG dataset are denoted in green whereas those found
within the NCT-MASTER dataset are seen in orange. Adapted from Abad et
al. (Abad, Glas, et al., 2024). (b) The promoter activity, measured in relative
light units, of each positively validated pSNV. Each WT-MUT replicate pair
can be seen in the different colors within each individual plot. (c) The cohort
and recurrence rate relative to their own dataset as well as the other dataset.
For example, CDC20G529A, which was originally found within PCAWG, has a
recurrence rate of 11 in the PCAWG dataset, though it was still found within
four samples within the NCT-MASTER dataset.
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activating pSNVs within clinical datasets as well as highly-curated datasets
such as PCAWG.

Furthermore, among the 10 positively validated pSNVs were the previously-
implicated CDC20G529A, RALYC927T , and LEPROTL1C921T pSNVs. The ac-
tivating result of CDC20G529A result aligns with He et al. (He et al., 2021),
who observed an increase in promoter activity for CDC20G529A, but contra-
dicts Godoy et al. (Godoy et al., 2023), who found a repressive effect. Fur-
thermore, while RALYC927T was previously identified and implicated within
the cancer type (Hayward et al., 2017), my study extends this finding by
functionally validating this pSNV in vitro and demonstrating its activating
functionality. Lastly, although LEPROTL1C921T was previously validated in
the same HEK293FT cell line by Rheinbay et al. (Rheinbay et al., 2017),
these results indicate a statistically significant increase in promoter activ-
ity, contradicting their prior findings in which a negative effect was found.
Notably, these three pSNVs were also recurrent in both datasets (Figure 25c).

Furthermore, the positive validation rate of recurrent mutations (40%;
4 of 10) was similar to that of singletons (43%; 6 of 14), suggesting that
the REMIND-Cancer workflow is equally effective at identifying pSNVs with
activating functional significance regardless of their recurrence status.

5.6 Mutational Signatures

5.6.1 The SKCM-US PCAWG Cohort Shows an Abundance of
SBS7 Mutations

In prior studies, the previously-identified CDC20G529A (He et al., 2021)(Godoy
et al., 2023), RALYC927T (Hayward et al., 2017), TERTC228T (Horn et al.,
2013) (F. W. Huang et al., 2013) and TERTC250T (Horn et al., 2013)
(F. W. Huang et al., 2013) were all identified within a melanoma sample. Fur-
thermore, in addition to RALYC927T and CDC20G529A, 9 additional pSNVs
were identified, prioritized and thus validated - all of which also were found
within a melanoma sample, particularly that of skin cutaneous melanoma
(SKCM-US).

Upon analysis of this cohort, I observed that two mutational signatures
provided by COSMIC (Alexandrov et al., 2013), particularly SBS7a and
SBS7b, were distinctly overrepresented when considering both SNVs and
pSNVs in comparison to all non-melanoma cohorts, matching previous stud-
ies (Hayward et al., 2017) (Figure 26a).
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Figure 26: Overview of the presence of SBS7a and SBS7b (a) A comparison
of the median percentage of mutations within all samples (y-axis) belonging
to the SBS7a and SBS7b mutational signatures (x-axis) between melanoma
and non-melanoma SNVs and pSNVs. Below each mutational signature, its
respective trinucleotide context (i.e. TpCp* ¿ TpTp*) is displayed; the star
(*) represents any of the four nucleotides (i.e. TpCp* implies that this can be
TpCpA, TpCpC, TpCpT, or TpCpG). (b) The presence of SBS7a (highlighted
in yellow) and SBS7b (outlined with a black dashed line) in the 11 validated
SKCM-US pSNVs. For each pSNV, the top sequence represents the WT,
while the bottom sequence represents the MUT.
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As described in Section 3.1.10, SBS7a is considered to be any TpC to TpT
(i.e. TC > TT) mutation whereas SBS7b is considered to be any CpC to
CpT (i.e. CC > CT) or CpC to TpC (i.e. CC > TC) mutation. Considering
that mutational signatures are typically displayed in a trinucleotide context,
a mutation is considered to have this mutational signature regardless of the
flanking nucleotide using a star (*) notation (e.g. TpCp* represents TpCpA,
TpCpC, TpCpG and TpCpT; *CpT represents ApCpT, CpCpT, GpCpT,
TpCpT). Moreover, of the 10 pSNVs belonging to the SKCM-US cohort and
were validated within this study, all contained at least one of SBS7a and
SBS7b (Figure 26b).

5.7 Transcription Factor Activity Prediction

5.7.1 DoRothEA, Collectri and decoupleR Are Unable To Predict
Activating TFs Of TERT and ANKRD53

To retrospectively assess the effectiveness of using solely RNA-Seq data to
predict TF activity as described in Section 3.1.11, I individually applied four
decoupleR (Badia-i Mompel et al., 2022) methods, namely ULM, WSUM,
VIPER and consensus, to two gene-TF interaction databases, namely DoRothEA
and Collectri on pSNVs from the PCAWG dataset. More specifically, these
eight method-database combinations (e.g. ULM and DoRothEA, WSUM
and Collectri, etc.) were applied to all TERTC228T pSNVs and the two high-
ranking ANKRDG529A pSNVs from the PCAWG dataset.

To recapitulate prior findings, it has been demonstrated that both TERTC228T

and TERTC250T result in the creation of a binding site for the ETS-family
transcription factor GABPA. Similarly, previous experiments (Abad, Glas,
et al., 2024) found that ANKRDG529A creates a binding site for RELA (p65)
(see Section 5.2.3). In both pSNVs, the TF binding and subsequent TF
activity lead to the upregulation of the pSNV’s associated gene.

I first applied these eight method-database combinations separately to
the cohort-based RNA-Seq data of the highest ranking and third highest
ranking PCAWG pSNVs, which both correspond to ANKRD53G529A. These
two were found within the BLCA-US cohort and the LUAD-US cohorts,
respectively. In both cases, RELA was predicted to have an activity score
less than 0, implying that this TF is inactive and therefore does not affect the
transcription of ANKRD53. When considering the possibility that RELA’s
activity may be captured within the TF REL instead, which has a nearly
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identical binding motif, a negative score also predicted .
Furthermore, the samples containing the three-highest ranking TERTC228T

pSNVs were also tested, which is known to create the ETS-family TF GABPA
among others. Two of these samples belong to the thyroid carcinoma (THCA-
US) cohort whereas the other belongs to the glioblastoma multiforme (GMB-
US) cohort. Surprisingly, all eight method-database pairs predicted that
GABPA is also inactive with estimates below 0. With this being the case,
these estimates’ corresponding p-values were also greater than 0.05 thereby
implying inconclusive results, potentially attributable to the small cohort
sizes.

Overall, when examining high-ranking samples containing ANKRD53G529A

and TERTC228T pSNVs, both of which have been experimentally shown to
create TFBSs for TFs that upregulate their corresponding genes, these TFs
were generally predicted to be inactive. Because of these unexpected results,
this raised doubts about the reliability of these tools when prospectively pre-
dicting the activity of a TF introduced by a pSNV de novo in future iterations
of the REMIND-Cancer workflow.

5.8 REMIND-Cancer Workflow in A Precision Oncol-
ogy Setting

In order to assess the applicability of the REMIND-Cancer workflow in differ-
ent contexts, my pipeline was applied to individual patients originating from
the NCT-MASTER program as well as a focused study on breast cancer
from the COGNITION program. Here, computational efficiency and usabil-
ity were of the utmost importance as both the REMIND-Cancer pipeline as
well as pSNV Hunter were designed to have a translational impact, particu-
larly in an MTB setting. Though several interesting candidate pSNVs were
identified through these analyses, no in vitro validation efforts were planned
and conducted.

Consequently, this section details the pilot study of samples from the
prospective NCT-MASTER dataset in Section 5.8.1, the pilot study of sam-
ples from the singular breast cancer cohort from the COGNITION program
in Section 5.8.2, and, lastly, evaluates the computational efficiency and gen-
eral usability of this workflow in Section 5.8.3.
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5.8.1 Pilot Study of the Prospective NCT-MASTER Program

The REMIND-Cancer workflow was first applied to new NCT-MASTER
samples received weekly over a nine week period from 9 January to 13 March
2023. This encompassed 1,160,518 mutations across 105 unique samples.
However, only 14 (13%) of these samples were analyzable by the REMIND-
Cancer pipeline due to several limitations: lack of patient metadata, samples
originating from metastasis sites rather than primary tumors and the absence
of expression data.

For all primary tumor samples with available RNA-Seq data, I manually
assigned the cohorts based on comments provided by clinicians. However,
these comments were either left empty or lacked sufficient context to deter-
mine a cohort (e.g. a comment for a sample was ”tumor grew in size”).
Furthermore, no metadata information was saved within NCT-MASTER
data folders as well as R databases generated by members of the MTB.
Since cohorts are essential in the normalization of gene expression within
the pipeline, samples without clear cohort assignments were excluded and
were only used to query recurrence. Ultimately, 14 samples from 5 cohorts
comprising 226,684 mutations remained for further analysis.

Of these remaining mutations, 1,699 (0.75%) were identified as being
pSNVs and 103 (0.06% of all SNVs; 6% of all analyzable pSNVs) success-
fully passed the pipeline. Notably, none of the previously-implicated pSNVs,
including both of the two TERT hotspot mutations, passed the pipeline. This
result, however, was expected particularly since there were zero instances of
TERTC250T , CDC20G529A, RALYC927T , and LEPROTL1C921T across all 105
samples. Furthermore, although TERTC228T was observed in four samples,
these samples could not be assigned an analyzable cohort and, therefore,
were unable to be analyzed.

5.8.1.1 Nearly All Remaining Prospective NCT-MASTER pSNVs
Are Singletons

Of the 103 prospective NCT-MASTER pSNVs passing the REMIND-Cancer
pipeline, 101 were singletons when considering recurrence with the retrospec-
tive NCT-MASTER cohort, which was the basis for calculating the prior-
itization score. The two recurrent pSNVs found within the promoters of
LCMT1 and RP11-358H9.1, were still, however, lowly-recurrent with recur-
rence levels of one and four, respectively. Notably, RP11-358H9.1 was also

93



identified as a lncRNA by pSNV Hunter, similar to several high-scoring mu-
tations in the retrospective NCT-MASTER dataset, owing to the importance
of individually analyzing mutations and their specific functions.

Of the 101 singletons, the highest ranking pSNV was NDUFA12T954A

was observed to have an exceptionally high zscore of 5.2 when compared
to all retrospective samples from the neuroendocrine cohort. Furthermore,
this pSNV was found to create a single binding site for the TF CREB3L4,
which has been linked to high transcriptional activity associated with cancer
cell proliferation in both breast cancer (Pu et al., 2020) and hepatocellular
carcinoma (Inagaki et al., 2008).

Conversely, when querying recurrence only against the PCAWG dataset,
100 of the 103 remaining pSNVs were singletons. These three recurrent
mutations were found in the promoters of RP11-358H9.1, AC096649.3, and
WFIKKN2. In addition to the aforementioned RP11-358H9.1 pSNV, AC096649.3
was also found to be a lncRNA mutation through pSNV Hunter.

Regardless of annotating the prospective NCT-MASTER pSNVs with
samples from the retrospective NCT-MASTER and/or the PCAWG datasets,
nearly all pSNVs identified by the REMIND-Cancer pipeline were singletons
and pSNV Hunter proved to be essential in determining which pSNVs effect
protein-coding genes.

5.8.2 Pilot Study of the COGNITION Dataset

Similar to that of the prospective NCT-MASTER dataset, the REMIND-
Cancer pipeline was also applied to the COGNITION dataset. The COGNI-
TION dataset consisted of 89 breast-cancer WGS samples, all of which had
corresponding RNA-Seq data, though no information regarding biopsy loca-
tion (i.e. metastatic site or from the primary tumor) was indicated. Prior to
data transfer by Dr. Marc Zapatka to myself, each WGS sample was filtered
to only include pSNVs according to a given GENCODE v19 BED file.

In total, the COGNITION dataset consisted of 15,561 total pSNVs (mean
of 175 pSNVs per sample), which was similar to that of the retrospective
NCT-MASTER dataset (mean of 215 pSNVs per sample) and the PCAWG
dataset (mean of 153 pSNVs per sample). All COGNITION samples were
considered to be within the same cohort. Through the application of the
REMIND-Cancer pipeline, 70 pSNVs from 36 samples passed the entirety of
the pipeline and were subsequently prioritized.
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5.8.2.1 67% of Remaining COGNITION pSNVs Are Recurrent

Of the 70 COGNITION pSNVs prioritized by the pipeline, a surprising 47
pSNVs (67%) were recurrent with at least one other COGNITION sample
- an extremely high percentage relative to that of the PCAWG and NCT-
MASTER datasets, which found only roughly 5% of remaining pSNVs to be
recurrent.

In particular, the pSNVs with the highest recurrence level was found
within the promoter of CCDC173C490G, which was recurrent within 8 other
COGNITION samples, followed by COL6A5G665C , which had a recurrence
statistic of 4. However, only one instance of CCDC173C490G successfully
passed the REMIND-Cancer pipeline whereas two instances of COL6A5G665C

remained.
Interestingly, when evaluating the recurrence of these 70 pSNVs in rela-

tion to other datasets, only one COGNITION pSNV (1.4%) was recurrent
in PCAWG samples and 16 pSNVs (23%) were recurrent in retrospective
NCT-MASTER samples.

Furthermore, the highest-ranking CDK2AP2A840C pSNV was recurrent
when considering all datasets. This pSNV was recurrent with one other
sample in the COGNITION dataset, had a recurrence rate of one within
PCAWG, and, lastly, had a recurrence rate of 14 within the retrospective
NCT-MASTER dataset. Though this pSNV was identified within COGNI-
TION, thereby originating from a breast cancer sample, this mutation was
found within 7 different NCT-MASTER cohorts, which include breast cancer,
as well as esophageal adenocarcinoma (ESAD-UK) within PCAWG.

Though this pSNV looks promising as a future in vitro validation can-
didate when solely looking at recurrence, its high transcriptional activity
(zscore = 1.86) may correspond to having a tumor-suppressive functionality.
By analyzing this particular gene’s function via pSNV Hunter, CDK2AP2
is a paralog of CDK2AP1, whose high transcriptional activity within breast
cancer has been shown to effectively suppress cell growth (Gera, Mokbel,
Jiang, & Mokbel, 2018). Though this is not conclusive evidence of the onco-
genic potential of CDK2AP2, this adds to the necessity of manual inspection
and having tools, such as pSNV Hunter, to investigate pSNVs and their
corresponding genes further.
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5.8.3 Precision Oncology Applicability

To recapitulate the purpose of applying the REMIND-Cancer workflow to
the single-sample prospective NCT-MASTER dataset and the single-cohort
COGNITION program, the two primary focuses were to ensure the compu-
tational efficiency and general usability in a precision oncology setting.

Consequently, the open-source REMIND-Cancer computational pipeline
supports three modes of analysis: pan-cancer analysis in the case of PCAWG
and the retrospective NCT-MASTER datasets, single-cohort analysis in the
case of the EOPC-DE PCAWG and COGNITION datasets, and single-
patient analysis in the case of the weekly prospective NCT-MASTER pa-
tients. In all three settings, the ability to identify, prioritize and investigate
highly-recurrent mutations, as well as the often-overlooked singletons and
lowly-recurrent mutations, was possible. With customizable pipeline param-
eters (i.e. different filtering threshold values), researchers as well as clinicians
are able to conduct their pSNV analysis despite potentially having different
use-cases.

In terms of computational efficiency, all samples can be analyzed in par-
allel using the DKFZ cluster system (or any cluster system) meaning that
multiple samples can be analyzed at the same time. As the time taken to
complete the each individual sample scales linearly with the amount of mu-
tations (Figure 27) regardless of dataset (e.g. prospective NCT-MASTER or
PCAWG), more than 99% of samples can be analyzed in under one hour,
thus ensuring quick and reliable results in translational settings.

5.9 DREAM Challenge

As a complementary project during my PhD, I participated in the ”Predicting
Gene Expression Using Millions of Random Promoter Sequence” DREAM
challenge in which the primary objective was to create a neural network to
predict gene expression based solely on promoter sequences (see Section 3.2
for details). Consequently, this section will detail the results of this challenge.

5.9.1 A Transformer-based Architecture Leads To An Improve-
ment Over the Benchmark

Prior to the start of the challenge, the project organizers created a neural
network, particularly that of a transformer (see Section 2.1.3), to address a
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Figure 27: A scatter plot of the amount of time needed to complete the
REMIND-Cancer Pipeline (x-axis) and the number of mutations (y-axis) for
each sample (green). The best fit line (red) is also plotted, which has an
R2 value of 0.930. For visualization purposes, four outlier samples that took
longer than 180 minutes were omitted from the plot, although these values
were still included in the calculation of the linear regression / best fit line.

similar sequence-to-expression task (Vaishnav et al., 2022). As this model
performed best in previous benchmarks, the organizers used this exact model
as a baseline for teams throughout the competition. Specifically, this model
was used for training and prediction similar to all other teams, which implied
that models surpassing this baseline would be an advancement in this subfield
of bioinformatics.

Within this competition, I leveraged three distinct ideas that led to an
improvement over the aforementioned baseline: a transformer-based neural
network with split branches to represent both DNA strands (see Section
3.2.3), a preprocessing strategy to generalize the training data’s expression
(see Section 3.2.2) and bayesian optimization as a hyperparameter optimiza-
tion method to obtain the optimal hyperparameters in a computationally
efficient manner (see Section 3.2.4).

The final test set in which teams were truly evaluated on consisted of
71,103 promoter sequence and expression pairs. In addition to being evalu-
ated on the Pearson and Spearman correlation of these sequences, the test
set was further divided into small sub-categories such as those sequences
with high expression and sequences corresponding with low expression. Fi-
nal rankings were a weighted sum of these measures with a majority of the
scoring weight going to the two main categories of overall Pearson and Spear-
man correlation.
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Of the 292 teams that submitted a model during the pre-submission
phase, not all submitted a final model. However, of all teams registering
for the competition, I placed 18th, which is within the top 10% of all teams
submitting at least a pre-submission model. Considering all sequences, my
model corresponded to a Pearson score of 0.88 as well as a Spearman score of
0.94, both of which were exactly equal to the baseline model. When consid-
ering the Spearman and Pearson score of sequences with high expressions, I
obtained a 0.29 (improvement of 0.03 over the baseline) and 0.5 (improvement
of 0.19 over the baseline), respectively. Conversely, my network performed
worse on sequences with low expression with scores of 0.24 (decrease of 0.03
from the baseline) and 0.33 (decrease of 0.09 from the baseline). A subset
of the results of nine teams (top 3 teams, teams ranked 18th through 20th,
and the bottom 3 teams) can be seen in Figure 28.

Figure 28: Overview of Pearson (left) and Spearman (right) correlations of
9 selected teams. The top three teams, teams ranked 18th to 20th, which
include my own network (solid green line) and the benchmark (dotted green
line), and the bottom 3 teams can be seen.
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6 Discussion

6.1 The REMIND-Cancer Workflow Approach

Within this thesis, I primarily presented the Regulatory Mutation Identi-
fication N’ Descriptions in Cancer (REMIND-Cancer) workflow, which is
an integrative approach to identify and characterize activating functional
promoter mutations. This workflow follows a filtering-ranking-inspection-
validation paradigm in which a series of filtering steps are first applied to
SNVs. Subsequently, biologically-relevant features, such as open chromatin
and association with a known cancer gene, are then added to the remaining
sample-specific pSNVs. These features are then used to compute a prioriti-
zation score for subsequent ranking, which serves as a basis for the inspection
phase.

To assist in this inspection phase, pSNV Hunter, which is a comprehensive
data aggregation and interactive visualization tool, was created to efficiently
assess the reliability of high-scoring candidates. After the manual selection of
mutations, the functionality of these pSNVs are then measured in vitro using
a luciferase reporter assay in which the wild type activity is compared to that
of its corresponding mutant, thereby further enhancing our understanding of
the pSNV’s functional implications.

As of today, a manuscript detailing this study is in preparation although
a pre-print is currently available and readily accessible (Abad, Glas, et al.,
2024). Additionally, four tools have been made publicly-available to facilitate
future research in the field:

1. The REMIND-Cancer computational pipeline (Abad, Körner, & Feuer-
bach, 2024d)

2. pSNV Hunter (Abad, Körner, & Feuerbach, 2024c)

3. DeepPileup (Abad, Körner, & Feuerbach, 2024a)

4. A wrapper for GenomeTornadoPlot (Abad, Körner, & Feuerbach, 2024b)

The following section will discuss these results, their implications and their
potential limitations in detail.
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6.1.1 Identifying Ten Functional pSNVs and Assessing Their Clin-
ical Potential

Upon application of the REMIND-Cancer workflow to the PCAWG and ret-
rospective NCT-MASTER datasets, 19,250 and 6,274 pSNVs, were identified
and prioritized, respectively. Utilizing pSNV Hunter led to the selection of 22
total pSNVs for in vitro validation, 15 of which came from PCAWG whereas
the remaining 7 were from the retrospective NCT-MASTER. Of these se-
lected mutations, eight displayed a statistically-significant (p-value ≤ 0.05;
one-sided t-test) upregulation of promoter activity. With the addition of
the previously positively-validated ANKRD53G529A and MYBC964A detailed
in Sections 5.2.3 and 5.2.4, respectively, this thesis thus implicates 10 total
pSNVs as having an activating effect on their corresponding gene.

However, the importance of identifying these 10 functional pSNVs lies
within the potential to influence therapeutic decision making as well as
provide better prognostics for individual patients. By identifying potential
biomarkers, such as these 10 functional pSNVs, this enables the detection of
specific targets (i.e. genes or proteins that play a critical role in a cancer
cell’s growth, progression and/or survival) within a singular patient’s cancer.
These targets could then be assessed for their drugability, allowing for the
selection and application of specific drugs that inhibit downstream pathways
and/or modulate the activity of these genes directly. Examples of known
targets include that of KRAS (Bekaii-Saab et al., 2023) (Jänne et al., 2022)
(Yaeger et al., 2023) and BRAF (da Rocha Dias et al., 2013), both of which
are listed within the list of 282 targettable genes provided by COSMIC (Tate
et al., 2019).

Because catalogs of targettable genes, such as that provided by COSMIC,
do not yet contain any of the genes associated with the 10 functional pSNVs
identified in this study, no effective treatments have yet been created to target
these genes. By elucidating the effects of these 10 pSNVs, this research could
potentially guide future drug development. It could help in first assessing
the true oncogenic potential of these genes and their corresponding proteins
and then in developing drugs to counteract these effects. More broadly,
this thesis could help elucidate the importance of further investigating the
effects of non-coding mutations on genes rather than just focusing on coding
mutations as current cancer research typically does.

In addition to their therapeutic potential, these 10 pSNVs can also add
prognostic value to clinicians. By understanding the specific mutations that
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drive cancer progression, clinicians can better predict disease outcomes and
tailor monitoring strategies accordingly. For example, certain mutations may
lead to a resistance to conventional therapies or may be associated with more
aggressive diseases.

For instance, since prostate cancer is the second leading cause of cancer-
related deaths in men (Rawla, 2019), extensive research has focused on under-
standing how androgens stimulate prostate cancer growth and how inhibiting
the androgen receptor (AR) can counteract this process. Though 70-80% of
men with prostate cancer treated with this inhibition respond positively,
most patients develop androgen-resistance (J. Edwards et al., 2001). This
development of androgen-resistance has been linked to the overexpression of
MYB, typically achieved through an increase in copy number level. How-
ever, as this study has shown that this overexpression may also be achieved
by MYBC964A, this may point to an alternative mechanism of developing
androgen-resistance in the absence of amplification. In the identification of
this mechanism, this may lead to clinicians being able to diagnose androgen-
resistance in an alternative way.

Taken together, the identification, prioritization, and positive in vitro
validation of these pSNVs highlight the potential for improving personalized
cancer treatment by enhancing therapeutic decision-making and providing
critical prognostic value.

6.1.2 Singletons Must Also Be Considered

Due to their low frequency, singletons, such as the aforementioned MYBC964A,
have been considered to be insignificant (Desai et al., 2024) though this
category of mutations comprise 90% of some publicly-available WGS datasets
(Chakraborty, Arora, Begg, & Shen, 2019). However, recent studies have
highlighted the oncogenic potential of these rare variants (Zhao et al., 2022)
(E. Kim et al., 2016) (Ostroverkhova et al., 2023), which are hidden in the
”long tail of infrequent molecular alterations” (Scholl & Fröhling, 2019).
Consequentially, I specifically targeted these understudied types of mutations
using the REMIND-Cancer workflow.

Among the 19,250 (PCAWG) and 6,274 (retrospective NCT-MASTER)
pSNVs remaining after the conclusion of REMIND-Cancer pipeline, approxi-
mately 95% of these mutations were singletons. As such, 14 singleton pSNVs
as well as two lowly-recurrent pSNVs were prioritized and selected for in
vitro validation in order to measure their potential activating effects on
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the promoter. Of these mutations, six singletons were positively validated
within this study, namely SCN1BC113T , NCBP2-AS2G713T , PRKCBC963T ,
EGR1C049T , TFEBT989G and MYBC964A.

These findings demonstrate that this underrepresented class of mutations
can indeed be identified and prioritized using methods that do not inher-
ently require recurrence. Unlike prior approaches such as FunSeq2 (Fu et
al., 2014), OncodriveFML (Mularoni et al., 2016), and ncDriver (Hornshøj
et al., 2018), which rely on comparing a statistical background model to an
expected mutation rate, these methods miss singletons and lowly-recurrent
mutations due to a lack of statistical power. Consequently, truly functional
mutations, such as these six, are not able to be distinguished from their back-
ground noise, therefore leaving a significant blindspot in the identification of
many functional pSNVs.

As one major goal of cancer research is to add to the list of known onco-
genic mutations, these six activating singleton pSNVs demonstrate that sin-
gletons can lead to a functional effect and must also be considered in any
driver identification analysis.

6.1.3 ANKRD53G529A and MYBC964A Reveal a Two-Hit Mecha-
nism That May Be Required For Promoter Activation

Both ANKRD53G529A and MYBC964A have been shown to increase promoter
activity, albeit under unique circumstances. As detailed in Section 5.2.3,
ANKRD53G529A alone leads to a slight 20% increase in promoter activity.
However, activation of the TF RELA (p65), which corresponds to the TFBS
that is predicted to be created, further increases promoter activity to 80%
over the WT. This significant effect is reversed by the knockdown of p65,
thereby indicating that this second hit is necessary for a substantial growth
advantage.

Furthermore, through the integration and analysis of the EOPC-DE dataset
detailed in Section 5.2.4, MYBC964A was identified and prioritized as being
the top ranking mutation, particularly due to the sample’s high MYB expres-
sion (zscore of 3.75) and the creation of binding sites for FOXD1 and FOXO3,
both of which exhibited high transcription. Consequently, the functional val-
idation of this pSNV revealed a significant 63% increase in promoter activity.
Similar to ANKRD53G529A, the transcriptomic upregulation of FOXD1 and
FOXO3, along with the MYBC964A pSNV, may be necessary in order to sub-
stantially increase promoter activity in this specific context.
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Taken together, these secondary activation mechanisms suggest that these
pSNVs significantly activate their corresponding promoters only under spe-
cific conditions. This indicates a potential selection bias where a secondary
mechanism is required to enhance the selective advantage conferred by the
pSNV.

6.1.4 Efficiency is Key in Precision Oncology

The time frame from biopsy to therapeutic decision by a molecular tumor
board (MTB) is extremely short. For instance, the NCT-MASTER program
reports a turnaround time of approximately 6 weeks while other programs
and studies report a clinically actionable time frame of 2-4 weeks (Acanda
De La Rocha et al., 2024) (Meggendorfer et al., 2022). Within this time,
oncologists, clinicians, bioinformaticians and other health care professionals
interpret the clinical and molecular information of individual cancer patients
on a case-by-case basis in order to recommend personalized treatment and/or
clinical trial options (Tsimberidou et al., 2023). As personalized oncology
programs become more common (Tsimberidou et al., 2023), having efficient
yet reliable analyses is a necessity, particularly since quick and accurate de-
cisions can significantly impact patient outcomes.

Consequently, the REMIND-Cancer computational pipeline and pSNV
Hunter were specifically designed to address these concerns. Since efficiency
is key, the REMIND-Cancer pipeline can identify and prioritize functional
pSNVs in pan-cancer, single-cohort, and single-sample datasets typically in
under an hour. Furthermore, the pipeline itself is easily modifiable meaning
that annotations, thresholds, and parameters can be adjusted within a single
configuration file to fit specific research and program needs.

Additionally, pSNV Hunter saves time by automatically aggregating pa-
tient information, along with their genomic, transcriptomic, and annotation-
based data, and displays this information in the form of an interactive and
visual dashboard. As multiple individuals typically assess patients simulta-
neously, pSNV Hunter also allows users to leave comments about individual
mutations, characterize whether a mutation may require further investiga-
tion, and export results to send to their colleagues. Altogether, this tool
saves time on time-consuming tasks (i.e. file integration, individual muta-
tion graph generation) while giving users a holistic view of the mutation at
hand.
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6.1.5 Studying Other Non-Coding Elements is a Natural Exten-
sion of the REMIND-Cancer Workflow

Within this study, characterizing singular point mutations within the core
and proximal promoter region of protein-coding genes were the primary fo-
cus, ultimately leading to observing the activating functionality of 10 pSNVs
in vitro. However, a natural extension to this project would be to also incor-
porate a promoter’s interaction with other non-coding elements, particularly
enhancers, as well as consider the idea of a promoter only being activating
in combination with other mutations (i.e. latent drivers).

In the case of incorporating enhancer-promoter interaction into the REMIND-
Cancer workflow, it is well known that enhancers are able to interact di-
rectly with multiple promoters. Through mechanisms such as DNA looping,
enhancers can increase promoter activity, even when located thousands of
base pairs away, either upstream or downstream of the promoter. This en-
hances the transcription of target genes, which is the phenomenon that I
was directly investigating through the REMIND-Cancer workflow. However,
this interaction is not accounted for in the original pipeline implementation.
The presence of an active enhancer could serve as an additional annotation,
contributing to the selection of future candidate pSNVs. This integration,
however, presents challenges such as the inability of relatively short in vitro
luciferase assays to capture long-range enhancer-promoter interactions and
also the limited knowledge of known enhancer-promoter interactions.

In addition to a promoter’s interaction with enhancers, another potential
extension of the REMIND-Cancer workflow would be to incorporate the pos-
sibility of latent drivers. Recent studies have shown that functionally weak
individual mutations can still confer a growth advantage or lead to increased
drug resistance when coupled with other mutations, particularly when these
mutations effect the same gene (Saito et al., 2020) (Yavuz et al., 2023) (Vasan
et al., 2019). These latent drivers do not inherently fit the classical defini-
tion of a driver or a passenger mutation as their functionality depends on the
presence of another specific mutation and are thus typically characterized
as passengers (Yavuz et al., 2023). Consequently, they have not yet been
extensively studied (Nussinov & Tsai, 2015).

However, of those studies that have investigated this third class of muta-
tions, they have predominantly focused on synergistic, recurrent protein-
coding mutations in well-known oncogenes, such as PIK3CA and EGFR
(Saito et al., 2020). Given that pSNVs, similar to that of coding muta-
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tions, can indeed individually be functional, it is plausible that a pSNV can
also work synergestically with other mutations, known drivers or not, to also
alter gene functionality. This could be achieved by modifying the original
REMIND-Cancer pipeline to identify and prioritize singular pSNVs in com-
bination with other mutations, thereby providing deeper insights into the
role of pSNVs in cancer progression.

6.1.6 Special Care Must Be Taken When Dealing With Clinical
Data

The REMIND-Cancer workflow was applied to two sets of WGS and RNA-
Seq data: publicly-available data (i.e. PCAWG) and clinical data (i.e. NCT-
MASTER and COGNITION). Although PCAWG samples were originally
from multiple clinics, the PCAWG consortium only ensured that samples
were of high quality with as few artifacts as possible. Consequently, this
dataset has been the basis of many cancer studies.

However, the raw clinical data of the NCT-MASTER and COGNITION
programs, understandably, did not have these same benefits. In particular, I
observed distinct differences between these two categories of data that must
be taken into account when, not only applying the REMIND-Cancer work-
flow, but also when applying any bioinformatics tool to clinical NGS data in
general. Here, I discuss three significant issues: (1) data quality, (2) lack of
metadata and (3) lack of data annotations.

6.1.6.1 Data Quality

The first and arguably most important observation is the noticeable differ-
ences within data quality. As noted previously in Section 1.10.1, each sam-
ple used in generating the PCAWG study was deemed to be of high quality
through rigorous quality assurance measures. This resulted in my analy-
sis of 2,413 approved donors corresponding to 19,401,901 mutations. How-
ever, though quality control measures are cited as being applied to the WGS
data from the NCT-MASTER project, several noticeable problems emerged:
heavy sample outliers (e.g. samples with up to 254 times the median number
of mutations) though this may be attributable to late-stage cancer patients,
duplicated and/or incomplete data points (e.g. SNV VCF files denoting an
SNV but with no ‘ALT‘ nucleotide to represent the actual nucleotide change,
SNV VCF files denoting an indel, multiple rows with the same exact infor-
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mation), and SNVs sporadically assigned to genes of interest (i.e. two of the
same genomic positions being mapped to different genes on the same DNA
strand).

6.1.6.2 Lack of Sample Metadata: Sample Cohorts

As detailed in Section 3.1.2.3, the REMIND-Cancer workflow detects pSNVs
leading to an increase in transcription of its corresponding gene by normal-
izing FPKM values based on the gene name and other samples within the
sample’s cohort. This, therefore, requires cohort information for each sam-
ple to be readily-available and accurate. Though several studies, includ-
ing that of the NCT-MASTER’s initial seminal study (Horak et al., 2017),
cite specific cohort details, this sample-to-cohort information was not avail-
able within any metadata file or NCT-MASTER database (e.g. the internal
NCT-MASTER Data Object used by Barbara Hutter and Malgorzata Oles of
the NCT-MASTER MTB or the One-Touch Pipeline). Similarly, unlike the
emails sent to me on a weekly-basis for new NCT-MASTER patients, clini-
cian comments were not documented and saved either, rendering me unable
to manually assign cohorts to specific samples for a two-year period between
2021 and 2023.

6.1.6.3 Lack of Sample Metadata: Biopsy Location

In addition to the lack of cohort information, metadata regarding the lo-
cation of a biopsy was missing, which should ideally be readily-available
for any researcher particularly when conducting any transcriptomic analy-
sis. When analyzing samples originating from the NCT-MASTER program,
the REMIND-Cancer workflow only considered RNA-Seq samples from the
primary tumor (See Section 4.4), which ultimately led to the exclusion of
approximately 10 million SNVs from 373 metastatic samples from the retro-
spective NCT-MASTER dataset. However, as the NCT-MASTER program
specifically enrolls patients with advanced-stage cancer who have may have
been pre-treated, metastatic samples are to be expected.

This, however, presents a challenge as the expression of genes within
metastatic samples depend on characteristics such as cancer grade, tumor
purity, the tumor of origin as well as where the sample was taken (Y. Zhang
et al., 2024) (Aftimos et al., 2021) (Garcia-Recio et al., 2023) (Cosgrove et al.,
2022). Therefore, including metastatic samples with primary tumor samples
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during the expression normalization process could significantly effect the de-
tection of putative pSNVs stemming from primary tumors. In future studies
that utilize transcriptomic data from both sets of samples, any bioinformatic
analysis must take into account the differences in expression in order to fully
utilize and take advantage of entire NGS datasets. However, to do so, hav-
ing metadata regarding biopsy location would be extremely beneficial in this
normalization process.

As normal cells from one tissue type are mixed with tumor cells from a
different tissue of origin within a metastatic sample, bulk RNA-Seq provides
an average gene expression profile of the combination of these cells. If cer-
tain genes are typically highly expressed in the normal cells but have low
expression in the tumor tissue of origin, the resulting gene expression value
in the bulk RNA-Seq data could be misleadingly high, especially in samples
with low tumor purity. Therefore, also having metadata on the location of
the biopsy could help distinguish between gene expression changes due to
the tumor cells and those due to the surrounding normal tissue. This in-
formation is crucial for accurate interpretation and effective normalization
in transcriptomic analyses, ultimately improving the detection of clinically
relevant mutations.

6.1.6.4 Lack of Data Annotations

In addition to having data quality and metadata issues, a third major prob-
lem I encountered was the lack of file annotations. In particular, there were no
details regarding which files were used for internal MTB analysis. Although
nearly all patients had multiple WGS files enabling a potential longitudinal
analysis, many patients had WGS files with extremely similar time stamps
though having drastically different mutational information (e.g. one patient
had two WGS files with the same date though one file had approximately
20,000 SNVS whereas the other had 6,000). Though one or more of these
files could be attributed to a potential sequencing mistake, bioinformaticians
outside of the MTB, such as myself, must make assumptions as to which file
to use in analysis.
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6.1.7 Luciferase Assays Could Guide Subsequent Endogenous Test-
ing

In this thesis, I implicated 10 pSNVs, including ANKRD53G529A and MYBC964A,
that lead to a statistically-significant increase in promoter activity when mea-
sured in vitro using a luciferase reporter assay. Although luciferase assays
are commonly used for this purpose (Horn et al., 2013) (He et al., 2021)
(Godoy et al., 2023), these assays only include a small fragment of DNA that
lacks chromatin context and other regulatory components (e.g. enhancers,
silencers), therefore being unable to capture the true endogenous context of a
pSNV (Rojas-Fernandez et al., 2015). Ideally, an experimental system should
take into account all components of gene regulation to capture a pSNVs true
effect, though doing so may have financial implications.

To account for the inherent limitations of luciferase reporter assays, sev-
eral studies have advocated for using precise genome editing technologies
such as CRISPR-Cas9 (Cong et al., 2013) (Cho, Kim, Kim, & Kim, 2013)
(P. D. Hsu et al., 2013). CRISPR-Cas9 allows for targeted modifications
directly in the genome, preserving the natural chromatin environment and
endogenous regulatory elements. This technology can create specific muta-
tions at a desired location, providing a more accurate representation of the
functional impact of pSNVs within their native genomic context (i.e. inclu-
sive of long-range interactions and overall chromatin structure).

With this in mind, luciferase assays, such as the one within this study,
can serve as an essential preliminary step in identifying which genomic posi-
tions to target with CRISPR. By using luciferase reporter assays, researchers
can quickly and cost-effectively screen for pSNVs that result in significant
changes in gene expression, providing an initial indication of which muta-
tions have a potential regulatory impact. Once specific pSNVs are identified,
such as the 10 pSNVs within this study, these genomic positions can then
be prioritized for further investigation using CRISPR-Cas9. Specifically in
pSNV validation, this two-step approach (i.e. initial screening with luciferase
assays followed by precise genome editing) would enable a more efficient and
focused exploration of putative functional pSNVs, thereby enhancing our un-
derstanding of the oncogenic roles of pSNVs and the non-coding genome as
a whole.
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6.2 DREAM Challenge: Sequence-to-Expression

6.2.1 Do Transformer Architectures Always Perform Better?

Since their creation in 2017 (Vaswani et al., 2017), transformers have been at
the forefront of NLP tasks due to their ability to capture both short-term and
long-term relationships and dependencies in an efficient fashion, particularly
through the use of a self-attention mechanism. In many tasks, transformer-
based architectures outperform its predecessors (e.g. CNNs and LSTMs)
(Vaishnav et al., 2022) using both bioinformatics and non-bioinformatics
datasets and have even garnered public attention particularly through Ope-
nAI’s suite of tools (e.g. ChatGPT, Dall-E).

Consequently, my reasoning for choosing this type of model was that if
this architecture has shown great promise in both research and in a commer-
cial setting, it may be logical to use this approach within this sequence-to-
expression task as well. However, as this type of neural network has been
attempted previously in this setting, my aim was to improve upon this using
better preprocessing techniques and hyperparameter optimization methods.
This reasoning and approach was slightly validated as this led me to placing
18th out of the 292 participating teams, placing me within the top 10%.

However, the question remained: what techniques did the top-ranking
methods employ and did they also utilize transformers? Surprisingly, none
of the top three teams employed a transformer architecture. Instead, these
teams relied on the direct predecessors of transformers, namely CNNs and
LSTMs, but used creative preprocessing techniques in order to augment their
data prior to training. Conversely, however, one of the bottom three ranking
teams also employed a CNN-based architecture although no explicit data
preprocessing techniques were conducted other than the one-hot encoding of
the input sequence. The exact details of these methods can be found within
Rafi et al. (Rafi et al., 2023).

All together, these results imply that in this particular task, especially
when the given training dataset is structurally different from the true test
dataset, effective preprocessing is necessary for achieving good predictive per-
formance and that relying solely on the choice of neural network architecture
is not sufficient.
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6.2.2 Future Integrations Within The REMIND-Cancer Work-
flow

As presented throughout this thesis, the goal of the REMIND-Cancer work-
flow was to identify, prioritize and validate activating pSNVs using a recurence-
agnostic approach with a focus on detecting singletons and lowly-recurrent
mutations. This was largely accomplished through the use of three filter-
ing steps, one of which was the TFBS motif and TF expression filter, which
initially detects the presence of known TFBSs in both the WT and MUT
sequences. Given that this challenge implicitly requires the detection of TF-
BSs, future iterations of the REMIND-Cancer workflow may benefit from
incorporating neural network architectures, such as CNNs and transformers,
and effective preprocessing techniques into the methodology when attempt-
ing to detect TFBSs.

Recent studies suggest that new TFBS motifs are continuously being
detected (Fornes et al., 2020) (Inukai, Kock, & Bulyk, 2017). However, be-
cause the current filtering step relies on comparing sequences to a database
of known TFs, there is a risk of overlooking consequential TFBSs that have
not yet been identified. By leveraging approaches similar to those used in the
DREAM challenge, future iterations of the REMIND-Cancer workflow may
benefit by being able to learn TFBSs de novo, regardless of their prior dis-
covery, thereby improving the overall ability of detecting activating pSNVs.
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Hanussek, M., Bartusch, F., & Krüger, J. (2021). Performance and scaling
behavior of bioinformatic applications in virtualization environments
to create awareness for the efficient use of compute resources. PLoS
Computational Biology , 17 (7), e1009244.

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virta-
nen, P., Cournapeau, D., . . . others (2020). Array programming with
numpy. Nature, 585 (7825), 357–362.

Hayward, N. K., Wilmott, J. S., Waddell, N., Johansson, P. A., Field, M. A.,
Nones, K., . . . others (2017). Whole-genome landscapes of major
melanoma subtypes. Nature, 545 (7653), 175–180.

He, Z., Wu, T., Wang, S., Zhang, J., Sun, X., Tao, Z., . . . Liu, X.-S. (2021).

122



Pan-cancer noncoding genomic analysis identifies functional cdc20 pro-
moter mutation hotspots. Iscience, 24 (4).

Head, T. (2016). Scikit-optimize. https://scikit-optimize.github.io/

stable/index.html.
Hellman, L. M., & Fried, M. G. (2007). Electrophoretic mobility shift assay

(emsa) for detecting protein–nucleic acid interactions. Nature protocols ,
2 (8), 1849–1861.

Hess, J. M., Bernards, A., Kim, J., Miller, M., Taylor-Weiner, A., Harad-
hvala, N. J., . . . Getz, G. (2019). Passenger hotspot mutations in
cancer. Cancer Cell , 36 (3), 288–301.

Hinton, G., Srivastava, N., & Swersky, K. (2012). Neural networks for
machine learning lecture 6a overview of mini-batch gradient descent.
Cited on, 14 (8), 2.

Hoadley, K. A., Yau, C., Hinoue, T., Wolf, D. M., Lazar, A. J., Drill, E., . . .
others (2018). Cell-of-origin patterns dominate the molecular classifica-
tion of 10,000 tumors from 33 types of cancer. Cell , 173 (2), 291–304.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9 (8), 1735–1780.

Hodis, E., Watson, I. R., Kryukov, G. V., Arold, S. T., Imielinski, M.,
Theurillat, J.-P., . . . others (2012). A landscape of driver mutations
in melanoma. Cell , 150 (2), 251–263.

Hombach, D., Schwarz, J. M., Robinson, P. N., Schuelke, M., & Seelow, D.
(2016). A systematic, large-scale comparison of transcription factor
binding site models. BMC genomics , 17 , 1–10.

Hong, C., Thiele, R., & Feuerbach, L. (2022). Genometornadoplot: a novel
r package for cnv visualization and focality analysis. Bioinformatics ,
38 (7), 2036–2038.

Horak, P., Heining, C., Kreutzfeldt, S., Hutter, B., Mock, A., Hüllein, J., . . .
others (2021). Comprehensive genomic and transcriptomic analysis
for guiding therapeutic decisions in patients with rare cancers. Cancer
discovery , 11 (11), 2780–2795.

Horak, P., Klink, B., Heining, C., Gröschel, S., Hutter, B., Fröhlich, M.,
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Mart́ınez-Jiménez, F., Muiños, F., Sent́ıs, I., Deu-Pons, J., Reyes-Salazar,
I., Arnedo-Pac, C., . . . others (2020). A compendium of mutational

127



cancer driver genes. Nature Reviews Cancer , 20 (10), 555–572.
Matys, V., Fricke, E., Geffers, R., Gößling, E., Haubrock, M., Hehl, R., . . .

others (2003). Transfac®: transcriptional regulation, from patterns
to profiles. Nucleic acids research, 31 (1), 374–378.

McFarland, C. D., Korolev, K. S., Kryukov, G. V., Sunyaev, S. R., & Mirny,
L. A. (2013). Impact of deleterious passenger mutations on cancer
progression. Proceedings of the National Academy of Sciences , 110 (8),
2910–2915.

McNabb, D. S., Reed, R., & Marciniak, R. A. (2005). Dual luciferase as-
say system for rapid assessment of gene expression in saccharomyces
cerevisiae. Eukaryotic cell , 4 (9), 1539–1549.

Meggendorfer, M., Jobanputra, V., Wrzeszczynski, K. O., Roepman, P., de
Bruijn, E., Cuppen, E., . . . others (2022). Analytical demands to use
whole-genome sequencing in precision oncology. In Seminars in cancer
biology (Vol. 84, pp. 16–22).

Melton, C., Reuter, J. A., Spacek, D. V., & Snyder, M. (2015). Recurrent
somatic mutations in regulatory regions of human cancer genomes. Na-
ture genetics , 47 (7), 710–716.

Miller, M. L., Reznik, E., Gauthier, N. P., Aksoy, B. A., Korkut, A., Gao,
J., . . . Sander, C. (2015). Pan-cancer analysis of mutation hotspots in
protein domains. Cell systems , 1 (3), 197–209.

Minnoye, L., Marinov, G. K., Krausgruber, T., Pan, L., Marand, A. P., Sec-
chia, S., . . . others (2021). Chromatin accessibility profiling methods.
Nature Reviews Methods Primers , 1 (1), 10.

Mo, J., Tan, K., Dong, Y., Lu, W., Liu, F., Mei, Y., . . . others (2023). Ther-
apeutic targeting the oncogenic driver ewsr1:: Fli1 in ewing sarcoma
through inhibition of the fact complex. Oncogene, 42 (1), 11–25.

Moreau, P., Hen, R., Wasylyk, B., Everett, R., Gaub, M., & Chambon, P.
(1981). The sv40 72 base repair repeat has a striking effect on gene
expression both in sv40 and other chimeric recombinants. Nucleic acids
research, 9 (22), 6047–6068.

Mularoni, L., Sabarinathan, R., Deu-Pons, J., Gonzalez-Perez, A., & López-
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Abbreviations and Acronyms

Acronym Meaning
ANKRD53 Ankyrin Repeat Domain-Containing Protein 53
BAM Binary Alignment Map
bp Basepair
CDC20 Cell Division Cycle 20
chr Chromosome
CGC Cancer Gene Census
CNN Convolutional Neural Network
COGNITION Comprehensive assessment of clinical features, genomics

and further molecular markers to identify patients with
early breast cancer for enrolment on marker driven trials
trials

COSMIC Catalogue of Somatic Mutations in Cancer
CRISPR Clustered Regularly Interspaced Short Palindromic

Repeats
DREAM Dialogue on Reverse Engineering Assessment and

Methods
ELK4 ETS Transcription Factor ELK4
ETS E-twenty-six
FIMO Find Individual Motif Occurrences
FOXD1 Forkhead Box D1
FOXO3 Forkhead Box O3
FPKM Fragments Per Kilobase of transcript per Million

mapped reads
GABPA GA Binding Protein Transcription Factor Subunit Alpha
GTF General Transcription Factor
HEK293FT Human embryonic kidney 293 cells
ICGC International Cancer Genome Consortium
Indel Insertion or Deletion
JSON JavaScript Object Notation
LEPROTL1 Leptin Receptor Overlapping Transcript Like 1
LSTM Long short-term memory
MAF Minor Allele Frequency
ML Machine learning
MLM Multivariate Linear Model
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Acronym Meaning
MUT Mutant
MTB Molecular Tumor Board
MYB V-Myb Avian Myeloblastosis Viral Oncogene Homolog
NCT-MASTER Molecularly Aided Stratification for Tumor Eradication

Research
NCBI National Center for Biotechnology Information
NF-κB Nuclear Factor kappa-light-chain-enhancer of activated

B cells
NGS Next-Generation Sequencing
PCAWG Pan-cancer Analysis of Whole Genomes
PIC Pre-initiation Complex
PID Patient ID or Patient Identifier
pSNV Promoter Single Nucleotide Variant
RALY Heterogeneous Nuclear Ribonucleoprotein
RELA Nuclear Factor Of Kappa Light Polypeptide Gene

Enhancer In B-Cells 3
REMIND-Cancer Regulatory Mutation Identification ’N’ Description

in Cancer
RNA Poly II RNA Polymerase II
RNA-Seq RNA Sequencing
SBS Single base substitution
SNV Single Nucleotide Variant
TCGA The Cancer Genome Atlas
TERT Telomerase reverse transcriptase
TF Transcription Factor
TFBS Transcription Factor Binding Site
TPM Transcripts Per Kilobase Million
TSS Transcription Start Site
ULM Univariate Linear Model
UV Ultraviolet
VAF Variant Allele Frequency
VCF Variant Call File
VIPER Virtual Inference of Protein-activity by Enriched

Regulon analysis
WGS Whole Genome Sequencing
WSUM Weighted Sum
WT Wild Type
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