
INAUGURAL–DISSERTATION
zur

Erlangung der Doktorwürde
der

Gesamtfakultät für Mathematik, Ingenieur- und Naturwissenschaften
der

Ruprecht-Karls-Universität
Heidelberg

vorgelegt von

Draxler, Felix Matthias, MSc.
aus München

Tag der mündlichen Prüfung:

Architectural Constraints of Normalizing Flows

Betreuer: Prof. Dr. Ullrich Köthe
Zweitbetreuer: Prof. Dr. Christoph Schnörr

Abstract

In this thesis, we consider Normalizing Flows, a class of models that leverage neural networks to
represent probability distributions, enabling efficient sampling and density estimation. The focus of our
work is to develop versatile normalizing flows, that is flexible methods readily applicable to arbitrary
problems.

We therefore theoretically examine the expressivity of existing architectures. We find that volume-
preserving flows are fundamentally biased and identify a fix. We improve on universality guarantees
for coupling-based flows, showing that well-conditioned affine coupling flows are universal. We find
that the latter scale favorably with dimension in comparison to Gaussianization flows.

We then proceed to lift architectural restrictions from normalizing flows altogether via the
introduction of Free-Form Flows. This framework trains arbitrary neural network architectures as
normalizing flows. This allows for the first time, among others, cheap rotation-equivariant normalizing
flows, normalizing flows on arbitrary Riemannian manifolds, and injective flows based on feed-forward
autoencoders. This model is significantly more flexible to adapt to novel problems, performs comparable
or better than existing normalizing flows and competitive with methods with iterative inference such
as diffusion models and flow matching.

Zusammenfassung

In dieser Dissertation betrachten wir Normalizing Flows, eine Klasse von Methoden, die neuronale
Netzwerke nutzen, um Wahrscheinlichkeitsverteilungen darzustellen, die effizientes Sampling und
Dichteschätzung ermöglichen. Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung von flexiblen
Normalizing Flows, die problemlos auf beliebige Probleme anwendbar sind.

Daher untersuchen wir zunächst die Eigenschaften bestehender Architekturen theoretisch. Wir
stellen fest, dass volumenerhaltende Flows eine verzerrte Dichte lernen und entwickeln eine Lösung
dafür. Wir verbessern existierende Universalitätsgarantien für coupling-basierte Flows, indem wir die
Universalität von wohlkonditionierten affinen Coupling Flows bestätigen. Außerdem stellen wir fest,
dass letztere im Vergleich zu Gaussianization Flows günstig mit der Dimension skalieren.

Anschließend heben wir die architektonischen Beschränkungen existierender Normalizing Flows
auf, indem wir Free-Form Flows einführen. Dieses Framework ermöglicht es, beliebige neuronale
Netzwerkarchitekturen als Normalizing Flows zu trainieren. Das ermöglicht erstmals unter anderem
kostengünstige rotationsequivariante Normalizing Flows, Normalizing Flows auf beliebigen Riemann-
schen Mannigfaltigkeiten und injektive Flows basierend auf Autoencodern. Free-Form Flows sind
erheblich flexibler in der Anpassung an neue Probleme, zeigen vergleichbare oder bessere Performanz
als bestehende Normalizing Flows und sind wettbewerbsfähig mit Methoden mit iterativer Inferenz wie
Diffusionsmodellen und Flow Matching.

6

Acknowledgments

An immense thank-you goes to my PhD supervisors Ullrich Köthe and Christoph Schnörr, who
have supported and guided this project through helpful, positive, critical and results-oriented feedback
and pointers.

I would like to extend my gratitude to all my colleagues at the Computer Vision and Learning
Lab (CVL) for the collaborative and friendly environment, the interesting discussions and the exciting
projects. I am especially thankful to Armand Rousselot, Peter Sorrenson, Jens Müller, Sander
Hummerich, Stefan Wahl, Lars Kühmichel, Robert Schmier, Stefan Radev, Lynton Ardizzone, Jakob
Kruse, The-Gia Leo Nguyen, Carsten Rother, and Bogdan Savchynskyy. A big thank you also goes
to my colleagues in the Image & Pattern Analysis Group (IPA) for the helpful feedback and friendly
atmosphere, especially to Jonathan Schwarz, Bastian Boll, Dmitrij Sitenko, Fabrizio Savarino, Ruben
Hühnerbein, Alexander Zeilmann, Matthias Zisler, and Artjom Zern.

Thank you, Mel, for always being so supportive and helping me every step of the way. And thank
you, Timba, for enduring late evening walks after paper deadlines and lifting the mood in the office.

Finally, thanks to Jens, Peter, Christoph, Fiona and Gabi for proofreading parts of this thesis.
This work is supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)

under Germany’s Excellence Strategy EXC-2181/1 - 390900948 (the Heidelberg STRUCTURES Cluster
of Excellence). It is also supported by the Vector Stiftung in the project TRINN (P2019-0092).
The authors acknowledge support by the state of Baden-Württemberg through bwHPC and the
German Research Foundation (DFG) through grant INST 35/1597-1 FUGG. We thank the Center for
Information Services and High Performance Computing (ZIH) at TU Dresden for its facilities for high
throughput calculations.

Felix Draxler

Contents

Abstract / Zusammenfassung 5

Acknowledgments 6

1 Motivation 9

2 Related Work 11

3 Contribution 13

3.1 Theoretical framework for normalizing flows . 13

3.2 Removing architectural constraints from normalizing flows 14

4 Background 17

4.1 Generative modeling . 17

4.2 Normalizing flows . 17

4.3 Invertible neural networks . 18

4.4 Kullback-Leibler divergence Pythagorean identities . 24

5 Distributional universality of normalizing flows 27

5.1 Distributional universality . 27

5.2 Non-universality of volume-preserving flows . 28

5.3 Expressivity of a single affine coupling block . 30

5.4 Coupling flow universality . 39

5.5 Conclusion . 45

6 Convergence rates of invertible neural network blocks 47

6.1 Setting . 47

6.2 Gaussianization . 49

6.3 Coupling blocks . 60

6.4 Architecture comparison . 68

7 Free-form neural networks as normalizing flows 71

7.1 Full-dimensional free-form flows (FFF) . 71

7.2 Manifold free-form flows on a known Riemannian manifold (M-FFF) 79

7.3 Free-form injective flows for learning compressed representations and distributions (FIF) 88

7.4 Conclusion . 96

8 Conclusion 99

Bibliography 103

8 Contents

A Proofs 117
A.1 Proofs on Pythagorean identities . 117
A.2 Proofs on Volume-preserving Flows . 119
A.3 Single non-linear affine layer . 126
A.4 Proofs on affine coupling flow universality . 129
A.5 Benefits of more expressive coupling blocks . 134
A.6 Convergence rate of Gaussianization blocks . 135
A.7 Convergence rate of coupling blocks . 138
A.8 Free-form flows . 151
A.9 Free-form flows on Riemannian manifolds . 151
A.10 Free-form injective flows . 157

B Experimental details 165
B.1 Layer-wise flow . 165
B.2 Volume-preserving flows . 167
B.3 Iterative Gaussianization . 168
B.4 Deep coupling bound . 173
B.5 Free-form flows . 178
B.6 Manifold free-form flows . 182
B.7 Free-form injective flows . 189

1. Motivation

Machine learning is a field at the intersection of computer science and statistics. It aims to develop
algorithms that enable computers to learn from and make predictions based on data (Bishop, 2006).
Typically, data is provided through a set of example data points called the training data. The task of
a machine learning system is to infer a mathematical computation that, when applied to the training
inputs x, yields the corresponding training outputs y (supervised learning), or reproduces the structure
of data points x without a specified output (unsupervised learning). The system should be set up in a
way behaves as intended even for values it has not seen during training (generalization). Contrast this
to a classical algorithm where an expert devises a sequence of mathematical operations that compute
outputs; in machine learning, the algorithm is derived by example.

Machine learning systems have achieved remarkable success in various areas. The following is
a non-exhaustive list, and the references each point to a central breakthrough: In computer vision,
they have surpassed human-level performance on tasks such as object recognition and classification in
images (Krizhevsky et al., 2012). In natural language processing, they have significantly improved text
translation and are able to perceive and generate natural text (Vaswani et al., 2017). In drug discovery
and protein folding, they have achieved unprecedented accuracy in predicting protein folding, a complex
problem with significant implications for understanding diseases and developing new therapies (Senior
et al., 2020). Generative models can generate highly realistic images, videos, and audio, as well as
solve inverse problems in scientific applications, such as reconstructing high-resolution images from
low-resolution counterparts, and in simulating complex systems (Goodfellow et al., 2014).

The backbone of modern machine learning, including these examples, are artificial neural networks
or simply neural networks. They consist of connected artificial neurons that each process input from
other neurons to compute some output. Neurons are organized into subsequent layers and each layer of
neurons receives the output from the previous layer as input. The input to the first layer is the input
to the entire neural network, and the network’s output is collected from the last layer. All values are
represented by scalar real-valued numbers. To train a neural network, one fixes the number of neurons
and their arrangement into layers and then the computation of each neuron is gradually adapted via
gradient descent on a loss function that measures the discrepancy between the target imposed by
the training data and the actual behavior the network (Rumelhart et al., 1986). An arrangement of
neurons into layers and their connectivity is called a neural network architecture.

The resulting systems are highly flexible and generic: Only little structural information about the
data at hand must be available in order to successfully train a neural network. This has also been
shown theoretically: If a neural network is large enough, it is universal in the sense that it is able to
represent arbitrary target functions as well as is required (Hornik, 1991). This is related to Turing
completeness in computability theory which states that any Turing machine can be simulated by a
given system. It is a strong statement in the sense that there are no fundamental barriers preventing
to represent any target function of interest.

However, real data often contains noise and uncertainty, leading to no unique mapping between
input and output in supervised learning. For example, predicting the outcome of a quantum experiment
or using inputs from sensors with finite resolution introduces intrinsic randomness. A natural approach
to make predictions under uncertainty is to model the answer via a probability distribution over
possible outcomes. Similarly, in unsupervised learning, the structure of the data can be represented
as a probability distribution. This can be done by discretizing the output space and predicting a

10 1. Motivation

histogram of the possible outcomes. This explicit representation fails when predicting many variables
jointly, as the total number of outcomes scales exponentially with the number of dimensions (curse of
dimensionality).

To address this, several approaches have been proposed to model probability distributions using
neural networks. They map simple noise sources, such as samples from a (multivariate) standard normal
distribution, to samples of the target probability distribution. This avoids the curse of dimensionality
as the neural network yields a single sample from the target distribution rather than fully representing
the distribution explicitly. This effectively captures the underlying probability distribution without the
computational infeasibility of dealing with exponentially growing outcome spaces.

Such a neural network is called a deep generative model (Goodfellow et al., 2014). There are two
fundamental ways to query a generative model: First, the model can yield samples from the distribution.
In supervised learning, this yields the plausible predictions given an input; in unsupervised learning, it
produces data points similar to the training data. Second, many deep generative models can evaluate
the probability density at points of interest (density estimation). Besides the practical applications
mentioned, we argue that properly communicating the uncertainty underlying a prediction is essential
for deploying neural networks in critical and large-scale contexts, such as autonomous driving, medicine,
and climate change.

A plethora of architecture and training methods have been proposed, most notably variational
autoencoders (VAEs, (Kingma & Welling, 2014)), generative adversarial networks (GANs, (Goodfellow
et al., 2014)), normalizing flows (Rezende & Mohamed, 2015) as well as their continuous variant,
continuous normalizing flows (Chen et al., 2018b), as well as diffusion models (Sohl-Dickstein et al.,
2015). These variants share the approach of computing samples via a transport from random noise,
but differ in the way they employ neural networks and how they are trained.

The goal of this thesis is to develop versatile generative model architectures that can model
arbitrary probability distributions of interest. In particular, we focus on normalizing flows since they
are deeply rooted in information theoretic principles, promising to be agnostic to the data modality.
Normalizing flows do not simply inherit their universality from neural networks: They learn a function
from data to latent space such that the data is mapped to latent codes distributed like a normal
distribution. Then, samples can be generated by passing random noise into the inverse of the learned
function, reversing the above process. This means that the learned function must be invertible, requiring
the use of an invertible neural network. This kind of neural networks modifies the architecture of neural
networks in terms of how neurons are connected, and thus does not fall under the classical universality
guarantees mentioned above.

We approach the task of developing versatile normalizing flows from two perspectives:
First, we establish a theoretical framework grounded in the rigorous formulation of the considered

models. In particular, we focus on distributional universality in chapter 5, that is given an architecture,
can we learn arbitrary target distributions? Also, we address how the required computational resources
scale with the problem at hand in chapter 6.

Second, the architectural constraints in invertible neural network architectures make adopting
them to problems with special structure difficult. For example, only expensive invertible neural network
architectures are known that learn rotation invariant distributions, a useful prior for modeling the
distribution of molecules (Köhler et al., 2020), or when the data lies on a known Riemannian manifold
(Chen & Lipman, 2024). Developing invertible neural networks for these cases is complex at best and
may be impossible at worst. We overcome this limitation via a new scheme to train arbitrary neural
network architectures as normalizing flows in chapter 7. This allows us to leverage the significant
advancements in versatile neural network architecture research for efficient and powerful generative
models.

2. Related Work

This chapter gives a high-level overview of the most prominent related work to each considered topic.
We refer to the reader to the related work in the corresponding part of this thesis for a detailed
discussion of the existing literature.

Applications Normalizing flows have been used to solve various problems. A prominent branch
is solving inverse problems in domains such as astrophysics (Ardizzone et al., 2018b), mechanical
engineering (Noever-Castelos et al., 2022), image colorization (Ardizzone et al., 2020a), medicine (Adler
et al., 2019), epidemiology (Radev et al., 2021), among others. Another branch considers modeling
the distribution of images (Kingma & Dhariwal, 2018) with applications to trustworthy generative
classifiers (Ardizzone et al., 2020b; Mackowiak et al., 2021). Other applications lie in causality (Müller
et al., 2021) and computational biology (Noé et al., 2019).

Universality theorems Standard neural networks that give a single prediction for each input are
known to be universal function approximators: Given a target mapping between inputs and outputs
that should be modeled by a neural network, if the neurons in a neural network are coordinated
in the right way, they can approximate this mapping to arbitrary precision. The classical results
show universality of vanilla neural networks (Cybenko, 1989; Hornik, 1991), but there are variants for
different architectures such as convolutional networks (Zhou, 2020; Heinecke et al., 2020) or for data
represented in special geometry (Kratsios & Bilokopytov, 2020).

In the context of normalizing flows, we are interested in whether the models can transform the
random latent codes into the right structured noise into the target probability distribution, despite the
constraints introduced to make the underlying neural networks invertible. The predominant approach
tackles the problem by showing that invertible neural networks can approximate any invertible mapping,
which thus also applies to the transformation between random and structured noise (Teshima et al.,
2020a; Koehler et al., 2021). However, these works require the involved neural networks to become
arbitrarily ill-conditioned, among other shortcomings.

We also consider the special case of volume-preserving normalizing flows, a family of architectures
whose additional constraints can be beneficial in some applications. To the best of our knowledge, no
previous analysis showed that they are fundamentally biased and how to fix this shortcoming.

Complexity guarantees The universality theorems above are useful as they assure that there are
no fundamental barriers from learning certain functions. However, they do not guarantee or only
loosely bound the computational complexity required to achieve a given quality. A bound of practical
relevance would limit how many layers or neurons are required to achieve a certain quality, since in
practice only limited resources are available.

Some complexity estimates are available for vanilla neural networks (Poggio et al., 2017). For
invertible neural networks, an important complexity trade-off lies between the expressive power of each
individual block in a normalizing flow with the total number of layers. Many such variants have been
proposed, see (Kobyzev et al., 2021) for a review. The only theoretical guarantee is that three affine
coupling layers are enough to fit arbitrary distributions (Koehler et al., 2021). However, as mentioned
before, this result has limited practical applicability due to the unrealistic assumptions it makes.

12 2. Related Work

Incorporating prior knowledge If there is existing knowledge about the structure of the data, then it
is advantageous to incorporate it into the architecture of the neural network. For example, to process
data in images, it is helpful to first process the image in small patches before combining the results into
a global prediction (Fukushima, 1980), which has led to a breakthrough in classifying real-world images
(Krizhevsky et al., 2012). Introducing such knowledge is known as an inductive bias. In addition,
properties of the data at hand might be known that should be strictly incorporated into the model.
For example, molecular data should often be treated identically regardless of global orientation and
location, and some data, in particular in scientific applications, is known to live on a manifold whose
topology and geometry should be obeyed. Below, we provide more details on how generative model
architectures, particularly normalizing flows, can incorporate prior knowledge.

A broad literature exists building neural network architectures with different inductive biases
(Zhang et al., 2023a). However, integrating these advances into normalizing flow architectures is
nontrivial, as the network must also be invertible. Such an architecture has been achieved for images
(Kingma & Dhariwal, 2018), but not for rotation equivariance, among others. One alternative is
restricting each block to an infinitesimal action, essentially parameterizing an ordinary differential
equation from latent codes to data (Chen et al., 2018b). However, this increases costs at inference
time, since the number of steps can grow large to accurately solve the differential equation.

A particularly prevalent prior knowledge about data is that real-world data such as images, sound
or complex sensor data is usually represented in raw form such as pixel or time-varying waveform
values, but they can be described efficiently in a low-dimensional representation through lossy or even
lossless compression algorithms that faithfully preserve the corresponding content (manifold hypothesis,
Bengio et al. (2013)). For a generative model, this has the implication that modeling such data in
its raw format wastes resources on modeling the negligible noise in addition to the variation of the
meaningful content in a prediction. This can also lead to badly conditioned transformations between
data and latent noise.

Generative autoencoders and injective (normalizing) flows tackle this issue by learning both a
low-dimensional representation and a distribution on it. Existing work either follow a two-stage
approach which first learns a low-dimensional representation and then its distribution, or learn a
distribution in the high-dimensional space together with a core set of latent variables that span the
low-dimensional manifold. To avoid ill-conditioned functions, the data is usually augmented with
small-variance noise (Horvat & Pfister, 2021). Rectangular flows jointly learn the low-dimensional
representation and a low-dimensional distribution on it, but this comes with the expensive use of
several conjugate gradient steps (Caterini et al., 2021).

Similarly, the case where the data is known to lie on a manifold requires special attention. Examples
are normed vectors on a (hyper)sphere, angles on a torus, points on a surface in an embedding space, or
manifolds with non-Euclidean geometry such hyperbolic space. These manifolds are also not naturally
represented by full-dimensional generative models, as this is incompatible with the topology, for example
at the poles of a sphere. Intuitively, a model respects the topology if it treats data points similarly
whenever they are close according to the geometry.

Riemannian generative models address this challenge of learning distributions on a known manifold.
To the best of our knowledge, Riemannian variants of normalizing flows are only known in special
cases, as they are nontrivial to adapt to arbitrary manifolds while maintaining expressivity. Like for
incorporating inductive biases, multistep methods offer a viable approach to learn generative models
on arbitrary manifolds, but this makes them expensive at inference and, in some cases, also at training
time (Mathieu & Nickel, 2020; Lou et al., 2020).

3. Contribution

Normalizing flows are a well-established generative model for learning multivariate probability densities
based on neural networks. In this thesis, we analyze and extend their versatility.

Therefore, we theoretically underpin the universality and efficiency of normalizing flows based on
invertible neural networks. However, such architectures are not known for all data modalities. We
address this by lifting all architectural constraints through the introduction of free-form flows, allowing
arbitrary neural network architectures to be trained as normalizing flows efficiently for the first time.

In the remainder of this chapter, we provide details on the contributions of this thesis and where
they were originally published. If not specified otherwise, the first author takes credit for the majority
of the contributions.

3.1. Theoretical framework for normalizing flows

Characterizing the Role of a Single Coupling Layer in Affine Normalizing Flows.
Felix Draxler, Jonathan Schwarz, Christoph Schnörr, and Ullrich Köthe.
In German Conference on Pattern Recognition (GCPR), 2020, best paper honorable mention.

Many normalizing flows rely on invertible neural networks consisting of a sequence of affine coupling
blocks, each of which is restricted to a limited class of invertible functions that is particularly easy to
invert analytically. Empirically, a deep sequence of such blocks can represent complicated probability
distributions such as those of images. To understand their success, we characterize the effect of a single
coupling block for learning a distribution in a deep sequence. We derive that a single block estimates
and then normalizes conditional moments of the data distribution. We give a tight lower bound for the
maximum possible loss improvement by a single coupling, depending on the orthogonal transformation
of the data. This bound can be used to identify the optimal orthogonal transform. Together, this
yields a block-wise training algorithm for deep affine coupling flows. Toy examples confirm our findings
and stimulate further research by highlighting the remaining gap between block-wise and end-to-end
training of deep affine flows. See section 5.3 for details, based on Draxler et al. (2020).

This work lays the foundation to the subsequent theoretical contributions that extrapolate the
effect of a single block to a deep coupling flow.

On the Universality of Volume-Preserving and Coupling-Based Normalizing Flows.
Felix Draxler, Stefan Wahl, Christoph Schnörr, and Ullrich Köthe.
In International Conference on Machine Learning (ICML), 2024.

In practice, no fundamental restrictions have been identified as to which probability distributions
can be represented by a coupling-based normalizing flow, even in the simplest variant of an affine
coupling block such as RealNVP (Dinh et al., 2017). Despite their prevalence in scientific applications,
a comprehensive understanding explaining their success remains elusive. Existing theorems fall short
as they require the use of arbitrarily ill-conditioned neural networks, limiting practical applicability.
We propose a distributional universality theorem for well-conditioned coupling-based normalizing flows
for the first time. In addition, we show that volume-preserving normalizing flows are not universal,
what distribution they learn instead, and how to fix their expressivity. Our results support the general
wisdom that affine and related couplings are expressive and in general outperform volume-preserving

14 3. Contribution

flows, bridging a gap between empirical results and theoretical understanding. Finally, we show that if
coupling is more expressive than affine, each block can reduce a loss component that is inaccessible to
affine couplings. See sections 5.2 and 5.4 for details, based on Draxler et al. (2024b).

Individual contributions: FD derived the theorems and performed the experiments, except: SW
trained the volume-preserving flow and derived a counter-example showing the non-universality of
volume-preserving flow.

Whitening Convergence Rate of Coupling-based Normalizing Flows.
Felix Draxler, Christoph Schnörr, and Ullrich Köthe.
In Annual Conference on Neural Information Processing (NeurIPS), 2022, oral presentation.

One key hyperparameter of neural network architectures and coupling flows in particular is the
choice of architecture parameters, such as the number of blocks. It is resource-intensive to tune, given
that the network has to be retrained for each new configuration. Theoretical guidance for choosing
parameters such as depth is therefore of great practical relevance. While existing work shows that
three layers are sufficient for representing any distribution, their proof construction for this statement
is severely limited as argued above. In particular, they make no statement about the strict convergence
criterion used in practice, the Kullback-Leibler divergence. For the first time, we make a quantitative
statement about this kind of convergence: We prove that all coupling-based normalizing flows perform
whitening of the data distribution (i.e. diagonalize the covariance matrix) and derive corresponding
convergence bounds that show a linear convergence rate in the depth of the flow. The convergence
rate is independent of the dimension of the data in late training. Numerical experiments confirm our
theory. See section 5.3 for details, based on Draxler et al. (2020).

On the Convergence Rate of Gaussianization with Random Rotations.
Felix Draxler, Lars Kühmichel, Armand Rousselot, Jens Müller, Christoph Schnörr, and Ullrich Köthe.
In International Conference on Machine Learning (ICML), 2023.

While coupling blocks are a common choice for normalizing flows on high-dimensional data, the
structurally simpler Gaussianization block has also achieved compelling performance in low dimensions
or little training data. Empirically, however, the convergence speed of Gaussianization slows down as
the dimension increases. We confirm this analytically, showing that the number of required layers scales
linearly with the dimension for Gaussian input in late training. We compare this to the previously
derived result on coupling flows, where the number of required layers is largely unaffected by dimension.
This suggests that the inferior scaling of Gaussianization occurs because the model struggles at
capturing dependencies between dimensions. Empirically, we find the same linear increase in cost for
arbitrary input in early training, but observe favorable scaling for some distributions. We explore
potential speed-ups and formulate challenges for further research. See section 6.3 for details, based on
Draxler et al. (2022).

Individual contributions: FD derived the theorems and suggested the experiments. LK performed
the experiments, with support by AR and JM.

3.2. Removing architectural constraints from normalizing flows

Free-form flows: Make any architecture a normalizing flow.
Felix Draxler1, Peter Sorrenson1, Lea Zimmermann, Armand Rousselot, and Ullrich Köthe.
In International Conference on Artificial Intelligence and Statistics (AISTATS), 2024.

Building versatile invertible neural networks has so far been largely constrained by the need to
build architectures that are analytically and tractably invertible and whose Jacobian determinant is

1These authors contributed equally.

3.2. Removing architectural constraints from normalizing flows 15

efficient to compute. We overcome these constraints by a novel training procedure for normalizing
flows, which allows any dimension-preserving neural network to serve as a generative model through
maximum likelihood training. It is enabled by an efficient estimator for the gradient of the change of
variables formula, fundamental to maximum likelihood training. This allows placing the emphasis on
incorporating prior knowledge about the data into the architecture. Specifically, we achieve competitive
results in molecule generation benchmarks utilizing E(n)-equivariant networks. Moreover, our method
is competitive in an inverse problem benchmark, while employing off-the-shelf ResNet architectures.
See section 7.1 for details, based on Draxler et al. (2024a).

Individual contributions: PS derived the theoretical guarantees for the combined loss. FD
coordinated and performed the majority of the experiments. AR and LZ contributed individual
experiments.

Learning Distributions on Manifolds with Free-form Flows.
Peter Sorrenson1, Felix Draxler1, Armand Rousselot1, Sander Hummerich, and Ullrich Köthe.
Preprint, under review, 2023.

Many real-world data, particularly in the natural sciences and computer vision, lie on known
Riemannian manifolds such as spheres, tori or the group of rotation matrices. When building normalizing
flows for such data, one is faced with the challenge that coupling blocks are not directly compatible to
work with this data, requiring special constructions that make adaptation to a new manifold difficult
or resorting to Euclidean models which violate the topology at hand. A competing approach is based
on learning a distribution on such a manifold that involves learning a differential equation. While
this is readily applicable to arbitrary Riemannian manifolds, sampling from the model and evaluating
densities requires solving the differential equation, significantly increasing the cost for downstream
tasks. Based on the free-form flow framework proposed above, we develop an alternative approach
which is directly compatible with arbitrary Riemannian manifolds with a known projection function.
For sampling, the resulting model only requires a single function evaluation followed by a projection to
the manifold. We outperform normalizing flows specialized to the considered manifolds and achieve
competitive performance to multistep methods at typically two orders of magnitude faster inference.
See section 7.2 for details, based on Sorrenson et al. (2023).

Individual contributions: FD implemented the modified gradient estimator based on the network
architecture proposed by PS, who then confirmed the estimator theoretically. AR and FD coordinated
and performed experiments, with the help of SH.

Lifting Architectural Constraints of Injective Flows.
Peter Sorrenson1, Felix Draxler1, Armand Rousselot, Sander Hummerich, Lea Zimmermann, and
Ullrich Köthe.
In International Conference on Learning Representations (ICLR), 2024.

Normalizing Flows, including free-form flows, maximize a full-dimensional likelihood on the training
data. However, real data such as real-world images is often best represented on a lower-dimensional
manifold, leading the model to expend significant compute on modeling noise. Injective Flows fix this
by jointly learning a manifold and the distribution of the data projected to that manifold. So far, these
approaches have been limited by restrictive architectures and/or high computational cost. We lift both
constraints by adapting the free-form flow estimator for the maximum likelihood loss to the case of
free-form bottleneck architectures. We further show that naively learning both the data manifold and
the distribution on it can lead to divergent solutions, since the maximum likelihood loss comes with
pathologies that negatively affect what projection is learned. We use these insights to motivate a stable
maximum likelihood training objective. We perform extensive experiments on toy, tabular and image
data, demonstrating the competitive performance of the resulting model. See section 7.3 for details,
based on Sorrenson et al. (2024).

16 3. Contribution

Individual contributions: PS came up with the original idea, derived and implemented the efficient
gradient estimator. FD implemented the experimental framework, and identified the stability of the
final gradient estimator. AR, SH and LZ contributed individual experiments.

4. Background

4.1. Generative modeling

As motivated in chapter 1, we are interested in learning probability densities with neural networks,
termed a generative model over continuous variables. Discrete distributions can be modeled by adding
small amounts of real-valued noise to the data (Uria et al., 2013).

Generative models can model both conditional p(x|c) and unconditional probability densities
p(x). For simplicity, we consider the unconditional case, since we are interested in how probability
distributions can be constructed using neural networks. From a conceptual perspective, it is easy to
make an unconditional model conditional via some function that takes the condition as input and yields
the parameters of the generative model representing the conditional distribution as output. Practically,
the condition can be introduced by feeding the condition as an additional input into all involved neural
networks, see e.g. (Ardizzone et al., 2020a).

We denote all ground truth probability densities as p(·) and a probability density that depends on
(learnable) parameters θ by pθ(·). The argument to p respectively pθ specifies the random variable it
concerns. We explicitly specify such a random variable x via p(x = ·) if it is unclear from context.

4.2. Normalizing flows

Normalizing flows are a class of generative models that represent a distribution pθ(x) with parameters θ
by learning an invertible function z = fθ(x) so that the latent codes z ∈ RD obtained from the data
x ∈ RD are distributed like a standard normal distribution p(z) = N (z; 0, I). Via the change of
variables formula, see Köthe (2023) for an overview, this invertible function yields an explicit form for
the density pθ(x):

pθ(x) = p
(
z = fθ(x)

)
|f ′θ(x)| =

(
(f−1
θ)♯p(z)

)
(x), (4.1)

where f ′θ(x) = ∂
∂xfθ(x) is the Jacobian matrix of fθ at x and |f ′θ(x)| is its absolute determinant. The

last form denotes the push-forward of p(z) through f−1
θ , mapping from the latent distribution to the

model distribution. We will later also consider generalizations of the change of variables formula to
non-Euclidean geometry in equation (7.14) and injective functions in equation (7.29).

Equation (4.1) allows easily evaluating the model density at points of interest. Obtaining samples
from pθ(x) can be achieved by sampling from the latent standard normal and applying the inverse
f−1
θ (z) of the learned transformation:

x = f−1
θ (z) ∼ pθ(x) for z ∼ p(z). (4.2)

The change of variables formula in equation (4.1) can be used directly to train a normalizing flow.
The corresponding loss minimizes the Kullback-Leibler divergence between the true data distribution
p(x) and the learned distribution, which can be optimized via a Monte-Carlo estimate of the involved
expectation:

L = DKL(p(x)∥pθ(x)) = Ex∼p(x)[log p(x)− log pθ(x)] (4.3)

= Ex∼p(x)[− log pθ(x)] + const. (4.4)

18 4. Background

This last variant makes clear that minimizing this loss is the same as maximizing the log-likelihood
the model assigns to the data. For training, the expectation value is approximated using (batches of)
training samples x1,...,N .

Changing perspective, consider the push-forward of the data distribution to the latent space,
that is the distribution of latent codes obtained from mapping the data distribution p(x) through the
invertible neural network fθ:

pθ(z) =
(

(fθ)♯p(x)
)

(z) = p
(
x = f−1

θ (z)
)
|f−1
θ

′
(z)| (4.5)

The above KL divergence can then be rewritten in the latent space:

DKL(p(x)∥pθ(x)) = Ex∼p(x)[log p(x)− log pθ(x)] (4.6)

= Ex∼p(x)[log p(x)− log p(z = fθ(x))− log |f ′θ(x)|] (4.7)

= Ez∼pθ(z)[log p(x = f−1
θ (z)) + log |f−1

θ

′
(z)| − log p(z)] (4.8)

= Ez∼pθ(z)[log pθ(z)− log p(z)] (4.9)

= DKL(pθ(z)∥p(z)) (4.10)

In other words, approximating p(x) with pθ(x) in the data space is directly tied to pθ(z) approximating
the target latent distribution p(z). We will heavily use this fact in chapters 5 and 6.

For sampling from pθ(x), draw a latent code z ∼ p(z) = N (0, I) and apply the inverse of the
learned function:

x = f−1
θ (z) ∼ pθ(x). (4.11)

A common alternative scenario is that the target distribution is known p(x) ∝ e−u(x) up to its
normalization constant. In this case, we can again use the change of variables to train with the reverse
KL divergence:

DKL(pθ(x)∥p(x)) = Ex∼pθ(z)[log pθ(x) + u(x)] + const. (4.12)

While this training objective is not limited by the size of the training set, training with reverse KL
can be unstable and exhibit mode collapse (Nicoli et al., 2022). Throughout this thesis, we consider
universality with respect to forward KL divergence.

4.3. Invertible neural networks

The change of variables formula equation (4.1) is only valid for invertible functions fθ. This is, in
general, not fulfilled by arbitrarily parameterized feed-forward neural networks, but requires special
constructions so that the network is invertible. These constructions are called invertible neural networks
(INN).

A useful invertible architecture for fθ has to (i) be computationally easy to invert, (ii) be able to
represent complex transformations, and (iii) have a tractable Jacobian determinant |det J | (Ardizzone
et al., 2018b). A plethora of such architectures called have been suggested, see e.g. (Kobyzev et al.,
2021) for an overview.

Constructing an architecture fulfilling these requirements is nontrivial; a major part of the literature
is based on composing L invertible blocks:

fθ(x) = (fL,θL ◦ · · · ◦ f1,θ1)(x). (4.13)

The parameters collect the parameters of the individual layers θ = (θ1, . . . , θL), but we usually drop
this explicit dependence on the parameters for simplicity. It is easy to see that if each of the blocks is

4.3. Invertible neural networks 19

easy to invert and the Jacobian determinant of each block is tractable, these properties transfer to the
composition:

f−1
θ (z) = (f−1

1 ◦ · · · ◦ f−1
L)(z), (4.14)

|f ′θ(x)| = |f ′L(xL−1) · · · f ′2(x1)f ′1(x)| = |f ′L(xL−1)| · · · |f ′2(x1)||f ′1(x)|. (4.15)

Here, we have denoted x1 = f1(x) and xi+1 = fi+1(xi). The expressivity of the overall transformation
causes the expressivity of the resulting distribution pθ(x). It depends on the expressivity and count of
the blocks, which are the main concern of chapters 5 and 6.

The majority of invertible blocks is based on one-dimensional parameterized invertible functions
cθ : R→ R, which we write as z = c(x; θ). In the following, we first explain how to parameterize one-
dimensional invertible functions. We then show how to combine one-dimensional invertible functions
to high-dimensional invertible blocks fulfilling the above requirements for an invertible neural network.

With the introduction of free-form flows in chapter 7, we overcome all of these requirements by
using two separate networks for the forward fθ and inverse maps gφ ≈ f−1

θ and replacing the volume
change term by an efficient gradient estimator.

4.3.1. One-dimensional invertible functions

In this section, we focus on how to represent one-dimensional invertible functions c(x; θ), a cornerstone
of building high-dimensional invertible neural networks. In fact, much of the research on normalizing
flow architectures is concerned with tuning these one-dimensional invertible functions, trading off
expressivity with inversion cost.

▶ A particularly simple function is an affine-linear function with positive slope s:

c(x; θ) = sx+ t. (4.16)

as proposed in NICE (Dinh et al., 2015) with s = 1 (which is volume-preserving, see section 4.3.3,
and RealNVP (Dinh et al., 2017) with s > 0. Here, θ = [s; t] ∈ R+ × R.

▶ Nonlinear squared flow extend the above to a transformation that is still uniquely invertible
(Ziegler & Rush, 2019):

c(x; θ) = ax+ b+
c

1 + (dx+ h)2
, (4.17)

for θ = [a, b, c, d, h] ∈ R5 with a > 9
8
√
3
|c|d and d > 0. The inverse is obtained by solving a third

degree polynomial equation.

▶ SOS polynomial flows (Jaini et al., 2019):

c(x; θ) =

∫ x

0

k∑
κ=1

 r∑
l=0

al,κu
l

2

du+ t. (4.18)

Here, θ = [t; (al,κ)l,κ] ∈ R× Rrk. Since the integrand is positive, the solution to the integration is
invertible. The inverse can be found using bisection.

▶ Flow++ (Ho et al., 2019):

c(x; θ) = sσ−1

 K∑
j=1

πjσ

(
x− µj
σj

)+ t. (4.19)

20 4. Background

Here, θ = [s; t; (πj , µj , σj)
K
j=1] ∈ R+ × R× (R× R× R+)K and σ is the logistic function. Again, it

can be inverted using bisection.

▶ Spline flows in the form of piecewise-linear, monotone quadratic (Müller et al., 2019), cubic
(Durkan et al., 2019), and rational quadratic (Durkan et al., 2019) splines. Here, c is a spline of the
corresponding type, parameterized by knots θ. For these splines, analytically tractable inverses are
known.

▶ Neural autoregressive flow (Huang et al., 2018) parameterize c(x; θ) by a feed-forward neural
network, which can be shown to be bijective if all weights are positive and all activation functions
are strictly monotone. Again, it can be inverted using bisection.

▶ Unconstrained monotonic neural networks (Wehenkel & Louppe, 2019) parameterize c(x; θ)
as the integral of a neural network with positive output:

c(x; θ) =

∫ x

0
c(u; θ)du+ t. (4.20)

This integral is computed numerically, and it can be inverted using bisection. The volume change
can be efficiently computed via the Leibniz integral rule.

4.3.2. High-dimensional invertible functions

Gaussianization layer Chen & Gopinath (2000) propose building a high-dimensional invertible block
by applying a one-dimensional function c(x; θi) to each dimension i = 1, . . . , D separately:

x̃ = fgzn

x1
...
xD

 =

c(x1; θ1)

...
c(xD; θD)

. (4.21)

This is easy to invert by applying xi = c−1(zi; θi) to each dimension individually. Since ∂ic(xj ; θj) = 0
for i ̸= j, the Jacobian is diagonal and the determinant of the block reads:

log |f ′gzn(x)| =
D∑
i=1

log |c′(xi; θi)|. (4.22)

This requires computing the derivative c′, which can be computed analytically or via automatic
differentiation.

Coupling layer Dinh et al. (2015, 2017) proposed to make Gaussianization layers more expressive by
adding dependencies between dimensions. Just like the Gaussianization layers above, coupling layers
apply one-dimensional invertible functions, but with a twist: the parameters of the one-dimensional
transforms of the second half of the dimensions a = xD/2+1,...,D (active dimensions) are predicted by
a function ψ(b) called the conditioner that takes the first half of dimensions b = x1,...,D/2 (passive
dimensions) as input:

x̃ = fcpl

x1
...

xD/2
xD/2+1

...
xD

=

c(x1; θ1)
...

c(xD/2; θD/2)

c(xD/2+1;ψ1(x1...D/2))
...

c(xD;ψD/2(x1...D/2))

. (4.23)

4.3. Invertible neural networks 21

This allows dimensions to interact between one another, since the transformation of xi for i > D/2 can
depend on the value of all x1...D/2:

∂

∂xj
c(xi;ψi(x1...D/2)) =

∂c

∂ψi

∂ψi
∂xj

, for j = 1 . . . D/2. (4.24)

Throughout this thesis, we will for simplicity assume that the dimension D is even. If D is odd,
use ⌊D/2⌋ or ⌈D/2⌉ active dimensions and the remaining dimensions are passive.

Inversion of a coupling layer takes three steps: (1) Compute x1...D/2 from z1...D/2, (2) determine
ψ1...D/2(x1...D/2), and (3) use these parameters to obtain xD/2+1...D from zD/2+1...D.

Computing log |f ′coupling(x)| is still feasible since the Jacobian is triangular, i.e. ∂jzi(x) = 0 if j > i,
so that we find:

log |f ′cpl(x)| =
D/2∑
i=1

log |c′(xi; θi)|+
D/2∑
i=1

log |c′(xi+D/2;ψi(x1...D/2))|. (4.25)

Usually, the conditioning is implemented via a single feed-forward neural network ψφ : RD/2 →
RD/2 with parameters φ that takes the passive dimensions as input and jointly predicts the transfor-
mation parameters of all active dimensions. Together, the parameters transformations of the passive
dimensions θ1...D/2 and the parameters of the conditioner φ form the parameters of the coupling layer.

It is common to choose the identity as the transform for the first half of dimensions i = 1, . . . , D/2.
This is consistent with our theory on the convergence rate of invertible architectures for the special
case of Gaussian data in chapter 6, suggesting that modeling dimensions individually is outperformed
by modeling dependencies.

A similar scheme is used in Feistel cipher (Feistel, 1973), applying the coupling structure to
encryption. Each round of the cipher splits data in two blocks. The first block fed together with a
secret key into a “round function” that produced a bit pattern of the same length as the second block.
This pattern is combined via XOR with the second block to replace the second block in the output of
the round. The first block is passed through as is. The parameters of the neural network θ(x1...D/2)
correspond to the secret key of the Feistel cipher.

Another variant uses the identity transform for the first half of dimensions and additionally
transforms all dimensions with an affine-linear layer called the activation normalization (ActNorm),
which reportedly stabilizes training (Kingma & Dhariwal, 2018). ActNorm rescales and shifts each
dimension:

fact(x) = r ⊙ x+ u, (4.26)

given parameters r ∈ RD+ and u ∈ RD.

Recursive coupling layers The Hierarchical Invertible Neural Transport (HINT) uses a recursive
scheme to model more dependencies between dimensions in a single block (Kruse et al., 2021). The
idea is to concatenate two additional coupling layers, one restricted to the passive dimensions (i.e. the
second half of the passive dimensions is transformed conditioned on the first half) and the other to the
active dimensions (i.e. the second half of dimensions is transformed conditioned on the first half). This
is repeated by again using recursive couplings for the additional coupling layers. Each hierarchical
level can be executed in parallel on the GPU.

Autoregressive layer We can build even more expressive invertible functions by letting the transfor-
mations of later dimensions depend on all previous dimensions:

far(x)i = c(xi, θi(x<i)). (4.27)

22 4. Background

One can show that if c(xi, θi(x<i)) are arbitrary diffeomorphisms, then any continuous distribution p(x)
can be constructed by a single autoregressive layer. This is called a Knothe-Rosenblatt rearrangement
(Rosenblatt, 1952; Knothe, 1957) and it is unique given data p(x) and latent distributions p(z).

While being expressive, autoregressive layers come with an important disadvantage: Inverting
f−1
ar (x̃) is sequential in the dimensions, since θi(x<i) requires the values of x<i to be known. Gaus-

sianization layers can invert all dimensions in parallel since they are independent, and coupling layers
require only two steps.

Rotation layer If several Gaussianization or coupling layers are repeated, the transformation would
be strictly limited in expressivity as all respectively a subset of the dimensions do not get information
about one another. This means that they would be modeled as independent by pθ; for the Feistel
cipher, it would mean that the first part of the data would not be encrypted. This is unrealistic for
general data, which motivates prepending the above layers with rotation layers that mix dimensions
before each layer:

frot(x) = Qx, (4.28)

where Q ∈ SO(D) ⊂ RD×D is a matrix with orthonormal columns/rows and positive determinant.

On this choice of matrices, note that we could, in principle, use an arbitrary invertible matrix
M ∈ RD×D with detM > 0. However, any invertible matrix M can be written in the form AQB,
where A,B are diagonal and Q orthogonal. Absorbing A and B in the subsequent respectively previous
layer, we are left again with an orthogonal matrix Q. Also, we could choose Q ∈ O(D) by allowing
detQ = −1, but this has no effect since the latent distribution is point symmetric.

In the case of coupling layers, it is common to choose permutations instead of free-form rotations.
They are cheaper to sample for initializing the network and execute, avoiding a matrix-vector product.
In fact, often just active and passive dimensions are swapped by the rotation layer. By (Koehler et al.,
2021, Theorem 2), a constant number of coupling layer together with such swapping rotation layers is
enough to represent any invertible linear transform, indicating that these variants are equivalent. For
Gaussianization layers, free-form rotations are necessary.

Invertible block Combining a Gaussianization or coupling with a rotation layer yields an invertible
block. An invertible neural network is then composed of several of the above blocks. We analyze the
expressivity of the resulting architectures in chapters 5 and 6.

Neural ODEs An orthogonal approach is to parameterize an ordinary differential equation (ODE)
with a neural network (Chen et al., 2018b):

∂

∂t
x(t) = fθ(x(t), t). (4.29)

By integrating the ODE from t = 0 (data space) to 1 (latent space) it can be used as an invertible
neural network. Neural ODEs do not require the special structures introduced by Gaussianization or
coupling blocks, allowing for more flexible architectures such as graph neural networks (Köhler et al.,
2020) incompatible with coupling blocks. However, they come with high inference compute costs, as
the ODE has to be solved using a numerical solver. We lift this constraint with free-form flows in
chapter 7.

Training Neural ODEs can be achieved via equation (4.4), which also requires solving the underlying
ODE, or by flow matching (Liu et al., 2023a; Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023),
which learns a fixed process between data and latent codes and does not require integrating the ODE
at training time.

4.3. Invertible neural networks 23

Invertible Residual Networks Another family of invertible neural networks consist of a feed-forward
neural network in a skip connection:

xl+1 = xl + fθl(xl). (4.30)

Here, the fθl are restricted such that the transformation in each block is invertible by ensuring that
the spectral radius ρ(f ′θl) < 1 (Behrmann et al., 2019; Chen et al., 2019; Perugachi-Diaz et al., 2021).
Again, inference is expensive since the inversion is based on iterative root finding. Free-form flows in
chapter 7 lift this restriction by jointly learning a decoder network that samples in a single function
evaluation.

4.3.3. Volume-preserving flows

Volume-Preserving Normalizing Flows or sometimes incompressible flows are a special variant of
normalizing flows that have a constant Jacobian determinant |f ′θ(x)| = const. This simplifies the
change of variables formula in equation (4.1) above, where C = |f ′θ(x)|:

pθ(x) = p(z = fθ(x))C. (4.31)

Strictly speaking, “volume-preserving” is a misnomer when C ̸= 1, but the term is commonly used also
in this more general case and in lemma A.3, we show that non-unit volume change can be absorbed
into a single scaling layer as previously implemented by Dinh et al. (2015).

Volume-preserving flows have been demonstrated to have useful properties in certain applications
such as disentanglement (Sorrenson et al., 2019), or temperature-scaling in Boltzmann generators
(Dibak et al., 2022) or to preserve volume in physical state-space (Toth et al., 2020). However, we
show that the volume-preserving change of variables in equation (4.31) does not allow for universal
normalizing flows regardless of the architecture in section 5.2.

For one-dimensional functions, a constant volume change implies that fθ(x) = sx + t is linear.
For multivariate functions, fθ(x) can be nonlinear, but any volume change in one dimension must be
compensated by an inverse volume change in the remaining dimensions.

Below, we list the ways to construct volume-preserving flows we are aware of. Our non-universality
results theorems 5.2 and 5.3 and proposition 5.4 hold for all of them:

▶ Nonlinear independent components estimation (NICE) (Dinh et al., 2015) is a volume-
preserving flow based on a coupling block:

c(x;ψ) = x+ t. (4.32)

Here, ψ = t ∈ R.

▶ General Incompressible-flow Networks (GIN) (Sorrenson et al., 2019) generalize NICE by
allowing the individual dimensions to change volume, only the overall volume change is normalized:

ci(xi;ψ) =
si∏D/2
j=1 sj

xi + ti, (4.33)

Here, ψ = [s, t] ∈ RD/2+ × RD/2 is jointly predicted for all active dimensions and then normalized as
above.

▶ Neural Hamiltonian Flows (Toth et al., 2020) parameterize a Neural ODE as a Hamiltonian
system:

dq

dt
=
∂H
∂p

,
dp

dt
= −∂H

∂q
(4.34)

24 4. Background

The Hamiltonian H(p, q) is a real-valued function that is parameterized by a neural network.
Its derivatives are obtained via automatic differentiation. The variant Fixed-kinetic Neural
Hamiltonian Flows (Souveton et al., 2024) fixes the kinetic term of the Hamiltonian to K(p) =
1
2p

TM−1p, where the positive definite matrix M is learned, and learns the potential V (q) via
a neural network to obtain H(p, q) = K(p) + V (q). The solution to the above ODE is always
volume-preserving on x = (p, q).

Note that some works employing volume-preserving flows such as Dibak et al. (2022); Souveton
et al. (2024) consider augmented flows (Huang et al., 2020), where additional noise dimensions are
padded p(a|x) to the data distribution of interest p(x). Then, the flow learns the joint distribution
p(x, a) = p(x)p(a|x). Depending on how p(a|x) is constructed, this can positively or negatively impact
the expressivity of the considered volume-preserving flow. For example, if a ⊥ x, then the joint
distribution p(x, a) has at least the same number of modes as p(x), but the learned joint distribution
pθ(x, a) can only have a single mode by proposition 5.4, inducing a bias. To derive the universality
in terms of KL, apply theorem 5.2 to the joint distribution at hand. On the positive side, Souveton
et al. (2024) find that having p(a|x) = N (µ(x), σ(x)2I) brings the obtained pθ(x) =

∫
pθ(x, a)da

closer to the target. This can be seen having an independent augmentation a ∼ N (0, I) ⊥ x plus a
single RealNVP coupling shifting and scaling the augmented dimensions. This effectively breaks the
volume-preservation of the flow in the joint space. It is unclear, whether this trick removes all biases
from the volume-preserving flow.

4.4. Kullback-Leibler divergence Pythagorean identities

To analyze the expressivity and efficiency of different normalizing flow architectures, it will be instructive
to split the KL divergence DKL(p(x)∥pθ(x)) = DKL(pθ(z)∥N (0, I)) into several contributions. The
following identities are due to our Draxler et al. (2022) as well as Cardoso (2003):

Theorem 4.1 (Pythagorean Identities, proof in appendix A.1.1). Given a probability density pθ(z) with
mean m and covariance Σ. Then, the Kullback-Leibler divergence to a standard normal distribution
decomposes as follows:

L = DKL(pθ(z)∥N (0, I)) = DKL(pθ(z)∥N (m,Σ))︸ ︷︷ ︸
non-Gaussianity G[pθ(z)]

+DKL(N (m,Σ)∥N (0, I))︸ ︷︷ ︸
non-Standardness S(m,Σ)

, (4.35)

and the non-Standardness again decomposes:

S(m,Σ) = DKL(N (m,Σ)∥N (m,Diag(Σ)))︸ ︷︷ ︸
Correlation C(m,Σ)

+DKL(N (m,Diag(Σ))∥N (0, I))︸ ︷︷ ︸
Diagonal non-Standardness

. (4.36)

Also,

L = DKL(pθ(z)∥N (0, I)) = DKL(pθ(z)∥p(x1) · · · p(xD))︸ ︷︷ ︸
Mutual Information I[pθ(z)]

+
∑
i

DKL(pθ(zi)∥N (0, 1))︸ ︷︷ ︸
marginal loss L[pθ(zi)]

. (4.37)

The mutual information I[pθ(z)] is also called the dependence (Cardoso, 2003). The non-Gaussianity
(Cardoso, 2003) is also called the negentropy (Comon, 1994). Note how equation (4.37) generalizes
equation (4.36) to non-Gaussian distributions.

These identities are called Pythagorean identities in analogy to the classical Pythagorean theorem
on inner product spaces that ∥a+ b∥2 = ∥a∥2 + ∥b∥2 when a and b are orthogonal. They are special
cases of a general result from information geometry (Amari & Nagaoka, 2007, Theorem 3.8). We use

4.4. Kullback-Leibler divergence Pythagorean identities 25

them because different function classes are limited in which parts of the loss they can affect. For
example, an affine-linear transport map fθ(x) = Ax+ b only affects the non-Standardness S, but not
the non-Gaussianity G. This has already been argued by (Comon, 1994), and we provide an explicit
proof in appendix A.7.1:

Lemma 4.2 (Proof in appendix A.1.2). Given a probability density p(x) and an affine-linear function

z = fθ(x) = Ax+ b (4.38)

for some invertible A ∈ RD×D and b ∈ RD. Then:

G[pθ(z)] = G[p(x)]. (4.39)

Similarly, an element-wise function only affects the marginal losses, but not the mutual information:

Lemma 4.3. Given a probability density p(x) and an element-wise homeomorphism

z = fθ(x) =

fθ,1(x1)

...
fθ,D(xD)

 (4.40)

Then:
I[pθ(z)] = I[p(x)]. (4.41)

See for example the appendix of (Kraskov et al., 2004) for a proof of this statement.

5. Distributional universality of normalizing flows

What probability distributions can a given generative model architecture represent? In this chapter, we
present a novel theoretical framework for understanding the expressive power of existing normalizing
flows.

We first analyze volume-preserving flows in section 5.2. They have a restricted change-of-variables
(equation (4.31) instead of equation (4.1)). While this form provides advantages in some applications,
we show that they are not universal in terms of what distributions they can learn. We propose a fix
that can be applied after training to recover universality.

We then enhance the proofs showing universality of coupling flows with non-volume-preserving
coupling functions in section 5.4. Despite their prevalence in scientific applications, a comprehensive
understanding of coupling flows remains elusive due to their restricted architectures. Existing theorems
fall short as they require the use of arbitrarily ill-conditioned neural networks, limiting practical
applicability. We propose a new distributional universality theorem for well-conditioned coupling-
based normalizing flows such as RealNVP (Dinh et al., 2017) that overcomes problems of previous
constructions. This result is based on an analysis of the universality of an individual affine coupling
block in section 5.3.

Our results support the general wisdom that affine and related couplings are expressive and in
general outperform volume-preserving flows, bridging a gap between empirical results and theoretical
understanding.

5.1. Distributional universality

The question about whether a generative model can learn arbitrary distributions p(x) stands in close
analogy to the classical universal approximation theorems that show that fully-connected neural
networks can approximate arbitrary continuous functions (Cybenko, 1989; Hornik, 1991). Due to the
nature of neural networks, we cannot hope for generative model based on them to exactly represent
a given p(x), that is p(x) = pθ(x) everywhere, just like for regression: Here, a neural network with
ReLU activations always models piecewise linear functions, and as such it can never exactly regress a
parabola y = x2. However, for every finite value of ϵ > 0 and given more and more linear pieces, it
can follow the parabola ever so closer, so that the average distance between x2 and fθ(x) vanishes:
Ex∼p(x)[|x2 − fθ(x)|2] < ϵ. To characterize the expressivity of a class of neural networks, it is thus
instructive to call a class of networks universal if the error between the model and any continuous
target function can be reduced arbitrarily.

In terms of representing distributions p(x), the following definition captures universality of a class
of model distributions, similar to Teshima et al. (2020a, Definition 3):

Definition 5.1. A set of probability distributions P is called a distributional universal approximator
if for every possible target distribution p(x) there is a sequence of distributions pn(x) ∈ P such that
pn(x)

n→∞−−−→ p(x).

The formulation of universality as a convergent series is useful as it (i) captures that the distribution
in question p(x) may not lie in P, and (ii) the series index n usually reflects a hyperparameter of

28 5. Distributional universality of normalizing flows

the underlying model corresponding to computational requirements (for example, the depth of the
network).

We have left the exact definition of the limit “pn(x)
n→∞−−−→ p(x)” open as we may want to consider

different definitions of convergence. The existing literature on affine coupling-based normalizing
flows considers weak convergence (Teshima et al., 2020a) respectively convergence in Wasserstein
distance (Koehler et al., 2021) (the construction in the most recent proof by Koehler et al. (2021) is
fundamentally tied to this relatively weak convergence metric as it constructs a volume-preserving
flow, see section 5.4.2). Many metrics of convergence have been proposed, see Gibbs & Su (2002) for a
systematic overview.

In this chapter, we consider continuous target distributions p(x) that have infinite support and
finite moments, which covers distributions of practical interest.

5.2. Non-universality of volume-preserving flows

We first consider volume-preserving normalizing flows. They are based on invertible neural networks
with constant Jacobian determinant |f ′θ(x)| = const, see section 4.3.

We contribute:

▶ We first show that volume-preserving flows are not universal in KL divergence.

▶ We propose how universality can be recovered by adding a single non-volume-preserving block which
learns a one-dimensional function.

We are not aware of previous work considering the universality of volume-preserving flows. The closest
result known to us states that Hamiltonian Monte Carlo (HMC) requires resampling the momentum
distribution in every step to sample from the correct target distribution (Toth et al., 2020).

The rest of this section is adapted from Draxler et al. (2024b).
Let us derive the minimizer of the loss DKL(p(x)∥pθ(x)) for a volume-preserving flow by using the

volume-preserving change-of-variables in equation (4.31), first in the special case of C = 1:

L =

∫
p(x) log

p(x)

pθ(x)
dx = −H[p(x)]−

∫
p(x) log p(z = fθ(x))dx. (5.1)

Only the last term depends on fθ. To derive the minimizer, consider the data p(x) and latent
distribution p(z) on a regular grid over RD with some spacing a > 0. Then, define a volume-preserving
flow with C = 1 that permutes the grid cells Bi 7→ Bf(i) (within the cells, keep the relative positions).
Then, discretize the above integral on the grid by approximating the latent probability by the average
density in each cell, that is p(z) ≈ 1

aD
p(Bi : z ∈ Bi):

−
∫
p(x) log p(z = fθ(x))dx ≈ −

∑
i

p(x ∈ Bsx(i)) log(p(z ∈ Bf(i))/|aD|). (5.2)

This is minimized by a bijective f∗ : N→ N that permutes the grid cells such that the cell with the
highest probability p(x ∈ Bi) in the data space aligns with the cell with the highest (logarithmic)
probability in latent space, and so on:

f∗(i) = sz(s
−1
x (i)), (5.3)

where sv(i) is a sorting of the grid cells, determined by probability mass p(v ∈ Bi) for v = x respectively
v = z.

The following theorem makes the above argument continuous and determines the optimal volume
change C > 0:

5.2. Non-universality of volume-preserving flows 29

Theorem 5.2 (Best possible volume-preserving flow, proof in appendix A.2.1). Given a continuous
bounded probability density p(x) with (D − 1)-dimensional level sets. Then, the minimal achievable
KL divergence by a volume-preserving normalizing flow p∗θ(x) whose underlying map f∗θ is continuous
almost everywhere and with a standard normal latent distribution reads:

DKL(p(x)∥p∗θ(x)) = DKL(p∗(z)∥N (0, |Σp∗(z)|
1
D I)), (5.4)

where p∗(z) is constructed by decreasingly sorting the probability densities p(x) from the origin with unit

volume change, and Σp∗(z) is its covariance matrix. This minimal loss is achieved for C = |Σp∗(z)|−
1

2D .

The optimal p∗(x) and its latent counterpart p∗(z) are constructed by sorting both the data and
latent space by density and progressively assigning regions of decreasing density to each other (see
lemma A.1 in appendix A.2.1). The theorem considers the more general class of almost everywhere
continuous volume-preserving flows, and everywhere continuous flows can only achieve at most as good.
Figure 5.1 shows how this optimal distribution p∗(x) differs from the target p(x) for a bimodal toy
distribution in 2D.

A) Target p(x)

E) Learned volume-preservingD) Learned non-volume-preserving

B) Best possible p*VP(x)

F) E + fixed latent radial

C) Latent radial distributions

Target radial distribution

Best possible radial distribution

Figure 5.1.: We reveal two limitations of volume-preserving flows: First, a 2D bimodal distribu-
tion (A) cannot be represented by a volume-preserving flow, the theoretic optimum predicted by theorem 5.2
assigns wrong densities to both modes (B). This is because the radial part of the latent distribution p∗(z)
does not match the radial part of the standard normal (C). In practice, learning a volume-preserving flow
comes very close to the biased solution (E). A normalizing flow with variable Jacobian determinant does
not have this issue (D). Our proposed fix corrects the densities at the modes (F) by correcting the latent
radials, see appendix A.2.2. Second, since the flow is continuous in practice, it cannot represent multi-modal
distributions by proposition 5.4, but a vanishing density bridge connecting the modes remains (E, white
level set).

30 5. Distributional universality of normalizing flows

The following result formalizes that volume-preserving flows are not universal:

Theorem 5.3 (Non-universality of volume-preserving flows, proof in appendix A.2.3). The family of
volume-preserving normalizing flows is not a universal distribution approximator under KL divergence.

To see this, we choose a concrete p(x), compute the optimal latent distribution p∗(z) and use
theorem 5.2 to derive the best possible KL divergence of a volume-preserving flow.

How can we recover universality? The construction underlying theorem 5.2 shows a clear path to
construct a universal volume-preserving flow: The best achievable latent distribution p∗(z) (the push-
forward of p(x) through f∗) is rotationally symmetric due to the sorting procedure. Now transform both
p∗(z) and the target standard normal p(z) into hyperspherical coordinates (r,Ω). As both distributions
are rotationally symmetric, only their radial parts p∗(r) and p(r) need to be matched, which can
be achieved via the addition of a single one-dimensional non-volume-preserving transformation (see
appendix A.2.2). As this fix is one-dimensional, unique, and can be applied after training, we think
that it is compatible with retaining beneficial properties of volume-preserving flows.

Figure 5.1 also reveals a shortcoming of volume-preserving flows as they are practically implemented:
There is a thin bridge of density between the modes with roughly constant height, so that the lower
mode in the ground truth is not a local maximum of the learned density. The reason is that flows
are implemented as continuous invertible functions (as opposed to theorems 5.2 and 5.3, which only
required almost everywhere continuous functions). This makes the learned distribution pθ(x) inherit
the mode structure of the latent p(z):

Proposition 5.4 (Mode preservation of volume-preserving flows, proof in appendix A.2.4). A normal-
izing flow pθ(x) based on a volume-preserving diffeomorphism fθ(x) has the same number of modes as
the latent distribution p(z).

The proof uses that diffeomorphisms map open sets to open sets, and thus the neighborhoods
of density maxima in the latent space remain neighborhoods of density maxima in the data space.
Note that the thin bridge connecting the modes can be made arbitrarily small by an expressive enough
volume-preserving flow, so that the shortcoming in proposition 5.4 does not manifest in a bias in the
KL divergence in addition to theorem 5.2.

Together, we identify a fundamental limitation for applications based on volume-preserving flows.
It explains why RealNVP significantly outperforms NICE in practice (Dinh et al., 2017). Work using
volume-preserving flows must take this limited expressivity and the resulting biases in the learned
distributions into account. In section 5.4.2, we show that this problem also applies to the most recent
universality proof for coupling-based normalizing flows by Koehler et al. (2021).

5.3. Expressivity of a single affine coupling block

In this section, we derive the minimizer of the loss if a normalizing flow consists of an isolated affine
coupling block. It is clear that a single block cannot fit arbitrary distributions, even in approximation.
However, our results yield several valuable insights:

▶ The minimizer of an isolated affine coupling block normalizes the first two moments of each active
dimension conditioned on all passive dimensions, that is of p(ai|b).

▶ It terms of the loss, the amount by which the loss is improved can be identified to a KL divergence
in the Pythagorean identity in theorem 4.1.

▶ We find that the rotation layer in an affine coupling block plays an important role in bringing the
performance of iterative training closer to end-to-end training.

5.3. Expressivity of a single affine coupling block 31

In addition, we will heavily use the above results in our analysis of deep coupling flows in section 5.4
and their convergence rate in section 6.3. We present illustrative examples and questions for further
research with each result.

The remainder of this section is an adapted version of Draxler et al. (2020).

5.3.1. Related work

The connection between affine transformations and the first two moments of a distribution is well-known
in the Optimal Transport literature. When the function space of an Optimal Transport (OT) problem
with quadratic ground cost is reduced to affine maps, the best possible transport matches mean and
covariance of the involved distributions (Tabak & Trigila, 2018). In the case of conditional distributions,
affine maps become conditional affine maps (Trigila & Tabak, 2016). We show such maps to have the
same minimizer under maximum likelihood loss (KL divergence) as under OT costs.

It has been argued before that a single coupling or autoregressive block (Papamakarios et al., 2019)
can capture the moments of conditional distributions. This is one of the motivations for the SOS flow
(Jaini et al., 2019), based on a classical result on degree-3 polynomials by Fleishman (1978). However,
they do not make this connection explicit. We can give a direct correspondence between the function
learned by an affine coupling and the first two moments of the distribution to be approximated.

Rotations in affine flows are typically chosen at random at initialization and left fixed during
training (Dinh et al., 2015, 2017). Others have tried training them via some parameterization like a
series of Householder reflections (Putzky & Welling, 2019). The stream of work most closely related to
ours explores the idea to perform layer-wise training. This allows an informed choice of the rotation
based on the current estimate of the latent normal distribution. Most of these works propose to choose
the least Gaussian dimensions as the active subspace (Bigoni et al., 2019; Meng et al., 2019). We argue
that this is inapplicable to affine flows due to their limited expressivity when the passive dimensions are
not informative. To the best of our knowledge, our approach is the first to take the specific structure of
the coupling layer into account and derive a tight lower bound on the loss as a function of the rotation.

5.3.2. KL divergence minimizer

We now derive how much an infinitely expressive affine coupling block as given in section 4.3 can
reduce the loss. By infinitely expressive, we mean that we consider arbitrary functions s(b), t(b) as
the conditioner ψ instead of practically realizable neural networks. We analyze finitely sized neural
networks in section 5.4.

We choose to fix the transformation of the first half of dimensions i = 1, . . . , D/2 to the identity
(see section 4.3.2) in this section.

We start by deriving the exact form of the maximum likelihood loss in equation (4.4) for such
an isolated affine coupling layer. Inserting the above definitions, we find the following optimization
problem for the parameters of the isolated coupling block with fixed rotation Q, where the degrees of
freedom of the coupling layer are captured by the conditioner functions s(b), t(b):

min
θ=[s(b),t(b)]

DKL(p(x)∥pθ(x)) = min
θ=[s(b),t(b)]

Eb,a∼Q♯p

[
1

2
∥b∥2 +

1

2
∥a⊙ s(b) + t(b)∥2 −

D/2∑
i=1

log si(b)

]
. (5.5)

As before, we collected the unchanged variables as the passive dimensions b = (Qx)1,...,D/2 and the
variables transformed by the coupling layers as a = (Qx)D/2+1,...,D (active dimensions).

We now derive the minimizer of this loss in the case:

Lemma 5.5 (Optimal single affine coupling, proof in appendix A.3.1). Given a probability density p(x)
with finite first and second moments, and a single affine coupling layer fcpl after a fixed rotation Q so

32 5. Distributional universality of normalizing flows

c)

2 0 2
Passive dimension p

4

3

2

1

0

1

2

3

4

Ac
tiv
e
di
m
en
si
on
a'

2 1 0 1 2
Passive dimension p

1.0

0.5

0.0

0.5

1.0

Ac
tiv
e
di
m
en
si
on
a

Input moments

True
Learnt

2 0 2
Passive dimension p

4

3

2

1

0

1

2

3

4
Ac
tiv
e
di
m
en
si
on
a'

Push-forward WUd)

2.0 1.5 1.0 0.5 _00 0.5 _1 1.5 v2
Passive dimension p

1.0

0.0

1.0
Ac
tiv
e
di
m
en
si
on
a

W Densitya)

2 0

1.0

0.5

0.0

0.5

1.0

Ac
tiv
e
di
m
en
si
on
a'

e) Normalized moments

Target
Learnt

2
Passive dimension p

b)

Push-forward W

bb

b b b

a
a~

a

a~ a~

Figure 5.2.: (a) W density contours. (b) The conditional moments are well approximated by a single affine
layer. (c, d) The learned push-forwards of the W (example 5.6) and WU (example 5.7) densities remain
normal respectively uniform distributions. (e) The moments of the transported distributions are close to
zero mean and unit variance, shown for the layer trained on the W density.

that (b, a) = Qx. Then, equation (5.5) is uniquely minimized by the following scaling and translations
as a function of the passive dimensions b:

s∗i (b) =
1√

Varai|b[ai]
=:

1

σi(b)
, (5.6)

t∗i (b) = −Eai|b[ai]si(b) =: −mi(b)

σi(b)
. (5.7)

Here we denote by mi(b) and σi(b) the mean and standard deviation of ai given b. The above
result means that the conditioner ψ(b) = [s∗(b), t∗(b)] learns the first two moments of each conditional
distribution p(ai|b) for each value of b and the coupling acts on the data by normalizing these moments:

ãi = ai · si(b) + ti(b) =
1

σi(b)
· (ai −mi(b)). (5.8)

This shifts the mean of p(a|b) to zero and rescales the standard deviations to one:

Eãi|b̃[ãi] = 0, Varãi|b̃[ãi] = 0. (5.9)

We derive this by optimizing the optimal value of equation (5.5) for each value of b separately.

Example 5.6. Consider a distribution where the first variable b is uniformly distributed on the interval
[−2, 2]. The distribution of the second variable a is normal, but its mean m(b) and standard deviation

5.3. Expressivity of a single affine coupling block 33

σ(b) are varying depending on b:

p(b) = U([−2, 2]), p(a|b) = N (m(b), σ(b)). (5.10)

m(b) =
1

2
cos(πb), σ(b) =

1

8
(3− cos(8π/3 b)). (5.11)

We call this distribution “W density”. It is shown in figure 5.2a.
From lemma 5.5, we expect that after the coupling the passive dimensions are unchanged and the

active dimensions are now independent of b and follow a standard normal distribution:

pθ(b̃) = p(b), pθ(ã|b̃) = N (0, 1) = pθ(ã). (5.12)

Figure 5.2 confirms that this is approximated empirically if we train a single affine coupling block
by minimizing the equation (5.5), fixing Q = I. As hyperparameters, we choose a joint neural network
for s, t with one hidden layer with 256 hidden units. The output of the network is split to form s and t.
The learning rate is 10−1 with a learning rate decay with factor 0.9 every 100 epochs. We train for
4096 epochs with 4096 i.i.d. samples from p(x) each using the Adam optimizer without weight decay.

We solve s, t in lemma 5.5 for the estimated mean m̂(b) and standard deviation σ̂(b) as predicted
by the learned ŝ and t̂. Upon convergence of the model, they closely follow their true counterparts
m(b) and σ(b) as shown in figure 5.2b.

Example 5.7. This example modifies the previous one to illustrate that the learned latent conditional
density pθ(ã|b̃) is not necessarily Gaussian at the minimum of the loss, but still, the moments are
normalized.

We modify the W density from above to the “WU density” by replacing the conditional normal
distribution p(a|b) by a conditional uniform distribution with the same conditional mean m(b) and
standard deviation σ(b) as before:

p(b) = U([−2, 2]), (5.13)

p(a|b) = U([m(b)−
√

3σ(b),m(b) +
√

3σ(b)]). (5.14)

One might wrongly believe that the KL divergence favors building a distribution that is marginally
normal while ignoring the conditionals, for example that the resulting marginal over ã becomes normal
pθ(ã) = N (ã; 0, 1).

Lemma 5.5 predicts the correct result, resulting in the following uniform push-forward density
depicted in figure 5.2d:

pθ(b̃) = p(b), pθ(ã|b̃) = U([−
√

3,
√

3]), (5.15)

where the latter is the uniform distribution with unit standard deviation. Note how pθ(ã|b̃) does not
depend on b̃.

Knowing that a single affine layer learns the mean and standard deviation of p(ai|b) for each b, we
can insert this minimizer into the KL divergence. This yields a tight lower bound on the loss after
training. Even more, it allows us to compute a tight upper bound on the loss improvement by the
layer, which we denote as ∆∗

affine(Q) ≥ 0.

Theorem 5.8 (Improvement by single affine layer, proof in appendix A.3.2). Given a probability
density p(x) with finite first and second moments, and a single affine coupling layer fcpl after a fixed
rotation Q so that (b, a) = Qx. Let fcpl be the minimizer from lemma 5.5 and x̃ = fcpl(Qx) = (b̃, ã).
Then, the loss has the following minimal value:

DKL(pθ(x̃)∥p(z)) = DKL(p(b)∥N (0, I)) + Eb∼p(b)
[
G[p(a|b)] + C(ma|b,Σa|b)

]
(5.16)

= DKL(p(b)∥N (0, I))−∆∗
affine(Q). (5.17)

34 5. Distributional universality of normalizing flows

Here, the non-Gaussianity G[p(·)] and correlation C(m,Σ) are defined in theorem 4.1 and ma|b and
Σa|b are the mean and covariance of p(a|b). The loss improvement can explicitly be computed from the
conditional moments of p(a|b):

∆∗
affine(Q) =

D/2∑
i=1

Eb[S(mi(b), σi(b))] =
1

2

D/2∑
i=1

Eb[m2
i (b) + σ2i (b)− 1− log σ2i (b)]. (5.18)

Here, S(m,σ) = DKL(N (m,σ)∥N (0, 1)) is the univariate non-Standardness like in theorem 4.1.

Theorem 5.8 says that the loss reduction by a single affine layer depends solely on the moments of
the distribution of the active dimensions conditioned on the passive subspace. Higher order moments
are ignored by this coupling design (as well as correlations between active dimensions, and the loss
in the passive dimensions). Together with lemma 5.5, this paints the following picture of an affine
coupling layer: It fits a Gaussian distribution to each conditional p(ai|b) and normalizes this Gaussian’s
moments. This gap constitutes the remaining KL divergence in equation (5.16). We will complement
the above result with a more in-depth analysis on the reducible and remaining loss contributions in
section 5.4.5 via the use of theorem 4.1.

To prove, insert the minimizer s, t from lemma 5.5 into equation (4.4). Then evaluate ∆∗
affine(Q) =

DKL(p(x)∥p(z))−DKL(pθ(x̃)∥p(z)) to obtain the statement.
We now make the connection explicit, that a single affine layer can achieve zero loss on the active

subspace if and only if the conditional distribution is Gaussian with diagonal covariance:

Corollary 5.9 (Exact representation by single affine coupling layer, proof in appendix A.3.3). If and
only if p(a|b) is normally distributed for all b with diagonal covariance, that is:

p(a|b) =

D/2∏
i=1

N (ai|mi(b), σi(b)), (5.19)

a single affine block can reduce the KL divergence on the active subspace to zero:

DKL(p(x)∥pθ(x)) = 0. (5.20)

This shows how limited a single-block normalizing flow is, in particular if compared to fully-
connected neural networks, where a single hidden layer is enough for the classical universality proofs in
the regression setting (Hornik, 1991).

Example 5.10. We revisit the examples 5.6 and 5.7 and confirm that the minimal loss achieved by a
single affine coupling layer on the W-shaped densities matches the predicted lower bound. This is the
case for both densities. Figure 5.3 shows the contribution of the conditional part of the KL divergence
DKL(pθ(ã|b)∥p(z2)) as a function of b:

For the W density, the conditional p(a|b) is normally distributed. This is the situation of
corollary 5.9 and the remaining conditional KL divergence is zero. The remaining loss for the WU
density is the non-Gaussianity of a uniform distribution with unit variance.

5.3.3. Determining the optimal rotation

The rotation Q of the isolated coupling layer determines the splitting into active and passive dimensions
and the axes of the active dimensions (the rotation within the passive subspace only rotates the input
into s, t and is therefore irrelevant). The bounds in theorem 5.8 explicitly depends on these choices
and thus depend on the chosen rotation Q, as visualized in figure 5.4.

5.3. Expressivity of a single affine coupling block 35

b b

Figure 5.3.: Conditional KL divergence before (gray) and after (orange) training for W-shaped densities
confirms lower bound (blue, coincides with orange). The plots show the W density from example 5.6 (left)
and the WU density from example 5.7 (right).

Rotated
Data

=0° =45° =90°

0

Training

0 0

Output

Loss curve

Tight lower bound

Figure 5.4.: An affine coupling layer pushes the input density closer to the latent standard normal. Its
success depends on the rotation of the input (top row). Theorem 5.8 yields a lower bound for the error that
is actually attained empirically (center row, blue and orange curves). The solution with the lowest error is
clearly closest to standard normal (bottom row, left).

36 5. Distributional universality of normalizing flows

This makes it natural to consider the loss improvement as a function of the rotation: ∆∗
affine(Q).

When aiming to maximally reduce the loss with a single affine layer, one should choose the subspace
maximizing this tight upper bound in equation (5.18):

max
Q∈SO(D)

∆∗
affine(Q). (5.21)

We propose approximating this maximization by evaluating the loss improvement for a finite set of
candidate rotations in algorithm 1 “Optimal Affine Subspace (OAS)”

Note that Step 5 requires approximating ∆∗
affine(Q) from samples, which involves estimation of

1D moments conditioned on high-dimensional p. In the regime of low D/2, one can discretize this by
binning samples by their passive coordinate b. Then, one computes mean and variance empirically for
each bin. We leave the general solution of equation (5.21) for future work.

Algorithm 1 Optimal Affine Subspace (OAS).

1: Input: Q = {Q1, . . . , QC} ⊂ SO(D), (xj)
N
j=1 i.i.d. samples from p.

2: for candidate Qc ∈ Q do
3: Rotate samples: yj = Qcxj .
4: for each active dimension i = 1, . . . , D/2 do
5: Use (y)Nj=1 to estimate the conditional mean mi(b) and variance σi(b) as a function of b.

{Example implementation in example 5.11}
6: end for
7: Compute ∆̂affine(Qc) := 1

2N

∑N
j=1

∑D/2
i=1 (mi(bj)

2 + σi(bj)
2 − 1− log σi(bj)

2) {equation (5.18)}.
8: end for
9: Return: arg maxQc∈Q ∆̂affine(Qc).

Example 5.11. Consider the following two-component 2D Gaussian Mixture Model:

p(x) =
1

2

(
N ([−δ; 0], σ) +N ([δ; 0], σ)

)
. (5.22)

We choose δ = 0.95, σ =
√

1− δ2 = 0.3122... so that the mean is zero and the standard deviation along
the first axis is one. We now evaluate the loss improvement ∆∗

affine(θ) in equation (5.18) as a function
of the rotation angle θ by which we rotate the above distribution:

(a, b) = Qx, x ∼ p(x). (5.23)

Since we are considering a Gaussian mixture distribution, we can compute m(b) and σ(b) analytically
for each b and then integrate numerically to obtain ∆̂affine(θ). This will not be possible for applications
where only samples are available. As a proof of concept, we employ the previously mentioned binning
approach. It groups N samples from p by their b value into B bins. Then, we compute m(bi) and σ(bi)
using the samples in each bin i = 1, . . . , B.

Figure 5.5 shows how much the loss can be improved by a single affine coupling layer as a function
of the rotation angle θ, as determined from the numerical integration and the estimation from binning
samples into B = 32 bins. Around N = 256 samples are sufficient for a good agreement between the
analytic and empiric bound on the loss improvement and the corresponding maximizer angle.

In this 2D example, we find that the rotation influences how much a single coupling block reduces
the loss. If we naively or by chance decide for θ = 90◦, the distribution is left unchanged.

5.3. Expressivity of a single affine coupling block 37

Figure 5.5.: Tight upper bound given by equation (5.18) for two-component Gaussian mixture as a function
of rotation angle θ, determined analytically (blue) and empirically (orange) for different numbers of samples.
The diamonds mark the equivalent outputs of the OAS algorithm 1.

5.3.4. Gap to universality

What do we need to make a single affine coupling block universal? Here, we identify one sufficient
condition that pushes an input to the standard normal via single additional Gaussianization block.

A necessary step towards pushing a multivariate distribution to a normal distribution is making
the dimensions independent of one another. In fact, theorem 4.1 shows that the loss DKL(p(x)∥pθ(x))
can be decomposed into two parts, where one of the two exactly measures the mutual information
between all dimensions xi.

Then, the residual to a global latent normal distribution can be solved with one sufficiently
expressive 1D flow per dimension, pushing each distribution independently to a normal distribution.
The following lemma shows for which data sets a single affine layer can make the active and passive
dimensions exactly independent.

Lemma 5.12 (Independence by single layer, proof in appendix A.3.4). Given a distribution p and a
single affine coupling layer f with a fixed rotation Q. Call (a, b) = Qx the rotated versions of x ∼ p.
Then, the following are equivalent:

1. ã ⊥ b for (ã, b̃) = fcpl(a, b) minimizing the ML loss in equation (5.5),

2. there exists n ⊥ b such that a = f(b) + n⊙ g(b), where f, g : RD/2 → RD/2.

This result relates a data generation process to the previously derived minimizer. It suggests that
affine coupling flows can learn distributions by reverting the above generating process, possibly by
iteratively applying lemma 5.12. While mathematically precise, this iteration is trivial and does not
capture well which distributions can be approximated in terms of some convergence metric. We will
provide such a universality result in section 5.4.

Example 5.13. Consider again the W-shaped densities from the previous examples 5.6 and 5.7. After
optimizing the single affine layer, the two variables b, ã are independent (compare figure 5.2c, d):

Example 5.6: ã ∼ N (0, 1) ⊥ b, (5.24)

Example 5.7: ã ∼ U([−
√

3,
√

3]) ⊥ b, (5.25)

38 5. Distributional universality of normalizing flows

Rotated
Q1#p0(x)

Resulting
p1(z) Q2#p1(z) Q3#p2(z) Q4#p3(z)p2(z) p3(z)

Model latent
p4(z)

True latent
p(z)

Figure 5.6.: Affine flow trained layer-wise “LW”, using optimal affine subspaces “OAS” (top) and random
subspaces “RND” (middle). After a lucky start, the random subspaces do not yield a good split and the flow
approaches the latent normal distribution significantly slower. End-to-end training “E2E” (bottom) chooses
a substantially different mapping, yielding a similar quality to layer-wise training with optimal subspaces.

5.3.5. Layer-wise training

By learning only a single coupling block, we have modified the usual end-to-end training procedure
of normalizing flows. While this allows optimizing for Q, the model cannot use potential symbiotic
effects of a sequence of layers. In this section, we explore constructing a deep flow layer by layer using
the optimal affine subspace (OAS) algorithm in algorithm 1. Each layer l being added to the flow is
trained to minimize the residuum between the current push-forward pl−1(xl−1) and the latent p(z).
The corresponding rotation Ql is chosen by maximizing ∆̂affine(Ql) and the coupling layers are trained
by gradient descent.

How does this ansatz compare to the quality of end-to-end affine flows? As an analytic answer is
out of the scope of this work, we perform an ablation on toy data:

Example 5.14. We consider a uniform 2D distribution p = U([−1, 1]2). Figure 5.6 compares the flow
learned layer-wise using to flows learned layer-wise and end-to-end, the latter two with fixed random
rotations. Visually, our proposed layer-wise algorithm performs on-par with end-to-end training despite
optimizing only the respective last layer in each iteration, and beats layer-wise with random rotations.

In appendix B.1.2, we provide examples on additional toy distributions.

5.3.6. Conclusion

In this section, we have derived what transformation an affine coupling block can learn if the conditioner
neural network is replaced by an arbitrary continuous function. We find that the affine coupling block
learns to normalize the first two conditional moments of each active dimension conditioned on all
passive dimensions when the rotation layer is fixed. From the perspective of the Pythagorean identities
in section 4.4, this removes the non-Standardness in each active dimension p(ai|b) from the overall loss.

We find that choosing the optimal rotation layer strongly influences how much loss can be removed
for the toy distributions considered. This brings iteratively training affine coupling flows significantly
closer to end-to-end training. This training scheme is attractive as the number of blocks can be
chosen dynamically, and we also propose a hybrid training procedure. Our experiments highlight
that end-to-end training is capable of approximating distributions even when rotations are chosen
at random. We leave scaling the iterative training with optimized rotations to larger problems open

5.4. Coupling flow universality 39

to future work (note that learning interesting directions from samples in high-dimensional spaces is
difficult, compare section 6.2.3).

The above lemma 5.5 and theorem 5.8 lay the foundation of all our other other theoretical
guarantees on coupling-based normalizing flows in sections 5.4 and 6.3.

5.4. Coupling flow universality

We now extrapolate the results in the previous section to understand the expressive power of deep
coupling-based normalizing flows such as RealNVP (Dinh et al., 2017) and neural spline flows (Durkan
et al., 2019) in terms of distributional universality (see definition 5.1). Coupling blocks impose a strong
architectural constraint on invertible neural networks. Most strikingly, half of the dimensions are left
unchanged in each block, and the transformation of the remaining dimensions is restricted in order to
ensure invertibility. At the same time, even the simple affine coupling-based normalizing flows can
learn high-dimensional distributions such as images (Kingma & Dhariwal, 2018).

Theoretical explanations for this architecture’s ability to fit complex distributions are limited.
Existing proofs make assumptions that are not valid in practice, as the involved constructions rely on
ill-conditioned neural networks (Teshima et al., 2020a; Koehler et al., 2021) or construct a volume-
preserving flow (Koehler et al., 2021). We introduce a new proof for the distributional universality of
coupling-based normalizing flows that does not require ill-conditioned neural networks to converge.
This proof is constructive, showing that training affine coupling blocks sequentially converges to the
correct target (compare figure 5.7).

In summary, we contribute:

▶ We show that whenever the target distribution is not perfectly learned, there is an affine coupling
block that reduces the loss (section 5.4.3).

▶ We use this result to give a new universality proof for coupling-based normalizing flows that is
not volume-preserving, considers the full support of the distribution, and is well-conditioned in
section 5.4.4.

Our results validate insights previously observed only empirically: Affine coupling blocks are
an effective foundation for normalizing flows, and volume-preserving flows have limited expressive
power. We also show that the most recent distributional universality proof for affine coupling-based
normalizing flows by Koehler et al. (2021) constructs a volume-preserving flow in section 5.4.2.

The code to our experiments can be found at the following public repository: https://github.

com/vislearn/Coupling-Universality.

5.4.1. Related work

That coupling-based normalizing flows work well in practice despite their restricted architecture
has sparked the interest of several papers analyzing their distributional universality. Teshima et al.
(2020a) showed that that coupling flows are universal approximators for invertible functions, which
results in distributional universality. Koehler et al. (2021) demonstrated that affine coupling-based
normalizing flows can approximate any distribution with arbitrary precision using just three coupling
blocks. However, these works assume neural networks with exploding derivatives for couplings, an
unrealistic condition in practical scenarios. Our work addresses this limitation by showing that training
a normalizing flow layer by layer yields universality. We additionally demonstrate that the latter proof
constructs a volume-preserving transformation in section 5.4.2, an additional important limitation.

Some works show distributional universality of augmented affine coupling-based normalizing flows,
which add at least one additional dimension usually filled with exact zeros (Huang et al., 2020; Koehler

https://github.com/vislearn/Coupling-Universality
https://github.com/vislearn/Coupling-Universality

40 5. Distributional universality of normalizing flows

n
=
1

Affine
coupling

n
=
2

n
=
20

n
=
10

0

Rotated
input pn-1(z)

Resulting
latent pn(z)

Learned
data pn(x)

Figure 5.7.: Our universality proof constructs a normalizing flow by iteratively adding affine
coupling blocks. We illustrate this by constructing such a flow from real data. Each block first rotates
the distribution pn−1(z) from the previous step (first column), then applies an affine coupling layer that
transforms the active dimensions to zero mean and unit variance for each passive coordinate b (second column).
The resulting latent distribution converges step by step (third column) to a standard normal distribution,
where the learned additional layers essentially learn the identity (last row). The data distribution pθ(x)
converges in parallel (right).

et al., 2021; Lyu et al., 2022). The problem with adding additional zeros is that the flow is not
exactly invertible anymore in the data domain and usually loses tractability of the change of variables
formula (equation (4.1)). Lee et al. (2021) add i.i.d. Gaussians as additional dimensions, which again
allows density estimation, but they only show how to approximate the limited class of log-concave
distributions. Our universality proof does not rely on such a construction.

Other theoretical work on the expressivity of normalizing flows considers more expressive invertible
neural networks, including SoS polynomial flows, Neural ODEs and Residual Neural Networks (Jaini
et al., 2019; Zhang et al., 2020a; Teshima et al., 2020b; Ishikawa et al., 2022).

5.4.2. Problems with existing constructions

The existing proofs that affine and more expressive coupling flows are distributional universal approxi-
mators (Teshima et al., 2020a; Koehler et al., 2021) come with several limitations. In particular, their
constructions use ill-conditioned coupling blocks as the translations t(b) approximate step functions,
as noted by Koehler et al. (2021). Also, they give guarantees only on a compact subspace K ⊂ RD,
and Teshima et al. (2020a) use only one active dimension per coupling. This limits their practical
applicability.

In addition, the flow constructed in Koehler et al. (2021) is volume-preserving and thus not
universal in KL divergence by our theorem 5.3. Their proof is technically accurate, but they only show
convergence under Wasserstein distance W2 in (Koehler et al., 2021, Theorem 1), which does not imply

5.4. Coupling flow universality 41

convergence in KL (see the counterexample in appendix A.4.4).

It is easy to see that their flow is volume-preserving by looking at the scaling functions s(b) in
the three affine coupling layers (equation (4.16)) they use. They read: s(1) = ϵ′ and s(2) = s(3) = ϵ′′.

This means that the overall flow has a Jacobian determinant |f ′θ| = (ϵ′ϵ′′2)
D
2 . This volume change is

independent of the input, making the flow volume-preserving, which is not universal per our theorem 5.3.

Also note how the volume change is directly tied to the guaranteed Wasserstein distance, since
they guarantee that W2(pθ(x), p(x)) < ϵ, and the above scalings fulfill ϵ′′ ≪ ϵ′ ≪ ϵ. Thus, the volume

change |f ′θ| ≪ ϵ
3D
2 vanishes, and its inverse |(f−1

θ)′| ≫ ϵ−
3D
2 explodes as ϵ is reduced, rendering the

flow ill-conditioned regardless of the distribution at hand. This is additional to the ill-condition of the
translation terms t(b) approximating step functions.

Together, this calls for a new universality guarantee that is based on a new coupling flow
construction. Our new construction, presented in the following sections, uses a flow that is neither
arbitrarily ill-conditioned nor volume-preserving. Also, it converges globally and considers vanilla affine
coupling blocks.

5.4.3. Affine coupling blocks have a unique fixed point

To construct our new universality theorem, we first analyze the effect of a single affine coupling on
learning a target distribution p(x). Our main result is that an affine coupling block always reduces the
loss when it has not yet perfectly learned the target distribution.

To derive this, remember that the loss L = DKL(p(x)∥pθ(x)) can be measured both in data and
latent space by equation (4.10):

L = DKL(p(x)∥pθ(z)) = DKL(pθ(z)∥p(z)). (5.26)

Here, the pushforward of p(x) through the flow fθ(x) is the latent distribution the flow actually creates
by mapping x 7→ z = fθ(x).

Let us now consider what happens if we append one more affine coupling block fblk;θ+ to an
existing invertible neural network fθ(x), resulting in a flow which we call pθ∪θ+(x). Let us choose
the parameters of the additional coupling block θ+ such that it maximally reduces the loss without
changing the previous parameters like in section 5.3.5:

min
θ+
DKL(pθ∪θ+(z)∥p(z)). (5.27)

Let us formalize this construction for later use:

Definition 5.15. Given a normalizing flow pθ(x) on a continuous probability distribution p(x) with
finite first and second moment and p(x) > 0 everywhere. Then, we define the loss improvement by an
affine coupling block as:

∆affine[pθ(z)] := DKL(pθ(z)∥p(z))−min
θ+
DKL(pθ∪θ+(z)∥p(z)), (5.28)

where θ+ = (Q,φ) parameterizes a single L-bi-Lipschitz affine coupling block whose conditioner neural
network ψφ has at least two hidden layers of finite width and ReLU activations and pθ(z) = (fθ♯p)(z).

The coupling block is restricted to be bi-Lipschitz to be well-conditioned. This means that we can
choose L > 1 such that L−1 < ∥fcpl(x)−fcpl(y)∥/∥x−y∥ < L, making both forward and inverse passes
through each coupling well-conditioned. Choosing a smaller L will result in more coupling blocks, each
more numerically stable.

42 5. Distributional universality of normalizing flows

Note that unlike in section 5.3, where we assumed the conditioner function to be any function,
here we restrict ourselves to practical neural networks. We assume ReLU networks for mathematical
convenience, but think that the definition is equivalent to versions with different activation functions.

Considering this loss improvement ∆affine[pθ(z)] is a useful quantity, since we can show that is
directly related to convergence of the flow:

Theorem 5.16 (Unique fixed point of affine couplings, proof in appendix A.4.1). With the definitions
from definition 5.15:

pθ(z) = N (z; 0, I)⇐⇒ ∆affine[pθ(z)] = 0. (5.29)

This is a nontrivial result: One might have thought that it is possible to end up in distributions
such that an affine coupling block gets stuck and cannot improve on the loss. Instead, if adding
another coupling layer has no effect, the latent distribution has converged to a standard
normal. This unique fixed point allows using ∆affine[pθ(z)] as a convergence metric for our universality
theorem in section 5.4.4.

In the remainder of this section, we give a sketch of the proof of theorem 5.16, with technical
details moved to appendix A.4.1.

We proceed as follows: First, we use the explicit form of the maximal loss improvement ∆∗
affine[pθ(z)]

for infinitely expressive affine coupling blocks from theorem 5.8, modified to include optimizing over Q.
Then, we show in lemma 5.17 below that convergence of free-form function conditioners is equivalent to
convergence of finite ReLU networks. Finally, we show that ∆affine[pθ(z)] = 0 implies pθ(z) = N (z; 0, I).
The other direction is trivial, since by pθ(z) = N (0, I), no loss improvement is possible.

If we assume for a moment that neural networks can exactly represent arbitrary continuous
functions, then we computed the learned optimal affine transformation in lemma 5.5 to be:

ãi(ai; b) =
1

σi(b)
(ai −mi(b)). (5.30)

Per theorem 5.8, this reduces the loss by:

∆∗
affine[pθ(z)] = max

Q
Eb[S(b)], (5.31)

where Q enters through (b, a) = Qx, and the expectation averages the contribution from normalizing
the component-wise conditional non-Standardness (compare theorem 4.1):

S(b) = Eb

D/2∑
i=1

DKL(N (mi(b), σi(b)∥N (0, 1))

 =
1

2

D/2∑
i=1

Eb
[
m2
i (b)︸ ︷︷ ︸
(A)

+σ2i (b)− 1− log σ2i (b)︸ ︷︷ ︸
(B)

]
. (5.32)

With the asterisk, we denote that this improvement cannot necessarily be reached in practice with
finitely sized and well-conditioned neural networks. More expressive coupling functions can reduce the
loss stronger, see section 5.4.5.

What loss improvement can be achieved if we go back to finite neural networks? It turns out that
∆∗

affine[pθ(z)] > 0 is equivalent to the existence of a well-conditioned coupling block as in definition 5.15
with ∆affine[pθ(z)] > 0:

Lemma 5.17 (Proof in appendix A.4.1). Given a continuous probability density pθ(z). Then,

∆∗
affine[pθ(z)] > 0⇐⇒ ∆affine[pθ(z)] > 0. (5.33)

5.4. Coupling flow universality 43

This says that the events ∆affine[pθ(z)] = 0 and ∆∗
affine[pθ(z)] = 0 can be used interchangeably. The

equivalence comes from the fact that if ∆∗
affine[pθ(z)] > 0, then we can always construct a conditioner

neural network that scales the conditional standard deviations closer to one or the conditional means
closer to zero, reducing the loss. In the detailed proof in appendix A.4.1 we also make use of a classical
regression universal approximation theorem (Hornik, 1991) and ensure the additional coupling block is
well-conditioned.

Finally, if the first two conditional moments of any latent distribution p(z) are normalized for all
rotations Q:

Eai|b[ai] = mi(b) = 0, Varai|b[ai] = σi(b) = 1, (5.34)

then the distribution must be the standard normal distribution: p(z) = N (z; 0, I): Equation (5.32)
enforces two characteristics of pθ(z) that uniquely identify the standard normal distribution: (A) It
must be rotationally symmetric, since mi(b) = 0 for all Q holds only for rotationally symmetric
distributions (Eaton, 1986). (B) This term is non-negative and zero only for σi(b) = 1 for all Q, which
uniquely identifies the standard normal from all rotationally symmetric distributions (Bryc, 1995).

This concludes the proof sketch of theorem 5.16 and we are now ready to present our universality
result, employing ∆affine[pθ(z)] as a convergence metric.

5.4.4. Affine coupling flow universality

We now confirm that affine coupling flows are a distributional universal approximator in terms of the
convergence metric we derived in section 5.4.3:

Theorem 5.18 (Affine coupling universality, proof in appendix A.4.2). For every continuous p(x)
with finite first and second moment with infinite support, there is a sequence of normalizing flows pn(x)
consisting of n L-bi-Lipschitz affine coupling blocks such that their latent distributions converge to the
standard normal:

pn(z)
n→∞−−−→ N (z; 0, I), (5.35)

in the sense that ∆affine[pn(z)]
n→∞−−−→ 0.

This means that with increasing depth, the latent distribution of the flow converges to the
standard normal. The use of ∆affine[pn(z)] as a convergence metric is justified by theorem 5.16 that
pn(x) = p(x)⇔ pn(z) = N (0, I)⇔ ∆affine[pn(z)] = 0.

The proof of theorem 5.18 explicitly constructs a normalizing flow by following an iterative scheme.
We start with the data distribution as our original guess for the latent distribution: p0(z) = p(x = z).
Then, we repeatedly append individual affine coupling blocks fblk(x) consisting of a rotation Q and a
coupling fcpl, optimizing the new parameters to maximally reduce the loss as in equation (5.27).

This series of coupling blocks converges: ∆affine[pθ(z)] measures how much adding each affine
coupling block reduces the loss, but the total loss that can be reduced by the concatenation of many
blocks is bounded. Since improvements ∆affine[pθ(z)] are also non-negative, they must converge to zero
for the sum to be finite (Rudin, 1976, Theorems 3.14 and 3.23). By theorem 5.16, the fixed point of
this procedure is a standard normal distribution in the latent space.

Figure 5.7 shows an example for how theorem 5.18 constructs the coupling flow in order to learn a
toy distribution. The affine coupling flow can learn the distribution well, despite its difficult topology.
Empirically, this is also true in terms of KL divergence: Figure B.1 in appendix B.1.1 shows the relation
between ∆affine[pθ(z)] and the KL divergence for the flow, both of which decrease over the course of
training. There we also provide experimental details.

44 5. Distributional universality of normalizing flows

5.4.5. Expressive coupling flow universality

The above theorem 5.18 shows that affine coupling functions c(ai; θ) = sai + t are sufficient for
universal distribution approximation. As listed in section 4.3.1, a plethora of more expressive coupling
functions have been suggested, for example neural spline flows (Durkan et al., 2019) that use monotone
rational-quadratic splines as the coupling function. It turns out that by choosing the parameters in the
right way, all coupling functions we are aware of can exactly represent an affine coupling, except for
the volume-preserving variants, see section 4.3.1 for a list. For example, a rational quadratic spline can
be parameterized as an affine function by using equidistant knots (ak, ãk) such that ãk = sak + t and
fixing the derivative at each knot to s.

Thus, the universality of more expressive coupling functions follows immediately from theorem 5.18,
just like Ishikawa et al. (2022) extended their results from affine to more expressive couplings:

Corollary 5.19 (Expressive coupling universality). For every continuous p(x) with finite first and
second moment with infinite support, there is a sequence of normalizing flows fn(x) consisting of n
coupling blocks with coupling functions at least as expressive as affine couplings such that their latent
distributions converge to the standard normal:

pn(z)
n→∞−−−→ N (z; 0, I), (5.36)

in the sense that ∆affine[pn(z)]
n→∞−−−→ 0.

Proof. The function class of a coupling layer more expressive than affine parameterizes a superset of
the functions that can be represented by an affine coupling layer, and therefore the solution constructed
in theorem 5.18 is also in more expressive function classes.

A similar result can also be stated about recursive coupling layer HINT as well as autoregressive
layers (compare section 4.3), since they also parameterize larger classes of invertible layers than affine
coupling layers.

In addition, our construction of a universal flow in theorem 5.18 through layer-wise training reveals
how more expressive coupling functions can outperform affine functions using the same number of
blocks. Similar to the loss improvement for an affine coupling in equation (5.28), let us compute the
maximal loss improvement for an arbitrarily flexible coupling:

∆∗
universal[pθ(z)] = max

Q
Eb

D/2∑
i=1

(Gi(b) + Si(b))

 ≥ ∆∗
affine[pθ(z)], (5.37)

where the expectation again goes over the passive coordinate b = (Qz)1,...,D/2 and z ∼ pθ(z).
Here, the loss improvement additional to the non-Standardness Si(b) in the ith active dimension

as given in equation (5.32) is the conditional non-Gaussianity Gi(b) = DKL(pθ(ai|b)∥N (mi(b), σi(b)),
which measures the deviation of each active dimension from a Gaussian distribution with matching
mean and variance. An affine coupling function c(ai; θ) = sai + t doesn’t influence this term, due to its
symmetrical effect on both sides of the KL in G(b) by lemma 4.2. More expressive coupling blocks,
however, can tap on this loss component if the conditional distributions p(ai|b) are non-Gaussian, see
figure 5.8 for an example. Note that while a single affine coupling does not affect Gi(b), subsequent
blocks can because the overall loss is redistributed over the loss terms.

The impact of this gain likely varies with the dataset. For instance, in images, the distribution of
one color channel of one pixel conditioned on the other color channels in the entire image, often shows
a simple unimodal pattern with low non-Gaussianity. This may explain why affine coupling blocks are
enough to learn the distribution of images (Kingma & Dhariwal, 2018). We give additional technical
details on equation (5.37) and the subsequent arguments in appendix A.5.

5.5. Conclusion 45

non-Standardness S(b)

non-Gaussianity G(b)

p(a |b)
𝒟KL(b) = G(b) + S(b)

Figure 5.8.: Information-geometric view of couplings more expressive than affine: The conditional KL
divergence DKL(p(a|b)∥N (0, I)) can be split into two orthogonal KL divergences, the non-Standardness
S(b) sensitive to the first two moments, and the non-Gaussianity G(b) sensitive to non-Gaussianity. Affine
couplings only reduce S(b), more expressive coupling also affect G(b).

5.5. Conclusion

In this chapter, we considered the universality of existing invertible neural networks. We derived that
volume-preserving flows are not distributional universal approximators under KL divergence and cannot
represent multi-modal distirbutions. Through identifying the distribution a volume-preserving flow
constructs in the latent space, we propose a fix to volume-preserving flows that can be applied after
training to make restore universality. Since the fix consists of learning a one-dimensional transform,
we expect that the beneficial properties of volume-preserving flows are easily transferable to our
construction.

Regarding the widespread coupling-based normalizing flows, we derived the minimizer and minimum
achievable loss value of a single affine coupling block trained with maximum likelihood. The central
insight is that such a block learns to normalize the first two moments of the active half of dimensions
conditioned on the passive half of dimensions. The rotation Q determines which subspaces of the data
end up being active or passive, and we give an explicit formula for the possible loss improvement for
a fixed rotation. We use this to approximate the best rotation and find that this makes layer-wise
training competitive to end-to-end training, while transforming the data more naturally to a Gaussian
latent distribution.

Using these results on a single layer, we construct a novel universality proof for coupling-based
normalizing flows.

Together, this reveals an intriguing hierarchy of the expressivity of invertible neural networks:

1. Volume-preserving normalizing flows are not universal in KL divergence, meaning that there is a
bias in what distributions they learn in practice. We propose a simple fix to restore universality.

2. Affine coupling flows such as RealNVP (Dinh et al., 2017) are distributional universal approxi-
mators in terms of ∆affine despite their seemingly restrictive architecture.

3. Coupling flows with more expressive coupling functions are also universal approximators, but they
converge with fewer blocks by tapping on an additional loss component in layer-wise training.

Our work theoretically grounds why coupling blocks are the standard choice for practical appli-
cations with normalizing flows, combined with their easy implementation and speed in training and
inference. We remove spurious constructions present in previous proofs and use a simple principle
instead: Construct a flow layer by layer until no more loss improvement can be achieved.

Table 5.1 summarizes how our universal construction is closer to practice than previous work
(Teshima et al., 2020a; Koehler et al., 2021): We only use well-conditioned L-bi-Lipschitz couplings,
allow variable volume change |f ′θ(x)| (as evidenced by the rescaling term in equation (5.30)) and

46 5. Distributional universality of normalizing flows

Table 5.1.: Our construction of a universal coupling flow overcomes important limitations of the
previous work on arbitrary input p(x) (Teshima et al., 2020a; Koehler et al., 2021): We use well-conditioned
coupling blocks, consider convergence on the full space and allow variable volume change |f ′θ(x)| ≠ const,
which is necessary for universality in KL divergence by theorem 5.3.

Teshima et al. (2020a) Koehler et al. (2021) Theorem 5.18 (ours)

Well-conditioned ✗ ✗ ✓
Variable |f ′θ(x)| ✓ ✗ ✓
Global support ✗ ✗ ✓

consider the entire support of p(x). We give further details on the sensitivity of ∆affine[pθ(z)] to
volume-preserving transformations in appendix A.2.1.

Directions for Future work Despite these advances, there are some properties we hope can be
improved in the future: First, our construction shows that we can build a deep enough flow with
arbitrary precision, but we have not exploited that blocks can be jointly optimized. Thus, while our
construction shows universality of end-to-end training, we expect a flow trained this way to require
fewer blocks than our iterative proof for the same performance.

Secondly, it is unclear how the convergence metric ∆affine[·] in definition 5.15 is related to
convergence in the loss used in practice, the KL divergence given in equation (4.3). In practice, we find
that constructing a coupling flow through iterative training converges in KL divergence (see figure B.1
in appendix B.1.1), so we conjecture that our way of constructing a universal coupling flow converges
in KL divergence. The reverse holds: We show in corollary A.10 in appendix A.4.3 that convergence in
KL implies convergence under our new metric.

Finally, our proof gives no guarantee on the number of required coupling blocks to achieve a
certain performance.

We will partly address the last two points in the next chapter on the convergence rate of normalizing
flows, where we consider the KL divergence, among others. We hope that our contribution paves the
way towards a full understanding of affine coupling-based normalizing flows.

6. Convergence rates of invertible neural network
blocks

In the previous chapter, and in particular theorem 5.18 and corollary 5.19, we established that
generative models pθ(x) based on non-volume-preserving coupling blocks are universal distributional
approximators. Similarly, Gaussianization is in theory able to represent arbitrary distributions to
arbitrary precision (Chen & Gopinath, 2000; Meng et al., 2020). However, these results come with
two important shortcomings. They only show that there exists some finite number of blocks L to
achieve a given performance, but do not state how large this number is. In addition, they do not give
a convergence guarantee for the loss used in practice, but consider weaker convergence metrics.

In this chapter, we take a step towards addressing these shortcomings: We derive explicit
convergence rates of the practical loss, the Kullback-Leibler divergence in equation (4.4). We focus
our derivations on the efficiency of different normalizing flow architectures at learning the first two
moments of the incoming data distribution, most notably the covariance matrix Σ. To motivate this
special case, we first show in section 6.1 that fitting these moments to any distribution is a separable
task that any generative model has to solve to accurately approximate a distribution p(x). We thus
expect that any difficulties arising in learning the first two moments also apply in learning the full
distribution.

In particular, we compare the three basic invertible block layouts that have been proposed in
the literature: Gaussianization blocks, which modify all dimensions independently in each block
(equation (4.21)), coupling blocks, which allow the first half of dimensions to influence the second half
(equation (4.23)), and autoregressive blocks (equation (4.27)), where every dimension is influenced by
all previous.

6.1. Setting

To compare the different architectures, we choose to focus on comparing the approaches in their ability
to learn the covariance Σ = Covx∼p(x)[x] of a given distribution p(x). This is interesting because (i) we
will see that the considered models do differ in the resources required for this task, (ii) the convergence
rates are analytically tractable and (iii) learning the covariance is a necessary condition for convergence
of maximum likelihood training in equation (4.4). To see the third point, we again make use of the
Pythagorean identities in theorem 4.1, of which we repeat equation (4.35) for convenience:

L = DKL(pθ(z)∥N (0, I)) = DKL(pθ(z)∥N (m,Σ))︸ ︷︷ ︸
non-Gaussianity G[pθ(z)]

+DKL(N (m,Σ)∥N (0, I))︸ ︷︷ ︸
non-Standardness S(m,Σ)

. (4.35)

Remember from section 4.2 that learning a normalizing flow means learning a function that maps data
points x ∼ p(x) to latent codes such that these codes follow the standard normal p(z) = N (0, I). The
above decomposition splits the transport from the data distribution to the latent standard normal
into two parts: (i) From the data to the nearest Gaussian distribution N (m,Σ), measured by the
non-Gaussianity G[pθ(z)] (Cardoso, 2003) (also called negentropy (Comon, 1994)). (ii) From that
nearest Gaussian to the standard normal in the latent space, for which a linear transformation suffices.

48 6. Convergence rates of invertible neural network blocks
non-Gaussianity

non-Standardness

Normalizing Flow Loss

non-Gaussianity

non-Standardness

NormalizingFlowLoss

non-Gaussianity

non-Standardness

NormalizingFlowLoss

non-Gaussianity

non-Standardness

Normalizing Flow Loss

non-Standardness S

non-Gaussianity G

Loss: ℒ = G + S

ℒ = G + S
G

S
𝔼[S]

Figure 6.1.: (Left) The Maximum Likelihood Loss L (blue) can be split into the non-Gaussianity G
(orange) (Cardoso, 2003) and the non-Standardness S (green) of the latent code z = fθ(x): L = G + S
(theorem 4.1). For the latter, we give explicit guarantees as one more coupling block is added in theorems 6.7
and 6.8 and show a global convergence rate in theorem 6.9. (Right) Typical fit of EMNIST digits by a
standard affine coupling flow for various depths. Our theory (theorem 6.7) upper bounds the average S for
L+ 1 coupling blocks given a trained model with L coupling blocks (dotted green). We observe that our
bound is predictive for how much end-to-end training reduces S.

This split is visualized in figure 6.1. In an experiment, we fit a series of affine coupling flows of
increasing depths to the EMNIST digit dataset (Cohen et al., 2017) using maximum likelihood loss
and measure the capability of each flow in decreasing G and S (details in appendix B.4.1).

The form of the non-Standardness S is given by the well-known KL divergence between the
involved normal distributions (see appendix A.1.1). It only depends on the first two moments of pθ(z),
its mean m = Ez∼pθ(z)[z] and its covariance matrix Σ = Covz∼pθ(z)[z]:

S(m,Σ) = DKL(N (m,Σ)∥N (0, I)) =
1

2
(∥m∥2 + tr Σ−D − log det Σ). (6.1)

The non-Standardness S(m,Σ) will be our measure of how far the covariance and mean have approached
the standard normal in the latent space.

Since a linear transformation suffices to map the mean and covariance of any input distribution
to zero respectively the identity matrix, we restrict the action of each invertible block to be linear.
This also ensures that the construction does not increase the non-Gaussianity, as it is left invariant
under linear transformations by lemma 4.2. This leaves room for a complimentary theory to derive a
convergence rate in non-Gaussianity.

For each block architecture, we consider two constructions to derive a scaling of the number of
blocks with the dimensionality of the problem: First, if the flow is trained layer by layer, how many
blocks are required to reduce the non-Standardness to a given target value? We derive the scaling laws
in the limit of low loss. Second, if the flow is trained end-to-end, how many blocks are required at least
to exactly match the first two moments.

To formulate the scaling laws, we adopt the notation for asymptotic convergence behavior with
dimension D by Knuth (1997), replacing O → O to avoid name collision with the orthogonal group
O(D):

O(f(D)) := {g(D) ≤ Cf(D) for D > D∗}, (6.2)

Ω(f(D)) := {g(D) ≥ Cf(D) for D > D∗}, (6.3)

Θ(f(D)) := O(f(D)) ∩ Ω(f(D)). (6.4)

6.2. Gaussianization 49

Figure 6.2.: Empirical scaling of learning Gaussian distributions as a function of dimension D
in the limit of low loss. Gaussianization requires at least Ω(D) layers (theorem 6.3), while only at most
constant (i.e. O(1)) number of coupling layers are needed (theorem 6.9). The solid lines are the exact values
predicted by the theories, the dots indicate experimental measurements. The shades show the interquartile
range over various initial covariance matrics.

Figure 6.2 visualizes the high-level perspective on our theoretical results alongside an experimental
confirmation: To reduce the non-Standardness by a given amount, Gaussianization requires at least
Ω(D) blocks, while coupling blocks require a constant number O(1) of blocks regardless of the dimension.
These results hold in late training when S ≪ 1 and for layer-wise training, which is state-of-the-art for
Gaussianization (so this is a useful lower bound) and it indicates that jointly trained coupling blocks
may perform even better (so this is a useful upper bound).

In the remainder of this chapter, we derive these convergence rates and give additional details.
We then summarize our results and combine them with existing knowledge on other architectures.

6.2. Gaussianization

This section is an adapted version of Draxler et al. (2023).
The Gaussianization layer in equation (4.21) was proposed by Chen & Gopinath (2000). In this

section, we contribute the following:

▶ We analytically derive that the number of Gaussianization blocks grows linearly with the dimen-
sionality of the problem for Gaussian input, in section 6.2.3 in terms of KL divergence for iterative
training with random rotations, and in section 6.2.4 for end-to-end training.

▶ For iterative training, we demonstrate limits of determining better-than-random rotations from
finite training data.

▶ We empirically determine the scaling behavior for non-Gaussian data, where we find a similar
linear increase in complexity with dimension, and favorable scaling for some distributions (see
section 6.2.5).

The code to our experiments can be found at the following public repository: https://github.com/
vislearn/Gaussianization-Bound.

https://github.com/vislearn/Gaussianization-Bound
https://github.com/vislearn/Gaussianization-Bound

50 6. Convergence rates of invertible neural network blocks

6.2.1. Related work

Several works consider iteratively transforming between distributions via rotations and element-wise
transformations. Originally, the idea of iteratively transporting input data to standard normal latent
codes has been proposed by Chen & Gopinath (2000). Laparra et al. (2011) extended the idea with
rotation-based iterative Gaussianization (RBIG), by also learning the reverse transport from latent
codes to the data distribution. Other variants like Iterative Distribution Transfer (IDT) replace the
standard normal by an arbitrary other distribution (Pitié et al., 2007). Meng et al. (2020) leave the
iterative scheme and train the flow end-to-end, which performs favorable in situations of little data.

An important part of all these works is to find meaningful non-Gaussian projections of the data.
Originally, random orthogonal matrices, ICA and PCA were suggested (Chen & Gopinath, 2000). Meng
et al. (2020) learn rotations jointly with the dimension-wise transforms. Sliced Iterative Normalizing
Flow (SINF) uses max K-SWD, which optimizes for the K most non-Gaussian directions in terms
of Sliced Wasserstein Distance (SWD) (Dai & Seljak, 2021). Sliced Wasserstein Flows (SWF) had
previously suggested utilizing SWD, but used this to iteratively solve a PDE (Liutkus et al., 2019).
We give limitations in section 6.2.3.

The existing work on the universality of Gaussianization (Chen & Gopinath, 2000; Meng
et al., 2020) relies on the concept of weak convergence, ensuring convergence of expectation values
Ex∼pθ(x)[f(x)]→ Ex∼p(x)[f(x)] for f under mild regularity conditions. This does not show convergence
of the corresponding densities “q → p” (Gibbs & Su, 2002). We fill this gap by considering the KL
divergence in the form of the non-Standardness, a stronger notion of convergence. We also give explicit
convergence rates instead of asymptotic guarantees. Our theoretical derivations are limited to Gaussian
distributions close to convergence, however.

6.2.2. Architecture details

Before we come to our convergence guarantees, we give some additional context on Gaussianization, as
it is often constructed differently than other normalizing flows.

As mentioned in section 4.3.2, a Gaussianization layer splits an incoming data vector x ∈ RD into
its D dimensions and then applies a one-dimensional invertible function to each dimension. This is
motivated by an exact decomposition of the loss L in theorem 4.1, which we repeat for convenience:

L = DKL(pθ(z)∥N (0, I)) = DKL(pθ(z)∥p(x1) · · · p(xD))︸ ︷︷ ︸
Mutual Information I[pθ(z)]

+
∑
i

DKL(pθ(zi)∥N (0, 1))︸ ︷︷ ︸
marginal loss L[pθ(zi)]

. (4.37)

This identity makes clear that the loss is composed of two parts: The mutual information I := I[pθ(z)],
which measures how far p(x) deviates from the product of its marginal p(z1) · · · p(zD), and the marginal
loss Li := L[pθ(zi)] for each dimension, which measure the deviation of each marginal p(zi) from the
univariate standard normal.

A single layer can reduce the marginal losses in all dimensions (close) to zero if each one-dimensional
transformation is sufficiently rich. Since a single-dimensional transformation does not affect the mutual
information by lemma 4.3, this leaves only the mutual information I as the remaining loss. As
mentioned in section 4.3.2, this is where the rotation layer frot(x) = Qx comes into play.

Rotating the data does not affect the sum of the loss contributions L = I +
∑

i Li, but it
redistributes it between the mutual information and the marginal losses, see below. Note that unlike
for coupling blocks, permutation matrices are not sufficient for mixing the dimensions as they do not
re-distribute loss from the mutual information to the marginal losses.

6.2. Gaussianization 51

f1(x) f 1
1 (z)

Q1

f2(x) f 1
2 (z)

f5(x) f 1
5 (z)

f17(x) f 1
17 (z)

Figure 6.3.: Gaussianization learns a Gaussian mixture with three modes. (Left) Gaussianization
makes marginals normal and rotates randomly. Iterating makes the latent distribution gradually Gaussian.
(Right) The first layer approximates p(x) via the product of its marginals, see first row: q1(x) ≈ p(x1)p(x2).
Subsequent rows show the effect of additional later layers. The rows show the effect of layer 1, 2, 5, and 17.

Training

Gaussianization is typically trained layer-by-layer (iterative) or by performing gradient descent with
equation (4.3) on all blocks jointly (end-to-end).

Iterative training In this training paradigm, one adds layers one by one: The data set is used to
train the first block fblock such that it transforms each marginal close to a univariate standard normal.
The second block is then trained with the data transformed by the first layer. This is visualized in
figure 6.3.

This approach has two advantages: First, there are fast approaches for learning the one-dimensional
transforms that do not require backpropagation. One approach is to estimate the cumulative distribution
function (CDF) on each 1D slice using quantiles of the data. Dai & Seljak (2021) use rational-quadratic
splines to fit the CDF due to their flexibility and analytical invertibility. Second, the approach
allows choosing rotations that promise maximum loss improvement by shifting loss from the mutual
information I to the marginal losses Li in equation (4.37) (see below).

End-to-end training In this approach, one concatenates a prespecified number of blocks at ini-
tialization. The parameters of each block are then trained jointly using negative log-likelihood in
equation (4.4) (Meng et al., 2020). The advantage of end-to-end training is that blocks can collaborate,
as the training signal is the gradient of the entire pipeline and not just of a single block.

In practice, end-to-end training requires fewer layers than iterative training when learning a
given distribution in low dimensions (Meng et al., 2020). As the dimension increases, however, the
convergence of the training saturates. State-of-the-art Gaussianization results in high dimensions (on
MNIST and CIFAR10 image datasets) are currently held by iterative training with SINF (Dai & Seljak,
2021).

52 6. Convergence rates of invertible neural network blocks

Choosing rotations

As mentioned above, the KL divergence DKL(pθ(z)∥N (0, I)) itself is symmetric under rotations, but
the rotation Q distributes the loss between the mutual information I and the marginal losses Li (see
equation (4.37)). The more loss ends up in the Li, the more loss can be reduced by the block. To
illustrate this, consider two special examples:

First, take a distribution p(x) ̸= N (0, I) which can be written as the product of marginals in some
rotation of the data Q∗:

p(Q∗x) = p((Q∗x)1) . . . p((Q
∗x)D). (6.5)

If we evaluate the loss in this orientation, the mutual information I = 0 becomes zero and all loss
is contained in the marginals: L =

∑
i Li. This allows Gaussianization to fit p(x) in one block:

Parameterize the rotation layer as Q = Q∗ and let the element-wise transforms fit the p((Q∗x)i).

Now consider a Gaussian distribution p(x) = N (0,Σ) where tr Σ = D. Then, there exists a
rotation Q+ for which the standard deviations along the axis are one, i.e. (Σ̃)ii = ((Q+)TΣQ+)ii = 1.
Then, Li = 0 and all the loss is contained in the mutual information: L = I. The element-wise
transformation layer cannot make any progress in this situation.

For the two examples given, it is in principle known how to obtain the optimal choice for Q: In
the case of the first distribution, independent component analysis (ICA, (Hyvärinen et al., 2001)) aims
to find Q∗ such that the marginals are independent. For the case of Gaussian distributions, principal
component analysis (PCA, (Pearson, 1901)) yields the optimal Q∗ such that Σ̃ is diagonal and can be
fit using one block.

For most real-world distributions, however, such an orientation Q∗ does not exist where the data
dimensions become independent.

The Cramér-Wold theorem (Cramér & Wold, 1936) guarantees that the learned latent codes are
exactly Gaussian if and only if there is no orientation Q with a non-Gaussian marginal. To visualize
this, imagine projecting the data set along a unit vector and looking at the histogram:

zproj = wTz. (6.6)

If the codes z are distributed like a multivariate standard normal distribution, then each projection
zproj will be distributed like a univariate standard normal distribution. If, however, z is not normally
distributed, then there must be some projection for which the data is also not distributed like a normal
distribution. Equivalently, if all marginal losses Li = 0 for all possible rotations Q, then pθ(z) = N (0, I).
Note that our theorem 5.16 is a variant of the Cramér-Wold theorem for coupling flows.

This implies that for a single layer, we want to choose Q such that the marginal projections are as
non-Gaussian as possible. Then, as much loss as possible is contained in the Li, which can then be
removed by the Gaussianization layer fgzn acting on each dimension individually.

There is a rich history in identifying interesting marginal directions in high-dimensional data.
These are the most common choices for computing Q from data:

▶ Random rotations are randomly sampled as Q ∈ O(D). We give several guarantees in section 6.2.3
for this case.

▶ Principal Component Analysis (PCA) transforms any distribution with nontrivial covariance Σ
such that its principal axes coincide with the coordinate axes, i.e. such that the resulting covariance
matrix is diagonal QTΣQ = Diag(Λ) with eigenvalues Λ.

▶ Independent Component Analysis (ICA) identifies the space in which a p(u) = p(u1) · · · p(uD), if
x = Au and u can be factorized in this form.

6.2. Gaussianization 53

▶ max K-SWD identifies the directions in which the sliced Wasserstein distance can be maximally
reduced. The sliced Wasserstein distances can be a proxy for the marginal KL divergences, as both
measure a divergence between distributions.

6.2.3. Iterative training

We now derive scaling laws for normalizing flows based on Gaussianization blocks if trained in the
iterative training scheme.

Single Gaussianization layer minimizer

As explained in section 6.1, we restrict ourselves to linear Gaussianization blocks, as this is sufficient
to learn a Gaussian distribution, and as this does not interfere with non-Gaussianity. Restricted to the
family of affine-linear mappings, the Gaussianization layer in equation (4.21) takes the following form:

fgzn,lin(x) = r ⊙ x+ u, (6.7)

where r ∈ RD+ and u ∈ RD are to be determined.

The following result characterizes the first two moments of the data after applying a single
Gaussianization block with a fixed rotation trained to optimality:

Proposition 6.1 (Moments after single Gaussianization layer, proof in appendix A.6.1). Given D-
dimensional data with mean m and covariance Σ and a rotation matrix Q. Then, the moments m̃, Σ̃
that can be reached by a linear Gaussianization layer as in equation (6.7) are:

m̃ = 0, Σ̃(Q) = M(QΣQT). (6.8)

This minimizes S(m̃, Σ̃) as given in equation (6.1), and G does not change.

The function M takes a square matrix A and rescales the diagonal elements to 1 as follows. It is a
well-known operation in numerics called Diagonal scaling or Jacobi preconditioning (Shewchuk et al.,
1994) so that M(A)ii = 1:

M(A)ij =
√
AiiAjj

−1
Aij = (Diag(A)−1/2ADiag(A)−1/2)ij . (6.9)

This means that a single Gaussianization layer will center the data and scale the standard deviations
of each marginal to one.

What is the effect of proposition 6.1 on the non-Standardness? First note that for mean m = 0
and a covariance Σ with tr Σ = D, the non-Standardness in equation (6.1) simplifies:

S(0,Σ) = −1

2
log det Σ. (6.10)

Thus, the non-Standardness after the layer in proposition 6.1 reads:

S(m̃, Σ̃(Q)) = −1

2
log det Σ̃ = −1

2
(log det Σ− log det Diag(QΣQT)), (6.11)

where Diag(QΣQT)−1/2 is the scaling matrix of the Jacobi preconditioning. To derive this, insert
equation (6.8) and use that det(AB) = det(A) det(B) for square matrices A,B.

54 6. Convergence rates of invertible neural network blocks

Expected single Gaussianization block performance

We now consider the role of the rotation Q in the Gaussianization block. In particular, we derive
expected non-Standardness after a Gaussianization block, averaged over rotations.

To simplify the arguments, we assume that the covariance has normalized trace already before the
block:

Assumption 6.1. The covariance is normalized: tr Σ = D.

This is part of typical data preprocessing, it can be achieved by scaling all data points by the
average standard deviation over all dimensions. Also, it is achieved after a single Gaussianization layer,
since tr Σ̃(Q) = D as all its diagonal entries are 1 by proposition 6.1.

We then find:

Theorem 6.2 (Non-Standardness after Gaussianization block, proof in appendix A.6.2). Given D-
dimensional data with covariance Σ fulfilling assumption 6.1 with covariance eigenvalues λ1, . . . λD.
Then:

S(m,Σ) ≥ EQ[S(m̃, Σ̃(Q))] ≥ S(0,Σ)− 1

2λ2min

2

D + 2
Var[λ] (6.12)

≥ S(0,Σ)− 2

D + 2

2− gD
1−

√
1− gD

(1− g), (6.13)

where Var[λ] is the empirical variance of the covariance eigenvalues, g is their geometric mean and
λmin is the minimal eigenvalue.

These guarantees make a negative statement: The non-Standardness after the layer will be at
least as large as given (but not worse than before the block). The last variant in equation (6.13) is
particularly useful, since we can rewrite the geometric mean of the covariance eigenvalues via the
non-Standardness:

g =
D∏
i=1

λ
D/2
i = exp(−2S(Σ)/D) < 1. (6.14)

Deep Gaussianization guarantee near convergence

We now extrapolate theorem 6.2 to a deep network, that is can we bound the non-Standardness after
Lgzn Gaussianization blocks.

It will be helpful to assume:

Assumption 6.2. The data is centered: m = 0.

Like assumption 6.1, centering the data is part of usual preprocessing and achieved by a single
Gaussianization block by proposition 6.1.

Theorem 6.3 (Deep Gaussianization bound, proof in appendix A.6.3). Given D-dimensional data with
covariance Σ fulfilling assumptions 6.1 and 6.2, and S(0,Σ)≪ 1. Then, the expected non-Standardness
after Lgzn Gaussianization blocks as in proposition 6.1 can be bounded as follows:

EQ1,...,QLgzn
[S(0,Σ(Lgzn)(Q1, . . . QLgzn))] ≥

(
1− 2

D + 2

)Lgzn

S(0,Σ). (6.15)

6.2. Gaussianization 55

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

N=60000 D=3072
Analytic marginal
Random projection
Adversarial target
Spurious projection

Figure 6.4.: Spurious projection of standard normal data. The plot shows N = 60, 000 samples from
a D = 3072-dimensional standard normal distribution projected to a single dimension. The blue projection
is selected randomly, and the resulting histogram is close to standard normal. The orange projection is
optimized so that the dataset has a spurious bimodal histogram. The histograms coincide with the marginal
distribution Gaussianization would learn, producing a bimodal distribution from Gaussian data in the
second case.

By solving equation (6.15) for the number of blocks Lgzn, we find that the number of required
blocks increases (at least) linearly with dimension to decrease the non-Standardness from S(0) to
E[S(Lgzn)]:

Lgzn ≥
log(1/γ)

log
(

1− 2
D+2

) ≈ log(γ)
D + 1

2
= Ω(D), (6.16)

where we write the target loss ratio as γ = S(0)/E[S(Lgzn)]). Note that we consider the case of late
training by assuming S(0,Σ)≪ 1. We explore early training in experiments in section 6.2.5 and leave
extending theorems 6.2 and 6.3 to early training open for future work.

Limitations of learned rotations

The previous sections assumed that the rotations are drawn at random. However, the bulk of the
literature focuses on rotating the data such that the marginals deviate as much as possible from
the target normal distribution N (0, 1), see section 6.2.2. Alternative methods differ mainly by their
measure of marginal non-Gaussianity.

Unfortunately, learning rotations has an inherent tendency to overfit on finite training sets: In this
non-asymptotic regime, there is a high probability that some marginal projections exhibit considerable
spurious non-Gaussianity even when the data are sampled from a perfect standard normal, x ∼ N (0, I).
In other words, although training has converged, the iterative training algorithm will identify a rotation
Q that “improves” the training loss but does not generalize since spurious orientations stem from the
concrete realization of the finite training data. In sufficiently high dimensions D, this still happens for
large datasets with N ≫ D, a typical situation in computer vision. Inspired by Bickel et al. (2018), we
illustrate the phenomenon at D = 3072 = 32× 32× 3 and N = 60000, the dimension and size of the
CIFAR10 dataset.

In figure 6.4, we show the histogram of a spurious non-Gaussian projection

xproj = wTx, |w| = 1, x ∼ N (0, I) (6.17)

of N fixed samples from a D-dimensional standard normal. We construct w such that the projection
of the fixed data is as close as possible to the adversarial bimodal distribution shown in the plot.

56 6. Convergence rates of invertible neural network blocks

Although in the asymptotic limit N →∞ no such w exists, the optimization readily finds a bimodal
projection in the finite dataset. Details on the experiment can be found in appendix B.3.3.

A similar experiment is reported in Dai & Seljak (2021, Appendix D.1). They show that max
K-SWD can identify spurious non-Gaussian projections. We extend their experiment by demonstrating
the effect of such projections on the learned distribution. In our example, Gaussianization would fit a
bimodal distribution to a standard normal.

The theoretical analysis in Wainwright (2019, Chapter 8) shows that phenomena like this are
fundamental in finite datasets. Specifically, they prove that no method can reliably estimate the
eigenvectors of the empirical covariance in high dimensions if the ratio D/N is bounded away from
zero, unless additional assumptions (e.g. sparsity of the covariance) are made. Consequently, even the
straightforward idea of defining the optimal Q via PCA can fail and must be used with caution.

In practice, we expect Gaussianization with learned rotations to work well in the initial blocks,
where the intermediate latent distributions are strongly non-Gaussian. Deeper in the network, however,
intermediate distributions are already close to standard normal, and spurious projections will appear.
The resulting overfit of the rotation Q will fool the subsequent marginal transformation, making the
data less rather than more Gaussian. This can only be fully avoided by random orthogonal matrices Q,
which almost surely do not result in spurious non-Gaussian projections (Bickel et al., 2018), compare
the random projection in figure 6.4. Random rotations and late training are exactly the regime of the
previous theoretical results.

6.2.4. End-to-end training

The previous results assumed iterative training, that is, we construct the Gaussianization blocks one
by one. However, as mentioned in section 6.2.2, Gaussianization can also be trained end-to-end, that
is the blocks are adapted jointly. Does this yield a better scaling behavior? Below, we provide a
simple parameter counting argument for the scaling behavior that confirms the previous scaling in
equation (6.16) that Lgzn = Ω(D).

We consider both the case of random as well as learned rotations.

Random rotations

We will assume the following, which is typically satisfied when working with real data that are in
‘general position’:

Assumption 6.3. The eigenvalues of the covariance matrix Σ are distinct: λi ̸= λj for i ̸= j.

We then find the following result:

Theorem 6.4 (Exact Gaussian representation using Gaussianization blocks, proof in appendix A.6.4).
Given a multivariate Gaussian distribution p(x) = N (0,Σ) under assumption 6.3. To exactly represent
p(x) with random rotations Q, at least

Lgzn ≥
1

2
(D + 1) (6.18)

Gaussianization blocks are required almost surely.

This is a lower bound on the required number of blocks regardless of the training approach: The
number of Gaussianization blocks required grows (at least) linearly with the number of dimensions.
The proof is a simple parameter-counting argument: The covariance Σ has D(D + 1)/2 degrees of
freedom, but linear Gaussianization with random rotations only has D parameters per layer. Dividing
D(D + 1)/2 by D yields the result. This is visualized in figure 6.5.

6.2. Gaussianization 57

.......
Covariance Σ Gaussianization block

.......

.......
 paramsΘ(D2)

Coupling block

 params Θ(D2) paramsΘ(D)

D(D + 1)
2

D

(D/2)2

D

Figure 6.5.: Parameter counting argument: The goal is to transform the covariance matrix Σ to the
unit matrix I. The covariance has D(D + 1)/2 degrees of freedom, of which Gaussianization can learn D
per layer, and couplings D2/4 +D per layer.

Learned rotations

Theorem 6.4 showed the scaling behavior of Gaussianization for random rotations. In this section, we
show that jointly training parameterized rotations has the same scaling behavior with dimension.

End-to-end training with learned rotations may outperform theorem 6.4 in terms of the number of
required layers. In fact, rotations exist such that arbitrary Σ can be fit with a single layer. However,
state-of-the-art rotation learning typically does not train on the full orthogonal group O(D), as this
becomes prohibitively expensive with increasing D. Instead, one considers subsets typically spanned
by k · D independent parameters, such as spanned by Householder transforms I − vvT (k = 1) or
block-diagonal orthogonal matrices (with k = (b− 1)/2 for block size b) (Meng et al., 2020). Even with
these parameterized rotations, however, the number of required layers scales with the dimension D:

Corollary 6.5 (Exact representation with learned rotations, proof in appendix A.6.5). Given a
multivariate non-degenerate Gaussian distribution p(x) = N (0,Σ) under assumption 6.3. To exactly
represent p(x) with learned rotations Q with k ·D parameters each, at least

Lgzn ≥
1

2(k + 1)
D (6.19)

Gaussianization layers are required almost surely.

The scaling of Lgzn with D can only be avoided when k = Ω(D), which does not hold for the
parameterizations mentioned above.

6.2.5. Empirical extrapolation to non-Gaussian data and early training

Theorem 6.3 predicts the convergence of Gaussianization on Gaussian input p(x) = N (0,Σ) at late
training. The core result is that the number of blocks increases linearly with the dimension.

We now lift these restrictions and consider p(x) ̸= N (0,Σ) at early training. We find that as the
dimension increases, the number of required layers Lgzn to reduce the loss by a factor increases with
dimension D, but favorable scaling can be achieved depending on the properties of the data. We base
our implementation of Gaussianization blocks on the code provided by SINF (Dai & Seljak, 2021), see
appendix B.3.4 for all details.

58 6. Convergence rates of invertible neural network blocks

102

103 Full

102

103 d = 15 d = 30 d = 50

20 40 60 100 170
of dimensions D

102

103 d = 15 d = 30 d = 50#
of

 re
qu

ire
d

la
ye

rs
 L

Figure 6.6.: Required layers of Gaussianization on toy data. (Top) If all dimensions depend on one
another, the number of required layers increases linearly with dimension. (Middle) If trailing dimensions
i > d are pairwise independent given the core d dimensions, only about a constant number of layers is
sufficient for fixed d. (Bottom) If the trailing dimensions i > d are independent Gaussian noise, the number
of layers increases linearly with dimension. Shaded regions indicate 100% of the training runs. Gray lines
indicate Θ(D) resp. Θ(1).

Toy scaling experiment

For determining the scaling behavior of Gaussianization we consider a family of distributions of varying
dimension D. We propose to build such a toy distribution autoregressively:

p(x) = p(x1)
D∏
i=2

p(xi|Ai), (6.20)

where the set Ai ⊆ {x1, . . . , xi−1} collects the random variables that xi depend upon. This allows
adding new dimensions by specifying their dependencies.

We consider the following three variants: (1) Let every variable depend on all previous variables:

A
(1)
i = {x1, . . . , xi−1}. (2) We only make a subset of d variables depend on all previous, and let the

remaining dimensions depend on this fixed subset of dimensions: A
(2)
i≤d = {x1, . . . , xi−1} (core) and

A
(2)
i>d = {x1, . . . , xd} (remainder). (3) Like the second case, but the remaining dimensions i > d are

independent Gaussian noise: A
(2)
i≤d = A

(3)
i≤d (core) and A

(3)
i>d = ∅ (noise).

In particular, we choose p(xi|Ai) as a continuous mixture of Gaussians

p(x1) = N (m1, σ
2
1), p(xi|Ai) = N (mi(Ai), σ

2
2) (6.21)

where the dependencies are introduced through mi(Ai):

mi(Ai) = m0 + 5 tanh

(
1

10

∑
xj∈Ai

sijx
2
j

)
. (6.22)

The values m1,m0 ∈ R;σ1, σ2 ∈ R+, sij ∈ {−1, 1} are parameters to the distribution.

6.2. Gaussianization 59

Figure 6.7.: Our multiscale EMNIST digits dataset.

Figure 6.6 shows how many layers Lgzn are needed to reduce the loss by a fixed ratio γ = L̃/L < 1
for each case as a function of dimension D. We find that for cases (1) and (3), the number of required
Gaussianization layers increases linearly with dimension, which is consistent with our theoretical result
on Gaussian data in equation (6.16). In case (2), however, the number of required layers remains
roughly constant with dimension (but it does depend on the number of dependent dimensions).We show
in figure B.6 in appendix B.3.5 that random projections are less Gaussian in this case, as additional
variables carry information about the core dimensions. This makes it easier for Gaussianization to fit
the data, efficiently removing loss by fitting the non-Gaussian marginals.

This toy experiment indicates that linear increase in required layers holds for some distributions,
and a favorable scaling behavior may be obtained for certain input if random projections are non-
Gaussian. Note that these experiments estimate the number of layer from initial training. This does
not contradict our theoretical results that consider Gaussian marginals and late training.

Real dataset experiment

We now consider the scaling behavior of Gaussianization on a real dataset, the EMNIST digits (Cohen
et al., 2017). To measure the scaling with dimensions, we construct variants of the data with different
dimensions. We therefore rescale the images to scales between 2 × 2 and the original 28 × 28, see
figure 6.7.

Figure 6.8 shows how many layers are required as a function of dimension, extrapolated from
training 64 Gaussianization layers. We find that up to a scale of D = 10× 10, the estimated number of
required layers roughly increases as Θ(D), like in equation (6.16), and then remains about constant.

Consistently, around a side length l = 10, the main characteristics of each digit become clear.
Afterwards, only local details are filled in. We identify the corresponding scaling of Gaussianization
with case (2) in section 6.2.5, where additional dimensions are highly correlated with others, so that
random marginal distributions become less Gaussian.

Note that for computing the absolute KL divergence as defined in equation (4.4), we need to
evaluate the entropy of the data H[p(x)]. This is an unknown value in general, and for rescaled
EMNIST digits in particular. We therefore replace the ground truth dataset by generative models
trained on each respective scale. We use a coupling-based normalizing flow for our ground truth
distribution, which achieves better density estimates in general than Gaussianization. This removes
bias from our convergence rate estimates: If we were to use the trained model itself as ground truth,

60 6. Convergence rates of invertible neural network blocks

101 102 103

of dimensions D

30

100

700

of

 re
qu

ire
d

la
ye

rs
 L

Experiment
Power law L D1.00

Figure 6.8.: Gaussianization requires more layers for higher resolution datasets. From 2× 2
to 10× 10, fitting a power law yields a linear function. For larger images, the difficulty does not increase
further. We think that this is due to an increasing number of pixels being largely determined from few other
dimensions. Data points show the median and error bars cover 90% of the training runs.

we would find spuriously fast convergence even if the model does not converge – as we might compute
the convergence rate to a suboptimal optimum. See appendix B.3.6 for all experimental details.

6.2.6. Conclusion

Gaussianization is a simple generative model, both trained end-to-end and iteratively (Meng et al., 2020;
Dai & Seljak, 2021). Differently from other approaches, it can be trained without backpropagation and
neural networks, yet provides useful density estimates and samples in low and moderate dimensions.

Scaling Gaussianization to high dimensions remains a major challenge, and we confirm this
rigorously. We show analytically for the Gaussian distribution p(x) = N (0,Σ) that the number of
required layers in late training typically scales with the dimensionality of the problem if the rotations
Q are chosen at random. On non-Gaussian distributions, we find that convergence can be favorable for
some distributions in early training.

This yields a first data point on the tradeoff between few unconstrained yet expensive layers and
constrained yet cheap layers. Gaussianization requires many layers, being limited to learning marginals
in each step.

An important point remains open, however: Improving Gaussianization to high dimensions may
be possible by constructing better rotations Q. Our work points out a fundamental limitation of this
approach: There exist spurious non-Gaussian directions that may be spuriously identified, yielding
overfitting distributions. It remains open to theoretically describe how many Gaussianization blocks
are required to fit real-world distributions.

6.3. Coupling blocks

Unless otherwise noted, this section is adapted from Draxler et al. (2022).

Coupling-based normalizing flows are the backbone of many of the successful applications of
normalizing flows listed in chapter 2. Here, we complement the universality theory on coupling flows in

6.3. Coupling blocks 61

section 5.4 with an explicit convergence rate for learning the first two moments of the input distribution.

Specifically, we make the following contributions:

▶ The contribution of a single coupling layer on the non-Standardness is analyzed in terms of matrix
operations (Schur complement and scaling).

▶ We derive explicit bounds for the non-Standardness after a single coupling block in expectation over
all possible rotations.

▶ We use these results to prove that a sequence of coupling blocks learns the first two moments of
the data and to derive linear convergence rates for this process. We find that rate to be largely
independent of dimension in late training.

We confirm our theoretical findings experimentally. They hold for all coupling functions we are
aware of (see section 4.3.1) and give an indication why coupling flows are a popular choice for
applications as opposed to Gaussianization. We provide the code to our experiments at https:

//github.com/vislearn/Coupling-Flow-Bound.

6.3.1. Related work

Analyzing the universality of coupling-based normalizing flows is an active area of research, and we list
the bulk of the literature in section 5.4.1. We give additional details here as far as they concern the
resources required to learn a given distribution.

The universality guarantee by Koehler et al. (2021) states that three coupling blocks are enough to
learn an arbitrary input distribution in terms of Wasserstein divergence. While technically correct, their
construction comes with strong restrictions preventing their results to being translated into a practical
recommendation: The underlying normalizing flow learns a volume-preserving transformation, which is
not universal in terms of KL divergence by our theorem 5.3. Also, it relies heavily on ill-conditioned
networks and the derivatives explode as the accuracy increases, regardless of the input distribution.
We provided details on these points in section 5.4.2 and appendix A.4.4.

In fact, none of the existing universality guarantees for coupling flows concern the KL divergence
(Huang et al., 2020; Teshima et al., 2020a; Zhang et al., 2020a; Ishikawa et al., 2022). While our results
only consider fitting the first two moments of the data, they do give rigorous guarantees in this strong
convergence metric.

Closely related to our work, at most 48 linear affine coupling blocks are required to represent any
invertible linear function Ax+ b with det(A) > 0 (Koehler et al., 2021, Theorem 2). This also allows
mapping any Gaussian distribution N (m,Σ) to the standard normal N (0, I). We complement their
result with a lower bound on the number of layers and give several statements in terms of the part of
the non-Standardness, the part of KL divergence that sensitive to the first two moments. We then
make strong statements about the convergence of the latter.

6.3.2. Convergence of non-Standardness

Like for Gaussianization, we derive the scaling behavior of reducing the non-Standardness via coupling
blocks trained iteratively. Since end-to-end training can also converge to the solution we construct
below, the number of layers we find for iterative training is an upper bound for the number of layers
for end-to-end training.

https://github.com/vislearn/Coupling-Flow-Bound
https://github.com/vislearn/Coupling-Flow-Bound

62 6. Convergence rates of invertible neural network blocks

Single coupling layer minimizer

We refer to section 4.3 for an introduction to normalizing flows and invertible neural networks based
on coupling layers. We decide to also apply the coupling function on the passive dimensions, as this
simplifies derivations. For learning the first two moments, this is equivalent to not transforming the
passive dimensions and instead appending an ActNorm layer, see equation (4.26).

As mentioned in section 6.1, we restrict the couplings to affine-linear functions, which ensures
that we reduce the non-Standardness S without increasing the non-Gaussianity G in turn. Under this
constraint, the coupling layer transforms an incoming vector x ∈ RD as follows:(

b̃
ã

)
= fcpl(Qx) = r ⊙

(
I 0
T I

)(
b
a

)
+ u. (6.23)

This is consistent for all architectures listed in section 4.3.1, and thus our results apply to all
non-volume-preserving coupling functions.

Our first result shows which mean m̃ and covariance Σ̃ a single affine-linear coupling as in
equation (6.23) yields to minimize S(m̃, Σ̃) given data with mean m and covariance Σ, rotated by Q:

Proposition 6.6 (Moments after single coupling layer, roof in appendix A.7.1). Given D-dimensional
data with mean m and covariance Σ and a rotation matrix Q. Split the covariance of the rotated data
into four blocks, corresponding to the passive and active dimensions of the coupling layer:

QΣQT =

(
Σbb Σba

Σab Σaa

)
(6.24)

Then, the moments m̃, Σ̃ that can be reached by a linear coupling layer as in equation (6.23) are:

m̃ = 0, Σ̃(Q) =

(
M(Σbb) 0

0 M(Σaa − ΣabΣ
−1
bb Σba)

)
. (6.25)

This minimizes the non-Standardness S(m̃, Σ̃) as given in equation (6.1), and G does not change.

The function M scales the marginal standard deviations to one, as defined as in equation (6.9).
Proposition 6.6 shows how the covariance can be brought closer to the identity. The new covariance

has passive and active dimensions uncorrelated. In the active subspace, the covariance is the Schur
complement Σaa − ΣabΣ

−1
bb Σba. This coincides with the covariance of the Gaussian N (0,Σ) as it is

conditioned on any passive value p. Afterward, the diagonal is rescaled to one, matching the standard
deviations of all dimensions with the desired latent code. Proposition 6.6 is the variant of lemma 5.5 if
the coupling block is restricted to be linear and the passive dimensions are normalized.

Figure 6.9 shows an experiment in which a single affine-linear layer was trained to bring the
covariance of EMNIST digits (Cohen et al., 2017) as close to I as possible (details in appendix B.4.2).
The experimental result coincides with the prediction by proposition 6.6. Due to the finite batch-size,
a small difference between theory and experiment remains.

Single coupling block guarantees

Proposition 6.6 allows the computation of the minimum non-Standardness after a single coupling block
given its rotation Q, by evaluating S(m̃, Σ̃(Q)). Just like for Gaussianization, if we were to choose
Q = Q∗ such that the data is rotated so that principal components lie on the axes (i.e. obtain Q∗ using
PCA), a single coupling block suffices to reduce the covariance to the identity: The rotated covariance

6.3. Coupling blocks 63

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

Input covariance
0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Experiment: Output covariance
0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Theory: Output covariance
0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Difference

0.0

0.5

1.0

1.5

2.0

2.5

Figure 6.9.: How a single coupling layer can whiten the covariance at the example of the EMNIST
digits covariance matrix (first panel). The covariance after a single layer trained experimentally to minimize
non-Standardness S(m̃, Σ̃) (second panel), which matches closely the prediction of proposition 6.6 (third
panel). The difference between theory and experiment vanishes (last panel).

Q∗ΣQ∗,T would be a diagonal matrix and Σ̃(Q∗) = I. This is not the case in practice, where this
optimal orientation has zero probability: Q is chosen uniformly at random before training from all
orthogonal matrices. One could argue that one should whiten the data before passing it to the flow,
reducing S to zero from the start. However, we are about to show that coupling-based normalizing
flows are already well-equipped to bring the non-Standardness to zero making such modifications
unnecessary.

We make essentially the same mild assumptions on the considered input as for Gaussianization.
They are part of usual data-preprocessing, when the mean is subtracted from the data m = 0
(assumption 6.2) and all data points are divided by the scalar

√
tr Σ/D so that tr Σ = D (assumption 6.1,

not to be confused with diagonal preconditioning, which acts dimension-wise). The assumptions simplify
the non-Standardness in equation (6.1) to only depend on the determinant of Σ, see equation (6.10):
We aim to compute the average non-Standardness after a single block EQ∈p(Q)[S(Σ̃(Q))]. For any

Q, S(m̃, Σ̃(Q)) is again given by the determinant of the covariance Σ̃(Q) as assumptions 6.1 and 6.2
remain fulfilled: By proposition 6.6, m̃ = 0, and the diagonal preconditioning M ensures that the
trace of Σ̃ is D. We write det(Σ̃) via Ma and Mp, the diagonal matrices that make up the diagonal
preconditioning in equation (6.9), and use the Schur determinantal formula for the determinant of
block matrices: det(Σbb) det(Σaa − ΣabΣ

−1
bb Σba) = det(QΣQT) = det(Σ) (Horn & Johnson, 2012). By

using that det(AB) = det(A) det(B) for square matrices A,B, we get:

det(Σ̃) = det(MpΣbbMp) det(Ma(Σaa − ΣabΣ
−1
bb Σba)Ma) = det(M2

p) det(M2
a) det(Σ). (6.26)

Inserting this into equation (6.10), we find:

S(0, Σ̃) = −1
2

(
log det Σ + log detM2

p + log detM2
a

)
≤ S(Σ). (6.27)

The inequality S(Σ̃) ≤ S(Σ) holds because Σ̃ = QTΣQ is an admissible solution of the coupling layer
optimization, and Σ̃ as given by proposition 6.6 is a minimizer of S(Σ̃).

We average this quantity over training runs, i.e. over rotations Q:

EQ∼p(Q)[S(Σ̃)] = −1
2

(
log det Σ + EQ∼p(Q)[log detM2

p] + EQ∼p(Q)[log detM2
a]
)
. (6.28)

The main difficulty lies in the computation of EQ∼p(Q)[log detM2
a]. Here, we contribute the two strong

statements theorems 6.7 and 6.8 below.

64 6. Convergence rates of invertible neural network blocks

Precise guarantee The first result is computed using projected orbital measures (Olshanski, 2013).
This theory describes the eigenvalues of submatrices of matrices in a random basis. We require such a
result for integrating over p(Q) in EQ∼p(Q)[log detM2

a]. In contrast to the typical choice of picking Q
from the Haar measure over O(D), the theory to the best of our knowledge only covers data rotated by
unitary matrices U(D).1 To comply with (Olshanski, 2013), we thus make two more assumptions. The
first assumption is that the eigenvalues are pairwise distinct (assumption 6.3), which is easily satisfied
when working with real data in ‘general position’. In addition, we switch to unitary rotations:

Assumption 6.4. The distribution of rotations is the Haar measure over unitary matrices U(D).

One could think that the step from orthogonal to unitary rotations takes us far away from the
scenario we want to consider. We will later observe empirically that the difference between averaging
over unitary and orthogonal matrices is negligible. Technically, the covariance matrix remains positive
definite, so the non-Standardness S is always real (see appendix A.7.2). We will write EQ∼U(D)[·] to
denote expectations over the Haar measure over the unitary group.

We are now ready to compute the expected non-Standardness after a single coupling block:

Theorem 6.7 (Non-Standardness after coupling block, proof in appendix A.7.2). Given D-dimensional
data with covariance Σ with eigenvalues λ1, . . . λD. Assume that assumptions 6.1, 6.3 and 6.4 hold.
Then, after a single coupling block, the expected non-Standardness is bounded from above:

EQ∈U(D)[S(m̃, Σ̃(Q))] < S(0,Σ) +
D

2
log

(
(−1)

D
2 +1

D∑
i=1

λ
1−D2
i log(λi)R(λ−1

i ;λ−1
̸=i)eD

2 −1
(λ−1

̸=i)

)
. (6.29)

Here, λ ̸=i := {λ1, . . . , λi−1, λi+1, . . . , λD} and R, eK are given by:

R(a; {bi}Ni=1) =
N∏
i=1

1

a− bi
and eK({bi}Ni=1) =

∑
0<i1<···<iK≤N

bi1 · · · biK . (6.30)

Inequality (6.29) sharply bounds the expected non-Standardness that can be achieved by a single
block. The only approximation made is an inequality which comes close to equality as the dimension
D increases due to the concentration of the corresponding probability distribution.

Figure 6.10 shows an experiment confirming theorem 6.7 (details in appendix B.4.3). We start
with covariance matrices using parameterized eigenvalue spectra. To each initial matrix, we first apply
a single coupling block with random Q and determine the coupling that maximally reduces S using
proposition 6.6. Then we iteratively append 32 additional blocks in the same manner, building a flow
of that depth. We average the resulting empirical ratio S(0, Σ̃(Q))/S(0,Σ) over several orthogonal
orientations Q of the rotation layer for each input covariance matrix. Then, we compare this to
(i) experimentally averaging over unitary rotations and (ii) to the prediction by theorem 6.7 and
confirm that it is a valid and close upper bound. Details for replication and more examples can be
found in appendix B.4.3.

The proof explicitly integrates E[M2
a] using (Olshanski, 2013), see appendix A.7.2. Numerically

evaluating equation (6.29) can be hard even for small D as the summands scale as O(exp(D)), but
the overall sum scales as O(D). High values cancel due to R alternating in sign, and one requires
arbitrary-precision floating-point software to evaluate equation (6.29). We use mpmath for computations
(Johansson et al., 2010).

1The only result known to us on the orthogonal group would only yield predictions for D = 2 (Faraut, 2015), whereas
we are interested in large D.

6.3. Coupling blocks 65

10 5 10 4 10 3 10 2 10 1 100 101

non-Standardness before Block

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

no
n-

St
an

da
rd

ne
ss

 a
fte

r B
lo

ck

i

Experiment
Experiment (Unitary)
'Unitary' Bound
'Var-max' Bound
'Loss-only' Bound

10 4 10 3 10 2 10 1 100 101 102

non-Standardness before Block

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

no
n-

St
an

da
rd

ne
ss

 a
fte

r B
lo

ck

i

Experiment
Experiment (Unitary)
'Unitary' Bound
'Var-max' Bound
'Loss-only' Bound

Figure 6.10.: Comparison between predicted non-Standardness and experiment for 48-dimensional
parametrized eigenvalue spectra (insets), varied over a parameter which controls the spread of the spectrum
and thus changes S. The experimental average over orthogonal rotations matrices (blue, shaded by
Interquartile Range IQR) is closely matched by the experimental average over unitary matrices (dotted
blue). The prediction by theorem 6.7 is a close upper bound that closely matches the experimental behavior
(orange). The predictions by theorem 6.8 are less precise, but converge to the same value as the precise bound
for covariances close to the identitiy: ‘Var-max’ is equation (6.31) (green) and ‘Loss-only’ is equation (6.32)
(red). More details and examples in appendix B.4.3.

Interpretable guarantee The guarantee in theorem 6.7 yields useful predictions, but it does not
lend itself to further analysis: How does the bound behave over several coupling blocks? What is the
behavior for varying dimension D? Also, assumption 6.4 restricts formal reasoning as we are interested
in averaging over orthogonal and not unitary rotations. Our second single-block guarantee depends
only on simple metrics of the covariance. Moreover, we drop assumptions 6.3 and 6.4, averaging over
orthogonal, not unitary, Q:

Theorem 6.8 (Interpretable non-Standardness after coupling block, proof in appendix A.7.3). Given
D-dimensional data with covariance Σ fulfilling assumption 6.1 with covariance eigenvalues λ1, . . . λD.
Then, after a single coupling block, the expected loss can be bounded from above:

EQ∈O(D)[S(0, Σ̃(Q))] ≤ S(0,Σ) +
D

4
log

(
1− D2

2(D − 1)(D + 2)

Var[λ]

λmax

)
(6.31)

≤ S(0,Σ) +
D

4
log

1− D2

(D − 1)(D + 2)

1−
√

1− gD
1 +

√
1− gD

(1− g)

 (6.32)

< S(m,Σ). (6.33)

Here, g is the geometric mean of the eigenvalues: g =
∏D
i=1 λ

1/D
i = exp(−2S(0,Σ)/D) < 1 which is a

bijection of S(0,Σ).

These two new bounds on the average achievable non-Standardness S after a single block are
also depicted in figure 6.10. They make useful predictions, but are less precise than theorem 6.7. The
second bound will be especially useful in what follows because it only depends on the non-Standardness
before the block S(0,Σ).

The full proof is given in appendix A.7.3. It relies on the integration of monomials of entries of
random orthogonal matrices as described by (Gorin, 2002) and the arithmetic mean-geometric mean
inequality by (Cartwright & Field, 1978).

The first bound hints at the beneficial scaling behavior of coupling blocks: The performance only
weakly depends on the dimension. To see this, divide equation (6.31) by D to obtain a statement

66 6. Convergence rates of invertible neural network blocks

0 5 10 15 20 25 30
Number of Coupling Blocks Number of Coupling Blocks

10 9

10 7

10 5

10 3

10 1

101

Av
er
ag
e
no
n-
St
an
da
rd
ne
ss

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag
e
no
n-
St
an
da
rd
ne
ss

Ra
tio

Experiment
'Unitary' bound
'Var-max' bound
'Loss-only' bound

Figure 6.11.: Deep network convergence of covariance on toy dataset. (Left) Each line shows the
experimental convergence of S via the repeated application of proposition 6.6, averaged over 32 runs with
different rotations Q. (Right) The empirical convergence rate (blue), i.e. the ratio of S before and after
a block, is correctly bounded from above by our predictions in theorem 6.7 (orange), and the bounds in
theorem 6.8: Equation (6.31) (green) and equation (6.32) (red). The solid lines show the ratio (bounds)
averaged over the toy dataset and rotations, the shade is the IQR. The experiment suggests that a convergence
rate like theorem 6.9 can also be derived for the remaining bounds.

about the non-Standardness per dimension S/D. Then keep the variance and the maximum of
covariance eigenvalues fixed. The guarantee is then approximately constant in D, it varies slightly with
D2/(D2 +D − 2), which is always close to 1.

Deep network guarantee

The previous results were concerned with determining how much a single coupling block can typically
contribute towards reducing the non-Standardness S to zero. Now, we extend this result to compute
the expected non-Standardness after a deep coupling-based normalizing flow as an explicit function of
the number of blocks. We again treat the rotation layer of each block as a random variable, as it is
randomly determined before training.

We find that the convergence rate of the covariance to the identity is (at least) linear:

Theorem 6.9 (Deep coupling flow bound, proof in appendix A.7.4). Given D-dimensional data with
covariance Σ Given D-dimensional data with covariance Σ fulfilling assumptions 6.1 and 6.2. Then,
after Lcpl coupling blocks, the expected loss is smaller than:

EQ1,...,QLcpl
∈O(D)[S(0,ΣLcpl

)] ≤ γ(S(0,Σ))LcplS(0,Σ), (6.34)

where the convergence rate depends on the non-Standardness before training:

γ(S) = 1 +
1

4S/D
log

1− D2

(D − 1)(D + 2)

1−
√

1− g(S)D

1 +
√

1− g(S)D

(
1− g(S)

) < 1. (6.35)

The non-Standardness decreases at least exponentially fast in the number of blocks. The con-
vergence rate that holds for a deep network is computed using the non-Standardness of the input
data S(0,Σ). This rate comes from equation (6.32). The proof uses that γ(S) improves from block to
block as S decreases (see appendix A.7.4). Again, g(S) = exp(−2S/D) < 1 is the geometric mean of
eigenvalues of Σ, which increases from block to block.

6.3. Coupling blocks 67

Figure 6.11 shows the convergence of the non-Standardness to zero in an experiment. We build a toy
dataset of various covariances, where we aim to capture a plethora of possible cases (see appendix B.4.4).
We apply a single coupling block with random Q and the coupling that maximally reduces S via
proposition 6.6. We iteratively add such blocks 32 times, building a flow of that depth. The resulting
convergence of S as a function of depth is averaged over 32 runs with different rotations. The measured
curve confirms theorem 6.9. We find that the rate γ in equation (6.35) is correct, but several experiments
show even faster convergence in practice. Indeed, the experiments suggest that dividing all upper
bounds for E[S(0, Σ̃)] in theorems 6.7 and 6.8 by S(0,Σ) also bounds the non-Standardness ratio for
subsequent blocks. Formally, we conjecture that E[S(0,ΣLcpl

)]/S(0,Σ) ≤ (B/S(0,Σ))Lcpl where B is
the rhs. of equations (6.29) and (6.31) (theorem 6.9 shows exactly this for equation (6.32)). We leave a
proof or falsification of this conjecture open to future work.

The bounds evaluated for the experimental covariances also suggest that all bounds agree after a
few blocks, leaving only a small gap to the actual experiment. We can explicitly compute this limit
value of γ(S) by taking S → 0:

γ(S)
S→0−−−→ D(D + 2)− 4

2(D − 1)(D + 2)
∈
[
1/2, 5/9

]
. (6.36)

The two experimental observations together with this limit value suggest the heuristic that a single
additional coupling block typically reduces the non-Standardness S by a factor of approx-
imately 50% if previous blocks are left unchanged, and possibly faster if cooperations between blocks
are considered.

This following result was derived in Draxler et al. (2023).
In terms of how many layers are required to reduce the non-Standardness by a prescribed factor,

we can condense theorem 6.9 to have the same format as theorem 6.3:

Corollary 6.10 (Coupling guarantee for low loss, proof in appendix A.6.6). Given a multivariate
Gaussian distribution p(x) = N (0,Σ). The initial loss S is given by equation (6.10). Then, in the case
S ≪ 1, 1≪ D, the loss after Lcpl iterative coupling blocks with random rotations is at most:

EQ1...L∈O(D)[S
(Lcpl)] ≲

(
1

2

)Lcpl

S. (6.37)

In parallel to the previous result for Gaussianization in equation (6.16), we derive how many
coupling blocks are required to reduce the loss by a factor γ = S/E[S̃(Lcpl)]:

Lcpl ≲
log(γ)

log(2)
= O(1). (6.38)

6.3.3. Minimum number of layers

Like for Gaussianization, we are interested in deriving how many layers are required to fit the covariance
and in particular how this number changes as the dimension of the data varies.

Applying the same parameter counting argument as in theorem 6.4 for Gaussianization blocks to
coupling blocks yields a first glance on how many coupling blocks are required to fit p(x) = N (0,Σ):

Corollary 6.11 (Exact representation with coupling blocks, proof in appendix A.7.5). Given a
multivariate Gaussian distribution p(x) = N (0,Σ) under assumption 6.3. To exactly represent p(x), at
least

Lcpl ≥ 2 ∈ Ω(1) (6.39)

coupling blocks with random rotations Q ∈ O(D) are required almost surely.

68 6. Convergence rates of invertible neural network blocks

This result says that the number of coupling blocks required to represent N (0,Σ) is independent
of dimension, or worse.

Just like corollary 6.11 gives a lower bound on the number of blocks required, Koehler et al. (2021,
Theorem 2) provide an upper bound, which we condense for simplicity:

Theorem 6.12 (Koehler et al. (2021)). Given a multivariate Gaussian distribution p(x) = N (0,Σ). To
exactly represent p(x), at most Lcpl ≤ 48 ∈ O(1) coupling blocks with block permutations are required.

This ensures that at most 48 blocks or O(1) are required to fit a Gaussian exactly p(x) = N (0,Σ).
While this may seem like a large number, the result crucially ensures that the number of required
blocks is independent of the dimension. In the statement, block permutations refer to all rotations
switching all active and passive dimensions:

Q =

[
0 ID/2

ID/2 0

]
. (6.40)

Odd and even layers each modify one half of the dimensions respectively. This is a popular choice in
practice.

Together, corollary 6.11 and theorem 6.12 state that for exactly representing N (0,Σ), Θ(1) coupling
layers are required.

6.3.4. Conclusion

To the best of our knowledge, this is the first work on coupling-based normalizing flows that provides a
quantitative convergence analysis in terms of the KL divergence. Specifically, a minimal convergence
rate is established at which flows whiten the covariance of the input data under this strong measure
of discrepancy of probability distributions. Splitting the loss into the non-Gaussianity G and the
non-Standardness S, we show that this whitening is a necessary condition for the flow to converge and
give explicit guarantees. Our derivations suggest the rule of thumb that S can typically be reduced by
about 50% per coupling block.

Our central idea was to separate out the contribution a single isolated block can make to reduce the
loss. Then, we combine the effect of many isolated blocks, disregarding potential further improvements
to S due to joint, cooperative learning of all blocks. This simplifies the theoretical analysis, but it is
not a restriction on the model: Any function that is achieved in block-wise training could also be the
solution of end-to-end training.

6.4. Architecture comparison

Together, sections 6.2 and 6.3 draw a compelling picture of the behavior of different invertible block
architectures. Theorems 6.3, 6.4 and 6.12 and corollaries 6.10 and 6.11 imply that the number of the
different invertible layers required to learn the first two moments of the input scales as follows with
dimension D:

Gaussianization: Lgzn= Ω(D), (6.41)

Coupling: Lcpl = Θ(1), (6.42)

Autoregressive: Lar = 1. (6.43)

We did not explicitly derive the scaling of the autoregressive layer, but the result immediately follows
from the Knothe-Rosenblatt rearrangement that any distribution can be represented by an expressive
enough autoregressive layer (Rosenblatt, 1952; Knothe, 1957).

6.4. Architecture comparison 69

This suggests that coupling blocks lie in a sweet spot between expressivity and computational
efficiency – only a constant factor away from autoregressive blocks, despite the greatly improved
inference speed by removing the sequential sampling. The central advantage over Gaussianization is
that they can model dependencies between dimensions in a constant number of blocks.

The same Lrec = Θ(1) holds for recursive coupling layers such as HINT (Kruse et al., 2021), and
they can achieve Lrec = 1 if the dimension is a power of 2. However, this again comes at the cost of a
sequential sampling scheme in each layer and the maximum number of hierarchies K = log2D has to
be used.

In terms of wall clock time, let’s estimate the number of required floating-point operations (FLOPs).
Both Gaussianization and coupling layers have to evaluate the coupling functions c(ai; θi), so evaluating
them once for each dimension yields O(D) FLOPs. A coupling block requires the computation of
the active parameters θ = ψ(b) by a neural network for a coupling block. This scales as O(D2) from
the scaling of a matrix-vector product if the number of hidden dimensions is scaled linearly with
dimension (a common choice). However, both layers are concatenated with a rotation layer, which
involves multiplication of a vector with a D ×D matrix, so both kinds of invertible block overall scale
as O(D2). Overall, this makes coupling flows scale a power of dimension D faster with dimension, as
they require fewer blocks.

We hope that the results developed here and leveraged from existing work will be helpful for
the generative model community at large. In particular, deriving useful quantities for arbitrary
distributions p(x) is often difficult. Given that the above results correlate with empirical findings for
Gaussianization (Dai & Seljak, 2021) and coupling blocks (Kingma & Dhariwal, 2018), a statement on
a simple distribution such as a Gaussian can be a useful indicator for the general behavior of the model
in terms such as the sample complexity and generalization, and its relation to learning the underlying
neural network.

7. Free-form neural networks as normalizing flows

In the previous chapters, we were concerned with the expressivity and efficiency of existing neural
networks invertible by design. However, being able to represent the distribution of interest is not
the only requirement for a successful application. As argued in chapter 2, it is often helpful to
incorporate prior knowledge in the form of inductive biases and strict constraints into the neural
network architecture.

For example, convolutional neural networks or patched-based approaches are essential for success-
fully training on image data. However, this is not apparent from a representational perspective: A
large enough fully-connected network can represent any convolutional network by carefully copying the
weights, but this is not the case vice versa (dAscoli et al., 2019). The solution to this paradox is that
architecture biases guide the learning process, ensuring that the model captures relevant patterns.

In addition, some useful architectures are incompatible to be used with coupling layers, for example
if the learned distribution should be invariant under rotations of the input: p(Qx) = p(x). Even if
some constructions can be implemented as invertible neural network blocks, developing specialized
architectures is time-consuming and increases complexity.

This strongly suggests that there is a need for streamlining the process of building normalizing
flows based on arbitrary architectures. This has been achieved previously by parameterizing an
invertible function via an ordinary differential equation (ODE), see section 4.3.2. However, this
approach makes sampling from the resulting pθ(x) more expensive because it involves solving the ODE
in equation (4.29).

In this chapter, we overcome this limitation and allow training arbitrary neural network architec-
tures as normalizing flows for the first time. We call the approach free-form flows (FFF) and provide
all details in section 7.1. We then consider two variants of free-form flows in the context of data on
manifolds: If the manifold of the data is known, we adapt free-form flows to manifold free-form flows
(M-FFF, section 7.2), which learn a distribution on that known manifold while respecting its topology.
To the best of our knowledge, M-FFFs are the first non-specialized generative model on manifolds that
sample in a single evaluation of the underlying neural network. If that manifold is unknown, free-form
injective flows (FIF, section 7.3) jointly learn a subspace and the distribution of the data projected to it.
The code to reproduce the experiments is publicly available at https://github.com/vislearn/FFF.

7.1. Full-dimensional free-form flows (FFF)

This section is adapted from Draxler et al. (2024a), see the list of individual contributions in chapter 3.

In this section, we contribute an approach that frees full-dimensional normalizing flows from
their conventional architectural confines, simplifying the development of normalizing flows. The key
methodological innovations are twofold: We derive a novel efficient estimator for computing the gradient
of the volume change log |f ′θ(x)| in the change-of-variables in equation (4.1). This allows training
normalizing flows based on architectures whose volume change is not readily available. We then replace
invertible neural networks (INNs), which jointly parameterize functions fθ(x) and their analytical
inverse f−1

θ (z), by a pair of arbitrary networks fθ(x) and gφ(z), where gφ(z) approximates the inverse
function f−1

θ (z). These networks can be freely chosen, depending on the task at hand.

In molecule generation, where rotational invariance of the learned distribution has proven to be

https://github.com/vislearn/FFF

72 7. Free-form neural networks as normalizing flows

Samples:

Decoder gϕLatent p(z)Encoder fθ

Lg
NLL

<latexit sha1_base64="PySJSFi+x+x2V2SjdEtLHp19/1k=">AAAC7XichVHLShxBFD12THwlcZIs3QwOgquhJ4i6FF9kYUTBUcERqe4px2KqH1TXCKaZvT/gTrLNLtvkV/RbXHiqbIVExGqq773n3nvqPqJcq8KG4c1I8Gb07bux8YnJqfcfPk7XPn3eL7KBiWU7znRmDiNRSK1S2bbKanmYGymSSMuDqL/m/Afn0hQqS/fsRS6PE9FL1amKhSV0UpvtWKW7suwkwp7FQpdbw+HJg2WScnvLmbVG2Az9qT9XWpXSQHV2stotOugiQ4wBEkiksNQ1BAp+R2ghRE7sGCUxQ015v8QQk8wdMEoyQhDt89+jdVShKW3HWfjsmK9oXsPMOuZ4Nz1jxGj3qqReUN7x/vBY78UXSs/sKrygjMg44Rm/E7c4Y8RrmUkV+VjL65muK4tTLPtuFOvLPeL6jJ941ukxxPreU8eGj+yRI/L2OSeQUrZZgZvyI0Pdd9ylFF5Kz5JWjIJ8htJNn/Vwza3/l/pc2f/abC02F3YXGiur1cLHMYNZzHOrS1jBN+ywjhiX+I0/+BtkwVVwHfx8CA1Gqpwv+OcEv+4B1uCeDw==</latexit>

L̃NLL

<latexit sha1_base64="RC9ZapzwYYy8V4JmE5MwicSgnqw=">AAAC6HichVFNSxtRFD0ZbU3SD6NdSiE0FLoKkyLqUrQWFxZSaDSQhPDm+RLHzBdvXgQ7ZOUf6K64dedWf037W7romeek0ErJG97ce8+997z74SWBnxrX/VFylpafPF0pV6rPnr94uVpbWz9O46mWqiPjINZdT6Qq8CPVMb4JVDfRSoReoE68yX7uP7lQOvXj6Iu5TNQgFOPIH/lSGELD2ut+KMyZFEF2NBtm1tBhppWMo+ZsNqw13KZrT/2x0iqUBorTjms/0ccpYkhMEUIhgqEeQCDl10MLLhJiA2TENDXf+hVmqDJ3yijFCEF0wv+YVq9AI9o5Z2qzJV8JeDUz63jL+9EyeozOX1XUU8pfvF8tNv7vC5llziu8pPTIWLGMn4gbnDFiUWZYRM5rWZyZd2Uwwo7txmd9iUXyPuUfng/0aGIT66njwEaOyeFZ+4ITiCg7rCCf8pyhbjs+pRRWKssSFYyCfJoynz7r4Zpb/y71sXL8vtnaam5+3mzs7hULL2MDb/COW93GLg7RZh0SV7jFHe6dc+eb8925fgh1SkXOK/x1nJvf+mub1g==</latexit>Lrecon.R

Input Reconstruction

Training:

Figure 7.1.: Free-form flows (FFF) train a pair of encoder and decoder neural networks with a fast maximum
likelihood estimator Lg

NLL and reconstruction loss LR. This enables training any dimension-preserving
architecture as a one-step generative model. For example, an equivariant graph neural network can be
trained on the QM9 dataset to generate molecules by predicting atom positions and properties in a single
decoder evaluation. (Bottom) Stable molecules sampled from our E(3)-FFF trained on the QM9 dataset for
several molecule sizes.

a crucial inductive bias, our approach outperforms traditional normalizing flows and generates valid
samples more than an order of magnitude faster than previous approaches. Further, experiments in
simulation-based inference (SBI) underscore the model’s versatility. We find that our training method
achieves competitive performance with minimal fine-tuning requirements.

In summary, our contributions are as follows:

▶ We remove all architectural constraints from normalizing flows by introducing maximum-likelihood
training for free-form architectures. We call our model the free-form flow (FFF), see figure 7.1
and section 7.1.3.

▶ We demonstrate competitive performance with minimal fine-tuning on inverse problems and molecule
generation benchmarks, outperforming ODE-based models in the latter. Compared to a diffusion
model, our model produces stable molecules more than two orders of magnitude faster. See
section 7.1.4.

7.1.1. Related Work

Normalizing flows traditionally rely on specialized architectures that are invertible and have a manage-
able Jacobian determinant. We listed the predominant approaches in section 4.3 and here give a short
overview over their properties in comparison to free-form flows.

One body of work builds invertible architectures by concatenating simple layers (coupling blocks)
each of which are easy to invert analytically and have a triangular Jacobian, which makes computing
the volume change easy (Dinh et al., 2015). Many choices for coupling blocks have been proposed, see
section 4.3.1. For computing the gradient of the volume change in the change-of-variables, we propose
a novel estimator that is also compatible with previous architectures, albeit exhibiting a larger variance.
Instead of analytical invertibility, free-form flows rely on a reconstruction loss to enforce approximate
invertibility between two networks that do not share weights.

Another line of work ensures invertibility by using a ResNet structure and limiting the Lipschitz
constant of each residual layer (Behrmann et al., 2019; Chen et al., 2019). Neural ODEs or continuous

7.1. Full-dimensional free-form flows (FFF) 73

normalizing flows (Chen et al., 2018b; Grathwohl et al., 2019) take the continuous limit of ResNets,
guaranteeing invertibility under mild conditions. These models can become expensive due to the
restriction of each layer. In addition, the Jacobian determinant must be estimated, adding overhead.
Like these methods, we must estimate the gradient of the Jacobian determinant, but we propose a more
efficient estimator. Flow Matching (Lipman et al., 2023; Liu et al., 2023a; Albergo & Vanden-Eijnden,
2023) avoids these limitations at training time, but still involves an expensive multistep sampling
process at inference time. By construction, our approach consists of a single model evaluation, and we
put no constraints on the architecture apart from inductive biases indicated by the task at hand.

Two interesting methods (Gresele et al., 2020; Keller et al., 2021) compute or estimate gradients
of the Jacobian determinant but are severely limited to architectures with exclusively square weight
matrices and no residual blocks. We have no architectural limitations besides preserving dimension.
Intermediate activations and weight matrices may have any dimension and any network topology is
permitted.

The gradient estimator closest to our method uses conjugate gradient to estimate the inverse
Jacobian Caterini et al. (2021), which we replace with the Jacobian of the inverse. We also generalize
to combining the gradient estimator with arbitrary feed-forward neural networks.

7.1.2. Gradient trick

We first derive how to efficiently estimate the gradient of the maximum-likelihood loss in equation (4.4),
even if the architecture does not yield an efficient way to compute the change of variables term log |f ′θ(x)|.
We avoid this computation by estimating the gradient of log |f ′θ(x)| via a pair of vector-Jacobian and
Jacobian-vector products, which are readily available in standard automatic differentiation software
libraries.

Gradient via trace estimator The crucial insight enabling fast gradient computation of the volume
change log |f ′θ(x)| is that its gradient can be computed via a trace:

Theorem 7.1 (Free-form flow volume change gradient, proof in appendix A.8). Let fθ : RD → RD be
a diffeomorphism parameterized by θ. Then, for all x ∈ RD and z = fθ(x):

∇θ log |f ′θ(x)| = tr

(
(∇θf ′θ(x))(f−1

θ

′
(z))

)
= Ev

[
vT(∇θf ′θ(x))(f−1

θ

′
(z))v

]
, (7.1)

The proof follows directly by applying Jacobi’s formula and using that the matrix inverse of the
Jacobian is the Jacobian of the inverse function (f ′θ)

−1 = f−1
θ

′
. We then replace the trace via the

Hutchinson trace estimator, where the random vector v ∈ RD must have unit covariance (Hutchinson,
1989).

Efficient computation via automatic differentiation We approximate the expectation over v by a
Monte Carlo sample (omitting the dependence on x and z for simplicity):

Ev
[
vT(∇θf ′θ)(f−1

θ

′
)v

]
≈ 1

K

K∑
k=1

vTk (∇θf ′θ)f−1
θ

′
vk. (7.2)

Now all we require is computing dot products of the form vTk (∇θf ′θ) and f−1
θ

′
vk.

Since vTk is independent of θ, we can draw it into the gradient vTk (∇θf ′θ) = ∇θ(vTk f ′θ). The term to
take the gradient of is a vector-Jacobian product. It can be readily computed via backward automatic
differentiation, for example via PyTorch’s torch.func.vjp or torch.autograd.grad (Paszke et al.,

74 7. Free-form neural networks as normalizing flows

2019). Similarly, the Jacobian-vector product f ′−1
θ vk is readily available via forward automatic

differentiation, for example using torch.func.jvp.

To implement the final gradient with respect to the flow parameters θ, we draw the derivative
with respect to parameters out of the trace, making sure to prevent gradient from flowing to f ′−1

θ by
wrapping it in a stop-gradient operation SG, for example via PyTorch’s tensor.detach():

1

K

K∑
k=1

vTk (∇θf ′θ)f−1
θ

′
vk = ∇θ

1

K

K∑
k=1

vTk f
′
θSG(f−1

θ

′
vk). (7.3)

Summary The above argument shows that

∇θ log |f ′θ(x)| ≈ ∇θ
1

K

K∑
k=1

vTk f
′
θSG(f−1

θ

′
vk), (7.4)

Instead of computing the full Jacobian f ′θ(x), which involved as many backpropagation steps as
dimensions, we are left with computing just one vector-Jacobian product and one Jacobian-vector
product for each k. In practice, we find that setting K = 1 is sufficient, and we drop the summation
over k in the following. We provide an ablation study on the effect of K in appendix B.5.3.

This yields the following maximum likelihood training objective, whose gradients are an unbiased
estimator for the true gradients from exact maximum likelihood as in equation (4.4):

∇θLf
−1

NLL = ∇θEx,v[− log p(fθ(x))− vTf ′θSG(f ′−1
θ v)]. (7.5)

This result enables training normalizing flow architectures with a tractable inverse function, but whose
Jacobian determinant is not easily accessible. We now move on to show how this gradient estimator
can be used to train any neural network architecture as a normalizing flow.

7.1.3. Free-Form Flows (FFF)

The previous section assumed that we have access to both fθ and its analytic inverse f−1
θ . We now

drop the assumption that fθ is invertible and replace its inverse f−1
θ by a separate neural network

gφ ≈ f−1
θ . Instead, we regularize these properties via a reconstruction loss:

LR = 1
2Ex[∥x− gφ(fθ(x))∥2]. (7.6)

This removes all architectural constraints from fθ and gφ except from preserving the dimension.

The replacement gφ ≈ f−1
θ leads to a modification of Lf−1

NLL, where we replace f ′−1
θ by g′φ, where

g′φ is shorthand for the Jacobian of gφ evaluated at fθ(x):

∇θLgNLL = ∇θEx,v[− log p(fθ(x))− vTf ′θSG(g′φv)] (7.7)

Combining this with the reconstruction loss leads to the following optimization:

∇θ,φLg = ∇θ,φ(LgNLL + βLR) (7.8)

where the two terms are traded off by a hyperparameter β. See algorithm 2 for a reference implemen-
tation.

7.1. Full-dimensional free-form flows (FFF) 75

Algorithm 2 FFF loss function. Vector-Jacobian product = vjp; Jacobian-vector product = jvp.
Time and space complexity are O(D).

Function Loss(x, fθ, gφ, β)
v ∼ p(v) {E[vvT] = I}
z, vf ← vjp(fθ, x, v) {z = fθ(x), vTf = vTf ′θ(x)}
x̂, vg ← jvp(gφ, z, v) {x̂ = gφ(z), vg = g′φ(z)v}
LgNLL ← 1

2∥z∥2 − vTf SG(vg) {stop gradient to vg}
LR ← ∥x̂− x∥2
Lg ← LgNLL + βLR
return Lg

Likelihood Calculation

Once training is completed, our generative model involves sampling from the latent distribution and
passing the samples through the decoder gφ.

To calculate the likelihoods induced by gφ, we can use the change of variables formula:

pφ(X = x) = p(Z = g−1
φ (x))|g′φ(g−1

φ (x))| ≈ p(Z = fθ(x))|g′φ(fθ(x))| (7.9)

where the approximation is due to g−1
φ ≈ fθ. See algorithm 3 for a reference implementation. In

the paper underlying this section, Peter Sorrenson derived additional justification for using free-form
architectures and the combination of maximum likelihood with a reconstruction loss (Draxler et al.,
2024a).

Algorithm 3 FFF likelihood calculation: returns an approximation of log pφ(x). Time complexity is
O(D3) and space complexity is O(D2).

Function LogLikelihood(x, fθ, gφ)
z ← fθ(x)
g′φ ← jacobian(gφ, z) {where g′φ = ∂

∂zgφ(z)}
ℓ← −1

2∥z∥2 − D
2 log(2π) + log |g′φ| {see change of variables in equation (4.1)}

return ℓ

7.1.4. Experiments

In this section, we demonstrate the practical capabilities of free-form flows (FFF). We compare the
performance against normalizing flows based on architectures which are invertible by construction.
First, on an inverse problem benchmark, we show that using free-form architectures offers competitive
performance to recent spline-based and ODE-based normalizing flows. This is achieved despite minimal
tuning of hyperparameters, demonstrating that FFFs are easy to adapt to a new task. Second, on
two molecule generation benchmarks, we demonstrate that specialized networks can now be used in a
normalizing flow. In particular, we employ the equivariant graph neural networks E(n)-GNN (Satorras
et al., 2021b). This E(n)-FFF outperforms ODE-based equivariant normalizing flows in terms of
likelihood, and generates stable molecules significantly faster than a diffusion model.

Simulation-Based Inference

One popular application of generative models is in solving inverse problems. Here, the goal is to
estimate hidden parameters from an observation. As inverse problems are typically ambiguous, a

76 7. Free-form neural networks as normalizing flows

Figure 7.2.: C2ST accuracy on the SBI benchmark datasets (lower is better). We compare our method
(FFF) against flow matching (FM) (Wildberger et al., 2023) and the neural spline flow (NSF) baseline in
the benchmark dataset (Lueckmann et al., 2021). The accuracy is averaged over ten different observations,
with error bars indicating the standard deviation. Our performance is comparable to the competitors across
all datasets, with no model being universally better or worse.

103 104 105
0.5
0.6
0.7
0.8
0.9
1.0

C2
ST

bernoulli_glm

103 104 105

bernoulli_glm_raw

103 104 105

gaussian_linear

103 104 105

gaussian_linear_uniform

103 104 105

gaussian_mixture
FFF (ours)
FM
NSF

103 104 105
0.5
0.6
0.7
0.8
0.9
1.0

C2
ST

lotka_volterra

103 104 105

sir

103 104 105

slcp

103 104 105

slcp_distractors

103 104 105

two_moons

Number of Simulations

probability distribution represented by a generative model is a suitable solution. From a Bayesian
perspective, this probability distribution is the posterior of the parameters given the observation. We
learn this posterior via a conditional generative model.

In particular, we focus on simulation-based inference (SBI, (Radev et al., 2022, 2021; Bieringer
et al., 2021)), where we want to predict the parameters of a simulation. The training data consists of
pairs of parameters (inputs) and measurements (outputs) generated from the simulation.

We train FFF models on the benchmark proposed in (Lueckmann et al., 2021), which comprises
ten inverse problems of varying difficulty at three different simulation budgets (i.e. sizes of the training
set) each. The models are evaluated via a classifier 2-sample test (C2ST) (Lopez-Paz & Oquab, 2017;
Friedman, 2003), where a classifier is trained to discern samples from the trained generative model
and the true parameter posterior. The model performance is then reported as the classifier accuracy,
where 0.5 demonstrates a distribution indistinguishable from the true posterior. We average this
accuracy over ten different observations. In figure 7.2, we report the C2ST of our model and compare
it against the baselines based on neural spline flows (Durkan et al., 2019) and flow matching for SBI
(Wildberger et al., 2023). Our method performs competitively, especially providing an improvement
over existing methods in the regime of low simulation budgets. Regarding tuning of hyperparameters,
we find that a simple fully-connected architecture with skip connections works across datasets with
minor modifications to increase capacity for the larger datasets. We identify the reconstruction weight
β large enough such that training becomes stable. We give all dataset and more training details in
appendix B.5.1.

Molecule Generation

Free-form flows (FFF) do not make any assumptions about the underlying networks fθ and gφ, except
that they preserve dimension. We can leverage this flexibility for tasks where explicit constraints should
be built into the architecture, as opposed to constraints that originate from the need for tractable
invertibility (such as coupling blocks).

As a showcase, we apply FFF to molecule generation. Here, the task is to learn the joint
distribution of a number of atoms x1, . . . , xN ∈ Rn. Each prediction of the generative model should
yield a physically valid position for each atom: x = (x1, . . . , xN) ∈ RN×n.

The physical system of atoms in space have an important symmetry: if a molecule is shifted or
rotated in space, its properties do not change. This means that a generative model for molecules should

7.1. Full-dimensional free-form flows (FFF) 77

yield the same probability regardless of orientation and translation:

pφ(Qx+ t) = pφ(x). (7.10)

Here, the rotation Q ∈ Rn×n acts on x by rotating or reflecting each atom xi ∈ Rn about the origin,
and t ∈ Rn applies the same translation to each atom. Formally, (Q, t) are realizations of the Euclidean
group E(n). The above equation (7.10) means that the distribution pφ(x) is invariant under the
Euclidean group E(n).

If the latent distribution p(z) is invariant under a group G, and a generative model gφ(z) is
equivariant to G, then the resulting distribution is also invariant to G (Köhler et al., 2020). Equivariance
means that applying any group action to the input (e.g. rotation and translation) and then applying
gφ should give the same result as first applying gφ and then applying the group. For example, for the
Euclidean group:

Qgφ(z) + t = gφ(Qz + t). (7.11)

This implies that we can learn a distribution invariant to the Euclidean group by making the
normalizing flows equivariant to the Euclidean group, as in equation (7.11). Previous work has
demonstrated that this inductive bias is more effective than data augmentation, where random
rotations and translations are applied to each data point at train time (Köhler et al., 2020; Hoogeboom
et al., 2022).

We therefore choose an E(n) equivariant network as the networks fθ(x) and gφ(z) in our FFF.
We employ the E(n)-GNN proposed by Satorras et al. (2021b). We call this model the E(n)-free-form
flow (E(n)-FFF). We give the implementation details in appendix B.5.2.

The E(n)-GNN has also been the backbone for previous normalizing flows on molecules. However,
to the best of our knowledge, all realizations of such architectures have been based on neural ODEs,
where the flow is parameterized as a differential equation dx

dt = fθ(x(t), t). While training, one can avoid
solving the ODE by using the flow matching objective (Liu et al., 2023a; Lipman et al., 2023; Albergo
& Vanden-Eijnden, 2023). However, they still have the disadvantage that they require integrating the
ODE for sampling. Our model, in contrast, only calls gφ(z) once for sampling.

Boltzmann Generator We test our E(n)-FFFs in learning a Boltzmann distribution:

p(x) ∝ e−βu(x), (7.12)

where u(x) ∈ R is an energy function that takes the positions of atoms x = (x1, . . . , xN) as an input. A
generative model pφ(x) that approximates p(x) can be used as a Boltzmann generator (Noé et al., 2019).
The idea of the Boltzmann generator is that having access to u(x) allows re-weighting samples from
the generator after training even if pφ(x) is different from p(x). This allows computing expectation

values Ex∼p(x)[O(x)] = Ex∼pφ(x)[
p(x)
pφ(x)

O(x)] from samples of the generative model pφ(x) if pφ(x) and

p(x) have the same support.

We evaluate the performance of free-form flows (FFF) as a Boltzmann generator on the benchmark
tasks DW4, LJ13, and LJ55 (Köhler et al., 2020; Klein et al., 2023). Here, pairwise potentials v(xi, xj)
are summed as the total energy u(x):

u(x) =
∑
i,j

v(xi, xj). (7.13)

DW4 uses a double-well potential vDW and considers four particles in 2D. LJ13 and LJ55 both employ a
Lennard-Jones potential vLJ between 13 respectively 55 particles in 3D space (see appendix B.5.2 for

78 7. Free-form neural networks as normalizing flows

Table 7.1.: Equivariant free-form flows (E(n)-FFF) sample significantly faster than previous models, and
achieve comparable or better negative log-likelihood (NLL, lower is better). More details in table B.5.

NLL (↓) Sampling time (↓)
DW4

E(2)-NF (Satorras et al., 2021a) 1.72 ± 0.01 0.024 ms
OT-FM (Klein et al., 2023) 1.70 ± 0.02 0.034 ms
E-OT-FM (Klein et al., 2023) 1.68 ± 0.01 0.033 ms
E(2)-FFF (ours) 1.68 ± 0.01 0.026 ms

LJ13

E(3)-NF -16.28 ± 0.04 0.27 ms
OT-FM -16.54 ± 0.03 0.77 ms
E-OT-FM -16.70 ± 0.12 0.72 ms
E(3)-FFF (ours) -17.09 ± 0.16 0.11 ms

LJ55

OT-FM -88.45 ± 0.04 40 ms
E-OT-FM -89.27 ± 0.04 40 ms
E(3)-FFF (ours) -88.72 ± 0.16 2.1 ms

details). We make use of the datasets presented by Klein et al. (2023), which obtained samples from
p(x) via MCMC.1

In table 7.1, we compare our model against (i) the equivariant ODE normalizing flow trained with
maximum likelihood E(n)-NF (Satorras et al., 2021a), and (ii) two equivariant ODEs trained via optimal
transport (equivariant) flow matching (Klein et al., 2023). We find our model to have comparable or
better negative log-likelihood than competitors. In addition, E(n)-FFFs sample significantly faster
than competitors because our model needs to evaluate the learned network only once, as opposed to
the multiple evaluations required to integrate an ODE.

QM9 Molecules As a second molecule generation benchmark, we test the performance of E(3)-FFF
in generating novel molecules. We therefore train on the QM9 dataset (Ruddigkeit et al., 2012;
Ramakrishnan et al., 2014), which contains molecules of varying atom count, with the largest molecules
counting 29 atoms. The goal of the generative model is not only to predict the positions of the atoms
in each molecule x = (x1, . . . , xN) ∈ R3, but also each atom’s properties hi (atom type (categorical),
and atom charge (ordinal)). We dequantize atom properties via an argmax flow (Hoogeboom et al.,
2021) and learn a distribution p(x, h).

We again employ the E(3)-GNN (Satorras et al., 2021b). The part of the network that acts on
coordinates xi ∈ R3 is equivariant to rotations, reflections and translations (Euclidean group E(3)).
The network leaves the atom properties h invariant under these operations.

We show samples from our model in figure 7.1. Because free-form flows only need one network
evaluation to sample, they generate two orders of magnitude more stable molecules than the E(3)-
diffusion model (Hoogeboom et al., 2022) and one order of magnitude more than the E(3)-normalizing
flow (Satorras et al., 2021a) in a fixed time window, see table 7.2. This includes the time to generate
unstable samples, which are discarded. A molecule is called stable if each atom has the correct
number of bonds, where bonds are determined from inter-atomic distances. E(3)-FFF also outperforms
E(3)-NF trained with maximum likelihood both in terms of likelihood and in how many of the sampled
molecules are stable. See appendix B.5.2 for implementation details.

1Datasets available at: https://osf.io/srqg7/?view_only=28deeba0845546fb96d1b2f355db0da5

https://osf.io/srqg7/?view_only=28deeba0845546fb96d1b2f355db0da5

7.2. Manifold free-form flows on a known Riemannian manifold (M-FFF) 79

Table 7.2.: E(3)-FFF trained on QM9 generates a stable molecule faster than previous models because a
sample is obtained via a single function evaluation. E(3)-DM is the E(3)-diffusion model, E(3)-NF the
E(3)-normalizing flow. The latter is also trained explicitly using maximum likelihood, yet outperformed by
E(3)-FFF in terms of negative log-likelihood (NLL) and what ratio of generated molecules is stable.

NLL (↓) Stable (↑) Sampling time (↓)
Raw Stable

E(3)-NF (Satorras et al., 2021a) -59.7 4.9 % 13.9 ms 309.5 ms
E(3)-DM (Hoogeboom et al., 2022) -110.7 82.0 % 1580.8 ms 1970.6 ms
E(3)-FFF (ours) -76.2 8.7 % 0.6 ms 8.1 ms

Data - 95.2 % - -

7.1.5. Conclusion

In this section, we presented free-form flows (FFF), a new paradigm for normalizing flows that

signficantly broadens what architectures can be trained efficiently as normalizing flows: First, Lf−1

NLL

enables training architectures that are invertible yet lack a tractable Jacobian determinant. Second,
learning a separate generator network allows training arbitrary architectures as normalizing flows via
LgNLL.

On the practical side, we first confirm that free-form flows with a vanilla architecture is able to
solve SBI tasks effectively, with no clear winner compared to expressive normalizing flows based on
rational-quadratic splines and flow matching. FFF and flow matching both do not require special
architectures to solve the task. Compared to flow matching, FFF has the advantage that it yields
samples in a single step whereas flow matching requires calling the underlying neural network several
times in order to solve the learned ordinary differential equation.

For the first time, we learn a normalizing flow equivariant to the Euclidean group sampling in a
single function evaluation. The resulting model outperforms previous models trained with maximum
likelihood and is competitive with a model based on diffusion, again at greatly improved inference
speed.

7.2. Manifold free-form flows on a known Riemannian manifold (M-FFF)

This section is adapted from Sorrenson et al. (2023), see the list of individual contributions in chapter 3.

Generative models such as normalizing flows have achieved remarkable success where the data
x ∈ RD is described in Euclidean geometry. However, the approaches are not directly applicable
when dealing with data inherently structured in non-Euclidean spaces, which is common in fields such
as the natural sciences, computer vision, and robotics. Examples include earth science data on a
sphere, the orientation of real-world objects given as a rotation matrix in SO(3), or data on special
geometries modeled by meshes or signed distance functions. Representing such data naively using
internal coordinates, such as angles, can lead to topological issues, causing discontinuities or artifacts.

While many generative models can be adapted to handle data on arbitrary manifolds, the
predominant methods compatible with arbitrary Riemannian manifolds involve solving differential
equations—stochastic (SDEs) or ordinary (ODEs)—for sampling and density estimation (Rozen et al.,
2021; Mathieu & Nickel, 2020; Huang et al., 2022; De Bortoli et al., 2022; Chen & Lipman, 2024).
These methods are computationally intensive due to the need for numerous function evaluations during
integration, slowing down inference.

In this section, we address these challenges by generalizing the free-form flow framework from
section 7.1 to data on arbitrary Riemannian manifolds. This novel approach for modeling distributions

80 7. Free-form neural networks as normalizing flows

Sphere 𝕊2 Torus 𝕋2

Hyperbolic ℍ2 Curved surface

Function in embedding space Project to manifold

Figure 7.3.: Manifold Free-Form Flows (M-FFF) learn generative models on various manifolds.
(Left) The learned distributions (colored surface) accurately match the test points (black dots). (Right) We
parameterize M-FFF using a neural network in an embedding space, whose outputs are projected to the
manifold. This enables simulation-free training and inference, and naturally respects the corresponding
geometry, yielding fast sampling and continuous distributions regardless of the manifold.

on arbitrary Riemannian manifolds circumvents the computational burden of previous methods and is
remarkably simple to adapt to novel manifolds. Again, we use a single feed-forward neural network
on an embedding space as a generator, with outputs projected to the manifold (figure 7.3). The
generalization of the volume change gradient estimator to manifolds is achieved by estimating the
gradient of the negative log-likelihood within the tangent space of the manifold.

In summary, we make the following contributions:

▶ We extend free-form flows to Riemannian manifolds, yielding manifold free-form flows (M-FFF)
in section 7.2.3. It can easily be adapted to arbitrary Riemannian manifolds, requiring only a
projection function from an embedding space.

▶ M-FFF only relies on a single function evaluation during training and sampling, speeding up
inference over multistep methods typically by two orders of magnitude.

▶ M-FFF consistently matches or outperforms previous single-step methods on several benchmarks on
spheres, tori, rotation matrices, hyperbolic space and curved surfaces (see figure 7.3 and section 7.2.4).
In addition, it is competitive with multistep methods.

Together, manifold free-form flows offer a novel and efficient approach for learning distributions on
manifolds, applicable to any Riemannian manifold with a known embedding and projection.

7.2.1. Related work

Existing work on learning distributions on manifolds can be broadly categorized as follows: (i) leveraging
Euclidean generative models; (ii) building specialized architectures that respect one particular kind of
geometry; and (iii) learning a continuous time process on the manifold. We compare our method to
these approaches in table 7.3 and give additional detail below.

Euclidean generative models. One approach maps the n-dimensional manifold to Rn and learns
the resulting distribution (Gemici et al., 2016). Another approach generalizes the reparameterization
trick to Lie groups by sampling on the Lie algebra, which can be parameterized in Euclidean space

7.2. Manifold free-form flows on a known Riemannian manifold (M-FFF) 81

Table 7.3.: Feature comparison of generative models on manifolds. We give a “✓” if any method in a
category meets this requirement.

Respects topology Single step sampling Arbitrary manifolds

Euclidean generative models ✗ ✓ ✓
Specialized architectures ✓ ✓ ✗
Continuous time models ✓ ✗ ✓
M-FFF (ours) ✓ ✓ ✓

(Falorsi et al., 2019). These approaches come with the downside that a Euclidean representation
may not respect the geometry of the manifold sufficiently, e.g. mapping the earth to a plane causes
discontinuities at the poles. This can be overcome by learning distributions on overlapping charts that
together span the full manifold (Kalatzis et al., 2021). An orthogonal solution is to embed the data
and add noise to it in the off-manifold directions so that the distribution can be learned directly in an
embedding space Rm (Brofos et al., 2021); this only provides access to a variational approximation
instead of the exact density. Our method also works in the embedding space so that it respects the
geometry of the manifold, but directly optimizes the likelihood on the manifold.

Specialized architectures take advantage of the specific geometry of a certain kind of manifold
to come up with special coupling blocks for building normalizing flows such as SO(3) (Liu et al., 2023b),
SU(d), U(d) (Boyda et al., 2021; Kanwar et al., 2020); hyperbolic space (Bose et al., 2020); tori and
spheres (Rezende et al., 2020). Manifold free-form flows are not restricted to one particular manifold,
but can be easily applied to any manifold for which an embedding and a projection to the manifold is
known, see table 7.4. As such, our model is an alternative to all of the above specialized architectures.

Continuous time models build a generative model based on parameterizing an ODE or SDE
on any Riemannian manifold, meaning that they specify the (stochastic) differential equation in the
tangent space (Rozen et al., 2021; Falorsi, 2021; Falorsi & Forré, 2020; Huang et al., 2022; Mathieu &
Nickel, 2020; De Bortoli et al., 2022; Chen & Lipman, 2024; Lou et al., 2020; Ben-Hamu et al., 2022).
These methods come with the disadvantage that sampling and density evaluation integrates the ODE
or SDE, requiring many function evaluations. Our manifold free-form flows do not require repeatedly
evaluating the model, a single function call followed by a projection is sufficient.

At its core, our method generalizes the free-form flow (FFF) framework from section 7.1 to
manifolds.

7.2.2. Riemannian manifolds

A manifold is a fundamental concept in mathematics, providing a framework for describing and
analyzing spaces that locally resemble Euclidean space, but may have different global structure. For
example, a small region on a sphere is similar to the Euclidean plane, but walking in a straight line on
the sphere in any direction will return to the starting point, unlike on a plane.

Mathematically, an n-dimensional manifold, denoted as M, is a space where every point has a
neighborhood that is topologically equivalent to Rn. A Riemannian manifold (M, G) extends the
concept of a manifold by adding a Riemannian metric G, which introduces a notion of distances
and angles. At each point x on the manifold, there is an associated tangent space TxM which is an
n-dimensional Euclidean space, characterizing the directions in which you can travel and still stay on
the manifold. The metric G acts in this space, defining an inner product between vectors. From this
inner product, we can compute the length of paths along the manifold, distances between points as
well as volumes (see next section).

Here, we consider Riemannian manifolds globally embedded into an m-dimensional Euclidean
space Rm, with n ≤ m. Embedding means that we represent a point on the manifold x ∈M as a vector

82 7. Free-form neural networks as normalizing flows

Table 7.4.: Manifolds, a global embedding and corresponding projections considered in this work.

Manifold Dimension n Embedding Projection

Generic rank(proj′(proj(x))) {x ∈ Rm : proj(x) = x} x 7→ proj(x)

Rotations SO(d) (d− 1)d/2 {Q ∈ Rd×d : QQT = I, detQ = 1} R 7→ arg minQ∈SO(d) ∥Q−R∥F ; see equation (B.41)

Sphere Sn n {x ∈ Rn+1 : ∥x∥ = 1} x 7→ x/∥x∥
Torus Tn = (S1)n n {X ∈ Rn×2 : ∥Xi∥ = 1 for i = 1...n} Xi 7→ Xi/∥Xi∥ for i = 1...n
Hyperbolic Hn n {x ∈ Rn : ∥x∥ < 1} x 7→ xmin{1, (1− ϵ)/∥x∥}

in Rm confined to an n-dimensional subspace; we write x ∈ M ⊆ Rm and denote by π : Rm → M
a projection from the embedding space to the manifold. A global embedding is a smooth, injective
mapping of the entire manifold into Rm, its smoothness preserving the topology.

In most cases, we work with, but are not limited to, isometrically embedded manifolds, meaning
that the metric is inherited from the ambient Euclidean space. Intuitively, this means that the length
of a path on the manifold is just the length of the path in the embedding space. We note that due
to the Nash embedding theorem (Nash, 1956), every Riemannian manifold has a smooth isometric
embedding into Euclidean space of some finite dimension, so in this sense using isometric embeddings is
not a limitation. Nevertheless, for some manifolds (especially with negative curvature, e.g. hyperbolic
space) there may not be a sensible isometric embedding.

7.2.3. Generalization of free-form flows to manifolds

The free-form flow (FFF) framework allows training any pair of parameterized encoder fθ(x) and
decoder gφ(z) as a generative model. In this section, we demonstrate how to generalize the steps in
section 7.1 to arbitrary Riemannian manifolds. Note that for simplicity, we choose the same manifold
in data and latent spaces, i.e. MX = MZ = M, but the method readily applies to MX ̸= MZ or
GX ̸= GZ as long as they are topologically compatible, like a sphere and a closed surface in 3D without
holes. The detailed derivations in the appendix consider this generalization.

Manifold change of variables The volume change on manifolds generalizes the Euclidean variant in
equation (4.1) by (a) considering the change of volume in the tangent space and (b) accounting for
volume change due to changes in the metric:

Theorem 7.2 (Manifold change of variables, generalized proof in appendix A.9.1). Let (M, G) be
a n-dimensional Riemannian manifold embedded in Rm, i.e., M ⊆ Rm. Let p(x) be a probability
distribution on M and let fθ : M→M be a diffeomorphism. Let pθ(z) be the pushforward of p(x)
under fθ.

Let x ∈M. Define Q ∈ Rm×n as an orthonormal basis for TxM and R ∈ Rm×n as an orthonormal
basis for Tfθ(x)M.

Then, the probability densities pθ(x) and p(z) are related under the following change of variables:

pθ(x) = p(z = fθ(x))|RTf ′θ(x)Q|
√
|RTG(fθ(x))R|
|QTG(x)Q| . (7.14)

where Q and R depend on x and fθ(x), respectively, although this dependency is omitted for brevity.

To give an intuition for this result, figure 7.4 shows how the volume change is computed for
an isometrically embedded manifold, that is G = I so that |RTGR| = |QTGQ| = 1. This simplifies
equation (7.14) to:

pθ(x) = p(z = fθ(x))|RTf ′θ(x)Q|. (7.15)

7.2. Manifold free-form flows on a known Riemannian manifold (M-FFF) 83

Embedding space

θ
θ

θ

Figure 7.4.: Computation of the volume change in the tangent space of the manifold: The manifold change
of variables formula in equation (7.15) requires to compute the change of a volume element in the tangent
spaces under fθ, which in this example is given by the ratio of lengths of dt and dt′. Since f is a map in
the embedding space, f ′θ(x) defines a linear map between vectors from the embedding space. To correctly
compute the change in volume, we use Q and R to change coordinates to the intrinsic tangent spaces,
resulting in the linear map RTf ′θ(x)Q : TxM→ Tfθ(x)M, which maps dt to dt′.

This is very similar to the familiar change of variables formula in the Euclidean case in equation (4.1),
the only difference being that the determinant is evaluated on the n× n projection of f ′θ(x) into the
tangent spaces. These projections are necessary as the Jacobian of f is singular in the embedding
space, since its action is restricted to the local tangent spaces.

Manifold gradient estimator We now generalize the volume change gradient estimator in section 7.1.2
to an invertible function on a manifold fθ :M→M. We find that taking the gradient of the manifold
change of variables in equation (7.14) results in essentially the same computation as in the Euclidean
case, but the trace in is now evaluated in the local tangent space:

Theorem 7.3 (Manifold volume change gradient, generalized proof in appendix A.9.2). Under the
assumptions of theorem 7.2. Let v ∈ Rm be a random variable with zero mean and covariance RRT.
Then, the derivative of the change of variables term has the following trace expression, where z = fθ(x):

∇θ log |RTf ′θ(x)Q| = tr

(
RT(∇θf ′θ(x))f−1

θ

′
(z)R

)
= Ev

[
vT(∇θf ′θ(x))f−1

θ

′
(z)v

]
. (7.16)

This shows that the adaptation of free-form flows for an invertible function fθ to isometrically
embedded manifolds is remarkably simple (if the manifold is not isometrically embedded, add the
corresponding term in equation (7.14)):

∇θLf
−1

M-NLL = ∇θEx,v
[
− log p(z)− vTf ′θ(x)SG[f−1

θ

′
(z)v]

]
. (7.17)

The only change from equation (7.5) is that v must have covariance RRT rather than the identity. We
achieve this by sampling standard normal vectors ṽ ∈ Rm in the embedding space and then projecting
them into the tangent space using the Jacobian of the projection function:

v = proj′(fθ(x))ṽ. (7.18)

84 7. Free-form neural networks as normalizing flows

Constructing v like this fulfills the conditions of theorem 7.3 because Ev[v] = 0, and:

Cov[v] = Eṽ
[
proj′(fθ(x))ṽṽT proj′(fθ(x))T

]
= proj′(fθ(x)) proj′(fθ(x))T = RRT. (7.19)

Equation (7.17) allows training invertible architectures on manifolds even if the volume change
log |RTf ′θ(x)Q| is not tractable.

Free-form manifold-to-manifold neural networks As discussed in the related work in section 7.3.1,
invertible architectures have to be specially constructed for each manifold. To overcome this limitation,
we now soften the constraint that the learned model be analytically invertible. Instead, we learn a pair
of free-form manifold-to-manifold neural networks, an encoder fθ(x) and a decoder gφ(z) as arbitrary
functions on the manifold:

fθ(x) :M→M, gφ(z) :M→M. (7.20)

We choose to fulfill equation (7.20) using feed-forward neural networks f̃θ, g̃φ : Rm → Rm working in
the embedding space Rm of M, but ensure that their outputs lie on the manifold by appending a
projection proj : Rm →M, mapping points from the embedding space Rm to the manifold M:

fθ(x) = proj(f̃θ(x)), gφ(z) = proj(g̃φ(z)). (7.21)

Figure 7.3 illustrates this for an example on a circle M = S1.
Just like in the Euclidean case, we employ a reconstruction loss to make fθ and gφ approximately

inverse to one another:

LR = Epdata [∥gφ(fθ(x))− x∥2]. (7.22)

We measure the distance in the embedding space; one can modify this to use an on-manifold distance
(e.g. great circle distance for the sphere) but we find that ambient Euclidean distance works well in
practice, since it is almost identical for small distances in an isometric embedding.

We now substitute f−1
θ

′
(z) ≈ g′φ(z) in equation (7.17):

∇θ,φLgM-NLL ≈ ∇θ,φEx,v
[
− log p(z)− vTf ′θ(x)SG[gφ

′(z)v]
]
. (7.23)

Regularization and final loss We find that the following two regularizations to the loss improve the
stability and performance of our models. Firstly, the reconstruction loss on points sampled uniformly
from the data manifold:

LU = Ex∼U(M)[∥gφ(fθ(x))− x∥2], (7.24)

helps ensure that we have a globally consistent mapping between the data and latent manifolds in
low data regions. Secondly, the squared distance between the output of f̃θ and its projection to the
manifold:

LP = Epdata(x)[∥f̃θ(x)− fθ(x)∥2] (7.25)

discourages the output of f̃θ from entering unprojectable regions, for example the origin when the
manifold is Sn. The same regularizations can be applied starting from the latent space.

The full loss is:

L = LM−NLL + βRLR + βULU + βPLP (7.26)

where the gradient of LM−NLL is computed using equation (7.23), and βR, βU and βP are hyperparam-
eters. We give our choices in appendix B.6.

7.2. Manifold free-form flows on a known Riemannian manifold (M-FFF) 85

Figure 7.5.: Manifold free-form flows on a synthetic SO(3) mixture distribution with M = 64 mixture
components proposed by De Bortoli et al. (2022). (Left) 10,000 samples each from the ground truth
distribution and (right) our model. This visualization computes three Euler angles, which fully describe
a rotation matrix, and then plot the first two angles on the projection of a sphere and the last by color
(Murphy et al., 2021). We find that our model nicely samples from the distribution with few outliers between
the modes.

7.2.4. Experiments

We now demonstrate the practical performance of manifold free-form flows on various manifolds. We
choose established experiments to ensure comparability with previous methods, and find:

▶ M-FFF matches or outperforms previous single-step methods. M-FFF uses a simple ResNet
architecture, whereas previous methods were specialized to the given manifolds, hindering adoption
to novel manifolds.

▶ M-FFF is competitive with methods sampling in several steps at significantly faster inference speeds.

In our result tables, we mark as bold (a) the best method overall (both single- and multistep), and
(b) the best single-step method. We provide all details necessary to reproduce the experiments in
appendix B.6. We run each experiment multiple times with different data splits and report the mean
and standard deviation of those runs.

Synthetic distribution over rotation matrices The group of 3D rotations SO(3) can be represented
by rotations matrices with positive determinant, i.e., all Q ∈ R3×3 with QTQ = I and detQ = 1. We
choose R3×3 as our embedding space and project to the manifold by solving the constrained Procrustes
problem via SVD (Lawrence et al., 2019), see appendix B.6.2.

We evaluate M-FFF on synthetic mixture distributions proposed by De Bortoli et al. (2022) with
M mixture components for M = 16, 32 and 64. Samples from one of the distributions and samples
from our model are depicted in figure 7.5.

Table 7.5 shows that M-FFF outperforms the normalizing flow developed for SO(3) by Liu et al.
(2023b), as well as the diffusion-based approaches for the mixtures M = 32 and 64.

Earth data on the sphere We evaluate manifold free-form flows on spheres with datasets from the
domain of earth sciences. We use four established datasets compiled by Mathieu & Nickel (2020)
for density estimation on S2: Volcanic eruptions (National Geophysical Data Center / World Data
Service (NGDC/WDS), 2022b), earthquakes (National Geophysical Data Center / World Data Service
(NGDC/WDS), 2022a), floods (Brakenridge, 2017) and wildfires (EOSDIS, 2020).

Figure 7.3 shows an example for a model trained on flood data. As the reconstruction error
sometimes does not drop to a satisfactory level, we employ the method described in appendix B.6.1 to
ensure that the measured likelihoods are accurate. Table 7.6 shows that M-FFF again outperforms the

86 7. Free-form neural networks as normalizing flows

Table 7.5.: Test negative log-likelihood (NLL, ↓) on SO(3) for multistep and single-step methods. M-FFF
consistently outperforms the specialized normalizing flow by Liu et al. (2023b) on synthetic distributions of
SO(3) matrices, and outperforms multistep methods in the cases with more mixture components. Multistep
baseline values are due to De Bortoli et al. (2022).

M = 16 M = 32 M = 64 Fast inference?

Moser flow (Rozen et al., 2021) -0.85 ± 0.03 -0.17 ± 0.03 0.49 ± 0.02 ✗: 1000 steps
Exp-wrapped SGM (De Bortoli et al., 2022) -0.87 ± 0.04 -0.16 ± 0.03 0.58 ± 0.04 ✗: 500 steps
Riemannian SGM (De Bortoli et al., 2022) -0.89 ± 0.03 -0.20 ± 0.03 0.49 ± 0.02 ✗: 100 steps

SO(3)-NF (Liu et al., 2023b) -0.81 ± 0.01 -0.12 ± 0.004 0.61 ± 0.01 ✓
M-FFF (ours) -0.87 ± 0.02 -0.21 ± 0.02 0.45 ± 0.02 ✓

Table 7.6.: M-FFF significantly outperforms the previous single-step density estimator (Peel et al., 2001)
on the sphere on real-world earth datasets in terms of negative log-likelihood (lower is better). Baseline
values are collected from De Bortoli et al. (2022); Huang et al. (2022); Chen & Lipman (2024).

Volcano Earthquake Flood Fire Fast inference?

Riemannian CNF (Mathieu & Nickel, 2020) -6.05 ± 0.61 0.14 ± 0.23 1.11 ± 0.19 -0.80 ± 0.54 ✗: ∼100 steps
Moser flow (Rozen et al., 2021) -4.21 ± 0.17 -0.16 ± 0.06 0.57 ± 0.10 -1.28 ± 0.05 ✗: ∼100 steps
Stereographic score-based (De Bortoli et al., 2022) -3.80 ± 0.27 -0.19 ± 0.05 0.59 ± 0.07 -1.28 ± 0.12 ✗: ∼100 steps
Riemannian score-based (De Bortoli et al., 2022) -4.92 ± 0.25 -0.19 ± 0.07 0.45 ± 0.17 -1.33 ± 0.06 ✗: ∼100 steps
Riemannian diffusion (Huang et al., 2022) -6.61 ± 0.97 -0.40 ± 0.05 0.43 ± 0.07 -1.38 ± 0.05 ✗: >100 steps
Riemannian flow matching (Chen & Lipman, 2024) -7.93 ±1.67 -0.28 ± 0.08 0.42 ± 0.05 -1.86 ± 0.11 ✗: 1000 steps

Mixture of Kent (Peel et al., 2001) -0.80 ± 0.47 0.33 ± 0.05 0.73 ± 0.07 -1.18 ± 0.06 ✓
M-FFF (ours) -2.25 ± 0.02 -0.23 ± 0.01 0.51 ± 0.01 -1.19 ± 0.03 ✓

Datset size 827 6120 4875 12809

specialized single-step model; the performance compared to multistep methods is mixed. We think
that multistep models have an advantage on the considered data, as there are large regions of empty
space between highly concentrated data points that have to be separated by the neural network while
achieving a high reconstruction accuracy everywhere (see density and sample plots in appendix B.6.3).

Table 7.7.: M-FFF consistently outperforms normalizing flows specialized to tori (Rezende et al., 2020) on
torus datasets, without requiring the development of a specialized architecture. In addition, our method
comes close to the performance of the multi-step methods and outperforms them on the Glycine dataset.
Baseline values are due to Huang et al. (2022); Chen & Lipman (2024).

General Glycine Proline Pre-Pro RNA Fast inference?

Riemannian diffusion (Huang et al., 2022) 1.04 ± 0.012 1.97 ± 0.012 0.12 ± 0.011 1.24 ± 0.004 -3.70 ± 0.592 ✗: ∼1000 steps
Riemannian flow matching (Chen & Lipman, 2024) 1.01 ± 0.025 1.90 ± 0.055 0.15 ± 0.027 1.18 ± 0.055 -5.20 ± 0.067 ✗: 1000 steps

Mixture of power spherical (Huang et al., 2022) 1.15 ± 0.002 2.08 ± 0.009 0.27 ± 0.008 1.34 ± 0.019 4.08 ± 0.368 ✓
Circular Spline Coupling Flows (Rezende et al., 2020) 1.03 ± 0.01 1.91 ± 0.04 0.21 ± 0.08 1.24 ± 0.04 -4.01 ± 0.24 ✓
M-FFF (ours) 1.03 ± 0.02 1.89 ± 0.05 0.17 ± 0.08 1.23 ± 0.04 -4.27 ± 0.09 ✓

Torsion angles of molecules on tori To benchmark manifold free-form flows on tori Tn, we follow
(Huang et al., 2022) and evaluate our model on two datasets from structural biology. We consider the
torsion (dihedral) angles of the backbone of protein and RNA substructures, respectively.

We represent a tuple of angles (φ1, . . . , φn) ∈ [0, 2π]n by mapping each angle to a position on a
circle: Xi = (cosφi, sinφi) ∈ S1. Then we stack all Xi into a matrix X ∈ Rn×2, compare table 7.4.

The first dataset comprises 500 proteins assembled by (Lovell et al., 2003) and is located on
T2. The three-dimensional arrangement of a protein backbone can be described by the so called

7.2. Manifold free-form flows on a known Riemannian manifold (M-FFF) 87

Table 7.8.: Test NLL on Stanford bunny data proposed by (Chen & Lipman, 2024), living on a manifold
with nontrivial curvature (see figure 7.3). M-FFF outperforms the multistep model for datasets with more
modes.

k = 10 k = 50 k = 100 Fast inference?

Riemannian Flow Matching (w/ diffusion) (Chen & Lipman, 2024) 1.16 ± 0.02 1.48 ± 0.01 1.53 ± 0.01 ✗: 1000 steps
Riemannian Flow Matching (w/ biharmonic) (Chen & Lipman, 2024) 1.06 ± 0.05 1.55 ± 0.01 1.49 ± 0.01 ✗: 1000 steps

M-FFF (ours) 1.21 ± 0.01 1.34 ± 0.01 1.28 ± 0.01 ✓

Ramachandran angles (Ramachandran et al., 1963) Φ and Ψ, which represent the torsion of the protein
backbone around the N -Cα and Cα-C bonds. The data is split into four distinct subsets General,
Glycine, Proline and Pre-Proline, depending on the residue of each substructure.

The second dataset is extracted from a subset of RNA structures introduced by Murray et al.
(2003). As the RNA backbone structure can be characterized by seven torsion angles, in this case we
are dealing with data on T7.

We report negative log-likelihoods in table 7.7, finding that M-FFF outperforms a circular spline
coupling flow, a normalizing flow particularly developed for data on tori (Rezende et al., 2020), as well
as the multistep methods on one of the datasets. In addition to the quantitative results, we show the
log densities of the M-FFF models for the four protein datasets infigure B.12 in appendix B.6.4 .

Toy distributions on hyperbolic space We apply M-FFF to the Poincaré ball model, which embeds
the 2-dimensional hyperbolic space H2 of constant negative curvature -1 in the 2-dimensional Euclidean
space R2, as specified in table 7.4. As this embedding is not isometric, and distances between points
grow when moving away from the origin, we must include the last term of equation (7.14) when
changing variables under a map on this embedded manifold.

We show that M-FFF can be applied to non-isometric embeddings using equation (7.14) and
visualize learned densities in figure 7.3 and in figure B.13 in appendix B.6.5 for several toy datasets
defined on the 2-dimensional Poincaré ball model. Further details can be found in appendix B.6.5.

Manifold with non-trivial curvature Finally, we follow Chen & Lipman (2024) and train M-FFF on
synthetic distributions on the Stanford bunny (Turk & Levoy, 1994) on the data provided with their
paper, see figure 7.3. The natural embedding of this mesh is R3, and we train a separate neural network
to project from the embedding space to the mesh. This ensures that the projection is continuously
differentiable, which we identify to be important for stable gradients.

Table 7.8 shows that M-FFF performs well on this manifold, outperforming Riemannian flow
matching in two out of three cases. This experiment underlines the flexibility of our model: We only
need a projection function to the manifold to train a generative model.

7.2.5. Conclusion

In this section, we present Manifold Free-Form Flows (M-FFF), a generative model designed for
manifold data. To the best of our knowledge, it is the first generative model on manifolds with
single-step sampling and density estimation readily applicable to arbitrary Riemannian manifolds. This
significantly accelerates inference and allows for deployment on edge devices.

M-FFF matches or outperforms single-step architectures specialized to particular manifolds. It
also surpasses multistep methods in some cases, despite the greatly reduced inference compute.

Adapting M-FFF to new manifolds is straightforward and only requires selecting an embedding
space and a projection to the manifold. In contrast, competing multistep methods are more challenging
to adapt, as they require implementing a diffusion process or computing distances on the manifold.

88 7. Free-form neural networks as normalizing flows

Dec g

<latexit sha1_base64="RC9ZapzwYYy8V4JmE5MwicSgnqw=">AAAC6HichVFNSxtRFD0ZbU3SD6NdSiE0FLoKkyLqUrQWFxZSaDSQhPDm+RLHzBdvXgQ7ZOUf6K64dedWf037W7romeek0ErJG97ce8+997z74SWBnxrX/VFylpafPF0pV6rPnr94uVpbWz9O46mWqiPjINZdT6Qq8CPVMb4JVDfRSoReoE68yX7uP7lQOvXj6Iu5TNQgFOPIH/lSGELD2ut+KMyZFEF2NBtm1tBhppWMo+ZsNqw13KZrT/2x0iqUBorTjms/0ccpYkhMEUIhgqEeQCDl10MLLhJiA2TENDXf+hVmqDJ3yijFCEF0wv+YVq9AI9o5Z2qzJV8JeDUz63jL+9EyeozOX1XUU8pfvF8tNv7vC5llziu8pPTIWLGMn4gbnDFiUWZYRM5rWZyZd2Uwwo7txmd9iUXyPuUfng/0aGIT66njwEaOyeFZ+4ITiCg7rCCf8pyhbjs+pRRWKssSFYyCfJoynz7r4Zpb/y71sXL8vtnaam5+3mzs7hULL2MDb/COW93GLg7RZh0SV7jFHe6dc+eb8925fgh1SkXOK/x1nJvf+mub1g==</latexit>Lrecon.

<latexit sha1_base64="PySJSFi+x+x2V2SjdEtLHp19/1k=">AAAC7XichVHLShxBFD12THwlcZIs3QwOgquhJ4i6FF9kYUTBUcERqe4px2KqH1TXCKaZvT/gTrLNLtvkV/RbXHiqbIVExGqq773n3nvqPqJcq8KG4c1I8Gb07bux8YnJqfcfPk7XPn3eL7KBiWU7znRmDiNRSK1S2bbKanmYGymSSMuDqL/m/Afn0hQqS/fsRS6PE9FL1amKhSV0UpvtWKW7suwkwp7FQpdbw+HJg2WScnvLmbVG2Az9qT9XWpXSQHV2stotOugiQ4wBEkiksNQ1BAp+R2ghRE7sGCUxQ015v8QQk8wdMEoyQhDt89+jdVShKW3HWfjsmK9oXsPMOuZ4Nz1jxGj3qqReUN7x/vBY78UXSs/sKrygjMg44Rm/E7c4Y8RrmUkV+VjL65muK4tTLPtuFOvLPeL6jJ941ukxxPreU8eGj+yRI/L2OSeQUrZZgZvyI0Pdd9ylFF5Kz5JWjIJ8htJNn/Vwza3/l/pc2f/abC02F3YXGiur1cLHMYNZzHOrS1jBN+ywjhiX+I0/+BtkwVVwHfx8CA1Gqpwv+OcEv+4B1uCeDw==</latexit>

L̃NLL

Enc f Dec g

Gaussian
latent

Gaussian
samples

Figure 7.6.: Free-form injective flow (FIF) training and inference. (Left) We combine a reconstruc-
tion loss Lrecon. with a novel maximum likelihood loss L̃NLL to obtain an injective flow without architectural
constraints. (Right) We generate novel samples by decoding standard normal latent samples with our
best-performing models on CelebA and MNIST. The reconstructions shown are on CelebA validation data,
the samples are uncurated samples from our models.

7.3. Free-form injective flows for learning compressed representations and
distributions (FIF)

This section is adapted from Sorrenson et al. (2024), see the list of individual contributions in chapter 3.

The manifold hypothesis suggests that realistic data lies on a low-dimensional manifold embedded
into a high-dimensional data space (Bengio et al., 2013). This implies that it is more efficient to
model distributions on a low-dimensional representation and regard deviations from that representation
as uninformative noise. Prior works such as Caterini et al. (2021); Brehmer & Cranmer (2020)
have restricted normalizing flows to low-dimensional subspaces via specially constructed bottleneck
architectures (known as “invertible autoencoders” (Teng & Choromanska, 2019) or “injective flows”
(Kothari et al., 2021)) where encoder and decoder share parameters. These injective flows are optimized
by some version of maximum likelihood training. This is not an ideal design decision, as the architectures
used in such models were originally designed for tractable change of variables calculations in normalizing
flows, but such calculations are not possible in the presence of a bottleneck (Brehmer & Cranmer,
2020). As a result, we propose to drop the restrictive constructions usually coming with invertible
neural networks (see section 4.3), instead use an unconstrained encoder and decoder, and generalize the
free-form flow gradient estimator to the injective change of variables formula. This greatly simplifies
the design of the model and makes it more expressive.

The resulting gradient estimator is an improvement to the one used by rectangular flows (Caterini
et al., 2021). We simplify their estimator considerably by replacing iterative conjugate gradient with
an efficient single-step estimator. This is fast: a batch can be processed in about twice the time (or
less) as an autoencoder trained on reconstruction loss only. In addition, we make a novel observation
about injective flows: naively training with maximum likelihood is ill-defined due to the possibility of
diverging curvature in the decoding function. To resolve this problem, we propose a modification to
our maximum likelihood estimator which counteracts the possibility of diverging curvature. We call
our model the free-form injective flow (FIF).

To summarize, we make the following contributions:

▶ We introduce an efficient gradient estimator for the injective change-of-variables and use it to train
an unconstrained injective flow for the first time (section 7.3.3).

▶ We identify pathological behavior in the naive application of maximum likelihood training in the
presence of a bottleneck, and offer a solution to avoid this behavior while maintaining computational
efficiency (section 7.3.3).

7.3. Free-form injective flows for learning compressed representations and distributions (FIF) 89

▶ We outperform previous injective flows and demonstrate competitive performance to generative
autoencoders on toy, tabular and image data (section 7.3.4).

7.3.1. Related work

Injective flows jointly learn a manifold and maximize likelihood on that manifold. The latter requires
estimating the Jacobian determinant of the transformation to calculate the change of variables. Efficient
computation of this determinant traditionally imposed two major restrictions on normalizing flow
architectures: Firstly, the latent space has to match in dimension with the data space, ruling out
bottleneck architectures. Secondly, normalizing flows are restricted to certain functional forms, such
as coupling and autoregressive blocks. Below, we outline the existing approaches to overcome these
problems and how our solution compares.

Lower-dimensional latent spaces One set of methods attempts to use full-dimensional normalizing
flows, with some additional regularization or architectural constraints, such that a subspace of the latent
space corresponds to the manifold. One strategy adds noise to the data to make it a full-dimensional
distribution, then denoises to the manifold (Horvat & Pfister, 2021; Loaiza-Ganem et al., 2022). Another
restricts the non-manifold latent dimensions to have small variance (Beitler et al., 2021; Silvestri et al.,
2023; Zhang et al., 2023b).

Other methods sidestep the problem by making training into a two-step procedure. First, an
autoencoder is trained on reconstruction loss, then a normalizing flow is trained to learn the resulting
latent distribution. In this line of work, (Brehmer & Cranmer, 2020) and (Kothari et al., 2021) use an
injective flow, while (Böhm & Seljak, 2022) use unconstrained networks as autoencoder. Ghosh et al.
(2020) additionally regularize the decoder.

Conformal embedding flows (Ross & Cresswell, 2021) ensure the decomposition of the determinant
into the contribution from each block by further restricting the architecture to exclusively conformal
transformations. Cramer et al. (2022) uses an isometric autoencoder such that the change of variables
is trivial. However, the resulting transformations are quite restrictive and cannot represent arbitrary
manifolds.

The most similar work to ours is the rectangular flow (Caterini et al., 2021) which estimates the
gradient of the log-determinant via an iterative, unbiased estimator. The resulting method is quite
slow to train, and uses injective flows, which are restrictive.

Unconstrained normalizing flow architectures Several works attempt to reduce the constraints
imposed by typical normalizing flow architectures, allowing the use of free-form networks. However, all
of these methods only apply to full-dimensional architectures. FFJORD (Grathwohl et al., 2019) is
a type of continuous normalizing flow (Chen et al., 2018b) which estimates the change of variables
stochastically. Residual flows (Behrmann et al., 2019; Chen et al., 2019) make residual networks
invertible, but require expensive iterative estimators to train via maximum likelihood. Self-normalizing
flows (Keller et al., 2021) and relative gradient optimization (Gresele et al., 2020) estimate maximum
likelihood gradients for the matrices used in neural networks, but restrict the architecture to use
exclusively square weight matrices without skip connections.

Approximating maximum likelihood Many methods optimize some bound on the full-dimensional
maximum likelihood, notably the variational autoencoder (Kingma & Welling, 2014) and its variants.
(Cunningham et al., 2020) also optimizes a variational lower bound to the likelihood. Other methods fit
into the injective flow framework by jointly optimizing a reconstruction loss and some approximation
to maximum likelihood on the manifold: Kumar et al. (2020); Zhang et al. (2020b) approximate

90 7. Free-form neural networks as normalizing flows

the log-determinant of the Jacobian by its Frobenius norm. The entropic AE (Ghose et al., 2020)
maximizes the entropy of the latent distribution by a nearest-neighbor estimator while constraining
its variance, resulting in a Gaussian latent space. In addition, there are other ways to regularize the
latent space of an autoencoder which are not based on maximum likelihood, e.g. adversarial methods
(Makhzani et al., 2015).

In contrast to the above, our approach jointly learns the manifold and maximizes the likelihood
on it with an unconstrained architecture, which easily accommodates a lower-dimensional latent space.

7.3.2. Injective change-of-variables

We now generalize normalizing flows in section 4.2 to bottleneck architectures. In particular, let
fθ : RD → Rd be an encoder which compresses data to a latent space and a decoder gφ : Rd → RD
which decompresses the latent representation. A full-dimensional model has d = D while a bottleneck
model has d < D.

Normalizing flows in full-dimensional space were constructed using invertible functions. If d < D, fθ
and gφ cannot be invertible. Instead, we consider an injective decoder gφ, that is gφ(z1) = gφ(z2) implies
z1 = z2. We call the image of the decoder the learned manifold Mφ = gφ(Rd) = {gφ(z) : z ∈ Rd}.

We call a pair fθ and gφ consistent if fθ ◦ gφ : Rd → Rd is the identity. For a fixed decoder
gφ, consistency does not fully determine fθ: The encoder fθ has additional degrees of freedom in
where to map points that do not lie on the learned manifold. Similarly, given a fixed encoder, gφ can
map a latent code z to any element in f−1({z}) and still be consistent. This is why unlike in the
full-dimensional case, where the inverse function is unique, we directly consider separate functions fθ
and gφ.

The change of variables in equation (4.1) transfers to an injective decoder for x ∈Mφ via a result
from differential geometry (Krantz & Parks, 2008):

pφ(x) = p(z)
√
|g′φ(fθ(x))Tg′φ(fθ(x))|

−1

(7.27)

Here, z = g−1
φ (x), which exists when x ∈Mφ.

We can also write this change of variables equation in terms of the encoder if it holds that the
encoder Jacobian f ′θ(x) is the pseudoinverse of the decoder Jacobian g′φ(z) for x ∈Mφ and z = fθ(x):

f ′θ(x) = (g′φ(z))† where A† = (ATA)−1AT. (7.28)

In this case, we can rewrite equation (7.27) via the encoder Jacobian:

pφ(x) = pθ(x) = p(z = fθ(x))
√
|f ′θ(x)f ′θ(x)T|. (7.29)

This change of variables only holds for x ∈Mφ, as points outside of Mφ are never generated by gφ.
We can still perform density estimation for points outside of Mφ, by first projecting points x ̸∈ Mφ

via x̂ = gφ(fθ(x)) ∈Mφ and then computing pθ(x̂). For example, this can be useful if gφ ◦ fθ denoises
the data and then a denoised density is computed.

7.3.3. Free-form injective flow (FIF)

If we want to perform maximum likelihood training using equation (7.29) with gradient descent for a
point x ∈Mφ, we need to compute the gradient of the negative logarithm of the injective change of
variables formula. Naively, we need O(d) computations to compute f ′θ(x), which can quickly become
prohibitively expensive. Again, we construct an efficient gradient estimator just like for free-form flows:

7.3. Free-form injective flows for learning compressed representations and distributions (FIF) 91

Theorem 7.4 (Injective volume change gradient, proof in appendix A.10.1). Let fθ : RD → Rd be the
pseudoinverse to a C1 and injective gφ : Rd → RD. Then, for all x ∈Mφ:

1

2
∇θ log |f ′θ(x)f ′θ(x)T| = tr

(
(∇θf ′θ(x))g′φ(z)

)
(7.30)

= Ev
[
vT(∇θf ′θ(x))g′φ(z)v

]
, (7.31)

where v ∈ Rd is a random variable with zero mean and unit covariance and z = fθ(x).

This estimator has the same form as for the full-dimensional change-of-variables in theorem 7.1,
only the dimension of v is adapted to the latent space. Equation (7.31) improves over a related gradient
estimator, that is based on conjugate gradient (Caterini et al., 2021):

1

2
∇θ log |f ′θf ′Tθ | =

1

2
Ev
[
vT(f ′θf

′T
θ)−1

(
∇θ(f ′θf ′Tθ)

)
v

]
(7.32)

=
1

2
Ev
[
CG(f ′θf

′T
θ ; v)T

(
∇θ(f ′θf ′Tθ)

)
v

]
, (7.33)

where conjugate gradient x = CG(A, b) iteratively constructs the solution to Ax = b for a non-singular A.
Structurally, both equations (7.31) and (7.33) only rely on Jacobian-vector respectively vector-Jacobian
products. However, the latter variant is computationally more expensive by a factor since conjugate
gradient may require several iterations for sufficient convergence and the Jacobian appears twice in
each product.

This suggests that we are now ready to train models with the efficient gradient estimator. However,
we first need to fix an important pathology, arising because the maximum likelihood term influences
what Mφ is learned.

Problems with maximum likelihood in the presence of a bottleneck

Remember that equation (7.29) only holds for data x ∈Mφ. In this section, we consider what goes
wrong if we choose to optimize with projected data x̂ = gφ(fθ(x)) instead. A variant of this issue has
already been raised by Brehmer & Cranmer (2020). We expand on their argument here, identifying an
additional pathology that cannot be overcome by adding a reconstruction loss. Consider using the
volume change in equation (7.29) as a per-sample injective maximum likelihood on projected data:

LI-NLL = Ex̂∼pθ,φ(x̂)
[
− log pθ(x̂)

]
= Ex̂∼pθ,φ(x̂)

[
− log p(z)− 1

2
log det

[
f ′θ(x̂)Tf ′θ(x̂)

]]
, (7.34)

where we denote by pθ,φ(x̂) the distribution obtained from projecting p(x) via gφ ◦ fθ. Now consider
that the negative log-likelihood loss is one part of a KL divergence, and KL divergences are always
non-negative:

DKL(pθ,φ(x̂)∥pθ(x̂)) = −H[pθ,φ(x̂)]− Epθ,φ(x̂)[log pθ(x̂)] ≥ 0. (7.35)

As a result, the loss is lower bounded by the entropy of the data projected onto the manifold:

LI-NLL ≥ H[pθ,φ(x̂)]. (7.36)

Unlike in standard normalizing flow optimization, where the right hand side would be fixed, here the
entropy depends on the projection learned by the model, as indicated by the parameters (φ, θ). Thus,
the model can modify the projection such that entropy is as low as possible. We break this pathology
down into two cases:

92 7. Free-form neural networks as normalizing flows

t = 1

t = 2

t = 0

Naive gradient computation

t = 1t = 2t = t = 0

Corrected gradient computation

Figure 7.7.: Naive training of autoencoders with negative log-likelihood (NLL, see section 7.3.3) leads
to pathological solutions (left). Starting with the initialization (t = 0, black), gradient steps increase the
curvature of the learnt manifold (t = 1, 2, orange). This reduces NLL because the entropy of the projected
data is reduced, by moving the points closer to one another. This effect is stronger than the reconstruction
loss. We fix this problem by evaluating the volume change off-manifold (right). This moves the manifold
closer to the data and reduces the curvature (t = 1, 2, green), until it eventually centers the manifold on the
data with zero curvature (t =∞, green). Light lines show the set of points which map to the same latent
point. Data is projected onto the t = 2 manifold.

1. A model manifold which does not align with the data manifold but instead intersects it . For
example, Brehmer & Cranmer (2020) discuss a case where a linear model learns to project a data
distribution to a single point on the manifold, thus reducing its entropy to −∞, the lowest possible
value. To the best of our knowledge, this can be fixed by adding noise and a reconstruction
loss with sufficiently high weight. In appendix A.10.2 we prove as much for linear models and
characterize the solutions, which are the same as PCA if the weight of a reconstruction loss
β ≥ 1/2σ2 where σ2 is the smallest eigenvalue of the data covariance matrix.

2. A model manifold which concentrates the data by use of high curvature, see figure 7.7 (left). This
newly identified pathological case only occurs in nonlinear models, hence Brehmer & Cranmer
(2020) did not notice this effect in their linear example. Importantly, this is not fixed by adding
a reconstruction loss.

Most existing injective flows avoid this by a two-stage training, which first learns a projection and
then the distribution of the projected data in the latent space. To enable jointly learning a manifold
and a maximum-likelihood density on it, we need to find a fix for the pathology.

Towards a well-behaved loss The term which leads to pathological behavior in the likelihood loss is
the log-determinant. When using the change of variables with f ′θ evaluated at x̂, all that matters is
the change of volume from the projected data to the latent space, so the model can decrease the loss
by choosing a manifold which concentrates the projected data more tightly (the more possibility it has
to expand the data, the lower the loss will be). We can counteract this effect by introducing a factor
inversely proportional to the concentration. This can be achieved by the fairly simple modification of
evaluating f ′θ in our estimator at x rather than x̂, that is removing the projection operation and directly
working with the training data (plus optionally added noise). Namely, we modify equation (7.31) to
estimate the gradient of the log-determinant term by:

vTf ′θ(x)SG
(
g′φ(z)v

)
. (7.37)

7.3. Free-form injective flows for learning compressed representations and distributions (FIF) 93

See appendix A.10.1 for a detailed explanation.
In this way, we discourage pathological solutions involving high curvature. In figure 7.7 (right)

we can see the effect of the modified estimator: the manifold now moves towards the data since the
optimization is not dominated by diverging curvature. We note that the modified estimator is also
computationally cheaper, since we do not need to compute the projection through the network before
computing the likelihood terms.

We add a reconstruction loss to train the projection, whose minimizer yields a pair of pseudoinverse
functions (see appendix A.10.1 for a derivation). This results in training with the following gradient:

∇θ,φLFIF(x) = ∇θ,φEx∼p(x)
[
− log p(z)− vTf ′θ(x) SG

(
g′φ(fθ(x))v

)
+ β∥gφ(fθ(x))− x∥2

]
. (7.38)

Phase transition Figure 7.8 shows that when using this loss, if β is large enough, the dominant
manifold direction is identified. In appendix B.7.2, we show a similar experiment on MNIST.

Architectures

In the existing literature, injective flows (Brehmer & Cranmer, 2020), also called invertible autoencoders
(Teng & Choromanska, 2019), adapt invertible neural network architectures as the ones given in
section 4.3 to a bottleneck setting. They parameterize fθ and gφ as the composition of two invertible
functions, wθw defined in RD and hθh defined in Rd, with a slicing/padding operation in between:

fθ = h−1
θh
◦ slice ◦ w−1

θw
and gφ = wθw ◦ pad ◦ hθh , (7.39)

where slice(x) selects the first d elements of x and pad(z) concatenates D − d zeros to the end of
z. Since slice and pad are consistent, so too are fθ and gφ. Note that injective flows share weights
between encoder and decoder, that is θ = φ. Note that unlike the full-dimensional normalizing flows,
injective in most cases do not provide a computational advantage in computing the volume change. In
addition, while consistent, the pair of encoder and decoder as constructed above are (in general) not
pseudoinverses, so that only the decoder change of variables formula in equation (7.27) yields accurate
densities.

Like for (manifold) free-form flows in sections 7.1 and 7.2, we again drop all architectural constraints
and instead make use of arbitrary neural network architectures for fθ and gφ. In our experiments, we
use off-the-shelf autoencoders. In some cases, we find that adding additional residual blocks on the
bottleneck dimensions helps performance.

7.3.4. Experiments

In this section, we test the empirical performance of the proposed model. First, we show that our
model is much faster than rectangular flows on tabular data. Second, we show that it outperforms
previous SOTA injective flows on generating images. Finally, we compare against other generative
autoencoders on the Pythae image generation benchmark (Chadebec et al., 2022), achieving the best
FID score in some categories.

Implementation details In implementing the trace estimator, we have to make a number of choices.
Briefly, i) we chose to formulate the log-determinant gradient in terms of the encoder rather than
decoder as it was more stable in practice, ii) we performed traces in the order f ′θ(x)g′φ(z) as this reduces
variance (both orderings are valid due to the cyclic property of the trace but since f ′θ(x)g′φ(z) is a
d× d matrix whereas g′φ(z)f ′θ(x) is D ×D, the former is typically easier to estimate), iii) we used a
mixture of forward- and backward-mode automatic differentiation as this was compatible with our

94 7. Free-form neural networks as normalizing flows

Figure 7.8.: Learning a noisy 2-D sinusoid with a 1-D latent space for different reconstruction weights β.
Color codes denote the value of the latent variable at each location. When the reconstruction term has low
weight (left), the autoencoder learns to throw away information about the position along the sinusoid and
only retains the orthogonal noise. Only sufficiently high weights (right) result in the desired solution, where
the decoder spans the sinusoid manifold. The middle plot shows the tradeoff between reconstruction error
and NLL as we transition between these regimes (box plots indicate variability across runs).

Table 7.9.: Free-form injective flows (FIF) are significantly faster than rectangular flows (RF) with superior
performance in FID-like metric on 3 out of 4 tabular datasets (Papamakarios et al., 2017). Both methods
use K = 1. The results for RF are taken directly from (Caterini et al., 2021).

Method POWER GAS HEPMASS MINIBOONE

RF (Caterini et al., 2021) 0.083 ± 0.015 0.110 ± 0.021 0.779 ± 0.191 1.001 ± 0.051
FIF (ours) 0.041 ± 0.007 0.281 ± 0.031 0.541 ± 0.034 0.598 ± 0.024

Training Time Speedup 3.9 × 2.2 × 6.1 × 1.5 ×

estimator, and iv) we used orthogonalized Gaussian noise in the trace estimator, to reduce variance.
Full justification for these choices is given in appendix B.7.1.

Tabular Data

We evaluate our method on four of the tabular datasets used by Papamakarios et al. (2017), using the
same data splits, and make a comparison to the published rectangular flow results (Caterini et al.,
2021), see table 7.9. We adopt the “FID-like metric” from that work, which computes the Wasserstein-2
distance between the Gaussian distributions with equal mean and covariance as the test data and the
data generated by the model. This is a measure of the difference of the means and covariance matrices
of the generated and test datasets. We outperform rectangular flows on all datasets except GAS. In
addition, we see a speedup in training time of between 1.5 and 6 times between FIF and a rerun of
rectangular flows (using the published code) on the same hardware. Full experimental details are in
appendix B.7.2.

In appendix B.7.2, we also perform an ablation comparing the different changes in the gradient
computation in table B.16. It shows that the on-manifold loss computation is unstable if combined
with a free-form autoencoder, but using an injective flow based on an invertible neural network can
stabilize training. This may be explained by the restrictive architecture. We notice that a free-form
architecture with our off-manifold gradient computation yields the best results overall.

Comparison to injective flows

We compare FIF against previous injective flows on CelebA images (Liu et al., 2015) in table 7.10.
Our models significantly improve the quality of the generated images in terms of the Fréchet inception
distance (FID) (Heusel et al., 2017) and Inception Score (IS) (Salimans et al., 2016). The former
compares generated samples to a set of reference samples, by computing the Wasserstein-2 distance

7.3. Free-form injective flows for learning compressed representations and distributions (FIF) 95

between two Gaussian distributions fit to some embedding of the respective sets of samples. The latter
measures diversity by the entropy of the distribution of class labels in the generated samples, where
the class labels are provided by some pre-trained classifier. Samples from this model are depicted in
figure 7.6.

For a fair comparison, we train each model on the same hardware for equal wall clock time with
the code provided by the authors. The architectures of previous works were dominated by the need
that most layers are invertible and have a tractable Jacobian determinant. Our loss in equation (7.38)
does not impose these constraints on the architecture, and we can use an off-the-shelf convolutional
auto-encoder with additional fully-connected layers in the latent space. Details can be found in
appendix B.7.2.

Comparison to generative autoencoders

As free-form injective flows (FIF) do not require any specific architecture, we expand our comparison to
the much broader range of generative autoencoders. This is a general class of bottleneck architectures
that encode the training data to a standard normal distribution so that the decoder can be used as a
generator after training.

Recently, Chadebec et al. (2022) proposed the Pythae benchmark for comparing generative
autoencoders on image generation. They evaluate different training methods using two different
architectures on MNIST (LeCun et al., 2010) (data D = 784, latent d = 16), CIFAR10 (Krizhevsky,
2009) (D = 3072, d = 256), and CelebA (Liu et al., 2015) (D = 12288, d = 64). All models are trained
with the same limited computational budget. The goal of the benchmark is to provide a fair comparison
of different models, not to achieve SOTA image generation results, as this would require significantly
more compute.

As shown in table 7.11, our model performs strongly on the benchmark, achieving SOTA on CelebA
in Fréchet Inception Distance (FID) (Heusel et al., 2017) on the ResNet architecture with latent codes
sampled from a standard normal, and on both architectures when sampling from a Gaussian Mixture
Model fit using training data. At the same time, the Inception Scores (IS) (Salimans et al., 2016) are
high, indicating a high diversity. In the one combination where our model does not outperform the
competitors, FIF still achieves a comparable FID and high Inception Score. FIF also performs strongly
on the other datasets, see appendix B.7.2.

For each method in the benchmark, ten hyperparameter configurations are trained and the best
model according to FID is reported. For our method, we choose to vary β = 5, 10, 15, 20, 25 and the
number of Hutchinson samples K = 1, 2. We find the performance to be robust against these choices,
and provide all details on the training procedure in appendix B.7.2.

7.3.5. Conclusion

Free-form injective flows offer a computationally efficient solution to learning a compressed representa-
tion of data together with its distribution. We i) significantly improve an existing estimator for the

Table 7.10.: Comparison of injective flows on CelebA under equal computational budget. Free-form
Injective Flows (FIF) outperform previous work significantly in terms of FID.

Model # parameters
N sampler GMM sampler

FID ↓ IS ↑ FID ↓ IS ↑
DNF (Horvat & Pfister, 2021) 39.4M 55.6 ± 0.59 1.9 52.7 ± 0.33 2.0
Trumpet (Kothari et al., 2021) 19.1M 56.2 ± 1.39 1.8 47.7 ± 2.24 1.9
FIF 34.3M 47.3 ± 1.39 1.7 37.4 ± 1.35 2.0

96 7. Free-form neural networks as normalizing flows

Table 7.11.: Pythae benchmark results on CelebA, following (Chadebec et al., 2022). We train their
architectures (ConvNet and ResNet) with our new training objective, achieving SOTA FID on ResNet. We
draw latent samples from standard normal “N” or a GMM fit using training data “GMM”. Models with
multiple variants (indicated in brackets) have been merged to indicate only the best result across variants.
We mark the best FID in each column in bold and underline the second best.

Model
ConvNet + N ResNet + N ConvNet + GMM ResNet + GMM
FID ↓ IS ↑ FID IS FID IS FID IS

VAE (Kingma & Welling, 2014) 54.8 1.9 66.6 1.6 52.4 1.9 63.0 1.7
IWAE (Burda et al., 2015) 55.7 1.9 67.6 1.6 52.7 1.9 64.1 1.7
VAE-lin NF (Rezende & Mohamed, 2015) 56.5 1.9 67.1 1.6 53.3 1.9 62.8 1.7
VAE-IAF (Kingma et al., 2016) 55.4 1.9 66.2 1.6 53.6 1.9 62.7 1.7
β-(TC) VAE (Higgins et al., 2017; Chen et al., 2018a) 55.7 1.8 65.9 1.6 51.7 1.9 59.3 1.7
FactorVAE (Kim & Mnih, 2018) 53.8 1.9 66.4 1.7 52.4 2.0 63.3 1.7
InfoVAE - (RBF/IMQ) (Zhao et al., 2017) 55.5 1.9 66.4 1.6 52.7 1.9 62.3 1.7
AAE (Makhzani et al., 2015) 59.9 1.8 64.8 1.7 53.9 2.0 58.7 1.8
MSSSIM-VAE (Snell et al., 2017) 124.3 1.3 119.0 1.3 124.3 1.3 119.2 1.3
Vanilla AE 327.7 1.0 275.0 2.9 55.4 2.0 57.4 1.8
WAE - (RBF/IMQ) (Tolstikhin et al., 2018) 64.6 1.7 67.1 1.6 51.7 2.0 57.7 1.8
VQVAE (van den Oord et al., 2017) 306.9 1.0 140.3 2.2 51.6 2.0 57.9 1.8
RAE - (L2/GP) (Ghosh et al., 2020) 86.1 2.8 168.7 3.1 52.5 1.9 58.3 1.8
FIF (ours) 56.9 2.1 62.3 1.7 47.3 1.9 55.0 1.8

gradient of the change of variables across dimensions, ii) note that it can be applied to unconstrained
architectures, iii) analyze problems with joint manifold and maximum-likelihood training and offer
a solution, and iv) implement and test our model on toy, tabular and image datasets. We find that
the model is practical and scalable, outperforming comparable injective flows, and showing similar or
better performance to other autoencoder generative models on the Pythae benchmark.

Several theoretical and practical questions remain for future work: We identified a problem with
jointly learning a manifold and maximum likelihood. We propose a fix in section 7.3.3 that provides
high-quality models, but further investigation is needed for a thorough understanding. Fitting a GMM
to the latent space after training improves performance on image data, suggesting that our latent
distributions are not perfectly Gaussian. We generally find that architectures with more fully-connected
layers in the latent space have a more Gaussian latent distribution, suggesting that larger models suffer
less from this problem. We leave potential theoretical or practical improvements to future work.

7.4. Conclusion

Using architectures that incorporate prior knowledge about the data at hand yields to superior
performance. Developing coupling architectures respecting beneficial properties increases the complexity
of modeling the data, and in some cases has not been possible, such as for rotation-equivariant networks
and for arbitrary Riemannian manifolds.

Free-form flows and its variants overcome this limitation by allowing the training of arbitrary
neural networks as normalizing flows. The two essential ingredients are the efficient estimator for the
change of variables term and the usage of two separate neural network for the forward and inverse
mapping in a normalizing flows, coupled by a reconstruction loss.

We show the versatility of the free-form flow framework by adapting it to the following three
classes of applications:

▶ Standard Euclidean geometry, where data is modeled as a full-dimensional distribution, by mapping
it to a latent distribution with equal dimension. We develop an estimator for the gradient estimator
in theorem 7.1.

7.4. Conclusion 97

▶ Non-Euclidean geometry, where the data is modeled in an embedding space, but the mapping
between data and latent space is restricted to the manifold and respects its geometry. Theorem 7.3
generalizes the gradient estimator to the tangent space of Riemannian manifolds.

▶ Learning the data distribution in terms of a compressed representation. Theorem 7.4 modifies the
gradient estimator to a latent space with reduced dimension.

The resulting gradient estimators are remarkably similar, and we hypothesize that the estimator can
also be applied in more scenarios such as missing data, time series, and energy-based training.

In practice, free-form flows perform comparable or better than previous normalizing flows. They
are competitive with multistep methods at typically two orders of magnitude faster inference.

However, there are several points that can be improved: Free-form architectures are not guaranteed
to fulfill the invertibility/injectivity assumptions underlying the change of variables equations. This may
influence the training dynamics, and it needs to be considered when reporting negative log-likelihood
as a performance metric, which we address in section 7.1.3. The gradient estimator can exhibit a high
variance, potentially slowing down training and preventing the model from sticking at the true optimum.
On the positive side, this may partially prevent overfitting. Because of the use of a stop-gradient
operation, the training dynamics are governed by a gradient field that is not necessarily the gradient of
a loss.

8. Conclusion

This thesis contributes significantly to modeling arbitrary probability distributions with normalizing
flows. We propose a new theoretical framework of coupling-based normalizing flows, and we introduce
free-form flows, which allow training arbitrary neural network architectures as normalizing flows.

Our theoretical contributions can best be summarized by the following two rigorous hierarchies of
normalizing flow architectures.

The first hierarchy considers the universality of different constructions, that is, their ability to
approximate arbitrary probability distributions of interest:

1. While volume-preserving normalizing flows may have useful properties for practical applications,
we show in section 4.3.3 that they are not universal, meaning that they are fundamentally limited
in what distributions they can approximate. We also provide a fix that consists of a single,
non-volume-preserving layer that can be concatenated after training.

2. Affine coupling normalizing flows are universal. Unlike previous work, our construction in
section 5.4.4 does not contain ill-conditioned building blocks. Note that this universality is only
measured in a premetric derived from the loss used in practice of training normalizing flows.

3. More expressive coupling flows inherit their universality from affine coupling flows. In section 5.4.5
we identify a loss term that they can leverage within a single block, which enhances their
expressivity compared to affine couplings.

This has several practical implications: It underpins the practical insight that affine coupling flows are
a universal generative model. It raises a warning for practical applications relying on volume-preserving
flows such as temperature steerable flows (Dibak et al., 2022), in that they are fundamentally limited
in what distributions they can learn. It equips the search for more expressive coupling flows with a
novel metric, the loss improvement by a single layer.

While the above guarantees are an important step towards guaranteeing that normalizing flows
can accurately capture the uncertainty in a prediction, they leave several important questions open
for future work: First, showing that the target distribution can in principle be represented is not
sufficient for successful application. It requires to additionally understand the practical training of
networks using gradient descent and a finite set of samples. This includes successful generalization and
an understanding of adversarial samples. We think that our constructive proofs can serve as a basis for
a more general guarantee in the practical setting of learning from a finite training set. Second, the
derived guarantees do not directly consider the practical loss, the Kullback-Leibler divergence, but
a derived convergence metric. On the positive side, our experiments suggest that this practical loss
vanishes with our construction, unlike that in previous work. Finally, the above guarantees do not
make a precise statement on the number of layers required for a certain model quality. See section 5.5
for additional details.

Our second hierarchy of architectures addresses the latter two open questions. It concerns the
resources different architectures require in terms of the loss used in practice, depending on the problem
dimension:

1. A Gaussianization blocks treats dimensions independent of one another. It requires a number
of blocks that is at least linear in the number of dimensions: Ω(D) required blocks, compare
section 6.2.3.

100 8. Conclusion

2. By modeling a part of dependencies with a neural network between dimensions in each layer, at
most a constant number of coupling blocks is sufficient regardless of dimension: O(1) required
blocks, compare section 6.3.2.

3. Finally, the Knothe-Rosenblatt rearrangement realized as an autoregressive model (Rosenblatt,
1952; Knothe, 1957) demonstrates that if dependencies between all dimensions can be modeled in
a single block, then only that single block is needed. This comes at the disadvantage that either
training or sampling has to be performed dimension by dimension, slowing down the computation.

Combined with their practical efficiency, this shows that coupling blocks lie in a sweet spot of
being expressive yet cheap. These results confirm empirical observations, e.g. found for images by
Gaussianization (Dai & Seljak, 2021) and coupling flows (Kingma & Dhariwal, 2018). Our proofs rely
on the assumption that the data is Gaussian and the limit model is already close to convergence. This
is a weakness since real-world data is usually far off from a Gaussian, in particular if it should be
modeled with a generative model. However, we think that our statement still describes a practical
scenario, namely when the model is close to convergence, and leave closing this gap open to future
work. To facilitate this extension, we also show that the remaining task of learning any distribution
can be isolated from learning the closest Gaussian distribution.

In the standard setting of full-dimensional probability distributions under Euclidean geometry,
we identify no theoretical shortcomings of coupling-based normalizing flows. However, as argued in
chapter 1, some problems require incorporating prior knowledge such as inductive biases, symmetries and
special geometry. Previously, building invertible neural networks for these cases was time-consuming at
best and impossible at worst. Chapter 7 achieves a breakthrough in this challenge via the introduction of
free-form flows. They allow using unconstrained, not necessarily analytically invertible neural networks
as the transform between latent and data space in a normalizing flow. This allows easily incorporating
architectural improvements achieved in the more general research community into normalizing flows.
Training is possible by an efficient way to optimize the change in volume from data to latent space, an
essential part of the normalizing flow loss.

Overall, free-form flows perform better or comparable to existing normalizing flows. In comparison
to other generative models built on dimension-preserving free-form architectures, free-form flows have
the advantage that they greatly reduce the time to produce a single sample: While competitors such
as diffusion models (Sohl-Dickstein et al., 2015) require calling the learned neural network on the
order of 100 to 1000 times to get a sample, free-form flows require only a single network evaluation at
competitive quality. This is achieved using neural networks of comparable size, so that the speedup is
reflected in greatly reduced wall clock times.

We confirm the power and flexibility of the framework in experiments in solving inverse problems,
finding comparable performance to previous state of the art normalizing flows. In addition, free-form
flows greatly broaden the spectrum of applications normalizing flows can be used for, which we explore
in three orthogonal directions:

First, we consider the generation of molecules in a Euclidean space using a neural network that is
equivariant to rotations and translations. This had not been achieved using invertible neural networks
before. The resulting distribution is invariant to these transformations, an important prior knowledge
helping the model generalize.

Second, if the data lies on a known Riemannian manifold, we derive that the free-form flow
framework is readily applicable by computing the change in volume only in the tangent space of the
manifold. This yields a simple recipe to learn a normalizing flow on arbitrary Riemannian manifolds.
We demonstrate successful application to standard datasets on spheres, tori and rotation matrices. We
find our model to outperform normalizing flows specialized to the respective manifolds, and observe
competitive quality to multistep models while reducing the wall clock times for sampling by two to

101

three orders of magnitude.
Finally, many real-world data such as images is generally viewed to be supported on a manifold,

but no analytic expression for that manifold is known. In this case, we propose free-form injective
flows that jointly learn a low-dimensional manifold to project the data to, as well as the distribution
of the data on that manifold. We contribute the identification of a pathology that can occur in this
joint training, in addition to pathologies already described in previous work (Brehmer & Cranmer,
2020). Again, we find our model to outperform previous injective flows and comparable performance
to alternative generative autoencoders on a benchmark.

Together, this makes free-form flows a strong generative model that is readily applicable to novel
problems. The gradient estimator for maximum likelihood training was easy to adapt in the considered
cases, and we expect that this will transfer to other modalities.

We leave several important research directions open to future work: On the theoretical side, since
encoder and decoder are only regularized to be inverse of one another, the training dynamics are
currently not understood and what minimizer is achieved in practice. On the practical side, computing
the value of learned density requires computing the exact Jacobian matrix, whose costs scale linearly
with dimension. Easy fixes could be estimating the volume change (Chen et al., 2019) or training a
surrogate model. In addition, the experiments have only scratched the surface of what applications are
possible with free-form flows. Given the plethora of available neural network architectures, we expect
to see applications in various settings.

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah,
C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng,
X. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.

Adler, T. J., Ardizzone, L., Vemuri, A., Ayala, L., Gröhl, J., Kirchner, T., Wirkert, S., Kruse, J., Rother,
C., Köthe, U., and Maier-Hein, L. Uncertainty-aware performance assessment of optical imaging
modalities with invertible neural networks. International Journal of Computer Assisted Radiology
and Surgery, 14(6):997–1007, 2019. ISSN 1861-6410, 1861-6429. doi: 10.1007/s11548-019-01939-9.

Albergo, M. S. and Vanden-Eijnden, E. Building normalizing flows with stochastic interpolants. In
International Conference on Learning Representations, 2023.

Amari, S.-i. and Nagaoka, H. Methods of Information Geometry. American Mathematical Society,
2007. ISBN 978-0-8218-4302-4 978-1-4704-4605-5. doi: 10.1090/mmono/191.

Ardizzone, L., Bungert, T., Draxler, F., Köthe, U., Kruse, J., Schmier, R., and Sorrenson, P. Framework
for Easily Invertible Architectures (FrEIA), 2018a.

Ardizzone, L., Kruse, J., Rother, C., and Köthe, U. Analyzing Inverse Problems with Invertible Neural
Networks. In International Conference on Learning Representations, 2018b.

Ardizzone, L., Kruse, J., Lüth, C., Bracher, N., Rother, C., and Köthe, U. Conditional Invertible Neural
Networks for Diverse Image-to-Image Translation. In German Conference on Pattern Recognition,
2020a. doi: 10.1007/978-3-030-71278-5 27.

Ardizzone, L., Mackowiak, R., Rother, C., and Köthe, U. Training Normalizing Flows with the
Information Bottleneck for Competitive Generative Classification. In Advances in Neural Information
Processing Systems, 2020b.

Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D., and Jacobsen, J.-H. Invertible residual
networks. In International Conference on Machine Learning, 2019.

Beitler, J. J., Sosnovik, I., and Smeulders, A. PIE: Pseudo-invertible encoder. arXiv:2111.00619, 2021.

Ben-Hamu, H., Cohen, S., Bose, J., Amos, B., Nickel, M., Grover, A., Chen, R. T., and Lipman, Y.
Matching normalizing flows and probability paths on manifolds. In International Conference on
Machine Learning, 2022.

Bengio, Y., Courville, A., and Vincent, P. Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

Bickel, P. J., Kur, G., and Nadler, B. Projection Pursuit in High Dimensions. PNAS, 115(37):9151–9156,
2018.

104 Bibliography

Bieringer, S., Butter, A., Heimel, T., Höche, S., Köthe, U., Plehn, T., and Radev, S. T. Measuring
QCD splittings with invertible networks. SciPost Physics, 10(6):126, 2021.

Bigoni, D., Zahm, O., Spantini, A., and Marzouk, Y. Greedy inference with layers of lazy maps. arXiv
preprint arXiv:1906.00031, 2019.

Bishop, C. M. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer,
New York, 2006. ISBN 978-0-387-31073-2.

Böhm, V. and Seljak, U. Probabilistic auto-encoder. Transactions on Machine Learning Research,
2022.

Bose, J., Smofsky, A., Liao, R., Panangaden, P., and Hamilton, W. Latent variable modelling with
hyperbolic normalizing flows. In International Conference on Machine Learning, 2020.

Boyda, D., Kanwar, G., Racanière, S., Rezende, D. J., Albergo, M. S., Cranmer, K., Hackett, D. C.,
and Shanahan, P. E. Sampling using SU(N) gauge equivariant flows. Physical Review D: Particles
and Fields, 103(7):074504, April 2021. doi: 10.1103/PhysRevD.103.074504.

Brakenridge, G. Global active archive of large flood events, 2017.

Brehmer, J. and Cranmer, K. Flows for simultaneous manifold learning and density estimation.
Advances in Neural Information Processing Systems, 33:442–453, 2020.

Brofos, J. A., Brubaker, M. A., and Lederman, R. R. Manifold density estimation via generalized
dequantization. arXiv preprint arXiv:2102.07143, 2021.

Bryc, W. The Normal Distribution, volume 100 of Lecture Notes in Statistics. Springer New York,
New York, NY, 1995. ISBN 978-0-387-97990-8 978-1-4612-2560-7. doi: 10.1007/978-1-4612-2560-7.

Burda, Y., Grosse, R., and Salakhutdinov, R. Importance weighted autoencoders. arXiv preprint
arXiv:1509.00519, 2015.

Cambanis, S., Huang, S., and Simons, G. On the theory of elliptically contoured distributions.
Journal of Multivariate Analysis, 11(3):368–385, September 1981. ISSN 0047259X. doi: 10.1016/
0047-259X(81)90082-8.

Cardoso, J.-F. Dependence, Correlation and Gaussianity in Independent Component Analysis. Journal
of Machine Learning Research, 4:1177–1203, 2003. ISSN 1532-4435.

Cartwright, D. I. and Field, M. J. A refinement of the arithmetic mean-geometric mean inequality.
Proceedings of the American Mathematical Society, 71(1):36–38, 1978. ISSN 0002-9939, 1088-6826.
doi: 10.1090/S0002-9939-1978-0476971-2.

Caterini, A. L., Loaiza-Ganem, G., Pleiss, G., and Cunningham, J. P. Rectangular flows for manifold
learning. Advances in Neural Information Processing Systems, 2021.

Chadebec, C., Vincent, L. J., and Allassonnière, S. Pythae: Unifying generative autoencoders in
python – a benchmarking use case. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K.,
and Oh, A. (eds.), Advances in Neural Information Processing Systems, 2022.

Chen, R. T. and Lipman, Y. Flow Matching on General Geometries. In International Conference on
Learning Representations, 2024.

Bibliography 105

Chen, R. T., Li, X., Grosse, R. B., and Duvenaud, D. K. Isolating sources of disentanglement in
variational autoencoders. Advances in Neural Information Processing Systems, 31, 2018a.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. Neural ordinary differential
equations. Advances in Neural Information Processing Systems, 2018b.

Chen, R. T., Behrmann, J., Duvenaud, D. K., and Jacobsen, J.-H. Residual flows for invertible
generative modeling. Advances in Neural Information Processing Systems, 2019.

Chen, S. and Gopinath, R. Gaussianization. In Leen, T., Dietterich, T., and Tresp, V. (eds.), Advances
in Neural Information Processing Systems, 2000.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A. EMNIST: Extending MNIST to handwritten
letters. In 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2921–2926. IEEE,
2017.

Comon, P. Independent component analysis, A new concept? Signal Processing, 36(3):287–314, April
1994. ISSN 01651684. doi: 10.1016/0165-1684(94)90029-9.

Costarelli, D. and Spigler, R. How sharp is the Jensen inequality? Journal of Inequalities and
Applications, 2015(1):69, December 2015. ISSN 1029-242X. doi: 10.1186/s13660-015-0591-x.

Cramer, E., Rauh, F., Mitsos, A., Tempone, R., and Dahmen, M. Isometric manifold learning for
injective normalizing flows. arXiv preprint arXiv:2203.03934, 2022.

Cramér, H. and Wold, H. Some Theorems on Distribution Functions. Journal of the London
Mathematical Society, s1-11(4):290–294, October 1936. ISSN 00246107. doi: 10.1112/jlms/s1-11.4.290.

Cunningham, E., Zabounidis, R., Agrawal, A., Fiterau, M., and Sheldon, D. Normalizing flows across
dimensions. International Conference on Machine Learning, Workshop Track, 2020.

Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals,
and Systems, 2(4):303–314, December 1989. ISSN 0932-4194, 1435-568X. doi: 10.1007/BF02551274.

Dai, B. and Seljak, U. Sliced iterative normalizing flows. In Meila, M. and Zhang, T. (eds.), International
Conference on Machine Learning, 2021.

dAscoli, S., Sagun, L., Biroli, G., and Bruna, J. Finding the Needle in the Haystack with Convolutions:
On the benefits of architectural bias. In Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., and Tomczak, J. M. Hyperspherical variational
auto-encoders. In Conference on Uncertainty in Artificial Intelligence, 2018.

De Bortoli, V., Mathieu, E., Hutchinson, M., Thornton, J., Teh, Y. W., and Doucet, A. Riemannian
score-based generative modelling. Advances in Neural Information Processing Systems, 35:2406–2422,
2022.

Dibak, M., Klein, L., Krämer, A., and Noé, F. Temperature steerable flows and Boltzmann generators.
Phys. Rev. Res., 4(4):L042005, October 2022. doi: 10.1103/PhysRevResearch.4.L042005.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-linear Independent Components Estimation. In
International Conference on Learning Representations, Workshop Track, 2015.

106 Bibliography

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estimation using Real NVP. In International
Conference on Learning Representations, 2017.

Draxler, F., Schwarz, J., Schnörr, C., and Köthe, U. Characterizing the Role of a Single Coupling
Layer in Affine Normalizing Flows. In German Conference on Pattern Recognition, 2020.

Draxler, F., Schnörr, C., and Köthe, U. Whitening Convergence Rate of Coupling-based Normalizing
Flows. In Advances in Neural Information Processing Systems, 2022.

Draxler, F., Kühmichel, L., Rousselot, A., Müller, J., Schnoerr, C., and Koethe, U. On the Convergence
Rate of Gaussianization with Random Rotations. In International Conference on Machine Learning,
2023.

Draxler, F., Sorrenson, P., Zimmermann, L., Rousselot, A., and Köthe, U. Free-form Flows: Make Any
Architecture a Normalizing Flow. In Artificial Intelligence and Statistics, 2024a.

Draxler, F., Wahl, S., Schnörr, C., and Köthe, U. On the Universality of Coupling-based Normalizing
Flows. arXiv:2402.06578, 2024b.

Durkan, C., Bekasov, A., Murray, I., and Papamakarios, G. Neural Spline Flows. In Advances in
Neural Information Processing Systems, 2019.

Eaton, M. L. A characterization of spherical distributions. Journal of Multivariate Analysis, 20(2):
272–276, December 1986. ISSN 0047259X. doi: 10.1016/0047-259X(86)90083-7.

EOSDIS. Land, atmosphere near real-time capability for EOS (LANCE) system operated by NASA’s
earth science data and information system (ESDIS), 2020.

Falcon, W. and The PyTorch Lightning team. PyTorch lightning, March 2019.

Falorsi, L. Continuous normalizing flows on manifolds. arXiv preprint arXiv:2104.14959, 2021.

Falorsi, L. and Forré, P. Neural ordinary differential equations on manifolds. arXiv preprint
arXiv:2006.06663, 2020.

Falorsi, L., de Haan, P., Davidson, T. R., and Forré, P. Reparameterizing distributions on lie groups.
In The 22nd International Conference on Artificial Intelligence and Statistics, 2019.

Faraut, J. Rayleigh theorem, projection of orbital measures and spline functions. Advances in Pure and
Applied Mathematics, 6(4):261–283, 2015. ISSN 1867-1152, 1869-6090. doi: 10.1515/apam-2015-5012.

Feistel, H. Cryptography and computer privacy. Scientific American, 228(5):15–23, 1973. ISSN
00368733, 19467087.

Fleishman, A. I. A method for simulating non-normal distributions. Psychometrika, 43(4):521–532,
1978.

Friedman, J. H. On multivariate goodness–of–fit and two–sample testing. Statistical Problems in
Particle Physics, Astrophysics, and Cosmology, 1:311, 2003.

Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202, April 1980. ISSN
0340-1200, 1432-0770. doi: 10.1007/BF00344251.

Bibliography 107

Gemici, M. C., Rezende, D., and Mohamed, S. Normalizing flows on riemannian manifolds.
arXiv:1611.02304, 2016.

Ghose, A., Rashwan, A., and Poupart, P. Batch norm with entropic regularization turns deterministic
autoencoders into generative models. In Conference on Uncertainty in Artificial Intelligence, 2020.

Ghosh, P., Sajjadi, M. S., Vergari, A., Black, M., and Schölkopf, B. From variational to deterministic
autoencoders. International Conference on Learning Representations, 2020.

Gibbs, A. L. and Su, F. E. On Choosing and Bounding Probability Metrics. International Statistical
Review / Revue Internationale de Statistique, 70(3):419–435, 2002. ISSN 03067734, 17515823.

Girard, A. A fast ‘Monte-Carlo cross-validation’ procedure for large least squares problems with noisy
data. Numerische Mathematik, 56:1–23, 1989.

Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
In International Conference on Artificial Intelligence and Statistics, 2010.

Golub, G. H. and Pereyra, V. The differentiation of pseudo-inverses and nonlinear least squares
problems whose variables separate. SIAM Journal on numerical analysis, 10(2):413–432, 1973.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. Generative adversarial nets. Advances in neural information processing systems, 27, 2014.

Gorin, T. Integrals of monomials over the orthogonal group. Journal of Mathematical Physics, 43(6):
3342–3351, 2002. ISSN 0022-2488, 1089-7658. doi: 10.1063/1.1471367.

Grathwohl, W., Chen, R. T., Bettencourt, J., Sutskever, I., and Duvenaud, D. Ffjord: Free-form
continuous dynamics for scalable reversible generative models. In International Conference on
Learning Representations, 2019.

Gresele, L., Fissore, G., Javaloy, A., Schölkopf, B., and Hyvarinen, A. Relative gradient optimization
of the jacobian term in unsupervised deep learning. In Advances in Neural Information Processing
Systems, 2020.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser,
E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M.,
Haldane, A., del Rı́o, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy,
T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. Array programming with NumPy.
Nature, 585(7825):357–362, 2020.

Heinecke, A., Ho, J., and Hwang, W.-L. Refinement and universal approximation via sparsely connected
ReLU convolution nets. IEEE Signal Processing Letters, 27:1175–1179, 2020.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. Gans trained by a two time-
scale update rule converge to a local nash equilibrium. Advances in Neural Information Processing
Systems, 30, 2017.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner, A.
Beta-vae: Learning basic visual concepts with a constrained variational framework. In International
Conference on Learning Representations, 2017.

Ho, J., Chen, X., Srinivas, A., Duan, Y., and Abbeel, P. Flow++: Improving Flow-Based Generative
Models with Variational Dequantization and Architecture Design. In International Conference on
Machine Learning, 2019.

108 Bibliography

Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., and Welling, M. Argmax flows and multinomial
diffusion: Learning categorical distributions. Advances in Neural Information Processing Systems,
2021.

Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling, M. Equivariant diffusion for molecule
generation in 3d. In International Conference on Machine Learning, 2022.

Horn, R. A. and Johnson, C. R. Matrix Analysis. Cambridge University Press, 2012.

Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):
251–257, 1991. ISSN 08936080. doi: 10.1016/0893-6080(91)90009-T.

Horvat, C. and Pfister, J.-P. Denoising normalizing flow. Advances in Neural Information Processing
Systems, 34:9099–9111, 2021.

Huang, C.-W., Krueger, D., Lacoste, A., and Courville, A. Neural Autoregressive Flows. In International
Conference on Machine Learning, 2018.

Huang, C.-W., Dinh, L., and Courville, A. Augmented Normalizing Flows: Bridging the Gap
Between Generative Flows and Latent Variable Models. In International Conference on Learning
Representations, Workshop Track, 2020.

Huang, C.-W., Aghajohari, M., Bose, J., Panangaden, P., and Courville, A. C. Riemannian diffusion
models. Advances in Neural Information Processing Systems, 35:2750–2761, 2022.

Hunter, J. D. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3):
90–95, 2007.

Hutchinson, M. F. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing
splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076, 1989.

Hyvärinen, A., Karhunen, J., and Oja, E. Independent Component Analysis. John Wiley & Sons, Ltd,
2001. ISBN 978-0-471-22131-9.

Ishikawa, I., Teshima, T., Tojo, K., Oono, K., Ikeda, M., and Sugiyama, M. Universal approximation
property of invertible neural networks. arXiv preprint arXiv:2204.07415, 2022.

Jaini, P., Selby, K. A., and Yu, Y. Sum-of-Squares Polynomial Flow. In International Conference on
Machine Learning, 2019.

Johansson, F. et al. Mpmath: A Python Library for Arbitrary-Precision Floating-Point Arithmetic
(Version 0.14), February 2010.

Jost, J. Riemannian Geometry and Geometric Analysis, volume 42005. Springer, 2008.

Kalatzis, D., Ye, J. Z., Pouplin, A., Wohlert, J., and Hauberg, S. Density estimation on smooth
manifolds with normalizing flows. arXiv preprint arXiv:2106.03500, 2021.

Kanwar, G., Albergo, M. S., Boyda, D., Cranmer, K., Hackett, D. C., bastien Racanière, S., Rezende,
D. J., and Shanahan, P. E. Equivariant flow-based sampling for lattice gauge theory. Physical Review
Letters, 125(12), September 2020. doi: 10.1103/physrevlett.125.121601.

Keller, T. A., Peters, J. W., Jaini, P., Hoogeboom, E., Forré, P., and Welling, M. Self normalizing
flows. In International Conference on Machine Learning, 2021.

Bibliography 109

Kim, H. and Mnih, A. Disentangling by factorising. In International Conference on Machine Learning,
2018.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic Optimization, January 2017.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow with invertible 1x1 convolutions. In Advances
in Neural Information Processing Systems, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational bayes. In International Conference on
Learning Representations, 2014.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling, M. Improved
variational inference with inverse autoregressive flow. Advances in Neural Information Processing
Systems, 29, 2016.

Klein, L., Krämer, A., and Noé, F. Equivariant Flow Matching. In Advances in Neural Information
Processing Systems, 2023.

Knothe, H. Contributions to the theory of convex bodies. Michigan Mathematical Journal, 4(1):39–52,
1957.

Knuth, D. E. The Art of Computer Programming, volume 3. Addison-Wesley, 1997.

Kobyzev, I., Prince, S. J., and Brubaker, M. A. Normalizing Flows: An Introduction and Review
of Current Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(11):
3964–3979, 2021.

Koehler, F., Mehta, V., and Risteski, A. Representational aspects of depth and conditioning in
normalizing flows. In International Conference on Machine Learning, 2021.

Köhler, J., Klein, L., and Noé, F. Equivariant flows: Exact likelihood generative learning for symmetric
densities. In International Conference on Machine Learning, 2020.

Kothari, K., Khorashadizadeh, A., de Hoop, M. V., and Dokmanic, I. Trumpets: Injective flows for
inference and inverse problems. In Conference on Uncertainty in Artificial Intelligence, 2021.

Köthe, U. A review of change of variable formulas for generative modeling. arXiv preprint
arXiv:2308.02652, 2023.

Krantz, S. G. and Parks, H. R. Geometric Integration Theory. Springer Science & Business Media,
2008.

Kraskov, A., Stögbauer, H., and Grassberger, P. Estimating mutual information. Physical Review E,
69(6):066138, June 2004. ISSN 1539-3755, 1550-2376. doi: 10.1103/PhysRevE.69.066138.

Kratsios, A. and Bilokopytov, I. Non-euclidean universal approximation. Advances in Neural Informa-
tion Processing Systems, 33:10635–10646, 2020.

Krishnaiah, P. Some recent developments on complex multivariate distributions. Journal of Multivariate
Analysis, 6(1):1–30, 1976. ISSN 0047259X. doi: 10.1016/0047-259X(76)90017-8.

Krizhevsky, A. Learning multiple layers of features from tiny images. Technical report, University of
Toronto, Toronto, Ontario, 2009.

110 Bibliography

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional neural
networks. Advances in neural information processing systems, 25, 2012.

Kruse, J., Detommaso, G., Köthe, U., and Scheichl, R. HINT: Hierarchical Invertible Neural Transport
for Density Estimation and Bayesian Inference. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(9):8191–8199, May 2021. ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v35i9.16997.

Kühmichel, L. E. and Draxler, F. Lightning trainable, 2023.

Kumar, A., Poole, B., and Murphy, K. Regularized autoencoders via relaxed injective probability flow.
In International Conference on Artificial Intelligence and Statistics, 2020.

Laparra, V., Camps-Valls, G., and Malo, J. Iterative Gaussianization: From ICA to Random Rotations.
IEEE Transactions on Neural Networks, 22(4):537–549, April 2011. ISSN 1045-9227, 1941-0093. doi:
10.1109/TNN.2011.2106511.

Lawrence, J., Bernal, J., and Witzgall, C. A purely algebraic justification of the Kabsch-Umeyama
algorithm. Journal of research of the National Institute of Standards and Technology, 124:1, 2019.

LeCun, Y., Cortes, C., and Burges, CJ. MNIST handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Lee, H., Pabbaraju, C., Sevekari, A. P., and Risteski, A. Universal approximation using well-conditioned
normalizing flows. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 12700–12711. Curran
Associates, Inc., 2021.

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and Le, M. Flow Matching for Generative
Modeling. In International Conference on Learning Representations, 2023.

Liu, X., Gong, C., and Liu, Q. Learning to Generate and Transfer Data with Rectified Flow. In
International Conference on Learning Representations, 2023a.

Liu, Y., Liu, H., Yin, Y., Wang, Y., Chen, B., and Wang, H. Delving into discrete normalizing flows on
SO (3) manifold for probabilistic rotation modeling. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 21264–21273, 2023b.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV), December 2015.

Liutkus, A., Simsekli, U., Majewski, S., Durmus, A., and Stöter, F.-R. Sliced-Wasserstein flows:
Nonparametric generative modeling via optimal transport and diffusions. In Chaudhuri, K. and
Salakhutdinov, R. (eds.), Proceedings of the 36th International Conference on Machine Learning,
2019.

Loaiza-Ganem, G., Ross, B. L., Wu, L., Cunningham, J. P., Cresswell, J. C., and Caterini, A. L.
Denoising deep generative models. In Advances in Neural Information Processing Systems, Workshop
Track, 2022.

Lopez-Paz, D. and Oquab, M. Revisiting classifier two-sample tests. In International Conference on
Learning Representations, 2017.

Lou, A., Lim, D., Katsman, I., Huang, L., Jiang, Q., Lim, S. N., and De Sa, C. M. Neural manifold
ordinary differential equations. Advances in Neural Information Processing Systems, 33:17548–17558,
2020.

Bibliography 111

Lovell, S. C., Davis, I. W., Arendall III, W. B., de Bakker, P. I. W., Word, J. M., Prisant, M. G.,
Richardson, J. S., and Richardson, D. C. Structure validation by cα geometry: φ,ψ and cβ deviation.
Proteins: Structure, Function, and Bioinformatics, 50(3):437–450, 2003. doi: 10.1002/prot.10286.

Lueckmann, J.-M., Boelts, J., Greenberg, D., Goncalves, P., and Macke, J. Benchmarking simulation-
based inference. In International Conference on Artificial Intelligence and Statistics, 2021.

Lyu, J., Chen, Z., Feng, C., Cun, W., Zhu, S., Geng, Y., Xu, Z., and Chen, Y. Universality of
parametric Coupling Flows over parametric diffeomorphisms. arXiv preprint arXiv:2202.02906, 2022.

Mackowiak, R., Ardizzone, L., Kothe, U., and Rother, C. Generative classifiers as a basis for trustworthy
image classification. In IEEE / CVF Computer Vision and Pattern Recognition Conference, 2021.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and Frey, B. Adversarial autoencoders. In
International Conference on Learning Representations, 2015.

Mathieu, E. and Nickel, M. Riemannian continuous normalizing flows. Advances in Neural Information
Processing Systems, 33:2503–2515, 2020.

McKinney, W. Data Structures for Statistical Computing in Python. In van der Walt, S. and Jarrod
Millman (eds.), 9th Python in Science Conference, 2010.

Meng, C., Ke, Y., Zhang, J., Zhang, M., Zhong, W., and Ma, P. Large-scale optimal transport map
estimation using projection pursuit. In Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 32, pp.
8116–8127. Curran Associates, Inc., 2019.

Meng, C., Song, Y., Song, J., and Ermon, S. Gaussianization Flows. In AISTATS, 2020.

Mezzadri, F. How to generate random matrices from the classical compact groups. Notices of the
American Mathematical Society, 54(5):592–604, May 2007. ISSN 0002-9920.

Miolane, N., Guigui, N., Brigant, A. L., Mathe, J., Hou, B., Thanwerdas, Y., Heyder, S., Peltre, O.,
Koep, N., Zaatiti, H., Hajri, H., Cabanes, Y., Gerald, T., Chauchat, P., Shewmake, C., Brooks, D.,
Kainz, B., Donnat, C., Holmes, S., and Pennec, X. Geomstats: A python package for riemannian
geometry in machine learning. Journal of Machine Learning Research, 21(223):1–9, 2020.

Miolane, N., Utpala, S., Guigui, N., Pereira, L. F., Brigant, A. L., Hzaatiti, Cabanes, Y., Mathe, J.,
Koep, N., elodiemaignant, ythanwerdas, xpennec, tgeral68, Christian, Nguyen, T. M., Peltre, O.,
pchauchat, Jules-Deschamps, Harvey, J., mortenapedersen, Maya95assal, Barthélemy, Q., Abdellaoui-
Souhail, Myers, A., Ambellan, F., Florent-Michel, Talbar, S., Heyder, S., de Mont-Marin, Y., and
Marius. Geomstats/geomstats: Geomstats v2.7.0. Zenodo, August 2023.

Müller, J., Schmier, R., Ardizzone, L., Rother, C., and Köthe, U. Learning Robust Models Using The
Principle of Independent Causal Mechanisms. In German Conference on Pattern Recognition, 2021.

Müller, T., Mcwilliams, B., Rousselle, F., Gross, M., and Novák, J. Neural Importance Sampling.
ACM Transactions on Graphics, 38(5):1–19, 2019. ISSN 0730-0301. doi: 10.1145/3341156.

Murphy, K. A., Esteves, C., Jampani, V., Ramalingam, S., and Makadia, A. Implicit-PDF: Non-
parametric representation of probability distributions on the rotation manifold. In International
Conference on Machine Learning, 2021.

112 Bibliography

Murray, L., Arendall, W., Richardson, D., and Richardson, J. RNA backbone is rotameric. Proceedings
of the National Academy of Sciences of the United States of America, 100:13904–9, December 2003.
doi: 10.1073/pnas.1835769100.

Nash, J. The imbedding problem for Riemannian manifolds. Annals of mathematics, 63(1):20–63, 1956.

National Geophysical Data Center / World Data Service (NGDC/WDS). NCEI/WDS global significant
earthquake database, 2022a.

National Geophysical Data Center / World Data Service (NGDC/WDS). NCEI/WDS global significant
volcanic eruptions database, 2022b.

Nicoli, K. A., Anders, C., Funcke, L., Hartung, T., Jansen, K., Kessel, P., Nakajima, S., and Stornati,
P. Machine Learning of Thermodynamic Observables in the Presence of Mode Collapse. In
Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021),
pp. 338, Zoom/Gather@Massachusetts Institute of Technology, May 2022. Sissa Medialab. doi:
10.22323/1.396.0338.

Noé, F., Olsson, S., Köhler, J., and Wu, H. Boltzmann generators: Sampling equilibrium states of
many-body systems with deep learning. Science, 365(6457):eaaw1147, 2019.

Noever-Castelos, P., Ardizzone, L., and Balzani, C. Model updating of wind turbine blade cross sections
with invertible neural networks. Wind Energy, 25(3):573–599, 2022. ISSN 1095-4244, 1099-1824. doi:
10.1002/we.2687.

Olshanski, G. Projections of orbital measures, Gelfand-Tsetlin polytopes, and splines. Journal of Lie
Theory, 23(4):1011–1022, 2013.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked autoregressive flow for density estimation.
Advances in Neural Information Processing Systems, 2017.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B. Normalizing
flows for probabilistic modeling and inference. arXiv preprint arXiv:1912.02762, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. Pytorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, 2019.

Pearson, K. On lines and planes of closest fit to systems of points in space. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, November 1901. ISSN
1941-5982, 1941-5990. doi: 10.1080/14786440109462720.

Peel, D., Whiten, W. J., and McLachlan, G. J. Fitting mixtures of Kent distributions to aid in joint
set identification. Journal of the American Statistical Association, 96(453):56–63, 2001.

Perugachi-Diaz, Y., Tomczak, J. M., and Bhulai, S. Invertible DenseNets with concatenated LipSwish.
In Advances in Neural Information Processing Systems, 2021.

Pitié, F., Kokaram, A. C., and Dahyot, R. Automated colour grading using colour distribution transfer.
Computer Vision and Image Understanding, 107(1-2):123–137, July 2007. ISSN 10773142. doi:
10.1016/j.cviu.2006.11.011.

Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., and Liao, Q. Why and when can deep-but not shallow-
networks avoid the curse of dimensionality: A review. International Journal of Automation and Com-
puting, 14(5):503–519, October 2017. ISSN 1476-8186, 1751-8520. doi: 10.1007/s11633-017-1054-2.

Bibliography 113

Putzky, P. and Welling, M. Invert to learn to invert. In Advances in Neural Information Processing
Systems, pp. 446–456, 2019.

Radev, S. T., Graw, F., Chen, S., Mutters, N. T., Eichel, V. M., Bärnighausen, T., and Köthe, U.
OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural
networks and its application to the COVID-19 pandemics in Germany. PLoS computational biology,
17(10):e1009472, 2021.

Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., and Köthe, U. BayesFlow: Learning Complex
Stochastic Models With Invertible Neural Networks. IEEE Transactions on Neural Networks and
Learning Systems, 33(4):1452–1466, April 2022. ISSN 2162-2388. doi: 10.1109/TNNLS.2020.3042395.

Ramachandran, G. N., Ramakrishnan, C., and Sasisekharan, V. Stereochemistry of polypeptide chain
configurations. Journal of Molecular Biology, 7(1):95–99, 1963. doi: 10.1016/S0022-2836(63)80023-6.

Ramakrishnan, R., Dral, P. O., Rupp, M., and von Lilienfeld, O. A. Quantum chemistry structures
and properties of 134 kilo molecules. Scientific Data, 1:140022, 2014.

Rezende, D. and Mohamed, S. Variational inference with normalizing flows. In International Conference
on Machine Learning, 2015.

Rezende, D. J., Papamakarios, G., Racaniere, S., Albergo, M., Kanwar, G., Shanahan, P., and Cranmer,
K. Normalizing flows on tori and spheres. In International Conference on Machine Learning, 2020.

Rosenblatt, M. Remarks on a multivariate transformation. The annals of mathematical statistics, 23
(3):470–472, 1952.

Ross, B. and Cresswell, J. Tractable density estimation on learned manifolds with conformal embedding
flows. Advances in Neural Information Processing Systems, 34:26635–26648, 2021.

Rozen, N., Grover, A., Nickel, M., and Lipman, Y. Moser flow: Divergence-based generative modeling
on manifolds. Advances in Neural Information Processing Systems, 34:17669–17680, 2021.

Ruddigkeit, L., van Deursen, R., Blum, L. C., and Reymond, J.-L. Enumeration of 166 billion organic
small molecules in the chemical universe database GDB-17. Journal of Chemical Information and
Modeling, 52:2864–2875, 2012.

Rudin, W. Principles of Mathematical Analysis. International Series in Pure and Applied Mathematics.
McGraw-Hill, New York St. Louis San Francisco [etc.], third ed edition, 1976. ISBN 978-0-07-054235-8.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by back-propagating
errors. Nature, 323(6088):533–536, October 1986. ISSN 0028-0836, 1476-4687. doi: 10.1038/323533a0.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X. Improved techniques
for training gans. Advances in neural information processing systems, 29, 2016.

Satorras, V. G., Hoogeboom, E., Fuchs, F., Posner, I., and Welling, M. E (n) equivariant normalizing
flows. Advances in Neural Information Processing Systems, 2021a.

Satorras, V. G., Hoogeboom, E., and Welling, M. E(n) equivariant graph neural networks. In
International Conference on Machine Learning, 2021b.

114 Bibliography

Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C., Ž́ıdek, A., Nelson,
A. W. R., Bridgland, A., Penedones, H., Petersen, S., Simonyan, K., Crossan, S., Kohli, P., Jones,
D. T., Silver, D., Kavukcuoglu, K., and Hassabis, D. Improved protein structure prediction using
potentials from deep learning. Nature, 577(7792):706–710, January 2020. ISSN 0028-0836, 1476-4687.
doi: 10.1038/s41586-019-1923-7.

Shewchuk, J. R. et al. An introduction to the conjugate gradient method without the agonizing pain,
1994.

Silvestri, G., Roos, D., and Ambrogioni, L. Deterministic training of generative autoencoders using
invertible layers. In The Eleventh International Conference on Learning Representations, 2023.

Snell, J., Ridgeway, K., Liao, R., Roads, B. D., Mozer, M. C., and Zemel, R. S. Learning to generate
images with perceptual similarity metrics. In IEEE International Conference on Image Processing,
pp. 4277–4281. IEEE, 2017.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Conference on Machine Learning, 2015.

Sorrenson, P., Rother, C., and Köthe, U. Disentanglement by nonlinear ICA with general incompressible-
flow networks (GIN). In International Conference on Learning Representations, 2019.

Sorrenson, P., Draxler, F., Rousselot, A., Hummerich, S., and Köthe, U. Learning distributions on
manifolds with free-form flows. arXiv preprint arXiv:2312.09852, 2023.

Sorrenson, P., Draxler, F., Rousselot, A., Hummerich, S., Zimmermann, L., and Köthe, U. Lifting
architectural constraints of injective flows. In International Conference on Learning Representations,
2024.

Souveton, V., Guillin, A., Jasche, J., Lavaux, G., and Michel, M. Fixed-kinetic Neural Hamiltonian
Flows for enhanced interpretability and reduced complexity. In International Conference on Artificial
Intelligence and Statistics, 2024.

Tabak, E. G. and Trigila, G. Conditional expectation estimation through attributable components.
Information and Inference: A Journal of the IMA, 7(4):727–754, 2018.

Teng, Y. and Choromanska, A. Invertible autoencoder for domain adaptation. Computation, 7(2):20,
2019.

Teshima, T., Ishikawa, I., Tojo, K., Oono, K., Ikeda, M., and Sugiyama, M. Coupling-based Invertible
Neural Networks Are Universal Diffeomorphism Approximators. In Advances in Neural Information
Processing Systems, 2020a.

Teshima, T., Tojo, K., Ikeda, M., Ishikawa, I., and Oono, K. Universal Approximation Property of
Neural Ordinary Differential Equations. In Advances in Neural Information Processing Systems,
Workshop Track, 2020b.

The pandas development team. Pandas-dev/pandas: Pandas, February 2020.

Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf, B. Wasserstein auto-encoders. In International
Conference on Learning Representations, 2018.

Toth, P., Rezende, D. J., Jaegle, A., Racanière, S., Botev, A., and Higgins, I. Hamiltonian generative
networks. In International Conference on Learning Representations, 2020.

Bibliography 115

Trigila, G. and Tabak, E. G. Data-driven optimal transport. Communications on Pure and Applied
Mathematics, 69(4):613–648, 2016.

Turk, G. and Levoy, M. Zippered polygon meshes from range images. In Proceedings of the 21st Annual
Conference on Computer Graphics and Interactive Techniques, pp. 311–318, 1994.

Uria, B., Murray, I., and Larochelle, H. RNADE: The real-valued neural autoregressive density-
estimator. In Advances in Neural Information Processing Systems, volume 26, 2013.

van den Oord, A., Vinyals, O., et al. Neural discrete representation learning. Advances in Neural
Information Processing Systems, 30, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,
E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman,
K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero,
E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy
1.0 Contributors. SciPy 1.0: Fundamental algorithms for scientific computing in python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Wainwright, M. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge University
Press, 2019.

Wehenkel, A. and Louppe, G. Unconstrained Monotonic Neural Networks. In Advances in Neural
Information Processing Systems, 2019.

Wildberger, J., Dax, M., Buchholz, S., Green, S. R., Macke, J. H., and Schölkopf, B. Flow Matching
for Scalable Simulation-Based Inference. In Advances in Neural Information Processing Systems,
2023.

Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. Dive into Deep Learning. Cambridge University
Press, 2023a.

Zhang, H., Gao, X., Unterman, J., and Arodz, T. Approximation Capabilities of Neural ODEs and
Invertible Residual Networks. In International Conference on Machine Learning, 2020a.

Zhang, M., Sun, Y., Zhang, C., and Mcdonagh, S. Spread flows for manifold modelling. In International
Conference on Artificial Intelligence and Statistics, 2023b.

Zhang, Z., Zhang, R., Li, Z., Bengio, Y., and Paull, L. Perceptual generative autoencoders. In
International Conference on Machine Learning, 2020b.

Zhao, S., Song, J., and Ermon, S. Infovae: Information maximizing variational autoencoders.
arXiv:1706.02262, 2017.

Zhou, D.-X. Universality of deep convolutional neural networks. Applied and computational harmonic
analysis, 48(2):787–794, 2020.

Ziegler, Z. and Rush, A. Latent Normalizing Flows for Discrete Sequences. In International Conference
on Machine Learning, 2019.

A. Proofs

A.1. Proofs on Pythagorean identities

This appendix is adapted from Draxler et al. (2022).

A.1.1. Proof of theorem 4.1

The explicit form of the non-Standardness is given by the KL divergence between the two multivariate
Gaussians N (m,Σ) and N (0, I):

S(m,Σ) = DKL(N (m,Σ)∥N (0, I)) (A.1)

= Ex∼N (m,Σ)[logN (x;m,Σ)− logN (x; 0, I)] (A.2)

= Ex∼N (m,Σ)[−1
2 log det(2πΣ)− 1

2(x−m)TΣ−1(x−m) + 1
2 log det(2πID) + 1

2∥x∥
2] (A.3)

= 1
2

(
− log det(Σ) + Ex∼N (m,Σ)[−1

2(x−m)TΣ−1(x−m) + 1
2∥x∥

2]
)

(A.4)

= 1
2(∥m∥2 + tr Σ−D − log det Σ). (A.5)

Theorem 4.1. Given data with distribution pθ(z) with mean m and covariance Σ. Then, the Kullback-
Leibler divergence to a standard normal distribution decomposes as follows:

L = DKL(pθ(z)∥N (0, I)) = DKL(pθ(z)∥N (m,Σ))︸ ︷︷ ︸
non-Gaussianity G[pθ(z)]

+DKL(N (m,Σ)∥N (0, I))︸ ︷︷ ︸
non-Standardness S(m,Σ)

, (A.6)

and the non-Standardness again decomposes:

S(m,Σ) = DKL(N (m,Σ)∥N (m,Diag(Σ)))︸ ︷︷ ︸
Correlation C(m,Σ)

+DKL(N (m,Diag(Σ))∥N (0, I))︸ ︷︷ ︸
Diagonal non-Standardness

. (A.7)

Also,

L = DKL(pθ(z)∥N (0, I)) = DKL(pθ(z)∥p(x1) · · · p(xD))︸ ︷︷ ︸
Mutual Information I[pθ(z)]

+
∑
i

DKL(pθ(zi)∥N (0, 1))︸ ︷︷ ︸
marginal loss L[pθ(zi)]

. (A.8)

Proof. We start with the first decomposition in equation (4.35).

DKL(p∥N (0, I))−DKL(p∥N (m,Σ)) (A.9)

= Ex∼p(x)[log p(x)− logN (x; 0, I)− log p(x) + logN (x;m,Σ)] (A.10)

= Ex∼p(x)[− logN (x; 0, I) + logN (x;m,Σ)] (A.11)

=
1

2
Ex∼p(x)[D log(2π) + ∥x∥2 −D log(2π)− log det Σ− (x−m)TΣ−1(x−m)] (A.12)

=
1

2
Ex∼p(x)[∥x∥2 − log det Σ− (x−m)TΣ−1(x−m)] (A.13)

=
1

2

(
Ex∼p(x)[∥x∥2]− log det Σ− Ex∼p(x)[(x−m)TΣ−1(x−m)]

)
. (A.14)

118 A. Proofs

The open expectation values read:

Ex∼p(x)
[
∥x∥2

]
= Ex∼p(x)

 D∑
i=1

x2i

 =
D∑
i=1

Ex∼p(x)[x2i] =
D∑
i=1

(m2
i + Σii) = ∥m∥2 + tr Σ, (A.15)

and interpreting (x − m) as a RD×1 matrix, we can re-write using the trace. Then use the cyclic
property and linearity of the trace:

Ex∼p(x)[(x−m)TΣ−1(x−m)] = Ex∼p(x)[tr((x−m)TΣ−1(x−m))] (A.16)

= Ex∼p(x)[tr((x−m)(x−m)TΣ−1)] (A.17)

= tr(Ex∼p(x)[(x−m)(x−m)T]Σ−1) (A.18)

= tr(ΣΣ−1) (A.19)

= D. (A.20)

Inserting the two expectation values, we identify:

DKL(p∥N (0, I))−DKL(p∥N (m,Σ)) =
1

2

(
∥m∥2 + tr Σ− log det Σ−D

)
(A.21)

= DKL(N (m,Σ)∥N (0, I)), (A.22)

and obtain equation (4.35).

Now we move on to show equation (4.36):

C(m,Σ) = DKL(N (m,Σ)∥N (m,Diag(Σ))) (A.23)

=
1

2

(
tr
(

(Diag Σ)−1Σ
)
−D + log

det(Diag(Σ))

det Σ

)
(A.24)

=
1

2
log

det(Diag(Σ))

det Σ
, (A.25)

and

DKL(N (m,Diag(Σ))∥N (0, I)) =
1

2

(
tr Diag(Σ)−D − log(det(Diag(Σ)))

)
(A.26)

=
1

2

(
tr Σ−D − log(det(Diag(Σ)))

)
. (A.27)

Adding the two divergences yields equation (4.36).

Equation (4.37) is due to (Cardoso, 2003, Section 2.1).

A.1.2. Proof of lemma 4.2

Lemma 4.2. Given a D-dimensional distribution p(x) and an affine-linear function

z = fθ(x) = Ax+ b (A.28)

for some invertible A ∈ RD×D and b ∈ RD. Then:

G[pθ(z)] = G[p(x)]. (A.29)

A.2. Proofs on Volume-preserving Flows 119

Proof. The non-Gaussianity G is given by:

G[p(x)] = DKL(p(x)∥N (m,Σ)). (A.30)

Mean and covariance of the push-forward of p through fθ read:

Ex∼p(x)[fθ(x)] = Ex∼p(x)[Ax+ b] = Am+ b = m̃, (A.31)

Covx∼p(x)[fθ(x)] = Covx∼p(x)[Ax+ b] = AΣAT = Σ̃. (A.32)

Thus, the non-Gaussianity after applying fθ reads:

G[g♯p] = DKL(g♯p∥N (m̃, Σ̃)). (A.33)

The push-forward of N (m,Σ) via fθ is identical to the normal distribution that occurs in the non-
Gaussianity of g♯p:

(fθ)♯N (m,Σ) = N (m̃, Σ̃), (A.34)

Now, we make use of the fact that the KL divergence is invariant if both arguments are transformed
by any invertible function fθ:

DKL(p1(x)∥p2(x)) = DKL(((fθ)♯p1)(x)∥((fθ)♯p2)(x)). (A.35)

Together,
G[pθ(z)] = G[p(x)]. (A.36)

A.2. Proofs on Volume-preserving Flows

This appendix is adapted from Draxler et al. (2024b).

A.2.1. Minimizer of Volume-Preserving Normalizing Flows

In this section, we consider what distribution a volume-preserving flow converges to instead. We first
construct the latent distribution a sufficiently rich volume-preserving flows converges to when trained
with KL divergence and then show that this actually minimizes the KL.

We also demonstrate in what sense ∆affine[pθ(z)] is sensitive to volume-preserving transformations.
We therefore show that this flow converges under our convergence measure ∆affine[pθ(z)] if and only if
that volume-preserving flow converges to a standard normal in the latent space under KL divergence.

Rotationally Symmetric Distribution with Same Level Set Structure

Let us repeat the change-of-variables formula for a volume-preserving flow from equation (4.31):

pθ(x) = p(z = fθ(x)) · C, (A.37)

where C = |f ′θ(x)| is constant with respect to x. Intuitively, this means that such a flow can permute
the probability mass at all locations x, and apply a single global factor to scale all probability values
by spreading out the distribution.

We now construct the best possible distribution learned by a volume-preserving flow to an arbitrary
input p(x) in terms of KL divergence. We therefore split the input space into the into level sets of p(x):

Lv(p(·)) := {x ∈ RD : p(x) = v}. (A.38)

120 A. Proofs

Acting on the input distribution, a volume-preserving flow yields a latent distribution pθ(z) whose level
set structure is closely related to that of the input distribution, in the following sense:

|Lv(p(x))| =
|Lv/C(pθ(z))|

C
. (A.39)

Here, with | · | we denote the (D − 1)-dimensional volume, thereby assuming:

Assumption A.1. The level sets of the data distribution Lv(p(x)) are (D − 1)-dimensional.

Intuitively, this captures that a volume-preserving flow maps the input space to the latent space
such that the level set in data space for the density value v is mapped to the level set in the latent
space of level v/C – and the volumes are scaled by the factor C.

In the following, we use these level sets to construct the distribution p∗(z) a volume-preserving
flow converges to in the latent space. This allows us to specify the best solution a volume-preserving
flow can converge to. We first consider a fixed C and then later consider choosing C.

Lemma A.1. Let p(x) be a bounded continuous probability density under assumption A.1. Then, a
unique continuous probability density p∗(z) with the following properties exists:

1. Its level sets have equal volume: |Lv(p)| = |Lv(p∗)|,

2. p∗ is rotationally symmetric: p∗(z) = p∗(Qz) for all Q ∈ SO(D),

3. p∗(z1, 0, . . . , 0) is strictly monotonically decreasing in 0 ≤ z1 <∞.

Proof. We write p∗(x) = p∗(r)p∗(Ω|r), where (r,Ω) are hyper-spherical coordinates. Since p∗(x) should
be rotationally symmetric, the distribution of the solid angle Ω is isotropic, and equal to one over the
surface AD−1(r) of the (D − 1)-dimensional hypersphere:

p∗(Ω|r) =
1

AD−1(r)
=

Γ(D/2)

2π
D
2 rD−1

(A.40)

This makes p∗ rotationally symmetric and leaves us with constructing p∗(r).
Define the superlevel sets v for p(x) as follows:

L+
v (p) = {x ∈ RD : p(x) ≥ v}. (A.41)

Their volume |L+
v (p)| as measured in D dimensions is monotonically decreasing in v and its derivative

yields the volume of the (D − 1)-dimensional level set:

∂

∂v
|L+
v (p)| = |Lv(p)|. (A.42)

We now demand that
|L+
v (p)| = |L+

v (p∗)| (A.43)

and integrate out Ω:

|L+
v (p∗)| =

∫
1[p∗(x) ≥ v]dx (A.44)

=

∫
dΩ

∫
rD−11[p∗(r) ≥ v]dr (A.45)

= AD−1(1)

∫
rD−11[p∗(r) ≥ v]dr. (A.46)

A.2. Proofs on Volume-preserving Flows 121

Since p∗(r) should decrease monotonically with r, we can replace the indicator function by integral
boundaries, where the upper limit depends on the target density value v. We identify maxx p(x) (exists
because p(x) is bounded) with R = 0:

|L+
v (p∗)| = AD−1(1)

∫ R(v)

0
rD−1dr (A.47)

= AD−1(1)
1

D
R(v)D (A.48)

Rearranging yields R(v) from |L+
v (p)|:

R(v) =

(
D|L+

v (p)|
AD−1(1)

) 1
D

(A.49)

As R(v) is monotonous in |L+
v (p)|, |L+

v (p)| is continuous and monotonous in v, and R(v) is invertible,
its inverse can be used to define p∗(r):

p∗(r) = R−1(r). (A.50)

By choosing R(v) to fulfill equation (A.43), their derivatives also match:

|Lv(p)| =
∂

∂v
|L+
v (p)| = ∂

∂v
|L+
v (p∗)| = |L+

v (p∗)|. (A.51)

The other properties of p∗ follow directly from the construction above. The density is unique (up to
zero sets) since a rotationally symmetric distribution is uniquely defined by a one-dimensional ray
(Eaton, 1986).

We now show that the latent distribution p∗(z) is actually attainable by a volume-preserving flow:

Lemma A.2. Under the assumptions of lemma A.1. There exists a bijective function fθ : RD → RD
that is continuous and volume-preserving with unit volume change (|f ′θ(x)| = 1) almost everywhere and
pθ(z) = p∗(x = z).

This means that there is a volume-preserving flow that exactly pushes p(x) to its respective p∗(x).
Note that this volume-preserving flow has |f ′θ(x)| = 1.

Proof. Divide the space into the level sets Lp(v) of p(x). Since p(x) is continuous, there is a countable
sequence of thresholds vi at which the number of connected components in the level set Lp(v) jumps:
The first jump is at vmax = maxx p(x), below which find as many connected components as there are
maximal modes in p(x). The number of connected components changes whenever there is a saddle point
or maximum in p(x). Between each subsequent pair of jumps (vi, vi+1), each connected component
can be continuously assigned to a countable cluster number. This yields two tessellations of the entire
space: One into level sets, and one into continuous connected components. To construct fθ, we assign
the highest points of x∗ ∈ RD to fθ(x

∗) = 0. Then, we continuously arrange the finite number of
components until the next jump in (maxx p(x), v1) around the origin, such that the resulting level sets
are concentric circles. This constructs fθ that pushes p(x) to p∗(x) and fulfills the above constraints.

122 A. Proofs

Best Volume-Preserving Normalizing Flow under KL Divergence

We are going to make use of the following identity that a volume-preserving flow with |f ′θ(x)| = C ̸= 1
with a standard normal in the latent space can be written as a volume-preserving flow with |f̃ ′θ(x)| = 1
and an alternative latent distribution p̃(z) = N (0, C−2/DI):

Lemma A.3. Given a volume-preserving bijection fθ that is diffeomorphic almost everywhere, and
with |f ′θ(x)| = C for some C > 0. Then, there exists a volume-preserving bijection f̃θ with |f̃ ′θ(x)| = 1
such that:

((f−1
θ)♯N (0, I))(x) = ((f̃−1

θ)♯N (0, C−2/DI))(x) (A.52)

In other words, the global volume change of a volume-preserving flow with standard normal latent
space can be absorbed into a single scaling layer at the latent end of the flow.

Proof. Let f̃θ(x) = C−1/Dfθ(x), which has |f̃ ′θ(x)| = C/C = 1 and write N (0, C−2/DI) as the push-
forward of N (0, I) through z 7→ C−1/Dz.

Now we show our main theorem 5.2 on volume-preserving flows, formalized in terms of the learned
latent distribution as constructed in lemma A.1:

Theorem A.4 (Best possible volume-preserving flow, formalized). Given a continuous bounded
probability density p(x) with (D−1)-dimensional level sets. Then, the minimal achievable KL divergence
by a volume-preserving normalizing flow p∗θ(x) whose underlying map f∗θ is continuous almost everywhere
and with a standard normal latent distribution reads:

DKL(p(x)∥p∗θ(x)) = DKL(p∗(z)∥N (0, |Σp∗(z)|
1
D I)), (A.53)

where p∗(z) is constructed as in lemma A.1, and Σp∗(z) is its covariance matrix. The minimal loss is

achieved for C = |Σp∗(z)|−
1

2D .

Proof. By equation (4.10), DKL(p(x)∥pθ(x)) = DKL(pθ(z)∥N (0, I)). The variant in the latent space
can be rewritten using the entropy of pθ(z) as:

DKL(pθ(z)∥N (0, I)) = DKL(pθ(z)∥N (0, I)) = −H[pθ(x)]−
∫
pθ(z) logN (z; 0, I)dz. (A.54)

The entropy of the latent distribution of a volume-preserving flow only depends on the volume
change constant C, but not on the exact choice of fθ:

H[pθ(z)] = −
∫
pθ(z) log pθ(z)dz (A.55)

= −
∫
p(x) log(pθ(z = fθ(x))C)dx− logC (A.56)

= −
∫
p(x) log p(x)dx− logC (A.57)

= H[p(x)]− logC. (A.58)

Inserting into equation (A.54):

DKL(pθ(z)∥N (0, I)) = DKL(pθ(z)∥N (0, I)) = −H[p(x)] + logC −
∫
pθ(z) logN (z; 0, I)dz. (A.59)

A.2. Proofs on Volume-preserving Flows 123

Using lemma A.3, rewrite the last term in equation (A.59) as an integral over x:

−
∫
pθ(z) logN (z; 0, C−2I)dz = −

∫
p(x) logN (f̃θ(x); 0, C−2I)dx. (A.60)

This reveals the KL is minimized by assigning the highest values of p(x) to the highest values of
N (0, C−2I). Since the order of densities N (z; 0, C−2I) is the same regardless of C, the assignment
f̃θ(x) does not depend on C, which can be estimated separately via

DKL(p∗(z)∥N (0, C−2I)). (A.61)

By theorem 4.1, the KL divergence equation (A.61) can be decomposed as follows:

DKL(p∗(z)∥N (0, C−2I)) = DKL(p∗(z)∥N (0, |Σz|
1
D I)) +DKL(N (0, |Σz|

1
D I)∥N (0, C−2I)), (A.62)

where |Σz| is the determinant of the covariance matrix of the latent codes of p∗(z): Σz = Covz∼p∗(z)[z] =

|Σz|
1
D I due to the rotational symmetry. The first term is invariant under scaling the latent codes, and

the second term is minimal for C−2 = |Σz|
1
D .

The remaining loss DKL(p∗(z)∥N (0, |Σp∗(z)|
1
D I)) can be reduced to zero by switching to spher-

ical coordinates and learning p∗(r) via a non-volume-preserving one-dimensional distribution, see
appendix A.2.2.

Sensitivity of ∆affine to Volume-Preserving Flows

We now confirm that if a volume-preserving flow converges in KL divergence to p∗(x) instead of p(x),
this is also noted by ∆affine.

Lemma A.5. For a volume-preserving normalizing flow such that DKL(pθ(z)∥p∗(z))→ 0, it holds that
∆affine[pθ(z)]→ 0 if and only if DKL(p∗(z)∥N (0, I)) = 0.

Proof. By lemma 5.17, we can use ∆∗
affine > 0 and ∆affine > 0 interchangeably. By its definition in

equation (5.32),

∆∗
affine = max

Q

1
2

D/2∑
i

Eb
[
m2
i (b) + σ2i (b)− 1− log σ2i (b)

]
(A.63)

According to theorem 5.2, the latent distribution pθ(z) = p∗(z = x) minimizes the KL in the latent
space: DKL(pθ(z)∥N (0, I)) (the exact assignment between data and latent codes is not unique, but all
lead to the same latent estimate).

At this minimum, pθ(z) = p∗(x = z). Since p∗(x) is symmetric under rotations, it holds that, it
holds that mi(b) = 0 for (a, b) = Qx in all rotations Q. However, since Vara∼(Q♯p∗)(a)[ai|b] ̸= 1 for all Q,
it holds that

∆∗
affine = 1

2

D/2∑
i

Eb
[
σ2i (b)− 1− log σ2i (b)

]
, (A.64)

which evaluates to the same value regardless of Q since the distribution is rotationally symmetric.
While this minimum may not be exactly achieved by a continuous volume-preserving flow, a

sufficiently rich architecture is able to achieve universality DKL(pθ(z)∥N (0, I))→ DKL(p∗(z)∥N (0, I)).
Since the KL divergence implies the convergence of expectation values (Gibbs & Su, 2002), it holds that

∆∗
affine → 1

2

∑D/2
i Eb

[
σ2i (b)− 1− log σ2i (b)

]
≥ 0. Equality holds if and only if DKL(p∗(z)∥N (0, I)) =

0.

124 A. Proofs

Note that the same argument also applies to Wasserstein distance and weak convergence, so this
does not indicate that ∆affine[pθ(z)] is more informative about convergence than these convergence
metrics.

A.2.2. Fixing Volume-Preserving Flows by Learning the Latent Radial Distribution

By Theorem 5.2, the global minimizer of a volume-preserving flow is given by p∗(z) in the latent space,
as characterized by lemma A.1. Both p∗(z) and the standard normal distribution p(z) = N (0, I) are
rotationally symmetric, so it is useful to make a change of variables to hyperspherical coordinates (r,Ω):

p∗(z) = p∗(r(z))p∗(Ω(z)|r(z))

∣∣∣∣∣d(r,Ω)

dz

∣∣∣∣∣, (A.65)

p(z) = p(r(z))p(Ω(z)|r(z))

∣∣∣∣∣d(r,Ω)

dz

∣∣∣∣∣. (A.66)

The rotational symmetry implies that:

p∗(Ω|r) = p(Ω|r) =
1

AD−1(r)
, (A.67)

where AD−1(r) is the surface of the (D − 1)-dimensional sphere of radius r.
This means that we only need to match p∗(r) and p(r). This can be achieved by a one-dimensional

transformation of r.
Fixing the latent distribution can even be done after training, even if training had fixed the

volume change |f ′θ(x)| = 1: Training the volume-preserving flow with a standard normal in the latent
space sorts the data such that p(xa) ≥ p(xb) implies that ra ≤ rb, that is points of higher ground
truth density are mapped to points closer to the origin. If we now replace the latent distribution
with another distribution that fulfills the same constraint by fitting p∗(r), the minimizer with this
latent distribution remains the same. Thus, we can train with a standard normal and later fix the
one-dimensional distribution.

A.2.3. Proof of theorem 5.3

Theorem 5.3. The family of volume-preserving normalizing flows is not a universal distribution
approximator under KL divergence.

Proof. Consider the data distribution

p(x) =
α2

2π
e−α
√
x21+x

2
2 (A.68)

This distribution is rotationally symmetric, and it is monotonically decreasing in x1, so it fulfills the
conditions of p∗(z) in lemma A.1, meaning that the best possible latent distribution is p∗(z) = p(x = z).

Let us compute the KL divergence between this optimal latent distribution and a normal distribu-
tion with covariance Σ = σ2I in polar coordinates:

DKL(p∗(z)∥N (0, σ2I)) (A.69)

= α2

∫
re−αr

(
2 log(α)− log(2π)− αr + log(2π) + 2 log(σ) + log

1

2σ2
r2

)
dr (A.70)

= 2 log(ασ)− 2 +
3

α2σ2
(A.71)

A.2. Proofs on Volume-preserving Flows 125

= log κ− 2 +
3

κ
, (A.72)

where we have defined κ := α2σ2.
To find the minimum, differentiate with respect to κ:

∂

∂κ
DKL(p∗(z)∥N (0, σ2I)) =

1

κ
− 3

κ2
, (A.73)

which is zero for κcrit = 3. This critical point is a minimizer since the KL goes to ∞ for κ→ 0 and
κ→∞ and κcrit is the only critical point.

We find at the extremum:

DKL(p∗(z)∥N (0, σ2I))
∣∣∣
κ=3

= −1 + log 3 = 0.09861... > 0. (A.74)

Thus, there exists a distribution for which by theorem 5.2 the KL divergence achievable by a volume-
preserving flow is bounded from below by a nonzero value. This makes volume-preserving flows not
universal under KL divergence.

A.2.4. Proof of proposition 5.4

Definition A.6. Given a probability density p(x) and a connected set M ⊂ RD. Then, M is called a
mode of p(x) if

p(x) = p(y) ∀x, y ∈M, (A.75)

and there is a neighborhood U of M such that:

p(x) > p(y) ∀x ∈M,y ∈ U \M. (A.76)

With this definition of a mode, let us characterize the correspondence between modes of pθ(x)
and p(z) for a volume-preserving flow:

Lemma A.7. Given a latent probability density p(z), a diffeomorphism fθ : RD → RD with constant
Jacobian determinant |f ′θ(x)| = C and a mode M ⊂ RD of p(z). Then, f−1

θ (M) is a mode of pθ(x).

Proof. We show that f−1
θ (M) fulfills definition A.6. First, for every x, y ∈ f−1

θ (M): Then, by
construction: fθ(x), fθ(y) ∈M . As M is a mode:

p(z = fθ(x)) = p(z = fθ(y)). (A.77)

We follow:
pθ(x) = p(z = fθ(x))C = p(z = fθ(y))C = pθ(y), (A.78)

where we have used the volume-preserving change of variables formula in equation (4.31).
Second, let U be a neighborhood of M such that equation (A.76) is fulfilled. As fθ is a diffeo-

morphism, there is a neighborhood V of f−1
θ (M) such that V ⊆ f−1

θ (U). Consider x ∈ f−1
θ (M), y ∈

V \ f−1
θ (M). As M is a mode:

p(z = fθ(x)) > p(z = fθ(y)). (A.79)

Multiplying both sides by C, we find:

pθ(x) = p(fθ(x))C > p(z = fθ(y))C = pθ(y). (A.80)

Thus, f−1(M) is a mode of pθ(x) by definition A.6.

126 A. Proofs

This makes us ready for the proof:

Proposition 5.4. A normalizing flow pθ(x) based on a volume-preserving diffeomorphism fθ(x) has
the same number of modes as the latent distribution p(z).

Proof. By lemma A.7, every mode of p(z) implies a mode of pθ(x). Applied reversely, every mode of
pθ(x) implies a mode of p(z). Therefore, there is a one-to-one correspondence of modes between p(z)
and pθ(x).

A.3. Single non-linear affine layer

This appendix is adapted from Draxler et al. (2020).

A.3.1. Proof of lemma 5.5

Lemma 5.5. Given a probability density p(x) with finite first and second moments, and a single
affine coupling layer fcpl after a fixed rotation Q so that (b, a) = Qx. Then, equation (5.5) is uniquely
minimized by the following scaling and translations as a function of the passive dimensions b:

si(b) =
1√

Varai|b[ai]
=:

1

σi(b)
, (A.81)

ti(b) = −Eai|b[ai]si(b) =: −mi(b)

σi(b)
. (A.82)

Proof. The affine nonlinearity c leaves the passive dimensions b unchanged. This leaves us with the
minimization problem in equation (5.5):

min
s,t:RD/2→RD/2

Eb,a

1

2
∥a⊙ es(b) + t(b)∥2 −

D/2∑
i=1

si(b)

, (A.83)

where Eb,a is shorthand for Eb,a∼Q♯p.

Under the assumption that s, t are arbitrary functions without smoothness constraints, the above
minimization problem decouples into one for each value of b. We fix b for what follows and write
s = s(b), t = t(b) ∈ RD/2 instead of the corresponding functions and obtain:

min
s,t∈RD/2

Eai|b

1

2

∥∥∥a⊙ es + t
∥∥∥2 − D/2∑

i=1

si(b)

. (A.84)

This can be decoupled into D/2 independent minimization problems, indexed by i = 1, . . . , D/2:

min
si,ti∈R

Eai|b

[
1

2
(aie

si + ti)
2 − si

]
. (A.85)

At an extremal point, we find

∂siEai|b

[
1

2
(esiai + ti)

2 − si
]

= Eai|b
[
(esiai + ti)e

siai − 1
]

= 0, (A.86)

A.3. Single non-linear affine layer 127

∂tiEai|b

[
1

2
(esiai + ti)

2 − si
]

= Eai|b
[
(esiai + ti)

]
= 0. (A.87)

We can solve the second equation for ti:

ti = −Eai|b[ai]esi . (A.88)

Insert this into the condition on si:

Eai|b
[
2(esiai − Eai|b[ai]e

si)esiai − 1
]

= e2si Varai|b[ai]− 1 = 0, (A.89)

and find:

e2si Varai|b[ai] = 1,

esi =
1√

Varai|b[ai]
. (A.90)

This is the statement, written component-wise and for a fixed b.

A.3.2. Proof of theorem 5.8

We will use the chain rule for the KL divergence for x = (y, z):

DKL(p(y, z)∥q(y, z)) = DKL(p(y)∥q(y)) + Ey[DKL(p(z|y)∥q(z|y)]. (A.91)

Theorem 5.8. Given a probability density p(x) with finite first and second moments, and a single
affine coupling layer fcpl after a fixed rotation Q so that (b, a) = Qx. Let fcpl be the minimizer from
lemma 5.5 and x̃ = fcpl(Qx) = (b̃, ã). Then, the loss has the following minimal value:

DKL(pθ(x̃)∥p(z)) = DKL(p(b)∥N (0, I)) + Eb∼p(b)
[
G[p(a|b)] + C(ma|b,Σa|b)

]
(A.92)

= DKL(p(b)∥N (0, I))−∆∗
affine(Q). (A.93)

Here, the non-Gaussianity G[p(·)] and correlation C(m,Σ) are defined in theorem 4.1 and ma|b and
Σa|b are the mean and covariance of p(a|b). The loss improvement can explicitly be computed from the
conditional moments of p(a|b):

∆∗
affine(Q) =

D/2∑
i=1

Eb[S(mi(b), σi(b))] =
1

2

D/2∑
i=1

Eb[m2
i (b) + σ2i (b)− 1− log σ2i (b)]. (A.94)

Here, S(m,σ) = DKL(N (m,σ)∥N (0, 1)) is the univariate non-Standardness like in in theorem 4.1.

Proof. By the chain rule of the KL divergence in equation (A.91), we can write the KL divergence
before the transport as:

DKL(p(x)∥N (0, I)) = DKL(p(b)∥N (0, I)) + Eb[DKL(p(a|b)∥N (0, I))], (A.95)

where we take the dimension of I to match the distribution in the other argument of the KL divergence.
By theorem 4.1,

DKL(p(a|b)∥N (0, I)) = G[p(a|b)] + C(ma|b,Σa|b) +

D/2∑
i=1

S(mi(b), σi(b)). (A.96)

128 A. Proofs

Applying the transport in equation (5.8), we find the outgoing moments:

m̃i(b) = 0, σ̃i(b) = 1. (A.97)

Thus, S(m̃i(b), σ̃i(b)) = 0 and by lemmas 4.2 and 4.3 the non-Gaussianity G and the correlation C
(which is a mutual information) are left unchanged. Also, b̃ = b, and so the passive KL contribution is
also left unchanged.

Taking the difference, we find:

∆∗
affine(Q) = DKL(p(x)∥N (0, I))−DKL(pθ(x̃)∥N (0, I)) =

D/2∑
i=1

S(mi(b), σi(b)), (A.98)

which concludes the proof.

A.3.3. Proof of corollary 5.9

Corollary 5.9. If and only if p(a|b) is normally distributed for all b with diagonal covariance, that is:

p(a|b) =

D/2∏
i=1

N (ai|mi(b), σi(b)), (A.99)

a single affine block can reduce the KL divergence on the active subspace to zero:

DKL(p(x)∥pθ(x)) = 0. (A.100)

Proof. “⇒”: Insert this particular choice of p(x) into equation (5.16) to obtain the result.
“⇐”: The push-forward pθ(ã|b) can only be written as a product of its marginals if p(a|b) was a

product distribution for each b. Then, equation (5.16) decouples into contributions from each p(ai|b).
Each contribution is the non-Gaussianity of p(ai|b) which is only zero if p(ai|b) is Gaussian.

A.3.4. Proof of lemma 5.12

Lemma 5.12. Given a distribution p and a single affine coupling layer f with a fixed rotation Q. Call
(a, b) = Qx the rotated versions of x ∼ p. Then, the following are equivalent:

1. ã ⊥ b̃ for (ã, b̃) = fcpl(a, b) minimizing the ML loss in equation (5.5),

2. there exists n ⊥ b such that a = f(b) + n⊙ g(b), where f, g : RD/2 → RD/2.

Proof. 1⇒ 2: Rewriting equation (5.8), we find:

a = m(b) + σ(b)⊙ ã =: f(b) + g(b)⊙ n. (A.101)

By assumption, n = ã ⊥ b and and we obtain the statement.
2⇒ 1: In the following, we omit “⊙” and all multiplications are element-wise.
We first identify the solution as in equation (5.8) and then show that the resulting variable is

independent of b. In the following, we write f = f(b) and g = g(b).

En[a] = f + En[n]g, (A.102)

En[a2] = f2 + 2fgEn[n] + g2E[n2]. (A.103)

A.4. Proofs on affine coupling flow universality 129

We combine:

m(b) = f + En[n]g, (A.104)

σ(b) =
√
f2 + 2fgEn[n] + g2E[n2]− (f2 + 2fgEn[n] + g2En[n]2) (A.105)

= gσn. (A.106)

The resulting ã from this transport reads:

ã = fcpl(a|b) =
1

σ(b)
(a−m(b)) (A.107)

=
1

gσn
(f + ng − (f + En[n]g)) (A.108)

=
1

σn
(n− En̂[n̂]). (A.109)

This is independent of b̃.

A.4. Proofs on affine coupling flow universality

This appendix is adapted from Draxler et al. (2024b).

A.4.1. Proof of unique fixed point of affine coupling blocks

Underlying results from previous work

Here, we restate the results from the literature that our proof is based on:
First, for some vector-valued random variable X and every pair of orthogonal projections the

mean of one projection conditioned on the other is zero, then X follows a spherical distribution:

Theorem A.8 (Eaton (1986)). Suppose the random vector X ∈ RD has a finite mean vector. Assume
that for each vector v ̸= 0 and for each vector u perpendicular to v (i.e. u · v = 0):

E[u ·X|v ·X] = 0. (A.110)

Then X is spherical and conversely.

Secondly, Cambanis et al. (1981, Corollary 8a) identifies the Gaussian from all elliptically contoured
(which includes spherical) distributions. We write it in the form of Bryc (1995, Theorem 4.1.4):

Theorem A.9 (Bryc (1995)). Let p(x) be radially symmetric with E[∥x∥α] <∞ for some α > 0. If

E[∥x1,...,m∥α|xm+1,...,n] = const, (A.111)

for some 1 ≤ m < n, then p(x) is Gaussian.

Relation to practical neural networks (lemma 5.17)

Before moving to the proof of theorem 5.16, we show the helper statement lemma 5.17.
To relate equations (5.6) and (5.18) to actually realizable networks, which cannot exactly follow

the arbitrary continuous functions s∗i (b), t
∗
i (b), the following statement asserts that the fixed point

of adding coupling layers with infinitely expressive conditioner functions is the same as for actually
realizable and well-conditioned coupling blocks:

130 A. Proofs

Lemma 5.17. Given a continuous probability density pθ(z). Then,

∆∗
affine[pθ(z)] > 0 (A.112)

if and only if:

∆affine[pθ(z)] > 0. (A.113)

Proof. First, note that ∆∗
affine[pθ(z)] ≥ ∆affine[pθ(z)] ≥ 0 since no practically realizable coupling block

can achieve better than equation (5.18). Thus, if ∆∗
affine[pθ(z)] = 0, so is ∆affine[pθ(z)] = 0.

Denote by ∆∗
affine(Q) and ∆affine(Q) the best possible loss improvement for a fixed rotation Q,

omitting the argument pθ(z) for brevity, as in theorem 5.8.
Now choose the rotation Q∗ = arg maxQ ∆∗

affine(Q) (pick any if not unique). Below, we show that
then ∆affine(Q

∗) > 0, and thus ∆affine[pθ(z)] ≥ ∆affine(Q
∗) > 0.

Without loss of generalization, we consider one single active dimension ai in the following, but the
construction can then be repeated for each other active dimension.

If we apply any affine coupling layer ci(ai; b) = si(b)⊙ ai + ti(b), the loss change by this layer can
be computed from the theoretical maximal improvement ∆∗

affine(Q
∗) before and after adding this layer

∆̃∗
affine(I):

∆affine(Q
∗) = ∆∗

affine(Q
∗)− ∆̃∗

affine(I) (A.114)

= 1
2Eb
[
mi(b)

2 + σi(b)
2 − 1− log σi(b)

2
]
− 1

2Eb
[
m̃i(b)

2 + σ̃i(b)
2 − 1− log σ̃i(b)

2
]
. (A.115)

The moments after the affine coupling layers read:

m̃i(b) = sφ(b)mi(b) + tφ(b), σ̃i(b) = sφ(b)σi(b). (A.116)

Case 1: Eb[σi(b)2 − 1− log σi(b)
2] > 0:

Then, without loss of generality, by continuity and positivity of pθ(z) and consequential continuity
of σi(b) in b, there is a convex open set A ⊂ RD/2 with non-zero measure p(A) > 0 where σi(b) > 1. If
σi(b) < 1 everywhere, apply the following argument flipped around σi(b) = 1.

Denote by σmax = maxb∈A σi(b). Then, by continuity of σi(b) there exists B ⊂ A so that
σi(b) > (σmax − 1)/2 + 1 =: σmax /2 for all b ∈ B. Let C ⊂ B be a multidimensional interval
[l1, r1]× · · · × [lD/2, rD/2] with p(C) > 0 inside B.

Now, we construct a ReLU neural network with two hidden layers with the following property,
where F ⊂ E ⊂ C are specified later with p(F) > p(E) > 0:

gφ(x) = 1
σmax /2

x ∈ E ⊂ D
1

σmax /2
≤ gφ(x) < 1 x ∈ D

gφ(x) = 0 else.

(A.117)

To do so, we make four neurons for each dimension i = 1, . . . , D/2:

ReLU(xi − li),ReLU(xi − li − δ),ReLU(xi − ri),ReLU(xi − ri + δ), (A.118)

where 0 < δ < mini(ri − li)/4. If we add these four neurons with weights 1,−1,−1, 1, we find the
following piecewise function:

0 x ≤ li
x− li li < x < li + δ

δ li + δ ≤ x ≤ ri − δ
ri − x ri − δ < x < ri

0 ri ≤ x.

(A.119)

A.4. Proofs on affine coupling flow universality 131

If we repeat this for each dimension and add together all neurons with the corresponding weights
into a single neuron in the second layer, then only inside D = (l1+δ, r1−δ)×· · ·×(lD/2+δ, rD/2−δ) ⊂ C
the weighted sum would equal δD/2. By choosing δ as above, this region has nonzero volume. We
thus equip the single neuron in the second layer with a bias of −δD/2 + ϵ for some ϵ < δ, so that it is
constant with value ϵ inside E = (l1 + δ − ϵ, r1 − δ + ϵ)× · · · × (lD/2 + δ + ϵ, rD/2 − δ − ϵ) ⊂ D and
smoothly interpolates to zero in the rest of D.

For the output neuron of our network, we choose weight (σmax /2 − 1)/ϵ and bias 1. By inserting
the above construction, we find the network specified in equation (A.117).

Now, for all b ∈ D,
1 < σ̃i(b) < σi(b), (A.120)

so that
m̃i(b)

2 + σ̃i(b)
2 − 1− log σ̃i(b)

2 < mi(b)
2 + σi(b)

2 − 1− log σi(b)
2. (A.121)

Thus, parameters φ exist that improve on the loss. (Note that this construction can be made more
effective in practice by identifying the sets where σ > 1 resp. σ < 1 and then building neural networks
that output one or scale towards σ̃(b) = 1 everywhere. Because we are only interested in identifying
improvement, the above construction is sufficient.)

Now, regrading tφ, we focus on Eb[mi(b)
2] > 0 (otherwise choose tφ = 0 as a constant, which

corresponds to a ReLU network with all weights and biases set to zero):

Eb[mi(b)
2] > Eb[(sφ(b)mi(b) + tφ(b))2]. (A.122)

By Hornik (1991, Theorem 1) there always is a tφ that fulfills this relation.
Case 2: Eb[σi(b)2 − 1− log σi(b)

2] = 0. Then, choose the neural network sφ(b) = 1 as a constant.
As ∆∗

affine[pθ(z)] > 0, Eb∼p(a,b)[mi(b)
2] > 0 and we can use the same argument for the existence of tφ as

before.
We now show that a L-bi-Lipschitz coupling block can be constructed. To achieve this, replace

the action of the coupling block ãi = s(b)ai + t(b) by ãi = α(s(b)ai + t(b)) + (1 − α)ai. Since s(b)
and t(b) above were constructed to move the data in the right direction, we obtain a finite loss
improvement, since α > 0 ⇔ ∆∗

affine > 0. The Jacobian f ′cpl of the restricted coupling block is

|f ′cpl| = α|f ′original|+ (1−α)I. Since the eigenvectors are unchanged, all eigenvalues λ
(i)
original of |f ′original|

are modified to λ
(i)
α = αλ

(i)
original + (1− α). This moves all eigenvalues closer to 1. Choose α > 0 such

that mini λ
(i)
α ≥ L−1 and maxi λ

(i)
α ≤ L to achieve L-bi-Lipschitzness.

Proof of theorem 5.16

The following theorem based on lemma 5.17 shows that ∆affine[pθ(z)] is a useful measure of convergence
to the standard normal distribution:

Theorem 5.16. With the definitions from definition 5.15:

pθ(z) = N (z; 0, I)⇐⇒ ∆affine[pθ(z)] = 0. (A.123)

Proof. The forward direction is trivial: pθ(z) = N (0, I) and therefore DKL(pθ(z)∥N (0, I)) = 0. As
adding an identity layer is a viable solution to equation (5.27), there is a θ+ withDKL(pθ∪θ+(z)∥N (0, I)) =
0, and thus ∆affine[pθ(z)] = 0.

For the reverse direction, we have ∆affine[pθ(z)] = 0. Then, by lemma 5.17 also ∆∗
affine[pθ(z)] = 0.

The maximally achievable loss improvement for any rotation Q is then given by equation (5.32):

∆∗
affine[pθ(z)] = max

Q

1

2

D/2∑
i=1

Eb
[
mi(b)

2 + σi(b)
2 − 1− log σi(b)

2
]

= 0. (A.124)

132 A. Proofs

Q1 θ1

Q1 θ1 Q2 θ2

min
Q1,θ1

ℒ1

min
Q2,θ2

ℒ2

Q1 θ1 Qn θnQ2 θ2

min
Qn,θn

ℒn

Figure A.1.: The normalizing flow we construct in our proof is remarkably simple: We iteratively add
coupling blocks, optimizing the parameters of the new block while keeping previous parameters fixed.
Theorem 5.16 shows that if adding another block shows no improvement in the loss, the flow has converged
to a standard normal distribution in the latent space. Since the total loss that can be removed is finite, the
flow converges.

It holds that both x2 ≥ 0 and x2 − 1− log x2 ≥ 0. Thus, the following two summands are zero:

0 = 1
2Eb
[
mi(b)

2
]
, (A.125)

0 = 1
2Eb
[
σi(b)

2 − 1− log σi(b)
2
]
. (A.126)

This holds for all Q since the maximum over Q is zero.
By continuity of p(b) and m1(b) in b, this implies for all b:

Ea1|b[a1] = 0. (A.127)

Fix b1 and marginalize out the remaining dimensions b2,...D/2 to compute the mean of a1 conditioned
on b1:

ma1|b = Ea1|b1 [a1] = Eb1,...,D/2
[Ea1|b[a1]] = Eb1,...,D/2

[0] = 0. (A.128)

As a1 and b1 are arbitrary orthogonal directions since the above is valid for any Q, we can employ
theorem A.8 to follow that pθ(z) is spherically symmetric.

We are left with showing that for a spherically symmetric pθ(z), if for all Q there is no improvement
∆affine(Q), then pθ(z) = N (0, I).

Choose Q = I and write x = (b; a). As ∆affine = 0, we can follow σi(b) = 1 like above. This implies
that:

Ea|b[∥a∥2] =

D/2∑
i=1

(mi(b)
2 + σi(b)

2) = D/2. (A.129)

In particular, this is independent of b and we can thus apply theorem A.9 with α = 2.
Finally, mi(b) = 0 and σi(b) = 1 for all Q imply that pθ(x) = N (0, I).

A.4.2. Proof of theorem 5.18

Theorem 5.18. For every continuous p(x) with finite first and second moment with infinite support,
there is a sequence of normalizing flows pn(x) consisting of n L-bi-Lipschitz affine coupling blocks such
that their latent distributions converge to the standard normal:

pn(z)
n→∞−−−→ N (z; 0, I), (A.130)

A.4. Proofs on affine coupling flow universality 133

in the sense that ∆affine[pn(z)]
n→∞−−−→ 0.

Proof. The proof idea of iteratively adding new layers which are trained without changing previous
layers is visualized in figure A.1.

Let us consider a coupling-based normalizing flow of depth n and call the corresponding latent
distributions pn(z), where n = 0 corresponds to the initial data distribution p(x). Denote by Ln =
DKL(pn(z)∥p(z)) the corresponding loss. Then, if we add another layer to the flow, we achieve a
difference in loss of: ∆affine[pn(z)] = Ln − Ln+1.

Without loss of generality, we may assume that the rotation layer Q of each block can be chosen
freely. Otherwise, add 48 coupling blocks with fixed rotations that together exactly represent the Q we
want, as shown by Koehler et al. (2021, Theorem 2).

We construct the blocks of the flow iteratively: Choose the rotation and subnetwork parameters
φn+1 of each additional block such that the block maximally reduces the loss, keeping the parameters
of the previous blocks φ1,...,n fixed. Then, ∆affine[pn(z)] attains the value given in equation (5.28):

∆affine[pn(z)] = Ln − Ln+1 = DKL(pφ1,...,n(z)∥p(z))− min
φn+1

DKL(pφ1,...,n∪φn+1(z)∥p(z)) ≥ 0, (A.131)

Each layer contributes a non-negative improvement in the loss which can at most sum up to the
initial loss:

n−1∑
k=0

∆affine[pk(z)] = L0 − Ln ≤ L0 for all n ≥ 1, (A.132)

and the inequality is due to Ln ≥ 0. For a non-negative series that is bounded above, the terms of the
series must converge to zero (Rudin, 1976, Theorems 3.14 and 3.23), which shows convergence in terms
of section 5.4.3:

∞∑
n=0

∆affine[pn(z)] ≤ L0 <∞⇒ ∆affine[pn(z)]→ 0. (A.133)

A.4.3. Relation to convergence in KL

Corollary A.10. Given a series of probability distributions pn(z). Then, convergence in KL divergence

DKL(pn(z)∥N (0, 1))
n→∞−−−→ 0 (A.134)

implies convergence in the loss improvement by a single affine coupling as in definition 5.15:

∆affine[pn(z)]
n→∞−−−→ 0. (A.135)

Proof. By assumption, for every ϵ > 0 there exists N ∈ N such that:

DKL(pn(z)∥N (0, 1)) < ϵ ∀n > N. (A.136)

This implies convergence of ∆affine[pn(z)], by the following upper bound via the sum of all possible
future improvements which is bounded from above by the total loss:

∆affine[pn(z)] ≤
∞∑
m=n

∆affine[pm(z)] ≤ DKL(pn(z)∥N (0, 1)) < ϵ ∀n > N. (A.137)

134 A. Proofs

A.4.4. Convergence in Wasserstein but not in KL Divergence

In section 5.4.2 we argued that convergence under Wasserstein distance W2(p, pn)
n→∞−−−→ 0 does not

imply convergence under KL divergence DKL(p∥pn)
n→∞−−−→ 0. We illustrate that via an example:

Take a standard normal target p(x) = N (0, 1) in 1D and approximate by a mixture of δ-
distributions:

pn(x) =

∞∑
i=−∞

p([i an, (i+ 1)an))δ(x− an i). (A.138)

This mixture splits the input space into bins of width an, and positions a δ-distribution at the left of
each bin, weighted by the amount of mass in the bin in the target distribution.

The optimal transport plan underlying the Wasserstein distance redistributes the weight from the
left edge of each bin over the entire bin. This means that the total distance any point has to travel
under the optimal transport plan is an. It thus holds that W2(p, pn) ≤ an. If we choose an → 0, so
does W2(p, pn)→ 0.

The KL divergence can be lower bounded by the total variation via Pinsker’s inequality:

δTV(p, pn) = sup
A measurable

∣∣∣P (A)− Pn(A)
∣∣∣ ≤√1

2
DKL(p(x)∥pn(x)) (A.139)

The set of all bin interiors I = ∪∞i=−∞(i an, (i + 1)an) is measurable. It holds that P (I) = 1 (since
we only exclude the zero-set of bin edges to get I from R). Also, Pn(I) = 0 since all the mass is

concentrated at the bin edges in pn, and so 1 ≤ δTV(p, pn) ≤
√

1
2DKL(p∥pn) regardless of an.

Thus, DKL(p∥pn) ≥ 2 > 0 regardless of n, but W2(p, pn)→ 0.
Intuitively, the construction in Koehler et al. (2021) is related to the mixture above. The vanishing

scaling terms from latent to data space in their universality proof squeeze the distribution to a thin
wall of high probability. The translation terms ensure that this squeezed distribution is distributed
over the space such that the error in terms of Wasserstein distance is bounded by the grid length ϵ.

A.5. Benefits of more expressive coupling blocks

This appendix is adapted from Draxler et al. (2024b).
To see what the best improvement for an infinite capacity coupling function can ever be for a fixed

rotation Q, we make use of the chain rule for KL divergences in equation (A.91) and the Pythagorean
identities in theorem 4.1:

L = DKL(pθ(z)∥N (0, I)) = B + Eb∼p(a,b)

I(b) +

D/2∑
i=1

(
Gi(b) + Si(b)

). (A.140)

The symbols B, I(b), Gi(b), Si(b) all denote KL divergences:
The first two terms remain unchanged under a coupling layer: The KL divergence to the standard

normal in the passive dimensions B = DKL(pθ(b)∥N (0, ID/2)), which are left unchanged. The mutual
information between active dimensions I(b) = DKL(pθ(a|b)∥pθ(a1|b) · · · pθ(aD/2|b)) the dependence
between active dimensions conditioned on the passive vales. It is unchanged because each dimension ai
is treated conditionally independent of the others by lemma 4.3.

The remaining terms measure how far each dimension pθ(ai|b) differs from the standard normal:
The non-Gaussianity measures the divergence to the Gaussian with the same first moments as pθ(ai|b):
G(b) = DKL(pθ(ai|b)∥N (mi(b), σi(b))). Finally, the non-Standardness measures how far each 1d
Gaussian is away from the standard normal distribution: Si(b) = DKL(N (mi(b), σi(b))∥N (0, 1)).

A.6. Convergence rate of Gaussianization blocks 135

Note that the total loss L is invariant under a rotation of the data. The rotation does, however,
affect how that loss is distributed into the different components in equation (A.140), which we have
used in section 5.3.3.

If we restrict the coupling function to be affine-linear c(ai; θ) = sai + t (i.e. a RealNVP coupling),
then this means that also G(b) is left unchanged per lemma 4.2. Only a nonlinear coupling function
c(ai; θ) can thus affect G(b) and reduce it to G(b̃) ≤ G(b).

Taking the loss difference between two layers in both cases, we find equation (5.37).

A.6. Convergence rate of Gaussianization blocks

This appendix is adapted from Draxler et al. (2023).

A.6.1. Proof of proposition 6.1

Proposition 6.1. Given D-dimensional data with mean m and covariance Σ and a rotation matrix Q.
Then, the moments m̃, Σ̃ that can be reached by a linear Gaussianization layer as in equation (6.7) are:

m̃ = 0, Σ̃(Q) = M(QΣQT). (A.141)

This minimizes S(m̃, Σ̃) as given in equation (6.1), and G does not change.

Proof. By equation (4.37), we only need to consider the marginal losses L[pθ(zi)], as Gaussianization
does not affect the mutual information I[pθ(z)]. The marginal losses, by equation (4.35), decompose
into the non-Gaussianity G[pθ(zi)], which is not affected by the linear layer we consider, and the
one-dimensional non-Standardness S(m̃i, Σ̃iiI1). The latter is minimal for m̃i = 0 and Σ̃ii = 1. Solving
(Σ̃)ii = (Diag(r)QΣQT Diag(r))ii for r and then choosing u to shift the mean to zero yields the
result.

A.6.2. Proof of theorem 6.2

Theorem 6.2. Given D-dimensional data with covariance Σ fulfilling assumption 6.1, and S(0,Σ)≪ 1.
Then, the expected non-Standardness after Lgzn Gaussianization blocks as in proposition 6.1 can be
bounded as follows:

EQ1,...,QLgzn
[S(0,Σ(Lgzn)(Q1, . . . QLgzn))] ≥

(
1− 2

D + 2

)Lgzn

S(0,Σ). (A.142)

Proof. By proposition 6.1, the output moments read:

m̃ = 0, Σ̃ = M(QΣQT). (A.143)

We define M = Diag(QΣQT)−1/2. Inserting into the loss in equation (6.10), we find:

S̃ = −1
2 log det Σ̃ = −1

2 log det(MQΣQTM) = 1
2(log detM2 − log det Σ) (A.144)

= S + 1
2 log detM2. (A.145)

As we consider random rotations Q ∈ O(D), we compute the expected loss over rotations:

EQ∈O(D)[S̃] = S + 1
2EQ∈O(D)[log detM2] = S + 1

2

D∑
i=1

EQ∈O(D)[log(QΣQT)ii] (A.146)

136 A. Proofs

≤ S + 1
2

D∑
i=1

logEQ∈O(D)[(QΣQT)ii] = S. (A.147)

Here, we have used Jensen’s inequality and that EQ∈O(D)[(QΣQT)ii] = tr Σ/D = 1 by lemma A.11.
(This is a vacuous bound: The expected loss after the layer is at least as good as before the layer.)

We now estimate Jensen gap, that is the error of Jensen’s inequality, to get an estimate for a lower
bound on EQ∈O(D)[S̃]. Here, we make use of the result in (Costarelli & Spigler, 2015) applied to log:

E[φ(x)]− φ(E[x]) ≤ 1

2
max
x∈I

φ′′(x) Var[x]. (A.148)

In our case, φ(x) = − log x, and x ∈ [λmin, λmax], the extremal eigenvalues of Σ (which are invariant
under rotation).

Identifying terms in equation (A.267):

Var[(QΣQT)ii] =
2

(D + 2)
Var[λ], (A.149)

for the variance of the eigenvalues of Σ, given by Vari[λi]. This means:

S − S̃ ≤ 1

2λ2min

2

(D + 2)
Var[λ]. (A.150)

We make use of the following arithmetic mean-geometric mean (AM-GM) inequality by (Cartwright
& Field, 1978):

Var[λ]

2λmax
≤ λ̄− g ≤ Var[λ]

2λmin
, (A.151)

where g is the geometric mean of the eigenvalues:

g :=
D∏
i=1

λ
1/D
i , (A.152)

and find:

S − S̃ ≤ 1

2λ2min

2

(D + 2)
2λmax(1− g). (A.153)

As λmax > 1, we can multiply the right-hand side by λmax:

S − S̃ ≤ 1

2λ2min

2

(D + 2)
2λ2max(1− g). (A.154)

Then, rewrite using the conditioning number κ = λmax/λmin:

S − S̃ ≤ 2

(D + 2)
κ2(1− g). (A.155)

Note that one can write the loss S directly via g and vice versa:

S = −1

2
log gD = −D

2
log g, (A.156)

g = exp(−2S/D). (A.157)

A.6. Convergence rate of Gaussianization blocks 137

We upper bound κ using a function of the loss (equation (A.276)):

max
λ1,...,λD∑

i λi=D∏
i λ

1/D
i =g

κ =
1 +

√
1− gD

1−
√

1− gD
. (A.158)

Then,

S − S̃ ≤ 2

(D + 2)

1 +
√

1− gD
1−

√
1− gD

2

(1− g). (A.159)

A.6.3. Proof of theorem 6.3

Theorem 6.3. Under the assumptions of theorem 6.2 and assumption 6.2, and S(0,Σ)≪ 1. Then,
the expected non-Standardness after Lgzn Gaussianization blocks as in proposition 6.1 can be bounded
as follows:

EQ1,...,QLgzn
[S(0,Σ(Lgzn)(Q1, . . . QLgzn))] ≥

(
1− 2

D + 2

)Lgzn

S(0,Σ). (A.160)

Proof. By assumption, we have the limit S ≪ 1. Rewriting equation (6.13) in terms of S and taking
the limit, we find:

EQ[S̃] ≥
(

1− 2

D + 2

)
S − |O(S)|. (A.161)

Repeat over Lgzn blocks to obtain the statement.

A.6.4. Proof of theorem 6.4

Theorem 6.4. Given a multivariate Gaussian distribution p(x) = N (0,Σ) under assumption 6.3. To
exactly represent p(x) with random rotations Q, at least

L ≥ 1

2
(D + 1) (A.162)

Gaussianization layers are required almost surely.

Proof. We need to exclude the special case that the accumulated rotation Q(l) = Ql · · ·Q1 (partially)
aligns with the eigenspace of Σ for some l = 1, . . . , L. Then, the Σ is (partially) diagonal in the input
to this block l and fdim can map Σ→ I already earlier. However, this alignment has probability mass
zero under random Q.

To perfectly map the input Gaussian N (0,Σ) to the latent distribution N (0, I), we need to learn a
linear function A such that the latent covariance becomes the identity: ATΣA = I. As a lower bound
on how many layers we need to represent a suitable A, our learned function needs to have at least as
many degrees of freedom as the covariance matrix Σ ∈ RD×D: As it is symmetric, Σ has D(D + 1)/2
independent degrees of freedom. The D linear single-dimensional transforms in each block fdim,i have
a total of D degrees of freedom. Thus, we need more than D(D + 1)/(2D) = (D + 1)/2 layers to
represent Σ.

138 A. Proofs

A.6.5. Proof of corollary 6.5

Corollary 6.5. Given a multivariate non-degenerate Gaussian distribution p(x) = N (0,Σ) under
assumption 6.3. To exactly represent p(x) with learned rotations Q with k ·D parameters each, at least

L ≥ 1

2(k + 1)
D (A.163)

Gaussianization layers are required almost surely.

Proof. The proof follows by replacing the number of parameters per layer in appendix A.6.4 by (k+1)D
instead of D. We find at least D(D + 1)/(2(k + 1)D) = (D + 1)/(2(k + 1)) ≥ D/(2(k + 1)) layers to
represent Σ.

A.6.6. Proof of corollary 6.10

Corollary 6.10. Given a multivariate Gaussian distribution p(x) = N (0,Σ). The initial loss L is
given by equation (6.10). Then, in the case L ≪ 1, 1≪ D, the loss after Lcpl iterative coupling blocks
with random rotations is at most:

EQ1...L∈O(D)[L(Lcpl)] ≲

(
1

2

)Lcpl

L. (A.164)

Proof. We start from theorem 6.9. We first take the limit of γ(L) for L ≪ 1 and then D ≫ 1. We use
the computer algebra system sympy to take the limits:

γ(L)
L→0−−−→ D(D + 2)− 4

2(D − 1)(D + 2)
+O(L)

D→∞−−−−→ 1

2
+O(L) +O(D−1). (A.165)

To further justify the usage of

γ(L)
L→0,D→∞−−−−−−−→ 1

2
, (A.166)

note that

γ(L)
L→0−−−→ D(D + 2)− 4

2(D − 1)(D + 2)
∈
[
1/2, 5/9

]
≤ 0.555 . . . (A.167)

A.7. Convergence rate of coupling blocks

This appendix is adapted from Draxler et al. (2022).

A.7.1. Proof of proposition 6.6

Proposition 6.6. Given D-dimensional data with mean m and covariance Σ and a rotation matrix
Q. Split the covariance of the rotated data into four blocks, corresponding to the passive and active
dimensions of the coupling layer:

QΣQT =

(
Σbb Σba

Σab Σaa

)
(A.168)

Then, the moments m̃, Σ̃ that can be reached by a linear coupling layer as in equation (6.23) are:

m̃ = 0, Σ̃(Q) =

(
M(Σbb) 0

0 M(Σaa − ΣabΣ
−1
bb Σba)

)
. (A.169)

A.7. Convergence rate of coupling blocks 139

This minimizes the non-Standardness S(m̃, Σ̃) as given in equation (6.1), and G does not change.

Proof. We aim to find the affine-linear coupling layer fcpl minimizing S(Σ̃). By lemma 4.2, the
non-Gaussianity G does not change.

The affine-linear coupling has the form in equation (6.23), which we repeat here for convenience:(
b̃
ã

)
= fcpl(Qx) = r ⊙

(
I 0
T I

)(
b
a

)
+ u. (6.23)

It has the form of fcpl(x) = AQx + u with an appropriately constrained A. To make the coupling
affine-linear, r ∈ RD+ is positive, u ∈ RD/2 and T ∈ RD/2×D/2 is the matrix describing the linear
dependence of the active on the passive dimensions.

By linearity of expectation, the mean of x̃ reads:

m̃ = AQm+ u. (A.170)

Write Mb := Diag(r1...D/2) and Ma := Diag(rD/2+1...D), so that the covariance of x̃ is given by:

Σ̃ := Cov[x̃] = AQΣQTAT (A.171)

=

(
Mb 0
T Ma

)(
Σbb Σba

Σab Σaa

)(
Mb TT

0 Ma

)
(A.172)

=

(
MbΣbbMb Mb(ΣbaMa + ΣbbT

T)
(TΣbb +MaΣab)Mb (TΣba +MaΣaa)Ma + (TΣbb +MaΣab)T

T

)
(A.173)

Together, the non-Standardness of x̃ is given from equation (6.1)

S(m̃, Σ̃) = 1
2

(∥∥∥m̃∥∥∥2 + tr Σ̃−D − log det Σ̃

)
(A.174)

= 1
2

(∥∥∥Am+ b
∥∥∥2 + tr(M2

b Σbb) + tr(TΣbaMa) + tr(M2
aΣaa) + tr(TΣbbT

T) (A.175)

+ tr(MaΣabT
T)−D − log det Σ− log detMb − log detMa

)
. (A.176)

To find the minimum of S(m̃, Σ̃), minimize the above over r, T and u:

arg min
r,T,u

S(m̃, Σ̃). (A.177)

It is easy to see that u = −Am minimizes equation (A.176) as in this case m̃ = 0.
At the minimum, we find for r:

0 =
∂S(m̃, Σ̃)

∂rl
= − 1

rl
+ rl(Σbb)ll, (A.178)

for some l = 1, . . . , D/2. We read off that rl = (Σbb)
−1/2
ll . In matrix notation:

Mb = Diag(Σbb)
−1/2. (A.179)

For rD/2+1...D, T , we find the system:

0 =
∂S(m̃, Σ̃)

∂sn+D/2
= − 1

sn+D/2
+

D/2∑
j=1

Tnj(Σba)jn + sn+D/2(Σab)nn (A.180)

140 A. Proofs

0 =
∂S(m̃, Σ̃)

∂Top
= sp(Σba)po +

D/2∑
k=1

Tpk(Σaa)ko. (A.181)

Multiplying the first equation by sn+D/2, we find in matrix notation:

I = Diag(TΣbaMa +M2
aΣaa) (A.182)

0 = MaΣba + TΣbb. (A.183)

We solve the second equation for T (we use that Σbb is invertible as it is positive definite):

T = −MaΣabΣ
−1
bb , (A.184)

and insert into the first:

I = Diag(−MaΣabΣ
−1
bb ΣbaMa +M2

aΣaa) (A.185)

= Diag(−M2
aΣabΣ

−1
bb Σba +M2

aΣaa). (A.186)

The last step is due to Diag(·) linear and Ma diagonal. We read off that:

Ma = Diag(Σaa − ΣabΣ
−1
bb Σba)

−1/2. (A.187)

Alternative solutions with negative signs are discarded because we assumed r > 0, that is the diagonal
of the Jacobian is positive (note that this would not have an effect on the covariance).

Inserting into equation (A.173), we find:

Σ̃pp = MbΣbbMb = Diag(Σbb)
−1/2Σbb Diag(Σbb)

−1/2 = M(Σbb), (A.188)

Σ̃pa = Mb(ΣbaMa + ΣbbT
T) = Mb(ΣbaMa − ΣbbΣ

−1
bb ΣbaMa) = 0, (A.189)

Σ̃ap = Σ̃T
pa = 0, (A.190)

Σ̃aa = (TΣba +MaΣaa)Ma + (TΣbb +MaΣab)T
T (A.191)

= (−MaΣabΣ
−1
bb Σba +MaΣaa)Ma + (MaΣabΣ

−1
bb Σbb −MaΣab)Σ

−1
bb ΣbaMa (A.192)

= Ma(Σaa − ΣabΣ
−1
bb Σba)Ma = M(Σaa − ΣabΣ

−1
bb Σba). (A.193)

This concludes the proof:

m̃ = 0, Σ̃ =

(
M(Σbb) 0

0 M(Σaa − ΣabΣ
−1
bb Σba)

)
. (A.194)

A.7.2. Proof of theorem 6.7

The following statement will help us along the way:

Lemma A.11. For A ∈ CD, Q ∈ {O(D), U(D)} with the corresponding Haar measure p(Q):

EQ∈p(Q)[(QAQ
∗)ii] =

1

D
tr(A). (A.195)

Proof. By symmetry, EQ[(QAQ∗)11] = EQ[(QAQ∗)ii] for i = 1, . . . , D. Thus, EQ[(QAQ∗)11] =
1
D

∑D
i=1 EQ[(QAQ∗)ii] = 1

DEQ[tr(QAQ∗)] = 1
D trA.

A.7. Convergence rate of coupling blocks 141

When we write Q∗, we mean conjugate transpose if Q is sampled from the unitary group U(D),
and transpose if Q is from the orthogonal group O(D). Whenever we only consider orthogonal Q, we
will resort back to writing QT.

This allows us to directly estimate EQ∼p(Q)[log detM2
p]:

Lemma A.12. With the definitions in section 6.3.2, p(Q) either the Haar measure of orthogonal or
unitary matrices, and assumption 6.1. Then:

EQ∼p(Q)[log detM2
p] ≥ 0. (A.196)

Proof. Mp is given by:
M2
p = Diag(Σbb)

−1. (A.197)

The corresponding expectation value can be estimated via Jensen’s inequality:

EQ∼p(Q)[log detM2
p] = EQ∼p(Q)[log det Diag(Σbb)

−1] (A.198)

= −EQ∼p(Q)

log

D/2∏
i=1

(Σbb)ii

 = −
D/2∑
i=1

EQ∼p(Q)[log(Σbb)ii] (A.199)

≥ −
D/2∑
i=1

logEQ∼p(Q)[(Σbb)ii] = −D
2

log(tr Σ/D) (A.200)

= 0. (A.201)

By assumption 6.1, tr Σ = D. We have used lemma A.11 for evaluating EQ∼p(Q)[(Σbb)ii].

As mentioned in section 6.3.2, the main difficulty in estimating EQ∼p(Q)[S(Σ̃(Q))] lies in estimating
EQ∼p(Q)[log detM2

a]. The followings show a path to do so.

Problem reformulation

In a first step, we reformulate this expectation so that it can be computed with the help of projected
orbital measures (Olshanski, 2013).

We split the expectation over the Haar measure p(Q) in two parts: One that defines which
eigenvalues the (D/2)× (D/2) block Σaa has (denote this as Qab) and, conditioned on this, another
which rotates Σaa into all possibles bases (denote this as Qa). Formally, write Q as:

Q =

(
I 0
0 Qa

)
Qab. (A.202)

We will replace the Schur complement Σaa − ΣabΣ
−1
bb Σba appearing in proposition 6.6 by the

corresponding block of the precision matrix P0 := (QΣ−1Q∗)−1 = QΣ−1Q∗ (e.g. (Horn & Johnson,
2012, Section (0.7.3)):

(P0,aa)
−1 = ((Σ−1

0)aa)
−1 = Σaa − ΣabΣ

−1
bb Σba. (A.203)

We give more details in the proof of the following lemma, which formalizes this step:

Lemma A.13. Given the definitions in section 6.3.2 and assumption 6.1. It holds that

EQ∼p(Q)[log detM2
a] ≥ −

D/2∑
i=1

logEQa∼p(Qa|Qab)[((Paa)
−1)ii]. (A.204)

142 A. Proofs

Proof. By proposition 6.6, M2
a is given by:

M2
a = Diag(Σaa − ΣabΣ

−1
bb Σba)

−1. (A.205)

Being diagonal, its determinant is given by the product of its diagonal entries:

EQ∼p(Q)[log detM2
a] = EQ∼p(Q)[log

D/2∏
i=1

(Σaa − ΣabΣ
−1
bb Σba)

−1
ii] (A.206)

=

D/2∑
i=1

EQ∼p(Q)[log((Σaa − ΣabΣ
−1
bb Σba)

−1
ii)] (A.207)

= −
D/2∑
i=1

EQ∼p(Q)[log((Σaa − ΣabΣ
−1
bb Σba)ii)]. (A.208)

Evaluating this expression is hard mainly because the ΣabΣ
−1
bb Σba involves the inverse of Σbb = (QΣQ∗)bb,

which depends on Q.

To circumvent this, note the following property of any nonsingular matrix M (Horn & Johnson,
2012, Section (0.7.3)). Split M into blocks as:

M =

(
A B
B∗ C

)
, (A.209)

and do the same for its inverse:

M−1 =

(
A′ B′

B′∗ C ′

)
(A.210)

Then, (A′)−1 = A−BC−1B∗, which is called the Schur complement M/C. This means we can rewrite

Σaa − ΣabΣ
−1
bb Σba = (Paa)

−1, (A.211)

where PQ = Σ−1
Q is the precision matrix of the rotated data. Given a rotation Q, it can easily be

obtained from the precision matrix of the data in its original rotation:

ΣQ = QΣQ∗, PQ = QΣ−1Q∗ =

(
Pbb Pba
Pab Paa

)
. (A.212)

Inserting this, we find the expectation value:

EQ∼p(Q)[log detM2
a] = −

D/2∑
i=1

EQ∼p(Q)[log(((Paa)
−1)ii)]. (A.213)

The logarithm can be drawn out via Jensen’s inequality:

−
D/2∑
i=1

EQ∼p(Q)[log(((Paa)
−1)ii)] ≥ −

D/2∑
i=1

log(EQ∼p(Q)[((Paa)
−1)ii]). (A.214)

This concludes the statement.

A.7. Convergence rate of coupling blocks 143

Projected orbit expectation

The theory of projected orbital measures describes the distribution of eigenvalues of a randomly
projected submatrix of some given matrix. Let us formalize this:

Fix a diagonal matrix A = Diag(a1, . . . , aN). Then, then the orbit of A is defined as:

OA := {QAQ∗ : Q ∈ U(D)}. (A.215)

(The same definition also exists for orthogonal Q ∈ O(D), but we keep it to the level we require here).
All matrices in the orbit of OA have the same eigenvalues.

The natural measure (probability distribution) on the orbit OA is given by the image of the Haar
measure on the unitary group U(D). This can be thought of as the uniform measure on the group of
unitary rotations. We call this measure the orbital measure.

We now cut out the K ×K top-left corner out of every matrix in OA:

PKOA := {PKY : Y ∈ OA}. (A.216)

We call this the projected orbit. The matrix PK projects a matrix to its upper-left corner:

PK = (IK ; 0K×(N−K)). (A.217)

The distribution of matrices in the projected orbit PKOA induced by the orbital measure is denoted
as the projected orbital measure µA,K . We are now interested in the eigenvalues of matrices in the
projected orbit PKOA.

Let spectrum be the function that assigns a matrix Y ∈ CK×K its eigenvalues y1, . . . , yK . We will
make use of a result that gives the distribution of eigenvalues of matrices in the projected orbit PKOA.
This is called the radial part of the projected orbital measure and is denoted as νA,K(x1, . . . , xK).

νA,K(x1, . . . , xK) = PX∼µA,K
[spectrum(X) = (x1, . . . , xK)]. (A.218)

In other words, νA,K(x1, . . . , xK) gives the probability density that a random matrix from the projected
orbit of A has exactly eigenvalues (x1, . . . , xK). Its functional form was shown by (Olshanski, 2013):

Theorem A.14 (Radial part of projected orbital measure (Olshanski, 2013)). Fix A = (a1, . . . , aD)
with a1 < · · · < aD. For any K = 1, . . . , D − 1, the density of eigenvalues of

νA,K(x1, . . . , xK) = cD,K
V (x1, . . . , xK) det[M(aj ;xi, . . . , xD−K+i)]

K
i,j=1∏

j−i≥D−K+1(xj − xi)
. (A.219)

Here, the constant is given by:

cD,K =

K−1∏
i=1

(
D −K + i

i

)
, (A.220)

and M(a; y1, . . . , yN) is the B-spline:

M(a; y1, . . . , yn) := (N − 1)
∑
i:yi>a

(yi − a)n−2∏
r:r ̸=i(yi − yr)

, (A.221)

and V is the Vandermonde polynomial:

V (y1, . . . , yn) =
∏
i<j

(yj − yi). (A.222)

144 A. Proofs

We will make use of the following variant of the Vandermonde determinant where all powers
greater or equal to some k are increased by one:

Lemma A.15. For all n ∈ N, k = 1, . . . , n− 1 and distinct ai, i = 1, . . . , n:

det

1 · · · ak−1
1 ak+1

1 · · · an1
...

...
...

...
1 · · · ak−1

n ak+1
n · · · ann

 = V (a1, . . . , an)en−k(a1, . . . , an). (A.223)

with the elementary symmetric polynomial eK given by equation (6.30).

Lemma A.16. Fix A = (a1, . . . , aN) with a1 < · · · < aN . For any K = 1, . . . , N − 1, it holds that:

Ea1,...,aK∼νA,K(x1,...,xK)[x
−1
1 + · · ·+ x−1

K] (A.224)

= (N −K)(−1)N−K
N∑
j=1

aN−K−1
j log(aj)R(aj ; a̸=j)eK−1(a̸=j). (A.225)

Here, R is defined in equation (6.30).

Proof. We use the Andreief identity in the form of (Krishnaiah, 1976, Lemma 2.1)

Ex1,...,xk∼νA,K [1
x1

+ · · ·+ 1
xk

] (A.226)

= Z−1

∫
(RK)+

(1
x1

+ · · ·+ 1
xk

) det(xj−1
i) det(M(xi; aj , . . . , aj+N−K))dx1 · · · dxk (A.227)

= Z−1
K∑
k=1

det

∫
R
x−δjkxj−1M(x; ai, . . . , ai+N−K)dx (A.228)

= Z−1 det

∫
R
xj−1−δj1M(x; ai, . . . , ai+N−K)dx (A.229)

= Z−1 det

 µ−1(ai, . . . , ai+N−K) j = 1

µj−1(ai, . . . , ai+N−K) j > 1
(A.230)

where µk(t1, . . . , tn) the kth moment of the B-spline with knots t1, . . . , tn:

µk(t1, . . . , tn) =

∫
xkM(x; t1, . . . , tn)dx. (A.231)

We can now make use of the Hermite–Genocchi formula (Faraut, 2015, Proposition 6.3):∫
f (n−1)(x)M(x; t1, . . . , tn)dx = (n− 1)!f [t1, . . . , tn], (A.232)

so we can rewrite
µk(t1, . . . , tn) = fk[t1, . . . , tn], (A.233)

with

f−1(x) = (n− 1)xn−2 log x, (A.234)

fk(x) =

(
n+ k − 1

k

)−1

xn+k−1. (A.235)

A.7. Convergence rate of coupling blocks 145

Together, we find

Ex1,...,xk∼νA,K [1
x1

+ · · ·+ 1
xk

] = Z−1 det(fi−1−δ1i [aj , . . . , aj+N−K]). (A.236)

The right-hand side can be identified with the right-hand side of (Faraut, 2015, Proposition 6.4). It is
equal to:

Z−1 det(fi[aj , . . . , aj+N−K]) (A.237)

= Z−1

 ∏
0<j−i≤N−K

(aj − ai)−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
a1 · · · aN
...

...

aN−K−1
1 · · · aN−K−1

N

f1(a1) · · · f1(aN)
...

...
fK(a1) · · · fK(aN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.238)

= Z−1

 ∏
0<j−i≤N−K

(aj − ai)−1
K∏
k=1

(
N −K + k

k

)−1
(N −K)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
a1 · · · aN
...

...

aN−K−1
1 · · · aN−K−1

N

aN−K−1
1 log a1 · · · aN−K−1

N log aN
aN−K+1
1 · · · aN−K+1

N
...

...

aN−1
1 · · · aN−1

N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.239)

=: C2 det(Mij) (A.240)

Here, C2 reduces to:

C2 =
N −K

V (a1, . . . an)
. (A.241)

Then, the determinant of Mij reads:

detMij =
N∑
j=1

(−1)N−K+1+jaN−K−1
j log(aj)V (a̸=j)

∑
i1<···<iK−1

i... ̸=j

ai1 · · · aiK−1 (A.242)

= V (a)(−1)N−K
∑
j

aN−K−1
j log(aj)R(aj ; a̸=j)eK−1(a̸=j), (A.243)

where R(aj ; a̸=j) collects all the terms in V (a) that were not contained in V (a̸=j) up to sign:

R(aj ; a̸=j) =

n∏
i=1
i ̸=j

1

ai − aj
= (−1)j−1V (a ̸=j)/V (a). (A.244)

Note that the sign of R(aj ; a ̸=j) flips from j → j + 1, so the alternating nature of the above series
remains.

146 A. Proofs

Together, the desired expectation value reads:

Ex1,...,xk∼νA,K [1
x1

+ · · ·+ 1
xk

] (A.245)

= (N −K)(−1)N−K
N∑
j=1

aN−K−1
j log(aj)R(aj ; a ̸=j)eK−1(a̸=j), (A.246)

which concludes the proof.

We now connect this result to our situation. This paves the path from the reformulation in
lemma A.13 to theorem 6.7.

Corollary A.17. For the definitions in section 6.3.2 and when assumptions 6.3 and 6.4 are fulfilled,
it holds that:

EQ∼p(Q)[log detM2
a] ≥ D

2 log

(
(−1)

D
2 +1

D∑
i=1

λ
1−D2
i log(λi)R(λ−1

i ;λ−1
̸=i)eD

2 −1
(λ−1

̸=i)

)
. (A.247)

Proof. Lemma A.11 tells us how to integrate over Qa.

EQa∼p(Qa|Qab)[((Paa)
−1)ii] = tr((QabPQ

∗
ab)

−1) =

D/2∑
i=1

ai(Qab)
−1. (A.248)

Here, we denote by ai(Qab) the ith eigenvalue of P0 = QabPQ
∗
ab, which depends on the “outer” rotation

Qab.
We substitute the expectation over Qab with an expectation over the projected eigenvalues of the

rotated precision matrix:

EQab∼p(Q)[EQa∼p(Qa|Qab)[((Paa)
−1)ii] = tr((QabPQ

∗
ab)

−1)] (A.249)

= Ea1,...,aD/2∼νA,D/2(a1,...,aD/2|λ−1
1 ,...,λ−1

D)[a
−1
1 + · · ·+ a−1

D/2]. (A.250)

Here X = (λ−1
1 , . . . λ−1

D) contains the eigenvalues of the precision matrix P , the inverse of the covariance
Σ. Lemma A.16 with K = D/2 tells us how to evaluate the above expression. Insert the result into
lemma A.13 to obtain the result.

Summary

We can now collect the above pieces to build the proof of theorem 6.7:

Theorem 6.7. Given D-dimensional data with covariance Σ with eigenvalues λ1, . . . λD. Assume that
assumptions 6.1 to 6.4 hold. Then, after a single coupling block, the expected non-Standardness is
bounded from above:

EQ∈U(D)[S(Σ̃(Q))] < S(Σ) +
D

2
log

(
(−1)

D
2 +1

D∑
i=1

λ
1−D2
i log(λi)R(λ−1

i ;λ−1
̸=i)eD

2 −1
(λ−1

̸=i)

)
. (A.251)

Here, λ ̸=i := {λ1, . . . , λi−1, λi+1, . . . , λD} and R, eK are given by:

R(a; {bi}Ni=1) =

N∏
i=1

1

a− bi
and eK({bi}Ni=1) =

∑
0<i1<···<iK≤N

bi1 · · · biK . (A.252)

Proof. Equation (6.28) is the version of the non-Standardness after a single layer when assumptions 6.1
and 6.2 are fulfilled. Insert lemma A.12 (passive part) and corollary A.17 (active part) to obtain the
result. The former required assumption 6.1 and the latter assumptions 6.3 and 6.4 to hold.

A.7. Convergence rate of coupling blocks 147

Handling of imaginary part

If we allow for unitary rotations Q ∈ U(D), real-valued data is typically rotated into imaginary space.
In fact, the case that the input remains real even has probability zero:

P[Qx ∈ RD] = 0. (A.253)

This does not pose a problem for our theory: The covariance matrix is positive definite also for
complex data and so it has a positive determinant and trace, which are the only quantities entering
the non-Standardness S (see equation (6.1)).

A.7.3. Proof of theorem 6.8

Lemma A.18. With the definitions in section 6.3.2 and p(Q) the Haar measure over the orthogonal
group O(D):

EQ∼p(Q)[log detM2
a] ≥ D/2 log

(
1− DD

2(D + 1)(D − 1)

Var[λ]

λmax

)
. (A.254)

Proof. By proposition 6.6, M2
a is given by:

M2
a = Diag(Σaa − ΣabΣ

−1
bb Σba)

−1. (A.255)

The determinant of a diagonal matrix is equal to the product of the entries on the diagonal. By the
permutation symmetry of p(Q), we can pick the entry in the upper-left corner:

EQ∼p(Q)[log detM2
a] = D/2EQ∼p(Q)[log((M−2

a)11)] ≤ −D/2 logEQ∼p(Q)[(M
2
a)11]. (A.256)

The last step is due to the Jensen inequality.
We are left with computing EQ∼p(Q)[(M

2
a)11]:

EQ∼p(Q)[(M
2
a)11] = EQ∼p(Q)[(Σaa − ΣabΣ

−1
bb Σba)11] (A.257)

= EQ∼p(Q)[(Σaa)11]− EQ∼p(Q)[(ΣabΣ
−1
bb Σba)11] (A.258)

=
1

D
tr Σ− EQ∼p(Q)[(ΣabΣ

−1
bb Σba)11]. (A.259)

The first expectation can be exactly computed via lemma A.11.
The average trace of the second matrix is not so easy to evaluate. As Σ−1

bb is positive definite, we
can replace it with the worst case in the expectation:

(ΣabΣ
−1
bb Σba)11 ≥ (Σabλ

−1
maxIΣba)11 = (ΣabΣba)11λ

−1
max. (A.260)

λmax is the largest eigenvalue of Σ, which does not depend on Q.
The expectation value can now be computed exactly:

EQ∼p(Q)[(ΣabΣba)11] =

D/2∑
i=1

EQ∼p(Q)[(Σab)1i(Σba)i1] (A.261)

= D/2EQ∼p(Q)[(Σab)
2
11]. (A.262)

The last step is because each summand will have the same contribution. Writing the matrix multiplica-
tion out explicitly:

(Σab)
2
11 = (QDiag(λ1, . . . , λD)QT)211 =

 D∑
j=1

Q1jλjQ(D/2+1)j

2

(A.263)

148 A. Proofs

Again by symmetry, we can exchange axes and write 2 instead of D/2 + 1 in what follows: D∑
j=1

Q1jλjQ(D/2+1)j

2

=

 D∑
j=1

Q1jλjQ2j

2

=
D∑

j,k=1

λjλkQ1jQ2jQ1kQ2k. (A.264)

Taking the expectation, we use the linearity of the expectation and are left with the following monomials
of elements of Q:

1. j = k: EQ∼p(Q)[Q
2
1jQ

2
2j] = EQ∼p(Q)[Q

2
11Q

2
21] as we can exchange axes,

2. j ̸= k: EQ∼p(Q)[Q1jQ2jQ1kQ2k] = EQ∼p(Q)[Q11Q21Q12Q22] as we can exchange axes.

By (Gorin, 2002), these amount to the following integrals of monomials of entries of random orthogonal
matrices and the corresponding values:

1.
〈

2 2
〉

=
1

D(D + 2)
, (A.265)

2.

〈
1 1
1 1

〉
= − 1

D(D − 1)(D + 2)
. (A.266)

Together, we find:

EQ∼p(Q)[(M
2
a)11] = 1− 1

2(D + 2)λmax

 D∑
j=1

λ2j −
1

D − 1

∑
j ̸=k

λjλk

 (A.267)

= 1− D2

2(D − 1)(D + 2)

Var[λ]

λmax
. (A.268)

Here, Var[λ] = 1
D tr Σ2 − (1

D tr Σ)2 is the variance of the eigenvalues of Σ.
Insert this to obtain the result.

Lemma A.19. With the definitions in section 6.3.2:

EQ∼p(Q)[log detM2
a] ≥ D/2 log

(
1− DD

2(D + 1)(D − 1)

Var[λ]

λmax

)
. (A.269)

Proof. The idea is to lower bound
Var[λ]

λmax
(A.270)

by some function of L. We make use of following arithmetic mean-geometric mean (AM-GM) inequality
by (Cartwright & Field, 1978):

Var[λ]

2λmax
≤ λ̄− g ≤ Var[λ]

2λmin
, (A.271)

where g is the geometric mean of the eigenvalues:

g :=

 D∏
i=1

λi

1/D

. (A.272)

A.7. Convergence rate of coupling blocks 149

We can write the loss L directly via g and vice versa:

L = −1

2
log gD = −D

2
log g, (A.273)

g = exp(−2L/D). (A.274)

Rewrite equation (A.271) to our needs:

Var[λ]

λmax
=

Var[λ]λmin

λmaxλmin
=

2

κ

Var[λ]

2λmin
≥ 2

κ
(1− g), (A.275)

with κ the condition number of the covariance Σ.

As we want a bound that merely depends on the loss, we upper bound κ using a function of the
loss, yielding a lower bound on Var[λ]/λmax that merely depends on the loss. The maximum of the
condition value is given by:

max
λ1,...,λD∑

i λi=D∏
i λ

1/D
i =g

κ =
1 +

√
1− gD

1−
√

1− gD
. (A.276)

This yields the required lower bound:

Var[λ]

λmax
≥ 2

1−
√

1− gD
1 +

√
1− gD

(1− g), (A.277)

which results in an overall upper bound:

EQ∈O(D)[S(Σ̃(Q))] ≤ S(Σ) +
D

4
log

1− D2

(D − 1)(D + 2)

1−
√

1− gD
1 +

√
1− gD

(1− g)

. (A.278)

Replacing the expression in equation (A.274) for g yields the statement.

We summarize to obtain the proof of theorem 6.8:

Theorem 6.8. Given D-dimensional data with covariance Σ fulfilling assumption 6.1 with covariance
eigenvalues λ1, . . . λD. Then, after a single coupling block, the expected loss can be bounded from above:

EQ∈O(D)[S(0, Σ̃(Q))] ≤ S(0,Σ) +
D

4
log

(
1− D2

2(D − 1)(D + 2)

Var[λ]

λmax

)
(A.279)

≤ S(0,Σ) +
D

4
log

1− D2

(D − 1)(D + 2)

1−
√

1− gD
1 +

√
1− gD

(1− g)

 (A.280)

< S(m,Σ). (A.281)

Here, g is the geometric mean of the eigenvalues: g =
∏D
i=1 λ

1/D
i = exp(−2S(0,Σ)/D) < 1 which is a

bijection of S(0,Σ).

Proof. Equation (6.28) is the form of non-Standardness S(Σ̃) (see equation (6.1)) we need to evaluate
when assumptions 6.1 and 6.2 hold. Into this equation, insert lemma A.12 together with lemma A.18
for the first bound. For the second bound, insert lemmas A.12 and A.19.

150 A. Proofs

A.7.4. Proof of theorem 6.9

Theorem 6.9. Given D-dimensional data fulfilling assumptions 6.1 and 6.2 with covariance Σ. Then,
after Lcpl coupling blocks, the expected loss is smaller than:

EQ1,...,QLcpl
∈O(D)[S(ΣLcpl

)] ≤ γ(S(Σ))LcplS(Σ), (A.282)

where the convergence rate depends on the non-Standardness before training:

γ(S) = 1 +
1

4S/D
log

1− D2

(D − 1)(D + 2)

1−
√

1− g(S)D

1 +
√

1− g(S)D

(
1− g(S)

) < 1. (A.283)

Proof. The non-Standardness will not increase by the action of a single layer given in proposition 6.6
(compare equation (6.27)). This holds regardless of the rotations of the individual blocks Q1, . . . QLcpl

,
so S(Σ) ≥ S(Σ1) ≥ · · · ≥ S(ΣLcpl

). It is easy to see that γ decreases as S decreases by using S > 0 to
check that

∂γ

∂S
> 0. (A.284)

Together, we have:

γ
(
S(ΣLcpl−1)

)
≤ · · · ≤ γ

(
S(Σ)

)
. (A.285)

Rewrite theorem 6.8 as follows:

EQ∈O(D)[S(Σ1(Q))] ≤ γ
(
S(Σ)

)
S(Σ), (A.286)

and apply repeatedly:

EQ1,...,QLcpl
∈O(D)[S(ΣLcpl

)] ≤ EQ1,...,QLcpl−1∈O(D)[γ(S(ΣLcpl−1))S(ΣLcpl−1)] (A.287)

≤ γ(S(Σ))EQ1,...,QLcpl−1∈O(D)[S(ΣLcpl−1)] (A.288)

≤ · · · ≤ γ(S(Σ))LcplS(Σ) (A.289)

This shows the statement.

A.7.5. Proof of corollary 6.11

This proof was published in (Draxler et al., 2023).

Corollary 6.11. Given a multivariate Gaussian distribution p(x) = N (0,Σ) under assumption 6.3.
To exactly represent p(x), at least

Lcpl ≥ 2 ∈ Ω(1) (A.290)

coupling blocks with random rotations Q ∈ O(D) are required almost surely.

Proof. The proof follows by replacing the number of parameters per layer in appendix A.6.4 by
(D/2)2 +D/2 instead of D. We find at least 2 > D(D+ 1)/(2((D/2)2 +D/2)) = 2(D+ 1)/(D+ 2) > 1
layers to represent Σ.

A.8. Free-form flows 151

A.8. Free-form flows

This appendix is adapted from Draxler et al. (2024a).

Theorem 7.1. Let fθ : RD → RD be a diffeomorphism parameterized by θ. Then, for all x ∈ RD:

∇θ log |f ′θ(x)| = tr

(
(∇θf ′θ(x))(f−1

θ

′
(x))

)
= Ev

[
vT(∇θf ′θ(x))(f−1

θ

′
(x))v

]
. (A.291)

Proof. Jacobi’s formula states that, for a matrix A(t) parameterized by t, the derivative of the
determinant is

d

dt
|A(t)| = |A(t)| tr

(
A(t)−1dA(t)

dt

)
(A.292)

and hence

d

dt
log |A(t)| = |A(t)|−1 d

dt
|A(t)| = tr

(
A(t)−1dA(t)

dt

)
= tr

(
dA(t)

dt
A(t)−1

)
(A.293)

using the cyclic property of the trace in the last step. Applying this formula with A = f ′θ(x) and t = θ,
and noting that (f ′θ(x))−1 = (f−1

θ)′(x) for a diffeomorphism yields the result.

A.9. Free-form flows on Riemannian manifolds

This appendix is adapted from Sorrenson et al. (2023).
In this appendix, we will focus on intuitive definitions of concepts from topology and differential

geometry. For a more rigorous treatment of these concepts, see (Jost, 2008).
An n-dimensional manifold M is a space where every point x has a neighborhood which is

homeomorphic to an open subset of Rn. Intuitively, this means that there is a small region of M
containing x which can be bent and stretched in a continuous way to map onto a small region in Rn.
This is what is meant when we say that the manifold locally resembles Rn. If all these maps from
M to Rn are also differentiable, then the manifold itself is differentiable, as long as there is a way to
connect the local neighborhoods in a differentiable and consistent way.

The tangent space of the manifold at x, denoted TxM, is an n-dimensional Euclidean space, which
is a linearization of the manifold at x: if we zoom in to a very small region around x the manifold
looks flat, and this flat Euclidean space is aligned with the tangent space. Because the tangent space is
a linearization of the manifold, this is where derivatives on the manifold live, e.g. if fθ :MX →MZ is
a map between two manifolds, then the Jacobian f ′θ(x) is a linear map from TxMX to Tfθ(x)MZ .

A Riemannian manifold (M, G) is a differentiable manifold which is equipped with a Riemannian
metric G : TxM×TxM→ R which defines an inner product on the tangent space, which allows us to
calculate lengths and angles in this space. The length of a smooth curve γ : [0, 1]→M is given by the
integral of the length of its velocity vector γ′(t) ∈ Tγ(t)M. This ultimately allows us to define a notion
of distance on the manifold, as the curve of minimal length connecting two points.

In the remainder of the appendix, we only consider Riemannian manifolds.

A.9.1. Manifold change of variables

Embedded manifolds We define an n-dimensional manifold embedded in Rm via a projection function

proj : P→ Rm (A.294)

where P ⊆ Rm is the projectable set. We require the projection to have the following properties (the
first is true of all projections, the others are additional requirements):

152 A. Proofs

1. proj ◦ proj = proj

2. proj is smooth on P

3. rank(proj′(proj(x))) = n for all x ∈ P

Given such a projection, we define a manifold by

M = {x ∈ Rm : proj(x) = x} (A.295)

with the tangent space

TxM = col(proj′(x)) (A.296)

where col denotes the column space. Since the rank of proj′(x) with x ∈ M is n, the tangent space
is n-dimensional and M is an n-dimensional manifold. To avoid clutter, we denote the Riemannian
metric and its m×m matrix representation with G interchangeably. If M is isometrically embedded,
then G(x) is just the identity matrix.

The Jacobian of the projection is a projection matrix, meaning proj′(x) proj′(x) = proj′(x) for
x ∈ M. For any v in the column space of proj′(x), there is a u such that v = proj′(x)u and due to
the projection property, proj′(x)v = proj′(x)u = v. Similarly, for any w in the row space of proj′(x),
w proj′(x) = w. If proj is an orthogonal projection, proj′ is symmetric by definition and hence the row
and column spaces are identical.

Integration on embedded manifolds In order to perform integration on the manifold, we cannot work
directly in the m-dimensional coordinates of the embedding space, instead we have to introduce some
local n-dimensional coordinates. This means that the domain of integration has to be diffeomorphic to
an open set in Rn. Since this might not be the case for the whole region of integration, we might need to
partition it into such regions and perform integration on each individually (each such region, together
with its map to Rn, is known as a chart and a collection of charts is an atlas). For example, if we want
to integrate a function on the sphere, we could split the sphere into two hemispheres and integrate
each separately. A hemisphere can be continuously stretched and flattened into a 2-dimensional region,
whereas the whole sphere cannot without creating discontinuities.

Given an open set U in Rn, and a diffeomorphic local embedding function φ : U →M, the integral
of a scalar function p :M→ R on φ(U) ⊆M is∫

φ(U)
pdV =

∫
U

(p ◦ φ)
√
|φ′(u)TG(φ(u))φ′(u)|du1 · · · dun. (A.297)

The integral on the right is an ordinary integral in Rn. The quantity inside the determinant is known
as the pullback metric.

Below, we generalize theorem 7.2 to the case where x- and z-space may have different manifolds
and metrics:

Theorem A.20 (Manifold change of variables). Let (MX , GX) and (MZ , GZ) be n-dimensional
Riemannian manifolds embedded in Rm, i.e.,MX ,MZ ⊆ Rm, and assume they have the same global
topological structure. Let pθ(x) be a probability distribution on MX and let fθ : MX → MZ be a
diffeomorphism. Let p(z) be the pushforward of pθ(x) under fθ.

Let x ∈ MX . Define Q ∈ Rm×n as an orthonormal basis for TxMX and R ∈ Rm×n as an
orthonormal basis for Tfθ(x)MZ .

A.9. Free-form flows on Riemannian manifolds 153

Then, the probability densities pθ(x) and p(z) are related under the change of variables x 7→ fθ(x)
by the following equation:

pθ(x) = p(z = fθ(x))|RTf ′θ(x)Q|
√
|RTGZ(fθ(x))R|
|QTGX(x)Q| . (A.298)

where Q and R depend on x and fθ(x), respectively, although this dependency is omitted for brevity.

Below, we provide two versions of the proof, the second being a less rigorous and more geometric
variant of the first.

Proof. Let φ : Rn → MX be defined by φ(u) = projX(x + Qu). Let U be an open subset of Rn
containing the origin which is small enough so that φ is bijective. Let ψ : Rn →MZ be defined by
ψ(w) = projZ(fθ(x) +Rw). Define φ = ψ−1 ◦ fθ ◦ φ and let W = φ(U).

Note that φ′(u) = proj′X(x+Qu) ·Q and hence φ′(0) = proj′X(x)Q = Q (since each column of Q
is in TxMX = col(proj′X(x))).

Similarly, ψ′(0) = R. Since ψ is a map from n to m dimensions, there is not a unique function from
Rm to Rn which is ψ−1 on the manifold and there are remaining degrees of freedom in the off-manifold
behavior which can result in different Jacobians. For our purposes, we define the inverse ψ−1 such that
ψ ◦ ψ−1 is an orthogonal projection onto MZ . This means ψ′(ψ−1(fθ(x)))(ψ−1)′(fθ(x)) = RRT and
hence (ψ−1)′(fθ(x)) = RT.

Since p(z) is the pushforward of pθ(x) under fθ, the amount of probability mass contained in φ(U)
is the same as that contained in fθ(φ(U)) = ψ(W):∫

φ(U)
pθ(x)dVX =

∫
ψ(W)

p(z)dVZ (A.299)

and therefore:∫
U
pθ(φ(u))

√
|φ′(u)TGX(φ(u))φ′(u)|du1 · · · dun

=

∫
W
p(ψ(w))

√
|ψ′(w)TGZ(ψ(w))ψ′(w)|dw1 · · · dwn. (A.300)

Changing variables of the RHS with w = φ(u) gives us∫
U
pθ(φ(u))

√
|φ′(u)TGX(φ(u))φ′(u)|du1 · · · dun

=

∫
U
p(fθ(φ(u)))

√
|ψ′(φ(u))TGZ(fθ(φ(u)))ψ′(φ(u))| ·

∣∣∣∣∣∂w∂u
∣∣∣∣∣du1 · · · dun. (A.301)

Since U was arbitrary, we can make it arbitrarily small, demonstrating that the integrands must be
equal for u = 0:

pθ(x)
√
|QTGX(x)Q| = p(fθ(x))

√
|RTGZ(fθ(x))R| ·

∣∣∣∣∣∂w∂u
∣∣∣∣∣. (A.302)

Since w = ψ−1(fθ(φ(u))), the Jacobian has the following form when evaluated at the origin (note
φ(0) = x):

∂w

∂u
= (ψ−1)′(fθ(x)) · f ′θ(x) · φ′(0) (A.303)

154 A. Proofs

= RTf ′θ(x)Q. (A.304)

Substituting this into the equality, rearranging and taking the logarithm gives the result:

log pθ(x) = log p(fθ(x)) + log |RTf ′θ(x)Q|+ 1
2 log

|RTGZ(fθ(x))R|
|QTGX(x)Q| . (A.305)

Alternative proof Here is a less rigorous and more geometric proof, which may be more intuitive for
some readers.

Proof. Let x be a point on MX . Consider a small square region U ⊆M around x (hypercubic region
in higher dimensions). If the sides of the square are small enough, the square is approximately tangent
to the manifold since the manifold looks very flat if we zoom in. Suppose Q is a basis for the tangent
space at x and q1, . . . , qn are the columns of Q. Suppose that the sides of the square (or hypercube)
are spanned by ui = ϵqi for a small ϵ. The volume spanned by a parallelotope (higher-dimensional
analog of a parallelogram) is the square root of the determinant of the Gram matrix of inner products:

vol(u1, . . . , un) =
√
|⟨ui, uj⟩|. (A.306)

The inner product is given by G, namely ⟨u, v⟩ = uTGv. We can therefore write the volume of U as

vol(U) ≈ ϵn
√
|QTGQ|. (A.307)

Now consider how U is transformed under fθ. It will be mapped to a region fθ(U) on Mz with
approximately straight edges, forming an approximate parallelotope in the tangent space at z = fθ(x).
This region will be spanned by the columns of f ′θ(x)ϵQ (since fθ(x+ ui) ≈ fθ(x) + f ′θ(x)ui) and hence
will have a volume of

vol(fθ(U)) ≈ ϵn
√
|QTf ′θ(x)TGZ(z)f ′θ(x)Q| (A.308)

= ϵn
√
|QTf ′θ(x)TRRTGZ(z)RRTf ′θ(x)Q| (A.309)

= ϵn|RTf ′θ(x)Q|
√
|RTGZ(z)R| (A.310)

where R is a basis for the tangent space at fθ(x). We can introduce RRT into the expression since it is
a projection in the tangent space at fθ(x) and is essentially the identity within that space. Since the
RHS of GZ(z) and the LHS of f ′θ(x) both live in this tangent space, we can introduce RRT between
them without changing the expression. Then in the last step, we use that |AB| = |A||B| for square
matrices.

The probability density in U and fθ(U) should be roughly constant since both regions are very
small. Since the probability mass in both regions should be the same, we can write

pθ(x) vol(U) ≈ p(fθ(x)) vol(fθ(U)) (A.311)

and therefore

pθ(x) = p(fθ(x))|RTf ′θ(x)Q|
√
|RTGZ(fθ(x))R|√
|QTGX(x)Q|

(A.312)

where the approximation becomes exact by taking the limit of infinitesimally small ϵ. Taking the
logarithm, we arrive at the result of theorem 7.2.

A.9. Free-form flows on Riemannian manifolds 155

A.9.2. Loss function

We prove theorem 7.3 in the slightly more general variant of considering potentially different manifolds
in x- and z-space, just like theorem A.20.

Theorem A.21. Under the assumptions of theorem A.20. Let v ∈ Rm be a random variable with zero
mean and covariance RRT. Then, the derivative of the change of variables term has the following trace
expression, where z = fθ(x):

∇θ log |RTf ′θ(x)Q| = tr(RT(∇θf ′θ(x))f−1
θ

′
(z)R) (A.313)

= Ev
[
vT(∇θf ′θ(x))f−1

θ

′
(z)v

]
. (A.314)

Proof. For brevity, we drop the index θ and denote g = f−1. First, a reminder that φ′(u) = RTf ′(x)Q
with φ = ψ−1 ◦ f ◦ φ. Let χ = φ−1, i.e. χ = φ−1 ◦ g ◦ ψ. Jacobi’s formula tells us that:

d

dt
log |A(t)| = tr

(
dA(t)

dt
A(t)−1

)
. (A.315)

Note also that since χ(φ(u)) = u, therefore χ′(φ(u))φ′(u) = I and χ′(φ(u)) = φ′(u)−1. Applying
Jacobi’s formula to φ′(u):

∇θ log |φ′(u)| = tr((∇θφ′(u))φ′(u)−1) (A.316)

= tr((∇θφ′(u))χ′(φ(u))) (A.317)

and substituting in f and g:

∇θ log |RTf ′(x)Q| = tr(∇θ(RTf ′(x)Q)QTg′(f(x))R). (A.318)

Q does not depend on θ, but R depends on f(x) and hence θ, so it must be considered in the derivative.
However,

∇θ tr(RRT) = tr((∇θR)RT +R∇θRT) = 2 tr(R∇θRT) (A.319)

and since tr(RRT) = tr(I) is a constant, tr(R∇θRT) = 0. Expanding equation (A.318):

∇θ log |RTf ′(x)Q| = tr(∇θ(RT)f ′(x)QQTg′(f(x))R) + tr(RT∇θ(f ′(x))QQTg′(f(x))R). (A.320)

Since Q is an orthonormal basis for TxMX , QQT is a projection matrix onto TxMX . This is because
(QQT)2 = QQTQQT = QQT, using QTQ = I. As a result, QQT proj′(x) = proj′(x). Since g
can also be written inside a projection: g(z) = projZ(g(z)), therefore g′(z) = proj′Z(g̃(z))g̃′(z), so
QQTg′(z) = g′(z). Note also that f ′(x)g′(f(x)) = I since f ◦ g = id. This simplifies the equation:

∇θ log |RTf ′(x)Q| = tr(∇θ(RT)R) + tr(RT∇θ(f ′(x))g′(f(x))R) (A.321)

and finally
∇θ log |RTf ′(x)Q| = tr(RT∇θ(f ′(x))g′(f(x))R). (A.322)

In the above proof we used the fact that QQTg′(z) = g′(z), where we dropped the index θ and use
g := f−1 for brevity. Can we use RRTf ′(x) = f ′(x) to simplify the equation further? No, we cannot,
since the expression involving f ′ is actually its derivative with respect to parameters, which may not
have the same matrix structure as f ′. Is it instead possible to use g′(z)RRT = g′(z) for simplification?

156 A. Proofs

If g is implemented as projZ(g̃(z)), this is not necessarily true, as g′(z) might not be a map from the
tangent space at z to the tangent space at g(z). For example, if we add a small deviation v to z, where
v is orthogonal to the tangent space at z, then g(z+v) might not equal g(z). However, this would mean
that derivatives in the off-manifold direction can be non-zero, meaning that g′(z)v ̸= g′(z)RRTv = 0
(since RRT will project v to 0). We can change this by prepending g by a projection:

g = projX ◦g̃ ◦ projZ . (A.323)

If projZ is an orthogonal projection, meaning that proj′Z is symmetric, the column space and row
space of projZ will both be the same as those of RRT, meaning proj′Z(z)RRT = proj′Z and hence
g′(z)RRT = g′(z). This leads to the following corollary:

Corollary A.22. Suppose the assumptions of theorem A.20 hold and the following implementation:

f−1
θ = projX ◦f−1

θ ◦ projZ (A.324)

where projZ is an orthogonal projection. Then the derivative of the change of variables term has the
following trace expression, where z = fθ(x):

∇θ log |RTf ′θ(x)Q| = tr((∇θf ′(x))(f−1
θ)′(z)). (A.325)

Proof. Again, we drop the index θ and let g = f−1 for brevity. Take the result of theorem A.21 and
use the cyclic property of the trace and the properties of g′ discussed above:

tr(RT∇θ(f ′(x))g′(f(x))R) = tr(∇θ(f ′(x))g′(f(x))RRT) (A.326)

= tr(∇θ(f ′(x))g′(f(x))). (A.327)

We use Hutchinson-style trace estimators to approximate the traces given above. This uses the
property that, for a matrix A ∈ Rn×n and a distribution p(v) in Rn with unit second moment (meaning
E[vvT] = I),

Ep(v)[vTAv] = tr(Ep(v)[vTAv]) (A.328)

= tr(Ep(v)[vvT]A) (A.329)

= tr(A) (A.330)

meaning that vTAv ≈ tr(A) is an unbiased estimate of the trace of A.
We have two variants of the trace estimate derived above, one evaluated in Rn, the other in Rm.

The first can be estimated using the following equality (again dropping the index θ and using g = f−1):

tr(RT∇θ(f ′(x))g′(f(x))R)

= Ep(u)[uTRT∇θ(f ′(x))g′(f(x))Ru] (A.331)

= Ep(v)[vT∇θ(f ′(x))g′(f(x))v] (A.332)

= ∇θEp(v)[vT∇θ(f ′(x))SG[g′(f(x))]v] (A.333)

where p(u) has unit second moment in Rn and p(v) is the distribution of Ru, which lies in the tangent
space at x and has unit second moment in that space by which we mean E[vvT] = RRT. An example
of such a distribution is the standard normal projected to the tangent space, i.e. v = RRTṽ where ṽ is
standard normal.

A.10. Free-form injective flows 157

In the second case, we can just sample from a distribution with unit second moment in the
embedding space Rm:

tr(∇θ(f ′(x))g′(f(x))) = ∇θEp(v)[vT∇θ(f ′(x))SG[g′(f(x))]v]. (A.334)

For this reason, we choose the first estimator, sampling v in the tangent space at x. This also
simplifies the definition of g, meaning that we don’t have to prepend it with a projection.

A.10. Free-form injective flows

This appendix is adapted from Sorrenson et al. (2024).

A.10.1. Derivation of gradient estimator

Theorem 7.4. Let fθ : RD → Rd be the pseudoinverse to a C1 and injective gφ : Rd → RD. Then, for
all x ∈Mφ:

1

2
∇θ log |f ′θ(x)f ′θ(x)T| = tr

(
(∇θf ′θ(x))g′φ(z)

)
(A.335)

= Ev
[
vT(∇θf ′θ(x))g′φ(z)v

]
, (A.336)

where v ∈ Rd is a random variable with zero mean and unit covariance and z = fθ(x).

Proof. Just like for theorem 7.1, we use Jacobi’s formula. Then, we find with J = f ′θ(x) for x ∈Mφ:

∂

∂θj

1

2
log detJJT =

1

2
tr

(
(JJT)−1 ∂

∂θj
(JJT)

)
(A.337)

=
1

2
tr

(JJT)−1

(
∂

∂θj
J

)
JT

+
1

2
tr

(JJT)−1J

(
∂

∂θj
JT

) (A.338)

=
1

2
tr

(
JT(JJT)−1 ∂

∂θj
J

)
+

1

2
tr

((
(JJT)−1J

)T ∂

∂θj
J

)
(A.339)

= tr

(
JT(JJT)−1 ∂

∂θj
J

)
(A.340)

= tr

(∂

∂θj
J

)
J†

 (A.341)

where we used the cyclic property of the trace, that tr(AB) = tr(ATBT) and that J† = JT(JJT)−1

since J is surjective. Since gφ is the pseudoinverse of fθ, we can replace J† = g′φ(z = fθ(x)).

Note on optimality with respect to reconstruction loss

Our estimator relies on the approximation f ′θ(x̂) ≈ g′φ(fθ(x))†. If fθ and gφ are consistent (fθ ◦ gφ is
the identity) this guarantees that g′φ(fθ(x))f ′θ(x̂) = I, but not that f ′θ(x̂) is the Moore-Penrose inverse
of g′φ(fθ(x)) and vice versa. A sufficient requirement is that fθ and gφ are optimal with respect to the

158 A. Proofs

Figure A.2.: Representation of ill-defined probability density p̃(x) ∝ p(x̂)e−β∥x̂−x∥2

(left and center). Solid
black lines denote the manifold, dashed lines are a constant distance from the manifold. The probability
density is constant along the manifold. The width of the cyan bands is proportional to e−β∥x̂−x∥2

and
represents the probability density along the on- and off-manifold contours. While the density is reasonable
for a flat manifold (left), note that the amount of probability mass associated with a region of the manifold
(bounded by solid lines) is larger at some points off the manifold than on it when the manifold has curvature
(center). This behavior can lead to divergent solutions when optimizing for likelihood and should be
compensated for. The appropriate compensation factor is the ratio of the volume of a small region on the
manifold (small blue square embedded in green manifold, right) to the equivalent region off the manifold
(large blue square, right). The blue arrows represent an orthonormal frame on the manifold, and the
equivalent frame in the off-manifold region.

reconstruction loss, that is, any variation in the functions would lead to a higher reconstruction. With
calculus of variations, it is possible to show that such fθ and gφ are consistent, and

(x̂− x)Tg′φ(fθ(x)) = 0 (A.342)

for all x. By taking the derivative with respect to x and evaluating at some x in the image of gφ (so
x̂ = x) we have that

f ′θ(x̂)Tg′φ(fθ(x))Tg′φ(fθ(x))− g′φ(fθ(x)) = 0 (A.343)

and hence

f ′θ(x̂) = g′φ(fθ(x))T(g′φ(fθ(x))Tg′φ(fθ(x)))−1 = g′φ(fθ(x))†. (A.344)

In the remainder of the appendix, given an encoder-decoder pair fθ and gφ which are optimal with
respect to the reconstruction loss, we refer to gφ as the pseudoinverse of fθ, and fθ as the pseudoinverse
of gφ.

Modified estimator

As stated in 7.3.3, we modify the log-determinant estimator (equation (7.31)) by replacing f ′θ(x̂) by
f ′θ(x). The loss we are trying to optimize (sending gradient from the log-determinant to the encoder)
is:

L(x) = − log p(fθ(x))− log vol
(
f ′θ(x̂)

)
+ β∥x̂− x∥2 (A.345)

A.10. Free-form injective flows 159

with vol(f ′θ(x̂)) =
√

det(f ′θ(x̂)f ′θ(x̂)T). Consider the probability density p̃ implied by interpreting this

loss as a negative log-likelihood:

p̃(x) ∝ p(x̂)e−β∥x̂−x∥
2

= p(z) vol
(
f ′θ(x̂)

)
e−β∥x̂−x∥

2
(A.346)

where p(x̂) is the on-manifold density. Unfortunately, this density is ill-defined and leads to pathological
behavior (see figure A.2). To provide a correction to this density, we need a term which compensates
for the volume increase or decrease of off-manifold regions in comparison to the on-manifold region
they are projected to. This is depicted in figure A.2 (right). The blue arrows in the on-manifold region
will span the same latent-space volume as the blue arrows in the off-manifold region. The change
in volume between the depicted on-manifold region and the latent space is vol(f ′θ(x̂)) and vol(f ′θ(x))
between the off-manifold region and the latent space. Combining these facts means

vol(f ′θ(x̂))× (volume of on-manifold region) = vol(f ′θ(x))× (volume of off-manifold region) (A.347)

and hence the ratio of the volume of the on-manifold to the off-manifold region is vol(f ′θ(x))/ vol(f ′θ(x̂)).
Multiplying p̃(x) by this factor leads to:

p̃(x)
vol(f ′θ(x))

vol(f ′θ(x̂))
= p(z) vol

(
f ′θ(x)

)
e−β∥x̂−x∥

2
(A.348)

and the corresponding negative log-likelihood loss is:

L(x) = − log p(fθ(x))− log vol
(
f ′θ(x)

)
+ β∥x̂− x∥2 (A.349)

The surrogate for the log-determinant term is therefore:

− tr(f ′θ(x)SG(f ′θ(x)†)) (A.350)

In order to maintain computational efficiency, we approximate f ′θ(x)† by g′φ(fθ(x)):

− tr(f ′θ(x)SG(g′φ(fθ(x)))) (A.351)

giving the stated correction.

A.10.2. Linear model trained on maximum likelihood alone

Consider a linear model, trained on data with zero mean and covariance Σ. Let the encoder function be
fθ(x) = Ax and suppose that A has positive singular values, meaning that AAT is positive definite. Let
the decoder function be gφ(z) = A†z, where A† = AT(AAT)−1. We want to minimize a combination of
negative log-likelihood and a reconstruction loss (here we use 1/2σ2 instead of β as prefactor):

L = LNLL + Lrecon. (A.352)

= Ex

[
1

2
∥Ax∥2 − 1

2
log det(AAT) +

1

2σ2
∥A†Ax− x∥2

]
(A.353)

=
1

2
Ex[xTATAx]− 1

2
log det(AAT) +

1

2σ2
Ex[xT(A†A− I)2x] (A.354)

=
1

2
tr(AEx[xxT]AT)− 1

2
log det(AAT) +

1

2σ2
tr(Ex[xxT](I−A†A)) (A.355)

=
1

2
tr(AΣAT)− 1

2
log det(AAT) +

1

2σ2
tr(Σ(I−A†A)) (A.356)

160 A. Proofs

where A is a full rank d×D matrix with d ≤ D.
Before solving for the minimum, let’s review some matrix calculus identities. It is often convenient

to consider A as a function of a single variable x, differentiate with respect to x, and then choose x to
be Aij . Then the derivative is

d

dAij
A = E(ij) (A.357)

where E(ij) is a matrix of zeros, except for the ij entry which is a one. We can write this as E
(ij)
kl = δikδjl

where δ is the Kronecker delta. When evaluating E(ij) inside a trace, we get the simple expression:

tr(E(ij)B) = E
(ij)
kl Blk = δikδjkBlk = Bji (A.358)

using Einstein notation. The additional matrix identities we will need are Jacobi’s formula for a square
invertible matrix B:

d

dx
det(B) = det(B) tr

B−1

(
d

dx
B

) (A.359)

and hence

d

dx
log det(B) = tr

B−1

(
d

dx
B

) (A.360)

and we will prove the following lemma.

Lemma A.23. Suppose the matrix A depends on a variable x. Then we have the following expression
for the derivative of the projection operator A†A:

d

dx
(A†A) = A†

(
d

dx
A

)
(I−A†A) +

A†

(
d

dx
A

)
(I−A†A)

T

(A.361)

Proof. The following is based on the proof to lemma 4.1 in (Golub & Pereyra, 1973). Define the
projection operator PA = A†A and its complement P⊥

A = I− PA. Then, since PAPA = PA,(
d

dx
PA

)
=

(
d

dx
PAPA

)
=

(
d

dx
PA

)
PA + PA

(
d

dx
PA

)
(A.362)

In addition, since PAA
T = AT

(
d

dx
PAA

T

)
=

(
d

dx
PA

)
AT + PA

(
d

dx
A

)T

=

(
d

dx
A

)T

(A.363)

and therefore(
d

dx
PA

)
PA =

(
d

dx
PA

)
ATA†T =

(
d

dx
A

)T

A†T − PA
(
d

dx
A

)T

A†T = P⊥
A

(
d

dx
A

)T

A†T (A.364)

By similar steps but using APA = A, we can derive

PA

(
d

dx
PA

)
= A†

(
d

dx
A

)
P⊥
A (A.365)

A.10. Free-form injective flows 161

Putting it all together gives

(
d

dx
PA

)
= A†

(
d

dx
A

)
P⊥
A +

A†

(
d

dx
A

)
P⊥
A

T

(A.366)

Note that the second term is just the transpose of the first.

Now we are ready to find the derivative of the loss and set it to zero.

Lemma A.24. The derivative of the loss with respect to A takes the form:

d

dA
L =

(
ΣAT −A† − 1

σ2
(I−A†A)ΣA†

)T

(A.367)

Proof. Let’s apply the above identities to the first term in the loss:

d

dx

1

2
tr(AΣAT) =

1

2
tr

(d

dx
A

)
ΣAT +AΣ

(
d

dx
A

)T
 (A.368)

= tr

(d

dx
A

)
ΣAT

 (A.369)

since the trace is invariant under transposition and hence

d

dAij

1

2
tr(AΣAT) = tr(E(ij)ΣAT) = (ΣAT)ji (A.370)

Applying Jacobi’s formula to the second term in the loss gives:

d

dx

1

2
log det(AAT) =

1

2
tr

(AAT)−1

(
d

dx
(AAT)

) (A.371)

=
1

2
tr

(AAT)−1

(d

dx
A

)
AT +A

(
d

dx
A

)T

 (A.372)

and therefore

d

dAij

1

2
log det(AAT) =

1

2
tr

(
(AAT)−1

(
E(ij)AT +AE(ji)

))
(A.373)

=
1

2
tr

(
E(ij)AT(AAT)−1 + E(ij)AT(AAT)−1

)
(A.374)

=
(
AT(AAT)−1

)
ji

(A.375)

= A†
ji (A.376)

where we used the cyclic and transpose properties of the trace and that E(ji)T = E(ij).

162 A. Proofs

The final term requires a derivative of tr(Σ(I−A†A)), which is equal to a derivative of − tr(ΣA†A).
We use the formula for the derivative of the projection operator to get

d

dx

1

2
tr(ΣA†A) =

1

2
tr

Σ

(
d

dx
(A†A)

) (A.377)

= tr

ΣA†

(
d

dx
A

)
(I−A†A)

 (A.378)

again using the transpose property of the trace, and therefore

d

dAij

1

2
tr(ΣA†A) = tr(E(ij)(I−A†A)ΣA†) = ((I−A†A)ΣA†)ji (A.379)

Putting the three expressions together, we have that

d

dA
L =

(
ΣAT −A† − 1

σ2
(I−A†A)ΣA†

)T

(A.380)

Lemma A.25. The critical points of L satisfy the following properties:

1. A = UΣ− 1
2 with UUT = I

2. UTU commutes with Σ

Proof. Using lemma A.24, the critical points satisfy

ΣAT −A† − 1

σ2
(I−A†A)ΣA† = 0 (A.381)

By multiplying by A from the left we have

AΣAT = Id (A.382)

meaning that U = AΣ
1
2 must have orthonormal rows (since UUT = I). With this definition, we can

write A = UΣ− 1
2 .

If we now multiply by A from the right, we get

ΣATA−A†A− 1

σ2
ΣA†A+

1

σ2
A†AΣA†A = 0 (A.383)

Noting that the second and fourth terms are symmetric (since A†A is symmetric), this means that the
remaining terms must be symmetric:

ΣATA− 1

σ2
ΣA†A = ATAΣ− 1

σ2
A†AΣ (A.384)

Since ATA commutes with A†A, they are simultaneously diagonalizable, and since they are both
symmetric, they share an orthonormal basis of eigenvectors. Clearly ATA − A†A/σ2 has the same
basis. Since this matrix commutes with Σ, it must share a basis with Σ and hence Σ has the same
basis as ATA. This means that Σ commutes with ATA.

Expanding A in terms of U , this means that

ΣATA = Σ
1
2UTUΣ− 1

2 = Σ− 1
2UTUΣ

1
2 = ATAΣ (A.385)

and therefore ΣUTU = UTUΣ, meaning that Σ and UTU commute.

A.10. Free-form injective flows 163

Consider as an example the case where Σ is diagonal. UTU is a projection matrix, and in this
case, must be diagonal due to commuting with Σ. As a result, it must have exactly d ones and D − d
zeros along the diagonal. This means that the rows of U are a basis for the d dimensional axis-aligned
subspace corresponding to the d nonzero entries. In the case of a non-diagonal Σ, this generalizes to
the rows of U spanning the same subspace as some subset of d eigenvectors of Σ. This leads to the
expression of the loss function in the next theorem.

Theorem A.26. Let Σ have the eigen-decomposition V ΛV T with Λ = diag(λ). Let UTU have the
eigen-decomposition V EV T, with E = diag(α). Then the minimum of the loss is satisfied by α such
that

Lα =
D∑
i=1

1

2
αi

(
log λi −

1

σ2
λi

)
(A.386)

is minimal, subject to the constraint αi ∈ {0, 1} with
∑D

i=1 αi = d.

Proof. Let’s note a couple of properties. First, we have (UΣUT)k = UΣkUT due to Σ commuting with
UTU , so we can say that fθ(UΣUT) = Ufθ(Σ)UT for any matrix function fθ with a Taylor series. Next,
UTU is an orthogonal projection matrix, so E is a diagonal matrix with ones or zeros on the diagonal.
We know that the rank of U is d, hence E has exactly d ones and D − d zeros along the diagonal.
Therefore, we have the constraint αi ∈ {0, 1} with

∑D
i=1 αi = d. Next, note that A†A = UTU .

Now we substitute back into the loss in terms of U :

L =
1

2
tr(UUT)− 1

2
log det(UΣ−1UT) +

1

2σ2
tr(Σ(I− UTU)) (A.387)

=
1

2
tr(U log(Σ)UT)− 1

2σ2
tr(UΣUT) + const. (A.388)

where we used that

log det(UΣ−1UT) = tr log(UΣ−1UT) = − tr(U log(Σ)UT) (A.389)

Note that tr(UUT) is constant. Consider that

tr(UΣUT) = tr(UTUΣUTU) = tr(V EDEV T) = tr(EDE) = α · λ (A.390)

The same logic holds for the term with log(Σ). Therefore, dropping constant terms, the loss can be
written in terms of α and λ:

Lα =
D∑
i=1

1

2
αi

(
log λi −

1

σ2
λi

)
(A.391)

The loss will take different values depending on which elements of α are nonzero. Define fθ(λi) =
log λi − λi/σ2. The loss will be minimized when the nonzero αi correspond to those values of fθ(λi)
which are minimal. Clearly f ′′θ (λi) < 0, so fθ has only one maximum at λi = σ2 and is unbounded
below on either side of this maximum (see figure A.3). Consider the two extreme cases:

1. All eigenvalues λ are smaller than σ2. The minimal values of fθ(λi) will occur for the smallest
values of λi. Hence the d smallest eigenvalues of Σ will be selected.

2. All eigenvalues λ are larger than σ2. The minimal values of fθ(λi) will occur for the largest values
of λi. Hence the d largest eigenvalues of Σ will be selected.

164 A. Proofs

Figure A.3.: Plot of fθ(λi) = log λi−λi/σ2 with σ = 1, showing maximum value at λi = σ2 and unbounded
behavior on either side.

In the intermediate regime, there will be a phase transition between these two extremes.
In the first case, the reconstructed manifold will be a projection onto the d-dimensional subspace

with the lowest variance, exactly the opposite result to PCA. In the second case, the reconstructed
manifold will be a projection onto the d-dimensional subspace with the highest variance, the same result
as PCA. If we maximize the likelihood on the manifold without any reconstruction loss, corresponding
to the σ2 → ∞ limit, we actually learn the lowest entropy manifold. It makes more sense to learn
the highest entropy manifold as in PCA. We can ensure this is the case by adding Gaussian noise of
variance σ2 to the data, ensuring that the minimum eigenvalue of the covariance matrix is at least σ2,
even if the original data is degenerate.

B. Experimental details

B.1. Layer-wise flow

B.1.1. Deep universal layer-wise flow

This appendix is adapted from Draxler et al. (2024b).

In an experiment on a toy dataset for figure 5.7, we demonstrate that a coupling flow constructed
layer by layer as in equation (5.30) learns a target distribution. We proceed as follows:

We construct a data distribution on a circle as a Gaussian mixture of M Gaussians with means
mi = (r cosφi, r sinφi), where φi = 0, 1

M 2π, . . . , M−1
M 2π are equally spaced, and σi = 0.3. The

advantage of approximating the ring with this construction is that this yields a simple to evaluate data
density, which we need for accurately plotting pθ(z):

p(x) =
1

M

M∑
i=1

N (x;mi, σ
2I). (B.1)

We then fit a total 100 layers in the following way: First, treat p(x) as the initial guess for
the latent distribution. Then, we build the affine coupling block that maximally reduces the loss
using equation (5.30). We therefore need to know the conditional mean m(b) and standard deviation
σ(b) for each b. We approximate this from a finite number of samples N which are grouped by the
passive coordinate b into B bins so that N/B samples are in each bin. We then compute the empirical
mean mi and standard deviation σi over the active dimension in each bin i = 1, . . . , B. According to
equation (5.30), we define si = 1

σi
and ti = − 1

σi
mi at the bin centers and interpolate between bins

using a cubic spline. Outside the domain of the splines, we extrapolate with constants s, t with the
value of the closest bin. We do not directly optimize over Q, but choose the Q that reduces the loss
most out of NQ random 2D rotation matrices.

We limit the step size of each layer to avoid artifacts from finite training data, by mapping:

x̃ = αx+ (1− α)fblk(x). (B.2)

In addition, we resample the training data from the ground truth distribution after every step to avoid
overfitting. We do not explicitly control for the bi-Lipschitz constant of our coupling blocks because
we do not encounter any numerical problems.

We choose N = 226, B = 64, M = 20, α = 0.5, NQ = 10. The resulting flow has 64 ·2 ·100 = 12, 800
learnable parameters. Figure B.1 shows how the KL divergence vanishes for our layer-wise training,
together with ∆affine.

B.1.2. Comparison of training methods on toy distributions

This appendix is adapted from Draxler et al. (2020).

In addition, we provide more examples on a set of toy distributions. As before, we train layer-wise
using OAS and randomly fixed rotations, and end-to-end. Additionally, we train a mixed variant of
OAS and end-to-end: New layers are still added one by one, but in iteration l the parameters of all

166 B. Experimental details

0 20 40 60 80 100
Number of coupling blocks

10 3

10 2

10 1

KL
 d

iv
er

ge
nc

e

10 5 10 4 10 3 10 2 10 1

Single layer improvement affine

10 3

10 2

10 1

KL
 d

iv
er

ge
nc

e

KL does not saturate

Figure B.1.: Empirically, the KL divergence decreases as more coupling blocks are added for the toy
distribution considered in figure 5.7 (left). At the same time, there is a strong correlation between the loss
improvement by a single coupling block ∆affine[pθ(z)] and the KL divergence (right). Crucially, the KL
divergence does not saturate as the loss improvements become smaller. The coupling flow considered is
trained according to the greedy layer-wise training in our proof construction.

Circle Mixture

D
at
a

di
st
rib

ut
io
n

Banana Big Mixture Checkerboard Mixture Shifted Uniform

O
AS LW

RN
D

LW
O
AS

PR
O
G

RN
D

PR
O
G

RN
D

E2
E

Figure B.2.: Twelve-block affine coupling normalizing flows trained on different toy problems (top row).
The following rows depict different training methods: layer-wise “LW” (rows 2 and 3), progressively “PROG”
(rows 4-5) and end-to-end “E2E” (last row). Rotations are “OAS” when determined by algorithm 1 (rows 2
and 4) or randomly fixed “RND” (rows 3, 5 and 6).

B.2. Volume-preserving flows 167

layers 1 through l are adapted in an end-to-end fashion. We call this training “progressive” as layers
are progressively activated and never turned off again.

We find the following results: Optimal rotations always outperform random rotations in layer-wise
training. With only a few layers, they also outperform end-to-end training, but are eventually overtaken
as the network depth increases. Progressive training continues to be competitive also for deep networks.

Figure B.2 shows the density estimates after twelve layers. At this point, none of the methods
show a significant improvement by adding additional layers. Hyperparameters were optimized for each
setup to obtain a fair comparison. Densities obtained by layer-wise training exhibit significant spurious
structure for both optimal and random rotations, with an advantage for optimally chosen subspaces.

B.2. Volume-preserving flows

This appendix is adapted from Draxler et al. (2024b).

The target distribution is a two-dimensional Gaussian Mixture Model with two modes. The two
modes have the same relative weight but different covariance matrices (Σ1 = I · 0.2, Σ2 = I · 0.1) and
means (m1 = [−0.5,−0.5], m2 = [0.5, 0.5]).

The normalizing flow with a constant Jacobian determinant consists of 15 GIN coupling blocks
as introduced in Sorrenson et al. (2019). This type of coupling block has a Jacobian determinant of
one. To allow for a global volume change, a layer with a learnable global scaling is added after the
final coupling block. This learnable weight is initialized as one. For the normalizing flow with variable
Jacobian determinant, the GIN coupling is modified by removing the normalization of the scaling
factors in the affine couplings. This allows the normalizing flow to have variable Jacobian determinants.
In this case, the global scaling block is omitted. To implement the normalizing flow, we use the FrEIA
package (Ardizzone et al., 2018a) implementation of the GIN coupling blocks.

In both normalizing flows, the two subnetworks used to compute the parameters of the affine
couplings are fully-connected neural networks with two hidden layers and a hidden dimensionality of
128. ReLU activations are used. The weights of the linear layers of the subnetworks are initialized by
applying the PyTorch implementation of the Xavier initialization (Glorot & Bengio, 2010). In addition,
the weights and biases of the final layer of each subnetwork are set to zero.

The networks are trained using the Adam (Kingma & Ba, 2017) with PyTorch’s default settings
and an initial learning rate of 1 · 10−3 which is reduced by a factor of ten after 5000, 10000 and 15000
training iterations. In total, the training ran for 25000 iterations. In each iteration, a batch of size 128
was drawn from the target distribution to compute the negative log likelihood objective. We use a
standard normal distribution as the latent distribution.

For obtaining the optimal distribution p∗(x), we follow the grid procedure in section 5.2 and
compute the probabilities on a regular 400× 400 grid of grid spacing 0.01. The covariance of p∗(z) is
computed for the latent scaling layer by sampling 4096 points from the mixture model, moving them
according to the volume-preserving flow learned using the grid and computing their empirical covariance
matrix. This yields essentially the same scaling as obtained from training the volume-preserving flow.

To learn p∗(r) as in appendix A.2.2, we sample 5 · 108 samples from ground truth data distribution.
These samples are passed through the volume-preserving flow and afterward the L2 norm is applied to
the latent codes to obtain the latent radii r. We subtract the smallest observed radius from all radii to
ensure that the distribution we construct is supported for all r ≥ 0 and fit a histogram with 4200 bins
to the radii. To obtain a smoother distribution, we use the left bin edges of the histogram and the
corresponding density values to fit a cubic spline using SciPy’s interpolate package (Virtanen et al.,
2020). We choose the partition function of the distribution pr(r) defined by the spline such that it
integrates to one. For a given latent code z the latent density can be computed by evaluating pr at

168 B. Experimental details

r = ∥z∥2 and correcting for the volume at the given radius (see equation (B.3)).

p(z) =
1

2π∥z∥2
· pr(r = ∥z∥2) (B.3)

B.3. Iterative Gaussianization

This appendix is adapted from Draxler et al. (2023).

B.3.1. Measuring number of required layers

We proceed as follows to predict the number of required layers to reduce the loss by a factor L̃/L from
training Ltrain layers in all experiments:

1. Determine the entropy H[p(x)] of the data distribution p(x). This is required for computing the
KL divergence in equation (4.3), and restricts us to distributions p(x) which we can sample from
(for training) and where we can evaluate the entropy via:

H[p(x)] = −Ex∼p(x)[log p(x)] (B.4)

2. Train a fixed number of layers Ltrain iteratively.

3. In general, we observe the loss as a function of depth L to decrease in a geometric series:

LLtrain := L0γLtrain . (B.5)

We determine γ from the initial loss L0 and the loss after Ltrain layers:

γ :=
[
LLtrain/L0

]1/Ltrain

(B.6)

4. We then extrapolate equation (B.5) to predict the number of layers required for an arbitrary loss
ratio L̃/L:

L =
log(L̃/L)

log γ
(B.7)

We evaluate equation (B.7) throughout the experiments for a loss ratio of log(L̃/L) = 1, that
is L̃ = e−1L = 36.8%L, but this is arbitrary as we are only interested in the scaling with dimension
which is independent of L̃/L.

B.3.2. Gaussian data

As our dataset, we construct the same dataset of Gaussians as in appendix B.4.4. We choose D in 10
geometrically spaced values from 10 to 128. We choose λmin = 10−3. The case where all eigenvalues
are equal to 1, λi = 1, is excluded, as Gaussianization has converged at this point.

For each Σi in the resulting data set, we create Nrot differently rotated variants Σr
i = QT

r ΣiQr,
where we choose Nrot = 8, whatever is larger. This corresponds to the initial unknown rotation of the
data.

We then apply the analytic solution of a Gaussianization block on the covariance, given by
equation (A.143). Then, another Nrot rotations are drawn, which rotate each resulting covariance.
This procedure is repeated until the specified number of layers is reached. We use Ltrain = 8D layers
as we expect the number of required layers to increase with Ω(D).

B.3. Iterative Gaussianization 169

101 102

of dimensions D

101

102

of

 re
qu

ire
d

la
ye

re
s L

Our (D) Gaussianization Bound

Theory
Experiment

101 102

of dimensions D

101

102

of

 re
qu

ire
d

la
ye

re
s L

Our (D) Gaussianization Bound

Theory
Experiment

101 102

of dimensions D

101

102

of

 re
qu

ire
d

la
ye

re
s L

Our (D) Gaussianization Bound

Theory
Experiment

Figure B.3.: For larger loss L ≫ 0, the median number of required layers over the data set
is larger than predicted, and some cases scale faster. (Left) If we predict the number of required
layers from the first Ltrain = D layers, the majority of cases show slower convergence than predicted. Some
cases show faster convergence, see figure B.4. (Medium) After the first Ltrain = 3D layers, most cases show
the linear scaling behavior with dimension. (Right) The bound is valid for at least 90% of the data after
Ltrain = 10D layers. All averaging is performed via the median, and shaded regions cover 90% of the cases.

10 2 100 102

101

102

103

of

 re
qu

ire
d

la
ye

rs

L = 0

10 2 100 102

L = 10

10 2 100 102

L = 20

10 2 100 102

L = 40
Single Varying > 1
Single Varying < 1
All Varying But One > 1
All Varying But One < 1
All Varying But One (Shifted) > 1
Uniform [0, 5]
Uniform [0, 2]
Log Uniform
Half Big, Half Small
Lower Bound (assumes 100)

Loss before layer

Figure B.4.: Our analytic lower bound on the number of layers gives a good estimate even
outside the valid regime (where L ̸≪ 1) for several considered cases. (Left) The cases with faster
initial convergence than equation (6.16) (orange) originate from “All eigenvalues varying but one” and
“Single eigenvalue varying” with one eigenvalue bigger than the others (left). After a finite number of layers
(L = 40 here), the number of required layers predicted at this depth is close to the number predicted
by the theory in all cases. The plot considers D = 128. Note that at this depth, the loss for the fastest
configuration is still greater than 10, far from convergence. The suffixes “> 1” and “< 1” separate α ≶ 1.

To evaluate theorem 6.3, we compare equation (6.16) with the empirical result. To estimate
the required number of layers for a fixed loss ratio, we proceed as in appendix B.3.1 so that we end
up in the regime where L ≪ 1. For figure 6.2, we fit γ from the loss ratio of the last two layers:
γ =

√
LLtrain/LLtrain−2 instead of equation (B.6). The maximum loss in this case is 10−2, so we are in

the regime of L ≪ 1.

In figure B.3, we observe the same linear scaling behavior of required layers with dimension for
L ≫ 0, i.e. at the beginning of training. However, in this case, the bound in equation (6.16) is violated
in few scenarios: They require less layers than predicted. However, after a small number of layers, also
these cases fulfill equation (6.16), see figure B.4.

B.3.3. Finding spurious dimensions in standard normal data

We randomly sample N = 60, 000 normal samples of dimension D = 3072, which corresponds to the size
of the CIFAR10 dataset. We optimize w ∈ RD, ∥w∥ = 1 to minimize the 1-dimensional sample-based

170 B. Experimental details

6 4 2 0 2 4
Input

6

4

2

0

2

4

Ou
tp

ut

Rational-Quadratic Spline
Forward
Inverse

Figure B.5.: Rational-Quadratic Spline. Each pair of knots (black) is interpolated with a rational-
quadratic polynomial. The outside is extrapolated with linear tails.

2-Wasserstein distance to a predefined bimodal distribution padv =
(
N (−d/2, σ) +N (d/2, σ)

)
/2:

W 2
2 =

N∑
i=1

(
(wTx)πw(i) − yi

)2
. (B.8)

Here, yi are sorted samples from padv. The permutation πw : [N] → [N] sorts the projected values
(wTx).

We choose the spread of the bimodal distribution to be d = 2 and the standard deviation of each
mode as σ = 0.4.

We optimize w for 64 steps using SGD with a learning rate of 10 and momentum .8. After each
update, we rescale ∥w∥ = 1. The final Wasserstein distance we obtain reads 0.03, down from 0.1 for a
random w.

For the visualization in figure 6.4, we project the data once with a random wT
randx and once with

wTx into 70 bins.

B.3.4. Gaussianization implementation

Following equation (4.21), we construct frot as a random rotation frot(x) = Qx where Q ∼ O(D)
for data dimensionality D. For fdim, we choose rational-quadratic splines, which allow for approx-
imation of arbitrary functions by separating their domain into b bins. Given bin edges (or knots)
x(k), y(k), x(k+1), y(k+1) and derivatives δ(k), δ(k+1) at those edges for bin k = 1, ..., b, they can be
interpolated with a rational-quadratic polynomial as described in (Durkan et al., 2019). Beyond the
outermost bin edges, the spline is extrapolated with linear tails.

We use an implementation of RQ splines based on (Dai & Seljak, 2021), where ψ(x, α) =
(1 − α)RQ(x) + αx with a scalar regularization parameter α. We choose b = 128 bins, as well as
α1 = 0.9 for the spline and α2 = 0.99 for the linear extrapolation, such that

fdim,θi(xi) =

ψ(xi, α1) x
(1)
i ≤ xi ≤ x

(b+1)
i

ψ(xi, α2) otherwise
. (B.9)

The α1,2 significantly slow down training, but increase performance (Dai & Seljak, 2021). It should

B.3. Iterative Gaussianization 171

not alter the scaling behavior of the number of required layers with dimension, up to a constant factor
independent of dimension.

Splines are fit to the CDF of the data by evenly distributing bin knots on the quantiles of the
data and applying the inverse Gaussian CDF:

x
(k)
i = q

(
k

b+ 2

)
, (B.10)

y
(k)
i = G−1

(
x
(k)
i

)
, (B.11)

where q(p) =
√

2 erf−1(2p− 1) is the quantile function and G(x) = 1
2

[
1 + erf

(
x√
2

)]
is the standard

normal CDF. The inner derivatives δ(k) can then be estimated by finite differences, following (Durkan
et al., 2019):

h
(k)
i = x

(k+1)
i − x(k)i , (B.12)

s
(k)
i =

y
(k+1)
i − y(k)i

x
(k+1)
i − x(k)i

, (B.13)

δ
(k+1)
i =

s
(k)
i h(k+1) + s(k+1)h(k)

h(k+1) + h(k)
, k = 1, ..., b− 1. (B.14)

We choose identity tails, i.e. δ(1) = δ(b+1) = 1.

B.3.5. Toy scaling experiment

Toy data distribution Our goal is to create a family of distribution p(x) which naturally extend over
different dimensions D by the continuous mixture of Gaussians equation (6.21) where the mean of each
dimension is conditioned on the previous via mi(xj ∈ Ai). In particular, we choose:

m1 =
1

2
, m0 = 0, σ21 = 0.8, σ22 = 0.2. (B.15)

The sij(D) are drawn randomly from {−1,+1} for each dimension D and for each seed. This is the
main source of noise between runs.

Training We employ the architecture described in appendix B.3.4 for Ltrain = 64 layers. We use
N = 60, 000 training samples in each case and run a total of four runs per case (except for case 1,
for which we average over eight runs). Before training, the data is normalized to zero mean and unit
standard deviation in the original rotation.

In principle, measuring convergence rates would be more accurate by using different batch of
training data for fitting each layer, as this avoids overfitting and yields slower convergence on test data.
We find this not to be a problem for the considered 64 layers and high α (see appendix B.3.4).

Evaluation We compute the number of required layers for each run via the procedure in appendix B.3.1.
This number is then averaged over all runs for each case and dimension.

172 B. Experimental details

0.0

0.5

(1) Full
Data
Standard normal

(2) Dependent (3) Independent

0.0

0.5

0.0

0.5

5 0 5
Random projection w x

0.0

0.5

5 0 5
Random projection w x

5 0 5
Random projection w x

Figure B.6.: Random projections of data from the different versions of toy data in D = 128. Columns
show the different cases, and each row depicts a different random projection w ∈ RD, ∥w∥ = 1. In case (2,
center), most dimensions depend on the same dimensions, making random projections deviate strongly from
a standard normal. For case (1) and (3), random projections are very close to a Gaussian, preventing a fast
fit using Gaussianization.

B.3.6. Multiscale EMNIST experiment

Data distribution As described in section 6.2.5, we make use of a normalizing flow as our data density
p(x). Each flow architecture consists of a fixed normalization layer, followed by 20 affine coupling
blocks. We use purely full-connected networks for odd scales, and convolutional networks for even scales.
We use wavelet downsampling before the first. If the image side length scale is a power of 4, we add a
second wavelet downsampling after the eighth affine coupling layer. Each convolutional subnetwork
uses two hidden layers with 16 channels respectively 32 channels after the second downsampling each,
and a kernel size of 3. The final 4 coupling blocks are fully-connected. Each fully-connected subnetwork
has two hidden layers with hidden width equal to the total number of dimensions D. The details for
each architecture are given in table B.1.

We train the normalizing flows for 30 epochs for D = 28× 28, and 20 for the other scales using
negative log-likelihood, see equation (6.10). We use Adam with a learning rate of 10−3 and a batch
size of 256.

After training, we replace the latent distribution with a normal distribution N (0, σ̂2ID) with
σ̂ = 0.8 to achieve a better sample quality. Note that this does not influence the ability to compute
density estimates p(x) from our model, but it does reduce the entropy of the data.

Traininig Like in the toy experiment, we use the implementation from appendix B.3.4. We again
choose N = 60, 000 training samples without resampling. We average each case over 10 runs.

Evaluation We use the same procedure as in appendix B.3.5.

B.4. Deep coupling bound 173

Table B.1.: Normalizing Flow architecture as a function of image size. A purely fully-connected network is
labeled by “fc”, “conv” networks are partially convolutional.

Scale Network type # of downsamplings # of parameters

4 = 2× 2 conv 1 149k
9 = 3× 3 fc 0 7k
16 = 4× 4 conv 2 194k
25 = 5× 5 fc 0 38k
36 = 6× 6 conv 1 164k
49 = 7× 7 fc 0 134k
64 = 8× 8 conv 2 235k
100 = 10× 10 conv 1 254k
144 = 12× 12 conv 2 406k
196 = 14× 14 conv 1 544k
256 = 16× 16 conv 2 861k
324 = 18× 18 conv 1 1M
400 = 20× 20 conv 2 2M
484 = 22× 22 conv 1 3M
576 = 24× 24 conv 2 4M
676 = 26× 26 conv 1 5M
784 = 28× 28 conv 2 6M

B.3.7. Compute and libraries

Experiments were performed on three workstations, each with a single high-end consumer GPU and
CPU each. We build our code upon the following Python libraries: PyTorch (Paszke et al., 2019),
PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019), Lightning Trainable (Kühmichel &
Draxler, 2023), Tensorflow (Abadi et al., 2015) for FID score evaluation, Numpy (Harris et al., 2020),
Matplotlib (Hunter, 2007) for plotting and Pandas (McKinney, 2010; The pandas development team,
2020) for data evaluation.

B.4. Deep coupling bound

This appendix is adapted from Draxler et al. (2022).

All experiments were carried out on a single AMD Ryzen 7 3700X 8-Core Processor together with

2 3 4 5 6 7 8 10 12 14 16 18 20 22 24 26 28
Side length of digit

0

1

2

3

4

5

6

7

8

9

Figure B.7.: Samples from our down-scaled EMNIST normalizing flows which we use as ground truth
distributions p(x). Normalizing Flows are sampled with reduced temperature 0.8.

174 B. Experimental details

a NVIDIA GeForce RTX 2080.

B.4.1. Deep network on EMNIST

In this experiment, we estimate the capability of affine normalizing flows in reducing the non-
Standardness S (see equation (6.1)) as a function of the number of layers. We compare this to
the theoretic bound in theorem 6.7.

To this end, we train affine normalizing flows on EMNIST digits (Cohen et al., 2017). We leverage
a 20-block Glow architecture. To measure the effect of depth L = 1, . . . , 20 of the flow on S, we
truncate the architecture to L layers.

The architecture is built as follows: We start by down-sampling the input image from gray scale
1× 28× 28 to 4× 14× 14: Each group of four neighboring pixels is reordered into one pixel with four
times the channels in a checkerboard-like pattern. Then, eight convolutional coupling blocks with 16
hidden channels are applied. They are followed by another down-sampling to 16 × 7 × 7 and eight
convolutional coupling blocks with 32 hidden channels. After flattening the input, four fully-connected
affine coupling blocks are added with 392 hidden dimensions.

When truncating this architecture, we remove blocks from the left. For example, when one block is
present (L = 1), only the last coupling block with the fully-connected subnetwork remains. This makes
our theory applicable, as proposition 6.6 assumes that the neural networks s and t are fully-connected
(otherwise, the whitening operation cannot always be represented).

We train each depth from scratch for 300 epochs using Adam with a learning rate of 3 · 10−3

which is reduced by a factor of .1 after 100 and 200 epochs. The batch size is 240 which implies 1000
iterations per epoch.

Given the 20 networks of different depth, we split the loss into the non-Gaussianity G and non-
Standardness S as suggested by theorem 4.1. To do so, we compute the empirical covariances Σl of
10’000 test samples pushed through each flow.

To relate this experiment to our theory, we take the covariance matrices obtained using the trained
flows Σl and apply theorem 6.7 to each. This yields an upper bound on the expected non-Standardness
after training another network with depth increased by one. In other words, given Σl, theorem 6.7
predicts an upper bound on the expected EQl+1∼p(Q)[S(Σl+1)]. We observe that the experimentally
observed non-Standardness behaves similar to the upper bound. We do not expect this to be the
case in general: There might be a trade-off between reducing S and G, so the optimization might
actually decide for reducing G at the cost of increasing S. We only show that with the covariance
in proposition 6.6, G does not increase. On the other end, an affine flow might actually be able to
reduce the non-Standardness stronger than predicted, as our theory does not take potentially useful
cooperation between layers into account.

We average all results over eight runs per depth (i.e. 8 · 20 = 160 networks in total). Despite
different random orientations in each run, the results are very concentrated: We find error bars so
small that they are not visible in figure 6.1.

We observe that after four blocks, the non-Standardness is close to zero. Here, the flow consists of
four coupling blocks with fully-connected subnetworks. This justifies the use of convolutional networks
for s and t in the remaining blocks; they can only reduce correlations between pixels locally, thus not
reducing non-Standardness as strongly as predicted. However, the non-Standardness is reduced enough
by only four coupling blocks.

figure B.8 shows samples from one networks trained for each depth (sampling temperature T = 0.7).

B.4. Deep coupling bound 175

20191817161514131211109876543210
Number of Coupling Blocks

8

7

6

5

4

3

2

1

Sa
m

pl
e

In
de

x

Figure B.8.: Samples generated by the affine coupling flows with varying depth trained for figure 6.1. Each
column shows eight samples by a network of the corresponding depth.

B.4.2. Single layer on EMNIST digit covariance

This experiment confirms that the covariance minimizing the non-Standardness S(Σ̃) after a single
layer is correctly predicted by proposition 6.6.

To get an interesting covariance matrix, we flatten the EMNIST digits training data and compute
its covariance matrix Σ, as depicted in figure 6.9 on the left. We then sample a multivariate Gaussian
with this covariance matrix and train a single affine coupling layer. As the data is Gaussian, we can
train with the standard maximum likelihood loss as it is equivalent to the non-Standardness S. We
use Adam with a learning rate 0.05, a batch size of 2048 and train for 512 iterations.

B.4.3. Single block on toy data

This experiment explores the average non-Standardness that can be reached by a single layer by
modifying the covariance as given by proposition 6.6. It also aims to confirm the upper bounds shown
in theorems 6.7 and 6.8.

We build a family of toy covariance matrices to work with. As the data will be randomly rotated
anyway, we choose the matrices to be diagonal w.l.o.g., i.e. we directly design the eigenvalue spectrum
of each covariance. We prescribe this spectrum by a continuous function µ : [0, 1]→ R+. It is chosen
bijective to ensure that the eigenvalues are distinct. We then define the eigenvalues as follows:

µi = µ
(

i
D−1

)
i = 0, . . . , D − 1. (B.16)

With this approach, we can systematically modify eigenvalue/noise spectra.

Given a vector of eigenvalues (µi)i, we need to ensure that its mean is one. We do so by dividing
by the mean:

νi :=
µi∑D

i=1 µi/D
. (B.17)

Finally, we add a scaling parameter s > 0 that defines how close the spectrum is to the identity:

λ
(s)
i := (νi − 1) · s+ 1. (B.18)

176 B. Experimental details

Figure B.9.: Eigenvalue spectra used for experiment depicted in figure 6.10. (Left) µ(x) = x2 and (right)
µ(x) = x8. Each line corresponds to a different scaling s.

The non-Standardness strictly decreases as s comes closer to 0. As the eigenvalues always have to be
positive, s must be chosen smaller than:

s <
1

1− λmin
=: smax. (B.19)

Given a spectrum λ
(s)
i , we build a diagonal covariance matrix

Σ = Diag(λ
(s)
i)Di=1. (B.20)

For the experimental baseline, we sample Nrot orthogonal and unitary rotation matrices Q ∼ p(Q)
from the corresponding Haar measure over O(D) and U(D). We employ scipy.stats.ortho group

respectively scipy.stats.unitary group (Virtanen et al., 2020). This yields the covariance of the
rotated data:

Σ0 = QΣQT. (B.21)

(Or, Q∗ instead of QT if we average over unitary matrices).

We do not train affine coupling layers directly. Instead, we make use of the single layer output
covariance Σ̃ from proposition 6.6.

We choose the following numerical values for s: To get a close look at the case where s → 0
and correspondingly S → 0, we take Nscale/3 geometrically spaced points in [0.001smax, 0.9smax]. To
accurately capture the off-minimum behavior, we add to that 2Nscale/3 linearly spaced points between
[0.9smax, .999smax].

We choose Nrot = 100 and Nscale = 150 for all experiments. To save computational resources, we
re-use the rotations sampled for the first scale for the remaining.

In figure 6.10, we showed the experiment for the parameterized spectra µ(x) = x2 and µ(x) = x8.
For both, figure B.9 shows which rescaled eigenvalue spectra were used in this experiment. In figure B.10,
we give examples for more spectra.

B.4.4. Layer-wise training on toy data

In this experiment, we track the non-Standardness as layers are added, check theorem 6.9, and compare
the convergence rate equation (6.35) to the other bounds in theorems 6.7 and 6.8.

This experiment uses a different set of toy covariances than appendix B.4.3. This time, we build a
plethora of different initial covariances (eigenvalue spectra) that include extreme cases:

B.4. Deep coupling bound 177

10 5 10 4 10 3 10 2 10 1 100 101

non-Standardness before Block

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

no
n-

St
an

da
rd

ne
ss

 a
fte

r B
lo

ck

i

Experiment
Experiment (Unitary)
'Unitary' Bound
'Var-max' Bound
'Loss-only' Bound

10 4 10 3 10 2 10 1 100 101 102

non-Standardness before Block

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

no
n-

St
an

da
rd

ne
ss

 a
fte

r B
lo

ck

i

Experiment
Experiment (Unitary)
'Unitary' Bound
'Var-max' Bound
'Loss-only' Bound

10 5 10 4 10 3 10 2 10 1 100 101

non-Standardness before Block

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

no
n-

St
an

da
rd

ne
ss

 a
fte

r B
lo

ck

i

Experiment
Experiment (Unitary)
'Unitary' Bound
'Var-max' Bound
'Loss-only' Bound

10 5 10 4 10 3 10 2 10 1 100 101

non-Standardness before Block

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

no
n-

St
an

da
rd

ne
ss

 a
fte

r B
lo

ck

i

Experiment
Experiment (Unitary)
'Unitary' Bound
'Var-max' Bound
'Loss-only' Bound

Figure B.10.: Examples for single layer relative non-Standardness on more eigenvalue spectra: (Top left)
µ(x) = x, (top right) µ(x) = x5, (bottom left) µ(x) = 1

1.1−x , (bottom right) µ(x) = exp(x). More details in
figure 6.10.

1. All eigenvalues are set to 1 except for one that is varying.

2. All eigenvalues have the same value that is varied, except for one that is set to 1.

3. Split the eigenvalues into two halves, respectively having the same value: The first half is varied,
the second half assume the inverse value of the first half.

4. Randomly sample all eigenvalues uniformly from [0, 2].

5. Randomly sample all eigenvalues between such that the logarithm is uniformly distributed over
[1/vmax, vmax].

Whenever we vary the value of any eigenvalue, we take Nvary scalars geometrically spaced between
1/vmax and vmax. We exclude the case where all eigenvalues are equal to 1, implying a non-Standardness
of 0.

To fulfill assumption 6.3, we do not actually assign the same value to eigenvalues, but multiply them
each with a linearly increasing factor in (1− ϵ, 1 + ϵ). We do not observe any change in experimental
behavior from this, but this allows us evaluating theorem 6.7.

Given the dataset of eigenvalues, we build diagonal covariances, repeatedly apply random rotations
and the whitening procedure in proposition 6.6. The details are given in algorithm 4. For each input
covariance, we obtain Nrot trajectories of covariances.

We evaluate the non-Standardness of each covariance matrix S(Σ
(i,r)
l) and average over rotations.

This is shown in the left plot in figure 6.11.
In addition, we compute the relative non-Standardness between layers:

S(Σ
(i,r)
l)/S(Σ

(i,r)
l−1). (B.22)

178 B. Experimental details

Algorithm 4 Multi-layer non-Standardness experiment

Require: Input covariances Σ(i), i = 1, . . . , N , number of rotations Nrot, number of layers L.

Σ
(i,r)
0 ← Σ(i) for i = 1, . . . , N ; r = 1, . . . , Nrot {Copy each input covariance Nrot times}

for l = 1, . . . , L do
Q(r) ∼ O(D) for r = 1, . . . , Nrot {Sample rotations}
Σ
(i,r)
l−1

′ ← Q(r)Σ
(i,r)
l−1 (Q(r))T for i = 1, . . . , N ; r = 1, . . . , Nrot {Apply rotations}

Σ
(i,r)
l ← proposition 6.6 on Σ

(i,r)
l−1

′ {Apply whitening step}
end for

Ensure: {Σ(i,r)
l }Ll=1 for i = 1, . . . , N ; r = 1, . . . , Nrot.

This quantity is averaged over rotations r and instances i. It is depicted together with the corresponding
interquartile range (IQR) in the right half of figure 6.11.

We also evaluate each of the bounds on EQ[S(Σ
(i,r)
l+1)] in theorems 6.7 and 6.8 given Σ

(i,r)
l and

divide it by the non-Standardness S(Σ
(i,r)
l). Again, we average over rotations and iterations.

Averaging over rotations might be counter-intuitive as the bounds explicitly calculate a value that
is an average: It is necessary because for each initial covariance, we have Nrot trajectories with different
convergence behavior. Let us make this explicit. Denote by B any of the bounds in theorems 6.7
and 6.8:

EQl+1∼p(Q)[S(Σ
(i,r)
l+1 (Ql+1))]

S(Σ
(i,r)
l)

≤ B(Σ
(i,r)
l)

S(Σ
(i,r)
l)

. (B.23)

We average the quantity on the right over the different trajectories, i.e. over i, r. It only depends on
the covariances in the lth layer in contrast to the expression on the left.

As hyperparameters to the experiment, we choose D = 48, L = 32, Nvary = 128, Nrot = 32, vmax =
1000, ϵ = 10−5. We stop a trajectory once the non-Standardness falls below 10−9 to avoid numerical
instabilities.

B.5. Free-form flows

This appendix is adapted from Draxler et al. (2024a).

We sample the vectors in theorem 7.1 from v ∼ U(SD−1
D/2), reducing the variance of the trace in

comparison to v ∼ N (0, I), see the experimental details on FIF in appendix B.7.1 for more details.

B.5.1. Simulation-Based Inference

Our models for the SBI benchmark use the same ResNet architecture as the neural spline flows (Durkan
et al., 2019) used as the baseline. It consists of 10 residual blocks of hidden width 50 and ReLU
activations. Conditioning is concatenated to the input and additionally implemented via GLUs at the
end of each residual block. We also define a simpler, larger architecture which consists of 2x256 linear
layers followed by 4x256 residual blocks without GLU conditioning. We denote the architectures in the
following as ResNet S and ResNet L. To find values for architecture size, learning rate, batch size and
β we follow (Wildberger et al., 2023) and perform a grid search to pick the best value for each dataset
and simulation budget. As opposed to (Wildberger et al., 2023) we run the full grid, but with greatly
reduced search ranges, which are provided in Table B.2, which amounts to a similar budget. The best
hyperparameters for each setting are shown in Table B.3. Notably, this table shows that our method
oftentimes works well on the same datasets for a wide range different β values. The entire grid search

B.5. Free-form flows 179

Table B.2.: Hyperparameter ranges for the grid search on the SBI benchmark. ∗We only perform the
search over architecture size for the 100k simulation budget scenarios.

Range

Reconstruction weight β 10, 25, 100, 500
Learning rate {1, 2, 5, 10} × 10−4

Batch size 22, ..., 28

Architecture size S, L∗

Table B.3.: Hyperparamters found by the grid search for the SBI benchmark. Cells are split into the
hyperparameters for all three simulation budgets, unless we use the same setting across all of them.

Dataset Batch size Learning rate β ResNet size

Bernouli glm 8/32/128 5× 10−4 25/25/500 S/S/L
Bernouli glm raw 16/64/32 5/10/10× 10−4 25/25/50 S/S/L
Gaussian linear 8/128/128 5/10/1× 10−4 25/500/500 S
Gaussian linear uniform 8/8/32 5/2/5× 10−4 500/10/100 S/S/L
Gaussian mixture 4/16/32 5/2/10× 10−4 10/500/25 S/S/L
Lotka Volterra 4/32/64 10/10/5× 10−4 500/500/25 S
SIR 8/32/64 10/10/5× 10−4 500/25/25 S
SLCP 8/32/32 5× 10−4 10/25/25 S/S/L
SLCP distractors 4/32/256 5/10/5× 10−4 25/10/10 S
Two moons 4/16/32 5/5/1× 10−4 500 S/S/L

was performed exclusively on compute nodes with “AMD Milan EPYC 7513 CPU” resources and took
∼ 14.500h× 8 cores total CPU time for a total of 4480 runs.

B.5.2. Molecule Generation

E(n)-GNN

For all experiments, we make use of the E(n) equivariant graph neural network proposed by (Satorras
et al., 2021b) in the stabilized variant in (Satorras et al., 2021a). It is a graph neural network that
takes a graph (V,E) as input. Each node vi ∈ V is the concatenation of a vector in space xi ∈ Rn
and some additional node features hi ∈ Rh. The neural network consists of L layers, each of which
performs an operation on vl = [xli;h

l
i → xl+1

i ;hl+1
i]. Spatial components are transformed equivariant

under the Euclidean group E(n) and feature dimensions are transformed invariant under E(n).

mij = φe

(
hli,h

l
j , d

2
ij , aij

)
, (B.24)

ẽij = φinf (mij), (B.25)

hl+1
i = φh

hli,
∑
j ̸=i

ẽijmij

, (B.26)

xl+1
i = xli +

∑
j ̸=i

xli − xlj
dij + 1

φx

(
hli,h

l
j , d

2
ij , aij

)
(B.27)

Here, dij = ∥xli − xlj∥ is the Euclidean distance between the spatial components, aij are optional edge
features that we do not use. The ẽij are normalized for the input to φh. The networks φe, φinf , φh, φx
are learned fully-connected neural networks applied to each edge or node respectively.

180 B. Experimental details

Table B.4.: Hyperparameters used for the Boltzmann generator tasks. The format “A / B“ specifies a
two-step training.

DW4 LJ13 LJ55

Layer count 20 8 10
Reconstruction weight β 10 200 500
Learning rate 0.001 0.001 0.001
Learning rate scheduler One cycle - - / Exponential γ = 0.99999
Gradient clip 1 1 0.1
Batch size 256 256 48
Duration 50 epochs 400 epochs 300k / 450k steps

Latent distribution

As mentioned in section 7.1.4, the latent distribution must be invariant under the Euclidean group.
While rotational invariance is easy to fulfill, a normalized translation invariant distribution does not
exist. Instead, we adopt the approach in (Köhler et al., 2020) to consider the subspace where the mean
position of all atoms is at the origin:

∑N
i=1 xi = 0. We then place a normal distribution over this space.

By enforcing the output of the E(n)-GNN to be zero-centered as well, this yields a consistent system.
See (Köhler et al., 2020) for more details.

Boltzmann Generators on DW4, LJ13 and LJ55

We consider the two potentials

Double well (DW): vDW(x1, x2) =
1

2τ

(
a(d− d0) + b(d− d0)2 + c(d− d0)4

)
, (B.28)

Lennard-Jones (LJ): vLJ(x1, x2) =
ϵ

2τ

(rm
d

)12

− 2

(
rm
d

)6
. (B.29)

Here, d = ∥x1 − x2∥ is the Euclidean distance between two particles. The DW parameters are chosen
as a = 0, b = −4, c = 0.9, d0 = 4 and τ = 1. For LJ, we choose rm = 1, ϵ = 1 and τ = 1. This is
consistent with (Klein et al., 2023) and we use their MCMC samples as data, of which we use 400k
samples for validation and 500k for testing the final model.

We give hyperparameters for training the models in table B.4. We consistently use the Adam
optimizer. While we use the E(n)-GNN as our architecture, we do not make use of the features h
because the Boltzmann distributions in question only concern positional information. Apart from the
varying layer count, we choose the following E(n)-GNN model parameters as follows: fully-connected
node and edge networks (which are invariant) have one hidden layers of hidden width 64 and SiLU
activations. Two such invariant blocks are executed sequentially to parameterize the equivariant update.
We compute the edge weights ẽij via attention. Detailed choices for building the network can be
determined from the code in (Hoogeboom et al., 2022).

QM9 molecule generation

For the QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) experiment, we again employ a
E(3)-GNN. This time, the dimension of node features h is composed of a one-hot encoding for the
atom type and an ordinal value for the atom charge. Like (Satorras et al., 2021a), we use variational
dequantization for the ordinal features (Ho et al., 2019), and argmax flows for the categorical features

B.5. Free-form flows 181

Table B.5.: Boltzmann generator negative log-likelihood and sampling times, including the time to compute
the density from the network Jacobians. Note that in all cases, the log prob could be distilled by a
E(3)-invariant network with scalar output for faster density estimation. NLLs are due to (Klein et al.,
2023). Errors are the standard deviations over runs. The other models are based on an ODE trained via
maximum likelihood (E(n)-NF, (Satorras et al., 2021a)), and trained via Optimal Transport Flow Matching
with (OT-FM) or without (E-OT-FM) equivariance-aware matching (Klein et al., 2023). E(n)-NF is too
memory intensive to train on LJ55 efficiently. Expands table 7.1 in main text.

NLL (↓) Sampling time (↓)
Raw incl. log qθ(x)

DW4

E(n)-NF 1.72 ± 0.01 0.024 ms 0.10 ms
OT-FM 1.70 ± 0.02 0.034 ms 0.76 ms
E-OT-FM 1.68 ± 0.01 0.033 ms 0.75 ms
FFF 1.68 ± 0.01 0.026 ms 0.74 ms

LJ13

E(n)-NF -16.28 ± 0.04 0.27 ms 1.2 ms
OT-FM -16.54 ± 0.03 0.77 ms 38 ms
E-OT-FM -16.70 ± 0.12 0.72 ms 38 ms
FFF -17.09 ± 0.16 0.11 ms 3.5 ms

LJ55

OT-FM -88.45 ± 0.04 40 ms 6543 ms
E-OT-FM -89.27 ± 0.04 40 ms 6543 ms
FFF -88.72 ± 0.16 2.1 ms 311 ms

(Hoogeboom et al., 2021). For QM9, the number of atoms may differ depending on the input. We
represent the distribution of molecule sizes as a categorical distribution.

We again employ the E(3)-GNN with the same settings as for the Boltzmann generators. We use
16 equivariant blocks, train with Adam with a learning rate of 10−4 for 700 epochs. We then decay the
learning rate by a factor of γ = 0.99 per epoch for another 100 epochs. We set reconstruction weight
to β = 2000. We use a batch size of 64.

For both molecule generation tasks together, we used approximately 6,000 GPU hours on an
internal cluster of NVIDIA A40 and A100 GPUs. A full training run on QM9 took approximately ten
days on a single such GPU.

B.5.3. Ablation studies

We study the effect of different modifications to our method in an ablation study on the MINIBOONE
dataset shown in Table B.6. Firstly, we train a classical normalizing flow, implemented as a coupling
flow (Dinh et al., 2015) (Classical NF) and compare it to a model where the exact likelihood loss of
equation (4.4) has been replaced by the trace estimator of equation (7.5), but still using the exact
inverse (NF + trace estimator). The resulting NLL shows that using equation (7.5) provides a good
estimate for the maximum likelihood objective, with only small deterioration due to the increased
stochasticity. Next, we train two identical coupling flow networks as FFF, meaning we no longer use
their invertibility and instead rely on the reconstruction loss of equation (7.8) to learn an inverse (INN
as FFF). This shows that the coupling flow architecture is suboptimal compared to FFF, despite its
guarantee of invertibility. Finally, we show that with the right architecture (ResNet as FFF/Transformer
as FFF) we can reach and even outperform coupling flows. We also include an ablation study on the

182 B. Experimental details

Table B.6.: Ablation in terms of NLL on MINIBOONE: We start with a classical normalizing flow trained
with exact likelihood, then add the trace estimator. Next, we compare different architectures trained as
free-form flows. Finally, we compare using more Hutchinson samples K and varying batch size bs.

Setup NLL

Classical NF (equation (4.4)) 10.55
NF + trace estimator (equation (7.5)) 10.60

INN as FFF 16.42
Transformer as FFF 10.10

ResNet as FFF, K = 1, bs = 256 10.60
ResNet as FFF, K = 2, bs = 256 10.18
ResNet as FFF, K = 1, bs = 64 12.96
ResNet as FFF, K = 2, bs = 64 12.30

effect of increasing the number of Hutchinson samples K vs. increasing batch size bs. Both measures
reduce stochasticity of the optimizer and can lead to better performance, but we find that the effect of
increasing batch size is more pronounced, and can lead to more improvements than increasing K at
the same cost.

B.5.4. Software libraries

We build our code upon the following Python libraries: PyTorch (Paszke et al., 2019), PyTorch
Lightning (Falcon & The PyTorch Lightning team, 2019), Tensorflow (Abadi et al., 2015) for FID score
evaluation, Numpy (Harris et al., 2020), Matplotlib (Hunter, 2007) for plotting and Pandas (McKinney,
2010; The pandas development team, 2020) for data evaluation.

B.6. Manifold free-form flows

This appendix is adapted from Sorrenson et al. (2023).
In accordance with the details provided in section 7.2.3, our approach incorporates multiple

regularization loss components in addition to the negative log-likelihood objective. This results in the
final loss expression:

L = LNLL + β
x/z
R L

x/z
R + β

x/z
U L

x/z
U + β

x/z
P L

x/z
P . (B.30)

For each of the terms, there is a variant in x- and in z-space, as indicated by the superscript. In detail:
The first loss LR represents the reconstruction loss:

LxR = Ex∼pdata [d(x, gφ(fθ(x))], (B.31)

LzR = Ex∼pdata [d(fθ(x), fθ(gφ(fθ(x)))]. (B.32)

Here d(x, y) = ∥x − y∥2 is the standard reconstruction loss in the embedding space. This could be
replaced with a distance on the manifold. However, this would be more expensive to compute and
since we initialize networks close to identity, the distance in the embedding space is almost equal to
the shortest path length on the manifold.

To have accurate reconstructions outside of training data, we also add reconstruction losses for
data uniformly sampled on the manifold, both for x and z:

LxU = Ex∼U(M)[d(x, gφ(fθ(x))], (B.33)

B.6. Manifold free-form flows 183

LzU = Ex∼U(M)[d(z, fθ(gφ(z))]. (B.34)

Finally, we make sure that the function learned by the neural networks is easy to project by
regularizing the distance between the raw outputs by the neural networks in the embedding space and
the subsequent projection to the manifold (compare equation (7.21)):

LxP = Ex∼pdata [∥gφ(fθ(x))− g̃φ(fθ(x))∥2], (B.35)

LzP = Ex∼pdata [∥fθ(x)− f̃θ(x)∥2]. (B.36)

If these superscripts are not specified explicitly in the following summary of experimental details,
we mean βx = βz.

In all cases, we selected hyperparameter using the performance on the validation data.

B.6.1. Likelihood evaluation

Sampling from a trained model can be easily achieved by sampling from the latent distribution and
performing a single pass through the decoder gφ. However, to evaluate the likelihood of the test set
under our model, as in section 7.1.3, we need to calculate the change of variable formula w.r.t. g−1

φ

log pφ(x) = log p(z = g−1
φ (x)) + log |RTg−1

φ
′
(x)Q|+ 1

2 log
|RTGZ(g−1

φ (x))R|
|QTGX(x)Q| (B.37)

≈ log p(z = fθ(x)) + log |RTg′φ(fθ(x))−1Q|+ 1
2 log

|RTGZ(fθ(x))R|
|QTGX(x)Q| . (B.38)

Here we used the approximation fθ ≈ g−1
φ . While it is expensive to compute for training, it is reasonably

fast to compute during inference time. However, if the assumption of fθ ≈ g−1
φ is not sufficiently

fulfilled, the measured likelihoods might be inaccurate. We try to identify such cases by sampling
points from M around the proposed latent point with small noise strength σ

z̃ = proj(fθ(x) +N (0, σ)). (B.39)

As inverse of the decoder gφ we use the sample z̃ which results in the lowest reconstruction loss:

g−1
φ (x) ≈ arg min

z̃
||gφ(z̃)− x||22. (B.40)

We also do this with samples drawn around x̃ = proj(x+N (0, σ)) and uniformly from the manifold
z̃ = U(M). We note that in most cases, except for the earth datasets, the likelihoods computed in
this way agree with fθ ≈ g−1

φ . In the case of the earth datasets, we note that the newly computed
likelihoods now agree with observed model quality. Specifically, whenever reconstruction loss is low,
we also see agreement between the likelihoods computed via fθ and our approximation of g−1

φ via
sampling. Otherwise, the disagreement between fθ and g−1

φ and the resulting drop in model quality
are correctly diagnosed. Therefore, for the all S2 experiments, we report the likelihoods computed by
our approximation.

B.6.2. Special orthogonal group

To apply manifold free-form flows, we project an output matrix R ∈ R3×3 from the encoder/decoder to
the subspace of special orthogonal matrices by finding the matrix Q ∈ SO(3) minimizing the Frobenius
norm ∥Q − R∥F . This is known as the constrained Procrustes problem and the solution Q can be
determined via the SVD R = UΣV T (Lawrence et al., 2019):

Q = USV T, (B.41)

184 B. Experimental details

Table B.7.: Hyperparameter choices for the rotation experiments. βU and βP are the same for both the
sample and latent space.

Hyperparameter Value

Layer type ResNet
Residual blocks 2
Inner depth 5
Inner width 512
Activation ReLU

βx
R 500
βz
R 0
βU 10
βP 10
Latent distribution uniform

Optimizer Adam
Learning rate 5× 10−3

Scheduler Exponential w/ γ = 1− 10−5

Gradient clipping 1.0
Weight decay 3× 10−5

Batch size 1,024
Step count 585,600
#Repetitions 3

Table B.8.: Dataset overview for the earth data experiments. Each dataset is split into 80% for training,
10% for validation and 10% for testing.

Dataset Number of instances Noise strength

Volcano 827 0.008
Earthquake 6120 0.0015
Flood 4875 0.0015
Fire 12809 0.0015

where the diagonal entries of Σ were sorted from largest to smallest and S = Diag(1, . . . , 1,det(UV T)).

The special orthogonal group data set is synthetically generated. We refer to (De Bortoli et al.,
2022) for a description of the data generation process. They use an infinite stream of samples. To
emulate this, we generate a data set of 107 samples from their code, of which we reserve 1,000 for
validation during training and 5,000 for testing. We vectorize the 3× 3 matrices before passing them
into the fully-connected networks. All training details are given in table B.7, one training run takes
approximately 7 hours on a NVIDIA A40.

The data set is synthetically generated; of the N = 100, 000 data points, we use 1% of for validation
and hyperparameter selection and 5% for test NLL. Each run uses a different random initialization of
weights.

B.6.3. Earth data

We follow previous works and use a dataset split of 80% for training, 10% for validation and 10%
for testing. For the earth datasets, we use a mixture of 5 learnable Von-Mises-Fisher distributions
for the target latent distribution. We base our implementation on the hyperspherical vae library
(Davidson et al., 2018). In order to stabilize training, we apply a small amount of Gaussian noise to
every batch (see table B.8) and project the resulting data point back onto the sphere. Other training

B.6. Manifold free-form flows 185

Table B.9.: Hyperparameter choices for the earth data experiments. βU and βP are the same for both the
sample and latent space.

Hyperparameter Value

Layer type ResNet
residual blocks 4
Inner depth 2
Inner width 256
Activation sin

βx
R 105

βz
R 0
βU 2× 102

βP 0
Latent distribution VMF-Mixture (ncomp = 5)

Optimizer Adam
Learning rate 2× 10−4

Scheduler onecyclelr
Gradient clipping 10.0
Weight decay 5× 10−5

Batch size 32
Step count ∼ 1.2M
#Repetitions 5

Figure B.11.: Density estimates of our model on the earth datasets. Blue points show the training dataset,
red points the test dataset.

186 B. Experimental details

Table B.10.: Details on the torus datasets. Each dataset is randomly split into a train dataset (80%),
validation dataset (10%) and test dataset (10%). During training, we add Gaussian noise with mean zero
and standard deviation given by ‘noise strength’ to the data, to counteract overfitting.

Dataset Number of instances Noise strength

General 138208 0
Glycine 13283 0
Proline 7634 0
Pre-Proline 6910 0
RNA 9478 1× 10−2

Table B.11.: Details on the model architecture, loss weights and optimizer parameters for the torus datasets.
We use the same configuration for all protein datasets on T2.

Hyperparameter Value (T2) Value (T7)

Layer type ResNet ResNet
residual blocks 6 2
Inner depth 3 2
Inner width 256 256
Activation SiLU SiLU

βx
R 100 1000
βz
R 100 100
βx
U 100 100
βz
U 0 1000
βP 0 0
Latent distribution uniform uniform

Optimizer Adam Adam
Learning rate 1× 10−3 1× 10−3

Scheduler oneclyclelr onecyclelr
Gradient clipping - -
Weight decay 1× 10−3 1× 10−3

Batch size 512 512
Step count ∼ 120k ∼ 120k
#Repetitions 5

hyperparameters can be found in table B.9. Each model trained around 20h on a compute cluster
using a single NVIDIA A40.

B.6.4. Tori

The torus datasets are randomly split into a train dataset (80%), validation dataset (10%) and test
dataset (10%). To counteract overfitting, we augment the RNA dataset with random Gaussian noise.
The noise strength and total number of instances is reported in table B.10. We use a uniform latent
distribution. We train for 120k steps with a batch size of 512 which takes 2.5 to 3 hours on a NVIDIA
GeForce RTX 2070 graphics card. Further hyperparameters used in training can be found in table B.11.

B.6.5. Hyperbolic space

A straightforward way to define distributions on hyperbolic space (but also other Riemannian manifolds)
is, to define a probability density ptangent in the tangent space at the origin and use the exponential

B.6. Manifold free-form flows 187

Figure B.12.: Log density of M-FFF models in the (Φ,Ψ)-plane of protein backbone dihedral angles
(known as Ramachandran plot(Ramachandran et al., 1963)). The learned density matches the true density
indicated by the test dataset (black dots) very well. Note also that the learned distribution obeys the
periodic boundary conditions.

map exp0 to pushforward this distribution onto the manifold using equation (7.14):

log pmanifold(exp0(v)) = log ptangent(v)− log |Jexp0(v)| − 1

2
log
|Gmanifold(exp0(v))|
|Gtangent(v)| , (B.42)

where Gmanifold denotes the metric tensor of the embedded manifold and Gtangent the metric tensor of
the tangent space. This is also known as a ’wrapped’ distribution.

We use the Poincaré ball model, which embeds the n-dimensional hyperbolic space Hn in the
n-dimensional Euclidean space Rn as defined in table 7.4. The exponential map at the origin of this
embedding and its Jacobian determinant are simply given by:

exp0(v) = tanh(∥v∥) v

∥v∥ and |Jexp0(v)| = tanh(∥v∥)
∥v∥ cosh2(∥v∥) . (B.43)

The metric tensor at some point p ∈ H is defined by: GijH(p) = λ2pδij with λp = 2/(1 − ∥x∥2). The

metric tensor of the tangent space is the usual Euclidean metric tensor: GijR = δij .

With this at hand, we can define latent and toy distributions as wrapped distributions at the
origin, as depicted in figure B.13.

For training, we sample 100k data points from each distribution. Hyperparameters for each model
can be found in table B.12. Training takes approximately 2.5, 16, 8 and 16 hours on a NVIDIA A40
graphics card for the one Gaussian, five Gaussians, swish and checkerboard dataset respectively. The
resulting model densities are shown in figure B.13.

B.6.6. 3D mesh

We base our experiment on the manifold and data provided by (Chen & Lipman, 2024) using 80%
for training, 10% for validation and hyperparameter tuning. We report test NLL on the remaining
10% of the data. Each run starts from different parameter initialization. They give the manifold as a
triangular mesh, consisting of vertices vi ∈ R3, i = 1, . . . Nv and triangular faces fj ∈ {1, . . . , Nv}3.

Since the projection to the nearest point on the mesh has zero gradient in parts of R3, we instead
project to the manifold using a separately trained auto encoder with a spherical latent space. This
autoencoder consists of an encoder e : R3 → R3 consisting of five hidden layers with 256 neurons each,
SiLU activations and an overall skip connection. The latent codes are computed by projecting the
encoder outputs e(x) to a sphere as z(x) = e(x)/∥e(x)∥, so that the latent space has the same the
topology as the input mesh. Then, a decoder d(z) with the same structure as the encoder is trained
to reconstruct the original points by minimizing ∥x− d(e(x)/∥e(x)∥∥2. We train it for 218 = 262, 144
steps, with each batch consisting of all Nv = 2, 502 vertices and an additional N = 2, 502 uniformly

188 B. Experimental details

Figure B.13.: Density estimation on the Poincaré ball model. As the latent distribution we use a wrapped
normal distribution with standard deviation 0.5 (Left). As target distributions (top row) we define several
toy distributions in the tangent space at the origin and use equation (B.42) to push forward to the manifold.
We will reference each distribution from left to right as ’one Gaussian’, ’five Gaussians’, ’swish’ and
’checkerboard’. We train M-FFF on these target distributions using the full expression in equation (7.14)
to compute the change in variables and evaluate the densities of the models (bottom row). M-FFF are
capable to adapting to non-isometrically embedded manifolds. The learned densities on the one Gaussian,
five Gaussians and swish dataset closely follow the target densities. On the checkerboard dataset, M-FFF
cannot fully reproduce the sharp edges and density of the dataset.

Table B.12.: Details on the model architecture, loss weights and optimizer parameters for the Poincaré
ball experiments.

Hyperparameter Value (one wrapped) Value (five gaussians) Value (swish) Value (checkerboard)

Layer type ResNet ResNet ResNet ResNet
residual blocks 2 6 6 6
Inner depth 2 3 3 3
Inner width 128 256 256 256
Activation SiLU SiLU SiLU SiLU

βx
R 1000 1000 1000 1000
βz
R 100 100 100 100
βx
U 100 100 100 100
βz
U 0 0 0 0
βP 1 1 1 1
Latent distribution Wrapped normal Wrapped normal Wrapped normal Wrapped Normal

Optimizer Adam Adam Adam Adam
Learning rate 2× 10−4 1× 10−4 1× 10−4 1× 10−4

Scheduler Exponential w/ γ = 0.9986 onecyclelr onecyclelr onecyclelr
Gradient clipping - - - -
Weight decay 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Batch size 4096 4096 4096 4096
Step count ∼ 84k ∼ 485k ∼ 240k ∼ 495k

B.7. Free-form injective flows 189

Table B.13.: Hyperparameter choices for the bunny experiments.

Hyperparameter Value

Layer type ResNet
Residual blocks 2
Inner depth 5
Inner width 512
Activation ReLU

βx
R 1000
βz
R 0
βU 10
βx
P 100
βz
P 10

Latent distribution uniform

Optimizer Adam
Learning rate 5× 10−4

Scheduler Exponential w/ γ = 1− 0.0039
Gradient clipping 1.0
Weight decay 3× 10−5

Batch size 1,024
Step count 469.199
#Repetitions 3

random points on the original mesh. We find that for successful training, it is helpful to filter out
data with x2 > 0.5 + n/10, 000, where n is the step number. This prevents the long bunny ears from
collapsing as the ears are slowly grown, allowing the model to adapt.

We then train M-FFF with the hyperparameters given in table B.13, using the pretrained
autoencoder as our projection to the manifold. Note that we do not train the distribution on the latent
sphere of the encoder, but directly on the manifold spanned by it. Training takes approximately 14
hours on a NVIDIA A40.

B.6.7. Libraries

We base our code on PyTorch (Paszke et al., 2019), PyTorch Lightning (Falcon & The PyTorch
Lightning team, 2019), Lightning Trainable (Kühmichel & Draxler, 2023), Numpy (Harris et al., 2020),
Matplotlib (Hunter, 2007) for plotting and Pandas (McKinney, 2010; The pandas development team,
2020) for data evaluation. We use the geomstats (Miolane et al., 2020, 2023) package for embeddings
and projections.

B.7. Free-form injective flows

This appendix is adapted from Sorrenson et al. (2024).

B.7.1. Implementation Choices

In implementing the trace estimator, we have to make a number of choices, each elaborated below.
The main reasons for each choice are given first, with more technical details deferred to later in the
appendix.

190 B. Experimental details

Gradient to encoder or decoder An equivalent variant to theorem 7.4 can be derived for the decoder,
see the original publication for the derivation (Sorrenson et al., 2024). Empirically, we find that
formulating it in terms of the encoder Jacobian leads to more stable training. Since the training
also minimizes the squared norm of fθ(x), we speculate that having gradient from this term and the
log-determinant term both being sent to the encoder allows the encoder to more efficiently shape the
latent space distribution. We note the similarity of this formulation to the standard change-of-variables
loss used to train normalizing flows. If we instead send the gradient of the log-determinant to the
decoder, the information about how the encoder can change can only reach it via the reconstruction
term, which doesn’t allow the encoder to deviate significantly from being the pseudoinverse of the
decoder. A change in the decoder will therefore lead to a corresponding change in the encoder, but
this is a less direct process than sending gradient to the encoder directly. In addition, this formulation
means the decoder is optimized only to minimize reconstruction loss, meaning that it will likely be an
approximate pseudoinverse for the encoder, a condition we require for the accuracy of the surrogate
estimator.

Space in which trace is performed Considering equation (A.341), the central component of the
surrogate is a trace (estimator). Making use of the cyclic property of the trace, i.e. tr(ATB) = tr(BAT)
for any A,B ∈ RD×d, we can choose which expansion of the trace to estimate:

d∑
i=1

(ATB)ii = tr(ATB) = tr(BAT) =
D∑
i=1

(BAT)ii. (B.44)

The variance of a stochastic trace estimator depends on the noise used but in general is roughly
proportional to the squared Frobenius norm of the matrix (see appendix B.7.1). Given two matrices
A,B ∈ RD×d with d < D, it is likely that ∥ATB∥2F < ∥BAT∥2F . This statement is not true for all A
and B, but is almost always fulfilled when d≪ D.

Transferred to our context: In general the matrices f ′θ(x) ∈ Rd×D and g′φ(z) ∈ RD×d are rectangular

and can be multiplied together in either the f ′θ(x)g′φ(z) ∈ Rd×d order or g′φ(z)f ′θ(x) ∈ RD×D order.
This matters for applying the trace since generally d < D.

A more precise statement (proven in appendix B.7.1) is that if the entries of A and B are sampled
from standard normal distributions, then E[∥ATB∥2F] = Dd2 versus E[∥BAT∥2F] = D2d. For d≪ D
the difference becomes significant. The difference between the two estimators may not be large if the
two matrices have special structure, in particular if they share a basis. However, since the terms being
multiplied in our case are a Jacobian matrix and the derivative of another Jacobian matrix with respect
to a parameter θj or φj , it is unlikely that any such particular structure is present.

As a result, when the latent space is smaller than the data space, the preferable estimator is the
one that performs the trace in the latent space, meaning that products in the estimator have the
order f ′θ(x)g′φ(z) (see table B.14). In appendix B.7.1, we experimentally test the convergence of trace
estimators with increasing Hutchinson samples, performed in both data and latent space, confirming
that convergence is much faster when performing the trace in latent space.

Type of gradient Consider the estimator:

tr

(∂

∂θj
f ′θ(x)

)
g′φ(z)

 =
∂

∂θj
Eϵ

[
ϵTf ′θ(x)SG(g′φ(z))ϵ

]
(B.45)

Ignoring the stop gradient operation for now, this requires computing terms of the form ϵTf ′θ(x)g′φ(z)ϵ.
In order to avoid calculating full Jacobian matrices, we can implement the calculation using some

B.7. Free-form injective flows 191

Table B.14.: Different possible estimators for the gradient of the log-determinant term.

gradient to encoder gradient to decoder

trace in data space − tr

(
g′φ(z)

(
∂

∂θj
f ′θ(x)

))
tr

((
∂

∂φj
g′φ(x)

)
f ′θ(x)

)

trace in latent space − tr

((
∂

∂θj
f ′θ(x)

)
g′φ(z)

)
tr

(
f ′θ(x)

(
∂

∂φj
g′φ(z)

))

combination of vector-Jacobian (vjp) or Jacobian-vector (jvp) products, which are efficient to compute
with backward-mode respectively forward-mode automatic differentiation. Note that we can use the
result from one product as the vector for another vjp or jvp. For example, v1 := (ϵTf ′θ(x))T ∈ RD
yields a vector, so we can compute ϵTf ′θ(x)g′φ(z)ϵ = vT1 g

′
φ(z)ϵ via two vector-Jacobian products.

This gives us three choices: i) backward mode only (two vjp), ii) forward mode only (two jvp) or
iii) a mix of both (one jvp and one jvp). We opt to use mixed mode (see appendix B.7.1 for further
details).

Trace estimator noise Trace estimators rely on the identity Eϵ[ϵ
TAϵ] = tr(AEϵ[ϵϵ

T]) = tr(A),
meaning that we require only Eϵ[ϵϵ

T] = I for the noise variable. The choice comes down mainly
to the variance of the estimator. Among all noise vectors whose entries are sampled independently,
Rademacher noise has the lowest variance (Hutchinson, 1989). However, if the entries are sampled
from a standard normal distribution and then scaled to have length

√
d where d is the dimension of ϵ,

the entries are no longer independent and the variance of the estimator is comparable to Rademacher
noise (Girard, 1989). When using a single Hutchinson sample, we choose to use scaled Gaussian
noise for its low variance, and since it covers more directions than Rademacher noise (covering the
hypersphere uniformly, rather than at a fixed 2d points). When we have more than one Hutchinson
sample, we additionally orthogonalize the vectors, as this further reduces variance. More details are in
appendix B.7.1.

Number of noise samples We can choose to use between 1 and d noise samples in the trace estimator
(with d samples we already can calculate the exact trace, so more samples are not necessary). Denote
the number of samples by K. We find that in general K = 1 is enough for good performance, especially
if the batch size is sufficiently high.

Variance of trace estimator

Theorem B.1. Let A,B ∈ RD×d where the entries of both matrices are sampled from a standard
normal distribution. Then

E
[
∥ATB∥2F

]
= d2D and E

[
∥BAT∥2F

]
= dD2 (B.46)

Proof. Consider first ∥ATB∥2F . We can write this as

∥ATB∥2F =

d∑
i=1

d∑
j=1

 D∑
k=1

AkiBkj

2

=

d∑
i,j

D∑
k,l

AkiAliBkjBlj (B.47)

192 B. Experimental details

2 4 6 8 10 12 14 16
number of Hutchinson samples

100100

101101

re
la

tiv
e

gr
ad

ie
nt

 d
ist

an
ce

batch size
1 16 64 256 512

2 4 6 8 10 12 14 16
number of Hutchinson samples

0

100100

re
la

tiv
e

gr
ad

ie
nt

 d
ist

an
ce

batch size
1 16 64 256 512 1

Figure B.14.: Relative gradient distance to the exact surrogate gradient as a function of Hutchinson
samples for varying batch sizes. (Left) Trace estimation in data space. (Right) Trace estimation in latent
space. We estimate the trace using orthogonalized Gaussian noise (see appendix B.7.1) (solid lines), but
also feature non-orthogonalized samples for batch size 1 in latent space (dashed line). Note the different
scales on the y-axes and the use of symlog in the right-hand plot. We evaluate the trace estimation on the
surrogate estimator with gradient to encoder as specified in table B.14 for a converged model trained on
conditional MNIST (d = 16, D = 784).

Taking an expectation over this expression, the only nonzero contributions will be from terms where
the A and B terms are both quadratic, since if not, the term will be multiplied by E[X] = 0 where X
is standard normal. This requires k = l, giving

E
[
∥ATB∥2F

]
=

d∑
i,j

D∑
k

E
[
A2
kiB

2
kj

]
=

d∑
i,j

D∑
k

E
[
A2
ki

]
E
[
B2
kj

]
= d2D (B.48)

since Aki and Bkj are independent and the expectation of the square of a standard normal variable is
its variance, i.e. 1. The equivalent expressions for ∥BAT∥2F can be obtained by swapping d and D in
these expressions.

Experimental confirmation To evaluate the convergence behavior of the trace estimation, which is
exact for d and D Hutchinson samples in latent and data space respectively, we compute the relative
gradient distance of the resulting surrogate gradient with respect to the exact solution as a function of
Hutchinson samples K:

relative gradient distance(K) =
∥∇surrogate(K)−∇exact∥2

∥∇exact∥2
. (B.49)

Here, ∇surrogate(K) denotes the gradient of the surrogate loss term after K Hutchinson samples and
∇exact the gradient of the exact surrogate loss term, i.e. after d or D samples.

In figure B.14 one can see a clear decrease in gradient distance and its variance when computing
the trace in latent space instead of data space. Furthermore, we note that increasing the batch size
also contributes to fast and steady convergence, which is a result of sampling an independent noise
sample per batch instance.

Forward/backward automatic differentiation

Two of the basic building blocks of automatic differentiation (autodiff) libraries are the vector-Jacobian
product (vjp) and the Jacobian-vector product (jvp). The vjp is implemented by backward-mode
autodiff and computes a vector multiplied with a Jacobian matrix from the left, along with the output
of the function being used:

fθ(x), ϵTf ′θ(x) = vjp(fθ, x, ϵ) (B.50)

B.7. Free-form injective flows 193

In PyTorch, this is implemented by the torch.autograd.functional.vjp function, or by first com-
puting fθ(x), then using torch.autograd.grad.

The jvp is implemented by forward-mode autodiff and computes a vector multiplied by a Jacobian
matrix from the right, along with the output of the function being used:

fθ(x), f ′θ(x)ϵ = jvp(fθ, x, ϵ) (B.51)

In PyTorch, this is implemented by the torch.autograd.forward ad package.

Our preferred estimator for the log-determinant is the following (see section 7.3.3):

− 1

K

K∑
k=1

ϵTk f
′
θ(x)SG

(
g′φ(z)ϵk

)
(B.52)

Therefore, we need to compute terms of the form ϵTf ′θ(x)g′φ(z)ϵ, with a SG operation. The SG operation
is implemented by applying the .detach() method to a tensor in PyTorch. We have the following
options. Note that we can use a product obtained from vjp or jvp as a vector input to a subsequent
product.

Backward mode This mode uses only vector-Jacobian products, requiring backward-mode autodiff.

1. vT1 = ϵTf ′θ(x) z, vT1 = vjp(f, x, ϵ)

2. vT2 = vT1 g
′
φ(z) x̂, vT2 = vjp(g, z, v1)

3. ϵTf ′θ(x)g′φ(z)ϵ = vT2 ϵ

Forward mode This mode uses only Jacobian-vector products, requiring forward-mode autodiff.

1. v1 = g′φ(z)ϵ x̂, v1 = jvp(g, z, ϵ)

2. v2 = f ′θ(x)v1 z, v2 = jvp(f, x, v1)

3. ϵTf ′θ(x)g′φ(z)ϵ = ϵTv2

Mixed mode This mode uses one vector-Jacobian and one Jacobian-vector product, requiring both
forward- and backward-mode autodiff.

1. vT1 = ϵTf ′θ(x) z, v1 = vjp(f, x, ϵ)

2. v2 = g′φ(z)ϵ x̂, v2 = jvp(g, z, ϵ)

3. ϵTf ′θ(x)g′φ(z)ϵ = vT1 v2

We prefer using backward mode autodiff where possible, since we find that it is slightly faster
than forward mode in PyTorch. However, for our estimator of choice, we use mixed mode, since this
is most easily implemented. Using backward mode would require a SG operation to be introduced
after the second step, but in a way that allows gradient to flow back to f ′θ(x). While we believe this is
possible if implemented carefully, we did not pursue this option. In mixed mode, we can easily detach
the gradient of v2 without affecting the first step of the calculation.

194 B. Experimental details

Properties of trace estimator noise

Hutchinson style trace estimators (Hutchinson, 1989) have the form Eϵ[ϵ
TAϵ] and equal tr(A) in

expectation. If A is skew-symmetric (AT = −A), then (ϵTAϵ)T = ϵTATϵ = −ϵTAϵ and hence ϵTAϵ = 0
with zero variance. Since any matrix can be decomposed into a symmetric and skew-symmetric part,
the variance in the estimator comes only from the symmetric part of A, namely As = (A + AT)/2.
From now on, suppose A is symmetric and if not, substitute As for A.

Rademacher noise If the entries of ϵ are sampled independently from a distribution with zero mean
and unit variance, then the variance of the estimator is minimized by the Rademacher distribution
which samples the values −1 and 1 each with probability half. This estimator achieves the following
variance for symmetric A (see proposition 1 in (Hutchinson, 1989)):

Vϵ[ϵ
TAϵ] = 2

∑
i ̸=j

A2
ij (B.53)

Gaussian noise With standard normal noise, the estimator is unbiased, but the variance is higher
(see again (Hutchinson, 1989)):

Vϵ[ϵ
TAϵ] = 2

∑
i,j

A2
ij = 2∥A∥2F (B.54)

i.e. twice the Frobenius norm.

Scaled Gaussian noise By contrast:

Eϵ

ϵTAϵ
ϵTϵ

 =
1

d
tr(A) (B.55)

where ϵ is a standard normal variable in Rd. The variance of this estimator for symmetric A (see
theorem 2.2 in (Girard, 1989)) is:

Vϵ

ϵTAϵ
ϵTϵ

 =
2

d+ 2
σ2(λ(A)) (B.56)

where σ2(λ(A)) denotes the variance of the eigenvalues of A.
We can write this estimator in the “Hutchinson” form by sampling ϵ from a standard normal

distribution, then normalizing it such that its length is
√
d. Then we have

Eϵ[ϵ
TAϵ] = tr(A) (B.57)

and

Vϵ[ϵ
TAϵ] =

2d2

d+ 2
σ2(λ(A)) (B.58)

Comparison When the dimension of A becomes large, the variance of Rademacher and scaled
Gaussian estimators are comparable. Suppose that the eigenvalues of A have zero mean (e.g. the
entries are independent normal samples). Then

dσ2(λ(A)) =
∑
i

λ2i = tr(A2) = ∥A∥2F (B.59)

B.7. Free-form injective flows 195

If we further assume that all entries of A have roughly equal magnitude, we have that:∑
i ̸=j

A2
ij ≈ ∥A∥2F (B.60)

since the sum in the Frobenius norm is dominated by the d(d− 1) off-diagonal terms. Similarly,

d2

d+ 2
σ2(λ(A)) ≈ dσ2(λ(A)) = ∥A∥2F (B.61)

meaning that the two estimators have approximately the same variance.
If the matrix has special structure, we might choose one estimator over the other. For example,

if the standard deviation of the eigenvalues of A is small in comparison to the mean eigenvalue, the
scaled Gaussian estimator is preferable and if A is dominated by its diagonal then the Rademacher
estimator is preferable. We don’t expect either type of special structure in our matrices, so we consider
the estimators interchangeable. We decided to use scaled Gaussian noise since it produces noise which
points in all possible directions in Rd whereas Rademacher noise is restricted to a finite 2d points.
We assume that there is no reason to prefer this set of 2d directions and therefore sampling from all
possible directions is better.

Reducing variance when sampling more than 1 Hutchinson sample When the number of Hutchinson
samples K are greater than 1, it is more favorable to sample the noise vectors in a dependent way
than independently. Consider the case of a d × d matrix A with K = d. Then we can get an exact
estimate of the trace via

d∑
i=1

qTi Aqi = tr(QTAQ) = tr(A) (B.62)

with orthogonal Q and qi the i-th column of Q. If the qi were sampled independently, we almost
certainly wouldn’t achieve this exact result. We therefore sample our noise vectors as the first K
columns of a randomly sampled d × d orthogonal matrix and scale each column by

√
d. We show

below that this reduces variance compared with sampling independently and make an experimental
comparison (see figure B.14). If the resulting noise vectors are denoted ϵi, we estimate tr(A) by

t̂r(A) =
1

K

K∑
i=1

ϵTi Aϵi (B.63)

This estimator is unbiased:

Eϵ1,...,ϵK [t̂r(A)] =
1

K

K∑
i=1

Eϵi [ϵ
T
i Aϵi] =

1

K

K∑
i=1

tr
(
AEϵi [ϵiϵ

T
i]
)

=
1

K

K∑
i=1

tr(A) = tr(A) (B.64)

since Eϵi [ϵiϵ
T
i] = I for all ϵi.

This procedure is equivalent to using scaled Gaussian noise when K = 1 and is what we implement
in practice for all values of K. Note that it is not necessary to use K > d since we already achieve the
exact value with K = d.

A note on our sampling strategy: in practice we sample by taking the Q matrix of the QR
decomposition of a d × K matrix with entries sampled from a standard normal. Since the QR
decomposition performs Gram-Schmidt orthogonalization, the Q matrix is uniformly sampled from
the group of orthogonal matrices if Q is square (Mezzadri, 2007). The same logic applies to the QR
decomposition of non-square matrices, yielding a d×K matrix made up of the first K columns of a

196 B. Experimental details

uniformly sampled orthogonal d× d matrix. Strictly speaking, the QR decomposition is only unique if
the R matrix has a positive diagonal, and uniqueness is required for uniform sampling. Let X = QR
and define by D the sign of the diagonal of R. D is diagonal with 1 or −1 on the diagonal and D2 = I.
Uniqueness can be achieved by multiplying Q by D from the right and multiplying R by D from the
left: X = QDDR = QR. The resulting uniformly sampled orthogonal matrix is QD, meaning the
columns of Q are multiplied by either 1 or −1. In our setting, we have terms of the form ϵTi Aϵi where
the ϵi are the columns of Q, so multiplying the columns by −1 has no effect on the trace estimate.
As a result we opt not to multiply by D. Therefore, although we do not sample uniformly from the
orthogonal group, the final result is equivalent to sampling uniformly.

Variance derivation Using the formula for the variance of a sum of random variables, we have that

Vϵ1,...,ϵK [t̂r(A)] =
1

K2

K∑
i,j=1

Cϵi,ϵj [ϵ
T
i Aϵi, ϵ

T
j Aϵj] (B.65)

where C denotes the covariance between two random variables. Note that since the permutation of
the columns of a randomly sampled orthogonal matrix is arbitrary (permuting the columns results in
another randomly sampled orthogonal matrix of equal probability), all columns are equivalent and we
only have to distinguish between the cases i = j and i ̸= j. This leads to1

Vϵ1,...,ϵK [t̂r(A)] =
1

K2
(Kv +K(K − 1)c) =

1

K
(v + (K − 1)c) (B.66)

with v = Vϵi [ϵ
T
i Aϵi] and c = Cϵi,ϵj [ϵ

T
i Aϵi, ϵ

T
j Aϵj] when i ̸= j. Each column viewed individually is a

randomly sampled Gaussian vector, scaled to have length
√
d, hence the value of v is equal to the

scaled Gaussian noise case above, namely

v =
2d2

d+ 2
σ2(λ(A)) (B.67)

where σ2(λ(A)) denotes the variance of the eigenvalues of A. We also know that the variance of the
estimator reduces to zero when K = d and hence v + (d− 1)c = 0 leading to

c = − v

d− 1
(B.68)

Putting it all together leads to

Vϵ1,...,ϵK [t̂r(A)] =
1

K
(v − K − 1

d− 1
v) (B.69)

=
1

K

d−K
d− 1

v (B.70)

=
2d2(d−K)

K(d− 1)(d+ 2)
σ2(λ(A)) (B.71)

valid for d > 1. The comparable quantity for independently sampled scaled Gaussian noise is

Vϵ1,...,ϵK [t̂r(A)] =
2d2

K(d+ 2)
σ2(λ(A)) (B.72)

1This argument is inspired by https://math.stackexchange.com/questions/1081345/

finding-variance-of-the-sample-mean-of-a-random-sample-of-size-n-without-replace

https://math.stackexchange.com/questions/1081345/finding-variance-of-the-sample-mean-of-a-random-sample-of-size-n-without-replace
https://math.stackexchange.com/questions/1081345/finding-variance-of-the-sample-mean-of-a-random-sample-of-size-n-without-replace

B.7. Free-form injective flows 197

i.e. 1/K times the K = 1 result. The orthogonalized noise strategy always has lower variance since the
ratio between the variances is

d−K
d− 1

≤ 1 (B.73)

which even reduces to zero when K = d. If d is large, the difference is not great for small K, which
aligns with the fact that randomly sampled directions in Rd are close to orthogonal for large d.

B.7.2. Experimental Details

Role of reconstruction weight

Toy data To analyze the model behavior depending on the reconstruction weight β, we train the
same architecture on a simple sinusoid data set with β varied between 0.01 and 100.

For the generation of data points, we draw x positions from a 1D standard normal distribution and
calculate the respective y positions by y = sin(πx/2). Then, isotropic Gaussian noise with σ = 0.1 is
added. We train an autoencoder architecture built with four residual blocks and a 1D latent space for
50 epochs with learning rate 0.001 until convergence. Each residual block is made up of a feed-forward
network with one hidden layer of width 256. For each value of β, 20 models are trained.

To visualize the dimension of the data that is captured by the model, we project samples from
the data distribution to the (1D) latent space and color the data points using the respective latent
code as color value. Figure 7.8 illustrates that low reconstruction weight β values result in learning the
dimension with the lowest entropy (noise) and higher values are required to learn the manifold that
spans the sinusoid.

Additionally, we repeat the procedure with higher noise levels (σ = 0.2, 0.3). We observe that the
point at which the model transitions from learning the noise to representing the manifold is not fixed,
but depends on features of the data set such as the noise (figure B.15).

Conditional MNIST To measure the structure of the conditional MNIST dataset learned by the
generating model g, we compute the full decoder Jacobian matrix J by calculating d Jacobian-vector
products (one per column of the Jacobian). We compute the singular values Σ = diag(s1, . . . , sd) of J ,
which – roughly speaking – indicate the stretching or shrinking of the latent manifold by gφ. Hence,
the number of non-vanishing singular values suggest the dimension of the data manifold and the sum
of the log singular values is equal to the change in entropy between the latent space and data space,
where a higher entropy indicates that more of the data manifold is spanned by the decoder. We can
see this from the formula:

H[pφ] = H[p(z)] + Ez∼p(z)

[
1

2
log det(g′φ(z)Tg′φ(z))

]
(B.74)

with H the differential entropy, and noting that 2 tr log Σ = log det(g′φ(z)Tg′φ(z)).
We train multiple FIF models on conditional MNIST with reconstruction weights β ranging from

0.1 to 100, and evaluate their singular value spectra. The models are trained for 400 epochs, which is
sufficient for convergence. The architecture used is the same as in table B.21, except that it has four
times as many channels in each convolutional layer.

In figure B.16 it is clear that a higher reconstruction weight gives rise to a higher number of
non-vanishing singular values. Hence, the reconstruction weight contributes towards learning structure
of the true data manifold. This observed additional structure for higher reconstruction weights is
reflected in an increasing diversity of samples (see figure B.17). Nevertheless, for high reconstruction
weights we note the trade-off between sample diversity and properly learned latent distributions, which
might result in out of distribution samples.

198 B. Experimental details

Figure B.15.: The position of the transition point depends on the data set. The plots show the tradeoff
between reconstruction error and NLL with reconstruction weight β (box plots summarize 20 runs per
condition). The point at which β becomes sufficiently large (transition point) shifts to lower values with
increased Gaussian noise added to the data points.

B.7. Free-form injective flows 199

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
number of singular value

10 3

10 2

10 1

100

101

sin
gu

la
r v

al
ue

reconstruction weight
0.1
1

3
7

10
30

70
100

300

10 1 100 101 102

reconstruction weight

2

4

6

8

10

nu
m

be
r o

f s
in

gu
la

r v
al

ue
s

 1

Figure B.16.: (Left) Singular value spectra for varying reconstruction weight. (Right) Number of singular
values greater or equal to one as a function of reconstruction weight. The error bars show the span of the
intersection of the shaded region with the line y = 1 in the left-hand plot, rounded down to the nearest
integer. For each trained model, we generate 1024 samples per condition, compute the singular value spectra
and average over all samples regardless of condition. The mean spectra and their standard deviation are
evaluated across five trained models per reconstruction weight.

Figure B.17.: Conditional MNIST samples for varying reconstruction weight β. For each value of
β ∈ [0.1, 1, 10, 100] (from left to right), and each condition (rows) we generate ten samples (columns) at
temperature T = 1.

200 B. Experimental details

Table B.15.: Dataset-dependent hyperparameters and average total runtime for tabular data experiments.
We compare our runtime against the published rectangular flow (Caterini et al., 2021) runtimes (RNFs-ML
(K = 1) model), as well as rerunning their code on our hardware.

Hyperparameter POWER GAS HEPMASS MINIBOONE

Latent dimension 3 2 10 21
Training epochs 15 30 85 875

Model Training time (minutes)

FIF (ours) 38 39 41 49
Rectangular flow (published) 113 75 138 34
Rectangular flow (our hardware) 147 86 249 75

Training time speedup (same hardware) 3.9 × 2.2 × 6.1 × 1.5 ×

Tabular data

We compare to the tabular data experiments in (Caterini et al., 2021), using the same datasets and
data splits, as well as the same latent space dimensions. We train models with roughly the same
number of parameters. Our main architectural difference is that we use an unconstrained autoencoder
rather than an injective flow. Our encoder consists of two parts: i) a feed-forward network with two
hidden layers of dimension 256 and ReLU activations (no normalization layers), which maps from the
input dimension to the latent dimension ii) a ResNet with two blocks, each with two hidden layers of
dimension 256 and ReLU activations. The ResNet has input and output dimension equal to the latent
space dimension. The decoder is the inverse: i) an identical ResNet to the encoder (but with separate
parameters) followed by ii) a feed-forward network with two hidden layers of dimension 256 mapping
from the latent space to the data space dimension.

We use a batch size of 512, add isotropic Gaussian noise with standard deviation 0.01, use K = 1
Hutchinson samples and a reconstruction weight β = 10 for all experiments. We use the Adam
optimizer with the onecycle LR scheduler with LR of 10−4 (except for HEPMASS which has LR of
3× 10−4) and weight decay of 10−4. The number of epochs was chosen such that all experiments had
approximately the same number of training iterations. We ran the model 5 times per dataset. The
dataset-dependent parameters and average training times are given in table B.15.

We compare our training times against the published rectangular flow training times for their
RNFs-ML (K = 1) model, as well as rerunning their code on our hardware (a single RTX 2070 card).
We find comparable FID-like scores on our rerun (except on GAS where we could not reproduce the
score, see section 7.3.4), but our hardware is slower, with runs consistently taking at least 15% longer
and more than twice as long on MINIBOONE. We find that our model runs in half the time or less of
the rectangular flow on the same hardware, except for MINIBOONE (about 2/3 the time).

Comparison to existing injective flows

We compare against Trumpets (Kothari et al., 2021) and Denoising Normalizing Flows (DNF) (Horvat &
Pfister, 2021), as they are the best-performing injective flows to our knowledge, and report performance
on CelebA in table 7.11. Note that Trumpets default to d = 192, DNF to d = 512, whereas we can
reduce the bottleneck dimension to d = 64 (consistent with the Pythae benchmark in appendix B.7.2).

Both models differ in the recommended wall clock time, and we therefore fix the wall clock time
available to each model to five hours on a single NVIDIA A40. Trumpets train the manifold and the
distribution on it in two sequential steps. To accommodate both steps in the reduced training time,
we vary the fraction of the five hours spent in training manifold and distribution and report the best

B.7. Free-form injective flows 201

Table B.16.: Ablation study on the effect of each component of our proposed improvement
to rectangular flows (RF). By NLL estimator, we denote how the loss in equation 7.38 is approximated.
For this experiment, we used our reimplementation of RF. The off-manifold estimator with a free-form
architecture performs best in all cases.

Hyperparameters NLL estimator
& Model (on-/off-manifold) POWER GAS HEPMASS MINIBOONE

FIF & free-form net off manifold (eq. 7.34) 0.041 ± 0.007 0.281 ± 0.031 0.541 ± 0.034 0.598 ± 0.024
FIF & free-form net on manifold (eq. 7.34) 19.54 ± 20.81 7.48 ± 5.40 29.03 ± 5.42 77.23 ± 16.55
FIF & coupling flow off manifold (eq. 7.37) 0.11 ± 0.06 0.45 ± 0.09 1.30 ± 0.14 1.55 ± 0.04
RF & coupling flow off manifold (eq. 7.37) 0.98 ± 0.69 6.16 ± 4.20 2.02 ± 0.74 1.80 ± 0.10
FIF & coupling flow on manifold (eq. 7.34) 3.71 ± 2.19 0.40 ± 0.22 0.71 ± 0.05 3.13 ± 0.42
RF & coupling flow on manifold (eq. 7.34) 0.33 ± 0.22 0.33 ± 0.17 0.82 ± 0.07 1.84 ± 0.11

Table B.17.: Reconstruction losses of FIF with a free-form architecture on the POWER, GAS HEPMASS
and MINIBOONE datasets. The reconstruction error is always much higher for on-manifold training
compared to off-manifold, demonstrating the instability caused by on-manifold NLL evaluation in free-form
networks. Note: the large standard deviations in on-manifold runs are typically the result of a single large
outlier. We remove the largest outlier where applicable (“On Manifold (outliers removed)” row).

POWER GAS HEPMASS MINIBOONE

On manifold 237 ± 498 5835 ± 13006 119 ± 34 300 ± 160
On manifold (outliers removed) 14 ± 27 18 ± 31 119 ± 34 229 ± 23
Off manifold 0.072 ± 0.002 0.188 ± 0.012 2.569 ± 0.098 1.077 ± 0.011

FID among the variants tried. We vary the number of manifold epochs as nmanifold = 2, 5, 10, with 10
performing best.

Our free-form injective flows (FIF) are not restricted in their architecture, and we choose an
off-the-shelf convolutional autoencoder, followed by a total of four fully-connected ResNet blocks,
see table B.21. The fully-connected blocks are important, as can be seen when comparing to the
architecture used in the Pythae benchmark (see appendix B.7.2). We note that the Pythae benchmark
could benefit from a modified architecture, but leave this modification open for future work.

For Trumpets and DNF, we point to the training details provided by the respective authors. For
FIF, we choose these training hyperparameters: We train with the Adam optimizer with a LR of 10−3

and a weight decay of 10−4, linearly increase β from 20 at initialization to 40 at the end of training, a
single Hutchinson sample K = 1 and a student-t distribution on the latent space. We set the batch
size to 256.

We conclude that the Pythae benchmark could benefit from an optimized architecture, as this
change probably also improves the other methods. From the data at hand, we further conclude that
the full potential of FIF has not yet been exploited, and that easy gains can be made by improving the
architecture and other hyperparameters.

Pythae benchmark on generative autoencoders

We compare our method to existing generative autoencoder paradigms using the benchmark from
(Chadebec et al., 2022). We use the provided open-source pipeline and follow the training setup
described by the authors. For MNIST and CIFAR10 this means training for 100 epochs with the Adam
optimizer at a starting LR of 10−4, reserving the last 10k images of the training sets as validation
sets. CelebA trains for 50 epochs with a starting LR of 10−3. All experiments are performed with
a batch size of 100 and LR is reduced by half when the loss plateaus for 10 epochs. In accordance
with the original benchmark, we pick 10 sets of hyper-parameters, compute their validation FID (see

202 B. Experimental details

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
 reconstruction loss

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

va
lid

at
io

n
lo

ss

ConvNet MNIST

, K=1
GMM, K=1

, K=2
GMM, K=2

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
 reconstruction loss

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

ResNet MNIST
, K=1

GMM, K=1
, K=2

GMM, K=2

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
 reconstruction loss

90

100

110

120

130

140

150

160

va
lid

at
io

n
lo

ss

ConvNet CIFAR10
, K=1

GMM, K=1
, K=2

GMM, K=2

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
 reconstruction loss

90

100

110

120

130

140

150

160

ResNet CIFAR10
, K=1

GMM, K=1
, K=2

GMM, K=2

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
 reconstruction loss

50

60

70

80

90

100

va
lid

at
io

n
lo

ss

ConvNet CELEBA
, K=1

GMM, K=1
, K=2

GMM, K=2

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
 reconstruction loss

50

60

70

80

90

100 ResNet CELEBA
, K=1

GMM, K=1
, K=2

GMM, K=2

Figure B.18.: Validation FID of our 10 benchmark model setups on the different datasets and architectures
used by Pythae. We report results for reconstruction weights β = 5, 10, 15, 20, 25 and number of Hutchinson
samples K = 1 in the solid lines and K = 2 in the dashed lines. We show the performance of standard
normal sampling (N) and a Gaussian mixture model (GMM). We see that GMM sampling always improves
performance. In contrast, the reconstruction weight and number of Hutchinson samples have no noticeable
effect on performance, except that increasing β improves performance on ConvNet MNIST and ConvNet
CIFAR10, and decreases performance on ResNet MNIST (normal sampling only).

B.7. Free-form injective flows 203

figure B.18) and use the model which achieves the best FID on the validation set as the final model.
In table B.18 we report the FID and IS of this model on the test set. To complement the metrics,
we show samples from all models in table B.22, demonstrating convincing quality. We exclude the
VAEGAN from the FID comparison, as the model trains more than double the time required for FIF
and goes beyond fitting a transformation of the training data to a standard normal distribution.

As described in section 7.3.4, we use the architectures from (Chadebec et al., 2022) for the
benchmark, which we replicate in tables B.19 and B.20.

Compute and dependencies

We used approximately 150 GPU hours for computing the Pythae benchmark, and an additional 800
GPU hours for model exploration and testing. The majority of the experiments were performed on an
internal cluster of A100s. The majority of compute time was spent on image datasets.

We build our code upon the following Python libraries: PyTorch (Paszke et al., 2019), PyTorch
Lightning (Falcon & The PyTorch Lightning team, 2019), Tensorflow (Abadi et al., 2015) for FID score
evaluation, Numpy (Harris et al., 2020), Matplotlib (Hunter, 2007) for plotting and Pandas (McKinney,
2010; The pandas development team, 2020) for data evaluation.

204 B. Experimental details

Table B.18.: Table taken from (Chadebec et al., 2022) with our results added at the top. We report
Inception Score (IS) and Fréchet Inception Distance (FID) computed with 10k samples on the test set. The
best model per dataset and sampler is highlighted in bold, the second best is underlined.

Model Sampler
ConvNet ResNet

MNIST CIFAR10 CELEBA MNIST CIFAR10 CELEBA
FID ↓ IS ↑ FID IS FID IS ↑ FID ↓ IS ↑ FID IS FID IS

FIF (ours) N 23.8 2.2 121.0 3.0 56.9 2.1 19.5 2.1 132.6 2.9 62.3 1.7
GMM 11.0 2.2 90.6 4.0 47.3 1.9 11.7 2.1 119.2 3.4 55.0 1.8

VAE N 28.5 2.1 241.0 2.2 54.8 1.9 31.3 2.0 181.7 2.5 66.6 1.6
GMM 26.9 2.1 235.9 2.3 52.4 1.9 32.3 2.1 179.7 2.5 63.0 1.7

VAMP VAMP 64.2 2.0 329.0 1.5 56.0 1.9 34.5 2.1 181.9 2.5 67.2 1.6

IWAE N 29.0 2.1 245.3 2.1 55.7 1.9 32.4 2.0 191.2 2.4 67.6 1.6
GMM 28.4 2.1 241.2 2.1 52.7 1.9 34.4 2.1 188.8 2.4 64.1 1.7

VAE-lin NF N 29.3 2.1 240.3 2.1 56.5 1.9 32.5 2.0 185.5 2.4 67.1 1.6
GMM 28.4 2.1 237.0 2.2 53.3 1.9 33.1 2.1 183.1 2.5 62.8 1.7

VAE-IAF N 27.5 2.1 236.0 2.2 55.4 1.9 30.6 2.0 183.6 2.5 66.2 1.6
GMM 27.0 2.1 235.4 2.2 53.6 1.9 32.2 2.1 180.8 2.5 62.7 1.7

β-VAE N 21.4 2.1 115.4 3.6 56.1 1.9 19.1 2.0 124.9 3.4 65.9 1.6
GMM 9.2 2.2 92.2 3.9 51.7 1.9 11.4 2.1 112.6 3.6 59.3 1.7

β-TC VAE N 21.3 2.1 116.6 2.8 55.7 1.8 20.7 2.0 125.8 3.4 65.9 1.6
GMM 11.6 2.2 89.3 4.1 51.8 1.9 13.3 2.1 106.5 3.7 59.3 1.7

FactorVAE N 27.0 2.1 236.5 2.2 53.8 1.9 31.0 2.0 185.4 2.5 66.4 1.7
GMM 26.9 2.1 234.0 2.2 52.4 2.0 32.7 2.1 184.4 2.5 63.3 1.7

InfoVAE - RBF N 27.5 2.1 235.2 2.1 55.5 1.9 31.1 2.0 182.8 2.5 66.5 1.6
GMM 26.7 2.1 230.4 2.2 52.7 1.9 32.3 2.1 179.5 2.5 62.8 1.7

InfoVAE - IMQ N 28.3 2.1 233.8 2.2 56.7 1.9 31.0 2.0 182.4 2.5 66.4 1.6
GMM 27.7 2.1 231.9 2.2 53.7 1.9 32.8 2.1 180.7 2.6 62.3 1.7

AAE N 16.8 2.2 139.9 2.6 59.9 1.8 19.1 2.1 164.9 2.4 64.8 1.7
GMM 9.3 2.2 92.1 3.8 53.9 2.0 11.1 2.1 118.5 3.5 58.7 1.8

MSSSIM-VAE N 26.7 2.2 279.9 1.7 124.3 1.3 28.0 2.1 254.2 1.7 119.0 1.3
GMM 27.2 2.2 279.7 1.7 124.3 1.3 28.8 2.1 253.1 1.7 119.2 1.3

VAEGAN N 8.7 2.2 199.5 2.2 39.7 1.9 12.8 2.2 198.7 2.2 122.8 2.0
(not compared) GMM 6.3 2.2 197.5 2.1 35.6 1.8 6.5 2.2 188.2 2.6 84.3 1.7

AE N 26.7 2.1 201.3 2.1 327.7 1.0 221.8 1.3 210.1 2.1 275.0 2.9
GMM 9.3 2.2 97.3 3.6 55.4 2.0 11.0 2.1 120.7 3.4 57.4 1.8

WAE - RBF N 21.2 2.2 175.1 2.0 332.6 1.0 21.2 2.1 170.2 2.3 69.4 1.6
GMM 9.2 2.2 97.1 3.6 55.0 2.0 11.2 2.1 120.3 3.4 58.3 1.7

WAE - IMQ N 18.9 2.2 164.4 2.2 64.6 1.7 20.3 2.1 150.7 2.5 67.1 1.6
GMM 8.6 2.2 96.5 3.6 51.7 2.0 11.2 2.1 119.0 3.5 57.7 1.8

VQVAE N 28.2 2.0 152.2 2.0 306.9 1.0 170.7 1.6 195.7 1.9 140.3 2.2
GMM 9.1 2.2 95.2 3.7 51.6 2.0 10.7 2.1 120.1 3.4 57.9 1.8

RAE - L2 N 25.0 2.0 156.1 2.6 86.1 2.8 63.3 2.2 170.9 2.2 168.7 3.1
GMM 9.1 2.2 85.3 3.9 55.2 1.9 11.5 2.1 122.5 3.4 58.3 1.8

RAE - GP N 27.1 2.1 196.8 2.1 86.1 2.4 61.5 2.2 229.1 2.0 201.9 3.1
GMM 9.7 2.2 96.3 3.7 52.5 1.9 11.4 2.1 123.3 3.4 59.0 1.8

B.7. Free-form injective flows 205

Table B.19.: ConvNet, neural network architecture used for the convolutional networks, adapted from
Chadebec et al. (2022).

MNIST CIFAR10 CelebA

Encoder (1, 28, 28) (3, 32, 32) (3, 64, 64)
Layer 1 Conv(128, 4, 2), BN, ReLU Conv(128, 4, 2), BN, ReLU Conv(128, 4, 2), BN, ReLU
Layer 2 Conv(256, 4, 2), BN, ReLU Conv(256, 4, 2), BN, ReLU Conv(256, 4, 2), BN, ReLU
Layer 3 Conv(512, 4, 2), BN, ReLU Conv(512, 4, 2), BN, ReLU Conv(512, 4, 2), BN, ReLU
Layer 4 Conv(1024, 4, 2), BN, ReLU Conv(1024, 4, 2), BN, ReLU Conv(1024, 4, 2), BN, ReLU
Layer 5 Linear(1024, latent dim)* Linear(4096, latent dim)* Linear(16384, latent dim)*

Decoder
Layer 1 Linear(latent dim, 16384) Linear(latent dim, 65536) Linear(latent dim, 65536)
Layer 2 ConvT(512, 3, 2), BN, ReLU ConvT(512, 4, 2), BN, ReLU ConvT(512, 5, 2), BN, ReLU
Layer 3 ConvT(256, 3, 2), BN, ReLU ConvT(256, 4, 2), BN, ReLU ConvT(256, 5, 2), BN, ReLU
Layer 4 Conv(1, 3, 2), Sigmoid Conv(3, 4, 1), Sigmoid ConvT(128, 5, 2), BN, ReLU
Layer 5 - - ConvT(3, 5, 1), Sigmoid

#Parameters 17.2M 39.4M 33.5M

Table B.20.: ResNet, neural network architecture used for the residual networks, adapted from Chadebec
et al. (2022). *The ResBlocks are composed of one Conv(32, 3, 1) followed by Conv(128, 1, 1) with ReLU.

MNIST CIFAR10 CelebA

Encoder (1, 28, 28) (3, 32, 32) (3, 64, 64)
Layer 1 Conv(64, 4, 2) Conv(64, 4, 2) Conv(64, 4, 2)
Layer 2 Conv(128, 4, 2) Conv(128, 4, 2) Conv(128, 4, 2)
Layer 3 Conv(128, 3, 2) Conv(128, 3, 1) Conv(128, 3, 2)
Layer 4 ResBlock* ResBlock* Conv(128, 3, 2)
Layer 5 ResBlock* ResBlock* ResBlock*
Layer 6 Linear(2048, latent dim)* Linear(8192, latent dim)* ResBlock*
Layer 7 - - Linear(2048, latent dim)*

Decoder
Layer 1 Linear(latent dim, 2048) Linear(latent dim, 8192) Linear(latent dim, 2048)
Layer 2 ConvT(128, 3, 2) ResBlock* ConvT(128, 3, 2)
Layer 3 ResBlock* ResBlock* ResBlock*
Layer 4 ResBlock*, ReLU ConvT(64, 4, 2) ResBlock*
Layer 5 ConvT(64, 3, 2), ReLU ConvT(3, 4, 2), Sigmoid ConvT(128, 5, 2), Sigmoid
Layer 6 ConvT(1, 3, 2), Sigmoid - ConvT(64, 5, 2), Sigmoid
Layer 6 - - ConvT(3, 4, 2), Sigmoid

#Parameters 0.73M 4.8M 1.6M

206 B. Experimental details

Table B.21.: FIF-ConvNet, neural network architecture used for comparison to Trumpet and Denoising
Normalizing Flow. *The ResBlocks(inner dim) are composed of Linear(latent dim, inner dim), SiLU,
Linear(inner dim, inner dim), SiLU, Linear(inner dim, latent dim) with a skip connection.

MNIST CelebA

Encoder (1, 28, 28) (3, 64, 64)
Layer 1 Conv(32, 4, 2), BN, ReLU Conv(128, 4, 2), BN, ReLU
Layer 2 Conv(64, 4, 2), BN, ReLU Conv(256, 4, 2), BN, ReLU
Layer 3 Conv(128, 4, 2), BN, ReLU Conv(512, 4, 2), BN, ReLU
Layer 4 Conv(256, 4, 2), BN, ReLU Conv(1024, 4, 2), BN, ReLU
Layer 5 Linear(256, latent dim)* Linear(16384, latent dim)*
Layer 6-9 4xResBlock(512) 4xResBlock(256)

Decoder
Layer 1-4 4xResBlock(512) 4xResBlock(256)
Layer 5 Linear(latent dim, 4096) Linear(latent dim, 65536)
Layer 6 ConvT(256, 3, 2), BN, ReLU ConvT(512, 5, 2), BN, ReLU
Layer 7 ConvT(128, 3, 2), BN, ReLU ConvT(256, 5, 2), BN, ReLU
Layer 8 ConvT(64, 3, 2), BN, ReLU ConvT(128, 5, 2), BN, ReLU
Layer 9 Conv(1, 3, 2), Sigmoid ConvT(3, 5, 1), Sigmoid

#Parameters 3.3M 34.3M

B.7. Free-form injective flows 207

Table B.22.: Uncurated samples from the CelebA ConvNet experiments in the PythAE benchmark. Our
model is shown at the bottom, samples from the other models have been taken from (Chadebec et al., 2022).

CelebA - N CelebA - GMM

IWAE

VAE-lin-NF

VAE-IAF

β-VAE

β-TC-VAE

Factor-VAE

InfoVAE - IMQ

InfoVAE - RBF

AAE

MSSSIM-VAE

VAEGAN

AE

WAE-IMQ

WAE-RBF

VQVAE

RAE-L2

RAE-GP

FIF (ours)

208 B. Experimental details

B.7.3. Details on pathology induced by curvature

20

2

0

2

R = 0.1

20

R = 1.0

20

R = 10.0

20

R = 100.0

20

R = 1000.0

Figure B.19.: Possible learned manifolds of varying curvature 1/R for data supported on a subspace,
where d = 1 and D = 2.

10 1 102

Radius R

4

2

0

2

4
= 1

10 1 102

Radius R

= 2

10 1 102

Radius R

= 3

10 1 102

Radius R

= 4

MSE
NLL*
Total

Figure B.20.: Weighting the reconstruction loss higher does not lead to stable training. The plots show
different reconstruction weights β. In all settings, highly curved manifolds (i.e. low radius) achieve the
lowest loss.

As described in section 7.3.3, gradients from the on-manifold loss in equation (7.34) cause the
learned manifold to increase curvature. This is visualized in the main text in figure 7.7, where the left
plot shows that this loss leads to ever-increasing curvature. The reason is that the entropy of data
projected to a curved manifold is smaller than the entropy of data projected to a flat manifold.

Here, we provide intuition for why this happens for synthetic data where d is known, and the data
could in principle be perfectly reconstructed. Figure B.19 depicts projections of the data to possible
model manifolds of varying curvature κ. We parameterize the curvature by varying the radius R = 1/κ.
One can observe that for with increasing curvature (i.e. decreasing radius), the data is projected to
an increasingly small region. Correspondingly, the entropy H[p̂data(x̂)] of the projected data becomes
arbitrarily negative (just like a Gaussian with low standard deviation has arbitrarily negative entropy),
lowering the achievable negative log-likelihood.

Adding reconstruction loss alone does not fix this pathology, which we illustrate in figure B.20:
The reconstruction loss saturates for small radii, but the best achievable negative log-likelihood (i.e. the
entropy of the data) continues to decrease with the radius. Thus, even when increasing β, the minimal
possible value of the total loss is still achieved by a spuriously curved manifold.

	Abstract / Zusammenfassung
	Acknowledgments
	Motivation
	Related Work
	Contribution
	Theoretical framework for normalizing flows
	Removing architectural constraints from normalizing flows

	Background
	Generative modeling
	Normalizing flows
	Invertible neural networks
	Kullback-Leibler divergence Pythagorean identities

	Distributional universality of normalizing flows
	Distributional universality
	Non-universality of volume-preserving flows
	Expressivity of a single affine coupling block
	Coupling flow universality
	Conclusion

	Convergence rates of invertible neural network blocks
	Setting
	Gaussianization
	Coupling blocks
	Architecture comparison

	Free-form neural networks as normalizing flows
	Full-dimensional free-form flows (FFF)
	Manifold free-form flows on a known Riemannian manifold (M-FFF)
	Free-form injective flows for learning compressed representations and distributions (FIF)
	Conclusion

	Conclusion
	Bibliography
	Proofs
	Proofs on Pythagorean identities
	Proofs on Volume-preserving Flows
	Single non-linear affine layer
	Proofs on affine coupling flow universality
	Benefits of more expressive coupling blocks
	Convergence rate of Gaussianization blocks
	Convergence rate of coupling blocks
	Free-form flows
	Free-form flows on Riemannian manifolds
	Free-form injective flows

	Experimental details
	Layer-wise flow
	Volume-preserving flows
	Iterative Gaussianization
	Deep coupling bound
	Free-form flows
	Manifold free-form flows
	Free-form injective flows

