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Abstract. The thesis deals with the experimental study of dilute ultracold gases of 133Cs
atoms mixed with a degenerate Fermi Sea of 6Li atoms. It focuses on the problem of
the coupling of an impurity to a surrounding quantum bath, which can be described
as a quasi-particle known as polaron. The large mass imbalance between the impurity
(Cs) and the bath (Li) leads to unique many-body phenomena, but also poses significant
experimental challenges for mixing the two species at ultracold temperature where Li is
quantum degenerate. In this work, we realize a mixture of a degenerate Li Fermi Sea and
a dilute thermal Cs gas by adopting a bichromatic trapping approach and implementing a
tightly confining and movable single beam trap for Li at the Cs tune-out wavelength. This
allows the sequential preparation of the Li Fermi Sea, which can be overlapped with Cs
atoms in a controlled manner, compensating for the differential gravitational sag between
the two species. To probe the Fermi-polaron scenario, an optical spectroscopic method
based on two-photon Raman transitions between the two lowest Zeeman states of Cs is
implemented. Guided by theoretical predictions of the polaron spectral function, ejection
spectroscopy on Cs impurities is performed to map the polaron energy spectrum as a
function of interaction strength near a Li-Cs Feshbach resonance at 890 G, which provides
high tunability of the interspecies interactions. Limitations to this kind of experiments
and strategies to overcome them are discussed, laying the groundwork for exploring
polaron physics with heavy mass impurities.

Zusammenfassung. Die Arbeit befasst sich mit der experimentellen Untersuchung ver-
dünnter ultrakalter Gase aus 133Cs-Atomen, die mit einem entarteten Fermi-See aus 6Li-
Atomen gemischt sind. Im Mittelpunkt steht das Problem der Kopplung einer Verun-
reinigung an ein umgebendes Quantenbad, das als Quasiteilchen, als Polaron, beschrieben
werden kann. Das große Massenungleichgewicht zwischen der Verunreinigung (Cs) und
dem Bad (Li) führt zu einzigartigen Vielkörperphänomenen, stellt aber auch eine große
experimentelle Herausforderung für die Mischung der beiden Spezies bei ultrakalten
Temperaturen dar, bei denen Li quantendegeneriert ist. In dieser Arbeit realisieren wir
eine Mischung aus einem entarteten Li-Fermi-See und einem verdünnten thermischen
Cs-Gas, indem wir eine bichromatische Falle verwenden, wofür wir eine eng begren-
zte und bewegliche optische Einzelstrahlfalle für Li bei der Cs tune-out-Wellenlänge
implementieren. Dies ermöglicht die sequenzielle Präparation eines Li-Fermi-Sees, der
auf kontrollierte Weise mit Cs-Atomen überlagert werden kann, wodurch die unter-
schiedliche gravitative Verschiebung zwischen den beiden Spezies kompensiert wird.
Um das Fermi-Polaron-Szenario mithilfe optischer Spektroskopie zu untersuchen, wird
ein Zwei-Photonen-Raman-Übergang zwischen den beiden niedrigsten Zeeman-Zustän-
den von Cs eingesetzt. Geleitet von theoretischen Vorhersagen der Polaron-Spektralfunk-
tion wird Ejektionsspektroskopie an Cs-Verunreinigungen durchgeführt, um das Energie-
spektrum des Polarons als Funktion der Wechselwirkungsstärke abzubilden. Dabei er-
möglicht eine Li-Cs-Feshbach-Resonanz bei 890 G die hohe Einstellbarkeit der Wech-
selwirkung zwischen den Spezies. Beschränkungen dieser Art von Experimenten und
Möglichkeiten zu deren Überwindung werden erörtert, wodurch die Grundlage für die
Erforschung der Polaronphysik mit schweren Verunreinigungen geschaffen wird.
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“Siamo una strana pattuglia di moderni esploratori, quelli che la gente
chiama scienziati, truppe speciali della conoscenza che l’umanità manda
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Introduction

Understanding the behavior of many-body systems requires to consider the complex in-
fluence that each particle has on the behavior of all the others. The problem of strongly
coupled many-body systems can be described by using the concept of elementary ex-
citations, which are often divided into the two categories of collective excitations and
quasi-particles [Mattuck, 1976]. The quasi-particles identify a special kind of elementary
excitations that resemble real particles quite closely. Nevertheless, the properties of the
real particle, such as energy, effective mass, lifetime and particle-particle interactions are
modified due to the interaction with the many-body environment. In this picture, the
overlap between the quasi-particle and the bare particle is encoded in the quasi-particle
weight. The quasi-particle concept has been used by Landau [Landau, 1933] to describe
electrons interacting with phonons in crystals. The electron moving through the ionic
crystal lattice displaces the surrounding ions and becomes dressed with the phononic ex-
citations of the lattice, resulting in a quasi-particle called polaron. More generally, the
problem of an impurity coupled to a quantum medium shows similarities with many
famous condensed matter problems, such as the Kondo effect [Mahan, 2000], the X-rays
singularities in metals [Nozières and De Dominicis, 1969], the mobility of ions [Prokof’ev,
1995] and of 4He [Arias de Saavedra et al., 1994] in 3He. Nowadays, this concept finds
applications in many diverse areas of physics, such as semiconductors [Sidler et al., 2017;
Muir et al., 2022], conducting polymers [Bredas and Street, 1985; Schott et al., 2019], high-
temperature superconductivity [Mott, 1993; Dagotto, 1994] and neutron matter [Forbes
et al., 2014; Nakano et al., 2020; Vidaña, 2021].

In the last fifteen years the concept of polaron has been applied successfully to describe
atomic impurities immersed in either a Bose-Einstein condensate (BEC) or Fermi Sea of
ultracold atoms. Indeed, ultracold atoms offer a very well suited playground for polaron
physics [Grusdt and Demler, 2016; Schmidt et al., 2018; Scazza et al., 2022] thanks to the
great insulation from the external environment, the possibility to exploit the full toolbox
provided by atomic physics and to control relevant parameters with high accuracy, such
as quantum statistics, impurities concentration and interactions. By experimentally ma-
nipulating these parameters, it is possible to study many-body effects that are difficult to
access in other systems. First of all, depending on whether the quantum medium con-
sists of fermions or bosons, one speaks of a Fermi or Bose polaron and the impurities
create excitation in the medium in the form of Bogoliubov modes or particle-holes ex-
citations, respectively. The Bose polaron is more similar to the solid state physics with
the collective phonon excitation of the BEC that can be mapped onto the Hamiltonian
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Introduction

of the Fröhlich model [Fröhlich, 1954], whereas the Fermi polaron is rather an exemplary
realization of Landau’s Fermi liquid theory [Mahan, 2000]. Second, while for the classical
solid state polaron the strength of interactions is weak and fixed by nature, the tunability
of the interactions via Feshbach resonances [Chin et al., 2010] enables experiments where
the coupling between the impurity and the medium can be tuned by magnetic fields from
weakly [Catani et al., 2012; Rentrop et al., 2016] to strongly interacting regimes [Schirotzek
et al., 2009; Kohstall et al., 2012; Jørgensen et al., 2016; Hu et al., 2016; Yan et al., 2020; Etrych
et al., 2024]. Third, in contrast to the attosecond timescales typical of condensed matter
systems, the degeneracy of the system ensures that all interesting many-body processes
occur on the experimentally accessible microsecond timescale, allowing the study the dy-
namics of impurities in a many-body environment [Cetina et al., 2015, 2016; Skou et al.,
2021] as well as the emergence of mestable states with finite lifetime [Scazza et al., 2017;
Darkwah Oppong et al., 2019; Skou et al., 2022]. Moreover, by tuning the temperature
it was studied how degenerate, i.e. quantum, the environment needs to be to observe
the emergence of polarons [Yan et al., 2019], and by using tailored optical potentials it
was also possible to obtain information on how much reduced dimensionality influences
the energy of the quasi-particle [Zhang et al., 2012; Koschorreck et al., 2012]. Recently,
interactions between polarons [Baroni et al., 2024a] as well as regimes of transitions be-
tween polarons and molecules in Fermi polarons [Ness et al., 2020] have also been stud-
ied by varying the impurity concentration and by adapting sophisticated spectroscopic
schemes, respectively.

Most of the experiments cited above were performed with homonuclear mixtures.
There, the medium and the impurity belong to the same atomic species but differ in
the selected spin state. With the introduction of an asymmetry in the mass between the
atomic impurity and the quantum medium, the impurity problem changes qualitatively
and new phenomena that do not occur in single species experiments appear [Baroni et al.,
2024b]. For lightweight impurities in a Bose gas, signatures of the crossover between few-
body and many-body physics are predicted [Levinsen et al., 2015; Sun et al., 2017; Sun
and Cui, 2017]. Here, the polaron state is expected to smoothly crossover into a dressed
Efimov state. Similarly, lightweight impurities in a Fermi gas are good candidates for
observing new types of quasi-particles associated with few-body physics [Mathy et al.,
2011; Liu et al., 2022]. In the opposite limit of an infinitely heavy impurity in a Fermi
gas, the overlap between the state describing the interacting many-body system and the
noninteracting one is expected to vanish, leading to the Anderson orthogonality catastrophe
[Anderson, 1967; Schmidt et al., 2018]. A similar phenomenon is also expected in a nonin-
teracting Bose gas [Guenther et al., 2021]. Among heteronuclear mixtures, the full Fermi
polaron spectrum has been recorded for both Fermi-Fermi mixtures of 6Li-40K [Kohstall
et al., 2012; Cetina et al., 2015, 2016] and Fermi-Bose mixtures of 6Li-41K [Fritsche et al.,
2021; Baroni et al., 2024a]; the Bose polaron spectrum was instead studied in Fermi-Bose
mixtures of 87Rb-40K [Hu et al., 2016] and 23Na-40K [Yan et al., 2020]. However, since the
atomic mixtures used so far have moderate mass ratios, the aforementioned phenomena
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remain largely unexplored.

In this work we study heteronuclear Fermi-Bose quantum mixtures of 6Li and 133Cs
atoms. These atomic species exhibit the highest mass ratio among all stable alkali iso-
topes, thereby providing access to both physically relevant limits of light impurities cou-
pled to a Bose-Einstein condensate and heavy particles coupled to a degenerate Fermi
Sea. These are non-trivial paradigms of many-body systems. The very well-suited inter-
play of Feshbach resonances at high magnetic fields, between 800 G and 1000 G [Repp
et al., 2013; Tung et al., 2013; Pires et al., 2014a], potentially allows for the preparation of
stable Bose and Fermi polarons, respectively. This mixture has been widely used as a test
bed for few-body Efimov physics [Pires et al., 2014b; Tung et al., 2014; Ulmanis et al., 2015,
2016a,b,c; Häfner et al., 2017; Johansen et al., 2017] and p-wave two-body physics [Zhu
et al., 2019a,b]. Experiments by [DeSalvo et al., 2017, 2019; Patel et al., 2023] have stud-
ied double-degenerate mixtures where the Cs Bose-Einstein condensate is embedded in
a Li-Fermi sea. Recently, also Bose-Bose degenerate mixtures of 7Li -133Cs with tunable
interactions have been realized [Li et al., 2022; Chen et al., 2023]. However, even though
Li-Cs mixtures have been considered in many theoretical studies as an exemplary appli-
cation of various polaron experiments, for example by Levinsen et al. [2015], Sun et al.
[2017], Christianen et al. [2022] and Rose and Schmidt [2022], polarons have not yet been
studied experimentally with such a high mass imbalance mixture. The 6Li-133Cs mixture
offers intriguing directions of study, including the following three: (i) the study of sig-
natures of Efimov physics in the polaron spectrum, in the Bose polaron scenario, (ii) the
study of the breakup of the infinite series of Efimov states due to bath-mediated interac-
tions as well as the occurrence of resonances in the impurity-impurity scattering length,
and (iii) many-body dynamics near the orthogonality catastrophe limit for the Fermi po-
laron scenario. In the following, I will explain these three motivations in more detail and
then outline the contents and the structure of this work.

How does many-body polaron physics build up from the few-body system? In the three-body
system, it has been observed the existence of peculiar three-body bound states known as
Efimov states. Those trimer states, originally proposed in the context of nuclear systems
[Efimov, 1970], have been created and observed in ultracold gases in both homonuclear
[Kraemer et al., 2006; Williams et al., 2009; Zaccanti et al., 2009; Gross et al., 2009; Pollack
et al., 2009; Knoop et al., 2009; Lompe et al., 2010; Nakajima et al., 2010; Roy et al., 2013]
and heteronuclear systems [Barontini et al., 2009, 2010; Bloom et al., 2013; Pires, 2014;
Tung et al., 2014]. A natural question to ask is whether the few-body Efimov states would
persist in a many-body environment. This problem was introduced by Levinsen et al.
[2015] describing the system by a variational ansatz including the dressing of the impu-
rity by one or two Bogoliubov excitations. The energy of the many-body ground state is
influenced by an avoided crossing between the Bose polaron state and a dressed Efimov
state. The crossover manifests itself in the quasi-particle weight, which is the overlap
between the interacting and non-interacting particle. The favorable conditions for the
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observation of Efimov physics in the Bose polaron depends on the ratio between two rel-
evant lengthscales, the characteristic size of the Efimov state lT and the mean distance d
between the atoms of the bath [Sun et al., 2017; Sun and Cui, 2017]. The studied systems
of 39K-39K [Jørgensen et al., 2016] and 40K-87Rb [Hu et al., 2016] are characterized by large
Efimov scaling factors λ, which limit their detection. In these cases, we do not expect any
signature of few-body correlations in the many-body observables. Strong signatures are
instead expected in Efimov favored systems, as for example the experimentally well stud-
ied combinations 7Li-87Rb [Maier et al., 2015] and 6Li-133Cs[Ulmanis et al., 2016b], where
the large mass imbalance drastically reduces the Efimov scaling factor λ, thus leading to
a dense spectrum of Efimov states and a large binding energy of the ground state trimer.
Hence, as calculated in [Sun et al., 2017], it is likely that one of the Efimov states fulfills
the condition lT ≈ d and manifests itself in the many-body spectrum.

How does a Fermi Sea mediate the interactions between heavier particles? Contrarily to the
Bose polaron case, a crossover between a quasi-particle and a trimer state is not possible
in a Fermi Sea because Pauli blocking prevents the formation of bound states. Indeed, by
using the Born-Oppenheimer approximation [Nishida, 2009], it has been calculated that,
for sufficiently large Fermi momentum, the formation of bound states is suppressed by
the presence of the Fermi Sea and the discrete Efimov state is violated [Sun and Cui, 2019;
Tran et al., 2021]. However, a new scaling can be formulated including the Fermi momen-
tum as an additional length scale [Sun and Cui, 2019; Tran et al., 2021]. On the other
hand, interesting scattering properties arise in this scenario, which at zero-temperature
can be solved exactly [Enss et al., 2020]. For weak interactions, the outcome is similar to
the results obtained by perturbation theory and it is consistent with experimental find-
ings in 6Li-133Cs [DeSalvo et al., 2019] and 87Rb-40K [Edri et al., 2020] mixtures. For strong
interactions, instead, we found, for the first time, a resonant behaviour in the induced
scattering length between two heavy bosons in a Fermi Sea. The resonances are found
at interspecies scattering lengths at which the Efimov state crosses the scattering contin-
uum in the medium. This repulsive interaction suggests a large suppression of losses
and an enhanced stability near resonance. Recent experiments on Bose-Fermi mixtures
of 23Na-40K [Yan et al., 2020; Chen et al., 2022] and 6Li-133Cs [Patel et al., 2023] have ob-
served a strong suppression of the losses, which could be explained by our predictions.
Moreover, mediated interaction by a Fermi Sea in strongly interacting regimes have been
observed recently in both 6Li-40K Fermi-Fermi and 6Li-41K Bose-Fermi mixtures by Ba-
roni et al. [2024a]. However, interactions between either Fermi or Bose polarons induced
by the medium remain experimentally largely unexplored.

What is the role of the mass of the impurity? On the one hand, as discussed above,
lightweight 6Li impurities in the 133Cs bosonic medium is a well suited system for study-
ing the emergence of few-body physics in the many-body polaron spectrum. On the other
hand, heavy 133Cs impurities in a 6Li Fermi Sea resembles quite closely the fully solvable
problem of an infinitely heavy fixed impurity in a Fermi Sea. In the thermodynamic
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limit, for infinitely heavy impurity and zero temperature the quasi-particle weight is ex-
pected to vanish, leading to the Anderson orthogonality catastrophe [Anderson, 1967].
Although the orthogonality catastrophe is an idealization, its signatures can still be ob-
served in realistic experimental scenarios with finite impurity mass and finite tempera-
ture [Knap et al., 2012; Schmidt et al., 2018]. Notably, it results in a universal evolution of
the quasi-particle properties during the early-time dynamics following a quench of the
interaction. This evolution exhibits a characteristic power-law dependence, where the
exponent is determined solely by the strength of the interspecies interaction. The tempo-
ral evolution of heavy impurities in a Fermi Sea has been studied for a 41K-6Li mixture
by Cetina et al. [2015] and Cetina et al. [2016]. However, the timescale on which the uni-
versal dynamics take place, set by the Fermi energy, is limited by the timescale on which
thermal and finite mass effects become relevant. Larger mass ratio, as in a 133Cs-6Li mix-
ture, would allow accessing the power-law scaling behaviour in a larger time window.
An impurity of infinite mass can also be realized experimentally by trapping one species
with a species-selective potential. Pinning down Li atoms with an optical tweezer real-
izes the scenario of a heavy impurity in a Bose-Einstein condensate, complementary to
the previous case. Here, the real-time dynamics of a Bose-Einstein condensate after a
sudden quench has recently been calculated by Drescher et al. [2019] using a variational
coherent state ansatz and long-lived quantum coherent oscillations are predicted on the
repulsive side of the Feshbach resonance. As a consequence, an impurity introduced at
a finite velocity exhibits a stop-and-go motion and a characteristic density profile. These
deformations have never been observed because, again, they are difficult to access ex-
perimentally as they requires the spatial scale of the healing length of the Bose-Einstein
condensate to be larger than the period of these density oscillations. Detection might be
possible either with high-resolution imaging combined with two-dimensional confine-
ment, or by Bragg spectroscopy on the medium in the presence of impurities.

Overview of the work presented in the thesis. The focus of this thesis is the study
of low-density samples of Cs atoms mixed to a degenerate Fermi Sea of Li atoms. In this
regime, we aim to spectroscopically probe thermal Cs impurities immersed in a degen-
erate Fermi gas of Li while tuning the interspecies interactions, in order to map out the
Fermi polaron spectrum in a Li-Cs mixture.

A considerable effort has been made in reconstructing the experiment to implement
a tightly confining and movable single-beam trap for Li at the Cs tune-out wavelength,
which was originally designed to create the Bose polaron scenario allowing to confine Li
inside a Cs Bose-Einstein condensate. This trap allowed for the sequential preparation
of a Li Fermi gas deep in the degenerate regime that can be overlapped with Cs atoms
in a controlled way. A major focus of the design was the resulting symmetry of the
two clouds, which allows for the compensation of the relative gravitational sag. This
ensures a good spatial overlap at arbitrary temperatures, which is a persistent challenge
for atomic mixtures with large mass ratio. After the implementation of this new Li trap, a
degradation of the Cs source was observed and a Cs Bose-Einstein condensate could no
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longer be produced. Since replacing the source would have caused a significant delay, in
addition to the delay already caused by the pandemic, we decided to shift the focus of
our experimental efforts from the Bose to the Fermi polaron scenario. Nevertheless, we
maintained the newly implemented Li trap, as it is versatile and suitable for producing a
deeply degenerate Li Fermi sea.

In order to probe the Fermi-polaron scenario, two ingredients are needed:

1. the ability to fine tune the magnetic field strength in the vicinity of favorable inter-
species Feshbach resonances,

2. the ability to probe the energy of the impurity as a function of the interaction
strength, which is generally done by an energy-selective transfer of the impurity
from a non-interacting state to an interacting one or viceversa (injection or ejection
spectroscopy).

Concerning the first point, great efforts have been made to (i) characterize the mag-
netic field topology in the region where the atoms are confined, (ii) map out the loss
signal of interspecies interaction in the vicinity of the broad Li-Cs Feshbach resonances
around 888.6 G, and (iii) take into account if and how inelastic two-body loss channels
might limit the typical timescale of polaron experiments.

Concerning the second point, after some effort in adapting our existing radio-frequency
(RF) setup to the Cs transition frequencies (around 260 MHz at the relevant magnetic
fields), we abandoned this approach because it turned out not to be feasible due to bad
coupling of the RF fields into our steel vacuum chamber. We have adopted an optical
method in which two co-propagating laser beams allow probing two-photon Raman tran-
sitions between the two lowest hyperfine states of Cs atoms. Additionally, Raman spec-
troscopy allows for local addressability of the atomic cloud and for finite momentum-
transfer [Veeravalli et al., 2008; Shkedrov et al., 2020], which opens up to investigating
polaron momentum-dependent properties [Ness et al., 2020; Diessel et al., 2024] that can-
not be studied with RF. The Raman technique on Cs, together with our ability to prepare
Li in either of its two lowest hyperfine states via radiofrequency transitions, allows for
versatile preparation and interrogation of the mixture in different states. Guided by nu-
merical predictions of the polaron spectral function at finite temperatures calculated by
the functional determinant method by our theoretical collaborators, we sought to iden-
tify the Fermi polaron signature.

The thesis is organized as follows:

Chapter 1 - A platform for creating an ultracold Li-Cs mixture. Ultracold experiments
rely on complex experimental setups. We present the apparatus in Heidelberg de-
signed for cooling, trapping, and manipulating the highly mass-imbalanced mix-
ture made of Li and Cs atoms. Given that the core of this dual-species experiment
was built over a decade ago, we quickly review its primary functions and focus
on recent updates, including a revision of the performance of the Zeeman slower,
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the tomography of our magnetic fields for Feshbach tuning of the interparticle in-
teractions and the implementation of a new dipole trap for Li atoms. Indeed, this
thesis introduces a new bichromatic approach for trapping both species and imple-
ments a tightly confining movable trap for Li at the Cs tune-out wavelength. We
then discuss our standard detection tools, such as radiofrequency, microwave, and
dual-species absorption imaging, emphasizing their roles in the experiment.

Chapter 2 - Li Fermi Sea with Cs impurities. We describe the experimental realiza-
tion of the effective mixing sequence for creating a Fermi Sea of Li atoms combined
with dilute samples of Cs atoms. First, we review fundamental concepts of Bose
and Fermi gases in harmonic potentials as well as basic two-body scattering theory
applied to Li-Cs mixtures. Then, we discuss the issues for the creation of ultra-
cold Li-Cs mixtures and outline the main solutions implemented in the course of
this work. Therefore, we provide a detailed, step-by-step explanation of our sub-
sequent individual preparation of the two species combined with the bichromatic
approach for mixing them. We describe cooling and trapping, first for Li towards
the creation of a deeply degenerate Fermi Sea, then for Cs, for the creation of ul-
tracold dilute Cs samples. We describe how we overlap them in a controlled way
and cancel the differential gravitational sag. Finally, we examine the loss processes,
primarily dominated by Raman spontaneous scattering on Cs atoms at the tune-out
wavelength and three-body losses near the Feshbach resonance at 888.6 G. We sum-
marize the highlights and discuss the criticalities of the described mixing procedure
and, propose the next steps towards the achievement of a thermalized mixture.

Chapter 3 - Heavy Fermi polarons. We investigate heavy Fermi polarons and detail our
detection protocol on Cs impurities. We theoretically compare the case of heavy
Cs impurities in a light Li Fermi Sea with the case of an infinite mass impurity.
We use the Chevy variational ansatz to calculate the ground state polaron energy
at zero temperature for a mass imbalance between the impurity and the bath of
mI/mb = 22 and compare it with the analytical result obtained for the case of an
impurity with infinite mass mI/mb = ∞. Additionally, we discuss numerical pre-
dictions of the polaron spectral function at finite temperatures calculated by our
theoretical collaborators using the functional determinant method. We then present
the implementation for a Li-Cs system, looking at the relevant timescales, at the
constraints given by two-body inelastic loss channels and draw conclusions about
ejection and injection spectroscopy schemes. We also introduce the Raman spec-
troscopy setup, which allows us to address the two lowest hyperfine states of Cs.
We provide an example from the first series of measurements based on an ejection
spectroscopy protocol aimed at detecting the polaron signal. We discuss the limi-
tations of these experiments and, based on our findings, we propose modifications
to the experimental setup to detect the Fermi polaron. Finally, we explore future
directions in few- and many-body physics within the Li-Cs system.
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Chapter 1

A platform for creating an ultracold
Li-Cs mixture

Parts of this chapter are based on the following manuscript:

A platform for the creation and manipulation of a mixture of 6Li and 133Cs atoms
E. Lippi, et al. Manuscript in preparation

The Li-Cs experiment in Heidelberg is a dual-species experimental apparatus whose
construction has started more than a decade ago. With each generation of Ph.D. stu-
dents, the experiment has been adapted to overcome the challenges of that generation.
The challenge during this Ph.D. work was to produce a mixture of a degenerate atomic
sample of either Li or Cs mixed with a dilute and non-degenerate sample of atoms of
the other species in strongly interacting regimes, and to develop some of the tools for the
characterization of our samples.

In this chapter I introduce our experimental apparatus and describe some of the up-
grades and analyses made during my time on the experimental machine. In Sec. 1.1 I
will give an overview of the experimental apparatus, using a block diagram for summa-
rizing the functions that the experiment must fulfill. In the other sections, I delve into
specific topics. In Sec. 1.2 I describe the characterization of the performance of the exist-
ing double-species Zeeman slower, starting from a modeling of the deceleration process.
This plays a key role for loading Li and Cs clouds in their respective magneto-optical
traps (MOTs). In Sec. 1.3 I describe our optical dipole trap management, focusing on
the implementation of a bichromatic scheme based on a tightly confined movable optical
trap for Li atoms realized at the Cs tune-out wavelength. In Sec. 1.4 I present how we
characterize the homogeneity and calibrate the magnetic fields generated by the homo-
geneous Feshbach coils. These are important prerequisite for controlling and tuning the
intra- and inter-species scattering lengths via magnetic Feshbach resonances. In Sec. 1.5
I describe the detection tools needed for the characterization of ultracold quantum gases
and for the detection of polarons, such as imaging detection techniques and spectroscopic
setups.
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FIGURE 1.1: Block diagram summarizing the complex structure of our experimental apparatus.
The block scheme is organized into five vertical sections, each representing a specific function of
our experimental apparatus and coded in a different colour: cooling (violet), trapping (green),
tuning interactions (orange), spectroscopy (yellow) and imaging (blue). The schema is divided
horizontally into two layers. The implementation layer outlines the different techniques and se-
tups used to implement the different functions of the experimental apparatus. The instrumenta-
tion layer lists the specific equipment and devices required to realize each implementation of a
particular function.

1.1 An overview of a double species experiment

In order to give an overview of the complexity of our experiment, I will follow the block
scheme in Fig. 1.1, which summarizes the structure of the experimental apparatus. The
block scheme is organized into five vertical sections, each representing a specific func-
tion of our experimental apparatus and coded in a different colour: cooling (violet), trap-
ping (green), tuning interactions (orange), spectroscopy (yellow) and imaging (blue). The
schema is divided horizontally into two layers called Implementation and Instrumenta-
tion. The implementation layer outlines the various techniques and setups used to im-
plement the different functions of the experimental apparatus. The instrumentation layer
lists the specific equipment and devices required to realize each implementation of a par-
ticular function. In some cases, the same techniques and setups are used to implement
different functions, and the same equipment and devices are used for different imple-
mentations. The instrumentation consists of external magnetic fields, lasers for cooling,
trapping and probing, CCD cameras for detection, source of oscillating electromagnetic
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1.1. An overview of a double species experiment

fields (radio frequency antenna and microwave horn).

Vacuum apparatus. A schematic overview of the core of the ultra-high vacuum (UHV)
apparatus for the production of ultracold 6Li-133Cs mixtures is shown in Fig. 1.2. The two
atomic beams are generated by a double-species effusive oven, decelerated by a double-
species Zeeman slower consisting of four interleaving helical coils with variable pitch
and captured in a magneto-optical trap inside the main experimental chamber by means
of a sequential loading scheme. The oven region and the main chamber are connected
by two differential pumping stages, allowing for pressure differences between the two
parts. We refer the reader to [Repp, 2013] for a more detailed description of our vacuum
system.

Double species effusive oven. For the thermal source beam we use an effusive double-
species oven with a similar design to the one presented by [Stan and Ketterle, 2005]. It
enables element selective control over the fluxes up to ten orders of magnitude, regardless
of the difference between vapor pressures of pLi = 1× 10−5 Torr and pCs = 4× 10−3 Torr,
at typical operation temperatures of Toven,Li = 625 K and Toven,Cs = 375 K [Gehm, 2003;
Steck, 2023]. The oven is divided into three parts maintained at different temperatures in
order to have individual control on fluxes and velocities of the two atomic species [Repp,
2013]. The atomic beams leave the oven through a nozzle with a diameter of 10 mm
leading to atomic fluxes of ΦLi = 5 × 1015 atoms/s and ΦCs = 1014 atoms/s. Note that
the velocity distribution in the atomic beams are strongly different for each species, due
to the different temperature and mass for Li and Cs atoms.

Cooling. The atomic beam is first decelerated by a double species Zeeman slower, as
explained in Sec. 1.2. A detailed characterization of the Zeeman slower can also be found
in [Repp, 2013]. Doppler cooling is performed by loading a three-dimensional magneto-
optical-trap (MOT). The cooling transitions for both Li and Cs are shown in Fig. 1.3. The
Cs-MOT is realized by six individual laser beams coming from different optical fibers.
The Li-MOT is realized by three retro-reflected laser beams with a beam diameter that
matches the transversal expansion of the atomic beam after Zeeman deceleration. The
details on the frequency preparation and laser setup can be found in [Repp, 2013]. We
cool both species below their Doppler limit by applying different cooling schemes. The
unresolved hyperfine structure of the excited 22P3/2 state in Li prevents the application of
simple sub-Doppler cooling schemes on the D2 transition and temperatures of standard
Li MOTs are limited by the Doppler temperature TLi ≈ 140 µK. We apply gray-molasses
cooling to achieve samples at a temperature of 40 µK. The optical setup that allow D1

cooling is described in [Gerken, 2016; Häfner, 2017; Neiczer, 2018]. Details on the load-
ing process after D1 cooling is detailed in [Neiczer, 2018; Gerken, 2022] and briefly sum-
marized in Sec. 2.2.1. Cs atoms are cooled and spin polarized into their energetically
lowest state by applying degenerate Raman sideband cooling (DRSC). The procedure is
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FIGURE 1.2: (a) Experimental apparatus: an atomic beam is generated in the oven chamber and
decelerated by a double-species Zeeman slower for the loading of MOTs in the experimental
chamber. Various ion pumps (black) in combination with differential pumping stages enable a
pressure difference between the oven region and the experimental chamber. (b) Schematic cut
through the first part of the Zeeman slower. On the left hand side a schematic of the four helical
coils, consisting of two inner ones (red) and two outer ones (blue), is shown. The magnetic fields
for the last part of the Zeeman slower are generated by the radial fields of the MOT coils (violet)
and a good matching of the fields is obtained by the adaption coil (yellow). (c) Schematic cut
through the experimental chamber: Feshbach and Curvature coils are placed inside the recess of
the re-entrant viewport. The picture is adapted from [Repp, 2013].

described in Repp [2013] and Tran [2022]. Main cooling steps within the sequence used
for our mixing scheme are sketched in Sec. 2.2.2.

Six diode lasers provide light for cooling Cs and Li: at 852 nm, Toptica TA Pro for Cs
MOT cooler beams and Toptica DL 100 Pro for Cs MOT repumping beams; at 671 nm two
Toptica TA, one for Li MOT cooler beams and one for D1 cooling, two home-built TAs,
one for the amplification of the MOT repumping beams and another for the amplification
of the in-plane beams for D1 cooling.

The external magnetic fields required for cooling the atoms are provided by a set of
both homogeneous and quadrupole magnetic fields. The quadrupole magnetic fields
required for MOT are generated by two coils connected in anti-Helmholtz configuration.
Raman coils are installed along the vertical direction to generate a small homogeneous
magnetic field used for DRSC and fast displacement of the MOT position. Compensation
cage coils are implemented to compensate for earth and magnetic stray fields. Offset coils
mounted on the large horizontal view-ports of the experimental chamber allow the MOT
to be moved in plane. [Repp, 2013; Pires, 2014; Häfner, 2017; Gerken, 2022; Tran, 2022].
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1.1. An overview of a double species experiment

Trapping. Optical dipole traps provide trapping potentials for neutral atoms which are
almost independent from the internal state occupied by the atoms (see Sec. 1.3). For trap-
ping Li and Cs atoms we use three different dipole traps, namely dimple trap, microtrap
and reservoir trap, which are produced by three high power lasers: a fiber laser IPG at
1070 nm, a Ti:Sa laser by Coherent tuned at 880 nm and pumped by a Verdi V-18 at 532
nm, and a Mephisto MOPA at 1064 nm. These dipole traps are described in detail in
Sec. 1.3. For specific needs, optical trapping can be also combined with magnetic field
gradients. An example is given by the trapping scheme for Cs when loaded into the
Reservoir trap, explained in Sec. 2.2.2. Such a magnetic field gradient is provided by
the Curvature Coils (Fig. 1.2 (c)). They consist of a pair of coils of two layers with two
windings each, which is placed inside the Feshbach coils. The implementation and con-
struction procedure is similar to the one for the Feshbach coils and can be found in [Pires,
2014]. In the course of this work, an H-bridge was implemented and connected to these
coils to allow switching the gradient direction. This makes possible to create a magnetic
field gradient that pulls down both species, compensating the gravitational sag while
trapping both species in the same trapping potential. Details on the implementation of
the H-bridge and on the calibration of the magnetic fields produced by the Curvature
coils can be found in [Freund, 2019]. In Appendix A I show a measurement where the
center of mass of Cs atoms trapped in this combined potential is effectively pushed down
as expected.

Tuning interactions. To tune intra- and inter-species interactions in a Li-Cs mixture we
need to generate homogeneous magnetic fields up to 1000 G. A homogeneous magnetic
field is produced by a couple of coils mounted in Helmholtz configuration within the
re-entrant view-ports of the main chamber, as shown in Fig. 1.2 (c). The coils consist of
4×6 windings, with a minimal radius of 39.1 mm and a distance from the center of the
chamber of 19.5 mm. They generate magnetic fields up to 1350 G, corresponding to the
maximum available current of 400 A. The temperature of the coils is stabilized by cooling
water supplied from a custom made industrial cooling unit and the current, measured
by a current transducer, is actively stabilized with a PID controller. The construction
procedure is shown in [Pires, 2014]. The characterization of the residual field curvature
and magnetic field resolution is presented in Sec. 1.4.

Detection. The relevant information on our experiment, such as atom number, temper-
ature and density distributions, are obtained by means of absorption imaging, which is
described in Sec. 1.5.2. Absorption imaging at high magnetic field is possible thanks to
dedicated lasers and optical setups. We use three CCD camera, one horizontally (Ximea)
and two vertically (Guppy and Andor). Andor camera can perform high-resolution ab-
sorption imaging in fast kinetic mode, which allows the acquisition of images of both
atomic clouds within the same experimental cycle. Moreover, to obtain detailed informa-
tion on the physical properties of ultracold gases, we employ also various spectroscopic
methods. Techniques such as radio-frequency and microwave spectroscopy are primarily
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FIGURE 1.3: Hyperfine structure for the D2 cooling line for Li and Cs. The arrows and the labels
(red, blue, dark blue) mark the laser light frequencies and frequency shifts by AOMs by the diode
lasers named Li TA, Cs TA Cs DL, respectively. The figure is taken from [Tran, 2022].

implemented to calibrate magnetic fields and to probe the polaron energy, as discussed
in Sec. 1.5.1. In addition, Raman spectroscopy, which was implemented in the course
of this thesis, is described in detail in section 3.2.2 and is used to probe Fermi polarons
on Cs impurities. Together, imaging and spectroscopy, provide a comprehensive toolkit
for investigating the complex behavior and properties of ultracold gases under different
experimental conditions, as summarized in Sec. 1.5.

1.2 Double species Zeeman slower

The atomic beam produced by the effusive oven has mean velocities corresponding to
1.48×103 m/s (Li) and 244 m/s (Cs), which are a factor of 10 and 30 respectively larger
than the capture velocity of a MOT. One of the standard techniques to mitigate such a
large gap is to use a Zeeman slower [Phillips and Metcalf, 1982; Metcalf and van der
Straten, 1999], where radiative light forces are used to decelerate the hot atoms while the
changing Doppler shifts are compensated by the Zeeman shifts produced by a position-
dependent magnetic field B(z) along the atomic beam direction z. The optimal field pro-
file has a total range which is expected to scales with 1/

√
m [Metcalf and van der Straten,

1999], where m is the atomic mass. Therefore widely different magnetic field profiles are
needed for decelerating either Cs or Li atoms.

For the exact design and the technical details on the implementation of the coils, I
address the reader to [Repp, 2013]. The description provided here is limited to the main
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1.2. Double species Zeeman slower

concepts that are useful to explain the calculated magnetic fields profiles presented in
Sec.1.2.1 and the measurements of the performance of the Zeeman slower by measuring
the MOT loading rates as reported in Sec.1.2.2.

1.2.1 Modeling of atom deceleration in the Zeeman slower

Design of the double-species Zeeman slower. To create two different field profiles, we
extended the approach presented by Bell et al. [2010] for a single species Zeeman slower.
Our design consists of four interleaving layers of helical coils, where each layer is imple-
mented as a single winding with a helical conductor profile of variable pitch. Moderate
currents of 30 A in the outer two layers generate the magnetic field profile for decelerat-
ing Cs atoms. Much higher currents and differently shaped magnetic fields are reached
for cooling Li atoms by increasing the current to 75 A in the outer two layers and simul-
taneously adding a magnetic field created by the same current value though the inner
two coils. The magnetic fields in the last part of our Zeeman slower are generated by the
radial fields of the MOT coils [Schünemann et al., 1998]. The perfect matching between
the fields generated by the helical coils and the MOT coils is ensured by an additional
thin adaption coil mounted in the overlap region between the Zeeman slower and the
MOT coils. The smooth overlap between the magnetic fields is beneficial to minimize
the transverse expansion of the atomic beam [Joffe et al., 1993], which is particularly crit-
ical for light elements like lithium. Compared to other solutions [Marti et al., 2010], this
scheme allows avoiding regions along the slower where the atomic beam is not deceler-
ated and thus expands.

The small inductance due to a small number of windings allows for fast switching
between loading Li or Cs. We measure switching times of the helical coils by recording
the voltage response at the connectors while varying the control parameter of our power
supplies. The 90% level of the final voltage is reached within less than 2 ms, whereas for
switching off, the induced voltage vanishes in less than 15 ms. Sub-ms time-scales can
also be reached switching off the coils by electronically short-circuiting them.

Modeling the deceleration of Li and Cs atoms. The required individual fields for de-
celerating Li and Cs atoms were calculated by studying the equations of motion via a nu-
merical simulation. The deceleration is provided by the dissipative light force FD = h̄kγp,
where k is the wave-vector of the light and γp is the excitation rate for a two level
atomic system [Metcalf and van der Straten, 1999]. FD has to be maintained, at each
position, constant and smaller than the limit-acceleration provided at saturation by the
on-resonance photon scattering Fmax

D = h̄kγ/2, where γ is the natural linewidth of the
excited state. This requirement can be quantified with an adimensional deceleration
η = FD/Fmax

D = a/amax that must be kept <1 in order to fulfill the resonance condition in
any position.

In Tab. 1.1 the design parameters used for simulating the optimal field for the two
species are listed. For simplification, the deceleration process was inverted by virtually
accelerating the two species separately towards the oven, starting at the MOT center with
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(a)

(b)

FIGURE 1.4: (a) Magnetic fields for the deceleration of Cs (upper panel) and Li (lower panel). The
measured field (green circles) of the helical coils and the adaptation coil is a sum of the fields from
the inner helical coils (red squares), the outer helical coils (blue diamonds) and a small field from
the adaption coil (orange triangles). The transverse expansion of the atomic beam is minimized
by generating the last part of the total field for slowing via the radial field of the MOT coils (violet
hexagrams). The colored lines represent the results from the calculation for the single coils, while
the black lines depict the calculated total field of all coils. The only free parameters are the zero
positions of the measurements. (b) Simulations of the deceleration process for Cs (blue) and Li
(red). The longitudinal velocity (upper panel), the beam radius due to the transverse heating
(middle panel) and the dimensionless acceleration η (lower panel) are shown for atoms near to
the capture velocity of the Zeeman slower, corresponding to vcap,ZS

Li = 650 m/s for Li (mI=-1) and
to vcap,ZS

Cs = 150 m/s for Cs (m f =3). Figure (a) is adapted by Repp [2013].
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1.2. Double species Zeeman slower

Design parameters Cs Li

Current MOT Coils (A) IMOT 30 97.7
Current External Helical Coils ZS (A) Iext 30 75
Current Internal Helical Coils ZS (A) Iint 0 75
Current Adaption Coils (A) IA 4.5 -1
Magnetic gradient MOT Coils (G/cm) ∂B/∂z 9.5 31.0
Saturation parameter S0 10 2.5
Detuning slower laser (MHz) δ/2π -35 -70
Adimensional acceleration η 0.5 0.5
Initial velocity (m/s) vin 23 48
Minimal distance (cm) dmin 7.5 12.5

TABLE 1.1: Design parameters used for simulating the optimal fields for the two species. The
adimensional deceleration η is fixed to 0.5. The differences in S0 arise from different available
laser powers on the experiment and the differences in vstart are assuming higher MOT capture
velocities for Li than for Cs, due to the smaller mass. The table has been taken from Repp [2013].

the assumed capture velocities of vcap,MOT
Cs = 25 m/s and vcap,MOT

Li = 48 m/s of our Cs and
Li MOT, respectively. The simulation started by first accelerating the atoms only by the
radial fields of the MOT coils at the given currents. The design values for the magnetic
gradients of the MOT along the axial direction are ∂BCs/∂z = 9.5 G/cm and ∂BLi/∂z =31.0
G/cm, which enables the levitation of Cs atoms [Weber et al., 2003] while simultaneously
loading a Li MOT. After a distance of about 100 mm, where the chamber geometry allows
for generating magnetic fields by additional coils, the photon scattering rate and thus the
acceleration at each position afterward was maximized in the simulation to η · amax via
optimizing the Zeeman shift. For typical magnetic field values, the Zeeman shift of Li is
larger than the hyperfine splitting and thus closed optical transitions within the Pashen-
Back regime were used in the calculation. To maximize the atomic flux, the field was
selected in such a way that all three lowest mI sub-levels are decelerated.

The calculated magnetic field profiles are shown in Fig. 1.4, together with the longi-
tudinal velocity, the beam radius due to the transverse heating and the dimensionless
acceleration η for atoms near to the capture velocity of the Zeeman slower, correspond-
ing to vcap,ZS

Li = 650 m/s for Li (mI=-1) and to vcap,ZS
Cs = 150 m/s for Cs (m f =3), calculated

considering the total field of all the coils (black lines). One can notice that at the position
of the junction of the helical coils with the MOT coils, where the adaption coils are lo-
cated, the deceleration remains constant at around the designed value of 0.5 even inside
the experimental chamber, ensuring an efficient deceleration of the atoms until they reach
the MOT center. As a consequence, the radial extension of the Li beam reaches a radius
of almost 4 mm, corresponding to the extension of the MOT laser beams and guarantee-
ing a smooth loading into the MOT. The measured magnetic fields profiles are shown
in Fig. 1.4. The magnetic fields resulting for both configurations have been measured
with a standard Hall probe [Repp, 2013]. The maximum discrepancy between the cal-
culated and measured fields is only 10 G, thanks to the high accuracy of the CNC-based
manufacturing process for the helical coils.
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FIGURE 1.5: Time dependence of the number of Cs (blue) and Li (red) atoms loaded into their
respective MOTs. Data (circles) are recorded by performing absorption imaging and the curves
are the best fit to the models described in the text. A loading rate of 5.9 × 107 atoms/s for either
Li and Cs atoms is deduced by the fit.

1.2.2 Performance of the Zeeman slower

In order to obtain fast cycle rates and having an efficient sub-sequential loading, a high
loading rate is desired. We test the performances of the Zeeman slower by recording
curves for a Li and Cs MOT via standard absorption imaging, as shown in Fig. 1.5 for
Toven,Li = 635 K and Toven,Cs = 375 K. Details on the preparation of the MOT in our
experiment can be found in [Repp, 2013].

For Cs atoms, we make a fit (blue solid line) of the measured loading curves with an
exponential growth

N(t) =
RCs

αCs
(1 − e−αCst) (1.1)

taking into account the interplay between the increasing of the number of atoms via de-
celerated atoms at rate R and the density independent one-body loss mechanisms at rate
αCs. A typical loading curve for Cs results in a MOT loading rate of RCs = 5.9 × 107

atoms/s and with one-body loss rate of αCs =0.09 s−1. The 1/e-lifetime of ∼11 s is close
to the vacuum-limited value. For a typical MOT loading time of 1 s, temperatures of
TCs ≈ TDoppler = 125 µK are generally reached at this stage with corresponding atomic
densities of 3.1 × 1010 cm−3.

In the case of Li, on the other hand, high densities result in non-negligible two-body
losses induced by multiple scattering of photons and light-assisted collisions. Indeed, a
maximal peak density of 7.2 × 1010 cm−3 leads to saturate the atom number at 1.2 × 108

for loading times longer than 2 s. Here, we describe the evolution of the atom number as

Ṅ(t) = RLi − β′
LiN(t)2 (1.2)
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FIGURE 1.6: (a) Dynamic polarizability and (b) scattering rate for a typical intensity of 108 W/m2

in dependence of the wavelength λ for 6Li (red) and 133Cs (blue). The wavelengths corresponding
to the D1 and D2 transitions for each species are indicated by vertical dashed lines. The polariz-
abilty is expressed in atomic units, where 1 a.u. = 1/(4πε0a3

0).

with β′
Li = βLiV where βLi is the two-body loss coefficient and V = (

√
2πr)3 is the

effective volume occupied by the cloud, where r is the 1/e2 size of the cloud averaged in
the three spatial dimensions. The curve used for the fit (red solid line) is then given by

N(t) =
√

RLi/β′
Li tanh (t

√
RLiβ

′
Li) (1.3)

with a typical loading rate of RLi = 5.9 × 107 atoms/s. In agreement with what reported
in [Schünemann et al., 1998] and [Schlöder et al., 1999], we obtain a two-body loss coef-
ficient of βLi = 1.7 × 10−11 cm−2. Typical achieved temperatures are around 1.4 mK. In
order to lower the temperature, after further 15 ms of compression the gradient fields are
increased and provided by an additional set of coils with switching-off times below 1 ms.
At the end of the compression phase, the laser intensity is reduced and the detuning of
the cooler beam is decreased to half of the natural linewidth of the D2 transition. The
temperatures are then reduced to TLi ≈ 400 µK with an atom number of 7.8 × 107.

1.3 Dipole trap management

The two main quantities of interest for dipole traps are the time-averaged interaction
energy of the induced dipole with the generating oscillating electric field of the light,
and the photon scattering rate. Qualitatively, when an atom, considered as a simple
oscillator, is placed in an electromagnetic field, like that of a laser beam, the electric field
E(r, t) = ê E(r) exp(−iωt) + c.c. induces an atomic dipole moment p(r, t) = α(ω)E(r, t)
that oscillates at the field frequency ω with a complex frequency-dependent polarizability
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α(ω). The dipole potential and the photon scattering rate are then given by

Udip(r) = −1
2
⟨p(r, t)E(r, t)⟩ = − 1

2ϵ0c
,ℜe{α(ω)}I(r) (1.4)

Γsc(r) =
Pabs

h̄ω
=

1
h̄ϵ0c

ℑm{α(ω)}I(r), (1.5)

respectively, where Pabs = ⟨ṗ(r, t)E(r, t)⟩ is the power absorbed by atoms from a stream
of photons with energy h̄ω and then re-emitted as dipole radiation, I(r) = 2/(ϵ0c)|E(r)|2

is the position-dependent intensity, c the speed of light, and ϵ0 the vacuum permittivity.
Both quantities can be expressed following Grimm et al. [2000] as

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ
ω0 + ω

)
I(r), (1.6)

Γsc(r) =
3πc2

2h̄2ω3
0

(
ω

ω0

)3( Γ
ω0 − ω

+
Γ

ω0 + ω

)2

I(r), (1.7)

where ω0 is the resonance frequency of the atomic transition and Γ is the natural linewidth.
In the simplest case of a single focused beam, the laser light has a gaussian beam profile
with peak intensity calculated via I0 = 2P/(πw2

0), and the intensity profile is given by

I(x, y, z) = I0

(
w0

w(x)

)2

exp

(
−2
(
y2 + z2)

w(x)2

)
(1.8)

with w(x) = w0

√
1 +

(
x

xR

)2
, xR = πw2

0/λ0 the Rayleigh length of the beam and w0 the

beam waist. Figure 1.6 (a) shows the polarizability ℜ(α) of 6Li and 133Cs [Le Kien et al.,
2013] in their electronic ground state as a function of the laser wavelength. The polariz-
ability of Li atoms exhibits a prominent resonance feature at a wavelength of 671 nm1 and
it remains positive for longer wavelengths. For Cs, two resonances are resolved clearly at
the D1 (894.6 nm) and D2 (852.3 nm) lines. Above 894.6 nm, the dipole potential for Cs is
attractive, whereas below 852.3 nm is repulsive. At a wavelength of 880.25(4) nm [Arora
et al., 2011; Ratkata et al., 2021], the polarizability of Cs is zero, meaning that Cs atoms
in their ground state do not experience any conservative light force. This wavelength is
known as the tune-out wavelength and enables species-selective trapping [LeBlanc and
Thywissen, 2007]. The wavelength dependent scattering rates of 6Li and 133Cs for a typi-
cal laser beam intensity of 108 Wm−2 are shown in Fig. 1.6 (b). The scattering rates at the
D1 and D2 lines are severely enhanced, limiting the lifetime and minimum achievable
temperature of the atomic samples. In general, it is beneficial to choose large detunings
from the atomic resonances, while at the same time increasing the intensity to achieve
sufficient trapping potentials. Light at the Cs tune-out wavelength, when it is in between
the D1 and D2 lines, is characterized by large scattering rate (see Sec. 2.3.1).

1In fact we expect two resonance features located at the D1 and D2-lines. However, the small hyperfine
splitting in 6Li of only ≈ 10 GHz, or equivalently 0.015 nm, is not resolved in Fig. 1.6.
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1.3. Dipole trap management

In the following, I introduce the optical dipole traps utilized in our experiment and
employed for a bichromatic trapping scheme (see Sec. 1.3.1). Additionally, I provide a
detailed description of a tightly confining dipole trap at the Cs tune-out wavelength (Sec.
1.3.2), which has been implemented in the course of this thesis work.

1.3.1 Bichromatic trapping scheme

Simultaneous optical trapping of highly mass-imbalanced atomic species has to satisfy
very different requirements for each of them, especially for reaching ultra-low temper-
atures and for compensating for the gravitational sag. This section describes the opti-
cal dipole traps used for combining Li and Cs together, which are the dimple trap (DT)
for Cs, and the microtrap (MT) for Li. The simultaneous exploitation of two distinct
trapping potentials at different wavelengths is referred to as bichromatic or dual-color
trapping. In this configuration, the MT is tuned to the Cs tune-out wavelength. Based on
the method of species-selective trapping described by LeBlanc and Thywissen [2007], this
wavelength allows for the independent control of the potentials of each species, as it does
not impose any confining effect on Cs atoms. In particular, the simultaneous presence of
both traps allows manipulating the Cs trapping potential without being deformed by the
presence of the MT. Conversely, the potential depth of Li is predominantly determined
by the MT potential, exhibiting only minor alterations due to the DT potential, as the
volume ratio between the two traps is large. The relative trap depth and residual gravi-
tational sag can be regulated by controlling the relative shifts and intensities of the two
dipole traps. A detailed discussion of the challenges in producing Li and Cs mixtures can
be found in 2.1.3.

Moreover, a third trapping potential is necessary to serve as a reservoir for loading Cs
atoms after sub-Doppler cooling sequences. This is referred to as the reservoir trap (RT).
The combination of these three distinct dipole traps is employed in our experiment, as
illustrated in Fig. 1.7.

Dimple trap (DT). This optical dipole trap is formed by two crossed linearly polarized
beams at a crossing angle of 8.5◦ with a beam waist of 62 µm. It comes out from a high
power fiber laser IPG YLR-200-LP-WC with a wavelength of 1070 nm. This trap is used as
a reservoir for Li atoms and as a final trapping potential for Cs atoms. At the maximum
power of 100 W per beam, a maximum trap depth of 1.2 mK for Li is achieved, which is
eventually required to transfer Li atoms directly from the MOT to the dipole trap. More-
over, the trap can dynamically change its trapping volume via frequency modulation of
an acousto-optic modulator [Neiczer, 2018], providing a good mode matching for loading
atoms from the gray molasses cooling to the dipole trap. The large trapping frequencies
on the order of 10 kHz allow fast thermalization during loading and evaporative cool-
ing. It also provides a small volume trap for Cs in the context of the dimple trick [Tran,
2022]. In the past it has also been used for monochromatic trapping of Li and Cs atoms.
Recently, it has been stabilized at low power by a Red-Pitaya digital PID. The original
optical setup can be found in [Heck, 2012].
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FIGURE 1.7: Schematic overview of the three optical dipole traps in our experiment: reservoir
trap (blue), dimple trap (light blue) and microtrap (red). The microtrap is oriented along the axial
direction of the dimple trap beams, which are combined together by the dichroic mirror (DM). The
DM can be shifted horizontally producing a corresponding vertical displacement of the microtrap
beam. The position of the reservoir trap can be adjusted with two piezo mirrors.

Microtrap (MT). This optical dipole trap,which has been designed and implemented
during this thesis work, is formed by a single-beam trap with a beam waist of 10 µm oper-
ated at the Cs tune-out wavelength of 880 nm, which has been designed and implemented
during this thesis work. The desired light is supplied by a titanium-sapphire (Ti:Sa) laser
Coherent MBR-100, tunable in the wavelength in a range of 700 nm to 1030 nm, and de-
livering up to 3 W at 880 nm. The Ti:Sa laser is pumped by a Coherent-Verdi V-18 at
532 nm with a power of 18 W. This trapping potential is used to prepare and store Li
Fermi gases, and combine them with the low-density Cs sample prepared in the dimple
trap. The tight confinement favors high densities and it is optimal for obtaining a highly
degenerate Li Fermi Sea. In addition, the beam can be translated along the z-direction
(gravity-direction) by horizontally shifting a dichroic mirror (see Fig. 1.9) over a range of
± 6.5 mm, which is used to combine the microtrap with the dimple trap. This feature al-
lows bringing the Li together with Cs and compensating for the differential gravitational
sag between the two clouds. However, this trapping potential was originally designed
with the aim of confining Li atoms in the center of a Cs Bose-Einstein condensate, with
the intention of probing Bose polarons, which was the reason for choosing such a small
beam waist of 10 µm2. The MT laser power is intensity stabilized via an analog PID to
reduce intensity fluctuations in the laser power. In Sec. 1.7, I describe the full setup and
the characterization of the main features, such as the achieved trapping frequencies and
the efficiency in the transport.

2The name microtrap has historical reasons. Even though the current beam waist is not on the order of a
few micrometers, we kept this name.
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FIGURE 1.8: Schematic of the Ti:Sa laser-source. The green laser source output at 532 nm is in-
jected into the Ti:Sa crystal placed into a bow-tie cavity aligned for having an output wavelength
of 880 nm. After the cavity, which is a commercial system, the beam goes through an AOM and
the 1st order goes through polarization optics and then is coupled into an optical fiber which
brings it to the optical table. The 0th order is used to monitor the wavelength by a wavemeter.

Reservoir trap (RT). This optical dipole trap is formed by two crossed linearly polar-
ized beams at a crossing angle of 90◦ with a beam waist of 300 µm. This large optical
dipole trap is provided by a single beam out of a 55 W Mephisto MOPA Nd:YAG solid-
state laser at 1064 nm and it is used for loading Cs atoms at trap depths on the order of 10
µK. This trapping potential is only used as a reservoir for Cs atoms, i.e. for collecting and
storing them from the Raman lattice for degenerate Raman sideband cooling. The posi-
tion of the intersecting foci can be displaced by a piezo-driven mirror and it was used in
the past for combining the two species together by superimposing the RT with the dimple
trap. Recently, the possibility of changing the beam waist between 300 µm and about 600
µm has been implemented, as well as a system for active power stabilization by means of
an analog PID. The original optical setup and its characterization can be found in Arias
[2014].

1.3.2 A tightly confining-movable optical trap

Here, I describe the implementation and characterization of the microtrap, evidencing its
main features.

Idea and design. The microtrap was originally designed to confine Li atoms in the cen-
ter of a Cs Bose-Einstein condensate, with the goal of probing Bose polarons. For this
reason, a beam waist of 10 µm was chosen (see Freund [2022] for a detailed discussion
of why we chose this size), in addition to the following specifications: (i) to enable the
storage of the atoms away from the Cs MOT and the shifting of the Li trapping potential
to compensate for the gravitational sag, (ii) to have a central geometry that is favorable to
polaron detection, and (iii) to facilitate the independent manipulation of the density and
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FIGURE 1.9: Schematic view of the microtrap setup in the xz plane. The microtrap light at 880 nm
is prepared in the setup presented in Fig. 1.8 and comes out from an optical fiber on the experi-
mental table. Here, the beam is spatially shaped in order to produce a tightly focused beam and
is combined with the Dimple Trap beams at 1064 nm through a dichroic mirror (DM), which is
mounted on a translational stage. As the stage moves horizontally, the microtrap beam shifts ver-
tically while the dimple trap remains at a constant height.

temperature of Li and Cs. To address (i), the beam is designed to be movable along the
vertical direction within a range of ± 6.5 mm; to address (ii), the beam is oriented along
the symmetry axis of the dimple trap; for (iii), the Cs tune-out wavelength is selected. A
detailed discussion about the challenges and solutions employed for the realization of a
Li and Cs mixture can be found in Sec. 2.1.3.

Optical setup. The optical setup for preparing the beam of the microtrap is divided
into two parts, one placed on the laser table shown in Fig. 1.8 and the other one on the
experimental chamber table shown in Fig. 1.9. The large Ti:Sa laser system as well as the
Verdi V-18 laser are kept far away from the experimental chamber due to the large size of
the former and to the thermal effects associated with the dissipation of high intensities of
the latter. Since the experimental chamber table is already quite packed, and the small 10
µm beam waist is sensitive to alignment, the setup was mounted on a portable aluminum
breadboard (see Fig. 1.10 (a)), which allows the pre-alignment in a test setup. The shape
and size of the breadboard was chosen to fit vertically in front of one of the small view-
port of the chamber of science.

The beam coming out of the Ti:Sa, after a periscope, passes through an AOM3, which
we use to turn the laser beam on and off as well as controlling intensity. The 0th order of
the AOM is used to monitor the wavelength of the free-running laser with a wavelength
meter4. The 1st order of the AOM passes through two polarizing beam splitters (PBSs)
and it is then coupled5 to a polarization-maintaining single mode fiber6, which brings

3Crystal Technology 3100-125
4HighFinesse WS7
5Schäfter+Kirchhoff 60FC-4-A8-07
6Thorlabs P3-780PM-FC-10
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(A) (B)

(C)

FIGURE 1.10: Photos of the microtrap setup: (a) the vertical breadbord implemented into the
pre-existing experimental apparatus; (b) enlargement of the optics in front of the small central
window of the chamber of science (second-last mirror, focusing lens, dichroic mirror); (c) view of
the custom-made holder for the dichroic mirror mounted on top of the translational stage.

the light to the setup on the experimental chamber table. A fiber outcoupler7 with a focal
length of 12 mm produces a collimated beam of 850(4) µm, which is linearly p-polarized
and has circular symmetry at any distance from the collimator. Afterwards, the beam
passes through a lambda half-wave plate and a polarizing beam splitter mounted on a
small cage system to maximize and clean the transmitted light, respectively8. The beam is
then magnified by a telescope consisting of two lenses mounted into a cage system, with
a focal length of -50 mm9 and 200 mm10 respectively, placed at a distance of 350 mm and
resulting in a magnification of the beam of a factor of 8, corresponding to a beam waist
of 6.8(2) mm. Before each of the two lenses, there are apertures for alignment purposes.
The beam is then directed by a two-inch piezo-controlled mirror11, used for remote fine
alignment on the atomic cloud, to a fixed two-inch industrial mirror, which directs it to
the focusing lens, as shown in Fig. 1.10 (b). Using a two-inch achromatic doublet 12 with
a focal length of 250 mm, the desired beam waist of 10.3(3) µm is reached. The achromatic
lens is placed on a manual translation stage13 with a maximum traveling range of 12.7

7Schäfter+Kirchhoff 60FC-4-M12-10
8Here, it is left on purpose some space to mount on the cage a second half-wave plate for turning the

polarization in case of need.
9Thorlabs: LC1715-B

10Thorlabs: LA1725-B
11During the construction of the setup, it was proposed that this mirror, together with the one-inch piezo-

mirror holder on which the outcoupler is mounted, could be used for active beam pointing stabilization.
12Thorlabs AC508-250-B
13Thorlabs: MT1/M
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mm, which allows shifting the focal position along the axial direction of the beam. The
microtrap is then combined with the dimple trap by a dichroic mirror14 mounted on
a compact, high resolution translation stage15 (see Klaus [2019] for the criteria of this
choice). The dichroic mirror has a cut-off wavelength at 950 nm such that it reflects the
microtrap light while transmits the dimple trap light. The stage on which the dichroic
mirror is mounted allows the vertical displacement of the beam over a maximum travel
range of 13 mm, resulting in a diagonal movement of the focus and thus of the trapped
atomic cloud (see Fig. 1.12 (a) and (b), top). It should be noted that this mirror shows a
slight astigmatic character, which results in a displacement of the focus position between
the two transversal direction of the beam of 2.3(2)×102 µm (see Freund [2022] for the
characterization of this effect). The mirror holder, shown in Fig. 1.10 (c), is custom
made to fit into the existing setup, matching the correct height of the dimple trap beams
and allowing both of them to pass through. The mirror holder is placed on a 2D gimbal
mount, which allows for adjusting the pointing of the beam after the lens before entering
the experimental vacuum chamber.

Behind the first mirror after the outcoupler, the light is collected by a lens and focused
on a photodiode16. This photodiode is used to measure the power of the microtrap’s
beam and is connected to the AOM via an analog PID controller. This allows the power
in the microtrap beam to be stabilized. The 3 dB bandwidth, defined as the frequency
at which the power drops to half of its initial value at low frequencies, corresponds to
a power of 220 mW and a trapping frequency of 25 kHz. As laser noise at a frequency
2νtr would excite the trap at νtr, in presence of laser noise at 25 kHz we would expect
to observe noise in the trapping frequency at 12.5 kHz. Taking the 3 dB bandwidth as
the limit for intensity stabilization, we can then stabilize frequencies up to 12.5 kHz. In
the scheme described in 2.2.1 we use a power of 60 mW for loading the microtrap from
the dimple trap and a power of 147 mW for compression during the storage phase, and
therefore, the laser intensity noise should not cause significant heating.

The frequency of the Ti:Sa laser can fluctuate around the set center frequency ν =

(340.576 ± 0.015) THz due to the strong sensitivity of the cavity inside the Ti:Sa laser17.
However, the laser source shows frequency fluctuations smaller than 2 GHz [Matthies,
2018], for which the ratio of the trap depths ULi/UCs > 500 and, therefore, the trapping
effect on Cs atoms is still negligible.

Trapping frequencies vs. laser power. It is of great importance to accurately determine
the trapping frequencies, as they directly influence the density and Fermi energy of the
cloud. A calibration of the microtrap trapping frequencies as a function of power is here
provided, for both axial and radial confinement. Axial trapping frequencies of the MT
are measured by exciting the breathing mode of a non-interacting gas. This is done by
rapidly increasing the trap depth, causing the cloud to compress and oscillate in size

14Thorlabs DMLP950L
15Physik Instrumente Q-545.140
16Thorlabs: PDA30B2
17We take the value of the tune-out wavelength λ = 880.25(4) nm from [Arora et al., 2011].
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FIGURE 1.11: Trapping frequencies for Li atoms trapped in the microtrap as a function of the
power: (a) along the radial direction, and (b) along the axial direction. A secondary x-axis in-
dicates the corresponding trap depths. The radial trapping frequency has been extracted from
a parametric heating measurement at twice the trapping frequency, while the axial trapping fre-
quency has been extracted from breathing modes obtained by an intensity kick. The uncertainty
in the fit is marked by the shaded area, which is calculated including the statistical error in the
power.

at twice of the trapping frequencies. Radial trapping frequencies are characterized by
parametric heating of an interacting cloud. Here the power of the microtrap beam, and
thus the trap depth, is modulated by a sinusoidal signal at a certain frequency. Heating
increases as the modulation frequency approaches the excitation frequency of one of the
collective modes [Grimm, 2007]. Assuming to be in the unitary limit 1/(kFa) ≈ 0 as well
as in the hydrodynamic regime, the frequency of the radial compression mode measured
by parametric heating ωc/(2π) is related to the radial trapping frequency ωr/(2π) by
the relation ωc =

√
10/3ωr [Pethick and Shmidt, 2001] (see also [Freund, 2022]). Axial

and radial trapping frequencies as a function of the microtrap power are shown in Fig.
1.11. For both recorded trapping frequencies, we fit the data by a function of the type
f (P) = A

√
P − P0, where P is the power, A is the prefactor, and P0 is the eventual offset

in the power recorded by the photodiode, which gives the following calibrations as a
function of the power of the microtrap’s beam

fax[Hz] =(497 ± 15)[Hz · W−1/2]
√

P[W]− (10.8 ± 2.6)× 10−3[W] (1.9)

fr[Hz] =(26900 ± 700)[Hz · W−1/2]
√

P[W]− (11.2 ± 3.3)× 10−3[W]. (1.10)
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The uncertainty in the fit is shown in Fig. 1.11 by the shaded area, which is calculated
including the statistical error in the power. It is important to note that a finite P0 offset in
power is a direct consequence of the fact that the power calibration was performed in an
environment where the background light was effectively negligible. Conversely, during
these measurements, as with any other measurement when the experiment is fully op-
erative, the light emitted by the second dimple trap beam is scattered and collected on
the MT photodiode, resulting in the presence of background light that leads to a power
offset of about 11 mW18. It should be noted that the measurement presented in this thesis
exploits a calibration that excludes this offset, and therefore, the calibration of the fre-
quency in the power is just given by f (P) = A

√
P, where A is the same appearing in

Eq. 1.9 and 1.10 for axial and radial frequencies, respectively. In Fig. 1.11 a secondary
axis is also present, which shows the trap depth calculated for a single-focused beam and
considering an offset in the power of 11 mW.

The measured aspect ratio between radial and axial trapping frequencies is about 56:1,
which is in good agreement with the one calculated taking into account the astigmatism
coming from the dichroic mirror, which is 56.6(1.6).

Transport of Li atoms. The transport of Li atoms is characterized as a function of beam
displacement, stage acceleration, and trap depth. The losses in the atom number due
to the cloud motion are determined by comparing the atom number N at the displaced
position with the atom number N0 without displacement after keeping the atoms in the
microtrap for the same time. Each measurement is performed with a non-interacting
cloud and it is averaged over 10 repetitions.

Figure 1.12 (b) shows the characterization of the transport as a function of the dis-
placement ∆x of the stage for a cloud of 6 × 104 atoms prepared at a trap depth of 120
µK (corresponding to a laser beam power of 230 mW). Figure 1.12 (b, top) shows the tra-
jectory of the center of mass of the cloud for a constant acceleration and deceleration of
1 mm/s2 up to a maximum velocity of 1 mm/s, with the translation stage displacement
varying between ±3 mm along the direction of propagation of the beam. The slope ex-
tracted is 0.941(12), which reveals a small deviation from the perfect horizontal alignment
of the beam. The corresponding losses in atom number, shown in Fig. 1.12 (b, bottom),
increases with displacement. However, a displacement of the atoms of 230 µm, used for
the mixing procedure described in Sec. 2.2, corresponds to a loss of less than 10%. Figure
1.12 (c) instead shows the transport efficiency as a function of a constant acceleration in
the range allowed by the translation stage, which can reach up to 10 mm/s2. Here we
have prepared a thermal cloud of 8 × 104 atoms at a trap depth of 50 µK (corresponding
to a laser beam power of 96.5 mW), fixing the displacement to 230 µm and the scatter-
ing length to a12 ≃ −300 a0. The change in the acceleration does not affect the number
of atoms left after the displacement of the stage. Indeed, at this trap depth, the dipole
trap is not significantly altered by the force imposed on the atoms, regardless of the ac-
celeration. The resulting potential is tilted but still confining. We calculated that for the

18Only recently, we implemented a notch filter to block the DT light
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FIGURE 1.12: Transport of Li atoms trapped in the MT. (a) Sketch of the transport setup. The mi-
crotrap beam is focused by an achromatic doublet with a focal length of 25 cm and addressed
through reflection by a dichroic mirror into the chamber of science. The dichroic mirror is
mounted on the translational stage. A displacement of the stage of ∆x corresponds to a verti-
cal displacement of the focal position of the gaussian beam of the same quantity ∆z = ∆x. (b)
Position of the center of mass of the cloud along the vertical direction z0 and transport efficiency
N/N0 as a function of the displacement of the stage at a maximal acceleration of 10 mm/s2 and
a trap depth of 120 µK. (c) Temperature and transport efficiency over a round trip as a function
of the acceleration of the stage, for a displacement of 230 µm and a power P = 96.5 mW and
corresponding to a trap depth of U/kB = 50 µK. The measurement in (b) has been performed
at an offset magnetic field of 526 G, where a ≃ 0 a0, while the one in (c) was at 320 G, where
a ≃ −300 a0.

maximum acceleration allowed by the stage of 10 mm/s2, the potential is always confin-
ing until the trap depth is deeper than 50 nK. However, we observed heating of 10% for
an acceleration > 8 mm/s2.

The atoms loss during the transport are due to vibrations transmitted to the laser
beam, causing fluctuations in the central position of the trapping potential. When these
vibrations match the trapping frequencies, they heat the cloud and lead to subsequent
losses. Figure 1.13 (a) shows the transport efficiency as a function of the trap depth over
a displacement of the cloud of 1.6 mm at an acceleration of 10 mm/s2. The trap depth is
varied between 50 µK and 120 µK, and the efficiency decreases for trap depths below 80
µK, corresponding to an axial trapping frequency of about 200 Hz. The corresponding
position fluctuation spectrum is recorded and the single-sided power spectrum is calcu-
lated as S(ν) = 2FFT(ν)FFT∗(ν)/N , where N is the number of data points and FFT(ν)
is the Fast Fourier Transform of the position fluctuations of the translation stage [Freund,
2022]. The results are averaged over 10 repetitions and a rolling average is taken over
8 Hz. As radial frequencies, which are on the order of several kHz, are insensitive to
mechanical vibrations, the analysis focuses on the axial trapping frequencies. The spec-
trum recorded during the motion was compared to the spectrum obtained for no motion,
taken on the same time scale, i.e. 600 ms. Following Savard et al. [1997], the energy-
doubling time T = ⟨x2⟩ /(π2ν2S(ν)), for trapping frequency ν and spectrum S(ν), can be
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FIGURE 1.13: Transport efficiency as a function of the trap depth. (a) Transport efficiency for
a non-interacting sample over a displacement of 1.6 mm at an acceleration of 10 mm/s2. The
efficiency N/N0 is expressed as the ratio between the number of atoms before and after the dis-
placement. (b) Energy-doubling time T given by the position fluctuation spectrum as a function
of the trapping frequencies, for the stage in motion (blue) and at rest (orange). The gray shaded
area indicates the range of trapping frequencies corresponding to the interval of trap depth in (a).
There is a broad minimum centered at around 190 Hz. For this reason we chose to transport the
atoms once they are stored in a potential with a trap depth > 80 µK. These pictures are adapted
from [Freund, 2022].

calculated as shown in Fig. 1.13 (b). Therefore, the energy-doubling time is compared to
the efficiency of the transport over the range of frequencies corresponding to the range
of trap depth 50 µK to 120 µK, corresponding to axial trapping frequencies between 160
Hz and 260 Hz. The energy-doubling time decreases by a factor of 10 in the range be-
tween 200 Hz and 70 Hz, while the efficiency drops to zero at a trap depth of 25 µK (115
Hz) and remains low down to 10 µK (70 Hz). The simultaneous decrease in transport
efficiency and energy-doubling time at around 200 Hz can partially explain the losses
during transport while keeping the atoms trapped at a trap depth lower than 80 µK. This
observation motivated us to ramp up the power of the microtrap before transport in the
mixing sequence presented in Sec. 2.2.

1.4 Feshbach magnetic field

Magnetic field stability is fundamental for the experiments performed in optical dipole
traps where it is important to control and tune the interactions between the atoms close
to Feshbach resonances (see Sec. 2.1.2). Homogeneity and long-time stability of our
magnetic fields allowed in the past to perform high-resolution Feshbach-spectroscopy
[Zhu et al., 2019b,a; Gerken et al., 2019] with a minimal step-size of 1 mG, enabling the
detection of a splitting in the loss feature up to 20 mG in a 6Li-133Cs mixture and 6 mG in
a spin polarized sample of 6Li.

In the following, I focus on some important features of the Helmholtz Feshbach coils
used to tune the interactions between Li and Cs atoms. In section 1.4.1 I will show a
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FIGURE 1.14: Tomography of the magnetic field produced by the Feshbach coils: (a) along the
z-axis (direction of gravity), (b) in the horizontal xy plane. The magnetic field is measured by
microwave spin flips on Cs atoms confined in the RT and it is given as the deviation from its
minimum value B0 = 1074.95 G. In (a) the solid line is a parabolic fit to the data that yields a
curvature of 0.027 cm−2. In (b) we used cubic interpolation to the black data points. The spatial
magnetic field deviation is given relative to the saddle point (x0, y0). Both pictures are adapted
from [Gerken, 2022].

tomographic measurement performed to map the residual magnetic field gradient of the
Feshbach coils. I will then explain our magnetic field calibration procedure in section
1.4.2.

1.4.1 Magnetic field tomography

The placement of the coils in the re-entrant view-ports prevents the realization of a perfect
Helmholtz configuration leading to a finite curvature of the magnetic field at the center
of the chamber. In order to detect the magnetic field inhomogeneity along the z axis we
adopted a tomographic approach. We prepare Cs atoms in the RT in |F, mF⟩ = |3, 3⟩
and perform microwave spectroscopy to the |4, 4⟩ state by detuning the microwave fre-
quencies such that atoms are selectively excited at different positions with pulses of 35
µs. We can then directly record the center position of the atom cloud from a gaussian fit
for different microwave detunings and, by means of the Breit-Rabi formula, calculate the
corresponding magnetic field. To have a complete tomography, we move the cloud by
means of the piezo-mirror over a region of ∼1 mm.

The variation of the measured magnetic field from the bias field of B0=1074.95 G is
shown in Fig. 1.14 and can be reproduced by a parabolic function B(z) − B0 = B0czz2,
where cz = 0.027 cm−2 is the obtained coefficient for the curvature along z-direction.
Each fit result is the average of 5 pixels (≈ 40 µm). We measure an uncertainty of fluc-
tuations of 16 mG over a timescale of several hours. However, this systematic error is
irrelevant for estimating the finite curvature of the coils. The obtained profile shows
that for a displacement of a few hundreds µm from the center, the variation in the mag-
netic field amounts to just a few mG. For a typical experiment with a Li-Cs mixture
cloud at 400 nK, we expect thermal cloud sizes of respectively σLi = (140, 10, 10) µm
and σCs = (70, 5, 6) µm. We can see that in the z-direction the magnetic field variation
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due to a residual magnetic field gradient is < 1 mG. We take as the upper limit the vari-
ation obtained for the Li cloud in the direction of its major elongation. This is estimated
by considering that B(x)− B0 = B0cxσ2

Li,x with cx = cz/2 = 0.0134 cm−2 and a large bias
field of 1000 G. For a typical size of σLi,x ∼ 150 µm we achieve an uncertainty of 3 mG.

1.4.2 Calibration of the magnetic fields

I discuss here the procedure of calibration of the magnetic field. This is performed by
driving radio-frequency spectroscopy on Li hyperfine states. For these measurements,
we prepare a spin-polarized Li sample in spin state |1/2, 1/2⟩ → |1/2,−1/2⟩ by ap-
plying a rectangular radio-frequency pulse. The remaining number of Li atoms in state
|1/2, 1/2⟩ is recorded and fitted with a proper line-shape function. We obtain the mag-
netic field strength by comparison to the Breit-Rabi energy difference. The typical sta-
tistical error in the determination of the resonance frequency is at the 1 Hz level, corre-
sponding to a magnetic field accuracy of less than 1 mG (see also [Häfner, 2017]). By
repeating the measurements for different values of the control parameter, we have a cali-
bration given by a linear function between the magnetic field and the control parameter.
This procedure leads to a maximal uncertainty of 9 mG [Ulmanis, 2015]. In the work by
[Ulmanis, 2015], the total systematic error in the magnetic field determination was also
estimated. Here, residual magnetic field gradient, long-term stability, length of the exper-
imental sequence and calibration were considered as the main sources of systematic error.
By assuming all these uncertainties uncorrelated and by adding them up quadratically, a
total systematic error that amounts to 16 mG was obtained. Such a good magnetic field
stability permitted to have high resolution in atom-loss spectroscopy [Zhu et al., 2019b,a;
Gerken et al., 2019].

1.5 Detection tools

To obtain information on the physical properties of ultracold gases we use spectroscopic
methods [Vale and Zwierlein, 2021] and absorption imaging [Ketterle et al., 1999]. In Sec.
1.5.1, I introduce the setup used for radiofrequency and microwave spectroscopy, as well
as the energy state investigated in the experiments. In Sec. 1.5.2, I give an overview of
absorption imaging for our double species experiment.

1.5.1 Radio-frequency and microwave spectroscopy

In the context of this thesis, spectroscopic techniques such as radio-frequency and mi-
crowave spectroscopy are mainly used either to probe the polaron energy or as a tool to
calibrate the magnetic fields. Radio-frequency spectroscopy of Li atoms was intended to
address Li impurities in a Bose-Einstein condensate by quenching Li impurities from the
non-interacting Li|1⟩⊕Cs|1⟩ state to the interacting Li|2⟩⊕Cs|1⟩ state at around 888.6 G.
Similarly, Raman spectroscopy, the setup and characterization of which are described in
the context of Fermi polarons in Sec.3.2.2, has been implemented to probe Cs impurities
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FIGURE 1.15: (a) Energy levels for the hyperfine states of 6Li in its electronic ground state as
a function of the magnetic fields. Energy for the state |1/2, 1/2⟩≡Li|1⟩ is highlighted in red,
while for |1/2,−1/2⟩≡Li|2⟩ is in black. (b) Energy difference between the states |1/2, 1/2⟩ and
|1/2,−1/2⟩. The inset is a zoom on the region between 800 G and 1000 G. The dashed line is a
linear fit of the energy difference in the range between 880 and 900 G, which gives a difference
in the magnetic moments of h×(1.256 ± 0.002) kHz/G and provides a rule of thumb for which 1
kHz corresponds to 800 mG. In all plots, the energy is expressed in units of h.

in a Li-Fermi sea by driving transitions from the interacting Li|2⟩⊕Cs|1⟩ state to the non-
interacting Li|2⟩⊕Cs|2⟩ state at around 888.6 G. On the other hand, both radio-frequency
on Li atoms between Li|1⟩↔Li|2⟩ and microwave on Cs atoms between Cs|1⟩↔Cs|4,+4⟩
are used for the magnetic field calibration, as already described in Sec. 1.4.1 and Sec. 1.4.2
respectively.

Breit-Rabi diagrams for 6Li and 133Cs. The Zeeman effect results in the splitting of the
energy levels of the atomic hyperfine states with total angular momentum F, according
to their projection mF along the quantization axis. This phenomenon is exemplified in
the Breit-Rabi diagrams for 6Li and 133Cs atoms in their electronic ground states, shown
in Fig. 1.15 and Fig. 1.16. In this thesis, we identify atomic states by their total angular
momentum F and projection mF at zero magnetic field, expressed as |F, mF⟩. The Zee-
man effect allows tuning the energy difference between various hyperfine and electronic
levels.

We use Li atoms prepared in the Zeeman states |1/2, 1/2⟩ or |1/2,−1/2⟩, as described
in Fig. 1.15 (a). In this thesis, we identify these two states as

Li |1⟩ = |F = 1/2, mF = 1/2⟩ , (1.11)

Li |2⟩ = |F = 1/2, mF = −1/2⟩ . (1.12)

In the region between 880 and 900 G, the difference in the magnetic moments between
these two states is h×(1.256 ± 0.002) kHz/G and provides a rule of thumb for which 1
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FIGURE 1.16: (a) Energy levels for the hyperfine states of 133Cs in its electronic ground state as
a function of the magnetic fields. The highlighted curves represent the states |3,+3⟩, in blue,
|3,+2⟩, in light blue, and |4,+4⟩, in green. (b) and (c): Energy difference between respectively,
|3,+3⟩ with |3,+2⟩, and |3,+3⟩ with |4,+4⟩. In (b), the dashed line is a linear fit of energy
difference in a range between 880 and 900 G, which gives a difference in the magnetic moments
of h×(244.8 ± 0.1) kHz/G. This provides us a rule of thumb for which 1 kHz corresponds to 4
mG. In (c), considering a range between 800 and 1000 G, the fit gives a difference in the magnetic
moment of h×(2.578 ± 0.001) MHz/G: here, 1 kHz corresponds to 0.4 mG. In all plots, the energy
is expressed in units of h.

kHz corresponds to 800 mG (see Fig. 1.15 (b)).
The energy states that we consider for Cs, as shown in Fig. 1.16 (a), are the ground

state |3,+3⟩, where we prepare our mixture, the first excited state |3,+2⟩, which we use
as the "non-interacting" state for the Fermi polaron protocol experiment, and the state
|4,+4⟩, which we use to calibrate the magnetic fields. In particular, in this thesis the two
lowest states of the hyperfine ground state are named as

Cs |1⟩ = |F = 3, mF = 3⟩ , (1.13)

Cs |2⟩ = |F = 3, mF = 2⟩ . (1.14)

The difference in magnetic moments in the range between 880 and 900 G, that is between
|3,+3⟩ and |3,+2⟩ is h×(244.8 ± 0.1) kHz/G (see Fig. 1.16 (b)). This gives us a rule
of thumb that 1 kHz corresponds to 4 mG. In the range between 800 and 1000 G, the
difference in magnetic moment between |3,+3⟩ and |4,+4⟩ is h×(2.578 ± 0.001) MHz/G:
here 1 kHz corresponds to 0.4 mG (see Fig. 1.16 (c)).

Radio-frequency spectroscopy setup. The current radio-frequency (RF) setup was de-
signed to amplify the signal at 76 MHz, in order to drive fast transitions between the
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FIGURE 1.17: Measured transmitted relative power spectrum (in dB) of our RF-antenna at a
power of -20 dBm. The antenna is impedance-matched at 76.426(9) MHz (red diamond). The
blue diamond marks the transition energy for Cs between state |3,+3⟩ and |3,+2⟩ at 890 G. The
ratio of powers transmitted at 76 MHz and 260 MHz is around -30 dB.

Zeeman states of Li |1/2, 1/2⟩ or |1/2,−1/2⟩ at magnetic fields around 890 G. A radio-
frequency generator19, which allows driving frequencies between 250 kHz and 3 GHz,
produces a typical output frequency of 76 MHz. The signal is amplified20 up to 100 W
before being emitted by a double loop antenna, which is impedance-matched at 76.426(9)
MHz and mounted inside the chamber of science in vacuum (see also Tran [2022]). Mea-
sured transmitted relative power spectrum (in dB) of our RF-antenna at a power of -20
dBm is shown in Fig. 1.17. Critical to this setup is the protection of the RF antenna inside
the vacuum chamber, which is done via an interlock system that prevents overheating
during operation. The pulse duration is controlled by an FPGA control system, with a Rb
clock21 serving as a 10 MHz reference oscillator for the frequency generator. The shape of
the RF signal can be modified by combining the RF signal with an external pulse of an ar-
bitrary waveform. This waveform can be, for example, a rectangular function, as shown
in Fig. 1.18 (a), or a Blackman function, as shown in Fig. 1.18 (b). Blackman pulses ef-
fectively eliminate the sidelobes that are inherent to rectangular pulses. However, this
results in a notable broadening of the width in the frequency domain when compared to
the rectangular pulses. Details about the performance of our RF setup can be found in
Filzinger [2018]

In order to drive transitions on the lowest Cs Zeeman states for Fermi polaron detec-
tion, we initially considered utilizing the existing RF antenna. However, as illustrated in
Fig. 1.17, the ratio between the powers transmitted at 76 MHz and 260 MHz is approx-
imately -30 dB. This would result in a reduction of the Rabi frequencies by a factor of
approximately 30. We evaluated a series of options, which however resulted to be un-
feasible. (i) Substitution of the electronic circuit impedance-matched for Cs was not pos-
sible, as the antenna was required to prepare Li atoms either |1/2, 1/2⟩ or |1/2,−1/2⟩

19Agilent E4421B
20Mini Circuits ZHL-100W-52+
21SRS FS 725
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FIGURE 1.18: Radio-frequency energy spectra of the |1/2, 1/2⟩ to |1/2,−1/2⟩ transition of Li. (a)
Spectrum taken with RF pulses of square temporal shape for -10 dBm and a π−pulse of 0.5 ms
(top). Rabi oscillation at resonance Ω0 = (1.010 ± 0.005) kHz (bottom). (b) Spectrum taken with
+10 dBm and a π−pulse of 0.18 ms (top). Rabi oscillation at resonance Ω0 = (2.819 ± 0.005) KHz
(bottom). For the Blackman pulse the sidelobes are strongly suppressed.

on a routine basis during the experimental sequence. (ii) Implementation of a switchable
circuit would have required a significant investment of resources that was not affordable
in a reasonable timescale. (iii) Construction and placement of a new antenna outside was
considered and initiated. The optimal placement for the antenna would have been at the
top, but due to limited space, it was necessary to position it laterally, which resulted in a
suboptimal coupling with the stainless steel chamber. Finally, we opted for an optical ap-
proach based on two-photon Raman spectroscopy, detailed in Sec. 3.2.2. This approach
allowed us to overcome all these issues.

Microwave spectroscopy setup. For Cs atoms a microwave generator22, which allows
driving frequencies between 8 kHz and 12.7 GHz, produces a typical output frequency of
9.2 GHz, which is amplified23 before being emitted with a horn24. As for radio-frequency,
the pulse duration is controlled by an FPGA control system, and a Rb clock serves as 10
MHz reference oscillator to the frequency generator. This setup is implemented to drive
transitions between F = 3 ↔ F = 4. A detailed description of the MW setup was
reported in [Tran, 2022] and investigation of Cs atoms were described in [Gerken, 2022].

1.5.2 Double-species absorption imaging

Absorption imaging is the technique we use for extracting information on the atomic
clouds, such as atom number, density distributions, and temperature [Ketterle et al.,
1999]. A resonant light beam, tuned to specific fine-structure splitting transitions (see

22Rohde & Schwarz SMA100B
23Mini Circuits ZVE-3W-183+
24Tactron WR90
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Fig. 1.3), illuminates the atoms. They absorb the light depending on their spatial distribu-
tion, creating a shadow of the atomic cloud that is recorded by a CCD camera positioned
behind them. For each species, we take three different images: (i) with atoms, displaying
an intensity distribution Iabs(x, y); (ii) with laser light only, Idiv(x, y); and (iii) five aver-
aged pictures with neither atoms nor light, capturing only readout and thermal noise,
denoted as Ibg. The transmission of the light through the atomic cloud is calculated using
the Beer-Lambert law:

T(x, y) =
Iabs(x, y)− Ibg(x, y)
Idiv(x, y)− Ibg(x, y)

= e−σabs
∫

n(x,y,z)dz (1.15)

where n(x, y, z) is the density distribution and σabs is the absorption cross-section25. The
column density, obtained by integrating the density distribution along the direction of
light propagation, is given by

n(x, y) =
∫

n(x, y, z)dz = − 1
σabs

log(T(x, y)) = − 1
σabs

OD(x, y) (1.16)

where OD(x, y) is the optical density, defined as OD(x, y) = − log(T(x, y)). By fitting
the column density with a two-dimensional Gaussian distribution, we extract both the
total atom number and the 1/e2 cloud radii. Specifically, we use time of flight (TOF)
expansion to measure temperatures and initial cloud sizes. By measuring the ballistic
expansion of the cloud after switching off the trapping potential and assuming that the
velocity distribution of the thermal cloud follows a Maxwell-Boltzmann distribution, the
evolution of the cloud size with respect to the time of flight follows

σx,y,z(tTOF) =

√
σ2

x,y,z(tTOF = 0) +
kBT
m

t2
TOF, (1.17)

where m is the atomic mass. The initial sizes and temperature T are extracted as free
parameters. We can assume that the expansion is purely ballistic if ω2

x,y,zt2
TOF ≫ 1; in

this case, the temperature T does not depend, to a good approximation, on the initial
size of the cloud. Conversely, it is important to consider the initial sizes if ω2

x,y,zt2
TOF ≈ 1.

Alternatively to TOF measurements, the initial size can be obtained either by imaging
the cloud in situ, which means just after that the trapping potential is switched off, or

by calculating σx,y,z(tTOF = 0) = ω−1
x,y,z

√
kBT
m , from an independent determination of the

trapping frequencies ωx,y,z and temperature T.

In circumstances where a global fit model is not feasible, or when it is useful to obtain
detailed spatial information just locally, such as in the measurements in Sec. 3.2.2 and
Sec. 3.3, the approach for the determination of the atom number is different. Instead of
relying on a continuous model fit, we work directly with the discretized column density
provided by the pixels of the CCD chip, with pixel sizes sx and sy. To determine the total
atom number N, we sum the optical density OD values over all the pixels. This can be

25For negligible saturation (I ≪ Isat) and for near-resonant light σ(z) ≈ σ0.

37



Chapter 1. A platform for creating an ultracold Li-Cs mixture

expressed as [Ketterle and Zwierlein, 2008]

N =
∫

n(x, y) dx dy =
sxsy

Mσabs
∑

pixels
OD(x, y), (1.18)

where M is the optical magnification. Additionally, when dealing with relative quanti-
ties, such as the ratio of the atom number to a maximum value N/Nmax, the calculation
simplifies further. The ratio can be directly derived from the total optical density ODtot

to its maximum value ODmax
N

Nmax
=

ODtot

ODmax
(1.19)

as the pixel sizes sx and sy and the absorption cross-section σabs, which are constants,
cancel out, it remains a dimensionless ratio that is easy to calculate. This simplification is
particularly advantageous when evaluating relative changes or variations in atom num-
bers without the need for an absolute calibration of each imaging parameter.

Imaging at low and high magnetic fields. For both species, we need to image the cloud
at zero magnetic fields, for example after the MOT and sub-Doppler cooling schemes, and
at high magnetic fields once the atoms are trapped in the dipole traps, typically between
800 G and 1000 G. At high magnetic fields, we perform spin-state selective imaging, as
the imaging frequencies depend on the Zeeman splitting. This method requires inde-
pendent diode laser sources, which are stabilized by an offset lock to the low-field lasers
[Schünemann et al., 1999]. The detailed setup description is presented in [Schoenhals,
2013] for Cs and [Heck, 2012] for Li, respectively.

For Cs atoms, the imaging scheme consists of two beams, one for "imaging", whose
frequency is adjusted to be resonant with the F = 4 → F′ = 5 transition, and another
for "repumping", which is used to pump the atoms initially prepared in the F = 3 state
to the F = 4 state. This scheme is valid for both low and high magnetic fields, but in the
latter scenario the two beams come from two independent lasers. The detailed scheme
can be found in [Schoenhals, 2013]. As discussed in Sec. 2.3.1, this scheme does not allow
distinguishing between population of atoms initially prepared in the |3,+3⟩ or |4,+4⟩
state.

For Li atoms, imaging at low magnetic fields involves the transition from the F =

1/2 ground state manifold to the unresolved F′ = 1/2, 3/2, 5/2 excited manifold. As
Li atoms decay back to the F = 3/2 hyperfine state, an additional repumping beam is
used. After the imaging pulse is turned on, the repumping beam is switched on for a
few hundred microseconds to optically pump the atoms back into the F = 1/2 manifold.
At high magnetic field, the two hyperfine sub-levels are no longer degenerate, allowing
selective imaging of different states by varying the frequency of the high-field imaging
laser. Recent improvements on the setup of Li high-field imaging is presented in [Schürg,
2024]. Additionally, we use spin-selective spectroscopy to prepare Li atoms in a single
spin state by applying a resonant light pulse (see Sec. 2.2).
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Cameras: resolution and orientation. In our systems three CCD cameras are currently
implemented: one to take pictures of the clouds along the horizontal direction, and two
along the vertical direction. The camera for imaging along the horizontal plane is a Ximea
MD028MU-SY CCD camera. Along the vertical direction there is an AVT Guppy F-038
NIR camera and an Andor Ikon-M 934 back-illuminated Deep Depletion CCD camera.
The former is currently used just for checking the position of the clouds after MOT and
sub-Doppler cooling schemes, whereas the latter is the camera we use for double-species
imaging. This camera features a fast kinetic (FK) mode that allows imaging both species
in the same experimental cycle in a time frame of ≈ 1.5 ms. This is achieved by imaging
on a subset of pixels on the CCD chip. After capturing the first image, the charges are
quickly shifted to an unused subset of pixels. This allows us to take a second image on
the initial subset of pixels before reading out the chip. The coating BEX2-DD allows a
similar quantum efficiency of about 80% [Renner, 2014] for both species. The resolution
of our imaging setup (with an NA = 0.15) is below 2 µm [Filzinger, 2018] and enables
us to resolve density distributions of both bosonic and fermionic degenerate quantum
gases. A comprehensive description of the imaging setup can be found in [Renner, 2014;
Eberhard, 2016; Häfner, 2017]. Detailed information on noise analysis is available in
[Filzinger, 2018], while [Klaus, 2019; Rautenberg, 2021] discuss estimates of the resolv-
able atom numbers. This camera was used here for the first time to capture images of the
two atomic clouds within the same experimental cycle. The measurements in this thesis,
involving Li and Cs trapped together, were taken with the Andor camera in FK mode.
Conversely, the characterization of the Li cloud was performed using the Ximea camera.
A detailed numerical simulation of the imaging process involving all the possible noise
sources of both Ximea and Andor cameras can be found in [Borchers, 2023].

39





Chapter 2

A Li Fermi Sea with Cs impurities

The heteronuclear Fermi-Bose system formed by light fermionic 6Li and heavy bosonic
133Cs atoms is the combination with the largest mass ratio among all the stable alkali
isotopes. The large mass imbalance combined with the suitable scenario of Feshbach res-
onances at high magnetic fields [Repp et al., 2013; Tung et al., 2013; Pires et al., 2014a]
gives access to the physically relevant limit of heavy particles coupled to a degenerate
Fermi Sea, a non-trivial paradigm of many-body systems. Nevertheless, the large mass
difference and species dependent polarizability pose several experimental challenges for
slowing, cooling and trapping the two species together. Therefore, the development of an
efficient experimental sequence to produce two-component mass-imbalanced quantum
gases deserves particular attention.

In this chapter I present the experimental scheme implemented for the realization of
low-density Cs samples prepared in the Cs ground state |3,+3⟩ mixed with a degenerate
Fermi gas prepared in the Li|2⟩ state. Although some aspects of the mixing scheme were
originally designed for the realization of a system of Li impurities immersed in a Cs-Bose
Einstein condensate, the same scheme was then adapted for the complementary scenario
aiming at the realization of Fermi polarons. In Sec. 2.1 I revise important quantities for
trapped Bose and Fermi gases and for two-body elastic scattering at ultracold tempera-
tures. I present Li-Cs Feshbach resonances for the scattering channels Li|1⟩⊕|3,+3⟩ and
Li|2⟩⊕|3,+3⟩ and discuss challenges and implemented solutions for the realization of
ultracold Li-Cs mixtures. In Sec. 2.2 I describe the experimental sequence for mixing Li
and Cs atoms, following the individual steps. I first present the realization of the highly
degenerate Fermi Sea, then the realization of the low-density Cs Bose gas, and finally
the procedure for overlapping and mixing the two species using a bichromatic approach,
where Li atoms are trapped in the tightly confining and mobile microtrap (MT) at the Cs
tune-out wavelength, while Cs is trapped in the dimple trap (DT). In Sec. 2.3 I present
the experimental results about the loss processes that occur in our mixed system, focus-
ing on the one-body losses induced by light at the tune-out wavelength on Cs atoms and
on the Li-Cs three-body losses. The loss spectroscopy measurements are performed near
the Li-Cs Feshbach resonance at 888.6 G. In Sec. 2.4 I summarize the main results and
briefly discuss possible improvements of the setup for Fermi polaron experiments.
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Chapter 2. A Li Fermi Sea with Cs impurities

2.1 Interacting Bose-Fermi Li-Cs mixtures

Before starting our journey on the route for preparing the Li-Cs mixture, I introduce im-
portant quantities for trapped Bose and Fermi gases (see Sec. 2.1.1) as well as fundamen-
tal concepts about scattering theory and Feshbach resonances (see Sec. 2.1.2). I explain
how resonant scattering behavior in ultracold collisions leads to tunable interactions be-
tween atoms and I provide an overview of the interspecies Li-Cs Feshbach resonances
for the scattering channels between Li, either in the ground state Li|1⟩ or in the excited
state Li|2⟩, and Cs in the ground state |3,+3⟩. In Sec. 2.1.3 I explain the main experimen-
tal challenges for the realization of ultracold degenerate Li-Cs mixtures and illustrate the
solution implemented in the course of this work.

2.1.1 Bose and Fermi quantum gases in harmonic traps

All constituents of matter, either elementary or composite particles, can be divided into
bosons and fermions, depending on whether their spin is integer or half-integer. Ultra-
cold quantum gases are thus classified as either fermionic or bosonic, based on the spin
of the atomic species used. According to the symmetrization and antisymmetrization
postulate for bosons and fermions, respectively, the mean occupation number of a single-
particle energy eigenstate with energy ϵ is given by [Goodstein, 1985]

f±(ϵ) =
1

e(ϵ−µ)/kBT ± 1
, (2.1)

where µ is the chemical potential fixed by the atom number N, and T is the temper-
ature. In the thermal regime, when the atomic density is low or the temperature is
high, i.e. (ϵ − µ) ≫ kBT, Eq. (2.1) approaches to the Maxwell-Boltzmann distribution
f (ϵ) = e−(ϵ−µ)/kBT, which is independent from the intrinsic nature of the particle. How-
ever, by lowering the temperature or increasing the atomic density the degenerate regime
can be reached when the term ± 1 becomes relevant, leading to different energy distri-
butions for bosons and fermions. Qualitatively, the occupation of low-energy states com-
pared to a classical gas is expected to be enhanced for bosons, according to the − term,
and suppressed for fermions due to Pauli blocking, according to the + term. The con-
dition that marks the onset of quantum degeneracy is reached when the inter-particle
spacing n1/3 is comparable with the De Broglie wavelength

λdB =

√
2πh̄2

mkBT
(2.2)

determined by the temperature T and the atomic mass m [Ketterle et al., 1999]. The phase-
space density ρ = nλ3

dB, at this point, is on the order of unity and the individual wave
functions start to overlap. Therefore, the particles exhibit collective phenomena. For a
Fermi gas at T = 0, fermions fill up all the available states starting from the lowest energy
level up to the Fermi energy EF = TFkB. The Fermi temperature sets the temperature scale

42



2.1. Interacting Bose-Fermi Li-Cs mixtures

at which a Fermi gas deviates from the classical behaviour1 [Ketterle and Zwierlein, 2008;
Giorgini et al., 2008]. On the other hand, a Bose gas, enters the degeneracy regime below
a critical temperature TC, when a macroscopic number of atoms occupy the ground state
of the system leading to Bose-Einstein condensation (BEC) [Ketterle et al., 1999; Pethick
and Shmidt, 2001].

In this thesis we work with either thermal gases or non-interacting Fermi gases, trapped
in optical dipole traps, which provide a confinement well described by harmonic poten-
tials of the form

U(x, y, z) =
1
2

m(ω2
xx2 + ω2

yy2 + ω2
z z2), (2.3)

where m is the mass of the particle, and ωx, ωy, ωz are the trapping frequencies in three
spatial directions. The harmonic approximation holds when the thermal energy kBT of an
atomic cloud is much smaller than the potential depth U0. Furthermore, in order to evalu-
ate thermodynamic quantities in a harmonic potential, it is convenient to change from the
representation of discrete energies to a continuous density of energy eigenstates. This is a
good approximation when the thermal energy kBT of the system is much larger than the
largest energy spacing in the harmonic potential, i.e., when kBT/h̄ ≫ Max(ωx, ωy, ωz).

For finite temperature, the fugacity q = exp(µ/(kBT)) parametrizes the degree of
degeneracy of the gas and can be obtained numerically from

N =
∫ ∞

0
g(ϵ) f (ϵ)dϵ = ± k3

BT3Li3(±q)
h̄3ω̄3

, (2.4)

where Lin(x) is the polylogarithmic function of n-th order and the ± is for either bosons
or fermions, respectively. For a three-dimensional harmonic trapping potential, the den-
sity of energy states is g(ϵ) = ϵ2/(2h̄3ω3), with ω = (ωxωyωz)1/3 geometric mean trap-
ping frequency. The three dimensional atomic density distribution n(x, y, z) of a thermal
cloud, centered at a position (x0, y0, z0), is given by

n(x, y, z) =
N

(2π)3/2σxσyσz
e
−
(

(x−x0)
2

2σ2
x

+
(y−y0)

2

2σ2
y

+
(z−z0)

2

2σ2
z

)
, (2.5)

where the value n0 = n(x0, y0, z0) denotes the peak density, and the cloud sizes are σx, σy

and σz, where σi =
√

kBT/(mω2
i ) are the widths of the atomic clouds. For a Fermi gas,

the Fermi energy is defined as the chemical potential at zero temperature, EF ≡ µ(T = 0)
and it can be obtained from

N =
∫ ∞

0
g(ϵ) f+(ϵ)dϵ

T=0
=

∫ ∞

0
g(ϵ)Θ(ϵ − EF)dϵ (2.6)

being N the number of atoms for a given spin species and choosing the + term for the

1The effect is visible for T/TF < 0.6 [Ketterle and Zwierlein, 2008].
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Chapter 2. A Li Fermi Sea with Cs impurities

energy distribution f (ϵ). The global Fermi energy in a three-dimensional harmonic po-
tential is therefore EF = (6N)1/3h̄ω̄. The local Fermi energy at position (x, y, z) in the trap
can be defined as ϵF(r) = h̄2(6π2nLi(r))2/3/(2m) [Ketterle and Zwierlein, 2008], which
coincides with the relation for a uniform Fermi gas [Giorgini et al., 2008]. The fugacity q
is related to the Fermi energy by combining Eq. (2.6) with Eq. (2.4)

T
TF

= [−6Li3(−q)]−1/3 . (2.7)

To obtain the density distribution we combine Eq. (2.1) for fermions with Eq. (2.3) [Ket-
terle and Zwierlein, 2008; Giorgini et al., 2008]

n(x, y, z) =
∫

dp f (r, p) = −
(mkBT

2πh̄2

)3/2
Li3/2

(
− exp

(µ − U(x, y, z)
kBT

))
(2.8)

For fermions, the density profile changes smoothly from the gaussian distribution for
high temperatures to the zero temperature profile

nF(x, y, z) =
8

π2
N

RFxRFyRFz
×
[
max

(
1 −

( x2

R2
Fx

+
y2

R2
Fy

+
z2

R2
Fz

))]3/2
(2.9)

with the Fermi radius RFi =
√
(2EF)/(mω2

i ). The profile of the degenerate Fermi gas has
a rather flat top compared to the gaussian profile of a thermal cloud, as the occupancy of
available phase-space cell saturates at unity.

2.1.2 Interactions in an ultracold Li-Cs mixture

The length scale on which interactions between neutral atoms take place is given by the
short-range van der Waals potential, which scales as r−6 and has a finite range known as
the van der Waals radius rvdW . The temperature at which quantum degeneracy is reached
is between 100 nK and 50 nK, λdB is about 1 µm. The range of interaction is given by the
van der Waals radius rLiCs

vdW = 45 a0, rCs
vdW = 101 a0 [Häfner, 2017], where a0 = 0.5292 ×

10−10 m is the Bohr radius. Those quantities satisfy the inequality λdB, n1/3 ≫ rvdW ,
meaning that the particles interact via two-body collisions.

Fundamentals of scattering theory. I will provide the fundamental concepts of scatter-
ing theory, following the review article by Dalibard [1999]. We consider a three-dimensional
quantum gas characterized by a two-body interacting potential V(r) that is radially sym-
metric short range and that decreases as 1/rj, j > 1. In the long distance term, the wave
function, ψ(r), that satisfies the Schrödinger equation[

− h̄2

2m
∇2 + V(r)

]
ψ(r) = Eψ(r), (2.10)

where r is the relative coordinate and m is the reduced mass of the particle, can be written
as a sum of an incoming plane-wave plus an outgoing spherical wave with k momentum
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2.1. Interacting Bose-Fermi Li-Cs mixtures

along the axis of its initial motion

ψk(r) ∝ eikz + f (k, θ)
eikr

r
. (2.11)

where f (k, θ) is the the scattering amplitude. Since the relative distance between two
particles |r|, given by n1/3, is larger than rvdW , the long range limit reflects the condition
in ultracold gases quite well. All the relevant information are contained in the scattering
amplitude which can be calculated expanding the wave-function ψ(r) into the spherical-
waves basis with angular momentum l. This expansion, inserted in the Schrödinger
equation, leads to a radial equation that depends on l and that can be related to the
centrifugal barrier inhibiting the scattering for l > 0 in the regime of small scattering en-
ergies. The centrifugal barrier for Li-Cs is on the order of 2 mK [Gerken, 2022] and thus
collisions for lower temperatures can only occur due to isotropic s-wave scattering. The
only effect of an elastic collision is a phase shift of δl for each spherical wave. In order
to determine the scattering amplitude, it is necessary to take into account that it is not
possible to distinguish between two scattering processes that differ only in terms of the
permutation of the particles’ positions

dσindist

dΩ
= | f (k, θ)± f (k, π − θ)|2, (2.12)

and the total cross-section is obtained by integrating it over the full solid angle

σtot(k) =
4π

k2

∞

∑
l=0

(2l + 1)[1 ± (−1)l ] sin2(δl(k)). (2.13)

The contribution to the total scattering cross-section is different from zero for polarized
bosons (fermions), which corresponds to even (odd) values of l. At ultra-low tempera-
tures, the De Broglie thermal wavelength, associated with the relative momentum k, far
exceeds the van der Waals range of the interatomic potential. As such, similarly to a light
wave imprinting on a scatterer much smaller than its wavelength, the resulting collision
process is predominantly isotropic, i.e. s-wave (l=0). The scattering length in the limit of
low energies is given by

a = − lim
k→0

tan δ0(k)
k

. (2.14)

The s-wave cross-section for identical bosons is σ(k) = 8πa2/(1 + k2a2), while for iden-
tical fermions is σ(k) = 0. Indeed, a Fermi gas interacting via s-wave scattering can only
be realized with at least two different kinds of fermions which are then distinguishable.
For distinguishable particles, σ(k) = 4πa2/(1 + k2a2) and in the low energy limit k → 0,
σ(k) = 4πa2. In the unitarity limit, when the scattering length exceeds the De Broglie
wavelength λ ∼ k−1 and k2a2 ≫ 1, the cross-section becomes independent of the scatter-
ing length, leading to σ(k) = 4π/k2.
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Chapter 2. A Li Fermi Sea with Cs impurities

Moreover, for s-wave, the scattering properties are fully encoded in the s-wave scat-
tering amplitude, which in turn can be expanded as

f (k) = − 1
ik + 1

a − R∗k2
. (2.15)

The ultracold collisions are therefore characterized by two parameters which are the scat-
tering length a and the effective range parameter R∗. While a depends on the presence
of weakly bound (or virtual) molecular states near the energy threshold of the colliding
atoms, R∗ is essentially determined by the microscopic properties of the van der Waals
interatomic potential [Petrov, 2012]. In particular, when the molecular state is above the
scattering threshold, a is negative, corresponding to a net atom-atom attraction. On the
other hand, the net interaction is repulsive when the molecular state is below the scatter-
ing threshold and thus a is positive.

The scattering processes are universal and can be described as a contact interaction
[Ketterle and Zwierlein, 2008] with a pseudo-potential

V(r) = gδ(r) (2.16)

where g = 4πh̄2a/m is the interaction strength. The mean interaction energy in a sample
with homogeneous density n = N/V is given by

Eint(a) = gn =
4πh̄2n

m
a (2.17)

where the sign of the scattering length a leads to a different kind of mean-field interaction,
i.e. attractive if a is positive, repulsive if a is negative.

Feshbach resonances. The scattering properties of a pair of atoms can be resonantly
controlled by tuning the scattering length. A good introduction to Feshbach resonance
is provided by Chin et al. [2010]. A magnetic Feshbach resonance occurs when the open
scattering channel is brought into energy degeneracy, via the Zeeman effect, with a bound
molecular state supported by a closed channel with a different magnetic moment. Since
the two interaction potentials depend on the hyperfine states of the interacting particles,
their magnetic momenta differ and the difference in their energy is given by ∆E = δµ∆B.
Near the pole of the resonance B0, the scattering length deviates from its background
value abg and shows a strong dependence on the external magnetic field B, given by

a(B) = abg

(
1 − ∆

B − B0

)
, (2.18)

where ∆ is the resonance width. In particular, the value and sign of a(B) directly de-
termine both the scattering cross-section of the atom pair and the strength of the inter-
particle interaction, i.e. attractive if a(B) > 0, repulsive otherwise. For large positive
values of the scattering length, i.e. a ≫ R∗, the binding energy Eb of the weakly bound
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FIGURE 2.1: Interspecies scattering lengths aLiCs for the channels Li|2⟩⊕Cs|1⟩ (upper panel, pur-
ple line), Li|1⟩⊕Cs|1⟩ (middle panel, green line) and intraspecies scattering length aCs for Cs
atoms in the ground state Cs|1⟩⊕Cs|1⟩ (lowest panel, blue line). The scattering lengths for Li-Cs
have been calculated with parameters in Ulmanis et al. [2015], while those for Cs-Cs are taken
from Berninger et al. [2013].

dimer takes the form

Eb = − h̄2

2ma2 . (2.19)

For smaller a, the binding energy is linear with a slope proportional to the difference in
magnetic moment δµ. The regime where the binding energy has a quadratic dependence
on the scattering length is considered universal because a is the only relevant length scale
and is independent of microscopic details of the potential.

Feshbach resonances between Li and Cs |3, 3⟩. The scattering channels we experimen-
tally take into account in this Chapter are

|α⟩ = Li |1/2,+1/2⟩ ⊕ Cs |3, 3⟩ = Li |1⟩ ⊕ Cs |1⟩ , (2.20)

|β⟩ = Li |1/2,−1/2⟩ ⊕ Cs |3, 3⟩ = Li |2⟩ ⊕ Cs |1⟩ , (2.21)
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Chapter 2. A Li Fermi Sea with Cs impurities

where Li |1⟩ = Li |1/2,+1/2⟩, Li |2⟩ = Li |1/2,−1/2⟩ and Cs |1⟩ = Cs |3, 3⟩. The chan-
nels |α⟩ and |β⟩ are characterized by a different projection of the total angular momentum
m f , equal to 7/2 and 5/2, respectively.

The Li-Cs s-wave scattering length for the channels |α⟩ and |β⟩ as a function of the
magnetic field is shown in Fig. 2.1. In the range between 800 G and 1000 G, the system
offers a total of five interspecies Feshbach resonances. Two of these, at 889 G and 843 G,
are intermediately broad with sres ≈ 0.7 [Tung et al., 2013], while the other three, at 893 G,
916 G and 943 G, are narrow resonances characterized by sres ≤ 0.03 [Tung et al., 2013].
These resonances have been mapped experimentally by atom-loss spectroscopy [Repp
et al., 2013; Tung et al., 2013] and by radio-frequency association of weakly bound dimers
[Ulmanis et al., 2015]. A detailed comparison between different theoretical models for
an accurate analysis of the Li-Cs Feshbach resonances has been presented by Pires et al.
[2014a]. The Cs-Cs scattering length in this magnetic field region is dominated by a broad
s-wave Feshbach resonance located at 787 G [Berninger et al., 2013] and displays a zero-
crossing at about 880 G.

The inter- and intra- species scattering lengths in the Li-Cs system offer access to
several interesting regimes. Specifically, the two intermediately broad Li-Cs Feshbach
resonances are characterized by a different sign and magnitude of the Cs-Cs scattering
length aCs: while close to the 843 G resonance the intraspecies scattering length is large
and negative aCs ≈ −1500 a0, the 889 G resonance is characterized by a small and positive
intraspecies scattering length aCs ≈ +190 a0 [Berninger et al., 2013]. Moreover, since the
889 G Li-Cs Feshbach resonance in channel |α⟩ is close to the zero-crossing in aCs, it offers
the possibility to form a stable Cs BECs with slightly repulsive interactions, while the
Li-Cs interactions can be tuned from weak to strong and from repulsive to attractive. The
scattering channels and the Feshbach resonances taken into consideration for realizing
the Fermi polaron scenario are described in Sec. 3.2.1.

2.1.3 Challenges for the realization of ultracold Li-Cs mixtures

The aim is to study interacting low-density thermal gases of bosonic Cs atoms mixed with
a highly degenerate Fermi gas of Li atoms at magnetic fields close to the Li-Cs Feshbach
resonance at 888.6 G in the channel Li |2⟩ ⊕ Cs |1⟩ with a density ratio between the two
samples of nCs/nLi ≲ 0.1. On the one hand, all previous experiments within our research
group [Repp et al., 2013; Zhu et al., 2019b,a; Ulmanis et al., 2016b,c; Häfner et al., 2017]
were performed under experimental conditions well below the degeneracy threshold for
both species. On the other hand, experiments performed by Chin’s group in Chicago on
6Li -133Cs [DeSalvo et al., 2017, 2019; Patel et al., 2023] have demonstrated the possibility
of realizing double degeneracy mixtures, where the Cs Bose-Einstein condensates are em-
bedded in the Li Fermi Sea. Recently, in Tung’s group in Taiwan, Bose-Bose degenerate
mixtures of 7Li -133Cs have also been realized [Chen et al., 2023]. However, since we want
to have Cs gas at low densities and degenerate Li-Fermi gases at high densities, the re-
quirements for the optical trap geometry and the experimental preparation sequence are
different from the aforementioned experiments. Therefore, we have realized a loading
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sequence based on a bichromatic approach that guarantees: (i) an independent control
of the trap depth of the optical potential for each species, (ii) an external control of the
differential gravitational sag, and (iii) a central symmetry, favorable for detection with
high resolution imaging along the gravitational direction. It should be underlined that
the approach used in this work is only one possible way to deal with the Li-Cs mixture,
and it is a compromise between several aspects. In the following I discuss the individual
steps from loading into the MOT to combining the optical traps, underlining the explicit
main challenge for the Li-Cs mixture. Therefore, I will present the solutions implemented
in the current mixing scheme.

Dual-species MOT loading: inelastic collisions. The trapping of Li and Cs atoms in
a double species magneto-optical trap (MOT) is affected by light-assisted inelastic col-
lisions that cause atomic losses for both species [Schlöder et al., 1999; Kraft, 2006; Dei-
glmayr, 2009]. In particular, collisions with optically excited Cs atoms can lead to fine-
structure changing collisions or radiative decay processes with ground state Li atoms
[Weiner et al., 1999; Schlöder et al., 1999]. The dominant loss channel has been identified as
inelastic collisions between excited Cs 6P3/2 state and ground state Li 2S1/2 atoms, while
collisions between Li and ground state Cs atoms are dominated by the elastic channel.

To overcome inelastic light-assisted collisions in a MOT, we use a subsequent loading
scheme, which prevents losses between the excited state of both Li and Cs atoms, while
to overcome losses between excited Cs 6P3/2 state and ground state Li 2S1/2 atoms the
two species are spatially separated. We first prepare a Li MOT, and then we sequentially
load the atoms first into the DT and then into the MT. The MT is then displaced from the
center in the vertical direction, enabling Cs atoms to be loaded into the MOT. The spatial
separation of the two clouds, thus avoiding inelastic collisions.

Dipole trap loading: different temperatures. An efficient transfer of laser-cooled atoms
into an optical dipole trap requires proper adaptation of the trap depth to the temper-
ature of the atomic cloud during the trap loading process. Trap depths of typically
U ∼ 6 − 10 kBT are required, which cannot be fulfilled for both species at the same time.
In the most simple mixture experiments, the two atomic species are loaded from the
MOT into a common magnetic trap or optical dipole trap, followed by evaporative cool-
ing. This is possible because the mismatch in mass ratios, polarizabilities and magnetic
moments allows for similar trap depths for both species. Some examples are given by
mixtures of 6Li-40K [Spiegelhalder et al., 2010], 6Li-23Na [Hadzibabic et al., 2002], 6Li-87Rb
[Silber et al., 2005] or 40K-87Rb [Ospelkaus et al., 2007]. In our case, Cs|3,+3⟩ cannot be
purely trapped magnetically and the mismatch between polarizabilities and mass ratio
does not allow for pure optical trapping of both species at the same wavelength and with
the same trap depth. Moreover, while Cs is routinely laser-cooled to temperatures of
TCs ∼ 1 µK, Li atoms are prepared at temperatures of TLi ∼ 42 µK after gray molasses
cooling. Additionally, maintaining low densities for Cs is crucial to prevent significant
three-body losses.
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The individual requirements during the transfer process can be satisfied by imple-
menting a sequential transfer scheme into spatially separated optical dipole traps, which
are the dimple trap (DT) and the large volume reservoir trap (RT), respectively. These
traps are well mode-matched to the individual species in terms of trap depth and trap
volume. Cs atoms in the reservoir trap are prepared in the |3,+3⟩ ground state, which
requires a small magnetic field of a few G to maintain the spin polarization and to avoid
anti-confining effects. Conversely, when loading Li atoms into the MT and perform-
ing grey molasses cooling, the latter is already significantly disturbed at magnetic fields
above 1 G. This issue can therefore be avoided by loading Cs atoms into the reservoir
trap only after grey molasses cooling is completed. After loading these species into their
respective reservoirs, the RT for Cs and the DT for Li, they are sequentially transferred to
the trapping potential desired for polaron experiments, which is the dimple trap for Cs
and the MT for Li. Here, each species is individually evaporated to reach similar temper-
atures. The use of the highly confining MT allows reaching very high Fermi temperatures
TF and thus low T/TF in a short evaporation time. Therefore, the microtrap trapping po-
tential is well suited for the production of highly degenerate single-component Fermi
gases. Furthermore, the Cs tune-out wavelength allows the two traps to overlap without
the trapping potential for Li affecting the one for Cs.

Dual species overlap: large differential gravitational sag. In previous experiments, Li
and Cs were trapped both in the dimple trap at 450 nK being still in a thermal regime
[Pires, 2014]. The challenge in further decreasing the temperature of Li-Cs mixture in a
single wavelength optical dipole trap arises from the significantly different gravitational
potentials due to the mass imbalance between Li and Cs. Pure optical monochromatic
trapping is indeed possible only as long as the dipole potential dominates over the grav-
itational potential, which prevents performing further forced evaporation. At the wave-
length of the DT, the difference in the atomic polarizability of a factor of αCs/αLi ∼4,
results in the same factor in the potential depths such that UCs

dip ≈ 4ULi
dip. Considering a

harmonic trap confinement, the gravitational sag is given by

z0 ∝ g/ω2
z ∝ m/α, (2.22)

where g is the gravitational acceleration, ωz is the trapping frequency along the vertical
direction, m is the atomic mass and α the atomic polarizability. For a mass imbalance of 22
then zCs

0 /zLi
0 = mCs

mLi

αLi
αCs

∼ 5. In our case the highly mass-imbalanced Li-Cs mixture entirely
separates at temperatures below 100 nK [Ulmanis et al., 2016c]. The solution adopted for
mixtures at 100 nK, was to use species-selective trapping [LeBlanc and Thywissen, 2007],
imposing a bichromatic trapping at a wavelength of 921.1 nm, where the polarizability
for Cs is twelve times greater than the one for Li. Even if this allows increasing the trap-
ping potential, thus restoring the confinement against gravity for Cs atoms, the estimated
spatial overlap between the two clouds is still only about 45% and the differential grav-
itational sag is 16 µm [Ulmanis et al., 2016c]. This differential sag is too large to assure
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a sufficient overlap once we consider degenerate samples, for which the Fermi radius
along the vertical direction is < 10 µm (see Freund [2022]).

The use of a movable microtrap enables us to displace the trapped Li atoms along the
vertical direction and to compensate an arbitrary differential gravitational sag. Thanks
to the use of the tune-out wavelength of 880 nm the process takes place without affecting
the Cs trapping potential, i.e. trapping frequencies and density.

2.2 Production of a Li Fermi Sea with Cs impurities

The best way to understand the experiment is to experience it from the perspective of the
atoms. Following this approach, I will discuss in detail the individual preparation of the
two species as implemented for the combined sequence depicted in Fig. 2.2. We use a
subsequent approach where we first prepare the Li sample in about 6 s and store it away
from the crossing of the DT beams. Then we start the preparation of Cs, evaporating it
up to a temperature similar to that of Li. Finally, we overlap the two clouds together. The
production of a Li Fermi Sea trapped in the MT will be described in Sec. 2.2.1 and of a
dilute thermal gas of Cs atoms trapped in the DT in Sec. 2.2.2. In Sec. 2.2.3 I will explain
the overlap procedure and the final experimental parameters that we obtain for our Li-Cs
mixture.

2.2.1 Production of a Li Fermi Sea

The experimental preparation of a Li Fermi Sea trapped in the microtrap is divided into
several steps: (i) laser cooling and trapping in the dimple trap, which plays the role of a
reservoir for Li atoms, (ii) loading into a tightly confined and movable dipole trap (the
microtrap), (iii) evaporative cooling in the microtrap at 320 G, (iv) compression, transport
and storage, and (v) spin preparation. Step (i) is similar to the procedure described in
previous works by Gerken [2022] and Tran [2022]. The other steps are rather specific to
the sequence presented here and aim to have a sequence for mixing Li with Cs following
the criteria discussed in Sec. 2.1.3. Figure 2.3 shows the phase-space density as a function
of Li atom number for different stages of laser and evaporative cooling. This figure of
merit provides a guideline for the route described in the following.

Laser cooling and trapping into the Dimple Trap. The experimental sequence for pro-
ducing a quantum degenerate 6Li gas starts with loading a MOT of 7×107 atoms in 2 s, at
a temperature of about 1.5 mK. After this loading, we use the curvature coils to compress
the cloud. Further cooling takes place in the compressed MOT configuration (cMOT),
where we collect 5×107 atoms at a temperature of 300 µK. While the cMOT is still on, the
spatially modulated dipole trap beams are turned on 1.5 ms before shutting off the MOT
lights. After the cMOT, an efficient sub-Doppler scheme based on gray molasses cooling,
which exploits the D1 line of Li, is implemented. As the cooling of the grey molasses
reduces the temperature of the atoms in free space by a factor of 8, the DT, originally de-
signed to be loaded directly from the cMOT, is adapted to have a trap depth and volume
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FIGURE 2.2: Schematic of the experimental sequence for the preparation of a Li-Cs mixture. Time
is shown along the vertical axis, while the displacement of the traps along the vertical (gravity) z-
direction is shown along the horizontal axis: z0 corresponds to the position defined by the crossing
point of the DT beams, which is centered on the center of the Feshbach coils, as determined by
Feshbach tomography (see Sec. 1.4.1); zM is the position where we store the Li cloud trapped in
the MT during the preparation of the Cs cloud, as determined experimentally (see Sec. 2.2.1). A
detailed description is given in the text along the entire Sec. 2.2.
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corresponding to the temperature and volume occupied by the cloud after D1 cooling.
The performance of our D1 cooling scheme has been quantified in Neiczer [2018] and the
detailed loading procedure into the DT has been discussed in Gerken [2022]. We optimize
the power of the D1 cooling beams and their detuning in order to maximize the loading
into the DT. With this procedure, by measuring the performance of D1 cooling in free
space, we achieve a temperature of T = 60 µK for about the 70% of the atoms collected
in the cMOT2. After a typical 4 ms long pulse of D1 cooling, we turn on the repumping
beams for a few hundred microseconds to ensure half of the atoms in the Li|2⟩ state and
half in Li|1⟩. We jump to a high magnetic field of 800 G close to the Feshbach resonance
at 832 G between the Li|1⟩and Li|2⟩ states to ensure fast thermalization. The timescales
associated with elastic two-body collisions for a scattering length of 1×104 a0 are about
0.5 ms for typical densities of 4.5×1011 cm−3. As the high laser powers of the dimple trap
reach 110 W per beam, the two beams separate within tens of milliseconds due to thermal
lensing effects of the AOM [Heck, 2012; Simonelli et al., 2019]. Therefore, a first evapo-
ration is performed by ramping down the power to 32 W per beam in 500 ms before the
beams separate. We obtain a balanced mixture of Li|1⟩⊕Li|2⟩ states, with 1×106 atoms in
each spin state, at a temperature of 30 µK with typical sizes of (30, 260) µm. The number
of atoms finally trapped by turning off the modulation is 8×105 at trapping frequencies
of (4×103, 240) Hz and with sizes of (30, 150) µm. For densities of 6.4×1012 cm−3 we
obtain a two-body collisional time of 0.25 ms. At this point the phase-space density is
ρ ≈ 6× 10−3 and T/TF ≈4. We consider these parameters to be the starting condition for
evaporative cooling, which depends on the mixing scheme procedure for Li and Cs.

2The lowest temperature that can be reached is ∼ 42 µK; the minimum in temperature does not corre-
spond to the maximum number of atoms collected [Gerken, 2016; Burchianti et al., 2014].
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FIGURE 2.4: Li-Li scattering length for a Li|1⟩⊕Li|2⟩ mixture. The magnetic fields used for the
preparation of Li in the DT are marked in black: 800 G (dot), 320 G (cross), 526 G (diamond).
The dashed lines correspond to the positions of the intermediate Li-Cs Feshbach resonances, at
843 G for the Li|1⟩⊕Cs|1⟩mixture, and 888.6 G for Li|2⟩⊕Cs|1⟩, respectively. The broad s-wave
Feshbach resonance is centered at around 834 G. The inset shows an enlargement of the magnetic
field region below 600 G. Data are taken from Zürn et al. [2013].

Loading into a tightly confining and movable dipole trap. The aim here is to produce
single-component degenerate Fermi gases trapped in the MT and mix them with Cs.
Therefore, we need to go to magnetic fields where the scattering length is zero in order to
selectively prepare the atoms in a single spin state by applying a light pulse. Loading the
MT from the DT at 800 G would cause the sample to become degenerate immediately due
to the very high densities. To reduce the losses due to molecule formation when jumping
to 526 G, corresponding to a12 is zero (see Fig. 2.4), we prepare the weakly interacting
Fermi gas at 320 G [Lompe, 2011; Burchianti et al., 2014], where no weakly bound dimer
state exists. However, the forced evaporation at 320 G is much slower than at 800 G, as the
scattering cross-section is at least a factor of 25 times smaller, and therefore it is beneficial
to start the evaporative cooling at 320 G with the cloud as cold as possible. The fraction
of atoms Natom that can form molecules Nmol is given by Nmol/Natom = ρ exp (Eb/kBT),
where ρ is the phase-space density of free atoms and Eb = −h̄2/(ma2) is the molecule
binding energy [Jochim, 2004]. Thus, we evaporate in the dimple trap until kBT > Eb,
i.e. before the temperature becomes so low that the sample begins to contain a significant
fraction of molecules we stop the evaporation and jump to a magnetic field of B = 320 G,
while atoms are still trapped in the DT, as shown in Fig. 2.5 (a). The evaporation at 800 G
is done by reducing the laser intensities in three successive linear ramps, decreasing the
power from 32 W to 2 W in 2.5 s. This results in samples of 5×105 atoms at a temperature
of 3.5 µK. The trapping frequencies are reduced to (ωr, ωax)/2π =(1.3×103, 75) Hz and
the calculated trap depth is ≈ 40 µK; typical densities are of 7.9×1012 cm−3. The T/TF

here estimated is on the order of 1 and the ρ = 0.4. The jump to 320 G causes a slight
heating of the atoms to 5.5 µK while decreasing the atom number of only 10%, which
results in a peak density of 3.4×1012 cm−3, a phase-space density of ρ = 0.1 and a degen-
eracy parameter of T/TF = 1.6. By adiabatically switching on the MT, the temperature
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FIGURE 2.5: Loading procedure of Li atoms from the dimple (DT) to the microtrap (MT).
(a) Atomic fraction of atoms after the jump between 800 G and 320 G as a function of the trap
depth of the DT. (b) Atom number loaded into the MT as a function of the trap depth of the
MT. (c) Efficiency of the loading from the DT to the MT. The solid line is a fit and has a slope of
(0.46± 0.03), which means that the atom number loaded in the MT is half of the atoms trapped in
the DT.

remains nearly unchanged compared to the temperature in the initial DT volume, but the
Fermi energy increases proportionally to the depth of the optical trap [Viverit et al., 2001].
We maximize the atom number loaded into the MT and choose a trap depth of ≈ 40 µK
as shown in Fig. 2.5 (b, c). We collect up to 2×105 atoms and a temperature of 4 µK.
This results in a decrease of the degeneracy parameter by a factor of 4 corresponding to a
T/TF = 0.4. The trapping frequencies (ωr, ωax)/2π =(8.3×103, 154) Hz are and densities
of 2×1013 cm−3. We measure a one-body 1/e lifetime of τ = (38.0 ± 0.9) s as in Fig. 2.6
by holding a thermalized Li Fermi gas at the zero-crossing of the scattering length at 526
G. This corresponds to a one-body loss rate of Γ = (0.0270 ± 0.0009) s−1. Such a lifetime
is much longer then the ≈ 6 s that are needed to prepare Cs, and therefore the one-body
losses do not limit the Li final atom number for the mixing with Cs.

Evaporative cooling at 320 G. The mixture of atoms in the Li|1⟩ and Li|2⟩ states is
evaporated at 300 G, where the scattering length of a12 ≃ −290 a0 promotes the evap-
oration efficiency. Typical initial trap parameters are similar to the measurement pre-
sented here and they are: Ni = 1.2×105 (for each spin state), ωi,r/2π = 8.3(2) kHz
and ωi,ax/2π = 154(5) Hz, Ti = 3.7(2) µK, Ui = 36.8(6) µK, Pi = 95.6(6) mW, and
T/TF = 0.37(4) as calculated from Ti, Ni and ωi,(r,ax). To increase the level of degeneracy
of the system we follow the Boltzmann equation model proposed in O’Hara et al. [2001]
for evaporation in optical traps, which holds for fermionic gases far from unitarity3. This
model leads to scaling laws for the atom number and for other relevant quantities and
it follows from energy conservation with the assumption that the truncation parameter
η = U/kBT, where U is the trap depth and T is the temperature of the sample, remains
constant during the process by lowering the power of the optical trap. The ramp we im-
plemented for forced evaporation follows the theoretical curve derived in O’Hara et al.

3In Luo et al. [2006] the case of evaporation at unitarity is treated.
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FIGURE 2.6: Atom number of a thermalized cloud of Li atoms stored in the MT at a trap depth of
40 µK at 526 G, where a12 = 0. From an exponential fit to the data a 1/e lifetime of τ = (38.0± 0.9)
s is found.

[2001] for the trap depth

U(t) = U0(t)(1 + t/τ)−2(η′−3)/η′
, (2.23)

which assumes a constant truncation parameter η for the whole evaporation process. The
coefficient η′ is related to η as η′ = η +(η − 5)/(η − 4). We use a time constant of τ = 300
ms, which is experimentally optimized for obtaining the maximum atom number, and
η′ = 10.8, obtained for a truncation parameter of η = 10. The power was adjusted to fol-
low the theoretical curve in Eq. (2.23). To characterize the performance of the evaporation
at 320 G, we performed TOF absorption imaging for different power jumping to 526 G,
which corresponds to the zero crossing for a Li|1⟩⊕Li|2⟩ mixture. Figure 2.7 summarizes
the main results of the forced evaporation. The cloud was fitted with a bidimensional
Fermi distribution and the temperature was extracted as a free parameter from a ballistic
expansion. The atom number was averaged over different TOF expansions. The degen-
eracy parameter T/TF is extracted in two different ways: (i) by fitting the density profiles
with a bidimensional finite-temperature Fermi distribution (see the gray diamonds in
Fig. 2.7 (b)), and (ii) from trapping frequencies taken from a calibration (see Fig. 1.11)
and atom number as TF = h̄ω̄(6N)1/3/kB, with ω̄ = (ω2

r ωax)1/3 (see the brown dots in
Fig. 2.7 (b)). The trap depth has been calculated assuming a single focused gaussian beam
in the presence of the gravitational potential, even though gravity is negligible compared
to the optical potential, even at low MT powers.

The trap depth of the MT is reduced by an order of magnitude in less than 2 s and an
efficient cooling of the cloud is observed down to a trap depth of 3 µK, corresponding to
evaporation times of 1.4 s and to a power P = 8.0(4) mW. At this point, N = 7.7×104

atoms in each spin state remained trapped at a temperature of T = 0.16(1) µK, corre-
sponding to a T/TF = 0.07(1). Here, we measure trapping frequencies of ωr/2π = 2.4(1)
kHz and ωax/2π = 44(2) Hz. By fitting a bidimensional Fermi distribution we obtain
a T/TF = 0.09(4), which is consistent with the value calculated from atom number and
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FIGURE 2.7: Forced evaporation of Li atoms at 320 G. (a) Atom number (top) and temperature
(bottom) as a function of the trap depth at different points of the forced evaporative cooling. The
dashed lines represent the scaling law N = N0(U/U0)

3/(2(η′−3)) [O’Hara et al., 2001], with η′ =

10.8 and η ≡ U/kBT = 10 (top), and T = 0.1×U/kB (bottom), respectively. The trap depth spans
one order of magnitude, between 4 and 40 µK in a time of 2 s as shown in the inset. (b) Degeneracy
parameter T/TF as a function of the atom number, for the same measurement. The degeneracy
parameter is extracted in two different ways: fitting the density profiles with a bidimensional
finite-temperature Fermi distribution (gray diamonds), and calculating TF = h̄ω̄(6N)1/3/kB as
described in the text (brown dots). The error bars in (a) and (b) include statistical errors (from
up to 10 independent measurements). A systematic error of 10% is also considered for the T/TF

extracted by fitting the Fermi distribution (gray diamonds).

trapping frequencies. This is the trap depth that we set as target for our evaporation
scheme. Indeed, for trap depths lower than 3 µK, the evaporation efficiency breaks down.
We compare our measurement of atom number over trap depth with the predictions pro-
vided by the scaling laws inferred from the Boltzmann equation model [O’Hara et al.,
2001]. Contrary to other experiments, such as [Burchianti et al., 2014; Gross et al., 2016],
even if we start the evaporation from a gas which is already degenerate, the scaling laws
are in reasonable agreement with the Boltzmann model, and the Fermi statistic, which be-
comes relevant for T/TF < 0.6, does not severely suppress the efficiency of evaporative
cooling, in agreement with [O’Hara et al., 2001].

Compression, transport and storage. Transport after preparation of the Li cloud is
mainly necessary to avoid losses induced by photon scattering from the MT once the
Cs atoms are prepared in their lowest ground state4. The minimum displacement of the

4The displacement of the Li cloud during the Cs MOT was taken as one of the criteria for redesigning the
trapping scheme to avoid inelastic collisions. Contrary to expectations, we have experimentally observed
that Li atoms trapped in the MT do not show any loss feature when superimposed to the Cs MOT. This
effect was not deepened further, but it seems that the MT light creates a dark spot for the Cs atoms trapped
in the MOT, shielding the Li atoms trapped in the MT from Cs. Therefore, inelastic interspecies collisions
are suppressed.
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MT necessary to avoid losses on Cs atoms was experimentally measured to be 230 µm.
This value was optimized looking at the number of remaining Cs atoms in the presence
of the MT and roughly corresponds to the size of the Cs cloud loaded in the levitated
RT. However, we have found that the efficiency of the transport is higher for deeper trap
depths, because at low trapping frequencies the noise related to beam pointing causes
heating and subsequent loss of Li from the trap (see Sec. 1.3.2 and Fig. 1.13). We there-
fore set the trap depth for transport to maximize the number of atoms remaining in the
trap afterward. To do this, we need to adiabatically compress the cloud. The idea is to
increase the trap depth while keeping the entropy and the ratio of T/TF constant [Ket-
terle et al., 1999; Walraven, 2019], so that the process is reversible. Since collisions help to
keep the cloud thermalized, we compress the cloud containing the sample at 320 G. The
fraction of atoms is independent from the ramp time for tramp > 10 ms, which is a factor
of 70 larger than the collisional time. We ramp up the MT power in 100 ms from a trap
depth of ≈ 3 µK to 76 µK. Assuming the process is adiabatic, T/TF should be conserved
and the temperature should increase as ω f /ωi ∝

√
U f /Ui, corresponding to an increase

of ≈ 20%. This should also result in an analogous decrease in temperature the power
is ramped down to the lowest value reached after evaporative cooling. Our aim was to
perform this process in such a way that T/TF does not change over the entire storage
time. However, we found that the process is not adiabatic due to several reasons. First,
during the preparation of Cs atoms, the number of Li atoms stored in the MT is reduced
by a factor of Γ∆t, where Γ = (0.0270 ± 0.0009) s−1 is the one-body loss rate and ∆t is the
waiting time. Consequently, T/TF is reduced by a factor of (N f /Ni)

−1/3. A storage time
of 6 s results in a 15 % reduction of the atom number, which implies that N f /Ni ≈ 0.85.
The corresponding change in T/TF is of ≈ 5%, which is negligible. Second, during the
spin cleaning process, the cloud is heated by about 10%, while the number of atoms per
spin state remains the same. Therefore, the change in T/TF is ≈ 10%. Third, during the
displacement of the trapped atoms at a trap depth of 76 µK, we lose about 20% of them for
each trip, becoming 40% considering going back and forth. Therefore, T/TF is reduced
by ≈ 20%. However, the main contribution is given by magnetic fields jumping, which
increases the temperature by about a factor of 3. At the end of the whole procedure we
have a Li temperature of about 0.6(2) µK and an atom number of 4×104. Then, we adjust
the final trap depth to limit the atom loss.

Spin preparation. We prepare a spin-polarized Li sample by applying a D2 resonant
light pulse on the Li|2⟩ state. Spin cleaning is performed during the preparation of Cs
atoms, while atoms are stored in the MT, displaced from the Cs cloud by 230 µm, as
shown in Fig. 2.10, (A). The removal is done by setting a magnetic field of 526 G, which
corresponds to a non-interacting Li|1⟩⊕Li|2⟩ mixture. The pulse length is adjusted ex-
perimentally to 60 µs. The Li|1⟩ spin state remains trapped, but the temperature increase
is about 10%, as photon scattering heats the atoms.

It should be noted that we remove the Li|2⟩ state independently from the desired final
state. In fact, during the preparation of Cs in the RT, by changing both the magnetic field
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offset and the gradient, the Li population becomes unbalanced with 30% of the atoms
in the Li|2⟩ state and 70% in the Li|1⟩ state. We then eliminate the state containing the
minority of the atoms. Afterwards, by using a radio-frequency sweep, we transfer the
population from the Li|1⟩ state to the Li|2⟩ state and obtain a mixture of Li|2⟩⊕Cs|1⟩.
This is done at 900 G with the two clouds still spatially separated and once the process of
Cs evaporation in the DT is completed (see Sec. 2.2.2).

2.2.2 Production of a dilute Cs Bose gas

The experimental sequence employed to create a dilute Cs sample for mixing with the Li
Fermi Sea is described below. Our efforts to design and implement an optimal sequence
for the realization of a Bose-Einstein condensate are described in Tran [2022] and will not
be repeated here. After the finalization of that work, due to the emptying of the Cs in
the oven, we worked with very poor Cs conditions and a very low atom number. For
the preparation of bosonic Cs ultracold gases, we follow some of the steps designed for
the aforementioned optimal sequence, but add important criteria such as (i) retaining as
much Cs as possible in such unfavorable situation and (ii) adapting the final Cs temper-
ature in the DT to match the Li temperature in the MT.

Cs experimental preparation in a nutshell. Each experimental cycle starts by loading
the Cs MOT for a typical duration of 3 s, followed by a 30 ms long compression phase.
Subsequently, a sub-Doppler cooling scheme is applied [Drewsen et al., 1994], resulting
in a sample of 2.5×106 atoms where temperatures on the order of 10 µK are reached5. At
this point, the RT is turned on at a power of 25 W per beam. While the dipole trap is
on, Cs atoms are prepared by means of the degenerate Raman-sideband cooling (DRSC)
[Vuletic et al., 1998; Kerman et al., 2000; Treutlein et al., 2001] in the lowest hyperfine
state |F = 3, mF = 3⟩ of Cs, where two-body losses are suppressed by applying a 1.5 ms
long DRSC pulse [Tran, 2022]. The magnetic fields as well as the beam powers of the
Raman lattice and polarizer, are ramped down in order to achieve temperatures of less
than 1 µK and a spin polarization of 85%. In order to facilitate the efficient transfer of
Cs atoms into the RT after DRSC, it is necessary to apply a magnetic field gradient in
order to prevent the atoms from a free fall under the influence of gravity. Furthermore,
a magnetic field offset must be employed in order to compensate for anti-trapping in
the xy plane [Tran, 2022]. To achieve fast turn-on times, the voltage applied to the coils,
is first maximized and then limited, as described in detail in Rautenberg [2021] and Tran
[2022]. This process is applied to a magnetic field of 200 G6 and a corresponding levitation
gradient of 30 G/cm. Typical samples of 8×105 spin-polarized atoms are finally loaded
into the RT at a temperature of 1 µK and with atomic peak-densities of 8×1010 cm−3.

5The measurements shown in Fig. 1.5 have been performed before the emptying of the Cs oven.
6The choice of this magnetic field is motivated, on the one hand, by the fact that this was the magnetic

field necessary to compensate for anti-trapping in the case of larger reservoir trap beam waist, used for a
certain period, and on the other hand, to make smoother the jump to 526 G.
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FIGURE 2.8: Cs-Cs scattering length in the |3,+3⟩ state as a function of the applied magnetic field
offset (including s-, d- and g-wave resonances). The magnetic fields used for the preparation of Cs
in the DT are marked in black: 200 G, corresponding to aCs ≈ 2000 a0 (dot); 526 G, corresponding
to aCs ≈ 3000 a0 (cross), 900 G, corresponding to aCs ≈ 300 a0 (diamond). The dashed lines
correspond to the positions of the intermediate Li-Cs Feshbach resonances, at 843 G and 888.6 G,
respectively. The three broad s-wave Feshbach resonances are centered around -12 G, 549 G and
787 G. Data are taken from Berninger et al. [2013].

Once the RT has been loaded, and before reaching the target magnetic field between
800 G and 100 G, it is essential to jump to 526 G (see Fig. 2.8 and Fig. 2.10 (A)), which
corresponds to the zero crossing for the scattering length a12 in the channel Li|1⟩⊕Li|2⟩.
At this point, a resonant light pulse provided by the imaging beam (see Sec. 1.5.2) selec-
tively excites the Li|2⟩ state, without affecting Cs. In order to limit Cs losses, we reach
526 G, corresponding to aCs ≈ 3000 a0, as smoothly as possible. Therefore, we first jump
to ≈ 511 G, which has a scattering length aCs ≈ 2000 a0, similar to that at 200 G, and
then we ramp up the magnetic field to the target value of 526 G. This process is subject
to periodic optimization to prevent the voltage of the coils from exceeding a predefined
threshold. Nevertheless, in this step, we register a loss in the atom number of 50%. We
then jump to ≈ 900 G, which corresponds to a scattering length of 400 a0, to take advan-
tage of the three-body loss minimum7, and set a corresponding magnetic field gradient
for levitation of 27.7 G/cm. We wait 100 ms for the coils to reach this value and for the
sample to thermalized. Even when we reach this magnetic field as quickly as possible,
we observe atomic losses of 80%, with respect to the previous step, and a temperature
increase by a factor of 2.5. The dimple trap is then ramped up to 230 mW in 300 ms,
corresponding to a trap depth of 16 µK, followed by the ramping down of the reservoir
trap in another 300 ms. We load into the DT a sample of 1×105 atoms at a temperature of
2.5 µK, resulting in atomic peak-densities of 2×1011 cm−3.

From here on, we start forced evaporation to lower Cs temperature in order to match
the temperature of Li atoms. A first evaporation is performed by lowering the magnetic
field gradient from 27.7 G/cm to 0 G/cm in 200 ms, which corresponds to a tilting of

7There is a Cs three-body loss minimum at 893 G, corresponding to aCsCs =270 a0 [Kraemer et al., 2006;
Berninger et al., 2011].
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FIGURE 2.9: Relevant quantities for both Li (red) and Cs (blue) during the complete experimental
sequence from loading of Li MOT to mixing of the two species. From top to bottom: atom num-
ber, temperature and peak atomic densities. On top, the different experimental steps as for the
corresponding timing diagram in Fig. 2.10.

the trap in the z-direction and provides a trap depth of 6 µK and trapping frequencies
of ωx,y,z/2π = (10, 143, 166) Hz. During this process, the power of the MT (for Li) is
also slightly adjusted in order to compensate for the removal of the artificial gradient.
We obtain 3×104 atoms at a temperature of 1 µK, resulting in atomic peak-densities of
2.3×1011 cm−3. The power of the DT laser is then reduced with a linear ramp from
230 mW to 150 mW, which corresponds to a trap depth of U = 3 µK in 1 s. Here, we
estimated the trapping frequencies to be ωx,y,z/2π = (8, 112, 121) Hz. We reach 6.5×103

atoms at a temperature of 300 nK, resulting in atomic peak-densities of 4×1010 cm−3.
Then, we jump to the target magnetic field, after which we move the MT back, starting
the process of overlapping and consequently mixing the two species.

2.2.3 Production of a Li-Cs mixture

Figure 2.9 shows the characteristic quantities during the whole experimental procedure,
reporting the typical atom number, temperatures and densities for both Li and Cs at
different stages of the experimental sequence up to the production of individual ultracold
samples, as summarized in Fig. 2.2 and described in detail in Sec. 2.2.2 and Sec. 2.2.1.
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FIGURE 2.10: Timing diagrams for the sequential trapping of Li and Cs atoms and subsequent
mixing. Parameters are described in the main text. The sequence time is in real scale. The di-
agrams for the magnetic fields corresponds to commands given to the coils. Panel (A) shows a
zoom on the spin cleaning sequence in order to prepare Li spin polarized sample. Panel (B) show
a zoom on the mixing procedure.

Figure 2.10 shows the timing diagram for sequential trapping of Li and Cs atoms and
subsequent mixing.

Compensation of the gravitational sag. The compensation of the differential gravita-
tional sag is done by mechanically shifting the position of the Li cloud with respect to
the Cs cloud by moving the MT beam (see Sec. 1.3.2). First, the position of the focus of
the MT is chosen to be optimal for loading Li atoms from the DT (see Sec. 2.2.1). Then,
as described in Sec. 2.2.2, we load Cs atoms into the DT while levitating them against
gravity by a magnetic field gradient provided by the curvature coils. For mixing Li with
Cs, we remove the magnetic field gradient such that Cs is purely optically trapped and
therefore, it is pulled down. To achieve the overlap between the two species, it is nec-
essary to move the Li cloud trapped in the MT downwards by a distance equal to the
gravitational sag of Cs. For a harmonic confinement, the gravitational sag of Cs trapped
in DT can be calculated as

z0 =
ϵ0cπ

4αp

w4
0

2P
(µBg − mg) (2.24)
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FIGURE 2.11: Measurement of the gravitational sag. (a) Sketch of the procedure. (b) Loss mea-
surement on Cs atoms induced by photon scattering at the tune-out wavelength as a function of
the displacement of the MT set by the translation stage. The Cs cloud is prepared in the DT at
900 G, with a magnetic field gradient of 27.7 G/cm providing levitation (in green) and without
levitation (in blue). The solid lines represent a Gaussian fit to the data and the vertical dashed
lines indicate the position of the minima. The difference between the two minima gives the grav-
itational sag of Cs ∆z0 = (15.0±1.8) µm. The zero of the x-axis corresponds to the position where
the gravitational sag is compensated.

where αp, w0, P are the polarizability, beam waist and power of the DT, respectively, while
µ is the magnetic moment for Cs atoms at a given magnetic field offset, Bg is the mag-
netic field gradient for levitating Cs and m is its mass. To levitate the Cs cloud prepared
in the DT with a magnetic field offset of 900 G and a power of 200 mW, a magnetic field
gradient of 27.7 G/cm is required. With such a levitation, the trap depth is 16 µK and the
vertical size of the cloud is σCs

z = (37.7±0.3) µm. By decreasing the magnetic field gradi-
ent, the trap depth is reduced to 6 µK and the size to (25.0±0.5) µm. In order to know the
correction of the stage after switching off the magnetic field gradient, we perform a kind
of tomographic measurement. Indeed, the differential gravitational sag is measured by
loss tomography on Cs atoms induced by photon scattering at the tune-out wavelength
(see section 2.3.1). The MT beam (without Li) is used as a probe and its height from
the horizontal plane, defined by the crossed DT beams, is varied in a range larger than
the size of the Cs cloud. The power of the beam is experimentally adjusted to maximize
the losses without saturating the signal. We change the focal position of the MT beam
by moving the translation stage. We measure the remaining atom number as a function
of the displacement of the stage, and the position where the losses are maximized is set
as the target where to move the MT. A typical measurement is shown in Fig. 2.11. The
power of the MT is here set to 147 mW and the loss rate is about 5.21 s−1 (see Sec. 2.3.2).
The signal is reproduced by a Gaussian function of (25±1) µm with and (18±1) µm with-
out levitation. The difference between the center position of the Gaussian functions, is
∆z0 = (15.0±1.8) µm and represents the effective differential gravitational sag between
Li and Cs at 900 G. This results is comparable to the Cs gravitational sag expected from
Eq. (2.24), which is about 10 µm. This result differs of approximately 20% with the sag
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FIGURE 2.12: Trapping potentials and density distributions for Li (red) and Cs (blue) in a purely
optical bichromatic trap, in the final preparation step. Li is essentially trapped by the microtrap
in y and z directions and by the dimple trap in the x-direction, whereas Cs is only confined by
the larger trapping potential provided by the dimple trap. Cuts of the density profiles at the
peak density are shown. They are calculated for typically measured atom numbers of NLi =

4×104, NCs =6.5×103, PMT = 8 mW, PDT = 150 mW and magnetic field offset of B = 900 G.
The gravitational sag is set to zero, as it is compensated by moving the MT with the translational
stage. For Li, we consider here a Fermi distribution at finite temperature.

calculated from the full potential, which leads to a gravitational sag of 13 µm. This pro-
cedure, in combination with in-situ absorption imaging from top, is regularly performed
before mixing the two species in order to compensate for the Cs gravitational sag and
center Li on the Cs cloud.

Overlap and final properties of the mixture. The final procedure of overlap between
the two species is illustrated in Fig. 2.10 (B). To prevent high intensities and excessive
scattering, we ramp down the trap while moving it back. The linear ramp back takes
approximately 100 ms. Since returning over a distance of 230 µm with an acceleration of
10 mm/s2 takes approximately 250 ms, we start to ramp down the power 150 ms after the
stage is triggered. The Li cloud has a vertical size of 10 µm, while the Cs cloud has a size
of 25 µm. They start to overlap when their centers of mass are 35 µm apart. Considering
the accelerated motion of the Li cloud with an acceleration of 10 mm/s2, this distance is
covered in a time of 17 ms. Therefore we have to consider that the sample starts to inter-
act before that they are perfectly overlapped. In the case of the experiment in Sec. 3.3 we
wait an additional 100 ms after the end of the ramp down due to the uncertainty in the
position of the stage.

Waiting 20 ms, at 900 G, after we reach the target power for the MT, we end up with a
mixture of NLi = 4×104, NCs = 6.5×103 in a bichromatic trapping configuration. Here, the
microtrap, at a laser power of ∼ 8 mW provides a trapping potential for Li only, which
results in a trap depth of ≈ 3 µK and trapping frequencies of ωLi/2π = (44, 2.4×103,
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2.2. Production of a Li Fermi Sea with Cs impurities

2.4×103) Hz. The dimple trap, instead, provides trapping mainly for Cs, with trapping
frequencies of ωCs/2π = (80, 112, 121) Hz. For Li atoms, the DT trap creates a much
shallower trap and the atoms remain mainly sucked into the deeper potential provided
by the microtrap. We measured separately TLi ≃ TCs = 560 nK8. Typical peak densities are
n0,Li,F = 4.0×1012 cm−3, n0,Cs = 5.4×1010 cm−3 with an estimated T/TF = 0.36. The ratio of
the densities is smaller about 1% as desired for impurity physics. The trapping potentials
and the density distributions for both Li and Cs are shown in Fig. 2.12. The gravitational
sag is set to zero, as it is compensated by moving the MT with the translational stage.
The Li spatial density distribution looks completely embedded in the thermal Cs along
y and z direction of confinement. We define the volume of spatial overlap between the
two clouds as the volume of the overlap normalized to the peak densities of the Cs cloud
n0,Cs and Li cloud n0,Li

Voverlap

VCs
=

1
VCs

∫
d3r

nLi(r) nCs(r)
n0,Lin0,Cs︸ ︷︷ ︸

Voverlap

. (2.25)

Assuming thermal distributions for both clouds Voverlap = 0.03 × VCs = 0.7 × VLi. The
overlap between the two clouds is confirmed by the signature of interspecies interaction
detected as three-body Li-Cs losses near the Feshbach resonance at 888.6 G shown in
Sec. 2.3.2. Another independent indication of the overlap between the two clouds is given
by the measurements performed in Sec. 2.3.1 by the estimate of the overlap between the
MT laser beam and the Cs cloud.

Considerations about thermalization. The collisional rate is given by [Mosk et al., 2001;
Ivanov et al., 2011]

τ−1
coll = ξvσLiCsn, (2.26)

where n = (N−1
Li + N−1

Cs )
∫

d3r nLi(r) nCs(r) is the overlap density [Silber et al., 2005;

Ivanov et al., 2011], v =
√

8kB
π ( TLi

mLi
+ TCs

mCs
) is the mean thermal velocity, σLiCs is the s-wave

scattering cross-section and ξ = 4mred/M = 4mLimCs/(mLi +mCs)
2 is the mass-mismatch

factor that corrects for unequal mass collisions, which for Li-Cs is ξ ≃ 0.17. We include
an energy dependence to s-wave cross-section σLiCs = (4πa2

LiCs)/(1 + k2a2
LiCs), where

h̄k = mredv is the mean relative thermal momentum with mred = mLimCs/(mLi + mCs) the
reduced mass for Li-Cs. Assuming for both nLi(r) and nCs(r) two gaussian distributions
as in Eq. (2.5) with xLi,Cs

0 = yLi,Cs
0 = 0, the overlap density can be simplified to

n = (N−1
Li + N−1

Cs ) ·
NLiNCs

(2π)3/2 exp

(
∆z2

2(σ2
z,Li + σ2

z,Cs)

)
∏

i=x,y,z

1√
(σ2

i,Li + σ2
i,Cs)

, (2.27)

8It should be noted that the measured Cs temperature is higher by a factor of 3 than that expected by
considering a thermalization factor between 6 and 10 for the calculated trapping potential. The values of
the sizes obtained from the ballistic expansion of the TOF measurements are also higher than those expected
from the calculated density distributions. Cs is already interacting with the MT light and heating up.
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where σi =
√

kBT/(mω2
i ) are the widths of the atomic clouds and ∆z = zLi

0 − zCs
0 is

the difference between the centers of the Li and Cs distributions and provides the dif-
ferential gravitational sag of the two species. The overlap density, calculated for the
parameters reported at the beginning of the previous paragraph, is n = 2.8×1011 cm−3,
while

∫
d3r nLi(r) nCs(r) = 1.6×1015 cm−3. The inter-component thermalization time,

which characterizes the variation of the temperature difference ∆T = TLi − TCs is given
by [Mosk et al., 2001; Mudrich et al., 2002]

− 1
∆T

d(∆T)
dt

= τ−1
th =

1
α

τ−1
coll , (2.28)

where α is the average number of collisions needed for thermalization. For harmonic
traps α ∼ 3 [Wu and Foot, 1996; Arndt et al., 1997; Delannoy et al., 2001; Mosk et al.,
2001; Mudrich et al., 2002]. If the offset magnetic field is set to 900 G, corresponding to
aLiCs = −175 a0, the expected collision rate between the two species is τ−1

coll ∼ 2.3 s−1.
This rate corresponds to τcoll ∼ 440 ms and τth ∼ 1.3 s is the expected thermalization
time. If instead the mixture is prepared directly at unitarity, i.e. at 888.7 G (as for the
measurements in Sec. 2.3.2 and Sec. 3.3.1) then τ−1

coll ∼ 1.4 ×103 s−1, leading to τcoll ∼
0.7 ms and τth ∼ 2 ms. By replacing nLi(r) with a Fermi distribution (see Eq. (2.8)), the
overlap density needs to be evaluated numerically. We performed this calculation by
considering a pure harmonic potential (see Eq. 2.3) with trapping frequencies ωLi/2π

= (44, 2.4×103, 2.4×103) Hz provided by the MT only and with a chemical potential of
µ = kB × 1.35 µK. The resulting collisional rates are reduced by 10% compared to the
rates calculated assuming thermal density distributions for both clouds.

2.3 Loss processes in a Li-Cs mixture

In order to gain experimental access to the creation of Fermi polarons, it is important to
understand the losses that occur in our mixed system. In a Li|2⟩⊕Cs|1⟩ mixture, losses
mainly include the one-body losses, in particular induced by light at the tune-out wave-
length on Cs atoms as well as Li-Cs three-body losses [Ulmanis, 2015]. In Sec. 2.3.1 we in-
vestigate the effect of the one-body losses induced by the MT at the tune-out wavelength
and in Sec. 2.3.2 we observe a clear signature of interspecies interactions, manifested in
the three-body loss close to the Li-Cs Feshbach resonance at 888.6 G. In addition, by mea-
suring both types of losses, we qualitatively test the overlap between the atomic clouds.

2.3.1 Light-induced Cs loss at the tune-out wavelength

The use of a dipole trap for trapping Li atoms tuned at the Cs tune-out wavelength [Arora
et al., 2011; Jiang et al., 2020; Ratkata et al., 2021] (see also Sec. 1.3) facilitates the indepen-
dent control over the two species when the two clouds are spatially overlapped, as it
prevents imposing any additional confinement on the Cs atoms [LeBlanc and Thywis-
sen, 2007]. Nevertheless, the Cs tune-out wavelength is in between the D1 and D2 line
and this leads to relevant spontaneous photon scattering by Cs atoms, which increases
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FIGURE 2.13: Spontaneous photon scattering by Cs atoms. (a) Energy levels of 133Cs showing
spontaneous transitions from linearly polarized light. The laser light at frequency ω is in red and
lies in between D1 and D2 lines. The solid lines show the path for scattering process when laser
detuning is larger than the excited-state hyperfine-structure splitting. This picture has been in-
spired by Cline et al. [1994]. (b) Scattering cross-sections for π-polarized light interacting with Cs
atoms in the ground state as a function of the laser wavelength. The total scattering cross-section
is indicated with a solid black line, Rayleigh scattering cross-section is the solid red line, and F-
changing Raman scattering cross-section to |F′′, m′′

F⟩ = |4, 4⟩, |3, 2⟩ and |4, 2⟩states are the green
dashed, violet dot-dashed and purple dot-lines, respectively. Both pictures have been adapted
from [Welz, 2024].

the trap loss rates and might prevent state-selective experiments for Cs [Cline et al., 1994;
Kaplan et al., 2005].

Spontaneous photon scattering. Spontaneous scattering is a two-photon process, in
which an atom initially in a state |F, mF⟩ absorbs a photon from the trapping laser and
goes to an intermediate state |F′, m′

F⟩ of some excited level. The atom then decays back
to the ground state, to a final state |F′′, m′′

F⟩. If the final state matches the initial state,
specifically F′′ = F and m′′

F = mF, the process is identified as Rayleigh scattering. Con-
versely, if the final state differs, i.e. F′′ ̸= F or m′′

F ̸= mF, the process is known as Raman
scattering, prevents the possibility to prepare the atoms in a well defined state and there-
fore has a negative impact on spectroscopic measurements. Following the considerations
in Cline et al. [1994] and [Kaplan et al., 2005] applied to Rubidium atoms, the probabil-
ity amplitude for scattering between |F, mF⟩ and |F′′, m′′

F⟩ via |F′, m′
F⟩ is proportional to

⟨F, mF|d̂0|F′, m′
F⟩ ⟨F′, m′

F|d̂q|F′′, m′′
F⟩ where dq are the spherical components of the dipole

moment operator q = 0 ,1 or -1 depending on the polarization of the absorbed and emit-
ted photons. We consider here a linearly polarized laser and for the conservation of the
angular momentum we have mF = m′

F. Moreover, considering that the detuning from
resonance is large enough such that no specific intermediate state is resolved, the rate of
transition between |F, mF⟩ and |F′′, m′′

F⟩ is given by the sum over all possible intermedi-
ate states as provided by the so called Kramers-Heisenberg formula [Cline et al., 1994;
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Loudon, 2000]

Γ|FM⟩→|F′′m′′
F⟩(r, ω) =

I(r)(ω − ωF′′m′′
F
)3

h̄3ϵ2
0c46π

∣∣∣∣∣∣ ∑
q,J′,F′,m′

F

⟨F′′, m′′
F| d̂q |F′, m′

F⟩ ⟨F′, m′
F| d̂0 |F, mF⟩

ωJ′,F′,m′
F
− ω

∣∣∣∣∣∣
2

(2.29)
where ω is the frequency of the laser of the dipole trap and I(r) is the gaussian inten-
sity profile of the laser beam. Moreover, the sum over the contributions from all the
final possible states |F′′, m′′

F⟩ coincides with the total scattering rate as calculated from
the imaginary part of the polarizability in Eq. (1.5)

Γsc(r, ω) = ∑
F′′,m′′

F

Γ|3,3⟩→|F′′,m′′
F⟩(r, ω) ≡ 1

h̄ϵ0c
ℑm{α(ω)}I(r) (2.30)

Figure 2.13 (a) shows the transitions for Cs atom prepared in the |3,+3⟩ state when it
spontaneously scatters a photon from linearly polarized light at the tune-out wavelength.
The intermediate states correspond to the 62P1/2 and 62P3/2 excited states, while the only
possible final states are |F′′, m′′

F⟩ = |3, 3⟩, |4, 4⟩, |3, 2⟩ and |4, 2⟩ [Welz, 2024]. In Fig. 2.13
(b) the total scattering rate calculated from Eq. (1.7) and the spontaneous photon scatter-
ing rates calculated from Eq. (2.29) are shown as a function of the wavelength for linear
polarization of the laser light. Both processes are expressed in terms of the scattering
cross-section to be intensity independent. The total scattering cross-section σsc(ω) is then
given by:

σsc(ω) =
h̄ωΓsc(r, ω)

I(r)
. (2.31)

The dominant contribution to the spontaneous scattering cross-section at 880.25 nm is
given by the spontaneous two-photon Raman scattering from the state |3,+3⟩ to the state
|4,+4⟩, which is more than one order of magnitude larger than the contributions to the
spontaneous scattering from the state |3,+3⟩ to the states |3, 2⟩ and |4, 2⟩, respectively.
The spontaneous Rayleigh cross-section is zero due to destructive interference between
the transition probabilities over the D1 and D2 lines.

Cs losses at the tune-out wavelength. We study Cs losses of optically trapped atoms
due to light scattering from the laser light at the tune-out wavelength. We prepare about
N = 2.5 × 104 atoms in the |3,+3⟩ state at a temperature of T = 1 µK and a magnetic
field offset of 880 G, corresponding to the zero crossing of the |3,+3⟩⊕|3,+3⟩ scattering
length. We switch on the laser light at λMT = 880.25 nm for a variable amount of time and
record the time evolution of the atom number for different laser power values as shown
in Fig. 2.14 (a). In order to understand how the atomic population is distributed among
the states |3,+3⟩ and |4,+4⟩ once the MT laser light is turned on, we write down a set of
coupled differential equations which describe the evolution of the atomic densities n3(r)
and n4(r), corresponding to the states |3,+3⟩ and |4,+4⟩, respectively (see also [Welz,
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FIGURE 2.14: Cs light-induced loss at the tune-out wavelength. (a) Remaining number of Cs
atoms trapped in the DT and prepared in the |3,+3⟩ state as a function of the exposure time to
light tuned at its tune-out wavelength (MT) for different MT powers. The solid lines are expo-
nential fit to data with Γ as free parameter. (b) Loss rate Γ as a function of the MT power P. The
colored dots correspond to the data shown in panel (a). The black solid line is a linear fit to the
data with η3 as free parameter as in Eq. (2.44); the red solid line reproduces the loss rate with η3 as
calculated by Eq. (2.37) for the measured sizes of the cloud. The black dashed line is the measured
loss rate in absence of the MT light, Γ3 = (0.21 ± 0.01) s−1.

2024]):

ṅ3(r) = −Γ34(r) · n3(r) + Γ43(r) · n4(r)− Γ3 · n3(r) (2.32)

ṅ4(r) = +Γ34(r) · n3(r)− Γ43(r) · n4(r)− Γ4 · n4(r), (2.33)

where Γ3 and Γ4 are the one-body loss rates of Cs from the trap in the |3,+3⟩ and |4,+4⟩
in absence of the MT light; Γ34(r) and Γ43(r) are the scattering rates from the ground
state |3,+3⟩ to the excited state |4,+4⟩ and viceversa at the frequency ωMT of the MT,
corresponding to the tune-out wavelength9. Here, Γ34(r) ≡ Γ43(r) and can be calculated
using Eq. (2.29). The scattering cross-section for ωMT = 2πc/λMT is σ34 = σ43 = 1.09 ×
10−5 a2

0. We spatially integrate Eq. (2.32) and Eq. (2.33) over the density distributions and
arrive at the equivalent system of differential equations for the atom numbers N3 and N4

of the two spin states:

Ṅ3 = −σ34

h̄ω

∫
R

I(r)n3(r)dr +
σ43

h̄ω

∫
R

I(r)n4(r)dr − Γ3 · N3, (2.34)

Ṅ4 = +
σ34

h̄ω

∫
R

I(r)n3(r)dr − σ43

h̄ω

∫
R

I(r)n4(r)dr − Γ4 · N4. (2.35)

We define an average scattering rate Γ34 and Γ43, introducing the coefficients η3 and η4,
which take into account the finite volume of overlap between the space occupied by the

9Two-body inelastic processes between the state |3,+3⟩ and |4,+4⟩ at 880 G are neglected. Indeed, we
prepare on purpose a sample with half of the atoms in the state |3,+3⟩ and half in the state |4,+4⟩ without
MT light and record the atoms in the |4,+4⟩ state with and without atoms in the |3,+3⟩. The 1/e lifetime
extracted in the two cases is identical. Feshbach spectroscopy of several Cs scattering channels is reported
in [Chin et al., 2004] but only to magnetic fields up to 30 G.
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gaussian beam, whose intensity distribution I(r) is given by Eq. (1.8), and the gaussian
density distribution n(r) for a thermal Cs cloud, which is given by Eq. (2.5). The coeffi-
cient of overlap η between the Cs cloud and the MT beam is defined by∫

R
I(r) n(r) dr = I0N0η (2.36)

and obtained by substituting Eq. (1.8) and Eq. (2.5) in the right part of Eq. (2.36)

η =
1

RxRyRz
√

π3︸ ︷︷ ︸
V−1

cloud

∫ ∞

−∞
dx

exp
(
−x2/R2

x
)

(2/(w2
0(1 + (x/xR)2)) + 1/R2

y)(1 + x2/x2
R)︸ ︷︷ ︸

Voverlap

, (2.37)

where Rx, Ry, Rz are the sizes of the thermal Cs cloud, while w0 and xR are the beam
waist and the Rayleigh length of the MT beam, respectively. If the cloud and beam are
not centered one on top of each other, then, only in one of the functions under the integral,
r → r − r0, and the variable r0 needs to be introduced. The average scattering rate is then
defined as

Γ34(P) =
σ34

h̄ω
η3 I0(P) and Γ43(P) =

σ43

h̄ω
η4 I0(P), (2.38)

where I0(P) = 2P/πw2
0 is the peak intensity of the MT laser beam with power P. There-

fore, Eq. (2.34) and Eq. (2.35) can be re-written as

Ṅ3(P) = −Γ34(P) · N3 + Γ43(P) · N4 − Γ3 · N3, (2.39)

Ṅ4(P) = +Γ34(P) · N3 − Γ43(P) · N4 − Γ4 · N4. (2.40)

The one-body loss rates Γ3 and Γ4, are taken from independent measurements in absence
of the MT light, preparing intentionally the cloud in one of the two states. For the cloud
prepared in |3,+3⟩ we measure Γ3 = (0.21 ± 0.01) s−1, corresponding to timescales of
Γ−1

3 = (4.7 ± 0.2)s. For the cloud prepared in |4,+4⟩, instead, we obtain much higher
rates of Γ4 = (62.1 ± 0.2) s−1 and timescales of Γ−1

4 = (16.1 ± 0.05) ms. Depending on
the relation between Γ4, Γ43 and Γ34, one can distinguish between different regimes.

Regime Γ4 ≪ Γ43, Γ34 : It can be demonstrated that assuming the population in the
|4,+4⟩ to be in equilibrium, such that Ṅ4 = 0, and the one-body losses from that state to
be the slowest loss process in the system, the population which accumulates in the state
|4,+4⟩ due to spontaneous Raman scattering is negligible. Therefore, the evolution of
the atom number follows a pure exponential decay and the total loss rate for atoms in the
|3,+3⟩ changes linearly as a function of the power. These conditions read as

Ṅ4(P) = 0 −→ N4 =
Γ34(P)

Γ43(P) + Γ4
N3. (2.41)
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2.3. Loss processes in a Li-Cs mixture

Inserting this result in Eq. (2.39) we obtain

Ṅ3(P) = − Γ3 +

(
Γ34(P)

1 + Γ43(P)
Γ4

)
︸ ︷︷ ︸

Γ(P)

N3 −→ N3(t; P) = N0e−Γ(P)t. (2.42)

As Γ43 ≈ Γ34 and for Γ4 ≫ Γ43, then N4 ∼ 0 and the total loss rate reduces to

Γ(P; η3) = Γ3 + Γ34(P; η3) (2.43)

= Γ3 +
σ34

h̄ω
η3

2P
πw2

0
(2.44)

where Γ34(P) is defined in Eq. (2.38) and η3 is taken as free parameter. Since it is challeng-
ing to determine a priori what is the MT power (intensity) for which the above condition
holds, we measure the time evolution of the number of Cs atoms initially prepared in the
|3,+3⟩ for different MT powers, as shown in Fig. 2.14 (a). We experimentally determine
that a good exponential fit is achieved up to powers of ≈ 30 mW. This is slightly above
the typical power used for trapping Li when the two species are overlapped. Figure 2.14
(b) shows that the loss coefficient Γ increases linearly with power in the same range, as
expected from Eq. (2.44). Due to an offset in the calibration of the MT power, the to-
tal loss rate up to 5 mW coincides with the background one-body loss. Beyond 5 mW,
the loss rate increases linearly with the power, with an angular coefficient of ≈ 0.04 s−1

mW−1, reaching a rate of 1.25 s−1 for 30 mW, which corresponds to a 1/e lifetime of 800
ms. The fit of the loss rate as a function of the power is done by fixing all the parame-
ters except η3, which is the coefficient of overlap as defined in Eq. (2.37). We determine
experimentally η

exp
3 = (0.044 ± 0.003). This result is in very good agreement with the

calculated value ηth
3 = (0.051 ± 0.002), as given by Eq. (2.37) considering the cloud and

the beam centered on each other and for the measured size of the Cs cloud considered
here, which are Ry,z = 27.5(5) µm and Rx = 257(4) µm. We can then define an effective
scattering cross-section σ34,e f f = σ34 · η3, which results in (4.796 ± 0.014)× 10−7 a2

0, with
η

exp
3 found experimentally and (5.51± 0.18)× 10−7 a2

0, with ηth
3 calculated from Eq. (2.37).

In order to draw conclusions about the consequences of such a loss rate to the Fermi
polaron experiment, we need to compare the total one-body loss found here with the
timescales involved in the polaron experiment. This means that the lifetime of the Cs
atoms in the presence of the MT must be sufficiently larger than the pulse length τpulse

and the Fermi time τF = EF/h (see section 3.3), which are on the order of tens and
a few microseconds, respectively. This requirement is satisfied by keeping the power
of the MT lower than 30 mW when the two species are overlapped, resulting in a Cs
lifetime of about 800 ms. In addition to the procedure of overlap described in 2.2.3, there
are further times to consider, such as the time required to set a magnetic field and the
waiting time for the stage to adjust to the target position, which can introduce a delay of
up to 100 ms. However, these are technical times that can be optimized. On the basis of
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these considerations, the total one-body loss rates do not seem to be a limitation for the
experiment.

It should be noted that the loss rate depends on the coefficient η, which quantifies
the normalized volume of overlap between the atomic cloud and the light beam. On
the one hand, with regard to a global observable such as the atom number in atom loss
spectroscopy, the region to be considered is the entire Cs cloud. Raman spontaneous
scattering is therefore not a limiting factor. On the other hand, for an observable related
to a local quantity, such as the atomic density at a given local Fermi energy EF(r) (as
in polaron spectroscopy), the region to consider must be reduced. The challenge is to
define the region from which the signal comes. The timescales associated with Raman
spontaneous scattering from the |3,+3⟩ to the |4,+4⟩ state mentioned above can then
only be considered as an upper limit. The lower limit is instead given by a scenario
where Voverlap = Vcloud, which means that η = 1 and therefore σ34,e f f = σ34. The loss
rate would be proportional to the power with an angular coefficient of ≈ 0.8 s−1 mW−1.
This would imply a Γ of 4 s−1 for 10 mW, 12 s−1 for 20 mW and 20 s−1 for 30 mW,
corresponding to timescales of 260 ms, 90 ms and 50 ms respectively. These timescales
could be problematic for polaron experiments.

Regime Γ4 ≃ Γ34, Γ43 : If the average scattering rates Γ34 and Γ43 become comparable
to the loss rate Γ4, then part of the atomic population is transferred from the |3,+3⟩ to
the |4,+4⟩ state. In this scenario, the cloud is a mixture of the two states whose relative
distribution changes over time and the total loss rate as a function of the power is not
expected to be linear. This prevents state-selective experiments, as required for the Fermi
polaron. In addition, two aspects complicate the study of this situation. First, the imag-
ing scheme (see section 1.5.2) makes impossible to distinguish atoms in the |3,+3⟩ state
from those in the |4,+4⟩ state [Schoenhals, 2013]. Indeed, we first pump the atoms from
the |3,+3⟩ to the |m′

J = 1/2, m′
I = 7/2⟩ state. They decay into the |4,+4⟩ and back to the

|3,+3⟩. Therefore, we repump them into the |4,+4⟩ state and then we do imaging by us-
ing the transition |4,+4⟩→ |m′

J = 3/2, m′
I = 7/2⟩ of the excited 62P3/2 manifold. Second,

the excited state |4,+4⟩ has a different trap confinement than the |3,+3⟩ state because it
is magnetically antitrapping and therefore its effective trap depth depends crucially on
the dimple trap being centered on the curvature of the magnetic field provided by the
Feshbach coils along the axial direction (see section 1.4.1). If the Cs cloud is not at the
center of the Feshbach coils, the losses increase and the exponential fit might not work
[Welz, 2024].

2.3.2 Signatures of Li-Cs interactions

The best indication of spatial overlap between the Li and Cs cloud is provided by the
observation of interspecies interactions, manifested in the three-body loss near the Fes-
hbach resonance. With this aim, we perform loss spectroscopy measurements close to
the Li-Cs Feshbach resonance at 888.6 G and record the corresponding time evolution of
the number of Li and Cs atoms during the time of interaction. Additionally, the set of
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measurements presented here is performed in the presence of large MT photon scatter-
ing, manifesting essentially as Cs one-body loss. We would like to show that the time
evolution of the number of Cs atoms in presence of such high one-body loss, still shows
characteristic three-body loss decay. To this end, I compare the remaining number of Li
and Cs atoms as a function of the interaction time with a theoretical model, taking into
account one-body loss recorded by an independent measurement, and three-body loss
calculated at unitarity.

The experimental preparation of the mixture of Cs|3,+3⟩⊕Li|2⟩ follows the sequen-
tial bichromatic scheme described in Sec. 2.2. The power of the MT is set to 147 mW, cor-
responding to a trap depth of ≈ 76 µK. We prepare samples of 2.5×104 atoms of Cs and
2×104 atoms of Li at temperatures of T ≈ 1 µK and ≈ 4 µK, respectively. We calculated
trapping frequencies of (ωLi

r , ωLi
ax) = 2π × (11 × 103, 200) Hz for Li and (ωCs

r , ωCs
ax ) =

2π × (140, 10) Hz for Cs. From the former ones a Fermi temperature of TF ≈ 7 µK is
calculated and results in a T/TF ∼ 0.6 and a peak density nLi

0 = 1.8 × 1013 cm−3 for Li
and nCs

0 = 2.3× 1011 cm−3 for Cs. The initial sizes of both clouds, (σLi
r , σLi

ax) = (12, 70) µm
and (σCs

r , σCs
ax ) = (22, 200) µm, are extracted from a fit of TOF expansions obtained by

independent measurements. At the Li-Cs Feshbach resonance, the interspecies scattering
length aLiCs → ∞, while the Cs intra-species scattering length is aCsCs = 180 a0.

Loss spectroscopy. Feshbach spectroscopy is performed by ramping up the magnetic
field to a desired value immediately after the translation stage brings the Li cloud into
superposition with the Cs cloud, and then waiting 100 ms to allow the interacting system
to evolve. The magnetic field is calibrated by RF spectroscopy on Li atoms as shown in
Sec. 1.4.2 and Fig. 1.17 (a). The remaining atoms for both species are monitored in the
same experimental cycle. High field absorption imaging is used to image selectively the
states Li|2⟩ and Cs |3,+3⟩. The time delay between the two images is 1.5 ms (first Li
and then Cs). The measurement shown in Fig. 2.15 was made with a step size of 550 mG
between 880.22 G and 897.04 G. The loss signal is about 26% for Li atoms and about 40%
for Cs atoms, which is consistent with the 1:2 ratio expected for Li-Cs-Cs losses. This is
a clear signature of the resonance and it does not saturate the signal. We reproduce the
loss feature with a Gaussian function and extract an FWHM of (2.35 ± 0.14) G on Li, and
of (4.03± 0.16) G, on Cs. In the case of Cs, we add a slope to take into account losses due
to Cs-Cs interactions.

Temporal evolution. To ensure that we understand the loss dynamics, even in this
slightly complicated scenario with MT-induced Cs losses, we take a closer look at the
atom numbers recorded as a function of interaction time. Therefore, the evolution of
the atom numbers of Li and Cs over the interaction time is compared with a theoretical
model which takes into account independent measurements of the one-body loss and
the calculated value of the three-body loss at unitarity. The procedure is the following: (i)
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FIGURE 2.15: Loss spectra of the interspecies Li-Cs s-wave Feshbach resonance at 888.6 G on Li
(red) and Cs (blue) in a Li-Cs mixture Li|2⟩⊕Cs|3,+3⟩. The y axis shows the remaining atom
number normalized to the atom number recorded at a magnetic field of 880 G. Each data point
is the average of at least twenty independent measurements and the error bars represent the
standard deviation.

writing the coupled differential equations for the density distributions of both species fol-
lowing the model in [Ulmanis, 2015]; (ii) performing a spatial integration of this equation
to obtain an equation for the atom numbers, which is the observable we can measure
[Ulmanis, 2015]; (iii) adding assumptions specific to the measurement presented here,
which further simplify the model, and calculating the three-body loss rate at unitarity;
(iv) comparing the result with the data.

The set of coupled differential equations which describes the time evolution of the
atomic densities nLi and nCs is given by [Ulmanis, 2015]

ṅCs = −LCs
1 nCs − 2L3n2

CsnLi − LCs
3 n3

Cs, (2.45)

ṅLi = −LLi
1 nLi − L3n2

CsnLi, (2.46)

where LLi, Cs
1 are the one-body loss rates of Li and Cs atoms from the trap and LCs

3 is
the three-body recombination loss rate coefficient. The interspecies inelastic three-body
losses due to Cs-Cs-Li collisions are described by the loss rate coefficient L3. The fac-
tor of two that multiplies L3 in the equation for Cs indicates that two Cs atoms and one
Li atom are lost from the trap in each recombination process. Following the considera-
tion in Ulmanis [2015], the inelastic Li-Li-Cs collisions are neglected, since this process is
strongly suppressed due to Pauli blocking. We also neglect inelastic two-body collisions
as we prepare the atoms in their respective ground state manifold10. Moreover, as we do
not observe any temperature rise during the entire interaction time, we do not include

10For atoms polarized in the Li|1⟩⊕Cs|1⟩ channel, this process is excluded; for the Li|2⟩⊕Cs|1⟩ channel it
is negligible [Tung et al., 2013].
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FIGURE 2.16: Temporal evolution of the remaining atom number of Cs (blue) and Li (red) in a
Li-Cs mixture of Li|2⟩⊕Cs|3,+3⟩ at the Li-Cs Feshbach resonance at 888.6 G (at unitarity). The
dashed lines represent the solution of the differential equations in Eq. (2.51) and 2.52 for L3=Lun

3 at
T = 1 µK and LCs

1 = 5.2 s−1. The black dot-dashed lines reproduce the exponential decay functions
fitted to an independent measurement without Li (a) or Cs (b), respectively. The measured one-
body loss rate for a pure Li gas corresponds to LLi

1 = 0.0925 s−1 and for a pure Cs gas in presence
of MT light at a power of 147 mW to LCs

1 = 5.2 s−1. The gray shaded area is given by a systematic
error in the determination of the geometric conversion factor to L3, which assumes an uncertainty
of 20% in the Cs cloud size.

recombinational heating in our model.

The densities nLi,Cs are not directly accessible in our experiment, but we can only
record the total number of atoms NLi,Cs as a function of the interaction time. We spatially
integrate Eq. (2.45) and (2.46) over the density distributions and arrive at the equivalent
system of differential equations [Ulmanis, 2015]

ṄLi = −LLi
1 NLi − K3NLiN2

Cs, (2.47)

ṄCs = −LCs
1 NCs − 2K3NLiN2

Cs − KCs
3 N3

Cs, (2.48)

where the loss rates K3 and KCs
3 are related to the three-body rates coefficients defined in

Eq. (2.45) and (2.46) by constants of unit volume squared. For the specific measurement
presented in Fig. 2.1611, we assume gaussian density distributions for both species of the

11For the specific measurement presented here, we estimated a T/TF ≈ 0.6. The density distribution
of a Fermi gas starts to change from a thermal distribution to a Thomas-Fermi profile at the fraction of
T/TF = 0.6 [Ketterle and Zwierlein, 2008] and therefore, we model the Li cloud with a thermal atomic
density distribution.
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atomic clouds and arrive at the following relations [Ulmanis, 2015]

L3 = 8π3 exp

(
∆z2

2σ2
z,Li + σ2

z,Cs

)
K3 ∏

i=x,y,z
σi,Cs

√
2σ2

i,Li + σ2
i,Cs , (2.49)

LCs
3 = 24

√
3π3KCs

3 ∏
i=x,y,z

σ2
i,Cs , (2.50)

where σi =
√

kBT/(mω2
i ) are the widths of the atomic clouds. The difference ∆z =

zLi
0 − zCs

0 between the centers of the Li and Cs distributions reduces the experimentally
observable loss rate K3 and provides the differential gravitational sag of the two species.
The differential gravitational sag z0 is zero, because before the measurement we center
the focus of the microtrap on the center of the Cs cloud, which corresponds to the posi-
tion where Cs losses in absence of Li are maximized (see Sec. 2.2.3). For the geometric
correction factor given by Eq. (2.49) we consider the sizes determined as described at the
beginning of this Sec. 2.3.2.

A typical evolution of the remaining number of Li and Cs atoms at the Li-Cs Feshbach
resonance is shown in Fig. 2.16. For interpreting these measurements we neglect KCs

3 N3
Cs,

LLi
1 NLi and fix the value of LCs

1 . These assumptions lead to the model described by

ṄLi = −K3NLiN2
Cs, (2.51)

ṄCs = −LCs
1 NCs − 2K3NLiN2

Cs, (2.52)

which is based on the following considerations. The one-body loss rates of Li and Cs
are determined from independent measurements of each species in the absence of the
other. For these measurements, the evolution of the atom number was reproduced by a
pure exponential decay. The one-body loss rates for Cs, as explained in Sec. 2.3.1, result
from two contributions: (i) the collisions with the background gas and the absorption
of photons from the dimple trap; (ii) the spontaneous Raman scattering due to the MT
light, which depends on the MT power (intensity). For the measurement shown here,
the power of the MT was set to P = 147 mW and we measure a total loss rate LCs

1 =

(5.21 ± 0.03) s−1, corresponding to timescales of (190 ± 10) ms. In Fig. 2.16 (a) we can
observe that the function calculated with the values extracted from the exponential fit
without Li is well above the data measured in presence of Li12. For Li, we measure a one-
body loss rate of LLi

1 = (0.0925 ± 0.0008) s−1, corresponding to timescales of (10.8 ± 0.1)
s. The curve calculated with the values extracted from the exponential fit without Cs
is shown in Fig. 2.16 (b)13. Considering a peak atomic density of nCs = 1 × 1011 cm−3

and the estimate for the three-body loss rate at unitarity at T = 1 µK as in Eq. (2.53), we
calculate ṅLi/nLi = L3n2

Cs = 0.76 s−1, which is much larger compared to the one-body

12The data recorded without Li are omitted for the sake of clarity.
13The data recorded without Cs are omitted for the sake of clarity.
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loss rate LLi
1 . Therefore, in Eq. (2.47), we neglect the term multiplied by LLi

1 . The three-
body loss rate coefficient for Cs-Cs-Cs collisions at 888.6 G (aCsCs = 180 a0) is expected
to be LCs

3 ≈ 1 × 10−28 cm6s−1, that is quite close to the three-body loss minimum at 893
G (aCsCs =270 a0)14. Considering a peak atomic density of nCs = 1 × 1011 cm−3, we
obtain ṅCs/nCs = LCs

3 n2
Cs ≈ 1 × 10−6 s−1, which is negligible compared to the one-body

loss rate LCs
1 dominated by the photon scattering. Therefore, in Eq. (2.48) we neglect the

term multiplied by KCs
3 . The order of magnitude estimate at the unitarity limit for the

three-body loss rate is given by [Ulmanis, 2015; Petrov and Werner, 2015]

Lun
3 =

4π2h̄5

µ3
3(kBT)2

(2.53)

where µ3 =
√

m2
CsmLi/(2mCs + mLi) ≃ 0.15 mCs is the three-body reduced mass. For a

temperature of T = 1 µK this gives Lun
3 = 7.6 × 10−23 cm6s−1. It should be noted that

Eq. (2.53) holds in thermal equilibrium, thus it is only used as an order of magnitude
estimate for our situation, since Li and Cs clouds have different temperatures.

Figure 2.16 shows that the model described by Eq. (2.51) and Eq. (2.52) is on the right
order of magnitude with respect to the data. The error in the determination of the number
of Li atoms is dominated by shot-to-shot fluctuations15 and therefore a good comparison
between the data and the model is provided only for Cs. We have estimated a systematic
error in the determination of K3 related to the uncertainty in the determination of geomet-
ric conversion factor to the loss rate coefficient L3 as in Eq. (2.49). The uncertainty comes
from the determination of the Cs cloud sizes and carries a relative error of 20%, which has
been estimated as the discrepancy in the Cs cloud size determined using different meth-
ods. We qualitatively understand the relevant contributions to the loss processes and the
mixture is stable enough to unambiguously observe Li-Cs interactions. It is question-
able whether the three-body loss would limit the observation of polarons. To evaluate
this, it would be necessary to systematically extract the three-body loss coefficient from a
thermalized sample for the desired temperatures and densities for the study of polaron
many-body physics.

14Theoretically, L3 = 3 C(a) h̄
m a4 [Esry et al., 1999; Bedaque et al., 2000; Braaten and Hammer, 2001, 2006],

where C(a) is a log-period function which leads to loss minima (maxima) for a>0 (a<0) caused by phenomena
related to Efimov physics. For Cs gases, these parameters are determined experimentally [Kraemer et al.,
2006; Berninger et al., 2011] by fits to the experimental data.

15The measurement is randomized and takes about thirty minutes in total. We measured a periodic vari-
ation in the number of Li atoms up to 35% and in the vertical position of the center of mass of the Li cloud
trapped in the MT of 2 µm over a period of about fifteen minutes. We found that these regular oscillations
were related to a periodic increase in the temperature of the water that cools the coils and the DT laser of 2°
C in the same period, associated with a problem with the water chiller.

77



Chapter 2. A Li Fermi Sea with Cs impurities

2.4 Summary and outlook

We have successfully achieved a mixture of Li and Cs atoms T/TF ≈ 0.3, with a peak
density ratio of Cs to Li of nCs/nLi ≈ 0.01. This is the first time our group has realized a
mixture where one of the two species is in the degenerate regime. The use of a mobile,
tightly focused dipole trap for Li at the tune-out wavelength of Cs enabled us to reach
high degeneracy in a short amount of time. By adiabatically switching on the MT, the
temperature remains nearly unchanged compared to the temperature in the initial DT
volume, but the Fermi energy increases proportionally to the depth of the optical trap.
This results to a decrease of the degeneracy parameter by a factor of 4. We load the MT
with a T/TF = 0.4 for an atom number of 2 × 105 atoms. The evolution of tempera-
ture and atom number during forced evaporation at 320 G aligns well with evaporation
characterized by a truncation parameter of η = 10. This process allows us to achieve a
T/TF < 0.1 in less than 2 s.

The Cs gravitational sag in our final settings was measured to be (15.0±1.8) µm, which
is larger than the radial size for Li atoms measured in this situation. The newly imple-
mented bichromatic trapping scheme allowed us to maintain independent control over
the two species and to fully compensate for the differential gravitational sag between Li
and Cs. We perform loss spectroscopy on Li and Cs atoms and simultaneous imaging of
the two species in the same experimental cycle, obtaining a loss signal with a Li-Cs ratio
of 1:2, as expected for Li-Cs-Cs losses. The mixture is stable enough to observe the Li-Cs
interactions close to the 888.6 G.

However, large losses of Cs atoms have been observed when the MT overlaps the Cs
cloud. These losses are explained by spontaneous two-photon Raman scattering and are
related to the proximity of the trap light to the Cs transitions. In the current setting, the
lifetime of Cs atoms in the presence of the MT, considering an averaged scattering rate
over the region of overlap between the beam and the cloud, is limited to between a few
hundred milliseconds and a few seconds. This timescale is on the same order of magni-
tude as the estimated thermalization timescale at aLi,Cs = −175 a0, but much larger than
the timescales at unitarity, which are on the order of a few hundred microseconds. How-
ever, the local scattering rate relevant for polaron experiments is in the order of tens to
hundreds of milliseconds. Even if this still guarantees thermalization at unitarity, these
timescales are too short compared to the technical times we need for them to overlap. In
addition, it remains to be verified whether three-body losses would limit the observation
of the polaron, since in general they can severely limit the stability of Bose-Fermi mix-
tures, especially as the boson density increases. Unfortunately, due to the depletion of
the Cs source and the consequent low reliability and stability of the Cs cloud state, which
makes the Cs conditions difficult to manage and reproduce, we did not have the opportu-
nity to perform systematic measurements to extract the three-body loss in the final cloud
configuration.
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Following the essential replacement of the Cs atom source, it is crucial to gain a com-
prehensive understanding of three-body losses as well as of the temperature evolution
of the mixture. To increase the time that Li and Cs atoms can be trapped together and
to allow thermalization between the two species, we plan to shift the wavelength of the
movable Li trap away from the Cs tune-out wavelength at about 880 nm. Some pos-
sible alternative trapping schemes are outlined in Sec. 3.4.1. Once the mixture will be
not limited by trap effects, sympathetic cooling can be used to create a well thermalized
sample at moderate interspecies interactions. Afterwards, three-body inelastic collisions
between Cs atoms in presence of a Li Fermi Sea can be reliably studied. Recent exper-
iments on Bose-Fermi mixtures have observed a strong suppression of the losses [Patel
et al., 2023; Chen et al., 2022; Yan et al., 2020]. This observation may be related to a study
made in our group [Enss et al., 2020] (see also section 3.1.3 and Appendix B), where we
discuss how a finite density of fermions provides a repulsive barrier between bosons that
can prevent them from coming too close to each other. This repulsive interaction sug-
gests a large suppression of losses and an enhanced stability near resonance, which may
explain the recent observations mentioned above. The experimental investigation of the
atomic losses that occur in our specific mixture setting would be relevant to understand
if three-body loss times are longer than the timescales that are relevant for the observa-
tion of the Fermi polaron. Moreover, a quantitative evaluation of the three-body losses
would allow extracting the spatial overlap, which can be used as an observable to reveal
the phase separation between the two clouds in a deeply degenerate regime, as a func-
tion of the interspecies repulsive scattering length [Lous et al., 2018]. These measurements
would be relevant to map the collisional properties of the mixture for higher Cs densities.

Improvements on how we perform thermometry of the Fermi gas is also necessary.
On the one hand, we need to understand the source of discrepancy that occurs for the de-
termination of the degeneracy parameter either via fitting Fermi distributions or through
indirect calculations from independent determinations of atom number, temperature,
and trapping frequencies. While measurements taken with the Ximea camera show a
very good agreement between these two methods, as demonstrated by Fig. 2.7, a signifi-
cant discrepancy has been revealed in many cases when using the Andor camera. Many
parameters can enter into the game such as, for example, atom number fluctuations, sig-
nal to noise ratio for very low Ti:Sa power and imaging processing. A preliminary study
of comparison about imaging processing in Ximea and Andor camera for Li thermome-
try is carried out in Borchers [2023]. A general requirement that we would like to fulfill
is to improve and implement the monitoring of different experimental parameters that
can influence thermometry, as trap powers, atom number in MOTs over time and beam
pointing. Also high field imaging for both Li and Cs needs to be reconsidered, and will
be done starting from the work of Schürg [2024]. On the other hand, more advanced
methods of thermometry could be implemented. For example, thermal expansion of the
non-condensed Cs cloud could be used as a thermometer for the Li Fermi Sea. Alterna-
tively, one can deduce the temperature of the mixture from either the condensed fraction
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of a Cs BEC [Lous et al., 2017] or even the Fermi polaron peak shift, as recently demon-
strated [Yan et al., 2024b].
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Chapter 3

Heavy Fermi polarons

What happens when a single impurity, infinitely heavy, is immersed into a Fermi Sea?
This question was the starting point for Anderson’s work on studying perturbations of
many-body phenomena [Anderson, 1967]. The answer is that, in the thermodynamic
limit, even a single potential, regardless of the nature of the impurity (i.e. boson, fermion
or deep potential), significantly perturbs the Fermi Sea, resulting in a state that is com-
pletely orthogonal to the initial one.

However, if the boundary of an infinitely heavy impurity is released and a finite mass
imbalance between the impurity and the fermionic medium is restored, we encounter
the problem of a single mobile particle interacting with many. While there is no gen-
eral solution for the problem of many particles interacting among each other, known
as many-body-problem, a special exception regards the problem of many interacting
fermions, known as Landau’s Fermi liquid theory [Mahan, 2000]. This theory introduces
the paradigmatic case of a single impurity dressed by interactions with the surrounding
medium, which is described as a quasi-particle. As the bath under consideration consists
of fermions, the dressed quasi-particle is named Fermi polaron. This is one of the sim-
plest examples of the many-body problem and it shows strong similarities with famous
condensed matter problems, such as the Kondo effect [Mahan, 2000], the X-rays singular-
ities in metals [Nozières and De Dominicis, 1969], the mobility of ions [Prokof’ev, 1995]
and 4He [Arias de Saavedra et al., 1994] in 3He. Additionally, the Fermi polaron plays a
significant role in the physics of semiconductors [Sidler et al., 2017; Muir et al., 2022] and
in the study of neutron matter [Nakano et al., 2020; Vidaña, 2021; Forbes et al., 2014].

Ultracold atoms are an appealing platform for the investigation of Fermi polaron
physics, as low densities and high degree of degeneracy ensure that all the interesting
many-body processes occur on the experimentally accessible microsecond timescale, in
contrast to the attosecond timescales typical of condensed matter systems. The prepara-
tion of both impurity and bath particles in a well-defined quantum states is enabled by
the combination of the control over interatomic interactions, exploiting Feshbach reso-
nances, with advanced spectroscopic techniques. In the last decade, several experiments
based on ultracold atom platforms have allowed deeper understanding in fundamental
many-body phenomena related to Fermi polarons [Massignan et al., 2014; Schmidt et al.,
2018; Scazza et al., 2022]. The possibility to control the relevant experimental parameters,
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such as interaction, temperature and impurity concentration, has allowed for the charac-
terization of the Fermi-polaron properties in strongly interacting regimes in three- [Schi-
rotzek et al., 2009; Kohstall et al., 2012] and two-dimensional environment [Koschorreck
et al., 2012; Zhang et al., 2012]. Moreover, not only attractive polaron ground-state but also
the repulsive first excited-state was prepared and investigated [Scazza et al., 2017; Dark-
wah Oppong et al., 2019]. Later on, different configurations have allowed for studios of
the temperature dependence [Yan et al., 2019], polaron formation dynamics [Cetina et al.,
2015, 2016], polaron-to-molecule transition [Ness et al., 2020] and mediated interactions
[Baroni et al., 2024a]. With the introduction of an asymmetry in the mass between the
atomic impurity and the quantum medium, the impurity problem changes qualitatively
and new phenomena that do not occur in single species experiments, as most of the ex-
periments listed above, appear [Baroni et al., 2024b].

This chapter focuses on the study of a low-density Cs gas interacting with a fermionic
spin-polarized Li degenerate gas. The large mass imbalance between Li and Cs allows
for the study of the behavior of very heavy impurities coupled to a Fermi Sea. The Fermi
polaron is theoretically introduced in the context of ultracold atoms in Sec. 3.1 with a
focus on the infinitely heavy impurity limit. Then, the main ingredients required for
probing the Fermi polarons in Li-Cs mixtures are discussed in Sec. 3.2. The properties
of the scattering channels involved are discussed in Sec. 3.2.1, while the spectroscopic
scheme for Cs impurities is outlined in Sec. 3.2.2. The first attempt to observe the attrac-
tive Fermi polaron is shown in Sec. 3.3. Necessary changes to the experimental apparatus
are proposed in order to realize the Fermi polaron and prospects for future experiments
are discussed in Sec. 3.4.

Collaborations with external groups from different fields of expertise have been es-
tablished to identify a suitable protocol for realizing the Fermi polaron in a Li-Cs mix-
ture. To this end, we have collaborated with Moritz Drescher and Tilman Enss from
the University of Heidelberg on the topic of Fermi polarons at finite temperature for the
case of an infinitely heavy impurity. Drescher has performed the calculation of the po-
laron spectra via Functional Determinant Approach (FDA) shown in Sec. 3.1.2. We have
gained knowledge regarding Cs intraspecies scattering properties which are presented
in Sec. 3.2.1 thanks to Matthew Frye and Jeremy Hutson from the University of Durham.
Additionally, for the same Sec. 3.2.1, we have consulted with Chris Greene from Purdue
University (US) as well as Arthur Christianen and Richard Schmidt from the University
of Heidelberg to extract properties of Li-Cs interactions with the first excited state of Cs,
from Multichannel Quantum Defect Theory (frame transformation) (MQDT-FT) and cou-
pled channel (cc) calculations, respectively. Moreover, we have taken inspiration for our
Raman spectroscopy setup from the scheme developed in the Li-K experiment of Rudi
Grimm’s group at the University of Innsbruck.
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3.1 Fermi polaron in the heavy-mass impurity limit

The mass of the impurity in the Fermi polaron picture plays an important role, and in the
case of heavy impurities a few peculiarities have to be taken into account. On the one
hand, in the single polaron picture, this scenario is close to the fully solvable problem of
an infinitely heavy fixed impurity in a Fermi sea. This problem has an analytical solution
at T = 0 [Fumi, 1955; Combescot et al., 2007] and a numerical but exact solution at finite
temperature [Liu et al., 2020]. Furthermore, the system exhibits the so-called orthogonal-
ity catastrophe, where the real time overlap between the interacting and non-interacting
state approaches zero and shows universal power law singularities [Schmidt et al., 2018].
On the other hand, in the context of interacting impurities, the scattering phase shift and
the induced scattering length between two infinitely heavy impurities in a Fermi sea can
be calculated exactly. These results show that in the strong coupling regime close to the
resonant Bose-Fermi interaction the fermionic medium mitigates the collapse between in-
teracting bosons [Enss et al., 2020] in comparison with the case of a pure bosonic medium.

In this section I will provide a theoretical overview to heavy Fermi polarons, focusing
on three aspects: (i) calculation of the polaron energy (attractive ground state) for a Li-Cs
mixture compared to the case of an infinitely heavy impurity, at T = 0, see Sec. 3.1.1;
(ii) discussion of the properties of the energy spectra obtained at finite temperature by
FDA in the limit of an infinitely heavy impurity, for the relevant experimental ejection
and injection protocols, see Sec. 3.1.2; (iii) discussion of the scattering properties of two
heavy Fermi polarons, see Sec. 3.1.3.

3.1.1 One single heavy impurity in a Fermi Sea

We consider the general problem of a single atom with mass mI in a bath consisting of a
fully polarized Fermi sea of Nb atoms with mass mb and atomic density nb = k3

F/(6π2),
where kF is the Fermi wave vector defining the Fermi energy EF = h̄2k2

F/2mb. The inter-
action between the two atomic species is characterized by an s-wave scattering length aIb,
the value of which can be detuned via a broad Feshbach resonance from positive to neg-
ative values of the interaction parameter 1/(kFaIb). We also assume that the interatomic
distance between the particles of the bath is much larger than the effective range of the
interspecies interaction. The total Hamiltonian is given by [Scazza et al., 2022]

Ĥ = ∑
k
(ϵbath

k − µb) f̂ †
k f̂k︸ ︷︷ ︸

Ĥbath

+∑
k

ϵk ĉ†
k ĉk︸ ︷︷ ︸

Ĥimp

+∑
k,q

V(q)ρ̂q ĉ†
k+q ĉk︸ ︷︷ ︸

Ĥint

(3.1)

where the Hamiltonian Ĥbath governs the bath, Ĥimp is the non-interacting impurity, µb

is the chemical potential and Ĥint the impurity-bath interactions. The single particle dis-
persion relation in the bath is given by ϵbath

k = h̄2k2/2mb with wave vector k, and the
creation operator f̂ †

k obeys the usual fermionic commutation rules. The impurity energy
is given by ϵk = h̄2k2/2mI and ĉ†

k is the impurity creation operator. The potential V(q)

83



Chapter 3. Heavy Fermi polarons

10
1

10
0

10
1

10
2

10
3

Mass ratio, rm

10
1

10
0

10
1

E p
ol

/E
F

40K-6Li 133Cs-6Li

6Li |1 -6Li |2

1/kFa = 0

FIGURE 3.1: Polaron energy Epol as a function of the mass ratio rm = mI/mb at unitarity
1/(kFa) = 0 and T = 0. The scattered points mark the energy for mass ratios corresponding
to specific atomic mixture: in red 133Cs-6Li with rm = 22, in green 40K-6Li with rm = 6.7 and in
orange 6Li prepared in different hyperfine states with rm = 1. The horizontal dashed line is the
result for rm = ∞. The polaron energy is expressed in unit of Fermi energy EF.

can be a generic finite-range potential and ρ̂q = ∑k f̂ †
k−q f̂k is the bath density operator.

We consider here short-range contact-interactions, and whether it is attractive or repul-
sive, the low energy s-wave scattering amplitude between the impurity and the bath has
the universal form f (k) = −1/(a−1

Ib + ik). This allows us to use pseudo-potentials for the
impurity-bath interactions.

The most comprehensive theoretical treatment of the impurity-bath system at strong
interactions is provided by the T-matrix approach [Combescot et al., 2007]. All the quasi-
particle properties are encoded in the retarded impurity Green’s function that can be
expressed in terms of the "self-energy" Σ(p, ω), where the dispersion relation for the im-
purity is given by ω − ϵk + µI − Σ(p, ω) = 0 and µI = Σ(0, 0). Since in our situation the
single impurity does not perturb the Fermi sea in the thermodynamic limit, the so-called
"ladder-approximation" can be applied and the obtained polaron energy shift is in good
agreement with the ground state that is found via the variational wave function approach
based on the Chevy ansatz [Chevy, 2006], shown in the next paragraph. Both methods
are also in good agreement with quantum Monte Carlo simulations [Lobo et al., 2006] and
with the results found in several experiments [Schirotzek et al., 2009; Scazza et al., 2017;
Yan et al., 2019]. All these methods agree that even at unitarity the effect of interactions is
fairly weak and can be well described by using single particle-hole excitations.

In the following paragraphs I compare the energy shift as calculated from the vari-
ational approach [Chevy, 2006], for the finite mass ratio of the Li-Cs mixture, with the
energy calculated analytically for an infinitely heavy impurity [Fumi, 1955], at T = 0.
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3.1. Fermi polaron in the heavy-mass impurity limit

Then, I will explain peculiar properties of heavy impurities, such as the polaron-to-
molecule transition and the fate of the quasi-particle weight, following the description
in [Combescot et al., 2007]. But first, to introduce why Li-Cs is a special case compared
to other mixtures already used to study polarons, and why it can serve as a test-bed for
systems with infinitely heavy impurities, I will make use of Fig. 3.1. This shows the po-
laron energy Epol as a function of the mass ratio at unitarity, 1/(kFaIb) = 0. The energy is
calculated by the T-matrix approximation [Combescot et al., 2007] in the limit of a large
chemical potential ratio between impurity and bath ρ = µI/µb. In such a case the expres-
sion for the self-energy is simplified, the chemical potential for the impurity is equal to
the polaron energy Epol . This results in an analytical formula that links ρ = |Epol |/EF to
1/(kFaIb) as [Combescot et al., 2007]

1
kFaIb

=

√
ρrm

1 + rm
− 2

3π

1 + rm

ρrm
, (3.2)

where rm = mI/mb is the mass ratio. At unitarity, i.e. 1/(kFaIb) = 0, it reduces to

|Epol |
EF

=

(
2

3π

)2/3 (1 + rm

rm

)
. (3.3)

For large rm → ∞, this energy ratio saturates to (2/(3π))2/3. The relative difference
between the 133Cs−6Li, with rm = 22, and the infinite heavy impurity is less than 5%,
while for example, already for 40K−6Li [Kohstall et al., 2012], with rm = 6.7, is about 15%.
It is an indication that the Li-Cs does not differ much from the case of an infinite heavy
impurity. However, this is an approximation of the T-matrix approach, and the analytical
formula is valid only for unitarity. In the next section, I will calculate the energy as
a function of the interaction parameter, using the variational approach without further
approximations.

Energy ground state for a Cs impurity in a Li Fermi Sea with the variational approach.
In order to calculate the polaron energy for the Li-Cs mass ratio as a function of the
interaction parameter 1/(kFa) without constraints on the ratio of the chemical potentials,
I have followed the variational approach proposed by Chevy [2006]. This assumes that
the ground state of the system is described by

|ψ⟩ = Φ0ĉ†
p |FS⟩+

k>kF

∑
q<kF

Φq,k ĉ†
p+q−k f̂ †

k f̂q |FS⟩ , (3.4)

where |ψ⟩ is given by the sum of two terms: (i) non-interacting Fermi sea |FS⟩ plus a
free impurity with momentum p, (ii) Fermi Sea dressed by single-particle excitations and
composed by particle-hole pairs with momentum k and q, respectively, plus an impu-
rity with momentum recoil p + q − k. This assumption is known as Chevy ansatz. The
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quasi-particle weight, which describes the overlap between the interacting and the non-
interacting state is here defined as

Z := Φ2
0 = |⟨FS|ψ⟩|2, (3.5)

and therefore, Φ0 =
√

Z. For p = 0, the change of energy E corresponds to the polaron
energy Epol . In order to find the ground state one can minimize the expectation value
of the total energy with respect to the coefficients Φ0 and Φq,k and obtain the implicit
equation

Epol = ∑
q<kF

1

∑k>kF

(
1

ϵk+ϵq−k−ϵq−Epol
− 1

2ϵk

)
− ∑k<kF

1
2ϵk

(3.6)

where ϵq is the energy of the hole with mass mb, ϵk is the energy of the impurity with
mass mI , ϵq−k is the energy acquired by the impurity to satisfy momentum conservation.
The term ∑k

1
2ϵk

is given by the Lippman-Schwinger equation [Chevy, 2006]

1
gb

=
mred

4πh̄2aIb
− 1

V ∑
k

1
2ϵk

, (3.7)

which relates the s-wave scattering length aIb between the impurity and the bath to
gb, which is the bare coupling constant characterizing interparticle interactions, where
mred = mImb/(mI + mb) is the reduced mass of the system. This equation represents a
normalization that serves to regularize the singular behaviour for which the terms with
ϕk,q ∼ 1/k2 would diverge for k → ∞ [Chevy, 2006]. Eq. 3.6 can be re-written by re-
placing ∑k →

∫
dk/(2π)3 and with the adimensional parameters ϵ′ = 2mredEpol/k2

F

and ρ = (mI − mb)/(mI + mB), where the latter is related to the impurity to bath ratio
by rm = (1 + ρ)/(1 − ρ). I computed and solved numerically this equation for different
values of the scattering parameter 1/(kFaIb) in the range −3 < 1/(kFaIb) < 2, fixing the
mass ratio rm to 22, 1 and ∞. The results are plotted in Fig. 3.2. It is evident that the
result for the Li-Cs case corresponding to rm = 22 shows a very good agreement with the
result obtained for rm = ∞1. The absolute energy difference between the Li-Cs case with
respect to the system with equal mass is ∼ 0.1 × EF for 1/(kFaIb) ≪ 1, while it is much
larger than 1 × EF for 1/(kFaIb) ≫ 1. It should be noted that for 1/(kFa) = 0, Epol/EF is
−0.607 for equal mass systems (rm = 1), −0.448 for the Li-Cs case (rm = 22) and −0.466
for the infinitely heavy impurity (rm → ∞). The results for rm = 1 and rm = ∞ were also
used as a benchmark to validate the accuracy of my numerical methods. These specific
cases were chosen also because the corresponding curves are presented in [Combescot
et al., 2007], and my results are in complete agreement with those reported there.

1This result is true for both computing methods, i.e. the variational approach, as obtained here, and the
exact calculation, which is detailed in the next paragraph.
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FIGURE 3.2: Polaron energy Epol as a function of the interaction parameter 1/(kFa) for different
mass ratios rm = mI/mb at T = 0. Numerical results for rm = 1 (orange), 22 (red), ∞ (gray)
obtained by the variational approach are shown. The thick black line shows the exact result
obtained with Eq. 3.12 for rm = ∞. The dashed black lines show the asymptotic behaviour for
a → 0− and for a → 0+. The inset contains an enlargement in the region close to unitarity: the
exact result for rm = ∞ is −0.5, which is quite close to the numerical result of −0.448 for the Cs-Li
mass ratio obtained by the variational approach. The polaron energy is expressed in unit of Fermi
energy EF.

Energy ground state of an infinitely heavy impurity. In the case of an infinitely heavy
impurity Ĥimp = 0, the Hamiltonian of Eq. 3.1 reduces to

Ĥ = Ĥbath + Ĥint (3.8)

and leads to the problem of a fixed impurity in a Fermi sea, where we remove the degree
of freedom associated with ĉ†

k. The interaction Hamiltonian Ĥint is described by the Fano-
Anderson model [Schmidt et al., 2018; Liu et al., 2020] and reads as

Ĥint = ϵdd̂†d̂ +
g√
V

∑
q
(d̂† f̂q + f̂ †

q d̂) (3.9)

where d̂ = ∑k d̂k is a fermionic operator, ϵd is the energy detuning from the bare closed-
channel which mediates the interaction between the atoms, g is the strength of the inter-
channel coupling and V is the volume of quantization.

However, the T = 0 ground state energy is known from the Fumi’s theorem [Fumi,
1955] and can be calculated analytically. Specifically, we consider here the attractive
ground state of the system. One has to consider the impurity at the center of a sphere
of radius R which by definition encloses the Fermi sea [Combescot et al., 2007; Schmidt
et al., 2018]. For s-wave interactions, the general solution of the two-particle problem is
proportional to sin(k jr + δ0(k j)) with k jr + δ0(k j) = jπ where j ≤ n is an integer and
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n = kFR/π. The s-wave scattering phase shift in the presence of the impurity is given
by tan δ0(k) = −kaIb and it vanishes in the absence of the impurity. The total energy E of
the system can be written as the sum of the energy of the unperturbed system plus the
energy shift Epol induced by the impurity and expressed as

Epol =
∫ EF

0
δ0

(
k(E)

)dE
π

. (3.10)

The calculation is done by finding the change in the energy due to a change in the scat-
tering length, and it leads to

Epol = − k2
F

2m
· 1

π

((
1 +

1
(kFaIb)2

)
arctan (kFaIb)−

1
kFaIb

)
(3.11)

where EF =
k2

F
2m , which holds only for a < 0. The analytic extension is given by

Epol/EF = − 1
π

((
1 + y2

)
(

π

2
+ arctan y) + y

)
, (3.12)

where y = 1/(kFaIb). This result is shown in Fig. 3.2 for comparison with the results
obtained by the variational approach via the Chevy ansatz. This formula interpolates
between the weak attractive coupling limit Epol,−/EF = 2

3π · y−1 for aIb → 0− and weak
repulsive coupling limit Epol,+/EF = −y2 + 2

3π · y−1 − 1 for aIb → 0+. At unitarity it
reaches the value Epol/EF = −0.5, which is in very good agreement with the values
of −0.448 for Li-Cs and −0.466 for the infinitely heavy impurity calculated numerically
from the Chevy ansatz. Furthermore, one can notice that the result obtained for rm = ∞
using Chevy differs from that obtained through the exact calculation. This discrepancy
highlights the limitations of this variational approximation, in the specific case of rm = ∞.
We can conclude, then, that the ground state energy of a Li Fermi sea coupled to a heavy
Cs impurity (as obtained by the variational approach) is in very good approximation
with the energy calculated for an infinitely heavy impurity immersed in a Fermi sea.

Polaron to molecule transition. While for y ≪ −1 the physics is dominated by the
mean-field interaction, which scales as 1/y, for y ≫ 1 a molecular state is energetically
favored with respect to the many-body polaronic state. The reason is that the quasi-
particle weight vanishes beyond a critical interaction parameter. The value of the in-
teraction parameter 1/(kFac) at the crossing between the polaron ground state and the
molecule differs from one mixture to another, as it depends on the mass ratio and the
resonance width [Trefzger and Castin, 2012; Massignan et al., 2014]. The crossing value
1/(kFac) increases for a given mass ratio by increasing the resonance width, while, for a
given resonance, it changes from positive to negative by increasing the mass ratio. For
equal masses of impurity and bath, at T = 0 and kFR∗ = 0, this has been calculated to
occur at 1/(k f ac) = 0.9 [Punk et al., 2009; Schmidt and Enss, 2011], where ac is the critical
scattering length. However, a recent work based on ejection Raman spectroscopy on a
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mass-balanced system revealed that for finite temperature there is no phase transition
but rather a smooth crossover [Ness et al., 2020]. For an impurity of infinite mass, no
crossing between the two states is expected even at zero temperature due to the vanish-
ing quasi-particle weight. In Sec. 3.4.2 I will discuss possible spectroscopic schemes that
would enable us to investigate the polaron to molecule transition in the Li-Cs system.

The fate of the quasi-particle weight. An important property that emerges in the limit
of a static impurity is that the quasi-particle weight Z vanishes. The many-body wave
function of the Fermi sea, when the impurity is present, is orthogonal to the wave func-
tion without the impurity. In other words, the overlap between the wave functions of
the non-interacting and interacting ground state of the isolated system becomes zero.
This phenomenon is known with the name of "orthogonality-catastrophe" [Anderson,
1967]. For a mobile impurity, it follows from momentum conservation that the particle
can generate only particle-hole excitations with a recoil energy up to ∼ 2h̄2k2

F/2M, where
M = mI + mb, which limits the available phase-space for scattering. For the case of a
static impurity, the quasi-particle picture breaks down since a static impurity can excite
an infinite number of low energy particle-hole excitations causing a complete shake-up
of the Fermi sea.

This phenomenon occurs at zero temperature and in the thermodynamic limit of
Nb → ∞. As ultracold atoms are systems constituted by a finite number of particles,
the quasi-particle weight is still finite even if ≪ 1. Indeed Z ≈ N−2 sin2 δF/π2

b , with δF the
scattering phase shift [Anderson, 1967]. At unitarity, where sin2 δF = 1 and this effect is
most pronounced, for a typical sample of 1 × 104 atoms, one expects Z ≈ 0.15 still. How-
ever, after the quench of the impurity between the non-interacting and the interacting
state, the system will take a finite amount of time to become orthogonal. The orthogo-
nality catastrophe manifests itself not only in ground state properties, which might be
challenging to detect, but also in non-equilibrium dynamics. The dynamical evolution
of the system can be measured by interferometric Ramsey-like spectroscopic schemes.
At long times compared to the Fermi timescale, the coherence of the state that describes
the system, i.e. the real-time overlap of the interacting and non-interacting state, is ex-
pected to show a universal power-law decay behaviour [Knap et al., 2012; Schmidt et al.,
2018]. In Sec. 3.4.2 I will discuss possible spectroscopic schemes to reveal signatures of
this universal behaviour in the Li-Cs system.

3.1.2 Ejection and injection spectral functions at finite temperature

Up to now we just looked at the case at zero temperature. However, finite temperature
effects reduce the polaron energy shift. Moreover, it was found experimentally that the
polaron peak for equal mass systems survives until T/TF ≈ 0.75 [Yan et al., 2019]. This
effect is expected to be more severe for systems with heavier impurities. For a weak
coupling the physics is dominated by the mean-field interaction, which scales with the
inverse of the reduced mass. Similarly, the bound molecule energy also scales with the
inverse of the reduced mass. Therefore, we expect that the highest temperature at which
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FIGURE 3.3: Energy spectra as a function of the interaction parameter 1/(kFa) at finite tempera-
ture for an infinitely heavy impurity calculated by FDA. (a) Ejection and (b) injection spectra are
shown. For both protocols, spectra for T/TF = 0 (upper row) and for T/TF = 0.3 (lower row)
are shown. The black dashed line shows the energy obtained from Eq. 3.12 at T = 0. The color
map displays the response amplitude A in unit of 1/EF up to a value of A × EF = 10, with EF the
Fermi energy. These graphs are based on calculations by Moritz Drescher (permission granted)
[Drescher et al., 2024].

one can resolve the polaron shift is lower for higher mass-ratio [Liu et al., 2020; Hu and
Liu, 2022].

Due to the lack of recoil, in the case of an infinitely heavy impurity, the polaron en-
ergy can be calculated exactly even at finite temperature [Liu et al., 2020]. The calculation
of the energy spectral functions is performed by using a method called Functional De-
terminant Approach (FDA) [Levitov and Lesovik, 1993; Knap et al., 2012; Schmidt et al.,
2018; Liu et al., 2020], which explicitly incorporates the dependency on the temperature.
The numerical results discussed in this section are obtained by Moritz Drescher, who col-
laborated with us on the polaron project for the theoretical part. The FDA method used
for these calculation is explained in Drescher et al. [2024]. The energy spectral functions
shown in the following have been obtained by considering a delta function as probe and
the single channel limit, kFR∗ = 0, for two different relevant experimental protocols.
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FIGURE 3.4: Ejection (a) and injection (b) energy spectral function for an infinite mass impurity
at unitarity for different temperatures. On the y-axis the response amplitude A in unit of 1/EF is
displayed, with EF is the Fermi energy. These graphs are based on calculations by Moritz Drescher
(permission granted) [Drescher et al., 2024].

There exist two different kinds of protocol that one can implement for creating a po-
laron: injection, where the impurity is merged into a bath from an initially non-interacting
state, and the ejection, where the impurity is ejected from a state where it is initially in-
teracting with the surrounding bath. These two methods lead to different spectral func-
tions: the injection method excites the impurities into a continuum of states, whereas
the ejection probes the ground state energy of the impurities. The two protocols are con-
nected by a simple mapping based on a balance condition in the thermal equilibrium [Liu
et al., 2020].

Figure 3.3 shows the full exact ejection and injection energy spectral functions in de-
pendence of the interaction parameter for two cases: zero temperature, T/TF = 0, and
finite temperature, T/TF = 0.3. The response amplitude is given by A and it is expressed
in unit of E−1

F . The injection spectrum shows two energy branches, the attractive ground
state and the metastable repulsive first-excited state. Conversely, the ejection spectrum
captures the attractive ground state only. It is evident that an increase in temperature
results in a broadening of the spectral response. For negative and large interaction pa-
rameter values the polaron peak is more narrow than at unitarity and shows a smaller
shift from the bare transition. On the other hand, for positive and large interaction pa-
rameter values the polaron peak is more shallow than at unitarity, even if the shift would
become larger. The exact solution in Eq. 3.12 is in good agreement with the FDA calcula-
tions for both zero and finite temperature.

The energy spectral functions at unitarity for different values of T/TF, ranging from
0 to 1.7, are shown in Fig. 3.4. At low temperatures, the injection spectrum contains two
peaks, associated respectively to the attractive and the repulsive polaron branch, whereas
ejection exhibits only the peak relative to the attractive ground state of the system. The
ejection spectrum at T = 0 shows the typical Fermi edge-singularity at 0.5 × EF expected
for an infinite mass impurity. For T/TF > 0.6 both cases display a single narrow peak
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FIGURE 3.5: Temperature dependence of the ejection energy spectrum peak position Epol and full
width at half maximum ∆E for an infinitely heavy impurity at different interaction parameters
1/(kFa) = -0.5, 0 and +0.2, respectively. These graphs are adapted from calculations by Moritz
Drescher (permission granted) [Drescher et al., 2024].

centered at E = 0, which indicates the complete disappearance of the polaron peak.
The temperature at which the polaron shift results comparable to the spectral width

can be set as an upper limit for the temperature at which the polaron peak can be resolved
with respect to the usual bare transition. Figure 3.5 shows the temperature dependence of
the polaron peak Epol and the full width at half maximum ∆E at a positive, a negative and
the zero value of the interaction parameter, for the ejection energy spectrum. For the three
different scenarios, the two quantities cross at a temperature ratio of T/TF ≈ 0.3. We can
also extract further information. First, for T/TF ≪ 1, the polaron peak as a function of
the temperature moves to slightly higher energies due to the strong asymmetry of the
spectrum caused by the presence of the characteristic power-law singularity for a static
impurity. This results in an initial upward shift of the peak. For T/TF > 1 the peak
approaches zero. Second, the broadening ∆E for T/TF ≪ 1 shows a characteristic linear
dependence ∆E ∼ T, whereas at high temperature it recalls the behaviour of ∆E ∼ T−1/2

of equal mass systems [Liu et al., 2020].
It is to notice that the results presented in this section show a good agreement with

analogous calculations in Liu et al. [2020]. I will use the ejection spectra described here to
interpret the experimental results shown in Sec. 3.3 and discussed in Sec 3.3.2.

3.1.3 Two heavy bosons in a Fermi Sea

As mentioned in Sec. 2.4, three-body recombination at the strongly interacting regime
could prevent the observation of the polaron. However, in a recent work carried out in
our group [Enss et al., 2020], which dealt with the study of scattering properties of two
heavy bosons in a Fermi Sea, it emerged the capability of dilute Bose gas of stabilizing
Bose-Fermi mixtures, close to strongly interacting regime, against three-body losses. Be-
ing this topic of critical importance in the context of this thesis work, I will qualitatively
discuss such an interesting result in this paragraph. The complete article can be found in
Appendix B, and is also discussed in Tran [2022].

A fermionic medium, composed by a non-interacting Fermi sea plus two heavy impu-
rities, obeys to the Pauli blocking principle. The induced interaction between the bosons
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FIGURE 3.6: Effective potential induced between two Cs atoms in a Li Fermi Sea as a function of
their inter-particle distance R for negative, resonant and positive scattering lengths a between Li
and Cs atoms (from left to right). The picture is adapted from our joint publication [Enss et al.,
2020].

must flip sign approximately on the length scale defined by the particle-fermion spacing
in the medium, which on the order of 1/kF. As a result, the induced interaction V(R)
between the bosons can also become repulsive, as shown in Fig. 3.6. In general, one
potential issue with a Bose gas is that bosons may form tightly bound molecules and be-
come unavailable to the system due to three-body recombination. Conversely, if there
is a repulsive potential between two heavy impurities mediated by the presence of the
Fermi sea, this can enhance the stability of the mixture.

The induced potential V(R) can be inserted into the Schrödinger equation to un-
derstand the scattering properties of these two heavy impurities. We found that in the
strong coupling regime near resonant Bose-Fermi interaction, the induced boson scatter-
ing length aind can even change sign and become repulsive, as shown in Fig. 3.7. Res-
onances appear at the positions where the Efimov states cross the scattering continuum
and the induced scattering length between bosons exhibits a repulsive behavior near to
the scattering resonance between the impurity and the medium. Specifically, while the
interaction is attractive for |1/kFa| > 2, as in a pure bosonic medium, near the inter-
species scattering resonance, the two impurities repel each other. Therefore, the fermionic
medium seems to mitigate the collapse between bosons, which is a qualitatively differ-
ent behavior compared to a pure Bose gas and points towards stabilizing a Bose-Fermi
mixture.

Interestingly, this repulsive interaction, which suggests a large suppression of losses
and an enhanced stability near resonance, may explain the recent observations in Chen
et al. [2022]. A similar behaviour has also been observed by studying the sound propaga-
tion in a Li-Cs double degenerate mixture, where a Bose-Einstein condensate is confined
in the center of a degenerate Fermi gas [Patel et al., 2023]. Remarkably, they found that
the sound propagation close to the interspecies scattering Efimov resonance becomes sta-
ble for all interspecies scattering lengths greater than the scattering length associated to
the Efimov state.
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FIGURE 3.7: Induced scattering length aind between two Cs atoms in a Li Fermi sea as a function
of the Li-Cs scattering length a. The exact solution of the Schrödinger equation shows resonances
at the positions where the Efimov states cross the scattering continuum, a(1)− and a1

+, marked in
red, and exhibits a repulsive behavior near to the scattering resonance between the impurity and
the medium. The picture is adapted from our joint publication [Enss et al., 2020].

3.2 Implementation for Li-Cs mixtures

Our system consists of a small Cs density sample, which plays the role of the impurity,
interacting with a polarized Fermi Sea of Li atoms, which plays the role of the bath. In
order to probe the Fermi-polaron scenario in a Li-Cs mixture, two ingredients are needed:
(i) the ability to tune the magnetic field strength in the vicinity of favorable interspecies
Feshbach resonances, (ii) the ability to probe the energy of the impurity as a function of
this interaction parameter, which is generally done by an energy-selective transfer of the
impurity from a non-interacting state to an interacting one or viceversa.

General concepts about tunable interactions and Feshbach resonances involving the
Cs |3, 3⟩ have been already introduced in Sec. 2.1.2. I will introduce here the properties of
the intra- and inter-species scattering channels which involve Cs |3, 2⟩ in Sec. 3.2.1. This is
useful in order to understand if timescales associated with two-body inelastic collisions
could limit our experiment. The newly implemented Raman spectroscopic scheme on
Cs impurities, conceived to transfer atomic population between Cs |3, 3⟩ and Cs |3, 2⟩, is
outlined in Sec. 3.2.2.
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FIGURE 3.8: Scattering length in the Li-Cs scattering channels involving (a) Li|1⟩ (in green) and
(b) Li|2⟩ (in purple) as a function of the magnetic field. The scattering lengths for the scattering
channels Li|1⟩⊕Cs|1⟩ and Li|2⟩⊕Cs|1⟩ (upper row) have been plotted with parameters reported
in Ulmanis et al. [2015]. For Li|1⟩⊕Cs|2⟩ (a, down) we use data from MQDT-FT calculations at
1µK provided by Chris Greene (permission granted). For Li|2⟩⊕Cs|2⟩ (b, down) we use numerical
data provided by Arthur Christianen (permission granted) and extracted from cc-calculations at
1µK using the potential found in Pires et al. [2014a]. The black dashed lines indicate the more
favorable Feshbach resonances for probing the Fermi polaron. A region of ±1 G from the pole
of the resonance, which corresponds to ∼ 1/(kFa)± 1.5 for a typical Fermi energy of EF = h · 50
kHz, is the most favorable for probing the Fermi polaron. The scattering length is given in units
of the Bohr radius a0.

3.2.1 Scattering channels involving Cs |3, 2⟩

The most common approach to detect the polaron energy shift is to spectroscopically
address the internal energy states of the minority species2. Conceptually, the first step
is to choose the spin component for the Fermi Sea, either Li|1⟩ or Li|2⟩, and then select
one pair of Cs states which allows driving transitions from interacting to non-interacting
Li-Cs states. The natural choice is to use Cs ground state Cs |3, 3⟩ = Cs|1⟩ and its first
excited Zeeman state Cs |3, 2⟩ = Cs|2⟩ since for both states the interactions with Li have
been already experimentally observed and mapped out [Repp, 2013].

In addition to the scattering channels |α⟩ and |β⟩ presented in Chapter 2, we take here
into consideration also the channels

|δ⟩ = Li |1/2,−1/2⟩ ⊕ Cs |3, 2⟩ = Li |2⟩ ⊕ Cs |2⟩ , (3.13)

|γ⟩ = Li |1/2,+1/2⟩ ⊕ Cs |3, 2⟩ = Li |1⟩ ⊕ Cs |2⟩ (3.14)

2The few experimental attempts done to probe the bath instead of the impurity have yielded a very small
signature of the polaron peak [Schirotzek et al., 2009].
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FIGURE 3.9: Scattering length for the Cs-Cs scattering channels, as a function of the magnetic
field. Data relative to the channel Cs|1⟩⊕Cs|1⟩ and Cs|2⟩⊕Cs|2⟩ are taken from [Frye et al., 2019]
and data relative to the channel Cs|1⟩⊕Cs|2⟩ come from numerical data provided by Matthew
Frye and Jeremy Hutson (permission granted). The black dashed lines indicate the Li-Cs Feshbach
resonances at 843 G and 888.6 G. The tiny gray shaded areas mark regions favorable for probing
the Fermi polaron.

which are characterized by projections of the total angular momentum m f , equal to 3/2
and 5/2, respectively. The only drawback is that those scattering channels can undergo
two-body inelastic collisions since the resonant state is comparably coupled to both the
incident channel and inelastic channel. In order to understand the behaviour of the scat-
tering length and of the inelastic rate coefficient as a function of the magnetic field be-
tween 800 G and 1000 G it is necessary to look at the theoretical models in Pires et al.
[2014a]. Regarding the Cs-Cs system, we refer instead to the work of Frye et al. [2019]
based on potentials reported in Berninger et al. [2013].

Scattering lengths. The interspecies s-wave scattering length for the Li-Cs system are
shown in Fig. 3.8. Data relative to the scattering channels Li|1⟩⊕Cs|2⟩ come from MQDT-
FT calculations at 1 µK by Chris Greene, while for the channel Li|2⟩⊕Cs|2⟩ they come
from cc-calculations performed by Arthur Christianen using the potential reported in
[Pires et al., 2014a]. The scattering lengths for Li-Cs, involving the Cs|1⟩ state, have been
already shown in Sec. 2.1.2 and were calculated with experimental parameters found in
Ulmanis et al. [2015]. Corresponding to the two intermediate broad resonances at 843 G
and 888.6 G, the scattering lengths in the Li|1⟩⊕Cs|2⟩ and Li|2⟩⊕Cs|2⟩ states are small
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and positive, a ≃ 30 a0. for a typical Fermi energy of EF = h · 50 kHz, a region of ±1 G
around the pole of the resonance, corresponding to a range ±1.5 × (kFa)−1, is the most
favorable for probing the polaron.

In Repp et al. [2013], in the range between 800 G and 1000 G, a Feshbach resonance
at 896.6(7) G with an FWHM of 10(2) G was experimentally found for the Li|1⟩⊕Cs|2⟩.
In the same work, Feshbach resonances for the Li|2⟩⊕Cs|2⟩ scattering channel have been
detected at 835.85(1) G and 943.5(1) G with an experimental FWHM of 0.15(3) G and
15(3) G, respectively. The theoretical curves in Fig. 3.8, show that the scattering length for
Li|1⟩⊕Cs|2⟩ is small and positive until 896.6(7) G and becomes small and negative after
the resonance. Similarly, for Li|2⟩⊕Cs|2⟩ the scattering length is small and positive up to
the Feshbach resonance at 943.5(1) G and becomes small and negative after that3.

The intraspecies s-wave scattering length for Cs-Cs system are shown in Fig. 3.9. For
Cs-Cs, data for the channels Cs|1⟩⊕Cs|1⟩ and Cs|2⟩⊕Cs|2⟩ are taken from [Frye et al.,
2019] and data for the channel Cs|1⟩⊕Cs|2⟩ comes from numerical data provided by
Matthew Frye and Jeremy Hutson. All these data are based on coupled channel calcu-
lations at 1 nK. Here, the scattering lengths for the channel Cs|1⟩⊕Cs|1⟩ at 888.6 G are
relatively small and repulsive, whereas at 843 G they are large and attractive; for the
channel Cs|2⟩⊕Cs|1⟩ as for the Cs|2⟩⊕Cs|2⟩ they are instead also large but repulsive.

Two-body collisional properties. The inter- and intraspecies scattering channels that
involve the Cs|2⟩ state can decay through two-body inelastic collisions. When inelastic
scattering is possible, the scattering length a(k) becomes complex, a(k) = α(k) + iβ(k)
and the rate coefficients of elastic and inelastic collisions are given by the diagonal ele-
ments of the scattering matrix Sll(k) = e2iδl(k), where δl is the scattering phase shift. Sup-
pose we consider only s-waves (with l = 0) and additional open channels besides the low
energy incident channel, denoted channel 0. The incident kinetic energy in channel 0 is

∆E0 = E − E0 = h̄2k2
0

2µ , where E is the total energy of the system and µ is the reduced mass.
For example, if there are two channels, the inelastic scattering probability to transition
from channel 0 to channel 1 is given by |S10|2. Generalizing the problem to N channels,
the inelastic scattering probability is given by the sum of all the individual probabilities to
go into one of these N states ∑N

i ̸=0|Si,0|2. The elastic and inelastic scattering cross-section
σel,in are given by [Balakrishnan et al., 1997; Idziaszek and Julienne, 2010]

σel(k0) =
π

k2
0
· |1 − Si,i|2 (3.15)

σin(k0) =
π

k2
0
· (1 − |Si,i|2) (3.16)

3Unfortunately, using Li|2⟩⊕Cs|2⟩ and Li|1⟩⊕Cs|2⟩ as "interacting channels" around 896.6(7) G and
943.5(1) G, respectively, is not favourable because of Li-Cs inelastic scattering rates that are three orders
of magnitude higher than at 843 G and 888.6 G.
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where k0 is the wavevector of the incoming channel. At low energy, Si,i is parameterized
in terms of the energy-dependent complex scattering length a(k0), such that

a(k0) =
1

ik0

(
1 − Si,i

1 + Si,i

)
. (3.17)

The cross-sections can then be written exactly in terms of the scattering length as [Hutson,
2007; Cvitaš et al., 2007]

σel(k0) =
4π|a|2

1 + k2
0|a|2 + 2k0β

k0→0−−−→ 4πa2 (3.18)

σin(k0) =
4πβ

k0(1 + k2
0|a|2 + 2k0β)

k0→0−−−→ 4π

k0
β. (3.19)

Similarly, considering that we have an equivalent formula given by the inelastic scatter-
ing cross-section, σin can also be calculated as follows4

σin =
π

k2
0
·

N

∑
i ̸=0

|Si,0|2

=
π

k2
0
·
(

1 − exp(−4k0|β|)
)

.
(3.20)

Following [Bohn and Julienne, 1997], the rate coefficients, for elastic kel and inelastic kinel

collisions, are given by the thermal averages

kel,in = ⟨viσel,in(E)⟩ (3.21)

where vi = h̄ki/mred is the relative incident velocity of the colliding atoms related to their
relative kinetic energy E = h̄2k2

i /2mred with reduced mass mred. For sub-mK temper-
atures, the s-wave collisions dominate. The average, at these temperatures, reduces to
the evaluation of viσ(E) at a single scattering energy E = kBT corresponding to the trap
temperature T. This leads to

kel,in(E) =

√
2E

mred
· σin,el(E). (3.22)

For s-wave it is important to notice that kel(k0) ∝ k0a2 while kin(k0) ∝ a. This means
that the inelastic scattering rate is independent from k0, whereas the elastic scattering
depends linearly on k0, which scales as

√
T. The two-body elastic and inelastic collisional

rate depends on the atomic density n0 and it is defined as

τ−1
el,in = kel,in · n0 (3.23)

4Handwritten lecture notes by Chris Greene.
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FIGURE 3.10: Elastic (green) and inelastic (red) cross-section and rate coefficient for the inelas-
tic scattering channels (a) Li|1⟩⊕Cs|2⟩ and (b) Li|2⟩⊕Cs|2⟩ as a function of the magnetic field.
The cross-section shown here is adapted from data obtained by Arthur Christianen (permission
granted) from cc-calculations for a temperature of 1 µK. The black dashed lines indicate the Li-Cs
Feshbach resonances at 843 G and 888.6 G. The cross-section is given in atomic units of a2

0.

where τel,in gives the timescales associated with two-body scattering processes. The elas-
tic collision rate is proportional to the thermalization time, while for inelastic collisions it
is the time at which two-body losses occur.

Interspecies collisional properties between Li-Cs for Li|1⟩⊕Cs|2⟩ and Li|2⟩⊕Cs|2⟩ are
shown in Fig. 3.10 and summarized in Tab. 3.1. Figure 3.10 shows the elastic and in-
elastic cross-sections and rate coefficients as a function of the magnetic field between
800 G and 1000 G. The cross-sections have been obtained by cc-calculations performed at
1 µK by Arthur Christianen and based on potentials accurately determined by Pires et al.
[2014a]. The rate coefficients have been calculated using Eq. 3.22 at the single relative ki-
netic energy of E/kB = 1 µK. The dashed black lines mark the positions of Li-Cs Feshbach
resonances at 843 G for Li|1⟩⊕Cs|2⟩ and at 888.6 G for Li|2⟩⊕Cs|2⟩, respectively. These
magnetic fields are both close to the absolute minima, respectively at 817 G and 872 G,
thanks to which, our scattering cross-sections remain quite low, as reported in Tab. 3.1.
The maxima in the inelastic cross-section correspond to the poles of the Feshbach reso-
nances. For typical densities of the Li Fermi Sea of n0,Li = 1 × 1012 cm−3, loss coefficients
of 5.3× 10−2 s−1 and 4.2× 10−2 s−1 are calculated at 843 G and 888.6 G, respectively. Both
scenarios lead to a loss timescale ≃ 20 s, which is not a limiting factor for our experiment.
A ratio of approximately 40 between elastic and inelastic cross-sections allows for a clear
separation of the timescales associated with elastic and inelastic collisions.

The same quantities have been studied for Cs intraspecies interactions. As Cs plays
the role of the impurity, we consider atomic densities much lower than for Li. These
quantities for Cs|2⟩⊕Cs|2⟩ and Cs|1⟩⊕Cs|2⟩ are shown in Fig. 3.11 and summarized in
Tab. 3.1. The rate coefficient kin has been obtained from cc-calculations at 1 nK from [Frye
et al., 2019] for Cs|2⟩⊕Cs|2⟩ and from private exchanges with Matthew Frye and Jeremy
Hutson for Cs|1⟩⊕Cs|2⟩. The inelastic scattering cross-sections have been calculated from
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FIGURE 3.11: Elastic (green) and inelastic (red) cross-section and rate coefficient for the Cs-Cs
scattering channels Cs|2⟩⊕Cs|2⟩ and Cs|1⟩⊕Cs|2⟩ in dependence of the magnetic field. Both sets
of data have been obtained by coupled-channel calculation for a temperature of 1 nK. Graphs
for the channel Cs|2⟩⊕Cs|2⟩ are adapted from data in [Frye et al., 2019] and for Cs|1⟩⊕Cs|2⟩ are
adapted from data provided by Matthew Frye and Jeremy Hutson (permission granted). The
black dashed lines indicate the Li-Cs Feshbach resonances at 843 G and 888.6 G.

kin obtained by the inverse of Eq. 3.22. The elastic cross-sections and rate coefficients
have been calculated with Eq. 3.18, considering E/kB=1 nK, for consistency with the data
relative to a and kin.

• For the scattering channel Cs|2⟩⊕Cs|2⟩ there is no pronounced minimum close to
the Li-Cs Feshbach resonances. For densities of n0,Cs = 1 × 1010 cm−3, we expect
inelastic collisional rates of 3.1 × 10−2 s−1 at 843 G and 1.7×10−1 s−1 at 888.6 G,
which lead to timescales of ∼ 30 s and ∼ 6 s, respectively. Those timescales are not
expected to limit the experimental protocol for probing the polaron energy.

• For the scattering channel Cs|1⟩⊕Cs|2⟩ the decrease in the inelastic scattering around
886 G represents an interference minimum. This phenomenon arises from two dif-
ferent pathways: the direct inelastic scattering from the incoming channel to the
loss channel, and the inelastic scattering that occurs through an intermediate res-
onant state, which is responsible for the pronounced decay resonance near 930 G.
These pathways can interfere, leading to destructive interference on one side of the
resonance, which in turn suppresses the loss. The same effect causes the smaller
dip near 845 G associated with the narrower 850 G resonance. For Cs densities of
n0,Cs = 1 × 1010 cm−3 this leads to inelastic collisional rates of 2.0 × 10−4 s−1 at
843 G and 4.8 × 10−5 s−1 at 888.6 G, corresponding respectively to timescales of ∼
5×103 s and 2 × 104 s. These values are long enough to not limit our experiment.

For both scattering channels, and both magnetic fields of interest, the ratio between
elastic and inelastic cross-section assures a good separation of the timescales. It is impor-
tant to note that even for s-wave approximation, where kin is expected to be independent
of k0, the scattering length for Cs is generally quite sensitive to temperature, and hence
the timescales shown here are expected to be the upper limit, as they are calculated for 1
nK.

100



3.2. Implementation for Li-Cs mixtures

B (G) channels σin(a2
0) k2,in (cm3 s−1) σel/σin

843.0 Li|1⟩⊕Cs|2⟩ 3.7×102 5.3×10−14 3.5×101

Cs|2⟩⊕Cs|2⟩ 2.2×106 3.1×10−12 5.3×101

Cs|1⟩⊕Cs|2⟩ 1.4×104 2.0×10−14 8.6×103

888.6 Li|2⟩⊕Cs|2⟩ 2.9×102 4.2×10−14 4.2×101

Cs|2⟩⊕Cs|2⟩ 1.2×107 1.7×10−11 2.9×101

Cs|1⟩⊕Cs|2⟩ 3.5×103 4.8×10−15 4.4×104

TABLE 3.1: Inelastic cross-section and rate coefficient in different scattering channels at 843.0 G
and 888.6 G at a relative kinetic energy of E/kB = 1 µK for Li-Cs and 1 nK for Cs-Cs. The last
column gives the ratio between the elastic and inelastic cross-section corresponding to the good
to bad collisional-rate ratio.

Consequences for the choice of spectroscopic protocols. Firstly, in order to prevent
undesirable atom loss, it is necessary to maintain the densities of Cs at a sufficiently low
level. Secondly, it is advantageous to select a spectroscopic protocol that allows the ini-
tial inter-species scattering state, for the chosen magnetic field, to remain as collisionally
stable as possible. Thirdly, if the final state is strongly interacting and involves inelas-
tic scattering, spin exchange collisions may occur, which could invalidate the protocol
for probing a specific state. Moreover, given the aforementioned timescales and mixing
scheme, and considering that these timescales are quite sensitive to temperatures and
densities, we have chosen the ejection spectroscopy around the Feshbach resonance at
888.6 G as the most suitable protocol for our current experimental setup. The states that
we take in consideration are then:

|β⟩ = Li |2⟩ ⊕ Cs |1⟩ , (3.24)

|δ⟩ = Li |2⟩ ⊕ Cs |2⟩ , (3.25)

where |β⟩ plays the role of the interacting state, while |δ⟩ is the non interacting state. We
are going to prepare the system in the state |β⟩ and then eject the impurities into the state
|δ⟩.

3.2.2 Raman spectroscopy on Cs atoms

The most well-established technique for probing quasi-particles in ultracold atoms is ra-
diofrequency (RF) spectroscopy [Vale and Zwierlein, 2021]. This technique involves two
internal hyperfine states of the impurity atoms that are coupled by an oscillating RF field.
The two coupled impurity states are chosen such that they feature different interaction
parameters 1/(kFa) with the surrounding medium and, especially, one of them has to be
at most weakly interacting.

Similarly to RF spectroscopy, two-photon Raman spectroscopy can also be used to
identify the coherent response of polarons and determine some of their key properties
[Ness et al., 2020]. Raman spectroscopy allows for local addressability of the atomic cloud

101



Chapter 3. Heavy Fermi polarons

and for finite momentum-transfer [Veeravalli et al., 2008; Shkedrov et al., 2020]. Indeed,
in the Raman process the momentum change compared to the atomic momentum is not
negligible and the transition rate depends on the atomic velocity. This opens up the
possibility of investigating momentum-dependent phenomena [Ness et al., 2020; Diessel
et al., 2024] that cannot be studied with RF.

After some effort in adapting our existing RF setup to the Cs transition frequencies as
shown in Sec. 1.5.1, we abandoned this approach because it turned out to be not feasible
due to bad coupling of the RF fields into our steel vacuum chamber. Inspired by the
work of Rudi Grimm in Innsbruck and in collaboration with his group5, we moved to an
optical approach where the use of two co-propagating laser beams enables us to drive
two-photon Raman transitions between the two lowest Cs hyperfine states.

Stimulated Raman transitions on Cs hyperfine states. The two-photon Raman pro-
cess couples two states to each other through an intermediate excited state. The schematic
that describes the situation for the specific application to Cs is depicted in Fig. 3.12 (a).
Here, Cs|1⟩ and Cs|2⟩ states are coupled to each other through an intermediate excited
state |e⟩ of the excited manifold 62P3/2, corresponding to the D2-Line. Each of the two
states is coupled to the excited state |e⟩ with a Rabi coupling Ω1,2. Each of these optical
fields is detuned from the excited state by a factor ∆ much larger than the excited state
linewidth γD2 [Steck, 2023]. While a large ∆ reduces the effective two-photon coupling, it
ensures that detrimental single-photon scattering with the excited state are avoided and
that the population can be coherently transferred from the state Cs|1⟩ to the state Cs|2⟩.
The two optical fields are characterized by a different frequency ω1,2 and a different po-
larization, which is linear and circular, leading to π and σ+ polarized light, respectively.
These two optical fields can also have different wave vectors k1,2, but here we consider
the case with zero momentum transfer, ∆k = k2 − k1 = 0, which is realized by two co-
propagating laser beams. For typical magnetic field offsets, between 880 G and 890 G, the
energy difference ω0 between the two states Cs|1⟩ and Cs|2⟩ falls in the range that goes
from ω0 = 2π×262.5 MHz to 262.9 MHz with 245 kHz/G, as in Fig. 1.16.

To calculate the effective Rabi frequency of the two-photon Raman process only a few
states of the excited manifold 62P3/2 are relevant, as depicted in Figure 3.12. These are
labeled as |mj, mI⟩ = |−1/2, 7/2⟩, |1/2, 5/2⟩, |3/2, 3/2⟩. At typical magnetic fields of
890 G, the manifold 62P3/2 is already in the Paschen-Back regime and these states are
labeled with mj and mI , according to the magnetic quantum number associated with the
total electronic and nuclear angular momentum, J and I, respectively. All other states
are assumed to be so far from the resonance that any additional contributions can be
neglected. Since the detuning is of the same order of magnitude of the hyperfine splitting,
the contribution of each hyperfine state must be considered individually. Thus, the Rabi
frequencies Ωi,e for the coupling between the ground state |i⟩ and the excited state |e⟩ are

5Private exchanges with Erich Dobler and Cosetta Baroni.
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FIGURE 3.12: Two-photon Raman transitions on Cs atoms. In (a), a schematic of the energy levels
involved in the Raman scheme is shown. The optical fields, with frequencies ω1 and ω2 are
detuned to the D2 transition of Cs by the detuning ∆, while the frequency difference between two
differently polarized optical fields resolves the energy difference ω = ω0 + δ of the two lowest Cs
Zeeman states. In (b), the Raman scattering cross-section as a function of the detuning ∆ is shown.
The resonances in the two-photon Raman cross-section (black solid line) correspond to the Cs|1⟩
→ |−1/2, 7/2⟩, |1/2, 5/2⟩, |3/2, 3/2⟩ transitions. The one-photon scattering cross-section (gray
dashed line) exhibits resonances corresponding to π and σ+ polarized light. Picture (b) is adapted
from [Welz, 2024].

calculated individually

h̄Ω1,e = E1 ⟨1|er̂π|e⟩ = ∑
F=3,4 F′=2,3,4,5

E1 ⟨1|F, 3⟩ ⟨F, 3|er̂π|F′, 3⟩ ⟨F′, 3|e⟩ (3.26)

h̄Ω2,e = E2 ⟨2|er̂+|e⟩ = ∑
F=3,4 F′=2,3,4,5

E2 ⟨2|F, 2⟩ ⟨F, 2|er̂+|F′, 3⟩ ⟨F′, 3|e⟩ (3.27)

where branching ratios of the transitions are calculated with the definition of ⟨F, M|e r̂q|F′, M′⟩
in [Steck, 2023], with the Wigner 6-j symbol and the Wigner 3-j symbol as it was defined
in [Loudon, 2000]. For details on this calculation I address the reader to [Welz, 2024].

When |δ|, γD2 ≪ |∆|, an effective Rabi frequency can be defined for the Cs|1⟩ to Cs|2⟩
transition via the excited state |e⟩, and it depends on the relative detuning ∆ to the state
|e⟩ as [Foot, 2005]:

ΩR(∆) =
Ω1,eΩ2,e

2∆
, (3.28)

with Ω1,e and Ω2,e the coupling strengths of the |1⟩ and |2⟩ states to |e⟩. Assuming that
both optical fields have the same intensity I1 = I2 = I with I = 1

2 ϵ0c|E |2, the Eq. 3.28 can
be written as

ΩR(I, ∆) =
h̄2 ⟨1|er̂π|e⟩ ⟨e|er̂+|2⟩

∆ϵ0c
I. (3.29)
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The effective two-photon Rabi frequency, named Raman frequency, is given by the coher-
ent sum of the individual frequencies ΩR as [Steck, 2024]:

ΩR(I, ∆) =

∣∣∣∣∣∣ ∑
|e⟩=| 3

2 , 3
2 ⟩,|

1
2 , 5

2 ⟩,|−
1
2 , 7

2 ⟩
ΩR(I, ∆)

∣∣∣∣∣∣ . (3.30)

To express the two-photon Raman coupling with an expression independent from the
intensity and to compare it with the one-photon cross-section, one can proceed similarly
to the one-photon scattering [Foot, 2005]. This procedure consists in dividing the Rabi
frequency for the photon flux I/h̄ω

σRaman(∆) =
ΩR(∆)h̄ωD2

2π I
. (3.31)

Here, we assume that both optical fields ω1, ω2 have approximately the same frequency,
because ωD2 ≫ ω0 [Steck, 2023]. The two photon Raman cross-section as function of the
detuning ∆ for an offset magnetic field of 890 G is shown in Fig. 3.12 (b). The interfer-
ence minima come from adding coherently one to each other the contributions coming
from pairs of different states. For comparison, the dashed line takes into account the
one-photon scattering, calculated as in Welz [2024]. The behaviour of the one-photon
scattering shows that for a detuning ∆ larger than approximately 2π · 2.5 GHz, the one-
photon scattering is negligible compared to the Raman process, since it is at least one
order of magnitude smaller. For 10 GHz detuning and a total intensity of 10 mW/mm2,
we should get a Rabi Frequency of ΩR = 2π × 51 kHz. It should be noted that as the
hyperfine coupling for Cs at about 890 G is still larger than the Zeeman term, in turns
the Raman coupling is large compared to other atoms. For instance, in the case of 41K,
at 335 G (position of the 6Li- 41K Feshbach resonance), the Raman coupling is a factor of
three smaller then what we expect here, since K is already in the Paschen-Back regime
and therefore the hyperfine coupling is much weaker.

Optical setup with co-propagating beams. The optical setup for the preparation of
the Raman light is divided into two parts that are illustrated in Fig. 3.136. We use a
Sacher laser-Tec1507 tunable in the range 830-870 nm with an accuracy of 0.122 nm per
26 V with piezo actuator. At 852.3 nm, the output power is > 80 mW after the inter-
nal optical isolator and > 50 mW after the fiber. On the laser table, the laser light is
coupled into a polarization-maintaining fiber and collimated with a collimator with a
focal length of 4 mm (Schäfter-Kirchhoff, 60FC-4-A4-02). It is then split by a polariza-
tion beam splitter (PBS) into two branches whose intensity ratio can be adjusted. The
reflected beam is sent to a wavemeter to monitor the wavelength over time, while the
transmitted beam goes to a first AOM, which is used to switch on and off the laser trans-
mission. The beam is then divided again in two branches by another PBS such that the
transmitted beam passes through a double-pass AOM which detunes the laser frequency

6Further details on the developments of this setup will be provided in the PhD thesis by Tobias Krom.
7Then it has replaced for the measurements presented in Sec. 3.3.1 with a Sacher VBG-0852-080-BFY.
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FIGURE 3.13: Optical setup for the preparation of the beams for Raman spectroscopy: (a) on the
laser table and (b) on the experimental chamber table. On the laser table, the laser is switched on
by a first AOM and split in two by a polarizing beam splitter. The transmitted beam passes
through a double-pass AOM which detunes the laser frequency of δ/2π ∼ 2 × fAOM. The
two branches are combined together with a polarizing beam splitter and then coupled into a
polarization-maintaining optical fiber. In the experimental chamber table, the light is focused
into the chamber of science through a lens which is mounted on a manual translational stage to
adjust the position of the beam on the atoms.

by δ/2π ∼ 2 × fAOM ∼ 2 × 131.3 MHz. The double-pass AOM is connected to the mi-
crowave frequency generator and amplified by a mini-circuit amplifier. The two branches
are then combined together again by a third PBS and coupled into a polarizing optical
fiber 10 m long (Thorlabs P3-780PM-FC-10), which brings the light to the experimental
table. In this way we obtained two beams with orthogonal polarization and different fre-
quencies (one detuned from the other by 2 × fAOM). Once there, the light is focused into
the science chamber through a lens mounted on a manual translational stage to adjust
the position of the beam on the atoms. The power of the laser is monitored behind the
science chamber. The two beams are linear polarized and orthogonal each other.As their
polarization is then orthogonal to the magnetic field we obtain π and σ+ light, respec-
tively (see Fig. 3.12). The largest beam diameter we can reach with the current setup is
roughly up to 1 mm and the maximal power per beam is 5 mW.

Performance: energy spectrum and Rabi frequencies. In order to benchmark the per-
formance of our Raman setup, we have performed both spectroscopic and Rabi oscilla-
tion measurements of the Cs|1⟩ to Cs|2⟩ transition. After sending a square Raman pulse
on the Cs sample prepared in the Cs|1⟩ state, the population starts oscillating between

the states Cs|1⟩ and Cs|2⟩ with the generalized Rabi frequency Ω =
√

Ω2
R + δ2. The frac-

tional population in Cs|1⟩ ρ11 can be written as a function of both the detuning δ and

105



Chapter 3. Heavy Fermi polarons

100 50 0 50 100
Frequency detuning, /2  (kHz)

0.0

0.5

1.0

N
/N

0

0 25 50 75 100 125 150 175 200
Pulse length,  (µs)

0.0

0.5

1.0

N
/N

0

(a) (b)

FIGURE 3.14: Two-photon Raman transitions on Cs. The graph (a) shows a scan of the frequency
difference for a fixed pulse length, which corresponds to a π-pulse. In (b) the coherent Rabi
oscillations for the case ω = ω0 is shown. The dots are the experimental data points, while the
lines are the respective fit, which are described in the text.

laser-atom interaction time, or pulse length, τ as in [Linskens et al., 1996]

ρ11(δ, τ) = 1 − ΩR√
Ω2

R + δ2
sin2

(√
Ω2

R + δ2

2
τ

)
. (3.32)

It holds that ρ11 + ρ22 = 1 and ρe = 0. The factor in front of the sinusoidal function
is the excitation amplitude, which depends on the two photon Rabi frequency ΩR and
determines the maximum degree of excitation. In the case of δ =0, i.e. pure two-photon
resonance, Eq. 3.32 reduces to

ρ11(τ) = 1 − sin2 (ΩRτ/2). (3.33)

Moreover, for a two-photon transition, ΩRτ ∝ P/w0, with P being the total power of the
beam and w0 its beam waist, whereas for a one-photon transition Ωτ ∝

√
P [Linskens

et al., 1996].

A spectroscopic measurement of the Cs|1⟩ and Cs|2⟩ transition in a dilute Cs Bose gas
at B0 = 891 G is displayed in Fig. 3.14 (a), obtained by measuring the fraction of Cs atoms
remaining in the initially occupied Cs|1⟩ state. For this measurement the power for each
of the two beams is about 3 mW, the beam diameter is 870 µm and the detuning ∆ is 20
GHz. We fit the data to the sinc-shape line in Eq. 3.32, with τ = 22 µs, as a function of
δ = ω − ω0. The resulting sinc-shaped line is centered at ω0/2π = (263.2097 ± 0.0007)
MHz and is observed after a square pulse with a Raman beam intensity of 8 mW/mm−2.
The FWHM of the function is given by ∆FWHM = 2× (16.1± 0.5) kHz, which defines our
spectral resolution in probing the polaron peak.
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We have also performed Rabi oscillation measurements at the resonance ω0. One il-
lustrative result is displayed in Fig. 3.14 (b), where it is visible a quite coherent sinusoidal
evolution of the state population. In this measurement, a small damping is observed over
the time scales of the evolution. Therefore, we fit the data adding a damping rate Γ in
Eq. 3.32 as follow8 [Linskens et al., 1996]:

ρ11(τ) = 1 − ΩR√
Ω2

R + δ2
sin2

(√
Ω2

R + δ2

2
τ

)
· e−Γτ. (3.34)

We find a Rabi frequency of ΩR/2π = (15.6 ± 0.9) kHz, which is on the same order
of magnitude as the predicted one. This result corresponds to a π-pulse duration of
τπ−pulse = (32.1± 1.8) µs, which is one order of magnitude greater than the typical Fermi
time of our system τF ≈ 2 µs, thus fulfilling one of the main design goals required for the
polaron experiment, as in Sec. 3.3. The non-negligible residual detuning δ/2π = (10 ±
1) kHz and the small decay rate Γ = (0.9 ± 0.5) ms−1, are probably given by both light-
intensity and magnetic-field fluctuations. An accurate analysis of the possible sources of
noise in our Raman setup is currently in progress (see the last paragraph of this section).

Local addressability of Raman spectroscopy. One of the advantages of Raman spec-
troscopy is that the atomic sample can be addressed locally with great precision. This is
possible thanks to the control of the pointing and beam waist size that one can have on
the laser beam. This feature, when combined with in-situ imaging of the cloud along the
gravity direction, allows for the study of the local properties of the sample. However,
in such a situation, the extraction of the typical properties of the cloud requires a local
analysis of the pictures. This is due to the finite size of the optical gaussian Raman beam,
which can be tuned to be either larger or smaller than the size of the atomic cloud. A
global gaussian fit is only possible if the size of the Raman beam σR is larger or compa-
rable to the size of the Cs cloud σCs. An example of the consequences of this is given in
Fig. 3.15. The plots illustrate the integrated optical density, normalized to its peak value,
resulting in a one-dimensional column along the longitudinal direction of the cloud. This
quantity is displayed over time by varying the pulse length τ of the two-photon Raman
beams. In the case σR ≪ σCs, the optical density is completely perturbed by the Raman
beam with respect to the case σR ∼ σCs. This kind of measurement demonstrated also
that we can achieve Rabi frequencies up to 65.1(2) kHz, which have bean measured at the
centre of the cloud.

The local analysis behind this kind of images is conducted as follows9: (i) A small
portion of the absorption picture is selected, typically a box measuring approximately

8This model was chosen to interpret the change in contrast over time by trying to give a physical inter-
pretation to the coefficient before the sinc function. Since magnetic field instability could have affected the
measurement, the detuning could have changed and determined the change in contrast. A more sophis-
ticated modeling of the process should be based on a deeper investigation of the processes that limit the
reproducibility of Raman oscillation, as discussed at the end of this paragraph.

9The script for the local analysis of the images has been developed by Tobias Krom and Michael Rauten-
berg.

107



Chapter 3. Heavy Fermi polarons

N
or

m
. 

op
ti
ca

l 
d
en

si
ty

N
or

m
. 

op
ti
ca

l 
d
en

si
ty

FIGURE 3.15: Effect of the finite size of the Raman beam on the spatially resolved Rabi oscillations.
The plots show the integrated optical density, resulting in a one-dimensional column along the
longitudinal direction of the cloud, displayed over time by varying the pulse length τ of the two-
photon Raman beams. Examples of the optical density map are given for two different situations:
(a) the size of the Raman beam σR is comparable to the size of the Cs cloud σCs, (b) σR ≪ σCs.

800 µm × 70 µm, centered on the cloud’s center and tilted at the same angle as the cloud.
(ii) This box is divided into strips along the axial direction. Typically, there are 40 stripes
with a width of 20 µm each. The sum over pixels is carried out along the short direction,
resulting in a column density along the longitudinal direction of the cloud of 40 boxes
800 µm long. It is however to mention that by doing absorption imaging one naturally
integrates over one direction. The optical density in Fig. 3.15 is displayed over time. This
methodology allows for the extraction of local Rabi oscillations. The same procedure is
employed for the extraction of the spectra (optical density over frequency).

Stability and reproducibility of Rabi oscillations. Our observations revealed fluctu-
ations in the magnetic fields on a daily basis, accompanied by variations in the decay
rates of Rabi oscillations. It is crucial to acknowledge that ongoing efforts are being made
to enhance the stability and reliability of Rabi oscillations at low frequencies, which are
essential for achieving a precise spectral response. A preliminary study can be found in
Welz [2024]. Here, I will just summarize our findings, which however still require to be
further studied.

• To rule out the possibility that a 50 Hz noise is caused by the power supply, the ex-
perimental cycles were synchronized to a 50 Hz signal. This ensured that each cycle
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commenced at the same moment in time as the signal. Consequently, magnetic-field
fluctuations were consistent across each cycle and added the same noise, regardless
of the length of the Raman pulse. However, to ensure that the phase evolution
is continuous and the Rabi oscillations are coherent, the magnetic field should be
stable on the order of ∼ 10 mG.

• The measured one-photon cross-sections do not align with the predicted values.
The observed damping is believed to arise from light fields resonantly interacting
with the atoms. This light source could be identified in the noise floor of the laser,
which is several decibels less intense than the peak of the laser’s spectrum.

• When tuning the linearly and circularly polarized laser beam to match the one-
and two-photon detuning, it is also necessary to consider the Stark shifts that the
couplings induce to the levels [Steck, 2024]. The resulting two-photon Stark-shift
for our mixture is given by ∆δStark = −2π · 12.1 kHz/(kW/m2) · ∆I, where ∆I
is the mean intensity fluctuation in a certain time period. For typical fluctuations
∆I of 1.7 kW m−2, the frequency variation induced by the Stark shifts is ∆δStark =

−2π · 20.6 kHz [Welz, 2024]. It is evident that intensity fluctuations play a critical
role in maintaining the stability of the measurements as even a minor variation can
result in the two-photon transition becoming out of resonance.

3.3 Ejection spectroscopy on Cs atoms in a Li-Fermi Sea

We performed Raman spectroscopy on a dilute Cs sample interacting with a polarized
Fermi Sea of Li atoms. The basic measurement procedure is shown in Fig. 3.16. We
initially prepare the mixture in the interacting channel in the unitarity regime close to
888.6 G Li-Cs Feshbach resonance between Li|2⟩ and Cs|1⟩. Signatures of the polaron
are expected to be frequency (energy) shifted from the bare atomic transition of the Cs
impurities. The spectral response of Cs impurities is studied by spectroscopically probing
the energy of the two lowest Zeeman states Cs|1⟩ and Cs|2⟩ via Raman spectroscopy.
The two Raman beams transfer the atoms from the state Cs|1⟩ to the state Cs|2⟩ which is
initially unoccupied. The measurements are performed by recording the atoms left in the
Cs|1⟩ state after the quench as a function of the detuning δ = ω −ω0, where ω = ω1 −ω2

and ω0 corresponds to the bare transition energy between states Cs|1⟩ and Cs|2⟩.
To observe the polaron, the following hierarchy of timescales should be fulfilled:

τloss ≫ τpulse ≫ τpol , (3.35)

where τloss is the lifetime of the gas in the trap, τpulse is the pulse length of the Raman spec-
troscopy, and τpol is the timescale of the polaron. The polaron is expected to exhibit an
energy shift Epol relative to the free-free transition E0, which is determined by the Fermi
energy EF. Therefore, the timescale is given by τpol ∼ h̄/EF. Due to the Fourier limit, the
pulse length must significantly exceed the polaron’s timescale as discussed in Sec. 3.2.2.

109



Chapter 3. Heavy Fermi polarons

1.00.50.00.51.0
1/kFa

20000

10000

0

10000

20000

a/
a 0

Li|2 Cs|1
Li|2 Cs|2

0

50

100

150

200

/2
 (k

H
z)

887.5 888.0 888.5 889.0 889.5
B(G)

0.0

0.5

1.0

1.5

2.0

E p
ol

/E
F

EF = h 100 kHz

(a) (b)

FIGURE 3.16: Sketch of the basic measurement procedure of a two-photon Raman ejection spec-
troscopy on Cs atoms in presence of a Li Fermi Sea close to the Li-Cs Feshbach resonance at 888.6
G. In (a) a schematic of the energy levels involved in the Raman scheme is shown. The energy
difference in absence of a surrounding bath is h̄ω0. The two-photon Raman pulse transfers the
atoms from the Cs|1⟩ state to the initially unoccupied Cs|2⟩ state. In presence of the Li Fermi
Sea, the atoms in the Cs|1⟩ state strongly couple to the surrounding bath forming a polaron. By
varying the frequency ω and recording the number of atoms left in the Cs|1⟩ after the quench,
it is possible to determine the polaron energy shift Epol = h̄δ. In (b) the scattering length in
the interacting channel Li|2⟩⊕Cs|1⟩ and in the non-interacting channel Li|2⟩⊕Cs|2⟩ (upper row)
is shown together with the energy shift that is approximately expected for a Fermi energy of
EF ∼ h × 100 kHz corresponding to the channel Li|2⟩⊕Cs|1⟩ (lower row).

We estimated τloss by the shortest timescales defined by one-, two-, and three-body losses.
Inter- and intraspecies three-body losses define the timescales 1/(L3n2

Cs), 1/(L3nCsnLi),
and 1/(LCs

3 n2
Cs) with Cs in the ground state, Cs|1⟩. We consider the magnetic field and

temperature-dependent three-body loss rate obtained in Sec. 2.3.2. Moreover, since the
final state of the ejection scheme is the Cs|2⟩ state, the two-body timescales 1/(kLiCs

2,in nLi),

1/(kCs2,2
2,in nCs), and 1/(kCs1,2

2,in nCs) discussed in Sec. 3.2.1 should also be considered. It is
important to note that all timescales associated with three- and two-body losses depend
strongly on the magnetic field and atomic densities of both species. However, the lifetime
of the gas in the trap is dominated, for most of the experimental settings, by light-induced
losses by the tune-out trap as obtained in Sec. 2.3.1.

In Sec. 3.3.1 I will show typical results obtained for the ejection spectroscopy protocol
on a Li-Cs mixture and in Sec. 3.3.2 I will discuss the limitations of our system.

110



3.3. Ejection spectroscopy on Cs atoms in a Li-Fermi Sea

3.3.1 Energy spectrum and Rabi oscillations

In the following I will present the experimental preparation, the typical analysis and the
results obtained for the ejection spectroscopy protocol on a Li-Cs mixture.

Experimental preparation. For the specific measurement shown here, we prepared an
ultracold mixture of 2 × 104 Li atoms in the state Li|2⟩ and 1 × 104 Cs atoms in the
state Cs|1⟩ at a temperature of 1.5 µK. We estimate atomic peak densities of n0,Li =

1.4 × 1013 cm−3 and n0,Cs = 1.0 × 1011 cm−3 from which we obtain the Fermi wavevector
k−1

F ≃ 1700 a0 and a Fermi energy of EF = h × 100 kHz. From the polylogarithmic fit
of the Li cloud we extract a global T/TF ≈ 0.310. Furthermore, the impurity density is
almost two orders of magnitude smaller than that of the fermions nCs/nLi ≈ 0.01, which
allows neglecting interactions between them at such low impurity concentrations. We
choose a magnetic field of 888.7 G, which is slightly above the Feshbach resonance posi-
tion corresponding to an interspecies scattering length of aLiCs ≈ −13000 a0. We obtain
the dimensionless interaction parameter 1/(kFaLiCs) ≈ −0.13. For this scattering length
and atomic densities we estimate a lifetime of τloss ≈ 600 ms and expect a polaron energy
of roughly Epol ≈ 0.5 × EF = h × 50 kHz (see Fig. 3.16). Thus, we set the pulse length to
τpulse = 34.0 µs, which corresponds to a π-pulse on the bare atomic transition that fulfills
the relation τloss > τpulse > τpol ≈ 20 µs.

In order to find the correct parameters, we first probe Rabi oscillations on resonance
by applying Raman laser pulses at fixed frequency but variable pulse length to identify
the Rabi frequency relevant to our scheme. Once the bare impurity regime has been
mapped out, we perform Rabi-type spectroscopy on Cs in presence of the Li clouds and
at the chosen magnetic field offset. In this setting, we apply Raman laser pulses with a
fixed duration corresponding to a Rabi π pulse and vary the frequency detuning between
the two laser beams to identify the polaron regime. The measurements were configured
to ensure comparability between the scenario with and without Li. Therefore, for each
frequency, the first experimental run included Li, followed by a subsequent run without
Li.

We perform double absorption imaging at 890 G on both Li|2⟩ and Cs|1⟩11 along the
gravity direction. Therefore, we take a picture of Li|2⟩ and Cs|1⟩ during the same exper-
imental cycle with a time delay of 1.5 ms: the first is Li, whose imaging is done in-situ;
the second is Cs, which acquires a small time of flight.

10The local T/TF is expected to be higher than this, but hard to access for our system (as explained later).
Moreover, as mentioned at the end of Sec.2.4, for recent sets of measurement taken with the Andor camera,
as those presented here, we found later on a discrepancy with respect to the global T/TF extracted from
trapping frequencies. For the presented measurement this would be rather on the order of 0.6, which would
lead to a Fermi energy of 45 kHz and then to an expected polaron shift of 22.5 kHz.

11Our imaging scheme, as explained in Sec. 1.5.2, does not allow doing imaging of the Cs|2⟩.
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FIGURE 3.17: Population of Cs atoms remaining in Cs|1⟩ after a π-pulse of length τpulse = 34.0 µs
via Raman spectroscopy at unitarity, with B = 888.7 G. (a) Colour maps of the optical density (OD)
of the Cs cloud, resolved in space as a function of the detuning δ = ω − ω0. Measurement with
Cs superimposed to a Li Fermi sea at a T/TF ≈ 0.3 (top, red); measurement with a gas of pure Cs
(bottom, blue). (b) Normalized remaining fraction of Cs atoms in the Cs|1⟩ state, embedded in a
Li Fermi Sea (red) or in a gas of pure Cs (blue). These data are the results of averaging in a region
of ±50 µm around the center of the cloud. The bare energy is given by ω0 = 2π × 262.6303(4)
MHz, which is extracted by a gaussian fit to the data from a gas of pure Cs. The dashed line at 50
kHz marks the position at which we would have expected to observe the polaron peak.

Local analysis due to limited Li-Cs overlap. Absorption imaging is performed along
the gravity direction, therefore integrating the signal in one of the three spatial direc-
tions. A local analysis is necessary for two reasons. First, since our sample is harmoni-
cally trapped, its spatial density distribution is not homogeneous. Hence, since the inter-
atomic interactions is Li density-dependent, the spectral response is not constant across
the cloud. Indeed, the Li-Cs interactions are parameterized by using the interaction pa-
rameter 1/(kFaLiCs), which depends on the Li atomic density and on the magnetic field.
Second, as already shown in Fig. 3.15, the gaussian shape of the Raman beams identifies a
finite region of overlap with the Cs cloud, and the spectral response is not constant along
the cloud in the region of the probe.

In order to reduce both effects we extract the spectroscopy signal only from the central
part of the integrated density. We use typical box of sizes of ∼ 200 µm × 20 µm. These
sizes are adapted depending on the size of the Raman beam and the relative position of
the Li cloud. We then sum over the shortest direction ending up in one column of optical
density along the axial direction of the cloud. We display this optical density column
over the variable we are scanning (either time or frequency).

Energy spectrum. We obtain energy spectra by recording the population of the Cs atoms
in the initially occupied and interacting Cs|1⟩ state as a function of the frequency differ-
ence of the Raman beams. We apply a local density analysis as described in the previous
paragraph. Moreover, since we cannot do imaging on the state where the impurities are
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3.3. Ejection spectroscopy on Cs atoms in a Li-Fermi Sea

transferred to and calculate the transfer ratio, we measure Cs|1⟩ with and without Li
atoms in two subsequent experimental runs. This is equivalent to having a measurement
for both interacting and non-interacting samples 12. Since the absolute total atom num-
ber is largely different due to not negligible three-body losses in the unitarity regime,
the normalization N0 of each measurement refers to the average over a certain range of
frequencies far from the bare transition, where the transfer to other states is negligible.
Therefore, from now on we will always consider the normalized atom number N/N0.
The obtained spectra are shown in Fig. 3.17. At the frequency E0/h = 262.6303(4) MHz
of the Cs spin-flip transition, we transfer the Cs atoms from the interacting state Cs|1⟩
to the non-interacting state Cs|2⟩. Thus, we observe a minimum in the fractional popu-
lation of the Cs|1⟩ state at a frequency that corresponds to the bare transition recorded
in absence of the Li Fermi Sea. We do not notice any depletion of the population in the
state Cs|1⟩ close to the expected polaron energy Epol ≈ 0.5 × EF = h × 50 kHz. By using
a gaussian fit, we determine a shift of (56.0 ± 0.9) Hz with respect to the bare transition.
The reduction of 10% in width and amplitude of the normalized atom number calculated
from the two fitted functions might be a signature of a small depletion of the bare transi-
tion in favour of populating another state. Experiments performed at different magnetic
fields, i.e. different scattering length aLiCs, pulse-length τpulse, Raman frequency ΩR of the
two-photon pulse and different global temperatures, did not reveal any clear signatures
of polarons so far. However, some of these experiments show a reduction in width and
amplitude of the signal at the bare transition frequency similarly to the one presented
here. Thus, it remains an open question why the Fermi polaron was not observed in
the Li-Cs system. I discuss possible reasons in Sec. 3.3.2 and suggest several prospects
towards its observation in Sec. 3.4.

Rabi oscillations. Despite energy spectra and Rabi oscillation measurement providing
similar information, the latter method is typically more resistant to noise. If the reduc-
tion of the signal observed in Fig. 3.17 is due to the presence of the polaron, then we
would expect to observe a change in the Rabi frequency. Since the Rabi polaron energy
differs from the bare Rabi frequency, if the polaron is there, we would have expected to
measure frequencies different from the bare and to observe a reduction in the contrast
of the oscillations. We drive Rabi oscillations on the two Cs impurity states in presence
of the fermionic medium. The experimental conditions are similar to those of the previ-
ous measurement. We set a detuning between the Raman beams corresponding to the
bare transition frequency ω0 between Cs|1⟩ and Cs|2⟩, and then vary the pulse length.
As before, to ensure comparability between the measurement with and without Li, we
conduct each experimental routine with Li first, followed by the same routine without Li
for each scan parameter. The obtained Rabi oscillations for a typical measurement of this
kind are presented in Fig. 3.18 and the analysis procedure is similar to the one described
for spectroscopic measurements. The fractional residual atoms are fitted with a function

12It is valid in the assumption that the final state is completely non-interacting, which is true in our case
where aLiCs2 ∼ 30a0.
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FIGURE 3.18: Time evolution of the remaining Cs atoms fraction in the Cs|1⟩ in presence of Li|2⟩,
at unitarity, with B = 888.7 G at the bare frequency ω0. (a) Colour maps of the evolution in the
optical density of the Cs cloud, resolved in space over time: on top, it is shown the measurement
with Cs superimposed to a Li Fermi sea at a T/TF ≈ 0.3, while on the bottom, a gas of pure Cs.
(b) Normalized remaining fraction of Cs atoms in the Cs|1⟩ state, embedded in a Li Fermi Sea
(red) or in a gas of pure Cs (blue). These data are the results of the average in a region of ± 50 µm
around the center of the cloud.

given by Eq. 3.34, at which we add a small time offset in the pulse length. The measured
Rabi frequency results to be (12.5 ± 1.6) kHz with Li and (14.4 ± 1.3) kHz without. The
remaining detuning has been estimated to be (12.4 ± 1.4) kHz with and (10.1 ± 1.7) kHz
without Li. The decay rate is for both about 10 ms−1 and the time offset of around 5 µs.
The contrast between the excitation amplitudes is about 0.87. It should be noted that
in the data analysis process, averaging over a smaller region centered on the Cs cloud
provides more signal coming from the region of interaction with Li, but it is also more
noisy.

Even if we did not reveal any signatures of the polaron, this approach is particularly
interesting. The coherent drive of Rabi oscillations between the two impurity states is a
powerful tool for probing the quasi-particle weight Z. The weight Z is directly related
to the Rabi frequency Ω normalized to the bare Rabi frequency [Kohstall et al., 2012] and√

Z essentially quantifies the wavefunction overlap between the polaron state and the
bare non-interacting impurity. Hence, Z ≃ (Ω2

p + Γ2)/Ω2
0 as long as Γ ≤

√
ZΩ0, where Γ

is the decay rate [Kohstall et al., 2012; Adlong et al., 2020], and it reduces to Z ≈ Ω2
p/Ω2

0

for very small Γ. This method has been proven both theoretically [Parish and Levinsen,
2016; Adlong et al., 2020, 2021] and experimentally for the mixtures of 40K-6Li [Kohstall
et al., 2012], of two different spin states of 6Li [Scazza et al., 2017] and of two different spin
states of 173Yb [Darkwah Oppong et al., 2019].
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FIGURE 3.19: Ejection spectral function at unitarity for different T/TF (in dark blue) and spectra
(in yellow) obtained considering the convolution of the ejection spectral function with a gaussian
probe with a finite width of ∆E = 0.2 × EF. The ejection spectra are obtained as in Sec. 3.1.2. The
solid vertical line at E/EF = 0.5 marks the positions of the polaron peak in the limit of T = 0.
These graphs are adapted from data obtained with FDA calculations provided by Moritz Drescher
(permission granted) [Drescher et al., 2024].

3.3.2 Limitations for finite temperature and overlap

In comparison to the observations for the mixtures of 40K-6Li [Kohstall et al., 2012] and of
different hyperfine spin states of 6Li [Schirotzek et al., 2009; Scazza et al., 2017], we expect
a smaller polaron energy shift due to the large mass imbalance between the impurity and
the fermionic medium, as explained in Sec. 3.1.1. Moreover, in those experiments, the
size of the atomic cloud of the minority species along the direction of imaging is much
smaller compared to the size of the cloud of the bath. In our case, instead, the size of the
Cs cloud along the direction of imaging is approximately two times as big as the size of
the Li cloud and therefore a large part of the detected signal comes from Cs atoms, which
are not interacting with Li atoms. Those atoms, when addressed by the spectroscopic
pulse, undergo the bare transition and populate the bare state.

Another crucial point concerns the temperature of the Li cloud and the detection of
the signal. A study of the temperature dependence of the polaron for an equal mass
system in a homogeneous confinement shows that the polaron peak survives until T/TF

≈ 0.75 [Yan et al., 2019]. However, in the case of a large mass imbalance, we expect the
highest temperature at which one can resolve the polaron energy to shift at much lower
values [Hu and Liu, 2022; Liu et al., 2020]. In addition, the harmonic confinement always
requires a local analysis in all three dimensions. As the size of the Cs cloud along the
imaging direction is twice that of the Li cloud, a local analysis in two-dimension, as we
currently do, is not enough since the signal along the direction of imaging is naturally
integrated. Since the Fermi temperature TF depends on the Li spatial density distribu-
tion nLi(r), being not able to determine the local Fermi temperature leads to an averaged
polaron peak. Another evident limitation is given by the pulse length used for the spec-
troscopy. We tried to use longer pulses, but we did not manage to reach the full contrast
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in the Rabi oscillations, even without Li atoms. To aid our understanding, I will discuss
these aforementioned arguments using a qualitative model divided in three steps.

1. As a first step, we perform a convolution between the discretized energy ejection
spectrum A(Ei), as obtained by FDA in Sec. 3.1.2, and a gaussian probe g(Ei −
E0) = e−(Ei−E0)

2/(2∆E2)/∆E
√

2π with a finite energy width of ∆E = 0.2 × EF as
follows

(A ∗ g)(E0) =
N

∑
i

A(Ei)g(Ei − E0)∆Estep (3.36)

with a finite step-size ∆Estep set by the discretization of the FDA data, and Ei such
that i = [1, N]. This gives the experimentally relevant energy-averaged spectra
for different T/TF, which are shown in Fig. 3.19. We observe a nearly constant
broadening of the response regardless of the temperature ratio T/TF.

2. In a second step, we add the hypothesis of partial spatial overlap between the two
clouds along the imaging direction by introducing the following simplified model.
We consider that only half of the population in the initially occupied Cs|1⟩ state can
interact with Li atoms and form a polaron. Therefore, half of the population con-
tributes to the polaron energy shift, while the other half will undergo the standard
bare transition. The total energy spectra are given by the sum of these two individ-
ual contributions, one centered on the bare energy transition and the other centered
on the expected polaron energy. The energy spectra for different T/TF are shown in
Fig. 3.20. We observe that the polaron peak does not emerge clearly for any global
T/TF here shown. The contribution of the bare transition and the large broadening
of our probe are already sufficient to prevent the observation of the polaron peak.
For the particular case of T/TF = 0.3 one could detect the polaron contribution
from the tail of the signal. This situation becomes even worst by decreasing the
pulse length or reducing the amount of Cs atoms interacting with Li.

3. However, a third step is necessary to reproduce our real situation. Indeed, as pre-
viously mentioned, atoms are trapped in a harmonic confinement and therefore
the TF, which is given by TF = h̄2(6π2nLi(r))2/3/(2mkB), depends locally on the
atomic density nLi(r), which is not constant along the direction of imaging. What
we measure is a signal that is integrated over several different TF, which leads to
smearing the polaron peak. It is therefore necessary to calculate the total energy
spectra by weighting each local spectral function with the contribution associated
with the local TF. However, this would simply contribute to a worsening of the
signal expected from the second step.

Although the polaron signal may have been washed out in this complex scenario,
pressure broadening in the spectroscopic response due to thermal collisions with Li atoms
could still be observed [Baranger, 1958a,b]. The reason why we do not observe this phe-
nomenon is likely due to two factors. Firstly, our signal is not Fourier limited. Secondly,
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FIGURE 3.20: Total energy spectra at unitarity for different T/TF for Cs population distributed
50:50 between the bare (black-dashed line) and the polaron state (yellow solid line). The probabil-
ity distribution to undergo a polaron transition is obtained by considering a gaussian probe with
a finite width of ∆E = 0.2 × EF as shown in Fig. 3.19. In red, the total probability resulting from
the sum of the yellow and black-dashed curve. These graphs are adapted from data obtained
with FDA calculations provided by Moritz Drescher (permission granted) [Drescher et al., 2024].

the large mass ratio between Cs and Li atoms results in Cs experiencing a very small re-
coil energy, making this source of broadening negligible.

A further relevant constraint is given by the Cs losses induced by the microtrap light,
discussed in detail in Sec. 2.3.1. The timescale associated with spin exchange processes
from Cs|3,+3⟩ to Cs|4,+4⟩ averaged over the volume of overlap between the microtrap
potential and the Cs cloud are large compared to the typical timescale for the polaron
experiment discussed in Sec. 3.3. Nevertheless, the local losses at the center of the micro-
trap occur much faster and could empty the Cs|1⟩ state before the Cs and Li clouds are
fully overlapped (see Sec. 2.2).

In conclusion, there could be multiple reasons why the Fermi polaron was not ob-
served. The most probable ones are related to a not optimal detection of the signal, such
as spectroscopic pulse too short or signal coming from a Cs atoms non-interacting with
Li, and to light induced Cs losses at the Cs tune-out wavelength. However, a more effec-
tive thermometry would also aid in understanding if our limitation is rather an incorrect
determination of the global T/TF of the cloud in such a scheme. Therefore, changes to
our experimental setup and procedure are necessary to observe the Fermi polaron.

3.4 Towards the Fermi polaron in Li-Cs mixtures

In Sec. 3.4.1 several changes in the experimental setup are proposed. Afterwards, in
Sec. 3.4.2, further directions of few- and many-body physics in the Li-Cs system are pre-
sented.
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3.4.1 Upgrade of the experimental setup

The Fermi polaron has not been observed in our experiment so far and, therefore, we
suggest the following improvements in order to experimentally study the Fermi polaron.

Local detection of Cs atoms interacting with Li: upgrade of the imaging scheme. In
order to gain experimental access to the polaron signal, we plan to upgrade our imaging
scheme. Conventional imaging techniques allow for spatial selection of a certain target
area just in two spatial directions, while data relative to the third spatial direction can-
not be directly acquired or post-selected. To circumvent this limitation, we propose to
implement a thin light sheet, propagating perpendicularly to the imaging direction. The
frequency of this light sheet is tuned to be resonant with the transition on which we opti-
cally pump Cs atoms from their ground state to an excited state for subsequent imaging.
The implementation of an optical sheet of only a few µm thickness, will allow us to probe
selectively the impurities in the central region of the Cs cloud, where the surrounding
medium’s density is relatively constant and defines a unique Fermi temperature.

Coherent Rabi oscillations: upgrade the spectroscopy scheme. For achieving coherent
Rabi oscillations using Raman spectroscopy, we need to prioritize the stabilization of
the magnetic field offset and laser intensities, especially on timescales of ∼ 100 µs. It is
important to establish whether the limitations described in Sec. 3.2.2 and Sec. 3.3 arise
solely from magnetic field or laser intensity fluctuations, or if there are other factors not
considered yet which constrain the coherence of the Rabi oscillations. This extensive
investigation is necessary to refine the methods for reliably driving Rabi oscillations in
our experiment.

Spatial overlap and reduced Cs losses: implementation of alternative trapping schemes.
Two schemes are suitable for ensuring a very dilute Cs cloud confined at the center of a
degenerate spin-polarized Li Fermi Sea while avoiding undesired losses caused at the Cs
tune-out wavelength.

A first approach proposes a monochromatic confinement for both species, mimicking
the scheme used previously in our experiment to create mixtures of non-degenerate gases
at temperatures as low as 200 nK, as reported in Repp et al. [2013], Pires et al. [2014b], Ul-
manis et al. [2016b] and Zhu et al. [2019b]. The single optical trapping potential at 1070 nm
would naturally create smaller sizes for the Cs cloud than for Li. However, pure optical
trapping would not allow compensating for the differential gravitational sag between the
two species, in particular at temperatures where Li is deeply degenerate. To overcome
this issue, it is necessary to combine optical and magnetic trapping using a magnetic
field gradient. The implementation of a setup to produce anti-levitation magnetic fields
for both species is reported in Freund [2019] and a measurement which shows the effec-
tive possibility to create negative gradients can be found in Appendix A. This scheme
creates a gradient that pushes both Li and Cs down along the direction of gravity, with
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a more pronounced effect for Li. This would enable us to fully overlap Li and Cs in the
same optical potential independently from the temperature of the mixture.

The second approach, instead, involves the usage of a bichromatic trapping scheme
similar to the one implemented in this thesis work. In order to increase the time for
which Li and Cs atoms can be trapped together, and to allow both thermalization and
sympathetic cooling between the two species, we propose to shift the wavelength of the
movable Li trap away from the Cs tune-out wavelength, while maintaining the concept
of a movable Li trap. The broadly tunable Ti:Sa laser wavelengths should be tuned to
around 700 nm. As Li has a much higher polarizability than Cs at those wavelengths, we
can use very low power, resulting in a negligible repulsive potential for Cs. A high power
single mode and highly stable laser would be used as source for the final Cs trap. This
would consist of two 30 µm beams crossing at an angle of 90°. The size of the trapping
beams for Cs is chosen to ensure spatial overlap of Li and Cs down to temperatures of a
few hundreds of nK.

3.4.2 Future polaron experiments

Besides mapping the energy polaron spectrum as a function of the interaction parame-
ter and of the temperature, the Li-Cs system is well-suited for investigating many-body
phenomena of broader interest because it naturally simulates an immobile pinhead sur-
rounded by light particles. I will give here an overview on possible future experiments
that we could realize thanks to the experimental upgrade described in Sec. 3.4.1 and after
a first signature of the Fermi polaron will be observed in our mixture.

Polaron to molecule transition at finite temperature in the heavy mass limit. The po-
laron to molecule transition remains still largely experimentally unexplored, particularly
in mixtures with heavy impurities. Similarly to the study conducted by Ness et al. [2020],
mentioned in Sec. 3.2.2, ejection Raman spectroscopy can be used to distinguish between
the polaronic and the molecular contributions to the energy spectra. Mapping out the
polaron energy and the quasi-particle weight of the polaron over both the interaction
parameter, the temperature and the degree of degeneracy expressed as T/TF in a Li-Cs
mixture would provide a comprehensive overview of the critical behaviour in the heavy
impurity limit. For example, for interaction parameters larger than the critical value
1/(kFac), one could extract the temperature at which the dressed dimer and polaron be-
gin to separate. However, as shown in Fig. 3.21, ejection spectroscopy allows only for
detection of the ground state.

Probing the full excitation spectrum of a dressed dimer. A dressed dimer at interac-
tion parameters below the critical value, i.e. when it corresponds to the first excited state
of the system, has not yet been observed experimentally. Diessel et al. [2024] proposes
a novel protocol to create a dressed dimer (named "molaron") on demand and to probe
its full excitation spectrum. This scheme employs Raman injection spectroscopy and re-
quires driving transitions between a bound-state (pre-formed tightly-bound dimer) and
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FIGURE 3.21: Scheme for probing the polaron (solid line) to molecule (dashed line) transition.
The different colors indicate the kind of spectroscopy that can be used to probe either the polaron
or the dressed dimer. Injection spectroscopy (green) allows for probing the polaron. Ejection
spectroscopy (yellow) allows the detection of the full ground state, which corresponds to the
polaron for (kFa)−1 < (kFac)−1 and to the dressed dimer for (kFa)−1 > (kFac)−1. The proto-
col proposed in [Diessel et al., 2024], which proposes the injection of a tightly bound dimer in a
dressed dimer (pink), would allow probing the full excitation spectrum of a dressed dimer, even
for (kFa)−1 < (kFac)−1 where neither of the other two protocols can work. This picture is inspired
by [Diessel et al., 2024].

another bound-state (dressed dimer), as shown in Fig. 3.21. This scenario necessitates
using two interspecies Feshbach resonances where the initial dimer state has sufficient
spectroscopic overlap with the final dressed dimer state. One resonance is used to create
the dimer, and the other to inject the dimer into the dressed state.

Unfortunately, using two hyperfine states of Cs might be problematic since the pairs
of Li-Cs Feshbach resonances available with Cs in different hyperfine states would not
work. This is due to either insufficient overlap or inelastic spin decay in the final state,
which would broaden the lines and cover the interesting many-body phenomena13.

An alternative might be to use the hyperfine transitions between the hyperfine states
of Li. The experimental procedure would consist of starting with the mixture of Li|2⟩
and Cs|1⟩ and use the Feshbach resonance at 888.6 G for preparing the tightly-bound
dimer. Then, transfer all free Li atoms remaining into Li|1⟩. If this is done ideally, it
would lead to a bath of Li|1⟩ plus dimers. Subsequently, jump to 843 G, where the bath
is strongly interacting with Cs|1⟩ and transfer the tightly-bound dimer to the dressed-
dimer state with the Raman protocol. In our existing setup this could be done with a

13We had taken into account the possibility to use the Feshbach resonance at 943.3 G between Li|2⟩⊕Cs|1⟩
for pre-forming the molecule and the one at 941.6 G between Li|2⟩⊕Cs|2⟩ for injecting the dimer into a
dressed dimer. The resonance at 943.3 G is characterized by sres ≤ 0.03 [Tung et al., 2013] while the one
at 941.6 G is open-channel dominated (from private exchanges with Arthur Christianen). The calculated
overlap is small but sufficient (from private exchanges with Arthur Christianen). However, at such magnetic
fields, even at low densities, if Cs is the impurity and it is not in the hyperfine ground state, spin changing
collisions with Li are possible, because the splittings for Cs are larger than the splitting for Li. If one excites
the hyperfine state of Cs, it is more favourable to change the spin of Li to an excited state so that Cs can go
back to the ground state.
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FIGURE 3.22: Scheme for probing the Anderson orthogonality catastrophe via a Ramsey interfer-
ometry protocol. (a) Sketch of the Ramsey protocol on Cs atoms. (b) Graphical illustration of the
expected evolution of the Ramsey contrast S(t). Picture (a) is inspired by [Cetina et al., 2016] and
(b) by [Schmidt et al., 2018].

detuned transition of Li. In this scenario, for our current apparatus, a feasible experiment
would consist of performing spectroscopy with zero momentum transfer. We could then
replace the Raman protocol with RF-spectroscopy on the two lowest hyperfine states of
Li. This would allow detecting the signal of the dressed dimer. As we want to detect
the dimer, the flip of the majority species should bring a larger contribution compared to
what we expect for the bath flip protocol with simple polarons.

Signatures of orthogonality catastrophe in the heavy mass limit. Following previous
works [Cetina et al., 2016, 2015], we expect Ramsey-type spectroscopy to be an experi-
mentally relevant protocol to observe signatures of the orthogonality catastrophe, intro-
duced in Sec. 3.1.1. Indeed, the evolution of the Ramsey contrast S(t) = ⟨eiĤ0te−iĤt⟩ is
directly related to the real-time overlap between the many-body state with and without
the impurity, governed respectively by the Hamiltonians Ĥ0 and Ĥ [Schmidt et al., 2018].

The implementation of such a protocol consist of applying a first π/2 pulse to create
a coherent superposition of interacting and non-interacting Cs states, let the impurities
evolve for a variable interaction time, and probe the resulting state with a second π/2
pulse by measuring the variation of the atomic population.

The evolution of the Ramsey contrast can be divided into two regimes. For short
evolution times t ≤ τf ew ≈ τF few-body physics dominates, whereas, for longer times,
with t > τF, many-body correlations build up and polarons are formed. The univer-
sal power-law scaling of the Ramsey contrast is expected to be observable for timescales
τF ≤ t < τR, τT. The time scale given by τR = 9

16 mI/mb × τF takes into account finite
recoil effects and gives an estimate of the evolution time at which finite mass correc-
tions become relevant [Cetina et al., 2016]. The K-Li mass ratio of ∼ 6.7 of the system
used in Cetina et al. [2016] limits the time window for observing the universal dynam-
ics associated with the Anderson orthogonality catastrophe to ∼ 4τF [Cetina et al., 2015,
2016]. Conversely, the Cs-Li of our system would allow accessing the power-law scal-
ing behaviour in a larger time window, up to ∼ 12τF. However, the timescale on which
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thermal decay becomes relevant is given by τT = τF × (T/TF)
−1 and it is independent

from the mass ratio. To prevent that thermal fluctuations hide most of the many-body
correlations accessible in our large time window, the degree of degeneracy of our Li bath
must satisfy T/TF ∼ 0.07. The idea would be then to use Ramsey spectroscopy protocols
based on our newly implemented Raman transfer scheme described in Sec. 3.2.2.

From this experiment we expect to understand how a large but finite mass impurity
at ultracold, but still finite, temperatures modifies polaron formation. It would be in-
teresting to study how the Ramsey spectra change as a function of the temperature, the
degree of degeneracy of the bath, the concentration of the impurity. This would allow
exploring the emergence and disappearance of the universal scaling in dependence of
these parameters.

It should be noted that the expected universal power law ωα could also be extracted
from the tail of the impurity energy spectrum [Knap et al., 2012]. However, this approach
is less robust than the interferometric approach described above.

Alternatively, Adlong et al. [2021] proposes to look for signatures of the orthogonality
catastrophe in the Rabi oscillations driven by standard RF spectroscopy. In particular, if
the Rabi coupling Ω0 is large enough to overcome thermal effects, but still small enough
to not completely smear the power law, the orthogonality catastrophe scaling α dictates
the frequency of the Rabi oscillations. This condition, given as 2T < Ω0 < EF, can be eas-
ily fulfilled by our experimental parameters. In fact, the use of our Raman spectroscopy
scheme would allow for a wide tunability of the Rabi frequencies.

Heavy polarons in BCS Fermi superfluids. The twin scenario of heavy polarons in a
Fermi Sea is the case of heavy polarons in a Fermi superfluid, which can be realized by
replacing the bath of a spin-polarized degenerate Fermi gas with a two-component Fermi
gas involving intra-species interactions tuned in the BCS regime. This scenario is easily
achievable in our mixture since BCS Fermi superfluid can be routinely prepared on the
BCS side of the Li|1⟩⊕Li|2⟩ Feshbach resonance at 832 G, and the Li-Cs interspecies in-
teractions can be tuned near 843 G as well as near 888.6 G. The interacting superfluids
would prevent the orthogonality catastrophe in such a system and would allow mea-
suring the background superfluid excitation spectrum and the pairing gap [Wang et al.,
2022]. Moreover, the pairing gap would protect the polaron against thermal fluctuations,
preserving clear polaron features in response functions even at finite temperature such
that kBT is comparable to the energy associated with the pairing gap.
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In this work we have realized a mixture composed of a Fermi Sea and heavy impurities
and developed an experimental protocol for the detection of Fermi polarons. The system
studied consists of a low-density sample of 133Cs atoms, in the role of the impurities, and
of a spin-polarized Fermi Sea of 6Li atoms, in the role of quantum medium. We aimed to
spectroscopically probe heavy thermal Cs impurities coupled to the Li Fermi Sea while
tuning the interspecies interactions for mapping out the polaron energy spectrum and,
thus, acquiring knowledge on many-body physics in systems with large mass imbalance.

For this purpose, we have extended and improved our experimental apparatus. On
the one hand, a large effort has been devoted to the design and implementation of a
bichromatic trapping scheme that allows compensating the differential gravitational sag,
ensuring a good spatial overlap at arbitrary temperatures and independent manipulation
of temperatures and densities of Li and Cs clouds. For this purpose, a tightly confining
mobile trap for Li atoms at the Cs tune-out wavelength was designed, built up, tested
and implemented in the main experiment. On the other hand, to probe the energy of
the Cs impurities, we have built an optical setup to perform Raman spectroscopy on the
two lowest Cs Zeeman states, which are |3,+3⟩= Cs|1⟩ and |3,+2⟩= Cs|2⟩. The detun-
ing required to address these two states at the desired magnetic fields is about 263 MHz
and we achieved typical Rabi frequencies of 15.6(9) kHz. This setup, together with the
already existing spectroscopic tools, such as a radio-frequency antenna and a microwave
horn, allows a versatile preparation and probing of the Li-Cs mixture in different states.
Moreover, the combination of these spectroscopic techniques with high-resolution ab-
sorption imaging in fast kinetic mode, which allows the acquisition of images of both
atomic clouds within the same experimental cycle, gives us complete access to the prop-
erties of the mixture. In addition, we have characterized existing features of the experi-
mental apparatus, such as the performance of the double-species Zeeman slower and the
homogeneity of the Feshbach coils. While the performance of the Zeeman slower plays
a key role for loading Li and Cs clouds in their respective magneto-optical traps (MOTs),
the homogeneity of the magnetic fields is an important prerequisite for controlling and
tuning the intra- and inter-species scattering lengths via magnetic Feshbach resonances.

Strengthened by the upgrade of the experimental apparatus, we have realized, for the
first time in our experiment, a mixture composed of a dilute thermal Cs gas and a degen-
erate Li Fermi Sea. For the mixing procedure, we have adopted a sub-sequential loading
scheme where we first prepare Li and then Cs. Specifically, we load the Li MOT, perform
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D1 cooling, load the atoms into the dimple trap, and then transfer them into the micro-
trap. This last step results in a decrease of T/TF by a factor of 4. The evolution of temper-
ature and atomic number during forced evaporation at 320 G agrees well with evapora-
tion characterized by a truncation parameter of η = 10, and we obtain T/TF ≲ 0.1 with
8 × 104 atoms in less than 2 s. We then adiabatically compress, displace and store the
Li cloud 230 µm away from the intersection of the dimple trap beams while loading the
Cs MOT. After different sub-Doppler cooling stages, we load Cs into the reservoir trap,
levitate the cloud with a finite magnetic field gradient and offset, and then jump to 526 G
where we select the desired Li spin state. Finally, we apply a magnetic field of 900 G and
then, after transferring the Cs atoms into the dimple trap, we remove the magnetic field
gradient and evaporate, decreasing the laser power to reach a temperature similar to that
of Li. Then, we spatially combine the two clouds while decreasing the microtrap power.
Following this route, we obtained mixtures of Li|2⟩ and Cs|1⟩ where the peak density
ratio of Cs to Li is nCs/nLi ≈ 0.01 and the Fermi Sea is characterized by a T/TF ≈ 0.3. A
clear signature of the interaction between the two species was observed by performing
Feshbach loss-spectroscopy near the Li-Cs Feshbach resonance at 888.6 G and recording
a loss signal with a typical 1 : 2 ratio expected for Li-Cs-Cs three-body collisions.

After realizing the Li-Cs mixture and have observed the signature of interspecies in-
teractions, we have focused on probing the energy spectrum of heavy Fermi polarons on
133Cs atomic impurities immersed in the Fermi Sea of 6Li atoms. We have estimated
from theory the expected polaron shift as a function of the interaction strength at both
zero and finite temperatures. For zero temperature, following [Combescot et al., 2007],
we have calculated the ground state of the polaron spectrum using the Chevy varia-
tional approach [Chevy, 2006] and then applied it to a finite impurity-bath mass ratio
of mI/mb = 22. This has been compared to the analytical result for the case of an in-
finitely heavy impurity mI/mb = ∞. The results are in agreement, indicating that the
limit of an infinitely heavy impurity remains accurate for the Li-Cs mixture. For finite
temperatures, numerical predictions of the polaron spectral function calculated using the
functional determinant approach [Drescher et al., 2024] for an infinitely heavy impurity
revealed that a T/TF ≲ 0.3 is required to distinguish the polaron from the bare transition.
Experimentally, we have implemented an ejection spectroscopy protocol on Cs impuri-
ties near the Feshbach resonance at 888.6 G, corresponding to the Li|2⟩⊕Cs|1⟩ scattering
channel. This protocol consists of preparing the impurities in the Cs|1⟩ state, which is
initially interacting with the Li|2⟩ state, and then transfer them to the state Cs|2⟩, which
is instead weakly interacting with Li|2⟩. This method should allow probing the ground
state of the system. Since this scattering channel, as well as the channels Cs|2⟩⊕Cs|2⟩ and
Cs|1⟩⊕Cs|2⟩ can undergo two-body inelastic collisions, we must keep the Cs densities
low, and possibly below 1 × 1011 cm−3. The spectral response of Cs impurities is stud-
ied by probing the energy difference of the two lowest Zeeman states Cs|1⟩ and Cs|2⟩
via Raman spectroscopy. The two Raman beams transfer the atoms from the state Cs|1⟩
to the state Cs|2⟩ via a π-pulse. The number of atoms left in the Cs|1⟩ state is recorded
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after the quench as a function of the detuning. The spectroscopic signal in the presence
of the Fermi Sea is then compared with the signal obtained in its absence. Even though,
we have studied the Li-Cs mixture for different temperatures and different interaction
strengths, we have not observed any signal of the polaron.

Therefore, we reassessed some features of the experiment. On the one hand, the in-
homogeneous density distribution of the Li and Cs atoms poses complications in the
detection of the polaron signal. Indeed, Cs impurities experience the effect of the density
variation of the Li bath nLi(x, y, z), which in turn leads to a spatial variation of the polaron
energy Epol ∝ nLi(x, y, z). This results in a broadening of the energy spectrum around the
polaron energy E0 + Epol , which makes the polaron feature not distinguishable from the
noise. On the other hand, the Cs tune-out trap prevents the realization of state-selective
experiments with the Cs ground state due to spontaneous two-photon Raman scatter-
ing, which results in significant Cs atom losses. To ensure thermalization occurs faster
than light-induced losses, the species are overlapped at a magnetic field with high inter-
species scattering lengths, i.e. at unitarity. Here, we have experimentally observed that
light induced losses do not prevent interspecies interactions, which manifest in three-
body losses close to the Feshbach resonance. However, locally, light-induced losses are
expected to be much more severe than on average and, thus, to hinder the detection of
polarons. Furthermore, the low reproducibility of the Raman spectroscopic signal and of
its Rabi oscillations limits significantly the reproducibility of the polaron experiment.

In consideration of the aforementioned limitations associated with the current exper-
imental setup, a series of modifications can be implemented. First, for improving the
detection of the polaron, we propose to implement an optical light sheet of a few µm
thickness that would permit the selective probing of the impurities in the central region
of the Cs cloud, where the surrounding medium’s density is relatively constant and de-
fines a unique Fermi temperature. Second, in order to avoid the breakdown of the co-
herence of the prepared Cs state induced by spontaneous two-photon Raman scattering,
we plan to shift the wavelength of the movable Li trap away from the Cs tune-out wave-
length. This choice is also favorable to increase the time for which Li and Cs atoms can be
trapped together and to allow sympathetic cooling between the two species at moderate
interspecies scattering lengths. It would be advantageous to choose a trapping potential
that ensures the confinement of the Cs cloud in the Li-Fermi Sea at a wavelength where
dissipative effects are negligible. A common solution to both issues, which are the detec-
tion of the polaron and the loss of coherence of the prepared Cs state, would consist of
using a bichromatic trapping scheme similar to the one implemented in this thesis work
but shifting the wavelength of the tunable Ti:Sa laser to around 700 nm, where it creates
a a repulsive potential for Cs atoms and an attractive potential for Li atoms. At the same
time, the gravitational sag can be overcome by positioning the microtrap slightly below
the dimple trap, pushing up the Cs atoms, while pulling down Li atoms. Another so-
lution would be to use the existing dimple trap as the final trapping potential for both
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species, retrieving a very old scheme used in our experiment. However, this old scheme
would be improved by using a magnetic gradient to push both species downward such
that it compensates for the differential gravitational sag, by using a different evapora-
tion scheme for Li atoms and relying on sympathetic cooling between the species. Both
schemes are suitable for ensuring a dilute Cs cloud confined at the center of a degenerate
spin-polarized Li Fermi Sea while avoiding undesired losses caused at the Cs tune-out
wavelength. An additional important point is the necessity to achieve coherent and re-
producible Rabi oscillations for Cs via Raman spectroscopy. It is important to determine
whether the limitations are solely due to magnetic or laser intensity fluctuations, or there
are other factors not considered yet that limit the coherence of the Rabi oscillations.

These upgrades should allow the detection and characterization of the properties of
the Fermi polaron in the Li-Cs system. The first experiment should be devoted to map
the energy polaron spectrum using zero-momentum transfer Raman spectroscopy on Cs
impurities. More advanced spectroscopic protocols should then be applied to study the
dynamics of heavy impurities in the context of the Anderson orthogonality catastrophe,
both via Ramsey spectroscopy [Schmidt et al., 2018; Cetina et al., 2015, 2016] and via
recording Rabi oscillations [Adlong et al., 2021]. Thanks to the capability of the Raman
setup to drive fast Rabi cycles, experiments on driven oscillations similar to Vivanco et al.
[2023] are also a possible direction of study. Additionally, minimal changes to the exist-
ing Raman setup are needed to upgrade it for finite momentum transfer [Veeravalli et al.,
2008; Shkedrov et al., 2020], which would open up to study momentum-dependent phe-
nomena. For example, ejection Raman spectroscopy can be used to distinguish between
the polaronic and the molecular contributions to the energy spectra [Ness et al., 2020].
Raman injection spectroscopy would allow instead creating a dressed dimer and probing
its full excitation spectrum [Diessel et al., 2024]. Furthermore, replacing the Fermi Sea
with a Fermi superfluid would also lead to the emergence of interesting phenomena: in
such a system, the interacting superfluids would prevent the orthogonality catastrophe
and allow the measurement of the background superfluid excitation spectrum and the
pairing gap [Wang et al., 2022]. Finally, after the necessary replacement of the Cs source,
it should be possible to increase the density of the Cs-Bose gas and to produce again Cs
Bose Einstein condensates [Tran, 2022]. This could be exploited to go beyond the Fermi
polaron scenario and explore the Bose polaron scenario and its connection to Efimov
physics [Levinsen et al., 2015]. In addition, other relevant topics that could be studied in
degenerate Fermi-Bose mixtures are for example the phase-diagram [Duda et al., 2023],
collective excitations [DeSalvo et al., 2019; Patel et al., 2023; Yan et al., 2024a], and droplet
formation [Rakshit et al., 2019a,b].

In conclusion, in this thesis work we have laid the ground for an unique and versatile
experimental setup capable of producing a degenerate Li Fermi gas mixed to a Cs thermal
Bose gas, which can be used for the exploration of polaron physics in the heavy mass
impurity limit.
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Appendix A

Compensation of the differential
gravitational sag:
an alternative approach

In this Appendix, I describe a strategy to compensate for the differential gravitational
sag of Li-Cs that is alternative to the use of species-selective trapping or to mechanical
translation of one cloud with respect to the other. The proposal is to use monochromatic
trapping of the two species by the dimple trap with a magnetic field gradient oriented
in the same direction as the gravitational potential. In this combination of potentials,
the differential gravitational sag is independent from the power of the dipole trap and,
in theory, this system allows the complete overlap of Li and Cs cloud in the same opti-
cal dipole trap, independently from the temperature reached by the mixture at thermal
equilibrium. During the course of this thesis a setup to produce anti-levitation magnetic
fields for both species was implemented. This magnetic field is provided by the Curva-
ture Coils, shown in Fig. 1.2 (c), which consist of a pair of coils with two layers and two
windings each, placed inside the Feshbach coils [Pires, 2014]. An H-bridge was imple-
mented and connected to this coils to allow switching the polarity of the magnetic field
gradient. The gradient pushes both Li and Cs down, resulting in an artificial sag more
pronounced for Li atoms than for Cs. The description of the setup, of its characterization
and of the building of the H-bridge can be found in Freund [2019]. Here, I summarize the
main expectations from the calculation of the total potential of this trapping scheme and
show a measurement about the effective possibility to shift it, by using as a probe the MT
light-induced loss on Cs atoms.

The differential gravitational sag is given by a combination of the different magnetic
moments, polarizabilities and masses between Li and Cs (see Freund [2019]). The main
results are summarized in Fig. A.1. The gravitational sag has been extracted by: (i) mini-
mizing the full trapping potential, (ii) considering a harmonic approximation for optical
trapping potential and linear approximation for the Breit-Rabi formula as given by Eq.
2.24. We computed the gradient necessary to cancel the differential gravitational sag for
Li and Cs at different magnetic field offsets and we found that for offset values B0 > 100
G, the expected magnetic field gradient is - 8 G/cm, for both mixtures of Li|1⟩⊕Cs|1⟩ and
Li|2⟩⊕Cs|1⟩.
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Experimentally, we show in Fig. A.2 that we can push the atoms down for negative
magnetic field gradients. This does not prove that we can hold both of them together in
such a combined potential, but that at least the gradient works as expected.

We proceeded by extracting the gravitational sag from measurements of light-induced
Cs loss at the tune-out wavelength as a function of the displacement of the MT. In this
measurement the MT beam is used as a probe and we vary its height from the horizontal
plane defined by the crossed DT beams. We change the focal position of the MT beam up
and down, along a diagonal, by moving the translation stage horizontally as described
in Sec. 2.2.3. The gravitational sag was measured as a function of the magnetic field gra-
dient as follow. The peak position of the Gaussian fit allowed for the extraction of the
absolute gravitational sag.

For a levitated DT trap at a laser power of 300 mW, we prepared an atom number of
N = 2.5 × 104, which decreases by reducing the gradient until reaching N = 3 × 103.
The offset magnetic field is 880 G. The area of the scan is limited to ±3 × σr where σr is
the radial Gaussian size of the Cs cloud. The magnetic gradient calibration is given by
Bg(I) = I × (0.238 ± 0.004) G cm−1A−1, where I is the current in the Curvature Coils
[Freund, 2019]. As this measurement was only intended to be a proof of principle, it was
only done for a few magnetic fields: Bg = 0 G/cm, which means pure optical trapping;
Bg = −8 G/cm, which is the value where we expected to have compensation of the grav-
itational sag; Bg = +27 G/cm, which is the value for fully levitating Cs atoms at 880 G;
Bg = −15 G/cm, which is for anti-levitation even steeper than the one required. A linear
fit to the data gives a slope of (0.29 ± 0.08) cm2/G with an offset of (−8.4 ± 1.6) µm,
which corresponds to the gravitational sag without any additional magnetic gradient.
This is compared to the gravitational sag as a function of magnetic field gradient ob-
tained by minimizing the full trapping potential, as well as to the sag calculated using
the harmonic approximation for the optical trapping potential and a linear approxima-
tion for the Breit-Rabi formula. The former has a slope of 0.24 cm2/G and an offset of -6.6
µm.

Finally, Fig. A.3 shows how the gravitational sag changes as a function of the laser
power, for a fixed magnetic field gradient of Bg = −8 G/cm and an offset magnetic field
of B0 = 880 G. For reference, we also computed and plotted the trap depth as a function of
DT laser power and the profile of the total trapping potential along the vertical direction.
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FIGURE A.1: Gravitational sag z0 for Li|1/2,−1/2⟩(red) and Cs|3,+3⟩(blue) optically trapped at
B0 = 880 G with a laser power of 200 mW as a function of the magnetic field gradient Bg. The
solid lines represent the gravitational sag extracted by minimizing the full trapping potential.
The dashed lines, instead, are obtained considering the harmonic approximation for the optical
trapping potential and a linear approximation for the Breit-Rabi formula. The gray shaded area
represents the range of magnetic field gradient values accessible with the newly implemented
H-bridge for the Curvature Coils. The differential gravitational sag ∆zsag is null at the crossing of
the absolute gravitational sag z0 for Li and Cs, which is marked by a green point. The plots on
the right hand side show the trapping potential for Li (red) and Cs (blue) corresponding to the
magnetic field gradients indicated by the gray vertical lines in the main plot: (a) Bg = - 8 G/cm,
differential sag between the two species is null and zLi,Cs

0 = 12.5 µm, (b) Bg = 0 G/cm, magnetic
field gradient is null and ∆zsag = 10 µm: here the gravitational sag for Li almost vanishes zLi

0

∼ 0 µm; (c) Bg = + 27 G/cm, gradient necessary for fully levitating Cs zCs
0 ∼ 0 µm. The inset

shows how the magnetic field gradient required for canceling the differential sag between Li and
Cs changes following the offset magnetic field B0. This dependence is shown in the inset for
Cs|3,+3⟩with Li|1/2,−1/2⟩(black) or with Li|1/2, 1/2⟩(gray). Here, the green point marks the
value of B0 for the other plots shown within this figure.
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FIGURE A.2: Measurements of the (absolute) gravitational sag for Cs optically trapped in the
DT at B0 = 880 G with a power of 300 mW. (a) Gravitational sag as a function of the magnetic
field gradient of the DT: the dots are the experimental data points extracted as shown in (b); the
orange dashed line is a linear fit to the data; the blue-solid line is the gravitational sag obtained by
minimizing the full trapping potential; the blue dashed line, is obtained considering the harmonic
approximation for the optical trapping potential and a linear approximation for the Breit-Rabi
formula. (b) Light-induced Cs loss at the tune-out wavelength in dependence of the position of
the MT with respect to the Cs cloud. The peak position of the Gaussian fit (orange solid line)
allows extracting the absolute gravitational sag.
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FIGURE A.3: Properties of Cs trapping potential for the magnetic field gradient Bg = −8 G/cm.
The offset magnetic field is B0 = 880 G and Cs is trapped in the DT. Gravitational sag z0 (a) and
trap depth (b) in dependence of the power of the DT. In (c) the trapping potential for Cs at 300
mW along the z-direction is shown.
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Appendix B

Scattering of two heavy Fermi
polarons

In this appendix the following publication is attached:

Scattering of two heavy Fermi polarons: Resonances and quasibound states
T. Enss, B. Tran, M. Rautenberg, M. Gerken, E. Lippi, M. Drescher, B. Zhu, M. Wei-
demüller, and Manfred Salmhofer
Physical Review A 102, 063321 (2020)
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Impurities in a Fermi sea, or Fermi polarons, experience a Casimir interaction induced by quantum fluctuations
of the medium. When there is short-range attraction between impurities and fermions, also the induced interac-
tion between two impurities is strongly attractive at short distance and oscillates in space for larger distances. We
theoretically investigate the scattering properties and compute the scattering phase shifts and scattering lengths
between two heavy impurities in an ideal Fermi gas at zero temperature. While the induced interaction between
impurities is weakly attractive for weak impurity-medium interactions, we find that impurities strongly and
attractively interacting with the medium exhibit resonances in the induced scattering with a sign change of the
induced scattering length and even strong repulsion. These resonances occur whenever a three-body Efimov
bound state appears at the continuum threshold. At energies above the continuum threshold, we find that the
Efimov state in medium can turn into a quasibound state with a finite decay width.
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I. INTRODUCTION

The interaction of impurity particles in a medium is studied
across physical disciplines. Specifically, the Casimir interac-
tion between two impurities arises from fluctuations of the
medium, or even the vacuum, subject to the boundary con-
ditions imposed by the impurities [1]. Current applications
range from neutron stars [2] and the quark-gluon plasma [3]
to ultracold atoms [4,5]. Recent advances in experiments with
ultracold atomic gases allow exploring mobile impurities in
a fermionic medium, or Fermi polarons, in the regime of
strong attraction [6–12] and precisely measuring their spectral
properties. These experiments are performed not on a single
impurity but on a dilute gas of impurities. The induced inter-
action between impurities is typically weak [13–16], but it can
play an important role when the impurity-medium interaction
becomes strong. Indeed, for large scattering length it can lead
to Efimov three-body bound states [17–19] that are crucial for
interpreting impurity spectra [20].

The interaction between localized spins in an electron
gas is a classic result of condensed matter physics: by the
Pauli principle, the induced Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction oscillates in space and changes sign
whenever the distance between the spins grows by about an
electron spacing, or Fermi wavelength [21–23]. For larger
objects in a Fermi sea, this can be understood by semiclassical
methods [24]. More recently, these studies have been extended
to the case of impurity atoms in a Fermi gas, or Fermi po-
larons [25–27]. When the impurity is tuned to strong attraction
with the Fermi sea, it can form a bound state with one of
the fermions [26,28,29]. These, in turn, lead to an enhanced
attraction between two impurities at short distance [4,5,30]

and even to bipolaron bound states between two impurities
in a Fermi sea [5,31–34]. The Efimov bound states between
two impurities and one fermion are characterized by discrete
scaling relations [18,35]. In the medium, the scaling relations
are modified by the Fermi wavelength as an additional length
scale [5,31,33,34] and lead to shifts in the bipolaron resonance
positions. Because they satisfy a new scaling relation, we
refer to them as in-medium Efimov resonances. In the limit
of a dense medium the induced interaction diminishes propor-
tional to the Fermi wavelength and eventually vanishes [30].

In this work, we study the scattering properties of two
heavy impurities in an ideal Fermi gas, as shown in Fig. 1.
Based on the Casimir interaction potential [4], we com-
pute the scattering phase shift and the induced scattering
length between impurities and find that they scatter resonantly
whenever an Efimov bound state appears at the continuum
threshold. Moreover, for positive scattering length a repulsive
barrier arises in the impurity potential, and remarkably the
in-medium Efimov state can live on behind the barrier as a
quasibound state at positive energies. In the following, we
start by reviewing the Casimir interaction potential in Sec. II.
In Section III we solve the Schrödinger equation for two impu-
rities in this potential to find the scattering properties, and we
discuss our results also for the experimentally relevant case of
cesium-lithium mixtures [36,37] before concluding in Sec. IV.

II. CASIMIR INTERACTION

The interaction of two heavy impurities (mass M) in an
ideal Fermi gas of light particles (mass m) is well described in
the Born-Oppenheimer approximation. By the separation of
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FIG. 1. Two heavy impurities (large blue dots) at distance R in a
Fermi sea of light fermions (small red dots).

time scales, the impurities can be considered as a static scat-
tering potential for the fermions and—in the case of a contact
potential—provide only a boundary condition for the fermion
wavefunctions. This approximation becomes exact in the limit
of infinitely heavy impurities, where the problem reduces to
potential scattering, and remains accurate at large mass ratio
M/m � 1, for instance in a quantum gas mixtures of bosonic
133Cs and fermionic 6Li atoms. In this section we present the
derivation of the interaction V (R) induced between the two
heavy impurities (of arbitrary statistics) by the presence of the
Fermi sea, following Nishida [4].

Consider two infinitely heavy impurities at distance R with
positions R1,2 = ±R/2. The impurities have a short-range
attractive interaction with the fermions, which we model by
a zero-range Fermi pseudopotential. The action of the po-
tential is equivalent to imposing the Bethe-Peierls boundary
condition on the fermion wavefunction near an impurity at
position Ri,

ψ (x → Ri ) ∝ 1

|x − Ri| − 1

a
+ O(|x − Ri|). (1)

Here, a denotes the impurity-fermion scattering length that
fully characterizes the contact interaction. The fermion wave-
functions solve the free Schrödinger equation, subject to the
boundary conditions (1) at both R1 and R2. There are poten-
tially two bound states at negative energies E± = −κ2

±/2m <

0, where the inverse length scale of the bound states κ± > 0 is
given by

κ± = 1

a
+ 1

R
W (±e−R/a) (2)

in terms of the Lambert W function that solves x =
W (x)eW (x). Since real solutions exist for x ∈ (−1/e,∞), the
bound state κ± > 0 appears for distances R/a > ∓1: while
κ− exists only for positive scattering length and R > a > 0,
κ+ exists both for a < 0 at small separation R < |a| and for
a > 0 at arbitrary R. Hence, a fermion attracted to two im-
purities forms a κ+ bound state much more easily than one
attracted only to a single impurity, and this will have dra-
matic consequences for the scattering properties between two
impurities.

Besides the bound states, there is a continuum of fermion
scattering states at positive energy E = k2/2m > 0. For each
mode k, the fermion wavefunction sin(kr + δ±) at large dis-
tance r from both impurities acquires an s-wave phase shift

FIG. 2. Induced interaction potential V (R) between two heavy
impurities for negative, unitary, and positive interspecies scattering
length a (from left to right). Data shown for Cs-Li mass ratio M/m =
22.17.

with respect to the free wavefunction without impurities,
which is given by

tan δ±(k) = − kR ± sin(kR)

R/a ± cos(kR)
(3)

for the (anti)symmetric solution, where 0 � δ±(k) < π . In
the thermodynamic limit, the total energy change with and
without impurities can be expressed as

�E (R) = −κ2
+ + κ2

−
2m

−
∫ kF

0
dk k

δ+(k) + δ−(k)

πm
. (4)

At large separation the impurities no longer interact, and the
energy change approaches

�E (R → ∞) → 2μ, (5)

or twice the single-polaron energy (chemical potential)

μ = −εF
kF a + [1 + (kF a)2][π/2 + arctan(1/kF a)]

π (kF a)2
(6)

in terms of the Fermi energy εF = k2
F /2m. The resulting

Casimir interaction relative to the chemical potential,

V (R) = �E (R) − 2μ, (7)

is shown in Fig. 2. For short distance it is strongly attractive
as −c2/2mR2 from the bound-state contribution κ+, where
c = W (1) ≈ 0.567 143 solves c = e−c; this effect is already
present for a single fermion and gives rise to the Efimov
effect [17–19]. In the fermionic medium, the Pauli principle
requires that the induced interaction changes sign after an
average spacing between the fermions, similar to the RKKY
interaction in solids [21–23]. The strong attraction is thus
canceled at larger distances by the contribution from the Fermi
sea and crosses over near kF R 	 1 into an oscillating decay
cos(2kF R)/R3 at large distance. Specifically at unitarity, the
bound-state contribution −c2/2mR2 is present for all R and
is canceled by the Fermi-sea contribution 2μ + c2/2mR2 −
cos(2kF R)/2πmkF R3 + O((kF R)−4). For positive scattering
length, a substantial repulsive barrier develops that will be
able to capture a quasibound state, as we discuss in the next
section.

III. SCATTERING BETWEEN IMPURITIES

Given the induced potential V (R) between the impuri-
ties, we now generalize the approach of Ref. [4] to bosonic
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or distinguishable impurities and compute their scattering
properties in the s-wave channel. We still work in the
Born-Oppenheimer approximation where the heavy impuri-
ties move slowly, while the Fermi sea of light particles adjusts
almost instantaneously to their positions and produces the
potential. The stationary states of the impurities are then de-
scribed by the Schrödinger equation

[
−∇2

R

M
+ V (R) + 2μ − E

]
�(R) = 0 (8)

in the central potential V (R). The scattering properties are
encoded in the scattering phase shifts δind

	 (k) induced by the
medium in the 	 partial wave component. We compute the
s-wave phase shift by integrating the variable phase equation
[38]

k∂Rδind
	=0(k, R) = −MV (R) sin

[
kR + δind

	=0(k, R)
]2

. (9)

Usually, one imposes the boundary condition δind
	=0(k, R =

0) = 0 at R = 0 and integrates up to large R, where one reads
off the phase shift δind

	=0(k) = δind
	=0(k, R → ∞).

A. Efimov resonances

The short-range singularity of the induced potential
V (R → 0) = −α/R2 leads to a Hamiltonian that is bounded
from below only for weak attraction α < 1/4; for larger α

there are an infinite number of Efimov bound states [18].
In our case α = (M/2m)c2 is always above 1/4 in the
Born-Oppenheimer limit M � m, so the potential needs a reg-
ularization, which is physically provided by the repulsive core
of the van der Waals potential between impurities [34]. We
mimic the actual potential by a hard sphere of radius R0, where
the initial condition reads δind

	=0(k, R0) = −kR0, and integrate
R = R0, . . . ,∞ using a standard ordinary differential equa-
tion solver (DOP853). The cutoff radius R0 is tuned to match
the size of the lowest Efimov state in the real potential and is
therefore directly related to the three-body parameter (3BP)
which incorporates the relevant short-range physics [18,39].
As a specific example, in the Cs-Li system the heteronuclear
Feshbach resonance at 889 G has a(1)

− = −2130aB [40], which
is reproduced by the induced potential with R0 = 220aB. For
a typical fermion density of n = 1013 cm−3 in current exper-
iments [10,15] we thus obtain kF R0 = 0.1 and we use this
value in our plots to make quantitative predictions.

The bound-state spectrum for Eq. (8) is shown in Fig. 3 for
the example of 133Cs impurities in a 6Li Fermi sea. One ob-
serves that the medium facilitates binding for weak attraction
(shifting the onset to the left), but the repulsive barrier inhibits
binding compared to the vacuum case for strong attraction
[33].

B. Induced scattering length

For a given cutoff radius R0 and the corresponding Efimov
spectrum, we compute the resulting s-wave scattering phase
shifts δind

	=0(k) that are shown in Fig. 4. In the limit of small
k one can read off the induced impurity-impurity scattering
length aind shown in the figure and the effective range re from

FIG. 3. Energy spectrum of Cs-Cs-Li Efimov states vs impurity-
fermion scattering. The energies are given relative to the scattering
continuum 2μ. Shown are the first [n = 1, blue (lower) lines] and
second [n = 2, green (upper) lines] Efimov states, both in vacuum
(dashed) and in medium (solid), with cutoff radius R0 = 0.1k−1

F . The
Efimov bound states merge with the continuum at scattering lengths
a(n)

± , as indicated by the arrows for the first in-medium Efimov state.
In vacuum, length units are 10R0 and energy units 1/2m(10R0)2.

the effective range expansion

k cot
[
δind
	=0(k)

] = − 1

aind
+ re

2
k2 + O(k4). (10)

Equivalently, the scattering length can be obtained from the
variable phase equation (9) directly in the k → 0 limit,

∂Raind(R) = −MV (R)[R − aind(R)]2, (11)

with initial condition aind(R0) = R0 and the final result aind =
aind(R → ∞). The Efimov bound states lead to resonances in
the induced scattering length [41], which are understood ana-
lytically from the solution of Eq. (11) for the −α/R2 potential
with α > 1/4 for distances R0, . . . , R,

aind(R) = R

[
1 − 1

2α
+ s0

α
tan

(
arctan

1

2s0
− s0 ln

R

R0

)]

(12)

FIG. 4. Induced scattering phase shift δind
0 (k) for the potentials in

Fig. 2. The initial slope near k = 0 determines the induced scattering
lengths kF aind = −0.8, +0.7, and −1.0 from left to right. On the a >

0 side the phase shift steeply rises above π/2 indicating a quasibound
state. Data shown for Cs-Li mass ratio M/m = 22.17.
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FIG. 5. Induced interaction between two heavy impurities: in-
duced scattering length aind vs impurity-fermion interaction. From
top to bottom: exact solution of Schrödinger equation (11) with
cutoff kF R0 = 0.1 (blue solid line), Born approximation (13) (red
dash-dotted line), analytical weak-coupling Born approximation (15)
(red dashed line), and second-order perturbation theory (16) (green
dotted line). The exact aind diverges at the in-medium Efimov reso-
nances a(1)

± indicated by the arrows. Data shown for Cs-Li mass ratio
M/m = 22.17.

with s0 = √
α − 1/4 > 0 [42]. This solution is valid for dis-

tances R0 < R � |a|, k−1
F and shows that the continuous scale

invariance of the 1/R2 potential is broken down to a dis-
crete scaling symmetry. The solution repeats itself whenever
s0 ln(R/R0) is a multiple of π and hence is log-periodic in
R with a length scale factor of l = exp(π/s0). For the case
of 133Cs impurities in 6Li, the scale factor is l ≈ 5.6 in the
Born-Oppenheimer approximation, close to the experimen-
tally observed value of l ≈ 4.9 [35]. For larger distance R �
k−1

F the −α/R2 form of the potential is cut off by the Fermi
sea, and no Efimov bound states of size larger than k−1

F occur.
The full potential V (R) in Eqs. (4) and (7) is computed

numerically and agrees with known analytical limits for small
or large distance and weak or strong coupling [4]. The induced
scattering length for the full potential is shown in Fig. 5 for
kF R0 = 0.1 (blue solid line). In this case, aind exhibits two
scattering resonances at a = a(1)

± , where a bound state crosses
the continuum threshold. For smaller R0, the potential admits
more bound states and associated resonances at a = a(n)

± with
n > 1 (for comparison see Fig. 2(b) in Ref. [33]). In the
interval 1/a(n)

− < 1/a < 1/a(n)
+ the induced potential admits n

Efimov bound states, and the phase shift starts at δind
	=0(k →

0) = nπ in accordance with Levinson’s theorem, as shown for
n = 1 in the central panel of Fig. 4.

The resonances of aind(a) occur whenever an Efimov
bound state crosses the continuum threshold. This can be seen
in the energy spectrum in Fig. 3: for 1/a > 1/a(n)

− the potential
is deep enough to admit the nth bound state, but for even
stronger attraction this bound state eventually merges again
with the scattering continuum at 1/a = 1/a(n)

+ . Note that the
resonance positions a(n)

± (kF ) in medium depend on the density
and differ from the vacuum values a(n)

± (0), as discussed in
Refs. [31,33,34].

For the singular potential V (R), the exact induced scatter-
ing length aind can differ drastically from the one obtained in
Born approximation,

aBorn
ind =

∫ ∞

0
dR R2 MV (R). (13)

Here, the asymptotics at short distance [1/R2] and at large
distance [cos(2kF R)/R3] are integrable and no cutoff R0 is
needed. The resulting scattering length is shown in Fig. 5
(red dash-dotted line); as might be expected for a singular
potential, it does not approximate the exact solution well even
for weak coupling.

It is instructive to compare the induced scattering length to
the exact result in the weakly attractive limit 1/kF a � −1. In
this case, the full induced potential is given analytically for all
R as the sum of the singular attractive potential from the bound
state and the regular oscillating potential from the Fermi sea,

Vweak(R) = −�(|a| − R)

2mR2

(
W (eR/|a|) − R

|a|
)2

+ a2

2m

2kF R cos(2kF R) − sin(2kF R)

2πR4
+ O((kF a)3).

(14)

For weak coupling, we find an analytical expression for the
induced scattering length in Born approximation with R0 = 0
(red dashed line in Fig. 5),

aBorn
weak = M

2m

(
γ a − kF

π
a2 + O(a3)

)
, (15)

where γ = ∫ 1
0 dx[W (ex ) − x]2 = 2(1 − c[1 + c(1 +

c/3)]) ≈ 0.100 795. Figure 5 shows that the analytical
weak-coupling form (15) agrees with the numerical
Born solution (13) for |kF a| � 0.3. Finally, second-order
perturbation theory for weakly repulsive interaction yields
[43]

aPT
ind = − kF

2π

(M + m)2

Mm
a2 + O(a3) (16)

from the continuum of scattering states alone (green dotted
line in Fig. 5). This result at order O(a2) fully agrees with
the second-order term in the Born approximation (15) in the
Born-Oppenheimer limit M � m. However, the first term in
the Born approximation (15) that arises from the bound state
is of first order in a and therefore dominates over the contin-
uum contribution at weak coupling R0 < |a| � k−1

F . Hence,
the usual perturbation theory for repulsive impurities is un-
able to describe attractive impurities even at weak coupling
because it misses the leading bound-state contribution for
|a| > R0. In the exact solution of the Schrödinger equation,
the bound-state contribution can become arbitrarily large near
an Efimov resonance, depending on the value of the cutoff
radius R0. Only for very weak attraction with |a| � R0 the
bound-state contribution is small, and the induced scattering
is dominated by the second-order contribution (16), as is the
case in Ref. [14] where kF a ≈ −0.012, and in Ref. [15].
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FIG. 6. Scattering resonance at positive energy above the con-
tinuum threshold and quasibound states. Enhanced scattering occurs
at the upturn of the scattering phase shift δind

0 (k) (blue solid line)
at k = 1.12 kF , where cot δind

0 (k) has a zero crossing (green dotted
line). Correspondingly, the s-wave differential cross section σ0 (red
dashed line) exhibits a maximum at energies near εF . The data
shown are for the Cs-Li mass ratio M/m = 22.17 and kF R0 = 0.1
near the Efimov resonance at a = 0.536 k−1

F � a(1)
+ = 0.542 k−1

F . In-
set: for larger mass ratio M/m = 44.33 there is a well-developed
scattering resonance of Breit-Wigner form (17) with Eqbnd = 1.06εF

and �qbnd = 0.69εF . This arises from a quasibound state at a =
0.359k−1

F � a(1)
+ = 0.360k−1

F .

C. Quasibound states

Beyond the Efimov threshold 1/a > 1/a(n)
+ at positive scat-

tering length, the in-medium Efimov bound state is pushed out
of the potential to energies above the continuum threshold, but
it may be caught behind the repulsive barrier that is created by
the fermionic medium and the two-body bound states (right
panel of Fig. 2). How long the bound state can be caught
behind the barrier depends on the effective height of the po-
tential in the Schrödinger equation (8), which is proportional
to the mass ratio M/m. The larger the mass ratio, the longer
lived is the quasibound state even at positive energies. We find
long-lived states approximately for M/m � 40. In this case,
the Efimov bound state goes over into a quasibound state at
positive energies and with a small decay width, similar to the
collisionally stable quasibound states found in Ref. [44]. We
identify such a state when the scattering phase shift assumes
the form of a Breit-Wigner resonance at positive energies
E = k2/2m as shown in Fig. 6,

cot
[
δind
	=0(k)

] = −E − Eqbnd

�qbnd/2
+ · · · . (17)

From the position of the zero crossing and the slope we read
off the energy Eqbnd and the full width at half maximum
decay width �qbnd. For Cs-Li parameters M/m = 22.17,
Fig. 6 shows enhanced scattering at positive energies but
still large width �qbnd > Eqbnd so that we cannot yet speak
of a well-defined quasibound state. For larger mass ratio
M/m = 44.33, we find that for 1/a > 1/a+ the in-medium
Efimov state can turn into a well-developed quasibound state

as shown in the inset: it has a decay width �qbnd < Eqbnd

smaller than its energy.
Based on Refs. [19,33], it appears reasonable to assume

that the excited quasibound trimer state will eventually decay
into two polarons, which form the continuum threshold for
1/a > 1/a+. The character of these polaron states depends
on the scattering length across the polaron-to-molecule transi-
tion [26,28,29]. For strong binding 1/kF a > (1/kF a)c 	 0.9,
which is the situation depicted in Fig. 3 near a(1)

+ , each impu-
rity forms a tightly bound impurity-fermion dimer of energy
μ embedded in the residual Fermi sea [19,33]. For weaker
binding 1/kF a < (1/kF a)c, instead, each impurity forms a
Fermi polaron, which would describe the continuum threshold
near higher-lying Efimov states a(n>1)

+ .
A quasibound state is also manifest as a peak in the s-wave

scattering cross section (red dashed line in Fig. 6)

σ	=0(k) = 4π

k2
sin2

[
δind
	=0(k)

]
(18)

at positive energy. For a finite density of heavy impurities
in thermal equilibrium with the medium at T 	 Eqbnd there
will be enhanced scattering between the impurities, which
would lead to a greater mean-field shift in the impurity spectra
proportional to the impurity density.

Experimentally, the Efimov bound states in medium could
be observed as a medium-density-dependent shift of the three-
body loss peaks associated with the Efimov trimers [33]. The
quasibound state and scattering resonance at positive energies
above the continuum threshold would lead to an impurity-
density-dependent shift in the polaron spectrum, estimated at
a few percent in the case of Ref. [45], and to enhanced radio-
frequency association of Efimov trimers [20] beyond a(n)

+ .

IV. CONCLUSION

The induced interaction between attractive impurities in
a Fermi sea differs fundamentally from the RKKY interac-
tion between nuclear spins in an electron gas, or repulsive
impurities. While the continuum of scattering states yields a
similar oscillating potential at large distance, the appearance
of bound states implies a strong attraction at short distances.
This singular −1/R2 attraction gives rise to a series of three-
body Efimov bound states down to the cutoff scale. Whenever
a bound state crosses the continuum threshold, the induced
scattering length aind exhibits resonances and changes sign.
Attractive impurities can thus scatter strongly, and repulsively,
in distinction to the weak induced attraction for repulsive
impurities. For very weak attraction of order kF a ≈ −0.01,
instead, our prediction for the induced scattering length is just
slightly more attractive than in perturbation theory due to the
additional attraction by the bound state, consistent with recent
measurements [14,15].

While the impurity-impurity-fermion Efimov bound states
below the continuum threshold have been discussed earlier,
we find that at positive scattering length and large mass ratio
the Efimov states can turn into quasibound states at positive
energy. This corresponds to two impurities caught behind the
repulsive potential barrier created by the Fermi sea: they can
eventually tunnel through the barrier and escape, but as long
as they are close, there is an enhanced probability to form a

063321-5



TILMAN ENSS et al. PHYSICAL REVIEW A 102, 063321 (2020)

deeply bound state. This three-body recombination leads to a
clear signature in experimental loss spectra [35–37].

Our investigation can be generalized to a dilute gas of
heavy impurities, where it has been shown that the total
Casimir energy is well approximated by a sum of pairwise
two-body energies [4,24]. It is then justified to apply our re-
sults to a thermal gas of impurities at temperature T , where the
scattering properties are evaluated at the thermal wave vector
λ−1

T = √
mT/2π . This leads to the prediction of an enhanced

mean-field shift when T 	 Eqbnd. Furthermore, if three im-
purities are all nearby it would be interesting to explore the
emergence of four-body impurity-impurity-impurity-fermion
bound states. For smaller mass ratio, corrections beyond
the Born-Oppenheimer approximation have to be included
[30,46], in particular the scattering of trimers by the Fermi sea,
which creates particle-hole excitations and alters the induced
potential [5].

For the related case of impurities in a Bose-Einstein con-
densate, recent studies found many-body bound states of two

impurities, or bipolarons, for moderately attractive interaction
[45,47–49]. It will be interesting to extend these studies to
the regime of strong attraction on the molecular side of the
Feshbach resonance, where the impurities have been shown
to strongly deform the surrounding Bose-Einstein conden-
sate [50,51]. This again gives rise to an oscillating induced
potential between the impurities that can be described using
nonlocal Gross-Pitaevskii theory [52].
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