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Zusammenfassung

Quantitäten sind unerlässlich, wenn es um die Darlegung von Fakten in Anwendungsbereichen
wie z.B. der Finanzbranche, Volkswirtschaft, Medizin und allgemeinen Wissenschaft geht. Diese
Dissertation beinhaltet 1.423 Quantitäten. Während dies gerade einmal 1% der gesamten Anzahl
an Wörtern ausmacht, beschreiben diese Wertangaben die genauesten und wichtigsten Informatio-
nen, die für die Analyse und den Vergleich von Systemen notwendig sind. Trotz dieser Relevanz von
Quantitäten gibt es nur wenige Studien, die sich mit der textuellen Repräsentation und deren Aus-
wirkungen auf das Information Retrieval (IR) beschäftigen. In einer Vielzahl von Anwendungen
spielen Quantitäten eine zentrale Rolle, um den Informationsbedarf von Nutzern zu decken, und
sie können ohne semantisches Verständnis nicht richtig behandelt werden. Bei der Suchanfrage „ein
Gebrauchtwagen mit weniger als 200 PS“ sucht ein Nutzer beispielsweise nach einem Auto in ei-
nem gewissen Bereich der Suchparameter. Um auf diese Suche eine richtige Antwort zu geben, muss
ein Suchsystem nicht nur den Zusammenhang zwischen einem Auto und der zugehörigen Quanti-
tät verstehen, sondern auch die entsprechenden Werte und Einheiten verarbeiten. Darüber hinaus
sollten nur Ergebnisse präsentiert werden, ienen der Wert für dieses spezi�sche Attribut kleiner als
„200“ ist, was ein Verständnis von Nachbarschaft von Zahlen erfordert. Derzeitige Modelle zur Re-
präsentation von Quantitäten betrachten diese isoliert und vernachlässigen dabei den Zusammen-
hang zu benachbarten Token im Text. Weiterhin wenden moderne Suchmaschinen die gleichen Me-
thoden auf Wörter und Quantitäten an und ignorieren dabei Informationen zu Werten und Einheit
von Quantitäten. Somit führen quantitäts-zentrische Suchanfragen oft zu irrelevanten Ergebnissen
und Nutzer verlieren wertvolle Zeit beim Anschauen durch irrelevante Inhalte.
Diese Arbeit beschäftigt sich mit diesen Problemen und zielt darauf ab, das Quantitäts-Verständnis
von derzeitigen Suchsystemen zu verbessern. Wir beginnen mit einem gesamtheitlichen Modell zur
Repräsentation von Quantitäten, welches e�ektiv Kombinationen von Werten bzw. Einheiten, Ver-
änderungen im Verhalten einer Quantität im gegebenen Kontext (bespielsweise fallend oder stei-
gend) und Konzepten (verwandte Entitäten oder Ereignisse) erkennen kann. Auf Basis dieses Mo-
dells wird eine Methode zur Extraktion namens Comprehensive Quantity Extraction (CQE) ent-
wickelt. Darüber hinaus stellen wir einen neuartigen Benchmark-Datensatz vor, der speziell für die
Bewertung dieser Aufgabe entwickelt wurde. Mithilfe dieser Extraktionsmethode stellen wir zwei
quantitäts-fokussierte Suchmethoden vor, welche sowohl klassische als auch neuronale Modelle um-
fassen. Diese Modelle sind so konzipiert, dass sie sowohl die Nachbarschaft von Quantitäten als auch
den Text in ein Ranking mit einbeziehen. Eine Variante ist der sogenannte Disjoint-Ranker, welcher
die Relevanz von Quantitäts- und Texttoken mittels einer Quantitäts-Indexstruktur separat bewer-
tet. Die zweite Variante, der Joint-Ranker, realisiert eine gemeinsame Abbildung von Quantitäten
und Textinhalten mittels Fine-Tuning von neuronalen Netzen auf Daten, welche viele Quantitä-
ten beinhalten. Diese Techniken beziehen Mengeninformationen während des Rankings sowohl
in neuronale als auch in lexikalische Modelle ein, mit minimalem Overhead in Bezug auf die E�-
zienz und ohne Änderung der zugrundeliegenden Architektur. Diese Modelle können Suchanfra-
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gen auswerten, die numerische Bedingungen wie gleich, größer als und kleiner als sowie bestimmte
Wörter enthalten. Um die E�ektivität unserer Ranking-Modelle zu bewerten, stellen wir zwei neue
Benchmark-Datensätze aus dem Finanz- und Medizinbereich vor.. Wir vergleichen unsere Metho-
den in den Benchmarks mit verschiedenen klassischen und neuronalen Retrieval-Systemen und zei-
gen eine signi�kante Verbesserung bei der Beantwortung quantitätfokussierter Abfragen.
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Abstract

Quantities are essential in documents to describe factual information in domains such as �nance,
business, medicine, and science. This thesis alone encompasses 1,423 quantities within its text.
While these account for just 1% of the overall word count, these values contain the most precise
and crucial information necessary for analysis and system comparison. Despite the importance of
quantities, only a handful of studies focus on their representation in text and their impact on In-
formation Retrieval (IR). In many cases, the information needs of a user revolve around quantities
and cannot be resolved without understanding their semantics. For instance, in the query “a used
car that has less than 200hp”, the user is looking for a car with a speci�c parameter range. To pro-
vide an accurate response, the retrieval method should not only recognize the connection between
the car and the quantity in the query but it must also comprehend value comparisons and units.
Furthermore, the retrieved results should contain values less than “200” for this speci�c attribute
of a car, requiring an understanding of numerical proximity. However, current quantity models
often analyze values and units in isolation, disregarding their relationships to other tokens in the
text. Additionally, modern search engines apply the same ranking mechanisms to both words and
quantities, overlooking magnitude and unit information. As a result, quantity-centric queries yield
sub-par results and often cost the users valuable time navigating through irrelevant content.
In this thesis, we address these shortcomings and aim to enhance the quantity understanding of
current IR models. We start by presenting a holistic quantity model that e�ciently models combi-
nations of values and units, changes in the behavior of a quantity in the given context (e.g., rising or
falling), and the concept (related entities or events) of a quantity. This quantity model leads to the de-
velopment of an extraction framework called Comprehensive Quantity Extraction (CQE), which is
designed to detect and normalize quantities in text. Additionally, we introduce a novel benchmark
dataset tailored to evaluate quantity extraction.
Using the quantity extractor, we introduce two quantity-aware retrieval techniques that encompass
both classical and neural models. These models are designed to rank documents based on the prox-
imity of quantities in the text as well as the textual content. One method is the disjoint quantity-
aware ranker, which is designed to separate the ranking of quantities and textual tokens by means
of a quantity index structure. The second method is the joint quantity-aware ranker, which fo-
cuses on the joint ranking of quantities and textual tokens by �ne-tuning a neural retrieval model
on quantity-rich data. These techniques incorporate quantity information during ranking in both
neural and lexical models, with minimal overhead in terms of e�ciency and without the change in
the system. These models can answer queries containing the numerical conditions equal, greater
than, and less than as well as keyword search. To evaluate the e�ectiveness of our ranking models,
we introduce two novel benchmark datasets in the domains of �nance and medicine. We compare
our methods on the benchmarks against various classical and neural retrieval systems and show sig-
ni�cant improvement in answering quantity-centric queries.
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1 Introduction

“Number rules the universe.”

Pythagoras

If you are on a search for a used car on a budget below €5k or trying to buy a small fridge that �ts
exactly in the designated corner of the kitchen, prepare for yourself hours of frustration. If your
query contains quantities and numerical conditions, modern search engines are likely to misinter-
pret your request. Consider the screen-shot from the well-known e-commerce website of Amazon 1

in Figure 1.1 for the query “fridge with less than 88L”. All the results on the �rst page (only three
shown here for brevity) are either fridges that have a capacity of exactly 88L (�rst example) or sig-
ni�cantly larger than the speci�ed amount. This is because conventional search methods struggle to
grasp the semantics of numerical conditions, values, and scales and fail to retrieve the desired results.

Figure 1.1: Amazon product search for the query “fridge with less than 88L”; Taken on 11.04.2024. The image
is edited to make the demonstartion of results more compact.

While one option to narrow down the search space is to utilize the faceted search available in the left
panel, this navbar is populated with information from a structured database, where speci�c values
for product attributes should be entered manually. If you have encountered a form with numerous

1https://www.amazon.de/ (last accessed 16.04.2024)
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1 Introduction

optional �elds, you are likely familiar with how few users actually complete all the information. In
reality, users often resort to either cramming all product details into a lengthy title or burying them
in verbose product descriptions that current search models struggle to comprehend and analyze ef-
fectively. Moreover, narrowing the search space would have not been necessary if the user intent had
been correctly identi�ed from the query itself.
Incorrect interpretation of numerical conditions is not the only issue. The absence of a relationship
between the quantity values and their units complicates matters further. If the value “88” appears
anywhere in the product description, the model is prone to detecting it, irrespective of the correct
unit. For instance, the height of “88cm” can be confused with capacity of “88L”. In such scenarios,
users must invest signi�cant time scrolling through product pages to �nd the desired match.
The importance of quantities is not limited to product search. In domains such as �nance, medicine,
and even legal documents, searching for speci�c values becomes important. Consider a �nancial an-
alyst going through a multitude of earning call transcripts and stock market reports per day. Each
document contains numerous quantities, tables, and graphs. Manually searching through these doc-
uments to �nd speci�c information is a time-consuming and tedious task. Faced with a corpus rich
in quantitative data, current Information Retrieval (IR) systems reliant on semantic or lexical simi-
larity are ill-equipped to answer quantity-centric queries.

Figure 1.2: Google results for the query “Tech company that have revenue more than $11B in Q1 2024”; Taken
on 11.04.2024. The questions people also ask are cut down to two, where the other two were irrel-
evant questions: “What are the top unicorn companies in the US?”, “How many unicorn compa-
nies are there in China?”, none of them re�ecting the user’s intention.
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1.1 Motivation

For instance, a �nancial analysis might look for “Tech company that has revenue more than $11B in
Q1 2024”. If one tries the same query on Google, 2, which is currently the most used search engine
in the world, the result demonstrated in Figure 1.2 would pop up. None of the top results re�ect
the user’s information needs. Even the questions generated for the people also ask section contain the
wrong value, i.e., “$1 billion” vs “$11 billion”.
Considering the two examples, we notice that search engines tend to prioritize lexical matches for
quantities (as seen in the second result in Figure 1.2 and the �rst result in Figure 1.1), and disregard the
numerical condition (the word “than”, which is part of the numerical condition, was even omitted
from the query text in Figure 1.2). Consequently, the ranking process overlooks a crucial aspect of
the user’s query: the quantity information, leading to suboptimal results.

1.1 Motivation

How is it that sophisticated search architectures, so adapt at reading users’ intentions from a few
keywords, fail when it comes to quantitative information? Considering how ubiquitous quantities
are and how crucial they are in certain domains, is it not strange how the modern search architec-
tures are inattentive to numbers and often neglect them altogether?
The main reason for the strange behavior of these search systems is that retrieval models treat quan-
tities as second-class citizens. The problem begins with neglecting quantities in tokenization and
persists through learning representation for natural language, all the way to training objectives and
de�nition of relevance for IR systems.
The most prominent methods for tokenization (word or sub-word level) split sentences on punctu-
ation and whitespace. In the case of the popular Byte pair encoding, a single number is often split
into distinct tokens, where, unlike words, these splits are not meaningful. As an example, by using
Byte pair encoding (Gage, 1994), the value “1,000,000” would be segmented into three tokens: “1,”,
“000,” and “000”, as segmentation occurs based on punctuation. Additionally, even a value with-
out punctuation, such as “12300” might be split into “123’ and “00”, based on the frequency of
distinct sub-words in the training corpus of the tokenizer.
What is even more troublesome is that during representation learning these discretized units are
used to represent a continuous entity. Consequently, the scale and relationships between values are
not preserved, and information about units is disregarded. Unlike words, whose semantics can be
derived based on the context they occur in (Firth, 1957), the same context can result in vastly di�er-
ent ranges of values. Quantity proximity is pre-de�ned on an interval scale and not by surrounding
words. Take the earning reports of a company into account. Although the context and the vocabu-
lary used in the report remain relatively the same throughout the years, the values reported change
based on the current state of the company. Therefore, masked language modeling (Devlin et al.,
2019a) or other denoising objectives (Ra�el et al., 2020), which are often used, are not well-suited

2https://www.google.com/ (last accessed: 06.05.2024)
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1 Introduction

to capture numeracy. Since numbers usually make up a smaller portion of the corpus, most re-
searchers choose to ignore them or treat them the same way as other textual tokens.
These inadequately equipped language models and embeddings serve as the foundation for modern
IR systems, where at the retrieval level, quantities and their semantics are once again overlooked.
IR systems are trained based on topical similarity and the notation of relevance de�ned in these sys-
tems does not consider quantity comparisons. This phenomenon cannot solely be attributed to the
model itself but also arises from the datasets used for optimization. The majority of training and test
data for IR comes from a set of general-domain benchmarks (Nguyen et al., 2016) that are frequently
utilized and overly optimized by researchers in the �eld. These datasets contain mainly term-based
queries and as a result, focusing on quantities has little trade-o� for researchers. However, domain-
speci�c and real-world scenarios usually di�er from general domain benchmark data, and queries
involving quantities occur more frequently.
In this thesis, we focus on exploring solutions for bringing quantity awareness into current IR sys-
tems, thereby alleviating some of these issues, while making minimal alterations to the original re-
trieval objectives. The goal is not to develop a specialized system solely for quantity-aware retrieval,
but an IR system that can retain its textual ranking capabilities but also extends to ranking quanti-
ties and considering numerical conditions. This system should understand numerical proximity and
capture relationships between values and units. At the same time, it should meet the criteria for an
e�ective and applicable IR system. This entails being e�cient in retrieving results, readily adaptable
to new domains, and performing e�ectively in low-resource settings.
Quantity-centric queries can be de�ned in a variety of ways. In this thesis, however, we focus on a
special type of query, where a numerical condition is imposed on a quantity. We found such queries
to be most problematic for the current search architectures, as demonstrated by the examples men-
tioned above. Quantity-centric queries contain a search term, the same as any other query type, but
there is a condition imposed on an attribute of the item, entity, or event that the user is searching for.
An example of such query is “fridge below 114 V”, where the user is seeking a very speci�c fridge.
The voltage is implicitly expressed through the unit “V” and the numerical condition indicates that
it should not exceed “114”.
In the following, we summarize our contributions towards creating a quantity-aware retrieval frame-
work that can e�ciently answer quantity-centric queries, and give an overview of the thesis structure.

1.2 Contribution and Structure

As we have stated above, the poor performance of IR systems is not due to a single reason but it
is attributed to many parts, many of which extend beyond the retrieval system itself. Although ex-
ploring all these parts is beyond the scope of a single thesis, we identify core elements for addressing
these issues. We start by introducing a quantity model that takes the contextualized information
into account. Using this contextualized model of quantities, we explore two approaches to bring

4



1.2 Contribution and Structure

quantity awareness into current retrieval architectures. Since our contributions are aligned with the
structure of the thesis, we present them jointly, in the following.

I To �nd the viable strategy for building a quantity-aware retrieval system, we �rst need to un-
derstand the current retrieval architectures and how they represent quantities. In Chapter 2,
we provide an in-depth overview of the commonly used retrieval models, including the prob-
abilistic model of BM25 (Robertson and Zaragoza, 2009) and transformer-based retrieval
systems (Zhao et al., 2022). The inner workings of these models are important as they make
the basis for our quantity-aware retrieval systems.

II As mentioned before, there has been limited work directly related to IR and quantities. In
Chapter 3, we discuss these few works and we set out to investigate and gain inspiration from
other domains. One relevant area that we also explore in Chapter 4 is describing a quantity
model and a method for quantity extraction. Other related work includes the investigation of
numeracy in language models and word embeddings and dedicated question-answering mod-
els for numerical reasoning. E�orts in these directions provide grounds for bringing quantity
understanding to IR methods as well.

III Based on these building blocks, we proceed to the de�nition of a suitable quantity model.
We formally introduce a contextualized quantity model in Chapter 4 that extends the quan-
tity models in previous work to include context information. Unlike previous approaches,
we avoid studying quantities as value and unit pairs in isolation but aim to capture the re-
lationship with textual content. Alongside the quantity model, we introduce a Comprehen-
sive Quantity Extractor (CQE) that can extract these contextualized quantities from the text.
Moreover, we propose a novel benchmark dataset for quantity extraction and perform exten-
sive evaluation against other extractors.

IV Having introduced a suitable quantity model, we explore various ways to bring quantity un-
derstanding into IR models. In Chapter 5, we propose two novel methods designed to rank
both quantity and textual content either jointly or independently. The disjoint quantity-
aware ranker is inspired by the fact that quantities are inherently di�erent from other textual
tokens and their proximity should be computed separately. On the other hand, the joint ap-
proach focuses on enhancing quantity understanding in neural retrieval models by additional
task-speci�c �ne-tuning. To evaluate the e�ectiveness of our proposed models, we introduce
two novel quantity-centric benchmark datasets in the domains of �nance and medicine and
compare our method against various lexical and neural models.

Finally, in Chapter 6, we summarize the contributions that we have made, the limitations of the
proposed models, and discuss future research directions. Our contributions are based on a set of
peer-reviewed publications:
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I Satya Almasian, Milena Bruseva, and Michael Gertz. QFinder: A Framework for Quantity-
centric Ranking. In SIGIR ’22: The 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Madrid, Spain, July 11 - 15, 2022, pages 3272–
3277. ACM, 2022b. URL https://doi.org/10.1145/3477495.3531672

II Satya Almasian, Vivian Kazakova, Philip Göldner, and Michael Gertz. CQE: A Compre-
hensive Quantity Extractor. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pages 12845–
12859. Association for Computational Linguistics, 2023. URL https://aclanthology.org/

2023.emnlp-main.793

III Satya Almasian, Alexander Kosnac, and Michael Gertz. QuantPlorer: Exploration of Quan-
tities in Text. In Advances in Information Retrieval - 46th European Conference on Infor-
mation Retrieval, ECIR 2024, Glasgow, UK, March 24-28, 2024, Proceedings, Part V, vol-
ume 14612 of Lecture Notes in Computer Science, pages 171–176. Springer, 2024b. URL
https://doi.org/10.1007/978-3-031-56069-9_13

IV Satya Almasian, Vivian Kazakova, and Michael Gertz. Numbers Matter! Bringing Quantity-
awareness to Retrieval Systems. Under Review, 2024a
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2 Background

“Know where to �nd the information and how to use
it – That’s the secret of success.”

Albert Einstein

Information Retrieval (IR) deals with the representation, storage, organization, and access of infor-
mation items (Baeza-Yates and Ribeiro-Neto, 2011). Retrieval is performed on a variety of informa-
tion items, from text to images and video. In this thesis, however, we focus solely on textual content.
In this chapter, we cover the foundations and background of textual retrieval systems, where the
information items are snippets of text. The granularity of a text snippet depends on the purpose of
retrieval and varies from sentences to paragraphs or an entire document. Generally, given a search
query x and a corpus of documentsD = {d1, d2, ..., dn}, a retrieval system ranks the documents in
D based on their relevance to the query. In other words, it estimates a probability distribution over
the corpus of documents p(di|x) of how probable document di is, given x. 1

The role of retrieval systems is to estimate the relevance of a query (x) to a document (di) based on
the similarity of their representations. If τ is a function that extracts a representation from raw text
inputs and sim is a similarity function that calculates the similarity between τ(x) and τ(di), then
the probability p(di|x) is estimated as shown in Equation 2.1.

p(di|x) =
exp(sim(τ(x), τ(di)))∑|D|
j=1 exp(sim(τ(x), τ(dj)))

(2.1)

Basically, Equation 2.1 calculates the similarity of query and document representations normalized
over the entire collection, resulting in the probability of their relevance. This equation can be used
to describe all retrieval approaches, regardless of their complexity. Therefore, the challenge of creat-
ing a retrieval system boils down to de�ning a suitable representation function (τ ), with respect to
a similarity function (sim). The similarity function is often not the bottleneck, as simple functions
like cosine similarity or dot product have proven to be very e�ective.
It is worth noting, that although here we calculate the similarity of query and document representa-
tions, the notion of similarity is not the same as the relevance. Similarity refers to the degree of like-

1In the glossary, notations used throughout this thesis are provided, mainly adapted from (Mitra and Craswell, 2018).
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ness or resemblance, whereas relevance refers to the usefulness of a document in satisfying a user’s
information need or answering a speci�c query. Relevance is about how well a document meets the
user’s expectations and goes beyond mere similarity. Relevance considers the quality, context, and
intent behind the query and the document. As a result, a document might be highly relevant, even
if it does not share many common terms with the query. For instance, a document explaining “how
to bake a cake” is relevant to the query “cake baking instructions” even if they do not have many
identical terms. However, in IR when we refer to similarity calculation, relevance is intended.

When studying IR in academia, the document collection often remains static, and new and diverse
queries are submitted to the system. This form of retrieval is known as ad-hoc retrieval, and this thesis
focuses on this task. However, in real-world scenarios, the document collection is rarely static and
new documents are added continuously to the collection. On the other hand, filtering refers to the
case where the queries are static and new documents are added continuously to the corpus (Baeza-
Yates and Ribeiro-Neto, 2011).
Baeza-Yates and Ribeiro-Neto (2011) divide classical IR models based on the representations of
query and document into Boolean, probabilistic, and vector models. In Boolean models, documents
and queries are represented as a set of terms, usually stored in an index structure. Probabilistic mod-
els use probability theory to compute the relevance between documents and queries, and in vector
models, queries and documents are represented as vectors in some high dimensional space. The ear-
liest approaches to IR are Boolean, with vector and probabilistic models appearing later in the liter-
ature. Traditional models in these categories are lexical or word-based, focusing on the presence or
absence of terms. Although decades old, these models are still very powerful baseline systems. With
the emergence of embedding techniques, vector-based models transformed into dense representa-
tions capturing the semantics of documents, driven by the meaning of words. The latest approaches
employ deep neural networks to learn such representations that capture more intricate relationships
between tokens in the text. In the upcoming sections, we give an overview of the important classical
IR methods, followed by neural models and semantic-focused representations.

2.1 Classical Information Retrieval

In this section, we discuss the most prominent classical methods in IR. Insights from these mod-
els not only build the foundation of more recent approaches but also serve as powerful baselines.
Classical models mostly work on the term or word level in a document, where a term or a word is
the most atomic unit of meaning in language. Later, neural models look at more �ne-grained units
in text, namely sub-words, which are commonly occurring sequences of characters in text. As a re-
sult, tokens encompass both words and sub-words, depending on the chosen tokenization method.
Throughout this thesis, the term token refers to either word or sub-word, in accordance with the
assumptions of the model being discussed.
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Studying classical IR models becomes important in Chapter 5, where we discuss quantity-aware
rankers. One approach we introduce for quantity-aware IR leverages inverted indices, tracing its ori-
gins back to Boolean and vector-based models. Additionally, our lexical quantity-ranker is grounded
in probabilistic models, speci�cally BM25 (Robertson and Jones, 1976), which we discuss in detail
in this chapter.

2.1.1 Boolean Models

The Boolean retrieval model is a simple retrieval system based on set theory and Boolean algebra,
such that the concept behind it is easy to grasp by a common user. The Boolean retrieval model rep-
resents any query as a Boolean expression of terms, in which terms are combined with the operators
AND, OR, and NOT (Roelleke et al., 2009). In these models, documents are represented as a set
of index terms. Index terms are either absent or present in a document, i.e., their weights are binary.
The information about the corpus is stored in an index structure with posting lists, where a posting
list is a record of all documents the term appears in. The entire structure for all documents in the
corpus is referred to as an inverted index (Manning et al., 2008). Such an index allows for e�cient
�nding of relevant documents in a large corpus. In Chapter 5, we use a similar structure in the dis-
joint quantity-ranker model, to represent quantities in the corpus and compute relevance based on
quantity proximity. To create an inverted index:

1. Tokenize the documents in the collection. Tokenization is the task of splitting a document
into tokens. In the case of Boolean models, usually word-level tokenization is used.

2. Apply linguistic preprocessing for normalizing the text, such as lemmatization or stemming.
Stemming and lemmatization are ways to reduce the in�ectional forms of a word to a common
base form. Stemming removes the ends of words, whereas lemmatization removes in�ectional
endings and returns the base form of a word, called a lemma (Manning et al., 2008).

3. Identify the index terms, which are important terms for retrieval. Often stopwords and other
unnecessary tokens like punctuation are removed at this stage and other tokens are kept for
indexing. The set of all the index terms from the vocabulary.

4. Create an inverted index from the index terms to posting lists of document ids.

An example of an inverted index is shown in Figure 2.1, for three example terms from a vocabulary.
The Boolean model uses exact matches between a user’s query and the documents that satisfy the
Boolean condition. An example query to match the index on Figure 2.1 is “Dog AND Cat”. To �nd
the relevant documents, �rst “Dog” has to be located in the dictionary and the respective posting
list has to be retrieved. Then, the same is repeated for “Cat”. The intersection of the two posting
lists retrieves the �nal documents, i.e., [2, 17, 22]. There are no partial matches in this model, and
the generated response is always binary: the document is relevant (1) or is not (0) relevant. This
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Figure 2.1: An example of an inverted index. The dictionary is commonly kept in memory for e�cient access,
which points to posting lists stored on disk.

Figure 2.2: Two documents and a query with a very limited vocabulary in the vector space model.

is one of the major drawbacks of Boolean models, as there is no in-between grading present. More-
over, Boolean expressions have very precise semantics, and it is not simple to translate all information
needs into Boolean expressions. These disadvantages result in retrieval of too few or too many doc-
uments (Baeza-Yates and Ribeiro-Neto, 2011).

2.1.2 Vector Space Models

Vector space models (Salton, 1975) overcome the limitations of Boolean models with an algebraic
solution that can perform partial matches. In Boolean models, the relevance between documents
and queries is measured by the appearance of shared index terms. The idea carries over to vector
space models, with the di�erence that the binary weighting is changed to a frequency-based weight-
ing schema. Computing relevance based on term frequencies and the frequency-based weighting
schema is an important prerequisite in understanding of the BM25 model. In this section, we dis-
cuss the important concepts in this regard.
In vector space models, queries and documents are represented by a vector in n-dimensional space (Berry
et al., 1999). The dimensions, or the basis of vectors, are de�ned by the number of terms in the vo-
cabulary and are linearly independent. This is a major drawback of these systems, as in the real world
typically terms are not semantically independent, e.g., “river” and “boat” are semantically similar and
they occur in the same context. If we limit the terms in the vocabulary to “Cat”, “Dog”, and “Bird’,
a sample representation of two documents and a query is shown in Figure 2.2.
The similarity between a query and the document is measured by their distance in space. The stan-
dard way of quantifying the similarity is with cosine similarity (as shown in Equation 2.2), where
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the representations of a document and a query are denoted as τ(x) = ~x = (ω1,x, ω2,x, ..., ωt,x)

and τ(d) = ~d = (ω1,d, ω2,d, ..., ωt,d). ω is the weight in each dimension, indicating the frequency
of the term (Manning et al., 2008). The denominator is a length-normalizer and, in the case of unit
vectors, can be written as the dot-product sim(d, x) = ~x · ~d. The vectors are usually sparse, since
each document uses a limited set of words from the vocabulary. Hence, the dot product is generally
inexpensive to compute.

sim(d, x) :=
~x · ~d

||~x|| · ||~d||
=

Σ
|x|
i=1ωi,d · ωi,x»

Σ
|x|
i=1ω

2
i,d

»
Σ
|x|
i=1ω

2
i,x

(2.2)

Unlike Boolean models, similarity is not limited to binary relevance as the cosine similarity returns
a degree of similarity between a document and a query. The most relevant documents are obtained
by establishing a threshold on sim(d, x).
The variety between vector space models comes from di�erent representations of d and x, i.e., τ(d)

and τ(x). In the Boolean models, the representation is focused on the absence or presence of terms,
leading to binary weights (ω ∈ {0, 1}).

A more e�ective approach is to use the number of times a term occurs in a document as a weight
or measure of importance, ω = tf t,d. The term frequency (tf) of term t in document d is denoted
by tf t,d. As a result, the similarity between the query terms and document terms can be written as
Equation 2.3, where tx is a set of query terms.

sim(d, x) :=
∑
i∈tx

tf i,x · tf i,d (2.3)

This equation is biased towards longer documents as they are more prone to have repetitive words.
One way to eliminate the unwanted in�uence of document length is to normalize tft,d by the length
of a document as shown in Equation 2.4, where |d| is the number of terms in the document d.

sim(d, x) :=
∑
i∈tx

tf i,x · tf i,d
|d|

(2.4)

Equation 2.4 removes the bias towards long documents, however, all terms in the document are
still treated equally. In each document, certain words are more topical and carry more information
about the document than others. For example, in the sentence “He went to Westminster Cathedral,
the largest Catholic church in the UK.”, “Westminster” and “Cathedral” are content-bearing words,
whereas “He”, “went”, and “to” are common linguistic glues that provide no information regarding
the topic of the text. 2 In other words, rare terms, which have a lower frequency in the entire corpus

2The importance of glue words depends on the domain of the text. In the case of a narrative, the three glues are of vital
importance. However, for retrieval purposes, they do not contribute to the relevance of a document.
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Figure 2.3: The di�erence between tf-idf, idf, and frequency weighing in a sample news article take from
https://www.cnbc.com. The corpus consisted of 8 short articles.

of documents, are more indicative of the topic. Inverse document frequency (idf) is a way to account
for such words. idf is denoted in Equation 2.5, where |D| is the total number of documents in the
corpus and df t is the number of documents containing the term t.

idf t := log
|D|
df t

(2.5)

idf represents the likelihood of a randomly selected document containing the term t. This proba-
bility tends to be higher for common terms and lower for rare ones. The log function is employed
to align the scale of idf with term frequency. By inserting idf and the document length normaliza-
tion into the Equation 2.3, we arrive at a very common weighting in IR, called tf-idf (Salton and
Buckley, 1988), as shown in Equation 2.5.

sim(d, x) := tf-idf (d, x) =
∑
i∈tx

tf i,x ·
tf i,d
|d|

log
|D|
df i

(2.6)

Relying solely on the term frequency (tf ) can lead to stopwords and uninformative terms domi-
nating the similarity computation. Conversely, relying solely on the inverse document frequency
(idf ) can skew the similarity towards extremely rare words, such as typos. It is only through the
combination of both that a balanced similarity computation can be achieved. Figure 2.3 shows the
top-ranked terms by tf-idf, idf, and raw term frequencies in a snippet from a news article. Raw fre-
quencies rank mostly stop words, obscuring the article’s topic. Idf ranks rare but uninformative
terms higher. In contrast, if we look at the combination of tf-idf, the topic of “bloomberg”, “gpt”,
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and “‘ai” is clearly distinguishable.

Over the years, several alternatives to tf and idf have been proposed. Table 2.1 summarizes the most
prominent alternatives in SMART notation (Salton and Lesk, 1965). The mnemonic represents a
combination of weights as ddd.qqq, where the �rst triplet gives the document weighting and the
second the query weighting. The �rst letter of each triplet represents term frequency, the second
letter document frequency, and the last letter is a form of normalization. For example, lnn.ltn equals
to 1 + log(tf t,x) · 1 + log(tf t,x) · log

|D|
df t

.

Table 2.1: Table from Manning et al. (2008), describing the variants of tf-idf ; CharLength is the number of
characters in a document.

term frequency document frequency normalization

n tf t,d natural n 1 none n 1 none

b
®

1 if tf t,d > 0

0 otherwise
Boolean t log |D|df t

idf c 1∑M
i=1

√
ω2
i

cosine

l 1 + log(tf t,d) logarithm p max[0, log
|D|−df t

df t
] prob idf b 1

CharLena , a < 1 byte size

a 0.5 +
0.5tf t,d

maxt(tf t,d)
augmented

L 1+log(tf t,d)
1+log(avet∈dtf t,d)

log ave

A full description of all the possible variations of tf-idf is beyond the scope of this thesis. Here, we
brie�y mention pivoted document length normalization (Singhal et al., 1996) due to its importance,
and for more detailed information of di�erent types, we refer the reader to Manning et al. (2008).

The addition of idf comes at a cost of bias towards documents that contain multiple rare words.
For example, with query x =“angry Armadillo” and two documents d1 =“angry ... Armadillo”
and d2 =“Armadillo ... Armadillo”, d2 will be ranked higher due to the large di�erence in idf of
the rare term “Armadillo” in comparison to the common term “angry”. To solve this issue, pivoted
document length normalization was proposed. The idea is that the �rst encounter of a query term
in a document is more important than the rest, and verbose documents that repeat the same content
over and over again should not alter the weight. In other words, in long documents repeated term
frequencies should be of lower importance in comparison to short ones. Equation 2.7 shows the
document length normalization, where the denominator smoothes the weight of term frequency
with higher repetition. k parameter is a free parameter, with larger k the e�ect of squashing is min-
imal and smaller values increase the e�ect. |d|

avg|D| accounts for document length, where if the |d| is
large, then the frequency weights become smoother in comparison to shorter documents.

lenght normalization :=
tf t,d

tf t,d + k|D|
avg|D|

(2.7)
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By adding this normalization to the previous tf-idf formula, Equation 2.8 is obtained.

sim(d, x) := tf-idf (d, x) =
∑
i∈tx

tf i,x ·
tf i,d

tf i,d + k|d|
avg|D|

log
|D|
df i

(2.8)

2.1.3 Probabilistic Models

Another family of classical methods is the probabilistic models that aim to formulate the relevance
problem using a probabilistic framework. The fundamental model in this family is known as Binary
Relevance Retrieval (BIR) (Roelleke et al., 2009), which gave rise to the popular ranking model of
BM25. In this section, we go over the BIR model in detail and motivate the derivation of the BM25
ranking function, which forms the basis for our quantity-aware lexical ranker in Chapter 5.
The probability ranking principle (Robertson and Jones, 1976) indicates that the ranking of docu-
ments is based on their posterior probability of relevance p(r|τ(d)), which has to be estimated as
accurately as possible from the data available to the system. Here, r is a Bernoulli variable, referring
to relevance, where r = 1 indicates a relevant document and r = 0 indicates an irrelevant one. The
posterior probability of relevance p(r|τ(d)) is essentially hard to estimate, as it depends not only on
the search terms in the query and document but also on the search domain and user interpretation.
However, it can be estimated using probability theory with a few assumptions regarding the vari-
ables and their dependencies.

(Assumption 1): relevance of any given document is independent of any other documents.

This assumption is common in most IR models, since the ranking of each document is done sepa-
rately from the other documents in the collection.
Our goal is to estimate a ranking based on p(r|τ(d)). In the following, we describe the steps to
simplify this computation. By representing p(r = 1|τ(d)) as x and applying the monotonic trans-
formation x

1−x , we can reformulate p(r = 1|τ(d)) as the ratio of the probability of relevance to
non-relevance, expressed in Equation 2.9.

p(r = 1|τ(d))

p(r = 0|τ(d))
=

p(r = 1|τ(d))

1− p(r = 1|τ(d))
(2.9)

Since x
1−x is a monotonic transformation, switching from x to x

1−x does not impact the ranking
result. By using the Bayes rule after the transformation, p(r|τ(d)) is reformulated in Equation 2.10.

sim(d, x) := p(r|τ(d)) =
p(r = 1|τ(d))

p(r = 0|τ(d))
=
p(τ(d)|r = 1)p(r = 1)

p(τ(d)|r = 0)p(r = 0)
(2.10)

The ratio of priors p(r=1)
p(r=0)

is constant for all documents and does not a�ect the �nal ranking, there-
fore, it can be disregarded. Consequently, the probability of relevance is estimated by computing
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Figure 2.4: Document representation, where a Bernoulli variable de�nes a presence or absence of a term, also
referred to as one-hot encoding (Assumption 2 and 3).

p(r = 1|τ(d)) and p(r = 0|τ(d)) and is shown in Equation 2.11 (Robertson and Zaragoza, 2009).

p(r|τ(d)) ∼ p(τ(d)|r = 1)

p(τ(d)|r = 0)
(2.11)

To compute these probabilities, we require a de�nition of τ . To arrive at the document representa-
tion, two other assumptions are required:

(Assumption 2): terms are either present or not present, frequency is disregarded.

(Assumption 3): all terms are mutually independent.

Based on these assumptions, a document is modeled as a collection of Bernoulli random variables
representing terms in a given vocabulary. These variables indicate if the term t is present or absent in
a document τ(d) = dt. It is worth noting that based on Assumption 3, the random variables dt are
mutually independent, e.g., the presence of the token “Barack” is independent of “Obama”, which
ignores the association among words. As a result, each document is represented with a binary vec-
tor in the size of the vocabulary, where the active dimensions indicate the presence of a term. This
form of document representation is also referred to as one-hot encoding, since only certain values in
a vector are activated while the rest remain zero (similar to the Boolean models from Section 2.1.1)

An example of the vector representation of a document with a Bernoulli variable for the limited vo-
cabulary of �ve terms is shown in Figure 2.4.
With the independence assumption, the ranking formula (Equation 2.11) is reformulated as prod-

ucts over individual token probabilities, as shown in Equation 2.12. The product goes over all the
tokens in the vocabulary, regardless of whether they appear in a document or not. Nevertheless,
we can separate the computation for tokens that are present from the absent tokens. To simplify
the notation, we de�ne pt as the probability that term t is present in d given that d is relevant
(pt = p(dt = 1|r = 1)) and gt if the document is not relevant (gt = p(dt = 1|r = 0)). Re-
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spectively, 1− pt is the probability of tokens that do not appear in a relevant document and 1− gt
is the probability of tokens that do not appear in an irrelevant document. Consequently, a single
product over the entire vocabulary splits into two independent components: one for tokens present
in the document and another for those absent.

p(r|τ(d)) ∼ p(τ(d)|r = 1)

p(τ(d)|r = 0)
∼

∏
t p(dt|r = 1)∏
t p(dt|r = 0)

=
∏
t∈d

pt
gt

∏
t/∈d

1− pt
1− gt

(2.12)

(Assumption 4): the empty document ~0, without any tokens, is equally likely to be relevant or non-
relevant p(~0|r = 1) = p(~0|r = 0).

Based on Assumption 4, ratio of p(~0|r = 1) and p(~0|r = 0) is equal to one,
∏

t
1−gt
1−pt = 1. The

nominator is the probability of an empty document occurring in a relevant class and the denomi-
nator is the probability of an empty document under the irrelevant class. We can use this property
to simplify Equation 2.12 to Equation 2.13, by multiplying this ratio. This multiplication simpli�es
and isolates the computation to only the tokens in a document.

p(r|τ(d)) ∼
∏
t∈d

pt
gt

∏
t/∈d

1− pt
1− gt

∏
t

1− gt
1− pt

=
∏
t∈d

pt(1− gt)
gt(1− pt)

(2.13)

When provided with relevance judgments for a sample of documents and queries, we can estimate pt
and gt from the data. Since these probabilities are estimated under the Bernoulli assumption, we can
employ maximum likelihood estimation to estimate pt. This involves determining the percentage of
relevant documents that contain token t, as shown in Equation 2.14. |D(r = 1)| is the total number
of relevant documents (in the entire corpus) and |Dt(r = 1)| are the relevant documents (from the
entire corpus) containing the term t. 1 is added to avoid division by zero.

pt :=
|Dt(r = 1)|+ 0.5

|D(r = 1)|+ 1
(2.14)

If we apply the same logic for gt we arrive at a similar function in Equation 2.15.

gt :=
|Dt(r = 0)|+ 0.5

|D(r = 0)|+ 1
(2.15)

However, in most cases, relevance judgments are not available to search engines and a way to esti-
mate them without annotated data is bene�cial. To this end, additional assumptions are needed:

(Assumption 5): if a token is not part of the query, it is equally likely to occur in relevant and non-
relevant documents.
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Figure 2.5: A hypothetical example of tree dependence model.

(Assumption 6): on average, a token in the query will occur in half of the relevant document, pt = 1−pt.

(Assumption 7): For each query, only a tiny fraction of the documents in the corpus are relevant.

Assumption 5 restricts the product in Equation 2.13 to terms in the query. In accordance with As-
sumption 7, the non-relevant set comprises the majority of documents and can be estimated using
the entire collection: gt ∼ |Dt|

|D| = |Dt|+0.5
|D|+1

. As a result, we arrive at Equation 2.16, where the �nal
fraction is similar to the idf weighting in Equation 2.5. This ranking function approximates the
summation of the idf score of terms present in both the query and document (Croft et al., 2009).

p(r|τ(d)) ∼
∏
t∈d

pt(1− gt)
gt(1− pt)

=
∏
t∈d∧x

pt(1− gt)
gt(1− pt)

=
∏
t∈d∧x

(1− gt)
gt

=
∏
t∈d∧x

|D| − |Dt|+ 0.5

|Dt|+ 0.5

(2.16)
Equation 2.16 is a classical equation for retrieval, containing many assumptions that are inherently
false in natural language. As a result, various improvements have been proposed to alleviate spe-
ci�c assumptions and bring the ranking function closer to real-world scenarios. One of the most
problematic ones is Assumption 3 regarding word independence. An example that contradicts this
assumption is the pair “Hong” and “Kong”, where the occurrence of one is strongly dependent on
the other (Manning et al., 2008). Van Rijsbergen (1979) tackle this assumption by modeling term
dependencies as a spanning tree, where the edge weights are the mutual information between terms.
Subsequently, the appearance of each term depends on the appearance of its parent in the tree. An
illustration of such a tree structure is depicted in Figure 2.5. In this example, the probability of the
sentence “cat dog barks“ is computed as p(cat dog barks) = p(cat)p(dog|cat)p(bark|dog).

The tree dependence model is one of the many methods for modeling dependencies among terms.
However, despite more realistic modeling of term dependencies, not much gain came from such
models and BIR turned out to be the basis for one of the most e�ective and popular ranking algo-
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rithms, known as BM25 (Robertson and Jones, 1976).

BM25 alters the BIR model in several ways. The most notable one is adding term frequencies to
the model, where dt is no longer a binary value but a count of occurrence of term t in document d.
Moreover, BM25 assumes a hidden property in each document as eliteness. If a term is deemed elite,
it signi�es that the document revolves around the concept represented by that term, hence, the term
tends to occur frequently in the document. Conversely, non-elite tokens occur at an expected rate
by chance, as they do not signi�cantly contribute to the document’s topic. BM25 captures these
frequency dynamics, including the concept of eliteness, through two Poisson distributions (Harter,
1975), as shown in Equation 2.17. The expected frequency of the term t is denoted by µ0,t and µ1,t,
and el denotes the eliteness.

p(dt) ∼ p(el = 1)
e−µ1,tµdt1,t

dt!
+ p(el = 0)

e−µ0,tµdt0,t
dt!

(2.17)

The parameters in Equation 2.17 are estimated using maximum likelihood. However, the two Pois-
son model was originally designed for corpus analysis and not retrieval. In retrieval systems, it is
crucial to consider the probability of relevance. Robertson and Jones (1976) came up with an ap-
proximation to the two Poisson models, conditioned on the relevance. This approximated relevance
model estimates sim(d, x) = p(r=1|τ(d))

p(r=0|τ(d)) and is known as BM25 (Robertson and Jones, 1976), often
referred to as Okapi weighting, after the system in which it was initially implemented.
BM25 weighting is shown in Equation 2.18, where dl is the length of a document and avgdl is the
average length of documents in the corpus. In addition to tx denoting all the terms in the query, td
denotes the terms in a given document d. As a result, the summation computes the heuristic score
for terms shared between the document and the query. xi denotes the frequency of term i in query
x. The parameter b controls the impact of length normalization, with b = 0 indicating no length
normalization and b = 1 representing the highest normalization level. A commonly used value for
b is 0.75. On the other hand, the constant k1 governs how the term frequency weight adjusts as the
frequency increases. If k1 = 0, the term frequency component would be disregarded, and only the
presence or absence of the term would matter. Conversely, for large values of k1, the term weight
would increase almost linearly with frequency. A typical value for k1 is 1.2, resulting in a non-linear
e�ect where, after three or four occurrences of a term, additional occurrences have minimal impact.
Similarly, the constant k2 plays a similar role in the weight of query terms, with values ranging from
0 to 1000. However, the performance is less sensitive to k2 since query term frequencies are typi-
cally lower and less variable compared to di. For optimal performance, it is advisable to tune these
parameters to �t the characteristics of the underlying corpus.

sim(d, x) ∼
∑

i∈td∧tx

di(1 + k1)

dt + k1((1− b) + b.dl
avgdl

)
log
|D| − |Di|+ 0.5

|Di|+ 0.5
· xi(1 + k2)

xi + k2
(2.18)
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Figure 2.6: BM25 document ranking explained.

We will not go into the derivation of Equation 2.18. Nevertheless, by looking closely at the equation,
most parts should be evident from the �ndings of previous sections. The log term of the equation is
the idf weight as shown in Equation 2.16. Fractions containing k1 and k2 are squashed versions of
term frequency in the query and document. Figure 2.6 identi�es and depicts di�erent parts of the
equation and the intuition behind them.

Even with advances in IR and neural models, BM25 is still considered a powerful baseline. A major
advantage of this heuristic function is its simplicity and e�ciency. Moreover, it does not require any
relevance judgment annotations as all the components of the equation are computed heuristically
using corpus statistics, making BM25 work out of the box on any document collection. Because
of these advantages, classical methods, particularly BM25, are standard in widely used open-source
search software. These open-source search engines are essential because they o�er freedom, data pri-
vacy, and the ability to be self-hosted, making them popular in both industry and academic settings 3.
Some of the commonly used open-source search engines and libraries are:

• Apache Lucene: 4This high-performance text search engine library in Java o�ers features for
indexing and searching, as well as spell checking and tokenization capabilities. It is widely
used in the implementation of many open-source search engines. Many open-source search
engines use this library in their implementation.

• Apache Solr: 5 This popular open-source enterprise search platform, written in Java, is built
on top of the Apache Lucene search library. It o�ers a wide range of features for searching
and indexing documents in various formats. Solr can e�ciently handle large volumes of data
and is easily integrated with other systems and applications.

• Elasticsearch: 6 This is a distributed search and analytics engine built on top of Apache Lucene.
It supports customizable text analysis and tokenization pipelines and provides data visualiza-

3With advances of the neural models these search engines tend to include some form of vector database as well as the
classical techniques, we discuss more about this topic in Section 2.2.5.2.

4https://lucene.apache.org/(lastaccessed:02.05.2024)
5https://solr.apache.org/(lastaccessed:02.05.2024)
6https://www.elastic.co/(lastaccessed:02.05.2024)
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2 Background

tion tools and interactive dashboards. It is widely used by various organizations, including
e-commerce sites, news organizations, and government agencies.

• OpenSearch: 7 This is an open-source, community-driven search suite derived from Elastic-
search. It builds on the capabilities of Elasticsearch, however, unlike Elasticsearch is governed
under the Apache 2.0 license, ensuring that the software remains free and open-source.

It is worth noting that all the classical retrieval models discussed here ignore numerical proximity
in their computations. Most classical methods depend on frequency-based index structures, which
treat quantities the same as other tokens in the text. When ranking a query that includes quanti-
ties, classical models search for exact matches in the document collection, overlooking variations in
values, di�erences in surface forms, value standardization, and numerical proximity. For example,
in the query “a mirror with height more than 90 cm”, the frequency of the value “90” is not a reli-
able indicator of relevance. In Chapter 5, we alleviate some of these shortcomings with the help of
a dedicated index structure for quantities.

2.2 Neural Retrieval

With the development of machine learning approaches and the availability of large annotated datasets,
the retrieval community moved away from the unsupervised realm of heuristic and probabilistic
models to supervised learning approaches, e.g., learning to rank (Li et al., 2008; Li, 2011). The idea
behind supervised systems is to classify documents into relevant and non-relevant classes, based on
a set of lexical and semantic features. The earlier models mainly used a set of hand-crafted features
for document and query representation, requiring manual feature engineering. The rise of neural
networks paved the way for developing more capable text retrieval systems, which no longer require
hand-crafted features.

Going back to Equation 2.1 as our universal similarity function, neural models aim to learn an elab-
orate representation of a document, τ(d), and query, τ(d), by looking at document and query pairs
containing relevance judgments, e.g., 1 for relevant and 0 for non-relevant. These representations
are mostly low-dimensional vectors (called dense vectors or embeddings), hence, the name dense re-
trieval. In contrast to the vector space model, where documents were represented by all the terms in
the vocabulary, these dense vectors have a much lower dimension and do not correspond to explicit
terms, but rather aim at capturing semantic characteristics. The similarity metric, sim, however, in
most cases, remains the same as the classical methods, i.e., cosine similarity. Such a retrieval paradigm
is referred to as Neural Information Retrieval (Neural IR) (Mitra and Craswell, 2018). In the ma-
jority of recent models, the dense representation comes from some form of a language model, more
speci�cally a transformer-based language model. Therefore, to understand the internal architecture

7https://opensearch.org/(lastaccessed:02.05.2024)
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of the neural model, one �rst needs to understand the building blocks of such models. In the fol-
lowing, we look at a brief history of how the representation of documents evolved from basic word
embeddings to neural language models and transformers(Vaswani et al., 2017). Equipped with an
understanding of transformers and their capabilities in representation learning, we move on to dif-
ferent types of neural retrieval systems, which adapt these models to ranking problems.
Embeddings and language models discussed here treat quantities the same as other textual tokens.
Although recent e�orts have been made to create dedicated embeddings and language models for
quantitative information, these specialized models typically have limited representation power and
are not commonly used in IR models. We discuss some of these dedicated models in Chapter 3.
In this section, however, we focus exclusively on the prominent methods used to create query and
document representations in IR models.

2.2.1 Word Embeddings

One of the challenges in NLP is to obtain dense representations of words, sentences, and documents.
These representations are referred to as embeddings. Word embeddings, as the name suggests, focus
on generating dense representations from words (terms). Unlike the one-hot representation used in
classical models, which ignores dependencies between words, dense representations aim to encode
the semantics of words in context. In a one-hot encoding, words are treated independently, and sim-
ilarities between words such as “hotel” and “motel” are not considered. One approach to capturing
these semantic relationships is to represent a word based on the words it typically co-occurs with.
There are several well-known word embeddings based on this idea, such as Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), and FastText (Bojanowski et al., 2017). 8

These embedding methods learn a static embedding for each word in the vocabulary and are also
referred to as non-contextualized embedding. A key drawback of these approaches is that the repre-
sentation for each word remains static, irrespective of the context in which it occurs. For example, in
sentences “He attends a play” and “He wanted to play bridge”, the embedding of the word “play” is
the same, despite the semantics being signi�cantly di�erent. Moreover, in retrieval settings, a repre-
sentation of a sequence of words or a document is required, which word embeddings do not provide
on their own. Adding and averaging them across a document is one solution, however, such combi-
nations usually result in poor performance, mix-up of static representations, and loss of information
about the relations of the words. It is more suitable to have a direct and uni�ed representation of
documents and queries in the same space, which takes the entire context into account. In context-
aware models, embeddings are a function of both a word and the context, where the context is often
encoded using some form of a language model.

8We do not go deep into the topic of word embedding and di�erent architectures, but point the reader to a survey by
Sezerer and Tekir (2021).
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2.2.2 Early Language Models

Language modeling in NLP refers to the task of predicting the word or token that comes next, e.g.,
in the sentence “The teacher cleaned the ___ ”, a language model �lls the blank with potential words
such as “blackboard” or “desk”. Formally, given a sequence of tokens t(1), t(2), ..., t(m), a language
model computes the probability distribution of the next token p(t(m+1)|t(m)...t(1)). Another way
to phrase the task is to view a language model as a system that assigns a probability to a piece of text.
These probabilities are decomposed using the chain rule into a product of the probabilities of pre-
dicting the next word, expressed as p(t(1)...t(m)) =

∏Vocab
t p(t(m)|t(m−1)...t(1)) (Eisenstein, 2019).

Here, Vocab refers to all terms in a given vocabulary.
The traditional way to estimate next-word probabilities is using n-gram language models. n-grams
are chunks of consecutive words, e.g., “teacher” is a unigram, “the teacher” is a bigram and “the
teacher cleaned” is a trigram. In n-gram language models, the frequencies of n-grams in a given cor-
pus are analyzed to construct a probability model (Jurafsky and Martin, 2009). With advances in
neural networks, language models have moved from the discrete space of n-grams to a continuous
space with potentially fewer parameters.
The initial neural network-based language model was introduced by Bengio et al. (2000, 2003). This
model employed a feed-forward network architecture, where a �xed window of tokens from the text
serves as the input to predict the next token. 9

While feed-forward networks address the sparsity issue and demand less storage, the window size is
still �xed and word order is disregarded. Additionally, fully connected networks have a considerable
number of parameters and are costly to train.

Recurrent neural networks (RNNs) (Hochreiter and Schmidhuber, 1997; Schmidt, 2019) revolu-
tionized language modeling by enabling the processing of inputs of arbitrary length, facilitating
larger context utilization and weight sharing. In RNNs, the hidden layer is fed into the network
recurrently, hence, weights are shared and the model size is smaller. Consequently, in RNNs, there
are only two parameter matrices (disregarding the embedding): one for multiplying the input em-
beddingsWe and one for updating the hidden stateWh.
The computation of the probability of the next word with a simple RNN is summarized in Equa-
tions 2.19. The prediction of a token at time-step n is not solely in�uenced by the embedding of
the current token e(n). Instead, it is combined with the hidden state of the previous cell h(n−1) to
produce the current hidden state h(n).

e(n) = Et(n) + b1

h(n) = f(Whh
(n−1) +Wee

(n) + b2)

y(n) = softmax(W1h
(n) + b3) ∈ R|V ocab|

(2.19)

9Here, we switch to token, since the language models based on neural network employ various tokenization tech-
niques, from words, to sub-words or characters.
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In practice, RNN models have di�culty remembering long contexts, due to the vanishing gradi-
ent and exploding gradient problem (Pascanu et al., 2013). Although the exploding gradient prob-
lem can be addressed by clipping gradients at some maximum value, a vanishing gradient requires a
change in architecture. Later, memory units such as Long Shot Term Memory (LSTMs) (Gers et al.,
2000; Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit (GRUs) (Cho et al., 2014b)
are proposed to better preserve information over many time steps. A memory unit is a neuron with
a recurrent self-connection that has an extra hidden vector as cell state. The cell aims to store long-
term information. The parameters of the memory unit decide how often the cell state should be
updated or maintained in each time step (Eisenstein, 2019).
An extension to RNNs is bi-directionality, where both preceding and succeeding contexts are uti-
lized for prediction. This is achieved by employing two separate RNNs: one reads the sentence from
left to right, and the other, with di�erent parameters, reads from right to left. The combined rep-
resentation of each token is then obtained by concatenating the hidden states of both RNNs. The
computation of the hidden state at timen is shown in Equation 2.20, where RNNFW and RNNBW

represent the forward and backward networks, respectively, and h(n) denotes the concatenation of
the hidden layers in both directions.

~h(n) = RNNFW = (h(n−1), tn)

~h
(n)

= RNNFW = (h(n+1), tn)

h(n) = [~h(n); ~h
(n)

]

(2.20)

A combination of bi-directionality and LSTMs gave rise to one of the earliest works that created con-
textualized embeddings using language modeling. ELMo (Embedding from Language Models) (Pe-
ters et al., 2018) learns contextualized word representation with multiple layers of bi-directional
LSTMs. An important and innovative part of ELMo’s architecture is that, unlike RNN models,
all internal layer representations of ELMo’s architecture along with the last hidden state contribute
to the �nal embedding. A linear combination of all hidden layers creates the �nal embedding, which
is used for various downstream tasks.
The input of ELMo is a sentence and as a result, it generates not only token representation but also
sentence embeddings. To use these embedding for downstream tasks, such as sentiment analysis,
question answering, or named entity recognition, a weighted combination of the layer-wise repre-
sentation is computed.ELMo showed that by pre-training on a large corpus of text for language
modeling, the internal representations of a language model are capable of encoding semantic and
grammatical dependencies, which can be utilized in a variety of downstream applications. Moreover,
di�erent layers of deep bidirectional RNNs encode diverse types of information. Hence, leveraging
this variability by combining layers is essential. For instance, lower levels of a deep LSTM are adept at
handling lower-level tasks like dependency parsing (Hashimoto et al., 2017), while the top layer of an
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Figure 2.7: Attention mechanism for RNN encoder-decoder.

LSTM specializes in learning representations of word sense (Melamud et al., 2016). This paradigm
becomes more prominent as we move on to transformer-based language models.

2.2.3 Transformers

Recent language models and neural IR architectures have shifted from using RNNs to leveraging
transformers for document representation (Vaswani et al., 2017). In this section, we provide a de-
tailed introduction to transformers, as understanding the inner workings of this model and how it
captures term interactions is crucial for gaining insight into the representation of documents and
queries in modern IR models.
In RNNs, the linear order of words is forced by the model, which is not always desirable. They are
computationally slow and resource-intensive to train on large text corpora. Moreover, local rela-
tionships are captured well, but as the sequence length grows, it becomes harder to learn long-term
dependencies. In 2015, Bahdanau et al. (2015) introduced attention to solve exactly this problem in
machine translation. Although the original paper rarely uses the term attention, subsequent works
adopted this terminology. The core idea behind attention is to consider the hidden states of the
entire input sequence when making predictions, rather than relying solely on the �nal hidden state
that represents the entire input. Then the task of the attention mechanism is to learn how much to
attend and give focus to each hidden state. The concept is best described using Figure 2.7, where
attention is applied on top of a bi-directional RNN to compute a weighted linear combination of
all hidden states. The �gure is created with the use-case of machine translation in mind, in which
an encoder (bi-directional RNN) creates a representation of an input sentence, and a decoder uses
the representation to generate tokens of the translation. The encoder-decoder architecture, where a
network encodes the input into a compact representation and a decoder generates text based on this
condensed representation, is widely used in literature.
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Given the hidden states of the decoder as hd, at each time-step n, the attention mechanism decides
the amount of attention to be paid to each hidden encoder unit he, by calculating the attention
weight a as a function of all encoder hidden states and the previous representation s(n−1). More
formally, the attention weights for hidden state j at time-step i are de�ned in Equation 2.21, where
FFNN is a feed-forward network. In other words, a(i,j) determines how much the decoder should
pay attention to h(j)e while computing the output token at time-step i.

a(i,j) :=
exp(A(i,j))∑n
k=1 exp(A(i,k))

A(i,j) := FFNN (h
(i−1)
d , h(j)e )

(2.21)

The entire context is captured by the context vector, which is the linear combination of hidden states
based on the attention weights, a, computed as shown in Equation 2.22.

contexti :=
n∑
j=1

aj,ih(j) (2.22)

The described attention mechanism transfers information from the encoder to the decoder. In con-
trast, self-attention computes attention within a single input and was �rst introduced in 2017 by
Vaswani et al. (2017) along with the transformer architecture for machine translation tasks. These
concepts form the foundation of current language models.

Self-attention works with three sets of vectors: queries q(n)u ∈ Rk, keys k(n) ∈ Rk, and values
ν(n) ∈ Rν . These vectors are computed for each token by multiplying the token embedding by
three matrices that are learned during the training process, namely WQu , WK , and WV . The basic
idea is that the query vector of each token is compared against the key vectors of all other tokens
for compatibility. The greater the compatibility, the more in�uence the corresponding value will
have on the output representation of the query token. For each token, a query, key, and value are
computed as a linear transformation of their token embeddings. In practice, the queries, keys, and
values of all tokens are packed together into matricesQu,K , and V .
If an embedding for token n is denoted as e(n) then q

(n)
u = WQu .e

(n), ν(n) = WV .e
(n) and

k(n) = WK .e
(n). The dot product between the query vector of a token, i.e., q(i)u , and the key vector

of another token, i.e., k(j), determines their compatibility. e.g., q(i)u k(j) determines how compatible
or important token j is to token i. This is referred to as dot-product attention that computes the
attention weights a as a set of unnormalized weights. The e�ect of dot-product attention su�ers for
large dimensionality of key, query, and value embeddings (dk), and authors attribute this to softmax
gradients vanishing for high dimensional inputs. Dividing by standard deviation,

√
dk, helps coun-

teract this problem. As a result, the weights are re-scaled by dividing by the dimensionality of query
and key vectors

√
dk. For normalization into non-negative values that sum to one, a softmax layer is
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Figure 2.8: Self-attention computation for a single token based on the representation of others, in this example
the sentence has only three tokens.

applied, e.g., a(i,j) = softmax( q
(i)
u .k(j)√
dk

). The computation of the attention weights in a vector, a, is
shown in Equation 2.23.

a := softmax(
QuK

T

√
dk

) (2.23)

The output of the attention network is an updated representation for each token, based on the
in�uence of the entire input, e.g.,

∑n
j=1 a

(i,j)νj is the new representation for token i based on all
the other tokens in the input sequence. The attention computation is shown in Equation 2.24.

Attention(Qu, K,V) := softmax(
QuK

T

√
dk

) · V (2.24)

Figure 2.8 goes over the computation for a single token in a sequence consisting of only 3 tokens.
Based on the coloring scheme it is visible how the �nal representation of a token t(1) becomes the
combination of di�erent value vectors. The amount of participation in the �nal representation is
selected by the interaction between the query vector q(1)u and the key vectors of all other tokens. A
single attention head computes one linear combination, while multiple attention heads learn several
representations simultaneously. For a set ofm attention heads, a set ofm learned projection matrices
are de�ned WQui

, WKi
, and WVi , where i is indexing over the heads. The multi-head attention

block computes the attention functionm concatenates the outputs, and multiplies them by another
weight matrix (WO) to project the multiple representations back to the original dimensionality. The
computation of multi-head attention is de�ned in Equation 2.25.

Multi-Head(Qu, K,V) = Concat(head1, ..., headm)WO

headi := Attention(Qui , Ku,Vu)
(2.25)
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Figure 2.9: Positional encoding matrix for “the teacher cleaned the”, with dimensionD = 4.

Unlike recurrent models, the input in a transformer is processed in parallel, signi�cantly reducing
computation time. However, processing inputs in parallel means the order of words is lost. To
retrain the word order, positional encodings are added to the token embeddings to inject some infor-
mation about the relative or absolute position of the tokens. There are many choices for positional
embeddings. The �rst ones are sine and cosine functions of di�erent frequencies, where the fre-
quency decreases as the dimension in index i (number of tokens in a sequence) increases. Positional
encoding functions are shown in Equation 2.26, where pos is the position of the word in a sequence
andD is the dimension of the embedding.

PE(pos,2i) := sin(pos/10000(2i/D))

PE(pos,2i+1) := cos(pos/10000(2i/D))
(2.26)

In Equation 2.26, the positions of the even numbers follow a sinus and the positions of the odd
numbers follow a cosine curve. An example of the positional encoding for a sequence with four
tokens is shown in Figure 2.9, where the encoding value is the function of its position in the in-
put sequence. In fact, the positional encoding matrix would be the same for any four-letter phrase.
However, more recent models tend to learn the positional embeddings as part of the model parame-
ter and the sinus and cosine functions are used less commonly. With the help of positional encodings
and multi-head attention, a transformer block (Tunstall et al., 2022) is built. The transformer block
consists of two sublayers: the �rst is multi-head attention, and the second is a feed-forward network.
After each sublayer a residual connection and layer normalization (Ba et al., 2016) are performed
(LayerNorm(x+ Sublayer(x))). Here, Sublayer(x) denotes either the multi-head attention mech-
anism or the feed-forward network.
Figure 2.10 shows the entire transformer architecture. In the �rst sublayer, Add & Norm denotes the
residual connection plus layer normalization. Layer normalization adjusts each token vector to have
a mean of zero and a standard deviation of one. The second sublayer is a position-wise feed-forward
network, with fully connected layers applied independently to each input position, followed by an-
other Add & Norm block. Each grey block, comprising of multi-head attention and feed-forward
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Figure 2.10: The transformer architecture. Image taken from Vaswani et al. (2017).

network, is stackedN times to form the transformer encoder.

The decoder block resembles the encoder but with a few distinctions. The �rst multi-head attention
block is replaced with a masked multi-head attention. A mask preserves the temporal dependencies
in the output sequence, ensuring predictions at each time step rely only on prior known outputs.
Such a model is called auto-regressive (Graves, 2013), generating the next token based on the previ-
ous context. A mask is simply an upper triangular matrix, with −∞ above the diagonal and zero
under it, which is added to the attention weights before the softmax. The softmax pushes the−∞
values to zero, causing zero attention for tokens after a speci�ed position.
The other multi-head attention block in the decoder computes cross-attention between the encoder
and decoder. In the encoder, the goal is to create a representation of the input, therefore attention
is computed on the input sentence only. However, in the decoder, the aim shifts to generating out-
put conditioned on both the encoder representation and the generated sequence. Cross-attention
merges these elements by using queries, keys, and values from di�erent sequences. Queries or selec-
tors come from the previous layer of the decoder. Keys and values come from the �nal layer of the
encoder. As a result, the decoder attends simultaneously to the sequence generated so far and the
input. The rest of the decoder module is similar to the encoder, where the last layer is the vector
representation for each token in the output sequence. A softmax linear layer converts these vectors
to probabilities over the target vocabulary to predict the next token.
Although the initial transformer contains both encoder and decoder blocks, depending on the ap-
plication only one would su�ce. For example, for generating sequences, only a decoder block is
enough, or for a representation learning task, an encoder is more suitable.
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2.2.4 Transformer-based language models

One of the main research questions in the era of deep learning is how to train e�ective and task-
speci�c models with limited annotated data. A major milestone for solving this issue comes from
transfer learning. This paradigm, �rst introduced in computer vision, is inspired by the fact that hu-
mans can solve novel problems with only a few samples because of the knowledge they have acquired
throughout their lives. In transfer learning, the model undergoes a pre-training phase to grasp basic
and common features, followed by a �ne-tuning stage where this acquired knowledge is applied to
target tasks (Han et al., 2021). The pre-training stage is usually an unsupervised objective or a task
with an abundance of data, whereas task-speci�c data are rather scarce.
It was not until language models that transfer learning made its way into NLP. Dai and Le (2015)
were the �rst to take advantage of this paradigm in NLP, followed by the ELMo model. ELMo per-
formed language modeling as pre-training on a large amount of text and only used smaller sets for
�ne-tuning on speci�c tasks. Transformers made it possible to speed up the costly pre-training task
on ElMo’s recurrent architecture and achieve better performance.
Another trend that started with the rise of transformer language models was the shift to sub-word
tokenization instead of word level or character level tokenization which is more relevant for the tradi-
tional models. Sub-word tokenization addresses the limitations of both word-based and character-
based tokenization approaches. It mitigates issues like large vocabulary sizes and out-of-vocabulary
tokens encountered in word-based methods, while also resolving concerns such as lengthy inputs
and the lack of meaningful individual tokens found in character-based approaches. In sub-word
tokenization, common words remain unchanged, while infrequent words are broken down into
meaningful sub-units. For example, “girls” is split into “girl” and the plural indicator “s”. This helps
the model detect the root word and shift in meaning by adding su�xes. Some of the popular sub-
word tokenization algorithms are Byte-Pair Encoding (BPE) that is �rst introduced in an article in
1994 (Gage, 1994) and later used in machine translation (Sennrich et al., 2016b), WordPiece (Song
et al., 2021), and SentencePiece (Kudo and Richardson, 2018). We do not go over the details of
sub-word tokenization and refer the reader instead to the respective papers. For all the transformer
models, when we refer to a token, a sub-word token is meant.
Transformer-based language models can be classi�ed into two main types: encoder-based and decoder-
based models. In this section, we brie�y describe each type and highlight their di�erences. The
encoder-based models are more prominent in IR models for learning query and document repre-
sentations and are discussed in depth. All the neural architectures described later in this chapter use
some form of encoder-based language model as their base model.
On the other hand, decoder-based models have gained signi�cant interest in recent years, particu-
larly with the GPT models (Radford et al., 2018). Since one variant of these models is employed as
a baseline system in Chapter 4, we also provide a brief description of the decoder-based approach
with an emphasis on GPT.
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2.2.4.1 Decoder-based Language Models

The decoder of a transformer (decoder part of an encoder-decoder architecture) is designed to gener-
ate a sequence conditioning on the previous context, making it suitable for language modeling tasks.
To �ne-tune the decoder on a speci�c task, the �nal softmax linear layer that predicts the next token
is replaced by a task-speci�c head. For example, for sentiment analysis, a linear layer predicting the
sentiment is added.
The �rst model in the line of decoder base language models is Generative Pretrained Transformer
or GPT for short (Radford et al., 2018). The �rst version of GPT is a transformer decoder with
12 layers, Byte-Pair Encoding as a tokenizer, and trained 7000 unique books, where long spans of
continuous text are used as input. GPT is a relatively small model with 117 million parameters. The
pre-trained model is then �ne-tuned on a variety of tasks, including classi�cation, natural language
inference, semantic similarity, and question answering. As expected, pre-training greatly bene�ts
downstream applications. The main contribution of the �rst GPT is semi-supervised learning for
NLP tasks, where unsupervised language modeling is the initial and resource-hungry part of the
training. For �ne-tuning, the authors added an auxiliary learning objective to get better general-
ization and faster convergence, where they combine the language modeling objective with a down-
stream task (Ltotal = Lfine-tune + λLLM ). The total loss is a combination of �ne-tuning loss (Lfine-tune

) and language modeling loss (LLM ), where λweighs down the language modeling objective.

In 2019, GPT-2 (Radford et al., 2019) was released as a larger model with more parameters and larger
hidden units, scaling up to 1.5 billion parameters. In comparison to the previous version, GPT-2 is
better at generating convincing and consistent text in natural language. Starting from GPT-2, the
GPT model series became controversial as the creators withheld its full version, claiming it to be
dangerous in generating fake news and harmful content. Here, the authors introduced task condi-
tioning, where the model is expected to produce di�erent outputs for the same input for di�erent
tasks. To this end, the language modeling objective of predicting an output sequence given an input
P (output|input) is transformed to condition on the task as well, P (output|input, task). The
task is a natural language instruction provided in addition to the input sequence, where the output
is conditioned on both. This provided the basis for zero shot task transfer, where the model under-
stands and solves a task only based on a given instruction without any training examples.

The GPT-3 model published in the year 2020 with 175 billion parameters marks a breakthrough that
is capable of generating text, which is hardly distinguishable from human-written content. Other
than the increase in parameter size, an enormous corpus of text data is added to the model training
set. Additionally, on-the-�y task learning emerges on tasks that the GPT-3 model is never explic-
itly trained on, like writing code and SQL queries with only providing one or few examples. This
is referred to as few-shot and one-shot training. Such capabilities come from in-context learning, in
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Figure 2.11: Di�erences in model architectures of BERT, GPT, and ELMo. BERT uses an encoder part of a
Transformer, GPT uses a left-to-right decoder transformer and, ELMo uses the concatenation of
left-to-right and right-to-left LSTMs to generate features. Image taken from Devlin et al. (2019a).

which the language model develops pattern recognition and other skills helping the model to extend
its capabilities to unseen tasks. During in-context learning, the language model receives a prompt
that consists of a list of input-output pairs that demonstrate a task. At the end of the prompt, a test
input is appended for the model to predict the answer.

More recent variants of GPT models use more sophisticated training paradigms to bring the outputs
of the model closer to human preference. GPT-3.5 uses a technique called Reinforcement Learning
from Human Feedback (RLHF) (Christiano et al., 2017) for better alignment to human preference.
In RLHF, the model learns to make decisions or take actions based on feedback provided by humans.
Moreover, GPT-3.5 introduces instruction tuning, by �ne-tuning a language model on a dataset of
instructions and corresponding responses. This process helps the model better understand and fol-
low human-provided instructions. GPT-3.5 is also referred to as InstructGPT and is the underlying
model for ChatGPT. 10

GPT-4 (OpenAI et al., 2023) is another model in this series and its main contribution is to have
extended the input from text to images and videos as well, i.e., multi-modality. 11

2.2.4.2 Encoder-based Language Models

A less intuitive way to train a language model is to take the encoder of a transformer without the
autoregressive masking. The �rst and most prominent model in this domain is Bidirectional Encoder
Representations from Transformers (BERT) (Devlin et al., 2019a). Figure 2.11 shows a comparison
between the main three models discussed so far, namely, BERT, GPT, and ELMo. Only BERT
representations are conditioned on both the left and right context in all layers. Moreover, BERT and
GPT introduce fewer task-speci�c parameters in comparison to ELMo. While ELMo learns general
textual features during language modeling, it freezes these layers during �ne-tuning, preventing the
�ow of information to the embedding layers for downstream tasks. In contrast, BERT and GPT are

10ChatGPT from Open AI: https://chat.openai.com/chat (last accessed: 02.05.2024)
11Given the rapid development in this �eld, there new language models published almost weekly and this list is not

comprehensive.
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Figure 2.12: Example of MLM for BERT (Devlin et al., 2019a), for an example sentence of “The dragon was
protecting the castle".

�ne-tuned for downstream tasks by updating all pre-trained parameters, improving performance on
speci�c tasks. An encoder creates representations with bi-directional context, considering both left
and right context, unlike traditional language models that only consider th previous context. BERT
combines ELMo’s bi-directionality, the e�ciency of transformers, and GPT’s end-to-end training
into one model.
To formulate the bi-directionality as a language modeling task, BERT (Devlin et al., 2019a) uses
Masked Language Modeling (MLM). The idea is to replace a fraction of the tokens in a sentence
with a mask token ([MASK]). The model task is to predict the mask tokens based on the entire context.
For example, in “The dragon was protecting the castle", random masking results in “The [MASK] was
protecting [MASK] castle". However, if the model is always conditioned to make predictions upon
encountering a [MASK] token, it does not develop strong representations for unmasked tokens. To
introduce more diversity, 15% of the sub-word tokens are randomly selected, which:

• 80% of the time are replaced with [MASK],

• 10% of the time replaced with a random token, and

• 10% of the time are left unchanged.

Consequently, for each sentence, the model is penalized for three di�erent mask variation and opti-
mized using cross-entropy loss.
In addition to MLM, BERT pre-training includes a Next Sentence Prediction (NSP) task, training
the model to predict if one text chunk follows another. NSP aims to teach relationships between text
pieces, useful for tasks like question answering where context di�ers between question and answer.
However, later works argued that this objective is not necessary for learning good quality represen-
tations (Liu et al., 2019; Yang et al., 2019).

In addition to di�erent training objectives, BERT introduces additional layers to the token embed-
ding of the default transformer:

1. Token embeddings: Each token is encoded as a low-dimensional vector, and two sentences are
fed into the model. Two special tokens are added: [CLS] at the beginning of the �rst sentence
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Figure 2.13: Embedding layer so of BERT; Image taken from BERT (Devlin et al., 2019a).

and [SEP] at the end of each sentence. [CLS] stands for classi�cation, with its �nal hidden
state used as the aggregate sequence representation for classi�cation tasks.
Another way to obtain sentence representation is by max/mean pooling of all token repre-
sentations from the last layer before softmax. However, the authors argue that [CLS] o�ers
better sentence-level understanding due to its use in NSP during pre-training. Averaging all
token embeddings gives equal weight to all tokens, including stop words. In contrast, the
[CLS] vector, computed with self-attention, collects task-relevant information. During pre-
training, [CLS] goes through a classi�cation layer to detect if two sentences divided by [SEP]

are consecutive.

2. Positional embeddings: Similar to the basic transformer architecture, a position embedding is
added to token embeddings to keep track of the positions of tokens in self-attention modules.

3. Segment embeddings: A marker indicating Sentence One or Sentence Two is added to each
token. This enables the encoder to distinguish between the two text chunks.

These embeddings are shown in Figure 2.13.
BERT was released with two variants based on the model size, as bert-base with 12 layers and 768
hidden dimensions and bert-large with 24 layers and 1024 hidden dimensions. Both models are
trained on the English Wikipedia and BookCorpus. Compared to recent GPT models, BERT is rela-
tively small. However, it still requires four days for pre-training with 64 TPUs, making it impractical
for single-GPU or academic pre-training. Despite the resource-intensive training, �ne-tuning BERT
is fast and easily achievable on a single GPU, making it appealing for many downstream applications,
the most notable of which is IR. In contrast to generative models like GPT, which excel at text gen-
eration, encoders are adept at capturing representations and features across various output formats.
This reason makes them more common in retrieval settings, where the task revolves around search-
ing through vast corpora of text rather than generating new text.

BERT is the �rst and most well-known encoder-based language model. There have been many vari-
ants of it proposed over the years mainly to improve the training procedure. Some of the most promi-
nent variations that are commonly used in IR models and their di�erences from the base model are
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organized in Table 2.2. This list is not exhaustive. Although models such as ALBERT (Lan et al.,
2020), ELECTRA (Clark et al., 2020), SpanBERT (Joshi et al., 2020), and XLNet (Yang et al.,
2019) have made signi�cant improvements in the development of language models, their �ndings
are less relevant to the IR and are therefore not discussed here. We provide only a brief overview of
the main ideas, for detailed information on each model, refer to the respective papers.

Table 2.2: List of the important model variants of BERT.
Model Summary

1. RoBERTa (Liu et al., 2019) (1) dynamic masking (2) remove NSP (3) More data (4) larger batches
2. DistilBERT (Sanh et al., 2019) reduce the size of the model with knowledge distillation
3. SBERT (Reimers and Gurevych, 2019) dedicated sentence embedding by using Siamese BERT networks

1. RoBERTa: To make the BERT model more robust, the authors introduce dynamic masking.
In contrast to BERT static masking, di�erent parts of the sentences are masked, for di�erent
epochs. NSP is also removed from the objectives as it is deemed unuseful. Additionally, more
data is incorporated into the pre-training corpus, and the model undergoes longer training
sessions with larger batch sizes. For instance, the batch size is increased to 8,000 over 300,000
steps, contrasting with BERT’s batch size of 256 and 1 million steps. RoBERTa is a standard
substitute for better in many IR models that aim to get a slight performance boost over the
base model without a change in architecture.

2. DistilBERT : This model does not tweak the BERT architecture or training procedure but
tries to reduce its size, by creating a smaller model that replicates the output of BERT in a pro-
cess called knowledge distillation. In knowledge distillation, the knowledge of a large model, a
teacher, is distilled to a smaller one, a student, that produces similar output. Knowledge dis-
tillation is widely used in IR models to enhance the performance of e�cient and small models
with the knowledge of the expensive and large ones. We discuss more about this topic in the
next section. In the case of BERT the student model learns the probability distribution of the
predictions made by the original BERT model. The authors show that with a much smaller
network, they can achieve on-par results with the original model.

3. SBERT : In order to measure the similarity between two sentences with BERT, one would
concatenate them with a [SEP] token in between and use the [CLS] token to compute their
similarity. This process is rather ine�cient as it computes attention across all tokens of the
�rst sentence to the second sentence. The cross-attention construction makes BERT unsuit-
able for semantic similarity search in an e�cient manner. Sentence-BERT (SBERT) presents
a modi�cation of the pre-trained BERT network that uses the siamese architecture of two
BERTs that share parameters. SBERT adds a pooling operation to the output of BERT to de-
rive sentence embeddings. Both embeddings and their element-wise di�erences are concate-
nated and fed through a classi�cation layer to predict their similarity. Constructs similar to
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Figure 2.14: Multi-stage architecture of modern IR systems.

SBERT are popular in retrieval settings as bi-encoder architectures, where one BERT model
computes the representation for the query and another for the document. We describe such
models in a later section.

2.2.5 Retrieval with Language Models

Pre-trained language models changed the landscape of retrieval systems. Their powerful representa-
tions have replaced traditional frequency-based methods to represent queries and documents, while
still following a similar paradigm. As mentioned at the beginning of this chapter, the goal of a re-
trieval system is to estimate the relevance of a query x to a document d based on the similarity of
their representations τ(x) and τ(d) or, in other words, to estimate the probability p(d|x) for docu-
ments in the corpus.

In neural retrieval τ(x) and τ(d) come from a pre-trained language model. As in traditional meth-
ods, the similarity function commonly used to compute the similarity of query and document is
cosine or dot product. However, unlike the traditional and probabilistic methods with multiple
independence assumptions among tokens and documents, a pre-trained language model captures
the interaction among all the tokens with the help of the attention module and their representation
is context-dependent. The attention mechanism resolves several limitations of traditional models.
However, these dense representations are derived from language models with millions, and some-
times billions, of parameters, rendering them computationally intensive and less interpretable. Ad-
ditionally, computing dot products among these dense vectors for large corpora with millions of
documents is impractical for real-time search engines. To balance e�ciency and e�ectiveness, many
modern systems adapt a multi-stage ranking pipeline, depicted in Figure 2.14. The �rst stage returns
an initial set of candidates from the entire corpus with fast and e�cient ranking models assisted by
an embedding or term-based index. Later ranking stages are more complex and e�ective with the aim
of pruning and improving the �nal result set. First-stage models are typically designed to have a high
recall and return potentially all relevant documents from the entire collections in a short time span.
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Whereas, in contrast, the secondary stage ranker emphasizes precision, with the aim to position the
most relevant documents at the top (Aumiller et al., 2020; Guo et al., 2022).
The �rst-stage rankers have long been dominated by lexical models. Due to their simplicity, power-
ful index structures, and integrability in most open-source search engines, they are good candidates
for e�cient retrieval. Although they have demonstrated reasonable performance in practice, they
still su�er from vocabulary mismatch and do not capture document semantics well by disregarding
word order. Moreover, the most important property of the �rst stage ranker is high recall and lexical
models tend to ignore semantically similar results with di�erent vocabulary.
These limitations act as a blocker, preventing second-stage rankers from accessing some of the rele-
vant documents (Chen et al., 2017). On that account, the development in recent years has focused
on creating �rst-stage neural retrieval systems that produce a high-quality ranking in an e�cient
manner. In contrast to classical methods, the representations from neural models are mostly dense,
necessitating a di�erent index structure. 12 Furthermore, conducting nearest neighbor matching by
considering all document representations in a large collection is no longer practical. As a solution,
approximate matching is commonly employed in practice. In this approach, queries are executed
on vector indices containing these dense representations, utilizing Approximate Nearest Neighbor
(ANN) matching for e�cient retrieval. (Aumüller et al., 2017).
Neural retrieval models are categorized into two approaches: dense and sparse methods. Dense re-
trieval relies on dense embeddings for document and query representations, feasible only through
parallelized dot product computations across multiple GPUs/TPUs and e�cient nearest-neighbor
search. However, they remain slower than databases with sparse inverted indices and techniques
like BM25. Sparse models aim to create a feasible sparse representation similar to traditional models
that can take advantage of fast index structures. Dense neural systems are divided into two categories
based on the level of interaction between the query and the document, including term-level repre-
sentation learning and document-level representation learning. Sparse neural models are categorized
into neural weighting scheme and sparse representation learning.
In the subsequent subsection, we begin with an overview of loss functions and training paradigms
for neural models. This is followed by a discussion of ANN methods for e�cient retrieval of docu-
ments using dense representation. These foundational topics are important for understanding the
common practices for training neural IR models and also methods for e�cient retrieval. Finally, we
provide an overview of the most prominent dense and sparse neural models. We aim to describe at
least one model per category, but mainly focus on the model architectures, which are used in Chap-
ter 5 for quantity-aware ranking or as baselines for comparison.

12There are ways to create sparse representations from the dense models, which are discussed in the upcoming sections.
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2.2.5.1 Loss Functions

Neural ranking models commonly employ either Negative Log-Likelihood (NLL) loss for classifying
relevant and non-relevant documents or triplet loss functions to learn the margin, which separates
the relevant and non-relevant samples.
Classi�cation approaches look at a single document at a time and compute the classi�cation loss
based on the relevance of a document to the current query. In this case, the score for each document
is independent of the other documents. This is also referred to as NLL loss for a set of binary rel-
evance judgments. Here, the idea is to maximize the probability of relevance for positive samples,
given a query. Given D− as the list of all non-relevant documents for a query. For a query x and a
relevant document d+, the NLL loss is de�ned in Equation 2.27. Given that computing the nor-
malization term across all documents is time-consuming, negative sampling is commonly employed
as a workaround to calculate the denominator.

LNLL(x, d+) = − log
exp(τ(x), τ(d+))

exp(τ(x), τ(d+)) +
∑

d′∈D− exp(τ(x), τ(d′))
(2.27)

In negative sampling, we sample a set of non-relevant documents as negatives, denoted by Nx, and
compute the denominator based on these samples. In the most basic case, the documents are chosen
at random. The reformulated NLL equation is shown in Equation 2.28 (Karpukhin et al., 2020;
Qu et al., 2021).

LNLL(x, d+) = − log
exp(τ(x), τ(d+))

exp(τ(x), τ(d+)) +
∑

d′∈Nx
exp(τ(x), τ(d′))

(2.28)

NLL loss is not dedicated to binary classi�cation and can handle multiple classes. However, most
times in relevance classi�cation, the relevance judgments are binary. Another way to maximize the
log-likelihood for binary classi�cation is to minimize the Binary Cross Entropy (BCE), which mea-
sures the average number of bits needed to represent the outcomes of a binary variable. Given the
representations of a query and a document, the probability of their relevance is computed by the sig-
moid (σ) of some vector operation (�), e.g., concatenation or dot product. The BCE loss is shown
in Equation 2.29, where g is a linear function and y is the relevance judgment.

p(d, x) = σ(g(τ(x)� τ(d)))

LBCN(x, d) := −y.p(d, x)− (1− y).(1− p(d, x))
(2.29)

In triplet loss (Schro� et al., 2015), each query in the training set is paired with both a relevant and
a non-relevant sample. To calculate the loss, two forward passes are required: one to compute the
representation of the relevant sample and another for the non-relevant one. Triplet loss aims to push
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Figure 2.15: The comparison of in-batch negatives and cross-batch negatives when trained on multiple GPUs,
where A is the number of GPUs, and B is the number of queries in each batch; Image taken from
Qu et al. (2021).

dissimilar pairs farther apart from similar pairs by a prede�ned margin value. Formally, for a query x
and a relevant document d+ and non-relevant document d−, triplet loss is de�ned in Equation 2.30.

Ltriplet(x, d
+, d−) := max(0, 1− (sim(τ(x), τ(d+))− sim(τ(x), τ(d−))) (2.30)

Once again the negative sampling strategy plays an important part in convergence. Random samples
are easy to distinguish for most models and result in slow convergence and low-quality representa-
tions. As a result, di�erent strategies for mining hard or semi-hard negatives have been proposed.
Here, we discuss a few of them. It is important to note that the choice of positive and negative ex-
amples signi�cantly impacts the learning process, guiding the model on which features to prioritize
in distinguishing relevance.

The major negative sampling methods are divided into three categories (Zhao et al., 2022):

1. In-batch negatives: This is a straightforward and e�cient way to acquire negative samples, �rst
introduced by Henderson et al. (2017). Instead of mining negatives from the entire collection,
for each query, the positive text is paired with the text of other queries in the same batch as
negatives. Since neural models are trained on GPUs with limited memory, this technique
provides a large number of negatives within the same batch and with minimal memory cost.
If there are B queries in a batch and each query has exactly one relevant text, with in-batch
negatives there areB − 1 negatives in the same batch.

2. Cross-batch negatives: This method is suitable for multi-GPU settings, where the examples are
reused across di�erent GPUs (Qu et al., 2021). Here the document embedding is computed
in a GPU and shared among all other GPUs. Besides the in-batch negatives, all the other
documents from the other GPUs are additional negative samples. If we have A number of
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GPUs, the number of negatives increases to A · (B − 1). An illustration of the di�erence
between in-batch and cross-batch negative sampling is shown in Figure 2.15. The idea of
cross-batch negatives can be extended to a single GPU by accumulating the negatives across
multiple mini-batches but it is less common (Gao et al., 2021).

3. Hard negatives: These types of negatives are essentially irrelevant text passages that exhibit a
high degree of textual similarity to the relevant ones. The inclusion of hard negatives in train-
ing increases the discriminating capabilities of retrieval systems (Karpukhin et al., 2020; Qu
et al., 2021). Hard negatives are further classi�ed into three categories: static hard negatives,
dynamic hard negatives, and denoised hard negatives.

a) Static hard negatives: These negatives are derived from a selector that remains con-
stant throughout the training process. A commonly used selector is BM25, which re-
trieves lexically similar answers to the queries but does not contain the actual answer.
(Karpukhin et al., 2020). Other choices of static hard negatives are sampling from sim-
ilar contexts or topics or a mix of all approaches. For instance, in the case of a relevant
document containing multiple passages, all passages except the relevant one are labeled
as negative. Another approach involves employing an e�cient dense encoder to iden-
tify semantically similar passages (Lu et al., 2021). Li et al. (2022) propose a topic-aware
sampling, in which queries are clustered into topics, and the negatives are chosen from
the same cluster.

b) Dynamic hard negatives: These types of negative samples come from an adaptive neg-
ative selector. ANCE (Xiong et al., 2021) selects hard training negatives globally from
the entire corpus, using an asynchronously updated ANN index. The index is refreshed
parallel to the training based on the updated model parameters. Consequently, hard
negatives are selected from the latest embeddings. This synchronized approach to se-
lection promotes faster convergence. ADORE (Zhan et al., 2021) is another approach,
which keeps the text embedding index �xed and utilizes an adaptive query encoder, re-
sulting in retrieving adaptive negative samples.

c) Denoised hard negatives: In this scenario, noisy negative samples are �ltered out to en-
hance quality, speci�cally targeting false negatives. Noisy negatives often stem from top-
ranking retrieval samples generated by static or dynamic systems that closely match the
query, but are actually positives, thereby introducing noise into the negative examples.
To resolve this issue RocketQA (Qu et al., 2021) proposes a denoised negative selection
using a well-trained cross-encoder 13 to �lter top-ranked retrieval results that are likely to
be false negatives. The cross-encoder is one of the most powerful similarity indicators
that can be used to re�ne the selection. Another denoising technique is SimANS (Zhou

13Cross-encoder is described in more detail in a later section. It is an encoder-based language model where both passages
are fed into the model divided by the [SEP] token.
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Figure 2.16: Probability skip-list and the search for value 22.

et al., 2022), which selects ambiguous negatives (those that are ranked close to positives
based on relevance scores). These ambiguous negatives are considered high-quality neg-
atives as they strike a balance between being neither too easy nor too di�cult, potentially
mitigating the presence of false negatives.

2.2.5.2 Approximate Nearest Neighbour (ANN)

ANN algorithms accelerate similarity search on index structures for dense vectors by replacing ex-
haustive comparisons between all document embeddings and a given query with a more computa-
tionally e�cient approximation. This approximation is achieved through techniques such as vec-
tor compression, limiting the search scope, or reducing the required memory. Generally, ANN al-
gorithms are categorized into four major types: tree-based (Beis and Lowe, 1997; Bentley, 1975),
hashing-based (Datar et al., 2004; Indyk and Motwani, 1998), quantization-based (Ge et al., 2014;
Jégou et al., 2011), and proximity graph approaches (Malkov and Yashunin, 2020).
The earliest approaches for ANN used hashing-based techniques, but currently, proximity graphs
o�er the best performance. Graph-based methods construct an index by preserving neighborhood
information for each data point or a set of pivot points. Various greedy heuristics are then applied to
these graphs to navigate to the closest points for a given query. Unlike tree-based and hashing mod-
els, graph algorithms are metric-agnostic, meaning they can work with a wide range of similarity
metrics. Graph models not only outperform other methods but also maintain a local view, mak-
ing it easier to add new data with minimal distribution changes. Several open-source libraries for
ANN search exist, among which Facebook AI Similarity Search (Faiss) (Johnson et al., 2021) from
Facebook (Meta) and Space Partition Tree And Graph (SPTAG) (Chen et al., 2018) from Microsoft
Research are well-known. Since the underlying principle of the graph-based methods is the same,
we describe Hierarchical Navigable Small World (HNSW) (Malkov and Yashunin, 2020), which is
the underlying technology of Faiss.

HNSW is a type of proximity graph, where nodes are embeddings that are connected to other nodes
based on their proximity. The proximity is commonly measured by Euclidean distance. HNSW is
based on two fundamental ideas: Navigable Small World graphs (NSW) (Malkov and Yashunin,
2020) and probability skip-list (Pugh, 1990).
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Figure 2.17: An example of a greedy-routing search for the query marked in yellow. The search starts at the
entry point and continues until the local minima is reached.

A probability skip-list was introduced in 1990 and is based on building a linked list in several layers.
On the �rst layer, there exist links that skip many intermediate nodes and as the layers go deeper, the
number of skips by each link is decreased. An example of such skip-list and search for an example
value of 22 is depicted in Figure 2.16, where the search is started at the highest level. Instead of
examining all values, the search begins at the top layer, comparing the query value to the values in
that layer until a larger value is encountered, overshooting the target. Once a larger value is found,
the search moves down to the next layer and continues. This process repeats until the query value
is found. The purpose of organizing the list into multiple layers is to minimize the number of steps
needed to locate the �nal value. In Figure 2.16, we only have to traverse the nodes in blue to �nd the
�nal value, and intermediate values of 5 and 12 are skipped.

Vector search with navigable small world graph was developed over the course of several papers (Malkov
et al., 2014; Ponomarenko et al., 2011; Malkov et al., 2012). The main idea is to reduce search time to
logarithmic complexity by constructing a graph with both long and short-range links based on node
proximity. Each node is connected to its neighbors with an edge, these neighbors are referred to as
friends, and for all nodes, a friends list containing all neighbors is kept. Searching is conducted using
greedy-routing search, where the algorithm navigates the graph by selecting the friend closest to the
query node as the next node to traverse. Each graph has a prede�ned entry point where the search
begins. At each step, the closest node from the current friend list is chosen as the next destination.
This process continues until no node closer than the current one can be found, indicating a local
minimum. Figure 2.17 shows a hypothetical example of greedy traversing at a high level. The search
starts at the entry point and the traverse is continued until the local minimum is reached, and the
current node on the traverse path is returned as the nearest neighbor (dark red node). Nodes with
few friends (low degree) are more likely to get stuck in a local minimum. In contrast, high-degree
nodes o�er more options and are less likely to be trapped in local minima. High-degree nodes are
also more likely to have long-range edges that extend beyond the local cluster.
Routing within the graph involves two phases. The zoom-out phase navigates through low-degree
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Figure 2.18: An example of node insertion (on the left) and search (on the right) in NHSW.

nodes, while the zoom-in phase traverses higher-degree nodes. Consequently, hitting a local mini-
mum is more likely during the initial zoom-out phase. To reduce the likelihood of early termina-
tion, higher-degree nodes are necessary, though this increases computational cost. An alternative
approach, used by HNSW, is to start the search with high-degree nodes (zoom-in �rst).
HNSW brings together the probability skip list and NSW. The major di�erence to a skip list is that
the linked list is replaced with proximity graphs. Edges are like skip connections that are separated
across di�erent layers, where the top layer contains long-range edges (long skips) and nodes with
higher degrees. The search starts at the top layer with high-degree nodes, reducing the chance of
reaching a local minimum. On each layer, traversal among the nodes is similar to NSW, moving
greedily to the nearest node until a local minimum is found. However, unlike NSW, the search does
not stop at the local minimum but instead descends to the next lower layer. This process is repeated
until the local minimum is reached at the bottom layer (layer 0). An illustration of the search on an
example graph is depicted in Figure 2.18, where the arrows show the direction of the greedy algo-
rithm from the entry point to the nearest neighbor of the query.

Figure 2.18 also depicts the process of graph construction and the insertion of new nodes. Nodes
are iteratively inserted one by one during graph construction. For each new element, an integer rep-
resenting the maximum layer is randomly selected based on an exponentially decaying probability
distribution P . The likelihood of insertion decreases exponentially with each ascending level in the
hierarchy. The probability of insertion is highest at the lower layers, particularly at layer 0, while only
a few nodes make it to the top layer. Layer 0 contains all the nodes in the graph. If a node is inserted
into a top layer, it will also be included in all the lower layers. For example, nodes at layer 2 will also
be present in layers 1 and 0. When a node is added to the selected layer, the graph is traversed greedily
from the top layer to �nd ef closest neighbors to the new element. This search continues layer by
layer, using the closest neighbors found in the previous layer as starting points for the next layer. The
parameter ef is the approximate number of neighbors to be maintained for each node. The list of
closest friends is updated on each insertion by looking at the neighborhood of the closest previously
non-evaluated element in the list. For a detailed algorithm on search and graph construction, refer
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Figure 2.19: Dense retrieval models based on interaction level. The left side is the term-level representation
and the right side is document-level representation. Figure inspired from (Guo et al., 2022)

to the paper by Malkov et al. (2014).

With advances in neural IR and their superior performance in comparision to the classical methods,
and open-source search engines such as the ones mentioned in Section 2.1.3 are increasingly adopt-
ing vector databases and techniques like HNSW. Moreover, databases such as Redis 14 and Weavi-
ate 15 o�er extremely e�cient vector search index structures, which work with a variety of embedding
methods. However, these open-source search engines and databases mainly focus on the most basic
query and document representation, where a single dense vector represents the query and another
represents the document. In the upcoming sections, we explore methods where embeddings are ei-
ther sparse or where a single query and document are represented by multiple vectors. Despite the
superior performance of such models, their support in open-source software remains limited.

Now that we covered the training paradigm, transformer-based language models, and ANN search,
we can delve into neural retrieval models. In the upcoming sections, we cover various model archi-
tectures for dense and sparse retrieval, most of which are built on top of pre-trained encoder-based
language models. During �ne-tuning on positive and negative samples, these models adapt their
internal representation to capture a notation of relevance between a query and a document.

2.2.6 Dense Neural Models

The essence of dense neural retrieval is ranking based on semantic interaction between the dense
representations of a query and documents. Based on di�erent interaction levels, dense models are
divided into document-level representation and term-level representation.
Term-level representations show more �ne-grained interactions among terms of query and docu-

14https://redis.io/(lastaccessed:02.05.2024)
15https://weaviate.io/(lastaccessed:02.05.2024)
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Figure 2.20: Cross-encoder architecture, where the [CLS] embedding is used to predict the relevance/similar-
ity. Both query and document representations are computed online (during inference).

ment compared to document-level, where all the terms are combined into a single representation.
Figure 2.19 shows the di�erence in the architecture of these two types. In the following subsection,
each variation is described in more detail along with respective prominent models. Since the query
representation might originate from a di�erent network than the document representation, we will
refer to the query representation as τ ′(x) and the document representation as τ(d).

2.2.6.1 Term-level Representation

Term-level models learn a �ne-grained (token-level) representation for a term in a query and a doc-
ument. As shown in Figure 2.19 on the left side, the matching function calculates the interaction
between the embedding of the terms in the query and document.

Cross-encoder: The most comprehensive yet most computationally expensive form of term-based
interaction is a cross-encoder. A visualization of the cross-encoder is shown in Figure 2.20. In this
case, both query and document are fed into a pre-trained language model, e.g., BERT, separated by
the [SEP] token. Due to the self-attention and cross-attention in the transformer architecture the
semantic interaction within all the terms as well as across terms in query and document are captured.
Then either the [CLS] token (Nogueira and Cho, 2019; Qiao et al., 2019) or a transformation of the
token embeddings, e.g., average or max (Xiong et al., 2017) is used to predict the relevance. Although
the cross-encoder is a powerful ranker, its practical use is infeasible. Ranking a single query requires
computing the interaction between the query and all documents in the corpus in real time, making
these models an expensive choice even as a re-ranker. To address this, recent models aim to delay
the interaction computation and make it more e�cient while retaining the bene�ts of term-level
interactions. We discuss a few of the relevant works and refer the reader to surveys of neural retrieval
models for more model variations, e.g., surveys by Guo et al. (2022) and Zhao et al. (2022).

ColBERT: The Contextualized Late Interaction over BERT (ColBERT) model (Khattab and Za-
haria, 2020) proposes late-interaction to balance between the quality and cost of term-level inter-
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Figure 2.21: ColBERT model and the late-interaction mechanism. The document representations are created
and indexed o�ine. During inference time only the query representation is computed and com-
pared against the index for e�cient retrieval.

actions. Figure 2.21 depicts the architecture of ColBERT, where a query encoder and document
encoder compute τ ′(x) and τ(d) with a bag of �xed-size token embeddings. As a result, the query
and document representations are comprised of the embeddings of all their tokens. Each token
embedding is contextualized based on the surrounding terms. The relevance score between these
�ne-grained embeddings is computed using a late-interaction mechanism, speci�cally by summing
the maximum similarity (MaxSim) values. MaxSim operator returns the similarity score for the most
similar token between query and document. Query and document encoders are a BERT model with
shared parameters, but there are some di�erences in how they are encoded.

Query Encoder: a special token is prepended to the input to denote if it is a query or a document,
[Q] for the query, and [D] for the document. τ ′(x) and τ(d) are WordPiece representations, due to
the wordpiece tokenization of the BERT model (described in Section 2.2.4).
BERT model has a limited sequence length (number of tokens that are allowed as input), and if the
query has fewer tokens than the de�ned limit, it is padded with the special [Mask] token. The authors
claim that the mask tokens perform an implicit query augmentation, by allowing BERT to predict
the mask token based on the query context. The BERT representation for each token, including
the masked ones, is passed through a linear layer with no activation to reduce the size of the �nal
embeddings and reduce the space footprint.

Document Encoder: Unlike the query encoder, no mask is appended to the documents, and short
documents are padded normally. After the �nal linear layer, token embeddings corresponding to
punctuation are removed from the �nal representation to reduce the memory footprint. Both query
and document representation are normalized to unit length.
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Using the query and document encoders τ ′(x) and τ(d) for x = x(1)...x(n) and d = d(1)...d(n) are
computed using Equation 5.14, where # denotes the mask tokens. Note that the masking is only
applied to the query encoding. The CNN layer is a 1-D convolution to down-project the embed-
dings and the Filter function removes the punctuation embeddings after document encoding.

τ
′
(x) := Normalize(CNN(BERT([Q]x(1)...x(n)#...#)))

τ(d) := Filter(Normalize(CNN(BERT([D]d(1)...d(n)))))
(2.31)

Given τ ′(x) and τ(d), the similarity is estimated using late interaction with cosine, implemented
as the dot product of the normalized vectors. More formally the MaxSim operator for query x and
document d is shown in Equation 2.32 as the sum of the dot products of all individual query and
document token embeddings. This approach measures similarity by selecting the most similar to-
kens from the query and the document. ColBERT is trained using cross-entropy loss, with positive
and negative samples to optimize this similarity measure.

sim(x, d) =
∑

i∈||τ ′ (x)||

maxj∈||τ(d)||τ
′
(x)i.τ(d)j (2.32)

ColBERT can be used both for �rst-stage (end-to-end) retrieval and also as a re-ranker. For end-to-
end retrieval, the pruning-friendly nature of the MaxSim operator is highly bene�cial. Document
embeddings are precomputed o�ine and stored in a fast vector-similarity index, such as Faiss. The
MaxSim operator, in conjunction with Faiss, is used to retrieve the nearest neighbors to a query based
on the token embeddings of both the query and the documents. This initial list of nearest neigh-
bors is then re�ned through re-ranking. For re-ranking, the dot product between the query token
embeddings and the document representations is computed to measure similarity. A max-pooling
layer on top selects the maximum similarity scores. ColBERT e�ciently returns query results on a
large corpus within a short time frame, but it still lags behind classical methods like BM25.

In Chapter 5, where we propose extensions to neural models for quantity understanding, ColBERT
is chosen as a representative of dense neural IR. This choice is driven by ColBERT’s balance of per-
formance and e�ciency, as well as its use of term-level interactions modeled through the MaxSim
operator on term embeddings. We argue that maintaining term-level interactions is crucial for an-
swering quantity-centric queries, where the relationship between terms and quantities is signi�cant.
Such �ne-grained connections are lost in document-level representations, where a single vector rep-
resents the entire document and query.

Multiple extensions of ColBERT have been proposed throughout the years. ColBERTv2 (San-
thanam et al., 2022) boosts the performance by a combination of distillation from a cross-encoder
and hard-negative mining. Additionally, it uses a residual compression mechanism to reduce the
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space footprint. ColBERTer (Hofstätter et al., 2022) proposes an extension to increase the level
of interpretability and reduce the storage and latency cost. To enhance interpretability, the Bag of
Whole-Words approach is introduced. This method aggregates all sub-word token representations
within a unique whole word into a single representation. This not only improves interpretability
but also reduces the number of vectors that need to be stored per document.

2.2.6.2 Document-level Representation

The document-level representation models learn one or more global representations for query and
document. The similarity between the global representation shows the �nal relevance, which is of-
ten computed with a dot product or cosine similarity. Although earlier models obtained query and
document embeddings by aggregating their corresponding word embeddings with heuristic func-
tions (Clinchant and Perronnin, 2013; Gillick et al., 2018), recent models use transformer models.

Dense Passage Retrieval (DPR): This is the �rst model in this category to combine language mod-
els for global document and query representations by using a BERT-dual encoder. The bi-encoder
architecture introduced in DPR has since been used in a variety of other models for e�cient end-to-
end dense retrieval. The general bi-encoder architecture is shown in Figure 2.22. In DPR, a dense
encoder precomputes dense representations, τ(d), for documents o�ine. During runtime, a sep-
arate encoder maps the query to a dense vector, τ ′(x). The similarity between a query and each
document is then estimated using the dot product, as shown in Equation 2.33. Note that in DPR,
unlike the term-level models, there is a global vector abstracting the features of the query and docu-
ment and the token-wise interactions are ignored.

sim(x, d) := τ
′
(x)cls · τ(d)cls (2.33)

DPR is trained using NLL with a positive document and negative sampling. The authors exper-
iment with di�erent negative sampling strategies and �nally settle on a combination of in-batch
negatives and hard negatives from BM25.

Document embeddings are stored in Faiss, for e�cient k-nearest neighbor retrieval during infer-
ence. DPR can serve either as a re-ranker or can be used for end-to-end retrieval. In the re-ranking
scenario, DPR is commonly paired with a lexical matcher like BM25. In end-to-end retrieval, a large
number of nearest neighbors are retrieved using Faiss, and �ne-grained matching is conducted using
Equation 2.33. DPR was one of the �rst models that introduced the idea of e�cient retrieval with
large language models, hence its popularity in literature.
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Figure 2.22: Bi-encoder architecture for retrieval, based on the DPR model, where the representation of query
and document is the [CLS] embedding of the BERT encoder.

An improvement on DPR is proposed through RocketQA (Qu et al., 2021), which uses a bi-encoder
but shows that the optimization of the training procedure has a great impact on the �nal result.
Speci�cally using denoised hard negatives and data augmentation with the help of a cross-encoder
can enhance results signi�cantly.

Knowledge distillation: In general, cross-encoders are used in a variety of ways to enhance the
performance of retrieval systems. Knowledge distillation is one way to take advantage of the knowl-
edge learned by these expensive models. Knowledge distillation refers to the process of transferring
knowledge from a more capable and usually larger model (called teacher) to a smaller and less capable
model (called student). The teacher is usually a well-trained cross-encoder who is capable of captur-
ing the semantics and interactions between query and document (Tahami et al., 2020). However,
in some cases, models like ColBERT are also used as the teacher (Lin et al., 2020b). Given that bi-
encoders are comparatively more cost-e�ective models, they are predominantly utilized by students.
Knowledge distillation is usually done in two ways: hard-label distillation and soft-label distillation.

Hard-label distillation: This method uses the output of the teacher as ground truth for training the
student (Qu et al., 2021). Given that the teacher’s predictions may include noisy output, robust
thresholding techniques are employed to �lter out low-con�dence scores. In this approach, a set
of query and document pairs with unknown judgments are tagged into relevant and non-relevant
classes using a cross-encoder. The newly tagged set is added to the training data of the student to
enhance its performance.

Soft-label distillation: This method aims to approximate the output distribution of the teacher using
the student network, by adjusting the loss function to learn the output probability of the teacher. If
simt(x, d) represents the relevance score from the teacher and sims(x, d) from the student, several
distillation loss functions include (Izacard and Grave, 2021; Zhao et al., 2022):
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1. MSE loss: In this case, the loss function minimizes the di�erence between the relevance of the
teacher and the student using mean square, as shown in Equation 2.34.

LMSE :=
1

2

∑
x∈X

∑
d∈D

(simt(x, d)− sims(x, d))2 (2.34)

2. KL-divergence loss: This function �rst normalizes the relevance scores of candidate docu-
ments into probability distributions by queries, denoted by, ˜simt(x, d) and ˜sims(x, d) , and
reduces their KL-divergences as in Equation 2.35. KL-divergence measures the distance be-
tween two distributions and by minimizing it, the student learns to make similar predictions
as the teacher.

LKL := −
∑

x∈X,d∈D

˜sims(x, d)(log ˜sims(x, d)− log ˜simt(x, d)) (2.35)

3. Margin-MSE loss: This loss reduces the margin di�erence between the positive and negative
predictions of the teacher and the student, as shown in Equations 2.36.

LMMSE := MSE((simt(x, d
+)− sims(x, d

+), (simt(x, d
−)− sims(x, d

−)) (2.36)

2.2.7 Sparse Neural Models

In the sparse retrieval scheme, each document and query is represented with sparse vectors, where
only a small number of dimensions are active. The di�erence to the classical models is that the rep-
resentations come from a neural network, where the semantics and relationships are learned during
training. The sparsity is either created from a dense representation directly or a neural model is used
to predict token importance in documents, which replaces the term frequencies in classical models.
A great advantage of sparse models is that they can be easily integrated into existing inverted in-
dex structures for e�cient retrieval. Sparse retrieval models are categorized into two classes: neural
weighting scheme, refers to employing the neural models to improve term weighing, where the classi-
cal inverted indices are used for retrieval. On the other hand, sparse representation learning directly
learns queries and documents in a sparse space using neural networks.

2.2.7.1 Neural Weighting Scheme

One of the major components in ranking for classical models is the term weights stored in an index
structure, which indicate their importance. 16 Neural weighting models, however, either employ a
neural network to learn better term importance based on semantics rather than heuristics, or they
keep the weights intact but augment documents with additional terms before indexing, using neural

16Frequencies are treated as weights in the classical models.
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networks for semantic expansion (Guo et al., 2022). Based on these approaches, neural weighting
schemes are divided into term re-weighting, expansion, and expansion + term re-weighting.

Term re-weighting: These models focus on estimating term importance in queries and documents
using neural networks. Deep Contextualized Term Weighting (DeepCT) (Dai and Callan, 2019) is
an example of such models, which primarily focuses on term re-weighting through contextualized
representations with BERT. To estimate the importance of tokens in the text, DeepCT �rst encodes
the passages and queries using BERT. The output of the BERT encoder is a contextualized feature
vector that captures the syntactic and semantic meaning of tokens. This vector is then used as input
for a linear regression model to predict the importance score of each word within the context of the
entire text. The linear regression layer is a simple feed-forward network. Since in the BERT model
sub-words are used as tokens, in order to compute the weight for a word, only the weight of the �rst
sub-word token is used.
More formally, importance is predicted using a linear combination of BERT token embedding (τ(d)t)
as shown in Equation 2.37, where ytd is the predicted weight for a token t in a document d and W ,
b is the weight and biases, respectively.

ytd := W T τ(d)t + b (2.37)

DeepCT is trained using a per token regression task with MSE, to predict the correct weight for each
token. However, since the true term weights are unknown, the authors estimate these values using
query term recall. Equation 2.38 shows the computation for query term recall, which is based on
the assumption that the search queries re�ect the topic of a document. Words appearing in queries
relevant to a document are considered more important than other words within the document. In
this context,Qd is the set of queries for which document d is relevant andQd,t is the subset of those
queries containing token t. The importance score, or query term recall, is calculated as the ratio of
the number of queries containing the term to the total number of relevant queries for the document.

QTR(t, d) :=
|Qd,t|
|Qd|

(2.38)

After training, the predicted term weights replace the term frequencies in an inverted index and can
be combined with widely used retrieval models like BM25. Hence, the main computation overload
of DeepCT is prior to index creation.
To compute the term weighting for queries, the authors propose a similar approach. In this case, the
term importance is estimated by term recall, as shown in Equation 2.39. Dd is a set of documents
relevant to the query andDd,t is the subset of those documents containing token t.

TR(t, d) :=
|Dd,t|
|Dd|

(2.39)
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Figure 2.23: Architecture overview of DeepCT model with query and document encoder. Term importance
scores for query and document come from query term recall and term recall respectively.

Term recall is based on the assumption that a token is more important if it is mentioned in relevant
documents. The overall architecture of DeepCT is shown in Figure 2.23.

Expansion: One technique to improve classical retrieval models is to expand documents with rele-
vant terms. By enriching documents with expansion terms, cases of vocabulary miss-match decrease.
Doc2Query (Nogueira et al., 2019b) utilizes a sequence-to-sequence transformer for such document
expansions. For each document, the task is to predict a set of queries that are relevant. The model is
trained using query and relevant document pairs. An encoder computes a representation of a doc-
ument, and a decoder predicts the relevant query based on the document representation. Once the
model is trained, several queries are generated for each document and appended to the existing doc-
ument terms as an expansion. The expanded documents are then indexed, and the �nal ranking is
performed using classical methods such as BM25. A further extension of Doc2Query is to use the
T5 model (Ra�el et al., 2020) instead of BERT for better e�ectiveness (Nogueira et al., 2019a). T5
is an encoder-decoder architecture and is better suited for conditional text generation than BERT.

Expansion + term re-weighting: These models perform both expansion and estimation of term
importance and are the type that we use in Chapter 5. One relatively simple yet e�ective model is
SPLADE (Formal et al., 2021b). SPLADE is inspired by the SparTerm model (Bai et al., 2020),
which directly learns term-based sparse representation for the entire vocabulary space. Figure 2.24
depicts the general architecture of SparTerm, consisting of an importance predictor (F ) and a gating
controller (G). The �nal sparse representation for a document is a combination of the outputs of the
importance predictor and gating controller (τ(d) = F (d) � G(d)), where � is the element-wise
multiplication of the two vectors.
The importance predictorF generates a dense vector representing the semantic importance of each
term in the vocabulary, thereby achieving both term weighting and expansion. Concurrently, the
gating mechanism �lters out less important terms, ensuring sparsity. To calculate the importance,

51



2 Background

Figure 2.24: SparTerm model uses a gating and importance module on top of BERT representation to �lter
terms and compute importance based on the entire context.

the contextualized embeddings from BERT undergo a linear transformation with GELU activation
and layer normalization to predict token-wise importance scores. The �nal document importance
distribution (I) is the summation of all token-wise importance distributions, as shown in Equa-
tion 2.40. ReLU activation is used to ensure the non-negativity of the output. Here,W and b rep-
resent the weights and biases, respectively, and I(i) is a distribution over the vocabulary, equivalent
to the MLM prediction. This equivalence allows for initialization from a pre-trained BERT.

I(i) := Normalize(GELU(BERT(d(i))))W T + b

I :=
n∑
i=0

ReLU(I(i))
(2.40)

More precisely, the importance predictor predicts term importance across the entire BERT Word-
Piece vocabulary based on the logits of the masked language model. I(i) is therefore a vector with
the size of the vocabulary where each element denotes the importance of the ith token of the input
to that token in the vocabulary. By summing up across the token axis, we get the importance of all
the terms in the vocabulary based on the current input tokens.
The gatingG controls which terms appear in the �nal representation with binary gating. SparTerm
proposes two types of gating mechanisms: literal-only gating and expansion-enhanced gating.
Literal-only gating is similar to a bag-of-words representation of a document, where only existing
terms in the original document are activated and no expansion is performed. On the other hand,
expansion-enhanced gating activates terms that might bridge the lexical mismatch gap. Similar to
importance prediction, a document-wise dense term gating distributionG is computed to quantify
the probability of each term participating in the �nal sparse representation. To ensure sparsity, a bi-
nary function is applied on top of outputs as a binary activation function, which outputs only 0 or 1
(G′ = Binarize(G)). The �nal expansion-enhanced gating vectorGle is computed in Equation 2.41,
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Figure 2.25: SPLADE combines the gating and importance mechanism in a single log saturation layer.

where a bitwise negation vector is applied to ensure only the terms not present in the document are
being expanded. The gating vector is the same size as the importance vector and spans across the
entire vocabulary. However, unlike the importance vector, the gating vector contains zeros and ones
to mask out the irrelevant tokens for the representation.

Ge := G
′ � (¬BoW(d))

Gle := Ge + BoW(d)
(2.41)

The �nal representation τ(d) for each document comes from the element-wise multiplication of bi-
nary masking and the importance vector for each term. SparTerm is trained by minimizing a token-
wise NLL loss for ranking and BCE loss for the gating mechanisms. Separating the importance of
predictors and gating mechanism is rather complex and hard to train.

The SPLADE model aims to simplify the importance and gating module into a single one by intro-
ducing an importance estimation that already imposes sparsity without the need for an extra gating
mechanism. Both modules are combined under a log-saturation layer, which is added on top of
BERTs masked language modeling distributions. Equation 2.42 states the log-saturation e�ect that
prevents some terms from dominating and adds sparsity.

τ(d) := log(1 + ReLU(BERT((d))) (2.42)

The log saturation trick, similar to log(tf) in the classical models, manages to add some degree of
sparsity by squashing large values. Moreover, the ReLU activation �lters out negative values. The
di�erence between the SPLADE architecture and SparTerm is shown in Figure 2.25, where the en-
tire importance and gating module is replaced by a single log-saturation layer. τ(d) ∈ R|V | is a
vector of the size of the vocabulary that contains zeros in many places and word importance scores
in the rest. The concept involves using log-saturation implicit expansion to enhance documents by
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Figure 2.26: Comparison of balanced and unbalanced index with equal sparsity (number of non-zero ele-
ments). The distribution of the non-zero elements de�nes the number interaction.

adding terms while �ltering out unimportant ones with low scores. This is achieved through ReLU
activation and further squashing by the log function. The resulting sparse vector is then indexed us-
ing an e�cient structure suitable for classical methods. New terms for a document are selected from
the active dimensions of τ(d), with term weights corresponding to the values of these dimensions.
Notably, these new terms might not include the original terms present in the document.

Unlike SparTerm, which requires two distinct loss functions for predictor and gating, SPLADE is
trained end-to-end using NLL loss. For negative sampling, the authors utilized the in-batch nega-
tives. Although the log-saturation layer introduces some form of sparsity, in practice still the num-
ber of active dimensions are high. To this end, the authors use the Floating-Point Operations Per
Second (FLOPS) regularizer (Paria et al., 2020), which is a smooth relaxation of the average number
of �oating-point operations necessary to compute the score of a document. The FLOPS regularizer
directly relates to the retrieval time of a document and is more suitable than the l1 norm.
The primary concept behind FLOPS regularization is to decrease the number of interactions be-
tween the query and the document, unlike theL1 norm which solely focuses on reducing the num-
ber of non-zero values. If τ(x)

′ is the query representation and τ(d) is the document representa-
tion. Then the l1 norm is the sum of the elements in τ(x)

′ and τ(d), e.g., L1x :=
∑
τ(x)

′(i).
This pushes certain values inside the query representation to be zero but it does not de�ne which
tokens should have zero weight. As a result, this type of sparsity might not result in a speed-up.
Figure 2.26 describes this idea better. In this example, an unbalanced inverted index leads to four
operations because, despite the documents being sparse, four of them have overlapping terms with
the query. In contrast, a balanced index distributes the zeros such that two of the documents are
excluded from the �nal interaction computations, resulting in a speedup. Therefore, the ultimate
speed improvement due to sparsity depends not only on the number of non-zero terms but also on
their distribution within the index.
In FLOPS regularization, the process is applied to each column of the document embedding matrix
(Wd) rather than to each row. This means the regularization focuses on reducing the number of
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documents associated with a particular token to only those documents where the token holds sig-
ni�cant importance. To estimate the interactions, FLOPS estimates the average number of �oating
point operations needed to compute the dot product between two representation vectors (query
and document) by a smooth function. FLOPS loss is computed as the sum across the terms in the
vocabulary of the squared probability of that a term having a non-zero weight in a document (fj).
The computation of FLOPS loss for a single document is shown in Equation 2.43, where j is the
index of the tokens in the vocabulary and i is the index of documents in the corpus. During training,
access to the entire document corpus is not feasible. Instead, a batch ofN documents is sampled to
serve as a representative of the entire distribution for computing the regularizer.

f̄j :=
1

N

N∑
i=0

τ(d)ji

lFLOPS :=
∑
j∈|V |

f̄ 2
j =

∑
j∈|V |

(
1

N

N∑
i=0

τ(d)ji )
2

(2.43)

The �nal loss is the combination of the ranking loss and the regularization on query and document
as shown in Equation 2.44, where λq and λd are the regularization weights.

L = Lranking + λql
q
FLOPS + λdl

d
FLOPS (2.44)

In Chapter 5, we build upon the SPLADE model for sparse quantity-aware retrieval. We chose
SPLADE because it e�ciently incorporates both term expansions and re-weighting, combining the
best of both approaches. Additionally, one of our quantity-aware methods relies on a quantity-index
structure that can be easily integrated into the SPLADE index.

There are two extensions proposed to the SPLADE model. SPLADE V2 proposed several improve-
ments to the base model in terms of e�ectiveness and e�ciency. Query expansion is removed as it is
deemed not useful, and knowledge distillation from a cross-encoder is introduced to improve per-
formance (Formal et al., 2021a). SPLADE++ further studies the e�ects of training improvements
like distillation and hard negative mining as well as the choice of language model for base encoders.
The authors also investigate the model’s performance in terms of zero-shot evaluation.

2.2.7.2 Sparse Representation Learning

These models focus on building sparse representations for queries and documents that capture the
semantic meaning of the input text. Inverted indices are used on top of such representations for
e�cient retrieval, where the units inside the index correspond to latent terms instead of actual to-
kens (Guo et al., 2022). Works in this category are rather limited and since these models are not used
in the remainder of the thesis, we only mention the most prominent one.
Learning sparse representations dates back to semantic hashing (Salakhutdinov and Hinton, 2009),
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which uses a multi-layer autoencoder for learning representations of documents. Yet, it does not cap-
ture the relevance relationship between queries and documents and it is not suitable for retrieval. In
2021, Jang et al. (2021) proposed the UHD-BERT to create high dimensional and sparse embed-
dings for query and document using BERT. UHD-BERT comprises a query encoder, a document
encoder, and a scoring function. The encoder is a BERT model that has a sparsity module on top
to create sparse embeddings into buckets. The learned representations are bucketed into multiple
parts that represent di�erent aspects of the document or query.

In this chapter, we have explored the major classical and frequency-based retrieval systems. Further-
more, we introduced two families of neural retrieval models: dense and sparse. We laid the ground-
work with an exploration of language modeling and transformers to facilitate a deeper understand-
ing of the underlying principles of neural architectures. While none of the models mentioned specif-
ically focus on quantity-centric retrieval or introduce a dedicated architecture and training paradigm
for quantities in text, comprehending their internals equips us with the knowledge to incorporate
quantity understanding, as discussed in Chapter 5.
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“If I have seen further it is by standing on the
shoulders of Giants.”

Issac Newton

This chapter covers the related work regarding quantity understanding, retrieval, extraction, and
question answering. The chapter starts by looking at quantity extraction techniques since many
other systems fundamentally rely upon a precise de�nition and extraction of quantities for their
downstream application. By studying prior work in this area, we observe that various systems prior-
itize di�erent capabilities based on their intended downstream applications, and a uni�ed de�nition
of quantities is lacking.
Section 3.2.1 covers quantity-aware retrieval models and numerical indices and discusses the early
work in the area. We point out the di�erences in the notion of quantity queries and output rep-
resentations throughout di�erent works in the literature and how they relate to the quantity-aware
models in this thesis. Section 3.3 gives an overview of the work in the language modeling domain and
numerical embeddings, which aim to create contextual quantity representations. Here, the short-
comings of current embeddings in capturing quantitative values are pointed out, and related work
that aims to solve these issues is discussed. Numerical reasoning and question answering systems are
discussed next in Section 3.4. These systems are also closely related to quantity representations but
mainly focus on optimal architectures or training strategies to inject numeracy and reasoning into
language models. Finally, numerical relation extraction is discussed, which aims to detect the rela-
tionship between quantities and other concepts in a text. Throughout all upcoming sections, the
focus is on describing the methods, contributions, and core �ndings regarding quantity understand-
ing. The complex mathematical formulation of optimization functions or long tables of evaluation
results is, therefore, avoided for a more coherent presentation.

3.1 Quantity Extraction

A building block of most quantity retrieval systems and indices mentioned in the upcoming sec-
tions is the correct extraction of quantities. In this section, the related work and advancements in
this area are discussed. Extraction of quantities in text goes beyond the identi�cation of mere digits
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and is a tedious task, involving standardization and unit detection. Nevertheless, quantity extraction
is rarely directly studied in the literature and is often experimented with as part of a larger system.
Often the downstream task de�nes what constitutes a quantity, causing discrepancies between sys-
tem de�nitions. This section discusses standalone packages, which are systems speci�cally designed
for quantity extractions, and dependent systems, which are sets of rules or parsers created for nu-
merical data acquisition of a larger system.
Table 3.1 shows a list of dependent and standalone extractors with information regarding various
quantity de�nitions, a summary of their extraction technique, and the type of suitable data. Al-
though most systems consider a value and unit pair as quantity, the representation is mainly depen-
dent on the downstream task or application domain. For example, event-centric methods add a time
dimension to the quantities to explore entities through time. The numbering of methods is added
to the table rows to easily identify the respective work in the text.

Table 3.1: List of quantity extractors with information regarding quantity de�nition, extraction technique,
focus, and whether they have a code repository available or not.

Model Quantity De�nition Method Focus Code

1. Roy et al. (2015) (value, unit, change) semi-CRF and bank of classi�ers, set of rules general 3

2. Quantulum3 (value, unit) rules, GloVe-based classi�er, dictionary of units scienti�c units 3

3. Huang et al. (2017) (value, unit) regular expressions, rules, dictionary of units 5 quantity types 3

4. Foppiano et al. (2019) (value, unit) 3 CRF models (unit, value, quantity) patent documents 3

5. Banerjee et al. (2009) (value, unit) 150 rules 10 quantity types 7

6. Maiya et al. (2015) (sign, value, unit, error, scienti�c value) regular expressions and syntactic patterns scienti�c units 7

7. Alonso and Sellam (2018) (value, unit, timestamp, property) rules based on language grammar event-centric 7

8. Ning et al. (2022) (value) BERT-based span detector event-centric 7

9. Ibrahim et al. (2019) (value, unit) random forest, random walk tables 7

10. Sarawagi and Chakrabarti (2014) (value, unit) probabilistic context-free grammar tables 7

In Chapter 4, we propose a new framework for quantity extraction from text and provide a more
in-depth evaluation of the capabilities of the publicly available standalone extractors. Error analysis
on standalone models reveals that domain-speci�c models, such as Recognizers-Text (Maiya et al.,
2015; Huang et al., 2017), often overlook a considerable number of quantities in their extractions.
On the other hand, more generalized models like those discussed in (Roy et al., 2015) lack proper
normalization and standardization, necessitating extensive post-processing for practical use. How-
ever, even with such post-processing, their performance remains poor. 1

3.1.1 Standalone Extractors

Extractor (1): Roy et al. (2015) describe a framework for quantity reasoning, consisting of two phases:
extraction of Quantity-Value triples (value, units, change), and reasoning in the form of quantity
entailment. In Quantity-Value Representation (QVR), which is inspired by Forbus (1993) and his
qualitative process theory, a quantity is de�ned as a triplet (v, u, ch), where v is a numeric value, u
is a noun phrase or unit that describes the value, and ch speci�es how the value is changing. The

1For a more extensive discussion, we refer the reader to the evaluation of quantity extractors in Chapter 4.
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de�nition of quantity by Roy et al. (2015) is the only one among the standalone extractors that go
beyond unit and value. In Chapter 4, we extend this de�nition further by incorporating the contex-
tual information in the form of a concept.
Quantity extraction is performed in two stages: segmentation and standardization. Segmentation
refers to �nding segments of contiguous text that describe quantities. The authors use a Semi-CRF
(Conditional Random Fields) (Sarawagi and Cohen, 2004) and a bank of classi�ers (Punyakanok and
Roth, 2000) with a set of de�ned word level and character level features for this task. Standardiza-
tion modules are rule-based systems that convert written numbers, ranges, and dates to standardized
decimal formats. In their study, Roy et al. (2015) point out the di�culty of quantity detection and
ultimately use a semantic role labeler 2 to �nd the segments related to the quantity in text. Their
quantity extractor is released as part of the CogCompNLP 3 package in Java, which collects several
core libraries for NLP developed by the Cognitive Computation Group.
The focus of the paper, however, is not on quantity extraction but quantity entailment as a 3-way
decision problem between entails (there exists a quantity in the given passage that entails the hy-
pothesis quantity), contradicts (the quantity in the passage contradicts the hypothesis quantity) and
no relation (there are no comparable quantities). To discover entailment relationships, the authors
apply a reasoning step after quantity extraction, in which they compare quantities to see whether
hypothesis quantity can be derived via some truth-preserving transformation of quantity in a pas-
sage. For a quantity to contradict or entail another, their units must be comparable, and the authors
propose some rules for comparing scienti�c and non-scienti�c units.

Extractor (2): There exist two prominent open-source packages that perform quantity extraction.
One tool is quantulum3 4. Quantulum3 employs a combination of rules and regular expressions to
extract and normalize quantities, maintaining an extensive list of scienti�c units and their normal-
ized forms, along with various surface forms found in the text. To resolve ambiguities between units
with similar surface forms, Quantulum3 utilizes a classi�er based on GloVe vectors (Pennington
et al., 2014) to determine the correct unit. The classi�er is trained on the text of Wikipedia articles
describing the di�erent scienti�c units to learn the context in which they appear. An example of an
ambiguous unit is “pound”, which can refer to either a currency or a weight measurement. Such
examples can only be distinguished using context information. We also adapt a similar approach for
unit disambiguation in Chapter 4.

Extractor (3): Another tool worth noting is Microsoft Recognizers-Text, 5 which is an open-source
package by Microsoft for recognition and resolution of numerical and temporal entities (Maiya et al.,

2A tool that assigns speci�c semantic roles, such as value, unit, and change, to words or phrases in a sentence.
3Libraries for Natural Language Processing developed by Cognitive Computation Group: https://github.com/

qiangning/illinois-cogcomp-nlp (last accessed: 02.05.2024)
4Quantulum3 package: https://github.com/nielstron/quantulum3 (last accessed: 02.05.2024)
5Recognizers-Text package:https://github.com/microsoft/Recognizers-Text (last accessed: 02.05.2024)
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2015; Huang et al., 2017). They provide support for more than 10 languages but are more focused
on the English language. The package is written primarily in .NET but has a wrapper for other pro-
gramming languages such as Python and Java. Recognition is mainly rule-based and is performed
with the help of set regular expressions, which are de�ned separately for the �ve quantity types sup-
ported. Speci�cally, the focus is only on percentages, age, currencies, dimensions, and temperatures.
Another shortcoming of this tool is that for each quantity type, a separate model is used and the
quantity type has to be de�ned before extraction.

Extractor (4): Foppiano et al. (2019) present Grobid-quantities for extracting and normalizing mea-
surements from scienti�c and patent literature. Their method focuses solely on the extraction of
quantities with scienti�c units. Foppiano et al. (2019) introduce quantities as measurements that
link an object or a substance with one or more quantities. Measurements take four types: atomic,
for a single measurement (e.g., 10 grams); interval (e.g., from 3 to 5 km); range (e.g., 100± 4 mm)
for continuous values, and a list of discrete values. A quantity consists of a quantitative value and a
unit. Quantity extraction is performed in three steps: tokenization, extraction, parsing, and normal-
ization. In tokenization, text is split by punctuation marks, then each resulting token is re-tokenized
to separate digits and alphanumeric characters. Extraction is performed by labeling the tokenized
data with three Conditional Random Field (CRF) models in a cascade. The Quantities CRF model
determines appropriate unit and value tags and the processed results are fed into Units CRF and Val-
ues CRF to highlight known units or pre�xes and to unify the format of identi�ed values. Finally,
parsing and normalization are performed to normalize and map the extracted unit surface form to
one of the base SI units (Newell and Tiesinga, 2019).

3.1.2 Dependent Extractors

In this section, we describe the extractor components, which are part of a larger system, focusing
speci�cally on the quantity extraction component. If the downstream application is relevant to
the topic of this thesis, it will be detailed later. However, most of these systems are very limited in
terms of quantity extraction capabilities, are tailored towards the speci�c downstream application,
do not publish their code and often perform no evaluation on the quantity extraction component.
Nonetheless, the involvement of many di�erent researchers across various domains, each developing
their own methods for quantity extraction, highlights the importance of this task.

Extractor (5): Banerjee et al. (2009) address quantity extraction as part of their ranking system us-
ing the JAPE engine (Cunningham et al., 2013) for entity search. Their objective is to aggregate
information from multiple snippets to answer questions about an entity in the database with a tight
quantity interval distilled from evidence of relevance in thousands of snippets. We discuss their re-
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trieval method in Section 3.2.1. As for their quantity extraction, a quantity scanner annotates char-
acter spans that are likely to be quantity mentions. The scanner is a set of 150 hand-crafted rules,
which are speci�c to the set of units and quantity types used in their study, covering mass, mileage,
power, speed, density, volume, area, money, time duration, time epoch, and temperature.

Extractor (6): In the MQSEARCH system (Maiya et al., 2015), quantity extraction is performed
in order to populate a numerical index. A rule-based extractor is utilized on individual sentences
that populate the quantity representation in the form of (sign, number, error, scientific notation,
units). For example, the quantity for the measurement of gravity’s curvature as “(1.3999±0.003)×
10−5s−2m−1” is extracted as “(< empty >, 1.3999, 0.003, 10−5, s−2m−1).” The set of rules for
extraction falls into the four categories of pre-processing, units, quantities, and post-processing.
Pre-processing rules identify variations in characters like minus signs, multiplication signs, and other
symbols in the text and perform the necessary normalization. Unit rules are de�ned to identify op-
tional pre�xes for submultiples and multiples, e.g., “µ” before “meter’ or “kilo” before “meter”. The
authors create an ontology of units from the OBO Foundry 6 and other public sources, which are
used to detect units in the text. Other sets of rules are designed to detect numerical values with both
an error range and scienti�c notation, e.g., “30, 000” is a simple form with no scienti�c notation or
error range, and “1.4±0.003×106” contains both an error range and scienti�c notation. There are
also rules for detecting numbers with exponents, e.g., “1.23 × 105”. Finally, post-processing rules
reject false detection of numerical values as quantities. We discuss the retrieval aspect of this work
in Section 3.2.1.

Extractor (7): Alonso and Sellam (2018) look at quantitative information in social networks, speci�-
cally tweets. They propose a method to extract quantitative information in order to perform several
experiments and analyses with Twitter data. They introduce a notion of quantfrag as the unit of
information, which is a small piece of text that mentions one or more quantitative properties of an
event. Basically, a quantfrag is a phrase in a text that contains just the necessary information to un-
derstand the quantity and the property being measured. These fragments are detected using rules
based on language grammar and part-of-speech tags. More speci�cally, the focus of this work is less
on the extraction and normalization of values and units but more on identifying text snippets with
valuable quantitative information.

Extractor (8): Ning et al. (2022) focus on event-centric spatiotemporal quantity extraction on three
speci�c domains of the COVID-19 pandemic, Black Lives Matter protests, and 2020 California
wild�res. They are the �rst to tackle the quantity detection task using deep neural networks, by
framing it as a span detection problem and utilizing the BERT model (Devlin et al., 2019a). The
authors have a more restricted de�nition of quantities, which are special types of numbers that are

6Open Biological and Biomedical Ontology Foundry: https://obofoundry.org/ (last accessed: 02.05.2024)
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Figure 3.1: Graph of quantities in table and text for disambiguation; taken from Ibrahim et al. (2019).

associated with events, either as digits (e.g., “123”) or in words (e.g., “one hundred twenty three”).
Since the focus in on detection of the quantity spans, normalization of units and standardization
of values are disregarded. Any temporal information such as date and time and implicit quantity
information, such as ordinal numbers (e.g., “the �fth case in Seattle”) and article words (e.g., “a”
and “an”), are removed from the study. In addition to quantity detection, the system performs typ-
ing (detect the type of a real-world event among the three mentioned domains), spatial grounding
(ground real-world events to a locale), and temporal grounding (ground each real-world event to a
time). Quantities are a small part of this study, and the main focus is on events.

Extractor (9): In addition to unstructured text, quantities appear in structured formats like tables.
The BriQ algorithm (Ibrahim et al., 2019) aligns quantity mentions in texts with the ones in tables.
Quantity mentions in a text often contain values from table cells, but also include phrases that refer
to the aggregation of multiple values. This task is harder than entity linking, since the format of
quantities in text and tables might di�er drastically, e.g., the text states “37K EUR” while the table
refers to the same value only as “37”, since the unit and the post�xes of magnitude, e.g., “K”, are
part of the columns. Moreover, quantities in text are often the result of summation, subtraction,
and maximum or minimum of di�erent cells. Parsing tables and their format are also another chal-
lenge in this domain. In this thesis, we only focus on quantities inside the unstructured text and do
not consider tables, however, quantities play an important role in table understanding.
BriQ proposes a hybrid algorithm, with a supervised classi�er that accepts or drops mention-cell
candidate pairs and an unsupervised, random-walk-based model for �nal inference. For classi�ca-
tion, they use a random forest classi�er with a variety of textual features and quantity features based
on proximity and scale. For resolving ambiguous cases, a quantity graph for values in tables and text
is created, and a random walk-based method is used for resolution. Figure 3.1 shows an example
of such a graph, where in-text mentions of “11%” and “13.3%” have exact matches in two di�erent
tables. The stationary visiting probabilities of the random walk on the graph are used as scores for dis-
ambiguation and correct alignment. Their work is used to create ExQuisiTe (Ibrahim and Weikum,
2019), a system to align quantity mentions in text with related quantity mentions in tables.
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Table 3.2: List of quantity-aware retrieval systems, their query formulations, output representation, and sum-
mary of the method.

Model Query Output Method Data Type

1. Ho et al. (2019) (quantity type, context, Qfact of (entity, bi-LSTM for extracting Qfacts, �ltering on conditions, general
condition) quantity, context) ranking context with probabilistic/embedding methods

2. Li et al. (2021) (quantity, context, entity type, table or charts results are �ltered by entity type, quantity, and general
condition, time condition) time condition, then aggregated in charts

3. Banerjee et al. (2009) (context, unit) quantity intervals intervals are tagged in text and ranked with consensus
frequency/lexical features and RankSVM data

4. Sarawagi and Chakrabarti (2014) (context, unit) quantity intervals intervals are extracted from tables, their distributions consensus
are computed with density estimators tables

5. Ho et al. (2021a) (quantity type, context, Qfact of (entity, extracting Qfact with row and column alignments, tables
condition) quantity, context) �ltering based on conditions, ranking with embeddings

6. John K. Stockton (2009) (context, range, quantity) documents unit-based index structure general

7. Maiya et al. (2015) (property, range, quantity) documents values and units in an index general

Extractor (10): Sarawagi and Chakrabarti (2014) describe a system that performs quantity extraction
on tables for question answering. In this case, a probabilistic context-free grammar is used, which
exploits co-occurrence statistics between quantity types, units, and phrases from an unlabeled cor-
pus of tables. Given that the quantity representation in tables is di�erent from the one in natural
text, they take advantage of column and row headers for unit normalization and design a speci�c
unit annotator for table columns. From the values in tables, a distribution for distinct quantitative
attributes of entities is created. These distributions are then used to answer queries. The goal is to
answer queries regarding attributes of an entity, e.g., “average revenue of Microsoft” and “half-life
of plutonium”, with a distribution derived from the tables in the corpus.

3.2 Quantity-Aware Retrieval Models

Related work that directly addresses the problem of quantity in search and retrieval is limited. There
is no proper de�nition of a quantity-aware retrieval system, and models that do both retrieval and
deal with quantities have various output representations. Some focus on factual information that
contains quantities (Ho et al., 2019, 2020, 2021a), while others focus on the aggregation of quan-
tities in tables or text based on common property and report distribution of values (Banerjee et al.,
2009; Li et al., 2021). Retrieving text snippets that impose certain quantity constraints are more
studied in context of index structures and patent documents, where a numerical filtering option is
added to a term-based index (Agrawal and Srikant, 2003; Fontoura et al., 2007; Maiya et al., 2015).
However, the methods proposed for handling quantities in index structures primarily focus on stor-
age, e�cient document access, and �ltering out irrelevant documents, rather than ranking.
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Figure 3.2: Qfact extraction with semantic role labeling; taken from Ho et al. (2019). The position of the
entity and quantity are encoded as input with word embedding to predict Qfacts in a text.

Table 3.2 gives a summary of the di�erent methods with the input and output representations. The
methods are numbered for easy reference to their descriptions in the following text. The output
representation varies across di�erent methods, making the methods practically incomparable to one
another. Moreover, there is no available benchmark dataset for this task. Index-based methods re-
turn paragraphs or documents, whereas retrieval systems either aggregate the quantities in intervals
and charts or abstract the quantity information in Quantity Facts (Qfacts). Qfacts are facts about an
entity that involves quantitative information, e.g., “ heights of towers”, “running times of athletes”,
or “energy consumption of a car”.
Models that output an interval aim to �nd a distribution of values related to a property of an en-
tity, e.g., “body mass”. In contrast, systems that output Qfacts return snippets that support speci�c
quantity conditions (e.g., greater than, less than, within a range, or equal to a certain value). In this
thesis, our approach to quantity-aware retrieval aligns more closely with the latter variant, where we
return text snippets that satisfy speci�c numerical conditions rather than extracting Qfacts.
One common element among all systems is that they rely on the correct extraction of values and
units, in other words, their performance is dependent on the quantity extraction phase, highlight-
ing once again the importance of quantity extraction.
Another point worth noting is the lack of neural retrieval models in this domain. Word embeddings
that are used for ranking are mainly non-contextualized, like Word2Vec, and matching is performed
mainly on lexical features. Ho et al. (2019) use a bi-LSTM model for semantic role labeling but for
the �nal ranking a static embedding and bag-of-word model is utilized. Although there are quantity-
speci�c language models and word embedding none of them are used for retrieval purposes. We
discuss a few of these systems in Section 3.3.

3.2.1 Retrieval Models

Retrieval Method (1): Ho et al. (2019, 2020) were the �rst to focus on the retrieval of entity-centric
Qfacts. They introduced Qsearch, a system designed to model Qfacts associated with named enti-
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Figure 3.3: Overview of Qsearch from Ho et al. (2019).

ties. Each Qfact is represented as a triple (entity, quantity, context), where the quantity includes a
numerical value, a unit, and a value resolution (exact, approximate, upper/lower bound, interval).
The context is a bag-of-words describing the relation between the named entity and the quantity.
A bi-directional LSTM (Hochreiter and Schmidhuber, 1997) detects the relevant spans for Qfacts
from the text through semantic role labeling. Each token in the text is annotated with the roles En-
tity, Context, and Outside token.

Prior to semantic role labeling, quantity extraction is performed using the quantity extractor from
(Roy et al., 2015) and named entities are detected and disambiguated using AIDA (Ho�art et al.,
2011), which links named entities to the YAGO knowledge base (Suchanek et al., 2007). Figure 3.2
shows the semantic role-labeler, with word embeddings as word features and annotations for quan-
tity and named entity positions for quantity and entity-level features. The semantic role labeler is
trained using a semi-supervised approach. The training data for Qfacts are generated in three stages
and used as ground truth. First, quantities are identi�ed and extracted, followed by the detection
and disambiguation of named entities. Finally, Qfacts are generated with relation extraction (An-
geli et al., 2015) between quantities and named entities in a sentence. These generated Qfacts are
used to train the semantic role labeler, which replaces the relation extraction module.
After training, Qfacts from all the documents in the corpus are extracted and indexed for ranking.
During ranking, the query is processed to identify the entity, quantity, context, and numerical con-
dition. An example query for such a system is “Hybrid cars with a price under 35,000 Euros”, where
the entity is “Hybrid cars”, the quantity is “35,000 Euros”, the numerical condition is “less than”
and the context is any remaining token. The processed query is scored against the extracted facts
that match the entity and quantity types from the query. In the mentioned example, text snippets
that contain named entities with the type “car” and contain currencies as quantities are selected as
candidates. Either a probabilistic or embedding-based ranking of the query context against candi-
date Qfact contexts determines the �nal ranking The ranking mechanisms primarily di�er in their
approach to context matching: the probabilistic method employs a traditional approach by com-
paring bag-of-words representations, while the embedding-based ranking performs soft matching
between words with similar meanings.
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Figure 3.4: Visualization of the results from AnaSearch for example queries (Li et al., 2021).

Figure 3.3 gives an overview of the Qsearch architecture, where a corpus of documents is processed
to extract Qfacts and to store them in a database. The stored Qfacts are used in the Answer phase,
to answer queries with a numerical condition and speci�c entity type. The authors further provide
a demo (Ho et al., 2020) for interacting with their system but refuse to provide the source code or
their training data, making their approach di�cult to evaluate.
One downside of Qsearch is that components of the pipeline, such as semantic role labeling and
named entity extraction, are expensive and rely on scarcely available annotated data for quantities.
Moreover, this method is tailored towards named entities, which many quantity-centric queries may
not contain. Nonetheless, this is the only model that is comparable to our work. Unfortunately, the
authors neither provide their code, nor their training data. Multiple tedious e�orts were made to
implement their system from scratch, however, not only does the data generation system depend
on outdated and deprecated libraries but also the training and evaluation proved to be extremely
ine�cient in practice. In this thesis, we propose a computationally cheaper option by eliminating
the need for explicit entity detection or semantic role labeling or expensive data annotation.

Retrieval Method (2): AnaSearch (Li et al., 2021) is a demonstration paper for analytical query pro-
cessing on unstructured text. The output of analytical queries is structured into tables or visualized
with charts. AnaSearch consists of three parts: quantitative data extraction, query parsing and re-
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Figure 3.5: Sample tables responding to query “refractive index of �int glass”; image taken from Sarawagi and
Chakrabarti (2014).

trieval, and data visualization. An example of the output as a bar chart and line chart is shown in
Figure 3.4. Similar to Qsearch, AnaSearch performs Qfact extraction, where a given query is ranked
against the facts extracted from the corpus. The extraction method utilizes a constituency parsing
tree to produce triplets (related, value and unit, time). The related component includes informa-
tion about the quantity being measured and any entities in�uencing the value. The value is the
number in the text, along with its value resolution and corresponding unit. The time denotes when
the quantity assumes a speci�c value, enabling visualization of value changes over time.
Based on the extracted facts, AnaSearch supports two types of queries: entity-based queries and
quantity-based queries. An entity-based query primarily focuses on retrieving facts that match the
entities speci�ed in the query. A quantity-based query, similar to those in the Qsearch system, in-
cludes an additional time dimension. For example “Sales of Tesla Model S and BMW i8 in 2019”
is an entity-based query, with “Tesla Model S, BMW i8” as the entity condition and “2019” as the
time condition. “Sales” serves as the context. In contrast, the query “cars with sales over 5,000 in
April”, is a quantity-based query as it includes a quantity condition of “more than 5000”. In this
case, “cars” is the condition on entity type, and the month of “April” is a time constraint. Queries in
Figure 3.4 are both entity queries since none of them contains a numerical condition.
While matching quantities against a condition, the retrieved unit should be comparable and the
value should satisfy the quantity condition. Due to the temporal dimension, the retrieved facts
should also satisfy the temporal conditions. The matching Qfacts are scored based on the occur-
rences in the corpus and grouped based on entities or time to be visualized in charts or tables to
enhance the analysis experience.
Similar to Qsearch, AnaSearch focuses on Qfacts with a more strict de�nition of entity and quantity
relation and does not explore generic nouns and search terms. Additionally, in their demo system,
no evaluation of the performance or comparison with previous methods is mentioned. The focus is
mainly on innovative visualizations.

Retrieval Method (3): Banerjee et al. (2009) consider quantities as a class of named entities and in-
troduce Quantity Consensus Queries, where the answer is a quantity interval distilled from the quan-
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tities gather in many relevant text snippets. Their method focuses on scoring quantity intervals and
combining snippets of quantity and text information. Unlike our approach, their queries do not
contain numeric information. Quantity consensus queries express uncertainty about the answer
quantity, e.g., “driving time from Paris to Nice” or “battery life of Lenovo X30”, and they aim to
learn a reasonable distribution over the uncertain value. The distribution is estimated by aggregating
evidence in favor of candidate quantities from snippets or segments of text around the mentioned
entity that matches the unit speci�ed in the query. The output of the system is a consensus inter-
val, a tight range of quantities that has strong collective support from high-scoring snippets. The
authors de�ne a set of frequency-based and lexical-based features and rank intervals in snippets with
RankSVM (Joachims, 2002) and weighted majority votes.

Retrieval Method (4): Sarawagi and Chakrabarti (2014) describe an approach for �nding census
queries on tables. A quantity query has two parts: The �rst part is a description of the quantity
type, e.g., “distance”, “speed” or “emission”, and the second indicates an entity, e.g., “Pluto”, “Mi-
crosoft”, and “Apple”. To determine the distribution of a desired attribute for an entity, a set of
tables is retrieved that match the entity and quantity type. Figure 3.5 shows an example of tables
retrieved for the query “refractive index of �int glass”. A quantity extractor detects the unit and
values in the table snippet, from which a distribution over the target attribute of the query entity
is formulated. Although Sarawagi and Chakrabarti (2014) and Banerjee et al. (2009) rank quantity
information to generate value distributions, this is not their primary objective. Additionally, their
query language and output representation di�er signi�cantly from those used in retrieval systems.

Retrieval Method (5): Ho et al. (2021a) introduce QuTE, a method for automatically extracting
Qfacts from web tables. These facts are used to generate answers for quantity-�lter queries. There
is also a demo of their work available (Ho et al., 2021a,b). The quantity-�lter queries are similar to
Qsearch, where a numerical condition is imposed on a quantity related to an entity, e.g., “Skyscrap-
ers higher than 1000 feet”.
First, quantities are extracted and normalized using pattern-based extractors and rule-based normal-
ization. Quantities are then enriched with contextual information from tables through rules applied
to the HTML DOM tree. The pipeline begins with recognizing and normalizing quantities in the
table’s quantity-column and linking entities in the entity-columns to a knowledge base. This column
alignment produces a Qfact. Additional context from the surrounding table and statistics from ex-
ternal corpora are used to further enrich these facts. To �nd Qfacts relevant to a query, the database
of all facts is �rst �ltered based on the entity type and quantity values that match the numerical con-
dition. Finally, an embedding distance between the context of the query and Qfacts in the database
ranks the elements of the �nal set. Similar to Sarawagi and Chakrabarti (2014), this work focuses on
web tables and not unstructured text.
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3.2.2 Numerical Indicies

Before quantity ranking gained attention in the information retrieval community, database research
had already explored numerical indices. These indices are made speci�cally to support queries that
contain numerical restrictions (Agrawal and Srikant, 2003; Fontoura et al., 2007; Maiya et al., 2015)
and patent documents also mention them (Burrows, 1996; John K. Stockton, 2009; Stepanova et al.,
2023; Marcus Fontoura and Zien, 2004). However, the primary focus of these indices and patents
is not the contextual ranking of quantities in text, but rather the e�cient structuring and �ltering of
results based on strict numerical constraints. For example, with an equal constraint, only the rows in
the database that match the exact value will be returned. If no exact match exists, the result set will be
empty, as no proximity matching of nearby values is performed. This creates a hard constraint �lter
rather than a ranking system. Some patent documents introduce a numerical posting list (Burrows,
1996; John K. Stockton, 2009; Marcus Fontoura and Zien, 2004), where each list is associated with
a range of values and includes document identi�ers for those containing values within that range.
The generated posting lists are multi-layered and stored to answer queries based on a range of values.
Documents are returned if they fall within the posting lists containing the minimum, maximum,
and in-between values speci�ed in the query. The primary focus is purely on constraint queries in-
volving values, without considering the context or the units of the quantities. From the body of
work on numerical indices, we mention two index structures that take context information into ac-
count and are therefore more relevant to our work.

Retrieval Method (6): John K. Stockton (2009) focus on contextualizing numeric data by including
both a numeric value and an accompanying unit. The method includes a unit-based index construc-
tion, where an indexer extracts numeric data from a set of source documents and converts number-
unit pairs from natural text or tables into number-unit tokens. Additionally, standardization and
unit conversion are performed. Other metadata and keywords from documents are also stored in
an index with positional information, resulting in a more contextualized index structure than solely
numeric values. Utilizing such an index, the user can formulate queries that contain numerical con-
ditions and �lter results accordingly.

Retrieval Method (7): The work of Maiya et al. (2015) also uses a numerical index to answer queries
on measured information, in a framework called MQSEARCH. The framework is a facet-based nav-
igation system for measured quantities, measured properties, and the topics and themes with which
they are associated. Quantities are saved in an index structure as a 5-tuple of the form (sign, number,
error, scientific notation, units). The paper itself is mainly focused on the quantity extraction part,
and the details of facetted navigation or how the index structure is realized are not mentioned. It
appears that they rely on the Apache Solr built-in functionalities for this purpose. 7 The framework

7Solar, open source search platform: https://solr.apache.org/ (last accessed: 02.05.2024)
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Figure 3.6: Choosing “U/mL” from the dropdown list reveals the associated topics (e.g., “breast/prostate can-
cer”) and properties (e.g., “concentrations of penicillin”). Additionally, ranges can be de�ned (i.e.,
“0.001 to 10,000”). Figure is taken from Maiya et al. (2015)

is only evaluated on the task of quantity extraction on the random number of sentences from un-
classi�ed research reports from the U.S. Department of Defense, where the data is not published.
Figure 3.6 shows an example of their query structure, where the user has to �rst choose a unit of
measurement, to �lter for associate keywords and properties in the neighboring dropdown list. In
addition to the unit, a user can further de�ne desired ranges for values.

3.3 Embeddings, Language Models, and Quantity Understanding

As discussed in Chapter 2, language models and embedding techniques are fundamental to many
NLP tasks, including question answering and IR. However, quantities are underrepresented in typ-
ical textual corpora used for pre-training these models. Moreover, the main benchmark datasets for
evaluating these representations do not focus on quantity understanding. As a result, quantities are
often neglected and the numeracy abilities of these models are limited. In recent years, e�orts have
been made to create dedicated embeddings for speci�c tasks or token types, such as named entities
in text (Almasian et al., 2019; Cherry and Guo, 2015). These e�orts have also extended to the devel-
opment of quantity-aware language models and embeddings.
In this section, works that identi�ed the issues with numeracy in dense representations, through
probing tasks and domain-speci�c datasets, are discussed. Then, a number of contextualized and
non-contextualized embedding techniques that aim to circumvent these problems are introduced.
Table 3.3, shows a summary of the embedding methods described in this section. The �rst group are
the non-contextualized or static embeddings, the second group are contextualized models and the
last group are domain-speci�c language models. The last group di�ers from the rest as their main
focus is on training a corpus with more numerals instead of adapting the architecture. Spithourakis
and Riedel (2018) were the �rst to design a speci�c language modeling objective for numbers. Later,
NumGPT (Jin et al., 2021) uses the �nding from the static numerical embeddings in Jiang et al.
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Table 3.3: List contextualized and non-contextualized quantity-aware embeddings.
Model Name Method Summary contextualized

1. Sundararaman et al. (2020) DICE cosine similarity between word embeddings of two numbers should re�ect their distance on 7

the number line, de�ne a linear mapping between similarity and distance

2. Jiang et al. (2020) - aims to solve the OOV problem with prototypes, which are typical numbers chosen by a clustering 7

method, embedding a number is the weighted average the prototypes weighted based on similarity

3. Spithourakis and Riedel (2018) - RNN-based language model that predicts numbers di�erently, either by binning them 3

into �nite vocabulary, predicting digit by digit with an RNN, or mixture of Gaussians

4. Jin et al. (2021) NumGPT add an extra number embedding to GPT, that is the combination of mantissa and exponent 3

in scienti�c notation, the mantissa is computed with prototypes

5. Berg-Kirkpatrick and Spokoyny (2020) - introduce (1) masked number prediction for predicting a missing number and 3

(2) numerical anomaly detection for detecting an errorful number in a sentence

6. Spokoyny et al. (2022) GeMM mask numbers and unit during language modeling, called Masked Measurement Prediction (MMP) 3

7. Petrak et al. (2023) - arithmetic-base pre-training with contrastive learning to improve number representation with 3

the addition of inferable number prediction objective to improve numeracy sentence

8. Araci (2019) FinBERT BERT model trained on �nancial data 3

9. Loukas et al. (2022) FiNER either replaces numbers with the [NUM] token or sudo-token re�ecting their shape 3

(2020) to design a transformer-based language model capable of handling numbers. More recently,
masking quantity tokens, numbers, and units have shown improvements in the numeracy of lan-
guage models (Berg-Kirkpatrick and Spokoyny, 2020; Spokoyny et al., 2022).
Although we do not use numerical embeddings and language models to create our quantity-aware
retrieval models, covering related work in this area is important. First, studying the shortcomings
of these models helps us understand the limitations of current retrieval systems in handling quan-
tities. Second, e�orts in this direction o�er inspiration for integrating quantity understanding into
retrieval systems. To this end, we �rst start by looking at probing tasks and works that investigate the
shortcomings of embedding methods and language models when it comes to numerical data. Then
we look at a number of non-contextualized or static embedding methods for numbers and conclude
with a numerical language model or contextualized embeddings.

3.3.1 Investigating Numeracy and Probing Tasks

We begin by investigating the issues with prominent word embedding techniques for numerical rep-
resentations through a series of probing tasks. These tasks are designed to test whether an embed-
ding of a number is suitable for tasks involving numerical understanding. This is achieved either by
checking the representations independent of the surrounding context, i.e., whether it has a notion
of magnitude, or in the context of textual content, i.e., �lling in the blanks for common sense knowl-
edge. Table 3.4 shows an overview of the main works in this domain and the probing tasks studied in
the works. The probing tasks and the main �ndings of each work are organized in columns, among
which the work of Thawani et al. (2021) is more of a survey of possible probing tasks and does not
introduce a new one. Almost all papers point to the same conclusion that the popular tokeniza-
tion and training strategies for words do not extend well to numbers. There are also certain rules
of thumb for better numerical representations that are useful to create quantity-aware models. We
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Table 3.4: List of works investigating numeracy in embeddings and their main takeaway messages.
Citation Tasks Findings

1. Chen et al. (2019a) (1) predict a range of magnitude in text (1) RNN models better than a CNN for contextual embeddings
(2) detect exaggerated numbers in text (1) bi-directionality enhances performance

(3) minor distortions in values are hard to detect

2. Naik et al. (2019) contrastive test for magnitude and numeration: (1) approximate notion of magnitude is present but not a precise one
(1) One-vs-all (2) Strict contrastive (2) numeration is not captured in current embeddings
(3) Broad contrastive

3. Wallace et al. (2019) set of probing tasks for numeracy: (1) character-based models work better
(1) list maximum (2) embeddings work well for ranges in training but fail to extrapolate
(2) decoding (3) sub-word tokenization not suitable for numbers
(3) addition (4) capabilities are stable across various number types

(5) right padding keeps the digits in the correct positions

4. Zhang et al. (2020) given an object and attribute (1) multi-class classi�cation beats regression
predict the distribution of values (2) numerical representation has an impact on scale prediction
with either (1) regression, or (3) scienti�c representation with mantissa and exponent is superior
(2) multi-class classi�cation into buckets (4) contextualized models are better than non-contextualized ones

5. Lin et al. (2020a) commonsense probing through (1) language models do not preserve relationships between
language modeling objects and numbers during pre-training

(1) small perturbation in context changes the output

6. Thawani et al. (2021) (1) simple arithmetic (2) numeration (1) scienti�c notation is the most promising
(3) magnitude comparison (2) log scale works better than linear scale
(4) arithmetic world problems (3) character-level tokenization is better
(5) exact fact (6) measurement estimation

summarized these �ndings in Table 3.4.

Probing Task (1): Numeracy-600K (Chen et al., 2019a) was the �rst benchmark dataset provided
for testing models in their ability to predict the magnitude of a number at some speci�c position in
text. For example in the sentence “S&P 500 <.SPX> up 1.53 points at ___ after market open”. A
�nancial investor would know from the context that the blank should be �lled with quotes of the
index “S&P 500”, with a 4th-magnitude numeral, e.g., “1840”. The model with numeracy capabil-
ities should detect the target entity in a sentence, and understand the type of information to insert
into the blanks. The dataset is designed in a way that each numeral is separated into eight classes by
magnitude and a proposed model should predict a suitable range. The data is collected from 600K
market comments from Reuters, 8 hence the name of the dataset. In addition to the data, result of
testing seven di�erent architectures for contextualized word embeddings are reported in the study,
including CNN (Kim, 2014), GRU (Cho et al., 2014a), BiGRU, CRNN (Choi et al., 2017), CNN-
capsule (Sabour et al., 2017), GRU-capsule, and BiGRU-capsule (Wang et al., 2018). BiGRU and
GRU-capsule models were the best-performing ones. The best model’s reasoning ability is further
tested by multiplying the numerals in the text by di�erent distortion factors, where the model should
detect whether a numeral is correct, overstated or understated. One �nding of the paper is that if a
numeral is distorted by a large factor most models could easily recognize it, while minor distortions
were harder to detect. This dataset is used in most works mentioned later in this section to evaluate

8News website: https://www.reuters.com/ (last accessed 02.05.2024)
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for magnitude understanding of embeddings and language models.

Probing Tasks (2): The work of Naik et al. (2019) looks at the popular models at that time (2019),
namely, Skip-gram, GloVe, and FastText, where numbers make up less than 5% of the vocabulary. An
analysis framework is developed for testing if these non-contextualized embeddings capture magni-
tude (e.g., 3 < 4) and numeration (e.g., 3 = three). Since numbers follow a well-de�ned ordering,
independent of their textual context, this ordering should be preserved in the embedding space. To
this end, three categories of contrastive tests are proposed. A contrastive test for a property p is de-
�ned as a triple (x, x+, x−) such thatx is closer tox+ thanx− under p. Here, p is the tested property
of either magnitude or numeration, resulting in the following tests:

• One-vs-All: x− = {y|y ∈ X − x, y 6= x+} the model should �nd x closer to x+ than to all
x−, whereX is the list of numbers in the vocabulary. An example for magnitude is (3, 4, x),
such that x = {y|y ∈ X − {3}, y 6= 4} and the embedding of 4 should be closer to the
embedding of 3 than all other integers. For numeration, an example is (3, three, x), such
that x = {y|y ∈ Y, y 6= three}, where the embedding of three should have a minimum
distance in comparison other embeddings in the vocabulary.

• Strict Contrastive: Choose x− to be the second-closest to x after x+ under p. An example for
magnitude is (3, 4, 5), where 4 is closer to 3 than 5, and for numeration is (3, three, four).

• Broad Contrastive: x− is the furthest from x under property p. An example for magnitude is
(3, 4, 1000000), where 1000000 is the furthest integer from 3, and 4 is closest. For numera-
tion, an example is (3, three, billion), which is the same but with spelled-out numbers.

For all experiments, cosine similarity is used as the distance metric. By observing the results of the
three sets of tests under the magnitude property, the authors conclude that the models tend to work
well on Broad Contrastive task but perform poorly on One-vs-All and Strict Contrastive. This indi-
cates that all models capture an approximate notion of magnitude but not a precise one. A reason for
this might be the variation in context, where numbers with similar magnitude usually occur in sim-
ilar contexts. While the context information allows the embeddings to distinguish large-magnitude
shifts, it does not provide an actual understanding of scale. The results for the numeration tasks are
more disappointing, where all models except GloVe fail to signi�cantly beat the random baseline.

Probing Task (3): Later that year, Wallace et al. (2019) designed another set of probing tasks. Var-
ious embeddings, from traditional word embedding methods, such as, GloVe (Pennington et al.,
2014) to language model-based techniques, like ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2019a) were studied in this work. Additionally, they also introduce a character-level CNN and a
character-level LSTM, as character-level tokenization is better suited for numerical representation
in comparison to word-level tokenization or byte pair encodings. The authors get their inspiration
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Figure 3.7: Probing setup by Wallace et al. (2019). A pre-trained embedder is used for the probing models.
Probing tasks include �nding a list’s maximum, decoding a number, or adding two numbers. Nu-
merical values are represented as digits (“9”), �oats (“9.1”), or negatives (“-9”).

from the NAQANet model (Dua et al., 2019), which is described in Section 3.4. To answer numeri-
cal reasoning questions, the NAQANet model implicitly learns to perform binary comparison (e.g.,
“Which country is a bigger exporter, Brazil or Uruguay?”), greater than comparison (e.g., “Which
player had a touchdown longer than 20 yards?”), identi�cation of a list maximum (e.g., “How many
yards was the shortest �eld goal?”), and argmax relations (e.g., “Who kicked the longest �eld goal?”).
However, the authors suspect that the source of numerical information lies in the token embeddings,
i.e., the character-level convolutions and GloVe embeddings of the NAQANet model. Therefore,
the probing task is focused on the token embeddings.

In the list maximum task, given a list of embeddings for �ve numbers with values of similar magni-
tude, the model should correctly predict the index of the largest quantity. A span selection model,
an LSTM trained with negative log-likelihood, is trained for this task.

The decoding task probes for magnitude by regressing to a value given an embedding, e.g., given
the string “�ve” the model should regress to 5.0. Embedding of the word “�ve” is passed through a
multi-layer perceptron, which trained using a mean squared error loss to regress to the value 5.0.

The addition probing task �nds the sum of two numbers given the embedding of their values, using
a three-layer fully connected network, trained using MSE loss.

Figure 3.7 illustrates the architecture and an example for the three probing tasks, where the decoding
and addition regress to a certain value, while list maximum is more of a classi�cation task.

Ultimately, probing tasks show that CNNs are a particularly good prior, resulting in ELMo’s su-
perior numeracy compared to BERT. Additionally, character-based models perform slightly better
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Figure 3.8: Scalar probing from Zhang et al. (2020). The mass of “dog” is a distribution (gray histogram)
concentrated around 10-100kg. A linear model over a frozen encoder predicts the distribution in
orange using either cross-entropy or a regression loss; the image is taken from the respective paper.

than word-level or word-piece tokenizers. However, most embeddings perform reasonably well on
all probing tasks when the values fall within the ranges observed in the training set, but they struggle
to extrapolate to new values.

Probing Task (4): Zhang et al. (2020) investigate if the language models capture scalar magnitudes
of objects, through scalar probing. This task is close to common sense reasoning, such that given an
object, e.g.,“car”, and an attribute with continuous numeric values, e.g., “price”, the model should
predict possible values. Since there may not be a single correct value for each attribute, predictions
are a distribution of possible values. For this task, the dataset Distributions over Quantities (Elazar
et al., 2019) is used, consisting of empirical counts of scalar attribute values for more than 350K

nouns, adjectives, and verbs, collected from web data. To predict the scalar value for nouns, a prob-
ing layer is added on top of the embedding to either regress to a point in the distribution or predict
a bucket into which a value falls. An example of scalar probing is shown in Figure 3.8.
The results demonstrate that contextual word embeddings, such as BERT and ELMo, outperform
non-contextual ones like Word2Vec and GloVe. Additionally, representing numbers in scienti�c
notation during pre-training can enhance overall performance. The scienti�c notation is added to
a contextual model like BERT by a combination of an exponent and mantissa, for example, 314.1
is represented as 3141[EXP]2, where [EXP] is a new token added to the vocabulary. With this minor
adjustment, models more easily associate objects in a sentence directly with the magnitude expressed
in the exponent, ignoring the relatively insigni�cant mantissa.
We also experimented with adding scienti�c notation to the quantity-aware retrieval systems de-
scribed in Chapter 5. However, this approach proved detrimental in our experiments, signi�cantly
reducing performance. It is important to note that we did not incorporate scienti�c notation dur-
ing pre-training. Our models rely on pre-trained checkpoints for general-purpose retrieval, and we
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Figure 3.9: Figure from Lin et al. (2020a) show that language models fail to stay consistent under small per-
turbations. With an additional token the distribution shifts towards the wrong prediction.

introduced this notation only during �ne-tuning. This limited exposure may have been insu�cient
for the model to learn the correct representation.

Probing Task (5): Lin et al. (2020a) introduce a numerical common sense reasoning probing task as
well as an associated dataset. In the probing setup, a pre-trained language model aims to predict a
mask quantity value from the context based on common sense knowledge in its representation. To
create the dataset, the authors focus on only 12 number words, from zero to ten, and annotate train-
ing sentences based on them. Some examples from the dataset include “The world contains seven
continents” and “Water will freeze at zero degrees centigrade”, where common sense knowledge
about the world helps with the prediction of correct values. Interestingly, powerful transformer-
based language models perform poorly on this task, even after �ne-tuning with distant supervi-
sion. Moreover, the language models are brittle under a simple perturbation of inserting an adjective
near the masked number, e.g., changing “A car usually has [MASK] wheels.” to “A car usually has
[MASK] round wheels.” reduces the probability of the value being predicted. An example of such
behavior is given in Figure 3.9. The authors added adversarial examples by adding adjectives before
the noun involved in the numerical reasoning to accommodate these perturbations.

Another surprising observation was made by looking at the attention weight of the language models
when predicting numbers, e.g., by plotting the attention distribution of the sentence “A bird usually
has two legs” with respect to the word “two”. In this case, words that humans consider important
for predicting the numerical value, namely “birds” and “legs” have lower weights in comparison to
unrelated tokens. This suggests that these models do not preserve the relationship between subjec-
t/object and number words during pre-training.

Probing Task (6): Thawani et al. (2021) analyzed a myriad of representational choices made by 18
publications and are the �rst to de�ne a taxonomy for numeracy tasks. Drawing from cognitive
science, the authors organize numeracy tasks into two categories.

1. Granularity: indicating if the encoding is exact, e.g., “cows have four legs”, or approximate,
when a vague guess of the value is enough, e.g., “she is about 180 cm tall”.
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2. Units: indicating if the number is abstract and the raw numerical value is enough, e.g., “2 +

3 = 5” , or grounded by a speci�c unit, e.g., “5 apples”.

For tasks grounded by units, both numbers and words should be understood in the same semantic
space. Based on these two dimensions, the eight probing tasks are categorized as follows:

1. Simple Arithmetic: Tasks that involve mathematics, such as addition and subtraction over
numbers, which are often solved with masking and causal language models.

2. Numeration: Refers to mapping a string to its numeric value, e.g., string “10” to value “10.0”.
This is usually done by regressing from an embedding representation to a numeric value.

3. Magnitude Comparison: The ability to tell which number is larger, referring to argmax of a
list of numbers or binary classi�cation between two values.

4. Arithmetic Word Problems: The grounded version of arithmetics that is present in school
books, e.g., “Mary had two cookies. She gave one away. How many does she have left?”

5. Exact Facts: Adding common sense knowledge into embeddings, such as “cats have 4 legs”.

6. Measurement Estimation: The task of approximating measures of objects along certain di-
mensions, e.g., “the number of seeds in a watermelon” or the “weight of a telephone”.

7. Numerical Language Modeling: More of a setup than a task, numerical language modeling is
analogous to masked/causal language modeling for words. Some tasks can be framed as nu-
meric language modeling, e.g., “arithmetic (5+3=[MASK])” and “measurement estimation
(cats weigh [MASK] kg)”. However, they require di�erent evaluation setups and regression-
based metrics such as mean absolute error, root means squared error, or their log-scaled and
percentage variants.

8. Downstream Applications: Numeracy is used in various downstream tasks from detecting sar-
casm in tweets based on quantities (Dubey et al., 2019) to identifying claims in �nancial doc-
uments (Chen et al., 2020a), where improvements in the downstream application indicate
the improvement of the underlying representation.

In Table 3.5, the mentioned eight tasks are arranged into the two categories of Unit and Granularity.

After inspecting a variety of methods and probing tasks, a set of rules of thumb and recommenda-
tions are proposed:

• If the output prediction is a string then scienti�c notation is more promising than decimal
notation and character-level tokenization outperforms subword-level tokenization.
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Table 3.5: Tasks by Thawani et al. (2021) organized into four categories.
Abstract Grounded

Exact simple arithmetic: 2+3=5 arithmetic world problems: 2 hats + 2 hats = 4 hats
exact facts: lions have four legs

Approximate numeration: 2: ’2’ measurement estimation: lions weigh 200 Ibs
magnitude comparison: 6>4

• For real value representations, log scale is preferred over linear scale, and binning (dense cross-
entropy loss) works better than continuous value prediction (MAE loss).

• Design choices de�ne the trade-o�s between inductive biases and data-driven variance, by
targeting a broad range or narrow range of numbers to be represented, e.g., multi-class clas-
si�cation over a �xed number of bins in contrast to value embeddings with continuous and
unrestricted representations.

3.3.2 Non-Contextualized Representations

We start with embedding methods that non-contextualized. Contextualized embeddings are often
learned in combination with language modeling tasks, to encode the surrounding context, whereas
the non-contextualized ones focus on learning embeddings directly. The �rst two rows of Table 3.3
summarize the two methods discussed in this section.

Embedding (1): Deterministic, Independent of Corpus Embeddings (DICE) (Sundararaman et al.,
2020) aims to create embeddings for numbers, such that their cosine similarity re�ects the actual
distance on the number line. 9 The embedding should establish a correlation between the abso-
lute distance of two numbers and the cosine similarity of their embeddings, ensuring that one in-
creases monotonically with the other. To make the embedding contextualize for evaluation tasks,
a bi-LSTM with soft attention is used to predict a bucket for each number, using the Numeracy-
600K dataset (Chen et al., 2019a). The optimization objective of DICE enhances the performance
of word embeddings on numeracy and magnitude tasks as well as probing tasks like list maximum,
decoding, and addition.

Embedding (2): Due to the in�nite variety of numbers, their appearances in textual corpora are
extremely rare, leading to Out-Of-Vocabulary (OOV) representations for the majority. Jiang et al.
(2020) delve into the numerical statistics within existing corpora, highlighting that the limited vo-
cabulary size of traditional embedding methods contributes to the failure of these models. For ex-
ample, while 6.15 percent of all unique tokens in English Wikipedia are numbers, the GloVe em-
bedding, which is partially trained on Wikipedia, contains only 3.79 percent of them. To handle

9Number line is a line on which numbers are marked at intervals.
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Figure 3.10: Modeling quantities with a categorical distribution over a �xed vocabulary does not re�ect the
smoothness of the continuous distribution. Image is taken from Spithourakis and Riedel (2018).

the OOV problem, an embedding of a quantity is de�ned as a weighted average of the similarity to
prototype embeddings. Prototypes are typical numbers that are induced from the training set us-
ing self-organized mapping (Kohonen, 1998) or a Gaussian mixture model. Self-organized mapping
is a clustering method and in a Gaussian mixture, each distribution is like a cluster. Each cluster
centroid will be a prototype, which will have an embedding assigned to it. The embedding of a
number is then calculated as the weighted average of these prototype embeddings. These weights
are determined by a similarity function between the number and a prototype, such as the absolute
di�erence between the prototype and the number. Consequently, the in�nite number of embed-
dings for numbers is e�ectively condensed into a set of prede�ned prototypes, where the embedding
of each number is derived from its distance to these prototype embeddings. The proposed method
improves the performance of number-related intrinsic and extrinsic tasks. Nevertheless, these em-
beddings are learned with a skip-gram model and are not contextualized, e.g., “2019” as a “digit” and
“year” have the same representation.

3.3.3 Contextualized Representations

Contextualized word embeddings are often generated using language models. In this section, we re-
view related work in this area. Most methods focus on modifying the masked language modeling or
next-word prediction task into a number prediction task. This is typically done through regression,
digit prediction, or distribution prediction.
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Figure 3.11: The model architecture of NumGPT from Jin et al. (2021): (a) Shows the prototype-based em-
bedding to encode the mantissa and another embedding to encode the exponent. (b) The numeral
embedding and token embedding are fused together. (c) NumGPT has four heads. If the Selector
Head predicts a token, then the Token Head outputs a token. Otherwise, Mantissa Head and
Exponent Head output a number.

Embedding (3): The �rst work to focus on numerical language modeling is the work of Spithourakis
et al. (2016). Issues with language models arise when numerals are treated similarly to other words,
using categorical distributions that ignore the smoothness of continuous attributes. An example
of this problem is illustrated in Figure 3.10, where not only there are two distinct representations
for the value “2”, but also the majority of values is grouped under the unknown token “UNK”. The
authors explore various strategies for modeling quantities in an RNN-based language model, noting
that quantities need to be handled di�erently from textual tokens. Predicting numerical values is
done in three ways: softmax variants, a digit RNN model, and a mixture of Gaussians. The proposed
method improves on perplexity in clinical and scienti�c texts and is the basis for later work in text
completion on clinical text (Spithourakis et al., 2016). In the following, we describe the variants:
Softmax model: In this model, the assumption is that quantities come from a �nite vocabulary, and
dedicated out-of-vocabulary tokens for numbers are de�ned. The input token embedding for num-
bers is generated with character-based embeddings consisting of digits (0-9), the decimal point, and
an end-of-sequence character. A hierarchical softmax based on the token class (number or word)
predicts the next token and decouples quantities from words.
Digit RNN model: In this approach, a digit-by-digit prediction task is employed, estimating the
probability of a number based on the probabilities of its digits using an RNN for character-based
prediction. A key advantage of this method is its ability to handle an open vocabulary, thereby elim-
inating the need for unknown tokens.
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Figure 3.12: Overview of the model architecture from Berg-Kirkpatrick and Spokoyny (2020), comprising a
sentence representation X fed into the encoder with parameters λ, and an output distribution
across the real number line with parameters θ. A numerical embedding is added to enhance nu-
merical prediction; Image taken from Berg-Kirkpatrick and Spokoyny (2020).

Mixture of Gaussians model: The probability of a number in text is computed using a probability
density function over all real numbers, estimated via a mixture of Gaussians. However, since the
probability of a continuous random variable that equals an exact value is always zero, the authors
resort to using the probability mass function for a discrete approximation.

Embedding (4): NumGPT (Jin et al., 2021) integrates a speci�cally designed quantity representation
and loss function to the auto-regressive language model of GPT (Radford et al., 2018). Figure 3.11
illustrates the architecture of NumGPT. Inspired by previous work (Jiang et al., 2020; Sundarara-
man et al., 2020; Zhang et al., 2020), a hybrid embedding that captures scale as well as precision
is designed. Numbers are converted into their scienti�c notation, consisting of an exponent and
a mantissa. The embedding of a number is then the concatenation of the exponent and mantissa
embeddings. The exponent uses a �xed vocabulary ranging from −10 to 10 and for the mantissa,
the prototype approach from the DICE embeddings is adapted (Jiang et al., 2020; Sundararaman
et al., 2020). The language modeling objective of GPT is modi�ed to �rst predict whether a token is
textual or numerical. If a token is textual, the standard cross-entropy loss is computed. If the token
is a number, the cross-entropy loss is applied separately for the prediction of the mantissa and the
exponent. Figure 3.11 (b) shows how token and numeral embeddings are concatenated and com-
bined with positional embeddings. NumGPT is trained on Wikipedia articles and tested against the
base GPT architecture on a variety of synthetic tasks. The results show that a dedicated numerical
embedding can boost a language model’s performance on number comparison, magnitude under-
standing, and solving math world problems.

Embedding (5): Berg-Kirkpatrick and Spokoyny (2020) focus on contextualized number prediction,
where a real numeric value is predicted in a masked language modeling style. Two sets of experiments
are conducted: masked number prediction and numerical anomaly detection. In masked number
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Figure 3.13: An example for inference in the GeMM model, where the �xed operations used during unit con-
version are shown in yellow and di�erent components of model prediction in black; Image taken
from Spokoyny et al. (2022).

prediction, the goal is to predict the masked number token, and in numerical anomaly detection, the
model should detect if a speci�c number in the sentence is anomalous. In addition to the change
in the pre-training objective, the authors propose an architectural change in the embedding layer
of language models. Figure 3.12 shows the new construction and masked number prediction task,
where in addition to the token and positional embeddings, a numeric value embedding, eNUM , is
combined to learn a better representation for numbers. The construction of eNUM involves either
employing character-based RNNs on the scienti�c notation of the numbers (e.g., “d.ddde+d”) or
encoding solely the 10-base exponents, indicating the magnitude of the values. The new token em-
beddings are used in a bidirectional RNN or a transformer-based language model for training on
masked number prediction. The model’s output consists of parameters de�ning a value distribu-
tion based on the context of the sentence. Regarding the distribution type, the author conducted
experiments using a range of methods, including Log Laplace, �ow-transformed Laplace, discrete
latent exponent, and Gaussian mixture model.
The models are trained on a set of �nancial news articles and academic papers and evaluated on
number prediction with log mean absolute error and accuracy of exponent prediction and also for
anomaly detection. Based on the experiments, it is concluded that the transformer-based model out-
performs the RNN language model and that using the base-10 exponent embedding is superior to
character-based RNNs for number encoding.

Embedding (6): Spokoyny et al. (2022) extend the masked number prediction from Berg-Kirkpatrick
and Spokoyny (2020) to consider units, and introduce Masked Measurement Prediction (MMP),
where the model learns to reconstruct a number and a unit given a masked text. The model that is
proposed to perform MMP is named the Generative Masked Measurement model (GeMM) and is
shown with an example in Figure 3.13. GeMM emphasizes the importance of units in predicting
the correct number. For example, given the question “How long did Alex Honnold climb for?”
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a single number as an answer is meaningless, and both answers “100 meters” or “4 hours” could
be valid. Moreover, measurements carry intricate semantic meanings in�uenced by standards and
natural phenomena. Taking a text on rainfall as an example, units like “inches per year (in/y)” and
“meters per second (m/s)” share the dimension of velocity. However, the choice of “in/y” indicates
a focus on total regional rainfall, while “m/s” suggests an examination of rain droplet speed.
The proposed generative process samples a discrete dimension variable conditioned on the input sen-
tence, which is used to sample a discrete unit variable compatible with the dimension. For example,
conditioned on the predicted dimension of “velocity”, the GeMM model will output a distribution
over the units of “velocity” such as “miles per hour”, “meters per second”, and “inches per year”.
The dimension is either selected from a set of pre-de�ned units or treated as a latent vector, which is
learned during training. Separately, a value for the measure is predicted conditioned on the sentence
and the predicted unit.
GeMM is based on a transformer-based language model and is trained to predict a distribution over
values (log Laplace), aligning with the approach of Berg-Kirkpatrick and Spokoyny (2020). The
study demonstrates enhancements in both unit and number prediction through conditional gener-
ation, emphasizing the crucial role of units for improved numerical representation.

Embedding (7): Petrak et al. (2023) introduce another pre-training approach for enhancing the nu-
meracy of language models on various numeracy-dependent downstream tasks. In contrast to other
numerical language models discussed here, Petrak et al. (2023) aim for a pre-training paradigm that
does not change the architecture or require dedicated numerical embeddings. However, the study
focuses on sequence-to-sequence models such as T5 (Ra�el et al., 2020).
The proposed approach is called arithmetic-based pre-training and consists of a constructive loss
that combines subword-level and character-level tokenizations and a denoising objective called in-
ferable number prediction task, to improve the model’s capability of working with numbers. Infer-
able number prediction is inspired by previous work on domain adaptive pre-training (Gururangan
et al., 2020), where an additional pre-training step is used to bridge the gap between the vocabulary
of the original model and the new domain.
The contrastive learning utilizes the multiple negative ranking loss (Henderson et al., 2017) to im-
prove the representation of numbers. For example, the model should learn a similar representation
for the number “1108.89”, whether it is tokenized as characters (“[1, 0, 8, ., 8, 9]”) or sub-words
(“[10, 8, ., 89]”). If a number is common in the pretraining corpus, subword-based encoding may
provide more information. Otherwise, character-level tokenization could yield better insights. For
contrastive loss, all numbers in the batch are considered independently of the input sequences. Each
number is tokenized twice: once at the character level and once using subword-based tokenization.
Character-level tokenization serves as the anchor, while the subword-based tokenization of the same
number acts as the positive sample. All other numbers in the batch are treated as negative samples
for the anchor.

83



3 Related Work on Quantities

The inferable number prediction task is a variant of masked language modeling, in which two sen-
tences, one with a masked number and one without masking, are presented to the model and the
model should reconstruct the masked number using the context of both sentences. This input is
dependent on the downstream task, e.g., for table-to-text generation one sentence is the linearised
form of the table and the other is the description with a masked number.
After the arithmetic-based pre-training, the model is tested on reading comprehension and text-to-
table tasks and shows improvement over baselines.

3.3.4 Language Models in Finance

Similar to many domain-speci�c tasks, language models trained on general domain data are not suit-
able for �nancial settings, where the text contains a speci�c vocabulary and numbers.

Embedding (8): FinBERT (Araci, 2019) is a BERT-based language model for �nancial NLP tasks
and is mainly evaluated for sentiment analysis. To this end, the author introduces a new dataset,
TRC2-�nancial, consisting of �nancial news articles from Reuters. Domain-speci�c pre-training is
then done by additional �ne-tuning on the TRC2 dataset or training sentences from a sentiment
classi�cation dataset. However, the authors do not investigate the e�ect of pre-training for quanti-
ties in text or perform any numerical reasoning tasks.

Embedding (9): FiNER (Loukas et al., 2022) performs �nancial and numeric entity recognition
or XBRL (eXtensive Business Reporting Language) tagging in reports from publicly traded com-
panies. XBRL is an XML-based language for �nancial documents, where most tagged tokens are
numeric. It is mainly used in periodic �nancial reports in the US, UK, and EU and contains a larger
set of entity types in comparison to normally named entity recognition (6k in full XBRL, where 139
are considered by the authors). They provide a novel dataset from 10k annual and quarterly English
reports with 1.8M total sentences. Since the majority of tags contain numerical information, the
authors look deeper into the tokenization and the representation of numerical values in BERT. The
�nite vocabulary of BERT is insu�cient for numeric expressions, e.g., the BERT tokenizer splits
everything on punctuation, therefore, the token “9,323.0” is split into �ve subword units, [9, ##,
##323, ##., ##0]. This excessive fragmentation harms the performance of such models, as the prob-
ability of producing nonsensical sequences of labels increases. To overcome this shortcoming, the
authors propose two methods: BERT + [NUM] and BERT + [SHAPE].
In BERT + [NUM], numbers are detected using regular expression and replaced with the [NUM]
token, for a uniform representation. The [NUM] pseudo-token is learned during �ne-tuning and
avoids fragmentation of numerals.
BERT + [SHAPE] replaces numbers with pseudo-tokens representing the shape of a number, e.g.,
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“53.2” becomes “[XX.X]”, and “40,200.5” becomes “[XX,XXX.X]”. 214 tokens for di�erent mag-
nitudes are considered, and their representations are learned respectively during �ne-tuning.
The numeric pseudo-tokens improve upon the task of XBRL tagging in comparison to the vanilla
BERT model or FinBERT. The error analysis reveals that the model fails to fully comprehend highly
technical details, for example, it fails to distinguish between di�erent expense types. Moreover, tem-
poral information is another bottleneck and is often misclassi�ed.

After examining various numerical embeddings, one might wonder if they are suitable for retrieval
use cases. Non-contextual embeddings provide static representations, ignoring context information.
While such embeddings were used in older retrieval models, they are no longer ideal for document
or query representation.
Contextual models consider the surrounding context but come with their own set of issues. Typ-
ically, their training objectives are limited to predicting numbers or units, overlooking other tex-
tual elements. It is surprising that no study ensures that textual element representations remain
una�ected by numerical �ne-tuning. Almost all models require pre-training from scratch, but do
not share their pre-trained checkpoint or training code. 10 Except Berg-Kirkpatrick and Spokoyny
(2020) all other models consider numbers in isolation and disregard unit information. Although
Berg-Kirkpatrick and Spokoyny (2020) emphasize units, their training objective completely ignores
textual tokens and focuses only on a prede�ned set of units, limiting the model’s capabilities. In sum-
mary, while these methods are e�ective for speci�c domains and tasks, they are not directly suited
for IR settings.
Similar arguments apply to �nancial language models. FinBERT is limited to the �nancial domain,
whereas, in this thesis, we aim to create a general-purpose retrieval system. It is worth noting that we
experimented with the BERT+[SHAPE] representation for our quantity-aware models, but it did
not enhance performance and was subsequently disregarded.

3.4 Reading Comprehension and Numerical Reasoning

Another relevant domain for quantity understanding is question answering and numerical reason-
ing. Unlike embedding and representation techniques, the focus is no longer on tweaking the ca-
pabilities of embeddings on numerical probing tasks but more on a speci�c downstream task of
reasoning on a passage or table that contains quantities.
Question answering systems in this domain are typically not open-domain, meaning relevant pas-
sages or tables are provided without needing an initial retrieval stage. However, in some cases, the
model must answer based on the accumulated world knowledge encoded in its parameters. In real-
world scenarios, these systems are often paired with a retrieval component to �rst gather relevant

10Only Jin et al. (2021) provided their code upon request but the resource for training such a model from scratch is still
needed.
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passages from a large corpus. A reading comprehension or reasoning module then condenses that
information to answer the given questions.
Unlike quantity-aware retrieval, passage and table comprehension are more prominent in the liter-
ature, and due to the large number of works in this domain, the list presented here is by no means
comprehensive. Here, we discuss the methodology of a few selected works to provide an overview.
With recent advances in large language models 11 e�orts to create dedicated models for numerical
reading comprehension have decreased and the focus has shifted to solving such problems with
Chain-of-thought reasoning (Wei et al., 2022), Scrachpads (Nye et al., 2021) or equipping large lan-
guage models with calculators, tools or external interpreters (Gou et al., 2023; Drori et al., 2021).
The survey by Lu et al. (2023) provide a good overview of current research in this domain.
Table 3.6 contains a list of approaches discussed and the type of task they refer to. The numbering
is aligned with the methods in the text. First, we provide a brief history of this task and introduce
the datasets used in this domain. Then, we present an overview of the methods listed in Table 3.6.

Table 3.6: List of works investigating numerical reasoning for reading comprehension or entailment tasks.
Model Approach Task

1. Dua et al. (2019) output layer to support the four di�erent kinds of answers: reading
(1) question span (2) passage span (3) count (4) arithmetic expression comprehension

2. Ran et al. (2019) adds a reasoning module as a graph neural network: nodes are reading
numbers in text and edges are relations between them (>, <=) comprehension

3. Chen et al. (2020b) adds entities and their relations to numbers to NumNet graph reading
and question representation to graph reasoning comprehension

4. Chen et al. (2020c) language model reader to encode passages reading
LSTM-based programmer to generate reasoning programs comprehension

5. Geva et al. (2020) adding two-step pre-training with numerical data (12+2=14) reading
or textual data (passage+quersion+answer) generated with templates comprehension

6. Wei et al. (2022) reading
comprehension

7. Wang et al. (2024) generate a reasoning process by decomposing the input, using table & text
synthetic data for training comprehension

With the release of the DROP dataset (Dua et al., 2019) for numerical reading comprehension, nu-
merical reasoning, and understanding found their way into the question answering realm. The ques-
tions are designed to encourage systems to learn addition, subtraction, comparison of values, and
other arithmetic tasks. Another widely used dataset is NQuAD (Chen et al., 2021) with more than
70,000 questions, which takes a slightly di�erent approach to question generation. The dataset
provides �ne-grained multi-option questions from news articles, and a given system should predict

11It is worth noting that at the time of writing this thesis, the models speci�cally designed for numerical question
answering still perform better than state-of-art large language model models such as GPT-4 and Gemini (Team
et al., 2023; OpenAI et al., 2023).
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the correct option given the article as context. The answers do not need numerical reasoning or
arithmetic but rather an understanding of the relation of numbers to other entities. An example
of a question from NQuAD is “Driven by self-discipline, the �ve major banks new mortgage in-
terest rates are approaching nearly ___ %”, where the system is presented with four options to �ll
the blank, e.g., “(A) 0.04 (B) 1.986 (C) 2 (D) 2.5”. In this case, the system should comprehend the
paragraph as context and notice that (C) is the correct answer.
Although in this section we primarily focus on numerical reasoning through reading comprehen-
sion, numerical reasoning encompasses various tasks, such as solving math word problems. How-
ever, since these other tasks are not directly relevant to retrieval, we do not discuss them here. For
instance, solving arithmetic problems demonstrates numeracy capabilities but is not typically in-
tegrated with a retrieval system and cannot serve as a downstream application for our quantity-
aware retrieval models. Furthermore, our quantity-aware IR systems require an understanding of
scales and numerical comparisons rather than advanced mathematics. While reading comprehen-
sion datasets often include questions testing for scale understanding, this is not the case for many
other numerical reasoning datasets, making them less relevant to our overall task.
We brie�y describe these other tasks but do not present speci�c models used in these tasks. LILA (Mishra
et al., 2022a) and NumGLUE (Mishra et al., 2022b) have comprehensive benchmarks for numerical
reasoning, mainly for testing large language models. NumGLUE is a multi-task benchmark com-
prising 8 di�erent tasks, which can involve world problems, reasoning strategies like commonsense
reasoning or reading comprehension combined with simple arithmetic. The set of 8 tasks proposed
by NumGLUE are as follows:

• Commonsense + Arithmetic Reasoning: Questions that require word knowledge and simple
arithmetic, e.g., “How many faces do 10 dice have?”.

• Domain Specific + Arithmetic Reasoning: Questions that require knowledge in a speci�c do-
main and simple arithmetic, e.g., “How many units of hydrogen are required to produce 10
units of water?”.

• Commonsense + Quantitative Comparison: To answer these types of questions, the model
should have world knowledge and be able to perform numerical comparisons, e.g., “A golf
ball weighs 40g and a baseball weighs 150g. Which has a higher gravitational force?’.

• Arithmetic Word Problems: This task includes single- and multi-step word problems with ad-
dition, multiplication, subtraction, division, and other math topics, e.g., “John had 5 apples.
He gave 3 to Peter. How many apples does John have now?”.

• Fill-in-the-blanks Format In this case, the questions from Arithmetic Word Problems are con-
verted to �ll-in-the-blanks, e.g., “John had 5 apples. He gave 3 to Peter. John has ___ apples.”.
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• Reading Comprehension + Explicit Numerical Reasoning: This is a subset of the DROP dataset,
where the answers are numeric values.

• Reading Comprehension + Implicit Numerical Reasoning: Another subset of the DROP
dataset, where the answer is a span of text.

• Quantitative NLI : Problems that require simple arithmetic calculations to be performed to
accurately classify the relationship between the provided premise and the hypothesis, e.g.,
“Premise: John had 5 apples. He gave 3 apples to Peter. Hypothesis: John has 2 apples now.
Does the hypothesis entail, contradict, or is neutral to the premise?”.

They show that tasks involving numerical understanding are challenging for large language models,
obtaining poor scores not only in zero or few shot settings but also after �ne-tuning. Moreover,
numerical tasks that contain common sense knowledge are the hardest to solve for the models, with
better performance observed in answering span-based questions compared to numeric answers. Ad-
ditionally, the research points to the potential improvement in model performance on common
sense knowledge tasks through numerical information retrieval, emphasizing the broader relevance
of our work in this thesis beyond the IR domain. LILA, which is created by the same authors, is a
uni�ed mathematical reasoning benchmark that consists of 23 mathematical reasoning tasks. LILA
extends all 23 datasets to include a solution program in Python as opposed to only an answer, and in-
struction annotations. The programs serve as reasoning chains for each question in the benchmark.
As mentioned before, many of the math-related tasks are focused on solving equations or arithmetic
problems, which is not related to the topic of this thesis.

Reasoning (1): Alongside the DROP dataset (Dua et al., 2019), the NAQANet model was proposed
for neural reading comprehension with symbolic reasoning. NAQANet can answer three types of
questions: spans, counts, and addition or subtraction over numbers. Similar to a previous QANet
model (Yu et al., 2018), the architecture is composed of embedding, encoding, passage-question at-
tention, and output layers. The output layer is altered to support four di�erent kinds of answers:

• (1) Passage span and (2) question span type, predict an answer span in a passage or question.

• (3) Count accounts for counting as a multi-class classi�cation problem between 0 to 9.

• (4) Arithmetic expression locates multiple numbers in the passage and �nds the answer by
adding or subtracting them. To model this process, all numbers are extracted and a minus
one, plus one, or zero is multiplied by them before summing up to evaluate the �nal answer.

NAQANet outperforms models without a numerical reasoning module but still fails at complex
tasks. Moreover, as mentioned in Section 3.3.3, training NAQANet for question answering indi-
rectly encodes some numerical understanding of scale and comparison into token embeddings. We
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Figure 3.14: The model architecture of NumNet from Ran et al. (2019). The model consists of an encoding
module, a reasoning module, and a prediction module. The graph encodes the numerical rela-
tions and it is leveraged by a graph neural network for reasoning. For example, the edge from “6”
to “5” indicates that “6” is greater than “5”.

take advantage of this �nding in Chapter 5, when we propose task-speci�c �ne-tuning to enhance
quantity understanding in IR models.

Reasoning (2): NumNet (Ran et al., 2019) is another framework, which consists of an encoding
module, a reasoning module ,and a prediction module, where the encoding module and prediction
module are the same as the NAQANet. The main contribution of NumNet lies in the reasoning
module, which leverages a Numerical Graph Neural Network (NumGNN) between the encoding
and prediction modules to perform numerical reasoning. Nodes of the graph are numbers in ques-
tions and passages, and edges encode numerical relationships among numbers. There are two types
of relationship or edge types for greater than and lower than or equal. Reasoning is done by message
propagation between each node to its neighbors, using relation-speci�c transform matrices. An ex-
ample extraction of a given graph is visualized in Figure 3.14. With this numerically aware graph, the
authors manage to capture numerical conditions in text. One limitation of NumNet is its inability
to handle cases where an intermediate number must be derived (e.g., from an arithmetic operation),
as the prede�ned graph cannot accommodate new node additions. Additionally, the method does
not di�erentiate between various number types or their relationships to entities in the text. More-
over, the reasoning module ignores the question text, thereby omitting crucial information.

Reasoning (3): Shortly after the success of NumNet, QDGAT (Chen et al., 2020b) set out to �x
the shortcomings of NumNet. Two main issues were the lack of understanding of di�erent num-
ber types and their connections to entities, as well as the omission of question representation in
numerical reasoning. To address the �rst issue, they constructed a heterogeneous directed graph,
where nodes represent entities and various types of numbers, and edges represent di�erent types
of relationships. To tackle the second issue, a contextual encoding of the question is added to the
graph reasoning process to identify important numbers. QDGAT remains state-of-the-art to this
date, showcasing that the separation of quantity information from the textual content is somewhat
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Figure 3.15: Comparison reading comprehension methods, where NeRd is an instance of the neuro-symbolic
family. The components in grey boxes are the neural architectures. Specialized Modules: are usu-
ally pre-trained language models with specialized modules for each type of question. These mod-
els are more rigid and less scalable to new domains and cannot be extended to multi-step complex
reasoning; Neural Semantic Parser: apply semantic parsers to the structured representation of the
passage, which su�ers from a cascade of error. NeRd is domain-agnostic and easily adaptable. It
includes a reader, e.g., BERT, and a programmer, e.g., LSTM, to generate programs. Image taken
from Chen et al. (2020c).

necessary to comprehend complex quantity relationships in text. Even language models like GPT-4
are still struggling on this task (OpenAI et al., 2023).

Reasoning (4): Chen et al. (2020c) introduce a neuro-symbolic reader for numerical reasoning tasks
(NeRd). A passage is encoded by a reader module, which is a language model like BERT, and fed
into a programmer, e.g., LSTM, to generate a program for multi-step reasoning. The programmer
takes embeddings from the reader as input and then decodes a program as a sequence of tokens. The
output after execution of the generated program provides the answer to a question. They introduce
a domain-speci�c language that is used to interpret tokens generated by the programmer. The lan-
guage includes operators that perform arithmetics, counting, and sorting and also speci�c tokens
for selecting spans or numbers from the passage and question. Similarly Saha et al. (2022) also use
neuro-symbolic module networks (Gupta et al., 2020) to parse the query into a specialized program
and execute it step-wise over learnable reasoning modules. Since the program is a sequence of tokens
generated based on the context and the questions, the neuro-symbolic models are quite �exible in the
variety of questions they can solve. However, optimizing over the large space of possible solutions
is usually the main challenge of these models, which is often solved with some type of pruning or
distant supervision. Figure 3.15 compares the neuro-symbolic reasoning to other approaches, where
NumNet and NAQANet fall into the specialized modules category. The compositional nature of
neuro-symbolic models allows for more scalability, whereas for each new operation, a new dedicated
module has to be added to the specialized module models.
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Figure 3.16: Figure from Geva et al. (2020), showing the two pre-training strategies for GENBERT: (a) two
pre-training steps with synthetic numerical data (ND) and textual data (TD); (b) �ne-tuning the
model over either numerical reasoning datasets or reading comprehension.

Reasoning (5): Geva et al. (2020) take a di�erent approach, and instead of focusing on architectural
changes, they inject numerical reasoning into GENBERT by adding two additional pre-training
steps. In GENERT an answer can either be an extracted question and passage or generated from
a decoder. The wordpiece tokenization of BERT is modi�ed to digit tokenization for numbers.
Additionally, a random shift is introduced to the position embeddings to prevent over�tting on
short inputs by randomly shifting all position IDs by an integer.
The �rst pre-training step introduced by Geva et al. (2020) is on numerical data in the form of
mathematical operations, e.g., “43 − 4 + 11 = 50”. The type of data is easy to generate, since
it does not involve textual content. The authors claim that this type of data teaches the model to
compute the value of numbers from their tokens and to perform numerical operations.
The second step of pre-training is to automatically generate question and answer pairs, in order
to enhance the model’s ability to understand numerical reasoning expressed in natural language.
To this end, the authors generate templates following the approach of Hosseini et al. (2014) for
math word problems. The templates contain abstract tokens that can be replaced with entities and
numbers and are used to generate sentences, which are utilized to create questions based on them.
Figure 3.16 demonstrates the two pre-training steps. The model is then �ne-tuned on speci�c tasks of
reading comprehension or numerical reasoning. The study shows that the task-speci�c pre-training
enhances the model’s understanding of quantities.
We take a similar approach as Geva et al. (2020) in Chapter 5 and use template generation the create
synthetic data for �ne-tuning a quantity-aware retrieval system.
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Figure 3.17: An example of demonstrating the di�erence between normal prompting and chain-of-thought
prompting. Image is taken from Wei et al. (2022).

Figure 3.18: Example of input and target for addition with a scratchpad. The carry is recorded in the digit
following “C:”. Comments (marked by #) are added for clarity and are not part of the target.
Image is taken from Nye et al. (2021).

Reasoning (6): Chain-of-thought prompting (Wei et al., 2022) is an approach designed to align large
language models more closely with human thinking by breaking down complex problems into log-
ical, sequential steps. The proposed approach augments each exemplar in few-shot prompting with
a chain of thought for an associated answer. This approach enables large language models to de-
compose multi-step problems into intermediate steps and provides an interpretable insight into the
behavior of the model. The authors primarily concentrate on math word problems and demonstrate
that chain-of-thought prompting, when employed with 540B parameter language models, performs
comparably with task-speci�c �ne-tuned models. It is crucial to note that the language model needs
to be su�ciently large for these advantages to manifest. An example of the standard prompting is
changed into a more elaborate chain-of-thought is shown in Figure 3.17.

Scrachpads (Nye et al., 2021) introduced another technique similar to chain-of-thought prompting.
In both cases, intermediate reasoning steps are added to enhance performance. In this case, interme-
diate steps of an algorithm are encoded as text and the model is trained to emit them to a bu�er called
scratchpad. An example is shown in Figure 3.18 for the algorithmic induction task of learning long
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Figure 3.19: Illustration of ENCORE for a single example, consisting of four steps: 1. Retrieve question-
related evidence. 2. Locate the table heads of each value in the formula. 3. Decompose the
located formula into operators and operands. 4. Fine-tune the model with the input and the
generated output. Image is taken from Wang et al. (2024).

addition. To teach a model to add 29 to 57, the steps of the grade-school long addition algorithm
are written out explicitly.

Reasoning (7): Wang et al. (2024) aim to enhance the numerical reasoning in large language models
for questions answered on text and tables. Their study introduces ENCORE, which generates a
reasoning process decomposed from answers to avoid irrelevant evidence. The reasoning generation
is done in four steps, as shown in Figure 3.19. First, a retriever �nds the relevant evidence for the
given question. Each text paragraph and table column is concatenated with the question and is fed
to a binary classi�cation model to generate correlation con�dence. The top-k text paragraphs and
table columns with the highest correlation con�dence are chosen as evidence. The second step is
designed to reduce the di�culty of value and table understanding by changing the value format in
answers. The values in the answer are substituted by locating their respective headers in the table.
The third step is to decompose the answer to reduce the complexity of reasoning. The formula for
generating the answer is decomposed into operators and operands. The constructed formulas and
answers from the dataset are used as targets and the question and the retrieved evidence as input to
�ne-tune a sequence to sequence model.
Even with the reasoning process generated by ENCORE, the model could still struggle to learn how
to produce such processes because of the limit of the training data. To aid the model in learning to
generate the reasoning process, the authors synthesize questions, answers, and reasoning processes
based on di�erent templates, and then pre-train the model with all these data as the multi-task train-
ing. The synthetic data include data for:

• Table Location Prediction: Given the row and column headers of one cell, the model should
predict the value of this cell.
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• Table Calculation Prediction: Given the column and the calculation type, the model should
generate the correct operator and operands.

• Hierarchical Table Prediction: For better operand extraction for hierarchical table structure
with multi-level headers, the model should predict the name of the �rst level of each given
table header.

The study concludes that smaller-size language models, e.g., BARTlarge, �ne-tuned with the reason-
ing process of ENCORE and pre-trained on synthetic data, outperform reasoning with much larger
models, e.g., GPT-3.5-turbo. This is another successful instance of pre-training on tasks-speci�c
synthetic data that enhances numerical reasoning, similar to the work of Geva et al. (2020).

3.5 Numerical Relation Extraction

In this �nal section, we examine numerical relation extraction. In Chapter 4, we introduced a quan-
tity extractor and explored the relationship between quantities and other textual tokens. Conse-
quently, numerical relation extraction is loosely related to quantity extraction. The majority of mod-
els for relation extraction are rule-based and rely on syntactic or dependency parsing.
Numerical relation extraction explores the relationship between quantities and other textual argu-
ments. Relation extraction on its own is the task of detection and identi�cation of semantic relation-
ships between two or more arguments in a text, such as entities and attributes. A sub-�eld of relation
extraction focuses on quantities in the context of numerical relations between an entity and a quan-
tity. Relations can identify attributes of named entities, such as “height” or “weight” or describe
more general concepts such as “in�ation rate”. Unlike general relation extraction, which can heavily
bene�t from the addition of knowledge bases, certain types of quantities pose a challenge for this ap-
proach. Quantity and entity relations have a far broader context than entity-to-entity relations and
are loosely de�ned, e.g., the entity “Ei�el Tower” has many known relations in the knowledge base
for height and its attributes but quantities such as the number of “visitors per day” are not stored in
a knowledge base. Moreover, quantities can be expressed in terms of their relative value, e.g., “FTSE
100 closes down 82 points”, where the actual value is not mentioned, making the de�nition of a
relationship more di�cult. Most approaches in this domain focus on a rule-based system that �nds
patterns for keywords and phrases to extract the relations.

One of the �rst attempts in this domain is NumberRule and NumberTron (Madaan et al., 2016).
Both systems tend to extract a set of relations, where the second argument is a quantity with a given
unit, and the �rst argument is an entity. NumberRule, as the name implies, is a generic rule-based
and precision-focused system. It �rst creates a dependency parse of a sentence and applies named
entity recognition to identify candidates for identifying relations. Then, the shortest path in the
dependency parse tree between a candidate entity and a quantity de�nes a relation. However, Num-
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berRule is not a learning system and does not go beyond given keywords and a set of rules. Therefore,
the authors propose NumberTron, which utilizes a graphical model like MultiR (Ho�mann et al.,
2011) for relation extraction. NumberTron is trained using a set of keyword features (similar to the
keyword list from NumberRule) and number features (characterizing scale and number types). Due
to a lack of annotations, the system is trained with distant supervision and a perceptron-like training
algorithm on an unlabeled text corpus with seed patterns from a knowledge base.

The �rst open IE model speci�cally built to handle numerical relation extractions is BONIE (Saha
et al., 2017). BONIE uses bootstrapping to learn dependency patterns that express numerical re-
lations on a large corpus of unlabeled data. The algorithm starts the training phase with a set of
six manually selected dependency patterns, which are matched against a corpus to generate the seed
facts that are used for bootstrapping. BONIE �nds sentences that contain all words in a seed fact
and generates (sentence, fact) pairs. In addition to the matching of words, quantities between facts
and a sentence should match. In this context, two quantities match if they have the same unit and
only a small di�erence in value. A threshold de�nes the acceptable di�erence. From extracting the
sentences more patterns are generated and added to rules for the �nal extraction system.

Xart (Berrahou et al., 2017) is also a system for the extraction of quantitative data from text, modeled
as n-ary relations. They model each object as a symbolic argument and its features as quantitative
arguments associated with their attributes, i.e., the numerical value and measurement unit. The
model employs a domain ontology for speci�c concepts of a given application domain and a core
ontology that explains the relations in a global setting. Then, given a terminological dictionary of
concepts, Xart �nds quantitative relations for these domain-speci�c concepts in the text.
Entities and their quantitative properties are part of knowledge bases, but as mentioned previously,
not as well maintained as other relations. Ho et al. (2022) address the problem of missing quantity
information in knowledge bases such as Wikidata. They propose an iterative method, by �rst ex-
tracting relations using OpenIE and tagging named entities and quantities in text. The output of
the �rst stage is Qfacts, similar to the previous work of Ho et al. (2019). Guided by the knowledge
base schema and its entities, they generate a query to select candidate facts from the �rst stage for
which the context indicates the predicate of interest. For example, for the predicate “height”, lever-
aging the knowledge base schema, the type of predicates, such as “buildings” and required units of
quantities like “meter” are discovered. The Qfacts are �ltered to match the predicates and to have
reasonable values. After some consolidation steps, new facts are added to the knowledge base.

In this chapter, we reviewed related work on quantity extraction and retrieval, exploring domains
relevant to quantity understanding and representation in text. The standalone extractors discussed
in Section 3.1.1 serve as baselines for evaluating our quantity extractor proposed in Chapter 4. The
numerical relation extractors in Section 3.5 inspired the incorporation of contextual information,
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such as concepts, into our quantity extractor.
Additionally, we drew inspiration from numerical indices discussed in Section 3.2.2 to design one of
the two quantity-aware retrieval models detailed in Chapter 5. The second quantity-aware retrieval
model is based on recent �ndings in enhancing numerical reasoning with additional training steps
on synthetic data, as discussed in Section3.4.
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“Number is the ruler of forms and ideas, and the
cause of gods and demons.”

Pythagoras

The main theme of this thesis revolves around quantities and their importance in texts for convey-
ing factual and accurate information. Hence, it is important to establish a common de�nition and
vocabulary for what we refer to as quantities, and to consider di�erent types of representations. The
�rst thing that comes to mind is numeric values. Yet, not all numbers are valid quantities. Quantity
is an amount, value, or measurement that expresses a magnitude (how much), a multitude (how
many), or a duration (how long). Hence, not every numeric in a text falls into the mentioned cat-
egories. For example, the terms “Apollo 2”, “Roewe 550” or “ zip code 69120” contain numeric
values, but they do not represent a multitude or magnitude, and therefore, are not considered as
quantities in this thesis.
Quantities appear in di�erent forms with di�erent complexities, making their identi�cation a daunt-
ing task. Despite their signi�cance, a uni�ed de�nition and a comprehensive system for extracting
them are not yet at hand. As mentioned in Chapter 3, there is very limited research that directly
studies quantity extraction, and most of it focuses on physical and scienti�c domains. Typically,
quantity extraction serves as a pre-processing step for larger systems that handle retrieval or textual
entailment tasks. (Banerjee et al., 2009; Li et al., 2021; Maiya et al., 2015; Sarawagi and Chakrabarti,
2014). Consequently, the de�nition of quantity varies based on the downstream application, and
the performance of an extractor is not evaluated separately. As a result, when in need of a quantity
extractor, one has to resort to a number of open-source packages, which not only are limited in their
capabilities but also do not have a performance guarantee.
Due to this variety in de�nitions, the contextual information that is considered by each system is
reduced to the essentials and particular needs of the downstream task. Most systems limit their
de�nition to value and unit pairs, where the unit is part of the metric system (Foppiano et al.,
2019). Nonetheless, outside of scienti�c and physical domains, any noun phrase describing a value
or counting an item is a potential unit, e.g., in “5 bananas”, bananas is the unit of counting. More-
over, numbers and units alone provide limited information about the context in which the quantity
is mentioned. A more comprehensive representation of quantities should also include their behavior
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and associated concepts. For example, in the sentence “German DAX fell 2% and S&P 500 gained
more than 2%”, the value and unit pair 〈2, percentage〉 indicates two di�erent quantities in associ-
ation with two di�erent concepts, “German DAX” and “S&P 500”, with opposite behaviors, de-
creasing and increasing. These subtleties are not captured by simpli�ed models that only consider
values and units. In this chapter, we focus on a comprehensive de�nition of quantities and propose
a framework to extract them properly from unstructured text.

Contributions. In this chapter, we make the following contributions.

1. Introduce a uni�ed de�nition for the quantities in the text that goes beyond value and unit
pair and takes contextualized information into account.

2. Propose a Comprehensive Quantity Extraction (CQE) framework for extracting quantitative
information from sentences.

3. Introduce the �rst-ever benchmark dataset speci�cally designed for evaluating quantity ex-
traction systems for �nancial news articles.

4. Evaluate the performance of our proposed method against other extractors for the proposed
benchmark for detection and normalization of quantities in text.

5. Design a web-based interface for interactive exploration of quantities in a piece of text.

Structure. We �rst discuss how quantities are presented in text and examine their properties, which
leads to a further distinction between di�erent types. After establishing a common taxonomy and
de�nition, we present the CQE framework in Section 4.3. CQE can extract standardized values,
both physical and non-physical units, changes and trends of these values, and the concepts associated
with them. In Section 4.4, a new benchmark dataset for quantity extraction, named NewsQuant,
is introduced. NewsQuant is the �rst benchmark dataset for quantity extraction and is carefully
selected from a diverse set of news articles in the categories of economics, sports, technology, cars,
science, and companies. CQE is compared against other open-source extractors on the NewsQuant
dataset for a quantitative evaluation. Finally, in Section 4.5, we present an explorative web-interface
to inspect the output of CQE and view a summary of extracted quantities.

References. Parts of this chapter are based on the peer-reviewed publications:

Satya Almasian, Vivian Kazakova, Philip Göldner, and Michael Gertz. CQE: A Comprehensive
Quantity Extractor. In Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, December 6-10, 2023, pages 12845–12859. Association
for Computational Linguistics, 2023. URL https://aclanthology.org/2023.emnlp-main.793
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Satya Almasian, Alexander Kosnac, and Michael Gertz. QuantPlorer: Exploration of Quantities
in Text. In Advances in Information Retrieval - 46th European Conference on Information Re-
trieval, ECIR 2024, Glasgow, UK, March 24-28, 2024, Proceedings, Part V, volume 14612 of Lec-
ture Notes in Computer Science, pages 171–176. Springer, 2024b. URL https://doi.org/10.1007/

978-3-031-56069-9_13

4.1 Quantity Types Based on Appearance in Text

On the highest level of abstraction, a quantity appears either implicitly, e.g., “a few books”, or ex-
plicitly, e.g., “�ve books”.
Implicit quantities have no numeric values associated with them but rather the amount is indirectly
indicated through special keywords. We frequently refer to quantities in our speech by choosing
appropriate verbs and prepositions, such as “a”. Some languages like Arabic even have dedicated
conjugation for groups of two and another for three or more. These keywords or numerical words
are often language-dependent and an exact equivalent might not exist in all languages. Additionally,
the meanings of some keywords can change over time. An example of such a keyword is “myriad”,
which originally refers to ten thousand, but now loosely refers to a very large quantity. Consider the
following sentences:

• “I ate an apple.” refers to one apple.

• “I carried a few apples in a box.” refers to a small number of apples but more than one.

• “Sara bought a new pair of shoes.” refers to two items.

• “In my teenage years, I played in a band.” refers to the range of 12 to 19 years of age.

• “The vase is more than a century old.” refers to 100 years.

In all these sentences the amount associated with the quantity is inferred indirectly through certain
keywords and is usually a vague amount or range of values. Moreover, some attributes and adjec-
tives can represent implicit quantities related to an entity or concept. If we consider “Peter” as a
“tall” individual and talk about his height, the sentence “Peter is 1.4 meters” is odd and incorrect,
meaning that with “tallness” comes an inherent quality of a certain height that is implicitly de�ned.
Identifying these types of quantities and reasoning about their values falls in the area of linguistics,
which is, however, outside of the scope of this thesis.

On the other hand, the quantities that interest us are explicit quantities, which are indicated by either
a numeric or word form, allowing for the deduction of an exact amount or range from the mentions
in the text. Based on how a value is presented in the text, explicit quantities can occur in three forms:
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1. Word form: The value is spelled out using words. The word form of the number “120” is “one
hundred twenty”. Usually, numbers between zero to a hundred are spelled out. For example,
“the race has been suspended, since five horses su�ered fatal injuries”. Exceptions are cheques
and certain payment documents, where the amount has to be written in both word form and
numeric form.

2. Numeric form: The value is presented using digits and numerics. For example, “Lyft said it
would o�er 307,700,00 shares of its common stocks to the public”. This is the most common
format present in the text, where a value is represented by using combinations of ten number
symbols.

3. Mixed form: Combining a numeric with a word indicating magnitude or a multitude of the
value or a unit. For example, “Cambridge Analytica received nearly $6 million for services
provided to President Trump’s campaign.” Half of the value is in digit format and the rest in
word form.

Due to the variety of numeric types, pre�x, and su�x symbols, extraction of values in any format
is more intricate than one imagines. We discuss these di�culties in the upcoming sections. Despite
this general categorization, quantities can be further divided by their di�erent properties, such as
units and related concepts. To make such distinctions we require a de�nition of what we consider
a quantity and how it is related to other tokens in a document. In the following, we look at our
proposed quantity model and its properties.

4.2 Contextual Quantity Model

A quantity is an amount, measure, or number that can be associated with attributes such as magni-
tude, size, extent, volume, area, and other measurable characteristics. There exist various quantity
models in the literature, where each focuses on certain aspects relevant to a downstream task. Ri-
jgersberg et al. (2013) describe a quantity model for recording observations of the physical world
where each record should contain four essential elements:

1. Phenomenon (object or event being observed), e.g., “a table”

2. Quantity kind (an aspect of the phenomenon being measured such as length or weight), e.g.,
“the height of a table”

3. Unit of measurement, e.g., “meter”

4. Numerical value, e.g., “1.05”

Another system is introduced by Forbus (1993) to describe qualitative processes in which a quantity
is a changing parameter of the object in the study. Each quantity consists of two parts, an amount
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and a derivative, which are both numbers describing a change in a physical element. Roy et al. (2015)
brought the Forbus quantity model into a computer science setting, by focusing on three attributes:

1. Value: A numeric value or a range, e.g., “100” is a single value and “(100,102)” is a range
containing multiple values.

2. Units: A noun phrase that describes what the value is associated with, e.g., “hour”.

3. Change: How the parameter is changing, e.g., “the Apple stock increased more than 2%.”,
shows an increasing value of more than a certain amount.

The model by Roy et al. (2015) is called Quantity-Value representation and is denoted by the triplet
(u, v, c). Quantity-Value representation is used by Roy et al. (2015) for the task of quantity en-
tailment. Ho et al. (2019) extend the de�nition of Quantity-Value representation with an entity to
introduce quantity facts. A quantity fact is a triple of

1. Entity: The entity, to which the quantity is referring.

2. Quantity: A triplet q = (v, u, res) consisting of a numerical value v, a unit u, and a value
resolution (change) res ∈ {exact, approximate, upper bound, lower bound, interval}.

3. Context: A bag of words describing the relation between entity and quantity.

In this thesis, we combine all the de�nitions from above to introduce a contextualized quantity
representation, considering four important aspects of a quantity in a textual context. A contextual
quantity contains a value and unit pair and the context information around it. The de�nitions of
value, unit, and change are similar to the Quantity-Value model. In addition, we borrow the notion
of phenomenon from Rijgersberg et al. (2013) and rephrase it as concept. The concept is any object,
entity, or event that the value is referring to.
For all upcoming de�nitions and models, we assume that a collection of documents is given, where
each document consists of a sequence of sentences. There are also other segmentations of document
structure, for example into paragraphs, possible but for our quantity model we focus on sentences as
extraction units. We assume for the remainder of this chapter that co-references have been resolved
in a document, prior to quantity extraction and that sentence segmentation is performed. 1 Each
sentence consists of tokens and possibly quantities, where the tokens considered in this framework
are single words. For the remainder of the chapter, we use tokens and words interchangeably.

De�nition 4.1. (Contextualized Quantity Representation).
A sentence s = (T,Q) is a sequence of tokens T = (t1, ..., tl) and a sequence of quantities Q =

(q1, ..., qk), where each quantity q = (u, v) consists of a unit u and a numeric value v.

1Segmentation of domain-speci�c text has its own challenges, which we do not discuss here, see, e.g., (Aumiller et al.,
2021).
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A contextualized quantity is defined as the tuple cq := (q, ch, cn), consisting of quantity q, change
ch and concept related to the quantity cn.
The function Extract(s) = CQ defines a mapping from a sentence s to the list of contextual quan-
tities contained in the sentence CQi = (cq1, cq2, ..., cqo). If there are no quantities in the sentences,
thenExtract(s) = {}.

It should be emphasized that even though we formulate our de�nition with a sentence being the
smallest computational unit, the same idea can be extended to a paragraph or even an entire docu-
ment. It is worth noting that by extracting contextual quantities, we distinguish ourselves from all
previous work that considers only units and values for extraction.
In the following subsections, we look at each property of the contextualized quantity individually.

4.2.1 Values

A value is a real number or a range of values describing the actual amount, magnitude, multitude, or
duration of a property. A value is represented by either a real number v ∈ R or the lower and upper
bound of a range [vl, vu] with vl, vu ∈ R. For example, in the sentence “the car accelerates from 0 to
72 km/h”, the value is the range “v = [0, 72]”. In the sentence “the car accelerated to 72 km/h”, the
value is a single number “v = 72”. The value is the primary attribute that distinguishes quantities
from other tokens in the text, providing them with scale and enabling comparison. Furthermore,
a value cannot be mapped to a discrete space alone and it requires a continuous one. While it is
typically represented numerically, it can also be expressed in word form or a combination of both
methods.

De�nition 4.2. (Value).
A value v ∈ R is a single number or a pair of numbers (lower and upper bound) representing a range
v = {[vl, vu]|vl, vu ∈ R}. 2

As mentioned previously not all numbers are considered a valid value of a quantity. For a number
to be a part of a quantity, in addition to a value it should also have a unit.

• In the sentence “Apollo 7 took o�”, “7” has neither a unit nor explains an attribute.

• In the sentence “Apollo is 1.5 kilometers in diameter.”, “1.5” has “kilometers” as a unit and is
describing an attribute of “Apollo”.

Table 4.1 illustrates di�erent types of values typically present in the text. This list is by no means
exhaustive, and new varieties might occur with a combination of two or more types.
Rational numbers cover a wide range of types and representations. Technically word form, integers,

2Open and closed intervals can be converted to one another by changing the lower and upper bound. For simplicity,
we only consider closed intervals, where the lower and upper bound are included.
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Table 4.1: Quantity value types with their examples.

Value type Example Standardized

Word form hundred and thirty two 132.0

Mixed form 10k 10, 000.0

Ratio 10 out of 20 0.5

Fraction 1
2

0.5

Integers −22 −22.0

Natural numbers 12 12.0

Rational numbers 5.9 5.9

Exponential 1.2E + 4 12, 000.0

Range 50− 60 [50.0, 60.0]

Math equation 12 + 7− 1 18.0

natural, fractions, ratios, and exponentials are rational numbers with di�erent textual representa-
tions. However, for the sake of completeness, we assign them to a separate category. The di�erence
between integers and natural numbers is the sign, where integer values also include negative num-
bers. Word form values are the written-out version of a number, and mixture forms are a mix of
word tokens and numerics values. Values come in di�erent magnitudes, often denoted by pre�xes
or post-�xes, e.g., “200 million”. The di�erences in magnitudes and scales are mainly shown by sin-
gle characters in front or after a numeric in a mixture form representation. Fractions are sometimes
written out in the text as ratios, e.g., “1

5
” or “one-�fth”. Ratios in some contexts can also imply a

percentage (Roy et al., 2015), which makes the extraction of units di�cult. The sentence “1 out of
10 patients developed post-corona symptoms” implies that “10%” of the patients developed post-
corona symptoms.
Ranges denote a set of values between a lower and upper bound and are represented by the set of
two real numbers. Lower and upper bounds can be represented by any of the value types described
above, e.g., “2 to 4 million dollars” or “between 4.5 and 5.6”. In some unconventional cases, upper
bound comes �rst in the text, e.g., “between 4 and 2 pounds”.
Math equations cover a broad range of complex mathematical equations, which can be further cat-
egorized. However, complex equations that also infer a unit rarely occur outside of physics and
domain-speci�c text and are not the focus of this thesis. Hence, they are not considered by our
CQE framework. If a uni�ed representation for such equations is required, one could consider the
outcome of solving the equation as the value.
Other forms of value types worth mentioning are calendar dates, e.g., “28.02.1991”, and timestamps,
e.g., “11:25”. Date and time are often represented in many di�erent surface forms and sometimes
with a mixture of word forms and numerics. The di�erent scales and speci�c date arithmetics make
calendar time a challenging quantity in comparison to the rest. Our CQE framework does not con-
sider calendar time. The reason for this decision is twofold. Firstly, the correct normalization of
dates is often dependent on context that goes far beyond a single sentence and sometimes requires
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additional information about the time of document creation. For example, “yesterday” is highly de-
pendent on the date on which the text is written or read. Second, temporal expressions are ordinal
values based on a given contract, varied across time zones, which makes them inherently di�erent
from other quantities considered by CQE. Extraction and normalization of temporal expression is
best left to a system specialized for temporal tagging. There are various shared tasks and dedicated
datasets created for temporal tagging and a vast area of research for their exploration in dynamic
document collections (Hausner et al., 2020; Sousa et al., 2023b; UzZaman et al., 2013a; Verhagen
et al., 2007, 2010). The traditional high-precision systems for temporal tagging were rule-based
and rely on a set of hand-crafted features for the detection and normalization of temporal expres-
sions (Chang and Manning, 2013; Strötgen and Gertz, 2015; Manning et al., 2014; Strötgen and
Gertz, 2010). Recently, a number of fully supervised approaches have also aimed to solve the iden-
ti�cation of temporal tags (Almasian et al., 2021, 2022a; Aumiller et al., 2022; Chen et al., 2019b;
Lange et al., 2020; Laparra et al., 2018; Sousa et al., 2023a). However, the normalization still re-
mains rule-based in most systems.
It is also important to make the distinction between concrete date-time mentions and an indication
of durations. Durations like “6 seconds” or “5 hours” are not date-time mentions and do not require
speci�c time scales. In CQE, we consider durations like the rest of the quantities.

4.2.2 Units

A unit is a noun or a noun phrase de�ning the atomic unit of measure for a quantity. Di�erent
units measure di�erent physical properties and are used to communicate measurements among peo-
ple (Rijgersberg et al., 2013). When referring to units often the global metric system comes to mind,
which has a pre-de�ned set of units for weights and measurements, e.g., “2km” has the unit “kilo-
meter”. But the complexity of human language and how we reference quantities allows for almost
any noun phrase to take the role of a unit, e.g., “2 apples”, where apple is the unit. To account for
all variations we divide the units into three categories:

1. Scientific units (Si): This is the most common type, containing systems of weights and mea-
sures. The agreement on the practical use of units has been an ongoing debate for years, due
to the multitude of systems. However, the global standard is SI (Rijgersberg et al., 2013).
Hence, scienti�c units are divided into SI and non-SI units. SI, short for International Sys-
tem of Units, comprises seven base units, which are:

a) meter for distance

b) kilogram for mass

c) second for time

d) ampere for electric current

e) kelvin for temperature
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f) mole for amount of substance

g) candela for the intensity of light.

The other SI units, called SI-derived units, are then de�ned algebraically in terms of these base
units, by multiplication, division, and exponentiation of them (Thompson and Taylor, 2008;
Rijgersberg et al., 2013). For example, “Newton” is a derived unit (in the SI) de�ned as “kgm

s2
”.

Even though SI is the recommended practical system, there are still several non-SI units that
are commonly used, mainly due to historical and political reasons, as well as convenience.
For example, in some countries distance is measured in “inches”, “feet”, “yards”, and “miles”,
rather than “millimeters”, “meters”, and “kilometers”. The representation of units in a text
also di�ers, some units are represented by symbols and some by abbreviations. Moreover,
other metric systems, such as the Centimetre–Gram–Second (Tittmann, 1892), MKS system
of measurements (Nicholson, 1951) are still used, although no longer prominent.

2. Currency (Cu): A unit of money, such as the pound, dollar, euro, or even cryptocurrencies.
They are present in text in word form, e.g., “euro”, ISO 4217 currency code, e.g., “EUR”, or
currency sign, e.g., “¤”. All units of money can be converted to one another. The conversion
is time-dependent, due to the volatility of exchange rates each day, thus, representing all the
monetary values in a text with a single unit is challenging and outside of the scope of this study.
In this work, we treat all the monetary units as they are and leave the task of time-dependent
unit conversion to future work.

3. Noun Phrase (Np): Usually the noun or noun phrase after a numeric indicates the unit for
that number. Although the scienti�c units are also nouns, in this category we only consider
the nouns that are not in the pre-de�ned metric system. Quantities in this format are often
used to count the multitude of the objects the noun is referring to. For example, in sentences
“I ate 4 apples” and “1,500 people were attending the concert”, apples and people are not pre-
de�ned metrics but the objects that are being counted.

Scienti�c units and currencies can have many textual or symbolic surface forms, and their normal-
ization is a daunting task, e.g., “km”, “kilometer”, “kilometre” or “euro”, “EUR”, “€”. Occasion-
ally the surface forms or symbols of a unit coincide with other units, resulting in ambiguity that
can only be resolved by knowing the context, e.g., “She weighs 50 pounds” is a measure of weight
(“pound-mass”) and not a currency. Therefore, it is important for a quantity extractor to perform
context-dependent disambiguation.

At times the unit can be inferred implicitly from the context, although not present in the text. For
example, “She was born in 1991”, is referring to the “year” of 1991. These mentions are more promi-
nent for dates and times and are not considered in our quantity model, as explained above.
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De�nition 4.3. (Unit).
A unit u is a noun (single token) or a noun phrase (multi-token) defining the atomic unit of measure
for a quantity, belonging to either the set of scientific units Si, set of currenciesCu, or a set of relevant
noun phrasesNp, u ∈ U,U := Si ∪Np ∪ Cu.

A notable feature of scienti�c units is that, if correctly identi�ed, they can be converted to standard
base units, such as converting “1 mile” to “1609.344 meters”. This allows values with di�erent units
referring to the same attribute to be compared through unit conversion. Unit conversion involves
changing the value from one unit type to another using multiplicative conversion factors or addi-
tion and subtraction. The primary goal is to convert the value without altering the property being
measured, typically converting to SI base units or a more common unit. However, these conversions
are not always exact and may involve rounding.
Conversion is also possible for noun-based units but becomes more tedious, e.g., “Julia ate 4 apples
and 3 bananas” indicates that Julia ate 7 fruits. Detecting such generalizations requires extensive
knowledge of the taxonomy of all possible noun combinations and synonyms, which cannot be
achieved without a lexical database such as WordNet (Miller, 1998). Even with WordNet synsets,
the question of whether such conversions distort the meaning of the sentence or not persists. More-
over, some noun phrases contain numeric information, resulting in a composition of quantities and
units. For example, “2 Italian couples”, implies 4 people, or “Marry took 1h 30 minutes ride to get
here”, implies that Marry was 90 minutes on the way.
In our CQE framework, we focus solely on normalizing scienti�c units to their base SI units, with-
out considering conversions among scienti�c or noun-based units. This decision is based on the fact
that unit conversions are not always exact and can introduce unwanted errors in our experiments.
Additionally, converting all units to a base unit would eliminate important granularities speci�c
to certain domains. For instance, in a clinical setting, doses are often measured in small units like
“millilitre” and “milligram”. If unit conversion is required, several third-party libraries are available
that can be applied on top of CQE output. 3 On the other hand, noun-based conversions require
semantic reasoning and discovering hidden arithmetical laws among nouns, which is more related
to linguistic and language comprehension and is outside of the scope of this thesis.
Scienti�c units can be combined with multiple su�xes and pre�xes for naming very large or very
small numbers, such as “micro” or “mega”, representing a multiplication factor. The combination
of pre�x and unit is called a multiple of a unit (Rijgersberg et al., 2013), e.g., “megameter”. Before
the expansion of the pre�x list in 1960, double pre�xes were also allowed, such as “kilo mega”. Al-
though these units are rarely used, they are still present in some texts.

Sometimes units appear in combination as Compound units, which combine multiple units and
measurements. Compound units are expressed as multiplication, division, or power of other units

3An example of a pip package is https://pypi.org/project/unit-convert/. (last accessed: 02.05.2024).

106

https://pypi.org/project/unit-convert/.


4.2 Contextual Quantity Model

and can not be pre�xed. Examples in a scienti�c context are “speed”, which is de�ned using both
“distance” and “time”, and “density” as in “kilograms” divided by “meters cubed”. Noun-based units
can also be combined with scienti�c units, e.g., “rate of payment is £20/h” refers to “twenty pounds
per hour”. Surface forms of compound units are not always consistent and various separators are
used for the combination. Common separators include:

• / , e.g., “km/hour”

• per, e.g., “kilometer per hour”

• a, e.g., “pound a gallon”.

In rare cases, compound units may consist of more than two units, e.g., “mg/g/day”.

Detecting a unit in a given text might seem like an easy task but it is by no means trivial. Even with
scienti�c units where a speci�c list and taxonomy exist, the unfamiliarity of the writer with the rules
or typos makes the task di�cult. Some of the common problems are indicated as follows:

1. Symbols referring to a unit are not separated from the numerical quantity. In these cases, it
is not obvious if the symbol is the su�x of the value of the pre�x of the unit. For example,
“5kg” is ambiguous and can be interpreted as “5 kilogram” or “5000 gram”.

2. The slash (“/”) in compound units is sometimes confused with backslash “\”, or unnecessary
spacing is added, e.g., “kilometre per hour” is written as “km\h” or “km \ h”.

3. The superscripts “__2” and “__3”, used for square and cubic are oftentimes not well-formatted
in text and are written without superscription. As a result, they are confused with the value
of the quantity, e.g., “kg/m3”.

4. Not all writers respect the case sensitivity of units. There is a tradition that the �rst letter of
an unpre�xed unit symbol is capitalized if (and only if) the unit’s name comes from a proper
name. This is important because often the same letter represents di�erent units: e.g., “t”
stands for the “tonne” and “T” for the “tesla”.

5. Inconsistent writing of confusing units. For example, “per cent”, can be a “percent” or “for
each cent” (as a unit of currency).

6. Occasionally, dashes and spaces are inserted between units and values, e.g., “12-cent-a-share”
or “200sq m”. There are other unnecessary symbols that are often added between units and
values, e.g., “100-million”, “100_million”, or using multiple numbers with the same su�x,
e.g., “100, 200, and 300 million”.

107



4 Quantity Extraction

Table 4.2: Types of changes with examples and keywords.
Change Example keywords Representation

equal 2 exactly, just, equals, totalling, = =

approximate around 2 roughly, nearly, approximately, about, round about, nearly, circa, barely ∼
average, averaging, close, almost, estimate, some, even,∼ , =∼,≈

greater than more than 2 greater, great, above, larger, large, higher, high, over, above, exceeding >

exceed,least, well over,>,>=

less than less than 2 smaller, below, up to, under, no more than, beneath <

lower, low, beneath, fewer, few, less,<,<=

increasing increased to 2 add, advance, ascend, climb, gain, grow, increase, jump up

rally, raise, rise under, surge, up, upward
decreasing dropped to 2 collapse, decline, decrease, descend, dip, down, downward, shrink, spil, fall down

drop, �op, lose, plummet, plunge, sag, skid, slide, slump, stumble, tumble

7. Using unconventional abbreviations is another common issue, like “bn” for “billion” or “degf”
for “fahrenheit”. This is most prominent in medical texts, where the abbreviation of one doc-
tor might di�er from the next one. For example, in a single corpus “y”, “yr”, and “yo” are all
used as abbreviations for “years of age”.

8. Traditional unit abbreviations are still used and only add to the confusion. The letter “p” is
often used as an abbreviation for “per”, “sq” or “s” as an abbreviation for "square", and “cu”
or “c” as an abbreviation for “cubic” (Thompson and Taylor, 2008).

9. An o�cial symbol is hard to �nd, therefore the writer replaces it with a made-up one, or
due to format conversions between documents, the true symbol is lost, e.g., the symbol “£” is
converted to “PS” when HTML4 �les with a character encoding of ISO-8859-1 are converted
to UTF-8 character encoding.

10. The abbreviation of a unit is the same as the metric symbol of another. For example, “A” is
sometimes used in English for the “acre” instead of the “ampere”.

11. Multiple spelling of the same unit exists for American and British English, e.g., in American
English one writes “meter” and “liter” while the British variant is “metre” and “litre”.

4.2.3 Changes of Values

Changes are modi�ers of values, describing how a value is changing or imposing a bound on a value.
For example “above 35$” is describing a bound with values more than a certain threshold, whereas
“the temperature dropped 10 degrees“ shows a changing trend. Table 4.2 contains all changes con-
sidered in this work with examples and representations. Changes are often identi�ed using speci�c
keywords before the value, e.g., “more than 5 percent”. The keyword list in Table 4.2 is not com-
prehensive and any keyword that indicates a modi�cation to the quantity value can be part of this
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list. It is worth noting that our de�nition of change does not cover negation, e.g., “the shirt did not
cost 20 euros”, as we do not look into the semantics of the entire sentence to derive the changes.
We introduce six categories for change, where the �rst four are mainly describing the bounds for a
quantity and the last two are accounting for trends:

1. Equal (=): These are changes that indicate exact values, e.g., “the laptop costs 1000 euros”.

2. Approximate (∼): These are values that are not exact and are approximate, e.g., “the laptop
costs around 1000 euros”.

3. Greater than (>): These are bound-based changes that indicate a lower bound for a range of
values, e.g., “the laptop costs more than 10 euros”.

4. Less than (<): These are bound-based changes that indicate an upper bound for a range of
values, e.g., “the laptop costs less than 1000 euros”.

5. up: These are changes that indicate an increasing trend, where the values are rising, e.g., “DAX
increased by 2%”, in this case, the DAX value has an increase of 2 percent.

6. down: These are changes that indicate a decreasing trend, where the values are falling, e.g.,
“DAX fell 2%”, where DAX is losing its value.

De�nition 4.4. (Change).
A change describes the alteration in a value of a quantity and describes exact, approximation, more
than, less than conditions as well as upward and downward trends, with ch ∈ {=,∼, >,<, up, down}.

Greater than and less than bounds inherently describe a range of values, e.g., “the laptop costs less
than 1000 euros” shows the range of values between zero and 1000 that are valid. In such cases, we
consider a change independently of the value and store the contextualized quantity with v = 1000

and ch =′<′. The range of value can later be constructed using contextualized information.

4.2.4 Concepts

Concepts are objects or events that a quantity is referring to. A quantity mentioned in a text is either
measuring a property of an object, e.g., “height of the Ei�el Tower”, in which case the phenomenon
and the property are the concepts, or an event involving a quantity, e.g., “Google hired 100 people”,
in which case the actor is what the quantity is referring to. The detection of concepts is a tedious
task and requires concentration and language understanding even for a human to correctly identify
the related token in a given text. We make the following observations regarding concept detection:

• If the quantity is directly measuring a property of an object, then the concept is direct. In the
phrase “German DAX fell 2%” the quantity is measuring the worth of the “German DAX”.
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• Indirect concepts may be also present in a text, where a quantity is referring to an action made
by an entity. In the sentence “The BMW Group is investing a total of $200 million”, the
investment is being made by the “BMW Group”.

• Sometimes concepts are distributed in di�erent parts of a sentence, e.g., in the sentence “The
iPhone 11 has 64GB of storage.” both “iPhone 11” and the “storage” are the concepts.

• Occasionally, concepts are a mixture of direct and indirect references. For example, in the
sentence “The radiologist recommended limiting the patients’ exposure to no more than 0.5
R per day” the quantity refers to both the “exposure of patients” directly and the “radiologist
who prescribes it” indirectly.

• There are cases of shared concepts, where a single concept can refer to multiple quantities in
text. In the sentence “Screen sizes remain 5.4 inches, 6.1 inches and 6.7 inches for the mini,
standard and Pro Max models, respectively” all three quantities refer to “screen size”.

• A concept may or may not be present in the text. The sentence “2,000 people went to the
concert.” does not have a concept, “people” is the noun unit of the quantity, and there is
no external entity that “2,000 people” is referring to. In other words, the object being talked
about (subject of the sentence) is the quantity itself. Nevertheless, if we change the sentence
slightly to “ The capacity of the concert hall is 2,000 people”, now “2,000 people” is referring
to the concept “concert hall”.

• For correct identi�cation of unknown pronouns as concepts, co-reference resolution is re-
quired, e.g., “She has completed sprint triathlons including a 750 meter swim”, where “she”
is an unknown pronoun that can only be deduced from the previous context. In this study,
we assume that co-reference resolution has been done prior to quantity extraction and such
pronouns are already resolved.

De�nition 4.5. (Concept).
Given a sentence s containing a quantity q, the function Rel(s, q) maps the concept related to q, as a
set of tokens, cn = {t|t ∈ s ∧Rel(s, q) = t}. If no concept is present,Rel(s, q) = {}.

4.3 Comprehensive Quantity Extraction (CQE)

Di�erent elements of a contextual quantity appear in various formats in text, which is highly depen-
dent on the topic of the text and the writing style of the author. Nonetheless, with the knowledge
of di�erent formats, quantities often follow a set of recurring patterns that help distinguish them
with a set of rules.
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The goal of this section is to a design theExtract function in De�nition 4.1. There are many ways to
design theExtract function. However, due to the de�ned formatting of quantities most previous
works rely mainly on regular expressions (Alonso and Sellam, 2018; Banerjee et al., 2009; Maiya et al.,
2015). We follow a similar strategy but instead of relying on regular expressions, we take advantage
of linguistic properties and dependency parsing. We justify the use of a rule-based system against a
supervised learning solution as follows:

• One of the major motivations for using a rule-based approach is the lack of data for compre-
hensive quantity extraction. There are no datasets available for training or testing quantity
extraction systems. A few systems that rely on a supervised approach for unit and value ex-
traction do not provide their test or train datasets, and in some cases, even the statistics of the
data are unknown (Foppiano et al., 2019; Roy et al., 2015).

• Quantities often follow a speci�c linguistic pattern in the text, which is easily captured by a set
of rules. Moreover, a rule-based system provides transparency, high control over the output
of the model, and easy error analysis.

• In Chapter 5, contextualized quantities are used to create quantity-aware retrieval systems.
For this purpose, we require a system with high precision that does not need �ne-tuning to a
speci�c data distribution, which is often the case for supervised learning approaches. In case
of a rule-based system, any domain speci�c writing style can be captured in a set of new rules
and added to the system.

• At the time of conducting these experiments, large language models such as GPT-3 (Brown
et al., 2020) with few shot learning capabilities still make numerous mistakes on quantity
extraction; More details on this are provided in Section 4.4.

A comprehensive quantity extractor takes a sentence as input and produces a tuple of value, unit,
change, and concept for each quantity in the sentence. For example, the sentence “In Europe, Ger-
man DAX fell 0.4 pc, while the CAC40 in France gained 0.1” results in two quantities:

• 〈v = 0.4, u = percentage, ch = down, cn = {German,DAX}〉

• 〈v = 0.1, u = percentage, ch = up, cn = {CAC40, F rance}〉.

There are two reasons why we decided to create our own extractor and not rely on existing packages.
First, most extractors in the literature are not open-source, and the few open-source libraries that
exist lack any quality assurance. Due to the lack of a benchmark dataset for this task and evalua-
tion only through downstream performance, choosing the most e�ective extractor becomes merely
an exploratory task. This brings us to the second point. After testing the available libraries and
studying their shortcomings, we concluded that none can satisfy the conditions that we need for
our subsequent downstream application in Chapter 5. More details around this topic are provided
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Figure 4.1: Five stages of comprehensive quantity extraction with the example sentence of “DAX fell 0.4p.c.,
while CAC40 gained 0.1”.

in Section 4.4.1, where di�erent systems are compared. The mentioned reasons are also our motiva-
tion for proposing the �rst-ever quantity extraction benchmark dataset, named NewsQuant.

Our proposed system (CQE) performs the extraction in �ve stages, as described next. A visualization
of the entire pipeline is shown in Figure 4.1, and the steps are detailed in the following subsections.

4.3.1 Pre-processing

The input of CQE is a sentence. We assume sentence splitting has been performed prior to quantity
extraction. Pre-processing and text cleaning are done prior to dependency parsing and POS-tagging,
alleviating some of the style issues mentioned in previous sections. The main pre-processing steps
are as follows:

• Removal of unnecessary punctuation and spacing. Certain punctuation are common but
misplaced in units. Examples:

– “400 million-year-old”→ “400 million year-old”.

– “m.p.h” with removal of dots→ “mph”.

– “200sq m” has an unnecessary spacing between the unit tokens→ “200 sqm”

• Adding helper tokens. Some tokens are transformed to a standard format to �t the rules for
correct detection of values and units. Examples:

– “sub-500 sqm”, where sub is an unusual word for under→ “under 500 sqm”

– “US71.37”, where the unit is attached to the value, a space is required→ “US 71.37”

– “+0.2%”, where the plus sign indicates a upward trend→ “up 0.2%”

• Tagging date and time entities to be ignored. Since date and time values do not �t the de�ni-
tion of our quantities, they need to be detected and ignored. Examples:

– day of the year mentions, such as “12 Sep”

– year mentions, such as “She was born in 1991”
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• Removal of numeric values that do not �t the de�nition of a quantity, such as phone numbers
and zip codes. These values follow a general pattern and are easily recognized with regular
expressions. Examples:

– “205 Mathemtikon, Im Neuenheimer Feld, 69120”

– “+49 (0) 6221 / 54 - 14353“

4.3.2 Tokenization

We perform a custom task-speci�c word tokenization. As mentioned in Section 2.2.4, available word
tokenizers are focused on general domain text, and since numbers take up a small portion of most
corpora, little work has been done to customize tokenizers for quantities. Our tokenizer is aware of
separator patterns in values and units and avoids between-word splitting to keep the unit and value
as single tokens. For example, in the sentence “A beetle goes from 0 to 80 km/h in 8 seconds.”, a
normal tokenizer would split “km/h”→ “(km, /, h)” but we will keep the entire unit intact. Another
example is numerical tokens containing punctuation, e.g., “2.33E-3” or “110,000”, where naive
tokenization splits the values.

4.3.3 Value, Unit, and Change Detection

The tokenized text is matched against a set of rules based on a dependency parsing tree and POS-
tags. A set of 61 rules was created based on patterns observed in �nancial data, a small set of scienti�c
documents and medical doctoral letters and also by considering previous work by Maiya et al. (2015)
and Huang et al. (2017). The rules are designed to detect tokens in a sentence associated with val-
ue/unit pairs and change.

Value/unit pairs are often (1) numbers and nouns, (2) numbers and symbols, or (3) numbers and
adjectives that co-occur in various sentence structures:

1. Numbers and nouns, e.g., “400 people”, “55 square meter” and “30 Mbps”

2. Numbers and symbols, e.g., “1M¤” or “$100”

3. Number and adjectives, e.g., “2.7 million contract” or “600 people worldwide”

For ranges, the extraction of values becomes more complex, as lower and upper bounds need to be
identi�ed using relational keywords such as “from... to” or “between”, e.g., “between 5% and 6%”.
Occasionally the unit or part of the unit between the lower and upper bound is implicitly shared.
For example, in the phrase “between 15kHz and 17”, not only the unit but the scaling pre�x is shared
between the lower and upper bound, or in the phrase “between $62 and $68 per share” part of the
unit is mentioned explicitly (dollar sign) but per share is implied.
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Table 4.3: Extraction rules for value/unit pairs and changes and their structure.

Extraction Target Number of rules Example

change as noun, value as number, noun as unit 5 lower than 8.90 ksi
percentage of a noun 2 60% of workers
values with symbols 2 $62
value as number, noun as unit 4 2.4 Ghz
value without unit 1 thirteen
value as number, noun phrase as compound unit 8 14 �rst-team players
value as number, adjective as unit 3 90 day old
value as number, changes as dependent of the value 3 only 799
negative values 2 −1.7%
value as number, changes as verbs 2 fell by 25
values as number that share the same unit 1 $62 and $68 per share
numbers that are tagged as nouns 2 tens of thousands
value with post�x 2 7.2 billion
ranges that have “to” in between 5 $920 to $1730 a week
ranges that have “-” in between 3 5-10
range that have “between” or “from” 8 from 5.7% to 3.4%
implicit ranges 2 tens of thousands of students
fractions 2 three out of �ve
spelled out values 3 �ve hundred
one of a noun 1 one of the computers
Σ rules 61

Changes are often adjectives, e.g., “ about 600” or verbs, e.g., “ climbed 0.1%” that have a direct rela-
tion to a number and modify its value. Sometimes symbols before a number are also an indication of
a change, e.g., “∼ 10” describes an approximation. The list of changes considered in CQE is men-
tioned in the previous section in Table 4.2, along with the list of keywords. If one of those keywords
or symbols is occurring with dependency relation to a number the change is allocated to the quantity.

For an exhaustive list of all 61 rules, we refer the curious reader to our open-source library, where
a comprehensive list and examples are available. 4 As an overview, the statistics of number of rules,
grouped by the elements they extract are given in Table 4.3. There is no execution order for the
rules, as these are detection rule set and make no changes to the input. All the rules are applied
simultaneously to extract possible candidates that are further processed in later stages. We would
like to point out that this set is not complete and based on domain of the text, and the language,
new rules need to be added to the list. Moreover, inclusion of certain rules is subjective, e.g., in the
sentence “one of the computers”, it is debatable if “one computer” should be extracted or not.

4https://github.com/satya77/CQE (last accessed: 02.05.2024).
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Figure 4.2: Dependency parsing tree of “In Europe, German DAX fell 0.4 pc, while the CAC40 in France
gained 0.1.”.

To understand how an extraction is performed we look at the detection of value, unit, and change
in the sentence “In Europe, German DAX fell 0.4 pc, while the CAC40 in France gained 0.1.”. The
dependency parsing tree of this example is shown in Figure 4.2. Note that in this stage only the
surface forms (spans in the text associated with each attribute) are detected and normalization to a
standardized format is performed in later stages.

• Value and unit of the first quantity: The NOUN_NUM 5 rule detects the surface form of
the �rst value/unit pair (0.4, pc). According to this rule, the numeric value should have a
POS tag of NUM and be the immediate syntactic dependent of the unit token, which should
be a noun or proper noun. When such a pair is found, the respective tokens are marked as
value/unit pairs.

• Value and unit of the second quantity: The LONELY_NUM rule detects the value/unit pair
for the second quantity, namely (0.1, {}). If all other rules fail to identify a value/unit pair,
indicating the absence of an explicit unit for the quantity, this rule detects the number with
a POS-tag of NUM. In such cases, only a single value is detected without an accompanying
unit, and the unit is inferred in subsequent steps.

• Changes for both quantities: The QUANTMOD_DIRECT_NUM rule detects the change,
by looking at the verb or adjective directly before tokens with POS-tag of NUM. Here, “fell”
is a trigger word for a downward trend, and “gained” is a trigger word for an upward trend.

We thus have two extracted triplets with value, unit, and change.

• 〈v = 0.4, u = pc, ch = fell〉

• 〈v = 0.1, u = {}, ch = gained〉,

If no unit is detected for a quantity, its context is checked for the possibility of shared units. For
the quantity 〈v = 0.1, u = {}, ch = gained〉 ,“percentage” is the derived unit, although not
mentioned in the text.
Shared units often occur in similarly structured sub-clauses or after connector words such as “and”,
“while”, or “whereas”. Authors tend to omit writing out the second unit as it is implied by the

5The names of the rules are preserved from the repository rule set for easier matching.
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sentence structure. In our method, the similarity between two sub-clauses is computed using the
Levenshtein ratio between the structure of clauses. The structure is represented by POS-tags, e.g.,
“German DAX fell 0.4 pc”→ “JJ NNP VBD CD NN” and “the CAC40 in France gained 0.1”→“DT

NNP IN NNP VBD CD”. The similarity between two clauses increases as their POS-tags follow the same
order. By representing the structure as a sequence of POS-tags, the Levenshtein ratio can be used
to measure their similarity. This ratio ranges from 0 to 100, with higher values indicating greater
similarity. We infer a shared unit between two sub-clauses if their similarity is 100 or if connector
words are present and the ratio exceeds 60. As a result, the unitless quantity is assigned the unit of
the other sub-clause, e.g., in the mentioned example “{}” becomes “pc”.

As a �nal step in this stage, the candidate values are �ltered by logical rules to avoid false detection
of non-quantities, e.g., in “S&P 500”, 500 is not a quantity but part of the stock index name.

Further extraction examples

In this section, we provide two additional examples of value, unit, and change detection and describe
the logic behind a few other rules. If the reader �nds the single example from the previous section
su�cient, this section can be skipped.

“The Meged �eld has produced in the past about 1 million barrels of oil, but its last well was capped
due to technical problems that have not been resolved.”

• Value detection: The NUM_NUM rule detects the compound number of 1million, where
1, a number, is the child ofmillion, a noun, in the dependency tree.

• Unit detection: The NOUN_NUM_ADP_RIGHT_NOUN rule �nds a noun or a proper
noun with a number as a child in the dependency tree. If there are prepositions connected to
the candidate noun, they are also considered as part of the unit. In this case, the candidates
are: {million, barrels, of, oil}.

• Change detection: The QUANTMOD_DIRECT_NUM rule detects the relation between
the adjective “about” to the value 1, which is identi�ed as the change.

From the combination of all rules, the candidate tokens {about} for change, {1, million} for value
and {barrels, of, oil} for unit are extracted.

“They pay a $3500 a month mortgage and two kids in private school.”

• Value detection for the first quantity: NUM_SYMBOL matches a symbol followed by a num-
ber. In this case, $3500 is detected.
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• Unit detection for the first quantity: NOUN_NUM_QUANT �nds a number with a noun or
an adverb as its head in the dependency tree. Here, we have {mortgage, 3500, $, month},
where 3500 is the number and {mortgage, $, month} are the nouns.

• Unit detection for the first quantity: UNIT_FRAC_2 �nds compound units with “per”, “a”
or “an” in between. In case of our example, {$, month, a}.

• Value and unit detection for the second quantity: NOUN_NUM detects a noun that has a
number as a child. In case of our example, “{kids, two}”.

If no change keyword is found in a sentence, the default change is “equal”. The mentioned rules
contribute to the extraction of two candidate contextual quantities.

1. {$, 3500, a,month, mortgage}

2. {two, kids}

Note that if no tokens indicating a change are detected in this case, the system defaults to “equal” in
the normalization stage.

4.3.4 Concept Detection

Concepts are detected using a separate rule-set, containing �ve rules. Unlike the rules for value, unit
and change detection, these rules are ordered by priority. If one rule manages to detect a concept,
later rules are ignored. The rules are as followed:

1. Keywords, such as “for”, “of”, “at”, or “by” before or after a numeric value point to a potential
concept. In “with carbon levels at 1200 parts per million” the concept cn = {carbon, levels}
is hinted at by the keyword “at”. The nouns before and after such keywords are potential con-
cepts. These keywords usually indicate a relationship between a property and a quantity.

2. When a number appears as a leaf node in a dependency parsing tree, the entire subtree is
examined to identify the closest verb to the number. If no verb is found, the verb connected
to the ROOT node is chosen instead. This verb serves as a seed to determine the correct
concept, with the nominal subject of the verb being considered as a potential concept. In
the sentence “In Europe, German DAX fell 0.4 pc, while the CAC40 in France gained 0.1.”,
both “German DAX” and “CAC40 in France” are the nominal subjects of the closest verbs
to the number tokens in the text. In such cases, an entity or object is the nominal subject of
the sentence, which has a quantitative property and the sentence indicates this relationship.

3. Sometimes values occur in a relative clause that modi�es the nominal. In the sentence, “max-
imum investment per person, which is 50000”, the value is mentioned in the relative clause
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to the concept cn = {maximum, investment, per, person}. In such a case, the noun
phrase before the relative clause is the concept, since the relative clause describes it. These
concepts occur when a relative clause to an object or entity describes one of its quantitative
properties.

4. If the numerical value in a sentence is not associated with the nominal of the sentence, then it
is mostly likely related to the object of the sentence. Therefore, the direct object of the verb is
also a candidate concept, e.g., “She gave me a raise of $1k”, where “raise” is the direct object of
the verb. In this case, the value does not describe the person or object performing the action;
instead, it pertains to the object upon which the action is performed. This structure is usually
present in a passive sentence, which is less frequent and is, therefore, lower in the priority list
of extraction rules.

5. Finally, if a concept is not found in the previous steps, and there is a single noun in the sen-
tence, the noun is tagged as the concept, e.g., “a beetle that can go from 0 to 80 km/h in about
8 seconds.” the concept is cn = {beetle}. Although this step can introduce unwanted errors
in the concept extraction, we decided to keep it for a more recall-oriented approach. In our
experiments, keeping such nouns increases the recall signi�cantly.

From the list of candidate tokens for concepts stopwords are removed, e.g., “CAC40 in France”
results in cn = {CAC40, F rance}.

4.3.5 Normalization and Standardization

The �nal stage is the normalization of units and changes and standardization of values.

Normalization of Units: The units dictionary is a set of 557 units, their surface forms and sym-
bols gathered from (1) the dictionary of units in Quantulum3 library, (2) a dictionary provided by
Uni�ed Code for Units of Measure (Lefrançois and Zimmermann, 2018), and (3) a list of units
from Wikipedia. 6 Other units were added as encountered in speci�c medical, �nancial, and sports
domains. For the complete list, we refer the reader to the open-source repository of our project. Al-
though this list is not comprehensive, if a user encounters a new unit, it can easily be extended by
adding a new entry to the dictionary. Without further changes to other steps, the normalized form
is then extracted. An example of an entry in this dictionary for “euro” is:

{"euro":
"entity": "currency",
"surfaces": ["Euro", "Euros", "euro", "euros"],
"symbols": ["EUR", "eur",€]}

6List of units in Wikipedia: https://en.wikipedia.org/wiki/Template:Convert/list_of_units (last accessed:
02.05.2024).
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Each entry has three attributes.

1. Surfaces refers to the possible textual surface forms of the unit.

2. Symbols contains a set of symbols assigned to the unit.

3. The entity attribute organizes the units into 53 classes, e.g., “ratio”, “angle”, “length”, “mass”,
and “volume”. These classes categorize the units into a hierarchy and de�ne the type of prop-
erty they measure. This attribute can be used to group quantities of the same type, an option
we explore in Chapter 5 for automatic data generation.

The candidate tokens detected (from the previous step) for a unit are normalized by matching against
the di�erent surface forms and symbols in the dictionary. The normalized form is the key of the dic-
tionary and is added to the output, e.g., “euro” in the example above. Another example is in the
phrase “12cm”, the surface form “cm” results in the normalized unit of “centimetre”. The normal-
ization makes the comparison of units with various representations easier. Note that conversions
between metric units are not supported. For example, “centimetre” is kept as the �nal representa-
tion and not converted to “metre”.

If a detected surface form is shared across multiple units, the unit is ambiguous and requires further
normalization based on the context. For example, “pound” is a surface form for both the currency
of Great Britain and a unit of mass, or “B” can refer to both “byte” or “bel”. The distinction be-
tween the di�erent units is only possible based on the context and recognition of the type of object
the quantity is referring to. Since language models are great at capturing contextual information,
for this purpose, we train a BERT-based classi�er (Devlin et al., 2019b). Basically, a BERT model is
used to create an embedding of the input sentence and the embedding of the [CLS] token is fed into
a linear layer for binary classi�cation between the two ambiguous units. There are 18 ambiguous
surface forms in our unit dictionary, and for each, a separate classi�er is trained that allows us to dis-
tinguish among units based on the context. If an ambiguous surface form is detected by the system,
the relevant classi�er is used to �nd the correct normalized unit, e.g., one classi�er separates “byte”
and “bel” and one separates “pound-currency” and “pound-mass”.

Compound units, where a unit is a combination of two or more independent units, are also detected
and normalized independently. For example, “kV/cm” results in “kilovolt per centimetre”, where
“kV” and “cm” are normalized based on separate dictionary entries. Recognizing “kV” and “cm” as
separate tokens relies on our custom tokenization described in the previous section.
If the candidate span of tokens does not match a unit in the dictionary, it is tagged as a noun-based
unit and lemmatized, e.g., “10 students” gives u = student. The lemmatized form is considered as
the normalized unit for a noun-based unit. In some cases, the adjective before a noun is also part of
the unit, e.g., “two residential suites” results in u = residential suite. Noun-based units include
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non-conventional units and are mainly ignored by the previous quantity extraction systems.

Standardization of Values: The value dictionary contains the necessary information to standardize
values to real numbers. More speci�cally, it contains the following information:

• Pre�xes and su�xes of scales that appear before or after a value, e.g., “B: billion” or “n: nano”.

• Spelled out numbers in the textual format up to a hundred, e.g., “forty-two: 42”.

• Fractions in textual format, e.g., “half: 1/2”.

• Scienti�c exponents in textual format and encodings, e.g., “102: 100”.

Moreover, scienti�c notations with exponent and mantissa are also recognized with regular expres-
sions and converted to decimal values, e.g.,“2.3E2” is converted to v = 23”.

Normalization of Changes: Various trigger words or symbols for bounds and trends are managed
in the changes dictionary (refer to Table 4.2). The candidate tokens for change are mapped to one of
the allowed categories based on the trigger words. In the sentence “Apple company earnings exceed
1 billion euros for the second quarter.”, the trigger word “exceeds” points to the bound-based con-
dition of more than, “>”.

4.4 Evaluation

As already mentioned in the introduction of this chapter, one of the main challenges in �nding
a suitable quantity extractor is the lack of a benchmark dataset and standalone evaluation frame-
work for such a system. To this end, we create the �rst comprehensive evaluation dataset from �-
nancial news articles and perform a detailed comparison with other quantity extractors that have
a functioning code base. CQE is compared against Illinois Quantifier (Roy et al., 2015) (abbrevi-
ated to IllQ), Quantulum3 (Q3) 7, Recognizers-Text (R-Txt) (Huang et al., 2017), Gorbid-quantities
(Grbd) (Foppiano et al., 2019), and GPT-3 with few-shot learning (Brown et al., 2020). From here
on, the abbreviations are used to refer to the respective system. Before describing our novel bench-
mark dataset, we �rst compare the models based on their functionality. For a quantitative compar-
ison, the models are compared on precision, recall, and F1-score for quantity extraction. The unit
disambiguation module is evaluated separately, on a custom-made dataset against the only other
extractor capable of unit disambiguation (Q3). The CQE package can be accessed under the url:
https://github.com/satya77/CQE and our evaluation scripts and the NewsQuant dataset are avail-
able at: https://github.com/satya77/CQE_Evaluation.

7Quantulum3 package: https://github.com/nielstron/quantulum3 (last accessed: 02.05.2024)
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Table 4.4: Comparison of functionality for �ve extractors.

Feature Example CQE IllQ R-Txt Q3 Grbd

Value 5k euros (5k) 3 3 3 3 3

Standardization 5k euros (5000) 3 3 3 3 7

Negative Values −5 C (−5) 3 7 3 3 3

Fractions 1/3 of the population (0.33) 3 7 3 3 3

Range 40-60 km/h (40-60) 3 7 7 3 3

Non-quantities iPhone 11 (-) 3 7 7 7 3

Scienti�c Notation 1.9× 102 (190) 3 7 7 3 7

Unit 1mm (mm) 3 3 3 3 3

Unit normalization 1mm (millimetre) 3 7 3 3 7

Unit disambiguation 10 pound (sterling or mass?) 3 7 7 3 7

Noun Units 200 people (people) 3 3 7 7 3

Shared Units about 8 or $9 (both dollar) 3 7 7 3 3

Change more than 100 (>) 3 3 7 7 7

Trends DAX fell 2% (down) 3 7 7 7 7

Concept AAPL rose 2% (AAPL) 3 7 7 7 7

4.4.1 Comparison of Functionality

Since quantity extractors are developed as a medium to support a certain downstream application,
often on a speci�c domain of data, these models are also limited in their capability. A trend visible
in all systems is a focus on narrow domains or limited types of quantities. With CQE, the aim is to
overcome such limitations and have a system that combines the strength of available extractors.
Table 4.4 compares the functionality of available systems in terms of di�erent types of values, units
and changes, as well as normalization techniques. These functionalities were determined by study-
ing the systems mentioned in the table and also quantities in �nancial documents and are not com-
prehensive. Some of the key observations are as follows:

• IllQ is the only baseline capable of detecting changes in values, but it is limited and does not
account for upward or downward trends. It performs partial normalization, focusing only on
currencies and neglecting scienti�c units. Additionally, IllQ cannot detect fractional values
and ranges.

• After our approach (CQE), Q3 has the most functionality and is the only model that correctly
detects ranges and shared units and performs unit disambiguation. Yet, Q3 disregards noun-
based units and only focuses on the units that are part of its internal dictionary. Although
Q3 is capable of detecting a wide range of value types, it still makes incorrect detections of
non-quantitative values, confusing entity names and postal codes with quantities.

• R-Txt has dedicated models for certain quantity types, which gives rise to good performance
for those speci�c types. More speci�cally, R-Txt has models for currencies, dimension, tem-
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perature, and age, but fails to detect other types of quantities in the text. Moreover, it cannot
distinguish automatically between the types and the model has to be chosen beforehand, i.e.,
to detect currencies the currency model needs to be activated, and for dimensions, the dimen-
sion model. In order to detect all possible quantities, all four models need to be applied to a
piece of text, which not only adds computational overhead but also creates ambiguity in cases
where multiple models detect the same quantity but with di�erent types.

• Grbd’s major shortcoming is the lack of value standardization, where fractions such as “1/3”
and scaled values like “2 billion” are not standardized. The system is limited to scienti�c units,
and unit normalization works di�erently than other systems. Their de�nition of unit normal-
ization is conversion of scienti�c units to the base SI unit, and scaling of the values accordingly.
Furthermore, Grbd fails to detect scienti�c notations and cannot disambiguate between units
with similar surface forms.

CQE aims to address the shortcomings of the mentioned models and is the only model capable of
identifying concepts and trends.
GPT-3 has a lot of variability in the output and does not provide concrete and stable functionality
like the models discussed in this section. Therefore, it is not considered in this comparison.

4.4.2 Datasets

For evaluation purposes and training of the disambiguation classi�ers in our research, two datasets
were created. In the following subsections, the data collection and annotation strategies are discussed
along with the statistics of each dataset.

4.4.2.1 NewsQuant Dataset

For a quantitative comparison, we introduce a new evaluation resource called NewsQuant, con-
sisting of 590 sentences from news articles in the domains of economics, sports, technology, cars,
science, and companies. To the best of our knowledge, this is the �rst comprehensive evaluation set
introduced for quantity extraction. The sentences were chosen to test the capabilities mentioned
in Table 4.4. Each sentence is tagged with one or more quantities containing a value, unit change,
and concept. The dataset is annotated by the author of the thesis and a student contributing to
the creation of CQE. Inter-annotator agreements are computed separately for value, unit, change,
and concept on a subset of 20 samples. The Cohen Kappa coe�cient (Cohen, 1960) of value, unit,
change identi�cation are 1.0, 0.92, and 0.85, respectively. Value detection is a simpler task for hu-
mans, and annotators have a perfect agreement, whereas unit and change detection requires a deeper
understanding of unit surface forms and semantics of a sentence.
A concept is a span of tokens in the text and does not have a standardized representation, therefore
the Cohen Kappa coe�cient cannot be used. Instead, we report Krippendor�’s alpha (Krippen-
dor�, 2018), with the value of 0.79. The annotation guidelines are designed based on the de�nitions
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Table 4.5: Statistics of the number of sentences, quantities, and sentences with and without quantities in the
NewsQuant and R-Txt datasets.

Dataset #sent #quantity #sent with quantity #sent w/o quantity

NewsQuant 590 904 475 115
R-Txt-currencies 180 255 178 2
R-Txt-dimension 93 121 77 14
R-Txt-temperature 36 34 34 2
R-Txt-age 19 22 18 1

of value, unit, change, and concept described in previous sections. Additionally, the annotators were
provided with the dictionary of units and values for purposes of normalization. As a summary of
agreement over the entire sample set, we compute the percentage of times both annotators agreed
on all attributes of a quantity. In this case, we reach the total agreement for 62% of the annotations.

For additional evaluation resources, the R-Txt repository contains a set of annotated quantities for
age, dimension, temperature, and currency. 8 These datasets are also added to the evaluation set.
However, they contain only unit/value pairs and no information about change or concepts. More-
over, the original dataset in its raw format is unsuitable for evaluation, as it only contains tags for
certain quantity types and would ignore other types, giving the R-Txt model an advantage. For
example, in the R-Txt-currencies, only the currencies were annotated and other quantities were ig-
nored. For that purpose, all these datasets were revised, and extra annotations for all other types of
quantities were added for a fair comparison. For example, in the sentence “I want to earn $10000 in
3 years”, where only “$10000” was annotated, “3 years” is added.
Table 4.5 shows the statistics of the number of sentences and quantities for each dataset. The NewsQuant
dataset is the largest dataset for this task containing over 900 quantities of various types. NewsQuant
also includes 74 negative examples with non-quantity numeric values. Three examples from the data
are shown below:

{"text": "Unregulated car finance falls outside the Consumer Credit Act 1974 leaving
those who want to end their car finance agreements early part-exchange the vehicle
or pay off the total value facing large penalties.",
"quantities": []},

{"text": "The Dow Jones Industrial Average lost 190 points, or 0.6%. The S&P 500 fell
0.9%, while the Nasdaq Composite slid 1.1%.",
"quantities": [{"change": "down",

"value": "190.0",
"unit": "points",
"normalized_unit": "point",
"referred_concepts": "Dow Jones Industrial Average"},

{"change": "down",

8Recognizers-Text datasets: https://github.com/microsoft/Recognizers-Text/tree/master/Specs/NumberWithUnit/

English (last accessed: 02.05.2024)
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"value": "0.6",
"unit": "%",
"normalized_unit": "percentage",
"referred_concepts": "Dow Jones Industrial Average"},

{"change": "down",
"value": "0.9",
"unit": "%",
"normalized_unit": "percentage",
"referred_concepts": "S&P 500"},

{"change": "down",
"value": "1.1",
"unit": "%",
"normalized_unit": "percentage",
"referred_concepts": "Nasdaq Composite"}]},

{"text": "Apple One’s Individual plan is $14.95 a month and comes with 50GB storage.",
"quantities": [{"change": "=",

"value": "14.95",
"unit": "$ a month",
"normalized_unit": "dollar per month",
"referred_concepts": "Apple One Individual plan"},

{"change": "=",
"value": "50.0",
"unit": "GB",
"normalized_unit": "gigabyte",
"referred_concepts": "storage, Apple One Individual plan"}]}

4.4.2.2 Disambiguation Dataset

In our unit dictionary, we encountered 18 ambiguous surface forms with di�erent normalized units.
To train the unit disambiguation module, a dataset of these 18 ambiguous surface forms was created,
using ChatGPT. 9 The number 18 is not absolute and in di�erent scienti�c domains, more ambigu-
ous cases might occur. For each ambiguous surface form, at least 100 examples are generated, and
the �nal training dataset consists of 1,835 sentences with various context information. Each sam-
ple consists of a sentence with an ambiguous surface and annotation for the correct unit. For more
challenging surface forms, more samples are generated. The number of samples per surface form
and associated units for each surface form are shown in Table 4.6.
A test dataset is generated in the same manner using ChatGPT, consisting of 180 samples, 10 samples
per surface form.
We experimented with multiple prompts, using ChatGPT. The aim was to create training/test data
in JSON format, where the sentences are not duplicates or too simple. For this purpose, two sen-
tences were formulated (one for each unit, in each surface form) and are used as input examples of
di�erent contexts. The prompt explicitly asks for JSON format output and 20 samples, due to the

9ChatGPT from Openai: https://chat.openai.com/ (last accessed: 02.05.2024)
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Table 4.6: Ambiguous surface forms, units associated with them, and the number of samples in the training
set for each surface form and unit pair.

Surface Form Normalized Units # samples

c cent, celsius 144

¥ Chinese yuan, Japanese yen 100

kn Croatian kuna, knot 116

p point, penny 149

R south african rand, roentgen 100

b barn, bit 127

’ foot, minute 104
′ foot, minute 104

" inch, second 112

” inch, second 112

C celsius, coulomb 116

F fahrenheit, farad 100

kt kiloton, knot 100

B byte, bel 107

P poise, pixel 102

dram armenian dram, dram 180

pound pound sterling, pound-mass 131

a acre, year 113

sequence length limitation of ChatGPT. The �nal prompt is shown below. UNIT1 and UNIT1 are re-
placed with di�erent normalized units that share a surface form and "SURFACE_FORM" denotes this
ambiguous surface form. "Sentence1" and "Sentence2" use the units in their relevant contexts.

Create a training set of 20 samples, for "UNIT1" and "UNIT2", where in the text the
surface form of the unit is always "SURFACE_FORM", but the unit is different. Output in
JSON format as follows:

{"text":"Sentence1", "unit": "UNIT1" },
{"text":"Sentence2", "unit": "UNIT2" }

The sentences are manually checked for coherence and correctness before adding to the dataset. In-
correct samples with wrong units were removed. In some cases, surface forms were manually altered
to match the speci�cations of the task. For certain units, multiple generations were required to get
more complex sentences.

4.4.3 Implementation

CQE is implemented in Python 3.10. For dependency parsing, part-of-speech tagging, and the
matching of rules spaCy 3.0.9 10 is used. 11 The unit disambiguation module, with BERT-based

10SpaCy package: https://spacy.io/ (last accessed: 02.05.2024)
11The latest version of the repository is updated to a newer version of SpaCy, but to replicate the result mentioned in

this section, version 3.0.9 should be �xed.
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classi�ers, is trained using spacy-transformers12 for smooth intergeneration with other SpaCy mod-
ules. Each classi�er is a bert-basemodel, trained for a maximum of 1000 steps with Adam optimizer
and a learning rate of 0.001. For computation of the Levenshtein distance we utilized the python-

Levenshtein 0.25.1 13 package and for the evaluation metrics we used scikit-learn 1.0.0 14.
Parsers were created to align the output format of di�erent baselines so that the di�erences in out-
put representation do not a�ect the evaluation. For instance, for IllQ, we normalize the scienti�c
units. It is worth noting that despite the claim that currencies will be normalized in IllQ, manual
normalization of a few currency units was also required. Another instance is Q3, where we account
for di�erences in the representation of ranges and di�erences in the normalization of values, i.e., in
the Q3 dictionary “minute” is normalized to “minute of arc”. As a result, if a value is detected by a
baseline but not standardized, or a unit is detected but not correctly normalized to the form present
in the dataset, post-processing is applied for a uni�ed output. In this way, a fair comparison among
all models is ensured.
The goal of the post-processing is to achieve a uni�ed representation, close to the benchmark dataset.
Since baseline models have various de�nitions of quantities, and di�erent unit dictionaries, it is ex-
pected that their output representation varies, although in many cases they refer to the same quan-
tity. This is most prominent for the units, as di�erent unit dictionaries or lack of unit normalization
result in multiple surface forms for a single unit. For example, the unit “celsius” in the benchmark
dataset is detected as “degree celsius” by Q3, “c” by R-Text, “c”, “° celsiu” and“celsiu” by IllQ, “celsiu”,
“degrees celsiu” and “degree celsiu” by GPT-3, “degc” and “degC” by Grbd. As demonstrated in the
example, GPT-3, Grbd, and IllQ use multiple surface forms for the same normalized unit. Although
one can argue that multiple representations for the same unit point to a the lack of normalization
altogether, we chose to map these variations to a single uni�ed format. The only exception is for cur-
rencies in IllQ since their work explicitly claims that unit normalization is performed for currencies.
For the entire post-processing steps, we refer to the evaluation repository.
To keep up with the recent trends in NLP and lack of a the baseline for concept detection, we in-
troduce a large language model baseline with GPT-3. We choose GPT-3 due to accessibility and
superior performance. 15 To tag sentences using GPT-3, we use the few-shot learning paradigm by
prompting the model to tag quantities and units in the text, given 10 distinct examples. GPT-3 is
mainly advertised as a task-agnostic, few-shot learners, and we have not performed extensive �ne-
tuning. With the 10 examples, we aim to account for a variety of outputs, i.e., compound units,
when no quantity is present, noun-based units, and pre�xes for scaling the magnitude of a value.
Our full prompt is as follows, where the desired output is quantities represented in a numbered list,
with change, value, unit surface form, unit, and concept.

12SpaCy Transformers package: https://spacy.io/universe/project/spacy-transformers (last accessed: 02.05.2024)
13python-Levenshtein: https://pypi.org/project/python-Levenshtein/ (last accessed: 02.05.2024)
14scikit-learn: https://scikit-learn.org/ (last accessed: 02.05.2024)
15At the time of conducting these experiments GPT-4 was not released and since OpenAI is costly repetition of whole

experiments at this point with GPT-4 would introduce additional costs.
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Tag quantities and units in the texts:
Sentence: Woot is selling refurbished, unlocked iPhone XR phones with 64GB of
storage for about $330.
Answer:
1. =, 1.64, GB, gigabyte, storage
2. ~, 330, $, dollar, iPhone XR phones

Sentence: The chain operates more than 600 supermarkets and less than 800 stores.
Answer:
1. >, 600, supermarkets, supermarkets, chain
2. <, 800, convenience stores, convenience stores, chain

Sentence: The spacecraft, which is about the size of a school bus, flew into Dimorphos
at a speed of about 4.1 miles per second, that’s roughly 14,760 miles per hour (23,760
kilometers per hour).
Answer:
1. ~, 4.1, miles per second, mile per second, spacecraft
2. ~, 14760, miles per hour, mile per hour, spacecraft
3. ~, 23760, kilometers per hour, kilometer per hour, spacecraft

Sentence: And overnight dogecoin fell from 0.317 to 0.308, a 2.8 percent drop.
Answer:
1. =, 1.0.317-0.308, -, -, dogecoin
2. =, 2.8, percent, percentage, dogecoin

Sentence: This is about minus 387 Fahrenheit (minus 233 Celsius).
Answer:
1. ~, -387, Fahrenheit, Fahrenheit, -
2. ~, -233, Celsius, Celsius, -

Sentence: WhatsApp more than 2 billion users send fewer than 100bn messages a day.
Answer:
1. >, 2000000000, users, users, WhatsApp
2. <, 100000000000, messages, messages, users

Sentence: This includes colors between red and blue - wavelengths ranging between 390
and 700 nm.
Answer:
1. =, 390-700, nm, nanometer, wavelengths

Sentence: You don’t have a two-year bachelor’s degree or a six to eight-year PhD degree.
Answer:
1. =, 2, year, year, bachelors degree
2. =, 6-8, year, year, PhD degree

Sentence: The price of CO2 and fuel
consumption are not clear.
Answer:
No quantities or units

Sentence:{sentence}
Answer:

{sentence} is replaced with a query sentence from the test set to be tagged.

127



4 Quantity Extraction

Nevertheless, the output of GPT-3 is not deterministic and requires extreme post-processing. The
post-processing includes cleaning the predicted values to include only numbers, normalization of
the units even if the unit is misspelled, e.g., “celsiu” instead of “celsius”, “ppb” to “parts-per-billion”,
or “€” to “euro”. As a result, it cannot be deduced that GPT-3 can normalize units without addi-
tional post-processing and a dictionary of unit surface forms.
From the di�erent model variations for generation, the text-davinci-003 16 model from the Ope-
nAI API 17 is used with a sequence length of 512, temperature of 0.5, and no frequency or presence
penalty (other parameters were left at the default setting). We are aware that with extensive �ne-
tuning and more training examples GPT-3 values are likely to improve. However, the purpose of
this evaluation is neither prompt engineering nor designing training data for GPT-3, and the few
short learning should su�ce for a baseline.

4.4.4 Analysis of Results

Our system is compared against Q3, IllQ, R-Txt, Grbd, and GPT-3 on precision, recall, and F1-score
for the detection of value, unit, change, and concept on both NewsQuant and R-Txt test datasets.
Disambiguation classi�ers are also compared with weighted micro-averaged precision, recall, and
F1-score for unit classi�cation against Q3. Permutation re-sampling is used to test for signi�cant im-
provements in F1-scores (Riezler and III, 2005), which is more statistically coherent in comparison
to the commonly paired bootstrap sampling (Koehn, 2004). In the following, we �rst describe the
evaluation metrics used in this study and then present the results.

4.4.4.1 Metrics

Detection results are reported with precision, recall, and F1-score. These measures are common both
for information retrieval and classi�cation settings. All these metrics are built on four concepts:

• True Positive (tp): The predicted and the ground truth conditions are both true.

• False Positive (fp): The predicted condition is true but the ground truth condition is false.

• True Negative (tn): The predicted condition and the ground truth condition are both false.

• False Negative (fn): The predicted condition is False but the ground truth condition is true.

Precision computes how many retrieved/classi�ed documents are correctly identi�ed. Recall com-
putes the number of relevant/correctly classi�ed items among all the positive predictions or in other
words, a fraction of all relevant items that were found.
These concepts are best explained for both retrieval and classi�cation settings in Figure 4.3, where

16This was the latest model at the time of conducting these experiments. Due to the rapid change in this domain, this
will not be the case at the point of reading this thesis.

17https://platform.openai.com/ (last accessed: 02.05.2024)
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Figure 4.3: True Positive, False Positive, True Negative, and True Negative, where the green area is the ground
truth relevant or positive samples and the yellow area is the model prediction.

the predicted condition in the case of a classi�cation is the class of an element and for retrieval is the
relevancy of an item.
Formally Precision (P ) and Recall (R) are de�ned in Equation 4.1, where recall is also known as true
positive rate.

P =
tp

tp+ fp
, R =

tp

tp+ fn
(4.1)

Precision and recall are complementary and are often reported together. If only one is reported the
values can be misleading, for example, a recall of 1 is easily achievable by returning an entire corpus
or classifying everything as positive, however, the precision in this case is abysmal.
To combine precision and recall into a single metric, the F1 score is introduced. The F1 score eval-
uates how well a model balances precision and recall, calculated as the harmonic mean of these two
measures. As shown in Equation 4.2, the parameter β de�nes the relative importance of precision
and recall. The common value of β is 1.

Fβ =
(β2 + 1)PR

β2P +R
(4.2)

All the mentioned metrics can be averaged in case of multi-class classi�cation, by taking the macro,
micro, or weighted average. In such cases, we have per-class scores that need to be averaged to a single
score, and the number of samples in each class plays a role in the �nal result. Often the dataset is
imbalanced and the number of samples per class varies.
Macro averaging is computed by taking the arithmetic mean or unweighted mean of all per-class
scores. This method treats all classes equally regardless of how many samples per class are available
in the test set. If the dataset is imbalanced, this is not a good averaging technique.
Micro averaging computes a global average by counting the sum of tp, fn, and fp across all classes
and then computing the respective metric. This metric is better suited to deal with class imbalance.
The weighted averaging is calculated by taking the mean of all per-class scores and taking the number
of samples in each class into account. The scores are weighted, where a weight refers to the propor-
tion of each class’s support in the dataset.
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Table 4.7: Precision, recall, and F1-score for detection of value, unit, and change on NewsQuant. Results with
†mark highly signi�cant improvements over the best-performing baseline with a p-value < 0.01.

Model
Value Value+Unit Value+Change

P R F1 P R F1 P R F1

CQE 92.0 91.9 92.0† 85.6 85.5 85.6† 88.2 88.1 88.1†

Q3 65.0 83.3 73.0 42.1 53.9 47.2 - - -
IllQ 50.6 66.0 57.3 32.8 42.8 37.1 44.2 57.6 50.0
R-Txt 59.7 82.2 69.1 29.6 40.7 34.2 - - -
Grbd 58.8 53.1 55.8 37.4 33.7 35.5 - - -
GPT-3 72.1 69.1 70.6 60.3 57.9 59.1 53.1 50.9 51.9

4.4.4.2 Results on NewsQuant

Table 4.8 shows the result on the NewsQuant dataset. Since Q3, R-Txt, and Grbd do not detect
changes, respective entries are left empty. CQE beats all baselines in each category by a signi�cant
margin, where most of the errors come from the independent dependency parser and POS-tagger
(SpaCy) and not the rules, i.e., mainly incorrect extraction of the dependency parsing tree and part-
of-speech tagging. One of the common mistakes is when date and year information is wrongly tagged
as a quantity by the POS-tagger, which increases the false positive rate.

The second-best model, Q3, scores highly for value detection but ignores all the noun base units. Q3
tends to overgeneralize tokens to units where none exist, e.g., in “0.1 percent at 5884”, Q3, detects
“percent per ampere-turn” as a potential unit, due to “at” being a surface form for “ampere-turn”.
Moreover, Q3 makes numerous mistakes on currencies and their normalization. We attribute this
to their incomplete unit dictionary. Since we utilized the Q3 units dictionary to create our own, we
can con�rm the lack of entries for scarce and rarely used units and currencies.
R-Txt works well for the quantity types that they have a dedicated model for, but all the other quan-
tities are ignored or misclassi�ed. Since the four quantity types considered by R-Txt touch only the
tip of the iceberg of all possible quantity and unit combinations, it is expected that many quantities
in NewsQuant go undetected by this model. Another point that makes the use of R-Txt cumber-
some is that one has to manually select a quantity type for the R-Txt prior to extraction. Therefore,
we needed to run all the available models to �nd a quantity, which not only increases the runtime
but increases errors due to the miss-classi�cation of quantity types.
IllQ has extremely poor performance on the NewsQuant dataset. Despite the fact that IllQ is the
only model that also detects noun-based units, the recall is much lower than for other models. This
behavior is surprising and rather unfortunate since this is the only model that has been repeatedly
used in literature as the foundation for other systems. IllQ has trouble with compound units, e.g.,
“$2.1 per gallon”. There also seems to be a bias towards tagging the word after a value as a unit, e.g.,
in “women aged 25 to 54 grew by 1%”, grew by is the falsely detected unit. Since IllQ does not have
a normalization module or a unit dictionary, these mistakes are not easily avoided. Although IllQ is
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claimed to normalize currencies, in practice the normalization is limited and often currency symbols
are not normalized. Moreover, trends are ignored by IllQ, and the model is biased to predict equality
(=) for most changes.
The Grdb model typically identi�es the correct tokens for values, but due to inconsistent standard-
ization, the �nal output is mainly incorrect. Unit normalization is limited to a small subset of units,
where percentages and compound units that consist of multiple words, e.g., “dollar per barrel”, are
mainly ignored. In general, the model is biased to predict a single word for a unit, and if the unit is
comprised of multiple tokens it is not detected.
GPT-3 achieves a score close to Q3 for the detection of value/unit pairs and close to IllQ for changes.
Nevertheless, these numbers are not calculated based on the raw output of GPT-3. Due to extreme
hallucination, extensive post-processing of the output is required for evaluation, e.g., many of the
values extracted were not actual numbers and units were not normalized. Moreover, GPT-3 often
confuses value su�xes with units, e.g., “billion” or “million”. Despite the normalization prompt,
GPT-3 fails to normalize units and requires manual normalization for most detections. Both IllQ
and GPT-3 require extensive post-processing for units and cannot easily be used out-of-the-box.

Table 4.8: Precision, recall, and F1-score for detection of value and unit on R-Txt datasets. Results with †
mark highly signi�cant improvements over the best-performing baseline with a p-value < 0.01.

Model Detect
currency dimension temperature age

P R F1 P R F1 P R F1 P R F1

CQE

Value

82.6 85.9 84.2 85.5 87.6 86.5 94.3 97.1 95.7 91.3 95.5 93.3

Q3 69.2 84.7 76.2 76.9 93.4 84.3 91.7 97.1 94.3 91.3 95.5 93.3

IllQ 65.5 70.6 67.9 65.3 77.7 70.9 88.9 94.1 91.4 65.4 77.3 70.8
R-Txt 67.4 91.8 77.7 73.6 90.1 81.0 91.9 100.0 95.8 77.8 95.5 85.7
Grbd 46.6 35.3 40.2 75.8 59.5 66.7 84.0 61.8 71.2 60.0 27.3 37.5
GPT-3 50.5 54.9 52.6 80.2 80.2 80.2 93.5 85.3 89.2 92.3 54.5 68.6

CQE 78.1 81.2 79.6† 78.2 80.2 79.2 91.4 94.1 92.8 91.3 95.5 93.3

Q3 Value 29.5 36.1 32.5 56.5 68.6 61.9 61.1 76.5 74.3 82.6 86.4 84.4
IllQ +Unit 41.8 41.6 45.1 43.4 52.1 47.5 30.6 32.4 31.4 42.3 50.0 45.8
R-Txt 46.7 63.5 53.8 44.6 54.5 49.1 91.9 100.0 95.8 70.4 86.4 77.6
Grbd 24.9 18.8 21.4 44.2 34.7 38.9 32.0 23.5 27.1 40.0 18.2 25.0
GPT-3 40.8 44.3 42.5 65.3 65.3 65.3 45.2 41.2 43.1 92.3 54.5 68.6

4.4.4.3 Results on R-Txt Dataset

Evaluation results on the four quantity types of the R-Txt dataset are shown in Table 4.9, where
the CQE model once again outperforms all baselines on value and unit detection for all categories
except for temperature. Nevertheless, for temperature, the R-Txt improvement over CQE is not
statistically signi�cant. The small size of the age and temperature dataset results in inconsistent sig-
ni�cance testing. The closeness of results for value detection between models is due to the structure
of the dataset. The R-Txt dataset does not contain diverse values and unit representation. Values are
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Table 4.9: Error analysis of di�erent extraction systems.
Mistake Systems

Trouble detecting temperature types, e.g., “celsius” and “Fahrenheit” are both denoted as “degrees”. Q3, IllQ, GPT-3, Grbd
Dollar types are not identi�ed, e.g., “Hong Kong dollar” and “new Zealand dollar”→ “dollar”. Q3, IllQ, Grbd
Unit normalization does not work for the majority of the time. IllQ, GPT-3, Grbd
Bias towards predicting “=” for changes. IllQ, GPT-3
Cryptocurrencies and rare currencies are not recognized, e.g. “Bitcoin” or “Markka”. Q3
Units used in sports are not recognized, e.g., “ppg”, “rpg”, “apg”. Q3
Temporal values are mistaken as quantities, e.g., “2 pm.” R-Text, GPT-3, Grdb
Compound units are rarely found, e.g., “kph”. R-Text, GPT-3
Units in incomplete sentences are not recognized, e.g., “rmb 10” and “usd 20”. CQE
No distinction between “year” and “year of age”. CQE, Q3, GPT-3
Units are confused with concepts, e.g., “building rate of $80 per sq m”→ “sq m” as a concept. GPT-3
Low recall due to limited quantity types. R-Text, Grbd
Detection of concepts where none exist. CQE
Problem with correct standardization of values. Grdb
Multi-word compound units and most percentage units are ignored. Grdb
Unable to correctly distinguish di�erent temperature units. Grdb

�oats, and the diversity of types like ranges, fractions, and non-quantities is negligible. The R-Text
model, with dedicated models for each of these quantity types, detects the quantity for the speci�c
type with high accuracy. However, after annotating the remaining quantities in the test set, it has
a hard time distinguishing the correct type, making the R-Text model unsuitable for general settings.

4.4.4.4 Error Analysis on NewsQuant and R-Text Datasets

We analyzed the incorrect detection for the models and the common mistake patterns on the test
datasets. For a more systematic overview of the common mistakes made by each system, refer to
Table 4.10. This list is not comprehensive and only contains the most prominent patterns that were
observed by inspecting the false positive and false negative detections.

4.4.4.5 Concept Detection

Table 4.10: Relaxed and strict matching, precision, recall, and F1-score for concept detection on the
NewsQuant dataset. Results annotated with † mark highly signi�cant improvements over the
best-performing baseline with a p-value < 0.01.

Model
Relaxed Match Strict Match

P R F1 P R F1

CQE 76.2 76.1 76.1† 57.0 57.0 57.0†

GPT-3 55.9 53.7 54.8 26.3 25.2 25.7

The results of the concept detection on the NewsQuant dataset are shown in Table 4.11. Due to
the similarity between concept detection and temporal tagging, where spans of text are tagged as a
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Table 4.11: Weighted micro-average precision, recall, and F1-score on the unit disambiguation dataset for CQE
and Q3. Results with †mark highly signi�cant improvements over the best-performing baseline
with a p-value < 0.01.

Model micro-avg P micro-avg R micro-avg F1

CQE 89.9 89.4 88.1†

Q3 57.33 57.78 54.46

temporal entity, we follow the approach of (UzZaman et al., 2013b) for evaluation. Accordingly,
two types of matches, namely, strict and relaxed matches are compared. A strict match is an exact
token match, where the entire concept, word by word, is detected by the model. A relaxed match is
counted when there is an overlap between the system’s and ground truth token spans. Based on the
scores we observe that concept detection is harder in comparison to value and unit detection. GPT-3
also struggles with accurate predictions. It is possible that the subtle nuance of what constitutes a
concept requires more training data for a language model to learn.
On the other hand, our approach for concept detection is limited to common cases and does not take
into account the full complexity of human language, leaving room for improvement in future work.
Moreover, in many cases, the concept is implicit and hard to distinguish even for human annotators,
causing the lower inter-annotator agreement in this setting. We aimed to create an approach that is
more recall-oriented, trying to capture as many concepts as possible, hence, the big gap between
relaxed and strict matches. In CQE, candidates are presented in a hierarchical structure based on
the priority of the rules, by choosing to ignore concepts further down the hierarchy the model can
be adjusted to be restrictive and precision-focused.

4.4.4.6 Unit Disambiguation

CQE is compared against Q3 (the only other systems with disambiguation capabilities) in Table 4.12.
Since the normalization of units is not consistent in the GPT-3 model and requires manual normal-
ization, GPT-3 is left out of this study.
In CQE, for each ambiguous unit, a classi�er is trained, yet they all work together in the �nal sys-
tem. As a result, all 18 classi�ers are then assessed within a single system, with test data combined
into one uni�ed test set rather than separated by ambiguous units. This approach is more realistic
and mirrors the practical use of the model.
The results are averaged by weighting the score of each class label by the number of true instances.
CQE signi�cantly outperforms Q3 on all metrics, and it is easily extendable to new unit surface
forms and units by adding a new classi�er. Since the training data is generated using ChatGPT, a
new classi�er can be trained using our paradigm and data generation described in Section 4.4.2.2,
making this module extendible to new units.
Other than the micro-averaged results, we also present a detailed evaluation of the disambiguation
dataset, where precision, recall, and F1-score are computed separately for each ambiguous unit. For
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Table 4.12: Precision, recall, and F1-score for unit disambiguation per class.

Class CQE Q3

P R F1 P R F1

knot 100 100 100 16.67 100 28.57
roentgen 100 100 100 44.44 80 57.14
barn 100 80 88.89 100 80 88.89
japanese yen 60 100 75 100 100 100
inch 83.33 100 90.91 77.78 70 0.7368
armenian dram 100 60 75 0 0 0
chinese yuan 0 0 0 100 100 100
byte 100 100 100 57.14 80 66.67
cent 83.33 100 90.91 0 0 0
croatian kuna 100 100 100 0 0 0
year 100 100 100 0 0 0
poise 100 100 100 100 100 100
south african rand 100 100 100 100 60 75
minute 80 80 80 60 90 72
bit 83.33 100 90.91 50 40 44.44
bel 80 100 88.89 100 100 100
kiloton 100 100 100 100 100 100
second 100 80 88.89 80 40 53.33
coulomb 100 100 100 100 100 100
dram 71.43 100 83.33 0 0 0
point 55.56 100 71.43 0 0 0
fahrenheit 100 100 100 100 100 100
celsius 100 90 94.74 0 0 0
pixel 100 100 100 80 80 80
pound-mass 100 100 100 83.33 100 90.91
pound sterling 100 100 100 100 80 88.89
foot 80 80 80 100 50 66.67
penny 100 20 33.33 0 0 0
farad 100 80 88.89 80 80 80
acre 100 100 100 0 0 0

each surface form, 10 examples are present in the test dataset and the results are shown in Table 4.13.
We noticed that distinguishing between “Japanese yen” and “Chinese yuan ” is partially di�cult for
the BERT-based classi�er since both of them are currencies and are used in similar contexts. Another
hard distinction is between “penny” and “point”, since monetary values and the point in the stock
market are used in similar contexts. In comparison, in Q3 certain normalized forms are almost never
predicted, hence the multiple zeros in the evaluation results.

4.5 Community Support

In addition to quantitative evaluation, we created an online interface named QuantPlorer that can
be accessed under https://quantplorer.ifi.uni-heidelberg.de/. The interface is built on top of
CQE and allows for interactive experiments with the model through an intuitive web interface to
demonstrate its extractive power and simplify the interaction with the framework. QuantPlorer
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extracts quantities from unstructured text using CQE and enables users to interactively investigate
and visualize quantities in text. It also supports the �ltering of results based units, speci�c ranges of
values, related concepts, and changes. Users can gain an overview of the quantities in a document by
looking at the distribution of values associated with a speci�c concept or unit. They can also further
explore the document by visualizing the frequency of di�erent units and concepts mentioned in
the text through a histogram. For a large number of documents, manual interactions with the web
interface are eliminated by using a programmatic API. 18

4.5.1 Interface implementation

The backend is the CQE package, as described in Section 4.4.3. The front-end is a web application,
which is served via Flask Python web server. 19 Since the input of CQE is sentences, before passing an
input text to CQE, documents are split into sentences using the SpaCy library and passed indepen-
dently to the extractor. The design is done using HTML, Javascript, and the Bootstrap 5 library 20

is used for a responsive layout. Charts and plots are generated using Chart.js 21 and the range slider
comes from the open-source library of range-slider-input. 22 Communication between the interface
and the server is based on AJAX and JSON objects are used to pass information in both directions
from the server and back.

4.5.2 Demonstration

We motivate the use case of CQE for the exploration of quantities in unstructured documents by
going over typical work�ows that Quantplorer presents. Although the work�ows described here are
limited to a single document, applying the extraction on large corpora and aggregating the statistics
can provide a more comprehensive overview. As mentioned before, for a large number of documents
the use of the programmatic API is advised. For the examples presented, we compiled relevant para-
graphs on a speci�c topic, i.e., Google’s earnings across di�erent sectors, into a single document. In
the following, work�ows for (1) inspecting the extractions, (2) �ltering the data based on quantity
attributes, and (3) gaining an overview of the document by looking at statistics of values is presented.

Extraction: The entry point to the interface is the extraction editor, which is shown in Figure 4.4.
The user can either explore the provided examples or add a new document by clicking on the “+”
symbol. The text editor is �lled either by dragging a text �le or directly typing in the editor.
By clicking the Extract button, all quantities and their respective components (value, unit, change,
and concept) are extracted and color-coded within the text for easy identi�cation.

18Quantplorer API : https://quantplorer.ifi.uni-heidelberg.de/api/extract (last accessed: 02.05.2024)
19Flask framework: https://flask.palletsprojects.com/en/2.0.x/ (last accessed: 02.05.2024)
20Bootstrap: http://getbootstrap.com (last accessed: 02.05.2024)
21Chart JS:https://www.chartjs.org/ (last accessed: 02.05.2024)
22Input-sider repository:https://github.com/n3r4zzurr0/range-slider-input (last accessed: 02.05.2024)
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Figure 4.4: The entry point to Quantplorer. The interface contains a text editor, where the quantities and
their components are color-coded and the standardized values and normalized units are shown in
the right sidebar.

The Quantities tab under the right sidebar in Figure 4.4 contains the extractions in a list format. The
surface forms of units and values are highlighted with an underline in the text editor and the stan-
dardized values, normalized units, and changes are displayed in the extraction block. By clicking on
an extraction, the source sentence of the extraction is highlighted for more clarity. The highlighting
and color coding in the editor provides an immediate overview of quantities in a document.
The download button next to the bottom right corner can be used to download extraction results
for a single document in JSON format.
The question mark on the bottom right corner of the screen opens a helper page that presents the
user with more information about the framework and examples on how to use the API.

Filtering: The Filters tab allows the user to view and download annotations for quantities that
match certain criteria. The �ltering options are selected based on the quantity attributes extracted
from the CQE. Users can specify the following �lters:

• ranges of values,

• speci�c concepts,

• restriction on changes,

• speci�c units,

• other keywords from sentences in the document.

Upon choosing a �lter, the Quantities tab is automatically updated to re�ect the selections. As a
result, the download button will then export only the quantities matching the �lters.
The concepts are usually multiple words, and for �ltering they are presented as uni-grams. There-
fore, if the user is looking for all sentences with a multi-word concept, e.g., “Alphabet revenue”, both
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Figure 4.5: Filtering options based on the quantity components extracted from CQE.

uni-grams need to be selected individually.
An example of the �ltering option is shown in Figure 4.5. The numbers in parenthesis show the
number of quantities that have this particular attribute under the given �lters. For example, in Fig-
ure 4.5 with the current �lters, there are no quantities that contain the concept “equity” but a single
one containing the concept “expenses”.
The value slider displays the minimum and maximum values among all quantities in the text, irre-
spective of the unit. Users can adjust the slider to set their desired �ltering conditions.
Each �lter appears as a closable span above the list of annotations, allowing users to remove �lters
by closing the span. The total number of �ltered quantities is displayed at the top of the page. As
shown in the example in Figure 4.5, 9 out of 105 quantities contain the concept “Google” and the
unit “dollar”, where the values lie between 2 and 90 billion and the change is equal.
Finally, the text box containing the text “Filter on sentence text” is used for keyword search within
the document.

Statistics: One way to summarize a document rich with quantities is to look at the distribution of
values associated with various concepts or units. Another way is to look at the frequency of vari-
ous units and concepts, which provides a rough idea of the topic of the documents and the type of
quantities mentioned in the text. The Statistics tab provides such functionalities, through (1) Unit
distribution, (2) Concept Distributions, and (3) Value Distribution.
Unit distribution and Concept Distributions illustrate the frequency of distinct units and concepts in
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Figure 4.6: Statistics tab with the distribution of values, concepts, and units.

a given document using histograms. The user can understand the frequent types of quantities and
concepts revolving around values by looking at these histograms.
An example of the Statistics tab is shown in Figure 4.6. In this case, the example document is domi-
nated by the units “percentage” and “dollar”. Moreover, quantities mainly revolve around the con-
cepts “Alphabet” and “revenue”.
The Value Distribution tab presents a �ne-grained analysis, where the user can choose a single or
combination of two concepts with a speci�ed unit to analyze the distribution of values. In the ex-
ample in Figure 4.6, the user can see the distribution of “Alphabet revenue” in “dollars” to get a sense
of ranges and scales of values. Since the paragraphs chosen for this example show the revenue of Al-
phabet from 2019 to 2023, we can see that in general the revenue for these years is expected to lie
between 50 and 150 billion. Although such information for companies and the stock market is easily
found on spreadsheets and �nancial reports, it is important to note that this information is extracted
from inspecting unstructured text. In domains where such information is not recorded separately,
extraction of quantities and related concepts can help to gain insights previously unknown.

API: To quickly obtain extractions for a collection of documents without the need to install the
CQE package or interact with the web interface, we additionally provide an API endpoint that re-
turns extractions in JSON format.
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4.6 Summary and Discussion

In this chapter, we de�ned a uni�ed representation for quantities in text and contextualized infor-
mation surrounding them. To extract such information from unstructured text, we introduced a
comprehensive quantity extractor, based on a set of rules from dependency parsing tree and POS-
tags. Our extractor is capable of standardizing values, normalizing units, and �nding contextualized
information in the form of change and concept from a sentence. CQE was compared on a novel
dataset against available liberalities for quantity extraction and outperformed all baselines by a high
margin. Finally, for community support and accessibility of the extractor we designed and deployed
a web interface to explore the extraction of quantities interactively. In the following, we point out
the limitations of CQE, future work, and the e�ect of large language models on quantity extraction.
Despite an extensive e�ort to account for most common cases, CQE is still mainly a rule-based ap-
proach, requiring manual feature engineering and rule-writing for unseen cases. This issue is more
prominent in the case of concept extraction, where the order in which we apply the rules has a di-
rect impact on correct extractions. If the rule with higher priority �nds a candidate, the rules further
down the list are ignored. Although for humans identifying the correct rule to use is easy by consid-
ering context and sentence formulation, such delicate di�erences in language are not easily captured
in rule-based systems. However, to the point that was possible, we focused on extendibility and �ex-
ibility. For example, upon the addition of a new entry to the unit dictionary, it will automatically be
detected and normalized. This �exibility extends to linguistic rule sets as well. Adding and removing
a rule will automatically change the behavior of the system.
Another source of error is that CQE relies heavily on correct dependency parsing and POS tagging,
and any error on the initial extraction propagates through the entire system. Consequently, even
changes in the versions of the SpaCy model used for dependency parsing and POS tagging can pro-
duce slightly varying results.
Given the rapid evolution of large language models, our comparison to GPT-3 may not accurately
re�ect the current capabilities of these models in quantity extraction. At the time of the experiments,
GPT-3 was the state-of-the-art model for large language modeling. Consequently, the performance
of newer models like GPT-4, BART, and Gemini on our benchmark remains unknown. In our ex-
periment with GPT-3, one major drawback was the variability in the output. Beyond formatting is-
sues, GPT-3 does not provide concrete and stable functionality like the other baselines. For instance,
it may opt to standardize a value or not, normalize a unit or not, introducing unpredictability. This
behavior makes it hard to use such models, where a deterministic output is desired.
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“We are drowning in information, while
starving for wisdom.”

E.O. Wilson

Armed with methods to extract quantities from unstructured text, we can set out to investigate
ways to incorporate quantity understanding in information retrieval systems. Despite advances in
semantic search and sophisticated neural network architectures, handling quantitative information
in text remains challenging, speci�cally performance on quantity-centric queries, in which the query
contains a quantity and a numerical condition, is low, e.g., “BMW with more than 530hp”. The
reason for this is that systems are not aware of numbers and their semantics, such as proximity, in
particular in combination with units. Numbers and units are treated in the same way as any other
text token that is subject to subsequent processing, i.e., indexing or embedding. What complicates
things further is that numbers and units can also have di�erent surface forms (e.g., “6k” vs “6,000”
and “mph” vs “miles per hour”) and require standardization and normalization (Weikum, 2020).

While there are approaches that speci�cally focus on numbers in text, i.e., extracting quantities for
entities (Ho et al., 2019; Li et al., 2021), linking quantities in tables (Ibrahim et al., 2019), or nu-
merical reasoning (Ran et al., 2019), they are tailored for speci�c tasks and not semantic search in
general. This applies to neural models supporting IR, which are trained on general-purpose data
without the focus on quantity semantics. As mentioned in related work in Section 3.3, language
models, which modern retrieval systems are based on, exhibit a limited understanding of number
scales and proximity (Wallace et al., 2019). The fundamental assumption of language models is that
the semantics of a word is inferred from the company it keeps (Firth, 1957), which is not necessarily
true for numbers. The context of a value may o�er some insight into valid ranges, but this becomes
uncertain when units are in play. For instance, reporting a company’s revenue in di�erent currencies
can result in signi�cantly varying ranges, despite the context roughly talking about the same topic.
Recent works on numerical language models (Spokoyny et al., 2022; Jin et al., 2021) focus on better
numerical representation. Yet, these architectures are very speci�c to certain downstream tasks and
require changes in the architecture of popularly used language models in IR, which indicates expen-
sive pre-training. As a result, quantity understanding in retrieval systems remains an uncharted area,
in particular numerical conditions and their semantics, as discussed in Section 3.2, is widely under-
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studied. The main body of work in this area is in the context of QSearch (Ho et al., 2019, 2020),
where the focus is narrowed down to named entities. In reality, quantities are related to concepts
that go beyond the narrow focus of named entities, e.g., “square footage of a house”, which makes
such approaches tailored to speci�c use cases and not general settings.
Current neural retrieval models are trained on general-purpose queries without the focus on quan-
tity semantics, where a small portion of the queries containing quantities is either focused on a rea-
soning task or retrieval of a single value related to a concept, e.g., “height of Ei�el tower”. Answering
queries of these types is possible with span detection and without the need for quantity understand-
ing. Since these models never had task-speci�c training, are based on language models with little
understanding of scales, and do not have a separate ranking module for quantity comparison, it is
no wonder that they perform poorly on such a task (as shown later in our evaluation). Moreover,
the lack of available benchmark datasets for training or comparison of quantity-centric queries is
exacerbating the problem.
In this chapter, we present two strategies to enhance the quantity understanding of current IR sys-
tems. We aim for a general-purpose model that is not speci�c to quantity ranking but is also capable
of term-based ranking. We speci�cally focus on queries containing quantities and numerical con-
ditions. 1 The quantity-centric ranking follows the same intuition as described in Chapter 2 for
general retrieval, where the relevance is computed as a function of the query and document simi-
larity, r(di|x) ∼ sim(τ(x), τ(di)). τ is a generic mapping function that converts the query x and
document di to their dense or sparse representations. We focus on sentences as basic retrieval units.
Hence, instead of relevance to the document di, we focus on relevance to the sentence si and an
estimation of r(si|x).
In the context of quantity-centric ranking, r(si|x) is dependent not only on the search terms but
also on the query quantity and numerical condition. When considering a quantity, both the value
and unit carry signi�cance. For instance, in a query like “iPhone with price more than €800”, the
quantities in the highly ranked sentences should have Euro as a unit. Moreover, the same search
term and quantity may be deemed relevant or irrelevant depending on the numerical condition. For
example, the sentence “iPhone X costs €999” is relevant for the query “iPhone price more than
€800” but irrelevant to the query “iPhone price less than €800”.
Throughout this chapter, we assume that our retrieval system is operating on a document collection
where each document consists of a sequence of sentences, which may or may not contain quantities.
The methods proposed in this chapter focus on four main principles:

1. Versatility: The proposed methods should be applicable in real-world scenarios and not lim-
ited to an academic setting or a speci�ed data type. Speci�cally, a quantity-centric ranking
should not hinder a model’s capability to do traditional term-based ranking.

1It can be argued that queries that contain numerical reasoning and aggregation of values, e.g., “What is the average
pro�t of Apple Inc. per year?”, are also categorized as quantity queries. Nevertheless, our emphasis is directed
speci�cally towards the scenarios containing numerical conditions.
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2. Efficiency: An essential part of retrieval systems is e�ciency and response rate, and the same
should apply to quantity-centric ranking.

3. Generalizability: It is important that the proposed model is generalizable to di�erent appli-
cation domains with minimal e�ort.

4. Applicable to low resource domains: As mentioned previously, there exists no open source
dataset for training quantity-centric retrieval models, and thus, the proposed approach should
be able to work in low resource settings.

Taking into account these four principles, we present two approaches to enrich current retrieval
systems with quantity understanding. We aim for a general-purpose model that is not speci�c to
quantity ranking but is also capable of term-based ranking. The two approaches di�er in their inte-
gration of quantity ranking with term-based ranking. The �rst employs a disjoint combination of
a quantity ranking score with term-based ranking, while the second focuses on the joint ranking of
quantities within the context of textual content.

A note on the terminology used in the following: Here, we refer to term-based ranking as both
semantic search and lexical-based models. The lexical model and keyword-based search are used
interchangeably. Semantic models include neural models that can have both dense and sparse repre-
sentations. Moreover, the task that we focus on is ranking, where a ranking function outputs a score
that represents the relevance of a document or sentence to a given query.

Contributions. In this chapter, we make the following �ve contributions:

1. We propose a disjoint quantity-centric ranking approach. This model is unsupervised, utiliz-
ing an index structure, and compatible with various lexical and semantic IR systems.

2. Due to the independence assumption of the disjoint model, the relationship between quanti-
ties and surrounding text is to some extent lost. Therefore, we propose a joint quantity rank-
ing model. In this case, we aim to learn quantity-aware sentence and query representations
through task-speci�c �ne-tuning of neural IR models.

3. We introduce two novel benchmark datasets for quantity-centric ranking, speci�cally focus-
ing on queries involving numerical conditions in the domains of �nance and medicine.

4. We evaluate the performance of our systems against various lexical and neural models and
show signi�cant improvements over these baselines.

5. Finally, we investigate the e�ect of quantity-centric retrieval in modern question answering
systems based on the Retrieval Augmented Generation (RAG) paradigm.
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Structure. We start by describing the disjoint quantity-centric ranking in Section 5.1. The com-
bination of unsupervised and heuristic quantity ranking with lexical and semantic rankers is de-
scribed in Section 5.1.3. We move on to joint quantity-centric ranking with supervised approaches
in Section 5.2 and propose a semi-supervised �ne-tuning paradigm with concept expansion, and
value and unit permutations. Section 5.3 describes the e�ect of quantity understanding in retrieval
augmented generation pipelines, where the query contains numerical conditions. Section 5.4 intro-
duces the two benchmark datasets, FinQuant and MedQuant for the evaluation of quantity-centric
systems and compares the performance of the proposed models against various baselines. Finally,
in Section 5.5, an interactive interface for the disjoint quantity ranking model is demonstrated for
further exploration.

5.1 Disjoint Ranking of Quantities and Terms

The disjoint model is based on the separation of quantity and term ranking. We assume that the
term-based relevance of a sentence to query terms is independent of the proximity of query and
sentence values under the query condition.

De�nition 5.1. (Quantity-centric Query).
Given a sentencesi = (Ti, Qi) as a sequence of tokensTi = (t1, ..., tl) and quantitiesQi = (q1, ..., qk),
where a quantity qi = (ui, vi) is a tuple of a unit ui and a value vi.
A quantity-centric query is given by x = (Tx, c, qx), where Tx = (tx1 , .., txn) are the search terms
related to the query quantity qx = (ux, Vx).
The query value is a pair of two numbers Vx = (vi1 , vi2), such that the ranges are considered, with vi1
being the lower bound and vi2 the upper bound of a range. For all other conditions that require a single
value for comparison, vi2 is set to undefined, i.e., Vx = (vi1 ,⊥).
c is a numerical condition from the set {=, <,>, [ ]} defining equal, less than, greater than, or range
of values, respectively.
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5.1 Disjoint Ranking of Quantities and Terms

Figure 5.1: Pipeline of the disjoint quantity-ranking approach, where a separate quantity index is used to com-
pute quantity proximity and a term-based lexical or semantic index is used to compute the similar-
ity of the search term to the candidate sentences.

De�nition 5.2. (Disjoint Quantity-centric Ranking).
Given a quantity-centric query as defined in Definition 5.1, the relevance, r(si|x), of a sentence si to a
query x in a disjoint quantity-centric ranking model is defined as

r(si|x) ∼ sim(τ(Tx), τ(Ti)) + αsimc(τ
′
(qx), τ

′
(Qi)).

sim computes the similarity of search terms (Tx) to sentence terms (Ti) independent of simc, which
computes the proximity of query quantity (qx) and sentence quantities (Qi) given the query condition
c. The parameter α controls the contribution of quantity proximity to the final ranking. τ and τ ′

denote that representations for query and document, respectively. These representations do not need to
be based on the same model.

If a query is not quantity-centric, simply by removing the quantity score (simc), the models fall
back to term-based ranking. The quantity-aware ranking model proposed in the remainder of this
section is a set of heuristic ranking functions that do not require training data. The choice of a term-
based ranking function is independent of the quantity-ranking, allowing for more �exibility and the
ability to combine with the variety of term-based retrieval models.

The pipeline for the disjoint quantity-ranking model is shown in Figure 5.1. The query is processed
into quantity, search terms, and a query condition, using CQE, described in Chapter 4, or similar
packages. Our ranking approach consists of two parts: �rst, a term-based ranking function, and
second, a quantity raking function for numerical proximity using a quantity-index.
The document corpus is indexed separately for terms and quantities. The term-based index can be
a traditional lexical index or a vector database that retrieves semantically similar text chunks. On the
other hand, the quantity index facilitates (1) �nding the values that share the same unit as the query
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Figure 5.2: Quantity index creation steps, including sentence splitting, extraction of value/unit pairs using
CQE, and creating a posting list for each distinct occurrence of value/unit pair.

and (2) computing proximity based on the query condition. The �nal ranking combines scores from
term-based and quantity ranking.
In the following sections, we �rst describe the pre-processing and quantity index creation. We then
delve into the heuristic quantity ranking function (simc(τ

′
(qx), τ

′
(Qi))). Finally, we describe how

to combine the quantity score with a variety of term-based ranking methods for the �nal ranking.

5.1.1 Pre-processing and Quantity Index Creation

For the computation of the quantity score, a separate index for quantities is created, which pro-
vides explicit knowledge about values and units in normalized form. The index structure mirrors
term-based indices used in lexical-based retrieval systems, with each value and unit pair containing a
posting list of documents where it occurs. Leveraging such an index, we de�ne heuristic functions
that compute the proximity of values based on di�erent numerical conditions.
Before index creation, pre-processing is performed, involving sentence splitting and extracting quan-
tities from the corpus. Figure 5.2 illustrates the pre-processing steps and the indexing process for an
example document containing six sentences. To extract quantities CQE package is utilized. 2 As the
retrieval units and input for CQE consist of sentences, the �rst step is to split the input corpus into
individual sentences. Subsequently, each sentence is processed independently by CQE. From the
contextualized quantity tuple returned by the CQE extractor (value, unit, change, concept), con-
cepts and changes are disregarded. 3 Through CQE, values are standardized, e.g.,“$300 million” to
“$300,000,000”, and units are normalized, e.g., “kilometer per hour” instead of “km/h’. The quan-
tity index is built using unique pairs of normalized units and standardized values extracted from the
corpus. Each pair references the sentence or list of sentences where that speci�c quantity appears,
analogous to inverted indices for terms. If a sentence contains multiple quantities with the same
unit, the quantity index will have multiple entries to re�ect the frequency.
An example of such an index for three value/unit pairs is shown in Figure 5.3. The values in the

2The system is not dependent on the use of CQE and any other extractor that provides standardized values and nor-
malized units can be used.

3One could argue that considering the changes is important for the correctness of retrieval systems, e.g., “he had more
than 10 dollars”, which means he does not have exactly 10 dollars. Our index structure currently does not di�eren-
tiate between such subtleties, which gives rise to possible future work in this direction.
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Figure 5.3: An example of quantity index, where value and unit pairs point to posting a list of document IDs.

posting list are the sentence IDs from the corpus. It is important to note that quantity values are in
standard decimal format, and units are normalized.

5.1.2 Quantity Ranking Functions

To estimate the numerical proximity (simc(τ(qx), τ(Qi)) as de�ned in De�nition 5.2 and to rank
the quantities in sentences (Qi) based on the query quantity (qx) and condition (c), we use a heuris-
tic function. We call this ranking functionQScore, which assesses the relevance of the query value
to the value in a sentence under a given condition (r(Qi|qx, c) := QScore(si, c, x)). For higher
values ofQScore, the probability of relevance increases. This ranking function is dependent on the
numerical condition, resulting in di�erent scores for the same value under various numerical con-
ditions. Additionally, the numerical score only matters if the units match, otherwise, the values are
not comparable and refer to aspects of an object that are fundamentally di�erent, e.g., “horsepower”
of a car is di�erent from “km/h” it reaches and should not be compared.
For a query quantity qx = (Vx, ux) with condition c ∈ {=, <,>, [ ]}, QScore for sentence si
is shown in Equation 5.1. The indicator function 1ui(ux) enforces the match between the unit in
the query and the sentence, and Φc is the condition-dependent ranking function. To obtain a value
between 0 and 1, the score is normalized by the number of quantities |Qi| in sentence si. In other
words, the relevance of quantities in a sentence Qi to the query quantity qx under condition c is
computed by the ranking function Φc, for quantities where the unit matches ux.

QScore(si, c,X) :=
1

|Qi|

|Qi|∑
i=1

1ui(ux)Φc(Vx, vi) (5.1)

Φc is a set of four functions, one for each condition c ∈ {=, <,>, [ ]}. In the following subsections,
the functions and the implications behind them are described.
All sentences containing quantities that share the unit of the query quantity ux, where the values
satisfy a numerical condition are considered relevant to the query. However, the order in which the
results are presented to the user can either aid or hinder the user in �nding the desired result. In
term-based ranking, the optimal order of a result is evident. However, when it comes to quantities,
ordering is more subjective and the optimal order is dependent on the user’s information needs. For
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example, a user searching for “iPhone display bigger than 8 inches” might look for a maximum value
larger than 8 inches or a display only marginally larger, both of which are valid answers. However, if
the results are presented in an ascending or descending order based on numerical distances, the user
can identify the desired result much faster. This issue becomes more prominent in the case of ranges,
e.g., “iPhone display between 8 to 12 inches”, where it is not obvious if the user searches for values
closer to the lower bound, the upper bound or perhaps near the average. For each ranking func-
tion, we discuss possible alternatives to achieve di�erent sortings. The de�nition of a single optimal
sorting of results and underlying ranking functions, respectively, is not necessarily meaningful and
could be de�ned by the user’s needs in a transparent fashion, e.g., the user can choose among ascend-
ing or descending numerical proximity during the search. An advantage of the disjoint approach is
its inherent �exibility. Simply by switching between di�erent variants of ranking functions, the re-
sults can be rearranged based on the desired sorting. Nonetheless, for the evaluation of the disjoint
rankers against other baselines, we focus only on the most intuitive variant, which ranks quantities
with values closer to the query value in descending order.
In the following, we describe variants of Φc for numerical conditions of equal (Φ=), greater than (
Φ>), less than (Φ<) and ranges (Φ[ ]). For each function, we discuss variations that result in ascend-
ing, descending, and no sorting.

5.1.2.1 Equality Ranking Function

The equality ranking function Φ= facilitates �nding quantities that have values equal to or approx-
imately equal to the query value.
No Sorting: This is the most restrictive function, without any sorting, where only the exact matches
are ranked high. In this case, Φ= assigns a score of 1 if vx1 = vi, and 0 otherwise, as shown in
Equation 5.2. For the example query of “Car with maximum speed 245 km/h.”, only the value
exactly equal to the query value is considered valid and a sentence like “Audi RS6 maximum speed
is 250 km/h.” would receive a quantity score of zero, although the value is close to “245”.

Φ= =:

1 vx1 = vi

0 else
(5.2)

Descending order: In this case, Φ= determines the proximity of the query value vx1 to the sentence
value vi based on the exponential decay of their di�erence, hereby, ranking closer quantities higher
and in descending order, as shown in Equation 5.3.

Φ=(vx1 , vi) =: exp(−|vx1 − vi|) (5.3)

The �nal score ranges between 0 and 1, with larger absolute di�erences yielding lower scores. For
example, Φ= for the sentence “Audi RS6 maximum speed is 245 km/h.” with the query “Car max-
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Figure 5.4: An example exponential decay for query value 2.

imum speed 250 km/h” is computed as exp(−|245 − 250|) = 0.006. In contrast, if the value in
the sentence were 260, the score would diminish to exp(−|245−260|) = 0.0000003. An example
plot of the ranking function concerted around the query value of 2 is depicted in Figure 5.4, where
the score peaks at values equal to 2 and decays as the absolute distance increases. Note that the score
exhibits a rapid decline to zero, where for values with greater distance to the query value, the score
converges quickly to zero.

Ascending sorting: For the equality condition, the ascending sorting of results based on quantity
proximity does not make sense. If the user is searching for values equal to the query values, sorting
in ascending order, where the values further away from the query value are ranked higher, is not rep-
resentative of the equality condition. Such sorting is more suitable for the non-equality condition,
where the desired results should not contain the value in the query. However, we do not consider
non-equality in this thesis.

5.1.2.2 Less Than and Greater Than Ranking Functions

Φ< and Φ> are used to �nd values less than and greater than a query value, respectively. In this sec-
tion, we introduce (1) a ratio and (2) an exponential decay function for these boundary conditions,
presenting arguments for the preference of the ratio function.

Ratio descending order: The numerical score in this case is de�ned by the ratio of a query value
vx1 and a sentence value vi, resulting in a score between 0 and 1. The ratio determines the numerical
proximity independent of the magnitude, where the score is higher for values with smaller di�er-
ences. To account for the smaller value consistently appearing in the numerator and to maintain the
ratio within the range of 0 to 1, if the query value vx1 is greater than the sentence value vi, the score
is de�ned by the ratio of vi to vx1 , and vice versa. Since less than and greater than conditions de�ne a
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Figure 5.5: An example ratio ranking with descending order for less than (left) and greater than (right), with
query value 2.

bound of valid ranges, any value that is strictly out of the bound is given the score of zero 4. The ratio
ranking for less than (Φ<) and greater then (Φ>) with descending order is shown in Equation 5.4.

Φ>(vx1 , vi) =:

vx1/vi vx1 < vi

0 else

Φ<(vx1 , vi) =:

vi/vx1 vx1 > vi

0 else

(5.4)

Assume the query “iPhone XS < 1500 dollars” and the two sentence with quantities q1 = (1490,
“dollar”) and q2 = (800, “dollar”). Based on the ratios v1

vx1
= 1490

1500
and v2

vx1
= 800

1500
, q1 receives a

higher score as its value is closer to “1500”.

One drawback of the ratio-based scoring is that the Φ< is linear while Φ> is convex, as shown in
Figure 5.5 for an example query value of 2. This causes an unbalanced scoring between these two
functions. Consequently, we also present an exponential decay variant of the functions, similar
to the equality condition. However, in practice, the ratios produce a high-quality ranking and the
computing and exponential function is more expensive.

4It is also possible to change the function to assign small scores to out of range quantities, however, this value has to
be less than the score for values within the valid range. Estimation of such value is di�cult and therefore, we keep
the score of zero.
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Figure 5.6: An example of the functions less than (blue area) and greater than (green area) with exponential
decay, where the query value is equal to 2.

Exponential descending order: The exponential variants of bound-based conditions are shown
in Equation 5.5, where Φ> and Φ< are a constraint version of the equality score in Equation 5.3.

Φ>(vx1 , vi) =:

exp(−|vx1 − vi|) vx1 > vi

0 else

Φ<(vx1 , vi) =:

exp(−|vx1 − vi|) vx1 < vi

0 else

(5.5)

As illustrated in Figure 5.6, altering the functions from ratio to exponential results in a more bal-
anced scoring between the two conditions. Similar to the equality function, values in close proxim-
ity to the quantity, adhering to the numerical condition bounds, are assigned higher rankings than
those with more substantial di�erences.
In our experiments, we noticed that the slope in which the score convergences to zero in the ex-
ponential setting is too steep for values with a large magnitude, leading to a sub-optimal ranking.
Conversely, in ratio functions, the proximity is una�ected by the magnitude of the value. Take the
query “Family house less than 100k dollar” and two sentence quantities, q1 = (90,000, “dollar”)
and q2 = (80,000, “dollar”) into account. The ratios v1

vx1
= 90,000

100,000
= 0.9 and v2

vx1
= 80,000

100,000
= 0.8

provide a meaningful comparison of proximity, while the exponential decay for both quantities con-
verges to zero. While this behavior is desirable for the equality function, it becomes less suitable for
the bound-based conditions, where a broader range of values should be taken into account. As a
result, for all experiments throughout this chapter, the ratio functions are employed.
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Ascending order: The sorting order can be reversed from descending to ascending by subtracting
each corresponding ratio or exponential decay score from 1. As an example, we denoted the ratio
variants in ascending order in Equation 5.6, the exponential version is computed in a similar manner.

Φ>(vx1 , vi) =:

1− vx1/vi vx1 > vi

0 else

Φ<(vx1 , vi) =:

1− vi/vx1 vx1 < vi

0 else

(5.6)

For the example query of “iPhone XS < 1,500 dollars”, quantities q1 = (1,490, “dollar”) and q2 =

(800, “dollar”) would have another sorting based on Equation 5.6. In this case, the scores are re-
versed, 1 − v1

vx1
= 1 − 1,490

1,500
and 1 − v2

vx1
= 1 − 800

1,500
, and q2 is ranked higher. In this sorting, the

quantity farthest from the query value is deemed the most relevant.
In a real-world scenario, both settings (ascending and descending) could be valid depending on the
intention of the user. For the example query of “iPhone XS < 1,500 dollars”, the user could be
looking for the cheapest “iPhone XS” or an “iPhone XS” slightly below “1,500 dollars”.

5.1.2.3 Range Ranking Function

In general, when one de�nes a valid range, any value that falls within the query range of vx1 and vx2
is of relevance. In this section, we discuss di�erent variations to enforce various sortings based on
proximity to (1) lower bound, (2) upper bound, and (3) average value. These are all propositions
of various ways the results can be displayed to the user and are best chosen by the user themselves
during search and not pre-de�ned by a system architecture.

Average of bounds, descending order: In this case, we assign a higher weight to values closer
to the average of the lower and upper bounds (vx1 and vx2), where the weight exponentially decays
as the values diverge from the mean. Φ[ ] for average of bounds is shown in Equation 5.7, which
assigns a score based on the exponential di�erence between vavg =

vx1+vx2
2

(average of lower and
upper bound) and vi (sentence value). This results in sorting the values based on their proximity
to the average, with values closer to the average ranked higher than those further away. While there
are no strict bounds, values signi�cantly outside the range receive extremely low scores due to the
exponential decay function.

Φ[ ]((vx1 , vx2), vi) =: exp(−|vavg − vi|) (5.7)
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5.1 Disjoint Ranking of Quantities and Terms

If the user requires strict bounds, Equation 5.7 can be modi�ed to assign a score of zero to any value
outside the speci�ed range, as shown in Equation 5.8. In this case, only values within the range are
sorted based on the proximity to the average of the lower and upper bound.

Φ[ ]((vx1 , vx2), vi) =:

exp(−|vavg − vi|) vx1 < vi < vx2

0 else
(5.8)

Average of bounds, no sorting: Alternatively, to remove the current sorting based on the average
value, one could simply apply hard �ltering and assign a score of 1 for values within the range and
an exponential decay (or zero score) for values outside, as shown in Equation 5.9. In this case, all
values within the range are equally relevant and their distance to the average is irrelevant. Yet, their
relevance decreases exponentially as they fall out of the valid range.

Φ[ ]((vx1 , vx2), vi) =:

1 vx1 < vi < vx2

exp(−|vavg − vi|) else
(5.9)

Lower/upper bounds, descending order: To sort based on proximity to the lower or upper
bound, we can use a combination of Φ> and Φ<. For ranking values closer to the lower bound
higher, we use the ratio from Φ> as shown in Equation 5.10. This method is particularly suitable
for scenarios like users searching for car prices within a range, where they typically prefer the lowest
possible price within their speci�ed range.

Φ[ ]((vx1 , vx2), vi) =:

vx1/vi vx1 < vi < vx2

0 else
(5.10)

For the exponential decay variation, we change the ratio to the exponential decay of the lower bound,
as shown in Equation 5.11.

Φ[ ]((vx1 , vx2), vi) =:

exp(−|vx1 − vi|) vx1 < vi < vx2

0 else
. (5.11)

The same strategy applies to sorting based on the upper bound, and equations are similar to Equa-
tions 5.10 and 5.11. The only di�erence is that instead of the lower bound value, the upper bound
value is used.

Ascending order: This type of sorting does not make sense for the ranges condition and is therefore
not discussed here.
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5.1.3 Term Ranking

The disjoint quantity-centric ranking requires a separate model for term-based ranking. This part
can come from any lexical or semantic ranker, requiring only normalized scores. Nonetheless, re-
trieval systems rarely care about the normalization of relevance scores between 0 and 1. Not only it
is computationally expensive, but also it does not a�ect the �nal ranking. In the following, we discuss
possible ways to normalize the term ranking scores of various neural and lexical models and integrate
them with the quantity ranking. For a lexical model, we use BM25, discussed in Section 2.1.3, and
for neural models we choose ColBERT and SPLADE, discussed in Sections 2.2.6.1 and 2.2.7.1 re-
spectively, as two representatives of dense and sparse neural rankers.
With recent trends in the retrieval community and the focus on neural models, one might wonder
about the usefulness of pursuing a lexical ranker altogether. The main issue with lexical rankers
stems from their use of one-hot encoding for words. These encodings are incapable of representing
semantics and meaning in their representation, where all words have the same distance from one an-
other. Synonyms, plurals, and miss-spellings are not captured by these models 5, requiring custom
made synonym and spelling variation lists and pre and post-processing of inputs. Ambiguous and
context-dependent words are mapped to the same representation, which causes additional prob-
lems, e.g., “Apple Inc.” and “Apple Pie” are not the same.
We argue that despite these shortcomings of the lexical system, there are still several use cases where
lexical models are a better �t. An example from the DPR paper (Karpukhin et al., 2020) re�ects this
di�erence the best, given the question “Who is the bad guy in lord of the Rings?”, DPR (a neural
model) can successfully return the relevant span “Sala Baker is best known for portraying the villain
Sauron in the Lord of the Rings trilogy" by capturing the semantic similarity between “villain “ and
“bad guy”. However, when it comes to exact matching, lexical models are more e�ective, i.e., key-
words or named entities. Another example from the DPR paper (Karpukhin et al., 2020) re�ects
such a case, given the query “Who plays Thoros of Myr in Game of Thrones?” looking for an exact
lexical match for Thoros of Myr is critical in �nding the correct passage. Dense models often return
noisy data when an exact matching is required, where the exact search terms are not guaranteed to
be in the top-k. This case becomes more extreme when entities or compositions are rare and not part
of the training set.
All things considered, widely used open-source search engines such as Lucene 6 still use lexical matches
as their main search functionality. The unsupervised nature of lexical models, minimum computa-
tional cost, and their domain-independent compatibility make them an attractive option for indus-
trial purposes, in contrast to neural models, which often require expensive GPU power for e�cient
training and inference. To this end, we provide a way to integrate the quantity score with both neu-

5Although stemming and lemmatization are proposed to map the plurals and di�erent verb tenses to the same repre-
sentation, the nature of stem can cause further problems, e.g., the company name “Withings” is reduced to “With”,
which is often removed as a stop word.

6https://lucene.apache.org/ Last accessed: 02.05.2024
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ral and lexical models, such that the user can decide based on their speci�c use cases which model to
employ.

5.1.3.1 Lexical Model

We present a lexical variant of our approach with a probabilistic term-based model, speci�cally BM25 (Robert-
son and Zaragoza, 2009). This is the most prominent approach in many IR systems and thus is easy
to integrate into existing frameworks. BM25 is described in detail in Section 2.1.3, therefore the de-
tails are excluded from this section.
BM25 relies on a term-based index and standard pre-processing steps before the index creation.
These steps include removing punctuation and stop words, converting text to lowercase, and stem-
ming. An inverted index entry is then created for each unique token, linking to a posting list of
sentences containing that token.
BM25 uses the created term-based index and statistics of the corpus to compute the relevance of
query terms to sentences in the corpus. The general calculation of the BM25 score from Section 2.1.3
is adjusted to sentence structure in Equation 5.12. For this study, we consider the commonly used
Okapi BM25 (Robertson et al., 1994; Robertson and Zaragoza, 2009) variant.

BM25(si, Tx) =
∑
t∈s∧Tx

st(1 + k1)

st + k1((1− b) + b.dl
avgdl

)
log
|S| − |St|+ 0.5

|St|+ 0.5
· Txt(1 + k2)

Txt + k2
(5.12)

The BM25 score is unbounded and, depending on the query and statistics of the query terms in a
given corpus, has various minimum and maximum values. In order for the quantity and term-based
scores to be comparable, they must share the same scale. Therefore, we need to normalize the BM25
score. For this purpose, for each individual sentence, the score (BM25(si|Tx)), is divided by the
maximum BM25 score for the query terms across all sentences ( BM25(si,Tx)

maxsi∈S(BM25(si,Tx))
).

To obtain the quantity-centric ranking, the quantity score, calculated using the heuristic functions,
is added to the normalized BM25 score. This �nal score is shown in Equation 5.13 as QBM25
(Quantity-aware BM25). The parameterα controls the impact of the quantity ranking. When set to
zero, the formula falls back to term-based ranking. For higher precision, we restrict the addition of a
quantity score to sentences where all the search terms are present, denoted by the indicator function
1Tx(si). For instance, for the query “Apple Inc. �nancial reports with a yearly pro�t of more than
$2 million”, returning information about a di�erent company would defeat the intended purpose.
If the quantity score is added to all sentences regardless of the lexical matches, then a sentence such
as “Amazon has a revenue of $2.1 million” would get an undeserving high score due to the quantity
proximity, when the textual information does not match the query constraints.

QBM25(si, c, x) :=
BM25(s, Tx)

maxsi∈S(BM25(si, Tx))
+ α1Tx(si)QScore(si, c, x) (5.13)
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5.1.3.2 Neural Dense Model

As described in Section 2.2.6, neural dense models are divided into two main families, term-based
representations and document-level representations. In document-level models, a single embedding
encodes the semantics of a document. In term-based models, token embedding and their interac-
tions are considered for more �ne-grained and powerful retrieval systems. Our quantity ranking
approach is integrable with both term and document-level models. Here, we describe the integra-
tion with the term-level model of ColBERT, described in detail in Section 2.2.6.1. This choice is due
to the same model being used for joint quantity ranking, where token-level interactions are crucial.
The same paradigm is applicable to document-level models.

Recall the similarity computation between the document and a query for the ColBERT model from
Section 2.2.6.1, shown in Equation 5.14. The document representation is swapped with sentence
representations to �t the constraints of our model, and we replaced the generic τ function with
BERT encoders. ColBERT utilizes two BERT (Devlin et al., 2019a) encoders for query and docu-
ment (sentence), where each encoder outputs a list of token embeddings.

ColBERT(si, Tx) =
∑

i∈|BERT(Tx)|

max
j∈|BERT(si)|

BERT(Tx)i · BERT(si)j (5.14)

The ColBERT score is computed with the MaxSim operator, where the maximum cosine similarity
of each token embedding in a sentence with vectors in a query embedding is computed and com-
bined via summation. This value, similar to the BM25 score, is unbounded and requires normal-
ization. However, in the context of neural models, calculating the similarity for the entire corpus
to identify the maximum value for each query is impractical. During ranking, the ColBERT model
does not compute this score for the entire corpus. Instead, ColBERT leverages the pruning-friendly
nature of the MaxSim operator to take advantage of the approximate nearest neighbor search, de-
tailed in Section 2.2.5.2, to return the top-k most relevant candidate sentences (Sk). We employ a
similar approach and compute the maximum score based on the top-k candidate sentences (Sk), to
normalize the score between 0 and 1, ColBERT(si,Tx)

maxsi∈Sk
(ColBERT(si,Tx))

. Subsequently, the quantity score is
incorporated exclusively into the top-k candidates, acting as a second-stage re-ranker, to re-order the
candidate set according to numerical proximity.
The �nal score for each sentence is the weighted summation of the ColBERT score and the quan-
tity score, where α controls the impact of quantity ranking. We refer to this score as Quanity-aware
ColBERT (QColBERT), as shown in Equation 5.15.

QColBERT(si, c, x) :=
ColBERT(si, Tx)

maxsi∈Sk
(ColBERT(si, Tx))

+ αQScore(si, c, x) (5.15)

Note that in comparison to QBM25, the quantity score does not a�ect the entire ranking and is
only applied to the subset retrieved by ColBERT. Therefore, if a relevant sentence is not among the
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top-k the quantity score does not have an impact. To this end, we also present our disjoint quantity
ranking with a sparse neural model, where the quantity score can be directly integrated into the �nal
ranking of all the sentences in the corpus.

5.1.3.3 Neural Sparse Model

Another family of neural retrieval systems is the sparse retrieval models, described in Section 2.2.7.
Like the lexical models, many of these systems end up with a similar inverted index structure to check
for lexical overlap on representations of documents and queries, which is often expanded with new
terms using a neural architecture.
The SPLADE model, detailed in Section 2.2.7.1, extends the document and query terms using the
BERT embeddings and stores the expanded representations in an inverted index. In this index, in-
stead of term frequencies, the importance weights are computed by the BERT model. This char-
acteristic of the SPLADE model makes it well-suited for integration with our proposed quantity
ranking, as the quantity score can be directly incorporated into the �nal ranking.
For each sentence, the SPLADE model computes the sentence embeddings with BERT and passes
it through a ReLU non-linearity and log function to produce a sparse vector over the entire vocab-
ulary. The values in this vector are predominantly close to zero, except for the vocabulary terms that
are deemed important by the BERT model. The query is expanded in the same way, and the simi-
larity between the query and a sentence is based on the sparse dot product of this representation, as
shown in Equation 5.16.

SPLADE(si, Tx) := log(1 + ReLU(BERT((si))) · log(1 + ReLU(BERT((Tx))) (5.16)

This dot product is e�ciently computed for all sentences inside a given corpus by multiplying the
non-zero elements in a query and sentence vector, which are stored in an index structure.
To obtain a score between 0 and 1, the SPLADE score is normalized based on the maximum score for
a given query, SPLADE(si,Tx)

maxsi∈S(SPLADE(si,Tx))
. The �nal ranking for Quantity-aware SPLADE (QSPLADE)

is shown in Equation 5.17 and is achieved by the summation of the normalized SPLADE score with
the quantity score for each sentence. For higher precision, we restrict the addition of a quantity score
to sentences where there is a match between the expanded query terms and sentences, denoted by
the indicator function 1SPLADE(Tx)(si).

QSPLADE(si, c, x) :=
SPLADE(si, Tx)

maxsi∈S(SPLADE(si, Tx))
· α1SPLADE(Tx)(si)QScore(si, c, x) (5.17)

Note that in contrast to the ColBERT model, the quantity score impacts the ranking of all the sen-
tences with a term match to the query and not solely the top-k candidates.
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A framework that disjointly ranks the term-base similarity and quantity proximity has many ad-
vantages. It can be combined with a variety of term-based ranking methods, and does not require
training data or �ne-tuning expensive neural architectures. In the following section, we discuss the
shortcomings of the disjoint approach and motivate the joint ranking of quantities and terms.

5.2 Joint Ranking of Quantities and Terms

The main limitation of the disjoint ranking is the independence assumption between the relevance
of quantities and terms. Assume the example query “iPhone XR below €200”. Since the term-
based ranking is computed independently from the quantity score, both of the following sentences
might receive an inappropriately high score.

• The price of iPhone XR has reached €236.50 over the past month, whereas the older version of
Samsung A14 is as low as €132.00. In this case, the numerical condition is satis�ed but for a
quantity related to a di�erent concept than the one in the query, while the relevant concept
does not satisfy the numerical condition in the query.

• Older versions of iPhone, including iPhone XR have dropped in price with refurbished versions of
iPhone 8 as low as €152.94 on Amazon. Here, the relevant concept has no quantity associated
with it in the text, and the relevant quantity is related to an irrelevant concept.

Both of these cases occur due to the lack of a correct association between a concept and a quantity.
We call this problem the quantity-concept mismatch.
One possible solution is to utilize the full output of CQE during the creation of the quantity index
and to consider the concepts as well as units. More precisely, the inverted index for the quantity can
be extended to a triplet of (concept, unit, value), pointing to sentences containing all three. This in-
dex can be used instead of the quantity index described before, for both term and quantity ranking.
However, this solution has a few shortcomings. Concepts are multi-token spans and indexing them
as single tokens results in a signi�cant increase in index size, thus, reducing the performance. Addi-
tionally, this index structure inherits all the typical issues of traditional lexical-based systems, such
as vocabulary mismatches in concepts and errors from stemming and lemmatization. Furthermore,
any errors in concept detection will propagate to the retrieval phase, and because we limit the search
context to detected concepts, recall might drop dramatically. A better solution is to seek a way to
remove the quantity and term separation and score sentences based on the entire context of a query.

De�nition 5.3. (Joint Quantity-centric Ranking).
Given a quantity-centric query (as defined in Definition 5.1), the relevance, r(si|x), of a sentence si to
a query x in a joint quantity-centric ranking is defined as

r(si|x) ∼ sim(τ(x), τ(si)) = simc(τ(Tx, qx), τ(Ti, Qi)).

158



5.2 Joint Ranking of Quantities and Terms

The similarity function simc is dependent on the query condition c, and ranks the textual content as
well as the quantity proximity. τ is a generic function that maps the query and sentences in a given
corpus to their representations.

Regarding the choice of τ , lexical models are not ideal. These models assume independence between
all tokens in a document (or sentence) and query, making them unsuitable for modeling inter-token
dependencies. In contrast, neural retrieval models based on the transformer architecture account for
the inter-dependencies of tokens within the entire context. These models learn patterns and relation-
ships as long as examples are provided to them in the training set. As mentioned in the motivation of
this chapter, the current retrieval benchmark lacks quantity-centric queries and thus suitable train-
ing data for this task is not available. Therefore, it is unknown if the lack of quantity understanding
in this model is due to a lack of task-speci�c training data or if the token representation and model
architecture of current systems prevents them from learning numerical comparisons 7. We aim to
answer this question by designing a data generation paradigm for quantity-centric ranking, using
the CQE framework. We automatically generate queries from the concepts and quantities in the
corpus and create positive and negative sentences through value and unit permutation.

The designed framework aims to provide positive and negative examples of cases where dense models
make the most mistakes. After interacting with the dense models and investigating the error cases,
two main sources of errors were identi�ed:

• Dense models are unable to perform value comparisons given numerical conditions. For the
example query “iPhone X with a price lower than 880€”, the models ignore the less than
condition, where sentences containing both an “iPhone X with 990€” or with “iPhone X
with 500€” are ranked unjusti�ably high.

• Traditional training paradigms based on the topic similarity between query and document on
dense models back�re in the case of units. For the example query “iPhone X with a price lower
than 880€”, if the corpus contains many instances with dollar or other currencies, sentences
containing those currencies can be ranked higher than sentences containing euro as a unit,
due to the semantic similarity of currency units.

As a result data generation is focused on providing contrastive examples for such cases by means of
data augmentation. In the following subsections, we go over the data and query generation process.
Neural models �ne-tuned on this task-speci�c dataset exhibit a better understanding of numerical
conditions and quantities in text.

7In Section 3.3.1, we mentioned several related work that point out the shortcoming of current word embedding and
transformer models in dealing with numbers in text. While keeping those shortcomings in mind, Wallace et al. (2019)
also point out that most neural embeddings work decently on numeracy tasks for values in the range of training set.
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5.2.1 Joint Quantity Ranking Training Paradigm

The data generation is speci�cally designed to enhance (1) value comparisons and (2) understand-
ing of unit surface forms, by generating positive and negative sentences through augmentation. Data
augmentation is a prominent method for generating additional, synthetic data and is widely used in
computer vision. In recent years, data augmentation has also been used in NLP tasks, e.g., in back
translation (Sennrich et al., 2016a). In Section 3.4, GENBERT and ENCORE models (Geva et al.,
2020; Wang et al., 2024) were mentioned that utilize templates to generate pre-training data for
a question answering system capable of numerical reasoning on text and table. GENBERT shows
that by pre-training the BERT model on automatically generated synthetic data with numerical tem-
plates, the model’s numerical reasoning is enhanced without resorting to specialized architectures.
In this section, we follow the same approach by adding a �ne-tuning step with automatically gener-
ated data to improve the quantity understanding in current retrieval models without the change in
architecture.
Following the terminology of Geva et al. (2020), we also view our approach as data augmentation.
However, given that we are perturbing values and units in a sentence, one might alternatively label
this approach as data perturbation. Alternatively, due to enriching the sentences with quantity in-
formation context enrichment or data expansion might come to mind. However, for the remainder
of this chapter, we stick to the notion of data augmentation.
The pre-requisite for this data generation paradigm is a dataset rich in quantitative information and
an extractor capable of identifying values, units, and related concepts. The CQE framework from
Chapter 4 provides us with the necessary extraction capabilities, and it is utilized for data generation.
The same paradigm can be applied with any other extractor, provided that the essential elements are
successfully extracted.
The data generation pipeline has three main stages:

1. Quantity Extraction: A quantity extractor is used to enrich the corpus with quantity infor-
mation by extracting values, units, and related concepts from each sentence.

2. Query generation: By utilizing the quantity information related to concepts in the corpus, and
a set of templates, a set of quantity-centric queries is generated.

3. Sample generation with value and unit permutation: For each query, additional positive and
hard negative samples are generated by permuting the values and units in sentences.

In the following, we describe each step in more detail.

5.2.2 Quantity Extraction

The �rst step is enriching the corpus with quantity information by means of a quantity extractor.
The documents are split into sentences and each sentence is fed independently to CQE to extract
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Figure 5.7: Overview of the quantity tagging step and creation of concept/unit index structure, where the red
arrows signify the peak in the distribution and the yellow box shows the values around the mean.

values, units, and related concepts. Based on the extracted quantities, the corpus is transformed
into an index-like structure based on the related concepts and units. We refer to this structure as
concept/unit index. The index keys are concept/unit pairs that refer to the same quantity. Each key
points to a list of values associated with the concept/unit and a list of the sentences in which they
appear. This list of values represents the distribution of values for a given concept and unit. For
example, an entry in the index from the dataset used in the evaluation is shown below.

{("cannabis company", "cent per share"):
{"values":[1.4, 17.0, 17.0, 22.0, 26.0, 35.0, 84.0],
"sentences":["The cannabis company says the loss amounted to 0.9 of a cent per share for
the quarter ended May 31 compared with a loss of 4 million dollar or 1.4 cents per share a
year earlier .",
"The cannabis company says its loss amounted to 17 cents per diluted share for the quarter
ended Jan. 31 .",...]}}

Note that repetitions of values for the same concept/unit pair are stored as duplicates to maintain
the frequency distribution, e.g., the value “17.0” is stored twice as it occurs in two distinct sentences.
The steps in the creation of the concept/unit index are illustrated in Figure 5.7. The corpus is pro-
cessed with CQE to extract values, units, and concepts from each sentence, where sentences sharing
the same unit and concept are grouped into a list, along with values represented as a distribution.
We take advantage of this index in the next steps to generate queries and training samples.

5.2.3 Query Generation

The queries for the training set are created by processing the concept/unit index. For each concep-
t/unit pair, three queries, one for each condition, equal, less than, and greater than, are created with
the template:

query = {concept} {numerical_condition} {unit_before}{value}{unit_after}.

The variables enclosed in the brackets are populated during query generation. For more clarity, we
also provide an algorithmic view of the query generation in Algorithm 1 and explain in the following
how each placeholder is �lled.
A quantity-centric query has three main elements, a quantity (value/unit pair), a concept that the
quantity is referring to, and a numerical condition imposed upon the value of the quantity. The
concept/unit index derived from the quantity extraction stage provides a list of typical concepts and
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units in the corpus and the range of values commonly associated with them. Utilizing this distribu-
tion of values as a reference, we select values to satisfy three numerical conditions (equal, less than,
and greater than). Queries for ranges are more complex and we leave this matter for future work. For
each concept/unit pair, three queries, one for each condition, are created with the given template.

Algorithm 1 Query Generation
function generate_query(conc, unit, condition)

v ← get_query_values(conc_unit_dict, condition) . select a value

u_b, u_a← get_unit_surfaceform(unit) . select unit surface form

c← get_condition_surfaceforms(condition) . select wording of the condition

query ← conc+ c+ u_b+ v + u_a

return query

end function

conc_unit_dict← concept/unit index

conc_expand_dict← concept expansions

for (concept, unit) in conc_unit_dict do: . for all concept/unit pairs

for conc in [concept, conc_expand_dict[concept]] do: . �nd expansion

for condition in (equal, greater, less) do: . for all conditions

GENEARATE_QUERY(conc, unit, condition)

end for

end for

end for

Unit: The concept/unit index contains normalized units. Consequently, if we rely solely on the
surface form of the unit within the index, our training data would only include a single surface form
per unit. To account for variability in the representation of units, we utilize a dictionary of unit
surfaces provided by CQE to augment the query value with di�erent surface forms. To this end, a
surface form of the query unit is chosen randomly from a dictionary of units, e.g., “€” is a surface
of the unit “euro”. Unit surface forms include symbols and abbreviations, which can appear before
or after a quantity value. Hence, two placeholders are used in the query template for units, where
one is left empty in each query. unit_before and unit_after account for symbols appearing before,
e.g., “€” and abbreviations after a value, e.g., “EUR”.

Value: Each entry in the concept/unit index points to the sentences and list of values that co-occur
within a given corpus. To generate samples, we need both positive and negative instances per query.
By choosing query concepts and units from the index, we guarantee the presence of supporting
sentences containing their co-occurrence. Yet, to �nd positive sentences, the value and the numerical

162



5.2 Joint Ranking of Quantities and Terms

Figure 5.8: An example value distribution from the concept/unit index, the peaks of the distribution marked
with red arrows are suitable candidates for queries with equal conditions. The values close to the
average, marked with a yellow box are suitable candidates for the bound-based conditions, less than
and greater than.

condition should also be satis�ed. Therefore, selecting the query value becomes crucial to ensure the
presence of supporting sentences in the index. We propose the following strategy:

• Equal query: For the equal query, the challenge is to �nd enough positive samples, since there
is an abundance of not equal values in each distribution. The values with the highest fre-
quency, representing the peaks of the distribution, are determined based on the number of
sentences containing them. Therefore, for each concept and unit pair, values for equal queries
are selected from the most frequent values. This process is illustrated in Figure 5.8, where the
values at the identi�ed peaks (indicated by red arrows) are selected for the query with equal
condition. In this manner, we make sure that there are enough positive samples in the corpus
for the data augmentation.

• Less than and greater than queries: These numerical conditions correspond to bounds and
cover a range of values. For such queries, we avoid infrequent values towards the tail of the
distribution, to avoid too few positive or negative samples. Optimal candidates for satisfying
these bounds are values close to the average, ensuring a broader coverage of values within the
speci�ed limits. Selecting infrequent values towards the tail of the distribution may result
in inadequate supporting sentences. In Figure 5.8, for instance, values close to the average
(highlighted in a yellow box) are chosen for the queries with conditions based on bounds.

To avoid systemic bias by focusing on the most frequent values, we generate a second set of queries
by picking the values at random.
To account for variability in representation, large values that have multiple written surface forms are
randomly replaced with their written form in the query template. The written form may take the
shape of a composite of numbers and post�xes, such as "10 million," or include commas for conve-
nient digit separation, for instance, e.g., “10,000,000”. This variability occurs only for values above
1000. Decimal numbers, on the other hand, possess a singular representation, e.g., “10000” can be
represented as “10,000” or “10k” or “10 thousand” but “10.2” has only a single representation.
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Numerical Condition: A numerical condition is a phrase in natural language indicating a bound
on a quantity. For this purpose, a surface-form dictionary is established for the three numerical con-
ditions, and the corresponding placeholder is populated with surface forms randomly selected from
this dictionary. The dictionary is shown in Table 5.1, containing multiple surface forms for each
condition. This list is not comprehensive but provides enough variety for query generation.

Table 5.1: Numerical conditions used for query generation and their surface forms.

Condition Surface forms

Equal exactly, exact, equals, equals to, for, with, of, at, =
Greater than greater than, more than, above, larger than, over, higher than, exceed, exceeding,>
Less than smaller than, below, less than, fewer than, no more than, beneath,<

Concept: Queries generated by taking a concept from the concept/unit index are guaranteed to
have positive samples in the corpus. However, the concept extraction in CQE identi�es multi-word
spans in a sentence as concepts, and utilizing them directly for query generation overlooks the nu-
ances of semantic queries. For example, in the sentence “Walt Disney Co. launched Disney+ in
November, charging $6.99 a month for access to its trove of �lms and shows .”, “Disney+” is the
extracted concept for the quantity “(6.99, dollars per month)”. A valid query in this case would be
“Disney+ equal to $6.99 a month”. Nonetheless, “Disney+” falls under the umbrella of streaming
platforms, encompassing entities like “Net�ix” and similar media services. Hence, if a user searches
for “streaming platform equal to $6.99 a month”, the same sentence should be retrieved as relevant.
Relying exclusively on queries with exact matching keywords in sentences poses a risk of biasing the
trained models toward keyword search and away from semantic search. To avoid such a case, we
add concept expansion to the query generation pipeline, where a large language model like GPT-3 is
used to generate synonyms or synsets for a given concept. The expansions are generated before the
actual query generation process, from the list of extracted concepts in the concept/unit index, and
stored in a dictionary for e�cient use. In conjunction with exact matching keywords, these expan-
sions generate semantic queries. For each expanded concept, new value and unit surface forms are
sampled to generate a semantic query for each numerical condition.
For example, consider the concept/unit pair “(Apple Inc Gross Pro�t Margin, percentage)” that
points to the value distribution “[26.70, 26.70, 26.70, 26.70, 22.46, 38.51, 38.51, 44.52, 45.17,
45.88, 45.88, 45.88]”. The following lists six random queries that can be generated:

1. Apple Inc Gross Pro�t Margin = 26.70%

2. tech company GM exactly 45.88 percent

3. Apple Inc Gross Pro�t above 38.51 pct.

4. tech company GM over 22.46%
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5. Apple Inc. Gross Pro�t below 44.52 percentage

6. tech company GM under 45.88 percent

Figure 5.9: Overview of the query generation pipeline, using the output of the quantity tagging stage and a
large language model for concept expansion.

The complete query generation pipeline is depicted in Figure 5.9. The concept/unit index from the
previous stage is used on one hand to select values and units for numerical conditions. On the other
hand, a large language model is used to expand concepts and avoid lexical queries. The template
generation block combines all the outputs to formulate three queries for each unit and concept pair.
For expanded concepts, new values are sampled from the value distribution and a new set of queries
is formulated for each numerical condition.

5.2.4 Sample Generation with Value and Unit Permutation

Semantic retrieval systems consider an entire context to �nd a fuzzy relevance to the query at hand.
Often, this aligns well with the user’s expectations. For instance, when searching for a “dark color
evening dress”, any dress that can be worn as an evening gown and has a dark color would be suit-
able. But as soon as the user becomes more speci�c like “blue evening dress”, the embedding space
could also bring a similar color like “teal” into the search result. Depending on the user’s �exibility
regarding the dress color, this behavior may or may not be desirable. Such hard constraints are chal-
lenging for neural models. Quantity-centric queries compose hard constraints on values and units,
where the fuzzy matching of context might do more harm than good. For instance, when searching
for a “car with more than 320 hp”, if the results contain a car with “360 brake horsepower” instead
of horsepower the result is irrelevant. Both horsepower and brake horsepower are used in similar
contexts but correspond to di�erent properties. Horsepower measures the power generated by the
engine, while brake horsepower measures how much of the power produced by the engine is sent to
the wheels which makes the car accelerate. Another common problem is with currencies. Given that
monetary values often appear in similar contexts, it becomes challenging for a model to di�erentiate
between various currency units. Hence, it is crucial for a model to grasp the signi�cance of units in
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Figure 5.10: Overview of the sample generation using value and unit permutation.

alignment with the query context.
The second essential point is the constraints on numerical values. The model must possess the abil-
ity to compare the magnitude and scale of the value in a query with the values in sentences. When
searching for a “car with more than 320 hp”, a sentence containing “310 horsepower” is irrelevant
under the greater than condition.

Both of these criteria need to be represented in the training data, with contrastive examples enabling
the model to learn the correct ranking strategy. An outline of our sample generation pipeline for
positive and negative examples is shown in Figure 5.10. The inputs of this stage are the generated
queries and the concept/unit index. For each quantity-centric query, beyond the positive and neg-
ative samples obtained from the dataset, additional samples are generated through unit and value
permutation, where the unit surface forms are chosen from a dictionary provided by CQE.
The initial positive and negative samples are sourced from the list of sentences associated with each
concept and unit pair in the concept/unit index. Applying the query condition to the list of values
allows for generating a list of sentences that either conform to or violate the condition. The original
positive and negative samples are then chosen at random from such a list.
The same list is utilized as seed samples for data augmentation. Unit and value permutation are
employed to generate augmented positive and hard negative samples. Hard negative are positive
samples, where the unit or value is perturbed to violate the query condition.
The steps are presented in Algorithm 2 for a more structured understanding. Each sampling mech-
anism is encapsulated within a distinct function, and the �nal training samples are the union of all
generation mechanisms. In the following, we describe each step and function in more detail.
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Algorithm 2 Sample Generation
s−← set of sentences violating the query condition

s+← set of sentences conforming the query condition

n← sample size

function original_sampling(s+, s−, n)

return sample( s+,n), sample( s−,n) . sample n sentences

end function

unit← query unit

n← sample size

s+← set of sentences conforming the query condition

function unit_permutation(s+, n, unit)

su+ ← replace_same_unit_surface(s+, unit)

su− ← replace_other_unit_surface(s+, unit)

return sample( su+,n), sample( su−,n)

end function

condition← query condition

v← query value

values← list of values for query unit and concept

n← sample size

s−← set of sentences violating the query condition

s+← set of sentences conforming the query condition

function value_permutation(s+, s−, n, values, v, condition)

su+ ← replace_with_positive_value(s−, v)

su− ← replace_with_negative_value(s+, value, condition)

return sample( sv+,n), sample( sv−,n)

end function

conc_unit_dict← concept/unit index

queries← list of queries

n← number of samples

for (concept, unit, condition, value) in queries do: . for each query

s← conc_unit_dict[(concept, unit)]

s+, s− ← �lter_based_on_condition(s, condition, value)

so+, so− ← ORIGINAL_SAMPLING(s+, s−, n)

su+, su− ← UNIT_PERMUTATION(s+, n, unit)

sv+, sv− ← VALUE_PERMUTATION(s+, s−, n, values, v, condition)

sf+ = so+ ∪ su+ ∪ sv+, sf− = so− ∪ su− ∪ sv−
end for
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Look-up: Given a query containing a quadruple (concept, unit, condition, value), a lookup is con-
ducted in the concept/unit index to retrieve the sentences and the distribution of values associated
with the concept and unit speci�ed in the query.

Positive and Negative Sentences List: The obtained sentences are divided into positive (s+) and
negative (s−) lists, based on the numerical condition. s+ contains sentences where the values satisfy
the query condition, and s− contains sentences violating the query condition. For instance, given
the equal condition, if the sentence value (vs) is equal to the query value (vi=), it will be part of s+.
Conversely, if vs violates the condition (vs 6= vi=), it is included in s−.

Original sampling: With sample size n, sentences are randomly selected from s+ as positive sam-
ples (so+) and from s− as negative samples (so−). These samples are added to the training set as origi-
nal positive and negative examples. If the number of available sentences in the positive list or negative
lists is smaller than the sample size, a downsampling procedure is implemented. When |s+| < n or
|s−| < n, the sample size is reduced to the smallest number of available samples.

Unit permutation sampling: This method generates positive and negative samples to cover diverse
unit surface forms using CQE’s unit dictionary. Positive samples contain various surface forms of
the unit in the query (ui), while negative samples include surface forms of other units in the same
family as the query unit, creating negatives. The unit permutation is applied to only the positive
sentence list, with n samples chosen from s+.

• Positive samples (su+) are formulated by substituting the unit in positive sentences (s+) with
other surface forms of the same unit in query ui.

• Negative samples (su−) are created by replacing the unit in positive sentences (s+) with a
surface form of a unit di�erent from the query unit (ui) but belonging to the same family.
The unit families are de�ned by the CQE framework, where there is a grouping of the units
based on the property they measure. For example, “pace”, “meter”, “yard”, “inch” and “foot”
all belong to the same family of “length”. Sampling the surface form from the same family
ensures a �ne distinction between unit types, even in similar contexts.

Permutations of the noun-based units are rather limited, where the positive samples are left un-
changed and negative samples are generated by random replacement with another noun-based unit
from the corpus. For instance, in the sentence “I ate 3 apples”, the unit “apple” remains the same
for positive instances, and for negative permutations, we consider all the other noun-based units in
the corpus as possible permutations.

168



5.2 Joint Ranking of Quantities and Terms

Value permutation sampling: This permutation emphasizes the importance of the value compari-
son and numerical conditions, highlighting that sentence relevance depends on whether the sentence
value satis�es the query condition or not.

• Positive samples (sv+) are formulated by permuting the values in negative sentences (s−),
maintaining the correct concept and unit and adjusting the value to satisfy the condition.

• Negative samples (sv−) are generated by permuting the values in positive sentences (s+). In
this case, the unit and concept align with the query but the value is permuted to invalidate
the query condition.

The replacement values are sampled from the values in the concept/unit index, mirroring the under-
lying distribution of the relevant quantity. It is crucial that the permuted values obey the original
value distribution of the corpus. The properties of concepts are often limited to a speci�c range,
e.g., the value “10000” is unreasonable for the percentage rate of unemployment. Moreover, certain
values are on a discrete scale with limited options, e.g., “RAM of a laptop” is limited to distinct val-
ues such as 4, 8, and 16. Assigning a random number outside this range, like 10, would be unlikely.
Therefore, for the synthetic data to obey the rule of the real-world dataset and re�ect the distribu-
tion of di�erent properties, the permuted values are chosen from the values observed in the corpus.

Aggregate: The �nal set of positive (sf+) and negative (sf−) samples for each query is the union of
all samples generated from the original sampling, value and unit permutation, sf+ = so+∪su+∪sv+
and sf− = so− ∪ su− ∪ sv−.

The models reported in the evaluation use a combination of original sampling with unit permu-
tation and concept expansion on the query. Value permutation did not show stable performance
gains, which we attribute to the di�culty of numerical representations in dense models. A more
elaborate discussion on this topic is given in Section 5.4.6.

With both the query and sample generation, a training set of augmented data is generated that con-
tains queries for the three numerical conditions as well as contrastive examples. This training set can
be paired with any neural retrieval architecture to enhance the quantity understanding with addi-
tional �ne-tuning. Since the generated data focuses only on queries with numerical conditions, this
set alone is not enough to acquire a full-�edged retrieval model. It is best to use the generated data
for an extra �ne-tuning step using an already trained checkpoint on general domain queries. The
models discussed for the joint quantity ranking in the evaluation are trained in this manner.
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Figure 5.11: Overview of a vanilla RAG pipeline, where the context passages or documents are retrieved using
a retriever and passed to a language model along with the question.

5.3 Integration into RAG Pipeline

The evolution of large language models in recent years has touched the �eld of NLP, including re-
trieval systems and QA. Within this landscape, one prominent application is integrating external
knowledge sources with the help of retrieval models to a language model, this method is referred to
as Retrieval Augmented Generation (RAG) (Guu et al., 2020; Lewis et al., 2020).
In this section, we consider RAG with quantity-centric ranking as a downstream application of our
ranking models and discuss their applicability to answer quantity-centric questions. We begin with
a brief overview of current research in this domain and then describe our integration.

5.3.1 What is RAG?

Large language models, trained on millions of documents, capture a vast amount of knowledge
about the world, enabling them to answer questions without relying on external data sources. How-
ever, this knowledge is con�ned to the training data. As a result, they lack the ability to address ques-
tions about events occurring after their training or in domains not covered by their training corpus.
There is also a struggle to memorize knowledge that is rarely mentioned (Kandpal et al., 2023) and
their memory cannot be easily updated or erased. Furthermore, since model parameters o�er no
insight into predictions, identifying issues when incorrect answers are generated or hallucinations
occur can be challenging (Marcus, 2020).
One solution to these problems is to couple the language model with an external memory, as done
in a RAG pipeline. In RAG, the language model is contextualized by relevant passages retrieved
from an external corpus. These passages, along with the original question, are then provided to
the language model for answer generation. By providing access to an external knowledge base, the
language model does not have to rely solely on the knowledge encoded in its parameter but can an-
swer questions from an unknown domain or recent data. Furthermore, by grounding the answer on
the retrieved passages, the origin of the response becomes clearer. This reduces instances of halluci-
nation and provides attribution by referencing the speci�c document from which the answer was
derived. A general RAG pipeline is depicted in Figure 5.11. The retriever can take the form of either

170



5.3 Integration into RAG Pipeline

a traditional index structure or a dense neural model. RAG systems can be categorized into three
types based on which part of the pipeline is updated during task-speci�c training: Frozen RAG, RAG
with contextualized retriever, and RAG with both contextualized retriever and generator. Below, we
elaborate on these approaches.

5.3.1.1 Frozen RAG

In the frozen RAG (Borgeaud et al., 2022) approach, no training is performed. Both the language
model and the retriever have been trained independently beforehand and are now coupled together
in a pipeline similar to Figure 5.11. This method heavily depends on the language model’s capability
for in-context learning (Brown et al., 2020), enabling it to adjust and generate responses according
to the given context. The accuracy of a response depends on two key factors: �rstly, the retriever’s
ability to �nd the correct context, and secondly, the language model’s adaptability in leveraging this
context to produce the correct answer.

Outside academic settings, frozen RAG is a paradigm used most often, and a variety of methods
have been proposed to enhance the quality. The e�orts mainly focus on methods to enrich the re-
trieved chunks of data with additional context or fuse the output of di�erent retrieval models, often
referred to as advanced frozen RAG. The main advances in this domain come from the developer
community and frameworks such as LlamaIndex 8 and LangChain. 9 In the following, we point to
a few approaches in this domain:

Context enrichment: Retrieval units depend on how the data is chunked and play an important
role both for retrieval and generation. Splitting must be done in a way that ensures enough con-
text for the language model to reason upon but it is speci�c and small enough for e�cient search.
One approach is to adjust the chunk size di�erently for retrieval and generation tasks. Retrieval can
be performed on smaller chunks, with additional surrounding context later added for the language
model to reason. Two common methods for incorporating additional context include sentence win-
dow retrieval and parent document retriever (Gao et al., 2023b).
In sentence window retrieval, once the most relevant sentences are identi�ed, the context is expanded
by including k sentences before and after each retrieved sentence. This extended context is then sent
to the language model for reasoning and answer generation.
Parent document retriever also known as auto-merging retriever follows a similar concept. In this
approach, documents are split into smaller child chunks, which correspond to larger parent chunks,
e.g., paragraphs. If more than n chunks within the top k retrieved chunks are associated with the
same parent, the context is replaced with the larger parent chunk.

8https://www.llamaindex.ai/ (last accessed 02.05.2024)
9https://www.langchain.com/ (last accessed 02.05.2024)

171

https://www.llamaindex.ai/ 
https://www.langchain.com/


5 Quantity-centric Ranking

Hierarchical indices: With a large collection, there is the need to e�ciently search, �nd relevant
information, and synthesize it into a single answer. A hierarchical index essentially consists of two
indices: one for summaries and another for document chunks. The retrieval is performed in two
steps, by �rst composing a candidate set of the relevant documents by �nding relevant summaries
and then searching inside this relevant group.

Hypothetical questions and HyDE: Gao et al. (2023a) propose an idea to �x hallucination through
purposeful hallucinations. Given a query, the language model is asked to generate hypothetical an-
swers. The embedding of the hypothetical answers is then used to �nd relevant chunks in the cor-
pus. The reverse of this is also possible, where the language model is asked to generate a question for
each chunk and embed these questions in vectors. The chunk vectors are replaced with generated
question vectors in the index and utilized for retrieval. After retrieval, the original chunks are used
as context for the language model. These methods improve the quality of retrieval since there is a
higher semantic similarity between query and hypothetical questions compared to an actual chunk.

Fusion retrieval or hybrid search: This method combines the classical retrieval and neural re-
trieval models using reciprocal rank fusion (Rackauckas, 2024). To properly combine the score
of the two models Reciprocal Rank Fusion algorithm (Cormack et al., 2009) is used. Hybrid or
fusion search usually provides better retrieval results as two complementary search algorithms are
combined, taking into account both semantic similarity and keyword matching between the query
and documents.

Re-ranking and �ltering: Similar to two-stage retrieval systems, a re-ranker can be used to re�ne
the results (Nogueira and Cho, 2019). The choice of re-ranker can vary from another large language
model with zero-short ranking capabilities or a trained cross-encoder (Déjean et al., 2024).

Query transformations: These are a family of techniques using language models as a reasoning
engine to modify user input in order to improve retrieval quality (Zhou et al., 2023; Trivedi et al.,
2023). For example, if the query is complex, the language model can decompose it into several sub-
queries, e.g., for the question “Is the unemployment rate of the UK higher than the US?”, it is un-
likely to �nd a direct comparison in some text. It is better to decompose this question into two
sub-queries to �nd the unemployment rate in the UK and the US and then compare them. Other
forms of query transformations are Step-back prompting (Zheng et al., 2023), which uses a language
model to generate a more general query, and Query re-writing, which uses a language model to re-
formulate the initial query.

For our experiments, we focus on the frozen RAG setting but provide a brief introduction to other
RAG types as well.
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5.3.1.2 Contextualizing the Retriever

Another family of methods aims to adapt the retriever for the generator without the need to alter the
weights of the generator itself. One example of this is the RePlug model by Shi et al. (2023), where
the retriever is trained using the output of a frozen language model as supervision. During training,
the generator language model is used as a ranking function to measure how much each document
could improve the language model’s perplexity. For each retrieved document, the perplexity of the
ground truth output answer given the input context is computed using the generator, and the re-
triever is trained by minimizing the KL divergence between the perplexity of the document and the
retrieval score for that document. The advantage of this approach is that it works well for any type
of generator and retrieval method and is not restricted to a speci�c model type.
Another approach in this domain is In-Context RALM (Ram et al., 2023), which is essentially a
frozen RAG with BM25 and a trained ra-ranker. In this case, the BM25 model and generator are
left untouched but back-propagation is performed on the weights of the re-ranker to increase the
probability of retrieving the document that produces the correct answer.

5.3.1.3 Contextualizing the Retriever and the Generator

In this scenario, both the retriever and generator are optimized and the entire architecture is contex-
tualized. One of the �rst methods in this domain was proposed by Lewis et al. (2020), where both
the generator and the retriever are updated during training. Two methods were proposed based on
the timing of the retrieval process: the RAG sequence model and the RAG token model. In the
RAG token model, a new context is retrieved before generating each token. In contrast, the RAG
sequence model requires only a single retrieval to generate an entire sequence. They showed that op-
timizing the whole pipeline works substantially better than any frozen variant. Later, methods such
as FLARE (Jiang et al., 2023) advise to not prescribe the time of retrieval but to let the language
model learn when to rely on retriever knowledge for a generation.
Another example contextualizing both retriever and generator is the KNN-LM model (Khandelwal
et al., 2020), which extends a pre-trained language model by linearly interpolating it with k-nearest
neighbors from a corpus. The idea is to interpolate between the parametric memory of the language
model and the non-parametric memory of the corpus to re-weight the language model generation
probability. Given an input text, the model generates the output distribution over the next words
and the retriever �nds its k-nearest neighbors. Based on the distance of the input and retrieved con-
text and the frequency of tokens, a probability distribution over the tokens in the retrieved context
is created, which is interpolated with the language model’s next-word generation probability.
In the mentioned methods the update would only take e�ect for the query encoder. The REALM
model (Guu et al., 2020), which was published before the hype of RAG models, was the �rst that
introduced a way to update the document encoder. REALM is a BERT-based language model aug-
mented with a retrieval component. For pre-training, the masked language modeling is altered to
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Figure 5.12: Overview of the RAG pipeline for our quantity-aware model involves retrieving context sen-
tences using a retriever, contextualizing them with paragraphs, and then passing them along with
the input question to a language model to generate an answer.

predict salient spans such as named entities or dates, using the retrieved evidence from the corpus.
Since updating the document encoder requires re-indexing the entire document collection, the au-
thors perform asynchronous updates after certain batches of training. This involves re-embedding
and re-indexing all documents every few hundred training steps.

5.3.2 Quantity Ranking with Augmented Generation

A retriever’s ability to �nd the relevant context is an essential part of a RAG system. As the work of
Liu et al. (2023) highlights even the order in which the context is presented to the language model
has an impact on whether the correct information is utilized during answer generation. Liu et al.
(2023) emphasize the beginning and the end of the context is most important and the information
in the middle is somewhat lost during generation in frozen RAG settings.
Finding the correct context for questions that contain numerical conditions depends on the retrieval
system’s ability to deal with quantity-centric queries. For example, for a quantity-centric question
of “Which states of the united states have unemployment rate less than 6%?”, the ranking model
should retrieve text chunks for “unemployment rate” that satisfy the numerical condition. If the
retrieved chunks have topic relevance (information about the unemployment rate in various states)
but incorrect quantities (unemployment rate does satisfy the condition of less than 6%), then the
generation model is unlikely to produce the correct response.
To investigate the impact of a quantity-centric retrieval in a RAG setup, we propose to replace a
general domain retriever with a quantity-aware one for answering quantity-centric questions (the
red block in Figure 5.11). We focus mainly on a frozen RAG set-up with a hierarchical index for
context enrichment in the form of a child-parent chunk retrieval. In this case, the retrieval units
remain as sentences but each retrieved sentence is enriched by the content of the parent paragraph
and a paragraph before and after. For retrieving the surrounding context, a hierarchical index is
created as shown in Figure 5.12, where the retrieval is performed on the child index and the parent
index is only utilized for context enrichment in the form of surrounding paragraphs.
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Since we focus on frozen RAG, neither the retriever nor the generator are �ne-tuned. We leave such
endeavors for future work.

5.4 Evaluation of Quantity-centric Ranking

In this section, we evaluate our models against various baselines on ranking performance, and down-
stream performance (in a RAG setting).
The absence of task-speci�c models leads us to assess our quantity-aware models only against general
domain lexical and neural models. Moreover, the lack of benchmark data for this task is addressed by
introducing two English resources named FinQuant and MedQuant. To the best of our knowledge,
these are the �rst quantity-centric benchmarks for quantity-aware IR.
For the evaluation of quantity-centric ranking, we start with an overview of the baselines employed
for comparison in Section 5.4.1, followed by a detailed presentation of the datasets developed for
this task in Section 5.4.2. We provide a comprehensive evaluation of our joint and disjoint mod-
els on FinQuant and MedQuant datasets. To this end, we �rst introduce the evaluation metrics
commonly used in IR in Section 5.4.4 and motivate the metrics we chose for comparison. The eval-
uation in Section 5.4.5 reports the comparison of the general model performance of FinQuant and
MedQuant datasets, as well as subsets of the data. The subsets are designed to compare models on
handling semantic versus lexical queries, and across di�erent numerical conditions.
In the description of the joint quantity-aware ranking, we provided various data generation strate-
gies. In Section 5.4.6, we provide an ablation study on these strategies for choosing the best combi-
nation. Moreover, to investigate whether task-speci�c �ne-tuning has shifted the ranking strategy of
the neural models to pay attention to quantity tokens (values and units in the text), in Section 5.4.7
we look at the impact of masking tokens related to quantities on the overall ranking performance.
In order to look at the e�ect of quantity-aware ranking in the context of RAG systems, in Sec-
tion 5.4.8, we introduce the relevant metrics for assessing the quality of a generated answer. Then,
the factual consistency and correctness of answers for a set of 42 questions quantity-centric ques-
tions is assessed and reported.
The code for all the models discussed here and the FinQuant and MedQuant datasets are available
in our repository: https://github.com/satya77/QuantityAwareRankers.

5.4.1 Baselines

Our baselines are divided into lexical and neural models.

Lexical models: The lexical rankers include a BM25 and a BM25filter variant. For the lexical mod-
els, the corpus and the test queries undergo pre-processing steps to normalize the unit surface forms
in the text, e.g., all instances of “km/h”, “kilometre per hour” or “kilometer an hour” is replaced
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with “kilometer per hour”, such that the di�erence in unit representation does not hinder the base-
lines from �nding the correct result. As a result, the units in the corpus as well as the unit in the
query text are normalized, such that the inverted index in the lexical models can easily map the cor-
rect unit. BM25filter has a separate numerical index for quantity values, where the distinct values in
the corpus are the keys of the index and point to sentences containing them. This index is utilized
to eliminate the results of BM25 where the query condition is not met. This method resembles nu-
merical indices from databases, focusing on �ltering rather than ranking.

Neural models: Our neural baselines include the trained checkpoints of SPLADE and ColBERT
as well as Coherev3 10. SPLADE and ColBERT checkpoints are trained on general-purpose retrieval
datasets, which lack quantity-centric queries. For both models, we utilized the best-performing
checkpoints provided by the authors.
Coherev3 embeddings are provided through the Cohere API and are included to show that even
industry-level models trained on extensive data still lack quantity understanding.

5.4.2 Datasets

In this section, we describe the creation of FinQuant and MedQuant datasets. For dataset creation,
similar to the generation of synthetic data, we �rst construct the concept/unit index. Test queries
are manually formulated using the concept/unit index for each dataset, covering both lexical and
semantic queries as well as all three numerical conditions (equal, less than, greater than). Statistics
for various query types are presented in Table 5.2. Each numerical condition is equally represented,
with 140 queries per condition in FinQuant and 70 queries per condition in MedQuant. Keyword-
based queries are those with lexical matches in the corpus and are divided into two categories of
seen and unseen. Semantic queries constitute a smaller portion due to annotation challenges and are
divided into exapnsion and w/o surface form. These categories are explained in more detail in the
upcoming section.

Table 5.2: Statistics of the di�erent types of queries in FinQuant and MedQuant datasets.
FinQuant MedQuant

Total queries 420 210
Sentence in corpus 306,291 153,252

Per condition
Equal queries (“=”) 140 70
Greater than queries(“>”) 140 70
Less than queries (“<”) 140 70

Keyword-based queries keywords seen in training (seen) 150 60
Keywords not seen in training (unseen) 150 60

Semantic queries Keyword synonyms or supersets (expansion) 75 30
Keywords not present in corpus (w/o surface form) 45 60

10https://cohere.com/embeddings (last accessed: 02.05.2024)
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FinQuant is created from a set of news articles in the categories of economics, science, sports, and
technology, collected between 2018 and 2022. The FinQuant corpus contains over 300k sentences
from 473,375 news articles. MedQuant is smaller, containing over 150k sentences from 375,580
medical documents of the TREC Medical Records (Voorhees, 2013) on Clinical Trails.

5.4.2.1 Annotation of Test Set

The test sets are annotated by the author of the thesis and a student assistant. Inter-annotator agree-
ment is computed for each dataset on a subset of 20 samples per dataset. The Cohen’s Kappa coef-
�cient (Cohen, 1960) is 0.83 and 0.88 for FinQuant and MedQuant, respectively, showing a high
agreement between the annotators.

Datasets were split into sentences and processed to eliminate boilerplate HTML or headers. All sen-
tences containing quantities were incorporated into the collection. The entire test data is manually
created and tagged. Here, we describe the query formulation and annotation tasks.

Query formulation: The concept/unit index and the value distributions from the data genera-
tion pipeline were used to formulate queries. Annotators were tasked with creating quantity-centric
queries based on the concept/unit index. They scanned the entire index for possible synonyms re-
lated to each concept, formulated queries accordingly, and maintained a list of these synonyms. For
example, if an annotator selects “Microsoft Surface Earbuds” with the unit “pound sterling”, they
would then scan the concept/unit index for other relevant concepts associated with “pound ster-
ling”. This process would identify related terms such as “Earbuds” and “Microsoft headphones”.
The value distribution and sentence list from all the synonyms of a concept were consolidated into
one and presented to the annotator. The annotator was then instructed to choose three values from
this distribution for equal, less than, and greater than queries, in such a way that supporting sen-
tences for the query are present. In the �nal stage, the annotator formulated a query in natural text
using various surface forms of units and numerical conditions, e.g., “Microsoft Surface Earbuds
lower than 179 pounds”. The annotators had access to the dictionary of surface forms for units and
numerical conditions to help query formulation and avoid repetitive queries.

Candiate list generation: For each query, a list of possibly relevant sentences was generated using
the concept/unit index. To achieve such a list, all sentences related to the concept and the concepts
synonyms (from the consolidated list in the previous step) were �ltered based on the query value
and the numerical condition. The �ltering process is automated to reduce the annotation e�ort,
presenting the annotator with a re�ned list of sentences that match the query value and condition
for a �nal review. For instance, for the query “Microsoft Surface Earbuds lower than 179 pounds”, all
sentences that contain ‘Microsoft Surface Earbuds”, “Earbuds” and “Microsoft headphones” with
unit “pound sterling” and the value in the sentence is less than “179” are added to the candidate list.
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Since CQE is used for the creation of the concept/unit index, its performance directly a�ects the
data quality. While CQE is adept at handling �nancial data, extractions on clinical data were noisy,
impacting performance comparisons later on. However, we �nd it important to report results on
both datasets, making the reader aware of the lesser quality of MedQuant. In both datasets, there is
no guarantee that the candidate list is comprehensive and covers all relevant instances.

Annotation: An annotation guideline was devised to instruct the annotators to set up the anno-
tation pipeline correctly and for consistent annotation of ambiguous cases. The guideline is pub-
lished alongside the dataset in our repository. Annotators were presented with the list of candidate
sentences (from the previous step) for each query and were tasked to mark the relevant sentences.
The marked sentences were used as ground truth for the subsequent evaluation.

5.4.3 Implementation Details

The code is implemented in Python 3.10 and PyTroch 1.13. The general sentence splitting and text
cleaning were performed with SpaCy 3.9. 11 As mentioned before we use the CQE library 12 for
quantity extraction. Evaluation and metrics were computed with the help of the pytrec_eval li-
brary (Van Gysel and de Rijke, 2018). 13 In the following, we discuss the implementation details for
each model separately.

BM25 models: We use the Okapi BM25 package 14 for all BM25 variants. The QBM25 and BM25filter
are variations of Okapi BM25 designed to include a quantity index for ranking and �ltering and were
implemented by forking the same package and making alterations to the code. The parameters of
BM25 were tuned to each of our datasets separately, as presented in Table 5.3. The latency values
(reported later on) are computed with plug-ins for an Opensearch instance 15 (described in more de-
tail in Section 5.5 ) on a desktop computer with 16GB of RAM. In comparison to the dense models,
the lexical models do not require speci�c hardware architectures.

Table 5.3: Hyperparameters of BM25-based models on the benchmark datasets.

FinQuant MedQuant

BM25 b = 0.5, k1 = 0.5, b = 0.5, k1 = 0.5
BM25filter b = 0.75, k1 = 1.5 b = 0.75, k1 = 1.5
QBM25 b = 0.5, k1 = 0.5 b = 0.5, k1 = 0.75

11https://spacy.io/ (last accessed: 02.05.2024)
12https://github.com/satya77/CQE (last accessed: 02.05.2024)
13https://pypi.org/project/pytrec-eval/(last accessed: 02.05.2024)
14https://pypi.org/project/rank-bm25/ (last accessed: 02.05.2024)
15https://opensearch.org/ (last accessed: 02.05.2024)
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Cohere baseline: We used the Cohere API 16 for Coherev3 embeddings. The Cohere API o�ers
two types of embeddings. Query embeddings were used to encode the queries and the document em-
beddings to encode the collection.

ColBERT models: Khattab and Zaharia (2020) supplied the trained checkpoint for the base Col-
BERT model. For �ne-tuning on augmented data, the model was initialized with this base check-
point 17. The checkpoint without further training was employed for the evaluation of both Col-
BERT and QColBERT. ColBERTft was �ne-tunned using the training script from the o�cial repos-
itory. 18 The code in the repository was forked and modi�ed to establish an endpoint for QCol-
BERT incorporating a quantity index. We did not perform extensive hyperparameter tuning except
for the learning rate and mainly used the parameters advised by the authors for both FinQuant and
MedQuant datasets. We �ne-tuned ColBERTft for 2 epochs, with a batch size of 256 and a learning
rate of 1e-05 on a server with four A-100 GPUs and 40GB of memory. The evaluation and bench-
marking for latency were performed on the same server, utilizing all four GPUs.

SPLADE models: SPLADEft was also �ne-tuned using the training script by the authors. 19 The
pre-trained checkpoint was acquired from Hugging Face 20 and utilized for both the SPLADE model
and QSPLADE. Scripts from the o�cial repository were adjusted to add a quantity index for QS-
PLADE. Similar to ColBERT, we conducted limited hyperparameter tuning, mainly focusing on
the learning rate. We �ne-tuned SPLADEft for 2 epochs using a batch size of 240, a learning rate of
2e-5, and a weight decay of 0.01. The �ne-tuning was conducted on a server with four A-100 GPUs
and 40GB of memory. The evaluation and benchmarking for latency were performed on the same
server, utilizing all four GPUs.

For all disjoint rankers, QBM25, QColBERT, and QSPLADE, the quantity impact parameter of α
is set to 1, such that the impact of term and quantity ranking is equal.

Generated data: Based on the combination of augmentation methods, the size of training data
would vary. In all cases, we saved a small sample of 1000 queries for validation. There were 40,732
and 20,376 concept and unit pairs considered for query generation in FinQuant and MedQuant,
respectively. If concept expansion is applied, these numbers would double to account for queries
on expanded concepts. We set the sample size n to 2, meaning that for each augmentation strategy,
two instances are generated in addition to positive and negative samples from the data without aug-
mentation. As a result, for each query, we have n sample from the data and based on augmentation

16https://cohere.com/ (last accessed: 02.05.2024)
17The checkpoint to the model is not publicly available but if one emails the authors the access is usually granted
18https://github.com/stanford-futuredata/ColBERT (last accessed: 02.05.2024)
19https://github.com/naver/splade (last accessed: 02.05.2024)
20https://huggingface.co/naver/splade-cocondenser-ensembledistil (last accessed: 02.05.2024)
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methods, additional samples are added for concept expansion and unit and value permutation, a
total of 3n per query. In the case of concept expansion and both value and unit permutation and
40,732 queries withn = 2, we have a collection of 40, 732×3×2 = 244, 392 sentences. Note that
this value might be slightly lower in practice due to the down-sampling described in Section 5.2.4.

Concept expansion: For concept expansion, we use the OpenAI API 21 and employ the text-

davinci-003 model with few-shot learning. We set the temperature to 1 to encourage creative re-
sponses (other parameters were left to the default setting). Since the concepts come from the two
di�erent domains of �nance and medicine, the few-shot examples vary accordingly. Below we spec-
ify the two prompts used for concept expansion, the result is stored in a concept expansion dictionary
and utilized during query generation. The place-holder {concept} is replaced with a concept to be
expanded from the concept/unit index.

For the �nance domain:

Complete with the words superset or synonym, but do not reuse the exact same words, the
word "Super Set" should not be in the response and response should have at least two words:

S&P 500 = stock market index
Audi = car
Oil prices = petroleum prices
unemployment rate = unemployment percentage
iPhone sales = phone sales
Netflix shares = stock shares
President Trump = president
iPhone 11= iPhone
Hong Kong = city
stake PEXA = Property Exchange Australia shares

{concept} =

For the medical domain:

Complete with the words superset or synonym, but do not reuse the exact same words, the
word "Super Set" should not be in the response and response should have at least two words:

ophthalmic solution = eye medication
Control group = treatment group
irinotecan hydrochloride = chemotherapy drug
monoclonal antibody = substitute antibodies
MRI scans = magnetic resonance imaging
influenza H1N1 vaccine = flu vaccine
HAI antibody response = Influenza-specific antibody response

{concept} =

21https://openai.com/ (last accessed: 02.05.2024)

180

https://openai.com/


5.4 Evaluation of Quantity-centric Ranking

5.4.3.1 Semantic and Lexical Queries

The queries are categorized into four types: seen, unseen, expansion, and w/o surface form. The lexical
queries consist of seen and unseen subsets. For such cases, during query formulation, the annotators
picked concepts from the concept/unit index without the change in surface form. For example, if
the concept “NASDAQ index” is chosen, the exact terminology is used for query generation. The
concepts from the unseen category, were removed from the index for data generation and training
of the joint neural models. Therefore, it contains lexical queries that were not seen during training.
For example, “YouTube channel” is a concept in the unseen subset, which means all instances of
“YouTube channel” were removed from the concept/unit index before data generation.
Semantic queries consist of expansion and w/o surface form subsets and were slightly harder to formu-
late, thereby, fewer instances of them are present in the data. For expansion queries, a concept from
the lexical set was chosen to expand to one of its supersets or synonyms. For example, “YouTube
channel” is a concept from the unseen category that is expanded to “social media channel” as a se-
mantic concept. These expansions were used to formulate queries that did not have a lexical match
in the database and often included a superset of many concepts. In the case of “social media chan-
nels”, other social media channels like “Facebook” or “Twitter” are also considered as relevant. The
W/o surface form subset is created similarly to the expansion queries, except that the concepts are not
chosen from the seen and unseen categories.

5.4.4 Evaluation Metrics

In this section, we introduce the metrics we use to measure the e�ectiveness of IR systems. Basically,
the metrics are divided into order-aware and order-unaware metrics, indicating if the order of the
results has an impact on the �nal score (Manning et al., 2008). Order-unaware metrics include, Peri-
sion@K (P@K), Recall@K (R@K), and F1@K. These are set-based measures that can be computed
on an unordered set of documents and are not limited to a retrieval setting. All three measures were
already covered in Chapter 4, so here we do not go into their details again. The only di�erence is the
addition of @K, where the results are computed up to a certain rank. In the evaluation that follows,
we will present two of the order-unaware metrics, speci�cally P@K and R@K.
The popular order-aware metrics are Mean Reciprocal Rank (MRR@K), Mean Average Precision
(MAP@K), and Normalized Discounted Cumulative Gain (NDCG@K). In the following, we brie�y
describe the intuition behind each metric. In the evaluation that follows, we present two of the
order-aware metrics in terms of MRR@K and NDCG@K.

5.4.4.1 Mean Average Precision (MAP)

Average precision (AP) is the average of precision scores calculated at the positions where relevant
documents are retrieved. Basically, it involves examining the ranks at which relevant documents
appear, computing precision at each of these ranks, and then taking the mean across these precision
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values, as shown in Equation 5.18. P@k represents the precision calculated for the top-k retrieved
documents, and relk indicates the relevance of the item at position k. AP operates with binary
relevance, so this value is set to 1 for relevant items and 0 for non-relevant items.

AP :=
Σn
kP@k× relk

n
(5.18)

MAP is the arithmetic mean of the average precision values for a set of X test queries (Manning
et al., 2008; Liu and Özsu, 2018), as shown in Equation 5.19.

MAP :=
1

|X|

|X|∑
x=1

APx (5.19)

In Mean Average Precision, the mean refers to the average calculated across multiple queries and
average speci�cally denotes the average of precisions at individual ranks within a single query. When
we use MAP@K, it implies that the evaluation cuts o� the results at rank K . Similar to precision,
this metric is biased towards the top of the ranking. Typically, an arithmetic average is employed for
aggregating results across multiple queries, although in certain cases, the Geometric Mean Average
Precision (GMAP) may also be utilized (Robertson, 2006).

5.4.4.2 Mean Reciprocal Rank (MRR)

MRR is another measure that is particularly useful in scenarios where the goal is to measure the
quality of the top-ranked results. For a given query, the Reciprocal Rank (RR) is the inverse of the
rank at which the �rst relevant item is found. If the �rst relevant item is at rank r then RR=1

r
. For

instance, RR is 1 if a relevant document was retrieved at rank 1, if not it is 0.5 if a relevant document
was retrieved at rank 2, and so on. MRR is the average of Reciprocal Ranks across all queries, as
shown in Equation 5.20 for queries in the setX .

MRR :=
1

|X|

|X|∑
x=1

RRx (5.20)

MRR@K is a variant that focuses exclusively on the top-k results. MRR operates under the assump-
tion that one scans through the ranking until one encounters a relevant document and stops one’s
search. If the �rst relevant document is at rank r, then the precision value at this rank is also 1/r,
which makes RR and AP equal. For this reason, MRR is equivalent to MAP in cases where each
query has precisely one relevant document (Liu and Özsu, 2018).

5.4.4.3 Normalized Discounted Cumulative Gain (NDCG)

One of the most popular metrics for IR systems is NDCG@K. It assesses the quality of the ranking
by considering both the relevance and the position of the items. NDCG (Järvelin and Kekäläinen,
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2002) is designed speci�cally for cases where there are graded degrees of relevance. The relevance
scores are computed based on a utility function rel, where each document in the ranking has a utility
associated with it. The optimal ranking would then prioritize documents with the highest utilities
at the top. In the context of binary relevance, utilities are set to zero and one, where a document is
either relevant (with rel equal to 1) or non-relevant (with rel equal to 0). In this case, the utility
function resembles that of MAP.
We start with Cumulative Gain (CG), as shown in Equation 5.21. relk indicates a �ne-grained scor-
ing, typically between 0 (least relevant) and 4 (most relevant).

CG@K :=
K∑
k=1

relk (5.21)

CG lacks order-awareness. To introduce order into ranking, we leverage Discounted Cumulative
Gain (DCG) and add a log penalty value in the denominator. DCG is calculated by summing the
relevance scores of the items at each position, discounted by the logarithm of their positions as shown
in Equation 5.22.

DCG@K :=
K∑
k=1

relk
log2(1 + k)

(5.22)

DCG values are unbounded and their range is dependent on rel values. To address this, the NDCG
is introduced, utilizing Ideal DCG (IDCG) for normalization purposes (Manning et al., 2008).
IDCG represents the highest possible DCG for a given set of items and their true relevance scores. It
is obtained by sorting the items based on their true relevance scores and computing the DCG value.
Then, NDCG is calculated by normalizing DCG by its ideal counterpart as shown in Equation 5.23.

NDCG@K :=
DCG@K
IDCG@K

(5.23)

A higher NDCG indicates a better quality ranking, taking both relevance and position into account.

5.4.4.4 Which Metrics to Use?

There is a lot of controversy regarding the correct metric and evaluation strategies for IR systems (Fuhr,
2017; Sakai, 2020). In this section, we cover a few of them and aim to make the reader aware of the
contradictory opinions in this regard, while reporting our performance score in both MRR and
NDCG to avoid any kind of bias.

MRR: Although MRR is widely used in almost all IR benchmarks, it shows strange behavior in
certain cases. For instance, assume that we have three queries, and system A returns the �rst relevant
documents at ranks 1, 2, and 4. On the other hand, system B returns the relevant answers in each
case at rank 2. For system A, we �nd the relevant item on average at rank 1+2+4

3
= 2.33, which is
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worse than rank 2 for system B. Nonetheless MRR(A)=1
3
(1 + 1

2
+ 1

4
) = 0.58 and MRR(B)=0.5.

This is due to the property of the expected value, whereE(1/r) 6= 1/E(r). Fuhr (2017) points out
this weakness of the MRR metric but also attributes the major problem of MRR to its ordinal scales
and that the average of an ordinal scale is meaningless. However, there is an ongoing debate about
whether RR is truly an ordinal scale or if it should be considered an interval scale (Sakai, 2020). One
point worth mentioning though, is that although the behaviour of the MRR on systems A and B
might seem strange at �rst, it aligns perfectly with the assumption of the metric. MRR relies heavily
on the �rst relevant document and thereby rewards system A for the �rst query, hence the higher
score. Optimizing for such measures is useful for instance in navigational search and it is comple-
mentary for other measures such as NDCG.

MAP: Fuhr (2017) mentions that MAP assumes that the user ends the search after the �rst relevant
document is found and the probability of stopping is the same for all relevant ranks. While the �rst
assumption might hold in some cases, the second assumption is unrealistic. Most users stop early
on and do not continue down a long list of relevant results (Granka et al., 2004).
Zobel et al. (2009) also argue against both AP and NDCG, as these measures depend on the total
number of known relevant documents, which is not always available.
Both Zobel et al. (2009) and Fuhr (2017) recommend Ranked Biased Precision (RBP) as an alter-
native to MAP (Mo�at and Zobel, 2008). However, RBP is also not perfect and there are some
discussions regarding its fundamental assumptions (Sakai, 2020). On the other hand, there exist
major points that support the validity of AP. In particular, AP was identi�ed as a reliable measure
for the evaluation of systems in TREC (Buckley and Voorhees, 2005) and was useful in identify-
ing e�ective term weighting schemes for models such as BM25 (Robertson and Zaragoza, 2009).
Nonetheless, if there are graded relevance assessments it is best to report the result in a more stable
metric such as NDCDG.

In summary, when choosing a metric for evaluation it is important to be aware of the implications
and assumptions of each metric and also report multiple ones to not have a narrow evaluation based
on a single criterion.

5.4.5 Ranking Performance

Table 5.4 shows the ranking performance of quantity-aware models, in terms of P@10, MRR@10,
NDCG@10, R@100, and latency in milliseconds. The three models with a “Q” pre�x indicate the
disjoint quantity-aware rankers combined with BM25 as QBM25, SPLADE as QSPLADE, and
with ColBERT as QColBERT. Neural models with a ft post�x are joint quantity-aware rankers
�ne-tuned on augmented data, namely, SPLADEft and ColBERTft.
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Permutation re-sampling is used to test for signi�cant improvements over the baseline models (Rie-
zler and III, 2005). Results denoted with †mark highly signi�cant improvements over the baseline
models, without quantity awareness with a p-value < 0.01. For instance, QSPLADE and SPLADEft
are compared with SPLADE for signi�cance testing.

Table 5.4: P@10, MRR@10, NDCG@10 and R@100 on FinQuant and MedQuant. Top-2 values in each
column are highlighted in bold and signi�cant improvements over baselines are denoted by †.

Model latency FinQuant MedQuant

(ms) P@10 MRR@10 NDCG@10 R@100 P@10 MRR@10 NDCG@10 R@100

baselines

BM25 9 0.06 0.14 0.09 0.47 0.04 0.11 0.07 0.37
BM25filter 9 0.14 0.32 0.25 0.60 0.08 0.19 0.15 0.48
Coherev3 - 0.14 0.22 0.19 0.27 0.10 0.17 0.15 0.25
SPLADE 26 0.10 0.24 0.19 0.53 0.11 0.25 0.20 0.58
ColBERT 36 0.15 0.35 0.27 0.70 0.12 0.31 0.24 0.63

disjoint
QBM25 311 0.21 0.53 0.41 0.55 0.18 0.47 0.37 0.51
QSPLADE 319 0.29† 0.67† 0.53† 0.83† 0.19† 0.52† 0.38† 0.70†

QColBERT 42 0.30† 0.69† 0.56† 0.87† 0.18† 0.51† 0.37† 0.73†

joint SPLADEft 26 0.21† 0.51† 0.41† 0.74† 0.14† 0.37† 0.29† 0.63†

ColBERTft 36 0.23† 0.55† 0.44† 0.77† 0.18† 0.44† 0.36† 0.72†

Both the joint and disjoint quantity ranking improves the quantity understanding of the IR mod-
els. However, contrary to our initial hypothesis, disjoint quantity rankers consistently outperform
joint models across all metrics. The improvement is consistent across the precision-focused metrics
of P@10 and MRR@10 as well as NDCG@10. The disjoint rankers show signi�cant improvements,
exceeding 10 points in P@10 and R@100, and over 30 points in MRR and NDCG compared to the
base models (without the “Q” pre�x). The joint models are slightly behind the disjoint ranker but
also demonstrate enhancements, with around 10 points in P@10 and R@100 and over 15 points in
MRR and NDCG compared to the base models.
Higher scores of the quantity-aware models in P@10 and MRR@10 indicate that the addition of
quantity scores or task-speci�c �ne-tuning pushes the relevant documents to higher ranks and to
the top of the candidate list. The improvement in the NDCG score from the base models shows
that the entire ordering of results (even in lower ranks) is better with the quantity-aware models.
Moreover, the improved R@100 also indicates that more relevant items are included in the top 100.
It is worth noting that the enhancement in the case of the disjoint quantity-aware rankers is achieved
without requiring additional �ne-tuning. The only drawback is a minimal increase in latency, espe-
cially for QBM25 and QSPLADE, where the quantity score is added to the entire ranking. This
overhead diminishes for the top-performing disjoint ranker, QColBERT, where the quantity score
serves as a re-ranker on the top-k candidates. ColBERT (base model without quantity scoring) shows
a high recall on both datasets, suggesting that relevant results are within the top-k but not necessarily
at the very top. Hence, the re-ranking with the quantity score proves bene�cial.
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Table 5.5: MRR@10, NDCG@10, and R@100 for the two evaluation datasets, where the �ne-tuned models
are trained using the other dataset as training set.

Model
FinQuant MedQuant

P@10 ↓ MRR@10↓ NDCG@10↓ R@100↓ P@10↓ MRR@10↓ NDCG@10 ↓ R@100 ↓

SPLADEout -0.03 -0.06 -0.07 -0.04 -0.02 -0.01 -0.04 -0.05
ColBERTout -0.03 -0.07 -0.06 -0.03 -0.02 -0.01 -0.03 -0.02

The results for the joint quantity-aware rankers demonstrate that task-speci�c �ne-tuning yields a
performance boost. Although the metrics fall short of those achieved by the disjoint ranker, they
still show signi�cant improvement over the base models. This supports our hypothesis that the lack
of task-speci�c data has exacerbated the challenge of quantity understanding for retrieval systems. In
terms of latency, disjoint ranker perform as well as their baselines, since �ne-tuning does not require
any architectural change. Here, once again the ColBERTft variant shows superior performance.
ColBERT (base model without quantity understanding) also exhibits superior performance among
the baselines. We attribute the better performance of the ColBERT-based model to the �ne-grained
token-level interactions that allow the model to learn better associations between tokens. In quan-
tity ranking, token interactions play a more signi�cant role compared to the query and document
expansions conducted by SPLADE. This also showcases that the architecture and how the inter-
token interactions are modeled matter for quantity understanding. Nonetheless, after manually
looking at the cases where the neural models make mistakes, we noticed that even after �ne-tuning,
understanding numerical conditions remains a challenge. We investigate how much the �ne-tuned
models rely on quantities for ranking in Section 5.4.7.

5.4.5.1 Cross-dataset Generalization

The base checkpoint used in the construction of disjoint quantity-aware rankers is trained on general-
purpose data without any additional �ne-tuning speci�c to the �nancial or medical domains. There-
fore, the results reported in Table 5.4 already show the performance on out-of-domain data for the
disjoint rankers.
On the other hand, the joint quantity-aware models underwent task-speci�c �ne-tuning on quantity-
centric queries speci�c to either the �nancial or medical domains. It is worth investigating whether
task-speci�c �ne-tuning in one domain can be e�ectively transferred to another domain. Table 5.5
shows the performance drops of joint rankers on out-of-domain data, The negative values show the
di�erence in performance compared to models �ne-tuned on data generated from the same domain.
Each model is �ne-tuned on data from the other dataset and evaluated on a new domain. In general,
both SPLADE and ColBERT show a minimal performance drop, with the data trained on the larger
set, FinQuant, being more robust to domain change. This suggests that the models learn patterns
for quantity-centric queries during the �ne-tuning without memorizing queries in a certain domain.
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Figure 5.13: Performance in terms of NDCG@10 on di�erent subsets of the test set, the seen and unseen cat-
egory focus on lexical matching, whereas the expansion and w/o surface form are paraphrasings
without exact match.

5.4.5.2 Performance on Lexical vs Semantic Queries

As outlined in Section 5.4.2, FinQuant and MedQuant contain a variety of lexical and semantic
queries. Seen and unseen subset are keyword-based queries and expansion and w/o surface form con-
tain instances of semantic queries. We evaluated the models on these di�erent subsets in terms of
NDCG@10. Other metrics show a similar pattern, however, the NDCG metric computes the per-
formance on the entire ranking and is a better �t for the comparison of the systems.
The NDCG@10 scores of all models on the FinQuant dataset are illustrated in terms of a bar plot
in Figure 5.13. The same pattern is observed for the MedQuant dataset, therefore, the plots are not
presented here. The bars are color-coded to represent di�erent model types: blue shades indicate the
joint rankers, red and orange shades denote the disjoint models, green shade represents the neural
baselines, and purple shade signi�es the lexical baselines.
In the context of lexical models relying on BM25, the di�erence between semantic and lexical sub-
sets is evident. These models show great performance on seen and unseen subsets but not on the
semantic subsets. It is crucial to emphasize that the expansion subset involves queries from seen and
unseen, paraphrased to include synsets and synonyms. Notably, the lexical models struggle to retrieve
accurate results in this scenario.
Neural models also perform better on keyword-based queries. However, the decline in performance,
when compared to lexical models, is less pronounced. A notable observation is that the combination
of neural models with a disjoint quantity index does not impede their capacity for semantic retrieval.

5.4.5.3 Complexity of Numerical Conditions

The FinQuant and MedQuant datasets contain an equal number of queries for each quantity con-
dition. In this section, we look at how performance changes for di�erent numerical conditions.
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Figure 5.14: Performance in terms of NDCG@10 on di�erent subsets of the test set, where each subset corre-
sponds to queries containing a certain numerical condition.

Figure 5.14 shows the NDCG@10 score of all models on subsets of various numerical conditions in
comparison to the complete test set (all subsets combined) for the FinQuant dataset. Results on the
MedQuant follow a similar pattern and are not presented here.
Equality queries are in general easier for the models as the notion of relevance in this case aligns with
term-based ranking and �nding exact matches for values is easier than interpreting bounds.
There is a substantial drop of almost 20 points in performance for the bound-based conditions in
comparison to the equality queries. Interestingly, the subset containing less than condition shows a
slightly greater drop in performance in comparison to the subset with greater than condition. The
decline in performance for bound-based conditions is consistent across all models, implying that
these conditions are harder for all models to rank. One hypothesis for this behavior is that the
bound-based conditions require an understanding of scales, numerical comparison, and �ltering
based on hard numerical conditions, which are typically harder. Moreover, unlike the equality con-
dition where exact token matching might help in retrieving the correct result, the relevant result
contains ranges for values that do not match the query value, making the task relatively harder.

5.4.6 Ablation Study on Augmentation Methods

The performance of the joint rankers relies on the data generated for �ne-tuning. While we provided
justi�cation for our generation mechanisms in Section 5.2.1, it is crucial to investigate the impact of
various augmentation strategies and identify the most bene�cial one. To this end, we perform an
ablation study on generation techniques purposed.
We separate each strategy, and �ne-tune the neural models (ColBERT and SPLADE) on data gener-
ated using a speci�c strategy or pair-wise combinations. The goal is to identify the optimal data gen-
eration strategy and evaluate whether incorporating synthetic contrastive examples enhances learn-
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(a) ColBERTft

(b) SPLADEft

Figure 5.15: Ablation study on di�erent augmentation methods, where value and unit, corresponds to value
and unit permutation and concept corresponds to concept expansion.

ing cues compared to using only positive and negative samples from the data.
There are three points of variability in data generation:

1. Concept expansion for semantic understanding in the query generation.

2. Value permutation for understanding of numerical conditions.

3. Unit permutation for understanding the semantics of units.

Once again, we present the result of the ablation study using the larger dataset of FinQuant, where
the training data is generated from the �nancial domain and evaluated on FinQuant. The presented
patterns are similar for MedQuant dataset.
The results for ColBERTft and SPLADEft are demonstrated in terms of NDCG@10 in Figures 5.15a
and 5.15b, respectively. The NDCG@10 for the base checkpoint without any �ne-tuning is added
to the top of the �gures in green for comparison. no perturbation corresponds to the case where no
data augmentation was applied and only the positive and negative samples from the original sam-
pling are used for training and the queries are not expanded using concept expansion.
In general, all the generation strategies enhance the performance of the base model, when used in
isolation. However, contrary to our original hypothesis, combining all strategies does not yield the
best-performing model.
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An interesting observation is the detrimental e�ect of value permutation. The value permutation
on its own enhances the performance of the base model. However, as soon as it is accompanied by
other augmentation methods the performance degrades slightly. The best combination for both the
SPLADE and ColBERT models is unit permutation and concept expansion. It is worth noting that
both of these augmentation techniques on their own also provide a larger boost in comparison to
value permutation. We �nd this behavior rather surprising and counter-intuitive. Usually, the per-
formance of neural models increases with the amount of data presented for a given task, however,
perturbing the values does not seem to enhance the performance as expected. This can be related to
the internal representation of the neural models for numerical value, which is hindering their ability
to correctly learn the semantics of them.
Due to the superior performance of unit permutation and concept expansion, the variant of the
models presented for evaluation as ColBERTft and SPLADEft are trained on data generated with
these strategies and value permutation is disregard.

It is crucial to note that we did not disregard the value permutation issue without thoroughly inves-
tigating its cause and attempting to alleviate the problem. Our initial assumption was that numerical
conditions are more challenging to learn and therefore require more samples. However, increasing
the sample size in the case of value permutation did not improve the results.
We also experimented with alternative ways to select the query value, other than the ones mentioned
in Section 5.2.1. These methods included selecting the query value randomly or adding perturba-
tions to the original values in the distribution. For instance, if the query value “100” is chosen for
a condition, a random value is added or subtracted. Despite these e�orts, the performance of the
value permutation strategy did not improve, leading us to ultimately disregard them.
In an attempt to enhance the representation of numerical values, we experimented with the con-
version of the values into scienti�c notation. Previous works (Thawani et al., 2021; Zhang et al.,
2020) have shown promising results for quantity-aware embedding models, when the values inside
the corpus are represented in scienti�c notation. Speci�cally Zhang et al. (2020) trained a quantity-
aware BERT model by transforming values in the corpus into a combination of an exponent and
mantissa. As an example, 314.1 is represented as 3141[EXP]2, where [EXP] is a new token added to
the vocabulary. The authors claimed that the separation of exponent and mantissa allows the mod-
els to compare the scales of values more easily by simply attending to the exponent.
We applied the same procedure to all sentences in the corpus and the values in the queries during
�ne-tuning. However, contrary to previous �ndings, the conversion reduced the performance of the
baseline models. It is essential to note that the base BERT model used in ColBERT and SPLADE
was not pre-trained to interpret numbers in scienti�c notations, and these models had not encoun-
tered such notations during training in the general-purpose retrieval setting. Given the relatively
small size of our dataset, introducing this new notation unexpectedly not only failed to enhance the
model’s performance but also introduced confusion.
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(a) ColBERT based models

(b) SPLADE based models

Figure 5.16: The e�ect of task-speci�c �ne tuning on models attention to quantity tokens. In the masked
variants either the unit or the value of the sentences in the collection is masked.

5.4.7 E�ect of Fine-tuning

In the disjoint quantity-aware ranking, separating quantity ranking and term ranking provides a
clear understanding of how quantity scoring in�uences the ranking. On the contrary, in the joint
quantity-aware models, it is not directly visible how the task-speci�c �ne-tuning has a�ected the in-
ternal ranking strategy of the neural models. Since directly examining changes in dense query and
sentence representations is not particularly insightful, we instead focus on the e�ect of tokens re-
lated to quantities in ranking. A quantity-aware model should learn to focus on tokens related to
quantities while ranking a quantity-centric query, whereas a general-purpose model would focus on
other tokens to �nd topical similarity between the query and a sentence.
To this end, we evaluate both the base models (ColBERT and SPLADE) and the �ne-tuned models
(ColBERTft and SPLADEft) on two masked versions of the test data. We compare the base ver-
sion of the neural models with their �ne-tuned version on the di�erent maskings of the FinQuant
dataset. The results for the ColBERT models are shown in Figure 5.16a and for SPLADE models in
Figure 5.16b. The masked versions include: masked value and masked unit.

Mask value: In this scenario, we mask all values in the collection with the [MASK] token before run-
ning the evaluation. As a result, the model can no longer use value comparison to retrieve the correct
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result. This task aims to determine the extent to which the model depends on the value token.

Mask unit: Here, we mask unit tokens in the collection before running the evaluation with [MASK]

token. This task is intended to observe the impact of unit comparison on the �nal ranking.

The �ne-tuned version exhibits a more signi�cant drop in performance compared to the base models
when quantity tokens are masked. This indicates that after �ne-tuning, the model becomes more
dependent on tokens related to quantities (values and units), to identify the relevant sentence.

5.4.8 RAG-based Evaluation

Despite the history of the machine learning model being heavily driven by manually labeled data, as
large language models became more e�ective the techniques have shifted towards automatic evalua-
tion with zero-shot prompting. In such cases, a language model is prompted with a template like

Provide a rating on a scale of 1 to 10 of whether these search results are relevant
to the query. The query is {query} , and the search results are {search_results}

A language model would output a score that is used as a relevance score during the evaluation of
the system. The most notable framework is Retrieval Augmentented Generation Assessment (RA-
GAS) (ES et al., 2024). The RAGAS score is made of a variety of prompts for evaluation of the
generation and retrieval. There are other extensions to the RAGAS method, e.g., Saad-Falcon et al.
(2023) propose that training a language model as an evaluator has a better performance than zero-
shot prompting for a score.
To evaluate our quantity-aware RAG system we utilize the RAGAS framework, to check if the gen-
erated answers for quantity-centric questions are correct and align with the user’s information needs.
Other related metrics that can be used in this setting are those developed for factual consistency of
summaries 22 for summarization models (Fan et al., 2023), but we do not cover those methods in
detail and focus on the RAGAS framework only.
Since the retrieval component has already been evaluated in the preceding section using a more de-
pendable method involving human annotations, we concentrate solely on metrics related to the an-
swer generation. In the following, we outline selected metrics from RAGAS and highlight the ones
we use in this study.

5.4.8.1 Metrics

The RAGAS metrics cover both retrieval and generation. Here, we only discuss faithfulness and
answer relevance. Metrics such as context relevance, context precision, and context recall focus on the

22Generating an answer from multiple context snippets is similar to multi-document summarization. Given that we
are handling quantities and their values to meet speci�c numerical conditions, metrics for factual consistency are
particularly relevant.
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quality of retrieval and are not relevant to the �nal generated output. Additionally, we exclude an-
swer relevancy, since it primarily evaluates whether answers are generated appropriately, regardless of
factual accuracy. This metric penalizes incomplete or redundant information, which does not align
with the focus of our evaluation. We are not interested in the quality and �uency of generation
(which is more related to the language model) but are more interested in how the retrieval model
impacts the generation output.

Faithfulness: To avoid hallucinations, and to ensure that the retrieved context can act as a justi�-
cation for the generated answer, faithfulness is introduced. An answer is faithful to the context if
the claims that are made in the answer can be inferred from the context. To estimate faithfulness, a
language model is used to extract a set of statements or claims from the generated answer. Then each
one of these claims is checked with a given context to determine if it can be inferred from the context
or not. The faithfulness score F is computed as shown in Equation 5.24, where |V | is the number
of statements that were supported by the context, and |S| is the total number of statements.

F :=
|V |
|S|

(5.24)

It is worth noting that the claims extracted from the answer and the context are usually general facts
and this score is not tailored to extract claims that are quantity-centric. To be more precise, consider
the prompt used in the RAGAS framework. 23

Given a question, an answer, and sentences from the answer analyze the complexity of each
sentence given under ’sentences’ and break down each sentence into one or more fully
understandable statements while also ensuring no pronouns are used in each statement.
Format the outputs in JSON.

This prompt does not encourage the model to focus on quantities. However, we did not change the
implementation of the RAGAS framework.

Answer correctness: This metric compares the generated answer and the ground truth (an answer
written by human annotators). The score ranges from 0 to 1. A higher score indicates a closer align-
ment between the generated answer and the ground truth, signifying better correctness. The focus
is on two aspects of semantic similarity (Risch et al., 2021) between the generated answer and the
ground truth, as well as factual correctness. The �nal metric is computed as the average of factual
correctness and the semantic similarity between the given answer and the ground truth. To com-
pute the semantic similarity both the answer and the ground truth are vectorized and their cosine
similarity is computed as shown in Equation 5.25, where τ is the vectorization function.

semantic := cosine(τ(answer) · τ(ground truth)) (5.25)
23Taken from the repository for RAGAS:https://github.com/explodinggradients/ragas/blob/main/src/ragas/

metrics/_faithfulness.py (last accessed: 02.05.2024).
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Factual correctness quanti�es correctness based on the number of facts in the ground truth and
the generated answer and it is shown in Equations 5.26. The facts are once again extracted using a
language model. TP (True Positives) counts the number of facts present in both the ground truth
and the generated answer. 24 FP (False Positives) counts the facts present in the generated answer
but absent in the ground truth. FN (False Negatives) counts facts present in the ground truth but
missing in the generated answer.

factual :=
TP

TP + 0.5× (FN + FP )
(5.26)

Similar to faithfulness this metric is general purpose and does not focus on quantity facts.

Factual consistency score: The metrics from the RAGAS framework are not trailered towards
quantities and we are already aware of the limitations of the language models in this regard. There-
fore, we introduce an additional metric based on human annotation to account for a more objective
view of the generated output. In this case, the annotator is presented with the generated answer and
ground truth and is asked to rate the answer between 0 and 1, based on the following guidelines:

• A score of 1 is assigned to answers that cover all the facts in the ground truth correctly.

• A score of 0 is assigned to answers that contain contradictory facts or none of the facts men-
tioned in the ground truth.

• A score of 0.5 is assigned to incomplete information, where the generated answer is partially
true but does not cover all the facts.

The average of the scores across all test instances shows the factual consistency score. This score is
similar to the factual correctness score from RAGAS but relies on human judgment instead of a
language model inference. As a result, we can make sure that the focus is on quantity facts. 25

5.4.8.2 Dataset and Evaluation Setup

To assess the impact of quantity-aware retrieval on subsequent generation within a RAG pipeline,
we manually create a set of 42 question and answer pairs. The questions are crafted from the same
news articles that were utilized to create the FinQuant dataset for evaluation of the rankers. The
questions are created in such a way that they contain a quantity and a numerical condition, e.g.,
“What are two car models from Tesla that cost more than 71k US dollars?” or “Which Apple watches
are less than 42 millimeters, what are the prices?”. The dataset is evenly divided across three nu-
merical conditions (equal, greater than, less than), with 14 questions allocated to each condition.
24Not to be confused with tp, fp, and fn in retrieval, although the semantics are similar.
25Such annotation is cumbersome in the case of a large test set, however, we have a small set of 42 questions and manu-

ally comparing the results is feasible in this case. For a large set of examples, one can rely on automatic quantity fact
extraction by replicating methods similar to Ho et al. (2019).
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The ground truth answers were crafted by the author of this thesis after carefully reading the top-
10 retrieved contexts by three retrieval models used in this evaluation (ColBERT, QColBERT, and
ColBERTft). Therefore, the ground truth answer includes the knowledge of all three rankers. If
a correct context is not in the top-10 result of any of the rankers, it will not contribute to the �-
nal answer, which should not matter for this speci�c evaluation setup as we are only considering
the named rankers. The factual consistency score is manually added after examining the generated
answers based on the guidelines described in the previous section. Once again the annotations are
performed by the author of the thesis.
In certain instances, there exist questions with multiple valid answers. For example, “Name at least
three smartphones in the context provided with 48MP cameras?”. Depending on the provided con-
text a variety of smartphones can satisfy this constraint. In such cases, the ground truth answer
encompasses the names of all smartphones with 48MP cameras mentioned in the top-10 contexts of
ColBERT, QColBERT, and ColBERTft. Then, for the factual consistency score, if the generated
answer contains three of any of the smartphones in the list, the answer is marked as correct. How-
ever, if only two of them have 48MP cameras and the last one does not satisfy the constraint, the
factual consistency score drops to 0.5, indicating a partial match.
Since our focus is on frozen RAG, no further training for aligning the generator and the retriever is
conducted. Sentences within the corpus are ranked utilizing one of the evaluated rankers (ColBERT,
QColBERT, and ColBERTft), and the surrounding context along with the question is supplied to
a language model for answer generation. We used the gpt-3.5-turbo model from Open AI for gen-
eration and set the temperature to 0 for a more consistent output (other parameters we left to the
default setting). Nonetheless, we still observed a lot of variability in the generation provided the
same context. We also experimented with multiple prompts inspired from LangChain 26 and Lla-
maIndex 27 frameworks for RAG and settled on the one that worked best for gpt-3.5-turbo, since
the variability in prompt has an impact on the output (Mizrahi et al., 2024). The generation prompt
is as follows:

System: Use the following pieces of contexts and their associated dates to answer the
user’s question. If you don’t know the answer, just say that you don’t know, don’t
try to make up an answer. Be short but comprehensive, and use numbered bullet
points when necessary.
----------------
Context: {context}
Date of the context:{context_date}

Given this information, please answer the question:
{question}

The placeholders {context} and {context_date} are �lled using the information from the ranker.
Here, {context_date} represents the publication date of the article from which the corresponding

26https://www.langchain.com/ (last accessed: 02.05.2024).
27https://www.llamaindex.ai/ (last accessed: 02.05.2024).
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context is selected. The date becomes important for answering questions such as “When was the
�rst instance of Germany’s yield dropping less than 3.5 bip in the year 2019?”. The date informa-
tion is part of the metadata of the articles. The {context} placeholder includes the paragraphs of the
highest-ranking sentences and the paragraphs before and after, retrieved from the hierarchical index.
To compute the evaluation metric we rely on the ragas package. 28 The package uses open-ai-

embeddings 29 for the computation of semantic similarity and and gpt-3.5-turbo for factual cor-
rectness and faithfulness.

5.4.8.3 Evaluation Results of RAG

Table 5.6: Faithfulness, answer correctness, and factual consistency on the quantity-centric question answer-
ing dataset for ColBERT models with and without quantity-awareness. The best-performing val-
ues are marked in bold.

faithfulness answer correctness factual consistency

ColBERT 0.63 0.57 0.67
QColBERT 0.78 0.59 0.71

ColBERTft 0.73 0.48 0.60

The evaluation results based on faithfulness, answer correctness, and factual consistency are shown
in Table 5.6. Since the generation is non-deterministic and we observed great variability in the out-
puts, the results are averaged across three distinct runs. For each question, the language model is
provided with the top-10 context paragraphs to ensure su�cient context for generated answers. As
demonstrated by the result, the best performing quantity-aware model (QColBERT) also facilitates
more accurate and factual consistent generated answers. Interestingly, the answer correctness and
factual consistency have lower values for ColBERTft when compared to ColBERT, despite the re-
trieval outcomes suggesting the contrary. Nonetheless, providing the correct context is not su�cient
for the language model to generate the best answer. One notable pattern observed is that despite the
retrieved context meeting a numerical condition, the language model’s reasoning process may still
yield inaccurate output or if the retrieved context does not meet the numerical condition, the lan-
guage model ignores the condition altogether. For example, for the question “Give me information
for leases in the context provided for more than $550 per m2.”, the language model generates the
following response given the context from ColBERT:

The following leases have rental rates of more than $550 per sq m:

- In the context 2019-05-21, a private accounting firm leased the ground floor at 302-320
Burwood Road for $523 per sq m.

- In the context 2020-04-07, NPCo leased level 2 at 103 Lonsdale Street for $650
gross per sq m.

28ragas: https://docs.ragas.io/ (last accessed: 02.05.2024)
29https://platform.openai.com/docs/guides/embeddings (last accessed: 02.05.2024)
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- In the context 2019-11-26, Device Technologies Australia leased a 1581 sq m office
at 6-8 Compark Circuit for $280 per sq m.

- In the context 2019-05-21, a vacant two-level commercial building at 177 Burnley
Street was leased to accounting firm BR Wellington Pty Ltd for a commencing annual rental
of $320,000 net plus.

These are the leases with rental rates exceeding $550 per sq m in the provided contexts.

In this scenario, 3 out of 4 leases presented in the answer fail to meet the constraints of the numerical
condition, despite the model ultimately reasoning that they do (last generated line). In the same
manner, even when the correct context is present, at times, the language model fails to distinguish
the correct information to incorporate in the �nal answer.
Implementing techniques like chain-of-thought prompting (He et al., 2023) might enhance the
model’s capability in such instances. However, we did not experiment with alternative methods.

5.5 Community Support

To showcase the performance and easy integration of disjoint quantity-aware retrieval, we developed
and open-sourced an Elasticsearch 30/OpenSearch 31 plug-in for the lexical model of QBM25. 32 To
demonstrate the plug-in, we developed an online interface called QFinder, which is accessible at
https://qfinder.ifi.uni-heidelberg.de/. Since Elasticsearch and Opensearch are used frequently
in the industry, this plug-in allows for easy integration into popular open-sourced search engines.
The only di�erence to QBM25 used in quantitative analysis of the rankers is that quantulum3 li-
brary 33 was used for quantity extraction instead of CQE. Quantulum3 has limited functionality in
comparison to CQE (refer to Section 4.4 for more details on this topic) and cannot detect numerical
conditions. Therefore, the QFinder interface requires a strict query language, in which the user has
to specify search terms, numerical conditions, values, and units separately. Another notable di�er-
ence is that queries with ranges are also supported.
The underlying data for the interface is a subset of the FinQuant dataset. The subset contains
186,614 English news articles from January to December 2021 on the following subjects: economics,
sports, technology, cars, and companies. In the upcoming sections, we delve into the implementa-
tion details of both the backend and the frontend. Then, the interface functionalities are demon-
strated by walking through the components and describing three query scenarios.

30https://www.elastic.co/ (last accessed: 02.05.2024)
31https://opensearch.org/ (last accessed: 02.05.2024)
32https://github.com/milenabruseva/qfinder-elasticsearch-plugin (last accessed: 02.05.2024)
33https://github.com/nielstron/quantulum3(last accessed: 02.05.2024)
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5.5.1 Backend Implementation

Since the retrieval units are sentences, we split all articles into sentences using SpaCy 3.9 34, resulting
in a total of 6,599,355 sentences, where 466,632 sentences (around 14%) of the corpus contain quan-
tities. As mentioned, to detect and normalize quantities and their units, we used the quantulum3
library. Each sentence, along with its list of extracted units and values, is added to an Elasticsearch
index as an individual document. The reference to the original news article is kept for the retrieval
of context information. The core of our ranking is performed by QBM25 implemented as an Elas-
ticsearch plug-in. By developing our plug-in, we take advantage of this scalable solution for full-text
search and extend it further for quantities in unstructured texts. The backend is based on a single-
node instance of Elasticsearch and on it the QBM25 plug-in is installed. For a multi-node cluster,
the plug-in has to be installed on every node. The plug-in itself extends the ScriptPlugin class and
implements its own ScriptEngine. The ranking is done in two stages. First, the maximum BM25
score of query terms is computed to compute the normalized BM25 score for term ranking. Sec-
ond, the normalized BM25 score is combined with the quantity score for the �nal ranking. The
plug-in is developed in Java and is realized on Elasticsearch version 7.16.3.

5.5.2 Frontend Implementation

The web server is realized on top of the Python Flask 35 framework, and the interface is implemented
using HTML/CSS and JQuery 36. Communication between the user interface and server is built on
AJAX and passes information in both directions as JSON objects. The Bootstrap 37 library is used
for a responsive layout.

5.5.3 Interface Functionality

Query Formulation: The user input for quantity queries consists of search terms, a quantity condi-
tion, a value and a unit. All the mentioned values need to be provided in the designated input boxes
as the system at this point cannot parse queries written solely in natural language. In the following,
all the search components on the front page as shown in Figure 5.17 are described.

• The reset button next to “SEARCH” clears all input boxes.

• “Search terms” are the keywords of the query and consist of any term related to the query
quantity. This can be a single term or a sequence of tokens. This box should only contain
the terms associated with a quantity, to de�ne values and units, the respective �elds should be
used.

34https://spacy.io/ (last accessed: 02.05.2024)
35https://flask.palletsprojects.com/en/2.0.x/ (last accessed: 02.05.2024)
36https://jquery.com/ (last accessed: 02.05.2024)
37http://getbootstrap.com (last accessed: 02.05.2024)
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Figure 5.17: Overview of the QFinder user interface. A quantity query consists of search terms, a quantity
condition, a unit and a Value1 (or Value2 as well for range conditions).

• Values (textboxes “Value1” and “Value2”) and a unit de�ne the quantity of the query with a
numerical value and a speci�c unit. The numerical value should be provided in a standardized
format, e.g., “1000” instead of “1K”.

• The unit (“Select a unit...” dropdown) is chosen from a pre-de�ned set of units that were
detected in the collection. The select box supports inline search and contains a list of all avail-
able units. Although the majority of well-known units used in the �nance domain are covered
here, this list is not comprehensive.

• From the “Choose a condition..” dropdown, users can choose between the four quantity con-
ditions: equal, greater than, less than, and ranges. Single-value conditions are equal, greater
than, and less than, meaning that they require only a single value. For ranges of values, upper
and lower bound values should be speci�ed in “Value1” and “Value2” text boxes.

• Upon �lling in the input boxes, the user’s query is formulated in natural language in the “Your
query” box. This formulation is rule-based by concatenating the search terms with numerical
conditions and the provided quantity.

Other Functionalities: QFinder’s interface contains additional components, to help the user in
query formulation and to answer frequently asked questions:

• The question mark on the top right corner guides the user to the FAQ page, with more infor-
mation about the interface, corpus, and Elasticsearch plug-in.

• The “HOW TO QUERY” button triggers a step-by-step walk-through on how to use the
system. It guides a new user through a sample of query formulation.
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Figure 5.18: Exploring the corpus, where the word cloud shows the prominent topic in each category and the
statistics of sentences and quantities are shown above it.

• As an example of how to formulate queries, we provide a set of pre-de�ned quantity queries.
The “GENERATE EXAMPLES” button �lls the input boxes with a random query from this
pre-de�ned set, and the user can directly click on the “SEARCH” button to see the results.

• Despite a large number of articles in our collection, the topics are rather limited and if the
user searches for a topic outside of the scope of the current collection, the results are not
satisfying. To help users in query formulation, we provide a word cloud representation of
each topic with statistics of the number of sentences and articles. The user can explore the
underlying data upon clicking the “EXPLORE THE DATA” button. An example based on
the topic “technology” is shown in Figure 5.18. Users can choose search terms that are related
to the topics from the word cloud.

5.5.4 Query Scenarios

To better demonstrate QFinder’s functionality, here we go through three typical search scenarios
for (1) single value numerical conditions, (2) range, and (3) pure term-based search.

Search with Single Value Conditions: Equal, less than and greater than are all single value con-
ditions, since they require a single numerical value for comparison against the query value. For such
queries, “Value2” is greyed out and not used during ranking.
A sample query “mustang greater than 380 horsepower” for the quantity condition greater than is
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Figure 5.19: Single value condition on sample query “mustang greater than 380 horsepower”.

shown in Figure 5.19. For brevity, we only show the top-2 results in the screenshot, but the inter-
face contains the �rst 100 results and supports pagination. In each result set, the relevant sentence is
highlighted in bold and the sentence after it is shown for more context information. The QBM25
score (combination of term-ranking and quantity-ranking) is presented in parentheses alongside the
article title, and users can access the relevant article by clicking on the title. Additionally, if the search
term or value and unit are present in the text, they are also highlighted and color-coded for visibility.

In Section 5.1.2, we discussed various quantity ranking functions for each numerical condition. The
Elasticsearch plug-in published alongside the interface o�ers the option to choose between di�erent
sorting methods and heuristic functions. However, for presentation purposes in QFinder, we uti-
lized the most intuitive sorting. For the equal condition, we used the descending exponential decay
variant, where values close to an exact match are ranked higher. For the less than and greater than
conditions, we applied ratio weighting with descending sorting, where values are sorted based on the
proximity to the query value.

Quantity Search for Ranges: In the case of ranges, two values are required in the query, one for
the lower bound and one for the upper bound. Upon selecting the range condition from the set of
quantity conditions, the “Value2” input is enabled, allowing the user to specify an upper bound. In
this setup, “Value1” serves as the lower limit for the range. Following the QBM25 ranking function,
the sentences ranked at the top contain the query unit, meet the range condition, and encapsulate
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Figure 5.20: Between (range) condition for sample query “unemployment rate between 3 and 5 percent”.

values strictly falling within the speci�ed range. An example of a range query as “unemployment
rate between 3 and 5 percent”, is shown in Figure 5.20.

As for the choice of the heuristic function, the ranges in QFinder are ranked based on the average of
the bounds in descending order, where the values near the average of the lower and upper bounds
are ranked higher.

Term-based Search: For a term-based search, the user is only required to provide “search terms”.
All the remaining inputs can stay empty. In this case, the ranking method falls back to the Elastic-
search default BM25 and quantity score do not have an impact on the �nal result.

5.6 Summary and Discussion

In this chapter, we (1) proposed two methods, joint and disjoint quantity-aware models, to inte-
grate quantity understanding into both classical IR models as well as recent neural architectures,
(2) introduced two novel benchmark datasets containing quantity-centric queries in domains of �-
nance and medicine, (3) demonstrated signi�cant improvements in quantity understanding over the
baselines for both proposed techniques, and (4) open-sourced our code and data and provided an
Elasticsearch/Opensearch plug-in for quantity-aware retrieval.
Our joint and disjoint approaches enable the integration of quantity understanding without alter-
ing existing architectures and with minimal overhead in query latency. We further highlighted the
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strengths and weaknesses of both approaches, arguing that the choice of method should depend on
the speci�c use case scenario. For the joint quantity-aware rankers, we summarize the strengths and
weaknesses as follows:

1. The disjoint models consistently outperform the joint models across various domains.

2. The unsupervised and heuristic nature of the disjoint rankers makes them more �exible than
the joint rankers. The notation of quantity proximity is easily altered by changing the quan-
tity ranking function, leading to great �exibility in terms of di�erent sorting of results.

3. The disjoint ranking can be combined with any lexical or semantic IR models without the
change in their architecture or need for additional �ne-tuning.

4. The quantity index and computation of quantity score introduce overhead in terms of query
latency and make these models susceptible to errors from quantity extraction.

5. The independence assumption between the quantity and term ranking leads to a possible
concept-quantity mismatch in the results.

For the disjoint quantity-aware rankers, we summarize the strengths and weaknesses as follows:

1. The joint models are better at �nding concept and quantity associations as the quantity and
term ranking are not separated by design (validated by error analysis and comparing the top
results of joint rankers side by side with the disjoint rankers).

2. The joint approach eliminates the need for an external index and the associated e�ciency
overhead and errors in quantity extraction.

3. The overall performance of the joint models is lower than the disjoint variants.

4. There is a need for an additional �ne-tuning step on synthetic data.

Depending on the user’s needs, both approaches are viable options to enhance the quantity under-
standing of the current IR systems.
In addition to evaluating our models on two novel benchmark datasets in terms of retrieval perfor-
mance, we highlight the importance and impact of quantity-centric ranking within recent question-
answering architectures using an RAG pipeline, where the retriever is replaced by a quantity-aware
model. Our �ndings show that using a quantity-aware model for retrieval in quantity-centric ques-
tions enhances the factuality and correctness of the generated answers, demonstrating the e�ective-
ness of our approach for downstream applications.

To conclude, we also highlight the limitations of the proposed evaluation resources and the joint
and disjoint quantity rankers.
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Data: One immediate consideration about the datasets is the relatively limited number of test queries
compared to larger-scale datasets such as MSMARCO (Nguyen et al., 2016). This is mainly due to
limited human resources and budget in an academic setting. Nonetheless, we argue that this number
of queries is already enough to showcase certain quantity-centric capabilities. Another shortcoming
of the data is the absence of queries for (1) ranges, e.g., “iPhone with price between 500 and 800
dollars”, and (2) negations, “iPhones not equal to 500 dollars”.

Models: When considering neural models, one limitation is their reliance on hardware capabilities,
particularly the need for GPUs, to ensure e�cient training, indexing, and inference. The query
latency values reported would su�er greatly if the computations were done on the CPU.
Another limitation is regarding the quantity extractor. Both the synthetic data generation paradigm
and the disjoint quantity-aware models rely on a quantity extractor. In the case of the disjoint model,
the quality of the quantity index directly relies on the quality of value and unit extraction. If a value
and unit is not detected by the extractor it will not be considered by the ranking function. In the joint
model, for data generation, the quantity extractor should also possess the ability to detect concepts
in text, introducing the potential for additional error propagation through the system.
One modeling limitation is that we do not discuss models that deal with negations. Adding this
variation to the disjoint models requires only a change in the numerical ranking function but it is
more di�cult for the joint setting where proper training data is required.
Finally, for the bound-based conditions of less than and greater than, we considered open bounds.
Depending on the user intent closed bounds might be more appropriate, however, similar to the
optimal sorting of results, this issue does not have a single solution.
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“The end of a melody is not its goal: but nonetheless,
had the melody not reached its end it would not have
reached its goal either. A parable.”

Friedrich Nietzsche

Quantities are pivotal elements for communicating precise and clear information across various do-
mains, enabling comparisons, analysis, and insights into trends and patterns. Quantity-centric re-
trieval, in which the system learns to prioritize quantities and their relations to textual elements for
an e�ective ranking, becomes essential when the information needs of users involve constraints on
quantitative attributes. Such systems should not only demonstrate an understanding of values and
scales but also be able to capture relationships between quantitative data and other textual elements.
In this �nal chapter, we summarize our contributions towards creating such a system, and discuss
the advancements that quantity-aware retrieval and its extensions provide.

6.1 Summary and Contributions

In Chapter 1, we motivated the necessity for dedicated systems for quantity-centric retrieval and
pointed out the shortcomings of current search engines concerning quantitative information in un-
structured text. We highlighted the importance of dedicated models that are adept at handling num-
bers and scales and discussed the challenges encountered by systems when quantities are treated in
the same way as other textual tokens.

In Chapter 2, we gave an overview of established methods in information retrieval, which creates the
basis for our proposed methods in later chapters. This chapter follows the evolution of IR methods
from the early probabilistic models to the recent neural architectures. We covered the traditional
models, based on inverted indices and statistics of the corpus as well as modern language models and
their impact on neural retrieval systems. For neural retrieval, we covered a variety of methods based
on dense and sparse embeddings and also discussed prominent training strategies and e�cient stor-
age and retrieval based on approximate nearest neighbor search. By discussing the state-of-the-art
architectures in retrieval and how relevance between queries and documents is de�ned and learned,
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we identify the shortcomings of current systems in relation to quantity-centric queries.

Since none of the current retrieval systems focuses on quantities in text, in Chapter 3 we provided an
overview of related work that directly or indirectly in�uences quantity representation in text. This
includes methods for extraction of standardized quantities from unstructured text, a limited num-
ber of works that look at use-case-speci�c quantity-centric retrieval as well as methods to enhance
quantity representations in language models and word embeddings. Since question answering is
tightly related to retrieval, we also covered the cases where dedicated modules were implemented for
quantity understanding and reasoning in reading comprehension tasks. Although many of these
works do not focus directly on quantity-centric queries, they provide an overview of the e�ort made
in the community to enhance quantity understanding in text.

Based on these considerations, we then explored various frameworks for quantity-centric informa-
tion retrieval in the following chapters.

Extraction of quantities: In order to build a quantity-aware retrieval system, we �rst need to cor-
rectly identify all quantities in text. Therefore, as our �rst contribution, we introduce a compre-
hensive framework for the extraction and normalization of quantities in unstructured text. Upon
reviewing the literature discussed in Chapter 3, we identi�ed two major shortcomings in prior quan-
tity extractors preceding our work. The �rst limitation involves restricting extraction solely to nu-
merical values and a selected few scienti�c units. The second limitation lies in isolating quantities
during extraction and neglecting crucial contextual information. Our proposed extractor alleviates
some of these problems and allows for a more comprehensive quantity model.
We begin Chapter 4 by looking at various quantity types and their appearance in the text. We then
de�ne contextualized quantity as a unit and value pair, which is enriched with contextualized infor-
mation. This includes concepts that are related to a quantity and how the value is changing. Since
we do not want to study quantities in isolation, our focus is to go beyond the conventional represen-
tation of units and values for quantities by contextualizing them with other tokens within a given
text. Our e�orts in this direction led to:

I the creation of the �rst-ever quantity extraction benchmark and,

II the CQE extractor as a hybrid system of rules and a BERT-based classi�er for unit disam-
biguation, which is able to handle a variety of quantity types, is easily extendable by adding
new rules or new units to the dictionary and is not limited to a speci�c domain.

More importantly, CQE extractions enrich the corpus with quantitative information that can be
used by retrieval models proposed in Chapter 5 for enhancing quantity-centric retrieval.
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Quantity-aware retrieval systems: Building on the construction of CQE, in Chapter 5 we ex-
plored ways to enhance the quantity understanding of current retrieval systems. From the lessons
learned in the e�orts of others in developing quantity-aware language models and embeddings (as
discussed in Chapter 3), our objective diverges from merely creating a single, specialized model for
quantity-centric retrieval, which may lack applicability across application domains. The aim is to en-
hance current models such that they can handle quantity-centric queries as well as keyword queries.
To this end, we �rst de�ne quantity-centric queries as queries that contain numerical conditions. We
propose two families of quantity-centric models. The models are distinguished based on whether
the quantitative information is ranked jointly or independently from the textual content.
The disjoint model operates on the assumption that quantities have di�erent semantics from textual
tokens, and by combining their ranking objective into one, we are disregarding the correct notation
of similarity based on scale and magnitude and replacing it with topical similarity. To this end, the
disjoint ranker completely separates the ranking of the quantitative part of a query (value and unit
pair with a numerical condition) from the textual part (search terms). Inspired by traditional in-
verted index structures, described in Chapter 2, the quantitative dimension of the corpus is encap-
sulated in a quantity index, where distinct unit and value pairs point to sentences containing them.
A set of heuristic functions designed to capture numerical proximity under various numerical con-
ditions operates on top of this index structure to handle quantity ranking. Due to this separation,
the notation of similarity for the quantity part of the query can now deviate from the textual part.
The term-based ranking can be performed by any neural or lexical ranker as long as the score is nor-
malizable. Quantity-centric scores are then the combination of the term and quantity scores.
The main advantages of the disjoint approach are its �exibility, simplicity, and dispensing with train-
ing data. Nonetheless, the assumption of independence between quantity and term-based ranking
is limiting and ignores the interdependency of the two. It would be more bene�cial if one could
learn both quantity proximity and textual similarity with a single objective and in a joint setting,
conserving the inter-dependency between all token types.
Quantity-centric queries are not part of the training dataset for a general domain neural retrieval
dataset. Therefore, we set out to experiment if the proper data is presented to these models, to what
extent neural retrieval systems can capture the quantity and textual relations in their internal rep-
resentations. It is important to note that we did not aim to create a dedicated model architecture,
similar to the ones in Chapter 3, but rather a training paradigm that can enhance the quantity un-
derstanding of current prominent neural models. A dedicated quantity-centric model limits the
application focus and is not useful in real-world scenarios, where users want to perform di�erent
types of queries.
Our training paradigm utilizes CQE to generate quantity-centric queries and positive and negative
examples for contrastive learning. The examples include evidence for the model to learn relevance
based on value comparison and unit understanding, which are the two main sources of errors in
neural rankers. We observed that by adding an additional �ne-tuning step on this synthetic data,
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the quantity understanding of the neural models improved signi�cantly. Yet, in our experiments
the disjoint quantity-centric models still exhibit superior performance, showcasing the di�culty of
learning the joint quantity and term-based ranking for neural models without a change in architec-
ture or training objective.

We concluded Chapter 5 by looking at the impact of quantity-centric ranking in a RAG pipeline, to
answer quantity-centric questions. Despite the quantity-aware models demonstrating better factual
correctness for such questions, the generation module of the RAG pipeline introduces a bottleneck
for quantity understanding, leaving room for future work in this direction.

6.2 Outlook

Given the diversity of potential applications of quantity-centric ranking and the fact that this area
of research is largely unexplored, several open questions warrant further investigation. We identify
two limitations of the current models as a basis for future work, namely, expansion of context be-
yond sentences and considering bounds and valid ranges for quantities in a sentence. Additionally, we
highlight two potential directions for further study and enhancement of quantity-aware retrieval,
namely, quantity-aware loss functions and architectural changes and the addition of temporal dimen-
sion to search. Finally, we discuss quantity-aware generators in RAG pipelines and the potential for
further work in that direction.

Expansion of context beyond sentences: Both the CQE framework and the proposed retrieval ar-
chitectures in this thesis operate at the sentence level. This deliberate decision was made to preserve
the relationships between quantities and concepts during detection and retrieval. As the context
window grows longer and more quantities and concepts are involved, this task becomes increasingly
challenging. Moreover, with larger window sizes concept detection becomes more di�cult, and
co-reference resolution becomes more vital to ensure consistency in concept detection. However,
condensing the context into a single sentence also increases the risk of errors and the chance of over-
looking critical information. In our view, one of the next steps with a focus on the technical aspects
of the model is increasing the context size of extraction and retrieval models to go beyond sentence
level and include larger chunks of data.

Considering bounds and valid ranges for quantities in a sentence: As mentioned in Chap-
ter 5, our proposed retrieval models assume a simpli�ed setting in a document collection, where the
bound-based conditions, where a value falls into a speci�c range, in the retrieval units are ignored.
For example, in “The iPhone XR is priced at under $745 on Amazon”, the quantity index in the
disjoint model contains the unit “dollar” and a singular value, “745”, rather than the entire range
of valid values. Designing an index structure that takes ranges of values into account and scoring
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functions operating on bounds instead of single values could be useful.
Certain sentences contain speculations or forecasts regarding the future and do not report exact and
correct values. For instance, the sentence “S&P 500 is forecasted to drop 1% by end of the year.”,
presents a speculative prediction of what may occur rather than an actual decline. Considering such
cases is another valuable addition to the model

Quantity-aware loss functions and architectural changes: Considering the inferior perfor-
mance of the joint models in comparison to the disjoint rankers, one obvious area of further study
is to inspect more closely the architecture and the objective functions of joint rankers. In particular,
it would be interesting to investigate the e�ect of numerical language models, described in Chap-
ter 3, as base models for retrieval architectures. Since these models have undergone task-speci�c
pre-training for understanding numerical scales, they should be better equipped for quantity com-
parison and answering quantity-centric queries. Nonetheless, the challenge of �tting such models to
general-purpose retrieval remains open, as numerical language modeling tasks have di�erent objec-
tives, e.g., predicting scales rather than the next word. These objective functions need to be altered to
account for the representation of quantities and textual elements in an equal manner. Moreover, de-
signing speci�c �ne-tuning objective functions for retrieval is also crucial. Such an objective should
account for both numerical proximity and textual similarity. A model trained in this manner can
bring the �ndings on quantity representation learning models into the retrieval settings.

Addition of temporal dimension to search: Temporal information represents a speci�c type of
quantitative data that we have overlooked in this thesis. Nonetheless, temporality remains a crucial
aspect of documents, which a�ects other quantitative information in the text. The quantities asso-
ciated with concepts are not always static, for instance, while the height of the Ei�el Tower remains
constant, the market share value of a stock �uctuates over time. A quantity-aware model equipped
to capture temporal dynamics and adept at modeling trends and �uctuations in values can contain
more precise and nuanced information from the text. Furthermore, it is rare for a user to conduct
a search on a static collection. Integrating the temporal dimension into the retrieval model enables
users to more easily locate the information they seek. For example, answering queries such as “How
did Apple’s revenue change over the past 10 years” or “Did the Bitcoin price in 2022 surpass the peak
in 2021?”, requires not only quantity understanding but also a search in the temporal dimension.
To answer the query “How did the Apple revenue change over the past 10 years”, the system should
be able to detect the Apple revenue for the past 10 years from the day of the query and provide a
summary. Moreover, for the query “Did the Bitcoin price in 2022 surpass the peak in 2021?”, not
only should the system �nd the peak price of Bitcoin in 2021 and 2022, but it should also compare
them, in order to �gure out if one surpasses the other.
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Quantity-aware generator in a RAG pipeline: A noteworthy observation from the RAG-based
evaluation of our models is the frequent occurrence of �awed generation outputs, even when the
generator language model was provided with the correct context. The next step in this area entails
exploring avenues to enhance the reasoning ability of the generator concerning quantities in the pro-
vided context. Similar to dedicated models for numerical reasoning in questions systems (discussed
in Chapter 3), one could either transform contextual chunks into suitable representations showcas-
ing the intrinsic relationships among quantities in the text, or instruct the generator to prioritize
quantity relations further, either through task-speci�c �ne-tuning or via in-context learning. For
example, the relation between the quantities in the retrieved context could be captured in a graph
structure, where nodes are the quantities and the edges show the relationship between the values,
greater than, less than, or equal. The graph can be an additional input to the language model to
facilitate quantity understanding and the relation between the quantities in a given context.
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Acronyms

ANN Approximate Nearest Neighbour
AP Average Precision
BCN Binary Cross Entropy
BERT Bidirectional Encoder Representations from Transformers
BIR Binary Relevance Retrieval
BM25 Best Match 25
CBOW Continuous Bag of Words
CNN Convolutional Neural Network
ColBERT Contextualized Late Interaction over BERT
CQE Comprehensive Quantity Extractor
DCG Discounted Cumulative Gain
DeepCT Deep Contextualized Term Weighting
DPR Dense Passage Retrieval
ELMo Embedding from Language Models
Faiss Facebook AI Similarity Search
FFNN Feed-forward Neural Network
GD Gradient Descent
GeMM Generative Masked Measurement model
GloVe Global Vector embeddings
GMAP Geometric Mean Average Precision
Grbd Gorbid-quantities
GRU Gated Recurrent Unit
HNSW Hierarchical Navigable Small World
IllQ Illinois Quanti�er
IR Information Retrieval
LSTM Long Short Term Memory
MAP Mean Average Precision
MLM Masked Language Modeling
MMP Masked Measurement Prediction
MRR Mean Reciprocal Rank
NDCG Normalized Discounted Cumulative Gain
Neural IR Neural Information Retrieval
NLI Natural Language Inference
NLL Negative Log-Likelihood
NLP Natural Language Processing
NSP Next Sentence Prediction
NSW Navigable Small World Graph
NumGNN Numerical Graph Neural Network
OOV Out Of Vocabulary
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Acronyms

P Precision
POS Part of Speech
Q3 Quantulum3
QA Questions Answering
QBM25 Quantity-aware BM25
QColBERT Quantity-aware ColBERT
Qfact Quantity Fact
QSPLADE Quantity-aware SPLADE
R Recall
R-Txt Recognizers-Text
RAG Retrieval Augmented Generation
RAGAS Retrieval Augmented Generation Assessment
RBP Ranked Biased Precision
RLHF Reinforcement Learning from Human Feedback
RNN Recurrent Neural Network
RR Reciprocal Rank
SBERT Sentence BERT
SG Skip Gram
SPLADE SParse Lexical AnD Expansion
SPTAG Space Partition Tree And Graph
TF-IDF Term Frequency Inverse Document Frequency
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Glossary

t(n) nth token in a sequence
cq A contextualized quantity
dt Bernoulli random variable if t is present in d
ch Change in quantity value
cn Concept of a quantity
α Control parameter for quantity scoring
e(n) Hidden layer of a RNN at timestep n and layer j
fn False negative
fp False positive
xt Frequency of term t in query x
τ , τ ′ Function to create representation of q and d
G Gating parameter
h
(n)
j Hidden layer of a RNN at timestep n and layer j
idf Inverse document frequency
dl Length of a document
K Matrix of key values in attention mechanism
Qu Matrix of query values in attention mechanism
V Matrix of values in attention mechanism
dft Number of documents containing the term t
ef Number of neighbors in ANN
c Numerical condition
Φ= Numerical scoring function for equal
Φ> Numerical scoring function for larger than
Φ[ ] Numerical scoring function for ranges
Φ< Numerical scoring function for smaller than
θ Parameters of a neural network
PE Positional Encoding
gt Probability that t is present in d given that d is not relevant
pt Probability that t is present in d given that d is relevant
X Query consisting of terms and quantities
r Relevance
s− Sentences from the negative examples to the query
so Sentences from the original sampling strategy
s+ Sentences from the positive examples to the query
sf Sentences of �nal set of training examples for a query
su Sentences with unit permutation
sv Sentences with value permutation
CQ Set of contextualized quantities
Cu Set of currencies
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Np Set of noun-based units
V Set of numerical values
Q Set of quantities
Si Set of scienti�c units
U Set of units
σ Sigmoid function
sim Similarity function
v Single numerical value
q Single quantity
x Single query
t Single term or token
u Single unit
tft,d Term frequency of term t in document d
ω The weight with a term in a vector space model
tn True negative
tp True positive
vl Value of the lower bound
vu Value of the upper bound
f Weight for FLOPs regularization
V ocab All the terms in the vocabulary
A Attention weight matrix
a Attention weight
b Bias term
el Eliteness
e Embedding vector
E Embedding weight matrix
hd Hidden state of a decoder
he Hidden state of an encoder
I Importance vector
k Key vector in attention mechanism
L Loss function
J Objective function
QScore Quantity scoring function
qu Query vector in attention mechanism
T Sequence of terms
D Set of documents
simc Similarity based on numerical condition
d Single document
ν Value vector in attention mechanism
W Weight matrix
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