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Über die Implikationen einer zukünftigen Entdeckung des neutrinolosen
doppelten Beta Zerfalls:

Der neutrinolose doppelte Beta Zerfall (0νββ) ist der vielversprechendste experi-
mentelle Test von leptonzahlverletzender (LNV) Physik jenseits des Standardmod-
ells. Seine Entdeckung würde tiefgreifende Einblicke in den Mechanismus der Neu-
trinomassenerzeugung sowie den Ursprung der Baryon-Asymmetry des Universums
erlauben. Die einfachste Interpretation eines solchen Signals als LNV Majorana Neu-
trino Masse vernachlässigt jedoch die Möglichkeit anderer LNV Mechanismen, welche
den Prozess dominieren können. Effektive Feldtheorien (EFTs) sind ein effizientes
Werkzeug, um die Vielzahl an möglichen LNV Mechanismen auf modellunabhängige
Art zu untersuchen. In der vorliegenden Arbeit erforschen wir die Implikationen einer
zukünftigen 0νββ Entdeckung, indem wir aufzeigen, wie verschiedene LNV Mech-
anismen anhand der Messung der Halbwertszeit und Elektronkinematik in unter-
schiedlichen Isotopen unterschieden werden können. Anhand eines Beispielmodells,
welches eine nicht triviale 0νββ Rate in einem Modell mit leptonzahlerhaltendem La-
grangian generiert, fordern wir das bekannte Black-Box Theorem heraus, welches
eine 0νββ Entdeckung mit der Majorana Natur der Neutrinos gleichsetzt. Dies
wird mithilfe des Einfangs eines leptonzahlgeladenen Skalarfelds aus einem dunklen
Hintergrund erreicht. Zu guter Letzt haben wir den verwendeten EFT Ansatz in
unserem Python Modul νDoBe automatisiert, welches wir anhand einiger Beispiele
beschreiben.

On the Implications of a Future Neutrinoless Double Beta Decay Discov-
ery

Neutrinoless double beta decay (0νββ) is the most promising experimental probe of
lepton number violating (LNV) physics beyond the Standard Model. Its discovery may
provide profound insights into the mechanism of neutrino mass generation as well as
the observed baryon asymmetry of the universe. While the most simple interpretation
of a 0νββ signal is in terms of a LNV Majorana neutrino mass term, other LNV
mechanisms may provide the leading contribution to the 0νββ transition amplitude.
Effective field theories (EFTs) are an efficient tool to describe and study the various
LNV mechanisms of 0νββ in a model-independent way. In this work, we study the
implications of a future 0νββ discovery by showcasing how different LNV mechanisms
of 0νββ can be disentangled via measurements of the half-life and electron kinematics
in various isotopes. By providing a proof-of-concept model that generates a non-
trivial 0νββ half-life in a model with a lepton number conserving vacuum ground-
state Lagrangian, we challenge the long-standing black-box theorem, which relates
a 0νββ observation to the Majorana nature of neutrinos. This is achieved via the
capture of a lepton number carrying scalar field from a dark background. Finally,
we automated the applied EFT framework in the Python tool νDoBe and showcase
example use-cases.
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Conventions

We will use the mostly-minus metric

gµν = (diag[1,−1,−1,−1])µν ,

as well as natural units, i.e.,

ℏ = kB = c = 1.

Additionally, we use the usual slash notation to contract (covariant) derivatives or,
generally, any four-vectors with gamma matrices

/∂ = γµ∂µ, /D = γµDµ, /p = γµpµ.

The Dirac gamma matrices are denoted in the usual way as γµ, µ ∈ [0, 3] and γ5 =
iγ0γ1γ2γ3. The Pauli matrices are denoted by both σi and τi, i ∈ [1, 3] where we use
the latter to distinguish the Pauli matrices from the spin operator also denoted by σ.
Generally, Greek indices α, β, ... will run from 0 to 3, representing the Minkowskian
space-time indices, while Latin indices a, b, ... may be used in different contexts such as,
e.g., Euclidean space, flavor-space or color-space. The latter will be defined each time
if their purpose is not clear from the context. We apply the usual sum convention for
repeated indices

xµyµ =
∑︂
µν

gµνx
µyν ,

which may at times be abbreviated as

x · y.

Spatial three-vectors in a Euclidean space will usually be denoted as bold or with an
arrow on top ⎛⎝x1x2

x3

⎞⎠ = x⃗ = x.
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Chapter 1

Introduction

The Nobel-prize-winning discovery of neutrino oscillations in atmospheric neutrinos
at Super-Kamiokande [6] and solar neutrinos at the Sudbury Neutrino Observatory
(SNO) [7] in combination with subsequent evidence for neutrino oscillations in reac-
tor experiments [8] as well as neutrino beams [9] provides, arguably, the most promising
laboratory proof of the requirement for new physics beyond the Standard Model we have
today. Indeed, neutrino oscillations require the neutrinos to have non-vanishing mass
differences [10, 11], therefore implying at least two of the three neutrino types to be
massive, a feature the Standard Model of particle physics [12–14] does not account for.
With neutrinos being the only fundamental fermion that is electrically neutral, the ques-
tion about their intrinsic nature being of Dirac or Majorana type is raised. At the same
time, the simplest extensions to the Standard Model able to explain the observed small
neutrino masses, the famous seesaw mechanisms [15–20], describe neutrinos as Majorana
particles, thereby implying the violation of lepton number. Additionally, Leptogenesis
scenarios [21] suggest that the origin of the observed matter-antimatter asymmetry of
the Universe might be tightly connected to the origin of the neutrino masses and the
nature of the neutrino. Therefore, the unknown origin of neutrino masses is a strong mo-
tivation for the search for lepton-number-violating-physics (LNV) beyond the Standard
Model.

Neutrinoless double beta decay (0νββ) experiments [22–29] are highly sensitive probes
of the potential Majorana nature of neutrinos and, additionally, provide the strongest
constraints for a variety of LNV physics scenarios [2, 30]. Indeed, there exists a plethora
of LNV mechanisms, beyond the most “simple” Majorana neutrino mass scenario, that
are testable in 0νββ experiments [24, 25]. Despite tremendous efforts in the experimental
physics community dedicated towards the discovery of a 0νββ signal, it has evaded any
detection so far.1 Next-generation ton-scale experiments [34–38] aim to explore half-lives
in the range of 1027 − 1028 yr, thereby covering the so-called inverted hierarchy scenario.

1An early claim of a positive signal in 76Ge by parts of the Heidelberg-Moscow collaboration [31, 32]
has been ruled out by the follow-up GERDA experiment [33].
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1 Introduction

A positive signal would have profound implications, as it is, generally, interpreted as
showcasing that lepton number conversation is, indeed, violated in Nature, and signaling
the Majorana nature of neutrinos [39, 40]. However, as we will discuss in Chapter 7,
some subtleties may arise in the interpretation of a 0νββ signature requiring additional
information from, e.g., cosmology in order to draw definite conclusions. Nevertheless,
a positive 0νββ detection would, without any doubt, be another Nobel-price-winning
achievement, providing valuable information about new physics beyond the Standard
Model.

To maximize the scientific return of a future 0νββ detection, it is essential to develop a
profound understanding of the various underlying LNV mechanisms that can, potentially,
trigger 0νββ. While limits on the 0νββ half-life are often interpreted solely in the context
of a light Majorana neutrino-exchange mechanism initiating 0νββ, one has to be more
careful and, generally, include all possible LNV scenarios in the analysis. In this way,
one may be able to not only observe but also narrow down or identify the new LNV
physics causing the 0νββ signal. Effective field theories (EFTs) [41–43] allow us to
study the relevant LNV scenarios beyond the Standard Model (BSM) in a controlled
and model-independent way. Due to the low-energy nature of 0νββ, with typical decay
energies at the MeV scale, EFTs can efficiently describe any LNV mechanism stemming
from new physics at some high energy scale. In this work, we will apply the chiral
EFT framework developed by Cirigliano et al. [44, 45] to study the implications of
a future 0νββ detection. To this end, we will discuss the requirement of new BSM
physics arising from the observation of neutrino oscillations in Chapter 2. Afterwards,
we will give a brief introduction to EFTs in Chapter 3. In Chapter 4, we will provide
a comprehensive introduction to the theoretical aspects of 0νββ. In this context, we
will apply the concept of EFTs to 0νββ by rederiving and extending the chiral EFT
framework of Refs. [44, 45]. This will lay the groundwork for the results presented in the
subsequent chapters. We will then study the potential to disentangle the different 0νββ
mechanisms, that arise in the employed EFT framework, based on the experimental
observables available in dedicated 0νββ experiments in Chapter 5. The particular focus
in this part of our work will be on the possible identification of higher dimensional
“non-standard” LNV mechanisms beyond the usual light neutrino-exchange mechanism
(LνEM). By utilizing the EFT approach, the calculation of 0νββ observables can be
described in an algorithmic way. We automated this approach in the open-source Python
tool νDoBe [2] which will be briefly described in Chapter 6 where we will provide example
use cases of the tool by studying the recent KamLAND-Zen limit on the 0νββ half-life
in 136Xe [46] and by deriving the corresponding limits on the various LNV mechanisms.
Additionally, we will apply νDoBe to the minimal left-right symmetric model [47–50] to
showcase its capabilities for model-dependent applications. Finally, we will discuss the
famous black-box theorem [39, 40] and its implications and potential shortcomings in
Chapter 7.
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Chapter 2

Neutrinos in the Standard Model – A
Window to New Physics

“Dear Radioactive Ladies and Gentlemen, [...] because of the "wrong" statistics of the
N- and Li-6 nuclei and the continuous beta spectrum, I have hit upon a desperate remedy
to save the "exchange theorem" of statistics and the law of conservation of energy.”
— W. Pauli, 1930

These are the famous first words in Wolfgang Pauli’s 1930 letter to the Gauverein meet-
ing in Tübingen [51] in which he proposed the existence of an electrically neutral low-
mass fermion, the neutrino1, to explain the observed continuous energy spectrum of the
electrons emitted in a single beta decay, which otherwise would contradict the conser-
vation of energy. This “desperate” attempt was finally confirmed by Cowan and Reines
in 1956 [53, 54] via the discovery of a neutrino-capture induced beta decay

νe + p −→ n+ e+. (2.1)

The discovery of neutrinos marked an important milestone in the development of the-
oretical physics as it paved the path to a deeper understanding of particle physics,
culminating in today’s formulation of the Standard Model and providing a promising
window beyond. In this chapter, we will discuss why our current understanding of neu-
trinos in the Standard Model, while being tremendously successful in many ways, is still
incomplete and, eventually, requires the existence of new physics beyond the Standard
Model. More detailed information on the general aspects of neutrino physics can be
found, e.g., in Refs. [10, 11], while Ref. [55] provides some historical context.

1Strictly speaking, he named it the “neutron” at the time. However, this was before the particle we
know today as the neutron was discovered in 1932 [52].
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2.1 Neutrinos in the Standard Model

2.1.1 The Standard Model Lagrangian

The Standard Model (SM) of particle physics describes the fundamental building blocks
and interactions we observe in Nature2. It is a relativistic, i.e., Lorentz invariant quantum
field theory (QFT) that is characterized by its local SU(3)C × SU(2)L × U(1)Y gauge
structure. In this way, it unifies Quantum Chromodynamics (QCD) [56, 57], describing
the strong nuclear force, with the electroweak theory, which describes electromagnetism
and the weak interactions. The dynamical degrees of freedom, and their respective
gauge structure, contained in the Standard Model are summarized in Table 2.1. The
SM fermions are defined in terms of the left- and right-handed chiral fields

Ψ = ΨL +ΨR, ΨL,R = PL,RΨ, (2.2)

via the chiral projectors which obey the following relations

PL =
1− γ5

2
, PR =

1 + γ5
2

, PL,RPL,R = PL,R, PL,RPR,L = 0. (2.3)

The subscript L in the SU(2)L symmetry signifies that it only acts onto the left-handed
fermions ΨL.

It is convenient to split the SM Lagrangian into four different parts [11, 58]

LSM = LGauge + LH + LY + LΨ. (2.4)

The gauge tensor part

LGauge = −
8∑︂

a=1

Gµν,aGµν
a −

3∑︂
i=1

Wµν,iW
µν,i −BµνB

µν , (2.5)

describes the behaviour of the three different gauge fields Bµ,W
i
µ,Ga

µ corresponding to
the U(1)Y , SU(2)L and SU(3)C gauge groups, respectively, with the gauge tensors given
by [11, 58]

Bµν = ∂µBν − ∂νBµ,

W i
µν = ∂µW

i
ν − ∂νW

i
µ − g2ϵijkW

j
µW

k
ν ,

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − g3fabcG

b
µG

c
ν . (2.6)

Here, the SU(3) structure constants fabc are defined via [λa, λb] = 2ifabcλ
c in terms of

the eight Gell-Mann matrices λa, a ∈ [1, ..., 8]. The Higgs sector is described in terms of
the SU(2)L Higgs doublet H = (h+, h0)T as

LH = (DµH)† (DµH)− V(H†H), V(H†H) = µ2H†H + λ
(︁
H†H

)︁2
, (2.7)

2except for gravity but this is beyond the scope of this work.
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Fermions of the Standard Model
SU(3)C SU(2)L U(1)Y U(1)EM

Qi =

(︄
uL,i

dL,i

)︄
3 2 1/3

+2/3

−1/3

uR,i 3 1 +4/3 +2/3Q
ua

rk
s

dR,i 3 1 −2/3 −1/3

Li =

(︄
νL,i

lL,i

)︄
1 2 −1

0

−1

Le
pt

on
s

lR,i 1 1 −2 −1

Bosons of the Standard Model
SU(3)C SU(2)L U(1)Y U(1)EM

H
ig
gs

B
os
on

H =

(︄
h+

h0

)︄
1 2 1/2

+1

0

G 8 1 0 0
W 1 3 0 —

G
au

ge

B
os
on

s

B 1 1 0 —

Table 2.1: Particle content of the Standard Model and their gauge group representations,
including the electric charge in the broken phase of the Standard Model. The
index i denotes the existence of three generations of fermions. Due to the
mixing of the electroweak gauge bosons W and B in the broken phase of the
Standard Model, we do not assign an electric U(1)EM charge to them here.
The bold numbers 1, 2, 3 and 8 signify a gauge singlet, doublet, triplet and
octet, respectively, while the non-bold numbers represent the relevant U(1)
charges.

where V(H†H) denotes the famous Higgs potential, with µ2 < 0 and λ > 0, that is
responsible for the spontaneous symmetry breaking of the electroweak part of the SM
to the electromagnetic U(1)EM subgroup, SU(2)L × U(1)Y → U(1)EM. Similarly, the
fermions and their gauge-interactions are summarized via

LΨ =
3∑︂

i=1

∑︂
Ψ∈{Q,L,uR,dR,lR}

Ψii /DΨi, (2.8)

where the sum over the index i signifies the existence of three generations of fermions.
The gauge-covariant derivative is given in terms of the SU(3)C and SU(2)L generators
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2 Neutrinos in the Standard Model – A Window to New Physics

λa/2, and τi/2, respectively, and the weak hypercharge operator Y as [59]

Dµ = ∂µ − ig3
λa
2
Ga

µ − ig2
τi
2
W i

µ − ig1Y Bµ, (2.9)

where τi denote the three Pauli matrices. Finally, the Higgs-fermion Yukawa interactions
are given by

LY = −Y l
ijLiHlR,j − Y u

ijQiH̃uR,j − Y d
ijQiHdR,j + h.c., (2.10)

where we defined H̃ = iτ2H
∗ = (h0, h−)T .

2.1.2 Fermion Masses in the Standard Model

One may notice that, within the fundamental SM Lagrangian, the only physical scale
is represented by the tachyonic mass µ2 < 0, while all other particles remain strictly
massless. Indeed, the gauge structure of the SM prohibits the existence of fundamental
mass terms for the SM fermions and gauge fields. This is in stark contrast to the
observed particle content of the Universe with massive fermions and massive W±, Z
gauge bosons. The apparent contradiction between the theoretical description in the SM
and the physical reality is solved by the famous Higgs mechanism [60–64] spontaneously
breaking the electroweak SU(2)L × U(1)Y symmetry when the neutral component of
the Higgs doublet acquires its non-zero vacuum expectation value (vev). In the unitary
gauge, we may write the Higgs doublet in the broken phase as [11]

H =
1√
2

(︃
0

v + h

)︃
, v ≃ 246GeV, (2.11)

where v is the Higgs vev and h is the physical Higgs boson, i.e., the excitation from the
ground-state. In this way, the Yukawa interactions between the Higgs doublet and the
SM fermions generate non-vanishing fermion masses of the type

LY ⊃
∑︂

Ψ∈(l,u,d)

mΨ
ijΨiΨj = mΨ

ij(ΨL,iΨR,j +ΨR,iΨL,j), (2.12)

with the mass matrices given in terms of the corresponding Yukawa matrices

ml
ij =

v√
2
Y l
ij, mu

ij =
v√
2
Y u
ij , md

ij =
v√
2
Y d
ij , (2.13)

The neutrino stands out, with respect to the remaining fermions of the SM, as being
the only strictly massless fermion. This massless nature of the neutrino within the SM is
related to the absence of a right-handed νR counterpart, and, consequently, the missing
Yukawa interaction with the Higgs field.
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2.2 Neutrino Oscillations – Motivating New Physics in the Neutrino Sector

2.2 Neutrino Oscillations – Motivating New Physics
in the Neutrino Sector

The observation of neutrino oscillations provides definite proof of the existence of new
physics beyond the Standard Model as it is described above. In order to understand
these implications, we will briefly review the standard quantum mechanical description
of neutrino oscillations following chapter 7.1 of Ref. [11]. While the standard textbook
description of neutrino oscillations via a quantum mechanical plane-wave approxima-
tion [11], strictly speaking, violates energy-momentum conservation [11]3, it generates
the correct oscillation probabilities and is thereby sufficient for the purpose of our dis-
cussion. For a self-consistent derivation of the neutrino oscillation probabilities, one has
to apply a wave packet approach to quantum mechanics or, alternatively, a complete
treatment in the context of QFT. The interested reader is referred to Refs. [11, 65–67]
and references therein.

Neutrinos are, generally, produced as weak interaction eigenstates νL,α, α ∈ {e, µ, τ}
which are defined in terms of the charged leptons of flavor α via the diagonal charged-
current interactions [11]

LSM ⊃ − g2√
2
W−

µ lL,αγ
µνL,α + h.c.. (2.14)

In general, the weak eigenstates νL,α do not need to coincide with the Hamiltonian
neutrino eigenstates νL,i which are defined via

H |νL,i⟩ = Ei |νL,i⟩ , Ei =
√︂

p2 +m2
i , (2.15)

but are, instead, related via a unitary 3× 3 matrix U

LSM ⊃ − g2√
2
W−

µ lL,αγ
µνL,α = − g2√

2
W−

µ lL,αγ
µU∗αiνL,i. (2.16)

If the interaction and Hamiltonian eigenstates align, U is simply given by the iden-
tity matrix. Let us now consider a neutrino of flavor α that is produced via some
charged-current weak interaction at time t = 0. Its time-evolution is captured by the
Schroedinger equation as

|νL,α(t)⟩ = exp{−iHt} |νL,α⟩ =
∑︂
β,k

U∗αk exp{−iEkt}Uβk |νL,β⟩ . (2.17)

The νL,α → νL,β transition probability after a certain time t is then given in terms of
the absolute square of the corresponding transition amplitude

Pα→β(t) = |⟨νL,β|νL,α(t)⟩|2 =
∑︂
ij

U∗αiUβiUαjU
∗
βj exp{−i(Ei − Ej)t}. (2.18)

3Also plane-waves are characterized by having a definite momentum and are therefore completely
delocalized in position-space making it impossible to define a proper baseline distance.
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2 Neutrinos in the Standard Model – A Window to New Physics

It is evident that non-trivial transition amplitudes require energy differences between the
different Hamiltonian eigenstates |νL,i⟩. With typical neutrino energies being at least at
the order of a few MeV, we may expand the neutrino energy in terms of small neutrino
masses mi ≪ p

Ei = p+
m2

i

2p
+O

(︄[︃
m2

i

2p

]︃2)︄
, (2.19)

and the energy difference becomes

Ei − Ej =
m2

i −m2
j

2p
. (2.20)

Consequently, in the vacuum, non-zero νL,α → νL,β transition probabilities require non-
trivial mass differences and therefore necessitate the existence of massive neutrinos. The
experimental verification of neutrino oscillations is therefore a clear signature requiring
physics beyond the SM.

Throughout this section, we applied the so-called same-momentum approach, by as-
signing a common momentum p to all propagating neutrino states. Additionally, we as-
sumed the neutrinos to propagate through an empty vacuum. The propagation through
a dense medium complicates the discussion, as neutrino-matter interactions have to
be considered in the Hamiltonian, thereby changing the in-medium eigenstates of the
Hamiltonian. Indeed, one may define an effective or refractive mass for neutrinos prop-
agating through a dense and interacting medium. In this way, the famous MSW effect
provides a solution to the solar neutrino problem [68–71]. Recently, a refractive neutrino
mass generation in the context of neutrino-dark matter interactions was proposed as a
potential solution to the observed neutrino oscillations without the necessity for vacuum
neutrino masses [72]. In Chapter 7, we will make use of this conceptual idea again.

2.3 Neutrino Masses and the Nature of Neutrinos
Besides its local gauge structure, the SM incorporates several accidental global symme-
tries. These are themselves not a defining feature of the SM, but arise from the given
field content and symmetry structure. On the Lagrangian level, both baryon number
B and lepton number L as well as their combinations B − L and B + L are conserved.
Taking into account non-perturbative effects, so-called anomalies, only B − L survives
as an exact accidental symmetry of the SM [73–75]. In this section, we will argue that
the introduction of neutrino masses into the SM requires either the violation of this
accidental symmetry or its promotion to a defining feature of the theory.

Basically, we are provided with two possible options for defining a neutrino mass term
of the formmννν. First, we may add a B−L conserving Dirac mass term by adding three
right-handed neutrinos νR,i to the SM and defining the full neutrino field νi = νL,i+νR,i.
This allows us to write down a Dirac neutrino mass term of the form

Lmν = mD
ijνiνj = mD

ij (νL,iνR,j + νR,iνL,j) , (2.21)
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where the Dirac neutrino mass matrix

mD
ij =

v√
2
Y ν
ij , (2.22)

is generated via the same Yukawa interactions of the neutrino with the Higgs doublet
as for the remaining SM neutrinos. Alternatively, instead of adding a dedicated right-
handed neutrino field, we may use the CP -conjugate of the left-handed neutrino field

νCL = CνL
T = PRCν

T , C = iγ0γ2, (2.23)

as the necessary right-handed counterpart and define ν = νL + ηνCL with some complex
phase η. This is called a Majorana neutrino. Its defining property is that it requires the
neutrino and anti-neutrino to be equivalent up to a complex phase

νC = η∗ν. (2.24)

The corresponding Majorana mass term is then

Lmν =
1

2
mL

ijνiνj =
1

2
mL

ij

(︂
νL,iν

C
L,j + νCL,iνL,j

)︂
, (2.25)

where we absorbed the complex phase η into the definition of the Majorana mass matrix
mL

ij. The conventional factor of 1/2 accounts for the fact that the left- and right-handed
parts of ν are not independent from each other. Evidently, a Majorana neutrino mass
term violates lepton number by 2 units. However, a Majorana mass term for the left-
handed neutrino is not invariant under the SM gauge structure and requires the extension
of the scalar sector by, e.g., an SU(2)L triplet scalar [17, 18, 20].

In order to save the accidental B − L symmetry of the SM, we have to describe the
neutrino as a Dirac particle and, consequently, add right-handed neutrinos to the theory.
However, because neutrinos are electrically neutral and do not interact via the strong
force, right-handed neutrinos are total singlets under the SM gauge group, νR ∈ (1,1, 0)4.
As a consequence, we may write down a gauge-invariant Majorana mass term for the
right-handed neutrino fields

Lmν ⊃ 1

2
mR

ijνR,iν
C
R,j + h.c.. (2.26)

This not only introduces new dimensionful scales given by the right-handed neutrino
mass matrix mR

ij into the theory. It also violates B − L by two units, again. Naively,
one might argue that the singlet Nature of the right-handed neutrinos will hide the LNV
nature of this SM extension, as νR does not take part in any gauge interactions. However,
as we will see in Chapter 7, the mixing of νR with the weakly interacting left-handed
neutrinos νL via the Dirac mass term, renders the neutrino mass states as Majorana

4The electric charge Q of a field is given in terms of the weak hypercharge Y and third component
of the weak isospin I3 = τ3/2 as Q = I3 + Y/2 [11]. As a right-handed field, νR is by definition an
SU(2)L singlet with I3 = 0, therefore requiring Y = 0.
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particles when diagonalizing the full mass matrix. This is known as the famous seesaw
type-I scenario [10, 15–17] which can have significant phenomenological consequences.

We see that in order to save the accidental B − L symmetry of the SM, we would
have to manually impose it onto the theory when adding right-handed neutrinos. This
is a strong motivation for the search for LNV BSM physics and the Majorana nature of
neutrinos.
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Chapter 3

Effective Field Theories in a Nutshell

Before turning towards 0νββ we will briefly introduce and discuss the concepts and
relevant aspects of effective field theories (EFTs). For a more comprehensive review the
interested reader is referred to the lecture notes of Refs. [41–43] while Ref. [76] offers
some interesting insights into the historical contexts and developments. In this chapter,
we will mostly follow along the lines of the first two chapters of Penco’s lecture notes [43].

3.1 The Purpose of Effective Field Theories

In a general sense, EFTs are approximate solutions to a more fundamental quantum
field theory and are valid only under certain conditions, e.g., below a certain energy
scale or above a certain length scale. They may be constructed to effectively describe a
certain (set of) physical system(s) under consideration. In the context of particle physics,
EFTs are used whenever a separation of scales justifies the description of macroscopic
(low-energy) phenomena of interest independently of the full microscopic (high-energy)
theory.

Depending on the phenomenological context, EFTs may differ from the full micro-
scopic theory in terms of the relevant degrees of freedom under consideration, either by
systematically removing “irrelevant” degrees of freedom, such as heavy particles above
the energy scale of interest, or by changing to a completely different set of degrees of free-
dom, such as transitioning from free particles to bound states. In the same way, EFTs
can feature different symmetry structures than the underlying fundamental microscopic
theory.

In the context of particle physics, the application of EFTs, usually, follows along either
of two lines:

1. Top → Down – Simplifying Calculations: In case the fundamental theory is
known we may still encounter problems when trying to do precise calculations of
physical observables in certain situations. In such a scenario, EFTs can be a useful
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tool to simplify calculations and allow us to make predictions that could not be
extracted from the full theory. The most common example in particle physics for
such a scenario is QCD at low energies. While the full microscopic theory of QCD
is known, it becomes strongly interacting below the energy scale of Λχ ∼ 2GeV
such that perturbation theory breaks down. Chiral perturbation theory [77, 78]
offers a systematic way of dealing with QCD in the strongly interacting regime
by considering composite mesons and nucleons as the relevant degrees of freedom
instead of the fundamental quark and gluon fields.

2. Bottom → Up – Searching for New Physics: When searching for new physics
we may use EFTs as a model-independent tool to constrain possible scenarios.
This can be achieved by either constructing an EFT appropriate to a specific
experimental setup using the relevant degrees of freedom and symmetry constraints
or by promoting an existing microscopic theory (such as the Standard Model) to
an EFT by dropping the renormalizability requirement and systematically adding
all (non-renormalizable) terms that can be constructed with the existing degrees
of freedom and that are allowed by the symmetries of the theory.

In this work, we will make use of both approaches.

3.2 Constructing an Effective Field Theory

As EFTs are not supposed to be fundamental theories of Nature valid up to arbitrary
energy scales, we may drop the requirement of renormalizability in the usual sense. That
is, we do not require renormalization via a finite set of counter-terms but settle for an
infinite number of counter-terms, instead. While this is, usually, interpreted as a loss
of predictive power of a theory, as we introduce an infinite set of free parameters that
would need to be fixed experimentally, we will see that one can systematically regain
predictability via the introduction of a power-counting scheme. Usually, the construction
of an EFT Lagrangian requires the following steps [43]:

1. At the beginning, one has to identify all relevant degrees of freedom and symmetries
that are necessary to describe the macroscopic physical system of interest. The
EFT will consist of all operators that can be built out of the relevant degrees of
freedom consistent with the identified symmetry constraints. In general, this will
be an infinite number of terms.

2. In the next step, one has to work out a power-counting scheme that allows us to
expand the Lagrangian in terms of some small quantity ϵ. This will enable us to
sort the infinite amount of terms in the EFT Lagrangian by their relevance based
on a suppression scale. The most common choice in particle physics is an expansion
in the ratio E/Λ with the high energy scale Λ representing the scale at which the
full microscopic theory and its degrees of freedom become relevant and the low-
energy scale E corresponding to the macroscopic phenomena the EFT is supposed
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to describe. In D space-time dimensions, we can use such a power-counting scheme
to write the effective Lagrangian as [42]

Leff =
∑︂
i,d>0

C
(d)
i

Λd−DO(d)
i =

∑︂
d>0

1

Λd−DL(d)
eff , (3.1)

where the operators O(d)
i are d-dimensional operators allowed by the relevant sym-

metry constraints and built from the EFT’s degrees of freedom, C(d)
i are the cor-

responding coupling constants or Wilson Coefficients and we have summarized all
terms at a certain dimension d in the effective d-dimensional Lagrangian L(d)

eff .

3. By truncating the effective Lagrangian at a certain order in the EFT expansion

Leff = L(d≤D)
eff +

kmax∑︂
k=1

1

Λk
L(D+k)

eff +O
(︁
(1/Λ)kmax

)︁
, (3.2)

one can limit the number of operators to a finite set and, hence, regain predictabil-
ity up to a certain level of accuracy set by the truncation order kmax. Here, we
explicitly split the effective Lagrangian into the renormalizable part L(d≤D)

eff and the
“non-renormalizable” higher dimensional contributions L(D+k)

eff suppressed by pow-
ers of Λ−k. In this sense, “non-renormalizable” theories are in fact renormalizable
as long as we restrict ourselves to some finite accuracy in the EFT expansion.

3.3 Matching Procedure - Integrating Out Heavy De-
grees of Freedom

A priori, the Wilson coefficients of an EFT are completely unknown. However, if the
microscopic theory is known, we can construct them systematically. This procedure is
usually referred to as matching. In this section, we will show how the parameters of a
given microscopic theory can be matched onto the corresponding macroscopic EFT by
integrating out the heavy degrees of freedom. This is a valid approach whenever the
macroscopic degrees of freedom are a subset of the full microscopic theory.

Let’s briefly recall the path integral formulation of Quantum Field Theory [79, 80]. In
this formulation, one can derive any n-point correlation function ⟨A⟩, from the so-called
partition function

Z =

∫︂ ∏︂
n

DΦn exp{iS({Φn}}, (3.3)

either by performing the functional integral

⟨A⟩ = 1

Z

∫︂ ∏︂
n

DΦnA exp{iS({Φn}}, (3.4)
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Figure 3.1: Diagrammatic visualization of a tree-level matching procedure. Feynman
diagrams offer an intuitive way of understanding the matching procedure
from a microscopic theory (left) to a macroscopic EFT (right) by taking the
m≫ p limit for internal propagators of heavy particles.

or by introduction of external sources Jn into the partition function

Z({Jn}) =
∫︂ ∏︂

n

DΦn exp

{︄
iS({Φn}+

∫︂
x

∑︂
n

J ∗n (x)Φn(x) + Jn(x)Φ
∗
n(x)

}︄
, (3.5)

and taking the appropriate functional derivatives with respect to the external sources

⟨Φi(x1)...Φj(xn)⟩ =
1

Z({Jn})
δn

δJi(x1)...δJj(xn)
Z({Jn})

⃓⃓⃓⃓
⃓
J=0

. (3.6)

From this point, we can already guess what integrating out a certain field means. For
simplicity, let us assume a simple Yukawa theory model composed of a heavy real scalar
field ϕ and a much lighter fermionic field Ψ with the Lagrangian

L = Ψ(i/∂ −mΨ)Ψ− 1

2
ϕ(∂µ∂µ +m2

ϕ)ϕ+ gϕΨΨ, (3.7)

and the partition function given by

Z(J, η, η) =

∫︂
DϕDΨDΨ exp

{︃
iS(ϕ,Ψ,Ψ) + i

∫︂
x

J(x)ϕ(x) + η(x)Ψ(x) + Ψ(x)η(x)

}︃
,

where the action is defined as

S =

∫︂
x

L. (3.8)

At energies much lighter than the scalars mass E ≪ mϕ we cannot observe any scattering
processes with incoming or outgoing scalars, as there is simply not enough energy to
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3.3 Matching Procedure - Integrating Out Heavy Degrees of Freedom

produce them. Hence, we might factor out and perform the path integral over ϕ and
define the effective action Seff via

Z(J = 0, η, η) =

∫︂
DΨDΨexp

{︃
i

∫︂
x

ηΨ+Ψη

}︃∫︂
Dϕ exp

{︁
iS(ϕ,Ψ,Ψ)

}︁
=

∫︂
DΨDΨexp

{︃
iSeff(Ψ,Ψ) + i

∫︂
x

ηΨ+Ψη

}︃
. (3.9)

Note that the partition function and effective action obtained in this way exactly describe
all scattering amplitudes that do not involve external scalars. For our simple Yukawa
theory without scalar self-interactions, we can explicitly calculate the Gaussian integral
over ϕ using the relation [79]∫︂

dNx exp

{︃
−1

2
xTAx+ jTx

}︃
=

(2π)(N/2)√︁
det{A}

exp

{︃
1

2
jTA−1j

}︃
, (3.10)

yielding∫︂
Dϕ exp

{︃
i

∫︂
x

−1

2
ϕ(□+m2

ϕ)ϕ+ gΨΨϕ

}︃
∝ exp

{︃
i

∫︂
x

gΨΨ(□+m2
ϕ)
−1ΨΨ

}︃
. (3.11)

From eq. (3.4) and (3.6) we can see that the prefactor of (2π)(N/2)/
√︁
det{A} has no

physical relevance. Hence, we can simply drop it. In this way, we obtain the effective
action

Seff =

∫︂
x

Ψ(i/∂ −mΨ)Ψ + gΨΨ(□+m2
ϕ)
−1ΨΨ. (3.12)

Turning to momentum space, □ → −p2, we may now expand the inverse propagator in
the low-energy limit p2 ≪ m2

ϕ

(□+m2
ϕ) =

1

m2
ϕ

− □
m4

ϕ

+O

⎛⎝(︄ □
m4

ϕ

)︄2
⎞⎠ , (3.13)

to obtain our effective action expressed in terms of a power-counting scheme

Seff =

∫︂
x

Ψ(i/∂ −mΨ)Ψ +
g

m2
ϕ

ΨΨΨΨ+O
(︄

□
m4

ϕ

)︄
. (3.14)

As long as we can solve the path integral over ϕ exactly, we do not lose any accuracy
in terms of predictive power. However, in most cases, we will not be able to solve the
path integral exactly and, instead, will have to resort to good old-fashioned perturbation
theory. At tree-level, this just means to solve the Euler-Lagrange equations of motion
for ϕ

∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
= 0, (3.15)
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3 Effective Field Theories in a Nutshell

and to plug the solution back into the Lagrangian. For our simple toy model with no
scalar self-interactions, we expect to recover the same result as obtained by solving the
path integral exactly. This is because without self-interactions there are no scalar loop-
diagrams that can contribute to any Ψ scattering process. Hence, tree-level is all there
is. Indeed, by solving eq. (3.15) we find

ϕ = g(□+m2
ϕ)
−1ΨΨ, (3.16)

and by plugging the solution for ϕ back into the action we recover the effective action
we found in eq. (3.12).

Diagrammatically, this procedure can be understood quite intuitively by considering
all relevant tree-level Feynman diagrams and replacing any internal scalar lines with
their respective propagator in the large m limit as visualized in Figure 3.1.

In the following chapter we will apply the concept of EFTs in the context of 0νββ
utilizing several EFTs each valid at different energy scales. The matching procedure
described above can be applied to the matching of a higher energy EFT onto a lower
energy EFT as well and we will make use of this when turning towards 0νββ.

However, in the case of chiral EFT the non-perturbative nature of low-energy QCD
does not allow us to apply the above matching procedures. Instead, we will see that we
will have to rely on symmetry arguments when matching onto the low-energy bound-
state degrees of freedom. The low-energy Wilson coefficients of chiral EFT have to be
fixed from experiments or matched via non-perturbative methods such as lattice QCD
calculations.
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Chapter 4

Theoretical Aspects of Neutrinoless
Double Beta Decay – An EFT
Perspective

The main purpose of this chapter is to build the foundations necessary for discussing the
results of the author’s papers [1, 2] which focus on the possibilities of disentangling dif-
ferent mechanisms of 0νββ as well as the development of the Python tool νDoBe that au-
tomates calculations of 0νββ observables for various BSM scenarios. To this end, we will
apply the EFT framework developed by Cirigliano et al. [44, 45]. The general idea of this
approach is to describe 0νββ using a ladder of different EFTs, each valid at a certain en-
ergy scale, with the Standard Model EFT (SMEFT) [59, 81–88] describing physics above
the scale of electroweak symmetry breaking (EWSB), the SU(3)C × U(1)EM-invariant
low-energy EFT (LEFT) [89–91] valid below the scale of EWSB, and chiral perturba-
tion theory χPT [78] as well as its multi-nucleon extension, chiral EFT (χEFT) [92]
that describe the transition from free quarks to confined nucleons and mesons below
Λχ ∼ 1GeV. This EFT ladder is displayed in Figure 4.1.

In the following sections, we will demonstrate that EFTs provide a powerful framework
that allows us to study new LNV physics in 0νββ both in a model-independent way as
well as in the context of individual BSM models that can be mapped onto the EFT
framework. We will describe the necessary steps in the transition from a full UV model
along the different steps of the EFT ladder to reproduce the 0νββ “master formula” as
derived in Refs. [44, 45]. This will lay the foundation for our results presented in the
following chapters. Broader reviews about neutrinoless double beta decay as a probe of
new physics can be found in, e.g., Refs. [22–29].

17
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Figure 4.1: Schematic visualization of the applied Effective Field Theory approach to
0νββ. We utilize a ladder of different EFTs each describing physics at a
different energy scale. In this way, 0νββ can be studied both in a model-
independent way or for specific BSM models via the appropriate matching
to the EFT framework. This process was automated in the Python tool
νDoBe [2]. The figure is taken from Ref. [2] which is a modified version of
Ref. [45].

4.1 A General Introduction to Double Beta Decay

Before we start to dive deeper into the connections between various LNV extensions
to the Standard Model and 0νββ let us first recall the basics of double beta decay to
understand why we even consider its neutrinoless mode. I have, previously, covered a
number of the following points within my Master thesis [93].

4.1.1 When and how does Double Beta Decay Occur?

In 1935, just briefly after Fermi’s theoretical description of the beta decay in 1934 [94], M.
Goeppert-Mayer theorized the existence of a double beta decay process [95] predicting
half-lives of ≳ 1017 yrs. Although double beta decay was initially thought to remain
unobserved due to its large half-life [96], it took only about 15 years until the first
experimental discovery in geochemical experiments. In 1950, Inghram and Reynolds
found a 130Xe excess in tellurium ores extracted from a ∼ 240m deep mine. This excess
was attributed to the double beta decay of 130Te →130 Xe with an estimated half-live of
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Figure 4.2: Single vs. double beta decay. In the single beta decay (left), a neutron,
n, inside some nucleus is turned into a proton, p, by emitting an electron,
e−, and an anti-electron neutrino, νe. A double beta decay (right) is the
occurrence of two simultaneous single beta decays inside the same nucleus.

1.4×1021 yrs [97]. Today, double beta decay has been explored and detected in laboratory
experiments covering various isotopes (c.f. Table 4.1) with half-lives of up to ∼ 1021 yrs,
while geochemical experiments have uncovered half-lives of up to ∼ 1024 yrs [98, 99].
Here, we will briefly explain the basics of this process.

The double beta decay, or more precisely the two-neutrino double beta decay (2νββ),

(A,Z) −→ (A,Z + 2) + 2e− + 2νe, (4.1)

as shown in Figure 4.2 is, simply, what its name suggests. That is, the 2νββ is the
occurrence of two simultaneous beta decays

(A,Z) −→ (A,Z + 1) + e− + νe, (4.2)

inside a single nucleus of mass number A and charge Z. Both are Standard Model
processes that can occur whenever the combined mass of all the final state particles Mf

is smaller than the initial state’s mass Mi. That is, when the Q-value, i.e. the decay
energy

Q =Mi −Mf , (4.3)

is positive. Naively, one might think that the 2νββ mode, being a second order weak
interaction, will always be suppressed in comparison to the first order weak interaction
single beta mode. However, in certain situations when the single beta decay is ener-
getically forbidden or strongly suppressed, the 2νββ can become the dominant mode.

Let’s see how such scenarios can be explained. Generally, the mass of a nucleus can
be expressed in terms of its constituents, i.e., the protons and neutrons and the relevant
binding energy EB as

M(A,Z) = Zmp + (A− Z)mn − EB(A,Z). (4.4)
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Figure 4.3: Mass parabolas for nuclei with fixed mass number A. For nuclei with an odd
mass number (left) all isotopes lie on a single mass parabola. Single beta
decays (dotted red arrow) move nuclei down along this parabola. For nuclei
with an even mass number (right) two separate mass parabolas exist with
single beta decay moving a nucleus from one parabola to the other. If both
neighbouring odd-odd isotopes are heavier than the initial state even-even
nucleus a single beta decay is energetically forbidden and the 2νββ (solid
red arrow) can become the dominant decay mode.

The binding energy can be expressed in a semi-empirical formula which was first intro-
duced by Weizsäcker [100] and reformulated by Bethe and Bacher [101] as

EB(A,Z) = αVA− αA
(N − Z)2

A
− αSA

2/3 − αC
Z2

A1/3
+ δαP

1

A1/2
, (4.5)

with the constants αV,A,S,C,P representing the binding energy from nuclear forces propor-
tional to the Volume (V) of the nucleus, the increase in binding energy for asymmetric
(A) numbers of neutrons and protons, the surface (S) energy, the repulsive Coulomb
(C) energies of the protons, and the spin-pairing (P) energy. In general, these constants
have to be determined experimentally. However, we are not interested in the precise
values. Instead, we should notice that any beta decay only changes the nuclear charge
Z while keeping the mass number A constant. For a constant nuclear mass number A
it is convenient to rewrite eq. (4.4) in a parabolic form

MA(Z) = mA + αZ + β(Z − ZA)
2 + δP , (4.6)
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Figure 4.4: The light neutrino-exchange mechanism of 0νββ. This process can occur
if the electron neutrino νe is a Majorana fermion. The decay amplitude is
proportional to the effective Majorana mass of the electron neutrino mββ.

with the pairing energy

δP ∝

⎧⎨⎩
1, A = even, N = odd, Z = odd
0, A = odd

−1, A = even, N = even, Z = even
. (4.7)

Thus, for fixed A we can see that the masses of isotopes with an odd A form a single
parabola such that single beta decays are generally allowed while moving down the
parabola. However, isotopes with an even A are positioned on two individual mass
parabolas separated by the pairing energy 2δP with odd-odd nuclei having larger masses
than even-even nuclei. In this case, single beta decays do not move along a single
parabola but, instead, move a nucleus from one parabola to the other one. In Figure 4.3
we have visualized this schematically. If the mass splitting between the two parabolas
is large enough, the single beta decay mode can be energetically forbidden for some
isotopes such that 2νββ becomes the leading mode. Overall, there are 35 naturally
occuring isotopes that undergo 2νββ [1]. The full list is provided in Table A.1.

4.1.2 The Neutrinoless Double Beta Decay

Influenced by E. Majorana’s seminal 1937 publication on the description of neutral
fermions [102], W. Furry proposed the idea of a neutrinoless double beta decay in
1939 [96]

(A,Z) −→ (A,Z + 2) + 2e−, (4.8)

long before any experimental observation of the Standard Model’s 2νββ process. This
hypothetical process can take place if the neutrino and anti-neutrino are the same parti-
cle, i.e., if neutrinos are correctly described as Majorana fermions. In this case, one can
close the external lines of the two outgoing neutrinos in the 2νββ diagram of Figure 4.2
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Isotope Daughter Q [MeV] N [%] T 2νββ
1/2 [yr] T 0νββ

1/2 [yr]
48Ca −→ 48Ti 4.267 0.187 6.4× 1019 [104] > 5.8× 1022 [105]
70Zn −→ 70Ge 0.997 0.61 > 3.8× 1018 [106] > 1.6× 1021 [107]
76Ge −→ 76Se 2.039 7.73 2.022× 1021 [108] > 1.8× 1026 [33]
82Se −→ 82Kr 2.996 8.73 8.69× 1019 [109] > 4.6× 1024 [110]
96Zr −→ 96Mo 3.349 2.80 2.35× 1019 [111] > 9.2× 1021 [111]

100Mo −→ 100Ru 3.034 9.82 7.07× 1018 [112] > 1.8× 1024 [113]
114Cd −→ 114Sn 0.542 28.73 > 1.3× 1018 [114] > 1.6× 1021 [115]
116Cd −→ 116Sn 2.813 7.49 2.63× 1019 [116] > 2.2× 1023 [116]
128Te −→ 128Xe 0.867 31.74 2.3× 1024 [99](∗) > 3.6× 1024 [117]
130Te −→ 130Xe 2.528 34.08 7.71× 1020 [118] > 3.2× 1025 [119]
134Xe −→ 134Ba 0.826 10.436 > 2.8× 1022 [120] > 3.0× 1023 [120]
136Xe −→ 136Ba 2.458 8.857 2.21× 1021 [121] > 3.8× 1026 [46]
150Nd −→ 150Sm 3.371 5.638 9.34× 1018 [122] > 2.0× 1022 [122]
160Gd −→ 160Dy 1.731 21.86 > 1.9× 1019 [123] > 1.3× 1021 [123]
186W −→ 186Os 0.492 28.43 > 2.3× 1019 [106] > 1.0× 1021 [106]

Table 4.1: List of experimental limits on the 0νββ half-life in various isotopes. To our
best knowledge, this list provides the strongest limit for each isotope studied
in 0νββ experiments to this date. In addition, we show the most recent
measurements of (limits on) the 2νββ half-life for each isotope. Except for
the 2νββ half-life in 128Te (marked by (∗), derived via geochemical methods),
all limits are obtained from laboratory experiments. We only included studies
of the ground state 0+ to ground state 0+ transition. The corresponding Q-
values as well as the isotopic abundance N = N(A,Z)/N(Z) are given as well
and taken from the NIST list of elements [124].

to write down a 0νββ diagram as pictured in Figure 4.4. Due to the favourable phase-
space in comparison to the 2νββ (c.f. Ref. [103]), the 0νββ mode was initially expected
to be the dominant process with decay rates estimated to exceed the 2νββ rates by
several orders of magnitude [96]. However, at these early times in history, the structure
of the weak interactions was not fully understood. Despite tremendous experimental
efforts and ever-increasing half-life sensitivities, the 0νββ has evaded detection so far,
while, at the same time, 2νββ processes have been observed in multiple isotopes.

From today’s standpoint and our theoretical understanding of the weak interaction
and its V −A structure it is easy to understand why we would expect the 0νββ to have
much larger half-lives than its Standard Model 2νββ cousin. Without going into details
on the theoretical aspects of 0νββ here, by looking at the Feynman diagram of the 0νββ
induced via the exchange of light Majorana neutrinos in Figure 4.4 and remembering
the left-handed nature of the weak interaction, we can see that the transition amplitude
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scales with the neutrino propagator as

A0νββ ∝ PL

∑︂
i

U2
ei

/q +mi

q2 −m2
νi

PL =
∑︂
i

U2
ei

mνi

q2 −m2
i

PL. (4.9)

Taking the limit of small neutrino masses mi ≪ q we can see that the transition ampli-
tude is proportional to the small neutrino masses

A0νββ ∝
∑︂
i

U2
eimi = mββ, (4.10)

and the half-life is usually parameterized as(︂
T 0νββ
1/2

)︂−1
=

⃓⃓⃓⃓
mββ

me

⃓⃓⃓⃓2
G0νββ |M0νββ|2 , (4.11)

where G0νββ ∼ O(10−15 yr−1) is the so-called phase space factor (PSF), M0νββ ∼ O(1)
is the so-called nuclear matrix element (NME) and me is, simply, the electron mass.
We will go into more details of the 0νββ theory in the following sections. For now, we
can use the expression in eq. (4.11) to provide a crude estimate of the expected 0νββ
half-lives as

T 0νββ
1/2 ≃ 2.6× 1026 yr

(︃
1 eV

|mββ|

)︃2(︃
10−15 yr−1

G0νββ

)︃(︃
1

|M0νββ|

)︃2

, (4.12)

to see that we should, indeed, expect very large half-lives suppressed via the smallness
of the neutrino masses. Note that the precise values for the NMEs and PSFs are isotope-
dependent.

This suppression via the small neutrino masses is a direct consequence of the V − A
structure of the weak interaction which fixes the chirality projectors in such a way that
the /q part of the neutrino propagator vanishes. In Table 4.1 we present a comprehensive
list of 0νββ candidate isotopes that have been studied in experiments, together with
the corresponding 2νββ half-lives and the strongest limits on the 0νββ half-life in each
isotope up to date. A complete list of all naturally occurring 0νββ candidate isotopes
is given in the appendix A.

4.1.3 The Experimental Program – Detecting 0νββ

The key towards identifying a 0νββ event and disentangling it from the 2νββ background
lies in a measurement of the combined kinetic energy carried by the emitted electrons.
In a 2νββ event, four particles are emitted from the nucleus and the two neutrinos show
up as missing energy resulting in a broad electron spectrum with a combined kinetic
electron energy T smaller than the decay energy T < Q. In contrast, in a 0νββ event
there are no neutrinos that could carry away any energy and, hence, the two emitted
electrons carry all of the decay energy thereby resulting in a delta-peak spectrum with
T = Q. The recoil energy of the nucleus is typically much smaller than the Q-value, due
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Figure 4.5: Summed electron spectra for the 2νββ [103] and 0νββ. While the 2νββ
results in a continuous spectrum, the 0νββ mode is a simple Gaussian peak
at the end of the decay-spectrum with its width given by the experimen-
tal energy resolution. Both spectra are in arbitrary and unrelated units to
showcase the qualitative behaviour.

to its large mass, and can be ignored in this context. In Figure 4.5 we show the summed
electron spectra for both 2νββ and 0νββ.

The experimental program dedicated towards the discovery of 0νββ covers various
different approaches including high-purity germanium (HPGe) semiconductors [35, 125,
126], cryogenic bolometers [37, 110, 113, 127–129], single- and dual-phase time projection
chambers (TPCs) [34, 130–132], organic and inorganic scintillators [38, 46, 133, 134], and
tracking calorimeters [111, 135, 136]. Each approach comes with different advantages and
disadvantages regarding scalability to maximize exposure, as well as energy resolution
and purity of the source. For a comprehensive and recent overview of the experimental
program, the interested reader is referred to Ref. [28].

4.1.4 β+ and Electron Capture Modes

Besides the double-β− decay we discussed so far, which is inherently characterized by
the emission of two electrons and a corresponding increase of the nuclear charge by
two units, there are additional decay processes that are connected to the double-β−
decay via crossing symmetry (See Figure 4.6). These are the double-positron emitting
2νβ+β+ decay as well as the double-electron capture 2νECEC, and the electron capture
accompanied by a positron emission 2νβ+EC. All of these decay modes are characterized
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Figure 4.6: Diagrams of the different double beta decay modes. The standard double-β−
decay diagram is pictured in (a), while the β+ and electron-capture modes
are shown in (b)–(d). The diagrams are related via crossing symmetry.

by a decrease in the nuclear charge by two units

(A,Z) −→ (A,Z − 2) + 2e+ + 2νe, (2νβ+β+),
(A,Z) + e− −→ (A,Z − 2) + e+ + 2νe, (2νβ+EC),
(A,Z) + 2e− −→ (A,Z − 2) + 2νe, (2νECEC).

(4.13)

Similar to the usual electron emitting 2νββ and 0νββ modes, each of these decay modes
does have a neutrinoless counterpart that could be studied in dedicated experiments.
However, each of these additional modes is phase-space suppressed when compared to
the double-β− mode, making them significantly less attractive from an experimental
point of view. This can be understood by investigating the Q-values that are given by

Q(β−β−) =Mi −Mf , Q(β+β+) =Mi −Mf + 4me,

Q(β+EC) =Mi −Mf + 2me, Q(2νECEC) =Mi −Mf , Q(0νECEC)
!
= 0,

(4.14)

where Mi,f are the masses of the initial- and final-state atoms. We can see that the
emission of a positron is related to a suppression of the Q-value by two electron masses
when comparing the initial- and final-state atoms. This fact strongly suppresses the
corresponding PSFs compared to the standard 0νββ process in both the two-neutrino
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and neutrinoless decays [103, 137]. Therefore, we can expect significantly longer half-
lives for the neutrinoless positron emitting β+ decays. Nevertheless, measurements of
the 2νββ half-life in positron emitting decays may provide additional data which can
help to advance our understanding of the relevant nuclear structure models. Despite the
tremendous experimental challenges, the recently proposed NuDoubt++ experiment [138]
is aiming for a few-kg to ton-scale 2νβ+β+ and 0νβ+β+ experiment.

While this suppression is not present in the double electron capture, we face a different
hurdle here when considering its neutrinoless variant. Looking at the double electron
capture diagram in Figure 4.6(d), we can see that, with the removal of the emitted
neutrinos, there are no particles that could carry away an excess decay energy, hence,
requiring the initial and final state atoms to be of equal mass with Q = 0.

Considering that the different double beta decay diagrams are all related via crossing
symmetry, we do not expect any enhancement of the β+ modes from the particle-physics
site, independently of the underlying LNV mechanism. In appendix A we provide a
complete list of all naturally occurring candidate isotopes for the double β+ and EC
modes.

4.2 Particle Physics Models of 0νββ

The most commonly studied mechanism of 0νββ is the LνEM, or mass mechanism1,
which is mediated via the exchange of light Majorana neutrinos as depicted in Figure 4.4.
It is inherently connected to the existence of a non-zero effective Majorana mass for the
electron neutrino flavor, with the transition amplitude being proportional to mββ =∑︁

i U
2
eimi. As discussed in Chapter 2, because the generation of a Dirac neutrino mass

term

L ⊃ mDνLνR + h.c., (4.15)

requires the addition of gauge-singlet right-handed neutrino fields νR, one has to either
impose an ad-hoc global lepton number symmetry or a global or gauged B−L symmetry
in order to forbid the Majorana mass for the right-handed neutrinos

L ⊃ 1

2
mRνRν

C
R + h.c.. (4.16)

Consequently, LNV BSM models that aim to explain neutrino masses will, generally, de-
scribe the neutrino as a Majorana particle and therefore give rise to the LνEM of 0νββ.
However, the occurrence of Majorana neutrino masses in a given theory does not nec-
essarily imply that the LνEM will be the dominant contribution to the 0νββ. Instead,
we may think of many other particle physics models that can contribute to the 0νββ
transition amplitude [1] such as vector or scalar leptoquark scenarios [143], neutralino
and gluino exchange mechanisms arising in R-parity breaking super symmetric mod-
els [141, 142, 144], double-charged scalars coupling to the W -bosons, or right-handed

1We will use these two terms interchangeably from here on. The term “mass mechanism” will mainly
be used when we want to highlight the dependence of the LνEM on the Majorana neutrino mass.
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ũL

n

p

e−

e−

n p

ν

V (S)

W

n e−

p

e−

n p

V (S)

ν

W

Figure 4.7: Selection of lepton-number-violating mechanisms of neutrinoless double beta
decay arising in different BSM scenarios [1]. In the upper row, we present a
selection of diagrams appearing in typical left-right symmetric theories which
include right-handed W -bosons as well as double-charged scalars ∆−−L,R and
heavy neutrinos N [1, 139, 140]. The middle row shows a selection of 0νββ
diagrams appearing in the R-parity breaking minimal supersymmetric Stan-
dard Model (/Rp-MSSM) [1, 141, 142]. The /Rp-MSSM diagrams are charac-
terized by the exchange of neutralinos χ and gluinos g̃ as well as squarks
d̃, ũ. In the last row, we present diagrams arising in models with scalar (S)
and vector (V) leptoquarks [1, 143].

SU(2)R gauge bosons as they appear in left-right symmetric models [139, 140]. In Fig-
ure 4.7 we present a selection of different 0νββ diagrams arising in these kinds of LNV
BSM models, showcasing the variety of mechanisms that may be the leading cause of
a future 0νββ detection. The 0νββ mechanisms presented in Figure 4.7 represent only
a small subset of the possible variations and combinations that are thinkable. Other
mechanisms include models with composite neutrinos [145–147], Majoron-emitting mod-
els [148–150], spatial extra-dimensions [151, 152], or Standard Model extension with a
modified gauge-structure [153, 154]. See Refs. [24, 25] and references therein for a more
detailed discussion on the connection of various particle physics models and 0νββ.
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The large variety of possible 0νββ realizations from different particle physics models
is a strong motivation for a model-independent approach to 0νββ via the application of
EFTs.

4.3 Lepton Number Violation in the Standard Model
EFT

In order to provide a model-independent approach to 0νββ, let us move to effective field
theories now.

The Standard Model is defined by its field content, symmetries, specifically, the sym-
metry under the local SU(3)C × SU(2)L × U(1)Y gauge group as well as invariance
under Lorentz transformations, and the requirement of renormalizability. As we have
discussed in Chapter 3, in order to study physics beyond the Standard Model in a model-
independent way, we can promote the SM to an EFT, the so-called Standard Model
EFT (SMEFT) [86], by dropping the requirement of renormalizability and systemati-
cally adding all Lorentz invariant terms that can be constructed out of the Standard
Model’s degrees of freedom while respecting the SU(3)C ×SU(2)L×U(1)Y gauge struc-
ture. The idea of treating the Standard Model as an effective rather than a fundamental
field theory was first brought forward by Steven Weinberg [155]. In the context of un-
resolved problems such as neutrino masses, dark matter [156, 157], or the unification of
gravity with the Standard Model, it does indeed appear rather questionable to expect
the Standard Model to be a fundamental theory of Nature. As we will see, by promoting
the Standard Model to an EFT, we automatically introduce not only a Majorana mass
for the neutrino but, indeed, many LNV operators of higher dimensions.

We may then utilize SMEFT, either, for a model-independent approach to 0νββ or
to study the low-energy effects of some specific BSM model with new physics arising at
some high energy scale Λ ≫ mW by matching it onto SMEFT.

4.3.1 The SMEFT Operator Basis up to Dimension 9

Lepton number violation by two units (∆L = 2) in the SMEFT takes place only at odd
(5, 7, 9, ...) operator dimensions [158]. On the particle physics level, the 0νββ process
involves six external fermions, independently of the underlying mechanism. Hence, the
“natural” dimension for the 0νββ amplitude is dimension 9 and we should include oper-
ators up to that dimension in our study. Let us now summarize all the relevant SMEFT
operators:

At dimension 5 there exists only one operator that can be constructed out of the
Standard Model’s degrees of freedom obeying the SU(3)C × SU(2)L × U(1)Y gauge
symmetry. This is the so-called Weinberg operator [159]

O(5)
LH = ϵijϵkl

[︂
LC

iLk

]︂[︂
HjHl

]︂
, (4.17)
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Class 1 ψ2H4 Class 5 ψ4D

O(7)
LH ϵijϵmn(L

T
i CLm)HjHn(H

†H) O(7)

LLduD1
ϵij(dγµu)(L

T
i C(D

µL)j)

Class 2 ψ2H2D2 Class 6 ψ4H

O(7)
LHD1 ϵijϵmn(L

T
i C(DµL)j)Hm(D

µH)n O(7)
LLeH ϵijϵmn(eLi)(L

T
j CLm)Hn

O(7)
LHD2 ϵimϵjn(L

T
i C(DµL)j)Hm(D

µH)n O(7)

LLQdH1
ϵijϵmn(dLi)(Q

T
j CLm)Hn

Class 3 ψ2H3D O(7)

LLQdH2
ϵimϵjn(dLi)(Q

T
j CLm)Hn

O(7)
LHDe ϵijϵmn(L

T
i Cγµe)HjHm(D

µH)n O(7)

LLQuH
ϵij(Qmu)(L

T
mCLi)Hj

Class 4 ψ2H2X O(7)

LeudH
ϵij(L

T
i Cγµe)(dγ

µu)Hj

O(7)
LHB ϵijϵmng

′(LT
i Cσ

µνLm)HjHnBµν

O(7)
LHW ϵij(ϵτ

I)mng2(L
T
i Cσ

µνLm)HjHnW
I
µν

Table 4.2: Lepton-number-violating operators at SMEFT dimension 7. All operators
that contribute to 0νββ at tree-level are marked as bold. All operators
but O(7)

LHB and O(7)
LLeH fall into this category. Table taken and adapted from

Ref. [44].

which, after electroweak symmetry breaking (EWSB), generates a Majorana mass for
the left-handed neutrinos

mν = −v2C(5)
LH . (4.18)

In the above equations the Latin indices i, j, k, l represent SU(2) indices and we have
suppressed generational indices that would represent the three generations of Standard
Model fermions. Note that we, generally, define the SMEFT Wilson coefficients C(d)

i to
be dimensionful in this work.

The SMEFT operator basis at dimension 7 was first introduced in Ref. [85]. It contains
12 independent LNV ∆L = 2 operators that we have listed in Table 4.2. In total, 10
out of the 12 dimension-7 operators contribute to the 0νββ amplitude at tree-level [2,
44]. The remaining operators, namely O(7)

LHB and O(7)
LLeH , can contribute at the 1-loop-

level [160, 161].
A complete basis for the SMEFT dimension-9 operators was first derived in Refs. [59,

88] and we will use the basis as presented in Ref. [59]. With growing dimension, the
number of operators increases such that there are in total 192 ∆L = 2 operators at
dimension 9. In order to reduce the complexity, we will only consider those dimension-
9 operators that generate a tree-level contribution to short-range 0νββ diagrams at
energies below EWSB. We will cover this in more detail in the following section. With
this restriction one finds that there are 26 relevant ∆L = 2 operators at dimension
9 [2, 88]. We have listed them in Table 4.3. As only the first generation of quarks
(u, d) and leptons (e, νe) is relevant for 0νββ, we will be working in a one-generation
approximation. That is, for SMEFT operators of dimension 5 and higher, we only
consider the first generation of fermions while setting all Wilson coefficients that involve
any of the second or third generation of fermions to zero.
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Class 1 ψ6 Class 3 ψ4H2D

O(9)
ddueue

[︁
dαdCβ

]︁[︁
uCαe

]︁[︁
uCβe

]︁
O(9)

deueH2D ϵij
[︁
dγµe

]︁[︁
uCe

]︁[︁
Hi

(︁
iDµH

)︁
j

]︁
O(9)

dQdueL1 ϵij
[︁
dQi

]︁[︁
dγµu

]︁[︁
eCγµLj

]︁
O(9)

dQLeH2D2 ϵikϵjl
[︁
dQi

]︁[︁
LC
j γ

µe
]︁[︁
Hk

(︁
iDµH

)︁
l

]︁
O(9)

dQdueL2 ϵij
[︁
dαQβ

i

]︁[︁
dβγµuα

]︁[︁
eCγµLj

]︁
O(9)

dLQeH2D1 ϵikϵjl
[︁
dLi

]︁[︁
QC

j γ
µe
]︁[︁(︁

iDµH
)︁
k
Hl

]︁
O(9)

QudueL1

[︁
Qu
]︁[︁
dγµu

]︁[︁
eCγµL

]︁
O(9)

dLuLH2D2 ϵikϵjl
[︁
dLi

]︁[︁
uCγµLj

]︁[︁
H̃k

(︁
iDµH

)︁
l

]︁
O(9)

QudueL2

[︁
Qαuβ

]︁[︁
dβγµuα

]︁[︁
eCγµL

]︁
O(9)

duLLH2D ϵikϵjl
[︁
dγµu

]︁[︁
LC

i

(︁
iDµL

)︁
j

]︁[︁
H̃kHl

]︁
O(9)

dQdQLL1 ϵikϵjl
[︁
dQi

]︁[︁
dγµQj

]︁[︁
LC
k γµLl

]︁
O(9)

deQLH2D ϵikϵjl
[︁
dγµe

]︁[︁
QC

i

(︁
iDµL

)︁
j

]︁[︁
HkHl

]︁
O(9)

dQdQLL2 ϵikϵjl
[︁
dαQβ

i

]︁[︁
dβγµQα

j

]︁[︁
LC
k γµLl

]︁
O(9)

QueLH2D2 ϵjk
[︁
Qiu

]︁[︁
uCγµLj

]︁[︁
Hi

(︁
iDµH

)︁
k

]︁
O(9)

dQQuLL1 ϵij
[︁
dQi

]︁[︁
Qu
]︁[︁
LCLj

]︁
O(9)

QeuLH2D2 δikϵjl
[︁
Qie
]︁[︁
uCγµLj

]︁[︁
Hk

(︁
iDµH

)︁
l

]︁
O(9)

dQQuLL2 ϵij
[︁
dαQβ

i

]︁[︁
Qβuα

]︁[︁
LCLj

]︁
O(9)

QLQLH2D2 ϵikϵjl
[︁
QγµL

]︁[︁
QC

i γ
µLj

]︁[︁
Hk

(︁
iDµH

)︁
l

]︁
O(9)

QuQuLL1

[︁
Qiu

]︁[︁
Qju

]︁[︁
LC
i Lj

]︁
O(9)

QLQLH2D5 ϵikϵjl
[︁
QγµLi

]︁[︁
QC

j γ
µL
]︁[︁(︁

iDµH
)︁
k
Hl

]︁
O(9)

QuQuLL2

[︁
Qα

i u
β
]︁[︁
Qβ

j u
α
]︁[︁
LC
i Lj

]︁
O(9)

QQLLH2D2 ϵikϵjl
[︁
QγµQi

]︁[︁
LC
(︁
iDµL

)︁
j

]︁[︁
HkHl

]︁
Class 2 ψ2H4D2 Class 4 ψ2H4W

O(9)

eeH4D2 ϵijϵkl
[︁
eCe
]︁[︁
Hi

(︁
DµH

)︁
j

]︁[︁
Hk

(︁
DµH

)︁
l

]︁
O(9)

LLH4W1 ϵij(ϵτ
I)klg2

[︁
LC
i σ

µνLk

]︁[︁
HjHl

]︁
W I

µν

[︁
H†H

]︁
O(9)

LLH4D23 ϵikϵjl
[︁(︁
DµLC

)︁
i

(︁
DµL

)︁
j

]︁[︁
HkHl

]︁[︁
H†H

]︁
O(9)

LLH4D24 ϵikϵjl
[︁
LC

i

(︁
DµL

)︁
j

]︁[︁(︁
DµH

)︁
k
Hl

]︁[︁
H†H

]︁
Table 4.3: Lepton-number-violating ∆L = 2 operators at SMEFT dimension 9. Here, in

order to limit the complexity, we only show those operators that contribute
to short-range 0νββ diagrams below EWSB.

4.4 Lepton Number Violation Below Electroweak Sym-
metry Breaking

After EWSB, the Standard Models SU(3)C ×SU(2)L×U(1)Y symmetry group is spon-
taneously broken to the subgroup SU(3)C×U(1)EM by the non-zero vacuum expectation
value of the Higgs doublet [11]

⟨H⟩ = 1√
2

(︃
0
v

)︃
, v ≃ 246GeV. (4.19)

At energies below the mass of theW -Boson, E ≲ mW , it is convenient to introduce LEFT
as a low-energy EFT [89] by dropping all particles heavier than the mass of the W -boson
(i.e., we drop the W,Z and H bosons as well as the top quark t) and constructing all
operators in agreement with the low-energy SU(3)C × U(1)EM symmetry that can be
built out of the remaining Standard Model degrees of freedom. As with any EFT, we can
utilize LEFT to simplify calculations by integrating out the heavy Standard Model fields
from SMEFT. The operators and Wilson coefficients obtained in this way replicate the
low-energy behaviour of SMEFT. Alternatively, we may treat LEFT as an independent
EFT by keeping all Wilson coefficients as free parameters that can be constrained from
experiments. In this way, one can study new physics beyond the Standard Model that
may not be fully captured by the SMEFT. We will utilize both of these approaches in
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Figure 4.8: Classification of 0νββ Feynman diagrams at LEFT level. One may identify
three different types of diagrams. These are the usual light neutrino-exchange
or mass mechanism (left), long-range mechanisms that include a neutrino ex-
change and a lepton-number-violating 4-fermion interaction (middle), as well
short-range mechanisms based on lepton-number-violating 6-fermion inter-
actions without a neutrino exchange. Here, we represent lepton-number-
violating 4- and 6-fermion interactions via black circles, while the standard
weak interaction is represented by a black square.

this work.

4.4.1 The LEFT Operator Basis up to Dimension 9

The full operator basis of LEFT up to dimension 6 has been constructed in Ref. [89]. It
contains 16 LNV ∆L = 2 operators displayed in Table 4.4, ten of which can contribute
to 0νββ at tree-level. These are the Majorana neutrino mass operator O(3)

ν as well
as the charged-current semi-leptonic dimension-6 ∆L = 2 operators O(6)

SL,SR,V L,V R,T .
Additionally, we will see that also the scalar neutral-current semi-leptonic operators
O(6)

SL,SR,νu,νd contribute to 0νββ at tree-level. This feature has been ignored in most of
the existing literature, including the original formulation of the EFT approach used in
this work [44, 45], and we will discuss it in more detail in Section 4.6.

At dimension 7 there are 15 additional ∆L = 2 operators [91], with four operators
generating a tree-level contribution to 0νββ, summarized in the upper part of Table 4.5.
However, as we will see, only two of these operators, namely O(7)

V L,V R, are actually rele-
vant. Finally, at dimension 9, LEFT includes 24 different 6-fermion ∆L = 2 operators
that contribute to short-range 0νββ mechanisms [45]. These are represented in the lower
part of Table 4.5.

Based on the various LNV LEFT operators listed in Tables 4.4 and 4.5, we can iden-
tify three different types of 0νββ mechanisms via their respective topology of the cor-
responding Feynman diagrams as displayed in Figure 4.8. These are classified as the
usual LνEM (or mass mechanism) with lepton number violation being caused by the
Majorana nature of the neutrino, other long-range mechanisms that initiate a 0νββ via
a LNV 4-fermion qqνe interaction while still exchanging a neutrino, and the so-called
short-range mechanisms which represent 6-fermion qqqqee contact interactions without
any neutrino exchange.
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Dimension 3 Dimension 5

Class 1 L Class 1 LX

O(3)
ν νCL νL O(5)

νγ νLσ
µννCLFµν

Dimension 6

Class 1 CC – RR Class 2 CC – RL

O(6)
SR

[︁
eLν

C
L

]︁[︁
uLdR

]︁
O(6)

SL

[︁
eLν

C
L

]︁[︁
uRdL

]︁
O(6)

V R

[︁
eRγ

µνCL
]︁[︁
uRγµdR

]︁
O(6)

V L

[︁
eRγ

µνCL
]︁[︁
uLγµdL

]︁
O(6)

T

[︁
eLσ

µννCL
]︁[︁
uLσµνdR

]︁
Class 3 NC – RR Class 4 NC – RL

O(6)
SR,νe

[︁
νLν

C
L

]︁[︁
eLeR

]︁
O(6)

SL,νe

[︁
νLν

C
L

]︁[︁
eReL

]︁
O(6)

SR,νu

[︁
νLν

C
L

]︁[︁
uLuR

]︁
O(6)

SL,νu

[︁
νLν

C
L

]︁[︁
uRuL

]︁
O(6)

SR,νd

[︁
νLν

C
L

]︁[︁
dLdR

]︁
O(6)

SL,νd

[︁
νLν

C
L

]︁[︁
dRdL

]︁
O(6)

T,νe

[︁
νLσ

µννCL
]︁[︁
eLσµνeR

]︁
O(6)

T,νu

[︁
νLσ

µννCL
]︁[︁
uLσµνuR

]︁
O(6)

T,νd

[︁
νLσ

µννCL
]︁[︁
dLσµνdR

]︁
Table 4.4: Lepton-number-violating ∆L = 2 operators in LEFT at dimensions 3, 5,

and 6. We choose to define the operator basis as the complex conjugate of
Ref. [89] in order to comply with the definitions of Refs. [44, 45] used to
derive the 0νββ rates. We provide the complete list for both charged-current
(CC) and neutral-current (NC) 4-fermion operators allowing us to extend the
Framework of Refs. [44, 45] towards LNV NC operators. However, not all of
the NC operators contribute at tree-level to 0νββ. The same is true for the
LNV dimension-5 operator which does not contribute at tree-level. For the
CC operators, we used the naming convention of Refs. [44, 45] which were
also used within νDoBe.

Ignoring neutral-current operators for now, the relevant LEFT Lagrangians for the
LνEM and long-range mechanisms of 0νββ are given by [44, 45]

L(3)
∆L=2 = mijνCL,iνL,j, (4.20)

describing the neutrino mass term at dimension 3, the charged-current scalar, tensor
and vector interactions

L(6)
∆L=2 =

1

v2

[︃
C

(6)
VL

(︁
uLγ

µdL
)︁ (︁
eRγµν

c
L

)︁
+ C

(6)
VR

(︁
uRγ

µdR
)︁ (︁
eRγµν

c
L

)︁
+C

(6)
SL

(︁
uRdL

)︁ (︁
eLν

c
L

)︁
+ C

(6)
SR

(︁
uLdR

)︁ (︁
eLν

c
L

)︁
+C

(6)
T

(︁
uLσ

µνdR
)︁ (︁
eLσµνν

c
L

)︁]︃
+ h.c., (4.21)
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at dimension 6, as well as the charged-current dimension-7 vector interactions

L(7)
∆L=2 =

1

v3

[︃
C

(7)
VL

(︁
uLγ

µdL
)︁ (︁
eL
↔
∂µν

c
L

)︁
+ C

(7)
VR

(︁
uRγ

µdR
)︁ (︁
eL
↔
∂µν

c
L

)︁]︃
+ h.c.. (4.22)

Note that we did not include the two dimension-7 operators O(7)
V L2,V R2 which include a

derivative term acting on the quark fields. In the initial formulation of this approach [44,
45] they were excluded because no SMEFT operator up to dimension 7 matches onto
either of the two operators. However, when including SMEFT dimension-9 operators,
O(9)

deQLH2D does, indeed, generate a contribution to O(7)
V R2. Nevertheless, both O(7)

V L2,V R2

are significantly suppressed in the chiral power-counting [2] and therefore we will not
include them in the calculation of 0νββ half-lives. See appendix B.3 for a more detailed
discussion on this.

Finally, the relevant short-range dimension-9 terms can be written as

L(9)
∆L=2 =

1

v5

∑︂
i

[︃(︃
C

(9)
i,R

(︁
eRe

c
R

)︁
+ C

(9)
i,L

(︁
eLe

c
L

)︁)︃
Oi + C

(9)
i

(︁
eγµγ5e

c
)︁
Oµ

i

]︃
, (4.23)

where the operators Oi represent the baryonic parts of the corresponding dimension-9
operators listed in Table 4.5

O(9)
i,L,R = Oi(eL,Re

C
L,R), i ∈ [1, 5] O(9)

i = Oµ
i (eγ5γµe

C), i ∈ [6, 9], (4.24)

i.e., [1, 45]

O1 =
(︁
uL

αγµd
α
L

)︁ (︁
uL

βγµdβL
)︁
, O1

′ =
(︁
uR

αγµd
α
R

)︁ (︁
uR

βγµdβR
)︁
,

O2 =
(︁
uR

αdαL
)︁ (︁
uR

βdβL
)︁
, O2

′ =
(︁
uL

αdαR
)︁ (︁
uL

βdβR
)︁
,

O3 =
(︁
uR

αdβL
)︁ (︁
uR

βdαL
)︁
, O3

′ =
(︁
uL

αdβR
)︁ (︁
uL

βdαR
)︁
,

O4 =
(︁
uL

αγµd
α
L

)︁ (︁
uR

βγµdβR),

O5 =
(︁
uL

αγµd
β
L

)︁ (︁
uR

βγµdαR
)︁
,

Oµ
6 =

(︁
uLγ

µdL
)︁ (︁
uLdR

)︁
, Oµ

6
′ =
(︁
uRγ

µdR
)︁ (︁
uRdL

)︁
,

Oµ
7 =

(︁
uLt

AγµdL
)︁ (︁
uLt

AdR
)︁
, Oµ

7
′ =
(︁
uRt

AγµdR
)︁ (︁
uRt

AdL
)︁
,

Oµ
8 =

(︁
uLγ

µdL
)︁ (︁
uRdL

)︁
, Oµ

8
′ =
(︁
uRγ

µdR
)︁ (︁
uLdR

)︁
,

Oµ
9 =

(︁
uLt

AγµdL
)︁ (︁
uRt

AdL
)︁
, Oµ

9
′ =
(︁
uRt

AγµdR
)︁ (︁
uLt

AdR
)︁
.

(4.25)

Here, the SU(3) generators tA, A ∈ [1, 8] are related to the 8 3× 3 Gell-Mann matrices
λA via tA = λA/2.

4.4.2 Matching SMEFT to LEFT

When transitioning from energies above the scale of EWSB to lower energies, we need
to match the relevant SMEFT operators to the corresponding LEFT operators. This
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Dimension 7

Class 1 Ψ4∂

O(7)
V L

[︁
eL
↔
∂µν

C
L

]︁[︁
uLγ

µdL
]︁

O(7)
V L2

[︁
eLγ

µνCL
]︁[︁
uR
↔
∂µdL

]︁
O(7)

V R

[︁
eL
↔
∂µν

C
L

]︁[︁
uRγ

µdR
]︁

O(7)
V R2

[︁
eLγ

µνCL
]︁[︁
uL
↔
∂µdR

]︁
Dimension 9

Class 1 Scalar Ψ6 Class 2 Vector Ψ6

O(9)
1L

[︁
uLγµdL

]︁[︁
uLγ

µdL
]︁[︁
eLe

C
L

]︁
O(9)

6

[︁
uLγµdL

]︁[︁
uLdR

]︁[︁
eγµγ5e

C
]︁

O(9)
1R

[︁
uLγµdL

]︁[︁
uLγ

µdL
]︁[︁
eRe

C
R

]︁
O(9)

6

′ [︁
uRγµdR

]︁[︁
uRdL

]︁[︁
eγµγ5e

C
]︁

O(9)
1L

′ [︁
uRγµdR

]︁[︁
uRγ

µdR
]︁[︁
eLe

C
L

]︁
O(9)

7

[︁
uLt

AγµdL
]︁[︁
uLt

AdR
]︁[︁
eγµγ5e

C
]︁

O(9)
1R

′ [︁
uRγµdR

]︁[︁
uRγ

µdR
]︁[︁
eRe

C
R

]︁
O(9)

7

′ [︁
uRt

AγµdR
]︁[︁
uRt

AdL
]︁[︁
eγµγ5e

C
]︁

O(9)
2L

[︁
uRdL

]︁[︁
uRdL

]︁[︁
eLe

C
R

]︁
O(9)

8

[︁
uLγµdL

]︁[︁
uRdL

]︁[︁
eγµγ5e

C
]︁

O(9)
2R

[︁
uRdL

]︁[︁
uRdL

]︁[︁
eRe

C
R

]︁
O(9)

8

′ [︁
uRγµdR

]︁[︁
uLdR

]︁[︁
eγµγ5e

C
]︁

O(9)
2L

′ [︁
uLdR

]︁[︁
uLdR

]︁[︁
eLe

C
L

]︁
O(9)

9

[︁
uLt

AγµdL
]︁[︁
uRt

AdL
]︁[︁
eγµγ5e

C
]︁

O(9)
2R

′ [︁
uLdR

]︁[︁
uLdR

]︁[︁
eRe

C
R

]︁
O(9)

9

′ [︁
uRt

AγµdR
]︁[︁
uLt

AdR
]︁[︁
eγµγ5e

C
]︁

O(9)
3L

[︁
uR

αdβL
]︁[︁
uR

βdαL
]︁[︁
eLe

C
L

]︁
O(9)

3R

[︁
uR

αdβL
]︁[︁
uR

βdαL
]︁[︁
eRe

C
R

]︁
O(9)

3L

′ [︁
uL

αdβR
]︁[︁
uL

βdαR
]︁[︁
eLe

C
L

]︁
O(9)

3R

′ [︁
uL

αdβR
]︁[︁
uL

βdαR
]︁[︁
eRe

C
R

]︁
O(9)

4L

[︁
uLγ

µdL
]︁[︁
uRγµdR

]︁[︁
eLe

C
L

]︁
O(9)

4R

[︁
uLγ

µdL
]︁[︁
uRγµdR

]︁[︁
eRe

C
R

]︁
O(9)

5L

[︁
uL

αγµdβL
]︁[︁
uR

βγµd
α
R

]︁[︁
eLe

C
L

]︁
O(9)

5R

[︁
uL

αγµdβL
]︁[︁
uR

βγµd
α
R

]︁[︁
eRe

C
R

]︁
Table 4.5: Lepton-number-violating ∆L = 2 operators at dimensions 7 and 9 relevant

to 0νββ in LEFT [2, 45]. The primed operators O′ relate to the unprimed O
via a parity flip in the quark bilinears.

matching procedure includes several steps. As described in Chapter 3, we first need to
integrate out the heavy W,H and top-quark fields that cannot be produced on-shell at
LEFT scales. Because we will only consider the tree-level matching, this can simply
be achieved by solving the equations of motion for the heavy fields as we have shown
in Chapter 3. Additionally, several steps are required in order to match the SMEFT
operators not onto any but precisely onto the pre-defined basis of LEFT operators. These
steps include Fierz identities [162, 163], integration by parts, field redefinitions [164, 165]
as well as basic algebraic tools. An explicit example matching calculation is provided in
appendix B.
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4.4.2.1 Fierz Identities

Fierz identities relate fermion quadrilinears of different Lorentz structures via a set of
linear equations. We define the scalar (S), vector (V), tensor (T), axial-vector (A) and
pseudo-scalar (P) fermion quadrilinears

eS(1234) =
[︁
Ψ1Ψ2

]︁ [︁
Ψ3Ψ4

]︁
,

eV (1234) =
[︁
Ψ1γ

µΨ2

]︁ [︁
Ψ3γµΨ4

]︁
,

eT (1234) =
[︁
Ψ1σµνΨ2

]︁ [︁
Ψ3σ

µνΨ4

]︁
,

eA(1234) =
[︁
Ψ1γ

µγ5Ψ2

]︁ [︁
Ψ3γµγ5Ψ4

]︁
,

eP (1234) =
[︁
Ψ1γ5Ψ2

]︁ [︁
Ψ3γ5Ψ4

]︁
, (4.26)

where Ψi are anti-commuting Dirac spinors. Via the Fierz identities one can express
each quadrilinear in terms of a linear equation

eI(1234) =
∑︂

J∈{S,V,T,A,P}

FIJeJ(1432), (4.27)

where the original sequence of fermions appearing in the order of Ψ1,Ψ2,Ψ3,Ψ4 is rear-
anged into the sequence Ψ1,Ψ4,Ψ3,Ψ2. The Fierz matrix F is given as

F =

⎛⎜⎜⎜⎜⎝
−1

4
−1

4
−1

8
1
4

−1
4

−1 1
2

0 1
2

1
−3 0 1

2
0 −3

1 1
2

0 1
2

−1
−1

4
1
4

−1
8

−1
4

−1
4

⎞⎟⎟⎟⎟⎠ . (4.28)

Fierz identities can be especially handy when dealing with chiral fermions Ψi → Ψi,L,R.
In this case, we find the explicit identities[︁

R1L2

]︁ [︁
L3R4

]︁
= −1

2

[︁
R1γ

µR4

]︁ [︁
L3γµL2

]︁
,[︁

L1R2

]︁ [︁
L3R4

]︁
= −1

2

[︁
L1R4

]︁ [︁
L3R2

]︁
− 1

8

[︁
L1σ

µνR4

]︁ [︁
L3σµνR2

]︁
,[︁

L1γ
µL2

]︁ [︁
L3γµL4

]︁
=
[︁
L1γ

µL4

]︁ [︁
L3γµL2

]︁
,[︁

L1σ
µνR2

]︁ [︁
L3σµνR4

]︁
= −6

[︁
L1R4

]︁ [︁
L3R2

]︁
+

1

2

[︁
L1σ

µνR4

]︁ [︁
L3σµνR2

]︁
= −8

[︁
L1R4

]︁ [︁
L3R2

]︁
− 4

[︁
L1R2

]︁ [︁
L3R4

]︁
,[︁

L1σ
µνR2

]︁ [︁
R3σµνL4

]︁
= 0, (4.29)

giving other helpful relations like[︁
L1σ

µνγρL2

]︁ [︁
L3σµνR4

]︁
= −4

[︁
L1γ

ρL2

]︁ [︁
L3R4

]︁
− 8

[︁
L1R4

]︁ [︁
L3γ

ρL2

]︁
,[︁

R1γ
ρσµνR2

]︁ [︁
L3σµνR4

]︁
= −4

[︁
R1γ

ρR2

]︁ [︁
L3R4

]︁
− 8

[︁
R1γ

ρR4

]︁ [︁
L3R2

]︁
. (4.30)
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Switching Li ⇌ Ri results in the same identities.
Let us take the opportunity to briefly point out a minor subtlety that arises in the con-

struction of the LEFT dimension-6 basis. Notice that at LEFT dimension 6 only a single
charged-current ∆L = 2 tensor operator is present. In some previous literature [166],
an additional LEFT tensor operator

O(6)
TL =

[︁
eLσ

µννCL
]︁[︁
uRσµνdL

]︁
, (4.31)

was considered in the context of 0νββ. By utilizing the chiral Fierz identities for tensor
currents, we can directly see that this operator, being of the type

[︁
L1σ

µνR2

]︁[︁
R3σ

µνL4

]︁
is identically zero and, hence, does not need to be considered. The same is, obviously,
true for neutral-current tensor operators of the same chirality structure.

4.4.2.2 Field Redefinitions

Although the dynamical degrees of freedom in a QFT, the fields, are supposed to rep-
resent physical particles such as the neutrino, electron, etc., their choice is, actually,
not unique. Indeed, the fields that are present in the action of a QFT are themselves
not physically observable quantities. Instead, the experimentally observable quantities
of a QFT are the S-matrix elements, and we are free to define the fields in any way as
long as they result in the same S-matrix elements. To put it in the famous words of S.
Weinberg: “You may use any degrees of freedom you like to describe a physical system,
but if you use the wrong ones, you’ll be sorry” [43, 167].

The proof of the invariance of the S-matrix under local field redefinitions Φ → Φ′

Φ = F (Φ′), (4.32)

has been derived in Refs. [164, 165]. In the path integral formulation of QFT, such a field
redefinition can be understood as a substitution of the integration variable (c.f. [42]).
The S-matrix is invariant under a field redefinition if

⟨p|F [Φ]|0⟩ ≠ 0. (4.33)

Field redefinitions are convenient tools that can significantly reduce the complexity of an
EFT Lagrangian by removing redundancies. When matching a theory onto some EFT,
field redefinitions are usually required to match onto a minimal EFT operator basis.
Primarily, we apply redefinitions of fields to remove derivative terms of the type

O/∂ΨL,R, (4.34)

where ΨL,R is a chiral fermion and O is some operator built from the EFT’s degrees of
freedom. The removal of such derivative terms via field redefinitions comes at the cost
of introducing higher dimensional interaction terms. To leading order, field redefinitions
are related to the equations of motion [41, 168]. Taking

Ψ → Ψ+ δΨ, Ψ → Ψ+ δΨ, (4.35)
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induces a change in the action [168]

S → S + δS, δS =
δS
δΨ

δΨ+ δΨ
δS
δΨ

+O(δΨ2, δΨ
2
). (4.36)

We can see that to leading order in δΨ, this is equivalent to adding some operator
multiplied by the fields equations of motion δS/δΨ to the Lagrangian.

4.4.2.3 The Matching Relations

After integrating out the heavy fields with masses ≥ mW and applying the appropriate
algebraic steps (c.f. appendix B) one finds the matching relations that map the SMEFT
Wilson coefficients onto the relevant LEFT coefficients. These have been derived in
Refs. [1, 2, 44] and we replicate these results here. For the neutrino mass we find the
usual contribution from the SMEFT dimension-5 Weinberg operator and its dimension-7
extension via

mββ = −v2C(5)
LH − v4

2
C

(7)
LH , (4.37)

while the relevant ∆L = 2 four-fermion Wilson coefficients receive contributions from
operators at SMEFT dimensions 7 and 9

C
(6)
SL = v3

(︂
1√
2
C

(7)∗
LLQuH1 +

mu

v
Vud

2
C

(7)∗
LHD2

)︂
+v4

(︂
mu

Vud

2
C

(9)∗
LLH4D23

−mu
Vud

4
C

(9)∗
LLH4D24

−mu
1
4
C

(9)∗
QQLLH2D2

−md
1
4
C

(9)∗
duLLH2D

)︂
,

C
(6)
SR = v3

(︂
1

2
√
2
C

(7)∗
LLQdH1 − Vud

2
md

v
C

(7)∗
LHD2

)︂
+v4

(︂
−md

Vud

2
C

(9)∗
LLH4D23

+md
Vud

4
C

(9)∗
LLH4D24

+md

4
C

(9)∗
QQLLH2D2

+mu

4
C

(9)

duLLH2D

+me

8
C

(9)∗
deQLH2D

)︂
,

C
(6)
V L = v3

(︂
− i√

2
VudC

(7)∗
LHDe + 4me

v
C

(7)∗
LHW

)︂
+v4

(︂
2meVudC

(9)∗
LLH4W1 − md

4
C

(9)∗
deQLH2D

)︂
,

C
(6)
V R = v3 1√

2
C

(7)∗
LeudH

−v4mu

4
C

(9)∗
deQLH2D,

C
(6)
T = v3

(︂
1

8
√
2
C

(7)∗
LLQdH1 +

1
4
√
2
C

(7)∗
LLQdH2

)︂
+ v4me

16
C

(9)∗
deQLH2D,

C
(7)
V L = v3

(︂
VudC

(7)∗
LHD1 − Vud

2
C

(7)∗
LHD2 + 4VudC

(7)∗
LHW

)︂
+v5

(︂
2VudC

(9)∗
LLH4W1 +

Vud

2
C

(9)∗
LLH4D23

−Vud

4
C

(9)∗
LLH4D24 − 1

4
C

(9)∗
QQLLH2D2

)︂
,

C
(7)
V R = v3

(︂
−iC(7)∗

LLduD1

)︂
+v5

(︂
1
4
C

(9)∗
duLLH2D

)︂
.

(4.38)

In a similar fashion, the short-range LEFT dimension-9 operators receive contributions
from both dimension-7 and -9 SMEFT operators. The SMEFT-to-LEFT matching onto
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the scalar LEFT dimension-9 operators is then given by

C
(9)
1L = v3

(︃
2V 2

udC
(7)∗
LHD1 + 8V 2

udC
(7)∗
LHW

)︃
+ v5

(︃
4V 2

udC
(9)∗
LLH4W1 − V 2

udC
(9)∗
LLH4D23 − V 2

udC
(9)∗
LLH4D24 − VudC

(9)∗
QQLLH2D2

− Vud
2
C

(9)∗
QLQLH2D2 −

Vud
2
C

(9)∗
QLQLH2D5

)︃
,

C
(9)
1R = −v5V 2

udC
(9)∗
eeH4D2 , C

(9)
1R

′
=
v5

4
C

(9)∗
ddueue,

C
(9)
2L = −v5C(9)∗

QuQuLL1, C
(9)
2L

′
= −v5C(9)∗

dQdQLL1,

C
(9)
3L = −v5C(9)∗

QuQuLL2, C
(9)
3L

′
= −v5C(9)∗

dQdQLL2,

C
(9)
4L = −v3i2VudC(7)∗

LLduD1 + v5
(︃
VudC

(9)∗
duLLH2D − Vud

2
C

(9)∗
dLuLH2D2 −

1

2
C

(9)∗
dQQuLL2

)︃
,

C
(9)
4R = −v5Vud

2
C

(9)∗
deueH2D,

C
(9)
5L = −1

2
v5C

(9)∗
dQQuLL1, (4.39)

while the matching onto the vector LEFT dimension-9 operators is given as

C
(9)
6 = v5

(︃
− 2

3
VudC

(9)∗
dLQeH2D1 +

Vud
2
C

(9)∗
dQLeH2D2 −

5

12
VudC

(9)∗
deQLH2D

)︃
,

C
(9)
6

′
= v5

(︃
1

6
C

(9)∗
QudueL2 +

1

2
C

(9)∗
QudueL1

)︃
,

C
(9)
7 = v5

(︃
− VudC

(9)

dLQeH2D1 − VudC
(9)∗
deQLH2D

)︃
, C

(9)
7

′
= v5C

(9)∗
QudueL2,

C
(9)
8 = v5

(︃
− Vud

2
C

(9)∗
QueLH2D2 +

Vud
6
C

(9)∗
QeuLH2D2

)︃
, C

(9)
8

′
= v5

(︃
1

6
C

(9)∗
dQdueL2 +

1

2
C

(9)∗
dQdueL1

)︃
,

C
(9)
9 = v5VudC

(9)∗
QeuLH2D2, C

(9)
9

′
= v5C

(9)∗
dQdueL2. (4.40)

In the above relations, we ignored a matching contribution from OdeQLH2D onto the
LEFT dimension-7 vector operator O(7)

V R2 as it is suppressed in the chiral power counting
(c.f. appendix B.3).

4.5 Chiral EFT - 0νββ at the Nuclear Level

Of course, our main interest lies in the realm of particle physics and the previous sections
have equipped us with the necessary tools to describe the transition from a high-energy
microscopic particle physics model with possible new degrees of freedom and/or new
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symmetry structures to the low-energy EFT valid at energies below EWSB, via a sub-
sequent matching chain onto SMEFT and LEFT.2 However, 0νββ is a nuclear decay
process and we need to consider the effects of nuclear physics as well. In this section, we
will describe the transition from the particle physics level with free quarks at the LEFT
scale to the nuclear level with quarks being confined within mesons and nucleons and,
finally, to complex nuclei composed of protons and neutrons. In this context, we will
utilize chiral perturbation theory (χPT) [78] as well as its few-nucleon extension chiral
EFT (χEFT) [92, 169] as the effective low-energy theory of QCD. For a more general
review, the interested reader is referred to Refs. [170–174].

We will start by describing the quark-to-nucleon transition via χPT which can be
used to effectively describe the LNV 4-fermion n → p interactions as well as LNV pion
interactions. Afterwards, we will apply χEFT to describe the short-range LNV nucleon-
nucleon interactions.

4.5.1 QCD with External Fields

Because we are only interested in the first generation of quarks we restrict ourselves
to the two flavor formalism of chiral perturbation theory. The Standard Model QCD
Lagrangian is then given by [171]

L0
QCD = q

(︁
i /D −M

)︁
q − 1

4
GaµνG

µν
a , (4.41)

with the quark doublet

q =

(︃
u
d

)︃
, M = diag(mu,md), (4.42)

and the gluon gauge field tensors Gµν
a . In the massless quark limit, taking md = mu =

0, two flavor QCD obeys a global SU(2)L × SU(2)R symmetry on the classical level.
Interactions other than QCD, including symmetry-breaking effects, can be studied by
adding external fields to the Lagrangian [78, 172]

L = L0
QCD + Lext, (4.43)

defined as

Lext = qγµ

(︃
vµ +

1

3
vµ(s) + γ5a

µ

)︃
q − q (s− iγ5p) q + qσµνt

µν
q, (4.44)

2Strictly speaking, we still require the renormalization group equations of the relevant SMEFT and
LEFT operators, in order to correctly describe the transition from a high-energy particle physics
model to the LEFT scales. We shift this discussion to Section 4.8.
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with the hermitian and color-neutral vector, singlet-vector, axial-vector, scalar, pseudo-
scalar and tensor fields [172, 175]

vµ =
3∑︂

a=1

vµa
τa
2
, vµ(s) = vµs 1, aµ =

3∑︂
a=1

aµa
τa
2
, s =

3∑︂
a=0

saτa, p =
3∑︂

a=0

paτa,

t
µν

=
3∑︂

a=0

t
µν
a

τa
2
. (4.45)

Here, τa are the Pauli matrices and we defined τ0 = 1. As usual, we can define the
left- and right-handed chiral fields lµ and rµ as linear combinations of the vector and
axial-vector fields

lµ =
1

2
(vµ − iaµ) , rµ =

1

2
(vµ + iaµ) . (4.46)

and write the external Lagrangian in terms of chiral fields as [172, 175]

Lext =qLγµ

(︃
lµ +

1

3
vµ(s)

)︃
qL + qRγµ

(︃
rµ +

1

3
vµ(s)

)︃
qR

+ qR (s− ip) qL + qL (s+ ip) qR

+ qRσµνt
µν
L qL + qLσµνt

µν
R qR,

(4.47)

with the chiral tensor fields

tµνR = P µνσρ
R tσρ, tµν,L = t†µν,R, P µνσρ

R =
1

4
(gµσgνρ − gνσgµρ + iϵµνσρ) . (4.48)

We can now promote the global SU(2)L × SU(2)R symmetry to a local one by requiring
that the external fields transform as [172, 175, 176]

lµ −→ LlµL† − iL∂L†, rµ −→ RrµR† − iR∂R†,
(s+ ip) −→ R(s+ ip)L†, (s− ip) −→ L(s− ip)R†,

tµνL −→ RtµνL L
†, tµνR −→ LtµνR R

†,
(4.49)

where L and R represent gauge transformations under the corresponding SU(2)L,R sym-
metries.

4.5.1.1 Defining the External Fields

We have already identified the relevant 4-fermion ∆L = 2 LEFT operators up to di-
mension 7 in Tables 4.4 and 4.5. From there, we can simply read off the external
source terms required to describe LNV 4-fermion interactions together with the stan-
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dard charged-current weak interactions in χPT as (c.f. Ref. [44])

lµ =
1

v2

(︃
− 2Vud

[︂
eLγ

µνL

]︂
τ+ + C

(6)
V L

[︂
eRγ

µνCL

]︂
τ+
)︃
+

1

v3

(︃
C

(7)
V L

[︂
eLi
↔
∂
µ

νCL

]︂
τ+
)︃
+ h.c.,

rµ =
1

v2

(︃
C

(6)
V R

[︂
eRγ

µνCL

]︂
τ+
)︃
+

1

v3

(︃
C

(7)
V R

[︂
eLi
↔
∂
µ

νCL

]︂
τ+
)︃
+ h.c.,

(s− ip) =
1

v2

(︃
C

(6)
SL

[︂
eLν

C
L

]︂
τ+ + (C

(6)
SR)

†
[︂
νCL eL

]︂
τ−

+ C
(6)
SL,νu

[︂
νLν

C
L

]︂
τu + (C

(6)
SR,νu)

†
[︂
νCL νL

]︂
τu

+ C
(6)
SL,νd

[︂
νLν

C
L

]︂
τ d + (C

(6)
SR,νd)

†
[︂
νCL νL

]︂
τ d
)︃
,

(s+ ip) =
1

v2

(︃
C

(6)
SR

[︂
eLν

C
L

]︂
τ+ + (C

(6)
SL)
†
[︂
νCL eL

]︂
τ−

+ C
(6)
SR,νu

[︂
νLν

C
L

]︂
τu + (C

(6)
SL,νu)

†
[︂
νCL νL

]︂
τu

+ C
(6)
SR,νd

[︂
νLν

C
L

]︂
τ d + (C

(6)
SL,νd)

†
[︂
νCL νL

]︂
τ d
)︃
,

tµνR =
1

v2

(︃
C

(6)
T

[︂
eLσ

µννCL

]︂
τ+ + C

(6)
T,νu

[︂
νLσ

µννCL

]︂
τu + C

(6)
T,νd

[︂
νLσ

µννCL

]︂
τ d
)︃
,

tµνL =(tµνR )†, (4.50)

with

τ± =
1

2
(τ1 ± iτ2), τu =

1

2
(τ0 + τ3), τ d =

1

2
(τ0 − τ3). (4.51)

For completeness and in contrast to Refs. [44, 45], we have included the LNV neutral-
current dimension-6 operators in the above definitions. While they are usually not con-
sidered to be of greater relevance for 0νββ, we will see later on in Section 4.6 that the
scalar NC interactions do provide a significant tree-level contribution to the 0νββ am-
plitude. Additionally, NC interactions may become relevant in the high-density neutrino
environments of core-collapse supernovae [177].

In the next two sections, we will follow the procedure outlined in Refs. [44, 45, 178]
and derive the LNV meson and nucleon interactions in χPT.

4.5.2 Chiral Perturbation Theory for Mesons

Within the two flavour χPT approach one introduces three scalar mesons, the pions,
described via [44, 172, 176]

U = u2 = exp

{︃
iτ⃗ · π⃗
F0

}︃
= 1 +

i

F0

(︃
π0

√
2π+

√
2π− π0

)︃
+O(π2), (4.52)
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which under the chiral SU(2)L × SU(2)R symmetry transforms as

U −→ LUR†, u −→ LuK† = KuR†, (4.53)

where K is a function of L,R, and U . Here, F0 is the so-called pion decay constant
and we use F0 = Fπ = 92.2MeV [44]. In order to write down a local gauge invariant
Lagrangian as well as to include the above external source terms we need to define a
covariant derivative Dµ acting on U as [176]

DµU = ∂µU − ilµU + iUrµ, (4.54)

which transforms as

DµU −→ L(DµU)R
†. (4.55)

The external scalar and pseudoscalar sources are described via the linear combination [44,
172, 176]

χ = 2B(M + s− ip), χ −→ LχR†, B =
m2

π

mu +md

≃ 2.7GeV. (4.56)

Here, we choose not to include the quark mass matrix M in the scalar field s and,
instead, separate it from the LNV interactions. One should, however, keep in mind that
M would usually be included in the scalar external field s and, hence, follows the same
symmetry transformation as s. The quantity B is related to the formation of a non-zero
quark condensate ⟨qq⟩ [172].

Assigning the standard power-counting scheme [172, 175]

U ∼ O(1), DµU ∼ O(p), lµ ∼ O(p), rµ ∼ O(p), vµ(s) ∼ O(p),

χ ∼ O(p2), tµνL,R ∼ O(p2), (4.57)

allows for an expansion in terms of the small parameter

ϵχ =
p

Λχ

, Λχ ∼ 1GeV, p ∼ mπ, (4.58)

for the meson operators of χPT. In the context of 0νββ, we will also encounter powers
of quark masses, as well as electron masses and energies. Therefore, we assign [45]

mu ∼ md ∼ O(ϵ2χΛχ), Q ∼ Ee ∼ me ∼ O(ϵ3χΛχ). (4.59)

We will see later on that the introduction of nucleons will require a different counting
scheme, due to the appearance of nucleon masses mN ∼ Λχ, but for now let us stick to
this one to follow the standard χPT reviews [171, 172].

The leading order χPT Lagrangian for pions in a p/Λχ expansion is then given by [44,
172]

L(0)
π =

F 2
0

4
Tr

[︃
(DµU)

†(DµU)

]︃
+
F 2
0

4
Tr

[︃
U †χ+ Uχ†

]︃
. (4.60)
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Considering the LNV ∆L = 2 dimension-6 LEFT operators of interest, it is convenient
to express the external fields in terms proportional to τ+, τu and τ d

lµ = lµ+τ
+ + h.c., rµ = rµ+τ

+ + h.c.

s = (s+τ+ + h.c.) + suτu + sdτ d,

p = (p+τ+ + h.c.) + puτu + pdτ d,

tµν = (t+µντ
+ + h.c.) + tuµντ

u + tdµντ
d. (4.61)

This allows us to separate the charged-current interactions acting via τ± from the
neutral-current interactions acting via τu,d. We can then expand eq. (4.60) in powers of
the pion and external fields as

L(0)
π =−

√
2F0

2

[︂
(∂µπ

−)(lµ+ − rµ+) + h.c.
]︂
+
F 2
0

4
Tr

[︃
4Bs− 4B

F0

(︃
π0

√
2π+

√
2π− π0

)︃
p

]︃
+O

(︂
π2, l2, r2, lr

)︂
=

√
2F0

2

[︂
(∂µπ

−)(lµ+ − rµ+) + h.c.
]︂

+
F 2
0

4

(︃
4B(su + sd)− 4B

F0

[︂
(pu + pd)π0 + (

√
2π−p+ + h.c.)

]︂)︃
+O

(︂
π2, l2, r2, lr

)︂
,

(4.62)

to arrive at the relevant interactions contributing to the 0νββ amplitude.

4.5.3 Chiral Perturbation Theory for Nucleons

4.5.3.1 The Power-Counting Problem in Baryon-χPT

Next, we want to consider the χPT single-nucleon interactions in the presence of the
external fields. Let us, therefore, introduce the nucleon doublet [44, 172]

N =

(︃
p
n

)︃
, N −→ KN. (4.63)

Keeping the power-counting scheme of the external fields introduced in eq. (4.57), the
pion-nucleon Lagrangian at leading order (LO) with the lowest number of derivatives is
given by [172]

L(1)
πN = N

(︂
i /D −mN +

gA
2
γµγ5uµ

)︂
N, (4.64)

and at next-to-leading order (NLO) one finds [172]

L(2)
πN =c1Tr

[︁
χ+

]︁
NN − c2

4m2
Tr
[︁
uµuν

]︁(︂
NDµDνN + h.c.

)︂
+
c3
2
Tr
[︁
uµuµ

]︁
NN

− c4
4
Nγµγν

[︁
uµ, uν

]︁
N + c5Nχ̂+N +N

(︂c6
2
f+
µν +

c7
2
v(s)µν

)︂
σµνN (4.65)

+N
(︂
c8t̂

µν

+ + c9Tr
[︁
t̂
µν

+

]︁)︂
σµνN. (4.66)
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In the above Lagrangians, we defined

χ̂+ = χ+ − 1

2
Tr(χ+), χ± = u†χu† ± uχ†u. (4.67)

Similarly, we summarize the tensor fields tµνL,R in

t̂
µν

± = u†tµνR u
† ± utµνL u. (4.68)

The covariant derivative acting on the nucleons is then defined as

DµN =
(︂
∂µ + Γµ − iv(s)µ

)︂
N, (4.69)

with the vector field

Γµ =
1

2

[︂
u†(∂µ − ilµ)u+ u(∂µ − irµ)u

†
]︂
, (4.70)

and the axial-vector field

uµ = −i
[︂
u†(∂µ − ilµ)u− u(∂µ − irµ)u

†
]︂
. (4.71)

The tensor fields f+
µν and v

(s)
µν are associated with the external vector fields lµ, rµ, v

(s)
µ

via [172]

f±µν = ufL
µνu † ±u†fR

µνu,

fL
µν = ∂µlν − ∂νlµ − i [lµ, lν ] ,

fR
µν = ∂µrν − ∂νrµ − i [rµ, rν ] ,

v(s)µν = ∂µv
(s)
ν − ∂νv

(s)
µ . (4.72)

In the above expansion, we come across two problems associated with the applied
power-counting scheme. The first problem is that, due to the nucleon mass being of the
order of the chiral scale

mN ∼ Λχ, (4.73)

we have to count derivatives acting on the nucleon fields as order one

DµN ∼ D0N ∼ O(mN/Λχ) ∼ O(1). (4.74)

In this way, we could construct LO nucleon operators with an arbitrary number of
derivatives and the derivative expansion of χPT would break down. Secondly, in order
to accommodate the nucleon-to-nucleus transition and calculation of NMEs, we need
to switch to a non-relativistic expansion of the nuclear operators used in the numerical
many-body simulations.
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4.5.3.2 Heavy Baryon Chiral Perturbation Theory

We can solve these problems by applying the heavy baryon chiral perturbation theory
(HBχPT) developed by Manohar and Jenkins [179] which allows for a non-relativistic
derivative expansion of baryon-χPT. Additionally, we will be switching to Weinbergs
power-counting scheme characterized by the (tree-level) chiral index [169]

∆ = d+
1

2
n− 2, (4.75)

where n is the number of nucleons, and d is the number of derivatives involved in the
operator.

While Weinbergs power counting does lift some operators from the NLO Lagrangian
in eq. (4.66) to the leading order, we will stick to the LO Lagrangian of eq. (4.64) for now
and use it as an example to show how to derive the non-relativistic HBχPT Lagrangian
from the relativistic theory. Following along the lines of Ref. [171], we introduce the
velocity projectors

P±v =
1± /v

2
, (4.76)

splitting the nucleon field N into velocity dependent light and heavy nucleon fields

Nv = exp{imNvµx
µ}P+

v N, Hv = exp{imNvµx
µ}P−v N, (4.77)

which are orthogonal eigenstates of the velocity operator

/vNv = Nv, /vHv = −Hv, N vHv = HvN = 0. (4.78)

We can write the pion-nucleon Lagrangian in terms of these light and heavy nucleon
fields by replacing

N = exp{−imNvµx
µ}(Nv +Hv). (4.79)

Explicitly, the πN Lagrangian of eq. (4.64) can then be written as

L
(1)
πN =

(︁
N v +Hv

)︁
exp{imNvµx

µ}
(︂
i /D −mN +

gA
2
γµγ5uµ

)︂
exp{−imNvµx

µ}(Nv +Hv)

=
(︁
N v +Hv

)︁(︂
mN/v + i /D −mN +

gA
2
γµγ5uµ

)︂
(Nv +Hv)

=
(︁
N v +Hv

)︁(︂
i /D +

gA
2
γµγ5uµ

)︂
(Nv +Hv)− 2mNHvHv. (4.80)

That is, only the heavy nucleon field Hv remains massive, with a mass of 2mN , while
the mass term of the light nucleon field Nv cancels, justifying the naming convention of
Nv and Hv. We can now integrate out the heavy nucleon field Hv exactly by performing
a Gaussian integral of the type [79]

Z(η, η) =

∫︂
DΨDΨ exp

{︁
−ΨMΨ+ ηΨ+Ψη

}︁
= det{M} exp

{︁
ηM−1η

}︁
. (4.81)
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Rewriting eq. (4.80) as

L
(1)
πN =N v

(︂
i /D +

gA
2
γµγ5uµ

)︂
Nv +Hv

(︂
i /D − 2mN +

gA
2
γµγ5uµ

)︂
Hv

+N v

(︂
i /D +

gA
2
γµγ5uµ

)︂
Hv +Hv

(︂
i /D +

gA
2
γµγ5uµ

)︂
Nv, (4.82)

the Gaussian structure becomes obvious and we find

L̂
(1)

πN =N v

(︂
i /D +

gA
2
γµγ5uµ

)︂
Nv

−N v

(︂
i /D +

gA
2
γµγ5uµ

)︂(︂
i /D − 2mN +

gA
2
γµγ5uµ

)︂−1(︂
i /D +

gA
2
γµγ5uµ

)︂
Nv.

(4.83)

We can see that we have successfully removed operators proportional to the nucleon
mass mN from the Lagrangian at the cost of introducing higher-order operators that are
suppressed by powers of 1/mN as represented in the second term of eq. (4.83). Hence,
for the light nucleon field Nv the power-counting rule is DµNv ∼ O(p) such that we
can expand the Lagrangian in terms of p/mN and therefore recover a working derivative
expansion. Finally, the HBχPT approach allows us to write the nucleon operators in a
non-relativistic form. The light nucleon fields Nv obey the following equalities [171, 179]

N vγ5Nv = 0, N vγ
µNv = N vv

µNv, N vγ
µγ5Nv = 2N vSµ

vNv,

N vσ
µνNv = 2ϵµναβvαN vSvβNv, N vσ

µνγ5Nv = 2i
(︂
vµN vS

ν
vNv − vνN vSµ

vNv

)︂
, (4.84)

where the spin matrix Sµ
v is given by

Sµ
v =

i

2
γ5σ

µνvν . (4.85)

In this way, we finally end up at the non-relativistic HBχPT expression of eq. (4.64) as

L̂(1)

πN = N v

(︂
pµvµ + gAS

µ
v uµ

)︂
Nv +O

(︃
p

mN

)︃
. (4.86)

Note that from here on, we will drop the index v from the light nucleon fields Nv as
well as the spin operator Sµ

v and use the non-relativistic approximation v = (1, 0, 0, 0)T ,
S = (0, σ1/2, σ2/2, σ3/2)

T valid in the rest-frame of the nucleon [45].

4.5.3.3 The Heavy Baryon Lagrangian at Leading and Next-to-Leading Or-
der

The HBχPT expansion of the πN Lagrangian in the presence of the external fields
lµ, rµ, s, p, tµν has been derived to LO and NLO in Ref. [44]. The relevant LO terms for
0νββ are

L̂(1)

πN =iNvµDµN + gANSµu
µN −Nc5χ+N −

[︃
2gT ϵµναβv

αNSβtµν+ N

]︃
. (4.87)
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Note that terms involving Tr[χ+] and Tr
[︁
t̂
µν

+

]︁
do not contribute to n ↔ p transitions

and can be ignored in the context of 0νββ. At zeroth order in the pion fields this can
be expanded as

L̂(1)

πN =Nvµ

[︂
i∂µ +

1

2
(lµ + rµ) + vµ(s)

]︂
N − gANSµ(l

µ − rµ)N

− gSN

(︃
su s+

s− sd

)︃
N − 2gT ϵ

µναβvαNSβ

[︄(︃
tuRµν t+Rµν

t−Rµν tdRµν

)︃
+ h.c.

]︄
N +O(π). (4.88)

Additionally, we will need the πN coupling to zeroth order in the external fields which
is given by

L̂(1)

πN ⊃ +
gA
F0

NSµ
v ∂µ

(︃
π0

√
2π+

√
2π− π0

)︃
N. (4.89)

In this way, the LNV LEFT operators associated with the pseudo-scalar external field p+
can generate a 0νββ via their coupling to the charged pion which allows for a transition
of the type

π− −→ e− + νe. (4.90)

The corresponding 0νββ diagram is shown on the right side of Figure 4.10.
As the parity and spin structure of the LO nucleon-pion Lagrangian does not provide

a contribution to the ground-state to ground-state 0+ → 0+ 0νββ transition for the LNV
vector and tensor operators O(6)

V L,V R and O(6)
T , one has to include the NLO Lagrangian [44]

L(2)
πN =

1

2mN

(︁
vµvν − gµν

)︁(︁
NDµDνN

)︁
− igA

2mN

N
{︁
S · D, v · u

}︁
N

− gM
4mN

ϵµναβvαNSβf
+
µνN − gT

mN

ϵµναβNSβ

{︁
tµν+ , iDα

}︁
N +

g′T
mN

vµN
{︁
tµν+ , iDν

}︁
N.

(4.91)

4.5.4 The n→ peνe Transition Amplitude in χPT

With these building blocks defined in L(0)
π ,L(1)

πN ,L
(2)
πN we can write down the lepton-

number violating and conserving n → peνe amplitudes that arise from the Standard
Model’s charged-current weak interactions as well as the LNV BSM interactions as
summarized in the external fields defined in eq. (4.50). The calculation of the n→ peνe
transition amplitudes involves 4-fermion contact interactions as seen on the left side of
Figure 4.9 as well as pion-exchange diagrams as visualized on the right side of Figure 4.9.
It can be written as [44]

An→peνe = Nτ+

[︄
lµ + rµ

2
Jµ
V +

lµ − rµ
2

Jµ
A − sJS + ipJP + tR,µνJ

µν
T

]︄
N, (4.92)
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n p

e−

νe

n p

e−

νe

π±

Figure 4.9: Feynman diagrams of the single-β decay in chiral perturbation theory. The
square denotes a LNV BSM qqeν interaction. The diagrams of the Standard
Model single-β decay in χPT are obtained by replacing νe → νe.

with the nuclear currents

Jµ
V = gV (q

2)

(︃
vµ +

pµ + p′µ

2mN

)︃
+
igM(q2)

mN

ϵµναβvαSβqν ,

Jµ
A = −gA(q2)

(︃
2Sµ − vµ

2mN

2S · (p+ p′)

)︃
+
gP (q

2)

2mN

2qµS · q,

JS = gS(q
2),

JP = B
gP (q

2)

mN

S · q,

Jµν
T = −2gT (q

2)ϵµναβ
(︃
vα +

pα + p′α
2mN

)︃
Sβ − i

g′T (q
2)

2mN

(vµqν − vνqµ), (4.93)

defined as functions of the incoming neutron and outgoing proton momenta p and p′,
respectively, and the momentum transfer qµ = (q0,q)T = pµ − p′µ. The momentum-
dependent form factors relate to the low-energy constants (LECs) of the χPT Lagrangians
via [44]

gV (q
2) =1, gA(q

2) = gA, gM(q2) = gM , gS(q
2) = −4Bc5,

gP (q
2) =− gA

2mN

q2 +m2
π

, gT (q
2) = gT , g′T (q

2) = g′T , (4.94)

where the 1/(q2 +m2
π) dependence of the pseudo-scalar form factor gP (q2) arises from

the pion propagator as shown on the right side of Figure 4.9. Hence, up to NLO in
χPT all form factors except for gP (q) are constant.

We can use these n → peνe amplitudes in combination with the appropriate neu-
trino propagators to construct the long-range 0νββ amplitudes that are induced via
the dimension-3, -6 and -7 LEFT operators. The corresponding Feynman diagrams are
displayed in Figure 4.10.

4.5.5 Nucleon-Nucleon Contact Interactions and Chiral EFT

In order to include short-range interactions into our description, we need to consider
direct nucleon-nucleon interactions nn → ppee as well as nucleon-pion interactions of
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Figure 4.10: Feynman diagrams of 0νββ in chiral perturbation theory. The lepton-
number-violating interactions are denoted by a black square. At leading
order in the χPT expansion, there are three different tree-level topologies
associated with the standard light neutrino-exchange mechanism (left), a
LNV 4-fermion npeνe interaction (middle), and a LNV lepton-pion eνeπ
interaction (right).

the type nπ → pee and pion-lepton interactions ππ → ee. Because these originate from
non-renormalizable 6-fermion qqqqee interactions at the LEFT scale, we cannot simply
add them to the renormalizible QCD Lagrangian in the same external field formalism
we used before3. The relevant 0νββ diagrams generated by these dimension-9 LEFT
operators are shown in Figure 4.11.

Instead, one has to resort towards matching the short-range dimension-9 LEFT op-
erators to the corresponding chiral NNNNee, NNπee and ππee operators based on
symmetry arguments alone. As the hadronization from quarks to nucleons is caused by
QCD interactions, each quark level operator should match onto chiral operators that
follow the same parity as well as SU(2)L × SU(2)R symmetry structure in the massless
quark limit. This matching procedure has first been done for a LEFT dimension-9 oper-
ator basis of parity eigenstates in Ref. [180] and redone for our choice of LEFT basis in
Ref. [45]. In this section, we will summarize the relevant equations identified in Ref. [45].

4.5.5.1 ππee

The relevant scalar ππee operators that induce 0νββ diagrams of the type shown in the
left part of Figure 4.11 are summarized in Ref. [45]

L(s)
ππee =

F 4
0

4v5

[︄
5

3
gππ1
(︁
C

(9)
1L + C

(9)
1L

′)︁
∂µπ

−∂µπ−

+
(︂
gππ4 C

(9)
4L + gππ5 C

(9)
5L − gππ2

(︁
C

(9)
2L + C

(9)
2L

′)︁− gππ3
(︁
C

(9)
3L + C

(9)
3L

′)︁)︂
π−π−

]︄
eLe

C
L

+ (L↔ R). (4.95)

3If we did so, we would have put quark-containing operators into the external fields, thus defying their
purpose and missing the quark to nucleon and meson transition.
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4.5.5.2 NNπee

LNV nucleon-pion interactions of the type NNπee are generated by the scalar O(9)
1L ,O

(9)
1L

′

operators in

L(s)
NNπee =

1

v5

√
2gAg

πN
1 F0

(︁
C

(9)
1L + C

(9)′
1L

)︁[︁
pS · (∂π−)n

]︁
eLe

C
L + (L↔ R), (4.96)

as well as the vector operators O(9)
6,7,8,9,O(9)′

6,7,8,9 generating

L(v)
NNπee =

1

v5

√
2gAF0

[︁
pS · (∂π−)

]︁(︁
gπNV C

(9)
V + g̃πNV C̃

(9)

V

)︁
vµeγµγ5e

C , (4.97)

with

C
(9)
V = C

(9)
6 + C

(9)′
6 + C

(9)
8 + C

(9)′
8 , gπNV = gπN6 + gπN8 ,

C̃
(9)

V = C
(9)
7 + C

(9)′
7 + C

(9)
9 + C

(9)′
9 , g̃πNV = gπN7 + gπN9 . (4.98)

4.5.5.3 NNNNee

Similarly to the scalar (s) and vector (v) ππee and NNπee Lagrangians, the relevant
scalar NNNNee Lagrangian is given by

L(s)
NNNNee =

1

v5

[︄
gNN
1

(︁
C

(9)
1L + C

(9)′
1L

)︁
+ gNN

2

(︁
C

(9)
2L + C

(9)′
2L

)︁
+ gNN

3

(︁
C

(9)
3L + C

(9)′
1L

)︁
+ gNN

4 C
(9)
4L + gNN

5 C
(9)
5L

]︄[︁
pn
]︁[︁
pn
]︁
eLe

C
L + (L↔ R), (4.99)

while the corresponding vector operators are

L(v)
NNNNee =

1

v5

[︄
gNN
6 C

(9)
V + gNN

7 C̃
(9)

V

]︄[︁
pn
]︁[︁
pn
]︁
vµeγµγ5e

C . (4.100)

4.5.5.4 Leading Order Counter Terms

Additionally, renormalization of the neutrino-exchanging 0νββ diagrams associated with
the neutrino mass mββ as well as the LEFT dimension-6 operators O(6)

V L,O
(6)
V R,O

(6)
T

requires the introduction of NNNNee,NNπee and ππee counter terms to the LO
Lagrangian [45, 181, 182]. These contact interactions arising from hard-neutrino ex-
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Figure 4.11: The chiral EFT 0νββ diagrams originating from the dimension-9 qqqqee
LEFT operators [45]. The 0νββ can be induced via interactions of the type
π−π− → e−e− (left), π−n→ pe−νe (center), and nn→ ppe−e− (right).

change [181, 182] are given by [45]

L(ct)
NNNNee =2G2

FV
2
udmββg

NN
ν

[︁
Nu†τ+uN

]︁[︁
Nu†τ+uN

]︁
eLe

C
L

+ iVud
1

v4

[︄
gEV L

m2
π

C
(6)
V L +

gEV R

m2
π

C
(6)
V R

]︄[︁
pn
]︁[︁
pn
]︁
vµvνeγµ

↔
∂ νe

C

+ Vud
me

v4

[︄
gme
V L

m2
π

C
(6)
V L +

gme
V R

m2
π

C
(6)
V R

]︄[︁
pn
]︁[︁
pn
]︁
eeC

+
Vud
v4

[︄
gNN
V L

mN

C
(6)
V Lv

µeγµγ5e
C +

gNN
T

mN

C
(6)
T eLe

C
L

]︄[︁
pn
]︁[︁
pn
]︁
. (4.101)

Similarly, one has to introduce LO ππee and NNπee interactions given by [45]

L(ct)
ππee =Vud

F 2
0

2mNv4
∂µπ

−∂µπ−gππT C
(6)
T eLe

C
L ,

L(ct)
NNπee =

√
2Vud

gAF0

v4
[︁
pS · (∂π−)n

]︁[︄gπNV L

mN

C
(6)
V Lv

µeγµγ5e
C +

gπNT
mN

C
(6)
T eLe

C
L

]︄
. (4.102)

4.5.6 Estimating the Low Energy Constants of Chiral EFT

The above chiral Lagrangians introduce new LECs which are the coupling constants
of χPT and χEFT. Due to the non-perturbative nature of QCD, we cannot simply
derive these couplings by the same matching procedure we employed for the SMEFT-to-
LEFT matching. Instead, the LECs of χEFT have to be derived either on experimental
grounds, by relating the LECs to certain physical observables, such as, e.g., masses or
scattering amplitudes. Alternatively, one can use non-perturbative methods such as
lattice QCD to calculate the LECs from first principles. When neither of these options
is available, the best remaining option is to estimate the order of magnitude of the
unknkown LECs gi that appear in some operator Oi via a naive dimensional analysis
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(NDA) [183, 184] as

gi ∼ f 2Λ2

(︃
1

f

)︃Nϕ,i
(︃

1

f
√
Λ

)︃NΨ,i
(︃
gX
Λ2

)︃NX,i
(︃
1

Λ

)︃ND,i

, (4.103)

where Nϕ,Ψ,X,D,i are the numbers of scalars, fermions, gauge field tensors and covariant
derivatives in the corresponding operator, gX is the gauge coupling related to the gauge
field tensor X and Λ ∼ 4πf is the suppression scale.

While this simple NDA estimate does give quite reliable projections of the LECs in
the mesonic and single-nucleon sector of χPT, it is known to fail in the multi-nucleon
regime of χEFT [182, 185–187]. Instead, the corresponding LECs were estimated based
on renormalization arguments in Refs. [45, 182]. The relevant LECs obtained in these
ways are summarized in Table 4.6. Nevertheless, in what follows we will refer to all
order of magnitude estimates of unknown LECs as NDA estimates. It should be noted
that precise values of these short-range LECs such as gNN

ν depend on the applied renor-
malization scheme which in turn affects the size of the relevant nuclear forces that enter
the calculation of NMEs. Hence, the numerical values of the short-range LECs have to
be determined in the same regularization scheme used in the NME calculations. The
pathway towards a reliable determination of the short-range LECs has been worked out
in Refs. [176, 188] and applied to the LνEM in Ref. [189] which provided the value given
for gNN

ν in Table 4.6. Strictly speaking, the numerical value of gNN
ν given in Table 4.6

only applies to the NMEs calculated in Ref. [189]. It is for this reason that we assign an
uncertainty of ±50% to gNN

ν [2].
Obviously, the 0νββ half-life is highly sensitive to the precise values of the currently

unknown LECs. In order to provide conservative numerical estimates of the expected
0νββ half-lives, we will generally be using a benchmark scenario with all unknown LECs
being put to zero except for the short-range LECs that enter the calculation of the
0νββ transition amplitude generated by the short-range vector operators where we take
gNN
6 = gNN

7 = gπNV = g̃πNV = 1. Keeping these LECs non-zero is necessary in order not to
completely omit the contributions of the short-range vector operators O(9)(′)

i , i ∈ [6, ..., 9].

4.6 Neutral-Current Contributions to Neutrinoless Dou-
ble Beta Decay

Within the χEFT formalism derived in Refs. [44, 45] as well as in most of the general
literature the contribution of neutral-current LNV operators to the 0νββ amplitude is
generally ignored. At first sight, this is done for good reason as there are simply no
tree-level 0νββ diagrams that can be drawn from neutral-current LNV interactions.
However, as was first noted by Babič et al. [193] the formation of a non-vanishing quark
condensate ⟨qq⟩ in combination with LNV neutral-current ννCqq operators can induce
a non-zero Majorana mass for the neutrinos.

This feature is easy to see in the χPT framework. Indeed, the leading order meson

52



4.6 Neutral-Current Contributions to Neutrinoless Double Beta Decay

n→ peν, π → eν ππ → ee
gA 1.271± 0.002 [190] gππ1 0.36± 0.02 [191]
gS 0.97± 0.13 [192] gππ2 2.0± 0.2 GeV2 [191]
gM 4.7 [190] gππ3 −(0.62± 0.06) GeV2 [191]
gT 0.99± 0.06 [192] gππ4 −(1.9± 0.2) GeV2 [191]
|g′T | O(1) gππ5 −(8.0± 0.6) GeV2 [191]
B 2.7 GeV |gππT | O(1)

n→ pπee nn→ pp ee
|gπN1 | O(1) |gNN

1 | O(1)
|gπN6,7,8,9| O(1) |gNN

6,7 | O(1)
|gπNV L | O(1) |gNN

V L | O(1)
|gπNT | O(1) |gNN

T | O(1)
|gNN

ν | −92.9GeV−2 ± 50% [176, 188, 189]
|gE,me

V L,V R| O(1)
|gNN

2,3,4,5| O((4π)2)

Table 4.6: The low-energy constants of chiral EFT. The table is taken from Ref. [2],
which is an updated version of the values given in Ref. [45].

Lagrangian of χPT of eq. (4.60) contains the term

L(0)
π ⊃ BF 2

0

(︁
su + sd

)︁
, (4.104)

with the scalar external fields su,d given by eq. (4.50)

su =
1

2v2

[︂
C

(6)
SL,νu + C

(6)
SR,νu

]︂[︁
νLν

C
L

]︁
+ h.c.,

sd =
1

2v2

[︂
C

(6)
SL,νd + C

(6)
SR,νd

]︂[︁
νLν

C
L

]︁
+ h.c., (4.105)

and the quark condensate being parameterized by 3F 2
0B = −⟨qq⟩ [172]. By relating B

to the pion mass m2
π = B(mu +md) one finds that B ≃ 2.7GeV [44, 45]. Consequently,

in the low-energy realm of χPT the neutral-current LNV scalar operators C(6)
SL,SR,ν,u,d

generate a Majorana neutrino mass of

mν = −BF
2
0

v2

[︂
C

(6)
SL,νu + C

(6)
SR,νu + C

(6)
SL,νd + C

(6)
SR,νd

]︂
≃ 9.3× 104 eV × C

(6)
S,NC , (4.106)

where we define the neutral-current LNV coefficient

C
(6)
S.NC = −

[︂
C

(6)
SL,νu + C

(6)
SR,νu + C

(6)
SL,νd + C

(6)
SR,νd

]︂
. (4.107)

As already stated, this contribution has been ignored in the original formulation of
Refs. [44, 45] as well as within our earlier publications [1, 2] but will be included in this
work. Notice that the SMEFT-to-LEFT matching relations were obtained in Refs. [2, 44]
which did not consider neutral-current contributions to 0νββ and consequently did not
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derive the matching relations onto the neutral-current LEFT operators. The same is
true for the LEFT RGEs derived in Refs. [44, 45]. The full matching relations will
be published in a future work. However, we do not expect a significant correction to
the 0νββ half-life from the inclusion of the neutral-current operators when considering
SMEFT operators that also map onto charged-current LEFT operators. This is because
of the relatively small contribution of the neutral-current dimension-6 LEFT operators
to the 0νββ amplitude in comparison to the charged-current dimension-6 operators.
As we will see in the following chapter, the current best limit on the 0νββ half-life in
136Xe set by the KamLAND-Zen collaboration [46] constraints the charged-current LNV
dimension-6 LEFT operators to be smaller than 10−7 − 10−9 while the upper limit on
the neutral-current operators is “only” at around 10−4. Nevertheless, to our knowledge
this bound represents the most stringent limit on BSM neutral-current neutrino-quark
interactions available to this date. In Ref. [5] we will discuss the impacts of LNV neutral-
current interactions on 0νββ in more detail.

4.7 Calculating the 0νββ Half-Life

4.7.1 The Light Neutrino-Exchange Mechanism

We are now equipped with the necessary tools to calculate the 0νββ transition amplitude
at the nuclear scale. The general transition amplitude including all relevant operators
and interference terms has been derived in Ref. [182] which we will summarize at the
end of this section. Here, we will rederive the 0νββ transition amplitude of the standard
LνEM without the recently discovered contact interaction as an example.

4.7.1.1 Transition Amplitude

The transition amplitude for the LνEM of 0νββ can be read from the two diagrams
in Figure 4.12. It is simply given by two single-beta decay amplitudes connected via
a Majorana neutrino propagator. In momentum-space, the 0+ → 0+ ground-state to
ground-state transition amplitude is defined as

A =
⟨︁
0+
⃓⃓
V(q2)

⃓⃓
0+
⟩︁
, (4.108)

with the so-called neutrino-potential defined as

V =2G2
FV

2
ud

(︁
Jµ
V (1) + Jµ

A(1)
)︁
τ+1 eL(k1)γµ

3∑︂
i=1

Uei
/q +mi

q2 −m2
i

(Uie)
Tγνe

C
L(k2)

(︁
Jν
V (2) + Jν

A(2)
)︁
τ+2

− (k1 ↔ k2), (4.109)

where the (k1 ↔ k2) part arises from the right diagram in Figure 4.12. Assuming that
the electron momenta are small, k1,2 ≃ O(MeV) ≪ mπ, we can take the momentum
exchange carried in the neutrino propagator to be equal in both diagrams. The relative
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Figure 4.12: Relevant diagrams for the standard light neutrino-exchange mechanism of
0νββ.

minus sign between the two contributions arises due to the anti-symmetric nature of
fermions. Noticing that

PL(/q +mi)PL = miPL, (4.110)

and taking the limit of small neutrino masses m2
i ≪ q2, as well as ignoring the nuclear

recoil energy q0 ≪ |q|, we can separate the nuclear and leptonic parts and write

V =2G2
FV

2
udmββ

1

−q2

[︂
(Jµ

V (1) + Jµ
A(1))(J

ν
V (2) + Jν

A(2))τ
+
1 τ

+
2

]︂[︂
e(k1)γµγνPRe

C(k2)
]︂

− (k1 ↔ k2), (4.111)

with the effective Majorana mass mββ defined as

mββ =
3∑︂

i=1

U2
eimi. (4.112)

Using the property (c.f. appendix B.1)

Ψ1γ
µγνΨC

2 = −Ψ2γ
µγνΨC

1 , (4.113)

we can see that the second (k1 ↔ k2) diagram gives the same contribution as the first
diagram resulting in

V = −4G2
FV

2
udmββ

1

q2

[︂
(Jµ

V (1) + Jµ
A(1))(J

ν
V (2) + Jν

A(2))τ
+
1 τ

+
2

]︂[︂
e(k1)γµγνPRe

C(k2)
]︂
.

(4.114)

With the anti-commutator relation for the gamma matrices

{γµ, γν} = 2gµν , (4.115)

we can rewrite the leptonic current as

e(k1)γµγνPRe
C(k2) = e(k1)

(︃
gµν +

1

2
(γµγν − γνγµ)

)︃
PRe

C(k2), (4.116)
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and notice that due to the symmetric nature of the nuclear currents, only the symmetric
part of the leptonic currents survives. Hence, the potential simplifies to

V = −4G2
FV

2
udmββ

1

q2

[︂
gµν(J

µ
V (1) + Jµ

A(1))(J
ν
V (2) + Jν

A(2))τ
+
1 τ

+
2

]︂[︂
e(k1)PRe

C(k2)
]︂
.

(4.117)

4.7.1.2 Nuclear Matrix Elements

Let us first focus on the nuclear part of the transition amplitude. The leading order
ground state 0νββ is of the type 0+ → 0+, i.e., it is parity even and spin conserving.
Therefore, only even powers of q contribute to the 0+ → 0+ amplitude. Because the
leptonic part of the transition amplitude in eq. (4.117) is independent of q, only the
parity even parts of the nuclear currents contribute to the 0+ → 0+ transition. These
are given by [178]

Jµ
V (1)JV µ(2) = g2V (q

2)− g2M(q2)
q2

6mN

(︃
σ1 · σ2 +

1

2
S(12)

)︃
,

Jµ
A(1)JAµ(2) = −g2A

[︄
σ1 · σ2

(︃
g2A(q

2)

g2A
+
gA(q

2)gP (q
2)q2

3g2AmN

+
g2P (q

2)q4

12g2Am
2
N

)︃

− S(12)

(︃
gA(q

2)gP (q
2)q2

3g2AmN

+
g2P (q

2)q4

12g2Am
2
N

)︃]︄
, (4.118)

with the tensor operator

S(12) = σ1 · σ2 − 3(σ1 · q̂)(σ2 · q̂), q̂ =
q

|q| . (4.119)

The form factors in the nuclear currents can be summarized in the Fermi (F), Gamow-
Teller (GT), and Tensor (T) contributions as [44, 45]

hF (q
2) = gV (q

2), hAA
GT (q

2) =
g2A(q

2)

g2A
, hAP

GT (q
2) =

gP (q
2)gA(q

2)

g2A

q2

3mN

,

hPP
GT =

g2P (q
2)

g2A

q4

12m2
N

, hMM
GT (q2) =

g2M(q2)

g2A

q2

6m2
N

, hAA
T (q2) = hAA

GT (q
2),

hAP
T (q2) = −hAP

GT (q
2), hPP

T (q2) = −hPP
GT (q

2), hMM
T (q2) =

1

2
hMM
GT (q2), (4.120)

such that we can write the relevant parts of the nuclear currents as

Jµ
V (1)JV µ(2) = −g2A

[︄
− 1

g2A
hF (q

2) + hMM
GT (q2)σ1 · σ2 + hMM

T (q2)S(12)

]︄
,

Jµ
A(1)JAµ(2) = −g2A

[︄
σ1 · σ2

(︂
hAA
GT (q

2) + hAP
GT (q

2) + hPP
GT (q

2)
)︂

+ S(12)
(︂
hAP
T (q2) + hPP

T (q2)
)︂]︄
. (4.121)
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Summarizing the Gamow-Teller and Tensor contributions in

hGT (q
2) = hAA

GT (q
2) + hAP

GT (q
2) + hPP

GT (q
2) + hMM

GT (q2),

hT (q
2) = hAP

T (q2) + hPP
T (q2) + hMM

T (q2), (4.122)

we can write the potential as

V =4G2
FV

2
udg

2
Amββ

1

q2

[︂
− 1

g2A
hF (q

2) + hGT (q
2)σ1 · σ2 + hT (q

2)S(12)
]︂
τ+1 τ

+
2

×
[︂
e(k1)PRe

C(k2)
]︂
. (4.123)

The numerical many-body calculations of the nuclear matrix elements that describe the
transition at the level of composite nuclei are oftentimes performed in position-space
(c.f. [194]). Hence, we define the position-space amplitude for the ground-state 0+ → 0+

transition as the Fourier transform of the momentum-space amplitude [182]

Ar =
⟨︁
0+
⃓⃓∑︂
m,n

∫︂
d3q

(2π)3
exp{iq · rnm}V(q2)

⃓⃓
0+
⟩︁
, (4.124)

where the sum is taken over all combinations of nucleons inside the nucleus with m ̸= n
and we defined the spatial distance between the nuclei n,m as rnm = rn − rm. The
0νββ rate Γ is then related to the spin-summed and averaged transition amplitude
via [23, 44, 195]

dΓ =
2π

8

∑︂
spins

|Ar|2δ
(︁
ϵ1 + ϵ2 + Ef − Ei

)︁
F (Z, ϵ1)F (Z, ϵ2)

d3k1
(2π)32ϵ1

d3k2
(2π)32ϵ2

, (4.125)

where ϵj, kj are the energy and momentum of the j-th electron, Ei,f are the energies
(masses) of the initial and final state nuclei, and the Fermi function for a point-like
nucleus [196]

F (Z,E) =
2πη

1− exp{(−2πη)} , η = Zα
me

p
, (4.126)

accounts for the effects of the Coulomb potential generated by the positively charged
final-state nucleus on the emitted electrons.4

We can now switch to spherical coordinates and perform the integration over the
angles ϕ, θ

Ar =
⟨︁
0+
⃓⃓∑︂
m,n

∫︂ 2π

0

dϕ

∫︂ π

0

dθ

∫︂ ∞
0

d|q|
(2π)3

q2 sin θ exp{i|q||rnm| cos θ}V(q2)
⃓⃓
0+
⟩︁
. (4.127)

4Note that the Fermi function has a pole at p = 0.
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Noticing that the factor of q2 resulting from the Fourier transformation cancels with the
1/q2 of the neutrino propagator we can define the position-space NMEs

MF =
⟨︁
0+
⃓⃓∑︂
m,n

hF (r)τ
+
(m)τ

+
(n)

⃓⃓
0+
⟩︁
,

M ij
GT =

⟨︁
0+
⃓⃓∑︂
m,n

hijGT (r)σ(m) · σ(n)τ
+
(m)τ

+
(n)

⃓⃓
0+
⟩︁
,

M ij
T =

⟨︁
0+
⃓⃓∑︂
m,n

hijT (r)S
(mn)(r̂)τ+(m)τ

+
(n)

⃓⃓
0+
⟩︁
. (4.128)

via the quantities [182, 194]

hijK(r) =
2

π
RA

∫︂ ∞
0

d|q|hijK(q2)jλ(|q|r), (4.129)

where RA = 1.2 fm×A1/3 is the nuclear radius, and jλ are the spherical bessel functions
which arise from the spherical part of the Fourier transformation with λ = 0 for K ∈
[F,GT ], i.e. for the Fermi and Gamow-Teller transitions which are independent of cos θ,
and λ = 2 for K = T , i.e. for the Tensor transitions.

Similarly, one can define the short-range NMEs that arise in the context of the
dimension-9 LEFT operators not involving a neutrino exchange as [45]

hijK,sd(r) =
2

π

RA

m2
π

∫︂ ∞
0

d|q| q2hijK(q
2)jλ(|q|r),

MF,sd =
⟨︁
0+
⃓⃓∑︂
m,n

hF,sd(r)τ
+
(m)τ

+
(n)

⃓⃓
0+
⟩︁
,

M ij
GT,sd =

⟨︁
0+
⃓⃓∑︂
m,n

hijGT,sd(r)σ(m) · σ(n)τ
+
(m)τ

+
(n)

⃓⃓
0+
⟩︁
,

M ij
T,sd =

⟨︁
0+
⃓⃓∑︂
m,n

hijT,sd(r)S
(mn)(r̂)τ+(m)τ

+
(n)

⃓⃓
0+
⟩︁
. (4.130)

With the normalization factor RA/m
2
π the short-range NMEs are typically of the same

order as the long-range NMEs. Note that within the literature, oftentimes a different
normalization factor of RA/(memp) is used [194, 197, 198]. Hence, when implementing
the results of numerical NME calculations from the literature, one has to be careful to
use the same conventions and apply possible rescalings appropriately when necessary.

In Table 4.7 we provide a comprehensive set of NMEs calculated in the Interacting
Boson Model 2 (IBM2) [197] covering most 0νββ candidate isotopes. Throughout this
work, we will use this set of NMEs. Exceptions from this will be stated explicitly. For
a comparison and review of the various different approaches to NMEs see Ref. [199].

4.7.1.3 Phase-Space Factor

The last remaining part of the half-life calculation for the LνEM is the leptonic PSF.
With the definition of the NMEs above we can write the spin-summed absolute square
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MF MAA
GT MAP

GT MPP
GT MMM

GT MAA
T MAP

T MPP
T MMM

T MFsd MAA
GTsd MAP

GTsd MPP
GTsd MAP

Tsd MPP
Tsd

76Ge -0.78 6.06 -0.86 0.17 0.20 0.0 0.24 -0.06 0.04 -1.20 4.18 -1.24 0.29 -0.77 0.23
82Se -0.67 4.93 -0.71 0.14 0.17 0.0 0.24 -0.06 0.04 -1.01 3.46 -1.03 0.25 -0.73 0.22
96Zr -0.36 4.32 -0.64 0.13 0.15 0.0 -0.21 0.05 -0.04 -0.87 3.06 -0.89 0.21 0.64 -0.20

100Mo -0.51 5.55 -0.90 0.20 0.22 0.0 -0.29 0.07 -0.05 -1.28 4.48 -1.33 0.30 0.93 -0.28
110Pd -0.42 4.43 -0.76 0.17 0.18 0.0 -0.21 0.06 -0.04 -1.07 3.72 -1.11 0.25 0.79 -0.24
116Cd -0.34 3.17 -0.55 0.12 0.13 0.0 -0.12 0.04 -0.03 -0.80 2.72 -0.81 0.18 0.49 -0.16
124Sn -0.57 3.37 -0.50 0.11 0.12 0.0 0.12 -0.03 0.02 -0.82 2.56 -0.77 0.19 -0.42 0.13
128Te -0.72 4.32 -0.64 0.13 0.15 0.0 0.12 -0.04 0.03 -1.03 3.24 -0.98 0.24 -0.52 0.16
130Te -0.65 3.89 -0.57 0.12 0.14 0.0 0.14 -0.04 0.02 -0.94 2.95 -0.89 0.22 -0.47 0.15
134Xe -0.69 4.21 -0.62 0.13 0.15 0.0 0.12 -0.04 0.03 -0.97 3.07 -0.92 0.22 -0.48 0.15
136Xe -0.52 3.20 -0.45 0.09 0.11 0.0 0.12 -0.03 0.02 -0.73 2.32 -0.69 0.17 -0.36 0.12
148Nd -0.36 2.52 -0.48 0.11 0.12 0.0 -0.12 0.02 -0.02 -0.78 2.54 -0.79 0.19 0.30 -0.09
150Nd -0.51 3.75 -0.76 0.17 0.19 0.0 -0.12 0.04 -0.03 -0.74 2.46 -0.76 0.18 0.34 -0.10
154Sm -0.34 2.98 -0.52 0.11 0.13 0.0 -0.12 0.03 -0.02 -0.78 2.64 -0.79 0.19 0.39 -0.13
160Gd -0.42 4.22 -0.71 0.15 0.17 0.0 -0.21 0.05 -0.03 -1.02 3.52 -1.04 0.24 0.60 -0.19
198Pt -0.33 2.27 -0.50 0.11 0.12 0.0 -0.12 0.03 -0.02 -0.78 2.57 -0.78 0.18 0.37 -0.12
232Th -0.44 4.17 -0.76 0.17 0.18 0.0 -0.21 0.05 -0.04 -1.08 3.80 -1.11 0.25 0.69 -0.22
238U -0.52 4.96 -0.90 0.20 0.21 0.0 -0.21 0.06 -0.04 -1.29 4.51 -1.32 0.30 0.82 -0.25

Table 4.7: A comprehensive set of NMEs covering most 0νββ candidate isotopes. These
NMEs have been calculated in Ref. [197] and have been rescaled to fit the
conventions used in this work. This table was published in Ref. [1].

of the transition amplitude as

|A|2 = 16G4
FV

4
ud |mββ|2

π2

4R2
A

|M|2
∑︂
spins

|e(k1)PRe
C(k2)|2, (4.131)

with the NMEs summarized in

M = − 1

g2A
MF +MGT +MT ,

MGT =MAA
GT +MAP

GT +MPP
GT +MMM

GT , (4.132)
MT =MAP

T +MPP
T +MMM

T . (4.133)

We can perform the sum over the electron spins via the usual trace techniques∑︂
spin

|e(k1)PRe
C(k2)|2 = 2kµ1k2µ = 2

(︁
ϵ1ϵ2 − |k1||k2| cos θ

)︁
, (4.134)
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and by defining the PSF as

G01 =
1

log 2

G4
Fm

2
e

64π5R2
A

∫︂
d cos(θ)dϵ1dϵ2 |k1||k1|(ϵ1ϵ2 − |k1||k2| cos θ)

F (Z, ϵ1)F (Z, ϵ2)δ
(︁
ϵ1 + ϵ2 + Ef − Ei

)︁
, (4.135)

the half-life can be written as(︂
T 0ν
1/2

)︂−1
=

Γ

log 2
= g4AG01

⃓⃓
V 2
udM

⃓⃓2 ⃓⃓⃓⃓mββ

me

⃓⃓⃓⃓2
. (4.136)

It should be noted that, in contrast to most of the literature, we follow Refs. [44, 45,
178] in not including Vud in the definition of the PSF but rather shift it towards the
nuclear part of the amplitude. This is done in order to have a common prefactor for the
PSFs of the LνEM (with two weak interaction vertices), other long-range mechanism
(with one single weak interaction vertex), and short-range mechanisms without any weak
interaction vertices.

The above definition of the PSF is a rather crude one which tries to capture the defor-
mation of the electron wave functions generated from the nuclear Coulomb potential via
the introduction of the Fermi functions F (Z,E). Indeed, more sophisticated treatments
exist that calculate the electron wave functions by solving the radial Dirac equations
for point-like [200] or finite-size nuclei assuming either a uniform nuclear charge distri-
bution [103] or a Woods-Saxon potential [201]. Additionally, screening effects resulting
from the surrounding electron shells of the atom have been included in these calcula-
tions [103, 200, 201].

If we want to study also the remaining 0νββ mechanisms including interference scenar-
ios of different mechanisms, we have to consider different leptonic currents and, hence,
different PSFs as well. Using the formalism described in Ref. [200], it is convenient to
define the general PSFs by splitting the leptonic currents into a radial part g as well as
an angular dependent part h via

G0k = Ck
G4

Fm
2
e

64π5 ln 2R2

∫︂
δ

(︃
ϵ1 + ϵ2 + Ef − Ei

)︃
×
(︃
h0k(ϵ1, ϵ2, R) cos θ + g0k(ϵ1, ϵ2, R)

)︃
× k1k2ϵ1ϵ2 dϵ1 dϵ2 d(cos θ). (4.137)

Again, ki and ϵi denote the absolute values of the momentum and energy of the i-th
electron. The angular-dependent and independent functions h, g depend on the approxi-
mations used in the calculations of the electron wave functions as described in Ref. [200]
and exact solutions require numerical methods [103]. We have calculated the PSFs by
analytically solving the radial electron wave functions to the lowest order assuming a
uniform charge distribution (see Ref. [200] scheme “A”) as well as via the analytic solu-
tion of the electron wave functions for a point-like nucleus (see Ref. [200] scheme “B”)
while exact solutions for a uniform or Woods-Saxon charge distribution including the
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Q N G01[10
−14yr−1] G02[10

−14yr−1] G03[10
−14yr−1] G04[10

−14yr−1] G06[10
−14yr−1] G09[10

−14yr−1]

Isotope [MeV] [%] A B A B A B A B A B A B
46Ca 0.989 0.004 0.017 0.016 0.006 0.006 0.005 0.005 0.012 0.012 0.036 0.035 0.042 0.041
48Ca 4.267 0.187 2.910 2.780 19.000 18.100 2.250 2.110 2.786 2.696 2.688 2.524 6.092 5.805
70Zn 0.997 0.610 0.027 0.026 0.010 0.010 0.009 0.008 0.020 0.019 0.060 0.055 0.070 0.066
76Ge 2.039 7.730 0.290 0.271 0.474 0.449 0.164 0.149 0.253 0.244 0.442 0.400 0.654 0.607
80Se 0.134 49.610 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.002
82Se 2.996 8.730 1.270 1.170 4.400 4.070 0.893 0.791 1.179 1.116 1.526 1.343 2.739 2.502
86Kr 1.258 17.279 0.075 0.070 0.047 0.045 0.030 0.027 0.059 0.057 0.149 0.133 0.184 0.169
94Zr 1.142 17.380 0.074 0.068 0.038 0.036 0.027 0.024 0.056 0.054 0.153 0.134 0.184 0.166
96Zr 3.349 2.800 2.680 2.390 11.600 10.400 2.010 1.700 2.511 2.336 2.981 2.512 5.721 5.053
98Mo 0.110 24.390 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.003 0.002
100Mo 3.034 9.820 2.100 1.860 7.540 6.760 1.510 1.270 1.940 1.804 2.496 2.077 4.505 3.959
104Ru 1.301 18.620 0.142 0.128 0.096 0.090 0.059 0.051 0.111 0.107 0.275 0.234 0.343 0.304
110Pd 2.017 11.720 0.641 0.567 1.060 0.960 0.375 0.311 0.558 0.522 0.990 0.819 1.447 1.264
114Cd 0.542 28.730 0.020 0.018 0.002 0.002 0.003 0.003 0.011 0.011 0.053 0.045 0.057 0.049
116Cd 2.813 7.490 2.290 1.980 7.230 6.340 1.620 1.300 2.097 1.930 2.872 2.296 4.963 4.233
122Sn 0.373 4.630 0.010 0.009 0.000 0.000 0.001 0.001 0.005 0.005 0.031 0.026 0.032 0.028
124Sn 2.291 5.790 1.250 1.080 2.680 2.370 0.800 0.640 1.116 1.030 1.798 1.426 2.786 2.366
128Te 0.867 31.740 0.081 0.071 0.023 0.022 0.023 0.019 0.055 0.054 0.187 0.151 0.212 0.180
130Te 2.528 34.080 2.000 1.700 5.200 4.510 1.360 1.060 1.809 1.656 2.700 2.094 4.400 3.681
134Xe 0.826 10.436 0.083 0.073 0.021 0.020 0.023 0.018 0.056 0.055 0.197 0.157 0.221 0.185
136Xe 2.458 8.857 2.090 1.760 5.150 4.440 1.400 1.080 1.876 1.710 2.861 2.182 4.592 3.800
142Ce 1.417 11.114 0.506 0.428 0.419 0.374 0.234 0.178 0.407 0.380 0.949 0.715 1.209 0.986
146Nd 0.070 17.189 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.008 0.006 0.008 0.006
148Nd 1.928 5.756 1.510 1.240 2.340 2.000 0.881 0.649 1.300 1.179 2.392 1.743 3.426 2.750
150Nd 3.371 5.638 9.790 7.750 44.600 35.900 7.770 5.480 9.135 7.965 10.899 7.621 20.861 16.293
154Sm 1.251 22.750 0.489 0.406 0.313 0.279 0.204 0.150 0.380 0.355 0.975 0.709 1.193 0.951
160Gd 1.731 21.860 1.480 1.200 1.860 1.580 0.808 0.574 1.246 1.130 2.497 1.755 3.423 2.676
170Er 0.656 14.910 0.168 0.137 0.026 0.025 0.035 0.025 0.103 0.103 0.430 0.300 0.467 0.353
176Yb 1.089 12.996 0.685 0.544 0.329 0.290 0.253 0.171 0.509 0.472 1.443 0.974 1.715 1.284
186W 0.492 28.430 0.168 0.132 0.013 0.013 0.024 0.016 0.089 0.094 0.469 0.307 0.493 0.350
192Os 0.408 40.780 0.145 0.113 0.007 0.007 0.016 0.010 0.069 0.076 0.425 0.272 0.441 0.305
198Pt 1.049 7.356 1.360 1.020 0.606 0.520 0.488 0.299 0.999 0.914 2.926 1.775 3.445 2.395
204Hg 0.419 6.870 0.234 0.178 0.012 0.013 0.027 0.016 0.113 0.125 0.683 0.413 0.710 0.472
232Th 0.838 100 2.990 2.050 0.811 0.689 0.848 0.432 2.025 1.836 7.047 3.533 7.923 4.805
238U 1.144 99.274 7.720 5.090 4.210 3.260 3.060 1.470 5.850 4.950 15.986 7.569 19.197 11.500

Table 4.8: Summary of the different phase space factors for each double beta decaying
isotop. We show the values obtained for both PSF approximation schemes
“A” and “B” [2, 200]. In addition, we present the corresponding Q-values as
well as the relative isotopic abundance N . The PSFs are rounded to 3 digits
and entries denoted by 0.000 are not exactly zero.

effects of electron screening were obtained in Refs. [103, 201]. Generally, the approxi-
mation scheme “A” results in PSFs that, in comparison to the exact numerical solutions,
are larger by about ∼ 10% − 60% depending on the exact PSF and isotope of inter-
est, while the approximation scheme “B” tends to overestimate the exact solutions by
∼ 2% − 10% [200]. In order to comply with different conventions used in Refs. [45]
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and [200] we defined the rescaling constants

Ck =

⎧⎪⎪⎨⎪⎪⎩
9/2 , k = 4

meRA/2 , k = 6
(meRA/2)

2 , k = 9
1 , else

. (4.138)

The different PSFs for all naturally occuring 0νββ candidate isotopes are given in Ta-
ble 4.8.

4.7.2 The 0νββ Half-Life Master Formula

The example of the LνEM presented in the previous section highlights the methodology
of the 0νββ half-life calculation and can be extended to the full LEFT basis of LNV
operators as has been done in Refs. [44, 45] with the exception of the neutral-current
dimension-6 LEFT operators. The contributions from the latter to the 0νββ amplitude
have been derived in this work, particularly in Section 4.6, for the first time. By sepa-
rating the different leptonic currents that arise in the context of the various operators,
the general transition amplitude can be written as [45]

A =
g2AG

2
Fme

πRA

(︄[︂
e(k1)PRe

C(k2)
]︂
Aν +

[︂
e(k1)PLe

C(k2)
]︂
AR +

ϵ1 − ϵ2
me

[︂
e(k1)γ0e

C(k2)
]︂
AE

+
[︂
e(k1)e

C(k2)
]︂
Ame +

[︂
e(k1)γ0γ5e

C(k2)
]︂
AM

)︄
, (4.139)

with the different sub-amplitudes Ai({C(d)
i }) defined in terms of the nuclear matrix

elements Mi and the corresponding Wilson coefficients C(d)
i as

Aν =

(︃
mββ

me

+
BF 2

0

v2me

C
(6)
S,NC

)︃
M(3)

ν +
mN

me

M(6)
ν

(︂
C

(6)
SL , C

(6)
SR , C

(6)
T , C

(7)
VL, C

(7)
VR

)︂
+
m2

N

mev
M(9)

ν

(︂
C

(9)
1L , C

(9)
1L
′, C

(9)
2L , C

(9)
2L
′, C

(9)
3L , C

(9)
3L
′, C

(9)
4L , C

(9)
5L

)︂
,

AR =
m2

N

mev
M(9)

R

(︂
C

(9)
1R , C

(9)
1R
′, C

(9)
2R , C

(9)
2R
′, C

(9)
3R , C

(9)
3R
′, C

(9)
4R , C

(9)
5R

)︂
,

AE =M(6)
E,L

(︂
C

(6)
VL

)︂
+ M(6)

E,R

(︂
C

(6)
VR

)︂
,

Ame =M(6)
me,L

(︂
C

(6)
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)︂
+ M(6)

me,R

(︂
C

(6)
VR

)︂
,

AM =
mN

me

M(6)
M

(︂
C

(6)
VL

)︂
+
m2

N

mev
M(9)

M

(︂
C

(9)
6 , C

(9)
6
′, C

(9)
7 , C

(9)
7
′, C

(9)
8 , C

(9)
8
′, C

(9)
9 , C

(9)
9
′
)︂
.

(4.140)

Here, we explicitly state the different Wilson coefficients involved in each sub-amplitude.
The corresponding NMEs Mi are defined in terms of the relevant LECs, the individual
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NMEs MF ,MF,sd, ... as well as the LEFT Wilson coefficients. The sub-amplitude Aν ,
which covers the standard LνEM including the new LO contact term proportional to
gNN
ν , is given in terms of the NMEs

M(3)
ν = −V 2

ud

(︃
− 1

g2A
MF +MGT +MT + 2

m2
πg

NN
ν

g2A
MF,sd

)︃
,

M(6)
ν = Vud

(︃
B

mN

(︂
C

(6)
SL − C

(6)
SR

)︂
+

m2
π

mNv

(︂
C

(7)
V L − C

(7)
V R

)︂)︃
MPS + VudC

(6)
T MT6,

M(9)
ν = − 1

2m2
N

C
(9)
ππL

(︁
MAP

GT,sd +MAP
T,sd

)︁
− 2m2

π

g2Am
2
N

C
(9)
NNLMF,sd. (4.141)

Further, AR, which describes right-handed short-range interactions arising in the context
of, e.g., left-right symmetric models [139, 140], is simply given by

M(9)
R = M(9)

ν

⃓⃓
L→R

. (4.142)

The sub-amplitude AE summarizes contributions proportional to the electron energies
with

M(6)
E,L = −VudC

(6)
V L

3

(︃
g2V
g2A
MF +

1

3

(︁
2MAA

GT +MAA
T

)︁
+

6gE
V L

g2A
MF,sd

)︃
,

M(6)
E,R = −VudC

(6)
V R

3

(︃
g2V
g2A
MF − 1

3

(︁
2MAA

GT +MAA
T

)︁
+

6gE
V R

g2A
MF,sd

)︃
, (4.143)

while terms proportional to the electron mass me are described by the sub-amplitude
Ame which is determined by
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Finally, AM is given by
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(4.145)
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While the individual Fermi, Gamow-Teller and Tensor NMEs of the long- and short-
range mechanisms, MF ,MGT ,MT ,M

ij
GT ,Mij

T , have been defined in Section 4.7.1.2, the
remaining pseudo-scalar and tensor NMEs are defined as

MPS =
1

2
MAP

GT +MPP
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1

2
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MT6 = 2
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. (4.146)

With these definitions, the general 0νββ half-life “master formula” is given as [45]

(︁
T 0ν
1/2

)︁−1
= g4A

[︃
G01

(︁
|Aν |2 + |AR|2

)︁
− 2 (G01 −G04) Re [A∗νAR]

+ 4G02 |AE|2 + 2G04

(︁
|Ame|2 +Re

[︁
A∗me

(Aν +AR)
]︁)︁

− 2G03Re [(Aν +AR)A∗E + 2AmeA∗E]

+G09 |AM |2 +G06Re [(Aν −AR)A∗M ]

]︃
.

(4.147)

4.8 Renormalization Group Equations

In order to describe the transition from the high-energy scale of new physics to the low-
energy scale of 0νββ described in terms of χEFT, one has to take the running of the
different Wilson coefficients into account.

4.8.1 RGE Running at LEFT Level

The LEFT QCD RGEs are covered in Ref. [45] and we repeat the results here for
convenience. The RGEs for the scalar and tensor long-range operators O(6)

SL,SR,T are
given as [45]

d

d log µ
C

(6)
SL,SR = −6CF

αs(µ)

4π
C

(6)
SL,SR,

d

d log µ
C

(6)
T = 2CF

αs(µ)

4π
C

(6)
T , (4.148)

with the constant CF given in terms of the number of colors Nc as

CF =
N2

c − 1

2Nc

. (4.149)
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The RGEs for the short-range scalar dimension-9 operators O(9)(′)
i , i ∈ [1, ..., 5] have been

derived as [45]
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and, finally, the RGEs for the short-range vector operators O(9)(′)
i , i ∈ [6, .., 9] are given

by [45]
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Importantly, the RGEs introduce a mixing between different operators when evolv-
ing them from the SMEFT-to-LEFT matching scale, mW , down to the chiral scale
µ ∼ 2GeV. Therefore, when extracting limits on the different Wilson coefficients from
experimental 0νββ half-life limits, it is essential to define the scale at which the Wilson
coefficients are given. As already stated, the above RGEs only represent those that
arise from QCD, i.e., that are proportional to the strong coupling constant gs. The
full LEFT RGEs up to dimension 6 have been calculated in Refs. [90, 202]. However,
the full set of RGEs is quite complex and not yet included in neither νDoBe [2] nor
in Ref. [1] or this work. In contrast to the QCD RGEs presented above, the complete
RGE running would induce a loop-level neutrino mass generated from neutral-current
∆L = 2 ννee, ννqq as well as ννFµν operators and the ∆L = 4 νννν operator. While
this is a qualitatively new feature, these RGEs are proportional to the small masses of
e, ν, u, d with dmν/d(log µ) ∝ GFm

3
e,u,d,ν ∼ 10−5 eV(me,u,d,ν/MeV)3 [90] and we expect

their contribution to be of little relevance in the one-generation approximation which we
apply. The full LEFT RGEs will be added to νDoBe in a future update.

4.8.2 RGE Running at SMEFT Level

The RGEs for the SMEFT dimension-7 operators have been worked out in Ref. [87] which
covered the RGE effects generated by Standard Model interactions, while Refs. [160, 161]
have calculated the full set of SMEFT RGEs up to dimension 7 including the mixing
of dimension-5, -6, and -7 operators. Within our code νDoBe, we have included both
approaches. Again, the full set of SMEFT RGEs as derived in Refs. [160, 161] does
induce a mixing between different LNV operators. Due to the complexity and length
of the RGEs, we will not repeat the full set of RGEs here. Instead, we will focus
on the loop generation of the Weinberg operator via other LNV dimension-7 SMEFT
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operators. In our simple one-generation approximation we can write the relevant terms
for the dimension-5 Weinberg operator as [160, 161, 203]
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)︂
uu
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(7)†
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]︃
, (4.152)

where we ignored contributions from any dimension-6 SMEFT operators that we do
not include in our study. In eq. (4.152), g2 and λ denote the weak gauge coupling
and the quartic Higgs coupling, respectively, while Yl,u,d represent the charged-lepton,
up-quark and down-quark Yukawa matrices (c.f. Chapter 2). Further, we defined the
trace [160, 161, 203]

T = Tr
{︂
Y †l Yl + 3Y †d Yd + 3Y †uYu

}︂
. (4.153)

While the dimension-7 version of the Weinberg operator O(7)
LH unsurprisingly contributes

to the neutrino mass at both tree- and loop-level, we can see that we expect an addi-
tional loop-level contribution to the neutrino mass from the dimension-7 SMEFT oper-
ators O(7)

LHD1,O
(7)
LHD2,O

(7)
LHDe,O

(7)
LLQdH1,O

(7)
LLQuH as well as O(7)

LLeH . In fact, for the latter
operator O(7)

LLeH this represents the leading contribution to 0νββ as it does not generate
any relevant diagram at tree-level. In contrast to the RGEs at LEFT level, the loop
contributions to the neutrino mass operator are generally less suppressed. While the
renormalization of the SMEFT up to dimension 7 is fully available within the literature,
the dimension-9 operators have not been covered, yet. Hence, if not stated otherwise,
we will ignore the RGE running in the SMEFT sector and always define the LEFT and
SMEFT Wilson coefficients right at the SMEFT-to-LEFT matching scale.
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Chapter 5

Unraveling the 0νββ Decay
Mechanisms

As we have seen in the previous chapter, from an EFT point of view there are numer-
ous mechanisms that can induce a non-zero 0νββ rate. It is by no means clear that a
future observation of a 0νββ signal can be interpreted as the widely considered “stan-
dard” LνEM scenario. Instead, further information is required in order to determine
the underlying mechanism of a future 0νββ signal. In this chapter, we will discuss the
possibilities how to experimentally distinguish the different 0νββ mechanisms and, in
an optimal case, identify the underlying particle physics scenario. This chapter sum-
marizes the results published in Ref. [1]. All numerical calculations within this chapter
have been carried out using the νDoBe Python tool [2], which will be described in the
following Chapter 6. In Ref. [1], we utilized electron wave functions approximated by
the leading order solution to a uniform nuclear charge distribution (Scheme “A”). At
the time of publication, this was the only approximation of the electron wave functions
implemented in νDoBe. However, the analytic solution to a point-like nucleus (Scheme
“B”) is known to give more robust results and we will update the results of Ref. [1] ac-
cordingly in this chapter. Nevertheless, one should notice that this is only a very minor
correction to the results published in Ref. [1].

5.1 Distinguishing the Leptonic Phase Space
As we have discussed in Section 4.1.3, 0νββ experiments will generally aim to identify
0νββ events by measuring the combined electron spectrum. As such, these experiments
are sensitive only to the half-life of the 0νββ process. However, experiments that ap-
ply tracking calorimeters, such as NEMO [111, 135] or its next-generation successor
SuperNEMO [136], are sensitive to the kinematics of each individual electron that is
emitted. Therefore, they can detect the single electron spectrum as well as the angular
correlation of the two outgoing electrons.
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5.1.1 Single Electron Spectra

For convenience let us repeat here the definition of the PSFs as given in eq. (4.137)

G0k = Ck
G4

Fm
2
e

64π5 ln 2R2
A

∫︂
δ

(︃
ϵ1 + ϵ2 + Ef − Ei

)︃
×
(︃
h0k(ϵ1, ϵ2, R) cos θ + g0k(ϵ1, ϵ2, R)

)︃
× k1k2ϵ1ϵ2 dϵ1 dϵ2 d(cos θ). (5.1)

The single electron spectrum is defined as the derivative of the decay rate with respect
to the electron energy. With the half-life being parameterized in the form

T1/2
−1 = g4A

∑︂
i

G0i|Ai({Ck})|2, (5.2)

the single electron spectrum becomes
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G4
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2
e

32π5R2
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(︃∑︂
k

Ckg0k|Ak|2
)︃
k1k2ϵ1ϵ2, (5.3)

with the energy and momentum of the second electron being fixed by the condition

Q = ϵ1 + ϵ2 − 2me. (5.4)

By defining the normalized electron energy

ϵ1 =
ϵ1 −me

Q
, ϵ1 ∈ [0, 1], (5.5)

we can determine the normalized spectrum as

1

Γ

dΓ

dϵ1
=
Q

Γ

dΓ

dϵ1
. (5.6)

Before we dive deeper into the precise spectra for each mechanism, let us first try to
gain some intuitive understanding of the expected spectral shapes. We can understand
the kinematics of the emitted electrons on a qualitative level by solving the corresponding
absolute square of the electron currents, again, via the usual trace techniques [44]

g01 ∼ ϵ1ϵ2, h01 ∼ −k1k2 cos θ,
g02 ∼

(︂
ϵ1−ϵ2
me

)︂2 (︁
ϵ1ϵ2 −m2

e

)︁
, h02 ∼ +k1k2 cos θ,

g03 ∼
(︁
ϵ1 − ϵ2

)︁2
, h03 ∼ 0,

g04 ∼
(︁
ϵ1ϵ2 −m2

e

)︁
, h04 ∼ −k1k2 cos θ,

g06 ∼ 2me(ϵ1 + ϵ2), h06 ∼ 0,
g09 ∼

(︁
ϵ1ϵ2 +m2

e

)︁
, h09 ∼ +k1k2 cos θ.

(5.7)

68



5.1 Distinguishing the Leptonic Phase Space

Figure 5.1: Comparison of the normalized single electron spectra arising from differ-
ent approximation schemes of the electron wave functions. The solid line
describes the case of free electrons calculated by taking the usual trace tech-
niques, the dashed line adds the correction in terms of the Fermi function
F (Z,E), the dashed-dotted line shows the approximate leading order solu-
tion for a uniform nucleus (scheme “A” in Ref. [200]), and lastly the dotted
line represents the exact solution to the radial electron wave functions for a
point-like nucleus (scheme “B” in Ref. [200]). The spectra are all shown for
136Xe.

Hence, we expect two qualitative behaviours in the single electron spectra. The PSFs
with g0k ∝ ϵ1ϵ2 will result in a single electron spectrum peaked at ϵ1 = ϵ2, i.e., they will
favour an even energy distribution among the emitted electrons, while those PSFs with
g0k ∝ ϵ1 − ϵ2 will favour an uneven distribution.

As we have mentioned earlier in Section 4.7.1.3, this simple approximation, treating
electrons as free particles, does not account for deformations of the electron wave func-
tions caused by the positively charged nucleus. Instead, one can try to model the effects
of the nuclear potential via the addition of the Fermi functions F (Z,E), by analytically
solving the radial Dirac equations for a nucleus of uniform charge distribution to leading
order (scheme “A”), by solving the exact radial electron wave functions for a point-like
nucleus (scheme “B”), or by numerically calculating the exact radial electron wave func-
tions for a uniform or Woods-Saxon nuclear potential including electron screening from
the atomic shell. In Figure 5.1 we showcase the spectra as calculated in the first three
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Figure 5.2: Comparison of the normalized single electron spectra in different 0νββ candi-
date isotopes. The normalized spectra are presented for the large Z isotopes
136Xe (Z = 54, Q ∼ 2.5MeV) and 134Xe (Z = 54, Q ∼ 0.8MeV) with large
and small Q-values, and the small Z isotopes 48Ca (Z = 20, Q ∼ 4.3MeV)
and 46Ca (Z = 20, Q ∼ 1MeV), again, with a larger and smaller Q−value.

approximation schemes of the electron wave functions. Except for G01, the qualitative
behaviour is similar among the different schemes. The same is true when considering
the exact numerical solutions to the electron wave functions as was shown in Ref. [200].

In Figure 5.2 we show the spectral dependence on the chosen isotope by comparing
two large Z isotopes with a larger and smaller Q-value, 136Xe (Z = 54, Q ∼ 2.5MeV)
and 134Xe (Z = 54, Q ∼ 0.8MeV), with two small Z isotopes, again, with a larger and
smaller Q−value in 48Ca (Z = 20, Q ∼ 4.3MeV) and 46Ca (Z = 20, Q ∼ 1MeV) using
the point-like nucleus wave functions “B”. Again, we see that the qualitative behaviour
is similar among the different isotopes with quantitative differences being attributed
mainly to the different Q−values.

5.1.2 Angular Correlation

To study the angular correlation of the two emitted electrons we can define the dif-
ferential decay rate with respect to the normalized energy ϵ and the opening angle θ
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Figure 5.3: Comparison of the angular correlation coefficient in different 0νββ candidate
isotopes. Again, we present the angular correlation coefficient for large Z
isotopes 136Xe (Z = 54, Q ∼ 2.5MeV) and 134Xe (Z = 54, Q ∼ 0.8MeV)
with comparatively small and large Q-values as well as low Z isotopes 48Ca
(Z = 20, Q ∼ 4.3MeV) and 46Ca (Z = 20, Q ∼ 1MeV).

as

dΓ
d cos θdϵ1

= a0

(︃
1 +

a1
a0

cos θ

)︃
. (5.8)

The angular correlation coefficient

a1
a0

(ϵ) =

∑︁
i |Ai|2h0i∑︁
j |Aj|2g0j

, (5.9)

then describes the angular kinematics of the emitted electrons. Qualitatively, a positive
angular correlation describes a scenario with the two electrons being preferably emit-
ted towards the same hemisphere with θ < π/2, while a negative angular correlation
represents scenarios with the two electrons preferably being emitted back-to-back with
an opening angle θ > π/2. A vanishing angular correlation coefficient corresponds to a
scenario with no preferred angular distribution.

The qualitative behaviour of the angular correlation described in terms of the functions
h0k can be read of eq. (5.7). We see that we would expect a negative angular correlation
for k ∈ [1, 4], a positive correlation for k ∈ [2, 9], and no correlation for k ∈ [3, 6]. In
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5 Unraveling the 0νββ Decay Mechanisms

Figure 5.4: Comparison of the normalized single electron spectra (lower left triangle)
and angular correlation coefficients (upper right triangle) associated with
the different phase space factors. The isotope is chosen to be 136Xe. The
dark blue solid lines correspond to the equally coloured PSFs labelled on the
x-axis, while the dashed cyan lines represent the equally coloured PSFs on
the vertical axis. Again, the plots are with respect to the normalized electron
energy in the range ϵ ∈ [0− 1]. This is an update of the figure published in
Ref. [1].

Figure 5.3 we present the angular correlation coefficients corresponding to each of the
six PSFs as calculated in the point-like nucleus approximation.

5.1.3 LEFT Operators

In Figure 5.4 we show a comparison of the normalized single electron spectra and the an-
gular correlation coefficients that arise from the six different PSFs involved in the 0νββ
half-life calculation. Indeed one finds that operators associated with different PSFs gen-
erate kinematic signatures that are in principle distinguishable in the spectra and/or the
angular correlation, despite some combinations requiring precise experimental accuracy
with high statistics. However, considering each PSF on its own is only meaningful in a
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Figure 5.5: Comparison of the normalized single electron spectra (lower left triangle)
and angular correlation coefficients (upper right triangle) for each of the 4
groups of LEFT operators related to different phase space factors. Again,
the isotope is chosen to be 136Xe and the dark blue solid lines correspond
to the equally coloured PSFs labelled on the x-Axis, while the dashed cyan
lines represent the equally coloured PSFs on the vertical axis. As before, the
plots are shown with respect to the normalized electron energy in the range
ϵ ∈ [0− 1]. The operators represented by G01 are the neutrino mass mββ,
the long-range operators ,O(6)

SL,SR,T ,O
(7)
V L,V R and the scalar short-range op-

erators, O(9)
i,L,R,O

(9)
i,L,R

′
, i = 1...5. Similarly, the short-range vector operators,

O(9)
i ,O(9)

i

′
, i = 6...9, belong to G09, while the long-range vector operators

O(6)
V L,V R have separate kinematic signatures. This is an update of the figure

published in Ref. [1].

limited set of scenarios. The reason for this is that, assuming only one operator at a time,
the long-range dimension-6 vector operators C(6)

V L,V R contribute not only to a single sub-
amplitude with a single electron current but, instead, trigger several PSFs (G02,03,04,09).
The remaining operators

(︁
mββ, C

(6)
SL,SR,T , C

(7)
V L,V R and C

(9)
i,L,R, C

(9)
i,L,R

′
, i = 1...5

)︁
all have

half-lives proportional to G01, while the short-range vector operators C(9)
i , C

(9)
i

′
, i = 6...9

are proportional to G09. At the same time, the PSF G06 is only generated via interference
terms.

In Figure 5.5 we provide a comparison of the leptonic phase space observables in these
4 groups of operators. Consequently, one finds that at LEFT scale, only the dimension-6
long-range vector operators O(6)

V L,V R as well as the short-range vector operators O(9)(′)
i , i ∈

[6, .., 9] generate electron kinematics which are different from the LνEM. The remaining
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Figure 5.6: Comparison of the normalized single electron spectra (lower left trian-
gle) and angular correlation coefficients (upper right triangle) for each
of the 4 groups of SMEFT operators related to different phase space
factors similar to Figure 5.5. The operators represented by G09 are
the Ψ6 operators O(9)

dQdueL1,2 and O(9)
QudueL1,2 as well as the Ψ4H2D op-

erators O(9)

dQLeH2D2,O
(9)

QueLH2D2,O
(9)

QeuLH2D2,O
(9)

dLQeH2D1 and O(9)

deQLH2D. The
dimension-7 operators O(7)

LHDe and O(7)
LeudH result in the same kinematics as

the LEFT dimension-6 vector operators O(6)
V L,V R. The remaining SMEFT

operators, including the neutrino mass generating Weinberg operator, are
summarized in the contributions proportional to G01.

LEFT operators are not distinguishable from this scenario via a comparison of the
kinematic signatures of the emitted electrons.

5.1.4 SMEFT Operators

While we did not cover a comparison of the different SMEFT operators in Ref. [1], we
will include a brief discussion here, in order to provide a comprehensive overview.

Taking into account the leading order SMEFT-to-LEFT matching relations, i.e. ignor-
ing contributions proportional to the small quark or electron masses, we find that, except
for O(7)

LHDe and OLeudH(7), all SMEFT dimension-7 operators give half-life contributions
proportional to the PSF G01 and, as such, result in the same electron kinematics as the
LνEM. The remaining two operators map onto the two long-range dimension-6 vector op-
erators, O(6)

V L (O(7)
LHDe) and O(6)

V R (O(7)
LeudH). At SMEFT dimension 9, the 6-fermion Ψ6 op-

erators O(9)
dQdueL1,2 and O(9)

QudueL1,2 as well as the Ψ4H2D operators O(9)

dQLeH2D2,O
(9)

QueLH2D2,
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Figure 5.7: Effect of the Renormalization Group Equations on the electron kinematics
generated by different SMEFT operators. The setting is the same is in
Figure 5.6. However, here we define each operator at the scale Λ = 1TeV
before running it down to the SMEFT-to-LEFT matching scale mW . As
one can see, the operator mixing induced via the 1-loop RGEs significantly
changes the expected signatures of the SMEFT dimension-7 operators.

O(9)

QeuLH2D2,O
(9)

dLQeH2D1 and O(9)

deQLH2D map onto the short-range vector LEFT operators
that contribute via G09. The remaining SMEFT dimension-9 operators all map onto
LEFT operators that contribute via G01 and hence have the same kinematics as the
usual mass mechanism. In Figure 5.6 we provide a comparison of the expected elec-
tron kinematics for these four different sets of SMEFT operators. Unsurprisingly, the
SMEFT operators O(7)

LHDe and O(7)
LeudH generate the same kinematics as the LEFT oper-

ators O(6)
V L,V R.

5.1.5 Renormalization Group Equations and Operator Mixing

In the previous sections, we assumed only a single operator with a non-vanishing Wilson
coefficient at a time, each defined at the SMEFT-to-LEFT matching scale mW . There-
fore, we have ignored the potential effects of the RGE running in the SMEFT sector.
Considering the SMEFT RGEs that arise solely from the Standard Model interactions as
calculated by Liao and Ma [87], the induced operator mixing does not alter the results
discussed in the previous section. However, when considering the full SMEFT RGEs
up to dimension 7 as calculated by Zhang [160, 161], the 1-loop contribution of the
dimension-7 SMEFT operators to the neutrino mass generating dimension-5 Weinberg
operator can have a significant impact on the expected electron kinematics. To study
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5 Unraveling the 0νββ Decay Mechanisms

the effects of the operator mixing induced via the 1-loop renormalization we apply the
RGEs as calculated by Zhang [160, 161] and define each SMEFT operator at the scale
Λ = 1TeV before running it down to the SMEFT-to-LEFT matching scale mW . We
present the corresponding kinematic signatures in Figure 5.7 showcasing that the 1-
loop contribution to the neutrino mass generating Weinberg operator does significantly
change the kinematics of the emitted electrons for the SMEFT dimension-7 operators.
After applying the RGE, the signatures of the SMEFT dimension-7 operators all re-
semble that of the LνEM. This finding signifies the importance of loop contributions to
0νββ in the SMEFT regime.

Conversely, as we have discussed in Section 4.8, we do not expect the full set of LEFT
RGEs calculated by Jenkins et al. [90] to be of similar importance as long as we stick to
the one-generation approximation.

5.2 Half-Life Ratios – Measuring 0νββ in Different Iso-
topes

While only tracking calorimeter 0νββ experiments are sensitive to the kinematics of
the emitted electrons, the major experimental observable is of course the half-life of the
0νββ process. In contrast to the electron kinematics which are only able to distinguish
operators via the leptonic phase-space, i.e., they can only distinguish operators with
different leptonic currents, the half-life is sensitive to the full 0νββ transition amplitude.
As such the half-life carries information about both the leptonic currents as well as the
hadronic structures of different operators and the corresponding NMEs. In order to
study the isotopic dependence of the various NMEs that arise in the context of different
LNV mechanisms, we define the half-life ratios [1]

ROi(AX) ≡
TOi

1/2(
AX)

TOi

1/2(
76Ge)

=

∑︁
j |AOi

j (76Ge)|2GOi
j (76Ge)∑︁

k |AOi
k (AX)|2GOi

k (AX)
, (5.10)

by normalizing the half-life TOi

1/2(
AX) in a certain isotope AX with mass number A,

generated by some LNV operator Oi, with respect to the benchmark isotope 76Ge. In
the above equation, we take the sums

∑︁
j,k with respect to all PSFs G0j,k generated by

the operator Oi, and we denote the corresponding sub-amplitudes by AOi
i . Conveniently,

in a single-operator scenario, the Wilson coefficient of the LNV operator drops out when
taking the ratios of half-lives, thereby eliminating any dependence on the magnitude of
the new physics couplings. This feature was first discussed in Refs. [204, 205]. Obviously,
this is only true in scenarios dominated by a single operator, while half-life ratios derived
from multi-operator scenarios will still depend on the precise parameter settings. By
comparing the expected ratios resulting from two different operators Oi,j via the ratio

Rij(
AX) =

ROi(AX)

ROj(AX)
, (5.11)
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Groups: mββ C
(6)
V L C

(6)
V R C

(6)
T C

(6,7)
S,V C

(9)
S1 C

(9)
S2 C

(9)
S3 C

(9)
S4 C

(9)
S5 C

(9)
V C̃

(9)

V

mββ C
(6)
V L C

(6)
V R C

(6)
T C

(6)
SL C

(9)
1L C

(9)
2L C

(9)
3L C

(9)
4L C

(9)
5L C

(9)
6 C

(9)
7

C
(6)
SL,νu - - - C

(6)
SR C

(9)
1R C

(9)
2R C

(9)
3R C

(9)
4R C

(9)
5R C

(9)
6
′ C

(9)
7
′

C
(6)
SL,νd - - - C

(7)
V L C

(9)
1L
′ C

(9)
2L
′ C

(9)
3L
′ - - C

(9)
8 C

(9)
9

C
(6)
SR,νu - - - C

(7)
V R C

(9)
1R
′ C

(9)
2R
′ C

(9)
3R
′ - - C

(9)
8
′ C

(9)
9
′

C
(6)
SR,νd - - - - - - - - - - -

Table 5.1: LEFT Operator groups that can be distinguished via taking decay rate ra-
tios. Operators within a certain group result in the same half-life ratios while
operators of different groups are, in principle, distinguishable via the half-life
ratios. The precise composition of the distinguishable groups does depend
on the currently unknown LECs. This table assumes there is no fine-tuning
among the unknown LECs. If, instead, the unknown LECs are taken to be
zero or equal to their NDA estimates, the short-range scalar operator groups
C

(9)
S2−S5 will result in the same ratios rendering them indistinguishable. The

same is true for the short-range vector operator groups C̃
(9)

V and C̃
(9)

V . This
table was published in Ref. [1] and is, here, updated with the neutral-current
LEFT operators.

we can determine how well these operators are distinguishable via half-life measurements
in multiple isotopes. In the following, we will calculate the ratios of all possible operator
combinations, to estimate if one can pinpoint the exact underlying mechanism. However,
our main focus will be put on the possibility of an experimental identification of exotic
higher-dimensional operators in contrast to the LνEM which is widely considered to be
the “standard” scenario. That is, we will focus on the ratios Rimββ

which compare the
half-life ratios expected for the LνEM with those originating from more exotic scenarios
parameterized in the operator Oi.

As a potential benefit, taking half-life ratios in different isotopes may help to decrease
numerical uncertainties connected to correlated systematic relative errors that may arise
in the calculation of NMEs via the different many-body methods. This is because sys-
tematic relative errors that, e.g., tend to over/underestimate NMEs by a certain amount
should drop out or cancel, at least to a certain extent, when taking the ratio of half-lives.

5.2.1 LEFT Operators

At LEFT scale, we can sort the 36 different operators into 12 different groups, such
that all operators within a certain group depend on the same combinations of PSFs,
NMEs and LECs and, as such, result in the same half-life ratios. In Table 5.1 we
present these operator groups and the corresponding operators. Notably, the LνEM is,

77



5 Unraveling the 0νββ Decay Mechanisms

Groups: mββ C
(6)
V L C

(6)
V R C

(6)
T C

(6,7)
S,V C

(9)
S1 C

(9)
S2 C

(9)
S3 C

(9)
S4 C

(9)
S5

C
(5)
LH C

(7)
LHDe C

(7)
LeudH C

(7)
LLQdH2 C

(7)
LHD2 C

(9)
ddueue C

(9)
QuQuLL1 C

(9)
QuQuLL2 C

(9)
dQQuLL2 C

(9)
dQQuLL1

C
(7)
LH - - - C

(7)
LLQuH C

(9)

QLQLH2D2 C
(9)
dQdQLL1 C

(9)
dQdQLL2 C

(9)

deueH2D -

- - - - - C
(9)

QLQLH2D5 - - C
(9)

dLuLH2D2 -

- - - - - C
(9)
eeH4D2 - - - -

Groups: C
(9)
V C

(9)

V Ṽ
CLHW C

(7)
LHD1 C

(7)
LLQdH1 C

(9)

duLLH2D C
(9)

dLQeH2D1 C
(9)

deQLH2D C
(9)

LLH4D23 C
(9)

QQLLH2D2

C
(9)
dQdueL1 C

(9)
dQdueL2 C

(7)
LHW C

(7)
LHD1 C

(7)
LLQdH1 C

(9)

duLLH2D C
(9)

dLQeH2D1 C
(9)

deQLH2D C
(9)

LLH4D23 C
(9)

QQLLH2D2

C
(9)
QudueL1 C

(9)
QudueL2 C

(9)

LLH4W1 - - - - - - C
(9)

LLH4D24

C
(9)

dQLeH2D2 C
(9)

QeuLH2D2 - - - - - - - -

C
(9)

QueLH2D2 - - - - - - - - -

Table 5.2: SMEFT operator groups that generate different decay rate ratios. Again,
operators within a certain group result in the same half-life ratios while op-
erators of different groups are, in principle, distinguishable via the half-life
ratios (c.f. Table 5.1). Whenever the half-life ratios are the same as for a
certain LEFT operator group, we have labelled the group by the same name.

in principle, distinguishable from all other operators1. The same is true for the long-
range dimension-6 tensor and vector operators C(6)

SL,SR,T , each of which differs when
taking half-life ratios. At the same time, we have identified 5 different groups for the
short-range scalar operators. However, the operator groups C(9)

S2,3,4,5 only result in distinct
half-life ratios if the currently unknown LECs gNN

2,3,4,5 are taken into account. Similarly,

the operator groups C(9)
V , C̃

(9)

V corresponding to the short-range vector operators are only
distinguishable from each other if the unknown LECs gNN

6,7 , g
πN
V and g̃πNV turn out to be

different from each other.

5.2.2 SMEFT Operators

Considering only tree-level contributions to 0νββ, within the SMEFT we identify the
Weinberg operator at dimension 5, 10 different dimension-7 operators, and 26 dimension-
9 operators giving rise to 0νββ. That is, in total we find 37 different SMEFT operators
contributing to the 0νββ amplitude at tree-level. Analogously to the LEFT case, we
can arrange these operators into different groups with operators within a given group
generating the same half-life ratios. However, due to the more complex SMEFT-to-
LEFT matching relations, the number of groups with potentially different half-life ratios
is larger. Indeed, we find that we can arrange the different SMEFT operators into 20
operator groups displayed in Table 5.2.

1Except of course from the scalar LNV NC operators which generate a neutrino mass directly and
therefore trigger the same mechanism.
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5.2.3 A Parameter Scan over the Unknown LECs

The major source of uncertainty within the chiral EFT approach results from the cur-
rently unknown LECs (c.f. Table 4.6). As a baseline scenario, we will set all unknown
LECs to zero, except for gNN

6,7 = gπNV = g̃πNV = 1 which are taken to their NDA estimates
in order not to omit the short-range vector operators. One can examine the sensitivity
of the half-life ratios towards variations of the unknown LECs gi via a parameter scan in
the range of ±[1/

√
10,

√
10]×|gi|. That is, we randomize the sign of the unknown LECs

and vary them within their respective order of magnitude estimate as given in Table 4.6.
At the same time, we assign a variation of ±50% to gNN

ν which parameterizes the con-
tact interaction arising from the LνEM to account for uncertainties arising due to an
inconsistent usage of regularization schemes (c.f. the discussion in Section 4.5.6). In the
following, we will consider all 0νββ candidate isotopes with Q > 2 eV that are currently
or have previously been used in laboratory 0νββ experiments with NMEs available in
the IBM2 framework, namely 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 130Te, 136Xe and 150Nd.
Additionally, we consider the low Q-value isotopes 128Te and 134Xe which, due to their
large natural isotopic abundance, are oftentimes present in experiments searching for
0νββ in 130Te and 136Xe, respectively, if no isotopic enrichment techniques are applied.

In order to study the sensitivity of the half-life ratios with respect to the unknown
LECs, we have performed a parameter scan by simulating 1000 different LEC parameter
settings drawing each LEC randomly from the defined parameter ranges using a uniform
probability distribution. In Figures 5.8 and 5.9 we present the resulting half-life ratios
ROi (upper panel) and Rimββ

(lower panel) obtained via this parameter scan for the
LEFT and SMEFT operator groups. The ratios resulting from the parameter scan are
visualized via the coloured points and we use 76Ge as the reference isotope. Additionally,
in Figures 5.8 and 5.9, we also display the ratios resulting from the benchmark scenario
with most of the unknown LECs turned off (by a dot for the low Q-values isotopes and
by a star for all other isotopes). The central (median) ratios arising from the variation
of the LECs are marked by a cross.

We can see that the variation of the contact term gNN
ν does not generate a significant

uncertainty in the half-life ratios of the LνEM. Indeed, they are too small to be visible on
the log-scale of Figures 5.8 and 5.9. However, the contribution arising from the contact
interaction gNN

ν cannot be disregarded when calculating the magnitude of the 0νββ
half-life as it decreases the expected 0νββ half-lives by approximately ∼ 50%. We have
displayed a parameter scan over gNN

ν of the 0νββ half-life for the normal and inverted
hierarchy scenarios in Figure 5.10, where we also provide a comparison to the gNN

ν = 0
scenario. We can see that the variation of gNN

ν does not generate a significant uncertainty
in the expected half-lives, especially when compared to the uncertainty arising from the
unknown Majorana CP phases. This behaviour supports the observed stability of the
half-life ratios with respect to a variation of gNN

ν .
For the more exotic higher dimensional operators, the introduction of non-zero values

for the unknown LECs generates half-life ratios that differ, by a considerable margin,
from the ratios resulting from the baseline scenario with the unknown LECs mostly
switched off (c.f. the upper half of Figure 5.8). This is especially true for the short-
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5 Unraveling the 0νββ Decay Mechanisms

Figure 5.8: Parameter scan of the half-life ratios ROi and the normalized ratios Rimββ

for each LEFT operator group over the unknown LECs. The unknown LECs
are varied within their respective order of magnitude NDA estimates with a
randomized sign, while the contact interaction LEC gNN

ν is varied at ±50%.
The baseline scenario with all unknown LECs turned off is marked by a
star for isotopes with Q > 2MeV and a point for those with Q < 2MeV.
Additionally, we mark the central (median) values of the LEC variation by
a cross. This figure was published in Ref. [1] and is recalculated here with
updated PSFs.

range LEFT operators C(9)
i as well as most of the SMEFT operators that cannot be

associated to a LEFT operator group (c.f. Figure 5.9). For these operators, the central
values given by the LEC parameter scan differ significantly from the baseline scenario.
At the same time, the parameter scans can show large variations in both ROi and Rimββ

ranging over several orders of magnitude. This signifies the importance of a precise
determination of the unknown LECs.

Some of the parameter scans in Figures 5.8 and 5.9 display gaps which can result from
the fact that we did not fix the sign of the unknown LECs. As we have stated previously,
we are mostly concerned with the identification of exotic higher dimensional operators
contrasting the standard light neutrino-exchange scenario. The relevant parameter here
is Rimββ

. From Figures 5.8 and 5.9 we can see that, besides the large uncertainty arising
from the parameter scan, the introduction of the unknown LECs tends to push the ratio
Rimββ

towards 1 (indistinguishable) when considering the central values of the variation.
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5.2 Half-Life Ratios – Measuring 0νββ in Different Isotopes

Figure 5.9: Parameter scan of the half-life ratios ROi and the normalized ratios Rimββ

for each SMEFT operator group over the unknown LECs. See Figure 5.8 for
details. The SMEFT operators were not studied in Ref. [1] and we add them
here for completeness.

5.2.4 Distinguishing Different Operators

As we have demonstrated, the uncertainties introduced by the unknown LECs are sub-
stantial. Nevertheless, we will attempt to provide a further analysis regarding the dis-
tinguishability of different 0νββ mechanisms, again, with a focus on the identification
of exotic scenarios in contrast to the LνEM. In this context, we define two benchmark
scenarios. First, we try to provide a representative scenario with half-life ratios given by
the central (median) values arising from the parameter scan. Secondly, we will provide
a worst-case scenario given by the ratios Rij that are closest to unity within the param-
eter scan. For both scenarios, we can then identify the optimal combination of isotopes
that maximizes the expected half-life ratios Rij and, hence, provides the best chance
to distinguish different operators from each other via a multi-isotope measurement. In
Figure 5.11 we provide a comprehensive overview of the best combinations of isotopes
and the corresponding expected half-life ratios for each operator combination Rij. The
figure is divided along the diagonal with the representative scenario derived from the
central values of the parameter scan being showcased in the upper right triangle, while
the ratios Rij arising from the worst-case scenario are given in the lower left triangle.
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5 Unraveling the 0νββ Decay Mechanisms

Figure 5.10: Impact of the contact LEC gNN
ν on the 0νββ half-life. We show the ex-

pected half-life in the light neutrino-exchange mechanism in dependency
on the minimal neutrino mass mmin for normal mass ordering (NO, blue)
and inverted mass ordering (IO, red). The shaded regions display the ex-
pected 0νββ half-lives with gNN

ν (coloured) and for gNN
ν = 0 (gray) when

marginalizing over the unknown Majorana CP phases. The dots show a
parameter scan of 10000 variations of the unknown Majorana phase as well
as the LEC gNN

ν within a range of ±50%. The isotope chosen here is 136Xe.
This figure was published in Ref. [1] and is recalculated here with updated
PSFs.

Let us focus on the identification of exotic higher-dimensional operators in contrast to
the “standard” LνEM proportional to the effective Majorana neutrino mass mββ. In the
representative scenario derived from the central values of the parameter scan, we can
see from the first row of Figure 5.11 that the long-range right-handed vector operator
C

(6)
V R (as well as the SMEFT operator O(7)

LeudH which matches onto C(6)
V R, c.f. Table 5.2)

generates the half-life ratios that differ from the ones associated with the neutrino mass
mechanism the most, specifically by a factor of Rimββ

∼ 7.5, closely followed by the
SMEFT operator O(7)

LLQdH1 and the operators associated with C
(6,7)
S,V . However, while

the latter operators give the most distinct ratios compared to the LνEM by utilizing
the isotopic combinations of 136Xe and 150Nd or 82Se and 150Nd, the best ratio for the
operators associated with C(6)

V R is achieved by comparing the half-lives in 134Xe to those
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in 150Nd. While 134Xe does appear in experiments utilizing natural (i.e., not enriched)
xenon with a natural abundance of N(134Xe) ∼ 10.4% (c.f. Table 4.1), its Q-value
of Q(134Xe) ∼ 0.8MeV is significantly smaller resulting in a considerable phase-space
suppression by about 2 orders of magnitude (c.f. Table 4.8), thereby complicating its
experimental detection. Therefore, in Figure 5.12 we provide the same overview as in
Figure 5.11 but only considering isotopes of experimental interest with Q > 2MeV. In
this case, the best ratios obtainable for the operators associated with C(6)

V R reduce to 2.3
when comparing half-lives in 76Ge to those in 150Nd. This is in a similar range as for the
remaining long-range LEFT operators C(6)

V L,T and the SMEFT operators matching onto
them. At the same time, the short-range dimension-9 LEFT operators as well as the
remaining SMEFT operators tend to give best values for Rimββ

in the range of ∼ 1.5...2.
While some of these are achieved by utilizing the low Q-value isotope 128Te, considering
only isotopes with Q > 2MeV does decrease these ratios only slightly as we can read
off from the first rows of Figures 5.11 and 5.12. In addition to the half-life ratios Rij we
have marked each operator combination distinguishable via the leptonic phase-space by
a dashed background in Figures 5.11 and 5.12.

Conversely, when considering the worst-case scenario the best achievable values of
Rimββ

drop significantly for most of the operators, with many becoming (almost) indis-
tinguishable from the LνEM. Only the operators associated with C

(6,7)
S,V as well as the

SMEFT operator O(7)
LLQdH1 remain mostly unchanged. This feature can be attributed

to the fact that the operators associated with C
(6,7)
S,V do, indeed, not depend on any un-

known LECs and, as such, are not influenced by the parameter scan. In this context, it
should be noted that the operator O(7)

LLQdH1 matches onto the operators O(6)
SR,T and hence

generates ratios similar to O(6)
SR. Nevertheless, if nature chooses to realize a parameter

setting best represented by our worst-case scenario, the identification of exotic 0νββ
mechanisms will have to rely mostly on the observables related to the leptonic phase
space and may be declared hopeless in many cases.

Of course, the final goal is to exactly determine and identify the underlying mechanism
once a 0νββ detection is realized. Taking our representative central value scenario as
a baseline, we can see that the LNV right-handed vector currents represented by C(6)

V R,
as well as operators associated with C

(6,7)
S,V and the SMEFT operator O(7)

LLQdH1 exhibit
the best potential for a clear identification, as they, generally, provide large values of
Rij > 4.72 when comparing them to all other operators.

2Except for the combination of the operators associated with C
(6,7)
S,V and the SMEFT dimension-7

operator O(7)
LLQdH1, which are hardly distinguishable from each other with Rij = 1.2.
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Figure 5.11: Maximal ratios Rij for all SMEFT and LEFT operator combinations. The maximum ratios Rij and the corre-
sponding isotopes are shown in each tile. The figure is divided along the diagonal with ratios in the upper right
triangle corresponding to a representative scenario derived from the central (median) ratios generated in the
parameter scan. Conversely, the ratios in the lower left triangle represent the worst-case scenario. In addition,
operator combinations that are distinguishable in the electron kinematics are marked by a dashed background.
The SMEFT operators were not studied in Ref. [1] and we add them here for completeness.
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Q > 2MeV. See Figure 5.11 for further details.
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5.2.5 Estimating the Required Accuracy in the Nuclear Theory

As we have seen in the previous section, the uncertainty related to the currently unknown
LECs is significant. Similarly, NMEs derived from distinct many-body methods often
vary by factors of two to three from each other, thereby inducing a variance in the half-
lives of about an order of magnitude when using NMEs derived from different approaches.
These uncertainties, related to the nuclear theory, strongly limit the conclusions that
can be drawn from a potential future 0νββ discovery concerning the identification of the
underlying mechanism via half-life ratios.

Again, we write the half-life in terms of the new physics coupling C, the phase space
factor G and an effective NME Meff that summarizes the contributions from the different
individual NMEs as well as the relevant LECs(︂

T 0νββ
1/2

)︂−1
= |C|2G|Meff |2. (5.12)

Strictly speaking, the effective NME Meff is a weighted sum of different NMEs and LECs,
with the weight also (for some operators) including the individual PSFs Gi normalized
with respect to G.

Because the PSFs can be calculated exactly [103], we can safely associate the theo-
retical uncertainties on the 0νββ half-life with the uncertainties in the nuclear theory
parameterized by Meff . In Figure 5.13 we provide an overview of the NMEs for the
LνEM obtained via various many-body methods. Typically, one finds a variation of the
NMEs of about a factor ∼ 3 with some outliers generated by the rEDF/CDFT NMEs of
Ref. [210]. For the higher-dimensional operators, the unknown LECs induce additional
uncertainties. Clearly, the identification of the underlying 0νββ mechanism via half-life
ratios requires a substantial improvement in the nuclear theory. We can estimate the
required accuracy by relating the uncertainty on the effective NME ∆Meff to the uncer-
tainty on the half-life ratios ∆Rij. For simplicity, we assume ∆Meff to be independent
of the choice of isotopes [1]

∆Meff

Meff

(AZ) =
∆Meff

Meff

= const.. (5.13)

Two operators Oi,j can be considered to be distinguishable via half-life measurements
in multiple isotopes if the theoretical uncertainty on the expected ratio ∆Rij is small
enough to separate it from unity, i.e., we require

∆Rij

!
< |Rij − 1|. (5.14)

This criterion can be translated into an upper limit on the required theoretical uncer-
tainty on the effective NME Meff as

∆Meff

Meff

!
<

1

4

|Rij − 1|
Rij

. (5.15)

Taking the representative central value scenario as a baseline, the identification of any
higher dimensional exotic mechanism in contrast to the “standard” mass mechanism
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Figure 5.13: Comparison of NMEs related to the light neutrino-exchange mechanism
as derived in various many-body methods. We plot the NME M0ν =
− 1

g2A
MF +MGT +MT , i.e., without the contact term, calculated via different

many-body methods. These include the interacting shell model (SM) [198],
the triaxial projected shell model (tpSM) [206] or realistic shell model
(rSM) [207], the proton-neutron quasiparticle random phase approximation
(pnQRPA) [194], the deformed QRPA (dQRPA) [208, 209], the relativistic
energy density functional method (rEDF) or covariant density functional
theory (CDFT) [210, 211], the non-relativistic energy density functional
method (nrEDF) [212], the interacting boson model (IBM2) [197] and state-
of-the-art ab initio approaches calculating NMEs from basic principles of
χPT [213, 214]. As one can see, there is a significant spread when compar-
ing the different approaches, and we highlight the range of NMEs in grey.
This figure was published in Ref. [1].

of light neutrino-exchange would require a theoretical accuracy in the nuclear theory
calculations of ∆Meff/Meff ∼ 7%, when considering all 0νββ candidate isotopes of
experimental interest with Q > 2MeV. While the inclusion of the low Q-value isotopes
128Te and 134Xe does improve the distinguishability from the LνEM for some operators,
as discussed in the previous section, it does not influence the Rimββ

values that limit the
identification of the short-range operators which set the most stringent requirement on
the accuracy of the nuclear theory calculations.

The operators easiest to disentangle from the LνEM are the long-range vector SMEFT
and LEFT operators associated with C(6)

V R as well as operators associated with C(6,7)
S,V and

the dimension-7 SMEFT operator O(7)
LLQdH1. Taking, again, the central value scenario

as a baseline, these operators would require an accuracy of ∆Meff/Meff ∼ 22% to 20%
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to become distinguishable from the LνEM.
Considering the current status of NME calculations, the required accuracy signifies the

necessity for a substantial improvement on the nuclear-theory side. Taking into account
more than two isotopes might help to improve the potential of identifying non-standard
operators [215].

5.3 Getting Creative: What About Other 0νββ Modes?

Up to this point, we have been concerned only with the leading 0+ → 0+ ground-state
to ground-state transition of the 0νβ−β− decay. However, as discussed in Chapter 4 one
may consider 0νββ-modes related to either the emission of positrons or the capture of
electrons. This raises the question whether the consideration of more exotic decay modes
would allow for an improved distinguishability among the various 0νββ mechanisms. For
the sake of this discussion, let us ignore the fact that one can expect a significant phase-
space suppression for all these modes in comparison to the more standard 0νβ−β− decay
(c.f. Refs. [103, 137, 216, 217]), and instead focus on their potential for an improvement
in the distinguishability of 0νββ mechanisms.

5.3.1 Beta Plus and Electron Capture Modes

Even when ignoring the phase-space suppression, it is hard to imagine a significant
advantage in the consideration of the 0νβ+β+, 0νβ+EC, and 0νECEC modes from a
particle physics point of view due to their relation to the 0νβ−β− mode via crossing
symmetry. Obviously, the β+ and electron capture modes differ with regards to the final
state nuclei from the usual β− decay mode and as such they may offer some improvement
with regards to half-life ratios in the same way as the inclusion of additional β−β− iso-
topes would do. Without a proper numerical evaluation, however, the potential benefit
is hard to quantify. At the current time, the relevant NMEs are, to our best knowledge,
not available within the literature.

While the positron-emitting modes are, in general, highly phase space suppressed, we
want to point out that the 0νECEC may be enhanced via a resonance of the initial
and final state nuclei [216, 217], potentially leading to expected half-lives smaller than
those for the 0νβ−β−. While the current estimates of the expected 0νECEC half-lives
do not suggest the existence of a significant resonance enhancement [216, 217], the
uncertainties connected to the mass measurement of the initial and final state nuclei are
still considerable [216]. A more recent finding suggests an additional enhancement of the
0νECEC rate via a non-resonant shake mechanism [218] in which the double capture
of two electrons is accompanied by the emission of another electron from the atomic
shell. The emitted electron can carry away any excess decay energy, thereby lowering
the resonance requirement on the 0νECEC decay and enhancing the expected half-lives.
See Ref. [219] for a recent review on the physics of the 0νECEC decay.
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5.3.2 Excited Final State Nuclei

Similarly to positron-emitting 0νββ modes, the 0νββ to excited final-state nuclei is
typically phase-space suppressed due to a smaller Q-value compared to the ground-
state-to-ground-state transition. However, the suppression can be substantially smaller
when considering the lowest order 2+ excited final state [23] making the search for the
0νββ to an excited state much more compelling.

In contrast to the β+ and EC modes, the decay to an excited 2+ state may offer some
intriguing opportunities. The most promising feature, from the point of distinguishing
different 0νββ mechanisms experimentally, lies in the fact that the decay to the lowest
lying 2+ ground state is associated with a spin flip of a nucleon inside the nucleus 0+ →
2+. This spin-flip requires the inclusion of (parity-odd) P -states of the electron wave
functions. This, in turn, allows for the long-range LEFT operators O(6)

V L,V R,T and the
associated SMEFT operators to contribute at LO in the chiral power counting, instead
of their NLO contribution in the 0+ → 0+ transition [23]. In contrast, mechanisms such
as the LνEM contributing at LO to the 0+ → 0+ transition can move to the NLO in the
0+ → 2+ transition due to the different parity structure. Therefore, it can expected that
the half-life ratios Rimββ

, associated with these operators, will be significantly enhanced,
thereby providing the potential to identify these exotic mechanisms more easily. While
the decay to an excited state suffers from a higher background of 2νββ events, the
subsequent de-excitation of the nucleus via the emission of a fixed-energy γ provides a
smoking-gun signature of this process, which should allow for a high detection efficiency.
The additional benefit of studying two decay modes (to the ground and the excited
states) within a single experiment as an internal consistency check has been previously
pointed out in Ref. [220].
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Chapter 6

νDoBe - A Python Tool for
Neutrinoless Double Beta Decay

In this chapter, we present νDoBe, an open-source Python tool for 0νββ calculations
originally published in Ref. [2]. νDoBe is accessible via GitHub under the URL:

https://github.com/OScholer/nudobe

and a comprehensive code documentation is given in Ref. [2]. Here, we will refrain
from repeating the tool’s documentation and instead provide specific examples of pos-
sible use cases of νDoBe. The Python code used to derive the results of most of the
following sections can be found on GitHub in the ExampleNotebooks directory.1

6.1 Features

νDoBe automates the chiral EFT approach developed in Refs. [44, 45] and described in
Chapter 3. As such it is able to perform all necessary steps in evolving any LNV SMEFT
model down to the scale of chiral EFT where the 0νββ observables such as half-lives,
electron energy spectra and angular correlations can be extracted. Vice-versa, given an
experimental limit on the 0νββ half-life in a certain isotope, νDoBe can be used to derive
the corresponding limits on the relevant SMEFT and LEFT operators as well as on the
parameter space that is spanned by any pair of two SMEFT or LEFT operators.

Its most important features are [2]:

• νDoBe contains all relevant LNV SMEFT and LEFT operators up to dimension 9.

• Calculating the 0νββ half-lives in all isotopes of experimental interest from any
given EFT model.

1Please note that νDoBe is an ongoing project under constant development. Therefore, all files on the
νDoBe GitHub are subject to change.
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• Calculating the electron kinematics, i.e., the single electron spectrum and the
angular correlation in all isotopes of experimental interest from any given EFT
model.

• νDoBe can perform the full tree-level SMEFT-to-LEFT matching procedure.

• Solving the 1-loop QCD RGEs of the LEFT operators up to dimension 9.

• Solving the full 1-loop RGEs of the SMEFT operators up to dimension 7.

• An easy extraction of the limits on the effective Majorana neutrino mass as well
as the higher-dimensional LNV SMEFT or LEFT operators given an experimental
bound on the 0νββ half-life for a certain isotope.

• νDoBe can be used to constrain the parameter space that is spanned by any set of
two LNV BSM operators given an experimental bound on the 0νββ half-life for a
certain isotope.

• νDoBe incorporates NMEs calculated in different state-of-the-art many-body schemes
such as the nuclear shell model (SM) [198], the quasi-random-phase-approximation
(QRPA) [194], the interacting boson model 2 (IBM2) [197] and the recently added
covariant density functional theory approach (CDFT) [221].

Additionally, νDoBe provides several quality-of-life features such as

• Highly customizable plotting functions to visualize all relevant and interesting
0νββ observables as well as operator limits, etc.

• Automated parameter scans over the unknown LECs

• LaTeX and HTML outputs of analytical expressions of the 0νββ half-life for any
EFT model.

νDoBe utilizes the following third-party Python packages

1. NumPy [222] [v. 1.19.2]

2. Pandas [223, 224] [v. 1.1.3]

3. Matplotlib [225] [v. 3.3.2]

4. SciPy [226] [v. 1.5.2]

5. mpmath [227] [v. 1.1.0]
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6.2 Reanalyzing the Recent KamLAND-Zen Results
with νDoBe

In Ref. [2] we have used νDoBe to reanalyze the results published by the KamLAND-Zen
collaboration [228] which, at the date of publication, provided the strongest limit on
both the 0νββ half-life as well as the effective Majorana mass mββ. By including the
effect of the contact interaction proportional to gNN

ν generated in the LνEM, which was
ignored in the KamLAND-Zen results, we were able to improve their limits by about
50% [2]. Additionally, we provided limits on the more exotic higher dimensional LNV
SMEFT and LEFT operators, thereby offering a more complete picture.

With the KamLAND-Zen collaboration just recently providing an updated limit on
the 0νββ half-life in 136Xe of 3.8× 1026 yr [46], we will repeat our reanalysis procedure
here. In doing so, we will, again, provide a comparison of the impact of the contact
interaction proportional to gNN

ν which was ignored by the KamLAND-Zen collaboration.
Additionally, we will provide the corresponding limits for each of the higher dimensional
LNV SMEFT and LEFT operators.

6.2.1 The Light Neutrino-Exchange Scenario

When only the LνEM is considered, the half-life simplifies to

T−11/2 = g4A

⃓⃓⃓⃓
mββ

me

⃓⃓⃓⃓2
G01V

4
ud

⃓⃓⃓⃓(︃
− 1

g2A
MF +MGT +MT + 2

m2
πg

NN
ν

g2A
MF,sd

)︃⃓⃓⃓⃓2
. (6.1)

Following our approach in Ref. [2], we will use the exact numerical solutions to the PSFs
provided in Ref. [103] by using

V 4
udG01(

136Xe) = 1.458× 10−14 yr−1, (6.2)

where the factor of V 4
ud accounts for the conventionally different definition of the PSFs

as described in Chapter 3. As the exact PSFs are only available for the LνEM within
the literature, we will resort to the PSFs calculated by νDoBe via the point-like nucleus
approximation when dealing with the higher dimensional operators in the following
sections. In the literature, the individual NMEs MF ,M

ij
GT and M ij

T are often not given
and instead, only the overall NME

Mν = − 1

gA
MF +MGT +MT , (6.3)

is provided. At the same time, the contact interaction arising from hard neutrino-
exchange and the corresponding NMEs have only been considered in a limited number
of publications with NMEs being available in the QRPA [194], IBM2 [197], SM [198]
and CDFT [221] frameworks. In Table 6.1 we provide a comprehensive list of NMEs
calculated in various many-body schemes as well as the corresponding limits on the
effective Majorana mass mββ with and without the inclusion of the contact interaction
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Mν MF,sd MF,sd/Mν ⟨MF,sd/Mν⟩ mββ [meV] m̃ββ [meV]
QRPA [194]* 3.009 −61.8memp

m2
π

−0.51 −0.68± 0.10 45 21
QRPA [229] 3.384 − − − 40 27
QRPA [230] 2.460 − − − 55 38
QRPA [209] 1.89 − − − 71 49
QRPA [208] 1.18 −28.8memp

m2
π

−0.60 − 114 49
EDF [212] 4.773 − − − 28 19
EDF [210] 4.32 − − − 31 21
EDF [231] 4.20 − − − 32 22
EDF [221]* 4.40 −65.3memp

m2
π

−0.37 −0.36± 0.01 31 17
IBM2 [197]* 3.387 −29.8memp

m2
π

−0.22 −0.25± 0.05 40 27
IBM2 [232] 3.05 −29.7memp

m2
π

−0.24 − 44 29
SM [207] 2.39 − − − 56 39
SM [233] 1.76 − − − 76 53
SM [234] 1.77 − − − 76 52
SM [198]* 2.45 −52memp

m2
π

−0.52 −0.53± 0.06 55 25

Table 6.1: A list of various nuclear matrix elements for 136Xe. The list is taken from
Ref. [2] and updated with the addition of the CDFT NMEs (labelled as EDF)
of Ref. [221]. We assume gA ∼ 1.271 and apply the proper rescaling whenever
necessary. NME sets that are marked with an asterisk (*) come pre-installed
in νDoBe. The limits on the effective Majorana mass are given in the columns
labelled by mββ and m̃ββ, which represent the results without (mββ) and
including (m̃ββ) the contact terms of the light neutrino-exchange mechanism
proportional to gNN

ν . Additionally, we provide the ratio of the long-range
and short-range NMEs MF,sd/Mν in 136Xe as well as the average ratio of the
NMEs ⟨MF,sd/Mν⟩ and its standard deviation when considering all isotopes
for a given scheme.

proportional to gNN
ν . With the recent update of the 0νββ half-life limit in 136Xe by the

KamLAND-Zen collaboration we can put an upper limit on the effective Majorana mass
of mββ < [28, 114]meV when ignoring the contact interaction.

Most of the sets of NMEs given in Table 6.1 do not include the short-range NME
MF,sd. Nevertheless, we want to make a conservative estimate of the half-life limit as it
would be obtained had the short-range NME MF,sd been calculated in all of the many-
body schemes. In order to achieve this, we can take a look at the ratios of the long-range
NME Mν and the short-range NME MF,sd in 136Xe as well as the average taken over
all isotopes covered by each NME method. The corresponding values are displayed in
Table 6.1. We then find that the ratios of the long- and short-range NMEs are generally
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larger than about |MF,sd|/|Mν | ≳ 0.2 in 136Xe with the smallest ratio resulting from
the IBM2 NMEs while the QRPA NMEs result in the largest short-range NMEs when
compared to Mν . Generally, the ratio of MF,sd/Mν tends to be relatively stable among
different isotopes for a given NME method with standard deviations ranging from 0.01
in the CDFT NMEs of Ref. [221] to 0.10 in the QRPA NMEs of Ref. [194]. While we
could estimate the short-range NMEs for each method based on the MF,sd/Mν ratios of
NMEs derived within a similar scheme, we will settle for a more conservative estimate
and simply fix the ratio MF,sd/Mν = −0.2 for all methods that do not provide their own
calculation of the short-range NME. In doing so we are able to include the short-range
contribution to the 0νββ transition amplitude, while, at the same time, minimizing the
probability of overestimating its significance. Note that due to the negative sign of gNN

ν

the short-range contribution to the LνEM’s transition amplitude is constructive, and
therefore, results in tighter bounds on the effective Majorana mass. By including the
short-range contribution in this way, we find an upper limit of mββ < [17, 53]meV when
taking the full transition amplitude into account, with the strongest limit being provided
by the CDFT NMEs of Ref. [221].

In Figure 6.1 we provide a comparison of the corresponding half-life limits in themmin−
mββ plane, spanned by the minimal neutrino massmmin and the effective Majorana mass,
with the allowed parameter space for the inverted (IO) and normal (NO) mass ordering
displayed in green and red, respectively. Additionally, we provide the same information
with respect to the summed neutrino masses

∑︁
imi ≲ 260meV [235, 236]. While the

limit on the sum of the neutrino masses already puts strong constraints on the parameter
space of the inverted mass ordering, most of the 0νββ limits put even more stringent
bounds with the strongest limits obtained by using the NMEs of Ref. [221] ruling out
almost all of the remaining parameter space of the IO scenario when considering the full
0νββ transition amplitude.

6.2.2 Higher Dimensional Operators

Let us now also take the higher dimensional LNV operators into account. As mentioned
previously, the exact numerical solutions to the electron wave functions for a uniform
charge distribution including electron screening effects are to this date only available for
the LνEM within the literature. Instead, we will use the analytic solution for a point-
like nucleus, again, which is known to be a precise approximation of the exact results,
overestimating the PSFs only by about ∼ 2%− 10% [200].

Generally, in scenarios with a single LNV BSM operator dominating the 0νββ tran-
sition amplitude, the half-life can be parameterized as(︂

T 0νββ
1/2

)︂−1
(AZ) = |Ci|2Gi(

AZ)|Mi(
AZ)|2, (6.4)

where Gi and Mi represent the PSF and NME corresponding to the BSM operator Oi

for the isotope AZ. The proportionality of the decay rate to the absolute square of the
Wilson coefficient |Ci|2 allows us to easily translate any experimental lower limit on the
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Figure 6.1: Limits on the effective Majorana mass mββ as obtained from the recent half-
life limit by the KamLAND-Zen experiment [46]. The parameter space of the
normal neutrino mass ordering (NO) and the inverted ordering (IO) are given
in red and green. In the upper two plots, we present the limits obtained from
the set of NMEs by setting gNN

ν = 0 (left) and by using gNN
ν = −92.9GeV2

(right). Additionally, we provide a comparison to the cosmological limit on
the sum of neutrino masses in the lower two plots. This is an updated version
of the figure published in Ref. [2].

half-life given in a certain isotope (AZ) to an upper limit on the absolute value of the
Wilson coefficient |Ci,max| via the relation

|Ci,max| =

⌜⃓⃓⎷T 0νββ
1/2 (Ci = 1,A Z)

T 0νββ
1/2,min(

AZ)
, (6.5)
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mββ C
(6)
S C

(6)
S,NC C

(6)
T C

(6)
V L C

(6)
V R C

(7)
V C

(9)
S1 C

(9)
S2 C

(9)
S3 C

(9)
S4 C

(9)
S5 C

(9)
V C

(9)

Ṽ

mββ C
(6)
SL C

(6)
SL,νu C

(6)
T C

(6)
V L C

(6)
V R C

(7)
V L C

(9)
1L C

(9)
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(9)
3L C

(9)
4L C

(9)
5L C

(9)
6 C

(9)
7

C
(6)
SR C

(6)
SR,νu C

(7)
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(9)
1R C

(9)
2R C

(9)
3R C

(9)
4R C

(9)
5R C

(9)
8 C

(9)
9

C
(6)
SL,νd C

(9)
1L

′
C

(9)
2L

′
C

(9)
3L

′
C

(9)
6

′
C

(9)
7

′

C
(6)
SR,νd C

(9)
1R

′
C

(9)
2R

′
C

(9)
3R

′
C

(9)
8

′
C

(9)
9

′

Table 6.2: Groups of LEFT operators that result in the same half-lives.

where T 0νββ
1/2,min(

AZ) is the lower experimental limit on the half-life in an isotope AZ and
T 0νββ
1/2 (Ci = 1,A Z) is the half-life that would result from the theory when setting Ci = 1.

From a naturalness perspective, it is reasonable to connect a limit on the dimensionful
Wilson coefficients to an expected scale Λ, at which the effective operator is generated
by integrating out the heavy new-physics fields, by defining [2]

Ci =
C̃i

Λ(d−4) , (6.6)

and assuming that the dimensionless coupling C̃i should be of order 1. Hence, for an
operator of dimension d we can estimate the new-physics scale as

Λ ≃ (Ci,max)
(1/(4−d)). (6.7)

Notice that in the definitions of the LEFT Wilson coefficients, we have already factored
out factors of GF in such a way that the LEFT Wilson coefficients are defined to be
dimensionless and the new-physics scale can, instead, be derived via

Λ ≃ v
(︁
CLEFT

i,mac

)︁(1/(4−d))
. (6.8)

6.2.2.1 LEFT Operators

From the half-life formula given in eq. (4.147) we can arrange the 36 different LEFT op-
erators into 14 different groups such that each operator within a given group results in
the same numerical value for the 0νββ half-life. We present these 14 groups of operators
in Table 6.2. Extracting the numerical limits on the corresponding Wilson coefficients
as well as the related new-physics scale can be achieved with the help of νDoBe within
a single line of code by using the provided get_limits_LEFT() function. The corre-
sponding lower limits on the new-physics scale Λ for each operator groups are presented
in Figure 6.2. In Table 6.3 we provide a comprehensive overview of the numerical lim-
its on the dimensionless couplings Ci as well as the estimated scales of new physics as
derived from the recent KamLAND-Zen limit [46]. The limits are given, individually,
as derived from each of the four NME methods that are available within νDoBe. To our
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Figure 6.2: Lower limits on the new-physics scale for each LEFT operator group as
derived from the recent KamLAND-Zen results [46].

best knowledge, the limits obtained for the neutral-current LNV dimension-6 LEFT op-
erators summarized in C(6)

S,NC represent the strongest constraints available in the current
literature exceeding the limits obtained from coherent elastic neutrino-nucleus scattering
(CEνNS) experiments by about 2 orders of magnitude [237].

In Figure 6.3 we provide a comparison of the limits derived from the recent KamLAND-
Zen results providing a lower half-life limit in 136Xe of T 0νββ

1/2 > 3.8× 1026 yr [46] and the
final results of the GERDA experiment giving a lower limit on the 0νββ half-life in 76Ge
of T 0νββ

1/2 > 1.8 × 1026 yr [33]. We can see that despite the different isotopes being used
and the corresponding difference in the NMEs, the KamLAND-Zen experiment provides
the strongest constraints on all the LEFT operators. For the comparison we use the shell
model NMEs of Ref. [198]. However, the statement remains true for all of the NMEs
provided in νDoBe.

6.2.2.2 SMEFT Operators

Due to the complex SMEFT-to-LEFT matching relations (c.f. Section 4.4.2) there are
rarely any SMEFT operators that result in precisely the same 0νββ half-lives. The only
exceptions out of the 36 relevant SMEFT operators are the operator pairs O(9)

QLQLH2D2

and O(9)

QLQLH2D5, O(9)

QueLH2D2 and O(9)

dQLeH2D2, O(9)

dLuLH2D2 and O(9)

deueH2D, O(9)
dQdQLL1 and

O(9)
QuQuLL1, O

(9)
dQdQLL2 and O(9)

QuQuLL2, O
(9)
QudueL1 and O(9)

dQdueL1, as well as the pair O(9)
QudueL2

and O(9)
dQdueL2, and we refrain from organizing the SMEFT operators into several groups

as we did for the LEFT operators. We extract the limits on the SMEFT coefficients
at the SMEFT-to-LEFT matching scale mW . The corresponding new-physics scales are
displayed in Figure 6.4. To save space here, we do not show the precise numerical values
but instead refer to the corresponding notebook in the νDoBe GitHub with which they
can be easily derived.
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Operator: C
(6)
V L C

(6)
V R C

(6)
T C

(6)
S C

(6)
S,NC C

(7)
V

NMEs:
Ci 1.2× 10−9 1.5× 10−7 6.2× 10−10 2.7× 10−10 8.3× 10−5 1.4× 10−5

SM [198]
Λ [TeV] 7.3× 103 645 9.9× 103 1.5× 104 27.1 10.3

Ci 8.1× 10−10 1.0× 10−7 4.4× 10−10 1.6× 10−10 6.8× 10−5 8.2× 10−6
QRPA [194]

Λ [TeV] 8.6× 103 761 1.2× 104 1.9× 104 29.8 12.2

Ci 1.7× 10−9 1.2× 10−7 9.3× 10−10 4.0× 10−10 8.7× 10−5 2.0× 10−5
IBM2 [197]

Λ [TeV] 5.9× 103 707 8.1× 103 1.2× 104 26.4 9.0

Ci 8.60× 10−10 8.57× 10−8 4.65× 10−10 4.58× 10−10 5.47× 10−5 2.35× 10−5
CDFT [221]

Λ [TeV] 8.4× 103 840 1.1× 104 1.1× 104 33.3 8.6

Operator: C
(9)
S1 C

(9)
S2 C

(9)
S3 C

(9)
S4 C

(9)
S5 C

(9)
V C

(9)

Ṽ

NMEs:
Ci 1.1× 10−5 9.6× 10−8 3.4× 10−7 5.9× 10−8 1.7× 10−8 1.8× 10−6 3.5× 10−6

SM [198]
Λ [TeV] 2.4 6.2 4.8 6.9 8.8 3.5 3.0

Ci 5.8× 10−6 5.4× 10−8 1.9× 10−7 3.3× 10−8 9.7× 10−9 2.7× 10−5 5.1× 10−5
QRPA [194]

Λ [TeV] 2.7 7.0 5.4 7.7 9.8 2.0 1.8

Ci 2.9× 10−5 9.7× 10−8 3.5× 10−7 6.0× 10−8 1.8× 10−7 3.0× 10−6 5.7× 10−6
IBM2 [197]

Λ [TeV] 2.0 6.2 4.8 6.9 8.8 3.1 2.8

Ci 1.3× 10−5 5.1× 10−8 1.8× 10−7 3.1× 10−8 9.2× 10−9 1.3× 10−6 2.4× 10−6
CDFT [221]

Λ [TeV] 2.3 7.1 5.5 7.8 10.0 3.7 3.3

Table 6.3: Numerical limits on the different higher dimensional LEFT operators as de-
rived from the recent KamLAND-Zen results. We present both the limits
on the dimensionless couplings Ci as well as the corresponding scale of new
physics Λ for the four different sets of NMEs that are included in νDoBe.

6.2.3 Multi-Operator Scenarios

The above limits on the SMEFT and LEFT operators all assume the 0νββ half-life to
be dominated by a single operator. However, the 0νββ amplitude might be driven by
multiple operators at the same time, with the possibility of constructive and destructive
interference terms adding another layer of complexity to the analysis. Again, νDoBe is
equipped with tools that allow us to easily analyze the parameter space of scenarios
dominated by two operators at a time. In a scenario with the 0νββ amplitude being
dominated by two operators Ox,y, the half-life can be parameterized in terms of the
corresponding Wilson coefficients Cx,y as well as the relative complex phase ϕ between
the two operators as [2](︂

T 0νββ
1/2

)︂−1
= C2

xMxx + C2
yMyy + 2Re[CxCy exp{(iϕ)}]Mxy, (6.9)

where the matrix M depends on the relevant PSFs, NMEs and LECs involved. Solving
for Cy, we get the expression

Cy = −Cx
cos(ϕ)Mxy

Myy

±

⌜⃓⃓⎷C2
x

cos(ϕ)M2
xy −MxxMyy

M2
yy

+
1

T 0νββ
1/2 Myy

, (6.10)
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Figure 6.3: Comparison of the LEFT constraints obtained from the half-life limit of
T 0νββ
1/2 > 3.8 × 1026 yr in 136Xe set by the KamLAND-Zen collaboration [46]

and the half-life limit of T 0νββ
1/2 > 1.8 × 1026 yr in 76Ge set by the GERDA

experiment [33]. The limits are obtained using the shell model NMEs of
Ref. [198].

which we can use to constrain the allowed parameter space in the Cx − Cy plane from
experimental half-life limits. Notably, depending on the precise values of the matrix
entries M the possibility of a cancellation between the two operators Ox,y exists, such
that the allowed parameter space contains unrestricted directions. In Figure 6.5 we
provide a summary of the allowed parameter space in the mββ−Cy plane for all relevant
LEFT operators Oy by considering the half-life limits given in 76Ge set by GERDA [33],
100Mo obtained by CUPID-Mo [113], 130Te given by the CUORE experiment [119], as
well as 136Xe as set by KamLAND-Zen [46] (c.f. Table 4.1). The limits on the parameter
space are obtained by using the IBM2 set of NMEs [197] and we varied the relative phase
ϕ. We can see that, except for the long- and short-range vector operators O(9)

V L,V R,6,7,
the mββ − Cy plane generally has a direction of cancellation such that the magnitude
of the coefficients cannot be fully constrained from a half-life limit in a single isotope.
However, an important feature displayed in Figure 6.5 is the relative tilt of the parameter
space regions constrained within different 0νββ candidate isotopes. Specifically, the
allowed parameter space resulting from half-life limits in 100Mo tends to be substantially
tilted with respect to the remaining isotopes. While this feature might be a remnant
resulting from the numerical many-body methods used to derive the relevant NMEs, it
is prominent not only within the IBM2 approach [197], but also in the QRPA NMEs
of Ref. [194], though to a different extent. While the shell model NMEs of Ref. [198]
available in νDoBe do not support the 100Mo isotope, the tilt is far less prominent within
the CDFT NMEs of Ref. [221], showcasing, again, the importance of precise and reliable
nuclear theory calculations. Nevertheless, this feature makes a strong case for next
generation 0νββ experiments utilizing 100Mo, such as CUPID [37] or AMoRE [238]
aiming to significantly improve the 0νββ half-life limit in 100Mo.
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Figure 6.4: Lower limits on the new-physics scale for each of the 36 SMEFT operators
of dimension-7 and 9 as derived from the recent KamLAND-Zen results [46].
The limits are extracted at the SMEFT-to-LEFT matching scale mW and
therefore do not include RGE effects.

6.3 Studying the Minimal Left-Right Symmetric Model
with νDoBe

Besides model-independent studies of new LNV physics in 0νββ experiments, the EFT
framework described in Chapter 4 allows for model-dependent approaches as well by
matching specific LNV high-energy models onto the appropriate SMEFT or LEFT opera-
tors. In this section, we will study the minimal left-right symmetric model (mLRSM) [47–
50] following along the lines of Refs. [1, 2, 45]. This will serve as an example how
νDoBe can facilitate model-dependent studies of 0νββ observables.

As described in Chapter 2, the Standard Model is a chiral theory that, due to its
SU(2)L gauge symmetry, maximally violates parity in the weak interaction sector. On
an intuitive level, this parity violation and the explicit distinction between left- and
right-handed fields seems rather unnatural. Of course, in the end Nature does not need
to care what we deem as natural or unnatural. Nevertheless, it is tempting to extend
the SM to a left-right symmetric theory which is only spontaneously broken to the
observed left-handed symmetry structure. The easiest way to achieve this is via the
mLRSM. It extends the SM symmetry structure to a left-right symmetric SU(3)C ×
SU(2)L × SU(2)R × U(1)B−L gauge model with the field content of the SM enlarged
to include three right-handed neutrino fields νR acting as a counterpart to the left-
handed neutrinos. At the same time, the mLRSM includes two scalar SU(2)L,R triplets
∆L ∈ (1,3,1, 2) and ∆R ∈ (1,1,3, 2) as well as a scalar bidoublet Φ ∈ (1,2,2∗, 0) which
replaces the standard Higgs doublet [50]. The neutral components of the scalar fields
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Figure 6.5: Parameter space constraints for the effective Majorana mass mββ with an
additional higher-dimensional contribution. The parameter space is ob-
tained from the half-life limits set by the KamLAND-Zen [46], GERDA [33],
CUORE [119] and CUPID-Mo [113] experiments (c.f. Table 4.1).

acquire non-trivial vevs [1, 2, 45, 50]

⟨Φ⟩ = 1√
2

(︃
κ 0
0 κ′eiα

)︃
, ⟨∆L⟩ =

1√
2

(︃
0 0

vLe
iθL 0

)︃
, ⟨∆R⟩ =

1√
2

(︃
0 0
vR 0

)︃
,

(6.11)
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subsequently breaking the mLRSM gauge structure down to the SM gauge group and
the broken phase of the SM, SU(2)L×SU(2)R×U(1)B−L → SU(2)L×U(1)Y → U(1)EM.
The relevant LNV terms in the broken phase of the mLRSM are given by the Yukawa
interactions [1, 2, 45, 50]

Ly =
∑︂
ij

[︃
Y l
ijLLiΦLR,j + Ỹ

l

ijLLiΦ̃LR,j + Y L
ij L

T
L,iCiτ2∆LLL,j + Y R

ij

†
LT
R,iCiτ2∆RLR,j

]︃
+ h.c., (6.12)

where we defined the SU(2)L and SU(2)R fermion doublets [1, 2, 45, 50]

LL =

(︃
νL
eL

)︃
∈ (1, 2, 1,−1) , QL =

(︃
uL
dL

)︃
∈ (3, 2, 1, 1/3) ,

LR =

(︃
νR
eR

)︃
∈ (1, 1, 2,−1) , QR =

(︃
uR
dR

)︃
∈ (3, 1, 2, 1/3) . (6.13)

These Yukawa interactions generate a Dirac neutrino mass matrix as well as a left-handed
and right-handed Majorana mass matrix given by [1, 2, 45, 50]

Mν
D,ij =

1√
2

[︂
Y l
ijκ+ Ỹ

l

ijκ
′ exp{−iα}

]︂
,

Mν
L,ij
† =

√
2Y L

ij vL exp{iθL},
Mν

R,ij =
√
2Y R

ij vR. (6.14)

The matching of the mLRSM onto the relevant SMEFT operators has been obtained in
Ref. [45] and the correspinding LNV parts of the Lagrangian may be written as

L∆L=2 =C
(5)
(︂(︁
LTCiτ2H

)︁ (︂
H̃
†
L
)︂)︂

+
(︁
LTγµeR

)︁
iτ2H

[︃
C

(7)

LeudΦ
dRγµuR + C

(7)
LΦDeH

T iτ2(DµΦSM)

]︃
+ eRe

c
R

[︃
C

(9)
eeuduRγ

µdRuRγµdR + C
(9)
eeΦuduRγ

µdR

(︂
[iDµH]† H̃

)︂
+ C

(9)
eeΦD

(︂
[iDµH]† H̃

)︂2 ]︃
. (6.15)

The SM Higgs vev is connected to the bidoublet’s vevs by v =
√
κ2 + κ′2. The relevant
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Wilson coefficients are given in terms of the mLRSM parameters as

C(5) =
1

v2
(︁
Mν

D
TMν

R
−1Mν

D −Mν
L

)︁
,

C
(7)

LeudΦ
=

√
2

v

1

v2R

(︁
V ud
R

)︁∗ (︁
MνT

D Mν
R
−1)︁

ee
, C

(7)
LΦDe =

2iξ exp{iα}
(1 + ξ2)V ud

R
∗C

(7)

LeudΦ
,

C
(9)
eeud = − 1

2v4R
V ud
R

2
[︃(︁
Mν

R
†)︁−1 + 2

m2
∆R
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]︃
, C

(9)
eeΦud = −4

ξ exp{−iα}
(1 + ξ2)V ud

R

C
(9)
eeud,

C
(9)
eeΦD = 4

ξ2 exp{−2iα}
(1 + ξ2)2 V ud

R
2C

(9)
eeud, (6.16)

where ξ = κ′/κ represents the left-right mixing. However, the operators in the LNV
Lagrangian of eq. (6.15) as obtained in Ref. [45] are defined in a different operator basis
than the one used in νDoBe. Therefore, we have to perform one final step and match
these operators onto the set defined in Tables 4.2 and 4.3. The corresponding Wilson
coefficients are easily obtained and read

C
(5)
LH =

(︁
C(5)

)︁
ee
, C

(7)
LeudH = C

(7)

LeudΦ
, C

(7)
LHDe = C

(7)
LΦDe,

C
(9)
ddueue = 4

(︂
C

(9)
eeud

)︂∗
, C

(9)

deueH2D = −2
(︂
C

(9)
eeΦud

)︂∗
, C

(9)

eeH4D = −
(︂
C

(9)
eeΦD

)︂∗
.

(6.17)

These matching relations given in eq. 6.16 and 6.17, will serve as the relevant input to
νDoBe and enable us to study the 0νββ in the context of the mLRSM.

To this end, we will utilize the EFT.SMEFT module of νDoBe which takes the relevant
SMEFT Wilson coefficients as input to calculate 0νββ half-lives as well as electron
kinematics in various isotopes. In addition, it is convenient to define a function that
translates the free parameters of the mLRSM to the relevant SMEFT coefficients. In
this context, the free parameters of the mLRSM are the masses of the three heavy
sterile neutrinos, mνR,i

, i ∈ [1, 2, 3], the minimal active neutrino mass mmin, the left-
and right-handed neutrino mixing matrices UL,R, the vevs of the scalar triplets vL,R as
well as the phases θL, α, the right-handed triplets mass m∆R

and, finally, the left-right
mixing ξ [1, 2, 45]. We provide a Python notebook with the relevant functions in the
ExampleNotebooks folder on the νDoBe GitHub. In this way, νDoBe can be utilized to
study specific mLRSM settings as well as extensive multi-dimensional parameter scans
in the context of 0νββ.

In Figure 6.6 we present a parameter scan over the minimal light neutrino mass mmin

of the expected 0νββ half-life in 136Xe parameterized in terms of the effective mass
parameter [2, 45]

meff
ββ =

me

g2AV
2
udM

(ν)
3 G

1/2
01

T
−1/2
1/2 . (6.18)

Additionally, we varied the complex vev phases θL, α as well as the unknown neutrino
Majorana phases of the mixing matrix U (c.f. eq. 7.105). The effective mass parameter

104

https://github.com/OScholer/nudobe


6.3 Studying the Minimal Left-Right Symmetric Model with νDoBe

Figure 6.6: A parameter scan of the effective mass parameter meff
ββ in the mLRSM. In

the upper half, we present the effective mass parameter meff
ββ scanned over

the minimal neutrino mass mmin on the x-axis, while varying the unknown
complex phases of the model. In the lower half, we have normalized the effec-
tive mass parameter to the LνEM. We present two parameter settings with
a small left-handed vev and small left-right mixing on the left, and a large
vev and mixing on the right. The blue and red dots represent the parameter
scan in the normal and inverted hierarchy scenarios, respectively, while the
shaded areas represent the parameter space of the standard LνEM. The iso-
tope is 136Xe. For comparison, we showcase the current best experimental
limit set by the KamLAND-Zen collaboration [46] via the dashed line. This
figure was published in Ref. [2].

meff
ββ serves as a convenient comparison to the standard LνEM scenario parameterized in

terms of mββ. The parameter scan is presented for two parameter settings by taking [2,
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45]

mνR1
= 10TeV, mνR2

= 12TeV, mνR3
= 13TeV,

m∆R
= 4TeV, vR = 10TeV, V R

ud = V L
ud, UR = UL = U, (6.19)

for both models and varying the left-right mixing ξ as well as the left-handed vev vL.
Specifically, we take vL = 0.1 eV, ξ = 0 for the model presented in the left panels of
Figure 6.6 and vL = 100 eV, ξ = mb/mt for the one presented on the right panels. In the
upper panels of Figure 6.6, we present the effective mass parametermeff

ββ for both settings
alongside the expected ranges for the LνEM while the lower panels are normalized with
respect to mββ, providing a better comparison to the standard LνEM. As we can see, for
the two parameter settings, the inverted hierarchy scenario differs at most at a few %
level of ca. 10% from the simple LνEM scenario. For the larger left-right mixing scenario
with ξ = mb/mt, however, the normal mass ordering differs at the O(100%) level when
considering smaller minimal neutrino masses, mmin ≲ 10meV. At the same time, the
famous funnel region of cancellation in the normal hierarchy scenario is closed due to
the additional LNV contributions in the mLRSM with large left-right mixing, thereby
providing an upper limit on the 0νββ half-life not only in the inverted but also in the
normal ordered scenario. Again, we utilized the IBM2 NMEs of Ref. [197].

The application of νDoBe to the mLRSM scenario showcases its potential to the model-
building community by largely simplifying and automating the tedious computational
steps in deriving the 0νββ observables for a specific LNV BSM model.
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Chapter 7

Neutrinoless Double Beta Decay
without Vacuum Majorana Neutrino
Mass

In this chapter, we will discuss possible new-physics scenarios beyond the Standard
Model that can generate a non-zero 0νββ signal while, at the same time, preserving the
Dirac nature of neutrinos on a fundamental level. This is an intriguing scenario that
has been given little attention in the existing literature. In this context, we will review
the well-known black-box theorem in Section 7.1 and, subsequently, explain the general
ideas that could lead to a potential loophole scenario in Section 7.2. In Section 7.3,
we will briefly revisit 0νββ in the Standard Model. The proof-of-concept model that
we propose in Section 7.4 introduces a new complex scalar field carrying two units of
lepton number with a 0νββ signal being generated by a proposed high-density scalar
background. In Section 7.4 we study the possible impacts of such a scalar background
on 0νββ experiments assuming the scalar background to be in a free phase. As it will
turn out, a 0νββ rate in the range of current and next-generation 0νββ experiments
requires a substantial number density of the scalar background. In this case, one should
expect the scalar field to undergo a phase transition to a Bose-Einstein condensed state.
To build the theoretical foundations for the description of such a high-density scalar
field, we will provide a brief introduction to quantum field theory at finite densities and
temperatures in Section 7.5. Afterwards, we will revisit the 0νββ in the condensate
phase in Section 7.6.

This chapter is based on Refs. [3] (under review) and [4] (to be published).

7.1 The Schechter-Valle Black-Box Theorem Revisited

The famous 0νββ black-box theorem, as proposed by Schechter and Valle [39] and later
refined by E. Takasugi [40], provides a deep connection between the Majorana nature of
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νL νL
e−e−

W W

dd

u u

Figure 7.1: The 0νββ black-box diagram. Independently of the underlying lepton-
number-violating mechanism, represented by the black-box, the 0νββ can
be employed to generate a contribution to the Majorana mass of the elec-
tron neutrino at 4-loop-level.

neutrinos and a non-zero 0νββ rate. While it is obvious that a non-zero effective Ma-
jorana mass for the electron neutrino will generate a non-zero 0νββ rate, we have seen
that also other LNV mechanisms can do the job. Hence, without further information,
the observation of a future 0νββ signal would not tell us anything about the nature
of neutrinos. This gap is filled by the black-box theorem as depicted in Figure 7.1. It
provides a simple proof that a non-zero 0νββ rate does, indeed, verify that the electron
neutrino is of Majorana type by generating a 4-loop contribution to the effective Majo-
rana mass of the electron neutrino. This loop contribution is present, independently of
the underlying LNV mechanism that triggers the 0νββ.

Several years after the introduction of the black-box theorem, Duerr et al. [239] studied
its quantitative aspects finding a contribution to the neutrino mass of δmee ≲ 10−28 eV.
Therefore, the observation of 0νββ does tell us about the nature of the neutrino. How-
ever, the extraction of the effective Majorana mass from the 0νββ half-life is not valid, if
the underlying mechanism turns out to be different from the LνEM. Additionally, while
a future observation of 0νββ does, indeed, imply the Majorana nature of the neutrino,
it may be, in fact, an almost degenerate pseudo-Dirac scenario.

In this context, the black-box theorem, while still widely referenced within today’s
literature, may be no more than an academic statement lacking physical consequences.
In this chapter, we will discuss possibilities of avoiding the remaining essence of the
black-box theorem by providing proof-of-concept scenarios in which a non-zero 0νββ
rate can be achieved with Dirac neutrinos.
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7.2 Avoiding the Black-Box Theorem
Let us discuss the general idea of how to avoid the consequences of the black-box theorem
in order to find mechanisms of 0νββ in Dirac neutrino models. As can be seen from
Figure 7.1, the black-box theorem holds if a transition of the form

2d −→ 2u+ 2e−, (7.1)

is observed. This is, obviously, the case for the standard 0νββ

(A,Z) −→ (A,Z ± 2) + 2e∓, (7.2)

and its β+ and electron capture variants. However, avoiding the applicability of the
black-box theorem is simply achieved by adding external lepton-number-carrying fields
that may be emitted or absorbed in the process. Within the literature, examples of such
models are given in the emission of lepton-number-carrying Majorons χ via the process

(A,Z) −→ (A,Z ± 2) + 2e∓ + nχ, (7.3)

where n signals the possibility of the emission of multiple Majorons [148, 149, 240]. If
lepton number is strictly conserved, such models may account for a non-zero 0νββ rate
while simultaneously describing neutrinos as Dirac fields. However, the experimental
signature of such Majoron-emission models is structurally different from the conventional
0νββ signature. This is obviously the case, as the emission of additional particles will
change the energy spectrum of the emitted electrons, i.e., not all of the decay energy
will be carried by the electrons anymore.

While the emission of additional particles does cause a change in the observed electron
spectrum, we may instead consider the absorption of additional lepton-number-carrying
fields χ from a dark background

(A,Z) + nχ −→ (A,Z ± 2) + 2e∓. (7.4)

If the energy of the captured particle(s) is smaller than the energy resolution of the
0νββ detector, it will mimic the standard 0νββ signature in the electron spectrum.
In Figure 7.2 we provide a comparison of the expected summed electron spectra for
the standard 2νββ and 0νββ modes, the spectrum for the 0νββ accompanied by the
emission of a single massless scalar, and the expected spectrum for a 0νββ induced via
the capture of a low-energy scalar. This is the general idea behind this chapter and the
corresponding publication [3].

7.3 Neutrinoless Double Beta Decay in the Standard
Model

Indeed, we do not have to consider any physics beyond the Standard Model in order
to obtain a non-trivial 0νββ signal as, despite the strict conservation of lepton number
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Figure 7.2: Comparison of the summed electron spectra expected in the usual two-
neutrino double beta decay (2νββ), neutrinoless double beta decays (0νββ),
a neutrinoless double beta decay accompanied by the emission of a single
massless scalar (0νββϕ), and the neutrinoless double beta decay induced by
the capture of a massless scalar with a kinetic energy much smaller than the
experimental energy resolution at the end-point of the spectrum Tϕ ≪ ∆Eexp.
This figure was published in Ref. [3].

within the Standard Model, it does, in fact, allow for a small but strictly non-zero 0νββ
rate. While this seems to be in direct contradiction to the black-box theorem, this appar-
ent conflict is easily circumvented when considering the discussion provided in the previ-
ous section. The Standard Model predicts the existence of a cosmic neutrino background
(CνB) [11, 241, 242]1, thereby providing the opportunity for a double-neutrino-capture
induced 0νββ (2νCββ)

2ν + (A,Z) −→ (A,Z + 2) + 2e−. (7.5)

This process is, of course, not “neutrinoless” in the usual sense. It does, however,
mimick the standard 0νββ signatures in dedicated 0νββ experiments. This possibility
was studied in Refs. [243, 244] for a hypothetical ton-scale 100Mo 0νββ experiment
resulting in a expected half-life for the 2νCββ of(︂

T
1/2
ννββ

)︂
≃ 7× 1047 yr×

(︃⟨nν⟩
nν

)︃2

, (7.6)

where ⟨nν⟩ = 56 cm−3 is the expected local number density per neutrino type. Therefore,
we see that the 2νCββ generates a tiny albeit strictly non-zero 0νββ signal. However,

1also referred to as CNB or relic neutrinos.
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it is evident that even a substantial local clustering is unlikely to provide enough en-
hancement to result in observable half-lives reducing this to an academically interesting
but practically irrelevant feature of the Standard Model. Instead, a direct detection of
the CνB via a neutrino-capture induced single beta decay in tritium may be achievable.
This is the goal of the PTOLEMY collaboration [245, 246].

Similar fermion capture modes of 0νββ may arise in the context of neutralino or
gluino CDM in /Rp-SUSY models[1, 141, 142, 144] as well as other light fermionic DM
models. However, scenarios with sizeable half-lives in reach of current or next-generation
0νββ experiments are strongly limited by the Pauli exclusion principle and require the
presence of multiple fermion types to circumvent the Pauli exclusion [3, 247, 248].

7.4 Neutrinoless Double Beta Decay via a Dark Scalar
Capture – I. The Free Phase

7.4.1 Introducing a Proof-Of-Concept Model

Let us now construct a proof-of-concept model that can generate a 0νββ signal with
the same kinematics as the usual 0νββ scenarios while, simultaneously, restricting the
neutrinos to be of Dirac nature. Firstly, this requires the introduction of a right-handed
neutrino νR, alongside the SM fields, that allows us to write down a Dirac mass term

Lmν,D
= −Y ν

ijLiH̃νR,j + h.c., (7.7)

where H̃ = iσ2H
∗ represents the Higgs field and Y ν

ij is the corresponding neutrino
Yukawa matrix. The Dirac neutrino mass is then given by

Mν
D,ij =

v√
2
Y ν
ij , (7.8)

where v ≃ 246GeV represents the Higgs vev. To circumvent the generation of a Ma-
jorana mass term for the right-handed neutrinos, which would consequently imply the
Majorana nature of active neutrinos via the famous seesaw type-I mechanism, we impose
a global B − L symmetry. Additionally, we introduce a complex scalar field ϕ carrying
a B − L charge of −2 while being a singlet under all remaining SM symmetries. The
relevant parts of the Lagrangian then read [3]

L ⊃
[︃
− Y ν

ijLiH̃νR,j − gijνR,iν
C
R,jϕ+ h.c.

]︃
− λHϕ(H

†H)(ϕ†ϕ)− V (|ϕ|2), (7.9)

where the scalar potential is given by the usual ϕ4 form

V (|ϕ|2) = m2
ϕϕ
†ϕ+ λϕ(ϕ

†ϕ)2, (7.10)

and we require the Higgs portal coupling λHϕ to be negligibly small. The generation of a
Majorana mass via a spontaneous breaking of the global B−L symmetry can be avoided
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Figure 7.3: Comparison of the relevant Feynman diagrams for a 0νββ induced via a
scalar capture (a), the corresponding scalar emission (b) as well as the usual
light neutrino-exchange mechanism (c). Our proof-of-concept model allows
for diagrams (a) and (b) but forbids diagram (c). This figure was published
in Ref. [3].

by a suitable choice of m2
ϕ and λϕ. At tree-level, it suffices to require m2

ϕ ≥ 0, λϕ ≥ 0.
It should be noted that, in a theory of quantum gravity, one may expect a spontaneous
breaking of global symmetries [249] which, in turn, may reintroduce small Majorana
neutrino masses into our proof-of-concept model. In this case, it is straightforward to
promote the global B−L symmetry to a local gauge symmetry [250], which is expected
to be conserved in a theory of quantum gravity, even at the non-perturbative level. In
any case, we are, obviously, not interested in gravity in our proof-of-concept model and
may therefore work with a global B − L symmetry.

The proposed model may generate two separate contributions to a 0νββ signal. The
first one via the capture of the B−L charged complex scalar ϕ from a dark background

ϕ+ (A,Z) −→ (A,Z + 2) + 2e−, (7.11)

which may act either as a dark matter or as a dark radiation component of the energy
density of the Universe. The second option is a 0νββ accompanied by the emission of a
scalar ϕ

(A,Z) −→ (A,Z + 2) + 2e− + ϕ†, (7.12)

which may occur whenever ϕ is light enough, i.e., mϕ < Q. In Figure 7.3 we compare
the corresponding Feynman diagrams to the standard LνEM. At the same time, the
famous black-box theorem cannot be applied here due to the addition of an external
scalar field as well as the exact B − L conserving nature of the model. Consequently,
the neutrino explicitly remains of Dirac nature. The capture of the complex scalar ϕ
from a cosmic background requires stability over cosmological timescales. This can be
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achieved by kinematically forbidding the ϕ → 2ν decay, i.e., by setting mϕ < 2mν,min.
This requirement will, generally, restrict ϕ to be of sub-eV masses, thus allowing both
the capture and the emission processes. In this section, we will consider the scenario in
which ϕ acts as an ultralight non-relativistic cold dark matter (CDM) component [251–
254]. Let us point out that, in contrast to recent literature discussing the possibility of
a 0νββ induced by a neutrino-DM interaction [255–257], we assume an explicit B − L
conservation via the introduction of a complex B − L charged scalar field that strictly
prohibits the generation of a Majorana neutrino mass term of any kind in the vacuum
ground-state Lagrangian.

7.4.2 0νββ Half-Lives from Scalar Capture and Emission

Next, we want to calculate the 0νββ rates arising from the scalar capture and emission
diagrams presented in Figure 7.3 following along the lines of Ref. [3]. Here, we will
naively assume ϕ to be in a free phase of cold particles. Due to the requirement that the
energy of the absorbed scalar should not exceed the typical energy resolution of 0νββ
experiments ∆E ∼ O(keV) [35, 37], and the fact that the energy of the emitted scalar
is constrained by the total decay energy Q ∼ O(MeV), we can ignore the scalars four-
momentum qϕ in both the emission and capture diagrams, as it is small in comparison
to the typical momentum transfer which is at the order of the Fermi momentum, i.e.,
qϕ ≲ O(MeV) ≪ pF ∼ O(100MeV). In this case, crossing symmetry ensures the
transition amplitude for the emission and absorption processes to be precisely identical

A0νββϕ = 2G2
FV

2
udeL(p1)γµ

∑︂
ij

UeiUej
gijmimj

q4
γνe

C
L(p2)

×
[︂
Jµ
V (1) + Jµ

A(1)
]︂
τ+1

[︂
Jν
V (2) + Jν

A(2)
]︁
τ+2 + (p1 ↔ p2), (7.13)

where the nuclear currents JV,A are defined in eq. (4.93). In contrast to the long- and
short-range mechanisms of 0νββ studied in previous chapters, the scalar emission and
capture amplitude A0νββϕ exhibits a 1/q4 dependence. Consequently, the relevant NMEs
cannot be extracted from the sets presented in previous chapters. Instead, we may ob-
tain the relevant NMEs from a comparison with existing literature on Majoron-emitting
mechanisms [258, 259]. The remaining parts of the transition amplitude resemble the
well-studied LνEM of 0νββ discussed in Section 4.7.1. The relevant PSFs can be ex-
tracted from existing literature by comparison of the final states, with the capture mode
following the same PSFs as the usual LνEM [103], while the scalar emission mode repre-
sents the well-studied Majoron-emission scenarios [260]. The relevant NMEs and PSFs
are listed in Table 7.1. Note that we use the PSFs derived from the exact solution of
the radial Dirac equation for a nucleus of uniform charge density with electron screen-
ing [103, 260].

In analogy to the effective Majorana mass mββ (c.f. eq. (4.112)) which governs the
magnitude of the usual LνEM-induced 0νββ half-life, it is convenient to define the
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effective mass

m2
ββϕ =

∑︂
i

U2
eim

2
i , (7.14)

where, for simplicity, we assumed a diagonal and real coupling gij = gδij, g ∈ R. At the
same time, we will restrict our interest here to the normal neutrino mass ordering with a
vanishing minimal neutrino mass mmin = 0. The decay rate of the scalar emission mode
is then given by

Γem
0νββϕ = g2 log(2)

(︃
mββϕ

me

)︃4

|M0νββϕ|2G0νββϕ, (7.15)

while the scalar capture rate reads

Γcap
0νββϕ = g2 log(2)

αρDM

2m2
ϕm

2
e

(︃
mββϕ

me

)︃4

|M0νββϕ|2G0νββ. (7.16)

Here, the scalar number density

nϕ =
αρDM

mϕ

, (7.17)

is parameterized in terms of the local dark matter density ρDM ≃ 0.3GeV/cm3 [261],
the fraction of the local dark matter density α that ϕ accounts for, and the scalar mass
mϕ. The factors of m−4e and m−2e in eq. (7.15) and (7.16) arise from the definitions of
M0νββϕ [259] and G0νββ, respectively. Note that in the calculation of the capture rate
we assumed ϕ to be non-relativistic today by taking Eϕ ≃ mϕ.

Remember that our initial goal was the formulation of a proof-of-concept model that
generates the same experimental signature as the usual 0νββ mechanisms. In order to
achieve this, we need to be sure that the emission mode is properly suppressed compared
to the capture mode (c.f. Figure 7.2), as it would otherwise result in a different summed
electron spectrum. In the regime corresponding to an ultralight scalar the ratio of the
emission and capture rates is given by

Γem
0νββϕ

Γcap
0νββϕ

=
2m2

ϕm
2
e

αρDM

G0νββϕ

G0νββ

,
Γem
0νββϕ

Γcap
0νββϕ

(︁
136Xe

)︁
≃ 6.4× 10−25

α

(︂ mϕ

10−20 eV

)︂2
, (7.18)

and we can write the 0νββ half-life induced by the scalar-capture mode as

T
1/2
0νββϕ =

log(2)

Γcap
0νββϕ

, T
1/2
0νββϕ

(︁
136Xe

)︁
≃ 1.4× 1028 yr

αg2

(︂ mϕ

10−20 eV

)︂2
. (7.19)

Using the example of 136Xe, we can see that in the relevant parameter ranges for an ultra-
light complex scalar field acting as CDM, the emission mode is substantially suppressed.
Consequently, the experimental 0νββ signature follows the capture mode, thereby mim-
icking the usual LNV 0νββ scenarios.
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Isotope G0νββ[10
−14 yr] [103] G0νββϕ[10

−16 yr] [260] M0νββϕ[10
−3] [259]

76Ge 0.236 0.442 2.556
82Se 1.016 3.610 1.993
96Zr 2.058 9.050 1.668

100Mo 1.592 5.980 1.901
110Pd 0.482 0.941 1.409
116Cd 1.670 5.690 0.945
124Sn 0.904 2.090 1.179
128Te 0.059 0.031 1.527
130Te 1.422 4.130 1.311
136Xe 1.458 4.090 1.113
148Nd 1.010 1.970 0.650
150Nd 6.303 31.00 0.839
154Sm 0.302 0.282 0.859
160Gd 0.956 15.90 1.260
198Pt 0.756 0.607 0.395
232Th 1.393 0.824 0.930
238U 3.361 3.370 1.118

Table 7.1: Phase-space factors and nuclear matrix elements for the scalar capture and
emission modes.

We see that our proof-of-concept model can accommodate a significant 0νββ rate
that reproduces the summed electron spectrum of the usual LNV 0νββ mechanisms
while, simultaneously, rendering neutrinos to be of Dirac nature. The possible existence
of such a scenario complicates the usual interpretation of a 0νββ detection as proof
of the Majorana nature of neutrinos via the black-box theorem. While, following the
previous literature, the quantitative aspects of the famous black-box theorem have al-
ready been known to be almost negligibly small [239] with a 0νββ observation allowing
for a scenario of almost degenerate pseudo-Dirac neutrinos, the qualitative essence of
the black-box theorem previously remained intact. It is the existence of such a lepton-
number-conserving model, capable of describing a 0νββ observation, that challenges the
qualitative essence of the long-standing black-box theorem by circumventing its practical
application.

7.4.3 Identifying a Scalar Capture Induced 0νββ

As we have seen in the previous section, a 0νββ induced via the capture of an ultralight
CDM scalar cannot be distinguished from the usual LNV 0νββ mechanisms via a mea-
surement of the summed electron spectrum. However, as we have discussed in Chapter 5,
one may be able to distinguish among different 0νββ mechanisms via a measurement
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Figure 7.4: Comparison of the half-life ratios generated by the scalar-capture mode and
the usual light neutrino-exchange mechanism of 0νββ.

of the individual electron kinematics, which can be studied in tracking calorimetric ex-
periments, such as NEMO [111, 135] and SuperNEMO [136], or by measuring the 0νββ
half-life in multiple isotopes and comparing the half-life ratios with the theoretical ex-
pectations for individual mechanisms. In the case of our proof-of-concept model defined
in the previous section, the additional information on the individual electron kinematics,
as provided via tracking calorimetric experiments, cannot be used to identify the 0νββ
induced via the scalar-capture mode, simply because the final state is equivalent to the
usual LνEM. Instead, we should focus on the possibility of an identification via half-life
ratios which are sensitive to the differences in NMEs. Again, we define the half-life ratio
for a certain isotope AX normalized with respect to 76Ge as [1]

ROi(AX) ≡
TOi

1/2(
AX)

TOi

1/2(
76Ge)

, (7.20)

such that the distinguishability of two 0νββ mechanisms i, j can be quantified via the
ratio

Rij(
AX) =

ROi(AX)

ROj(AX)
. (7.21)

In Figure 7.4 we show the half-life ratios resulting from the scalar-capture mode nor-
malized with respect to the usual LνEM R0νββϕ

mββ
= R0νββϕ/Rmββ

for various isotopes.
We can see that the capture mode does, indeed, result in distinct half-life ratios, such
that a measurement of the 0νββ half-life in multiple isotopes may offer a possibility to
unravel it. From Figure 7.4 we can see that the potential to distinguish a scalar capture
induced 0νββ from the usual mass mechanism is maximized when comparing the 0νββ
half-life in smaller nuclei, such as 76Ge, with that in larger nuclei, such as 150Nd. This
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behaviour reflects the naive expectation that the momentum-exchange in the neutrino
propagator should be scaling with the nuclear radius as q ∼ 1/R, thereby representing
the different q-dependence of the LνEM NMEs and the scalar-capture NMEs.

7.4.4 Critique on the Free Phase Approach

By assuming the scalar background to be in a free phase of cold particles, we found
that our proof-of-concept model can, indeed, accommodate for significant 0νββ rates
observable in current and next-generation 0νββ experiments. However, this requires
substantially large number densities of an ultralight scalar background. In this case, our
naive perturbative treatment is expected to break down [72] as diagrams with more than
one external scalar become dominant. Indeed, one would expect that ϕ should undergo
a phase transition and form a Bose-Einstein Condensate (BEC) when a certain number
density is exceeded. As we will see in the following sections, this phase transition has
relevant physical consequences, inducing an effective in-medium Majorana mass for the
neutrino and substantially increasing the 0νββ rate.

7.5 An Introduction to Quantum Field Theory in Ther-
mal Equilibrium

In order to properly describe the 0νββ induced via a Bose-Einstein condensed scalar
background, we should briefly review the relevant theoretical foundations. Therefore,
in this section, we will provide a brief introduction to thermal-equilibrium QFT at
finite temperatures and densities. Our primary focus will be to discuss the connection of
QFT at finite density (= finite chemical potential) and spontaneous symmetry breaking.
We will then apply this phenomenon to introduce a novel way of generating an in-
medium seesaw mechanism for neutrino mass generation via the coupling of right-handed
neutrinos to a cosmic scalar BEC. In this way, we can describe the non-zero 0νββ rate
induced by a scalar background while circumventing the problems that arise in the naive
free phase approach.

A comprehensive introduction to finite temperature field theory can be found, for
example, in the lecture notes of Laine and Vuorinen [262] or Kapusta’s textbook [263].
For a general introduction to QFT we recommend the lecture notes by Floerchinger
and Wetterich [79, 80], Weigand [264], or the standard textbooks by Schwartz [75] and
Peskin and Schroeder [265]. Here, we will mostly follow the textbook by Kapusta [263].

7.5.1 QFT at Finite Temperatures

In the path integral formulation of relativistic QFT, the partition function is given in
terms of the Minkowskian action

SM(Φn) =

∫︂
d4xLM(Φn), (7.22)
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as

Z =

∫︂ ∏︂
n

DΦn exp{iSM(Φn)}, (7.23)

where DΦ denotes the functional integral over the field Φ and LM is the Minkowskian
Lagrange density. Correlation functions are then given by

⟨Ω|T [Φ1(x1)...Φn(xn)]|Ω⟩ =
1

Z

∫︂ ∏︂
n

DΦnΦ1(x1)...Φn(xn) exp{iSM(Φn)}, (7.24)

inferring that any constant prefactor in the partition function drops out when calculating
correlation functions and, hence, is not physical.

A finite temperature description of QFT can be introduced by applying a Wick rota-
tion, i.e., going to an imaginary time description

x0 = t→ τ = it, (7.25)

such that we can work in a Euclidean metric

∂µ∂µ = ∂2t − ∂2i = −(∂2τ + ∂2i ). (7.26)

The imaginary time τ is then associated with the temperature β = T−1 by restricting it
to the interval τ ∈ [0, β], i.e., by taking∫︂

dt→ −i
∫︂ β

0

dτ, (7.27)

such that the partition function can be written as

Z =

∫︂ ∏︂
n

DΦn exp{−SE}, (7.28)

with the Euclidean action

SE =

∫︂ β

0

dτ

∫︂
d3xLE, LE = −LM(τ = it). (7.29)

In analogy to classical statistical thermodynamics we can now associate the partition
function given by the Euclidean action with the canonical partition function

Z = Tr[exp{−βH}] =
∫︂ ∏︂

n

DΦn exp{−SE}, (7.30)

by requiring periodicity of bosonic fields Φn → Φ and anti-periodicity of fermionic fields
Φn → Ψ

ϕ(τ) = ϕ(τ + β), Ψ(τ) = −Ψ(τ + β), (7.31)

such that the cyclicality of the trace operator is recovered. While this recipe works in
general for scalar-, gauge- and fermionic fields [262, 263], we are only interested in the
case of scalar fields.
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7.5.1.1 The Path Integral at Finite Temperatures

Let us briefly discuss the derivation of eq. 7.30 in the case of a scalar field theory.
This will come in handy when discussing aspects of spontaneous symmetry breaking via
Bose-Einstein condensation, later on. Again, we will follow along the lines of Ref. [263].

The thermodynamic partition function can be written as

Z = Tr[exp{−βH}] =
∑︂
n

∫︂
dϕn⟨ϕn| exp{−βH}|ϕn⟩, (7.32)

where the states |ϕn⟩ are the eigenstates of the scalar field ϕ following the normalization
condition ∫︂

dϕ |ϕ⟩⟨ϕ| = 1, (7.33)

and the trace operator is evaluated by summing over all states. By associating the
temperature with the imaginary time β = it we can identify the transition amplitude
ϕn → ϕn after a time t as

⟨ϕn| exp{−βH}|ϕn⟩ = ⟨ϕn| exp{−iHt}|ϕn⟩. (7.34)

Additionally, we introduce the conjugate momentum field π and its eigenstates |π⟩

π =
∂LM

∂(∂tϕ)
, (7.35)

which are normalized as ∫︂
dπ

2π
|π⟩⟨π| = 1. (7.36)

Using eq. (7.34) as well as the normalization conditions (7.33) and (7.36) we can rewrite
the partition function (7.32) by splitting it into infinitesimal timesteps ∆t = limN→∞ t/N

exp{−iHt} =
N∏︂
j=1

exp{−iH∆t}, (7.37)

and inserting (alternating) complete sets of ϕ and π states (i.e. unities)

Z =
∑︂
n

∫︂
dϕn lim

N→∞

∫︂ (︄ N∏︂
i=1

dϕi dπi
2π

)︄
× ⟨ϕn|πN⟩⟨πN | exp{−iH∆t}|ϕN⟩⟨ϕN |πN−1⟩⟨πN−1| exp{−iH∆t}|ϕN−1⟩
× ...

× ⟨ϕ2|π1⟩⟨π1| exp{−iH∆t}|ϕ1⟩⟨ϕ1|ϕn⟩. (7.38)
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We can immediately perform the first integral
∫︁
dϕn by using the orthogonality condition

⟨ϕ1|ϕn⟩ = δ(ϕ1 − ϕn), (7.39)

and by associating ϕN+1 = ϕn = ϕ1 we can write the partition function in a short-hand
notation as

Z =
∑︂
n

lim
N→∞

∫︂ (︄ N∏︂
i=1

dϕi dπi
2π

)︄
N∏︂
j=1

⟨ϕj+1|πj⟩⟨πj| exp{−iH∆t}|ϕj⟩. (7.40)

After Taylor expanding the exponential

⟨πj| exp{−iH∆t}|ϕj⟩ = ⟨πj|1− iH∆t|ϕj⟩+O(∆t2), (7.41)

and using

⟨ϕi|πj⟩ = exp

{︃
i

∫︂
d3x πj(x)ϕi(x)

}︃
, (7.42)

we can write the partition function in the continuum limit as

Z =

∫︂
DπDϕ exp

{︃
i

∫︂ t

0

dt′
∫︂
x

L(ϕ, π)
}︃

=

∫︂
DπDϕ exp

{︃
−
∫︂ β

0

dτ

∫︂
x

LE(ϕ, π)

}︃
.

(7.43)

Here, we inserted the Lagrangian as the Legendre transform of the Hamiltonian

H = π
dϕ

dt
− L. (7.44)

By performing the integral over the conjugate fields π eq. (7.30) is recovered.

7.5.2 Spontaneous Symmetry Breaking via Bose-Einstein Con-
densation - QFT at Finite Density

Remember that our final goal is to induce a 0νββ signal in a Dirac-neutrino scenario via
the capture of a lepton-number-carrying scalar from some cosmic background. In order to
describe such a scenario, we need to describe QFT at finite densities as well. We will see
that if the scalar density is high enough, the formation of a Bose-Einstein condensate will
introduce a spontaneous symmetry breaking to the theory. The theoretical foundations
of this concept have been developed in Refs. [266–268]. Here, we will summarize and
describe the basics of this phenomenon.

To study Quantum Field Theories at finite density we start with the grand canonical
partition function in classical statistical thermodynamics

Z = Tr[exp{−β(H − µN)}], (7.45)
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where the chemical potential µ is the conjugate to the conserved particle number N .
In a relativistic QFT, however, the particle number N is not necessarily a conserved
quantum number. Instead, we should define the chemical potential in more general
terms as the conjugate of some conserved charge Q associated to a symmetry of the
action via Noether’s theorem [75, 265]:

Theorem 7.1. Noether’s Theorem – If the action S of a theory is invariant under
a continuous symmetry transformation of the fields ϕn → ϕn + δϕn then, assuming that
the equations of motion are satisfied, there exists an associated conserved current

jµ =
∑︂
n

∂L
∂(∂µϕn)

δϕn

δα
, (7.46)

such that

∂µj
µ = 0, (7.47)

and a corresponding conserved charge

Q =

∫︂
d3xj0 =:

∫︂
x

Q. (7.48)

The expectation value of the conserved charge is then related to the chemical potential
by taking the derivative of the partition function

⟨Q⟩ = 1

β

∂ logZ
∂µ

. (7.49)

Let us consider a typical ϕ4 theory of a complex scalar given by

LM = ∂µϕ†∂µϕ− V(|ϕ|2), V(|ϕ|2) = m2|ϕ|2 + λ|ϕ|4. (7.50)

This theory obeys a global U(1) symmetry that transforms ϕ → exp{iα}ϕ. For conve-
nience, we may describe the complex field ϕ in terms of two real scalars ϕ1,2 as

ϕ =
1√
2
(ϕ1 + iϕ2), (7.51)

with the corresponding conjugate momenta

πi =
∂L

∂(∂tϕi)
. (7.52)

Accordingly, the Hamiltonian is given by

H =
∑︂
i

1

2
π2
i +

1

2
(∂jϕi)

2 +
m2

2
ϕ2
i +

λ

4
ϕ4
i , (7.53)
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and we can write down the partition function in terms of the real scalar fields as [263]

Z =

∫︂ ∏︂
j

DπjDϕj exp

{︄∫︂ β

0

dτ

∫︂
x

(︄∑︂
k

iπk
∂ϕk

∂τ
−H + µQ

)︄}︄
. (7.54)

The charge density Q is simply given by Noether’s theorem as

Q = ϕ2π1 − ϕ1π2, (7.55)

and represents the difference in the number of particles nϕ and anti-particles nϕ [264].
We now want to perform the integration over the conjugate fields π1,2. In order to do
so, it is convenient to split the partition function into two parts, one for each conjugate
momentum field. The relevant integrals [262]∫︂

Dπ1 exp
{︃
−1

2
π2
1 + π1

(︃
i
∂ϕ1

∂τ
+ µϕ2

)︃}︃
∝ exp

{︄
−1

2

(︃
∂ϕ1

∂τ
− iµϕ2

)︃2
}︄
,

∫︂
Dπ2 exp

{︃
−1

2
π2
2 + π2

(︃
i
∂ϕ2

∂τ
− µϕ1

)︃}︃
∝ exp

{︄
−1

2

(︃
∂ϕ2

∂τ
+ iµϕ1

)︃2
}︄
, (7.56)

take a Gaussian form with the general solution presented in eq. (3.10). Again, we have
dropped any constant prefactors arising in the Gaussian integration. Notably, we can
see that after the Gaussian integration the chemical potential acts as a negative squared
mass with terms of −µ2ϕ2

1,2 arising. Indeed, going back to the notation in terms of the
complex field ϕ we can write the partition function as [262]

Z =

∫︂
Dϕ exp

{︃
−
∫︂ β

0

dτ

∫︂
x

[︂
∂τϕ

†∂τϕ+ ∂iϕ
†∂iϕ+ (m2 − µ2)|ϕ|2 + λ|ϕ|4

+ µ(ϕ†∂τϕ−
(︁
∂τϕ

†)ϕ
)︁]︂}︃

. (7.57)

Therefore, we should expect a spontaneous symmetry breaking for µ2 > m2. This
spontaneous symmetry breaking describes a macroscopic occupation of the ground-state
better known as Bose-Einstein condensation [266–268].

7.5.3 Spontaneous Symmetry Breaking at Zero Temperature and
Finite Density

We may introduce the effective potential [266, 267]

Veff = − 1

βV
logZ, (7.58)

such that the minimum of Veff with respect to ϕ describes the system in thermal equi-
librium. The relevant thermodynamic quantities, i.e. the pressure P , entropy density
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S = S/V, and charge density Q, can be derived by taking the proper derivatives of the
effective potential [267, 269]

P =
1

β

∂ logZ
∂V

= −Veff ,

S =
1

βV

∂ logZ
∂T

= −∂Veff
∂T

,

Q =
1

βV

∂ logZ
∂µ

= −∂Veff

∂µ
, (7.59)

while the total energy density U = U/V of the system can be calculated via the usual
relation

U = TS − P + µQ, (7.60)

and, correspondingly, the equation of state is simply given by ω = P/U .
At tree-level and zero temperature, the effective potential is given by the classical

potential [262, 268]

Veff,tree = (m2 − µ2)ϕ†ϕ+ λ(ϕ†ϕ)2, (7.61)

which for µ > m, acquires the well-known Mexican-hat shape and the scalar field gains
a non-zero ground-state expectation value given by the potential minimum as

|⟨ϕ⟩|2 = µ2 −m2

2λ
. (7.62)

In this simple setting, the chemical potential µ is related to the charge density Q via
eq. (7.59) as

Q = 2µ|⟨ϕ⟩|2, (7.63)

which in the broken phase for µ > m can be expressed as

Q =
µ(µ2 −m2)

λ
. (7.64)

Obviously, the symmetric phase is by definition characterized by a vanishing charge
density Q = 0 stored in the ground-state.

We want to restrict ourselves to the case of a non-interacting ideal gas to provide a
simple proof-of-concept scenario. Additionally, this simplification is strongly motivated
from a physical standpoint if we want our scalar background field to act as a CDM
component of the energy density of the Universe. For ϕ to act as CDM, it needs to have
an equation of state that closely follows that of cold dust with ω ≃ 0. However, we can
see that even at zero temperature, the interacting scalar theory is characterized by a
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non-zero pressure in the broken phase. Indeed, the relevant thermodynamic quantities
P,S,U are given by

P =

{︃
0 (unbroken phase),
(µ2−m2)2

4λ
(broken phase),

S ≃ 0,

U =

{︃
0 (unbroken phase),
3µ4−m4−2µ2m2

4λ
(broken phase).

(7.65)

Hence, the equation of state at zero temperature for the interacting scalar field in the
broken phase is given by

ω =
P

U =
(µ−m)(µ+m)

3µ2 +m2
. (7.66)

Therefore, even at T = 0 a pressureless equation of state requires µ2 → m2. From
eq. (7.64) we can see that retaining a non-zero ground-state density in the limit µ2 → m2

requires to take λ → 0, thus providing another argument for working with a non-
interacting ideal gas. In this case, a non-zero ground-state charge density requires µ2 =
m2 with Q = 2m|⟨ϕ⟩|2, connecting the ground-state expectation value to the non-zero
charge density. Finally, let us parameterize the complex scalar field ϕ in terms of its
absolute value and a complex phase

ϕ = |ϕ| exp{iα}. (7.67)

The expectation value for |ϕ| is fixed by eq. (7.63) and found to be constant. However,
from Noether’s theorem, the charge density is given in terms of the conjugate fields
π = ∂tϕ and therefore a non-zero charge density requires a non-trivial time dependence
of ϕ. Since we know the absolute value to be constant in time, this time dependence has
to stem from the complex phase α and we may write

Q = −2|⟨ϕ⟩|2∂tα, (7.68)

such that we can identify ∂tα = −m and, thus, find ϕ to be a rotating complex field of
constant absolute value

ϕ =

√︄
Q
2mϕ

exp{−imϕt}. (7.69)

This result simply resembles the classical-field approximation that is often used in the
context of bosonic fields with large occupation numbers [72, 254, 270].

7.5.4 Spontaneous Symmetry Breaking at Finite Temperature
and Density

In the context of 0νββ we have seen that, at least in the free phase, a significant 0νββ rate
requires ϕ to be an ultralight CDM component with masses m ≲ 10−20 eV. Usually, in
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the context of laboratory experiments studying the formation of BECs, the phenomenon
of Bose-Einstein condensation is assumed to be a low-temperature phenomenon with
T ≪ m. One may therefore question if the zero-temperature description provided in the
previous section is a valid approach in the context of an ultralight scalar field much lighter
than, e.g., the temperature of the cosmic microwave background TCMB ≃ 2.35×10−4 eV.
From an experimental point of view, our naive constraint should be an upper limit on
the scalar temperature in the region of the experimental energy resolution Tϕ ≲ ∆E ∼
O(keV) which is several orders of magnitude larger than the usual mass region of an
ultralight scalar DM field.

At finite temperatures, we may use the periodicity of ϕ in the imaginary time 0 ≤
τ ≤ β, ϕ(τ = 0) = ϕ(τ = β) to employ a Fourier expansion [267]

ϕ(τ, x⃗) =
1

β

∞∑︂
n=−∞

∫︂
d3p

(2π)3
ϕn exp{i(p⃗ · x⃗+ ωnτ)}, (7.70)

with the Matsubara frequencies

ωn =
2πn

β
, n ∈ Z. (7.71)

It is convenient to separate the constant zero mode ρ with ωn=0 = 0 from the remaining
terms,

ϕ(τ, x⃗) = ρ+
1

β

∑︂
n̸=0

∫︂
p

ϕn exp{i(p⃗ · x⃗+ ωnτ)}. (7.72)

For simplicity, we may choose ρ to be real. In the ideal gas scenario, the path integral
may be solved exactly for µ2 ≲ m2 via a Gaussian integration [266, 267]. The effective
potential is then given as

Veff = Vtree + V ,thermal (7.73)

where the constant zero-mode gives a contribution of the form of the classical tree-level
potential

Vtree = (m2 − µ2)ρ2, (7.74)

and the finite temperature effects carried in the remaining modes are summarized in

Vthermal =
1

β

∫︂
d3p

(2π)3

(︄
log
[︂
1− exp{−β(ω − µ)}

]︂
+ log

[︂
1− exp{−β(ω + µ)}

]︂)︄
.

(7.75)

Here, ω =
√︁
p2 +m2 denotes the energy and we ignored a constant, divergent zero-point

term which does not affect the thermodynamics of the system [263, 266, 267].
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7 Neutrinoless Double Beta Decay without Vacuum Majorana Neutrino Mass

The zero-mode is the lowest energy state ϕ can occupy and therefore describes the
ground-state of the system. It is evident that, similar to the zero-temperature case,
a non-trivial ground-state expectation value ρ ̸= 0 can only be realized when taking
µ2 = m2. In this case, we may separate the total charge density into a ground-state
part Q0 and thermally excited part Q∗, again, by taking the derivative of the effective
potential with respect to the chemical potential µ [263]

Q = −∂Veff

∂µ

⃓⃓⃓⃓
⃓
µ=m

= Q0 +Q∗(T, µ = m), (7.76)

where the charge density stored in the thermally excited modes is given by [263]

Q∗(T, µ = m) =

∫︂
d3p

(2π)3

(︄
1

exp{β(ω −m)} − 1
− 1

exp{β(ω +m)} − 1

)︄
, (7.77)

and the charge density in the ground state is simply

Q0 = 2mρ2. (7.78)

Spontaneous symmetry breaking via the formation of a BEC is realized as long as the
ground-state charge density is non-zero, Q0 > 0, with the expectation value of the
zero-momentum mode given by

ρ2 =
Q−Q∗(β, µ = m)

2m
. (7.79)

This requirement allows us to define a critical temperature at which the system switches
from the free to the condensed phase. The critical temperature Tcrit is then simply given
by the transition point at which all of the conserved charge is stored in the thermal
excitations

Q∗(Tcrit, µ = m) = Q. (7.80)

In the limit of high or low charge densities, approximate analytical solutions to the
critical temperature are given by [263]

Tcrit =

⎧⎨⎩ 2π
m

(︂
Q

ζ(3/2)

)︂2/3
Q ≪ m3(︁

3Q
m

)︁1/2 Q ≫ m3
, (7.81)

while exact solutions require a numerical evaluation. For the scenario of an ultralight
scalar CDM field, the high-density parameter region with Q ≫ m3 is what is relevant
to us. While in the broken phase with temperatures below the critical temperature the
chemical potential is fixed to µ = m, charge conservation requires that the chemical
potential should decrease at temperatures above Tcrit. In the high-density regime, we
can write the charge density stored in the thermal excitations as [267]

Q∗(T ) =
{︃

1
3
µT 2 = Q = const., T > Tcrit, unbroken phase

1
3
mT 2, T < Tcrit, broken phase . (7.82)

126



7.5 An Introduction to Quantum Field Theory in Thermal Equilibrium

Similarly, the charge density stored in the ground-state is given by Q0 = Q−Q∗ and we
may can eq. (7.82) to express it in terms of the total charge density Q, the temperature
T and the critical temperature Tcrit as

Q0 = 2mρ2 = Q
(︃
1− T 2

T 2
crit

)︃
, (7.83)

such that the ground-state expectation value in the broken phase is given by

ρ2 =
1

6
T 2
crit

(︃
1− T 2

T 2
crit

)︃
. (7.84)

We can see that finite temperature effects on the symmetry breaking nature of the system
scale with T 2/T 2

crit. In the high-density regime of interest, the critical temperature may
be expressed as a function of the scalar number density Q = nϕ = αρDM/mϕ

Tcrit ≃ 2.6× 1017 eV × α1/2
(︂ mϕ

10−20 eV

)︂−1
. (7.85)

Thus, in the case of an ultralight scalar CDM field, the critical temperature is many
orders of magnitude larger than, e.g., the CMB temperature and thermal effects are
strongly suppressed even for T ≫ mϕ. Therefore we may, for all practical purposes,
resort to the zero-temperature description. A high-temperature T ≫ m expansion of
the effective potential for both the ideal as well as the interacting scalar field has been
obtained in Refs. [267–269] and the relevant thermodynamic properties are given to
leading order as

P =

{︄
π2T 4

45
+ (2µ2−m2)T 2

12
(unbroken phase),

π2T 4

45
(broken phase),

S =

{︄
4π2T 3

45
+ (2µ2−m2)T

6
(unbroken phase),

4π2T 3

45
(broken phase),

U =

{︄
π2T 4

15
+ (2µ2−m2)T 2

12
+ µQ (unbroken phase),

π2T 4

15
+mQ (broken phase),

(7.86)

such that even at relatively high temperatures comparable to today’s CMB temperature,
the ideal gas would follow a CDM equation of state of ω ≃ 0. Obviously, for ϕ to act
as the dark matter candidate, it would have to maintain this role throughout all of
the cosmological evolution and a comprehensive cosmological study is beyond what we
want to achieve here. In fact, we actually do not care whether ϕ is a dark matter, dark
radiation, or even dark energy component, as long as its number density is sufficient to
generate a detectable 0νββ signal within a lepton-number-conserving theory with Dirac
neutrinos. Instead, our main point is that, generally speaking, the T = 0 approximation
captures the relevant physics for our discussion, even if the ϕ was produced thermally
(e.g., through some additional dark sector) and not non-relativistically.
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7.6 Neutrinoless Double Beta Decay via a Dark Scalar
Capture – II. The BEC Phase

Now that we are equipped with the necessary tools to understand the transition to the
BEC phase in a high-density scalar environment, let us focus on the impact of such
a scenario on 0νββ experiments. As we have seen, in the case of an ultralight scalar
with a density in the region of the local CDM density ρDM ≃ 0.3GeV/cm3, the critical
temperature below which the scalar field is expected to undergo the phase transition
to the BEC state is substantially larger than the typical CMB temperature. In the
context of 0νββ our main concern lies in the magnitude of the scalar fields expectation
value and with finite temperature effects scaling as T 2/T 2

crit we can simply stick to the
T = 0 approximation. In this case, we can replace the complex scalar by it’s (rotating)
expectation value

ϕ =

√︃
nϕ

2mϕ

exp{−imϕt}. (7.87)

Thus, from the symmetry breaking nature of the BEC formation we can see that the
neutrino-scalar interaction term in the condensate phase

L ⊃
√︃

nϕ

2mϕ

exp{−imϕt}gijνR,iν
C
R,j + h.c., nϕ =

αρDM

mϕ

, (7.88)

provides a mechanism for the generation of an effective in-medium Majorana mass for
the right-handed neutrinos. Indeed, the condensate acts similar to a vacuum expec-
tation value in a Higgs-like scenario and we may identify the rotating phase as the
corresponding Goldstone mode representing a quasi-particle phonon excitation of the
condensate. Consequently, in the condensate phase the 0νββ triggered by a scalar cap-
ture and emission can be perfectly described in terms of the usual LνEM parameterized
by the effective Majorana mass mββ with an additional contribution arising from the
exchange of three sterile neutrinos. This simply corresponds to a 0νββ induced via the
usual seesaw type-I mechanism. Indeed, we can identify the Dirac mass matrix MD and
the right-handed Majorana mass matrix MR via their respective Yukawa interactions
with H and ϕ as

MD,ij = Y ν
ij

v√
2
, MR,ij = 2

√︃
nϕ

2mϕ

exp{−imϕt}gij. (7.89)

7.6.1 A Bose-Einstein Condensate Seesaw Mechanism

For simplicity, we will assume that the Dirac mass matrix MD and the effective in-
medium right-handed mass matrix MR can be diagonalized at the same time, i.e., we
choose the most simple setting gij = gδij, again, such that we can write

MD,ij = mD,iδij, MR,ij = 2

√︃
nϕ

2mϕ

exp{−imϕt}gδij. (7.90)
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In this case, the diagonalization of the three-generation 6 × 6 neutrino mass matrix
simplifies to three separate one-generation scenarios resembling the usual type-I seesaw
scenario [10]. In addition, this scenario has the convenient benefit of forbidding the
possible (albeit suppressed) neutrino decay channel νi → ϕνj. By defining the left and
right-handed fields

nR,i =

(︃
νCL,i
νR,i

)︃
, nL,i = nC

R,i, (7.91)

we can summarize the neutrino mass terms as

L ⊃ −1

2
nC
L,iMinL,i + h.c., Mi =

(︃
0 mD,i

mD,i |mR| exp{−imϕt}

)︃
, (7.92)

with

|mR| = 2g

√︃
nϕ

2mϕ

. (7.93)

The eigenvalues of each mass matrix Mi can be obtained in the usual fashion as

m±χ,i =
1

2

(︃
|mR| exp{−imϕt} ±

√︂
|mR|2 exp{−2imϕt}+ 4m2

D,i

)︃
, (7.94)

and the corresponding diagonalizing matrices Vi can be obtained from the normalized
eigenvectors as

Vi =

⎛⎜⎜⎝− m+
χ,i√︂

m2
D,i+(m

+
χ,i)

2 − m−
χ,i√︂

m2
D,i+(m

−
χ,i)

2

mD,i√︂
m2

D,i+(m
+
χ,i)

2

mD,i√︂
m2

D,i+(m
−
χ,i)

2

⎞⎟⎟⎠ , V −1 = V T , (7.95)

with the mass states χL = (χ−L , χ
+
L)

T given via

nC
L,iMinL = nC

L,iViV
T
i MiViV

T
i nL,i = χC

L,iMi,diagχL,i, (7.96)

as

χL,i = V T
i nL,i, (7.97)

where we defined the diagonalized mass matrix

Mi,diag =

(︃
m−χi

0
0 m+

χ,i

)︃
. (7.98)

In general, the eigenvalues m±χ,i of the mass matrices Mi are complex-valued

m±χ,i = |m±χ,i| exp
{︁
iα±i
}︁
, (7.99)
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and we may apply another basis transformation, to arrive at real-valued and non-negative
masses by taking

χC
L,iAiA

†
iMi,diagA

†
iAiχL,i = NC

L,iMiNL,i, (7.100)

where the diagonal matrix

Ai =

(︃
exp
{︁

1
2
iα−i
}︁

0
0 exp

{︁
1
2
iα+

i

}︁)︃ , (7.101)

cancels the phase of the complex eigenvalues m±χ,i. Hence, the final mass matrix

Mi =

(︃
m−i 0
0 m+

i

)︃
, m±i = |m±χ,i|, (7.102)

describes the real-valued physical masses of the corresponding mass states

NL,i = AiV
T
i nL,i. (7.103)

Note that, due to the time dependence of the rotating condensate, both the physical
masses |m±χ,i| as well as the corresponding eigenstates NL,i exhibit a time dependence.
While this may be counter-intuitive at first, we should remind ourselves that these do
not describe fundamental masses, but, instead, effective in-medium masses generated
via the interaction of the right-handed neutrinos νR with the ϕ BEC. Before we look at
the possible consequences of this time dependence, let us first consider the changes in
the neutrino mixing and its effects on the weak charged-current interactions with the
charged leptons.

The appearance of the additional three sterile states as well as the time dependence
requires a correction to the usual PMNS neutrino mixing matrix U [11]. In the standard
three-neutrino mixing scenario, the weak charged-current interaction between the left-
handed charged leptons of flavor α, lL,α, and the neutrino mass states νL,i is, ignoring
the W -boson as well as coupling constants, given by

lL,αγ
µU∗αiνL,i, (7.104)

where the neutrino mixing matrix is parameterized in terms of the three mixing angles
θ12, θ13, θ23, the dirac CP phase δ as well as the two Majorana CP phases α1, α2 as [11]

U =

⎛⎝ c12c13 s12c13 s13e
−iδcp

−s12c23 − c12s23s13e
iδcp c12c23 − s12s23s13e

iδcp s23c13
s12s23 − c12c23s13e

iδcp −c12s23 − s12c23s13e
iδcp c13c23

⎞⎠ · UM , (7.105)

with the Majorana phases being incorporated in

UM = diag
(︁
1, eiα1 , eiα2

)︁
, (7.106)
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Figure 7.5: Time dependence of the six effective in-medium neutrino masses m±i , i ∈
[1, 2, 3] generated from the rotating Bose-Einstein condensate. On the left,
we present a low-density scenario with a relatively light effective right-handed
neutrino mass of |mR| = 100meV which generates a significant time depen-
dence of the effective in-medium neutrino masses. On the right, we show
a contrasting high-density scenario with a heavy effective right-handed neu-
trino mass of |mR| = 1GeV, such that the time dependence is strongly sup-
pressed. For each scenario, we present the corresponding scalar massesmϕ as-
suming that g = α = 1. The minimal neutrino mass is put to mmin = 1meV.

and with the usual abbreviations sin θij = sij and cos θij = cij employed. We can express
eq. (7.104) in terms of the effective in-medium mass states NL,i = (N−L,i, N

+
L,i)

T as∑︂
i

lL,αγ
µU∗αiνL,i =

∑︂
i,k

lL,αγ
µU∗αi

(︂
ViA

†
i

)︂
0k
(NL,i)k =

∑︂
i

lL,αγ
µ
(︁
U−∗αi N

−
L,i + U+∗

αi N
+
L,i

)︁
,

(7.107)

with the mixing matrices for the light and heavy states

U−∗αi = U∗αi(ViA
†
i )00, U+∗

αi = U∗αi(ViA
†
i )01. (7.108)

The mixing angles θij are fixed from oscillation data [235].
In order to determine the eigenvalues of the effective neutrino mass matrix Mi we

need to fix the model parameters mϕ, g, and α which determine the effective right-
handed Majorana mass mR. Additionally, we have to fix the Dirac masses mD,i. This
can be achieved by requiring that at t = 0, i.e., for mR = |mR| the three light eigenvalues
m−i should replicate the squared-mass differences ∆mij = m2

i − m2
j that are observed

within neutrino oscillation experiments. In this way, only the minimal neutrino mass
mmin together with the mass ordering and the two Majorana phases remain free.

We may wonder now, whether the time dependence introduced by the rotating con-
densate may get into conflict with the neutrino oscillation data, or whether it has any
other relevant phenomenological implications. Indeed, in previous literature, it was
shown that the time dependence introduced by an oscillating real scalar field coupling
to neutrinos may have a significant impact on neutrino oscillations [271–274]. This
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mainly stems from the fact that for an oscillating real scalar field the absolute value
of the field is time-dependent, Φ = A sin(mΦt), thereby significantly impacting the
effective in-medium neutrino masses. In general, this behaviour cannot be blindly as-
sumed to be realized for a complex scalar background field, which has a rotating time-
dependent phase but a constant absolute value (c.f. eq. (7.33)). In Figure 7.5 we show
the time dependence of the different mass eigenvalues m±i for a light right-handed mass
of |mR| = 100meV ∼ O(mD,i) and for a heavier case of |mR| = 1GeV ≫ mD,i. In both
scenarios, we put the minimal neutrino mass to mmin = 1meV. We can see that, while
the time dependence is noticeable for the light mR scenario, it is unobservably small
when going to heavier effective right-handed neutrino masses |mR| > 1GeV. Indeed,
in this parameter region, the time dependence of the masses is only at the order of
∆mi/mi ∼ 10−10. This behaviour is to be expected as heavier sterile neutrinos should,
simply, decouple from the remaining degrees of freedom at some point. As in the free
phase, we will see that the heavy mR scenario is the one relevant to our discussion on
0νββ. From this standpoint, in contrast to the case of a real scalar field, we do not
expect the time dependence that is connected to the rotating condensate to leave any
observable imprints.

7.6.2 Neutrinoless Double Beta Decay in the Condensate Phase

Let us now return to the phenomenology of the 0νββ in the condensate phase. As we
have seen in the previous section, the neutrino-scalar interaction in the condensate phase
is simply an in-medium realization of a seesaw type-I mechanism, albeit with a time-
dependent complex phase which can be relevant when the effective right-handed neutrino
mass is of the order of the vacuum Dirac masses. In such seesaw-like scenarios, which
have been widely studied in previous literature [176, 275–277], the 0νββ is described in
terms of the exchange of both light and heavy massive Majorana neutrinos. In contrast
to the usual mass mechanism of 0νββ, we will generally not be able to ignore the neutrino
masses within the denominator of the neutrino propagator by taking the m2

ν ≪ p2 limit.
Instead, the exchange of heavy sterile neutrinos in the mν ≫ p2 limit can be matched
onto the LEFT operator O1L (c.f. Table 4.5) by integrating out the heavy neutrinos. The
remaining parameter space that describes the exchange of heavy neutrinos with masses
similar to the typical momentum exchange of 0νββ, m2

ν ∼ p2 ∼ O(100MeV), can be
approximated by defining a mass-dependent NME, M(mν), which can be obtained via
a simple interpolation approach [275, 276]

Mν(mi) =
4m2

N |M(9)
ν |

⟨p2⟩+m2
i

,
⟨︁
p2
⟩︁
= 4m2

N

|M(9)
ν |

|M(3)
ν |

. (7.109)

Here, ⟨p2⟩ describes the typical momentum exchange carried by the propagating neu-
trino, M(3)

ν and M(9)
ν are the relevant NMEs for the exchange of light and heavy neutri-

nos, respectively, and the interpolation formula follows the form of the neutrino propa-
gator to replicate the naive scaling behaviour of the NMEs for different neutrino masses.
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Figure 7.6: 0νββ half-life of the scalar-capture mechanism in the Bose-Einstein Con-
densate phase. As a baseline scenario, we use the current best-fit values
of the neutrino mixing parameters, we set g = α = 1 and neglect the ef-
fect of the unknown Majorana phases. The minimal neutrino mass is varied
within the range currently allowed by cosmology imposing the constraint∑︁

im
−
i ≤ 260meV [235, 236]. The dark blue area represents the case of

normal neutrino mass ordering, m−1 < m−2 < m−3 , while the lighter turquoise
region shows the inverted mass ordering scenario with m−3 < m−1 < m−2 . The
isotope of choice is 136Xe and we present the current best limit as obtained by
the KamLAND-Zen collaboration [46] as well as the projected target sensi-
tivity of the next-generation nEXO experiment [34]. This plot was published
in Ref. [3].

We can now express the 0νββ half-life in terms of the effective in-medium neutrino
masses m±i and the corresponding mixing matrices V±ei as [2, 276](︂

T
1/2
0νββ

)︂−1
= g4AG0νββ

⃓⃓⃓⃓ 3∑︂
i=1

(V−ei)2
m−i
me

Mν(0) + (V+
ei)

2m
+
i

me

Mν(m
+
i )

⃓⃓⃓⃓2
. (7.110)

In Figure 7.6 we show the expected 0νββ half-lives over a range of different scalar masses
mϕ, by setting g = α = 1 and varying the minimal neutrino mass within the allowed
range constrained by the cosmological limits on the sum of the light neutrino masses,∑︁

im
−
i ≤ 260meV, as obtained from the Planck CMB data [235, 236]. The mixing

angles as well as the Dirac CP-phase of the PMNS matrix are taken as the best-fit
values provided by the PDG report [235] and we assume vanishing Majorana phases.
We can see that in this baseline scenario, in the high-density regime with mϕ ≲ 10−10 eV,
the 0νββ half-life approaches the usual range expected from the standard LνEM induced
by the exchange of three light Majorana neutrinos. On the contrary, in the low-density
regime with mϕ ≳ 10−10 eV, the expected 0νββ half-life increases substantially, as the
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sterile neutrino masses m+
i approach the masses of the active neutrinos m−i thereby

transitioning to a pseudo-Dirac scenario. This is precisely the behaviour one expects
from a seesaw type-I-like mechanism [277]. While we fixed g = α = 1, we want to point
out that smaller values do not impact the general shape of Figure 7.6, but would instead
shift the x-axis towards smaller scalar masses, i.e., larger densities. Therefore, we do not
require the scalar field to act as a substantial amount of the observed CDM.

In comparison to the free phase, the 0νββ half-lives in the condensate phase approach
the sensitivity levels of the current and next-generation 0νββ experiments at much lower
scalar densities, signifying a substantial enhancement of the 0νββ half-life attributed to
the phase transition from the free to the BEC phase.

7.6.3 Identifying the Bose-Einstein Condensate Induced 0νββ

It is evident that, in the high-density parameter region of interest, the BEC-induced
0νββ is not distinguishable from the usual LνEM by any means, as it simply leads to an
effective in-medium Majorana neutrino mass via a seesaw type-I-like mechanism. While
the time dependence attributed to the rotating condensate is, in principle, a distinct
feature, it does not result in measurable time variations of the 0νββ. Consequently, it is
impossible to distinguish such a scenario from the usual mass mechanism within 0νββ
experiments. The same is true when considering its impact on oscillation experiments.
In this way, our proof-of-concept model sets itself apart from previous literature, which
studied LNV scenarios in the context of a real scalar field background [255, 271].

However, as the effective in-medium neutrino mass is highly dependent on the local
scalar number density, it can vary in astrophysical environments situated in different
scalar backgrounds of different densities. Additionally, in the free phase, ϕ can act
as a mediator of long-range neutrino self-interactions [278]. In the condensate phase,
both long-range neutrino self-interactions mediated via a massless phonon excitation of
the condensate, as well as short-range neutrino self-interactions mediated by a heavy
quasi-particle excitation are present. These self-interactions may impact neutrino free-
streaming in astrophysical and cosmological environments of high neutrino-densities such
as core-collapse supernovae [279] or during recombination in the early Universe thereby,
potentially, providing a solution to the Hubble tension [278, 280–282].

Similarly, the expansion of the cosmos is associated with a larger scalar number den-
sity in the early Universe. This would render the effective in-medium neutrino masses
to vary on cosmological time-scales with the right-handed effective neutrino mass mR

being larger in the early Universe and, consequently, resulting in smaller active neutrino
masses via the seesaw mechanism. Hence, a BEC-induced seesaw mechanism could offer
a compelling explanation for a potential future discrepancy between the increasingly
stringent cosmological limits on the sum of neutrino masses Σim

−
i and the minimal neu-

trino mass derived from the squared mass differences ∆mij obtained from oscillation
data. In fact, the most stringent cosmological limit up to date [283], taking into account
the Planck CMB data as well as additional information on the large-scale structure for-
mation and background evolution [235, 283] in combination with the current best-fit

134



7.6 Neutrinoless Double Beta Decay via a Dark Scalar Capture – II. The BEC Phase

oscillation data [235] restricts the sum of the light neutrino masses to the range of

82meV >
∑︂
i

m−i ≳

{︃
59meV, normal hierarchy
100meV, inverted hierarchy , (7.111)

prompting the need to consider a scenario in which conflicting cosmological and oscilla-
tion data may require an explanation in terms of new physics.

For simplicity, we have considered an ultralight scalar background that accommodates
for all of the observed CDM. BECs have been extensively studied as potential dark
matter candidates in the previous literature [251–254, 284–288]. While it is, obviously,
intriguing to explain two phenomena (0νββ and CDM) in a single model, this is by no
means a strict requirement and we may simply set α ≪ 1 such that the scalar condensate
only accounts for a tiny fraction of the required CDM in the Universe. Alternatively,
ϕ might act as a radiation component of the energy density of the Universe, a scenario
that we will study more carefully in Ref. [4].

Considering collider experiments such as the LHC, scalar emission modes can con-
tribute to the decay width of several heavy particles, such as Z → ννϕ, W± → l±νϕ,
H → ννϕ and others that can decay via a neutrino emitting channel. However, all of
these decay modes suffer a substantial suppression from the requirement of light neutrino
mass insertions, as ϕ couples only to the right-handed neutrino. We have discussed the
suppression of the emission modes earlier in the context of 0νββ.

As a summarizing statement, the appearance of a lepton-number-carrying complex
scalar field coupling to right-handed neutrinos could, in principle, have interesting phe-
nomenological consequences in several contexts. However, in general, its effects on ob-
servables related purely to particle physics are expected to be negligible due to the
coupling only to right-handed neutrinos and the corresponding suppression of transi-
tion amplitudes stemming from the tiny active-sterile mixing. Both in the free phase
and in the condensate phase, this tiny mixing can only be compensated by the pro-
posed high number density of the scalar background, which, however, in the condensate
phase acts solely through the generation of an effective in-medium Majorana mass for
the right-handed neutrinos and the corresponding seesaw mechanism. Therefore, we
expect that the most promising ways to uncover such a model will be related to a local
or time-dependent variation of the scalar number density in different astrophysical and
cosmological environments. Probably the smoking gun signature of such a BEC-induced
seesaw mechanism would be a future conflict between the minimal neutrino mass mea-
sured in today’s oscillation experiments and the sum of the light neutrino masses as
derived from the early Universe.

7.6.4 Critique on the Bose-Einstein Condensate Approach

As we have done for the free phase approach, we want to discuss whether the description
of a high-density scalar background in terms of a BEC is appropriate. The deciding fac-
tor here is the application of thermal-equilibrium QFT which, strictly speaking, requires
the scalar field to be in a state of thermal and chemical equilibrium. However, with ϕ
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7 Neutrinoless Double Beta Decay without Vacuum Majorana Neutrino Mass

coupling to the Standard Model only via the interactions with right-handed neutrinos, it
cannot equilibrate via interactions with the Standard Model. Obviously, the reintroduc-
tion of the repulsive scalar self-interactions would allow ϕ to self-thermalize at the cost
of increasing the pressure of the system thereby conflicting the assumption of ϕ acting
as CDM. We may, however, introduce small self-interactions sufficient to account for a
self-thermalization of ϕ by allowing ϕ to act as a radiation component to the energy
density of the Universe. This scenario does come with stronger constraints on the scalar
energy density and we will study it more closely in Ref. [4].

For the ideal gas scenario considered here, gravitational self-interactions can be suffi-
cient for the scalar field to equilibrate [4, 289, 290] if the gravitational relaxation rate

Γg ≃
Gn

δv2
, (7.112)

is larger than the Hubble rate

H2 = H2
0 (Ωγa

−4 + ΩMa
−3 + Ωka

−2 + ΩΛ), (7.113)

with the scalar velocity dispersion δv, Newton’s gravitational constant G ≃ 6.7 ×
10−57 eV, the cosmological scale factor a, today’s Hubble rate H0 ≃ 70 km/s/Mpc, and
with Ωγ,M,k,Λ corresponding to the energy density components of the Universe, i.e.,
radiation, matter, curvature and the cosmological constant [235], respectively. For a
non-relativistically produced scalar field generated at a redshift z1 with an initial dis-
persion relation δv(z1) and an initial number density n0 = n(z1), the dispersion relation
at later times, i.e., smaller redshift z < z1 may be expressed as [289, 290]

δv(z) = δv(z1)
a(z1)

a(z)
<
a(z1)

a(z)
. (7.114)

By utilizing this relation, we can put a lower limit on the gravitational relaxation rate
at a given redshift z in dependence on the redshift at production z1 [289]

Γg ≳
Gn0

a(z1)2a(z)
. (7.115)

It follows that an ultralight scalar field with masses mϕ < 10−20 eV will thermalize in-
stantaneously at production if it is produced at a redshift corresponding to temperatures
of T1 > 1GeV. As the Hubble rate in the early Universe is proportional to a−2 while
the gravitational relaxation rate goes with a−1, such a gravitationally self-thermalized
ultralight scalar field will remain in an equilibrium state throughout the cosmological
evolution until today and will drop out of equilibrium at some point in the future when
the Hubble rate will be dominated by the cosmological constant and, therefore will
approach a constant value.

While the existing literature presents convincing arguments in favour of a gravita-
tional self-thermalization of ultralight scalar dark matter [289–291], there is no general
agreement on this with opposing arguments appearing as well [292]. In the context of
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structure formation, gravitational thermalization might only take place locally within
DM halos of high scalar number densities without a global thermalization [291]. A
self-consistent theoretical description of Bose-Einstein condensation in the context of a
self-gravitating scalar field will, generally, require the inclusion of equilibrium QFT in
curved space-times [293–300], a task which goes beyond the scope of this work.

Irrespective of this, we have shown that the zero-temperature equilibrium QFT ap-
proach does recover the classical field approach that is often used in the context of
bosonic fields with large occupation numbers [254, 255, 270]. Therefore, we might argue
that the phenomenological consequences should be rather insensitive to the degree of
thermalization. Indeed, Refs. [301, 302] provide arguments for a condensation into the
zero-momentum mode on time scales much shorter than those required for a full ther-
malization. Nevertheless, the application of equilibrium QFT methods, specifically mod-
elling non-zero number densities via the introduction of a chemical potential, provides
convincing arguments for spontaneous symmetry breaking within the scalar medium. As
such, it intuitively provides an explanation for the generation of an effective in-medium
Majorana neutrino mass, a feature that is less obvious in the simple classical field treat-
ment.

Finally, as described in Section 7.5, we want to point out that the introduction of a
chemical potential requires the existence of an associated conserved charge. While in the
simple ϕ4 theory the scalar number density is conserved due to the corresponding U(1)ϕ
symmetry of the scalar potential, this symmetry is broken in our model by the neutrino-
scalar interaction term gνRν

C
Rϕ. We could recover an approximate U(1)ϕ symmetry

by taking g ≪ 1. However, this is not necessary as number-density-changing processes
require incoming or outgoing right-handed neutrinos. While processes involving outgoing
right-handed neutrinos can be kinematically forbidden due to the ultralight nature of the
scalar field as well as the fact that it mostly occupies the low-energy zero-momentum
mode even at relatively large temperatures T ∼ TCMB, processes involving incoming
right-handed neutrinos are strongly suppressed due to the tiny active-sterile mixing
limiting the production of right-handed neutrinos. In this sense, the scalar number
density may be treated as a conserved quantity even though the Lagrangian does not
reflect the corresponding symmetry.
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Chapter 8

Summary & Conclusion

In this work, we have studied various aspects and implications of new lepton-number-
violating physics in the context of neutrinoless double beta decay. The basis for our dis-
cussion was described in Chapter 4. By utilizing chiral perturbation theory, we have red-
erived the 0νββ half-life master formula developed by Cirigliano et al. in Refs. [44, 45],
and expanded it to include the effects of scalar lepton-number-violating neutral-current
neutrino-quark LEFT operators, which generate a contribution to the Majorana neu-
trino mass via the formation of a quark condensate in the low-energy regime of χPT.
This interesting feature has been ignored in most of the previous literature. However,
we showcased in Chapter 6 that this mechanism sets the strongest limits on such LNV
neutral-current neutrino-quark interactions to date, improving the limits obtained in co-
herent elastic neutrino-nucleus scattering experiments by about 2 orders of magnitude.
It should be pointed out that 0νββ experiments, of course, cannot put limits on lep-
ton number conserving interactions which are testable in coherent neutrino scattering
experiments. The inclusion of these operators provides another essential step towards a
complete description of 0νββ in a model-independent EFT approach.

In Chapter 5, we applied the chiral EFT approach to 0νββ, described in Chapter 4,
to study the phenomenological implications of different 0νββ mechanisms in a model-
independent way. In this context, we discussed different possibilities that may allow
us to distinguish among the different 0νββ operators covering both SMEFT and LEFT
operators. While a measurement of the 0νββ half-life in multiple isotopes shows the
strongest potential for uncovering 0νββ induced by higher-dimensional operators, it
turns out that, at the current level of accuracy attributed to the nuclear-theory inputs
involved in the calculations of the expected 0νββ half-lives, this is not practically achiev-
able. We performed a parameter scan over the currently unknown low-energy constants
of chiral EFT to estimate the required level of theoretical accuracy in the nuclear the-
ory to be around ∼ O(10%). This estimate is based on the median values of half-life
ratios for various isotopes obtained from the parameter scan and its applicability is of
course limited by the current uncertainties of both the nuclear matrix elements as well
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as the low-energy constants of chiral EFT. Therefore, we also estimated the worst-case
scenario given by the least favourable results from the parameter scan, showcasing that,
if Nature chooses so, the identification of the underlying 0νββ mechanism via half-life
measurements in multiple isotopes might turn out to be hopeless. Nevertheless, our
estimate of the required accuracy of nuclear matrix elements and LECs can act as a
guideline for the ongoing development of ab-initio approaches to nuclear matrix element
calculations which aim to improve and quantify the uncertainties involved. A reanalysis
of the results presented in Chapter 5 should be performed in the future when signif-
icant improvements on the nuclear-theory side have been achieved. Independently of
the uncertainties stemming from the nuclear theory, we showed that 0νββ experiments
utilizing tracking calorimetric techniques such as NEMO and SuperNEMO can help to
uncover new lepton-number-violating vector interactions via the measurement of the
individual electron kinematics. Despite the fact that tracking calorimeter experiments
are, currently, not at the forefront of half-life sensitivities when compared to the next-
generation ton-scale experiments such as nEXO or LEGEND, the potential benefit from
the measurement of the individual electron kinematics with regards to the identifica-
tion of non-standard lepton-number-violating mechanisms presents a strong case for the
further development of these experiments.

The effective field theory approach summarized in Chapter 4 provides a simple and al-
gorithmic way of calculating 0νββ half-lives and other observables in a model-independent
as well as model-dependent way. However, the necessary steps, including the matching
procedures connecting the different EFTs, are rather complicated and tedious. With
νDoBe, we provide a simple and easy-to-access computational Python framework that
automates the computational steps and allows users to analyze specific models defined
either at the SMEFT or LEFT scales, as well as to derive limits on the individual EFT
operators from a given 0νββ half-life limit. In Chapter 6 we provided several use-case
examples of νDoBe by reanalyzing the recent half-life limit on 0νββ in 136Xe as obtained
by the KamLAND-Zen collaboration. In this context, we provided a complete list of
upper limits on all relevant lepton-number-violating SMEFT and LEFT operators de-
rived from the KamLAND-Zen limit. Additionally, we employed νDoBe to study the
constraints on the two-dimensional parameter spaces spanned by the light neutrino-
exchange mechanism of 0νββ, parameterized by mββ, and the higher-dimensional LEFT
operators derived by the half-life limits in four different isotopes, 76Ge, 100Mo, 130Te, and
136Xe as given by the GERDA, CUPID-Mo, CUORE, and KamLAND-Zen experiments,
respectively. We found that several of the higher-dimensional LEFT operators can lead
to a (partial) cancellation of the 0νββ half-life when paired with the standard light
neutrino-exchange mechanism, leading to unrestricted directions in the parameter space
spanned by mββ and the corresponding higher-dimensional Wilson coefficient. Again,
a combination of half-life limits taken from multiple isotopes can help to restrict these
regions of cancellation. Particularly, we found that the allowed parameter space derived
from the half-life limits in 100Mo tends to be substantially tilted in comparison with the
parameter spaces derived from other commonly used isotopes. Consequently, this sug-
gests that the combination of 0νββ limits derived in 100Mo and some other commonly
used isotope can close these regions of cancellation in the parameter space, thereby
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making a strong case for next-generation 0νββ experiments utilizing 100Mo. Further, by
studying 0νββ in the context of the mLRSM, we provided a model-dependent use-case
example as well, showcasing the potential of νDoBe for the model-building community.
In the future, we plan to extend νDoBe to include additional particle physics scenarios,
such as light sterile neutrinos and other LNV physics.

Finally, in Chapter 7 we tackled the famous black-box theorem which states that any
observation of 0νββ implies the Majorana nature of neutrinos via a 4-loop diagram.
While the quantitative aspects of the black-box theorem are known to be tiny, such
that a pseudo-Dirac scenario cannot be ruled out via a 0νββ detection, its qualitative
essence, strictly speaking, still remains intact. By proposing a lepton-number-carrying
scalar background field, we provided a B−L conserving proof-of-concept model that can
accompany a non-zero 0νββ rate via a scalar-capture mode that mimics the experimen-
tal signature of the usual LNV 0νββ mechanisms. Due to the addition of the external
scalar field, the application of the black-box theorem is not valid within this scenario.
Therefore, the loop generation of a Majorana neutrino mass can be avoided and the Dirac
nature of the neutrino is left intact. In this way, the black-box theorem remains true
in the sense that any 0νββ without additional external fields will generate a Majorana
contribution to the neutrino mass, but the application of the black-box theorem to an
experimental 0νββ signature is, in general, not valid anymore. However, the generation
of experimentally testable half-lives via the scalar-capture mode requires the existence
of a dark scalar background of substantial number density. In this context, one can
expect the scalar field to undergo a phase transition to a Bose-Einstein condensed state
which is accompanied by a spontaneous symmetry breaking within the scalar medium,
thereby generating an effective in-medium Majorana neutrino mass in a seesaw-like sce-
nario. We applied equilibrium QFT methods to describe the transition of the scalar
field to the condensed state. While the thermalization/equilibration of the scalar field
via gravitational self-interactions is up for debate, the application of equilibrium QFT
methods allowed us to recover the usual classical field approach, which is widely used
within the literature when describing bosonic fields of high occupation numbers. At the
same time, our approach offers a compelling explanation of the spontaneous symmetry
breaking process within the scalar medium, which allows for the generation of an effec-
tive in-medium Majorana neutrino mass. In this sense, the neutrino remains a Dirac
field only in the zero-density vacuum, while effectively turning into a Majorana state
within the scalar medium, showcasing subtleties that need to be addressed in the inter-
pretation of a future 0νββ discovery. Interestingly, we found that such an in-medium
effective seesaw mechanism for neutrino mass generation could offer an explanation for
a potential future discrepancy between the upper limit on the sum of light neutrino
masses, obtained from cosmology in the early Universe, and the lower limit on the sum
of the light neutrino masses derived from today’s oscillation experiments. We will study
the cosmological implications of this model in a future publication.

To summarize, the results presented in this work improve our understanding of lepton-
number-violating physics beyond the Standard Model in the context of neutrinoless dou-
ble beta decay. We have achieved this by extending the existing theoretical frameworks
to include previously ignored effects, by questioning the implications of long-standing
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theorems related to 0νββ, as well as by developing νDoBe, an easily accessible opens-
source computational tool, which we believe will be of use to the broad particle physics
community and, as such, will help to accelerate scientific progress. In the end, Nature
will decide if our efforts will be rewarded by an experimental 0νββ discovery. As the
closing statement and takeaway, I want to highlight that even if it looks like a duck it
might not be a duck1.

1The Wikipedia article on the Duck Test may be worth a read.
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Appendix A

The Isotopes of Double Beta Decay

In the main text, we have mostly been focusing on the β−β− decay which involves
the emission of two electrons. As discussed in the main text as well, crossing sym-
metry suggests the existence of corresponding decay modes involving the emission of
positrons and/or the capture of electrons from the atomic shell. As we discussed, these
decay modes, are generally highly suppressed and, therefore, are usually not interest-
ing for practical experimental setups. A recent counter-example is the proposal of the
NuDoubt++ experiment [138] aiming for a few-kg to ton-scale 2νβ+β+ and 0νβ+β+ ex-
periment. Similarly, we only covered a small subset of the potential 0νβ−β− candidate
isotopes in the main text, due to similar low Q-value suppression. For completeness we
provide a complete list of all naturally occurring isotopes that are expected to undergo
some sort of double beta decay alongside their natural abundance N and corresponding
Q-values in Table A.1. The table is obtained by scanning the NIST list of elements [124]
for isotopes with a natural abundance N > 0 that may decay via at least one of the
provided double beta channels (β−β−, β+β+, β+EC,ECEC).

143



A The Isotopes of Double Beta Decay

(2, 0)νβ−β− (2, 0)β+β+ (2, 0)β+EC (2, 0)ECEC

Isotope Q[MeV] N [%] Isotope Q[MeV] N [%] Isotope Q[MeV] N [%] Isotope Q[MeV] N [%]
46Ca 0.989 0.004 78Kr 0.802 0.355 50Cr 0.147 4.345 36Ar 0.433 0.334
48Ca 4.267 0.187 96Ru 0.670 5.540 58Ni 0.904 68.077 40Ca 0.194 96.941
70Zn 0.997 0.610 106Cd 0.731 1.250 64Zn 0.073 49.170 50Cr 1.169 4.345
76Ge 2.039 7.730 124Xe 0.820 0.095 74Se 0.187 0.890 54Fe 0.680 5.845
80Se 0.134 49.610 130Ba 0.575 0.106 78Kr 1.824 0.355 58Ni 1.926 68.077
82Se 2.996 8.730 136Ce 0.335 0.185 84Sr 0.768 0.560 64Zn 1.095 49.170
86Kr 1.258 17.279 92Mo 0.630 14.530 74Se 1.209 0.890
94Zr 1.142 17.380 96Ru 1.692 5.540 78Kr 2.846 0.355
96Zr 3.349 2.800 102Pd 0.150 1.020 84Sr 1.790 0.560
98Mo 0.110 24.390 106Cd 1.753 1.250 92Mo 1.652 14.530
100Mo 3.034 9.820 112Sn 0.898 0.970 96Ru 2.714 5.540
104Ru 1.301 18.620 120Te 0.708 0.090 102Pd 1.172 1.020
110Pd 2.017 11.720 124Xe 1.842 0.095 106Cd 2.775 1.250
114Cd 0.542 28.730 130Ba 1.597 0.106 108Cd 0.272 0.890
116Cd 2.813 7.490 136Ce 1.357 0.185 112Sn 1.920 0.970
122Sn 0.373 4.630 144Sm 0.760 3.070 120Te 1.730 0.090
124Sn 2.291 5.790 156Dy 0.984 0.056 124Xe 2.864 0.095
128Te 0.867 31.740 162Er 0.825 0.139 126Xe 0.920 0.089
130Te 2.528 34.080 168Yb 0.387 0.123 130Ba 2.619 0.106
134Xe 0.826 10.436 174Hf 0.077 0.160 132Ba 0.844 0.101
136Xe 2.458 8.857 184Os 0.429 0.020 136Ce 2.379 0.185
142Ce 1.417 11.114 190Pt 0.362 0.012 138Ce 0.693 0.251
146Nd 0.070 17.189 144Sm 1.782 3.070
148Nd 1.928 5.756 152Gd 0.056 0.200
150Nd 3.371 5.638 156Dy 2.006 0.056
154Sm 1.251 22.750 158Dy 0.283 0.095
160Gd 1.731 21.860 162Er 1.847 0.139
170Er 0.656 14.910 164Er 0.025 1.601
176Yb 1.089 12.996 168Yb 1.409 0.123
186W 0.492 28.430 174Hf 1.099 0.160
192Os 0.408 40.780 180W 0.143 0.120
198Pt 1.049 7.356 184Os 1.451 0.020
204Hg 0.419 6.870 190Pt 1.384 0.012
232Th 0.838 100.000 196Hg 0.820 0.150
238U 1.144 99.274

Table A.1: List of naturally occuring double beta isotopes. This list was also published
in Ref. [1] and we recalculate it here with updated data from the NIST list
of elements [124] with additional information about the natural abundances
N . For each isotope, both the Q-value in MeV and the natural abundance
N in % are given.
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Appendix B

Matching the Standard Model EFT to
the Low-Energy EFT

In this appendix, we will provide msome identities and relations that have not been
covered in the main text but are very helpful when doing the matching calculations of
SMEFT operator onto LEFT. Afterwards, we will provide an example of a matching
calculation highlighting the main obstacles in the process.

B.1 Helpful relations

In many scenarios, especially when matching different operator basises onto each other,
one has to relate fermionic operators of different bilinear structures onto each other.
While the relations are, simply, obtained by taking the transpose of the corresponding
bilinear and adhering to the anti-symmetric nature of Dirac spinors, we will provide a
comprehensive list of the relations used in the SMEFT-to-LEFT matching discussed in
the main text. We hope these may be helpful for future students or any readers of the
work presented here:

B.1.1 Scalar Bilinears

Ψ1Ψ2 = ΨC
2 Ψ

C
1

Ψ1Ψ
C
2 = Ψ2Ψ

C
1(︁

Ψ1Ψ
C
2

)︁†
= −ΨC

2 Ψ1(︁
Ψ1Ψ2

)︁†
= −Ψ2Ψ1 (B.1)
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B.1.2 Pseudoscalar Bilinears

Ψ1γ5Ψ2 = ΨC
2 γ5Ψ

C
1

Ψ1γ5Ψ
C
2 = Ψ2γ5Ψ

C
1(︁

Ψ1γ5Ψ
C
2

)︁†
= ΨC

2 γ5Ψ1(︁
Ψ1γ5Ψ2

)︁†
= Ψ2γ5Ψ1 (B.2)

B.1.3 Vector Bilinears

Ψ1γ
µΨ2 = −ΨC

2 γ
µΨC

1

Ψ1γ
µΨC

2 = −Ψ2γ
µΨC

1(︁
Ψ1γ

µΨC
2

)︁†
= −ΨC

2 γ
µγ5Ψ1(︁

Ψ1γ
µΨ2

)︁†
= −Ψ2γ

µγ5Ψ1 (B.3)

B.1.4 Axial-Vector Bilinears

Ψ1γ
µγ5Ψ2 = ΨC

2 γ
µγ5Ψ

C
1

Ψ1γ
µγ5Ψ

C
2 = Ψ2γ

µγ5Ψ
C
1(︁

Ψ1γ
µγ5Ψ

C
2

)︁†
= −ΨC

2 γ
µΨ1(︁

Ψ1γ
µγ5Ψ2

)︁†
= −Ψ2γ

µΨ1 (B.4)

B.1.5 Tensor Bilinears

Ψ1σ
µνΨ2 = −ΨC

2 σ
µνΨC

1

Ψ1σ
µνΨC

2 = −Ψ2σ
µνΨC

1(︁
Ψ1σ

µνΨC
2

)︁†
= −ΨC

2 σ
µνΨ1(︁

Ψ1σ
µνΨ2

)︁†
= −Ψ2σ

µνΨ1 (B.5)

B.2 An Explicit Matching Example – O(9)

duLLH2D

Here we will perform an explicit SMEFT-to- LEFT matching calculation to provide an
example of the general procedure. A prime example is provided by the matching of the
SMEFT dimension-9 operator O(9)

duLLH2D to the relevant LEFT basis for 0νββ. This
specific example maps onto both long- and short-range operators of dimensions 6, 7, and
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duLLH2D

9 and includes all relevant steps such as field redefinitions, integration by parts, and
integrating out heavy fields.

The operator is given by

OduLLH2D = CduLLH2Dϵikϵjl
[︁
dRγ

µuR
]︁ [︂
LC

i (iDµL)j

]︂
H̃kHl.

After EWSB the Higgs has gained its non-zero vev. Switching to the unitary gauge we
can write

H =
1√
2

(︃
0

v + h

)︃
, H̃ = iτ2H

∗ =
1√
2

(︃
v + h
0

)︃
, (B.6)

fixing the SU(2) indices to k = 0, l = 1. Because we are only interested in charged-
current processes, we do not need to consider the physical Higgs boson h or the neutral
gauge bosons W 3 and B such that the covariant derivative is simply given by

DµL =

(︃
∂µνL − ig2

2

√
2W+

µ eL
∂µeα − ig2

2

√
2W−να

)︃
+O(W 3

µ , Bµ). (B.7)

The relevant parts of the operator can now be written as

OduLLH2D = −v
2

2
CduLLH2D

[︁
dRγ

µuR
]︁ [︃
eCL

(︃
i∂µνL +

g2√
2
eLW

+
µ

)︃]︃
+O(W 3, B, h, ...),

(B.8)

and we will drop the irrelevant parts O(...) from here on, completely. Next, we notice
that the quark current in OduLLH2D is a hermitian conjugate of the currents appearing
in the LEFT basis (c.f. Tables 4.4 and 4.5) and we should correct this difference by
taking the hermitian conjugate

O†duLLH2D =
v2

2
C†duLLH2D [uRγ

µdR]

(︃[︃
i∂µνLe

C
L − g2√

2
eLe

C
LW

−
µ

)︃]︃
=
v2

2
C†duLLH2D [uRγ

µdR]

(︃[︃
eLi∂µν

C
L − g2√

2
eLe

C
LW

−
µ

)︃]︃
. (B.9)

We are now left with two different terms. Let’s focus on the first one as it does not
include any heavy fields. Therefore, we are left with the task of transforming it into
the correct operator basis utilizing our tool-set of field redefinitions, integration by part
(IBP), and general algebra.

First, we notice that the LEFT dimension 7 operators do only involve derivatives of
the type

↔
∂ acting both on the left and right. Let us separate the lepton bilinear into

two equal terms

v2

2
C†duLLH2D [uRγ

µdR]
[︁
eLi∂µν

C
L

]︁
=
v2

2
C†duLLH2D [uRγ

µdR]
1

2

(︁[︁
eLi∂µν

C
L

]︁
+
[︁
eLi∂µν

C
L

]︁)︁
, (B.10)
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and perform an IBP on the second lepton bilinear

v2

4
C†duLLH2D [uRγ

µdR]
(︁[︁
eLi∂µν

C
L

]︁
+
[︁
eLi∂µν

C
L

]︁)︁
=
v2

4
C†duLLH2D

(︃
[uRγ

µdR]
[︂
eLi
↔
∂µν

C
L

]︂
+
[︂
dCRi/∂u

C
R

]︂ [︁
eLν

C
L

]︁
−
[︁
uRi/∂dR

]︁ [︁
eLν

C
L

]︁)︃
. (B.11)

This provides us with the correct expression for the LEFT operator O(7)
V R. However, on

the way we also generated two terms that involve derivatives acting on quark fields /∂dR
and /∂uCR. By performing appropriate field redefinitions of uR and dR we can get rid of
these derivatives and write

v2

4
C†duLLH2D

(︃
[uRγ

µdR]
[︂
eLi
↔
∂µν

C
L

]︂
+
[︂
dCRmuu

C
L

]︂ [︁
eLν

C
L

]︁
− [uRmddL]

[︁
eLν

C
L

]︁)︃
=
v2

4
C†duLLH2D

(︃
[uRγ

µdR]
[︂
eLi
↔
∂νCL

]︂
+mu [uLdR]

[︁
eLν

C
L

]︁
−md [uRdL]

[︁
eLν

C
L

]︁)︃
, (B.12)

where we dropped higher order contributions that arise from the field redefinitions but
do not contribute to 0νββ. Hence, we identify contributions from the first term to the
LEFT operators O(6)

SL,O
(6)
SR and O(6)

V R.
The remaining second term can be matched by integrating out the W -boson. At

tree-level this is simply done by solving the equations of motion for W (c.f. Chapter 3)
giving

− v2g2

2
√
2
C†duLLH2D [uRγ

µdR]
[︁
eLe

C
L

]︁
W−

µ

=
v2g22Vud
4m2

W

C†duLLH2D [uRγ
µdR]

[︁
eLe

C
L

]︁
[uLγµdL]

=VudC
†
duLLH2D [uRγ

µdR]
[︁
eLe

C
L

]︁
[uLγµdL] . (B.13)

Finally, we can combine both terms to find the contributions to the correct LEFT
operators

C
(6)
SL = −mdv

4

4
C†duLLH2D, C

(6)
SR =

muv
4

4
C†duLLH2D, C

(7)
V R =

v5

4
C†duLLH2D,

C
(9)
4L = v5VudC

†
duLLH2D. (B.14)

B.3 Chiral Power Counting and Matching onto O(7)
V L2,V R2

In our main text analysis, we did not include the LEFT operators O(7)
V L2,V R2. Here, we

want to provide the reasoning for this:
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When calculating the SMEFT-to-LEFT matching relations for the SMEFT dimension-
9 operator OdeQLH2D, one finds the following matching contributions

C
(6)
T =

v4me

16
C†deQLH2D, C

(6)
SR =

v4me

8
C†deQLH2D, C

(6)
V L = −v

4md

4
C†deQLH2D,

C
(6)
V R = −v

4mu

4
C†deQLH2D, C

(7)
V R2 = −iv

5

4
C†deQLH2D,

C
(9)
6 = − 5

12
v5VudC

†
deQLH2D, C

(9)
7 = −Vudv5C†deQLH2D. (B.15)

However this is the only matching contribution to any of the two operators O(7)
V L2,V R2

and we may therefore disregard the left-handed operator O(7)
V L2 already. In order to

estimate the relevance of the remaining operator O(7)
V R2 we need to map it onto χPT via

the external field framework. To achieve this and map it onto the external sources
lµ, rµ, s, p, tµν , we need to get rid of the partial derivative acting on the quark fields. The
simplest way to do this is to apply a generalized version of the Gordon decomposition
given by

Ψiγ
µΨj =

1

m

[︂
Ψi

↔
∂µΨj + ∂ν

(︁
Ψiσ

µνΨj

)︁]︂
, m = mi +mj, (B.16)

which is easily derived from the Dirac equations of the two fermions Ψij

Ψi

(︂
iγµ
←
∂µ +mi

)︂
= 0, (iγµ∂µ −mj)Ψj = 0. (B.17)

Thus we find contributions to three different external sources

lµ =
1

v3
τ+C

(7)
V R2md

[︂
eRγµν

C
L

]︂
,

rµ =
1

v3
τ+C

(7)
V R2mu

[︂
eRγµν

C
L

]︂
,

tµνR =
1

v3
τ+C

(7)
V R2

(︃[︂
∂νeRγ

µνCL

]︂
+
[︂
eRγ

µ∂ννCL

]︂)︃
. (B.18)

The first two terms, entering via lµ, rµ, simply give the same contribution as the dimension-
6 vector operators O(6)

V L,V R but with an additional suppression of ϵ2χ due to the small quark
masses. The last term, entering via the tensor field tµνR , only contributes with the NLO
parts of the nuclear currents Jµν

T , Jµ
V , J

µ
A to the relevant 0+ → 0+ transition amplitude,

with each nuclear current providing a suppression proportional to ϵχ. Additionally, we
find a suppression of ϵ2χ stemming from the neutrino momentum in the propagator and
the derivative acting on ν. The contributions proportional to the electron momenta
k ∼ ϵ3χΛχ via the partial derivative acting on eR are similarly suppressed.

In total, the leading contribution of the operator O(7)
V L2 is, therefore, at ϵ4χ and we may

ignore it in comparison to the remaining LEFT operators which enter either via the
Majorana neutrino mass, which is small but of great phenomenological relevance, or at
ϵ2χ

1. In fact, a self-consistent treatment including the operator O(7)
V L2 would require the

inclusion of χPT terms up to NNLO.
1Except for the right-handed vector operator O(6)

V R which contributes at ϵ3χ and, strictly speaking,
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B Matching the Standard Model EFT to the Low-Energy EFT

requires a treatment up to NNLO. However, it is included due to its phenomenological relevance
in connection to left-right symmetric models or other popular scenarios with right-handed vector
interactions.
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