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Abstract

A new era of measurements and tests of the Standard Model of particle physics at the
Large Hadron Collider has been shaped by novel methodologies applied to simulations and
data analysis. Machine learning is leading this revolution with constant and progressive
development of new tools for understanding our data. We have access to techniques that
exploit correlations in high-dimensional phase spaces in a statistically principled way. In
the context of colliders, these techniques not only boost searches for physics beyond the
Standard Model but also improve the already advanced simulation chain. We consider
two obstacles that will be critical for the LHC. We propose fast, accurate, and precise
surrogate models for simulating the detector response, answering the increasing demand
for simulations in the future runs of the LHC. Second, we develop tools for searches of
new physics that do not rely on assumptions of the specific new physics signature These
tools aim to complement the current paradigm of direct tests of extensions of the SM,
which can carry limiting assumptions. We unify these two applications under the lens of
precise density estimation using modern machine learning tools, and we demonstrate the
importance of using powerful representations that leverage our physics knowledge, e.g.
symmetries.

Zusammenfassung

Die Einführung neuer Methoden und Techniken für Simulationen und Datenanalyse
hat eine neue Ära von Tests und Messungen des Standardmodels am Large Hadron
Collider geprägt. Diese Revolution wird dabei vor allem durch das Machine Learning
und dessen ständigen Fortschritt bei der Entwicklung neuer Werkzeuge zum Verständnis
unserer Daten angetrieben. Diese erlauben es uns nun Korrelationen im hochdimen-
sionalen Phasenraum auf statistisch fundierte Weise auszunutzen. Im Kontext von
Teilchenbeschleunigern hilft dies nicht nur bei der Suche nach Physik jenseits des Stan-
dardmodels, sondern verbessert auch die so schon weit fortgeschrittene Simulationskette.
Wir betrachten hier zwei kritische Hürden für den LHC. Zum einen schlagen wir schnelle,
präzise und akkurate, sogenannte Surrogate Models für die Simulation von Detektoref-
fekten vor, um dem steigenden Bedarf an Simulationen am LHC nachzukommen. Zum
anderen entwickeln wir Werkzeuge für die Suche nach neuer Physik, welche unabhängig
von spezifischen Annahmen über dessen Signatur ist. Diese sollen komplementär zum mo-
mentanen Paradigma direkter Suchen nach neuer Physik sein, welche auf einschränkenden
Annahmen beruhen können. Beide diese Anwendungen vereinen wir unter der Nutzung
von Precise Density Estimation mithilfe moderner Machine Learning tools. Hierbei
demonstrieren wir die Stärke von Repräsentationen durch die wir unser physikalisches
Wissen, wie z.B. Symmetrien, effektiv nutzen können.
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CHAPTER 1

Introduction

Our understanding of Nature has advanced considerably since we started studying the
subatomic world. We quickly understood, although not without heated discussions, that
subatomic particles behave differently than the classical mechanics we more commonly
encounter everyday. These observations ultimately gave us quantum field theory (QFT),
a theoretical framework for describing free particles and their interactions. Thanks to
QFT, we have the Standard Model of particle physics (SM). A predictive model that
describes our current understanding of the universe. However, the SM is not perfect
and it does not describe completely what we observe nowadays. As physicists, we aim
to always strive for a better model of Nature and, secretly, to bring down the SM. The
main place where we look for tests of the SM is at particle colliders. Here, collisions
between particles accelerated to a fraction of the speed of light giving access to studies
of the interactions with large amounts of available energy. The leading experiment in
particle physics is the Large Hadron Collider (LHC). Built by the European Organization
for Nuclear Research, it is a 27 km long circular collider that accelerates protons to an
energy of about 7 GeV.

In recent years the machine learning (ML) revolution has been changing society
in every field, including fundamental sciences. In high-energy physics (HEP), ML is
allowing for a more systematic approach to physics questions. The ability to model
high-dimensional spaces and all the correlations between observables gives ML an edge
over previous methods in several tasks, e.g. optimal observables, fast simulators, reduced
assumptions, BSM searches, and uncertainty estimation. All of this by leveraging the
powerful simulators we can access in particle physics. Indeed simulations are a defining
aspect of LHC physics, bridging experiment and fundamental theory and allowing for a
proper interpretation of LHC measurements [7,8]. In this thesis, we want to challenge two
fundamental issues for the future of the LHC. The need for the simulators to match the
collected data poses a computational challenge in the future. We propose fast generators
trained on the expensive simulations to replace the bottleneck in LHC analysis. Secondly,
direct searches of BSM physics from fully characterized theoretical models are limited by
the sheer size of the parameter space. The new physics we are looking for might be hidden
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1 Introduction

in a phase space corner still untouched by our current model-building approaches. A
need of model agnostic searches is therefore needed to complement the standard analysis
pipeline. Here, we look at observables which can boost anomaly searches in a fully
data-driven way, i.e. without the need for simulations. Although seemingly far apart, we
will present methods that bring together these two problems and seal them as two sides
of the same coin from a machine learning point of view.

One development driving faster LHC simulations is the advent of deep generative
networks. Such networks have shown great promise for LHC physics in the past few
years, providing fast and accurate surrogates for simulations in high-dimensional phase
spaces [9]. They learn the underlying probability distribution of events or calorimeter
showers from a reference dataset and then generate new samples based on this learned
distribution [10,11] and we have already seen many successful applications on detector
simulations [12–41]. For LHC physics, it is crucial that these networks are not used
as black boxes, but their performance can be investigated, understood, and improved
systematically [2, 42–46]. In the first part of this thesis, we will focus on the problem
of building fast and accurate surrogate models for detector simulations. In practice, we
consider the bottleneck in simulations, which is the calorimeter response. We approach
the problem from two sides.

First, we will show how impressive speed and accuracy can be achieved with invertible
neural networks (INN) [47–49], a particular version of normalizing flows (NF). Then,
we switch focus and trade the speed for a more accurate description of the physics
with a conditional flow matching (CFM) network for even higher dimensional feature
spaces. However, there are also major challenges with scaling networks up to more
granular (higher-dimensional) detectors [30,31,36,41]. To alleviate the computational
challenges, we also show how a lower-dimensional manifold can be learned by a variational
autoencoder (VAE) and train a generative network in this lower dimensional latent space.

In the second part of the thesis we study the design of observables for beyond the
standard model (BSM) searches reducing the assumptions on the specific physics model.
Motivated by their initial success, ML methods for anomaly detection at the LHC
were developed for tagging anomalous objects [50–59], anomalous events [60–78], or to
enhance search strategies [79–87]. They include a first ATLAS analysis [88], experimental
validation [89,90], applications to heavy-ion collisions [91], the DarkMachines community
challenge [92], and the LHC Olympics 2020 community challenge [93,94]. The techniques
used for this are strongly influenced by developments in modern machine learning.
Autoencoders (AE) are simple tools for anomaly searches, based on a bottleneck in
the mapping of a data representation onto itself. A better-suited definition is based on
low-probability regions in the background phase space distributions [95–99]. However, the
vanilla version of an AE is not a fail-proof proxy for the phase space density because of
an inherent complexity bias. One of the goals of this thesis is to develop an autoencoder
which is a robust anomalous tagger by defining a training strategy which provides a
statistically well-defined density estimate as an anomaly score.

One issue with the density-based approaches [58,100] is that the score is not invariant
under simple transformations in the phase space. This means that a simple re-mapping
of the momenta or coordinates fundamentally changes what the anomaly score is. This
poses the question of how to choose a representation of the data for use in density-based
anomaly detection tasks. Supervised machine learning methods use the idea of a truth
label to optimise the neural networks, usually to classify between data with different
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1 Introduction

truth labels. Unsupervised methods are those which do not require truth labels, instead
optimising a network using a reconstruction loss or a negative log-likelihood, for example.
Self-supervision on the other hand uses ‘pseudo-labels’, labels generated from the data
without knowledge of a truth label, to optimise the networks. In contrastive learning [101],
these labels correspond to a link between an original event and an augmented event. We
define augmentations as some physical modification of the event kinematics.

Contrastive learning uses pseudo-labels to devise an auxiliary task for network opti-
misation through the contrastive loss function. Now the network learns how to process
high-dimensional correlations in the data, and thus the representations learned by these
networks can be very useful for downstream tasks. We introduce a pretraining strategy
using contrastive learning tailored for density-based anomaly searches. It can be applied
to objects reconstructed in an LHC event or to study the substructure in jets. The
underlying idea is to learn a representation to which the underlying physics should be
invariant, e.g. rotations, translations, or general transformations of the data. So the
workflow is as follows; obtain a representation vector for each object in the dataset, then
train an autoencoder on these representations to obtain the anomaly scores.

The thesis is structured as follows. We start with an introduction to the Standard
Model of particle physics and collider physics in Ch. 2. The chapter follows with the role
of simulations in collider phenomenology together with the description of the simulation
chain. The last section gives a high-level overview of an analysis at the LHC. Ch. 3
provides all the necessary background to the ML techniques used in the later chapters,
from the basics of neural networks to the specific implementation of network architectures.
In Ch. 4 we discuss generative networks as fast surrogate models to replace expensive
LHC simulations. The last section is dedicated to the evaluation of generative networks
and their interpretability. The density-based approach to anomaly detection is discussed
in Ch. 5. We present various robust anomaly scores tested on different datasets which are
also invariant under specific transformations. Finally, the conclusions and the prospects
are discussed in Ch. 6.
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CHAPTER 2

Physics at the LHC

Particle physics distinguishes from other physics areas for the profound understanding
of the underlying theory. The Standard Model, given only a handful of parameters,
has descriptive and predictive power. As a consequence, we have access to simulations
unmatched by any other field. The precision and accuracy of our simulations allow for
tests of the theoretical description of nature and the characterization of new physics
effects.

This chapter concisely introduces the theory model used in particle physics and the
colliders phenomenology. It starts with a general description of the Standard Model of
particle physics, followed by the description of the physics in particle collisions together
with their simulations. A dedicated section describes the interaction of particles with
matter. The final section contains the general recipe for discoveries of effects not accounted
for in the SM and future computational shortcomings that are challenged in the later
chapters of this thesis.

2.1 Standard model of particle physics

The Standard Model of particle physics [102–104] is described in terms of quantum
field theory [105], the theory that describes particles as relativistic quantum fields. The
fundamental assumption in our description of nature is the global invariance under
translations and Lorentz transformations, which defines the Poincaré group. In the SM,
each fundamental particle is associated to an irreducible representation of the Poincaré
group. The representation is characterized by its Casimir operators,

p2 = M2 and W 2 = M2S(S + 1), S = 0, 1/2, 1, 3/2 . . . , (2.1)

which implies that the mass and the spin define the particle. For instance a massive
scalar particle is defined by S = 0 and the mass M . We then specify the local symmetries
of a particle by its invariance under a local gauge transformation. The corresponding
gauge group is characterized by the algebra and its generators in different representations.
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2 Physics at the LHC

The SM follows a global invariance under the Poincaré group and a local invariance under
the gauge group:

SU(3) × SU(2)L × U(1) , (2.2)

where SU(N) is the special unitary group of degree N . The SU(3) group describes quan-
tum chromodynamics (QCD), or strong force. The SU(2)L×U(1) component encompasses
the weak sector and quantum electrodynamics (QED). The interactions and the dynamic
of fields is typically described in the Lagrangian formalism which manifestly shows the
Lorentz invariance of the action. The global U(1) gauge invariance is promoted to a
local invariance after introducing gauge fields. These are eight gluonic fields for SU(3)
and four additional gauge bosons for SU(2)L×U(1), the photon, the W bosons, and the
neutral Z boson.

The overall structure of the SM has three families of particles charged under SU(3),
the quarks, and three families of particles interacting in the electroweak sector, the
leptons. Then, there are the 12 Gauge spin-1 particles presented previously and, finally,
the Higgs boson which gives mass to the W and Z bosons by spontaneous symmetry
breaking, namely

Quarks:
(
ui

di

)
L

, uR, dR + c.c

Leptons:
(
νl

l

)
L

, lR, + c.c.

Gauge bosons: γ,W+/−, Z, g,

Higgs boson: H

(2.3)

where i = 1, 2, 3 indicates the quark family, l = e, µ, τ indicates the lepton family, and we
do not explicitly write the charge conjugated particles. In the SM the full Lagrangian
density of nature is summarized as

LSM = Lgauge + Lfermions + LYukawa + LHiggs (2.4)

This very compact representation includes all the particles observed until today and their
interactions. This decomposition separates the dynamic of the fields from the interactions
between them. The terms contain:

• Lgauge includes the kinetic terms of the gauge bosons;

• Lfermions includes the kinetic terms of fermions and the interaction with the gauge
bosons;

• LYukawa, in this term are included the mass terms and the interaction of fermions
with the Higgs boson;

• LHiggs. Lastly, this term contains the dynamic description of the Higgs boson, its
self-interaction, and the interaction with the gauge bosons.

The SM, as presented in Eq. 2.4, has 19 parameters. These are the 9 masses of the
fermions, the Higgs boson mass, 4 parameters which describe the quark flavour mixing
(CKM matrix), a strong CP-violation phase, 3 gauge couplings, and the Higgs vacuum
expectation value.

Although this model has been providing a very precise description of the observed
phenomena, it is known to not accommodate all the experimental observations. The
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Figure 2.1: Summary of total and fiducial cross section measurements for different
production channels at the ATLAS experiment [106].

observation of beyond the Standard Model effects can open the way to a better under-
standing of nature. Among the well-known open questions in the field, from astrophysical
observations we detect the existence of dark matter and dark energy. These two add up
to ' 95% of the total energy of the universe. However, the nature of dark matter has
been eluding the direct and indirect searches and it is still unknown. The observation of
neutrino masses is another missing piece of the SM in which neutrinos are assumed to be
massless. The SM lacks a clear unique mechanism that gives mass to neutrinos. It is also
known that the theory is not valid at the Planck energy scale anymore, where gravitation
effects has to be taken into account. Depending on the point of view, naturalness and
the hierarchy problem can be considered an additional issue of the SM which are studied
in combination with the other open problems.

2.2 Simulations ex machina

This section describes the physics behind a collision in a hadron collider and the simulation
of each step from the first-principle description of the hard scattering to the final
interaction with the particle detector.

2.2.1 Hard scattering

The LHC has slowly turned into a precision machine, allowing for tests of the SM with
exceptional precision. This is possible because, given the free parameters of the SM
that have to be measured, the theory is predictive, i.e. it provides theory estimates of
observables. For instance, Fig. 2.1 shows the cross section, namely the probability for a
certain event to occur, for different processes in the SM. It is clear that the LHC has
been providing high-precision measurements of the SM over many orders of magnitudes.
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2 Physics at the LHC

Taking a closer look, it stems from extremely precise theory predictions which is a rather
unique scenario made possible by a controlled simulation chain.

Starting from the Lagrangian we can calculate a quantity related to the interaction
strength, the cross section. The number of expected events is proportional to the cross
section and thus of primary importance for colliders. Its calculation involves solving a
high-dimensional integrals that might not be easy to compute in practice. Given two
incoming particles and n final states, the differential kinematic phase space region is
written as

dΦ = (2π)4
n∏
i=1

d3pi
(2π)3

1
2Ei

δ(4)(p1 + p2 −
∑
i

pi), (2.5)

where dΦ is the phase space element for on-shell incoming particles p1, p2 and outgoing
particles pi, . . . , pn. The delta function ensures momentum conservation in the scattering
process. The (squared) matrix element |M̄2| contains the information calculable from
first principles in QFT and it expresses the phase space weights of the considered process
as a function of a scalar combination of the four momenta. These pieces are combined to
obtain the differential cross section from

dσ = 1
F

|M̄2|dΦ, (2.6)

and the total cross section as
σ =

∫
dΦ dσ

dΦ (2.7)

where F is the flux factor, the modulo of the difference between the velocities of the two
beams. The generation of events from the hard scattering process is done by sampling,
with Monte Carlo methods, from the normalized differential cross section. Among the
methods that efficiently sample the phase space, we have MG5aMC [107], Pythia8 [108],
and Sherpa [109].

In a proton-proton collider, the scattering is well-described by the collision of two
constituents inside the protons, each one carrying a fraction x of the total momentum.
Given the two interacting partons a and b, the available center-of-mass energy is rescaled
as

s̄ = xaxbs, (2.8)

with the center-of-mass energy s defined by the momentum of the two protons. The
probability of having a particular parton involved in the collision is not analytically
calculable from QFT and it is measured from data. This is called a parton distribution
function (PDF) f(x,Q2) and modifies the cross section for the production of the final
state X at the energy scale Q2 as

σX =
∑
a,b

∫ 1

0
dxadxbfa(xa, Q2)fb(xb, Q2)σab→X . (2.9)

This equation convolves the cross section with the parton distribution function of the
proton fi(xi, Q2), summed over all the partons. The most outstanding methodolgy
that extracts these functions is NNPDF [110] which uses machine learning for accurate
predictions.
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2.2.2 QCD effects

The full description of a QCD hard scattering process is more involved. The calculation
of any cross section has to take into account the emission of additional particles. This is
a consequence of collinear singularities appearing in any calculation with additional final
state quarks or gluons. A general factorization equation for a gluon collinear to a quark
holds [111],

dσ(X → Y + g) = dσ(X → Y )dxdz 1
x

[
αs
2πCF

1 + z2

1 − z
+ O( x

Q2 )
]
. (2.10)

This expression basically says that in the collinear limit we cannot distinguish between
the final state Y and the final state Y + g. The form of the differential cross section
includes a collinear term, written as a function of a variable x singular in the collinear
limit, and a splitting kernel that depends on the fraction of momentum z carried by the
additional particle. This function is one of the QCD splitting kernel,

Pqq(z) = 1 + z2

1 − z
(2.11)

These splitting kernels are universal and are also used in the DGLAP equations to
calculate the evolution of the parton distribution functions from the reference scale to
the one of interest.

As a final result, the hard scattering process is accompanied by radiation of particles
in the initial state (ISR) and in the final state (FSR). These effects are often considered
noise that complicates the observation of the hard scattering process. The simulation of
ISR and FSR exploits this description of a sequence of splittings to generate a parton
shower. The splitting kernel represents the probability for an off-shell q/g emission.
Given a hard scale Q2, the current energy scale t, and the allowed splitting fraction z′, z′′,
the probability of finding a new particle is

P (t) ∝
∫ z′′(t,Q2)

z′(t,Q2)
Pab(z)dz. (2.12)

This equation is used in simulators to calculate the probability of the parton not un-
dergoing a splitting process between the two scales t′, t′′, also known as the Sudakov
factor:

∆a(t′, t′′) = exp

−
∑
b∈q,g

∫ t′′

t′

dt

t

∫ z′′

z′

αS
4π Pab

 . (2.13)

Various implementation of event generators, like Pythia8 [108], Sherpa [109], and
Herwig [112], use this description for the parton showers.

However, particles from QCD cannot be observed directly at our energy scale. This is
a direct consequence of the non-abelian structure of QCD [105,111]. This effect is also
referred to as confinement, i.e. free fundamental particles can only be observed at high
energies. In other words, perturbative QCD only works at high energy and we have to
deal with large non-perturbative effects at the scale ΛQCD ' 1 GeV. The observed final
state is a collimated collection of hadrons referred to as “jets”.

Empirical models explain this last non-perturbative step, also called “hadronization”.
The hadronization process starts from assumptions on the non-perturbative interaction
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between quarks. The most used methods are the Lund string model [113] and the cluster
hadronization model [114]. As an example, in the Lund string model the potential between
quarks increases linearly V (r) ≈ kr with the distance and quarks are pushed further away.
The increasing energy breaks the “string” causing a split which, by color confinement,
produces new color neutral particles. The process is algorithmically implemented in
Pythia8 [108] in a sequantial way. It starts from the initial selection of the size of the
string, to the flavour selection, the pT , and the energy sampling. This short descriptions
serves to remark that these models have several parameters that have to be tuned.
However, a global tuning that fits the data is not possible, which implies a possible model
dependence in studies highly dependent on the hadronization model. We introduce an
example in Sec. 2.3, presenting data-driven strategies that avoid simulation biases.

2.2.3 Interaction with matter

All the particles produced during the process are finally reconstructed by detectors
located around the interaction point. The end-to-end simulation chain also includes
this step and it is largely tied to the interaction of particles with matter. This section
introduces the physics processes in the detector and their simulations, while details on the
detector structure are discussed in Sec. 2.3. Only particles with a long lifetime reach the
detector and interact with matter according to different processes. Among the particle
zoo, eight are the most frequently observed: e+/−, µ+/−, γ, π+/−/0,K+/−,K0, p+/−, n.
The interaction of these particles is grouped as:

• charged electromagnetic interactions: e, µ interact by exciting the material or by
emission of radiation;

• photon interactions: photons undergo photo-electric effect, Compton scattering, or
pair production;

• hadronic interactions: all the other hadrons can directly interact with the nucleus as
well as incur in inelastic scattering. This makes the number of possible interaction
large and difficult to model.

Charged electromagnetic interactions are well described by the Bethe-Bloch formula [115].
It relates the energy loss per unit length dE/dx as a function of the momentum p or,
more often, of the product βγ = p/(Mc). Given a material with atomic number Z,
nuclear number A, charge z, and minimum ionisation potential I, the Bethe-Bloch [116]
function is 〈

dE

dx

〉
∝ z2Z

A

1
β2

[
ln 1

2
2me(cβγ)2Wmax

I2 − β2 − δ(βγ)
2

]
, (2.14)

where me is the electron mass, Wmax is the maximum energy transfer by the particle,
and δ is a corrective function for high-relativistic radiative effects. From this equation we
distinguish three regimes. At high energy electrons and muons interact via Bremsstrahlung
while at lower energies the interaction is dominated by ionization/excitation. An example
of the Bethe-Bloch function is shown in Fig. 2.2 for muons traversing Copper.

The energy loss for photons interacting with matter is equally understood and well
modeled. As a function of the energy, the energy loss is characterized by primarily three
interaction modes. At low energy the cross section is dominated by the photoelectric
effect, i.e. emission of electrons from the material after the absorption of the incoming
photons. At higher energies the incoherent scattering off an electron, or Compton
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Figure 2.2: Bethe-Bloch function for a positively charged muon interacting with
Copper [115]. The mean energy deposition dE/dx in the material divided by
the density gives the mass stopping power here showed as a function of the
energy of the incoming particle

scattering, prevails until the energy threshold of ∼ 1 MeV where the production of an
e+e− pair is possible and quickly takes over the total cross section. The exact dependence
of the cross section as a function of the energy varies with the material. An example for
Z = 6 carbon is shown in Fig. 2.3. Notice that in these interactions, except for Compton
scattering, photons are absorbed hence the interactions are presented in terms of cross
sections instead of energy deposition per unit-length.

Hadrons interactions are more complicated to model because of the vast and complex
range of nuclear interactions that have to be taken into account. A high-energetic
interacting hadron produces charged particles and neutrons at different times and in a
wide energy spectrum of about 1eV . E . 1GeV. Additionally, the emission of photons
introduces an electromagnetic component in the chain of interactions. The interest
of this thesis lays in hadrons of O(1) GeV energy. These particles collide with the
nuclei and likely strongly interact causing nuclear spallation, which cannot be treated
by perturbative QCD. Initially, the incoming hadrons deeply penetrate the nucleus and
induce a nuclear cascade which produces final-state and excited nucleons, charged and
neutral pions, and kaons. A subset of these particles are emitted and keep interacting
with the material while others are absorbed. In a second phase the excited nucleus emits
neutrons, photons, and α particles. High-energetic neutrons mostly undergo elastic and
inelastic scattering. In the latter case, the recoil nucleus, after excitation, emits photons.
Neutrons can also be absorbed by the nucleus with detectable secondary radiation. This
radiation comprises charged particles, photons, neutrons, and even fission products in
materials with high Z. These effects are explained from a combination of nuclear physics
and collected data.

The detailed modeling of electromagnetic and hadronic interactions pertinent to this
thesis is described in the next section. The simulation of all these interactions with
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Figure 2.3: Cross section per atom of photons interacting with Carbon as a
function of the energy of the photon [115].

matter is done again following Monte Carlo techniques. The most used tool in HEP
is Geant4 [117–119], which is a flexible framework for the simulation of any type of
interaction with matter. Geant4 allows for a user-defined detector geometry and list of
interactions that have to be taken into account. Then, given the nuclear information of the
material, the simulator keeps track of all the particles produced in the material together
with their space-time history. As the energy and, consequentially, the number of particles
grow, the simulation in Geant4 can become considerably computationally intensive.
Therefore, detector simulations are considered the limiting factor in the simulation chain.

2.2.4 Calorimeter showers

The typical quantities of interest for particles produced from the hard scattering are
the position and the energy. The measurement of the energy is a destructive process
where the energy is progressively deposited in the material and detected. However, at
the energy frontier, this process is not immediate and new particles are produced from
the interaction. Starting from the electromagnetic interactions, at energies E ≥ 1GeV
the main interaction mechanisms are Bremsstrahlung and pair production. From these
two processes, it is possible to define a simple model for electromagnetic interactions. An
useful quantity used to describe the passage of electrons through matter is the radiation
length X0, defined from nuclear properties of the material and therefore function of Z,
A, and dimensional constants [120].

The radiation length provides the mean distance needed for an electron to reduce its
initial energy by a factor e. For colliders, the definition of X0 is often reformulated in an
approximate way as

X0 = (4αr2
eNA/A)−1

Z(Z + 1) ln(287/
√
Z)

(2.15)

where we defined the fine structure constant α, the electron radius re, and Avogadro’s
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Figure 2.4: Schematic of an electromagnetic shower.

number NA. For simplicity, these constants are usually replaced by their numerical
product as (4αr2

e ∗ NA/A)−1 = 716.4 g cm−2. Following this construction the average
energy loss due to Bremsstrahlung is〈

dE

dx

〉
= − E

X0
(2.16)

and after integrating over the thickness x of the material,

〈E(x) 〉 = E0 e
−x/X0 (2.17)

where E0 is the initial energy. The same quantity is retrieved in the calculation of the
scattering cross section for photons undergoing pair production. The cross section for
high-energetic photons is written as [115]

σpair = 7
9
A

NA

1
X0

, (2.18)

which can be used to described the number of photons in a beam after penetrating the
material as a function of the position x. For an initial number of photons N0, the number
of photons in the beam can be described by

Nγ(x) = N0 exp −7
9
x

X0
. (2.19)

Eq. 2.19 shows that the number of photons is reduced by a factor of e after one interaction
length. From these observations, we expect photons and electrons/positrons to behave
similarly when interacting with matter in the high energy regime, except for small
differences originating from the different nature of the two interactions.

Given these two processes, a simple model for the deposition of energy in a block of
material consists of assuming each particle interacts after 1X0. Following the example
in Fig. 2.4, the originating particle initiates a so-called shower, a cascade of particles of
progressively lower energy. In this simple model, the number of particles at time t(X0) is

N(t) = 2t (2.20)

and, assuming an equal splitting of the energy between the two final state particles, the
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energy at the same step is
E(t) = E0/2t . (2.21)

The showering process continues until the particles reach a critical energy Ec after which
everything is absorbed by either ionisation, Compton, or photoelectric effect. Formally,
the critical energy is defined by the point where the ionization and the radiative energy
loss match: (

dE

dx

)
ionization

=
(
dE

dx

)
radiative

(2.22)

A characteristic of these showers is the typical scaling of the space needed to contain the
shower longitudinally, which in our simple model is

tmax = ln(E0/Ec)
ln 2 (2.23)

Although more realistic simulations describe the data better, the log(E) scaling is
approximately respected which further motivates the usage of energy detectors via the
destructive measurement of the full energy deposition. These instruments are called
calorimeters and further discussed in Sec. 2.3.

Regarding the hadronic interactions, a similar showering process occur inside the
material. However, as already discussed in the previous section, the complexity of the
strong interactions does not allow for a similar theoretically motivated description. It
is possible to define the mean free path λ for a proton or neutron to undergo a nuclear
interaction. Starting from the geometric cross section of a proton interaction with a
material with atomic number A,

σ ∝ A1/3 (2.24)

The mean free path is defined as

λ( g cm2) = 35 g cm2A1/3 (2.25)

Hadronic showers are broader and longer than electromagnetic showers due to the typical
larger mean free path. They include an electromagnetic component from photons radiated
from the nucleus or from π0 decay. Because of the plethora of processes in hadronic
interactions with matter, as described in Sec. 2.2, hadronic showers are modeled with
parametric functions fitted to data.

2.3 Discovering New Physics

In this section, we introduce the general structure of high-energy detectors, the workflow
for the reconstruction and triggering of events, and the summary of the tasks we will
focus on in the rest of the thesis.

2.3.1 Particle detectors

Detectors at the LHC have varying design. The multi-purpose detectors are ATLAS and
CMS, which aim to generally test aspects of the SM and search for BSM effects. Two
other experiments focus on the b quark physics, LHCb, and heavy ion physics, ALICE,
respectively. The structure of a multi-purpose detector, like ATLAS and CMS, has a
cylindrical shape with full coverage in the azimuthal direction immersed in a magnetic
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field. Trackers are the first elements in the detector. Charged particles interact with
the active material leaving tracks used to reconstruct the transverse momentum and
the position of the interaction point. Additionally, the magnetic field curves the tracks
providing information on the particle charge. The next shell detects the energy of the
incoming particles using calorimeters. In the destructive interaction with the material,
particles produce a “calorimeter shower” while depositing energy as described in the
previous section. For several reasons, including cost and general needs, the hadronic
calorimeter (HCal) is separated from the electromagnetic (ECal), therefore resulting in
two calorimetry systems specialized in fully containing both showers. In practice, the
hadrons showering often starts in the ECal leaving a signature that can be matched to an
energy deposition in the HCal. At this stage the only stable particles are muons which
deposit a small amount of energy in the calorimeters and continue towards the muon
chamber. In this final shell, the muon momenta is inferred from the interaction with the
active material.

2.3.2 Reconstruction and triggering

The collection of the information from the different parts of the detector is the key to
high-quality reconstruction of the particles of a collision event. A crucial step in the
analysis chain consist of summarizing the information contained in the O(10000) readout
channels into a handful of particles that originate from the interaction point. An electron
is defined by a charged track matched to an energy cluster in the ECal. An energy cluster
in the ECal, without any associated track, defines a photon. Both selections also have to
fulfill an isolation criterion. The collimated spray of final-state particles coming from the
showering and hadronization of colour charged particles is reconstructed as a “jet”. A jet
requires energy deposition in both the ECal and the HCal, however the definition of the
constituents inside the jet depends on the reconstruction algorithm. Sequential clustering
algorithms are often used for jets reconstruction. These algorithms define a distance
measure between constituents and iteratively group them under a distance condition.
The distance is calculated, given a radius parameter R, as

dij = min(pnTi, pnTj)
R2
ij

R2 (2.26)

diB = pnTi (2.27)

where n is defined by the clustering algorithms, and diB is the pT distance from the
beam axis. Typical choices are n = 0, 2,−2, respectively the Cambridge/Aachen, kT , and
anti-kT algorithms. The distance between constituents, defined as Rij , is calculated in
the (η, φ) plane as

R2
ij = (ηi − ηj)2 + (φi − φj)2 . (2.28)

The two constituents are clustered if dij < diB. This process continues until all particles
are clustered or a fixed number of jets is found. Finally, a charged track in the muon
chamber defines a muon. This is usually a clean signature because all the other particles
have already been stopped by the detector. The combined, more refined, information
from the entire detector improves the reconstruction of candidates. An example of such
approach is Particle Flow [121,122], used by CMS and ATLAS. After reconstructing all
the objects, it is possible to define the amount of missing energy from energy-momentum
conservation and its direction. The presence of neutrinos, which do not interact with the
detector, can be inferred from the missing energy as well.
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The rate at which collision happen of 40 MHz poses constraints on the timing
for the online reconstruction of events as well as the overall number of stored events.
Therefore, the storage system at the LHC is provided with a multi-level triggering system.
Considering the CMS experiment as an example, the first trigger system (L1) reduces the
output rate from 40 MHz to ∼ 100 kHz. This system is hardware-based and it performs
a selection of interesting events based on an hand-crafted triggering menu. The event
composed of coarsely reconstructed electrons, muons, and jets passes the trigger if it
fulfills particular kinematics or multiplicity conditions. The second trigger (HLT) is
software-based and exploits all the information, including tracking information, collected
in the detector for a more precise reconstruction. Here, the data stream is further reduced
from ∼100 kHz to about 1 kHz and then saved for future analysis.

2.3.3 Physics analysis

One of the achievements of the LHC is the discovery of the Higgs boson in 2012 [123,124].
The procedure from collected raw data to the final hypothesis test is quite involved and
requires a deep understanding of the experimental conditions, the simulations, and the
underlying physics. In a standard analysis, a signal hypothesis is formulated based on
model assumptions. Then, the search space is optimized to maximize the ratio between
signal and background. This phase includes defining the fiducial region with kinematic
cuts restricting to the interesting phase space regions with well-behaving detector response.
Accurate simulations of the BSM scenario are compared to the collected data in the
selected observables and, in the frequentist approach, a likelihood-ratio test provides
the summary statistic for the background only H0 versus background plus signal H1
hypothesis. If the alternative hypothesis is rejected, the analysis provides limits on
parameters of the signal model, e.g. the mass of a new particle. The extraordinary
accurate modeling of the SM, together with precise measurements, allows not only for
searches of new particles but also for consistency checks of our understanding of the SM.

However, at different levels there are assumptions which can obstacle the observation
of BSM effects. Already at the L1 trigger level the hand-crafted menu might be limited
by what physicist find interesting and completely mask out BSM physics. Similarly,
the number of models which people can design is limited compared to Nature and the
answer might be that we are looking in the wrong place. Both aspects advocate for
more model agnostic approaches that sacrifice sensitivity to specific signal in favor of
coverage. Having access to data, this can be done in a fully data-driven way without any
dependence on differences between data and simulations.

2.3.4 Goals

This thesis proposes to enhance aspects of analysis at colliders. Looking at the future
of the LHC, the increase in luminosity for the High Luminosity-LHC (HL-LHC) will
require a steep increase in the number of simulations which comes with an increase
in computational costs which are currently above the budget. Simulating the detector
response is the most expensive part of the simulation and Ch. 4 discusses how to provide
fast, accurate, and precise detector simulations. Regarding model agnostic searches, Ch. 5
includes results on unsupervised ML methods for data-driven searches and techniques to
define powerful observables that respect symmetries of the data. The next chapter shows
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how these two problems are brought together by machine learning and can be formulated
as similar tasks, i.e. density estimation of high-dimensional phase spaces.
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CHAPTER 3

Machine learning

The large amount of data available at the LHC opens the avenue to the development of
methods and tools based on machine learning techniques. Paired with powerful simulators
which provide labeled data, we have an ideal framework for ML to shine. Indeed the
usage of ML is becoming ubiquitous in HEP, from classification of jets [125, 126], to
unsupervised searches [127,128], and applications of generative networks [11,129].

This section provides some background on the neural networks (NN) used in this
thesis. Sec. 3.1 starts with the training strategy of these networks. Then, in Sec. 3.2 we
describe the details of three applications of modern machine learning, i.e. classification,
generation, and representation learning. Finally, we focus on the specific architectures in
Sec. 3.3.

3.1 Deep learning basics

From our point of view, a NN is a high-dimensional parameterization which can represent
a large family of functions, and the training process is nothing more than a procedure to
find the best fitting parameters. The fundamental units, the “neurons”, constitute the
layers in the NN and different implicit biases can be enforced by the specific architecture.
Here, we start with the basics of defining a NN and its training methodology.

3.1.1 Fully connected networks

The simplest building block of many networks is a fully connected layers. Given an input
x ∈ Rdx , the layer applies a linear transformation with a weight matrix W ∈ Rdx×dy and
a bias vector b ∈ Rdy as learnable parameters to give the output y ∈ Rdy . The extension
to more complex functions follows from the introduction of a non-linearity σ applied to
the output as

y = σ(Wx+ b) . (3.1)
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It has been shown that a neural network with a hidden layer of infinite width can
approximate any continuous function [130, 131]. Typical choices for the non-linear
function are part of the Rectified Linear Unit family, e.g.

ReLU =
{
x x > 0
0 x ≤ 0

, (3.2)

LeakyReLU =
{
x x > 0
αx x ≤ 0

(3.3)

Swish = xσ(x) (3.4)

where σ is the sigmoid function

σ(x) = 1
1 + e−x . (3.5)

There are cases where we prefer to have a bounded output from the network, typically to
have a probabilistic interpretation of the output. In these scenarios a typical choice is
the sigmoid function defined in Eq. (3.5) or a rescaled version of it.

3.1.2 Loss function and training

Once we define the network that approximates the function, we need to define a strategy
to optimize its parameters. The common approach leverages highly efficient packages for
gradients calculations to minimize a loss function with respect to the network parameters.
The choice of the loss depends on the specific problem. As an example, suppose we
have a regression problem where, given a set of inputs x, we want to predict a single
output f(x). We approximate the function with a neural network fθ(x) with learnable
parameters θ. A naive loss function for this problem is the mean squared error (MSE)
loss

L =
〈
||f(x) − fθ(x)||L2

〉
pdata

. (3.6)

The loss function in Eq. (3.6) is estimated on the phase space points by using training
data that describes the function f(x), i.e. we have labeled data (x, f(x)) available.
During training the loss is evaluated sampling from the training distribution pdata. The
training that makes use of labels is called “supervised”, while the completely label-free
counterpart is called “unsupervised”.

The backpropagation algorithm [132] allows for the computation of the derivative of
the loss with respect to all the network parameters θ. With this information the network
is updated, from step t to t+ 1, in the direction that minimizes the loss

θt+1
i = θti − λ

∂L
∂θti

. (3.7)

The parameter λ is called “learning rate” and, in its simplest form, is a scalar value
that changes the size of the update step. In more complicated training algorithms,
λ is not constant during training and it differs for each weight. An example is the
OneCycleLR [133] where, after a warm-up period, λ follows a cosine annealing policy.
The Gradient Descent (GD) method in Eq. (3.7) is a relatively standard technique which
has been improved in more recent methods, like the Adam [134] or the AdamW [135].
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However, this minimization procedure can end up in one of the local minima of the
loss landscape and provide a sub-optimal solution. A practical solution to this problem is
to introduce a noisy version of the update that can more easily explore the loss landscape.
A stochastic version of the update rule, which considers M batches of the training dataset,
can ameliorate this problem. Therefore, we split the loss as

Lbatches = 1
M

M∑
i=1

Li . (3.8)

and update the network parameters after each batch.

The next section describes three particular problems that can be solved by ML.
Meanwhile we also describe a theoretical founded approach to derive an optimal loss
function.

3.2 The Mexican standoff

There is a common categorization of neural networks based on their outputs. In a
classification problem the output is a probability score, while in a generative task the
network provides a density estimate as well as the possibility of sampling new datapoints
from the phase space distribution. A third aspect is the automated learning of new data
representations which are compact and more data efficient. We consider the unsupervised
learning of the data manifold and the explicit learning of known symmetries as an
example.

However, the distinction between these classes is fluid and more involved methods
may combine the different approaches. Here, we introduce the theory of the networks
that are used in Ch. 4 and Ch. 5.

3.2.1 Classification

For pedagogical reasons, we start by describing classifiers. Suppose we have two probability
distributions p0(x) and p1(x) and a dataset X. A two-hypothesis test has a null hypothesis
H0, which states that the data is sampled from the distribution p0 and the alternative
H1, which contrarily assumes that data is sampled from p1. For a simple hypothesis the
best summary statistic exists and it is the likelihood ratio

L(X) = p0(X)
p1(X) (3.9)

Formally, the Neyman-Pearson lemma [136] proves that, given a significance level α for
H0, the likelihood ratio is the most powerful test statistic. This means that the test
maximizes the probability of rejecting H0 when H1 is true, i.e. its power.

By an accurate choice of loss function, we can approximate L(x) with a neural network
C(x). Given the two distributions p0 and p1, and the labels y ∈ {0, 1}, the minimization
of the binary cross-entropy loss function

Lcls = −〈logC(x)〉p0 − 〈log(1 − C(x))〉p1 (3.10)
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provides a NN which converges to the likelihood ratio. This can be easily derived using
functional derivatives. We can calculate the exact minimum of the loss as

0 != δL
δC

(3.11)

= p0
C

− p1
1 − C

(3.12)

= (1 − C)p0 − Cp1 (3.13)

⇒ C(x) = p0
p0 + p1

(x) (3.14)

where we omitted the x dependence. From Eq. (3.14) we can define a weight per phase
space point as

w(x) = p0
p1

(x) = C

1 − C
(x) (3.15)

In Sec. 4.5 we will see the importance of this quantity to reweight distribution and, in
particular, to the systematic understanding of generative networks.

The binary cross-entropy loss is implemented by applying the sigmoid function defined
in Eq. (3.5) to the final layer of the network. Other choices are possible [137] but,
although they should converge to the same quantity, are less numerically stable.

3.2.2 Generation

Unlike classification, the aim of a generative network is to reproduce the distribution
pdata encoded in the training data. For instance, if the data is the result of a forward
model, the generative network will be a surrogate model for that forward process. The
two approaches of interest involve estimating the density of the distribution. This is
useful not only for generating new data but also for studying out-of-distribution (OOD)
detection. We distinguish between networks which define a transformation between two
distributions, we refer to these as “flow networks”, and cases where the network directly
predicts a likelihood.

The training has foundations in statistical physics. The ideal loss function for this
task would be a measure of the distance between the network and the data distribution
that is zero when the two distributions match exactly. The f -divergence f(t) = t log t,
although not a distance measure in the mathematical sense, is often the basic recipe for
a loss function, the Kullback-Leibler (KL) divergence. The KL-divergence is defined as

KL(pdata(x)|pθ(x)) =
∫
pdata(x) log

(
pdata(x)
pθ(x)

)
dx , (3.16)

which is positive definite and zero if pθ = pdata. Starting from Eq. (3.16), we can derive
the negative log-likelihood (NLL) loss function:

L = KL(pdata(x)|pθ(x)) (3.17)

=
∫

dx pdata(x) log pdata(x) −
∫
dx pdata(x) log pθ(x) (3.18)

= −
∫

dx pdata(x) log pθ(x) + c (3.19)

= −〈 log pθ(x) 〉pdata + c , (3.20)
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where c is a constant that does not depend on the network parameters θ. An unbiased
estimator of the loss is the Monte Carlo average, i.e.

L ≈ − 1
N

N∑
i=1

log pθ(xi) , (3.21)

with N random samples from the training dataset and where we drop the constant term
c.

Flows

The flows used in this thesis are mappings between two spaces with the same dimension-
ality. The important equation for flow architectures is the change of variable formula.
Defining the invertible transformation G and its inverse Ḡ as

Gθ(x) : x → z (3.22)
Ḡθ(z) : z → x x, z ∈ Rd , (3.23)

the change of variable formula defines a bijective mapping from the data space x to the
latent space z as as

plat(z) = pθ(Gθ(x))
∣∣∣∣∂Gθ(z)∂z

∣∣∣∣ (3.24)

If we invert Eq. (3.24) and we take the negative logarithm of the network distribution,
we obtain again the KL loss of Eq. (3.20). Then, the definition of the flow loss function
is the negative log-likelihood

LF = −〈 log pθ(x) 〉pdata

= −
〈

log plat(Ḡ(x)) + log
∣∣∣∣∣∂Ḡ∂x

∣∣∣∣∣ 〉pdata
. (3.25)

For a standard Gaussian latent distribution the first term of Eq. (3.25) is

− log plat(z) = log(
√

2π) + z2

2 . (3.26)

As showed in the previous section, the loss in Eq. (3.25) is minimized if pθ = pdata. After
training, when the approximate solution is found, the network gives access to a way of
estimating the likelihood via the forward pass. If we choose a tractable latent distribution
like in Eq. (3.26), we can easily generate new samples by sampling z from the latent space
distribution plat(z) and use the inverse mapping to obtain new samples in the data space.
The modeling of the data distribution is extended to the conditional case by introducing
the additional information as a condition to the transformation:

LcF = −〈log plat(Ḡ(x; c)) + log
∣∣∣∣∣∂Ḡ(x; c)

∂x

∣∣∣∣∣〉pdata . (3.27)

The simple formalism of such neural network faces a few constraints. First, the
Jacobian and its inverse have to exist, meaning that only invertible transformations are
applicable. Second, the computation of the Jacobian has to be fast enough to allow
multiple model evaluations resulting in a reasonable training time. This limits the choices
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in the architecture and introduces a trade-off between expressivity and speed that has to
be taken into account. The implementation details of these networks are discussed in
Sec. 3.3.

Energy-based networks

Energy-based models (EBM) are a class of probability density estimation models appealing
for their flexibility. They are defined through a normalizable energy function, which is
minimized during training. This energy function can be chosen as any non-linear function
mapping a point to a scalar value [138],

Eθ(x) : RD → R , (3.28)

where D is the dimensionality of the phase space. The EBM uses this energy function to
define a probabilistic loss, assuming a Boltzmann or Gibbs distribution as its probability
density over phase space,

pθ(x) = e−Eθ(x)

Zθ
with Zθ =

∫
x

dxe−Eθ(x) , (3.29)

where we defined the partition function Zθ. We omit an explicit scaling of the energy by
a temperature or some other constant in this formula. The main feature of a Boltzmann
distribution is that low-energy states have the highest probability. The EBM loss is the
negative logarithmic probability evaluated as a likelihood over the model parameters,

L(x) = − log pθ(x) = Eθ(x) + logZθ
⇒ L =

〈
Eθ(x) + logZθ

〉
pdata

, (3.30)

where we define the total loss as the expectation over the per-sample loss. The difference
to typical likelihood losses is that the second, normalization term is unknown.

To train the network we want to minimize the loss in Eq. (3.30), so we have to compute
its gradient,

∇θL(x) = −∇θ log pθ(x) (3.31)
= ∇θEθ(x) + ∇θ logZθ

= ∇θEθ(x) + 1
Zθ

∇θ

∫
x

dxe−Eθ(x)

= ∇θEθ(x) −
∫
x

dxe
−Eθ(x)

Zθ
∇θEθ(x)

= ∇θEθ(x) −
〈
∇θEθ(x)

〉
x∼pθ

. (3.32)

The first term in this expression can be obtained using automatic differentiation from
the training sample, while the second term is intractable and must be approximated.
Computing the expectation value over pdata(x) allows us to rewrite the gradient of the
loss as the difference of two energy gradients〈

∇θL(x)
〉
x∼pdata

=
〈
−∇θ log pθ(x)

〉
x∼pdata

(3.33)

=
〈
∇θEθ(x)

〉
x∼pdata

−
〈
∇θEθ(x)

〉
x∼pθ

. (3.34)
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The first term samples from the training data, the second from the model. According to
the sign of the energy in the loss function, the contribution from the training dataset is
referred to as positive energy and the contribution from the model as negative energy.
One way to look at the second term is as a normalization which ensures that L = 0 for
pθ(x) = pdata(x). Another way is to view it as inducing a structure for the minimization
of the likelihood.

One practical way of sampling from pθ(x) is to use Markov-chain Monte Carlo (MCMC).
We use Langevin Markov chains (LMC), where the steps are defined by drifting a random
walk towards high probability points according to

xt+1 = xt + λx∇x log pθ(x) + σxεt with εt ∼ N0,1 . (3.35)

Here, λ is the step size and σ the noise standard deviation. When 2λ = σ2 the equation
resembles Brownian motion and gives exact samples from pθ(x) in the limit of t → +∞
and σ → 0.

For ML applications, the high dimensionality of the data makes it difficult to cover
the entire physics space x with Markov chains of reasonable length. For this reason, it
is common to use shorter chains and to choose λ and σ to place more weight on the
gradient term than on the noise term. If 2λ 6= σ2, this is equivalent to sampling from the
distribution at a different temperature defined as

T = σ2

2λ , (3.36)

where σ and λ have been previously defined in Eq. (3.35). By upweighting λ or down-
weighting σ we are effectively sampling from the distribution at a low temperature,
thereby converging more quickly to the modes of the distribution.

By inspecting the expectation value of the loss in the form of Eq. (3.34), we can
identify the training as a minmax problem, where we minimize the energy of the training
samples and maximize the energy of the MCMC samples. This means that the energy of
training data points is pushed downwards. At the same time the energy of Markov chains
sampled from the energy model distribution will be pushed upwards. For instance, if pθ(x)
reproduces pdata(x) over most of the phase space x, but pθ(x) includes an additional mode,
its phase space region will be assigned large values of Eθ(x) through the minimization
of the loss. This way, all modes present in the energy model distribution but missing
from the training distribution pdata will be suppressed. This process of adjusting the
energy continues until the model reaches the equilibrium in which the model distribution
is identical to the training data distribution.

Despite the well-defined algorithm, training EBMs is difficult due to instabilities
arising from (i) the minmax optimization, with similar dynamics to balancing a generator
and discriminator in a generative adversarial network; (ii) potentially biased sampling
from the MCMC due to a low effective temperature; and (iii) instabilities in the LMC
chains. Altogether, stabilizing the training during its different phases requires serious
effort.
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3.2.3 Representation learning

The final part concerns the definition of representations suitable for either classification
or generation purposes. A practical way of approaching the problem is the definition
of pre-processing steps hand-crafted to the specific data and often physically not well-
motivated. The alternative approach consist of defining a pseudo-task which we use
as training objective. For a bijective transformation, a new representation can be seen
intuitively as a variable transformation following again Eq. (3.24). This means that a
proper choice of the Jacobian can ease the learning process of the target density.

The two examples relevant for this thesis are concerned with high-dimensional data.
In the first approach we assume that the data lives on a much smaller manifold which we
learn in an completely unsupervised way. The second example instead learns approximate
known symmetries in the data in a self-supervised approach.

Autoencoders

AEs are the simplest tools for unsupervised representation learning. It is defined as
two-module function that maps an input to its reconstruction using an encoder-decoder
structure,

fθ(x) : Rdx −→ Rdz (3.37)
gφ(z) : Rdz −→ Rdx , (3.38)

where the dimensionality of the latent space dz is smaller than input space dx. The encoder
fθ and the decoder gφ are two neural networks with generally uncoupled parameters θ
and φ. The training minimizes the difference between the original input and its mapping.
A typical choice for the loss function is the MSE of this reconstruction, as defined in
Eq. (3.6). While minimizing the reconstruction error, the network encodes the important
information in the latent space. For high-dimensional datasets it can be the real manifold
of the data, if the latent space is large enough, or the most prominent features of the
training data in case of a very small latent space.

One of the original application of autoencoders in particle physics is anomaly de-
tection [139]. An autoencoder trained on a background dominated sample encodes
information only relevant to its reconstruction. This means that OOD samples are likely
to have large reconstruction error and are, therefore, in the tail of the MSE distribution.
Following this observation, the reconstruction error s(x) can be used as an anomaly score
which defines the OOD region,

OOD :
{
x ∈ Rdx |s(x) > τ

}
, (3.39)

with a sensitive choice of the threshold τ . However, any transformation of the background
distribution can change the definition of anomalies [100] and a motivated transformation
is presented in Ch. 5.

This definition a vanilla AE is not a probabilistic model, since a small reconstruction
error does not correspond to a large likelihood. A common way to promote the AE to
a probabilistic model is the introduction of a latent prior distribution and a likelihood
assumption for the decoder, like in the variational autoencoder. In a VAE we introduce
a latent variable z and we assume to describe the true posterior distribution pθ(z|x)
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with a variational approximation qφ(z|x), i.e. the encoder. If we try to minimize the
KL-divergence between the two distribution, we obtain

KL(qφ(z|x)|pθ(z|x)) = −〈 log(pθ(x)) 〉qφ(z|x) +
〈

log pθ(x, z)
qφ(z|x)

〉
qφ(z|x)

. (3.40)

Even if the NLL is intractable, we can minimize the latter term. In fact the positivity of
the KL-divergence, ensures that this is a lower bound of the NLL and therefore called
the Evidence Lower Bound (ELBO) loss,

LELBO =
〈

log pθ(x, z)
qφ(z|x)

〉
qφ(z|x)

(3.41)

= 〈 log pθ(x|z) 〉qφ(z|x) + KL(qφ(z|x)|pθ(z)) (3.42)

The first term minimizes the conditional likelihood of the decoder, while the second is
a regularization term that pushes the latent distribution to a prior distribution. If we
assume a Gaussian latent prior with fixed diagonal standard deviation and we add a
weight β between the two components of the loss, we obtain the β-VAE [140]. Although
this can be seen as a generative model, the quality of the samples is nowadays far from
more modern architectures. Therefore, we will use the β-VAE as a regularization term to
learn a smooth and compact latent representation of high-dimensional sparse data. An
alternative likelihood-based approach that reduces the latent space assumptions inherits
from energy-based networks and is discussed in Ch. 5.

Contrastive learning

The contrastive learning (CLR) of visual representations [101] framework showed how to
learn representations imposing approximate invariance under specified transformations.
The alternative approach directly enforces the invariance in the network. For instance,
many networks in particle physics revolve around Lorentz invariance or equivariance [126,
141,142]. However, this is not always possible and a more general approach augments
the data to learn an approximate symmetry during training. CLR follows the latter by
introducing these elements:

• a latent space z, the representation space;

• a set of transformations (or augmentations) we want to apply to the training data.
We want to be invariant under these tranformations;

• pseudo-labels used during training to specify if two points should be mapped to
the same representation;

• a compact distance measure in the latent space;

• a loss function that forces invariance and uniformity of the representations.

This time we only need an encoder neural network f ,

fθ(x) : Rdx −→ Rdz , (3.43)

where the dimensionality of the representation space can now also be larger than the
original space. The pseudo-labels we define during training are positive and negative
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pairs,

positive pairs:
{
(xi, x′

i)
}N
i=1

negative pairs:
{

(xi, xj) ∪ (xi, x′
j)
}N
i,j=1,i 6=j

, (3.44)

where the primed objects are transformed with the set of augmentations. The positive
pair only considers the object with its augmented version. Instead, the negative pairs
relate two different objects with and without the application of the augmentations. The
distance measure we use for each pair is the cosine similarity, defined as

s(zi, zj) = cos θij
‖zi‖‖zj‖

, (3.45)

where θij is the angle between the two vectors in the representation space. The cosine
similarity measures the distance between points in a compact latent space z ∈ Sdz−1. On
the hyper-sphere maximizing the distance between pairs leads to a uniform distribution,
i.e. it is not possible to separate two representation by increasing the norm of the vector.

Finally, the CLR loss function is designed to minimize the distance between positive
pairs and maximize it for negative pairs, after mapping them to the representation space.
These two terms, also called alignment and uniformity, are defined as

Lalign = 〈s(zi, z′
i)/τ〉pdata (3.46)

Lunif = 〈log
∑
j 6=i

e(−s(zi,zj)/τ) + e(−s(zi,z′
j)/τ)〉pdata , (3.47)

where τ is a temperature hyper-parameter. Combining the two terms in a single loss, we
obtain the CLR loss function

LCLR = −Lalign + Lunif

= − log exp(s(zi, z′
i)/τ)∑

j 6=i exp(s(zi, zj)/τ) + exp(s(zi, z′
j)/τ) , (3.48)

Notice that the numerator is minimized if s(zi, z′
i) = 1, i.e. the representations of the two

points zi and z′
i are identical on the hyper-sphere. To keep the representation informative,

this is coupled with the uniformity loss. The final solution will be approximately invariant
under the applied transformations. We extend this framework to anomaly detection in
Ch. 5.

3.3 Architectures

Each model presented in the previous section can be implemented in multiple ways,
imposing different inductive biases on the learnable family of functions. In this section,
we describe the details of the architectures used in the later chapters.
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3.3.1 Normalizing flows

The naive implementation of a normalizing flow, using the loss function in Eq. (3.25),
has several limitations we have to account for. The first problem is the scalability
of the computation of the Jacobian of the transformation. A complete general flow
architecture has a O(N3) computational scaling which makes the training unfeasible for
high-dimensional problems. This is the case for our applications and we present a design
choice that solve this issue. Secondly, we still have to specify a fully invertible neural
network needed for the bijective mapping.

Affine coupling blocks We reduce the computational cost of the Jacobian with coupling
blocks. In a coupling block the D dimensional input vector x is transformed as:{

yi = xi i ∈ 1, . . . , d
yi = fθ(xi|x1, . . . , xd) i ∈ d+ 1, . . . , D,

(3.49)

where d = D/2 is a standard splitting choice. The peculiar property of Eq. (3.49) is its
expression of the Jacobian,

∂y

∂x
=
(
I ( 6= 0)
0 ∂yi

∂xi

)
(3.50)

which is a triangular matrix with determinant given by the product of the diagonal
elements. This transformation introduces limitations on the expressivity of the network
but it also reduces the scaling to a O(N) operations. We will refer to this networks as
invertible neural networks (INN) [143] or coupling block networks [144].

It is left to define an invertible transformation. The affine transformation

yi = xisθi + tθi (3.51)

fulfills this role. Indeed, given the features y, it is possible to retrieve the original
inputs x. The parameters s, t are predicted by a neural network which can be a simple,
non-invertible, stack of linear layers with non-linearities. A clear issue, which stems from
this formulation, is that a subset of the features is unchanged. This is solved by stacking
a fixed number T of coupling blocks, each one followed by a permutation of the input
vector. The original loss function is therefore modified to

LINN = 〈− log pθ(x)〉pdata (3.52)

= 〈− log plat(gT ◦ . . . ◦ g0(x))〉pdata +
〈 T∑

i

log
∣∣∣∣∂gi∂x

∣∣∣∣〉
pdata

, (3.53)

where we recognize Ḡ(x) = gT ◦ . . . ◦ g0, now a composition of the T transformations
g0, . . . , gT . Additionally, a deeper network can also improve the density estimate of the
phase space point by sequentially transforming the distribution to the desired latent
space instead of having one single step. Among the permutations used between the
blocks, a random permutation defined at the initialization stage is a standard choice.
Other possibilities are a flip of the two subvectors [144], rotations [143], or learnable
permutations [145].
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An alternative approach is the masked autoregressive flow (MAF) [146], which predicts
the output vector according to

p(x, t) = p(x0)p(x1|x0) . . . p(xD|x0, . . . , xD−1) (3.54)

However, this approach has a slow sampling process due to the additional number of
network evaluations needed in the inverse pass. Proposed alternatives have fast sampling
but slow training, the inverse autoregressive flow (IAF) [147], or require an additional
teacher-student distillation process where a fast student network is trained to ad-hoc
reproduce the teacher density estimate [23].

Neural spline flows A considerably more expressive invertible transformation for a
coupling block normalizing flow is a spline parameterization. Assuming that we want to
define a spline in the interval [0, 1], a neural network predicts the heights, widths, and
derivatives of K predetermined bins. These are processed with a Softmax function to
ensure the correct normalization. From the [0, 1] window it is possible to rescale the
function to cover a different interval [a, b]. Outside the spline we apply a linear function.
The two spline transformations we will use in Ch. 4 are rational quadratic splines [148],
and cubic splines [149]. The rational quadratic spline fits in each bin a function

fk(ξ) = αk0ξ
2 + αk1ξ(1 − ξ) + αk2ξ

2

βk0ξ2 + βk1ξ(1 − ξ) + βk2ξ2 , (3.55)

while the cubic spline fits the polynomial of order three

gk(ζ) = δk0 + δk1ζ + δk2ζ
2 + δk3ζ

3 . (3.56)

The detail of the parameterizations, including the calculation of the inverse and the
Jacobians, can be found in the respective references.

3.3.2 Transformers

The key aspect of transformers is the attention mechanism. This operation builds weights
based on the importance between a query and a key vector. These weights are then
used to transform the input similarly to the change of basis formula. Mathematically, we
construct the self-attention in which the queries and vectors are all obtained from the
input vector. The prediction of the prefactors ai depends on learnable weights according
to

x′
i =

Nc∑
j=1

ajvj

=
Nc∑
j=1

Softmaxj

(
(WQxi) · (WKxj)√

dz

)
W V xj , (3.57)

where WQ and WK are learnable matrices used to construct the query WQx and the
key WKx, and dz is a normalization factor equal to the dimensionality of the query xi.
The matrix W V is also a learnable matrix used to define the value vector W V x. The
Softmax operation ensures that the aj are a set of properly normalized weights, also
called attention weights, which are applied to the value vector vj . This is often referred to
as a single-head self-attention. The multi-head operation simply splits the self-attention
into separate learnable weight matrices over the input features dimension.
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3.3.3 Conditional Flow Matching

A limitation of the normalizing flow architecture is the finite number of transformations
we can apply to the base distribution. A conditional flow matching (CFM) model can be
seen as an extension of a normalizing flow with a continuous evolution encoded in the
time variable t. It starts with the ordinary differential equation (ODE)

dx(t)
dt = v(x(t), t) with x ∈ Rd , (3.58)

and a velocity field v(x(t), t) ∈ Rd. This time evolution is related to the underlying
density through the continuity equation

∂p(x, t)
∂t

+ ∇x [p(x, t)v(x, t)] = 0 . (3.59)

Our aim is to find a velocity field that transforms the density p(x, t) such that

p(x, t) →
{

N (x; 0, 1) t → 1
pdata(x) t → 0 .

(3.60)

We estimate the velocity field with vφ(x(t), t), a neural network. For our purposes, we
can sample the data distribution from Gaussian random numbers, tracing the trajectory
using any ODE solver. We can train this network with a simple MSE loss,

L = ||v(x, t) − vφ(x, t)||L2 (3.61)

Defining the training trajectories to be linear, the conditional path for an initial point x0
is

x(t|x0) = (1 − t)x0 + tε ε ∼ N (0, 1) (3.62)

Then, we can define the velocity field v(x, t) as [129]

v(x, t) =
∫

dx0
v(x, t|x0) p(x, t|x0) pdata(x))

p(x, t) , (3.63)

where p(x, t|x0) = N (x; (1 − t)x0, t). With this definition, we write the final loss function,
where we have to sample from the training data, the time t ∈ U(0, 1) and the latent noise
ε ∼ N (0, 1):

LCFM =
〈[
vφ((1 − t)x0 + tε, t) − dx(t|x0)

dt

]2〉
U(0,1),N , pdata

(3.64)

=
〈

[vφ((1 − t)x0 + tε, t) − (ε− x0)]2
〉
U(0,1),N , pdata

. (3.65)

Similarly to the conditional normalizing flow, conditional probability distributions can
be learned by allowing vφ to depend on additional inputs. After training, the sampling
procedure requires solving the ODE from t = 1 to t = 0 using the learned velocity field
vφ,

x(t = 0) = x(t = 1) −
∫ 1

0
vφ(x, t)dx . (3.66)
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CHAPTER 4

Fast detector simulations

The content of this chapter was finalized in collaboration with Ranit Das, Florian Ernst,
Theo Heimel, Claudius Krause, Ayodele Ore, Sofia Palacios Schweitzer, Tilman Plehn,
and David Shih.

In the development of the LHC as a precision-hadron collider, the detector simulation
has become a major limitation in terms of speed and precision. In particular, reproducing
the interactions of the incident particles with the calorimeters and all the secondary
interactions is the slowest step of the simulation chain. Without significant progress,
first-principled simulations, based on Geant4 [118,119,150], will be the limiting factor
for all analyses at the high-luminosity upgrade of the LHC.

In this chapter, we will focus on the problem of building fast and accurate surrogate
models for calorimeter shower simulation using cutting-edge generative networks. We
embark on the challenge of simulating the detector response in calorimeters with increasing
granularity. We will cover both aspects of the trade-off between generation speed and
quality. We will first push the sampling speed frontier in Sec. 4.3 with a normalizing
flow network. Then, we maximize the faithfulness of the showers in Sec. 4.4 with a
transformer-based CFM model at the expense of a slower sampling speed.

Einc 256 MeV ... 131 GeV 256 GeV 0.512 GeV 1.04 TeV 2.1 TeV 4.2 TeV

photons 10000 per energy 10000 5000 3000 2000 1000
pions 10000 per energy 9800 5000 3000 2000 1000

Table 4.1: Sample sizes for different incident energies in dataset 1.
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4 Fast detector simulations

4.1 High-dimensional calorimeters

The showers we aim to generate are represented as energy deposition in a fixed spatial
grid. Therefore, a shower consists of a vector containing the energy deposition in each
voxel of the 3-dimensional geometry. The grid can be different from the real detector
and in a second step, which we do not address here, the shower has to be mapped from
the voxelized space back to detector space.

We use the public datasets [151–154] of the Fast Calorimeter Simulation Challenge [155].
They consist of showers simulated with Geant4 for different incident particles. The
general geometry is the same across all datasets: the detector volume is segmented into
layers in the direction of the incoming particle. Each layer is segmented along polar
coordinates in radial (r) and angular (α) bins. A shower is given as the incident energy
of the incoming particle and the energy depositions in each voxel.

Dataset 1 (DS1) provides calorimeter showers for central photons and charged pions.
They have been used in AtlFast3 [22]. The voxelizations for photons and pions in the
radial and angular bins (nr × nα) are

photons 8 × 1, 16 × 10, 19 × 10, 5 × 1, 5 × 1
pions 8 × 1, 10 × 10, 10 × 10, 5 × 1, 15 × 10, 16 × 10, 10 × 1 (4.1)

This gives 368 voxels for photons and 533 voxels for pions. The incoming particles are
simulated for 15 different incident energies Einc = 256 MeV ... 4.2 TeV, increasing by
factors of two, with the sample sizes given in Tab. 4.1. The original ATLAS dataset does
not require an energy threshold. The effect of a threshold on the shower distributions at
the detector cell level requires further studies. We require Emin = 1 MeV to all generated
voxels, motivated by the readout threshold of the calorimeter cells and the fact that
photon showers require a minimum cell energy of 10 MeV to cluster and pion showers
start clustering at 300 MeV [156]. We show an example shower from dataset-1 in Fig. 4.1.

Datasets 2 and 3 (DS2/3) are not modeled after existing detectors. They assume
45 layers of active silicon detector (thickness 0.3 mm), alternating with inactive tungsten
absorber layers (thickness 1.4 mm) at η = 0. Each dataset contains 100,000 Geant4
positron showers with log-uniform Einc = 1 ... 1000 GeV. The only difference between the
two datasets is the voxelization. In dataset 2, each layer is divided into 16 × 9 angular
and radial voxels, defining 6480 voxels in total. Dataset 3 uses 50 × 18 voxels per layer
or 40,500 voxels in total. The minimal recorded energy per voxel for these two datasets
is 15.15 keV.

Clever preprocessing We improve our training by including a series of preprocessing
steps, similar to previous studies [5, 29, 31, 37, 38]. We split information on the deposited
energy from its distribution over voxels by introducing energy ratios [21]

u0 =
∑
iEi

fEinc
and ui = Ei∑

j≥iEj
i = 1, . . . , 44 , (4.2)

where Ei refers to the total energy deposited in layer i, and f ∈ R is a scale factor. The
number of u-variables matches the number of layers. With these variables extracted from a
given shower, we are free to normalize the voxel values by the energy of their corresponding
layer without losing any information. This definition is analytically invertible, imposes
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energy conservation, and ensures that the normalized voxels and each ui>0 are always
in the range [0, 1]. However, due to the calibration of the detector response caused by
the inactive material, u0 can have values larger than 1. We set f = 2.85 in Eq. (4.2), to
rescale u0 ∈ [0, 1]. All networks are conditioned on Einc. This quantity is passed to the
network after a log transformation and a rescaling into the unit interval.

To train the autoencoders used for dimensionality reduction we do not use any
additional preprocessing steps. For the setup using the full input space, we apply a logit
transformation regularized by the parameter α which rescales each input voxel x,

xα = (1 − 2α)x+ α ∈ [α, 1 − α] with α = 10−6

x′ = log xα
1 − xα

. (4.3)

Finally, we calculate the mean and the standard deviation of the training dataset and
standardize each feature. The postprocessing includes an additional step that rescales
the sum of the generated voxels to ensure the correct normalization in each layer.

The final task can be formulated in two ways:

• The ui are appended to the list of voxels for each shower and a single network is
trained on this enlarged vector. We train the INN in this way, conditioned on the
logarithm of the incident energies. Unlike, for instance, CaloFlow [23, 29, 36] we
train a single network without any distillation, maximizing training and generation
speed;

• The set of ui is generated separately by an “energy” network. The energy network
learns the energy-ratio features conditioned on the incident energy, p(ui|Einc). This
approach provides a better modeling of the energy deposition in each layer due to
the smaller space tackled by the generative network. This will be the strategy in
Sec. 4.4.

4.2 Evaluation of the generated showers

Evaluating the showers generated by the networks is a challenging problem due to
the high-dimensionality of the space of interest. We start by exploring several physics
motivated high-level observables. The specific physical features of a shower are governed

Figure 4.1: Example γ shower from DS1. The layers in the depth direction are
separated in slices. The minimum value on the energy scale corresponds to no
energy deposition.
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by its incident energy. Low-energy showers will interact with only a few layers of the
calorimeter and quickly widen, leading to a broad center of energy distribution in earlier
calorimeter layers and a high sparsity in the given voxelization. High-energy showers
penetrate the calorimeter more deeply. They will be collimated in the initial layers and
have low sparsity since each shower is likely to deposit energy in each voxel.

To see if the ML-learned showers reflect these physics properties, we look at physics-
motivated and high-level features. Given a shower with energy depositions I, we look at
the center of energy and its width for each layer,

〈ζ〉 = ζ · I∑
i Ii

and σ〈ζ〉 =
√
ζ2 · I∑
i Ii

− 〈ζ〉2 for ζ = η, φ ; (4.4)

where
∑
i runs over the voxels in one layer. We also look at the energy deposition in

each layer; the layer sparsity; and for DS1, the ratio Etot/Einc for each discrete incident
energy.

In addition to the layer-wise shower shapes, we calculate the mean shower depth
weighted by the energy deposition in each of the N layers for slices in the radial direction
for DS2 and DS3,

drj =
∑N
i kiEi,rj
Etot,j

rj ∈ {0, . . . , |r|} . (4.5)

Here Ei,rj is the average energy deposition in slice rj , and Etot,j is the total energy
deposition in the selected slice. Slices in the angular direction are less interesting to
calculate due to the rotational invariance of the showers.

All these observables are extremely useful for the detection of failure modes in the
network, in particular related to important physical quantities. However, they are limited
to one-dimensional histograms which do not include correlations. Given a generative
model trained on some reference data, we would like to know how well it reproduces
the data in the full phase space. This includes correct reproduction of critical high-level
features as well as the multi-dimensional correlations between all the features throughout
phase space, which might not be visible at the level of histograms of pre-defined high-level
features. An optimal binary classifier, trained to distinguish generated from reference
data in the full phase space, fits the bill in every respect. By the Neyman-Pearson (NP)
lemma, this classifier is the most powerful discriminant between generative model and
reference data.

Studies that have used the classifier metric to judge the quality of generative models
have tended to focus exclusively on single numbers [21, 23, 27, 29, 30, 36, 157], like the
area-under-the-curve (AUC), the loss, or the accuracy of the classifier. While these
aggregate measures certainly have their uses, there is much more useful information to
be gleaned from the classifier than a single number [31,43,158]. For example, a global
integral measure such as the AUC will not detect discrepancies in tails of distributions.
Also, the AUC becomes less and less informative the closer the generated and reference
samples become. Finally, declaring the model with the highest AUC as the “best” model
is oversimplistic, because the definition of the “best” generative network depends on what
we actually require from the generative network and how we want to use its output.
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We choose to work in terms of weights which can be obtained from the classifier
outputs C as

w(x) = pdata(x)
pθ(x) = C(x)

1 − C(x) with C(x) = pdata(x)
pdata(x) + pθ(x) . (4.6)

The assumption is that the NP-classifier learns the density ratio. For a good generative
model and an optimal classifier, the weight distribution will typically peak near one, with
tails to the left (w � 1) and right (w � 1), corresponding to regions of phase space
where the generative model is overproducing and underproducing the reference data,
respectively. On general grounds, the NP classifier should have an excess of generated
events as a small-weights tail of the distribution, and an excess of reference events as a
large-weight tail. Indeed this is a general pattern we will observe in the different examples
we consider.

For these weights it is crucial that we evaluate them on the reference data and on the
generated datasets combined, because typical failure modes correspond to tails for one
of the two datasets [2]. By examining the generated and reference data as a function
of the cut on the classifier, one can zoom in on the most anomalous regions of phase
space, i.e. those that are worst-reproduced by the generative model. This facilitates the
interpretability of the classifier metric, which could be further enhanced using recent
xAI techniques developed in HEP such as Refs. [159, 160] This topic will be discussed in
detail in Sec. 4.5.

4.3 CaloINN

We study two different network architectures. First, we benchmark a standard INN and
demonstrate its precision and generation speed especially for low-dimensional phase space
(DS1). Second, we embed this INN in a VAE, with the goal of describing DS2 with the
same physics content, but a much larger phase space dimensionality.

4.3.1 Neural networks

The normalizing flow architecture follows closely the description of Sec. 3.2. We define a
bijective mappings between a (Gaussian) latent space z and the physical phase space x
as in Eq. (3.23). The INN variant [143,161] of normalizing flows is completely symmetric
in the two directions. After training the network, pdata(x) ∼ pθ(x), we use the INN
to sample pθ(x) from plat(r) [9]. The building block of our INN architecture is the
coupling layer [47–49]. We replace the standard affine layer by a more expressive
spline transformation. We use different spline transformations, depending on speed and
expressivity. For datasets 1, we employ a rational quadratic spline [148], while for dataset
2 we use a cubic spline [149]. All INN hyperparameters can be found in Appendix B.

The INN is implemented using the FrEIA package [162], and is trained with the
likelihood loss of Eq. (3.25). The first term ensures that the latent representation remains
Gaussian, while the second term constructs the correct transformation to the phase space
distribution. Given the structure of Gθ(x) and the latent distribution plat, both terms
can be computed efficiently.
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The problem with the INN is the scaling towards larger datasets with its high-
dimensional phase space of 40k voxels, as in DS3. To solve this scaling problem we
introduce an additional VAE to reduce the dimensionality of the INN mapping. Differently
from [30], we do not estimate the dimensionality of the manifold but rather optimize
the reconstruction of the VAE while keeping a low-dimensional latent space. The VAE
consists of a preprocessing block, an encoder-decoder combination, and a postprocessing
block. Both, the decoder and the encoder are conditioned on the incident energies
and additional energy variables. Therefore, we compress normalized showers in the
latent space and jointly learn the energy and the latent variables with the INN. During
generation, the INN samples into the latent space of the VAE, and the VAE decoder
translates this information to the shower phase space. We set the latent space to 50 for
dataset 1 and dataset 2.

The goal of our β-VAE is to learn to reconstruct the input data. We assume a Gaussian
distribution for the encoder network pθ(z|x). For a Gaussian encoder the KL-divergence
can be computed analytically, and the prefactor is β = 10−9. For the decoder we use a
Bernoulli likelihood, because it outperforms for example its Gaussian counterpart. The
Gaussian decoder does not model the shower geometry well, and it under-populates the
low-energy regions. The continuous Bernoulli distribution [163] leads to instabilities, as
the average energy deposition in the normalized space is close to zero. Therefore, we use
a Bernoulli decoder,

D(x|λ(z)) = λ(z)x(1 − λ(z))1−x , (4.7)

defining the combined VAE loss

LVAE =
〈〈
x log λ+ (1 − x) log (1 − λ)

〉
pθ(z|x)

+ β
[
1 + log σ2

E − µ2
E − σ2

E

]〉
pdata

. (4.8)

Because the Bernoulli distribution gives a binary probability we use its continuous mean
λ as the prediction for the individual voxels.

The remaining differences between the unit-Gauss prior in the latent space and the
encoder are mapped by the INN. Applying a 2-step training we first train the VAE and
then train the INN given the learned latent space. This means we pass the encoder means
and the standard deviations, as well as the energy variables to the INN. The INN is
trained as described above, mapping the latent representation of the VAE to a standard
Gaussian. As for the full INN, the energy information is encoded following Eq (4.2) and
learned by the latent flow. Both encoder and decoder of the VAE are conditioned to
these variables.

For the larger datasets 2, we employ a mixture of a convolutional and a fully connected
VAE. Our assumption is that the calorimeter layers do not require information from
all the other layers, so we can simplify the structure by compressing consecutive layers
jointly in a first-step compression. We use an architecture with fully connected sub-
blocks, resembling a kernel architecture with a kernel size k (number of jointly encoded
calorimeter layers) and a stride s (distance between two neighboring kernel blocks). After
this first compression we concatenate these latent sub-spaces and compress them a second
time into our final latent space. For the decoding we reverse this two-step structure. The
overlapping regions of the fully connected kernel blocks are summed over.
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4.3.2 From DS1 to DS2

Dataset 1 photons We start with the photons in dataset 1, the simplest case in terms
of dimensionality and of complexity, since photons only undergo a handful interactions
in the calorimeter. In this established benchmark normalizing flows are known to excel.
We summarize the most interesting high-level features for the Geant4 training data, the
INN generator, and the VAE+INN generator in Fig. 4.2.

For instance for the calorimeter layer 2, we first look at the shower shape in rapidity.
Dataset 1 is not a symmetric in η and φ, because the shower were not generated around
η = φ = 0. All showers have the same mean width, regardless of the incident energy.
This is captured by both networks at the level of 5% to 20%. A failure mode of the INN
is the region σ〈η〉 < 20 mm. where the network undershoots the training data by up to
30%. A peculiar feature of these distributions is a small peak at zero, which occurs when
at most one voxel per layer receives a hit. These cases are better reproduced by the VAE,
whereas the INN tends to produce slightly more collimated showers.

The sparsity λ2 in the same layer is determined by the energy threshold of 1 MeV.
The INN matches the truth over the entire λ-range to 10%, while the VAE struggles. In
particular, its showers have too many active voxels, leading to the mis-modeled peak
close to zero.

Next, we show the energy depositions in layers 0 and 2. Both networks show comparable
performance over the entire energy range and are challenged by the sharp increase in
energy around 100 MeV. The energy in layer-2 highlights the effect of discrete incident
energies. High-energy showers at fixed energy deposit a similar amount of energy creating
steps in the histogram.

Finally, the ratio Etot/Einc exhibits a small bias in the energy generation for the
VAE+INN towards low energies, artifact of the final threshold in the architecture. For
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Figure 4.2: Set of high-level features for γ showers in dataset 1, compared
between Geant4, INN, and VAE+INN for all incident energies.
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Figure 4.3: Energy ratio Etot/Einc for each discrete incident energy, compared
between Geant4, INN, and VAE+INN for γ showers.

smaller incident energies, more voxels are zero [31], which causes a problem for the
VAE+INN because we already know that the sparsity is its weakness.

To illustrate the discrete structure of the incident energies in dataset 1, we collect
Etot/Einc for each incident energy in Fig. 4.3. The incident energy, provided during
training and generation, carries energy-dependent information about the shower. For
instance, low-energy showers have a much broader energy ratio distribution, in contrast
to high-energy showers. Both generative networks learn the conditional distribution on
Einc with deviations up to 30% in the tails.

Dataset 1 pions The physics of hadronic showers is significantly more complex than
photon showers, so it is interesting to see how our INNs perform for a low-dimensional
calorimeter simulation of pions. As before, we show shower shapes, sparsity, energy
depositions, and the fraction of deposited energy in Fig. 4.4.

For the shower shapes, both networks show small, percent-level deviations in the bulk
of the distributions. In addition, the VAE+INN is smearing out secondary peaks of the
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distributions. Both networks generate slightly too wide showers, predominantly where
the energy deposition ends up in a narrow band of the calorimeter.

The slightly reduced quality of the generated pion showers can also be seen in the
sparsity, especially for the VAE+INN. The energy depositions indicate similar failure
modes. The sharp cut at low energy is smeared to a different extent by the networks,
and a second deviation appears in the low-density region before the sharp cut. From the
ratio Etot/Einc we see that at all energies the fraction of deposited energy can be very
different from shower to shower, leading to the wide energy distribution far from one.

To evaluate the performance of our generative networks on dataset 1 systematically,
we train a network to learn the classifier weights defined in Eq.(4.6) over the voxel space.
In the left panel of Fig. 4.5 we show the weights for the γ-shower. We clearly see that the
INN outperforms the VAE+INN. Its weight distribution peaks much closer to 1 and the
corresponding AUC of 0.601 is substantially better than the corresponding AUC=0.936
of the VAE+INN.

More importantly, the INN does not show significant tails at large or small weights,
which would indicate distinct failure modes. The peak of the VAE+INN, on the other
hand, has moved away from 1. The tail at small weights indicates regions that are
overpopulated by the network. We already know that this is the case for the sparsity.
Large weights appear in phase space regions which the VAE+INN fails to populate, for
instance the widths of the centers of energy.

In the right panel of Fig. 4.5 we see that the two generators perform more similar
for π-showers. Both networks now show tails at small and large weights, two orders of
magnitude away from one. This means there are regions that are over- and underpopulated
by the generative networks. The fact that small weights appear for generated showers
and large weights appear for the training data is generally expected. The AUCs for the
INN and the VAE+INN are 0.805 and 0.864, respectively. The INN weight distribution is
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Figure 4.4: Set of high-level features for pion showers in dataset 1, compared
between Geant4, INN, and VAE+INN.
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Figure 4.5: Classifier weight distributions in dataset 1. Classifier trained on γ
showers (left) and π showers (right).
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Figure 4.6: Set of high-level features for positron showers in dataset 2, compared
between Geant4, INN, and VAE+INN.

sharper around one, resulting in the smaller AUC compared to the combined VAE+INN
approach. Altogether, we find that for dataset 1 with its limited dimensionality of 368
voxels for photons and 533 voxels for pions the INN works well, and that adding a VAE
to compress the information does increase with the network performance.

Dataset 2 positrons Dataset 2 is given in terms of 6480 voxels, the kind of dimensionality
which will probe the limitations of the regular INN. The number of parameters for this
network approaches 200M. The question will be, if the VAE+INN condensation helps
the performance of the network. As before, we show a representative set of high-level
features in Fig. 4.6. We choose layer 20, approximately in the middle of the calorimeter.
It combines features from low-energy showers, which are absorbed in this region, and
high-energy showers, which continue until the end of the calorimeter.

From the shower shapes we see that the INN-based architectures generate realistic
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Figure 4.7: Classifier weight distributions. Classifier trained on e+ showers on
dataset 2.

showers at all energies. The training is stable and consistent across different runs of the
same architecture. We only see sizeable deviations in the center of energy distributions
in the first and last layers of the calorimeter, where there are less energy depositions.
The agreement in phase space density between Geant4 and the INN ranges from a
few percent in the bulk of the distributions to 50% in the tails. Similar numbers apply
to the width of the center of energy. The failure mode of the INN, regardless of the
dataset, is an under-sampling of showers with width between the peak at zero and the
secondary peak, for which the location depends on the layer but not on the incident
energy. The VAE+INN generates showers of slightly worse quality. This is true for the
shower shapes, for instance the peak position in σ〈η〉, but most obvious for the poorly
reproduced sparsity.

The two networks learn the energy depositions in the layers in two very different
spaces. The INN extracts them with a large number of voxels, while the VAE+INN
compresses them into a reduced space of around 50 additional features. This different
expressivity is reflected in all energy distributions in Fig. 4.6. While in poorly populated
tails the INN does better, for instance at low energies, the VAE+INN performs better for
the main features in the central and high-energy regime. This is true for the layer-wise
energies, but also for the ratio Etot/Einc.

Again, we show a systematic comparison for dataset 2 in terms of the classifier weights
in the left panel Fig. 4.7. Compared to dataset 1, there is a clear deterioration of
the INN performance for the higher-dimensional phase space. At small weights, the
tail remains narrow, indicating that there are still no phase space regions where the
network over-samples the true phase space distribution. For large weights the weight
tail now extends to values larger than w ∼ 103. This tail can be related to a recurrent
under-sampling of showers with a small width of the center of energy in each layer, as
seen in Fig. 4.6.

The classifier evaluating the VAE+INN generator highlights a few important structures
as well. First, we have a clear over-sampled region in phase space with weights w ∼ 10−2,
which we can relate to the center of energy distribution as well. As mentioned before,
the VAE+INN over-samples showers with width close to the mean shower width. The
classifier confirms this major failure mode. For the large-weight tail we checked that the
under-sampled showers do not cluster in the same way, but are distributed over phase
space, including tails of distributions.

The AUC values of the classifiers for dataset 2, 0.703 for the INN and 0.916 for the
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VAE+INN, confirm the challenge of the INN, especially relative to the well-modelled
γ-showers in dataset 1. However, adding a VAE does not significantly improve the
situation as long as it is technically possible to train an INN.

Timing comparison Finally, we time our networks using the CaloChallenge procedure.
The INN architecture with modern coupling layers is ideally suited for fast and precise
generation. We create a singularity container [164] of the software environment and take
the time it takes to load the container, load the network, move it on the GPU, generate
the samples, and save them to disk. In Tab. 4.2 we show the averaged results from ten
runs. We observe a speed–up for increased batch size and when running on the GPU.
The INN has a small advantage for dataset 1, but is unable to generate dataset 2 with
the highest batch size and dataset 3 altogether. The VAE shows generation times at or
below the millisecond mark.

4.4 CaloDREAM

In CaloDREAM, we employ two generative networks, one energy network and one shape
network [21]. The energy network learns the energy-ratio features conditioned on the
incident energy, p(ui|Einc). The shape network learns the conditional distribution for
the voxels, p(x|Einc, u). The two networks are trained independently, but are linked in
the generative process. Specifically, to sample showers given an incident energy, we follow

Batch size INN
1-photon 1-pion 2-positron

GPU
1 24.79 ± 0.49 24.76 ± 0.35 50.90 ± 0.37
100 0.385 ± 0.002 0.406 ± 0.003 1.900 ± 0.026
10000 0.162 ± 0.002 0.191 ± 0.006

CPU
1 17.48 ± 0.09 18.88 ± 0.33 117.5 ± 1.8
100 0.827 ± 0.028 1.004 ± 0.047 14.26 ± 0.18
10000 0.510 ± 0.008 0.719 ± 0.016 15.24 ± 1.36

Batch size VAE+INN
1-photon 1-pion 2

GPU
1 33.64 ± 0.32 33.54 ± 0.23 40.55 ± 0.40
100 0.507 ± 0.005 0.544 ± 0.007 1.05 ± 0.02
10000 0.180 ± 0.002 0.228 ± 0.003 0.748 ± 0.018

CPU
1 20.83 ± 0.72 20.05 ± 0.13 28.11 ± 0.15
100 0.582 ± 0.005 0.886 ± 0.015 1.94 ± 0.01
10000 0.328 ± 0.004 0.426 ± 0.014 1.25 ± 0.01

Table 4.2: Per-shower generation times in ms. We show mean and standard
deviation of 10 independent runs. The star indicates that only 10k samples were
generated. The CPU timings were done with an Intel(R) Core(TM) i9-7900X at
3.30 GHz, the GPU timings with an NVIDIA TITAN V with 12GB RAM.
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Figure 4.8: Schematic diagram of the autoregressive Transfusion network [166]
used in our energy network.

the chain

ui ∼ pφ(ui|Einc)
x ∼ pθ(x|Einc, u) . (4.9)

In this notation φ stands for the weights in the energy network and θ for the weights in
the shape network. Although the number of calorimeter layers is consistent across DS2
and DS3 and the underlying showers are the same, we train separate energy networks for
each dataset. The incident energy is always sampled from the known distribution in the
datasets.

4.4.1 Neural networks

Energy network — Transfusion Both of our generative networks use the conditional
flow matching architecture [165]. For the energy network, we exploit the causal nature
of the energy deposition in layers using an autoregressive transfusion architecture [166],
as visualized in Fig 4.8. We start by embedding Einc as our one-dimensional condition
and the u-vector. For the u, this is done by concatenating a one-hot encoded position
vector and zero-padding. These embeddings are passed to the encoder and decoder of a
transformer, respectively. For the one-dimensional condition the encoder’s self-attention
reduces to a trivial 1 × 1 matrix. For the decoder we mask our self-attention with an
upper triangle matrix, to keep the autoregressive conditioning. Afterward, we apply a
cross-attention between the encoder and decoder outputs. The transformer outputs the
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Figure 4.9: Schematic diagram of the vision transformer (ViT) [167] used in our
shape network.

vectors c0, . . . , c44, encoding the incident energy and previous energy ratios,

ci =
{
ci(u0, . . . , ui−1, Einc) i > 0
ci(Einc) i = 0 .

(4.10)

For generation, we use a single dense CFM network vφ, with the inputs time t, embedding
ci, and the point on the diffusion trajectory ui(t). This network is evaluated 45 times to
predict each component of the velocity field individually,

vfull(u(t), t, Einc) = (vφ(u0(t), c0, t), . . . , vφ(u44(t), c44, t)) (4.11)

During training, we can evaluate the contribution of each ui to the loss in parallel, whereas
sampling requires us to iteratively predict the ui layer by layer. The hyperparameters of
the transfusion network are given in Appendix B.

Shape network — Vision Transformer For the shape network, we use a 3-dimensional
vision transformer (ViT) to learn the conditional velocity field vθ(x(t), t, Einc, u). The
architecture is inspired by Ref [167] and illustrated in Fig. 4.9. It divides the calorimeter
into non-overlapping groups of voxels, so-called patches, which are embedded using a
shared linear layer and passed to a sequence of transformer blocks. Each block consists of
a multi-headed self-attention and a dense network that transforms the patch features. To
break the permutation symmetry among patches, we add a learnable position encoding
to the patch embeddings prior to the first attention block. After the last block, a linear
layer projects the processed patch features into the original patch dimensions, where
each entry represents a diffusion velocity. Finally, the patches are reassembled into the
calorimeter shape.
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The network uses a joint embedding for the conditional inputs, t, Einc and u. The
time and energy coordinates are embedded with separate dense networks, then summed
into a single condition vector. The attention blocks incorporate this condition via affine
transformations with shift and scale a, b ∈ R and an additional rescaling factor γ ∈ R
learned by dense layers. These are applied within each block, and also to the final
projection layer. Concretely, the operation inside the ViT block is summarized by

xh = x+ γhgh(ahx+ bh),
xl = xh + γlgl(alxh + bl), (4.12)

where gh is the multi-head self-attention step and gl is the fully connected transformation.
The hyperparameters of our transformer are given in Appendix B.

The scalability of this architecture is closely tied to the choice of patching. On the
one hand, small patches result in high-dimensional attention matrices. While this gives
a more expressive network, the large number of operations can become a limitation for
highly-granular calorimeters. Conversely, a large patch size compresses many voxels into
one object, implying a faster forward pass but at the expense of sample quality. In this
case, an expanded embedding dimension is needed to keep the network flexibility fixed.

Usually, we train Bayesian versions [168] of all our generative networks, including
calorimeter showers [5]. In this study, the networks learning DS2 and DS3 are so heavy
in terms of operations, that an increase by a factor two, to learn an uncertainty map over
phase space, surpasses our typical training cost of 40 hours on a cutting-edge NVIDIA
H100 GPU. In principle, Bayesian versions of all networks used in this study can be built
and used to quantify limitations, for instance related to a lack of training data.

training

Einc, u

x

Encoder
µ

σ
rψ

z ∼ N (0, 1)

r(t) CFM

ε ∼ N (0, 1)
t ∼ U(0, 1)

vθ

sampling

Einc, uφ

ε ∼ N (0, 1)

ε + ∫ 1
0 dt CFM rθ Decoder xψ

Figure 4.10: Training (upper) and sampling (lower) with the latent diffusion
network, using a variational autoencoder.
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Latent diffusion As the calorimeter granularity is increased from DS2 to DS3, the
computational requirements to train a network on the full voxel space also increase
considerably due to the larger number of patches. This motivates a study of how the
naive scaling may be avoided by a lower-dimensional latent representation. Starting
from the detector geometry, a voxel-based representation of a shower defines a grid with
fixed size and stores the deposited energy in each voxel. This means a highly granular
voxelization will produce a large fraction of zero voxels, but the showers should define
a lower-dimensional manifold of the original phase space. Such a manifold can then be
learned by an autoencoder [5, 30,169].

We train a variational autoencoder with learnable parameters ψ. The encoder outputs
a latent parameter pair (µ, σ), which defines the latent variable r = µ + z · σ with
z ∼ N (0, 1). The encoder distribution represents the phase space distributions over x
through pψ(r|x, u). For simplicity, in the following we drop the energy dependence in the
encoder and decoder distributions. After sampling the latent variable, we minimize the
learned likelihood of a Bernoulli decoder pψ(x|r) represented by the reconstruction loss

LVAE =
〈
− log pψ(x|r)

〉
pdata,pψ(r|x) + β

〈
DKL[pψ(r|x),N (0, 1)]

〉
pdata

. (4.13)

This choice of likelihood is possible since our preprocessing normalizes voxels into the
range [0, 1]. The reconstruction quality achieved in the autoencoder training places an
upper bound on the quality of a generative model trained in the corresponding latent
space.

The KL-divergence term, with unit-Gaussian prior and a small weight β = 10−6, is
a regularization rather than a condition for a tractable latent space. It encourages a
smooth latent space, over which we train the generative network. Especially for DS3,
an autoencoder trained without KL-regularization produces a sparse latent space with
features mapped over several orders of magnitude.

The VAE consists of a series of convolutions, the last of which downsamples the data.
This structure is mirrored in the decoder using ConvTranspose operations. As always,
the energy conditions are encoded in a separate network and passed to the encoder and
decoder. For a compressed latent space the ratio between the dimensionality of x and r
defines the reduction factor F . Rather than estimating the dimensionality of the datasets,
we use a moderate, fixed reduction factor F ' 2.5 and a bottleneck with two channels.
We provide more details on the autoencoder training in Appendix A.

The trained autoencoder is used as a pre- and postprocessing step for the CFM as
illustrated in Fig. 4.10. Given the trained encoder distribution pψ(r|x) the velocity field
v(r(t), t) imposes the boundary conditions

p(r, t) →
{

N (r; 0, 1) t → 0
pψ(r|x) t → 1, x ∼ pdata .

(4.14)

The expensive sampling then uses the lower-dimensional latent space and yields samples
r from the learned manifold. Finally, the phase space configurations are provided by the
the deterministic decoder Dψ(r). Here we summarize the sampling procedure, including
the energy dependence, as three sequential steps:

u ∼ pφ(u|Einc)
r ∼ pθ(r, 1|u,Einc) (4.15)

48



4 Fast detector simulations

x = Dψ(r, u, Einc)

All network hyperparameters and the main training parameters are as usual given in
Appendix B.

Bespoke samplers A potential drawback of CFM networks is their slower sampling
than, for instance, normalizing flows with coupling layers [5] which stems from the
numerical integration of the ODE in Eq.(3.58). Depending on the complexity of the
target distribution, a standard ODE solver requires O(100) steps to achieve high-fidelity
samples, each consisting of at least one forward pass of the neural network.

One method to overcome this slow inference is distillation [37,170–172], which aims to
predict the sampling trajectory at only a handful of intermediate points, or even at the
terminus in a single step. This requires fine-tuning the network weights using additional
training time, in some cases even additional training data. Further, since the weights of
the network itself are updated, consistency is not strictly guaranteed and we can end up
sampling from a different distribution than was originally learned.

An alternative approach is to keep the network fixed and consider alternative structures
for the ODE solver. Reference [173] provides a comparison of various training-free solvers
in the context of calorimeter simulations. While training-free approaches are the least
costly, they are not task-specific and therefore unlikely to be optimal. However, there
exists trainable family of ODE solvers that can be optimized to a given vector field vθ
without excessive additional training [174, 175]. Such bespoke non-stationary (BNS)
solvers parameterize the steps along the flow trajectory. Starting from an initial state x0,
and a time discretization 0 = t0 < ti < tN = 1, the ith integration step is

xi+1 = aix0 + bi · Vi with ai ∈ R, bi ∈ Ri+1

Vi = [vθ(x0, t0), · · · , vθ(xi, ti)] ∈ R(i+1)×d , (4.16)

where we again suppress the energy dependence of vθ. By appropriately caching the
velocities, each step requires just one evaluation of the network. Including the ti not
fixed by the boundary conditions, an N -step BNS solver has a total of N(N + 5)/2 + 1
learnable parameters, which is typically orders of magnitude fewer than the network vθ.
Therefore, optimizing the solver generally requires a fraction of the computation time
needed to train the vector field itself. Non-stationary solvers encompass a large family of
ODE solvers, including the Runge-Kutta (RK) methods. Euler’s method, i.e. first order
RK, corresponds to taking ai = 1 and bij = 1/N .

Bespoke solvers can be trained by comparing the bespoke trajectory to a precisely-
computed reference xref(t), given an initial state x0 sampled from the CFM latent
distribution. Here we define two options. First, the global truncation error measures the
deviation between the final states of the solvers

LGTE =
〈
[xref(1) − xN ]2

〉
x0∼N

, (4.17)

where xN is computed by iterating Eq.(4.16) starting from x0. The local truncation error
instead measures the discrepancy at each step,

LLTE =
〈N−1∑
i=0

[
xref(ti+1) − (aix0 + bi · Vref,i)

]2〉
x0∼N

, (4.18)
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Figure 4.11: Distributions of selected u-features in DS2 from the CaloDREAM
energy network (blue) compared to truth (grey). The error bars in all feature
distributions in this paper show the statistics of the respective datasets.

where Vref,i is defined as in Eq.(4.16), but with velocities evaluated on the reference
trajectory.

Although we use CFM for both our shape and energy networks, we only study BNS
solvers for the shape network. For training a BNS solver, we initialize it to the Euler
method. At each iteration, we sample an x0 batch from the unit Gaussian and a batch
of conditions from the energy network. A precise solver is then used to generate the
reference trajectory xref(t) which enters the loss. Note that the shape model parameters
θ are frozen during training.

4.4.2 From DS2 to DS3

Layer energies In Fig. 4.11 we compare samples generated from the energy network
with the truth for a selection of normalized layer energies ui. The transfusion network
indeed generates high-quality distributions, with errors comparable to the statistical
uncertainties in the test data. The distributions for ui>40 are the most difficult to model,
since the majority of showers lie in the sharp peaks at zero or one. These are zero-width
peaks corresponding to showers that end at the given layer, leading to a one, or end
before or skip the layer, leading to a zero.

We find that our autoregressive setup is particularly effective in faithfully mapping
regions close to these peaks. As a quantitative performance measure, we train a classifier
to distinguish the u’s defined by our energy network from the Geant4 truth, obtaining
AUC scores around 0.51. The comparison in terms of layer energy is shown in Fig. 4.12.
The factorization procedure allows us to use the same energy network for the ViT and
the laViT, effectively generating statistically-identical layer energy distributions.

DS2 showers Given the learned layer energies, we use the shape networks described in
Sec. 4.4.1 to generate the actual calorimeter showers over the voxels. In the first row of
Fig. 4.12 we compare a set of layer-wise distributions from the networks trained in the full
space and in the latent representation to the test data truth. We start with the energy
deposited in layer 20, where for E20 > 10 MeV the full-dimensional vision transformer
(ViT) as well as the latent-diffusion counterpart (laViT) agree with the truth at the level
of a few per-cent, as expected. Towards smaller energies we see a missing feature in
both networks. Also in the two other shown distributions the ViT and laViT agree with
each other and deviate from Geant4 only in regions with statistically limited training
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Figure 4.12: Selection of high-level features for DS2. The first row shows features
for individual layers, the second row the combination of layers.

data. The second row of Fig. 4.12 shows example distributions probing the combination
of layers. Here, the weighted depth of the shower highlights a small deviation for both
networks from the reference for showers with maximum depth of five layers not captured
by the layer-wise high-level features.

Also combining layer-wise information, we show the total energy deposited in the
calorimeter Etot normalized by the incident energy and the full voxel distribution across
the entire calorimeter Evoxel. The total shower energy relative to the incident energy is
reproduced very well by both networks since this information is coming from the energy
network. However for the voxel energies only the full-dimensional network captures the
low-energy regime, whereas the latent model overestimates this regime and in turn shifts
down the prediction for larger energies because of the normalization of the curve. This is
the only noteworthy shortcoming of the laViT compared to the ViT that we find.

Following up on the problem raised by the last panel in Fig. 4.12, we focus on the
(latent) description with low-energy voxels. In Fig. 4.13 we again compare the two
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Figure 4.13: Effect of an additional threshold E > 1 MeV on DS2; we show the
shower energy and the sparsities without and with threshold cut.
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Figure 4.14: Selection of high-level features for DS3. The first row shows features
for individual layers, the second row the combination of layers. All features
correspond to the DS2 results shown in Fig. 4.12.

network predictions with the truth, but applying an additional threshold cut of

Evoxel > 1 MeV . (4.19)

After this cut, the agreement of the laViT prediction with the full ViT and the truth
improves significantly. We checked that this cut has only a limited impact on the
total energy deposition Etot. Slight deviations are limited to the threshold region
Evoxel . 5 GeV. The reason can be seen in the sparsity distributions for instance of
layer 10, λ10. The laViT networks generates a sizeable number of showers with energy
depositions everywhere, leading to a peak at zero sparsity. This failure mode is already
present in the autoencoder reconstruction as shown in Appendix A. Because of their low
energy, these contributions do not affect the other high-level observables or the learned
physics patterns of the showers.

DS3 showers The same analysis done for DS2 in Sec. 4.4.2 we now repeat for DS3. This
means we study the same shower energies and shower shapes, but from 40500 instead
of 6480 voxels. A target phase space of such large dimension is atypical for most LHC
applications, and the key question is whether the precision-generative networks developed
for lower-dimensional phase spaces also give the necessary precision for high-dimensional
phase spaces. As a matter of fact, we know that this is not the case for standard
normalizing flows or INNs [5], where the architectures have to be modified significantly
to cope with higher resolution.

In Fig. 4.14 we again show a set of layer-wise features in the first row, observing
extremely mild differences to the DS2 results. Only the shower shapes from the laViT
suffer slightly in regions with too little training data. For the multi-layer features in the
second row, we also find the same results as for DS2, including the challenge in describing
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voxels with Evoxel . 3 GeV.

Understanding and targeting this challenge, we again show the voxel energy distribution
and the sparsity after the threshold cut Evoxel > 1 MeV in Fig. 4.15. For DS3 it turns
out that after applying this cut the description of DS3 through the laViT network is
excellent. The reason for this is two-fold. Given the low energy bound we can reproduce
with the latent model, a cut larger than this threshold completely adjusts the sparsity
up to a specific value by removing the additional energy deposition of the latent model
and the noisy components of Geant4. For both DS2 and DS3 the cut fixes the sparsity
in λ10 up to λ10 & 0.7. However, for DS3 this is done by moving the peak at zero, while
for DS2 the mass is moved from the intermediate sparsity. This second difference comes
from the dimensionalities of the two datasets, where the fixed reduction factor has a
stronger impact on DS2 due to the larger information loss in the bottleneck.

Sampling efficiency To demonstrate the performance of bespoke samplers, we compare
the quality of showers produced by various solvers in terms of classifier tests. Classifiers
trained to distinguish generated and true samples are an effective diagnostic tool since
they capture failure modes in high-order correlations that are hidden in simple high-level
distributions. As we will see in the following section, the phase space distribution of
classifier scores can be used to search for and identify such failure modes. In this section,
we only use the AUC as a simple, one-dimensional quality measure. The high-level
classifier uses the layer-wise features but since we want sensitivity also to voxel-level
correlations, we train a classifier on the low-level phase space as defined by the original
voxels.

For our comparison, we include three standard fixed-steps solvers: the Euler, Midpoint,
and Runge-Kutta 4 methods. We also consider bespoke non-stationary solvers using
either the global, Eq.(4.17), or local, Eq.(4.18) truncation error as described in Sec. 4.4.1.
Using each solver, we generate 100k showers from the DS2 ViT shape network. We
train classifiers to distinguish these samples from the Geant4 reference set using the
standard CaloChallenge pipeline. In Fig. 4.16, we plot the high-level (left) and low-level
(right) AUC scores against the number of function evaluations neval for each solver. Note
that the Midpoint and RK4 methods respectively use 2 and 4 function evaluations per
integration step. See App. 4.4.2 for function evaluation timings of each network.

In both panels of the figure, we see that the Euler solver has a notably poor efficiency
in terms of function evaluations. This indicates that the velocity field learned by the
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Figure 4.15: Effect of an additional threshold E > 1 MeV on DS3; we show the
shower energy and the sparsities without and with threshold cut. All features
correspond to the DS2 results shown in Fig. 4.13.
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Figure 4.16: High-level (left) and low-level (right) classifier AUC scores on DS2
as a function of the number of function evaluations neval for various ODE solvers.
Samples of 100k reference and generated showers are used to train the classifier.
Errors bands are taken as the standard deviation over 10 runs.

shape network has non-trivial curvature. Considering the remaining solvers, the sample
quality essentially saturates by neval = 64 and all non-Euler methods appear to have
statistically-equal performance at this point. The bespoke samplers demonstrate the
best retention in quality when looking toward smaller neval. In particular, the local BNS
solver keeps an AUC below 0.6 for both classifiers even at 8 function evaluations. The
global BNS solver achieves a large margin of improvement at neval = 4 for the high-level
classifier. The local bespoke solver also shows an advantage in the high-quality regime.
Specifically, its AUC is already saturated for both solvers at 32 function evaluations. As
such, in a resource-limited scenario the efficiency gains offered by bespoke solvers can be
translated into improved sample quality.

It is interesting to note that the performance of a given solver can be significantly
different between high- and low-level classifiers. This is evident in the reversed rankings
of, for example, the two bespoke solvers in each panel. The global BNS solver favors
performance on the high-level classifier, while the local BNS solver is best on the low-level
classifier. A similar exchange can be seen among the Midpoint and RK4 solvers, with
the former being close to optimal at low level.

Performance In Fig. 4.17 we show the classifier weights from the low-level classifier for
DS2 and for DS3. We also include a table with the AUC scores of the high-level classifier
trained on layer-wise features and the low-level classifier, where the ViT shows state-of-
the-art results on DS2 and the high-level DS3. The peaks of the weight distributions are
nicely centered around w = 1, symmetric towards small and large (logarithmic) classifiers,
and show no significant difference between generated and training data. The weights for
the networks encoding the full phase space and the latent diffusion are different, with a
typical broadening of the distribution by a factor two around the peak and larger and less
smooth tails. We still observe that the classifier misses the low-energetic noise affecting
the sparsity and the voxel energy distributions. Despite the simple nature of the neural
network, a sequence of fully connected layers, the main result from this performance
test is that the classifier identifies additional failure modes related to the step from DS2
to DS3 and to the reduced latent space. We expect these failure modes correspond to
cross-layer features, since we observe a correlation between the classifier weights and the
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Figure 4.17: Learned low-level classifier weight distributions for DS2 (left) and
DS3 (right). We compare the full-dimensional ViT and the latent laViT results
and, for each of them, show weights for the generated sample and for a Geant4
test sample. The table shows the AUC values for the trained classifier in each
case.

Network Time (ms)

DS2 DS3

Energy 0.37±0.01 0.37±0.01
Shape (ViT) 17±1 84±8

Shape (LaViT) 31±1 63±6

Table 4.3: Timings for one network forward pass using batch size 100 on an
NVIDIA H100.

shower depth introduced in Sec. 4.4.2, and the high-level AUC is similar across the two
datasets. Details of the neural network classifier are listed in Appendix B.

Timing In Sec. 4.4.2, we study the sampling cost of networks in terms of the number of
function evaluations neval. Here we provide timing measurements for a single forward
pass of each of our CFM networks, using a batch size 100. We ran tests using a single
NVIDIA H100 GPU and summarize the results in Tab. 4.3. The times for the energy
network are identical across the two datasets since there is no change in the network
architecture. Also note that since the energy model is autoregressive, sampling with an
N -step solver uses N × L function evaluations, where L is the number of calorimeter
layers.

4.5 Understanding generative networks

Finally, we showcase the power of classifiers to understand failure modes in generative
networks starting from weight distributions. As an example of how to use weights over
phase space, we turn to the classic calorimeter simulation. The dataset used for this study
was generated in a previous iteration of fast surrogate models [12,14,21,23]. We study
weight distributions for positron, photon, and pion showers in a simplified calorimeter.
The classifier defined in Appendix B is trained on voxels, energy, and layer energies. We
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Figure 4.18: Left to right: calorimeter showers for e+, γ, and π+. Top to bottom:
ROC curve, weight distribution on a linear scale, and weight distribution on a
logarithmic scale. The weights are evaluated separately on the Geant dataset
used for generator training and the generated dataset.

focus on the classifier with unnormalized preprocessing in this work because it appears
to be better calibrated and shows less propensity for overfitting. For more discussion, see
Sec. 4.5.3.

4.5.1 Tails of weights

In Fig. 4.18 we show the receiver operating characteristic (ROC) curves and weight
distributions for e+, γ, and π+ showers generated from the CaloINN and compared to
the reference dataset. The top row confirms that positron and photon showers are easier
to generate than pion showers. The question is which potential failures are related to
this performance difference.

In the second row we show the weight distributions. First, we observe that they are
not symmetric, because the reweighting now compensates features. The limit w(x) = 0,
most visible for the pion shower, marks phase space points where the generator has
learned a finite density pθ(x), where the correct density is pdata(x) = 0.
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In the third row of Fig. 4.18 we show the same curves on a logarithmic scale to see the
tails. As expected, they are different when evaluated on Geant and generated showers.
Already for positrons, the generated data includes many more showers with w(x) � 1
than the training data. These are showers for which the generator overpopulates phase
space, so they appear preferably in the generated dataset. This tail connects to showers
with weight zero.

In contrast, showers with w(x) � 1 appear more frequently in training dataset. These
under-populated regions of phase space correspond, for instance, to features or tails which
the network does not learn. This serious failure mode can be identified by evaluating
showers with anomalous weights on the training data.

4.5.2 Phase space clustering

The simpler structure of photon showers allows for a detailed study of the clustered
observables. By cutting on the weight values and looking at the distribution of the
remaining photon showers, we identify three characteristic failure modes highlighted with
different colors Fig. 4.19.

1. In orange, we isolate the large-weights tail with w > 1.6 and no energy deposited
in layer 2 (E2 < 0.1 MeV), as shown in Figs. 4.19(c) and 4.19(f). As shown in
Figs. 4.19(g) and 4.19(h), these showers have higher sparsity in layers 0 and 1 than
the typical shower. Additionally they have lower energy, shown by the E1 histogram
in Fig. 4.19(e), since on average most of the energy is deposited in layer 1. Overall,
these showers consist of just a few activated, low-energy voxels in layers 0 and 1,
and exactly none in layer 2. This sub-population of showers exists in the GEANT
data, but it is not sufficiently generated by the network.

2. In blue, we isolate the small-weights tail with w < 0.6. Fig. 4.19(c) shows that this
failure mode is characterized by a single voxel carrying all the energy in layer 2,
and Fig. 4.19(e) shows that this energy is lower than the average energy deposition.
Blue and orange agree in every feature that we looked at in layers 0 and 1; they
only differ in layer 2. Since these are showers overproduced by the generator, we
interpret this as the compensation of the generator for the underproduction of the
orange showers; the compensation is only needed in layer 2. We think the reason
for both the orange and blue failure modes is due to the low energy and the large
number of zero voxels in these showers: this causes them to be especially sensitive
to the noise we add during training, since a single voxel is being activated and it
either falls just under or just over the minimum energy threshold. The vicinity of
these showers to the noise threshold makes it harder for the generator to perfectly
model this region of phase space.

3. Finally, in green we isolate again the large-weights tail with w > 1.6 that does
deposit energy in layer 2 (E2 > 0.1 MeV). These showers are also underproduced
by the generator but they are distinct from the previous two classes. According to
Fig. 4.19(d)-(f), these have very low energy in layer 0 (even lower energy than the
orange showers), and higher-than-typical energy in layer 2. In layer 1 their energy is
closer to the typical shower. We also see in the sparsity that these photons deposit
very little energy and activity in layer 0, while in layers 1 and 2 they are fairly
typical. These are showers which develop late in the calorimeter, leaving little or no
energy in layer 0. Interestingly, physics tells us that these late-developing showers
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Figure 4.19: Relevant distributions for γ showers in the small-weights (blue) and
large-weights regions (orange and green). We show the energy depositions, the
fraction of the energy deposited in the leading voxel, and the sparsity in the
three layers of the calorimeter.

are possible for photons but not likely for positrons. At high energies, the latter
interact continuously with the material through Bremsstrahlung, while the former
need to convert to e+e− first [176]. This leads to showers fully absorbed deeper
in the calorimeter, therefore with more energy deposited in layer 2. We see this
difference in the physics clearly reflected comparing with the green showers for the
positron case. The positrons have energy deposited in layer 0, unlike the photons.

The situation becomes much more complicated when looking at pions, where the more
complex physics through the nuclear interaction and the poorer generative model make
it harder to identify failure modes with kinematic or physics features. In line with the
sobering AUC value given in Fig. 4.18, we see in Fig. 4.20 that the generator requires
correction weights essentially all over phase space. The first distinctive failure mode
is corrected by small weights in the energy distributions, for instance in layer 0, which
suppress the generated showers to reproduce the sharp lower edge of the energy deposition.
In addition, the network produces too many showers with exactly zero energy deposition
in layers 1 and 2. They are included in an overflow bin in the energy histograms, but
appear as a failure mode in the energy fraction of the brightest voxel, for example in
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Figure 4.20: Relevant distributions for π+ showers in the small-weights (blue)
and large-weights regions (orange). We show the energy deposition and the
sparsity in layer 0, and the brightest voxel energy and the sparsity in layer 2.

layer 2. Finally, we see showers with large weights cluster at low sparsities. Here the
generator has a systematic bias towards simpler showers with fewer voxels. Given these
observations, the leading improvement to the generative model concerns the low-energetic
voxels. As discussed before, this can be linked to the addition of noise during training and
provides us a research direction to improve the generator, e.g. sampling from a different
noise distribution or the development of a noise-less training scheme. We provide the full
set of studied histograms in Appendix A.

4.5.3 Classifier calibration

To gauge whether the classifiers used in our study have been well-trained (not overfitted,
reasonably close to optimal), one important check is to inspect their calibration curves.
The idea of the calibration curve is that a properly learned and optimal classifier C(x)
should return the probability that x is class 1, and 1 − C(x) the probability that x is
class 0. Therefore, if we took all events x in the training data (assumed to be balanced)
for which C(x) = C, a fraction C of them should be class 1. The differential way to write
this is

dN1
dC

dN1
dC

+ dN0
dC

= C , (4.20)
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where Ni is the number of events in class i. As in the other sections, we will look at
calibration curves in terms of the weights w. Using Eq.(4.6), we can turn Eq.(4.20) into
a statement about the weights,

dN1
dw = dN0

dw w . (4.21)

Equation (4.21) implies an equivalent way of plotting a calibration curve in weight
space: divide the combined weight distribution in bins and calculate the ratio Ntruth/Ngen
for each bin. According to Eq.(4.21), for a well-calibrated classifier these should agree. We
show calibration curves, calculated following this method, for our classifiers in Fig. 4.21.
We see that the classifiers are for the most part very well-calibrated. One possible
exception is for e+ at lower weights, but one should keep in mind this is one of the better
generative models considered in this work (AUC=0.536), so nearly all the events are in
the well-calibrated part of the calibration curve (with w ≈ 1). Also, as we see in the
discussion in Sec. 4.5.2 and in Fig. 4.19, even if the tails of the classifier are mis-calibrated,
it can still extract poorly modeled regions of phase space and assign, if anything, too
extreme weights to them.

10−2 100 102

wc

10−2

10−1

100

101

102

N
tr

u
th
/N

ge
n

e+ Unnorm.

10−2 100 102

wc

10−2

10−1

100

101

102

N
tr

u
th
/N

ge
n

γ Unnorm.

10−2 100 102

wc

10−2

10−1

100

101

102

N
tr

u
th
/N

ge
n

π+ Unnorm.

Figure 4.21: Calibration plots in weight space for the different discriminator
models. From left to right, normalized showers for e+, γ, and π+.
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CHAPTER 5

Model agnostic searches

The content of this chapter was finalized in collaboration with Barry M. Dillon, Friedrich
Feiden, Michael Krämer, Tanmoy Modak, Tilman Plehn, Jan Rüschkamp, and Peter
Sorrenson.

The big goal of the LHC is to discover physics beyond the Standard Model and to
identify new properties of the fundamental constituents of matter. Until now, we pursue
BSM searches based on pre-defined theory hypotheses. However, the lack of a clear
direction for future searches motivates a more model agnostic approach, where we look
for anomalies in the data. This chapter starts with the datasets and the representations
we used for our studies. Following, we study anomaly detection using autoencoders. We
introduce an energy-based network, the normalized autoencoder (NAE), that solves the
complexity bias in autoencoders. We describe the NAE setup, with its efficient way of
sampling the background data manifold in phase space and latent space. In Sec. 5.2.1 we
apply the NAE to the top tagging dataset [177–179] and show that, for the first time, the
NAE identifies anomalous top jets and anomalous QCD jets symmetrically and with high
efficiency. Next, we target two challenging dark jet signals [58] and confirm the excellent
performance of the NAE and its relative independence of the jet image preprocessing in
Sec. 5.2.3.

In the second part of the chapter, we show the importance of learning powerful
representations of the data for anomaly detection. We develop a new approach to density-
based anomaly detection using self-supervision, which defines the representation of the
data in a model-agnostic way using the power of highly expressive networks such as
transformers or graph networks to boost anomaly detection. We introduce AnomalyCLR
and DarkCLR, both methods based on the idea of ‘anomaly-augmentations’. These
anomaly-augmentations are modifications of the original event to which the underlying
physics is not invariant. In fact these augmentations are chosen to mimic very general
features that anomalous events might have, such as high multiplicity, large missing
transverse energy (MET), or large pT . Despite choosing explicitly the augmentations,
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the approach does not target any specific new physics model, and we will see from the
results that the approach is model agnostic.

In Sec. 5.1 we will discuss the dataset and the different backgrounds and signals. In
Sec. 5.3 we introduce the AnomalyCLR idea, first discussing contrastive learning and then
how this can be modified for use in anomaly detection. The specifics of the application to
event-level collider data and jet substructure is given in Sec. 5.3.2. The discussion on how
we estimate anomaly scores is given in Sec. 5.3.4, where the architecture and optimisation
of the autoencoders we use is discussed. The results are presented in Sec. 5.3.5 and
Sec. 5.3.6, along with an analysis of how different anomaly-augmentations and different
representation dimensions affect the results.

5.1 Events and jet substructure

Robustness is a fundamental requirement for an anomaly detection method. We test the
robustness towards different signals and data formats by testing the networks on several
datasets which are described in this section.

5.1.1 Benchmark physics models

Jet constituents Jets are a prevalent signature of several new physics models, the
first test will be top vs QCD, discussed in Sec. 5.2.1, where we use the top-tagging
dataset [177–179], also used for the AE in Ref. [139] and the Dirichlet VAE in Ref. [180].
We start with anti-kT jets [181] with R = 0.8, defined by FastJet3.1.3 [182] as
substructure containers. The top and QCD jets are are required to have

pT = 550 ... 650 GeV and |η| < 2 . (5.1)

This task is considered a benchmark test for any tagging methods. In the boosted regime
top jets produce a typical three-prong jet substructure due to the decay products being
clustered in a single fat jet.

A second class of challenging signatures are Hidden Valley models, which can lead to
tantalizing semi-visible jets at the LHC. In Sec. 5.3 and Sec. 5.3.6 we are interested in
Hidden Valley models that consist of a strongly coupled dark sector with dark quarks
coupled to the Standard Model (SM) through a vector mediator. As a result, jets can
be produced by the dark quarks from the decay of the vector mediator. The shower in
this case would involve radiation into the dark sector, resulting in jets that are called
semi-visible or dark jets, depending on the phenomenology of the signal.

For our purposes, we consider a benchmark signal scenario with an underlying dark
sector as introduced in [58,183,184]:

pp → Z ′ → qdq̄d, with mZ′ = 2 TeV and qd = 500 MeV, (5.2)

where Z ′ is the mediator between the dark sector and the SM quarks, charged under
a U(1)′ gauge group, and qd is a dark quark charged under a dark SU(3)d. The dark
sector hadronizes to dark pions (πd = 4 GeV) and dark rho mesons (ρd = 5 GeV). The
neutral dark rho mesons mix with the Z ′ and can thus decay into SM quarks. The other
dark mesons are stable and escape detection. In our benchmark scenario the fraction
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of invisible particles in a shower is given by rinv = 0.75 [183, 184]. This dark sector
model then leads to semi-visible jets and can be simulated with the Pythia Hidden Valley
module [185,186]. We will refer to this benchmark scenario as the “Aachen” dataset in
the remainder of the paper.

The dataset is generated using Madgraph5 [187] for the hard process. The generated
events are then interfaced with Pythia 8.2 [188] for showering and hadronization and
finally fed to Delphes 3 for fast detector simulation [189]. The jets are reconstructed
using the anti-kT algorithm [190] with radius parameter R = 0.8 in FastJet [182].

The most important phenomenological parameters for Hidden Valley models are the
invisible fraction of the constituents, rinv, and the mass of the dark mesons, mπ/ρ. To test
the model dependence of our approach, we generate several data sets with the following
parameter choices: starting from our benchmark signal, we first vary only the mass of
the dark mesons and the confinement scale Λ as mπd = mρd = Λ = 10 GeV, 20 GeV. In
addition, for our default choice of dark meson masses, we change the invisible fraction
rinv by allowing all dark mesons to decay back to SM quarks with a given probability.
To explore the region where the number of visible jet constituents is closer to the QCD
background, we reduce the invisible fraction to rinv = 0.5, 0.2. The light QCD background
is generated from leading order di-jet events. A second model that leads to a modified
QCD jet [139] is also used as a reference and called “Heidelberg” signature in the following
sections.

The selection of the jets at detector level is done by calculating the ∆R between the
reconstructed fat jets and the dark quarks at parton level and ensuring that ∆R < 0.8.
On the selected fat jets we apply a kinematic selection in pT and η, namely

pjT = 150...300 GeV and |ηj| < 2 . (5.3)

Reconstructed events To test the performance of applying representation learning to
raw data in a simpler scenario for an anomaly detection task we use the CMS anomaly
detection challenge dataset [191], which contains simulated proton-proton collisions with
a 13 TeV centre-of-mass energy. We will refer to this network as AnomalyCLR and
it is discussed in Sec. 5.3. Differently from the jet constituents, this dataset contains
reconstructed objects in an event resulting in a much lower input dimensionality. The
events are selected to have at least one e or µ with transverse momenta pT >23. The
pseudo-rapidity (|η|) is required to be <3 and <2.1 respectively for e and µ. Further,
the events are allowed to have up to 10 jets with pT >15 GeV and |η|<4, up to 4 muons
pT >3 GeV and |η|<2.1, up to 4 electrons pT >3 GeV and |η|<3 and missing transverse
energy (MET). The dataset is generated with Pythia 8.240 generator [188] with a fast
detector simulation using Delphes 3.3.2 [189] with the Phase-II CMS detector card. The
jets are reconstructed using anti-kt algorithm [190]. In the provided dataset each event
is formatted such that the first entry is assigned for MET, next eight are assigned for
electrons and muons respectively and, the final 10 entries are for jets. For each particle
object the data set contains information of pT , η, φ and particle id such that the shape
of an event in the data frame is [N,19,4] where N is the total number of events. Note
that if an event has less than the maximum allowed of a type of object, the remaining
entries in that case are zero padded. The background dataset consists of a number of
Standard Model processes and to determine the performance of the anomaly detection
algorithm four light BSM scenarios are considered.
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For the SM background a collection of events are generated from production channels
with at least a single lepton in the final state. The fraction of events to be included in
the SM for each process is fixed by its trigger efficiency and the LO cross section. Thus,
four leading processes are considered: W and Z inclusive productions, QCD multijet
contributions, and tt̄ production. The proportions between the four processes are given
in [192] as:

pp → W± + jets → `±ν` + jets (59.2%)
pp → Z + jets → `+`− + jets (6.7%)
pp → tt̄+ jets (0.3%)
pp → jets (33.8%) . (5.4)

with ` = e, µ, τ . The QCD multijet production is by far the largest production process at
the LHC. Although leptons in QCD multijet backgrounds are rarely present and mainly
originate from decays of unstable hadrons, the sheer volume of QCD multijet production
makes it one of the largest processes in the data stream for the challenge.

The signal datasets provided by the challenge consist of events simulated from the
following signal models:

• Leptoquark (LQ): A 80 GeV LQ decaying in to a b and τ .

• Neutral scalar boson A: A 50 GeV neutral scalar boson A. The production
mechanism
pp → A + X → Z∗Z∗ + X (with X is inclusive activity) followed by both Z∗

decaying into charged leptons.

• Scalar boson h0: A scalar boson 60 GeV h0 with pp → h0 + X → τ+τ− + X
production.

• A charged scalar h±: Charged scalar with 60 GeV mass and pp → h± +X →
τν +X production.

The most distinguishing high-level features of these signals when compared with the
background processes are the electron, muon, and jet multiplicities and the pT and MET
distributions.

5.1.2 Representations

Jet images As our first application we choose jet images. Before defining the jet image,
the jets are pre-processed by centering each jet around the kT -weighted centroid of
all constituents. Then, the jets are rotated such that their principal axis points to 12
o’clock, and flipped so that the highest pT region is in the lower-left quadrant. Then,
the constituents are pixelized in 40 × 40 images with pixel size [∆η,∆φ] = [0.029, 0.035].
The intensity of the pixels is defined by the sum of pT s within that cell, and finally, the
whole image is rescaled by the total pT of the event. To reduce the sparsity we apply a
Gaussian filter to each image. The effect of two Gaussian filters is illustrated in Fig. 5.1.
Our top tagging dataset consists of 140k jets for each class, of which we use 100k jets
for training, and the remaining 40k for testing. The jet images are pre-processed with a
Gaussian filter with σG = 1.
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Figure 5.1: Example QCD and top images without Gaussian filter, σG = 1, and
σG = 2.

Our second reference dataset, presented in Sec. 5.2.3 are the two dark-matter-inspired
signal samples [58]. Compared to the QCD background, the Aachen dataset is mostly
more sparse, whereas the Heidelberg dataset includes an additional decay structure. As
for the top jets, a Gaussian filter improves the network training and we use a filter with
a σG = 1, but some additional precautions are needed for dark jets. We know that for
an efficient identification of both of the dark jets we need to reweight the jet images.
Unlike in Ref. [58] we now apply the same pixel-wise remapping for both dark jet signals,
namely

pT → pnT with n = 0.01, 0.1, 0.2, 0.3, 0.5 . (5.5)

The goal is to reduce the dependence of an autoencoder performance on this remapping
for different signals.

Point-clouds Although images give an interpretable visualization of a jet, the final input
is a rather sparse representation where only a handful of pixels are activated. A more
natural approach is to consider the jet as a point-cloud. In this case one data instance
is a set of objects of the form {(pT , η, φ)}Ni=1, where N is the number of constituents
of the jet. We ignore the mass of the particles because it is set to zero in our datasets.
In this representation we use the lowest level information available in a detector after
reconstruction to maximize the sensitivity of the anomaly search. We set the maximum
length of the jet zero-padding the vector if smaller jets are encountered. Although we have
zeros in the padded input features, we develop an architecture that is totally insensitive
to the contribution coming from these constituents. We adopt this representation for the
studies in Sec. 5.3.
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5.2 Normalized autoencoder

The normalized autoencoder [193] we will use for this study is an energy-based modification
of a standard AE, as applied in Ref. [139]. We already discussed in Sec. 3.2 the features
of autoencoders but also the problems from the vanilla implementation. However, we
can upgrade the AE to a probabilistic NAE by using the MSE as the energy function in
Eq. (3.30)

Eθ(x) = MSE ≡ 1
N

∑
pixels

|x− fθ(x)|2 . (5.6)

This way we can train a probabilistic AE using Eq. (3.34) and Eq. (3.35).

The NAE training includes two steps. First, we pre-train the baseline AE with the
standard MSE loss, similar to Ref. [139]. After the AE pre-training we switch to the
NAE loss given in Eq. (3.30). All NAE parameters are given in Tab. 5.1. In the spirit of
a proper anomaly search we use the same network and hyper-parameters throughout this
paper. They reflect a trade-off between sampling quality, training stability, and tagging
performance.

The pre-training phase builds an approximate density estimator exclusively based on
the training data by minimizing the reconstruction error. Then, the NAE loss explores the
regions with low energy and guarantees the behavior of the model especially in the region
close to but not in the training data distribution. Here, the mismatch between the data
and the model distribution is corrected by the inter-play between the two components of
the loss function. We cannot give such a guarantee for a standard autoencoder, which
only sees the training distribution and could assign arbitrary reconstruction scores to
data outside this distribution. In fact this is the source of the problems with standard
autoencoders outlined in the introduction, which are solved using the NAE.

As mentioned above, training EBMs is a practical challenge. Several algorithms have
been proposed to train these networks. Two well-known methods based on MCMC
samples are contrastive divergence (CD) and persistent CD. CD and PCD differ in how
they define the initial sample. CD uses a sample taken from the data distribution pdata(x)
while PCD samples from a replay buffer made up of the final state of Markov chains from
previous steps of the optimization. However, these methods are susceptible to creating
spurious high density modes and struggle with full space coverage [193].

We follow a different approach, using the fact that we can train a regular autoencoder
before starting the NAE training. If we accept that different initializations of the MCMC
defined in Eq. (3.30) lead to different results, we can tune λx and σx in such a way
that we can use a sizeable number of short, non-overlapping Markov chains [194–196].
Specifically, the proposed algorithm for an efficient training of NAEs is on-manifold
initialization (OMI) [193]. This approach is motivated by the observation that sampling
the full data space is inefficient due to its high dimensionality, but the training data lies
close to a low-dimensional manifold embedded in the data space x. All we need to do
is to sample close to this manifold. Since we are using an autoencoder this manifold
is defined implicitly as the image of the decoder network, meaning that any point in
the latent space z passed through the decoder will lie on the manifold. This means we
can first focus on the manifold by taking samples from a suitably defined distribution in
the low-dimensional latent space, and then map these samples into data space via the
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decoder. After that, we perform a series of MCMC steps in the full ambient data space
to allow the Markov chains to minimize the loss around the manifold.

To sample from the model we first need to define a suitable latent probability density,
which we do as

qθ(z) = e−Hθ(z)

Ψθ
with Hθ(z) = Eθ(fD(z)) , (5.7)

where Hθ(z) is the latent energy, and fD is the decoder network, all in complete analogy
to Eq. (3.29). Having defined these quantities, the latent space chain is run as

zt+1 = zt + λz∇z log qθ(z) + σzεt with εt ∼ N0,1 . (5.8)

Once we reach a high-density point on the decoder manifold, the final sample is obtained
by running a second input chain according to Eq. (3.35).

During the OMI it is crucial that we cover the entire latent space, thus a compact
structure is preferable. To achieve that, we normalize the latent vectors so that they lie
on the surface of a hypersphere SDz−1, allowing for a uniform sampling of the initial batch
in the latent space. The step size and the noise of both chains are tuned to give T < 1.
Even if a lower temperature introduces a bias towards modes with lower reconstruction
error, this helps stabilize the training and obtain finer samples from the MCMC. Long
LMC chains are affected by instability by two reasons: sudden changes in the gradients
between steps, and diverging energy for both positive and negative samples due to the
loss function being independent of constant shifts. Even if these issues are still not well
understood in the ML community, different possible solutions have been proposed [194]
and applied in this work: (i) clipping gradients in each step; (ii) spectral normalization;
(iii) L2 weight normalization; and (iv) L2 normalization on positive and negative samples.
To decrease the size of both chains, a replay buffer has been utilized which saves the final
points of each latent chain. In the next iteration the initial sample is either drawn from
the buffer or drawn uniformly from the hypersphere, with the probability of being drawn
from the buffer being 0.95. Finally, an acceptance Metropolis step and a noise annealing
step can be applied.

The encoder has 5 convolutional layers. Each layer has 8 filters, except for the last
layer with one filter. The output is then flattened, and two dense layers downsize the
network to the latent space size. The decoder mimics the encoder with 2 dense layers
followed by 4 convolutional layers. All intermediate activation functions are PReLU. The
output activation for the encoder and the decoder are linear and sigmoid, respectively. For
the latent space dimension we use Dz = 3, which is not optimized for performance, but
allows us to visualize the latent space easily. We run the pre-training for 300 epochs, using
Adam [134] with default parameters. Additional information on the network architecture
can be found in Appendix B.

5.2.1 QCD vs top jets

A simple, established anomaly detection task based on jet images is to extract top jets
out of a QCD jet sample, with network training on background only [139]. We summarize
the results with a focus on the performance for symmetric tagging of QCD vs top images.
In standard autoencoder networks a known problem is that they tend to assign larger
reconstruction losses to samples with higher complexity rather than those which are not
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well-represented in the training data. This is exemplified when training an autoencoder
on QCD jets to identify anomalous top jets, versus training the autoencoder on top jets
to identify anomalous QCD jets. The underlying physics suggests that it should be easy
to find large regions of phase space exclusively populated by QCD or top jets, therefore
allowing for out-of-distribution detection in both directions. However, the autoencoder
works well in the direction of anomalous top jets, while it does not work well in the
direction of anomalous QCD jets. We refer to any anomaly detection technique that
tags in both directions of higher and lower jet complexity, without modifications in the
architecture and training, as symmetric.

A known issue in training EBMs is a potential collapse of the sampler, detected by
a diverging negative energy and a collapse of the sampled images [49, 194]. To find a
sweet spot between mode coverage and stability requires careful tuning of the LMC
parameters, in addition to a regularization. We only encounter this failure when training
on top jets, because the latent space undergoes drastic changes. To detect a collapse,
we use several diagnostic tools. A proper training shows stable positive and negative
energies, a fluctuating loss function close to zero, and smooth variations of the weights.
In addition, we can directly look at the sampled images saving batches after a fixed
number of iterations. The NAE training is carried over for 50 epochs or until a collapse
of the sampler happens. Then, the best model is chosen by taking the iteration with the
loss function closest to zero and with stable positive and negative energies.

We choose a three-dimensional latent space for our model, making it a sphere in three
dimensions. We exploit this low dimensionality to visualize the development of the latent
energy landscape. We employ an equirectangular projection as shown in Fig. 5.2. The
x-axis and the y-axis give the longitude and the latitude on the sphere. To reduce the
distortion around jets, the poles are chosen such that the center (0, 0) is given by the
region with most jets. By sampling points on the sphere and calculating the energy of
the decoded jets we build the latent landscapes. In this landscape we show the path of
latent LMCs and the position of encoded jets from both distribution.

In the upper panels of Fig. 5.2 we show a projection of the latent space after minimiza-
tion of the MSE, like in the usual AE, but using a compact, spherical latent space. In the
left panels we train on the simpler QCD background, which means that the latent space

LMC parameters latent input

λ 100 50
σ 10−2 10−4

# of steps 30 30
metropolis X X

annealing − X

training parameters pre-AE NAE

learning rate 10−3 10−5

iterations 15k 40k
batch size 2048 128

Table 5.1: LMC and training parameters. The temperature is implicitly fixed by
the noise and the step size as Tx = 10−7 and Tz ≈ 10−6.
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has a simple structure. The QCD jets are distributed widely over the low-energy region,
while the anomalous top jets cluster slightly away from the QCD jets. The situation
changes when we train on the more complex top jets, as shown in the right panels.
The latent MSE or energy-landscape reflects this complex structure with many minima,
and top jets spread over most of the sphere. After the NAE training, only the regions
populated by training data have a low energy. The sampling procedure has shaped the
decoder manifold to correctly reconstruct only training jet images. For both training
directions, the Markov chains move from a uniform distribution to mostly cover the
region with low energy, leading to an improved separation of the respective backgrounds
and signals.

To see the difference in the two-directional training we can also look at the respective
energy distributions. In the left panel of Fig. 5.3 we first see the result after training
the NAE on QCD jets. The energy values for the background are peaked strongly, cut
off below 4 × 10−5 and with a smooth tail towards larger energy values. The energy
distribution for top jets is peaked at larger values, and again with an unstructured tail
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Figure 5.2: Equirectangular projection of the latent space after pre-training
(upper) and after NAE training (lower). The x- and y-axis are the longitude and
latitude on the sphere. We train on QCD jets (left) and on top jets (right). The
background color indicates the energy over the latent space, the lines represent
the path of the LMCs in the current iteration, and the points show the positions
of jets from both samples.
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Figure 5.3: Distribution of the energy or MSE after training on QCD jets (left)
and on top jets (right). We show the energy for QCD jets (blue) and top jets
(orange) in both cases.

into the QCD region. We can then evaluate the performance of anomalous top tagging
in terms of the ROC curve, the AUC score, and the inverse mistag at low efficiency
(εs = 0.2) in Fig. 5.4. This choice of working point is motivated by possible applications
of autoencoders requiring significant background rejection. The orange ROC curves show
how the performance increases after the additional AE training to the NAE training
in the self-constructed latent-space geometry. The AUC value of 0.91 quoted in the
corresponding table is above the AE setup and our earlier studies.

Next, we can see what happens when we train on top jets and search for the simpler
QCD jets as an anomaly. In the right panel of Fig. 5.3 the background energy is much
broader, with a significant tail also towards small energy values. The QCD distribution
develops two distinct peaks, an expected peak in the tail of the top distribution and an
additional peak under the top peak. The fact that the NAE manages to push the QCD
jets towards larger energy values indicates that the NAE works beyond the compressibility
ordering of the simple AE. However, the second peak shows that a fraction of QCD jets
look just like top jets to the NAE. The ROC curves in Fig. 5.4 first confirm that training
a regular AE to search for QCD jets in a top sample makes little sense, leading to an
AUC value of 0.579. After the additional NAE training step we reach an ROC value of
almost 0.9, close to the corresponding value for top tagging. However, the shape of the
ROC curve does not exactly follow our expectations. We can start with large εS → 1
in the right panel of Fig. 5.3. Here the working point is in the small-energy tails of the
signal and background distributions, and because of the tails in the top jet distribution
the performance of the classification network starts poorly. Moving towards smaller
εS the network performance drastically improves, until we pass the background peak,
corresponding to εS ∼ 0.6. Below this value, the QCD tagging improves, again, but more
slowly than the corresponding top tagging.

Altogether, we see in the right panels of Fig. 5.4 that the NAE combines competitive
performance with symmetric tagging top and QCD tagging. In the easier direction of top
tagging it beats the AE and DVAE benchmarks in spite of the non-optimized setup, and
in the reverse direction of QCD tagging it provides competitive results for the first time.
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Signal NAE AE [139] DVAE [180]
AUC ε−1

B (εS = 0.2) AUC AUC

top (AE) 0.875 68 0.89 0.87
top (NAE) 0.91 80
QCD (AE) 0.579 12 – 0.75
QCD (NAE) 0.89 350

Figure 5.4: ROC curve for top (orange) and QCD (blue) tagging after AE
pre-training (dashed), and after NAE training (solid). A random classifier
corresponds to the solid black line. In the table we compare the performance of
the NAE, and the pre-trained AE used here, to two studies in the literature.

5.2.2 Jets reconstruction and sampling

The NAE architecture allows us to check explicitly the reconstruction of different jets.
Here, we show the average of two subsamples of QCD and top jets with their reconstruction.
By comparing the input images and the reconstruction we get a better understanding of
the main features learned by the network. These subsamples are shown in Fig. 5.5. The
reconstruction of tops events as signal shows how the network is only able to reconstruct
what’s in the training distribution and therefore ignores additional prongs. In the inverse
direction, the network detects all three prongs while also wrongly reconstructing QCD
signal images. In the latter case the main contribution to the energy is coming from the
intensity of the pixels rather than the location of the main prong.

Furthermore, we can explicitly look at sampled images and compare the average
distribution to the expected one. The last two images of Fig. 5.5 show the average
sampled distribution for QCD and top tagging. The averaging is performed on 1000
images sampled after training. In both cases the model distribution has converged and
resembles the training background. A subset of the LMC samples is shown in Fig. 5.6.

5.2.3 QCD vs dark jets

After testing NAE on this benchmark process, we can move to a more difficult task,
namely tagging two distinct kinds of dark jets with the same network. The signal datasets
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Figure 5.5: Average of various jet images. The first two rows account for the
direct and the inverse tagging problem, and they are showing the average of 10k
input and reconstructed images. The last row show an average of 1000 images
sampled via LMC when training on the two different backgrounds.

74



5 Model agnostic searches

LMC images - QCD sample

LMC images - top sample

Figure 5.6: A subset of LMC samples for top (upper) and QCD (lower) tagging.
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Figure 5.7: Average QCD jet images for the 1k most poorly reconstructed jets,
from left to right: average input, average reconstruction, pixel-wise energy
between the two, and average output of the negative energy sample used during
training in the last iteration. The rows correspond to reweighting factors
n = 0.5, 0.2, 0.001.

are the same as in Ref. [58].

To first illustrate the pT -reweighting we select the most poorly reconstructed 1000
QCD images, according to their MSE or energy. In Fig. 5.7 we show the average of these
images to the left, the average reconstruction in the second column, and the pixel-wise
energy between the two in the third row. Reducing the remapping defined in Eq. (5.5)
from n = 0.5 to n = 0.01 washes out the pT -structures, so the input and especially the
reconstructed images change from more structured jets to a simple, single-prong structure.
For our two signal hypotheses this means that for large n the poorly reconstructed QCD
images resemble the Heidelberg signal, leading to a more efficient signal extraction, while
for small n the poorly reconstructed jet images resemble the Aachen dataset.

This difference in the jet reconstruction for different models can be explained by
looking at the sampled distributions during training. The NAE-sampled average of the
negative-energy jets in the last iteration is shown in the two right column of Fig. 5.7.
At n = 0.5 the NAE sampling discards all secondary clusters and focuses on the main
feature of the QCD jets, the single prong. During training, the loss function enhances
the main feature by increasing the energy of everything around it in the latent and phase
spaces. As a consequence, the initial background is lost after some epochs, but to keep
the normalization of each jet the central prong is enhanced. As a result, the tagging of
two-prongs structure like the Heidelberg jets is improved. Conversely, at n = 0.01 the
reweighting enhances the secondary cluster, which cannot be discarded by the training
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Figure 5.8: Equirectangular projection of latent spaces after NAE training on
QCD jets to identify anomalous dark jets. We show four different pT -reweightings
n. The blue points represent a sub-sample of QCD training events.

anymore. As a result, in both initial iteration, and at equilibrium there is a residual
background away from the central prong. This way, the NAE training increases the
energy for Aachen jets, because the normalization forces the main prong to a lower
value. These effects are inevitable when training likelihood-based models, a different
preprocessing will change the density and, therefore, the anomaly score.

As for the top vs QCD tagging, we then show the latent space landscapes after NAE
training in Fig. 5.8. For all pT -reweightings the network identifies the least populated
regions in the decoder manifold and increases the corresponding energy. As discussed
above, a large n = 0.5 enhances the sensitivity to the more complex Heidelberg dataset,
while the sparse Aachen dataset is hardly separated from the QCD jets. For small
n = 0.01 a distinct region appears at large λ, where the Aachen signal extends beyond
the QCD region. In between the two extremes, the latent landscape changes smoothly
with the biggest change happening around n = 0.2. Around this point the training
can oscillate between focusing on primary prongs or on secondary clusters, causing
fluctuations in the performance. This transition in the pT -reweighting is also the only
case where the hyperparameters, and especially the temperatures, have a noteworthy
effect on the network performance.
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Figure 5.9: Distribution of the energy for QCD, Aachen, and Heidelberg datasets.
Each panel corresponds to a different reweighting of the same datasets. The
table shows the mean and the standard deviation for each distribution (×10−6).

Once again focusing on the pT -reweightings we show the energy distributions for the
QCD training data and the two signals in Fig. 5.9. We see that unlike in our earlier
study [58] the effect of the preprocessing on the whole distribution is limited. A shift in
performance at low signal efficiency can be seen by varying n with the ordering between
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Figure 5.10: MMD in phase (solid) and latent (dashed) space between two
random sample of QCD and signal jets (left), and between the QCD sample and
the most poorly reconstructed signal jets (right). Unlike for the other figures,
the remapping n increases from left to right.
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the two dataset being switched around n = 0.2 ... 0.3. The energy distribution of the
Heidelberg dataset has a shifted main peak at n = 0.5 which is washed out by smaller
reweighting factors, while the QCD distribution undergoes a slight shift and develops
a longer high-energy tail. For the Aachen dataset, lowering n moves the mean away
from the QCD background and at the same time increases the width of the distribution.
These patterns will affect the ROC curves at low signal efficiency and large background
suppression.

Once we understand how the pT -reweighting changes the input distributions and
the energy distributions for the QCD background and the dark jets signals, we can
measure the difference between QCD jets and each of the two signals by computing the
maximum mean discrepancy (MMD) [197] of sub-samples from these distributions. We
show these MMD curves as a function of n in Fig. 5.10, for the full distributions of 20k
QCD and signal jets and only considering the 1k most poorly reconstructed jets in the
high-background-rejection target region. For the input distributions we see the same
trend in both panels — small n benefits the tagging performance for the Aachen dataset
and decreases for the Heidelberg dataset; increasing n improves the tagging performance
for the Heidelberg dataset.

The more interesting question is if the input-space pattern can also be observed in
the latent-space distributions. The idea behind this test is to construct an autoencoder
with a choice of anomaly scores, either reconstruction-based in phase space or in the
latent space [180]. Again in Fig. 5.10 we show the corresponding MMD values as dashed
curves. For the complete samples as well as for the most poorly reconstructed jets the
latent-space MMD behaves just like the phase-space MMD. This indicates that it should,
if necessary, be possible to construct a latent-space anomaly score for the NAE.

Moving on to the performance of the NAE on dark jets, we show the ROC curves
with different reweightings in Fig. 5.11. First, we see that the AUCs for the Aachen and
Heidelberg datasets are roughly similar. For the sparse Aachen jets we already know
that smaller values of n benefit the tagging performance, but we also see that for n < 0.3
the AUC reaches values above 0.72, and for n = 0.2 ... 0.01 the performance essentially
plateaus at a high level. In contrast, for the Heidelberg signal we expect a better tagging
performance around εS ∼ 0.2 for larger n-values.

From Fig.5.9 we know that the different reweightings mostly change the ordering of
the two signal tails at high energies and leave the bulks of the distributions unchanged.
The corresponding ROC curves in Fig. 5.11 confirm that the remaining n-dependence is
connected to a behavioral change in the model in the region n ∼ 0.2. While the choice
n = 0.2 is not optimal for each of the signals, it can be used as a working compromise
between sparse dark jets and dark jets related to a mass drop.

5.3 AnomalyCLR & DarkCLR

In this section we describe the AnomalyCLR and the DarkCLR methods. We discussed
in Sec. 3.2 the contrastive learning of representations [101] technique used to construct
highly-expressive representations of data for use in downstream tasks, which for us is
anomaly detection. The advantage of this, from the collider physics perspective, is that
the technique can be run directly on experimental data rather than on simulation. This
allows the network to learn non-trivial correlations and tails in data that might not be
well-modelled in simulations.
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Figure 5.11: ROC curve for dark jets tagging with different reweightings n,
shown for the Aachen signal (left) and the Heidelberg signal (right). A random
classifier corresponds to the solid black line. The table is based on the same
information and shows the mean and the standard deviation of five different
runs.

5.3.1 Contrastive learning for anomaly detection

While contrastive learning has been shown to be very useful in generating representations
for downstream classification tasks [198], there is a potential issue when using this
approach for downstream anomaly detection tasks. For the classification task, for
example in [198], the function f(·) is optimised on data from both the background and
signal classes, despite not using their truth-labels explicitly in the optimisation. Through
the contrastive learning this allows the function to encode non-trivial features of both
the background and signal data in the representations. When using contrastive learning
for a downstream anomaly detection task however, the function f is optimised on just
the background data (or at least a significantly background-dominated dataset). This
means that the representation learned by the function f(·) will focus solely on features
relevant for the background data. This could mean that anomalous data is not out-of-
distribution and so may not lead to competitive performance in downstream anomaly
detection tasks. This will become evident when we look at the results in Sec. 4.3.2. To
remedy this we introduce AnomalyCLR, a modified approach to contrastive learning for
anomaly detection in particle physics. At the core of this approach is the introduction of
‘anomaly-augmentations’, such that we now have two categories for augmentations:
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1. Physical augmentations
These are augmentations of the data that we would like the mapping to be invariant
to.

2. Anomaly-augmentations
These are unphysical augmentations of the data that are supposed to mimic potential
anomalies, we want the representations to be highly discriminative towards these
augmentations.

We add a third pseudo-label:

3. Anomaly-pair labels
These labels match each data point in the sample to an anomaly-augmented version
of itself.

The advantage of anomaly-augmentations is that we can increase the sensitivity of the
anomaly detection tools to anomalies using just the background data, potentially the
data directly measured at colliders. This keeps the approach in line with the original
data-driven CLR idea. We can then define the anomaly-augmented contrastive loss
function as

LAnomCLR = − log e
[
s(zi,z′

i)−s(zi,z
∗
i )
]
/τ∑

j 6=i∈batch

[
es(zi,zj)/τ + es(zi,z

′
j)/τ

] , (5.9)

where we denote the representations of the anomaly-augmented events by z∗, and so
the anomaly-pair is defined as {(xi, x∗

i )}. Note that the anomaly-augmentations only
enter in the numerator of Eq. (5.9), and without these the loss function becomes the
regular contrastive loss function. Introducing the anomaly-pairs we expose the network
to data features that are outside of the background distribution. The CLR portion of
the loss function still optimises for alignment and uniformity, however this uniformity is
now disrupted by the anomaly-pair term. As a result the background data will not be
uniformly distributed in the representation space, with some regions encoding features of
the anomaly-augmented data. This means that anomalous data with features similar
to those generated by the anomaly-augmentations should be out-of-distribution in this
representation space.

We did some minor testing on alternative forms of this loss function, for example
including the anomaly-augmentations in the denominator of the loss function with the
negative-pairs. However since the anomaly-augmentations compute distances between
a data point and its augmented counter-part, and not between other data points (i.e.
i 6= j), it is more intuitive to include this term in the numerator. The denominator
in Eq. (5.9) is used to encode features in the representation space that discriminate
between the different data points used during training, which for anomaly detection is
the background data. This is not necessary for anomaly detection, and the anomaly-pairs
should provide the representations with all the discriminative power they need, so we
experimented with removing the denominator in Eq. (5.9) altogether, and found that
this is sufficient. In this case the loss function is written as

L+
AnomCLR = − log e

[
s(zi,z′

i)−s(zi,z
∗
i )
]
/τ = s(zi, z∗

i ) − s(zi, z′
i)

τ
, (5.10)

where the plus sign in L+
AnomCLR indicates that only positive-pairs are used. This results

in a much less computationally expensive loss function, since we no longer need to
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compute pair-wise correlations between each entry in a batch the complexity scales as
Nbatch rather than N2

batch. We also remove the dependence on τ in L+
AnomCLR, since there

is no longer a trade-off between positive- and negative-pairs. We could of course introduce
a term to control the trade-off between the physical and anomaly-augmentation terms,
but we do not explore that here. In our results we will compare the performance of both
loss functions. The number of augmentations is theoretically unlimited, however including
a large number of scenarios can incur unstable optimization of the loss especially for
contradicting transformations. This problem can be tackled with a larger batch size, to
get a better average estimate of the loss, and with a larger representation space.

5.3.2 Applications to events and semi-visible jets

The application of AnomalyCLR to different physical scenarios requires an understanding
of the data and the physics in order to construct the physical and anomaly-augmentations.
For the event-level dataset discussed in Sec. 5.1 we consider three physical augmentations
to the data:

1. Azimuthal rotations
The whole final state is rotated by an angle φ randomly sampled from [0, 2π].

2. η − φ smearing
The (η, φ) coordinate of every object in the event is resampled according from a
Normal distribution centred on the original coordinate and with a variance inversely
proportional to the pT , i.e. η′ ∼ N (η, σ(pT )) and φ′ ∼ N (φ, σ(pT )).

3. Energy smearing
The pT of every object in the event is re-sampled according to p′

T ∼ N (pT , f(pT ))
with f(pT ) determining the strength of the smearing.

These augmentations reflect both the symmetries in the data and the experimental
resolution of the detector. Detectors are imperfect, especially in measuring jet energies,
and we encode this in the representations of the data through the energy-smearing
augmentation. Here we re-sample the jet pT ’s as p′

T ∼ N (pT , f(pT )), where f(pT ) =√
0.052p2

T + 1.502pT is the energy smearing applied by Delphes (the pT ’s are normalised
by 1GeV). If not explicitly mentioned, we always assume units of GeV for energy. For
the anomaly-augmentation we consider some very simple scenarios:

1. Multiplicity shift, x′
i = m(xi)

For each event m(·) adds a random number of electrons, muons, and jets to the
event. The number is chosen randomly within the limits (ne, 4−ne), (nµ, 4−nµ), and
(nj , 10−nj) for electrons, muons, and jet, respectively. The azimuthal angle and
pseudo-rapidities are also chosen randomly within the limits allowed, and the pT for
each object is chosen as a random fraction of the maximum pT in the event. Once
the objects have been added, the MET of the event is recalculated and updated.

2. Multiplicity shift, keeping MET and the total pT constant, , x′
i = m(xi)

This is similar to the above augmentation, but now m(·) generates the extra objects
by splitting the existing objects and smearing the η−φ coordinates using the
function used in the physical augmentations above.

3. pT and MET shifts, x′
i = spT (xi)

Here spT (·) shifts the pT ’s in the event by the same random factor. We randomly
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choose whether we shift just the MET, just the reconstructed object pT ’s, or both.
And we ensure that the the trigger selection is not spoiled by these shifts.

With the physical augmentations we apply all of them simultaneously, whereas for the
anomaly-augmentations we apply just one augmentation to each event. The augmentation
that is applied is selected randomly and uniformly. We do not apply both a physical
augmentation and an anomaly-augmentation to the events in s(zi, z∗

i ), since this would
conflict with the optimisation goal of the s(zi, z′

i) term. It would also be possible to have
an anomaly-augmentation that removes objects from the event, however this effect is
already captured by the augmentation that adds objects to the event. Many of the events
in the background have the minimal multiplicity allowed by the applied cuts, so the
effect of an anomaly-pair with a low multiplicity background event and the same event
augmented to have more objects is the exact same as the effect of an anomaly-pair with
a high-multiplicity background event augmented to have less objects. This is because
of the symmetry in the distance function s(zi, z∗

i ). So the anomaly-augmentations here
are as general as can be, and do not target any specific new physics scenario, therefore
the technique should be model-agnostic. More precisely, the anomalous transformations
democratically introduce a modification given the background data and its format. In our
implementation there are no explicit assumptions on the allowed signals, both multiplicity
shifts, m(·) and m̄(·), uniformly sample the number of additional reconstructed objects
and differ in the treatment of the kinematics. In the first case, the new objects take a
fraction, uniformly sampled as well, of the maximum pT , while in the second case the
total MET and the pT are left constant. The third augmentation shifts MET and/or pT
uniformly sampling a scaling factor, given the original values. Here, we fixed a window
corresponding to five times the original momentum. This window has not been fine tuned
and, given the wide range of kinematics in the training events, this window covers an
extremely large phase-space region. Given the generality of these transformations, the
representations comply with our anomaly detection downstream task. For the general
application of this method, it is important a careful study of the augmentation technique
and their implementations to avoid the usage of inconsistent data.

In DarkCLR we apply the CLR framework to the semi-visible jets scenario presented
in Sec. 5.1. We start with the positive augmentations. These are easy to implement
approximate symmetries of a jet:

• Rotations: We rotate each jet in η − φ by an angle which is chosen randomly
between [0, 2π]. Note that the angle is chosen randomly for each jet, i.e., each
constituent inside a jet is rotated by the same angle.

• Translations: We shift each constituent in the η − φ plane by randomly choosing
a shift in a window with size given by the distance between the two furthest
constituents.

After applying these two transformations to the original jet xi, we obtain the augmented
version x′

i and the positive pair {xi, x′
i}.

Semi-visible jets, as discussed earlier, have fewer constituents than QCD jets. Therefore,
we consider dropping constituents as an anomaly augmentation. The transformation
is implemented as follows: We drop each component of the jet with a fixed probability
pdrop, and the pT of the augmented jet is rescaled to match the original pT . The latter
step ensures that the augmented jets fulfill the selection cuts applied in the generation
process.
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Figure 5.12: (top) Example of positive augmentations on a QCD jet. The original
QCD jet is rotated in η − φ the middle panel and translated in η − φ in the
right panel. (bottom) Example of an anomalous transformation on a QCD jet.
The left panel shows the original background jet while the middle and right
panels show the same jet after applying the augmentations with pdrop = 0.3 and
pdrop = 0.5 respectively.

Fig. 5.12 shows an example positive transformation of a QCD jet used during training,
together with an anomalous one with pdrop = 0.3 and pdrop = 0.5.

5.3.3 Network architecture

A clear difference stems from the event-based datasets compared to jets. The collider
event data being used has a well-defined structure:

• MET: one entry with (pT , η, φ)

• Electrons: four entries, each with (pT , η, φ)

• Muons: four entries, each with (pT , η, φ)

• Jets: ten entries, each with (pT , η, φ).

The multiplicity is typically much less than the maximum allowed, so the data for a
single collider event can have many zeros. A transformer netowrk allows us to avoid
this by having a permutation-invariant and variable length input format. Because the
data is now processed in a permutation-invariant way, the information on which entry
corresponds to which object (MET, electron, muon, or jet) is lost. We reinstate this
information by adding a one-hot encoded ID vector to (pT , η, φ), with a 1 indicating
the correct ID. This means that each reconstructed object is now represented by a 7D
vector. Before passing the kinematic data to the transformer we do some very minor
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preprocessing to make sure that the numbers the networks see are O(1). Specifically, we
divide all MET and pT values by the average pT of all objects (electrons, muons, jets) in
the background dataset, we do not shift the values to be centred on zero because the
distribution is highly peaked at zero and we want the preprocessed data to have the same
sparsity as the original data. We then divide all η and φ values by 4 and π, respectively.
When training the AutoEncoder networks discussed in the next section we use the same
preprocessing of the data, this ensures that any difference in the results can be attributed
to AnomalyCLR. On the contrary, the jet dataset has no internal structure and the full
permutation invariance from the transfomer is desired.

We describe the network architecture following the schematic in Fig. 5.13. Notice
that the indexed variable x refers to the objects inside the jet or event and not to one
instance of the training data.

As the first step of the CLR network, an embedding layer maps the set of constituents
{(pTi, ηi, φi)}Nci=1 to a larger vector with dr dimensions. The number of features inside the
jet/event has a fixed maximum size of Nc. This selection includes the entire event and
the entirety of the QCD jets in most cases, while ignoring the softest components if the
number of constituents is larger than Nc. The embedded constituents are then passed
through a sequence of transformer encoder blocks. A block consist of a multi-head self-
attention layer followed by a feed-forward network. A single-head self-attention operation
transforms the input set by considering all the correlations between the constituents. The
operations inside the self-attention block are described in Sec. 3.3. The output of the last
transformer block provides an encoding of dimension (Nc, dz). As a crucial next step,
the output is summed over Nc to induce permutation symmetry between the features.
Finally, the output is passed to a fully connected head network. The output of the head
network then serves as the representation and input to the contrastive loss function of
Eq. (5.10).

If a jet has less than Nc constituents, these are zero-padded. We ensure that this does
not affect the transformer by masking the zero pT entries. The masking procedure ensures
that the attention weights from zero-padded constituents are zeros by adding minus
infinity to the attention weight before normalization. Additionally, the contributions
from the masked particles are also ignored in the final aggregation over Nc [198].

The output of this head network is what is passed to the loss function. We list the
hyper-parameters used in training the networks in Appendix B. The representation used
in the anomaly detection task is taken either from the output of the transformer network
or the output of the head z.

5.3.4 Anomaly scores

Here we describe the anomaly scores we studied for the new representations. In Anoma-
lyCLR we focused on the CLR loss function and used a standard autoencoder to test the
representations. Indeed, it worked well because these benchmark have larger multiplicity.
The semi-visible jets studied in DarkCLR provide a case study where we have more
control on the phenomenology. In this case we studied the structure of the representations
with an anomaly score defined directly in CLR space and, additionally, a NAE as better
density estimator. In the following, we present the details of the three anomaly scores.
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Figure 5.13: Schematic of the network architecture. The shape of the input
vector, excluding the batch dimension, are shown after each step.

AE The encoder and decoder networks used in AnomalyCLR have 5 feed forward layers
each with 256, 128, 64, 32, and 16 neurons, connected by a 5-dimensional bottleneck. The
activation function between layers is a LeakyReLU with default slope. The decoder is a
mirrored version of the encoder. We don’t apply regularization techniques during training.
The training is performed using Adam optimiser with learning rate 0.001 for 100 epochs,
the batch size is 4096, and the number of SM events used is 106. Note that we have not
optimised the AutoEncoder architecture, simply choosing the same architecture used
in [77]. Instead we have only ensured that they are trained to convergence and that the
training is stable. The AutoEncoder is trained on both the representations obtained from
contrastive learning and the raw data. In the case of the raw data we apply the same
preprocessing to the data as is applied to the data in the contrastive learning network.
In this way we ensure that any differences in the anomaly detection performance can be
attributed to the contrastive learning methods. As presented in Sec. 3.3 the MSE will be
the final anomaly score.

CLR Here we focus more on understanding the CLR representations. First, we show in
Appendix A that the representation before the head network encodes useful information
for the discrimination between background and signal. In particular, the representations
perform better than the constituents-level on a simple linear classifier test (LCT). However,
we find that the output of the head network performs better on a cut-based analysis on a
very simple quantity, and we use this representation for the evaluation of the anomaly
scores. We first note that one way to reduce the loss is to simply increase the length of the
vector so that jets with different properties are separated in the non-normalized space and
close to each other after projection. Therefore, we expect the norm of the representation
vector to be a discriminative scalar quantity and propose it as a CLR-based anomaly
score that can show the effect of the DarkCLR pretraining. Namely:

sCLR = ||z||L2 , z ∈ Rdz . (5.11)

Before using this anomaly score, a small modification is needed. Since our loss
Eq. (5.10) is norm-free, the ordering between background and signal norms is not a priori
fixed. This ambiguity, which can spoil applications in anomaly detection, is resolved by
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introducing a regularization term which penalizes background representations with large
norms. This ensures that anomaly detection associates high norm with outlier data. The
implementation is done by adding to the loss function the L2 norm of the representations
of the background batch. We find empirically that this new term does not affect the
similarity, and therefore the loss, of the training. By definition sCLR has no access to
angular information which should provide additional discriminative information. We
include this in the following anomaly score that takes as input the full high-dimensional
vector.

NAE The second anomaly score we consider in DarkCLR is the reconstruction error
of a normalized autoencoder. We remind that a NAE shares the same structure of a
standard AE with the added robustness of maximum likelihood estimate training. The
strategy for the analysis of the DarkCLR representations consist of obtaining the latent
representations via the encoding function f defined in Sec. 5.3 and pass them to the NAE.
The energy function is then used as anomaly score which is approximately invariant under
the physical transformations used during the CLR training. Since the autoencoder is
trained in a second step, DarkCLR can be seen as a pre-training procedure which exploits
known invariants and the anomalous augmentation to provide better representations
where we run a density estimation downstream task.

The following description of the NAE methodology differs from the one presented
in Sec. 5.2 and therefore shortly summarized. We assume to train on representations z
sampled from the latent space distribution pZ(z) induced by the training data,

z = f(x) where x ∼ pdata(x) . (5.12)

In the NAE we assume a Boltzmann underlying distribution pθ with energy Eθ:

pθ(z) = e−Eθ(z)

Ω , Eθ(z) = ||z − z′||2, (5.13)

where θ are the trainable parameters of the network, and z′ is the reconstructed repre-
sentation.

Performing MLE on the probability distribution translates to minimizing the sum of
the reconstruction error and the normalization factor Ω. However, computing Ω becomes
easily intractable for high-dimensional spaces, so we do not explicitly minimize this
quantity. Instead, we rewrite the gradient of the loss function in a computationally
feasible manner as:

∇θL = Ez∼pZ [∇θEθ(z)] − Ez∼pθ [∇θEθ(z)]. (5.14)

We obtain samples from pθ using LMCs. An LMC process follows the equation:

zt+1 = zt − λ∇z log pθ(z) + σε ε ∼ N (0, 1), (5.15)

and does not require an estimate of the integral due to the independence of the latter
from the input z.

In particular, we utilize the contrastive divergence [199] Markov chain Monte Carlo
scheme. Given a transition kernel Tθ for the data distribution pZ , the following combina-
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tion of Kullback-Leibler divergences has a zero only for pθ(z) = pZ(z) [200]:

KL(pZ ||pθ) − KL(T tθ(pZ)||pθ) , (5.16)

Therefore, we can run short Langevin Markov Chains with steps t, which define the
transition kernel T tθ , and estimate the gradients of Eq. 5.14 as:

∇θL = Ez∼pZ [∇θEθ(z)] − Ez∼T t
θ
pZ

[∇θEθ(z)]. (5.17)

Note that Eq. 5.17 ignores an additional term as pointed out in [199]. We find that this
approximation does not affect the convergence of our model and therefore we use the
base CD loss.

The procedure defined above stabilizes the training and corrects for the mismodeling
of the density estimate introduced by the mere minimization of the reconstruction error.
The epoch with the energy difference closest to zero defines the best loss, and we select
the corresponding model for evaluation. Before turning on the regularization term, we
pre-train the autoencoder for 200 epochs then continue training according to Eq. 5.14 for
another 100 epochs. The architecture of the encoder network is a simple feed-forward
network with five layers with neurons from 128 to 8 in powers of two and a three-
dimensional bottleneck. The decoder mimics the encoder network, this time up-sampling
from 8 to 128 dimensions in powers of two.

5.3.5 AnomalyCLR results

In this section we present some results using the different techniques discussed in the
preceding sections. The results here are three-fold; we first compare the different methods
based on anomaly detection performance, we then study the effects of the different
anomaly-augmentations on the AnomalyCLR performance, and lastly we look at the
effect of the representation dimension on the performance.

Comparison of methods We compare the methods using the ROC curves, the signifi-
cance improvement (SI) curves, and the AUC. The baseline we compare to is the AutoEn-
coder trained on raw kinematic data. We present results using the CLR method without
anomaly-augmentations (LCLR), and the CLR method with anomaly-augmentations
(both LAnomCLR and L+

AnomCLR). So we have 4 methods in total to compare. For all
results on the raw data we have trained five AutoEncoder networks and taken the central
value and the error estimation from the mean and standard deviation of the results. For
the CLR methods we also aggregate over five different CLR runs, where for each run we
train a different transformer network and three different AutoEncoders. We then take the
central value and the standard deviation for the error estimate. The CLR representations
have a dimension of 160 and where anomaly-augmentations are used we have used them
all as outlined in Sec. 5.3.2. In Fig. 5.14 we present AnomalyCLR results using L+

AnomCLR
and see that it leads to significant improvements over the raw data representations, not
only in the AUC but also at all signal efficiencies. In the Significance Improvement
(SI) curves we also see large improvements, with the SI being between ∼ 3.5−4 for
A → 4l and h+. We can see from Tab. 5.2 that the L+

AnomCLR loss function is clearly
advantageous over LAnomCLR, beating it on all signals with the exception of A → 4l,
where LAnomCLR achieves better performance at εs=0.3. A point of interest here is that
the AutoEncoder on raw data outperforms the AutoEncoder on the CLR representations
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Figure 5.14: Comparison between the AE on raw data and the AE on the CLR
representations trained with the L+

AnomCLR loss function.

in most cases. This is likely due to the fact that traditional CLR optimises for uniformity,
and since it is trained on background only, the mapping is not optimised to separate
SM-like background events from any event which may look different to that. The benefit
of anomaly-augmentations here is strikingly clear.

The effect of anomaly-augmentations We now want to study how the addition of
the individual anomaly-augmentations affects the anomaly detection performance. For
this we use just L+

AnomCLR , however we expect the results with LAnomCLR to be similar.
We use a representation dimension of 160 and obtain the error estimate on the runs
with a combination of different CLR and AutoEncoder trainings. We train five different
CLR models, and then train three separate AutoEncoders on each of these models, and
take the average and standard deviation to obtain the error. We can see from Fig. 5.15
that the affect of the augmentations together results in more or less the best overall
performance. One thing we noticed is that it can be difficult to determine from the affect
of individual augmentations, or subgroups of them, what the performance of all of them
together will be. For example, in most cases if we take just the m(x) augmentation, i.e.
the multiplicity augmentation that simply adds reconstructed objects, we see that it alone
decreases performance below baseline for two out of four signals. However when used in
combination with the others it either increases or has little effect on the performance.
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Figure 5.15: Results of a scan on the anomaly-augmentations used with the
L+

AnomCLR loss function. The augmentations are defined in Sec. 5.3.2. The dashed
lines here correspond to the AutoEncoder on raw data baseline performance.

We can in fact see from this figure which augmentations are most advantageous for each
signal. For the LQ this is the m(x) augmentation, for h0 it is both the m(x) and spT
augmentations, for A it is the m(x) augmentation, and for h+ it is the spT augmentation.
The important take away here is that in the case where we do not know what the
signal is, including all augmentations will allow us to be signal-agnostic and retain the
discriminative power for each signal type.

Signal AE-Raw CLR AnomCLR AnomCLR+

AUC A 0.885(2) 0.89(1) 0.918(2) 0.917(3)
h0 0.755(2) 0.726(9) 0.749(3) 0.776(2)
h+ 0.900(4) 0.84(1) 0.898(3) 0.925(2)
LQ 0.856(2) 0.82(1) 0.847(6) 0.882(2)

ε−1
b (εs =0.3) A 47(2) 170(70) 400(100) 270(50)

h0 14.9(7) 10(1) 15.0(5) 19.1(7)
h+ 60(10) 20(2) 53(3) 110(10)
LQ 24.4(6) 16(1) 27(1) 37(2)

SI(εs =0.3) A 2.05(5) 4.0(8) 6.4(9) 5.0(4)
h0 1.16(3) 1.01(5) 1.19(2) 1.34(2)
h+ 2.3(2) 1.38(9) 2.24(7) 3.2(2)
LQ 1.48(2) 1.25(5) 1.59(3) 1.87(6)

Table 5.2: Comparison of the different CLR loss functions, with and without
anomaly-augmentations, and the AE trained on raw data.
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The effect of representation dimension With CLR we can project our raw data from
D to a representation of any dimension we like. We would expect that the larger the
representation dimension the more information that can be encoded in the space. However
we also expect that this would plateau or even peak at some point, and this what we
want to investigate here. For this we use just L+

AnomCLR , however we expect the results
with LAnomCLR to be similar. Here we also obtain the error estimate from a combination
of five CLR models and three AutoEncoders trained on each.
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Figure 5.16: Results of a scan on the representation dimension used with the
L+

AnomCLR loss function. The dashed lines here correspond to the AutoEncoder
on raw data baseline performance.

In Fig. 5.16 we see that increasing the representation dimension certainly improves
the performance of the anomaly detection, at least up until a certain point. The A signal
appears to achieve peak performance somewhere between dimensions 120 and 200, while
the other signals performances all increase and/or plateau right up until 400. There is
no fundamental limitation related to the representation size which we would expect to
cause a degradation at larger dimensions, however there are two points we should keep in
mind here. The first is simple, these means and variances are calculated with a total of
fifteen runs (five CLR models each with three AutoEncoders), so more runs might present
a clearer picture. The second point is that we have not optimised the AutoEncoder
architecture or hyper-parameters as the representation size increases. While it is beyond
the scope of this paper, it is possible that an independent hyper-parameter optimisation
for each representation dimension would improve these results, particularly at larger
dimensions. What these results show is that there is a clear tendancy for the results to
improve as we increase from dimensions of ∼ 4 to ∼ 100, as we would naturally expect.
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5.3.6 DarkCLR results

In this section, we show results using DarkCLR on the benchmark “Aachen” signal. First,
we compare our results with previous methods tested on the same dataset. We then
perform studies to test the robustness of our results with respect to variation of the
semi-visible jet model parameters. Finally, we discuss the dependence of the performance
on the main network parameters.

Improved performance First, we discuss the base pipeline of our procedure and compare
the results with other methods. We train the transformer encoder network with the
hyper-parameters as specified in Appendix B. The chosen embedding space uses 512
dimensions, and the augmentations follow the implementation described in Sec. 5.3.2,
where pdrop = 0.5. Note that the size of the embedding space must be large enough
to contain the information passed from the head to the output layer. As we show
in Appendix A, our results are not sensitive to the specific choice of the embedding
dimension, as long as it is sufficiently large. We show ROC curves for the CLR latent
score sCLR and the NAE score sNAE. In addition, we report the low signal efficiency
background rejection as a measure of the purity of a signal sample in the low background
region and the AUC score. The error bands on sCLR are taken from 5 runs of CLR
training with different initializations. From each of these representations, we train 3
autoencoders for a total of 15 sNAE scores, which are used to compute the mean and
standard deviation. Note that no transformations are applied to the representations
before training the autoencoder, thus limiting the preprocessing to the mere pT rescaling
and the physically guided CLR transformation.

Fig. 5.17 shows the ROC curves obtained with our method. The new embedding space
greatly improves the background rejection ε−1

B , in particular in the region of low signal
efficiency as estimated by ε−1

B (εS = 0.2). We find that the transformer network does indeed
encode information in the norm to discriminate between jets. In particular, it improves
purity in the low background region, as shown by the background rejection of sCLR at
low signal efficiency. However, due to the high dimensionality of the representations,
many jets will share the same norm in the bulk of the distribution, causing the sCLR
ROC curve to drop off at εS = 0.3. We also observed similar problems when training a
standard autoencoder. This is solved by a more precise density estimator like the NAE.
The resulting sNAE ROC curve is much more stable with an average AUC of 0.76 and a
ε−1
B (εS = 0.2) = 59.

Tab. 5.3 summarizes the AUC and the background rejection ε−1
B (εS = 0.2) for DarkCLR

and compares them to previous methods: an NAE trained on jet images [1], a Dirichlet
variational autoencoder [180], and an invertible neural network [58]. While the best AUC
is similar for all methods, with DarkCLR we find much stronger background rejection at
low signal efficiency, and we do not rely on image-based representations or any specific
preprocessing steps.

Dependence on the dark shower signal As a next step, we study the robustness of
our method with respect to the main phenomenological parameters of the semi-visible
jet as described in Sec. 4.1. We set up a benchmark by training a transformer classifier
with 100k jets equally divided between the QCD background and the “Aachen” dataset.
We then use the classifier score to detect the signals with different invisible fraction rinv
and dark meson mass scale mmesons. The classifier uses the same backbone transformer
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Figure 5.17: (left) ROC curves of background suppression ε−1
B versus signal

efficiency εS , computed from the L2 norm of the representations, sCLR (red),
and from the MSE of the NAE trained on the representations from DarkCLR,
sNAE (blue). (right) CLR and NAE AUC (upper panel) and background rejection
at low signal efficiency (lower panel) for different embedding dimensions.

DVAE [180] INN [58] NAE Jet images [1] DarkCLR

AUC 0.71 0.73 0.76(1) 0.76(1)

ε−1
B (εS = 0.2) 36 39 41(1) 59(1)

Table 5.3: Summary of AUCs and background rejections at low signal efficiencies
for DarkCLR compared to other methods. The numbers in parenthesis indicate
the standard deviation of the score from an ensemble of networks. For the DVAE
and the INN this was not reported.

architecture of Sec. 5.3.3 where the head network is replaced by a two-layer MLP with
ReLU nonlinearities and a single output. We train the network for 300 epochs, minimizing
the binay cross-entropy loss, and refer to the validation loss to select the best model.

Fig. 5.18 shows the results of the supervised classifier (left panel) compared to
DarkCLR trained only on the QCD background and tested on all signals (right panel).
The supervised classifier shows a large drop in performance when applied to datasets with
different model parameters, see also [184]. Instead, our DarkCLR method performs well
on different semi-visible jet signals, as expected from the unsupervised training approach.

The small differences between the DarkCLR ROC curves for the various signals can
be understood by analyzing the phenomenological aspects of the different semi-visible
jet models. As we reduce the invisible fraction rinv, the signal becomes more similar to
a QCD jet, increasing the overlap between the two distributions and thus reducing the
detection efficiency. Similarly, increasing the confinement scale and thus the mass of the
dark hadrons leads to an earlier hadronization of the dark quarks. Therefore, the visible
SM decays continue to shower down to the QCD confinement scale, again more closely
resembling a QCD background jet initiated by light quarks. We observe this effect when
we increase the energy scale from the default choice of the Aachen benchmark dataset to
mπd = mρd = Λ = 10 GeV and 20 GeV.
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Figure 5.18: Left panel: ROC curves of a supervised classifier trained on the
“Aachen” benchmark signal and tested on datasets with different dark shower
model parameters. Right panel: ROC curves obtained from DarkCLR after
training on the QCD background only and tested on additional datasets.

ε−1
B (εS = 0.2)

”Aachen” rinv = 0.2 rinv = 0.5 mmesons = 10 GeV mmesons = 20 GeV

CLS (“Aachen”) 80(1) 28(2) 22(2) 30(2) 28(2)

DarkCLR 58(2) 28(2) 35(3) 65(7) 33(1)

Table 5.4: Summary of the results presented in Fig. 5.18 for the background
rejection ε−1

B at a signal efficiency of εS = 0.1.

For a summary of the background suppression at low signal efficiency, see Tab. 5.4.
The generalization capabilities of DarkCLR outperform the supervised classifier for all
signal models, especially in the more interesting low signal efficiency region.

Impact of Anomaly augmentation To validate the use of anomalous augmentations,
we compare DarkCLR with the standard JetCLR training. The latter is trained only
on QCD jets using the set of physical augmentations. We refer to previous work for the
implementation and training of JetCLR [198]. After creating the new representations,
we train an NAE using the same procedure. Fig. 5.17 shows the performance of JetCLR
compared to DarkCLR in terms of AUC and background rejection for the benchmark
dataset. Without anomalous pairs, the results vary between different embeddings and
underperform in both figures of merit. Notably, DarkCLR improves detection at low
signal efficiency even for small embedding dimensions, while without augmentation we
observe a small increase in sensitivity only for large embedding spaces.
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CHAPTER 6

Summary and outlook

The LHC is entering a new data-taking phase which will provide an enormous amount
of data to analyse. The success of this final phase will be dictated by our ability
to understand the dataset to the best of our capabilities. The last decade of precise
measurements at the LHC is already paving the way for future analysis. A key ingredient
to further extend this success is the development of new techniques which can boost LHC
analysis. Novel machine learning techniques fit the bill in every aspect. The possibility of
modelling high-dimensional spaces with a reduced number of assumptions is an appealing
face of ML which is already catching on at the LHC.

In this thesis, we explored ML solutions to real problems we face and will be facing
at the LHC. Starting from the importance of precise, accurate, and fast simulations, we
propose fast surrogate networks to replace the most computationally expensive step of
the simulation chain, calorimeter simulations. Indeed, calorimeter showers are one of the
most exciting applications of modern generative networks in fundamental physics. Their
specific challenge is the high dimensionality of the voxelized phase space, combined with
extremely sparse data and an LHC-level precision requirement. In our case, we focused
on datasets of increasing target phase space dimensionality, from O(100) to O(10000)
input features.

We started with a normalizing flow architecture and a VAE to reduce the dimensionality
with a learned latent space. For the simplest case, the dataset 1 photons, we have found
that the INN generated high-fidelity showers and learns the phase space density of
high-level features at the 10% level, except for failure modes which we can identify
using high-level features and classifier weights over the low-level phase space. For this
dataset, the VAE+INN shows no advantage, but less expressivity for example affecting
the sparsity. For the pions in dataset 1, the INN faces more serious challenges, including
mis-modelled features, and a wider range of learned classifier weights. The performance of
the INN and the VAE+INN becomes much more similar. These modelling limitations are
counterbalanced by the generation speed of the network. The fully invertible architecture
allows us to generate showers in O(1) ms, which is a huge speed-up factor compared to
Geant4 simulations.
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Exploring the other side of the trade-off between speed and accuracy. Diffusion
networks allow us to go a step beyond standard normalizing flows. Our CaloDREAM
architecture first factorizes the generation of detector showers into an energy network
and a shape network. Both networks are trained using Conditional Flow Matching. The
former generates the layer energies using a transformer backbone with self-attention
and cross-attention blocks. For the latter, we use a 3-dimensional vision transformer,
operating on patches of the target phase space. Because diffusion networks are slower
than alternative generative networks, we use bespoke samplers to enhance their generation
speed, at no cost of the precision and improving the fidelity in case of limited resources.
We can use a VAE to reduce the dimensionality using latent diffusion. We find essentially
no loss in performance, except for the reproduction of low-energy voxels and, with it,
sparsity, which can be improved by introducing a MeV-level energy threshold. However,
further studies are needed to understand the effects of mapping the distributions into real
detectors with irregular geometries, more complex distributions from different incident
particles, e.g. hadrons, and varying angles of impact.

Our study shows that modern generative networks can be used to describe calorimeter
showers in highly granular calorimeters. When the number of phase space dimensions
becomes very large and the data becomes sparse, a latent diffusion network combined
with an (autoregressive) transformer and bespoke sampling provides excellent benchmarks
in speed and precision.

The second part of the thesis focuses on BSM searches. In particular, we explore new
ML-based techniques for model-agnostic searches. We define anomalous objects based
on their likelihood, expecting BSM physics to populate a tail of the SM background
distribution. We first present the NAE for high-energy physics. The NAE combines a
standard autoencoder architecture with an energy-based normalization in the loss. This
means it constructs an energy or MSE landscape such that any anomaly with features
not present in the training data will be pushed to even larger energies. Because of the
normalization, the NAE can also balance different kinds of features, which means that the
absence of a background feature in signal jets will be visible in the energy landscape. The
additional components of the NAE architecture do not increase the size of the network
or the inference time, they only increase the time taken to train the model. Technically,
we adjust the training after an AE pre-training step. Applied to top vs QCD jets we first
show that for this extreme case of different compressibilities the NAE still tags complex
top jets in a simple QCD background as well as simple QCD jets in a complex QCD
background. For the more challenging Aachen and Heidelberg dark jets the NAE works
for a reasonable single choice of preprocessing. The performance gain from using different
preprocessing on the two datasets are explainable in terms of the changes induced by
the features of the two signals. A full analysis for the detection of semivisible jets using
NAEs is currently under development in CMS [201].

Furthermore, we defined a procedure to construct observables without using hand-
crafted preprocessing steps but rather imposing approximate invariance under transforma-
tions of the data. In this contrastive learning scheme, we use anomalous augmentations of
collider data to build a representation space from which to construct anomaly scores with
a range of methods, for example, using autoencoders, that are approximately invariant
under the transformations. This is a self-supervised method, based on the contrastive
learning idea. We tested this method on the CMS ADC dataset and semi-visible jets,
and compared to the raw data baselines we found large improvements on all signals.
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6 Summary and outlook

In AnomalyCLR and DarkCLR, the anomaly-augmented data is constructed from the
background data through feature augmentation, designed to emulate a generic anomaly.
We have discussed in detail how we do this for the reconstructed event-level anomalies
and in studies of jet substructures. We proposed a new loss function which we use to
train a deep transformer-based neural network. This network projects the events to a
new representation, in which the anomaly-augmented events are far from their original
counterparts while being close to similar events. The network then learns a highly
discriminative representation of the events which is sensitive to the presence of potential
anomalies. We have seen that the choice of these augmentations is quite model-agnostic.
This model-agnostic nature of the approach can be seen in how the results improve across
all four signals considered.

In addition in DarkCLR, we test the dependence of our network on the main phe-
nomenological parameters entering the dark shower model, the invisible fraction of
particles and the mass of dark mesons. We find that a supervised classifier is highly
sensitive to the specific choice of signal parameters used during training, especially at
low signal efficiencies. In contrast, our method, based on a density estimation of the
background, is more robust to a variation of the parameters of the dark shower model,
thus validating the application of unsupervised methods for a model-agnostic search.
In our experiments, we assumed uncorrelated visible constituents, i.e. constituents are
uniformly dropped in the jet. A dedicated study on this specific signature is needed to
evaluate any potential bias. However, our framework is flexible enough to account for
these modifications. Both positive and anomalous augmentations can be extended to
cover different transformations.

We conclude by remarking on the power of ML tools for HEP. While the underlying
theme in the thesis has been density estimation and generative networks, we discussed the
strong impact that other tools, i.e. classification and representation learning, can have at
the LHC. Likely, ML will become the standard at the LHC with a cohesive interplay of
different methods without a clear winner from the standoff.

99





APPENDIX A

Supplementary material

Bayesian CaloINN on CaloGAN dataset

In this section we discuss the INN performance on the even simpler CaloGAN dataset [12,
14]. The INN architecture is described in Sec. 4.3. To extract uncertainties from the
generative network, we promote the deterministic INN to its Bayesian counterpart [43,168].
The implementation follows the variational approximation substituting the linear layer
with a mixture of uncorrelated Gaussians with learnable means and a diagonal covariance
matrix. In practice, we only upgrade the last layer of each sub-network to a Bayesian
layer [202].

Figure A.1 showcases two high–level features as examples of the performance of the
CaloINN as compared to the training data distribution generated by Geant4. We show
the brightest voxel distribution in layer 0, the average φ location of the showers in layer
2, and the width of the shower depth width defined as the standard deviation of sd [21],
with

sd =
∑2
k=0 kEk∑2
k=0Ek

. (A.1)

The error bars in the Geant4 distribution are the statistical errors while for the INN we
estimate the uncertainties by sampling N = 50 times from the network and resampling
the network parameters each time.

To evaluate our model on low-level observables, we resort again to classifier-based
metrics. As already studied in a previous work [2], the INN samples are indistinguishable
from the Geant4 counterpart besides a few specific phase-space regions. We train a
classifier on the CaloFlow samples and find a large tail towards small weights. From
clustering of the tail, we observe a clear dependence on the energy deposition total energy
deposition. We link this effect to the learned energy variable u2 = E1/(E1 + E2) and
the noise injection procedure. If the noise is added at voxel-level, before calculating the
additional energy variables, the flow learns distorted energy ratio distributions. Especially
in the last layer, where the average energy deposition is smaller, this effect is larger. We
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Figure A.1: Comparison between CaloINN and Geant4 on three high level
features. Brightest voxel distribution in layer-0 (left), φ coordinate of the center
of the shower in layer-2 (right), and width of the shower depth (bottom). Error
bars on the INN are calculated after sampling from the Bayesian network N = 50
times.

summarize this effect in Fig. A.2. We also provide the AUCs and the generation timings
in Tab. A.1.
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Figure A.2: (left) Weight distribution of CaloFlow and CaloINN for e+ showers.
(right) u2 distribution with different noise injections.

AUC CaloFlow [21] CaloINN

e+
unnorm. 0.859(10) 0.525(2)
norm. 0.870(2) 0.598(3)
hlf 0.795(1) 0.656(2)

γ

unnorm. 0.756(50) 0.530(2)
norm. 0.796(2) 0.584(2)
hlf 0.727(2) 0.671(2)

π+
unnorm. 0.649(3) 0.662(2)
norm. 0.755(3) 0.735(4)
hlf 0.888(1) 0.786(4)

Batch size CaloFlow [23] CaloINN

GPU
1 55.12 ± 0.19∗ 23.79 ± 0.10∗

100 0.744 ± 0.04 0.425 ± 0.005
10000 0.249 ± 0.003 0.211 ± 0.003

CPU
1 119.9 ± 0.9∗ 46.39 ± 3.18∗

100 3.13 ± 0.11 1.14 ± 0.03
10000 1.681 ± 0.004 0.72 ± 0.01

Table A.1: (left) AUC of the two classifiers trained on the CaloFlow teacher and
CaloINN samples. (right) Per shower generation timings in ms. We show mean
and standard deviation of 10 independent runs of generating 100k showers. The
star indicates that only 10k samples were generated in total.
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Manifold learning with Bernoulli VAE

The VAE introduced in Sec. 4.4.1 is trained separately, using the BCE reconstruction loss

LVAE = −
〈
x log(xψ) + (1 − x) log(1 − xψ)

〉
pψ(r|x) + βDKL[pψ(r|x),N (0, 1)] . (A.2)

This loss provides notably better reconstruction quality than the standard MSE loss,
both in terms of high-level features and a neural network classifier trained to distinguish
reconstructed showers from an independent test set. A detailed description of the network
architecture is provided in Tab. B.6. Each block consists of three Conv2d operations that
preserve the number of channels of which the final one downsamples according to the
stride and padding parameters. In addition, we break the translation equivariance by
adding the coordinates of each input to the activation map as new channels [38].

In Fig. A.3 we provide a set of kinematic distributions similar to Fig. 4.14 for DS3, to
illustrate the VAE reconstruction. We find that the only missing feature in the learned
manifold is the distribution of the low-energetic voxels, also reflected in the sparsity. We
also train a classifier using the hyperparameters of Tab. B.5 on the low-level features
which gives an AUC score of 0.512(5) consistently for both, DS2 and DS3.
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Figure A.3: Selection of high-level features sensitive to the reconstruction of the
autoencoder for DS3.
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Shower observables with weight clustering
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Figure A.4: Clustering plots for γ: (i) reweighting is required at low energies, but
the pattern is not just the energy; (ii) (orange) under-sampling of soft showers
with zero energy deposition in layer-2; (iii) (blue) induced over-sampling of soft
showers in layer-2; (iv) (green) under-sampling of delayed showers, low energy
deposition in layer-0.
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Figure A.5: Clustering plots for e+: similar pattern of γ showers, expected given
the similar physics and data structure.
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Figure A.6: Clustering plots for π+: (i) for the different energies the INN finds
all features, but the balance between feature and continuum is not perfect; (ii) in
both tails corrections at all energies are applied; (iii) the generator over-samples
showers with no energy deposition in layer-1 and layer-2; (iv) large sparsity
values are underestimated by the INN.
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Linear classifier test of CLR representations

We study the separability between the QCD and semi-visible jets representations in a
supervised way by training a linear classifier test (LCT) between background and signal.
Even though we move to a supervised scenario, the network never accesses the signal
data during training. This evaluation will test the separation power and the information
content in the representations starting only from QCD jets and their augmentations. We
disentangle the effects of the embedding dimension and the head network by selecting 128
as the embedding dimension of the transformer and scanning over the output dimension
of the head network. This choice closely matches the original dimensionality of the
input data. Fig. A.7 (left) shows that the LCT of the head representation is informative
regardless of the output dimension. The head network is affected by the projection on the
hypersphere and requires a larger dimension to saturate to the same separation power.
In both cases, we observe that the representation space is simpler than the original
constituent-level space. The implemented LCT is a single linear layer network without
non-linearities.
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Figure A.7: Linear Classifier test between the Aachen benchmark dataset and
QCD jets. Head representations (left) and output representations (right) with
different embedding dimensions from 128 up to 1000. The LCT on raw con-
stituents is shown in purple.
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APPENDIX B

Hyperparameters

CaloINN

In this appendix we give some details on the network architectures and the preprocessing.
The INN and the VAE+INN take layers normalized by the layer energy as input. The
extra energy dimensions, calculated as in Eq. 4.2, are appended to the feature vector.

In the INN, we apply uniform noise and and a regularized logarithmic transformation
with strength α. The transformation applied to the features is a rational quadratic
spline [148] for dataset 1 and a cubic spline [149] for dataset 2. The prediction of the
spline parameters is obtained with an feed-forward sub-network with 256 nodes for each
hidden layer. To equally learn each dimension, we permute the order of the features after
a transformation and normalize the output to mean zero and unit standard deviation
with an ActNorm [49] layer. In the large-scale architecture, we stack twelve blocks to
construct the INN with the additional preprocessing block.

The VAE preprocessing has a similar structure. After normalization, we apply an
α-regularized logit transformation and a normalization to zero mean and unit standard
deviation to each feature. We do not add noise during training and we set the latent
dimension to 50 for dataset 1 and 2, and to 300 for dataset 3. We provide the full list of
parameters in Tabs. B.1 and B.2.

The classifiers, trained for the evaluation of the generative networks, are simple MLP
networks with leaky ReLU. We use three layers with 512 nodes each and a batch size
of 1000. The network is trained for 200 epochs with a learning rate of 2 · 10−4 and the
Adam optimizer with standard parameters. To prevent overfitting, especially for the
larger datasets, we apply 30% dropout to each layer, and we reduce the learning rate
on plateau with a decay factor of 0.1 and decay patience of 10. The splitting between
training, validation, and testing is 60/20/20%. The selection of the best network is based
on the best validation loss.
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Parameter INN DS1/DS2 INN (with VAE)

coupling blocks RQS / Cubic RQS
# layers 4 / 3 3
hidden dimension 256 32
# of bins 10 10
# of blocks 12/14 18
# of epochs 450 / 200 200
batch size 512 / 256 256
lr scheduler one cycle one cycle
max. lr 1 · 10−4 1 · 10−4

β1,2 (ADAM) (0.9, 0.999) (0.9, 0.999)
b 5 · 10−6 /
α 1 · 10−8 1 · 10−6

Table B.1: Network and training parameters for the pure INN.

Parameter VAE

lr scheduler Constant LR


Inner VAE

lr 1 · 10−4

hidden dimension 5000, 1000, 500 (Set 1)
1500, 1000, 500 (Set 2)
2000, 1000, 500 (Set 3)

latent dimension 50 (Set 1,2) / 300 (Set 3)
# of epochs 1000
batch size 256
β 1 · 10−9

threshold t [keV] 2 (Set 1) / 15.15 (Set 2,3)

hidden dimension 1500, 800, 300
Kernelkernel size 7

kernel stride 3 (Set 2), 5 (Set 3)

Table B.2: Network and training parameters for the VAE-INN.

110



B Hyperparameters

CaloDREAM

Parameter DS2 & DS3

Epochs 500
LR sched. cosine
Max LR 10−3

Batch size 4096
ODE solver Runge-Kutta 4 (50 steps)

Network transformer
Dim embedding 64
Intermediate dim 1024
Num heads 4
Num layers 4

Network dense feed-forward
Intermediate dim 256
Num layers 8
Activation SiLU

Table B.3: Parameters for the autoregressive energy network in Sec. 4.4.1.

ViT laViT

Parameter DS2 DS3 DS2 DS3

Patch size (3, 16, 1) (3, 5, 2) (3, 1, 1) (3, 2, 2)
Embedding dimension 480 240 240 240
Attention heads 6 6 6 6
MLP hidden dimension 1920 720 960 960
Blocks 6 6 10 10

epochs 800 600 800 400
batch size 64 64 128 128
LR sched. cosine
Max LR 10−3

ODE solver Runge-Kutta 4 (20 steps)

Table B.4: Parameters for the shape networks in Sec. 4.4.1, for the full and the
latent space.
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Parameter Value

Optimizer Adam
Learning rate 2 · 10−4

LR schedule reduce on plateau
Decay factor 0.05
Decay patience (epochs) 20
Batch size 1000
Epochs 200
Number of layers 3
Hidden nodes 512
Dropout 20%
Activation function leaky ReLU
Training samples 70k
Validation samples 10k
Testing samples 20k

Table B.5: Parameters for the classifier network used to calculate the weights of
Fig. 4.17.

Parameter Value

DS2 DS3

Loss BCE + βKL
β 10−6

Epochs 200
Out activation sigmoid
Lr sched. OneCycle
Max lr 10−3

# of blocks 2 (+ bottleneck)
Channels (64, 64, 2)
Dim. bottleneck (2, 15, 9, 9) (2, 9, 26, 16)
Kernels [(3,2,1), (1,1,1)] [(5,2,3), (1,1,1)]
Strides [(3,2,1), (1,1,1)] [(2,2,1), (1,1,1)]
Paddings [(0,1,0), (0,0,0)] [(0,1,0), (0,0,0)]
Normalized cut 1 · 10−6

Table B.6: Parameters of the autoencoder for DS2 and DS3 used for the laViT
network in Sec. 4.4.1.
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Parameter Value

Reference solver midpoint (100 steps)
Initialization Euler
Optimizer Adam
Learning rate 1 · 10−3

Batch size 100
Max iterations 5000
Stopping patience (iterations) 200

Table B.7: Parameters used to train BNS solvers, described in Sec. 4.4.1.

Parameter Value

Optimizer Adam
Learning rate 0.001
LR schedule reduce on plateau
Decay factor 0.1
Decay patience (epochs) 5
Batch size 1000
Epochs 150
Number of layers 3
Hidden nodes 512
Dropout 10%
Activation function leaky ReLU
Training samples 60k
Validation samples 20k
Testing samples 20k

Table B.8: Hyperparameters of the classifier network used to generate the
clustering plots in Sec. 4.5.
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NAE

In this section we provide the details of the network architecture and the parameters
setting for the NAE trained in Sec. 5.2. Tab. B.9 summarizes the layers used in both
encoder and decoder and their parameters. The architecture of the AE is summarized in
Tab. B.9. Each layer is regularized using Spectral Normalization. The output of the last
encoder layer is mapped to the surface of a hyper-sphere SDz−1. During training, each
step of the preliminary LMC is projected on the surface. The initial latent distribution is
uniform but a buffer of size 10000 is used to store the final points of each chain. Then,
the initial points are sampled from the uniform distribution with probability 0.05 or from
the buffer with probability 0.95.

Additional regularization terms are used to improve training stability. The L2 norm of
the weights for both encoder and decoder is added to the loss function with a coefficient
10−8. We also prevent the negative energy divergence by adding the average squared
energy of the training batch to the final loss function.

The bottleneck of the training procedure is the sampling algorithm. The parameters
of the LMCs have been tuned to give fine samples after a small amount of steps to train
a model in less than 15 hours. We have found that the structure of the initial manifold
after pre-training plays an important role for the following NAE updates. A large batch
size gave the best results while a smaller one during NAE showed more stable results.

Encoder

Conv2d(1, 8, 3, 1, 1, True) - PReLU -
Conv2d(8, 8, 3, 1, 1, True) - PReLU - MaxPool2d(2, 2) -
Conv2d(8, 8, 3, 1, 1, True) - PReLU -
Conv2d(8, 8, 3, 1, 1, True) - PReLU -
Conv2d(8, 1, 3, 1, 1, True) - PReLU - Flatten -
Dense(400, 100, True) - PReLU - Dense(100, Dz, True)

Decoder

Dense(Dz, 100, True) - PReLU - Dense(100, 400, True) - PReLU -
Reshape(1, 20, 20) - Deconv2d(1, 8, 3, 1, 1, True) - PReLU -
Deconv2d(8, 8, 3, 1, 1, True) - PReLU -
Upsampling(2, ’b’) - Deconv2d(8, 8, 3, 1, 1, True) - PReLU -
Deconv2d(8, 1, 3, 1, 1, True) - Sigmoid

Table B.9: Architecture of the normalized autoencoder. The latent space is
Dz = 3.
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Contrastive learning

hyper-parameter

model (embedding) dimension 160
feed-forward hidden dimension 160
output dimension 160
# self-attention heads 4
# transformer layers (N) 4
# layers 2
dropout rate 0.1

hyper-parameter

optimiser Adam(β1 =0.9, β2 =0.999)
learning rate 5 × 10−5

batch size 128
# epochs 500

Table B.10: Default setup of the transformer-encoder network and the Anomaly-
CLR training.

Hyper-parameter Value

Embedding dimension (dr) 128
Feed-forward hidden dimension (dz) 512
Output dimension (dz) 512
# self-attention heads 4
# transformer layers (N) 4
# head architecture layers 2
Dropout rate 0.1
Optimizer Adam (β1 = 0.9, β2 = 0.999)
Learning rate 5 × 10−5

Batch size 256
# constituents (Nc) 50
# jets 100k
# epochs 150

Table B.11: Default setup of the transformer-encoder network and the DarkCLR
training.
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