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Abstract

Background: Deep Learning (DL) is becoming more and more state-of-the-art for the

analysis of next-generation sequencing data such as RNA-seq and single-cell RNA-seq,

due to its ability to capture more complex patterns in the data. In particular, variational

autoencoders (VAEs) have been used for a variety of tasks ranging from batch effect

removal to data integration. One disadvantage of DL lies in its limited interpretability

due to the the non-linear nature of the models. However, interpretability is crucial

especially in the biomedical context.

Results: In this thesis, we developed OntoVAE, an interpretable VAE model whose

latent space and decoder are reflecting a biological regulatory network. OntoVAE can be

installed from Pypi and is available on GitHub at https://github.com/hdsu-bioquant/

onto-vae. We used OntoVAE to compute pathway activities and to predict the outcome

of a gene knockout and of interferon treatment response. We then further developed

COBRA, a tool that extends OntoVAE with an adversarial approach to disentangle the

effects of different covariates. We used COBRA to study interferon response, adrenal

medulla development, and schizophrenia.

Conclusion: OntoVAE and COBRA are useful VAE tools that are based on an inter-

pretable latent space and decoder. They can compute pathway activities, but also be

used for predictive modeling, and in the case of COBRA, also to extract effects otherwise

overshadowed by confounders. Both tools are easy to install and easy to use, and thus a

valuable resource to the scientific community.
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Zusammenfassung

Hintergrund: Deep Learning (DL) entwickelt sich mehr und mehr zum Standard für die

Analyse von Hochdurchsatzsequenzierungsdaten, wie zum Beispiel RNA-Sequenzierung

und single-cell RNA-Sequenzierungsdaten, weil die Methoden in der Lage sind, kom-

plexere Strukturen in den Daten zu erkennen. Vor allem Variatonal Autoencoders (VAEs)

wurden für viele Aufgaben verwendet, vom Entfernen von Batch Effekten hin zu der In-

tegration von Daten. Ein Nachteil von DL ist die limitierte Interpretabilität aufgrund

der nicht-linearen Natur der Modelle. Jedoch ist die Interpretabilität essenziell vor allem

im biomedizinischen Kontext.

Ergebnisse: In dieser Arbeit haben wir OntoVAE entwickelt, ein interpretierbares VAE

Modell, dessen latent space und Decoder aus einem biologischen regulatorischen Netzwerk

bestehen. OntoVAE kann über Pypi installiert werden und ist auf GitHub verfügbar:

https://github.com/hdsu-bioquant/onto-vae. Wir haben OntoVAE verwendet, um

die Aktivitäten von Signalwegen zu berechnen, und um Vorhersagen über das Knockout

von Genen sowie die Behandlung mit Interferon zu treffen. Weiterhin haben wir COBRA

entwickelt, das OntoVAE um einen adversarial Ansatz ergänzt, der es ermöglicht, die

Effekte einzelner Kovariaten voneinader zu isolieren. Wir haben COBRA angewendet,

um Interferonantwort, die Entwicklung des Nebennierenmarks, sowie Schizophrenie zu

studieren.

Schlussfolgerungen: OntoVAE und COBRA sind nützliche VAE Modelle, die beide auf

einem interpretierbaren latent space und Decoder basieren. Sie können Aktivitäten von

xi

https://github.com/hdsu-bioquant/onto-vae


Signalwegen berechnen, Vorhersagen treffen, und im Fall von COBRA Effekte isolieren,

die sonst von Störvariablen verdeckt werden. Beide Tools sind einfach zu installieren und

anzuwenden, und daher eine nützliche Resource für die wissenschaftliche Gemeinde.
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Chapter 1

Scope

1.1 Background

With the emergence of high-throughput sequencing techniques such as RNA-seq and

single-cell RNA-seq, researchers became able to study development and disease on a

molecular level (Lightbody et al. 2019). Nowadays, massive amounts of sequencing

data can be collected that describe an individuals or an individual cells genotype and

phenotype. The entirety of influences that affect a cells phenotype are denoted as cellu-

lar perturbations, and they comprise genetic as well as environmental stimuli (Ji et al.

2021).

Due to their good performance on large datasets, deep learning (DL) models are becoming

more and more state-of-the-art in the analysis of omics data and the prediction of cellular

perturbations. Especially the Variational Autoencoder (VAE) is now widely used since it

can compress the high-dimensional omics data and generate an embedding which captures

the essence of the data. One challenge that arises in applying these models outside of the

academic area in a clinical context is their limited interpretability due to their non-linear

nature, meaning that it is not possible to attribute feature importances, and thus, to

explain the observed predictions (Linardatos, Papastefanopoulos, and Kotsiantis 2020).
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However, as trust and understanding of model decisions are crucial in the clinic, the

subfield of interpretable DL tries to come up with models that mitigate this problem.

Broadly, there are post-hoc methods which are applied on a trained model to calculate

feature importances, and model based methods which natively provide interpretability

due to their structure, making use of biological knowledge in the form of a prior.

1.2 Aims

The main objective of this thesis was to address the problem of limited interpretability

when applying VAE models on omics data in order to analyse mechanisms and make

predictions. Thus, the following aims were addressed:

• Development of toolbox of user-friendly, interpretable VAE models that can be

applied in the context of predictive modeling.

• Application of the tools to study different cellular perturbations, such as genetic

perturbations, drug treatments, development, and disease.

• Development of a web application to share results.

Moreover, in the scope of a collaborative side project, the interferon response of the gut

was analyzed and results were collected in a web application.

1.3 Major findings

In this thesis, I developed an interpretable VAE model, OntoVAE, that incorporates a

biological ontology, and thus allows to extract pathway activities as well as to model per-

turbations. I expanded OntoVAE with an adversarial approach that furthermore allows

for the separation of different covariate effects while maintaining the interpretability. As

a side project, I investigated the interferon response in the gut using standard single-cell

analysis techniques. I also created web applications to share results and to facilitate

collaboration. The major findings and products of this work are:
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• Development of OntoVAE, an interpretable VAE model that learns pathway activi-

ties. OntoVAE is implemented in pytorch, is available from GitHub at https://github.com/hdsu-

bioquant/onto-vae, and can also be installed via Pypi (pip install onto-vae).

The original manuscript was published in Bioinformatics.

• Development of OntoVAE Model Explorer, a Dash based web application that al-

lows for interactive exploration of some of the results from the OntoVAE paper. The

app is hosted on http://ontovaemodelexplorer.pythonanywhere.com, and the source

code is available on https://github.com/daria-dc/OntoVAE-Model-Explorer.

• Further optimization of OntoVAE and development of COBRA, a tool that ex-

tends OntoVAE with an adversarial approach that encourages separation of dif-

ferent covariate effects. Both VAE models are now hosted in the same GitHub

repository https://github.com/hdsu-bioquant/cobra-ai, which will be made avail-

able after publication.

• Application of OntoVAE on different ontologies and datasets to compute path-

way activities of bulk tissues, and to predict the outcome of a disease (limb-girdle

muscular dystrophy) and a treatment (interferon response).

• Application of COBRA with different biological networks on different datasets

to distinguish celltype and treatment effect in interferon response, and to study

adrenal medulla development and schizophrenia.

• Development of a Shiny based web application to summarize results from the anal-

ysis of Ileum and Colon organoid single-cell transcriptomic data that was treated

with interferon. The app helped in studying how interferon response differed in the

different cell types.

1.4 Outline of the thesis

This document is organized as follows:
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• Introduction: The introduction showcases how deep learning is used to address

questions in computational biology, and explains the concept of artificial neuronal

networks and variational autoencoders in more detail. Furthermore, the concept

of interpretable deep learning is outlined together with different types of meth-

ods. Finally, the concept of cellular perturbations is explained, with a focus on

schizophrenia and interferon response.

• Part I. Tool Development: The first part describes the development and opti-

mization of OntoVAE and its extension, COBRA. It includes detailed instructions

on how to use the tools, as well as proof of concept applications on well understood

datasets.

• Part II. Wep Application development: The second part describes the two

web applications that were developed in this thesis, one to explore results from the

OntoVAE manuscript, and the other to facilitate collaboration on the single-cell

interferon project. In the scope of this, results are presented that were generated

during the analysis of the single-cell data from interferon-treated Ileum and Colon

organoids

• Part III. Perturbation modeling: The third part contains results that were

generated with OntoVAE or COBRA on different datasets. OntoVAE was used to

predict how a genetic perturbation changes pathway activities, and which genes

most significantly perturb a specific pathway that is related with disease, or treat-

ment. COBRA was used to study perturbations such as interferon response and

adrenal medulla development, and to isolate this effect from the celltype effect.

• Part IV. Final remarks: The last part presents a summary of the results, dis-

cussing the relevance of the findings but also the limitations of the tools. It also

places the work in the context of the current developments in the field, along with

future perspectives of the study.
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Chapter 2

Introduction

2.1 Deep Learning in Computational Biology

The emergence of high-throughput sequencing (HTS) technologies drastically reduced the

costs and the time required to sequence a genome and increased the capacities compared

to the traditional Sanger sequencing, and thus opened up a new era of biomedical re-

search (Reuter, Spacek, and Snyder 2015). It is now possible to produce massive amounts

of sequencing data to profile not only the genome, but also the epigenome of tissues and

samples, including the transcriptome, proteome and metabolome among others. RNA-

sequencing (RNA-seq) for example allows the simultaneous profiling of the expression of

ten thousands of genes (Z. Wang, Gerstein, and Snyder 2009). Whole-genome bisulfite

sequencing, ATAC-sequencing and ChIP-sequencing allow the profiling of DNA methy-

lation state, chromatin accessibility and histone marks, and thus give valuable insights

into epigenetic regulation. This data is collectively referred to as ‘omics’ data. With this,

researchers can tackle different questions on a molecular level, and identify biomarkers

(genes or proteins), to understand mechanisms of disease onset and progression, or pre-

dict response to a treatment (Lightbody et al. 2019). In recent years, the subsequent

development of single-cell technologies such as single-cell RNA-seq (scRNA-seq) further-

more enabled researchers to monitor gene expression within individual cells and thus
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study their heterogeneity and identify and characterize different cell populations (Jovic

et al. 2022). For this purpose, the accurate annotation of the cell type of each cell is a

prerequisite. This often relies on unsupervised clustering of the cells, followed by manual

annotation using established marker genes. As this is a time-consuming task, computa-

tional methods have been developed that automate the process. One example is label

transfer, which uses a prelabelled reference dataset to annotate a new target dataset

based on cell-cell similarities (Stuart et al. 2019). For label transfer to succeed, a similar

dataset of approximately the same celltype composition needs to be available, which is

not always the case. An international collaborative effort, the Human Cell Atlas Con-

sortium, set out to define all cell types of the human body, and create a comprehensive

reference map which aids in studying developmental trajectories, physiological states,

cell-cell interactions, and regulation and dysregulation in disease (Regev et al. 2017).

Since the foundation of the consortium, the amount of data that is being integrated is

constantly expanding, additionally including specified atlases such as the Pediatric At-

las or the Human Lung Cell Atlas. The rapid development of single-cell technologies

that drastically increases the number of cells that can be profiled together with an ever

growing amount of publicly available collections of single-cell data opens up new compu-

tational challenges. Computational methods are needed that can pre-proceess, normalize

and analyze the data, and integrate new and existing datasets in an efficient way (Qiu

2020; Luecken et al. 2022).

Inspired from other fields such as computer vision or natural language processing (NLP),

where they were applied with huge success, the so-called Deep Learning (DL) algorithms

are being more and more widely adopted in the field of omics as well, especially for

scRNA-seq data, as they benefit from large amounts of data (Chai et al. 2021; Anger-

mueller et al. 2016) (see Box 2.1 for a brief overview of Artifical Neural Networks).
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Box 2.1: Artificial Neural Networks

The backbone of DL algorithms are Artificial neural networks (ANNs), which

mimic the neural networks of the human brain (McCulloch and Pitts 1943; Rosen-

blatt 1958). The single unit of every ANN is the mathematical neuron, which

processes the input X it receives, and returns some output z (Figure B2.1a).

Mathematically, the working of the neuron can be formulated as:

z = φ(Xβ + b) (2.1)

whereas the matrix of input weights is denoted as β, the node internal bias as

b, and the (mostly non-linear) activation function as φ. When multiple of those

neurons are organized in L layers and working in series, with each layer Li receiving

input from the previous layer Li−1, and forwarding its output to the next layer

Li+1, we end up with a feed-forward architecture or multi-layer perceptron (MLP),

which is the most basic ANN (Figure B2.1b). Usually the architecture is fully

connected, meaning that each neuron in a layer receives input from every neuron

in the previous layer. The layers between input and output layer are denoted as

’hidden layers’ (Goodfellow, Bengio, and Courville 2016).

x1 w1

w2

w3

x2 z

x3

b

φ

Input layer

Hidden layer

Output layer
a

b

Figure B2.1: Schematic drawing of an artificial neuron (a) and an MLP (b).

The weights and biases of any ANN are learnt during model training. During this
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process, samples are being passed through the network in batches, and then the

prediction of the network is evaluated based on a previously defined cost or loss

function. The loss function is chosen according to the task, which is mostly either

regression (prediction of a continuous value, e.g. gene expression) or classification

(prediction of class membership, e.g. cancer or no cancer). Based on the loss, the

gradients of the network are calculated in a backward iteration starting from the

last layer. This process is called ’backpropagation’, and an optimization algorithm

uses these gradients to compute the parameter updates. Usually a network is

trained until convergence. To prevent overfitting, a scenario in which the model

has captured the training data very well but cannot generalize on unseen data,

the dataset is usually split into a training and validation set. Parameter updates

are performed on the training set, and evaluation of the model on the validation

set. Training stops when the performance on the validation set does not increase

anymore (Goodfellow, Bengio, and Courville 2016).

Which DL model to use depends on the data and the task. In the context of omics

data, which is high-dimensional with ten thousands of features, Variational Autoencoders

(VAE) are widely used, since they perform dimension reduction and can capture the

underlying distribution of the data (Svensson et al. 2020). Autoencoder based methods

have successfully been applied on tasks such as cancer classification (X. Zhang et al.

2019), data denoising (Eraslan et al. 2019), batch correction (J. Wang et al. 2019),

multi-domain translation (Yang et al. 2021), and treatment effect prediction (Lotfollahi,

Wolf, and Theis 2019). Moreover, models are being developed that are supposed to

replace complete workflows especially in the context of single-cell analysis. The scVI

(single-cell Variational Inference) model explicitly models the expected counts from the

data without any normalization and can perform downstream tasks such batch correction,

clustering and differential expression analysis (Lopez et al. 2018). Its successor scanVI

furthermore adds the possibility to annotate cell types and states (Xu et al. 2021).
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2.1.1 Variational Autoencoder

The idea of autoencoders has been around for decades (Rumelhart, Hinton, and Williams

1986; Bourlard and Kamp 1988; Hinton and Zemel 1993). An autoencoder learns to com-

press unlabeled input observations xi in a way that they can be faithfully reconstructed

from this compressed representation. For example, if the input data is an image, the

autoencoder would give as output an image that is as similar to the input as possible

(Michelucci 2022). The typical architecture of an autoencoder is visualized in Figure

2.1. Its three main components are the encoder, the latent space, and the decoder. En-

coder and decoder are usually neural networks and can be treated as functions, thus, we

can define the encoder as a function g

hi = g(xi) (2.2)

where hi ∈ IRq, the output of the encoder, is also the latent space representation

(Michelucci 2022). The encoder reduces the dimension of the input data, thus, it applies

g : IRn → IRq. The decoder can be written as another generic function f of the latent

space features

x̃i = f(hi) = f(g(xi)) (2.3)

where x̃i is the reconstructed input data. Since the decoder restores the original dimen-

sion of the data, it applies x̃i ∈ IRn. During training, the parameters of encoder g(·) and

decoder f(·) have to be learnt such that

argmin
f,g

< [∆(xi, f(g(xi)))] > (2.4)

which means that the input and output of the autoencoder should differ as little as

possible. Thus, the most common loss function that is used is the mean squared error

(MSE) (equation (2.5)). Since the MSE is measuring how well the original data was

reconstructed, it is also referred to as the reconstruction error (RE) in this context.

RE ≡ MSE =
1

M

M∑
i=1

|xi − x̃i|2 (2.5)
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Figure 2.1: Schematic drawing of an autoencoder. The autoencoder con-

sists of an encoder part and a decoder part. The encoder part compresses

the input data to a lower dimensional latent representation z. The decoder

part reconstructs the input data from z.

The main purpose of the autoencoder lies not so much in an accurate reconstruction of

input data, but in the fact that, for reconstructing the data from the latent space rep-

resentation, this latent space representation must capture the most important features,

the essence of the data. One problem of the standard autoencoder is the disjoint latent

space representation which cannot generalize to unseen variations of the training data (I.

Goodfellow, Bengio, and Courville 2016).

This is where the variational autoencoder (VAE) comes into play, a generative autoen-

coder model that was introduced by Kingma and Welling in (2013). The main difference

compared to the traditional autoencoder is that the VAE learns the parameters of a

probability distribution over the latent space. This is schematically visualized in Figure

2.2. The encoder part of the VAE yields a posterior distribution qθ(z/x), where x is the

input data, and z the latent space. The decoder part of the VAE yields a likelihood dis-

tribution pϕ(x/z). θ and ϕ are the learnable parameters of the neural network (Diederik

P. Kingma and Welling 2019). Thus, in practice, when data is passed through the VAE

model during training or predictions, the latent space representation is sampled from

qθ(z/x) in a stochastic process, making the VAE a probabilistic model. The loss formula
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of the VAE consists of two components:

Lϕ,θ(X) = Eqϕ(z/x)[logpϕ(x/z)]−DKL(qϕ(z/x)||pθ(z)) (2.6)

The first term of equation (2.6) is aiming at optimizing the likelihood of the observed

data under the model. In practice, we can use an MSE loss here, as for the standard au-

toencoder. The second term of equation (2.6) is the Kullback-Leibler (KL) divergence,

which measures the divergence of a learnt distribution from the prior. The KL divergence

is used since computation of the posterior qθ(z/x) is intractable. The derivation of this

is given in more detail in Appendix A (Blei, Kucukelbir, and McAuliffe 2017; Odaibo

2019). In practice, we often model the true posterior as a multivariate Gaussian, thus, a

closed-form solution exists for the KL divergence and can be written as follows (Odaibo

2019):

Lϕ,θ(X) = −
J∑

j=1

1

2
[1 + log(σ2

i )− σ2
i − µ2

i ]−
1

L

∑
l

E qθ(z/xi)[logp(xi/z
(i,l))] (2.7)

During model training, the reparameterization trick is applied to enable backpropagation

(Diederik P. Kingma and Welling 2013).

2.2 Interpretable Deep Learning

In practice, in the field of computational biology, researchers are mostly interested in the

latent space embedding of the samples that is learnt by the VAE. Due to the bottleneck

structure, the VAE is reducing the dimension of the high-dimensional omics data, and its

latent space is capturing the most essential features of the data in a lower-dimensional

embedding. However, one problem that the VAE has in common with all DL methods

is the limited interpretability due to their non-linear nature. The word ‘interpretability’

in this context means that the user understands the predictions of a model and knows

which features contributed how strongly, so that possible model biases can be faithfully

detected. A good example for this comes from the field of image classification: A classifier

that was trained to distinguish huskies from wolves made a wrong prediction, which could
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Figure 2.2: Schematic drawing of a Variational Autoencoder. The VAE

consists of an encoder part and a decoder part. The encoder part learns the

parameters of a distribution over the latent variables of the data, µ and σ.

The lower dimenstional latent representation z is then obtained by sampling

from the learnt distribution, and is then fed into decoder which reconstructs

the input data.

then be explained by looking at the feature contributions, revealing that the animal in

the image itself was not taken into account by the classifier, but only the surrounding

snow, which the classifier seemingly mistook for fur (Figure 2.3)(Ribeiro, Singh, and

Guestrin 2016).

For DL models, the determination of the feature contributions is not straight-forward

due to the non-linearity. Thus, while DL models learn more complex patterns in the

data and outperform less complex, linear models on many tasks, this comes at the cost

of sacrificing interpretability (Linardatos, Papastefanopoulos, and Kotsiantis 2020). This

is often referred to as the black-box problem of neural networks (X. Li et al. 2022). As

already stated, in the field of ‘omics’, where VAEs are often applied, their learnt latent

space embedding cannot be directly attributed to certain input features. In critical do-

mains such as healthcare, however, understanding the rationale behind decision-making

of the models is important in order to be able to trust their predictions. Personalized
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Figure 2.3: The importance of model interpretability. (a) Image of a husky

that was classified as wolf. (b) Saliency map in which pixel colors correspond

to their contribution to the prediction. Figure was taken from Ribeiro et al.

(2016).

medicine is a concept of healthcare that wants to tailor medical treatment to the individ-

ual patient for earlier diagnosis and more effective treatment. The approach takes into

account multiple factors such as the individuals genetic background and environment,

and collects different patient-related data to understand the onset and progression of

disease in the individual (Goetz and Schork 2018). Thus, for any model that is trained

on this data to make predictions, it is important that these predictions are enriched with

an understanding of the underlying biological processes. For example, in the case of

single-cell data, the model should not only provide a prediction, but also offer insight on

the molecular regulators and disease mechanisms, so that adequate conclusions can be

drawn and downstream experimental validations can be performed.

To address this need for models that are high performing but still trustworthy, the subfield

of Interpretable DL has emerged (Linardatos, Papastefanopoulos, and Kotsiantis 2020).

The different approaches taken by the field can mainly be separated into two classes: post-

hoc and model based. Post-hoc methods are applied post-hoc on a trained model, while

model based methods modify the structure of the model to gain interpretability.
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2.2.1 Post-hoc methods

Examples for post-hoc methods are the general neural network feature attribution meth-

ods such as Layerwise Relevance Propagation (LRP) (Bach 2015), LIME (Ribeiro, Singh,

and Guestrin 2016), DeepLIFT (Shrikumar, Greenside, and Kundaje 2019) or SHAP

(Lundberg and Lee 2017). LRP propagates the output back through the network using

the learnt weights and activations, and a set of purposely designed propagation rules.

LIME is model-agnostic and performs local model approximation with interpretable lin-

ear models and assesses how model predictions change as a consequence of feature pertur-

bation. DeepLIFT also backpropagates the contributions of every neuron in the network

to all input features, comparing their activations to a reference for the calculation of

contribution scores. SHAP (SHapley Additive exPlanations) is based on Shapley values,

a concept which originated in game theory, and quantifies the contribution of each fea-

ture to the model prediction by considering each possible combination of input features.

One drawback of methods such as SHAP is the poor scalability, as the computational

load increases with an increasing number of samples and features (Choi, Li, and Quon

2023).

2.2.2 Model based methods

Examples for model based methods in the biomedical field either introduce some linearity

and/or prior biological knowledge into the model. LDVAE replaces the non-linear decoder

of a VAE by a linear version to allow to assign feature weights to the different latent space

dimensions (Svensson et al. 2020). VEGA also implements a single-layer linear decoder,

but additionally introduces sparsity by incorporation of prior biological knowledge in the

form of so-called gene module variables (GMVs) into the latent space (Seninge et al.

2021). Thus, each latent space dimension of VEGA represents a GMV, and connections

are only present to the genes in the output layer that are annotated to the specific GMV,

making the decoder sparse. In principle, any entity with gene annotations can be used

as GMV, such as pathways or transcription factors (TFs). Binary masks are used to

indicate whether connections are present or not. Modifications of this approach allow
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the model some flexibility by solely imposing a penalty term on connections that are not

part of the prior, so that the model is guided but not completely determined by the prior

(Rybakov et al. 2020).

In line with these approaches, other methods make use not only of annotated gene sets,

but of hierarchical biological networks, through their direct incorporation into model

structure. These biological networks can be signaling networks, as in knowledge-primed

neural networks (KPNNs) (Fortelny and Bock 2020), or biological ontologies. What the

networks have in common is that they are directed acyclic graphs (DAGs), thus they

fulfill two properties: first, edges of the graph are directed, and second, cycles or loops

in the graph are not allowed. The most prominent biological ontology is Gene Ontology

(GO), which has three subontologies: biological process, molecular function, and cellular

component (Ashburner et al. 2000). GO is a hierarchical grouping of genes based on

some characteristic such as their function. Figure 2.4 illustrates the principles of GO

based on an excerpt of the GO biological process graph. Each node of the graph is a GO

term, and each edge represents a directed connection from a parent term to a child term.

GO is organized in a way that a child term is always more specific than its parent term.

Here, the root term is metabolic process, and it is connected to its child term biosynthetic

process through an is_a relationship. Thus, one can say that ‘biosynthetic process’ is

a ‘metabolic process’. As we progress through the DAG, terms are becoming more and

more specific. Thus, when looking at the set of genes that are annotated to a term,

one can distinguish between directly annotated genes and genes that are annotated to

children terms. When considering the distance between two nodes, the level describes

the shortest possible path, while depth refers to the longest possible path.

One method that is making use of GO is DCell, a neural network structured according

to GO subsets, and used for prediction of growth rates in yeast (Ma et al. 2018). Deep-

GONet is a neural network classifier that is encouraging the formation of connections

that mirror the GO DAG by imposing regularization on model weights, and thus, favor-

ing connections between associated GO terms (Bourgeais et al. 2021). It has been used
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(Ashburner et al., 2000)

GO ID GO ID
parent child

Level: shortest path between a 
node and a root node
Depth: longest path between a node
and a root node

Figure 2.4: Subgraph of the GO biological process DAG. Directed arrows

are connecting parent terms to children terms. With progression trough the

subgraph (from left to right) starting from the root node metabolic process

up to the leaf node hexose biosynthetic process, terms are becoming more and

more specific. Level refers to the shortest path between a node and a root

node (the level of hexose biosynthetic process is 4), while depth refers to the

longest possible path between a node and a root node (the depth of hexose

biosynthetic process is 5). Terms in the graph are arranged by depth, so that

terms with the same depth are depicted below each other.

to provide biological explanations in a cancer classification task. The successor of this

method is GraphGONet, which models the GO topology directly without regularization

(Bourgeais, Zehraoui, and Hanczar 2022). The model that was developed in this thesis,

OntoVAE, is a VAE that integrates the GO DAG in its latent space and decoder part

(Doncevic and Herrmann 2023).
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2.3 Cellular perturbations

Another task that is more and more commonly addressed by DL methods in computa-

tional biology is the modeling and prediction of cellular perturbations. The term ‘cellular

perturbations’ has been introduced to denote the entirety of influences that cells are con-

stantly subjected to that affect their phenotype (Ji et al. 2021). These can be of genetic

nature, such as gene knockouts or overexpressions, or caused by external stimuli such as

drug treatment (Figure 2.5). Cells constantly respond to their environment through

the so-called epigenetic regulation. While every cell contains the same genetic blueprint,

the body is composed of many different cell types and tissues, all with their specialized

functions. Epigenetic regulation mechanisms determine the spatio-temporal patterns of

gene expression and allow the cell to respond to perturbations such as developmental

and environmental cues (Jaenisch and Bird 2003). In a broader sense, a disease can

also be considered a perturbation as it interferes with the normal, healthy status of a

cell. With the emergence of next-generation sequencing techniques such as RNA-seq and

scRNA-seq, it became possible to study how the phenotype changes in response to a

perturbation in a tissue or in an individual cell. Hence, cell type specific perturbation

responses can be uncovered that might go unnoticed in a bulk tissue. In the following, I

will briefly discuss two types of perturbations that have been investigated in the scope

of this thesis: schizophrenia, a mental disorder, and interferon response, which is usually

triggered upon viral infection.

2.3.1 Schizophrenia

Schizophrenia is a severe psychiatric disorder with an incidence of approximately 1% in

the population worldwide, thus posing a great burden on patients and families, but also

on healthcare and societies (Insel 2010; Prince et al. 2007). Due to the heterogeneity

of the disease, affected individuals suffer from a wide range of symptoms which can be

broadly separated into three categories: positive symptoms (hallucinations, delusions,

paranoia), negative symptoms (social withdrawal, apathy), and cognitive impairment
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Figure 2.5: Different kinds of cellular perturbations. Perturbations that

affect the phenotype of a cell include genetic knockouts, drug treatment, and

disease. Figure was created with BioRender.com

affecting concentration, executive function and memory (Lu et al. 2022; Birnbaum and

Weinberger 2017). Men and women are equally affected by the disease, and for most

patients, the onset occurs in their adolescence (Picchioni and Murray 2007; Nishioka et al.

2012). An accurate diagnosis of schizophrenia is difficult and can often change over time,

partly due to the wide range of symptoms that can manifest in affected individuals, but

also due to the fact that many of the symptoms can also be indicative of related diseases

or substance abuse (Schultz, North, and Shields 2007). Once the diagnosis has been

made, treatment with antipsychotic drugs, usually dopamine antagonists, is initiated.

Together with psychotherapy and family interventions, the medication can alleviate the

condition, however, most of the patients rely on therapy for the rest of their lives. The

antipsychotic drugs also have many metabolic and neurologic side effects, among them

obesity and susceptibility to type 2 diabetes (P. Li, Snyder, and Vanover 2016). Type

2 diabetes together with cardiovascular diseases is one of the common comorbidities of
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schizophrenia, thus making it difficult to dissect the contributions of mechanistic and

drug treatment related processes that lead to the development of a comorbid disease in

schizophrenia patients (Mangurian et al. 2016).

The molecular origin of schizophrenia is still not well understood. It is known that both,

the genetic background and environmental factors, contribute to the development of the

disease. A large genome-wide association study (GWAS) identified 108 schizophrenia-

associated genetic loci, among others associated to genes involved in glutamatergic neu-

rotransmission and synaptic plasticity, and encoding subunits of voltage-gated calcium

channels (Ripke et al. 2014). Furthermore, it is known that a microdeletion in chromo-

some 22q11, which causes developmental defects such as DiGeorge syndome and velo-

cardiofacial syndrome, is associated with a 30% risk of developing schizophrenia (Bas-

sett and Chow 2008). Some of the genes in this locus were independently identified as

schizophrenia susceptibility genes.

Besides, family and twin studies of schizophrenia have proven a strong genetic influence,

with the lifetime incidence increasing with degree of relativity to an affected individual.

For first-degree relatives, the risk of developing schizophrenia is at 6 to 17%, and for

monozygotic twins at 50% (Schultz, North, and Shields 2007; Lewis and Lieberman 2000).

This also highlights the fact that onset of schizophrenia cannot be solely attributed to

the genetic background, but is also associated with environmental factors. Known early

environmental agents are encountered mostly due to obstetric complications and involve

prenatal viral infection, a premature birth, perinatal hypoxia, and reduced nutrition

before and after birth (Kunugi, Nanko, and Murray 2001; Brown and Derkits 2010).

Later in infancy and early adulthood, environmental factors that increase the risk for

schizophrenia are social isolation, socioeconomic status, an urban environment, belonging

to a minority group, and cannabis consumption (Os, Kenis, and Rutten 2010).

For patients and families, it is important to get a better mechanistic understanding of

onset and development of schizophrenia in order improve diagnosis and to design novel

therapies that are better tailored to the needs of the individual. Thus, in this thesis, in
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the scope of COMMITMENT, I analysed a single cell dataset of schizophrenia to identify

molecular pathways that are involved in the disease.

2.3.2 Interferon response

Interferons (IFNs) are a family of cytokines that alert the immune system to the presence

of viral infection and activate defense mechanisms (Le Page et al. 2000). They are

secreted by infected cells and immune cells and bind to cell surface receptors to trigger

signal transduction cascades that culminate in the transcription of so-called interferon

stimulated genes (ISGs). IFNs can be subcategorized into type I (IFNα, IFNβ), type

II (IFNγ), and type III (IFNλ), with each type initiating a slightly different cascade.

Type I and type III IFNs are more similar in their response, and considered to be the

classical antiviral IFNs. Both lead to the activation of the same transcription factors

(TFs), including STAT1, STAT2, IRF7 and IRF9, which then induce ISG transcription

(Schoggins 2019).

Per definition, an ISG is a gene that is induced during IFN response, however, the com-

plexity of the system makes the understanding and nomenclature of ISGs more difficult.

Some ISGs already exhibit a baseline expression in the absence of IFNs while others do

not, some are direct targets of members of the signalling cascade and can thus be in-

duced independently of IFN signaling. For the members of the signalling cascade, some

are IFN-inducible themselves, leading to multiple potential pathways that can promote

transcription of a single ISG (Schoggins 2019).

Interestingly, about 10% of the human genes are potential IFN targets. With the

development of next-generation sequencing technologies, studies can now systematically

profile ISGs in different tissues. Viral infections affect the respiratory tract through

aerosol transmission, but also the gut through oral and fecal transmission. Over the

past years, intestinal organoids have emerged as surrogate models as they mimic the

composition of the intestine (Triana et al. 2021). In this thesis, in collaboration with the

group of Steeve Boulant, I analysed single-cell data from colon and ileum organoids that
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had been treated with IFNβ, IFNλ, or both, to identify the tissue- and cell type-specific

ISGs.

2.3.3 Computational analysis of cellular perturbations

As already stated, cellular perturbations change the phenotype of a cell. Gene expres-

sion, for example, can be used as a measure to characterize and quantify this change.

One goal of computational biology is the development of methods that can predict the

perturbation response (Lotfollahi, Wolf, and Theis 2019). Methods with high accuracy

could be applied for in silico drug screening for example, to lower the number of po-

tential drug candidates before validation in the wetlab. A VAE based model, scGen,

was demonstrated to predict perturbation responses in single-cell data for out-of-sample

data (Lotfollahi, Wolf, and Theis 2019). This model learns a mapping from unperturbed

to perturbed in the latent space, and applies it on new data. Another recent method,

GEARS, combines graph neural networks (GNNs) with an MLP structure, whose final

output ist the gene expression prediction (Roohani, Huang, and Leskovec 2024). One

GNN contains information about the gene coexpression, and the other models perturba-

tion relationships based on GO. GEARS is also able to predict interaction mechanisms

of two-gene perturbations. While these methods perform quantitative prediction at the

level of gene expression, we used the model developed in this thesis, OntoVAE, for a

qualitative prediction on the level of pathway activities that are encoded in the latent

space and decoder of OntoVAE (Doncevic and Herrmann 2023).

The CPA (Compositional Perturbation Autoencoder) model, which was developed by

Lotfollahi et al. (2023), is autoencoder based, and can separate drug perturbation effects

from other confounders such as the celltype by factorizing the latent space. We used the

approach implemented in CPA to extend our model OntoVAE, thus, I will explain it in

more detail. The purpose of this model is to learn an overall drug perturbation state and

then predict gene expression upon drug perturbations for cell types where only untreated
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data is available. Mathematically, the authors formulate it the following way:

x′i = M((xi, di, ci), d
′) (2.8)

whereby (xi, di, ci) is a given dataset triplet that was perturbed with drug d and has the

covariate c, and x′i is the estimated gene expression if the data had been perturbed with

d′ instead of di. As already stated, this goal is achieved in CPA by separating the effects

of drug treatment from other covariates in the latent space, a schematic drawing of this is

represented in Figure 2.6. During model training, this separation is encouraged by the

implementation of an adversarial approach, where for each covariate (celltype, drug), an

auxiliary classifier is attached to the latent space, which is supposed to force the encoder

to learn a representation of samples in which different celltypes and drugs cannot be

distinguished anymore. The authors call this the learning of a basal state:

ẑi
basal = f̂enc(xi) (2.9)

Simultaneously, perturbation embeddings V perturbation and covariate embeddings V cov

are learned for each covariate through embedding layers, and those embeddings are then

added to the basal state. Thus, the basal state is used both as an input to the auxiliary

classifiers, but also for computation of the estimated perturbed state:

ẑi = ẑi
basal + V̂ perturbation.(f̂1(di,1), ...f̂M (di,M )) +

∑
j=1,...,K

V̂ covj .ci,j (2.10)

whereby (f̂1, ..., ˆfM ) are learnable dose-response curves that are implemented as neural

networks themselves in CPA, and K is the number of categories a covariate j can take.

Finally, a decoder estimates the gene expression from this perturbed state:

x′i = f̂dec(ẑi) (2.11)

Thus, three loss functions are used during CPA model training. The Gaussian negative

log-likelihood is computed for the reconstruction loss function li as in standard autoen-

coders. Additionally, auxiliary loss functions are defined to remove covariate information

from zbasal:
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Figure 2.6: Schematic drawing of the CPA model. Figure was taken from

Lotfollahi et al. (2023).

ldi = CrossEntropy(f̂d
adv

(ẑi
basal), di)

lci,j = CrossEntropy(f̂adv
ci,j (ẑi

basal), ci,j), j = 1, ...,K

whereby f̂d
adv

and f̂adv
ci,j are neural network classifiers that try to predict (di, ci) from

the basal state ẑi
basal. The parameter optimization during training is a two-step process

and follows the principle of Generative Adversarial Networks (GANs), where a generator

and discriminator compete against each other, with the generator trying to generate fake

samples that are as close to the real ones as possible, and the discriminator trying to

discriminate between real and fake (I. J. Goodfellow et al. 2014). Thus, the authors

also call this an adversarial approach. The following two steps are repeated during the

training process:
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• The parameters of the auxiliary classifiers f̂adv
d and f̂adv

ci,j are updated to minimize

ldi +
∑

j l
c
i,j

• The parameters of encoder f̂enc, decoder f̂dec, perturbation embeddings V̂ perturbation,

covariate embeddings V̂ covj , and dose-response curve estimators (f̂1, ..., ˆfM ) are up-

dated to minimize li − λ(ldi +
∑

j l
c
i,j)

The interpretable VAE model that was developed in this thesis, OntoVAE, was extended

with an adversarial approach analogous to CPA, to be able to dissect the contributions

of different covariates. This new COBRA model is still unpublished.
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Tool Development
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Chapter 3

OntoVAE: Interpretable VAE based

on biological ontologies

Disclosure: The results that are presented in this section have been published in Doncevic

and Herrmann (2023).

With the advance of high-throughput sequencing technologies, researchers became able

to collect large amounts of biological data. For example, genomics profiles the DNA

sequence, transcriptomics quantifies the abundance of RNA molecules, proteomics mea-

sures protein abundance, and so on. All these techniques can be grouped under the

collective term ‘omics’ (Hasin, Seldin, and Lusis 2017). VAEs have been widely used to

extract meaningful patterns from this high-dimensional data, and have been applied on

many different tasks, including data denoising, sample clustering, batch correction, and

transfer learning. However, VAEs are lacking interpretability as we cannot assign the

contributions of different features to the patterns learnt in their latent space (Svensson

et al. 2020). As model interpretability is a crucial aspect especially in biomedical ap-

plications, we constructed a novel interpretable VAE termed ‘OntoVAE’ in whose latent

space and decoder any biological ontology can be incorporated (Doncevic and Herrmann

2023). Therefore, by design, the neurons in latent space and decoder correspond to terms
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of the integrated ontology, and their activations can be directly interpreted as pathway

or phenotype activities.

3.1 Model architecture

We named our novel VAE architecture OntoVAE (short for Ontology guided VAE) as

the structure of latent space and decoder of OntoVAE is guided by a biological ontology,

so that each neuron in these layers corresponds to a term of the given ontology. Hence,

OntoVAE consists of a fully connected non-linear encoder which is coupled to a sparse,

multi-layer linear decoder (Figure 3.1), whereby the sparse connections in the decoder

reflect either relationships between parent and children terms of the ontology or anno-

tations of genes to terms of the ontology. Furthermore, the decoder is organized into

multiple layers based on ontology depth, meaning that each layer in the decoder repre-

sents one depth layer of the ontology and terms that have the same depth are located

in the same layer. Hereby, the term ‘depth’ refers to the longest possible path between

a given node/term and a root node. In contrast to a standard VAE where connections

are only present between neighboring layers, OntoVAE also has to model connections be-

tween non-neighboring layers, since parent child term relationships are not restricted to

neighboring depth layers of the ontology. Additionally, annotations have to be modelled

between the genes in the output layer and ontology terms in each depth layer.

The root terms, which are at the same time the most generic terms of the ontology,

are localized in the latent space layer (depth 0). With progression through the following

layers of the decoder, terms are becoming more and more specific until reaching the

reconstruction layer which contains the genes that could be mapped to the ontology. In

general, a biological ontology, as any directed acyclic graph (DAG), has one root node.

As a one-dimensional latent space would not be meaningful, we apply a pruning process

to every ontology before incorporation into OntoVAE which is illustrated in Figure 3.2.

Basically, a top and a bottom pruning threshold define the maximum and minimum

number of annotated genes that is allowed. Terms with a higher number of annotated
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genes than the top threshold are removed, and their children are eventually relocated

to a different depth layer to ensure connectivity. This process usually removes the root

node, and converts many of the children terms to new root terms. Terms with a lower

number of annotated genes than the bottom threshold are removed likewise, and their

annotated genes are transferred to all of their parent terms.

Due to the orientation of the ontology in the model, with information flowing from

parent to children terms, two children would be completely correlated if they shared the

same parent which means that the input they receive would completely overlap. In order

to mitigate this correlation effect, we use three neurons for each term.

µ

σ

Gene 1

Gene 2

Gene N

Term 1

Term 2

Term 3

z

3

Depth

Level

210

Figure 3.1: Schematic drawing of OntoVAE model. A non-linear encoder

is connected to a masked, multi-layer linear decoder. The structure of latent

space and decoder reflects a biological ontology, and the wiring reflects the

connections between parent and children terms, and the annotation between

terms and genes in the given ontology. The root terms of the ontology are

located in the latent space layer, and each layer in the decoder corresponds

to one depth layer of the ontology. Note that ‘depth’ refers to the longest

possible path between a node and a root node, while ‘level’ refers to the

shortest possible path between a node and a root node.
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Figure 3.2: Overview of the ontology pruning process. (a) Top pruning.

Term A is a root term and located in the latent space. Since the number of

genes annotated to term A is higher than the top pruning threshold, term A

is removed and its children terms B and C are relocated to the latent space.

(b) Bottom pruning. (1) Term D is a leaf term and has less genes annotated

to it than the bottom pruning threshold. Therefore, D will be removed and

its annotated genes will be transferred to its parent terms, in this case term

C. (2) The number of genes annotated to C is still lower than the bottom

pruning threshold, so C will also be removed and its annotated genes will be

transferred to its parent term A. (3) The number of genes annotated to A

lies within the pruning thresholds, so pruning stops here.

3.2 Model implementation

OntoVAE was implemented in pytorch and made freely available through pip and GitHub

at https://github.com/hdsu-bioquant/onto-vae under the GPLv3 license. The python

package has two main classes, Ontobj() and OntoVAE(). The Ontobj() class handles

the preparation of a given ontology and dataset and has predefined slots which store the

necessary information, such as:

• annotation of the ontology: a dataframe containing information such as term iden-

tifier, term name, depth, number of parents, number of children, number of descen-

dants, number of annotated genes, number of descendant genes
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• genes of the ontology: an alphabetically sorted list containing the genes that could

be mapped to the ontology and therefore define the input to OntoVAE

• ontology graph: a dictionary containing all mappings between children and parent

terms as well as between genes and terms they are annotated to

• matched datasets: datasets whose features have been matched to the genes of the

ontology

It is possible to store multiple trimmed versions with different pruning thresholds in

the same Ontobj() instance. It is also possible to store multiple matched datasets per

trimmed version in the object. The OntoVAE() class is initialized with an instance of the

Ontobj() class and contains the actual implementation of the VAE. The class itself is

composed of an encoder building block, and an OntoDecoder building block which con-

tains the logic of the ontology. Alongside with that, an OntoEncoder building block, and

a standard decoder were also implemented, so that the user could also create a reverse

model. Tests with this were also carried out in the manuscript. The modular imple-

mentation of OntoVAE makes it very flexible. Additional functions for model training

and retrieving information make the tool user-friendly, since it requires only a handful of

commands to run a complete analysis. A vignette that was made available together with

the OntoVAE package illustrates how to initialize and train an OntoVAE model.

The code for the ontology preparation as shown in the vignette is displayed below.

# import modules

import os

from onto_vae.ontobj import *

from onto_vae.vae_model import *

# initialize the Ontobj

# the description should be an identifier, e.g. the ontology used,

# here: PWO (Pathway Ontology)
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pwo = Ontobj(description='PWO')

# initialize our ontology

# obo: path to an obo file

# gene_annot: path to a tab separated file with two columns:

# Genes and Ontology IDs

pwo.initialize_dag(obo=data_path() + 'pw.obo',

gene_annot=data_path() + 'gene_term_mapping.txt')

# trim the ontology

pwo.trim_dag(top_thresh=1000,

bottom_thresh=30)

# create masks for decoder initialization

pwo.create_masks(top_thresh=1000,

bottom_thresh=30)

# match a dataset to the ontology

# expr_path: path to the dataset (either h5ad)

pwo.match_dataset(expr_data = data_path() + 'pbmc_sample_expr.csv',

name='PBMC_CD4T')

Two files have to be provided by the user, an obo file containing the ontology and an

annotation file containing the mapping from genes to ontology terms. From these files,

the initial ontology graph dictionary is built. The user then chooses a top and a bottom

pruning threshold to trim the ontology. In a next step, the binary masks that are needed

to initialize the decoder wiring are created. This process is illustrated in more detail in

Figure 3.3.
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Figure 3.3: Representation of binary masks for decoder wiring initializa-

tion. The binary masks are generated through a step-by-step concatenation

process. Mask 1 models the connection between parent terms in the depth 0

layer (root terms in latent space) and children terms in the depth 1 decoder

layer. Mask 2 models the connections between parent terms in both, the

depth 0 and the depth 1 decoder layers, and children terms in the depth 2

decoder layer. Mask 3 models connections between parent terms in depth 0,

1, and 2, decoder layers, and children terms in depth 3 decoder layer. Finally,

mask 4 models the annotations of the genes (output layer) to all terms of

the ontology (depth layers 0, 1, 2, and 3). The entry 1 in the binary mask

indicates parent child relationships (masks 1-3) or gene annotations (mask

4).
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Since connections also have to be modelled between non-neighbouring layers, at each step,

the previous layer is concatenated to the current one. The final binary mask contains

the annotation between the genes in the output layer and all terms. Finally, the datasets

that we want to use for model training or passing through a trained model are matched

to the ontology genes and stored in a separate slot of the Ontobj(). Instances of the

Ontobj() class can be saved and loaded with pickle.

The code for initialization and training of an OntoVAE model as shown in the vignette

is displayed below:

# initialize OntoVAE

pwo_model = OntoVAE(ontobj=pwo, # the Ontobj we will use

dataset='PBMC_CD4T', # which dataset from the Ontobj to use

top_thresh=1000, # which trimmed version to use

bottom_thresh=30) # which trimmed version to use

pwo_model.to(pwo_model.device)

# generate a directory where to store the best model

if not os.path.isdir(os.getcwd() + 'models'):

os.mkdir(os.getcwd() + 'models')

# train the model

pwo_model.train_model(os.getcwd() + 'models/best_model.pt',

lr=1e-4, # learning rate

kl_coeff=1e-4, # KL loss weighting coefficient

batch_size=128, # minibatch size

epochs=5, # number of training epochs

run=None) # Neptune run for logging can be passed here

An instance of the Ontobj() class needs to be provided and the user needs to specify

which trimmed version and which matched dataset will be used. Here, we can also define
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the number of neurons that should be used per ontology term. For the model training

process, the user can tune the following parameters: learning rate, Kullback-Leibler (KL)

loss weighting coefficient, minibatch size, and number of epochs. Additionally, the user

can decide if losses of the run should be logged to Neptune, which is seamlessly integrated

in OntoVAE, by passing a run to the run parameter.

The main functions that are available to the user to carry out analysis with a trained

model are:

• get_pathway_activities(): This function retrieves the pathway activities, aver-

aged by the number of neurons that was used per term.

• get_reconstructed_values(): This function retrieves the values of the recon-

struction layer.

• perturbation(): This function takes as input a list of genes to be perturbed

together with a list of their new input values, and retrieves either the pathway

activities or the reconstructed values after the perturbation.

Additionally, functions were implemented for plotting and carrying out statistical tests.

3.3 Proof of concept: GTEx dataset

We hypothesize that the latent space and decoder part of OntoVAE are directly inter-

pretable through their structure. Thus, we postulate that the activations, that can be

retrieved for each neuron after passing samples through a pre-trained model, correspond

to pathway or phenotype activities, given the used ontology. Furthermore, we assume

that the results are somewhat reproducible for different runs of model training. To test

the OntoVAE model, we used the bulk RNA-seq data from the Genotype Tissue Expres-

sion (GTEx) consortium, that measures gene expression in 31 different tissues.
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3.3.1 Investigation of pathway activities

We trained an OntoVAE model with Gene Ontology (GO)-decoder, using pruning thresh-

olds of 30 and 1,000, on the bulk RNA-seq samples from GTEx. We then extracted the

pathway activities for each GO term, that are calculated as the average activation of

the neurons representing this term, and checked if the results matched our biological

knowledge, and if certain pathways displayed higher activities in the expected tissues.

According to our expectations, digestive system process was especially active in Small

Intestine, Colon, and Stomach, glutamate receptor signaling pathway was especially ac-

tive in Brain (Figure 3.4a), aortic valve morphogenesis was especially active in Heart,

and axon ensheathment was especially active in Nerve and Brain (Figure 3.4b).
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Figure 3.4: Scatter plot displaying the pathway activities for the exam-

ples digestive system process and glutamate receptor signaling pathway (a)

and aortic valve morphogenesis and axon ensheathment (b). OntoVAE was

trained with GO-decoder on bulk RNA-seq tissue samples from GTEx, the

different tissues are displayed in different colors.

Next, we set out to investigate whether the pathway activities obtained from OntoVAE

could classify the correct tissues with high accuracy. For this purpose, we trained a

Naive Bayes classifier with 10-fold cross-validation on the pathway activities for each

GO term. We performed this for each tissue separately in a 1-vs-all setting, and then
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calculated the median area-under-the-curve (AUC) from the cross-validation. According

to our expectations, the AUC is 0.5 for majority of the tissues, which means that the

classification does not perform better than random, but a higher AUC is achieved for the

seemingly correct tissues, e.g. for Adipose Tissue and Breast in neutral lipid metabolic

process, for Pancreas and Stomach in Digestion, for Liver and Small Intestine in drug

metabolic process, or for Nerve and Brain in myelination (Figure 3.5a). For some

pathways, we also find some unexpected tissues with a high AUC, such as Brain for

muscle system process and gland development, or Blood for brain development. However,

when we look at the density of tissues with an AUC higher than 0.5 over the pathway

activities, we see that in these cases, the accurate classification is due to a very low activity

value of these tissues in these pathways (Figure 3.5b). Thus, a good classification

accuracy of a pathway for a certain tissue does not necessarily correspond to a high

activity of this pathway in the tissue. We also looked at the clustering of the top ten

GO terms with AUC higher than 0.5 of each tissue, and saw that especially for Brain,

there is a lot of overlap with other tissues, however, we speculate that this is due to low

activity of Brain in many other pathways (Figure 3.6).

Since our model incorporates a hierarchical representation by design, we wanted to

compare how different samples can take different trajectories through the interpretable

decoder. We used the previously calculated median AUCs for quantitative assession and

mapped them back to the ontology. We display the same example subnetwork of the

GO graph for Blood and Spleen (Figure 3.7), with node colors corresponding to the

median AUC for the respective term. Since Blood and Spleen are both composed of

blood cells, the two tissues are somewhat related. The displayed subnetwork can roughly

be divided into two branches. Interestingly, while both branches are lit up for Blood,

only the right branch is lit up for Spleen. Upon closer inspection, we can see that the

terms in the left branch are more related with the myeloid lineage, whereas the terms

in the right branch are more related with the lymphoid lineage. Thus, our results can

be explained by the fact that Spleen is a reservoir especially for lymphocytes and plays

an important role in immune response. Another interesting observation is that different
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Figure 3.5: Pathway activities can classify correct tissues. Naive Bayes

classifier was trained for each GO term for each tissue in a 1-vs-all setting

with 10-fold cross-validation. (a) Median AUCs are displayed for ten example

pathways. (b) For tissues with a median AUC higher than 0.5, density over

the pathway activity is displayed.

depths of the ontology can provide different information. The node B cell activation

involved in immune response shows a high AUC in both tissues, for example, whereas its

parent terms have highly divergent AUCs.

Since the classification approach cannot distinguish between high and low pathway ac-

tivities, we devised an alternative approach that allowed us to to investigate our results

in a group-specific manner, and to discover terms that were most active in specific tis-

sues. We cannot directly rank the pathway activities for a given tissue, since they are not

directly comparable with each other due to internal biases at the nodes. Thus, we per-
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Figure 3.6: Heatmap of top classifying GO terms. Ten GO terms with the

highest median AUC were selected for each GTEx tissue given the AUC was

higher than 0.5. The terms are clustered and annotated with their depth

level in the trimmed ontology.

formed separate comparisons between groups of samples at each node. More specifically,

we computed Wilcoxon tests at each node for all possible two pairs of tissues, and called

it a hit if a term was significantly more active in one tissue compared to another (p-value

< 0.05). We than ranked all tissues for one term, with the tissue with most hits for this

term receiving rank 1, the tissue with second most hits receiving rank 2 and so on. For

a given tissue, we then sorted all the terms based on the rank the tissue had received for

this term, the number of hits, and the median of the Wilcoxon test statistic. The top 100

terms for the tissue were then extracted and then clustered based on their Wang seman-
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tic similarities. The cluster representative was either the common ancestor of all cluster

members or the term with most annotated genes. The clusters for Blood and Liver are

displayed in Figure 3.8. For Blood, we find many clusters that are in accordance with

our biological intuition, such as neutrophil degranulation, myeloid leukocyte migration,

innate immune response, regulation of adaptive immune response, myeloid cell differenti-

ation, positive regulation of T cell activation, negative regulation of leukocyte activation,

and type I interferon signaling pathway. For Liver, we also detect meaningful clusters,

such as regulation of lipid metabolic process, plasma lipoprotein particle remodeling, cellu-

lar oxidant detoxification, xenobiotic metabolic process, small molecule catabolic process,

glucose homeostasis, and reponse to drug.

3.3.2 Investigation of reproducibility

Although the examples we looked at agreed with our biological intuition, we wanted to

make sure that the results generated by OntoVAE are actually reproducible. For the

pathway activities to be truly meaningful, we would expect that, when we train a model

twice with the same parameters, the results would still agree. In this context, we also

set out to investigate the behavior of the model in case that the ontology was integrated

in the encoder part of the model. We trained ten models for both cases with the same

parameters, and also investigated the influence of another parameter, the number of neu-

rons used per term. Here, we tried the values 1, 2, and 3, so that in total, 30 models were

trained with a GO-decoder, and 30 models were trained with a GO-encoder. Training

was still performed on bulk RNA-seq tissue samples from GTEx. The agreement of the

models was evaluated by calculating the pearson correlation of the pathway activities

for the same term between two separate models, e.g. cor(termAmodelA, termAmodelB),

cor(termBmodelA, termBmodelB). We compared models that were trained with the same

number of neurons per term (here, pearson correlations were calculated for all possible

pairs of two models), and models that were trained with a different number of neurons

per term (here, pearson correlations were only calculated between two models).
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Figure 3.7: Subnetwork of the GO graph mapped on Blood (top) and Spleen

(bottom). Nodes are colored by the median AUCs for the respective tissue.

Abbreviations: act. - activation, diff. - differentiation, prolif. - proliferation,

deg. - degranulation, i.i.i.r. - involved in immune response.
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We can see that, when integrating the ontology in the decoder, models trained with the

same parameters agree very well, with most of the pearson correlations being above 0.9,

and even close to 1 between models that had been trained with the same number of

neurons per term. On the other hand, when the ontology is integrated in the encoder,

pearson correlations are worse, with half of the samples having values above 0.8, but a

quarter of the samples having values below 0.2 (Figure 3.9a). We also compared the

pearson correlations between GO-decoder and GO-encoder models, and found them to

be 0.5 on average (Figure 3.9b).
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Figure 3.9: Boxplots displaying the reproducibility between models. (a)

Pearson correlations of pathway activities between models that have been

trained with the same parameters, with the ontology integrated in either the

decoder or the encoder. Pairwise correlations between two models are shown.

Models were trained either with 1, 2, or 3 neurons per term. (b) Pearson

correlations between encoder and decoder ontology based models.

Next, we also wanted to investigate the influence of another important parameter on

model reproducibility, the chosen trimming thresholds. For this, aside of the trimming

thresholds of 1000 (top threshold) and 30 (bottom threshold), we also trained models

with trimming thresholds of 1200 and 10, which is less strict, and trimming thresholds

of 800 and 50, which is more strict. Figure 3.10a shows how many terms are left in

each ontology depth level after the trimming with the different thresholds, whereby the
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thresholds 1/1 refer to the untrimmed ontology. We can see that the distribution becomes

bimodal after trimming, since the untrimmed ontology only has one root node, but the

trimmed versions have multiple root nodes. Except for the root layer, the distribution is

preservered, but the trimming is drastically reducing the number of terms. We then again

calculated the pearson correlations between pathway activities for the same term for the

terms that were still present in all trimmed ontologies, but between models trained with

different thresholds. Figure 3.10b shows our results. The trimming thresholds 1000/30

and 1200/10 show a good agreement, especially for the GO-encoder model. However,

both show a significantly worse agreement with the thresholds 800/50. We speculate

that the thresholds of 800/50 are too strict, and too many terms are being removed,

so that the ontology is not accurately preserved anymore. Thus, our choice of 1000/30

seems to represent a good compromise between reducing the complexity, and preserving

the ontology. Since the pearson correlations were better for the GO-decoder model, we

decided to make this the default configuration for OntoVAE, although our package also

allows for ontology integration in the encoder.

a

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

depth

0

500

1000

1500

2000

2500

co
un
t 800 / 50

1200 / 10
1000 / 30

1 / 1

thresholds

b

1000-30 /
800-50

1000-30 /
1200-10

thresholds

800-50 /
1200-10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Encoder
Decoder

Ontology in

P
ea
rs
on

co
rr
el
at
io
n

Figure 3.10: Influence of trimming thresholds on model reproducibility. (a)

Number of GO terms in each ontology depth layer after applying different

trimming thresholds. (b) Agreement between models with different trimming

thresholds when ontology is integrated in encoder or decoder.

We also compared the validation loss of OntoVAE to the validation loss of a standard
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VAE with fully connected encoder and fully connected decoder. According to our expec-

tations, the validation loss of OntoVAE is higher, since we are trading off reconstruction

accuracy for interpretability (Figure 3.11). With increasing number of neurons per

term, the validation loss improves (Figure 3.11a), while changing the trimming thresh-

olds does not have a major influence on validation loss (Figure 3.11b)
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Figure 3.11: Comparison of validation loss between OntoVAE and vanilla

VAE. Loss curves are shown for OntoVAE models that were trained with dif-

ferent numbers of neurons per term (a) or with different trimming thresholds

(b).

As mentioned previously, the number of neurons per term was investigated to account

for the fact that, due to the orientation of the ontology in the model, information is

flowing from parent to children terms, and could therefore cause completely correlated

children just because they share the same parent. To mitigate this, and allow more

freedom to the model, we increased the number of neurons per term, and chose three

as default, based on the results we see in Figure 3.12. The barplots are showing

the number of pearson correlations for all pairwise term comparisons that fall above

a certain threshold. This time, correlations were calculated within the same model,

e.g. cor(termAmodelA, termBmodelA), cor(termAmodelA, termCmodelA) and so on. The

number of highly correlated terms drastically decreases when using three neurons per

term.
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Figure 3.12: Barplots displaying amount of highly correlated terms for

different numbers of neurons per term. Pearson correlations were computed

between all pairs of terms, and number of terms with correlations higher than

0.9, 0.95, and 0.99 is displayed.

3.4 Chapter summary

We have developed OntoVAE, a novel interpretable VAE that can incorporate any bi-

ological ontology in its latent space and decoder part, thus making the nodes directly

interpretable by assuming their activations correspond to pathway or phenotype activi-

ties. We have published the onto-vae python package on Pypi (pip install onto-vae)

and GitHub under: https://github.com/hdsu-bioquant/onto-vae together with a vi-

gnette that demonstrates package use. The package is easy-to-use, a few simple functions

suffice to preprocess an ontology and train an OntoVAE model. Furthermore, the pack-

age already implements easy Logging with Neptune, as well as functions for analysis such

as retrieval of pathway activities. We have demonstrated the abilities of OntoVAE on

Gene Ontology (GO) and bulk tissue RNA-seq samples from GTEx, using a pathway

centric approach where we look at specific pathways and which tissues they are most

active in, and a tissue centric approach where we construct GO networks for each tissue,

highlighting the most important processes.
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Chapter 4

COBRA: COvariate Biological

Regulatory network Autoencoder

Disclosure: The results that are presented in this chapter are still unpublished.

With a rapidly growing number of single-cell datasets, deep learning methods are more

and more becoming state-of-the-art for data processing and analysis, as they benefit from

large amounts of data. When investigating the effects of cellular perturbations, such as

disease or drug treatment, the cell type can be a strong confounder which masks the

effect of interest. To address this, we expanded OntoVAE with an adversarial approach

that encourages covariate disentanglement in the latent space. Thus, we dissect the con-

tributions of different covariates while maintaining the interpretability in the decoder.

We named the new tool COBRA (COvariate Biological Regulatory network Autoen-

coder).

4.1 Model architecture

COBRA combines the interpretable decoder of OntoVAE with an adversarial approach

that leads to a splitting of covariates in the latent space, with the possibility of using either
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a multi-layer (Figure 4.1) or a one-layer biological regulatory network (BRN) (Figure

4.2) as prior information. The adversarial approach implemented in COBRA relies on

the previously published CPA tool (Lotfollahi, Klimovskaia Susmelj, et al. 2023). The

mathematical details of this have already been described in the Introduction in section

2.3.3.
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Figure 4.1: Overview of the multi-layer COBRA model. COBRA combines

the interpretable decoder of OntoVAE with a splitting of covariates in the

latent space. This is achieved through attaching discriminators for each co-

variate to the basal latent space embedding (z basal) and externally learning

the embeddings for each covariate through torch.nn.Embedding layers. The

separate embeddings are then added up, and the total embedding is fed into

the interpretable decoder part.
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Figure 4.2: Overview of the single-layer COBRA model. As Figure 4.1,

but interpretable decoder part consists of a single-layer BRN (bottom).

Unlike CPA, the goal of COBRA is more a qualitative description in terms of pathway

activities than a quantitative prediction of gene expression levels. Additionally, it should

be noted that so far COBRA only implements auxiliary classifiers for categorical covari-

ates and does not model dose-response curves as in CPA. In brief, for each categorical

covariate that we want to disentangle, an auxiliary classifier is attached to the learnt

basal state in the latent space. The aim here is that the classifier is not able to distin-

guish between the different classes, hence leading to a mixing of the samples in the latent

space. As in CPA, we call this the z basal embedding or z basal view. Note that the

term ‘view’ is used to denote the contemplation of a certain combination of covariates.

The covariate embeddings are then learnt separately using torch.nn.Embedding layers.
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The advantage of using Embedding layers instead of one-hot encoding is that they also

capture similarities between the samples (De Donno et al. 2023). The sum of the differ-

ent latent space embeddings (z total) is then fed into the decoder during model training

so that the original data can be reconstructed. During analysis, latent space embeddings

from different views can be fed into the decoder to obtain pathway activities that only

depend on a certain covariate.

4.2 Model implementation

COBRA is implemented in pytorch and will be made freely available through pip and

github at https://github.com/hdsu-bioquant/onto-vae/cobra-ai under the GPLv3

license. The code for OntoVAE was also moved to this repository. Thus, there are two

major contributions: first, the code for OntoVAE has been restructured and made more

user-friendly and flexible. Second, the new COBRA model has been implemented that

allows for additional disentanglement of covariates. We envision cobra-ai to become a

toolbox with a set of models that share the interpretable decoder part. In the following,

I will illustrate in more detail the key points of the implementation.

4.2.1 Reimplementation of OntoVAE

The code base for OntoVAE underwent some major and minor changes to make the

tool more flexible, more user-friendly and more adequate to cope with larger and larger

single-cell datasets. The major changes include:

• The Ontobj became more light-weight. It still stores the information about the

ontology, including annotation, graph, and masks, but not the datasets since this

was taking up too much memory for large datasets. The information is now stored

as a json-file, so that the user needs to create a new instance of the Ontobj, and

then feed a previously processed object with the load() function.

• As already stated, the datasets are not stored in the Ontobj anymore. The model

is now interfacing with the AnnData class, pythons standard container class for
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single-cell data, which stores the counts alongside with annotation information for

samples and features.

The code below demonstrates how to initialize an OntoVAE model with the new imple-

mentation:

# import packages

import scanpy as sc

from cobra_ai.module.ontobj import *

from cobra_ai.module.utils import *

from cobra_ai.model.onto_vae import *

# load ontobj

ontobj = Ontobj()

ontobj.load('GO.ontobj')

# load anndata

adata = sc.read_h5ad('Kang_PBMC.h5ad')

# prepare anndata

adata = setup_anndata_ontovae(adata,

ontobj)

# create model

model = OntoVAE(adata)

• OntoVAE now also includes the possibility to use a one-layer BRN, for example if

one wants to model connections between TFs and target genes. If the user wants

to construct such an Ontobj, they just have to leave out the obo parameter in the

initialization function and only provide a file with mappings from genes to gene

sets.
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ontobj = Ontobj()

ontobj.initialize_dag(gene_annot='/path/to/gene_term_mapping.txt')

Minor changes include:

• Similar to scVI, the user can provide batch information through an additional one-

hot encoded neuron by specifying which column in adata.obs corresponds to the

batch and passing it to the setup command.

# prepare anndata

adata = setup_anndata_ontovae(adata,

ontobj,

batch='batch')

• The user can now choose from many different parameters to have full control over

the model. He can start the ontology in the latent space, or decide to move it to

the first layer of the decoder. Furthermore, he can now use activation functions in

the decoder, and really customize the model. Detailed explanations of the model

creation parameters are given in Table B.1.

• Saving of model and train parameters together with the best model in the same

folder. A trained model is now loaded as follows:

model = OntoVAE.load(adata, # data that was processed with setup function

modelpath) # path where the best model is stored

# together with the parameters

• The implementation of early stopping through setting parameters in the train_model

function. Detailed explanations of the model training parameters are given in Ta-

ble B.3.

• More things are happening under the hood, such as the default choice of trimming

thresholds and moving the model to the device. Thus, it becomes even easier for

the user to execute the code.
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4.2.2 Implementation of COBRA

COBRA inherits from the OntoVAE class, so that many of the same principles apply. The

major difference is that the user now specifies the covariates that should be disentangled

in the latent space. Thus, the anndata needs to be prepared in a slightly different way,

specifying the cobra_keys. The below code chunk demonstrates how to initialize a

COBRA model.

# import packages

import scanpy as sc

from cobra_ai.module.ontobj import *

from cobra_ai.module.utils import *

from cobra_ai.model.cobra import *

# load ontobj

ontobj = Ontobj()

ontobj.load('GO.ontobj')

# load anndata

adata = sc.read_h5ad('Kang_PBMC.h5ad')

# prepare anndata

adata = setup_anndata_ontovae(adata,

ontobj,

cobra_keys = ['condition', 'celltype'])

# create model

model = COBRA(adata)

There is now an additional set of parameters the user can tune that define the structure

of the auxiliary covariate classifiers. An overview is given in Table B.2. The main
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difference in the implementation of COBRA compared to OntoVAE is the training loop.

Due to the adversarial approach that COBRA was extended with, training is a two-

step process. Again, see section 2.3.3 for a more detailed explanation. In brief, first,

samples of the minibatch are passed through the VAE and through the classifiers. The

VAE loss is now integrated with the adversarial loss of the auxiliary classifiers, and

backpropagation leads to a simultaneous update of the parameters of Encoder, Decoder,

and covariate embedding layers. Second, the basal state of samples is passed through

the auxiliary classifiers, and the adversarial loss is computed and then weighted by the

gradient penalty, which is now commonly used during training of GANs (Gulrajani et al.

2017). Backpropagation then optimizes the parameters of the auxiliary classifiers. The

new loss components that are introduced by this adversarial approach all have weights

that can be tuned by the user. An overview of tunable training parameters that are new

in COBRA is given in Table B.4.

Another novelty in COBRA is the way that model outputs are organized. The user can

still run the main functions to_latent(), get_pathway_activities(), get_reconstructed_values(),

and perturbation() to retrieve the latent space embedding, the pathway or TF activ-

ities, the reconstructed values, or any of the three after an in silico perturbation of the

gene expression input values. While the output of OntoVAE is a matrix, COBRAs out-

put is organized as a dictionary, with the different views as keys, and the corresponding

matrices as values. This allows the user to compare the model output between different

views, and thus, pinpoint covariate specific effects.

4.3 Proof of concept: Mouse interferon dataset

Disclosure: The results that are showed in this section have been generated by Dr. Carlos

Ramirez under my supervision.

In principle, due to the flexible implementation of COBRA, any kind of BRN can be used

in the interpretable part, and the user can decide whether the latent space already forms

part of the BRN or whether the BRN is only accommodated in the decoder. However,
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in contrast to the original OntoVAE model, the adversarial approach in COBRA makes

model training less stable, thus we opted for a simpler structure for initial experiments,

with the prospect of expanding again to a multi-layer network at some point. All analyses

that were done with COBRA in this thesis use a model with the following structure: A

non-linear encoder, a latent space that is a linear combination of the different views,

a one-layer decoder followed by a ReLU activation function, still using three neurons

per term. The terms we used for the different analyses were either TFs or Reactome

pathways.

To showcase the utility of COBRA, we used a scRNA-seq dataset of mouse embryonic

stem cells (ESCs) and mouse embryonic fibroblasts (MEFs) that had been treated with

IFNβ for 0, 1, or 6 hours (Muckenhuber et al. 2023). We initialized COBRA with a one-

layer decoder, and the collecTRI derived regulons with TF - target gene interactions as

BRN (Müller-Dott et al. 2023). The model was trained with default parameters, passing

the cell type and the stimulation time as COBRA covariates. Additionally, the VEGA

model was trained on the same dataset for comparison (Seninge et al. 2021). UMAP was

computed on the latent space embeddings of the different views of the COBRA model as

well as on the VEGA model (Figure 4.3). For the basal view of COBRA, all cells are

mixed, and no distinction can be made between cell type or stimulation time. For the

cell type view, two clusters can be observed, each corresponding to one cell type. Within

each cell type, the stimulation time is mixed. Analogously, for the stimulation time view,

three clusters can be observed, with one cluster per treatment time, while the cell type

is mixed within each cluster. In the total view, six individual clusters are formed, one

cluster per cell type and per stimulation time. For VEGA, cells are clustering according

to cell type and stimulation time, however, no real distinction can be made between 0h

stimulation and the early stimulation time of 1h. This demonstrates that COBRA can

better separate treatment effects, and isolate samples at an earlier timepoint.
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Figure 4.3: UMAP embedding of the latent spaces of different views. CO-

BRA was run on the mouse interferon dataset using the cell type and stimu-

lation time as covariates. The latent space embeddings of the different views

are displayed as well as the embedding of the VEGA latent space (bottom).

Each latent space representation is colored by cell type (left) and stimulation

time (right).

We then set out to compare the TF activities in the different views of COBRA and

VEGA. They were retrieved from COBRAs decoder and VEGAs latent space, respec-

tively. We then unsupervisedly selected the top 50 TFs that had the highest variance

in the stimulation time view of COBRA and plotted their activities, aggregated per cell

type and stimulation time, in a heatmap (Figure 4.4). It immediately becomes obvious

that for VEGA, the main clustering is by cell type, and within both cell types, the 0h

and 1h samples cluster together, while for COBRA, in the cell type view, the samples
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cluster by cell type, and in the stimulation time view, they cluster by treatment. With

this unbiased way of preselecting TFs, many TFs were identified in this analysis that are

known to play a role in interferon response, such as IRF7, IRF2, and IRF1, IRF3, IRF9,

IRF4, IRF5, STAT1, and STAT2 (highlighted in Figure 4.4), that become especially

active at the 6h stimulation timepoint. Both, COBRA and VEGA, are able to capture

important TFs that become active upon IFN stimulation. However, COBRA is able to

capture effects at an earlier timepoint since the model can separate the 0h and 1h treated

samples from each other. The TFs IRF7, ETV7, and NANOG (highlighted in Figure

4.4) were selected to illustrate this in more detail (Figure 4.5). These three TFs dis-

play a high activity in stem cells as becomes apparent from COBRAs cell type view,

as well as from VEGA. However, COBRAs stimulation time view additionally uncovers

interesting dynamics for these TFs upon IFN treatment. For IRF7, the dynamics of

both COBRA and VEGA agree, but COBRA additionally shows an effect in ESCs after

1h IFN stimulation. For ETV7, COBRA reveals that the activity first increases upon

treatment (1h timepoint) and then drastically drops (6h timepoint). This connection

between ETV7 and interferon response is in line with a recent work where the authors

demonstrated that ETV7 acts as a repressor of a set of ISGs in breast cancer stem cells,

and this could be partially reverted after treating with IFNβ (Pezzè et al. 2021). VEGA

does not capture these effects as well. For Nanog, VEGA does not show any dynamic

behaviour after IFN stimulation, however, COBRA reveals that the activity of Nanog is

increasing as a consequence of treatment. Nanog is well known as one of the Yamanaka

factors and plays an important role in the self-renewal and pluripotency of ESCs (Liu et

al. 2008; W. Zhang et al. 2016). Interestingly, a recent study also demonstrated that

type I IFNs significantly upregulate the Yamanaka factors and thus promote stemness

in cancer (Musella et al. 2022). We speculate that VEGA is missing out on this due

to the strong cell type specific effect which overshadows the responsiveness of Nanog to

IFN treatment.

57



stimulation_time cell_type total VEGA

CRX
THRA
AHR
ETV7
TBX15
E2F4
DDIT3
MBD1
ID3
ZNF362
LITAF
TFAP2B
HOXA9
ZEB1
TEAD1
NRF1
POU2F2
REST
MAFA
NANOG
CEBPD
NRG1
TCF7
NCOR1
SOX4
RB1
ZGLP1
USF1
HOXA7
ARNT
TFE3
HMGA2
TBX21
SRY
IRF7
IRF2
IRF1
NR5A2
STAT1
TBPL1
GATA1
KAT2B
EZH2
HMGA1
IRF3
TTF1
IRF9
PRDM1
SPIB
IRF4
KLF10
KLF4
TCF7L2
USF2
DLX5
POU2F1
IKZF1
NR4A3
IRF5
STAT2

cell_type
stimulation_time

COBRA

0

1

2

3

VEGA

−10
−5
0
5
10
15

cell_type
ESC
MEF

stimulation_time
0h
1h
6h

Figure 4.4: Heatmap displaying the top 50 variable TFs for the different

views of COBRA and VEGA. Variance for TF activities was calculated on the

stimulation time view of COBRA. Values for the single cells were aggregated

per cell type and stimulation time. TFs highlighted in red are mentioned in

the text.
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Figure 4.5: Comparison of COBRA stimulation time view with VEGA.

Boxplots are displaying the TF activities of IRF7 (top), ETV7 (middle), and

NANOG (bottom), for both VEGA (left) and the stimulation time view of

COBRA (right).

Finally, we also trained COBRA on the dataset using the Reactome pathways as a prior.

We then extracted the pathway activities from the stimulation view and the celltype

view and performed a Random Forest analysis to determine which pathways contribute

most to the variance observed in either view. Interestingly, we could observe an exclusive

behavior, where majority of pathways either had a high feature importance in one or the

other (Figure 4.6. For the stimulation time view, most important pathways were related
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with viral mechanisms and interferon response, such as ‘RIG1 MDA5 mediated induction

of IFN alpha beta pathways’, ‘TRAF6 mediated IRF7 activation’, and ‘Regulation of

IFNA signaling’. For the celltype view, most important pathways were related with

the distinction between more and less differentiated and thus proliferating cells, such as

‘Telomere maintenance’, ‘G0 and early G1’, and ‘G2M checkpoints’. Thus, COBRA can

capture meaningful information using different biological priors.

ACTIVATION_OF_IRF3_IRF7_MEDIATED_BY_TBK1_IKK_EPSILON

AXON_GUIDANCE

ERK_MAPK_TARGETS

G0_AND_EARLY_G1G2_M_CHECKPOINTS

GENERIC_TRANSCRIPTION_PATHWAY

G_ALPHA_I_SIGNALLING_EVENTS

HOMOLOGOUS_RECOMBINATION_REPAIR_OF_REPLICATION_INDEPENDENT_DOUBLE_STRAND_BREAKS

HOST_INTERACTIONS_OF_HIV_FACTORS

INFLUENZA_VIRAL_RNA_TRANSCRIPTION_AND_REPLICATION

INTEGRATION_OF_PROVIRUS

PROTEIN_FOLDING

PYRUVATE_METABOLISM

REGULATION_OF_IFNA_SIGNALING

RIG_I_MDA5_MEDIATED_INDUCTION_OF_IFN_ALPHA_BETA_PATHWAYS

TELOMERE_MAINTENANCE

TRAF3_DEPENDENT_IRF_ACTIVATION_PATHWAYTRAF6_MEDIATED_IRF7_ACTIVATION

0

100

200

0 50 100
RF Score (Cell type)

R
F

 S
co

re
 (

S
tim

ul
at

io
n 

tim
e)

Figure 4.6: Comparison of Reactome pathway ranking between stimula-

tion time and celltype view. Random Forest classification was performed for

the different stimulation times and the different celltypes, using the pathway

activities from the stimulation time view and from the celltype view, respec-

tively, as predictors. Scatter plot shows feature importances of Reactome

pathways for both views. Top pathways for either view are labelled in red.
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4.4 Chapter summary

We developed COBRA, which extends OntoVAE with an adversarial approach that en-

ables the disentanglement of covariates in the latent space, and subsequently in the

interpretable part of the model. The code was further improved to make it more user-

friendly and give the user more control over the model. Both models are now hosted in

the same package that will be made available after publication: https://github.com/

hdsu-bioquant/cobra-ai. We demonstrated the use of COBRA on a mouse interferon

dataset using TF regulons and Reactome pathways as a biological prior. COBRA was

able to identify TFs that are important in IFN signaling, and also revealed TF dynamics

that are strongly overshadowed by the cell type confounding effect in comparable meth-

ods. COBRA also identified a distinct set of Reactome pathways for the stimulation time

and for the celltype view.
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Part II

Web Application Development
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Chapter 5

OntoVAE Model Explorer: Dash

Web Application to publish

results

With an ever growing amount of research works, community efforts have been made

to make research in general more transparent and more reproducible, one of them the

FAIR guidelines, which stand for Findability, Accessibility, Interoperability, and Reuse

of digital assets (Wilkinson et al. 2016). In line with this, to make our research more

accessible and more transparent, we developed and deployed a web application, OntoVAE

Model Explorer, that allows the user to browse all results from our publication (Doncevic

and Herrmann 2023) that were obtained when training OntoVAE on GTEx data, which

we used as a proof of concept. In our paper, we only showed selected pathways and tissue

specific GO networks.
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5.1 Web app usage

OntoVAE Model Explorer was developed with Dash and hosted on pythonanywhere, so

that it can be accessed anywhere at any time under: http://ontovaemodelexplorer.

pythonanywhere.com. The user can explore the pathway activities as computed by

OntoVAE for all the GO terms by selecting a term from the drop-down menu (Figure

5.1). Scatter plots were generated with plotly, which allows the user to select or deselect

certain tissues and to zoom in and out of the plot. Furthermore, the user can also explore

the GO networks for all the tissues by selecting them from the drop-down menu (Figure

5.2). The networks were generated with python igraph and dash cytoscape. By hovering

over the nodes in a network, the user can obtain the GO term and its cluster membership.

The source code of the web application has been published on github and can be found

under: https://github.com/daria-dc/OntoVAE-Model-Explorer.

Figure 5.1: Web application allows browsing of pathway activities. The

user can display four different GO terms at the same time, and check their

pathway activities as computed by OntoVAE in the different tissues from

the GTEx cohort. In the drop-down menu, the user can simply search for a

pathway of interest, e.g. all pathways containing the sub-string ‘brain’.
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5.2 Chapter summary

We have demonstrated the abilities of OntoVAE on Gene Ontology (GO) and bulk tis-

sue RNA-seq samples from GTEx, using a pathway centric approach where we look at

specific pathways and which tissues they are most active in, and a tissue centric ap-

proach where we construct GO networks for each tissue, highlighting the most important

processes. All of these results can be browsed under http://ontovaemodelexplorer.

pythonanywhere.com, our Dash based web application that has been deployed on pytho-

nanywhere, the source code of which is available at: https://github.com/daria-dc/

OntoVAE-Model-Explorer.
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Figure 5.2: Web application allows browsing of GO networks. The user can

look at two different networks at the same time, the tissue can be selected

in the drop-down menu. In the graph, only the cluster representatives are

labelled, but by hovering over the nodes, the user can obtain their information

as it will show up in the green box below. The user can also change the size

of the network by determining in the slider how many nodes/terms should

be included.
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Chapter 6

Interferon scRNAseq: Shiny Web

Application to facilitate

collaboration

Disclosure: The work presented in this chapter has been carried out in a collaboration

with the group of Steeve Boulant and is still unpublished.

6.1 Workflow

In order to investigate IFN response in the gut, our collaborators grew intestinal organoids

from Ileum and Colon, and treated them with IFNβ, IFNλ, or both, followed by scRNA-

seq. See Figure 6.1 for an experimental overview. For each condition, there were two

replicates, resulting in 16 samples in total.

The data was pseudoaligned with kallisto and quantified with bustools (Melsted et al.

2021). Quality control and merging of replicates was performed with a standard prepro-

cessing workflow using the Seurat package. The following filtering criteria were applied

to remove low quality cells: minimum number of counts = 5000, maximum number of

69



Figure 6.1: Schematic drawing of experimental workflow. Organoids were

grown from ileum and colon, and treated with IFNβ, IFNλ, or a combination

of both. The different samples then underwent scRNA-seq. Figure was

created with biorender.com.

counts = 100,000, minimum number of expressed features = 500, maximum percentage

of mitochondrial genes = 20. For the rest of the analyses presented here, Ileum and

Colon were processed and treated separately, but the data from the different treatments

was integrated using a standard integration workflow from Seurat. Cell type annotation

was performed using label transfer based on a previously annotated dataset (Triana et

al. 2021). Cell types identified in Ileum were Stem cells, Transit Amplifying (TA) cells,

Cycling TAs, Type I Enterocytes, Type I and II Inmature Enterocytes, Enteroendocrine

cells, and Goblet cells. Cell types identified in Colon were Stem cells, Transit Amplifying

(TA) cells, Cycling TAs, Secretory TAs, Type I and II Enterocytes, and Type I and II

Inmature Enterocytes.

Data was then further analyzed with standard analysis workflows, such as marker gene

discovery to identify ISGs, followed by enrichment analysis against different databases

such as GO and KEGG. Additionally, TF activities were computed using SCENIC, a

tool that constructs the regulons in a data-driven way using random forest regression

and then calculates TF activities per cell using this regulon information (Aibar et al.

2017). SCENIC also provides a possibility to binarize the TF activities, and simply
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classify a TF as active or not active in a cell.

6.2 Web App

One difficulty of the organoid IFN dataset lies in the many possible comparisons that

can be made. Since there are two tissues, with four conditions each, and 7-8 cell types

per tissue, a vast amount of plots is produced during any kind of analysis, making it

difficult to keep track of everything, to discuss results, and to isolate interesting findings.

To mitigate this and facilitate our collaboration, I developed an interactive Shiny web

application that allows for better organization and query of the results. So far, the web

app is organized into four different tabs.

The first tab shows an overview of the data (screenshot in Figure 6.2) Hereby, the user

can choose between Ileum and Colon. The tab is organized into two main panels: the

top panel displays a UMAP visualization of the data, with the top row colored by cell

type per default, and the bottom row colored by some quantitative variable, for example

the number of counts, the number of features, or the mitochondrial percentage. The

bottom panel then displays more clearly the quantification of this quantitative variable

by boxplots or violin plots. The user could also restrict the view to certain cell types.

For the bottom panel, he can also choose to look at the expression of a particular gene

(screenshot in Figure 6.3).

The second tab includes all results from the find-markers analysis. All results that are

organized in this tab are already pre-computed and just dynamically accessed through

the web app. Mainly, differential gene expression analyses were performed between all

treated and untreated conditions, separately for each cell type and each tissue, leading

to a vast amount of gene marker lists. All of these lists were then also subjected to

enrichment analysis with KEGG terms and GO pathways. The user can display either

a heatmap showing the differentially expressed genes (screenshot in Figure 6.4), or the

enrichment results for these genes (screenshot in Figure 6.5). In the command panel in

the left, the user can select again at which tissue and cell type they want to look, and
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whether they are interested in up- or downregulated genes.
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Figure 6.2: Expression tab of interferon web app. User can select between

the available tissues. The top panel shows the UMAP visualization, colored

by cell type (top) or by a quantitative variable (bottom). The bottom panel

additionally display a quantification of the bottom variable.

Both, the third and the fourth tab, include the results from the SCENIC analysis. The

third tab summarizes the TF activities. The top part of the tab allows the user to select

any TF and have its activities displayed for the selected tissue (screenshot in Figure

6.6). The activities are compared between the four conditions in each cell type. The

intensity of the color corresponds to the percentage of cells in that group that the TF is

active in. The bottom part of the tab is a heatmap showing TFs that have high activity
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in one group compared to the others, and thus helps the user in identifying important

TFs (not shown). The user can perform this TF selection looking only at the cell type,

or also considering the different treatments. He can also do this on a subset of the cell

types.

Cycling TACycling TA
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Enteroendocrine cells
Goblet Cells
Inmature Enterocyte 1
Inmature Enterocyte 2
Stem Cells
TA

Mock

STAT1

treatment Mock Lambda Beta_LambdaBeta
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0
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Beta Lambda Beta_Lambda

Cycling TA

Goblet cells

Stem cells

Inmature Enterocyte 1 Inmature Enterocyte 2

Enterocyte 1 Enteroendocrine cells

Figure 6.3: Gene expression in interferon web app. User can color the

bottom panel with the expression of any gene from the dataset. The bottom

panel then shows the quantification in violin plots per celltype and treatment.
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Finally, the fourth tab intersects the SCENIC computed TF regulons with the results

from the differential gene expression analysis (screenshot in Figure 6.7). The user can

again select a tissue and a cell type and then obtains the differential genes between the

different conditions, this time displaying the numbers of their overlap with regulons of

different TFs. A Fisher’s exact test was calculated for each overlap to determine its

significance.

Figure 6.4: Web app displays heatmap of differentially expressed genes.

User can select tissue and cell type, and if they want to look at up- or

downregulated genes. For simplicity, only the heatmap for the comparison

Beta vs Mock is shown, the app also displays the comparisons Lambda vs

Mock, Beta_Lambda vs Mock, and Beta_Lambda vs Lambda.
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Figure 6.5: Web app displays enrichment results for differentially expressed

genes. User can select tissue and cell type, and if they want to look at up-

or downregulated genes. For simplicity, only the barplot for the comparison

Beta vs Mock is shown, the app also displays the comparisons Lambda vs

Mock, Beta_Lambda vs Mock, and Beta_Lambda vs Lambda.

6.3 Results

The web app allowed us to systematically browse through the results and pinpoint inter-

esting findings. First, IFNβ and IFNΛ show a very distinct response in many ways, with

the response of the double treatment resembling more the response of IFNΛ. This can be

observed, for example, from the activity of the TF STAT1, which is known to be a core

TF in type I and type III IFN response (Figure 6.6). The TF shows a high activation in

Lambda and the double treatment but not so much in Beta. Another trend is observed

in this analysis. The less differentiated cell types such as stem cells and cycling TAs seem

to be less responsive to IFN treatment.

Another interesting finding consisted in the fact that, for some cell types, IFNβ seemed to

induce a cell type specific response rather than an antiviral response. This is illustrated
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Figure 6.6: Web app displays TF activity. Violin plots are split by cell type,

and compare the activity of the selected TF between the four conditions.

Intensity of the color corresponds to the percentage of cells that the TF is

active in.

for the Enteroendocrine cells (EECs) of the Ileum. In order to showcase this finding,

we systematically collected results from the web app (Figure 6.8). First, we looked at

the genes that were upregulated in Beta compared with Mock (Figure 6.8a), and found

a handful of genes (SCG3, SNAP25, TAGLN3, KCNB2, RGS4, and CALY ), none of

which seem to be related to the classical antiviral IFN response. Interestingly, of those

genes, SNAP25, TAGLN3, KCNB2, and RGS4 were expressed in the Beta condition

only. Enrichment analysis for the differential genes yielded terms related with potassium

ion transport, and neurotransmitter signaling mechanisms (Figure 6.8b).
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Figure 6.7: Web app displays intersection of regulons with differentially

expressed genes. User can select tissue and cell type, and if they want to

look at up- or downregulated genes. Bar plots then show the overlap of the

gene list with the regulons of different TFs, sorted by overlap size and colored

by significance. For simplicity, only the barplot for the comparison Beta vs

Mock is shown, the app also displays the comparisons Lambda vs Mock,

Beta_Lambda vs Mock, and Beta_Lambda vs Lambda.

EECs are hormone-secreting cells that functions as regulators of insulin secretion, intesti-

nal motility, and food digestion (Worthington, Reimann, and Gribble 2018). Moreover,

recent studies revealed that EECs establish a direct communication with peripheral neu-

rons via synapses (Barton et al. 2023). This is in line with our findings, and also

highlights a potential role for IFNβ in enhancing the gut-brain communication. We then
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focused our analysis on identifying relevant TFs, and isolated RFX6, NEUROG3, and

NEUROD1 from the SCENIC overlap analysis (Figure 6.8c). Further exploration of

results showed that these TFs are indeed only active in EECs (Figure 6.8d), and be-

come more strongly activated upon treatment with IFNβ, but not IFNλ (Figure 6.8e).

One other interesting observation that can be made in this context is that IFNλ seems to

counteract some of the effects of the IFNβ treatment. Since IFNλ treatment alone does

not have any effect upon the selected TFs, but the double treatment does, this can solely

be attributed to the effects of IFNβ. However, looking back at the differential genes,

the double treatment behaves more like IFNλ. The potential synergistic mechanisms

between the two treatments need to be further investigated.

6.4 Chapter summary

We set out to investigate the cell type specific IFN response in the gut. Thus, our

collaborators grew organoids from the Ileum and the Colon, and collected scRNA-seq

data after treatment with IFNβ, IFNλ, or both. One challenging aspect of the dataset

consisted in the many possible comparisons that can be made, namely between Ileum

and Colon, between different cell types within the same tissue, between the same cell

type in different tissues, or between the different treatment conditions. To facilitate

the organization of the results and the collaborative work, I developed a Shiny web

application that was fed with the precomputed results of all analyses, such as marker gene

discovery, enrichment analysis, and TF activity analysis. The web app allows interactive

and fast exploration of the results and helped us in discovering some key findings: IFN

response is indeed very cell type specific, and especially in some cell types, IFNβ seems

to trigger different mechanisms than the classical antiviral ones. We highlighted this at

the example of the EECs from Ileum.
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Figure 6.8: Enteroendocrine cells of Ileum respond to IFNβ in a cell type

specific manner. a Heatmap of genes that are upregulated in Beta compared

to Mock. b GO biological process enrichment of genes from a. c Overlap

of genes from a with TF regulons from SCENIC. d Heatmap displaying

the percentage of cells with the TF active. e TF activities of NEUROG3,

NEUROD1, and RFX6. f Figure legend for treatment and celltype. All

figures were collected from the web app. Except for d, all figures refer to

enteroendocrine cells.
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Part III

Perturbation modeling
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Chapter 7

Predictive modeling with

OntoVAE

Disclosure: The results that are presented in this section have been published in Doncevic

and Herrmann (2023).

One important aspect in biomedical research is the investigation of how genetic pertur-

bations change the behavior and transcriptional response of a cell. This can shed light on

the functioning of the cell and on the downstream effects of different genes. Thus, gene

perturbation experiments also have implications for drug design, since they can identify

genes that are most likely to be successful in clinical trials (Nelson et al. 2015).

The state-of-the-art approach hereby is carrying out large CRISPR screens to assess

the effects of perturbations of a wide range of genes. In pooled CRISPR screens, a

variety of perturbations is induced into a pool of cells, and then they are exposed to

different biological challenges such as viral infection or drug treatment. Subsequently,

each perturbation can be quantified in the proliferated cells, thus allowing to evaluate

if certain perturbations are more ore less favorable under certain conditions (Bock et

al. 2022). However, this approach is very resource intensive since many genes can be

tested, and the number of experiments increases with the number of cell lines, drugs,
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and conditions to be tested. Additionally, since genes can also interact with each other

in a synergistic manner, combinations of genes can also be tested, further scaling up the

experiment (Roohani, Huang, and Leskovec 2022).

Thus, computational approaches have been designed that can predict perturbation

response (Lotfollahi, Wolf, and Theis 2019; Roohani, Huang, and Leskovec 2024). We

hypothesized that OntoVAE can also be applied in the context of predictive modeling.

Hence, we developed a strategy where we manipulate the input values of genes prior

to running samples through a trained model, and then compare the pathway activities

before and after perturbation using paired Wilcoxon tests. Functions for performing

gene perturbations have also been implemented in the onto-vae package and a use-case

is demonstrated in the vignette. We distinguish between a gene-centric approach, where

we perturb a single gene and assess the effects of this perturbation on all terms, and a

term-centric approach, where we systematically perturb all genes one-by-one, and rank

them based on their influence on a specific term. Both strategies will be discussed in

more detail and with examples in the following sections. It should be noted that, in this

chapter, we focus solely on the single-gene perturbation case, perturbing one gene at a

time.

7.1 Gene-centric approach

To illustrate the gene-centric approach, we again used our OntoVAE model that had

been trained with a GO-decoder on all bulk tissue RNA-seq samples from GTEx. As an

example gene, we picked the Duchenne muscular dystrophy (DMD) gene, which encodes

for the protein dystrophin. Dystrophin is located primarily in the muscle and functions as

a linker that attaches the cytoskeleton to the extracellular matrix. Dystrophin is therefore

crucial for proper muscle development and functioning. A mutation in the DMD gene

leads to depletion of functional dystrophin protein and thus causes muscle weakness and

muscle degradation. This disease phenotype is called ‘Duchenne Muscular Dystrophy’

(DMD) (Duan et al. 2021). We wanted to investigate whether OntoVAE can capture
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the importance of DMD in muscle function, so we focused on the 881 muscle samples in

the GTEx dataset, and performed an in silico knockout of the DMD gene in all muscle

samples by setting the input value of DMD to zero prior to running them through the

trained model. We then performed paired Wilcoxon tests comparing the muscle samples

before and after the knockout at each node/term in latent space and decoder to find

the GO terms that were most affected by the knockout (term-level analysis, Figure 7.1

blue box). We also performed paired Wilcoxon tests for each gene in the reconstruction

layer to identify the most affected genes and grouped them into GO terms using gene set

overrepresentation analysis (gene-level analysis, Figure 7.1 green box).

Wilcoxon
testing

+

Gene Set Over-
representation analysis

Wilcoxon testing

µ

σ

Gene 1

DMD

Gene N

Term 1

Term 2

Term 3

z

Figure 7.1: Schematic drawing of gene-centric gene perturbation approach.

The input value of a gene of interest is perturbed, and then paired Wilcoxon

tests pre- and post perturbation are performed at each node/term in latent

space and decoder to detect the most significant terms (pathway-level analy-

sis, blue box). Paired Wilcoxon tests can also be performed for each gene in

the reconstruction layer to see which genes are affected. They can then be

further grouped into terms using gene set overrepresentation analysis (gene-

level analysis, green box).

From the term-level analysis, we identified many muscle process related terms, such as

muscle system process, positive regulation of cytoskeleton organization, muscle contrac-

tion, and positive regulation of actin filament bundle assembly (Figure 7.2a). From the

gene-level, we also obtained terms that are highly specific to muscle, such as muscle sys-
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tem process, muscle contraction, muscle organ development, and muscle filament sliding

(Figure 7.2b). Taken together, these results confirm that OntoVAE can predict the

consequence of a gene knockout on a pathway level. In order to show that we did not

only identify these muscle specific processes because we only considered muscle samples

in our analysis, we also performed a synthetic knockout of two other genes: SFSWAP,

which is a splicing factor, and COX5A, which is a member of the mitochondrial respira-

tory chain. From the term-level analysis (Figure 7.3a), we obtain terms related to RNA

splicing and processing for SFSWAP and terms related to the respiratory electron trans-

port chain and oxidative phosphorylation for COX5A. The same applies to the gene-level

analysis (Figure 7.3b). Thus, we can conclude that the results produced by OntoVAE

are not biased by the sample group.
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Figure 7.2: DMD knockout affects muscle specific processes. (a) Top ten

GO terms obtained from decoder (term-level analysis). (b) Top ten GO terms

obtained from reconstruction layer after grouping genes into GO terms (gene-

level analysis).

7.2 Term-centric approach

To illustrate the term-centric approach, we employed two examples: the investigation of

a disease-related perturbation by dissecting the outcome of Limb-girdle muscular dys-

trophy (LGMD), and the investigation of a treatment-related perturbation by predicting
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Figure 7.3: SFSWAP and COX5A knockout, respectively, affect gene func-

tion related terms. (a) Top ten GO terms obtained from decoder (term-level

analysis) for SFSWAP (top) and COX5A (bottom). (b) Top ten GO terms

obtained from reconstruction layer after grouping genes into GO terms (gene-

level analysis) for SFSWAP (top) and COX5A (bottom).

interferon response. For both applications, the overall procedure was the same: a sys-

tematic one-by-one perturbation was performed for all genes 1..N , followed by a paired

Wilcoxon test pre- and post perturbation at the node of interest (LGMD and type I inter-

feron signaling pathway, respectively), resulting in a ranked gene list where all genes were

ranked according to their p-value (Figure 7.4). The two examples will be illustrated in

more detail in the following sections.

7.2.1 Predicting the outcome of disease

To see if we can predict with OntoVAE how a disease context changes gene expression, we

focused again on Muscular Dystrophy (MD), this time on Limb-girdle muscular dystrophy
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Figure 7.4: Schematic drawing of term-centric perturbation approach. Sys-

tematic one-by-one perturbation is performed for all genes 1..N . Paired

Wilcoxon test pre- and post perturbation is performed at the term of inter-

est, and then all genes can be ranked according to their p-value.

(LGMD), which is a form of MD that primarily affects the muscles in arms and legs.

For this purpose, we incorporated the Human Phenotype Ontology (HPO) in the la-

tent space and decoder of OntoVAE, as LGMD is a term in HPO. This time we used

trimming thresholds of 10 and 1,000. We again trained the model on all bulk tissue

RNA-seq samples from GTEx, and carried out the analysis on the 881 muscle samples.

In all the samples, we performed a synthetic knockout for all genes that could be mapped

to the ontology, 4,774 genes in total, by setting their input value to zero before passing

the muscle samples through the trained model. We then specifically computed a paired

Wilcoxon test for each knockout at the node corresponding to LGMD, and ranked all

genes according to their p-value. As for HPO, many gene annotations originate from short

nucleotide polymorphisms (SNPs) in that gene where an association to the disease had

been demonstrated, the directionality of the relationship is not straightforward, meaning

it is not always clear at the level of gene expression whether depletion of a gene will lead
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to a higher or lower activation of the phenotype. Therefore, we looked at both directions

and computed two paired Wilcoxon tests, one to identify genes significantly downregu-

lating the LGMD node, and one to identify genes significantly upregulating the LGMD

node. Thus, we also obtained two ranked genelists, predLGMD_dn and predLGMD_up,

respectively. In order to validate our genelists, we downloaded an external dataset of

LGMD. In this study, the authors have carried out bulk RNA-seq on muscle samples

from 16 LGMD patients and 15 age-matched healthy individuals (Depuydt et al. 2022).

We performed differential gene expression analysis (DGEA) between muscle samples of

patients (n=42) and controls (n=33) using the R package DESeq2 with a significance

threshold of 0.1 for the adjusted p-value. Furthermore, we filtered for genes that could be

mapped to HPO. Genes that were upregulated in patients were called LGMD_up, and

genes downregulated in patients were called LGMD_dn. For validation of the ranked

gene lists predLGMD_dn and predLGMD_up that resulted from the OntoVAE analysis

approach, we performed a Geneset Enrichment Analysis (GSEA) in both ranked gene

lists, using as gene sets the results from the DGEA, LGMD_up and LGMD_dn. For

both, predLGMD_dn (Figure 7.5a) and predLGMD_up (Figure 7.5b), the gene set

LGMD_dn displayed a significant enrichment, with p-values of 0.001 and 0.006, respec-

tively. This confirms that OntoVAE can make meaningful predictions.
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Figure 7.5: GSEA of LGMD DGEA gene sets in OntoVAE predicted ranked

gene lists for LGMD. OntoVAE had been trained with HPO-decoder on

GTEx samples. (a) GSEA in predLGMD_dn. (b) GSEA in predLGMD_up.
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To closer investigate this, we fused the genes from the leading edges of both GSEA

analyses, and checked their overlap with LGMD_dn, as well as with genes directly anno-

tated to the LGMD node in HPO, finding an intersection of 147 and 10 genes, respectively

(Figure 7.6).
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Figure 7.6: Overlap of GSEA results with LGMD_dn and LGMD HPO

genes. Genes from both GSEA leading edges were fused (predicted genes;

green circle) and their overlap with LGMD_dn (Venn diagram top right) and

genes annotated to the LGMD node in HPO (Venn diagram bottom left) is

shown. The hockey stick plot shows where the LGMD HPO genes fall in the

ranked gene list.

We then set out to examine whether the detection of the 10 HPO genes was a direct

product of their annotation to the LGMD term in HPO. For this purpose, we trained

10 new models, whereby in each model, we removed the link of one of the genes to the

HPO LGMD term. We then reran the same analysis as before for the 10 new models,

performing the systematic knockout followed by paired Wilcoxon testing to determine

the new rank of the gene after its annotation had been removed. Of these 10 genes, seven

had been found in the leading edge of genes downregulating LGMD activity. After link

removal, they were still located in the leading edge (Figure 7.7a). Of the remaining

three genes that had been found in the leading edge of genes upregulating LGMD activity,
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one was still located in the leading edge (Figure 7.7b). Taken together, these results

demonstrate that OntoVAE is capable of tolerating missing prior information to a certain

degree, and can discover relationships that go beyond the available annotation.
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Figure 7.7: Rank of the 10 predicted genes that are also annotated to

LGMD before and after link removal. The red dotted line represents the

leading edge cutoff. (a) Genes that were found in the leading edge of genes

downregulating LGMD activity. (b) Genes that were found in the leading

edge of genes upregulating LGMD activity.

7.2.2 Predicting the outcome of treatment

As another application example, we wanted to study if OntoVAE could predict gene

expression changes upon treatment. We chose the interferon (IFN) response for this,

as it is a well studied process. The IFN response is triggered by viral infection, and

is characterized by the release of a special type of cytokines, the IFNs, which induce a

signal cascade that ultimately culminates in the transcription of interferon-stimulated

genes (ISGs) (Schoggins 2019).There are three main classes of IFNs, type I, type II, and

type III, which act on different receptors and induce different signaling cascades. In our

application example, we are focusing on the type I IFNs.

To investigate if we could predict the type I IFN response, we again used Gene Ontology
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(GO), where we focused on the term ‘type I interferon signaling pathway’. This time, we

chose a single-cell (sc) RNA-seq dataset of peripheral blood mononuclear cells (PBMC),

where the authors had sequenced cells from Lupus patients that had been treated with

IFN-β, a type I IFN, or control (Kang et al. 2018). UMAP of this dataset shows that the

cells cluster by cell type (NK, Dendritic, CD4T, B, FCGR3A+Mono, CD14+Mono, and

CD8T) and treatment (Figure 7.8). First, for each cell type separately, we performed

Wilcoxon tests on the scRNA-seq data to identify genes that were upregulated in this

cell type upon treatment, so that we could use these gene sets for validation of our

analysis. We then trained the OntoVAE model only on the unstimulated cells, and then

performed one-by-one in silico stimulation of all genes, followed by a paired Wilcoxon

test at the node corresponding to ‘type I interferon signaling pathway’. For this analysis,

we restricted ourselves to CD4T cells as they represented the largest cell population in

the dataset. As in the previous analysis, all genes were ranked by their p-value, and

a GSEA was performed with CD4T_IFN-β_stim_up (genes upregulated in stimulated

CD4T cells vs. control) to validate the ranked gene list (Figure 7.9). The enrichment

of the validation gene set was significant, with a p-value of 0.001, confirming the ability

of OntoVAE to predict treatment outcome without ever having seen the treated samples

during training.
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Figure 7.8: UMAP of the PBMC dataset. Cells are colored by cell type

(left panel) or treatment (right panel).
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Figure 7.9: Validation of interferon treatment response prediction. GSEA
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dicted by OntoVAE.

Next, we wanted to see where our perturbed CD4T cells lie in the pathway activity

space of OntoVAE compared to the control CD4T cells and the IFN stimulated CD4T

cells (ground truth). For this, we extracted the pathway activities of all cells from the

trained OntoVAE model, and then computed a UMAP on the pathway activities of

control and ground truth CD4T cells. The pathway activities of the perturbed cells were

projected onto that UMAP space. We can see that, when stimulating all 717 genes from

the leading edge of the GSEA, perturbed cells are shifting from the control population

to the ground truth population with increasing stimulation strength (Figure 7.10a),

while they are remaining in place, when the bottom 717 genes are stimulated (Figure

7.10b).The stimulation was performed by adding values of 2, 4, 6, and 8 (Figure 7.10

from left to right) to the non-zero cells for each gene. We also showed that a shift is

induced when perturbing the top 5, 20, 50, or 100 genes of the leading edge (Figure

7.10c,d,e,f left panels), but more genes are needed when perturbing an equal number of

random genes from the leading edge (Figure 7.10c,d,e,f right panels). Taken together,

the genes predicted by OntoVAE indeed drive interferon response, and their ranking is

meaningful as well.
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Figure 7.10: Perturbed cells approach ground truth cells in pathway activ-

ity space. UMAP was computed on OntoVAE pathway activities of control

CD4T cells and IFN stimulated CD4T cells, and in silico stimulated CD4T

cells were projected onto that UMAP space. (a) UMAP embedding of cells

when stimulating the 717 genes from the leading edge of the GSEA. Density
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strength is increasing from left to right, with values of 2, 4, 6, and 8 for

the stimulation. (b) The same as a, but for stimulation of the 717 bottom

genes from the GSEA. (c,d,e,f) Density plots of cells over UMAP2 when 5,

20, 50, or 100 genes are stimulated, respectively. Left column always shows

stimulation of top n genes, while right column shows stimulation of random

n genes from the leading edge.
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We then again had a closer look at the genes in the leading edge of the GSEA (Figure

7.11), our so-called ‘predicted genes’. Their overlap with CD4T_IFN-β_stim_up amounts

to 44 genes, which are additionally labelled in the hockey stick representation of the pre-

dicted genes in Figure 7.11. The color corresponds to their significance in CD4T_IFN-

β_stim_up, a darker red indicating a higher significance. The small black triangles next

to nine of the labels mean that these genes are either annotated directly to the GO term

‘type I interferon signaling pathway’ or to one of its descendant terms.
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Figure 7.11: Overlap of predicted genes with actual differential genes. Pre-
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with CD4T_IFN-β_stim_up is shown in the Venn diagram. The 44 over-

lapping genes are labelled in the hockey stick plot, a darker red indicating a
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Thus, we can see that the majority of the 44 predicted genes is identified in the absence

of direct annotation, highlighting the potential of OntoVAE to learn internal relationships

in the data that go beyond the prior annotation. Next, we set out to further validate the

remaining 673 predicted genes that were not overlapping with CD4T_IFN-β_stim_up.

We first checked if there was any overlap with genes that were upregulated upon IFN

stimulation in one of the other cell types from the PBMC dataset, and indeed found

an especially high overlap with Dendritic cells (19 genes), FCGR3A+ Monocytes (33

genes), and CD14+ Monocytes (20 genes) (Figure 7.12a). We also performed a gene

set overrepresentation analysis (ORA) with the C7 immunologic signature sets from

MSigDB that are related to interferon, and found a significant enrichment of gene sets

that were up in CD8T cells or a mature neuron cell line upon IFN treatment, and gene

sets that were down in Dendritic cells after knockout of the IFN receptor (first, second,

third and ninth set in Figure 7.12b). Taken together, our results confirm that OntoVAE

can predict interferon response without having encountered treated cells in the training

data set.

7.3 Comparison with other methods

Next, we wanted to compare OntoVAE with VEGA (Seninge et al. 2021) and expiMap

(Lotfollahi, Rybakov, et al. 2023), two VAE methods that had been published previously

and are similar to OntoVAE, as they both provide biological interpretability through

their structure. In the VEGA model, a fully connected non-linear encoder is coupled

to a sparse, one-layer linear decoder. The latent space can represent different biological

entities, called gene module variables (GMV) by the authors, ranging from TFs to sets

of gene pathways such as GO or Reactome. In principle, any kind of entity can be

used that is annotated or linked to a set of genes. Thus, the decoder is sparse, since

connections are only present e.g. between TFs and their target genes, or pathways and

their annotated genes. In their manuscript, authors are demonstrating the use of VEGA

to compute differential GMV activities between groups of samples, and how their model
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Figure 7.12: Follow-up analysis of predicted genes. (a) Overlap of 673

predicted genes that do not overlap with CD4T_IFN-β_stim_up (orange

circles) with genes upregulated upon treatment in the other cell types of the

PBMC dataset (grey circles). (b) Interferon related terms from MSigDB

that are overrepresented in the 673 predicted genes.

can generalize on unseen training data. The expiMap model is similar to the VEGA model

in that it also consists of a non-linear encoder, an interpretable latent space consisting

of gene programs (GPs), and a one-layer linear decoder. In terms of applications, the

authors of expiMap see it as an extension of their previous model scArches, a transfer

learning strategy which allows for the mapping of query datasets onto large existing

atlases (Lotfollahi et al. 2022). Through the interpretable latent space of expiMap, the

mapping of query dataset onto reference atlas becomes more interpretable. Furthermore,

the authors demonstrate the capacity of their tool to learn GPs de novo by adding

additional nodes and allowing the model to learn the associated genes.

In order to compare these approaches to OntoVAE, we trained the VEGA and expiMap

models on unstimulated PBMC data with Reactome pathways in their latent space.
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For model training we followed the instructions given in https://vega-documentation.

readthedocs.io/en/latest/tutorials/vega_tutorial.html (as of February 2023) for

VEGA, and the instructions given in https://scarches.readthedocs.io/en/latest/

expimap_surgery_pipeline_basic.html (as of February 2023) for expiMap. For better

comparison, we also trained OntoVAE with Reactome pathways in the latent space,

making it a single-layer model as well. To assess the quality of the produced latent

spaces, we performed Leiden clustering and computed the adjusted rand index (ARI).

The different methods yielded similar results, only expiMap performed slightly worse

(Figure 7.13a). We assume that this is due to the higher KL loss weight in expiMap.

Interestingly, the highest ARI value was obtained by OntoVAE coupled to a GO-decoder,

although this model had a higher reconstruction error than the single-layer Reactome

model (Figure 7.13c). For the VEGA and expiMap model, we then also performed the

IFN response prediction analysis by stimulating all genes one-by-one followed by a paired

Wilcoxon test at the node Reactome_Interferon_Alpha_Beta_Signaling for each gene,

allowing us to create a ranked gene list. GSEA analysis with CD4T_IFN-β_stim_up

reveals that VEGA and expiMap can predict the IFN response equally well as OntoVAE

(Figure 7.13b, p-value 0.001).

7.4 Chapter summary

In this chapter, we showed how predictive modeling is a possible application of OntoVAE.

We devised a gene-centric approach, where we perturbed one gene and analysed the

influence of this perturbation on all the ontology terms. As an example, we performed an

in silico knockout of DMD, a gene that is essential for muscular stability, and showed that

this knockout affected muscle related terms. We also devised a term-centric approach,

where we systematically perturbed all genes one-by-one, and analysed the outcome of the

perturbation on a specific node, ranking the genes based on their influence on this node.

One example that we used was the disease LGMD together with HPO as a prior, where

we validated our findings in an external dataset. Another example was IFN response,
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where we had a dataset with treated and untreated samples, trained the model only on

the untreated samples, and used the treated ones for validation purposes. All in all,

we demonstrated that OntoVAE is a useful tool, and might be applied in large in silico

screens to preselect candidates that could be further validated experimentally.
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Figure 7.13: Comparison of OntoVAE with VEGA and expiMap. (a)

Leiden clustering of unstimulated PBMC cells on gene expression data, the

latent space of OntoVAE + GO, OntoVAE + Reactome, VEGA + Reactome,

and expiMap + Reactome. (b) GSEA analysis as in Figure 7.9, this time

for the VEGA and expiMap models. (c) Comparison of validation loss curves

of OntoVAE + GO and OntoVAE + Reactome.
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Chapter 8

Mechanistic dissection with

COBRA

8.1 Development of the adrenal medulla

We applied COBRA on an scRNA-seq dataset of the developing adrenal medulla, which

has been published in Jansky et al (2021) and is shown in Figure 8.1. The adrenal

medulla is the inner part of the adrenal gland which is located on top of the kidney. In

response to the sympathetic nervous system, the adrenal medulla mainly produces and

secretes the steroid hormones epinephrine and norepinephrine into the circulation. The

adrenal medulla is also of scientific interest because it can give rise to neuroblastoma, a

pediatric cancer affecting the developing sympathetic nervous system. For their study,

Jansky et al collected adrenal medulla cells from different timepoints post-conception.

The UMAP of the dataset captures the lineage trajectories quite well (Figure 8.1a).

Schwann cell precursors (SCPs) differentiate over intermediate states into two separate

lineages: neuroblasts and chromaffin cells.
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Figure 8.1: The developing adrenal medulla. UMAP representation of the

data (a), cells are colored by their cell type (top) or the timepoint measured

in post-conception weeks (pcw) (bottom). Barplots show the composition

of the dataset aggregated by celltype (b) and timepoint (c). A heatmap

displays the activities of TFs that are specific for the distinct celltypes (d),

adapted from Jansky et al (2021).
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The abundance of different cell types is strongly correlated with the developmental time-

point as measured in post-conception weeks (pcw), with a larger amount of Late SPCs,

Late neuroblasts, and Late chromaffin cells in the later timepoints 11pcw, 14pcw, and

17pcw (Figure 8.1b,c). In their work, Jansky et al (2021) moreover identified TFs that

are specific for the different cell types (Figure 8.1d).

Within our analysis, we asked two main questions. First, we wanted to see if COBRA

would allow us to decouple the cell type effect from the developmental timepoint effect in

the dataset to identify TFs and pathways that drive differentiation in general. Second, we

wanted to see how COBRA performs in an out-of-distribution (ood) setting when applied

on a previously unseen cell condition. Therefore, we designed the study as follows: We

used the dataset specific SCENIC regulons that were generated by Qian-Wu Liao as part

of his master thesis as well as the Reactome pathways as prior. The interpretable term

layer was placed in the decoder of COBRA, followed by a ReLU activation function. We

then defined the celltype and the timepoint as covariates for training COBRA. For both

priors, we trained three models, whereby one model was trained on all cells (we call this

full-model from now on), one model was trained on all cells but Late neuroblasts (we call

this nb-model from now on), and one model was trained on all cells but Late chromaffin

cells (we call this chrom-model from now on). Visualizations and follow-up analyses were

then performed on all cells together.

8.1.1 COBRA disentangles celltype and timepoint effects

COBRA successfully disentangled the effects of celltype and timepoint in the latent space

for both, the nb-model (Figure 8.2) and the chrom-model (Figure 8.3), using either

the SCENIC TF prior or the Reactome pathways prior. While in the z basal view,

cells are mixed, in the z timepoint view they are clustering according to timepoint, and

in the z celltype view according to celltype. Since during model training, either Late

neuroblasts (nb-model) or Late chromaffin cells (chrom-model) were never seen, for their

projection onto the celltype embedding, they were encoded as neuroblasts and chromaffin

cells, respectively. Interestingly, it can be observed that in the celltype view, cells of the

103



previously unseen celltype already form subclusters. This highlights the potential of

COBRA to identify them as separate celltypes.
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Figure 8.2: COBRA nb-model segregates the adrenal medulla dataset by

celltype and timepoint. Latent space embeddings of the four different views

z_basal, z_timepoint, z_celltype, and z_total are displayed (from left to

right). Cells are colored by celltype (top) or timepoint (bottom). Model was

trained on all cells but Late neuroblasts. Top panel: SCENIC TFs, bottom

panel: Reactome pathways.
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Figure 8.3: COBRA chrom-model segregates the adrenal medulla dataset

by celltype and timepoint. Like Figure 8.2. Model was trained on all cells

but Late chromaffin cells. Top panel: SCENIC TFs, bottom panel: Reactome

pathways.

8.1.2 COBRA identifies TFs and pathways that drive differentiation

We then set out to identify TFs and pathways that play a role in development and

differentiation of the adrenal medulla independently of cell type. For this, we extracted

the activities from the timepoint view of the three models, the full-model, the nb-model
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and the chrom-model. For each term, we then calculated the correlation between its

activity and the timepoint as measured in pcw. The activities of the top 10 correlated

terms are displayed in heatmaps for the three models (Figure 8.4a for TFs, Figure

8.5a for Reactome). We wanted to systematically investigate how well the nb-model and

the chrom-model agree with the full-model, so we compared the correlations with each

other, and found a significant agreement between the correlations both for the nb-model

(Figure 8.4b for TFs, Figure 8.4b for Reactome) and for the chrom-model (Figure

8.4c for TFs, Figure 8.4c for Reactome). However, it is noted that the agreement

between full-model and ood -model is better for the TF prior than for the Reactome prior.

For both priors, a subset of terms displayed opposite correlations in the two models, but

we showed this this was due to their lower absolute correlation values (Figure 8.4d

for TFs, Figure 8.5d for Reactome). Here as well, this effect is more pronounced for

the TF prior than for the Reactome prior. Taken together, we can assume that TFs

and pathways that are indeed important for differentiation and development and have

a strong correlation with timepoint, are also accurately captured by COBRA, even in

the setting of an ood -model where the information of one Late celltype is completely

absent during training. We speculate that the better agreement of an ood -model with

the full-model when using the SCENIC prior is due to the fact that the SCENIC TF

regulons were computed directly from the data and, hence, describe the data better than

the more generic Reactome pathways. This highlights the importance of the prior in a

model like COBRA.

Of the TFs we identified, CEBPA, SHOX2, TEAD4, REST, MITF, and GATA6 corre-

lated positively with development and, thus, were especially active in the later timepoints

11pcw, 14pcw, and 17pcw. On the other hand, ZNF491, HOXD8, POU4F1, and ZNF263

correlated negatively with development, being more active in the earlier timepoints 7pcw

and 8pcw. We conducted literature research to see what is known about these TFs in

the context of development and differentiation. We found that CEBPA regulates myeloid

cell differentiation (Pundhir et al. 2018), REST is a master regulator in neuronal dif-

ferentiation (Hwang and Zukin 2018), SHOX2 is essential during heart development
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Figure 8.4: COBRA identifies TFs associated with timepoint. A heatmap

shows the activities of TFs that have the highest correlation with timepoint in

the nb-model (left), and the chrom-model (right) (a). A scatter plot displays

the correlation between the correlation vectors of the two models for every

TF (b). TFs that display the same direction of correlation in both models

are colored in black, while TFs that display opposite directions of correlation

are colored in darkred. R correlation coefficient and p-value are given for

TFs of same directionality. A boxplot is comparing the absolute correlation

values between TFs of opposite and same directionality (c).

(Espinoza-Lewis et al. 2009), TEAD4 plays an important role in trophectoderm differ-

entiation (Stamatiadis et al. 2022), MITF drives melanocyte differentiation (Lee, Lim,
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and Lim 2024), GATA6 leads to differentiation (Wamaitha et al. 2015), and POU4F1 is

crucial for the differentiation of sensory neurons (Hudson et al. 2008). Furthermore, it is

known that HOX genes influence stem cell differentiation during development (Bhatlekar,

Fields, and Boman 2018). Hence, the identified TFs play a role in developmental pro-

cesses, but to what extent they are involved in the development of the adrenal medulla

remains to be investigated.

cor(TF activity, pcw) cor(TF activity, pcw)

ab
s(
co
r(
TF

ac
tiv
ity
,p
cw
))

direction
opposite
same

Plasma lipoprotein clearance

celltype
timepoint

The NLRP3 inflammasome

HDR through Homologous Recombination
(HRR) or Single Strand Annealing (SSA)
eNOS activation
Regulation of Insulin−like Growth Factor (IGF)
transport and uptake by Insulin−like Growth
Factor Binding Proteins (IGFBPs)
Signaling by FLT3 fusion proteins
Processing of Capped
Intron−Containing Pre−mRNA
Diseases of mitotic cell cycle

Collagen formation

Smooth Muscle Contraction

Bridge

Chromaffin cells
Connecting progenitor cells

Late chromaffin cells

Late neuroblasts
Neuroblasts

SCPs
Late SCPs

celltype

7pcw
8pcw
11pcw
14pcw
17pcw

timepoint

nb
activity

nbfull
0.00

0.25

0.50

0.75

chrom
mactivity

chrom
m

full
0.00

0.25

0.50

0.75

full
activity

chrom-model

nb-model

fu
ll-
m
od
el

fu
ll-
m
od
el

nb-modelfull-model

chrom-model

a

b c d

0
0.5
1
1.5
2

0
0.5
1
1.5
2

0

1

2

3

R = 0.79, p < 2.2e−16

−0.5

0.0

0.5

−1.0 −0.5 0.0 0.5

R = 0.52, p < 2.2e−16

−0.5

0.0

0.5

−0.5 0.0 0.5

direction
opposite
same

direction
opposite
same

Figure 8.5: COBRA identifies pathways associated with timepoint. Like

Figure 8.4, but with Reactome pathways as prior.

In terms of pathways, we find for example ‘eNOS activation’ to be negatively correlated
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with timepoint. Nitric oxide (NO) has been shown to preserve pluripotency or induce

differentiation dependent on the dose (Caballano-Infantes et al. 2022). Among the top

10 terms, we also find pathways that are oppositely correlated with timepoint in the

nb-model compared to the full-model, such as ‘Processing of Capped Intron-Containing

Pre-mRNA’, but speculate that this is due to the less adequate prior.

8.1.3 COBRA identifies celltype specific TFs and pathways

Next, we wanted to see whether COBRA could also identify celltype specific TFs and

pathways. For an unbiased selection of terms, we calculated the variance of the activities

in the celltype view. The top 50 terms that were selected this way are shown in the

heatmap in Figure 8.6 for TFs, and Figure 8.7 for Reactome. Many of the TFs we

find were also identified in the analysis of Jansky et al (2021), such as SOX2, ETS1,

SOX10, and SOX13 in SCPs and Late SCPs, GATA3, ALX3, TFAP2B, and HIVEP3 in

Neuroblasts and Late neuroblasts, MEIS1 and ASCL1 in Bridge, and EGR1, FOS, and

EGR4 in Chromaffin and Late chromaffin cells.

Regarding the pathways, in the SCPs, which are more stem-like, we find terms such

as ‘TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition)’. In

Neuroblasts, we find pathways auch as ‘Activation of AMPK downstream of NMDARs’,

‘Other semaphorin interactions’, and ‘Olfactory Signaling pathway’, which are related

with neuronal processes. In the Chromaffin cells, we find ‘Metabolism of amine-derived

hormones’, such as epinephrine and norepinephrine, and ‘Presynaptic depolarization and

calcium channel opening’. Without a benchmark to compare against, more literature

research is needed to determine the relevance of our identified pathways.

8.1.4 COBRA can predict late-timepoint celltypes

Finally, we wanted to investigate COBRAs ability to predict TF and pathway activities

for the ood celltype, which was Late neuroblasts in the nb-model and Late chromaffin cells

in the chrom-model. For this analysis, we exploited the fact that Late neuroblasts can
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Figure 8.6: COBRA identifies celltype specific TFs. A heatmap shows the

activities of TFs that have the highest variance in the celltype view for the

full-model (left), the nb-model (left), and the chrom-model (right).

also be considered as neuroblasts from a later timepoint, and Late chromaffin cells can

also be considered as Chromaffin cells from a later timepoint, respectively. Indeed, the

different timepoints exhibit distinct cell type compositions, with the Late celltypes being
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more prevalent at later timepoints. (Figure 8.1c). Thus, since the ood models could

not learn a separate embedding for the missing celltype, when passing data through

the model, we encoded the Late neuroblasts as neuroblasts, and the Late chromaffin

cells as chromaffin cells, respectively. Thus, their learnt cell type embeddings were the

same. But, since the Late cell types predominate at later timepoints, the timepoint

embeddings differ. Hence, the z total view allows a separation of the populations, which

is also observed in the UMAPs (Figure 8.2,8.3). We then compared the activities in

the z total view between the full-model, the nb-model and the chrom-model for a set of

selected TFs: FOS, EGR1, and EGR4, which are predominant in (Late) chromaffin cells,

and ALX3, TFAP2B, GATA3, and HIVEP3, which are predominant in (Late) neuroblasts

(Figure 8.8), and a set of selected pathways: ‘Transcriptional Regulationby MECP2’,

‘Postsynaptic acetylcholine receptors’, ‘Olfactory Signaling Pathway’, and ‘Phase 0 -

rapid depolarisation’, which are predominant in (Late) neuroblasts and ‘Circadian Clock’,

‘Tryptophan catabolism’, and ‘Antimicrobial peptides’, which are predominant in (Late)

chromaffin cells (Figure 8.9). In terms of TFs, we observe that, for EGR1 and EGR4,

the trend between chromaffin cells and Late chromaffin cells is the same in the chrom-

model, which never encountered the Late cells during training, as in the full-model. Only

for FOS, the chrom-model captures the opposite trend. For ALX3, TFAP2B, GATA3,

and HIVEP3, the trend between neuroblasts and Late neuroblasts is the same in all three

models, although the nb-model has never seen Late neuroblast samples during training.

For the displayed pathways as well, the same trends are captured between cells and

their late timepoint equivalents in all three models, except for the pathway ‘Nicotinate

metabolism’, where the nb-model shows the opposite compared to the full-model. These

results confirm that, through the decoupling of celltype and timepoint, COBRA is able

to predict ood Late celltypes since it can still accurately learn the timepoint embedding

from the remaining celltypes.
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Figure 8.7: COBRA identifies celltype specific pathways. Like Figure 8.6,

but for Reactome pathways.
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Figure 8.8: COBRA can predict late-timepoint celltypes. Boxplots show

activities of selected TFs by celltype in the z total view for the full-model

(left), the nb-model (middle), and the chrom-model (right). The ood celltype

is highlighted in the respective model.
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8.2 Limitations: Classification of schizophrenia

We applied COBRA on a single-cell RNA-seq dataset of schizophrenia (SCZ) that was

generated by the PsychENCODE consortium and comprises 468,727 nuclei isolated from

140 individuals across two cohorts (Ruzicka et al. 2024). The dataset consists of different

neuronal celltypes, excitatory and inhibitory, as well as Astrocytes (Ast), Oligodendro-

cytes (Oli), Oligodendrocyte precursor cells (OPC), and small fractions of Microglia

(Mic), Endocytes (Endo), and Pericytes. Furthermore, the dataset consists of two co-

horts, McLean and MtSinai. Throughout this section, model training was always per-

formed on the larger McLean cohort, while analysis and plotting was performed on the

smaller MtSinai cohort. A UMAP representation of the MtSinai cohort of the dataset

as well as celltype proportions are given in Figure 8.10. The clustering is strongly

driven by the celltype covariate, with the phenotype covariate mixed in each celltype

cluster.

We wanted to see whether COBRA could separate the celltype and phenotype effects

from each other, and thus identify pathways that are important for the distinction of SCZ

versus control. Thus, we trained COBRA on the McLean cohort, passing the celltype

and phenotype as covariates and using Reactome pathways in the decoder as a prior,

and then applied the trained model on the MtSinai cohort. A UMAP representation of

the different latent space views is displayed in Figure 8.11. As expected, in the z basal

view, the cells are mixed, while in the covariate embedding views they cluster according

to celltype or phenotype, respectively. However, since the phenotype was already mixed,

we wondered whether COBRA actually captured a biologically meaningful separation

between SCZ and control, or whether this was due to the fact that it was passed the

labels during training. To investigate this closer, we performed two permutation analyses,

shuffling either the phenotype or the celltype labels before training. We observed that,

when the phenotype labels were shuffled, the latent space embeddings for z basal and

z phenotype looked the same as previously, with a good mixing in the basal view, and

a separation of SCZ and control in the phenotype view (Figure 8.12a). On the other
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Figure 8.10: PsychENCODE schizophrenia single-cell RNA-seq dataset. a

UMAP representation of the dataset, with cells colored by celltype (left) or

phenotype (right). b Pie chart showing the proportions of different celltypes.

Oli- Oligodendrocyte, Ast - Astrocyte, OPC - Oligodendrocyte precursor,

Mic - Microglia, Endo - Endocytes.

hand, when the celltype labels were shuffled, the celltypes separated from each other

in the celltype view, but were not mixed in the basal view (Figure 8.12b). From

these analyses, we conclude that, the model will always learn the correct clustering

in the covariate embedding views, since it is passed the different labels. However, if
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data is mislabelled, the adequate learning of the basal view is affected, since the model

optimizes the encoding of z basal together with the covariate embeddings. Or, in other

words, the model cannot subtract out the covariate effects from the different classes if

the data is mislabelled, thus it cannot achieve a mixing of cells in the basal view in that

scenario. This means that we cannot derive from this experiment whether the separation

between SCZ and control is meaningful, since the cells were already mixed with respect

to that covariate before applying COBRA. Therefore, we decided to further investigate

the pathways that were best separating SCZ from control in the phenotype view. As

mentioned previously, due to the adversarial approach taken by COBRA, training is less

stable and results are less reproducible than for the original OntoVAE model. Thus, we

trained the normal model five times, the phenotype shuffled model twice, and created five

random rankings of Reactome terms. For the trained models, we trained Naive Bayes

classifiers on the phenotype view activities, and ranked the terms by their AUC as done

previously. We then compared the top x terms between different model combinations,

either by directly computing the intersection (overlap) of terms, or by computing the

mean jaccard similarity (MJS), so that also similar terms are taken into account (Figure

8.12c).

The formula to compute the jaccard similarity between two sets of terms is given in

equation (8.1).

J(A,B) =
A ∩B

A ∪B
(8.1)

The jaccard similarity was first calculated for all pairwise combinations of top x ranked

terms between two models A and B to obtain a matrix with jaccard similarities:

Jx,x =


J(A1, B1) J(A1, B2) ... J(A1, Bx)

J(A2, B1) J(A2, B2) ... J(A2, Bx)

... ... ... ...

J(Ax, B1) J(Ax, B2) ... J(Ax, Bx)

 (8.2)

The MJS in dependence of x was then calculated the following way:

MJS =
1

x

x∑
i=1

maxxj=1J(Ai, Bj) (8.3)
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To create a baseline (What overlap would we expect when comparing two random sets

of x terms?), we calculated the overlap and the MJS between all possible combinations

of our previously defined random term rankings. We then calculated these measures also

between the normal models, as well as between normal and phenotype shuffled models.

We observed that, for the comparisons normal-vs-normal and normal-vs-shuffled, the

overlap and the MJS are higher than for the comparison random-vs-random, indicating

that the identified terms are not random. However, measures are around the same

for normal-vs-normal and normal-vs-shuffled, which means that COBRA captures some

other effect than the biology between SCZ and control and results are probably based on

a model bias here.
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Figure 8.11: Different COBRA views of the PsychENCODE schizophrenia

single-cell RNA-seq dataset. Trained model was applied on the MtSinai

cohort, displayed are the UMAPs on the latent space embeddings for the

different views basal, celltype, phenotype, and total. Cells were colored by

celltype (top), and phenotype (bottom). Color legend can be found in Figure

8.10.
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Figure 8.12: Shuffling of phenotype and celltype labels. COBRA was

trained on the dataset after shuffling the phenotype labels (a), or the cell-

type labels (b), and UMAP plots for different latent space views are shown.

Color legend can be found in Figure 8.10. c Line plots are showing the

mean jaccard similarity or the total overlap when comparing the top pheno-

type associated terms between multiple runs of the same model for different

comparisons.

We speculated about possible reasons why COBRA fails on the PsychEncode dataset.

First, indeed, if the effect of a covariate is as small as is seen between SCZ and control,

the adversarial approach might simply fail as the cells are already completely mixed to

119



begin with. Second, in a dataset, where a covariate effect is not global, but only restricted

to a subset of the dataset, COBRA would still learn global separate embeddings for each

covariate. For example, it might be that not all cell types are affected equally by the

SCZ condition. Indeed, in the original publication, authors described the major changes

to occur in the excitatory neuron populations (Ruzicka et al. 2024). However, COBRA

cannot distinguish these kind of effects, thus it is also not suited to reveal celltype specific

responses.

8.3 Chapter summary

We applied our tool COBRA on two datasets: an scRNA-seq dataset of the developing

adrenal medulla (Jansky et al. 2021) and an scRNA-seq dataset of post-mortem brains

of schizophrenia patients and healthy controls (Ruzicka et al. 2024). We wanted to

demonstrate COBRAs ability in decoupling the effects of different covariates and how

we can exploit that to get mechanistic insights.

For the adrenal medulla dataset, we used two different priors: SCENIC TF regulons that

were computed directly from the data, and generic Reactome pathways. We trained two

models each, leaving out either Late neuroblasts or Late chromaffin cells during training.

We showed how COBRA can be used to decouple the celltype effect from the timepoint

effect, and how this fact could be used to predict the Late unseen celltype. However, we

also noted that model performance was better using a data-driven prior, thus highlighting

also the importance of choosing an appropriate prior.

For the schizophrenia dataset, we used Reactome pathways as a prior, and trained CO-

BRA using the celltype and the phenotype as covariates. Although we observed a split in

phenotype, we performed additional experiments where we shuffled phenotype or celltype

labels. These experiments demonstrated that the adversarial approach is compromised

when a covariate is already well mixed from the beginning. Hence, we could not extract

any meaningful biological mechanisms when applying COBRA on this dataset.
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Final Remarks
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Chapter 9

Discussion and conclusion

9.1 Development and limitations of OntoVAE

OntoVAE has been implemented in pytorch, which recently became the most popu-

lar DL library in python, and published as a python package that is available under:

https://github.com/hdsu-bioquant/onto-vae, and can be installed via pip install

onto-vae. OntoVAE is an interpretable VAE framework that can incorporate any kind

of biological ontology into its latent space and decoder part, so that the activations of

the interpretable neurons directly correspond to pathway activities. Since a biological

ontology is a directed acyclic graph (DAG), one major difficulty during development was

the modeling of skip connections, connections that are present between non-neighboring

layers. This was achieved trough a step-wise concatenation process during the for loop in

the training, and binary masks at each step indicating presence or absence of a connec-

tion. The package is composed of two main classes: the Ontobj() class which implements

functions for processing and trimming the ontology and generating the masks, and the

OntoVAE() model class, which accommodates the pytorch implementation for building

and training the DL model. The OntoVAE() model class itself is composed of modular

building blocks, mainly an encoder and a decoder which incorporates all the logic with

the ontology. This modular implementation makes OntoVAE a flexible tool. Another
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advantage of OntoVAE is the user friendliness. The user can perform the whole workflow

by means of a few simple commands as illustrated in the package vignette. Besides, use-

ful functions for carrying out analysis on a trained model are implemented to facilitate

retrieval and plotting of pathway activities, performance of in silico perturbations, and

statistical testing.

We demonstrated in this work that the pathway activities retrieved by OntoVAE are

meaningful and reproducible. However, as with any model that relies on prior informa-

tion, one limitation of OntoVAE is that the prior will heavily influence the results, since

only relationships and trajectories through the graph can be explored that are already

known. Some of the related one-layer models do not hard-code the gene annotations, but

impose a penalty on term on connections that are not present in the prior, allowing to

‘learn’ the prior during training. However, with OntoVAE, this would be hard to realize,

since connections could in principle be possible between any nodes from any two layers.

Additionally, the use of the prior restricts the model to make use only of genes that can

be annotated to the prior, which a priori excludes non-coding genes from any kind of

analysis that can be made. Other limitations of the model arise due to the nature of DL

models. For once, there is no way to model different connections. For this reason we

limited OntoVAE to encode only is-a connections. However, this might not be an accu-

rate enough description of the underlying biology. Moreover, it is difficult to interpret

the weights that are learned in the decoder. The weights in the reconstruction layer, the

ones that connect every term to their associated genes, are biologically different from

the weights that connect parent and children terms. One intuitive explanation would be

that the decoder weights reflect the strength of the connection, but since there is just one

set of weights per trained model, no comparison between different sample groups can be

made on this level. Finally, due to internal model biases, comparisons can only be made

between groups at one particular neuron/term, but not by ranking all neurons for one

particular group or sample.
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9.2 Perturbation prediction with OntoVAE

One possible application of OntoVAE is the prediction of perturbations. This can be

done in a gene-centric manner (Which terms are mostly influenced by the gene?) or

a term-centric manner (Which genes mostly influence this term?). For this kind of

analysis, the input values for certain genes are manipulated, e.g. set to zero, and then

the pathway activities at the terms of interest that are obtained before and after the in

silico manipulation are compared. Evaluation of the statistical significance is based on

a paired Wilcoxon test. In this work, we demonstrated how OntoVAE can predict the

outcome of a gene knockout, and also how it can predict the influence of a disease or

drug treatment.

One problematic of this analysis is the sensitivity of the paired Wilcoxon test, which

usually produces many significant hits, even after multiple testing correction. This might

include a high amount of false positives. Additionally, especially for nodes with generally

low activities, results may vary due to the stochasticity of latent space sampling. Fur-

thermore, the distinction between causal and indirect relationships is not possible, and

the directionality of the influence sometimes hard to interpret. One other aspect is the

comparison with more simple, one-layer models. In our benchmark, there was no clear

advantage of using a more complex model over a more simple one in terms of predictive

power. Nevertheless, we believe that the additional benefit of OntoVAE lies in the pos-

sibility to trace different activation trajectories through the hierarchy of the graph, and

to see at what point different groups diverge.

9.3 Development and limitations of COBRA

We further developed the OntoVAE tool and made it more flexible and user-friendly,

and hosted the code in the same GitHub repository as the new COBRA model: https:

//github.com/hdsu-bioquant/cobra-ai which will be made available following publi-

cation. The COBRA model extends OntoVAE with an adversarial approach that encour-
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ages a decoupling of specified covariates in the latent space. The purpose of this is to

capture more subtle effects at the level of pathway activities that might be overshadowed

by a strong confounder such as celltype. In this work, we showed how COBRA could

extract IFN treatment related effects that were not visible when the celltype was not

decoupled. Since COBRA still uses an interpretable decoder framework that is based on

a prior, the same limitations apply that were previously discussed for OntoVAE. Addi-

tionally, due to the adversarial approach implemented in COBRA, model training is less

stable, meaning that obtained results vary more between different training runs of the

same model than for the original OntoVAE model.

Other limitations became apparent when applying COBRA on different datasets. First,

we noted a strong dependence on the used prior. In the adrenal medulla dataset, repro-

ducibility metrics were better when a dataset specific prior (the SCENIC TF regulons)

was used compared to the general Reactome pathways. Especially for single-cell data,

genesets from Reactome and GO might not be adequate anymore since they were mostly

computed on bulk data. However, this means that another method would have to be ap-

plied first, to compute the prior from the data. We can also imagine different approaches

to generate an adequate prior from the dataset at hand or from a related dataset. One

could for example trim the ontology to only keep branches that are important in dis-

tinguishing groups in the given dataset, or create a custom ontology in a bottom-up

approach by computing gene-gene relationships from the data and organizing them in

a hierarchical way. In this work, we only used COBRA with a one-layer interpretable

decoder structure, since model reproducibility became worse with a multi-layer ontology

(results for this are not shown in this work). However, in the future, we would like to

expand COBRA to our multi-layer model again, and we speculate that more adequate

priors might also generate more reproducible results.

One major limitation of COBRA became apparent when we applied the tool to study

a scRNA-seq dataset of schizophrenia. In this dataset, cells clustered according to their

celltype, with no visible separation between schizophrenia and control. On a transcrip-
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tomic level, the effects of schizophrenia are very subtle and thus hard to isolate. Thus,

we wanted to see whether COBRA could capture something meaningful in this scenario.

However, we noted that, while COBRA segregated schizophrenic and control cells in the

phenotype view, it also did so in a shuffled scenario where the label should not carry any

meaning anymore. On the other hand, when we shuffled the celltype variable, we still

obtained a segregation in the celltype view, but not a mixing of cells in the basal view.

Thus, we concluded that COBRA cannot accurately remove the covariate effects from

the basal view if data is mislabelled. However, since data was already mixed in terms of

phenotype, there was no way to tell if the model learnt a meaningful separation or not.

We then looked at top pathways, and found the same proportions of overlap between

models that were trained with correct labels and models that were trained with wrong

labels. This demonstrated that COBRA will always learn a separation in the covariate

embeddings because it is given the labels, and that it learned some bias rather than an

actual biological effect for the schizophrenia dataset. We speculate that the adversarial

approach is compromised when cells are already mixed well from the beginning. Further-

more, we believe it is a problem if one of the studied effects is not global but limited only

to a subset of cells. For example, if the schizophrenic condition only affected a subset of

the celltypes, COBRA would still learn a global schizophrenic effect and a global celltype

effect, and then make linear combinations of both for each celltype in the latent space.

Thus, by design, it is not possible to decouple an effect only from part of the cells.

9.4 IFN response in the gut

We analyzed scRNA-seq data from Ileum and Colon organoids that had been treated

with IFNβ, IFNλ, or both, to study the IFN response in the human gut. Due to the

composition of the dataset, there are many possible research questions and directions in

which to take the project. One focus could be the comparison between the two different

tissues Ileum and Colon, but also between the different celltypes that the tissues are

composed of. Here, one could investigate either the similarities and differences between
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celltypes of the same tissue, or between the same celltype of the two different tissues.

Another possible focus could be the comparison between the different treatment condi-

tions, since IFNβ is a type I IFN, and IFNλ a type III IFN. Moreover, their potential

synergistic action could be investigated in the double treatment. To better organize and

visualize the vast amount of results that were generated, we developed a collaborative

Shiny web application that allows to browse the results in a systematic way, and to look

at ISGs, enrichment analyses and TF activities in the two tissues and the different cell-

types. We found multiple lines of interesting findings, among others the fact that IFN

response is indeed very cell type specific, and also that, especially for some cell types,

IFNβ response triggers other than the classical antiviral mechanisms. We highlighted

this at the example of the EECs from Ileum, hormone secreting cells that are important

for the regulation of digestive processes. In this context, IFNβ seemed to amplify the

communication between the EECs and peripheral neurons. However, one should be aware

that the numbers of EECs in the dataset were rather low, thus, further experiments are

needed to confirm this.

Another interesting discovery consisted in the potential synergistic mechanism of IFNβ

and IFNλ. This also opens up a possible application for COBRA, where we could try

to see whether we can predict the double treatment from the single treatments. Here,

we imagine an approach where we modify samples in the latent space, by adding up the

learnt covariate embeddings from both categories. We call that ‘latent space engineering’.

We could also look at intermediate states by looking at different mixing proportions of

the two latent space embeddings.

9.5 Final remarks and overall perspective

The main work of this thesis consisted in the development of two interpretable VAE

models, OntoVAE and COBRA. While OntoVAE allows for direct interpretability of its

decoder which is structured like a biological network, COBRA extends this approach

with an additional decoupling of covariates in the latent space. Thus, both models
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address the need of the scientific community for trustworthy models that can be applied

in critical domains such as personalized medicine. In the field of omics, the VAE has

been one of the most popular models so far due to its ability to capture the essence of

high-dimensional data, with many applications ranging from the impute of missing values

to batch correction and data integration. However, the field of deep learning in the life

sciences is rapidly evolving, and since the breakthrough of ChatGPT, the transformer

model class, which is state-of-the-art for NLP tasks, has now also become the focus of

attention of life scientists.

Transformers exploit a mechanism called self-attention which helps them to discover

relevant connections in the data independent of the proximity of the data points. Re-

cently, the first transformer based models for single-cell data were published, among

them scGPT (Cui et al. 2024) and scFoundation (Hao et al. 2024). Both models are

so-called foundation models, meaning that they are pretained on a very large corpus of

data, and can then be fine-tuned on specific tasks with less data available (Boiarsky et

al. 2023). The application of foundation models has been demonstrated on various tasks,

such as cell type annotation, perturbation prediction, data integration and gene interac-

tion analysis. In terms of interpretability, transformer based methods natively provide

an additional layer of interpretability due to their attention mechanism which captures

gene-gene interactions, and scGPT for example was also applied in the context of learn-

ing gene regulatory networks. A recent work benchmarked pretrained foundation models

against transformer models without pretraining and simple models like logistic regression

(Boiarsky et al. 2023). The authors came to the conclusion that more research is needed

to determine the value of foundation models and find an adequate area of application,

since many tasks can also be addressed with simpler models. Thus, we believe that, as

method development in the field progresses, both, VAE and transformer based models,

will still be used and further developed. We also envision overlaps, as in principle, we

could also combine the heart of our models, which is the interpretable decoder part, with

a transformer based encoder.
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Appendix A

Derivation of Kullback-Leibler loss

term

According to Bayes rule, it applies for a set of observed variables x and a set of latent

variables z:

p(z/x) =
p(x/z)p(z)

p(x)
(A.1)

where p(z/x) is the posterior, p(x/z) is the likelihood, p(z) is the prior, and p(x) is the

marginal or evidence. The evidence is calculated by marginalizing out the latent variables

z from the joint density.

p(x) =

∫
p(x, z)dz (A.2)

Since there is no closed-form solution for the evidence integral and computation time

scales exponentially, for most models it is intractable. Thus, we cannot compute the

posterior directly, but have to find an approximation q(z) ≈ p(z/x) which is as good as

possible. For this, the Kullback-Leibler (KL) divergence has to be minimized, which is

defined as the distance between two distributions and is given by:

KL(q(z)//p(z/x)) = Ez q(z)[log
q(z)

p(z/x)
]

=

∫
z0

...

∫
zD−1

log
q(z)

p(z/x)
dz0 ...dzD−1

(A.3)

145



Again, in equation (A.3), the posterior p(z/x) cannot be computed directly, thus, we

have to rearrange the terms as follows:

KL(q(z)//p(z/x)) =

∫
z
q(z)log(

q(z)p(x)

p(z, x)
)dz

=

∫
z
q(z)log(

q(z)

p(z, x)
)dz +

∫
z
q(z)log(p(x))dz

= Ez q(z)[log(
q(z)

p(z, x)
)] + Ez q(z)[logp(x)]

= −Ez q(z)[log(
p(z, x)

q(z)
)] + logp(x)

(A.4)

The first term of the final rearranged equation (A.4) is also called the evidence lower

bound (ELBO).

ELBOL(q) = Ez q(z)[log(
p(z, x)

q(z)
)] (A.5)

Thus, we can simplify equation (A.4) as follows:

KL = −L(q) + logp(x) (A.6)

Since the KL divergence is a distance measure, it applies KL ≥ 0. The value of a

probability lies between 0 and 1, thus it also applies: logp(x) ≤ 0, and L(q) ≤ 0. From

this, it follows that L(q) ≤ logp(x) and this is why L(q) is called the evidence lower bound.

Thus, from equation (A.6) we can see that, in order to minimize the KL divergence,

the ELBO needs to be maximized. This approach is taken by the VAE and by other

variational inference methods.
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Appendix B

Model initialization and training

parameters
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Table B.1: Tunable parameters for OntoVAE model initialization in cobra-

ai.

Parameter Type Default Structure Description

adata AnnData - - Anndata that was prepared with setup_anndata_ontovae function

use_batch_norm_enc bool True Encoder whether to use batch norm

use_layer_norm_enc bool False Encoder whether to use layer norm

use_activation_enc bool True Encoder whether to use activation functions

activation_fn_enc nn.Module nn.ReLU Encoder which activation function to use

bias_enc bool True Encoder whether to learn bias for linear layers

hidden_layers_enc int 3 Encoder how many hidden layers to use

inject_covariates_enc bool False Encoder whether covariate information should be injected into each layer

drop_enc float 0.2 Encoder dropout rate

z_drop float 0.5 latent space dropout rate

root_layer_latent bool False latent space if ontology should start in latent space

latent_dim int 128 latent space latent space dimension

neuronnum int 3 Decoder number of neurons per term

use_batch_norm_dec bool True Decoder whether to use batch norm

use_layer_norm_dec bool False Decoder whether to use layer norm

use_activation_dec bool True Decoder whether to use activation functions

activation_fn_dec nn.Module nn.ReLU Decoder which activation function to use

rec_activation nn.Module None Decoder which activation function to use on reconstruction layer

bias_dec bool True Decoder whether to learn bias for linear layers

inject_covariates_dec bool False Decoder whether covariate information should be injected into each layer

drop_dec float 0 Decoder dropout rate
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Table B.2: Additional tunable parameters for COBRA model initialization.

Parameter Type Default Structure Description

hidden_layers_class int 2 Classifier number of hidden layers

neurons_per_class_layer int 64 Classifier number of neurons per layer

use_batch_norm_class bool True Classifier whether to use batch norm

use_layer_norm_class bool False Classifier whether to use layer norm

use_activation_class bool True Classifier whether to use activation functions

activation_fn_class nn.Module nn.ReLU Classifier which activation function to use

bias_class bool True Classifier whether to learn bias for linear layers

inject_covariates_class bool False Classifier whether covariate information should be injected into each layer

drop_class float 0.2 Classifier dropout rate

average_neurons bool False Classifier if neuronnum averaging is to be performed before input in classifier
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Table B.3: Tunable parameters for OntoVAE model training in cobra-ai.

Parameter Type Default Description

modelpath str - where to save trained model

save bool True whether to save trained model

train_size float 0.9 fraction of samples to use for training

seed int 42 seed for the train/val split

lr float 1e-4 learning rate

kl_coeff float 1e-4 KL weighting coefficient

batch_size int 128 minibatch size

optimizer Optimizer AdamW optimizer

pos_weights bool True whether to make decoder weights positive

epochs int 300 number of training epochs

early_stopping bool True whether to use early stopping

patience int 10 after how many epochs early stopping applies

run Neptune.run None run for logging with Neptune
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Table B.4: Additional tunable parameters for COBRA model training.

Parameter Type Default Description

lr_vae float 1e-4 VAE learning rate

lr_adv float 1e-3 adversarial learning rate

adv_coeff float 1e3 adversarial loss weighting coefficient

pen_coeff float 2.0 gradient penalty weighting coefficient

adv_step int 1 after how many epochs adversarial training starts
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