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Zusammenfassung
Die Einführung der Gravitationswellenastronomie hat die Astrophysik in eine neue Ära gestürzt.
Gravitationswellensignale, die von starken Gravitationsregimen ausgehen, liefern enorme Informa-
tionen über die Umgebung aus der sie stammen. Dies ermöglicht die Durchführung bemerkenswert
leistungsfähiger Studien zur grundlegenden Natur der Schwerkraft, der dunklen Energie und der
dunklen Materie. Diese aktuellen und zukünftigen Studien erfordern eine sehr hohe Genauigkeit
und Präzision der physikalischen Modelle, die sie entwickeln, um alle potenziellen Informatio-
nen aus den beobachteten Daten zu extrahieren. Insbesondere aufgrund der schwachen Kopplung
zwischen Materie und Schwerkraft liefern sehr starke Gravitationsumgebungen die höchste Qual-
ität an Informationen über die umgebenden fundamentalen Felder. Zu diesem Zweck besteht
das Hauptziel dieser Arbeit darin, Modelle der Wechselwirkung dunkler Materie mit hochdy-
namischen Schwarzlochsystemen zu erstellen und die potenzielle Beobachtbarkeit mithilfe zukün-
ftiger Gravitationswellenobservatorien vorherzusagen. Zur Förderung dieses Ziels wurden mehrere
Studien und Werkzeuge entwickelt, die in neuen Toolkits der numerischen Relativität, Parame-
terbeschränkungen und theoretischen Ergebnissen gipfelten. Obwohl noch viel Arbeit nötig ist,
um die Leistungsfähigkeit künftiger Gravitationswellenobservatorien voll auszuschöpfen, bietet die
Arbeit in dieser Dissertation große Fortschritte und leistungsfähige Werkzeuge für das Verständnis
der fundamentalen Bausteine   des Universums.

Abstract
The inception of gravitational wave astronomy has plunged astrophysical sciences into a new era.
Gravitational wave signals sourced by strong gravity regimes provide enormous information about
the surrounding environments from which they came. This allows remarkably powerful studies to
be performed regarding the fundamental nature of gravity, dark energy, and dark matter. These
current and future studies require very high accuracy and precision in the physical models they
develop in order to extract all potential information from observed data. In particular, due to the
feeble coupling between matter and gravity, very strong gravitational environments provide the
highest quality of information regarding surrounding fundamental fields. To that end, the primary
objective of this thesis is to generate models of dark matter interacting with highly dynamical black
hole systems and forecast potential observability using upcoming gravitational wave observatories.
Several studies and tools were developed to further this goal, culminating in new numerical relativ-
ity toolkits, parameter constraints, and theoretical results. While much more work still needs to be
done to fully leverage the prowess of upcoming gravitational wave observatories, the work in this
thesis provides great advancements and powerful tools in the pursuit of understanding the funda-
mental building blocks of the universe.
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The darkest things in the universe simultaneously shine

the brightest.

1
Introduction

The story of science can be traced back thousands of years to ancient Mesopotamia1. The

beginning of science is fundamentally ontological. What is the nature of our being, the relations

we have to the world, and the nature of these relations? The early works during this revolutionary

period laid the groundwork for formalized thoughts into the underpinnings of the natural world.

These early ’theories’ include philosophies such as alchemy and astrology. It wasn’t until the scien-

tific revolution in 16th- to 17th-century Europe when natural scientific philosophies dramatically

changed, departing from the outdated Greek traditions2–4.

The new philosophies that emerged were more mechanical, leveraging mathematical methods,

concepts, and insights to explain the everyday phenomena. Moreover, the new science was far

more reliable and reproducible, owing to the emergence of the scientific method5,6. These devel-
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opments paved the way for extraordinary breakthroughs and revolutions, some even transforming

our very view of the universe overnight. The 18th century saw the chemical revolution, one of the

first drastic changes in human scientific thought following the scientific revolution6. The 19th cen-

tury brought new ideas and concepts regarding energy, the age of the Earth, and especially evolu-

tion6–8. Finally, the 20th century brought forth transformations in genetic theory and new insights

in physics paved the way for new fields such as molecular biology, and particle physics6.

It wasn’t just the spirit of natural philosophy that influenced scientific progress. The tumultuous

political environment of the time often pushed scientific thinking into new paradigms and further

scientific progress, the Manhattan project being one of the most well-known examples9. These

politically-guided advancements even hastened humanity’s journey into space, where progress on

chemical rocketry and near-Earth space navigation allowed humans, for the first time in history, to

step foot on another celestial body10.

The multi-millennia-spanning story of science has no end in sight. The modern day library of

knowledge built by human curiosity of the natural world is so vast and so deep that thousands of

textbooks have been authored and published concerning an enormous range of disciplines, top-

ics, concepts, and theories. Moreover, this library of knowledge has been an endeavor built upon

previous generational insights and continues to be an ever-growing mountain of understanding.

Though historically, some have predicted a looming end of physics, today’s insights have revealed a

seemingly crestless mountain of understanding11,12.

1.1 Our Library of Knowledge

Our current understanding of the universe covers a vast range of insights into the physical world

ranging from subatomic lengths on the scale of femtometers, to the entire universe on the scale of

billions of light-years, and everything in between. This body of knowledge has been built both by

geniuses of the ages, but also lesser known scientists whose cumulative efforts have greatly advanced

human understanding.

Science is very much a collaborative effort, which is especially true in the current age. As little as

a century ago, the mountain of knowledge was little more than a hill, taking a curious mind com-

paratively little effort to summit the top and discover a new phenomena. However, at the turn of

2



the 20th century, the discovery of quantum theory and relativity sparked a tremendous explosion

that radically shifted scientific exploration. Waves behaving like particles, particles appearing like

waves, the constancy of the speed of light, the cosmic microwave background — all these discoveries

opened new avenues of research, bringing forth even more discoveries that pushed human explo-

ration into both the subatomic and supra-galactic scales.

In the current age, fundamental scientific understanding of the natural world is built upon two

large pillars: quantum field theory and general relativity. Moreover, the inception of these two pil-

lars were around the same time, the early 20th century. General relativity was the first radical shift in

understanding of gravity for almost three centuries since the age of Isaac Newton13,14. The theory

describes the origin of gravity and its deep relationship with matter and energy. Naturally, general

relativity describes things at very large scales, from the orbit of the moon to the evolution of the

cosmos. However, around the same time, quantum theory was emerging as the sole descriptor of

the microscopic universe and arguably represents an even bigger shift in humanity’s views of the

natural world.

1.1.1 Quantum Field Theory

The progenitor to quantum field theory, the theory that describes the microscopic universe, is

quantum mechanics. The annals of quantum mechanics is thus a fundamental piece of the history

of modern physics. The first emergence of the quantum theory can be dated back to the latter half

of the 19th century15, beginning with attempts to describe individual phenomena such as black-

body radiation and solar emission spectra.

Black-body Radiation

Black-body radiation is perhaps the greatest beacon of the inadequacy of classical mechanics to de-

scribe mesoscopic and microscopic phenomena. Thermal radiation is electromagnetic radiation

that has been emitted from an object due to the object’s own internal processes. A black-body is a

so-called ’perfect emitter’ in the sense that all incident electromagnetic radiation is absorbed, leav-

ing none to be reflected. The opposite, called a white body, reflects all incident radiation and emits

nothing. A black-body then emits only thermal radiation, which would then be called black-body
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radiation16. Many everyday objects can be modeled as a black-body, such as the planets and the sun.

The prediction for the spectral signature of black-body radiation is what sparked the quantum

revolution. Classical physics predicts that the spectral radianceB of electromagnetic radiation from

a black-body should scale linearly with the temperature T and quadratically with the frequency f of

the emitted radiation,B ∝ T ∗ f 2. This is a catastrophic result, suggesting that higher frequencies

are emitted much more than lower frequencies. This implies that an infinite amount of photons

with an infinite frequency should be emitted from everything in the universe that has a non-zero

temperature. According to classical physics, the universe should be bathed in infinite energy. This

goes by the name the ultraviolet catastrophe and the solution to this problem sparked the quantum

revolution.

The Quantum Revolution

In the 20th century, physicist Max Planck suggested that the emitted radiation should be ’quan-

tized’ into discrete amounts. In other words, the emitted photons can only take discrete energies

with the smallest unit called a ’quanta’ of energy16. Yet, Planck only suggested the quanta as a

mathematical tool with zero real world correspondence. Finally, in the same year that he proposed

special relativity, Einstein suggested that these quanta are real particles, which now go by the name

of ’photons’. This sparked an avalanche of physical predictions about the nature of atomic theory,

leading Einstein to predict the photoelectric effect, earning him the 1921 Nobel prize17,18.

Quantum theory continued to develop along the route suggested by the quanta. In 1927, Werner

Heisenberg penned an early version of his illustrious uncertainty principle19. In 1926, Erwin Schrö-

dringer formulated his celebrated equation that describes the behavior of quantum waves, becom-

ing a core piece of quantum mechanics20. With his equation, Schrödinger calculated the energy

levels of the hydrogen atom which correctly reproduced many different properties of hydrogen,

earning Schrödinger and Dirac the 1933 Nobel prize in physics21,22.

From Particles to Fields and Back

However, around 1927, quantum mechanics stood as an offshoot of classical mechanics, regarding

only particles, probability waves, and time as an absolute concept. Relativity, already well-matured
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at this point, had yet to be incorporated into the theory. Paul Dirac began to consider the learnings

from special relativity in the context of quantum theory, proposing his well-known ’Dirac equa-

tion’ for the electron23. This unification of relativity with quantum theory gave birth to quantum

field theory, which regards particles as localized excitations of an omnipresent field.

The father of quantum field theory can be attributed to Paul Dirac himself, who was able to

compute the spontaneous emission of an atom24. He described the quantization of the electro-

magnetic field as an ensemble of harmonic oscillators, introducing new mathematical tools along

the way. With these new tools, physicists believed any possible computation for any physical process

involving photons and charged particles could be performed. However, it was quickly realized that

the computations were only reliable to first order in the perturbative expansions25–27. It became

apparent that at higher orders, infinities in the calculations began to emerge, making the computa-

tion physically irrelevant and diminishing the confidence of the theory itself. The very nature of the

compatibility between quantum theory and relativity were called into question.

Reigning in the Infinities

The resolution to the infinities began to emerge in 1947, when Hans Bethe reabsorbed the infini-

ties into corrections of the mass and charge of the particles, giving birth to the powerful theoretical

method of renormalization28. This tool allowed finite results to be deduced. Based on these results,

several other physicists were finally able to covariantly formulate arbitrarily precise models of quan-

tum electrodynamics (QED), earning them the 1965 Nobel prize in physics29–37. Through these

works, renormalization became a foundational aspect of quantum field theory. With these tech-

niques, QED became one of the most precisely tested theories in all of physics38. For some of the

parameters, the agreement with experimental data is found to be within 1 part in 10−9, or one part

in a billion, making it one of the most precisely tested physical theories of all time39–41.

Diving into the Nucleus

The success of QED has made it a model for other quantum field theories, such as quantum chro-

modynamics (QCD), which describes the strong force between quarks and gluons, the nucleus

equivalents of electrons and photons, respectively. These comprise the inner world of the proton
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and neutron, making QCD the theory describing the nucleus of the atom. Though equivalent to

QED in spirit, QCD is saliently different in practice resulting in very different phenomena.

QCD exhibits several bewildering phenomena relative to QED. The first is color confinement,

the phenomenon where quarks and gluons cannot be isolated from one another. In fact, as two

color-charged particles such as quarks are continuously separated, the force between them ap-

proaches a constant. This is in stark contrast to the inverse-square law of electrodynamics, where

the force falls off as the square of the distance between two electrically charged particles42,43.

The second phenomenon is asymptotic freedom, in which the strength of the interaction be-

tween quarks and gluons steadily decrease as the energy scale increases and the corresponding length

scale decreases44,45. In other words, quarks interact weakly at high energies. At low energies, the in-

teractions are much stronger, leading to confinement of quarks and gluons, and forming composite

hadrons such as protons and neutrons.

The third phenomenon is chiral symmetry breaking46. This phenomenon is different in nature

than the previous two in that the internal symmetries of the theory undergo spontaneous breaking.

At the theoretical level, this spontaneous breaking of the symmetry leads to the dynamical genera-

tion of mass for otherwise massless particles.

These three strange phenomenon make QCD a very different theory than QED and, at the same

time, shows the versatility of the tools allotted by quantum field theories.

The Final Pillar

The third and final foundational pillar of our understanding of the subatomic world illuminated

by the mechinations of quantum field theory is quantum flavordynamics (QFD). The earliest his-

tory of QFD can be traced back to Enrico Fermi, the pioneer of the weak interaction47,48. Fermi

suggested that the beta decay process can be explained via the weak force which is mediated by the

W and Z bosons, analogous to the photon of electromagnetism. In fact, the weak interaction is

responsible for all radioactive decay and thus is important in the understanding of many physical

processes that occur in stellar matter, fission reactors, and any other radiation-driven processes.

In the 1960s, the pioneering work of Sheldon Glashow, Abdus Salam, and Steven Weinberg uni-

fied the electromagnetic and the weak force into a single force termed the electroweak force49,50.
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They earned the 1979 Nobel prize in physics for their discovery. They realized that above a criti-

cal energy scale of around 246 GeV, the electromagnetic and weak interactions would unify into

a single force. It was later shown that the electroweak theory of Glashow, Salam, and Weinberg

was renormalizable. In other words, the infinities inherent to the quantum field theory could be

reabsorbed, leading to well-defined finite predictions. To date, the precision of experimental mea-

surements of the electroweak interaction are on par with that of QED, making it one of the most

precisely tested theories51.

1.1.2 The Standard Model

These three revolutionary theories, QED, QCD, and electroweak theory, built using the mathemat-

ical tools of modern QFT, form our understanding of the atomic cosmos. These theories classify

and describe all known fundamental particles and three out of the four fundamental forces. The

collective name of these three theories that form our modern understanding of atomic processes is

the StandardModel.

The Standard Model of particle physics is the collective model that describes the electromagnetic

interaction, the weak interaction, the strong interaction, and all fundamental particles. This col-

lective description can be split broadly into two separate pieces, namely the matter itself and the

interactions between the matter particles. The particles representative of the interactions are called

’force carriers’ and they include the photon, the W and Z boson for the weak force, and the gluon

for the strong force. All fundamental particles can be divided into three large classes, fig. 1.1. They

can be bosonic or fermionic, depending on the internal properties of their quantum fields, and they

can be hadronic.

Bosons and Fermions

The bosonic and fermionic descriptors are categorizations that depend on the internal spin of the

particle, which is a quantum analog of angular momentum and is a fundamental intrinsic property

of the particle. In equivalence to the photon, the spin of particles is also quantized and hence the

spin can be used to distinguish various particles. The electron is a famous example of a particle that

carries intrinsic spin, which was inferred in 1921, by Otto Stern and Walther Gerlach, by sending an
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electron through an inhomogeneous magnetic field. The deflection of the trajectory of the electron

led Stern and Gerlach to suggest that all electrons carry a fundamental, irreducible, and quantized

spin.

Figure 1.1: 52Division of fundamental, composite, and force-

carrying particles into classes. The force-carrying particles are all

bosons, while thematter particles can be bosonic or fermionic,

depending on the internal properties of the particles andwhether

they are fundamental or composite.

Bosons are particles that carry a spin which is

an integer number, such as 1, 2, etc. Fermionic

particles are those particles whose spin is a half-

integer, such as 1
2

, 3
2

, etc. 53,54. All force-carrying

particles, the W, Z bosons and gluons (as well

as the gravitational force carrier), are bosonic.

Electrons, neutrons, the neutrinos, and pro-

tons are all fermionic. However, the proton

and neutron are not fundamental since they are composed of more fundamental particles. Parti-

cles that are composed of more fundamental particles are composite particles held together by the

strong nuclear force and are called hadrons. They are the subatomic analog of molecules, which are

held together by the electromagnetic force.

Building the Subatomic Universe

The hadrons and fermions can be further categorized into three more categories. The leptons are

fundamental fermionic particles that do not interact with the strong force. Due to the lack of in-

teraction with the strong force-carrying particles, they are termed ’color-free’, where color refers to

the strong nuclear interactions equivalent of electric charge. The particles that are leptonic are the

electron, muon, tauon, and their corresponding neutrino flavors, the electron neutrino, the muon

neutrino, and the tau neutrino. The fermionic hadrons are called baryons. They are composite par-

ticles that participate in the strong nuclear force. Particles that are baryonic are the proton, neutron,

and more exotic flavors such as the pentaquark. The bosonic hadrons are called mesons. They are

also composite particles which participate in the strong nuclear force. They differ from the baryons

in that they possess an even number of quarks, in contrast to baryons which are composed of an

odd number. However, all mesons are unstable, with the longest living one lasting only for tens of

nanoseconds55. This implies free mesons only exist for a very short amount of time. On the other
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hand, mesons are extremely important as they are responsible for binding together atomic nuclei56.

Since they are bosonic, they act as the force carrier for the residual strong force, or nuclear force. The

strong nuclear force can be thought of as certain combinations of quarks ’leaking away’ from the

internal interactions of the individual protons and neutrons, binding the protons and neutrons to-

gether and forming atomic nuclei.

Figure 1.2: 57The StandardModel of particle physics consists

of twelve fundamental matter particles and five force-carrying

particles. The six quarks are the fundamental particles that

composemesons and baryons, yielding atomic nuclei. The six

leptons consist of electrons and their heavier cousins, themuon

and tauon, along with their associated neutrino flavors. The five

force-carrying particles, the gluon, photon,W and Z bosons, and

the Higgs particle are responsible for the interactions between

the variousmatter particles or, in the case of the Higgs particle,

givemass to them.

Since mesons are unstable, they also participate

in the weak interaction where they can undergo

decay processes to lighter mesons. There are

hundreds of discovered mesons, all with vari-

ous properties dependent on their constituent

particles55.

The force carrier bosons, mesons, baryons,

and leptons contain all fundamental particles

known to particle physics. There are an enor-

mous number of such particles with most be-

ing mesons and baryons. However, all known

composite particles are composed of just 12

fundamental matter particles which interact

with the 5 force-carrying particles.

The Building Blocks of the Cosmos

The 6 quarks compose the inner nuclei, binding together with the gluon to form protons, neu-

trons, and mesons. The 6 leptons consist of the electron, the muon, the tauon, and the electron

neutrino, the muon neutrino, and the tau neutrino. The five force-carrying particles are the gluon,

responsible for binding together quarks to form hadrons, the photon, responsible for the interac-

tion between leptons, the W and Z bosons, responsible for radioactive decay of particles, and the

Higgs particle, which is responsible for giving mass to all fundamental particles.

These 17 particles constitute the Standard Model, the most accurate model for the fundamental

constituents of the universe, fig. 1.2. The Standard Model has been in development since the latter

9



half of the 20th century through the enormous work of scientists around the world58. The Standard

Model was finalized in the 1970s after the existence of the quark was experimentally confirmed59–61.

Figure 1.3: The StandardModel Lagrangian, the fundamental

mathematical object that describes the atomic universe. The first

line describes the four force-carrying particles, how they exist and

how they interact with each other. The second line describes how

the force-carrying particles interact with thematter particles.

The third line describes how thematter particles interact with

the Higgs fieldϕ, thereby obtainingmass. The last line describes
the Higgs field itself and how the force carriers — in fact, only the

weak force carriers — interact with it.

The Standard Model is built using the tools

of quantum field theory and is an immensely

complicated theory. The Standard Model con-

sists of 19 parameters whose numerical values

must be fixed by experimental data. However,

in 2010, it was discovered that the neutrino,

previously thought to be a massless particle, ac-

tually contains a very light mass62. This discov-

ery changed the Standard Model and in doing

so introduced 7 new parameters, for a total of

26 experimentally determined parameters.

Language of the Subatomic Universe

The fundamental mathematical object that

defines the theory is the Standard Model Lagrangian, fig. 1.3 63. This object contains the 12 fun-

damental matter particles, the five force-carrying particles, describes how they interact with each

other, and how they acquire mass via the Higgs particle. This object encapsulates our best under-

standing of all particles in the universe, how they interact with each other to form nuclei, atoms,

molecules, and eventually stellar matter, planets, and organic material. It describes the propagation

of light, how cells form animals and humans, how the atmosphere behaves, how fusion reactors

work, how the sun warms the planet, and how the light from stars on the other side of the universe

is created. Naturally, using the Standard Model to describe the weather would be analogous to us-

ing a hydrogen bomb to pound a nail instead of a hammer. Remarkably good approximations can

be built from the model, such as chemistry, condensed matter physics, etc. Nonetheless, it’s the

fundamental theory that is thought to describe how all fundamental particles in the universe exist

and behave.

That isn’t to say the Standard Model is perfect. There are many challenges that still need to be
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overcome. For instance, the description of the gravitational force is not present anywhere in the

model, nor is dark matter or dark energy. But much more fundamentally, the Standard Model is

mathematically inconsistent with that of the theory of gravity. This implies one or the other must

be wrong. There have been many theories proposed that are collectively denoted as physics beyond

the StandardModel. This refers to theories that aim to solve the challenges faced by the Standard

Model and includes models such as Minimal Supersymmetric Standard Model, string theory, M-

theory, loop quantum gravity, and many more. All these theories aim in some way to bring in a

quantum description of gravity which is currently described by general relativity. However, due to

the nature of the gravitational theory, this has proven to be a remarkably difficult problem and it is

currently unclear which direction is correct.

1.1.3 The General Theory of Relativity

The current best theory of gravity that continues to withstand the scrutiny of experimental data is

General Relativity (GR). GR is a vastly different theory from the Standard Model, but its origins

can be traced back to around the time of the quantum revolution. Albert Einstein first developed

his theory of special relativity in 1905, an offshoot of classical mechanics that hypothesizes the con-

stancy of the speed of light based on Maxwell’s equations64–66. He realized later that his ’princi-

ple of relativity’, the idea that the speed of light is the same for everything no matter their velocity,

could be extended to the gravitational field. He later realized that undergoing free fall in a gravi-

tational field is equivalent to non-accelerating motion. Hence, the rules of special relativity must

apply to a freely falling observer. This idea is called the equivalence principle and is at the very heart

of GR67. At the same time, Einstein predicted the phenomenon of gravitational time dilation. In

1911, Einstein then predicted the equivalence between accelerated motion and the gravitational

force, deducing gravitational light deflection68. He later sought to describe the gravitational force

as a geometrical manifestation, employing the use of differential geometry. Following several years

of thought and development, Einstein finally wrote down field equations he believed to accurately

describe the gravitational forces, which took the form

Rab = Tab .
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The left-hand side describes the geometry of spacetime, the unification of space and time into a sin-

gle object, and the right-hand side describes the distribution of matter and energy. However, Her-

mann Weyl realized this equation is only consistent if the entire universe was filled with a uniform

distribution of mass69. Einstein returned in 1915, with an improved version, which he presented to

the Prussian Academy of Sciences70, and which took the form

Rab −
1

2
gabR = Tab ,

These are nowadays famously known as the Einstein equations.

Success in the Face of Scrutiny

The history of the astronomical verification of Einstein’s predictions is turbulent, however they

were finally verified in 1919, by Eddington and Dyson and again in 1922, by Campbell71–73. To

this day, GR has undergone a litany of tests, making it the most successful gravitational theory of

all time. The first tests were proposed by Einstein himself, suggesting that the perihelion precession

of Mercury’s orbit, the gravitational deflection of light passing by the sun, and the gravitational

redshift of light could be used to test the predictions of his theory. The perihelion precession of

Mercury’s orbit is one of the more powerful tests of GR, which it famously passed.

More modern tests of GR have been carried out in the hopes of finding a breakdown in either

GR or the Standard Model. One of the most important modern tests of GR is that of gravitational

lensing. The most precise tests are analogous to Eddington’s 1919 experiment in which deflections

of light from distant sources by the sun are measured. Current day tests confirming the predic-

tions of GR are at the 0.03% level74. The Shapiro time delay, a relativistic correction of the time

taken by a photon to complete a there-and-back journey to a planet, is another ’classical’ test of GR,

which agrees with experimental data at the 0.002% level (though there is debate on the experimen-

tal data)75. Tests of the equivalence principle itself have also been carried out using experimental

apparati called ”Eötvös torsion balance” experiments. These test the assertion that the trajectories

of falling bodies are independent of their mass and internal structures. They have tested the equiva-

lence principle to a factor of 10−15, making it an extremely precise test76.

The direct detection of gravitational waves in 2015 by the Advanced LIGO team was a momen-
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tous test of GR. The discovery achieved two things: provide further data in support of GR and

heralded in the new age of multimessenger astronomy. GR predicts that orbiting astrophysical ob-

jects will emit gravitational waves and the radius of this orbit will slowly decay due to the emissions.

The existence of gravitational waves is not unique to GR, but to any theory that predicts the propa-

gation of gravity at some speed. The measurement of the waveform at Earth of these waves is then a

powerful test of GR among the swampland of all gravitational theories. So far, these tests have been

in excellent agreement with GR77–79. Multimessenger astronomy, the combination of astronomical

measurements such as radio, x-ray, and optical observations with gravitational wave detections and

measurements, will be a powerful tool in continuing to test the predictions of GR.

A Century of Correct Predictions

Figure 1.4: Einstein rings are a form of strong gravitational lensing

where the light of a distant luminous source is bent into a ring

shape by the gravitational effect of a closer massive object.

Credit: ESA/Hubble, NASA

GR makes many new predictions, some that

are regarded as ’physical’ which could occur in

the universe, and even more that may just be

exotic mathematical oddities. The first radi-

cal prediction of GR that significantly departs

from the outdated Newtonian gravity is the ex-

istence of gravitational lensing. Since GR asso-

ciates the gravitational force with the curvature

of spacetime, the trajectory of a photon can

appear to curve when travelling past a massive

object. The most striking example of this is the

existence of so-called Einstein rings, fig. 1.4. A massive object in front of a distant luminous object

can curve the light from the distant object so drastically, it appears to smear out into a ring with the

massive object at its center. This forms what appears to be a ring of light, which are called Einstein

rings. Einstein rings are one of the more drastic manifestations of gravitational lensing and are part

of a class of gravitational lensing called strong lensing. They are distinguished by the clearly visible

distortion of a background source that forms Einstein rings, arcs, and multiple images, fig. 1.5.

Weak lensing is a class of gravitational lensing where the light of the luminous source is only
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slightly modulated and can only be detected using large statistical samples. Usually, a large number

of galaxies must be used to reach high enough statistical confidence for the presence of weak lensing

due to the fact that galaxies are intrinsically elliptic.

Figure 1.5: Strong gravitational lensing, or strong lensing, is a

class of gravitational lensing where the light of a distant luminous

source is clearly distorted by the eye, forming Einstein rings, arcs,

or multiple images. In this image, the enormousmass of galactic

clusterMACSJ1206.2-0847 distorts the image of amore distant

galaxy. Credit: ESA/Hubble, NASA

The final class of gravitational lensing effects is

that of microlensing, where no distortions can

be detected yet the amount of light received

from a luminous object changes with time.

Gravitational lensing can be a powerful tool in

astronomical measurements since one can use

the degree of lensing to estimate the mass of the

lens, the most famous example being that of

the Bullet cluster.

The existence of black holes is another pre-

diction of GR that has been tested extensively.

By definition, a black hole is a region of space-

time where the curvature is so strong that not

even electromagnetic waves — the fastest thing in the universe — could escape it, leaving what ap-

pears to be a black lightless void. However, the idea of such an object dates back to the 18th century

and was suggested by the astronomer John Michell80,81. He suggested that a star massive enough

could have an escape velocity that exceeds the speed of light, and that their existence could be in-

ferred by their effect on neighboring bodies.

The modern theory of GR predicts a similar object, the black hole, though the origin of the grav-

itational force is much different than suggested during the time of Michell. Instead, the curvature

of spacetime becomes so strong that light can no longer escape the gravitational ’well’ and, if close

enough, inevitably plummets to the center. The first solution of the Einstein equations which pos-

sessed such properties was suggested by Karl Schwarzschild just a few months after Einstein intro-

duced his field equations82,83.

Schwarzschild developed a solution which results from a spherically symmetric and static point

mass. Though simple in its construction, it already possesses many striking properties that portray
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just how bewildering black holes are. The first is the existence of a curvature singularity. This is the

point at the center of the black hole where the curvature, i.e. the gravitational force, blows up to in-

finity. All matter that enters the black hole will inevitably reach the singularity, where the density of

the matter will diverge.

Figure 1.6: An image of the supermassive black hole at the center

of theM87 galaxy in the radio band. Credit: EHT Collaboration

Many physicists today believe such intense

gravitational forces signal a breakdown in the

theory of GR and will require a fully quantum

version of gravity to describe. Nonetheless, in

the 1960s Roger Penrose and Stephen Hawk-

ing proved that singularities are an inevitable

consequence of GR, earning Penrose the 2020

Nobel prize in physics, though Hawking un-

fortunately passed away in 2018 84–86. Another

striking feature is the existence of an event hori-

zon. Though not a solid surface like a planet,

the event horizon is a region defined as a ’co-

ordinate singularity’. Its defining feature is that

it’s the radius from the center past which things travelling at the speed of light can no longer escape.

This turns the event horizon into a ’causal boundary’, as events that occur inside the event horizon

can not affect anything on the outside, since the information would have to travel faster than the

speed of light to escape. The event horizon is analogous to the surface of Michells ’dark star’, where

the escape velocity equals the speed of light.

Since the work of Schwarzschild, several new black hole solutions of the Einstein equations have

been put forth. The most widely utilized and the one believed to most accurately represent black

holes in our universe was formulated by Roy Kerr in 196387. Now called the Kerr metric, Roy Kerr

wrote down the solution of the Einstein equations that describe an empty spacetime which pos-

sesses a spinning black hole, a generalization of the Schwarzschild solution which was static and

unmoving. The Kerr solution exhibits many new interesting properties such as the Lense-Thirring

precession effect, a Coriolis-like force distinct to solutions of GR which are rotating88–90. The sin-
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gularity at the center of the black hole is also no longer point-like, but instead smeared out over a

ring, fig. 1.791.

Figure 1.7: 92The various structures of the Kerr black hole. The

ergosphere lies outside the outer horizon. The singularity is now a

ring instead of a point, represented by the dashed line.

A new feature of the Kerr black hole that

differs from the Schwarzschild black hole is the

existence of what is called an ergoregion, delin-

eated between the event horizon and the ergo-

surface. The Kerr metric is distinct from the

Schwarzschild metric in that it possesses spin.

However, black holes are not material objects,

they are regions of spacetime itself. Hence, it is

spacetime itself that is rotating, dragging along

material particles and other forms of energy with it. The ergosurface is a special surface of the space-

time beyond which material particles can no longer remain at rest and are forced to rotate with the

black hole. Matter and energy would have to travel faster than the speed of light to remain rotation-

ally stationary. However, since the ergosphere is outside the event horizon, particles are still free to

escape the black hole. Another feature distinct from the Schwarzschild black hole is the existence

of two event horizons. The outer horizon is analogous to the Schwarzschild horizon and is the sur-

face beyond which nothing can escape. The inner horizon is closer to the singularity and is called a

Cauchy horizon. This horizon is technically escapable and past this horizon, closed curves in space-

time can exist, providing a possible scenario of time travel, though their existence is questionable at

best.

Beyond the simple cases of static and rotating black holes, there is a plethora of other black hole-

like solutions, such as the Reissner-Nordström black hole, describing a static black hole that pos-

sesses an electromagnetic charge, the Kerr-Newman black hole, describing a rotating and electro-

magnetically charged black hole, the white hole, the exact opposite of the usual black hole in which

nothing can enter its event horizon, and hairy black holes, which possess other charges beside the

usual electromagnetic one.
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Figure 1.8: 93–95An example of a gravitational signal. The last few

moments are highly dynamical and themost difficult part of the binary

merger tomodel. This waveform clearly shows the three distinct phases

of a merger — the long inspiral phase, the transient merger phase char-

acterized by the large peaks in the waveform, and finally a ringdown

phase when the final combined black hole settles down. This waveform

was generated using numerical solutions of the Einstein equations with

binary black hole initial data.

The first astronomical object to be ac-

cepted as a black hole is Cygnus X-1, a

galactic x-ray source96,97. The very first

image of a black hole was captured in

2019 by the Event Horizon Telescope

(EHT) collaboration, where radio tele-

scopes scattered around the Earth were

used to form a virtual Earth-sized radio

telescope to image the center of the M87

galaxy, capturing an image of the sur-

rounding orbital material of the supermas-

sive black hole at its center, fig. 1.6 98–100.

The EHT collaboration again used the

same techniques in 2022 to image the black hole at the center of our Milky Way galaxy, Sagittar-

ius A∗ 101–103. These images can be used to test the predictions of GR, since the orbiting material

around the black hole is in an extremely strong gravitational environment.

Beyond black holes, GR also predicts the stability and evolutions of stars such as main-sequence

stars like our sun, white dwarfs and neutron stars, which are collapsed stars composed of degen-

erate quantum matter, and more exotic stars like strange stars or quark stars which have not been

observed. Nonetheless, GR can be used to predict the shape of these stars which in turn, using ob-

servational data, place constraints on GR itself.

Another famous prediction of GR that has only recently been discovered is that of gravitational

waves. These are waves in spacetime itself that are generated by accelerated masses and propagate

at the speed of light. In 1916, Einstein demonstrated that his theory of general relativity predicts

the existence of gravitational waves104,105. Nearly a hundred years later, in a groundbreaking exper-

iment, the LIGO-Virgo collaboration made the first direct detection of gravitational waves gener-

ated by a pair of stellar mass spinning black holes a distance of about 1.4 billion light years away.

The collision of these black holes generated gravitational waves with a power at merger of about

3.6 ∗ 1049 watts which, if this were an electromagnetic signal, would outshine every star in the
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universe combined77,78. These phenomena are easily one of the most powerful events in the entire

universe, showcasing the colossal prowess of black holes.

The direct discovery of gravitational waves confirmed the last remaining directly undetected pre-

dictions of GR and provides even more evidence of the geometric nature of gravity. The discovery

itself brought forth the new age of gravitational wave astronomy, and multimessenger astronomy

in general. Since the famous 2015 discovery, over a hundred more detections have been published,

including the mergers of neutron stars and neutron star-black hole binaries106–108. Multimessenger

astronomy has been a powerful tool to study black holes and other compact objects, and provides

stringent tests of GR itself, even placing constraints on the quantum nature of black holes109–117.

The Exotic Realm

Beyond the astrophysical predictions that astronomers have observed by testing GR in a huge range

of experiments, GR is also a mathematical theory, so the mathematical aspects of GR have also been

explored in depth. From these studies, several very interesting results have been published. Some of

the more interesting ones include closed timelike curves, wormholes, and warp drives.

A timelike curve is the path of a physical observer, such as a person, bird, plane, planet, or galaxy,

through the four-dimensional spacetime. It’s the curve that describes how physical matter travels in

space and time. A closed timelike curve (CTC) is such a physical trajectory that forms a closed loop

in spacetime, returning to its starting position. In normal three-dimensional space, a closed trajec-

tory is usually not an issue, since observers are free to travel through space without restrictions, such

as planets completing their orbits. However, a closed curve in four-dimensional spacetime possesses

the primary issue of possibly allowing time travel, raising paradoxical philosophical issues such as

the grandfather paradox. Such CTCs have been shown to exist both in exotic solutions of GR,

such as infinite material cylinders, and physical solutions, such as the Kerr black hole. However,

Hawking proposed that CTCs are unphysical and proposed the chronology protection conjecture, ”It

seems that there is a Chronology Protection Agency which prevents the appearance of closed time-

like curves and so makes the universe safe for historians.”118. Many theorists believe the quantum

version of the gravitational theory will rule out the existence of CTCs. Nonetheless, they exist as

perfectly reasonable trajectories allowed by GR.
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Wormholes are another exotic object allowed within the context of GR. They are a purely hy-

pothetical structure that connects two distant, even casually disconnected, regions of spacetime.

Some forms of wormholes are even of the interuniversal type. The first type of wormhole was the

Schwarzschild wormhole, a wormhole thought to exist at the singularity point of the Schwarzschild

black hole.

Figure 1.9: 119An embedding diagram of a Lorentzian wormhole, a

type of continuation of the Schwarzschild black hole connecting

two separate universes.

However, these types of wormholes have been

shown to be unstable, requiring exotic nega-

tive matter to stabilize them 120. Other types

of wormholes are the so-called traversable

wormholes, wormholes that material particles

could travel back and forth through, being

held up also by exotic negative mass material.

If traversable wormholes exist, they would be

a method of faster-than-light travel, since they

could connect two separate ends of the uni-

verse through a shortcut.

The last exotic solution of GR worth men-

tioning is the warp drive. Warp drives have

a turbulent history since the 1990s when Miguel Alcubierre proposed his now-called Alcubierre

warp drive121. The main idea of the Alcubierre drive is that the spacetime behind an object is ex-

panded while the spacetime in front is contracted, supposedly accelerating the object to super-

lightspeed velocities, fig. 1.10. However, already in Alcubierre’s proposal, the Alcubierre drive has

been shown to violate almost all physicality conditions, requiring enormous amounts of negative

energy. Since his proposal, many other proposals have been suggested as reducing or outright elim-

inating the negative energy requirements122–126. The warp drive is still a controversial topic among

theorists with some suggesting the warp drive is completely infeasible. Nonetheless, this remains an

active area of research in the hopes of aiding humanity’s expansion into space and crossing interstel-

lar distances122,127,128.
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Figure 1.10: A slice of the spacetime expansion in the Alcubierre

warp drive. Spacetime behind the object, in this case a spaceship,

is expanding and spacetime in front is contracting, in theory

propelling the ship to faster-than-light speeds.

Warp drives are a particularly appealing so-

lution to interstellar travel since they are a per-

fectly valid solution of the Einstein equations,

though their physical validity is still an active

question in research. It may be possible one

day to construct a spacetime distortion using

physically realistic material to propel a payload

to cosmic distances on human timescales.

A Beautiful Theory

GR is easily the most successful gravitational

theory of all time, continuing to pass stringent

observational tests ranging from terrestrial ex-

periments, such as the Eötvös torsion balance

experiment, to strong-gravity astrophysical tests, such as the merger of massive black hole binaries.

Repeated successes increase the confidence in the correctness of GR in explaining astrophysical phe-

nomena, allowing theorists to use GR to confidently predict new phenomena and explain currently

observed ones. Another of GR’s key successes is explaining the evolution of the universe’s structure

as a whole when cosmologists apply GR to the entire cosmos.

1.1.4 The Greater Universe

The application of GR to the entire universe results in the field of study called theoretical cosmology.

A cosmological model provides a description of the large-scale structure of the universe and allows

questions of its origin, evolution, composition, and eventual fate. The current understanding of

cosmology began with the introduction of GR in 1915. This was quickly followed by the first ma-

jor observational discovery of cosmic expansion in the 1920s by Edwin Hubble, Vesto Slipher, and

others129,130. Further efforts revealed the cosmic microwave background, distant supernovae, and

the accelerated expansion of the universe, leading to the theory of the big bang and the standard

cosmological model — our best understood theory of the composition and history of the universe.
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The standard cosmological model, called the Λ-CDM model, is the current best understanding

of the contents and evolution of the cosmos. It purports that the universe began from an initial

quantum fluctuation during an era called the Planck epoch and lasted for 10−43 seconds and is be-

lieved to be the time when all four fundamental forces were united into a single force from which

came the grand unification epoch, where gravity is believed to have separated from the other three

fundamental forces.

Figure 1.11: An artistic rendition of the evolution of the universe,

from the initial quantum fluctuations, through the rapid infla-

tionary epoch, to the present day accelerated expansion phase.

Credit: NASA/WMAP Science Team 131

So far, these epochs are highly theoretical and

not much, if anything, is understood about

these timescales. It’s commonly understood

that a full quantum theory of gravity is re-

quired to really understand what took place

during this time.

Next came the inflationary epoch which

lasted until the universe was 10−32 seconds

old. This is where the predictive power of Λ-

CDM begins to take place. During this epoch,

the universe underwent a drastic and rapid in-

flation from 10−36 seconds to 10−32 seconds, increasing in size by a factor of 1026, fig. 1.12. This

radical idea solves many of the previous issues present in cosmology at the time. During inflation,

the initial quantum fluctuations ’froze in’, giving birth to the large-scale structure inhomogeneities

we see today, such as galaxies and stellar clusters. Following inflation came several dynamical eras

characterized by additional particle interactions, the electroweak epoch, quark epoch, hadron epoch,

lepton epoch, then the photon epoch. During the photon epoch, at around 370, 000 years after the

big bang, the cosmic microwave background (CMB) formed, which is perhaps the greatest evidence

we have for the big bang. The CMB formed as a result of electrons recombining with protons to

form atoms, allowing photons to stream freely through the universe, some travelling unperturbed

until they finally reach our detectors. This period of the universe forms an opaque barrier for cos-

mological telescopes, since before the CMB, photons could not stream freely as they continuously

interacted with free electrons.

21



Overlapping with the photon epoch and reigning for billions of years was the matter dominated

era, where the universe cooled enough for matter to clump together to form structures. At this

point, the non-relativistic matter dominated the energy content of the universe, hence its name. Ac-

cording to Λ-CDM, the universe was mainly composed of 15.5 % ordinary matter and 84.5 % yet-

to-be discovered ’dark matter’.

Figure 1.12: 132Artistic rendition of inflation from early quantum

fluctuations.

The matter dominated era lasted from about

47, 000 years after the big bang until about 9.8

billion years after the big bang. During the era,

many physical processes took place, including

the formation of the CMB, the beginnings of

molecular matter and the formation of stars,

galaxies, and clusters.

After the matter dominated era came the

dark energy dominated era, the current era the

universe exists in. The dark energy dominated

era is characterized by the dominant content

of the universe being that of a yet-to-be-discovered form of energy that is responsible for the accel-

erated expansion of the universe. According to Λ-CDM, this is the final epoch of the universe and

several scenarios have been suggested to be the ultimate fate of the cosmos:

• Heat Death: Cosmic expansion continues to accelerate until thermal equilibrium is reached

after 101000 years and no more structure is possible. After this point, the universe has reached

a highly entropic state and most matter is in the form of subatomic particles and low-energy

photons. 133

• Big Rip: Expansion of spacetime becomes so extreme that subatomic particles are ripped

apart and eventually spacetime itself, resulting in a kind of singularity event134. Current ob-

servations by the Chandra X-ray Observatory and the Planck telescope do not rule out the

big rip scenario135,136.

• Big Crunch: Expansion eventually halts and reverses under the influence of all matter and
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energy in the universe, accelerating it back towards a hot and dense state. Current estimates

suggest this scenario is unlikely.

• VacuumDecay: This suggests the universe is in a false vacuum state, leading to the implica-

tion that the universe could later undergo a phase transition to a lower state, replacing all

particles and forces with new ones, destroying the old ones in the process.

Figure 1.13: 132Different types of evolution scenarios for the

cosmos lifetime. The top left is an example of the Big Crunch. The

universe is birthed from a singularity and then eventually col-

lapses back into one. The bottom three show different scenarios

of accelerated expansion. The topmiddle shows expansion at

a decelerated rate. Finally, the top right shows expansions at a

constant rate.

Currently, Λ-CDM favors the first two sce-

narios, given the recent cosmological data.

However, vacuum decay or some other ex-

tremely unlikely quantum phenomena are

technically still possible.

At the heart of the standard cosmological

model lies GR, the underlying theory that cos-

mological parameters are fed in to. To date,

GR has been a well developed theory that has

passed many cosmological tests. However,

there remains many open challenges that need

to be addressed, such as the nature of dark mat-

ter and the energy content that is responsible

for the accelerated expansion of the universe. While it is possible that all these challenges have an-

swers within GR, it could be that GR itself is ultimately the wrong theory. In fact, a large num-

ber of theorists believe this to be the case since GR does not tell us anything about the nature of

fundamental particles. Should there be a single true theory underpinning the universe, GR is cer-

tainly not it. Nonetheless, it provides a remarkably good approximation when describing large-scale

physics ranging from the orbits of planets to the evolution of the cosmos.

1.2 The Dark Ocean

The true nature of the universe’s accelerated expansion is a particularly challenging problem to

solve. In reality, it is likely a combination of quantum field theory and GR. After all, material par-
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ticles and the force carriers live on spacetime and therefore are affected naturally by the spacetime

background. Hence, the description of the underlying energy responsible for the accelerated expan-

sion of the universe should have a natural residency in a fully quantum theory of gravity. As this has

yet to be fully developed in a consistent way, the only recourse is to embed a quantum theory in a

classical description of gravity, such as that of GR.

1.2.1 History

The idea of a cosmological constant is traced back to the very early works by Einstein on his new

theory of general relativity in 1917137. Einstein wished to develop a theory of cosmology in GR,

but one in which the universe was static and unchanging, a commonly accepted notion at the time.

The idea of a static universe is one in which the universe as a whole is spatially and temporally in-

finite, i.e. it extends forever in every direction and has always existed, and is neither expanding nor

contracting.

Einstein’s version of a static universe is slightly different, allowing the universe to remain tem-

porally infinite yet possess some amount of spatial curvature rendering it spatially finite, which is

called a static eternal universe. This was achieved by adding a positive cosmological constant to his

equations of GR, counteracting the attractive nature of all the matter in the universe. Einstein’s

static universe is one which is closed — it contains a uniform distribution of dust and a positive

uniform cosmological constant. However, the Einstein static universe possessed a lethal property:

it is fundamentally unstable. The cosmological constant must be exactly equal to a specific value.

Should the cosmological constant be even a miniscule amount larger, the universe would undergo

expansion. If it were even a fraction smaller, the universe would collapse. This implies the Einstein

static universe is unstable to small perturbations, rendering it untenable as we know the universe

experiences perturbations everywhere, such as the existence of galaxies, clusters, and superclusters.

The cosmological constant was then abandoned.

The return of the cosmological constant can be divided into four separate stages138. In 1922,

Alexander Friedmann showed that the equations of GR remain valid in the presence of a non-zero

cosmological constant, provided the universe becomes dynamical. Then in 1927, Georges Lemaître

showed that the universe is in fact expanding, combining GR with astronomical observations, in
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particular those of Edwin Hubble in 1929. In the late 1960s, Petrosian, Salpeter, and Szekeres intro-

duced the cosmological constant to explain a peculiar expansion history motivated by quasar data

(though later data removed this particular motivation). Finally, recent observations of supernovae

indicate the cosmological constant is needed after all. The existence of the cosmological constant

has been compounded in recent decades by even more high resolution cosmological and astrophys-

ical observations136. It appears that the cosmological constant is a peculiar requirement in GR to

explain the current view of the cosmos.

1.2.2 Lights in the Dark

The current model of cosmology, one based on copious observational data, is that the universe is

undergoing cosmic expansion and the rate of expansion is increasing. At the level of the Einstein

equations, this can be explained by introducing a universe-spanning energy density. Since the na-

ture of this energy is mysterious and largely unknown, it has been dubbed dark energy. The sim-

plest implementation of dark energy in the Einstein equations is the cosmological constant, a ho-

mogeneous energy density throughout spacetime. Despite the fact that dark energy is exceedingly

sparse, only 10−27 kilograms per cubic meter throughout the universe, current data suggests it com-

poses a staggering 68% of the overall energy content of the cosmos. This suggests that this myste-

rious form of energy could arise from the fundamental properties of empty space itself. In other

words, dark energy could be the energy of spacetime, though this is currently only speculative.

A common explanation of dark energy comes from the realm of quantum field theory. Vacuum

energy is the lowest possible energy state of a quantum field. It turns out that the lowest energy

state of QED is non-zero, implying that there exists a constant and homogeneous amount of energy

associated with the QED vacuum throughout spacetime. Naturally, this provides a seemingly ex-

cellent description of dark energy as it portrays many of the same properties required to explain the

cosmic expansion. The vacuum energy can be explained using the Heisenberg uncertainty princi-

ple, that is, the conjugacy between energy and time. This states that particle-anti particle pairs are

continuously generated and mutually annihilated within a very short amount of time, inversely

proportional to the energy of the particle-anti particle pair. With regards to the dark energy pro-

posal, this means particle-anti particle pairs and their subsequent annihilation are responsible for
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the cosmic expansion. However, there is an error with this prosposal that is so large, it has its own

name — the vacuum catastrophe. When the energy of the vacuum was calculated and subsequently

compared to the observational data for the cosmological constant, the two values differed from

between 50 to as much as 120 orders of magnitude, making it the worst prediction in scientific his-

tory139–143.

Naturally, other explanations for dark energy besides the cosmological constant have been pro-

posed. First and foremost, the observational and theoretical evidence for dark energy are heavily

based on GR itself. It’s therefore conceivable that the classical theory of GR is wrong and another

classical theory would be the more agreeable one, eliminating the need for dark energy. There are

many such theories, in principle an infinite number, differing either in the exact mathematical form

of the theory or in their interpretation of the gravitational interaction.

Another popular interpretation of dark energy is called quintessence. This is popular for two rea-

sons: it introduces a new matter field with very simple behavior and it solves the coincidence prob-

lem. If acceleration occurred too early in the universe, then structures such as galaxies would never

have had the opportunity to occur. Quintessence solves this issue by allowing the density of the

quintessence field to ’track’ the radiation density in the early universe until the matter-radiation

equality, after which the quintessence field starts behaving as dark energy144,145. Quintessence has

neither been suggested by the data nor ruled out. More work, both observationally and theoreti-

cally, will need to be performed to confidently make statements on the viability of quintessence.

1.2.3 What We Know

The current knowledge on the true nature of dark energy is, naturally, extremely limited. The so-

called ’late time accelerated expansion’ of the universe is considered one of the most mysterious as-

pects of the standard cosmological model. In the base Λ-CDM model, the accelerated expansion is

driven by the cosmological constant. This means that in the current standard model of cosmology,

the cosmological constant is a purely phenomenological parameter without an underlying theoreti-

cal basis. Testing the standard paradigm can be carried out by parameterizing models of dark energy

and then constraining those parameters using observational data. For a generic model, this means

taking a particular ansatz for the cosmological equation of state, which is a rough classifier for model
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types. The equation of state is characterized by the ratio of pressure and energy. For the standard

cosmological paradigm, this ratio is generically time-dependent and spatially constant, and hence

denoted by ω(t). The most recent cosmological data suggests that ω(t) = ω0 = −1.028 ± 0.031,

i.e. a time-independent constant slightly smaller than −1. The Λ-CDM model fixes ω = −1 ex-

actly. Hence, current observational data taken from the Planck satellite is in quite good agreement

with the current cosmological model. Models that exhibit ω < −1 are called phantom energy mod-

els and they lead to late-time behaviors characteristic of Big Rip scenarios.

Thus, current observational data is in good agreement with the accelerated expansion of the

universe being driven by a dark energy density which is constant and unchanging throughout the

universe with an equation of state parameter approximately equal to −1. The nature of this dark

energy density is wholly unknown and much more work, both theoretically and observationally,

needs to be carried out to determine precisely what lies at the heart of empty space.

1.3 The Dark Forest

So far, we have discussed the Standard Model, which describes all known material particles in the

universe. Current observations point to the fact that they contribute to about 5 % of all energy in

the universe. We have also discussed the cosmological constant, a particular form of dark energy

which Λ-CDM suggests is the reason for the accelerated expansion of the universe. Current obser-

vations suggest dark energy makes up about 68 % of all energy in the universe. Equally mysterious,

the remaining content is colloquially known as dark matter. Current observations by the Planck

satellite suggest dark matter contributes about 26 % to the total energy content of the universe, five

times more than regular matter. It is a very weakly interacting form of matter that does not fit into

the Standard Model, making it very difficult to detect using laboratory experiments. However, to

our best knowledge, dark matter still interacts via gravitation, the same as all other forms of matter,

making its cosmological impact easy to detect. There is a plethora of candidates for dark matter,

including abandonments of its particle nature and suggesting it’s a new form of gravity. However,

a large body of observational evidence suggests the particle nature of dark matter. In the current

age of the Standard Model, GR, and Λ-CDM, the mysterious nature of dark matter is one of the

greatest challenges in the modern era of physics and cosmology.
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1.3.1 History

The history of dark matter, much like GR, has been one of turbulence146–151. Just a decade after

Einstein introduced his new theory of GR, physicists and astronomers attempted to estimate the to-

tal amount of luminous material in the galaxy152–154. Several scientists observing the data noticed a

discrepancy between the velocity dispersions of the rotating material around the galactic center and

the amount of visible, luminous material comprising the galactic disk155–157.

Figure 1.14: 158Expected orbital speeds of stars in theMilky

Way (A) versus the observed orbital speeds (B). This discrepancy

represents one of the biggest smoking guns for the existence of

darkmatter.

These discrepancies were not particularly prob-

lematic until much later when astronomers

began to observera discrepancy between the

relatively ’flat’ rotation curves of galaxies and

the predicted ’declining’ curve deduced from

the visible material comprising that galaxy,

fig. 1.14. The modern-day acceptance of the

existence of dark matter is owed to the defini-

tive cumulative evidence resulting from two

different branches of astronomy — that of the

high velocity dispersions in clusters and the flat galactic rotation curves. It was not until the 1970s

when the evidence for a yet undetected, invisible, and very weakly interacting form of matter was

sufficient to convince the larger scientific community. Perhaps the most famous observation in

support of the existence of dark matter was performed in 1933 by Fritz Zwicky, who studied the

velocity dispersion of the Coma cluster155,159. Zwicky estimated the mass of the Coma cluster based

on the mass at the edge of the cluster and then again based purely on its brightness. He estimated

that the cluster had about 400 times as much mass compared to what could be seen. The velocities

of the constituent galaxies was too high to explain the amount of visible matter, suggesting some

other matter must be present that is obscured from view, concluding that the bulk of the matter

was invisible. Further evidence for dark matter also came in the form of mass-to-light estimations.

Finally, perhaps in the most influential paper regarding dark matter in history, Vera Rubin and

Kent Ford used a new spectrograph to measure the orbital velocity curves of spiral galaxies with

great accuracy160,161. They studied the orbital velocities of ionized hydrogen clouds in the M31
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galaxy, confirming the presence of invisible matter being responsible for increased orbital veloc-

ities compared to standard predictions from the luminous material. At the same time, radio as-

tronomers were measuring interstellar atomic ionized hydrogen clouds, since these typically extend

much farther than the visible stellar objects. The rotation curves traced using these measurements

further compounded the presence of invisible matter. More studies continued to build a mountain

of evidence in favor of invisible matter.

1.3.2 What We Know

To date, there is a large amount of observational evidence for the existence of dark matter that can

be classified based on the type of data collected. The first are the ones utilized historically, that of

galactic rotation curves and velocity dispersions. These simply use frequency data of the measured

electromagnetic radiation and known astrophysical stellar/galactic processes to measure velocities

of the galactic constituents. These were used by Fritz Zwicky and Vera Rubin in their pioneering

work.

Figure 1.15: X-ray data (pink) collected by the Chandra X-ray

Observatory superimposed over optical data, with thematter

distribution computed using gravitational lensing (blue). The

x-ray data represents the bulk of the baryonic (normal) matter

composing the galaxies, while the gravitational lensing data shows

all thematerial composing the galaxies, providing one of the best

pieces of evidence for the existence of darkmatter.

The second class of observations regard

galactic clusters. These are particularly impor-

tant for dark matter estimations since the mass

distributions of the cluster can be estimated

using several methods. The first is the velocity

of the constituents along the Earth-cluster line-

of-sight. The second is x-ray data emitted by

hot intergalactic gas within the cluster. These

measurements are typically in agreement with

the estimation that dark matter outweighs nor-

mal matter in a ratio of 5 to 1, as suggested by

the cosmological data of Planck162. Besides ro-

tation curve and galactic cluster estimations,

gravitational lensing is also a powerful tool in estimating the mass of a galaxy or cluster. The pri-

mary phenomenon leveraged for these analyses is the fact that dark matter interacts gravitationally
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just like any other matter, allowing it to form a gravitational lens. This effect was capitalized on in

recent decades to provide extremely strong evidence for the existence of galactic dark matter ha-

los 163,164.

The bullet cluster provides one of the strongest and widely popular pieces of evidence in favor

of the material nature of dark matter, suggesting dark matter is a new form of matter and not a

phenomenon associated with an alternative form of gravity, fig. 1.15. The cluster consists of two

colliding clusters of galaxies 3.7 billion light years from Earth. The Chandra X-ray Observatory,

combined with optical data from the Hubble Space Telescope, can image the gaseous components

of the cluster, forming estimations on the total amount of visible material. Gravitational lensing

maps then provide a secondary estimation of the total amount of material and its distribution in

the colliding clusters. Comparing these two observational datasets provides strong evidence for the

existence of material present in the colliding clusters that does not interact with the electromagnetic

spectrum.

Cosmological data provides another powerful avenue to probe the dark sector of the universe.

Since dark matter behaves differently than normal matter, the CMB will show different imprints

depending on the nature of the material. The small-scale differences in the temperature of the CMB

can be utilized to measure the density of dark matter165.

There are several other methods to measuring cosmological and astrophysical distributions of

dark matter, including Type 1a supernovae, redshift-space distortions, and the Lyman-alpha forest.

All these methods are in agreement with the Λ-CDM cosmological model, providing evidence for

the material nature of dark matter.

1.3.3 Candidates and Experiments

Since the true particle nature of dark matter has yet to be confirmed, and with little evidence in

the way of any one model, there have been many candidates suggested over the years, and several

have had large, expensive detectors built to find them. The types of candidates suggested originate

from almost all of fundamental physics, including new, undiscovered particles beyond the Standard

Model, extra dimensions, black holes, and even new forms of gravity.

With regards to new particles, these candidates can be split into two broad categories: baryonic
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Figure 1.16: 166 Different types of darkmatter candidates as a function of mass. The little knowledge on the true nature of dark

matter translates to a huge uncertainty in themass of the theoretical particle ranging from several times themass of the sun, in the

case of black holes, to ten trillion trillion times lighter than a proton.

and non-baryonic. The baryonic candidates are those which are composed of baryons, such as neu-

tron stars, burnt-out dwarfs and other massive objects. These are collectively called MACHOs, or

Massive Compact Halo Objects. These were initially the most popular candidates, since they pro-

vide a simple explanation167,168. However, these types of candidates have largely run out of favor

due to lack of evidence for such a high amount of baryonic matter in the early universe.

Non-baryonic matter is currently the most favored candidate for dark matter and can be repre-

sented in two large classes: hypothetical new particles and primordial black holes. The most popu-

lar hypothetical particles are the Weakly Interacting Massive Particle (WIMP), the axion, sterile neu-

trinos, the dark photon, and supersymmetric particles. Most of these particles have well-motivated

production mechanisms, making them good candidates for dark matter.

The First Black Holes

Primordial black holes are an interesting candidate since they have a fairly simple production mech-

anism and are quite distinct from the elementary particle candidates. Primordial black holes (PBH)

are black holes that were formed in the very early universe when the causal structure of spacetime

was rapidly changing. Their accepted formation scenario is that they were formed when certain re-
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gions in the random density fluctuations of the inflationary epoch and early photon era underwent

gravitational collapse. Since their formation pre-dated the standard stellar formation era, they could

in principle form with a much wider mass range, even in the subatomic mass scales. This means

PBHs could be in existence today that have the mass of our moon, the sun, or an asteroid and they

could be moving at enormous speeds169.

There are several possible ways their existence could be inferred using observations. The first is

via direct observation of the radiation emitted during their evaporation via Hawking radiation. A

second detection mechanism is via temperature fluctuations in the CMB, since PBHs would affect

the energy distribution in the CMB. The third avenue for detection relies on the assumption that

PBHs only account for a fraction of the total dark matter, and the rest in the form of some sort of

fundamental particles. This would imply the particle dark matter could accumulate around the

PBHs and, provided the particle dark matter undergoes some sort of annihilation, be detectable

as a radiation-emitting halo. PBHs could also form binary systems with themselves, leading to po-

tential gravitational wave observations in the near future when the LISA telescope begins its data

collection phase.

Current observations for PBHs come from the NASA Fermi Gamma-ray Space Telescope, Planck

space observatory, and LIGO/Virgo. Near future observatories that could conceivably constrain

the PBH mass range are the Square Kilometer Array, gravitational wave observatories such as the

Laser Interferometer Space Antenna (LISA), pulsar timing arrays, the Vera C. Rubin Observatory,

very large arrays, and other electromagnetic observatories.

Cleaning Up the Standard Model

Axions are another very common candidate and are part of a larger class of particles called WISPs,

or weakly interacting sub-eV particles. This is a generic acronym for particles that interact, as the

name suggests, only very weakly with all other matter. The neutrino is a non-dark matter example

of a WISP. The axion has quite a long history, being originally postulated independently of the

dark matter hypothesis. They were suggested as a possible resolution to the so-called strong CP

problem in QCD, which is the question of why QCD preserves a certain kind of internal symme-

try, called charge-parity symmetry170. This is where the name ’axion’ derives from, being named
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by Frank Wilczek after a cleaning detergent. In 1977, Roberto Peccei and Helen Quinn postulated

a mechanism nowadays called the Peccei-Quinn mechanism which naturally solves the strong CP

problem by introducing a new particle, now called the axion. QCD effects in the early universe

cause a large cosmological population of axions171–173. Within a certain range of the axion param-

eter space, these cosmological axions could account for dark matter174,175. This makes the axion a

very promising candidate for the dark matter particle, due to the fact it both solves the strong CP

problem and is an excellent explanation for cosmological dark matter.

However, as is usual for dark matter candidates, searching for axions via direct detection is ex-

tremely challenging. Not only does the axion interact very weakly with the Standard Model, it

is also extremely light. Nonetheless, the presence of the axion modifies the Maxwell equations

of electromagnetism. This implies the axion can convert to photons and hence be measured as

an excess of electromagnetic energy. This is the idea behind the Axion Dark Matter eXperiment

(ADMX)176–179. The experiment uses a resonant microwave cavity that searches for axion-to-

photon conversion of axionic dark matter in the local galactic halo. Thus far, the experiment has

only produced null results. However, continuous upgrades and searches could reveal an electro-

magnetic excess. Besides terrestrial searches, helioscopes are another avenue for axion detection

since axion conversion could be stimulated by the strong solar magnetic fields. They could also be

generated in the extremely high magnetic field in the magnetosphere of neutron stars. Astronom-

ical imaging, such as imaging of the M87 core by the EHT collaboration, is also used to constrain

the axion parameter space.

A Dark Matter Miracle?

The Weakly Interacting Massive Particle (WIMP) is one of the most popular dark matter candi-

dates. There is no formal definition of a WIMP, other than the fact that it acts gravitationally and is

at least as weak as the weak force. Many different WIMP candidates are expected to be produced in

the early universe. For the correct dark matter abundance today, the WIMP must have a mass in the

range of 100GeV
c2

180. Certain extensions of the Standard Model, called supersymmetric extensions,

naturally predict the existence of a new particle in this mass range.
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Figure 1.17: 181 Limits on theWIMP parameter space constrained

by various direct detection experiments.

This apparent coincidence was an exciting pre-

diction and was called the WIMPmiracle182.

WIMP-like particles are also predicted by mod-

els that include universal extra dimensions.

There are many experiments underway hop-

ing to discover a WIMP. Indirect observations

aim to discover WIMP annihilation signals or

decay products. These usually will occur in

overdense regions of dark matter halos, such

as those around galactic centers, clusters, and

even black holes. Halos that form around bi-

naries would alter the waveform of the gravi-

tational wave radiation, allowing gravitational wave observatories to search for WIMPs alongside

other channels. Typical indirect searches look for gamma ray radiation excesses, whose spectral sig-

nature depends on the specific model of the WIMP. This allows telescopes such as the Fermi-LAT

gamma ray telescope or the VERITAS ground-based gamma ray observatory to place constraints

on the WIMP parameter and model space. Future observations from the IceCube Neutrino Obser-

vatory may also constrain the WIMP mass. Similar to axion helioscopes, WIMPs interacting with

solar photons could also be measured.

Direct detection schemes are also underway. These cover a large range of different detection

schemes, such as cryogenic crystal detectors, scintillators, bubble chambers, and time projection

chambers. To date, there have been no detection confirmations.

The Dark Photon

The dark photon is another interesting dark matter candidate, owed in part to its curious origina-

tion beyond the Standard Model, its various production mechanisms, and the implications of its

existence. The dark photon is a new force carrier beyond the usual four that interacts very weakly

with electrically charged matter 183,184. The existence of such a new force carrier is quite ubiquitous

in new physics scenarios. These new forces are said to reside in a hidden sector, a portion of the the-
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ory that very weakly interacts with the rest of the model, within which particle-type dark matter

resides. There are many different ways the dark photon could couple to the Standard Model, each-

ing giving rise to a new model.

Mass for the dark photon can naturally arise in several scenarios. It could manifest via a Higgs

mechanism, similar to the Standard Model matter sector185–188. This mass production mechanism

could produce masses in the MeV-GeV range, often utilizing some form of supersymmetry. How-

ever, much smaller masses are possible using a Stückelberg mechanism, which is a theoretical tech-

nique to restore some sort of symmetry to a vector theory (such as the dark photon theory) that

otherwise is devoid of it. The use of the Stückelberg mechanism has particular relevance in large

volume string compactifications with branes, a concept from string theory189,190. The amalgama-

tion of these various models lead the dark photon mass range to span from the meV scale to the

TeV scale. Besides coupling to the electromagnetic sector of the Standard Model, the dark photon

can also couple to the weak sector, colloquially called the ”dark Z”, due to its coupling to the Z bo-

son.

Technically, there exist two different kinds of dark photons. The first is massless and cannot in-

teract directly with any of the Standard Model particles. The second is the massive kind that can

couple directly to the Standard Model sector. The mass of the massive dark photon covers the

enormous range that was just discussed, from meV to TeV scales. However, this mass parameter

space can be split into two separate regions, centered around 1 MeV, which is twice the mass of the

electron, the lightest Standard Model particle191. The dark photon is said to be visible if its mass

is greater than 1 MeV, since it can decay into Standard Model charged states which leave a distinct

signature in detectors. However, the dark photon could also decay into dark sector states, provided

those states are light enough. If the dark photon mass is less than 1 MeV, then it can no longer de-

cay into Standard Model particles and its decay products are hence invisible. The searches for these

dark photons rely on searching for energy deficits in astrophysical processes like stars or in direct

search schemes.

Collider experiments are also able to search for dark photon productions. These include search-

ing for meson decays, bremsstrahlung, and annihilation signals. Data collection at the LHC and

SLAC provide precise experimental data that further constrains the allowable mass range for the
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dark photon. For the mass range less than 1 MeV, atomic and nuclear experiments provide further

constraints. They aim to detect modifications of the Coulomb force due to the presence of a dark

photon. Additionally, corrections to the atomic energy levels of the hydrogen atom translate into

bounds on the dark photon parameters. Further, searches for axion and axion-like particles can be

translated into constraints on the dark photon parameter space. For example, the experimental data

from ADMX has been leveraged to place additional bounds192.

Figure 1.18: Superradiant build-up of amassive dark photon cloud

around a rapidly spinning black hole. This imagewas generated

using a numerical evolution of the dark photon equations of

motion on a Kerr black hole. The finite grid onwhich the dark

photonwas calculated is visible as a hierarchy of boxes.

Astrophysical processes also allow further

constraints on the dark photon parameter

space, opening the door for gravitational wave

observatories to behave as cosmic particle de-

tectors193–199. A common scenario discussed in

the literature in these searches is that of super-

radiance. This is a process by which a matter

field surrounding a spinning black hole, like

a Kerr black hole, undergoes a rapid instabil-

ity, causing the matter field to absorb energy

from the black hole and grow exponentially200.

The growth of the field will eventually saturate,

leading to the formation of a cloud around the

black hole, fig. 1.18. If these clouds form in binary systems, they can modify the orbital dynamics

and resulting gravitational radiation, leading to possible detection scenarios for gravitational ob-

servatories. Since the instability develops by channeling energy from the black hole into the matter

field, statistical studies can be done on black hole populations, and measure the statistical distribu-

tions of mass and spin of the black holes. With a fine enough model for the statistical distributions

of ’naked’ black holes, the presence of dark photon clouds could be statistically determined. Follow

up searches could then be utilized for individual black hole systems to look for the clouds directly.

One of the major studies performed in this thesis pertains to detecting such superradiant clouds

using extreme mass-ratio inspirals and detecting the gravitational radiation with the LISA mission.

All details on this study are covered in Section 2.
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Figure 1.19: 181 Limits on the dark photon parameter space from various channels, including astrophysical and collider types.

The implications of a dark photon discovery would be immense. This would imply not only a

possible detection of dark matter, but could also imply an entirely new force carrier in nature that

lies beyond the Standard Model201.

1.4 Heavy Photons and Beyond

The Standard Model of particle physics can be mathematically described by a single Lagrangian,

fig. 1.3. Adding new fields to the Standard Model, such as the dark photon, amounts to adding new

mathematical terms to the Standard Model Lagrangian. The type of terms that are added and their

mathematical nature depends on the specific model of dark photon under consideration. In math-

ematical terms, adding a new dark photon to the Standard Model is accomplished by adding a new

U(1) gauge field*. The Standard Model photon, responsible for the electromagnetic interactions,

is a type of U(1) gauge field. For the case of a massive dark photon, various mechanisms exist for

*U(1) is a type of very simple symmetry inherent to the dark photon, which can be thought of as a type of rota-
tional symmetry. A gauge field is a type of field that possesses certain types of invariances under localized transforma-
tions 202.
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generating mass for the gauge field, which explicitly breaks the U(1) symmetry. These could be the

Higgs mechanism or a Stückelberg mechanism, depending on the specific model203.

The most popular basic model for the dark photon can be represented by the so-called Proca La-

grangian, fig. 1.20.

Figure 1.20: The Proca Lagrangian describes amassive vector

field.

The Proca theory can be traced back to

Alexandru Proca’s 1936 paper where he in-

troduces a massive alternative to the standard

wave equation204. Later refinements showed

that this new vector equation is the result of

a massive spin-one force carrier, i.e. a massive

photon205. The two phenomenologies of the

photon and this new massive photon hence,

will be very different. For example, since the Proca field is massive, it will now propagate an addi-

tional degree of freedom.

If the photon itself were massive, the simplest model for the new electrodynamics would be the

Proca theory. The most common theory for the massless photon is, of course, the Maxwell electro-

dynamics, however it’s conceivable that the photon mass is miniscule. If the photon were to carry

mass, the speed of electromagnetic waves would develop a frequency dependence. Other effects

would also be apparent, such as modifications to the Coulomb law. High precision tests using hol-

low conductors have placed an upper bound on the mass of the photon ofm ≤ 10−14 eV
c2

206. Astro-

physical processes can also place a limit on the photon mass. For example, experiments designed to

detect effects caused by the galactic vector potential have placed extremely small upper bounds on

the photon mass. The main idea is that the additional mass term in the Proca Lagrangian, fig. 1.20,

would affect the galactic plasma207. The generation of magnetoacoustic waves in the galactic plasma

cannot have frequencies lower than a certain critical frequency which depends on the mass of the

photon. The lack of observation of a lower frequency bound has placed limits on the photon mass

ofm < 3 ∗ 10−27 eV
c2

, which is tremendously smaller than the terrestrial experiments. These sharp

upper limits from the non-observation of effects generated by the galactic potential are model-
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dependent 208. If the photon mass is generated by the Higgs mechanism, the upper limit ism ≤

10−14 eV
c2

from the Coulomb law experiments.

1.4.1 Going Above and Beyond

More recent proposals attempt to generalize the Proca theory to include additional interactions

that extend the standard Proca terms. Such theories go by the name of generalized Proca theo-

ries209,209,210. The approach to generalizing the Proca theory is to include additional derivative self-

interactions, which are carefully chosen to preserve the three degrees of freedom of the Proca field.

The motivation for these new interactions extends beyond previous extensions to electromagnetic

theories. Generalizing the standard Einstein equations to include additional degrees of freedom

could reconcile the dark energy problem. Introducing these new modes of the field could give rise

to a late-time acceleration of the universe, circumventing the need for a cosmological constant211.

It has been shown that a subsector of the full generalized Proca theory can give rise to de Sitter so-

lutions, solutions that possess a positive cosmological constant. It has also been shown that the full

generalized Proca landscape generically gives rise to de Sitter solutions. This implies that generalized

Proca models can explain the late-time accelerated expansions of the universe without invoking a

mysterious energy content.

Generalized Proca theories have also been studied in the context of black hole solutions212–215.

These solutions will be important in searching for astrophysical signals of generalized Proca fields,

for example in gravitational wave signals, dynamical friction of black holes through dark matter

halos, etc.

Recent studies have uncovered an interesting issue that arises when generalized Proca fields are

allowed to evolve on spinning black hole backgrounds216–220. Particular cases of generalized Proca

theories have been studied on both flat spacetime and Kerr black holes, which have shown that the

temporal evolution of the field equations cease to be well-defined after some point in the evolu-

tion. This can be traced back to a breakdown in the field equations themselves. This implies that

the generalized Proca model is ill-defined and hence would not be a viable candidate for dark matter

systems. These studies themselves are limited in their scope, since they don’t include the backreac-

tion of the Proca field on spacetime which, by the Einstein equations, would modify the dynamics.
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Nonetheless, this suggests that some models within the generalized Proca landscape are intractable.

Further details on this problem will be elucidated in appendix C.

The landscape of generalized Proca theories could harbor solutions to some of physics largest

problems, including the nature of dark energy and dark matter. However, theoretical issues still

exist that must be well understood in order to narrow down the theories that have astrophysical

relevance. Much more work is still needed to determine which class of generalized Proca theories, if

any, could solve the biggest problems in physics.

1.5 Probing the Universe with the Computer

The fundamental equations of GR are the Einstein equations. In order to make predictions about

astrophysical processes, the Einstein equations are the most widely used equations that predict the

trajectories of matter and shapes of astrophysical objects. The fundamental object that describes the

’shape’ of spacetime is the metric. Given a particular distribution of matter, the Einstein equations

will dictate what the shape of spacetime is. Equivalently, given a particular shape of spacetime, the

Einstein equations will dictate how the matter will move. The famous aphorism in regard to this is

given by John Archibald Wheeler: ”Spacetime tells matter how to move and matter tells spacetime

how to curve”.

Figure 1.21: The Einstein equations written out in terms of the

metric. Themetric gµν is a four-by-four symmetric matrix, so the
Einstein equations are a set of ten partial differential equations,

each equation a highly non-linear expression. The symbolTµν

denotes the energy andmomentum of thematter field. In a

vacuum,Tµν = 0.

However, compared to the aged Newtonian

theory of gravity, the Einstein equations are

vastly complex, fig. 1.21. They consist of ten

non-linear partial differential equations that

must be solved with appropriate boundary

conditions. Further, if matter fields are present

in the spacetime, the equations of motion for

the matter fields must be solved in tandem with

the Einstein equations, increasing the complexity several times. Only a handful of exact solutions

to the Einstein equations are known. The list of astrophysically relevant solutions is even smaller.

These solutions usually leverage certain symmetries or algebraic properties in order to simplify

the equations. For example, the Kerr black hole uses rotational symmetry in a vacuum while the
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Reissner-Nordström black hole assumes complete spherical symmetry in the presence of an electro-

magnetic field. However, most astrophysical processes are extremely dynamical and, hence, usually

do not possess nearly as many symmetries, making it difficult to develop astrophysically relevant

exact solutions.

The usual recourse for developing solutions to astrophysical problems is to resort to either ap-

proximations or numerical methods. Approximations can be very powerful in their predictive

power, such as the Teukolsky master equation221. The most powerful method utilized today to de-

velop highly accurate solutions of the Einstein equations is leveraging computational power to solve

them. This is the vast field of numerical relativity. Due to the extreme complexity of both the astro-

physical environment and the Einstein equations themselves, supercomputers or high-performance

computing clusters are often deployed for solutions.

Numerical relativity covers almost all aspects of astrophysics and cosmology, including black

hole perturbations, neutron stars, merging astrophysical objects in binaries, and cosmic evolution

models. There is quite some freedom in choosing the exact form of the Einstein equations, thanks

in part to the covariant nature. All methods of solving the Einstein equation must solve two broad

problems. The first is initial data, which must be carefully chosen so as to be consistent with the

Einstein equations. The second is the temporal evolution of the metric field. These two problems

require different methods. The first, choosing suitable initial data, requires either an intelligent

guess or solving elliptic constraint equations. The second is purely numerical and requires solving

hyperbolic equations.

1.5.1 History

The field of numerical relativity emerged from the desire to study more general solutions of the Ein-

stein equations that are not tractable analytically. A widely enforced precondition for numerical

solutions of the Einstein equations is a mathematical decomposition of spacetime back to sepa-

rated space and time*. The first such formalism can be traced back to the late 1950s to the work of

Richard Arnowitt, Stanley Deser, and Charles W. Misner, which is nowadays known as the ADM

formalism222. However, for technical reasons, the exact form in their original paper of the decom-

*There are also techniques that do not perform this split.
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position isn’t usually used anymore, instead opting for the ”3+1 formalism”, which decomposes the

four-dimensional spacetime into three dimensions of space and one dimension of time.

At the time the ADM decomposition was published, computational power was insufficient to

handle the task of performing numerical computations. The first documented case of attempts to

numerically solve the ADM equations appears to be in 1964 by Susan Hahn and Richard Lindquist223.

These early attempts were focused on evolving simple rotationally symmetric data. Around the

same period, Tsvi Piran wrote one of the first codes to evolve a system containing gravitational radi-

ation in a cylindrically symmetric system224. This body of work set the groundwork for many con-

cepts still in use today in solving the ADM equations, such as ’free evolution’ versus ’constrained

evolution’. These two different approaches deal with the constraint equations present in the ADM

formulation in different ways. Additionally, applying symmetry to the problem reduced the com-

putational power and memory requirements, allowing the code to run on available supercomputers

at the time.

The earliest realistic results were carried out in the 1980s by Richard Stark and Tsvi Piran225,

when they calculated the gravitational radiation produced from the formation of a rotating black

hole. These results stood among the very few numerical relativity results for nearly 20 years, owing

to the vast computational power required. Then, in the 1990s, the Binary Black Hole Grand Chal-

lenge Alliance successfully simulated a head-on binary black hole collision. In the post-processing

stage, they computed the event horizon, although still imposing an axisymmetry of the system226.

The earliest work to solve the Einstein equations in full three-dimensional space focused on a sin-

gle spherically symmetric black hole, since this provides an excellent test of the numerical method.

First, it’s a numerical solution of an already exactly known solution, so the accuracy of the numer-

ical method can be determined by simply comparing it to the known exact solution. Second, it

contains one of the most challenging features of GR to numerically handle, the curvature singu-

larity. In the following years, two key advances greatly aided the numerical relativity community

— the advancement in computational power and new theoretical tools to improve the simulation’s

efficiency. In regard to black hole spacetimes, two theoretical concepts were developed to aid the

handling of the physical singularity, the idea of ’excision’ and the ’puncture’ method. Additionally,

adaptive mesh refinement techniques were introduced into the numerical relativity field.
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Figure 1.22: 227 Example of excision of a black hole singularity on

the computational grid of the simulation.

The idea of excision is quite simple — dur-

ing the course of the simulation, continuously

cut out a portion of the spacetime within the

horizon, fig. 1.22. This resolves the issue of

handling the physical singularity at the center

of the black hole. This idea was developed in

the late 1990s by Miguel Alcubierre and Bernd

Brügmann 228. The main reason this works and

does not contaminate the rest of the spacetime

with noise is because causality prevents information from escaping the event horizon. Thus, errors

that could accumulate at the excision boundary will not contaminate the region outside the event

horizon, which is the most physically interesting. The main issue with these implementations is

twofold. First, while physical information will not escape the event horizon, co-ordinate informa-

tion could, for example, if the co-ordinate data was elliptic. Second, as the black hole moves, the

excision zone will need to move in tandem. Thus, the simulation will need to continuously track

the location of not only the singularity, but also determine the location of the horizon, a highly

non-trivial task. The first stable, long-term evolution of the orbit and subsequent merger of two

black holes using the excision method was in 2005229.

The puncture method is markedly different from the excision method in that no removal of the

singularity throughout the simulation is required. Instead, the analytic part of the solution that

contains the singularity is factored out230. Until 2005, all published usage of the puncture tech-

nique required fixing the singularity to a specific co-ordinate location throughout the entire sim-

ulation. Since black holes tend to move under the influence of their mutual mass, this caused the

co-ordinate grid to become twisted and deformed, resulting in instabilities.

Finally in 2005, a breakthrough occurred, resulting in the year being called the annus mirabilis

of numerical relativity. A group of researchers demonstrated that a specific choice of co-ordinate

conditions along with intelligent choices for the behavior of the singularity, they demonstrated the

ability to allow the singularity, or ’puncture’, to move throughout the co-ordinate system. This al-

lowed numerical solutions for two black holes orbiting each other to be obtained, as well as accurate
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extraction of the gravitational radiation emitted by the binary. This was a remarkable achievement,

demonstrating a huge leap forward in the numerical relativity community, allowing accurate mod-

els of strong gravitational events to be developed.

Adaptive mesh refinement (AMR) is another concept that greatly increased the efficiency and

accuracy of numerical solutions, which was borrowed from computational fluid dynamics. Mesh

refinement first appeared in the 1980s, thanks to the work of Choptuik in his studies of critical

collapse of scalar fields231. The first studies were performed in one dimension and later extended

to two232. AMR has also been applied to cosmological studies. In today’s active field of numerical

relativity, AMR is a widely used technique and has been applied to compact object mergers and

simulations of the resulting gravitational radiation233,234.

1.5.2 Complexities and Challenges

The field of numerical relativity deals with many challenges that range over two broad disciplines,

mathematical relativity and computer science. The challenges faced in mathematical relativity are

theoretical challenges that pertain to the causal structure of the problem at hand, co-ordinate dif-

ficulties, and well-posedness of the evolution equations themselves. The difficulties faced on the

computational side include developing fast code, computer memory handling, and all the chal-

lenges brought by parallelization. The solutions to these issues took several decades of intense work

to amend, or in the case of computational power, waiting for more advanced processors and com-

putational methods to be built.

Understanding each individual challenge is vital to developing highly efficient and parallelizable

code that can fully leverage the latest computing technology.

1. Complexity and Nonlinearity of the Evolution Equations

• Nonlinearity: The Einstein field equations are extremely nonlinear, meaning that small

perturbations in the initial data for solutions or parameters can lead to large variations

in the final state. These nonlinearities make finding stable solutions difficult.

• Coupling of Equations: The Einstein equations themselves are a system of coupled

partial differential equations, where one solution depends on the solution of another.

This system makes finding numerical solutions arduous.

44



2. Dimensionality and Computational Cost

• High Dimensions: The fundamental structure of spacetime is a four-dimensional

manifold. This means numerical simulations often need to be performed in a three-

dimensional space and evolution through time, requiring significant computational

resources. Leveraging symmetries in the problem allows one to reduce the dimensional-

ity of the simulation or reduce the size of the computational grid.

• Resolution and Scale: High resolution is vital to capture fine detail, especially near

strong gravitational sources where the metric is changing rapidly, like near a black hole.

This leads to a large number of grid points and a high computational cost, vastly in-

creasing processor and memory requirements.

3. Stability and Accuracy

• Numerical Stability: Ensuring numerical stability over long simulations is a challenging

art. Instabilities can arise from the discretization methods or from inherent dynamics

of the system. Tracking the origin of these instabilities and whether they arise from the

numerical method or from the system itself is vital to ensuring accurate simulations.

• Accuracy: Maintaining high accuracy is crucial for long-term stability of simulations.

This is especially true for extreme conditions, such as near the event horizon or singu-

larities. Small numerical errors can grow over time, tarnishing the simulation.

4. Constraint Equations

• Constraint Preservation: The Einstein equations are a constrained system, meaning

there are constraints in the equations that must be satisfied at all times. Violations of

constraints imply the simulation is no longer solving the Einstein equations. Numeri-

cally ensuring that these constraints remain satisfied throughout the entire simulation

is formidable and several different schemes have been developed to handle this chal-

lenge.
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5. Boundary Conditions

• Artificial Boundaries: Simulating an entire spacetime is an extremely complex under-

taking and only recently have efforts been made in this direction. Almost all simulation

software actively utilized in research employs a finite computational domain, requiring

artificial boundary conditions at the outer edges. Choosing the appropriate boundary

conditions, which is a highly system-dependent choice, is vital to ensure unphysical

reflections or inaccuracies are not present at the boundaries.

• Asymptotic Boundaries: For systems such as black hole mergers, an ideal boundary is at

infinity, however this is impractical since this would either require an infinite number

of grid points or an entirely new computational method. This approach is still in its

infancy.

6. Singularities and Black Holes

• Spacetime Singularities: Singularities, such as those within a black hole, pose a tremen-

dous numerical challenge. Many computational quantities tend to diverge near this

point, hence methods to numerically handle them are vital for stability. Techniques

such as excision or puncture methods are used, but these come with their own com-

plexities.

• Event Horizons: Accurately locating and evolving event horizons is crucial for black

hole simulations. Typically, a high resolution near the event horizon is required for

long-term stability and accuracy. However, locating event horizons is difficult due

to their dynamical nature, especially in binary systems. Searching for event horizons

greatly increases computational complexity and cost.

7. Gravitational Waves

• Extraction of Gravitational Waves: Extracting and interpreting gravitational wave data

from numerical simulations requires precise techniques and is sensitive to numerical

errors. Overcoming these difficulties is crucial for developing accurate templates for use

in gravitational wave detection, such as LIGO, VIRGO, and the future LISA mission.
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• Wave Propagation: Accurately modeling the propagation of gravitational waves over

large distances is computationally demanding, especially in the presence of matter.

Typically, integrations of quantities over discretized surfaces are required to compute

waveforms, further reducing precision. Maintaining a high precision for waveform

modeling comes at a high computational cost.

8. Initial Conditions and Physical Modeling

• Realistic Initial Conditions: Setting up realistic and physically accurate initial con-

ditions for simulations, such as those representing inspiraling neutron stars or black

holes, is an artform due to its high difficulty. Entire software toolkits have been devel-

oped just to handle the task of developing initial data. Highly accurate initial data is

vital for long-term stability and accuracy of simulations, especially for methods that do

not employ constraint violation damping.

• Matter and Fields: Including additional physical elements such as matter, electromag-

netic fields, and other fields introduces further complications and increases computa-

tional complexity. These additional elements typically come with their own evolution

equations, stability requirements, and initial data. Adding such elements to a simula-

tion vastly increases computational complexity and cost.

9. Computational Resources

• High Performance Computing: The need for significant computational resources of-

ten requires access to high-performance computing clusters, typically requiring aca-

demic standing. Managing and optimizing these resources is a challenge and is typically

specialized to each facility. Moreover, each computing cluster runs their own type of

processors, schedulers, and login procedures, making optimizing simulations for these

architectures arduous.

• Parallelization and Efficiency: Efficient development of software to run on modern

multi-core and distributed computing systems is essential but technically demanding.

To generate efficient code typically requires additional knowledge about modern pro-

cessor architecture, parallelization libraries, and resource management.
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These challenges make numerical relativity a slowly growing area of gravitational research, some-

times taking several decades to satisfactorily overcome them. Nonetheless, advancements in com-

puter science, manufacturing and processing, and theoretical methods has led to groundbreaking

discoveries in gravitational research. This makes the task of overcoming these challenges deeply re-

warding.

1.5.3 Current Programs

To date, there are many different numerical relativity toolkits available. Each one tackles different

challenges and physical systems.

• Einstein Toolkit235: The Einstein toolkit is a comprehensive collection of software compo-

nents and tools for simulating and analyzing relativistic astrophysical systems. It has been

used to simulate binary black hole systems, neutron star mergers, gravitational wave genera-

tion, and other relativistic astrophysical phenomena.

• Spectral Einstein Code (SpEC)236: The SpEC code is a flexible, multi-domain spectral solver

for partial differential equations. It has been used to simulate gravitational radiation emis-

sion, horizon topologies, and binary evolution.

• Bi-functional AdaptiveMesh (BAM)237: The BAM code is a closed-source code that special-

izes in binary black hole simulations, neutron star processes, and binary neutron star mergers.

• Numerical Relativity in Python (NRPy+)238: NRPy+ is a python package that aims to accel-

erate the encoding of differential equations into high performance software. Alongside the

”Simple, Efficient Numerical Relativity Code” (SENR), they form a fully-functional, highly

parallelized numerical relativity code written in the C programming language. It has been

used for binary black hole simulations, as well as gravitational waveform modeling.

• GRChombo239,240: GRChombo is a new open-source NR code written in the C++ program-

ming language and uses hybrid MPI and OpenMP parallelism, alongside vector intrinsics. It

uses an adaptive mesh refinement library that allows it to dynamically adjust the numerical

grid resolution based on pre-defined metrics. It has been used in many areas, including early

universe cosmology, astrophysics, and mathematical GR.
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• Langage Objet pour la RElativité NumériquE (Lorene)241: LORENE is a code written in

the C++ programming language that uses spectral methods to solve partial differential equa-

tions. It has been used in the simulation of modified gravity theories as well as neutron stars.

• AdaptiveMesh Spectral Scheme (AMSS-NCKU)242,243: AMSS-NCKU uses characteristic

evolution to solve the Einstein equations and has been used to study binary black holes, mul-

tiple black hole systems, and black holes in modified gravity theories.

There are many more NR libraries that tackle different physical systems, such as cosmological

systems and hydrodynamical evolutions, with too many to list. The large number of NR libraries

is tantamount to the complexity of numerical solutions of the Einstein equations. There are many

challenges one is faced with when pursuing numerical solutions.

The GRChombo library will be further explained in Section 3, where it was used to build a new

library dedicated to numerical solutions of generalized Proca theories.

1.6 Outline

The rest of the thesis is divided into three pieces. Section 2 will detail a study of a standard Proca

field on a spinning black hole. The solutions found in this study will be applied to extreme mass

ratio inspirals to determine the viability of the LISA mission to detect such Proca clouds using the

gravitational wave information. Section 3 will go into details about a new numerical relativity li-

brary built during this thesis that is dedicated to studying generalized Proca fields on arbitrary fixed

backgrounds. Finally, Section 4 applies the new library to the case of a standard Proca field on a

Kerr-de Sitter background.
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The important thing is not to stop questioning. Curiosity

has its own reason for existence. One cannot help but be

in awe when he contemplates the mysteries of eternity, of

life, of the marvelous structure of reality. It is enough if

one tries merely to comprehend a little of this mystery each

day.

Albert Einstein

2
Proca on Kerr

The advent of gravitational wave astronomy has brought forth a plethora of avenues to

study a wide range of physical phenomena, including fundamental physics. The coupling of gravity

to all fundamental particles allows for the study of fundamental fields in the proximity of a strong

gravitational field, such as coalescing compact objects. These studies have already placed stringent

limits on the allowed parameter space of some physical theories244–249. Current GW observato-

ries such as LIGO250, Virgo251,252, KAGRA 253,254; future missions such as LISA255,256, Einstein

Telescope257, Cosmic Explorer258,259, DECIGO 260,261; and indirect detectors such as pulsar timing

arrays, for example EPTA262,263, NANOGrav264,265, and the PPTA266 are thus invaluable tools to

study fundamental physics. They shed light on the accuracy of theoretical models of strong gravity,

but they can also potentially ameliorate current big problems in physics such as the nature of dark
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matter and dark energy. In the scope of astrophysical and fundamental research, they are extremely

powerful tools.

The LISA mission in particular, operating in the millihertz frequency range, offers a unique ca-

pability to answer fundamental questions. These range from probing the dynamics of extreme mass

ratio inspirals (EMRIs) to studying the expansion of the universe267. The EMRI scenario has par-

ticular interest due to the long timescale for which the system remains in the strong gravity regime.

Moreover, the wide difference in their respective masses translates to a wide difference in the curva-

ture of spacetime they generate, fig. 2.1.

Figure 2.1: 268 An EMRI system represented graphically by the

curvatures they generate.

The substantial gap in masses implies the cen-

tral super massive black hole (SMBH) can be

treated as generating a Kerr geometry on which

the secondary compact object acts as a perturb-

ing particle. This approximation drastically

simplifies estimation techniques for the gravita-

tional waveform, without requiring an appeal

to full numerical relativity269–271.

The most common formation mechanism

of EMRIs is thought to occur by gravitational

capture of a stellar mass compact object onto a highly eccentric orbit272–275. These captures are

thought to happen as a result of two body relaxations of the objects where an object is deflected to

an orbit around the SMBH with a small pericenter distance. Eventually, emission of gravitational

waves (GWs) will reduce the eccentricity to more circular values. Only compact objects such as stel-

lar mass black holes (BHs), neutron stars, white dwarfs or helium cores of giant stars can produce

detectable extragalactic EMRI signals. Less compact or lighter objects such as main sequence stars

either cannot withstand the tidal forces of the SMBH or are not massive enough to produce suffi-

ciently strong GWs. Other less common formation scenarios exist such as tidal separation of bina-

ries, Bondi-like capture of passing objects, separation of a massive star’s core from its envelope, and

compact object formation in accretion disks around the SMBH276.
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2.1 Motivation

The timescale with which the secondary BH experiences relativistic orbital velocities suggests EM-

RIs will be a prime target for performing a litany of tests of GR, study environmental affects around

SMBHs, and enabling high precision estimation of the physical parameters of the system, such as

redshifted masses and black hole spins267,277,278. The high precision measurements of massive black

holes (MBHs) and EMRI properties allows a remarkably precise test of many theories, including

the predictions of new fundamental fields outside the Standard Model.

Such fundamental fields include the predicted dark matter particle. Dark matter candidates cover

a wide range of predicted mass values, depending on the underlying theory. Some models predict

the dark matter particle to have a mass as low as 10−22eV 279, so-called fuzzy dark matter, and as high

as (sub-) solar masses in the form of primordial black holes280. One model for dark matter includes

the dark photon, which can be extremely light,m ≳ 10−22eV 281, and behaves as non-relativistic

matter.

Near future constraints on the couplings of the dark photon to the Standard Model will come

from GW measurements, for example from black hole superradiance197,282–284 *. Current con-

straints in the literature coming from superradiance suggest LISA would be able to constrain the

mass of the vector field in the range 1 × 10−16 eV to 6 × 10−16 eV287. The superradiance phe-

nomenon, and more generally GW measurements, will be a powerful tool in probing the potential

vector nature of dark matter.

2.1.1 Previous Studies

The study of the instability of matter fields on black hole spacetimes has seen much attention in

recent years, owing to the detection prospects using gravitational observatories197,198,282,283,288–299.

Most of these studies pertain to either the superradiant process itself and how it affects the black

holes spin and mass, which will have an astrophysical statistical effect on the black hole populations,

or on the gravitational radiation emitted from the resulting cloud itself. For example, full numer-

ical simulations have been performed to study the resulting gravitational radiation emitted from a

*See ref. 285,286 for the case of a scalar-charged secondary BH in an EMRI and the associated effects on the GW
waveform.
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superradiantly-excited Proca cloud around a spinning black hole, including evolving through the

initial instability phase. Other studies have performed analytic derivations using specialized ansatzes

for the solution.

More in line with the details of this study, literature exists for research into the effect of the su-

perradiant clouds, so-called gravitational atoms, on the internal motion of a binary system. One

study looked at the effect of a scalar and massive vector cloud around one of the black holes and

energy transitions induced by a companion black hole300. They showed that this effect could be

detectable as a dephasing in the gravitational wave signal.

The study performed here investigates the ability for the LISA mission to detect the modifica-

tions to the gravitational wave signal from an EMRI system due to the presence of a superradiant

cloud around the supermassive black hole. To that end, numerical solutions of the Proca cloud are

computed on a Kerr background, giving the resulting energy distribution of the superradiant cloud.

Then the modifications of the gravitational wave signal resulting from the presence of this energy

distribution is computed. A LISA forecast is then carried out to determine which parameter values

of the Proca field allow LISA to detect such modifications.

2.2 Theory

2.2.1 Curved Spacetime with Proca

The starting point is the specification of the relevant fields, via the action functional

S[g, A, ψ] = S0[g, A] + Sm[g, A, ψ] , (2.1)

where g is the metric tensor,A is the Proca field, S0[g, A] describes the background, and Sm[g, A, ψ]

is the action for the matter field ψ. Here, the ”skeletonized” approach is adopted. The matter ac-

tion for the generic matter field ψ is replaced by the action for the point particle. This is a phe-

nomenological reduction of the description of the secondary black hole to that of a ”probe” particle

following the geodesics set by the background. This is achieved via the replacement

Sm[g, A, ψ] → Sp[g, A, {x}] , (2.2)
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where {x} are the co-ordinates of the secondary black hole.

Specifying the background to be that of a Proca field minimally coupled to a supermassive Kerr

black hole, the background action becomes

S0[g, A] =

∫
d4x

√
−g
[
1

κ
R− 1

4
FµνF

µν − 1

2
µ2AµA

µ

]
, (2.3)

where κ = 16πG
c4

. Due to the lack of an obvious separability of the point particle current in the

chosen ansatz, we consider no coupling between the secondary BH and the Proca field*

Sp[g, A, ψ] ≡ −
∫
mpdτ + q

∫
AµJ

µ (2.4)

→ −mp

∫ √
−gµν

dxµ

dtτ

dxµ

dτ
dτ . (2.5)

The equations of motion (EOM) associated to the action functional are

Gρσ = 8π

(
−1

4
FµνF

µνgρσ + F ρνF σ
ν − 1

2
µ2gρσAµA

µ + µ2AρAσ

)
+ 8πTρσ

p (2.6)

0 = ∇ρF
ρσ − µ2Aσ , (2.7)

where Tρσ
p is the energy-momentum tensor of the point particle. Note that, due to the source

terms on the RHS of the Einstein equations, the Proca equations cannot be written in a Klein-

Gordon-type form. Instead, using the Lorentz constraint from the conserved current, one finds

∇2Aν −Rν
σA

σ − µ2Aν = 0 . (2.8)

However, this is a generic statement for the full non-linear system. If we work in a perturbative

regime in which the Proca amplitude is small and the mass ratio between the secondary and the

SMBH is large, then the right-hand side of the Einstein equations vanish, so we can write

∇2Aν − µ2Aν = 0 . (2.9)

*More generally, we don’t consider any direct coupling between the Proca field and the Standard Model fields.
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So, the Proca equations become, in the linearized regime,

∇2Aν − µ2Aν = 0 (2.10)

∇σA
σ = 0 . (2.11)

Decomposition in the FKKS Ansatz

Analytic solutions of the Proca EOM in the Kerr background have historically been extremely dif-

ficult to achieve. This is due to the fact that there is no obvious separable ansatz for the Proca field.

The usual approach is to take perturbative approximations. However, a recent analysis has shown

that there is such an ansatz that allows the equations to separate, the so-called Frolov-Krtouš-Kubizňák-

Santos (FKKS) ansatz301. Using this ansatz, we can progress in the semi-analytic computation of

the Proca spectra.

The first step in solving the Proca equations is to decompose the Proca EOM in the FKKS ansatz.

We define the ansatz for the Proca field as

Aµ = Bµν∇νZ , (2.12)

whereBµν is implicitly defined through the complex-valued algebraic equation

Bµν(gνγ +
i

λ
hνγ) = δµγ , (2.13)

and hµν is the so-called principle tensor of the Kerr spacetime. In Boyer-Lindquist co-ordinates, it is

defined as

hµν =



0 r a2 cos(θ) sin(θ) 0

−r 0 0 ar sin(θ)2

−a2 cos(θ) sin(θ) 0 0 a cos(θ)(a2 + r2) sin(θ)

0 −ar sin(θ)2 −a cos(θ) sin(θ)(a2 + r2) 0


.

(2.14)
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We then perform a separation of variables in the FKKS ansatz via

Z = R(r)S(θ)e−iωteimϕ . (2.15)

This is a multiplicative separation into two arbitrary single-coordinate-dependent functions and

two eigenfunctions of the spacetime Killing vectors *

LTZ = −iωZ (2.16)

LΦZ = imZ , (2.17)

where L is the Lie derivative, and T ,Φ are the temporal and azimuthal Killing vectors of the Kerr

spacetime, respectively. After inserting this separated form into the Proca EOM, one finds the fol-

lowing coupled second-order system of differential equations

d

dr

(
∆

qr

dR

dr

)
+

(
K2

r

qr∆
+

2− qr
q2r

σ

ν
− µ2

ν2

)
R = 0 (2.18)

1

sin θ
d

dθ

(
sin θ
qθ

dS

dθ

)
−
(

K2
θ

qθ sin2 θ
+

2− qθ
q2θ

σ

ν
− µ2

ν2

)
S = 0 , (2.19)

where

Kr = am− (a2 + r2)ω qr = 1 + ν2r2 (2.20)

σ = aν2(m− aω) + ω Kθ = m− aω sin θ2 (2.21)

qθ = 1− ν2a2 cos θ2 ∆ = r2 + a2 − 2Mr . (2.22)

Henceforth, we focus only on a single mode specified by the tuple (ν, ω,m). A generic solution

to the Proca EOM will be a linear combination of the single mode solutions. See appendix A.1 for

a more in-depth discussion of the method to solving the coupled eigenvalue problem 2.18-2.19.

Some additional quantities that are important for the later analysis are the total energy and the nor-

malization of the Proca field. Eqs. 2.18-2.19 determine the Proca field only up to an overall nor-

*We write the mode number as m in order to distinguish it from the mass of the secondary black hole, which is
denoted as m.
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malization constant. This constant must be determined as part of a full description of the state of

the cloud. We choose to normalize the field by the requirement that the total energy of the Proca

field matches the reduction in energy of the black hole (energy conservation), utilizing the clear sep-

aration of timescales between the superradiant instability and the gravitational radiation from the

cloud. Were this separation of timescales not present, a non-negligible amount of energy from the

Proca cloud could be radiated away in gravitational energy during the instability phase, preventing

this method from determining the Proca normalization. Fortunately, the cloud generally builds up

more rapidly than it depletes via gravitational radiation, hence we can safely neglect the depletion

during the instability 300. The total energy of the cloud at a particular instance is defined by

Ec = −
∫

Tt
t

√
−gdrdθdϕ , (2.23)

where g is the metric determinant and T is the stress-energy tensor of the Proca field, eq. 2.6. Nor-

malization of the Proca field then follows from the requirementEc = M0,bh −Mf,bh, whereM0,bh

andMf,bh are the masses of the black hole before and immediately after the superradiant instability,

respectively.

Systematics of Solving the Radial and Angular Equations

We can now proceed to solve the angular and radial equations, eqs. 2.18-2.19. First, define the pa-

rameters and eigenvalues of the problem as (m, S, n, a, µ,M) = P and (ν, ω) = E , respectively.

The system of equations can then be represented schematically as

L[r;P , E ]R(r) = 0 (2.24)

O[θ;P , E ]S(θ) = 0 ,

where L andO are linear operators defined in eq. 2.18 and 2.19 and which are coupled only through

the set of eigenvalues E . In the non-relativistic limit µM ≪ 1, the real and imaginary parts of the

frequency read294,302,303
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ωR

µ
≈ 1− µ2M2

2(|m|+ n+ S + 1)2
+O((µM)4) (2.25)

MωI ≈ 2r+ClmSngjm(a, µM, ω)(mΩH − ωR)(Mµ)4|m|+5+2S . (2.26)

These, together with the non-relativistic limits for the eigenvalue ν in appendix A.1, provide

good starting guesses for iteratively solving the system eq. 2.24. The algorithm we employ to nu-

merically solve the Proca field in the FKKS ansatz follows similarly to 293 and goes as follows:

• After specifying the initial parameters to be considered, i.e. choosing a particular p ∈ P , an

initial guess for the ω and ν eigenvalues are formed by the non-relativistic limit.

• Solve the determinant of the angular equation matrix and pick the eigenvalue that is nearest

to either the non-relativistic limit or the previous result for a different mass.

• Solve the Proca radial equation using the Frobenius method and find the initial conditions

from evaluating the Frobenius solution at a starting radius, close to the outer horizon.

• Numerically solve the radial equation with the previously obtained ω and ν eigenvalues and

boundary conditions.

• Find the logarithmic minimum of the radial equation at the outer boundary of the radial

integration over ω-space. Minimization is carried out in ω-space, recalculating ν for each ω-

value, using a native Nelder-Mead algorithm in the software system Mathematica304.

• With the found value of ν and ω, the angular matrix can be solved for the expansion of the

angular function in terms of the spherical harmonics, completing the solution of the EOM.

This process can be repeated for varying choices of the Proca mass parameter, overtone number,

and mode number. Initial guesses for ω and ν switch from using the non-relativistic limit to using

a 4th-order polynomial fit to previous results in µ − ω space. These fits perform much better than

the non-relativistic limit for higher mass parameters, typically µ ⪆ 0.3.

The flow of the algorithm proceeds graphically as in fig. 2.2.
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Computing the Asymptotic Flux

Figure 2.2: Graphical representation of routine to solve the Proca

equations in the Kerr background.

We used the package superrad287 for the

calculation of the asymptotic fluxes from the

Proca cloud. It uses a combination of analytic

and numerical results to compute the asymp-

totic energy flux from a Proca cloud, assuming

all the energy of the cloud resides in a single

mode. The asymptotic angular momentum

flux can then be computed from the Teukolsky

formalism305 as

⟨dJ
dt

⟩ = m

ω
⟨dE
dt

⟩ . (2.27)

2.2.2 Superradiance

Black hole superradiance is a dissipative phe-

nomenon which involves the unstable growth of field amplitudes due to the collection of negative

energy states by the ergoregion *. This superradiant instability of matter fields around spinning

black holes can lead to, under certain conditions, a quasibound state. In fact, a quite general argu-

ment for the existence of superradiance can be shown to follow from the black hole area theorem,

which states

δM =
TH
4
δA+ ΩHδJ (2.28)

for an uncharged black hole, where TH is the Hawking temperature,AH is the area of the horizon,

ΩH = a
r2++a2

, a is the spin of the black hole, and r+ is the radius of the outer event horizon. For a

matter wave of frequency ω and azimuthal number m, the ratio of angular momentum to energy is

L

E
=

m

ω
. (2.29)

*For a review of superradiance, see 200.

59



Hence, an interaction of the matter wave with the black hole causes the latter to change its angular

momentum by

δJ

δM
=

m

ω
. (2.30)

The area theorem then tells us

δM =
ωTH
4

δAH

ω −mΩH

. (2.31)

The second law of black hole thermodynamics, δAH > 0, implies waves impinging on the event

horizon with frequency

ω < mΩH (2.32)

causes the black hole to lose mass and hence energy is extracted by the wave, increasing its own en-

ergy. This wave can become trapped by the potential well of the black hole, causing the wave to

again impinge on the black hole.

This is the mechanism of superradiance. A small amplitude wave initially impinging from past

infinity will be continuously excited in a runaway process until the black hole loses enough angu-

lar momentum and mass to turn off the superradiant condition, eq. 2.32. This is a purely classical

description. A quantum description, in which vacuum states at past and future infinity contain

different particles numbers, has also been formulated306–308. The process is reminiscent of the well-

known Penrose process, though they are distinct phenomena309*.

2.2.3 Modified Gravitational Waves

After the superradiant instability has turned off, saturating the superradiant threshold eq. 2.32,

the system exists in a quasi-stationary state consisting of a black hole surrounded by a quasibound

Proca condensate. It is not in an eternal bound state due to gravitational emission from the cloud

itself, which manifests as a long-duration depletion of the condensate300. This long-timescale deple-

*It has been shown that the Penrose process requires the existence of an ergoregion, while superradiance requires
an event horizon 310,311. Additionally, a stationary axi-symmetric black hole necessarily has an ergoregion. Thus, super-
radiance is a sufficient condition for the Penrose process, but the converse is not necessarily true.
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tion of the cloud provides a secular change in the mass and angular momentum of the background,

in addition to any other emissions from the system. Hence, the presence of a Proca environment

surrounding the primary black hole in an EMRI system modifies the inspiraling dynamics of the

secondary black hole, resulting in a modification to the measured waveform at the detector *. In an

EMRI system, the inspiraling dynamics is well approximated by assuming the trajectory follows a

sequential evolution of geodesics of the Kerr spacetime. In the Kerr spacetime, geodesics are deter-

mined by three constants of motion: the energyE, the projection of the angular momentum along

the spin axis L, and the Carter constantC . Assuming an equatorial orbit, the Carter constant van-

ishes and receives no evolution. Hence, the geodesic motion is determined by only two constants,

E and L. Sequential evolution along a series of geodesics corresponds to an adiabatic evolution of

the orbital constants. This adiabatic change in the integrals of motion arises due to the asymptotic

flux of energy and angular momentum from the system, sourced by either environmental effects or

gravitational emission.

In particular, for the case of an EMRI system immersed in a superradiantly-generated Proca

cloud, the evolution of the integrals of motion is given by

dEgeo

dt
= −

(
dEGW

dt
+

(
dEgeo

dt

)
Proca

)
(2.33)

dLgeo

dt
= −

(
dLGW

dt
+

(
dLgeo

dt

)
Proca

)
, (2.34)

where Igeo represents the integral of motion for the geodesic and
(

dIgeo
dt

)
Proca

represents the change

in the orbital constants due to the flux of energy and momentum from the quasibound Proca

cloud. Since the secondary black hole is minimally coupled to the energy-momentum of the Proca

field, via the Einstein equations, the change in the orbital constants will not be the same as the

change in the energy and angular momentum of the Proca cloud. Instead, at the linear level, the

presence of the Proca cloud modifies the energy and angular momentum of the background space-

time, which enters as an additional change in the orbital constants. In particular, the change in the

*Here, we neglect higher order effects such as resonant depletion of the Proca cloud (see 302,312 for resonant
depletion of a superradiant scalar cloud in an EMRI system). We also neglect dynamical friction effects on the sec-
ondary black hole. These effects have been shown to have dramatic effects in the scalar field case and conceivably will
also have large effects in the vector case 302,313, though a study of this nature has yet to be performed. However, for the
preliminary and simplified analysis considered here, we relegate these effects to studies that will be performed in the
future.
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integrals of motion, due to the presence of an uncoupled Proca cloud, arises due to the change in

the energy and angular momentum of the Kerr background:

dEgeo =
∂Egeo

∂LKerr

dLKerr +
∂Egeo

∂EKerr

dEKerr (2.35)

dLgeo =
∂Lgeo

∂LKerr

dLKerr +
∂Lgeo

∂EKerr

dEKerr (2.36)

such that

(
dEgeo

dt

)
Proca

=
dEProca

dt
Γ(r)

[
dEgeo

dEKerr

+
m

ω

dEgeo

dLKerr

]
(2.37)(

dLgeo

dt

)
Proca

=
dEProca

dt
Γ(r)

[
dLgeo

dEKerr

+
m

ω

dLgeo

dLKerr

]
, (2.38)

where we introduced a radially dependent prefactor that accounts for the fraction of the Proca

cloud within the orbital radius, andEKerr and LKerr are the total mass and angular momentum

of the Kerr spacetime, respectively. EKerr and LKerr are calculated prior to the superradiant insta-

bility and hence represent the total mass and angular momentum of the black hole-cloud system

after the instability has turned off. It follows from the Teukolsky equation and our choice of nor-

malization of the Proca field that dEProca

dt
∝ E2

Proca, and hence Γ(r) =
(

E(r<rorbit)
Etotal

)2
(see A.2).

This prefactor accounts for the portion of the radiating Proca cloud that modifies the orbital tra-

jectory. Γ(r) asymptotes to unity at asymptotic infinity, meaning all of the Proca cloud is within

the orbital radius and contributes to the trajectory modification. At the other extreme, near the

horizon, Γ(r) approaches zero since all of the cloud is external to the orbital radius. This prefactor

hence represents the fraction of the Proca cloud the inspiraling black hole ”sees”. At infinity, the

mass the secondary black hole ”sees” is the total mass of the black hole-cloud system; At the hori-

zon, it’s the mass of the central black hole which is ”seen” by the secondary black hole and hence

none of the radiating Proca cloud modifies the trajectory at this point.

This is an approximation in several respects. First, the angular structure of the cloud is integrated

out to produce a purely radial function. Secondly, the energy integral eq. 2.23 is calculated using

the stress-energy tensor from the perturbative calculation of the Proca field and not from the full

Einstein-Proca system. Thirdly, an additional averaging of the radial distance over an orbital period
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is performed when calculating Γ(r), due to limitations of the waveform generator.

For the gravitational terms in the flux functions, 5PN accurate analytic expressions for the en-

ergy and momentum fluxes (hence, semi-latus rectum and eccentricity evolution. See below.) are

employed.

For our purposes, it’s more convenient to express adiabatic evolution of the integrals of motion

in terms of the eccentricity and semi-latus rectum, from which the integrals of motion can be ex-

pressed. The asymptotic fluxes can be transformed into rates of change of the orbital parameters

by inverting İgeo = dIgeo
dp

ṗ + dIgeo
de
ė. This then gives us the rate of change of the geometry of the

trajectory which the secondary black hole follows.

The full trajectory is calculated by integrating the flux equations, after choosing suitable ini-

tial conditions, using an 8th-order explicit Runge-Kutta integrator. The trajectory is integrated

to within 0.2 gravitational radii of the separatrix, calculated using the previous iteration loop of

the integration. Initial conditions for the integration, namely (p0, e0,Φθ,0 ,Φϕ,0 ,Φr,0), are chosen

such that coalescence occurs approximately after five years. This gives the greatest possible chance a

Proca cloud will be detected during the mission lifetime of the LISA observatory.

The trajectory, once computed, is then fed into a waveform model. The model currently em-

ployed is the Fast EMRI Waveforms (FEW) Augmented Analytic Kludge (AAK) model271,314. The

AAK model is built using Keplerian ellipses for the orbital trajectory, and evolves the inspiral, pe-

riapsis precession, and Lense-Thirring precession using PN fluxes. The difference to the original

Analytic Kludge model is that the orbital frequencies and two precession rates are enforced to be

the original Kerr values, which is achieved by solving an algebraic expression for some unphysi-

cal values of the mass, spins, and semi-latus rectum. This defines a map (M,a, p) → (M̃, ã, p̃)

which maps the frequencies of the Keplerian orbit onto the frequencies for the Kerr geodetic mo-

tion. This greatly improves the accuracy of the original AK model and agrees remarkably well with

Teukolsky-based waveforms. The FEW version, the version employed in this study, removes this

mapping and instead directly calculates the fundamental frequencies and converts them into the

basis for the AAK model, eqs. 2.39-2.41.
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Φ̇ = Ωr (2.39)

γ̇ = Ωθ − Ωr (2.40)

α̇ = Ωϕ − Ωθ , (2.41)

where Φ̇ is the variation of the quasi-Keplerian mean anomaly, α̇ is the Lense-Thirring precession,

and γ̇ + α̇ is the periapsis precession. These phase evolutions are then fed into the Peters-Matthew

formula for the gravitational strain amplitudes315 *.

The states of the cloud in this analysis are restricted to them = 1 mode and n = 0 overtone.

This is for several reasons. First, the asymptotic flux values from the numerical solver are numer-

ically unstable for larger mode and overtone values. Secondly, gravitational emission from higher

modes is α-suppressed287,292, with higher modes being suppressed by powers of α4. Hence, the sec-

ular variation in the cloud largely comes from them = 1 mode. Moreover, the total mass contained

in the higher modes is less than that in them = 1 mode. Reducing the analysis to the single choice

of these parameters is thus reasonable within the approximations already employed.

2.3 Results

2.3.1 Proca Clouds

Following the procedure laid out in Section 2.2.1, the Proca field equations were solved for mode

numbers m = {1, 2, 3, 4}, overtone numbers n = {0, 1, 2, 3, 4}, SMBH dimensionless spin

χ ∈ [0.6, 0.9] and Proca spin S = −1 †. For our purposes, we restrict to S = −1 as this is the most

unstable294. Examples of our generated data are shown in fig. 2.3,2.4,2.5. Figure 2.3 shows the evo-

lution of the Proca field frequency as a function of the gravitational coupling for the m = 1 mode

and SMBH dimensionless spin χ = 0.9, for various overtone numbers. The imaginary part of the

frequency gives the instability rate of the cloud, while the real part yields the oscillation frequency.

As can be seen, the n = 0 overtone number is the most unstable. The maximum instability occurs

*The custom code used to generate these trajectories and waveforms is available at https://github.com/Shaun-F/
GWGenerator.git.

†The code used to generate this dataset is available at https://github.com/Shaun-F/KerrDressedWithProca.git.
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Figure 2.3: Superradiant Proca data form = 1mode, dimensionless spinχ = 0.9, and Proca spinS = −1. The left plot displays
the imaginary part of the Proca field frequency, which directly yields the instability rate of the cloud. The right plot displays the real

part of the frequency, which yields the oscillatory part of the field. As expected, them = 1,n = 0mode is themost unstable. Here
we takeG = c = ℏ = 1, so thatα = µM G

cℏ → µM .

at, for (m, n, χ) = (1, 0, 0.9), α = 0.304 with an instability rate of τ = 2.1 × 104 GM
c3 = 0.105

s. Compared to the maximum instability of the corresponding scalar superradiant cloud, this is

∼ 2500 times faster294.

Fig. 2.4,2.5 show example radial functions for the m = 1 mode and dimensionless spin χ = 0.9.

The overtone structure of the Proca field is clearly displayed. The number of roots of the radial

function is given by the overtone number, which also specifies the number of maxima and minima.

The compactness of the cloud is also apparent, being directly given by the gravitational coupling, as

expected. A higher gravitational coupling translates to a more compact Proca cloud. Lower values

of the gravitational coupling yield a Proca cloud that can span thousands of gravitational radii, as

expected from the rough scaling of the radial function as ∼ 1
α

. Higher values of the gravitational

coupling yield Proca clouds that span tens of gravitational radii. Hence, higher values of the gravita-

tional coupling are expected to have the greatest effect on an EMRI system*.

2.3.2 Identifying Modified GWs

To assess the detectability and measurability of a superradiantly-generated Proca cloud around an

EMRI system from the emitted GWs, we leverage a simple figure of merit. We perform a simple

analysis based on generated SNR and traditionally used faithfulness criteria to have an idea about

the distinguishable mass region of the Proca particles. This merit relies on comparing two wave-

forms, and so can be easily and quickly computed.

*For a more in-depth analysis of superradiant Proca fields on Kerr backgrounds, see 283,293,294,297,301,316.
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Figure 2.4: Example radial functions form = 1modewith dimensionless spinχ = 0.9 and gravitational couplingα = 11
100 for

various overtone numbers.

Figure 2.5: Example radial functions form = 1modewith dimensionless spinχ = 0.9 and overtone numbern = 0 for various
gravitational couplings. As expected, higher gravitational couplings translate to a denser cloud, withmost of themass being concen-

trated closer to the horizon.
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An Estimate Based on SNR

First, we define a noise-weighted inner product between two waveforms as

⟨h1, h2⟩ = 4×Re
∑

α=I,II

∫ fmax

fmin

h̃1,α(f)h̃
∗
2,α(f)

Sn(f)
df , (2.42)

where h̃1/2,α are the Fourier-transforms of the detector response signals, h̃∗2,α the latter’s complex

conjugate, and Sn(f) the one-sided noise power spectral density (PSD) of LISA270,317. The LISA

PSD model receives contributions from three noise sources. The analytic expression for the PSD is

Sn(f) =
10

3L2

(
POMS(f) +

4Pacc(f)

(2πf)4

)(
1 +

6

10

(
f

f∗

)2
)

+ Sc(f) , (2.43)

where POMS is the single-link optical metrology noise, Pacc is the single test mass acceleration noise,

and Sc is the galactic confusion noise, accounting for unresolved galactic sources that manifest in

the noise. The analytic expressions for the three noise contributions are

POMS = (1.5× 10−11 m)2

(
1 +

(
2 mHz
f

)4
)

Hz−1 (2.44)

Pacc =
(
3× 10−15 m

s2

)(
1 +

(
0.4 mHz

f

)2
)(

1 +

(
f

8 mHz

)4
)

Hz−1 (2.45)

Sc = Af− 7
3 e−fα+βf sin (κf) (1 + tanh (γ(fk − f)))Hz−1 , (2.46)

where the parameters of the galactic confusion noise are fit to simulations for a four-year data

run. These fit values are (A,α, β, κ, γ, fk) = (1.8× 10−44, 0.138,−221, 521, 1680, 0.00113).

Using the noise-weighted inner product, the SNR of a particular signal is defined as SNR2 =

⟨h|h⟩. Further, we also define the faithfulness between two signals as 318,319

F ≡ max
tc,ϕc

⟨h1|h2⟩√
⟨h1|h1⟩⟨h2|h2⟩

, (2.47)

which is maximized over time and phase offsets of the two signals and takes values between -1 and 1,

where the latter indicates perfect agreement between the waveforms. The maximization translates
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to maximizing over the variables T in

⟨h1,T |h2⟩ = Re
∑

α=I,II

∫
h̃1,α(f)h̃

∗
2,α(f)

Sn,2(f)
e−2πfTdf , (2.48)

where h1,T is the time-offset version of the original waveform h1 by time T, Sn,2 is now the two-

sided noise power spectral density, and we have extended the integration domain to the entire

reals using the fact that the noise PSD forces the integrand to vanishing values outside the range

[−fmax,−fmin]∪ [fmin, fmax] and that it’s an even function of f . Using the convolution theorem,

this translates into the convolution

⟨h1,T |h2⟩ = Re
∑

α=I,II

(H1,α ∗H2,α) , (2.49)

whereH1,α = F−1( h̃1,α(f)

Sn,2(f)
),H2,α = F−1(h̃∗2,α(f)), and F denotes the Fourier transform. The

faithfulness then becomes *

F ≡ max

{(
Re
∑

α=I,II(H1,α ∗H2,α)√
⟨h1|h1⟩⟨h2|h2⟩

)
(T, ϕc)

}
. (2.50)

The detectability requirement places a threshold on the faithfulness statistic. Under Gaussian likeli-

hoods for the parameters, this threshold arises from the requirement that a systematic mismodeling

error, i.e. the error between the true waveform and the model waveform, should be smaller than the

statistical measurement error. If the mismodeling error were larger than the measurement error,

then the signals would be measurably different in the LISA data. Thus, if the faithfulness between

the bare EMRI and the dressed EMRI waveforms are below this critical threshold, LISA should

likely be able to distinguish between the two EMRI systems. This threshold assumes a Gaussian dis-

tribution for the model parameters around the true values. This prerequisite does not hold for the

Proca mass, since the distribution is asymmetric and the waveforms are being compared against the

vacuum case (c.f. fig. 2.6). However, it provides a rough estimate for the threshold of distinguisha-

*Maximization over the coalescence phase ϕc is achieved by iteration over phase offsets of one of the signals. See
320 for further discussion of the maximization procedure.
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Figure 2.6: The difference in number of orbits and faithfulness as a function of Procamass, respectively. The total spacetime dimen-

sionless spin isχ=0.9 and the initial eccentricity was chosen to be 0.2. The difference in number of orbits is the absolute difference
between the number of orbits completed by the dressed and undressedwaveform at separatrix. This data suggests LISA should

be able to distinguish GR-in-vacua waveforms and Proca-modifiedwaveforms, for the given initial data, for Procamasses above

∼2 × 10−18 eV. The upper limit on themass is enforced by the superradiant threshold cutoff. Above this threshold, no bound state

exists. For theM = 105M⊙ data, this upper limit isµmax = 4.47× 10−16 eV.

bility. The expression for this threshold is

Fc = 1− D − 1

2× SNR2 , (2.51)

whereD is the size of the parameter space321. The inclusion of a Proca mass increases the number

of parameters by one, hence the total parameter space is specified by

(M,m, µ, a, p0, e0, x0, dL, θs, ϕs, θK , ϕK ,Φθ,0,Φϕ,0,Φr,0) , (2.52)

whereM is the mass of the SMBH (the primary),m is the mass of the smaller black hole (the sec-

ondary), µ is the mass of the Proca field, a is the spin value of the SMBH, p0, e0, and x0 are the

initial semi-latus rectum, eccentricity and inclination, respectively, dL is the luminosity distance

to the system, θS and ϕS are the barycentric sky location of the system, θK and ϕK describe the

orientation of the EMRI angular momentum vector in the barycentric co-ordinate system, and

Φθ/ϕ/r,0 are the initial phases for the polar, azimuthal, and radial motion, respectively. Orientation

of the spin vector of the SMBH is currently ignored in waveform generation due to limitations of

the waveform generator package employed during this study. For signals with SNR on the order

of 20, the faithfulness threshold for detectability is ∼ 0.98. For any pair of signals that produces a

faithfulness below this threshold, they will likely be distinguishable with LISA.

The second measure of detectability we utilize is the number of orbits completed by the binary,
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as this is easily inferred from the waveform directly measured by LISA. The number of orbits com-

pleted by the binary at separatrix is directly related to the orbital frequency by

Norbits =
1

2π

∫ Tsep

0

Ωϕdt , (2.53)

where Ωϕ is the azimuthal orbital frequency, which is related to the phase of the trajectory Φϕ by
dΦϕ

dt
= Ωϕ. The resolvable deviations in the phase of the trajectory of an EMRI system by LISA

can be estimated by a Fisher-matrix analysis321,322. The result is that LISA should be able to dis-

tinguish a phase shift of ∆Φϕ ∼ 0.05 radians, or in terms of the GW phase ∆Ψ ∼ 0.1 radians.

This roughly translates to a resolution in the number of completed orbits at the time the trajectory

reaches the separatrix as ∆Norbits ∼ 0.001.

Figure 2.6 shows three example EMRI systems with SMBH massesM = (105, 106, 107)M⊙,

SMBH dimensionless spin χ = 0.9, and initial eccentricity of the orbit e = 0.2. The initial semi-

latus rectum is chosen so that the lifetime of the system approximately equals the LISA mission

lifetime. As expected, for higher Proca masses, the dressed waveform increasingly deviates from the

GR-in-vacua (undressed) waveform. This is due to the increased coupling between the Proca cloud

and the background spacetime. Since the size of the Proca cloud roughly scales as 1
µ

(c.f. eq. A.22),

higher mass translates to a more compact Proca cloud. Thus, as the secondary black hole inspirals,

Proca clouds with greater Proca masses have a larger effect on the trajectory due to the compact-

ness (c.f. eq. 2.37, in particular Γ(r)). In addition, the energy and angular momentum fluxes from

the Proca cloud are monotonically increasing up until just before the superradiant condition fails.

Hence, higher compactness of the cloud together with larger values of the asymptotic fluxes ex-

plains the greater deviation from the GR-in-vacua scenario.

It was found that the initial value of the eccentricity has little effect on the faithfulness, i.e. the

difference between the Proca waveform and the GR-in-vacua waveform doesn’t change much with

eccentricity. This is likely due to the averaging procedure over eccentricity of the effect the Proca

flux has on the secondary’s trajectory. In other words, the function Γ(r) is only a function of the

radial distance and not the eccentricity. Though factors such as
[
dEorbit

dEKerr
+ m

ω
dEorbit

dLKerr

]
are expected

to change with eccentricity, this effect is evidently small.

The spin of the SMBH, on the other hand, plays a larger role. While the spin doesn’t affect the
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’knee’ of the graph in fig. 2.6, it does change the minimum value of the faithfulness. In other words,

lower spins of black holes are less able to constrain lower Proca masses.

It’s also important to determine the astrophysical relevance of this type of modification to the

background. This is achieved by comparing the timescale for gravitational emission from the Proca

cloud to the timescale for inspiral of the secondary object. The latter is fixed to be ∼5 years, the

approximate LISA mission lifetime, and the former depends on the gravitational coupling α. In

other words, the astrophysical relevance for the study performed in this paper depends on the grav-

itational coupling. The ’knee’ of the faithfulness statistic as a function of α in fig. 2.6 occurs ap-

proximately at α ∼ 0.07. The corresponding timescale for gravitational emission from the Proca

condensate ranges from 103 - 105 years (cf. appendix A.2 and fig. A.1). This means the modifica-

tion to the gravitational wave signal due to the time-dependent background as discussed here is of

astrophysical relevance since the two relevant timescales are separated by three or more orders of

magnitude. For higher gravitational couplings, the timescale for gravitational emission shrinks (see

fig. A.1). This translates to less observational relevance since the inspiral phase and gravitational

emission must occur coincidentally for LISA to be able to probe the Proca cloud properties us-

ing the results of this study. It would be astrophysically remarkable to observe a high gravitational

coupling using EMRIs as probes with LISA. Nonetheless, for the purposes of this study, perfect

coincidence is assumed. This is a reasonable approximation for lower α values, but becomes un-

reasonable for α ≳ 0.2, where the cloud decay timescales roughly equals the inspiral timescale

which are both extremely short. However, the faithfulness statistic is much less than unity at this

point, so the Proca condensate will already be observable with LISA for the astrophysically-relevant

timescales. Hence, there is a range of small gravitational coupling, translating to large cloud decay

timescales, where the effect on the inspiral will be observable with LISA and where the cloud is suf-

ficiently long lived. To quantitatively take into account the likeliness of coincidence for these two

timescales, a full population synthesis study, analysis, and potentially an N-body simulation would

be required, which is beyond the scope of this study.
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LISA Proca Discovery Potential

This study suggests LISA should be able to detect superradiantly-generated Proca fields in the mass

range µ ∈ [1.8 × 10−17, 4.47 × 10−16]eV. The lower bound comes from both the 1
µ

scaling of the

Proca cloud radius and the reduced SNR for higher SMBH masses. At lower mass values, the Proca

cloud extends over several thousands of gravitational radii and so not enough mass is within the or-

bital radius to significantly modify the secondary BH’s trajectory. The resulting waveforms are thus

not ’different’ enough to be distinguishable with LISA (as determined through the faithfulness

and number of orbits statistics). The upper bound comes from the saturation of the superradiant

condition. Above a critical mass, the superradiant condition is no longer satisfied and hence a su-

perradiant bound state is not formed. Since the energy flux from the Proca cloud depends on the

combinationM · µ, lower mass values of the SMBH allow for increased detection probability for

higher mass values of the Proca field (and vice versa).

2.4 Conclusion

EMRI systems provide a unique arena to study fundamental fields beyond the Standard Model,

most notably dark matter candidates. Due to the feeble interaction between dark matter candidates

and the Standard Model fields, the mass range of such candidates covers tens of orders of magni-

tudes. The dark photon, in particular, is a well-motivated candidate for dark matter. It has several

production mechanisms including the misalignment mechanism, quantum fluctuations during

inflation, tachyonic instabilities arising from couplings to a misaligned axion, and topological de-

fect decays. Various couplings have been proposed for the dark photon. Direct detection searches

assume different couplings in the hope of detecting a dark photon-involved process.

Gravitational interactions, on the other hand, need only assume a minimal coupling between

gravity and the dark photon. The study performed here investigated the gravitational instability

arising from a perturbation in the Proca field in the vicinity of a rotating uncharged black hole.

The superradiant phenomenon is responsible for a buildup of a Proca cloud around a Kerr black

hole. The resulting cloud modifies the dynamical behavior of an EMRI system during the inspi-

raling phase, which in turn causes a modification of the measured GW waveform. Depending on
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the regime of the parameter space, such a modification can be measured by the future space-borne

gravitational observatory LISA.

After solving the Proca equations on a Kerr background and determining the fluxes of energy

and angular momentum from the resulting quasibound state, the modification of the waveform

was calculated along with derived statistical quantities that allows one to quantify the difference

between modified and unmodified waveforms. Limits on the detectable mass range of the Proca

field using LISA were obtained and found that LISA should be able to detect Proca fields in the

mass range [1.8× 10−17, 4.47× 10−16]eV.

Throughout the study, several approximations were leveraged. Primarily, the Einstein-Proca

system is linearized with respect to the Kerr background. This separates the Proca field from the

gravitational perturbations, greatly aiding analytical developments. Secondly, the secondary black

hole is approximated to be travelling adiabatically on a sequence of geodesics and is only described

as a point particle, the so-called skeletonized approach. Higher order corrections to the motion due

to self-force interactions are neglected. Thirdly, the coupling between the secondary black hole and

Proca cloud is minimal. The only coupling between them is through the modification to the back-

ground the Proca cloud induces via the integrals of motion. This neglects resonant effects between

the Proca cloud and secondary black hole. It should be pointed out that dynamical friction effects,

accretion, and resonant transitions have been shown to have drastic effects on the orbital phase for

the case of a superradiant scalar field. It’s reasonable to suspect such dramatic effects will also be

present in the Proca field scenario. For example, resonant transitions can produce floating/sink-

ing orbits which have a drastic effect on the resulting gravitational wave signal. Dynamical friction

and accretion produce an additional torque on the binary, gradually dephasing it with respect to

the vacuum scenario. The results in this study are thus a conservative treatment since incorporat-

ing these effects will provide additional ways in which the signal can be modified, widening the

observational potential of LISA (see appendix A.3). Finally, the variation of the local gravitational

potential is approximated via the function Γ(r) in eq. 2.37.

Future studies planned by the authors involve a more accurate calculation of the Einstein-Proca

equations of motion, involving numerical relativity calculations to accurately determine the geodesics,

as well as dynamical friction effects and accretion effects on the secondary BH which would pro-
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vide further modifications to the signal. Additionally, transitions between bound-bound states and

bound-unbound states induced by the secondary black hole will likely also have a significant effect.

These resonant transitions are planned for future studies as well. Hence, future plans involve more

accurate predictions for the interplay between a Proca cloud around an EMRI system with the plan

to generate data analysis-ready templates for the future LISA mission. These templates will form

the foundation for probing the existence of macroscopic Bose-Einstein condensates around EM-

RIs. We also plan to extend our analysis to the generalized Proca theories210,323, since the presence

of derivative interactions will have large implications both for the background dynamics as well as

for the perturbations.
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The task is not to see what has never been seen before, but

to think what has never been thought before about what

you see every day.

Erwin Schrödinger

3
GRBoondi

Generalized Proca is a complicated extension of the base theory of Proca. Searching for

new numerical solutions of even a single model within the generalized Proca landscape requires

building entirely new solvers, making searching the landscape a taxing endeavor. Optimizing these

searches will be vital in looking for cosmologically and astrophysically relevant models. To that

end, GRBoondi was built to facilitate finding numerical solutions of generalized Proca theories*.

GRBoondi is an open-source numerical relativity code written in the C++14 programming lan-

guage†. It uses a hybrid set of Message Passing Interface (MPI) and Open Multi-Processing (OpenMP)

parallelization libraries to achieve good performance on the latest architectures, allowing GRBoondi

to have excellent scaling on both high-performance computing clusters and supercomputers.

*Boondi is a Koori word for a multi-purpose tool used for hunting and digging.
†GRBoondi is freely available for download at https://github.com/ShaunFell/GRBoondi.git.
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3.1 Motivation

The theory of generalized Proca is an extension of the standard Proca model that aims to extend

Proca theories in a consistent way. A natural question that often arises is whether it is possible to

extend the interactions present in the Proca field in a way that does not introduce extra propagat-

ing degrees of freedom and still maintain second order equations of motion. Previous results have

proven a no-go theorem for similar theories, making such extensions potentially problematic. For-

tunately, there is a path forward and the solution is given by the generalized Proca models. The

main objectives of such an extension are:

• enforce the equations of motion to be of second order

• restrict the temporal component of the Proca field to be non-dynamical.

The second objective is vital to ensure no instabilities arise via negative energy modes, or ghosts. This

requirement comes from the massive representation of the Lorentz group, which only carries 3

dynamical fields and hence the inclusion of additional interactions should not alter this.

The derivation of the interaction terms resulting from these two requirements is rather lengthy.

However, there are a finite number of such terms323. The resulting generalized Proca Lagrangian

takes the form

Lg.P. =
√
−g

(
−1

4
FµνF

µν +
6∑

n=2

αnLn

)
, (3.1)

where the self-interaction terms are

L2 = G2(X,F, Y ) (3.2)

L3 = G3(X)∇µA
µ (3.3)

L4 = G4(X)R +
∂G4

∂X

(
(∇µA

µ)2 −∇ρAσ∇σAρ
)

(3.4)

L5 = G5(X)Gµν∇µAν − 1

6

∂G5

∂X

(
(∇µA

µ)3 + 2∇ρAσ∇γAρ∇σAγ (3.5)

−3 (∇µA
µ)∇ρAσ∇σAρ)− g5(X)F̃ αµF̃ β

µ∇αAβ

L6 = G6(x)L
µναβ∇µAν∇αAβ +

1

2

∂G6

∂X
F̃ αβF̃ µν∇αAµ∇βAν , (3.6)

whereGi are arbitrary functions ofX = −1
2
AµA

µ, Y = AµAνF α
µ Fνα, F = −1

4
FµνF

µν ,

76



L µναβ = 1
4
EµνρσEαβγδRρσγδ is the dual Riemann tensor, Eαβµν is the four-dimensional Levi-

Civita tensor,Rαβµν is the Riemann tensor, Fµν is the field strength tensor of the Proca fieldAµ,

Gµν is the Einstein tensor, ∇µ is the covariant derivative operator with respect to the metric gµν , g

is the metric determinant, and F̃µν is the dual field strength tensor210,324.

These are the most general interactions giving rise to second order equations of motion and that

propagate only three dynamical degrees of freedom. Due to the appearance of the arbitrary func-

tionsGi, the generalized Proca Lagrangian is actually a landscape of theories, with each one deter-

mined by a specific choice of the arbitrary functions. Studying certain physical systems within the

framework of generalized Proca theories requires specifications of the arbitrary functions. This

leads to difficulties in making general statements about the landscape of all generalized Proca theo-

ries, since there are in principle an infinite number of different choices for the arbitrary functions.

For this reason, to facilitate the numerical study of generalized Proca theories in arbitrary space-

times, GRBoondi was built. This new NR code allows for arbitrary modifications to the base theory,

expediting research into all generalized Proca models.

3.2 NR Fundamentals

GR is a highly complicated theory and numerical GR is even more so. There are many different

conceptual pieces, mathematical tools, and numerical methods that enter in the field of numer-

ical computation. Section 3.2.1 will discuss the basic theoretical method of writing the Einstein

equations in a form conducent to numerical computation. This section expands on this by writing

the Einstein equations in a form pertinent to temporal evolution, the so-called Cauchy problem.

Finally, section 3.2.3 will discuss various different schemes developed throughout the years along

with their advantages and disadvantages. These following sections will lay the theoretical ground-

work necessary to begin discussing the numerical code.

This section does not aim to provide a comprehensive pedagogical sermon for numerical relativ-

ity, instead laying a broad foundation for the rest of this chapter. There are several well-established

lecture notes and textbooks that give excellent introductions to the field of numerical relativity.

These references include refs. 325 and 326 which present comprehensive introductions on the

topic.
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3.2.1 3+1 Decomposition of the Field Equations

Before the Einstein equations can be input into a computer, they need to be written in the form

of an Initial Value Problem (IVP). This is a form of the equations that, given data for the fields

at a specific time, can be uniquely solved for at later times using the field equations. It should be

pointed out that this is only possible because the Einstein equations, which are a set of partial dif-

ferential equations, are hyperbolic in nature. This is the statement that the Cauchy problem, which

an IVP is, can be uniquely solvable everywhere. A hyperbolic partial differential equation (PDE) is

a type of PDE characterized by properties that resemble the wave equation. In fact, the Einstein

equations can be written in the form of a non-linear wave equation, called the relaxed Einstein

equations

□hαβ = −16πταβ (3.7)

∂µh
µα = 0 , (3.8)

where hαβ is the so-called gravitational field amplitude, ταβ is a stress-energy pseudo-tensor of the

matter fields and the gravitational field, and □ is the standard covariant d’Alembertian operator. It

is thus clear that the Einstein equations possess a wave-like form, allowing the IVP of the Einstein

equations to be solved uniquely.

To write the Einstein problem as an IVP, a common approach is to write the equations in the

so-called 3+1 form. That is to say, the ’covariant-ness’ of the equations is undone. Recall that one

of Einstein’s greatest insights was to combine the three-dimensional space and one dimension of

time into a single object called spacetime. The 3 + 1 formalism unwinds this process and separates

the temporal direction from the spatial one. This is obvious if one wants to do explicit temporal

evolution of initial spatial data and is the approach adopted here.

However, there are other formalisms such as the generalized Harmonic approach, where the co-

ordinates satisfy □xµ = Hµ(xµ), andHµ is some four-dimensional function of the co-ordinates.

This choice of formalism was used to prove the well-posedness of the Einstein equations and the

one chosen in the first groundbreaking simulation of an inspiraling black hole229,327. It is also com-

monly used today by the SXS collaboration to generate gravitational waveform templates for the
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data analysis pipelines in current gravitational wave observatories94. Another, albeit less used, for-

malism is the Cauchy characteristic approach which chooses to slice spacetime using null surfaces

instead of temporal surfaces328.

Slicing Spacetime

The starting point is to consider a globally hyperbolic spacetime (M, g), which is to say a spacetime

manifold M equipped with a metric g that admits a Cauchy surface Σ. A Cauchy surface Σ is a

surface whose intersecting causal curves, which have no end points, intersect Σ once and only once.

This implies that there exists a global time co-ordinate t : M → R whose level surfaces are Cauchy

surfaces. This means the topology of M is necessarily Σ×R. In other words, spacetime can be con-

sistently sliced according to a constant time co-ordinate, fig. 3.1.

Figure 3.1: 325 Slicing of spacetime according to Cauchy surfaces,

which are defined as the level surfaces of some ’time’ co-ordinate.

The existence of this temporal co-ordinate al-

lows one to define concepts such as ’evolution’,

which is a key ingredient in solving the Einstein

equations. Moreover, the temporal co-ordinate

defines a normal vector for each Cauchy sur-

face, or leaf/hypersurface, of the slicing, or ’foli-

ation’, which is defined by

nµ = −α∇µt , (3.9)

where α is called the lapse, defined by

α = (−∇µt∇µt)
− 1

2 . (3.10)

Another important quantity is the normal evolution vectormµ = αnµ. This will be important in

defining the evolution equations for various quantities later.

With a four-dimensional metric g and normal vectors to the hypersurface, one can define the

projection operator, which takes tensors defined in the four-dimensional spacetime and projects
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them down onto the hypersurface

γµβ = gµβ + nµnβ . (3.11)

For example, a four-dimensional vector V µ ∈ M can be projected to the hypersurface Σ via

γiαV
α = V i ∈ Σ. For an arbitrary (r,s)-rank tensor, the projection onto the hypersurface Σ is

accomplished via

γiµγ
j
ν · · · γαk γ

β
l · · ·T

µν···
αβ··· = T ij···

kl··· ∈ Σ . (3.12)

This projection operator also defines a metric on the hypersurfaces, defined by

γµν = gµν + nµnν . (3.13)

We have thus split the spacetime and its fundamental object, the metric, into three spatial dimen-

sions defined as the level surfaces of a time co-ordinate and equipped with a three-dimensional

spatial metric γ and a single temporal dimension which defines the normal vector for the hyper-

surfaces. For any tensorial quantity defined on the manifold M, it can be split into spatial and tem-

poral contributions via the projection operator and the normal vector. For example, given a vector

V µ ∈ R, the spatial and temporal contributions can be factored out by defining

γiµV
µ = X i ∈ Σ (3.14)

nµV
µ = ϕ , (3.15)

where ϕ is the scalar quantity that signifies ’how much’ V µ points out of the hypersurface Σ. The

full four-dimensional vector can then be reconstructed via V µ = Xµ+nµϕ. This is a general proce-

dure that will be vital when decomposing additional matter fields living on the spacetime manifold.

Towards a decomposition of the full four-dimensional metric g in terms of quantities orthog-

onal and transverse to the hypersurface, the remaining quantity needed is the shift vector, which is

defined by*

βi = γiµt
µ , (3.16)

*Actually, choosing this definition is choosing a specific set of co-ordinates that are said to be adapted co-ordinates,
which are co-ordinates of the form xµ =

(
t, xi

)
, where the xi are co-ordinates on the hypersurface.
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where tµ is the tangent vector to curves of constant spatial co-ordinate, i.e. temporal curves, fig. 3.2.

Figure 3.2: Slicing of spacetime according to Cauchy surfaces,

which are defined as the level surfaces of some ’time’ co-ordinate

whose curve is graphically represented as the dashed line.

With this decomposition, the tangent vector to

curves of constant spatial co-ordinates can be

decomposed as

tµ = (γµν − nµnν)t
ν

= −nµnνt
ν + γµν t

ν = αnµ + βµ . (3.17)

With these ingredients, the full four-

dimensional metric can be decomposed entirely

in terms of quantities defined on the hypersur-

face and scalar functions and it takes the form

gµν =

−α2 + βlβ
l βj

βi γij

 , (3.18)

or, in terms of the infinitesimal line element

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) . (3.19)

Using these definitions, one can deduce a simple relation between the determinant of the spa-

tial and four-dimensional metric. Let g = det(gµν) and γ = det(γij). It follows from a simple

computation that
√
−g = α

√
γ . (3.20)

This relation will find much importance in computing various integrals over hypersurfaces, espe-

cially in the context of GRBoondi.

Derivations on the hypersurface and the four-dimensional manifold can, remarkably, be written

in terms of one another. LetD be the covariant derivative with respect to the spatial metric γµν

and, as before, ∇ the covariant derivative with respect to the full four-dimensional metric g *. For

*These are also called connection coefficients and relate to how quantities defined in two different tangent spaces can
be compared.
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a tensor T ∈ T (M), the covariant derivative of T is also a tensor, ∇(T ) ∈ T (M). The same

holds true for a tensor P ∈ T (Σ) andD. In fact, one can find a relation between the two covariant

derivative operations acting on the four-dimensional tensor and its projected component, which

takes the form*

DwT
ij···
kl··· = γiµγ

j
ν · · · γαk γ

β
l · · · γ

σ
w∇σT

µν···
αβ··· . (3.21)

Thus, tensors and their derivations have been decomposed in terms of scalar and three-dimensional

quantities defined on the hypersurfaces of the foliations. This allows any four-dimensional equa-

tion to be written in terms of spatial and temporal quantities.

Gauge Freedom

The Einstein equations constitute a type of gauge theory. This means there is a certain kind of free-

dom in defining the metric field that does not change the physical states of the theory. The decom-

position in the previous section has made this gauge freedom manifest in terms of the lapse and

shift vector. This is rather apparent by inspection of eqs. 3.10 and 3.16. The temporal co-ordinate

can be freely scaled, which should not change any of the dynamical equations governing the phys-

ical states. Since the shift and lapse are defined in terms of this temporal co-ordinate, they are also

freely specifiable without changing the physical states, hence encoding the gauge freedom apparent

in the theory.

There is a particular choice of observers that become special in a foliation by spatial hypersur-

faces, which are called the Eulerian observers. Since the normal vector is a unit timelike vector, it can

be regarded as the four-dimensional velocity of some physical observer, called the Eulerian observer.

The proper time τ for this observer is related to the global time co-ordinate t via

δτ = αδt . (3.22)

This justifies the use of the word ’lapse function’. The lapse encodes the relation between the ’co-

ordinate time’ t and the physical time τ measured by an Eulerian observer. Additionally, the shift

*It should be noted that the T on the left-hand side is a three-dimensional projected version of the four-
dimensional tensor T on the right-hand side. It’s written here using the same T in order to avoid useless cluttering
of the equations.
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encodes the ’velocity’ of the lines of constant co-ordinate xi relative to the Eulerian observer. If the

observer is at position xi at time t, then at a later time of t + δt, the observer will be at position

xi − βiδt.

Since the lapse and shift are completely freely specifiable, we could in principle choose what-

ever functions we want. However, practically, the gauge choice plays a huge role in ensuring the

numerical simulations remain stable and accurate, especially in the context of simulations that con-

tain curvature singularities. For example, taking the choice α = 1, called geodesic slicing, and the

Schwarzschild spacetime in isotropic co-ordinates, it can be shown that observers within the hori-

zon reach the singularity in finite proper time which scales proportionately to the mass of the black

hole. Since α = 1, this means the observer will reach the singularity in finite co-ordinate time as

well, posing a huge problem for numerical simulations. When trying to evolve the spacetime using

this gauge choice, observers will reach the singularity within the simulation timeframe, causing the

simulation to break down as the curvature measured by these observers becomes infinite.

Curvature of the Hypersurfaces

The curvature of the hypersurface, relative to the four-dimensional spacetime, can be encoded in

a quantity called the extrinsic curvature, which is nothing but the projected part of the covariant

derivative of the normal vector

Kµν = −γαµ∇αnν . (3.23)

The extrinsic curvature is sometimes called the second fundamental form, the spatial metric being

the first fundamental form. The extrinsic curvature is related to the principal curvatures of the hy-

persurface at a given point, via the Weingarten map, or shape operator. The shape operator is noth-

ing but the directional covariant derivative of the normal vector, hence encoding information about

the curvature of the hypersurface in that direction.

Remarkably, the second fundamental form can be related to the first fundamental form in a suc-

cient way,

Kij = −1

2
Lnγij , (3.24)

where Ln is the Lie derivative in the direction of the normal vector. It can also be written directly in
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terms of the covariant derivative of the normal vector as

Kµν = −∇νnµ − nνDµln(α) . (3.25)

Projecting the Riemann Tensor

The Einstein equations* are written in terms of various projections of the Riemann curvature ten-

sor, namely the Ricci tensorRµν and Ricci scalar R

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (3.26)

where T is the stress-energy tensor of the matter fields present in the spacetime. Towards the ob-

jective of decomposing the evolution equations into spatial and temporal components, the Ricci

tensor and Ricci scalar must be decomposed as well. This will inevitably come from a full decom-

position of the Riemann tensor itself. These projected forms of the Riemann tensor will form a

foundation of the 3+1 formalism for GR.

In order to avoid further cluttering of equations, we introduce a new notation for spatial and full

four-dimensional quantities. Unless otherwise stated, full four-dimensional tensors will be denoted

with a 4 behind the symbol, such as the full four-dimensional Ricci scalar 4R. Three dimensional

tensors will be denoted with no superscript, such as the three-dimensional Ricci scalar R.

The Riemann tensor is a rank-4 tensor, meaning it is a 4× 4× 4× 4 matrix of components. This

means it will have various projections, depending on the index that is projected. The first projection

will be a complete projection of all four indices to the hypersurface, γαµγβν γσρ γ
γ
λ(

4R)ραβγ . This can

be written using the three-dimensional Riemann tensor and the extrinsic curvature tensor as

γαµγ
β
ν γ

σ
ρ γ

γ
λ(

4R)ραβγ = Rσ
µνλ +Kσ

νKµλ −Kσ
λKνµ . (3.27)

This is the so-called Gauss relation. We can contract the σ and ν indices to obtain the contracted

*Here, we ignore the cosmological constant, which would contribute a term Λgµν to the left-hand side.
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Gauss relation,

γµαγ
ν
β(

4R)µν + γαµn
νγρβn

σ(4R)µνρσ = Rαβ +KKαβ −KαµK
µ
β , (3.28)

where K = gµνKµν is the trace of the extrinsic curvature. This can be contracted again over the

indices α and β to obtain

4R+ 2(4R)µνn
µnν = R+K2 −KijK

ij . (3.29)

This famous equation is called the scalar Gauss relation and is a generalization of Gauss’ famous

Theorema Egregium, which relates the intrinsic curvature of Σ, encoded by the Ricci scalar R, to its

extrinsic curvature, encoded by K2 −KijK
ij .

We can derive another relation using the Ricci identity, which is a statement about the non-

commutativity of the covariant derivative operator,

[∇α,∇β]n
γ =4 Rγ

µαβn
µ . (3.30)

Projecting this relation using the tools just developed, one finds

γγρn
σγµαγ

ν
β(

4R)ρσµν = DβK
γ
α −DαK

γ
β , (3.31)

which is called the Codazzi relation. Contracting the Codazzi relation once along the α and γ in-

dices yields the contracted Codazzi relation

γµαn
ν(4Rµν) = DαK −DµK

µ
α . (3.32)

Taken together, eqs. 3.27 and 3.31 form the Gauss-Codazzi relations, which underpin the 3+1

formalism of GR. They will be explicitly used in projecting the constraints hidden within the GR

field equations onto the hypersurfaces.

Instead of projecting the entire Riemann tensor onto the hypersurface in eq. 3.31, we can project

85



it twice onto the hypersurface and twice along the normal vector

γαµn
σγνβn

ρ(4R)µρνσ = γαµn
σγνβ [∇ν ,∇σ]n

µ . (3.33)

These leads to

γαµn
σγνβn

ρ(4R)µρνσ =
1

α
LmKαβ +

1

α
DαDβα +KαµK

µ
β , (3.34)

wheremµ = αnµ is the evolution normal vector. This is sometimes called the Ricci equation.

Together with the Gauss-Codazzi relations, these three relations complete the 3+1 decompo-

sition of the Riemann tensor. One can take the trace of the Ricci equation, combine it with the

scalar Gauss equation, and find an expression for the four-dimensional Ricci scalar in terms of

three-dimensional quantities

4R = R+K2 +KijK
ij − 2

α
LmK − 2

α
DiD

iα . (3.35)

So far, the projection of the left-hand side of the Einstein equations have been formulated in

terms of the 3+1 variables. What remains is the decomposition of the right-hand side, the stress

energy tensor of the matter fields Tµν . It is a rank-2 symmetric tensor, so there are three possible

projections

• The matter energy density measured by the Eulerian observer is given by the double projec-

tion along the normal direction

ρ = Tµνn
µnν , (3.36)

which follows from the fact that the four velocity of the Eulerian observer is the unit normal

vector itself.

• Similarly, the matter momentum density as measured by the Eulerian observer is the linear

form

pα = −Tµνγ
µ
αn

ν (3.37)

whose sign is chosen so that it is future-oriented.
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• Finally, the matter stress tensor as measured by the Eulerian observer is the bilinear form

Sµν = Tαβγ
α
µγ

β
ν . (3.38)

Under this decomposition, the full four-dimensional stress energy tensor can be reconstructed as

Tµν = Sµν + nµpν + nνpµ + ρnµnν . (3.39)

The Constraints

Behind the scenes, GR is a constrained system. It’s not obvious what those constraints are from first

inspection of the equations themselves, however they are revealed by the 3+1 decomposition.

Projecting eq. 3.26 entirely along the normal direction and applying the scalar Gauss equation

eq. 3.29 results in the equation

4Rµνn
µnν +

1

2
(4R) = 8πTµνn

µnνwww�
R+K2 −KijK

ij = 16πE . (3.40)

This is the Hamiltonian constraint and, as its name suggests, follows also from a Hamiltonian treat-

ment of GR.

Projecting eq. 3.26 once along the hypersurface and once along the normal vector, then applying

the contracted Codazzi equation eq. 3.32, yields

4Rµνγ
µ
i n

ν − 1

2
(4R)gµνγ

µ
i n

ν = 8πTµνγ
µ
i n

νwww�
DjK

j
i −DiK = 8πpi . (3.41)

This is the momentum constraint.
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The remaining projection of the Einstein equations is the complete projection along the hyper-

surface. Combining the contracted Gauss equation with the Ricci equation, eqs. 3.28 and 3.34,

yields

LmKij = −DiDjα + α
(
Rij +KKij − 2KilK

l
j + 4π [(S − ρ) γij − 2Sij]

)
, (3.42)

where S = γijSij is the trace of the matter stress tensor.

eqs. 3.40-3.42 are completely equivalent to the original Einstein equations, eq. 3.26. Eq. 3.42 is

an equation for a rank-2 bilinear form in the leaves of the foliation, involving only symmetric ten-

sors. Hence it therefore has six independent components. Eq. 3.40 is a scalar equation, yielding an

additional component. Eq. 3.41 is a vectorial equation, yielding three more components. In total,

eqs. 3.40-3.42 are a system of equations for ten independent components, the same as the original

Einstein equations. Including eq. 3.24, all variables can be evolved using spatial and temporal infor-

mation.

NR as a Cauchy Problem

As mentioned earlier, the Einstein equations can be placed in a form that makes the problem of

solving them a Cauchy IVP. The evolution normal vector can be written asmµ = tµ − βµ. Using

properties of the Lie derivative, this implies

Lm = Lt − Lβ . (3.43)

Using so-called adapted co-ordinates, i.e. co-ordinates whose temporal component is simply t, one

can write

Lt =
∂

∂t
, (3.44)

which implies

LmT
i···
j··· =

(
∂

∂t
− Lβ

)
T i···
j··· . (3.45)
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Hence, eq. 3.24 and 3.42 can be rewritten as

(
∂

∂t
− Lβ

)
Kij = −DiDjα + α

(
Rij +KKij − 2KilK

l
j + 4π [(S − ρ) γij − 2Sij]

)
(3.46)(

∂

∂t
− Lβ

)
γij = −2αKij . (3.47)

Thus, the full Einstein equations may be written as

3+1 Einstein Equations

(
∂

∂t
− Lβ

)
γij = −2αKij(

∂

∂t
− Lβ

)
Kij = −DiDjα + α

(
Rij +KKij − 2KilK

l
j + 4π [(S − ρ) γij − 2Sij]

)
DjK

j
i −DiK = 8πpi

R+K2 −KijK
ij = 16πE .

Hence, given constraint-satisfying initial data at some particular time slice, the 3+1 Einstein

equations will determine the physical state at later times. However, this is not enough to ensure

the solutions obtained from the 3+1 Einstein equations are unique and valid solutions. One also

has to ensure these equations are well-posed, which is closely related to the concept of hyperbolicity.

3.2.2 Well-posedness and Hyperbolicity

Stability and accuracy of the IVP of the 3+1 Einstein equations relies on the concept of well-posedness,

which comes from the mathematical theory of PDEs. Since stability of the numerical solutions of

GRBoondi is vital for simulating a wide range of physical systems, this concept will be touched on

here, although a pedagogical discussion is deferred to the literature329,330.

The starting point for a discussion of well-posedness begins with a general discussion of PDEs.

Consider a system of PDEs of the generic form

∂tu = P (D)u (3.48)
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for some arbitrary n-dimensional vector-valued function of space and time, and P (D) an n×nma-

trix whose components are smooth functions of the spatial derivation operators. The IVP for such

a system corresponds to finding a solution of the form u(x, t) given some initial data u(x, t = t0).

A critical property for such a system of PDEs is that of well-posedness. This is the idea that the solu-

tion u(x, t) depends continuously on the initial data u(x, t = t0). In other words, small perturba-

tions in the initial data u(x, t = t0) produces only small changes in the final states u(x, t). This can

be encapsulated in the following definition330:

Definition 3.2.1
A system of partial differential equations is called well-posed if there exists a norm (usually a Sobolev

norm) and two constants k, α, such that for all initial data and all positive times,

||u(·, t)|| ≤ keαt||u(·, 0)|| .

Most systems of evolution in mathematical physics are well-posed, however simple examples can

already showcase systems that are ill-posed. Consider for example the simple inverse heat equation

∂tu = −∂2xu . (3.49)

Assume the initial data is single Fourier mode u(x, 0) = eikx. The solution is easily found to be

u(x, t) = ek
2t+ikx , (3.50)

which grows exponentially in time with an exponent that depends on the frequency of the Fourier

mode k. By increasing k, the rate of growth can be increased arbitrarily, so the general solution can-

not be bounded by an exponential that is independent of the initial data. Additionally, given any

generic initial data, we can always add a small perturbation of the form ϵeikx for ϵ ≪ 1 and k ≫ 1,

such that after a finite amount of time has elapsed, the solution can be very different than the orig-

inal unperturbed system. Hence, there is no continuity of the solution with respect to the initial

data. Therefore, this system is ill-posed.

Hyperbolicity is a concept closely related to well-posedness. In fact, it can be shown that a hyper-
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bolic system of PDEs is well-posed under very general conditions. Consider a system of first order

evolution equations

∂tu+M i∂iu = s(u) , (3.51)

whereM i are n × n constant-valued matrices and s(u) is a source vector-valued function that may

depend on the us but not on their derivatives. It can be shown quite generally that if the system

of equations with s(u) = 0 is well-posed, then the system of equations with s(u) ̸= 0 is also

well-posed. Intuitively, hyperbolicity is attributed to systems of evolution equations that behave in

some way as wave equations. Such systems are well-posed and the speed of propagation of informa-

tion should be finite. The notion of hyperbolicity can be related to properties of the matricesM i,

which are also called the characteristic matrices. To that end, consider an arbitrary unit vector ni

and construct the matrix P (ni) = M ini, which is known as the principal symbol of the system of

equations. Then, using the principal symbol, one can define several different versions of hyperbolic-

ity:

• The system of equations eqs. 3.51 is called strongly hyperbolic if the principal symbol has real

eigenvalues and a complete set of eigenvectors for all ni.

• The system of equations is called weakly hyperbolic if the principal symbol has real eigenval-

ues for all ni but does not have a complete set of eigenvectors.

• If all the characteristic matrices are symmetric, then the system is called symmetric hyperbolic.

• The system of equations is called strictly hyperbolic if all the eigenvalues of the principal sym-

bol are not only real but also distinct for all ni.

It can be shown that strongly and symmetric hyperbolic systems are well-posed. Moreover, strictly

hyperbolic systems are automatically strongly hyperbolic.

The system eq. 3.51 can be recast into the form

∂tu+ ∂iF
i(u) = s(u) , (3.52)

where F i are vector-valued functions of the us and spacetime co-ordinates, but not of derivatives of
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the us. The vectors F i are called the flux vectors, and the characteristic matrices are then given by

(M i)ab =
∂F i

a

∂ub
. (3.53)

A system of the form eq. 3.52 is called a balance law since the change of the solution u in a vol-

ume is given by a balance between the fluxes entering or leaving the volume element and sources.

If s(u) = 0, then eq. 3.52 is called a conservation law.

A simple example of a hyperbolic equation is the one-dimensional advection equation

∂tu+ v∂xu = 0 (3.54)

with v ∈ R. This solution propagates the initial data with a speed v without changing the initial

data’s profile. In other words, for initial data u(x, 0) = f(x), the solution to eq. 3.54 is simply

u(x, t) = f(x− vt). This is an example of a strongly hyperbolic system.

Hyperbolicity of the Einstein Equations

Now the following question arises: Under what conditions are the 3+1 form of the Einstein equa-

tions well-posed? It turns out the 3+1 Einstein equations are well-posed under two mutually inde-

pendent conditions:

• The momentum constraints eq. 3.41 can be guaranteed to be identically satisfied.

• Either the ’densitized lapse’ α̃ = α/
√
γ is assumed to be a known function of spacetime

(but not the lapse itself), or we use the slicing condition of the so-called Bona-Masso family:
d
dt
α = −α2f(α)K.

Under these conditions, the Einstein evolution equations would be strongly hyperbolic, imply-

ing well-posedness. While choosing a type of gauge is easy enough, ensuring the momentum con-

straints are continuously satisfied is an entirely different challenge. Firstly, using finite methods for

numerical integrations will inevitably lead to violations of the constraints, due to the inability for

the solver to resolve details finer than the highest resolution of the computation. Secondly, even in

the continuum limit, when the resolution is taken to infinity, the strong hyperbolicity of the system
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would only be guaranteed for very specific choices of the initial data. Hence, even in the absence

of matter, when S = ρ = 0, the evolution equations in the form of the 3+1 Einstein equations

are only weakly hyperbolic. Thus, alternative versions of the evolution equations must be sought to

ensure stability and accuracy of the numerical scheme.

3.2.3 Evolution and Schemes

A large number of alternative formulations of the Einstein equations have been proposed in the

literature, more than there are groups that can code the solvers. These formulations all search for

evolution equations that result in stable and accurate evolutions.

The BSSNOK Formulation

In 1987, Nakamure, Oohara, and Kojima presented a new formulation of the Einstein equations

based on a conformal transformation and which showed improved stability compared to the 3+1

Einstein equations331. Largely unnoticed for over a decade, it wasn’t until Baumgarte and Shapiro

rigorously compared it to the 3+1 Einstein equations and showed that the new formulation had

excellent stability properties in all considered cases. Today, this new formulation is widely accepted

and the most commonly used in full three-dimensional solvers. The most common version of this

formulation is called the BSSN (Baugmarte, Shapiro, Shibata, Nakamura), or BSSNOK (Baum-

garte, Shapiro, Shibata, Nakamura, Oohara, Kojima), formulation.

A central point in the BSSN formulation is the application of a conformal transformation of the

spatial metric

γ̃ij = ψ−4γij , (3.55)

where ψ is a conformal factor that can in principle be freely specified. For example, in black hole

spacetimes, the conformal factor can be chosen to be the initial singular conformal factor and then

enforce this factor to remain temporally fixed. This allows the non-singular part of the metric to be

evolved and is known as the puncture method. In the BSSN formulation, the conformal factor is

chosen such that the conformal spatial metric γ̃ij has unit determinant

ψ4 = γ1/3 ⇒ ψ = γ1/12 . (3.56)
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Additionally, the extrinsic curvature is separated into its trace and its trace-free part,

Aij = Kij −
1

3
γijK , (3.57)

which is then conformally rescaled

Ãij = ψ−4Aij . (3.58)

An important additional piece for the BSSN formulation is the introduction of three new auxiliary

functions called conformal connection functions

Γ̃i = γ̃jkΓ̃i
jk = −∂j γ̃ij , (3.59)

where Γ̃ are the Christoffel symbols of the conformally rescaled metric. These additional variables

are promoted to full dynamical variables, meaning they will possess evolution equations. The in-

troduction of these variables is to allow the conformal Ricci tensor R̃ij to be expressed in a man-

ifestly elliptic form, which is crucial for ensuring strong hyperbolicity and hence well-posedness.

In order to improve further the hyperbolicity properties of the evolution equations, multiples of

the constraints are added in. For example, in the evolution equation for the extrinsic curvature, the

Hamiltonian constraint eq. 3.40 is used to remove the Ricci scalar. In the evolution equation for

Γ̃i, the momentum constraint is used to remove derivatives ofAij , which is important for stability.

Additionally, instead of evolving the conformal factor explicitly, a common approach for black hole

spacetimes is to evolve χ = γ−1/3.

The evolution variables for the BSSN formulation of the Einstein equations are then a set of 16

variables {χ, γ̃ij,K, Ãij, Γ̃
i} and whose evolution is governed by eqs. 3.60-3.64.

The second covariant derivative of the lapse can be calculated using the BSSN variables as

DiDjα = ∂i∂jα− Γ̃k
ij∂kα +

1

2χ

(
∂iα∂jχ+ ∂jα∂iχ− γ̃ij γ̃

kl∂kα∂lχ
)

(3.65)

and the full spatial Ricci tensor is computed via

Rij = R̃ij +
1

χ
Rχ

ij (3.66)
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BSSN Evolution Equations

∂tγ̃ij = −2αÃij + γ̃ik∂jβ
k + γ̃jk∂iβ

k − 2

3
γ̃ij∂kβ

k + βk∂kγ̃ij (3.60)

∂tÃij = χ [−DiDjα + α (Rij − 8πSij)]
TF + α(KÃij − 2ÃikÃ

k
j ) + βk∂kÃij+

Ãik∂jβ
k + Ãjk∂iβ

k − 2

3
Ãij∂kβ

k (3.61)

∂tχ =
2

3
χ(αK − ∂iβ

i) + βi∂iχ (3.62)

∂tK = −χγ̃klDkDlα + α

(
ÃijÃij +

1

3
K2

)
+ 4πα(ρ+ S) + βi∂iK (3.63)

∂tΓ̃
i = γ̃jk∂j∂kβ

i +
1

3
γ̃ij∂j∂kβ

k − Γ̃k∂kβ
i +

2

3
Γ̃i∂kβ

k + βk∂kΓ̃
i−

Ãik

(
3α

χ
∂kχ+ 2∂kα

)
+ 2αΓ̃i

klÃ
kl − 4

3
αγ̃ik∂kK − 16παγ̃ikpk (3.64)

R̃ij = −1

2
γ̃kl∂k∂lγ̃ij + γ̃k(i∂j)Γ̃

k +
1

2
Γ̃k∂kγ̃ij + γ̃lm

(
2Γ̃k

l(iΓ̃j)km + Γ̃k
imΓ̃klj

)
(3.67)

Rχ
ij =

1

2

(
D̃iD̃jχ+ γ̃ij γ̃

klD̃kD̃lχ
)
− 1

4χ

(
∂iχ∂jχ+ 3γ̃ij γ̃kl∂kχ∂lχ

)
, (3.68)

where D̃ is the covariant derivative with respect to the conformal spatial metric γ̃ij . The BSSN evo-

lution equations are supplemented with algebraic constraints due to the definition of the new vari-

ables

γ̃ = 1 (3.69)

γ̃ijÃij = 1 (3.70)

Γ̃i − γ̃klΓ̃i
kl = 0 . (3.71)

The first constraint typically is not enforced since it is fairly stable for simulations that have well-

behaved initial data. The second constraint is required to be manually enforced throughout the

simulation in order to maintain stability. The third also needs to be enforced.

It turns out, after performing a detailed analysis, that the BSSN evolution equations are strongly

hyperbolic, implying that they are well-posed. The BSSN system has been proven time and again to

be more numerically stable than other formulations.
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CCZ4 Formulation: Damping the Constraints

An important point to be made about the BSSN formulation is that the constraints need to be care-

fully monitored throughout the entire simulation, since errors can accumulate over time due to

finite differencing, boundary effects, and possible other origins. The accumulation of these errors

drives the simulation data away from solutions of the Einstein equations. To counteract these chal-

lenges, a new formulation was developed called the CCZ4 formalism. The CCZ4 formalism adds

additional auxiliary fields that act as damping fields which suppress the Hamiltonian and momen-

tum constraint equations.

The idea of a constraint suppression mechanism can be largely understood using a simple exam-

ple. Consider the trivial system

∂tλ = 0 (3.72)

which is subject to the constraint λ = 0 for all time. Suppose at a later time, λ = k ̸= 0, possibly

due to numerical errors, mesh refinement effects, or other origins. Numerically evolving eq. 3.72

past this point means the violation of the constraint will remain constant throughout the rest of the

simulation. Instead, we could add a constraint damping term to the right-hand side of eq. 3.72

∂tλ = −κλ (3.73)

for κ > 0. If λ becomes non-zero at some point in the evolution, the constraint damping term

will push the solution back to the constraint ’surface’ λ = 0. The constraint surface becomes an

attractor in the solution space.

In the spirit of this, the CCZ4 formulation of the Einstein equations was introduced which in-

cludes a new auxiliary field that is responsible for damping away violations of the constraints. The

modified Einstein equations take the form

Rµν + 2∇(µZν) − κ1
(
2n(µZν) − (1 + κ2)gµνn

αZα

)
= 8π

(
Tµν −

1

2
gµνT

)
. (3.74)

This new vector field is assumed to vanish on physical solutions, which amounts to adding a new
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constraintZµ = 0. This form of the Einstein equations implies an evolution equation for Z,

∇ν∇νZµ +RµνZ
ν − κ1∇α

(
2n(αZµ) + κ2gµαn

βZβ

)
= 0 , (3.75)

which takes the form of a generalized telegraph equation, implying the Z field propagates as an ex-

ponentially damped wave at the speed of light332. A careful analysis shows that for the Z field to be

properly damped, κ1 > 0 and κ2 > −1. The requirement that this system be strongly hyperbolic is

simply that one uses the densitized lapse α/√γ or a Bona-Masso slicing gauge condition. Notably,

the momentum constraint is no longer required.

This approach has several advantages. The first is obviously that the constraints are damped and

violations propagate at the speed of light outside the computational domain. This is a highly de-

sirable trait since numerical schemes inevitably introduce some amount of error, whether it’s finite

differencing related, boundary related, or from some other source. The damping of these violations

increases the confidence that the simulation data is closer to the constraint surface than they would

have otherwise been. While in principle starting with initial data that possesses some amount of

constraint violation is permissible, relying on the damping terms to reduce the violations during the

evolution is discouraged. This is due to the fact that the flow of the solution towards the constraint

surface may converge to a solution not intended during the initial data construction.

The CCZ4 formalism continues towards decomposing the covariant equations of motion eq. 3.74.

The decomposition follows closely to the BSSN approach, however, different auxiliary functions

are chosen

Γ̂ = Γ̃i +
2

χ
Zi , (3.76)

where theZi are the spatially projected version of the four vectorZµ,Zi = γiµZ
µ. The modifica-

tion of these auxiliary connection functions changes the dynamical variables compared to BSSN.

Now, the dynamical variables are {χ, γ̃ij,K, Ãij,Θ, Γ̂
i}, where Θ = −nµZ

µ, the component of

the auxiliary damping field normal to the hypersurfaces. This formulation results in the evolution

equations 3.77-3.82. In order for this system to be strongly hyperbolic, the combination R+2DiZ
i
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CCZ4 Evolution Equations

∂tγ̃ij = −2αÃij + 2γ̃k(i∂j) β
k − 2

3
γ̃ij∂k β

k + βk∂kγ̃ij (3.77)

∂tÃij = χ [−DiDjα + α (Rij +DiZj +DjZi − 8παSij)]
TF + αÃij (K − 2Θ)

− 2αÃilÃ
l
j + 2Ãk(i∂j) β

k − 2

3
Ãij∂k β

k + βk∂kÃij (3.78)

∂tχ =
2

3
αχK − 2

3
χ∂kβ

k + βk∂kχ (3.79)

∂tK = −DiDiα + α
(
R+ 2DiZ

i +K2 − 2ΘK
)
+ βjDjK − 3ακ1 (1 + κ2)Θ

+ 4πα (S − 3ρ) (3.80)

∂tΘ =
1

2
α

(
R+ 2DiZ

i − ÃijÃ
ij +

2

3
K2 − 2ΘK

)
− Zi∂iα + βkDkΘ

− ακ1 (2 + κ2)Θ− 8παρ (3.81)

∂tΓ̂
i = 2α

(
Γ̃i
jkÃ

jk − 3

2
Ãij ∂jχ

χ
− 2

3
γ̃ij∂jK

)
+ 2γ̃ki

(
α∂kΘ−Θ∂kα− 2

3
αKZk

)
−

2Ãij∂jα + βk∂kΓ̂
i + γ̃kl∂k∂lβ

i +
1

3
γ̃ik∂k∂lβ

l +
2

3
Γ̃i∂kβ

k − Γ̃k∂kβ
i+

2κ3

(
2

3
γ̃ijZj∂kβ

k − γ̃jkZj∂kβ
i

)
− 2ακ1γ̃

ijZj − 16παγ̃ijpk (3.82)

must be computed as

Rij + 2D(iZj) = −1

2
γ̃mn∂m∂nγ̃ij + γ̃mn

(
2Γ̃k

m(iΓ̃j)kn + Γ̃k
imΓ̃kjn

)
+ γ̃m(i∂j)Γ̂

m + Γ̃mΓ̃(ij)m +
1

2χ

(
D̃iD̃jχ− 1

2χ
∂iχ∂jχ

)
+

1

2χ
γ̃ij

(
γ̃mnD̃mD̃nχ− 3

2χ
γ̃mn∂mχ∂nχ

)
.

3.2.4 Gauge Choices

With the evolution equations in hand, there is one remaining piece before turning to numerical

solvers and that is the choice of gauge. This choice is vital to ensure stability of simulations, espe-

cially in the presence of singularities. Consider the evolution of the spatial metric, given by eq. 3.24.

Fixing the spatial co-ordinates to xi, then

∂tln(
√
γ) = −αK +Dkβ

k . (3.83)
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Using the choice α = 1 and βk = 0, then the evolution of the 3+1 Einstein equations yields

∂tK = KijK
ij + 4π(ρ+ S) . (3.84)

The first term is positive-definite and the second is at least non-negative, implying that the volume

element shrinks to vanishing values.

The solution to this issue is by finding an alternative choice of gauge. Intense effort was put into

this search, finally arriving at the Bona-Masso family of gauge conditions333

(∂t − Lβ)α = −αf(α)K (3.85)

with f(α) an arbitrary function of the lapse. Substituting the spatial metric evolution eq. 3.24 into

the above equation and choosing f(α) = 2
α

yields

∂tα = 2∂tlog (
√
γ) , (3.86)

which can be directly integrated to yield

α = g(x) + log (γ) . (3.87)

This choice of f(α) is commonly known as 1+log slicing. It turns out this choice of slicing has very

strong singularity avoidance properties, making it a robust choice for evolving spacetimes contain-

ing singularities334. In the CCZ4 formulation, the 1+log slicing becomes

∂tα = βk∂kα− 2α (K − 2Θ) . (3.88)

This is not enough for stable evolution, since the choice of the shift vectors needs to be gauge fixed

as well. It turns out the choice βi = 0 is insufficient as well. Instead, the most common choice is

99



the so-called Gamma-driver condition, which amounts to the choice

∂tβ
i = b1β

k∂kβ
i + b2B

i

∂tB
i = b1

(
βk∂kB

i − βk∂kΓ̂
i
)
+ ∂tΓ̂

i − ηBi ,

where b1, b2, and η are specifiable parameters. The choice implemented in codes such as GRChombo

is b1 = 1, b2 = 3
4

, and η ∼ 1/M for simulations of black holes of mass M.

The combination of 1+log slicing and the Gamma driver condition is known as the moving punc-

ture gauge as it permits black hole singularities to traverse the computational grid without the need

for excision or extra care. For this very reason, this is a common gauge choice when dealing with

black holes and is the most common choice of gauge for codes such as GRChombo.

With these gauge choices and evolution formalisms in hand, one can finally turn to generating

computer code and running simulations.

3.3 Evolving Generalized Proca

This section discusses the intricate details of a new numerical relativity code developed during this

thesis titled GRBoondi. The code is entirely dedicated towards numerical evolutions of systems con-

taining generalized Proca fields. In other words, GRBoondi is used to solve eqs. 3.1-3.6.

The inception of GRBoondi came about due to several difficulties arising from computing the

evolution of the Proca field using full numerical relativity in GRChombo. Primarily, a catastrophic

result prevented long-term evolution of the Proca field in a dynamical spinning black hole back-

ground: The black hole background was unstable to long-term evolution. Even with a proper

choice of gauge and using the best initial data that’s actively used in black hole evolutions, the hori-

zon of the black hole had trouble evolving past several hundred simulation clock cycles. For a su-

perradiant Proca cloud, this is extremely far from sufficient. Typical timescales are on the order

of thousands, or even tens of thousands, of clock cycles. Hence, one of the central projects of the

thesis had a catastrophic problem. Therefore the attention was turned to evolving the Proca field

on a fixed background. At first, this was heavily avoided, since the initial goal was to derive results

for generalized Proca fields in the full Einstein-generalized Proca theory. However, after facing the
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show-stopping problem in the full simulation, closer inspection of the fixed background problem

revealed that the fixed background approximation was quite acceptable. This is actually a permis-

sible approximation for these types of studies since the Proca field is largely a perturbation on the

background. Hence the errors in the Einstein equation, whose magnitude is roughly proportional

to the square of the Proca field, are otherwise small, even for large superradiant Proca clouds. More-

over, it was quickly realized that studying several different generalized Proca theories all resulted in

roughly the same computer code. Hence, GRBoondi was developed, allowing for rapid reusability of

huge parts of the computer code, even for more complex generalized Proca theories.

This section will be split into several parts. Subsection 3.3.1 spells out the fundamental pieces

of GRBoondi. In particular, the structure of the code, the discretization procedure, dissipation al-

gorithms, and available boundary conditions will be elucidated. Subsection 3.3.2 will be dedicated

to discussing the complexities of adaptive mesh refinement. Subsection 3.3.3 will discuss the paral-

lelization procedures utilized by GRBoondi, an important piece in developing highly scalable simula-

tions. Subsection 3.3.4 discusses diagnostic quantities and their extraction from the computational

grid. This is crucial in extracting useful information from the simulations and especially in study-

ing the superradiant process, where knowing the total energy of the Proca cloud is vital. Subsec-

tion 3.3.5 finally discusses how GRBoondi can incorporate arbitrary modifications to the base Proca

theory, allowing any generalized Proca model to be studied.

3.3.1 Fundamental Pieces

There are many pieces and active parts in numerical relativity codes, making development of an

accurate and precise simulator a challenging task. Fortunately, many libraries have been developed

over the years that provide comprehensive functions, allowing developers to relegate challenging

methods to more established software libraries. These libraries are heavily utilized by GRBoondi. We

describe these fundamental methods, concepts, and libraries here.

Structure of Code

From the outset, GRBoondi aims to be two things: 1) A highly modular codebase and 2) easy to use.

This means many low-level function methods and algorithms are entrusted to existing libraries.
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Two of the most widely used ones are:

• Chombo335: a set of tools for implementing finite differencing and finite volume methods for

solving generic PDEs on block-structured adaptively refined grids.

• GRChombo239,240: a numerical relativity code for solving Einstein’s equations, which allows

matter fields to be mutually evolved.

Since GRChombo is based off the Chombo library itself, the Chombo methods are not directly

utilized within GRBoondi, instead only indirectly through its use of GRChombo. Because of this

inheritance, the structure of GRBoondi is basically of the form

GRChombo.Methods inherent
to GRBoondi

+

Many of the grid generation, refinement methods, checkpointing, and other methods come directly

from GRChombo, while the methods for evolving the Proca evolution equations, setting up appro-

priate level classes, and ability to incorporate additional terms in the generalized Proca Lagrangian

are in GRBoondi.

It’s instructive to use an example in order to explain the basic mechanics of running a simula-

tion using GRBoondi. To this end, the problem of simulating a standard Proca field on a Kerr back-

ground is used, whose code is incorporated into the GRBoondi Github repository and henceforth

will be called the Proca example. The fundamental class structure of the Proca example is shown

in fig. 3.3. The central orchestrating class is the AMR class, which is a parent class to GRAMR. The AMR

class stores pointers to AMRLevel classes, which contain methods and information about each re-

finement level of the grid. Each AMRLevel class corresponds directly to a single refinement level. At

runtime, the AMR class instantiates the grid, generating each level class, and then finally executing

the evolution. The AMR class is thus the orchestrator of the entire simulation. It generates check-

point files and, as the grid orchestrator, is responsible for the regridding procedure. While the AMR

class manages the overall mechinations of the simulation, it doesn’t know how to perform finer-

grained tasks, instead calling methods from each level class and their children. For example, after

each timestep, the AMR class calls the GRAMRLevel::postTimeStep() method, which executes func-

tions after each timestep on the level that that GRAMRLevel instance points to.
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AMR (Chombo)GRAMR

AMRLevel (Chombo)GRAMRLevelBaseProcaFieldLevelProcaFieldLevel

AMRLevel (Chombo)GRAMRLevelBaseProcaFieldLevelProcaFieldLevel

AMRLevel (Chombo)GRAMRLevelBaseProcaFieldLevelProcaFieldLevel

Stored

GRAMR Level Data

Stored

LevelData<FArrayBox> (Chombo)

FArrayBox

FArrayBox

Disjoint Box LayoutCell
Cell
Cell

Figure 3.3: Diagrammatic representation of the class structure and hierarchy for the Proca example. The lilac rectangles are classes

from the Chombo library, the green rectangles are GRChombo classes, and the light green boxes are GRBoondi classes.

The GRAMR class is a child of the full AMR class and handles generic methods from GRChombo

that need access to the full refinement hierarchy, for example, a pointer to the interpolator object

for interpolating data on the grid. It can also handle filling in ghost cells across multiple levels (see

sec. 3.3.2) or accessing the GRAMRLevel children of the AMRLevel instances. Users could add another

level to the hierarchy by inheriting from GRAMR and defining their own AMR orchestrator. For exam-

ple, in GRChombo, there is the BHAMR which handles apparent horizon locating and tracking the

black hole puncture. Users of GRBoondi could easily incorporate similar inheritances.

Each refinement level in the grid is represented programmatically by the ProcaFieldLevel class,

itself a great-grandchild of the AMRLevel class, grandchild of the GRAMRLevel class, and child of the

BaseProcaFieldLevel class. The AMRLevel class contains information about the levels above and

below it, and virtualizes methods such as setting up initial data, performing the regridding on its

level, and advancing the state of the simulation on its level. These methods are then defined by

the child of the class, in this case GRAMRLevel. The GRAMRLevel class does the brute force work on

its level. It executes code that advances the levels state, carries out the process of regridding, and

executes the functions that define the initial data. The BaseProcaFieldLevel class inherits from
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Figure 3.4: Diagrammatic representation of the level methods and level class inheritance of GRBoondi. Starredmethods in the
ProcaFieldLevel planet are required to be set by the user. All other methods are virtual and have default definitions which can be
freely modified by the user.

GRAMRLevel. It contains almost all of the methods required for evolving the Proca field on its level,

including computing diagnostic quantities for plotting, executing the time-stepping code, and in-

tegrating quantities across the level. The methods of BaseProcaFieldLevel are catered towards

generalized Proca systems. They use the variables and data specifically designed for evolving such

fields. The ProcaFieldLevel class is entirely problem specific and must be defined by the user.

This is the final level of the level class hierarchy. It must have at least one method defined, which

is the initial data method — it must define exactly how to compute the initial data. Beyond that,

additional methods are available for use and are inherited from BaseProcaFieldLevel. These in-

clude additional steps to be performed in the BaseProcaFieldLevel::postTimeStep or in the

BaseProcaField::PrePlotLevel execution. Users can even overwrite methods inherited from

BaseProcaField, such as the specific time-stepping code, since the methods have been virtualized

using c++14 specifiers.
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Discretization and Time-Stepping

GRBoondi evolves the equations using the Method of Lines, which separates the differencing into

time and space. As an example, consider the heat equation

∂u

∂t
=
∂2u

∂x2
. (3.89)

Then let ∆2u represent a discretized version of the second partial derivative ∆2u ≈ ∂2u
∂x2 . In partic-

ular, ∆2u is determined by neighboring points and is no longer a derivation. This transforms the

heat equation into
∂u

∂t
= ∆2u , (3.90)

which is now an ordinary differential equation that approximates the PDE eq. 3.89 and can be

solved using standard ordinary differential equation techniques.

GRBoondi uses the fourth order Runge-Kutta (RK4) method for computing the temporal inte-

grals. To illustrate the RK4 procedure, consider an arbitrary IVP of the form

dy

dt
= f(t, y) (3.91)

with initial data y(t0) = y0, y(t) is the yet-to-be-determined function, and f(t, y) is an arbitrary

function of time and the variable y itself. Then, with a step size of ∆t = h > 0, four substeps are

computed

k1 = f(tn, yn)

k2 = f(tn +
h

2
, yn + h

k1
2
)

k3 = f(tn +
h

2
, yn + h

k2
2
)

k4 = f(tn + h, yn + hk3) .

For a given n, the solution one timestep later is computed as

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) . (3.92)
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So long as the original IVP is well-posed, then so is the RK4 method336. The simplicity and stabil-

ity of the RK4 method makes it an extremely popular choice for solving finite difference problems.

Additionally, the accuracy of the integration can be dramatically increased simply by adding more

substeps, resulting in the so-called explicit Runge-Kutta method337. Moreover, the total accumu-

lated error from the approximation scales as O(h4), making it easy to substantially increase accu-

racy by simply reducing the time step.

For the discretization itself, the continuous spatial and temporal directions are replaced by finite

versions up to some boundary. This means the spacetime is truncated to finite spatial and temporal

extent and the continuous surface is replaced by a mesh. For simplicity, this mesh is here assumed to

be uniform in all spatial and temporal directions, however the real mesh setup will be discussed in

section 3.3.2, where an adaptive mesh routine is discussed.

The computational domain then becomes D = [xmin, xmax] ∪ [0, tmax] ∈ R2 and the grid is

defined by

xj = xmin + j∆x (3.93)

tn = n∆t (3.94)

for j = 0, · · · , J and n = 0, · · ·N , with J = xmax−xmin

∆x
andN = tmax

∆t
. The evolution variables

then become functions over this meshQ(x, t) → Qn
m = Q(xm, tn). Spacial derivatives are com-

puting by using stencils. GRBoondi uses fourth-order centered stencils, which means derivatives are

computed using the following formulas338

∂xQ =
1

12h
(Qi−2 − 8Qi−1 + 8Qi+1 −Qi+2)

∂2xQ =
1

12h2
(−Qi−2 + 16Qi−1 − 30Qi + 16Qi+1 −Qi+2)

∂x∂yQ =
1

144h2
(Qi−2,j−2 − 8Qi−2,j−1 + 8Qi−2,j+1 −Qi−2,j+2 − 8Qi−1,j−2 + 64Qi−1,j−1

−64Qi−1,j+1 + 8Qi−1,j+2 + 8Qi+1,j−2 − 64Qi+1,j−1 + 64Qi+1,j+1

−8Qi+1,j+2 −Qi+2,j−2 + 8Qi+2,j−1 − 8Qi+1,j+1 +Qi+1,j+2) ,

whereQi,j is the value of the evolution variable at grid point (i, j). The x and y symbols are place-
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holders for any of the three spatial co-ordinates. For computing so-called advection terms, which are

of the form βi∂iQ, different stencils are required in order to maintain stability

∂xQ =


1

12h
(−3Qi−1 − 10Qi + 18Qi+1 − 6Qi+2 +Qi+3) , if βx > 0

1
12h

(−Qi−3 + 6Qi−2 − 18Qi−1 + 10Qi + 3Qi+1) , if βx < 0

. (3.95)

Sixth order stencils are available as well, though these typically aren’t necessary.

Kreiss-Oliger Dissipation

An issue that arises from using finite methods to compute systems of PDEs is the appearance of

high frequency noise, which is especially true for multi-level refinement hierarchies and the use

of regridding. These can arise from reflections off level boundaries or simply from the spacing be-

tween grid points. Even worse, these high frequencies can develop amplitudes which grow very

fast. Hence, it’s important to impose a scheme that can deal with these high frequency (unphys-

ical) modes and preserve the low frequency (physical) ones. This is achieved by implementing an

N = 3 Kreiss-Oliger (KO) dissipation term 339. The basic idea of the Kreiss-Oliger dissipation term

is to add an additional term to the evolution equations that damps these unphysical high frequency

modes. Consider a finite difference scheme that schematically is of the form

un+1
m = unm +∆tS(unm) , (3.96)

where S(un) is some spatial finite differencing operator. To this evolution scheme, an additional

term is added

un+1
m = unm +∆tS(unm)− ϵ

∆t

∆x
(−1)N∆2N

x (unm) (3.97)

with ϵ > 0,N ≥ 1 an integer, and where ∆2N
x is the 2N centered difference operator. In GRBoondi,

theN = 3 KO dissipation term is used, adding the term

σ

64∆x
(Qi−3 − 6Qi−2 + 15Qi−1 − 20Qi + 15Qi+1 − 6Qi+2 +Qi+3) (3.98)
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Figure 3.5: 326 Dissipation of modes as a function of wavenumber

k∆x. Higher frequencies correspond to lower values ofk∆x,
while lower frequencies correspond to higher values ofk∆x.
This shows that higher orders of the KO dissipation approach a

step function, meaning the dissipation strongly dampens frequen-

cies higher than the inverse of the grid spacing and leaves lower

frequencies, the physical ones, virtually untouched.

to the evolution of each variableQ, where σ is

the so-called Kreiss-Oliger coefficient. In the

continuum limit, this term vanishes. This term

does exactly what is desired, it damps high fre-

quency modes corresponding to the grid spac-

ing, and leaves the lower frequencies minimally

affected, fig. 3.5. A stability analysis shows that

this scheme is stable as long as

0 ≤ σ ≤ 2

αC

,

where αC = ∆t
∆x

is the so-called Courant factor

and has a typical value of α = 0.25. The dissipation term should be tuned based on the problem at

hand. A typical value of σ = 0.3 is the default, however increasing it can improve long term stabil-

ity. Contrarily, increasing it too much runs into the upper bound set by the stability condition. A

value that is too high can result in a checkboard type of pattern developing in the simulation, spoil-

ing it. This problem was encountered periodically during some simulations. The remedy is simply

to slightly reduce the coefficient.

Boundary Conditions

An important piece in choosing the conditions of a simulation is picking the right boundary con-

ditions at the edge of the computational space. Broadly speaking, there are three possible ways to

choose a boundary condition:

• Modify the evolution equations close to the boundary;

• Add additional cells beyond the boundary;

• Use different derivative stencils close to the boundary.

The appropriate approach depends on the physical system under consideration, for example, if the

system has asymptotic waves, a uniform but time varying value at the boundary, or is asymptotically

vanishing.
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Figure 3.6: Example of adding ghost cells to the outer boundary of the numerical grid. These allow the usual derivative stencils to be

used at the outer boundary of the computational box.

A particularly simple example is that of periodic boundary conditions. Periodic boundary condi-

tions are enforced by adding in so-called ghost cells outside the domain whose values are set to the

value of the fields on the opposite side of the box. In other words, for a two-dimensional system

in a centered square of side length a, the values of the derivatives are calculated using the standard

stencils via

∂p

∂xp1
ϕ(a/2, x2) =

∂p

∂xp1
ϕ(−a/2, x2) (3.99)

∂p

∂xp2
ϕ(x1, a/2) =

∂p

∂xp2
ϕ(x1,−a/2) ,

where the stencils use ghost cells for cells that lie on the exterior of the boundary. Periodic bound-

ary conditions are not typically astrophysically relevant, although some use cases include large cos-

mological simulations (motivated by the cosmological principle) and other large computational

scenarios. More physically relevant to the cases in GRBoondi are radiative conditions, or Sommer-

feld radiation conditions. This is a very common condition in numerical relativity, since it ensures

that outgoing waves do not get reflected back into the computational space at the boundary. The

conditions on the evolution variables assume an outgoing spherical wave, so the evolution variables

behave as

u ∼ ur→∞ +
f(t− r)

r
(3.100)

in the limit that r → ∞, where f is an arbitrary function and ur→∞ is a constant that is added for
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variables that asymptote to non-zero values. This can be enforced at the derivative level by rewriting

eq. 3.100 as
∂Q

∂t
= −x

i

r
∂iQ− Q−Qr→∞

r
(3.101)

for the evolution variableQ. This works well for linear wave equations, but in the vast majority of

cases relevant to GRBoondi, this will no longer be true. Nonetheless, this is an adequate condition so

long as it is applied far enough away from the highly dynamical and nonlinear parts of the simula-

tion.

Extrapolation is another boundary condition that sees some use. At the outer boundary of the

computational box, the evolution variables are assumed to satisfy

Q = a+ b ∗R , (3.102)

whereR is the radius from the user-defined center, and a and b are constants. For zeroth order

extraction, b = 0 and a is the value of the field in the cell closest to the boundary. For first order

extraction, the two coefficients are computed using the two outermost non-boundary cells. This

boundary condition is particularly useful when the field is spatially uniform, or approximately so, at

the boundary but has some time variance.

Reflection symmetry is a particularly useful boundary condition since it can be used to dramat-

ically reduce the size of the computational box, vastly speeding up simulation time. Across a re-

flective boundary, the evolution variable is assumed to be either odd or even. For example, if the

reflective boundary is the x = 0 plane, then the evolution variable is assumed to satisfy

Q(x, y, z) = ±Q(−x, y, z) , (3.103)

where the choice of sign depends on the nature of the variable and is user-defined. This condition

sees use in highly symmetric systems, such as Schwarzschild or Kerr spacetimes. For example, the

example in GRBoondi of a Proca field on a Kerr background uses the symmetry in the z = 0 plane to

reduce the size of the computational box by 1
2

.

The last boundary condition is a static boundary condition, which fixes the value of the evolu-
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tion variable to its initial data by imposing

∂tQ = 0 . (3.104)

GRBoondi also supports mixing various boundary conditions. For example, in the Proca example,

the symmetry across the z = 0 plane is enforced while the Sommerfeld boundary condition is en-

forced at the outer edges of the z > 0 computational domain. This allows the outgoing radiation

condition to be enforced while also leveraging the z-symmetry to reduce the computational domain

size, substantially reducing computation time.

3.3.2 Adaptive Mesh Refinement

The computational grid is a core part of setting up a simulation and choosing the right type of grid

is highly problem dependent, but also very important for extracting accurate data. GRBoondi uses

the Berger-Rigoutsos (BR) adaptive mesh refinement (AMR) implementation from Chombo. This

grid is built from a hierarchy of increasingly fine levels, called refinement levels, which are labeled

l = 0, · · · , lmax and are of the form

∆xl = ∆x0/2
l , (3.105)

where ∆x0 is the spatial size of the coarsest cells, i.e. the size of the cells on the coarsest level of the

hierarchy. The BRAMR algorithm uses a block-structured approach, meaning each level of the

hierarchy is split into variably sized boxes, which are then distributed between CPUs, see sec. 3.3.3.

The allowable boxes are constrained by two conditions:

• Proper Nesting: a box on the lth refinement level must not touch level (l − 2) directly. In-

stead, there must be at least one intermediate (l − 1)-level grid cell in between.

• Proper Refinement: a box on level l must not refine parts of a level (l − 1) grid cell. It must

refine it completely or not at all.

At regridding or initial generation of the grid, on a single refinement level l, cells are flagged for re-

finement according to a tagging criterion τ = τ(I). For a given cell with indices I = (i, j, k)
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and Cartesian co-ordinatesXI = (x, y, z), if the tagging criterion computed for that cell is above

a user-defined threshold, τ(I) > τU , then that cell is flagged for refinement and its resolution in-

creased by a factor of 2 once the refinement stage is reached*.

In block-structured AMR, a challenge commonly faced is how to properly and efficiently par-

tition cells that need refinement into boxes. GRBoondi, being a derivative of GRChombo, uses the

BR algorithm for this purpose. A block factor is user-defined and enforces the minimum number of

cells that can partition the length of a box. Additionally, there is a user-defined maximum box size.

Typically, these two parameters are set equal to each other so that all boxes are roughly the same

size. In order to enforce the block factor on a newly refined level, Chombo generates a temporary

coarser level built from a set of tagged cells whose size corresponds to the block factor on the newly

refined level. Chombo then applies the BR partitioning algorithm on the new virtual coarse level to

construct boxes of grids which obey the user-specified block factor and maximum box size. The size

of the box is typically chosen with the number of CPU threads in mind, since the cells of each box

are iterated through using the available CPU threads (OpenMP; see sec. 3.3.3).

The BRAMR algorithm is reviewed here, since it is a central component of the GRBoondi foun-

dation 340. The algorithm itself follows four broad tenets:

• There should be as little unnecessarily refined area as possible.

• There should be as few boxes as possible.

• The boxes should ’fit’ the data.

• The algorithm should be fast.

The idea is to find the minimum box size that encloses all tagged cells on each level. Define the tag-

ging indicator function as

T (I) =


1 τ(I) > τU

0 else

. (3.106)

*The factor of 2 is known as the ref ratio and is the resolution difference between levels. In other words, it’s the
ratio of the size length of the cells on level l − 1 to that of cells on level l.
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In each partition, the signatures of the tagging function of any given box are defined as

X(x) =

∫
T (I)dydz (3.107)

Y (y) =

∫
T (I)dxdz (3.108)

Z(z) =

∫
T (I)dxdy . (3.109)

Given these signatures, the Laplacian of the signatures are also computed, ∂2xX(x), ∂2yY (y), and

∂2zZ(z). Given these results, the BR algorithm searches for all (if any) inflection points individu-

ally for each direction. Finally, the one whose difference δ(∂2iXi) is the greatest becomes the line of

partitioning for this particular dimension. This roughly corresponds to the line between tagged and

untagged cells in the orthogonal directions of the signature. If there exists a point with zero signa-

ture, then this ’hole’ is chosen to be the line of partition instead. If there are no holes or inflections,

then the box is split along the midpoint.

After partitioning, the new partition is checked for efficiency, by checking whether the propor-

tion of tagged cells to all cells in the partition exceeds a user-defined fill ratio ϵ and that the boxes

are within the block factor and maximum box size requirements. If the tests are passed, then the

partition is accepted. If not, then the boxes are recursively partitioned, discarding any boxes that

don’t meet the requirements. The value of ϵ naturally plays a role in the computational efficiency.

A higher value of ϵ leads to a greater ratio of tagged to untagged cells, making for a more efficient

partitioning. However, this is not always computationally efficient since there will be greater over-

head for the increased number of boxes, especially since each box needs to be allocated to an MPI

instance (more on this in sec. 3.3.3). There could also be greater fluctuation in the overall structure

of the grid, leading to more noise generation. Likewise, a smaller value of ϵ is more computationally

efficient but produces a less efficient partitioning. The default value is fill ratio= 0.7, though

the optimal value is case and processor dependent.

The partitioned box is finally refined, its constituent cells split into a finer mesh using the refine-

ment ratio δxl+1

δxl . This process is recursively performed until there are no more tagged cells, or the

top of the refinement hierarchy is reached, lmax. On each new level, the data is interpolated from

the coarser level using fourth-order interpolation.
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One now needs to specify a prescription for tagging cells that need to be refined. GRBoondi tags

cells based on expressions involving user-selected fields, F (Q). When any one of the expressions

passes a user-defined global threshold σ(Q), then the cell is tagged for regridding

τ(I) =


1 F (Q(I)) > σ(Q)

0 else

. (3.110)

Figure 3.7: An example of amesh generated using the

BRAMR algorithm. Themesh is overlayed on a two-

dimensional extruded plot of the conformal factor for a

Kerr black hole spacetime. The various refinement levels

are clearly visible, showing areas of strong gravity are

sufficiently resolved.

The rate at which regridding is performed is user-

defined. In an ideal world, regridding would occur

at every timestep. However, this is usually not the

best approach. One should consider that it’s impor-

tant to let numerical errors dissipate before remesh-

ing. Moreover, it’s more computationally efficient

to not regrid very often. In some cases, it may be

best to turn off regridding completely and evolve

the system on a static hierarchy of levels. This is the

case in the Proca on a Kerr black hole example. The

highest levels of the hierarchy capture almost all of

the physics, which do not deviate from the center

very much, thus making a fixed grid the best choice.

Fig. 3.7 shows an example of a computational grid

generated using the BRAMR algorithm. Since the finer levels have a smaller Courant number, each

mesh levels timestep is appropriately reduced according to

∆tl+1 = ∆tl
∆xl+1

∆xl
. (3.111)

This means the grids on level l + 1 will take two timesteps for each timestep taken on level l. The

entire grid is then evolved according to the Berger-Colella evolution algorithm, which uses the con-

cept of subcycling, fig. 3.8. The first step is to evolve grid level l one timestep. Then the next level in

the hierarchy l + 1 is evolved until it reaches the same time as grid level l. For a refinement ratio of
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2, level l + 1 takes 2 timesteps to reach the same time at level l. After the level has caught up to the

coarser level, the data on the coarser level is generated using the data from the finer level using inter-

polation. Ghost cells on the boundary between levels are populated with data from the coarser level

in both space and time. The temporal interpolation is generated using 3rd order polynomial fits in

time and the data from the substeps of the RK4 time-stepping.

3.3.3 Parallelization: MPI, OpenMP, and SIMD

Figure 3.8: Pictorial representation of subcycling. Finer

levels undergo evolution at a finer timestep until they reach

the time of the coarser level, which then updates the data

on the coarser level via interpolation of the data on the

finer level. This algorithm is recursive, so levels higher in

the hierarchy undergo frequent time-stepping compared to

the coarser levels.

Modern computational power has reached the ex-

ascale, with modern supercomputers being able to

execute ∼ 1018 floating point operations per sec-

ond (FLOPS) 341. With modern graphics processing

units (GPUs) and central processing units (CPUs)

reaching such enormous throughput, modern nu-

merical relativity codes have access to tremendous

resources. However, being able to access the compu-

tational potential for modern day processing units

requires fundamental design changes for the code.

In the modern day of multi-node, multi-core, and multi-threaded systems, parallelization can

take several forms. There are four main types:

• Distributed-memory parallelization: Multiple instances of the same program, called processes,

run simultaneously, with each process being run on a different CPU core. Each process has

its own copy of the data and information required for the simulation. This is a form of inter-

node parallelization.

• Shared-memory parallelization: Multiple ’threads’ are run using a single, shared memory

allocation in the CPUs random access memory (RAM). This is typically more memory effi-

cient since the program has access to the same memory locations of the data. However, inter-

node parallelization cannot be used because of this. This is instead of form of intra-node

parallelization.
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Figure 3.9: Distributed-memory parallelization allows a program to run on several nodes simultaneously, each node supplying its

own pool of memory. While this allows for enormous parallelization, it introducesmany complexities in program design.

• Vectorization: Modern CPUs support so-called ’single instruction, multiple data” (SIMD),

which means they can perform the same operation on multiple operands simultaneously.

For example, multiplying each element of a vector by a scalar can be handled simultaneously

on a single core. This type of parallelization is handled by the program compiler, though

depending on the program, the programmer may need to alter the code to better leverage

vectorization.

• Heterogeneous computing: This leverages the massive computational ability of modern day

GPUs to perform many simple tasks over a huge number of compute cores.

Distributed-memory allows for programs to run on multiple computers (called nodes) simultane-

ously. For example, a high performance computer cluster (HPC), such as the Baden-Württemberg

UniCluster*, is a collection of hundreds of computers connected via high-throughput linkages.

Distributed-memory parallelization allows a program to run on several of these nodes at once and

access each node’s memory pool. The program is split into several processes, called ranks. Each

process is an exact duplicate of all the others. Thus, the programmer has to design their program

around the fact that it will be split into several copies. Each rank is assigned a unique identifier, thus

each copy can perform different tasks depending on the identifier of the rank. The message passing

interface (MPI) is a standardized and portable library that enables distributed-memory paralleliza-

tion. MPI is what enables GRBoondi to be massively parallel.

*All the simulations in this thesis were performed on this cluster.
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Shared-memory parallelization involves running a computation using a single process that spawns

multiple threads, each running on a different core of the CPU, fig. 3.10. These threads all run on a

single node, thus accessing the same memory pool. However, shared-memory programs tend to be

far more challenging to develop since many factors can cause a huge heap of problems, including

race-conditions, different CPU architectures, even the weather can cause variations in results us-

ing shared-memory parallelization. Nonetheless, shared-memory parallelization is typically faster

than distributed-memory parallelization, since the computations and communications all take place

usually on a single CPU, and requires considerably less memory.

Figure 3.10: Shared-memory parallelization lets a

program spawnmany different threads on a single

CPU, who can all access the samememory pool.

While this can provide a considerable reduction

in communication latency and has amuch smaller

memory footprint than distributed-memory, it

can also introducemany complexities and bizarre

problems since the physical CPU chip can have

defects that alter results.

Vectorization is the remaining type of parallelization

supported by GRBoondi. In particular, the type of vector-

ization employed is the ’single instruction, multiple data’

(SIMD) type. It is a type of parallel processing in which a

single operation acts on multiple data points simultane-

ously. The data is grouped into vectors that the hardware

can process in parallel. The size of these vectors depends

on the architecture of the CPU. For instance, a 256-bit

wide SIMD operator can hold four 64-bit floating-point

numbers. This allows significant performance improve-

ment, particularly in tasks with high data parallelism,

such as the ones simulated with GRBoondi. The most

common SIMD implementations relevant for GRBoondi

are the Intel Streaming SIMD Extensions (SSE) and Ad-

vanced Vector Extensions (AVX). The AVX SIMD extensions are compatible with x86 instruction

sets for processors from both Intel and AMD, the most common CPU manufacturers. AVX-512

extends the standard AVX extension to include 512-bit support, first supported by Intels Knights

Landing processors. The AVX-512 extension can process 8 floating-point numbers simultaneously,

a tremendous speed improvement that is hugely beneficial for numerical relativity simulations. Ac-

tivating SIMD vectorization in the compiler for the simulations has improved processing speeds

close to 100 times.
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1 class DampingFieldDiagnostic
2 {
3 ...
4 template <class data_t> void compute(Cell<data_t> current_cell) const
5 {
6 MatterVars<data_t> matter_vars{current_cell.template load_vars<MatterVars>()}; // load the matter variables from the

Chombo grid
7 current_cell.store_vars(matter_vars.Z, c_Z_out);
8 };
9 };

Listing 3.1: Example of a class that computes a diagnostic quantity using either SIMD vectorization or the built-in double datatype.

GRBoondi utilizes distributed-memory, shared-memory, and vectorization parallelization. Uti-

lization of heterogenous computing is underway by the GRChombo collaborators342. GRBoondi

splits the computational domain into boxes, which are then shared between processes via the MPI

implementation. The typical CPU used during this thesis is the Intel Xeon Platinum 8358 pro-

cessor, which features 64 cores and a clock speed of 2.6 GHz. Since intra-node communication is

typically much faster than inter-node communication (which takes place via Infiniband HDR200

linkages), multiple MPI processes are spawned on a single node, typically between 4 to 8 processes.

The individual cells within a box are then parallelized using the shared-memory distribution library

OpenMP. A large portion of the simulation time is spent computing the evolution equations at

each RK4 timestep. Hence, parallelizing these steps is vital for performance. GRChombo abstracti-

fies away the SIMD vectorization utilities by defining new C++ datatypes which automatically han-

dle both vectorized and serialized operations, depending on whether the user compiles with SIMD

or not. All of the box loops and cell loops are handled by a single BoxLoops:loop C++ method.

This further abstractifies away the complex task of designing MPI and OpenMP operations. The

only requirement from the user is to write a class that takes a (in the terminology used in the C++

language) template datatype, which replaces the standard double or float datatype. The classes

which compute various quantities written by the user must have a compute method which executes

the computation. The instantiated class is then passed to a BoxLoops:loop member function which

executes the compute method over all cells and boxes for each level of the grid.

As an example of the multiple levels of parallelism in the GRBoondi code, we look at the Proca ex-

ample. A simple usage of the box loop class is the computation of diagnostic variables. The Proca

example has a diagnostic variable called the Damping Field diagnostic, which computes the value

of an evolution variable and stores it for plotting. The template datatype data_t is what enables the
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1 DampingFieldDiagnostic z_field_diagnostic{};
2 // compute diagnostics on each cell of current level
3 BoxLoops::loop(
4 make_compute_pack(Asquared, EM, z_field_diagnostic, background_init),
5 m_state_new, m_state_diagnostics, EXCLUDE_GHOST_CELLS
6 );

Listing 3.2: An example of looping over the boxes and cells usingMPI andOpenMP implementations. The parallelism is abstracted

away in a single method called BoxLoops:loop.

method compute to take either double or SIMD datatypes. In the BaseProcaFieldLevel class, the

damping field is computed (or in this case extracted) from each cell using a call to the BoxLoops:loop

method. The damping field class is initialized and then passed to the BoxLoops:loop method. Since

many other diagnostic quantities are typically computed after each timestep, they are packaged to-

gether using the make_compute_pack function. Each call to the compute method in the BoxLoops:loop

method automatically threads that call to each class in the compute pack. Additionally, the ghost

cells on the grid can be ignored by passing the EXCLUDE_GHOST_CELLS flag, which tells the box loops

to ignore any ghost cells and only execute the computation on the physical grid cells. Should the

user write a class that cannot utilize the SIMD extension, such as when the code contains condi-

tional statements, the vectorization can be disabled at the call to BoxLoops:loop by passing another

flag via BoxLoops:loop(..., disable_simd()). This is a common occurrence when excising cer-

tain regions of the grid, where a conditional is employed to only excise cells within a certain zone

of the computational domain. Conditionals are quite a challenge to implement alongside SIMD,

so sometimes it’s easier to just disable SIMD in favor of simpler code. Fortunately, computations

such as excision are executed much less frequently than the RK4 steps, so disabling SIMD for these

computations has little impact on the computation speed.

3.3.4 Extraction and Diagnostics

GRBoondi offers various methods to extract quantities from the grid, either by saving directly each

value in every cell, integrating quantities over the entire mesh, or integrating quantities over pre-

defined surfaces. Primarily, the total energy and fluxes are computed by default in GRBoondi, though

the user can very easily add additional quantities. This is a particularly vital feature since derived

data is almost always required. Hence, this section will review the main pieces of this procedure.

Since GRBoondi inherits from GRChombo, most of the class structure comes from this inheritance,
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1 AMRReductions<VariableType::diagnostic> amr_reductions(m_gr_amr);
2 std::vector<double> integrals;
3 integrals.push_back(m_p.SymmetryFactor * amr_reductions.sum(c_rho));
4 SmallDataIO constraint_file(m_p.data_path + m_p.integrals_filename, m_dt, m_time, m_restart_time, SmallDataIO::APPEND,

first_step);
5 constraint_file.write_time_data_line(integrals);

Listing 3.3: An example of computing a volume-integrated quantity. Using themethods of Chombo and the interface classes of

GRChombo, such a procedure is simple.

though GRBoondi adds additional functionality specific for generalized Proca theories, including

dedicated post-processing routines.

Volume-integrated Quantities

Volume-integrated quantities are those quantities that are formed by integrating variables over the

grid ∫
G

f(x(i), y(j), z(k), Q)dxdydz , (3.112)

where G is the entire three-dimensional grid, x(i), y(j), z(k) are the three spatial co-ordinates as

functions of the grid indices,Q is a grid variable (usually one of the evolution variables), and f is

some arbitrary function of position andQ. The procedure to compute this sum is fairly straight-

forward. Chombo has built-in tools, called AMRTools, that allow for methods to be run that need

access to the entire level hierarchy. In this case, the computeSum method is used. This method com-

putes the sum of a specified variable over all cells in a level and over all levels.

Since the sum computed in this way is blind to the metric, the function f needs to already have

the volume element taken into account. For example, in computing the total energy in the Proca

example simulations, the energy density ρ is multiplied by the determinant of the spatial metric

before being saved to the grid. Hence, f(x(i), y(j), z(k), Q) = ρ(x(i), y(j), z(k)) ∗ √γ.

At the level of the code, it’s very easy to compute volume-integrated quantities, lst. 3.3. The

AMRReductions object is templated over the type of value defined on the grid. In this instance, the

type of c_rho is a diagnostic variable, in contrast to an evolution variable. This means c_rho is un-

derstood to be a variable that is not relevant in any way to the evolution equations, instead only

as a value that should be computed a posteriori. The AMRReductions class is then initialized using

the AMR object, which holds all the information about the grid. The summation is then com-

puted using the sum method of AMRReductions, which is then stored in a vector, accounting for any
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1 for (auto var_enum : vars_to_integrate)
2 {
3 integrals.push_back(m_p.SymmetryFactor * amr_reductions.sum(var_enum));
4 }

Listing 3.4: An example of integrating several quantities and storing their output. The vector storage can then be saved to file exactly

the same as lst.3.3.

symmetries implied by the boundary conditions. The vector is then stored to disk as a time series

datapoint. Multiple quantities can be computed this way with each integral being appended to the

vector storage. For example, by iterating over an enum which labels the various diagnostic quantities,

one can compute all their integrals as in lst. 3.4.

Surface-integrated Quantities

Extraction of quantities over more general surfaces requires a more involved process, since the sur-

face itself needs to be explicitly defined. This section will use the example of extracting fluxes across

a two-dimensional surface, though in principle any quantity can be computed over a general surface

using similar methods discussed here.

Integrals of the form ∫
S

f(u, v,Q)ϵS dudv (3.113)

are the primary quantities computed here. S is the surface over which the integral is evaluated,

f(u, v,Q) is an arbitrary function of the co-ordinates of the surface, u and v, and a variableQ,

which is typically an evolution variable, and finally ϵS is the co-ordinate area element. Note again

that f needs to have the spacetime volume element already taken into account. At each point on the

surface, the variableQ is interpolated using the values on the grid cells.

For the example of extracting fluxes, the FluxExtraction class takes care of all the necessary

computations. It is a child class which inherits from the SphericalExtraction class, which it-

self inherits from the SurfaceExtraction<SphericalGeometry> class. The SurfaceExtraction

class is templated over a SurfaceGeometry class, which defines several properties about the surface

being integrated, such as the embedding relations of the surface in the computational space, the

volume elements, and co-ordinate differentials. The SurfaceExtraction class handles the low-

level methods for computing the actual integrals using user-specified integration methods*. The

*At the time of writing, the trapezium, Simpson’s, and Boole’s rule have been implemented as possible integration
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1 for (auto var_enum : vars_to_extract)
2 {
3 m_gr_amr.fill_multilevel_ghosts(VariableType::diagnostic, Interval(var_enum, var_enum), min_level);
4 };
5 FluxExtraction my_extraction(
6 m_flux_container, m_p.extraction_params, vars_to_extract, m_dt, m_time, first_step, m_restart_time, m_p.SymmetryFactor);
7 my_extraction.execute_query(m_gr_amr.m_interpolator);

Listing 3.5: An example of extracting fluxes through a spherical surface.

SphericalExtraction class is a specification of the templated SurfaceExtraction class to extract

quantities over spherical surfaces of radius R, S = S2. In this case, the surface co-ordinates are

chosen to be the standard spherical co-ordinates, (u, v) = (θ, ϕ) and the discretization is a homo-

geneous grid with spacings ∆θ = π
nθ−1

and ∆ϕ = 2π
nϕ−1

. This results in the usual co-ordinate

volume element ϵS = R2 sin θ. The default integration rule is the Simpson rule in both spherical

directions with cell counts of nθ = 49 and nϕ = 32, though these numbers are freely specifiable in

the simulation’s parameter file.

In the code, implementation of these methods is straightforward. However, since the interpo-

lator needs values defined around a queried cell, the ghost cells need to be filled. Hence, the pro-

cedure for computing fluxes is a little more involved than just querying the AMRReductions class,

see lst. 3.5 The first step is to fill the ghost cells for variables that are going to be integrated over the

spherical surface, to ensure the interpolator has accurate data. Then the FluxExtraction code is

initialized, including all variables that are going to be extracted using the vars_to_extract variable.

Finally, the query is executed and all variables are integrated over the spherical surface and saved to

disk.

The FluxExtraction class has several different pieces but it’s conceptually fairly straightforward.

The first piece happens at class initialization and involves specifying which grid variables should

be extracted, lst. 3.6. The add_var method is a member of the SurfaceExtraction class. It sim-

ply appends the variable to be extracted to a vector of names. This is populated by iterating over

the m_vars_to_extract member variables of the FluxExtraction class, which finds its origin in

the simulation’s parameter file, i.e. specified by the user at runtime. The next step is to execute the

query, which orchestrates several different steps. Step one is to compute the interpolated values of

the grid variables onto the surface itself, lst. 3.7. Step two is to compute the integrands, which sets

methods.
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1 FluxExtraction(Container &a_flux_container, spherical_extraction_params_t &a_params, std::vector<int> a_vars_to_extract,
double a_dt, double a_time, bool a_first_step, double a_restart_time = 0.0, double a_symmetry_mult = 1.0)

2 : SphericalExtraction(a_params, a_dt, a_time, a_first_step, a_restart_time), m_vars_to_extract(a_vars_to_extract),
m_flux_container(a_flux_container), m_symmetry_mult(a_symmetry_mult)

3 {
4 // iterate over variables to extract and add them to the extractor
5 for (auto var : m_vars_to_extract)
6 {
7 add_var(var, VariableType::diagnostic);
8 }
9 }

Listing 3.6: Initialization of the FluxExtraction class specifies which variables should be extracted.

1 extract(a_interpolator);

Listing 3.7: In the FluxExtraction class the first step in executing a surface integration query is to compute the interpolated grid
variables on the surface itself.

up the integration method and performs several checks of the discretization. This is performed for

each variable that is to be extracted. This step also sets up the output vector, where each integral

is stored, see lst. 3.8. Finally, the integration is executed for all variables, see lst. 3.9. The results are

then stored in the flux_integrals vector, which is a two-dimensional matrix that holds the results

of the integrals for each radii of the spherical surface and for each variable.

Diagnostic Quantities

GRBoondi offers the ability for users to select in-built diagnostic quantities that should be computed

throughout the simulation. Moreover, users can define their own classes and quantities that are

computed from the evolutionary variables. These are specified in the parameter file of the simula-

tions and hence at runtime. The user can specify which variables should be used as diagnostic vari-

ables and hence which ones are saved to disk. These are separated into three distinct categories. The

first is plot variables. These are variables whose value at each cell is saved to an HDF5 file format

and read in by specialized visualization toolkits (or GRBoondi’s own post-processing routines). The

second type is the integration_vars, or variables that will be integrated across the entire grid. For

1 std::vector<std::vector<double>> flux_integrals(m_vars_to_extract.size());
2 for (int var{0}; var < m_vars_to_extract.size(); var++)
3 {
4 add_var_integrand(var, flux_integrals[var], IntegrationMethod::simpson, IntegrationMethod::simpson);
5 }

Listing 3.8: In the FluxExtraction class the second step in executing a surface integration query is to set up the integration
methods and storage container for the results.
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1 integrate();

Listing 3.9: In the FluxExtraction class the final step in executing a surface integration query is to execute the integration.

1 plot_vars = Z Asquared rho rhoE EMtrace EMsquared
2 extraction_vars = Edot Jdot
3 integration_vars = rho rhoE rhoJ EMsquared

Listing 3.10: User can specify which variables are used as diagnostic variables.

example, the energy density is integrated to find the total energy across the entire computational do-

main. The third and final type is the extraction_vars, or the extraction variables. These are vari-

ables that will be integrated across spherical surfaces of user-specified radii. For example, the energy

flux is integrated over a sphere of large radius to find the total flux of a quantity from a spherical re-

gion. All three variable types are specified in the parameter file, lst. 3.10. Moreover, users can turn

off either integration, extraction, or both using distinct flags, lst. 3.11. By default, GRBoondi offers

several diagnostic quantities that users can choose from. These include the Proca energy density,

angular momentum scalar density, energy flux, angular momentum flux, Eulerian energy density,

the trace of the stress-energy tensor, the square of the stress-energy tensor TµνTµν , the auxiliary

constraint-damping scalar, the square of the Proca fieldAµAµ, approximately conserved momen-

tum αT0
i , flux of the conserved momentum, and another quantity associated with the flux of linear

momentum 343 *.

3.3.5 Modularity

Modularity of GRBoondi is one of its core features. It’s one of the ways in which GRBoondi allows

arbitrary modifications coming from generalized Proca theories. The main class that specifies vari-

ous steps in the simulation, including computing the evolution equations, generating plot files, and

postprocessing after each timestep, is the BaseProcaFieldLevel class. In the language of C++, the

BaseProcaFieldLevel class is an abstract class. It cannot be instantiated directly. Instead, it serves

1 activate_extraction = 1
2 activate_integration = 1

Listing 3.11: User can specify which variables are used as diagnostic variables.

*If the spacetime does not admit the killing vectors associated to these conserved quantities, the user can simply
turn off any computation involving them by not specifying them in the parameter file.
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1 template <class background_t, class proca_t>
2 void BaseProcaFieldLevel<background_t, proca_t>::specificAdvance()
3 {
4 // check for nans
5 if (m_p.nan_check)
6 {
7 BoxLoops::loop(NanCheck(), m_state_new, m_state_new,
8 EXCLUDE_GHOST_CELLS, disable_simd());
9 }

10 };

Listing 3.12: Default code for themethod specificAdvance.

1 virtual void specificAdvance() override
2 {};

Listing 3.13: Default code for themethod specificAdvance.

to be purely a parent class, being inherited by other classes. This primarily comes from the need to

specify initial data, which is unique for each simulation. Every method in BaseProcaFieldLevel is

a virtual method, meaning the child class can define their own version of the method, allowing users

to change specific functionality in each step of the simulation. For example, one method defines

what to do after each RK4 calculation, lst. 3.12. Instead of running this code, users can define their

own version of this method in their child class by simply overriding the method itself. For example,

if the user defines the child class as ProcaFieldLevel, which inherits from BaseProcaFieldLevel,

and they wish for no code to be run in this step, they could simply define the method to be trivial,

lst. 3.13. They could do this with any method in BaseProcaFieldLevel. Moreover, some methods

in BaseProcaFieldLevel have additional steps built in which, instead of overriding the method,

simply add additional functionality after the default code has run. For example, a virtual method

called additionalPostTimeStep exists which is called after all the code in BaseProcaFieldLevel::

specificPostTimeStep is executed, lst. 3.14. There is also the additionalPrePlotLevel which

adds functionality to the BaseProcaFieldLevel::prePlotLevel method.

The BaseProcaField class is the base class which holds the actual evolution equations and equa-

1 template <class background_t, class proca_t>
2 void BaseProcaFieldLevel<background_t, proca_t>::specificPostTimeStep()
3 {
4 ...
5 // add any other computations from the user, via virtual function
6 additionalPostTimeStep();
7 };

Listing 3.14: Adding additional functionality on top of the default behavior in specificPostTimeStep.
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tions for the stress energy tensor. This class is then instantiated in the BaseProcaFieldLevel::

specificEvalRHS method, which computes the RHS and evolves the fields. As the name suggests,

BaseProcaField only holds the basic evolution equations for the generalized Proca fields. More

specifically, it holds the equations for the theory L = −1
4
F µνFµν and sets the time derivative of the

temporal part of the Proca field and the auxiliary damping field to zero, ϕ̇ = Z = 0. In total, the

base evolution equations are

Ẋi = −α∂iϕ− ϕ∂iα + βj∂jXi − αγijE
j +Xj∂iβ

j (3.114)

Ėi = αKEi + βj∂jE
i − Ej∂jβ

i + γjkγil (∂jα ∗ [∂lXk − ∂kXl] (3.115)

+α [∂j∂lXk − ∂j∂kXl])− αγjkγil
[
Γm
jl (∂mXk − ∂kXm) + Γm

jk (∂lXm − ∂mXl)
]

ϕ̇ = 0 (3.116)

Ż = 0 , (3.117)

where the 3+1 variables of the Proca field are ϕ = −nµAµ,Ei = γiµnνF
µν ,Xi = γiµA

µ, and

Z is an auxiliary field introduced to damp violations of the Proca constraint, similar to the CCZ4

formalism, eq. 3.74. Higher order terms in the generalized Proca theory will modify these evolu-

tion equations. To deal with these new modifications, the BaseProcaField class must somehow

allow the evolution equations to be modified. Due to subtleties in templated and virtualized func-

tions in C++, it’s not possible to create a virtualized function that is templated over typenames.

However, there does exist a type of coding idiom called curiously recurring template pattern, or

CRTP, which allows parent classes to access methods of the child class by passing the child class

as a template argument to the parent class itself. If this wasn’t the case, then the templated method

in BaseProcaField would have to access a virtualized method, which would be defined by the user,

which is not possible in C++. The specific implementation of CRTP by GRBoondi follows:

• BaseProcaField is templated over two class types, one for the background spacetime and

another for the evolution modifications.

1 template <class background_t, class modification_t> class BaseProcaField

• After the evolution equations are computed, a method of the templated class is called, which

adds the modifications to the evolution equations.
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1 void BaseProcaField<background_t, modification_t>::matter_rhs(...)

2 {

3 ...

4 // add modifications ala CRTP

5 static_cast<const modification_t *>(this)->matter_rhs_modification(

6 total_rhs, matter_vars, metric_vars, d1, d2, advec);

7 }

This static casts the BaseProcaField object to the templated class, which is simultaneously

a child class. Finally, the method which modifies the evolution variables is called from the

casted object.

• Users then define a ProcaField class which inherits from BaseProcaField as

1 class ProcaField : public BaseProcaField<background_t, ProcaField>

and defines a method called matter_rhs_modification which modifies the evolution equa-

tions to account for higher order terms in the generalized Proca Lagrangian

1 void matter_rhs_modification(...)

2 {

3 FOR1(i)

4 {

5 total_rhs.Evec[i] += ...

6 total_rhs.Avec[i] += ...

7 }

8 total_rhs.Z += ...

9 total_rhs.phi += ...

10 }

where FOR1(i) is a preprocessor definition for for(int{i} = 0; i<3; ++i).

With these procedures, users can easily add modifications to the base L = −1
4
F µνFµν Lagrangian.

These modifications are then automatically taken into account in the BaseProcaField evolution

computation.

3.4 Convergence Behavior of GRBoondi

When performing numerical computations of any kind, relativity included, it’s vital that conver-

gence and consistency checks are performed alongside the main simulations. Without these quan-
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titative error estimations, the resulting data from the main simulations are completely worthless*.

Numerical simulations unavoidably introduce errors in the final solution, originating from mul-

tiple places. Firstly, the finite size of the grid can, and does, introduce high frequency noise with

frequencies comparable to the grid spacing. This is the reason GRBoondi uses Kreiss-Oliger dissi-

pation. Secondly, the interpolation errors from, for example, computing derivatives using ghost

cells near box boundaries or level boundaries introduce additional errors. Thirdly, highly dynam-

ical spacetimes such as black hole spacetimes can exacerbate existing errors, compounding them

and causing them to dramatically increase. Finally, in the context of finite numerical simulations,

boundary conditions are unphysical and will contribute to the noise and errors of the simulation.

There are potentially many more sources of errors that can arise in numerical relativity. Hence, it’s

absolutely critical that users of the code approximately quantify the total amount of errors in the

simulation, otherwise there is no confidence in the accuracy and precision of the resulting data. To

that end, GRBoondi performs several convergence tests, correctness tests, and consistency tests for

various methods and background spacetimes.

3.4.1 Theory of Convergence Testing

The key idea of convergence testing is the observation that the solution of a stable finite differencing

scheme can be expanded as a continuous function in a power series of the discretization parameter

ϵ345

qϵ(t, x) = q(t, x) + ϵe1(t, x) + · · ·+ ϵnen(t, x) + · · · , (3.118)

where q(t, x) is the (continuous) solution of the original differential equation and the ei(t, x) are

so-called error functions at different orders in ϵ. For an ”n’th order accurate approximation”, we

expect ei<n = 0 and en ̸= 0.

Assume for the moment that we know the exact solution to the differential equation and we

want to compare the numerically computed solution against the known solution. To test the con-

vergence of the numerical solution to the true solution, we perform the computation at two resolu-

tions, say ∆1 and ∆2, with r ≡ ∆1

∆2
> 1.

*Boyd defines an ’idiot’ as someone who publishes a numerical calculation without checking it against an identical
calculation with a different resolution 344.
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In each case, we compute the error between the numerical and true solution

E1 = q − q∆1 (3.119)

E2 = q − q∆2 . (3.120)

Notice that this difference can only be computed at the grid points of the simulation, since that

is the only place where q∆1 and q∆2 are respectively defined. Moreover, these grid points will be

different between the two simulations. We then compute the r.m.s. norm for each solution error

and calculate the ratio

c(t) =
||E1(t)||
||E2(t)||

. (3.121)

This ratio, being a sort of spatial integration of the solution errors, is purely a function of time and

is called the convergence factor. If we have a numerical scheme that is of n’th accuracy, the solution

expansion eq. 3.118 will yield the convergence factor in the continuum limit

lim
∆→0

c(t) =

(
∆1

∆2

)n

= rn . (3.122)

The convergence tests are typically performed with r = 2, i.e. the resolution of the simulation is

doubled. However, in principle it can be performed with any ratio. The simulation is performed

with several higher resolutions and, if the behavior is close to the expected value, we are said to be in

the convergence regime.

However, the issue with this approach is that it assumes we know the exact solution of the dif-

ferential equation to begin with. Most of the time, including all cases relevant to GRBoondi*, this is

not the case. The best we can do is prove that the simulations converge to something and hope that

thing is the true solution†. To that end, the simulation is repeated with three different resolutions

∆1 > ∆2 > ∆3. The relative errors are then computed and the convergence factor is defined as

c(t) =
||q∆1 − q∆2 ||
||q∆2 − q∆3 ||

. (3.123)

*Except for some testing cases, see below.
†This is where good initial data is vital. If the initial data is too far off of the expected result, the simulation can

convergence to something that is not the desired solution, but is a solution to an entirely different problem.
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In the continuum limit, we expect

lim
∆→0

c(t) =
∆n

1 −∆n
2

∆n
2 −∆n

3

. (3.124)

For equal resolution ratios, ∆1/∆2 = ∆2/∆3 = r, we have

lim
∆→0

c(t) = rn . (3.125)

Convergence testing not only allows us to ensure the errors are decreasing at the expected rate

as resolution is increased, but also estimate the error in the final solution itself. Assume we have an

n’th order accurate scheme and we’ve performed the simulations for two different resolutions, ∆1

and ∆2. The series expansion eq. 3.118 tells us

q∆1 − q∆2 = en (∆
n
1 −∆n

2 ) +O(∆n+1) ∼ E∆2 (r
n − 1) . (3.126)

The solution error on the highest resolution of the grid is then

E∆2 ∼
1

rn − 1
(q∆1 − q∆2) . (3.127)

This error estimate allows the creation of error bars for the simulations.

3.4.2 Convergence Checks

GRBoondi comes built in with several different background spacetimes and so several convergence

tests are performed, one convergence check for each grid variable. Since the convergence check is

functionally identical for each background spacetime, the basic layout will be discussed once and

then the results for each check will follow.

The first step is to define the result containers and number of resolutions to run at, lst. 3.15.

Next, the iteration over the resolutions begins and the grid is initialized based on the current res-

olution, lst. 3.16. Whichever background spacetime is being tested is then initialized, lst. 3.17. The

GR constraints are then computed to verify that the background spacetime is indeed a solution of

the Einstein equations. The Proca field class is then initialized and the evolution equations are com-
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1 const std::vector<int> resolutions{96, 192, 384}; // resolutions to run at
2 const int num_resolutions = 2; // how many of the resolutions to actually use
3 // vector of norms for convergence checking
4 std::array<std::array<double, NUM_VARS>, num_resolutions> error_norms;

Listing 3.15: Setup phase for convergence testing.

1 for (int ires{0}; ires < num_resolutions; ++ires)
2 {
3 // setup the array boxes for various inputs and outputs
4 const int N_GRID{resolutions[ires]}; // number of cells on each side of box
5 // setup boxes
6 Box box(IntVect(0, 0, 0), IntVect(N_GRID - 1, N_GRID - 1, N_GRID - 1)); // The computational box

Listing 3.16: Resolution iteration begins and grid is initialized.

puted using numerically computed derivatives, including the background ones, lst. 3.18. where

fixedbg_FAB and rhs_FAB are the boxes of cells on the grid. Then the evolution equations are com-

puted again, however this time using the analytic derivatives for the background variables, lst. 3.19.

Then the difference between the two solutions is taken, lst. 3.20.

A basic check is run to ensure constraints aren’t violated and that the difference between the two

solutions isn’t too large. Then the convergence factor is computed via eq. 3.123. The results of the

convergence checks for each background built in to GRBoondi are displayed in table 3.1.

It’s not clear what convergence factor we should expect, since there are many levels of refinement,

and various ingredients at different orders. However, since GRBoondi uses fourth-order stencils, we

can expect c(t) to be somewhere in the range of c(t) = 16. For the Minkowski background, we

obtain exactly c(t) = 16, however for the Boosted Schwarzschild background, the convergence

factor is less, closer to what we would expect for a third-order accurate approximation. Nonetheless,

a high convergence factor such as 12.7084 is sufficient.

3.4.3 Consistency Checks

Besides convergence tests, GRBoondi also performs consistency checks to ensure the code behaves

as it was designed to. The first is checking that the modifications introduced via a ProcaField class

reproduces the expected evolution equations. To verify this, the equations of motion derived from

1 background_t background_init(bg_params, dx);

Listing 3.17: Initialization of the background class.
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1 ProcaFieldTest matter(background_init, proca_params);
2 // setup matterccz4 rhs with matter class
3 MatterCCZ4RHS<ProcaFieldTest> matter_ccz4_rhs(
4 matter, ccz4_params, dx, sigma, CCZ4RHS<>::USE_BSSN, G_Newt);
5 BoxLoops::loop(matter_ccz4_rhs, fixedbg_FAB, rhs_FAB);

Listing 3.18: Evolution equations are computed using numerically computed derivatives for the Proca and background variables.

1 ProcaField::params_t proca_params = {1, 1, 1};
2 ProcaField analytic_matter(background_init, proca_params);
3 // compute RHS using analytic expressions
4 MatterEvolution<ProcaField, background_t> my_an_evolution(
5 analytic_matter, background_init, sigma, dx, center_vector);
6 BoxLoops::loop(my_an_evolution, fixedbg_FAB, fixedbg_rhs_FAB);

Listing 3.19: Evolution equations are recomputed, however this time using the known analytic derivatives for the background

variables.

the Lagrangian L = −1
4
FµνF

µν − 1
2
µ2AµAµ are computed, yielding

1

α
LmE

i = EiK −DiZ + µ2X i − 2

α
Dj

(
αD[jX i]

)
(3.128)

1

α
LmZ = −µ2ϕ−DiE

i − κZ (3.129)

1

α
LmXi = −Ei −Diϕ− ϕDiln(α) (3.130)

1

α
Lmϕ =

Z

µ2
+ ϕK −DiX

i − xiDiln(α) , (3.131)

where LmQ = (∂t − Lβ)Q and the auxiliary fieldZ is introduced to damp constraint violations.

These equations are then modifications of the base equations used in GRBoondi, eqs. 3.114. This

check will test the ability for GRBoondi to correctly incorporate modifications to the field equations.

The test proceeds similarly to the convergence checks in the previous section, but this time only

choosing a single resolution. The grid is set up in the same manner and a Kerr black hole back-

ground is initialized. Two separate ProcaField classes are instantiated. The first contains all the

evolution equations from eqs. 3.128-3.131 and the second contains only the modifications from

the base evolution equations eqs. 3.114-3.117. Finally, the two evolution equations are computed

and their results subtracted, lst. 3.21. The results of each evolution are stored in my_rhs_FAB and

ref_rhs_FAB, respectively, and their difference taken in the last line. The error is then computed

1 rhs_FAB -= fixedbg_rhs_FAB;

Listing 3.20: Difference between the two solutions using numerically and analytically computed derivatives.
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Convergence Tests
Background Convergence

Factor
Boosted Schwarzschild 12.7084

Minkowski 16
Kerr-de Sitter 14.3488

Kerr 15.5201

Table 3.1: Convergence test results for background spacetimes shippedwith GRBoondi.

1 MatterEvolution<ProcaField, KerrSchild> my_matter(my_proca_field, kerr_init, 0.0, dx,center_vector); // GRBoondi evolution.
set Kreiss-Oliger to zero

2 MatterEvolution<FixedBGProcaField<Potential>, KerrSchild> ref_matter(test_proca_field, kerr_init, 0.0, dx,center_vector); //
Reference evolution. set Kreiss-Oliger to zero

3 // Now loop over the box and compute the RHS
4 BoxLoops::loop(my_matter, my_FAB, my_rhs_FAB);
5 BoxLoops::loop(ref_matter, ref_FAB, ref_rhs_FAB);
6 ref_rhs_FAB -= my_rhs_FAB; // now subtract the two

Listing 3.21: Checking the ability for GRBoondi to correctly incorporatemodifications to the Proca equations of motion.

using the L∞-norm, lst. 3.22. The current version of GRBoondi passes this check perfectly, with all

errors falling below the critical threshold.

GRBoondi also contains other smaller checks to test the correctness of various helper functions,

though these will not be detailed here to avoid pedantism.

3.5 Performance Benchmarking and Analysis

Benchmarking the performance of any numerical relativity code is a vital part of ensuring the soft-

ware runs as it was designed to. There are a huge number of places where performance potential

could be lost. For example, by improper memory management, poorly optimized coding choices,

compiler options, processor architecture, etc. Running performance checks allows one to verify the

code runs as intended and to find potential performance bottlenecks.

The performance of GRChombo has been thoroughly tested up to 285,600 cores on the Stam-

1 for (int i{c_phi}; i <= c_Z; i++) //iterate over each evolution variable
2 {
3 double max_err = ref_rhs_FAB.norm(max_norm, i, num_comps); //compute the norm of the difference between the two evolution

computations for current variable
4 if (max_err > error_limit)
5 {
6 failed = -1; //if the error is larger than a predefined limit, then test fails
7 }
8 }

Listing 3.22: iterating over the errors and checking they fall below a predefined threshold.
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pede2 supercomputer, which uses Intel Xeon Phi 7250 processors. These tests showed that GR-

Chombo scales both strongly and weakly with increased resources. Strong scaling refers to the speed

increase for simulations when the available resources is increased. For an ideal runtime, doubling

the number of resources should cut the simulation walltime in half. GRChombo also shows weak

scaling. This refers to the ability for more expensive simulations to run in the same amount of time

for a proportional increase in the number of computational resources. Since GRBoondi inherits

most of the mesh generation and time-stepping code, it automatically inherits these traits as well.

These scaling tests refer to how well the program itself handles increased resources. Another

place programs can gain efficiency, even without increasing the resource pool, is by researching

and applying compiler options when building the program. Sometimes this can feel like an artis-

tic movement rather than a scientific approach, due to the huge number of possible compiler op-

tions and number of compilers. In the development of GRBoondi, it was found that carefully pick-

ing compiler options can increase the speed of simulations up to hundreds of times, so it is worth

running optimization benchmarks to understand the effect of each option and search for improve-

ments.

Another benchmark will be comparing GRBoondi to GRChombo itself. Since GRChombo is a

versatile toolset for evolving matter and spacetime in tandem, for some problems it can be too large

of a tool than is necessary*. This versatility can even cause greater computational overhead, slow-

ing simulations down just from these added features existing, especially when multiple unnecessary

code files are incorporated at compile time†. The advantage of using GRBoondi against GRChombo

for simulating superradiant Proca fields in black hole spacetimes will be analyzed. The effect of us-

ing a fixed background compared to a fully evolving one will be tested, showing that the fixed back-

ground approximation in GRBoondi is both precise enough for useful data and a huge optimization.

3.5.1 Performance Comparisons

The two main benchmarks performed for GRBoondi are then

• Compilation optimizations using the Intel OneAPI DPC++/C++ Compiler. Since the sim-

ulations performed in this test are ran on Intel processors, the Intel C++ compiler typically

*Analogously, using GRChombo for simpler problems is like using a sledgehammer to crack a nut.
†Although, advanced compilers should be able to optimize these redundant files away.
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offers the best performance. With sufficient knowledge of compiler options, similar perfor-

mance can also be obtained with the GNU compilers.

• Performance comparison between evolving the full Einstein+Proca system using GRChombo

and evolving just the Proca system on a fixed background using GRBoondi.

CPU and Architecture

Since performance metrics, especially compiler optimizations, are largely architecture dependent,

it’s vital that the testing computers are standardized across all tests. The tests in this section are per-

formed on an Intel Xeon Platinum 8358 processor with a base frequency of 2.6 GHz and turbo

frequency of 3.4 GHz. The turbo frequency is the maximum single-core frequency at which the

processor is capable of operating*. The CPU cache is 48 megabytes, which is memory storage lo-

cated physically on the processor itself, in contrast to system memory, which is typically stored on

the main motherboard of the computer and accessed by the processor via PCIe channels. Each pro-

cessor contains 32 cores, or 32 independent central computing units, and 64 threads, or 64 ’logical’

cores.

These tests run on a various number of compute nodes in the Baden-Württemberg high per-

formance computing cluster (bwHPC), with each compute node containing two Intel Xeon pro-

cessors and 256 gigabytes of system memory. Each node is connected via an Infiniband HDR200

(High Data Rate 200) interconnect, which supports data transfer speeds up to 200 gigabytes per

second (Gbps) per port. These interconnects have extremely low latency, allowing code highly par-

allelized using tools such as MPI to achieve extremely fast speeds, even when several processes are

scattered across several nodes. The operating system of the nodes is Red Hat Enterprise Linux re-

lease 8.8.

Compilation and Optimizations

The first benchmark is evaluating the effects of different compilation options for the Intel OneAPI

C++ compiler, henceforth denoted by icpc. There are many different types of compiler options,

*Though, consumer processors can be, and are, overclocked to allow higher clock speeds, though this comes at the
cost of increased thermal energy and decreased stability.
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ranging from optimizations, code generation, floating point operations, and linker settings. By far

and large, the optimization options are naturally the most relevant, though other options can sub-

tlety impact performance. Reviewed here are some of the most important options that should be

enabled.

• -O[n]: This flag tells the compiler the broad level of optimization to use for the compila-

tion. The maximum of -O3 tells icpc to be aggressive in its optimization. The compiler will

use many fancy techniques to generate a highly optimized executable. This option is espe-

cially useful for loops that have many floating-point operations, which is highly relevant to

GRBoondi.

• -parallel: This tells the compiler to enable the auto-parallelizer, which generates multi-

threaded code for loops.

• -xCORE-AVX512: This is an extremely important compiler option, which tells the compiler

to generate AVX instruction code, a type of vectorization (see sec. 3.3.3). There are many

different Intel vectorization features enabled with this option. The code compiled with this

option can see significant speed up. It should be noted the exact vectorization flag is highly

architecture dependent. The option -xCORE-AVX512 works on the Intel Xeon processors that

the simulations were executed on. Users of GRBoondi need to be aware of the architecture the

code is being compiled on and adjust this option accordingly.

• -qopt-zmm-usage=high: This option pertains to the vectorization of the program and should

be used in accordance with the -xCORE-AVX512 option. This option tells the vectorizer to

maximize the usage of particular SIMD registers in the processor, providing further speed-

up.

• fp-model fast=2: This option controls the semantics of floating-point calculations. The

floating-point domain of the processor is a collection of registers that control the floating

point behavior of the instruction sets. Setting the model to fast=2 tells the compiler to use

more aggressive optimizations, increasing speed at the slight detriment in accuracy and repro-

ducability. Analysis of GRBoondi shows these detriments are unnoticeable.
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• -ipo: This option enables interprocedural optimization between files, or Whole Program

Optimization (WPO). This option inlines functions that are defined in separate files (replaces

the function call with the function code itself).

The options that are absolutely critical for highly optimized code are the -O and -xAVX-512 option

set. There are also various other options set for the icpc compiler, though they are usually warning-

suppression or smaller floating point optimizations and are largely irrelevant compared to the vec-

torization and optimization features.

Since GRBoondi inherits from Chombo, there is a very high-level compilation option offered by

the Chombo library called OPT. It has three possible choices: FALSE, TRUE, and HIGH. Setting it to

TRUE turns on the optimizations (though it’s not entirely clear the effect of this. Setting OPT=TRUE

at the very least has the effect of including -O3 in all executable compilations.). Setting the option

to HIGH turns off all assert statements and initializes memory locations to zero during allocation.

Naturally, this option also has a substantial effect on performance.

The performance improvement garnered by setting these options can be quantified by turning

on each option incrementally. This benchmark was executed by selectively turning on various com-

pilation options and executing a standardized simulation. The simulation consists of a Kerr black

hole of mass 1 and dimensionful spin a = 0.99. Plot files and checkpoint files are disabled, to en-

sure no unnecessary performance penalties from writing to files. The grid consists of four static re-

finement levels, with grid co-ordinate size 643 and each level has 643 cells. The box sizes are fixed to

be built from 163 cells. Sommerfeld outgoing radiation boundary conditions are chosen along with

reflective symmetry about the z-plane to take advantage of the z-symmetry. The CFL factor is 0.2

and nan checking is disabled. The spatial resolution on the finest grid is dxfine = 0.0625M , cor-

responding to a temporal resolution of dtfine = 0.0125M . The simulation rate is sampled exactly

when the lowest level in the AMR hierarchy reaches t = 20M . The simulation is repeated three

times and the average of the simulation rate at t = 20M is taken to obtain the result for that set

of compilation options. This usually gives the simulation enough time to settle down into a steady

state after all the necessary boilerplate components have been initialized and set up.

The simulations were ran on two compute nodes of the bwHPC, each containing two Intel

Xeon Platinum 8358 processors using 86GB of system memory per node. Eight MPI processes are
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spawned on each node and eight cores are allocated to each process. The results of the benchmark

are displayed in table 3.2. LetRt denote the rate of the simulation measured in geometrized seconds

per hour, M
hr

, measured at simulation time t. This is a conversion between how many co-ordinate

seconds can be simulated in one hour of walltime.

Compilation Benchmarking
Compiler Options Simulation rate
DEBUG=TRUE, OPT=FALSE, no other options D.N.F.
DEBUG=FALSE, OPT=FALSE, no other options R20M = 97.86M

hr

-O3 R20M = 372.96M
hr

-parallel, -O3 R20M = 376.44M
hr

-xCORE-AVX512, -parallel, -O3 R20M = 491.87M
hr

-xCORE-AVX512, -qopt-zmm-usage=high,
-parallel, -O3

R20M = 516.92M
hr

-fp-model fast=2,-xCORE-AVX512,
-qopt-zmm-usage=high, -parallel, -O3

R20M = 518.09M
hr

-no-prec-div, -fp-model
fast=2,-xCORE-AVX512, -qopt-zmm-usage=high,
-parallel, -O3

R20M = 516.95M
hr

-qoverride-limits, -no-prec-div, -fp-model
fast=2,-xCORE-AVX512, -qopt-zmm-usage=high,
-parallel, -O3

R20M = 504.95M
hr

-ipo, -qoverride-limits, -no-prec-div,
-fp-model fast=2,-xCORE-AVX512,
-qopt-zmm-usage=high, -parallel, -O3

R20M = 517.07M
hr

Table 3.2: Performance benchmarking of compilation options for the Intel OneAPI C++ compiler, averaged over three separate runs.

These results show how important vectorization is for generating efficient simulation code, as

well as using the high-level optimization flag -O3. Turning off all debugging features and enabling

all optimization features increases performance several times.

Assessing Relative Performance

Comparing the simulation rates for GRBoondi and GRChombo highlights the efficiency boost gar-

nered by simply neglecting backreaction. Although one typically has to be careful with this approx-

imation to ensure it’s physically realistic, the vast majority of cases relevant for GRBoondi permit

such an approximation. Utilizing this approximation allows one to turn off the evolution of the

background spacetime and simply evolve the Proca field on a fixed background. This can permit
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Figure 3.11: Performancemetric of GRBoondi compared to GRChombo. The reduction in evolution equations from choosing the

fixed background approximations results in a dramatic speed-up in simulation rates.

a tremendous boost in simulation performance since there are less equations to solve using the

Runge-Kutta method. In this section, we estimate the performance boost by comparing the sim-

ulation rates of GRBoondi and an equivalent physical system using GRChombo.

The simulation setups are equivalent to the previous section. A µ = 0.4 Proca field begins as a

perturbation around a rapidly spinningM = 1 and a = 0.99 Kerr black hole. 4 levels of mesh

refinement are chosen on a fixed grid with co-ordinate volume V = 643 and the side lengths of

the computational box are partitioned intoN = 64 cells. The box dimensions are constrained to

consist of 163 cells. The z-axis symmetry is exploited by imposing symmetric boundary conditions

at the z=0 plane and only evolving the z>0 domain. This choice of refinement levels and cell parti-

tions implies the finest level has a spatial resolution of dxfine = 0.0625M . Choosing a CFL factor

of 0.2 implies the temporal resolution is dtfine = 0.0125M . Generation of plot and checkpoint

files was disabled.

The simulations were ran on four compute nodes of the bwHPC, each containing two Intel

Xeon Platinum 8358 processors using 86GB of system memory per node. 8 MPI processes are
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1 template <class data_t> void compute_emtensor_modification(...) const {};
2 template <class data_t, ...> void matter_rhs_modification(... ) const {};

Listing 3.23: The electromagnetic example in GRBoondi highlights themost basic usage of the software adding no additional terms
to the base equations.

spawned on each node and 8 cores are allocated to each process. The results of the benchmark are

displayed in table 3.3. LetRt denote the same metric as the previous section. The simulation rates

are extracted on the same level at a simulation time of t = 50M . The tremendous performance

Performance Benchmarking
Simulation Toolkit Simulation rate
GRChombo R50M = 301.18M

hr

GRBoondi R50M = 909.24M
hr

Table 3.3: Performance improvement of GRBoondi relative to GRChombo. This test highlights the efficiency boost gained from
exploiting a perturbative backreaction inmany physical systems. This test uses a superradiant Proca cloud around a rapidly spinning

black hole as a proxy.

boost from using GRBoondi is evident. The simulation runs at three times the rate compared to GR-

Chombo, thanks to the dramatic reduction in evolution equations, fig. 3.11.

3.6 Examples

GRBoondi comes equipped with several example systems to highlight the various features of the

code. Each example highlights a different aspect of the code and shows users a good starting point

for building their simulations.

3.6.1 Electromagnetic Fields on Minkowski

The first and simplest example is that of electromagnetic fields on a Minkowski background. This

highlights the most basic usage of GRBoondi, without any additional terms in the Lagrangian. The

theory under study in this example is the standard electromagnetic field, L = −1
4
F µνFµν . In this

system, the modifications to the evolution equations are trivial and the ProcaField class adds no

additional modification to the evolution equations where the dots represent additional arguments,

either additional template parameters or function arguments. They are omitted here for clarity.

The only equations that are computed are then the base evolution equations, eqs. 3.114-3.117.

The level class definition is the most irreducible version that any level class can be, only specifying
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1 class EMFieldLevel : public BaseProcaFieldLevel<DefaultBackground, ProcaField>
2 {
3 public:
4 // inherit constructor from base class
5 using BaseProcaFieldLevel::BaseProcaFieldLevel;
6
7 // override method to calculate initial data
8 virtual void initialData() override
9 {

10 // Initialize the initial conditions class
11 Initial_EM_Conditions initial_conditions(m_dx, m_p.initial_conditions_params, m_p.background_params);
12
13 // Loop over box cells and assign initial EM field
14 BoxLoops::loop(initial_conditions, m_state_new, m_state_new,INCLUDE_GHOST_CELLS);
15 }
16 };

Listing 3.24: Level class of the electromagnetic example, representing themost irreducible version that any level class can be. The

necessary definition is specification of the initial data.

the initial data for the electromagnetic field. This highlights a very basic setup for initial data. The

class which computes the initial data at each grid point, as a function of co-ordinates, is initialized

using parameters specified by the user in the parameter file. Then the class is looped over the boxes

and cells, populating the grid with initial values for the variables, including the ghost cells.

The initial data itself is also simple, specifying the initial data of the electromagnetic field to be

that of an electrically charged point particle, lst. 3.25.

This also highlights the simple procedure of storing data on the grid. The co-ordinates of the

current grid cell are computed using the Coordinates<> class, which computes the co-ordinate po-

sition of the cell. The co-ordinate radius, r =
√
x2 + y2 + z2, can simply be computed using the

built-in .get_radius() method of the Coordinates<> class. The initial amplitude is then extracted

from the user-defined parameters. The matter evolution variables on the grid are then flushed with

zeroes to ensure no memory initialization values tarnish further computations. Finally, the initial

data is computed using analytic expressions and saved to the current cell using the .store_vars()

method.

Another important fundamental piece that users need to specify is the parameter class, called

SimulationParameters, which inherits from the base ProcaSimulationParameters. This class

loads the parameters defined in a parameter field and stores them as members of the class, lst. 3.26.

The members of the class can be simple datatypes such as doubles, or they can be structs de-

fined in other classes, which is the case here. For example, in lst. 3.25 line 4, the initial data struct is

defined and in lst. 3.26 line 16, it’s initialized as a member of the SimulationParameters class.
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1 class Initial_EM_Conditions
2 {
3 public:
4 struct params_t
5 {
6 double init_amplitude;
7 };
8
9 protected:

10 ...
11 public:
12 Initial_EM_Conditions(const double a_dx, params_t a_params, const DefaultBackground::params_t a_Kerr_params): m_params{

a_params}, m_dx{a_dx}, m_Kerr_params{a_Kerr_params} {};
13
14 template <class data_t> void compute(Cell<data_t> current_cell) const
15 {
16 Coordinates<data_t> coords(current_cell, m_dx, m_Kerr_params.center); // location of cell
17
18 data_t radius{coords.get_radius()}; //radius of the current cell
19 double amp = m_params.init_amplitude; // initial amplitude of the EM field
20
21 MatterVars<data_t> matter_vars; //initialize the matter variables
22 VarsTools::assign(matter_vars, 0.); // assign all matter variables in this cell to zero
23
24 matter_vars.phi = -amp / radius; // assign scalar part to be that of electrically charged point particle
25 matter_vars.Evec[1] = amp / radius / radius; //assign corresponding electric part
26
27 current_cell.store_vars(matter_vars); // push matter vars to cell
28 }
29 };

Listing 3.25: Initial data for the electromagnetic field takes the simple form of an electrically charged point particle.

1 class SimulationParameters : public ProcaSimulationParameters
2 {
3 public:
4 SimulationParameters(GRParmParse &pp) : ProcaSimulationParameters(pp)
5 {
6 read_params(pp);
7 check_params();
8 }
9

10 void read_params(GRParmParse &pp)
11 {
12 pp.load(”center”, background_params.center, center);
13 pp.load(”initial_em_field”, initial_conditions_params.init_amplitude); // Initial EM field params
14 }
15 DefaultBackground::params_t background_params; // parameters of kerr bh
16 Initial_EM_Conditions::params_t initial_conditions_params; // initial conditions parameters
17 ProcaField::params_t matter_params; // Proca field params. In this class, an empty struct
18 };

Listing 3.26: Simple example of setting up the SimulationParameters class, which reads in the parameter file and saves the values
tomembers of the class.
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The initial data parameters can then be stored in this struct and used throughout classes that

contain references to the class.

The remaining piece is to write a main function for the program to execute. The main function

has many responsibilities. It must:

• set up and coordinate the MPI processes before anything else;

• initialize the SimulationParameters class and pass the parameter file to the class in order for

the parameters to be parsed;

• execute the ProcaLevelFactory, a class which is responsible for setting up each level of the

AMR hierarchy;

• set up the AMR interpolator, for interpolating data across grid cells;

• set up any timing functionality for analyzing the simulation performance metrics;

• execute the simulation;

• perform cleanup of the AMR object;

• finalize the MPI processes and clean up memory.

Fortunately, almost all of these processes are constant boilerplate procedures for every simulation.

GRBoondi relegates almost all of these setup procedures to a single function called runGRBoondi.

The example can then be compiled using the standard procedure of running make all. This

generates an executable which can then be run by either calling the executable directly or using a

job scheduler such as slurm. This example highlights the irreducible pieces of a simulation. More

complicated parts can be added by the user for more complex systems.

3.6.2 Base Proca

The next example represents a step up in complexity by introducing a mass term to the base La-

grangian, L = −1
4
F µνFµν − 1

2
µ2AµAµ. This is actually a simplified case of the most simple gen-

eralized Proca theory. This theory corresponds to settingG2 = 1
2
AµAµ, α2 = −1, and αi>2 = 0.

GRBoondi contains built-in functions to handle the simple case when L2 = αG2(A
µAµ), for
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1 template <class G2 = DefaultG> class L2
2 {
3 public:
4 struct params_t
5 {
6 double alpha2;
7 };
8 ...
9 public:

10 L2(){}; // Default constructor for default initialization in matter class
11 L2(G2 a_G2_function, params_t a_params): m_g2_function(a_G2_function), m_params{a_params} {};
12
13 template < ... > void compute_emtensor_modification( ... ) const;
14
15 template < ... > void matter_rhs_modification( ... ) const;
16 };

Listing 3.27: GRBoondi contains built-in functions to evolve generic definitions ofL = − 1
4F

µνFµν + α2G2(A
µAµ).

1 ProcaField(KerrSchild a_background, params_t a_params)
2 : BaseProcaField<KerrSchild, ProcaField>(a_background),
3 m_background(a_background), m_params(a_params)
4 {// set up the L2 Lagrangian
5
6 DefaultG::params_t G2_params{m_params.mass}; // Initialize G2 function parameters
7 L2_t::params_t L2_params{m_params.alpha2}; // Initialize L2 Lagrangian parameters
8
9 DefaultG a_G2(G2_params);

10 this->m_L2 = L2_t(a_G2, L2_params);
11 this->m_G2 = a_G2;
12 };

Listing 3.28: Using the built-inL2 functions is very straightforward, amounting to initializing the functions in the constructor of the

ProcaField class.

generic choices ofG2. This is achieved by templating the evolution equations and stress-energy

equations over a generic definition ofG2, allowing users to define any choice of mass term. GRBoondi

contains a class called L2 which encapsulates all modifications to the equations of motion coming

from such terms. Users then simply have to define their own G2 function or use the default built-in

definition ofG2 = AµAµ.

The base Proca example uses the default definition of theG2 function and the ProcaField class

is initialized and sets these functions. Then, the modification to the evolution equations is achieved

by calling the built-in modification methods of the L2 class. Users can also add the evolution equa-

1 template < ... >
2 void matter_rhs_modification( ... ) const
3 {
4 // add modifications coming from L2 Lagrangian
5 m_L2.matter_rhs_modification(total_rhs, matter_vars, metric_vars, d1,d2, advec);
6 ...
7 }

Listing 3.29:Modifying the evolution equations from theL2 Lagrangian is as simple as calling the built-in function of the L2 class.
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1 class Initial_Proca_Conditions
2 {
3 ...
4 template <class data_t> void compute(Cell<data_t> current_cell) const
5 {
6 ...
7 mattervars.Avec[0] = m_params.init_amplitude * exp(-radius / r0_BL) / gamma_det;
8 current_cell.store_vars(mattervars); // export to grid
9 }

10 };

Listing 3.30: Initial data for the Proca field is taken from analytic approximate computations of the Proca bound states.

tion for the damping term, which isn’t automatically added by the L2 class, which is done in the

base Proca example.

For the base Proca example, the initial data is taken from analytic approximate computations of

the superradiant bound state for a Proca field, lst. 3.30, where r0_BL is the approximate radius of

the bound state. The energy density at a late time is displayed in fig. 3.12.

GRBoondi also contains another example called the NonLinearProcaKerrBH example, which evolves

the system originating from the Lagrangian L = −1
4
F µνFµν − 1

2
µ2AµAµ − 1

4
λµ2 (AµAµ)

2. In-

corporating these new terms amounts to modifying theG2 function. In this example, a newG2

function is defined, called NonlinearG2, which defines the function itself and its first and second

derivatives with respect to its arguments. The rest of the code follows almost identically to the base

Proca example previously. This example highlights the great modularity of GRBoondi, making it

extremely easy to modify the evolution equations coming from additional terms in the Lagrangian.

3.6.3 Base Proca in a Spinning, Expanding Universe

The final example is a slight modification of the base Proca example and highlights the modularity

of GRBoondi with respect to the background spacetime*. For this example, a new background space-

time was built, called the Kerr-de Sitter spacetime, and the new class called KerrdeSitter. The key

pieces of building a new background spacetime will be elucidated here†.

The first step in defining a new background class is specifying the parameters of the background.

In this case, there are four new parameters, lst. 3.31. The struct also contains additional parame-

*At the time of writing, the background spacetime defined in this example has become a standard class in the
source code of GRBoondi. Nonetheless, it highlights how users can easily define their own background spacetime and
very easily incorporate the new class into existing code, taking advantage of the classes templated over the background
class.

†For a discussion of the Kerr-de Sitter spacetime itself, see Chapter 4.
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Figure 3.12: A snapshot of the energy density of a standard Proca field at late times in the z = 0 plane. The value of the energy

density is represented both by the colored portion and a vertical extrusion. The AMR hierarchy is overlayed on this extrusion,

highlighting the fact that the finest levels sufficiently cover themost dynamical parts of the simulation.

1 class KerrdeSitter
2 {
3 public:
4 struct params_t
5 {
6 double mass = 1.0; //!<< The mass of the BH in solar masses
7 double cosmo_constant = 0.0; //!< The cosmological constant
8 double spin = 0.0; //!< The spin param a = J / M
9 std::array<double, CH_SPACEDIM> center; //!< The center of the BH

10 double r_plus = 0.0; //!< The outer horizon. Precomputed
11 double r_minus = 0.0; //!< The inner horizon. Precomputed
12 };
13 ...
14 };

Listing 3.31: The first step in defining a new background is specifying the relevant parameters.
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1 template <class data_t>
2 void compute_metric_background(MetricVars<data_t> &metric_vars, const Coordinates<data_t> &coords) const
3 {
4 metric_vars.lapse = ...
5 FOR1(i)
6 {
7 metric_vars.shift[i] = ...
8 FOR1(j)
9 {

10 metric_vars.gamma[i][j] = ...
11 }
12
13 metric_vars.d1_lapse[i] = ...
14 ...
15 }

Listing 3.32: The new background class is required to have amethod called compute_metric_backgroundwhich computes the
metric variables and its derivatives.

ters, the outer and inner horizon of the black hole, which are precomputed using GRBoondi’s utility

functions and external computations. This is to prevent loss of performance due to expensive com-

putations of the outer and inner horizon, which is quite involved.

The next step is to define the initializer. Typically, a default constructor can be used. However,

in this example, a constructor was built that automatically verifies the user-defined parameters sat-

isfy certain consistency checks, such as ensuring a naked singularity isn’t formed. Since the con-

structor is called at initialization time of the class, which occurs only once for each level method, it’s

inexpensive to check the parameters at initialization time.

Finally, the background class should have a function called compute_metric_background, which

computes the metric variables and their derivatives for a given co-ordinate point, lst. 3.32. The

function signature of the method is required to be of this form, taking in a reference to the MetricVars

class and Coordinates class.

The background class should also have a method called check_if_excised, which returns a

boolean value telling the excision code if a cell should be excised or not depending on which re-

gion of the computational domain the cell is in. This is extremely important for black hole space

times since the curvature at the center diverges and can cause significant numerical errors, spoiling

the simulation. For singularity free backgrounds, such as the Minkowski background, the method

can return false to never excise, lst. 3.33.

The rest of the code follows almost identically to the base Proca example, except every instance

of KerrSchild is replaced with KerrdeSitter. For example, the definition of the ProcaFieldLevel

class is shown in lst. 3.34. These are all the necessary ingredients to implement a new background
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1 virtual bool check_if_excised(const Coordinates<double> &coords,
2 const double buffer = 1.0) const
3 {
4 return false; // Dont ever excise
5 }

Listing 3.33: New background classes are required to have a check_if_excisedmethod, which computes where cells are within a
domain where their values should be excised, such as within the black hole horizon. The example here shows a trivial implementation

where excision never takes place.

1 class ProcaFieldLevel : public BaseProcaFieldLevel<KerrdeSitter, ProcaField>
2 {
3 ...
4 }

Listing 3.34: Initialization of the ProcaFieldLevel class using a custom background class.

spacetime. All the features showcased in the examples highlight the power of GRBoondi to simulate

generalized Proca theories in arbitrary spacetime backgrounds, greatly accelerating the study of the

landscape of generalized Proca.
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My goal is simple. It is a complete understanding of the

universe, why it is as it is and why it exists at all.

Stephen Hawking

4
Proca in an Expanding Universe

It is crucial that accurate models are developed for the evolution of superradiant

Proca clouds around spinning black holes. Near future gravitational observatories are going to

offer unprecedented tests for massive vector dark matter, hence accurate models are necessary to

probe experimental data. Several theoretical analyses have already been carried out to understand

the evolutionary behavior of massive vector fields surrounding black holes and their subsequent sec-

ular decay199,282,283,289,292–295,297,301,303,346,347. All of these studies explicitly neglect the cosmological

constant, an overwhelming component of our universe. Normally, this is a justifiable assumption,

since recent observational data has shown the cosmological constant to be quite small136,348,349. In

terms of SI units, the observed cosmological constant is Λ ∼ 10−52m−2, a tremendously small

value. It is hence a reasonable approximation to take Λ = 0 in the studies of superradiant Proca
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fields. Nonetheless, the effects of a cosmological constant on the growth rate of the Proca cloud is

still required to complete the understanding of Proca superradiance in our universe.

The purpose of this chapter is to detail the study of Proca fields in spinning and expanding uni-

verses by specifying the background spacetime to be that of a Kerr black hole in a de Sitter back-

ground, the so-called Kerr-de Sitter solution. At first, the general theory of (standard) Proca fields

in a Kerr-de Sitter background is discussed, elucidating the interesting causal properties of the back-

ground and general dynamical evolution of the Proca field. Next, as a first application of GRBoondi,

the Proca evolution equations are solved in the Kerr-de Sitter background spacetime and the results

discussed. Finally, as is standard for all numerical relativity computations, resolution and conver-

gence tests are performed to verify the data converges to some continuous solution.

4.1 Theory

The starting point is the Einstein-Hilbert-Proca theory, where the Einstein-Hilbert action is aug-

mented by the Proca action

S[gµν , A
σ] =

∫
d4x

√
−g
(

1

16πG
(R− 2Λ)− 1

4
F µνFµν −

1

2
µ2AµAµ

)
, (4.1)

where gµν is the metric, g its determinant, R is the Ricci scalar, Λ is the cosmological constant, and

Aµ is the Proca four-vector. Variation of S[g, A] with respect to these two fields yields the equa-

tions of motion

Gρσ + Λgρσ = 8π

(
−1

4
FµνF

µνgρσ + F ρνF σ
ν − 1

2
µ2gρσAµA

µ + µ2AρAσ

)
= 8πTµν (4.2)

0 = ∇ρF
ρσ − µ2Aσ , (4.3)

whereGρσ is the Einstein tensor and Tµν is the stress-energy tensor of the Proca field. We assume

the backreaction of the Proca field on the spacetime is negligible, as is usually the case, meaning we

can set Tµν = 0 without significant loss of accuracy. This implies that the field equations reduce to

Gρσ + Λgρσ = 0 (4.4)
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∇ρF
ρσ − µ2Aσ = 0 . (4.5)

The solution of the gravity sector describing a spinning black hole is called the Kerr-de Sitter

(KdS) solution. This solution is in fact a special case of the more general Plebański-Demiański fam-

ily of metrics350,351. We choose to work in the Kerr-Schild form of the solution, which takes the

form

gµν = g0,µν + 2HKµKν , (4.6)

where g0,µν is the background de Sitter metric andKµ is a null vector (with respect to both g and

g0). In Kerr-Schild co-ordinates (t, r, θ, ϕ), the de Sitter background metric takes the form

g0,µν =



−∆θ

Θ
Λr 0 0 0

0 ρ2

(r2+a2)
Λr 0 0

0 0 ρ2

∆θ
0

0 0 0 (r2+a2)
Θ

sin θ


, (4.7)

where we’ve defined

∆θ = 1 +
Λ

3
a2 cos θ2

Θ = 1 +
Λ

3
a2

∆r = r2 − 2Mr + a2 − Λ

3
r2(r2 + a2)

ρ2 = r2 + a2 cos θ2
(4.8)

andH = 2Mr
ρ2

. The ∆r definition becomes important for the analysis of the black hole horizons.

The poles of ∆r correspond to the poles of the metric in Boyer-Lindquist co-ordinates352. In a sim-

ilar fashion, the null vector is defined via

Kµ =

(
∆θ

Θ
,

ρ2

(r2 + a2)Λr

, 0,
−a
Θ

sin2(θ)

)
. (4.9)

Prior to plugging this metric into the numerical solver, we need to understand the basic causal

structure of the background spacetime on which the Proca cloud will evolve. This amounts to de-

termining the location of the horizons, which follows by solving the quartic polynomial ∆r = 0.

The existence of the horizons can be determined by analyzing the discriminant of the quartic poly-

nomial, which will be denoted byQ. The positivity ofQ guarantees that all four roots are simulta-
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neously either real or complex. This means we only have to verify one of the roots is real to ensure

the other three are as well. The discriminant is easily solved for and takes the form

Q =− 16Λ

243

[
12a8Λ8 + a10Λ4 + a2

(
81− 891M2Λ

)
+ 3a6Λ2

(
18 +M2Λ

)
(4.10)

+81M2
(
−1 + 9M2Λ

)
+ 27a4Λ

(
4 + 11M2Λ

)]
. (4.11)

Fig. 4.1 shows a contour plot ofQ, with the spin and cosmological constant rescaled by the black

hole mass. The regionQ > 0 shows the allowed parameters for the background. The shaded region

denotes the disallowed region. Beyond the allowed region, one or more horizons will disappear,

yielding a naked singularity. Fig. 4.1 hence tells us the allowed values of the black hole parameters

that can be used in the simulations. An absolute maximum value of the cosmological constant is

Λmax = 16
45+26

√
3

1
M2 and corresponding absolute maximum value of the black hole spin of amax =√

9
16

+ 3
√
3

8
M . This point corresponds to the cusp of the non-shaded region on the upper-right

quadrant of fig. 4.1.

Another interesting feature is the existence of a minimum spin for a certain range of values for

the cosmological constant. For spacetimes satisfying Λ ≥ 1/9, the black hole is required to pos-

sess spin in order for the Kerr-de Sitter black hole to exist. That is to say, for cosmological constant

values greater than 1/9, static black holes in the form of eq. 4.6 do not exist.

We label the three positive roots as r−, r+, and rΛ, which denote the inner, outer, and cosmo-

logical horizons, respectively. The fourth root is negative and corresponds to a ’horizon’ inside the

singularity at r = 0. In Kerr-Schild co-ordinates, besides the singularity at r = 0, the poles in the

metric disappear, including rΛ. However, a new pole appears at r̃Λ =
√

3
Λ

. We find that rΛ ≤ r̃Λ

throughout the allowed parameter space. In the limit of small cosmological constant,

rΛ = r̃Λ − 1 +O
(√

Λ
)
. (4.12)

A peculiar property of the causal structure is the existence of a maximum cosmological constant

which permits the existence of a black hole. At the maximum cosmological constant value Λmax,

the outer and cosmological horizons merge, see for example fig. 4.2. Additionally, dimensionless

spin values greater than unity are allowed without producing a naked singularity, as long as the cos-

152



Figure 4.1: Plot of the values of the discriminantQ. The shaded region shows the unallowed parameters for the existence of a

Kerr-de Sitter black hole. The unshaded region are the allowable parameters.

Figure 4.2: Evolution of the cosmological and outer horizons, eventually merging. A value of a=0.5 is chosen as a representative

value. Past the value ofΛwhere the horizonsmerge, no Kerr-de Sitter black hole is possible.
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mological constant is greater than zero, in stark contrast to spinning black hole solutions in non-

expanding universes.

On the other hand, the solution in the Proca sector of eqs. 4.4-4.5 is unclear, since analytic stud-

ies have yet to be performed. However, based on knowledge from the Proca on Kerr solutions, we

can expect the cloud to undergo a superradiant instability due to the existence of the black hole

horizon. This implies that the energy of the cloud will be of the form

E(t) = E0e
2iωt , (4.13)

where ω is the complex frequency of the Proca field. The factor of 2 comes from the fact that the

stress-energy tensor of the Proca field is quadratic in the Proca field itself. Since the frequency is of

the form ω = ωr + iωi, the imaginary part implies an exponential evolution superimposed over an

oscillatory one. The imaginary frequency is what is solved for in this study.

4.2 Method

Towards a numerical solution of the Proca system, the next step is to decompose the field equa-

tions into a form pertinent for numerical computations. We follow the standard procedure, which

is to decompose the spacetime via a foliation into a series of three-dimensional time-like hypersur-

faces. Since the spacetime admits a time-like Killing vector, we can choose the Kerr-Schild time co-

ordinate as the function that defines the foliation leaves. Hence, the (r, θ, ϕ) co-ordinates become

co-ordinates on the hypersurfaces. We thus define our 3 + 1 decomposition as325

α = −g
γ

(4.14)

βi = − g0i

g00
(4.15)

γij = gij , (4.16)

where g and γ are the determinants of the full and spatial metrics, respectively, α is the lapse func-

tion, βi is the shift vector, γij is the spatial metric, and Latin indices range from one to three. In the
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co-ordinate system of eq. 4.7, these take the form

α =

√
∆θΛ2

rρ
2

Γ
(4.17)

βi =

[
2Mr(a2+r2)∆θΛr

2a2Mr sin2(θ)Λr+Θ(2Mr+(a2+r2)Λr)ρ2
0 − 2Mra∆θΛr

2a2Mr sin2(θ)Λr+Θ(2Mr+(a2+r2)Λr)ρ2

]
(4.18)

γij =


ρ2(2Mr+(a2+r2)Λr)

Λ2
r(a

2+r2)2
0 − 2aMr sin2(θ)

a2ΘΛr+r2ΘΛr

0 ρ2

∆θ
0

− 2aMr sin2(θ)
a2ΘΛr+r2ΘΛr

0 sin2(θ)
Θ2

(
Θ(r2 + a2) + 2a2Mr sin2(θ)

ρ2

)
 , (4.19)

where we’ve defined Γ = 2Mr∆θ + ρ2ΘΛr. As our numerical solver computes the time evolu-

tion using cubic cells, we transform the (r, θ, ϕ) co-ordinates to a Cartesian-like co-ordinate system

defined by

x = r sin(θ) cos(ϕ) (4.20)

y = r sin(θ) sin(ϕ) (4.21)

z = r cos(θ) . (4.22)

The shift, spatial metric, and all derivatives are then transformed using the resulting Jacobian ma-

trix. See App. B.1 for more details. The last step is to decompose the Proca equations eq. 4.5 under

the foliation. A standard calculation yields

1

α
LmE

i = EiK −DiZ + µ2X i − 2

α
Dj

(
αD[jX i]

)
(4.23)

1

α
LmZ = −µ2ϕ−DiE

i − κZ (4.24)

1

α
LmXi = −Ei −Diϕ− ϕDiln(α) (4.25)

1

α
Lmϕ =

Z

µ2
+ ϕK −DiX

i − xiDiln(α) , (4.26)

whereEi = γiµF
µν ,Xi = γiµA

µ, ϕ = −nµA
µ, Z is an auxiliary field introduced to damp viola-

tions of the Proca constraint with a tuning parameter κ216,283,353, and nµ is the time-like normal to

the spatial hypersurfaces.
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4.3 Results

For the numerical evolution of eqs. 4.23-4.26, we use GRBoondi. We use a box width of L = 60M

withN = 192 grid points across each edge of the computational box. We use 4 refinements levels

at a 2 : 1 refinement ratio, resulting in a resolution of the finest level of dxfine = 0.01953M . To

prevent boundary effects from contaminating the simulation, we use Sommerfeld-outgoing radia-

tion boundary conditions, which allows oscillations to exit the simulation region with minimal re-

flections due to finite-size effects. This is especially important since we introduced an auxiliary field

which dampens violations of the constraint equation and the evolution equation forZ is a general-

ized telegraph equation. This implies that not only are the values ofZ damped, but also propagate

at the speed of light. Hence, the outgoing radiation boundary conditions are vital for ensuring vio-

lations of the constraint equation propagate outside the computational domain.

To understand the effect of a cosmological constant on the dynamical evolution of the superradi-

ant Proca cloud, we perform a various number of simulations with parameters that yield the highest

growth rates. We choose three different values of the cosmological constant, Λ = (5 · 10−6, 10−4, 10−3).

Higher values of the cosmological constant are more difficult to simulate numerically as the cosmo-

logical horizon quickly becomes small. We reserve probing this region of the parameter space to

future studies, which will likely entail a new co-ordinate system. Additionally, we fix the black hole

spin to χ = 0.99. We sample the Proca mass at six different values, µ = (0.35, 0.4, 0.45, 0.5, 0.6, 0.7).

In addition to the main simulations, we also perform a convergence study to ensure our choice of

resolution produces accurate data, which we discuss in sec. 4.3.1.

For initial data, we take a Gaussian profile with width determined by analytic approximation

studies199, r0 = 1
M2µ

. The initial data is thenAx = A
γ
e
− r

r0 , whereA is some pre-determined

amplitude which we take to beA = 0.1, and all other variables are chosen to be zero.

The data from our simulations is available in table 4.1. The cosmological constant has been

rescaled to Λ = Λ̄
M2 , where Λ̄ is the unscaled parameter. Plots of the normalized total energy as

a function of time are shown in fig. 4.3. A curious new feature seems to arise in the case of decay-

ing modes, namely a secondary scale. For example, in the case of µ = 0.6 and Λ = 5 ∗ 10−6,

the decay rate of the total energy slows at around t = 4000M . Similar features can be seen in the
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µ = 0.7/Λ = 10−3 plot as well as µ = 0.6/Λ = 10−4. Whether this is a numerical artifact or a real

emerging scale is uncertain. Analytic studies will need to be performed to determine the true nature

of this emerging scale. Due to the variations in the µ = 0.35/Λ = 10−3 simulation data, such a fea-

ture cannot be determined. It should be noted that the rapid oscillations and cessation of decay in

the µ = 0.35/Λ = 10−3 plot is likely purely numerical errors. As the energy of the Proca cloud be-

comes incredibly small, it likely runs in to a precision floor and the simulation becomes numerically

meaningless past t ∼ 2000M .

Simulation Data
µ Λ ωi

0.35 0.000005 0.0000378479679286
0.40 0.000005 0.0004368389589392
0.45 0.000005 0.0006612210382883
0.50 0.000005 0.0007077262886612
0.60 0.000005 -0.0025030874787604
0.70 0.000005 -0.0003803920672232
0.35 0.0001 -0.0000509955398002
0.40 0.0001 0.0004173920772338
0.45 0.0001 0.0006586744541765
0.50 0.0001 0.0007037383784603
0.60 0.0001 -0.0027137433850122
0.70 0.0001 -0.0007733224329400
0.35 0.001 -0.0086145055245226
0.40 0.001 -0.0017417580794997
0.45 0.001 0.0002659457748499
0.50 0.001 0.0006576997786869
0.60 0.001 -0.0027797013519735
0.70 0.001 -0.0025289981313056

Table 4.1: All available simulation data.

4.3.1 Convergence Tests

To ensure the reliability and accuracy of our simulations, we conduct two types of convergence

tests. These tests are crucial for validating the fidelity of the simulated data and confirming that

it accurately reflects the underlying physical system. The first type of test we perform is the grid

resolution test. By running our simulations at multiple grid resolutions, we can verify that the re-

sults converge to a stable solution as the grid is refined. This process helps us identify and minimize

numerical artifacts that might arise from discretization errors. Specifically, we monitor key physi-
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Figure 4.3: Growth of the energy of the cloud over simulation time. Energy values are normalized to their value at t = 250M . The

energy data is fitted in logarithmic space to a linear function, which captures the exponential characteristics of the instability. The

fitting of the data starts at t = 250M . The green line is the numerical data and the blue straight line is the fit function.

158



cal quantities and ensure that their values stabilize with increasing grid resolution, indicating that

our results are not dependent on the grid size. The second type of test is the time step refinement

test. Here, we run our simulations with progressively smaller time steps to ensure that the temporal

evolution of the system is accurately captured. By comparing results obtained with different time

steps, we can check for stability and convergence in the time integration scheme. This test is partic-

ularly important for dynamic simulations where rapid changes in the system need to be accurately

resolved. In order to maintain the Courant–Friedrichs–Lewy condition, the temporal timestep de-

creases proportionally with the spatial timestep. Thus, the two checks are unified in our resolution

tests. Below, we provide detailed insights into the methodologies employed for conducting these

two tests and assess the reliability of our simulations based on their outcomes.

Resolution Test

The first convergence test is a resolution test. This ensures that finite-differencing effects have a

diminishing effect on the data as the resolution is turned up. In other words, the resulting data

should converge to stable values as the resolution is increased. After some point, increasing the reso-

lution further should have little effect on the data. This ensures that the resolution we have chosen

for our simulations is satisfactory enough to produce good data.

The results of this convergence test are as follow: we repeat two of the simulations with param-

eters (µ,Λ) = (0.4, 5 ∗ 10−6) and (0.4, 10−3) with a resolution on the finest level of dxfine =

0.0167M . Since the Courant-Friedrichs-Lewy condition is automatically adjusted for in GRBoondi,

the corresponding time resolution is dtfine = 0.0033M , an increase in resolution from the main

data, which utilized dtfine = 0.0039M . It was found that the instability rate for both the growing

and decay mode change by less than a percent, signifying good precision for the main data. The two

simulations and their differences are shown in fig. 4.4.

Analytic Derivatives Test

The second convergence test is a self-check test on the metric derivatives. Since the procedure in

transforming the metric variables and their derivatives from Kerr-Schild co-ordinates to a Cartesian-

like co-ordinate system is involved, we run a check to make sure the numerically computed deriva-
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Figure 4.4: Test of the convergence of the simulations as resolution is increased. The normal resolution is the resolution used for the

main data, which usesN = 192 grid points. The high-resolution simulations useN = 224 grid points, resulting in a resolution on
the finest level ofdxfine = 0.0167M . The fractional difference is computed as |Enorm.res. − Ehighres.|/Enorm.res. . The

two energy datasets were interpolated over a common time dataset using cubic splines.

tives converge to the analytically computed ones from eqs. B.3-B.4. We follow the procedure of 354

for carrying out this convergence test.

The test procedure is graphically represented in fig. 4.5. The convergence factor c(t) is defined as

ci(t) ≡
||ϵ∆i

||
||ϵ∆i+1

||
(4.27)

and ∆i denotes the i’th resolution, ϵ∆i
= U(t, x) − U∆i

(t, x), U(t, x) denotes the variable com-

puted using the exact analytic derivatives, and U∆i
(t, x) denotes the variable computed using the

numerically computed derivatives at a resolution of ∆i. The resolutions are typically chosen to be

twice the previous resolution. In other words, ∆i = 2i∆1. This implies that for an nth-order finite

differencing scheme,

c(t) = 2n . (4.28)
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Figure 4.5: Graphical representation of the convergence test routine. Multiple resolutions are iterated over to compute the conver-

gence factors ci(t).

Since GRBoondi uses fourth-order finite differencing stencils for the spatial derivatives, we expect

c(t) = 16 for each variable. We perform the convergence test for two different resolutions, which

differ by a multiple of two per the previous discussion. We find that the minimum convergence

factor across all grid variables was 14.35, in fairly good agreement with the expected convergence

factor of 16 for a fourth-order finite differencing routine.

4.4 Conclusion and Future Work

This study investigated the dynamics of a Proca field surrounding a spinning black hole within an

expanding universe, a novel approach that advances our understanding of superradiant vector fields

interacting with the cosmological constant—a crucial yet overlooked aspect in prior research. Lever-

aging the advanced capabilities of the recently developed GRBoondi software, we conducted a series

of simulations aimed at quantifying the growth rates under diverse scenarios involving different

Proca masses and cosmological constants. Furthermore, we conducted a rigorous resolution anal-

ysis to validate the accuracy and reliability of our simulation data, revealing robust agreement with

161



expected theoretical predictions.

There are a few limitations of the current study. Firstly, the effects of backreaction were ignored,

however this approximation is suitable for this analysis as the energy densities were small and grav-

itational radiation was not desired. Should gravitational emission from the resulting Proca cloud

be desired, full numerical computations will need to be performed. Due to GRBoondi outputting

checkpoint files in the same format as GRChombo, using GRChombo to perform full computa-

tions with initial data from the simulations here will be straightforward. Additionally, many parts

of the parameter space were left unsampled, due to the numerical complexities. Primarily, simulat-

ing larger cosmological constants is difficult due to the cosmological horizon rapidly approaching

the outer horizon of the black hole. Additionally, simulating lower spins increases the simulation

time considerably, hence we only focused on a single value of the black hole spin, χ = 0.99. A

more complete analysis would likely require a different co-ordinate choice that penetrates the cos-

mological horizon.

Future studies to be performed include theoretical analyses of various co-ordinate systems in the

search of ones that can penetrate the outer and cosmological horizons. Additionally, future studies

will turn to full evolution of the Einstein+Proca system to compute the emitted gravitational radia-

tion and apply the results to gravitational observatory forecasting. An intriguing progression would

involve extending beyond the Proca fields mass term to incorporate derivative self-interactions in-

herent in generalized Proca theories. This expansion would enhance our exploration of the field’s

dynamics, encompassing interactions that go beyond simple mass considerations and delve into the

complexities introduced by derivative couplings within these theories.
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5
Conclusion

The onset of multimessenger astronomy has opened up new channels for humans to peer

into the universe. Next generation gravitational observatories will provide excellent data to study

the nature of dark matter and dark energy, perhaps providing indirect detections of such mysteri-

ous phenomena. Strong gravity regimes will hence provide an excellent laboratory to study fun-

damental physics. In particular, the superradiant phenomenon is an invaluable tool to study dark

matter and dark energy models, especially the landscape of generalized Proca theories. To that end,

highly accurate models will need to be developed to facilitate data analysis pipelines. Without these

accurate models, searching the data for possible detections is analogous to roaming around a dark

room hoping to find something you know nothing about.

The work in this thesis took steps towards developing such models by placing constraints on the
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possible mass range of Proca fields detectable by LISA, developing powerful tools for studying gen-

eralized Proca models and, for the first time, analyzing the effect of a cosmological constant on the

superradiant growth rate of Proca fields. The detection prospects of LISA utilized the dephasing ef-

fect of a gravitational wave induced by the presence of a massive vector field around a supermassive

spinning black hole. That study placed constraints on the mass parameter space of the Proca field

observable by LISA.

In the pursuit of models for generalized Proca theories, no unified tool existed in the literature

for studying generalized Proca theories in general. This inspired the creation of GRBoondi, a versa-

tile and powerful tool for simulating the evolution of any generalized Proca theory in an arbitrary

fixed background. The broad field of numerical relativity and the finer details of GRBoondi were

discussed, illustrating its modularity and prowess. The example systems that ship with GRBoondi

were also discussed, elucidating the key properties that make GRBoondi a powerful tool for studying

generalized Proca theories.

The first results using GRBoondi were then detailed by studying a standard Proca field in a spin-

ning and expanding universe. This was a first of its kind study in two respects. Primarily, it was the

first study to utilize GRBoondi, demonstrating its modularity with respect to the background space-

time. It was a simple task to adjust the built-in examples to use a new background spacetime class.

Secondly, it is the first study to incorporate the cosmological constant into the evolution of a super-

radiant Proca field around a spinning black hole. It was shown that the introduction of a non-zero

cosmological constant can have tremendous impacts on the evolution. States that originally are ex-

ponentially growing in the Λ = 0 case transform to exponentially decaying states in the Λ > 0

case. This has huge impacts on the phenomenology, providing another avenue to search for massive

vectorial dark matter, especially in more general dark energy scenarios that vary both spatially and

temporally.

While the mysteries of the cosmos remain vast and enigmatic, the insights gained in this thesis

illuminates new pathways for exploration, promising a deeper understanding of the universe and

our place within it.

Equipped with his five senses, man explores the universe around him and calls the adventure Science.

- - Edwin Powell Hubble
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A
Additional Details on Superradiant Proca

Clouds around EMRIs

This appendix contains further details pertaining to Section 2 that are not relevant for the main text

but aid in further understanding of the finer details of the study. Section A.1 provides details on

the decomposition of the Proca equations of motion in the FKKS ansatz. Section A.2 discusses the

long-term evolution of the Proca cloud due to the emission of gravitational waves sourced by the

cloud itself. Section A.3 discusses other physical effects that could alter the results of Section 2.
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A.1 Decomposition of Proca Equations

Angular Equation

Multiply the angular equation eq. 2.19 by qθ and define Λ = µ2

ν2
− σ

ν
+ 2aωm − a2ω2 and

γ2 = ω2 − µ2, where we’ve denoted the mode number bym and no longer by m as in the main

text. Rearranging the terms, one finds

qθ

(
∂2θ + cot θ∂θ −

m2

sin θ2
+ Λ

)
S+ (A.1)

((
γ2 − 2σν

)
a2 cos θ2 − γ2ν2a4 cos θ4 − 2a2ν2 cos θ sin θ∂θ

)
S = 0 .

Now we expand the angular variable S in terms of functions proportional to the associated Legen-

dre polynomials as

S = Σ
l′=|m|

bl′Y
m
2l′−|m|+η(θ) , (A.2)

where Y m
l′ (θ) = Y m

l′ (θ, 0), and we expand the function in a basis with definite parity as the angular

equation respects parity. We then insert this into the angular equation above.

Using various relations of the associated Legendre polynomials in the first term of eq. A.1, one

can easily show

qθ

(
∂2θ + cot θ∂θ −

m2

sin θ2
+ Λ

)
S → qθ(−l(l + 1) + Λ)Y m

l , (A.3)

where we dropped the bl coefficient. We operate on eq. A.1 with
∫
dΩȲ m

l and define the quantity

⟨lm|X|l′m⟩ ≡
∫
dΩȲ m

l XY m
l′ . Then we have the expression

0 =(−l′(l′ + 1) + Λ)⟨lm|l′m⟩+

((γ2 − 2σν)a2 − a2ν2(−l′(l′ + 1) + Λ))⟨lm| cos θ2|l′m⟩−

2a2ν2⟨lm| cos θ sin θ∂θ|l′m⟩−

γ2ν2a4⟨lm| cos θ4|l′m⟩ .
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Representing the trigonometric functions in a spherical harmonic basis, we can easily calculate

⟨lm|l′m⟩ = δll′

all′ ≡ ⟨lm| cos θ2|l′m⟩ = 1

3

√
16π

5
⟨l|2|l′⟩+

√
4π

3
⟨l|0|l′⟩

bll′ ≡ ⟨lm| cos θ4|l′m⟩ = 16
√
π

105
⟨l|4|l′⟩+ 7

√
4π

35
⟨l|0|l′⟩+ 10

35

√
16π

5
⟨l|2|l′⟩

dll′ ≡ ⟨lm| cos θ sin θ∂θ|l′m⟩ =
√

4π

3

l′
√

(l′ + 1)2 −m2√
(2l′ + 1)(2l + 3)

⟨l|1|l′ + 1⟩−√
4π

3

(l′ +m)(
√
l2′ −m2√

(2l′ + 1)(2l′ − 1)
⟨l|1|l′ − 1⟩ ,

where ⟨l1, l2, l3⟩ denotes the triple product integral
∫
dΩY m

l1 Y
m
l2 Y

m
l3 and can be represented in

terms of the 3J-symbols. Thus, the angular equation, after reinserting the bl′ coefficients, becomes

Mll′bl′ = 0 , (A.4)

where

Mll′ = (Λ− l′(l′ + 1)) δll′ +
(
ν2(l′(l′ + 1)− Λ)− 2σν + γ2

)
a2all′ − γ2ν2a4bll′ − 2a2ν2dll′ .

(A.5)

This implies that bl′ lives in the kernel of the map M. For there to be nontrivial solutions to this

eigenvalue equation, we requireDet(M) = 0, which places restrictions on the complex-valued

eigenvalue ν. In general, the complex eigenvalue ν depends on µ, ω, l, and a. A generic solution can

be obtained numerically, though insight can be found by taking suitable limits.

static limit: In the limit of staticity (a→ 0), the map takes the diagonal form

M = (Λ− l′(l′ + 1))δll′ . (A.6)

The nontrivial solution constraint then enforces

Λ = l′(l′ + 1) , (A.7)
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which, in terms of the eigenvalue ν, yields

µ2 − ων − l′(l′ + 1)ν2 = 0 . (A.8)

We thus find the solutions

ν =


µ2

ω
l′ = 0

−ω±
√

ω2+4µ2l′(l′+1)

2l′(l′+1)
l′ > 0

. (A.9)

We have a pair of modes for l′ > 0 and a single (even-parity) mode for l′ = 0. For the latter, the

associated eigenvector is a single spherical harmonic and is thus even-parity under a parity transfor-

mation, while for the former we have a pair of modes. As the angular equation respects parity, this

pair have the same parity. Thus, we’ve found the even-parity solutions.

Marginally-bound case: γ2 = 0 Consider now the case ω2 = µ2. This is the threshold

between a quasibound mode and an unbound state. The matrix M is tridiagonal, as can be seen

using properties of the 3J-symbols. Consider the truncated series

S = Y m
l + b1Y

m
l+2 + 0 ∗ Y m

l+4 , (A.10)

where l = |m|+ η and η = 0, 1 denotes the parity.

In general, we have three equations coming from

M · b (A.11)

with b = (1, b1, 0)
T .

In the η = 0 case, we havem = ±l. The solution S = Y ±l
l with ν = ±ω

m−aω
is an exact solution

since Λ = l(l + 1), σ = ±mν. It can be shown this solution together with this eigenvalue solves

the angular equation by direct insertion. It can also be shown this eigenvalue corresponds to the

S = −1 polarization state of the Proca field.

In the case η = 1 and b1 = 0, we now have two nontrivial equations, withm = ±(l − 1). It can
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be shown by direct computation that the corresponding eigenvalues are

ν =
1

2a

(
±l − a ∗ ω + ϵ

√
(∓l + aω)2 + 4aω

)
. (A.12)

These correspond to both parity-odd and parity-even polarization states, as shown in294.

For η = 0 andm = 1, the last polarization state can be recovered by finding the middle root of

the following cubic expression294

aν3(m− aω)− ν2((m+ 1)(m+ 2)− aω(2m− aω)) + ων + ω2 = 0 . (A.13)

Radial equation

The radial equation eq. 2.18 at asymptotic infinity can be shown to reduce to

((
1− rs

r

)
∂r∂r +

ω2

1− rs
r

− µ2

)
R(r) = 0 . (A.14)

Remarkably, there is an exact solution in terms of Whittaker M and W functions. The exact solu-

tion is

R(r) = c1Mξ,χ [2 (rs − r)Q] + c2Wξ,χ [2 (rs − r)Q] , (A.15)

where ξ = rs(µ2−2ω2)
2Q

, χ =
−i
√

−1+4r2sω
2

2
, c1,2 are constants,Q ≡

√
µ2 − ω2, andWξ,χ[x],

Mξχ[x] are the Whittaker W and M functions. Asymptotically, the solution takes the form

R(r → ∞) = r
(2ω2−µ2)M

Q e−Qr , (A.16)

assuming vanishing boundary conditions at infinity, as employed later.

Now, we rewrite the derivatives of the radial equation in terms of the tortoise co-ordinate, ∂r∗

dr
=

r2+a2

∆
. One finds

(
(r2 + a2)2

qr∆
∂2r∗ +

K2
r

qr∆

)
R(r) +

(
2− qr
q2r

σ

ν
− µ2

ν2
+

2r(2− qr)

q2r
∂r∗

)
R(r) = 0 . (A.17)
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Multiplying by qr∆,

(
(r2 + a2)2∂2r∗ +K2

r

)
R(r) + qr∆

(
2− qr
q2r

σ

ν
− µ2

ν2
+

2r(2− qr)

q2r
∂r∗

)
R(r) = 0 . (A.18)

In the limit r → r+, ∆ = (r− r+)(r− r−) → 0, and so the above differential equation reduces to

(
(r2+ + a2)2∂2r∗ +K2

r+

)
R(r) = 0 , (A.19)

assuming ∂r∗R(r) is finite at the outer horizon. Takingm = 0, this reducesKr+ to −(r2+ + a2)ω.

The ODE is readily solved, yielding

R(r → r+) = e−iωr∗ . (A.20)

If we take a generic m, then the asymptotic form is

R(r → r+) ∼ e
−r∗

√
m(aω−m)

rsr+
+ 1

r2s
(m−rsω)(m+rsω)

= e
−ir∗

Kr+

(r2++a2) . (A.21)

Asymptotic form The two asymptotic forms of the radial equation are then

R(r) =


e−iωr∗ r → r+

r
(2ω2−µ2)M

Q e−Qr r → ∞
(A.22)

withQ ≡
√
µ2 − ω2.

Write out the tortoise co-ordinate in terms of the Boyer-Lindquist radial co-ordinate to find

r∗ = r +
rsr+

r+ − r−
ln
r − r+
rs

− rsr−
r+ − r−

ln
r − r−
rs

(A.23)

with rs = 2 ∗M and r± the inner and outer horizon radii in Boyer-Lindquist co-ords. Then we

rewrite the asymptotic form near the horizon as

e−iωr∗ = e−iωr

(
r − r+
rs

)−iω
rsr+

r+−r−
(
r − r−
rs

)iω
rsr−

r+−r−
. (A.24)

170



We see there is a pole at r = r+. We can then expand this function in terms of a generalized power

series as

R(r) = x−iκ(r0 + r1x+ r2x
2 + ...) (A.25)

with x ≡ r−r+
r+−r−

and κ = ωrsr+
r+−r−

, or more concisely,

R(r) =
∞
Σ
n=0

rnx
n−iκ . (A.26)

The coefficients rn can be determined by inserting the above into the radial equation. We first recast

the radial equation into the form

∂2rR(r)+

(
qr
∆

(
2r − rs
qr

− 2rν2∆

q2r

))
∂rR(r)+

(
qr
∆

(
−µ

2

ν2
+
K2

r

∆qr
+

(2− qr)σ

q2rν

))
R(r) = 0 ,

(A.27)

which is of the form

∂2rR(r) + P (r;λ)∂rR(r) +Q(r;λ)R(r) = 0 , (A.28)

where λ are all the other parameters, i.e. ν, µ, etc, and

P (r;λ) =
1

(r − r+)

(
qr

(r − r−)

(
2r − rs
qr

− 2rν2∆

q2r

))
=

1

(r − r+)
∗ P̃ (r;λ)

Q(r;λ) =
1

(r − r+)2

(
qr

(r − r−)2

(
−µ

2

ν2
∆+

K2
r

qr
+∆

(2− qr)σ

q2rν

))
=

1

(r − r+)2
Q̃(r;λ) .

It’s clear then that, as ∆ = (r − r+)(r − r−), then the P (r;λ) diverges like 1
r−r+

andQ(r;λ)

diverges as 1
(r−r+)2

. Hence, r − r+ is a pole of order 1 for P (r;λ) and a pole of order 2 forQ(r;λ)

and both P̃ (r;λ) and Q̃(r;λ) are regular at r = r+. Thus, by Fuch’s theorem, we can apply the

method of Frobenius to find a power series solution of the form eq. A.26 for the radial function

near the outer horizon. Define the following functions

P̃1(r;λ) =
2r − rs
(r − r−)

P̃2(r;λ) = −2rν2

qr
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Q̃1(r;λ) =
K2

r

(r − r−)2

Q̃2(r;λ) =
qr

(r − r−)

(
2− qr
q2r

σ

ν
− µ2

ν2

)

so that

P̃ = P̃1 + (r − r+)P̃2

Q̃ = Q̃1 + (r − r+)Q̃2 .

The differential equation then becomes

∂2rR(r) +
P̃1

r − r+
∂rR(r) + P̃2∂rR(r) +

Q̃1

(r − r+)2
R(r) +

Q̃2

(r − r+)
R(r) = 0 . (A.29)

Inserting the expansion eq. A.26, one finds

0 =
∑
n=0

(
rn(n− κ)(n− κ− 1)xn−2−κ + P̃1rn(n− κ)xn−2−κ+

Q̃1rnx
n−κ−2 + P̃2rn(n− κ)xn−κ−1 + Q̃2rnx

n−κ−1
)

0 =
∑
n=0

(
rn(n− κ)(n− κ− 1)xn−2−κ + P̃1rn(n− κ)xn−2−κ + Q̃1rnx

n−κ−2
)
+

∑
n=0

(
P̃2rn(n− κ)xn−κ−1 + Q̃2rnx

n−κ−1
)

0 =
∑
n=0

(
(n− κ)(n− κ− 1) + P̃1(n− κ) + Q̃1

)
rnx

n−2−κ+

∑
n=1

(
P̃2(n− 1− κ) + Q̃2

)
rn−1x

n−κ−2

0 =
(
(−κ)(−κ− 1) + P̃1(−κ) + Q̃1

)
r0x

−2−κ +
∑
n=1

[(
(n− κ)(n− κ− 1) + P̃1(n− κ) + Q̃1

)
rn

+
(
P̃2(n− 1− κ) + Q̃2

)
rn−1

]
xn−κ−2 .
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The indicial equation can be read off as

(
(−κ)(−κ− 1) + P̃1(r+;λ)(−κ) + Q̃1(r+;λ)

)
= 0 . (A.30)

Solving for κ,

κ =
P̃1(r+)− 1±

√
(1− P̃1(r+))2 − 4Q̃1(r+)

2
. (A.31)

Evaluating the tilde functions, one finds

P̃1(r+) = 1

Q̃1(r+) =

(
ωr+rs − am

r+ − r−

)2

.

Hence, we find κ to be

κ = ±i
(
ωr+rs − am

r+ − r−

)
. (A.32)

To find the recursion relation between the coefficients, we reindex the sum to

∑
n=0

((
(n− k)(n− k − 1) + P̃1(r)(n− k) + Q̃1(r)

)
rn +

(
P̃2(r)(n− 1− k) + Q̃2(r)

)
rn−1

)
xn−k−2 .

(A.33)

Now expand the tilde functions in a Taylor series around the outer horizon radius. After an appli-

cation of the Cauchy product formula, one finds

∑
n=0

[
(n− κ)(n− κ− 1)rn +

n∑
j=0

(
p1,j(n− j − κ)rn−j + q1,jrn−j + p2,j(n− j − 1− κ)rn−j−1+

(A.34)

q2,jrn−1−j

)]
xn−κ−2 ,

where p1/2,j and q1/2,j denote the j’th coefficient in the Taylor series expansion of the four tilde
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functions. Vanishing of the coefficients enforces

rn = − 1

(n− κ)(n− κ− 1)

n∑
j=0

(
p1,j(n−j−κ)rn−j+q1,jrn−j+p2,j(n−j−1−κ)rn−j−1+q2,jrn−1−j

)
.

(A.35)

Solving for rn, we find the recursion relation for the Frobenius coefficients

rn =
−1

n(n− 2 ∗ κ)

[
(p2,0(n− κ− 1) + q2,0)rn−1+ (A.36)∑

j=1

((p1,j(n− j − κ) + q1,j)rn−j + (p2,j(n− j − 1− κ) + q2,j)rn−1−j)

]
.

Taking r0 = 1 and calculating the Taylor series expansion of the four tilde functions, together with

the value for κ derived from the indicial equation, we have completed our asymptotic expansion of

the radial function. By Fuchs theorem, we have a fundamental set of solutions given by eq. A.26,

together with eq. A.32 and eq. A.36. This solution will be used to calculate the boundary condi-

tion at the outer horizon as required for numerically solving eq. A.27.

Now the boundary conditions at infinity can be enforced by minimizing the quantity lnR(rmax)
2

over the complex-frequency space for a specified large value of rmax. This not only enforces the

asymptotic boundary conditions at infinity, namelyR(r → ∞) ∼ e−Qr, but also will yield the

complex-frequency parameter ω.

With these two boundary conditions enforced, we can numerically solve the radial equation by

integrating from r = r+ + ϵ to rmax, with initial conditions determined by the Frobenius expan-

sion at the outer horizon and the asymptotic boundary condition enforced by the minimization of

lnR(rmax)
2, which yields the complex-frequency ω.

After solving the radial and angular equation for the complex eigenvalues, we’ve determined the

Proca field in terms of the parameters (m, a,M, n, S, µ), wherem is the total angular momen-

tum projection, a is the dimensionless spin of the BH,M is the mass of the BH, n is the overtone

number specifying the number of zero crossings of the radial function and comes from imposing

boundary conditions on a Schrödinger-like equation in the non-relativistic regime, S is the spin of

the Proca field, taking values S = −1, 0,+1, and µ = mA

ℏ is the mass parameter of the Proca field.
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A.2 Secular Evolution of Proca Cloud

Here, we display various figures for certain orbital and system parameters. These aid in visualizing

the relation between a dressed EMRI system and the vacuum case. The variation of the mass of the

cloud over time can be determined from dEc

dt
∝ E2

c , which follows from the Teukolsky formalism

for the Proca field on a Kerr background. In particular, our choice of normalization is the statement

of energy conservation, i.e. Mc = M0,bh −Mf,bh, whereMc is the mass of the cloud at saturation,

M0,bh andMf,bh are the initial and final masses of the black hole at saturation, respectively. Using

eq. 2.23, and the fact Tµν ∼ (Aµ)2, it then follows that the normalization coefficient of the Proca

field is

C =

√
M0,bh −Mf,bh

Ēc

, (A.37)

where Ēc is the unnormalized energy calculated directly from eq. 2.23. The final mass of the black

hole can be determined directly from eq. 2.30 and the requirement the saturation condition it met,

ω = mΩH .

The true normalized energy of the cloud is thenEc = C2Ēc. This implies the amplitude of the

Proca field scales likes ∼
√
Mc. From the Teukolsky formalism, the asymptotic energy flux due to

perturbations of the Kerr spacetime obey the scaling relations Ėc ∝ |Z|2 ∝ C4 = E2
c . In other

words, dEc

dt
∝ E2

c . This relation yields

Mc(t) =
M0

1 + t/τ
, (A.38)

where τ is the gravitational emission timescale and is determined from the relation

τ =
M0

dM
dt
(0)

. (A.39)

The initial time is taken to be the time when the superradiant instability saturates and the cloud

reaches a quasibound state. The gravitational emission during the instability is neglected due to

the clear separation of timescales. The timescale for depletion via gravitational emission and evo-

lution of the Proca cloud mass is shown in figure A.1. The evolution of the orbital parameters for

an example system ofM = 106M⊙ and χ = 0.9 due to the secular change in the mass and angu-
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Figure A.1: Gravitational emission timescale (left) and relative depletion of themass of the radiating Proca cloud (right) versus

gravitational coupling for various choices of the SMBHmass. The emission timescale tends to shrink for higher couplings, up until the

superradiant condition is violated. It’s also apparent that lower gravitational couplings permit longer lived clouds.

lar momentum of the background is shown in figure A.2. The strength of the deviation from the

vacuum scenario (labeled α = 0 in the figure) as a function of the gravitational coupling is clearly

visible. Stronger values of α correspond to greater deviations from the vacuum scenario, producing

waveforms that differ by a larger amount from the undressed counterpart.

It should be noted that lower values of α use analytic expressions for the energy flux, while higher

values of α use fits to numerical relativity calculations287. Moreover, for higher values of α, τ di-

verges near the superradiant threshold as the Proca cloud mass drops off in this region and τ ∼ 1
M0

.

A.3 Comparison to Other Effects

As stated in the main text, several effects have been neglected when computing the potential Proca

mass range observable with the LISA mission. These include dynamical friction 279,313,355–361, ac-

cretion of the Proca cloud onto the secondary black hole362,363, and resonant transitions between

Proca states300,302,358,364. Within a limited scope, each effect is studied here to understand the role it

plays in the potential Proca mass range observable with LISA.

First, it has been shown that dynamical friction has the same order of magnitude effect as that

arising from transitions between states of the cloud. Indeed, the transition from bound to un-

bound states has been suggested to be interpreted as dynamical friction361 of the Proca cloud on the
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Figure A.2: Variation of the semi-latus rectum (left) and eccentricity (right) over the course of the inspiral, for various choices of the

gravitational couplingα. Here, the SMBHmass is taken to beM=106M⊙ . The semi-latus rectum is expressed in gravitational

units,
p
M , where p is the semi-latus rectum in geometrized units.

secondary black hole. However, the full phenomenon of state transitions has one of three effects on

the orbital trajectory. The orbit either floats, sinks, or is kicked, depending on the initial and final

states of the transition. Either of these three effects individually yield a reduction in the faithfulness,

with respect to the vacuum case. When including the modification to the background, a sinking

orbit may counteract the effect of the modification to the background discussed in the main text.

However, a floating orbit has the opposite effect, it enhances the deviation from the vacuum sce-

nario. This can be seen from the expression for the waveform inner product eq. 2.42. Consider a

signal in the detector, whose functional form is h(f) = A(f)eiϕ(f), whereA(f) and ϕ(f) are the

amplitude and phase as a function of frequency, respectively. LetA0(f) and ϕ0(f) be the ampli-

tude and phase, respectively, for the vacuum inspiral. Let δϕ1(f) denote the deviation from the

vacuum scenario due to the modification of the background, as discussed in the main text, and let

δϕ2(f) denote the additional phase deviation due to the floating or sinking orbits. At lowest order,

the amplitude remains unchanged, so the waveform of the perturbed spacetime is

hProca(f) = A0(f)e
i(ϕ0(f)+δϕ1(f)+δϕ(2)(f) = hvacuum(f)e

i(δϕ1(f)+δϕ2(f)) , (A.40)
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where we’ve defined hvacuum(f) = A0(f)e
iϕ0(f). The waveform inner product then takes the form

⟨hvacuum|hProca⟩ = 4 ∗Re
∫
hvacuumh

∗
Proca

Sn

df = 4 ∗Re
∫

|A0|2

Sn

ei(δϕ1(f)+δϕ2(f))df . (A.41)

Assuming a small deviation of the phase*, then the inner products, at lowest order, becomes

⟨hvacuum|hProca⟩ = 4 ∗Re
∫

|A0|2

Sn

df − 2 ∗Re
∫

|A0|2

Sn

(δϕ1(f) + δϕ2(f))
2 df , (A.42)

where we’ve dropped purely imaginary terms. For floating orbits, δϕ1 and δϕ2 have the same sign,

so the second term is purely positive, reducing the value of the faithfulness. This implies that the

inclusion of state transitions in the cloud will increase the observable mass range of the Proca cloud

with LISA. To further elucidate this point, consider for example a 107M⊙ primary black hole sur-

rounded by a Proca cloud with mass µ = 9.35 ∗ 10−19eV . The results of this study suggest this

Proca mass would be unobservable with LISA. However, inclusion of floating reduces the faithful-

ness even further, potentially pushing it below the critical faithfulness threshold for observability.

Over the entire parameter, the observable mass range of the Proca field with LISA is then further

extended beyond the range suggested in the main text. This is owed to the fact that floating orbits

contribute scenarios where the Proca mass is observable, while sinking orbits, that partially cancel

the effect of this study, do not. These estimates were confirmed with explicit numerical computa-

tion for an example scenario. It was found that for µ = 9.35 ∗ 10−19eV ,M = 107M⊙, e0 = 0.2,

and χ = 0.9, inclusion of either a sinking or floating orbit reduced the faithfulness from values

above the critical threshold for observability (see figure 2.6) to values below it. Despite the fact there

are regions of the parameter space where the effects can partially cancel, over the entire range of the

parameter space, the observable Proca mass range will increase due to those regions which enhance

the background modification and thus push the faithfulness statistic below the critical threshold for

observability.

The second additional effect neglected is accretion of the Proca cloud onto the secondary black

hole. It has been suggested in 365 that accretion is strongly α-suppressed relative to dynamical fric-

tion (and hence state transitions discussed above) and the change in the cloud mass is even further

*For state transitions, this is typically a good approximation since the deviation in frequency scales as q for
q ≪ 1300.
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suppressed *. Hence, it’s reasonable to neglect the effect of accretion at this order in the perturba-

tive expansion. Nonetheless, accretion acts as an additional force that can either enhance or impair

the radial inspiral362,363. In a similar argument as above, over the entire parameter space, the region

that enhances the modification to the background will widen the observable Proca mass range with

LISA by pushing the faithfulness below the critical threshold. Thus, including accretion will also

further expand the potentially observable Proca mass range of LISA.

The inclusion of these two effects are thus shown to further widen the mass range observable

with LISA, further suggesting the results of this study are a conservative estimate. It should also be

noted that self-gravity is another effect commonly studied in the literature366,367. Since this study

uses the superrad 287 package to compute the asymptotic energy and angular momentum fluxes

from the Proca cloud, which uses numerical relativity-fitted formulas for large α-values and a New-

tonian treatment for α ≪ 1, the self-gravity of the cloud is automatically included in this study.

*The estimations in 365 were calculated assuming a scalar cloud, but then suggested to be within the same order of
magnitude for the Proca cloud as well.
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B
Additional Considerations for Proca in an

Expanding Universe

This appendix contains elucidations on the theoretical study in Chapter 4. Section B.1 elucidates

the co-ordinate transformations performed in the numerical analysis. In particular, the transforma-

tion of the metric variables and their derivatives from the transformation (r, θ, ϕ) → (x, y, z) is

detailed. Section B.2 goes into detail about the evolution equations for the auxiliary damping field

introduced in eqs. 4.23-4.26.
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B.1 Coordinate Transformations

In transforming metric variables from Kerr-Schild to the Cartesian-like co-ordinate system eqs. 4.20-

4.22, we follow the standard procedure for co-ordinate transformations. That is

βi
cart(x, y, z) = Λi

jβ
j
KS(r, θ, ϕ) (B.1)

γij,cart = (Λ−1)ki (Λ
−1)ljγkl,KS , (B.2)

where Λi
j =

dXi

dRj ,X = (x, y, z), andR = (r, θ, ϕ). The derivatives of the metric variables are then

computed straight forwardly using the following rule for a rank-r contravariant tensor

∂pT
ij··· =

(
Λ−1

)r
p

[
∂̃r
(
Λi

mΛ
j
n · · ·

)
T̃mn··· +

(
Λi

mΛ
j
n · · ·

)
∂̃rT̃

mn···
]
, (B.3)

where a tilde represents the quantity in the base co-ordinate system and non-tilde in the new co-

ordinate system. For a covariant rank-r tensor, we find a similar rule

∂rTij··· =
(
Λ−1

)p
r

((
Λ−1

)m
i

(
Λ−1

)n
j
· · ·
)
∂̃pT̃mn··· + T̃mn···∂r

((
Λ−1

)m
i

(
Λ−1

)n
j
· · ·
)
. (B.4)

For example, the spatial metric in the new Cartesian-like co-ordinate system can be computed as

∂rγij =
∂γ̃kl
∂Rm

∂Rm

∂Xr

∂Rk

∂X i

∂Rl

∂Xj
+ γ̃kl

∂

∂Xr

(
∂Rk

∂X i

∂Rl

∂Xj

)
. (B.5)

The rest of the derivatives of the metric variables follow similarly. The Jacobian matrix of the trans-

formation eqs. 4.20-4.22 is simple to compute. Since at each grid point, we are given the (x, y, z)

co-ordinates, we represent the Jacobian matrix in terms of the (x, y, z) variables. Hence, it is given

by

Λi
j =


x
r

y
r

z
r

xz
r2ρ

yz
r2ρ

−ρ
r2

−y
ρ2

x
ρ2

0

 , (B.6)
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where r2 = x2 + y2 + z2 and ρ2 = x2 + y2. Due to the division by the two radii, GRBoondi sets a

minimum value for the radii of 10−12. For more details on the numerical implementation, see 368.

B.2 Equations of Motions of the Auxiliary Damping Field

The details about the auxiliary damping field introduced in eqs. 4.23-4.26 are discussed here. The

covariant equations of motion that lead to eqs. 3.128-3.131 are

∇α(F
αβ + gαβZ) = µ2Aβ + κZnβ . (B.7)

In the absence of the auxiliary field, eq. 4.5 is recovered and taking the divergence would yield the

Lorenz constraint ∇µA
µ = 0. However, in the case of the added auxiliary field, a new equation is

derived

□Z − κnµ∇µZ + κZK = µ2∇νA
ν , (B.8)

which is manifestly an evolution equation for the auxiliary field. In fact, due to the presence of the

□ operator, this is the form of a modified wave equation. Since the constraint ∇νA
ν is the function

that should be minimized by theZ field, and with a little foresight, we make the intelligent choice

Z = µ2∇νA
ν . Eq. B.8 is now a modified wave equation for the Lorenz constraint and takes the

form

□Z − κnµ∇µZ + Z(κK − 1) = 0 (B.9)

called the generalized telegraph equation332 in curved space. This equation describes exponentially

suppressed wave motion. This can be seen by restricting to flat space and setting κ = 1. In this

case,Z = f(t − x)e−t is a solution, which describes waves propagating at the speed of light and

experiencing exponential temporal suppression. This is the desired behavior here sinceZ represents

violations of the Proca constraint equation. In the context of numerical schemes, violations of the

Proca constraint propagate at the speed of light outside of the finite computational domain and are

simultaneously suppressed. This explains the terminology used in the main text of the thesis which

describesZ as an ’auxiliary damping field’. It’s auxiliary since it was added by hand and it damps

due to the nature of the generalized telegraph equation.
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C
Generalized Proca as a Constrained System

Broadly speaking, there are two possible avenues for studying generalized Proca theories. The first

was the one adopted throughout the main text of the thesis — the Lagrangian formalism. This is

largely the angle adopted throughout most field theories. However, the other approach can offer

new insights, which is the Hamiltonian formalism. This is the approach usually taken in the con-

text of quantum mechanics.

One of the fathers of quantum mechanics, Paul Dirac, developed a theory of constrained systems

using the Hamiltonian formalism. This theory offers insights into the gauge nature of many fields.

In the modern age, Dirac’s theory forms one of the key foundations of modern theoretical physics

and is widely utilized by theories such as modern QFT and GR. It provides a rigorous treatment of

all theories that contain constraints and systematically describes gauge invariance and even quan-

tization. We can thus use Dirac’s theory of constrained Hamiltonian systems to acquire further
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insights into the nature of generalized Proca systems. Though this analysis is largely incomplete, we

use one of the most basic generalized Proca theories to illustrate possible issues that can easily sneak

up unsuspectingly when evolving seemingly innocuous evolution equations.

C.1 Hamiltonian Analysis à la Dirac-Bergmann

We consider the L2 Lagrangian, restricted to be only a function of the Proca norm

L = −1

4
F µνFµν − V (AµAµ) . (C.1)

Converting to the Hamiltonian via the standard Legendre transformation yields

Hcan =
α

2
ΠiΠ

i +DjΠ
j
(
αϕ− βiXi

)
+DiXj

(
Πjβi − Πiβj

)
+ (C.2)

α

2
DiXj

(
DiXj −DjX i

)
+ αV (A2) , (C.3)

where Πi ≡ δL
δXi

and π ≡ δL
δϕ

. Its immediately clear from the canonical Hamiltonian that we have a

single primary constraintC1 ≡ π = 0. The primary Hamiltonian is thus

H ′ = Hcan + λ1C1 , (C.4)

where λ1 is a Lagrange multiplier. It’s important to note here that there are cases where the Dirac-

Bergmann algorithm can breakdown369. In particular, the algorithm will fail when the primary

constraints contain spatial derivatives of the configuration space variables. Fortunately, this is not

the case here, so the algorithm can be followed as usual. We can continue forward by following the

Dirac consistency conditions for the constraints.

As usual, we define the Poisson bracket in field theory by

[A,B] =

∫
d3w

[
δA

δϕ(w)

δB

δπ(w)
− δA

δπ(w)

δB

δϕ(w)
+ (C.5)

δA

δXi(w)

δB

δΠi(w)
− δA

δΠi(w)

δB

δXi(w)

]
. (C.6)
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The Dirac consistency conditions then yield an additional constraint

Ċ1 = [C1, H
′] ≈ 0 → C2 ≡ −DiΠ

i + 2ϕV ′ , (C.7)

where the symbol ≈ denotes equality on the constraint surface. This constraint is reminiscent of

the Gauss constraint from Maxwell electrodynamics. In fact, one can show Πi = −Ei, thus recov-

ering the previous constraint from the corresponding Lagrangian theory.

Continuing with the consistency relations, one would calculate Ċ2 = [C2,H ′]. However, this

yields relations for the Lagrange multiplier, signaling the end of the recursive algorithm. Hence, for

this theory there is only one primary and one secondary constraint,C1 = π andC2 = −DiΠ
i +

2ϕV ′.

It immediately follows from these constraints that this system is purely second class, just as regu-

lar Proca, since

[C1, C2] = V ′ − 2ϕ2V ′′ . (C.8)

Since this system is purely second class for generic field configurations, the first class, total, and

extended Hamiltonians are all equivalent. These are obtained by plugging in the solution from

[C2, H
′] in terms of the Lagrange multiplier into the primary Hamiltonian.

With the second-class constraints in hand, we can continue on and define the Dirac bracket.

Since we’re dealing with a field theory, we need to modify the usual finite-dimensional version.

Here, we have an infinite number of second-class constraints — two at each hypersurface point.

Thus, the matrix product in the finite-dimensional Dirac bracket gets promoted to an integral over

the hypersurfaces

[A,B]∗ ≡ [A,B]−
∫
d3zd3z′ [A,Ca(z)]M

−1
ab (z, z

′) [Cb(z
′),Hpr] , (C.9)

where Hpr is the partially reduced Hamiltonian, obtained from the extended Hamiltonian by ap-
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plying the second-class constraints. For our system

Hpr =
α

2
ΠiΠ

i +DiXj

(
Πjβi − Πiβj

)
+ (C.10)

α

2
DiXj

(
DiXj −DjX i

)
+ αV (A2) + 2ϕV ′ (αϕ− βiXi

)
.

This definition of the Dirac bracket can be straight-forwardly shown to satisfy the usual properties

of the finite-dimensional Dirac bracket, namely vanishing on the second-class constraints, anti-

symmetry, linearity, etc.

The evolution of the canonical variables is then determined via the Dirac bracket. We hence find

the equations of motion

π̇ ≈ 0 (C.11)

ϕ̇ ≈ 1

gnn
[C2,Hpr] (C.12)

LmXi ≈ αΠi −Di (αϕ) (C.13)

LmΠ
i ≈ 2αX iV ′ − ΠiαK −Dj

(
αDjX i

)
+ αDjD

iXj . (C.14)

We leave the expression for ϕ̇ unevaluated here since the resulting expression is quite lengthy due to

the presence of the termDi
δHpr

δXi
. This results in third derivatives of the potential.

These evolution equations automatically take into account the second-class constraints and so

are free evolution equations. Though this assumes we have a purely second class system. A pecu-

liarity of the second-class constraints is that they’re spatially varying quantities, hence their Poisson

bracket are as well. This implies that there can be certain field configurations where [C1, C2] ≈ 0

in local patches of spacetime, while remaining non-zero everywhere else. This has immense implica-

tions for the well-posedness of the evolution equations, which we now investigate.

C.2 Well-posedness of the Cauchy Problem

We wish to analyze the well-posedness of the Cauchy problem from the point of view of the Hamil-

tonian theory. The primary issue will occur in the region of phase space where the second-class
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constraints become first class,

[C1, C2](x) = 2gnn(x) → 0 . (C.15)

Since gnn(x) is an explicitly local quantity, the region where gnn(x) = 0 is a patch of the spacetime

(which may or may not be an open region and it may be point-like). The important consequence of

gnn → 0 is that the constraints become first class.

It follows directly from the Dirac-Bergmann algorithm and the Dirac conjecture that the first

class constraints generate infinitesimal gauge transformations, while second-class constraints don’t

affect the evolution and only the initial data. Explicitly, consider the canonical variable ϕ(x). Once

ϕ(x) enters the region of phase space where gnn(x) = 0, it acquires an additional gauge freedom,

via

δϕ(x) = ϵa[ϕ(x), Ca(x)] . (C.16)

This is precisely where the issue arises in the well-posedness of the Cauchy problem, which we now

show.

Consider the canonical variable ϕ and set up initial data for ϕ far away from any region where

gnn = 0. Since the constraints are all second class on the initial data surface, the evolution of ϕ is

uniquely determined by the total Hamiltonian. Let ϕ evolve off the initial data surface according

to this evolution and suppose its trajectory takes it into a region where gnn = 0. Let the time this

occurs be called t1.

At t1, ϕ acquires gauge freedom due to the reduction of the second-class constraints to first class.

So ϕ is subject to specifiable gauge conditions, in order to have a well-defined evolution. Hence, the

solutions behavior is subject to additional freedom that is independent of the initial data. As one

cannot impose these gauge conditions at the initial data surface, the solutions behavior changes dis-

continuously with the initial data. Hence, the system is ill-posed, with respect to Hadamard. If at

any point in the evolution, gnn = 0, then the system becomes ill-posed and well-defined evolution

is no longer possible.

The ill-posedness of the equations of motion is also evident from eq. C.11. When gnn → 0, the

solution of the evolution equations is no longer possible since ϕ̇→ ∞. This reflects the fact that we
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lose a degree of freedom in this patch of spacetime. Due to the fact the constraints become locally

first class, the number of dynamical degrees of freedom reduces from three to two.
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