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ZUSAMMENFASSUNG
Die Einfiihrung der Gravitationswellenastronomie hat die Astrophysik in eine neue Ara gestiirzt.
Gravitationswellensignale, die von starken Gravitationsregimen ausgehen, liefern enorme Informa-
tionen tiber die Umgebung aus der sie stammen. Dies ermdglicht die Durchfithrung bemerkenswert
leistungsfihiger Studien zur grundlegenden Natur der Schwerkraft, der dunklen Energie und der
dunklen Materie. Diese aktuellen und zukiinftigen Studien erfordern eine sehr hohe Genauigkeit
und Prizision der physikalischen Modelle, die sie entwickeln, um alle potenziellen Informatio-
nen aus den beobachteten Daten zu extrahieren. Insbesondere aufgrund der schwachen Kopplung
zwischen Materie und Schwerkraft liefern sehr starke Gravitationsumgebungen die héchste Qual-
itit an Informationen tiber die umgebenden fundamentalen Felder. Zu diesem Zweck besteht
das Hauptziel dieser Arbeit darin, Modelle der Wechselwirkung dunkler Materie mit hochdy-
namischen Schwarzlochsystemen zu erstellen und die potenzielle Beobachtbarkeit mithilfe zukiin-
ftiger Gravitationswellenobservatorien vorherzusagen. Zur Férderung dieses Ziels wurden mehrere
Studien und Werkzeuge entwickelt, die in neuen Toolkits der numerischen Relativitit, Parame-
terbeschrinkungen und theoretischen Ergebnissen gipfelten. Obwohl noch viel Arbeit nétig ist,
um die Leistungsfihigkeit kiinftiger Gravitationswellenobservatorien voll auszuschépfen, bietet die
Arbeit in dieser Dissertation grofie Fortschritte und leistungsfihige Werkzeuge fiir das Verstindnis
der fundamentalen Bausteine des Universums.

ABSTRACT
The inception of gravitational wave astronomy has plunged astrophysical sciences into a new era.
Gravitational wave signals sourced by strong gravity regimes provide enormous information about
the surrounding environments from which they came. This allows remarkably powerful studies to
be performed regarding the fundamental nature of gravity, dark energy, and dark matter. These
current and future studies require very high accuracy and precision in the physical models they
develop in order to extract all potential information from observed data. In particular, due to the
feeble coupling between matter and gravity, very strong gravitational environments provide the
highest quality of information regarding surrounding fundamental fields. To that end, the primary
objective of this thesis is to generate models of dark matter interacting with highly dynamical black
hole systems and forecast potential observability using upcoming gravitational wave observatories.
Several studies and tools were developed to further this goal, culminating in new numerical relativ-
ity toolkits, parameter constraints, and theoretical results. While much more work still needs to be
done to fully leverage the prowess of upcoming gravitational wave observatories, the work in this
thesis provides great advancements and powerful tools in the pursuit of understanding the funda-
mental building blocks of the universe.
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The darkest things in the universe simultaneously shine

the brightest.

Introduction

THE STORY OF SCIENCE can be traced back thousands of years to ancient Mesopotamia'. The
beginning of science is fundamentally ontological. What is the nature of our being, the relations
we have to the world, and the nature of these relations? The early works during this revolutionary
period laid the groundwork for formalized thoughts into the underpinnings of the natural world.
These early ’theories’ include philosophies such as alchemy and astrology. It wasn’t until the scien-
tific revolution in 16™- to I7th-century Europe when natural scientific philosophies dramatically
changed, departing from the outdated Greek traditions*~*.

The new philosophies that emerged were more mechanical, leveraging mathematical methods,
concepts, and insights to explain the everyday phenomena. Moreover, the new science was far

more reliable and reproducible, owing to the emergence of the scientific method #°. These devel-



opments paved the way for extraordinary breakthroughs and revolutions, some even transforming
our very view of the universe overnight. The 1 gth century saw the chemical revolution, one of the
first drastic changes in human scientific thought following the scientific revolution®. The 19™ cen-
tury brought new ideas and concepts regarding energy, the age of the Earth, and especially evolu-
tion®~®. Finally, the 20™ century brought forth transformations in genetic theory and new insights
in physics paved the way for new fields such as molecular biology, and particle physics®.

It wasn’t just the spirit of natural philosophy that influenced scientific progress. The tumultuous
political environment of the time often pushed scientific thinking into new paradigms and further
scientific progress, the Manhattan project being one of the most well-known examples?. These
politically-guided advancements even hastened humanity’s journey into space, where progress on
chemical rocketry and near-Earth space navigation allowed humans, for the first time in history, to
step foot on another celestial body '°.

The multi-millennia-spanning story of science has no end in sight. The modern day library of
knowledge built by human curiosity of the natural world is so vast and so deep that thousands of
textbooks have been authored and published concerning an enormous range of disciplines, top-
ics, concepts, and theories. Moreover, this library of knowledge has been an endeavor built upon
previous generational insights and continues to be an ever-growing mountain of understanding.
Though historically, some have predicted a looming end of physics, today’s insights have revealed a

11,12

seemingly crestless mountain of understanding

1.1 OUuURLIBRARY OF KNOWLEDGE

Our current understanding of the universe covers a vast range of insights into the physical world
ranging from subatomic lengths on the scale of femtometers, to the entire universe on the scale of
billions of light-years, and everything in between. This body of knowledge has been built both by
geniuses of the ages, but also lesser known scientists whose cumulative efforts have greatly advanced
human understanding.

Science is very much a collaborative effort, which is especially true in the current age. As little as
a century ago, the mountain of knowledge was little more than a hill, taking a curious mind com-

paratively little effort to summit the top and discover a new phenomena. However, at the turn of



the 20 century, the discovery of quantum theory and relativity sparked a tremendous explosion
that radically shifted scientific exploration. Waves behaving like particles, particles appearing like
waves, the constancy of the speed of light, the cosmic microwave background — all these discoveries
opened new avenues of research, bringing forth even more discoveries that pushed human explo-
ration into both the subatomic and supra-galactic scales.

In the current age, fundamental scientific understanding of the natural world is built upon two
large pillars: quantum field theory and general relativity. Moreover, the inception of these two pil-
lars were around the same time, the early 20 century. General relativity was the first radical shift in
understanding of gravity for almost three centuries since the age of Isaac Newton '>'#. The theory
describes the origin of gravity and its deep relationship with matter and energy. Naturally, general
relativity describes things at very large scales, from the orbit of the moon to the evolution of the
cosmos. However, around the same time, quantum theory was emerging as the sole descriptor of
the microscopic universe and arguably represents an even bigger shift in humanity’s views of the

natural world.

1.1.1  QUANTUM FIELD THEORY

The progenitor to quantum field theory, the theory that describes the microscopic universe, is
quantum mechanics. The annals of quantum mechanics is thus a fundamental piece of the history
of modern physics. The first emergence of the quantum theory can be dated back to the latter half
of the 19" century s, beginning with attempts to describe individual phenomena such as black-

body radiation and solar emission spectra.

Brack-sopy RapiaTioN

Black-body radiation is perhaps the greatest beacon of the inadequacy of classical mechanics to de-
scribe mesoscopic and microscopic phenomena. Thermal radiation is electromagnetic radiation
that has been emitted from an object due to the object’s own internal processes. A black-body is a
so-called ’perfect emitter’ in the sense that all incident electromagnetic radiation is absorbed, leav-
ing none to be reflected. The opposite, called a white body, reflects all incident radiation and emits

nothing. A black-body then emits only thermal radiation, which would then be called black-body



radiation '°. Many everyday objects can be modeled as a black-body, such as the planets and the sun.
The prediction for the spectral signature of black-body radiation is what sparked the quantum
revolution. Classical physics predicts that the spectral radiance B of electromagnetic radiation from
a black-body should scale linearly with the temperature T and quadratically with the frequency f of
the emitted radiation, B o< T" * f2. This is a catastrophic result, suggesting that higher frequencies
are emitted much more than lower frequencies. This implies that an infinite amount of photons
with an infinite frequency should be emitted from everything in the universe that has a non-zero
temperature. According to classical physics, the universe should be bathed in infinite energy. This
goes by the name the ultraviolet catastrophe and the solution to this problem sparked the quantum

revolution.

THE QUANTUM REVOLUTION

In the 20™ century, physicist Max Planck suggested that the emitted radiation should be ‘quan-
tized’ into discrete amounts. In other words, the emitted photons can only take discrete energies
with the smallest unit called a ‘quanta’ of energylé. Yet, Planck only suggested the quanta as a
mathematical tool with zero real world correspondence. Finally, in the same year that he proposed
special relativity, Einstein suggested that these quanta are real particles, which now go by the name
of ’photons’. This sparked an avalanche of physical predictions about the nature of atomic theory,
leading Einstein to predict the photoelectric effect, earning him the 1921 Nobel prize 7.
Quantum theory continued to develop along the route suggested by the quanta. In 1927, Werner
Heisenberg penned an early version of his illustrious uncertainty principle . In 1926, Erwin Schré-
dringer formulated his celebrated equation that describes the behavior of quantum waves, becom-
ing a core piece of quantum mechanics*°. With his equation, Schrédinger calculated the energy
levels of the hydrogen atom which correctly reproduced many different properties of hydrogen,

21,22

earning Schrédinger and Dirac the 1933 Nobel prize in physics

FroM PARTICLES TO FIELDS AND BAck

However, around 1927, quantum mechanics stood as an offshoot of classical mechanics, regarding

only particles, probability waves, and time as an absolute concept. Relativity, already well-matured



at this point, had yet to be incorporated into the theory. Paul Dirac began to consider the learnings
from special relativity in the context of quantum theory, proposing his well-known "Dirac equa-
tion’ for the electron®. This unification of relativity with quantum theory gave birth to quantum
field theory, which regards particles as localized excitations of an omnipresent field.

The father of quantum field theory can be attributed to Paul Dirac himself, who was able to
compute the spontaneous emission of an atom**. He described the quantization of the electro-
magnetic field as an ensemble of harmonic oscillators, introducing new mathematical tools along
the way. With these new tools, physicists believed any possible computation for any physical process
involving photons and charged particles could be performed. However, it was quickly realized that
the computations were only reliable to first order in the perturbative expansions*~*7. It became
apparent that at higher orders, infinities in the calculations began to emerge, making the computa-
tion physically irrelevant and diminishing the confidence of the theory itself. The very nature of the

compatibility between quantum theory and relativity were called into question.

REIGNING IN THE INFINITIES

The resolution to the infinities began to emerge in 1947, when Hans Bethe reabsorbed the infini-
ties into corrections of the mass and charge of the particles, giving birth to the powerful theoretical
method of renormalization®®. This tool allowed finite results to be deduced. Based on these results,
several other physicists were finally able to covariantly formulate arbitrarily precise models of quan-
tum electrodynamics (QED), earning them the 1965 Nobel prize in physics**7. Through these
works, renormalization became a foundational aspect of quantum field theory. With these tech-
niques, QED became one of the most precisely tested theories in all of physics*®. For some of the
parameters, the agreement with experimental data is found to be within 1 part in 1072, or one part

in a billion, making it one of the most precisely tested physical theories of all time**~#.

D1viING INTO THE NUCLEUS

The success of QED has made it a model for other quantum field theories, such as quantum chro-
modynamics (QCD), which describes the strong force between quarks and gluons, the nucleus

equivalents of electrons and photons, respectively. These comprise the inner world of the proton



and neutron, making QCD the theory describing the nucleus of the atom. Though equivalent to
QED in spirit, QCD is saliently different in practice resulting in very different phenomena.

QCD exhibits several bewildering phenomena relative to QED. The first is color confinement,
the phenomenon where quarks and gluons cannot be isolated from one another. In fact, as two
color-charged particles such as quarks are continuously separated, the force between them ap-
proaches a constant. This is in stark contrast to the inverse-square law of electrodynamics, where
the force falls off as the square of the distance between two electrically charged particles 4.

The second phenomenon is asymptotic freedom, in which the strength of the interaction be-
tween quarks and gluons steadily decrease as the energy scale increases and the corresponding length
scale decreases *#*5. In other words, quarks interact weakly at high energies. At low energies, the in-
teractions are much stronger, leading to confinement of quarks and gluons, and forming composite
hadrons such as protons and neutrons.

The third phenomenon is chiral symmetry breaking46. This phenomenon is different in nature
than the previous two in that the internal symmetries of the theory undergo spontaneous breaking.
At the theoretical level, this spontaneous breaking of the symmetry leads to the dynamical genera-
tion of mass for otherwise massless particles.

These three strange phenomenon make QCD a very different theory than QED and, at the same

time, shows the versatility of the tools allotted by quantum field theories.

THE FINAL P1LLAR

The third and final foundational pillar of our understanding of the subatomic world illuminated
by the mechinations of quantum field theory is quantum flavordynamics (QFD). The earliest his-
tory of QFD can be traced back to Enrico Fermi, the pioneer of the weak interaction *#*. Fermi
suggested that the beta decay process can be explained via the weak force which is mediated by the
W and Z bosons, analogous to the photon of electromagnetism. In fact, the weak interaction is
responsible for all radioactive decay and thus is important in the understanding of many physical
processes that occur in stellar matter, fission reactors, and any other radiation-driven processes.

In the 1960s, the pioneering work of Sheldon Glashow, Abdus Salam, and Steven Weinberg uni-

fied the electromagnetic and the weak force into a single force termed the electroweak force*°.



They earned the 1979 Nobel prize in physics for their discovery. They realized that above a criti-
cal energy scale of around 246 GeV, the electromagnetic and weak interactions would unify into
a single force. It was later shown that the electroweak theory of Glashow, Salam, and Weinberg
was renormalizable. In other words, the infinities inherent to the quantum field theory could be
reabsorbed, leading to well-defined finite predictions. To date, the precision of experimental mea-
surements of the electroweak interaction are on par with that of QED, making it one of the most

precisely tested theories®".

1.1.2 THE STANDARD MODEL

These three revolutionary theories, QED, QCD, and electroweak theory, built using the mathemat-
ical tools of modern QFT, form our understanding of the atomic cosmos. These theories classify
and describe all known fundamental particles and three out of the four fundamental forces. The
collective name of these three theories that form our modern understanding of atomic processes is
the Standard Model.

The Standard Model of particle physics is the collective model that describes the electromagnetic
interaction, the weak interaction, the strong interaction, and all fundamental particles. This col-
lective description can be split broadly into two separate pieces, namely the matter itself and the
interactions between the matter particles. The particles representative of the interactions are called
*force carriers’ and they include the photon, the W and Z boson for the weak force, and the gluon
for the strong force. All fundamental particles can be divided into three large classes, fig. 1.1. They
can be bosonic or fermionic, depending on the internal properties of their quantum fields, and they

can be hadronic.

BosonNs AND FERMIONS

The bosonic and fermionic descriptors are categorizations that depend on the internal spin of the
particle, which is a quantum analog of angular momentum and is a fundamental intrinsic property
of the particle. In equivalence to the photon, the spin of particles is also quantized and hence the
spin can be used to distinguish various particles. The electron is a famous example of a particle that

carries intrinsic spin, which was inferred in 1921, by Otto Stern and Walther Gerlach, by sending an



electron through an inhomogeneous magnetic field. The deflection of the trajectory of the electron
led Stern and Gerlach to suggest that all electrons carry a fundamental, irreducible, and quantized
spin.

Bosons are particles that carry a spin which is

an integer number, such as 1, 2, etc. Fermionic
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Made up of Quarks

o . particles, the W, Z bosons and gluons (as well
Figure 1.1: °“Division of fundamental, composite, and force-

carrying particles into classes. The force-carrying particles are all as the gravitational force carrier), are bosonic.

bosons, while the matter particles can be bosonic or fermionic,
depending on the internal properties of the particles and whether

_ Electrons, neutrons, the neutrinos, and pro-
they are fundamental or composite.

tons are all fermionic. However, the proton
and neutron are not fundamental since they are composed of more fundamental particles. Parti-
cles that are composed of more fundamental particles are composite particles held together by the
strong nuclear force and are called hadrons. They are the subatomic analog of molecules, which are

held together by the electromagnetic force.

BuiLpING THE SuBaATOMIC UNIVERSE

The hadrons and fermions can be further categorized into three more categories. The leptons are
fundamental fermionic particles that do not interact with the strong force. Due to the lack of in-
teraction with the strong force-carrying particles, they are termed ‘color-free’, where color refers to
the strong nuclear interactions equivalent of electric charge. The particles that are leptonic are the
electron, muon, tauon, and their corresponding neutrino flavors, the electron neutrino, the muon
neutrino, and the tau neutrino. The fermionic hadrons are called baryons. They are composite par-
ticles that participate in the strong nuclear force. Particles that are baryonic are the proton, neutron,
and more exotic flavors such as the pentaquark. The bosonic hadrons are called mesons. They are
also composite particles which participate in the strong nuclear force. They differ from the baryons
in that they possess an even number of quarks, in contrast to baryons which are composed of an
odd number. However, all mesons are unstable, with the longest living one lasting only for tens of

nanoseconds*®. This implies free mesons only exist for a very short amount of time. On the other



hand, mesons are extremely important as they are responsible for binding together atomic nuclei*°.
Since they are bosonic, they act as the force carrier for the residual strong force, or nuclear force. The
strong nuclear force can be thought of as certain combinations of quarks "leaking away’ from the
internal interactions of the individual protons and neutrons, binding the protons and neutrons to-
gether and forming atomic nuclei.

Since mesons are unstable, they also participate

in the weak interaction where they can undergo Standard Model of Elementary Particles
three generations of matter interactions / force carriers
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mng mesons and bal‘}’OHS- However, all known Figure 1.2: >’ The Standard Model of particle physics consists

of twelve fundamental matter particles and five force-carrying

ComPOSIte ParUCles are Composed OfJuSt 12 particles. The six quarks are the fundamental particles that
. . . compose mesons and baryons, yielding atomic nuclei. The six
fundamental matter Pamdes which interact leptons consist of electrons and their heavier cousins, the muon

. . . and tauon, along with their associated neutrino flavors. The five
Wlth the 5 fOfCC'Carf}’mg ParthleS- force-carrying particles, the gluon, photon, W and Z bosons, and

the Higgs particle are responsible for the interactions between
the various matter particles or, in the case of the Higgs particle,

THE BuiLDING BLocks oF THE CosMOS give mass to them.

The 6 quarks compose the inner nuclei, binding together with the gluon to form protons, neu-
trons, and mesons. The 6 leptons consist of the electron, the muon, the tauon, and the electron
neutrino, the muon neutrino, and the tau neutrino. The five force-carrying particles are the gluon,
responsible for binding together quarks to form hadrons, the photon, responsible for the interac-
tion between leptons, the W and Z bosons, responsible for radioactive decay of particles, and the
Higgs particle, which is responsible for giving mass to all fundamental particles.

These 17 particles constitute the Standard Model, the most accurate model for the fundamental

constituents of the universe, fig. 1.2. The Standard Model has been in development since the latter



half of the 20™ century through the enormous work of scientists around the world 5% The Standard

Model was finalized in the 1970s after the existence of the quark was experimentally confirmed *~¢".
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Figure 1.3: The Standard Model Lagrangian, the fundamental

The Standard Model is built using the tools
of quantum field theory and is an immensely
complicated theory. The Standard Model con-
sists of 19 parameters whose numerical values
must be fixed by experimental data. However,
in 2010, it was discovered that the neutrino,
previously thought to be a massless particle, ac-

tually contains a very light mass®*. This discov-

mathematical object that describes the atomic universe. The first . .
: ery changed the Standard Model and in doing

line describes the four force-carrying particles, how they exist and
how they interact with each other. The second line describes how

. - i ) so introduced 7 new parameters, for a total of
the force-carrying particles interact with the matter particles. u 7 Dewp ’

The third line describes how the matter particles interact with 26 experimentally determined parameter
the Higgs field ¢,therebyobtainingmass. The last line describes expe cntally dete ¢d parameters.

the Higgs field itself and how the force carriers — in fact, only the
weak force carriers — interact with it.
LANGUAGE OF THE SUBATOMIC UNIVERSE

The fundamental mathematical object that
defines the theory is the Standard Model Lagrangian, fig. 1.3 %. This object contains the 12 fun-
damental matter particles, the five force-carrying particles, describes how they interact with each
other, and how they acquire mass via the Higgs particle. This object encapsulates our best under-
standing of all particles in the universe, how they interact with each other to form nuclei, atoms,
molecules, and eventually stellar matter, planets, and organic material. It describes the propagation
of light, how cells form animals and humans, how the atmosphere behaves, how fusion reactors
work, how the sun warms the planet, and how the light from stars on the other side of the universe
is created. Naturally, using the Standard Model to describe the weather would be analogous to us-
ing a hydrogen bomb to pound a nail instead of a hammer. Remarkably good approximations can
be built from the model, such as chemistry, condensed matter physics, etc. Nonetheless, it’s the
fundamental theory that is thought to describe how all fundamental particles in the universe exist
and behave.

That isn’t to say the Standard Model is perfect. There are many challenges that still need to be

I0



overcome. For instance, the description of the gravitational force is not present anywhere in the
model, nor is dark matter or dark energy. But much more fundamentally, the Standard Model is
mathematically inconsistent with that of the theory of gravity. This implies one or the other must
be wrong. There have been many theories proposed that are collectively denoted as physics beyond
the Standard Model. This refers to theories that aim to solve the challenges faced by the Standard
Model and includes models such as Minimal Supersymmetric Standard Model, string theory, M-
theory, loop quantum gravity, and many more. All these theories aim in some way to bring in a
quantum description of gravity which is currently described by general relativity. However, due to
the nature of the gravitational theory, this has proven to be a remarkably difficult problem and it is

currently unclear which direction is correct.

1.1.3 THE GENERAL THEORY OF RELATIVITY

The current best theory of gravity that continues to withstand the scrutiny of experimental data is
General Relativity (GR). GR is a vastly different theory from the Standard Model, but its origins
can be traced back to around the time of the quantum revolution. Albert Einstein first developed
his theory of special relativity in 1905, an offshoot of classical mechanics that hypothesizes the con-
stancy of the speed of light based on Maxwell’s equations®+~“°. He realized later that his *princi-
ple of relativity’, the idea that the speed of light is the same for everything no matter their velocity,
could be extended to the gravitational field. He later realized that undergoing free fall in a gravi-
tational field is equivalent to non-accelerating motion. Hence, the rules of special relativity must
apply to a freely falling observer. This idea is called the equivalence principle and is at the very heart
of GR . At the same time, Einstein predicted the phenomenon of gravitational time dilation. In
1911, Einstein then predicted the equivalence between accelerated motion and the gravitational
force, deducing gravitational light deflection®®. He later sought to describe the gravitational force
as a geometrical manifestation, employing the use of differential geometry. Following several years
of thought and development, Einstein finally wrote down field equations he believed to accurately

describe the gravitational forces, which took the form

Rab - (zab .
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The left-hand side describes the geometry of spacetime, the unification of space and time into a sin-
gle object, and the right-hand side describes the distribution of matter and energy. However, Her-
mann Weyl realized this equation is only consistent if the entire universe was filled with a uniform

69

distribution of mass®. Einstein returned in 1915, with an improved version, which he presented to

the Prussian Academy of Sciences”®, and which took the form

1
Rab - igabR = Sab )

These are nowadays famously known as the Einstein equations.

SUCCESS IN THE FACE OF SCRUTINY

The history of the astronomical verification of Einstein’s predictions is turbulent, however they
were finally verified in 1919, by Eddington and Dyson and again in 1922, by Campbell7"~73. To
this day, GR has undergone a litany of tests, making it the most successful gravitational theory of
all time. The first tests were proposed by Einstein himself, suggesting that the perihelion precession
of Mercury’s orbit, the gravitational deflection of light passing by the sun, and the gravitational
redshift of light could be used to test the predictions of his theory. The perihelion precession of
Mercury’s orbit is one of the more powerful tests of GR, which it famously passed.

More modern tests of GR have been carried out in the hopes of finding a breakdown in either
GR or the Standard Model. One of the most important modern tests of GR is that of gravitational
lensing. The most precise tests are analogous to Eddington’s 1919 experiment in which deflections
of light from distant sources by the sun are measured. Current day tests confirming the predic-
tions of GR are at the 0.03% level7*. The Shapiro time delay, a relativistic correction of the time
taken by a photon to complete a there-and-back journey to a planet, is another classical’ test of GR,
which agrees with experimental data at the 0.002% level (though there is debate on the experimen-
tal data)”s. Tests of the equivalence principle itself have also been carried out using experimental
apparati called "E6tvs torsion balance” experiments. These test the assertion that the trajectories
of falling bodies are independent of their mass and internal structures. They have tested the equiva-
lence principle to a factor of 10715, making it an extremely precise test”°.

The direct detection of gravitational waves in 2015 by the Advanced LIGO team was a momen-
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tous test of GR. The discovery achieved two things: provide further data in support of GR and
heralded in the new age of multimessenger astronomy. GR predicts that orbiting astrophysical ob-
jects will emit gravitational waves and the radius of this orbit will slowly decay due to the emissions.
The existence of gravitational waves is not unique to GR, but to any theory that predicts the propa-
gation of gravity at some speed. The measurement of the waveform at Earth of these waves is then a
powerful test of GR among the swampland of all gravitational theories. So far, these tests have been
in excellent agreement with GR 77772, Multimessenger astronomy, the combination of astronomical
measurements such as radio, x-ray, and optical observations with gravitational wave detections and

measurements, will be a powerful tool in continuing to test the predictions of GR.

A CENTURY OF CORRECT PREDICTIONS

GR makes many new predictions, some that
are regarded as "physical’ which could occur in
the universe, and even more that may just be
exotic mathematical oddities. The first radi-

cal prediction of GR that significantly departs
from the outdated Newtonian gravity is the ex-

istence of gravitational lensing. Since GR asso-

ciates the gravitational force with the curvature

Figure 1.4: Einstein rings are a form of strong gravitational lensing

ofspacetime, the trajectory ofa photon can where the light of a distant luminous source is bent into a ring

shape by the gravitational effect of a closer massive object.

appear to curve when travelling past a massive Credit: ESA/Hubble, NASA

object. The most striking example of this is the

existence of so-called Einstein rings, fig. 1.4. A massive object in front of a distant luminous object
can curve the light from the distant object so drastically, it appears to smear out into a ring with the
massive object at its center. This forms what appears to be a ring of light, which are called Einstein
rings. Einstein rings are one of the more drastic manifestations of gravitational lensing and are part
of a class of gravitational lensing called strong lensing. They are distinguished by the clearly visible
distortion of a background source that forms Einstein rings, arcs, and multiple images, fig. 1.5.

Weak lensing is a class of gravitational lensing where the light of the luminous source is only
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slightly modulated and can only be detected using large statistical samples. Usually, a large number
of galaxies must be used to reach high enough statistical confidence for the presence of weak lensing
due to the fact that galaxies are intrinsically elliptic.

The final class of gravitational lensing effects is
that of microlensing, where no distortions can
be detected yet the amount of light received
from a luminous object changes with time.
Gravitational lensing can be a powerful tool in
astronomical measurements since one can use
the degree of lensing to estimate the mass of the

lens, the most famous example being that of

the Bullet cluster.

Figure 1.5: Strong gravitational lensing, or strong lensing, is a

class of gravitational lensing where the light of a distant luminous Th . .
e existence of black holes is another pre-
source is clearly distorted by the eye, forming Einstein rings, arcs, p
or multiple images. In this image, the enormous mass of galactic
cluster MACSJ1206.2-0847 distorts the image of a more distant

galaxy. Credit: ESA/Hubble, NASA

diction of GR that has been tested extensively.
By definition, a black hole is a region of space-
time where the curvature is so strong that not
even electromagnetic waves — the fastest thing in the universe — could escape it, leaving what ap-
pears to be a black lightless void. However, the idea of such an object dates back to the 1 gth century
and was suggested by the astronomer John Michell *>**. He suggested that a star massive enough
could have an escape velocity that exceeds the speed of light, and that their existence could be in-
ferred by their effect on neighboring bodies.

The modern theory of GR predicts a similar object, the black hole, though the origin of the grav-
itational force is much different than suggested during the time of Michell. Instead, the curvature
of spacetime becomes so strong that light can no longer escape the gravitational *well’ and, if close
enough, inevitably plummets to the center. The first solution of the Einstein equations which pos-
sessed such properties was suggested by Karl Schwarzschild just a few months after Einstein intro-
duced his field equations®**3.

Schwarzschild developed a solution which results from a spherically symmetric and static point

mass. Though simple in its construction, it already possesses many striking properties that portray
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just how bewildering black holes are. The first is the existence of a curvature singularity. This is the
point at the center of the black hole where the curvature, i.e. the gravitational force, blows up to in-
finity. All matter that enters the black hole will inevitably reach the singularity, where the density of
the matter will diverge.

Many physicists today believe such intense
gravitational forces signal a breakdown in the
theory of GR and will require a fully quantum
version of gravity to describe. Nonetheless, in
the 1960s Roger Penrose and Stephen Hawk-
ing proved that singularities are an inevitable
consequence of GR, earning Penrose the 2020
Nobel prize in physics, though Hawking un-
fortunately passed away in 2018°+*¢. Another

striking feature is the existence of an event hori-

zon. Though not a solid surface like a planet,

Figure 1.6: An image of the supermassive black hole at the center
of the M87 galaxy in the radio band. Credit: EHT Collaboration the event horizon is a region defined as a co-

ordinate singularity’. Its defining feature is that
it’s the radius from the center past which things travelling at the speed of light can no longer escape.
This turns the event horizon into a ‘causal boundary’, as events that occur inside the event horizon
can not affect anything on the outside, since the information would have to travel faster than the
speed of light to escape. The event horizon is analogous to the surface of Michells 'dark star’, where
the escape velocity equals the speed of light.

Since the work of Schwarzschild, several new black hole solutions of the Einstein equations have
been put forth. The most widely utilized and the one believed to most accurately represent black
holes in our universe was formulated by Roy Kerr in 1963 *7. Now called the Kerr metric, Roy Kerr
wrote down the solution of the Einstein equations that describe an empty spacetime which pos-
sesses a spinning black hole, a generalization of the Schwarzschild solution which was static and
unmoving. The Kerr solution exhibits many new interesting properties such as the Lense-Thirring

precession effect, a Coriolis-like force distinct to solutions of GR which are rotating**~*°. The sin-
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gularity at the center of the black hole is also no longer point-like, but instead smeared out over a
ring, fig. 1.7°".

A new feature of the Kerr black hole that

redshift surface

differs from the Schwarzschild black hole is the

ergosphere
\ existence of what is called an ergoregion, delin-
D eated between the event horizon and the ergo-
' ~
N

/ surface. The Kerr metric is distinct from the
event horizon

Schwarzschild metric in that it possesses spin.
However, black holes are not material objects,

Figure 1.7: 92The various structures of the Kerr black hole. The
ergosphere lies outside the outer horizon. The singularity is now a they are regions ofspacetime itself. Hence’ it is

ring instead of a point, represented by the dashed line.

spacetime itself that is rotating, dragging along
material particles and other forms of energy with it. The ergosurface is a special surface of the space-
time beyond which material particles can no longer remain at rest and are forced to rotate with the
black hole. Matter and energy would have to travel faster than the speed of light to remain rotation-
ally stationary. However, since the ergosphere is outside the event horizon, particles are still free to
escape the black hole. Another feature distinct from the Schwarzschild black hole is the existence
of two event horizons. The outer horizon is analogous to the Schwarzschild horizon and is the sur-
face beyond which nothing can escape. The inner horizon is closer to the singularity and is called a
Cauchy horizon. This horizon is technically escapable and past this horizon, closed curves in space-
time can exist, providing a possible scenario of time travel, though their existence is questionable at
best.

Beyond the simple cases of static and rotating black holes, there is a plethora of other black hole-
like solutions, such as the Reissner-Nordstrom black hole, describing a static black hole that pos-
sesses an electromagnetic charge, the Kerr-Newman black hole, describing a rotating and electro-
magnetically charged black hole, the white hole, the exact opposite of the usual black hole in which

nothing can enter its event horizon, and hairy black holes, which possess other charges beside the

usual electromagnetic one.
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The first astronomical object to be ac- Waveform

cepted as a black hole is Cygnus X-1, a 03
galactic x-ray source®>*”. The very first v
image of a black hole was captured in = ::
2019 by the Event Horizon Telescope E o
(EHT) collaboration, where radio tele- -02

scopes scattered around the Earth were o

1000 2000 3000 4000

used to form a virtual Earth-sized radio oM

telescope to image the center of the M87 Figure 1.8: 7°~7> An example of a gravitational signal. The last few

moments are highly dynamical and the most difficult part of the binary

galaxy, capturing an image of the sur- merger to model. This waveform clearly shows the three distinct phases
of a merger — the long inspiral phase, the transient merger phase char-

rounding orbital material of the supermas- acterized by the large peaks in the waveform, and finally a ringdown
phase when the final combined black hole settles down. This waveform

sive black hole at its center, ﬁg 1.698-100 was generated using numerical solutions of the Einstein equations with
binary black hole initial data.

The EHT collaboration again used the

same techniques in 2022 to image the black hole at the center of our Milky Way galaxy, Sagittar-

ius A*'°*7%3, These images can be used to test the predictions of GR, since the orbiting material

around the black hole is in an extremely strong gravitational environment.

Beyond black holes, GR also predicts the stability and evolutions of stars such as main-sequence
stars like our sun, white dwarfs and neutron stars, which are collapsed stars composed of degen-
erate quantum matter, and more exotic stars like strange stars or quark stars which have not been
observed. Nonetheless, GR can be used to predict the shape of these stars which in turn, using ob-
servational data, place constraints on GR itself.

Another famous prediction of GR that has only recently been discovered is that of gravitational
waves. These are waves in spacetime itself that are generated by accelerated masses and propagate
at the speed of light. In 1916, Einstein demonstrated that his theory of general relativity predicts
the existence of gravitational waves'®*'. Nearly a hundred years later, in a groundbreaking exper-
iment, the LIGO-Virgo collaboration made the first direct detection of gravitational waves gener-
ated by a pair of stellar mass spinning black holes a distance of about 1.4 billion light years away.

The collision of these black holes generated gravitational waves with a power at merger of about

3.6 * 10* watts which, if this were an electromagnetic signal, would outshine every star in the
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universe combined””7%. These phenomena are easily one of the most powerful events in the entire
universe, showcasing the colossal prowess of black holes.

The direct discovery of gravitational waves confirmed the last remaining directly undetected pre-
dictions of GR and provides even more evidence of the geometric nature of gravity. The discovery
itself brought forth the new age of gravitational wave astronomy, and multimessenger astronomy
in general. Since the famous 2015 discovery, over a hundred more detections have been published,

106—

including the mergers of neutron stars and neutron star-black hole binaries 108, Multimessenger

astronomy has been a powerful tool to study black holes and other compact objects, and provides

109-117

stringent tests of GR itself, even placing constraints on the quantum nature of black holes

TaE ExoTic REALM

Beyond the astrophysical predictions that astronomers have observed by testing GR in a huge range
of experiments, GR is also a mathematical theory, so the mathematical aspects of GR have also been
explored in depth. From these studies, several very interesting results have been published. Some of
the more interesting ones include closed timelike curves, wormholes, and warp drives.

A timelike curve is the path of a physical observer, such as a person, bird, plane, planet, or galaxy,
through the four-dimensional spacetime. It’s the curve that describes how physical matter travels in
space and time. A closed timelike curve (CTC) is such a physical trajectory that forms a closed loop
in spacetime, returning to its starting position. In normal three-dimensional space, a closed trajec-
tory is usually not an issue, since observers are free to travel through space without restrictions, such
as planets completing their orbits. However, a closed curve in four-dimensional spacetime possesses
the primary issue of possibly allowing time travel, raising paradoxical philosophical issues such as
the grandfather paradox. Such CTCs have been shown to exist both in exotic solutions of GR,
such as infinite material cylinders, and physical solutions, such as the Kerr black hole. However,
Hawking proposed that CTCs are unphysical and proposed the chronology protection conjecture, It
seems that there is a Chronology Protection Agency which prevents the appearance of closed time-
like curves and so makes the universe safe for historians.” ***. Many theorists believe the quantum
version of the gravitational theory will rule out the existence of CTCs. Nonetheless, they exist as

perfectly reasonable trajectories allowed by GR.
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Wormbholes are another exotic object allowed within the context of GR. They are a purely hy-
pothetical structure that connects two distant, even casually disconnected, regions of spacetime.
Some forms of wormholes are even of the interuniversal type. The first type of wormhole was the
Schwarzschild wormhole, a wormhole thought to exist at the singularity point of the Schwarzschild
black hole.

However, these types of wormholes have been
shown to be unstable, requiring exotic nega-

120

tive matter to stabilize them '*°. Other types
of wormholes are the so-called traversable
wormboles, wormholes that material particles
could travel back and forth through, being
held up also by exotic negative mass material.

If traversable wormholes exist, they would be

a method of faster-than-light travel, since they

could connect two separate ends of the uni-

Figure 1.9: 19 An embedding diagram of a Lorentzian wormhole, a verse through ashorteut.

type of continuation of the Schwarzschild black hole connecting The last i luti FGR th
€ 1ast exotic solution o wor men-

two separate universes.

tioning is the warp drive. Warp drives have
a turbulent history since the 1990s when Miguel Alcubierre proposed his now-called Alcubierre
warp drive*’. The main idea of the Alcubierre drive is that the spacetime behind an object is ex-
panded while the spacetime in front is contracted, supposedly accelerating the object to super-
lightspeed velocities, fig. 1.10. However, already in Alcubierre’s proposal, the Alcubierre drive has
been shown to violate almost all physicality conditions, requiring enormous amounts of negative
energy. Since his proposal, many other proposals have been suggested as reducing or outright elim-
inating the negative energy requirements'**~"*°. The warp drive is still a controversial topic among
theorists with some suggesting the warp drive is completely infeasible. Nonetheless, this remains an
active area of research in the hopes of aiding humanity’s expansion into space and crossing interstel-

122,127,128

lar distances
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Warp drives are a particularly appealing so-
lution to interstellar travel since they are a per-
fectly valid solution of the Einstein equations,
though their physical validity is still an active
question in research. It may be possible one
day to construct a spacetime distortion using
physically realistic material to propel a payload

to cosmic distances on human timescales.

A BeauTirur THEORY

GRis easily the most successful gravitational Figure 1.10: A slice of the spacetime expansion in the Alcubierre
warp drive. Spacetime behind the object, in this case a spaceship,

theory of all time, continuing to pass stringent isexpanding and spacetime in front is contracting, in theory
propelling the ship to faster-than-light speeds.

observational tests ranging from terrestrial ex-

periments, such as the E6tvs torsion balance

experiment, to strong-gravity astrophysical tests, such as the merger of massive black hole binaries.

Repeated successes increase the confidence in the correctness of GR in explaining astrophysical phe-

nomena, allowing theorists to use GR to confidently predict new phenomena and explain currently

observed ones. Another of GR’s key successes is explaining the evolution of the universe’s structure

as a whole when cosmologists apply GR to the entire cosmos.

1.1.4 THE GREATER UNIVERSE

The application of GR to the entire universe results in the field of study called theoretical cosmology.
A cosmological model provides a description of the large-scale structure of the universe and allows
questions of its origin, evolution, composition, and eventual fate. The current understanding of
cosmology began with the introduction of GR in 1915. This was quickly followed by the first ma-
jor observational discovery of cosmic expansion in the 1920s by Edwin Hubble, Vesto Slipher, and
others**"3°, Further efforts revealed the cosmic microwave background, distant supernovae, and
the accelerated expansion of the universe, leading to the theory of the big bang and the standard

cosmological model — our best understood theory of the composition and history of the universe.
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The standard cosmological model, called the A-CDM model, is the current best understanding
of the contents and evolution of the cosmos. It purports that the universe began from an initial
quantum fluctuation during an era called the Planck ¢poch and lasted for 10~ seconds and is be-
lieved to be the time when all four fundamental forces were united into a single force from which
came the grand unification epoch, where gravity is believed to have separated from the other three
fundamental forces.

So far, these epochs are highly theoretical and

not much, if anything, is understood about

Dark Energy
Mooyl these timescales. It’s commonly understood
400000yrs. Galaxies, Planets, etc.

that a full quantum theory of gravity is re-
quired to really understand what took place

during this time.

1st Stars
about 400 million yrs.

Big Bang Expansion

157 bitln years Next came the inflationary epoch which

lasted until the universe was 10732 seconds

Figure 1.11: An artistic rendition of the evolution of the universe, old. This is where the predictive power of A-
from the initial quantum fluctuations, through the rapid infla-

tionary epoch, to the present day accelerated expansion phase. CDM begins to take place. During this epoch,
Credit: NASA/WMAP Science Team ***

the universe underwent a drastic and rapid in-

073% seconds to 107? seconds, increasing in size by a factor of 10%, fig. 1.12. This

flation from 1
radical idea solves many of the previous issues present in cosmology at the time. During inflation,
the initial quantum fluctuations ’froze in’, giving birth to the large-scale structure inhomogeneities
we see today, such as galaxies and stellar clusters. Following inflation came several dynamical eras
characterized by additional particle interactions, the electroweak epoch, quark epoch, hadron epoch,
lepton epoch, then the photon epoch. During the photon epoch, at around 370, 000 years after the
big bang, the cosmic microwave background (CMB) formed, which is perhaps the greatest evidence
we have for the big bang. The CMB formed as a result of electrons recombining with protons to
form atoms, allowing photons to stream freely through the universe, some travelling unperturbed
until they finally reach our detectors. This period of the universe forms an opaque barrier for cos-

mological telescopes, since before the CMB, photons could not stream freely as they continuously

interacted with free electrons.
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Overlapping with the photon epoch and reigning for billions of years was the matter dominated
era, where the universe cooled enough for matter to clump together to form structures. At this
point, the non-relativistic matter dominated the energy content of the universe, hence its name. Ac-
cording to A-CDM, the universe was mainly composed of 15.5 % ordinary matter and 84.5 % yet-
to-be discovered ‘dark matter’.

The matter dominated era lasted from about
47,000 years after the big bang until about 9.8
billion years after the big bang. During the era,
many physical processes took place, including
the formation of the CMB, the beginnings of
molecular matter and the formation of stars,
galaxies, and clusters.

After the matter dominated era came the

dark energy dominated era, the current era the

Figure 1.12: **2Artistic rendition of inflation from early quantum

) universe exists in. The dark energy dominated
fluctuations.

era is characterized by the dominant content
of the universe being that of a yet-to-be-discovered form of energy that is responsible for the accel-

erated expansion of the universe. According to A-CDM, this is the final epoch of the universe and

several scenarios have been suggested to be the ultimate fate of the cosmos:

* Heat Death: Cosmic expansion continues to accelerate until thermal equilibrium is reached
after 101000 years and no more structure is possible. After this point, the universe has reached
a highly entropic state and most matter is in the form of subatomic particles and low-energy

photons. '*?

* Big Rip: Expansion of spacetime becomes so extreme that subatomic particles are ripped
apart and eventually spacetime itself, resulting in a kind of singularity event'*#. Current ob-
servations by the Chandra X-ray Observatory and the Planck telescope do not rule out the

big rip scenario"?5"¢.

* Big Crunch: Expansion eventually halts and reverses under the influence of all matter and
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energy in the universe, accelerating it back towards a hot and dense state. Current estimates

suggest this scenario is unlikely.

e Vacuum Decay: This suggests the universe is in a false vacuum state, leading to the implica-
tion that the universe could later undergo a phase transition to a lower state, replacing all

particles and forces with new ones, destroying the old ones in the process.

Currently, A-CDM favors the first two sce-
narios, given the recent cosmological data.
However, vacuum decay or some other ex-
tremely unlikely quantum phenomena are
technically still possible.

At the heart of the standard cosmological

model lies GR, the underlying theory that cos-

mological parameters are fed in to. To date,

Figure 1.13: 132pjifferent types of evolution scenarios for the

GR has been a well developed theory that has

cosmos lifetime. The top left is an example of the Big Crunch. The

universe is birthed from a singularity and then eventually col-

passed many CosmOIOglcal tests. HOW€V€1‘, lapses back into one. The bottom three show different scenarios

of accelerated expansion. The top middle shows expansion at

there remains many open challenges that need a decelerated rate. Finally, the top right shows expansions at a

constant rate.
to be addressed, such as the nature of dark mat-

ter and the energy content that is responsible

for the accelerated expansion of the universe. While it is possible that all these challenges have an-
swers within GR, it could be that GR itself is ultimately the wrong theory. In fact, a large num-

ber of theorists believe this to be the case since GR does not tell us anything about the nature of
fundamental particles. Should there be a single true theory underpinning the universe, GR is cer-
tainly not it. Nonetheless, it provides a remarkably good approximation when describing large-scale

physics ranging from the orbits of planets to the evolution of the cosmos.

1.2 THE DARK OCEAN

The true nature of the universe’s accelerated expansion is a particularly challenging problem to

solve. In reality, it is likely a combination of quantum field theory and GR. After all, material par-
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ticles and the force carriers live on spacetime and therefore are affected naturally by the spacetime
background. Hence, the description of the underlying energy responsible for the accelerated expan-
sion of the universe should have a natural residency in a fully quantum theory of gravity. As this has
yet to be fully developed in a consistent way, the only recourse is to embed a quantum theory in a

classical description of gravity, such as that of GR.

1.2.1 HisToORrY

The idea of a cosmological constant is traced back to the very early works by Einstein on his new
theory of general relativity in 1917 %7, Einstein wished to develop a theory of cosmology in GR,
but one in which the universe was static and unchanging, a commonly accepted notion at the time.
The idea of a static universe is one in which the universe as a whole is spatially and temporally in-
finite, i.e. it extends forever in every direction and has always existed, and is neither expanding nor
contracting.

Einstein’s version of a static universe is slightly different, allowing the universe to remain tem-
porally infinite yet possess some amount of spatial curvature rendering it spatially finite, which is
called a static eternal universe. This was achieved by adding a positive cosmological constant to his
equations of GR, counteracting the attractive nature of all the matter in the universe. Einstein’s
static universe is one which is closed — it contains a uniform distribution of dust and a positive
uniform cosmological constant. However, the Einstein static universe possessed a lethal property:
it is fundamentally unstable. The cosmological constant must be exactly equal to a specific value.
Should the cosmological constant be even a miniscule amount larger, the universe would undergo
expansion. If it were even a fraction smaller, the universe would collapse. This implies the Einstein
static universe is unstable to small perturbations, rendering it untenable as we know the universe
experiences perturbations everywhere, such as the existence of galaxies, clusters, and superclusters.
The cosmological constant was then abandoned.

The return of the cosmological constant can be divided into four separate stages*®. In 1922,
Alexander Friedmann showed that the equations of GR remain valid in the presence of a non-zero
cosmological constant, provided the universe becomes dynamical. Then in 1927, Georges Lemaitre

showed that the universe is in fact expanding, combining GR with astronomical observations, in
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particular those of Edwin Hubble in 1929. In the late 1960s, Petrosian, Salpeter, and Szekeres intro-
duced the cosmological constant to explain a peculiar expansion history motivated by quasar data
(though later data removed this particular motivation). Finally, recent observations of supernovae
indicate the cosmological constant is needed after all. The existence of the cosmological constant
has been compounded in recent decades by even more high resolution cosmological and astrophys-
ical observations'*°. It appears that the cosmological constant is a peculiar requirement in GR to

explain the current view of the cosmos.

1.2.2 LIGHTS IN THE DARK

The current model of cosmology, one based on copious observational data, is that the universe is
undergoing cosmic expansion and the rate of expansion is increasing. At the level of the Einstein
equations, this can be explained by introducing a universe-spanning energy density. Since the na-
ture of this energy is mysterious and largely unknown, it has been dubbed dark energy. The sim-
plest implementation of dark energy in the Einstein equations is the cosmological constant, a ho-
mogeneous energy density throughout spacetime. Despite the fact that dark energy is exceedingly
sparse, only 10727 kilograms per cubic meter throughout the universe, current data suggests it com-
poses a staggering 68% of the overall energy content of the cosmos. This suggests that this myste-
rious form of energy could arise from the fundamental properties of empty space itself. In other
words, dark energy could be the energy of spacetime, though this is currently only speculative.

A common explanation of dark energy comes from the realm of quantum field theory. Vacuum
energy is the lowest possible energy state of a quantum field. It turns out that the lowest energy
state of QED is non-zero, implying that there exists a constant and homogeneous amount of energy
associated with the QED vacuum throughout spacetime. Naturally, this provides a seemingly ex-
cellent description of dark energy as it portrays many of the same properties required to explain the
cosmic expansion. The vacuum energy can be explained using the Heisenberg uncertainty princi-
ple, that is, the conjugacy between energy and time. This states that particle-anti particle pairs are
continuously generated and mutually annihilated within a very short amount of time, inversely
proportional to the energy of the particle-anti particle pair. With regards to the dark energy pro-

posal, this means particle-anti particle pairs and their subsequent annihilation are responsible for
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the cosmic expansion. However, there is an error with this prosposal that is so large, it has its own
name — the vacuum catastrophe. When the energy of the vacuum was calculated and subsequently
compared to the observational data for the cosmological constant, the two values differed from
between 50 to as much as 120 orders of magnitude, making it the worst prediction in scientific his-
tOI‘y 139—-143 .

Naturally, other explanations for dark energy besides the cosmological constant have been pro-
posed. First and foremost, the observational and theoretical evidence for dark energy are heavily
based on GR itself. It’s therefore conceivable that the classical theory of GR is wrong and another
classical theory would be the more agreeable one, eliminating the need for dark energy. There are
many such theories, in principle an infinite number, differing either in the exact mathematical form
of the theory or in their interpretation of the gravitational interaction.

Another popular interpretation of dark energy is called guintessence. This is popular for two rea-
sons: it introduces a new matter field with very simple behavior and it solves the coincidence prob-
lem. If acceleration occurred too early in the universe, then structures such as galaxies would never
have had the opportunity to occur. Quintessence solves this issue by allowing the density of the
quintessence field to ’track’ the radiation density in the early universe until the matter-radiation
equality, after which the quintessence field starts behaving as dark energy *##'#5. Quintessence has
neither been suggested by the data nor ruled out. More work, both observationally and theoreti-

cally, will need to be performed to confidently make statements on the viability of quintessence.

1.2.3 WHAT WE Know

The current knowledge on the true nature of dark energy is, naturally, extremely limited. The so-
called ’late time accelerated expansion’ of the universe is considered one of the most mysterious as-
pects of the standard cosmological model. In the base A-CDM model, the accelerated expansion is
driven by the cosmological constant. This means that in the current standard model of cosmology,
the cosmological constant is a purely phenomenological parameter without an underlying theoreti-
cal basis. Testing the standard paradigm can be carried out by parameterizing models of dark energy
and then constraining those parameters using observational data. For a generic model, this means

taking a particular ansatz for the cosmological equation of state, which is a rough classifier for model
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types. The equation of state is characterized by the ratio of pressure and energy. For the standard
cosmological paradigm, this ratio is generically time-dependent and spatially constant, and hence
denoted by w(t). The most recent cosmological data suggests that w(t) = wy = —1.028 £ 0.031,
i.e. a time-independent constant slightly smaller than —1. The A-CDM model fixesw = —1 ex-
actly. Hence, current observational data taken from the Planck satellite is in quite good agreement
with the current cosmological model. Models that exhibit w < —1 are called phantom energy mod-
els and they lead to late-time behaviors characteristic of Big Rip scenarios.

Thus, current observational data is in good agreement with the accelerated expansion of the
universe being driven by a dark energy density which is constant and unchanging throughout the
universe with an equation of state parameter approximately equal to —1. The nature of this dark
energy density is wholly unknown and much more work, both theoretically and observationally,

needs to be carried out to determine precisely what lies at the heart of empty space.

1.3 THE DARK FOREST

So far, we have discussed the Standard Model, which describes all known material particles in the
universe. Current observations point to the fact that they contribute to about 5 % of all energy in
the universe. We have also discussed the cosmological constant, a particular form of dark energy
which A-CDM suggests is the reason for the accelerated expansion of the universe. Current obser-
vations suggest dark energy makes up about 68 % of all energy in the universe. Equally mysterious,
the remaining content is colloquially known as dark matter. Current observations by the Planck
satellite suggest dark matter contributes about 26 % to the total energy content of the universe, five
times more than regular matter. It is a very weakly interacting form of matter that does not fit into
the Standard Model, making it very difficult to detect using laboratory experiments. However, to
our best knowledge, dark matter still interacts via gravitation, the same as all other forms of matter,
making its cosmological impact easy to detect. There is a plethora of candidates for dark matter,
including abandonments of its particle nature and suggesting it’s a new form of gravity. However,
a large body of observational evidence suggests the particle nature of dark matter. In the current
age of the Standard Model, GR, and A-CDM, the mysterious nature of dark matter is one of the

greatest challenges in the modern era of physics and cosmology.
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1.3.1 HisToRry

The history of dark matter, much like GR, has been one of turbulence #*~"5". Just a decade after
Einstein introduced his new theory of GR, physicists and astronomers attempted to estimate the to-
tal amount of luminous material in the galaxy '>*7*4. Several scientists observing the data noticed a
discrepancy between the velocity dispersions of the rotating material around the galactic center and
the amount of visible, luminous material comprising the galactic disk *>57*57.

These discrepancies were not particularly prob-

lematic until much later when astronomers

>
o

began to observera discrepancy between the

Velocity

relatively "flat’ rotation curves of galaxies and

T A the predicted ‘declining’ curve deduced from

the visible material comprising that galaxy,

Distan
stance fig. 1.14. The modern-day acceptance of the
Figure 1.14: *>®Expected orbital speeds of stars in the Milky
Way (A) versus the observed orbital speeds (B). This discrepancy
represents one of the biggest smoking guns for the existence of

existence of dark matter is owed to the defini-
dark matter. tive cumulative evidence resulting from two
different branches of astronomy — that of the
high velocity dispersions in clusters and the flat galactic rotation curves. It was not until the 1970s
when the evidence for a yet undetected, invisible, and very weakly interacting form of matter was
sufficient to convince the larger scientific community. Perhaps the most famous observation in
support of the existence of dark matter was performed in 1933 by Fritz Zwicky, who studied the
velocity dispersion of the Coma cluster "7, Zwicky estimated the mass of the Coma cluster based
on the mass at the edge of the cluster and then again based purely on its brightness. He estimated
that the cluster had about 400 times as much mass compared to what could be seen. The velocities
of the constituent galaxies was too high to explain the amount of visible matter, suggesting some
other matter must be present that is obscured from view, concluding that the bulk of the matter
was invisible. Further evidence for dark matter also came in the form of mass-to-light estimations.
Finally, perhaps in the most influential paper regarding dark matter in history, Vera Rubin and
Kent Ford used a new spectrograph to measure the orbital velocity curves of spiral galaxies with

great accuracy '*>'®". They studied the orbital velocities of ionized hydrogen clouds in the M3 1
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galaxy, confirming the presence of invisible matter being responsible for increased orbital veloc-
ities compared to standard predictions from the luminous material. At the same time, radio as-
tronomers were measuring interstellar atomic ionized hydrogen clouds, since these typically extend
much farther than the visible stellar objects. The rotation curves traced using these measurements
turther compounded the presence of invisible matter. More studies continued to build a mountain

of evidence in favor of invisible matter.

1.3.2 WHAT WE Know

To date, there is a large amount of observational evidence for the existence of dark matter that can
be classified based on the type of data collected. The first are the ones utilized historically, that of
galactic rotation curves and velocity dispersions. These simply use frequency data of the measured
electromagnetic radiation and known astrophysical stellar/galactic processes to measure velocities
of the galactic constituents. These were used by Fritz Zwicky and Vera Rubin in their pioneering
work.

The second class of observations regard
galactic clusters. These are particularly impor-
tant for dark matter estimations since the mass
distributions of the cluster can be estimated
using several methods. The first is the velocity
of the constituents along the Earth-cluster line-

of-sight. The second is x-ray data emitted by

hot intergalactic gas within the cluster. These

measurements are typically in agreement with Figure 1.15: X-ray data (pink) collected by the Chandra X-ray
Observatory superimposed over optical data, with the matter

the estimation that dark matter outweighs nor- distribution computed using gravitational lensing (blue). The
x-ray data represents the bulk of the baryonic (normal) matter

mal matter in a ratio of 5 to 1,as suggested by composing the galaxies, while the gravitational lensing data shows
all the material composing the galaxies, providing one of the best

the cosmological data of Planck '®>. Besides ro-  Pieces of evidence for the existence of dark matter.

tation curve and galactic cluster estimations,

gravitational lensing is also a powerful tool in estimating the mass of a galaxy or cluster. The pri-

mary phenomenon leveraged for these analyses is the fact that dark matter interacts gravitationally
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just like any other matter, allowing it to form a gravitational /ens. This effect was capitalized on in
recent decades to provide extremely strong evidence for the existence of galactic dark matter ha-
los 163164,

The bullet cluster provides one of the strongest and widely popular pieces of evidence in favor

of the material nature of dark matter, suggesting dark matter is a new form of matter and nota
phenomenon associated with an alternative form of gravity, fig. 1.15. The cluster consists of two
colliding clusters of galaxies 3.7 billion light years from Earth. The Chandra X-ray Observatory,
combined with optical data from the Hubble Space Telescope, can image the gaseous components
of the cluster, forming estimations on the total amount of visible material. Gravitational lensing
maps then provide a secondary estimation of the total amount of material and its distribution in
the colliding clusters. Comparing these two observational datasets provides strong evidence for the
existence of material present in the colliding clusters that does not interact with the electromagnetic
spectrum.

Cosmological data provides another powerful avenue to probe the dark sector of the universe.
Since dark matter behaves differently than normal matter, the CMB will show different imprints
depending on the nature of the material. The small-scale differences in the temperature of the CMB
can be utilized to measure the density of dark matter 165

There are several other methods to measuring cosmological and astrophysical distributions of
dark matter, including Type 1a supernovae, redshift-space distortions, and the Lyman-alpha forest.

All these methods are in agreement with the A-CDM cosmological model, providing evidence for

the material nature of dark matter.

1.3.3 CANDIDATES AND EXPERIMENTS

Since the true particle nature of dark matter has yet to be confirmed, and with little evidence in

the way of any one model, there have been many candidates suggested over the years, and several
have had large, expensive detectors built to find them. The types of candidates suggested originate
from almost all of fundamental physics, including new, undiscovered particles beyond the Standard
Model, extra dimensions, black holes, and even new forms of gravity.

With regards to new particles, these candidates can be split into two broad categories: baryonic
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Figure 1.16: 16¢ Different types of dark matter candidates as a function of mass. The little knowledge on the true nature of dark
matter translates to a huge uncertainty in the mass of the theoretical particle ranging from several times the mass of the sun, in the
case of black holes, to ten trillion trillion times lighter than a proton.
and non-baryonic. The baryonic candidates are those which are composed of baryons, such as neu-
tron stars, burnt-out dwarfs and other massive objects. These are collectively called MACHOs, or
Massive Compact Halo Objects. These were initially the most popular candidates, since they pro-
vide a simple explanation'*”'**. However, these types of candidates have largely run out of favor
due to lack of evidence for such a high amount of baryonic matter in the early universe.
Non-baryonic matter is currently the most favored candidate for dark matter and can be repre-
sented in two large classes: hypothetical new particles and primordial black holes. The most popu-
lar hypothetical particles are the Weakly Interacting Massive Particle (WIMP), the axion, sterile neu-
trinos, the dark photon, and supersymmetric particles. Most of these particles have well-motivated

production mechanisms, making them good candidates for dark matter.

THE FiIrsT BLACk HOLES

Primordial black holes are an interesting candidate since they have a fairly simple production mech-
anism and are quite distinct from the elementary particle candidates. Primordial black holes (PBH)
are black holes that were formed in the very early universe when the causal structure of spacetime

was rapidly changing. Their accepted formation scenario is that they were formed when certain re-
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gions in the random density fluctuations of the inflationary epoch and early photon era underwent
gravitational collapse. Since their formation pre-dated the standard stellar formation era, they could
in principle form with a much wider mass range, even in the subatomic mass scales. This means
PBHs could be in existence today that have the mass of our moon, the sun, or an asteroid and they
could be moving at enormous speeds 169,

There are several possible ways their existence could be inferred using observations. The first is
via direct observation of the radiation emitted during their evaporation via Hawking radiation. A
second detection mechanism is via temperature fluctuations in the CMB, since PBHs would affect
the energy distribution in the CMB. The third avenue for detection relies on the assumption that
PBHs only account for a fraction of the total dark matter, and the rest in the form of some sort of
fundamental particles. This would imply the particle dark matter could accumulate around the
PBHs and, provided the particle dark matter undergoes some sort of annihilation, be detectable
as a radiation-emitting halo. PBHs could also form binary systems with themselves, leading to po-
tential gravitational wave observations in the near future when the LISA telescope begins its data
collection phase.

Current observations for PBHs come from the NASA Fermi Gamma-ray Space Telescope, Planck
space observatory, and LIGO/Virgo. Near future observatories that could conceivably constrain
the PBH mass range are the Square Kilometer Array, gravitational wave observatories such as the
Laser Interferometer Space Antenna (LISA), pulsar timing arrays, the Vera C. Rubin Observatory,

very large arrays, and other electromagnetic observatories.

CLEANING UP THE STANDARD MODEL

Axions are another very common candidate and are part of a larger class of particles called WISPs,
or weakly interacting sub-eV particles. This is a generic acronym for particles that interact, as the
name suggests, only very weakly with all other matter. The neutrino is a non-dark matter example
of a WISP. The axion has quite a long history, being originally postulated independently of the
dark matter hypothesis. They were suggested as a possible resolution to the so-called strong CP
problem in QCD, which is the question of why QCD preserves a certain kind of internal symme-

try, called charge-parity symmetry '7°. This is where the name ’axion’ derives from, being named
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by Frank Wilczek after a cleaning detergent. In 1977, Roberto Peccei and Helen Quinn postulated
a mechanism nowadays called the Peccei-Quinn mechanism which naturally solves the strong CP
problem by introducing a new particle, now called the axion. QCD effects in the early universe
cause a large cosmological population of axions'”'~'7*. Within a certain range of the axion param-
eter space, these cosmological axions could account for dark matter '7#'75. This makes the axion a
very promising candidate for the dark matter particle, due to the fact it both solves the strong CP
problem and is an excellent explanation for cosmological dark matter.

However, as is usual for dark matter candidates, searching for axions via direct detection is ex-
tremely challenging. Not only does the axion interact very weakly with the Standard Model, it
is also extremely light. Nonetheless, the presence of the axion modifies the Maxwell equations
of electromagnetism. This implies the axion can convert to photons and hence be measured as
an excess of electromagnetic energy. This is the idea behind the Axion Dark Matter eXperiment
(ADMX) 77179, The experiment uses a resonant microwave cavity that searches for axion-to-
photon conversion of axionic dark matter in the local galactic halo. Thus far, the experiment has
only produced null results. However, continuous upgrades and searches could reveal an electro-
magnetic excess. Besides terrestrial searches, helioscopes are another avenue for axion detection
since axion conversion could be stimulated by the strong solar magnetic fields. They could also be
generated in the extremely high magnetic field in the magnetosphere of neutron stars. Astronom-
ical imaging, such as imaging of the M87 core by the EHT collaboration, is also used to constrain

the axion parameter space.

A DARK MATTER MIRACLE?

The Weakly Interacting Massive Particle (WIMP) is one of the most popular dark matter candi-
dates. There is no formal definition of a WIMP, other than the fact that it acts gravitationally and is
at least as weak as the weak force. Many different WIMP candidates are expected to be produced in
the early universe. For the correct dark matter abundance today, the WIMP must have a mass in the
range of 100% 1%, Certain extensions of the Standard Model, called supersymmetric extensions,

naturally predict the existence of a new particle in this mass range.
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naries would alter the waveform of the gravi-
tational wave radiation, allowing gravitational wave observatories to search for WIMPs alongside
other channels. Typical indirect searches look for gamma ray radiation excesses, whose spectral sig-
nature depends on the specific model of the WIMP. This allows telescopes such as the Fermi-LAT
gamma ray telescope or the VERITAS ground-based gamma ray observatory to place constraints
on the WIMP parameter and model space. Future observations from the IceCube Neutrino Obser-
vatory may also constrain the WIMP mass. Similar to axion helioscopes, WIMPs interacting with
solar photons could also be measured.

Direct detection schemes are also underway. These cover a large range of different detection

schemes, such as cryogenic crystal detectors, scintillators, bubble chambers, and time projection

chambers. To date, there have been no detection confirmations.

TaE Dark PHOTON

The dark photon is another interesting dark matter candidate, owed in part to its curious origina-
tion beyond the Standard Model, its various production mechanisms, and the implications of its
existence. The dark photon is a new force carrier beyond the usual four that interacts very weakly
with electrically charged matter "®*%+. The existence of such a new force carrier is quite ubiquitous

in new physics scenarios. These new forces are said to reside in a hidden sector, a portion of the the-
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ory that very weakly interacts with the rest of the model, within which particle-type dark matter
resides. There are many different ways the dark photon could couple to the Standard Model, each-
ing giving rise to a new model.

Mass for the dark photon can naturally arise in several scenarios. It could manifest via a Higgs
mechanism, similar to the Standard Model matter sector '*5~'**. This mass production mechanism
could produce masses in the MeV-GeV range, often utilizing some form of supersymmetry. How-
ever, much smaller masses are possible using a Stiickelberg mechanism, which is a theoretical tech-
nique to restore some sort of symmetry to a vector theory (such as the dark photon theory) that
otherwise is devoid of it. The use of the Stiickelberg mechanism has particular relevance in large

volume string compactifications with branes, a concept from string theory '*>'%°

. The amalgama-
tion of these various models lead the dark photon mass range to span from the meV scale to the
TeV scale. Besides coupling to the electromagnetic sector of the Standard Model, the dark photon
can also couple to the weak sector, colloquially called the “dark Z”, due to its coupling to the Z bo-
son.

Technically, there exist two different kinds of dark photons. The first is massless and cannot in-
teract directly with any of the Standard Model particles. The second is the massive kind that can
couple directly to the Standard Model sector. The mass of the massive dark photon covers the
enormous range that was just discussed, from meV to TeV scales. However, this mass parameter
space can be split into two separate regions, centered around 1 MeV, which is twice the mass of the
electron, the lightest Standard Model particle . The dark photon is said to be viszble if its mass
is greater than 1 MeV, since it can decay into Standard Model charged states which leave a distinct
signature in detectors. However, the dark photon could also decay into dark sector states, provided
those states are light enough. If the dark photon mass is less than 1 MeV, then it can no longer de-
cay into Standard Model particles and its decay products are hence invisible. The searches for these
dark photons rely on searching for energy deficits in astrophysical processes like stars or in direct
search schemes.

Collider experiments are also able to search for dark photon productions. These include search-
ing for meson decays, bremsstrahlung, and annihilation signals. Data collection at the LHC and

SLAC provide precise experimental data that further constrains the allowable mass range for the
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dark photon. For the mass range less than 1 MeV, atomic and nuclear experiments provide further
constraints. They aim to detect modifications of the Coulomb force due to the presence of a dark
photon. Additionally, corrections to the atomic energy levels of the hydrogen atom translate into
bounds on the dark photon parameters. Further, searches for axion and axion-like particles can be
translated into constraints on the dark photon parameter space. For example, the experimental data
from ADMX has been leveraged to place additional bounds*”*.

Astrophysical processes also allow further
constraints on the dark photon parameter
space, opening the door for gravitational wave
observatories to behave as cosmic particle de-
tectors 27?2, A common scenario discussed in

the literature in these searches is that of super-
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radiance. This is a process by which a matter

field surrounding a spinning black hole, like

a Kerr black hole, undergoes a rapid instabil-

X-Axis

Figure 1.18: Superradiant build-up of a massive dark photon cloud ity, CaUSing the matter field to absorb energy

around a rapidly spinning black hole. This image was generated
using a numerical evolution of the dark photon equations of from the black hole and grow CXponentlaHy
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motion on a Kerr black hole. The finite grid on which the dark
photon was calculated is visible as a hierarchy of boxes. The grthh of the field will eventually saturate,

leading to the formation of a cloud around the

black hole, fig. 1.18. If these clouds form in binary systems, they can modify the orbital dynamics
and resulting gravitational radiation, leading to possible detection scenarios for gravitational ob-
servatories. Since the instability develops by channeling energy from the black hole into the matter
field, statistical studies can be done on black hole populations, and measure the statistical distribu-
tions of mass and spin of the black holes. With a fine enough model for the statistical distributions
of 'naked’ black holes, the presence of dark photon clouds could be statistically determined. Follow
up searches could then be utilized for individual black hole systems to look for the clouds directly.

One of the major studies performed in this thesis pertains to detecting such superradiant clouds
using extreme mass-ratio inspirals and detecting the gravitational radiation with the LISA mission.

All details on this study are covered in Section 2.
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Figure 1.19: ! Limits on the dark photon parameter space from various channels, including astrophysical and collider types.

The implications of a dark photon discovery would be immense. This would imply not only a
possible detection of dark matter, but could also imply an entirely new force carrier in nature that

lies beyond the Standard Model **'.

1.4 HEeavy PHOTONS AND BEYOND

The Standard Model of particle physics can be mathematically described by a single Lagrangian,

fig. 1.3. Adding new fields to the Standard Model, such as the dark photon, amounts to adding new
mathematical terms to the Standard Model Lagrangian. The type of terms that are added and their
mathematical nature depends on the specific model of dark photon under consideration. In math-
ematical terms, adding a new dark photon to the Standard Model is accomplished by adding a new
U(1) gauge field”. The Standard Model photon, responsible for the electromagnetic interactions,

is a type of U(1) gauge field. For the case of a massive dark photon, various mechanisms exist for

*U(1) is a type of very simple symmetry inherent to the dark photon, which can be thought of as a type of rota-
tional symmetry. A gauge field is a type of field that possesses certain types of invariances under localized transforma-
tions *°*.
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generating mass for the gauge field, which explicitly breaks the U(1) symmetry. These could be the
Higgs mechanism or a Stiickelberg mechanism, depending on the specific model *>.
The most popular basic model for the dark photon can be represented by the so-called Proca La-

grangian, fig. 1.20.

The Proca theory can be traced back to 1
Alexandru Proca’s 1936 paper where he in- g — F F 'u/ 1%
troduces a massive alternative to the standard 4 ’LL v
wave equation***. Later refinements showed 1

2
that this new vector equation is the result of — 5 m A M AM

a massive spin-one force carrier, i.e. a massive

photon 205 The two phenomenologies of the Figure 1.20: The Proca Lagrangian describes a massive vector
field.

photon and this new massive photon hence,

will be very different. For example, since the Proca field is massive, it will now propagate an addi-

tional degree of freedom.

If the photon itself were massive, the simplest model for the new electrodynamics would be the
Proca theory. The most common theory for the massless photon is, of course, the Maxwell electro-
dynamics, however it’s conceivable that the photon mass is miniscule. If the photon were to carry
mass, the speed of electromagnetic waves would develop a frequency dependence. Other effects
would also be apparent, such as modifications to the Coulomb law. High precision tests using hol-
low conductors have placed an upper bound on the mass of the photon of m < 1071 £52°¢. Astro-
physical processes can also place a limit on the photon mass. For example, experiments designed to
detect effects caused by the galactic vector potential have placed extremely small upper bounds on
the photon mass. The main idea is that the additional mass term in the Proca Lagrangian, fig. 1.20,
would affect the galactic plasma*®”. The generation of magnetoacoustic waves in the galactic plasma
cannot have frequencies lower than a certain critical frequency which depends on the mass of the
photon. The lack of observation of a lower frequency bound has placed limits on the photon mass

of m < 3 * 10_27%, which is tremendously smaller than the terrestrial experiments. These sharp

upper limits from the non-observation of effects generated by the galactic potential are model-
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dependent®®®. If the photon mass is generated by the Higgs mechanism, the upper limitism <

10_14% from the Coulomb law experiments.

1.4.1 GOING ABOVE AND BEYOND

More recent proposals attempt to generalize the Proca theory to include additional interactions
that extend the standard Proca terms. Such theories go by the name of generalized Proca theo-
ries*>**>*'°_ The approach to generalizing the Proca theory is to include additional derivative self-
interactions, which are carefully chosen to preserve the three degrees of freedom of the Proca field.
The motivation for these new interactions extends beyond previous extensions to electromagnetic
theories. Generalizing the standard Einstein equations to include additional degrees of freedom
could reconcile the dark energy problem. Introducing these new modes of the field could give rise
to a late-time acceleration of the universe, circumventing the need for a cosmological constant®'*.
It has been shown that a subsector of the full generalized Proca theory can give rise to de Sitter so-
lutions, solutions that possess a positive cosmological constant. It has also been shown that the full
generalized Proca landscape generically gives rise to de Sitter solutions. This implies that generalized
Proca models can explain the late-time accelerated expansions of the universe without invoking a
mysterious energy content.

Generalized Proca theories have also been studied in the context of black hole solutions**>72'5,
These solutions will be important in searching for astrophysical signals of generalized Proca fields,
for example in gravitational wave signals, dynamical friction of black holes through dark matter
halos, etc.

Recent studies have uncovered an interesting issue that arises when generalized Proca fields are
allowed to evolve on spinning black hole backgrounds 216-220 Darticular cases of generalized Proca
theories have been studied on both flat spacetime and Kerr black holes, which have shown that the
temporal evolution of the field equations cease to be well-defined after some point in the evolu-
tion. This can be traced back to a breakdown in the field equations themselves. This implies that
the generalized Proca model is ill-defined and hence would not be a viable candidate for dark matter

systems. These studies themselves are limited in their scope, since they don’t include the backreac-

tion of the Proca field on spacetime which, by the Einstein equations, would modify the dynamics.
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Nonetheless, this suggests that some models within the generalized Proca landscape are intractable.
Further details on this problem will be elucidated in appendix C.

The landscape of generalized Proca theories could harbor solutions to some of physics largest
problems, including the nature of dark energy and dark matter. However, theoretical issues still
exist that must be well understood in order to narrow down the theories that have astrophysical
relevance. Much more work is still needed to determine which class of generalized Proca theories, if

any, could solve the biggest problems in physics.

1.5 PROBING THE UNIVERSE WITH THE COMPUTER

The fundamental equations of GR are the Einstein equations. In order to make predictions about
astrophysical processes, the Einstein equations are the most widely used equations that predict the
trajectories of matter and shapes of astrophysical objects. The fundamental object that describes the
’shape’ of spacetime is the metric. Given a particular distribution of matter, the Einstein equations
will dictate what the shape of spacetime is. Equivalently, given a particular shape of spacetime, the
Einstein equations will dictate how the matter will move. The famous aphorism in regard to this is
given by John Archibald Wheeler: ”Spacetime tells matter how to move and matter tells spacetime
how to curve”.
However, compared to the aged Newtonian
%g”‘?a“i)ugg‘/ + %g””?)uﬁ,,gﬂg - %g’wi)(,aggw, — %g””i)uaugug

theory of gravity, the Einstein equations are

B ) L A e L 5 won
= 5979 0a9mugs— 59”9 D0y Ougus + 3!15 NG 01,900 0, 9pp

03 g~ 4\10‘ 905 ol Bugart ﬁymau 1805+ A = 267, vastly complex, fig. 1.21. They consist of ten
C

o ) . . non-linear partial differential equations that
Figure 1.21: The Einstein equations written out in terms of the

metric. The metric g,,,, is a four-by-four symmetric matrix, so the must be solved with appropriate boundary

Einstein equations are a set of ten partial differential equations,
each equation a highly non-linear expression. The symbol T;w

conditions. Further, if matter fields are present
denotes the energy and momentum of the matter field. Ina

vacuum, Ty, = 0. in the spacetime, the equations of motion for
the matter fields must be solved in tandem with
the Einstein equations, increasing the complexity several times. Only a handful of exact solutions
to the Einstein equations are known. The list of astrophysically relevant solutions is even smaller.

These solutions usually leverage certain symmetries or algebraic properties in order to simplify

the equations. For example, the Kerr black hole uses rotational symmetry in a vacuum while the
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Reissner-Nordstrom black hole assumes complete spherical symmetry in the presence of an electro-
magnetic field. However, most astrophysical processes are extremely dynamical and, hence, usually
do not possess nearly as many symmetries, making it difficult to develop astrophysically relevant
exact solutions.

The usual recourse for developing solutions to astrophysical problems is to resort to either ap-
proximations or numerical methods. Approximations can be very powerful in their predictive
power, such as the Teukolsky master equation**'. The most powerful method utilized today to de-
velop highly accurate solutions of the Einstein equations is leveraging computational power to solve
them. This is the vast field of numerical relativity. Due to the extreme complexity of both the astro-
physical environment and the Einstein equations themselves, supercomputers or high-performance
computing clusters are often deployed for solutions.

Numerical relativity covers almost all aspects of astrophysics and cosmology, including black
hole perturbations, neutron stars, merging astrophysical objects in binaries, and cosmic evolution
models. There is quite some freedom in choosing the exact form of the Einstein equations, thanks
in part to the covariant nature. All methods of solving the Einstein equation must solve two broad
problems. The first is initial data, which must be carefully chosen so as to be consistent with the
Einstein equations. The second is the temporal evolution of the metric field. These two problems
require different methods. The first, choosing suitable initial data, requires either an intelligent
guess or solving elliptic constraint equations. The second is purely numerical and requires solving

hyperbolic equations.

1.5.1 HisToRry

The field of numerical relativity emerged from the desire to study more general solutions of the Ein-
stein equations that are not tractable analytically. A widely enforced precondition for numerical
solutions of the Einstein equations is a mathematical decomposition of spacetime back to sepa-
rated space and time”. The first such formalism can be traced back to the late 1950s to the work of
Richard Arnowitt, Stanley Deser, and Charles W. Misner, which is nowadays known as the ADM

222

formalism***. However, for technical reasons, the exact form in their original paper of the decom-

“There are also techniques that do not perform this split.
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position isn’t usually used anymore, instead opting for the ”3+1 formalism”, which decomposes the
four-dimensional spacetime into three dimensions of space and one dimension of time.

At the time the ADM decomposition was published, computational power was insufhicient to
handle the task of performing numerical computations. The first documented case of attempts to
numerically solve the ADM equations appears to be in 1964 by Susan Hahn and Richard Lindquist***.
These early attempts were focused on evolving simple rotationally symmetric data. Around the
same period, Tsvi Piran wrote one of the first codes to evolve a system containing gravitational radi-
ation in a cylindrically symmetric system***. This body of work set the groundwork for many con-
cepts still in use today in solving the ADM equations, such as ’free evolution’ versus ‘constrained
evolution’. These two different approaches deal with the constraint equations present in the ADM
formulation in different ways. Additionally, applying symmetry to the problem reduced the com-
putational power and memory requirements, allowing the code to run on available supercomputers
at the time.

The earliest realistic results were carried out in the 1980s by Richard Stark and Tsvi Piran**s,
when they calculated the gravitational radiation produced from the formation of a rotating black
hole. These results stood among the very few numerical relativity results for nearly 20 years, owing
to the vast computational power required. Then, in the 1990s, the Binary Black Hole Grand Chal-
lenge Alliance successfully simulated a head-on binary black hole collision. In the post-processing
stage, they computed the event horizon, although still imposing an axisymmetry of the system **°.

The earliest work to solve the Einstein equations in full three-dimensional space focused on a sin-
gle spherically symmetric black hole, since this provides an excellent test of the numerical method.
First, it’s a numerical solution of an already exactly known solution, so the accuracy of the numer-
ical method can be determined by simply comparing it to the known exact solution. Second, it
contains one of the most challenging features of GR to numerically handle, the curvature singu-
larity. In the following years, two key advances greatly aided the numerical relativity community
— the advancement in computational power and new theoretical tools to improve the simulation’s
efhiciency. In regard to black hole spacetimes, two theoretical concepts were developed to aid the
handling of the physical singularity, the idea of ’excision’ and the ’puncture’ method. Additionally,

adaptive mesh refinement techniques were introduced into the numerical relativity field.
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The idea of excision is quite simple — dur-
ing the course of the simulation, continuously
cut out a portion of the spacetime within the
horizon, fig. 1.22. This resolves the issue of

handling the physical singularity at the center

of the black hole. This idea was developed in

the late 1990s by Miguel Alcubierre and Bernd

Figure 1.22: ??” Example of excision of a black hole singularity on
. The main reason this works and  the computational grid of the simulation.

Briigmann ***

does not contaminate the rest of the spacetime
with noise is because causality prevents information from escaping the event horizon. Thus, errors
that could accumulate at the excision boundary will not contaminate the region outside the event
horizon, which is the most physically interesting. The main issue with these implementations is
twofold. First, while physical information will not escape the event horizon, co-ordinate informa-
tion could, for example, if the co-ordinate data was elliptic. Second, as the black hole moves, the
excision zone will need to move in tandem. Thus, the simulation will need to continuously track
the location of not only the singularity, but also determine the location of the horizon, a highly
non-trivial task. The first stable, long-term evolution of the orbit and subsequent merger of two
black holes using the excision method was in 2005 ***.

The puncture method is markedly different from the excision method in that no removal of the
singularity throughout the simulation is required. Instead, the analytic part of the solution that

contains the singularity is factored out**°

. Until 2005, all published usage of the puncture tech-
nique required fixing the singularity to a specific co-ordinate location throughout the entire sim-
ulation. Since black holes tend to move under the influence of their mutual mass, this caused the
co-ordinate grid to become twisted and deformed, resulting in instabilities.

Finally in 2005, a breakthrough occurred, resulting in the year being called the annus mirabilis
of numerical relativity. A group of researchers demonstrated that a specific choice of co-ordinate
conditions along with intelligent choices for the behavior of the singularity, they demonstrated the

ability to allow the singularity, or *puncture’, to move throughout the co-ordinate system. This al-

lowed numerical solutions for two black holes orbiting each other to be obtained, as well as accurate
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extraction of the gravitational radiation emitted by the binary. This was a remarkable achievement,
demonstrating a huge leap forward in the numerical relativity community, allowing accurate mod-
els of strong gravitational events to be developed.

Adaptive mesh refinement (AMR) is another concept that greatly increased the efficiency and
accuracy of numerical solutions, which was borrowed from computational fluid dynamics. Mesh
refinement first appeared in the 1980s, thanks to the work of Choptuik in his studies of critical
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collapse of scalar fields**". The first studies were performed in one dimension and later extended

to two >3

. AMR has also been applied to cosmological studies. In today’s active field of numerical
relativity, AMR is a widely used technique and has been applied to compact object mergers and

simulations of the resulting gravitational radiation**>*4,

1.5.2 COMPLEXITIES AND CHALLENGES

The field of numerical relativity deals with many challenges that range over two broad disciplines,
mathematical relativity and computer science. The challenges faced in mathematical relativity are
theoretical challenges that pertain to the causal structure of the problem at hand, co-ordinate dif-
ficulties, and well-posedness of the evolution equations themselves. The difficulties faced on the
computational side include developing fast code, computer memory handling, and all the chal-
lenges brought by parallelization. The solutions to these issues took several decades of intense work
to amend, or in the case of computational power, waiting for more advanced processors and com-
putational methods to be built.

Understanding each individual challenge is vital to developing highly efficient and parallelizable

code that can fully leverage the latest computing technology.

1. Complexity and Nonlinearity of the Evolution Equations

* Nonlinearity: The Einstein field equations are extremely nonlinear, meaning that small
perturbations in the initial data for solutions or parameters can lead to large variations

in the final state. These nonlinearities make finding stable solutions difhicult.

* Coupling of Equations: The Einstein equations themselves are a system of coupled
partial differential equations, where one solution depends on the solution of another.

This system makes finding numerical solutions arduous.
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2. Dimensionality and Computational Cost

* High Dimensions: The fundamental structure of spacetime is a four-dimensional
manifold. This means numerical simulations often need to be performed in a three-
dimensional space and evolution through time, requiring significant computational
resources. Leveraging symmetries in the problem allows one to reduce the dimensional-

ity of the simulation or reduce the size of the computational grid.

* Resolution and Scale: High resolution is vital to capture fine detail, especially near
strong gravitational sources where the metric is changing rapidly, like near a black hole.
This leads to a large number of grid points and a high computational cost, vastly in-

creasing processor and memory requirements.
3. Stability and Accuracy

* Numerical Stability: Ensuring numerical stability over long simulations is a challenging
art. Instabilities can arise from the discretization methods or from inherent dynamics
of the system. Tracking the origin of these instabilities and whether they arise from the

numerical method or from the system itself is vital to ensuring accurate simulations.

* Accuracy: Maintaining high accuracy is crucial for long-term stability of simulations.
This is especially true for extreme conditions, such as near the event horizon or singu-

larities. Small numerical errors can grow over time, tarnishing the simulation.
4. Constraint Equations

* Constraint Preservation: The Einstein equations are a constrained system, meaning
there are constraints in the equations that must be satisfied at all times. Violations of
constraints imply the simulation is no longer solving the Einstein equations. Numeri-
cally ensuring that these constraints remain satisfied throughout the entire simulation
is formidable and several different schemes have been developed to handle this chal-

lenge.

45



5. Boundary Conditions

* Artificial Boundaries: Simulating an entire spacetime is an extremely complex under-
taking and only recently have efforts been made in this direction. Almost all simulation
software actively utilized in research employs a finite computational domain, requiring
artificial boundary conditions at the outer edges. Choosing the appropriate boundary
conditions, which is a highly system-dependent choice, is vital to ensure unphysical

reflections or inaccuracies are not present at the boundaries.

* Asymptotic Boundaries: For systems such as black hole mergers, an ideal boundary is at
infinity, however this is impractical since this would either require an infinite number
of grid points or an entirely new computational method. This approach is still in its

infancy.
6. Singularities and Black Holes

* Spacetime Singularities: Singularities, such as those within a black hole, pose a tremen-
dous numerical challenge. Many computational quantities tend to diverge near this
point, hence methods to numerically handle them are vital for stability. Techniques
such as excision or puncture methods are used, but these come with their own com-

plexities.

* Event Horizons: Accurately locating and evolving event horizons is crucial for black
hole simulations. Typically, a high resolution near the event horizon is required for
long-term stability and accuracy. However, locating event horizons is difficult due
to their dynamical nature, especially in binary systems. Searching for event horizons

greatly increases computational complexity and cost.
7. Gravitational Waves

* Extraction of Gravitational Waves: Extracting and interpreting gravitational wave data
from numerical simulations requires precise techniques and is sensitive to numerical
errors. Overcoming these difficulties is crucial for developing accurate templates for use

in gravitational wave detection, such as LIGO, VIRGO, and the future LISA mission.
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* Wave Propagation: Accurately modeling the propagation of gravitational waves over
large distances is computationally demanding, especially in the presence of matter.
Typically, integrations of quantities over discretized surfaces are required to compute
waveforms, further reducing precision. Maintaining a high precision for waveform

modeling comes at a high computational cost.
8. Initial Conditions and Physical Modeling

* Realistic Initial Conditions: Setting up realistic and physically accurate initial con-
ditions for simulations, such as those representing inspiraling neutron stars or black
holes, is an artform due to its high difficulty. Entire software toolkits have been devel-
oped just to handle the task of developing initial data. Highly accurate initial data is
vital for long-term stability and accuracy of simulations, especially for methods that do

not employ constraint violation damping.

* Matter and Fields: Including additional physical elements such as matter, electromag-
netic fields, and other fields introduces further complications and increases computa-
tional complexity. These additional elements typically come with their own evolution
equations, stability requirements, and initial data. Adding such elements to a simula-

tion vastly increases computational complexity and cost.
9. Computational Resources

* High Performance Computing: The need for significant computational resources of-
ten requires access to high-performance computing clusters, typically requiring aca-
demic standing. Managing and optimizing these resources is a challenge and is typically
specialized to each facility. Moreover, each computing cluster runs their own type of
processors, schedulers, and login procedures, making optimizing simulations for these

architectures arduous.

* Darallelization and Efficiency: Efficient development of software to run on modern
multi-core and distributed computing systems is essential but technically demanding.
To generate efficient code typically requires additional knowledge about modern pro-

cessor architecture, parallelization libraries, and resource management.
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These challenges make numerical relativity a slowly growing area of gravitational research, some-
times taking several decades to satisfactorily overcome them. Nonetheless, advancements in com-
puter science, manufacturing and processing, and theoretical methods has led to groundbreaking
discoveries in gravitational research. This makes the task of overcoming these challenges deeply re-

warding.

1.5.3 CURRENT PROGRAMS

To date, there are many different numerical relativity toolkits available. Each one tackles different

challenges and physical systems.

* Einstein Toolkit***: The Einstein toolkit is a comprehensive collection of software compo-
nents and tools for simulating and analyzing relativistic astrophysical systems. It has been
used to simulate binary black hole systems, neutron star mergers, gravitational wave genera-

tion, and other relativistic astrophysical phenomena.

* Spectral Einstein Code (SpEC)**°: The SpEC code is a flexible, multi-domain spectral solver
for partial differential equations. It has been used to simulate gravitational radiation emis-

sion, horizon topologies, and binary evolution.

* Bi-functional Adaptive Mesh (BAM)>*”: The BAM code is a closed-source code that special-

izes in binary black hole simulations, neutron star processes, and binary neutron star mergers.
binary black hol lat tron star p d binary neutron st g

* Numerical Relativity in Python (NRPy+)**‘: NRPy+ is a python package that aims to accel-
erate the encoding of differential equations into high performance software. Alongside the
”Simple, Efficient Numerical Relativity Code” (SENR), they form a fully-functional, highly
parallelized numerical relativity code written in the C programming language. It has been

used for binary black hole simulations, as well as gravitational waveform modeling.

* GRChombo*****°: GRChombo is a new open-source NR code written in the C++ program-
ming language and uses hybrid MPI and OpenMP parallelism, alongside vector intrinsics. It
uses an adaptive mesh refinement library that allows it to dynamically adjust the numerical
grid resolution based on pre-defined metrics. It has been used in many areas, including early

universe cosmology, astrophysics, and mathematical GR.
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* Langage Objet pour la RElativité NumériguE (Lorene)’*": LORENE is a code written in
the C++ programming language that uses spectral methods to solve partial differential equa-

tions. It has been used in the simulation of modified gravity theories as well as neutron stars.

o Adaptive Mesh Spectral Scheme (AMSS-NCKU)*#>*# : AMSS-NCKU uses characteristic
evolution to solve the Einstein equations and has been used to study binary black holes, mul-

tiple black hole systems, and black holes in modified gravity theories.

There are many more NR libraries that tackle different physical systems, such as cosmological
systems and hydrodynamical evolutions, with too many to list. The large number of NR libraries
is tantamount to the complexity of numerical solutions of the Einstein equations. There are many
challenges one is faced with when pursuing numerical solutions.

The GRChombo library will be further explained in Section 3, where it was used to build a new

library dedicated to numerical solutions of generalized Proca theories.

1.6 OUTLINE

The rest of the thesis is divided into three pieces. Section 2 will detail a study of a standard Proca
field on a spinning black hole. The solutions found in this study will be applied to extreme mass
ratio inspirals to determine the viability of the LISA mission to detect such Proca clouds using the
gravitational wave information. Section 3 will go into details about a new numerical relativity li-
brary built during this thesis that is dedicated to studying generalized Proca fields on arbitrary fixed
backgrounds. Finally, Section 4 applies the new library to the case of a standard Proca field on a

Kerr-de Sitter background.
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The important thing is not to stop questioning. Curiosity
has its own reason for existence. One cannot belp but be

in awe when be contemplates the mysteries of eternity, of
life, of the marvelous structure of reality. It is enough if
one tries merely to comprebend a little of this mystery each
day.

Albert Einstein

Proca on Kerr

THE ADVENT OF GRAVITATIONAL WAVE ASTRONOMY has brought forth a plethora of avenues to
study a wide range of physical phenomena, including fundamental physics. The coupling of gravity
to all fundamental particles allows for the study of fundamental fields in the proximity of a strong
gravitational field, such as coalescing compact objects. These studies have already placed stringent
limits on the allowed parameter space of some physical theories**7*#. Current GW observato-

ries such as LIGO*°, Virgo*"*5*, KAGR A ****5#; future missions such as LISA>55*5¢, Einstein
Telescope 7, Cosmic Explorer*®*5?, DECIGO**>**'; and indirect detectors such as pulsar timing
arrays, for example EPTA **>2% NANOGrav**+*%5, and the PPTA *° are thus invaluable tools to
study fundamental physics. They shed light on the accuracy of theoretical models of strong gravity,

but they can also potentially ameliorate current big problems in physics such as the nature of dark
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matter and dark energy. In the scope of astrophysical and fundamental research, they are extremely
powerful tools.

The LISA mission in particular, operating in the millihertz frequency range, offers a unique ca-
pability to answer fundamental questions. These range from probing the dynamics of extreme mass
ratio inspirals (EMRIs) to studying the expansion of the universe**”. The EMRI scenario has par-
ticular interest due to the long timescale for which the system remains in the strong gravity regime.
Moreover, the wide difference in their respective masses translates to a wide difference in the curva-
ture of spacetime they generate, fig. 2.1.

The substantial gap in masses implies the cen-
tral super massive black hole (SMBH) can be
treated as generating a Kerr geometry on which
the secondary compact object acts as a perturb-
ing particle. This approximation drastically
simplifies estimation techniques for the gravita-
tional waveform, without requiring an appeal

to full numerical relativity **=7".

The most common formation mechanism

Figure 2.1: 268 AnEMRI system represented graphically by the

. L. curvatures they generate.
of EMRIs is thought to occur by gravitational

capture of a stellar mass compact object onto a highly eccentric orbit*”*7*75. These captures are
thought to happen as a result of two body relaxations of the objects where an object is deflected to
an orbit around the SMBH with a small pericenter distance. Eventually, emission of gravitational
waves (GWs) will reduce the eccentricity to more circular values. Only compact objects such as stel-
lar mass black holes (BHs), neutron stars, white dwarfs or helium cores of giant stars can produce
detectable extragalactic EMRI signals. Less compact or lighter objects such as main sequence stars
either cannot withstand the tidal forces of the SMBH or are not massive enough to produce suffi-
ciently strong GWs. Other less common formation scenarios exist such as tidal separation of bina-
ries, Bondi-like capture of passing objects, separation of a massive star’s core from its envelope, and

compact object formation in accretion disks around the SMBH 276,
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2.1 MOTIVATION

The timescale with which the secondary BH experiences relativistic orbital velocities suggests EM-
RIs will be a prime target for performing a litany of tests of GR, study environmental affects around
SMBHs, and enabling high precision estimation of the physical parameters of the system, such as
redshifted masses and black hole spins**7*77*7%, The high precision measurements of massive black
holes (MBHs) and EMRI properties allows a remarkably precise test of many theories, including
the predictions of new fundamental fields outside the Standard Model.

Such fundamental fields include the predicted dark matter particle. Dark matter candidates cover
a wide range of predicted mass values, depending on the underlying theory. Some models predict
the dark matter particle to have a mass as low as 10722eV*7?, so-called fuzzy dark matter, and as high

280 One model for dark matter includes

as (sub-) solar masses in the form of primordial black holes
the dark photon, which can be extremely light, m 2 10722eV>*'| and behaves as non-relativistic
matter.

Near future constraints on the couplings of the dark photon to the Standard Model will come

197:282-284 *  Current con-

from GW measurements, for example from black hole superradiance
straints in the literature coming from superradiance suggest LISA would be able to constrain the
mass of the vector field in the range 1 x 1071% eV to 6 x 107'%eV>*". The superradiance phe-

nomenon, and more generally GW measurements, will be a powerful tool in probing the potential

vector nature of dark matter.

2.1.1 PREVIOUS STUDIES

The study of the instability of matter fields on black hole spacetimes has seen much attention in
recent years, owing to the detection prospects using gravitational observatories '?719%282283:2887299,
Most of these studies pertain to either the superradiant process itself and how it affects the black
holes spin and mass, which will have an astrophysical statistical effect on the black hole populations,

or on the gravitational radiation emitted from the resulting cloud itself. For example, full numer-

ical simulations have been performed to study the resulting gravitational radiation emitted from a

"See ref. 285,286 for the case of a scalar-charged secondary BH in an EMRI and the associated effects on the GW
waveform.
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superradiantly-excited Proca cloud around a spinning black hole, including evolving through the
initial instability phase. Other studies have performed analytic derivations using specialized ansatzes
for the solution.

More in line with the details of this study, literature exists for research into the effect of the su-
perradiant clouds, so-called gravitational atoms, on the internal motion of a binary system. One
study looked at the effect of a scalar and massive vector cloud around one of the black holes and
energy transitions induced by a companion black hole**°. They showed that this effect could be
detectable as a dephasing in the gravitational wave signal.

The study performed here investigates the ability for the LISA mission to detect the modifica-
tions to the gravitational wave signal from an EMRI system due to the presence of a superradiant
cloud around the supermassive black hole. To that end, numerical solutions of the Proca cloud are
computed on a Kerr background, giving the resulting energy distribution of the superradiant cloud.
Then the modifications of the gravitational wave signal resulting from the presence of this energy
distribution is computed. A LISA forecast is then carried out to determine which parameter values

of the Proca field allow LISA to detect such modifications.

2.2 THEORY

2.2.1 CURVED SPACETIME WITH PrROCA

The starting point is the specification of the relevant fields, via the action functional

5[97"471” = 50[97‘4} + Sm[97A,l/)] ) (2.1)

where ¢ is the metric tensor, A is the Proca field, Sp[g, A] describes the background, and S, [g, A, ]
is the action for the matter field ©. Here, the ”skeletonized” approach is adopted. The matter ac-
tion for the generic matter field v is replaced by the action for the point particle. This is a phe-
nomenological reduction of the description of the secondary black hole to that of a ”probe” particle

following the geodesics set by the background. This is achieved via the replacement

Smlg: A ¢] = Splg, A {=}] (22)
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where {x} are the co-ordinates of the secondary black hole.
Specifying the background to be that of a Proca field minimally coupled to a supermassive Kerr

black hole, the background action becomes

1 1 1
Solg. A] = /d49:\/—g {—S‘i = 3 Fw " - §u2AuA"} : (2.3)
K
where K = 160—710. Due to the lack of an obvious separability of the point particle current in the

chosen ansatz, we consider no coupling between the secondary BH and the Proca field”

Splg, A, ) = —/mpdT—i—q/AMJ“ (2.4)
L awdr, -
I ir dr =5

The equations of motion (EOM) associated to the action functional are

1 1
G = 8 (TFWF’“’g”" T EE] = g AA £ ;PAPA") + 8T (2.6)

0=V,F" — y?A% (2.7)

where L7 is the energy-momentum tensor of the point particle. Note that, due to the source
terms on the RHS of the Einstein equations, the Proca equations cannot be written in a Klein-

Gordon-type form. Instead, using the Lorentz constraint from the conserved current, one finds
VZAY — RVA° — *A” =0 . (2.8)

However, this is a generic statement for the full non-linear system. If we work in a perturbative
regime in which the Proca amplitude is small and the mass ratio between the secondary and the

SMBH is large, then the right-hand side of the Einstein equations vanish, so we can write

V2AY — ?AY = 0. (2.9)

“More generally, we don’t consider any direct coupling between the Proca field and the Standard Model fields.
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So, the Proca equations become, in the linearized regime,

V2AY — ?AY =0 (2.10)

V,A7=0. (2.11)

DecomMmrosITION IN THE FKKS ANsaATZ

Analytic solutions of the Proca EOM in the Kerr background have historically been extremely dif-
ficult to achieve. This is due to the fact that there is no obvious separable ansatz for the Proca field.
The usual approach is to take perturbative approximations. However, a recent analysis has shown
that there is such an ansatz that allows the equations to separate, the so-called Frolov-Krtous-Kubizndk-
Santos (FKKS) ansatz***. Using this ansatz, we can progress in the semi-analytic computation of
the Proca spectra.

The first step in solving the Proca equations is to decompose the Proca EOM in the FKKS ansatz.

We define the ansatz for the Proca field as

At = B"N ,Z | (2.12)

where B* is implicitly defined through the complex-valued algebraic equation

?

B" (gyy + X

hyy) = 08 (2.13)

and hy,, is the so-called principle tensor of the Kerr spacetime. In Boyer-Lindquist co-ordinates, it is

defined as
0 r a’ cos(8) sin(0) 0
" —r 0 0 arsin(6)?
wr =
—a? cos(0) sin(0) 0 0 acos(f)(a* + r?)sin()
0 —arsin()* —acos(f)sin(6)(a* + r?) 0

(2.14)
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We then perform a separation of variables in the FKKS ansatz via

7 = R(r)S(§)e @™ (2.15)

This is a multiplicative separation into two arbitrary single-coordinate-dependent functions and

two eigenfunctions of the spacetime Killing vectors *

LrZ = —wZ (2.16)

LoZ =1m7 (2.17)

where £ is the Lie derivative, and 7', ® are the temporal and azimuthal Killing vectors of the Kerr
spacetime, respectively. After inserting this separated form into the Proca EOM, one finds the fol-

lowing coupled second-order system of differential equations

d (AdR K? 2—q. 0 u?
— | == — ———=|R=0 .18
dr (qr dr)+(qrA+ @ v 1/2) (2.18)

1 d (sinfd K? 2 — 2
1 d sinfl dS\ S 2q9g_u_ S—0. (2.19)

sinfdf \ qy db g sin® 0 @ v v

where

K, =am — (a* + r*)w ¢ =1+ %2 (2.20)
o =ar*(m—aw) +w Ky =m — aw sin 6? (2.21)
g9 = 1 — v%a’ cos 6* A=r?4+a>—2Mr. (2.22)

Henceforth, we focus only on a single mode specified by the tuple (v, w, m). A generic solution
to the Proca EOM will be a linear combination of the single mode solutions. See appendix A.1 for
a more in-depth discussion of the method to solving the coupled eigenvalue problem 2.18-2.19.
Some additional quantities that are important for the later analysis are the total energy and the nor-

malization of the Proca field. Eqs. 2.18-2.19 determine the Proca field only up to an overall nor-

“We write the mode number as m in order to distinguish it from the mass of the secondary black hole, which is
denoted as m.
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malization constant. This constant must be determined as part of a full description of the state of
the cloud. We choose to normalize the field by the requirement that the total energy of the Proca
field matches the reduction in energy of the black hole (energy conservation), utilizing the clear sep-
aration of timescales between the superradiant instability and the gravitational radiation from the
cloud. Were this separation of timescales not present, a non-negligible amount of energy from the
Proca cloud could be radiated away in gravitational energy during the instability phase, preventing
this method from determining the Proca normalization. Fortunately, the cloud generally builds up
more rapidly than it depletes via gravitational radiation, hence we can safely neglect the depletion

300

during the instability **°. The total energy of the cloud at a particular instance is defined by

E.=— /T%/—gdrdﬁdqﬁ , (2.23)

where g is the metric determinant and T is the stress-energy tensor of the Proca field, eq. 2.6. Nor-
malization of the Proca field then follows from the requirement B, = Mgy, — M1, where M pp,
and M pp, are the masses of the black hole before and immediately after the superradiant instability,

respectively.

SYSTEMATICS OF SOLVING THE RADIAL AND ANGULAR EQUATIONS

We can now proceed to solve the angular and radial equations, egs. 2.18-2.19. First, define the pa-
rameters and eigenvalues of the problem as (m, S, n, a, p, M) = P and (v,w) = &, respectively.

The system of equations can then be represented schematically as

Lir;P,E]R(r) =0 (2.24)

0[6; P, E]S(6) =0,

where L and O are linear operators defined in eq. 2.18 and 2.19 and which are coupled only through
the set of eigenvalues £. In the non-relativistic limit M < 1, the real and imaginary parts of the

frequency read*9+3°»3°3
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WR ;L2M2
— 1
1 2(lm| +n+S+1)

3+ O((uM)") (225)

Muw; ~ 27y Cinsngjm(a, pM,w)(mQy — wg) (M p)*mi+5+25 (2.26)

These, together with the non-relativistic limits for the eigenvalue v in appendix A.1, provide
good starting guesses for iteratively solving the system eq. 2.24. The algorithm we employ to nu-

merically solve the Proca field in the FKKS ansatz follows similarly to 293 and goes as follows:

* After specifying the initial parameters to be considered, i.e. choosing a particularp € P, an

initial guess for the w and v eigenvalues are formed by the non-relativistic limit.

* Solve the determinant of the angular equation matrix and pick the eigenvalue that is nearest

to either the non-relativistic limit or the previous result for a different mass.

* Solve the Proca radial equation using the Frobenius method and find the initial conditions

from evaluating the Frobenius solution at a starting radius, close to the outer horizon.

* Numerically solve the radial equation with the previously obtained w and v eigenvalues and

boundary conditions.

* Find the logarithmic minimum of the radial equation at the outer boundary of the radial
integration over w-space. Minimization is carried out in w-space, recalculating v for each w-

value, using a native Nelder-Mead algorithm in the software system Mathematica’>°+.

* With the found value of v and w, the angular matrix can be solved for the expansion of the

angular function in terms of the spherical harmonics, completing the solution of the EOM.

This process can be repeated for varying choices of the Proca mass parameter, overtone number,
and mode number. Initial guesses for w and v switch from using the non-relativistic limit to using
a 4th-order polynomial fit to previous results in ;t — w space. These fits perform much better than
the non-relativistic limit for higher mass parameters, typically 1 < 0.3.

The flow of the algorithm proceeds graphically as in fig. 2.2.
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COMPUTING THE AsYMPTOTIC FLUX

We used the package SUPERRAD 87 for the

calculation of the asymptotic fluxes from the Setup Iteration

Proca cloud. It uses a combination of analytic l

and numerical results to compute the asymp- Fix branch of Frobenius solution

totic energy flux from a Proca cloud, assuming l '
Construct guess for w from ei-
all the energy of the cloud resides in a single ther previous results or wponrel

|

Walk w-space until slope % changes sign.
flux can then be computed from the Teukolsky — Indicates rough location of wWrye

|

Minimize R(71q2) us-
ing Nelder-Mead simplicies

R R e l

mode. The asymptotic angular momentum

formalism 3°5 as

W .
Solve angular equation for kernel vectors

2.2.2  SUPERRADIANCE Flgurt? 2.2:. Graphical representation of routine to solve the Proca
equations in the Kerr background.

Black hole superradiance is a dissipative phe-

nomenon which involves the unstable growth of field amplitudes due to the collection of negative
energy states by the ergoregion *. This superradiant instability of matter fields around spinning
black holes can lead to, under certain conditions, a quasibound state. In fact, a quite general argu-
ment for the existence of superradiance can be shown to follow from the black hole area theorem,

which states

SM = TfaA + Qo (2.28)

for an uncharged black hole, where T} is the Hawking temperature, A is the area of the horizon,

Qp =

o3> @ is the spin of the black hole, and r is the radius of the outer event horizon. Fora
+

matter wave of frequency w and azimuthal number m, the ratio of angular momentum to energy is

(2.29)

&)
€13

“For a review of superradiance, see 2.00.
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Hence, an interaction of the matter wave with the black hole causes the latter to change its angular

momentum by

SV o 2.30
The area theorem then tells us
oy = W 0An (231)

4 w—mf H .
The second law of black hole thermodynamics, d Ay > 0, implies waves impinging on the event

horizon with frequency

w < mQy (2.32)

causes the black hole to lose mass and hence energy is extracted by the wave, increasing its own en-
ergy. This wave can become trapped by the potential well of the black hole, causing the wave to
again impinge on the black hole.

This is the mechanism of superradiance. A small amplitude wave initially impinging from past
infinity will be continuously excited in a runaway process until the black hole loses enough angu-
lar momentum and mass to turn off the superradiant condition, eq. 2.32. This is a purely classical
description. A quantum description, in which vacuum states at past and future infinity contain
different particles numbers, has also been formulated°°73°%, The process is reminiscent of the well-

known Penrose process, though they are distinct phenomena®**.

2.2.3 MODIFIED GRAVITATIONAL WAVES

After the superradiant instability has turned off, saturating the superradiant threshold eq. 2.32,
the system exists in a quasi-stationary state consisting of a black hole surrounded by a quasibound
Proca condensate. It is not in an eternal bound state due to gravitational emission from the cloud

itself, which manifests as a long-duration depletion of the condensate**°. This long-timescale deple-

*It has been shown that the Penrose process requires the existence of an ergoregion, while superradiance requires
an event horizon?'*3'". Additionally, a stationary axi-symmetric black hole necessarily has an ergoregion. Thus, super-
radiance is a sufficient condition for the Penrose process, but the converse is not necessarily true.
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tion of the cloud provides a secular change in the mass and angular momentum of the background,
in addition to any other emissions from the system. Hence, the presence of a Proca environment
surrounding the primary black hole in an EMRI system modifies the inspiraling dynamics of the
secondary black hole, resulting in a modification to the measured waveform at the detector *. In an
EMRI system, the inspiraling dynamics is well approximated by assuming the trajectory follows a
sequential evolution of geodesics of the Kerr spacetime. In the Kerr spacetime, geodesics are deter-
mined by three constants of motion: the energy F, the projection of the angular momentum along
the spin axis L, and the Carter constant C'. Assuming an equatorial orbit, the Carter constant van-
ishes and receives no evolution. Hence, the geodesic motion is determined by only two constants,
FE and L. Sequential evolution along a series of geodesics corresponds to an adiabatic evolution of
the orbital constants. This adiabatic change in the integrals of motion arises due to the asymptotic
flux of energy and angular momentum from the system, sourced by either environmental effects or
gravitational emission.

In particular, for the case of an EMRI system immersed in a superradiantly-generated Proca

cloud, the evolution of the integrals of motion is given by

dEgeo . dEGW dEgeo
dt N ( dt +< dt Proca (233)

dLyeo  (dLaw [ dLgeo
dt B ( dt +( dt Proca 7 (234)

dlgeo
dt

where I, represents the integral of motion for the geodesic and < > . represents the change
in the orbital constants due to the flux of energy and momentum from the quasibound Proca
cloud. Since the secondary black hole is minimally coupled to the energy-momentum of the Proca
field, via the Einstein equations, the change in the orbital constants will not be the same as the
change in the energy and angular momentum of the Proca cloud. Instead, at the linear level, the

presence of the Proca cloud modifies the energy and angular momentum of the background space-

time, which enters as an additional change in the orbital constants. In particular, the change in the

“Here, we neglect higher order effects such as resonant depletion of the Proca cloud (see 302,312 for resonant
depletion of a superradiant scalar cloud in an EMRI system). We also neglect dynamical friction effects on the sec-
ondary black hole. These effects have been shown to have dramatic effects in the scalar field case and conceivably will
also have large effects in the vector case*°*3'3, though a study of this nature has yet to be performed. However, for the
preliminary and simplified analysis considered here, we relegate these effects to studies that will be performed in the
future.
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integrals of motion, due to the presence of an uncoupled Proca cloud, arises due to the change in

the energy and angular momentum of the Kerr background:

oF OFE
dE eo — = dL err ) err .
g aLK'er'r K i aEKerr K (Z 35)
oL oL
dL eo — —I=dL err = dE err 36
g aLKe'r'r K - aEKerr K (Z ’ )

such that

dE dE dE dE
< geo) _ Proca F(’f’) |: geo 4 m geo :| (237)
Proca

dt dt dExerr W dLgor

dLgeo dEProca dLQCO m dLgeo
— r — .38
( dt )Proca dt (T) |:dEKerr * w dLKeTT 7 (2 ’ )

where we introduced a radially dependent prefactor that accounts for the fraction of the Proca
cloud within the orbital radius, and Fk.,, and L., are the total mass and angular momentum
of the Kerr spacetime, respectively. Exc,, and Ly, are calculated prior to the superradiant insta-
bility and hence represent the total mass and angular momentum of the black hole-cloud system

after the instability has turned off. It follows from the Teukolsky equation and our choice of nor-

malization of the Proca field that #22reee oc E2,  and hence I'(r) = (W) i (see A.2).
This prefactor accounts for the portion of the radiating Proca cloud that modifies the orbital tra-
jectory. I'(r) asymptotes to unity at asymptotic infinity, meaning all of the Proca cloud is within
the orbital radius and contributes to the trajectory modification. At the other extreme, near the
horizon, I'(1) approaches zero since all of the cloud is external to the orbital radius. This prefactor
hence represents the fraction of the Proca cloud the inspiraling black hole ”sees”. At infinity, the
mass the secondary black hole ”sees” is the total mass of the black hole-cloud system; At the hori-
zon, it’s the mass of the central black hole which is "seen” by the secondary black hole and hence
none of the radiating Proca cloud modifies the trajectory at this point.

This is an approximation in several respects. First, the angular structure of the cloud is integrated
out to produce a purely radial function. Secondly, the energy integral eq. 2.23 is calculated using

the stress-energy tensor from the perturbative calculation of the Proca field and not from the full

Einstein-Proca system. Thirdly, an additional averaging of the radial distance over an orbital period
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is performed when calculating I'(r), due to limitations of the waveform generator.

For the gravitational terms in the flux functions, sPN accurate analytic expressions for the en-
ergy and momentum fluxes (hence, semi-latus rectum and eccentricity evolution. See below.) are
employed.

For our purposes, it’s more convenient to express adiabatic evolution of the integrals of motion
in terms of the eccentricity and semi-latus rectum, from which the integrals of motion can be ex-
pressed. The asymptotic fluxes can be transformed into rates of change of the orbital parameters

by inverting I geo = d{f;" P+ %é. This then gives us the rate of change of the geometry of the

trajectory which the secondary black hole follows.

The full trajectory is calculated by integrating the flux equations, after choosing suitable ini-
tial conditions, using an 8th-order explicit Runge-Kutta integrator. The trajectory is integrated
to within o.2 gravitational radii of the separatrix, calculated using the previous iteration loop of
the integration. Initial conditions for the integration, namely (po, €0, Po,y, Py, Pr0), are chosen
such that coalescence occurs approximately after five years. This gives the greatest possible chance a
Proca cloud will be detected during the mission lifetime of the LISA observatory.

The trajectory, once computed, is then fed into a waveform model. The model currently em-
ployed is the Fast EMRI Waveforms (FEW) Augmented Analytic Kludge (AAK) model*”"*"#. The
AAK model is built using Keplerian ellipses for the orbital trajectory, and evolves the inspiral, pe-
riapsis precession, and Lense-Thirring precession using PN fluxes. The difference to the original
Analytic Kludge model is that the orbital frequencies and two precession rates are enforced to be
the original Kerr values, which is achieved by solving an algebraic expression for some unphysi-
cal values of the mass, spins, and semi-latus rectum. This defines a map (M, a,p) — (M , 0, D)
which maps the frequencies of the Keplerian orbit onto the frequencies for the Kerr geodetic mo-
tion. This greatly improves the accuracy of the original AK model and agrees remarkably well with
Teukolsky-based waveforms. The FEW version, the version employed in this study, removes this
mapping and instead directly calculates the fundamental frequencies and converts them into the

basis for the AAK model, egs. 2.39-2.41.



d=Q, (2.39)
’3/ - Q@ - Qr (2"40)

a=Qs—Q, (2.41)

where @ is the variation of the quasi-Keplerian mean anomaly, ¢ is the Lense-Thirring precession,
and 7 + & is the periapsis precession. These phase evolutions are then fed into the Peters-Matthew
formula for the gravitational strain amplitudes’*s ™.

The states of the cloud in this analysis are restricted to the m = 1 mode and n = 0 overtone.
This is for several reasons. First, the asymptotic flux values from the numerical solver are numer-
ically unstable for larger mode and overtone values. Secondly, gravitational emission from higher
modes is a-suppressed **7>?*, with higher modes being suppressed by powers of a?. Hence, the sec-
ular variation in the cloud largely comes from the m = 1 mode. Moreover, the total mass contained
in the higher modes is less than that in the m = 1 mode. Reducing the analysis to the single choice

of these parameters is thus reasonable within the approximations already employed.

2.3 RESULTS

2.3.1 Proca CLouDs

Following the procedure laid out in Section 2.2.1, the Proca field equations were solved for mode
numbersm = {1,2, 3,4}, overtone numbersn = {0, 1,2, 3,4}, SMBH dimensionless spin

X € [0.6,0.9] and Proca spin S = —1 7. For our purposes, we restrict to S = —1 as this is the most
unstable***. Examples of our generated data are shown in fig. 2.3,2.4,2.5. Figure 2.3 shows the evo-
lution of the Proca field frequency as a function of the gravitational coupling for the m = 1 mode
and SMBH dimensionless spin x = 0.9, for various overtone numbers. The imaginary part of the
frequency gives the instability rate of the cloud, while the real part yields the oscillation frequency.

As can be seen, the n = 0 overtone number is the most unstable. The maximum instability occurs

“The custom code used to generate these trajectories and waveforms is available at https: //github. com/Shaun-F/
GWGenerator.git.
"The code used to generate this dataset is available at https://github.com/Shaun-F/KerrDressedWithProca.git.
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Figure 2.3: Superradiant Proca dataform = 1 mode, dimensionless spin y = 0.9, and Proca spin S = —1. Theleft plot displays

the imaginary part of the Proca field frequency, which directly yields the instability rate of the cloud. The right plot displays the real
part of the frequency, which yields the oscillatory part of the field. As expected, them = 1,1 = 0 mode is the most unstable. Here
wetake G = ¢ =N = 1,sothata = uM% — uM.

at, for (m,n, x) = (1,0,0.9), & = 0.304 with an instability rate of 7 = 2.1 x 10*<}! = 0.105
s. Compared to the maximum instability of the corresponding scalar superradiant cloud, this is

~ 2500 times faster >+,

Fig. 2.4,2.5 show example radial functions for the m = 1 mode and dimensionless spin y = 0.9.
The overtone structure of the Proca field is clearly displayed. The number of roots of the radial
function is given by the overtone number, which also specifies the number of maxima and minima.
The compactness of the cloud is also apparent, being directly given by the gravitational coupling, as
expected. A higher gravitational coupling translates to a more compact Proca cloud. Lower values
of the gravitational coupling yield a Proca cloud that can span thousands of gravitational radii, as
expected from the rough scaling of the radial function as ~ <. Higher values of the gravitational
coupling yield Proca clouds that span tens of gravitational radii. Hence, higher values of the gravita-

tional coupling are expected to have the greatest effect on an EMRI system”.

2.3.2 IDENTIFYING MoDIFIED GWSs

To assess the detectability and measurability of a superradiantly-generated Proca cloud around an
EMRI system from the emitted GWs, we leverage a simple figure of merit. We perform a simple
analysis based on generated SNR and traditionally used faithfulness criteria to have an idea about
the distinguishable mass region of the Proca particles. This merit relies on comparing two wave-

forms, and so can be easily and quickly computed.

“For a more in-depth analysis of superradiant Proca fields on Kerr backgrounds, see 283,293,294,297,301,316.
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Figure 2.4: Example radial functions form = 1 mode with dimensionless spin Y = 0.9 and gravitational couplingax = 100 for
various overtone numbers.
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Figure 2.5: Example radial functions form = 1 mode with dimensionless spin Y = 0.9 and overtone numbern = 0 for various

gravitational couplings. As expected, higher gravitational couplings translate to a denser cloud, with most of the mass being concen-

trated closer to the horizon.




AN EsTIMATE BASED oN SNR

First, we define a noise-weighted inner product between two waveforms as

Tmaz oy o (f)105 o (f)

hy,hy) =4 xR df | 2.42
(1 2> X ea;ﬂ/fmm Sn(f) If (2-42)

where f~11 /2, are the Fourier-transforms of the detector response signals, ﬁ;a the latter’s complex
conjugate, and S,,(f) the one-sided noise power spectral density (PSD) of LISA*’>*'7. The LISA

PSD model receives contributions from three noise sources. The analytic expression for the PSD is

10 4Poce(f) 6 (f\°
377 (POMS(f) + W) (1 + 15 (f_> ) + Se(f) 5 (2.43)

where Pps is the single-link optical metrology noise, Py is the single test mass acceleration noise,

Sn(f) =

and S, is the galactic confusion noise, accounting for unresolved galactic sources that manifest in

the noise. The analytic expressions for the three noise contributions are

4
Pous = (1.5 x 107! m)? (1 + (2”}HZ) ) Hz ! (2.44)
2 4
Pue = (31073 <1+ (0'4‘;‘HZ) ) <1+ ( . H{HZ) )Hzl (2.45)
S, = Af de I"H0F 0N (1 4 tanh (v(f, — f)))Hz ", (2.46)

where the parameters of the galactic confusion noise are fit to simulations for a four-year data
run. These fit values are (A, o, 8, k,7, f) = (1.8 x 1074,0.138, —221, 521, 1680, 0.00113).
Using the noise-weighted inner product, the SNR of a particular signal is defined as SNR? =

(h|h). Further, we also define the faithfulness between two signals as?**3*?

F = max <h1|h2>

R Tl (ral) (47)

which is maximized over time and phase offsets of the two signals and takes values between -1 and 1,

where the latter indicates perfect agreement between the waveforms. The maximization translates



to maximizing over the variables 7" in

h CY h NeY _
(hi|ha) = Re > / : (2 ) e 2 ITdf (2.48)

a=I1,I1

where hy 7 is the time-offset version of the original waveform h; by time T, S,, 2 is now the two-
sided noise power spectral density, and we have extended the integration domain to the entire

reals using the fact that the noise PSD forces the integrand to vanishing values outside the range

|— fmaws — fmin) U [fmin, fmaz) and thatit’s an even function of f. Using the convolution theorem,

this translates into the convolution

(hirlho) = Re Y (Hiox Haa) (2.49)

a=I,IT

where H, , = S‘l(ﬁi’z(f) ), Ho = 3_1(~§7a(f)), and § denotes the Fourier transform. The

faithfulness then becomes *

Red (Ao * Hog)
F = max ’ T &) p - 2.50
{< (ha|h1)(ha|ha) ) (T,¢ )} (2.50)

The detectability requirement places a threshold on the faithfulness statistic. Under Gaussian likeli-
hoods for the parameters, this threshold arises from the requirement that a systematic mismodeling
error, i.e. the error between the true waveform and the model waveform, should be smaller than the
statistical measurement error. If the mismodeling error were larger than the measurement error,
then the signals would be measurably different in the LISA data. Thus, if the faithfulness between
the bare EMRI and the dressed EMRI waveforms are below this critical threshold, LISA should
likely be able to distinguish between the two EMRI systems. This threshold assumes a Gaussian dis-
tribution for the model parameters around the true values. This prerequisite does not hold for the
Proca mass, since the distribution is asymmetric and the waveforms are being compared against the

vacuum case (c.f. fig. 2.6). However, it provides a rough estimate for the threshold of distinguisha-

“Maximization over the coalescence phase ¢, is achieved by iteration over phase offsets of one of the signals. See
320 for further discussion of the maximization procedure.
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Figure 2.6: The difference in number of orbits and faithfulness as a function of Proca mass, respectively. The total spacetime dimen-
sionless spinis xY=0.9 and the initial eccentricity was chosen to be 0.2. The difference in number of orbits is the absolute difference
between the number of orbits completed by the dressed and undressed waveform at separatrix. This data suggests LISA should

be able to distinguish GR-in-vacua waveforms and Proca-modified waveforms, for the given initial data, for Proca masses above

~2 x 10718 eV. The upper limit on the mass is enforced by the superradiant threshold cutoff. Above this threshold, no bound state
exists. For the M = 105M@ data, this upper limit is fty,q, = 4.47 X 10~ 6 v,

bility. The expression for this threshold is

D -1

Fo=1-—1—5,
2 x SNR

(2.51)

where D is the size of the parameter space®*'. The inclusion of a Proca mass increases the number

of parameters by one, hence the total parameter space is specified by

<M7 m, [, a, Po, €o, Lo, dLa 957 ¢57 eKa ¢K7 (1)9,07 (I)¢>,O> (I)T,O) ) (2"52)

where M is the mass of the SMBH (the primary), m is the mass of the smaller black hole (the sec-
ondary), 1 is the mass of the Proca field, a is the spin value of the SMBH, py, €9, and z are the
initial semi-latus rectum, eccentricity and inclination, respectively, dy, is the luminosity distance

to the system, g and ¢ are the barycentric sky location of the system, 0 and ¢ describe the
orientation of the EMRI angular momentum vector in the barycentric co-ordinate system, and
Dy, 4/r0 are the initial phases for the polar, azimuthal, and radial motion, respectively. Orientation
of the spin vector of the SMBH is currently ignored in waveform generation due to limitations of
the waveform generator package employed during this study. For signals with SNR on the order
of 20, the faithfulness threshold for detectability is ~ 0.98. For any pair of signals that produces a
faithfulness below this threshold, they will likely be distinguishable with LISA.

The second measure of detectability we utilize is the number of orbits completed by the binary,
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as this is easily inferred from the waveform directly measured by LISA. The number of orbits com-

pleted by the binary at separatrix is directly related to the orbital frequency by

1 ,I;'ep
Norbits = % Q¢dt ; (2'53)
0

where (2, is the azimuthal orbital frequency, which is related to the phase of the trajectory ®4 by

d®y _

o 4. The resolvable deviations in the phase of the trajectory of an EMRI system by LISA

can be estimated by a Fisher-matrix analysis**"***. The result is that LISA should be able to dis-
tinguish a phase shift of A®, ~ 0.05 radians, or in terms of the GW phase AW ~ 0.1 radians.
This roughly translates to a resolution in the number of completed orbits at the time the trajectory
reaches the separatrix as A Nypi5 ~ 0.001.

Figure 2.6 shows three example EMRI systems with SMBH masses M = (10°,10°, 107) M,
SMBH dimensionless spin x = 0.9, and initial eccentricity of the orbit e = 0.2. The initial semi-
latus rectum is chosen so that the lifetime of the system approximately equals the LISA mission
lifetime. As expected, for higher Proca masses, the dressed waveform increasingly deviates from the
GR-in-vacua (undressed) waveform. This is due to the increased coupling between the Proca cloud
and the background spacetime. Since the size of the Proca cloud roughly scales as i (c.f. eq. A.22),
higher mass translates to a more compact Proca cloud. Thus, as the secondary black hole inspirals,
Proca clouds with greater Proca masses have a larger effect on the trajectory due to the compact-
ness (c.f. eq. 2.37, in particular I'(r)). In addition, the energy and angular momentum fluxes from
the Proca cloud are monotonically increasing up until just before the superradiant condition fails.
Hence, higher compactness of the cloud together with larger values of the asymptotic fluxes ex-
plains the greater deviation from the GR-in-vacua scenario.

It was found that the initial value of the eccentricity has little effect on the faithfulness, i.e. the
difference between the Proca waveform and the GR-in-vacua waveform doesn’t change much with
eccentricity. This is likely due to the averaging procedure over eccentricity of the effect the Proca

flux has on the secondary’s trajectory. In other words, the function I'(7") is only a function of the

dEo'rbit m dEorbit
dEKer'r w dLKe'rr

radial distance and not the eccentricity. Though factors such as ] are expected
to change with eccentricity, this effect is evidently small.

The spin of the SMBH, on the other hand, plays a larger role. While the spin doesn’t affect the
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’knee’ of the graph in fig. 2.6, it does change the minimum value of the faithfulness. In other words,
lower spins of black holes are less able to constrain lower Proca masses.

It’s also important to determine the astrophysical relevance of this type of modification to the
background. This is achieved by comparing the timescale for gravitational emission from the Proca
cloud to the timescale for inspiral of the secondary object. The latter is fixed to be ~5 years, the
approximate LISA mission lifetime, and the former depends on the gravitational coupling . In
other words, the astrophysical relevance for the study performed in this paper depends on the grav-
itational coupling. The ’knee’ of the faithfulness statistic as a function of « in fig. 2.6 occurs ap-
proximately at &« ~ 0.07. The corresponding timescale for gravitational emission from the Proca
condensate ranges from 10% - 10° years (cf. appendix A.2 and fig. A.1). This means the modifica-
tion to the gravitational wave signal due to the time-dependent background as discussed here is of
astrophysical relevance since the two relevant timescales are separated by three or more orders of
magnitude. For higher gravitational couplings, the timescale for gravitational emission shrinks (see
fig. A.1). This translates to less observational relevance since the inspiral phase and gravitational
emission must occur coincidentally for LISA to be able to probe the Proca cloud properties us-
ing the results of this study. It would be astrophysically remarkable to observe a high gravitational
coupling using EMRISs as probes with LISA. Nonetheless, for the purposes of this study, perfect
coincidence is assumed. This is a reasonable approximation for lower av values, but becomes un-
reasonable for & 2 0.2, where the cloud decay timescales roughly equals the inspiral timescale
which are both extremely short. However, the faithfulness statistic is much less than unity at this
point, so the Proca condensate will already be observable with LISA for the astrophysically-relevant
timescales. Hence, there is a range of small gravitational coupling, translating to large cloud decay
timescales, where the effect on the inspiral will be observable with LISA and where the cloud is suf-
ficiently long lived. To quantitatively take into account the likeliness of coincidence for these two
timescales, a full population synthesis study, analysis, and potentially an N-body simulation would

be required, which is beyond the scope of this study.
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LISA Proca DiscoVvERY POTENTIAL

This study suggests LISA should be able to detect superradiantly-generated Proca fields in the mass
range p1 € [1.8 x 10717, 4.47 x 10~ '%]eV. The lower bound comes from both the % scaling of the
Proca cloud radius and the reduced SNR for higher SMBH masses. At lower mass values, the Proca
cloud extends over several thousands of gravitational radii and so not enough mass is within the or-
bital radius to significantly modify the secondary BH’s trajectory. The resulting waveforms are thus
not different’ enough to be distinguishable with LISA (as determined through the faithfulness

and number of orbits statistics). The upper bound comes from the saturation of the superradiant
condition. Above a critical mass, the superradiant condition is no longer satistied and hence a su-
perradiant bound state is not formed. Since the energy flux from the Proca cloud depends on the
combination M - f1, lower mass values of the SMBH allow for increased detection probability for

higher mass values of the Proca field (and vice versa).

2.4 CONCLUSION

EMRI systems provide a unique arena to study fundamental fields beyond the Standard Model,
most notably dark matter candidates. Due to the feeble interaction between dark matter candidates
and the Standard Model fields, the mass range of such candidates covers tens of orders of magni-
tudes. The dark photon, in particular, is a well-motivated candidate for dark matter. It has several
production mechanisms including the misalignment mechanism, quantum fluctuations during
inflation, tachyonic instabilities arising from couplings to a misaligned axion, and topological de-
fect decays. Various couplings have been proposed for the dark photon. Direct detection searches
assume different couplings in the hope of detecting a dark photon-involved process.

Gravitational interactions, on the other hand, need only assume a minimal coupling between
gravity and the dark photon. The study performed here investigated the gravitational instability
arising from a perturbation in the Proca field in the vicinity of a rotating uncharged black hole.
The superradiant phenomenon is responsible for a buildup of a Proca cloud around a Kerr black
hole. The resulting cloud modifies the dynamical behavior of an EMRI system during the inspi-

raling phase, which in turn causes a modification of the measured GW waveform. Depending on
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the regime of the parameter space, such a modification can be measured by the future space-borne
gravitational observatory LISA.

After solving the Proca equations on a Kerr background and determining the fluxes of energy
and angular momentum from the resulting quasibound state, the modification of the waveform
was calculated along with derived statistical quantities that allows one to quantify the difference
between modified and unmodified waveforms. Limits on the detectable mass range of the Proca
field using LISA were obtained and found that LISA should be able to detect Proca fields in the
mass range [1.8 x 10717,4.47 x 107 1%]eV.

Throughout the study, several approximations were leveraged. Primarily, the Einstein-Proca
system is linearized with respect to the Kerr background. This separates the Proca field from the
gravitational perturbations, greatly aiding analytical developments. Secondly, the secondary black
hole is approximated to be travelling adiabatically on a sequence of geodesics and is only described
as a point particle, the so-called skeletonized approach. Higher order corrections to the motion due
to self-force interactions are neglected. Thirdly, the coupling between the secondary black hole and
Proca cloud is minimal. The only coupling between them is through the modification to the back-
ground the Proca cloud induces via the integrals of motion. This neglects resonant effects between
the Proca cloud and secondary black hole. It should be pointed out that dynamical friction effects,
accretion, and resonant transitions have been shown to have drastic effects on the orbital phase for
the case of a superradiant scalar field. It’s reasonable to suspect such dramatic effects will also be
present in the Proca field scenario. For example, resonant transitions can produce floating/sink-
ing orbits which have a drastic effect on the resulting gravitational wave signal. Dynamical friction
and accretion produce an additional torque on the binary, gradually dephasing it with respect to
the vacuum scenario. The results in this study are thus a conservative treatment since incorporat-
ing these effects will provide additional ways in which the signal can be modified, widening the
observational potential of LISA (see appendix A.3). Finally, the variation of the local gravitational
potential is approximated via the function I'(7) in eq. 2.37.

Future studies planned by the authors involve a more accurate calculation of the Einstein-Proca
equations of motion, involving numerical relativity calculations to accurately determine the geodesics,

as well as dynamical friction effects and accretion effects on the secondary BH which would pro-
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vide further modifications to the signal. Additionally, transitions between bound-bound states and
bound-unbound states induced by the secondary black hole will likely also have a significant effect.
These resonant transitions are planned for future studies as well. Hence, future plans involve more
accurate predictions for the interplay between a Proca cloud around an EMRI system with the plan
to generate data analysis-ready templates for the future LISA mission. These templates will form
the foundation for probing the existence of macroscopic Bose-Einstein condensates around EM-
RIs. We also plan to extend our analysis to the generalized Proca theories*****3, since the presence
of derivative interactions will have large implications both for the background dynamics as well as

for the perturbations.
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The task is not to see what bas never been seen before, but
to think what has never been thought before about what

you see every day.

Erwin Schrédinger

GRBoondi

GENERALIZED PROCA IS A COMPLICATED EXTENSION of the base theory of Proca. Searching for
new numerical solutions of even a single model within the generalized Proca landscape requires
building entirely new solvers, making searching the landscape a taxing endeavor. Optimizing these
searches will be vital in looking for cosmologically and astrophysically relevant models. To that

end, GRBoondi was built to facilitate finding numerical solutions of generalized Proca theories™.
GRBoond1 is an open-source numerical relativity code written in the C++14 programming lan-

guage'. It uses a hybrid set of Message Passing Interface (MPI) and Open Multi-Processing (OpenMP)
parallelization libraries to achieve good performance on the latest architectures, allowing GRBoondi

to have excellent scaling on both high-performance computing clusters and supercomputers.

“Boondi is a Koori word for a multi-purpose tool used for hunting and digging.
TGRBooNdi is freely available for download at https://github.com/ShaunFell/GRBoondi.git.
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3.1 MoTIvATION

The theory of generalized Proca is an extension of the standard Proca model that aims to extend
Proca theories in a consistent way. A natural question that often arises is whether it is possible to
extend the interactions present in the Proca field in a way that does not introduce extra propagat-
ing degrees of freedom and still maintain second order equations of motion. Previous results have
proven a no-go theorem for similar theories, making such extensions potentially problematic. For-
tunately, there is a path forward and the solution is given by the generalized Proca models. The

main objectives of such an extension are:
* enforce the equations of motion to be of second order
* restrict the temporal component of the Proca field to be non-dynamical.

The second objective is vital to ensure no instabilities arise via negative energy modes, or ghosts. This
requirement comes from the massive representation of the Lorentz group, which only carries 3
dynamical fields and hence the inclusion of additional interactions should not alter this.

The derivation of the interaction terms resulting from these two requirements is rather lengthy.
However, there are a finite number of such terms***. The resulting generalized Proca Lagrangian

takes the form

1 6
Eg.P. =Vv—g <_ZFMVFW/ + Zan£n> ) (3I)
n=2

where the self-interaction terms are

£2 - GZ(X7 F? Y) (32')
L3 = G3(X)V, A" (3.3)
0G4 > U
Ly=Gy(X)% + X (VA" = V,A,V7AP) (3.4)
1
Ls = G5(X)G,, VIA” — 6% (VA" + 2V, A, VY APV A, (3.5)
—3(V,A")V,A,VA?) — g5(X) " FIV Ay
1 o
Ls = Go(2). LMV AN Ag + §%FQBF“”VQAMV5AV , (3.6)
where G; are arbitrary functions of X = —%AMA“, Y = A"A”FﬁFm, F = —}lFWFW,
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grveb = JEmrTEP O R, s is the dual Riemann tensor, E*?* is the four-dimensional Levi-
Civita tensor, [2,g,,, is the Riemann tensor, F),,, is the field strength tensor of the Proca field A,
G is the Einstein tensor, V, is the covariant derivative operator with respect to the metric g,,,, g
is the metric determinant, and F ,w is the dual field strength tensor?* 3%+,

These are the most general interactions giving rise to second order equations of motion and that
propagate only three dynamical degrees of freedom. Due to the appearance of the arbitrary func-
tions (i}, the generalized Proca Lagrangian is actually a landscape of theories, with each one deter-
mined by a specific choice of the arbitrary functions. Studying certain physical systems within the
framework of generalized Proca theories requires specifications of the arbitrary functions. This
leads to difficulties in making general statements about the landscape of all generalized Proca theo-
ries, since there are in principle an infinite number of different choices for the arbitrary functions.

For this reason, to facilitate the numerical study of generalized Proca theories in arbitrary space-
times, GRBoondi was built. This new NR code allows for arbitrary modifications to the base theory,

expediting research into all generalized Proca models.

3.2 NR FUNDAMENTALS

GR is a highly complicated theory and numerical GR is even more so. There are many different
conceptual pieces, mathematical tools, and numerical methods that enter in the field of numer-
ical computation. Section 3.2.1 will discuss the basic theoretical method of writing the Einstein
equations in a form conducent to numerical computation. This section expands on this by writing
the Einstein equations in a form pertinent to temporal evolution, the so-called Cauchy problem.
Finally, section 3.2.3 will discuss various different schemes developed throughout the years along
with their advantages and disadvantages. These following sections will lay the theoretical ground-
work necessary to begin discussing the numerical code.

This section does not aim to provide a comprehensive pedagogical sermon for numerical relativ-
ity, instead laying a broad foundation for the rest of this chapter. There are several well-established
lecture notes and textbooks that give excellent introductions to the field of numerical relativity.
These references include refs. 325 and 326 which present comprehensive introductions on the

topic.
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3.2.1 3+I DECOMPOSITION OF THE FIELD EQUATIONS

Before the Einstein equations can be input into a computer, they need to be written in the form
of an Initial Value Problem (IVP). This is a form of the equations that, given data for the fields

at a specific time, can be uniquely solved for at later times using the field equations. It should be
pointed out that this is only possible because the Einstein equations, which are a set of partial dif-
ferential equations, are hyperbolic in nature. This is the statement that the Cauchy problem, which
an IVP is, can be uniquely solvable everywhere. A hyperbolic partial differential equation (PDE) is
a type of PDE characterized by properties that resemble the wave equation. In fact, the Einstein
equations can be written in the form of a non-linear wave equation, called the relaxed Einstein

equations

Oh*? = —1677%° (3.7)

e =0, (3.8)

where h? is the so-called gravitational field amplitude, 7P is a stress-energy pseudo-tensor of the
matter fields and the gravitational field, and [ is the standard covariant d’Alembertian operator. It
is thus clear that the Einstein equations possess a wave-like form, allowing the IVP of the Einstein
equations to be solved uniquely.

To write the Einstein problem as an IVP, a common approach is to write the equations in the
so-called 3+ form. That s to say, the ‘covariant-ness’ of the equations is undone. Recall that one
of Einstein’s greatest insights was to combine the three-dimensional space and one dimension of
time into a single object called spacetime. The 3 + 1 formalism unwinds this process and separates
the temporal direction from the spatial one. This is obvious if one wants to do explicit temporal
evolution of initial spatial data and is the approach adopted here.

However, there are other formalisms such as the generalized Harmonic approach, where the co-
ordinates satisfy Ca# = H*(z*), and H* is some four-dimensional function of the co-ordinates.
This choice of formalism was used to prove the well-posedness of the Einstein equations and the
one chosen in the first groundbreaking simulation of an inspiraling black hole*****”. It is also com-

monly used today by the SXS collaboration to generate gravitational waveform templates for the
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data analysis pipelines in current gravitational wave observatories**. Another, albeit less used, for-
malism is the Cauchy characteristic approach which chooses to slice spacetime using null surfaces

instead of temporal surfaces**".

SLICING SPACETIME

The starting point is to consider a globally byperbolic spacetime (M, g), which is to say a spacetime
manifold M equipped with a metric g that admits a Cauchy surface ¥. A Cauchy surface ¥ is a
surface whose intersecting causal curves, which have no end points, intersect ¥ once and only once.
This implies that there exists a global time co-ordinate ¢ : M — R whose level surfaces are Cauchy
surfaces. This means the topology of M is necessarily > x R. In other words, spacetime can be con-
sistently sliced according to a constant time co-ordinate, fig. 3.1.

The existence of this temporal co-ordinate al-
lows one to define concepts such as ‘evolution’,
which is a key ingredient in solving the Einstein
equations. Moreover, the temporal co-ordinate
defines a normal vector for each Cauchy sur-
face, or leaf/hypersurface, of the slicing, or *foli-

ation’, which is defined by

n' = —aV*t, (3.9)

where a is called the Japse, defined by

Figure 3.1: 825 Slicing of spacetime according to Cauchy surfaces,

N

o= (=VHV,t)

(3 I O) which are defined as the level surfaces of some 'time’ co-ordinate.

Another important quantity is the normal evolution vector m* = an*. This will be important in
defining the evolution equations for various quantities later.
With a four-dimensional metric g and normal vectors to the hypersurface, one can define the

projection operator, which takes tensors defined in the four-dimensional spacetime and projects
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them down onto the hypersurface

’)/g = gg +nfng . (3.11)

For example, a four-dimensional vector V# € M can be projected to the hypersurface ¥ via
L V® = V' € 3. Foran arbitrary (r,s)-rank tensor, the projection onto the hypersurface X is
accomplished via

Vel T = Ty €. (3.12)

This projection operator also defines a metric on the hypersurfaces, defined by

Yuvr = Guv + nuny . (313)

We have thus split the spacetime and its fundamental object, the metric, into three spatial dimen-
sions defined as the level surfaces of a time co-ordinate and equipped with a three-dimensional
spatial metric v and a single temporal dimension which defines the normal vector for the hyper-
surfaces. For any tensorial quantity defined on the manifold M, it can be split into spatial and tem-
poral contributions via the projection operator and the normal vector. For example, given a vector

V# € R, the spatial and temporal contributions can be factored out by defining

’yZV“ =X'ex (3.14)

nuv'u = ¢ ) (3~15)

where ¢ is the scalar quantity that signifies how much’ V# points out of the hypersurface 3. The

tull four-dimensional vector can then be reconstructed via V# = X#+4n*¢. This is a general proce-

dure that will be vital when decomposing additional matter fields living on the spacetime manifold.
Towards a decomposition of the full four-dimensional metric ¢ in terms of quantities orthog-

onal and transverse to the hypersurface, the remaining quantity needed is the shzft vector, which is

defined by”

Bl =t (3.16)

" Actually, choosing this definition is choosing a specific set of co-ordinates that are said to be adapred co-ordinates,
which are co-ordinates of the form z# = (t, xl), where the 2 are co-ordinates on the hypersurface.
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where t# is the tangent vector to curves of constant spatial co-ordinate, i.e. temporal curves, fig. 3.2.
With this decomposition, the tangent vector to

. . t
curves of constant spatial co-ordinates can be kY

2y

decomposed as

th = (y% — nfn,)t”

= —n'n,t" +y5t" = an” + " . (3.17)

>,

With these ingredients, the full four- Figure 3.2: Slicing of spacetime according to Cauchy surfaces,
which are defined as the level surfaces of some 'time’ co-ordinate
dimensional metric can be decomposed entlrely whose curve is graphically represented as the dashed line.

in terms of quantities defined on the hypersur-

face and scalar functions and it takes the form

—a® + Bp" B
Juv = ’ ) (318)
Bi Yij
or, in terms of the infinitesimal line element
ds® = —a’dt® + v;;(dx' + B'dt)(dz? + fdt) . (3.19)

Using these definitions, one can deduce a simple relation between the determinant of the spa-
tial and four-dimensional metric. Let g = det(g,,) andy = det(7;;). It follows from a simple

computation that

V=g=ay7. (3.20)

This relation will find much importance in computing various integrals over hypersurfaces, espe-
cially in the context of GRBoondi.

Derivations on the hypersurface and the four-dimensional manifold can, remarkably, be written
in terms of one another. Let D be the covariant derivative with respect to the spatial metric ,,,

and, as before, V the covariant derivative with respect to the full four-dimensional metric g *. For

“These are also called connection coefficients and relate to how quantities defined in two different tangent spaces can
be compared.
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atensor T € T (M), the covariant derivative of T is also a tensor, V(T') € T (M). The same
holds true for a tensor P € T (3) and D. In fact, one can find a relation between the two covariant
derivative operations acting on the four-dimensional tensor and its projected component, which
takes the form”

DwTﬁI.’ = ’Y,Z%J/' e _%?%6 e "YZVUTC%:: . (3.21)

Thus, tensors and their derivations have been decomposed in terms of scalar and three-dimensional
quantities defined on the hypersurfaces of the foliations. This allows any four-dimensional equa-

tion to be written in terms of spatial and temporal quantities.

GAUGE FREEDOM

The Einstein equations constitute a type of gauge theory. This means there is a certain kind of free-
dom in defining the metric field that does not change the physical states of the theory. The decom-
position in the previous section has made this gauge freedom manifest in terms of the lapse and
shift vector. This is rather apparent by inspection of egs. 3.10 and 3.16. The temporal co-ordinate
can be freely scaled, which should not change any of the dynamical equations governing the phys-
ical states. Since the shift and lapse are defined in terms of this temporal co-ordinate, they are also
freely specifiable without changing the physical states, hence encoding the gauge freedom apparent
in the theory.

There is a particular choice of observers that become special in a foliation by spatial hypersur-
faces, which are called the Eulerian observers. Since the normal vector is a unit timelike vector, it can
be regarded as the four-dimensional velocity of some physical observer, called the Eulerian observer.

The proper time 7 for this observer is related to the global time co-ordinate ¢ via
0T = adt . (3.22)

This justifies the use of the word "lapse function’. The lapse encodes the relation between the “co-

ordinate time’ ¢ and the physical time 7 measured by an Eulerian observer. Additionally, the shift

*It should be noted that the T" on the left-hand side is a three-dimensional projected version of the four-
dimensional tensor T" on the right-hand side. It’s written here using the same 7" in order to avoid useless cluttering
of the equations.
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encodes the *velocity’ of the lines of constant co-ordinate @ relative to the Eulerian observer. If the
observer is at position 2% at time ¢, then at a later time of t + §¢, the observer will be at position
xt — Biot.

Since the lapse and shift are completely freely specifiable, we could in principle choose what-
ever functions we want. However, practically, the gauge choice plays a huge role in ensuring the
numerical simulations remain stable and accurate, especially in the context of simulations that con-
tain curvature singularities. For example, taking the choice o« = 1, called geodesic slicing, and the
Schwarzschild spacetime in isotropic co-ordinates, it can be shown that observers within the hori-
zon reach the singularity in finite proper time which scales proportionately to the mass of the black
hole. Since @ = 1, this means the observer will reach the singularity in finite co-ordinate time as
well, posing a huge problem for numerical simulations. When trying to evolve the spacetime using
this gauge choice, observers will reach the singularity within the simulation timeframe, causing the

simulation to break down as the curvature measured by these observers becomes infinite.

CURVATURE OF THE HYPERSURFACES

The curvature of the hypersurface, relative to the four-dimensional spacetime, can be encoded in
a quantity called the extrinsic curvature, which is nothing but the projected part of the covariant

derivative of the normal vector

K, = —”yfjvan,, ) (3.23)

The extrinsic curvature is sometimes called the second fundamental form, the spatial metric being
the first fundamental form. The extrinsic curvature is related to the principal curvatures of the hy-
persurface at a given point, via the Weingarten map, or shape operator. The shape operator is noth-
ing but the directional covariant derivative of the normal vector, hence encoding information about
the curvature of the hypersurface in that direction.

Remarkably, the second fundamental form can be related to the first fundamental form in a suc-

cient way,

1

Ki; = —§£n%‘j ; (3.24)

where L,, is the Lie derivative in the direction of the normal vector. It can also be written directly in
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terms of the covariant derivative of the normal vector as
K,, = —V,n, —n,D,n(a) . (325)

PROJECTING THE RIEMANN TENSOR

The Einstein equations” are written in terms of various projections of the Riemann curvature ten-

sor, namely the Ricci tensor R, and Ricci scalar R

1 8tG
R,uzx - §QWR = A

T (3.26)

where 7 is the stress-energy tensor of the matter fields present in the spacetime. Towards the ob-
jective of decomposing the evolution equations into spatial and temporal components, the Ricci
tensor and Ricci scalar must be decomposed as well. This will inevitably come from a full decom-
position of the Riemann tensor itself. These projected forms of the Riemann tensor will form a
foundation of the 3+1 formalism for GR.

In order to avoid further cluttering of equations, we introduce a new notation for spatial and full
four-dimensional quantities. Unless otherwise stated, full four-dimensional tensors will be denoted
with a 4 behind the symbol, such as the full four-dimensional Ricci scalar 4R. Three dimensional
tensors will be denoted with no superscript, such as the three-dimensional Ricci scalar R.

The Riemann tensor is a rank-4 tensor, meaningitis a4 x 4 X 4 X 4 matrix of components. This
means it will have various projections, depending on the index that is projected. The first projection
will be a complete projection of all four indices to the hypersurface, ’yﬁ"yf Yo (*R)” ,_ . This can

aBy:

be written using the three-dimensional Riemann tensor and the extrinsic curvature tensor as
a B.o (4 14 __ po o o
’ylt’yl//yp’yA( R)aﬁfy - R;wk +KVKMA - KXKVM : (327)

This is the so-called Gauss relation. We can contract the o and v indices to obtain the contracted

“Here, we ignore the cosmological constant, which would contribute a term Ag,,,, to the left-hand side.
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Gauss relation,
Vs (R + Yo 15 (“R)Y,, = Rap + KKap — Kap Ky (3.28)

where C = ¢g" K, is the trace of the extrinsic curvature. This can be contracted again over the

indices v and /3 to obtain
R+2("R)wnn’ = R+ K? — K K" . (3.29)

This famous equation is called the scalar Gauss relation and is a generalization of Gauss’ famous
Theorema Egregium, which relates the intrinsic curvature of ¥, encoded by the Ricci scalar R, to its
extrinsic curvature, encoded by K — K;; K.

We can derive another relation using the Ricci identity, which is a statement about the non-

commutativity of the covariant derivative operator,
vy _4 pvY
[Va?vﬁ]n - Ruaﬁnu : (330)
Projecting this relation using the tools just developed, one finds

Ay (*R)S,, = DsK] — Do K} (3.31)

ouy

which is called the Codazzi relation. Contracting the Codazzi relation once along the o and 7y in-

dices yields the contracted Codazzi relation
" ("Ryu) = Dok — D, KL (3.32)

Taken together, egs. 3.27 and 3.31 form the Gauss-Codazzi relations, which underpin the 3+1
formalism of GR. They will be explicitly used in projecting the constraints hidden within the GR
field equations onto the hypersurfaces.

Instead of projecting the entire Riemann tensor onto the hypersurface in eq. 3.3 1, we can project
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it twice onto the hypersurface and twice along the normal vector

Yo"V’ (R)A, o = Yaun "V [V, Vo] 0 . (3-33)
These leads to
o v, p4 1 1 17
Va5 CR)pe = —ZmKap + —DaDso + KoK (3.34)

where m* = an* is the evolution normal vector. This is sometimes called the Ricci equation.
Together with the Gauss-Codazzi relations, these three relations complete the 3+1 decompo-

sition of the Riemann tensor. One can take the trace of the Ricci equation, combine it with the

scalar Gauss equation, and find an expression for the four-dimensional Ricci scalar in terms of

three-dimensional quantities
4 2 iy 2 2 i
R=R+K +K;K"—-—-L,K—-—-D;,D'« . (3.35)
« «

So far, the projection of the left-hand side of the Einstein equations have been formulated in
terms of the 3+1 variables. What remains is the decomposition of the right-hand side, the stress
energy tensor of the matter fields 7,,,.. It is a rank-2 symmetric tensor, so there are three possible

projections

* The matter energy density measured by the Eulerian observer is given by the double projec-
tion along the normal direction

p = Tuntn", (3.36)

which follows from the fact that the four velocity of the Eulerian observer is the unit normal

vector itself.

¢ Similarly, the matter momentum density as measured by the Eulerian observer is the linear

form

14
Pa = —TuwYhn (3.37)
whose sign is chosen so that it is future-oriented.
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* Finally, the matter stress tensor as measured by the Eulerian observer is the bilinear form
S = Tas VW - (338)
Under this decomposition, the full four-dimensional stress energy tensor can be reconstructed as
Tow = Spw + Py + Mupy + prny (3.39)

THE CONSTRAINTS

Behind the scenes, GR is a constrained system. It’s not obvious what those constraints are from first
inspection of the equations themselves, however they are revealed by the 3+1 decomposition.
Projecting eq. 3.26 entirely along the normal direction and applying the scalar Gauss equation

eq. 3.29 results in the equation

1
4Ruyn“n” + 5(472) = 8nTnt'n”

l

R+ K? - K;;K7 = 167E . ] (3.40)

This is the Hamiltonian constraint and, as its name suggests, follows also from a Hamiltonian treat-
ment of GR.
Projecting eq. 3.26 once along the hypersurface and once along the normal vector, then applying

the contracted Codazzi equation eq. 3.32, yields

12 1 12 1%
Rt = S("R)gui'n” = 8 Turln

!

DjKij — DK = 8mp; . (3.41)

This is the momentum constraint.
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The remaining projection of the Einstein equations is the complete projection along the hyper-
surface. Combining the contracted Gauss equation with the Ricci equation, eqs. 3.28 and 3.34,

yields

EmKij = —DiDja + (R” —+ ICKU — 2K11KJZ + A [(S — ,0) ’Vij — 251]) 9 (3.42)

where S = 7S;; is the trace of the matter stress tensor.

eqs. 3.40-3.42 are completely equivalent to the original Einstein equations, eq. 3.26. Eq. 3.42 is
an equation for a rank-2 bilinear form in the leaves of the foliation, involving only symmetric ten-
sors. Hence it therefore has six independent components. Eq. 3.40 is a scalar equation, yielding an
additional component. Eq. 3.41 is a vectorial equation, yielding three more components. In total,
eqs. 3.40-3.42 are a system of equations for ten independent components, the same as the original
Einstein equations. Including eq. 3.24, all variables can be evolved using spatial and temporal infor-

mation.

NR As A CaucHY PROBLEM

As mentioned earlier, the Einstein equations can be placed in a form that makes the problem of
solving them a Cauchy IVP. The evolution normal vector can be written as m* = t# — 8#. Using

properties of the Lie derivative, this implies
Lo =L —Ls. (3-43)

Using so-called adapted co-ordinates, i.e. co-ordinates whose temporal component is simply ¢, one

can write

Le=o (3.44)

which implies

L, T = (a — ﬁg) Ty (3.45)
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Hence, eq. 3.24 and 3.42 can be rewritten as

0
(— - Eg) Kij = —DiDjOé + « (RU + ICKZ‘j - 2KilKjl- + 47 [(S - p) Yij — 281]) (3.46)

0
<— - 5,8) Vij = —20K; (3.47)

Thus, the full Einstein equations may be written as

3+1 Einstein Equations

0
(a — £/3> ’Yij = —ZOéKZ'j

(% — ﬁ@) Kij = —DiDjCY + « (RZJ + K:KZ] — QKZIKJZ + 47T [(S — p) ’77;]' — 251])

D,;KJ} — D;K = 8p;

R+ K? — K;; K" = 167F .

Hence, given constraint-satisfying initial data at some particular time slice, the 3+1 Einstein
equations will determine the physical state at later times. However, this is not enough to ensure
the solutions obtained from the 3+1 Einstein equations are unique and valid solutions. One also

has to ensure these equations are well-posed, which is closely related to the concept of hyperbolicity.

3.2.2 WELL-POSEDNESS AND HYPERBOLICITY

Stability and accuracy of the IVP of the 3+1 Einstein equations relies on the concept of well-posedness,
which comes from the mathematical theory of PDEs. Since stability of the numerical solutions of
GRBoondi is vital for simulating a wide range of physical systems, this concept will be touched on
here, although a pedagogical discussion is deferred to the literature >**3%°.

The starting point for a discussion of well-posedness begins with a general discussion of PDEs.

Consider a system of PDEs of the generic form

dyu = P(D)u (3.48)
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for some arbitrary n-dimensional vector-valued function of space and time, and P(D) an n X n ma-
trix whose components are smooth functions of the spatial derivation operators. The IVP for such
a system corresponds to finding a solution of the form u(z, t) given some initial data u(x,t = t).
A critical property for such a system of PDEs is that of well-posedness. This is the idea that the solu-
tion u(z, t) depends continuously on the initial data u(z,t = t;). In other words, small perturba-
tions in the initial data u(z, ¢ = ¢() produces only small changes in the final states u(z, t). This can
be encapsulated in the following definition**°:

Definition 3.2.1

A system of partial differential equations is called well-posed if there exists a norm (usually a Sobolev

norm) and two constants k, o, such that for all initial data and all positive times,

[Ju( )] < ke™|lu(-, 0] -

Most systems of evolution in mathematical physics are well-posed, however simple examples can

already showrcase systems that are ill-posed. Consider for example the simple inverse heat equation

o = —0%u . (3.49)

Assume the initial data is single Fourier mode u(x, 0) = e**. The solution is easily found to be

u(z, t) = F ik (3.50)
which grows exponentially in time with an exponent that depends on the frequency of the Fourier
mode k. By increasing k, the rate of growth can be increased arbitrarily, so the general solution can-
not be bounded by an exponential that is independent of the initial data. Additionally, given any
generic initial data, we can always add a small perturbation of the form ee’* fore < land k > 1,
such that after a finite amount of time has elapsed, the solution can be very different than the orig-
inal unperturbed system. Hence, there is no continuity of the solution with respect to the initial
data. Therefore, this system is ill-posed.

Hyperbolicity is a concept closely related to well-posedness. In fact, it can be shown that a hyper-
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bolic system of PDEs is well-posed under very general conditions. Consider a system of first order

evolution equations

Ou + MO = s(u) | (3.51)

where M"are n X n constant-valued matrices and s(u) is a source vector-valued function that may
depend on the us but not on their derivatives. It can be shown quite generally that if the system

of equations with s(u) = 0 is well-posed, then the system of equations with s(u) # 0isalso
well-posed. Intuitively, hyperbolicity is attributed to systems of evolution equations that behave in
some way as wave equations. Such systems are well-posed and the speed of propagation of informa-
tion should be finite. The notion of hyperbolicity can be related to properties of the matrices M 0
which are also called the characteristic matrices. To that end, consider an arbitrary unit vector n;
and construct the matrix P(n;) = M'n;, which is known as the principal symbol of the system of

equations. Then, using the principal symbol, one can define several different versions of hyperbolic-
ity:

* The system of equations eqs. 3.51 is called strongly hyperbolic if the principal symbol has real

eigenvalues and a complete set of eigenvectors for all n;.

* The system of equations is called weakly hyperbolic if the principal symbol has real eigenval-

ues for all n; but does not have a complete set of eigenvectors.
¢ Ifall the characteristic matrices are symmetric, then the system is called symmetric byperbolic.

* The system of equations is called strictly byperbolic if all the eigenvalues of the principal sym-

bol are not only real but also distinct for all ;.

It can be shown that strongly and symmetric hyperbolic systems are well-posed. Moreover, strictly
hyperbolic systems are automatically strongly hyperbolic.

The system eq. 3.51 can be recast into the form

O+ 0;F'(u) = s(u) , (3.52)

where F are vector-valued functions of the us and spacetime co-ordinates, but not of derivatives of
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the us. The vectors F* are called the flux vectors, and the characteristic matrices are then given by

- OF"
(M")ap = 8u: : (3-53)

A system of the form eq. 3.52 is called a balance law since the change of the solution u in a vol-
ume is given by a balance between the fluxes entering or leaving the volume element and sources.
If s(u) = 0, then eq. 3.52 is called a conservation law.

A simple example of a hyperbolic equation is the one-dimensional advection equation

O+ vO,u =0 (3-54)

withv € R. This solution propagates the initial data with a speed v without changing the initial
data’s profile. In other words, for initial data u(x,0) = f(x), the solution to eq. 3.54 is simply

u(x,t) = f(x — vt). This is an example of a strongly hyperbolic system.

HYPERBOLICITY OF THE EINSTEIN EQUATIONS

Now the following question arises: Under what conditions are the 3+1 form of the Einstein equa-
tions well-posed? It turns out the 3+1 Einstein equations are well-posed under two mutually inde-

pendent conditions:
* The momentum constraints eq. 3.41 can be guaranteed to be identically satisfied.

* Either the ‘densitized lapse’ @ = «/,/7 is assumed to be a known function of spacetime
(but not the lapse itself), or we use the slicing condition of the so-called Bona-Masso family:

La=—a’f(a)k.

Under these conditions, the Einstein evolution equations would be strongly hyperbolic, imply-
ing well-posedness. While choosing a type of gauge is easy enough, ensuring the momentum con-
straints are continuously satisfied is an entirely different challenge. Firstly, using finite methods for
numerical integrations will inevitably lead to violations of the constraints, due to the inability for
the solver to resolve details finer than the highest resolution of the computation. Secondly, even in

the continuum limit, when the resolution is taken to infinity, the strong hyperbolicity of the system
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would only be guaranteed for very specific choices of the initial data. Hence, even in the absence
of matter, when S = p = 0, the evolution equations in the form of the 3+1 Einstein equations
are only weakly hyperbolic. Thus, alternative versions of the evolution equations must be sought to

ensure stability and accuracy of the numerical scheme.

3.2.3 EVOLUTION AND SCHEMES

A large number of alternative formulations of the Einstein equations have been proposed in the
literature, more than there are groups that can code the solvers. These formulations all search for

evolution equations that result in stable and accurate evolutions.

Tuae BSSNOK FORMULATION

In 1987, Nakamure, Oohara, and Kojima presented a new formulation of the Einstein equations
based on a conformal transformation and which showed improved stability compared to the 3+1
Einstein equations**’. Largely unnoticed for over a decade, it wasn’t until Baumgarte and Shapiro
rigorously compared it to the 3+1 Einstein equations and showed that the new formulation had
excellent stability properties in all considered cases. Today, this new formulation is widely accepted
and the most commonly used in full three-dimensional solvers. The most common version of this
formulation is called the BSSN (Baugmarte, Shapiro, Shibata, Nakamura), or BSSNOK (Baum-
garte, Shapiro, Shibata, Nakamura, Oohara, Kojima), formulation.

A central point in the BSSN formulation is the application of a conformal transformation of the

spatial metric

Yij = 1/174%']' ; (3.55)

where 1) is a conformal factor that can in principle be freely specified. For example, in black hole
spacetimes, the conformal factor can be chosen to be the initial singular conformal factor and then
enforce this factor to remain temporally fixed. This allows the non-singular part of the metric to be
evolved and is known as the puncture method. In the BSSN formulation, the conformal factor is

chosen such that the conformal spatial metric 7;; has unit determinant

Pt =3 = =412, (3.56)
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Additionally, the extrinsic curvature is separated into its trace and its trace-free part,

1
Aij = Kij — g%‘j’c ) (3:57)
which is then conformally rescaled
Az’j =y A, . (3.58)

An important additional piece for the BSSN formulation is the introduction of three new auxiliary

tunctions called conformal connection functions
ey »
" =4"T% = =0;77, (3-59)

where I are the Christoffel symbols of the conformally rescaled metric. These additional variables
are promoted to full dynamical variables, meaning they will possess evolution equations. The in-
troduction of these variables is to allow the conformal Ricci tensor 7~2,~j to be expressed in a man-
ifestly elliptic form, which is crucial for ensuring strong hyperbolicity and hence well-posedness.
In order to improve further the hyperbolicity properties of the evolution equations, multiples of
the constraints are added in. For example, in the evolution equation for the extrinsic curvature, the
Hamiltonian constraint eq. 3.40 is used to remove the Ricci scalar. In the evolution equation for
fi, the momentum constraint is used to remove derivatives of A¥, which is important for stability.
Additionally, instead of evolving the conformal factor explicitly, a common approach for black hole
spacetimes is to evolve Y = 13,

The evolution variables for the BSSN formulation of the Einstein equations are then a set of 16
variables {x, 7;;, K, Aij, f‘z} and whose evolution is governed by eqs. 3.60-3.64.

The second covariant derivative of the lapse can be calculated using the BSSN variables as
~ 1 .
D;D;a = 0;0;00 — I‘fjakoz + E (@a@jx + 0;00;x — %ﬂkl(?kaﬁlx) (3.65)
and the full spatial Ricci tensor is computed via
- 1 N
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BSSN Evolution Equations

. ~ . . 2 .
Oy = —2aAi; + Fin0; 8" + A0;8" — §%j3k5k + B0 (3.60)

0, Aij = x [-DiDja + a (Ry; — 8mSy)|" " + (K Ay — 243 AY) + B0 Aij+

_ ~ 9 .
A0, 8 + Ap0,8% — gAijakﬁk (3.61)
2 . .
O x = gX(OéK — 0;8") + B'O;x (3.62)
.~ 1 .
(9tK = —X’?leleOé + o (AUAZ']' 4 §K2> = 471'@([) = S) = B’@ZK (3.63)

. . 1 . 9 .
AL = F*0,08' + =770,008" — "0’ + ST°0,8" + BOLT"~

(3 L4 .
i <§akx + 28ka) + 20T, AM — ga’y““akic — 16ma7"py, (3.64)

3 1 o I T o
Rij = _§'Yklakal%‘j + @O + Erkak%j + 7 <2F§€(Z‘Fj)km + Ffka1j> (3.67)
1

Ry = 3 (DiDjX + %’ﬂleleX) "Iy (@Xan + 3%j’YklakX81X> : (3.68)

where D is the covariant derivative with respect to the conformal spatial metric ;;. The BSSN evo-

lution equations are supplemented with algebraic constraints due to the definition of the new vari-

ables

y=1 (3.69)
FIA; =1 (3.70)
i — ~klf§€l =0. (3.71)

The first constraint typically is not enforced since it is fairly stable for simulations that have well-
behaved initial data. The second constraint is required to be manually enforced throughout the
simulation in order to maintain stability. The third also needs to be enforced.

It turns out, after performing a detailed analysis, that the BSSN evolution equations are strongly
hyperbolic, implying that they are well-posed. The BSSN system has been proven time and again to

be more numerically stable than other formulations.
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CCZ4 FORMULATION: DAMPING THE CONSTRAINTS

An important point to be made about the BSSN formulation is that the constraints need to be care-
tully monitored throughout the entire simulation, since errors can accumulate over time due to
finite differencing, boundary effects, and possible other origins. The accumulation of these errors
drives the simulation data away from solutions of the Einstein equations. To counteract these chal-
lenges, a new formulation was developed called the CCZ4 formalism. The CCZ4 formalism adds
additional auxiliary fields that act as damping fields which suppress the Hamiltonian and momen-
tum constraint equations.

The idea of a constraint suppression mechanism can be largely understood using a simple exam-

ple. Consider the trivial system

oA=10 (3.72)

which is subject to the constraint A = 0 for all time. Suppose at a later time, A = k # 0, possibly
due to numerical errors, mesh refinement eftects, or other origins. Numerically evolving eq. 3.72
past this point means the violation of the constraint will remain constant throughout the rest of the

simulation. Instead, we could add a constraint damping term to the right-hand side of eq. 3.72
DA = —KA (3.73)

for k > 0. If XA becomes non-zero at some point in the evolution, the constraint damping term
will push the solution back to the constraint ’surface’ A = 0. The constraint surface becomes an
attractor in the solution space.

In the spirit of this, the CCZ4 formulation of the Einstein equations was introduced which in-
cludes a new auxiliary field that is responsible for damping away violations of the constraints. The

modified Einstein equations take the form

1
Ruw + 2V 2y — K1 (2n(MZV) -1+ KQ)QMVTLQZQ) =87 <7Iw — 59#,,7') . (3.74)

This new vector field is assumed to vanish on physical solutions, which amounts to adding a new
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constraint Z,, = 0. This form of the Einstein equations implies an evolution equation for Z,
VN Zy + R Z” — 61V (200 Zyy + K2guan’Zs) =0, (3.75)

which takes the form of a generalized telegraph equation, implying the Z field propagates as an ex-
ponentially damped wave at the speed of light***. A careful analysis shows that for the Z field to be
properly damped, k; > 0and ko > —1. The requirement that this system be strongly hyperbolic is
simply that one uses the densitized lapse v/ /7 or a Bona-Masso slicing gauge condition. Notably,
the momentum constraint is no longer required.

This approach has several advantages. The first is obviously that the constraints are damped and
violations propagate at the speed of light outside the computational domain. This is a highly de-
sirable trait since numerical schemes inevitably introduce some amount of error, whether it’s finite
differencing related, boundary related, or from some other source. The damping of these violations
increases the confidence that the simulation data is closer to the constraint surface than they would
have otherwise been. While in principle starting with initial data that possesses some amount of
constraint violation is permissible, relying on the damping terms to reduce the violations during the
evolution is discouraged. This is due to the fact that the flow of the solution towards the constraint
surface may converge to a solution not intended during the initial data construction.

The CCZ4 formalism continues towards decomposing the covariant equations of motion eq. 3.74.
The decomposition follows closely to the BSSN approach, however, different auxiliary functions
are chosen

f‘:fi—i—zZi , (3.76)
X
where the Z* are the spatially projected version of the four vector Z*, Z* = *yZL Z". The modifica-
tion of these auxiliary connection functions changes the dynamical variables compared to BSSN.
Now, the dynamical variables are {x, 7;;, IC, flij, O, IA”}, where © = —n, Z*, the component of
the auxiliary damping field normal to the hypersurfaces. This formulation results in the evolution

equations 3.77-3.82. In order for this system to be strongly hyperbolic, the combination R+2D, 2’
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CCZ4 Evolution Equations

- ~ - 2 -
Oy = —2aAs; + 29,05 Br — g%jak BF + Bkak%j (3.77)
6,5/1“ =X [—DiDjOé —+ « (Rl] + D,ZJ + DJZ,L — 87TO[Sij)]TF + CYAU (]C — 2@)
. - 9 . .
— 20414@1143- + 245,05 B* — gAijak B* + B0 Ay (3.78)
2 2
Ihx = saxK = gxak/ﬁ’“ + B*0rx (3.79)
0K = —D'Djo+ o (R+2D;Z' + K* — 20K) + /D, K — 3ak; (1 + k2) ©
+ 4wa (S — 3p) (3.80)

1 . . o~ .
00 = Za (R +2D,7¢ — Ay AV + §/c2 - 2@&) — Z'9a + B*D,©

— aky (24 K2) © — 8map (3.81)
i = ik 3 70X 2.4 ~ ki 2
Ol = 2a | T A" — §A]7 — gfyjﬁle + 27" | @0r® — B0y — gaICZk -
- N : 1 . 2~ = )
249000+ B*ORI" + M 0,0,8" + gv’“akalﬁl + grzakﬁk —T*9,8'+
2K3 (giijﬁkﬁk — ﬁJijakB’) — 2amY Z; — 16Ty py, (3.82)

must be computed as

1. o L L
Rij + 2D 75 = =57 OmuFig + 5" (205 Dipion + T D)
A 1 (2 1
505 I + T iy + = ( DiDyx — —0ixd;
T mOp T+ L () +2><( X750 ij>

1 L~ 3
_~i' ~manDn - —5™" m an .
+ 2X’YJ (’Y X 2X’V X X)

3.2.4 GAUGE CHOICES

With the evolution equations in hand, there is one remaining piece before turning to numerical
solvers and that is the choice of gauge. This choice is vital to ensure stability of simulations, espe-
cially in the presence of singularities. Consider the evolution of the spatial metric, given by eq. 3.24.

Fixing the spatial co-ordinates to 2*, then
ddn(y/7) = —ak + D" . (3.83)
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Using the choice @ = 1 and % = 0, then the evolution of the 3+1 Einstein equations yields

oK = K K7 +4n(p+ S) . (3.84)

The first term is positive-definite and the second is at least non-negative, implying that the volume
element shrinks to vanishing values.
The solution to this issue is by finding an alternative choice of gauge. Intense effort was put into

this search, finally arriving at the Bona-Masso family of gauge conditions**?

(0 — £5) a = —af(a)K (3.85)

with f(a) an arbitrary function of the lapse. Substituting the spatial metric evolution eq. 3.24 into

the above equation and choosing f () = 2 yields

Ay = 29,log (v/7) (3.86)

which can be directly integrated to yield

a = g(z) +log (v) . (3.87)

This choice of f(«) is commonly known as 1+log slicing. It turns out this choice of slicing has very
strong singularity avoidance properties, making it a robust choice for evolving spacetimes contain-

ing singularities ***. In the CCZ4 formulation, the 1+log slicing becomes

o = B — 20 (K — 20) . (3.88)

This is not enough for stable evolution, since the choice of the shift vectors needs to be gauge fixed

as well. It turns out the choice 3° = 0 is insufficient as well. Instead, the most common choice is
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the so-called Gamma-driver condition, which amounts to the choice

0,3 = b1 8501, B" + by B’

8B = b, (MakBi - 5kakfi> v o~ B,

where by, by, and 7 are specifiable parameters. The choice implemented in codes such as GRChombo
isby =1,by = %, and 7 ~ 1/M for simulations of black holes of mass M.

The combination of 1+log slicing and the Gamma driver condition is known as the moving punc-
ture gauge as it permits black hole singularities to traverse the computational grid without the need
for excision or extra care. For this very reason, this is a common gauge choice when dealing with
black holes and is the most common choice of gauge for codes such as GRChombo.

With these gauge choices and evolution formalisms in hand, one can finally turn to generating

computer code and running simulations.

3.3 EvorviNG GENERALIZED PrROCA

This section discusses the intricate details of a new numerical relativity code developed during this
thesis titled GRBoondi. The code is entirely dedicated towards numerical evolutions of systems con-
taining generalized Proca fields. In other words, GRBoondi is used to solve eqs. 3.1-3.6.

The inception of GRBoondi came about due to several difficulties arising from computing the
evolution of the Proca field using full numerical relativity in GRChombo. Primarily, a catastrophic
result prevented long-term evolution of the Proca field in a dynamical spinning black hole back-
ground: The black hole background was unstable to long-term evolution. Even with a proper
choice of gauge and using the best initial data that’s actively used in black hole evolutions, the hori-
zon of the black hole had trouble evolving past several hundred simulation clock cycles. For a su-
perradiant Proca cloud, this is extremely far from sufficient. Typical timescales are on the order
of thousands, or even tens of thousands, of clock cycles. Hence, one of the central projects of the
thesis had a catastrophic problem. Therefore the attention was turned to evolving the Proca field
on a fixed background. At first, this was heavily avoided, since the initial goal was to derive results

for generalized Proca fields in the full Einstein-generalized Proca theory. However, after facing the
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show-stopping problem in the full simulation, closer inspection of the fixed background problem
revealed that the fixed background approximation was quite acceptable. This is actually a permis-
sible approximation for these types of studies since the Proca field is largely a perturbation on the
background. Hence the errors in the Einstein equation, whose magnitude is roughly proportional
to the square of the Proca field, are otherwise small, even for large superradiant Proca clouds. More-
over, it was quickly realized that studying several different generalized Proca theories all resulted in
roughly the same computer code. Hence, GRBoondi was developed, allowing for rapid reusability of
huge parts of the computer code, even for more complex generalized Proca theories.

This section will be split into several parts. Subsection 3.3.1 spells out the fundamental pieces
of GRBoondi. In particular, the structure of the code, the discretization procedure, dissipation al-
gorithms, and available boundary conditions will be elucidated. Subsection 3.3.2 will be dedicated
to discussing the complexities of adaptive mesh refinement. Subsection 3.3.3 will discuss the paral-
lelization procedures utilized by GRBoondi, an important piece in developing highly scalable simula-
tions. Subsection 3.3.4 discusses diagnostic quantities and their extraction from the computational
grid. This is crucial in extracting useful information from the simulations and especially in study-
ing the superradiant process, where knowing the total energy of the Proca cloud is vital. Subsec-
tion 3.3.5 finally discusses how GRBoond1i can incorporate arbitrary modifications to the base Proca

theory, allowing any generalized Proca model to be studied.

3.3.1 FUNDAMENTAL PIECES

There are many pieces and active parts in numerical relativity codes, making development of an
accurate and precise simulator a challenging task. Fortunately, many libraries have been developed
over the years that provide comprehensive functions, allowing developers to relegate challenging
methods to more established software libraries. These libraries are heavily utilized by GRBoondi. We

describe these fundamental methods, concepts, and libraries here.

STRUCTURE OF CODE

From the outset, GRBoondi aims to be two things: 1) A highly modular codebase and 2) easy to use.

This means many low-level function methods and algorithms are entrusted to existing libraries.
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Two of the most widely used ones are:

* Chombo’**: a set of tools for implementing finite differencing and finite volume methods for

solving generic PDEs on block-structured adaptively refined grids.

* GRChombo****#°: a numerical relativity code for solving Einstein’s equations, which allows

matter fields to be mutually evolved.

Since GRChombo is based oft the Chombo library itself, the Chombo methods are not directly
utilized within GRBoondi, instead only indirectly through its use of GRChombo. Because of this

inheritance, the structure of GRBoondsi is basically of the form

Methods inherent
to GRBoondi + | GRChombo.

Many of the grid generation, refinement methods, checkpointing, and other methods come directly
from GRChombo, while the methods for evolving the Proca evolution equations, setting up appro-
priate level classes, and ability to incorporate additional terms in the generalized Proca Lagrangian
are in GRBoondi.

It’s instructive to use an example in order to explain the basic mechanics of running a simula-
tion using GRBoondi. To this end, the problem of simulating a standard Proca field on a Kerr back-
ground is used, whose code is incorporated into the GRBoondi Github repository and henceforth
will be called the Proca example. The fundamental class structure of the Proca example is shown
in fig. 3.3. The central orchestrating class is the AMR class, which is a parent class to GRAMR. The AMR
class stores pointers to AMRLevel classes, which contain methods and information about each re-
finement level of the grid. Each AMRLevel class corresponds directly to a single refinement level. At
runtime, the AMR class instantiates the grid, generating each level class, and then finally executing
the evolution. The AMR class is thus the orchestrator of the entire simulation. It generates check-
point files and, as the grid orchestrator, is responsible for the regridding procedure. While the AMR
class manages the overall mechinations of the simulation, it doesn’t know how to perform finer-
grained tasks, instead calling methods from each level class and their children. For example, after
each timestep, the AMR class calls the GRAMRLevel: :postTimeStep() method, which executes func-

tions after each timestep on the level that that GRAMRLevel instance points to.
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Figure 3.3: Diagrammatic representation of the class structure and hierarchy for the Proca example. The lilac rectangles are classes
from the Chombo library, the green rectangles are GRChombo classes, and the light green boxes are GRBoondi classes.

The GRAMR class is a child of the full AMR class and handles generic methods from GRChombo
that need access to the full refinement hierarchy, for example, a pointer to the interpolator object
for interpolating data on the grid. It can also handle filling in ghost cells across multiple levels (see
sec. 3.3.2) or accessing the GRAMRLevel children of the AMRLevel instances. Users could add another
level to the hierarchy by inheriting from GRAMR and defining their own AMR orchestrator. For exam-
ple, in GRChombo, there is the BHAMR which handles apparent horizon locating and tracking the
black hole puncture. Users of GRBoondi could easily incorporate similar inheritances.

Each refinement level in the grid is represented programmatically by the ProcaFieldLevel class,
itself a great-grandchild of the AMRLevel class, grandchild of the GRAMRLevel class, and child of the
BaseProcaFieldLevel class. The AMRLevel class contains information about the levels above and
below it, and virtualizes methods such as setting up initial data, performing the regridding on its
level, and advancing the state of the simulation on its level. These methods are then defined by
the child of the class, in this case GRAMRLevel. The GRAMRLevel class does the brute force work on
its level. It executes code that advances the levels state, carries out the process of regridding, and

executes the functions that define the initial data. The BaseProcaFieldLevel class inherits from
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Figure 3.4: Diagrammatic representation of the level methods and level class inheritance of GRBoondi. Starred methods in the
ProcaFieldLevel planet are required to be set by the user. All other methods are virtual and have default definitions which can be

freely modified by the user.

GRAMRLevel. It contains almost all of the methods required for evolving the Proca field on its level,
including computing diagnostic quantities for plotting, executing the time-stepping code, and in-
tegrating quantities across the level. The methods of BaseProcaFieldLevel are catered towards
generalized Proca systems. They use the variables and data specifically designed for evolving such
fields. The ProcaFieldLevel class is entirely problem specific and must be defined by the user.
This is the final level of the level class hierarchy. It must have at least one method defined, which
is the initial data method — it must define exactly how to compute the initial data. Beyond that,
additional methods are available for use and are inherited from BaseProcaFieldLevel. These in-
clude additional steps to be performed in the BaseProcaFieldLevel: :postTimeStep or in the
BaseProcaField: :PrePlotLevel execution. Users can even overwrite methods inherited from
BaseProcaField, such as the specific time-stepping code, since the methods have been virtualized

using c++14 specifiers.
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DISCRETIZATION AND TIME-STEPPING

GRBoondi evolves the equations using the Method of Lines, which separates the differencing into

time and space. As an example, consider the heat equation

ou  O%u

R (3.89)

. . . . . . 2 .
Then let A2 represent a discretized version of the second partial derivative A%y ~ %. In partic-
ular, A% is determined by neighboring points and is no longer a derivation. This transforms the

heat equation into
ou
— =A%y .90
which is now an ordinary differential equation that approximates the PDE eq. 3.89 and can be
solved using standard ordinary difterential equation techniques.

GRBoondi uses the fourth order Runge-Kutta (RK4) method for computing the temporal inte-

grals. To illustrate the RK4 procedure, consider an arbitrary IVP of the form

Y stw) (91

with initial data y(ty) = o, y(t) is the yet-to-be-determined function, and f (¢, y) is an arbitrary
function of time and the variable y itself. Then, with a step size of At = h > 0, four substeps are

computed

klzf(tnayn>
h k1
ky = tn o In h—
2 = f( +2 Yn + 2)
h ko
kS—f(tn‘i‘i?yn‘i_hE)

ky = f(tn + h,yn + hks) .

For a given n, the solution one timestep later is computed as

h
Yor1 = Yo+ & (k1 + 2ko + 2ks + ky) . (3.92)
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So long as the original IVP is well-posed, then so is the RK4 method?**°. The simplicity and stabil-
ity of the RK4 method makes it an extremely popular choice for solving finite difference problems.
Additionally, the accuracy of the integration can be dramatically increased simply by adding more
substeps, resulting in the so-called explicit Runge-Kutta method**”. Moreover, the total accumu-
lated error from the approximation scales as O(h), making it easy to substantially increase accu-
racy by simply reducing the time step.

For the discretization itself, the continuous spatial and temporal directions are replaced by finite
versions up to some boundary. This means the spacetime is truncated to finite spatial and temporal
extent and the continuous surface is replaced by a mesh. For simplicity, this mesh is here assumed to
be uniform in all spatial and temporal directions, however the real mesh setup will be discussed in
section 3.3.2, where an adaptive mesh routine is discussed.

The computational domain then becomes Z = [Zynin, Zmaz) U [0, timaz] € R? and the grid is

defined by
Tj = Tpin + JAT (3.93)
tn = nAt (3.94)
forj=0,---,Jandn = 0,--- N, with J = #mez=imin and N = tz—“t”. The evolution variables

then become functions over this mesh Q(z,t) — Q, = Q(Z,, t,). Spacial derivatives are com-
puting by using stencils. GRBoondi uses fourth-order centered stencils, which means derivatives are

computed using the following formulas 338

1
0,Q = n (Qi—2 — 8Qi—1 + 8Qi11 — Qiy2)

1
Q= 97,2 (—Qi—2 +16Q;—1 — 30Q; + 16Q;11 — Qit2)
1
0:04Q) = Tian? (Qi—2j—2 — 8Qi—2,j-1 +8Qi—2j+1 — Qi—2,j+2 — 8Qi—1,j—2 + 64Q;i—1 -1

—64Q;i—1,j4+1 + 8Qi—1j12 + 8Qiy1,j—2 — 64Qi11 -1 + 64Qi41 541

—8Qit+1,j+2 — Qit2,j—2 +8Qit2 -1 — 8Qi+1j+1 + Qit1,42) »

where (); ; is the value of the evolution variable at grid point (¢, j). The « and y symbols are place-
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holders for any of the three spatial co-ordinates. For computing so-called advection terms, which are

of the form /370;Q), different stencils are required in order to maintain stability

o (—=3Qi—1 — 10Q; 4 18Qi41 — 6Qiys + Qiy3), if 57 >0
0:Q = : (3.95)

o7 (—Qi—3 +6Qi—2 — 18Q;—1 +10Q; + 3Qi4+1), if " <0

Sixth order stencils are available as well, though these typically aren’t necessary.

KRrEISS-OLIGER DISSIPATION

An issue that arises from using finite methods to compute systems of PDE:s is the appearance of
high frequency noise, which is especially true for multi-level refinement hierarchies and the use

of regridding. These can arise from reflections off level boundaries or simply from the spacing be-
tween grid points. Even worse, these high frequencies can develop amplitudes which grow very
fast. Hence, it’s important to impose a scheme that can deal with these high frequency (unphys-
ical) modes and preserve the low frequency (physical) ones. This is achieved by implementing an

N = 3 Kreiss-Oliger (KO) dissipation term**°. The basic idea of the Kreiss-Oliger dissipation term
is to add an additional term to the evolution equations that damps these unphysical high frequency

modes. Consider a finite difference scheme that schematically is of the form

Upe = Uy, + ALS(up,) (3.96)

where S(u") is some spatial finite differencing operator. To this evolution scheme, an additional
term is added
At

up = g, + ALS(u) — e (1) VAT (uf) (3.97)
X

with € > 0, N > 1 an integer, and where AiN is the 2V centered difference operator. In GRBoondi,

the N = 3 KO dissipation term is used, adding the term

g

N (Qi—s —6Qi—2 + 15Q;—1 — 20Q; + 15Q; 11 — 6Qit2 + Qiyt3) (3.98)
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Figure 3.5: 326 Dissipation of modes as a function of wavenumber

kAx. Higher frequencies correspond to lower values of kA,

while lower frequencies correspond to higher values of kAx.

This shows that higher orders of the KO dissipation approach a
step function, meaning the dissipation strongly dampens frequen-

cies higher than the inverse of the grid spacing and leaves lower

frequencies, the physical ones, virtually untouched.

to the evolution of each variable (), where o is
the so-called Kreiss-Oliger coefficient. In the
continuum limit, this term vanishes. This term
does exactly what is desired, it damps high fre-
quency modes corresponding to the grid spac-
ing, and leaves the lower frequencies minimally
affected, fig. 3.5. A stability analysis shows that

this scheme is stable as long as

OSUSi
ac

Y

where o = ﬁ—; is the so-called Courant factor

and has a typical value of @ = 0.25. The dissipation term should be tuned based on the problem at

hand. A typical value of o = 0.3 is the default, however increasing it can improve long term stabil-

ity. Contrarily, increasing it too much runs into the upper bound set by the stability condition. A

value that is too high can result in a checkboard type of pattern developing in the simulation, spoil-

ing it. This problem was encountered periodically during some simulations. The remedy is simply

to slightly reduce the coeflicient.

BounpaArRY CONDITIONS

An important piece in choosing the conditions of a simulation is picking the right boundary con-

ditions at the edge of the computational space. Broadly speaking, there are three possible ways to

choose a boundary condition:

* Modify the evolution equations close to the boundary;

* Add additional cells beyond the boundary;

¢ Use different derivative stencils close to the boundary.

The appropriate approach depends on the physical system under consideration, for example, if the

system has asymptotic waves, a uniform but time varying value at the boundary, or is asymptotically

vanishing.
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Figure 3.6: Example of adding ghost cells to the outer boundary of the numerical grid. These allow the usual derivative stencils to be
used at the outer boundary of the computational box.

A particularly simple example is that of periodic boundary conditions. Periodic boundary condi-
tions are enforced by adding in so-called ghost cells outside the domain whose values are set to the
value of the fields on the opposite side of the box. In other words, for a two-dimensional system
in a centered square of side length a, the values of the derivatives are calculated using the standard

stencils via

o o

8_a:§’¢(a/2’x2) = a—ﬁﬂ—a/&m) (3.99)
P or

a—xg¢($1>a/2) = 8_:c127¢<x1’ —a/2),

where the stencils use ghost cells for cells that lie on the exterior of the boundary. Periodic bound-
ary conditions are not typically astrophysically relevant, although some use cases include large cos-
mological simulations (motivated by the cosmological principle) and other large computational
scenarios. More physically relevant to the cases in GRBoond1i are radiative conditions, or Sommer-
feld radiation conditions. This is a very common condition in numerical relativity, since it ensures
that outgoing waves do not get reflected back into the computational space at the boundary. The
conditions on the evolution variables assume an outgoing spherical wave, so the evolution variables
behave as

ft—=r)

U~ Up_soo + — (3.100)

in the limit that 7 — oo, where f is an arbitrary function and u, _,«, is a constant that is added for
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variables that asymptote to non-zero values. This can be enforced at the derivative level by rewriting

€g. 3.100 as
0Q

ot

Q _Qrﬁoo (3.101)
r

=200 -
;

for the evolution variable (). This works well for linear wave equations, but in the vast majority of
cases relevant to GRBoondi, this will no longer be true. Nonetheless, this is an adequate condition so
long as it is applied far enough away from the highly dynamical and nonlinear parts of the simula-
tion.

Extrapolation is another boundary condition that sees some use. At the outer boundary of the

computational box, the evolution variables are assumed to satisfy
Q=a+bxR, (3.102)

where R is the radius from the user-defined center, and @ and b are constants. For zeroth order
extraction, b = 0 and a is the value of the field in the cell closest to the boundary. For first order
extraction, the two coefficients are computed using the two outermost non-boundary cells. This
boundary condition is particularly useful when the field is spatially uniform, or approximately so, at
the boundary but has some time variance.

Reflection symmetry is a particularly useful boundary condition since it can be used to dramat-
ically reduce the size of the computational box, vastly speeding up simulation time. Across a re-
flective boundary, the evolution variable is assumed to be either odd or even. For example, if the

reflective boundary is the = 0 plane, then the evolution variable is assumed to satisfy

Q(I,y,Z) = iQ(_JJ?y? Z) ) (3-103)

where the choice of sign depends on the nature of the variable and is user-defined. This condition
sees use in highly symmetric systems, such as Schwarzschild or Kerr spacetimes. For example, the
example in GRBoond1i of a Proca field on a Kerr background uses the symmetry in the 2 = 0 plane to
reduce the size of the computational box by %

The last boundary condition is a static boundary condition, which fixes the value of the evolu-



tion variable to its initial data by imposing

9Q=0. (3.104)

GRBoond1 also supports mixing various boundary conditions. For example, in the Proca example,
the symmetry across the z = 0 plane is enforced while the Sommerfeld boundary condition is en-
forced at the outer edges of the z > 0 computational domain. This allows the outgoing radiation
condition to be enforced while also leveraging the z-symmetry to reduce the computational domain

size, substantially reducing computation time.

3.3.2 ADAPTIVE MESH REFINEMENT

The computational grid is a core part of setting up a simulation and choosing the right type of grid
is highly problem dependent, but also very important for extracting accurate data. GRBoondi uses
the Berger-Rigoutsos (BR) adaptive mesh refinement (AMR) implementation from Chombo. This
grid is built from a hierarchy of increasingly fine levels, called refinement levels, which are labeled

=0, , e and are of the form

Az = Azo/2' (3.105)

where Az is the spatial size of the coarsest cells, i.e. the size of the cells on the coarsest level of the
hierarchy. The BRAMR algorithm uses a block-structured approach, meaning each level of the
hierarchy is split into variably sized boxes, which are then distributed between CPUs, see sec. 3.3.3.

The allowable boxes are constrained by two conditions:

* Proper Nesting: a box on the I*" refinement level must not touch level (I — 2) directly. In-

stead, there must be at least one intermediate (I — 1)-level grid cell in between.

* Proper Refinement: a box on level [ must not refine parts of a level (I — 1) grid cell. It must

refine it completely or not at all.

At regridding or initial generation of the grid, on a single refinement level /, cells are flagged for re-

finement according to a tagging criterion T = 7(I). For a given cell with indices I = (3, j, k)



and Cartesian co-ordinates X; = (z,y, 2), if the tagging criterion computed for that cell is above
a user-defined threshold, 7(I) > 7y, then that cell is flagged for refinement and its resolution in-
creased by a factor of 2 once the refinement stage is reached”.

In block-structured AMR, a challenge commonly faced is how to properly and efficiently par-
tition cells that need refinement into boxes. GRBoondi, being a derivative of GRChombo, uses the
BR algorithm for this purpose. A block factor is user-defined and enforces the minimum number of
cells that can partition the length of a box. Additionally, there is a user-defined maximum box size.
Typically, these two parameters are set equal to each other so that all boxes are roughly the same
size. In order to enforce the block factor on a newly refined level, Chombo generates a temporary
coarser level built from a set of tagged cells whose size corresponds to the block factor on the newly
refined level. Chombo then applies the BR partitioning algorithm on the new virtual coarse level to
construct boxes of grids which obey the user-specified block factor and maximum box size. The size
of the box is typically chosen with the number of CPU threads in mind, since the cells of each box
are iterated through using the available CPU threads (OpenMP; see sec. 3.3.3).

The BRAMR algorithm is reviewed here, since it is a central component of the GRBoondi foun-

dation**°. The algorithm itself follows four broad tenets:

There should be as little unnecessarily refined area as possible.

There should be as few boxes as possible.

¢ The boxes should ’fit’ the data.

The algorithm should be fast.

The idea is to find the minimum box size that encloses all tagged cells on each level. Define the z4¢-
ging indicator function as

1 7(I)>my
T() = . (3.106)

0 else

*The factor of 2 is known as the ref ratio and is the resolution difference between levels. In other words, it’s the
ratio of the size length of the cells on level I — 1 to that of cells on level /.



In each partition, the signatures of the tagging function of any given box are defined as

X(x) = /T(])dydz (3.107)
Y(y) = /T(I)dxdz (3.108)
Z(z) = /T(I)dxdy. (3.109)

Given these signatures, the Laplacian of the signatures are also computed, 92X (), 92Y (y), and
027 (z). Given these results, the BR algorithm searches for all (if any) inflection points individu-
ally for each direction. Finally, the one whose difference 4(97 X;) is the greatest becomes the line of
partitioning for this particular dimension. This roughly corresponds to the line between tagged and
untagged cells in the orthogonal directions of the signature. If there exists a point with zero signa-
ture, then this "hole’ is chosen to be the line of partition instead. If there are no holes or inflections,
then the box is split along the midpoint.

After partitioning, the new partition is checked for efficiency, by checking whether the propor-
tion of tagged cells to all cells in the partition exceeds a user-defined fill ratio € and that the boxes
are within the block factor and maximum box size requirements. If the tests are passed, then the
partition is accepted. If not, then the boxes are recursively partitioned, discarding any boxes that
don’t meet the requirements. The value of € naturally plays a role in the computational efficiency.
A higher value of € leads to a greater ratio of tagged to untagged cells, making for a more efhicient
partitioning. However, this is not always computationally efhcient since there will be greater over-
head for the increased number of boxes, especially since each box needs to be allocated to an MPI
instance (more on this in sec. 3.3.3). There could also be greater fluctuation in the overall structure
of the grid, leading to more noise generation. Likewise, a smaller value of € is more computationally
efficient but produces a less efficient partitioning. The default value is fill ratio = 0.7, though
the optimal value is case and processor dependent.

The partitioned box is finally refined, its constituent cells split into a finer mesh using the refine-

1
Sl

ment ratio 22— This process is recursively performed until there are no more tagged cells, or the
top of the refinement hierarchy is reached, ;4. On each new level, the data is interpolated from

the coarser level using fourth-order interpolation.
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One now needs to specify a prescription for tagging cells that need to be refined. GRBoondi tags

cells based on expressions involving user-selected fields, F'(()). When any one of the expressions

passes a user-defined global threshold o (@), then the cell is tagged for regridding

Figure 3.7: An example of a mesh generated using the
BRAMR algorithm. The mesh is overlayed on a two-
dimensional extruded plot of the conformal factor for a
Kerr black hole spacetime. The various refinement levels
are clearly visible, showing areas of strong gravity are
sufficiently resolved.

(3.110)
else

The rate at which regridding is performed is user-
defined. In an ideal world, regridding would occur
at every timestep. However, this is usually not the
best approach. One should consider that it’s impor-
tant to let numerical errors dissipate before remesh-
ing. Moreover, it’s more computationally efficient
to not regrid very often. In some cases, it may be
best to turn off regridding completely and evolve
the system on a static hierarchy of levels. This is the
case in the Proca on a Kerr black hole example. The
highest levels of the hierarchy capture almost all of
the physics, which do not deviate from the center
very much, thus making a fixed grid the best choice.

Fig. 3.7 shows an example of a computational grid

generated using the BRAMR algorithm. Since the finer levels have a smaller Courant number, each

mesh levels timestep is appropriately reduced according to

Al,l—i—l
Azl

(3.111)

This means the grids on level [ + 1 will take two timesteps for each timestep taken on level I. The

entire grid is then evolved according to the Berger-Colella evolution algorithm, which uses the con-

cept of subcycling, fig. 3.8. The first step is to evolve grid level [ one timestep. Then the next level in

the hierarchy [ + 1 is evolved until it reaches the same time as grid level [. For a refinement ratio of
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2,level [ + 1 takes 2 timesteps to reach the same time at level /. After the level has caught up to the

coarser level, the data on the coarser level is generated using the data from the finer level using inter-

polation. Ghost cells on the boundary between levels are populated with data from the coarser level

in both space and time. The temporal interpolation is generated using 3rd order polynomial fits in

time and the data from the substeps of the RK4 time-stepping.

3.3.3 PARALLELIZATION: MPIL, OPENMP, anD SIMD

Modern computational power has reached the ex-
ascale, with modern supercomputers being able to
execute ~ 10'® floating point operations per sec-
ond (FLOPS)*#'. With modern graphics processing
units (GPUs) and central processing units (CPUs)
reaching such enormous throughput, modern nu-
merical relativity codes have access to tremendous
resources. However, being able to access the compu-
tational potential for modern day processing units

requires fundamental design changes for the code.

to tos t tis L

Figure 3.8: Pictorial representation of subcycling. Finer
levels undergo evolution at a finer timestep until they reach
the time of the coarser level, which then updates the data
on the coarser level via interpolation of the data on the
finer level. This algorithm is recursive, so levels higher in
the hierarchy undergo frequent time-stepping compared to
the coarser levels.

In the modern day of multi-node, multi-core, and multi-threaded systems, parallelization can

take several forms. There are four main types:

* Distributed-memory parallelization: Multiple instances of the same program, called processes,

run simultaneously, with each process being run on a different CPU core. Each process has

its own copy of the data and information required for the simulation. This is a form of inter-

node parallelization.

* Shared-memory parallelization: Multiple *threads’ are run using a single, shared memory

allocation in the CPUs random access memory (R AM). This is typically more memory effi-

cient since the program has access to the same memory locations of the data. However, inter-

node parallelization cannot be used because of this. This is instead of form of intra-node

parallelization.
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Node 1 Node 2

Process 0 Process 1 Process 2 Process 3 Process 4 Process 5 Process 6 Process 7
Memory Memory Memory Memory Memory Memory Memory Memory

Figure 3.9: Distributed-memory parallelization allows a program to run on several nodes simultaneously, each node supplying its
own pool of memory. While this allows for enormous parallelization, it introduces many complexities in program design.

* Vectorization: Modern CPUs support so-called ’single instruction, multiple data” (SIMD),
which means they can perform the same operation on multiple operands simultaneously.
For example, multiplying each element of a vector by a scalar can be handled simultaneously
on a single core. This type of parallelization is handled by the program compiler, though
depending on the program, the programmer may need to alter the code to better leverage

vectorization.

* Heterogeneous computing: This leverages the massive computational ability of modern day

GPUs to perform many simple tasks over a huge number of compute cores.

Distributed-memory allows for programs to run on multiple computers (called zodes) simultane-
ously. For example, a high performance computer cluster (HPC), such as the Baden-Wiirttemberg
UniCluster", is a collection of hundreds of computers connected via high-throughput linkages.
Distributed-memory parallelization allows a program to run on several of these nodes at once and
access each node’s memory pool. The program is split into several processes, called ranks. Each
process is an exact duplicate of all the others. Thus, the programmer has to design their program
around the fact that it will be split into several copies. Each rank is assigned a unique identifier, thus
each copy can perform different tasks depending on the identifier of the rank. The message passing
interface (MPI) is a standardized and portable library that enables distributed-memory paralleliza-

tion. MPI is what enables GRBoond1i to be massively parallel.

*All the simulations in this thesis were performed on this cluster.
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Shared-memory parallelization involves running a computation using a single process that spawns
multiple threads, each running on a different core of the CPU, fig. 3.10. These threads all run on a
single node, thus accessing the same memory pool. However, shared-memory programs tend to be
far more challenging to develop since many factors can cause a huge heap of problems, including
race-conditions, different CPU architectures, even the weather can cause variations in results us-
ing shared-memory parallelization. Nonetheless, shared-memory parallelization is typically faster
than distributed-memory parallelization, since the computations and communications all take place
usually on a single CPU, and requires considerably less memory.

Vectorization is the remaining type of parallelization
Node 1

supported by GRBoondi. In particular, the type of vector-

ization employed is the ’single instruction, multiple data’

(SIMD) type. Itis a type of parallel processing in which a

single operation acts on multiple data points simultane-

ously. The data is grouped into vectors that the hardware

can process in parallel. The size of these vectors depends
on the architecture of the CPU. For instance, a 256-bit

wide SIMD operator can hold four 64-bit ﬂoating—point Figure 3.10: Shared-memory parallelization lets a
program spawn many different threads on a single

numbers. This allows significant performance improve- ~ CPU,who canall access the same memory pool.
While this can provide a considerable reduction

ment, particularly in tasks with high data parallelism, in communication latency and has a much smaller
memory footprint than distributed-memory;, it

such as the ones simulated with GRBoondi. The most can also introduce many complexities and bizarre

problems since the physical CPU chip can have

common SIMD implementations relevant for GRBoondi ~ defects that alter results.

are the Intel Streaming SIMD Extensions (SSE) and Ad-

vanced Vector Extensions (AVX). The AVX SIMD extensions are compatible with x86 instruction
sets for processors from both Intel and AMD, the most common CPU manufacturers. AVX-512
extends the standard AVX extension to include 5 12-bit support, first supported by Intels Knights
Landing processors. The AVX-512 extension can process 8 floating-point numbers simultaneously,
a tremendous speed improvement that is hugely beneficial for numerical relativity simulations. Ac-
tivating SIMD vectorization in the compiler for the simulations has improved processing speeds

close to 100 times.
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class DampingFieldDiagnostic

{

template <class data_t> void compute(Cell<data_t> current_cell) const
{
MatterVars<data_t> matter_vars{current_cell.template load_vars<MatterVars>()}; // load the matter variables from the
Chombo grid
current_cell.store_vars(matter_vars.Z, c_Z_out);
}
+i

Listing 3.1: Example of a class that computes a diagnostic quantity using either SIMD vectorization or the built-in double datatype.

GRBoond1 utilizes distributed-memory, shared-memory, and vectorization parallelization. Uti-
lization of heterogenous computing is underway by the GR Chombo collaborators*#*. GRBoondi
splits the computational domain into boxes, which are then shared between processes via the MPI
implementation. The typical CPU used during this thesis is the Intel Xeon Platinum 8358 pro-
cessor, which features 64 cores and a clock speed of 2.6 GHz. Since intra-node communication is
typically much faster than inter-node communication (which takes place via Infiniband HDR 200
linkages), multiple MPI processes are spawned on a single node, typically between 4 to 8 processes.
The individual cells within a box are then parallelized using the shared-memory distribution library
OpenMP. A large portion of the simulation time is spent computing the evolution equations at
each RK4 timestep. Hence, parallelizing these steps is vital for performance. GRChombo abstracti-
fies away the SIMD vectorization utilities by defining new C++ datatypes which automatically han-
dle both vectorized and serialized operations, depending on whether the user compiles with SIMD
or not. All of the box loops and cell loops are handled by a single BoxLoops : 1oop C++ method.
This further abstractifies away the complex task of designing MPI and OpenMP operations. The
only requirement from the user is to write a class that takes a (in the terminology used in the C++
language) template datatype, which replaces the standard double or float datatype. The classes
which compute various quantities written by the user must have a compute method which executes
the computation. The instantiated class is then passed to a BoxLoops : loop member function which
executes the compute method over all cells and boxes for each level of the grid.

As an example of the multiple levels of parallelism in the GRBoondi code, we look at the Proca ex-
ample. A simple usage of the box loop class is the computation of diagnostic variables. The Proca
example has a diagnostic variable called the Damping Field diagnostic, which computes the value

of an evolution variable and stores it for plotting. The template datatype data_t is what enables the
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DampingFieldDiagnostic z_field_diagnostic{};

// compute diagnostics on each cell of current level

BoxLoops: : 1loop(
make_compute_pack(Asquared, EM, z_field_diagnostic, background_init),
m_state_new, m_state_diagnostics, EXCLUDE_GHOST_CELLS

)i

Listing 3.2: An example of looping over the boxes and cells using MPI and OpenMP implementations. The parallelism is abstracted
away in a single method called BoxLoops : 1oop.

method compute to take either double or SIMD datatypes. In the BaseProcaFieldLevel class, the
damping field is computed (or in this case extracted) from each cell using a call to the BoxLoops : 1oop
method. The damping field class is initialized and then passed to the BoxLoops : 1loop method. Since
many other diagnostic quantities are typically computed after each timestep, they are packaged to-
gether using the make_compute_pack function. Each call to the compute method in the BoxLoops : Loop
method automatically threads that call to each class in the compute pack. Additionally, the ghost
cells on the grid can be ignored by passing the EXCLUDE_GHOST_CELLS flag, which tells the box loops
to ignore any ghost cells and only execute the computation on the physical grid cells. Should the
user write a class that cannot utilize the SIMD extension, such as when the code contains condi-
tional statements, the vectorization can be disabled at the call to BoxLoops : 1oop by passing another
flag via BoxLoops:loop(..., disable_simd()). Thisisacommon occurrence when excising cer-
tain regions of the grid, where a conditional is employed to only excise cells within a certain zone

of the computational domain. Conditionals are quite a challenge to implement alongside SIMD,

so sometimes it’s easier to just disable SIMD in favor of simpler code. Fortunately, computations
such as excision are executed much less frequently than the RK4 steps, so disabling SIMD for these

computations has little impact on the computation speed.

3.3.4 EXTRACTION AND DIAGNOSTICS

GRBoondi offers various methods to extract quantities from the grid, either by saving directly each
value in every cell, integrating quantities over the entire mesh, or integrating quantities over pre-
defined surfaces. Primarily, the total energy and fluxes are computed by default in GRBoond1i, though
the user can very easily add additional quantities. This is a particularly vital feature since derived
data is almost always required. Hence, this section will review the main pieces of this procedure.

Since GRBoondi inherits from GRChombo, most of the class structure comes from this inheritance,
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AMRReductions<VariableType::diagnostic> amr_reductions(m_gr_amr);

std: :vector<double> integrals;

integrals.push_back(m_p.SymmetryFactor * amr_reductions.sum(c_rho));

SmallDataIO constraint_file(m_p.data_path + m_p.integrals_filename, m_dt, m_time, m_restart_time, SmallDataIO::APPEND,
first_step);

constraint_file.write_time_data_line(integrals);

Listing 3.3: An example of computing a volume-integrated quantity. Using the methods of Chombo and the interface classes of
GRChombo, such a procedure is simple.

though GRBoondi adds additional functionality specific for generalized Proca theories, including

dedicated post-processing routines.

VOLUME-INTEGRATED QUANTITIES

Volume-integrated quantities are those quantities that are formed by integrating variables over the
grid
[ #a0.90),2(0), Qdedya: (3.112)
G

where ¢ is the entire three-dimensional grid, z(¢), y(j), (k) are the three spatial co-ordinates as
functions of the grid indices, () is a grid variable (usually one of the evolution variables), and f is
some arbitrary function of position and ). The procedure to compute this sum is fairly straight-
forward. Chombo has built-in tools, called AMRTools, that allow for methods to be run that need
access to the entire level hierarchy. In this case, the computeSum method is used. This method com-
putes the sum of a specified variable over all cells in a level and over all levels.

Since the sum computed in this way is blind to the metric, the function f needs to already have
the volume element taken into account. For example, in computing the total energy in the Proca
example simulations, the energy density p is multiplied by the determinant of the spatial metric
before being saved to the grid. Hence, f(x(7),y(j), 2(k), Q) = p(x(7),y(j), 2(k)) * /7.

At the level of the code, it’s very easy to compute volume-integrated quantities, Ist. 3.3. The
AMRReductions object is templated over the type of value defined on the grid. In this instance, the
type of c_rho is a diagnostic variable, in contrast to an evolution variable. This means c_rho is un-
derstood to be a variable that is not relevant in any way to the evolution equations, instead only
as a value that should be computed a posteriori. The AMRReductions class is then initialized using
the AMR object, which holds all the information about the grid. The summation is then com-

puted using the sum method of AMRReductions, which is then stored in a vector, accounting for any
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for (auto var_enum : vars_to_integrate)
2 {
integrals.push_back(m_p.SymmetryFactor * amr_reductions.sum(var_enum));
1

Listing 3.4: An example of integrating several quantities and storing their output. The vector storage can then be saved to file exactly
the same as Ist.3.3.

symmetries implied by the boundary conditions. The vector is then stored to disk as a time series
datapoint. Multiple quantities can be computed this way with each integral being appended to the
vector storage. For example, by iterating over an enum which labels the various diagnostic quantities,

one can compute all their integrals as in Ist. 3.4.

SURFACE-INTEGRATED QUANTITIES

Extraction of quantities over more general surfaces requires a more involved process, since the sur-
face itself needs to be explicitly defined. This section will use the example of extracting fluxes across
a two-dimensional surface, though in principle any quantity can be computed over a general surface
using similar methods discussed here.

Integrals of the form

/ F(u,0, Q)epdudv (3.113)
54

are the primary quantities computed here. .# is the surface over which the integral is evaluated,
f(u, v, Q) is an arbitrary function of the co-ordinates of the surface, u and v, and a variable @),
which is typically an evolution variable, and finally € » is the co-ordinate area element. Note again
that f needs to have the spacetime volume element already taken into account. At each point on the
surface, the variable () is interpolated using the values on the grid cells.

For the example of extracting fluxes, the FluxExtraction class takes care of all the necessary
computations. It is a child class which inherits from the SphericalExtraction class, which it-
self inherits from the SurfaceExtraction<SphericalGeometry> class. The SurfaceExtraction
class is templated over a SurfaceGeometry class, which defines several properties about the surface
being integrated, such as the embedding relations of the surface in the computational space, the
volume elements, and co-ordinate differentials. The SurfaceExtraction class handles the low-

level methods for computing the actual integrals using user-specified integration methods®. The

" At the time of writing, the trapezium, Simpson’s, and Boole’s rule have been implemented as possible integration
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for (auto var_enum : vars_to_extract)

{
m_gr_amr.fill multilevel_ghosts(VariableType::diagnostic, Interval(var_enum, var_enum), min_level);
+
FluxExtraction my_extraction(
m_flux_container, m_p.extraction_params, vars_to_extract, m_dt, m_time, first_step, m_restart_time, m_p.SymmetryFactor);
my_extraction.execute_query(m_gr_amr.m_interpolator);

Listing 3.5: An example of extracting fluxes through a spherical surface.

SphericalExtraction class is a specification of the templated SurfaceExtraction class to extract
quantities over spherical surfaces of radius R, . = S 2 In this case, the surface co-ordinates are

chosen to be the standard spherical co-ordinates, (u,v) = (¢, ¢) and the discretization is a homo-

geneous grid with spacings A0 = mjil and Ap = niil. This results in the usual co-ordinate
volume element € » = R?sin 6. The default integration rule is the Simpson rule in both spherical
directions with cell counts of ng = 49 and ny = 32, though these numbers are freely specifiable in
the simulation’s parameter file.

In the code, implementation of these methods is straightforward. However, since the interpo-
lator needs values defined around a queried cell, the ghost cells need to be filled. Hence, the pro-
cedure for computing fluxes is a little more involved than just querying the AMRReductions class,
see Ist. 3.5 The first step is to fill the ghost cells for variables that are going to be integrated over the
spherical surface, to ensure the interpolator has accurate data. Then the FluxExtraction code is
initialized, including all variables that are going to be extracted using the vars_to_extract variable.
Finally, the query is executed and all variables are integrated over the spherical surface and saved to
disk.

The FluxExtraction class has several different pieces but it’s conceptually fairly straightforward.
The first piece happens at class initialization and involves specifying which grid variables should
be extracted, Ist. 3.6. The add_var method is a member of the SurfaceExtraction class. It sim-
ply appends the variable to be extracted to a vector of names. This is populated by iterating over
the m_vars_to_extract member variables of the FluxExtraction class, which finds its origin in
the simulation’s parameter file, i.e. specified by the user at runtime. The next step is to execute the
query, which orchestrates several different steps. Step one is to compute the interpolated values of

the grid variables onto the surface itself, Ist. 3.7. Step two is to compute the integrands, which sets

methods.
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FluxExtraction(Container &a_flux_container, spherical_extraction_params_t &a_params, std::vector<int> a_vars_to_extract,
double a_dt, double a_time, bool a_first_step, double a_restart_time = 0.0, double a_symmetry mult = 1.0)

| : SphericalExtraction(a_params, a_dt, a_time, a_first_step, a_restart_time), m_vars_to_extract(a_vars_to_extract),

m_flux_container(a_flux_container), m_symmetry mult(a_symmetry_mult)

3[4

4 // iterate over variables to extract and add them to the extractor

5 for (auto var : m_vars_to_extract)

6 {

7 add_var(var, VariableType::diagnostic);

8 Iy

9 ¥

Listing 3.6: Initialization of the FluxExtraction class specifies which variables should be extracted.

“extract(a_interpolator);

Listing 3.7: In the FluxExtraction class the first step in executing a surface integration query is to compute the interpolated grid
variables on the surface itself.

up the integration method and performs several checks of the discretization. This is performed for
each variable that is to be extracted. This step also sets up the output vector, where each integral

is stored, see Ist. 3.8. Finally, the integration is executed for all variables, see Ist. 3.9. The results are
then stored in the flux_integrals vector, which is a two-dimensional matrix that holds the results

of the integrals for each radii of the spherical surface and for each variable.

D1AGNOSTIC QUANTITIES

GRBoondi offers the ability for users to select in-built diagnostic quantities that should be computed
throughout the simulation. Moreover, users can define their own classes and quantities that are
computed from the evolutionary variables. These are specified in the parameter file of the simula-
tions and hence at runtime. The user can specify which variables should be used as diagnostic vari-
ables and hence which ones are saved to disk. These are separated into three distinct categories. The
first is plot variables. These are variables whose value at each cell is saved to an HDFj file format
and read in by specialized visualization toolkits (or GRBoondi’s own post-processing routines). The

second type is the integration_vars, or variables that will be integrated across the entire grid. For

I std: :vector<std: :vector<double>> flux_integrals(m_vars_to_extract.size());
for (int var{0}; var < m_vars_to_extract.size(); var++)
{
4 add_var_integrand(var, flux_integrals[var], IntegrationMethod::simpson, IntegrationMethod::simpson);
5 }
Listing 3.8: In the FluxExtraction class the second step in executing a surface integration query is to set up the integration
methods and storage container for the results.
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w integrate();

Listing 3.9: In the FluxExtraction class the final step in executing a surface integration query is to execute the integration.

1| plot_vars = Z Asquared rho rhoE EMtrace EMsquared
> | extraction_vars = Edot Jdot
;| integration_vars = rho rhoE rhoJ EMsquared

Listing 3.10: User can specify which variables are used as diagnostic variables.

example, the energy density is integrated to find the total energy across the entire computational do-
main. The third and final type is the extraction_vars, or the extraction variables. These are vari-
ables that will be integrated across spherical surfaces of user-specified radii. For example, the energy
flux is integrated over a sphere of large radius to find the total flux of a quantity from a spherical re-
gion. All three variable types are specified in the parameter file, Ist. 3.10. Moreover, users can turn
off either integration, extraction, or both using distinct flags, Ist. 3.11. By default, GRBoondi offers
several diagnostic quantities that users can choose from. These include the Proca energy density,
angular momentum scalar density, energy flux, angular momentum flux, Eulerian energy density,
the trace of the stress-energy tensor, the square of the stress-energy tensor TH%,,,, the auxiliary
constraint-damping scalar, the square of the Proca field A" A,,, approximately conserved momen-
tum aT?, flux of the conserved momentum, and another quantity associated with the flux of linear

momentum 343 ¥,

3.3.5 MODULARITY

Modularity of GRBoondi is one of its core features. It’s one of the ways in which GRBoondi allows
arbitrary modifications coming from generalized Proca theories. The main class that specifies vari-
ous steps in the simulation, including computing the evolution equations, generating plot files, and
postprocessing after each timestep, is the BaseProcaFieldLevel class. In the language of C++, the

BaseProcaFieldLevel class is an abstract class. It cannot be instantiated directly. Instead, it serves

1| activate_extraction = 1
> | activate_integration = 1

Listing 3.11: User can specify which variables are used as diagnostic variables.

“If the spacetime does not admit the killing vectors associated to these conserved quantities, the user can simply
turn off any computation involving them by not specifying them in the parameter file.
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template <class background_t, class proca_t>

| void BaseProcaFieldLevel<background_t, proca_t>::specificAdvance()
i

// check for nans
if (m_p.nan_check)
{
BoxLoops: : loop(NanCheck(), m_state_new, m_state_new,
EXCLUDE_GHOST_CELLS, disable_simd());
}
}i

Listing 3.12: Default code for the method specificAdvance.

virtual void specificAdvance() override

{3

Listing 3.13: Default code for the method specificAdvance.

to be purely a parent class, being inherited by other classes. This primarily comes from the need to
specify initial data, which is unique for each simulation. Every method in BaseProcaFieldLevel is
a virtual method, meaning the child class can define their own version of the method, allowing users
to change specific functionality in each step of the simulation. For example, one method defines
what to do after each RK4 calculation, Ist. 3.12. Instead of running this code, users can define their
own version of this method in their child class by simply overriding the method itself. For example,
if the user defines the child class as ProcaFieldLevel, which inherits from BaseProcaFieldLevel,
and they wish for no code to be run in this step, they could simply define the method to be trivial,
Ist. 3.13. They could do this with any method in BaseProcaFieldLevel. Moreover, some methods
in BaseProcaFieldLevel have additional steps built in which, instead of overriding the method,
simply add additional functionality after the default code has run. For example, a virtual method
called additionalPostTimeStep exists which is called after all the code in BaseProcaFieldLevel::
specificPostTimeStep is executed, Ist. 3.14. There is also the additionalPrePlotLevel which
adds functionality to the BaseProcaFieldLevel: :prePlotLevel method.

The BaseProcaField class is the base class which holds the actual evolution equations and equa-

template <class background_t, class proca_t>
void BaseProcaFieldLevel<background_t, proca_t>::specificPostTimeStep()

{

// add any other computations from the user, via virtual function
additionalPostTimeStep();
I

Listing 3.14: Adding additional functionality on top of the default behavior in specificPostTimeStep.
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tions for the stress energy tensor. This class is then instantiated in the BaseProcaFieldLevel::
specificEvalRHS method, which computes the RHS and evolves the fields. As the name suggests,
BaseProcaField only holds the basic evolution equations for the generalized Proca fields. More
specifically, it holds the equations for the theory £ = — }LF # F,, and sets the time derivative of the
temporal part of the Proca field and the auxiliary damping field to zero, gb = Z = 0. In total, the

base evolution equations are

X; = —adip — ¢pia + 0, X; — ay; B + X0, (3.114)
Ei = aKE' + J8;E" — B8, + 774" (90 % [0,X), — 0p X (3.115)
+a [0;0X), — 0;00X1)) — o ! [T (0 Xk — Ok Xo) + T (0 X — 0 X))]

b =0 (3.116)

Z=0 , (3.117)

where the 3+1 variables of the Proca field are ¢ = —n#A,, Ei = 'yZnZ,F“”, X, = v, At and
Z is an auxiliary field introduced to damp violations of the Proca constraint, similar to the CCZ4
formalism, eq. 3.74. Higher order terms in the generalized Proca theory will modify these evolu-
tion equations. To deal with these new modifications, the BaseProcaField class must somehow
allow the evolution equations to be modified. Due to subtleties in templated and virtualized func-
tions in C++, it’s not possible to create a virtualized function that is templated over typenames.
However, there does exist a type of coding idiom called curiounsly recurring template pattern, or
CRTP, which allows parent classes to access methods of the child class by passing the child class

as a template argument to the parent class itself. If this wasn’t the case, then the templated method
in BaseProcaField would have to access a virtualized method, which would be defined by the user,

which is not possible in C++. The specific implementation of CRTP by GRBoondi follows:

* BaseProcaField is templated over two class types, one for the background spacetime and

another for the evolution modifications.

template <class background_t, class modification_t> class BaseProcaField

* After the evolution equations are computed, a method of the templated class is called, which

adds the modifications to the evolution equations.
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1 void BaseProcaField<background_t, modification_t>::matter_rhs(...)

2 {

4 // add modifications ala CRTP
5 static_cast<const modification_t *>(this)->matter_rhs_modification(

6 total_rhs, matter_vars, metric_vars, d1, d2, advec);

This static casts the BaseProcaField object to the templated class, which is simultaneously
a child class. Finally, the method which modifies the evolution variables is called from the

casted object.

e Users then define a ProcaField class which inherits from BaseProcaField as

I class ProcaField : public BaseProcaField<background_t, ProcaField>

and defines a method called matter_rhs_modification which modifies the evolution equa-

tions to account for higher order terms in the generalized Proca Lagrangian

void matter_rhs_modification(...)
2 {

FOR1(1)

4 {

s total_rhs.Evec[i] += ...

6 total_rhs.Avec[i] += ...

7 }

8 total_rhs.Z += ...

9 total_rhs.phi += ...

where FOR1(1) is a preprocessor definition for for(int{i} = 0; i<3; ++i).

With these procedures, users can easily add modifications to the base £ = — iF # F,,, Lagrangian.
These modifications are then automatically taken into account in the BaseProcaField evolution

computation.

3.4 CONVERGENCE BEHAVIOR OF GRBoondi

When performing numerical computations of any kind, relativity included, it’s vital that conver-

gence and consistency checks are performed alongside the main simulations. Without these quan-
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titative error estimations, the resulting data from the main simulations are completely worthless”.
Numerical simulations unavoidably introduce errors in the final solution, originating from mul-
tiple places. Firstly, the finite size of the grid can, and does, introduce high frequency noise with
frequencies comparable to the grid spacing. This is the reason GRBoondi uses Kreiss-Oliger dissi-
pation. Secondly, the interpolation errors from, for example, computing derivatives using ghost
cells near box boundaries or level boundaries introduce additional errors. Thirdly, highly dynam-
ical spacetimes such as black hole spacetimes can exacerbate existing errors, compounding them
and causing them to dramatically increase. Finally, in the context of finite numerical simulations,
boundary conditions are unphysical and will contribute to the noise and errors of the simulation.
There are potentially many more sources of errors that can arise in numerical relativity. Hence, it’s
absolutely critical that users of the code approximately quantify the total amount of errors in the
simulation, otherwise there is no confidence in the accuracy and precision of the resulting data. To
that end, GRBoondi performs several convergence tests, correctness tests, and consistency tests for

various methods and background spacetimes.

3.4.1 THEORY OF CONVERGENCE TESTING

The key idea of convergence testing is the observation that the solution of a stable finite differencing
scheme can be expanded as a continuous function in a power series of the discretization parameter

€345

QG(ty‘I) = (](t,l’) + 661(t, (L’) +oot Enen(twr) e (3'118)

where (¢, z) is the (continuous) solution of the original differential equation and the e;(¢, z) are
so-called error functions at different orders in €. For an ”n’th order accurate approximation”, we
expect €;<, = Oand e, # 0.

Assume for the moment that we know the exact solution to the differential equation and we
want to compare the numerically computed solution against the known solution. To test the con-
vergence of the numerical solution to the true solution, we perform the computation at two resolu-

tions, say Ay and Ay, with r = ﬁ—; > 1.

"Boyd defines an ’idiot’ as someone who publishes a numerical calculation without checking it against an identical
calculation with a different resolution #4.
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In each case, we compute the error between the numerical and true solution

Ei=q—qa, (3.119)

E, =q—(qn, - (3'120)

Notice that this difference can only be computed at the grid points of the simulation, since that
is the only place where ga, and ga, are respectively defined. Moreover, these grid points will be
different between the two simulations. We then compute the r.m.s. norm for each solution error
and calculate the ratio

_E@)

c(t) = TEat)]] (3.121)

This ratio, being a sort of spatial integration of the solution errors, is purely a function of time and
is called the convergence factor. If we have a numerical scheme that is of n’th accuracy, the solution
expansion eq. 3.118 will yield the convergence factor in the continuum limit

lim c(t) = (i—;) =7r". (3.122)

A—0

The convergence tests are typically performed with 7 = 2, i.e. the resolution of the simulation is
doubled. However, in principle it can be performed with any ratio. The simulation is performed
with several higher resolutions and, if the behavior is close to the expected value, we are said to be in
the convergence regime.

However, the issue with this approach is that it assumes we know the exact solution of the dif-
ferential equation to begin with. Most of the time, including all cases relevant to GRBoondi”, this is
not the case. The best we can do is prove that the simulations converge to something and hope that
thing is the true solution’. To that end, the simulation is repeated with hree different resolutions

Ay > Ay > As. The relative errors are then computed and the convergence factor is defined as

C(t) o HQAl — quH

= . (3.123)
HqA2 - CJAsH

*Except for some testing cases, see below.
"This is where good initial data is vital. If the initial data is too far off of the expected result, the simulation can
convergence to something that is zot the desired solution, but is a solution to an entirely different problem.
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In the continuum limit, we expect

: _ AT - A7
lim (t) = Ar—Ar (3.124)

For equal resolution ratios, A1 /Ay = Ay /As = 7, we have

lim c(t) =r"

lim (3.125)

Convergence testing not only allows us to ensure the errors are decreasing at the expected rate
as resolution is increased, but also estimate the error in the final solution itself. Assume we have an
n’th order accurate scheme and we’ve performed the simulations for two different resolutions, A4

and Ay. The series expansion eq. 3.118 tells us

qa, — qa, = en (AT — AD) + O(A™) ~ Ep, (r" — 1) . (3.126)

The solution error on the highest resolution of the grid is then

1

Bag ~ o (aa = aa,) - (3.127)

This error estimate allows the creation of error bars for the simulations.

3.4.2 CONVERGENCE CHECKS

GRBoondi comes built in with several different background spacetimes and so several convergence
tests are performed, one convergence check for each grid variable. Since the convergence check is
functionally identical for each background spacetime, the basic layout will be discussed once and
then the results for each check will follow.

The first step is to define the result containers and number of resolutions to run at, Ist. 3.15.
Next, the iteration over the resolutions begins and the grid is initialized based on the current res-
olution, Ist. 3.16. Whichever background spacetime is being tested is then initialized, Ist. 3.17. The
GR constraints are then computed to verify that the background spacetime is indeed a solution of

the Einstein equations. The Proca field class is then initialized and the evolution equations are com-
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const std::vector<int> resolutions{96, 192, 384}; // resolutions to run at
const int num_resolutions = 2; // how many of the resolutions to actually use
// vector of norms for convergence checking

std::array<std::array<double, NUM_VARS>, num_resolutions> error_norms;

Listing 3.15: Setup phase for convergence testing.

for (int ires{0}; ires < num_resolutions; ++ires)
{
// setup the array boxes for various inputs and outputs
const int N_GRID{resolutions[ires]}; // number of cells on each side of box
// setup boxes
Box box(IntVect(0, 0, 0), IntVect(N_GRID - 1, N_GRID - 1, N_GRID - 1)); // The computational box

Listing 3.16: Resolution iteration begins and grid is initialized.

puted using numerically computed derivatives, including the background ones, Ist. 3.18. where
fixedbg_FAB and rhs_FAB are the boxes of cells on the grid. Then the evolution equations are com-
puted again, however this time using the analytic derivatives for the background variables, Ist. 3.19.
Then the difference between the two solutions is taken, Ist. 3.20.

A basic check is run to ensure constraints aren’t violated and that the difference between the two
solutions isn’t too large. Then the convergence factor is computed via eq. 3.123. The results of the
convergence checks for each background built in to GRBoondi are displayed in table 3.1.

It’s not clear what convergence factor we should expect, since there are many levels of refinement,
and various ingredients at different orders. However, since GRBoond1i uses fourth-order stencils, we
can expect ¢(t) to be somewhere in the range of ¢(t) = 16. For the Minkowski background, we
obtain exactly ¢(t) = 16, however for the Boosted Schwarzschild background, the convergence
factor is less, closer to what we would expect for a third-order accurate approximation. Nonetheless,

a high convergence factor such as 12.7084 is sufficient.

3.4.3 CONSISTENCY CHECKS

Besides convergence tests, GRBoondi also performs consistency checks to ensure the code behaves
as it was designed to. The first is checking that the modifications introduced via a ProcaField class

reproduces the expected evolution equations. To verify this, the equations of motion derived from

background_t background_init(bg_params, dx);

Listing 3.17: Initialization of the background class.



ProcaFieldTest matter(background_init, proca_params);

// setup matterccz4 rhs with matter class
MatterCCZ4RHS<ProcaFieldTest> matter_ccz4_rhs(

matter, ccz4_params, dx, sigma, CCZ4RHS<>::USE_BSSN, G_Newt);
BoxLoops: :loop(matter_ccz4_rhs, fixedbg FAB, rhs_FAB);

Listing 3.18: Evolution equations are computed using numerically computed derivatives for the Proca and background variables.

ProcaField: :params_t proca_params = {1, 1, 1};

ProcaField analytic_matter(background_init, proca_params);

// compute RHS using analytic expressions
MatterEvolution<ProcaField, background_t> my_an_evolution(
analytic_matter, background_init, sigma, dx, center_vector);
BoxLoops: :loop(my_an_evolution, fixedbg FAB, fixedbg rhs_FAB);

Listing 3.19: Evolution equations are recomputed, however this time using the known analytic derivatives for the background

variables.

the Lagrangian £ = —1F,,, " — 12 A" A, are computed, yielding

1 : , 4 9 o
—L,E'=E'K—D'Z + X' — =D, (DY X" (3.128)
o !
1 .
“LnZ = —p*p — D;E' — KkZ (3.129)
!
1
aﬁsz‘ = —E; — Di¢p — ¢D;ln(a) (3.130)
1 A P
~Ln¢ = — +¢K — D; X" — ' Diln(a) , (3.131)
a 1

where £,,QQ = (0; — L3)Q and the auxiliary field Z is introduced to damp constraint violations.
These equations are then modifications of the base equations used in GRBoondi, eqs. 3.114. This
check will test the ability for GRBoondi to correctly incorporate modifications to the field equations.
The test proceeds similarly to the convergence checks in the previous section, but this time only
choosing a single resolution. The grid is set up in the same manner and a Kerr black hole back-
ground is initialized. Two separate ProcaField classes are instantiated. The first contains all the
evolution equations from egs. 3.128-3.131 and the second contains only the modifications from
the base evolution equations eqs. 3.114-3.117. Finally, the two evolution equations are computed
and their results subtracted, Ist. 3.21. The results of each evolution are stored in my_rhs_FAB and

ref_rhs_FAB, respectively, and their difference taken in the last line. The error is then computed

v‘ rhs_FAB -= fixedbg_rhs_FAB;

Listing 3.20: Difference between the two solutions using numerically and analytically computed derivatives.



Background Convergence
Factor
Boosted Schwarzschild 12.7084
Minkowski 16
Kerr-de Sitter 14.3488
Kerr 15.5201

Table 3.1: Convergence test results for background spacetimes shipped with GRBoondi.

MatterEvolution<ProcaField, KerrSchild> my_matter(my_proca_field, kerr_init, 0.0, dx,center_vector); // GRBoondi evolution.
set Kreiss-Oliger to zero

MatterEvolution<FixedBGProcaField<Potential>, KerrSchild> ref_matter(test_proca_field, kerr_init, 0.0, dx,center_vector); //
Reference evolution. set Kreiss-Oliger to zero

// Now loop over the box and compute the RHS

BoxLoops: :loop(my_matter, my_FAB, my_rhs_FAB);

BoxLoops: :loop(ref_matter, ref_FAB, ref_rhs_FAB);

ref_rhs_FAB -= my_rhs_FAB; // now subtract the two

Listing 3.21: Checking the ability for GRBoondi to correctly incorporate modifications to the Proca equations of motion.

using the L>°-norm, Ist. 3.22. The current version of GRBoondi passes this check perfectly, with all
errors falling below the critical threshold.
GRBoond1 also contains other smaller checks to test the correctness of various helper functions,

though these will not be detailed here to avoid pedantism.

3.5 PERFORMANCE BENCHMARKING AND ANALYSIS

Benchmarking the performance of any numerical relativity code is a vital part of ensuring the soft-
ware runs as it was designed to. There are a huge number of places where performance potential
could be lost. For example, by improper memory management, poorly optimized coding choices,
compiler options, processor architecture, etc. Running performance checks allows one to verify the
code runs as intended and to find potential performance bottlenecks.

The performance of GRChombo has been thoroughly tested up to 285,600 cores on the Stam-

for (int i{c_phi}; i <= c_Z; i++) //iterate over each evolution variable

2 [if

double max_err = ref_rhs_FAB.norm(max_norm, i, num_comps); //compute the norm of the difference between the two evolution
computations for current variable
if (max_err > error_limit)
{
failed = -1; //if the error is larger than a predefined limit, then test fails
}

10

Listing 3.22: iterating over the errors and checking they fall below a predefined threshold.
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pede2 supercomputer, which uses Intel Xeon Phi 7250 processors. These tests showed that GR-
Chombo scales both strongly and weakly with increased resources. Strong scaling refers to the speed
increase for simulations when the available resources is increased. For an ideal runtime, doubling
the number of resources should cut the simulation walltime in half. GR Chombo also shows weak
scaling. This refers to the ability for more expensive simulations to run in the same amount of time
for a proportional increase in the number of computational resources. Since GRBoondi inherits
most of the mesh generation and time-stepping code, it automatically inherits these traits as well.

These scaling tests refer to how well the program itself handles increased resources. Another
place programs can gain efficiency, even without increasing the resource pool, is by researching
and applying compiler options when building the program. Sometimes this can feel like an artis-
tic movement rather than a scientific approach, due to the huge number of possible compiler op-
tions and number of compilers. In the development of GRBoondsi, it was found that carefully pick-
ing compiler options can increase the speed of simulations up to hundreds of times, so it is worth
running optimization benchmarks to understand the effect of each option and search for improve-
ments.

Another benchmark will be comparing GRBoondi to GRChombo itself. Since GRChombo is a
versatile toolset for evolving matter and spacetime in tandem, for some problems it can be too large
of a tool than is necessary”. This versatility can even cause greater computational overhead, slow-
ing simulations down just from these added features existing, especially when multiple unnecessary
code files are incorporated at compile time'. The advantage of using GRBoondi against GRChombo
for simulating superradiant Proca fields in black hole spacetimes will be analyzed. The effect of us-
ing a fixed background compared to a fully evolving one will be tested, showing that the fixed back-

ground approximation in GRBoondi is both precise enough for useful data and a huge optimization.
3.5.1 PERFORMANCE COMPARISONS

The two main benchmarks performed for GRBoondi are then

* Compilation optimizations using the Intel OneAPI DPC++/C++ Compiler. Since the sim-

ulations performed in this test are ran on Intel processors, the Intel C++ compiler typically

" Analogously, using GRChombo for simpler problems is like using a sledgehammer to crack a nut.
TAlthough, advanced compilers should be able to optimize these redundant files away.
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offers the best performance. With sufficient knowledge of compiler options, similar perfor-

mance can also be obtained with the GNU compilers.

* Performance comparison between evolving the full Einstein+Proca system using GR Chombo

and evolving just the Proca system on a fixed background using GRBoondi.

CPU AND ARCHITECTURE

Since performance metrics, especially compiler optimizations, are largely architecture dependent,
it’s vital that the testing computers are standardized across all tests. The tests in this section are per-
formed on an Intel Xeon Platinum 8358 processor with a base frequency of 2.6 GHz and turbo
frequency of 3.4 GHz. The turbo frequency is the maximum single-core frequency at which the
processor is capable of operating”. The CPU cache is 48 megabytes, which is memory storage lo-
cated physically on the processor itself, in contrast to system memory, which is typically stored on
the main motherboard of the computer and accessed by the processor via PCle channels. Each pro-
cessor contains 32 cores, or 32 independent central computing units, and 64 threads, or 64 ’logical’
cores.

These tests run on a various number of compute nodes in the Baden-Wiirttemberg high per-
formance computing cluster (bwHPC), with each compute node containing two Intel Xeon pro-
cessors and 256 gigabytes of system memory. Each node is connected via an Infiniband HDR 200
(High Data Rate 200) interconnect, which supports data transfer speeds up to 200 gigabytes per
second (Gbps) per port. These interconnects have extremely low latency, allowing code highly par-
allelized using tools such as MPI to achieve extremely fast speeds, even when several processes are
scattered across several nodes. The operating system of the nodes is Red Hat Enterprise Linux re-

lease 8.8.

COMPILATION AND OPTIMIZATIONS

The first benchmark is evaluating the effects of different compilation options for the Intel OneAPI

C++ compiler, henceforth denoted by icpc. There are many different types of compiler options,

“Though, consumer processors can be, and are, overclocked to allow higher clock speeds, though this comes at the
cost of increased thermal energy and decreased stability.
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ranging from optimizations, code generation, floating point operations, and linker settings. By far
and large, the optimization options are naturally the most relevant, though other options can sub-

tlety impact performance. Reviewed here are some of the most important options that should be

enabled.

* -0[n]: This flag tells the compiler the broad level of optimization to use for the compila-
tion. The maximum of -03 tells icpc to be aggressive in its optimization. The compiler will
use many fancy techniques to generate a highly optimized executable. This option is espe-
cially useful for loops that have many floating-point operations, which is highly relevant to

GRBoondi.

* -parallel: This tells the compiler to enable the auto-parallelizer, which generates multi-

threaded code for loops.

* -xCORE-AVX512: This is an extremely important compiler option, which tells the compiler
to generate AVX instruction code, a type of vectorization (see sec. 3.3.3). There are many
different Intel vectorization features enabled with this option. The code compiled with this
option can see significant speed up. It should be noted the exact vectorization flag is highly
architecture dependent. The option -xCORE-AVX512 works on the Intel Xeon processors that
the simulations were executed on. Users of GRBoondi need to be aware of the architecture the

code is being compiled on and adjust this option accordingly.

* -qgopt-zmm-usage=high: This option pertains to the vectorization of the program and should
be used in accordance with the -xCORE-AVX512 option. This option tells the vectorizer to

maximize the usage of particular SIMD registers in the processor, providing further speed-
up.

* fp-model fast=2: This option controls the semantics of floating-point calculations. The
floating-point domain of the processor is a collection of registers that control the floating
point behavior of the instruction sets. Setting the model to fast=2 tells the compiler to use
more aggressive optimizations, increasing speed at the slight detriment in accuracy and repro-

ducability. Analysis of GRBoondi shows these detriments are unnoticeable.
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* -ipo: This option enables interprocedural optimization between files, or Whole Program
Optimization (WPO). This option inlines functions that are defined in separate files (replaces

the function call with the function code itself).

The options that are absolutely critical for highly optimized code are the -0 and -xAVX-512 option
set. There are also various other options set for the icpc compiler, though they are usually warning-
suppression or smaller floating point optimizations and are largely irrelevant compared to the vec-
torization and optimization features.

Since GRBoondi inherits from Chombo, there is a very high-level compilation option oftered by
the Chombo library called OPT. It has three possible choices: FALSE, TRUE, and HIGH. Setting it to
TRUE turns on the optimizations (though it’s not entirely clear the effect of this. Setting OPT=TRUE
at the very least has the effect of including -03 in all executable compilations.). Setting the option
to HIGH turns off all assert statements and initializes memory locations to zero during allocation.
Naturally, this option also has a substantial effect on performance.

The performance improvement garnered by setting these options can be quantified by turning
on each option incrementally. This benchmark was executed by selectively turning on various com-
pilation options and executing a standardized simulation. The simulation consists of a Kerr black
hole of mass 1 and dimensionful spin @ = 0.99. Plot files and checkpoint files are disabled, to en-
sure no unnecessary performance penalties from writing to files. The grid consists of four static re-
finement levels, with grid co-ordinate size 643 and each level has 643 cells. The box sizes are fixed to
be built from 163 cells. Sommerfeld outgoing radiation boundary conditions are chosen along with
reflective symmetry about the z-plane to take advantage of the z-symmetry. The CFL factor is 0.2
and nan checking is disabled. The spatial resolution on the finest grid is d f;,. = 0.0625M , cor-
responding to a temporal resolution of dt ¢, = 0.0125M/. The simulation rate is sampled exactly
when the lowest level in the AMR hierarchy reaches ¢ = 20M. The simulation is repeated three
times and the average of the simulation rate att = 20 is taken to obtain the result for that set
of compilation options. This usually gives the simulation enough time to settle down into a steady
state after all the necessary boilerplate components have been initialized and set up.

The simulations were ran on two compute nodes of the bwHPC, each containing two Intel

Xeon Platinum 8358 processors using 86GB of system memory per node. Eight MPI processes are
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spawned on each node and eight cores are allocated to each process. The results of the benchmark
are displayed in table 3.2. Let R; denote the rate of the simulation measured in geometrized seconds
per hour, ;‘L—{, measured at simulation time ¢. This is a conversion between how many co-ordinate

seconds can be simulated in one hour of walltime.

Compiler Options Simulation rate

DEBUG=TRUE, OPT=FALSE, no other options D.N.E.
|  DEBUG=FALSE, OPT=FALSE, no other options | Roonr = 97.865" |
| -o03 | Roonr = 372.965" |
| -parallel, -03 | Roopr = 376.44% |
|  -xCORE-AVX512, -parallel, -03 | Roon = 491.8732 |

-XCORE-AVX512, -qopt-zmm-usage=high, Roonr = 516.92h—Mr

-parallel, -03

-fp-model fast=2,-xCORE-AVX512, Rogys = 518.09%

-qopt-zmm-usage=high, -parallel, -03

-no-prec-div, -fp-model Roon = 516.95h—Mr

fast=2,-xCORE-AVX512, -qopt-zmm-usage=high,
-parallel, -03

-qoverride-limits, -no-prec-div, -fp-model f%mnw'::504~95£§
fast=2,-xCORE-AVX512, -qopt-zmm-usage=high,
-parallel, -03

-ipo, -qoverride-limits, -no-prec-div, l%mnw'=:517ﬂ07%%
-fp-model fast=2,-xCORE-AVX512,
-qopt-zmm-usage=high, -parallel, -03

Table 3.2: Performance benchmarking of compilation options for the Intel OneAPI C++ compiler, averaged over three separate runs.

These results show how important vectorization is for generating efficient simulation code, as
well as using the high-level optimization flag -03. Turning off all debugging features and enabling

all optimization features increases performance several times.

ASSESSING RELATIVE PERFORMANCE

Comparing the simulation rates for GRBoondi and GR Chombo highlights the efficiency boost gar-
nered by simply neglecting backreaction. Although one typically has to be careful with this approx-
imation to ensure it’s physically realistic, the vast majority of cases relevant for GRBoondi permit
such an approximation. Utilizing this approximation allows one to turn off the evolution of the

background spacetime and simply evolve the Proca field on a fixed background. This can permit
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GRBoondi vs. GRChombo Simulation Rates
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Figure 3.11: Performance metric of GRBoondi compared to GRChombo. The reduction in evolution equations from choosing the
fixed background approximations results in a dramatic speed-up in simulation rates.

a tremendous boost in simulation performance since there are less equations to solve using the
Runge-Kutta method. In this section, we estimate the performance boost by comparing the sim-
ulation rates of GRBoondi and an equivalent physical system using GR Chombo.

The simulation setups are equivalent to the previous section. A = 0.4 Proca field begins as a
perturbation around a rapidly spinning M = landa = 0.99 Kerr black hole. 4 levels of mesh
refinement are chosen on a fixed grid with co-ordinate volume V' = 64° and the side lengths of
the computational box are partitioned into N' = 64 cells. The box dimensions are constrained to
consist of 16% cells. The z-axis symmetry is exploited by imposing symmetric boundary conditions
at the =0 plane and only evolving the 2>0 domain. This choice of refinement levels and cell parti-
tions implies the finest level has a spatial resolution of dz f;,,. = 0.0625M . Choosing a CFL factor
of 0.2 implies the temporal resolution is dt y;n. = 0.0125M . Generation of plot and checkpoint
files was disabled.

The simulations were ran on four compute nodes of the bwHPC, each containing two Intel

Xeon Platinum 8358 processors using 86GB of system memory per node. 8 MPI processes are
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1| template <class data_t> void compute_emtensor_modification(...) const {};
»| template <class data_t, ...> void matter_rhs_modification(... ) const {};

Listing 3.23: The electromagnetic example in GRBoondi highlights the most basic usage of the software adding no additional terms
to the base equations.

spawned on each node and 8 cores are allocated to each process. The results of the benchmark are
displayed in table 3.3. Let R; denote the same metric as the previous section. The simulation rates

are extracted on the same level at a simulation time of t = 50M. The tremendous performance

Simulation Toolkit Simulation rate
GRChombo Rsonr = 301.18%
|  GRBOONdi | Rsonr = 9092457 |

Table 3.3: Performance improvement of GRBoondi relative to GRChombo. This test highlights the efficiency boost gained from
exploiting a perturbative backreaction in many physical systems. This test uses a superradiant Proca cloud around a rapidly spinning
black hole as a proxy.

boost from using GRBoondi is evident. The simulation runs at three times the rate compared to GR-

Chombo, thanks to the dramatic reduction in evolution equations, fig. 3.11.

3.6 EXAMPLES

GRBoondi comes equipped with several example systems to highlight the various features of the
code. Each example highlights a different aspect of the code and shows users a good starting point

for building their simulations.

3.6.1 ELECTROMAGNETIC FIELDS ON MINKOWSKI

The first and simplest example is that of electromagnetic fields on a Minkowski background. This
highlights the most basic usage of GRBoondi, without any additional terms in the Lagrangian. The
theory under study in this example is the standard electromagnetic field, £ = —1 F*F,,,. In this
system, the modifications to the evolution equations are trivial and the ProcaField class adds no
additional modification to the evolution equations where the dots represent additional arguments,
either additional template parameters or function arguments. They are omitted here for clarity.
The only equations that are computed are then the base evolution equations, egs. 3.114-3.117.

The level class definition is the most irreducible version that any level class can be, only specifying
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class EMFieldLevel : public BaseProcaFieldLevel<DefaultBackground, ProcaField>

2 (I

public:
// inherit constructor from base class
using BaseProcaFieldLevel: :BaseProcaFieldlLevel;

// override method to calculate initial data
virtual void initialData() override

{
// Initialize the initial conditions class
Initial EM_Conditions initial_conditions(m_dx, m_p.initial conditions_params, m_p.background_params);

// Loop over box cells and assign initial EM field
BoxLoops: :loop(initial_conditions, m_state_new, m_state_new, INCLUDE_GHOST_CELLS);
}
}

Listing 3.24: Level class of the electromagnetic example, representing the most irreducible version that any level class can be. The
necessary definition is specification of the initial data.

the initial data for the electromagnetic field. This highlights a very basic setup for initial data. The
class which computes the initial data at each grid point, as a function of co-ordinates, is initialized
using parameters specified by the user in the parameter file. Then the class is looped over the boxes
and cells, populating the grid with initial values for the variables, including the ghost cells.

The initial data itself is also simple, specifying the initial data of the electromagnetic field to be
that of an electrically charged point particle, Ist. 3.25.

This also highlights the simple procedure of storing data on the grid. The co-ordinates of the
current grid cell are computed using the Coordinates<> class, which computes the co-ordinate po-
sition of the cell. The co-ordinate radius, 7 = /22 4 y? + 22, can simply be computed using the
built-in . get_radius() method of the Coordinates<> class. The initial amplitude is then extracted
from the user-defined parameters. The matter evolution variables on the grid are then flushed with
zeroes to ensure no memory initialization values tarnish further computations. Finally, the initial
data is computed using analytic expressions and saved to the current cell using the . store_vars()
method.

Another important fundamental piece that users need to specify is the parameter class, called
SimulationParameters, which inherits from the base ProcaSimulationParameters. This class
loads the parameters defined in a parameter field and stores them as members of the class, Ist. 3.26.

The members of the class can be simple datatypes such as doubles, or they can be structs de-
fined in other classes, which is the case here. For example, in Ist. 3.2 line 4, the initial data struct is

defined and in Ist. 3.26 line 16, it’s initialized as a member of the SimulationParameters class.
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Listing 3.25: Initial data for the electromagnetic field takes the simple form of an electrically charged point particle.

-
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Listing 3.26: Simple example of setting up the SimulationParameters class, which reads in the parameter file and saves the values
to members of the class.
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The initial data parameters can then be stored in this struct and used throughout classes that
contain references to the class.
The remaining piece is to write a main function for the program to execute. The main function

has many responsibilities. It must:
* set up and coordinate the MPI processes before anything else;

* initialize the SimulationParameters class and pass the parameter file to the class in order for

the parameters to be parsed;

* execute the ProcalevelFactory, a class which is responsible for setting up each level of the

AMR hierarchy;
* set up the AMR interpolator, for interpolating data across grid cells;
* set up any timing functionality for analyzing the simulation performance metrics;
* execute the simulation;
* perform cleanup of the AMR object;
* finalize the MPI processes and clean up memory.

Fortunately, almost all of these processes are constant boilerplate procedures for every simulation.
GRBoondi relegates almost all of these setup procedures to a single function called runGRBoond.i.
The example can then be compiled using the standard procedure of running make all. This
generates an executable which can then be run by either calling the executable directly or using a
job scheduler such as s1lurm. This example highlights the irreducible pieces of a simulation. More

complicated parts can be added by the user for more complex systems.

3.6.2 Base Proca

The next example represents a step up in complexity by introducing a mass term to the base La-

grangian, £ = —%F WE. — % ,uzA“Au. This is actually a simplified case of the most simple gen-
eralized Proca theory. This theory corresponds to setting Gy = %A“A#, as = —1,and a;~o = 0.
GRBoondi contains built-in functions to handle the simple case when £, = aG3(A*A,,), for
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template <class G2 = DefaultG> class L2
{
public:
struct params_t
{
double alpha2;
+
public:
L2(){}; // Default constructor for default initialization in matter class
L2(G2 a_G2_function, params_t a_params): m_g2_function(a_G2_function), m_params{a_params} {};
template < ... > void compute_emtensor_modification( ... ) const;
template < ... > void matter_rhs_modification( ... ) const;
}
Listing 3.27: GRBoondi contains built-in functions to evolve generic definitions of £ = —%F’“’Fﬂy + asGo(AFAY).

ProcaField(KerrSchild a_background, params_t a_params)

: BaseProcaField<KerrSchild, ProcaField>(a_background),
;| m_background(a_background), m_params(a_params)
{// set up the L2 Lagrangian

DefaultG: :params_t G2_params{m_params.mass}; // Initialize G2 function parameters
7 L2_t::params_t L2_params{m_params.alpha2}; // Initialize L2 Lagrangian parameters

9 DefaultG a_G2(G2_params);

o this->m_L2 = L2_t(a_G2, L2_params);
this->m_G2 = a_G2;

23
Listing 3.28: Using the built-in Lo functions is very straightforward, amounting to initializing the functions in the constructor of the

ProcaFieldclass.

generic choices of G'a. This is achieved by templating the evolution equations and stress-energy
equations over a generic definition of (g, allowing users to define any choice of mass term. GRBoondi
contains a class called L2 which encapsulates all modifications to the equations of motion coming
from such terms. Users then simply have to define their own G2 function or use the default built-in
definition of Gy = A*A,,.

The base Proca example uses the default definition of the G2 function and the ProcaField class
is initialized and sets these functions. Then, the modification to the evolution equations is achieved

by calling the built-in modification methods of the L2 class. Users can also add the evolution equa-

1| template < ... >
>| void matter_rhs_modification( ... ) const

31 4
4 // add modifications coming from L2 Lagrangian
5 m_L2.matter_rhs_modification(total_rhs, matter_vars, metric_vars, d1,d2, advec);

d

Listing 3.29: Modifying the evolution equations from the Lo Lagrangian is as simple as calling the built-in function of the L2 class.
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class Initial_Proca_Conditions

2 (I

template <class data_t> void compute(Cell<data_t> current_cell) const

{

mattervars.Avec[0] = m_params.init_amplitude * exp(-radius / r0_BL) / gamma_det;
current_cell.store_vars(mattervars); // export to grid
}
}i

Listing 3.30: Initial data for the Proca field is taken from analytic approximate computations of the Proca bound states.

tion for the damping term, which isn’t automatically added by the L2 class, which is done in the
base Proca example.

For the base Proca example, the initial data is taken from analytic approximate computations of
the superradiant bound state for a Proca field, Ist. 3.30, where 70_B L is the approximate radius of
the bound state. The energy density at a late time is displayed in fig. 3.12.

GRBoondi also contains another example called the NonLinearProcaKerrBH example, which evolves
the system originating from the Lagrangian £ = —1F"F,, — T2 A*A, — 1ap? (A*A,) In-
corporating these new terms amounts to modifying the G2 function. In this example, a new G2
function is defined, called NonlinearG2, which defines the function itself and its first and second
derivatives with respect to its arguments. The rest of the code follows almost identically to the base
Proca example previously. This example highlights the great modularity of GRBoondi, making it

extremely easy to modify the evolution equations coming from additional terms in the Lagrangian.

3.6.3 BASE PROCA IN A SPINNING, EXPANDING UNIVERSE

The final example is a slight modification of the base Proca example and highlights the modularity
of GRBoondi with respect to the background spacetime”. For this example, a new background space-
time was built, called the Kerr-de Sitter spacetime, and the new class called KerrdeSitter. The key
pieces of building a new background spacetime will be elucidated here'.

The first step in defining a new background class is specifying the parameters of the background.

In this case, there are four new parameters, Ist. 3.31. The struct also contains additional parame-

*At the time of writing, the background spacetime defined in this example has become a standard class in the
source code of GRBoondi. Nonetheless, it highlights how users can easily define their own background spacetime and
very easily incorporate the new class into existing code, taking advantage of the classes templated over the background
class.

TFor a discussion of the Kerr-de Sitter spacetime itself, see Chapter 4.
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Figure 3.12: A snapshot of the energy density of a standard Proca field at late times in the z = O plane. The value of the energy
density is represented both by the colored portion and a vertical extrusion. The AMR hierarchy is overlayed on this extrusion,
highlighting the fact that the finest levels sufficiently cover the most dynamical parts of the simulation.

Listing 3.31: The first step in defining a new background is specifying the relevant parameters.
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template <class data_t>

2| void compute_metric_background(MetricVars<data_t> &metric_vars, const Coordinates<data_t> &coords) const
i

metric_vars.lapse = ...
FOR1(1)
{
metric_vars.shift[i] = ...
FOR1(3)
{
metric_vars.gamma[i]l[j] = ...

}
metric_vars.d1_lapse[i] = ...

3

Listing 3.32: The new background class is required to have a method called compute_metric_background which computes the
metric variables and its derivatives.

ters, the outer and inner horizon of the black hole, which are precomputed using GRBoondi’s utility
functions and external computations. This is to prevent loss of performance due to expensive com-
putations of the outer and inner horizon, which is quite involved.

The next step is to define the initializer. Typically, a default constructor can be used. However,
in this example, a constructor was built that automatically verifies the user-defined parameters sat-
isty certain consistency checks, such as ensuring a naked singularity isn’t formed. Since the con-
structor is called at initialization time of the class, which occurs only once for each level method, it’s
inexpensive to check the parameters at initialization time.

Finally, the background class should have a function called compute_metric_background, which

computes the metric variables and their derivatives for a given co-ordinate point, Ist. 3.32. The

function signature of the method is required to be of this form, taking in a reference to the Metricvars

class and Coordinates class.

The background class should also have a method called check_if_excised, which returns a
boolean value telling the excision code if a cell should be excised or not depending on which re-
gion of the computational domain the cell is in. This is extremely important for black hole space
times since the curvature at the center diverges and can cause significant numerical errors, spoiling
the simulation. For singularity free backgrounds, such as the Minkowski background, the method
can return false to never excise, Ist. 3.33.

The rest of the code follows almost identically to the base Proca example, except every instance
of KerrSchild is replaced with KerrdeSitter. For example, the definition of the ProcaFieldLevel

class is shown in Ist. 3.34. These are all the necessary ingredients to implement a new background
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virtual bool check_if_excised(const Coordinates<double> &coords,
const double buffer = 1.0) const

31 4

return false; // Dont ever excise
}
Listing 3.33: New background classes are required to have a check_if_excised method, which computes where cells are within a
domain where their values should be excised, such as within the black hole horizon. The example here shows a trivial implementation
where excision never takes place.

class ProcaFieldlLevel : public BaseProcaFieldlLevel<KerrdeSitter, ProcaField>

{

b

Listing 3.34: Initialization of the ProcaFieldLevel class using a custom background class.

spacetime. All the features showcased in the examples highlight the power of GRBoond1i to simulate
generalized Proca theories in arbitrary spacetime backgrounds, greatly accelerating the study of the

landscape of generalized Proca.
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My goal is simple. It is a complete understanding of the

universe, why it is as it is and why it exists at all.

Stephen Hawking

Procain an Expanding Universe

IT IS CRUCIAL THAT ACCURATE MODELS ARE DEVELOPED for the evolution of superradiant
Proca clouds around spinning black holes. Near future gravitational observatories are going to

offer unprecedented tests for massive vector dark matter, hence accurate models are necessary to
probe experimental data. Several theoretical analyses have already been carried out to understand
the evolutionary behavior of massive vector fields surrounding black holes and their subsequent sec-

199,282,283,289,2927295,297,301,303,346347  A] of these studies explicitly neglect the cosmological

ular decay
constant, an overwhelming component of our universe. Normally, this is a justifiable assumption,
since recent observational data has shown the cosmological constant to be quite small 136348349 Ty

terms of SI units, the observed cosmological constantis A ~ 107°2m=2,a tremendously small

value. Itis hence a reasonable approximation to take A = 0 in the studies of superradiant Proca
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fields. Nonetheless, the effects of a cosmological constant on the growth rate of the Proca cloud is
still required to complete the understanding of Proca superradiance in our universe.

The purpose of this chapter is to detail the study of Proca fields in spinning and expanding uni-
verses by specifying the background spacetime to be that of a Kerr black hole in a de Sitter back-
ground, the so-called Kerr-de Sitter solution. At first, the general theory of (standard) Proca fields
in a Kerr-de Sitter background is discussed, elucidating the interesting causal properties of the back-
ground and general dynamical evolution of the Proca field. Next, as a first application of GRBoondi,
the Proca evolution equations are solved in the Kerr-de Sitter background spacetime and the results
discussed. Finally, as is standard for all numerical relativity computations, resolution and conver-

gence tests are performed to verify the data converges to some continuous solution.

4.1 THEORY

The starting point is the Einstein-Hilbert-Proca theory, where the Einstein-Hilbert action is aug-

mented by the Proca action

1 1 1
S[g/“,, AU] = /d4l'\/ —g (Wcﬁ — 2A) — ZF“VFIU’ — El,LQA'uAM) s (41)

where g,,,, is the metric, g its determinant, R is the Ricci scalar, A is the cosmological constant, and
A* is the Proca four-vector. Variation of S|g, A] with respect to these two fields yields the equa-

tions of motion

-1 1
G + Ag" = 8 (TFWF‘“’Q”" +FME] = 19 A A 4 /ﬁApAU) = 87T, (4.2)

0=V,F"7 — A, (4.3)

where G*7 is the Einstein tensor and ¥, is the stress-energy tensor of the Proca field. We assume
the backreaction of the Proca field on the spacetime is negligible, as is usually the case, meaning we

can set T, = 0 without significant loss of accuracy. This implies that the field equations reduce to

G + Ag” =0 (4:4)



V,F" — A7 =0. (4-5)

The solution of the gravity sector describing a spinning black hole is called the Kerr-de Sitter
(KdS) solution. This solution is in fact a special case of the more general Plebariski-Demiariski fam-
ily of metrics*>**. We choose to work in the Kerr-Schild form of the solution, which takes the
form

Guv = 9o,uv + QHK/LKV ) (46)

where g .., is the background de Sitter metric and K, is a null vector (with respect to both g and

o). In Kerr-Schild co-ordinates (¢, r, 8, ¢), the de Sitter background metric takes the form

-fA
“Lap, 0 0 0
0 =LA 0 0
o = e , (4.7)
0 0o £ 0
0 0 0 e ing

where we’ve defined

A A
Ay =1+ =a’cos§? A, =1 —=2Mr+a® — —r*(r* 4+ a?)
; 3 (4.8)

A
@:14—5@2 p* =12 + a® cos

and H = 2%T. The A, definition becomes important for the analysis of the black hole horizons.
The poles of A, correspond to the poles of the metric in Boyer-Lindquist co-ordinates*>*. In a sim-

ilar fashion, the null vector is defined via

2

Ay p —a . 4
K,=|— ————-,0,—/— . .
12 ( @ Y (TQ _'_ QZ)AT’()? @ sin (9)) (4 9)

Prior to plugging this metric into the numerical solver, we need to understand the basic causal
structure of the background spacetime on which the Proca cloud will evolve. This amounts to de-
termining the location of the horizons, which follows by solving the quartic polynomial A, = 0.
The existence of the horizons can be determined by analyzing the discriminant of the quartic poly-

nomial, which will be denoted by Q). The positivity of () guarantees that all four roots are simulta-



neously either real or complex. This means we only have to verify one of the roots is real to ensure

the other three are as well. The discriminant is easily solved for and takes the form

Q=— % [12a°A% + a'A* + a® (81 — 891M2A) + 3a®A* (18 + M>A) (4.10)
+81M? (=1 +9M?A) +27a*A (4 + 11M>A)] . (4.11)

Fig. 4.1 shows a contour plot of (), with the spin and cosmological constant rescaled by the black
hole mass. The region ) > 0 shows the allowed parameters for the background. The shaded region
denotes the disallowed region. Beyond the allowed region, one or more horizons will disappear,
yielding a naked singularity. Fig. 4.1 hence tells us the allowed values of the black hole parameters

that can be used in the simulations. An absolute maximum value of the cosmological constant is

Mg = 45+1266 7 # and corresponding absolute maximum value of the black hole spin of @4, =

1% + %gM . This point corresponds to the cusp of the non-shaded region on the upper-right
quadrant of fig. 4.1.

Another interesting feature is the existence of a minimum spin for a certain range of values for
the cosmological constant. For spacetimes satisfying A > 1/9, the black hole is required to pos-
sess spin in order for the Kerr-de Sitter black hole to exist. That is to say, for cosmological constant
values greater than 1/9, static black holes in the form of eq. 4.6 do not exist.

We label the three positive roots as 7_, 7, and 75, which denote the inner, outer, and cosmo-
logical horizons, respectively. The fourth root is negative and corresponds to a ’horizon’ inside the
singularity at 7 = 0. In Kerr-Schild co-ordinates, besides the singularity at 7 = 0, the poles in the

metric disappear, including ry. However, a new pole appears at 7y = \/% . We find thatry < 74

throughout the allowed parameter space. In the limit of small cosmological constant,
TA:fA—l—FO(\/K) . (4.12)

A peculiar property of the causal structure is the existence of a maximum cosmological constant
which permits the existence of a black hole. At the maximum cosmological constant value A4,
the outer and cosmological horizons merge, see for example fig. 4.2. Additionally, dimensionless

spin values greater than unity are allowed without producing a naked singularity, as long as the cos-
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Figure 4.1: Plot of the values of the discriminant (. The shaded region shows the unallowed parameters for the existence of a
Kerr-de Sitter black hole. The unshaded region are the allowable parameters.
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Figure 4.2: Evolution of the cosmological and outer horizons, eventually merging. A value of a=0.5 is chosen as a representative
value. Past the value of A where the horizons merge, no Kerr-de Sitter black hole is possible.
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mological constant is greater than zero, in stark contrast to spinning black hole solutions in non-
expanding universes.

On the other hand, the solution in the Proca sector of eqs. 4.4-4.5 is unclear, since analytic stud-
ies have yet to be performed. However, based on knowledge from the Proca on Kerr solutions, we
can expect the cloud to undergo a superradiant instability due to the existence of the black hole

horizon. This implies that the energy of the cloud will be of the form

E(t) = Ege*™" (4.13)

where w is the complex frequency of the Proca field. The factor of 2 comes from the fact that the
stress-energy tensor of the Proca field is quadratic in the Proca field itself. Since the frequency is of
the form w = w, + iw;, the imaginary part implies an exponential evolution superimposed over an

oscillatory one. The imaginary frequency is what is solved for in this study.

4.2 METHOD

Towards a numerical solution of the Proca system, the next step is to decompose the field equa-
tions into a form pertinent for numerical computations. We follow the standard procedure, which
is to decompose the spacetime via a foliation into a series of three-dimensional time-like hypersur-
faces. Since the spacetime admits a time-like Killing vector, we can choose the Kerr-Schild time co-
ordinate as the function that defines the foliation leaves. Hence, the (7, 0, ¢) co-ordinates become

co-ordinates on the hypersurfaces. We thus define our 3 + 1 decomposition as**’

a=—= (4.14)
~
0i
; g
p=-2 (4.15)
g0
Yii = Gij (4.16)

where g and vy are the determinants of the full and spatial metrics, respectively, v is the lapse func-

tion, 37 is the shift vector, 7ij is the spatial metric, and Latin indices range from one to three. In the
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co-ordinate system of eq. 4.7, these take the form

AQA%pz
o= T (4.17)

@i — 2Mr(a®+12)Ag Ay 0 . 2MralgA, (4.18)
2a2Mrsin?(0) Ar+O©(2Mr+(a2+r2)A,) p2 2a2Mrsin?(0) Ar+© (2Mr+(a2+r2)A,)p?
p2(2Mr+(a?+r2)A,) 0 __2aMrsin®(6)

AZ(a?+r2)?2 a?OA,+r20A,
2
Yij = 0 £ 0 ; (4.19)
2aMrsin?(0) sin?(0) 2 2 2a% Mrsin®(0)
~ @20, +126A, 0 or (O +a%) + o

where we've defined I' = 2MrAy + p?©OA,. As our numerical solver computes the time evolu-

tion using cubic cells, we transform the (7, 6, ¢) co-ordinates to a Cartesian-like co-ordinate system

defined by
x = rsin(6) cos(¢) (4.20)
y = rsin(f) sin(¢) (4.21)
z =rcos(f) . (4.22)

The shift, spatial metric, and all derivatives are then transformed using the resulting Jacobian ma-
trix. See App. B.1 for more details. The last step is to decompose the Proca equations eq. 4.5 under

the foliation. A standard calculation yields

1 ) ) ) ) 2 .
—L,E'=E'K - D'Z +1*X' — =D; (DU X" (4.23)
(6] (6]
1 .
L7 =—u*p— Di;E' — kZ (4.24)
«
1
—LnX; = —E; — Dj¢ — ¢D;ln(a) (4.25)
(e
1 Z o
—Ln¢ == +¢K — D X" — 2’ Djin(a) | (4.26)
o It

where B = 7LF WX = v A, ¢ = —n, A*, Z is an auxiliary field introduced to damp viola-
tions of the Proca constraint with a tuning parameter £*'**%%53 and n* is the time-like normal to

the spatial hypersurfaces.
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4.3 RESULTS

For the numerical evolution of egs. 4.23-4.26, we use GRBoondi. We use a box width of L = 600
with N = 192 grid points across each edge of the computational box. We use 4 refinements levels
ata 2 : 1 refinement ratio, resulting in a resolution of the finest level of dx ¢ = 0.01953M. To
prevent boundary effects from contaminating the simulation, we use Sommerfeld-outgoing radia-
tion boundary conditions, which allows oscillations to exit the simulation region with minimal re-
flections due to finite-size effects. This is especially important since we introduced an auxiliary field
which dampens violations of the constraint equation and the evolution equation for Z is a general-
ized telegraph equation. This implies that not only are the values of Z damped, but also propagate
at the speed of light. Hence, the outgoing radiation boundary conditions are vital for ensuring vio-
lations of the constraint equation propagate outside the computational domain.

To understand the effect of a cosmological constant on the dynamical evolution of the superradi-
ant Proca cloud, we perform a various number of simulations with parameters that yield the highest
growth rates. We choose three different values of the cosmological constant, A = (5 - 107%,107%,107?).
Higher values of the cosmological constant are more difficult to simulate numerically as the cosmo-
logical horizon quickly becomes small. We reserve probing this region of the parameter space to
future studies, which will likely entail a new co-ordinate system. Additionally, we fix the black hole
spin to x = 0.99. We sample the Proca mass at six different values, ;o = (0.35,0.4,0.45,0.5,0.6,0.7).
In addition to the main simulations, we also perform a convergence study to ensure our choice of
resolution produces accurate data, which we discuss in sec. 4.3.1.

For initial data, we take a Gaussian profile with width determined by analytic approximation

1

studies'??, rg = R The initial datais then A, =

A
¥

6_%, where A is some pre-determined
amplitude which we take to be A = 0.1, and all other variables are chosen to be zero.

The data from our simulations is available in table 4.1. The cosmological constant has been
rescaled to A = %, where A is the unscaled parameter. Plots of the normalized total energy as
a function of time are shown in fig.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>