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Abstract

Genetic changes play crucial roles in shaping the development and progression of tumors,
affecting their growth, response to treatment and overall prognosis. This thesis aims at
reconstructing the genetic history of oligodendroglioma, a slowly growing yet incurable
brain tumor. The dynamics of its ongoing genetic evolution and the resulting progression
remain poorly understood. Therefore, in this work I develop a mathematical approach to
estimate malignant growth and infer evolutionary trajectories of oligodendrogliomas from
whole-genome sequencing data.
I analyse deep whole-genome sequencing data from six primary-relapse oligodendroglioma
pairs. This type of data enables quantitative analysis of subclonal evolution during the early
stages of the disease and its subsequent progression. By applying a population genetics
model to these samples, I identify a common early tumorigenesis pathway characterized by
mutations in the IDH1/2 genes and the loss of chromosomes 1p and 19q, which are defining
properties of these tumor entities. Dating the founding cell (most recent common ancestor)
of individual patients suggests that oligodendrogliomas originate in childhood and evolve
over decades with an increasing growth rate. These dynamics are consistent with rapid
oligodendrocyte production in childhood and provides an explanation for the incidence
peak of oligodendrogliomas in mid-life. Accelerated growth is linked to the selection of
subclones, with or without known driver mutations. Specifically, I find that TERT promoter
mutations are associated with strong selection, whereas weak subclonal selection is linked
to mutations in CIC, NOTCH1, ZBTB20 or ATM, or could not be explained by a known
driver. For individual tumors, I predict the time to recurrence based on the inferred growth
rate of the primary tumor. Overall, I show how genome sequencing can provide valuable
insights into the dynamics of tumor evolution, allowing for personalized predictions of
recurrence based on the genomic analysis of the primary tumor.
In the second part of the thesis, I explore a potential non-genetic factor influencing
subclonal selection of oligodendrogliomas: DNA methylation. Specifically, differentially
methylated sites between recurrent and primary tumor samples are identified to better
understand oligodendrogliomas progression. However, I could not detect evidence for
epigenetic subclonal driver events.
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Zusammenfassung

Genetische Veränderungen spielen eine entscheidende Rolle bei der Entwicklung und
dem Fortschreiten von Tumoren. Sie beeinflussen die Wachstumsgeschwindigkeit des
Tumors, das Ansprechen auf Behandlungen und die allgemeine Prognose. Ziel dieser
Dissertation ist, die genetische Entwicklung des Oligodendroglioms zu rekonstruieren.
Oligondendrogliome sind langsam wachsende, aber unheilbare Hirntumore. Die Dynamik
der fortlaufenden genetischen Evolution und des daraus resultierenden Wachstum des
Tumors ist noch wenig verstanden. Daher entwickle ich in dieser Arbeit einen mathema-
tischen Ansatz, um Wachstumsparameter zu schätzen und evolutionäre Trajektorien von
Oligodendrogliomen anhand von Genomsequenzierungsdaten abzuleiten.
Ich analysiere Genomsequenzierungsdaten von sechs Paaren primärer und rezidivierender
Oligodendrogliome. Diese Daten ermöglichen eine quantitative Analyse der subklonalen
Evolution in den frühen Stadien der Krankheit und des weiteren Fortschreitens. An-
hand eines populationsgenetischen Modells identifiziere ich in allen Proben eine frühe
Tumorentstehung, die durch Mutationen in den IDH1/2-Genen und den Verlust der Chro-
mosomen 1p und 19q gekennzeichnet ist. Diese intialen Mutationen definieren das Oligo-
dendrogliom. Die Ursprungszelle des Oligodendrioglioms (letzter gemeinsamer Vorfahre
aller Zellen des Tumors) wird in allen Patienten auf das Kindesalter datiert. Die Tumore
entwickeln sich dann über Jahrzehnte mit einer zunehmenden Wachstumsrate. Diese Dy-
namik ist konsistent mit einer schnellen Produktion von Oligodendrozyten im Kindesalter
und liefert eine Erklärung für die gehäufte Diagnose von Oligodendrogliomen im mittleren
Lebensalter. Das Vorkommen selektierter Subklone, mit oder ohne bekannten Treibermu-
tationen, beschleunigt das Tumorwachstum. Insbesondere finde ich, dass Mutationen im
TERT-Promoter mit einer starken Selektion verbunden sind, während schwache subklonale
Selektion mit Mutationen in den CIC, NOTCH1, ZBTB20 oder ATM Genen verbunden ist,
oder nicht durch eine bekannte Treibermutation erklärt werden konnte. Mithilfe des mathe-
matischen Modells schätze ich zudem den voraussichtlichen Zeitpunkt des Wiederkehrens
des Tumors nach primärer Behandlung (bei gleichbleibender Wachstumsrate). Insgesamt
zeige ich, dass die Genomsequenzierung wertvolle Einblicke in die Dynamik der Tumorev-
olution liefern kann. Dies ermöglicht personalisierte Vorhersagen des Wiederauftretens
des Tumors basierend auf der genomischen Analyse des Primärtumors.
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Im zweiten Teil der Dissertation untersuche ich einen potenziellen nicht-genetischen Faktor,
der die subklonale Selektion von Oligodendrogliomen beeinflusst: die DNA-Methylierung.
Insbesondere werden unterschiedlich methylierte Stellen zwischen rezidivierenden und
primären Tumorproben identifiziert, um das Fortschreiten von Oligodendrogliomen besser
zu verstehen. Allerdings konnte ich keine Hinweise auf epigenetische Ereignisse finden,
die das subklonale Tumorwachstum beschleunigen.
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Chapter 1

Introduction

1.1 Outline of this thesis

This thesis investigates the evolutionary dynamics of six pairs of primary and recurrent
oligodendrogliomas by analyzing genetic factors and exploring a potential epigenetic
influence on the growth of these tumors.
The first two sections of Chapter 1 provide general background on cancer initiation mecha-
nisms. Specifically, 1.2 offers a general background on mutation accumulation mechanisms
and DNA repair, introducing cancer as a mutation-driven disease, whereas 1.3 explains the
importance of studying epigenetic changes, despite their relatively understudied nature and
incomplete understanding of their contribution to tumorigenesis. Lastly, in 1.4 I provide
an introduction to the clinical and biological aspects of oligodendrogliomas.
Chapter 2 focuses on the genetic analysis. I firstly discuss a new computational method to
infer tumor heterogeneity from deep whole-genome sequencing data specifically tailored
for oligodendrogliomas. Next, I examine clonal evolution in oligodendroglioma, inferring
the evolutionary trajectories using the population dynamics model previously described.
Furthermore, I uncover tumor growth characteristics, time the tumor’s origin and estimate
the selective advantage of positively selected subclones, reconstructing the evolutionary
history of tumor cell populations from genetic alterations. The results are contextualized
within current research in the concluding section.
Chapter 3 focuses on the epigenetic analysis. Specifically, I analyze DNA methylation
data from the same cohort of oligodendrogliomas, identifying specific methylome changes
associated with cancer progression. I investigate whether any epigenetic drivers is able to
explain, the positively selected subclones previously identified in Chapter 2. I could not
identify any upmethylated pattern that could drive such faster growth.
In the final Chapter 4, results from both genetic and epigenetic analyses are integrated
and put in a broader context to provide a comprehensive understanding about oligoden-
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Chapter 1. Introduction

drogliomas’ evolution. Moreover, the potential of whole-genome sequencing data to probe
evolutionary dynamics in tissues is discussed more generally.
This thesis examines the functional and dynamic aspects of mutations driving the tran-
sition from healthy to diseased brain, utilizing deep whole-genome sequencing data and
mathematical models to outline cancerous tissue growth dynamics.

1.2 Somatic mutations in cancer cells

Many cancers arise as a result of errors that have occurred in the DNA sequence that
transform normal cells into cancerous ones. Mutations arising from these errors can be
inherited, build up over time or caused by external factors damaging the genome, such
as cigarette smoke, alcohol or ultraviolet radiation from the sun. Over the last decades,
advancements in genome sequencing techniques have greatly improved the understanding
of cancer genetics.
In this thesis, I will show how a detailed analysis of cancer mutations can reveal the
evolutionary dynamics of individual tumors. To set the stage, I will start with a brief
discussion on how somatic mutations develop over a lifetime, including a short overview of
key historical events, technological advancements and concepts defining cancer evolution.
With this foundation, I will examine the role of somatic mutations in the progression
from normal to cancer cells. Finally, I will highlight the importance of timing somatic
mutational events for understanding tumor evolution.

1.2.1 About somatic mutations and cancer

Brief history

Before the early twentieth century, it was known that the origin of cancer was tightly
linked to the unrestricted division of malignant cells and their progeny [49]. However,
the reasons behind the malignant transformation, and hence the cancer initiating events,
were unclear. In 1914, Theodor Boveri observed unusual chromosomal abnormalities
in dividing cancer cells under a microscope [23]. This observation led him to propose
that cancers are abnormal clones of cells, caused and characterized by irregularities in
hereditary material [23], suggesting that cancers originate from a single cell that bears
chromosomal abnormalities. These are then passed on to all descendant of the cell of
origin, causing rapid proliferation. Today, it is understood that aneuploidy (a type of
genomic instability) is a common genetic feature in solid tumors [53], along with other
factors like enabling replicative immortality (where cancer cells maintain their telomeres,
allowing indefinite division) and sustaining proliferative signaling (continuous activation
of growth factor pathways). These features are among the hallmarks of cancer [47, 48],
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Chapter 1. Introduction

which collectively contribute to its development and progression by giving cancer cells the
traits needed to survive, proliferate and spread uncontrollably.
This connection between somatic mutations and cancers was one of the earliest established
links in cancer research [138]. Over the following decades, numerous studies confirmed and
further developed this concept. For example, it was discovered that many chemical agents,
such as tobacco smoke, are mutagenic and can lead to cancer [88]. A key breakthrough was
the demonstration that introducing genomic DNA from human cancers into normal cells
could transform them into cancer cells [74, 30, 29, 97, 133]. This led to the identification
of abnormal genes called oncogenes in 1982 [127, 141], which, when mutated, gain
functions that drive cancer development [20, 21, 153]. Concurrently, research on hereditary
retinoblastoma led to the identification of tumor suppressor genes [69], which typically
loose functions by mutations. These findings initiated the still ongoing search for oncogenes
driving human cancers.

Cancer as an evolutionary process

In 1976, Peter Nowell used concepts of evolutionary theory to understand cancer formation
and development, pioneering the hypothesis of tumor evolution. He proposed that tumors
are highly individual, suggesting that each cancer may require a specific treatment approach.
Success in therapy could be achieved if no new therapy-resistant clones emerge [113].
Nowell’s model proposed that most cancers originate from a single neoplastic cell (exactly
like Boveri stated in 1914) and evolve through a selection process that favors somatic
alterations promoting the proliferation and survival of the most aggressive clones [113].
Hence, cancer development can be seen as a form of Darwinian evolution [31], involving
two key processes: the continuous acquisition of heritable genetic variation in individual
somatic cells through mutations, and natural selection acting on the resulting phenotypic
diversity [138, 155, 43]. Cancer therapy resistance mechanisms can also be seen as an
adaptation of the Darwinian framework: while therapeutic intervention may destroy cancer
clones and limit their habitats, it can also unintentionally apply strong selective pressure,
leading to the emergence and expansion of resistant variants [45].
Nowadays, the Darwinian framework is widely accepted for understanding the progression
of cancer. However, deducing the evolutionary dynamics of individual tumors from,
typically, one or a few clinical samples remains a fundamental problem [98, 154, 77]. To
address this, several models describing tumor evolution have been proposed. One model
describes a linear succession of clonal cell divisions. In this scenario, alterations occur in
progenitor cells in a stepwise manner, giving these cells a strong selective advantage that
allows them to outcompete earlier clones (see Figure 1.2.1 on the left). As a result, the
tumor would consist of clonally identical cells resulting from continuous selective sweeps
[32]. However, in 1978, Dexter at al. [34] demonstrated that tumors are composed of
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Chapter 1. Introduction

genetically diverse subclones with fundamentally different behaviors, defining tumors as
heterogeneous. This supported a model where tumors are formed by multiple subclones
simultaneously, each diverging and expanding with varying levels of fitness (or selective
advantage) and giving rise to a branching tumor evolution [51, 45] (see Figure 1.2.1 on the
right). In Chapter 2, I will show how the branching tumor evolution model will be able to
fit my data best.

Linear evolution Branching evolution

Figure 1.2.1: Linear (left) and branching (right) tumor evolution. Different colors
highlight different subclones driven by newly acquired mutations.

Recent advancements of sequencing strategies

Today, genome-wide analysis, through exome or whole-genome sequencing, is well es-
tablished [157, 96]. In fact, high-throughput DNA sequencing, known as next-generation
sequencing, has enabled the sequencing of tens of thousands of primary cancers and
matched normal samples across a wide range of cancer types. This has led to projects
like The Cancer Genome Atlas (TCGA; cancergenome.nih.gov) and the Catalog
of Somatic Mutations in Cancer (COSMIC; cancer.sanger.ac.uk), which identify
common features among different cancer entities.
These advancements have revolutionized the understanding of cancer genetics; for example,
previously unknown cancer driver genes were discovered and new mutational signatures
have provided deeper insights into cancer development [98]. Moreover, by sequencing
each DNA locus several times, the tissue fraction harboring a specific mutation can be
estimated from the fraction of reads carrying the mutation [139]. In this way, clonal genetic
variants are distinguished from subclonal ones. These efforts have not only advanced the
understanding of cancer as a genomic disease, but also provided the data needed to develop
tools and resources for rapid detection and analysis of relevant genomic events, guiding
individualized treatment options [179, 129, 76]. In this thesis, I will show how analyzing
allele frequency patterns can provide even deeper insights into a cancer’s evolutionary
history.

4

cancergenome.nih.gov
cancer.sanger.ac.uk


Chapter 1. Introduction

Passenger and driver mutations

As previously discussed, next-generation sequencing has enabled the identification of
numerous somatic mutations in cancer cell genomes [125]. Determining which of these
mutations contribute to cancer development is crucial for understanding tumor biology,
advancing cancer research and improving targeted therapies.
While most somatic mutations that accumulate in cells are harmless, some can affect
genes or regulatory elements, leading to significant consequences such as initiation or
progression of cancers [98, 157]. Therefore, each somatic mutation in a cancer cell
genome, whatever its structural nature, can be classified based on its impact on cancer
development: a driver mutation gives the somatic cell a selective advantage, promoting the
growth or survival of the clone originating from the mutated cell, and is thus positively
selected during cancer evolution. The remaining and vast majority of mutations, known
as passenger mutations, do not confer any growth advantage and have no phenotypic or
biological effect on the clone [46, 138]. Large-scale publicly available tumor sequencing
projects, developed in recent decades, have provided classifications of variants driving
cancer evolution. Examples include Pan-Cancer Analysis of whole-genomes (PCAWG)
[1], COSMIC ([144] , https://cancer.sanger.ac.uk/cmc/home) and Intogen
([102], https://www.intogen.org/search).
Driver genes can be classified into two categories: oncogenes and tumor suppressor genes.
They both promote the growth advantage of the cell, but the former ones when activated by
a mutation and the latter ones when inactivated by a mutation. Moreover, oncogenes often
have recurrent mutations at the same amino acid positions, whereas tumor suppressors
typically undergo mutations that truncate the protein throughout their length [157].
Patterns of passenger mutations allow consequences of drivers on clonal evolution to be
detected with statistical confidence, which I will exploit in the next chapter.

1.2.2 Mutational processes in cancer

Somatic mutations occur after conception and accumulate with each cell division. These
changes can, but do not always, lead to cancer. In a cancer cell’s genome, somatic mutations
may result from replication errors or DNA damage that is either incorrectly repaired or
left unrepaired. These mutations can be either endogenous, originating within the cell, or
exogenous, caused by external factors. Endogenous factors include aging, reactive oxygen
species, aldehydes, mitotic errors and possibly other unknown mechanisms. Exogenous
factors include chemicals, tobacco smoke, ultraviolet (UV) light or radiation exposure
[14]. Both endogenous and exogenous mutational processes contribute to various cancers
in different ways [98]. The mutations they cause can take various forms: base pair
substitutions (single nucleotide variants or SNVs), insertions or deletions (indels) of DNA
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Chapter 1. Introduction

segments, DNA rearrangements (also known as structural variants, where DNA is broken
and rejoined with a segment from elsewhere in the genome) and copy number losses and
gains [98, 26].
The rate of cancer mutations varies significantly [42]. Most cancers carry between 1000
and 20000 somatic point mutations and a few to hundreds indels. The range varies widely
due to diverse sequencing depths, but it is known that pediatric tumors and leukemias
generally have the fewest mutations, while cancers caused by exogenous mutagens, such
as lung cancer (induced by tobacco) or melanomas (induced by UV light), have the highest
rates [157, 7, 80].
In addition to genetic variants, the cancer genome also acquires epigenetic changes.
These changes alter chromatin structure and gene expression without modifying the DNA
sequence and are reflected by, for example, changes in the DNA methylation status [177,
61, 16]. I will provide more into detail about mutations induced by epigenetic factors in
Section 1.3.

Signatures of mutational processes in cancer genomes

In the previous section, I discussed how tumor cells (and not only) accumulate, on the
genomic level, somatic alterations during cancer development. For certain mutational
processes, distinctive patterns of mutations, known as mutational signatures, have been
identified. These provide insights into the factors, both endogenous and exogenous, that
have caused and influenced cancer development [70], which can be identified by system-
atically studying mutation spectra [95]. Analysing mutational signatures has shown that
some mutagenic processes are active in all tissues, whereas others are tissue- or exposure-
specific. For example, it is clear that single base substitution signature (SBS) 1 and SBS5,
as well as small insertions and deletions signature (ID) 1 and ID2, are present in all cell
types and reflect life-long activity of clock-like mutational processes, which accumulate
throughout life at a steady rate and are hence related to aging [5, 7, 110]. However, some
cells exhibit additional mutational signatures, that can partly explain the variation in the
mutation rate and mutation spectra between tissues. For example, SBS7, found in most
skin fibroblasts and melanocytes, is a signature caused by UV light, leading to erroneous
repair in pyrimidine dimers [142, 59]. Similarly, SBS2 and SBS13 are associated with
activity of endogenous APOBEC cytosine deaminases and have been identified in multiple
cell types including lung, breast, colorectal and small intestinal cells [128, 160, 52, 122,
82].
In recent years, mutation signatures have become valuable for cancer diagnosis and progno-
sis. They can predict therapy response [86, 152, 87] and reflect genomic changes induced
by chemotherapy, making them essential tools in cancer research [35]. However, some
limitations need to be considered. For instance, a mutational signature can correspond to
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Chapter 1. Introduction

multiple types of somatic mutations, complicating the unique decomposition of signatures.
Additionally, in recent years, the number of signatures has significantly increased, many of
which with unknown origin, and various sub-signatures emerged within a single one (e.g.,
SBS7 has multiple versions SBS7a, SBS7b, SBS7c and SBS7d). This raises concerns about
whether these findings reflect biological phenomena or are merely mathematical artifacts.
Therefore, for clinicians, using mutational signatures reliably for clinical stratification is
still under discussion [70].
To sum up, mutational signatures can indicate the presence or absence of certain cellular
processes in cancer cells. Some of these mutational processes are consistently active
throughout the cancer cell’s lifetime (clock-like signatures) [5], while others are active
only when subject to certain factors and are influenced by the patient’s lifestyle [6, 35]. By
examining these mutational patterns in cancer genomes, it is possible to uncover the action
of many known and unknown mutational processes in cancer [98]. Specifically, I will use
signatures to determine if particular mutational processes that occurred during the cancer’s
evolution could have caused an increase in its mutation accumulation rate.

1.2.3 Progression from normal to cancer cells

Recent research has shown that somatic driver mutations can accumulate in normal tissues,
and not just in cancerous ones [126]. This raises important questions about the origins of
cancer and how normal tissues transition into tumors.
The transformation from normal to cancer cells is a complex, multi-step process involving
a series of genetic and epigenetic mutations that accumulate over a patient’s lifetime. Some
of these mutations were acquired in the precursors of the first cancer cells (as indicated by
∆t1 in Figure 1.2.2, shown in dark blue). These mutations often result from environmental
factors, genetic predispositions or random errors during cell replication, as detailed in
Section 1.2.2. Detecting somatic mutations in normal tissues before they develop into
cancer is challenging due to the difficulty of identifying low-frequency events in a small
number of cells and the limited availability of normal tissue samples from healthy donors.
However, targeted sequencing of known cancer driver genes has identified several driver
mutations occurring in the skin [100], esophagus [101, 174], colon [116, 166] and brain
[41, 63] of healthy individuals.
The remaining somatic mutations in a cancer cell’s genome are acquired during the tumor’s
evolution (∆t2 in Figure 1.2.2, shown in light blue), making them specific to the tumor’s
development. Cancer cells within the tumor can further evolve, potentially enhancing their
malignancy and capacity to metastasize, thereby spreading cancer to other parts of the
body.
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Zygote

Passenger mutations
Driver mutations

First tumor cell Tumor

Figure 1.2.2: Scheme showing the progression of a tumor through mutation acquisition.
The mutations acquired before the tumor’s origin are shown in dark blue, whereas the

mutations acquired afterwards are shown in light blue.

To sum up, the catalogue of somatic mutations in a cancer cell is essentially a detailed
record of all the mutational processes the cell has undergone throughout the patient’s life,
from birth to the present. This comprehensive record offers valuable insights into the
development of individual tumors. In Chapter 2, I will build on this knowledge to infer
quantitative measurements about the tumor’s evolutionary dynamics, including timing the
tumor’s origin. Understanding the tumor’s evolutionary history is essential for creating
targeted therapies and early detection methods to effectively fight cancer [138, 98].

1.2.4 Mutation timing

In the previous section, I showed how many tumors often transition from benign to
malignant lesions through the gradual accumulation of mutations over time. Certain
cancers, such as colorectal cancers, esophageal adenocarcinomas and breast carcinomas,
follow distinct and well-established progression stages that can be identified using both
histological and genetic methods, making early detection more straightforward. Conversely,
other cancer types, including brain cancers, do not have a histologically and genetically
discernible premalignant phase. One possible reason for this is that catastrophic mutational
events, such as telomerase crises, may lead to a rapid accumulation of driver mutations,
making it difficult to detect intermediate stages between normal and malignant cells [98].
Accurately timing the acquisition of driver mutations becomes even more crucial, as
understanding this progression aids in reconstructing the tumor’s evolutionary history and
predicting its future course. This task is more straightforward for cancers with known
pre-cancerous conditions, as illustrated in the study of colorectal cancer by [54], whereas
for tumors without pre-cancerous conditions it is more challenging. Such insights are
important for the development of effective therapies and early diagnostic strategies.
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Chapter 1. Introduction

Pre-cancerous condition

The term precancerous lesion is referred to areas of a tissue that show certain histological
changes that are associated with an increased risk of cancer. In epithelia, these early
changes can evolve into adenomas, which are benign growths, where cells present mor-
phological features of cancer but do not yet invade the underlying tissue. After invasion,
carcinomas are formed, which are usually associated with stage III malignant cancers.
The mostly studied multi-hit model (where the accumulation of each new driver mutation
drives a new phase of the cancer’s evolution) is the one for colorectal cancer formation and
progression. Colorectal cancer’s gradual evolution goes through well defined morphologi-
cal stages (see Figure 1.2.3) and was documented already in the early 90s by Vogelstein
and Kinzler [156], who define it as the sequential mutation of genes in a single cell and its
progeny.

Healthy
colon CRC

5q loss
APC mutation

BRAS mutation
KRAS mutation

17p loss
TP53 mutation

additionalmutations

18q loss
DCC mutation

SMAD4 mutation
TGFBR2 mutation

Normal epithelium

Tumor initiation Tumor promotion Tumor progression

Polyp

Stage 0 Stage I Stage II Stage III Stage IV

small benign
growth

late benign
growth

late benign
growth

malignant
tumor

Early adenoma Late adenoma Carcinoma Metastasis

Figure 1.2.3: Colorectal cancer progression. Figure adapted from [156] and [92].

Other examples of pre-cancerous lesions are Barrett’s esophagus, which is the pre-
malignant condition for oesophageal adenocarcinoma [44], and ductal carcinoma in situ,
which represents pre-invasive breast carcinoma [159, 84]. These observations seem consis-
tent with the step-wise model explaining cancer progression, in which a series of events
drives successive clonal expansions with progressively more complex phenotypes.

Age

The incidence and the number of mutations in certain tumors are directly correlated with
age [145, 108, 78, 17]. Linear regression analysis suggests that more than half of the
somatic mutations identified in these tumors arise during the initiating phase, which is
when normal cells continuously replenish the tissues [157]. Indeed, recent studies have
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confirmed that the burden of somatic mutations in normal tissue cells increases linearly
with age [22, 2]. Moreover, deep targeted sequencing of genes from healthy sun-exposed
skin, esophagus and brain tissues without tumor diagnoses has revealed positive selection
of mutant clones carrying driver mutations [100, 101, 63]. Surprisingly, many of these
mutations resemble those commonly found in tumors (including IDH1 in the brain [41]),
indicating a process of positive selection and clonal expansion in normal tissue similar to
the one seen in cancer [62, 41]. These findings suggest that somatic mutation-driven clonal
expansions may be characteristic of aging in various tissues [57, 95]. However, healthy
brains did not show an accumulation of high-frequency variants with age, indicating no
age-related increase in detectable oncogenic variants in normal brain tissue [41]. This
partly explains why advanced brain tumors generally have fewer mutations than, for in-
stance, colorectal tumors; glial cells in the brain do not replicate like the epithelial cells
forming the colon’s crypts. Therefore, the initial mutation in brain cancer is likely to occur
in a precursor cell with fewer mutations than a colorectal precursor cell.

Telomere length is a measure of biological aging. Telomeres are specific DNA–protein
structures at the ends of chromosomes that protect the genome from degradation, recombi-
nation, repair and interchromosomal fusion. With each cell division, a portion of telomeric
DNA is lost, and when telomere length reaches a critical threshold, the cell undergoes
senescence and/or apoptosis. Thus, telomere length serves as a biological clock, inversely
correlating with age [151, 58, 132]. Cancer cells often exhibit activation of telomerase
reverse transcriptase, which prevents telomere shortening and enables replicative immor-
tality [149, 171, 37].

In Chapter 2, I will show how mutations in the telomerase reverse transcriptase pro-
moter region significantly influence the evolutionary process of the specific cancer entity
examined in this thesis, which is IDH-mutant and 1p/19q-codeleted oligodendroglioma.

1.3 Epigenetics to explain cancer development

Originally recognized as a genetic disease, cancer is now understood to involve both
genetic and epigenetic abnormalities. Mutations are often found in genes that regulate
the epigenome and epigenetic changes can lead to gene mutations [16]. While genetic
alterations in tumorigenesis have been extensively studied, the role of epigenetic changes
is, overall, not equally well understood.
Epigenetics studies how gene expression is heritably regulated without changes to the
primary DNA sequence. Disruption of these processes can affect the function of tumor
suppressor genes and oncogenes, initiating malignant transformation [61, 103]. Epige-
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netic changes, like genetic mutations, can undergo Darwinian natural selection if there is
variation within the cell population, stable heritability from mother to daughter cells and
resultant phenotypic effects subject to selection [138].
The primary processes responsible for epigenetic regulation include DNA methylation
and histone modifications; changes in microRNA expression also contribute [16, 61, 177].
These mechanisms are vital for normal cell development and growth, and their alterations
contribute to cancerous phenotypes [16, 61, 177, 25].
In this thesis, I will concentrate on DNA methylation data and analyse data for oligoden-
drogliomas.

1.3.1 What is DNA methylation

DNA methylation is a chemical modification where a methyl group is added to the DNA
molecule, specifically at the fifth carbon of cytosine residues that are linked to a guanine
nucleotide, forming a CpG dinucleotide. This process is catalyzed by DNA methyltrans-
ferases (DNMT), resulting in the formation of 5-methylcytosine (5mC) [79, 93]. Certain
DNA regions, known as CpG islands, are rich in CpG sites and are typically located at
the 5’ end of genes, overlapping with gene promoters. CpG sites are also present in gene
bodies and other regions; depending on their proximity to CpG islands they are called CpG
shores (2 k-bp regions flanking CpG islands), CpG shelves (regions greater than 2 k-bp
from CpG shores) and open sea regions (more than 4 k-bp from the nearest CpG islands)
[93]. The primary DNA methylation writer enzymes are: DNMT1, which preserves ex-
isting methylation patterns after DNA replication, and DNMT3A and DNMT3B, which
are de novo enzymes targeting unmethylated CpGs to initiate methylation. DNMT3A and
DNMT3B are highly active during embryogenesis and minimally expressed in adult tissues
[61].

1.3.2 DNA methylation defines distinct groups of cancers

DNA methylation is a vital epigenetic modification that regulates gene expression and
maintains genome stability [61, 119, 177]. This modification can either activate or silence
specific genes and varies between cell types, developmental stages and in response to
environmental factors and diseases. Abnormal DNA methylation patterns are linked to
various diseases, including cancer [60, 119]. Some cancers exhibit unique methylation
profiles that define distinct molecular subtypes. Specifically, changes in CpG-island
methylation within individual tumors can affect specific loci, potentially defining a unique
phenotype [60]. This concept was introduced in 1999 by Toyota et al. as the CpG island
methylator phenotype (CIMP) [147]. Initially identified in human colorectal cancer [147],
CIMP refers to the cancer-specific hypermethylation of certain genes in specific tumors
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[93, 175]. Molecular subtypes based on DNA methylation have been identified in many
other cancer types, including acute myeloid leukemia [148], esophageal adenocarcinoma
[176], chronic lymphocytic leukemia [114], pediatric brain tumors [27] and gliomas [112,
150], on which I will focus on in the next sections.

G-CIMP status distinguishes low-grade from high-grade gliomas

The primary objective of the methylation classifier of any tumor type is to accurately
categorize them based on their methylation profiles. Precise tumor diagnosis is essential
for healthcare professionals to predict prognosis and develop personalized treatment plans
for patients [119].
Given that the focus of this thesis is on oligodendrogliomas, I will now discuss more in
detail the DNA methylation status classification of adult tumors of the central nervous
system. In 2010, a glioma CpG island methylator phenotype (G-CIMP) was identified
by Noushmehr et al. [112]. This diagnosis was based on an epigenetic biomarker panel
comprising seven hypermethylated loci and one hypomethylated locus, validated in silico.
Specifics about these eight loci are shown in Table 1.1. A sample is considered G-
CIMP high (or G-CIMP+) if at least six genes displayed a combination of DOCK5
hypomethylation and/or hypermethylation of the other genes in the panel [112, 93].

Gene Name CpG site ID Type
DOCK5 cg16849041 Hypomethylated
RHOF cg09088508 Hypermethylated
FAS1 cg16257983 Hypermethylated
FAS2 cg17120764 Hypermethylated
LGALS3 cg17403875 Hypermethylated
HFE cg19320816 Hypermethylated
MAL cg21245652 Hypermethylated
ANKRD43 cg26399201 Hypermethylated

Table 1.1: Table showing sites for determining G-CIMP status in adult gliomas [112].

The G-CIMP status is closely related with somatic mutations in the IDH1/2 genes [112,
150]. The mechanism behind this association is the following: wild-type IDH converts
isocitrate into α-ketoglutarate, whereas mutant IDH converts α-ketoglutarate into the
oncometabolite 2-hydroxyglutarate (2-HG). Hence, 2-HG accumulates in high levels in
tumors with IDH mutations but is nearly absent in IDH wildtype cases [161]. The presence
of 2-HG inhibit DNA demethylation [150, 19], leading to widespread DNA and histone
hypermethylation, genetic instability and the acquisition of new mutations [60]. Thus,
mutations in IDH1/2 genes define a distinct subset of gliomas with a hypermethylated
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G-CIMP phenotype (namely low-grade gliomas), which are associated with better clinical
outcomes compared to gliomas without this phenotype (namely high-grade gliomas) [94].
In summary, methylation profiling plays a crucial role in categorizing tumors of the central
nervous system into clinically significant subtypes, allowing a more refined diagnosis of
brain tumors [65].

Methylation status detects 1p/19q-codeletion

Having established the ability to differentiate low-grade gliomas from high-grade gliomas
using the methylation status of specific CpG site, the next step is to further classify low-
grade gliomas based on the presence or absence of chromosomes 1p/19q-codeletion. This
distinction allows for the differentiation between oligodendrogliomas and astrocytomas.
Whole-genome methylation studies have shown that G-CIMP+ gliomas can be divided into
subgroups based on their 1p/19q-codeletion status. Specifically, Paul et al. [120] identified
14 CpG sites (shown in Table 1.2) that can allow the distinction between IDH-mutant
gliomas with 1p/19q-codeletion (oligodendrogliomas) and IDH-mutant gliomas with intact
1p/19q loci (astrocytomas).

Gene name CpG site ID
CD300LB cg00873351
NA cg03492827
FLJ37543 cg04437966
FGFR2 cg07250222
TCF7L1 cg07847030
PLCG1 cg07893801
PTPRN2 cg08935418
FGFR2 cg09772154
PRKAG2 cg10363569
NA cg12210255
MAPKAP1 cg13412754
NA cg13598010
GPR156 cg19093820
PTPRN2 cg23759393

Table 1.2: Table showing sites for determining 1p/19q-codeletion status [120].

These CpG sites are hypermethylated in oligodendrogliomas compared to diffuse astrocy-
tomas [120]. Additionally, lower methylation levels are associated with poorer survival
outcomes. This suggests that the 1p/19q-codeletion induces epigenetic changes and
genome-wide hypermethylation, leading to a distinct biological phenotype with better
survival rates [146].
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1.4 Oligodendrogliomas, IDH-mutant and 1p/19q-codeleted

1.4.1 Human brain development

Neuroepithelial cells are the stem cells of the central nervous system and initiate the
development of neurons and glial cells. Initially, neuroepithelial cells undergo symmetric
division to expand the progenitor pool. They then elongate and transform into radial glial
cells. Radial glial cells can produce neurons directly through asymmetric division or
indirectly by generating intermediate progenitor cells. Intermediate progenitor cells act
as transient amplifying cells, dividing symmetrically multiple times to create clones of
neurons [140, 180]. Neurons differentiate and mature as they migrate along radial glial
scaffolds of radial glial cells to the cortical plate. This migration occurs in a inside-out
manner, with late-born upper-layer neurons migrating past early-born deep-layer neurons,
as depicted in Figure 1.4.1 by different shades of green. As neurons approach their
destinations, they extend axons and dendrites.
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Figure 1.4.1: Neurons (in green) are generated by migration along radial glial cells
(orange) and reach the cortical plate. Lighter shades of green indicate later generated
neurons. Among non-neuronal cells, astrocytes and oligodendrocytes are generated by
radial glial cells (RGCs) post-neurogenesis and mature throughout early postnatal periods.
The red box highlights the formation of oligodendrocytes. Figure adapted from [180].

Radial glial cells also give rise to progenitors for glial cells, oligodendrocyte progenitor
cells and astrocyte progenitor cells. Oligodendrocytes and astrocytes are produced post-
neurogenesis and mature during early postnatal periods, playing roles in modulating
neuronal functions, such as regulating synaptic transmission and myelinating neuronal
axons [180].
Oligodendrocytes are the myelinating cells of the central nervous system. They facilitate
an efficient transmission of electrical signals by wrapping around axons and speeding up
impulse transmission [75]. Oligodendrocytes develop from oligodendrocyte progenitor
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cells into immature oligodendrocytes through processes of migration, proliferation and
differentiation. Eventually, they reach maturity, extending organized branches to myelinate
neuronal axons (red box in Figure 1.4.1). Each oligodendrocyte can myelinate multiple
neurons, providing support and releasing substances that support neuronal health.

1.4.2 Dynamics of oligodendrocyte generation

Oligodendrogliomas arise from oligodendrocyte progenitors in the brain [121]. The number
of these progenitors is highest in infancy and reaches a plateau by around five years of age
[172]. After this period, the number of oligodendrocytes remains largely stable throughout
life, with an annual turnover rate of 1/300 oligodendrocytes, or about 0.33% per year.
This rate, estimated from the dynamics of carbon isotopes formed by nuclear weapon
tests, is at least 100-fold lower than the rate measured in mice by genetic fate mapping of
oligodendrocyte progenitor cells in transgenic mice (with an oligodendrocyte generation
rate of 36.5%–182% per year) [172].
Unlike neurogenesis and astrocytogenesis, oligodendrogenesis begins later and takes
longer, as shown in Figure 1.4.2.
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4 8 12 16 20 24 28 32 1 2 3 4 5
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Figure 1.4.2: Timeline of the major events in human brain development: in green
neurogenesis, in pink astrocytogenesis and in purple oligodendrogenesis. Figure adapted

from [134].

1.4.3 Oligodendroglioma is a relatively recent tumor entity

Over the past decades, the understanding of molecular changes in tumors of the cen-
tral nervous system has greatly increased. Until the fourth edition of the World Health
Organization classification of tumors of the central nervous system published in 2007
[91], these tumors were defined on the basis of their histology only. This meant that they
were categorized by their morphological similarities to different potential cells of origin.
Starting in 2016, with the updated fourth edition [90], and especially from the 2021 edition
[165], the classification underwent a significant advancement: it expanded from purely
histological criteria to histological-molecular ones. As a result, the traditional method of
diagnosing tumors based on microscopy imaging was improved by introducing molecular
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parameters of specific central nervous system tumor entities, increasing the objectivity
of the diagnostic process [164]. This aims to enhance diagnostic accuracy and improve
patient management by more precisely predicting prognosis and treatment responses.
This shift in classification had a great impact on oligodendrogliomas. Until then, oligoden-
drogliomas and astrocytomas were grouped together and diagnosed as oligoastrocytoma,
a category of diffuse gliomas known for their invasive growth and diagnostic challenges,
including high interobserver discordance. By using genetic markers, such as the IDH1/2
mutations and 1p/19q-codeletion status, these tumors were assigned as either astrocytomas
or oligodendrogliomas. As a result, the diagnostic differences between these two cancer
entities could be more easily defined and more effective treatment strategies could be
developed and tailored to either of the two different cancers. This approach of combining
histopathological and molecular features needed a new nomenclature, which would include
both the histopathological name and genetic features. Therefore, oligodendrogliomas are
now classified as IDH-mutant and 1p/19q-codeleted oligodendrogliomas.
The classification of adult tumors of the central nervous system, according to the 2021
edition [165, 89], groups three different categories, namely gliomas, glioneuronal tumors
and neuronal tumors. Gliomas are then further characterized into diffuse or more circum-
scribed, called non-diffuse, gliomas. Adult-type diffuse gliomas are the most common
and aggressive malignant neoplasms of the central nervous system and are grouped into
distinct subtypes: oligodendrogliomas, IDH mutant and whole-arm loss of the long arm
of chromosome 1 and the short arm of chromosome 19 (which is shortly called 1p/19q-
codeletion) (grades 2 and 3), astrocytoma, IDH mutant (grades 2-4) and glioblastoma, IDH
wild-type (grade 4), as can be seen in Figure 1.4.3.
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Figure 1.4.3: Classification of adult diffuse gliomas. Figure adapted from [18].
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Clinical presentation, diagnosis, prognosis and treatment of oligodendroglioma

Oligodendrogliomas make up around 5% of all malignant central nervous system tumors
[146, 118]. They typically peak around midlife, between the fourth and fifth decades of
life [146]. Clinically, patients usually present with non-specific symptoms, like headaches,
and sometimes with focal neurological deficits or seizures, depending on the tumor’s size
and location [146, 18].
Accurate classification of these tumors is crucial for diagnosis and treatment planning. The
standard diagnostic procedure includes contrast-enhanced magnetic resonance imaging
and histopathologic evaluation. However, as I mentioned before, these two procedures
alone are insufficient to distinguish oligodendrogliomas from lastrocytomas, necessitating
a biopsy to check for specific genetic markers. Oligodendrogliomas are defined by the
presence of IDH mutations, particularly IDH1 codon 132 (R132H) and/or the homologous
IDH2 codon 172 (R172K) mutations, along with 1p/19q-codeletion. These key alterations,
detectable through next-generation sequencing, occur early in the tumor’s development.
Oligodendrogliomas are then divided histologically into grades 2 and 3 [18], with grade 3
having a slightly worse prognosis.
Despite their relatively slow growth compared to other brain cancers, oligodendrogliomas
are incurable [158]; the primary treatment is surgical resection, though recurrence is in-
evitable [85, 4]. Postoperative approaches, such as watchful waiting and adjuvant therapy,
are considered on a case-by-case basis [65]. Patients under 40 with grade 2 oligoden-
drogliomas and complete resection can be monitored with serial magnetic resonance
imaging, while those with partial resection or older age often require further treatment. For
grade 3 oligodendrogliomas, standard therapy includes both radiotherapy and chemother-
apy, with several studies (such as the Radiation Therapy Oncology Group 98-02 trial and
the European Organization for Research and Treatment of Cancer) showing that adding
chemotherapy improves survival [65].
New therapy options are arising [65]. The IDH mutations in oligodendrogliomas make
them suitable for IDH-specific targeted treatments. For example, the NOA16 trial tested an
IDH-specific vaccine combined with other treatments, demonstrating safety and positive
immune responses [124]. The ongoing AMPLIFY-NEOVAC trial is further exploring this
vaccine with a checkpoint inhibitor [24]. Additionally, IDH inhibitors like enasidenib
and ivosidenib, initially used for leukemia, show promise for gliomas [104, 143, 109].
Vorasidenib, another IDH inhibitor, has also shown positive results and is currently being
tested in the INDIGO trial for primary astrocytoma and oligodendroglioma patients [105].
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Chapter 2

Evolutionary trajectories of
oligodendrogliomas

In this Chapter, the clonal evolution of IDH-mutant and 1p/19q-codeleted oligoden-
drogliomas is analyzed using whole-genome sequencing data of paired primary and
relapsed tumor samples. I will develop a population-dynamic model of mutation ac-
quisition and tumor growth, and will then apply it to the oligodendroglioma data. In this
way, I will be able to learn dynamic aspects of the evolution for individual tumors. Finally,
the results are discussed in the context of the current state of research.
All data shown in this chapter were collected within the scope of the "SysGlio" consortium,
coordinated by Peter Lichter (German Cancer Research Center, Heidelberg).

2.1 Patient and tissue samples collection

Matched tissue samples from the initial surgery, before any tumor-specific treatment, and
the second surgery, for recurrent tumor growth, were collected from six patients with
IDH-mutant and 1p/19q-codeleted oligodendroglioma registered to the German Glioma
Network (GGN, www.gliomnetzwerk.de). All patients included in the study provided
their written informed consent for participating in the German Glioma Network and for
the use of their tissue samples and clinical data for research purposes. The molecular
characterization of primary and recurrent oligodendroglioma pairs was performed within
the collaborative research project "SysGlio – Systems-based prediction of the biological
and clinical behavior of gliomas" consortium, coordinated by Peter Lichter (German
Cancer Research Center, Heidelberg) and funded by the German Ministry of Education
and Research (BMBF). The study was approved by the institutional review board of the
Medical Faculty, Heinrich Heine University, Düsseldorf, Germany (study number 4940).
Tumor samples were histologically classified as oligodendrogliomas, IDH-mutant and
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1p/19q-codeleted by Jörg Felsberg and Guido Reifenberger (Heinrich Heine University,
Düsseldorf). According to the 2021 World Health Organization classification of central
nervous system tumors [165], four patients were classified as grade 2, while the remaining
two were grade 3. Mean patient age was 37 years old, ranging from 24 to 48 years old,
and mean time of tumor relapse was 5 years, ranging from 1 to 9 years. Primary samples
were retrieved from treatment-naïve tumors after initial surgery. After resection of the
primary tumor, one patient received concomitant adjuvant radiation therapy, and all the
other patients did not receive any therapy treatment. Table 2.1 provides overall patients’
clinical information.

Table 2.1: Patient data including demographics, tumor characteristics and treatment
details (RT: radiation therapy).

Patient Gender
Age at first surgery

(years) WHO grade Tumor location
Extent of
resection

Therapy after 1st
surgery

Years between
surgeries

P1 F 37 2 Other Total RT only 9
P2 F 41 2 Frontal No data None 1
P3 M 29 2 Other Partial None 2
P4 M 48 3 Temporal Subtotal None 4
P5 M 40 2 No data No data None 8
P6 F 24 3 Parietal Total None 5.5

2.2 Whole genome sequencing

Whole genomes of tumor samples from primary and recurrent resections and matched
blood samples, used as germline controls, were sequenced at an average coverage of 150x
and 80x, respectively (see Figure 2.2.1). This deep sequencing strategy allows for variant
calling at high resolution of allele frequencies.
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WGS
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Primary
tumor
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growth

1st 2nd

resectionresection

• Radiation therapy (1/6)
• No therapy (5/6)

Figure 2.2.1: Sample acquisition and sequencing.

Unfixed deep frozen tissue specimens used for extraction of nucleic acids were histo-
logically evaluated to assure that they contained vital tumor cells with a histologically
estimated tumor cell content of 80% or more. Genomic DNA from deep-frozen tis-
sue samples of primary and relapsed oligodendrogliomas was extracted by Bernhard
Radlwimmer and Yonghe Wu (both German Cancer Research Center, Heidelberg, with
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support from the DKFZ Genomics and Proteomics Core Facility). Sequence align-
ment (github.com/DKFZ-ODCF/AlignmentAndQCWorkflows/wiki), tumor-
specific variant calling (with the standard pipeline of DKFZ - DKFZ SNVCalling Workflow
(github.com/DKFZ-ODCF/SNVCallingWorkflow) and Insertion-Deletion Call-
ing Workflow for Roddy (github.com/DKFZ-ODCF/indelCallingWorkflow))
and detection of copy number alterations, tumor cell content estimates (with ACE-
Seq (github.com/DKFZ-ODCF/ACEseqWorkflow)) and structural variants (with
Sophia (github.com/DKFZ-ODCF/SophiaWorkflow)) were performed by Jing
Yang and Matthias Schlesner (both German Cancer Research Center, Heidelberg, with
support from the DKFZ Omics IT and Data Management Core Facility).

2.3 A model inferring the dynamics of cancer evolution

As introduced in Section 1.2, the development of a tumor is an evolutionary process that
begins with a single cell acquiring a mutation that gives it a selective advantage, leading to
tumor formation. As the tumor progresses over time and space, different cell populations,
or subclones, may appear, expand and diminish due to continuous accumulation of new mu-
tations and selection, resulting in a heterogeneous tumor [45]. Comprehending intratumor
heterogeneity by reconstructing subclones is crucial for cancer evolution studies, as it can
improve clinical management and can help develop more effective cancer treatments [3].
Hence, in the upcoming sections, I will develop a computational approach to deconvolute
the cell population of primary and recurrent oligodendrogliomas into clones and subclones
based on the frequencies of accumulated mutations, relying on the variant allele frequency.

2.3.1 The variant allele frequency

To build my inference model I will use deep whole-genome sequencing data. Among other
features, this technology provides a table of mutated single nucleotide variants (SNVs)
and insertions/deletions (indels) in the genome. Each mutation is mapped to a genomic
location, having a certain copy number, and the number of reference reads and variant
(mutated) reads are counted. The variant read number measures the independent sequence
reads supporting the presence of the variant. The number of reference reads measures the
independent reads without the somatic variants. Hence, the sum of variants and reference
reads indicates how deeply that genomic locus was sequenced. Sequencing depth varies
across the genome, implying that sequencing depth affects the VAF and influences the
threshold to set for the analysis (I will discuss this more in detail in the following section).
The variant allele frequency (VAF) is the ratio of mutated reads to the total coverage at the
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specific locus in the genome

VAF =
# of mutated reads

# of total reads
=

# of mutated reads
# of mutated reads + # of reference reads

.

This number, between 0 and 1, informs about the proportion of cells carrying a specific
mutation and is the key measure for all my analysis. In fact, the VAF is helpful for
distinguishing clonal from subclonal mutations within the sequenced tumor data. A high
VAF corresponds to a clonal mutation, which was acquired and accumulated in the ancestry
of the cell that originated the tumor and hence is present in all tumor cells. In particular,
for a disomic locus, a clonal mutation would have VAF ≈ 0.5 in the tumor cell fraction.
Lower VAFs indicate a subclonal mutation, which was acquired post tumor origin and
hence is present only in a subset of the cells that will form the tumor.

The shape of the variant allele frequency distribution

An effective way to visualize all VAFs is through a histogram, where the abscissa represents
the frequency of reads with a specific mutation, while the ordinate shows the number of
mutations observed at that frequency. This histogram typically has a distinct shape [167],
which I will explain in detail. To be specific, I assume a diploid genome; however, all ideas
carry over to other copy numbers.
A variant that is present in every cancer cell is known as a clonal mutation (see Figure 2.3.1
on the left, in dark green). The mutations occur before the tumor’s most recent common
ancestor (MRCA) and hence I will use them to estimate when the first tumor cell emerged.
For genomes without any copy number gains/losses, clonal mutations typically create a
peak around a frequency of 0.5 (see Figure 2.3.1 on the right, in dark green), reflecting that
such mutations affect one of the two alleles. The spread of this clonal peak is influenced
by sequencing depth, as the number of reads for a mutation follows a binomial sampling
process. I will explore this aspect further in the next section.
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Figure 2.3.1: Mutation accumulation in cancer (on the left) and the corresponding VAF
distribution (on the right). Clonal mutations are shown in dark green, whereas subclonal

mutations are shown in light green; a lighter shade indicates its later acquisition.
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Conversely, variants that arise later in tumor development, and are thus present in only
a subset of tumor cells, are referred to as subclonal mutations (shown in Figure 2.3.1
in lighter greens). These are depicted in the histogram at a lower frequency compared
to clonal mutations and form the subclonal tail. The subclonal tail follows a 1/VAF2

distribution, as shown in various studies [36, 64, 167].
In summary, the shape of the variant allele frequency histogram contains quantitative
information on the tumor’s evolution: the clonal peak briefs about mutations acquired prior
the tumor’s MRCA, while the subclonal peak contains information about intratumoral
heterogeneity.

How purity, ploidy and sequencing depth affect the variant allele frequency distribu-
tion

Aside from basic cell processes, which I will cover in the next section, other factors
influencing the shape of the VAF distribution are sequencing depth, tumor cell content
(also known as purity) and changes in the copy number of the tumor’s genome. The first
two are related to sample acquisition, whereas the latter one is intrinsic to the tumor. I will
go more into detail explaining how each of these aspects affect the VAF histogram’s shape.
Sequencing depth refers to the number of independent reads. As illustrated in Figure
2.3.2 for a diploid genome, lower sequencing depths result in a broader clonal peak,
whereas higher ones produce a sharper peak around 0.5. Sequencing depth is the major
determinant of the measurement error. Sequencing depth also impacts the ability to detect
low-frequency mutations reliably. Specifically, a higher sequencing depth allows for a
lower threshold for variant detection, while a lower sequencing depth necessitates a higher
threshold. Hence, to accurately interpret the tumor’s evolutionary dynamics from the
VAF and avoid considering false negatives, it is essential to set an appropriate minimum
frequency limit. For my analysis, I have chosen a threshold of 0.05, which is appropriate for
the 150x whole-genome sequencing data I will use, as it means that a variant is supported
on average by at least seven reads.
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Figure 2.3.2: From left to right: a simulated VAF distribution of variants obtained with a
progressively higher sequencing depth, ranging from 15x to 150x.
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In bulk whole-genome sequencing, the sequenced sample is formed by a mixture of
tumor and normal (non-tumor) cells. The proportion of these cell types defines the tumor
cell content (or purity), which ranges from 0 (indicating the absence of tumor cells) to
1 (indicating the presence of exclusively tumor cells). The purity influences the VAF
histogram, as the presence of normal cells reduces the frequency of tumor variants. Thus,
a lower sample purity results in a shift towards lower VAFs, as shown in Figure 2.3.3.
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Figure 2.3.3: From left to right, a simulated VAF distribution of variants obtained with a
progressively lower purity.

The VAF distribution is also influenced by the copy number of the genomic region the
variants are mapped to. Specifically, the higher the copy number, the more clonal peaks
will be present. As illustrated in Figure 2.3.4, clonal variants in disomic regions produce
a single clonal peak at a frequency of 0.5, corresponding to variants present in one of
the two alleles. In contrast, variants in trisomic regions exhibit two distinct peaks: one
at a frequency of 1/3, representing variants in one of the three alleles, and another at 2/3,
representing variants in two of the three alleles. The latter were present already before the
duplication of one of the alleles. The subclonal tail remains evident in both cases.
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Figure 2.3.4: On the left, a typical VAF of variants mapped to a disomic region, highlight-
ing in red the clonal peak. On the right, a typical VAF of variants mapped to a trisomic

region, containing two distinct peaks, shown in different shades of red.
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How the mode of evolution influences the variant allele frequency distribution

In addition to copy number, other intrinsic factors related to tumor growth influence the
shape of the VAF distribution. The most important ones are the tumor cells’ birth rate,
death rate and mutation accumulation rate. So far, I discussed the expected shape of the
VAF histogram under the assumption of neutral evolution of the tumor, implying that,
once the driver mutation occurred, all tumor cells have indistinguishable rates of mutation,
proliferation and cell loss (represented by the yellow cells in Figure 2.3.1 and 2.3.5). Now,
I will explain how the VAF distribution changes if, at a random time tsel, one of these
tumor cells acquires an additional driver mutation that confers a selective advantage to its
birth rate with respect to the remainng tumor cells. This driver mutation will enable that
cell, and its progeny, to proliferate more rapidly, forming a positively selected subclone
(illustrated in dark red on the left in Figure 2.3.5). In the VAF distribution, variants from
this subclone will create a distinct peak located at a frequency between the subclonal tail
and the clonal peak [169]. The presence of this positively selected subclonal peak sets this
VAF histogram apart from the one obtained under neutral evolution (Figure 2.3.1).
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Figure 2.3.5: How the tumor growth dynamics with the presence of a positively selected
subclone, which is highlighted by red cells on the left, affect the shape of the VAF

histogram with the presence of peak of the selected subclone, on the right.

Both the position and size of the subclonal peak offer quantitative insights into the timing
of the subclone’s emergence and the dynamics of selection. Specifically, the number of
variants in the subclone is formed by the mutations accumulated before its formation and is
hence related to the subclone’s age tsel. A subclone that arises early in tumor evolution will
have fewer variants, as its founder cell had less time to accumulate mutations. Conversely, a
subclone that emerges later will exhibit a larger peak. Additionally, the higher the selective
advantage, the higher the frequency of the subclone’s peak. This is because the selected
subclone expands faster and becomes more represented within the tumor quicker.
Thus, the VAF distribution not only provides information about the timing of mutation
acquisition, as previously discussed, but also offers insights into the tumor’s mode of
evolution. In cases where evolution involves ongoing selection, the VAF distribution can
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quantitatively reflect the impact of selection: the number of mutations in a subclone indi-
cates its age, while the frequency of these mutations correlates with the selective advantage.
Therefore, the VAF histogram is a crucial statistic to infer the tumor’s evolutionary history.
To do this, developing a mathematical model describing the frequency of somatic variants
is essential. In the following sections I will do this, after briefly reviewing existing models
for cancer inference from bulk whole-genome sequencing data and explaining why a new
model is needed.

2.3.2 Existing models for subclonal deconvolution in cancer

In recent years, various models have been developed for subclonal deconvolution and in-
ference of tumor evolution from whole-genome sequencing data. Examples include BMix,
which uses a traditional Bayesian mixture model to analyse variant allele frequencies [28];
VIBER, which employs variational Bayesian inference integrating both VAFs and copy
number variants [28]; and MOBSTER, which combines a Bayesian mixture model with a
Dirichlet process, focusing primarily on VAFs [28]. Other Bayesian-based models include
PyClone [130] and DPClus [111], whereas SciClone [107] uses a Gaussian mixture model.
Among these, only MOBSTER can distinguish between a subclonal tail, a selected sub-
clone and a clonal peak. It does so by modeling VAF density with two types of distributions:
beta distributions, to capture the clone and subclone, and a Pareto Type-I power law, to
represent the neutral tail. Additionally, MOBSTER estimates key parameters related to the
tumor’s evolutionary dynamics, such as subclone frequency, the number of mutations in
the subclone and the selective advantage. However, given that MOBSTER uses a statical
approach with a mixture model for subclonal deconvolution, it sometimes fails to detect
subclones (see Figure 2.3.6). For example, it does not detect any positively selected
subclone in the primary samples of Patients 1, 2 and 5, despite clear evidence of such
subclones in at least Patients 1 and 2.
In contrast, the model I developed (which I will explain in detail in Section 2.3.3) dynami-
cally fits evolutionary processes from population genetics and aligns more closely with the
approaches described in [73, 71]. My model appears more sensitive to subclonal detection,
successfully identifying the subclones that MOBSTER missed (see Figure 2.5.1).
What sets my model apart is its integration of mathematical modeling with the patient’s
age at the time of the first surgery, allowing the inference, for each individual tumor, of its
evolutionary stages in actual years. This innovation provides a timeline for tumor growth
and for the development of selected subclones.
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Figure 2.3.6: Results of MOBSTER runs on the six primary samples of oligoden-
drogliomas. The red cluster C1 corresponds to the clone, whereas the blue one, C2,

is the selected subclone. The tail is shown in grey.

2.3.3 Mathematical description of the model

I showed in Section 2.3.1 how the dynamics of cell division, loss and variant acquisition
shape the characteristic VAF histogram. The aim of my model is to learn these processes
leading to a specific VAF distribution.
Upon tumor initiation, my model distinguishes between two growth scenarios, which
I already discussed previously: neutral evolution, where all tumor cells expand at the
same rate, and the selection of a fitter subclone, which accelerates tumor growth due to
the selective advantage of the subclone cells. In both scenarios, I assume that the tumor
originated from a single normal cell that underwent malignant transformation. This cell
will be the most recent common ancestor (MRCA) and emerges at time tMRCA. The MRCA
cell continues to divide accumulating mutations until the time of the surgery, tsurgery, from
which the sequenced biopsy was obtained.
In the following pages, I will outline my approach to modeling variant accumulation in
tumors, addressing both scenarios. I will begin by presenting the equations that describe
tumor cell growth over time in both neutral and positively selected tumors. These equations
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will only depend on the birth rate, death rate and selective advantage of the tumor cells.
Next, I will incorporate the mutation accumulation rate to simulate VAF distributions.
These will then be compared to the observed VAF histograms to estimate the parameters
of the model using approximate Bayesian computation.

Modeling the tumor cell population

In the case of neutral evolution, tumor cells divide symmetrically with a net growth rate
of τN = b− d, where b and d are, respectively, the birth rate (due to division) and the
death rate (due to death or differentiation). I assume both of them to be constant over
time. In this way, the resulting total cancer cell population at time t, NT,neutral(t), will grow
exponentially with time according to

NT,neutral(t) = eτN(t−tMRCA) with t ≥ tMRCA.

To incorporate a positively selected subclone into the model, I start by assuming that
it arises from a random tumor cell that acquires a driver mutation at time tsel, where
tMRCA < tsel < tsurgery. This driver mutation will confer a selective advantage, which I
model as an increased rate of cell division by a factor of 1+s, signifying a faster exponential
growth than the neutral cancer cells due to a net growth rate of τS = b(1+ s)− d (see
Figure 2.3.7 in red). This implies that the number of cells at time t belonging to the selected
subclone NS(t) grows according to the following equation

NS(t) = eτS(t−tsel) with t ≥ tsel.

Mutation accumulation rate

<

b(1+s)b

<

Birth rate
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Basic cell processes:

tMRCA tsurgerytsel
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m
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Figure 2.3.7: Tumor cells’ rates affect the growth of the tumor. In yellow, tumor’s neutral
cells, in red, positively selected tumor cells.

In order to get the total amount of cells NT,selection(t) forming the tumor in the presence of
a selected subclone, I will also have to take into account the neutrally growing cells, hence:

NT,selection(t) = NS(t)+NN(t),
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with

NN(t) =

{︄
eτN(t−tMRCA), if tMRCA < t < tsel

eτN(t−tMRCA)− eτN(t−tsel), if t ≥ tsel.
(2.3.3.1)

Modeling the variant allele frequency histogram

Regardless of the evolutionary mode, tumor cells acquire neutral somatic variants at a rate
of µ . For simplicity, I assume µ to be sufficiently small to be consistent with Kimura’s
infinite-sites model, which assumed that the number of nucleotide sites making up the
genome is so large while the mutation rate per site is so low that whenever a mutant appears
it represents a mutation at a new site [67].
To infer the growth dynamics and potential clonal selection from the VAF distribution
in these exponentially growing cell populations, I developed a model to simulate whole-
genome sequencing of variants accumulated in a tumor. This model considers tumors
starting to grow from a single cell at time tMRCA and reaching a size of 109 cells by the
time of surgery tsurgery [33]. According to [33], a tumor of 109 cells is approximately the
size of a diagnosable tumor of a few cubic centimeters. This simulation generates a VAF
histogram based on the model’s parameters, which are specified in Table 2.3.8.

Parameter Unit Distribution Max

d/b 1 Uniform 1

SNVs Uniform 200

s 1 Uniform 1

tsel 1 Uniform 1

nclonal SNVs Uniform 10000

purity 1 Uniform 1

Min

0.5

0

0

0

1

0

Figure 2.3.8: Prior estimates for model fitting.

To determine the expected VAF distribution at time tsurgery, a forward branching process is
used. According to [115], the expected number of mutations with VAF f in a neutrally
evolving tumor is given by

Sneutral( f ,µ, tsurgery|b,d) =
∫︂ tsurgery

tMRCA

P(i,b,d, tsurgery − t)NT,neutral(t)bµdt,

where i denotes the clone size and relates with f according to i = 2 f NT,neutral, accounting
for a diploid genome; P(i,b,d, tsurgery − t) accounts for neutral drift during expansion and
denotes the probability for a clone to grow to size i from a single cell within tsurgery − t.
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The probability distribution of this supercritical birth-death process is well known [13]:

P(i,b,d, t ′) =

{︄
x(t ′) for i = 0

(1− x(t ′))(1− y(t ′))y(t ′)i−1 for i ≥ 1

where:

x(t ′) =
de(b−d)t ′ −d
be(b−d)t ′ −d

and

y(t ′) =
be(b−d)t ′ −b
be(b−d)t ′ −d

.

The second term under the integral, NT,neutral(t)bµ , describes the number of mutations
acquired at time t.
For a tumor evolving with a positively selected subclone, the expected number of mutations
with VAF f is given by

Sselection( f ,µ, tsurgery|b,d) =SI( f ,µ, tsurgery|b,d)+SII( f ,µ, tsurgery|b,d)
+SIII( f ,µ, tsurgery|b,d).

The terms SI, SII and SIII are illustrated in Figure 2.3.9, describing how a mutation (in
light blue), acquired either before (subfigure A) or after (subfigure B) the formation of the
selected subclone (in red), contributes to the VAF distribution.
Specifically, SI( f ,µ, tsurgery|b,d) is defined as the sum of all the mutations acquired in the
founding tumor clone before the formation of the selected subclone. To quantify this term,
I distinguish mutations ending up in the selected subclone (Figure 2.3.9A, nested case, on
the left) from mutations that do not (in Figure 2.3.9A, independent case, on the left). The
probability that a mutation acquired at time t (in light blue), with tMRCA < t < tsel, will be
in the selected subclone (in red) is

NN(tsel − t)
NN(tsel)

.

In this case, the mutation will be present in the entire selected subclone; otherwise, with a
probability of

1− NN(tsel − t)
NN(tsel)

,

the mutation acquired at time t will drift in the founding tumor clone and be absent in the

30



Chapter 2. Evolutionary trajectories of oligodendrogliomas

selected subclone. Thus, SI is defined as:

SI( f ,µ, tsurgery) =
∫︂ tsurgery

tMRCA

[︃
NN(tsel − t)

NN(tsel)
P(i−NS(tsurgery),b,d, tsurgery − t)

+

(︃
1− NN(tsel − t)

NN(tsel)

)︃
P(i,b,d, tsurgery − t)

]︄
NN(t)bµ dt

with t < tsel.

tMRCA ttsel tsurgerytMRCA ttsel tsurgery

Nested case Independent case

tMRCA t tsel tOP1

A

B
Independent case Nested case

tMRCA t tsel tOP1

1-prob

Figure 2.3.9: How a mutation (in light blue) acquired (A) before or (B) after the formation
of the selected subclone (in red) contributes to the model.

Otherwise, when considering mutations acquired after the formation of the selected sub-
clone, tsel < t, (Figure 2.3.9B), I distinguish between mutations acquired in the founding
tumor clone, which form SII (on the left, the independent case), from those acquired in the
selected subclone itself, which form SIII (on the right, the nested case). Specifically, in the
former case, the blue mutation just arises in the tumor founder clone and hence I employ
2.3.3.1, yielding

SII( f ,µ, tsurgery) = NN(tsel)Sneutral( f ,µ, tsurgery − tsel|b,d).
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Conversely, SIII takes into account the blue mutations acquired within the selected subclone
and is thus defined as:

SIII( f ,µ, tsurgery|b,d) = Sneutral( f ,µ, tsurgery − tsel|b(1+ s),d).

Together, SI, SII and SIII define the VAF of mutations acquired in a growing tumor mass
with selection of a subclone. The so obtained simulated VAF distribution will then be
compared to its measured counterpart by minimizing the distance between the two using
approximate Bayesian computation (ABC) (Figure 2.3.10) [68]. In this way I will get a
list of values for the parameters of the model. This allows for the inference of the tumor’s
evolution and growth dynamics retrospectively, which I will describe now more in detail.

Estimating the evolutionary parameters

The time of origin of the selected subclone, tsel, is defined on a scale from 0 (representing
tMRCA) to 1 (representing tsurgery) and is measured relative to the expansion of the original
tumor mass rather than in actual time. Hence, to obtain tsel in actual time (in years), I will
calibrate the MRCA’s appearance time against the patient’s age at diagnosis. From this, I
will then derive the actual time estimates for tsel.
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Figure 2.3.10: Description of the mathematical model simulating the VAF from the data.
The time estimates and the model’s parameters are highlighted in the lower part.

As previously discussed, the growth process of a tumor includes the pre-malignant time
span between the patient’s birth, tbirth, and tMRCA, denoted as ∆t1, and the duration of
tumor expansion, denoted as ∆t2, which goes from tMRCA to tsurgery (see the lower part of
Figure 2.3.10). At tMRCA, the tumor-initiating cell will already contain a certain amount
of mutations. These were acquired at a rate of µ , from tbirth to the time at which the
tumor founder cell arose (as I already discussed in Sections 1.2.3 and 2.3.1). Hence, the
tumor cell of origin already contains a set of µbtMRCA somatic variants. Given that the
mutation rate is known (as it is one of the inferred model parameters), the number of
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pre-malignant generations can be inferred from the number of clonal mutations using the
following formula

∆t1 =
nclonal

bµ
.

Furthermore, the relative loss rate, combined with the final tumor size (assumed to be 109

cells), determines the number of generations occurring during tumor growth ∆t2. Assuming
a constant cell division rate before and after tumor initiation, ∆t2 is found by solving the
following exponential equation, where the last term adjusts for a single cell in the neutral
tumor population that mutated into the fitter type:

e(b−d)∆t2 + e(b(1+s)−d)(1−tsel)∆t2 − e(b−d)(1−tsel)∆t2 !
= 109.

Note that solving this equation for ∆t2 essentially involves taking the logarithm of the
tumor cell number. Hence the estimate of ∆t2 depends on the magnitude of the cell number
and not its precise value. Now, given the patient’s age at the time of surgery and that same
time span relative to the expansion of the tumor mass, ∆t = ∆t1 +∆t2, a straightforward
ratio can be used to estimate the time (in years) when the first tumor cell originated (tMRCA)
and when the advantageous mutation conferring the selective advantage first occurred (tsel)
for each patient sample.
Thus, analyzing VAF histograms in conjunction with the age at diagnosis yields evolution-
ary trajectories for each individual in real-time.

2.4 Genomic landscape in primary and recurrent oligo-
dendrogliomas

To begin my analysis, I compared the mutational burden of small variants (SNVs and
indels) and structural variants (SVs, including medium-sized insertions, deletions, inver-
sions, and translocations) between primary and relapse tumor samples. After excluding
putative germline mutations by comparing with blood controls, tumor-specific variants
were identified. On average, primary tumors had 4003 SNVs (ranging between 2392
and 6051) and 258 indels (ranging between 162 and 356), with 33% to 85% shared with
relapse tumors. The overall mutational burden was not significantly higher in relapse
tumors (p=0.57, Wilcoxon rank sum test), averaging 4310 SNVs (ranging between 2978
and 8429) and 300 indels (ranging between 186 and 507) (Figure 2.4.1A-B). Moreover,
primary tumors had on average 21 SVs (ranging between 8 and 31), while relapse samples
had 42 (ranging between 4 and 174) (Figure 2.4.1C), but none targeting known driver
genes. Notably, Patient 1, who is the only one who underwent radiation therapy after the
initial surgery, showed a significant increase in all variant types in the relapse sample.
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Excluding this patient, the mutational burden between primary and relapse samples was
comparable and overall stable.
I then analyzed copy number variants (CNVs) and purity estimates results. Purity in all
samples was high, ranging from 0.62 to 0.92 (see Figure 2.5.3B), aligning with histology
estimates. Furthermore, all tumors had near-diploid genomes, and the copy number profiles
between primary and relapse samples of the same patient remained overall stable (see
Figure 2.4.1D). Besides the subtype-defining 1p and 19q monosomy, the most common
CNVs included the loss of chromosome 14 in four samples, and the loss of chromosome
4/4p, 13, 14 and 18 in three samples (notably, the loss of chromosome 4/4p occurred
only in relapse samples). In addition, two samples shared gains of chromosome 7q and
11 and loss of chromosome 15. Non-subtype-defining CNVs were often subclonal and
frequently changed after primary resection, indicating ongoing subclonal evolution after
tumor initiation (see Section 2.4.1 below).
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Figure 2.4.1: (A) and (B): Number of SNVs and indels, respectively, for each of the tumor
samples. Variants shared between samples of the same patient are shown in a darker
colour. (C) Number of SVs for each of the tumor samples. (D) Copy number variation

profile for the 12 tumor samples.

While comparing overall mutational burdens provides limited insight into the mutagenic
processes involved, deriving mutational signatures can reveal underlying mechanisms of
cancer development, as discussed in Section 1.2.2. For instance, the increase in variants
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observed in Patient 1 might be attributed to a particular mutational signature, possibly
related to therapeutic treatment the patient underwent. To investigate this, I examined the
single nucleotide substitution profiles for all primary and relapse samples (Figure 2.4.2).
For Patient 1, as well as for all other patients, the profiles remained mostly stable between
primary and relapse samples, predominantly featuring C>T and T>C substitutions, similar
to patterns seen in normal tissue aging as reported by [99].
Additionally, the analysis of mutational patterns using YAPSA [55] on COSMIC v3
(cancer.sanger.ac.uk/signatures/sbs/), revealed that most SNVs were at-
tributed to the clock-like signatures SBS1 and SBS5, except for Patient 6, who had a
significant proportion assigned to SBS3, which is strongly associated with defective DNA
damage repair (see figure 2.4.3A) [8]. However, when analyzing indel mutation signa-
tures (see Figure 2.4.3B, cancer.sanger.ac.uk/signatures/id/), there was
no indication of ID6, which is linked to defective DNA damage repair and hence to SBS3.
Furthermore, there was no increase in SNV and indel counts for Patient 6 (see Figure 2.4.1).
Overall, the mutational profiles were stable, with no evidence of an increased mutation
rate due to abnormal mutagenic processes, including therapeutic treatment for Patient 1.
In summary, primary and recurrent oligodendrogliomas had comparable numbers and
patterns of somatic mutations, suggesting minimal genetic evolution between the two surg-
eries, with the exception of the increased mutational burden of Patient 1 upon recurrence.
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Figure 2.4.3: (A) and (B) Signatures profiles for SNVs and indels, respectively, for the
six oligodendroglioma patients.

35

cancer.sanger.ac.uk/signatures/sbs/
cancer.sanger.ac.uk/signatures/id/


Chapter 2. Evolutionary trajectories of oligodendrogliomas

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

0.0

0.1

0.2

Patient 5
primary

Patient 5
relapse

Patient 6
primary

Patient 6
relapse

C>A C>G C>T T>A T>C T>G

0.0

0.1

0.2

R
el
at
ive

co
nt
rib
ut
io
n

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

0.0

0.1

0.2

C>A C>G C>T T>A T>C T>G

0.0

0.1

0.2

R
el
at
ive

co
nt
rib
ut
io
n

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

0.0

0.1

0.2

C>A C>G C>T T>A T>C T>G

0.0

0.1

0.2

R
el
at
ive

co
nt
rib
ut
io
n

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

0.0

0.1

0.2

C>A C>G C>T T>A T>C T>G

0.0

0.1

0.2

R
el
at
ive

co
nt
rib
ut
io
n

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

0.0

0.1

0.2

Patient 2
primary

Patient 2
relapse

Patient 3
primary

Patient 3
relapse

Patient 4
primary

Patient 4
relapse

C>A C>G C>T T>A T>C T>G

0.0

0.1

0.2

R
el
at
ive

co
nt
rib
ut
io
n

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

A.
A

A.
C

A.
G

A.
T

C
.A

C
.C

C
.G C
.T

G
.A

G
.C

G
.G G
.T T.
A

T.
C

T.
G T.
T

0.0

0.1

0.2

C>A C>G C>T T>A T>C T>G

Patient 1
primary

Patient 1
relapse

0.0

0.1

0.2

R
el
at
ive

co
nt
rib
ut
io
n

Figure 2.4.2: Single nucleotide substitution profiles in 3 bp context of the 12 tumor
samples.
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2.4.1 Patterns of driver mutations

As mentioned in Chapter 1.2, most mutations in cancer are passengers, with only a mi-
nority driving tumor growth. This raises the question of whether the pattern of driver
mutations changes between primary and recurrent oligodendrogliomas, despite their over-
all similarity in mutational burden and signatures previously analyzed. To address this,
I considered a list of driver genes identified for low-grade gliomas from "intOGen"
(intogen.org) [102], known drivers for gliomas from "COSMIC" (cancer.sanger.
ac.uk/cosmic) [144] and mutations in the telomerase reverse transcriptase (TERT)
promoter [66, 15]. TERT mutations occur at two mutually exclusive hotspots: C228T
(position 1,295,228 on chromosome 5p, a C to T mutation) and C250T (position 1,295,250
on chromosome 5p, with a C to T mutation) [10, 117, 50].

0.00

0.25

0.50

0.75

1.00
C
C
F

Shared variants
CIC.42795207
CIC.42799059
IDH1 p.R132H
IDH2 p.R172K
TERT C228T
TERT C250T
TP53

B

0.0

0

0.2

5

0.5

0

0.7

5

1.0

0

C
C

F

ARID1A
ATM
FUBP1
KMT2D
NOTCH1
SETD2
CIC
TERT
C228T

Private
variants

C

0.00

0.25

0.50

0.75

1.00

C
C
F

ARID1A
ATM
FUBP1
NOTCH1
SETD2
CIC
TERT C228T
ZBTB20

Private variants

P1
_p

P1
_r

P2
_p

P2
_r

P3
_p

P3
_r

P4
_p

P4
_r

P5
_p

P5
_r

P6
_p

P6
_r

Frameshift Insertion
Stopgain
Splicing
Double splicing
Promoter

Nonsynonymous SNV (nSNV)
Double nSNV
Frameshift deletion (FSD)
Double FSD
Nonframeshift deletion

SETD2
NOTCH1

TP53
FUBP1

ARID1A
ATM

KRAS

ZBTB20
NF1

GNAS

IDH1/2* * *

CIC

0 10

TERT

10

#
M
ut

0

P1
_p

P1
_r

P2
_p

P2
_r

P3
_p

P3
_r

P4
_p

P4
_r

P5
_p

P5
_r

P6
_p

P6
_r

# MutationsA

Figure 2.4.4: (A) Upper section, driver mutations that were shared in both samples of a
tumor pair; lower section, driver mutations that were found in a single sample of a tumor
pair only. IDH1 mutations are shown without asterisk; IDH2 mutations are identified with
an asterisk. (B) and (C) Cancer cell fraction of driver mutations found in both samples of

a tumor pair and in a single sample of a tumor pair, respectively.

On average, each tumor had five small mutations targeting driver genes (Figure 2.4.4A).
Besides the subtype-defining mutations in the IDH genes (with the few oligodendrogliomas
that do not harbor the IDH1 p.R132H mutation containing the IDH2 p.R172K mutation)
[89], all patients had mutations in the TERT promoter. Additionally, mutations in the CIC
gene was observed in 9 out of 12 samples, with each tumor having two to three distinct
mutations in this gene. However, inactivating mutations in the CIC gene on chromosome
19q and the FUBP1 gene on chromosome 1p are often present in oligodendrogliomas: CIC
functions downstream of growth factor receptor signaling pathways by binding to DNA,
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while FUBP1 is a DNA-binding protein with an unknown role in gliomagenesis [25].
Driver mutations shared between primary and relapse tumors (upper part of Figure 2.4.4A)
were mostly found in similar cancer cell fractions in both samples (Figure 2.4.4B). Notably,
Patient 1 showed a significant decrease in cancer cell fraction for CIC upon recurrence,
while Patient 5 exhibited a marked increase in TP53. Private driver mutations (lower part of
Figure 2.4.4A) appeared in either primary or relapse tumors at varying cancer cell fractions
(Figure 2.4.4C). Clonal mutations in the TERT promoter, ATM, SETD2 and ZBTB20 were
detected in the primary sample of Patient 5, and in SETD2 in the primary sample of Patient
2, but these mutations were lost in the corresponding relapse samples. Patient 5, however,
increased the frequency of TP53 and newly acquired FUBP1 and CIC mutations upon
recurrence, suggesting clonal replacement between the two surgeries. Additionally, Patient
4 and Patient 6 had different SNVs in CIC upon recurrence, and Patient 6 exhibited a
frameshift deletion in the SWI/SNF complex gene ARID1A, replacing a prior SNV.
In conclusion, the driver’s mutations landscape in paired primary and recurrent oligoden-
droglioma samples confirms a mostly stable mutagenic process during disease progression.

2.4.2 Genetic subclones with and without known driver mutations

To understand subclonal evolution of the oligodendrogliom samples, I analyzed VAF
histograms and driver mutations together. As discussed in Section 2.3.1, factors such as
sequencing depth, purity and chromosomal changes can influence the VAF of mutations.
To account for these factors, I normalized the allele frequencies of variants mapped to
chromosomes with copy number gains/losses and adjusted for tumor cell content by
calculating the cancer cell fraction (CCF), defined as

CCF =
VAF

purity
(purity∗ploidy+(1−purity)∗2) .

Specifically, the term outside the parenthesis is the corrected VAF, which adjusts the
frequency of a mutation for the sample’s purity estimate. The first term in the parenthesis
represents tumor cells with a specific ploidy value, and the second term accounts for
diploid non-tumor cells present in the sequenced bulk sample. Computing the CCF allows
to plot the distribution of pseudo-heterozygous VAFs, defined as CCF/2, with a minimum
threshold of 0.05, to account for sequencing depth. These histograms provide a fair analysis
between all variants mapped to different chromosomes and belonging to samples with
different purity estimates.
An initial visual inspection revealed substantial peaks at a normalized VAF of around 0.5
in all tumors, formed by clonal variants. Most of these variants remained clonal in the
relapse samples, as shown in the second-to-last panels (denoted by 2D) in Figure 2.4.5 and
Figure 2.4.6, with few shared variants shifting from the clonal peak in the primary sample
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to a lower frequency in the relapse sample, and the other way around.
To rigorously deconvolute subclones, I used VIBER [28] on the 2D pseudo-heterozygous
VAF distributions. VIBER, being semi-parametric, attempts to use at most K Binomial
clusters. I set a minimum cluster size of 2% of the total number of variants; this explains
the presence of the green "NA" cluster in Figure 2.4.5 and Figure 2.4.6. After subclonal
decomposition, I highlighted the frequency of the driver mutations, showing their mean
frequency and the 95% confidence interval according to a binomial distribution. Different
colors indicate distinct clusters to which driver genes are assigned to, according to their
pseudo-heterozygous VAF. The 2D VAF scatterplot only includes driver mutations shared
between primary and relapse samples. The rightmost plot in the two figures displays
how cluster frequencies changed between primary and relapse samples (mean and 95%
confidence bound of the mean are shown), along with associated driver mutations to each
cluster.
All samples exhibited the presence of 7 to 8 subclones, with many showing changes in
VAF between primary and relapse samples. For example, Cluster 7 decreased in frequency
in all the relapse samples, whereas Cluster 10 increased. In some cases, distinct subclones
could be identified with newly acquired mutations in driver genes. For example, mutations
in NOTCH1 and ATM were found in Cluster 6 in Patient 3, while Cluster 8 in Patient 6
featured mutations in FUBP1, CIC and TP53. However, there were exceptions: Cluster 7
in Patient 6 lacked mutations in known driver genes, whereas in other patients the same
cluster was associated to mutations in CIC and SETS2. Moreover, subclones can arise
in the absence of selective pressure, either through neutral drift - evidenced by smaller
clusters, like Cluster 4, which align with the neutral power-law tail of the VAF histogram -
or through the survival of a subset of cells following resection. VIBER decomposes the
power-law tail at low frequencies in the histogram into multiple subclones.
Overall, the observed intratumoral heterogeneity, both with and without known driver
mutations, raises the question of whether subclonal expansions in oligodendrogliomas are
primarily driven by positive selection for genetic drivers or are more influenced by random
neutral drift. To answer this question, I will apply my model to the data.
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Figure 2.4.5: Pseudo-heterozygous VAF histograms and scatterplot of primary and
relapsed tumors of Patients 1, 2 and 3. The plot on the most right shows how the

frequencies of each cluster changes between primary and relapse samples.
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Figure 2.4.6: Pseudo-heterozygous VAF histograms and scatterplot of primary and
relapsed tumors of Patients 4, 5 and 6. The plot on the most right shows how the

frequencies of each cluster changes between primary and relapse samples.
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2.5 Dynamics of tumor growth

As previously shown in Section 2.3.3, it is possible to construct a mathematical model
to simulate the VAF distribution. By applying Bayesian inference, it is possible to use
the VAF to quantitatively measure the evolutionary dynamics of tumor growth, thereby
understanding growth and selection dynamics in primary oligodendrogliomas. Figure
2.5.1 shows the effectiveness of this method, as the model, in blue, fits the data, in pink,
reasonably well. Hence, this fit allows to accurately estimate all the parameters of the
model, such as selective advantage, growth rate and cancer age.
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Figure 2.5.1: Model fits the data; on top of the VAF histograms driver mutations are
highlighted.

Briefly, the model depends on accurately determining the number of clonal mutations to
time the MRCA and using a low VAF threshold for subclonal mutations to resolve the
tumor’s evolution. Hence, given that the model heavily relies on the number of variants
for the inference and quantification of the tumor’s parameters, it necessitates data with a
relatively high sequencing depth (at least 50x). For example, an attempt to apply the model
to publicly available whole-genome sequencing data of ten oligodendrogliomas from the
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GLASS consortium [15] showed that, for the majority of samples sequenced at depths
ranging from 10x to 25x, the VAF histogram was too poorly defined to allow for a precise
analysis. However, the model successfully fitted two datasets sequenced at approximately
55x (Figure 2.5.2).
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Figure 2.5.2: The model (in blue) fits the VAF histograms of the two samples taken from
[15]. On the left Patient TCGA-DU-5870, with sequencing depth of 52x, and on the right

Patient TCGA-DU-6397, with sequencing depth of 58x.

2.5.1 Subclonal selection of diverse driver mutations

The first significant finding from the modeling is that in all six primary cases, the model
identifies a selected subclone, indicated by the dotted vertical red line in Figure 2.5.1. This
suggests the presence of a cell population with a selective advantage over other tumor
cells, independent of prior constraints. The size of the selected subclone varies between
42% and 86% (see Figure 2.5.9A). In five of the six cases, driver gene mutations were
found at frequencies consistent with the selected clone, indicating that these mutations
contributed to the subclonal outgrowth. In the sixth case, no apparent driver was identified
for subclone outgrowth. This lack of enrichment for specific drivers in the Patient 6
suggests that oligodendroglioma evolution during tumor progression may involve a variety
of oncogenes (maybe even epigenetic, which I will discuss in Chapter 3), indicating that
subclonal selection might also be driven by yet unknown factors.
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Figure 2.5.3: (A) Mean, with min and max values, of the estimated size of the leading
subclone. (B) Comparison of purity estimates from ACESeq and from my model.
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I then explored whether the strength of subclonal selection, s, varied among different
driver mutations. The results showed significant variation, from mild subclonal selection
(s = 0.11, potentially associated with a SETD2 mutation in Patient 2) to rapid expansion
(s = 0.72, potentially associated with mutations in ZBTB20, SETD2, ATM and a TERT
promoter mutation in Patient 5), as illustrated in Figure 2.5.4 on the left panel. Interestingly,
the largest selective advantages (s > 0.3) were inferred in Patient 4 and Patient 5, who
exhibited selection for a subclonal TERT promoter mutation (in both patients) and/or gain
of Chromosome 7q (in Patient 4 only). This suggests that the TERT promoter mutation
and/or 7q gain may confer a stronger selective advantage compared to other drivers. To
further support this observation, I analyzed the normalized ratio of non-synonymous to
synonymous substitutions, dN/dS, which is an independent measure of selection based
on the assumption that most synonymous mutations are selectively neutral [99, 163, 168,
178]. The results revealed higher dN/dS ratios, indicative of positive selection, in patients
with high inferred selective advantages, thus corroborating my inference approach (Figure
2.5.4, panel in the middle).
In sum, both dN/dS ratios and the VAF histograms in primary oligodendrogliomas suggest
marked variation in the dynamics of subclonal evolution and strong subclonal selection for
TERT promoter mutations, which causes an increase in telomerase activity and telomere
elongation.
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Figure 2.5.4: Estimates of selective advantage, dN/dS ratio of the six primary cases and
how they relate to each other.

Importance of TERT promoter Telomere length maintenance is crucial for genome
stability. In fact, mutations in the TERT promoter, which are absent in normal cells, disrupt
this stability by enhancing cell proliferation and cancer progression [56]. Specifically,
these mutations lead to increased TERT expression, necessary for telomerase activation
and telomere maintenance, preventing cell death [117]. Such mutations are frequently
found in various tumors of the central nervous system [50, 66, 11], including both the most
aggressive form of diffuse glioma, astrocytoma, and the least aggressive form, oligoden-
droglioma, and play a significant role in glioblastoma [117, 73, 137].
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Since I have identified a pattern that distinctly separates the six primary cases based
on their selective advantage estimates, and given that YAPSA allows for the analysis of
mutational signatures using stratified data, I evaluated the relative contribution of signa-
tures from SNVs grouped into clone, subclone or tail signatures (Figure 2.5.5). I initially
hypothesized that certain signatures would be predominantly associated with specific
clusters. However, the data did not support this, as the relative distribution of signatures
was consistent across all three different clusters.
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Figure 2.5.5: The relative signature contribution of SNVs to clone, subclone and tail for
each tumor sample.

Other aspects that can be derived from the estimated parameters are the tumor growth
rates. Due to the inferred intratumoral heterogeneity, the growth rate of the entire tumor
mass varies with the relative size of the selected subclone, changing dynamically as the
subclone expands. Initially, before the selected subclone emerges, the tumor grows at a
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constant rate of b− d. As the subclone begins to proliferate, the overall growth rate of
the tumor increases, eventually reaching b(1+ s)−d when the selected subclone becomes
the predominant component of the tumor mass. By the time of primary tumor resection,
I estimated that the tumor’s annual growth rate increased by a factor of between 1.8 and
3.5, which corresponds to a doubling time of approximately 0.6 to 1.1 years, as shown in
Figure 2.5.6.
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Figure 2.5.6: Estimated tumor size increase per year and doubling time for each patient.

The doubling time is obtained by solving the following equation with respect to ∆t (all the
other parameters are outputs from the model):

2 = e(b−d)∆t + e(b(1+s)−d)(1−tsel)∆t − e(b−d)(1−tsel)∆t .

The estimated tumor increase per year is then obtained by a simple ratio 2/∆t, where ∆t is
the previously derived doubling time.

2.5.2 Decade-long tumor growth

Lastly, I examined the evolutionary history of the tumors in each of the six patients
individually. The population-genetics model consistently suggested that tumor initiation
occurred in early childhood, between 1 and 9 years of age, averaging at 4.7 years. Given the
patients’ ages at diagnosis ranging from 24 to 48 years (detailed in Table 2.1), this implies
a decade-long tumor growth before diagnosis (Figure 2.5.7). In four of the six patients
(Patients 1, 2, 3 and 6), the selected subclone emerged 4.7-8 years after tumor initiation,
indicating early-life subclonal selection followed by prolonged expansion. Conversely,
in Patient 4 and Patient 5, the selected subclones appeared much later, 18.4 and 20.1
years after tumor initiation, respectively. These subclones also carried a TERT promoter
mutation, with Patient 4 additionally showing a gain of chromosome 7q and a loss of
chromosome 15q.
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Figure 2.5.7: Time estimates of the six primary cases.

Notably, for the two oligodendroglioma cases from the GLASS study [15] with sufficient
sequencing depth (around 55x) and purity (>0.5), the model estimated an early origin
(from 0 to 5.3 years, mean: 1.6 years) and a decade-long evolution as well (see Figure
2.5.8B). Moreover, a relatively small selective advantage was inferred (see Figure 2.5.8A).
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Figure 2.5.8: Selective advantage and time estimates of the two primary cases from [15].

These findings, combined with earlier results discussed in 2.5.1, confirm the model’s
reliability. For Patients 1, 2, 3 and 6, the subclones formed early, as they have a weaker
selective advantage. In contrast, the subclones in Patient 4 and Patient 5, associated
with higher selective advantage and TERT promoter mutations, emerged later. This
implies a significant selective pressure to acquire telomere maintenance mechanisms,
enabling subclones with TERT promoter mutations to achieve larger sizes despite their
later emergence. Conversely, other driver mutations experience less selective pressure and
can only reach substantial sizes if they are acquired early in the tumor’s development. This
suggests that oligodendrogliomas grow inefficiently and face challenges related to cellular
senescence. To support this hypothesis I identify the effective mutation rate

µeff =
µ

(1−d/b)
,

defined as the number of variants acquired per effective symmetric self-renewing cell
division (the denominator represents the fraction of cell divisions contributing to tumor
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growth). The high µeff values (150 to 434 variants per effective division, Figure 2.5.9 on
the left) proves an inefficient tumor growth, as these rates exceed typical estimates of 1 to
10 variants per somatic cell division [12, 72, 81, 106]. However, such a markedly elevated
mutation rate is unlikely given the similarity of the mutational profiles in my cohort to
normal tissues (Figure 2.4.3). Alternatively, the high effective mutation rate observed
in my cohort may report on inefficient expansion of oligodendrogliomas, where only a
minority of cell divisions sustain actual tumor growth, in agreement with strong selection
for telomere stabilization.
It is also possible to derive the mutation rate of the mutation driving the selected advantage,
which is defined as the inverse of the number of divisions until tsel

µdriver =
1∫︁ tsel

0 µbNN(t)dt
=

1
µb

∫︁ tsel
0 e(b−d)tdt

=
1
µ

b−d
e(b−d)tsel

.
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Figure 2.5.9: Mutation rate estimates of the six primary cases.

Taken together, the VAF histograms in primary oligodendrogliomas suggest inefficient
tumor growth, driven by strong selection for telomere maintenance and ongoing clonal
evolution during tumor progression.

2.6 Growth rate of the primary tumor predicts time to
recurrence

Up to this point, my analysis has solely focused on the primary tumor samples, aiming to
reconstruct the tumor’s evolutionary trajectory up to the day of the first surgery. However,
as discussed in Section 1.4.3, recurrence is unfortunately inevitable for oligodendrogliomas.
I will use the relapse data to validate the growth dynamics inferred from the primary tumor
samples. Specifically, the evolutionary parameters estimated from the primary tumors will
be employed to predict the time of tumor regrowth after the initial surgery.
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Assuming the primary tumor reached a diagnosable size of 109 cells, as described in [33],
I consider three possible degrees of resection at tsurgery, which the clinicians call partial,
subtotal and total. To simulate these resection scenarios, which the clinicians perform
based on a case-by-case decision, I associate specific resection percentages to each (as can
be seen in Figure 2.6.1). Specifically, for a total resection, I assume that 99-99.99% of the
primary tumor cells was removed, indicating that a percentage between 0.01% and 1%
of tumor cells were left. For a subtotal incision, about 10% of the primary cells survive,
corresponding to 90% resection. Lastly, for a partial resection, around 20% of tumor cells
subsist, suggesting the removal of 8 ∗ 108 cells. After the surgery, for each scenario, I
estimate the expected time spans for relapse, assuming that the tumor growth dynamics
remain unchanged. This implies that the recurrent tumor grows back with the same net
growth rate, mutation accumulation rate and selective advantage, ultimately reaching
the same size of approximately 109 cells. Once I have these three different time span
estimates between surgeries, namely ∆tsurgeries, partial, ∆tsurgeries, subtotal and ∆tsurgeries, total,
I can compare them with the known relapse times (∆tsurgeries, years, known) and derive an
appropriate resection percentage for each of the three different resection types. This will
allow me to associate a specific percentage of resected cells with partial, subtotal or total
surgery.

Time of 1st surgery

surgery

Estimated
growth rate

partial

subtotal

total

Time of 2nd surgery

109 cells

109 cells

~ cm3

Δtsurgeries, partial

Δtsurgeries, subtotal

Δtsurgeries, total

Δtsurgeries, yeas, known

Figure 2.6.1: How I use information from the relapse sample to validate the growth
dynamics of the overall tumor.
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When comparing the predicted regrowth times with the reported times until tumor pro-
gression for different resection types, the cohort fell into two distinct groups (Figure 2.6.2
on the left). The first group, which includes Patients 1, 5 and 6, showed that the reported
progression times were best explained by a nearly complete resection of more than 99%
of the primary tumor. For Patients 1 and 6, surgical reports confirmed "total resection",
aligning with the model’s predictions. The second group, consisting of Patients 2, 3 and
4, had reported progression times that were best explained by an incomplete resection of
80-90% of the tumor mass. Surgical reports for Patient 3 and Patient 4 indicated "partial"
and "subtotal" resections, respectively, again confirming the model’s predictions. Thus,
the growth dynamics inferred from primary resections provided reliable predictions for
tumor recurrence following both gross and subtotal surgical resections. Remarkably, the
dynamic predictions were accurate even though some driver mutations were lost and new
ones emerged after the initial surgery and after therapeutic treatment (Figure 2.6.2 on the
right). This observation suggests that many subclonal drivers (e.g., SETD2, CIC) are only
weakly selected and do not significantly alter the overall growth dynamics of the tumor.
Alternatively, distinct subclones may have similar fitness but occupy different regions,
resulting in comparable overall tumor growth dynamics.
In summary, data from matched relapse samples validate the growth dynamics inferred
from primary tumor samples. For four patients with available surgical information, the
inferred tumor growth rates from the primary tumor accurately predicted the tumor’s
regrowth after initial surgery.

Figure 2.6.2: (Next page.) Left panels: predicted time till tumor re-growth to 109 cells in
all six patients, simulating variable extent of tumor resection and using the growth rate
estimated from the population genetics model. Surgical reports classified the resection
in these tumors as, respectively, total, NA, partial, subtotal, NA and total. Right panels:
evolutionary plots illustrating tumor growth (measured in the number of cells), the
percentage of cells positively selected at the time of both surgeries and the presence of

private and shared driver mutations.
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2.7 Discussion

Recent advancements in genomics have provided deeper insights into the genetic factors
involved in oligodendroglioma development, revealing complex genetic mosaics defining
these tumors [173, 4, 158]. This chapter focuses on broadening the understanding about
oligodendrogliomas’ genomic evolution by estimating when significant events, such as
their origin and the acquisition of mutations that accelerate tumor growth, occur. In addi-
tion to outline the tumor’s development history, I also aim to predict its future behavior,
specifically tumor recurrence, to aid a more accurate treatment planning.
To understand the clonal dynamics driving oligodendroglioma growth and the timing the
acquisition of key driver mutations, I developed a population genetics model. This model
simulates clonal selection and the accumulation of neutral mutations in an expanding cell
mass, based on deep whole-genome sequencing data, as detailed in Section 2.3.3. I applied
this model to the primary samples of the six oligodendroglioma patients. My findings
indicate that mutations in IDH1 and IDH2, along with 1p/19q codeletions, are clonal events
occurring early in tumor evolution, consistent with previous research [162, 25].
Additional alterations in tumor suppressor genes contribute to the tumors’ genetic com-
plexity. Notably, TERT promoter mutations were found in all primary tumors and were
subclonal in two cases. Previous research suggests that in IDH-wildtype glioblastomas,
TERT promoter mutations promote aggressive tumor growth by preventing cancer cell
death, rather than serving as founding mutations [73]. My findings suggest a similar
role in oligodendrogliomas, where the frequency of TERT promoter mutations correlates
with tumor aggressiveness. In Section 2.5.1, I discuss the strong selective advantage of
TERT promoter-mutated subclones, highlighting their role in enhancing cell proliferation
[50]. Therefore, TERT promoter mutations might serve as both diagnostic and prognostic
markers for oligodendrogliomas. Moreover, quantitative modeling of leading subclones in
primary tumors revealed positive selection of known driver mutations such as NOTCH1,
SETD2, CIC, ZBTB20 and ATM. Interestingly, in Patient 6, clonal selection occurred with-
out detectable variants in known oncogenic drivers. This suggests that oligodendroglioma
growth might involve mutations in unidentified driver genes or epigenetic changes, which
will be explored in the next chapter.
Unlike cancers like colorectal carcinoma, whose incidence rises steadily with age, oligo-
dendroglioma diagnoses peak between 36 and 40 years and then decline. My birthdating
study (Section 2.5), which combines mutation counts, tumor size and patient age with
population dynamics models, shows that in all six primary-relapse pairs studied and two
additional cases from a previous study [15], the tumor’s founding cell originated in child-
hood, typically before age ten, indicating a path to early tumorigenesis. Interestingly, in
the first ten years of life, human oligodendrocyte populations expand and then stabilize, as
described in 1.4.2, suggesting that early childhood is a period of vulnerability for develop-
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ing oligodendrogliomas.
Lastly, in Section 2.6, I found that the growth dynamics inferred from initially resected
samples, together with the extent of surgical resection, could accurately predict the time
to progression, despite changes in subclonal composition. These prediction, with further
validation and assessment of therapy’s impact on the prediction, could be useful improve
treatment strategies.
In summary, in this chapter I demonstrated how genomic profiling of temporally separated
oligodendroglioma samples can reconstruct the evolutionary history and clonal archi-
tectures of individual tumors. By combining deep whole-genome sequencing data with
mathematical modeling, I reconstructed a common early tumorigenesis path characterized
by 1p/19q chromosomal losses and IDH1 or IDH2 mutations [9]. This path, peaking dur-
ing active glial development, is followed by the acquisition of TERT promoter mutations,
which enhance telomerase activity and eventually dominate clonally. Understanding that
oligodendrogliomas may originate in early childhood and peak in midlife has profound
implications for brain tumor biology and early intervention strategies. Investigating these
tumors’ early origins could lead to novel detection and treatment designs. Given the signif-
icance of TERT promoter mutations, telomerase-targeted therapy might also be effective,
as suggested in [11].
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Chapter 3

DNA methylation patterns in
oligodendrogliomas

Deregulation of cellular functions in cancer involves both genetic and epigenetic alterations.
Thus, there is a need for a comprehensive epigenetic analysis, alongside the genetic one, to
fully understand cancer progression. This raises the question of whether epigenetic data,
like genetic data (as shown in Chapter 2), can be used to trace the evolutionary pathways
of tumors.
To address this question, I will analyze DNA methylation data from the same oligoden-
drogliomas previously studied, to determine if it can shed light on the events that shape the
tumor’s evolution. I will specifically investigate whether DNA-methylation factors play a
role in the subclonal selection observed in the genetic analysis of oligodendrogliomas, as
discussed in Chapter 2. For instance, in Patient 6, no known driver mutation was identified
to explain the accelerated growth of the subclone. This suggests that a purely genetic
perspective may be inadequate, and incorporating the heterogeneity and evolution of the
epigenome could provide new insights.

3.1 Sequencing strategy

The methylation status of the six primary-recurrent paired oligodendroglioma samples was
assessed using Illumina 850k arrays by Yonghe Wu (German Cancer Research Center,
Heidelberg). The Infinium assay, conducted according to Illumina’s standard protocol
with the Infinium Human Methylation 850K BeadChip (illumina.com), measures
DNA methylation levels at CpG sites. This assay uses two types of probes: a methylated
(M) one, which binds to methylated DNA regions, and an unmethylated (U) one, which
targets unmethylated CpG sites. By comparing the signal intensities of the methylated
and unmethylated probes, the assay determines the methylation level at each CpG site,
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expressed as the β -value:

β =
M

M+U
.

The β -value ranges from 0 to 1, where high values indicate high methylation levels and
lower values indicate less or no methylation [4].

3.2 DNA methylation signatures confirm hallmarks of
oligodendrogliomas

Genome-wide changes in the methylation status of CpG dinucleotides occur during cancer
formation. As mentioned in the previous chapter in Section 1.3.2, some cancers exhibit
unique methylomes, such as the CpG Island Methylator Phenotype (CIMP) [147]. The
CIMP assumes that the methylation status of specific CpG sites in the promoter regions
of various tumor suppressor genes can lead to unchecked cell proliferation and cancer
progression. Moreover, the CIMP allows for a clear definition of distinct molecular tumor
subtypes. These methylation-based subtypes have been identified in various cancers, in-
cluding gliomas. Further methylation signatures can distinguish between different subtypes
of diffuse adult gliomas, which I will describe in the subsequent sections. Specifically, in
Section 3.2.1, I will focus on the primary branching point that distinguishes low-grade
gliomas (IDH-mutant, shown on the left side of Figure 1.4.3) from high-grade gliomas
(IDH-wildtype, shown on the right side of Figure 1.4.3), whereas in Section 3.2.2, I will dis-
cuss the branching point within IDH-mutant gliomas, which separates oligodendrogliomas
from astrocytomas based on their 1p/19q-codeletion status.

3.2.1 Glioma CpG island methylator phenotype

As discussed in Section 1.3.2, genetic mutations in the IDH genes lead to a specific
pattern of early epigenetic alterations known as glioma CIMP (G-CIMP), characterized
by extensive remodeling of the DNA methylome [112, 103]. This methylation profile
distinguishes low-grade gliomas, such as astrocytomas and oligodendrogliomas, which
have a G-CIMP+ phenotype characterized by hypermethylation, from glioblastomas, which
have a G-CIMP- phenotype characterized by hypomethylation. When applying the G-
CIMP criterion described in 1.3.2 to the 12 tumor samples, I found that all primary samples
are classified as G-CIMP+, and their status is maintained at recurrence, as shown in Figure
3.2.1 on the left. This result aligns with expectations, given that all gliomas profiled here
are IDH-mutant and thus exhibit the characteristic hypermethylation patterns associated
with the G-CIMP+ status.

56



Chapter 3. DNA methylation patterns in oligodendrogliomas

3.2.2 Methylation Classifier identifies 1p/19q-codeletion status

To further classify IDH-mutated low-grade gliomas, Paul et al. [120] identified 14 specific
CpG positions (shown in Table 1.2) that can distinguish 1p/19q-codeleted from 1p/19q-
non-codeleted gliomas. The former ones are oligodendrogliomas, while the latter ones
are astrocytomas. This analysis reinforces the classifier’s ability to predict tumor types,
confirming that the analyzed samples are oligodendrogliomas, as depicted in Figure 3.2.1
on the right.
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Figure 3.2.1: G-CIMP and 1p/19q-codeleted methylation status confirms that the samples
are low grade gliomas with 1p/19q-codeleted, namely oligodendrogliomas. C1 and C2
are two healthy brain tissues downloaded from The Cancer Genome Atlas. ND: no data

available.

3.3 β -value distribution

To compare the methylation levels between normal brain tissue and the oligodendroglioma
samples, I downloaded methylation data of two healthy brain tissues from The Cancer
Genome Atlas portal (https://tcga-data.nci.nih.gov/). After filtering out
the probes targeting the X and Y chromosomes (as done in [4, 19]), I analysed the difference
between methylation levels in healthy brains and oligodendrogliomas.
The standard representation of the methylation levels β is by a density plot. The density
plots in Figure 3.3.1 reveal that, irrespective of the sample type (non-tumor or tumor),
the majority of CpG sites exhibit either of the two extreme methylation levels. This
implies a bimodal distribution of the methylation data, with most β -values clustered near
0 or 1, signifying CpG sites that are either unmethylated in most cells or methylated in
most cells. Additionally, in the density plots for the tumor samples, an intermediate peak
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at moderate methylation levels is evident, varying in visibility across different samples
(the most evident one is in the primary sample of Patient 5). When comparing the DNA
methylation profiles between primary and relapse tumor pairs, some patients (such as
Patients 2, 3 and 6) show minimal differences, whereas others (Patients 1, 4 and 5) exhibit
more substantial variations, implying different paths to recurrence in oligodendrogliomas.
The variation between primary and relapse tumors does not correlate with the extent of
surgical resection. This is evident in Patient 6, who underwent total resection, yet showed
no noticeable change in the β -value distribution. Notably, Patient 1, the only patient to
receive concurrent radiation therapy after resection, was also the only patient who exhibited
a shift from highly to intermediately methylated sites as the tumor progressed.
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Figure 3.3.1: Density plots representing the distribution of the β -values in normal brain
tissue (on the left; in white) and in the 12 oligodendroglioma samples (on the right).

3.3.1 Subclonal selection did not correlate with known hypermethy-
lated tumor suppressor genes

The CDKN2A/2B genes on chromosome 9p21 encode the proteins p16INK4a/p14ARF and
p15INK4b, respectively. These tumor suppressor genes are known to be aberrantly expressed
in various human cancers [131, 83, 40, 39], including oligodendrogliomas. Specifically,
hypermethylation of CDKN2A/2B has been identified as a crucial epigenetic mechanism
that allows oligodendroglial tumors to evade growth control [170].
I investigated whether I could identify a methylated tumor suppressor in my data that might
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help driving positively selected subclones progression. I observed partial hypermethylation
of the CDKN2A/2B promoter-associated CpG island (chr9:21994101-21995910), as shown
in Figure 3.3.3. No clear hypermethylation signal was detected in the CDKN2A promoter-
associated CpG island (chr9:21974578-21975306), as depicted in Figure 3.3.2.
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Figure 3.3.2: CDKN2A promoter-associated CpG positions. C1 and C2 are two healthy
brain tissues downloaded from The Cancer Genome Atlas. ND: no data available.
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Figure 3.3.3: CDKN2A and CDKN2B promoter-associated CpG positions. C1 and C2
are two healthy brain tissues downloaded from The Cancer Genome Atlas. ND: no data

available.

Of note, the available controls from normal brain tissue (taken from The Cancer Genome
Atlas) did not cover all investigated CpG sites, which should be improved in the future.
Additionally, I did not find any specific CpG site where the β -value correlated with the
estimated selective advantage of the subclone. Furthermore, no clear correlation was found
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between increased methylation levels of CpG sites in Patient 6, where subclonal selection
did not correspond to a known driver, and positive selection.
In conclusion, partial hypermethylation of the CDKN2A/2B promoters may contribute to
silencing of these genes in all oligodendrogliomas studied here, but does not provide a
mechanism for subclonal outgrowth without a known genetic driver.

3.3.2 Comparing methylation levels between samples

To further investigate the differences in methylomes in tumor samples and identify common
and specific methylation profiles, I selected the top 1% most variable CpG sites across
the six initial and recurrent oligodendrogliomas. Using these sites, I performed two-way
unsupervised hierarchical clustering with Euclidean distance and Ward linkage.
Hierarchical clustering grouped initial and recurrent samples from the same patient together
(see Figure 3.3.4). This result indicates a higher similarity in DNA methylation profiles
between paired samples from individual patients rather than between samples from different
patients. Hence, primary and relapse samples exhibit minimal differences, indicating
a relatively stable DNA methylation landscape during oligodendroglioma progression,
consistent with the findings of [103, 4]. Notably, patients for whom the birth-death model
based on genetic data estimated a higher selective advantage for the positively selected
subclone (Patients 3, 4 and 5) formed a separate cluster from the others (on the left of
Figure 3.3.4).
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Figure 3.3.4: Unsupervised hierarchical clustering of the top 1% most variable CpG sites.

The same clustering results are also obtained when considering the top 0.5% and 2.5%
most methylated CpG sites, as can be seen in Figure 3.3.5 (A) and (B), respectively. This

60



Chapter 3. DNA methylation patterns in oligodendrogliomas

further supports epigenetic stability of oligodendrogliomas during progression (confirming
results in Section 2.4), and points to a specific methylation pattern of tumors with fast
growing subclones.
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Figure 3.3.5: Unsupervised hierarchical clustering of the (A) top 0.5% and (B) top 2.5%
most variable CpG sites.

3.4 Differentially methylated positions

Next I derive changes in methylation level between paired tumor samples of individual
patients defined as

∆β = β recurrent −β primary.

This approach accounts for age-related DNA methylation differences, as outlined in [103].
Thus, the variations observed between initial and recurrent tumors are, at least in part, due
to abnormal changes associated with tumor progression rather than originating from the
cells themselves.
To identify CpG sites with significant methylation changes upon recurrence, I focused on
the most differentially methylated positions (DMPs), defined as |∆β | ≥ 0.3 [38]. I analyzed
the number of shared CpG sites between samples of the same patient and identified how
many of these sites were differentially methylated (Figure 3.4.1A). The number of shared
positions was consistent across patients (mean: 865653). However, only a small fraction
of these sites were DMPs (mean: 9120), ranging from 0.01% to 2.67%. I then examined
whether, for each patient, the DMPs tended to show increased or decreased methylation
levels from primary to recurrence, but no clear pattern emerged (Figure 3.4.1B).
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Figure 3.4.1: (A) The total number of CpG sites present in both samples for each
patient. Highlighed in purple is the percentage of differentially methylated positions.
(B) The number of differentially methylated positions between the primary tumor and
recurrence for individual patients is displayed, with colors indicating whether they are

down-regulated (in blue) or up-regulated (in red) in the recurrence sample.

Additionally, only a minority of DMPs were shared across patients: 5285 DMPs were
present in two out of six patients, 388 DMPs in three out of six patients, 13 DMPs in
four out of six patients and only 1 DMP was shared between five out of six patients
(Figure 3.4.2A). Furthermore, there was no significant correlation between the number of
differentially methylated positions found in a sample and the time until tumor recurrence
(Figure 3.4.2B). Notably, no increase in DNA methylation alterations was observed in
Patient 1, who received radiation therapy in addition to surgery, suggesting that radiation
therapy may not induce focal changes in the methylome, on the contrary to findings by
[38].

A B

0

5000

10000

15000

20000
p-value=0.7648352
corr=0.1580936

2.5 5.0 7.5
Years until recurrence

N
um
be
ro
fD
M
Ps P1

P2
P3
P4
P5
P6

0

10000

20000

30000

40000

21 3 54 6
Number of patients

Nu
m
be
ro
fD
M
Ps

Figure 3.4.2: (A) Only a small number of differentially methylated positions were shared
among the majority of patients. (B) The differentially methylated positions showed no

correlation with the time between the primary tumor and its recurrence.

For the final analysis, I identified the most different methylated CpG positions using a more
relaxed criterion, specifically assuming |∆β |> 0.2 (as done in [103]). I then compared the
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number of DMPs between tumor samples classified as grade 2 and grade 3. There was a
slightly higher number of hypermethylated DMPs in the grade 3 tumors that relapsed, as
shown in Figure 3.4.3. Unfortunately, information on the grade of the relapse samples is
not available.

Figure 3.4.3: The average methylation change from initial diagnosis to recurrence at each
CpG site was measured in grade 2 patients (left) or grade 3 patients (right). Colored lines
represent CpG sites with significant hypomethylation (orange, ∆β < −0.2, with total

counts provided) or hypermethylation (green, ∆β > 0.2, with total counts provided).

Lastly, to connect the genetic analysis from Chapter 2 with the DNA methylation data, I
divided the patients into two groups based on their estimated selective advantage: high
(Patients 4 and 5) and low (the other four patients). Patients with a low selective advantage
had very few common highly differentially methylated sites (fewer than 100 DMPs with
|∆β | > 0.2). In contrast, patients with a high selective advantage showed significant
methylation changes when the cancer returned, with 1130 CpG sites showing strong
hypomethylation (∆β < −0.2) and 3184 CpG sites showing strong hypermethylation
(∆β > 0.2), as shown in Figure 3.4.4. When I performed a gene set enrichment analysis
on all the differentially methylated positions, I found that they were linked to genes
involved in biological processes related to cellular component organization and molecular
functions associated with protein and enzyme binding. However, no known genes related
to neurobiology were enriched.
Altogether, these results suggest that patients with a higher selective advantage experience
a higher amount of differentially methylated changes but no specific gene pathway was
enriched.
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Figure 3.4.4: The average methylation change from initial diagnosis to recurrence at each
CpG site was measured in patients estimated to have either a low selective advantage (left)
and a high selective advantage (right). Colored lines represent CpG sites with significant
hypomethylation (orange, ∆β <−0.2, with total counts provided) or hypermethylation

(green, ∆β > 0.2, with total counts provided).

3.5 Discussion

DNA methylation is an epigenetic mechanism that changes dynamically throughout the
human lifespan and aberrant methylation can lead to various diseases, including cancer. In
this Chapter, I explored the DNA methylation changes occurring during the progression of
adult-type diffuse oligodendroglioma, IDH-mutant and 1p/19q-codeleted.
Firstly, I demonstrated the effectiveness of classifying the 12 tumor samples based on
specific DNA methylation signatures. The DNA methylation levels at certain CpG sites
were able to confirm the diagnoses already made by clinicians and obtained from whole-
genome sequencing analysis, affirming that the samples were indeed oligodendrogliomas.
Specifically, this methylation analysis confirmed the G-CIMP status in all initial tumors,
which was consistently maintained at recurrence. This indicates that these epigenetic
changes occur early in tumor development. Considering the strong association between
G-CIMP status and the IDH gene, and the importance of IDH mutations in the formation of
oligodendrogliomas as shown in my genetic analysis 2.7, it can be concluded that G-CIMP
status is potentially tumor-initiating, a conclusion also supported by [103].
Secondly, hierarchical clustering grouped all the tumor samples by patient identity, regard-
less of tumor grade, suggesting a higher similarity in DNA methylation profiles between
paired samples from individual patients. This result indicates relatively stable DNA methy-
lation over time, supporting the notion of epigenetic stability in oligodendrogliomas at
recurrence, consistent with findings from [136, 4].
Lastly, in order to investigate changes in the methylome and identify potential methyla-
tion signatures linked to oligodendroglioma recurrence, I analysed the most differentially
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methylated CpG positions between paired samples. The results showed that only a few
of these positions were common across most patients, confirming findings in [38]. This
outcome suggests that there is no common path of DNA methylation changes in recur-
rence. Furthermore, I did not detect an increase in DMPs across different World Health
Organization tumor grades, implying that methylation changes may occur independently
of tumor grade and that grade 2 oligodendrogliomas do not differ significantly from grade
3 ones in terms of methylation.
Lastly, the number of detected DMPs was linked to the estimated selective advantage
from the computational analysis in Chapter 2. This connection emphasizes the interaction
between genetic and epigenetic changes during oligodendroglioma evolution. However, no
correlation between the estimated selective advantage and the methylation level in know
oligodendroglial tumor suppressor genes could be found. Furthermore, for Patient 6, no
potential epigenetic driver was identified that could explain the genetically inferred positive
selection of the subclone.
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Conclusions

Resolving the evolutionary history of a tumor is clinically valuable, as prognosis depends
on the future course of the evolutionary process and therapeutic response is mostly de-
termined by the evolution of resistant subpopulations. In humans, the details of tumor
evolution have remained largely uncharacterized, as longitudinal measurements are im-
practical (given that patients cannot ethically be biopsied at multiple time points during the
progression of the disease) and studies are complicated by intratumoral heterogeneity and
between-patient variation. However, recent studies have used mathematical approaches
from population genetics to infer the evolutionary history from single time-point samples.
This thesis further develops this approach by linking genetic evolution with tumor growth.
This approach is possible, because intratumoral heterogeneity, measured in my case by
deep whole-genome sequencing, serves a record of mutations that occurred throughout the
history of the tumor. Consequently, it becomes feasible to infer the evolutionary parameters
that have shaped the tumor’s growth and, therefore, to reconstruct its past evolution.
In this thesis, I learn the past dynamics of oligodendroglioma growth, and use the so
inferred evolutionary parameters to derive the expected regrowth of the tumor after an
initial surgery. Among genetic and chromosomal alterations, IDH1/2 mutation and 1p/19q-
codeletion were present in all tumor cells and are considered to be part of the trunk of the
evolutionary tree describing oligodendrogliomas. In addition, the presence of other muta-
tions, first of all the TERT promoter mutation, were also frequently observed, appearing
to be later events in oligodendroglioma oncogenesis. For the TERT promoter mutation
especially, I showed how its frequency within the tumor can vary temporally, indicating
different expansion rates of the positively inferred selected subclone.
The population genetics model of tumor initiation and progression uniformly dated the
origin of oligodendrogliomas in childhood or puberty, when glial development is most
active. Thus, the active oligodendrocyte progenitors in early childhood create a time-
limited vulnerability for developing this tumor. A confined origin in early life followed

67



Chapter 4. Conclusions

by decade-long tumor growth is consistent with the peak incidence of IDH-mutant and
1p/19q-codeleted oligodendrogliomas in midlife. Importantly, this generates a window-of-
opportunity for early detection.
Moreover, using the estimates growth rates of primary tumors and the extend of resection
at the surgery, I managed to successfully predicting when the recurrent tumor would grow
back. I also examined epigenetic data to further analyze the progression of recurrent
oligodendrogliomas, assessing whether new epigenetic drivers might challenge the assump-
tion that the growth dynamics of the recurrent tumor mirror those of the primary tumor.
No significant epigenetic changes were observed between the first and second surgeries,
reinforcing the overall genetic and epigenetic stability of recurrent oligodendrogliomas.
Furthermore, I investigated epigenetically driven variants to explain the genetically inferred
selective advantage for Patient 6, but I did not find any DNA methylation level pattern that
could explain this.
Interestingly, for Patient 1, neither the genetic evolutionary analysis nor the epigenetic pro-
gression analysis revealed any significant impact from the administered radiation therapy,
aside from an increase in the mutational load.
In summary, this thesis demonstrates that oligodendrogliomas rarely acquire additional
driver mutations or genomic/epigenetic aberrations upon recurrence, indicating their ge-
netic and epigenetic stability at recurrence. This stability may contribute to the clinically
slow-growing nature of oligodendrogliomas compared to other diffuse gliomas and could
inform future tailored therapeutic strategies for this tumor.
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List of publications

At the time of this thesis submission, the PhD research has resulted in an article titled
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Thomas Hoefer, Marc Zapatka, Marcel Kool, Stefan M Pfister, Amir Abdollahi,
and Aurelie Ernst. Carbon ion radio-therapy eradicates medulloblastomas with
chromothripsis in an orthotopic Li-Fraumeni patient-derived mouse model. Neuro-
Oncology, 23(12):2028–2041, 12 2021 [135]

• C. Pixberg, M. Zapatka, M. Hlevnjak, S. Benedetto, J.P. Suppelna, J. Heil, K.
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A. Schneeweiss, and P. Lichter. COGNITION: a prospective precision oncology trial
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ESMO Open, 7(6):100637, 12 2022 [123]
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