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A B S T R AC T

In this thesis, we study the thermalization properties in both closed and periodically
driven systems subject to spatial inhomogeneities.
In Part 1, we focus on long-range Heisenberg spin models of spatially disordered

spins which can be realized experimentally by current state-of-the-art platforms. We
find numerically that the disordered couplings induced by the randomly positioned spins
can lead to a many-body localized regime. Using perturbative arguments based on the
real-space renormalization group, we demonstrate that the emergent quasi-conserved
quantities arise from pairs of strongly interacting spins decoupling from their environment.
Predictions from the resulting effective model of pairs are compared to real experimental
data from a Rydberg quantum simulator for validation and are found to be highly
accurate.

In Part 2, we shift our focus to periodically driven systems which are known to exhibit
long-lived (meta-)stable states under certain conditions. Specifically, we consider an
ordered Ising chain subject to a driving field of varying strength across different parts
of the chain. We demonstrate that a configuration where the driving field has the same
strength for all spins except one can dramatically prolong time-crystalline signatures.
We link this behavior to the presence of approximate conservation laws stabilized by the
spatial inhomogeneity. Additionally, we present preliminary results on the possibility to
create a time crystal by driving the pair model derived in the first part.

Z U S A M M E N FA S S U N G

In dieser Arbeit untersuchen wir die Thermalisierungseigenschaften sowohl in isolierten
als auch in periodisch getriebenen Quantensystemen mit räumlichen Inhomogenitäten.
Im ersten Teil konzentrieren wir uns auf Heisenberg-Spin-Modelle von räumlich un-

geordneten Spins mit langreichweitigen Wechselwirkungen, wie sie in derzeitigen Ex-
perimenten realisiert werden können. Numerische Untersuchungen zeigen, dass durch
die ungeordneten Kopplungen, die durch die zufällig positionierten Spins induzierten
werden, Vielteilchen-Lokalisierung auftreten kann. Mithilfe perturbativer Argumente
der Realraum-Renormierungsgruppe zeigen wir, dass die entstehenden quasi-erhaltenen
Größen aus Paaren stark wechselwirkender Spins bestehen. Daraus resultiert ein effektives
Modell von Paaren dessen Vorhersagen sich sehr präzise mit experimentellen Daten eines
Rydberg-Quantensimulators decken.
Im zweiten Teil dieser Arbeit fokussieren wir uns auf periodisch getriebene Systeme.

Diese können unter bestimmten Bedingungen von Unordnung stabilisierte, langlebige
Zustände aufweisen. Konkret betrachten wir eine geordnete Ising-Kette, die einem zeitlich
periodischen Feld ausgesetzt ist. Wir zeigen, dass in diesem Sysetm die Lebensdauer
der zeitkristallinen Signaturen sehr empfindlich auf räumlich lokale Abweichungen des
Antriebs ist. Diesen Effekt führen wir auf Quasi-Erhaltungsgrößen zurück, die durch
die Abweichungen im Feld stabilisiert werden. Zusätzlich präsentieren wir vorläufige
Resultate zur Frage ob das Paarmodell aus dem ersten Teil unter Treiben auch eine
Zeitkristall-Phase ermöglichen kann.
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L I S T O F F I G U R E S

Figure 1 Schematic of the thermalization process of a classical latte. 3
Figure 1.1 Gas in box. (a) Initially all particles are confined to the left. (b) At

a later time the gas has spread evenly throughout the box. 10
Figure 1.2 Comparison thermalizing and non-thermalizing system using a

long-range Heisenberg model (cf. Equation 1.13) where ∆ =
0.4,α = 3 and h = 0. The spins are randomly positioned as seen in
(a). (b) shows the eigenstate expectation values for the observable
2S

(10)
z . (c) shows the eigenstate occupation numbers (binned into

100 bins) w.r.t. the domain-wall state, where the left 7 spins
are |↓〉 and the other 6 are |↑〉. The shaded region indicates the
mean energy and its variance. The time traces of this operator
and initial state are shown in (d). Also shown are the respective
prediction by the diagonal and microcanonical ensembles. 12

Figure 1.3 Real-space structure of a couple of eigenstates of the XXZ chain
with random on-site potentials (cf. Equation 1.11) in the single
excitation sector with W = 15. The exponential tails are clearly
visible. 14

Figure 1.4 Schematic overview of the experimental features. (a) Spins are
randomly distributed in space and feature power-law interactions
and can evolve under different Heisenberg Hamiltonians. Depend-
ing on the choice of states, the experiment can realize XX (b),
XXZ (c) and Ising (d) models. Taken from [C]. 16

Figure 1.5 Example configurations (top row) and corresponding nearest-
neighbor distance distributions (bottom row) for high density/weak
disorder (left column), intermediate density/disorder (middle col-
umn) and low density/strong disorder (right column). 17

Figure 4.1 Steady-state magnetization curves of the two-component model
using the same color scheme as Fig. 2 (d) and (e) of [D]. Parame-
ters, α and d correspond to (a) Fig. 2 (b) Fig. 4. The inset shows a
zoom around Ω = 0 to highlight the qualitative difference between
the curves. 76

Figure 4.2 Comparison of the two-component model (dashed lines) with
another model where the constituents’ magnetization is given by
a Lorentzian (solid lines). (a) steady-state magnetization of the
constituent. (b) predictions of both model for α = d = 3 [same
parameters as Figure 4.1(a)]. 77

x



Figure 8.1 Preliminary experimental results on time-crystalline signatures in
a spatially disordered XX model. a) sketches the experimental
sequence. Then experimental results for perfect rotation (b), short
interaction times and imperfect rotation (c) and longer interaction
times with imperfect rotation (d) follow. Left column depict the
magnetization’s time trace, while right column shows the Fourier
transform of the signal. e) Then plots the normalized Fourier
weight at ν = 0.5 versus rotational deviation ε. Taken with
permission from Ref. [160] 100

Figure 8.2 Preliminary result of the pair model applied to the time crystal
protocol for d = α, ε = 2% and τ = 10Jmed. (a) shows the
distribution of the pair couplings as given by Equation 4.10. The
yellow shaded area indicates the region where the approximation
is applied. The gray, dashed, line indicates where J̄ = 1 and
thus phase wrapping sets in. (b) Resulting distribution if the
couplings contained in the yellow area of panel (a) are phase
wrapped. The gray, dotted, line is a guide to the eye and marks a
uniform distribution. (c) Compares the time traces resulting from
averaging exact pair dynamics (gray), averaging the approximated
pair dynamics and (blue) and the approximate analytical average
(yellow dashed). 102

Figure 9.1 Localization exemplified by a macchiato. 109

N O TAT I O N

We will work with natural units ~ = kB = c = 1. Furthermore, we will denote matrices
and operators as uppercase letters O, vectors using arrows ~o and scalars as lowercase
letters o. In special instances, we will use a calligraphic font, such as H to denote Hilbert
spaces. All other notation is explained at the first point of occurrence.
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I N T RO D U C T I O N

When pouring some milk into a cup of coffee, one can watch as it distributes itself
throughout the cup rather quickly until a homogeneous mixture is reached (cf. Figure 1).
Or, as a physicist might say, the system evolves to thermal equilibrium. The reason
for this thermalization process can be stated statistically: There are just many more
possible configurations where milk and coffee particles are mixed than ones where they
are spatially separated, i.e. most microstates are typical. Assuming the dynamics explore
many different configurations 1, we will thus find the system in a typical microstate most
of the time. Zooming out and taking a macroscopic point of view, the system appears
to be in equilibrium. To emphasize: Although there is still on-going dynamics on the
microscopic level, the macroscopic state appears to be stationary simply because most
microstates exhibit similar macroscopic features. Importantly, this apparent equilibrium
state can be described using only a few macroscopic quantities, such as the average
temperature and the ratio of milk to coffee. Knowledge of this handful of values allows
to compute all other properties of the system simply by averaging over all compatible
microscopic configurations without having to know the precise dynamics. Strikingly, most
classical systems show thermalization: From small, simple ones like coffee in a cup, over
more complex ones such as fridges and engines even up to stellar objects like black holes.
This underpins the great predictive power of statistical mechanics.

−→
Figure 1: Schematic of the thermalization process of a classical latte.

In the quantum realm, the situation turns out to be similar for many cases. For example,
even isolated quantum systems initialized in a pure state are oftentimes found to thermalize
rapidly. This means they reach a state where observables are consistent with a thermal
description depending only on few parameters. This is quite surprising considering the
time evolution dictated by the Schrödinger equation preserves the purity and additionally
thermal states are usually highly mixed (i.e. a statistical mixture of many pure states).
Thus, an initially pure quantum state can never come close to a thermal state in state
space. This conundrum can be alleviated by restricting to local observables, i.e. observables
that extract information from only a small subsystem such as the magnetization of a
single spin. Then the measurement process effectively averages over the state of the rest
of the system which is equivalent to performing a measurement on a mixed state. If most
of the states one averages over have the same local expectation value, then this explains

1 More precisely, the dynamics needs to be ergodic.

3
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the observed thermalization. This assumption is now known as eigenstate thermalization
hypothesis (ETH) [1–3] and is conceptually similar to the typicality of microstates in
classical systems. From a dynamical perspective, the consequences of ETH and thus the
mechanism behind quantum thermalization, can be stated more intuitively: Consider some
quantum spin system initialized in a product state, such that each spin has a well defined
magnetization and there is no entanglement among spins. Letting the system evolve
for some time, the interactions will cause entanglement to form and thus the initially
local information about the initial state of each spin will be distributed throughout the
whole system - hidden in the complicated correlations between all spins and utterly
inaccessible to small scale measurements. In fact, the stronger the entanglement between
subsystem and rest, the more the subsystem appears to be mixed. Thus, the rapid buildup
of entanglement is the main driver behind thermalization of local observables in closed
quantum systems.
If interactions are the main reason behind the build-up of entanglement and thus

thermalization, should not every non-integrable quantum system thermalize? The story
is not as simple as that! In his seminal 1958 paper [4], Anderson showed that for a
single excitation hopping in a lattice with random on-site potentials, all motion, and
thus thermalization, arrests completely if the randomness of said potentials is sufficiently
strong. This phenomenon, now dubbed Anderson localization, started a new branch of
research on models subject to static randomness. These kinds of systems arise naturally
in many different contexts such as cold atomic gases [5, 6], color centers in diamond [7,
8] or generally systems with impurities [9, 10]. A few years after Anderson’s paper,
localization was generalized to interacting many-body systems under the name many-
body localization (MBL) [11–14]. Conceptually, in an MBL system, the disorder causes
local energy mismatches of such severity that the transport of physical quantities (e.g.
magnetization) is (almost) completely prohibited [15–17]. Even though the system appears
to be fully interacting at first glance, the strong disorder causes it to fracture into small
pieces, called local integrals of motion (LIOMs), that cannot exchange information. Such
a system of course never thermalizes, therefore no thermal description can ever be applied!
Fortunately, one can still describe the state of the system rather easily if the structure of
those LIOMs constituting the system is known. Thus, the concept of MBL can also be a
practical tool to understand the dynamics of strongly disordered quantum systems.

The existence of MBL was demonstrated numerically in a large variety of systems with
tens of spins/sites in a huge number of studies (e.g. [18–22]) and also experimentally [5,
23–25]. However, its existence in the thermodynamic limit, i.e. infinitely large systems, is
currently hotly debated [26–29]. The reason for the absence of MBL in large systems is
seen in the so-called avalanche instability of MBL [27, 30–32]. This mechanism is rooted in
the observation that a thermal region can thermalize neighboring LIOMs which results in
a larger thermal region. Thus, a small thermal inclusion in an otherwise localized system
can grow slowly and cause thermalization of the whole. Large enough systems will always
feature some statistically rare regions of low disorder that then seed a thermalization
avalanche. For systems featuring long-range interactions, which are of particular relevance
in this thesis, there exists even more direct arguments based on counting resonances that
rules out MBL whenever the interaction decays slower then a power-law with exponent
twice the spatial dimension [33–36].

However, thermalization achieved through either mechanism, avalanche thermalization
or resonance proliferation, appears to slowdown exponentially with the system’s size [29, 37,
38]. Thus, the question whether these truly prohibit localization in infinitely large systems
is still considered open. Independently of the theoretical debate, it is unclear how relevant
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the resulting thermalization timescales are for experiments [39]. In fact in Chapter 4, we
show evidence that MBL can still be applied to describe the dynamics of an experiment
featuring power-law interactions with an exponent equal to the spatial dimension despite
MBL being ruled out in that parameter range. Of course the experiment can only probe
finite times and thus cannot rule out thermalization at later times. Nonetheless, MBL
proves to be a useful concept for understanding the observed phenomena.
Notably, most systems used for studying avalanche thermalization or counting res-

onances feature random on-site potentials, whereas the experiment realizes a bond-
disordered model, i.e. its main source of randomness lies within the interactions between
the spins. Thus, aforementioned arguments might not apply readily to this kind of sys-
tem. Usually, bond-disordered models are tackled using real-space renormalization group
(RSRG) techniques, which iteratively identify and eliminate the strongest coupling of the
system [40–43]. Traditionally, RSRG has been applied to models with nearest neighbor
interactions to derive properties of the groundstate (e.g. [44–46]) but was recently gener-
alized to study excited states as well [47]. Even more recently it has also been applied to
long-range systems [48–52]. All of these works use exact numerics to benchmark their
results and thus comparison is limited to small systems.

Given this background, we explore localization phenomena in Part II using a model that
can be realized naturally in a Rydberg quantum simulator. This opens up the possibility
for benchmarking the theoretical results with much larger systems than accessible via
numerics. Concretely, we consider a bond-disordered Heisenberg spin model where the
disorder arises from power-law interaction between randomly positioned spins. After a
brief review of the relevant context in Chapter 1, we start the analysis of this model
in Chapter 2 by performing a numerical study in one spatial dimension across disorder
strength. We find a clear crossover from a thermalizing into a localized regime at sufficiently
strong disorder and apply RSRG to derive the locally (quasi-)conserved quantities, which
consist of pairs of strongly interacting spins. In the following Chapter 3, we show how this
emergent structure of the system can be exploited to compute the dynamics efficiently
and accurately with a semi-classical numerical technique. Finally in Chapter 4, we turn
to a quantum simulator based on ultra-cold Rydberg atoms, that naturally implements
the type of model studied, and present two different experimental studies that show
clear signatures of localization based on pairs of spins. While this cannot answer the
question about the stability of MBL in infinitely large systems at arbitrarily late times, it
nonetheless establishes once more that MBL can be a quite useful concept to understand
the dynamics of real-world systems effectively.

Shifting focus from closed quantum systems to periodically driven systems, MBL seems
to have a stabilizing effect on the dynamics even in the presence of strong driving. Usually,
driving causes the system to absorb energy from the drive and heat up resulting in a
featureless infinite temperature state. However, if the system exhibits MBL, then the
energy absorption can be suppressed and the system can remain perpetually in an out-of-
equilibrium state [53–56]. This allows for novel out-of-equilibrium phases of matter to exist
that can show radically different properties than regular phases. One such new feature is
the spontaneous breaking of time translation symmetry which is normally impossible [57].
This broken symmetry manifests as stable oscillations of the system that show a different
frequency compared to the drive. A state breaking time translation symmetry is called a
time crystal in analogy to ordinary crystals that break spatial translation symmetry.

Since this phenomenon seems to be closely linked to disorder as well, in Part III of this
thesis, we study two periodically driven systems with unusual spatial inhomogeneity: In
Chapter 7, we consider a spatially varying driving field and find it to dramatically enhance
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the lifetime of time crystalline signatures in an otherwise clean Ising chain. Following this
in Chapter 8, we consider again the spatially disordered Heisenberg XXZ model from
Part II subject to periodic driving. We show preliminary measurements and undertake a
theoretical exploration regarding the longevity of this time crystalline behavior based on
the pair model.

This thesis consists of two major parts: Part II discussing localization in closed quantum
systems caused by disorder in the interactions due to spatially random positions. And
Part III about the effect of spatial inhomogeneity in the context of Floquet time crystals.
Each part starts with an overview of the relevant concepts (Chapter 1 and Chapter 6
respectively) and ends with a discussion of the results including directions for future
research (Chapter 5 and Chapter 9). This thesis closes in Part IV with a short, high-level
summary of its findings.



Part II

PA I R L O C A L I Z AT I O N I N S PAT I A L LY D I S O R D E R E D
H E I S E N B E RG S P I N M O D E L S





1C O N C E P T S : T H E R M A L I Z AT I O N A N D A B S E N C E T H E R E O F
I N C L O S E D Q U A N T U M S Y S T E M S

In this chapter, we give a brief overview of the concepts relevant for Part II of this thesis
and establish the necessary context to interpret the results. However, we’ll try to be
brief and only summarize the essence of the matter. The interested reader is referred
to the relevant literature for the details. Since the distinction between thermalizing and
localized systems is at the core of this part of the thesis, we start by reviewing the current
understanding of the thermalization process in closed quantum systems in general and
contrast this with the typical picture of how localized systems evade thermalization.
In particular, we discuss localization in long-range and bond-disordered systems. We
close this chapter with a high-level description of the Rydberg-based quantum simulation
experiment which naturally implements the specific disordered Hamiltonian studied here.

1.1 thermalization in closed quantum systems

The simplest picture of thermalization in a classical system is perhaps the gas in a box
which initially is confined to one of the sides (cf. Figure 1.1). Upon removing the constraint,
the gas quickly spreads throughout the box and soon after a new equilibrium is reached.
Interestingly, we can understand this process in a purely statistical way, without knowing
about the precise equations of motion. As long as the dynamics sufficiently explore the
configuration space, i.e. are ergodic, we can postulate each possible configuration to be
equally likely. This already explains why we find the gas to distribute itself throughout the
box: There are just overwhelmingly more configurations where the particles occupy most of
the box than configurations where the particles are concentrated, i.e. most configurations
are typical. With this ansatz, we could also compute how much force we would need on
average to slowly compress the gas back to one side and how much kinetic energy this
process adds. Thus, the presence of a thermal equilibrium grants us enormous predictive
power. The key features of a thermal equilibrium are:

• Loss of memory: One cannot tell on which side of the box the gas started.

• Subsystem independence: Every patch of space appears to be thermal with the same
parameters (at least sufficiently away from the boundary).

• Independence of microscopic details: The full state of the system can be described
using just a few macroscopic quantities, namely in this case the total (kinetic)
energy, the number of particles and the volume of the box.

Since quantum systems become computationally intractable much faster than classical
systems, it would be very helpful if such an approach could be applied as well. Fortunately,
for many quantum systems an analogue to classical thermalization can indeed be found,
which we can only sketch here. We refer the interested reader to one of the many great
reviews on this topic for further details [3, 58–60].

9
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t = 0 t ≫ 1(a) (b)

Figure 1.1: Gas in box. (a) Initially all particles are confined to the left. (b) At a later time the
gas has spread evenly throughout the box.

Consider some quantum system governed by a Hamiltonian H which is prepared in
some pure state |ψ(t)〉 = |ψ0〉 at t = 0. Written in the energy eigenbasis H|k〉 = Ek|k〉,
the state at some later time t can be written as

|ψ(t)〉 = e−iHt|ψ0〉 =
∑
k

e−iEkt|k〉〈k|ψ0〉 =
∑
k

cke
−iEkt|k〉. (1.1)

Notably, due to the unitarity of the time evolution, the system’s state at every time t can
be reversed to t = 0 and thus the memory of the initial state is always preserved perfectly.
This basic fact already means that we cannot expect every observable to be captured by
a thermal description of a few parameters.
However, in practice it is impossible to measure e.g. the expectation value of some

projector onto a highly-entangled, many-body state. Thus, for practical applications it
would be sufficient, if the expectation values of some simple observables could be described
by thermal ensembles. So suppose we restrict ourselves to measuring the expectation
value of some local observable O which only acts on a small subsystem S, i.e. can be
written as O = OS ⊗ 1S̄ . Writing out the evolution of the expectation value, we see

〈O(t)〉 = 〈ψ(t)|O|ψ(t)〉 (1.2)
= Tr [(OS ⊗ 1S̄)|ψ(t)〉〈ψ(t)|] (1.3)
= TrOS TrS̄ |ψ(t)〉〈ψ(t)| (1.4)
= TrOSρS(t). (1.5)

So the fact alone that we measure a property O on a subsystem makes this measurement
effectively equivalent to measuring O on a mixed state! This simple observation is what
enables equilibration and thermalization of local observables. Indeed, it has been shown
that such a reduced state ρS(t) is close to its equilibrium state

ωS = lim
τ→∞

1

τ

∫ τ

0
dtTrS̄ ρ(t) (1.6)

= TrS̄
∑
k

|ck|2|k〉〈k| (1.7)

= TrS̄ ω (1.8)
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for most times t under very mild conditions [61, 62]. The equilibration to this so-called
diagonal ensemble ω is not yet equivalent to thermalization [63, 64]. For one ω still
requires knowledge of an extensive amount of eigenstates occupation numbers |ck|2 and
additionally the system might take very long to equilibrate as the derivation relies on
the dephasing of off-diagonal elements. So in the worst case, equilibration takes up until
tdeph ∝ 1/δ where δ = mink,k′ |Ek − Ek′ | is the smallest energy gap of the Hamiltonian
which generally shrinks exponentially with increasing system size.

To ensure thermalization additional assumptions are required. Considering the expec-
tation value of O with respect to the diagonal ensemble ω

〈O〉ω = TrOω =
∑
k

|ck|2〈k|O|k〉, (1.9)

we can see that if all eigenstate expectation values 〈k|O|k〉 are equal to some 〈k|O|k〉 ≈
Omc, then the precise distribution of |ck|2 is irrelevant and we have 〈O〉ω = Omc. This can
be thought of the direct pendant to the typicality of microstates in classical thermalization.
It seems reasonable to assume that this Omc = Omc(E) is a smooth function of the energy
because states of similar energy should be able to show wildly different properties. This
assumption that 〈k|O|k〉 = Omc(Ek) is a smooth function for all eigenstates and all local
observables called eigenstate thermalization hypothesis (ETH) [1, 2, 65]. Of course, it
appears to be a strong assumption but it is physically well motivated1 and indeed many
systems have been shown to exhibit ETH.

However, ETH alone is not enough to ensure thermalization, we also need to demand
that the ck are concentrated in the spectrum around some mean Ē. Then we have indeed

〈O〉ω = Omc(Ē) = 〈O〉mc(Ē), (1.10)

where 〈O〉mc(Ē) denotes the microcanonical ensemble expectation value at mean energy
Ē, i.e. the average over all eigenstates within a small energy window [E −∆E,E +∆E].
Physically, this restriction just means that one cannot expect extreme cases, e.g. a
superposition of some state at low energy and another at high energy, to thermalize.
Fortunately, these scenarios are rare. Usually, experiments initialize their systems in some
reasonable state, e.g. product states with well-defined physical properties, which will also
be concentrated in the spectrum due to ETH.

We remark that thermalization according to ETH reflects the key features of thermal
equilibrium defined in the beginning of this section: The precise initial state is irrelevant
and the only information needed to describe its equilibrium properties is its average
energy (assuming the absence of other conservation laws). In a sense ETH translates
the concept of typicality from the classical world into the quantum realm by demanding
that every eigenstate itself looks already thermal when probed locally. Since thermal
states are usually highly mixed, this implies that eigenstates are highly entangled, i.e.
feature volume-law entanglement generically. This leads to the common sentiment that
”the system acts as its own bath”.

To conclude this introduction, Figure 1.2 shows a comparison of two concrete systems
where one thermalizes (blue) and one is subjected to strong disorder which can prohibit
thermalization as described in the following sections. The model itself is a long-range
Heisenberg model that will be studied throughout whole Part II but the details are not
relevant to recognize the striking difference between the weakly and strongly disordered
cases. Panel (b) clearly shows that ETH is not fulfilled, eigenstate expectation values are

1 There are also more mathematical motivations based on random matrix theory, see e.g. [59].
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Figure 1.2: Comparison thermalizing and non-thermalizing system using a long-range Heisenberg
model (cf. Equation 1.13) where ∆ = 0.4,α = 3 and h = 0. The spins are randomly
positioned as seen in (a). (b) shows the eigenstate expectation values for the observable
2S

(10)
z . (c) shows the eigenstate occupation numbers (binned into 100 bins) w.r.t. the

domain-wall state, where the left 7 spins are |↓〉 and the other 6 are |↑〉. The shaded
region indicates the mean energy and its variance. The time traces of this operator
and initial state are shown in (d). Also shown are the respective prediction by the
diagonal and microcanonical ensembles.

highly discontinuous for the strongly disordered system. In contrast, for weak disorder
they show no real energy dependence for the chosen observable (which is just the z-
magnetization of a single spin). Similarly, but not as stark is the contrast for the eigenstate
occupation numbers, i.e. the |cl|2, shown in panel (c) for the domain-wall state |↓〉⊗7|↑〉⊗6.
This is a reasonable state and thus we can see that for weakly disordered system the
eigenstate occupations cluster in the spectrum. Conversely for the strongly disordered
system, they are spread roughly twice as far. Finally, these spectral properties are
reflected in the time evolution of the expectation value of the chosen operator: While for
thermalizing system the equilibrium value is reached quickly and agrees with the value
obtained by the diagonal and microcanonical ensembles, for the non-thermal system the
microcanonical prediction is very far from the actual values.
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1.2 many-body localization

In 1958 Anderson discovered that a particle, that can hop between sites in a lattice with
random on-site potentials, can become stuck completely [4]. Thus, this simple system does
not thermalize at all since the memory of the initial state, i.e. where the particle started,
is retained at all times. This scenario, now known as Anderson localization, was the
starting point of a whole new branch of research on localization in disordered systems [17,
41, 66–69]. It was later generalized from single particles to interacting many-body spin
systems where the phenomenon is called many-body localization (MBL) in honor to its
conceptual predecessor [11–13].

The most studied model is the paradigmatic Heisenberg XXZ chain with random on-site
potentials:

HXXZ = J
∑
i

(
S(i)
x S(i+1)

x + S(i)
y S(i+1)

y +∆S(i)
z S(i+1)

z

)
+
∑
i

hiS
(i)
z (1.11)

Here S(i)
α denotes the spin-12 operator in direction α ∈ {x, y, z} on site i and hi ∼

U [−W,W ] are independently drawn from a uniform distribution. The width of this
distribution W thus regulates the strength of the disorder. As found in many studies, this
model exhibits a crossover from a thermalizing regime into a localized regime2 at around
Wc ≈ 3−4 for ∆ = 1 [14, 18, 20, 22, 70–81]. This means that at sufficiently strong disorder
W > Wc, the properties of this model differ dramatically from those of a thermalizing
system. Most importantly: the eponymous absence of particle transport, which means
that local excitations remain put and do not disperse. Note, entanglement can spread
albeit very slowly [73, 82–87]. From the spectral perspective, numerical studies confirmed
the breakdown of ETH [88–91] and the related absence of volume-law entanglement of
the eigenstates, which is replaced by are-law entanglement across the whole spectrum [14,
92].

1.2.1 LIOM picture

The properties of a many-body localized system detailed above suggest the interpretation
that strong disorder leads to the emergence of new, quasi-local, conservation laws. This
idea is further supported by the observation that the energy gap statistic changes from
the Wigner-Dyson (typical for thermalizing systems) to a Poissonian distribution [70],
which is typical for integrable systems. For the model with on-site disorder as defined in
Equation 1.11, it is natural to assume that each S(i)

z will be quasi-conserved in the limit
of strong disorder W → ∞.
Indeed, this perspective of a many-body localized system as an effectively integrable

model unifies all the observations made above. It means we can find a basis transformation
to write the Hamiltonian in terms of mutually commuting, quasi-local, conserved operators
τ (i), called ”local integrals of motion” (LIOM) or ”l-bits” such that [15, 16, 93]

H =
∑
i

hiτ
(i) +

∑
i,j

hi,jτ
(i)τ (j) . . . (1.12)

Here quasi-local means that the operator should essentially act on a single site and decay
quickly, i.e. exponentially, when moving away from that site. Figure 1.3 shows numerical

2 In this work, we follow the terminology of regime and phase as coined by Morningstar et al. [27].
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Figure 1.3: Real-space structure of a couple of eigenstates of the XXZ chain with random on-
site potentials (cf. Equation 1.11) in the single excitation sector with W = 15. The
exponential tails are clearly visible.

result for a few eigenstates in the single-excitation sector of the model from Equation 1.11,
where we can see that the spin occupies essentially a single site with the occupation
decaying exponentially with distance to that site.
Considering a system that can be approximated by a Hamiltonian of the form Equa-

tion 1.12, we can see directly that none of the key features of thermalization defined
above hold for MBL systems. Since each of the τ (i) is quasi-local and conserved, some
memory of the initial state can always be retrieved by local measurements. From this
directly follows, that the measurement depends strongly on the choice of subsystem.
However, the independence of microscopic details is still partially given: The number of
parameters grows with system size but only linearly in the number sites as expected for
an integrable system. Thus, knowledge about the LIOMs is very useful and allows to
make computations for large systems!
In general finding these LIOMs is not a trivial task. For models with random on-

site potentials like Equation 1.11, one can guess that τ (i) ≈ S
(i)
z (see e.g. [94]) but for

more complicated models like the long-range, bond-disordered system considered in the
following chapters, it is not as obvious. While there exist different numerical schemes to
compute LIOMs [94–98], we want to focus on gaining insight using an analytical approach
falling under name of strong disorder renormalization group or real-space renormalization
group (RSRG) [40–46, 99, 100].

1.2.2 MBL in long-range, bond-disordered systems

Considering the mental model for MBL, described above, which is caused by random on-
site potentials, it is natural to assume that both stronger and more long-range interactions
should be detrimental to localization. Consider a long-range version of Equation 1.11 such
as

H =
∑
i,j

Jij
|ri − rj |α

(
S(i)
x S(j)

x + S(i)
y S(j)

y +∆ijS
(i)
z S(j)

z

)
+
∑
i

hiS
(i)
z , (1.13)

where |Jij | = O(1), ri are the locations of the spins and α regulates the spatial decay of
the interaction. For this type of model, there are arguments restricting the presence of
MBL based on the amount of possible resonances for a spin. In this context, two spins i
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and j are in resonance if their coupling Jij is larger than the energy difference |hi−hj | due
to the random potentials. Given a system with spatial dimension d, resonance counting
rules out localization if α ≤ 2d for systems with |∆ij | > 0 [33–35, 101] or α ≤ 1.5d in the
case of an XX model, i.e. ∆ = 0 [36]. Later numerical works supported these predictions
by numerically studying systems of < 40 spins [21, 102, 103].
Conceptually, these works continue the train of thought from models where random

on-site potentials are the source of MBL and generalize to power-law interactions with
random coefficients. However, there is also a complementary approach, when starting at
models, where MBL is caused solely by disordered interactions, e.g. models like

H =
∑
i

Ji

(
S(i)
x S(i+1)

x + S(i)
y S(i+1)

y +∆iS
(i)
z S(i+1)

z

)
, (1.14)

where the Ji are independently drawn from some distribution. These bond-disordered
models also feature MBL (see e.g. [104]) but the LIOMs are much less obvious. They are
usually tackled by the real-space renormalization group (RSRG) technique (see [40–43]
for reviews). The general principle of the RSRG approach is to iteratively eliminate the
strongest bond of the system by freezing the spins sharing this bond into one of the
eigenstates of their interaction Hamiltonian and deriving new couplings for surrounding
spins perturbatively. This is a good approximation, if the system is sufficiently disordered
such that the strongest bond dominates all other couplings in its vicinity. Interestingly,
the elimination step increases the disorder in the system, such that each successive
elimination makes less and less error [99]. Thus, the system’s coupling distribution flows
towards the infinite randomness fixed point where the elimination step becomes exact
and the coupling distribution converges to a power-law distribution. Originally, RSRG
was used to find the ground state properties of bond-disordered systems [44, 45, 99, 105,
106] and was generalized later to also compute dynamical properties [46, 107–109] or
study excited states [47, 104, 110]. This line of work culminated in a general theory of the
MBL transition for these one-dimensional, bond-disordered, model with nearest neighbor
interactions [100].

Generalizing nearest-neighbor, bond-disordered models to power-law interactions does
not significantly change the story from the perspective of the RSRG approach and local-
ization is predicted to persist even without on-site potentials [48, 49, 111]. Subsequently,
numerical studies in small systems confirmed the presence of a localization crossover [50–
52]. This causes tension with the resonance counting arguments which predict the total
absence of localization, because without on-site potentials every spin is considered in
resonance with every other spin. This dramatic difference ultimately boils down to the
treatment of resonances: Where resonance counting treats every possible resonance on
the same footing, RSRG essentially considers only the strongest resonance and eliminates
it perturbatively. This elimination assumes a strong hierarchy of interaction timescales
associated with the resonances. After the elimination, the other previously possible reso-
nances are no longer resonant with the newly created states. In the end, it boils down
to whether the RSRG perspective is justified, i.e. whether a given system has a strong
enough separation of scales locally. In this thesis, we aim to contribute to an answer by
studying a system that can also be realized by a Rydberg-based quantum simulator to
examine the validity of the RSRG prescription in large system. The specific experiment
is introduced in the next section.
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1.3 using cold rydberg gases to probe thermalization

Rydberg atoms, i.e., atoms in highly excited states, are a versatile platform for quantum
simulation experiments due to their long coherence times and high degree of tunability [112–
115]. The particular setup considered in this thesis does not employ tweezers, i.e. small
traps for single atoms that can be manipulated individually, but instead traps a large
amount of 87Rb atoms as a thermal cloud3. The subsequent Rydberg excitation thus
produces a different spatial configuration in each run of the experiment. This has the
down-side that local control is very limited. However, the great advantage of this setup is
the larger number of Rydberg atoms, which can well be in the thousands, in comparison
to experiments using tweezers, which top out at a few hundreds of Rydberg atoms [114].
Using two different Rydberg states to encode the spin-12 degrees of freedom, this

experiment naturally realizes a Heisenberg XXZ model [116, 117]

H =
∑
i<j

Jij

(
S(i)
x S(j)

x + S(i)
y S(j)

y +∆S(i)
z S(j)

z

)
. (1.15)

Here the interactions Jij ∝ |ri − rj |−α decay as power-law of the spatial separation with
α = 3 (dipole-dipole) or α = 6 (van der Waals) depending on the chosen states (cf.
Figure 1.4).

Figure 1.4: Schematic overview of the experimental features. (a) Spins are randomly distributed
in space and feature power-law interactions and can evolve under different Heisenberg
Hamiltonians. Depending on the choice of states, the experiment can realize XX (b),
XXZ (c) and Ising (d) models. Taken from [C].

3 Note, the temperature of the cloud is very low. Thus, the atoms’ position don’t change much over the
course of a run.
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While the Rydberg atoms are positioned randomly in each shot, there is a way to
control the strength of the randomness. This is enabled by the Rydberg blockade, which
shifts the Rydberg excitation of a groundstate atom off resonances if another Rydberg
atom is close by [118]. Thus, Rydberg atoms effectively enforce a certain minimal distance
rb among them, where rb is the blockade radius. Tuning the sample’s density changes
the distances between the atoms, e.g. given the Wigner-Seitz radius a0, but keeps the
blockade radius rb constant. Using these two length scales, we can manipulate the width
of the coupling distribution (cf. Figure 1.5): At high density, the spins need to pack tight
and there is simply no room for large variations of the nearest neighbor distance rNN [cf.
Figure 1.5(a) and (d)]. Conversely, at very low densities there is almost no correlation in
the spin’s locations [cf. Figure 1.5(c) and (f)].
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Figure 1.5: Example configurations (top row) and corresponding nearest-neighbor distance dis-
tributions (bottom row) for high density/weak disorder (left column), intermediate
density/disorder (middle column) and low density/strong disorder (right column).

In summary, this Rydberg quantum simulator allows for the exploration of different
Heisenberg-type models with different interaction power-law exponents and tunable
disorder strength all within the same experiment. This makes it an ideal testbed for
exploring the physics of disordered long-range models.
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In this chapter, we address the question: Does the model defined in Equation 1.15 exhibit
a localization crossover for sufficiently strong disorder? To this end, we compute the
level-spacing ratio [18], Thouless parameter [74] and half-chain entropy to detect the
crossover into a localized regime and use the shot-to-shot variance of the half-chain entropy
to perform finite size scaling of the crossover’s location. Indeed, all indicators confirm the
presence of a localized regime. Remarkably, the location of the crossover in this system
appears to be significantly more stable than in systems with random on-site potentials.
Additionally, we employ the strong disorder/real-space renormalization group (RSRG)
approach to show that the quasi-conserved quantities are given by strongly interaction
pairs of spins, which demonstrate numerically by computing participation ratios between
the approximated and exact eigenbases.
In summary, we find that for sufficiently strong disorder the complicated many-body

system given by Eq. 1.15 can be well approximated by an integrable model of pairs:

Hpairs =
∑
〈i,j〉

(
S(i)
x S(j)

x + S(i)
y S(j)

y +∆S(i)
z S(j)

z

)
+

∑
〈i,j〉
〈i′,j′〉

∆

4
(Ji,i′ + Ji,j′ + Jj,i′ + Jj,j′)

(
S(i)
z + S(j)

z

)(
S(i′)
z + S(j′)

z

)
(2.1)

Here
∑

〈i,j〉 denotes a sum over specific pairs of spins identified by RSRG. These pairs
are found iteratively: One defines the two spins linked by the strongest coupling in the
system to be a pair, removes them and then continues with the remaining spins until
every spin is paired up. This model of pairs is validated experimentally in Chapter 4 and
proves to give very accurate results.
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Strongly interacting quantum systems subject to quenched disorder exhibit intriguing phenomena such as
glassiness and many-body localization. Theoretical studies have mainly focused on disorder in the form of
random potentials, while many experimental realizations naturally feature disorder in the interparticle inter-
actions. Inspired by cold Rydberg gases, where such disorder can be engineered using the dipole blockade
effect, we study a Heisenberg XXZ spin model where the disorder is exclusively due to random spin-spin
couplings, arising from power-law interactions between randomly positioned spins. Using established spectral
and eigenstate properties and entanglement entropy, we show that this system exhibits a localization crossover
and identify strongly interacting pairs as emergent local conserved quantities in the system, leading to an intuitive
physical picture consistent with our numerical results.

DOI: 10.1103/PhysRevB.106.134212

I. INTRODUCTION

Understanding how an isolated quantum system prepared
out of equilibrium can exhibit thermal properties at late times,
i.e., how it thermalizes, has challenged quantum physicists
for almost a century. The eigenstate thermalization hypoth-
esis (ETH) [1,2] offers a generic mechanism to explain this
phenomenon but makes strong assumptions on the structure
of energy eigenstates in terms of the matrix elements of local
operators. Nonetheless, it has been shown numerically that
a large class of quantum systems complies with ETH and
thermalizes [3,4]. A notable exception are strongly disordered
systems in which transport is absent and the system retains
memory of the initial state at arbitrary times [5–8].

This phenomenon, called many-body localization (MBL),
has been verified for small systems including, but not limited
to, spin systems with random potentials [9–11], random near-
est [12–14], and next-nearest-neighbor interactions [15,16],
and power-law interactions [17–21] using a combination of
exact numerical approaches and heuristic arguments like the
strong disorder renormalization group (SDRG) [22–25] to
generalize to large systems.

Recently, claims have been made that this localization phe-
nomenology may not be stable in the thermodynamic limit due
to thermal inclusions [26–34]. These are small, more ordered
subregions thought to thermalize with their surroundings and
thus slowly pushing the system toward thermalization. Un-
fortunately, these regions are very rare and thus only start
appearing in large systems far beyond the reach of numerical
methods. This raises the question whether this instability is
relevant for quantum simulation experiments, being finite in

*adrian.braemer@kip.uni-heidelberg.de
†martin.gaerttner@kip.uni-heidelberg.de

size and limited by coherence time. In this paper, we only
focus on the phenomenology of localization in finite systems
and subsequently use the term localized regime instead of a
phase, following the terminology of Ref. [28].

Complementary to numerical works, there are a number
of experimental results falling into roughly two classes: Ex-
periments with single-particle resolution, including optical
lattices [35–38] and trapped ions [39], and experiments based
on macroscopic samples, like NV centers in diamond [40] or
NMR systems [41]. The former offer precise control, but are
rather limited in size, while the latter can realize much larger
systems at the expense of flexibility, in particular, lack of pro-
grammable disorder. Cold gases of Rydberg atoms implement
dipolar dynamics with random couplings (similar to NMR
systems or NV centers) and allow for control of the disorder
strength and even the power law of the interaction at rather
large particle numbers [42], which makes them a powerful
platform for studying localization phenomena.

Motivated by recent progress on quantum simulations with
Rydberg atoms [42–45], we consider a power-law interacting
spin system where the disorder is due to randomly positioned
spins respecting a blockade condition, which induces disor-
dered couplings. In this setup, the strength of the disorder can
be tuned by changing the density of particles or, equivalently,
the minimal distance between them. Starting in an ordered
system, where the blockade radius is of order of the mean
interparticle distance, we show numerically that this system
exhibits a crossover to a localized regime at small blockade
and apply a SDRG approach to derive a simple model based
on strongly interacting pairs, which captures the properties of
the eigenstates in the localized regime well. Our study thus
adds to the body of numerical works on MBL, focusing on
dipolar systems with tunable positional disorder, and is highly
relevant to experimental efforts, as a wide range of quantum
simulation platforms feature dipolar interactions.

2469-9950/2022/106(13)/134212(10) 134212-1 ©2022 American Physical Society
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II. LOCALIZATION IN A RYDBERG GAS

A. System

We consider the Heisenberg XXZ spin model described by
the Hamiltonian (h̄ = 1)

Ĥ = 1

2

∑
i �= j

Ji j
(
Ŝ(i)

x Ŝ( j)
x + Ŝ(i)

y Ŝ( j)
y + �Ŝ(i)

z Ŝ( j)
z

)︸ ︷︷ ︸
≡H (i)( j)

pair

, (1)

where Ŝ(k)
α (with α ∈ {x, y, z}) denotes the spin- 1

2 operators
acting on the kth spin. The coupling Ji j between spins i and j
at positions xi and x j is given by Ji j = Cα

|xi−x j |α , where Cα is an
interaction coefficient which we set to Cα = 1. In experimen-
tal realizations of this model with Rydberg atoms, the values
of the anisotropy parameter � and interaction exponent α are
controllable via the choice of the Rydberg states encoding the
two spin states. The cases α = 3, � = 0 (dipolar exchange)
and α = 6, � ≈ −0.7 (van der Waals) have been realized
experimentally [42,44]. For typical cloud temperatures and
timescales of the spin dynamics, the atom positions can be
regarded as fixed (frozen gas approximation).

During the initial Rydberg excitation, the spins are sub-
jected to the Rydberg blockade [46], which means no two
spins can be closer than some distance rb, called the blockade
radius. This feature allows one to tune the strength of disorder
via the sample’s density: In a very dilute sample, the mean
interspin distance is much larger than the blockade radius rb

and thus positions are essentially uncorrelated. In the other
extreme, the spins are tightly packed and exhibit strong spatial
correlations.

We quantify the strength of disorder by the ratio W of the
system’s total volume V over total blocked volume Vblock or,
equivalently, by the ratio of Wigner-Seitz radius a0, which is
half of the mean interspin distance, to the blockade radius rb

to the power of the dimension d:

W = V

Vblock
=

(
a0

rb

)d

. (2)

For d = 1, the minimal value of Wmin = 1
2 is attained for a

translationally invariant chain with spacing 2a0 = rb, as illus-
trated in Fig. 1(a).

B. Effective pair description

This model differs from the random field Heisenberg
model, which has been studied extensively in the MBL lit-
erature, as no disordered potentials are considered. Thus it
may not be immediately apparent why this system features
localization and what constitutes the local conserved quanti-
ties akin to the l-bits [47] in the standard scenario. Here we
provide a phenomenological picture in the spirit of the SDRG,
suggesting that localization should appear due to strongly
interacting pairs.

Consider a strongly disordered cloud of N spins described
by Eq. (1) like the example depicted in Fig. 1(b). Due to
the power-law interactions, coupling strengths vary strongly
between different pairs of atoms, symbolized by the width and
brightness of the green lines. This motivates us to employ a
perturbative treatment, in which we single out the strongest

FIG. 1. Pair description. The blockade constraint (blue shadings)
enables tuning of disorder in the couplings (green lines) from fully
ordered (a) to disordered (b). In the latter case, a perturbative treat-
ment to first order yields a description in terms of strongly correlated
pairs (c) subject to an Ising-like interaction (not depicted). These
pairs constitute local integrals of motion (LIOM).

pair coupling and consider all other couplings as a perturba-
tion. In the example shown in Fig. 1(b), the two rightmost
spins share the strongest coupling and we can see that it is
much stronger than the other couplings of either one of the
spins to the rest of the system. Using perturbation theory to
first order, we find that the pair of spins almost decouples
from the rest of the system, leaving only an effective Ising-like
interaction, which is unimportant for the further procedure and
thus not shown in the figure. For details on the calculations
involved, see Appendix A.

We may now repeat this procedure of eliminating cou-
plings between the pairs and the rest of system by identifying
the next strongest interaction among the remaining spins
which, in this example, is the coupling between the second
and third spin. Eliminating the respective couplings as well
leaves us with the effective pairs shown in Fig. 1(c). Note that
in an ordered system, as shown in Fig. 1(a), this perturbative
treatment is not applicable as not all neglected couplings can
be considered small. We also note that the order of elimi-
nations is not important as long as each time the inner-pair
coupling is much larger than the couplings between the pair
and the rest. Concretely, for the given example, choosing the
coupling between spins 2 and 3 in Fig. 1(b) first in the pair
elimination process does not change the result.

The great advantage of this ansatz is that we can now
give a simple description of the whole many-body spectrum.
Diagonalizing Hpair [see Eq. (1)], we find two maximally
entangled eigenstates |±〉 = 1/

√
2(|↑↓〉 ± |↓↑〉) at energies

E± = ±2 − � and two degenerate states |↑↑〉, |↓↓〉 at energy
Ed = �, which we will refer to as |

〉. The Ising-like interac-
tion between pairs does not act on the entangled states |±〉 and
is diagonal with respect to |

〉. Thus, in the pair picture, the

134212-2



PAIR LOCALIZATION IN DIPOLAR SYSTEMS WITH … PHYSICAL REVIEW B 106, 134212 (2022)

eigenstates of the full system are now given by tensor products
of these four pair eigenstates. We refer to this basis as the pair
basis.

In the many-body spectrum, the degeneracy between the
pair states |↑↑〉 and |↓↓〉 is lifted due to the emerging Ising-
like interaction. However, we note that this splitting is small
compared to the splitting between the other pair eigenstates as
it emerges from first-order perturbation theory.

The pair picture is analogous to the l-bit picture often
used in MBL, where strong local disorder potentials lead to
the emergence of quasilocal conserved quantities τ̂ (i) ∼ σ̂ (i)

z
[47,48]. Here, we see that each projector on a pair’s eigenstate
constitutes an approximately conserved quantity and hence
is a local integral of motion (LIOM). Thus, we established
a description akin to the l-bit picture of MBL for this disor-
dered Heisenberg model, where the role of LIOMs is taken by
strongly interacting pairs.

While this ansatz is heuristic and neglects all higher reso-
nances, that may play a crucial role in delocalizing the system,
it will nonetheless turn out to be useful for interpreting and
understanding the spectral and eigenstate properties reported
in the following.

III. NUMERICAL RESULTS

To minimize boundary effects, we consider a one-
dimensional system with periodic boundary conditions [49] of
up to N = 16 spins governed by Eq. (1) and perform exact di-
agonalisation on the sector of smallest positive magnetization.
We fix the interaction exponent to α = 6, corresponding to a
Van der Waals interactions, and set � = −0.73 (cf. Ref. [42]).
We do not expect a strong dependence of our results on the
precise value of � as long as one steers clear from regions
around points where additional symmetries emerge.

For each disorder strength W , we generate 2000 configura-
tions of random spin positions, perform a full diagonalization
and compute several well-established indicators for the lo-
calization transition from the spectrum. We always average
over all eigenstates/-values as restricting to the bulk of the
spectrum does not lead to qualitative changes in the observed
behavior. The statistical error resulting from disorder aver-
aging is smaller than the thickness of the lines in all figures
unless indicated otherwise. For a description of the algorithm
for choosing the configurations, we refer to Appendix C. All
code used for this paper can be found in Ref. [50].

The following sections discuss different indicators of lo-
calization with the aim to establish the localization crossover
in this model and employ the pair model for interpretation and
predictions. The last section directly compares the pair basis
to the eigenstates, thus demonstrating its validity.

A. Level spacing ratio

The spectral average of the level spacing ratio (LSR), de-
fined as [51]

〈r〉 = 1

|H|
∑

n

min

(
En+2 − En+1

En+1 − En
,

En+1 − En

En+2 − En+1

)
, (3)

is a simple way of characterizing the distribution of dif-
ferences between adjacent energy levels. For thermalizing

FIG. 2. Level-spacing ratio. With increasing disorder, the LSR
shows a crossover from an ergodic value to its Poissonian value and
below. We identify four major regions where the physics is governed
by (I) translational symmetry breaking, (II) thermal behavior, (III)
the localization crossover and (IV) localization. The horizontal lines
show random-matrix theory predictions.

(ergodic) systems, the Hamiltonian is expected to show a
mean LSR resembling a random matrix from the Gaussian
orthogonal ensemble because its eigenvectors essentially look
like random vectors. Thus one can use random matrix theory
to obtain 〈r〉thermal = 4 − 2

√
3 ≈ 0.536 [52].

On the other hand, in localized systems the eigenvalues
follow a Poisson distribution, since they are essentially sums
of randomly distributed energies from the l-bits the system
consists of. Computing the mean LSR in this case yields
〈r〉MBL = 2 ln 2 − 1 ≈ 0.386 [52].

Comparing with the numerical results in Fig. 2 and focus-
ing on the central parts first, we find the mean LSR reaches its
thermal value for large enough systems and weak disorder (II)
dropping toward the Poissonian value for stronger disorder
(III). With growing system size, the thermal plateau (II) broad-
ens, marking a parameter region where the system appears
ergodic. But while the plateau broadens, the drop-off (III)
for increasing disorder strength becomes steeper, meaning the
crossover becomes sharper as the system gets larger.

Considering very strong disorder (IV), the mean LSR drops
even below the Poissonian value, which indicates level attrac-
tion. This effect can be explained by the pair model: As stated
earlier, the |

〉 states’ degeneracy is lifted by the effective
Ising-like terms from first-order perturbation theory, which
means the split is of smaller magnitude compared to the intra-
pair interactions. For small systems with comparatively low
spectral density, this means that the small lifting likely fails
to mix the formerly degenerate states into their surrounding
spectrum. Thus, the LSR still reflects the near degeneracy
within the pairs, leading to level attraction. Based on this
interpretation, we expect this effect to diminish for larger
systems with the spectral density growing. In fact, this trend
is already visible in Fig. 2.

A similar argument can be made at very weak disorder
(I): Here the source of the degeneracy is the proximity to the
perfectly ordered case at W = 0.5, which has an additional
translation invariance. Weak disorder breaks that symmetry
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FIG. 3. Thouless parameter. Spectral and disorder averaged
G versus disorder strength W . Data shown uses local operator
V̂1 = 2Ŝ(1)

z

but couples the symmetry sectors only weakly, leading again
to a very small energetic splitting of degenerate states. We
want to emphasize the reason for level attraction being very
different in nature in (I) and (IV): Whereas in (I) the system
is close to a system with obvious conserved quantities due
to symmetries, in (IV) there is the emergent integrability of
the MBL regime [8]. Nevertheless, we expect region (I) to
become less pronounced for larger systems continuing the
trend visible in Fig. 2.

We conclude that, in analogy to standard MBL, we find a
crossover in the level spacing distribution from a regime with
level repulsion to Poissonian gaps indicating a localization
crossover. At very strong disorder, we even find a region with
level attraction, the source of which can be explained by the
effective pair model.

B. Thouless parameter

Complementary to eigenvalue statistics, we also probe
eigenstate properties by computing the Thouless parameter

Gn = ln
|〈n|V̂ |n + 1〉|

E ′
n+1 − E ′

n

, (4)

introduced by Serbyn et al. [53]. This quantity is akin to the
Thouless conductance in single particle systems and quanti-
fies how well two states |n〉, |n + 1〉 with perturbed energies
E ′

n = En + 〈n|V |n〉 are coupled by a local perturbation V̂ . In
the thermal phase, states of similar energy will have similar
spatial structures, whereas in the localized phase, eigenstates
are products of LIOM eigenstates and thus typically vary
drastically from one to the next. One can derive the scaling
of the average G in the thermal regime to be G ∝ log |H| and
in the localized regime to be G ∝ − log |H|, leading to the
natural definition of the location of the crossover to be the
point where G = const [53].

Figure 3 shows results using local operator V̂1 = 2Ŝ(1)
z .

Data for local operators V̂2 = 4Ŝ(1)
z Ŝ(2)

z and V̂3 = Ŝ(1)
+ Ŝ(2)

− +
H.c. is visually identical. There is a very clear point where all
curves intersect each other, indicating the crossover’s location.

To the right of the crossing point in the localized regime, the
curves are roughly evenly spaced, reflecting the expectation
of G ∝ − log |H|, clearly signaling the localized regime. The
apparent absence of a drift of the transition point with system
size is in contrast to observations in power-law interacting
models with on-site disorder and will be further discussed in
the next subsection.

C. Half-chain entropy

Having shown the presence of a localization crossover, we
now demonstrate that our effective pair model is indeed a good
approximation. We start by probing the half-chain entropy,
S = −TrρA log2 ρA, with ρA = TrB(ρ), i.e., the entanglement
entropy between two halves of the chain. For that, we select
�N

2 � consecutive spins and trace out the rest, resulting in two
cuts due to the periodic boundary conditions, and average
over all N possible choices of connected subsystems and all
eigenstates.

In an ergodic system, all bulk states should exhibit volume-
law entanglement, meaning S ∝ N . In contrast, in a localized
setting all states show area-law entanglement, which for d = 1
means S = const [3,54].

To compute the half-chain entropy predicted by the pair
model, we need to determine how many pairs are divided
by each cut and how often these pairs are found in one of
the entangled states |±〉 = 1/

√
2(|↑↓〉 ± |↓↑〉). Not all pairs

consist of adjacent spins [see Fig. 1(c)], so a cut can sepa-
rate more than one pair. The amount of cut bonds is easily
determined from the position data alone by adding up the
distances between paired spins. Respecting periodic boundary
conditions of the system yields an additional factor of 2, since
there are two cuts needed to divide the chain.

Considering the entropy contribution of a single bond, if
we were to average over all possible configurations of pair
states, each cut bond would contribute half a bit of entan-
glement on average, as half of the pair states are maximally
entangled and the other half not entangled at all. However,
here we consider the sector of smallest positive magnetization,
which yields a slightly larger entropy, because it favors the
entangled states |±〉 (which have zero net magnetization) over
the fully polarized ones. This modification can be computed
exactly (see Appendix B for details).

Taking into account both the effects of extended pairs and
of the fixed total magnetization, we can compute a prediction
for the entanglement entropy directly from the interaction
matrix Ji j . Figure 4 shows both the numerically computed
values for different system sizes (solid) and pair-model pre-
diction (dashed).

We clearly see the change between the ergodic and local-
ized regime for the numerically computed data. For strong
disorder, all lines collapse, confirming on one hand the area
law entanglement expected in the localized phase and, on the
other hand, validating the pair model as it predicts the strong-
disorder limit with high accuracy. Figure 4(b) magnifies the
strong-disorder regime showing that the pair-model prediction
in fact slightly overestimates the half-chain entropy for very
strong disorder. This might indicate that there are spins that
do not pair up perfectly, not forming a maximally entangled
Bell pair. It is plausible that this happens at late stages of the
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FIG. 4. Half-chain entropy. Average over possible cut locations
and over disorder realizations for different system sizes as a function
of disorder strength. Also shown is the prediction derived from a pair
description, computed from position data for N = 16 (red dashed
line), see B for details. Inset: Linear fits at fixed disorder strengths
indicated by the vertical dashed lines in the main panel. Shaded
areas indicate uncertainty from the fit; (b) magnifies the strongly
disordered regime of (a). Shaded areas indicate statistical uncertainty
from disorder averaging.

pair elimination procedure described in Sec. II B when the
spins of a pair can have couplings that are stronger than the
pair’s internal coupling but the spins associated with these
stronger couplings are already eliminated. We thus interpret
this feature as an indication of the limitations of a simple pair
description.

Another piece of information that we can readily access
via the half-chain entropy is the location of the crossover.
To determine it, we calculate the variance of the half-chain
entropy over different disorder realizations and extract the
maximum for each chain length N via a quadratic fit [15,55].
Figure 5 shows no strong dependence of the crossover point
on N in the range of accessible system sizes. Indeed, the
crossover does not seem to drift significantly, which is in con-
trast to models with onsite disorder, see, e.g., Refs. [18,55,56],
where finite-size drifts of the transition point are commonly
observed.

Interestingly, the crossover location is very close to the
density given by Rényi’s parking constant, or jamming limit,
which is the maximal density attainable by randomly placing
nonoverlapping unit intervals on the number line [57]. As in
experiments with Rydberg spins, atom positions result from
such a random process; this could imply that these experi-
ments might not be able to reach the densities required for
observing the fully ergodic regime. However, it is unclear how
the crossover location generalizes to higher dimensions and
larger systems.

FIG. 5. Standard deviation of half-chain entropy. The main plot
shows the standard deviation of the half-chain entropy across dis-
order realizations exhibiting a clear maximum around which a
quadratic polynomial is fitted. Shaded areas indicate statistical un-
certainty. Inset: Position of the maximum as extracted by the fits.
Errors shown are statistical errors from the fits.

D. Participation ratio

Now that we have seen that the pair model captures the
spatial entanglement structure of the exact eigenstates, we
compare the predicted eigenstates directly to the exact ones by
computing the participation ratio (PR). Intuitively, it measures
how many states of a reference basis B = {|b〉} contribute to a
given eigenstate |φn〉:

PRB(|φn〉) =
(∑

b∈B
|〈b|φn〉|4

)−1

. (5)

Usually, in the MBL context, one chooses a product basis
as reference because a low PR relative to product basis means
the eigenstates are close to product states. “Low” in this con-
text means a sublinear scaling of PR with the dimension of
the Hilbert space H: PR ∝ |H|τ , where τ < 1. In contrast, a
thermalizing system always has PR ∝ |H| with respect to any
product basis [58–60].

Here we compare two different reference bases, the z-basis
Z = {|↑〉, |↓〉}⊗N and the pair basis P = {|±〉, |

〉}⊗N/2,
introduced above, to determine how well the pair model de-
scribes the eigenstates. If the pair basis P was exactly equal
to the eigenbasis, its PR would be exactly 1. In this case, the
expected PR with respect to the z-basis, averaged over the
Hilbert space, Z will be 1.5N/2, because a single pair has an
average PR of 1.5. However, we only consider the sector of
smallest positive magnetization, which increases the expected
PR by a similar line of reasoning as for the entropy in the
previous section.

Figure 6(a) shows the PR relative to the two reference
bases as a fraction of the Hilbert space dimension |H|. We
see that the weakly disordered regime indeed has ergodic
eigenstates as the curves collapse onto each other. The small
offset between the two reference bases is plausible, since a
thermal systems eigenstates express volume law entanglement
and thus the overlap with a product basis like Z is minimal.
The states of the pair basis contain pairwise entanglement and
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FIG. 6. Participation ratio. (a) PR relative to Hilbert space di-
mension |H| for different reference bases: z-basis in blue, pair basis
in red. The inset shows a magnification of the region toward perfectly
ordered systems. (b) shows the growth in absolute PR with increasing
system size in the localized regime. The used value of W is indicated
by the dash-dotted line in (a).

are thus a bit closer, which manifest as slightly lower PR.
Around W = 0.6, the scaling with |H| starts to change to a
sublinear relation as we crossover to the localized regime.

Checking the PR deep in the localized phase (at W = 1.9)
in Fig. 6(b), we can see that the PR relative to the z-basis
(blue line) is slightly, but systematically, larger than the pair
model’s prediction (dashed green line). Consistent with this
observation, we see that the PR relative to the pair basis (red
line), while being much smaller, is still not constant across
system sizes.

We conclude that the pair states offer a good first-order
approximation of the true eigenstates, but there are higher
order resonances that lead to further hybridization for some
states. The exponent of the remaining dependence on system
size is close to N/4, which hints at effects stemming from
interactions between pairs.

IV. CONCLUSIONS

We analyzed a disordered Heisenberg XXZ spin model
with power-law interaction and positional disorder, which is
naturally realized by many quantum simulation platforms.
Among these, cold Rydberg gases allow for easy tuning of the

disorder via the sample’s density due to the Rydberg blockade.
By using standard MBL indicators, we showed numerically
that this system undergoes a localization crossover, which we
interpreted in terms of a simple physical model derived using
an SDRG ansatz. This model, consisting of an effective Ising
model of strongly interacting pairs of spins, was verified by
considering the PR of eigenstates with the conjectured basis,
which is drastically reduced compared to the PR relative to
the z-basis. Still, there was a weak dependence on system size
left, which means there are higher order corrections to our
model. Nonetheless, we also showed that this simple model
can already predict the entanglement entropy of the system
nearly perfectly.

With this model at hand, we can now make predictions
for large systems which may be tested in quantum simulation
experiments. Of course, one of the most interesting questions
will be whether the location of the crossover shifts toward
stronger disorder for large systems, indicating a transition at
infinite disorder strength in the thermodynamic limit. For this
purpose, the easy tunability of the disorder is a great advan-
tage as both sides of the crossover can be probed on the same
platform by changing the system parameters. Remarkably,
our small-scale numerical study showed almost no finite-size
drift. This could indicate that localization in this model is
more stable than in similar models against resonances. We
leave this investigation for future work.

Note that the pair model cannot be used to predict the
crossover itself as it essentially requires the assumption that
one can find strongly interacting pairs, which is only justified
in the strongly disordered regime. Recent arguments for the
absence of localization postulate the existence of rare ther-
mal subregions within the system [26,26–34]. This would
of course break the base assumption of the pair model. A
possible direction for future research would be to extend the
model to include not only pairs but also larger clusters, which
would require one to track all kinds of interactions between
clusters of different sizes.

Interestingly, the dimensionality of the system does not
directly influence the pair model. As long as the couplings
are sufficiently disordered, such that pairs can be defined,
it will be a good approximation. Thus, it suffices to study
how the distribution of couplings changes with respect to the
dimensionality d of the space and coupling power α. Similar
to resonance counting arguments [61], we conjecture the re-
quirement d < α for the pair model to be applicable. Hence,
we expect our results, while acquired in d = 1, to generalize
well to d > 1.
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TABLE I. Eigensystem of Hpair .

State k Energy Ek Vector |k〉

1 2 − �
√

2
−1

(|↑↓〉 + |↓↑〉)
2 � |↑↑〉
3 � |↓↓〉
4 −2 − �

√
2

−1
(|↑↓〉 − |↓↑〉)

Excellence Cluster) and under SFB 1225 ISOQUANT No.
273811115.

APPENDIX A: DERIVATION OF PAIR PICTURE

Here we derive the pair model of the main text by means
of Schrieffer-Wolff transformations [63]. Starting with the full
Hamiltonian of the system,

Ĥ = 1

2

∑
i �= j

Ji j
(
Ŝ(i)

x Ŝ( j)
x + Ŝ(i)

y Ŝ( j)
y + �Ŝ(i)

z Ŝ( j)
z

)︸ ︷︷ ︸
≡H (i)( j)

pair

. (A1)

Suppose without loss of generality that J12 � J1 j, J2 j and set
H0 = J12H (1)(2)

pair and V = HXXZ − H0. We label the eigenvec-
tors and eigenenergies of Hpair as shown in Table I.

The projectors on these states are consequently named
Pk = |k〉〈k| ⊗ 1, but since the middle two states are degen-
erate, we need to use the projector on the full eigenspace and
call it P23 = P2 + P3.

To first order, only diagonal terms PkV Pk contribute, which
in this case means the pair decouples and only an effective
Ising term remains:

Ĥ =
∑
i, j

Ji j Ĥ
(i)( j)
pair (A2)

≈ J12Ĥ (1)(2)
pair +

∑
i, j>2

Ji jĤ
(i)( j)
pair + Ŝ(1)(2)

z

∑
i>2

�̃iŜ
(i)
z + O(V̂ 2),

(A3)

where 2Ŝ(1)(2)
z = |↑↑〉〈↑↑| − |↓↓〉〈↓↓| is akin to a spin-1

magnetization operator and �̃i = �(J1i + J2i ) is the renor-
malized Ising coupling. Note that this first order term lifts
the apparent degeneracy of the |↑↑〉 and |↓↓〉 states. This
elimination is a good approximation if the interaction within
the pair is much stronger than any other interaction between a
spin of the pair and some other spin.

We can now repeat this elimination step with remaining
spins by incorporating the effective Ising terms into V . This is
justified because its coupling is small and is already first-order
perturbation theory, and thus including it into the zeroth order
of the next pair would mix expansion orders inconsistently.

Further eliminations now generate effective Ising terms
between the states |↑↑〉 and |↓↓〉 of the eliminated pairs. After
pairing up all spins, we find

Ĥ =
∑
i, j

Ji j Ĥ
(i)( j)
pair (A4)

≈
∑
〈i, j〉

Ji jĤ
(i)( j)
pair +

∑
〈i, j〉,〈i′, j′〉

�̃(i, j),(i′, j′ )Ŝ
(i)( j)
z Ŝ(i′ )( j′ )

z (A5)

where the sum over 〈i, j〉 denotes pairs of spins and
�̃(i, j),(i′, j′ ) = �(Ji,i′ + Jj,i′ + Ji, j′ + Jj, j′ ).

Also note that with each elimination step, the mean inter-
particle distance grows and thus the disorder in the system
increases [64,65] making it more likely for later elimination
steps to be good approximations.

APPENDIX B: PAIR ENTROPY IN A SPECIFIC
MAGNETIZATION SECTOR

Averaged over all states, each cut separating a pair gives an
average entropy of 1

2 , since two of the pair’s eigenstates are
fully entangled and the other two possess no entanglement.
However, when we consider a sector of fixed magnetiza-
tion, this simple argument no longer holds as there are now
dependencies among the eigenstates given by the external
constraint. Sectors around zero magnetization will have more
entropy on average and strongly magnetized sectors less, sim-
ply because the strongest magnetized eigenstates possess no
entropy.

Given N the number pairs of spins where N+, N−, and
N0 pairs occupy the states |↑↑〉, |↓↓〉, and |↑↓〉 ± |↓↑〉,
we find the number of possible configuration with these
amounts to be

C(N+, N−, N0) =
(

N

N0

)(
N − N0

N+

)
2N0 . (B1)

In the end, we need the number of configurations C(N, r) =∑
N0
C(N, r, N0) given a total amount of pairs N and a magne-

tization imbalance r = N+ − N−, where

C(N, r, N0) =
∑

0�N+,N−

C(N+, N−, N0)δN,N++N−+N0δr,N+−N− .

(B2)

To evaluate this expression, we compute the generating
function

Z (x, y, z) =
∑
N>0

xN
∑

−N�r�N

yr
∑
N0>0

zN0C(N, r, N0) (B3)

=
∑

0�N+,N0,N−

xN++N0+N−yN+−N−zN0C(N+, N−, N0) (B4)

=
∑

0�N−

(
x

y

)N− ∑
0�N+

(xy)N+

(
N+ + N−

N+

)

×
∑
N0

(
N

N0

)
(2z)N0 (B5)

= y

y − 2xyz − xy2 − x
, (B6)

where we used the fact that (1 − x)−k−1 = ∑
n

(n+k
k

)
xn twice

and then a geometric series.
From that, it follows directly that

Z (x, y, 1) =
∑
N>0

xN
∑

−N�r�N

yrC(N, r) (B7)

= y

y − 2xy − xy2 − x
(B8)
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= 1

1 − x (y+1)2

y

(B9)

=
∑
0�k

xk

(
(y + 1)2

y

)k

(B10)

=
∑
0�k

xk
∑

0�l�2k

yl−k

(
2k

l

)
, (B11)

and thus by identification of terms

C(N, r) =
(

2N

r + N

)
. (B12)

Singling out a specific pair and asking how often it is in one
of the entangled states given a set of configurations described
by values for (N+, N0, N−), we find that its the case in

S(N+, N−, N0) = 2C(N+, N−, N0 − 1) = N0

N
C(N+, N−, N0)

(B13)

configurations. Again we want to find this number for
a total amount of pairs N and an magnetization imbal-
ance r = N+ − N−. Fortunately, we can find the generat-
ing function ZS (x, y, z) of S (N, r, N0) = N0

N C(N, r, N0) by
means of Z:

ZS (x, y, z) =
∫

dx

x
z

∂

∂z
Z (x, y, z). (B14)

So, we compute

ZS (x, y, z = 1) =
∑

N

xN
∑

r

yrS (N, r) (B15)

=
∫

dx

x

2xy2

(y − x(y + 1))2
(B16)

= 2y2

(y + 1)2

1

y − x(y + 1)2
(B17)

= 2
∑

k

xk
∑

l

yl−k+1

(
2k − 2

l

)
(B18)

⇒ S (N, r) = 2

(
2N − 2

r + N − 1

)
. (B19)

Thus, cutting a single pair contributes

S̄(N, r) = S (N, r)

C(N, r)
(B20)

= 2
N2 − r2

4N2 − 2N
(B21)

bits of entropy, on average, over all states in a given magneti-
zation sector (cf. Fig. 7).

For the prediction of the average entropy in Fig. 4, we
extracted the size of the pairs from the position data, which di-
rectly determines how many times a pair is cut, when moving
along the chain. The number of cut pairs is then divided by the

FIG. 7. Entropy value of a single cut for different magnetization
sectors.

number of cuts made—which equal the number of spins—and
multiplied by the average entropy contributed by cutting a
pair, computed here.

APPENDIX C: DRAWING BLOCKADED POSITIONS

In the following, we restrict ourselves to N spins in d = 1
dimension and measure every distance in units of the blockade
radius rb. We define the density of spins 0 � ρ = 1

2W � 1,
the corresponding volume of the space L = N

ρ
, and set out

to construct a scheme to efficiently generate a set of in-
dependently drawn positions {xi}, that respect the blockade
condition

|xi − x j | � rb ∀i �= j. (C1)

A priori, all positions are drawn i.i.d. from a uniform
distribution over the full space U [0, L] and the naive way
would be to just draw N positions and reject the sample if
the blockade condition [Eq. (C1)] is violated. This is essen-
tially equivalent to a random sequential adsorption process
where the expected density in d = 1 is given by Renyi’s
parking constant m ≈ 0.748 [57]. It directly follows that
the rejection rate will become essentially 1 for any ρ > m
and we certainly will not get close to the fully ordered
regime.

To circumvent this problem, we parameterize the positions
like

xi = is + σi, (C2)

where s = 1
ρ

= 2W is the mean interspin distance and σi ∼
U [−σ, σ ] are i.i.d. random variables. For σ = L

2 , this ansatz
is certainly equivalent to the naive scheme.

Note that, in the highly ordered case ρ = 1 − ε, where
ε is small, each realization of the experiment looks es-
sentially like a regularly spaced chain with s = 1

1−ε
≈

rb(1 + ε) where each site has small fluctuations around
the mean. This means, in this limit, we get away with
choosing σ ≈ ε.
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For our simulations, we used the just-described method in
the region W < 1.0 and chose σ = 1.5( 1

ρ
− 1). For W � 1.0,

we used the naive sampling strategy. One can see a slight jump
in all plots at W = 1.0 where the sampling method changes.
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[9] M. Žnidarič, T. Prosen, and P. Prelovsek, Phys. Rev. B 77,

064426 (2008).
[10] D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B 91,

081103(R) (2015).
[11] P. Sierant, M. Lewenstein, and J. Zakrzewski, Phys. Rev. Lett.

125, 156601 (2020).
[12] R. Vasseur, A. J. Friedman, S. A. Parameswaran, and A. C.

Potter, Phys. Rev. B 93, 134207 (2016).
[13] I. V. Protopopov, R. K. Panda, T. Parolini, A. Scardicchio,

E. Demler, and D. A. Abanin, Phys. Rev. X 10, 011025
(2020).

[14] T. Chanda, P. Sierant, and J. Zakrzewski, Phys. Rev. Res. 2,
032045(R) (2020).

[15] J. A. Kjäll, J. H. Bardarson, and F. Pollmann, Phys. Rev. Lett.
113, 107204 (2014).

[16] M. S. Bahovadinov, D. V. Kurlov, S. I. Matveenko, B. L.
Altshuler, and G. V. Shlyapnikov, Phys. Rev. B 106, 075107
(2022).

[17] A. L. Burin, Phys. Rev. B 91, 094202 (2015).
[18] S. Schiffer, J. Wang, X.-J. Liu, and H. Hu, Phys. Rev. A 100,

063619 (2019).
[19] S. Roy and D. E. Logan, SciPost Phys. 7, 042 (2019).
[20] A. Safavi-Naini, M. L. Wall, O. L. Acevedo, A. M. Rey, and

R. M. Nandkishore, Phys. Rev. A 99, 033610 (2019).
[21] Y. Mohdeb, J. Vahedi, and S. Kettemann, Phys. Rev. B 106,

104201 (2022).
[22] D. Pekker, G. Refael, E. Altman, E. Demler, and V. Oganesyan,

Phys. Rev. X 4, 011052 (2014).
[23] A. C. Potter, R. Vasseur, and S. A. Parameswaran, Phys. Rev. X

5, 031033 (2015).
[24] R. Vosk, D. A. Huse, and E. Altman, Phys. Rev. X 5, 031032

(2015).
[25] C. Monthus, J. Phys. A: Math. Theor. 51, 275302 (2018).
[26] W. De Roeck and F. Huveneers, Phys. Rev. B 95, 155129

(2017).
[27] D. J. Luitz, F. Huveneers, and W. De Roeck, Phys. Rev. Lett.

119, 150602 (2017).
[28] A. Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz, and

D. A. Huse, Phys. Rev. B 105, 174205 (2022).
[29] D. Sels and A. Polkovnikov, Phys. Rev. E 104, 054105 (2021).
[30] D. Sels and A. Polkovnikov, arXiv:2105.09348.
[31] D. Sels, Phys. Rev. B 106, L020202 (2022).

[32] T. Thiery, F. Huveneers, M. Müller, and W. De Roeck, Phys.
Rev. Lett. 121, 140601 (2018).

[33] P. Ponte, C. R. Laumann, D. A. Huse, and A. Chandran, Philos.
Trans. R. Soc. London A 375, 20160428 (2017).

[34] M. Pandey, P. W. Claeys, D. K. Campbell, A. Polkovnikov, and
D. Sels, Phys. Rev. X 10, 041017 (2020).

[35] S. S. Kondov, W. R. McGehee, W. Xu, and B. DeMarco, Phys.
Rev. Lett. 114, 083002 (2015).

[36] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H.
Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch,
Science 349, 842 (2015).

[37] P. Bordia, H. P. Lüschen, S. S. Hodgman, M. Schreiber, I.
Bloch, and U. Schneider, Phys. Rev. Lett. 116, 140401 (2016).

[38] A. Lukin, M. Rispoli, R. Schittko, M. E. Tai, A. M. Kaufman,
S. Choi, V. Khemani, J. Léonard, and M. Greiner, Science 364,
256 (2019).

[39] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P.
Hauke, M. Heyl, D. A. Huse, and C. Monroe, Nat. Phys. 12,
907 (2016).

[40] G. Kucsko, S. Choi, J. Choi, P. C. Maurer, H. Zhou, R. Landig,
H. Sumiya, S. Onoda, J. Isoya, F. Jelezko, E. Demler, N. Y. Yao,
and M. D. Lukin, Phys. Rev. Lett. 121, 023601 (2018).

[41] K. X. Wei, C. Ramanathan, and P. Cappellaro, Phys. Rev. Lett.
120, 070501 (2018).

[42] A. Signoles, T. Franz, R. F. Alves, M. Gärttner, S. Whitlock,
G. Zürn, and M. Weidemüller, Phys. Rev. X 11, 011011
(2021).

[43] A. P. Orioli, A. Signoles, H. Wildhagen, G. Günter, J. Berges,
S. Whitlock, and M. Weidemüller, Phys. Rev. Lett. 120, 063601
(2018).

[44] S. Geier, N. Thaicharoen, C. Hainaut, T. Franz, A. Salzinger, A.
Tebben, D. Grimshandl, G. Zürn, and M. Weidemüller, Science
374, 1149 (2021).

[45] T. Franz, S. Geier, C. Hainaut, A. Signoles, N. Thaicharoen, A.
Tebben, A. Salzinger, A. Braemer, M. Gärttner, G. Zürn, and
M. Weidemüller, arXiv:2207.14216.

[46] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch,
J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901 (2001).

[47] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phys. Rev. B
90, 174202 (2014).
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3E F F I C I E N T T I M E E VO L U T I O N O F PA I R L O C A L I Z E D
S Y S T E M S

After having found an analytical approximation applicable at strong disorder in the
preceding chapter, here we show how to utilize this knowledge to achieve an efficient
numerical computation of the dynamics. The key idea is to employ the cluster truncated
Wigner approximation [119], which is a semiclassical simulation method that solves the
dynamics of only small clusters of spins exactly and treats interactions among clusters on a
mean-field level. By using the pairing procedure of Chapter 2 to define the clusters, we find
that this method is highly accurate not only at strong disorder and short-range interactions
but also in regimes of comparatively weak disorder and long-range interactions. Thus,
our method represents a numerically efficient scheme to compute arbitrary dynamical
quantities in these kinds of spatially disordered spin systems.
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Adrian Braemer ,1,* Javad Vahedi ,2,† and Martin Gärttner 2,‡

1Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
2Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany

(Received 1 July 2024; revised 1 August 2024; accepted 2 August 2024; published 19 August 2024)

We present a comprehensive numerical investigation of the cluster truncated Wigner approximation (cTWA)
applied to quench dynamics in bond-disordered Heisenberg spin chains with power-law interactions. We find
that cTWA yields highly accurate results over a wide parameter range. However, its accuracy hinges on a
suitable choice of clusters. By using a clustering strategy inspired by the strong disorder renormalization group
and real-space renormalization group (RSRG), clusters of two spins are sufficient to obtain essentially exact
results in the regime of strong disorder. Surprisingly, even for rather weak disorder, e.g., in the presence of very
long-range interactions, this choice of clustering outperforms a naive choice of clusters of consecutive spins.
Additionally, we develop a discrete sampling scheme for the initial Wigner function, as an alternative to the
originally introduced scheme based on Gaussian approximations. This sampling scheme puts cTWA on the same
conceptional footing as regular discrete TWA for single spins and yields some reduction in the Monte Carlo shot
noise compared to the Gaussian scheme.

DOI: 10.1103/PhysRevB.110.054204

I. INTRODUCTION

Long-range interactions arise in several physical scenarios
within disordered quantum many-body systems. For exam-
ple, in doped semiconductors containing randomly positioned
magnetic impurities, interactions occur via exchange cou-
plings that depend on their spatial separation [1–3]. These
interactions exhibit different behaviors depending on the state
of the system. In insulating phases, the interaction strength
decreases exponentially, as denoted by J (r) ∝ exp (−r/ξ ),
while in metallic phases the interactions operate through the
Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism, fol-
lowing a power-law decay described by J (r) ∝ r−d , where
d represents the dimension of the host system. Interestingly,
sufficiently random, power-law interacting systems can even
feature ultraslow relaxation known from classical spin glasses
as observed in local two-level systems formed by tunneling
ions interacting through dipole-dipole and elastic forces [4,5].

Moreover, recent experimental progress has enabled the
manipulation and investigation of cold atoms or molecules
featuring strong dipole-dipole interactions in diverse setups,
including optical lattices [6–8], Rydberg gases [9–11], and
trapped ions [12–16]. This has, in turn, spurred theoretical
interest in studying quantum many-body dynamics in systems
characterized by varying interaction ranges.

However, the potential of these studies is often limited
by the lack of suitable computational tools. Considering that
the Hilbert space of the system grows exponentially with the
system size, the exact solution of quantum dynamics is limited

*Contact author: adrian.braemer@physi.uni-heidelberg.de
†Contact author: javad.vahedi@uni-jena.de
‡Contact author: martin.gaerttner@uni-jena.de

to rather small systems. Even employing sophisticated tools,
e.g., based on Krylov subspaces [17–21], typically allows
simulating systems of a only few tens of spins. Leaving the
realm of exact methods, one usually tries to approximate
the wave functions with a variational ansatz such as matrix
product states (MPS) [22] and solves the dynamics within
this variational manifold. While these MPS based meth-
ods, such as time-dependent density matrix renormalization
group, have been used very successfully to simulate large,
one-dimensional many-body systems with nearest-neighbor
interactions [23,24], they struggle for higher-dimensional or
long-range interacting systems due to the rapid generation of
entanglement [25,26].

In the search for effective approaches to deal with many-
body systems and the entanglement problem, phase-space
methods have emerged as promising candidates. Among
them, the truncated Wigner approximation (TWA) [27,28],
based on the Wigner-Weyl correspondence, stands out as
a practical and widely adaptable strategy for exploring the
dynamics of quantum many-body systems, even in higher-
dimensional settings with long-range interactions [29–32]. At
its heart, TWA approximates the dynamics of the Wigner
function, i.e., the phase-space analog of the wave function,
by particles following the classical mean-field equations of
motion. The initial conditions of these particles are sampled
from a Gaussian approximation of the initial Wigner function.
While a priori TWA is exact only for short times, numerical
experiments have shown it to yield accurate results at interme-
diate or even late times in some cases [33].

Although TWA was originally developed in the context of
bosonic systems where a clear classical limit exists, it can also
be applied to spin systems. Remarkably, for finite-dimensional
quantum systems there exists a discrete formulation of the
quantum phase space [34]. For spin systems prepared in a
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product state, discrete TWA (dTWA) exploits this to dramati-
cally improve accuracy [35] and to capture quantum revivals
[16,36–45].

Another extension aims at incorporating more quantum
interactions into the equations of motion, which in traditional
TWA are essentially mean-field equations for single particles
[46]. This so-called cluster TWA (cTWA) does so by group-
ing spins together into clusters and then assigning classical
variables to all degrees of freedom within these clusters [47].
Thus, all quantum interaction within a cluster a treated ex-
actly and only interactions between clusters are approximated
semiclassically. In the limit of clusters consisting of single
spins, cTWA is identical to (d)TWA while in the opposing
limit, where the whole system constitutes a single cluster the
exact quantum evolution is recovered. Thus, one has a tuning
parameter to assess the convergence of the simulation which
the usual (d)TWA lacks. While in principle cTWA is com-
patible with the discrete phase-space formulation, literature
on their combination is quite sparse. A conceptual precursor,
dubbed GDTWA, exists in [48] where the discrete sampling
was extended to larger SU(N ) spins. In a recent paper a variant
of discrete sampling is applied to a Bose-Hubbard model [49].

In this paper, we present a generalization of both cTWA
and dTWA combining the discrete sampling scheme of the
latter with the capability of treating clusters of spins of the
former, which we term dcTWA. We then systematically evalu-
ate the performance of these methods in the context of quench
dynamics for bond disordered XX and XXZ long-range inter-
acting spin- 1

2 models. More precisely, we study the dynamics
of an initial Néel state by means of the decay of the stag-
gered magnetization and the buildup of Rényi entropy in a
two-spin subsystem for different interaction ranges and disor-
der strengths and compare the results from the semi-classical
methods to exact diagonalization. While in the weakly disor-
dered regime a bigger cluster size is beneficial generally, we
find that in the strongly disordered regime the physics is well
captured by clusters of size 2 if they are chosen following a
pairing rule known from the real-space renormalization group
(RSRG) approach to bond-disordered systems. Our analysis
of the statistical uncertainties reveals that although the av-
eraged results from cTWA and dcTWA are similar, dcTWA
shows less sampling noise and thus converges faster.

II. MODEL AND METHODS

A. Model

We study the behavior of a disordered spin chain with long-
range interactions, described by the Hamiltonian

H =
∑
i< j

Ji j
(
ŝx

i ŝx
j + ŝy

i ŝy
j + �ŝz

i ŝ
z
j

)
, (1)

where N spins (ŝi = 1
2 σ̂i) are randomly positioned at locations

ri along a lattice of length L with lattice spacing a, resulting
in a density f = N/L. The interactions Ji j between pairs of
sites i and j are long range, characterized by a power-law
decay with parameter α: Ji j = J0|(ri − r j )/a|−α . Throughout
our study we set J0 = 1 and a = 1, and employ open boundary
conditions.

The disorder in this model arises from the random arrange-
ment of spins along the chain, leading to different spin-spin
couplings. Previous studies of this model with � = 0 focused
on the entanglement entropy in the ground state [50] and
excited states [51] as well as the dynamical growth of the
entanglement entropy after a quench [52]. These studies found
good agreement between numerically exact results and ana-
lytical calculations based on the real-space renormalization
group for low density ( f = 10%) and interaction exponents
α � 1.8.

We explore the system dynamics by initializing it in a
Néel state and subsequently computing dynamic observables.
These observables encompass the staggered magnetization
Mst (t ) = ∑

i(−1)i〈σ̂ z
i (t )〉/N and the Rényi-2 entropy S2(t )

evaluated over a two-spin subsystem. The Rényi-2 entropy
belongs to a continuum of entropy measures defined as
Sγ [ρ̂A(t )] = 1

1−γ
log2(tr[ρ̂A(t )γ ]), where γ � 1. In this con-

text, ρ̂A(t ) ≡ TrBρ̂(t ) signifies the reduced density matrix
associated with a subsystem A, and ρ̂(t ) represents the density
matrix of the entire system. Expanding the two-site reduced
density matrix ρ̂i j = 1

4

∑
αβ〈σ̂ α

i σ̂
β
j 〉σ̂ α

i σ̂
β
j in a basis of Pauli

strings gives a clear recipe for extracting the Rényi-2 entropy
from the expectation values of observables:

S2[ρ̂i j (t )] = − log2(Tr[ρ̂i j (t )]2) (2)

= 2 − log2

⎛
⎝∑

αβ

〈
σ̂ α

i σ̂
β
j

〉2⎞⎠, (3)

where we used the trace orthogonality of the Pauli strings.
This expression has a clear physical meaning: The more
correlations the subsystem retains after tracing out the envi-
ronment, the weaker the entanglement is.

B. Cluster truncated Wigner approximation (cTWA)

Phase-space methods are powerful tools for simulating
quantum system dynamics close to the classical limit. These
methods have applications across various scientific domains,
including quantum chemistry, optics, and condensed mat-
ter physics [28,34]. Among them, the TWA maps quantum
degrees of freedom onto classical phase-space variables fol-
lowing classical equations of motion as in a mean-field
treatment. Quantum fluctuations are taken into account by
Monte Carlo sampling of initial conditions from the Wigner
function, which guarantees accuracy on short timescales.
However, for quantum systems close to the classical limit,
e.g., highly occupied bosonic modes or collective spin models,
TWA has been found to yield accurate results even at late
times [28].

When applying TWA to spin systems, usually one con-
siders 3 degrees of freedom per spin: its X , Y , and Z
magnetization [35]. Mapping these to classical variables treats
all quantum interactions between spins on a mean-field level,
which is justified if the interactions are either weak or very
long range and thus average out [33]. One avenue of incor-
porating more quantum effects into the dynamics, known as
cluster TWA (cTWA), uses the degrees of freedom of clusters
of spins instead of just the single-spin ones [47]. In effect,
this means all quantum dynamics within a cluster is computed
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FIG. 1. (a) This diagram shows a long-range bond disorder spin
chain where spins are randomly positioned along a lattice. The
couplings are represented by solid lines Ji j , while stronger bonds
are indicated by thicker lines. (b) The initial state is the Néel state,
represented as |	0〉 = |↑↓ . . . ↑↓〉, where each arrow represents the
spin direction. The green shaded box illustrates a naive clustering of
spins into clusters of size 2. (c) Clustering inspired by the real-space
renormalization group, as explained in the text.

exactly and only the interaction between clusters is approx-
imated on a mean-field level. In the limit of a single cluster
encompassing the whole system, cTWA is equivalent to an
exact solution. Conversely, in the limit of clusters of single
spins, cTWA reduces to regular TWA. Thus, cTWA offers a
tuning parameter to steadily tune between TWA and an exact
solution by means of increasing the cluster size. In order to be
self-contained, we provide an overview of this method. For a
more detailed introduction, we refer the reader to the paper by
Wurtz et al. [47].

To illustrate the cTWA method, consider a system of inter-
acting spins- 1

2 described by the Hamiltonian

H =
∑

i j

Ji j
abσ̂

i
aσ̂

j
b +

∑
j

B j
aσ̂

j
a . (4)

Here, a, b ∈ x, y, z are the indices of Pauli matrices, and i, j
denote distinct spins on the lattice. The couplings Ji j

ab and
fields B j

a can be either short or long range.
The following steps outline the implementation of the op-

erator cTWA:
(i) Divide the system into clusters indexed by [i′], as

shown in Fig. 1(b). Define a complete operator basis
{X̂ [i′]

p }, p = 0, . . . , D2 − 1 for the Hilbert space of each clus-
ter, where D = 2n is the dimension of the Hilbert space and n
the number of spins making up the cluster. Ensure that the ba-
sis operators are trace orthogonal and satisfy Tr[X̂ [i′]

p X̂ [ j′]
q ] =

Dδpqδ
[i′][ j′]. Then any operator O[i′] inside a cluster [i′] can

be written as linear combination of the basis operators Ô[i′] =∑
p opX̂ [i′]

p .
(ii) Define structure constants fpqr as[

X̂ [i′]
p , X̂ [ j′]

q

] = i fpqrδ[i′][ j′]X̂
[i′]
r , (5)

which project commutators onto the basis spanned by {X̂ [i′]
p }.

(iii) Express the Hamiltonian in terms of cluster
operators X̂ i′

α .

Ĥ =
∑

[i′][ j′]

J[i′][ j′]
pq X̂ [i′]

p X̂ [ j′]
q +

∑
[ j′]

B[ j′]
p X̂ [ j′]

p . (6)

The interactions J and fields B generally differ from the
original parameters Ji j

ab, B j
a. For instance, local fields now en-

compass connections among spins residing within a particular
cluster, given that an operator σ i

aσ
j

p becomes linear in X̂ [ j′]
p

when both spins i and j are part of the same cluster [ j′].
(iv) Associate basis operators X̂ [i′]

p with classical phase-

space variables x[i′]
α satisfying canonical Poisson bracket

relation {x[i′]
p , x[ j′]

q } = i fpqrδ[i′][ j′]x[i′]
r defined by the structure

constants

X̂ [i′]
p → x[i′]

p − i

2
x[i′]

q fpqr
∂

∂x[i′]
r

. (7)

(v) Represent the Hamiltonian and observables as func-
tions of classical phase-space variables.

Ô[i′] =
∑

p

opX̂ [i′]
p → OW({x}) =

∑
p

opx[i′]
p (8)

with op = 1
D Tr[ÔX̂ [i′]

p ], and

Ĥ → HW =
∑

[i′][ j′]

J[i′][ j′]
pq x[i′]

p x[ j′]
q +

∑
[ j′]

B[ j′]
p x[ j′]

p , (9)

where index W indicates that this is the Weyl symbol corre-
sponding to symmetric operator ordering.

(vi) Find or approximate the Weyl symbol of the initial
state, i.e., its Wigner function. While it can assume negative
values, we require that it is completely positive and thus
can be thought of as a probability distribution. We present
two possible definitions for the Wigner function below this
implementation guide.

(vii) Solve the classical equations of motion for the phase-
space variables:

dx[i′]
p (t )

dt
= −{

x[i′]
p , HW

} = fpqr
∂HW

∂x[i′]
q

x[i′]
r . (10)

(viii) Find expectation values of observables by aver-
aging the corresponding classical functions over phase-
space points sampled from the Wigner function 〈Ô(t )〉 =
limM→∞ 1

M

∑M
m OW({x(t )}m), where M denotes the number

of samples.

1. Gaussian Wigner function

Wurtz et al. [47] defined an approximate Gaussian Wigner
function W ({x}) describing the initial conditions for the sys-
tem with the only requirement that the initial state factorizes
between clusters such that W ({x}) = ∏

[i′] W [i′]({x[i′]
α }), where

W [i′](x[i′] ) = 1

Z
exp

[(
xp − ρ[i′]

p

)
�[i′]

pq

(
xp − ρ[i′]

q

)]
(11)
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is simply a Gaussian. To determine coefficients ρ[i′]
p and �[i′]

pq
from the initial density matrix on cluster [i′], we demand
(cluster index [i′] suppressed)

Tr[ρ̂X̂q] =
∫ ∏

p

dxpxqW ({x}), (12)

Tr[ρ̂(X̂qX̂r + X̂rX̂q)] = 2
∫ ∏

p

dxpxqxrW ({x}) (13)

such that the moments match to second order.

2. Discrete Wigner function

While the Gaussian approximation of the Wigner function
described above is quite general, it neglects the moments
beyond the second order. dTWA, on the other side, can capture
all moments of the single-spin observables for initial states
that factorize between individual spins [35]. In the following,
we briefly recapitulate the derivation dTWA’s sampling to in-
troduce the notation and then generalize the method to clusters
of spins.

The key idea behind the dTWA is to replace the Gaus-
sian approximation of the Wigner function with a discrete
Wigner function defined via a discrete set of phase-point
operators Â

⊗
n = ⊗N

i Â[i] where Â[i] are discrete phase-point
operators that span the SU(2) phase space of the ith spin.
These are usually defined as Â[i]

p,q = [1 + r(p, q) · σ̂ ]/2, σ̂ =
(σ̂x, σ̂z, σ̂z ) are the Pauli matrices, and r(p, q) denotes suit-
able combinations thereof (cf. [34,35,37]): r(0, 0) = (1, 1, 1),
r(0, 1) = (−1,−1, 1), r(1, 0) = (1,−1,−1), and r(1, 1) =
(−1, 1,−1). In case the wave function factorizes, the Wigner
function of the system is then given simply by the product of
single-spin Wigner function given by w[i](p, q) = 〈Â(p,q)〉 /2.
Crucially, for all spin states pointing along one axis each value
of w[i](p, q) is positive and, since they sum to 1, one can
interpret them as probability distribution to sample from. A
schematic illustration is provided in Fig. 2.

Considering a system of nc clusters of n spins each, we
again seek to describe the state by a discrete Wigner func-
tion. The main difference to before is that each local Hilbert
space is represented by a copy of SU(D), where D = 2n.
In analogy to before, we introduce the phase-point opera-
tors Â

⊗
nc = ⊗nc

i′ Â[i′]
n with Â[i′]

n = (1D + r[i′]
n · Xn)/D, where

r[i′]
n = (r[i′]

1 , . . . , r[i′]
D2−1)i represents a vector of D2 − 1 = 4n −

1 real-valued parameters and Xn corresponds to a vector of
the operators of the operator basis for a cluster of n spins
as used in cTWA. Note, we can construct the operator ba-
sis Xn for n spins iteratively from an operator basis X1 for
a single spin by taking tensor products Xn = (X1 ⊗ 1,1 ⊗
Xn−1, X1 ⊗ Xn−1). One can construct rn analogously:

rn(p, q) = [r1(p1, q1), rn−1(p̃, q̃), r1(p1, q1) ⊗ rn−1(p̃, q̃)]

(14)

with p, q ∈ {0, 1}n and p̃ (q̃) denoting the vector derived from
p (q) by dropping the first element. Suppressing the index
n from now on, the Wigner function of a cluster is defined
as before to be w[i′](p, q) = 〈Â(p,q)〉 /D. If the quantum wave
function factorizes between spins within a cluster, the Wigner
function also factorizes and the result is essentially equivalent

FIG. 2. A schematic of the discrete cluster truncated Wigner
approximation. Considering a cluster of two spins, the individual
Hilbert spaces (depicted as Bloch spheres) combine to the Hilbert
space of the cluster. Shown below is a representation of the single-
spin discrete Wigner functions in the spirit of [35]. The probabilities
of a spin pointing along the ±x, ±y, and ±z directions are com-
puted by summing over the vertical, diagonal, and horizontal lines,
respectively. For product states within a cluster, one can simply take
the tensor product of single-spin discrete Wigner functions to obtain
Wigner functions for the cluster. In the case of clusters of size 2, the
resulting Wigner function is four dimensional and contains 16 phase
points.

to the single-spin case:

w[i′](p, q) =
∏

i

〈Â(pi,qi )〉 /2 =
∏

i

w[i](pi, qi ). (15)

The key difference is in the phase-point vectors rn(p, q) con-
nected to this Wigner function which now also encompass a
much larger operator basis. In summary, if the initial wave
function factorizes between spins, one can simply sample
the initial values for the single-spin operators and compute
the initial values for operators acting on multiple spins by
appropriate products. For a more detailed description of the
sampling process, see Appendix A.

As a concrete example, consider a cluster of two spins in a
Néel state |↑↓〉. To generate a sample, one draws the four val-
ues for 〈X̂1〉, 〈Ŷ1〉, 〈X̂2〉, and 〈Ŷ2〉 randomly from {−1, 1} and
sets 〈Ẑ1〉 = − 〈Ẑ2〉 = 1. Then the rest of the correlators are
computed from the products of these, e.g., 〈X̂1Ŷ2〉 = 〈X̂1〉 〈Ŷ2〉
and so on. This means that the initial spin vectors are ran-
domly drawn from one of the 16 spin configurations. All other
states on the Bloch sphere can be sampled using the same
configurations, followed by an appropriate rotation.

C. Clustering strategies

The cTWA necessitates a choice of clustering of the spins.
While in ordered systems, it makes sense to simply choose
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contiguous regions of desired size, in disordered systems it
is not clear a priori that this is a reasonable choice. In this
work, we evaluate two possible strategies for choosing the
clustering:

(i) Naive clustering method [see Fig. 1(b)]. In this ap-
proach, clusters of spins are formed by starting from one
end of the chain and grouping together every n consecutive
spins. Thus, the resulting clusters are determined solely on
the basis of this selection process, without taking into account
any specific properties or interactions between the spins.

(ii) Renormalization group clustering [see Fig. 1(c)].
The RG clustering strategy takes inspiration from the real-
space renormalization group (RSRG), also known as strong
disorder renormalization group (SDRG), approaches to bond-
disordered models which are used to construct approximate
eigenstates [53–55]. These methods identify the two spins
sharing the strongest coupling in the system and treat their
couplings to the environment in a perturbative manner. Since
this procedure effectively decouples the pair and leaves the
form of the remaining Hamiltonian invariant, one can read-
ily repeat this procedure with the remaining spins until all
spins are paired up. Instead of computing eigenstates, we
simply use the resulting partition of spins into clusters of
size two as input for the cTWA. In this way, the strong
intrapair interactions are treated fully quantum mechani-
cally, while the effective interaction among pairs is treated
semiclassically.

Based on the excellent results found by RSRG and SDRG,
we expect the RG clustering to outperform the naive clustering
method for strong disorder. However, the naive clustering
scheme generalizes naturally to generate larger clusters, while
it is unclear how to merge the clusters given by the RG scheme
in a consistent manner.

III. RESULTS

In this section, we present the numerical results of our
exploration of the quench dynamics of a disordered spin chain
with long-range interactions. We compute the behavior of two
dynamical observables initiated from a Néel state, namely, the
staggered magnetization and the Rényi entropy S2(t ) evalu-
ated over a two-spin subsystem, using the different methods
detailed above and compare to results obtained with exact
diagonalization (ED). Our primary focus lies on evaluating the
performance of the cluster truncated Wigner approximation
(cTWA) relative to standard dTWA. To this end, we consider
combinations of the aforementioned clustering schemes, the
naive clustering and the one based on the strong disorder
renormalization group, and the two approximations of the
initial state, the Gaussian cTWA (gcTWA) and discrete cTWA
(dcTWA). Our analysis aims to shed light on how cTWA
captures the intricate behavior of the system under bond dis-
order and long-range interactions, and to elucidate the extent
to which this approach provides insights into the quantum
dynamics of the system under consideration. All curves shown
are obtained using 1000 disorder samples and 1000 Monte
Carlo trajectories unless specified otherwise. Disorder shots
are identical across the methods. The code is freely available
at GitHub [56].

FIG. 3. The disorder-averaged staggered magnetization 〈Mst (t )〉
is shown for XX chain of N = 16 spins with a fixed filling of
f = 10%. The panels show results for long-range interactions with
α = 1.0 in (a) and short-range interactions with α = 3.0 in (b).
The semi-classical cluster methods using the RG-inspired clustering
(green, dashed and purple, solid) overlap the exact results (black,
solid) almost completely. dTWA (yellow, solid) and gcTWA with
naive clustering (blue, dotted) deviate already early on (t ≈ 10J0).

A. Bond-disordered XX chain

We begin our investigation by considering a bond-
disordered XX chain (� = 0). We explore various regimes
by adjusting two key parameters: the power-decay exponent
of the interaction, denoted as α, and the filling fraction of
the lattice, denoted as f , which controls the strength of the
disorder. Here a low filling fraction corresponds to strong
disorder, while f = 100% represents a fully ordered system.

Figure 3 shows the disorder-averaged time evolution of the
staggered magnetization 〈Mst (t )〉 with a fixed filling of f =
10%, starting from the Néel state. The top panel corresponds
to long-range interactions (α = 1), while the bottom panel
corresponds to short-range interactions (α = 3). The stag-
gered magnetization starts at a value of one, which reflects the
perfect order inherent in the initial Néel state. It then under-
goes a decay, caused by the spins exchanging magnetization
as system evolves. At late times, we observe equilibration to
a value close to zero. The general behavior is captured by all
semiclassical methods.

Upon closer inspection, it becomes evident that the dTWA
approach fails to accurately track the true dynamics and
loses accuracy even at intermediate timescales starting around
tJ0 ≈ 10. In both cases, it predicts the location of the first
oscillation approximately correctly but underestimates the
amplitude. Subsequently, it systematically underestimates the
amplitude of the oscillations of the staggered magnetization.
Interestingly, gcTWA with the naive clustering does not fare
much better. While it is generally more accurate with respect
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FIG. 4. Same as Fig. 3, but for filling fixed at f = 50% (weak
disorder regime). Here, the methods using the RG-inspired clustering
show some deviation from the exact results and for α = 1 in panel
(a) there are some differences between the Gaussian and discrete
sampling schemes visible as well.

to the oscillation frequency, it also underestimates the ampli-
tude. In contrast, both cTWA variants using the RG clustering
yield essentially exact results even at late times. This is a
very strong indicator that the dynamics is strongly shaped
by the presence of strongly interacting pairs of spins where
interactions among pairs are weak [57]. With this pair model
we can explain the observed curves qualitatively: It is known
that dTWA is unable to correctly capture the dynamics of even
a single pair and can just approximate the decay timescale (cf.
Appendix B). If the two spins forming a strongly interacting
pair are not part of the same cluster, then cTWA treats the
interactions within the pair semiclassically similar to dTWA
and thus faces the same problems. Consequently, using the
naive clustering will result in a mixture of “correctly” and
“incorrectly” chosen pairs and thus cTWA with this type of
clustering provides only a slight improvement over dTWA.
The RG clustering, in turn, ensures that all strongly interacting
pairs are treated as clusters and thus the predictions match the
exact dynamics much more closely. In turn, the high degree
of agreement between cTWA with the RG clustering is also
testament to the quality of pair approximation.

To further explore the efficacy of cTWA in regimes of
weak disorder, we increase the filling fraction to f = 50%
and repeat the analysis (cf. Fig. 4). In this regime, we do not
expect the pair approximation to be accurate anymore. Indeed,
for the long-range case α = 1 we find all semiclassical meth-
ods to overestimate the oscillation frequency similarly. Both
RG clustering-based methods predict the amplitudes almost
exactly correct, while dTWA and cTWA with naive clustering
again clearly underestimate it. In the more short-range case
α = 3, the picture is more complex. dTWA performs worst

FIG. 5. Comparison of sampling schemes with different cluster
sizes in a clean system (filling fraction f = 100%). We compare
TWA results for cluster sizes 2 (solid) and 4 (dashed) using the naive
clustering and the different sampling schemes, Gaussian (lighter
colors) and discrete (darker colors) to exact results [black (solid)].
Generally, cluster size 4 is more accurate than cluster size 2 and
the discrete sampling scheme agrees with the exact results longer
than the Gaussian sampling scheme. Other parameters are similar to
Fig. 3.

out of all the methods and does not resolve the oscillation well
and cTWA with naive clustering again essentially underesti-
mates the amplitude. Interestingly, in this case there is a clear
difference on intermediate timescales t ≈ 8J0 between both
cTWA methods with RG clustering but different choice of
sampling. The discrete sampling captures the first oscillation
slightly better both in position and in amplitude before at later
times the prediction collapses onto the cTWA curve employ-
ing a Gaussian Wigner function. Generally, all cluster-based
methods still capture the dynamics qualitatively but not quite
quantitatively over the whole time shown here.

For a better comparison of the sampling schemes, it is
instructive to examine a perfectly ordered regime by setting
the filling factor to f = 100%. In this setting, the RG and
naive clustering schemes result in the same choice of clusters
and we use this opportunity to check the convergence with
increasing cluster size. Figure 5 shows the staggered magne-
tization results for systems with both long-range (α = 1.0)
and short-range (α = 3.0) spin interactions and for cluster
sizes 2 and 4. Similar to the weakly disordered case before,
cluster size 2 is insufficient to capture the relaxation dynamics
quantitatively. In the short-range case (α = 3) gcTWA (cluster
size 2) struggles to reproduce the oscillatory behavior, which
is reflected better by dcTWA. This likely stems from the fact
that this coherent dynamics comes about due to the discrete
nature of the spin 1

2 which is mimicked by the discrete sam-
pling procedure [35]. Conversely, for the long-range system
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FIG. 6. The average Rényi entropy 〈S2(t )〉 is calculated over all
possible choices of two sites. This analysis is performed with the
same parameter settings as in Fig. 3. The cTWA methods using the
RG-inspired clustering [purple (solid) and green (dashed)] reproduce
the exact entanglement dynamics [black (solid)] almost exactly with
only very slight deviations at late time. Whereas the gcTWA with
naive clustering [blue (dotted)] overestimates the entanglement and
dTWA [yellow (solid)] even more so.

(α = 1), this effect is weaker as spins hybridize more due to
the stronger interactions. Interestingly, for this setting dcTWA
predicts the value of the first minimum more accurately than
gcTWA. Increasing the cluster size to 4 spins improves the
accuracy of both methods in both cases drastically and we do
not find significant differences between the sampling schemes
in the long-range case. However, for the short-range case, we
find the discrete sampling scheme to approximate the true
amplitude of the oscillation generally better than the Gaussian
scheme.

To extend our investigation to more complicated, non-local
observables, we study the Rényi entropy of two-spin sub-
systems and assess the efficacy of the semiclassical methods
under scrutiny. More specifically, we consider the average
Rényi entropy across all possible choices of two sites.

Starting with the strongly disordered setting at f = 10%
in an analogy to above, Fig. 6 illustrates the dynamics of
the average Rényi entropy with time in a strongly disordered
setting. Since the initial state is a product state, entanglement
starts at 0 for t = 0 and then starts to increase. We find that
generally the semiclassical methods are able to capture the
dynamics across the different settings probed qualitatively, as
shown in Figs. 6 and 7. Perhaps surprisingly at first, these
methods systematically overestimate the amount of entan-
glement present. This conundrum can be resolved, if one
considers that the Rényi entropy is computed by estimating
the expectation values of all intrapair correlators and less
correlations means more entanglement of the pair with its

FIG. 7. Same as Fig. 6, but for density fixed at f = 50%. In
comparison to Fig. 6, the RG-based cTWA methods deviate from
each other and also overestimate the true amount of entanglement
present. In the long-range case (a) they do not capture the oscillation
frequency correctly, however, in the short-range case (b) they do but
underestimate the amplitude.

environment [cf. Eq. (3)]. The semiclassical methods miss
out on some of the quantum correlations, thus tend to un-
derestimate the total amount of correlations and consequently
predict too much entanglement. Again, the quality of the
result depends significantly on the scheme. The deviations
are most pronounced for dTWA and the cTWA with naively
chosen clusters. Conversely, both dcTWA and gcTWA with
the RG clustering scheme approximate the exact dynamics
very closely and only overestimate the entanglement by a few
percent at late times.

In summary, we find that cTWA may offer tremendous
improvements over the simpler dTWA. However, the im-
provement depends strongly on the choice of clusters. If the
clustering does not respect the underlying physics, as is the
case for the naive clustering strategy, cTWA showed only a
very minor increase in accuracy. On the other hand, if the
dominant physical processes are mostly contained within the
chosen clusters, as is the case with the RG inspired clus-
tering, cTWA can describe the dynamics of the system over
all time intervals almost exactly. The results obtained with
the Gaussian Wigner function were very similar compared to
the discrete sampling with a slight advantage in favor of the
discrete scheme for ordered, short-range systems.

B. Bond-disordered XXZ chain

In this section, we investigate the role of the anisotropy
parameter � in the dynamics of the system. In the pair picture,
a strong anisotropy increases the energy gap between the
sectors of different absolute z magnetization. This does not
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FIG. 8. The disorder-averaged staggered magnetization 〈Mst (t )〉
is shown for XXZ chain of size N = 16 with α = 0.5 at f = 10%.
Different panels are shown different �. Results of cTWA, dTWA,
and ED are shown with solid blue, dotted green, and solid blue,
respectively.

alter the dynamics of a single pair initialized in a Néel state
because dynamics is fully contained within the sector of zero
magnetization. As such, we expect the choice of clusters to
have a large impact on the quality of the approximation when-
ever the dynamics is heavily dominated by pair dynamics. To
expand the domain of our study, we employ α = 0.5 to evalu-
ate settings with even more long-range interactions, which in
principle should play to TWA’s strengths. In the short-range
case, we chose α = 6, as motivated by the typical interaction
exponent of van der Waals interactions in Rydberg atoms
which are a possible platform to implement XXZ Heisenberg
models (see, e.g., [58]). We note, however, that the qualitative
differences to α = 3 are minor.

Figures 8 and 9 show the dynamics of the staggered magne-
tization under long-range (α = 0.5) and short-range (α = 6)
interactions, respectively. Starting again from the Néel state,
we examine the evolution of the staggered magnetization by
varying �, assessing how these adjustments affect the dynam-
ics and how well semiclassical methods approximate the true
dynamics. At � = 0, all semiclassical methods give results
matching the exact solution over almost the entire timescale
for the long-range system (α = 0.5), while in the short-range
system (α = 6) only the cTWA simulations using the RG-
inspired clustering provide accurate results. dTWA performs
worst by predicting oscillation with both wrong amplitude
and frequency. gcTWA with naive clustering improves upon
this due to the inclusion of more quantum correlations which
results in a correct prediction of the frequency.

Increasing the Ising interaction [cf. Figs. 8, 9(b), and
9(c)] does not alter the exact dynamics qualitatively, but
dTWA increasingly deviates from the exact results vastly

FIG. 9. Same as Fig. 8 but for α = 6.0.

underestimating the rate of the initial decay. For the short-
range system and � = 4 the decay is almost completely
suppressed. By contrast, gcTWA with naive clustering yields
significantly better results than dTWA. For both systems, the
gcTWA prediction qualitatively matches the exact data but is
offset by an increasing amount with increasing �. Interest-
ingly, both cTWA variants using the RG-inspired clustering
match the reference rather closely over the entire time domain
except for intermediate times for � = 4 in the long-range
system α = 0.5, where the fluctuations are not reproduced ex-
actly. Surprisingly, this hints at pairs still playing an important
role for the dynamics in spite of the quite long-range interac-
tions. For the short-range interactions with strong disorder, the
precise match is no surprise as the dynamics is governed by
pairs of spins on adjacent lattice sites in this regime.

Again, we we employ the semiclassical methods to also
extract the average pair Rényi entropy and compare to exact
results. Starting with the long-range scenario, α = 0.5, we
find for � = 0 all semiclassical approaches to converge to the
true dynamics approximately (Fig. 10). Increasing �, we can
see again how dTWA fails to capture the essential processes
and predict much too slow dynamics (roughly one order
of magnitude too slow). gcTWA with naive clustering fares
rather well and only slightly underestimates the initial rise
for � = 2 very similar to gcTWA with RG-inspired cluster-
ing. Most interesting are the differences between gcTWA and
dcTWA (both with RG clustering) since in this setting both
methods seem to converge to slightly different results with
dcTWA following the exact curve more closely at interme-
diate times (up to t ≈ 10J0). At late times all cTWA methods
overestimate the amount of entanglement present. This trend
continues for � = 4 where the discrepancy is enhanced for all
methods.

For the short-range interacting systems (cf. Fig. 11), we
find that cTWA schemes based on the RG clustering to be in
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FIG. 10. The average Rényi entropy 〈S2(t )〉 is calculated over all
possible pairs of two sites. This analysis is performed with the same
parameter settings as in Fig. 8.

excellent agreement with the exact results, while the naive
clustering gcTWA and dTWA fail to capture the dynam-
ics. This stark contrast to the long-range interacting systems
likely originates in the much broader distribution of couplings
caused by the much shorter interaction range. Since the RG
clustering scheme incorporates the strongest of the relevant
couplings, the system can show deviations only at very late
timescales.

FIG. 11. Same as Fig. 10 but for α = 6.0.

In order to understand why dTWA struggles to accurately
capture the dynamics of even a single pair of spin interact-
ing via an XXZ Hamiltonian H = J (σ 1

x σ 2
x + σ 1

y σ 2
y ) + �σ 1

z σ 2
z

we need to consider its spectrum. Eigenstates of H are the
maximally entangled Bell states |±〉 = (|↑↓〉 ± |↓↑〉)/

√
2 at

energies E± = ±2J − � and the polarized states |↑↑〉 and
|↓↓〉 with energy Ep = �. Taking the Néel state |↑↓〉 =
(|+〉 + |−〉)/

√
2 as initial state, the exact quantum dynam-

ics only populates the two maximally entangled eigenstates.
Since their energetic splitting depends on J only, the exact dy-
namics is independent of � and just encompasses the coherent
flipping of both spins |↑↓〉 ↔ |↓↑〉. dTWA essentially has ac-
cess only to single-body terms and thus needs to approximate
this process by two steps which will couple to the polarized
states. This gives an intuitive understanding of the dependence
on � for dTWA. The precise nature of this relation is quite
intricate and not akin to, e.g., a two-photon transition. For
further analysis of the two-spin case with dTWA, we refer
to Appendix B. At this point, we want to remark that even
cTWA of course captures the dynamics exactly if the two spins
are part of the same cluster, but still the state is not repre-
sented exactly at all times. As we have shown in Appendix A,
dcTWA can only represent states where the Wigner function is
non-negative but one can ensure that all observables within a
cluster have correct means and only higher moments deviate.

In summary, we find that even in very long-range systems
and for strong Ising interactions the RG-inspired clustering
yields quite accurate results at early and intermediate times.
At late times, we see some deviations that increase with the
strength of the Ising couplings which likely signals the break-
down of the pair approximation in this regime. For short-range
interactions, the cTWA methods with RG clustering yield
basically exact results in all cases studied here. Conversely,
dTWA and gcTWA with the naive clustering strategy struggle
due to the competition of the Ising and hopping interactions.
We did not see a significant difference between discrete and
Gaussian sampling in these settings.

C. Statistical error analysis

To highlight the merits of the discrete sampling scheme,
we study the convergence of the staggered magnetization
Monte Carlo samples by extracting standard deviation of the
staggered magnetization across 10 000 trajectories of a single
disorder shot. While previous analyses did not show large
differences in result between the sampling schemes, Fig. 12(a)
reveals the higher accuracy of the discrete sampling schemes
which leads to a reduced number of samples required to
achieve a given level of precision. Averaged over the timescale
shown, we report approximately 8% smaller standard devi-
ation for dcTWA with cluster size 2 and 15% reduction for
cluster size 4. This translates to approximately 16%, and
28% fewer trajectories needed to achieve similar levels of
accuracy.

We repeat this analysis for the Renyi entropy, where we es-
timate the standard deviation from 100 sets of 100 trajectories
each [cf. Fig. 12(b)]. Again by averaging, we find a similar
reduction of 14% and 29% reduction in standard deviation for
cluster sizes 2 and 4, respectively.
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FIG. 12. Error analysis for a single shot with the parameters
α = 1, f = 10%, � = 0 and 10 000 trajectories. We compute the
standard deviation of (a) the staggered magnetization and (b) average
pair Renyi entropy estimated from batches of 100 trajectories. We
use naive clustering to compare both cluster sizes 2 (green lines) and
4 (purple lines) as well as Gaussian sampling (dashed) and discrete
sampling (solid).

IV. CONCLUSION

In this study, we conducted a comprehensive numeri-
cal investigation focusing on the cluster truncated Wigner
approximation (cTWA) for modeling quench dynamics in
disordered spin chains with power-law interactions. Through
comparisons with the discrete truncated Wigner approxima-
tion (dTWA) and with exact diagonalization, we explored the
performance of the cTWA on different timescales relevant to
quench experiments and studied the influence of the choice of
clusters on the prediction. Additionally, we introduced a sam-
pling scheme for generating Monte Carlo trajectories which
extends the discrete Wigner function known from dTWA to
the realm of cTWA. Our analysis included both the XX and
XXZ models with bond disorder initiated from a Néel state,
and calculated dynamical observables such as staggered mag-
netization and two-site Rényi entropy.

We found that while cTWA generally yields improved ac-
curacy compared to dTWA, the choice of clusters strongly
impacts the results. Our results in the context of bond disorder
show that a clustering strategy inspired by the strong disor-
der renormalization group could yield astonishingly precise
results in the presence of strong disorder, while still being
very accurate even for quite long-range interactions, weak
disorder, and long times. XXZ models featuring strong Ising
interactions were found to be challenging for all semiclassical
methods presented here and we conclude that likely larger
clusters are needed to capture the relevant physical processes
accurately. In all of these systems, we only found minor

differences between the Gaussian and discrete sampling
schemes in situations were the results were not converged in
cluster size. However, a closer study of the statistical proper-
ties revealed the discrete sampling to exhibit smaller intrinsic
Monte Carlo shot noise.

In conclusion, our study provides valuable insights into
the effectiveness of cTWA in studying quench dynamics in
bond-disordered spin systems. If using the correct clustering
strategy, even clusters of size 2 yield close to exact results,
where single-spin dTWA fails. Additionally, we conclude that
the discrete sampling strategy introduced here is generally
preferable to the Gaussian approximation due to less Monte
Carlo shot noise and somewhat simpler implementation. We
also want to emphasize that the method presented here is not
intrinsically limited to one-dimensional systems and can be
applied readily to higher-dimensional systems with arbitrary
geometries. We expect cTWA to be able to perform well as
long as the coupling matrix is sufficiently disordered. For
spatially disordered systems, this should be the case as long
as the power-law exponent is larger than the spatial dimension
[59] and the density is sufficiently low. In more long-range
or denser scenarios, it would likely be beneficial to general-
ize the clustering algorithm described here to larger clusters,
e.g., based on heuristic renormalization group schemes such
as [60,61]. Overall, our results highlight the potential of
cTWA and its variants, such as dcTWA, as powerful tools for
studying the complex dynamics of bond-disordered quantum
systems.
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APPENDIX A: SAMPLING FROM DISCRETE WIGNER
FUNCTIONS OF SPIN CLUSTERS

In this Appendix, we first recapitulate how to derive the
concrete sampling rules of dTWA and then extend the scheme
to clusters of multiple spins. Finally, we provide a concrete ex-
ample of sampling rules for clusters of 2 spins. The concepts
described here are similar to Appendix A in [37].

1. Recap: Sampling a single spin

Earlier in Sec. II B 2, we defined the phase-point operators
for a single spin

Âp,q = [1 + r(p, q) · σ̂ ]/2 (A1)

via a choice of phase-point vectors r(p, q). In principle there
are many possible choices for r(p, q) but since there are a total
of 8 discrete spin states, two sets of phase point operators are
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enough to cover all possible states. We define the two sets of
phase-point operators (see Fig. 2 in [40] for a visualization)
via

r1(0, 0) = (1, 1, 1), (A2a)

r1(0, 1) = (−1,−1, 1), (A2b)

r1(1, 0) = (1,−1,−1), (A2c)

r1(1, 1) = (−1, 1,−1), (A2d)

and

r2(0, 0) = (1,−1, 1), (A3a)

r2(0, 1) = (−1, 1, 1), (A3b)

r2(1, 0) = (1, 1,−1), (A3c)

r2(1, 1) = (−1,−1,−1). (A3d)

With this choice, we can define the Wigner function of
some quantum state ρ̂ as

ws(p, q; ρ̂ ) = 1
2 Tr ρ̂Âs

(p,q), (A4)

where s = 1, 2 denotes the set of phase-point operators. These
are normalized for each set, i.e.,

∑
p,q ws(p, q; ρ̂ ) = Tr ρ̂ = 1

independent of s, and thus quasiprobability distributions. In
case all values of a ws(p, q; ρ̂ ) are positive, we can treat it as
a probability distribution and sample initial conditions for the
truncated Wigner approximation from it. For a single spin, it
is always possible to rotate the phase-point operators to render
the Wigner functions positive, so we can always sample from
either one of the two possible choices of Wigner functions.
In fact, it is crucial to employ both choices for sampling to
prevent the introduction of spurious correlations (see example
below) [33,40]. To be explicit, the complete sampling pro-
cedure for a single trajectory first randomly selects one of
the phase-space representation and then draws a phase-space
vector according to its Wigner function.

We illustrate this prescription using the state ρ = |↑〉 〈↑| as
an example. The Wigner functions read as

w1(ρ) =
(

w1(0, 0) w1(0, 1)

w1(1, 0) w1(1, 1)

)
=
(

1
2

1
2

0 0

)
, (A5a)

w2(ρ) =
(

w2(0, 0) w2(0, 1)

w2(1, 0) w2(1, 1)

)
=
(

1
2

1
2

0 0

)
. (A5b)

Choosing one these Wigner functions at random and then
sampling from it is equivalent to drawing a sample from
the set {r1(0, 0), r1(0, 1), r2(0, 0), r2(0, 1)}. In turn, this just
means we need to set the z component to 1 and choose x
and y independently from ±1. We remark that this prescrip-
tion reproduces all moments of the spin operators 〈(σ̂x,y,z )k〉
in contrast to the Gaussian approximation which reproduces
means and covariances only. Additionally, we remark that
every possible phase point of w1 (w2) has the x and y compo-
nents aligned (antialigned), which is the spurious correlation
mentioned earlier. By using both Wigner functions, we avoid
artifacts caused by this, making the simulation more accurate.

2. Generalization to clusters of spins

The prescription, we just outlined, readily generalizes to
clusters of spins by taking tensor products of the phase-point
operators. Consider a cluster of n spins: The joint Hilbert
space is now SU(D), where D = 2n, given from the tensor
product of Hilbert spaces of the single spins. In the following,
we essentially repeat the construction from before applied to
the cluster’s Hilbert space and exploit its product structure.
We denote the operator basis of a cluster of n spins by Xn,
which can be constructed recursively by

X̂1 ≡ σ̂ , (A6a)

[X̂n]i =

⎧⎪⎨
⎪⎩

σ̂i ⊗ 1, i ∈ {1, 2, 3}
1 ⊗ σ̂i−3, i ∈ {4, 5, 6}
[X̂1 ⊗ X̂n−1]i−6, else

(A6b)

where [·]i denotes the ith component of the vector.
In much the same way, we can construct the phase-point

vectors. However, we need to consider that we have two possi-
ble choices for each spin to make, so there are a total of 2n sets
of phase-point operators. Using s ∈ {1, 2}n, we can construct
the phase-point vectors corresponding to the operator basis
defined above as

rs
n(p, q) = rs1 (p1, q1)

⊕ rs̃
n−1(p̃, q̃)

⊕ [
rs1 (p1, q1) ⊗ rs̃

n−1(p̃, q̃)
]
, (A7)

where the vectors with tilde (s̃, p̃, and q̃) are the same as the
bare vectors without the first element, e.g., s̃ = (s2, . . . , sn).
From these building blocks, we can define the Wigner func-
tions of the cluster as

ws(p, q; ρ̂ ) = 1

2n
Tr ρ̂Âs

(p,q) (A8)

= 1

4n
Tr ρ̂

(
1 + rs

n(p, q) · X̂n
)
. (A9)

As can be checked easily via induction, this definition gives
us a normalized Wigner function for every choice of s.

Another short calculation shows that if the quantum state
ρ̂ factorizes between the spins, i.e., ρ = ⊗

i�n ρ̂i, then the
Wigner function factorizes as well:

ws

⎛
⎝p, q;

⊗
i�n

ρ̂i

⎞
⎠ =

∏
i�n

wsi (pi, qi; ρ̂i ). (A10)

This allows for efficient sampling.
To derive rules for sampling initial states, conceptually one

needs to choose a random set of phase-point representations,
i.e., draw s randomly, and then choose a phase-space vector
rs

n(p, q) with a probability determined by the corresponding
Wigner function ws(p, q). In case of a product initial state,
this prescription simplifies dramatically because we choose
the phase-space vector of each spin independently and com-
pute the initial value of correlators by products [see Eq. (A8)].
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We illustrate the prescription given above using the Néel
state ρ̂ = |↑↓〉 〈↑↓|. Applying the rule for product states,
we can immediately state the sampling scheme: Set 〈σ̂ 1

z 〉 =
− 〈σ̂ 2

z 〉 = 1, choose 〈σ̂ 1
x 〉 , 〈σ̂ 1

y 〉 , 〈σ̂ 2
x 〉 , 〈σ̂ 2

y 〉 randomly from
{−1, 1}, and then compute the initial values of the correlators
by products, e.g., 〈σ̂ 1

x σ̂ 2
x 〉 = 〈σ̂ 1

x 〉 〈σ̂ 2
x 〉.

Alternatively, we can employ the tedious route and com-
pute all the Wigner functions. We start by computing the
single-spin Wigner functions, which for |↑〉 〈↓| are given in
Eqs. (A5a) and (A5b). Similarly for |↓〉 〈↓|, we find

w1(|↓〉) = w2(|↓〉) =
(

0 0
1
2

1
2

)
. (A11)

From this we can compute the full two-spin Wigner functions:

w(1,1) = w(2,2) = w1(|↑〉) ⊗ w1(|↓〉)

=
(

w1(|↑〉)(0, 0) · w1(|↓〉) w1(|↑〉)(0, 1) · w1(|↓〉)

w1(|↑〉)(1, 0) · w1(|↓〉) w1(|↑〉)(1, 1) · w1(|↓〉)

)

=

⎛
⎜⎜⎜⎝

0 0 0 0
1
4

1
4

1
4

1
4

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠, (A12)

w(1,2) = w(2,1) =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
1
4

1
4

1
4

1
4

0 0 0 0

⎞
⎟⎟⎟⎠. (A13)

To generate a single sample, we first need to select one of
the four Wigner functions, e.g., w(1,1). This Wigner function
gives us the probability distribution to choose the state from,
which in this case means we need to select one of the phase
points (p, q) from the set{[(

0
1

)
,

(
0
0

)]
,

[(
0
1

)
,

(
0
1

)]
,

[(
0
1

)
,

(
1
0

)]
,

[(
0
1

)
,

(
1
1

)]}
(A14)

with equal probability. Assuming we selected the first phase
point, then the corresponding phase-space vector is given by

r(1,1)
2

((
0
1

)
,

(
0
0

))
= r1(0, 0) ⊕ r1(1, 0)

⊕ [r1(0, 0) ⊗ r1(1, 0)]. (A15)

The corresponding initial values of the trajectory are given
explicitly in Table I.

APPENDIX B: SINGLE PAIR DYNAMICS

To illustrate the inaccuracy of dTWA in the presence of XX
interactions, we study the same system as in the main text for
two spins. Repeating the definition here for convenience, we
consider the Hamiltonian

Ĥ = 2J
(
σ̂ 1

x σ̂ 2
x + σ̂ 1

y σ̂ 2
y

) + 2�σ̂ 1
z σ̂ 2

z , (B1)

the initial state |ψ0〉 = |↑↓〉 and the observable M̂st =
1
2 (σ̂ 1

z + σ̂ 2
z ). Since this Hamiltonian conserves total z

TABLE I. Coefficients for the phase-point vector given in
Eq. (A15).

Index i Operator Xi Initial value Term in Eq. (A15)

1
〈
σ̂ 1

x

〉
1 r1(0, 0)

2
〈
σ̂ 1

y

〉
1

3
〈
σ̂ 1

z

〉
1

4
〈
σ̂ 2

x

〉
1 r1(1, 0)

5
〈
σ̂ 2

y

〉
1

6
〈
σ̂ 2

z

〉 −1

7
〈
σ̂ 1

x σ̂ 2
x

〉
1 r1(0, 0) ⊗ r1(1, 0)

8
〈
σ̂ 1

x σ̂ 2
y

〉
1

9
〈
σ̂ 1

x σ̂ 2
z

〉 −1

10
〈
σ̂ 1

y σ̂ 2
x

〉
1

11
〈
σ̂ 1

y σ̂ 2
y

〉
1

12
〈
σ̂ 1

y σ̂ 2
z

〉 −1

13
〈
σ̂ 1

z σ̂ 2
x

〉
1

14
〈
σ̂ 1

z σ̂ 2
y

〉
1

15
〈
σ̂ 1

z σ̂ 2
z

〉 −1

magnetization M̂z = σ̂ 1
z + σ̂ 2

z , the dynamics stays confined to
the zero magnetization sector, where the state oscillates back
and forth between |↑↓〉 ↔ |↓↑〉. So the exact solution reads
as 〈M̂st(t )〉 = cos(8Jt ). This is independent of � because the
ZZ term σ̂ 1

z σ̂ 2
z of course commutes with M̂z and thus cannot

introduce additional couplings.
Setting J = 1 and using dTWA to solve the dynamics for

several values of �, we see that the semiclassical solution
is both influenced strongly by the value of � and yields
inaccurate results even for � = 0 (cf. Fig. 13).

FIG. 13. Dynamics of the staggered magnetization for two spins
with XXZ interaction for various anisotropies �. Shown is the exact
solution [black (dashed)] and solutions obtained with dTWA [colors
(solid)]. The exact dynamics are independent of �, so only a single
curve is shown.
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4E V I D E N C E O F PA I R L O C A L I Z AT I O N I N T H E DY N A M I C S O F
RY D B E RG S P I N S

In this chapter, we apply the previously derived effective model of pairs interpret ex-
perimental results from a Rydberg-based quantum simulator. While the experiment is
limited to global control and readout, we make great use of its ability to implement
Heisenberg models with different anisotropy and various density (which translates to
disorder strength).
We find the pair model to yield an excellent agreement with the observed behavior

explaining both the relaxation dynamics and rescaling thereof [C] as well as the dependence
of the steady state magnetization on the strength of the transverse field [D].

4.1 anisotropy-independent relaxation dynamics

In this paper, we utilize the ability of the Rydberg quantum simulator to implement XX,
XXZ and Ising models to measure the relaxation of the x-magnetization when starting
from a fully magnetized state. For disordered Ising models prior work has shown the
relaxation to follow a stretched exponential form well-known from spin glasses [117,
120–122]. It has been conjectured that this type of slow, hierarchical relaxation is a
common feature of strongly disordered quantum systems [123].

Indeed we find that for all three models the relaxation curves are fitted well by stretched
exponentials. Moreover, we also find a scaling law for the characteristic decay time scale
which hints at a common origin of the relaxation. This mechanism is explained by the
pair model, which yields that for all three models the relaxation is caused essentially
by oscillations of the magnetization of pairs. Since each pair has a different oscillation
frequency these individual oscillations dephase and thus cause the total magnetization
to decay. From the parameter dependence of these pair oscillations, we recover the
characteristic timescale for the global magnetization’s decay. This is a clear indicator of
an effective pair localization at least for experimentally relevant timescales.
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Observation of anisotropy-independent magnetization dynamics in spatially
disordered Heisenberg spin systems
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An important step towards a comprehensive understanding of far-from-equilibrium dynamics of quantum
many-body systems is the identification of unifying features that are independent of microscopic details of the
system. We experimentally observe such robust features in the magnetization relaxation dynamics of disordered
Heisenberg XX, XXZ, and Ising Hamiltonians. We realize these Heisenberg spin models with tunable anisotropy
parameter and power-law interactions in an ensemble of Rydberg atoms by encoding the spin in suitable Rydberg
state combinations. We consistently observe stretched-exponential relaxation of magnetization for all considered
spin models, collapsing onto a single curve after appropriate rescaling of time. This robust short-time relaxation
behavior is explained by a perturbative treatment that exploits the strong disorder in pairwise couplings, which
leads to a description in terms of approximately independent pairs of spins. In numerical simulations of small
systems, we show that these pairs of spins constitute approximate local integrals of motion, which remain at least
partially conserved on a timescale exceeding the duration of the relaxation dynamics of the magnetization.

DOI: 10.1103/PhysRevResearch.6.033131

I. INTRODUCTION

Far-from-equilibrium dynamics of isolated quantum sys-
tems after a quench displays a wide range of emergent
phenomena, such as dynamical phase transitions [1,2], quan-
tum many-body scars [3–5], and many-body localization
(MBL) [6–10]. The time evolution of these systems generally
depends strongly on the type of interactions and the distri-
bution of interaction strengths between the particles [11]. A
notable exception are systems showing (metastable) prether-
mal phases, where relaxation dynamics can show universal
behavior, i.e., the dynamics become independent of details of
the microscopic model [12–17].

When considering the role of disorder for the dynamics
of quantum many-body systems, a striking characteristic of
the dynamics is that they can be nonergodic [18], which is
found for example in spin glasses where relaxation becomes
extremely slow [19] or in MBL systems where the dynamics
might be completely frozen [20]. Anomalously slow relax-
ation was also observed in disordered quantum spin systems

*These authors contributed equally to this work.
†Contact author: weidemueller@uni-heidelberg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
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that feature subexponential dynamics [21–25]. Remarkably,
in all these different classical and quantum systems, in the
strong disorder regime, the subexponential dynamics are well
described by the same functional form, the stretched exponen-
tial law. This raises the question of the origin of this robust
behavior and whether it is affected by the modification of
symmetry properties of the Hamiltonian.

In classical systems, the answer to these questions is
provided by the seminal work of Klafter and Shlesinger,
who found that a scale-invariant distribution of timescales is
the common underlying mathematical structure that induces
stretched-exponential relaxation [26]. Indeed, the authors pro-
posed an intuitive understanding by considering the parallel
channels model where an ensemble of initially fully polarized
spins are coupled to an external bath at a different strength
sampled from a scale-invariant distribution. Due to the cou-
pling to the bath, each spin decays exponentially on a different
timescale. Thus, the global polarization of the system yields a
stretched exponential form resulting from the averaging over
all the spins.

For isolated quantum systems, where the dynamics are
unitary, there is no notion of decay due to a bath. However, in
a disordered system where the spins are randomly positioned
in space, the interaction strengths between the spins can be
distributed scale invariantly. For example, it was shown an-
alytically for the dynamics of the quantum Ising model that
this scale-invariant distribution of coupling strengths induces
a stretched exponential relaxation [27]. The derivation of the
analytic solution is only possible because the Ising model
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FIG. 1. Rydberg quantum simulator platform. (a) Illustration of out-of-equilibrium disordered spin systems relaxing with respect to
different Hamiltonians. (b) Illustration of the experimental realization of a Heisenberg XX Hamiltonian by coupling a Rydberg |nS〉 state
to a |nP〉 state, possessing opposite parity. The interaction is of dipolar nature and falls off as r−3

i j . Coupling two Rydberg states with the same
parity results in a Heisenberg XXZ Hamiltonian for state combinations |nS〉 and |(n + 1)S〉 (c), while state combinations |nS〉 and |(n + 3)S〉
results in a Ising Hamiltonian (d). In the two latter cases, the interactions are of van der Waals nature with a r−6

i j dependence.

features an extensive number of conserved quantities, i.e., it is
integrable. For nonintegrable models, where no analytic solu-
tion exists, generic mechanisms for describing the relaxation
dynamics after a quantum quench remain largely unknown.
Investigating the exact time evolution numerically is chal-
lenging due to the exponential growth of the Hilbert space
with system size in quantum many-body systems. Semiclas-
sical simulations, neglecting quantum effects beyond initial
quantum fluctuations, suggest that nonintegrable Heisenberg
XYZ Hamiltonians present out-of-equilibrium dynamics that
follows a stretched exponential law like the Ising model
independent of their symmetry [28]. An alternative route
is implementing the desired unitary time evolution experi-
mentally using quantum simulation experiments with tunable
parameters, which is the approach we pursue here [29–32].

In this paper, we use different combinations of states of
highly excited Rydberg atoms to realize different types of spin
Hamiltonians thus making use of the full versatility of this
platform [9,21,33–37]. Rydberg atoms are ideally suited to
study unitary quantum dynamics because the timescales of
the interacting dynamics vastly exceed those of the typical
decoherence mechanisms. We observe the relaxation dynam-
ics of three different Heisenberg Hamiltonians: the integrable
Ising model and the nonintegrable XX and XXZ models with
power-law interactions and positional disorder [see Fig. 1(a)].
For all models, we observe the same characteristic decay
of magnetization, well described by a stretched exponential
function, which causes the data to collapse onto a single curve
after the appropriate rescaling of time. We show that this

robust behavior is directly linked to the presence of strong
disorder, which allows deriving an effective, integrable model
consisting of pairs of spins.

II. HEISENBERG SPIN SYSTEMS ON A RYDBERG-ATOM
QUANTUM SIMULATOR

We consider an interacting spin-1/2 system described by
the following Heisenberg Hamiltonian (h̄ = 1)

Ĥ =
∑
i< j

(
J⊥

i j /2(ŝi
+ŝ j

− + ŝi
−ŝ j

+) + J‖
i j ŝ

i
zŝ

j
z

)
. (1)

Here, ŝi
± = ŝi

x ± iŝi
y, where ŝi

α (α ∈ x, y, z) are the spin-1/2

operator of spin i and J⊥,‖
i j = C⊥,‖

a /ra. These types of Heisen-
berg XXZ Hamiltonians with disordered couplings feature
a rich phenomenology of different phases and relaxation
behaviors [38]. The Ising case, where J⊥

i j = 0, features
additional symmetries under local spin rotations ŝi

z that
commute with the Hamiltonian, which make the Ising model
integrable. For J⊥

i j �= 0, ŝi
z are no longer conserved and the

Hamiltonian is nonintegrable. We provide a comprehensive
description of how to engineer this Hamiltonian with different
combinations of Rydberg states in the Appendix [39,40].
Figure 1 illustrates the state combinations that can be used
to realize the Heisenberg XX, XXZ, and Ising models. For
the rest of this paper, the three spin models are realized
by state combinations |61S〉 − |61P〉 (XX, J‖/J⊥ = 0,

033131-2



OBSERVATION OF ANISOTROPY-INDEPENDENT … PHYSICAL REVIEW RESEARCH 6, 033131 (2024)

FIG. 2. Relaxation dynamics of disordered quantum spin systems. Magnetization dynamics as a function of time for the Ising model (a),
the XX model (b), and the XXZ model (c). The dashed lines stem from DTWA simulations. (d) Magnetization dynamics of the three models as
a function of the time rescaled by the typical interaction strength 2π |J⊥

median − J‖
median| = 2.3 MHz (Ising model), 21 MHz (XX model), 7.6 MHz

(XXZ model). (Inset) Data points of (c) plotted on as loglog vs log. The dashed line is a guide to the eye, indicating a stretched exponential
relaxation with β = 0.5. The error bars denote the standard error of the mean.

a = 3), |61S〉 − |62S〉 (XXZ, J‖/J⊥ = −0.7, a = 6), and
|61S〉 − |64S〉 (Ising, J‖/J⊥ = −400, a = 6).

III. EXPERIMENTAL OBSERVATION OF MODEL
INDEPENDENT RELAXATION DYNAMICS

The experiment starts with trapping rubidium-87 atoms
loaded in a crossed dipole trap at a temperature of 20 µK
(see Appendix for experimental details). The atoms are ex-
cited from the ground |g〉 = |5S1/2, F = 2, mF = 2〉 to the
Rydberg state |61S1/2, mj = 0.5〉 by a two-photon transition
with red (780 nm) and blue (480 nm) lasers that are de-
tuned by 2π × 98 MHz from the intermediate state |e〉 =
|5P3/2, F = 3, mF = 3〉. For this state, the Rydberg lifetime
of 100 µs exceeds the duration of the spin experiment of 30 µs.
The excitation process leads to a three-dimensional cloud of
N ≈ 80 − 250 Rydberg atoms that are distributed randomly.
The van der Waals interaction during the excitation process
imposes a minimal distance of rbl ≈ 10 µm between the spins
(Rydberg blockade effect). The state |61S1/2, mj = 0.5〉 is the
|↓〉 state of all three different spin systems, the main difference
is the second Rydberg states that is addressed by choos-
ing proper microwave coupling using an AWG setup (see
Appendix for details).

After having excited the ground state atoms to the down
spin state, we implement a Ramsey protocol in our Rydberg
experiment. To initialize the dynamics a first π/2-microwave

pulse is performed, which sets the whole system is the state
|→〉⊗N = 1/

√
2(|↑〉 + |↓〉)⊗N and we let the system evolve

over 30 µs. A second π/2 pulse at a different readout phase
followed by optical de-excitation and field ionization allows
a tomographic measurement of the x magnetization 〈Ŝx〉 =∑

i 〈ŝi
x〉 [21].

The resulting relaxation dynamics of the Ising, Heisen-
berg XX, and XXZ models are shown in Figs. 2(a)–2(c).
At early times, the magnetization seems to be almost per-
fectly conserved at 〈Ŝx〉 = 0.5 before the relaxation begins.
This effect is attributed to the Rydberg blockade that induces
a maximal interaction strength that determines the system’s
fastest timescale. For each model, the system relaxes to
zero magnetization, which can be understood by consider-
ing symmetry arguments: Indeed, the magnetization can be
rewritten using the commutator relation for Pauli matrices
〈Ŝx〉 = −i〈[Ŝy, Ŝz]〉. The latter term vanishes for each eigen-
state |φ〉 of the XXZ Hamiltonian because each eigenstate
is also an eigenstate of Ŝz|φ〉 = ∑

i ŝ(i)
z |φ〉 = Sz|φ〉 due to the

global U(1) symmetry leading to 〈[Ŝy, Ŝz]〉 = Sz〈[Ŝy, 1]〉 = 0.
The timescale of the dynamics occurring within less than
10 µs is comparable with the typical interaction strengths in
the megahertz regime depending on the realized Heisenberg
model (details on the distribution of interaction timescales can
be found in the Appendix).

To compare the relaxation curves to numerical predictions,
the spatial distribution of Rydberg spin positions needs to
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be modeled realistically. We use a hard-sphere model where
each Rydberg excitation is described by a superatom [41]
with a given blockade radius and effective Rabi frequency
[21]. For more details on the parameters of the models, see
the Appendix. We simulate the exact time-evolution of the
experiment using the discrete truncated Wigner approxima-
tion (DTWA) [42]. DTWA simulations agree well with the
experimental data as shown in Figs. 2(a)–2(c). The small
deviation between simulations and experiments can be mostly
attributed to an inaccuracy of the atom distribution obtained
from the simplified excitation model (see Appendix).

The dynamics under the three different spin model in
Figs. 2(a)–2(c) look strikingly similar in a log-linear plot.
Indeed, by rescaling time with the characteristic timescale of
each system given by |J⊥

median − J‖
median|, all relaxation curves

coincide within the experimental errors. Here,

J⊥,‖
median = median j max

i
|J⊥,‖

i j | (2)

is the median of the nearest neighbor interaction strengths.
This choice of typical interaction timescale is motivated by the
oscillation frequency of a single pair of interacting spins gov-
erned by (1), which will be further discussed in the following
section. The striking collapse allows us to infer the func-
tional form of the relaxation dynamics of the nonintegrable
models: For the Ising model, it is known that the relaxation
follows exactly the stretched exponential law e−(t/τ )β [27]
with stretching exponent β and timescale τ . The logarithm
of the stretched exponential law is a power law. Plotted on
a double logarithmic scale, this power law becomes a linear
function [dashed line in the inset of Fig. 2(d)]. In this repre-
sentation, the rescaled experimental data also show a linear
behavior. This confirms the hypothesis that the stretched ex-
ponential law is the unifying description of the magnetization
relaxation for the integrable quantum Ising model as well as
the nonintegrable XX and XXZ Hamiltonians in the strongly
disordered regime. We note that the dynamics are only robust
with respect to a parameter of the microscopic model, the
anisotropy J‖/J⊥, whereas the macroscopic geometry and
also the dimension of the cloud may lead to different dynamics
(see Appendix). In addition, we also measured the relax-
ation dynamics for various initial states (for one Hamiltonian)
possessing different magnetization and again find similar re-
laxation dynamics at late times (see Appendix E).

IV. APPROXIMATE DESCRIPTION THROUGH
STRONGLY INTERACTING PAIRS

In order to understand the regime where we have observed
robust relaxation dynamics, we aim for a simplified model
that includes only the relevant timescales of the system. To
identify these, we exploit the strongly disordered nature of the
system by adopting a perturbative approach in the spirit of
the strong disorder renormalization group (SDRG) where the
strongest coupling is integrated out iteratively [43–46].

In our model, the strongest coupled spins define a pair of
spins. Crucially, the coupling within the pair will be much
larger than all other couplings affecting the pair. This allows
one to treat the coupling between this pair and the rest of the
system perturbatively. To zeroth order, this pair of spins just

decouples from the system and evolves independently. This
elimination step, where we remove the strongest coupling, can
be repeated within the rest of the system. For our initial state,
each individual pair undergoes coherent dynamics between
the fully polarized state in plus and minus x direction [see
Fig. 3(a)] [47]. The resulting oscillation of the magnetiza-
tion [shown in Fig. 3(b)] is independent of the specific XXZ
Hamiltonian. Only the frequency, given by J⊥

i j − J‖
i j , differs

depending on the Ising and exchange interaction strengths.
This independence is at the origin of the observed model
independence of relaxation dynamics.

With this model in hand, we can compute the time evo-
lution of the magnetization by a simple average of cosine
oscillations as shown by the grey dash-dotted lines (pair,
noninteracting) in Figs. 3(c)–3(e). The resulting relaxation
dynamics show good agreement with the experimental data.
However, especially for the Ising and XXZ model, this model
underestimates the timescales of the dynamics. This is some-
what expected, considering that the pair couplings found by
iterative elimination are, on average, smaller than the nearest
neighbor couplings.

Taking the perturbative treatment to next order, one finds
an effective Ising-like coupling between pairs, as derived re-
cently in the Appendix of [48]. The effective Hamiltonian
governing the dynamics was found to be

Ĥeff ≈
∑
〈i, j〉

(
J⊥

i j /2(ŝi
+ŝ j

− + ŝi
−ŝ j

+) + J‖
i j ŝ

i
z ŝ

j
z

)
.

+
∑

〈i, j〉,〈k,l〉
Jeff

i jkl ŝ
(i)( j)
z ŝ(k)(l )

z (3)

Jeff
i jkl = J‖

ik + J‖
il + J‖

jk + J‖
jl (4)

where 〈i, j〉 denotes the summation over paired spins i and j
and 2ŝ(i)( j)

z = ŝi
z + ŝ j

z .
Fortunately, this model is integrable and allows for deriva-

tion of an analytical solution for the evolution of 〈Ŝx(t )〉 (see
Appendix F), which reads

〈
Ŝpair

x

〉
(t ) = 1

N

∑
〈i, j〉

cos

(
1

2
(J⊥

i j − J‖
i j )t

) ∏
〈k,l〉

cos2

(
1

8
Jeff

i jkl t

)
.

(5)

The first factor in each term originates from the pair dynamic
to zeroth order, as described previously. The other factors are
reminiscent of the Emch-Radin solution for the Ising model
and stem from the effective Ising interaction among the pairs.
This effective Ising model of pairs captures the overall demag-
netization dynamics remarkably well for all observed times
[see Figs. 3(c)–3(e)], yielding very similar (and in the case of
XXZ, even better) results compared to dTWA.

From the analytical form of the time evolution, Eq. (5),
we find that many different oscillation frequencies contribute
to each spin’s magnetization dynamics. Most of these
frequencies are very small, however, and do not contribute
to the early-time dynamics. Thus, a reasonable ansatz for
rescaling to make the dynamics collapse is to consider
only the fastest frequency for each spin. Due to the highly
disordered nature of our system, this strongest coupling will
essentially always correspond to the closest neighboring spin.
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FIG. 3. Effective description by localized pairs. (a) Illustration of
the oscillation of a single pair under an arbitrary XXZ Hamiltonian.
A fully polarized state |→→〉 (left) evolves via the maximally en-
tangled Bell state 1/

√
2(|→→〉 + |←←〉) (top) to the state |←←〉

(right). Then, it returns to the origin via the other Bell state
1/

√
2(|→→〉 − |←←〉) (bottom). (b) Oscillation of the magneti-

zation for a single pair initialized in |→→〉. [(c)–(e)] Comparison
of the relaxation dynamics obtained by the pair approximation
with/without effective Ising terms (solid black line/grey dash-dotted

This explains the rescaling found from the experimental data
with mediani max j |J⊥

i j − J‖
i j |.

V. SEPARATION OF TIMESCALES IN SPIN DYNAMICS

In the previous section, we revealed that the relaxation
dynamics of a single-body observable is well captured by an
ensemble of pairs with Ising-like interactions. This simple
description in terms of pairs provides an integrable effec-
tive Hamiltonian, which is valid not only at early times but
agrees surprisingly well with the data over the entire relax-
ation process, which lasts for over three decades in time.
In the following section, we will more quantitatively ad-
dress the question of whether the magnetization of each pair
is conserved by evaluating the pair autocorrelator given by
〈Ŝpair

z (t )Ŝpair
z 〉, where Ŝpair

z = ŝi
z + ŝ j

z . If the pair picture is per-
fect or if the system is an Ising model, this quantity stays
〈Ŝpair

z (t )Ŝpair
z 〉 = 1. On the other hand, if the correlations in

the system are fully decohered, the autocorrelator assumes its
minimal value of 〈Ŝpair

z (t )Ŝpair
z 〉 = 2

N for a system of size N due
to symmetry constraints.

Our numerics presented in Fig. 4 for N = 16 spins in
d = 1 with interaction exponent α = 2 reveals three important
points. Firstly, at t |J‖

median − J⊥
median| ≈ 0.2 the global mag-

netization 〈Ŝx〉 has decayed almost by half, while the pairs’
magnetization autocorrelators are still close to 1. This justifies
our simplistic pair picture and highlights the regime of univer-
sal dynamics. Secondly, at intermediate times up to 102, the
global magnetization relaxes fully to zero while the autocorre-
lator still features slow dynamics. This illustrates the existence
of two timescales. Observing two distinct timescales shows
that the system has not yet reached thermal equilibrium once
the magnetization has relaxed to zero [17,22] but rather hints
at prethermal behavior [12,14,16,49]. This generally means
that a system does not directly relax to its “true” thermal state,
but instead reaches a prethermal state. This is still a thermal
state but with respect to a different, prethermal Hamiltonian,
which in our case only contains mostly Ising-like interactions
among pairs. At very late times, this prethermal description
ceases to be a reliable description, but even in the infinite
time limit (derived by the diagonal ensemble and indicated
by arrows in Fig. 4), the pair autocorrelator remains at ≈1/2,
which is significantly above the lower limit of 2

N = 1/8. This
indicates that our integrable pair model is still a reasonable
description of the system even at late times.

VI. CONCLUSION

Our paper demonstrates the ability of Rydberg atom
quantum simulators to synthesize a variety of many-body
Hamiltonians on a single experimental platform. By choosing
the appropriate state combination, we realized XX, XXZ, and
for the first time, a quantum Ising model within the Rydberg
manifold. This versatility of the platform has enabled us to

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
line) and with DTWA (dotted line) and the experimental data of
Fig. 2 for Ising (c), XX (d), and XXZ model (e).
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FIG. 4. Dynamics of the pair magnetization autocorrelator. Nu-
merical simulation of N = 16 spins in d = 1 with interaction
exponent a = 2 and a mean interspin distance a0 = 20rb. Line width
shows statistical uncertainty from disorder averaging.

directly study and compare the relaxation dynamics of three
different quantum spin systems far from equilibrium.

The central finding of this study is the robustness of the
functional form of the relaxation curves with respect to pa-
rameter changes in the microscopic spin model, even across
models featuring different symmetries, and the choice of
initial state (cf. Appendix E). This discovery raises a funda-
mental question about the universality of relaxation dynamics
in spatially disordered spin systems. To address this question
comprehensively, we presented an approximate description
of the system based on pairs of spins, exhibiting excellent
agreement with both numerical simulations and experimental
data. Moreover, this effective model is integrable and thus
features an extensive number of conserved quantities allowing
for an exact solution.

To assess the quality of the effective model, we studied
the decay of these effectively conserved quantities in small
systems via exact methods. We found them to decay on a
much slower timescale, which might indicate that the system
behaves prethermaly: On the early timescale, the effective pair
model to lowest order holds, and thus the relaxation appears
universal.

The observed robustness hinges on a number of system
properties: Firstly, universal relaxation is known to hold only
in the strong disorder regime [21]. Secondly, we expect the
dynamics to depend on global parameters of the system like
the spatial dimension d and the range of interaction α, which
both determine the distribution of couplings J⊥,‖

i, j (e.g., the
stretch power has been analytically derived to be β = d/α

in the case of the Ising model [27]). Therefore, it is crucial
to compare experimental data only where the distributions of
interaction strengths are comparable such that the underlying
universal behavior becomes evident (see also Appendix C
where the distribution of coupling for the experiments shown
in this article are shown).

The accurate approximation of the relaxation dynam-
ics by an integrable model of pairs indicates that the
time evolution of disordered quantum spin systems can-
not be viewed as direct thermalization. Instead, even at

later times when the global magnetization has completely
relaxed to zero, the system can still exhibit local charac-
teristics originating from quasiconserved pairs of spins. In
order to investigate the deviations from the pair model and,
hence, from the prethermal state, future experiments will re-
quire single-site resolution [50]. Further investigations could
also study the influence of the energy density of the ini-
tial state on the dynamics, indicative of a possible phase
transition [51].

ACKNOWLEDGMENTS

We thank A. Salzinger and A. Tebben for important
contributions to maintaining the experimental apparatus. Fur-
thermore, we thank H. Zhou, N. Leitao, and L. Martin
for helpful discussions. This work is part of and supported
by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strat-
egy EXC2181/1-390900948 (the Heidelberg STRUCTURES
Excellence Cluster), within the Collaborative Research Cen-
tre “SFB 1225 (ISOQUANT),” the DFG Priority Program
“GiRyd 1929,” the European Union H2020 projects FET
Proactive project RySQ (Grant No. 640378), and FET flagship
project PASQuanS (Grant No. 817482), and the Heidelberg
Center for Quantum Dynamics. The authors acknowledge
support by the state of Baden-Württemberg through bwHPC
and the German Research Foundation (DFG) through Grant
No. INST 40/575-1 FUGG (JUSTUS 2 cluster) and used the
Julia programming language for most of the numerics [52].
T.F. acknowledges funding by a graduate scholarship of the
Heidelberg University (LGFG).

APPENDIX A: ENGINEERING HEISENBERG XXZ
HAMILTONIANS BY DIFFERENT COMBINATIONS

OF RYDBERG STATES

In the following, we provide a comprehensive description
of how to engineer this Hamiltonian with different combina-
tions of Rydberg states [40,41]. Especially, this gives us the
opportunity to explain how to engineer an Ising Hamiltonian
in a spin system realized by two different Rydberg states.

For general spin systems with global U (1) symmetry, the
coupling terms can be obtained by calculating the matrix
elements of the interaction Hamiltonian Ĥ . The Ising term

J‖
i j = (E↑i↑ j + E↓i↓ j ) − (E↓i↑ j + E↑i↓ j ) (A1)

is defined as the energy difference between spins being
aligned and being antialigned. Here, Eαiβ j = 〈αiβ j |Ĥ |αiβ j〉
are the interaction energy of spin i and j with α, β ∈ [↑,↓].
The exchange term is determined by

J⊥
i j = 〈↓i↑ j |Ĥ |↑i↓ j〉. (A2)

For a system consisting of states with opposite parity,
such as |↓〉 = |nS〉 and |↑〉 = |nP〉 [see Fig. 1(b)], where n
is the principal quantum number, the dominant coupling is
a direct dipolar interaction, which can be described by the
Hamiltonian

ĤDDI = d̂i · d̂ j − 3(d̂i · eri j )(d̂ j · eri j )

r3
i j

, (A3)
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where d̂i is the dipole operator of atom i, eri j is the unit vector
connecting the two atoms, and ri j their distance. Mapped
Eq. (A3) on the spin Hamiltonian of Eq. (1), the resulting
interaction coefficient is

J⊥
i j = C⊥

3 (1 − 3cos2θij )

r3
i j

. (A4)

Here, θi j is the angle between eri j and the quantization axis

and C⊥
3 the coupling parameter [36,37]. The Ising term J‖

i j is
zero since interaction energy shifts Eαiβ j are dipole forbidden.
Therefore, this is a way to realize an XX model as depicted
in Fig. 1(b). In this paper, we have chosen |61S〉 and |61P〉
leading to C⊥

3 /2π= 3.14 GHzµm3 .
In the case where the two chosen states possess the same

parity, such as the two atoms being in the same state |nS〉,
direct dipolar coupling is forbidden and the leading interaction
is a second-order process through a virtually excited pair state
|m〉 and can be described by

ĤvdW = −1

h̄

∑
m

ĤDDI|m〉〈m|ĤDDI

�ν

. (A5)

Here, the Foerster defect �ν is the energy difference between
the initial state and the virtually excited state |m〉. This Hamil-
tonian gives rise to power-law interactions Ji j = C6/r6

i j that
scales with n11. Especially, this term is large if a pair state |m〉
with a small Foerster defect exists. Many experiments exploit
these interactions to realize a spin system where the ground
state is coupled to a single Rydberg state. These systems
feature the Rydberg blockade effect and can be mapped on
an Ising model [3,34,35].

Similar interactions also exist for a spin system real-
ized with two different Rydberg states |↓〉 = |nS〉 and |↑〉 =
|(n + 1)S〉. In this case, the van der Waals Hamiltonian (A5)

TABLE I. Waists of the blue (480 nm) and red (780 nm) Rydberg
excitation lasers used to realize the different models and the respec-
tive ground state cloud waists.

Model blue exc. σx,y red exc. σx,y GS σx GS σy,z

Ising 55 µm 1.5mm 64 µm 45 µm
XXZ 55 µm 1.5mm 64 µm 45 µm
XX 55 µm 1.5mm 62 µm 47 µm

also induces a spin exchange term because the two Ryd-
berg states are coupled via the intermediate pair state |m〉 =
|nP, nP〉 [see Fig. 1(c)]. In the case of n = 61, both the Ising
and exchange interactions terms are similar with J‖/J⊥ =
−0.7. Therefore, this spin system can be mapped onto an
effective Heisenberg XXZ-Hamiltonian [21].

In order to realize an Ising Hamiltonian with two different
Rydberg states, a state combination is needed where the ex-
change term (A2) is small requiring a large Foerster defect �ν

[see Fig. 1(d)]. This can be achieved by coupling |↓〉 = |nS〉 to
|↑〉 = |(n + 3)S〉. In this case, the largest contribution to the
exchange term comes from |m〉 = |(n + 1)P, (n + 1)P〉. For
example, for n = 61, this spin system is characterized by a
ratio of J‖/J⊥ = 400, which is a good approximation to an
Ising Hamiltonian (J⊥ = 0).

APPENDIX B: EXPERIMENTAL IMPLEMENTATION
OF VARIOUS SPIN MODELS

To realize the Heisenberg XX model, a single-photon
microwave transition at 2π × 16 GHz with a Rabi fre-
quency of � = 2π × 18 MHz couples the state |↓〉 to |↑〉 =
|61P3/2, mj = 1/2〉. To implement the XXZ Hamiltonian,

FIG. 5. Comparison of the scaling behavior for rescaling time either by the median interaction matrix (a) or by the median of the pair
oscillation frequency (b). max(J⊥

median, J‖
median ) is defined as J⊥

median for the Heisenberg XX and XXZ model, and as J⊥
median for the Ising model.
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FIG. 6. Influence of the density and the blockade radius on the DTWA simulations. Left column: Simulations for the same blockade radius
as in the main text for different particle numbers N . Right column: Simulations for the same particle number and various blockade radii. In all
simulations the geometry of the cloud is the same.

two microwave photons at 2π × 16 GHz couple to |↑〉 =
|62S1/2, mj = 1/2〉. Here, a single photon Rabi frequency
of � = 2π × 48 MHz with a detuning �ν = 2π × 170 MHz
leads to a two-photon Rabi frequency of �2γ = 2π ×
6.8 MHz. To realize the Ising model, the state |61S〉 has to
be coupled to |64S1/2, mj = 0.5〉 but the detuning of �ν =
2π × 1.426 GHz is too large and prevents an efficient cou-
pling of the states with two microwave photons of the same
frequency 2π × 47 GHz. Therefore, we combine two fre-
quencies differing by 2π × 1.563 GHz such that the effective
detuning to the intermediate state |62P〉 is 2π × 136 MHz.
For a single photon Rabi frequency of � = 2π × 30 MHz
this results in an effective two-photon Rabi frequency of
�2γ = 2π × 3.3 MHz [see Figs. 1(b)–1(d) for the microwave
photonic transitions]. The parameters of the laser waists and
resulting geometries can be found in Table I.

APPENDIX C: DISTRIBUTION OF INTERACTION
TIMESCALES IN THE SPIN SYSTEM

In the main text, we have highlighted that the typical
timescale of the relaxation is given by the pair oscillation
frequency |J‖ − J⊥|. For the Heisenberg XXZ Hamiltonian,
both exchange and Ising interactions exist. Therefore, another

possibility of rescaling would only involve J⊥, which would
disregard the anisotropy δ = J‖/J⊥. In Fig. 5, we have com-
pared both possibilities of rescaling time. The rescaling by the
oscillation frequency shows a more precise collapse of the ex-
perimental data. This demonstrates that this frequency indeed
determines the relevant timescale of the system. In addition,
this indicates that the Rydberg interactions can be mapped
onto the Heisenberg XXZ Hamiltonian with δ = −0.7.

In Fig. 6, we show the sensitivity of the DTWA simulations
to different densities and blockade radii. For most simulations,
these parameters have only a small, quantitative effect on the
simulated dynamics. A notable exception is the Ising system.
Here, the Rydberg cloud is largely saturated and the blockade
radius is the relevant length scale of the system. Therefore,
a variation of the blockade radius changes drastically the
early time dynamics. In contrast, the density of the sample
featuring XX-interaction is low, therefore the blockade effect
can be neglected. For the Heisenberg XXZ Hamiltonian, the
simulations show that the blockade radius of 8.3 µm fits the
observed dynamics slightly better than the value of 10 µm
expected from the simplified excitation model assuming no
phase noise of the laser.

Histograms showing the resulting distribution functions of
couplings are shown in Fig. 7.
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FIG. 7. Histograms of the distribution of interaction strengths for
the experimental data shown in the main text. The histograms are
obtained by averaging over 50 distributions of interaction strengths,
with a bin size of 0.1median j maxi |J⊥,‖

i, j |.

APPENDIX D: INFLUENCE OF THE GAUSSIAN TRAP
GEOMETRY ON THE RELAXATION DYNAMICS

The functional form of the relaxation dynamics in a
strongly disordered spin system has been demonstrated to be
independent of both the Rydberg blockade radius and the
anisotropy of the Heisenberg XXZ Hamiltonian. However,
the timescale of these dynamics is contingent upon the den-
sity and coupling constant. Consequently, there arises the
necessity to rescale time by the median interaction strength
mediani max j Ji j .

In the context of a Gaussian trap geometry, we conduct an
averaging procedure over varying local densities ρ. Assum-
ing local density approximation, we average over different
local relaxation dynamics, each characterized by a stretched
exponential function, sharing a common stretching exponent
β, while exhibiting distinct timescales τ (ρ). The collective
summation of these relaxation curves again manifests as
a stretched exponential decay. However, the details of the
stretching exponent β depend on the shape of the Gaussian
cloud (cf. Fig. 8).

Furthermore, finite-size effects come into play, with one-
dimensional physics becoming relevant in an elongated
cigar-shaped geometry and two-dimensional physics in a flat
pancake geometry. Consequently, the measured stretched ex-
ponential does not align with the expected value of β = d/α

(where d represents the dimension and α signifies the range
of interactions) as anticipated from semiclassical simulations
[28]. Instead, the observed value interpolates between various
dimensions and exhibits slight variations in different experi-
mental realizations when the trap geometry is altered.

Nevertheless, through a comparative analysis of experi-
ments conducted in similar geometries, it remains feasible
to investigate whether the dynamics are contingent upon the
size of the blockade radius [21] or the anisotropy parameter
� of the Heisenberg XXZ Hamiltonian (as explored in this
study).

FIG. 8. MACE simulations of the relaxation of the magnetization
for four different geometries of the Gaussian cloud where the aspect
ratio of the waist wx in x direction with respect to the waist wyz in
y and z direction is tuned. The product wx × w2

yz is fixed for all four
geometries. For each geometry, we simulate the time evolution for
different anisotropies J‖

J⊥ ∈ {−2, −0.5, 0, 0.5, 2}.

APPENDIX E: RELAXATION UNDER INITIAL STATES
WITH DIFFERENT MAGNETIZATION

In order to test if the universal relaxation behavior, orig-
inating from a pair picture approximation is even consistent
for the relaxation of more general states than the fully

Init. Preparation Readout

(a)

(b)

Evolution

FIG. 9. Relaxation dynamics of initial states with different mag-
netization. (a) Experimental sequence consisting of an evolution
under a spin locking field (preparation), followed by a measurement
of the magnetization for the resulting relaxation dynamics for t2

(evolution). (b) Magnetization dynamics after different �Lock/2π

applied in phase one.
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x-polarized state, we probe the relaxation for initial states with
different magnetization. The experimental protocol is shown
in Fig. 9(a) and is similar to the one used in [53]. It consists
of the following steps. In the preparation, spins are initially
polarized along the x axis. A locking field �Lock, which is
also aligned along the x axis is applied for a time t1. During
this time, as reported in [53], the magnetization will relax and
approximately settle to a constant nonzero value that depends
on the strength of the locking field. In the evolution, we then
turn off the locking field and measure the resulting relaxation
of the x-magnetization. The resulting relaxation over period
t2 is shown in Fig. 9(b). The magnetization starts with dif-
ferent values depending on the field strength applied during
the preparation. We note that the locking time t2 = 2 µs is
larger than the time it takes to directly relax to zero magne-
tization without phase one (blue points). We observed that for
decreasing initial magnetization, the onset of the relaxation
dynamics gets shifted to a later time (red, green, and yellow
points). However, independent of this behavior, for later times,
all curves overlap with the direct relaxation curve without field
(blue points).

The observed dynamics can be understood within the pair
approximation in the following way. During preparation, the
locking field is only able to lock pairs with interactions
smaller than the field strength �Lock. These pairs stay po-
larized while pairs with stronger interactions oscillate and
dephase. As reported in [53], magnetization takes an almost
constant value. During the evolution, when the field is turned

off, the relaxation timescale is given by the remaining pairs
that were locked and now start to oscillate. This timescale is
longer for small fields where only weakly interacting pairs
remained locked during the preparation. The overlapping at
a later time is due to the fact that these pairs are also locked
under larger fields. The data was take for |48S1/2, mj = 0.5〉
and |48P3/2, mj = 0.5〉.

APPENDIX F: DERIVATION
OF DEPOLARIZATION DYNAMICS

The goal is to compute the expectation value of 〈Ŝx(t )〉 =
1
N

∑
i 〈ŝi

x〉 starting from the x-polarized state |ψ0〉 = |→〉⊗N

governed by the effective Hamiltonian derived in [48]

Ĥeff =
∑
〈i, j〉

(
J⊥

i j

(
ŝi

x ŝ j
x + ŝi

yŝ j
y

) + J‖
i j ŝ

i
z ŝ

j
z

)

+
∑

〈i, j〉,〈k,l〉
Ji jkl

eff ŝ(i)( j)
z ŝ(k)(l )

z (F1)

where 〈i, j〉 denotes the summation over paired spins i and j
and 2ŝ(i)( j)

z = ŝ(i)
z + ŝ( j)

z .
Without loss of generality, we assume that spins 1 and

2 form a pair and compute 〈ŝ1
x (t )〉. The evolution of 〈Ŝx(t )〉

then follows simply by linearity. First we notice that all the
terms in Ĥeff commute with each other, allowing for direct
computation of 〈ŝ1

x (t )〉 by commuting ŝ1
x through the time

evolution operators,

ŝ1
x (t ) = eitĤeff ŝ1

xe−it Ĥeff (F2)

= eitJ⊥
12

(
ŝ1

x ŝ2
x+ŝ1

y ŝ2
y

)
eitJ‖

12 ŝ1
z ŝ2

z eit ŝ(1)(2)
z

∑
〈k,l〉 J12kl

eff ŝ(k)(l )
z ŝ1

xe−it ŝ(1)(2)
z

∑
〈k,l〉 J12kl

eff ŝ(k)(l )
z eitJ‖

12 ŝ1
z ŝ2

z e−itJ⊥
12

(
ŝ1

x ŝ2
x+ŝ1

y ŝ2
y

)
(F3)

= eitJ⊥
12

(
ŝ1

x ŝ2
x+ŝ1

y ŝ2
y

)
eit ŝ1

z

∑
〈k,l〉 J12kl

eff ŝ(k)(l )
z e2itJ‖

12 ŝ1
z ŝ2

z e−itJ⊥
12

(
ŝ1

x ŝ2
x−ŝ1

y ŝ2
y

)
ŝ1

x . (F4)

Now we can just expand the exponentials using the usual formula for the exponential of Pauli matrices (note that ŝ1
x ŝ2

x + ŝ1
y ŝ2

y is
akin to ŝx in a specific subspace) and take the expectation value with respect to the initial state to get the desired result,

〈ŝ1
x (t )〉 = 1

2
cos

(
J⊥

12 − J‖
12

2
t

) ∏
〈k,l〉

cos2

(
J12kl

eff

8
t

)
. (F5)
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4.2 emergent pair localization

Another way of validating the pair model is the comparison of the same model at different
disorder strengths. This can be realized in a Rydberg based quantum simulator by tuning
the systems’ density as explained in Section 1.3.
In the following [D], we again use the x-magnetization as observable and track its

steady-state value with respect to an external magnetic field aligned in x-direction as
well. We find a clear qualitative difference between weak and strong disorder at small
external fields: The strongly disordered system responds much stronger to the field, i.e. the
steady-state magnetization grows very fast with increasing field strength, than the weakly
disordered on. This leads to a sharp cusp-like curve, which we show to be incompatible
with a thermal state. Instead, we find that a pair-based effective model reproduces this
feature and can also match the full measurement data closely. Conversely, at weak disorder,
i.e. high density, the steady-state magnetization behaves quite different. At weak field,
the curve is very round which is reproduced nicely using a thermal description.
This experiment provides direct evidence for a pair localization transition. However,

it is possible that this is a prethermal regime only and the signature vanishes at much
later times. Testing for this experimentally will of course be very hard, if not impossible,
depending on the timescale of this final relaxation.
Following the publication, we present an alternative to the mean-field model in Sec-

tion 4.2.1. This conceptually simpler model allows for analytical computation of both
the presumably thermal and pair localized magnetization curves. Thus, the qualitative
difference between weak and strong disorder is tracked back to a qualitative difference
of the distribution of relevant couplings. While this model is not as quantitative as the
mean-field model contained in the publication, it nonetheless has the same qualitative
features and thus highlights the physical origin of the behavior at weak field more directly.



Emergent pair localization in a many-body quantum spin system

Titus Franz,1, 2, ∗ Sebastian Geier,1 Adrian Braemer,1, 3 Clément Hainaut,1, 4

Adrien Signoles,1, 5 Nithiwadee Thaicharoen,1, 6 Annika Tebben,1 Andre Salzinger,1

Martin Gärttner,1, 3, 7, 8, † Gerhard Zürn,1 and Matthias Weidemüller1, ‡

1Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, Garching, Germany

3Kirchhoff-Institut für Physik, Universität Heidelberg,
Im Neuenheimer Feld 227, 69120 Heidelberg, Germany

4Univ. de Lille, CNRS, UMR 8523–PhLAM–Physique des Lasers, Atomes et Molécules, Lille, France
5PASQAL, 7 rue Léonard de Vinci, 91300 Massy, France

6Department of Physics and Materials Science, Faculty of Science,
Chiang Mai University, 239 Huay Kaew Road, Muang, Chiang Mai, 50200, Thailand

7Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg,
Philosophenweg 16, 69120 Heidelberg, Germany

8Institute of Condensed Matter Theory and Optics,
Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany

(Dated: February 27, 2024)

Understanding how closed quantum systems dynamically approach thermal equilibrium presents
a major unresolved problem in statistical physics. Generically, non-integrable quantum systems are
expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis. However, in
the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to
thermalize on experimentally accessible timescales, as in spin glasses or many-body localized systems.
In general, particularly in long-range interacting quantum systems, the specific nature of the disorder
necessary for the emergence of a prethermal, metastable state—distinctly separating the timescales
of initial relaxation and subsequent slow thermalization—remains an open question. We study an
ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized
by a Rydberg quantum simulator. We observe a drastic change in the late-time magnetization
when increasing disorder strength. The data is well described by models based on pairs of strongly
interacting spins, which are treated as thermal for weak disorder and isolated for strong disorder.
Our results indicate a crossover into a pair-localized prethermal regime in a closed quantum system
of thousands of spins in the critical case where the exponent of the power law interaction matches
the spatial dimension.

I. INTRODUCTION

What is the fate of an isolated, strongly interacting,
and possibly disordered quantum system initially pre-
pared in a far-from-equilibrium state? In general, even
if a strongly interacting quantum system is isolated from
its environment, it is expected to thermalize [1–4]. As a
notable exception to this rule, strongly disordered sys-
tems can retain retrievable memory of their initial state
for arbitrarily long times, leading to a rich phenomenol-
ogy ranging from glassy dynamics to many-body local-
ization.

A comprehensive framework for understanding sys-
tems that do not undergo direct thermalization is pro-
vided by the concept of prethermalization [5–10]: Here,
the Hamiltonian can be decomposed into a reference
Hamiltonian H0, and a weak perturbation H1 which

∗ franzt@physi.uni-heidelberg.de
† martin.gaerttner@uni-jena.de
‡ weidemueller@uni-heidelberg.de

breaks at least one local conservation law of H0. In such
instances, a metastable state exists whose properties
can be calculated using the generalized Gibbs ensemble
(GGE) of the reference Hamiltonian H0 [11]. As an ex-
ample, we can consider many-body localization (MBL)
in the framework of prethermalization: Here, the refer-
ence Hamiltonian is given by a non-interacting ensem-
ble of spins subject to a strongly disordered external
field, andH1 describes the interactions between nearest-
neighbor spins. If these interactions are sufficiently
weak, these systems remain localized [12, 13], and the
conserved quantities become “dressed,” commonly re-
ferred to as l-bits [14, 15]. However, a different type of
disorder naturally occurs in numerous systems, includ-
ing cold atoms [16–23], ions [24] or nitrogen-vacancy
centers [10, 25] where the couplings themselves are dis-
ordered, not the external field. In this case, discern-
ing the reference Hamiltonian H0 becomes nontrivial,
and in previous studies, the depolarization dynamics
in these systems is interpreted as direct thermaliza-
tion [10, 25]. Yet, it is known from spin glasses that dis-
order in the couplings leads to a hierarchy of timescales,
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Figure 1. Thermal and non-thermal regimes. Schematic depiction of the dynamics of the system. Depending on the
strength of disorder, initially, uncorrelated spins evolve either directly (via A) to a thermal state with correlations between
all spins or (via B) to a prethermal state consisting of uncorrelated pairs of strongly correlated spins. Whether, in this
case, thermalization occurs eventually remains an open question.

which slows down the dynamics such that on experimen-
tally accessible timescales, these systems never reach
thermal equilibrium.

Unfortunately, understanding if and how quantum
systems thermalize is extremely challenging, as numer-
ical simulations are limited to relatively small system
sizes [26–28] and analytical solutions are scarce. Quan-
tum simulation experiments with single-site resolution
can investigate slightly larger systems with several tens
of particles [29–33], but they can only probe finite time
scales [17–19, 24].

In this study, we employ a Rydberg quantum sim-
ulator [34–36] to explore the thermalization dynamics
in long-range interacting systems in 3D using a cloud
of up to 6000 Rydberg spins with spatial disorder. In
the weakly disordered regime, characterized by similar
distances between particles (top row in Fig. 1), our
experimental findings align with previous assertions of
direct thermalization [25]. However, at strong disorder,
we demonstrate the emergence of a localized prethermal
state, verified through a non-analytical dependence of
the late-time magnetization on an external field. Here,
the hierarchy of interaction strengths allows us to effec-
tively describe the Hamiltonian with a reference Hamil-
tonian H0, where strongly interacting pairs of spins
remain localized for long times before interactions be-
tween pairs possibly lead to thermalization at even later
times (bottom row in Fig. 1).

II. EXPERIMENTAL SETUP

We consider the quantum spin-1/2 Heisenberg XXZ-
model (in units where ℏ = 1)

Ĥint =
1

2

∑
i,j

Jij

(
ŝ(i)x ŝ(j)x + ŝ(i)y ŝ(j)y + δŝ(i)z ŝ(j)z

)
, (1)

with spin operators ŝ(i)α = σ̂
(i)
α /2 (α ∈ {x, y, z}) acting

on spin i. The interactions between spins decay with
a power law Jij = Car

−a
ij

(
1− 3 cos(θij)

2
)
, where rij

are the distances between the spins i and j and θij is
the angle with respect to the quantization axis defined
by the magnetic field. The parameters δ and a are de-
termined by the choice of Rydberg states (cf. [35]). In
our experiment, we encode the spin degree of freedom
in the Rydberg states |↓⟩ = |48S⟩ and |↑⟩ = |48P ⟩ lead-
ing to dipolar interactions as described by Eq. (1) with
δ = 0, a = 3 and C3/(2π) = 1.15GHzµm3. Additional
data for a Van-der-Waals interacting system (a = 6,
C6/(2π) = 507GHz µm6, δ ≈ −0.7 and no angular de-
pendence on θij) is shown in Appendix B.

The spins are distributed randomly with an imposed
minimal distance rbl resulting in a random but corre-
lated distribution of couplings Jij (Fig. 1). This ge-
ometry is naturally given in the experiment where the
Rydberg blockade effect forbids two excitations being
closer than rbl. The blockade constraint allows tun-
ing the strength of the disorder: For the weak disor-
der measurements, we chose the density such that the
typical interparticle distance of a0 ∼ 6.8 µm is compa-
rable to the blockade radius of 4.6 µm, whereas in the
strongly disordered case, the blockade radius of 5.0µm
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is much smaller compared to the typical interparticle
distance a0 ≈ 11.2 µm (see methods for more details
on the Rydberg atoms’ distribution). In both cases,
the median interaction strengths of Jmedian/(2π) =
mediani (maxj |Jij |) /(2π) = 2.8MHz (weak disorder)
or Jmedian/(2π) = 1.1MHz (strong disorder) is large
compared to typical decoherence rates like the decay
rate of the Rydberg atoms of Γ/(2π) = 0.018MHz. The
maximal duration of the experiment of 10 µs is chosen
such that the Rydberg decay can still be considered
small.

By coupling the spin states with a microwave field Ω,
we perform a Ramsey protocol (schematically depicted
in Fig. 2 a) where a first π/2 pulse initially prepares the
system in the fully x-polarized state |ψ0⟩ = |→⟩⊗Nx =

2−N/2(|↑⟩ + |↓⟩)⊗N (see methods for details of the ex-
perimental protocol) which shows no classical dephas-
ing or dynamics in a mean-field description where for
each atom, the effective field is aligned with the polar-
ization of the atoms (see Fig. 2 a center). With a sec-
ond π/2-pulse, we read out the average magnetization
⟨Ŝx⟩ = ⟨

∑
i ŝ

(i)
x ⟩/N . Since this observable is an average

over local (single-spin) observables, it should relax to
its thermal value if the system is locally thermalizing.

III. HIERARCHY OF RELAXATION TIME
SCALES

The blue dots in Fig. 2 b (strong disorder) and the red
dots in Fig. 2 c (weak disorder) labeled with 0.0MHz
show the time evolution of the magnetization under
Ĥint. In both regimes, the magnetization relaxes to
zero, following a stretched exponential law as discussed
in previous work [37–39], and reaches a steady-state on
a time scale of ∼ 2π/Jmedian in units of the inverse me-
dian nearest neighbor interaction strength. This depo-
larization dynamics is a direct consequence of the sym-
metry of the interaction Hamiltonian as all eigenstates
already have vanishing x-magnetization due to the con-
servation of

∑
i ŝ

(i)
z

1.
This situation changes when adding a homogeneous

transverse field term to the Hamiltonian

Ĥext = Ω
∑
i

ŝ(i)x , (2)

which breaks the U(1) symmetry and leads to a finite
late-time magnetization as the data in Fig. 2 b and c
shows. As a result, the dynamics still feature an ini-
tial fast relaxation on the time-scale of 2π/Jmedian, fol-

1 From the conversation of Ŝz , i.e. [Ŝz , Ĥint] = 0, it follows that
⟨Ŝx⟩ = −i⟨[Ŝy , Ŝz ]⟩ = 0 for every eigenstate.

lowed by a slowly relaxing regime. The stronger the ap-
plied magnetic field, the sooner the metastable regime
is reached, and the higher the magnetization value be-
comes.

The finite late-time value of the magnetization of
these curves may be understood on a qualitative level by
a simple, intuitive, spin-locking model [40]. At strong
field Ω ≫ Jmedian, the inter-spin interaction cannot
overcome the magnetic forces and so the spins stay put.
Lowering the external field strength weakens this lock
and the spins can start dephasing due to their interac-
tions.

As a consistency check, we compare the experimental
data to semiclassical truncated Wigner approximation
(dTWA) (solid lines in Fig. 2 b and c). All simulated
curves agree well with the experimental data except for
the strongest magnetic field strength, confirming the
quality of our quantum simulation of the Heisenberg
model. The deviations at strong magnetic field (see
grey dots in Fig. 2 b are likely caused by an experimen-
tal imperfection as the strong field may lead to addi-
tional couplings to other Rydberg states. This induces
population loss to states, which are not measured, thus
reducing the total magnetization. Therefore, all exper-
imental data at external field strength above 5MHz are
greyed out.

IV. PRETHERMALIZATION IN DISORDERED
SPIN SYSTEMS

The striking difference between strongly and weakly
disordered cases becomes apparent when examining the
dependence of the plateau value on the external field
measured after 10 µs (see Fig. 2d and e). For strong
disorder, there is a sharp cusp at Ω = 0MHz, which
is not present for weak disorder, where the curve is
very smooth. Note that this is not an artifact of the
difference in absolute scale of the x-axis caused solely
by the on average weaker interactions in the strongly
disordered case. Relative to their respective median in-
teraction strength Jmedian, both plots cover a similar
range. For a generic, thermalizing system, it is plausi-
ble to expect a smooth parametric dependence based on
the Eigenstate Thermalization Hypothesis (ETH). We
will argue that the cusp feature is a clear signature of a
non-thermal state, consistent with a generalized Gibbs
ensemble with extensively many conserved quantities.

To explain the curve in the strongly disordered
regime, characterized by a small blockade radius rbl and
significant variations in the nearest neighbor inter-spin
distances, we employ a model based on pairs of strongly
interacting spins: For strong positional disorder, close-
by spins form pairs that approximately decouple from
the rest of the system as the energy splitting between
their eigenstates will typically be much larger than any
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Figure 2. Late-time magnetization for different strength of disorder for a spin system interacting with
dipole-dipole interactions. a Experimental protocol: A π/2 pulse (blue arrow in the Bloch sphere) rotates the spins
from the z (light red arrow) to the x-direction (red arrow). During the subsequent time evolution, the system interacts via
the Heisenberg Hamiltonian (1) while a spin locking field at Rabi frequency Ω is applied. The final magnetization is read
out after a second π/2-pulse. b (strong disorder) and c (weak disorder): Measured spin relaxation dynamics for varying
transverse field strengths. The solid lines show semiclassical DTWA simulations. d (strong disorder) and e (weak disorder):
Magnetization after 10µs as a function of field strength Ω. The solid blue (red) lines show the magnetization expected from
a GGE (4) (canonical ensemble (5)). The dashed lines show the same simulations rescaled by a global factor to best fit the
experimental data.
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other terms in the Hamiltonian affecting the pair [41–
45]. In the presence of an external field, such a pair,
initially in a fully polarized state, will undergo coherent
oscillations and depolarize only very slowly as it does
not become entangled with the rest of the system until
very late times [38]. Thus, the depolarization dynamics
arises due to dephasing among pairs oscillating at dif-
ferent frequencies due to different interaction strengths.

Thus, returning to the notion of prethermalization
introduced above, H0 is given by the part of the full
Hamiltonian that acts on single pairs, while interactions
between the pairs form the weak part H1. Since H0

factorizes into contributions of the individual pairs, we
can make a prediction for the prethermal steady state
magnetization. On average, each pair contributes

⟨Ŝx⟩pair =
Ω2

2(Ω2 + j2)
(3)

to the total magnetization, where j = J (δ − 1) and
J the pair’s coupling (see Appendix C for a detailed
derivation). The distribution of pair couplings can be
found numerically by sampling blockaded positions. To
calculate the steady-state value, we use a self-consistent
mean-field approach to assign each pair an effective field
strength Ωi taking into account the interaction with
its surroundings. This leads to the asymmetry around
Ω = 0, as for Ω > 0, the mean-field contribution adds
to the static part and thus results in a larger effective
field, while for Ω < 0 the converse is true. This effect is
much more prominent in the case of α = 6 as shown in
the appendix in Fig. 4.

In essence, this mean-field pair model describes the
system as a generalized Gibbs ensemble

ρGGE ∝ exp

(
−
∑
i

βiH
(mf)
pair,i

)
(4)

of pairs governed by H
(mf)
pair,i, where the Lagrange mul-

tipliers βi are fixed by energy conservation. Using this
model, we find qualitative agreement with the experi-
mental data in the case of strong disorder (blue, solid
line in Fig. 2d). If the interaction strength of the
pair simulation is artificially increased by a factor of
1.75 (dashed blue line), we find even perfect agreement
with the experiment. We conjecture that this factor
is needed to take into account interactions beyond the
nearest neighbor.

Thus, we have shown that the system is consistent
with a prethermal description in the sense, that we
found a quasi-stationary state inconsistent with a ther-
mal ensemble description yet matching a generalized
Gibbs ensemble. Furthermore, this prethermal state is
localized as the pairs’ eigenspaces constitute local inte-
grals of motion.

In the less disordered regime, this model of isolated
pairs also predicts a sharp, narrow shape (see blue, solid
line in Fig. 2 e) which does not match the experimen-
tal data even on a qualitative level. In this regime,
the approximation of isolated pairs of spins is no longer
valid, and we need to consider the build-up of entangle-
ment between different pairs of spins, which leads to fast
thermalization. While the full treatment of the highly
correlated many-body system of 6000 spins is not feasi-
ble on a classical computer, we can make the first order
approximation that the system itself acts as a thermal
bath for each pair and imposes that all pairs thermalize
to the same global temperature (see also Appendix C):

ρcan ∝ exp

(
−β
∑
i

H
(mf)
pair,i

)
(5)

Here, β is defined implicitly by energy conservation
Tr ρcanĤ = ⟨ψ0|Ĥ|ψ0⟩. We find qualitative agreement
between this model (red, solid line) and experimental
data. The agreement can be improved by increasing
the interactions by a factor of 1.4 (red, dashed line) that
effectively takes into account the correlations between
distant spins that are neglected in the pair description
of eq. 5. The deviation at strong field is likely caused by
coupling to different Rydberg states as remarked earlier.

As a consistency check, we also try to explain the
data in the strong-disorder regime with the canonical
ensemble description (see Fig. 2 d) which clearly fails to
reproduce the observed sharp cusp around Ω = 0MHz.

V. CONCLUSION AND DISCUSSION

We studied the relaxation dynamics of power-law in-
teracting spins by observing the change in the para-
metric dependence of the late-time magnetization on an
external field. By finding simple models based on pairs
of strongly interacting spins, we explained the measured
data both in the weak and strong disorder regime reveal-
ing a fundamental change in the dynamical properties of
the system on experimentally accessible timescales. Our
results indicate the presence of a crossover from a ther-
malizing regime to a prethermal pair-localized regime
caused by positional disorder.

The method for observing prethermal localization
used in this work is inherently versatile and may also
be applied to study thermalization in other systems.
The signature that distinguishes thermalized from lo-
calized systems is the smooth dependence of the steady-
state magnetization(, which is absent in the latter).
This consideration becomes particularly crucial when
the system’s components, such as the pairs of spins in
this study, experience rapid dephasing. This dephasing
generally occurs on a much faster timescale compared
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to the build-up of entanglement between these compo-
nents, resulting in thermalization. This insight calls for
the reevaluation of claims made in [10, 25], given that
the relaxation of the magnetization in spatially disor-
dered spin systems reflects only the dephasing but not
the thermalization process.

Notably, our system implements a critical case where
the power law dependence of the interaction strength
with distance a equals the spatial dimension d = 3.
In this regime, theoretical results for large systems are
scarce due to competing scales. In Appendix B, we show
a similar experiment for a Van-der-Waals interacting
system where a = 2d = 6. In this case, the magnetiza-
tion behaves qualitatively as in the strongly disordered
case of α = 3 and also shows a sharp cusp. This indi-
cates that prethermalization caused by localized pairs
of spins is a robust effect independent of the spatial
dimension as long as disorder is sufficiently strong.

This study paves the way toward exploring the late-
time dynamics of far-from-equilibrium systems with
power-law interactions and disordered couplings, which
are ubiquitous in nature. For these systems, it is yet an
open question if they show (prethermal) many-body lo-
calization similar to the standard model of MBL where
the on-site potential is disordered. Recent theoretical
and numerical results indicate that localization and the
consequent absence of thermalization are excluded in di-
mensions d > 1 and for power law interactions [23, 46].
However, the type of spatial disorder investigated in this
study differs significantly from that in traditional MBL
systems, rendering most conventional arguments about
instability and eventual thermalization not directly ap-
plicable. Intriguingly, first numerical studies [45] sug-
gest that for the type of disorder studied here, localiza-
tion effects are surprisingly robust to finite size drifts,
a significant issue for the numerical investigation of the
standard model of MBL. To draw parallels between our
findings of prethermalization and prethermal MBL, it
will be decisive to investigate the scaling of the relax-
ation timescale with the strength of disorder which is
expected to be exponential in the case of prethermal
MBL [47]. However, a proper definition of the strength
of disorder in case the disordered couplings, opposed
to disordered on-site detuning, remains an open ques-
tion. Finally, an exciting avenue for future research is
to explore the relation between the slow relaxation dy-
namics observed in this work and quantum spin glasses.
In quantum spin glasses, the combination of frustration,
low energies and disorder leads to exceptionally slow re-
laxation dynamics, a phenomenon being highly relevant
to the approach of quantum computation via quantum
annealing [48, 49].
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METHODS

Here we provide further details on the numeric simu-
lations, the experimental protocol and the spatial con-
figuration of the Rydberg cloud.

Details on experimental implementation. We
start the experiment by trapping 106 Rubidium-87 in
a cigar shaped dipole trap with a diameter of 300 µm
(long axis) and 70 µm (short axis) at a temperature of
10 µK. We consider this gas to be frozen since the atoms
move only a distance of dkin = texp

√
3kT
m = 0.5µm

during an experimental cycle of texp = 10 µs which
is small compared to the Rydberg blockade radius of
rbl ≈ 5µm. After optically pumping the atoms into
the state |5S(F = 2,mF = 2)⟩, we optically excite the
atoms to the spin state |↓⟩ via a two-photon off-resonant
excitation process (single-photon detuning of 98MHz
and two-photon Rabi frequency of 1MHz). A global
microwave π/2-pulse prepares the fully polarized ini-
tial state |ψ0⟩ = |→x⟩⊗N . For the dipolar interact-
ing spin system, we couple the states |48S⟩ and |48P ⟩
resonantly with a single-photon transition at 35GHz.
This frequency is generated by mixing a 5GHz sig-
nal of the Keysight M8190A AWG with an Anritsu
MG3697C signal generator. In the case of Van-der-
Waals interactions, the state |61S⟩ is coupled resonantly
to |62S⟩ via a two-photon transition at a microwave fre-
quency of 16.546GHz which can be directly generated
with a Keysight M8190A arbitrary waveform generator
(AWG).

The same microwave setup is used to realize the spin
locking field where a phase shift of 90 degrees needs
to be added such that the field aligns with the spins.
This allows us to implement the transverse field term,
Eq. (2), with field strengths up to Ω/(2π) = 10MHz.
After a time evolution t, the x-magnetization is rotated
tomographically onto the z-axis by applying a second
π/2-pulse with various phases. Finally, the magnetiza-
tion is obtained from a measurement of the population
of one of the two spin states via field ionization, and
the other spin state is optically deexcited to the ground
state. A visual representation of the measurement pro-
tocol can be found in Fig. 2 a, and a more detailed
explanation of the determination of the magnetization
was reported in a previous publication [37].

Details on the Rydberg distribution. In this
work, we can tune the disorder with the Rydberg block-
ade effect, which imposes a minimal distance rbl be-
tween the spins. At small blockade radius, the spins are
distributed randomly in the cloud, while a large radius
introduces strong correlation between the atom posi-
tions and, hence, the coupling strength. To quantify
the disorder strength, we compare the blockade radius
to typical interparticle distance, which can be estimated
from the Wigner-Seitz radius a0 = [3/(4πρ)]1/3. We ad-

just this parameter in our experiment by controlling the
Rydberg fraction, which is dependent on the excitation
time texc. In addition, we tune the Rydberg density ρ
by varying the volume of the ground state atoms with
a short time-of-flight period after turning off the dipole
trap and before exciting to the Rydberg states. We
measure the resulting Rydberg density through deple-
tion imaging [50] where we deduce the Rydberg distri-
bution from the missing ground state atoms after Ry-
dberg excitation. The measured parameters of the Ry-
dberg distribution are presented in detail in Table I in
the appendix.

To estimate the Rydberg blockade radius, we model
the excitation dynamics by the simplified description in-
troduced in [37] which assumes a hard-sphere model for
the Rydberg blockade effect. This model sets an upper
limit on the blockade radius rbl = 6

√
C6

Γeff
by estimating

the effective linewidth of the laser, based on the dura-
tion of the excitation pulse and power broadening. The
latter is calculated self-consistently, taking into account
the enhancement factor induced by collective Rabi os-
cillations within a superatom [51, 52].

This established model of the Rydberg cloud can
be benchmarked using the experimentally measured
time evolution, which is known to be well described
by semiclassical Discrete Truncated Wigner Approxi-
mation (DTWA) in case no locking field is applied [37]
(see Fig. 3 in appendix A). This simulation is highly
sensitive with respect to the blockade radius and the
density, and can therefore be used to determine these
experimental parameters in case of weak and strong dis-
order. From the excitation model, we can also compute
the median of the nearest neighbor interaction strength
Jmedian which ranges from 1.1MHz to 2.8MHz depend-
ing on the experimental setting (see table I). The re-
sulting time evolution can be considered unitary for up
to 10 µs, which is an order of magnitude larger than the
timescale of the experiment 2π/Jmedian.
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Appendix A: Semiclassical DTWA simulations

In previous work [37, 53], we could show that the
semiclassical Discrete Truncated Wigner Approxima-
tion (DTWA) is well suited to describe the relaxation
of the magnetization under the interaction Hamiltonian
(1) defined in the main text. The main principle of
DTWA is to sample classical time evolutions over differ-
ent initial states such that the quantum uncertainty of
the initial state is respected [54]. In Fig. 3, we compare
the time evolution obtained from DTWA simulations
to the experimental data (red dots) in the case of weak
(left panels) and strong disorder (right panels). It turns
out that the resulting dynamics depend sensitively on
the blockade radius and on density. However, the same
fitted parameters describes the time evolution for dif-
ferent locking fields (top panels) and the dependence
of the late-time magnetization on the field strength. As
mentioned in the main text, the observed discrepency of
DTWA simulations and experimental data observed for
large fields in the weakly disordered regime (Fig. 3 c)
can be most likely attributed to experimental imperfec-
tions such as coupling to other Rydberg states due to
power broadening of the microwave transition.

Appendix B: Data for Van der Waals interactions

By encoding the spin degree of freedom in different
Rydberg states, it is possible to realize different Hamil-
tonians with different range of interactions. In addition
to a dipolar interacting Hamiltonian with a = d = 3 as
shown in the main text, we can also create a spin system
with less long-range Van der Waals interactions. For
this purpose, we couple the Rydberg state |↓⟩ = |61S⟩ to
|↑⟩ = |62S⟩ which results in a Heisenberg XXZ Hamil-
tonian as described by Eq. (1) with δ = −0.7, a = 6
and C6/(2π) = 507GHzµm6 (see also Table I for an
overview over the experimental parameters).

Similar to the experimental results presented in the
main article, also the Van der Waals interacting sys-
tem shows a slow relaxation dynamics on a timescale
of ≈ 2π/Jmedian (see Fig. 4 a). Applying an external
field Ω also slows down the relaxation dynamics consid-
erably. It should be noted, that the external field has
to be realized by a two-photon microwave transition as
the transition between the two spin states is dipole for-
bidden. Therefore, the single photon Rabi frequencies
are required to be much larger compared to the dipolar
interacting spin system, which might potentially lead to
a stronger coupling to different Rydberg states inducing
addition decay of the magnetization, especially at late
times.

The dependence of the late-time magnetization
(taken after 10 µs) on the spin locking field Ω of the

Van der Waals interacting system is shown in Fig. 4 b.
Compared to the dipolar interacting case presented in
the main text, the curve is even more asymmetric. This
effect can be explained by the isotropic repulsive in-
teractions in the Van der Waals case, whereas dipolar
couplings vary as 1 − 3 cos(θ)

2 depending on the an-
gle θ between the inter-spin axis and the quantization
axis. Most importantly, also the Van der Waals inter-
acting system features a sharp cusp around Ω = 0MHz.
In this regard, the curve strongly resembles the case of
strong disorder in dipolar interacting systems presented
in the main text. At first sight, this result might be sur-
prising as the spin system is even more blockaded with
a ratio of blockade radius to typical interaction range
of rbl/a0 = 5.7/7.8 = 0.73 than the weakly disordered
dipolar system where rbl/a0 = 4.6/6.8 = 0.682. How-
ever, the shorter-range interaction increases the effec-
tive disorder in the system as the nearest-neighbor in-
teraction becomes much stronger compared to the next-
nearest neighbor coupling. This proves that, especially
for short-range interactions decaying faster than a = d,
the existence of a prethermal state is a ubiquitous phe-
nomenon in spatially disordered quantum spin systems.

Appendix C: Derivation of the effective model

In this appendix, we derive how to describe the sys-
tem in terms of localized pairs, which constitute the ap-
proximate local integrals of motion for the GGE descrip-
tion of the system. Starting from the physics of a single,
isolated pair, we will derive the GGE, the description
in terms of thermal pairs, and the self-consistent mean-
field equations, which partly take into account interac-
tions beyond the nearest neighbor. This approximation
provides an intuitive picture that allows us to explain
all the observed features of the long-time magnetization
(positivity, cusp, asymmetry).

For a single interacting pair, in the basis

2 Due to the Van der Waals interactions being a second order
process, the typical interaction strength are much weaker com-
pared to the dipolar interacting case. To compensate for this
effect, we increase the density which increases the interaction
strength.
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Dipolar interactions (weak disorder) Dipolar interactions (strong disorder) Van-der-Waals interactions

Rydberg states
∣∣48S1/2

〉
↔

∣∣48P3/2

〉 ∣∣48S1/2

〉
↔

∣∣48P3/2

〉 ∣∣61S1/2

〉
↔

∣∣62S1/2

〉
decay rate Γ/(2π) 0.018MHz 0.018MHz 0.0096MHz
texc 10µs 1µs 5 µs
Excitation volume 59µm× 44 µm× 36µm 59µm× 34µm× 30µm 69 µm× 43 µm× 37µm
NRyd 6895 775 2907
rbl 4.6µm 5.0µm 5.7µm
a0 6.8µm 11.2µm 7.8µm
Jmedian/(2π) 2.8MHz 1.1MHz 0.5MHz

Table I. Experimental parameters. texc specifies the duration of the optical excitation to the Rydberg state, the Rydberg
volume is specified by the radii (1/e2) of the Rydberg cloud, NRyd denotes the derived Rydberg number, rbl the blockade
radius and Jmedian the obtained median nearest-neighbor interaction.

Figure 3. Simulation of the experimental data shown in the main text with DTWA simulations Time evolution
of the magnetization in case of weak (a) and strong (b) disorder. The dependence of the late-time magnetization are shown
in c (weak disorder) and a (strong disorder). The experimental parameters are shown in Table I.

{|→→⟩ , |→←⟩ , |←→⟩ , |←←⟩}, Hamiltonian (1) reads

Ĥpair = 4J
(
∆ŝ(1)x ŝ(2)x + ŝ(1)y ŝ(2)y + ŝ(1)z ŝ(2)z

)
+Ω

2∑
i=1

ŝ(i)z

(C1)

=

 J +Ω 0 0 J(∆− 1)
0 −J J(∆ + 1) 0
0 J(∆ + 1) −J 0

J(∆− 1) 0 0 J − Ω


(C2)

where we defined J = J12/4. Out of the four eigenstates
of this Hamiltonian, only two have non-zero overlap
with the initial state |→→⟩ (see table II). Therefore,
each interacting pair can be seen as an effective two-
level system on its own, with a modified interaction be-
tween these "renormalized" spins. This ansatz of diago-
nalizing the strongest interacting pairs first can be seen
as a first step in a real-space strong-disorder renormal-
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Figure 4. Experimental data for a quantum spin system with Van der Waals interactions. a, Measured
spin relaxation dynamics for varying transverse field strengths ranging from Ω/(2π) = −5.5MHz (dark blue) to 5.5MHz
(dark red). b, Magnetization after 10µs as a function of field strength Ω (see Table I for a summary of the experimental
parameters). The inset shows a zoom into the data for small values of Ω.

ization group treatment [55–58]. Here, we do not aim
to proceed further in this renormalization scheme, but
instead, we use the basis of eigenstates of strongly in-
teracting pairs to derive an intuitive understanding of
the physics within mean-field theory.

Diagonal ensemble: In contrast to a single spin
which does not show any dynamics, a strongly inter-
acting pair features oscillatory dynamics. Using the
definition given in the main text, we can calculate the
diagonal ensemble expectation value for single pair:

⟨Ŝx⟩pair =
Ω2

2(Ω2 + j2)
(C3)

where we introduced j = J (∆− 1). It should be
noted that this diagonal ensemble does not describe
the steady-state but rather the time average over the
oscillations. The magnetization expectation value pre-
dicted by the diagonal ensemble of a single interacting
pair represents an inverted Lorentz profile with width
j/2, which features a quadratic dependence on Ω around
zero (see Figure 5 a). However, if we average over mul-
tiple pairs with different interaction strengths j, the di-
agonal ensemble value becomes more meaningful since
we can assume that the different oscillation frequen-
cies dephase. Also, the behavior of the magnetization
changes: For example, assuming a uniform distribution

of j ∈ [0,∆j ]
3, we obtain

1

∆j

∫ ∆j

0

⟨Ŝx⟩pair dj =
Ω

2∆j
arctan

(
∆j

Ω

)
(C4)

which shows the non-analytic cusp feature at Ω = 0
(see Figure 5 b). Close to the non-analytic point, the
magnetization increases linearly with a slope

π

4∆j
in-

versely proportional to the width of the distribution of
interaction strengths. Therefore, we can conclude that
the non-analyticity is a direct consequence of disorder
and the resulting broad distribution of nearest neighbor
interaction strengths.

Canonical and generalized Gibbs ensemble: To
calculate the properties of a system in thermal equilib-
rium, we evaluate the density matrix ρ̂canonical of the
canonical ensemble

ρ̂canonical =

∑
i e

−βEi |ψi⟩ ⟨ψi|∑
i e

−βEi
(C5)

where β is the inverse temperature of the system. For
a single pair of spins, this ensemble can be used to cal-
culate the expectation value of the magnetization:

⟨ŝpx⟩canonical(β) = −
h

2
√
h2 + j2

tanh
(√

h2 + j2β
)
(C6)

3 For distributions like j ∈ [jmin,∆j ] that do not feature arbi-
trary small interaction strengths, a small region of approximate

size Ω < |
jmin

∆j
| exists where magnetization is a smooth func-

tion of external field.
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Eigenvalue Ei Eigenvector |ψi⟩ Occupation | ⟨ψ0|ψi⟩ |2 Magnetization
〈
Ŝx

〉
ψi

J∆
1√
2
(|→←⟩+ |←→⟩) 0 0

−J(2 + ∆)
1√
2
(|→←⟩ − |←→⟩) 0 0

J −
√

Ω2 + J2 (∆− 1)2
√

1

2
− Ω

2
√

Ω2 + j2
|→→⟩+

√
1

2
+

Ω

2
√

Ω2 + j2
|←←⟩ 1

2
− Ω

2
√

Ω2 + j2
− Ω

2
√

Ω2 + j2

J +
√

Ω2 + J2 (∆− 1)2
√

1

2
+

Ω

2
√

Ω2 + j2
|→→⟩+

√
1

2
− Ω

2
√

Ω2 + j2
|←←⟩ 1

2
+

Ω

2
√

Ω2 + j2
Ω

2
√

Ω2 + j2

Table II. Properties of the four eigenstates of a single interacting spin pair. To simplify notation, we introduced j =
J (∆− 1).

Figure 5. The diagonal ensemble expectation value of the
magnetization as a function of applied external field Ω for a
single pair (a), a disorder average of single pairs with interac-
tion chosen randomly in the interval J ∈ [0, 1] (b), a system
of identical pairs that interact with mean field interaction
Jinter = 1.5 ∗ J (c), and a realistic random distribution with
power-law interactions, as described in the text (d). For the
latter, the dashed orange line shows the full quantum me-
chanical solution obtained by exact diagonalization for the
same system.

In a system coupled to a thermal bath, the inverse tem-
perature β would be determined by the temperature of
the bath. However, in a closed the system, the energy
is conserved, which fixes the inverse temperature such
that the energy of the canonical ensemble equals the en-
ergy of the initial state. In a generalized Gibbs ensem-
ble, where the energy of each pair of spins is conserved,
this leads to the equation

⟨Ĥpair⟩canonical(β)
!
= ⟨Ĥpair⟩|ψ0⟩ (C7)

⇔ −
√
h2 + j2 tanh

(√
h2 + j2β

)
+ J

!
= h+ J (C8)

This equation can be solved analytically and results in
exactly the diagonal ensemble from Eq. C3. This result

is not surprising considering the following argument:
Only two out of four eigenstates of the pair of spins
can be occupied due to symmetry arguments. Thus,
any mixture of these states is completely determined
by only two variables. Out of those, one is fixed by nor-
malization and the other by energy, and all ensembles
are strictly equivalent.

In the generalized Gibbs ensemble, we have consid-
ered an ensemble of perfectly isolated pairs, where each
pair i has equilibrated to a different inverse temperature
βi. A first approximation to estimate the magnetization
of a thermalized ensemble of disordered spins can be ob-
tained by assuming weak interactions between each pair
of spins that do not affect the eigenstates but lead to
thermalization such that every spin relaxes to a canon-
ical ensemble with one global β = βi for all pairs i. In
this case, eq. (C7) has to be solved for β for the sum of
all pairs:∑

i

⟨Ĥpair,i⟩canonical(β)
!
=
∑
i

⟨Ĥpair,i⟩|ψ0⟩. (C9)

For this value of β, the canonical ensemble expectation
value for the average magnetization can be calculated
using equation (C5).

Self-consistent mean-field equations: To obtain
an even more realistic model and to understand addi-
tional features like the asymmetry of the cusp, we add a
mean-field interaction between pairs. For this purpose,
we replace the external field with an effective mean-field
acting on spin i:

Ω→ Ωi = Ω+
∑
j

J inter
ij ⟨ŝ(j)x ⟩ (C10)

As a first example, we may consider a periodic chain
of equally spaced pairs where all pairs are identical and
the mean-field shift arising from interactions between
the pairs is J inter. In this case, the diagonal ensemble
expectation value can be calculated by solving the self-
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consistent equation

⟨Ŝx⟩ =
1

2

(
Ω+ J inter⟨Ŝx⟩

)2
(
Ω+ J inter⟨Ŝx⟩

)2
+ j2

. (C11)

Since the right-hand side of the equation only con-
tains squares, the magnetization is still positive or zero.
Therefore, for positive external fields Ω, the effective
field is larger than the external field (Ωi ≥ Ω), lead-
ing to an enhanced spin locking effect. Consequently,
mean-field leads to an increased magnetization com-
pared to the case of independent pairs. For negative
Ω, the external field is anti-aligned with the mean-field,
and the resulting magnetization is decreased. Thus, the
dependence of the magnetization as a function of field
strength is asymmetric (see Figure 5 c. In conclusion,
we can attribute the asymmetry to mean-field interac-
tion between different pairs.

In order to model the disordered spin system realized
experimentally, we apply the pair model to an ensemble
of spins with randomly chosen positions. We cluster the
spins i into pairs p in such a way that the sum over all
pair distances is minimized. Naturally, the interaction

jp of a pair p consisting of spins i and j is given by the
interaction strength between the spins. The interaction
strength J inter

pq between pair p and q can be obtained
from the strongest interaction Jij where spin i is in pair
p and j in q respectively. Now, we solve the system of
self-consistent equations

⟨ŝpx⟩ =
1

2

(
Ω+

∑
q(J

inter
pq ⟨ŝ

q
x⟩)
)2

(
Ω+

∑
q(J

inter
pq ⟨ŝ

q
x⟩)
)2

+ j2p

. (C12)

The resulting magnetization curve obtained after dis-
order averaging (see blue line in Figure 5 d closely re-
sembles the exact diagonal ensemble prediction (orange
line). Importantly, all qualitative features are captured,
including a positive magnetization which is asymmetric
with respect to the external field and shows a sharp
cusp at zero field. The remaining discrepancy between
the pair model and the exact solution, in particular the
stronger asymmetry of the exact solution, can be at-
tributed to clusters of spins containing more than two
atoms where quantum fluctuations decrease the magne-
tization even further than predicted by the pair mean-
field model.
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4.2.1 Origin of the cusp-like signature

To derive the qualitative behavior of the steady-state magnetization 〈M(Ω)〉 with respect
to external field Ω, we use a simple two-component model where each spin is either fully
polarized or fully demagnetized. We assume that a spin’s final state depends solely on the
ratio of the strongest coupling J towards another spin and the strength of the external
field Ω. If the field dominates, i.e. |Ω| > J , the spin stays polarized as it is locked by the
field. Conversely, if the coupling dominates, i.e. |Ω| < J , then the interactions lead to
depolarization and the spin loses its magnetization. Thus, in this simplified model, the
only quantity determining the steady-state magnetization is the distribution of relevant
couplings P (J):

〈M(Ω)〉 = 1

2

∫ |Ω|

0
dJP (J) (4.1)

In the regime of weak disorder, it only natural to assume that the most relevant coupling
for a spin is given by its strongest coupling, i.e. the coupling to its nearest neighbor. Thus,
at weak disorder, we want to use the nearest-neighbor coupling distribution PNN (J). In
contrast, at strong disorder, the pair model (cf. Chapter 2) results in a different distribution
of pair couplings Ppair(J). To compute these coupling distributions analytically, we go to
the limit of vanishing blockade radius, i.e. rb → 0, and assume that spins are distributed
randomly with uniform density ρ in d dimensional space. Fixing some spin, this gives us
the number of spins in spherical shell of size r and width dr as

wu(r)dr = dρΩdr
d−1dr = dλ(λr)d−1dr (4.2)

where Ωd = πd/2

Γ(n/2+1) is the volume of a d-dimensional unit sphere and λd = ρΩd is akin
to the inverse mean distance between spins. We use this setup to compute both the
distribution of nearest neighbor coupling PNN (J) and the distribution of pair couplings
Ppair(J) in the following sections.

4.2.1.1 Nearest-neighbor coupling distribution PNN (J)

The distribution of the nearest neighbor couplings can be found using a simple ansatz [124].
Consider some fixed spin and the density of spin w(r) at distance r. Then, the proba-
bility PNN (r) of finding the nearest neighbor of that fixed spin at distance r should be
proportional to both the probability of having a spin in that distance and the probability
of having no closer neighbor. This gives us the following integral-equation

PNN (r) = w(r) ∗
(
1−

∫ r

0
dr′PNN (r′)

)
(4.3)

which can be solved straight-forwardly by noting that it has the form f ′ = −wf and
using separation of variables. The solution reads:

PNN (r) = w(r) exp

(
−
∫ r

0
dr′w(r′)

)
. (4.4)

Plugging in the distance distribution for uniform spin density wu(r) (cf. Equation 4.2)
gives us a so-called Weibull distribution:

PNN (r) = dλdrd−1 exp(−λdrd) (4.5)
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Finally, changing variables1 from distance r to coupling J = r−α yields the sought-after
distribution of nearest-neighbor couplings

PNN (J) = βλdJ−β−1 exp
(
−λdJ−β

)
(4.6)

where β = d
α .

4.2.1.2 Distribution of pair couplings Ppair(J)

We can derive the distribution of pair lengths in a similar fashion to Equation 4.3. The
key insight about the difference between a nearest neighbor and the partner of a pair in
the RSRG sense is that the two partners of the pair are in some sense each other’s partner.
In contrast, the ”nearest neighbor” property does not need to be reflexive. Denoting the
pair coupling distribution as Ppair(J), we write down the respective integral equation,
which is very similar to Equation 4.3, except that the second factor gets squared because
both spins may not be part of a smaller pair:

Ppair(r) = w(r) ∗
(
1−

∫ r

0
dr′Ppair(r

′)

)2

(4.7)

This equation can be solved in the same way as Equation 4.3 and yields 2:

Ppair(r) =
w(r)(

1 +
∫ r
0 dr

′w(r′)
)2 (4.8)

Employing the distance distribution for uniform spin density wu(r) (cf. Equation 4.2)
again gives us that the pair distances follow a log-logistic distribution for spins of uniform
density:

Ppair(r) =
dλdrd−1

(1 + λdrd)
2 (4.9)

Changing to distance r to coupling J = r−α yields:

Ppair(J) =
βλdJ−β−1

(1 + λdJ−β)
2 (4.10)

4.2.1.3 Analytical steady-state magnetization

Having derived both the distribution of nearest-neighbor coupling PNN (J) (cf. Equa-
tion 4.6) and pair coupling distribution Ppair(J) (cf. Equation 4.10), we can compute the
steady-state magnetization of our simple model by using Equation 4.1:

MNN (Ω) =
1

2

∫ |Ω|

0
dJ PNN (J) =

1

2
exp(−λd|Ω|−β) (4.11)

Mpair(Ω) =
1

2

∫ |Ω|

0
dJ Ppair(J) =

1

2 + 2λd|Ω|−β
(4.12)

1 Note, the change of variables also needs to transform the measure, i.e. we transform P (r)dr→P (J)dJ
2 Equation 4.8 was derived by a different method for d = 3 by former Master student Péter Kaposvári in

his Master thesis [125].
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Figure 4.1: Steady-state magnetization curves of the two-component model using the same color
scheme as Fig. 2 (d) and (e) of [D]. Parameters, α and d correspond to (a) Fig. 2 (b)
Fig. 4. The inset shows a zoom around Ω = 0 to highlight the qualitative difference
between the curves.

The resulting curves, shown in Figure 4.1, show the same qualitative features as their
counterparts in [D]. Thus, this simple model gives us insight in the key mechanism behind
the qualitative change of the steady-state magnetization behavior: At weak field |Ω| � 1,
the magnetization is determined by the weakest interactions J < |Ω| � 1 which stem from
long distances r � 1. For nearest neighbors, the distribution of distances is suppressed
exponentially ∝ exp(−rd) (cf. Equation 4.5), which creates the very smooth, round shape
at weak field. Conversely, if the relevant lengths are given by the pairing procedure, the
exponential suppression is weakened to an algebraic decay ∝ r−d−1. Intuitively, this is
because while with increasing distance r the number of potential partners increases, it
also becomes less likely that they are still available. This competition then leads to a
much slower decay of the relevant lengths resulting in enhanced sensitivity to the external
magnetic field.

4.2.1.4 Discussion

The two-component model developed here is of course much simpler than the mean-field
used in [D] but we argue that it captures the essential physics nonetheless. The two main
conceptual differences are: The mean field model considers the magnetization response
of pairs, which is a Lorentzian [cf. Eq. (C3)], and additionally solves the equations self-
consistently to capture the influence of a pairs magnetization on other pairs in the vicinity.
The latter is responsible an the asymmetry of the ensemble’s magnetization because the
induced magnetization enhances (weakens) the effective magnetic field if external field
and initial polarization are aligned (anti-aligned) to each other. This effect is showcased
in Figure 4 in the appendix of [D]. However, apart from the asymmetry, the qualitative
features remain unchanged.
To check the effect of the Lorentzian magnetization function, we can generalize the

two-component model slightly at the cost of it being no longer analytically solvable.
Conceptually, we replace the idea of ”binary” spins, that are either locked by the field or
dominated by interaction, by more general constituents that just follow some activation
function, i.e. a function m(ω) that gives the resulting magnetization for a given ratio
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Figure 4.2: Comparison of the two-component model (dashed lines) with another model where
the constituents’ magnetization is given by a Lorentzian (solid lines). (a) steady-state
magnetization of the constituent. (b) predictions of both model for α = d = 3 [same
parameters as Figure 4.1(a)].

ω = Ω/J of field strength Ω and relevant coupling J . Then the total steady-state
magnetization reads

〈M(Ω)〉 = 1

2

∫ ∞

0
dJP (J)m

(
Ω

J

)
. (4.13)

The two-component model is recovered with m(ω) = Θ(ω − 1) where Θ denotes the
Heaviside function. For a pair, the magnetization follows a Lorentzian curve (cf. Equation
C3 of [D]), which in this notation is given by mL(ω) =

ω2

1+ω2 . As Figure 4.2 shows, this
also does not significantly alter the qualitative behavior at weak external field. Thus, we
conclude that the observed qualitative change of the steady-state magnetization stems
from a fundamental change in character of the distribution of relevant couplings.





5C O N C L U S I O N

In Part II of this thesis, we studied long-range Heisenberg models subject to spatial
disorder through the lens of many-body localization. We found that this type of disorder
indeed leads to a MBL-like regime in small systems, where the dynamics is governed by
the presence of quasi-local, conserved quantities. These are made up of pairs of strongly
interacting spins. This result, when combined with cTWA, leads to a very efficient
and accurate method to calculate the time evolution of observables also in regimes of
weak disorder. We showed two experimental signatures that we traced back to pairs
being responsible for the dynamics and thus corroborated the model’s applicability and
predictive power in real-world scenarios.
Of course an experiment can only offer data on finite times and finite system sizes

and thus the big question of the existence of MBL in power-law systems [34–36, 126] or
even in general cannot be answered experimentally [27, 29, 39, 127]. However, we have
shown that MBL can be a very useful perspective on the dynamics even in d = α = 3,
at least on experimentally accessible timescales. Since we have seen that the experiment
can access both thermalizing regime and the localized regime (cf. [D]), we can use it to
locate the critical disorder strength and perform finite size scaling. Thus, we can check
experimentally both the presence of a prethermal MBL regime (cf. [39]) and the drift of
the crossover. Usually in models with on-site disorder, the crossover shows significant
drift (see e.g. [20]) which is absent in the model studied here (see Fig. 5 of [A]).
Due to experimental limitations, so far we only probed the global magnetization,

which the pair model describes sufficiently accurate. In order to test its range of validity
and shed more light on the properties of the system, it would be interesting to study
more complex observables. A recent preprint [128] found that already simple 2-point
correlation functions like

〈
S
(i)
x S

(j)
x

〉
show significantly different late time behavior than

predicted by the pair model. Accessing these in the current experiment could perhaps be
realized through measurement of the variance of

〈∑
i S

(i)
x

〉
. Another direction for future

measurements are out-of-time-order correlators (OTOC) written as

F (t) =
〈
W †(t)V †W (t)V

〉
. (5.1)

HereW and V are unitary operators that act locally. With this setup, the OTOC quantifies
how much information has been exchanged between the locations W and V act on [129–
132]. Thus, OTOCs carry allow for a detailed diagnostic of the thermalization process
(or lack thereof). This appears to be true even for OTOCs of global observables [133].
However, measuring OTOCs is not an easy task since they generally require reversing the
arrow of time for the system. While involved, this can be achieved robustly by changing
the states that encode the spin as demonstrated recently [F]. Another proposal based on
Floquet Hamiltonian engineering is also in preparation [G]. These methods also open the
wide field of echo protocols, which find use e.g. in quantum enhanced sensing [134–136].

Addressing the question of the presence of MBL in systems with power-law interaction on
the more theoretical side, one could extend RSRG-X to calculate higher order corrections
of the pair model, which to our knowledge was not done so far. This extension owes to
the fact that in power-law interacting systems the base Hamiltonian already contains
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interactions among spins that belong to different pairs. As such, performing the iterative
elimination that RSRG-X prescribes, implicitly assumes that the eliminated couplings
also form a strong hierarchy which is generally not true. Thus, one should eliminate all
pairs simultaneously to obtain effective interactions among the pairs. Preliminary results
starting from an XX model (∆ = 0) indicate that this effective model of pairs assumes
XXZ form, similar to a calculation by Burin [36]. However, the simple interpretation of
an ensemble of pairs is lost, as this effective model depends on the choice of the sectors
of the pairs. This makes further study significantly harder since for Np pairs there are
2Np slightly different copies of the system, similar to the problem with RSRG-t described
in [43]. Interestingly, this picture likely can be reconciled with the iterative pairs criterion
from [34] because the states described therein can be found in specific copies. This
implies the presence of eigenstates which entangle arbitrarily distant sites. Conversely,
choosing an entangled pair state for each pair results in very weak perturbative couplings
signaling the existence of eigenstate close to product states between pairs. Consequently,
the system contains both extended and localized states and it is hard to gauge what
properties a typical state would show. To summarize, it seems that considering effective
pair-pair interactions gives rise to a multi-faceted picture of a system with both long-range
entangled and localized states. This contradicts the idea of the existence of a global set of
conserved quantities and thus would rule out MBL for these systems in a technical sense.
Instead, the conjectured form of the eigenstates features strong dynamical bottlenecks
which are a hallmark of Hilbert space fragmentation [137–139], which was recently found
in a closely related model [140].

A completely different route to understand the dynamics of disordered systems originates
in the observation that a simple disorder-averaged expectation value can be seen as
the expectation value of a single mixed state (overline denotes average w.r.t. disorder
realization)

〈ψ(t)|O|ψ(t)〉 = TrO|ψ(t)〉〈ψ(t)| = TrOρ(t). (5.2)

The time evolution of this effective state ρ(t) = Λt[ρ0] is governed by a dynamical map
Λt, i.e. a super-operator mapping the initial density operator to the effective state at
a later time. In general, this evolution is dissipative and non-markovian but it can be
mapped to a Lindblad description under certain conditions [141–144]. Although spatial
symmetries are usually broken in each shot, the averaging can lead to a restoration
of these symmetries in the dynamical map Λt. This bears great potential as spatially
disordered systems oftentimes do not have a canonical order of the constituents and thus
enjoy permutation invariance on average! Thus, this approach has the power to dispel the
curse of dimensionality and might allow for the (numerical) simulation of large systems
far beyond the reach of current methods. In a forthcoming publication [H], we explore
this idea and show that one can indeed exploit the average symmetry to find a Taylor
expansion of a time-dependent effective Lindbladian1 for simple disorder distributions.
While the numerical results already look promising, more work is required to generalize
this approach to more realistic distributions such as the couplings arising from power-law
interactions between randomly located sites.

1 A Lindbladian is defined by ρ̇ = Lt[ρ]. If Λ−1
t exists, then Lt exists and reads: Lt = Λ̇t ◦ Λ−1

t .
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6C O N C E P T S : P E R I O D I C A L LY D R I V E N S Y S T E M S A N D T I M E
C RY S TA L S

The second major part of the thesis switches gear and focuses on the effects of spatial
inhomogeneities in Floquet systems, i.e. systems that undergo periodic driving. While
there has been a lot of attention in the literature for Floquet systems with disorder
in the interactions already, most studies focus on the prototypical MBL model. Thus,
the consequences of pair localization or influence of disorder in the drive remain largely
unstudied. Before, we explore these in the following chapters, first we give a brief overview
of the relevant concepts from the field of Floquet systems. For a more in-depth review,
we refer the interested reader to e.g. [145]. Subsequently, we also cover the basics of
thermalization in Floquet systems (see e.g. [60] for more context) and then briefly
summarize the phenomenon of time crystals in particular [56, 146, 147].

6.1 introduction to floquet systems

Starting with the basics, a Floquet system is a system governed by a time-dependent
Hamiltonian H(t) with period T , i.e.

H(t) = H(T + t) . (6.1)

The time evolution operator evolving the initial state to some time t reads formally

U(t) = T exp(−i
∫ t

0
dt′H(t′)) (6.2)

where T exp is the time-ordered exponential. Exploiting the periodicity, we can split the
time evolution operator

U(t) = T exp(−i
∫ t

0
dt′H(t′)) (6.3)

= U(t− nT )

[
T exp(−i

∫ T

0
dt′H(t′))

]n
(6.4)

= U(t− nT )(UF )
n (6.5)

into n applications of an operator UF , which advances the state a full cycle, and a
micromotion part U(t−nT ) governing the dynamics within a cycle. Restricting observation
to stroboscopic times where t = nT , we can understand the dynamics by considering only
the time-independent operator

UF = T exp(−i
∫ T

0
dt′H(t′)) ≡ exp(−iTHF ) (6.6)

where HF is an effective, time-independent Hamiltonian, called Floquet Hamiltonian.
However, there are some difficulties with this approach: First of all, HF is ill-defined be-
cause its eigenvalues are only defined mod2π

T . Hence, they are usually called quasienergies.
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Secondly, HF is generally infeasible to calculate exactly and might be grossly non-local.
Nonetheless, in many cases one can find approximations to HF that sufficiently describe
the system’s dynamics.
In the following, we restrict the discussion to a typical setup where H(t) consists of

two parts: A part where the system undergoes dynamics according to its interactions
Hint and another part where the drive Hdrive is active and no other internal dynamics
takes place:

H(t) =

Hint 0 ≤ t < tint

Hdrive tint ≤ t < T = tint + td

(6.7)

⇒ UF = exp (−itdHdrive) exp (−itintHint) (6.8)

A simple way of approximating such a HF is through the Magnus expansion, which is
guaranteed to converge in the high frequency limit, i.e. if tint‖Hint‖+td‖Hdrive‖ � π [148].
In this simple case, it amounts to applying the well-known Baker-Campbell-Hausdorff
formula to Equation 6.8. The first few terms are given by:

HF =
∑
k

H
(k)
F (6.9)

H
(1)
F =

1

T
(tintHint + tdHdrive) (6.10)

H
(2)
F =

tdtint
2T

[Hdrive,Hint] (6.11)

Apart from being simple to calculate in most cases, the Magnus expansion is hermitian
in every order and preserves the symmetries of the Floquet operator UF . Additionally,
for models featuring only two-body terms, the occuring operators only grow by a single
site per order. This features make the Magnus expansion central to many approaches to
Floquet systems.

In cases where one of the participating operators is not small, there exists another ap-
proach to approximate HF with similar properties which is based on a replica resummation
trick [149].

6.2 thermalization in floquet systems

The Floquet Hamiltonian HF allows to understand the dynamics of Floquet systems in
the same terms as in closed quantum systems. So when viewed at stroboscopic times, the
system thermalizes in accordance to HF . However, when considering longer and longer
times, higher and higher orders of the Magnus expansion become relevant leading to a slow
drift of the equilibrium state. This phenomenon is called Floquet prethermalization [60].
The general physical intuition is that the drive pumps energy into the system heating it
up until it reaches a featureless infinite temperature state[150, 151]. It has been shown
that the timescale this heating occurs on grows exponentially with the driving frequency
ω ∝ T−1 [152, 153].

However, similar to closed systems, there are exceptions to this rule. For example, it has
been shown that an interaction Hamiltonian featuring MBL can preserve the localization
even under driving provided the driving frequency is sufficiently large [53, 154, 155]. This
Floquet MBL is just one example of large variety of phenomena related to the late and
intermediate time behavior of periodically driven systems.
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6.3 time crystals

An interesting consequence of the absence of thermalization (e.g. due to Floquet MBL)
is the existence of out-of-equilibrium phases of matter exhibiting new, exotic properties.
One such feature is the existence of states that spontaneously break time translation
symmetry which is ruled out in equilibrium phases [57] but can be observed in Floquet
systems [54, 56, 147, 156]. Such a state is dubbed time crystal in analogy to regular
crystals that spontaneously break spatial translation symmetry. A prototypical example
of a system with time crystalline behavior [56, 146] is a driven MBL system, where the
LIOMs τ (i)z ≈ σ

(i)
z are close to σz and the drive approximately flips the system about its

x-axis, i.e.

Hint =
∑
i

hiτ
(i)
z +

∑
ij

Jijτ
(i)
z τ (j)z + . . . (6.12)

Hd = exp

[
i(1− ε)π

∑
i

σ(i)x

]
. (6.13)

It is easy to see that at ε = 0, all the σ(i)z are quasi-conserved in magnitude but switch
their sign every period because σxσzσx = −τz. Thus, we can write

UF = X exp(−i
∑
ij

Jijτ
(i)
z τ (j)z + . . .) (6.14)

where X ∝
∏

i σx and the exponential contains only the terms commuting with X. This
means any z-basis state is (close to) an eigenstate of U2

F but not of UF , which is the
realization of time translation symmetry-breaking [146]. The dynamics of such a state
show a subharmonic response because they oscillate with an integer multiple of the
system’s driving frequency.
Crucially, this phenomenon is stable to perturbations! Leaving the exactly soluble

point at ε = 0, all of these features persist in a finite region of the parameter space.
Thus, time crystals truly represent an out-of-equilibrium phase of matter. Apart from the
prototypical model above, there are many different scenarios where they can arise [56,
147] and they have also been studied experimentally on a variety of platforms (e.g. [23,
157–159]).





7S TA B I L I Z AT I O N B Y S PAT I A L VA R I AT I O N O F T H E D R I V E

In this chapter, we consider a clean, i.e. disorder-free, Ising spin chain with periodic
driving and explore the influence of a spatially inhomogeneous drive on the dynamics.
Remarkably, we find the time dynamics to be very sensitive to even small variations of
said drive. In fact, limiting the spatial inhomogeneity of the drive to a single site, while
all other sites experience the same driving, is already sufficient to manipulate the lifetime
of the time crystalline signatures greatly. For initial states polarized in z-direction, this
remarkable sensitivity to even minor deviations of the driving field is closely related to the
spontaneous symmetry breaking of the groundstate of the Ising model. For generic states
at high temperatures, the long-lived, period-doubled, oscillations are retained on the
outer most spins only. We uncover the topological origin of this observation and exemplify
it by slightly altering the systems geometry in way which removes the stabilization.
These results persist in the presence of disorder or the addition of integrability breaking
interactions. In summary, this work showcases a dramatic consequence of the long-range
spatiotemporal order that is required to create a time crystal.
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Metronome spin stabilizes time-crystalline dynamics
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We investigate a disorder-free quantum Ising chain subject to a time-periodic drive that rotates each spin
by an angle π (1 − εi ). In case all spins experience the same deviation ε and the system is initialized in a
fully polarized state, the dynamics is known to be time crystalline: the magnetization of the system exhibits
period-doubled oscillations for timescales that grow exponentially with the length of the chain. In this work, we
study the effect of a deviation ε that differs between spins. We find that reducing ε for a single spin drastically
enhances the lifetime of spatiotemporal order, suggesting the name metronome spin. Employing perturbative
arguments in an average Hamiltonian picture, we explain this observation for initial states with macroscopic
bulk magnetization. Furthermore, in the case of random bit-string initial states, we report the enhancement of the
lifetime of a topological edge mode, which can also be understood in the same picture. Finally, we discuss an
altered geometry in which the metronome spin is not directly part of the chain, affecting the dynamics in different
ways in the two scenarios considered. Our findings unveil the intricate dynamics that emerge in Floquet systems
under the influence of a spatially varying drive, thereby uncovering new avenues for Floquet engineering.

DOI: 10.1103/PhysRevB.109.224301

I. INTRODUCTION

For the longest time, stable physical phases of matter were
thought to be a concept exclusive to equilibrium physics.
However, with the pioneering work of Wilczek and Shapere
[1,2], Watanabe and Oshikawa [3,4], and others, it became
clear that out-of-equilibrium phases of matter are not only
possible but also offer features beyond equilibrium phases
[5,6]. One of the most prevalent categories of systems in
which such phases have been demonstrated is Floquet setups,
that is, periodically driven systems. Instead of heating up, they
can display long-lived period-doubled spatiotemporal order
with remarkable stability with respect to perturbations of the
drive. Due to their discrete time-translation symmetry break-
ing, they have been dubbed Floquet time crystals or discrete
time crystals (DTC) and have gained significant attention
among the theoretical and experimental communities over the
last decade [7,8].

Initially, many-body localization (MBL) was considered
to be the main mechanism for stabilizing the long-lived dy-
namics [9–12]. However, over the years, a multitude of other
processes have been shown to lead to time-crystalline behav-
ior in different systems, including weakly broken symmetries
[13], prethermalization [14–16], domain-wall confinement
[17], among others [18–21]. Experimentally, time-crystalline
dynamics has been observed on a variety of platforms, such
as nitrogen vacancy centers [22–24], NMR systems [25–27],
ultracold atoms [28,29], trapped ions [30], Rydberg atoms
[31,32], and also superconducting qubits [33,34], to name a
few. Most of the above time-crystal realizations demonstrate

*These authors contributed equally to this work.
†martin.gaerttner@uni-jena.de

long-lasting but finite spatiotemporal order, whereas some,
e.g., the MBL DTC, lay claim to stability up to infinite
times, even though this is controversially discussed by the
community [16,35–38]. Numerical simulations have shown
crystal lifetimes that exceed typical experimental timescales
[5,33], thus it remains difficult to convincingly disprove
infinitely long-lived order. Remarkably, two different realiza-
tions of absolutely stable [39] DTCs were recently reported
[40,41]. These systems promise stability towards arbitrary
perturbations, even if they break the discrete time-translation
symmetry of the drive.

In most Floquet setups, drives are typically realized by
periodically rotating all constituents by a fixed angle. One
of the most striking features of time-crystalline order is the
stability with respect to such a drive. The spatiotemporal
structure is present not only at isolated points in parameter
space (dictated by intrinsic symmetry of the interactions) but
has also been observed for drives that systematically over- or
undershoot the targeted rotation angles for the entire system
by up to ε � 15% in every drive period [30,33]. Contrary to
the naive expectation, these errors do not accumulate and lead
to rapid dephasing but are instead compensated for through
the different stabilization mechanisms mentioned above. This
defining characteristic of a DTC motivates the classification
as an out-of-equilibrium phase of matter, as extended areas
of stability can be identified with respect to the parameters
of the system and drive, e.g., the interaction strength and the
deviation of the driving angle [10,11]. Until recently [42],
drives and perturbations have typically been considered to
be spatially uniform, i.e., equal for all constituents of the
system. The question of whether and how the stability of
spatiotemporal order extends to regimes where parts of the
system are driven at different values of ε remains largely
unanswered. It is especially unclear whether this structure

2469-9950/2024/109(22)/224301(11) 224301-1 ©2024 American Physical Society
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is destabilized by a small subsystem driven at much higher
values of ε, or whether a modest amount of particles driven at
small ε can stabilize an otherwise unstable system.

To investigate the impact of the spatial dependence of the
drive, we consider a disorder-free spin-1/2 chain with nearest-
neighbor Ising interactions and periodic driving through
numerical simulations. When initialized in a fully magne-
tized state, such a system’s magnetization is known to exhibit
period-doubled oscillations for a time growing exponentially
with system size, which we will call lifetime [14,43–45].
Interestingly, by reducing the rotation angle deviation ε for
a single spin of the chain, we find a drastic enhancement of
the magnetization lifetime of the entire chain, as if the single
spin was acting like a metronome that keeps the other spins on
beat. We employ a time-averaged effective description, which
allows us to explain the observed behavior with the help of
symmetry arguments for the bulk of the chain.

Building on these results, we study how generic initial
states behave in the presence of a metronome spin. Again, we
find analogous lifetime enhancements in magnetization auto-
correlators, however, only for the outermost spins stemming
from the existence of a topological edge mode. Finally, we
present a system geometry in which these two mechanisms
can be clearly discerned. Our results offer new insights into
how local perturbations in the chain can have a strong impact
on the overall lifetime of large systems. This opens up new
possibilities in the design and implementation of extended,
(meta)stable phases of matter out of equilibrium, even in
systems without disorder.

Following this introduction, we first give a more detailed
description of the investigated system and the numerical
methods used in Sec. II. The results for bulk and edge sta-
bilization are presented in Sec. III and subsequently discussed
in Sec. IV.

II. MODEL AND METHODS

We study the effects of spatially nonuniform Floquet
driving through numerical simulation of a spin-1/2 chain.
The Floquet sequence investigated in this work consists of
two parts: in a first step, the spins interact through nearest-
neighbor Ising couplings with open boundary conditions, as
shown in Fig. 1(a). Second, the spins are subjected to unitary
rotations by π (1 − εi ), with i indicating the site index. We
consider the case where the first spin is driven with εi=1 = ε′
and all other spins with εi>1 = ε [Fig. 1(b)]. Thus, this con-
figuration represents a uniformly driven chain with a local
perturbation at one boundary site, obeying a spin-flip symme-
try in the absence of z fields. One cycle of this time-periodic
evolution is captured by the Hamiltonian

H =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Hint =
L−1∑
i=1

Ji,i+1si
zs

i+1
z +

L∑
i=1

his
i
z, 0 � t � t1

Hx =
L∑

i=1

(1 − εi )s
i
x, t1 < t < t1 + π =: T

,

(1)

with si
{x,y,z} = σ i

{x,y,z}/2 being the single-spin operators. The
evolution governed by this Hamiltonian induces (imperfect)

(a)

(b)

FIG. 1. An illustration of the two-step Floquet cycle of the one-
dimensional (1D) system considered in this work. (a) The interaction
phase of the cycle given by an Ising Hamiltonian with nearest-
neighbor couplings. (b) The driving phase of the Floquet cycle,
realized through single-spin sx rotations. While the majority of the
spins in the chain (here drawn in blue) is subjected to imperfect flips
around the x axis given by π (1 − ε), one spin at site index i = 1
has a differing drive-angle deviation ε1 = ε ′, resulting in π (1 − ε ′)
rotations.

periodic flipping of the magnetization of the spin chain with
period 2T , which is twice the original period of the Hamil-
tonian. Here, we are especially interested in how decreasing
the deviation of the rotation angle, ε′, for a single spin, which
we call the metronome spin, affects the dynamics of spatially
distant spins at late times. While we set hi = 0 in the main
text, we also study chains with random fields and disordered
couplings in Appendix A and disorder-free chains with the
metronome in the center, εi= L+1

2
= ε′, in Appendix B.

The stroboscopic evolution of the system, that is, evaluated
only once at the beginning of every cycle, is given by the
Floquet evolution operator UF , which propagates the system
through one cycle of the Floquet sequence. To gain a better
understanding of the stroboscopic dynamics, one would like
to find a time-independent Floquet Hamiltonian HF that gen-
erates the Floquet time evolution operator, such that

UF = e−iHxπe−iHintt1 =: e−iHF T . (2)

In most cases, there is no straightforward way to obtain HF

analytically, but one can expand HF in the so-called Magnus
series [46,47]. By construction, HF is guaranteed to be Hermi-
tian at all orders. We give the first two terms of the expansion,

HF = H (0)
F + H (1)

F + · · · , (3a)

H (0)
F = 1

T

∫ T

0
dt H (t ), (3b)

H (1)
F = 1

2Ti

∫ T

0
dt

∫ t

0
dt ′ [H (t ), H (t ′)], (3c)

with the first term H (0)
F often being referred to as the

average Hamiltonian.
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By computing the average over one period, one has to
include the large π (1 − εi )si

x rotations in H (0)
F ,

H (0)
F,1P = 1

t1 + π

[
t1

(
L−1∑
i=1

Ji,i+1si
zs

i+1
z +

L∑
i=1

his
i
z

)

+ π

L∑
i=1

(1 − εi )s
i
x

]
, (4)

which is detrimental to the convergence of the Magnus series
[47]. As stated earlier, the magnetization-flipping dynamics is
period doubled with respect to the time-dependent Hamilto-
nian. Therefore, if averaged over two periods, one not only
mostly cancels the spin rotations but also averages out any
random y/z fields. The newly obtained two-period averaged
effective Hamiltonian has the form of a transverse-field Ising
model (TFIM),

H (0)
F,2P = 1

t1 + π

(
t1

L−1∑
i=1

Ji,i+1si
zs

i+1
z − π

L∑
i=1

εis
i
x

)
, (5)

hereafter only referred to as H (0)
F . Alternatively, this Hamil-

tonian can also be derived by applying a toggling-frame
transformation and subsequently taking the average over one
cycle [8]. This effective description retains the spin-flip sym-
metry present in the original time-dependent model.

III. RESULTS

In this section, we investigate numerically the lifetimes of
various multispin and single-spin observables at stroboscopic
times. We employ exact evolution according to the full Flo-
quet unitary given in Eq. (2) in addition to the effective evolu-
tion with an TFIM as derived in Eq. (5) for comparison. Here,
we study systems with L = 14 spins and set Ji j =: J = 1,
hi = 0, ε = 0.1, t1 = 1, and ε′ = 10−5, if not otherwise spec-
ified.

A. Bulk lifetime enhancement for polarized initial states

We start by considering the dynamics of the global mag-
netization 〈∑i σ

i
z 〉/L for a polarized initial state |�init〉 =

|↑ . . . ↑〉, as shown on a logarithmic time axis in Fig. 2.
Only even period numbers are probed, so that the underlying
spin-flipping dynamics is hidden in the shown simulation.
The magnetization shows an initial decline that lasts ≈102

periods of the drive, largely independent of the presence of
a metronome spin. Subsequently, for both with and without
metronome spin we observe slow oscillations of the mag-
netization, which manifest themselves as extended plateaus
of nonvanishing magnetization due to the log-linear axes
choice in Fig. 2. The macroscopic magnetization indicates that
large parts of the chain retain some of its initial polarization.
The duration of this plateau is strongly dependent on the angle
deviation of the metronome spin drive ε′ and, in the case of an
active metronome spin, lasts ≈107 periods instead of ≈103

periods without the metronome. The single-spin magnetiza-
tion of the metronome spin, 〈σ 1

z 〉, as shown on the right axis
of Fig. 2, qualitatively demonstrates the same behavior and
has a lifetime similar to that of 〈∑i σ

i
z 〉/L. For all data taken,

FIG. 2. The global z magnetization of the spin chain of length
L = 14 starting in a fully polarized stated subjected to different driv-
ing schemes. We show the exact stroboscopic dynamics of the chain
at even period numbers with and without a metronome spin at one
boundary site and the average Hamiltonian given in Eq. (5). Configu-
rations that include a metronome spin display a lifetime enhancement
of several orders of magnitude. All data are well described through
numerical cosine fits. On the second axis (in purple font) the single-
spin magnetization of the metronome spin itself is displayed. The
lifetime of the magnetization of the metronome coincides with the
lifetime of the total magnetization. For better visibility, only the first
two oscillation cycles are plotted for each curve.

the evolution under the two-period average of the Floquet
Hamiltonian H (0)

F is in satisfactory agreement with the full
Floquet evolution (the green line shows this for the case with
metronome spin), indicating that it is a sufficiently good de-
scription of the full stroboscopic evolution. Therefore, we can
safely focus on the simpler time-independent H (0)

F to better
understand the observed behavior.

Our chosen polarized initial state is the superposition
of the two lowest-energy eigenstates of H (0)

F which, for
ε � J , are well approximated by the two parity states, |±〉L =
(|↑ . . . ↑〉 ± |↓ . . . ↓〉)/

√
2. At finite ε, states with domain-

wall excitations are admixed (domain-wall dressing), leading
to the observed initial fast decay. The energy gap between
the two lowest-lying states is ∝ εL in the uniform case by
a perturbative argument, considering that all L spins are be-
ing flipped through off-resonant coupling to excited states.
Thus, the gap vanishes in the limit L → ∞, making the
two states degenerate. In the case of L = 14 presented here,
the gap is still finite and leads to slow Rabi oscillations of
period TR between the two polarized states, which explains
the observed behavior. The data show good agreement with
the numerical cosine fits ∝ cos (2πt/TR), as also plotted in
Fig. 2, with TR(ε1 = ε) = (1.641 ± 0.006)104T and TR(ε1 =
ε′) = (1.281 ± 0.004)108T . This difference in the length of
the period of four orders of magnitude is expected in the
average Hamiltonian picture, as the energy gap given above
is inversely proportional to the Rabi-oscillation period TR ∝
ε−L. By endowment of one spin with reduced ε′, one obtains

TR ∝ ε−L+1(ε′)−1, (6)
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FIG. 3. The lifetime of the global z magnetization 〈∑i σ
i
z 〉/L for

a range of drive deviation parameters ε and ε ′ including a metronome
spin on one boundary site is shown in (a). (b) A horizontal cut
through this plane at fixed ε ′ = 10−5. (c) A vertical cut at fixed
ε = 0.1, as indicated by the black and red lines in (a), respectively.
All data points have been obtained through cosine fits, as shown in
Fig. 2. Lifetimes above t = 1010T and below t = 102T cannot be
adequately resolved and are therefore exempt from the fit.

which yields the observed difference for the values used of
ε = 0.1 and ε′ = 10−5.

Next, we systematically investigate the dependence of the
global magnetization lifetime TR on the deviations of the drive
angle. For this, we repeat the procedure explained above for a
number of combinations of the values of ε and ε′. The results
are shown in Fig. 3(a), where we have probed a wide regime of
drive parameters. At small ε, we observe lifetimes that exceed
the resolved duration of 1010 Floquet cycles (yellow region).
For fixed ε = 0.1, we find that TR is approximately inversely

proportional to ε′, TR ∝ (ε′)α with α = −0.982 ± 0.007, as
shown in Fig. 3(b), which is consistent with the reasoning
presented in Eq. (6). For fixed ε′ = 10−5, the recorded life-
times follow a power law with offset, TR/T ≈ aεβ + (3.35 ±
0.09)105, with β = −12.29 ± 0.03. This value of β roughly
agrees with the expectation β = −13 implied by Eq. (6).
However, the observed convergence to a nonzero lifetime in
the limit of large ε is not predicted by this perturbative picture
[cf. Eq. (6)].

This behavior can be understood by taking ε′ → 0. In
this limit, the dynamics of the metronome spin effectively
decouple from the bulk of the chain, since the metronome
cannot leave the manifold of {|↑〉, |↓〉}, alternating between
the two states in every Floquet cycle. One can now write down
a Hamiltonian restricted to the bulk of the chain, where the
coupling between the metronome and its neighboring spin,
s1

z s2
z , can be replaced by an effective field on the second spin

of the chain,

H (0)
F,bulk = 1

T

(
h̃s2

z + t1

L−1∑
i=2

Ji,i+1si
zs

i+1
z − π

L∑
i=2

εis
i
x

)
. (7)

The new field term effectively breaks the spin-flip symme-
try of the original Hamiltonian H (0)

F in the bulk and thus
introduces an energy gap between the two polarized states.
Therefore, the prepared polarized state is no longer the su-
perposition of the two lowest-energy eigenstates but, rather,
very close to the lowest eigenstate of H (0)

F,bulk, resulting in
a stable magnetization plateau. For cases where ε′ � 1 the
metronome spin stays close to the {|↑〉, |↓〉} manifold for
extended periods of time before it and, subsequently, the rest
of the chain dephases. However, in the large ε limit, large parts
of the chain farther away from the metronome lose their mag-
netization much earlier due to domain-wall excitations. Still,
since the metronome is largely decoupled in its dynamic from
the rest of the chain, it retains nonvanishing magnetization
even at late times, keeping the magnetization plateau alive,
albeit at a lower value 〈∑i σ

i
z 〉/L ∼ O(1/L). This explains

the observed saturation behavior in the lifetime dependence
at large ε in Fig. 3(b).

B. Edge-mode enhancement for random bit-string initial states

Next, we investigate how the introduction of a metronome
affects the dynamics of different initial states beyond the fully
polarized case. To this end, we subject an ensemble of random
bit-string states, i.e., states where every spin is either |↑〉 or |↓〉
chosen randomly, to the Floquet sequence given in Eq. (1).
As the magnetization of these states vanishes on average,
we instead consider local magnetization autocorrelators in
the rotating frame, 〈σ i

z (0)σ i
z (t/T )〉(−1)�t/T � =: Zi. Three au-

tocorrelators of selected spin sites, averaged over a set of 500
bit-string initial states, are shown in Fig. 4. The three panels
show the autocorrelators of the metronome spin on the site
i = 1 in Fig. 4(a), of a spin in the bulk of the chain on site
i = 8 in Fig. 4(b), and at the other chain boundary on site
i = 14 in Fig. 4(c).

First, the results for the autocorrelator of the metronome
spin itself are in line with the results for the metronome
single-spin magnetization in Fig. 2 (right axis). The
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FIG. 4. The z-magnetization autocorrelators Zi averaged over
500 random initial bit-string states for three different sites in a
chain of L = 14 spins with open boundary conditions. (a) The au-
tocorrelator for the metronome spin at the left boundary of the
chain at site index i = 1. (b) The autocorrelator for a spin in the
middle of the chain at site index i = 8. (c) The autocorrelator for
the right boundary site with i = 14. We observe a long-lived edge
mode with clear lifetime enhancement through the introduction of a
metronome spin.

autocorrelator oscillates with full amplitude, −1 � Z1 � 1,
even at late times. Second, for sites in the bulk, we observe
a rapid decline in the autocorrelator to zero, regardless of
the value of ε′. Third, we see a plateau of the autocorrelator
of the opposite boundary site analogous to the dynamics of
the metronome site itself, as presented in Fig. 4(c). These
characteristics are consistent with those of a strong π mode
(SPM) [48]. This phase encompasses rapid bulk heating, but
also robust period-doubled edge modes, and is closely related

FIG. 5. A visual summary of the different spin-flipping processes
and their associated energy differences. The spins in the bulk are
colored blue, whereas the metronome is colored orange, and the
right edge spin is colored green. Flipped spins are highlighted with
a red background. (a) The creation or annihilation of two domain
walls in the bulk of the chain. If the two adjacent spins are aligned,
flipping the central spin results in an energy difference of |δE | = 4J .
(b) The free propagation of a domain wall. If the two adjacent
spins of a central spin are antialigned, flipping the central spin
is energetically degenerate, i.e., |δE | = 0. Therefore, domain walls
can propagate freely along the chain, utilizing this mechanism to
iteratively flip the next spin at the domain wall. (c) The flipping
of the edge spin. Flipping an edge spin always results in an energy
difference of |δE | = 2J , half of the bulk value, since it is coupled
to only one neighboring spin. Consequently, the edge spins cannot
participate in the domain-wall dynamics shown in (b). The resulting
coupling for the first three processes is ∝ ε. (d) The flipping of the
entire chain. Flipping all spins together preserves the domain-wall
structure of the chain and thus does not have an associated energy
difference. This resonant process flips the edge spins at an effective
rate ∝ ε ′εL−1.

to a symmetry-protected topological (SPT) phase [48–51].
This phase has recently been observed in the system under
investigation [52]. Our data show a clear enhancement of
the lifetime of the autocorrelator at the boundary sites, ZL,
through the introduction of the metronome spin, even though
the two boundaries are separated by L − 2 = 12 spins coupled
only through nearest-neighbor interactions. In particular, it is
not necessary to apply the stabilized drive directly to one of
the two edge modes. Additional simulations of a chain with a
central metronome spin reveal a similar behavior with edge-
mode lifetime enhancement. More details on this additional
investigation can be found in the Appendix B.

This behavior can be understood by considering the spec-
tral structure of the average Hamiltonian H (0)

F , which we
motivate in the following by a dynamical perspective. In the
regime of small transverse field, the spectrum of the TFIM
approximately decomposes into blocks of states with equal
number of domain walls, i.e., adjacent spins pointing in oppo-
site direction. The interaction term yields an energy difference
of 2J per domain wall between these blocks. The action of the
field term is twofold in this view: it causes spin flips, which,
in the bulk of the chain, can either create or annihilate two
adjacent domain walls [see Fig. 5(a)] or move an existing
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domain wall by one site [see Fig. 5(b)]. The former changes
the number of domain walls by ±2 and is thus off resonant,
i.e., comes at an energy cost. However, the latter leaves the
total number of domain walls invariant and thus is resonant,
i.e., domain walls can propagate freely within the bulk. At the
edges of the chain, any spin flip always creates or annihilates
a single domain wall. This observation is at the heart of the
topological protection of the edge spins: Flipping an edge spin
is the only process that changes the number of domain walls
by an odd amount, and thus is always off resonant, unless
both edge spins are flipped. This picture is analogous to pre-
vious work [53], in which the authors describe how Majorana
fermions are protected on the boundary sites due to an approx-
imate conservation law. One process that is always resonant
and simultaneously flips both edge spins is flipping all spins
[see Fig. 5(d)] as it corresponds to the global symmetry of
the system. All other processes that alter the edge spins are
strongly suppressed, because after diagonalizing the resonant
domain-wall dynamics in the bulk, the resulting eigenstates
do not feature any other resonant transitions. This leads to the
observed oscillations with frequency ∝ ε′εL−1 as in the case
of the fully polarized initial state.

To better illustrate that last point, we translate the dynami-
cal perspective above onto the static eigenstates of the average
Hamiltonian H (0)

F . Starting with the global parity symmetry,
all eigenstates |φ±〉 ∝ |φ〉 ± |φ̄〉 are also eigenstates of the
parity operator and thus are an equal superposition of a state
|φ〉 and its spin-flipped counterpart |φ̄〉. For weak field ε � J ,
the domain-wall number is approximately conserved, which
means that each eigenstate predominantly consists of states
from the same domain-wall-number sector with only minor
admixtures from adjacent sectors. The observation from the
dynamical viewpoint in the previous paragraph, namely that
domain walls can propagate freely, here means that within
the same domain-wall-number sector, the location of domain
walls is ill-defined and the eigenstates are a superposition of
all possible placements (see Fig. 6).

With this characterization of the eigenstates, the explana-
tion of the observations made above is straightforward (see
sketch Fig. 6). Taking a bit-string initial state and expanding
it in the eigenstate basis, we find it to overlap with many
different eigenstates from the same sector of the domain-wall-
number operator. These eigenstates dephase rapidly ∝ O(ε)
and lead to the decay of autocorrelators in the bulk, as seen
in Fig. 4(b). By contrast, the edge spins can only change due
to the dephasing between the parity sectors, which happens ∝
O(ε′εL−1). Since the splitting is identical for all components,
this leads to the long coherent oscillations seen at late times in
Fig. 4(a) and 4(c). The initial decay of the edge spin opposite
to the metronome [see Fig. 4(c)] is caused by the admixture of
wave-function components with a different number of domain
walls. The observation that a nonzero number of domain walls
will lead to rapid bulk dephasing and thus only a polarized
initial state can show long-range order is in line with an earlier
study [54]. There, the authors describe a prethermal phase,
which they claim can generally only be realized in long-range
interacting systems in one dimension. In short-range interact-
ing systems, only the polarized (zero-temperature) initial state
displays long-lived spatiotemporal order, as it is the only state
with vanishing domain-wall number.

FIG. 6. An illustration of the topological edge-mode protection
mechanism. The system is initially prepared in a random bit-string
state |�init〉. Expanded in the energy eigenbasis of the average Hamil-
tonian H (0)

F , the initial state has overlap with many eigenstate pairs
|φ〉± with the same number of domain walls. These eigenstate pairs
each comprise a superposition of all possible domain wall place-
ments since domain walls can move freely (highlighted in red). The
dephasing between eigenstate pairs leads to the vanishing autocor-
relators in the bulk. However, since domain walls cannot propagate
through the edges, edge spins (marked in green) are protected from
the domain-wall dynamics. Instead, they show long coherent oscil-
lations due to the exponentially small energy gap between the parity
sectors.

C. Adapted model with external metronome spin

To clearly separate the two described stabilization mech-
anisms introduced in Secs. III A and III B, we modify the
geometry of the model as shown in Fig. 7(a). Instead of attach-
ing the metronome spin to one end of the chain, as previously
shown in Fig. 1, the metronome is coupled to the central spin,
which itself is still coupled to its two neighbors in the chain.
Thus, the two boundary spins are driven in the same way, and
they are connected by a direct line of not actively stabilized
spins in the bulk. By the reasoning outlined in Sec. III A, one
expects similar results for polarized initial states compared
to the standard layout of Fig. 1, as the argument relating
to the effective symmetry breaking in the bulk still holds.
However, the new configuration includes three edges and one
central spin coupled to three neighbors, one of which being the
metronome spin. One important conceptual difference to the
linear configuration is that here the number of domain walls
in the main part of the chain is less strictly conserved. This
results in a much weaker edge protection, as the coupling
between adjacent domain wall sectors is no longer strongly
suppressed.

To test these hypotheses, we compute the z-magnetization
autocorrelators of a boundary site, ZL, and of the new
metronome site, Zm, with the results given in Figs. 7(b),
7(c). The observed lifetime behavior is in full agreement with
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FIG. 7. The setup of the adapted system with L − 1 spins in a
chain with an additional externally coupled metronome spin attached
to the center. (a) A schematic visualization of the adapted geometry.
The lifetimes of the boundary-site z-magnetization autocorrelators
ZL are shown in the next two panels for different initial states. (b) The
autocorrelator of the polarized initial state. The blue and orange lines
show the results for the case without metronome spin and with a
metronome spin in the chain, respectively, for reference. Both config-
urations with a metronome display similar lifetime enhancements of
the autocorrelator. (c) The autocorrelator averaged over 500 random
initial bit-string states. The adapted system shows a much earlier
decay of the autocorrelators compared to the configuration with the
metronome spin in the chain and retains only a remnant of the
original magnetization for the duration of the metronome lifetime.
On the second axis in (b) and (c) (in purple font) the magnetization
autocorrelator Zm of the metronome spin itself in the adapted setup
is displayed.

the previous predictions. In the fully polarized case, we see
analogous results, whereas for random bit-string states, the

averaged autocorrelator of the edge spin (green curve) de-
creases rapidly to an intermediate plateau before vanishing
completely. The timescale of the larger first decay is compara-
ble to the lifetime of the nonstabilized chain (t/T ≈ 103), and
the second late-time decay coincides with the dephasing of the
metronome spin. The initial decay stems from the multitude
of different couplings between domain-wall sectors and the
small remaining autocorrelations are protected by the spin-flip
parity that is broken on timescales � ε′ where the metronome
is still fully polarized.

IV. CONCLUSION

In this work, we have shown that near-resonant driving of
a single spin can significantly increase the lifetime of long-
range order in periodically driven systems. In particular, the
stabilization is not based on disorder-induced MBL; instead,
we have identified two distinct mechanisms that lead to long-
lived bulk and edge spins, respectively. For polarized states, an
argument concerning the breaking of spin-flip symmetry was
found to explain the increased bulk magnetization lifetimes.
Subsequent studies revealed a lifetime enhancement of stable
oscillations on the boundary spins in arbitrary bit-string initial
states. We argued that the reason for the slowed edge-mode
decay is that the metronome spin leads to a suppression of
resonant higher-order processes. Finally, we discussed an-
other setup with external stabilization to the chain and thus no
edge-mode enhancement to clearly highlight the two different
mechanisms identified before.

Thus, our work introduces novel stabilization mechanisms
suitable for ordered and, in particular, finite-size systems. The
bulk-stabilization argument relies on the effective symmetry
breaking introduced through one metronome spin, which is
not affected by the length of the chain. Similarly, the energy
offset of flipping edge spins compared to the bulk is linked to
open boundary conditions, leading to enhancement of stable
oscillation even for short chains. Therefore, both processes
enable arbitrarily long-lived oscillations without taking the
thermodynamic limit.

We point out that the stabilization mechanism of the model
is not based on the Hamiltonian being integrable. The core
concept is linked to the underlying approximate conservation
of the domain-wall number and the spin-flip symmetry, the
latter of which is broken by the metronome in the bulk of the
chain. We expect to find similar results in other spin systems
as long as these conditions are met. To corroborate this state-
ment, we have studied the same model as in Eq. (1), but added
next-nearest-neighbor interactions, ∼Ji,i+2 si

zs
i+2
z , which break

the integrability of the Hamiltonian (cf. Appendix C). As
expected, we find that decreasing ε for one of the spins
yields lifetime enhancements analogous to the regular TFIM
model, which encourages further study of applications in other
models.

One potential future extension of this work is the study of
two- and three-dimensional setups. The existence of MBL and
thus disorder-stabilized DTC in these systems has been the
subject of ongoing debate in recent years, which makes the
study of alternative stabilization mechanisms an interesting
direction. Moreover, the search for analogous stabilization
mechanisms in other paradigmatic spin models, such as the
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FIG. 8. The disorder-averaged lifetimes of the global chain z
magnetization with N = 13 spins, starting in the fully polarized
initial state. The data were obtained by numerical sigmoid fits.
Lifetimes above � 1010T and below � 102T cannot be adequately
resolved.

Heisenberg XX and XXZ models, could lead to new insights
into out-of-equilibrium dynamics in quantum many-body
systems.
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APPENDIX A: DISORDERED COUPLINGS AND FIELDS

The stabilization mechanism proposed in Sec. III A is not
based on the presence of disorder in the system. To study
the interplay of disorder with the metronome, we repeat the
drive-parameter scan of Fig. 3 for a disordered system. Specif-
ically, we subject a polarized initial state to realizations of
the Hamiltonian of Eq. (1), where the parameters Ji,i+1 and
hi are uniform iid random variables according to Ji,i+1 ∼
U (0.5, 1.5) and hi, ∼ U (−1, 1), in analogy to simulations
shown in Ref. [5]. The resulting average over 250 disorder
realizations of the Floquet unitary is shown in Fig. 8. Since the
increase in complexity due to the disorder average required a
reduction in the size of the system to L = 13, we also give the
analogous data set for a disorder-free chain of the same length
in Fig. 9. The averaged time traces approximately follow a
sigmoid shape ∝ 1/(1 + exp αt ), as different disorder real-
izations have different Rabi oscillation frequencies and cancel

FIG. 9. The lifetimes of the global ordered-chain z magnetization
with N = 13 spins, starting in the fully polarized initial state. The
data were obtained through numerical cosine fits. Lifetimes above
� 1010T and below � 102T cannot be adequately resolved.

out at late times. The times plotted in Fig. 8 correspond to
t = 1/α, so the magnetization has decreased to ∼1/(1 + e) ≈
26.9% of the plateau value. Comparing the two figures reveals
that the behavior is qualitatively the same. However, making
direct quantitative comparisons between the two data sets is
not directly possible due to the differences discussed in the
determination of the lifetime.

APPENDIX B: METRONOME SPIN
AT THE CENTER OF THE CHAIN

Up until now, we have studied systems with the metronome
attached to the end of a linear chain or to the side of it,
coupled to the central spin of the chain. Now, we replace a
central spin on the index i = �(L + 1)/2� =: m, i.e., εm = ε′.
For odd chain lengths (here L = 13), the spin is exactly in the
middle of the chain, and the system has a spatial inversion
symmetry, reducing the numerical complexity. The global z
magnetization of a polarized initial state is depicted in Fig. 10.
The global magnetization of the centrally stabilized system
has many similarities with that of the original setup with
stabilization at the boundary, as shown in Fig. 2. The system
demonstrates Rabi oscillations with a similar frequency and
initial magnetization amplitude. However, after ≈105 Floquet
drive cycles, the metronome-spin magnetization temporarily
decays to the chain average (right axis) in Fig. 10, before the
subsequent Rabi oscillations set in.

The metronome is coupled to two neighboring spins sub-
jected to the standard drive angle deviation, ε, instead of the
previous single spin. Therefore, the observed reduced time
of the initial decay compared to the boundary metronome is
consistent with this difference in chain configuration. Before
that decay, the dynamics of the metronome can, in good ap-
proximation, again be considered to be largely independent
of the rest of the chain. Thus, the metronome effectively
decouples the two half-chains, acting as a rotating field on
its two neighbors. After the decay, the two chains are coupled
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FIG. 10. The global z magnetization of the spin chain of length
L = 13 starting in a fully polarized state subjected to different driving
schemes. We show the exact stroboscopic dynamics of the chain
at even period numbers with and without a metronome spin at the
central site as well as the average Hamiltonian given in Eq. (5).
The configurations that include a metronome spin display lifetime
enhancements by several orders of magnitude. All data are well de-
scribed through numerical cosine fits. On the second axis (in purple
font) we display the single-spin magnetization of the metronome
spin itself. The dephasing of the magnetization of the metronome
coincides with the dephasing of the plateau.

again, leading to the intermediate plateau before the late-time
Rabi oscillations.

APPENDIX C: NNN INTERACTIONS

Here we want to study a modified version of the original
interaction Hamiltonian Hint given in Eq. (1). We include
additional next-to-nearest-neighbor (NNN) interactions to the
model,

HNNN
int = Hint +

L−2∑
i=1

Ji,i+2 si
zs

i+2
z , (C1)

FIG. 11. The global z magnetization of the spin chain of length
L = 12 starting in a fully polarized stated subjected to different
interaction Hamiltonians. We show the exact stroboscopic dynamics
of the chain at even period numbers with and without a metronome
spin at one boundary site, for both the standard and the integrability-
breaking model (denoted NNN). Configurations that include a
metronome spin display a lifetime enhancement of several orders of
magnitude. For better visibility, only the first two oscillation cycles
are plotted for each curve.

which break the integrability of the new effective Floquet
Hamiltonian. We study the global magnetization of a polar-
ized initial state of L = 12 spins subjected to the modified
Floquet sequence with HNNN

int replacing the original interaction
Hamiltonian Hint. We give the results for Ji,i+2 = 0.6 and
ε′ = 10−3 in Fig. 11.

Both the standard model evolved through Hint (blue and
orange curves) and the modified model evolved through HNNN

int
(green and red curves) experience qualitatively compara-
ble lifetime enhancements ∼1/ε′ through the addition of a
metronome spin.
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8O U T L O O K : C A N PA I R S S TA B I L I Z E T I M E C RY S TA L L I N E
DY N A M I C S ?

In this chapter, we revisit the model discussed in Chapter 2 and explore the question
whether this form of disorder can sustain a time crystalline phase. The concrete protocol
we study is similar to the previous chapter: After some interaction period τ , all spins are
flipped around the x-axis with angle φ = π(1− ε). Hence, the Floquet unitary is given by:

UF = exp

[
−iπ(1− ε)

∑
i

S(i)
x

]
exp(−iτHXX) (8.1)

The dynamics are initialized in a z-polarized state |ψ0〉 = |↑ . . . ↑〉 and the observable
tracked is the total z-magnetization Mz = N−1

∑
i S

(i)
z .

Preliminary experimental results of this protocol published in [160] indicate that
interactions indeed stabilize the magnetization dynamics (cf. Figure 8.1)1. Running the
experiment with a rather short wait time of τ1 = 5ns finds period doubling for ε = 0 [cf.
Figure 8.1(b) left] as expected due to symmetry. However, this signature is not stable to
perturbations of the drive as increasing the drives deviation to ε = 2% replaces the stable
period-doubled oscillations by a beating signal [cf. Figure 8.1(c) left]. However, increasing
the wait time to τ2 = 45ns [cf. Figure 8.1(d) left] clearly reconstitutes the time crystalline
signature. This is reflected by the so-called crystalline fraction [cf. Figure 8.1(b-d) right],
which is defined as the normalized Fourier weight at ν = 1/2 [23]. A systematic parameter
sweep shows that increasing the interaction time τ not only leads to a larger crystalline
fraction but also extends the range of ε where time crystalline behavior can be observed
[cf. Figure 8.1(e)]. Thus, there is a clear stabilization effect due to the interactions which
could imply the system to enter a time crystalline phase.

8.1 time crystal protocol with pairs

In the following, we use the pair model to derive the functional form of the envelope of
|Mz(n)|. The first obvious step is to just apply the pair model to solve the dynamics. So
replacing HXX →

∑
〈i,j〉H

(i,j)
pair , we find that UF factorizes completely between pairs:

UF ≈
∑
〈i,j〉

exp
[
−i(1− ε)π(Si

x + Sj
x)
]
exp

[
−iτH(i,j)

pair

]
≡

∑
〈i,j〉

U
(i,j)
F,pair. (8.2)

〈Mz〉(n) =
1

N

∑
〈i,j〉

〈
↑↑
∣∣∣(U (i,j)†

F,pair)
n(S(i)

z + S(j)
z )(U

(i,j)
F,pair)

n
∣∣∣↑↑〉 ≡ 1

N

∑
〈i,j〉

〈
M

(i,j)
z,pair(n)

〉
(8.3)

1 Note that the graphic uses a different definition for the rotation angle. It uses φ = επ and thus ε = 1
means perfect flips. In contrast, this thesis uses φ = (1− ε)π with ε = 0 corresponding to perfect flips.
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Figure 8.1: Preliminary experimental results on time-crystalline signatures in a spatially disordered
XX model. a) sketches the experimental sequence. Then experimental results for perfect
rotation (b), short interaction times and imperfect rotation (c) and longer interaction
times with imperfect rotation (d) follow. Left column depict the magnetization’s time
trace, while right column shows the Fourier transform of the signal. e) Then plots
the normalized Fourier weight at ν = 0.5 versus rotational deviation ε. Taken with
permission from Ref. [160]

Now we can exploit that U (i,j)
F,pair commutes with S(i)

x S
(j)
x to decompose the 4-dimensional

Hilbertspace of each pair into two 2-dimensional subspaces. Thus, we can compute the
exponential Un

F,pair analytically and find:

2
〈
M

(i,j)
z,pair(n)

〉
≈ 2 cos(nJ̄) cosnθ + 2 sin(nJ̄) sin(nθ)

sin τ cosφ

sin θ︸ ︷︷ ︸
≡f

(8.4)

= (1 + f) cos
[
n(J̄ − θ)

]
+ (1− f) cos

[
n(J̄ + θ)

]
(8.5)

where J̄ = Jτ
4 and cos θ = cos J̄ cosφ.

To find the shape of the envelope, we assume ε� 1 which is equivalent to φ� 1 in a
toggling frame where we swap the orientation of the z-axis in every step. Furthermore, we
will consider only pairs where the interaction is stronger than the driving, i.e J̄ > φ. The
other pairs with J̄ < φ essentially oscillate around the x-axis with some deviation and
thus dephase slowly among themselves on a timescale ∝ ε. For the interaction dominated
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pairs, we can neglect the second term of Equation 8.5 since its coefficient (1 − f) gets
rather small because

f =
sin J̄ cosφ√

1− cos2 J̄ cos2 φ
≈ cosφ√

1− φ2

sin2 J̄

≈ 1 +
1

2
φ2

(
1

sin2 J̄
− 1

)
≈ 1. (8.6)

Additionally, we can approximate θ for J̄ < π as

θ = arccos(cos J̄ cosφ) ≈ arccos(cos J̄(1− φ2

2
)) ≈ J̄ − φ2

2 tan J̄
, (8.7)

which further justifies neglecting the second term, since not only its amplitude is small but
it also oscillates quickly and therefore it averages out when considering the dynamics on a
longer timescale. Putting these results together we find for the approximate magnetization
dynamics of an interaction dominated pair:

〈
S1
z + S2

z

〉
(n) ≈ cosn(J̄ − θ) ≈ cos(n

φ2

2 tan J̄
) (8.8)

From Figure 8.2(c), we can see that this approximation (blue line) matches the exact
data (gray) essentially exactly.

In principle, we now need to average this expression (Equation 8.8) over the appropriate
part of the pair coupling distribution Ppair(J)dJ (cf. Equation 4.10). This is analytically
infeasible. Instead, we can exploit that this distribution is very broad (cf. Figure 8.2(a)),
which leads to phase-wrapping. This is the curious property of Floquet systems that their
coupling are confined to a circle and strong coupling then just ”wrap around”. Another
way this manifests is the periodicity of Equation 8.8 where any J̄ can be mapped back to
the interval [0, π/2). Since the coupling distribution is so broad that most couplings wrap
around multiple times, the distribution thus becomes effectively uniform (cf. Figure 8.2(b)).
Exploiting this fact, we can approximate the average:

〈Mz(n)〉 =
1

2

∫ ∞

4φ/τ
dJPpair(J)

〈
S1
z + S2

z

〉
(n) (8.9)

≈ 1

2
κ
2

π

∫ π/2

0
dJ̄

〈
S1
z + S2

z

〉
(n) (8.10)

=
1

2
κ exp

(
−nφ

2

2

)
(8.11)

Here κ =
∫∞
4φ/τdJPpair(J) denotes the fraction of pairs that are dominated by their

interaction. Figure 8.2(c) confirms this to be a reasonable approximation. The slight
deviation likely stem from the fact that the effective, phase-wrapped, coupling distribution
shows a systematic deviation from a uniform distribution. This is likely due to the
assumption that all couplings J̄ > φ are subject to the phase-wrapping. However the pair
coupling distribution shows a slight curve in the regime φ ≤ J̄ ≤ π, which explains the
slight emphasis on smaller phase-wrapped couplings2.

2 A uniform distribution with a logarithmic x-axis would appear as a linear slope since the height of the
bin is proportional to its width.
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Figure 8.2: Preliminary result of the pair model applied to the time crystal protocol for d = α,
ε = 2% and τ = 10Jmed. (a) shows the distribution of the pair couplings as given by
Equation 4.10. The yellow shaded area indicates the region where the approximation
is applied. The gray, dashed, line indicates where J̄ = 1 and thus phase wrapping
sets in. (b) Resulting distribution if the couplings contained in the yellow area of
panel (a) are phase wrapped. The gray, dotted, line is a guide to the eye and marks
a uniform distribution. (c) Compares the time traces resulting from averaging exact
pair dynamics (gray), averaging the approximated pair dynamics and (blue) and the
approximate analytical average (yellow dashed).
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8.2 discussion

The first-order pair model predicts a stabilization effect due to interactions, which shifts
the decay timescale from O(ε) to O(ε2). However, this stabilization does not increase
with system size, because the pairs do not interact among each other. Therefore, the time
crystalline signature is only a transient effect according to the pair model. However, it
is unclear whether this model captures the relevant physics of the situation. One way
to check this is by experiment of course, where one could try to confirm the scaling of
the decay timescale τdecay ∝ ε2 and perform more extensive numerical checks in small
systems.

From the theoretical side, there are some more possible mechanisms that could stabilize
the time crystalline signature. For one, the Rydberg spins also generate some on-site
potential due to van der Waals interactions, which were neglected so far. This term can
be combined with the driving field to effectively slight deviations in the rotation axis.
As we have seen in the previous Chapter 7, such a spatially dependent drive can have a
huge influence on the lifetime of the system. However, since this does not cause further
interactions between pairs and thus the dynamics stay constricted to small Hilbert spaces,
it is unlikely that this effect would have a large impact in this scenario.
A likely more fruitful approach is to incorporate pair-pair interactions. For an XXZ

model, we derived (cf. Chapter 2) that these pair-pair interactions are effectively a kind of
Ising model of pairs. Since disordered Ising models are known to feature time crystalline
phases, we deem this avenue quite promising to study. Unfortunately, these terms thwart
the integrability and so one will need to resort to numerics or find some other clever
approach to tackle this problem analytically. The extension of this idea to XX models
is also not straight-forward as it requires a better understanding of the next order of
perturbation theory, which was already discussed previously in Chapter 5.

While we could not confirm the presence of time crystal in this preliminary analysis of
the pair model, we also dit not rule it out. However, just the base pair description does
not lend itself to produce a stable time crystal. Hence, new insights beyond bare pairs
are required to draw a definitive conclusion on this matter.





9C O N C L U S I O N

In Part III of this thesis, we have demonstrated time-crystalline behavior shares a close
relationship not only to disordered interactions but also to disorder in the driving part.
The unifying concept, that is key to understanding the described phenomena, is the role
of long-range order within the eigenstates (described well in e.g [54, 156]). In Chapter 7,
the high sensitivity of the lifetime of the whole system to the variation of the driving
field on just a single site is testament to the underlying long-range order - in that case
of the ground state of an Ising model. States at higher temperature do not possess long
range order and thus do show neither time crystalline behavior nor lifetime enhancements
(except at the edges due to topological effects). Viewing the driven pair model of Chapter 8
through this lens, it becomes apparent that no true time crystal can be expected at this
level: The lowest order of the pair model just does not feature any interaction terms among
the pairs and so no long-range order can be generated. Whether pair-pair interactions
can change this fundamentally is questionable because there is a crucial difference to
the Ising model: All eigenstates of an Ising interaction, i.e.

∑
ij JijS

(i)
z S

(j)
z , written in

the symmetric sector of its Z2 symmetry feature long-range order because they must
be superpositions of the form |ψ〉 ± X|ψ〉, where X is the generator of the symmetry.
In contrast, this is not true for eigenstates of the pair model because each Hpair has
|±〉 ∝ |↑↓〉 ± |↓↑〉 as possible eigenstates which itself are symmetric under spin-flip. Thus,
the eigenstates for the pair model can fulfill the symmetry in local patches destroying the
global long-range order in the process.
A consequence of this interpretation is that one learns about the structure of the

eigenstates from the measurement of the time crystal protocol. An interesting application
of this could be to study whether we can restore the time crystal signature by using
different parameter regimes. The flexibility of the Rydberg platform allow for tuning
the strength of not only Ising interactions but also of random on-site potentials which
are generated through van der Waals interactions of neighboring spins [161]. So one
could use the existence of a time crystal as an indicator to probe the crossover between
XXZ and Ising models and thus the transition between pair localization and traditional
Ising-like MBL. While MBL is conjectured to be absent for long-range interaction α < 2d
by resonance counting arguments [34, 36], these estimates used coefficients of the same
magnitude for Ising and hopping terms and so the Ising limit of power-law XXZ models
is not studied to our knowledge.
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S U M M A RY

In this thesis, we have studied how spatial inhomogeneities can prohibit a system’s
thermalization at least on short and intermediate timescales. In Part II, we studied closed
quantum systems featuring power-law interactions and demonstrated the presence of an
emergent integrability following the structure of MBL. This feature appeared to be robust
using numerical finite size scaling and also experimental data showed clear signatures of
its consequences even in a critical case where α = d = 3. While the existence of MBL as
a true thermodynamic phase is hotly debated, its core concept, i.e. the disorder-induced
emergent integrability, proved to be a very useful tool to understand the behavior of
real-world experiments. Whether or not this apparent localization persists to infinite
times and infinite system size can perhaps be answered by generalizing the perturbative
RSRG procedure to higher orders but this is beyond the scope of this work.

Then, in Part III, we considered periodically driven systems and discerned the intricate
interplay of driving and non-trivial, quasi-conserved quantities caused by spatial inhomo-
geneity. The key signature of these conservation laws manifests as long-lived oscillations
that have a frequency that is an integer multiple of the driving frequency. However, we
have seen that the details of the conservation laws and the connected symmetries have a
strong influence on the stability of the dynamics. Thus, the microscopic structure of the
system imprints on its macroscopic dynamics allowing for novel physics out-of-equilibrium.
More generally, we have seen that the absence of thermalization often comes with

additional structure. Hence, even though out-of-equilibrium states are, per definitionem,
not amenable to a thermal description, all is it not lost. For the systems studied here,
effective conservation laws could be identified and subsequently exploited to gain insight
into the systems’ dynamics.
Speaking in terms of coffee: In a latte, the milk and coffee always intermix quickly.

However, if the milk is strongly disordered, i.e. frothy, then it will not mix well into the
coffee even if stirred. However the resulting macchiato is not much harder to describe
than the latte. It just features some additional structure. At least in this regard, quantum
systems are akin to coffee.

−→
Figure 9.1: Localization exemplified by a macchiato.
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