
Inaugural dissertation  
for  

obtaining the doctoral degree  
of the  

Combined Faculty of Mathematics, 
Engineering and Natural Sciences  

of the 
Ruprecht - Karls - University  

Heidelberg 
 

 

 

 
Presented by 

M.Sc. Zhao Yuan 

Born in: Tianjin, China 

Oral examination: 22.11.2024 



2 
 

Analysis of somatic copy 

number alterations in liquid 

biopsies from cancer patients 

 

 

 

 

 

 

 

 

 
Referees: 

Prof. Dr. Benedikt Brors 

Prof. Dr. Holger Sülltmann  

 



3 
 

Abstract 

  

Compared to tissue biopsies, ctDNA provides a more comprehensive tumor landscape, 

allowing for repeated non-invasive sampling. Therefore, ctDNA detection has a broad 

application prospect in tumor diagnosis, treatment and monitoring. However, due to the low 

content of ctDNA in cfDNA, ctDNA detection requires a high sequencing depth to achieve 

high sensitivity. Currently, the commonly used ctDNA testing scheme is panel sequencing 

with high coverage, so that genes of interest can be tested at a lower cost. However, panel 

sequencing has limited ability to detect other variants such as SV and CNV. Another option is 

lcWGS. lcWGS is able to identify CNVs, providing valuable insights into genomic alterations. 

Based on the data of HIPO-K34 and INFORM, this study explored the ability of ctDNA 

detection by the two schemes. The HIPO-K34 project focused on patients with ALK gene-

fused non-small cell lung cancer (NSCLC) and contains multi-time point sequencing data 

from lcWGS and panel sequencing. The INFORM project consists of liquid biopsy samples and 

tissue samples taken from the same patient at the same time point. In addition, various 

detection tools were benchmarked using simulated data with known tumor DNA fractions 

and CNVs. In order to improve the detection performance, the tools were optimized and the 

tool with the best performance was selected. Finally, a pipeline combining the panel analysis 

process with the optimized lcWGS analysis process was established for the accurate analysis 

of liquid biopsy samples. 

  

Keywords: liquid biopsy; ctDNA; lcWGS; tumor DNA fraction; CNV 
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Zusammenfassung  

 

Im Vergleich zu Gewebebiopsien bietet ctDNA eine umfassendere Tumorlandschaft und 

ermöglicht wiederholte, nicht-invasive Probenahmen. Daher hat die ctDNA-Detektion ein 

breites Anwendungspotential in der Tumordiagnose, -behandlung und -überwachung. 

Aufgrund des niedrigen ctDNA-Gehalts in cfDNA erfordert die ctDNA-Detektion jedoch eine 

hohe Sequenziertiefe, um eine hohe Sensitivität zu erreichen. Derzeit ist das häufig 

verwendete ctDNA-Testverfahren die Panel-Sequenzierung mit hoher Abdeckung, sodass 

Gene von Interesse zu geringeren Kosten getestet werden können. Die Panel-Sequenzierung 

hat jedoch eine begrenzte Fähigkeit, andere Varianten wie SV und CNV zu erkennen. Eine 

andere Option ist lcWGS. lcWGS kann CNVs identifizieren und wertvolle Einblicke in 

genomische Veränderungen bieten. Basierend auf den Daten von HIPO-K34 und INFORM 

wurde in dieser Studie die Fähigkeit der ctDNA-Detektion durch die beiden Verfahren 

untersucht. Das HIPO-K34-Projekt konzentrierte sich auf Patienten mit ALK-genfusioniertem 

nicht-kleinzelligem Lungenkrebs (NSCLC) und enthält Sequenzierungsdaten zu mehreren 

Zeitpunkten von lcWGS und Panel-Sequenzierung. Das INFORM-Projekt besteht aus 

Flüssigbiopsieproben und Gewebeproben, die vom selben Patienten zum selben Zeitpunkt 

entnommen wurden. Darüber hinaus wurden verschiedene Detektionstools unter 

Verwendung von simulierten Daten mit bekannten Tumor-DNA-Fraktionen und CNVs 

bewertet. Um die Detektionsleistung zu verbessern, wurden die Tools optimiert und das 

leistungsstärkste Tool ausgewählt. Schließlich wurde eine Pipeline entwickelt, die den Panel-

Analyseprozess mit dem optimierten lcWGS-Analyseprozess kombiniert, um eine genaue 

Analyse von Flüssigbiopsieproben zu ermöglichen. 

 

Schlüsselwörter: Flüssigbiopsie; ctDNA; lcWGS; Tumor-DNA-Fraktion; CNV 
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1. Introduction 

The text was written by Zhao Yuan. It has been proofread and edited by ChatGPT. 

1.1 Cancer pathogenesis 

 

Cancer is caused by the accumulation of genomic changes in somatic cells. There are many 

reasons for these mutations, including mismatches during DNA replication, DNA repair 

defects, and exposure to exogenous or endogenous mutagens1. In 1982, the first oncogene 

RAS was discovered in bladder cancer cells. Mutations in the RAS gene can inhibit the 

senescence and death of cells, leading to cell canceration2. In addition, studies have shown 

that RAS gene mutations can maintain the stable synthesis of PD-L1 protein which can 

respond to PD-1 on the surface of T cells so that cancer cells have the ability to promote 

immunosuppression3. Subsequently, the first tumor suppressor gene RB1 was discovered, 

which plays an indispensable role in inhibiting the occurrence of a variety of tumors, such as 

retinoblastoma, small cell lung cancer, osteosarcoma, pancreatic cancer, and breast cancer4.  

The tumor suppressor effect of RB1 is closely related to its regulation of cell cycle, cell 

differentiation, cell senescence, cell apoptosis, and growth inhibition 5 . The activation of 

oncogenes and the loss of tumor suppressor genes can all lead to the occurrence of cancer. 

Microbial gene integration is also one of the important causes of cancer. Zapatka M et al. 

analyzed the whole genome and part of the transcriptome data of 38 tumor types from 2,658 

cases and detected virus genes in about 13% of the samples. These include Epstein-Barr Virus 

(EBV), Hepatitis B Virus (HBV), and Human Papilloma Virus (HPV)6. In addition, epigenetic 

changes may also cause cancer by changing chromosome structure and gene expression7. 
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Figure 1-1 Timeline of tumor therapeutic option. In the early 1900, radiotherapy is the main means 

of cancer treatment. After that, with the discovery of the first chemotherapeutic drugs, chemotherapy 

gradually became one of the means of cancer treatment. In 1980, Targeted therapy went into 

people's vision because of the progress of Medical Oncology. In the past few years, the emergence 

of immune checkpoint inhibitors provided new ideas for advanced and metastatic tumors (from 

Falzone L, et al. 2018)8. 

 

Over the past century, there have been tremendous advancements in cancer treatment 

research. (Figure 1-1) In the past few decades, researchers have conducted extensive studies 

on the mechanism of cancer and made considerable progress. However, mutations in cancer 

genomes vary widely between different tumor types and different cases. For example, some 

cancer genomes contain more than 100,000 point mutations, while others have less than 

1,000.9 Some childhood cancers carry very few mutations in the genome, while cancers that 

have been exposed to mutagens for a long time, such as lung cancer caused by smoking, 

contain numerous mutations.10, 11 In addition to point mutations, the rearrangement of the 

cancer genome is also very complicated12. These characteristics of cancer have brought great 

challenges to cancer research. Next-generation sequencing (NGS) methods can help 

researchers understand these changes in the cancer genome more comprehensively. 
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1.2 Cancer diagnosis: tissue biopsy and liquid biopsy 

 

Tumor tissue is the current gold standard source for diagnosing and characterizing cancer. 

Morphological and immunohistochemical analysis of tissue samples can provide critical 

information to determine the type and characteristics of cancer and provide information on 

its grade and extent of spread 13 . By detecting mutations in specific genes or abnormal 

expression of proteins in tumor tissue, it is possible to predict a patient's sensitivity to certain 

targeted therapeutic drugs. This provides an important basis for the development of 

individualized treatment plans, which are critical to providing optimal patient care14. Clinically, 

tissue cells are usually chemically or frozen processed, and then further studied by 

microscopic observation and sequencing. Because of directly sampling the tumor tissue, 

tissue biopsy can obtain a higher concentration of tumor cells, which is very helpful for 

obtaining sufficient tumor biological information. In addition, when paired normal samples 

exist, comparing the patient's tumor cell genome with the normal cell genome through high-

throughput sequencing can easily eliminate individual patient bias15. 

 

However, the shortcomings of tissue biopsy cannot be ignored. First, sampling is difficult. For 

some patients, such as advanced cancer patients and lung cancer patients with 

pneumothorax 16 , the sampling of tissue biopsy is relatively difficult. Second, clinical 

complications. The tissue biopsy process can cause trauma that is difficult to heal. Especially 

for those patients which need repeated sampling and have a poor biological function, it is 

easy to cause complications. The difficulties brought by these complications in the treatment 

are undoubtedly worsening the situation for the patients17. Third, it is difficult to preserve 

samples. One method of tissue preservation in clinical is fresh frozen. However, due to the 

relative higher cost of fresh frozen fixation and the need for the resected tissue to be quickly 

frozen in liquid nitrogen in a short period of time, formalin fixation and paraffin embedding 

(FFPE) is an alternative to fresh frozen18. But FFPE can easily cause DNA cross-linking in the 

sample19. Fourth, is the heterogeneity of tumors. Tissue biopsy is conducted for a specific part, 
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and the sample can only represent the tumor information at the specific part at the time of 

sampling. The change of tumor is an evolving process, and there is heterogeneity among 

different tumor cells20. Tissue biopsy cannot reflect the heterogeneity of tumor. 

 

Compared with tissue biopsy, liquid biopsy has the advantage of non-invasiveness, reflecting 

the whole picture of the tumor, and facilitating real-time monitoring of patients. There is cell-

free circulating DNA (cfDNA) in human plasma and serum. These cfDNA fragments usually 

come from apoptotic cells in healthy humans. (Figure 1-2) DNA fragments are released into 

the blood after cell apoptosis, the size of these DNA fragments is usually between 150 and 

200bp21. In cancer patients, besides the DNA fragments produced by normal apoptotic cells, 

there are also DNA fragments from necrotic tumor cells and apoptotic tumor cells, or DNA 

fragments carried in exosomes released by tumor cells22. These DNA fragments are called 

cell-free circulating tumor DNA (ctDNA). Therefore, ctDNA can be used as a marker for tumor 

detection. Studies have shown that there are higher cfDNA levels in cancer patients than in 

healthy people23, 24, 25. This is because phagocytes cannot effectively remove the residues of 

apoptosis and necrosis in tumors, causing DNA fragments to aggregate and release into the 

blood. 
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Figure 1-2 The release of DNA fragments from tumor cells into the blood circulation. The DNA 

fragments of tumor cells are released through secretion, apoptosis, and necrosis, accumulate in the 

tissues, and finally enter the circulatory system. By sequencing cfDNA in the blood, point mutations 

in cfDNA, CNV, chromosomal rearrangements, changes in methylation levels, etc. can be detected 

(from Diaz Jr, et al. 2014)19. 

 

Liquid biopsy also has its own limitations. At present, the accuracy of the ctDNA detection is 

insufficient, and the false negative of the detection cannot infer the absence of a tumor. For 

different types of cancer, the detection rate of liquid biopsy varies greatly26. Compared with 

other cancers, ctDNA has a lower detection rate in primary brain, kidney, prostate, or thyroid 
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cancers. This is because physical barriers like the blood-brain barrier and mucins can prevent 

ctDNA from entering the circulation27. 

 

1.3 Next Generation Sequencing and Cancer Diagnosis 

 

In the past few years, next-generation sequencing technology has made rapid progress and 

development. Compared with the traditional first-generation sequencing technology, NGS 

has the advantages of high throughput and low cost. In 2001, the cost of sequencing the 

entire human genome was about $100,000,000. With the development of next-generation 

sequencing technology, the cost has dropped to less than $1,000 in 202128. The reduction of 

sequencing cost makes it possible to use sequencing technology to assist in the diagnosis 

and treatment of cancer. Using next-generation sequencing technology to detect the 

mutation in patients to support the design and adjustment of targeted drugs or 

immunotherapy, is a common auxiliary means in cancer therapy29. 

 

The application of NGS is of great help to the diagnosis and treatment of cancer30 . As 

mentioned earlier, cancer is caused by the accumulation of mutations in the genome of 

somatic cells. Even for the same type of cancer, the genetic mutations between different 

individuals are very different. Next-generation sequencing strategies include whole-genome 

sequencing (WGS), whole-exome sequencing (WES), transcriptome sequencing (RNA-seq), 

targeted sequencing, Bisulfite-seq, ChIP-seq, etc. Figure 1-3 shows the application of NGS in 

cancer research and clinical application. 
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Figure 1-3 The application of second-generation sequencing in cancer research and clinical 

application. The application of second-generation sequencing includes WGS and WES at the 

genomic level, RNA-seq at the transcriptome level, and bisulfite-seq and ChIP-seq at the epigenetic 

level. A variety of bioinformatics tools are used to analyze data to help us better understand the 

mechanism of cancer occurrence and formulate cancer treatment plans (from Shyr D, et al. 2013)31. 

 

1.3.1 Development history of sequencing 

 

Sequencing technologies for proteins and RNAs have been around long before DNA 

sequencing technologies emerged. In 1949, Frederick Sanger developed a technique for 

determining the amino-terminal sequences of the two peptide chains of insulin, and in 1953, 

the amino acid sequence of insulin was determined32. Edman also proposed the protein N-

terminal sequencing technology in 1950 and later developed the protein automatic 
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sequencing technology on this basis33. Sanger et al. invented the small fragment sequencing 

method of RNA in 1965 and completed the determination of 120 nucleotides of E. coli 5S 

rRNA 34 . During the same period, Holley completed the sequencing of yeast alanine-

transporting tRNA35. 

 

Compared to RNA sequencing, DNA sequencing technology appeared relatively late. In 1975 

Sanger and Coulson invented the addition and subtraction method to determine DNA 

sequence36. In 1977, after the introduction of dideoxynucleoside triphosphate (ddNTP), the 

dideoxy chain termination method was formed, which greatly improved the efficiency and 

accuracy of DNA sequence determination37. Maxam and Gilbert also reported in 1977 the 

chemical degradation method to determine the sequence of DNA 38 . In the same year, 

Frederick Sanger invented the first sequencer and used it to sequence the first genome, phage 

X174 with a full length of 5375 bases39. The dideoxy chain termination method, also known as 

the first-generation sequencing technology, remains widely used today. This method enables 

the sequencing of a range of 700-1000 bases in a single run, demonstrating high accuracy 

and effective handling of repetitive sequences40. However, its limitation of detecting only one 

template at a time makes it a time-consuming process. Consequently, it is unable to meet 

the urgent needs of modern scientific development for the acquisition of modern scientific 

development for the acquisition of biological gene sequences. 
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Figure 1-4 The next-generation sequencing technologies. According to the development history, 

sequencing principles, and technologies, the next-generation sequencing can be mainly divided into 

massively parallel signature sequencing, polony sequencing, 454 pyrosequencing, Illumina–solexa 

sequencing, ABI SOLiD sequencing, Ion semiconductor sequencing, and DNA nanoball sequencing. 

 

Next-generation sequencing, also called high-throughput sequencing (HTS) is a 

revolutionary change to traditional Sanger sequencing technology, which can sequence up 

to millions of nucleic acid molecules at a time. The emergence of high-throughput 

sequencing technology has made it possible to conduct a detailed and comprehensive 

analysis of the genome and transcriptome of a species. There are currently several 

representative next-generation sequencing technologies (Figure 1-4), like 454 technology of 

Roche, SOLiD technology of ABI, and Solexa technology of Illumina41. Invented by Jonathan 

Rothberg in 2005, 454 was the first next-generation sequencing technology to be invented, 

which led life science research into the era of high-throughput sequencing42 . The DNA 

fragment does not need to be fluorescently labeled or electrophoresed. Synthesis and 

sequencing are performed simultaneously. A pyrophosphate will be removed when the base 

is added to the sequence, and the base will be recognized by detecting the pyrophosphate. 

This technology is also called pyrosequencing. SOLiD technology was developed from the 
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ligase sequencing method. Leroy Hood designed the first automatic fluorescent sequencer 

using the ligase method in the middle 1980s43. Based on the sequential ligation synthesis of 

four-color fluorescently labeled oligonucleotides, SOLiD replaces the traditional polymerase 

ligation reaction and enables large-scale amplification and high-throughput parallel 

sequencing of DNA fragments. In the Solexa technology, synthesis and sequencing are also 

carried out at the same time44 (Figure 1-5). In the process of sequencing, the modified DNA 

polymerase and dNTPs with four kinds of fluorescent labels are added. Because the 3' 

hydroxyl terminus of dNTPs bears a chemically cleavable moiety, it only allows the 

incorporation of a single base per cycle. The surface of the reaction plate is scanned with the 

laser so that the type of nucleotides polymerized in each round of the reaction of each 

template sequence can be determined according to the fluorescence of dNTPs. After the cycle 

of "synthesis-cleaning-photographing", the sequence of the target fragment is finally 

obtained. 

 

 
Figure 1-5 Principle and workflow of Illumina sequencing. In the first step of sequencing, the 
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sample DNA needs to be sheared into a specific size, and then the adapters are added to the end of 

the DNA fragments to prepare the sequencing library. Then the prepared library is loaded into the 

flowcell and amplified by bridge PCR. The dNTP with fluorescent-label is added to the system for 

sequencing. The dNTP also contains an azide group so it cannot extend normally during sequencing. 

Therefore, the extension of the sequence will stop after each nucleic acid is added. At this time, the 

nucleic acid being synthesized can be read under the observation equipment according to the 

fluorescence color emitted by the nanowells. After observation, the azide group and fluorescent 

group are hydrolyzed by specific enzymes, so that the next dNTP can enter the extension sequence 

normally (from Kircher M, et al. 2011)45. 

 

The novel sequencing technology represented by PacBio's SMRT technology and Oxford 

Nanopore Technologies' nanopore single-molecule technology is called the third-generation 

sequencing technology (TGS). Compared with the previous sequencing technology, it doesn’t 

need PCR amplification during sequencing, so no GC preference is introduced. It can achieve 

an average read length of over 10kb46. Furthermore, methylation information can be directly 

detected in third-generation sequencing techniques, and epigenetic recognition can be 

performed simultaneously. 

 

1.3.2 Next-generation sequencing strategies 

1.3.2.1 DNA sequencing 

 

The advent of DNA sequencing methods has greatly facilitated research and discovery in 

biology and medicine. DNA sequencing has become an indispensable tool in basic biological 

research and numerous applications, such as the diagnosis of cancer or other diseases, 

biotechnology, forensic biology, and biosystematics47, 48. 

 

WGS sequenced the entire genome to provide the most comprehensive genome features. It 
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can obtain all gene sequences and help to clarify the factors that affect the occurrence and 

progression of diseases. Among next-generation sequencing strategies, WGS is more 

expensive. However, it provides extensive information on point mutations, gene fusions, 

indels, and copy number variations (CNV), as well as information on complex rearrangements 

of chromosomes. In addition, WGS can detect genomic mutations outside the coding region 

of genes49. This includes non-coding somatic mutations such as promoters, enhancers, introns, 

non-coding RNAs, and unannotated regions. 

 

WES can detect mutations of coding genes in the genome. Although it has limitations in 

detecting structural variation50 and is not able to detect non-coding region variation, the cost 

and analysis time of WES are greatly reduced, and the coverage of the region of interest and 

the accuracy of mutation information have been improved51. Compared with WGS, WES is 

mainly used to characterize the defects of single-gene diseases (Mendelian genetic diseases), 

which can cause rare familial diseases52. In addition, WES also has great potential in non-

hereditary or new mutation-related diseases. Therefore, it can be used to detect known 

mutations and new mutations in tumor samples53.  

 

Targeted sequencing is a research strategy in which genomic regions of interest are enriched 

and sequenced by techniques such as gene probe capture and PCR amplification. According 

to different applications, ultra-high sensitivity and accuracy can be obtained with a small 

amount of data54. Compared with whole genome sequencing and whole exome sequencing, 

targeted sequencing focuses on the region of interest and eliminates the interference of 

redundant data. With low sequencing cost and deep sequencing depth, it can maximize the 

use of sequencing reads, especially in clinical applications55. For example, the size of the whole 

human genome is about 3Gb while the exon region only accounts for 2% (about 60M). A 

single WGS sample of 30-50X has an output data of 90-150Gb, and a single WES sample of 

100-200X has an output data of 6-12Gb. For a panel with a target region size of 2M, the data 

volume is only 4Gb when the sequencing depth reaches 2000X. In recent years, many 

commercial companies and scientific researchers have developed their own gene panels. For 
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example, TruSight Cancer of Illumina Company provides a gene panel of 94 genes and 287 

SNPs related to breast cancer, and the Ion AmpliSeq Cancer Hotspot Panel of Ion Torrent 

Company provides tumor detection panel which contains 2800 hot spot mutations56, 57. In 

addition, Welch et al. used a gene panel of their own design in a study of drug response to 

decitabine in patients with acute myeloid leukemia and myelodysplastic syndrome58. 

 

1.3.2.2 RNA sequencing 

 

RNAs are critical to gene expression, both in the form of mRNAs and in the form of non-

coding RNAs that regulate transcription, such as lncRNAs59 or snRNA60. There is evidence that 

RNA processing is systematically altered in cancer cells, demonstrating that RNA has an 

important impact on tumorigenesis, growth and progression61. RNA-Seq analysis is a useful 

way to obtain insights into cancer genome alterations. RNA-seq extracts transcriptome RNA 

from biological samples, obtains cDNA by reverse transcription, and then sequences the 

cDNA. Through RNA-seq, a complete transcriptome sequence can be obtained to reflect the 

gene expression in the sample. Because the content of the transcriptome is highly variable in 

the body, the analysis of the transcriptome can only represent the expression of genes in the 

body when the transcriptome is obtained. RNA-seq is highly sensitive and effective in 

detecting gene fusion, somatic mutation, and gene expression62. In cancer research, the use 

of RNA-seq to detect gene expression and transcriptome changes helps to understand the 

classification and progression of tumors63. 

 

1.3.2.3 Bisulfite sequencing 

 

The term epigenetics was defined by Riggs et al. as "any heritable changes in gene function 

that cannot be explained by changes in the DNA sequence"64. Its important feature is that the 
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DNA sequence is unchanged, but gene expression and phenotype undergo changes that can 

be stably transmitted during development and cell proliferation. For decades since the 

discovery of the DNA double helix, it has been assumed that genes determine all biological 

phenotypes. But there are still unexplained phenomena, such as identical twins who share the 

same genome but have vastly different personalities and health when raised in the same 

environment. With the deepening of research, the concept of epigenetics is used to explain 

these phenomena that cannot be explained by classical genetic theory. Epigenetics includes 

DNA methylation, histone methylation, Non-coding RNA interference, etc. Among them, due 

to the close relationship between DNA methylation and tumors, such as the inactivation of 

tumor suppressor gene transcription caused by CpG island methylation, the global 

hypomethylation that induces genomic instability 65 , and the unwanted activation of 

transposons leading to further genetic damage66, DNA methylation has become an important 

focus in cancer research. 

 

1.3.3 Application of Next Generation Sequencing in Cancer 

Diagnosis 

 

NGS can provide detailed information about the tumor genome and provide data support 

for researchers to understand the generation and development of tumors. In the early stage 

of the development of NGS technology, tumor research mainly focused on exome sequencing 

with a relatively small amount of data67. With the development of NGS technology, the 

improvement of sequencing throughput and the continuous reduction of sequencing costs, 

the research field gradually expanded to multi-omics research involving a greater amount of 

data68. Recently, the research on liquid biopsy, immunotherapy, and the relationship between 

microorganisms and tumors has attracted more and more attention. In general, the analysis 

of tumor genome sequencing data mainly includes the following: point mutation, indel, copy 

number variation, structural variation, methylation, pathogen integration (such as HBV, HPV)69，

etc. 
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Oncogene mutations are generally functional or active mutations, showing hot spot 

mutations, while tumor suppressor genes are inactivated mutations, showing scattered 

mutations70. The research of point mutations and indels mainly focuses on oncogenes and 

tumor suppressor genes, as well as the related genes of some specific cancer species. Some 

cancer patients' cancer cell genomes show large-scale copy number variation. For example, 

in ovarian cancer, pancreatic cancer, prostate cancer, and other tumors 71 , homologous 

recombination deficiency causes DNA double-strand break repair to rely excessively on low 

fidelity DNA damage repair pathways such as non-homologous end joining (NHEJ), 

microhomology-mediated end joining (MMEJ)72 and single-strand annealing (SSA), leads to 

insertion/deletion of nucleic acid sequence and abnormal copy number73. Structural variation 

is also one of the characteristics of tumor cells, including rearrangement deletion, 

amplification, translocation, and so on. A study has shown that SVs can be classified into 16 

different patterns (Figure 1-6), and these patterns show uneven distribution in different tumor 

types74. Viruses are closely related to the occurrence of cancer. For example, about 99.7% of 

all cases of cervical cancer are caused by human papillomavirus (HPV)75. Besides, Epstein Barr 

virus has been shown to cause many different types of cancer, such as lymphoma, gastric 

cancer and nasopharyngeal carcinoma 76 . Abnormal DNA methylation can lead to the 

activation of oncogenes or the inactivation of tumor suppressor genes77. In addition, studies 

have shown that genome-wide methylation can be applied to ctDNA early tumor detection 

and detection of measurable residual disease (MRD)78, 79, 80, 81. 
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Figure 1-6 Schematic diagram of the major types of structural variants. Each type is divided into 

three parts, the top dotted arcs represent rearrangement junctions connecting the two chromosomal 

segments, and the middle part represents the copy number of the genomic segments. The bottom 

shows the final chromosome configuration (from Li Y, et al. 2020)74. 
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1.4 ctDNA sequencing method 

 

As mentioned above, tissue biopsy has inherent limitations, such as invasiveness and tumor 

heterogeneity. Compared with tissue biopsy, liquid biopsy is getting more and more attention 

in tumor diagnosis and treatment because it is non-invasive and makes it easy to monitor the 

tumor progress of patients.  

 

1.4.1 Tumor DNA fraction detection and CNV detection in cfDNA 

 

At present, imaging methods are commonly used in clinical practice to detect early tumors 

or monitor tumor progression. Commonly used imaging methods include computer 

tomography (CT), positron emission tomography (PET), and magnetic resonance imaging 

(MRI). However, the evaluation of the results of these methods is sometimes subjective and 

limited, and it is often difficult to distinguish when the tumor size is small82. The detection of 

tumor DNA fraction can provide important information about tumor progression, treatment 

response, and prognosis, helping to guide clinical decision making and individualized 

treatment 83 . When using cfDNA to detect tumor, tumor DNA fraction represents the 

proportion of ctDNA in the cfDNA. A higher tumor DNA fraction is generally associated with 

a poorer prognosis and shorter survival84. If the tumor DNA fraction continues to increase, 

current treatment options may need to be reevaluated and additional treatment options 

considered. 

 

As mentioned in the previous section, CNV detection plays a key role in studying the 

mechanism of tumorigenesis, guiding treatment decisions, and evaluating prognosis. First, 

CNV detection can determine the copy number change of a gene or chromosome region in 

a tumor cell, helping to detect the deletion of tumor suppressor genes and the expansion of 

oncogenes. Deletion of tumor suppressor genes may lead to abnormal cell proliferation and 
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tumor formation, while expansion of oncogenes may promote tumor cell growth and 

survival85. Second, certain drug targets are often associated with copy number changes in 

specific genes or chromosomal regions. For example, HER2 amplification in breast cancer is 

associated with sensitivity to Trastuzumab treatment86. In terms of detecting tumor DNA 

fraction, CNV detection is also an important basis. This will be described in detail in the 

following section. 

 

1.4.2 Tumor DNA fraction estimation methods 

1.4.2.1 Tumor DNA fraction estimation based on CNV 

 

One approach is to determine tumor DNA fraction in cfDNA based on CNV detection. In 

general, the CNV-based method to detect the tumor DNA fraction in total cfDNA starts by 

dividing the genome into bins of the same length. These bins usually range from kilobase to 

megabase87. The reads number or average depth in these bins is observed, and the bins with 

adjacent positions and similar reads number or average depth are combined to achieve 

genome segmentation. Of course, because of the effects of GC bias and mapping bias88, 

paired normal samples need to be used to eliminate these biases. At present, the commonly 

used method to eliminate bias is to generate a fitting curve by loess regression89 to correct 

the original sequencing data. After segmentation, the likelihood of different copy numbers 

corresponding to the obversed reads number or average depth are calculated, and the 

optimal tumor DNA fraction and CNV status can be calculated through maximum likelihood 

estimation. Common tools are ABSOLUTE90, AbsCN-seq91, and so on. In addition, some tools 

are used to detect allele specific CNV and predict the tumor DNA fraction by replacing reads 

number or average depth with allele specific frequency of SNP sites, such as FACETS92 , 

Sequenza93. 

 

The above methods are designed based on WGS or WES data of tumor tissue samples, which 



29 
 

have certain requirements on the depth of sequencing data and need paired normal samples 

to eliminate bias. In 2017, the researchers developed ichorCNA, which is suitable for low-

coverage whole-genome sequencing (lcWGS) of ctDNA, to detect tumor DNA fraction94. It 

counts genomic reads using the tool in the HMMcopy Suite95 and then normalizes the read 

counts to correct the GC content and mapping bias. Specifically, ichorCNA uses the cfDNA 

sequencing results of 27 healthy donors as the standard reference dataset, calculates the log2 

copy ratio between the sample to be tested and the reference in each bin, and then uses the 

Hidden Markov model (HMM) to predict the segments with copy number changes. Finally, 

according to the above results, the corresponding clones, tumor DNA fraction, and subclone 

information can be estimated. 

 

1.4.2.2 Tumor DNA fraction estimation based on specific variation 

frequency 

 

In addition to the above CNV-based method, tumor DNA fraction can also be detected based 

on specific variation frequency96, such as single nucleotide variations, structural variations, etc. 

Because the tumor content in cfDNA is generally low, detecting mutations usually requires 

very high coverage. High coverage sequencing of the entire genome or exome is expensive, 

so it is not a good option for many patients. The researchers developed a method, CAncer 

Personalized Profiling by deep Sequencing (CAPP-Seq), to address this challenge. Based on 

mutations frequently observed in the Catalogue of Somatic Mutations in Cancer (COSMIC) 

database, as well as mutations in WGS data from The Cancer Genome Atlas (TCGA) database, 

CAPP-Seq designed probes to cover exon and intron regions in genes containing common 

mutations. CAPP-seq efficiently concentrates the sequencing segment to only 0.004% of the 

total genome size, enabling subsequent ultra-deep sequencing.97 This technique is capable 

of detecting tumor-derived ctDNA with high sensitivity and specificity, while also being cost-

effective. 
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The Avenio ctDNA analysis kit used in subsequent articles is based on CAPP-Seq technology. 

This is a kit for ctDNA analysis launched by Roche. It detects variations from 17 important 

lung cancer and colorectal cancer-related genes and uses the molecular-barcoding method 

to reduce sequencing errors. In addition, AVENIO's ctDNA analysis software (Roche) leverages 

integrated digital error suppression (iDES) to remove PCR duplicates and stereotypical errors98. 

At present, this kit is only for scientific research. It offers a comprehensive genomic map across 

four mutation categories: single nucleotide variation (SNV), indel, copy number variation 

(CNV), and fusion, with the aim of helping researchers to explain the genomic complexity of 

tumors. This kit was used in project K34R of this study. 

 

1.4.3 Limitations of the tumor DNA fraction estimation methods 

 

It is crucial to recognize that both the CNV-based and the variation-based methods have 

their respective limitations. CNV-based approaches encounter difficulties when the tumor 

genome approximates diploidy. Furthermore, in certain cancer types like thyroid carcinoma 

(THCA) and kidney renal clear cell carcinoma (KIRC), CNV occurrence is infrequent99. Due to 

the lack of sufficient aneuploidy and chromosomal instability, tools such as ichorCNA and 

ACE100 may not provide reliable estimates of the tumor DNA fraction. The shortcoming of the 

method of estimating tumor DNA fraction by variation is that the probes cover only a small 

part of the genome. Some patients do not detect enough variants in the CAPP covered area, 

but this does not rule out tumor positivity. 

 

1.4.4 Future directions 

 

In summary, while the aforementioned methods have demonstrated promising outcomes in 

numerous studies, it is important to acknowledge their inherent limitations. To enhance the 

accuracy of estimation of ctDNA tumor DNA fraction, it is crucial to consider the specific 
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characteristics of different cancer types. Selecting appropriate methods based on these 

characteristics or employing a comprehensive approach can improve the reliability of results. 

 

Researchers have shown that the length of ctDNA fragments is typically shorter than that of 

cfDNA fragments derived from normal cells. In rat, the main fragments length of ctDNA 

derived from human glioblastoma multiforme and hepatocellular carcinoma was about 134-

144 bp. The length of the main fragments in normal sample was about 167bp. The same thing 

happened in melanoma. In addition, the selection of cfDNA with shorter fragments lengths in 

lung cancer can increase the frequency of detection of EGFR mutations.101 Based on these 

findings, efforts should be made to enrich fragments approximately 140bp. By focusing on 

this specific fragment size range, it may be possible to improve the precision and reliability of 

CNV detection. 

 

The corresponding leukocyte sequencing data can be used to reduce the impact of clonal 

hematopoiesis. A study has indicated that most somatic mutations detected in cfDNA of lung 

cancer patients are attributed to clonal hematopoiesis, which are non-recurrent. Compared 

to tumor-derived mutations, clonal hematopoietic mutations tend to occur on longer cfDNA 

segments and lack the mutational signature associated with smoking.102 

 

1.5 Aim of this study 

 

With the continuous development of technology, ctDNA detection has a broad application 

prospect in tumor diagnosis, treatment, and monitoring. In recent years, the investigation of 

ctDNA has been increasingly discussed as an alternative to tumor tissue analysis.14, 103, 104, 105 

Compared with tissue biopsy, the use of ctDNA makes it easy to monitor the tumor progress 

by allowing repeated noninvasive sampling. However, due to the low content of ctDNA in 

cfDNA, ctDNA detection requires high sequencing depth to achieve high sensitivity. In this 

case, because of the high cost, it is unrealistic to sequence the whole genome at high 
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coverage. To solve this problem, two commonly used schemes at present include low-

coverage WGS and high-coverage targeted sequencing. However, both methods have 

certain limitations. With high-coverage targeted sequencing, SNVs in the detection interval 

can be accurately detected, but the detection ability of other variations such as SVS and CNV 

is limited. With lcWGS, while the detection of SNVs may be limited, it still enables the 

identification of CNVs, providing valuable insights into genomic alterations. Combining the 

advantages of the two sequencing methods may provide a more holistic view of the tumor 

development and progression. 

 

Based on the data of HIPO-K34 and INFORM, the main purpose of this study is to investigate 

and enhance the detection capability of ctDNA by the two methods. The HIPO-K34 study 

focused on patients with non-small cell lung cancer (NSCLC) with ALK gene fusion, 

incorporating multiple time-point sequencing data obtained from both lcWGS and panel 

sequencing. The INFORM project includes both liquid biopsy samples and tissue samples 

collected at the same time point from the same patient. 

 

In this study, the consistency of the tumor DNA fraction estimation ability of CAPP-seq and 

lcWGS was tested based on the data of HIPO-K34. After that, various tools for tumor DNA 

fraction estimation and CNV detection were benchmarked using simulated data with 

predetermined CNVs. And then, the performance of those tools was further examined by 

enriching short fragments of cfDNA. Finally, the tool with the best performance was selected 

and optimized to improve its accuracy. Since the INFORM project includes both liquid biopsy 

samples and tissue samples, the accuracy of ctDNA detection by the optimized tool could be 

verified against the results of tissue samples, thereby evaluating the effectiveness of the 

optimized tool. At last, a pipeline was established to combine the panel analysis process with 

the optimized lcWGS analysis process to realize the accurate analysis of liquid biopsy samples. 
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2. Comparison of Tumor DNA Fraction 

Estimation Method for Liquid Biopsy 

Samples 

 

In this chapter, the analysis was based on project HIPO-K34. In this project, my job was to 

perform bioinformatics analysis of the sequenced data. To use liquid biopsies for monitoring 

tumor diseases, it is a prerequisite to determine the tumor DNA fraction in cfDNA samples. In 

this chapter, I compared two methods to detect the tumor DNA fraction for liquid biopsy 

samples.  

 

2.1 Introduction 

 

The samples of the project HIPO-K34 are from non-small cell lung cancer (NSCLC) patients 

with ALK gene fusion. Anaplastic lymphoma kinase (ALK) fusion gene may lead to NSCLC. In 

most ALK-positive cases, the EML4 gene which is located at the 5’ end of chromosome 2p 

inverses and fuses with ALK106 (Figure 2-1). Due to the EML4 promoter, the fusion gene 

(EML4-ALK) is activated and expressed, thereby inducing cell proliferation and development 

of the tumor. 

 

At present, a variety of drugs have a good therapeutic effect on this type of cancer. They 

specifically bind to the fusion gene through tyrosine kinase inhibitors (TKIs), thereby inhibiting 

the expression of the fusion gene and improving the survival of NSCLC patients. Unfortunately, 

almost all current targeted therapies against this mutation inevitably suffer from resistance 

problems107. One of the common reasons for drug resistance is the secondary mutation at the 

position where the original TKI is bound so that the original TKI cannot be well combined with 
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the fusion gene (Figure 2-2). The drug resistance caused by this reason can be solved by 

replacing a new generation of TKIs, which have a different binding site108. Therefore, we need 

to use ctDNA sequencing method that is less harmful to patients, convenient and low-cost, 

to clearly know the patient's cancer development status, tumor DNA fraction, and whether 

there are mutations at certain key sites. 

 

Figure 2-1 Schematic diagram of the fusion process of EML4 and ALK genes. The ALK gene 

and the EML4 gene are both located on chromosome 2. The two genes are on opposite chains 

and with a distance of about 10MB in between. The fusion gene of ALK and EML4 generates the 

fusion protein EML4-ALK, which leads to abnormal activation of downstream signaling pathways 

such as AKT, STAT3, and ERK1/2, so that cells can proliferate, resist apoptosis, and eventually 

induce cancer. (Soda M et al., 2007)109. 
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Figure 2-2 Secondary mutations lead to drug resistance. TKIs specifically bind to the fusion 

gene, thereby inhibiting the expression of the fusion gene. And the secondary mutation at 

the TKI binding site leads to drug resistance. The drug resistance caused by this reason can 

be solved by changing the targeted drugs. 

 

Liquid biopsy is rapidly becoming an important minimally invasive aid for standard tumor 

biopsy. ctDNA sequencing can be used to monitor tumor progression and the development 

of drug resistance mechanisms110. Because the amount of ctDNA can reflect the patient's 

tumor load, for a better understanding of tumor evolution and drug resistance mechanisms, 

a method needs to be developed to accurately describe the tumor load for patients. 

 

Here I used two methods to estimate the tumor DNA fraction. One of the methods was to 

estimate the tumor DNA fraction through the SNVs’ allele frequency in the sample, and the 

other was to use the CNV detection tool. In this project, the CNV detection tool I used was 

ichorCNA94.  

 



36 
 

2.2 Methods 

2.2.1 Data  

 

In this project, plasma samples were collected at several time points from 87 ALK-positive 

patients. The patients with metastatic NSCLC had received TKIs treatment at the Thoraxklinik 

Heidelberg, Germany, and the Lungenclinic Großhansdorf, Germany111. In total, 416 lcWGS 

data and 402 panel sequencing data were acquired. 395 samples contain both lcWGS and 

panel sequencing data (Figure 2-3). In this project, panel sequencing (average 4100x 

coverage) was used to detect mutations and fusions in the target genes, and lcWGS (average 

0.5x coverage) was used for global copy number variant analysis from cfDNA. The data I used 

in this project included the BAM files of the lcWGS samples, and the results of the panel 

samples, which were analyzed by the bioinformatics analysis workflow of the Avenio platform. 

The Avenio analysis workflow reported the potential variants for the 402 panel sequencing 

samples. Most of the variants exhibited a MAF value below 0.2. However, it is crucial to note 

that the MAF values of some samples were concentrated around 0.5 and 1. Since all the 

samples in this project were from liquid biopsy, the proportion of ctDNA within cfDNA was 

relatively low. The mutation frequencies around 0.5 and 1 likely indicated germline mutations 

rather than specific mutations in tumor cells. Therefore, I removed variants with a MAF value 

larger than 0.4. The remaining variants were used for subsequent analysis. My job was to 

conduct downstream bioinformatics analysis based on these data. 
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Figure 2-3 Sample composition of project HIPO-K34. Among them, 402 samples were panel 

sequenced, and 416 samples were whole genome sequenced with low coverage. A total of 395 

samples were subjected to both panel sequencing and lcWGS. 

 

For 87 patients, sampling was performed every two months, and the samples were subjected 

to lcWGS and panel sequencing. Of these, 21 patients were sampled only once, and 13 

patients were sampled at two time points. The remaining 53 patients had greater than or 

equal to 3 sampling times at different time points. Taking multiple samples from the same 

patient at different time points can well track the development of cancer and detect drug 

resistance. One of the patients underwent 31 samplings spanning five years (Figure 2-4). 

 

 

Figure 2-4 Distribution of sampling times per patient. The x-axis represents sampling times, the y-

axis represents patients’ numbers. More than half of the patients had sampling times greater than 2 

at different time points. 
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2.2.2 Tool and parameter selection 

 

In this project, I used ichorCNA (implemented in R 3.3.1) to do CNV detection for the lcWGS 

samples. Bin size is an important parameter for ichorCNA. In the process of genome 

segmentation, bins with similar reads number that are adjacent to each other on the genome 

need to be merged. Different bin sizes will affect the segmentation results112 . IchorCNA 

provided three bin sizes, namely 10kb, 500kb, and 1MB. A comparison was carried out to 

select the best parameter. The command was as follows to test different bin sizes by changing 

the parameter ‘--window’. 

1. readCounter \   

2.         --window 1000000 --quality 20 \   

3.         --

chromosome "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,X,Y" \ 

  

4.         bamfile > wigfile   

 

2.2.3 Quality control 

2.2.3.1 Sequencing quality control by fastqc 

 

In this study, I conducted rigorous quality control procedures to ensure the reliability of 

sequencing data from 416 cfDNA lcWGS samples in BAM format. To accomplish this, I used 

the FastQC 113  software (version 0.11.9) for the purpose of assessing data quality, 

complemented by the application of the MultiQC 114  software (version 1.10) for the 

aggregation and visualization of results derived from FastQC. FastQC is designed to assess 

the quality of sequencing data. It offers a multitude of quality-related graphs and statistical 



39 
 

information, facilitating the swift recognition of issues and enabling the implementation of 

appropriate corrective measures. MultiQC is a tool specifically designed for the integration 

and visualization of reports from multiple analysis tools. It offers the invaluable capability to 

consolidate and visualize results from all samples in the project within a single report, 

providing a comprehensive overview of data quality across the entire dataset. Prior to FastQC 

analysis, I secured the lcWGS sequencing data for 416 cfDNA samples, available in their 

original BAM file format. The procedural framework for quality control is as follows: 

 

1. Software Installation: Initially, the installation of FastQC and MultiQC was executed, 

accompanied by the validation of their configurations. In this study, FastQC version 0.11.9 

and MultiQC version 1.10 were employed. 

2. Running FastQC: For each sample's FASTQ file, the following command was executed to 

run FastQC: 

fastqc sample.bam 

Here, sample.bam represents the BAM file under analysis. 

3. Running MultiQC: To run MultiQC and display results for FastQC from the directory 

containing FastQC result files, the following command was executed: 

multiqc /path/to/fastqc_results/   

Here, /path/to/fastqc_results/ represents the directory path where the FastQC result files 

were located. 

4. Interpreting MultiQC Results: MultiQC generated a comprehensive HTML report that 

compiles information from FastQC results, allowing for the review of data quality for 

multiple samples within a single report. 

 

2.2.3.2 GC bias removal 
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PCR amplification plays an important role in the generation of GC bias115. GC bias will affect 

the accuracy of CNV detection, so it is necessary to remove GC bias. ichorCNA provides its 

own function ‘correctReadCounts’ to remove GC bias from samples. To check the sample 

quality, I modified this function and output the log2 ratio for each bin as a scatter plot. The 

steps are as follows. 

1， Output reads number after GC bias removal. Below is the code of function 

‘correctReadCounts’, the part marked with ‘#’ was added to output the reads number 

after GC bias removal. 

correctReadCounts <- function(x, chrNormalize = c(1:22), mappability = 0.9, samplesize
 = 50000, verbose = TRUE) { 
    if (length(x$reads) == 0 | length(x$gc) == 0) { 
        stop("Missing one of required columns: reads, gc") 
    } 
    chrInd <- as.character(seqnames(x)) %in% chrNormalize 
    if(verbose) { message("Applying filter on data...") } 
    x$valid <- TRUE 
    x$valid[x$reads <= 0 | x$gc < 0] <- FALSE 
    x$ideal <- TRUE 
    routlier <- 0.01 
    range <- quantile(x$reads[x$valid & chrInd], prob = c(0, 1 - routlier), na.rm = TRUE) 
    doutlier <- 0.001 
    domain <- quantile(x$gc[x$valid & chrInd], prob = c(doutlier, 1 - doutlier), na.rm = T
RUE) 
    if (length(x$map) != 0) { 
        x$ideal[!x$valid | x$map < mappability | x$reads <= range[1] | 
        x$reads > range[2] | x$gc < domain[1] | x$gc > domain[2]] <- FALSE 
    } else { 
        x$ideal[!x$valid | x$reads <= range[1] | 
        x$reads > range[2] | x$gc < domain[1] | x$gc > domain[2]] <- FALSE 
    } 
    if (verbose) { message("Correcting for GC bias...") } 
    set <- which(x$ideal & chrInd) 
    select <- sample(set, min(length(set), samplesize)) 
    rough = loess(x$reads[select] ~ x$gc[select], span = 0.03) 
    i <- seq(0, 1, by = 0.001) 
    final = loess(predict(rough, i) ~ i, span = 0.3) 
    x$cor.gc <- x$reads / predict(final, x$gc) 
    if (length(x$map) != 0) { 
        if (verbose) { message("Correcting for mappability bias...") } 
        coutlier <- 0.01 
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        range <- quantile(x$cor.gc[which(x$valid & chrInd)], prob = c(0, 1 - coutlier), na.r
m = TRUE) 
        set <- which(x$cor.gc < range[2] & chrInd) 
        select <- sample(set, min(length(set), samplesize)) 
        final = approxfun(lowess(x$map[select], x$cor.gc[select])) 
        x$cor.map <- x$cor.gc / final(x$map) 
    } else { 
    x$cor.map <- x$cor.gc 
    } 
    x$copy <- x$cor.map 
    x$copy[x$copy <= 0] = NA 
    x$copy <- log(x$copy, 2) 
################################## 
# Output log2 ratio of reads number of GC content distribution 
################################## 
    write.table(x$copy,"outfilepath.csv",row.names=FALSE,col.names=TRUE,sep=",") 
    return(x) 
} 

2， Plot the log2 ratio. The reads number after GC bias removal in each bin of a tumor sample 

was divided by the reads number in the corresponding bin of the healthy donor (provided by 

ichorCNA). And then logarithm was taken to obtain the log2 ratio. For all bins in the sample, 

a scatter plot was drawn with GC content as the x-axis and log2 ratio as the y-axis. 

 

2.2.3.3 Genomic Fingerprints 

  

The purpose of genomic fingerprinting is to uniquely identify genomes from the same person. 

It can be used to check samples swaps. In this project, genomic fingerprinting played a crucial 

role due to there were not only samples from multiple timepoints but also samples from 

different sequencing types (Panel sequencing and lcWGS) per patient. It played a significant 

role in ensuring that samples associated with the same Patient Identifier (PID) indeed 

originated from the same patient. This method greatly enhanced the credibility and 

reproducibility of the study, particularly when dealing with samples collected at different time 

points. The details are as follows: 
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1. Format Conversion: Because Panel Sequencing samples were aligned using GRCh38, 

while lcWGS employed GRCh37, it was necessary to initially utilize the LiftOver116（default 

parameter）, an assembly converter software to convert the mutation data from Panel 

Sequencing samples from GRCh38 format to GRCh37 format. This ensures that all 

samples' variant information was compared on the same genome version. 

2. Collection of Variant information from all Panel Sequencing samples. First, the variants 

that appeared in all panel sequencing samples were collected, totaling 432 variants. The 

chromosome positions, reference bases, and variant bases of these 432 variants were 

recorded. Next, for each sample, a fingerprint file (with the extension .fp) was generated. 

This fingerprint file contains four columns: the chromosome position, the reference base, 

the variant base, and marker. If the genotype of the sample at one chromosome position 

matched the reference base, the marker was labeled as 0. If a mutation occurred and the 

variant matched the variant base, the marker was labeled as 1. If there was no coverage 

at the position, the marker was labeled as 0. The final fingerprint file consisted of 432 

rows, with each row representing the variant information for one specific genomic 

position.  

3. Sample Comparison and Spearman Correlation Calculation: By comparing the .fp files of 

any two samples and examining the base differences at the 432 variants, the values of the 

marker column were utilized to calculate the spearman correlation coefficient, which 

represents the similarity between the pairs of samples.  

4. Visualization of Correlation Coefficients: The correlation coefficients between all pairs of 

samples were depicted as a heatmap, with colors indicating the strength of the 

relationships. Through clustering analysis, samples with higher correlation coefficients 

were grouped together, aiding in the identification of potential sample swaps. The 

heatmap was generated using the ‘pheatmap’ package in R (version 3.3.1). Clustering was 

achieved by setting the parameters ‘cluster_rows’ and ‘cluster_cols’ to TRUE.  

2.2.4 Estimate tumor DNA fraction 
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For monitoring the tumor development of the patients, a method was needed to evaluate the 

tumor DNA fraction. The two commonly used methods are CNV based method and 

mutation-based method. 

 

In this chapter I used ichorCNA to estimate the tumor DNA fraction of lcWGS data. The default 

parameters of ichorCNA are described in Table 2-1. IchorCNA presets different ploidy and 

normal contamination in the initial stage. For each preset, a CNV state suitable for the whole 

genome is calculated based on the observed reads number in each bin. Then, the optimal 

solution is determined by judging the log-likelihood score of each preset. The optimal preset 

will be taken as the ploidy and tumor DNA fraction of the sample. 

 

Table 2-1 The main default parameter of IchorCNA. IchorCNA sets the initial ploidy as 2 and 3, 

and the initial normal contamination as 0.5-0.9. To reduce errors caused by excessive copy number, 

total clonal CN states is set as 5. For subclonal copy number states, only 1 and 3 are considered. 

Initial ploidy 2 and 3 

Initial normal contamination 0.5, 0.6, 0.7, 0.8 and 0.9 

Total clonal copy number states 5 

Subclone copy number states 1 and 3 

 

In this project, I also used the mutation-based approach to estimate tumor DNA fraction of 

the panel sequencing data. Mutation allele frequency (MAF) is an important index of tumor 

DNA content. First, single nucleotide polymorphism sites were excluded. Second, considering 

the subclonal diversity of tumor cells, the presence of mutations with different frequencies 
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should be observed. The mutations occurred in most tumor cells can reflect the tumor DNA 

fraction. In theory, the histogram of the MAFs should draw to find the identifiable peaks and 

the MAF value corresponding to the highest peak should be selected for tumor DNA fraction 

estimation. In this project, the number of mutations was small in most samples, so the highest 

MAF value was multiplied by 2 to represent the tumor DNA fraction of the sample. The MAF 

was multiplied by 2 because biallelic mutations at the site are uncommon. 

 

To show more clearly how to determine tumor DNA fraction based on the MAF value, I used 

a sample (K34R-2VL6V1_tumor1-b13) to illustrate. As shown in Table 2-2, a total of 4 

mutations were detected in sample K34R-2VL6V1_tumor1-b13, and their MAF value were 

0.00964957, 0.00457038, 0.0353101 and 0.00375235, respectively. Among them, the highest 

MAF value was 0.0353101, and the tumor DNA fraction of this sample was estimated by 

0.0706202, which was twice that of 0.0353101. 

 

Table 2-2 MAF value of detected mutations of sample K34R-2VL6V1_tumor1-b13 after removal 

of SNP sites. There are 4 SNVs in this sample, among which the largest MAF value is 0.0353101 

occurring at the chr2:29220765 position (green background). The tumor DNA fraction of this sample 

is twice the mutation frequency, which is 0.0706202. 

Chromosome Position Ref Alt MAF value 

chr2 29220747 C T 0.00964957 

chr2 29220759 G A 0.00457038 

chr2 29220765 G T 0.0353101 

chr2 29222347 A G 0.00375235 
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2.3 Results 

2.3.1 Bin size selection 

 

To determine the bin size of ichorCNA, I selected a sample in which no mutations were 

detected, including SNVs, CNVs, and fusions. The CNV results (by ichorCNA) of this sample 

(K34R-S6EHTR_tumor1-b1) according to different bin sizes are shown in Figure 2-5. 

 

 

（a） 

 

(b) 
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(c) 

Figure 2-5 The influence of different bin sizes on the analysis results by ichorCNA (sample K34R-

S6EHTR_tumor1-b1). The x-axis represents different chromosomes, the y-axis represents the log2 

ratio of copy number. In addition, ichorCNA also reported the corresponding tumor fraction and 

ploidy. The bin size of (a) is 10kb, the bin size of (b) is 500kb, and the bin size of (c) is 1Mb. 

 

It can be found that when 10kb was selected, the tool considered part of the noise to be CNV 

and detected that the sample contains tumor with a tumor fraction of 0.204. When a larger 

bin size was selected, (b) and (c) yield different results from (a), both indicating that the sample 

did not contain a tumor. Because there were no mutations in sample K34R-S6EHTR_tumor1-

b1 through panel sequencing, (b) and (c) appear to be more credible. In the CNV detection 

of lcWGS, the largest challenge is the extremely low tumor DNA fraction in the sample. This 

causes noise to have a huge impact on CNV detection, so it is very important to improve the 

ability to resist noise117. Therefore, after comparing the analysis results of three different bin 

sizes, the bin size of 1MB was used for subsequent analysis. 

 

2.3.2 QC results 

2.3.2.1 MultiQC results 

 

Before doing other data analysis, it is necessary to conduct basic quality control of the 416 

lcWGS samples. Only when the quality of the sample is qualified it can be used for subsequent 

analysis. 

 

By MultiQC, QC results for all samples were compared together. Among all the QC results, 

the more important indicators include the duplication rate and the mean quality score. 

Among all the samples, 409 samples had a duplication rate below 15%, and 7 samples had a 
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duplication rate between 15% and 20% (Figure 2-6). As can be seen from Figure 2-6, the 

duplication rates of all samples are concentrated in two ranges, one is around 6%, the other 

is around 11%. Samples in the two ranges are from different batches. As shown in Figure 2-7, 

all lcWGS samples came from 5 batches, and the distribution of duplication rates of each 

batch was different. The distribution of duplication rates of the samples on August 15, 2018, 

April 5, 2019 and June 26, 2020 was relatively wide. The duplication rates vary from 6-15%, 6-

11%, 1.5% to 18% respectively. The distribution of duplication rates of the samples on 

November 29, 2018 and July 23, 2019 is relatively small, ranging from 5-7.5% and 3-5% 

respectively. Therefore, the batch effect may be the main reason for the bimodal distribution 

of all samples. Overall, the duplication rate of these samples was within the expect. 

 

 

Figure 2-6 The duplication rate distribution of all 416 samples. Each dot represents one 

sample, and the duplication rate of the samples is concentrated between 5%-7% and 10%-12%. 

Seven samples had a duplication rate of more than 15 percent. 
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Figure 2-7 The duplication rate distribution of different batch. The X-axis represents the batch 

date, and the Y-axis represents the distribution of duplication rate. 

 

The mean quality score is shown in Figure2-8. On most second-generation sequencing 

platforms, the quality of sequencing will gradually decrease with the length of sequencing. It 

can be seen from the figure that the mean quality score of most lcWGS samples was in line 

with expectations. However, there were still three samples (the red and yellow line) with low 

mean quality score. The red line was K34R-4UWF2Y_tumor2-b4 with a quality of 33.7. The 

two yellow lines were K34R-S77QY2_tumor1-b2 with a quality of 35.3, and K34R-

QBKEXL_tumor1-b5 with a quality of 35.7. These three samples were still included in 

subsequent analyses, but they were recorded as low-quality samples. 

 

 
Figure 2-8 The mean quality score of 416 samples. Among them, the x-axis represents the 
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position of the reads. The y-axis represents the quality score. The higher the score, the higher 

the quality of base detection. The green background indicates very good quality, the orange 

background indicates reasonable quality, and red indicates poor quality. 

 

2.3.2.2 GC bias removal 

 

As described in section 2.2.3.2, ichorCNA provides the function of GC bias removal. I modified 

this function to output the read number after GC bias removal in each bin of the sample. After 

that, I took GC content as the x-axis and log2 ratio as the y-axis to draw a scatter plot. The 

scatter plot of the normal sample is shown in Figure 2-9, where the female sample has one 

horizontal line (Figure 2-9a) and the male sample has two horizontal lines (Figure 2-9b). The 

reason for the two straight lines in the male sample is that the male sex chromosome contains 

one X and one Y, and the number of reads is half of the other chromosomes. 

 

  

（a） (b) 

Figure 2-9 The relationship between GC content and reads number after GC correction. X-axis 

represents GC content, y-axis represents the normalized reads number per bin. (a) is a female sample 

(K34R-1DQJQJ_tumor1-b2) while (b) is a male sample (K34R-6GMRNB_tumor1-b5). 

 

Among the total of 416 samples, there were six samples exhibiting distinct images (Figure 2-

10). Multiple lines appear in (a) and (b), indicating that there were different copy numbers in 

the samples. In the figure (c) to (f), indicating that the reads number of these sample bins with 
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similar GC content were very different, which probably because of quality problems. This 

phenomenon may be attributed to inadequate coverage or DNA degradation in the samples. 

When a sample has insufficient coverage, the read count becomes more volatile. By checking 

the coverage of (c) to (f), it was found that they all had extremely low sequencing depth, 

respectively 0.0011, 0.000893, 0.000299, and 0.001736. The four samples were labeled as low 

quality. However, due to the intention of evaluating the performance of the detection tools 

on liquid biopsy samples with exceptionally low coverage, these samples were still included 

in subsequent analyses.  

 

  
(a) K34R-DHKDDL_tumor1-b1 (b) K34R-QJRC8U_tumor1-b1 

  
（c）K34R-4UWF2Y_tumor1-b2 (d）K34R-PKN8UU_tumor1-b2 

 
 

 

（e）K34R-PKN8UU_tumor1-b8 （f）K34R-4UWF2Y_tumor2-b4 
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Figure 2-10 The six samples with low sequencing quality. After GC bias correction, their 

shape is not linear, which means that their sequencing quality is poor, and their CNV detection 

results are untrustworthy. Samples (a) and (b) indicate different copy numbers, samples (c) to 

(f) exhibit significantly low coverage, lower than 0.002. These factors contribute to the 

variations observed in the scatter plot. 

2.3.2.3 Genomic Fingerprints 

 

The genomic fingerprinting was used to test whether two samples are from the same patient. 

After construction of the heatmap of Genomic Fingerprints，all samples from the same patient 

can be clustered to check whether the samples correspond to the patient ID correctly. After 

this process, 4 sample swaps were discovered. One sample swap was shown in Figure 2-11. 

The figure shows the pairwise correlation between samples of two patients (K34R-1DQJQJ 

and K34R-DBD7LR), including both lcWGS data and panel data at all sampling times. There 

were suspected swaps of two samples (K34R-1DQJQJ_tumor1-b3 and K34R-

DBD7LR_tumor1-b6) in the figure. By verifying the experimental records, the 4 incorrectly 

labeled samples were corrected. 
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Figure 2-11 The correlation coefficients between K34R-1DQJQJ and K34R-DBD7LR. Samples 

from the same patient at different times have a higher correlation coefficient. Samples from the same 

patient are grouped in a square matrix. The correlation coefficients between different samples are 

low, showing blue. 

 

2.3.3 Tumor DNA fraction 

 

The tumor DNA fraction of lcWGS samples was estimated using ichorCNA, and the tumor 

DNA fraction of panel samples was estimated by mutation-based method. 

 

The tumor DNA fraction of each lcWGS sample was obtained by selecting 1 Mb as bin size 

using default parameter by ichorCNA. The tumor DNA fraction of 340 samples was 0, and the 

mean and median of the remaining 76 samples were 0.108 and 0.083. Among them, 49 

samples had tumor DNA fraction less than 0.1, and 27 samples had tumor DNA fraction 



53 
 

greater than 0.1. The distribution of the tumor DNA fraction of these samples was shown in 

Figure 2-12. 

 

 
Figure 2-12: Tumor DNA fraction of all samples detected by ichorCNA with default parameters. 

The tumor DNA fraction of 389 samples was less than 0.1. 

 

On the other hand, the mutation-based method was used to calculate the tumor DNA fraction 

of the panel sequencing samples. The distribution of the tumor DNA fraction of the panel 

samples is shown in Figure 2-13. No mutaiton was found in 193 samples. Of the remaining 

209 samples, the mean and median tumor fraction were 0.0245 and 0.0077. For 121 samples, 

the tumor fraction was between 0 and 0.01. Additionally, 79 samples had tumor fraction less 

than 0.1, and 9 samples had tumor fraction greater than 0.1.  
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Figure 2-13 The tumor DNA fraction of all panel samples. The tumor DNA fraction of 314 samples 

was less than 0.1. 

  

2.3.4 The consistency of the results of the two methods 

 

It is necessary to analyze the consistency of the results to test the two methods’ performance. 

Germline variants cannot be used to estimate tumor DNA fraction, so I excluded sites with 

MAF value above 0.4. The consistency of the two methods is shown in Figure 2-14. Each point 

represents a sample. The X-axis value is the tumor DNA fraction estimate based on MAF and 

the Y-axis value is the tumor DNA fraction estimate CNV method (ichorCNA). 142 samples 

had a tumor DNA fraction of 0 by both methods. For 13 samples, the tumor DNA fraction 

detected by MAF based method was 0, but by ichorCNA was not 0. For 186 samples, the 

tumor DNA fraction detected by ichorCNA was 0, but by MAF based method was not 0. The 

consistency was high only in a small number of samples, and a larger number of samples 

were detected with tumor in only one result. 
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Figure 2-14 The consistency of the results of the two methods. For most samples, the two methods 

show highly inconsistent results. Each point represents a sample. The X-axis value is the tumor DNA 

fraction estimate based on MAF and the Y-axis value is the tumor DNA fraction predicted based on 

CNV method (ichorCNA). The Spearman Correlation is 0.31 and the P-value is 1.69e-10. 

 

As for the samples with low quality, sample K34R-4UWF2Y_tumor2-b4 did not have a 

matched panel sequencing data. The tumor DNA fractions for samples K34R-

S77QY2_tumor1-b2 and K34R-QBKEXL_tumor1-b5, as predicted by both sWGS and MAF 

value methods, were 0. The tumor fractions predicted by CNV-based method and MAF-

based method for the samples with extreme low coverage (K34R-4UWF2Y_tumor1-b2, K34R-

PKN8UU_tumor1-b2, and K34R-PKN8UU_tumor1-b8) were 0.0776 and 0.0350109, 0.07702 

and 0, and 0.2869 and 0, respectively, showing poor consistency. 
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2.4 Discussion 

2.4.1 The selection of MAF value 

 

For the method based on MAF values, the MAF values of mutation sites may be affected by 

CNV and subclones, thus overestimating or underestimating the tumor DNA fraction. In 

theory, sites in the copy number neutral region should be selected to estimate tumor DNA 

fraction, and the number of sites should not be too small99. To eliminate the effect of 

subclonality, enough sites should also be used to plot the histogram to find the highest 

frequency MAF value118. If only a few variations are observed, it is difficult to find a reliable 

MAF value. The panel used in this project included only 17 genes which may contain not 

enough variants. A total of 432 variants were reported in 402 panel sequencing samples, with 

an average of 1.07 variants per sample. This makes MAF based estimation challenging for our 

research. In addition, sites suspected of germline variation (MAF values around 0.5 or 1) 

should also be excluded. Therefore, in this project, after excluding germline variations, I 

selected the highest MAF to carry out estimation of tumor DNA fraction. 

 

2.4.2 The inconsistency between the two estimation methods 

 

As shown in Figure 2-14, the results of some samples were highly consistent. However, a large 

number of samples showed a tumor DNA fraction of 0 by ichorCNA and a none 0 tumor DNA 

fraction by the MAF-based method. In another subset of samples, the situation was exactly 

the opposite. The reason for the inconsistency between the two methods may be that they 

have different judgment basis. 

 

When the sample doesn’t contain enough CNVs, ichorCNA could not accurately determine 

the tumor DNA fraction. This was also mentioned by Polski A et al in their research using 
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ichorCNA to estimate tumor DNA fraction of retinoblastoma patients119. It is worth noting that 

in addition to the optimal solution given by ichorCNA, for some samples they manually 

selected better solutions from other solutions given by ichorCNA. The selection of solutions 

affects the judgment of tumor DNA fraction. In addition, the operating parameters of 

ichorCNA also have an impact on the tumor DNA fraction. This will be discussed in detail in 

the next chapter.  

 

When the MAF-based method is used to estimate tumor DNA fraction, the number of 

mutations and the change of copy number at these mutations could greatly affect the results. 

Newman A. M. et al. performed CAPP-Seq on NSCLC patients and confirmed that CAPP-Seq 

could achieve a reliable assessment of tumor burden97. Remarkably, the median number of 

mutations in their sample was 4, while in our samples the average number was 1. For samples 

without mutations detected, their tumor DNA fraction was considered as 0 based on the 

MAF-based method. However, it should be noted that since the patients in this project 

received TKIs treatment, a lower tumor DNA fraction may affect the detection of mutations. 

Researchers suggested that a higher sequencing depth and a lower detection limit can be 

utilized for samples taken after treatment to enhance the accuracy of detection120. 

 

In general, both approaches have their own limitations. The combination of the two methods 

should be adopted, and the parameters of CNV detection tools should be optimized to 

improve the accuracy of tumor DNA fraction estimation. 
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3. Benchmark of CNV detection tools 

using simulated cfDNA data  

 

The CNV-based method plays an important role in tumor DNA fraction estimation. In addition, 

CNV detection itself has important implications for the diagnosis and treatment of cancer. 

Therefore, different CNV detection tools need to be benchmarked. The parameters of the 

detection tools can affect the results, so in this chapter, the parameters of ichorCNA were 

adjusted and ACE was modified. In addition, ground truth is very important for benchmarking 

the tools, but this ground truth for actual samples is not available. So simulated data with 

known tumor DNA fractions were used in this chapter to benchmark the performance of 

WisecondorX121, modified ACE100, and ichorCNA with two different sets of parameters. 

 

3.1 Introduction 

 

In general, when performing CNV analysis on tissue samples, the corresponding blood 

samples can be used as references to improve the accuracy of CNV analysis. Moreover, tissue 

samples have a higher tumor DNA fraction than cfDNA and are usually sequenced with higher 

coverage. The tumor DNA fraction and CNVs can be determined by using CNV detection 

tools such as ACEseq122. But for cfDNA samples, the analysis of tumor DNA fraction and CNV 

is difficult. To benchmark the tools, simulated data with known tumor DNA fractions and CNVs 

should be generated. To ensure the accuracy of the benchmark, the coverage of the 

simulation data should be set to the average coverage (0.5X) of cfDNA samples in the K34R 

project. 
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In this chapter, the ability of ichorCNA, ACE, and WisecondorX to detect CNVs was evaluated 

using simulated lcWGS data. ACE is a tool for absolute copy number estimation. It provides 

alternative solutions in addition to the optimal predicted solution selected by the tool. The 

dynamic data visualization function allows user to visually check the absolute copy number 

estimated and select the best fit. Unlike the currently commonly used tools that estimate 

absolute copy number based on SNP array123, WES124, or high coverage WGS data125，ACE 

does not need matched normal samples and can be applied to lcWGS. Segmentation data 

can be obtained from lcWGS through the QDNAseq pipeline, which integrates mapping, 

mapping correction, GC content analysis126 , and segmentation. The function of genome 

segmentation is realized by integrating DNAcopy127. WisecondorX was designed to detect 

copy number variation in lcWGS data. It divides the genome into bins of equal size and 

calculates the reads number in each bin. After adjusting GC bias and mappability issues, the 

Hidden Markov model was used to estimate the copy number status of each bin. Finally, CNVs 

are detected by considering the copy number status of adjacent bins, and statistical tests are 

used to filter out false positives. The predecessor of WisecondorX is WISECONDOR. 

Compared with WISECONDOR128, WisecondorX can better deal with low coverage areas and 

improve the sensitivity and specificity of CNV detection by adjusting HMM parameters and 

adding statistical tests. 

 

3.2 Methods 

3.2.1 Preparation of simulated data for benchmark 

 

To benchmark the performance of three tools, WGS data which has low coverage (around 

0.5X) and low tumor DNA fraction (<0.1) was necessary. Therefore, I generated simulated 

data which has a known tumor DNA fraction and copy number profile (Figure 3-1). These 

simulated datasets were generated from 5 paired (tumor and control) samples (PID: 4117030X, 

4139483X, 4122063, 4170577, and 4144633) with high coverage (30X) bulk sequencing data 
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and higher tumor DNA fraction (average 0.62) from the ICGC MMMLseq project (Molecular 

Mechanisms in Malignant Lymphoma). The tumor DNA fraction and CNVs of the original 

samples were detected by ACEseq. The tumor DNA fractions of the simulated data were from 

0.5% to 10% with steps of 0.5%.  

 

Figure 3-1 The workflow of generating simulated data. The original paired WGS samples (tumor 

and control) are sequenced to around 30X coverage. After downsampling, resulting LH (low coverage 

and high tumor DNA fraction) tumor samples were merged with low coverage control samples to 

generate LL (low coverage and low tumor DNA fraction) tumor samples. 

 

To generate samples with each specific tumor DNA fraction, the required read counts from 

tumor and control samples were computed and the samples were downsampled accordingly. 

The tumor and control samples were downsampled into LH (low coverage and high tumor 

DNA fraction) samples and LL (low coverage and low tumor DNA fraction) samples. I used 

GATK (Genome Analysis Toolkit, version 4.0.9.0) which invoked the DownsampleSam tool in 

Picard (version 1.125). To ensure that coverage of the generated LL tumor sample was around 

0.5X, I checked the total reads number (Rtot) of the corresponding 0.5X sample and 

determined that Rtot was 17,900,000. 

 

The probability of keeping any individual read (Pt) of the required LH tumor sample was 

calculated by the following formula, in which tf represents the tumor DNA fraction to be 

Tumor sample Control sample 

LH tumor sample Low coverage control 

sample 

LL tumor sample 

Downsample Downsample 

Merge samples 
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reached by the new sample, and Rt represents the total reads number of the original tumor 

sample, tp represents the tumor purity of the original tumor sample. 

 

𝑃𝑡 = (𝑡𝑓 ∗ 𝑅𝑡𝑜𝑡)/(𝑅𝑡 ∗ 𝑡𝑝) 

 

The probability of keeping any individual read (Pc) of the low coverage control sample was 

calculated by the following formula, in which Rc represents the total reads number of the 

control sample corresponding to the original tumor sample. 

 

𝑃𝑐 = (𝑅𝑡𝑜𝑡 − 𝑅𝑡 ∗ 𝑃𝑡)/𝑅𝑐 

 

Finally, subsamples from tumor and control were merged. To produce more random samples 

to see the stability of the assessment, the procedure was repeated 100 times for each tumor 

DNA fraction. 

 

3.2.2 Tools adjustment 

 

To find the most suitable parameters, I performed parameter optimization for ichorCNA (OPT 

parameters). IchorCNA uses EM step to find the optimal solution, that is, it looks for the local 

optimal solution from each initial normal contamination and looks for the global optima 

among these local optima. Because the content of ctDNA is low, setting higher initial normal 

contamination and a higher number of initial normal contaminations is more likely to find the 

optimal solution. I changed the initial normal contamination from the default 0.5, 0.6, 0.7, 0.8 

and 0.9 to 0.8, 0.83, 0.86, 0.89, 0.90, 0.93, 0.96 and 0.99. The initial ploidy was changed from 

2, 3, 4, and 5 to 1.5-4.0 with steps of 0.1. Because ACE iterated the purity from 5% to 100% 

with steps of 1%, it only reports a purity larger than 5%. I modified the code of ACE to enlarge 

the iteration range from 1% to 100%. WisecondorX needs a reference file to run the analysis 

for samples. For 5 different PIDs, their own 100 low coverage control samples were used to 
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create the corresponding references, respectively. Therefore, I benchmarked WisecondorX, 

modified ACE, and ichorCNA with default parameters and OPT parameters. 

 

3.2.3 Tumor DNA fraction benchmark 

 

Because WisecondorX does not report tumor DNA fraction, the performance of modified ACE, 

ichorCNA with default parameters and opt parameters on tumor DNA fraction prediction was 

compared in this section. For every PID, I performed the analysis separately. Each PID had 

2000 low coverage and low tumor DNA fraction (LL) tumor samples which included 20 groups 

that had different tumor DNA fractions from 0.5% to 10% step by 0.5%. Each group contained 

100 LL tumor samples. Theoretically, the tumor DNA fraction predicted by the tools should 

match the theoretical tumor DNA fraction of each group. 

 

3.2.4 CNV event benchmark 

 

In this section, the performance of WisecondorX, modified ACE, and ichorCNA with default 

parameters and opt parameters on CNV event detection was benchmarked. First, the tools 

split the whole genome into 1MB bins and segment the genome. For each segment, the tool 

predicted a copy number. If a bin's copy number was greater than 2.5, I defined it as gain 

event, less than 1.5 as loss event, and 1.5-2.5 as neutral event. ACEseq's copy number 

prediction of each PID's original high-coverage (30x) sample was used as ground truth. For 

each bin, if the CNV predicted by the tool was consistent with ground truth, the prediction 

score for this bin was 1, otherwise, it was 0. Finally, I summed up the prediction scores of all 

bins of the LL tumor sample and divided them by the total number of bins in the whole 

genome as the tool’s CNV event prediction accuracy. 
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3.2.5 Tumor DNA-free sample detection 

 

ACE returns a most likely tumor DNA fraction for each sample. However, due to the limitations 

of the tool algorithm, for the tumor DNA-free sample, the result returned by ACE is still a 

tumor DNA fraction greater than 1%. Therefore, another software, ichorCNA, was needed to 

determine whether a sample is a tumor DNA-free sample. 

 

To benchmark the performance of tumor DNA-free samples prediction, 500 tumor samples 

that come from 5 groups of simulated data (0.5%, 1.0%, 1.5%, 2.0%, and 2.5% tumor DNA fraction) 

and 500 tumor DNA-free samples which were downsampled from the control sample (0.5x 

coverage) were chosen for the benchmark. IchorCNA with default parameter and OPT 

parameter were used to detect the 1000 samples, and the more appropriate parameter was 

selected by comparing the prediction accuracy. 

 

3.3 Results 

 

In this section, I chose a typical example (PID: 4117030X) to describe ACE and ichorCNA with 

default and OPT parameters performance. Since WisecondorX does not report tumor DNA 

fraction it was not included in the tumor DNA fraction benchmark section.  

 

3.3.1 Tumor DNA fraction benchmark 

 

This section shows the performance of ACE and ichorCNA with default and OPT parameters 

to estimate tumor DNA fraction. In Figure 3-2, the X axis shows the 20 groups which have 

different tumor DNA fractions from 0.5% to 10% step by 0.5% and the Y axis shows the 

predicted tumor DNA fractions by the respective tool. In the performance plot for ichorCNA 
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with default parameters (Figure 3-2a), the prediction results of samples with expected tumor 

DNA fractions less than 5% were particularly unstable. There were many outliers with too high 

tumor DNA fractions (>20%). However, when the expected tumor DNA fraction was greater 

than 5%, the results became stable and fit a linear regression model with the expected tumor 

DNA fraction (R2=0.96). However, the absolute predicted tumor DNA fractions were lower 

than the expected tumor DNA fractions. 

 

In the performance plot of ichorCNA with OPT parameters (Figure 3-2b), the prediction 

results of samples with expected tumor DNA fractions less than 3% were more stable and 

accurate than in Figure 3-2a. However, when the expected tumor DNA fraction was greater 

than 3%, the results were far away from the expectation. In contrast, outlier values (single 

points) were much closer to the expectation. Compared to ichorCNA, ACE's tumor DNA 

fraction prediction was accurate and stable. The only disadvantage was that the prediction 

accuracy of ACE can only reach 0.01 (Figure 3-2c). 

 

(a) 
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(b) 

 

(c) 

Figure 3-2 Performance of PID 4117030X tumor DNA fraction prediction by tools. (a) Performance 

of default parameter by ichorCNA. (b) Performance of OPT parameters by ichorCNA. (c) Performance 

of modified ACE 

 

3.3.2 CNV event benchmark 

 

This section shows the performance of ACE, ichorCNA with default and OPT parameters, and 
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WisecondorX to detect CNV events. In Figure 3-3, the X axis shows the 20 groups which have 

different tumor DNA fractions from 0.5% to 10% step by 0.5% and the Y axis shows the accuracy 

of predicted CNV event by the respective tool. In the performance plot for ichorCNA with 

default parameters (Figure 3-3a), the accuracy of prediction results with expected tumor DNA 

fractions less than 4% was particularly unstable. They included many outliers with too low 

accuracy (<50%). However, when the expected tumor DNA fraction was greater than 4%, the 

accuracy became stable and higher. 

 

In the performance plot of ichorCNA with OPT parameters (Figure 3-3b), the prediction 

results had an overall low accuracy. They included many outliers with too low accuracy (<50%). 

 

Compared to ichorCNA, ACE and WisecondorX had better performance on CNV event 

prediction. In the performance plot for ACE (Figure 3-3c), the prediction results with expected 

tumor DNA fractions larger than 3% had fewer outliers and high accuracy (>90%). In the 

performance plot for WisecondorX (Figure 3-3d), the prediction results with expected tumor 

DNA fractions larger than 5% had an accuracy higher than 95%. 

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 3-3 Performance of PID 4117030X CNV event prediction by tools. (a) Performance of 

default parameter by ichorCNA. (b) Performance of OPT parameters by ichorCNA. (c) Performance 

of modified ACE. (d) Performance of WisecondorX. 

 

3.3.3 Tumor DNA-free sample detection 

 

IchorCNA with default parameters and OPT parameters were used to benchmark. For 500 

tumor DNA-free samples, default parameters predicted that all 500 samples do not contain 

tumor DNA, while OPT parameters only predicted that 63 samples do not contain tumor DNA. 

For 500 tumor samples, default parameters predicted 412 samples were tumor samples and 

OPT parameters predict 491 samples were tumor samples. (Table 3-1)  

 

IchorCNA with default parameters had higher specificity than ichorCNA with OPT parameters 

but lower sensitivity. Considering specificity and sensitivity by calculating F-score, ichorCNA 

with default parameters were more suitable for determining whether a sample contains tumor 

DNA or not.  
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Table 3-1 Performance of PID 4117030X tumor DNA-free sample detection. 

 

3.4 Discussion 

3.4.1 The ichorCNA parameters 

 

The parameters of CNV detection tools have a great influence on the results. IchorCNA divides 

the sample into fragments with a length of 1MB, and there are about 3000 bins in the whole 

genome. The Expectation-Maximization (EM) algorithm is carried out to estimate the tumor 

DNA fraction and ploidy of the sample based on reads number of each bin. That is, ichorCNA 

initially uses the preset tumor DNA fraction and ploidy to calculate the discrepancy between 

the solution for each bin and the actual situation. Then, it attempts to fine-tune the 

parameters to reduce the discrepancy to find the optimal tumor DNA fraction and ploidy. 

Therefore, appropriate initial parameters are important to accurately predict the tumor DNA 

fraction and ploidy of the samples.  

 

The default parameter of ichorCNA for initial normal contamination is from 0.5 to 0.9 which 

means the tumor DNA fraction is from 0.1 to 0.5. Therefore, when the tumor DNA fraction is 

much less than 0.1, there is no particularly close initial normal contamination and there is a 

higher probability to pick an outlier. From Figure 3-2a, it can be observed that as the tumor 

DNA fraction decreases compared to 0.1, an increasing number of outliers appears. When 

 IchorCNA with default 

parameters 

IchorCNA with OPT 

parameters 

Specificity  500/500 63/500 

Sensitivity 412/500 491/500 

Precision 1 0.529 

Recall 0.824 0.982 

F-score 0.904 0.688 



70 
 

the tumor fraction is below 5%, the growing number of outliers results in an enlargement of 

the box in the boxplot. This explains why the results are very unstable and inaccurate when 

the tumor DNA fraction is low. However, as the initial tumor DNA fraction approaches the 

real tumor DNA fraction, the percentage of outliers decreases. In this case, ichorCNA can find 

a more appropriate solution. The ctDNA in the blood of cancer patients is only a small fraction 

of the total cfDNA, usually between 0.01% to 2%129, so initial normal contamination needs to 

be set to a higher value.  

 

3.4.2 The performance of ichorCNA 

 

The ichorCNA with default parameter had a higher performance in predicting tumor DNA 

fraction and detecting CNV when the tumor DNA fraction of the sample is above 5%. However, 

when the tumor DNA fraction was below 0.05, the estimated tumor DNA fraction fluctuated 

greatly, and higher outliers were observed. Adalsteinsson V A et al. also tested the 

performance of ichorCNA using simulated data94. In their research, simulated data with exact 

tumor DNA fraction was generated by mixing the cfDNA from cancer patients and healthy 

donors. According to the data provided by them, when the tumor DNA fractions of the 

simulated data were below 0.05, the predicted tumor DNA fractions were all below 0.1. Their 

data performed better when tumor DNA fractions were below 0.05, possibly because the CNV 

patterns of the raw data we used were different. The complexity of CNVs and the number of 

subclones would affect the results130, 131. Adalsteinsson V A et al. used cfDNA from patients 

with breast or prostate cancer, while I used samples of patients with malignant lymphoma to 

generate simulated data. In addition, the setting of parameters is a key factor affecting the 

performance of ichorCNA. In their study, lcWGS samples had matched WES samples with 

higher coverage, and the ploidy generated by ABSOLUTE/TITAN from these WES samples 

was used as the initial ploidy for ichorCNA. Using appropriate initial ploidy can improve the 

analytical performance of ichorCNA.  
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With the OPT parameters, ichorCNA improved its performance in estimating tumor DNA 

fraction below 5%, but its ability to detect CNV was not as good as the default parameter. For 

detecting tumor DNA free samples, ichorCNA with default parameter showed 100% specificity, 

which was better than ichorCNA with OPT parameter. 

 

3.4.3 The reference for CNV detection tools 

 

The reference plays a very important role in detecting CNVs of ctDNA. It can be found in 

section 3.3.2, WisecondorX had the best ability to detect CNVs. This may be because 

WisecondorX provides reference parameters, allowing users to customize the input reference 

to eliminate bias. In section 3.3.2, I used the control sample which was used to generate the 

simulated data as a reference. This may be the reason why WisecondorX performed best. 

 

The concentration of ctDNA in cfDNA is low, so a high noise background can interfere with 

the detection of CNV132. The reference can eliminate bias from lab and sequencing, it can 

improve the accuracy of CNV detection. One difficulty in detecting ctDNA is that ctDNA is 

mixed with DNA from normal cells. The reference can be used to clarify the pattern of normal 

DNA fragments, to better identify tumor signals133.  

 

In section 3.3, ichorCNA used its own reference to calibrate the sequencing data. Due to 

sequencing instruments and batch effect, the built-in reference may have different bias from 

the sequencing data in our project. To address this, I'll build our own reference in the next 

chapter. Although ACE performs well in the detection of tumor DNA fraction and CNV, it does 

not use reference to correct bias. Adding a reference correction step might further improve 

its performance. This will also be discussed in detail in the next chapter. In short, the reference 

correction is very important for the CNV detection tools, and I needed to optimize it to 

improve the tools' performance. 
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4. CNV detection tools benchmark 

based on short fragment read samples 

 

In this chapter, the analysis was based on the data from project HIPO-K34. Firstly, I established 

a PoN (Panel of Normals) dataset. Secondly, based on the PoN dataset, a reference was 

created for each tool. During this process, ACE was optimized to enhance its performance. 

Thirdly, I generated simulated data using enriched short fragments. Finally, I benchmarked 

the performance of tools based on the simulated data. 

 

4.1 Introduction 

 

Since researchers first reported the existence of cfDNA in human plasma in 1948, it has 

become an attractive research topic as a non-invasive disease biomarker. cfDNA can be 

present in serum, plasma, and other body fluids such as urine or saliva134. In addition to the 

large abundance of cfDNA, there may also be a small amount of ctDNA in the plasma of 

cancer patients. The presence of this ctDNA makes it possible for early screening of cancer or 

a more convenient and less traumatic concomitant diagnosis. However, an issue that needs 

to be noted is that accurate tumor information can be obtained only when the abundance of 

ctDNA in cfDNA is high enough135. Except for some advanced cancers, this abundance is not 

easy to reach in most patients. At present, the method to improve the sensitivity and accuracy 

of ctDNA detection is to increase the sequencing depth. However, increasing sequencing 

depth may lead to a higher false-positive rate, as DNA of non-tumor derived may also carry 

various tumor associated mutations136. This problem has limited the application of liquid 

biopsy. However, some research has brought new ideas to the detection of ctDNA. Previous 

studies have shown that the length of cfDNA released into the plasma by different cells is 

different. The length of cfDNA is about 167bp in general, which is similar to that of a 
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nucleosome, which may be related to caspase dependent DNA cleavage during apoptosis137. 

cfDNA from different cell sources will show a unique pattern in length, for example, the cfDNA 

of infants is significantly shorter than that of mothers138. In cancer patients, the fragment 

lengths of cfDNA from normal cells and ctDNA from tumor cells also have different 

distributions. Nitzan Rosenfeld et al.139 found that the distribution of cfDNA between healthy 

people and cancer patients was different between 90-150bp, 180-220bp, and 250-320bp. 

ctDNA fragments with cancer mutations are generally 20-40bp shorter than the 167bp of 

nucleosome DNA fragments and are enriched in the range of 90-150bp (Figure 4-1). In 

addition, some ctDNA fragments are enriched in the range of 250-320bp, which is considered 

to be binuclear body fragments of tumor cells. At present, the reason for this biological 

difference has not been clearly explained101. However, the method of fragment length 

screening can significantly improve the abundance of ctDNA and thus improve the sensitivity 

and accuracy of detection. 

 

As shown in the results in Chapter 3, for samples with tumor DNA fractions greater than 5%, 

both ichorCNA and ACE can accurately measure tumor DNA fractions. When a higher tumor 

DNA fraction is obtained by filtering the reads, the accuracy of tumor fraction measurement 

may be improved. 

Figure 4-1 The distribution of cfDNA fragments with mutation and without mutation. In the range 
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of 90-150bp and 250-320bp，cfDNA with mutation has higher enrichment than cfDNA without 

mutation (from Nitzan Rosenfeld et al., 2018). 

 

4.2 Methods 

4.2.1 Establishing the PoN dataset 

 

Using a PoN dataset as a reference can reduce systematic biases arising from library 

construction, sequencing platform, and cfDNA-specific artifacts. In this case, 11 samples from 

project HIPO-K34 which have not detected any SNV were selected to form the PoN dataset. 

After establishing the PoN dataset, I validated its effectiveness using the following methods: 

 

1. Firstly, using a bin size of 1Mb, the reads number in each bin of the test samples was 

calculated. 

2. Secondly, loess regression was applied to correct for GC bias for the reads number 

within each bin. To enhance comparability, the corrected reads numbers were 

normalized to a range of 0-1 (normalized coverage score), where 0 represents 

minimum coverage and 1 represents maximum coverage.  

3. Thirdly, for each bin in the test samples, the normalized coverage score was divided 

by the corresponding normalized coverage score in the PoN dataset. The resulting 

ratio was then normalized again to a range of 0-1. 

4. Finally, a heatmap was generated for all samples to observe if there are any specific 

biases present after PoN correction. 

 

4.2.2 Reference creation and ACE modification 

 

In this section, I created a corresponding reference for each CNV detection tool based on the 
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PoN dataset established in the previous section. However, since ACE did not have a built-in 

functionality for reference correction, I made modifications to ACE. 

 

4.2.2.1 ichorCNA 

 

The default reference of ichorCNA is derived from 27 healthy donors. For the three default 

bin sizes (10kb, 500kb, and 1MB), ichorCNA has the corresponding reference files. In addition, 

ichorCNA also offers users the method to create their own reference file. I followed 

ichorCNA's documentation to create the PoN_reference file. The process included the 

following steps: 

 

1. The WIG files were created. For each sample in the PoN dataset, a WIG file was generated 

by the following command. 

/path/to/HMMcopy/bin/readCounter --window 1000000 --quality 20 \   

            --

chromosome "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22" \   

/path/to/tumor.bam > /path/to/tumor.wig   

 

2. The 'createPanelOfNormals.R' script provided by ichorCNA was used to generate the 

reference file. Where ‘--filelist’ was the file containing the path to all normal sample WIG 

files, ‘--gcWig’ was the GC Wig file of the reference genome, ‘--mapWig’ was the 

mappability Wig file of the reference genome, and ‘--centromere’ was the file containing 

the centromere location. The GC Wig file, mappability Wig file and centromere files were 

provided by ichorCNA. 

3. ‘--normalPanel’ was used to reduce the systematic biases. 
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4.2.2.2 WisecondorX 

 

WisecondorX also has the ability to generate the reference file from the PoN dataset. The 

details were as follows. 

1. The BAM files of the PoN dataset were converted to NPZ files.  

WisecondorX convert input.bam --binsize 1000000 output.npz   

2. The generated NPZ files were used to create the reference file. 

WisecondorX newref reference_input_dir/*.npz reference_output.npz –

binsize 1000000   

 

4.2.2.3 ACE 

 

The reference was merged from the PoN bams by samtools (version 1.9) 140 . After the 

preparation of the reference, it was placed at the beginning of the sample list for ACE analysis. 

ACE's built-in process will downsample all input samples to 1Gb, so that all bam files have a 

similar coverage. When the sample size is less than 1Gb, the downsample will not be 

performed. 

 

ACE integrates functions from QDNAseq to perform tasks including obtain the reads number 

of each bin, removing the blacklist areas, GC bias correction, read counts normalization, and 

segmentation. However, ACE does not include a function to do reference correction. 

Therefore, prior to segmentation, I made a modification the ACE’s code to implement 

reference correction. The modified code section was as follows: 

 

for (b in binsizes) {   
  currentdir <- file.path(outputdir, paste0(b, "kbp"))   
  dir.create(currentdir)   
  bins <- QDNAseq::getBinAnnotations(binSize = b, genome = genome)   
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  readCounts <- QDNAseq::binReadCounts(bins, path = inputdir)   
  readCountsFiltered <- QDNAseq::applyFilters(readCounts, residual = TRUE, blacklist = 
TRUE) 
  readCountsFiltered <- QDNAseq::estimateCorrection(readCountsFiltered)  
  copyNumbers <- QDNAseq::correctBins(readCountsFiltered)   
  copyNumbers <- QDNAseq::normalizeBins(copyNumbers)   
  copyNumbers <- QDNAseq::smoothOutlierBins(copyNumbers)     
  ################################    
  #  old code   
  #  copyNumbersSegmented <- QDNAseq::segmentBins(copyNumbers,transformFun =
 "sqrt")     
  ################################     
  #  modification code     
  tumorVsNormal<-
QDNAseq::compareToReference(copyNumbers,c(FALSE,rep(1,length(copyNumbers[[1]])
-1)))   
  copyNumbersSegmented <- QDNAseq::segmentBins(tumorVsNormal,  transformFun 
= "sqrt")   
  #  modification end     
  ################################     
  copyNumbersSegmented <- QDNAseq::normalizeSegmentedBins(copyNumbersSegm
ented) 
  saveRDS(copyNumbersSegmented, file = file.path(outputdir,  paste0(b, "kbp.rds")))   
  ploidyplotloop_lowrange(copyNumbersSegmented, currentdir, ploidies, imagetype, me
thod, penalty, cap, bottom, trncname, printsummaries, autopick)   
}   

 

The original code of ACE directly uses the copy number data obtained by 

'QDNAseq::smoothOutlierBins(copyNumbers)' to perform segmentation. I added 'QDNAseq: : 

compareToReference' to perform reference correction for tumor samples. This function takes 

copy number data as input, along with a vector indicating which samples need to do reference 

correction. In this vector, ‘False’ represents the reference, and ‘1’ represents a tumor sample. 

Since I placed the reference bam file at the beginning of the sample list during the 

preprocessing process, the first element of the vector was ‘False’. The copy number data 

corrected by reference was then used for segmentation. 
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4.2.3 Generating simulated data 

 

To benchmark the performance of the tools, I used simulated data. The advantage of these 

simulated samples over real samples is that they have known tumor DNA fraction and CNV 

events. The tumor DNA fraction of sample K34R-XDDFED_tumor1-b3 was detected to be 10% 

by both ichorCNA and ACE. I filtered the reads with a short fragment size (90-150bp) in this 

sample and treated these reads as a new sample. The tumor DNA fraction of this new sample 

was 0.13 (by ACE). Using the same method in Chapter 3, I downsampled the new sample 

obtained in the previous step and mixed it with healthy donor samples to form a test sample 

set. The tumor DNA fraction of this test sample set was 0.5% to 10% with steps of 0.5%. For 

each tumor DNA fraction, this process was repeated 100 times. 

 

4.2.4 Tumor DNA fraction and CNV event benchmark 

 

The performance of modified ACE, ichorCNA with default parameters and opt parameters 

and WisecondorX were benchmarked in this section. 

 

Because WisecondorX does not report tumor DNA fraction, the performance of modified ACE, 

ichorCNA with default parameters and opt parameters on tumor DNA fraction prediction was 

compared for tumor DNA fraction prediction. According to the tumor DNA fraction from 0.5% 

to 10%, the samples were divided into 20 groups, each group containing 100 samples. 

Theoretically, the tumor DNA fraction predicted by the tools should match the theoretical 

tumor DNA fraction of each group. 

 

In the CNV event section, the performance of WisecondorX, modified ACE, and ichorCNA 

with default parameters and opt parameters on CNV event detection was benchmarked. 

Consistent with the method in Chapter 3, for each segment, the tool predicts a copy number. 
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If a bin's copy number was greater than 2.5, it was defined as gain event, less than 1.5 as loss 

event, and 1.5-2.5 as neutral event. ACEseq's copy number prediction of the original sample 

K34R-XDDFED_tumor1-b3 was used as ground truth. For each bin, if the CNV predicted by 

the tool was consistent with ground truth, the prediction score for this bin was 1, otherwise, 

it was 0. Finally, I sum the prediction scores of all bins of the LL tumor sample and divided 

them by the total number of bins in the whole genome as the tool’s CNV event prediction 

accuracy. 

 

4.3 Results 

4.3.1 The ability of PoN dataset to remove bias 

 

This section shows the original coverage distribution of all samples and the coverage 

distribution of all samples after removing systematic biases by the selected PoN dataset. 

Figure 4-2 provides an overview of the normalized reads number for each bin of all samples. 

The x-axis represents all bins arranged by chromosome position, and the y-axis represents 

all the samples. Samples from the same patients were grouped together and sorted according 

to sampling time. Different patients were separated by a horizontal black line. Red indicates 

lower reads number and blue indicates higher reads number. Figure 4-2a shows the original 

coverage distribution of all samples. It can be seen that almost all of the samples exhibited a 

similar coverage at the same x-axis positions (visible as blue or red vertical lines). This 

indicates that reads number bias was present at specific genomic locations. In order to 

remove the bias, a PoN dataset was selected. This PoN dataset were from 11 samples in this 

project which have not detected any SNV. 

 

In the process of removing coverage bias using reference, the ratio of sample coverage and 

the average coverage of the reference was used to be the new coverage. For comparability 

between samples, the ratio was then normalized. As shown in Figure 4-2b, there were no 
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apparent vertical lines observed, indicating that the bias was effectively removed. 

 

For IchorCNA and WisecondorX, the PoN dataset was used as a reference to eliminate bias. 

ACE does not have a reference correction process, so I achieved this function by modifying 

the ACE code, as described in the methods section. 

 

(a) 
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(b) 

Figure 4-2 Coverage distribution plot of K34R samples. (a) Coverage distribution before removing 

bias. (b) Coverage distribution after removing bias. The x-axis represents all the bins arranged 

according to their chromosomal positions, while the y-axis represents all the samples. The color scale 

indicates the reads number of each bin, with red indicating a lower reads number and blue indicating 

a higher reads number. Distinct vertical lines were observed in (a), indicating that different samples 

had similar coverage distributions at the same genomic positions. No vertical lines were observed in 

(b), indicating an improvement in coverage bias. 

 

4.3.2 Tumor DNA fraction benchmark 

 

In Figure 4-3, the X axis shows the 20 groups which have different tumor DNA fractions from 

0.5% to 10% step by 0.5% and the Y axis shows the predicted tumor DNA fractions by the 

respective tool.  
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In the performance plot for ichorCNA with default parameters (Figure 4-3a), it can be seen 

that when the expected tumor DNA fraction was lower than 5% and higher than 8%, the result 

was unstable and there were more outliers. The performance of ichorCNA with opt 

parameters was significantly better than that of ichorCNA with default parameters (Figure 4-

3b). In all 20 groups ranging from 0.5% to 10%, their predicted tumor DNA fractions were 

relatively stable and had a linear relationship with the expected tumor DNA fractions. However, 

these predicted tumor DNA fractions were generally slightly larger than the corresponding 

expected tumor DNA fractions. 

 

ACE's results performed best among the three tools. It can be seen from Figure 4-3c that the 

predicted tumor DNA fractions and the expected tumor DNA fractions had a higher 

consistency in the entire interval from 0.5% to 10%. And for each tumor DNA fraction, the 

distribution of prediction results was relatively concentrated. 

 

(a) 
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(b) 

 

(c) 

Figure 4-3 Performance of tumor DNA fraction prediction by tools. (a) Performance of default 

parameter by ichorCNA. (b) Performance of OPT parameters by ichorCNA. (c) Performance of 

modified ACE. 

 

4.3.3 CNV event benchmark 

 

In Figure 4-4, the X axis shows the 20 groups which have different tumor DNA fractions from 

0.5% to 10% step by 0.5% and the Y axis shows the accuracy of predicted CNV event by the 
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respective tool. In the performance plot for ichorCNA with default parameters (Figure 4-4a), 

it can be observed that when the expected tumor DNA fraction was greater than 5%, the 

accuracy of the CNV event was higher (>80%). When the expected tumor DNA fraction was 

less than 5%, the result was very unstable and contained a lot of outliers. The performance 

plot for ichorCNA with opt parameters (Figure 4-4b) showed relatively stable results. But only 

when the expected tumor DNA fraction was greater than 8%, the accuracy was higher (>80%). 

In The performance plot for ACE (Figure 4-4c), the accuracy of prediction exceeded 80% when 

the expected tumor DNA fraction was greater than 6.5%, and when the expected tumor DNA 

fraction was less than 6.5%, the accuracy decreased as the tumor DNA fraction decreased. The 

accuracy of WisecondorX for predicting CNV events did not change much with different 

tumor DNA fractions, and stayed always around 60% (Figure 4-4d). 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 4-4 Performance of CNV event prediction by tools. (a) Performance of default parameter 

by ichorCNA. (b) Performance of OPT parameters by ichorCNA. (c) Performance of modified ACE. 

(d) Performance of WisecondorX. 
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4.4 Discussion 

4.4.1 PoN dataset to reduce bias 

 

Experimental procedures, such as PCR，library preparation, target capture, and sequencing 

can introduce biases into NGS data141. At present, the conventional method is to use the 

sequencing data of patients’ white blood cells or the sequencing data of healthy donors as 

control to remove the bias142, 143. The PoN data I selected in this section came from 11 samples 

in project HIPO-K34. Because they came from the same experimental conditions as other 

liquid biopsy samples, it can effectively reduce bias. However, it should be noted that these 

11 samples were derived from cfDNA of patients and were selected for the PoN dataset 

because no SNV was detected. It should be noted that the panel region represents only a 

small portion of the genome. While the samples were from NSCLC patients, and the genes 

included in the panel are common mutation genes for this type of patients, it does not imply 

that the mutations in these patients occur only within the panel region144，145. Although Avenio 

reported that no SNVs were detected in these samples, the presence of ctDNA in these 11 

samples cannot be ruled out. If using cfDNA from healthy donors in the same batch of 

experiment as PoN dataset, better results may be obtained. 

 

4.4.2 Enrichment of short fragments in NSCLC 

 

In this chapter, I obtained a sample with higher tumor DNA fraction (13%) by enriching 

fragments of 90-150bp in length and used this sample to generate simulated data of different 

tumor DNA fraction. The differences in fragment lengths between ctDNA and cfDNA have 

been demonstrated in several studies 139，146，147. However, there are still aspects in this field that 

require further investigation and exploration. For example, in the study by Jiang P et al.148，it 

was mentioned that hepatocellular carcinoma patients with lower concentrations of tumor 
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DNA fractions in plasma had significantly longer size distributions than healthy controls. These 

longer fragments may be derived from necrosis rather than apoptosis. As for lung cancer, in 

the study of Underhill HR et al., it was confirmed that the length of cfDNA fragments in lung 

cancer patients was generally shorter than that in healthy people. However, there was overlap 

in the distribution of cfDNA fragment length between patient samples and healthy people.Error! 

Bookmark not defined. This suggests that in lung cancer, perhaps short fragments of ctDNA are present 

only in part of the samples. The differences in fragment lengths may be related to the 

mechanisms of ctDNA formation, which still require extensive research. 

 

4.4.3 The performance of tumor DNA fraction estimation 

 

The reference can affect tumor DNA fraction estimation. Since the simulated data in this 

chapter was generated using one sample from project K34, I selected samples from project 

K34 that did not detect any SNVs as the PON dataset. After bias removal, the performance of 

ichorCNA with default parameters did not show significant improvement compared to the 

results in Chapter 3. This is because the default parameters of ichorCNA set the initial tumor 

DNA fraction from 0.1 to 0.5. Since ichorCNA uses the EM algorithm to find local optima, the 

initial tumor DNA fraction can affect the resulting tumor DNA fraction, as discussed in detail 

in Chapter 3. The results of ichorCNA with optimized parameters showed improvement 

compared to the results in Chapter 3. The tumor DNA fraction estimated by ichorCNA with 

optimized parameters and the expected tumor DNA fraction had a strong linear relationship. 

However, these predicted tumor DNA fractions were generally slightly larger than the 

corresponding expected tumor DNA fractions. ACE also showed a strong linear relationship 

between the estimated tumor DNA fraction and the expected tumor DNA fraction. Overall, 

after bias removal, both ichorCNA with optimized parameters and ACE demonstrate good 

performance in tumor DNA fraction estimation. 
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4.4.4 The performance of CNV detection 

 

As for the prediction of CNV events, the performance of ichorCNA with optimized parameters 

was improved compared to the result in Chapter 3. Using samples from the same batch as 

reference might eliminate coverage bias specific to experimental and sequencing processes149, 

potentially leading to the observed improvement. However, the performance of ACE in CNV 

detection declined compared to Chapter 3. In Chapter 3, the simulated data was generated 

from tissue samples, while in this chapter, the simulated data was generated from cfDNA 

enriched by short fragment size. This difference may contribute to the discrepancy in 

performance. Currently, although there are several studies indicating that ctDNA fragments are 

relatively shorter compared to cfDNA, it is still not clear whether the short DNA fragments are 

uniformly distributed throughout the entire genome. In this chapter, I enriched short fragments 

to generate the simulated data. This enrichment process may result in locally increased or 

decreased coverage, affecting the ability of PoN datasets to effectively remove bias. The 

performance of WisecondorX in CNV detection significantly declined compared to Chapter 3. 

This is because, in Chapter 3, WisecondorX used the normal sample for which the simulated 

data was generated, enabling it to effectively eliminate background noise. In this chapter, the 

reference was replaced by the PoN dataset, resulting in a degradation of the performance to 

detect CNVs. 

 

In summary, when the expected tumor DNA fraction is greater than 8%, ACE achieves a 

prediction accuracy of over 90% for CNV events. Additionally, both ichorCNA with default 

parameters and ichorCNA with optimized parameters achieve a prediction accuracy of around 

80%. However, when the tumor DNA fraction is low, the accuracy of these four tools is not ideal. 

When the tumor DNA fraction is extremely low, the noise in the sample can be easily mistaken 

for CNV events, thereby affecting the accuracy of the CNV detection. Therefore, these tools are 

more suitable for samples with higher tumor DNA fractions when detecting CNV events. 
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5. CNV detection tool benchmark based 

on liquid biopsy samples 

 

In the previous sections, the CNV detection tools were evaluated using simulated data. The 

advantage of simulated data is that the sample's tumor DNA fraction and CNV events are 

already known and can be used as ground truth to evaluate the tools. However, for real 

samples, the accurate tumor DNA fraction and CNV events are not known. In this chapter, to 

evaluate the tools’ ability to detect CNV using real samples, I compared the CNV results of 

blood samples and tissue samples from the same patients over the same time period to assess 

the consistency of the results.  

 

5.1 Introduction 

 

For NGS samples, the commonly used CNV detection method is based on read depth (RD). 

This method indicates copy number amplification and deletion through the read depth 

difference between tumor sample and control sample in sliding windows. The core principle 

of the RD method is based on a linear relationship between the RD and CNV. Through 

methods based on statistical models and machine learning, such as Hidden Markov model 

and circular binary segmentation (CBS), RD is processed to find the copy number variation 

region. In theory, the sequencing process is uniform, and the RD in sliding windows on the 

chromosome should be subject to Gaussian distribution.150 An increase or decrease in the RD 

indicates that a CNV has occurred. However, the deviation of GC content, mapping affinity, 

and the background noise introduced during the experimental procedures and sequencing 

process make the relationship between RD and CNV not linear, so the accuracy of CNV 

detection will be affected. Current CNV detection tools often include correction sections for 
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GC and mapping affinity bias. As for the background noise introduced in the process of 

experiment and sequencing, a segmentation quality score can be introduced to evaluate the 

CNVs’ accuracy. 

The data utilized in this chapter was sourced from the INFORM (Individualized Therapy for 

Relapsed Malignancies in Childhood) project, which was initiated by the Society for Pediatric 

Oncology and Hematology (GPOH) in collaboration with the German Cancer Consortium 

(DKTK).151 NGS was employed to acquire the biological attributes of every patient, and a 

skilled panel of specialists then evaluated and categorized the identified abnormalities in each 

patient, considering their clinical significance. The advantage of the INFORM project is that it 

contains tissue samples and blood samples from the same patient in the same timeline. 

Because of the advantages of higher coverage, and the reference from the same patient to 

remove bias, the CNVs detected in tissue samples can be used as ground truth to evaluate 

the performance of tools to detect CNV events in real liquid biopsy samples. The tissue 

samples in INFORM are WES samples, CNVkit was used to detecte CNVs for these WES 

samples. CNVkit is a CNV calling tool published in PLOS computational biology in 2016. It is 

characterized by the fact that copy number variation analysis can be performed on specified 

regions.87 

 

5.2 Methods 

 

To benchmark the effectiveness of different CNV detection tools for liquid biopsy, patients 

with both liquid biopsy samples and tissue samples were selected. Since the liquid biopsy 

sample and tissue sample come from the same patient at the same sampling time, they should 

have a similar CNV profile. By comparing the CNV results of liquid biopsy samples with the 

CNV results of tissue samples, it is possible to determine which tool is more accurate for liquid 

biopsy samples (Figure 5-1). 
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Figure 5-1 The analysis pipeline in this chapter.  

 

5.2.1 Data preparation 

 

In the INFORM project, the tissue samples include two types of sequencing data, namely 

lcWGS and WES. The lcWGS data provides coverage across the entire genome, enabling the 

detection of CNVs throughout the whole genome, including repeats and non-coding regions. 

However, the lcWGS data has a lower coverage of 5X. On the other hand, the WES samples 

have a higher coverage of around 200X, but they can only identify variations within the exons, 

limiting their ability to detect CNVs across the entire genome. INFORM also has sWGS 

(shallow Whole Genome Sequencing) data of blood samples from the same patient in the 

same timeline, with a coverage of about 0.5X. 
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To judge the accuracy of CNV results, patients with both tissue and blood samples were 

enrolled in the dataset in this section. In the previous chapter, I have already evaluated that 

ichorCNA with default parameter was the most accurate to determine whether a sample 

contains tumor or not. So one criterion for determining whether the sample can be enrolled 

here was to use the ichorCNA with default parameter to check whether the tumor DNA 

fraction of the sample is greater than 0. Finally, 30 sets of samples were collected in this 

project. 

 

5.2.2 Tools 

 

In this chapter, I used CNVkit, CNAclinic 152 , ichorCNA, ACE and WisecondorX for CNV 

detection. The WES samples were detected by CNVkit, while the lcWGS samples were 

analyzed by both CNAclinic and CNVkit. As for the liquid biopsy samples, I used ichorCNA 

(default parameter), ACE modified with reference, and WisecondorX to detect their CNV. 

 

5.2.3 Estimate CNV of tissue samples (CNVkit, CNAclinic）  

 

CNVkit and CNAclinic were used to estimate the CNV events of tissue samples. Among them, 

CNVkit was used to estimate the CNV event of WES and lcWGS samples, while CNAclinic was 

used to estimate the CNV of lcWGS samples.  

 

The workflow of CNVkit was as follows. 

1. Identification the target regions and add gene annotation information. This step was 

achieved by guess_baits.py of CNVkit. 

guess_baits.py -g access.hg19.bed Sample1.bam Sample2.bam -o baits.bed   
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2. The sequencing depth calculation. Two subcommands ‘coverage’ and ‘autobin’ were 

used in this step. 

1. cnvkit.py autobin *.bam -t baits.bed -g access.hg19.bed    

2. cnvkit.py coverage Sample.bam baits.target.bed -

o Sample.targetcoverage.cnn   

3. cnvkit.py coverage Sample.bam baits.antitarget.bed -

o Sample.antitargetcoverage.cnn   

3. The normal genome sequencing distribution model construction. This was achieved by 

the ‘reference’ subcommand. 

1.  cnvkit.py reference *Normal.{,anti}targetcoverage.cnn --fasta hg19.fa -
o my_reference.cnn   

4. Systematic biases correction and log2 ratio calculation. 

1.  cnvkit.py fix Sample.targetcoverage.cnn Sample.antitargetcoverage.cnn my_ref
erence.cnn -o Sample.cnr   

5. Segmentation. 

1.  cnvkit.py segment Sample.cnr -o Sample.cns   

 

CNVkit reports only the log2 ratio but not the CNV events of each segment, so the threshold 

of CNV events needs to be determined. In this project, the same reference was used for all 

samples, but the tumor purity of each sample was different. Hence it is inappropriate to use 

a fixed log2 ratio as the threshold for determining the CNV event. To give each sample a 

suitable threshold for their own, the log2 ratio was employed to indicate the status of CNV. 

CNVkit recalibrated each log2 ratio by subtracting the median value derived from all log2 

ratios. Ideally, a log2 ratio near 0 signifies diploid status. As for the thresholds of gain and loss, 

they can be obtained by the iterative method. The initial thresholds were set to 0.2 (gain) and 

-0.2 (loss), the distance score was calculated by Equation 1. Then, the gain threshold (gt) was 

increased to 0.5 by step 0.01, while the loss threshold (lt) decreased to -0.5 by step 0.01. 

Finally, gt and lt with the minimal distance score were used as the final threshold. 
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CNAclinic was specifically developed for CNV detection of lcWGS samples. The workflow 

involved several steps. Initially, both the tumor sample and control sample were downsampled 

using the subsetData function, resulting in files containing 10,000,000 reads each. 

Subsequently, the data underwent processing and preparation using the 

processForSegmentation function. In the next step, the data was segmented using the 

runSegmentation function. Finally, CNV detection and calculation were performed on the 

segmented results to derive the final outcome. 

 

5.2.4 Estimate CNV of liquid biopsy samples 

 

Liquid biopsy samples were analyzed using ichorCNA, WisecondorX, and ACE to detect CNV 

events. In the previous section, the PoN was used to remove biases from the samples. Both 

ichorCNA and WisecondorX allow the creation of a specialized reference file using PoN 

samples. For ACE, I modified the code to include a reference comparison process (as 

described in section 4.2.2.3), enabling all three software tools to remove biases using PoN 

datasets. Following bias correction, default parameters were used to detect CNVs in the 

samples using ichorCNA, WisecondorX, and ACE. 

 

5.2.5 Correlation between tissue samples and ctDNA samples 

 

In this project, the tissue samples and ctDNA samples were from the same patient with the 

same timeline. It can be considered that CNVs detected in ctDNA samples should have a high 

consistency with CNVs detected in tumor tissue samples. For the purpose of evaluating the 

accuracy of CNV detection of liquid biopsy tools, CNV results of tissue samples was regarded 

𝑠𝑐𝑜𝑟𝑒 = 	∑ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑡𝑜	𝑙𝑡)!"#$ + ∑ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑡𝑜	0)!%#$	'()"*$ +∑ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑡𝑜	𝑔𝑡)!%*$        Equation 1 
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as ground truth since tissue samples had higher coverage and higher tumor load. By 

comparing the results of different liquid biopsy CNV detection tools with the results of tissue 

samples, it was possible to determine which tools were more accurate. 

 

The correlation coefficient between the predicted results of different tools in the same sample 

can reflect the similarity of the predicted results. The whole genome was divided into 2880 

bins of 1MB bin size. There were three types of CNV events for each bin, gain, loss, and neutral. 

The CNV events (gain or loss) predicted by different tools on the same bin were compared. If 

the events given by two different tools on the same bin were both gain or loss, this bin was 

marked as 1. If the events were different, this bin was marked as 0. Finally, the consistency of 

the two tools for the same sample was obtained by using Pearson correlation. The higher the 

correlation coefficient, the closer the two predicted results were.  

 

5.2.6 Segmentation quality score 

 

Segmentation is an important part of CNV detection, the quality of segmentation directly 

affects the CNV detection results. After GC bias removal and reference correction, the CNV 

detection tools segment the samples. If there is a significant fluctuation in the read numbers 

between neighboring bins within the same segment, it is difficult to find a copy number close 

to the true value, then we can conclude that the quality of the segmentation is not high. A 

segmentation quality score was introduced to determine whether the segmentation quality 

was good or not. The segmentation distance score is a sum score of the distance square 

between the bins' log2 Ratio and their segment's log2 Ratio. To obtain the segmentation 

quality score, I subtracted the normalized segmentation distance score from 1. Normalization 

was implemented using the sklearn package's QuantileTransformer function with parameters 

n_quantiles=5 and random_state=0. 
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𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛	𝑞𝑢𝑎𝑙𝑖𝑡𝑦	𝑠𝑐𝑜𝑟𝑒

= 1 − Normalizaion(F(𝑙𝑜𝑔2𝑅𝑎𝑡𝑖𝑜	𝑜𝑓	𝑏𝑖𝑛 − 𝑙𝑜𝑔2𝑅𝑎𝑡𝑖𝑜	𝑜𝑓	𝑠𝑒𝑔𝑒𝑚𝑒𝑛𝑡)! 

       Equation 2 

 

5.3 Results 

5.3.1 Estimate CNVs of tissue samples 

 

It is necessary to determine a specific threshold of CNV event for each sample. Due to 

variations in coverage, tumor purity and quality among samples, the log2 ratio distribution of 

each sample was different. According to different log2 ratio distributions, the thresholds of 

gain event and loss event should also be changed. Figure 5-2 shows the effect of using 

different thresholds to distinguish CNVs, using the histogram of log2 ratios for six samples as 

an example. The X axis represents the bins’ log2 ratio value, and the y axis represents the 

number of bins. By using the method described in section 5.2.3 to determine the gain and 

loss event thresholds (shown as red lines), all bins in the samples were divided into three 

clusters (loss event region, neutral region, and gain event region). Bins falling into the loss 

event region were determined to have undergone loss events, those in the gain event region 

were determined to have undergone gain events, and those in the neutral region were 

determined to have not undergone any CNV event. It can be observed that in (a) to (d), the 

samples were distinctly categorized into three regions by the red lines, indicating that the 

threshold determination method aligned with expectations. In (e) and (f), the boundary 

between gain and loss was not particularly clear. This may be due to the complex CNV pattern 

in the sample or the presence of subclones. For these samples, multiple thresholds were 

theoretically required to determine the copy number. In order to simplify the problem, I chose 

only one threshold for the same sample to distinguish gain or loss, and the red line in the 

graph was the threshold that minimizes the distance score. 
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(a)5LB-022 WES (b)5LB-022 lcWGS 

  
(c)2LB-033 WES (d)2LB-033 lcWGS 

  
（e）2LB-022 WES (f) 2LB-022 lcWGS 

Figure 5-2 Histograms of read number’s log2ratio per bin for 6 samples. The samples were 

(a)5LB-022_WES, (b)5LB-022_lcWGS, (c)2LB-033_WES, (d)2LB-033_lcWGS, (e)2LB-022_WES and 

(f) 2LB-022_lcWGS. The X axis represents the bins’ log2ratio, and the y axis represents the number 

of bins. The red line on the left is the loss threshold, and the red line on the right is the gain 
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threshold. 

 

5.3.2 Correlation between tissue samples and ctDNA samples 

 

I compared the consistency of CNV results obtained from 30 tissue samples with different 

sequencing methods and different CNV detection tools. The CNV results by lcWGS-based 

CNAclinic, lcWGS-based CNVkit, and WES-based CNVkit were compared pairwise. As shown 

in Figure 5-5, the pairwise correlation coefficients between lcWGS-based CNAclinic, lcWGS-

based CNVkit, and WES-based CNVkit were much higher. Among them, the median 

correlation coefficient of lcWGS-based CNVkit and CNAclinic reached 0.950, while the median 

correlation coefficient of WES-based CNVkit and lcWGS-based CNVkit was 0.935. The median 

correlation coefficient between WES-based CNVkit and lcWGS-based CNAclinic was 0.898. 

In general, the results of tissue samples with different sequencing methods and CNV detection 

tools were consistent. 

 

Figure 5-3 The correlation coefficient between tissue CNV results by lcWGS-based CNAclinic, 

lcWGS-based CNVkit, and WES-based CNVkit. The pairwise correlations among the three tools are 

relatively high. 
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Afterwards, I compared the consistency between the CNV results obtained from 30 sWGS 

samples using ACE, ichorCNA, and WisecondorX with the results obtained from the tissue 

samples. The median consistency of ACE results of 30 sWGS samples and the results of 

corresponding tissue samples was 0.32. For ichorCNA, the median consistency with tissue 

samples was 0.28. For WisecondorX, the median consistency with tissue samples was 0.23. 

ACE exhibited the highest degree of correlation, followed by IchorCNA. Conversely, 

WisecondorX demonstrated poor performance in comparison. In general, CNV results from 

ctDNA and tissue were poorly consistent. 

 

In the subsequent analysis, I selected ACE with the best performance to observe the impact 

of segmentation quality on the consistency of CNV results. In Figure 5-4, the x-axis represents 

30 patients, each of whom has three types of sequencing data: ctDNA by sWGS, tissue by 

lcWGS, and WES. The lcWGS and WES samples have matched normal sequences that can 

help eliminate errors caused by sequencing technologies. To evaluate various tools for 

detecting CNVs in ctDNA, lcWGS and WES samples were used as ground truth to calculate 

the correlation between the CNV detection results of tissue samples and liquid biopsy samples. 

The y-axis represents the data type used for comparison and the corresponding CNV 

detection tool. As for the color scale, white represents the highest correlation and black 

represents no correlation. The y-axis also includes the segmentation quality of ACE (for 

ctDNA), where white represents high quality and black represents low quality.  
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Figure 5-4 Correlation of CNV detection tools for tissue samples and for liquid biopsy samples. 

The X axis represents 30 samples, and the Y axis represents the data type used for comparison and 

the corresponding CNV detection tool. White indicates high correlation or high segmentation quality, 

black indicates low correlation or low segmentation quality. 

 

As shown in Figure 5-4, ACE, ichorCNA, WisecondorX, and CNV results of tissue samples 

showed high correlations for samples with high segmentation quality (the right region of the 

figure), while the performance of these three tools was poor for samples with low 

segmentation quality (the left region of the figure).  

 

In Figure 5-5, the x-axis is the segmentation quality score of ctDNA samples analyzed by ACE, 

the y-axis is the mean value of correlation between the liquid biopsy samples detected with 

ACE and the tissue samples detected by different methods. It is observed that when the 

segmentation quality score increased, there was a higher correlation between CNVs of ctDNA 

samples and CNVs of tissue samples. When the samples were divided into two groups of 15 
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samples each according to the segmentation quality score (Figure 5-6), there was a significant 

difference in the correlation between the CNV results detected by the best performing ACE 

and the tissue sample detection results (p-value=0.002). The median correlation coefficients 

of the two groups of samples were 0.41 and 0.04, respectively. 

 

 
Figure 5-5 The segmentation quality affects the correlation. The x-axis is the segmentation quality 

score of ctDNA samples analyzed by ACE, the y-axis is the mean value of correlation between the 

liquid biopsy samples detected with ACE and the tissue samples detected by different methods. 
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Figure 5-6 Boxplot shows the difference between the segmentation quality smaller than 0.5 and 

the segmentation quality larger than 0.5. The samples were divided into two groups, depending on 

the segmentation quality obtained from ACE. When the segmentation quality was higher than 0.5, 

the consistency of CNV results obtained from ctDNA and tissue was improved. 

 

5.4 Discussion 

 

In this chapter, the consistency of CNV results analyzed by different tools and different sample 

types is discussed. I introduced the segmentation quality score to evaluate the accuracy of 

CNV results of liquid biopsy samples. 

 

5.4.1 The consistency of CNV among different tools and sample 

types 
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The study aimed to investigate the consistency of CNV detection results among different tools 

for both tissue and liquid biopsy samples. 

 

5.4.1.1 The tissue samples showed high consistency in CNV detection 

 

This section addresses the consistency of CNV results between lcWGS and WES samples. As 

CNVkit does not establish a fixed threshold for CNV events, a dynamic threshold was 

proposed to better capture the CNV events in diverse samples compared to the default 

threshold, ensuring more accurate results. 

 

The lcWGS samples encompass the entire genome, albeit with a low depth. Conversely, WES 

samples exhibit greater depth, but they do not provide complete genome coverage. The CNV 

results of lcWGS tissue samples and WES tissue samples reveal a high level of consistency. 

This can be attributed to two factors. Firstly, the tissue samples have corresponding controls 

to eliminate the noise caused by sequencing. Secondly, noise has minimal impact on CNV 

detection when the tumor purity is high. Researchers have demonstrated that despite the 

poor DNA quality and increased noise observed in formalin-fixed and paraffin-embedded 

tissues, CNV detection results remain reliable when the tumor proportion exceeds 20%153. 

Overall, there is a high consistency in the CNV results of tissue lcWGS samples and WES 

samples when using CNVkit and CNAclinic. 

 

5.4.1.2 The liquid biopsy samples showed lower consistency with 

tissue samples in CNV detection 

 

In comparison to tissue samples, there is a lack of high consistency in CNV event detection 

results among different tools for liquid biopsy samples. The findings reveal that the 



104 
 

consistency between ACE and tissue samples is notably higher than that between the other 

tools and tissue samples. However, even the best-performing ACE exhibits a correlation of 

only 0.317.  

 

Previous studies have also indicated a lower level of consistency in CNV detection results 

between ctDNA and tissue samples. Research conducted by Molparia et al. highlighted that 

the copy number and length of CNV regions can impact detection sensitivity. When there is 

minimal variation in CNV copy numbers and shorter CNV regions, a higher sequencing depth 

is required for accurate CNV detection154. In the study by Chae Y K et al., CNV results from 

tissue and liquid biopsies of 86 Breast Cancer samples were only 3.5% consistent155. The study 

of R Wang et al. showed that in Aggressive variant Prostate Cancer, the CNV consistency of 

tumor tissue and ctDNA was 20.2%156. From the above studies, it can be found that tumor type 

may affect the detection of CNV in ctDNA, but even in more aggressive cancer species, the 

consistency of results between tissue and ctDNA is still low. 

 

The consistency of CNV results between ctDNA and tissue is low, which may be due to tumor 

heterogeneity. ctDNA contains the genomes of all cancer cells in the body, while tissue 

samples contain only the genomes of the tissues from which they were extracted. Some 

samples (2LB-053, for example) have high segmentation quality, but the correlation with 

tissue samples is low. This suggests that the CNVs in these samples may be different in tissue 

and ctDNA samples, possibly due to tumor heterogeneity. On the other hand, CNV results of 

ctDNA may be influenced by low sample quality. As mentioned in the previous section, when 

tumor proportion is high enough, poorer DNA quality and increased noise have less effect on 

CNV detection. However, the tumor DNA fraction of liquid biopsy samples is low, and poor 

DNA quality may lead to increased noise and affect CNV detection. 

 

5.4.2 The segmentation quality affects the CNV detection 
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In this study, the segmentation quality score was introduced as a measure of the disparity in 

sequencing depth between neighboring regions. When this disparity is significant, it can lead 

to inaccurate segmentation during CNV detection. Various factors, such as sample quality and 

sequencing technology, can contribute to the substantial differences in sequencing depth 

observed in adjacent regions. For instance, when sample quality is compromised due to 

severe DNA degradation or the presence of numerous impurities, it can result in substantial 

variations in sequencing depth between neighboring locations157. Second, the experimental 

process or sequencing platform may lead to uneven sequencing depth. When sample 

uniformity is poor, it is difficult to reliably identify CNV158, 159. In addition, when the CNV 

detection tools show poor segmentation performance due to its own algorithm, the accuracy 

of CNV detection will also be reduced. 

 

The segmentation quality score can serve as an indicator of the accuracy of CNV results to a 

certain extent. The findings presented in section 5.3.2 demonstrated that when liquid biopsy 

samples with higher segmentation quality were chosen, the detected CNV results exhibited 

greater consistency with the CNV results obtained from tissue samples. 
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6. Analysis Pipeline for liquid biopsy 

samples 

In this section, I summarized all previous evaluation results and developed a data analysis 

pipeline specifically designed for liquid biopsy samples, which includes both sWGS and panel 

sequencing data. This pipeline was used to reanalyze the samples in Chapter 2. 

 

6.1 Introduction 

 

Avenio panel sequencing allows gene sequencing analysis in the region including 17 genes 

(as shown in Table 6-1). With high coverage sequencing (average 5000X), it can detect SNVs 

of the genes in the table as well as Indels of ALK, APC, BRAF, EGFR, ERBB2, KIT, MET, and TP53. 

It can also detect fusions of ALK, RET, and ROS1, as well as CNVs of EGFR, ERBB2, and MET. 

In the detection of CNVs, panel sequencing only provides information on whether there are 

gain events in the three genes of MET, EGFR, and ERBB2. In fusion detection, the fusion score 

of each sample is obtained by calculating the proportion of the number of reads where fusion 

occurs in all reads. 

Table 6-1 The 17 gene regions included in panel sequencing. Green represents the type of 

variation the gene can be detected for. 

 

Gene SNV Indel Fusion CNV 
ALK ▪       
APC         
BRAF         
BRCA1         
BRCA2         
DPYD         
EGFR         
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ERBB2         
KIT         
KRAS         
MET         
NRAS         
PDGFRA         
RET         
ROS1         
TP53         
UGT1A1         

 

sWGS samples can determine the CNVs and tumor purity using low coverage sequencing 

technology. The critical loci of certain key genes in tumor cells can be used to monitor the 

cancer progression of patients and determine the degree of resistance to tumor drugs.  

However, due to the low coverage, the variations of these critical loci cannot be detected by 

sWGS and can only be detected in samples with high coverage such as panel sequencing. 

Similarly, the detection of gene fusion requires samples with high coverage using panel 

sequencing. For the detection of CNVs, both panel sequencing and sWGS can detect CNVs 

to some extent. In this chapter, the analysis results of the two types of sequencing data will 

be considered comprehensively. 

 

6.2 Methods 

6.2.1 Overview of the pipeline 

 

To facilitate the efficient and automated analysis of paired samples of bulk ctDNA sWGS and 

panel sequencing, a tailored pipeline was developed, drawing from the evaluation results 

discussed in the preceding chapters. The workflow for this pipeline is outlined as follows 

(Figure 6-1). 
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Firstly, the PoN dataset selection and reference establishment were conducted. A subset of 

relatively tumor DNA free samples was chosen as the PoN dataset, which was used to 

establish the reference.  

 

Secondly, quality control was performed on both panel sequencing and sWGS samples. The 

panel sequencing data was generated by Avenio, and SNVs with a MAF value exceeding 40% 

were filtered out. This is because, in liquid biopsy samples, the tumor DNA fraction is typically 

low, and SNVs with a MAF value above 40% are more likely to originate from the germline 

rather than the tumor. Fingerprinting was employed to verify the consistency between the 

sWGS and panel sequencing data, ensuring that the samples originated from the same patient.  

 

Thirdly, the tumor DNA fraction and CNVs were detected. Two tools, ichorCNA and ACE, were 

utilized in this process. As described in previous chapters, modifications were made to these 

tools to improve the detection of tumor DNA fraction and CNVs. In addition, a segmentation 

quality score was calculated using the method described in Chapter 5 to assess the sample's 

segmentation quality. 

 

Finally, a comprehensive evaluation of the results was conducted. The reliability of the CNV 

predictions was assessed based on all the aforementioned information. The samples were 

assessed to determine if they contained tumors. For samples that were identified as 

containing tumors, the tumor DNA fraction and segmentation quality score were examined 

to determine the tumor burden and identify CNVs. 

 

The above is an overview of the entire pipeline. The details of the pipeline will be described 

in the following sections. 
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Figure 6-1 The workflow of the data analysis pipeline for liquid biopsy samples.  

 

6.2.2 PoN dataset selection and reference establish 

 

In this project, 11 samples were selected as the PoN dataset, depending on three criteria: first, 

no SNVs were detected in the Panel sequencing results; second, the samples were determined 

as clean by ichorCNA; third, the samples were assessed based on clinical information to 

determine if they were in the early stage. As described in section 4.2.2.1, the 

createPanelOfNormals function of ichorCNA was used to get the reference file for ichorCNA. 

This reference file can help to normalize the cancer patient cfDNA to correct for systematic 

biases arising from library construction, sequencing platform, and cfDNA-specific artifacts. 
Due to the lack of reference correction function in ACE, I made modifications to ACE, as 

described in section 4.2.2.3. 

 

6.2.3 QC 

 

Quality control is an important step in the pipeline. All samples were fingerprint tested to 

determine whether there was a high correlation between samples from the same patient. As 

described in section 2.2.2.3, the genotypes at the selected characteristic SNVs were listed in 
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a matrix, and the correlation coefficients between different samples were calculated. Then, 

the samples with high correlation were gathered through clustering, to test whether the 

pairing information of samples was correct. Among them, samples from the same patient with 

different sequencing techniques (Panel sequencing and sWGS) and samples from the same 

patient with different timelines were tested simultaneously, thus improving the accuracy and 

credibility of fingerprinting. 

 

Fastqc was used to test the sequencing quality of all samples. After checking the basic 

statistics, per base sequence quality, per sequence quality scores, per base sequence content, 

sequence length distribution, sequence duplication level, etc., the samples with poor quality 

were marked. 

 

In addition, the GC content per sequence of each sample was checked. The GC content of the 

sample is also an important factor that affects the quality of the sample. GC bias can be caused 

by the preference of sequencing technology. The commonly used method to eliminate bias 

is to obtain the real reads number by loess regression. After the removal GC bias, the GC 

content distribution graph of the sample should approximate a horizontal line (as described 

in Chapter 2). 

 

6.2.4 Tools adjustments 

 

In this pipeline, in order to better detect CNVs, the tools need parameter optimization. For 

ichorCNA and ACE, the adjustment of parameters was critical. Since there were no controls 

for liquid biopsy samples, the most important step was to find a suitable reference for noise 

cancellation so that CNV detection tools do not detect sequencing noise as CNV events. In 

addition, some other parameters need to be adjusted for each tool, details were as follows. 
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6.2.4.1 ichorCNA 

 

For ichorCNA, the default parameter was employed to determine whether the sample 

contains tumor or not. The default parameters adopted initial normal contamination (0.5-0.9) 

and initial ploidy (2, 3, 4, 5). In addition, I added functionality to output reads number per bin 

after removal of GC bias for filtering low quality samples.  

 

6.2.4.2 ACE 

 

For ACE, I first expanded the detection range of ACE for tumor DNA fraction from the original 

5%-100% to 1%-100% to accommodate low-tumor-fraction samples. Secondly, the bias 

correction function was added and the PoN data set was used as a reference to eliminate the 

impact of coverage bias on CNV detection. When calculating the copy number of each bin, 

the log2 value of reads number of bin in sample divided by the reads number of the same 

bin in reference was used, replacing the log2 value of the reads number of bin in sample. 

 

6.2.5 Output 

 

The output of the entire pipeline contains three parts: the output of panel sequencing, the 

output of sWGS, and the data analysis of the integrated results of both sequencing methods. 

 

6.2.5.1 Panel sequencing output  

 

The result of panel sequencing was provided by Avenio, providing information on SNVs, CNVs, 
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and fusions present within the targeted region. According to the manufacturer, Avenio 

demonstrates high sensitivity and positive predictive value (PPV) exceeding 99% for all types 

of mutations. In terms of SNV detection, panel sequencing can identify SNVs with an allele 

frequency greater than 0.5% accurately within the targeted region. The detection limit for 

fusion is 1%. For CNV detection, the detection limits for MET, EGFR, and ERBB2 are 2.3, 2.3, 

and 2.6 copies, respectively160. 

 

6.2.5.2 sWGS output 

 

For every sWGS sample, ichorCNA was used to determine whether the sample was tumor 

DNA free. For the sample containing tumor, its whole-genome CNV results were exported by 

ACE, including all the solutions of tumor DNA fraction ranging from 1% to 10%. Of course, the 

tumor DNA fraction of the best solution was also shown. The detection limit of tumor DNA 

fraction was 1% to 10%, while the detection range of CNV was 0 to 5 copies. The segmentation 

quality scores of sWGS samples were also reported to evaluate the segmentation quality of 

sample segmentation and the accuracy of their CNV results. 

 

6.3 Results 

6.3.1 Comparison of CNV detection by panel sequencing and 

sWGS 

 

Panel sequencing reports whether there are gain events in MET, EGFR, ERBB2, while sWGS 

reports CNV events in the whole genome. In order to verify the consistency of the results of 

the two sequencing methods, the CNVs detection results of sWGS on the three genes of MET, 

EGFR, and ERBB2 were compared with panel sequencing. 



113 
 

 

A total of 395 samples were sequenced by panel sequencing and sWGS simultaneously (Table 

6-2). Among them, for the EGFR gene, 18 samples were predicted to have gain events by 

both panel sequencing and sWGS. 10 samples were only predicted to have gain events by 

panel sequencing, and 22 samples were only predicted to have gain events by sWGS. For the 

remaining 345 samples, panel sequencing and sWGS both reported that there was no gain 

event. For the MET gene, 15 samples were predicted to have gain events by both panel 

sequencing and sWGS. 8 samples were predicted to have gain events only by panel 

sequencing, and 26 samples were predicted to have gain events only by sWGS. 346 samples 

were predicted by panel sequencing and sWGS as no gain event. For the ERBB2 gene, only 1 

sample was predicted to have gain events by both panel sequencing and sWGS. 14 samples 

were reported to have gain events in sWGS but not in panel sequencing. For the remaining 

380 samples, no gain event was reported in panel sequencing and sWGS.  

 

CNVs are a crucial factor in tumor load evaluation. Various sequencing methods can be used 

to detect CNVs, but it is essential to determine the consistency of results between different 

methods. By analyzing the CNV detection results of sWGS and panel sequencing methods for 

the above 395 samples, it can be found that 27 samples were detected to contain CNV 

patterns in both panel sequencing and sWGS. 6 samples were detected to contain CNV 

patterns in panel sequencing but not in sWGS. 50 samples contained CNV patterns in sWGS 

test but not in panel sequencing. In the remaining 312 samples, the CNV pattern was detected 

neither in panel sequencing nor in sWGS. In addition, among the six samples that were 

detected as negative by sWGS but positive by panel sequencing, 5 of them have a score of 

less than 5 in panel sequencing, which means that they have low confidence in the CNV 

detection results.  

 

It can be observed in Table 6-2, most of the samples were not detected with gain events by 

either method. For the remaining samples, more gain events were detected by sWGS. 
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Table 6-2 CNV events were detected by both panel and sWGS. (a), (b) and (c) represent the 

CNV events in the EGFR, MET, and ERBB2 respectively. (d) shows whether CNV exists in the sample. 

 EGFR sWGS with CNV gain EGFR sWGS without CNV gain 

EGFR Panel with CNV gain 18 10 

EGFR Panel without CNV gain 22 345 
 

(a) 

 MET sWGS with CNV gain MET sWGS without CNV gain 

MET Panel with CNV gain 15 8 

MET Panel without CNV gain 26 346 
 

(b) 

 ERBB2 sWGS with CNV gain ERBB2 sWGS without CNV gain 

ERBB2 Panel with CNV gain 1 0 

ERBB2 Panel without CNV gain 14 380 
 

(c) 

 sWGS with CNV sWGS without CNV 

Panel with CNV 27 6 

Panel without CNV 50 312 
 

(d) 

 

6.3.2 Detection of ctDNA as biomarker for tumor samples 

 

In addition to CNVs, SNVs and gene fusions can also be present in tumor samples. The panel 

sequencing samples was determined to contain tumor by detecting the presence of SNV, 

CNV, or fusion. As for sWGS samples, ichorCNA was used to determine if they contain tumor. 

A confusion matrix between the results of panel sequencing and the results of sWGS was 

created (Table 6-3), it can be found that 66 samples were detected to contain tumor by both 

panel sequencing and sWGS. 152 samples were detected to contain tumor by panel 
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sequencing but not by sWGS. 11 samples were detected by sWGS to contain tumor but not 

by panel sequencing. 166 samples contained no tumor by panel sequencing and sWGS. 

Through comparison, it can be found that for tumor detection, the consistency of the two 

sequencing methods was poor. However, it is worth noting that for the 152 samples that were 

detected as positive by panel but negative by sWGS, 148 of them had a fusion allele frequency 

less than 0.01, indicating a low tumor DNA fraction in these samples. 

  

Table 6-3 Confusion matrix of the detection results between panel sequencing samples and 

sWGS samples from the same patient in the same timeline. 

 sWGS with tumor sWGS without tumor 

Panel with tumor 66 152 

Panel without tumor 11 166 

 

It can be speculated that the low allele frequency (AF) of SNV and fusion may be a factor that 

affects the consistency of detection. In order to verify this hypothesis, samples were compared 

respectively by SNV AF and fusion AF as biomarkers. Among them, the two groups were 

further divided into four levels according to the allele frequency of their panel sequencing, 

respectively AF=0, AF between 0-0.01, AF between 0.01-0.05, and AF greater than 0.05. The 

AF value here represents the maximum AF value among all SNVs in a sample. 

 

First, the SNV AF in panel sequencing was used as a biomarker to evaluate the consistency of 

detection (Table 6-4a). Among the 188 samples reported by panel sequencing that did not 

contain SNV, 16 samples were detected as containing tumor by sWGS. Among 119 samples 

with AF between 0-0.01, sWGS detected 19 samples with tumor. Among 61 samples with AF 

between 0.01-0.05, sWGS detected 19 samples with tumor. Among 27 samples with AF 

greater than 0.05, sWGS detected 23 samples containing tumor. 

 

Among the 35 samples with an SNV AF value less than 0.01 and tumors detected by sWGS, 

12 samples were detected by panel sequencing as containing fusion, 10 samples contained 
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CNV, and 8 samples only contained SNV. Among the 16 samples that did not contain SNV, a 

total of 11 samples did not contain any mutations according to the panel sequencing, that is, 

did not contain any SNV, CNV, or fusion.  

 

For all 61 samples with SNV AF between 0.01-0.05, tumor was detected in only 19 sWGS 

samples, resulting in a low consistency of 31.1% when compared to the panel results. Among 

27 samples with SNV AF greater than 0.05, 23 were detected to contain tumor by sWGS, 

resulting in a consistency of 85%. 

 

Second, the fusion AF was used as the biomarker for evaluation (Table 6-4b). By grouping 

the samples according to fusion AF, 35 samples with no fusion were detected by sWGS to 

contain tumor. Among 42 samples with a fusion AF between 0 to 0.01, sWGS detected 10 

samples containing tumor. Among 30 samples with a fusion AF between 0.01 to 0.05, 26 

samples were detected by sWGS to contain tumor. The 6 samples with a fusion AF greater 

than 0.05 were all detected by sWGS to contain tumor. 

 

For the 35 samples with no fusion but had tumor detected by sWGS, 7 samples contained 

SNV and CNV, 15 samples contained only SNV, 2 samples contained only CNV, and the 

remaining 11 samples did not contain any mutations.  

 

For all 30 samples of fusion AF between 0.01-0.05, tumor was detected in sWGS of 26 samples， 

resulting in a consistency of 86.7%. And tumor was detected in sWGS of 6 samples with fusion 

AF greater than 0.05, resulting in a consistency of 100%. When the fusion AF exceeded 0.01, 

only 4 out of 36 sWGS samples did not detect the tumor. Compared with the SNV results, 

maybe fusion events are more suitable as a biomarker for tumor burden detection. 

 

Table 6-4 The number of sWGS samples that contain tumor according to different ranges of AF, 

using SNV and fusion as biomarkers, respectively. (a) The detection results of sWGS are classified 

according to the highest AF of SNV in the panel; (b) the detection results of sWGS are classified 
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according to the fusion AF in the panel. 

 sWGS contains tumor Total samples 

Panel SNV AF =0 16 188 

Panel SNV AF 0-0.01 19 119 

Panel SNV AF 0.01-0.05 19 61 

Panel SNV AF >0.05 23 27 

Sum 77 395 
 

(a) 

 sWGS contains tumor Total samples 

Panel fusion AF 0 35 317 

Panel fusion AF 0-0.01 10 42 

Panel fusion AF 0.01-0.05 26 30 

Panel fusion AF >0.05 6 6 

Sum 77 395 
 

(b) 

 

6.4 Discussion 

6.4.1 Panel sequencing combined with sWGS for tumor 

detection in liquid biopsy 

 

At present, in the field of tumor detection, panel sequencing is widely used due to its low 

price and high sensitivity and specificity161. Panel sequencing is a good choice for detecting 

SNV and fusion of specific genes. In addition to SNV and fusion, CNV is also a potential 

biomarker or prognostic factor for tumor therapy. However, panel sequencing can detect a 

limited range of CNVs. For example, Avenio, used in this project, only reports the CNV of 

three genes: EGFR, ERBB2 and MET. Although these genes are commonly altered in lung 
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cancer, there are still other genes that are common in lung cancer that need to be tested. For 

example, for ALK fusion-positive tumors, amplification of MYC and MDM2 is common162. 

MDM2 amplification is associated with poor clinical outcomes and significantly increases 

tumor growth rates in PD-1 /PD-L1 immunotherapy 163 . In other cancers, such as Acute 

Lymphoblastic Leukemia, the absence of CDKN2A and CDKN2B are independent prognostic 

markers164.  

In addition, segmentation is one important step of CNV detection. This step uses statistical 

methods such as Hidden Markov models or circular binary segmentation to merge regions 

with similar read counts to estimate the CNV events within the region131. This means that CNV 

detection requires that the detection area is long enough and has a stable coverage. For panel 

sequencing, the detection area is limited, only specific genes can be detected, and the 

coverage heterogeneity caused by the hybridization capture step may affect the accuracy of 

CNV detection158, 159. Therefore, the ability of panel sequencing to detect CNVs has certain 

limitations. The ability of using sWGS for CNV detection has been demonstrated. For example, 

the researchers demonstrated that CNVs associated with glioma diagnosis can be detected 

using sWGS samples from glioma patients, and other glioma-associated abnormalities can 

also be revealed, such as EGFR amplification and homozygous loss of CDKN2A/B165. In one 

study of urothelial bladder carcinoma, although the average depth of the sWGS samples was 

0.6X, amplification of MDM2, ERBB2, CCND1, and CCNE1 and deletion of CDKN2A, PTEN, 

and RB1 were observed. These are all known to change frequently in urothelial bladder 

carcinoma, and the CNV patterns of cfDNA showed similar patterns to tumor samples166. 

However, due to the low coverage of sWGS and the lower tumor content in cfDNA, the 

resolution of CNV detection is low, and it is more susceptible to noise, resulting in reduced 

accuracy167. Therefore, a comprehensive analysis of a cancer sample is required from the 

perspectives of SNVs, fusions, CNVs, etc. In this project, a combination of panel sequencing 

and sWGS methods was employed to better analyze the relevant tumor characteristics of the 

samples. 
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6.4.2 Consistency between panel sequencing and sWGS 

 

As indicated in Table 6-3, 152 samples tested tumor positive by Panel sequencing, but were 

negative by sWGS. It is worth mentioning that among these 152 samples, 148 of them 

exhibited fusion AF below 1%. According to Avieno's documentation, when the fusion score 

exceeds 1%, the sensitivity and positive predictive value (PPV) are both above 99%. However, 

for samples with fusion AF below 1%, the detection accuracy may be compromised, leading 

to false positives. Another potential explanation is that although some samples may have 

SNVs or fusion events, there might be a low occurrence of CNV events, which may not be 

detected by CNV analysis tools. 

 

As shown in Table 6-4, the consistency between the SNV results by panel sequencing and 

sWGS, as well as fusion detection results and sWGS, were analyzed separately. It can be 

observed that in this project, the consistency between sWGS results and fusion detection 

results is higher compared to SNV detection results. Especially when the fusion AF exceeded 

0.01, only in 4 out of 36 samples sWGS analysis did not detect tumor DNA. It can be inferred 

that in this project, fusion events are more suitable as a biomarker for tumor burden detection. 

There are several possible reasons for this observation. Firstly, since all the samples analyzed 

in this project were cfDNA samples from tumor patients without corresponding control 

samples, it is difficult to determine whether the higher positive rate of SNV detected by panel 

sequencing is influenced by clonal hematopoiesis. Secondly, all the samples in this project 

were derived from ALK fusion-positive patients, indicating that fusion events may better 

reflect the tumor characteristics compared to SNVs in these specific cases. 

 

6.4.3 Further works 

 

In addition to using comprehensive detection methods based on SNVs, fusions, and CNVs as 



120 
 

mentioned in this project to detect tumors and monitor tumor progression, literature also 

suggests the use of t-mad score (Trimmed Median Absolute Deviation from copy number 

neutrality) to detect circulating tumor DNA139. The article mentioned that through the analysis 

of 97 samples, a strong correlation (Pearson correlation coefficient r=0.80) was found 

between t-mad and VAF in high ctDNA cancer types. Furthermore, another study showed 

that the t-mad scores of cfDNA at the 6th and 8th weeks after treatment in metastatic breast 

cancer patients are correlated with subsequent RECIST response on imaging168. There is one 

study demonstrated that t-mad score exhibits higher sensitivity and lower specificity than the 

mean value of VAF in NSCLC patients, and the t-mad score may be more suitable for use in 

the early stages of the disease111. In conclusion, the t-mad score can serve as a potential 

biomarker for detecting ctDNA. 

 

Additionally, in SNV detection of liquid biopsy samples, panel sequencing of tumor-only 

samples has certain limitations. Due to the influence of clonal hematopoiesis, it is difficult to 

determine the origin of SNVs. To ascertain whether the SNVs identified in the sequencing are 

derived from circulating tumor DNA or from white blood cells, leukocyte separation 

sequencing is necessary169. However, in this project, only liquid biopsy blood samples were 

available, which poses challenges for accurate detection of tumor SNVs. In addition, a study 

by Sun J X et al. mentioned how to differentiate somatic mutations from germline mutations 

in tumor tissue samples170. Another research suggested the use of population frequency to 

remove common variants171. This may provide some ideas to improve the accuracy of SNV 

detection in cfDNA. 
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