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Abstract

The hierarchies and regular patterns that occur in the mass spectrum of fermions remain
a puzzling phenomenon that the Standard Model has yet to address. In this thesis, we
investigate a mechanism that could explain the mass hierarchy between fermion generations
from quantum loop corrections. We propose concrete implementations of this mechanism in
models that feature new generations of massive vector-like fermions, leading to a generalized
seesaw mechanism for quarks and leptons. In these models, the masses of heavier families
emerge from a tree level seesaw, while in contrast, lighter generations obtain masses only
through higher order loop corrections. Opposed to previous studies that consider multiple
scalar extensions, we realize such scenarios with a minimal scalar content and loop corrections
primarily arise from new gauge interactions. For this purpose, we examine Abelian and
non-Abelian Standard Model gauge extensions. The first involves an additional local U(1)
symmetry, while the second belongs to the class of left-right symmetric models. Our study
demonstrates that realistic fermion mass patterns can naturally arise from loop factors and
neither strongly hierarchical Yukawa couplings nor new global or discrete symmetries are
needed. Moreover, small neutrino masses can be incorporated into the mechanism. Since
models that include massive neutrinos often predict neutrino non-standard interactions,
probing them is a promising approach to learn more about the mechanism behind neutrino
masses. We explore the potential of a future muon collider to test neutrino non-standard
interactions and the complementary insights it could provide.

Zusammenfassung

Die hierarchischen Strukturen und wiederkehrenden Muster, die im Massenspektrum von
Fermionen beobachtet werden, sind bis heute eine rätselhafte Erscheinung. Um diesem
Verhalten auf den Grund zu gehen, erforschen wir Mechanismen, in denen radiative Kor-
rekturen eine Massenhierarchie zwischen den verschiedenen Generationen von Fermionen
erzeugen. Zur Umsetzung des Mechanismus schlagen wir explizite Modelle vor, die sich
durch neue Generationen vektorartiger Fermionen auszeichnen. Dies führt zu einem uni-
versellen Seesaw-Mechanismus für Quarks und Leptonen. Während die Massen schwerer
Generationen durch einen tree-level Seesaw-Mechanismus entstehen, werden die Massen der
leichten Generationen durch Quantenkorrekturen höherer Ordnung erzeugt. Im Gegensatz
zu bisherigen Studien, konzentrieren wir uns vor allem darauf, wie diese Korrekturen
durch neue Eichbosonen entstehen können. Dazu untersuchen wir eine abelsche und eine
nicht abelsche Erweiterung der Eichgruppe des Standardmodells. Mit unserer Studie
demonstrieren wir, dass Schleifenkorrekturen die Verhaltensmuster von Fermionmassen auf
natürlichem Weg erklären können und dazu weder hierarchische Yukawa Kopplungen noch
neue globale oder diskrete Symmetrien notwendig sind. Darüber hinaus können auch kleine
Neutrinomassen in den Mechanismus integriert werden. Da Modelle, die massive Neutrinos
enthalten, in vielen Fällen zu neuen Wechselwirkungen führen, ist die Erforschung solcher
Neutrinointeraktionen jenseits des Standardmodells ein vielversprechender Ansatz, um mehr
über die Mechanismen hinter Neutrinomassen herauszufinden. Wir untersuchen die Rolle
eines hochenergetischen Myonenbeschleunigers bei der Erkundung von Nicht-Standard-
Neutrinointeraktionen und zeigen, dass dieser in Zukunft vielversprechende Erkenntnisse
liefern könnte.
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Chapter 1

Introduction

The first observation of the muon by Anderson and Neddermeyer in 1936 [5, 6] was a
groundbreaking discovery in particle physics. Even though in the beginning little was
known about the new particle with a mass lighter than the proton but heavier than the
electron, the muon gave a first evidence that protons, neutrons and electrons are not the
only existing particles. Today we know that the muon was the precursor of a complete
second generation of fermions, but many more discoveries had to follow to built up a
consistent theory to describe particles and their interactions.

In the 1960s, after a number of new hadrons had been discovered, Gell-Mann and Zweig
raised the idea of three quarks (up, down, strange) as the fundamental building blocks of
mesons and baryons [7–9]. Together with his student Fritzsch, Gell-Mann coined the name
“flavor” for these different types of quarks. However, soon it became clear that the small
branching ratio of kaons decaying into two muons would be explained with an existing
fourth quark (Glashow, Iliopoulos, and Maiani [10]). Only four years after this prediction,
the charm quark was discovered at BNL and SLAC almost at the same time [11,12]. Two
generations of fermions provided an elegant treatment of particles and the discovery of a
third lepton, the tau, in 1976 [13] evoked the question whether there would be also a third
generation of quarks. In fact, Kobayashi and Maskawa already pointed out a few years
earlier [14] that three quark generations would allow to describe CP violation observed
in kaon decays. Indeed, shortly after another quark, the bottom, was discovered [15] and
physicists were sure that the third generation of fermions should be completed with a
sixth quark. Nonetheless, it took almost 18 years, until the top quark was found at an
unexpected high mass of 173 GeV [16,17]. Together with the detection of three species of
light neutrinos (the tau neutrino as latest in 2000 [18]), the flavor sector of the Standard
Model (SM) seems complete. Apart from neutrinos, fermion masses can be described by
the Brout-Englert-Higgs mechanism [19–21]. A SM-like fourth generation of fermions is
under tension due to precision measurements in the electroweak and Higgs sector [22–26].

Today, we have a much better understanding, though some puzzling features of the
flavor sector are as astonishing as on the day of their discovery. From the tiny electron
mass to the top quark, which weights almost as much as a gold atom, the fermion masses
span already five orders of magnitude. On top of that, neutrino oscillations have proven
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Figure 1.1 Masses of up-type quarks (up, charm and top), down-type quarks (down, strange and
bottom) and charged leptons (e, µ and τ) as a function of the electric charge. Neutrino mass limits
are not displayed. The data is taken from [31].

that at least two species of neutrinos are massive. Current experimental bounds limit them
to the sub-eV scale [27–29] which broadens the scale of fermion masses to twelve orders
of magnitude. However, fermion masses do not just randomly scatter within this range.
They follow intriguing patterns as each generation is more massive than the preceding
one.1 It seems also remarkable that within one generation, colored particles are mostly
heavier than uncolored ones, and up-type quarks with charge +2/3 in turn are heavier
than down-type quarks with charge −1/3 (with the exception of the first generation). We
illustrate these peculiar patterns in Figure 1.1. Mixing between generations occurs in the
quark and lepton sector, nevertheless with completely different mixing patterns. While the
quark mixing matrix is close to diagonal, mixing angles in the lepton sector seem anarchical.
The SM offers no reason for the existence of exactly three generations, nor does it give
a deeper reasoning for the emerging structures in masses and mixings. The fact that it
can only describe these observations, but not explain, turns it into a true “flavor puzzle”.
Overall, it is hard to believe that the observed patterns are only governed by coincidence
and non-zero neutrino masses definitely require new physics beyond the SM. Therefore,
it is worth to explore models that can potentially address both issues. In this thesis we
particularly concentrate on a possible mechanism that explains mass hierarchies appearing
between different fermion generations. In addition, we discuss possibilities to incorporate
small neutrino masses appropriately.

So far, a huge effort was put to understand the flavor structure by means of discrete or
global symmetries [32–34]. Especially discrete groups with a triplet representation, as for

1Neutrinos are possibly an exception to this, as their mass ordering is not yet determined [30].
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CHAPTER 1. INTRODUCTION

example A4, S4 or ∆(27), were popular targets to represent the three generation structure
of the SM. Nevertheless, nature has realized none of these symmetries directly and the
explicit breaking scheme of flavor symmetries is a key ingredient of this type of models,
which usually involves a plethora of new scalars, the flavons [35]. An appealing alternative,
which we will follow in this work, are models that do not need additional flavor symmetries
or a multitude of new scalars. Instead, they rely on the idea of radiative loop suppression
that can be understood from the following consideration:

When a fermion mass matrix, for instance in the quark sector, has the structure

Mu/d = mt,b

⎡⎢⎣|α⟩⟨α|ϵ2 + |β⟩⟨β|ϵ+

⎛⎜⎝ 0 0 0

0 0 0

0 0 1

⎞⎟⎠
⎤⎥⎦ ,

where |α⟩⟨α|, |β⟩⟨β| denote tensor products of coupling matrices which are in general
different for up- and down-type quarks and ϵ≪ 1 being a small parameter. Then, couplings
of O(1) naturally lead to eigenvalues that fulfill the hierarchical relation

mt : mc : mu ≃ 1 : ϵ : ϵ2 , mb : ms : md ≃ 1 : ϵ : ϵ2 .

From this estimation we clearly see that ϵ ∼ 10−2 leads to the observed hierarchy in fermion
masses and it seems obvious to identify the expansion parameter ϵ with a loop suppression
factor ∼ 1/(16π2). In this scenario, only the third generation is massive at tree level, while
second and first generation fermions obtain their masses through one-loop and two-loop
quantum corrections leading to the observed hierarchies. Since the matrix rank steadily
increases by including higher loop orders until all fermions have become massive, this is
called the rank mechanism. Of course, partial realizations of this idea with different loop
levels are possible as well. Models based on the rank mechanism were suggested in the
1980s and since then a number of related works followed [36–47]. They address the mass
hierarchy by considering SM extensions with either new gauge or scalar interactions that
contribute to the loop effects. Among these two possibilities, gauge extensions represent
the more economical theories but are also highly restrictive and therefore received less
attention in the literature. An example of the constraining character of gauge interactions
is given by the proposal [44]. It describes realistic mass hierarchies but fails to reproduce
experimentally observed mixing patterns.

In this work we follow the guiding principle to keep the scalar content minimal, i.e.
we only consider scalars needed for symmetry breaking and explore which ingredients
are necessary to realize hierarchical fermion masses by gauge loop corrections. For this
we examine two different scenarios, an Abelian SM gauge extension and a non-Abelian
gauge extension in the left-right symmetric model [48–50]. A natural advantage of the
non-Abelian gauge extension is the existence of an additional charged gauge boson that
opens the possibility for further loop corrections opposed to Abelian extensions with neutral
gauge bosons alone. As a key prerequisite for a radiative origin of the fermion mass hierarchy,

3



CHAPTER 1. INTRODUCTION

some generations need to stay massless at tree level. Therefore, an important ingredient for
our work are seesaw-like tree level mass matrices, which we implement by introducing new
vector-like fermions. The advantage of this approach is that the number of massive SM
fermions at tree level is precisely controlled by the number of vector-like fermion generations.
A series of papers has studied the application of the seesaw mechanism outside the neutrino
sector, which was dubbed the universal seesaw mechanism [51–61]. Contrary to these works,
where all three fermion generations obtain masses at tree level, we combine the tree level
seesaw mechanism for the heavier fermions with radiatively induced masses for the lighter
fermions. Besides charged lepton and quark masses, we also discuss possibilities to obtain
sub-eV neutrino masses in the considered models.

The definite need for a mechanism that explains massive neutrinos made this topic to
one of the most active research areas in particle physics and numerous theories describing
small neutrino masses were proposed over the last decades (for a selection see [62–70]).
Clearly, any of these theories that accomplish massive neutrinos needs to introduce new
interactions beyond the SM, commonly known as neutrino non-standard interactions (NSIs).
The study of NSIs is therefore an integral part of the current neutrino research program
and provides a promising pathway to discover physics beyond the SM. Unfortunately, new
physics that lead to neutrino NSIs can hide at vastly different energy scales. Hence, it is
necessary to conduct a broad range of experiments testing different energy ranges. At low
energies, neutrino oscillation experiments are sensitive to NSIs through new matter effects
that modify the standard oscillation probabilities [71–73]. Alternatively, NSIs can be probed
in scattering experiments at high energy colliders [74–80] or at neutrino telescopes [81–83].
The aforementioned experiments are able to constrain NSIs with first generation fermions
(electron, up and down quark) and a summary of the current status is given in [84]. Though
equally thrilling, NSIs with second generation fermions are mostly unexplored. It is therefore
essential to investigate which type of experiment allows us to get further insights into NSIs
in future and we find a muon collider to be an excellent candidate for these explorations.
In the light of a persisting discrepancy between the theoretical prediction of the muon
anomalous magnetic moment and its experimentally determined value [85,86], the muon
offers a particular interesting candidate to probe NSIs and in this way also a possible
connection between the anomalous (g − 2)µ and neutrino mass via a muonic force.

The prospect of a high energy muon collider whose planning enters now a new stage
[87–92], has brought the probe of NSIs with muons to feasible reach. We therefore devote
the second last chapter of this thesis to analyze the potential of a muon collider to test
four-fermion contact interactions with two neutrinos and two muons. For this, we study
SM extensions that feature vector or scalar mediated NSIs with muons, such as the gauged
Lµ − Lτ model or the Zee model, and analyze the monophoton signal that results from the
process µ+µ− → ννγ to obtain a projected sensitivities for the NSI strength. Exploring
muonic NSIs in future experiments opens a new window to test beyond SM physics related
to neutrinos and muons and therefore offers a chance to get further insights into the
mechanisms behind neutrino mass.

4



CHAPTER 1. INTRODUCTION

The remainder of this thesis is structured as follows: In the Chapter 2 we give an
introduction to the SM and point out different motivations for new physics beyond the SM.
Chapter 3 elaborates the details of the flavor puzzle and summarizes theoretical attempts
to solve it. In Chapter 4, we present a model which explains hierarchical fermion masses
by a loop suppression mechanism in a U(1) gauge extension of the SM together with
phenomenological consequences. Chapter 5 extends this mechanism to a non-Abelian gauge
symmetry in a left-right symmetric model. Finally, in Chapter 6 we discuss the possibility
to constrain neutrino non-standard interactions with muons at a future collider, before we
summarize and conclude in Chapter 7.
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Chapter 2

The Standard Model and beyond

Up to now, nature has revealed the four fundamental forces gravity, strong interaction, weak
interaction and electromagnetism to us. With the exception of gravity, numerous efforts
in the past have led to a full description of the remaining three forces in terms of a local
gauge invariant theory based on the symmetry group GSM = SU(3)C × SU(2)L × U(1)Y .
Here, the labels refer to color (C), left-chiral (L) and weak hypercharge (Y). While SU(3)C

describes quantum chromodynamics (QCD), featuring eight massless mediators called the
gluons, the electroweak force is unified and characterized by the Glashow-Salam-Weinberg
(GSW) theory based on SU(2)L ×U(1)Y [93–95]. Massive gauge bosons that appear in the
weak interaction can be successfully described by a mechanism proposed by Brout, Englert
and Higgs [19–21]. This mechanism, also known as spontaneous symmetry breaking, is not
only able to explain massive gauge bosons but at the same time allows to introduce mass
terms for fermions. A prediction of the SM is the existence of the Higgs boson, a neutral
scalar particle, which was finally found in 2012 by ATLAS and CMS [96,97].

With the current theory, physicists are able to test SM predictions of particle properties.
For example the measured electron magnetic moment agrees with a precision of 1 part in
1012 with its theoretical prediction [98]. On the other hand, there are puzzling experimental
and theoretical hints that the SM is not the ultimate theory. We will discuss some of these
open questions at the end of this chapter. First, we discuss the SM in more detail and
focus explicitly on the electroweak interaction and the Higgs mechanism, with only little
reference to the strong interaction.1

2.1 Glashow-Salam-Weinberg theory

The Lagrangian density describing the electroweak interaction as well as the Brout-Englert-
Higgs mechanism can be divided into four main parts

L = Lgauge + Lf + Lscalar + LY uk , (2.1)

1We refer the reader to [99] for a recent review on QCD.

7



2.1. GLASHOW-SALAM-WEINBERG THEORY

which describe the gauge sector, the fermion and scalar fields and the Yukawa sector of the
theory. We start by considering the gauge part.

Since SU(2)L is a rank three group, it gives rise to three gauge fields W a
µ (a=1,2,3), while

Bµ is the single gauge boson originating from the Abelian group U(1)Y . The generators
of the Lie algebra associated with SU(2)L are given by the operators ta that fulfill the
following relation

[ta, tb] = ifabctc , (2.2)

where fabc are the structure constants of SU(2). A convenient basis is represented by the
Pauli matrices ta = τa/2 and one can check fabc = ϵabc. The generator of the Abelian
group U(1)Y is simply given by an operator proportional to the identity element and hence
the structure constants vanish in this case. From the gauge fields, one can define the field
strength tensors

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gfabcW

b
µA

c
ν ,

Bµν = ∂µBν − ∂νBµ ,
(2.3)

such that the gauge kinetic terms are represented by

Lgauge = −1

2
Tr[WµνW

µν ]− 1

4
BµνB

µν , (2.4)

with the short notation Wµν ≡ W a
µνt

a. The strength of the interaction is determined by
the gauge couplings g and g′ and vector fields satisfy the gauge transformation

Wµ →W ′
µ = UWµU

−1 − 1

ig
(∂µU)U−1, U = exp(iβa(x)t

a) ,

Bµ → B′
µ = Bµ −

1

g′
∂µα(x) ,

(2.5)

where Wµ ≡Wµt
a and the α(x), βa(x) are the local parameters of the U(1)Y and SU(2)L

transformation. Using the previous transformation properties, one can show that the
field strength tensor transforms like Wµν → UWµνU

−1 and together with Eq. (2.5), the
expression Lgauge is manifestly gauge invariant. On the other hand, an explicit mass term
M2
BBµB

µ is forbidden by gauge invariance. Hence, in the unbroken theory, there are in
total four massless gauge bosons. This is not what we see in nature today and further
ingredients are demanded to comply with observations.

Besides the gauge bosons that mediate the forces, an other integral part of the SM
are the fermion fields that make up matter. In the Glashow-Salam-Weinberg theory, left-
handed fermions are assigned to doublets under the left-chiral SU(2)L, whereas right-handed
particles are trivial singlets. As such, SU(2)L distinguishes between left- and right-handed
chirality, in contrast to quantum chromodynamics which is a vector-like theory. The fermion
content of the SM is given in Table 2.1 together with the charge assignments. The strongly
interacting part consists of the weak quark doublets QiL = (uiL, diL)

T that are formed
by the left-handed up- and down-type quarks and the right-handed weak singlets uiR and

8



CHAPTER 2. THE STANDARD MODEL AND BEYOND

Field SU(3)C SU(2)L U(1)Y

QiL =

(︃
ui
di

)︃
L

3 2 1/3

ΨiL =

(︃
νi
ei

)︃
L

1 2 −1

uiR 3 1 4/3

diR 3 1 −2/3

eiR 1 1 −2

Table 2.1 Fermionic fields in the Standard Model and their charges. The index i = 1, 2, 3 denotes
the family.

diR. On top of that, there are uncolored lepton doublets ΨiL = (νiL, eiL)
T composed by

left-handed neutrino and charged lepton and the right-handed counterparts for the charged
leptons, which are weak singlets eiR. Therein, every fermion field appears as one out of
a series of three copies i = 1, 2, 3 with exactly the same gauge charges. Even though
this repetition of fermion representations does not constitute a problem in the first place,
one may wonder whether there is some deeper underlying reason and we will discuss this
question in more detail in the next section. It is also important to emphasize that there is
no right-handed fermion field for the neutrino in the SM.

The hypercharge Y of a particle is defined by Y/2 = Q − T3, where T3 is the third
component of left isospin. Under a local SU(2)L×U(1)Y transformation, the fermion fields
transform as

fL → exp (iβa(x)t
a) exp

(︁
iqYLα(x)

)︁
fL ,

fR → exp
(︁
iqYRα(x)

)︁
fR ,

(2.6)

where qYL/R
is the hypercharge of fL/R and ta are the SU(2) generators of the fundamental

representation. As desired, the right-handed fermion transforms trivially under the SU(2)L

gauge transformation. Local gauge invariance furthermore requires to introduce the covariant
derivatives

DµfL = ∂µ − igW a
µ t
a − i

g′

2
qYLBµ ,

DµfR = ∂µ − i
g′

2
qYRBµ .

(2.7)

With the help of this, it is possible to write a gauge invariant interaction between a fermionic
field and the gauge fields,

Lf = fLiγ
µDµfL + fRiγ

µDµfR . (2.8)

9



2.2. ELECTROWEAK SYMMETRY BREAKING

Since left- and right-handed fermion fields transform as different representations under
SU(2)L × U(1)Y , an explicit Dirac mass term, which has the chiral structure

−mff = −m
(︁
fLfR + fRfL

)︁
, (2.9)

is forbidden in the SM. This can be easily deduced from the tensor product decomposition in
SU(2). The left-handed fermion in doublet representation and the right-handed fermion in
singlet representation together form a doublet according to the tensor product decomposition
2⊗1 = 2. We will see in Section 2.2 that more ingredients are necessary to achieve fermion
masses in a chiral theory. Evidently, a non-chiral theory is much simpler in this respect. If
left- and right-handed components of the fermion field transform the same way, mass terms
will no longer be forbidden by gauge invariance. Fermions with this property are usually
called vector-like and play a mayor role in the mechanisms we present in Chapter 4 and 5
of this work.

2.2 Electroweak symmetry breaking

To coincide with experimental observations, a mechanism is needed that generates masses
for the gauge bosons W and Z while keeping the photon γ a massless particle at the same
time. On the other hand, a successful theory should also be capable of explaining massive
fermions. In the SM, this is achieved by spontaneous symmetry breaking. The combination
of left-chiral charge and hypercharge is broken to electromagnetic charge (EM):

SU(2)L × U(1)Y → U(1)EM .

The remnant symmetry in the broken theory has rank one and therefore possesses one
massless force carrier, the photon. To achieve this, an uncolored complex scalar field ϕ which
is in the doublet representation of SU(2)L and carries Y = 1 hypercharge is introduced.
This particle is commonly known as the Higgs field. Under certain conditions, the Higgs
boson can develop a vacuum expectation value (VEV) and thereby triggers electroweak
symmetry breaking. To describe the dynamics of the additional scalar field, further terms
are added to the Lagrangian

Lscalar = (Dµϕ)
†(Dµϕ)− V (ϕ) , (2.10)

where the covariant derivative for ϕ is

Dµϕ =

(︃
∂µ − igW a

µ t
a − i

g′

2
Bµ

)︃
ϕ , (2.11)

and the scalar potential includes the following gauge invariant quadratic and quartic terms:

V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2 . (2.12)
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CHAPTER 2. THE STANDARD MODEL AND BEYOND

For µ2 < 0, the potential spontaneously develops a non-zero vacuum expectation value
⟨ϕ⟩ ≠ 0 which breaks the electroweak symmetry to U(1)EM. During that process, masses
are generated for those gauge bosons which correspond to the broken generators of the
symmetry. In the potential, λ defines the quartic coupling parameter and for λ > 0 the
vacuum is stable. To successfully break to U(1)EM, the structure of the Higgs VEV needs
to be

⟨ϕ⟩ = 1√
2

(︄
0

v

)︄
, (2.13)

which means the VEV v resides in the neutral charge component of ϕ. Minimization of the
scalar potential reveals that the minimum satisfies v2 = −µ2/λ. Then, gauge boson masses
are generated via the kinetic term

(Dµϕ)
†(Dµϕ) ⊃ v2

8
g2(W 1

µ+ iW
2
µ)(W

1µ− iW 2µ)+
v2

8
(gW 3

µ−g
′Bµ)(gW

3µ−g′Bµ) . (2.14)

In the current basis, it is not immediately clear which gauge bosons pick up a mass.
Therefore, one has to do a basis rotation in order to identify the mass eigenstates. By
redefining

W±
µ =

W 1
µ ∓ iW 2

µ√
2

,

Zµ =
−g′Bµ + gW 3

µ√︂
g2 + g′2

,
(2.15)

one can show that the W and Z bosons are now massive particles and their masses are
given by the expressions

M2
Z =

(g2 + g′2)v2

4
, M2

W =
g2v2

4
. (2.16)

The fourth state, which is defined orthogonal to the Z, is given by the linear combination

Aµ =
−gBµ + g′W 3

µ√︂
g2 + g′2

. (2.17)

It represents the massless photon with M2
A = 0, associated to the unbroken residual

symmetry U(1)EM. By defining the weak mixing angles

sin θw = g′/(

√︂
g2 + g′2) , cos θw = g/(

√︂
g2 + g′2) ,

the mass of the Z boson can be rewritten as MZ = gv/(2 cos θw). The Glashow-Salam-
Weinberg theory therefore predicts the tree level relation

MW

MZ
= cos θw . (2.18)

11



2.2. ELECTROWEAK SYMMETRY BREAKING

As a measure of the deviation from that relation, the ρ-parameter

ρ ≡ MW

MZ cos θw
, (2.19)

is introduced. Experimental tests currently constrain ρexp = 1.00038± 0.00020 [31], which
agrees well with the predicted value. Small deviations from the tree level value ρtree = 1

are expected and can be explained in the SM by higher order corrections. This shows how
the GSW theory successfully describes our current observations and seriously constrains
other models. In more general terms, a set of scalars φi (i = 1, ..., n), of which each has a
VEV vi, weak isospin Ti and third component of weak isospin T3i, contributes to the tree
level ρ parameter as

ρtree =

∑︁n
i

[︂
Ti(Ti + 1)− T 2

3i

]︂
|vi|

2

2
∑︁

i T3i|vi|
2 , (2.20)

assuming charge conservation [100]. The relation ρtree = 1 is trivially fulfilled by SU(2)
doublets, but constrains higher dimensional scalar representations and their VEVs.

Since the Higgs boson is a complex doublet there are in total four degrees of freedom
added. Expanding these degrees of freedom around the minimum of the potential yields

ϕ =
1√
2

(︄
G+

1 + iG+
2

v + h+ iG0

)︄
. (2.21)

Only one of these fields corresponds to a physical particle with mass M2
h = 2λv2, whereas

the others are Goldstone bosons of the spontaneously broken symmetry and become the
longitudinal degrees of freedom for the massive gauge bosons. As such, a complex scalar
field in the doublet representation of SU(2) fits exactly to describe our observation of
massive W and Z bosons plus a neutral scalar particle, the Higgs boson.

The fact that the Higgs boson is in the fundamental representation of SU(2) gives rise to
a remarkable coincidence. As a weak doublet, it also allows to introduce a coupling between
left- and right-handed fermions, because the SU(2) tensor product 2 ⊗ 2 ⊗ 1 = 1 ⊕ 3

includes a singlet now. Defining the conjugate field ϕ̃ ≡ −iτ2ϕ∗, Yukawa couplings to
quarks and charged leptons are possible and we describe them through the Lagrangian

LY uk = −Y u
ijQiLϕ̃ujR − Y d

ijQiLϕdjR − Y e
ijΨiLϕ ejR + h.c. . (2.22)

As a reminder, we note that the indices i and j live in family space. Hence, the couplings
Y u, Y d and Y e are 3× 3 matrices, which are in general non-diagonal. From the definition
of ϕ̃, it becomes clear that the field transforms like ϕ̃ ∼ (1,2,−1) under the SM gauge
group and its VEV resides in the upper component of the doublet:

⟨ϕ̃⟩ = 1√
2

(︄
v

0

)︄
. (2.23)
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CHAPTER 2. THE STANDARD MODEL AND BEYOND

This is an important property of SU(2) and allows to write down the Yukawa couplings to
up- and down-type quarks as well as charged leptons with only one scalar field. When the
Higgs obtains a VEV, the fermions acquire the masses

L ⊃ −mu
ijuiLujR −md

ijdiLdjR −me
ijeiLejR + h.c. , (2.24)

with the mass matrices given by

mu
ij =

Y u
ijv√
2
, md

ij =
Y d
ijv√
2
, me

ij =
Y e
ijv√
2
. (2.25)

Due to the missing νR, it is not possible to write down a mass term for neutrinos in a
similar way as for the other fermions in the Standard Model. We discuss possible solutions
to this issue in the next section.

To find the physical mass basis for the fermions, it is necessary to diagonalize the mass
matrices in Eq. (2.25) by a bi-unitary transformation. In general, the matrices for up-
and down-type quarks cannot be diagonalized simultaneously. This misalignment leads to
physical observable effects in charged current interactions, where the Lagrangian is given by

LCC ⊃ uLγ
µW+

µ dL = ûLVuγ
µW+

µ V
†
d d̂L . (2.26)

In above notation, .̂.. indicates the mass eigenstates and Vu/d are the matrices transforming
between the flavor and the mass eigenbasis. Note that we suppress flavor indices for
a better readability. The product of the two rotation matrices VCKM ≡ VuV

†
d is the

Cabibbo–Kobayashi–Maskawa (CKM) matrix and parameterizes the mixing between differ-
ent quark flavors that occurs in charged current weak interactions. In general, its elements
are written in the form

VCKM =

⎛⎜⎝ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎟⎠ , (2.27)

and the magnitude of each of the elements is experimentally determined with a precision
of a few percent by now [31]. Contrary to the charged current interaction, the effect of
flavor changing cannot be observed in neutral current interactions, as the rotation matrices
transforming between the different bases simply drop out. Therefore, there are no tree level
flavor changing neutral currents (FCNCs) in the Standard Model.

An equivalent to the CKM matrix in the lepton sector is given by the so-called Pon-
tecorvo–Maki–Nakagawa–Sakata (PMNS) matrix which will be discussed in the next sections
together with possible neutrino mass generation mechanisms.

2.3 Motivation for physics beyond the Standard Model

During the last sections, we already pointed at some questions that are unanswered by
the SM. These can be roughly categorized into two different kind of problems. On the one
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2.3. MOTIVATION FOR PHYSICS BEYOND THE STANDARD MODEL

hand, there is a number of experimental observations that have been made but cannot be
explained by the Standard Model. This kind of problem demands for an explanation and
therefore necessitates extensions to the Standard Model. Examples for this category are the
origin of neutrino masses, dark matter and the baryon asymmetry of the universe. On top
of that, there is a number of experimental anomalies where measured observables deviate
from the Standard Model prediction. Ongoing experimental effort has to reveal whether
these anomalies persist also in the future.

On the other hand, there are some puzzling features of the SM from a theoretical point
of view. Prominent examples for this category are the flavor puzzle, the strong CP problem
and the electroweak hierarchy problem. Even though the Standard Model can parameterize
many of the observations related to these topics, it cannot give a deeper explanation for
the size of the involved parameters. In the following section, we give a short overview on
the different motivations mentioned so far. Details for the flavor puzzle, the basic incentive
for this work, are presented in Chapter 3.

2.3.1 Experimental evidences

Neutrino masses

The first measurement of solar neutrinos in the 1960s in the Homestake experiment by
Raymond Davis Jr. was a great success but its result gave rise to the puzzling question:
Why was the observed electron neutrino flux well below the theoretical predictions? At
the same time, the Super-Kamiokande experiment measured a deficit in the atmospheric
neutrino flux [101]. Both these phenomena could be explained by neutrino oscillations
and in 2001 the Sudbury Neutrino Observatory finally confirmed that neutrinos from the
sun oscillate to a different flavor [102].2 This elementary discovery solved a puzzle that
persisted over thirty years and was awarded with the Nobel prize in 2015. However, it
gave rise to a further question. Neutrino oscillation does not only imply that neutrinos can
change their flavor while propagating, but it also implies that neutrinos are massive.

This can be easily illustrated in a simple two flavor scenario. Neutrino oscillation is a
phenomenon that occurs because neutrinos are produced (detected) as flavor eigenstates
να/β in weak interactions but propagate as mass eigenstates ν1/2, the stationary states of
the free Hamiltonian. In general, these two bases are not aligned but can be related by a
unitary matrix (︄

να

νβ

)︄
=

(︄
cos θ sin θ

− sin θ cos θ

)︄(︄
ν1

ν2

)︄
. (2.28)

The oscillation probability at a distance L from the source is then given by

Pνα→νβ
= sin2(2θ) sin2

(︄
∆m2L

4Eν

)︄
, (2.29)

2The basic ingredient to the solution of the solar neutrino problem is the Michejew-Smirnow-Wolfenstein
(MSW) effect [71,103].
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CHAPTER 2. THE STANDARD MODEL AND BEYOND

where ∆m2 ≡ m2
2 −m2

1 is the squared mass difference between two mass eigenstates. If
both neutrinos are massless or the mixing angle θ vanishes, the probability will be zero and
no oscillations will occur.

In a complete setup with three light neutrinos, which is favored by LEP data, the
oscillation probability depends on two mass squared differences ∆m2

21 and ∆m2
31, three

mixing angles θ13, θ12, θ23 and one CP violating phase. With ∆m2
21 and ∆m2

31 non-
vanishing, at most one of the three neutrinos can be massless. Since the sign of ∆m2

31 is
unknown, there are two possible variants of mass ordering which are called normal hierarchy
(NH) and inverted hierarchy (IH):

m1 < m2 < m3 (NH), m3 < m1 < m2 (IH) . (2.30)

The actual size of the neutrino mass is currently not known, but there is a lot of experimental
effort to determine their absolute values. For example, the Karlsruhe Tritium Neutrino
Experiment (KATRIN) aims to measure the absolute mass scale of neutrinos emitted in
tritium beta decays and puts the upper limit

mν < 0.8eV (90% CL) (2.31)

on the effective electron anti-neutrino mass which is defined by m2
ν =

∑︁
|U2
ei|m

2
i [27].

Cosmological bounds deduced from the cosmic microwave background by the PLANCK
collaboration constrain the sum of neutrino masses to [28]∑︂

i

mνi
< 0.12 eV . (2.32)

Only recently, there was an additional result by the DESI collaboration, which reported [29]∑︂
mν < 0.072 eV (95% CL) . (2.33)

This has to be compared with the lower bound on the sum of neutrino masses which can
be obtained from the measured squared mass difference under the assumption that the
lightest neutrino is massless,∑︂

i

mνi
≳ 0.06eV (NH) ,

∑︂
i

mνi
≳ 0.1eV (IH) . (2.34)

Taken at face value, the outcome of the DESI study disfavors IH. However, the result needs
to be treated with caution as it is not independent from assumptions and chosen priors.
As explained in the previous section, it is not possible to give mass to neutrinos in the
Standard Model. One of the simplest solutions to this problem would be to extend the
particle content by three right-handed neutrinos with gauge charge νR ∼ (1,1, 0). Then,
one can add the Yukawa coupling terms

LY uk ⊃ −Y νΨLϕ̃νR + h.c.
SSB−−→ −mDνLνR + h.c. , (2.35)
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with mD ≡ Y νv/
√
2 which gives mass to neutrinos after EWSB. However, this seemingly

small change in the particle content has a big consequence. Since the fields νR do not carry
U(1)Y charge, it is not forbidden by any gauge charge to write down the bare mass term

L ⊃ −1

2
MRνRν

c
R + h.c. , (2.36)

where νcR is the charge conjugated field. This term violates lepton number by two units.
It would therefore stand out from the rest of the SM which accidentally preserves lepton
number. If present, the neutrino will be its own antiparticle, also called a Majorana fermion.
Eqs. (2.35) and (2.36) together yield the complete neutrino mass matrix

L ⊃ −1

2

(︂
νL νcR

)︂(︄ 0 mD

mT
D MR

)︄(︄
νR

νcL

)︄
. (2.37)

In the limit MR ≫ mD,3 diagonalization reveals three light and three heavy eigenvalues

mlight ≈
1

2
mT
DM

−1
R mD , mheavy ≈MR . (2.38)

This mechanism is widely known as type I seesaw mechanism and can explain the small
neutrino masses by suppression via a large scale MR [62–64]. For instance, for Y ν ∼ O(1),
neutrino masses below the eV scale are obtained for MR ∼ O(1014GeV). In the effective field
theory (EFT) picture, the type I seesaw mechanism is one out of three minimal possibilities
to open the dimension five lepton number violating (LNV) Weinberg operator [104]

LEFT =
yeff
Λ

(︂
Ψc
Lϕ̃

∗
)︂(︂

ϕ̃†ΨL

)︂
, (2.39)

which generates Majorana masses for neutrinos when ϕ develops a VEV. The structure of
the operator shows a suppression with respect to the scale of new physics Λ and its strength
depends on the effective coupling yeff of the explicit realization. The other two options
to complete the Weinberg operator in a ultraviolet (UV) theory include a SU(2)L triplet
scalar [65–68] or a SU(2)L triplet fermion [69].

It is experimentally challenging to reveal whether the neutrino nature is Dirac or
Majorana. A consequence of the Majorana nature would be the existence of neutrinoless
double beta decay (0νββ). In this process the neutrino emitted in a beta decay is directly
absorbed by a second simultaneous beta decay in the same nucleus. The decay rate for
0νββ depends on the phase space factor G and the nuclear matrix element M and is given
by

Γ0νββ = G|M |2m2
ββ , (2.40)

3When the entries of the matrix MR are of the order O(µR) and those of mD are O(µD), then we
consider the limit µR ≫ µD.
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where mββ ≡
∑︁

i U
2
eimi. Evidently, this process is suppressed through the small neutrino

mass. So far 0νββ was never observed. For example, the GERDA experiment currently
constrains the half-life for 0νββ decay of 67Ge to [105]

T 0νββ
1/2 (67Ge) > 1.8× 1026yr (90% C.L.) . (2.41)

The non-observation of 0νββ does however not imply that neutrinos are not Majorana
particles. If there is an unlucky cancellation of parameters, mββ will be zero in case of NH
and 0νββ will never be observed.

Dark matter

Even though we gained a lot of knowledge about the character of baryonic matter in the
last centuries, there is a huge proportion of matter with largely unknown properties. Its
observation so far only relates to gravitational effects and therefore gave birth to the term
Dark Matter (DM). The plethora of different observations which has established that DM
indeed exists ranges from observation of small scales like galaxies to the largest observable
scales in cosmology. One of the most convincing evidences is given by the velocity profile
of stars circulating around the central bulge of spiral galaxies. Against expectation, the
rotation velocity does not decrease with increasing distance from the center, but rather
stays constant [106, 107]. This suggests a matter distribution different from the visible one.
Other observations such as cosmic microwave background anisotropies or the difference of
total mass to visible mass distribution in the bullet cluster permit an explanation with DM
as well [108,109]. In the current standard model of cosmology, the DM density is described
by

ΩDMh
2 = 0.1200± 0.0012 , (2.42)

where Ωi ≡ ρi/ρc represents the relative density to the critical density. Todays Hubble
constant is measured as H0 = h · 100 km s−1 Mpc−1 and h = 0.674 ± 0.005 [110]. This
yields ΩDM = 0.264 ± 0.003 and shows that DM accounts for 26.4% of the total energy
density today. In comparison, baryonic matter constitutes only 4.9% and radiation 0.0091%,
leaving the largest portion to dark energy ΩΛ ≃ 68.5% [111]. Structure formation with
relativistic DM particles would not have been effective and therefore suggests DM to be
non-relativistic (cold). The SM does not offer such a candidate for cold DM.

Matter-antimatter asymmetry

The visible universe is formed out of atoms which are in turn composed of electrons,
protons and neutrons. In contrast, structures or regions populated with a large fraction
of antiparticles are not observed. The origin of the dominance of matter over antimatter
supposedly formed in the early universe and the baryon (B) to antibaryon (B) asymmetry
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can be quantified in terms of their respective number densities in relation to the photon
number density

nB − nB
nγ

∼ 10−9 , (2.43)

which is known from the abundance of light isotopes produced in big bang nucleosynthesis
[31]. In simpler terms, the ratio illustrates that for each 109 antibaryons there were 109 + 1

baryons, annihilating to photons and leaving behind a single baryon. According to Sakharov,
three conditions are necessary to form this asymmetry: First, there must be baryon number
violation, second, C and CP needs to be violated and third, there must be a departure from
thermal equilibrium [112]. Even though in principle there is CP violation in the Standard
Model, the effect is too small. It cannot explain the observed asymmetry and new physics
is therefore needed.

Anomalies

Over time, experiments measured a plethora of different processes and it is only natural to
expect that some fraction of them deviates from the Standard Model expectation due to
statistical fluctuation. When a discrepancy between theory and experiment exists over a
long time and is confirmed by different experiments, this can potentially point towards new
physics. An example of such a long standing anomaly is the anomalous magnetic moment of
the muon, defined by aµ ≡ (gµ − 2)/2 [85,86,113–115]. Measurements of aµ at Brookhaven
National Lab (BNL) and Fermilab National Accelerator Laboratory (FNAL) are consistent
with each other but show a 4.2σ discrepancy with the data driven SM prediction [31]:

∆aµ = aexpµ − aSMµ = 251(41)(43)× 10−11 . (2.44)

For the SM prediction, it is necessary to calculate the higher order loop corrections to aSMµ .
Especially, the hadronic contribution aHadµ is subject of ongoing debate, as the data-driven
dispersion relation approach and lattice calculations differ by 2.2σ [116]. Interestingly, the
tension in ∆aµ would be alleviated if the lattice result for aHadµ were used. Nonetheless,
it is worth to consider new physics models that can potentially lead to such signatures
and we discuss some of them in Chapter 6. Of course the magnetic moment of the muon
is not the only measured anomaly. Another prominent example in the neutino sector is
the MiniBooNE anomaly which describes an excess of νe and νe events in charged-current
quasi-elastic scattering. Currently, it is at a significance of 4.7σ and subject of ongoing
investigations [117–119].

2.3.2 Theoretical motivations

The flavor puzzle

The flavor puzzle summarizes several puzzling questions related to the flavor sector in
the SM. First of all, it deals with the issue why we observe exactly three generations of
fermions. The duplication of each fermion representation has no deeper origin so far, but
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having exactly the same number of generations in the quark and lepton sector creates the
impression that a deeper mechanism might be at work. Of course, it could turn out that
the three generations are merely a coincidence. In this case however, one is still confronted
with the weird fact that the fermion masses cover a large range of scales. From the mass
of the electron O(100 keV) to the top quark mass O(100 GeV), the SM already spans
six order of magnitude. Including sub-eV neutrino mass enhances this to twelve orders.
Even within one fermion species, masses are hierarchical and hence the Yukawa sector
is the only part of the SM which does not treat fermions of the same representation on
an equal footing. Furthermore, the mixing that occurs in the quark and lepton sector is
fundamentally different. While the CKM matrix is close to diagonal, the PMNS matrix
exhibits rather large mixing angles. Finally, the flavor puzzle is also closely connected to
the origin of CP violation, as three generations of quarks are the minimal requirement
for the appearance of a CP violating phase in the CKM matrix, which is experimentally
established.

Strong CP problem

Even though there is no experimental sign of CP violation in the strong interaction, the
QCD gauge symmetry allows the charge-parity violating term

LQCD ⊃ θg2

32π2
GaµνG̃

aµν , (2.45)

where G̃aµν ≡ 1
2ϵ
µνρσGaρσ is the gluon dual field strength tensor. The size of this term is

determined by the parameter θ. However, it is not a physical parameter, as a chiral rotation
on the quark fields can generate a term of the same kind in the Lagrangian by the chiral
anomaly. The parameter that has physical consequences involves the quark mass matrices
Mu/d and is defined as

θ = θ +Arg(Det[MuMd]) . (2.46)

If there was large CP violation in the strong interaction, this would induce a large neutron
electric dipole moment. Its non-observation constrains the parameter θ ≤ 10−10, although
there is a priori no reason why it should be so small. This phenomenon is commonly
known as the strong CP problem. Several new physics models attempt to explain the
smallness of θ. In one approach, called the Peccei-Quinn mechanism, θ is promoted to a field
which dynamically relaxes to zero [120–122]. Other attempts in the framework of left-right
symmetric models start with a parity symmetric theory. The spontaneous breaking of
parity induces a small θ only at the two-loop level explaining its smallness [56,123].

Naturalness

In the SM, there is only one fundamental scalar, the Higgs boson ϕ. Its mass term, described
by µ2ϕ†ϕ, is invariant under gauge and global symmetries, i.e. the case µ2 = 0 does not
enhance the symmetry of the theory. This is contrary to the case of fermion masses which
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are protected by chiral symmetry [124]. The Higgs mass is therefore particularly vulnerable
to radiative corrections that enter quadratically in the cut-off scale Λ

δm2
ϕ ∼ λ2

16π2
Λ2 . (2.47)

To achieve a physical mass at the electroweak scale, a tuning of the tree level mass against
the radiative corrections is necessary, as m2

ϕ(phys) = m2
ϕ(tree) + δm2

ϕ. If the cut-off was
chosen to be the Planck scale, one would need a tuning of 10−28 to achieve a Higgs mass at
the electroweak scale [125]. This high amount of tuning raises suspicion and is considered
as unnatural.
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Chapter 3

The flavor puzzle and theoretical
concepts to address it

In the previous chapter we already pointed out the main questions that are covered by the
flavor puzzle, namely, the existence of three generations of fermions together with their
hierarchical mass scales and the appearance of differing mixing schemes in the quark and
lepton sector. To consider these issues in more detail, it is helpful to look at the flavor
sector of the Standard Model from the viewpoint of symmetries. The SM Lagrangian parts
Lgauge, Lf and Lscalar, as introduced in Eq. (2.1), possess a larger symmetry than the one
that is gauged. Accidentally, they also preserve the global symmetry [126]

Gglobal = SU(3)Q × SU(3)u × SU(3)d × SU(3)Ψ × SU(3)e × U(1)5 . (3.1)

The SU(3) groups act on fermions of the same representation and transform one fermion
generation into another (Q, u, d,Ψ, e are the irreducible fermion representations as defined
in Table 2.1). Once the Yukawa sector LY uk is included to these considerations, the global
symmetry in Eq. (3.1) is no longer preserved and the residual global symmetry of the
complete SM reduces to U(1)B × U(1)Le

× U(1)Lµ
× U(1)Lτ

, i.e. baryon number and
the three separate flavors of lepton number [127]. At the same time, the Yukawa sector
gives rise to the majority of parameters that are needed to describe the SM. Out of the
total 19 parameters, only three gauge couplings and two scalar couplings are unrelated to
flavor. The remaining 14 parameters are needed to describe six quark masses, three lepton
masses, three quark mixing angles, one CKM CP phase and a strong CP violating angle.
If one incorporates neutrino masses and mixing into a more complete theory, the amount
of parameters will increase even further by at least three neutrino masses, three mixing
angles, a Dirac CP phase and two Majorana CP phases (depending on the nature of the
neutrino). In the following chapter, we first present the current status of measuring the
SM parameters in the flavor sector. After a short discussion of experimental constraints on
further generations of fermions, we give an overview on theoretical concepts that address
the flavor puzzle.

21



3.1. THE FLAVOR PUZZLE IN NUMBERS

3.1 The flavor puzzle in numbers

3.1.1 Lepton sector

The masses of charged leptons are experimentally determined with a very high precision.
Their current values are given by [31]

me = 0.51099895000± 0.00000000015 MeV ,

mµ = 105.6583755± 0.0000023 MeV ,

mτ = 1776.86± 0.12 MeV .

(3.2)

and we visualize the emerging scales in Figure 1.1 together with the masses of other SM
fermions. The most precise of these values, the electron mass, is measured in Penning traps
where the Larmor frequency of electrons is compared to that of trapped ions [128]. The
mass of the electron is therefore known very well in atomic units, and the conversion to MeV
dominates the error given above. Zeemann spectroscopy with muonium, a µ+e− bound
state, then allows to obtain the relative size of mµ/me [129]. In comparison to the first two
generations, the τ mass is known with less precision. Its value is either measured by the
reconstruction of invariant mass in hadronic τ decays, or by studying the e+e− → τ+τ−

cross section near the τ mass threshold [130,131].

Contrary to charged leptons, the absolute neutrino mass scale is not yet known. Still,
oscillation experiments allow to constrain the squared mass differences and their current
best fit values from global analysis are given by [30]

∆m2
21 = (7.41+0.21

−0.20)× 10−5eV2 ,

∆m2
31 = (2.511+0.027

−0.027)× 10−3eV2 (NO) ,

∆m2
32 = (−2.498+0.032

−0.024)× 10−3eV2 (IO) .

(3.3)

Especially solar neutrino experiments, such as SNO, Super-Kamiokande and Borexino, are
sensitive to the smaller mass splitting ∆m2

21 [132–134] and its absolute sign is determined
from the resonance condition of the MSW effect [71, 103]. On the other hand, atmospheric
neutrino experiments allow to determine |∆m2

31| [135]. Still, its sign is not constrained so
far which leads to two possible mass orderings in the neutrino sector. The detailed study
of neutrino oscillations also permits to constrain parameters of the PMNS mixing matrix.
For a general setup with n generations, the PMNS matrix is described by an n× n unitary
matrix which possesses n2 free parameters. These divide into n(n− 1)/2 Euler angles and
n(n+ 1)/2 phases. However, many of these phases are not physical and can be absorbed
by a redefinition of the fermion fields. If neutrinos are Dirac, further 2n − 1 phases will
be absorbed which will yield 1/2(n− 1)(n− 2) physical phases in total. In the standard
n = 3 generations picture this amounts to three mixing angles and one phase δCP which are
in principle accessible in oscillation experiments. Interestingly, two further phases would
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be present in the PMNS matrix if neutrinos were Majorana particles. Even though many
parameterizations of the PMNS matrix are possible, the commonly used one is given by

UPMNS =

⎛⎜⎝ c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

⎞⎟⎠P (3.4)

where sij ≡ sin
(︁
θij
)︁

and cij ≡ cos
(︁
θij
)︁

are the mixing angles and the matrix P includes
two Majorana phases η1/2

P =

⎛⎜⎝ eiη1 0 0

0 eiη2 0

0 0 1

⎞⎟⎠ . (3.5)

The current best fit values for the mixing angles from global analysis are given by [30]

sin2 θ12 = 0.307+0.012
−0.011 , sin2 θ23 = 0.572+0.018

−0.023 , sin2 θ13 = 0.02203+0.00056
−0.00058 , (3.6)

assuming normal ordering, whereas those for inverted ordering are

sin2 θ12 = 0.307+0.012
−0.011 , sin2 θ23 = 0.578+0.016

−0.021 , sin2 θ13 = 0.02219+0.00059
−0.00057 . (3.7)

While sin2 θ12 is most precisely known from solar neutrino experiments [132–134], atmo-
spheric [135] and reactor experiments [136] provide information on sin2 θ23 and sin2 θ13,
respectively. Knowledge about the Dirac CP phase can be retrieved from the long baseline
accelerator experiments NOνA and T2K [137,138]. Within the 3σ experimental uncertainty,
the current best fit value covers a wide range

δCP = (108− 404)◦ (NO) , δCP = (192− 360)◦ (IO) , (3.8)

which includes the CP violating case (δCP = 270◦) as well as the CP conserving case
(δCP = 180◦). A decisive answer whether CP violation is present in the lepton sector
therefore needs further experimental input and future results of T2K and NOνA hopefully
shed light on this in upcoming years. Contrary to the Dirac CP phase, Majorana phases
are not observable in oscillation experiments and are therefore still unconstrained.

3.1.2 Quark sector

The experimental determination of quark masses is not straightforward as quarks do not
propagate as free particles. Consequently, quark masses need to be deduced from hadron
properties and different theoretical tools have to be combined with experimental results.
For the three lightest quarks, chiral perturbation theory allows to derive constraints [139].
Since the masses of these quarks are small, the QCD Lagrangian has an approximate
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SU(3)L × SU(3)R symmetry.1 Non-perturbative effects of the strong interaction break this
symmetry to the diagonal SU(3)V . Thus, there are eight Goldstone modes (mesons) which
obtain a mass since the approximate symmetry is explicitly violated by non-zero quark
masses. Treating them as small perturbations yields a relation between the meson and
quark masses. To lowest order, the chiral perturbation theory predicts

mu

md
=

2m2
π
0 −m2

π
+ +m2

K
+ −m2

K
0

m2
K

0 −m2
K

+ +m2
π
+

= 0.56

ms

md
=
m2
K

0 +m2
K

+ −m2
π
0

m2
K

0 −m2
K

+ +m2
π
+

= 20.2 ,

(3.9)

and higher order corrections improve this result [32]. Nonetheless, to determine the absolute
mass scale further input from lattice calculations and QCD sum rules is needed. Altogether,
the current values for the three light quarks quoted by the PDG are [31]

mu = 2.16+0.49
−0.26 MeV ,

md = 4.67+0.48
−0.17 MeV ,

ms = 93.4+8.6
−3.4 MeV .

(3.10)

For the heavier charm and bottom quark, masses can be determined from quarkonium
spectroscopy, i.e. by investigating the properties of charmonium (cc) and bottonium (bb)
bound states. Together with lattice QCD results, this yields [31]

mc = 1.27± 0.02 GeV ,

mb = 4.18+0.03
−0.02 GeV .

(3.11)

Since the top quark decays before hadronization, its mass can be assessed from its decay
products. The most precise result stems from the decay to a lepton plus jets final state and
the average value given by the PDG is [31]

mt = 172.69± 0.30 GeV . (3.12)

With this, the top quark is the heaviest elementary particle we have discovered so far.
Comparing its mass to the electron reveals the large difference of scales me/mt ≈ 10−6.
When we take into account the current upper mass limit for neutrinos, the ratio even
reduces to mν/mt ≲ 10−12.

The mixing of quarks in charged current interactions is described by the 3× 3 unitary
CKM matrix. In contrast to the PMNS matrix, the diagonal entries of the CKM matrix

1The original symmetry is U(3)L × U(3)R ≃ SU(3)L × SU(3)R × U(1)V × U(1)A. The axial U(1)A is
explicitely broken by the chiral anomaly. U(1)V represents the unbroken baryon number.
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are close to one and off-diagonal contributions are suppressed by different orders of λ ≃ 0.2

according to the following pattern

VCKM ≃

⎛⎜⎝ 1 λ λ3

λ 1 λ2

λ3 λ2 1

⎞⎟⎠ . (3.13)

This reveals that the mass bases of up- and down-type quarks are almost aligned, even
though they could be in principle arbitrary. More precisely, the absolute values of the CKM
matrix entries are measured to be [31]⎛⎜⎝ |Vud| |Vus| |Vub|

|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

⎞⎟⎠ =

⎛⎜⎝ 0.97373± 0.00031 0.2243± 0.0008 0.00382± 0.00020

0.221± 0.004 0.975± 0.006. 0.0408± 0.0014

0.0086± 0.0002 0.0415± 0.0009 1.014± 0.029

⎞⎟⎠ ,

(3.14)
with errors ranging at the percent level or even below. Many of the CKM elements
are measured in weak decays with a semileptonic final state. For example, the element
|Vud| can be measured in the nuclear beta decays n → p + e− + νe [140]. In a similar
manner, the elements |Vus|,|Vcd| and |Vcs| are measured in semileptonic decays of Kaons
and D-mesons [141, 142], while ones uses B-meson decays to study |Vub| and |Vcb| [143].
A direct determination of |Vts| and |Vtd| via top decays is currently rather imprecise.
Therefore, a different strategy is applied and the elements are indirectly determined from
neutral meson oscillations of B0

d −B0
d and B0

s −B0
s [31]. Finally, the element |Vtb| can be

extracted from measuring the ratio of branching fractions Br(t→Wb)/Br(t→Wq) where
q = b, s, d [144, 145]. By measuring all these parameters independently, it is possible to
overconstrain the CKM matrix which depends only on three mixing angles and one phase
in the three generation picture. One possibility is to test unitarity by determining the
relation [31]

|Vud|
2 + |Vus|

2 + |Vub|
2 = 0.9985± 0.0007 , (3.15)

which would be equal to one if VCKM were indeed unitary. Similar strategies apply for
the second and third row of the CKM matrix. In this case, the first row result shows a
mild 2.2σ deviation from the SM. If this discrepancy were confirmed, it could for example
point towards additional generations of fermions which would make the three generation
description incomplete. Independently from the exact parametrization of the CKM matrix,
the Jarlskog invariant is a measure of CP violation in the quark sector [146]. It is defined
by

J = Im[VijVklV
∗
ilV

∗
kj ] (3.16)

and the current experimental bound is given by [31]

J =
(︂
3.08+0.15

−0.13

)︂
× 10−5. (3.17)
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Hence, the quark sector is the only part of the SM where we know for sure that CP is
violated.

3.2 Constraints on further generations

While all SM parameters are measured more and more precisely, one might wonder whether
there is still the possibility for further generations of fermions. After all, there is no reason
why there should be exactly three generations in the SM. The presence of a fourth generation
would have a number of consequences on experimental observables though. As constraints
strongly depend on the gauge charges and properties of these new fermions, it is reasonable
to distinguish between different scenarios and consider the two distinct cases of a chiral or
a vector-like family.

In the former case, a minimal extension would be to enlarge the SM fermion content by
a complete sequential fourth generation with exactly the same gauge charges as the ones
of the previous three SM generations (see Table 2.1). This simple model, also sometimes
called SM4 [147,148], is in tension with experimental results though. The reason for this is
that the loop induced couplings of the Higgs to gluons (Hgg) and photons (Hγγ) can be
sensitive to a further heavy generation of fermions whose couplings to the Higgs boson are
proportional to their mass. Further heavy fermions could therefore considerably change the
Higgs production and decay rates. But also global fits to electroweak precision observables
constrain a fourth sequential generation [22–26].

When we consider vector-like generations of fermions, these limits drastically change.
Since left- and right-chiral components of vector-like fermions have the same transformation
behavior under the local gauge group of the theory [149], explicit mass terms for vector-like
fermions are generally allowed, as we discussed at the end of Section 2.1. Hence, the masses
of those fermions are not in correlation with the coupling to the Higgs boson and constraints
from Higgs observables are relaxed. Nevertheless, there are limits from direct searches at
colliders. Since colored particles unavoidably interact with gluons, a new generation of
vector-like quarks would have consequences on direct searches in hadron collisions. The
exact bounds depend strongly on the particular gauge representation but when heavy
quarks are pair produced and subsequently decay to the top or bottom quark and a W , Z
or Higgs boson, constraints on their masses can arise. For example, LHC measurements
limit vector-like quarks in the weak doublet or singlet representation with electric charge
+2/3 or −1/3 to be heavier than ∼ 1500 GeV [150–152]. On the other hand, vector-like
leptons could be produced via s-channel Z or γ exchange in pp collisions. If they were
coupled to standard model leptons, searches for multilepton final states would provide
constraints on the vector-like mass. The current upper mass limit from LHC measurements
is ∼ 1000 GeV [153–155]. Future searches at high energy colliders are going to improve
these bounds further and we discuss their prospects in Section 4.2.6.
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3.3 Theoretical ideas to address the flavor puzzle

By now, we have illustrated in great detail what the flavor sector looks like and pointed
out that there is no satisfactory answer to explain the emerging patterns of masses and
mixings within the SM. Solutions to the flavor puzzle therefore involve physics beyond the
SM, either through new symmetries, new particles or both. In the following we discuss a
selection of well known theoretical ideas. Further detailed information can be found in [32].
A basic concept that is used to model large hierarchies starts from the heuristic approach:

mu : mc : mt = ϵ8 : ϵ4 : 1 , md : ms : mb = ϵ4 : ϵ2 : 1

me : mµ : mτ = ϵ5 : ϵ2 : 1 , Vud ∼ 1 , Vus ∼ ϵ , Vub ∼ ϵ3 .

As such, masses and mixings are parameterized in terms of a suitable expansion parameter
ϵ < 1. We will see that ϵ can have different origins and meanings, depending on the explicit
model.

Froggatt-Nielson mechanism

Symmetries have proven to be an extremely useful tool in physics and it is therefore only
natural to consider them as a possible candidate to resolve the flavor puzzle. An approach
in this direction was taken in the late 70s by Froggatt and Nielson [156]. Their basic
idea was to introduce an extra U(1)FN charge that distinguishes between the different
generations of fermions. The usual SM Yukawa couplings are no longer allowed due to
the new symmetry. However, when a flavon field η, which typically carries one unit of the
U(1)FN charge, obtains a VEV the symmetry is broken. This allows to generate Yukawa
terms at the non-renormalizable level. With a generation dependent charge, the fermion
mass is generated effectively by higher dimensional operators

Leff ⊃ yeffQiLϕujRϵ
nij , (3.18)

where the expansion parameter ϵ can be identified with ϵ ≡ ⟨η⟩/M and nij depends on
the exact Froggatt-Nielson charges of the involved fermions. The new mass scale M that
appears here usually corresponds to heavy fermions that are integrated out in the low energy
effective field theory. For ϵ < 1, the suppression of the Yukawa term can be conveniently
controlled by the Froggatt-Nielson charges. Within this mechanism, both the hierarchy in
masses and the mixings can be addressed. However, this comes at the cost of introducing
new fermions and generation dependent Froggatt-Nielson charges that a priori have no
deeper motivation. Furthermore, some aspects of this idea need to be treated with caution.
First of all, if U(1)FN is a local gauge symmetry, this will give rise to gauge anomalies
unless the fermion charges are assigned in such a way that the anomaly cancels exactly. To
avoid this constraint, U(1)FN can be considered a global symmetry though its breaking
would then result in a massless Goldstone boson (see [157–160] for a selection of papers
studying the Froggatt-Nielson mechanism).
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Figure 3.1 Schematic fermion mass generation in the Froggatt-Nielson mechanism.

Discrete flavor symmetries

The idea that a horizontally acting symmetry connects different generations and can
therefore explain the apparent patterns in the flavor sector is at the heart of models
involving discrete symmetries. Nonetheless, none of the symmetries investigated so far
turned out to be explicitly realized in nature and one has to search for remnant patterns
of symmetries that are nowadays broken. A key ingredient of the discussion of flavor
symmetries is therefore often the precise symmetry breaking patterns. Most beneficial, the
breaking of discrete symmetries does not produce Goldstone or gauge bosons and theories
are hence less constrained.

Among the large number of discrete groups, A4, S4 or ∆(27)2 were popular targets for
research due to their simple structures. The interest was especially pushed in the years
before 2011, when it was not clear whether the neutrino mixing angle θ13 was going to
be different from zero. Back then, the pattern of leptonic mixing was consistent with the
matrix

UTB =

⎛⎜⎜⎜⎝
√︂

2
3

√︂
1
3 0

−
√︂

1
6

√︂
1
3 −

√︂
1
2

−
√︂

1
6

√︂
1
3

√︂
1
2

⎞⎟⎟⎟⎠ , (3.19)

which is also called tri-bimaximal mixing (TBM) [161]. This structure can be nicely
explained by the alternating group A4, which is the group of even permutations of four
objects. Besides a three dimensional irreducible representation 3, A4 has three distinct
one dimensional representations 1, 1′ and 1′′. A number of studies [162–165] investigated
the mixing patterns that will appear if the lepton doublets are assigned to the 3 while the
lepton singlets transform in the 1 + 1′ + 1′′ representation. Today, we know that even
though θ13 is small, it is non-zero and theoretical models can use the TBM as a first order
approximation or investigate whether other discrete groups are suitable to explain the
patterns found in leptonic mixing. A selection of these models that include non-zero θ13
are given in [166–170].

2All these discrete groups are subgroups of SU(3) and have a triplet representation to unify the three
generations.
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Also beyond that, discrete groups have been extensively studied and reviews discussing
the most important groups for model building can be found in [33, 171]. Later, studies also
discuss possible connections to other problems. For example, the connection between CP
transformations and flavor symmetries is discussed in [172–174], while flavor symmetries in
the context of grand unifying theories are the topic of [175–177].

The studies of recent years have shown that, if existent, flavor symmetries are well
hidden and large breaking effects need to be considered to construct realistic models. The
specific pattern of symmetry breaking is crucial for these models which usually necessitates
a large number of flavons to break the flavor symmetries in the desired way. Unfortunately,
this reduces the predictive power and is a common point of criticism for this approach [35].

Clockwork mechanism

A method that has some similarity to the Froggatt-Nielson mechanism is the so-called
clockwork mechanism. Originally, it was proposed in axion physics [178, 179], but was
subsequently also transmitted to the scalar, gauge and fermion sectors [180]. The nice
feature of the clockwork mechanism is that it is able to explain hierarchies in couplings or
scales, even though there are no small parameters in the fundamental theory. To outline
the basic idea, we consider a simplified setup where a fermion ψR,0 interacts with a chain
of massive vector-like fermions ψL/R,i, i = 1, .., n via a nearest neighbor interaction

L = Lkin −m

⎛⎝ n∑︂
j=1

ψL,jψR,j − qψL,jψR,j−1

⎞⎠ . (3.20)

Then, the mass matrix has dimension n× (n+ 1) and is given by

Mψ = m

⎛⎜⎜⎜⎜⎝
−q 1 0 ... 0

0 −q 1 ... 0
...

. . .
...

0 0 ... −q 1

⎞⎟⎟⎟⎟⎠ . (3.21)

After performing a bi-unitary transformation, the eigenvalues are given by V T
L MψVR =

Mdiag = diag(0,M1,M2, ...Mn). Thus, there is one zero mode and n massive modes, the
clockwork gears. The elements of the zeroth column of VR are given by (VR)i0 = N/q(n−i),
where N is a normalization factor. For the case q > 1, clockworking is successful, as the
massless mode is exponentially distributed among the clockwork gears and in particular
suppressed towards one boundary by (VR)00 ∼ 1/qn. The chain length n thereby determines
the degree of suppression. If the SM Higgs only couples to ψR,0, which is related to the
zero mass eigenstate ψ′

R,0 by

ψR,0 = (VR)00ψ
′
R,0 + ... , (3.22)
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couplings will be naturally suppressed. The dots represent further terms that are not
important for our discussion. In a similar way, a suppression to the coupling of left-chiral
fermions can be achieved [181, 182]. From the above, one can identify the expansion
parameter ϵ ≡ 1/q < 1 in this mechanism. The clockwork theory has similarities to
the Froggatt-Nielson mechanism in the limit where the q’s are all the same for different
fermion representations, i.e. qQLi

= quRi
= qdRi

and the hierarchy is generated by different
chain lengths nQL1

> nQL2
> nQL3

. On the other hand, a setting with universal n’s and
hierarchical qQL1

> qQL2
> qQL3

is close to Randall-Sundrum models which we will not
discuss here [183].

Radiative mechanism

Yet another class of models to realize hierarchical fermion masses and quark mixings is
given by radiative mechanisms. The simple idea of theses theories relies on the fact that a
one-loop radiative correction is typically suppressed by a factor ϵ ≡ 1/(16π2) ∼ 10−2 with
respect to tree level processes. Going even to higher loop order, this effect continuously
grows. If one constructs a model where only the third generation of fermions is massive at
tree level and higher order one-loop and two-loop corrections induce masses for the second
and first generations, one will naturally generate a hierarchy ϵ2 : ϵ : 1. Even when dealing
only with order one couplings in the fundamental theory, this can generate a considerable
hierarchy in scales and masses of light fermions become calculable as there are no counter
terms in the Lagrangian [184,185].

The idea of a radiatively generated mass hierarchy has existed since the 70s, when
people tried to explain the mass difference between the muon and the electron. In these
early attempts, the electron mass arises from a radiative correction proportional to the
muon mass [186–190]. Subsequently, this idea was also transferred to the quark sector.
Especially in the late 80s, many works studied possible realizations of this idea where
extended scalar sectors are responsible for the loop corrections that generate masses for
the lighter fermions [36–38,40,41,191]. Further papers also investigated the possibilities of
radiative fermion masses in grand unified theories [192–195].

For a long period of time, interest in the topic dropped and only few works were
published [42,43,196]. Among these, we highlight the work presented in [42]. There, the
authors propose a scenario where the top quark is the only massive particle at tree level. All
other fermion masses arise from radiative corrections up to 5-loop order to explain the large
hierarchy between the top quark and the electron. However, this mechanism necessitates a
large number of leptoquarks which are responsible for the radiative corrections.

Only a few years ago, the idea of a gauged horizontal SO(3)L × SO(3)R symmetry
was explored by Weinberg in [44]. There, the gauge bosons of the new symmetry create
radiatively suppressed fermion masses for the first two generations. This setup lacks an
explanation of mixing and can therefore only be seen as a toy model. Nonetheless, the paper
has caused an increasing interest in the topic again and more recent papers followed, where
either enlarged scalar sectors [197–201] or new gauge interactions are considered [45–47]. It
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turns out that the ladder approach can be more minimal, in the sense that it does not need
new scalars apart from those that are anyway required for spontaneous symmetry breaking.
However, gauge extensions can be also more restrictive as the work of Weinberg [44] has
shown.

In the following, we aim to investigate the necessary ingredients to realize a radiative
mass hierarchy for fermions that mainly arises from gauge interactions. For this purpose, we
examine two types of gauge extensions. We start by considering an Abelian U(1) symmetry
in Chapter 4, before we move to a non-Abelian gauge extension in Chapter 5.
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Chapter 4

A radiative seesaw model for quarks
and leptons

In the universal seesaw mechanism, all fermion masses result from a tree level seesaw with
heavy vector-like fermion partners [51–54]. In this chapter we propose a model which realizes
tree level masses only for the third and second generation fermions, while the first generation
mass is attributed to one-loop gauge corrections as illustrated by the Feynman diagrams in
Figure 4.1. To implement this scheme, we introduce a new U(1) gauge symmetry which
features a Z ′ responsible for the loop correction. In this way, small masses of the first
generation can be explained by a loop suppression factor of 1/(16π2). Because the rank of
the fermion mass matrix is increased when one-loop corrections are taken into account, this
is also sometimes called the rank mechanism. It is quite usual in many models that neutrino
masses arise from different mechanisms as quark and charged lepton masses. Remarkably,
our mechanism can be applied to up- and down-type quarks as well as charged leptons
and neutrinos. In this way, neutrinos obtain small Dirac masses and lepton number can
be a conserved quantity. The model features a number of phenomenological consequences,
especially related to flavor violating observables. Further improvements in the search for
lepton flavor violating decays or the measurement of neutral meson oscillation will therefore
allow to test our model in future.

In the remainder of this chapter, Section 4.1 summarizes the idea of the mechanism
which we apply in our proposal. After clarifying the model details in Section 4.2, we discuss
the masses and mixing angles that arise in the quark and lepton sector and substantiate
the mechanism by giving explicit benchmark points. Finally in Section 4.3, we discuss
phenomenological consequences of the model. The scientific content of this chapter is based
on work published in [1].
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Figure 4.1 Illustration of the mass generation mechanism in the U(1) gauge extension of the SM.
Published in [1].

4.1 Rank mechanism

Before going into the model details, we want to highlight the main ingredients for the rank
mechanism as originally proposed in [37]. First of all, we examine a mass matrix which has
a tree level texture

MT =

(︄
0 vEW |h⟩

vS⟨h| MP

)︄
.

In our notation MP symbolizes the explicit mass of a vector-like fermion, while the n-column
vector |h⟩ indicates Yukawa couplings with chiral quarks. These couplings are realized
by suitable scalars that obtain VEVs denoted by vEW and vS . By means of the seesaw
mechanism, the vector-like fermion gives tree level mass to one other fermion. The above
(n+ 1)× (n+ 1) matrix has therefore rank two and leaves n− 1 fermions massless. In the
limit MP ≫ vEW , vS , the non-vanishing eigenvalues are approximately given by

mt ≃ a0⟨h | h⟩ ,

mP ≃MP ,

and we define a0 ≡ − (vEW vS/MP ). At one-loop, the mass matrix receives radiative
corrections and becomes

MT =

(︄
δM vEW |α⟩
vS⟨α| MP

)︄
.

Both, δM and |α⟩ indicate the quantum loop effects in the corresponding entries. Again, the
rank of MT provides information on the number of fermions that are massive. Likewise, the
non-zero eigenvalues of MTM

†
T (or M †

TMT ) can be counted. By analyzing the eigenvalue
equations

δM |x⟩+ vEW |α⟩xn+1 = 0 ,

vS⟨α | x⟩+MPxn+1 = 0 ,

we can substitute the state xn+1 and arrive at

(δM + a0|α⟩⟨α|) |x⟩ ≡M |x⟩ = 0 .
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The properties of the matrix M = δM + a0|α⟩⟨α| determine the rank of MT . When the
matrix rank of M is r, i.e. it has r non-zero eigenvalues, we find that MT has rank r + 1.
Thus, besides the massive vector-like fermion, r generations obtain masses.

With this formalism, it is possible to investigate the rank of a mass matrix at each loop
order and determine in this way the number of massive fermions. Note that for simplicity, we
discuss here a scenario with a single vector-like fermion. Settings with different numbers of
new fermions are considered in the next sections together with an explicit model realization
of the given mechanism.

4.2 Details of the model

4.2.1 Particle content

To implement the seesaw-like matrix texture, we consider the gauge group of the SM and
supplement it by an additional Abelian local symmetry such that the gauge group is given
by G = GSM × U(1)X . The fermion content of the model comprises the left-handed quark
and lepton doublets

QjL =

(︄
uj

dj

)︄
L

∼ (3,2, 1/3, 1/3) , ΨjL =

(︄
νj

ej

)︄
L

∼ (1,2,−1,−1) , (4.1)

and the respective weak singlets

ujR ∼ (3,1, 4/3, 1/3) , djR ∼ (3,1,−2/3, 1/3) ,

νjR ∼ (1,1, 0,−1) , ejR ∼ (1,1,−2,−1) ,
(4.2)

where the charges of each field are given in brackets and j = 1, 2, 3. In our convention, the
electric charge is defined by Q = T3 +

Y
2 and T3 is the third component of weak isospin.

Note that we also include three right-handed neutrinos to be able to implement the same
mass generation mechanism for all fermions. If the SM Higgs doublet carries non-zero
charge under the new Abelian gauge group,

ϕ =

(︄
ϕ+

ϕ0

)︄
∼ (1,2, 1, 1/3) , (4.3)

standard Yukawa couplings between left- and right-chiral fermions will be forbidden in this
setup. Instead, the seesaw mechanism is realized by considering m additional generations of
vector-like fermions. In detail, we regard vector-like partners for the up-type and down-type
quarks

Tk L, Tk R ∼ (3,1, 4/3, 2/3) , Bk L, Bk R ∼ (3,1,−2/3, 0) , (4.4)
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as well as vector-like neutral and charged leptons

Nk L, Nk R ∼ (1,1, 0,−2/3) , Ek L, Ek R ∼ (1,1,−2,−4/3) , (4.5)

where k = 1, ...,m is a generation index for vector-like families. Ultimately, the U(1)X
symmetry has to be broken. We achieve this by a new scalar singlet carrying the following
gauge charges

η ∼ (1,1, 0, 1/3) . (4.6)

At the same time, the scalar η allows to have further Yukawa couplings between right-handed
SM fermions and their vector-like partners giving eventually rise to a seesaw mechanism.

4.2.2 Gauge sector

As the gauge sector is enlarged by an additional symmetry, the gauge kinetic Lagrangian
includes not only the field strength tensors of the strong (Gaµν), left-chiral (W i

µν) and weak
hypercharge (Bµν) but also that of the U(1)X (Xµν)

Lgauge = −1

4
GaµνG

µν a − 1

4
W i
µνW

µν i − 1

4
BµνB

µν − 1

4
XµνX

µν , (4.7)

where a = 1, ..., 8 , i = 1, .., 3 and gs, g, g
′ and gX are the corresponding gauge couplings

for each symmetry. Fermions carrying non-zero U(1)X charge qψ interact with the neutral
gauge boson Xµ according to the neutral current interaction

LNC ⊃ gX
2

∑︂
i,j

ψiγµ
[︁
qψPL + qψPR

]︁
ψjX

µ . (4.8)

With our choice of gauge assignments, ψ ∈ {Q,Ψ, u, d, ν, e, T,N,E} in the above equation
and the vector-like down-type quark is the only fermion that does not couple to Xµ due to
its vanishing gauge charge. Note that we discuss here a general scenario where the gauge
boson couplings can be flavor non-diagonal [202]. This will have important consequences
for the phenomenology of the model, as harsh constraints arise from flavor changing neutral
currents. A detailed discussion of these limits can be found in Section 4.3.

4.2.3 Scalar sector and symmetry breaking

The scalar sector is rather minimalistic and comprises only two fields. The dynamics are
described by the Lagrangian

Lscalar = (Dµϕ)
†(Dµϕ) + (Dµη)

†(Dµη)− V (ϕ, η) , (4.9)

where the potential is given by

V (ϕ, η) = −µ2ϕϕ
†ϕ+

1

2
λϕ(ϕ

†ϕ)2 − µ2ηη
†η +

1

2
λη(η

†η)2 + λϕη(ϕ
†ϕ)(η†η) . (4.10)
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Besides the dimensionful mass terms µϕ and µη, the potential includes the dimensionless
four-point couplings λϕ and λη and a portal term which couples η to the SM Higgs field.
Its strength is parameterized by the portal coupling λϕη which leads to a mixing between
the physical scalars. According to the gauge charges, the covariant derivatives are given by

Dµϕ =

(︄
∂µ + ig

τ i

2
W i
µ + i

g′

2
Bµ + iqϕ

gX
2
Xµ

)︄
ϕ , (4.11)

and
Dµη =

(︂
∂µ + iqη

gX
2
Xµ

)︂
η , (4.12)

where qϕ, qη indicate the U(1)X charges of ϕ and η. We assume that the symmetry of the
theory is broken in two steps. First, a non-zero VEV of η breaks the U(1)X symmetry at a
high scale, followed by the spontaneous symmetry breaking of the electroweak theory by
the SM Higgs field:

SU(3)C × SU(2)L × U(1)Y × U(1)X
⟨η⟩−→ SU(3)C × SU(2)L × U(1)Y
⟨ϕ⟩−→ SU(3)C × U(1)EM .

(4.13)

A detailed analysis of the scalar potential is beyond the scope of this work. For now, we
assume that a minimum realizing the symmetry breaking exists and parameterize the VEVs
of the scalar fields by

⟨ϕ⟩ =

(︄
0

vEW /
√
2

)︄
, ⟨η⟩ = vS√

2
, (4.14)

where vS ≫ vEW . The symmetry breaking induces masses for the gauge bosons of the
broken generators. Similar to the SM, the charged gauge boson W±

µ ≡
(︂
W 2
µ ∓ iW 1

µ

)︂
/
√
2

acquires a mass

M2
W

± =
g2v2EW

4
. (4.15)

Contrary, neutral gauge boson masses are altered with respect to the SM, as ϕ is charged
under U(1)X . In the basis (B, W 3, X), the neutral gauge boson mass matrix is given by

M2 =
1

4

⎛⎜⎜⎝
g′2v2EW −gg′v2EW g′gXqϕv

2
EW

−gg′v2EW g2v2EW −g gXqϕv
2
EW

g′gXqϕv
2
EW −g gXqϕv

2
EW g2X

(︂
q2ϕv

2
EW + q2ηv

2
S

)︂
⎞⎟⎟⎠ . (4.16)

As the gauge boson corresponding to the unbroken U(1)EM should be massless, we first
perform a basis change ⎛⎜⎝ A

Y

X

⎞⎟⎠ =

⎛⎜⎝ cw sw 0

−sw cw 0

0 0 1

⎞⎟⎠
⎛⎜⎝ B

W 3

X

⎞⎟⎠ , (4.17)
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where sw ≡ sin θw = g′/

√︂
g2 + g′2 is the weak mixing angle and the field A can be identified

with the massless photon. The remaining two-by-two matrix in the subspace (Y,X) is then
defined through the matrix entries

M2
Y Y =

v2EW

[︂
g2c2w(1 + 2s2w) + g′2s2w(1 + 2c2w)

]︂
4

,

M2
XX =

g2X(q
2
ϕv

2
EW + q2ηv

2
S)

4
,

M2
Y X = −

gXqϕv
2
EW (gcw + g′sw)

4
.

(4.18)

A further diagonalization by the unitary transformation(︄
Z

Z ′

)︄
=

(︄
cξ sξ

−sξ cξ

)︄(︄
Y

X

)︄
, (4.19)

where the mixing angles is given by

tan 2ξ =
2M2

Y X

M2
Y Y −M2

XX

, (4.20)

yields the mass eigenstates (Z, Z ′) with corresponding eigenvalues

M2
Z,Z

′ =
1

2

(︃
M2
Y Y +M2

XX ∓ (M2
Y Y −M2

XX)

√︂
1 + tan2 2ξ

)︃
. (4.21)

As can be seen from the mixing angle, Z − Z ′ mixing is proportional to ∼ v2EW /v
2
S .

Considering the limit vS ≫ vEW , mixing effects are rather suppressed and will not be taken
into account in the following. Likewise, we do not consider kinetic mixing in our work,
which however can occur in general.

4.2.4 Yukawa interactions

With the assigned gauge charges, SM Yukawa couplings such as QLϕdR are forbidden due
to U(1)X charge. However, new couplings with the vector-like fermions are possible. The
complete gauge invariant Yukawa Lagrangian is given by

LYuk = −yqaQjLϕ̃TkR − yqbT kLη ujR − yqcQjLϕBkR − yqdBkLη
† djR

−yℓaΨjLϕ̃NkR − yℓbNkLη νjR − yℓcΨjLϕEkR − yℓdEkLη
† ejR + h.c. ,

(4.22)

where the matrices ya, yb, yc and yd represent Yukawa couplings for the quark (q) and
lepton (ℓ) sector, respectively. On top of that, the vector-like nature of the fields T, B, N
and E allows the explicit mass terms

Lexplicit = −MTT kLTkR −MBBkLBkR −MNNkLNkR −MEEkLEkR + h.c. . (4.23)
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Note that the m×m matrices MT/B/N/E can be taken as real and diagonal, without loss
of generality. Furthermore, it is important to highlight that the U(1)X charge protects
the neutrinos from getting Majorana mass at the renormalizable level. Including them
would necessitate an additional scalar field. The LNV Weinberg operator LLHH/Λ is
likewise protected by the U(1)X symmetry. The first operator which would contribute to a
Majorana neutrino mass is generated at dimension nine and is therefore expected to be
suppressed.

4.2.5 Quark masses and mixings

⟨η⟩⟨ϕ⟩

Z'

uiL umL unR ujRTkR TkL

(a)

⟨ϕ⟩ ⟨η⟩

ηϕ

uiL TkR TkL ujR

(b)

Figure 4.2 One-loop Feynman diagrams contributing to the up quark mass matrix in the U(1)
gauge extension of the SM. Published in [1].

Having defined the Yukawa sector in the previous section, we turn our interest first
to the quark masses. When the scalars ϕ and η develop non-zero VEVs, their Yukawa
couplings to quarks induces mass terms. In matrix notation, they are given by

uLM
(0)
u uR ≡

(︂
u1L u2L u3L T 1L . . . TmL

)︂(︄ 03×3 yqa⟨ϕ⟩(︁
yqb
)︁† ⟨η⟩ MT

)︄
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1R

u2R

u3R

T1R

. . .

TmR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

for the up-type sector. The matrices yq have dimension 3 ×m in this case. In a similar
manner, the down-type quark mass matrix is described by

dLM
(0)
d dR ≡

(︂
d1L d2L d3L B1L . . . BmL

)︂(︄ 03×3 yqc ⟨ϕ⟩(︁
yqd
)︁† ⟨η⟩ MB

)︄
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1R

d2R

d3R

B1R

. . .

BmR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

39



4.2. DETAILS OF THE MODEL

If the matrices yq consist of m linearly independent column vectors, the vector-like quarks
will give mass to m SM generations via the seesaw mechanism at tree level. At one-loop,
both the gauge and scalar exchange diagrams given in Figure 4.2 populate the zero entry in
the mass matrix. We identify now different scenarios that can lead to hierarchical fermion
masses depending on the number of vector-like fermions in the model.

First, for m = 3 generations of vector-like quarks, all SM quarks obtain masses at the
tree level. This mechanism has already been studied in the literature and is commonly
known as the universal seesaw mechanism [51–56]. A mass hierarchy for the SM fermions
can be induced in this setup from an interplay of hierarchical vector-like fermion masses
and Yukawa couplings. Hence, to realize a radiative mass suppression we need to consider
a different scenario. We first examine a case of flavor diagonal Z ′ couplings. In this setup,
the loop contribution is proportional to the matrix product ∼ yqa

(︁
yqb
)︁† for the up quark

case. Furthermore, we include four generations of vector-like fermions out of which one has
no explicit mass term and does not couple to the SM quarks but only to the remaining
three other vector-like fermions.1 Then, two SM generations are massive at tree level, while
the first generation mass arises from the one-loop diagrams in Figure 4.2. Note that this
setting realizes a double seesaw structure and we study such a scenario in more detail
in Chapter 5. For the following chapter we examine the details of a different scenario,
where the Z ′ couplings are flavor non-diagonal as described in Eq. (4.8). For m = 2, it is
possible to realize mass terms for the third and second generation fermions at tree level
from the seesaw, while the first generation fermion mass originates from the one-loop Z ′

induced radiative correction. The key point is that flavor non-diagonal Z ′ interaction can
enhance the matrix rank. The one-loop contribution to the mass matrix is given by the
fermion self-energy at zero external momentum δMu

ij ≡ Σij(/p = 0). Explicitly calculating
the contribution of the Feynman diagram given in Figure 4.2a yields

δMu
ij =

2∑︂
k=1

3∑︂
m,n=1

3g2XqQqu[y
q
a]mk[y

q
b ]knvEW vS

32π2
MTk(︂

M2
Z

′ −M2
Tk

)︂ log
M2
Z

′

M2
Tk

. (4.24)

Useful formulas applied in the calculation of the above expression are given in Appendix C.
Note that a summation over indices m and n is necessary due to non-diagonal Z ′ couplings.
With this result at hand, the one-loop corrected mass matrix for up-type quarks is

uLM
(1)
u uR ≡

(︂
u1L u2L u3L T 1L T 2L

)︂(︄ δMu yqa⟨ϕ⟩(︁
yqb
)︁† ⟨η⟩ MT

)︄
⎛⎜⎜⎜⎜⎜⎜⎝

u1R

u2R

u3R

T1R

T2R

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.25)

Here, the matrix δMu has dimension 3× 3 and its entries in index notation are given by
δMu

ij as defined above. The Feynman diagram presented in Figure 4.2b is proportional

1This can be realized by an additional symmetry.
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to the portal coupling λϕη and its contribution is negligible for λϕη ≪ 1. Furthermore,
it does not change the matrix rank of M(1)

u , as it is proportional to ∼ yqa
(︁
yqb
)︁† and will

therefore not be included in our calculation. Is is also important to stress that the number
of vector-like fermion generations can not be further reduced, because this would cause one
massless generation of SM fermions. Thus, the most minimal case of a complete model of
fermion masses is given by two generations of vector-like fermions. The down-type sector
proceeds in a similar manner and the one-loop corrected mass matrix is given by

dLM
(1)
d dR ≡

(︂
d1L d2L d3L B1L B2L

)︂(︄ δMd yqc ⟨ϕ⟩(︁
yqd
)︁† ⟨η⟩ MB

)︄
⎛⎜⎜⎜⎜⎜⎜⎝

d1R

d2R

d3R

B1R

B2R

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(4.26)
where the one-loop result for the down quark sector is easily deduced from Eq. (4.24) by
replacing the Yukawa couplings appropriately. The fermion mass eigenstates are finally
obtained by bi-unitary transformations

V u
LM

(1)
u (V u

R )
† = Mdiag

u ≡ diag(mu,mc,mt,mT1,mT2) ,

V d
LM

(1)
d (V d

R)
† = Mdiag

d ≡ diag(md,ms,mb,mB1,mB2) .
(4.27)

As a result, the relation between flavor and mass eigenstates is given by

ûL/R = V u
L/RuL/R ,

d̂L/R = V d
L/RdL/R ,

(4.28)

and we indicate fermion mass eigenstates from now on by hatted quantities. The diagonal-
ization procedure induces mixing between the different generations and in particular mixing
between SM quarks and vector-like quarks. We provide here an approximate estimate
on the size of this mixing. If we simplify the tree level mass matrix to the case of one
vector-like fermion and one SM generation and further assume order one Yukawa couplings,
we will find

Mu ≃

(︄
0 vEW

vS MT

)︄
. (4.29)

The mixing angle with the vector-like partner for left- and right-handed fermions can now
be obtained from the diagonalization of the matrices MuM

†
u and M†

uMu, respectively. In
this simple approximation:

MuM
†
u ≃

(︄
v2EW MT vEW

MvEW M2
T + v2R

)︄
,

M†
uMu ≃

(︄
v2S MT vS

MvS M2
T + v2EW

)︄
.

(4.30)
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Hence, the mixing angles are given by

tan 2θL ≃ 2MT vEW

v2EW −M2
T − v2S

, (4.31)

tan 2θR ≃ 2MT vS

v2S −M2
T − v2EW

, (4.32)

where θL(θR) indicates the mixing between left-handed (right-handed) fermions.

4.2.6 Neutral and charged current interactions

After having defined the fermion mass eigenstates in the previous section, we examine
their couplings in charged and neutral current interactions. Even though we exemplify our
notation for the quark sector only, the lepton sector is treated along the same line. In the
flavor basis, the quarks couple to the Z boson according to

L ⊃ Zµ [uLγ
µguL(Z)uL + uRγ

µguR(Z)uR] , (4.33)

where we define the coupling strengths

guL(Z) =
g

cw

[︃
1gu,SML (Z)− diag(0, 0, 0,

1

2
,
1

2
)

]︃
,

guR(Z) =
g

cw

[︂
1gu,SMR (Z)

]︂
,

(4.34)

which depend on the charges of the fermions through the relations gu,SML (Z) = T3 −Qs2w =

1/2 − 2/3s2w and gu,SMR (Z) = −Qs2w = −2/3s2w. Unlike in the SM, guL(Z) is no longer
proportional to the unit matrix and therefore induce FCNCs when transforming to the
quark mass eigenbasis. The Lagrangian in the new basis is given by

L ⊃ Zµ
[︁
ûLγ

µĝuL(Z)ûL + ûRγ
µĝuR(Z)ûR

]︁
, (4.35)

where we include now the unitary transformations from the diagonalization of the mass
matrices in the definition of the coupling matrices ĝuL(Z) ≡ V u

L g
u
L(Z)(V

u
L )

† and ĝuR(Z) ≡
guR(Z). We note that even though FCNCs at the tree level are generated, this effect stems
from mixing with vector-like quarks and is therefore considered to be a small effect. This is
in contrast to Z ′ interactions. When we transform the Z ′ neutral current interaction to the
fermion mass basis we find

L ⊃ Z ′
µ

[︁
ûLγ

µĝuL(Z
′)ûL + ûRγ

µĝuR(Z
′)ûR

]︁
, (4.36)

with

ĝuL(Z
′) = V u

L g
u
L(Z

′) (V u
L )

† ,

ĝuR(Z
′) = V u

R g
u
R(Z

′) (V u
R )

† .
(4.37)
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In this case, guL(Z
′) = guR(Z

′) denote the non-diagonal Z ′ couplings proportional to the
gauge charge under U(1)X as introduced at the beginning of this chapter (compare to
Eq. (4.8)). As a consequence, tree level FCNCs are present in Z as well as in Z ′ neutral
currents. Besides the neutral current interaction, SM quarks also couple to the charged W
boson according to

L ⊃ g√
2
W+
µ

[︂
ûLγ

µĝqL(W )d̂L

]︂
+ h.c. , (4.38)

where the coupling matrix is given by

ĝqL(W ) = V u
L g

q
L(W ) (V d

L )
† , (4.39)

and we defined

gqL(W ) = diag(1, 1, 1, 0, 0) . (4.40)

The misalignment between up- and down-type quarks creates mixing between the generations
and the 3× 3 subspace of the coupling matrix can be identified with the CKM matrix

VCKM ≡ ĝqL(W )
⃓⃓
3×3

. (4.41)

In the scalar sector, we describe the coupling of fermions to the physical neutral scalar ϕ0

by
L ⊃ −ϕ0uLYuuR + h.c. , (4.42)

where

Yu ≡ 1√
2

(︄
03x3 yqa

02x3 02x2

)︄
. (4.43)

In the fermion mass basis the Lagrangian becomes

L ⊃ −ϕ0ûLŶuûR + h.c. , (4.44)

and the coupling matrix is given by

Ŷu = V u
LYu(V

u
R )

† . (4.45)

Since the fermion mass matrix receive contributions from two scalar VEVs, the couplings to
the physical Higgs have non-zero off-diagonal terms which gives rise to FCNC. We discuss
limits following from non-diagonal couplings in Section 4.3. Even though in principle there
can be mixing between the scalars ϕ and η, we consider this to be a negligible effect as
λϕη ≪ 1. Furthermore, the mass of η is at a high scale and FCNCs mediated by η will
therefore be hugely suppressed.
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4.2.7 Lepton masses and mixings

In this section we only shortly comment on the origin of charged lepton and neutrino masses,
as the previously described mechanism equally applies to the lepton sector. The one-loop
corrected neutrino mass matrix is given by

νLM
(1)
ν νR ≡

(︂
ν1L ν2L ν3L N1L N2L

)︂⎛⎝ δMν yℓa⟨ϕ⟩(︂
yℓb

)︂†
⟨η⟩ MN

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎝

ν1R

ν2R

ν3R

N1R

N2R

⎞⎟⎟⎟⎟⎟⎟⎠ .

(4.46)
We remind the reader that Majorana mass terms are forbidden at tree level by the U(1)X

charge and can only arise at the higher dimensional operator level beyond d = 5 (see
discussion at the end of Section 4.2.4 ). δMν indicates the one-loop contribution from Z ′

exchange and arises from an expression similar to Eq. (4.24). Equally, the charged lepton
mass matrix is given by

eLM
(1)
e eR ≡

(︂
e1L e2L e3L E1L E2L

)︂⎛⎝ δMe yℓc⟨ϕ⟩(︂
yℓd

)︂†
⟨η⟩ ME

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎝

e1R

e2R

e3R

E1R

E2R

⎞⎟⎟⎟⎟⎟⎟⎠ .

(4.47)
By the unitary transformations

ν̂L/R = V ν
L/RνL/R ,

êL/R = V e
L/ReL/R ,

(4.48)

the mass matrices are diagonalized and yield the eigenvalues

V ν
LM

(1)
ν (V ν

R)
† = Mdiag

ν ≡ diag(mν1
,mν2

,mν3
,mN1,mN2) ,

V e
LM

(1)
e (V e

R)
† = Mdiag

e ≡ diag(me,mµ,mτ ,mE1,mE2) .
(4.49)

In the fermion mass eigenbasis, the charged current interaction is described by the Lagrangian

L ⊃ g√
2
W−
µ

[︂
êLγ

µĝℓL(W )ν̂L

]︂
+ h.c. , (4.50)

and the transformation to the mass basis is reflected by the appearance of a mixing matrix

ĝℓL(W ) = V e
L g

ℓ
L(W ) (V ν

L )
† , (4.51)

44



CHAPTER 4. A RADIATIVE SEESAW MODEL FOR QUARKS AND LEPTONS

where

gℓL(W ) = diag(1, 1, 1, 0, 0) . (4.52)

Thus, mixing between the generations is described by the 5× 5 matrix ĝℓL(W ). The PMNS
matrix lives in the 3× 3 subspace and is accordingly represented by

UPMNS ≡ ĝℓL(W )
⃓⃓⃓
3×3

. (4.53)

Evidently, the PMNS matrix is not unitary in this model.

4.2.8 Numerical solutions

Even though the radiative mechanism in our model generates a naturally suppressed scale
for the first generation fermion masses, parameters can not be chosen arbitrary but have to
be mapped to SM observables. To demonstrate that a viable parameter space exists, we
give two benchmark points (BPs) in the following and show that the reproduced fermion
masses and mixings agree with current experimental bounds.

For the parameters related to the U(1)X gauge symmetry we chose

MZ
′ = 300 TeV , gX = 1 , (4.54)

in the following two scenarios. The vector-like fermion masses for BP1 are given by

MT1 = 8.00 TeV , MT2 =MT1 + 1 GeV ,

MB1 = 40.00 TeV , MB2 =MB1 + 1 GeV ,

MN1 = 7.00× 107 TeV , MN2 = 1.00× 108 TeV ,

ME1 = 50.00 TeV , ME2 = 80.00 TeV ,

(4.55)

whereas those for BP2 are

MT1 = 8.00 TeV , MT2 = 17.91 TeV ,

MB1 = 40.00 TeV , MB2 = 65.69 TeV ,

MN1 = 1.15× 106 TeV , MN2 = 1.25× 106 TeV ,

ME1 = 50.00 TeV , ME2 = 80.00 TeV .

(4.56)

While BP1 has almost degenerate vector-like quark masses, BP2 shows that also a larger
degeneracy is viable. The Yukawa couplings for both benchmark points are displayed in
Table 4.1. The predicted masses and mixing parameters in both scenarios are presented
in Table 4.2, together with current experimental bounds. We demand that our model
reproduces the 3σ experimental bounds for all parameters, except for charged lepton masses
which we fit to the ±5% level, to keep the numeric effort reasonable [30, 203]. The Jarlskog
invariant is calculated from the relation introduced in Eq. (3.16).
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Yukawa Couplings Benchmark Points
BP1 BP2

yqa

⎛⎝ 0.625 0.513

0.186× ei0.05 0.159
0.401 0.327

⎞⎠ ⎛⎝ 0.631 0.522

0.183× ei0.05 0.158
0.412 0.344

⎞⎠
yqb

⎛⎝ 0.332 0.229
0.340 0.224

0.294 0.232× ei0.05

⎞⎠ ⎛⎝ 0.335 0.227
0.352 0.222

0.290 0.230× ei0.05

⎞⎠
yqc

⎛⎝ 1.539 1.287
0.195 0.538
1.060 0.754

⎞⎠ ϵ1

⎛⎝ 1.501 1.341
0.205 0.600
1.061 0.795

⎞⎠ ϵ1

yqd

⎛⎝ 1.110 0.332
0.850 1.506
13.969 12.405

⎞⎠ ϵ1

⎛⎝ 1.129 0.331
0.811 1.624
14.076 13.236

⎞⎠ ϵ1

yℓa

⎛⎝ 1.306 1.494
0.175 1.257
0.538 0.333

⎞⎠ ϵ21

⎛⎜⎝ 1.235× ei0.1 0.948
0.195 2.283
0.443 0.347

⎞⎟⎠ ϵ2

yℓb

⎛⎝ 0.319 1.048
0.285 0.668
0.967 0.328

⎞⎠ ϵ21

⎛⎝ 0.101 1.210
2.871 0.947
0.243 1.589

⎞⎠ ϵ2

yℓc

⎛⎝ 0.678 1.166
0.854 0.574
1.474 0.820

⎞⎠ ϵ1

⎛⎝ 0.484 1.468
0.999 1.281
0.617 0.809

⎞⎠ ϵ1

yℓd

⎛⎝ 1.398 0.960
0.740 0.780
0.747 1.445

⎞⎠ ϵ1

⎛⎝ 1.555 0.479
1.355 1.381
0.858 0.982

⎞⎠ ϵ1

Table 4.1 Benchmark points used for the Yukawa couplings in the analysis of the U(1) gauge
extension of the SM. We used the abbreviations ϵ1 = 10−2, ϵ2 = 10−1ϵ21. Data published in [1].

Our BPs demonstrate that vector-like quark masses of a few tens of TeV can nicely
describe the SM quark sector with Yukawa couplings in the range O(10−2)-O(1). Similar
scales need to be considered to fulfill observations in the charged lepton sector. To
accommodate for the small neutrino masses, O(107) TeV vector-like neutral lepton masses
and Yukawa couplings of the order O(10−4) need to be considered. Even though this
introduces some hierarchy to the couplings, the separation is not as large as the twelve
orders of magnitude that appear in the SM. As there is no symmetry that protects vector-like
mass terms, they can be in principle at any scale. It would be therefore also possible to
find a scenario where Yukawa couplings in the neutrino sector are O(1). The necessary
mass suppression would then arise from the seesaw with a vector-like neutral lepton with a
mass of O(1017 GeV). With the two BPs, we also demonstrate that both IH and NH for
neutrino masses can correctly be reproduced.

We remind the reader that this section is intended to give a proof of concept. An
in-depth analysis of the possible parameter space is outside the scope of this thesis. This
also implies that further solutions at lower energy scales might be possible. Furthermore,
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CHAPTER 4. A RADIATIVE SEESAW MODEL FOR QUARKS AND LEPTONS

we highlight, that the number of parameters in our models exceeds the parameters in the
SM. Hence, it is not possible to predict masses and mixing angles. We rather show that
our set of parameters can be selected in such a way that the observed mass hierarchies and
mixing angles can be reproduced with less hierarchical Yukawa couplings. We anticipate
that extending the mechanism by further symmetries could reduce the number of Yukawa
couplings. We explore this possibility in more detail in the model presented in Chapter 5.

Quark Sector Lepton Sector

Model Prediction Model Prediction
(NH)

Model Prediction
(IH)Observable

(Masses in GeV) Exp. Range BP1 BP2
Observable

(Masses in GeV)
Exp. Range

(NH)
Exp. Range

(IH) BP1 BP2

mu/10
−3 1.38 → 3.63 2.12 3.07

∆m2
21

10−5 eV2 6.82 → 8.04 6.82 → 8.04 7.583 7.898

mc 1.21 → 1.33 1.29 1.25
mt 171.7 → 174.1 172.3 174.1

∆m2
3ℓ

10−3 eV2
2.421 → 2.598 −2.583 → −2.412 2.567 −2.432

md/10
−3 4.16 → 6.11 4.34 5.08 me/10

−3 0.485 → 0.537 0.511 0.527
ms 0.078 → 0.126 0.122 0.109 mµ 0.100 → 0.111 0.109 0.109
mb 4.12 → 4.27 4.18 4.13 mτ 1.688 → 1.866 1.862 1.839
|Vud| 0.973 → 0.974 0.974 0.974
|Vus| 0.222 → 0.227 0.227 0.226

|Vub|/10
−4 31.0 → 45.4 38.4 44.8

sin2(θ12) 0.269 → 0.343 0.269 → 0.343 0.315 0.320

|Vcd| 0.209 → 0.233 0.226 0.226
|Vcs| 0.954 → 1.020 0.973 0.973

|Vcb|/10
−3 36.8 → 45.2 42.3 41.9

sin2(θ23) 0.407 → 0.618 0.411 → 0.621 0.444 0.413

|Vtd|/10
−4 71.0 → 89.0 84.0 78.7

|Vts|/10
−3 35.5 → 42.1 41.6 41.4

|Vtb| 0.923 → 1.103 0.999 0.999
sin2(θ13) 0.02034 → 0.02430 0.02053 → 0.02436 0.02053 0.02300

J /10−5 2.73 → 3.45 3.12 3.40 δcp/◦ 107 → 403 192 → 360 0 250

Table 4.2 Fermion masses and mixing parameters reproduced by the two benchmark points in
the U(1) gauge extension of the SM. For NH ∆m2

3ℓ ≡ ∆m2
31, while for IH ∆m2

3ℓ ≡ ∆m2
32. The BPs

align with the experimental 3σ ranges except for charged lepton masses which fulfill the best fit
value within ±5%. Data published in [1].

4.3 Phenomenological implications

4.3.1 FCNC processes in quark sector

ϕ

qi

qj qi

qj

(a)

Z'

qi

qj

qj

qi

(b)

Figure 4.3 Tree level Feynman diagrams which contribute to neutral meson mixing through (a)
Higgs boson and (b) Z ′ mediated flavor changing currents. Figure published in [1]

The presented model has impact on a number of observables in the flavor sector, which
we investigate in the following sections. The appearance of tree level flavor changing neutral
currents is one of the new physics effects which becomes important in the context of neutral
meson oscillations in the systems D0 −D0, K0 −K0, B0

d − B0
d and B0

s − B0
s . Figure 4.3
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shows how additional contributions from ϕ and Z ′ can contribute to these processes, which
are usually only generated at the one-loop level in the SM.2 To estimate the new physics
contribution we follow an effective field theory approach. Integrating out heavy particles
leaves us with the effective Hamiltonian [204,205]

Heff =− 1

2m2
ϕ

(︃
q̂i

[︃
(Ŷq)ij

1 + γ5
2

+ (Ŷ∗
q)ij

1− γ5
2

]︃
q̂j

)︃2

− 1

2M2
Z

′

(︃
q̂iγµ

[︃[︁
ĝqL(Z

′)
]︁
ij

1− γ5
2

+
[︁
ĝqR(Z

′)
]︁
ij

1 + γ5
2

]︃
q̂j

)︃2

,

(4.57)

which is responsible for neutral meson mixing. Note that in this general notation, q̂i
and q̂j indicate the involved quark fields, i.e. charm and up quarks (D0), strange and
down quarks (K0), down and bottom quarks (B0

d) and strange and bottom quarks (B0
s ).

With the effective Hamiltonian it is possible to calculate the transition matrix element
MP

12 = ⟨P |Heff |P ⟩ for a meson P ∈ {D, K, Bd, Bs}. This allows us to obtain the mass
splitting between the neutral mesons P and P that is physically observable and given by

∆mP = 2Re(MP
12) .

For Kaons, a further CP violating parameter |ϵK | ≃ Im(MK
12)/(

√
2∆mK) can be measured.

The evaluation of the hadronic matrix elements involves the four-fermion operators [206]

⟨P |qi
(1± γ5)

2
qjqi

(1∓ γ5)

2
qj |P ⟩ = f2PmP

(︄
1

24
+

1

4

m2
P

(mqi
+mqj

)2

)︄
B4 ,

⟨P |qi
(1± γ5)

2
qjqi

(1± γ5)

2
qj |P ⟩ = − 5

24
f2PmP

m2
P

(mqi
+mqj

)2
B2 ,

⟨P |qiγµ
(1± γ5)

2
qjqiγ

µ (1± γ5)

2
qj |P ⟩ =

1

3
mP f

2
PB1 .

(4.58)

They depend not only on the so-called B parameters, but also on the meson mass mP and
the meson decay constant fP . After using a Fierz rearrangement for the Z ′ current that
involves fermions of mixed chirality [207], we find a transition matrix element

MP
12 = −f

2
PmP

2m2
ϕ

[︄
− 5

24

m2
P

(mqi
+mqj

)2

(︂
(Ŷq)

2
ij + (Ŷ∗

q)
2
ij

)︂
·B2 · η2(µ)

+ (Ŷq)ij(Ŷ
∗
q)ij

(︄
1

12
+

1

2

m2
P

(mqi
+mqj

)2

)︄
·B4 · η4(µ)

]︄

− f2PmP

2M2
Z

′

1

3

(︂[︁
ĝqL(Z

′)
]︁2
ij
+
[︁
ĝqR(Z

′)
]︁2
ij

)︂
·B1 · η1(µ)

− f2PmP

M2
Z

′

[︁
ĝqL(Z

′)
]︁
ij

[︁
ĝqR(Z

′)
]︁
ij

(︄
1

12
+

1

2

m2
P

(mqi
+mqj

)2

)︄
·B4 · η4(µ) .

(4.59)

2Tree level FCNCs induced by Z exchange also exist, but constitute rather small effects as non-diagonal
Z couplings arise only from the mixing with the vector-like quarks.
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The parameters η1, η2 and η4 are correction factors which take into account the running
of the Wilson Coefficients (WC) when the operators are evaluated at the hadronic energy
scale µ instead of the scale where heavy particles are integrated out. To find them we use
the magic number technique, which is explained in detail in Appendix A and we quote here
only the results. For the calculation of the mass difference for the Bd and Bs meson, we
take the B parameters (B1, B2, B4) = (0.87, 0.82, 1.16) from [208] together with the decay
constants fBd

= 0.240 GeV and fBs
= 0.295 GeV and the masses mBd

= 5.281 GeV and
mBs

= 5.370 GeV. At the relevant hadronic scale µ = mb, we find for the Higgs contribution

η2(µ) = 1.650 , η4(µ) = 2.259 , (4.60)

while for the Z ′ contribution

η1(µ) = 0.713 , η4(µ) = 5.446 . (4.61)

In the case of K0 −K
0 mixing, the input parameters are (B1, B2, B4) = (0.60, 0.66, 1.03),

fK = 0.160 GeV and mK = 0.498 GeV [206]. Calculating the η factors at a scale µ = 2

GeV yields
η2(µ) = 2.210 , η4(µ) = 3.523 , (4.62)

for the Higgs boson induced operators and

η1(µ) = 0.674 , η4(µ) = 8.181 , (4.63)

for the operators related to Z ′. Lastly, for neutral D-meson oscillations we consider the
parameters (B1, B2, B4) = (0.865, 0.82, 1.08), fD = 0.200 GeV and mD = 1.864 GeV
from [209]. At µ = 2.8 GeV, we obtain the results

η2(µ) = 1.906 , η4(µ) = 2.903 , (4.64)

and
η1(µ) = 0.690 , η4(µ) = 6.939 , (4.65)

for the Higgs and Z ′ contributions, respectively. For the further calculation, we assume
that changes in the contributions from box diagrams, which are also present in the SM, are
negligible. As our model reproduces the same CKM mixing angles and fermion masses as in
the SM, only tiny deviations due to the presence of vector-like quarks are expected. They
are weak singlets though and a coupling to the W boson solely originates from fermion
mass mixing. The additional loop suppression makes these effects insignificant compared to
the tree level FCNCs.

In general, interference effects between the new physics contributions and SM processes
can appear. However, in our case the additional Higgs contribution involves fermions of
mixed left- and right-handed chirality and can not interfere with the left-handed currents in
the SM process. Likewise, we find the dominant contribution from Z ′ exchange in diagrams
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Observable
(in GeV)

Model Prediction
BP1 BP2

∆mNP
Bd

−1.402× 10−13 −1.495× 10−14

∆mNP
Bs

2.663× 10−14 3.003× 10−14

∆mNP
D 2.405× 10−15 2.036× 10−15

∆mNP
K 0.504× 10−15 0.109× 10−15

Table 4.3 Neutral meson mass splittings that arise from new physics contributions in the U(1)
gauge extension of the SM. Both BPs are in agreement with current experimental limits. Published
in [1].

where particles of left- and right-handed chirality participate. Therefore, we do not consider
any interference terms. The total mass difference can now be divided in two parts

∆mtot
P = ∆mSM

P +∆mNP
P , (4.66)

where ∆mSM
P is the theoretical SM prediction and ∆mNP

P labels the new new physics
contribution. We evaluate whether our benchmark scenarios agree with the experimental
results by demanding

∆mNP
P < ∆mexp

P −∆mSM
P (4.67)

within a 3σ range. The theoretical predictions for neutral B-mesons in the SM are given
by ∆mSM

Bd
= (3.475± 0.513)× 10−13 GeV and ∆mSM

Bs
= (1.205± 0.178)× 10−11 GeV [210].

The experimentally determined values are given by ∆mexp
Bd

= (3.334± 0.013)× 10−13 GeV
and ∆mexp

Bs
= (1.169± 0.001)× 10−11 GeV [203]. Thus, we obtain the limits

∆mexp
Bd

−∆mSM
Bd

= (−0.141± 0.513)× 10−13GeV ,

∆mexp
Bs

−∆mSM
Bs

= (−0.036± 0.178)× 10−11GeV .
(4.68)

In the neutral K-meson system, the theoretical prediction is ∆mSM
K = 3.074 × 10−15

GeV [211]. However, this value only includes short distance contributions, whereas large
distance effects are not calculable so far [212]. We therefore take into account a 30%

uncertainty on the theoretical value. Taking into account the experimental result ∆mexp
K =

(3.484± 0.006)× 10−15 GeV [203], we find

∆mexp
K −∆mSM

K = (0.410± 0.922)× 10−15GeV . (4.69)

Note also that |ϵK | receives no contribution in our model, since the Yukawa couplings in
the down-type sector are real. Similarly, the SM theory prediction for the mass splitting
between D0 and D0 has large theoretical uncertainties [213]. Thus, we require the new
physics contribution to be less than the experimental uncertainty on the measured value
∆mexp

D = (6.253+2.699
−2.896)× 10−15 GeV [203].
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The results of the evaluation of Eq. (4.59) are given in Table 4.3 for the two considered
benchmark points. Evidently, both scenarios are in agreement with current experimental
limits. In particular, the new physics contribution to ∆mBd

is not far from current
experimental bounds and a more precise measurement in future will be an interesting probe
of our model.

4.3.2 Charged lepton flavor violation

ℓi ℓjℓkℓk

γ

ϕ

(a)

Z'

γ

ℓi ℓk ℓk ℓj

(b)

Figure 4.4 Feynman diagrams which generate the lepton flavor violating decays ℓi → ℓjγ at
one-loop by exchange of the (a) Higgs boson or the (b) Z ′. Published in [1]

Also in the lepton sector, there can be observable consequences from FCNCs. Especially
in the decays ℓi → ℓjγ, experiments put stringent constraints on new physics models that
violate flavor. In our case, contributions to these processes arise at one-loop from the
diagrams in Figure 4.4. The decay width of these diagrams is described by [214]

Γ(ℓi → ℓjγ) =
∑︂
k

(m2
i −m2

j )
3
(︂
|σL|

2 + |σR|
2
)︂

16πm3
i

(4.70)

where mi and mj indicate the masses of the ingoing and outgoing lepton, respectively. For
the Higgs mediated diagram σL and σR can be identified with

σL =
iQk

16π2m2
ϕ

[︁
(ρmi + λmj)F1(t) + νmkF2(t)

]︁
, (4.71)

σR =
iQk

16π2m2
ϕ

[︁
(λmi + ρmj)F1(t) + ζmkF2(t)

]︁
. (4.72)
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Note that a sum over the internal fermion ℓk with mass mk and electric charge Qk will be
necessary if there are contributions from several different fermions inside the loop. The
expressions F1(t) and F2(t) depend on the parameter t = m2

k/m
2
ϕ and are given by

F1(t) =
t2 − 5t− 2

12(t− 1)3
+

t ln t

2(t− 1)4
,

F2(t) =
t− 3

2(t− 1)2
+

ln t

(t− 1)3
.

(4.73)

Of course, the decay amplitude depends on the involved Yukawa couplings and we identify
ρ = (Ŷe)

∗
kj(Ŷe)ki, λ = (Ŷe)jk(Ŷe)

∗
ik, ν = (Ŷe)

∗
kj(Ŷe)

∗
ik and ζ = (Ŷe)jk(Ŷe)ki.

For Z ′ mediated decays, the expressions slightly change. While Eq. (4.70) is still valid,
the terms for σL and σR become

σL =
iQk

16π2M2
Z

′

[︄
(ρ′mi + λ′mj)F3(t) + ν ′mkF4(t)− ζ ′

mimjmk

M2
Z

′
F5(t)

]︄
, (4.74)

σR =
iQk

16π2M2
Z

′

[︄
(λ′mi + ρ′mj)F3(t) + ζ ′mkF4(t)− ν ′

mimjmk

M2
Z

′
F5(t)

]︄
. (4.75)

The functions appearing in these expressions depend on the parameter t = m2
k/M

2
Z

′ and
are given by

F3(t) =
−5t3 + 9t2 − 30t+ 8

12(t− 1)3
+

3t2 ln t

2(t− 1)4
,

F4(t) =
t2 + t+ 4

2(t− 1)2
− 3t ln t

(t− 1)3
,

F5(t) =
−2t2 + 7t− 11

6(t− 1)3
+

ln t

(t− 1)4
,

(4.76)

where λ′ =
[︂
ĝℓL(Z

′)
]︂∗
kj

[︂
ĝℓL(Z

′)
]︂
ki

, ρ′ =
[︂
ĝℓR(Z

′)
]︂∗
kj

[︂
ĝℓR(Z

′)
]︂
ki

, ζ ′ =
[︂
ĝℓL(Z

′)
]︂∗
kj

[︂
ĝℓR(Z

′)
]︂
ki

and ν ′ =
[︂
ĝℓR(Z

′)
]︂∗
kj

[︂
ĝℓL(Z

′)
]︂
ki

. We remind the reader that the notation used for the

couplings is defined in Section 4.2.6.

Further interesting flavor violating decays that arise in our model have the signature
ℓi → ℓjℓkℓl. We determine the branching ratios of these decays to compare them to current
experimental bounds and follow the calculation presented in [215]. If the decay is mediated
by the scalar ϕ, the partial decay width will be

Γ(ℓi → ℓjℓkℓl) =
1

1536π3
m5
i

m4
ϕ

S|(Ŷe)
∗
ij(Ŷe)kl|

2 . (4.77)
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ℓi

ℓj

ℓk

ℓl

Z'

Figure 4.5 Feynman diagram responsible for the flavor violating decay ℓi → ℓjℓkℓl. Published
in [1]

The factor S accounts for the symmetries in the final states and is chosen to be S = 1

when k = l or S = 2 when one has k ̸= l. The tree level contribution mediated by Z ′ is
illustrated in Figure 4.5 and can be described by the partial decay width

Γ(ℓi → ℓjℓkℓl) =
1

1536π3
m5
i

M4
Z

′
S

[︃
2

S
|CLL|

2 +
2

S
|CRR|

2 + |CRL|
2 + |CLR|

2

]︃ij
kl

. (4.78)

For the involved couplings with chirality X,Y ∈ {L,R}, we define the shorthand notation

[CXY ]
ij
kl = [ĝℓX(Z

′)]ij [ĝ
ℓ
X(Z

′)]kl , (4.79)

and the matrices ĝℓX(Z
′) are defined in Section 4.2.6. The factor two before the terms CLL

and CRR emerges because of interference between diagrams that are related by exchange of
two identical leptons. From the calculation of the partial decay widths for our benchmark
points, we find that the contribution from the Higgs boson ϕ is negligible compared to the
Z ′ contribution. This can be understood from the fact that even though the Higgs boson
has flavor non-diagonal couplings in the fermion mass eigenbasis, the couplings to first and
second generation charged leptons are suppressed due to their tiny masses.

Experimental limits for the mentioned decays are usually quoted as branching ratios.
From the partial decay widths, we obtain the branching ratio through the relation

BR(ℓi → ℓjℓkℓl) =
Γ(ℓi → ℓjℓkℓl)

Γtot , (4.80)

where Γtot
µ = 3.00× 10−19 GeV and Γtot

τ = 2.27× 10−12 GeV are the total decay widths for
the muon and tau, respectively [203]. For our analysis, we consider the decays µ− → e−γ,
τ− → e−γ, τ− → µ−γ, τ− → µ−e+e−, τ− → e−e+e− and µ− → e−e+e−. The resulting
branching ratios for the two BPs, together with the current experimental bounds are
presented in Table 4.4 [203]. As our results show, the benchmark scenarios agree with
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current limits. The current sensitivity for the decay µ− → e−γ is close to our model
prediction and will be therefore allow to test the model in upcoming experiments.

Process Experimental Limit Model Prediction
BP1 BP2

BR(µ− → e− γ) < 4.2× 10−13 1.8× 10−14 6.3× 10−15

BR(τ− → e− γ) < 3.3× 10−8 2.2× 10−14 2.2× 10−14

BR(τ− → µ− γ) < 4.4× 10−8 6.8× 10−15 3.0× 10−15

BR(µ− → e−e+e−) < 1.0× 10−12 1.3× 10−18 3.9× 10−19

BR(τ− → e−e+e−) < 2.7× 10−8 2.2× 10−17 1.8× 10−17

BR(τ− → µ−e+e−) < 1.8× 10−8 9.5× 10−18 4.1× 10−18

Table 4.4 Experimental bounds on branching ratios for lepton flavor violating decays together
with the model prediction of the benchmark scenarios in the U(1) gauge extension of the SM.
Published in [1].

4.3.3 Other implications

Besides the processes considered so far, there is a variety of other observables that can be
influenced by the additional Z ′ boson and the vector-like fermions. With our benchmark
points we have demonstrated that some of the vector-like fermions could exist at a mass
scale of a few TeV. This will have interesting implications for forthcoming collider searches.
For instance, vector-like fermions could be produced in pp collisions via s-channel Z and
γ exchange. While the decay of charged vector-like leptons could lead to missing energy
signatures such as 2l + E/T or 4l + E/T , the decay of vector-like quarks will be testable in
jj + 4l, bb̄ + 4l, tt̄ + 4l final states. The authors of [216] extensively study the discovery
prospects for vector-like leptons at future colliders such as HL-LHC, HE-LHC and FCC-hh.
According to their study, weak singlet vector-like leptons can be tested up to a mass scale
∼ 3 TeV with a 100 TeV pp collider. Collider limits on vector-like quarks that decay
to multi-lepton final states together with jets or bottom and top quarks are investigated
in [217] and show that a 100 TeV collider can probe vector-like quark masses as large as
∼ 7 TeV. Additionally, the new force mediator Z ′ can be possibly probed at upcoming
collider experiments such as a high energy muon collider. The studies in [218, 219] have
investigated that mediator masses of the order O(100) TeV could be probed in the two
body scattering processes µ+µ− → µ+µ− with a muon collider with a center-of-mass energy
of

√
s = 3 TeV and L = 1 ab−1 integrated luminosity for the gauge coupling strengths

gX = 1 (
√
4π) [218,219].

On top of that, flavor violating Higgs decays, such as h → eτ and h →→ µτ , can in
principle occur in our model. We estimated the corresponding branching ratios and found
them to be below current experimental bounds.

In recent years, there is an increasing interest in the measurement of the muon magnetic
moment that does not align with SM predictions [115]. In principle the anomaly can be
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explained by the existence of a vector-like lepton that contributes at the one-loop level
to the muon g − 2 [220]. However, we find that the extra contributions that arise in our
benchmark scenarios are three orders of magnitude too small to explain the anomaly.
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Chapter 5

Hierarchy from loops in a left-right
symmetric model

We have shown in the previous chapter that the flavor mass hierarchy can be partly
explained by gauge loop corrections in a U(1) extension of the SM. Here, we propose a
complete radiative origin of the fermion mass hierarchy in a non-Abelian gauge extension.
We will see in the following that non-Abelian gauge symmetries offer much more possibilities
due to the emergence of additional charged and neutral gauge bosons. Among the non-
Abelian gauge extensions of the SM, left-right symmetric models (LRSM) are particularly
intriguing [48–50, 221, 222]. They explain not only parity violation due to spontaneous
symmetry breaking, but they also include right-handed neutrinos as part of the right-
handed lepton doublets. This is tempting from a symmetry point of view and opens
many possibilities to incorporate massive neutrinos [63,67]. In this chapter, we propose a
mechanism in the left-right symmetric framework, where the third generation of fermions
is massive at tree level, whereas the second and first generation fermions obtain masses
from one-loop and two-loop quantum corrections, respectively. By implementing a double
seesaw mechanism, this scenario can be entirely realized via gauge loop corrections. The
scalar sector of the model comprises only those fields required for symmetry breaking and
the physical spectrum consists of three neutral scalars out of which one is the SM Higgs
boson. Since the rank of the fermion mass matrix is increased stepwise by including higher
loop corrections, the mass hierarchy is solely created from loop factors. Our mechanism
applies to quarks and charged leptons, whereas the realization of sub-eV neutrino masses
necessitates the presence of lepton number violating terms at high scales.

The remainder of this chapter is structured as follows: In Section 5.1 we discuss the basic
idea of our mechanism. Subsequently, in Section 5.2 we present how it can be implemented
in a left-right symmetric framework and discuss the generation of quark and charged lepton
masses in detail in Sections 5.3 and 5.4. Neutrinos require a special treatment which
is outlined in Section 5.5, before we finally provide numerical results for our study in
Section 5.6. Note that the work presented in this chapter is published in [3].
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5.1. BASIC MECHANISM

5.1 Basic mechanism

In Section 4.1 we have discussed the idea of the rank mechanism, and showed that it can
be realized in a theory with seesaw-like mass matrices. The implementation of this idea in
a theory with non-Abelian gauge symmetry is remarkably simple in left-right symmetric
models, where the gauge symmetry is given by1

GLRSM = SU(3)C × SU(2)R × SU(2)L × U(1)X .

In these theories, the fermion content has a parity symmetric structure, such that left-
handed fermions are part of a doublet representation of SU(2)L, while right-handed fermions
are arranged in doublets of SU(2)R. If the theory only includes two scalar fields χL and
χR in the doublet representation of SU(2)L and SU(2)R, respectively, Yukawa couplings
connecting left-handed and right-handed SM fermions will not be possible.2 To achieve
fermion masses in this setting, another m generations of massive vector-like quarks and
leptons can be introduced, which transform as singlets under SU(2)L × SU(2)R. When the
gauge symmetry is spontaneously broken by non-zero VEVs vL and vR, this gives rise to a
generalized seesaw [53–56,226] and the fermion mass matrices of dimension (3+m)×(3+m)

have the structure

M =

(︄
0 vL|α⟩

vR⟨α| MT

)︄
. (5.1)

Here, the Yukawa couplings are summarized by |α⟩ and the m×m matrix MT represents an
explicit vector-like mass. The above mass matrix has rank 2m. The choice of m therefore
regulates how many SM fermions are massive at tree level. Our objective is to have one
massive SM fermion at tree level and when we consecutively include higher loop corrections
the matrix rank should increase further. Specifically, we pursue a realization with no
additional scalars besides those that are needed to break the gauge symmetry. Previous
studies [1,45] have shown that flavor non-diagonal gauge couplings are necessary to increase
the rank of the above matrix through one-loop gauge boson corrections. Notably, the
situation will change if we include further n generations of a new species of fermions such
that the matrix is extended to dimension (3 +m + n) × (3 +m + n) and has a double
seesaw structure as illustrated below

M =

⎛⎜⎝ 0 vL|α⟩ 0

vR⟨α| MT |β⟩
0 ⟨β| 0

⎞⎟⎠ . (5.2)

In our notation, |β⟩ is an m× n vector that includes Yukawa couplings to the new species
of fermions. Since these have no explicit mass terms, the matrix rank of M is still 2m and

1Note that one can also identify X with B −L charge. However, as discussed in [223], this would imply
a breaking of B − L charge which is not always desired.

2Many LRSMs feature a bi-doublet scalar, which allows to introduce mass terms for SM fermions
directly (see e.g. [224,225]).
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the extended matrix structure allows for an enhancement of the matrix rank at one-loop
due to the diagonal gauge interactions.3 This feature of double seesaw models was already
investigated in [227], where small active neutrino masses arise from one-loop radiative
corrections. To our knowledge, its application to other species of fermions has not been
considered so far. A two-loop correction which introduces new linear independent sets of
couplings from the SU(2) isospin partners to the mass matrix is then able to raise the rank
even further.

While we only outline the basic idea in this section, a UV complete model that resides in
the framework of LRSMs is discussed in the following sections. As illustrated in Figure 5.1,
the model is able to generate third generation masses at the tree level from a seesaw relation,
while the second generation masses originate from neutral current interactions at one-loop.
Lastly, small masses of first generation fermions can be explained by two-loop suppression
from charged gauge boson exchange, which mix only at one-loop level in our setup.

Figure 5.1 Illustration of the mass generation for quarks in the LRSM. While the third generation
gets a mass at tree level (left panel), the mass of second generation fermions emerges at one-loop
(middle panel) and a two-loop radiative correction is responsible for the first generation mass (right
panel). The grey blob on the internal gauge boson propagator indicates mixing at one-loop level.
Published in [3].

5.2 Double seesaw in a left-right symmetric model

5.2.1 Particle spectrum

To implement the double seesaw texture, which is fundamental for our mechanism, we take
the universal seesaw models presented in [51–56] as a starting point. Under the gauge group
GLRSM, the SM fermions form doublets of either SU(2)L or SU(2)R and have the following
transformation properties

QjL =

(︄
uj

dj

)︄
L

∼ (3, 2, 1, 1/3) , QjR =

(︄
uj

dj

)︄
R

∼ (3, 1, 2, 1/3) ,

ΨjL =

(︄
νj

ej

)︄
L

∼ (1, 2, 1,−1) , ΨjR =

(︄
νj

ej

)︄
R

∼ (1, 1, 2,−1) ,

(5.3)

3This is only true provided that m < 3 + n. If the inequality were not fulfilled, all SM fermions would
be already massive at the tree level.
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where the index j = 1, 2, 3 labels the three SM families. The scalar sector does not include
the usual bi-doublet representation as it would prevent the seesaw structure. Instead, it
consists of two scalar fields

χL ∼ (1, 2, 1, 1) , χR ∼ (1, 1, 2, 1) , (5.4)

which will be also responsible for spontaneous symmetry breaking. In this setup, the electric
charge is given by

Q = T 3
L + T 3

R +
X

2
, (5.5)

with the third component of SU(2)L and SU(2)R isospin given by T 3
L and T 3

R, respectively.
Since there is no possibility to include fermion masses with the particles listed so far, a set
of massive vector-like fermions is included

Tk ∼ (3, 1, 1, 4/3) , Bk ∼ (3, 1, 1,−2/3) ,

Nk ∼ (1, 1, 1, 0) , Ek ∼ (1, 1, 1,−2) .
(5.6)

Note that the gauge charges are assigned in such a way that each SM fermion species has
k = 1, 2 vector-like partners of same electric charge and gauge anomalies automatically
cancel due to the vector-like character of the new fermions.

To achieve a mass matrix similar to Eq. (5.2), we extend the gauge group by an
additional Abelian U(1)X′ . In doing so, the complete gauge group is given by

G ≡ SU(3)C × SU(2)R × SU(2)L × U(1)X × U(1)X′ .

The particles mentioned so far are not charged under U(1)X′ , but another set of fermions
is added which transforms non-trivially under the new gauge group. The purpose of this is
to accomplish a double seesaw texture for the tree level mass matrix. Note however that
one could in principle also use a discrete symmetry, such as Z4, to implement this idea. In
more detail, we include one generation of exotic fermions, which have vector-like properties
with regard to GLRSM but are chiral concerning the new gauge symmetry U(1)X′ . Their
quantum numbers are given as

T ′
L/R ∼ (3, 1, 1, 4/3,∓α) , B′

L/R ∼ (3, 1, 1,−2/3,±α) ,

N ′
L/R ∼ (1, 1, 1, 0,±α) , E′

L/R ∼ (1, 1, 1,−2,∓α) ,
(5.7)

and are specifically chosen to cancel gauge anomalies within each generation. It is apparent
that explicit masses can not be realized for this type of fermions, unless a further singlet
scalar with a U(1)X′ charge of 2α would be included. We choose not to do so, but instead
add a complex scalar with gauge charges

η ∼ (1, 1, 1, 0, α) . (5.8)
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The purpose of this scalar is twofold. On the one hand, its VEV can spontaneously break
the gauge symmetry U(1)X′ and provide mass for the associated neutral gauge boson. On
the other hand, its gauge charges allow a coupling of the primed fermions to the vector-like
fermions. Table 5.1 summarizes the particle content of our model.

Type Particle SU(3)C SU(2)R SU(2)L U(1)X U(1)X′

Quarks QjL =

(︃
uj
dj

)︃
L

3 1 2 1/3 0

QjR =

(︃
uj
dj

)︃
R

3 2 1 1/3 0

Leptons ΨjL =

(︃
νj
ej

)︃
L

1 1 2 -1 0

ΨjR =

(︃
νj
ej

)︃
R

1 2 1 -1 0

T1L/R , T2L/R , T ′
L/R 3 1 1 4/3 {0, 0,∓α}

BSM Fermions B1L/R , B2L/R , B′
L/R 3 1 1 -2/3 {0, 0,±α}

N1L/R , N2L/R , N ′
L/R 1 1 1 0 {0, 0,±α}

E1L/R , E2L/R , E′
L/R 1 1 1 -2 {0, 0,∓α}

Scalars χL =

(︄
χ+
L

χ0
L

)︄
1 1 2 1 0

χR =

(︄
χ+
R

χ0
R

)︄
1 2 1 1 0

η 1 1 1 0 α

Table 5.1 Particle content of the left-right symmetric model. In addition to the three SM families,
we consider further two generations of vector-like fermions (T, B, N, E) and one generation of the
fermions (T ′, B′, N ′, E′), which are chiral under U(1)X′ . Published in [3].

5.2.2 Scalar sector

With the three scalars included in our model, the most general scalar potential is specified
below

V (χL, χR, η) =µ
2
1χ

†
LχL + µ22χ

†
RχR + λ1L(χ

†
LχL)

2 + λ1R(χ
†
RχR)

2 + λ2(χ
†
LχL)(χ

†
RχR)

+µ2ηη
†η + λ3(η

†η)2 + λ4L(η
†η)(χ†

LχL) + λ4R(η
†η)(χ†

RχR) .

(5.9)

LRSMs allow to define parity symmetry due to the extended gauge structure. If the
couplings fulfill the relations

λ1 ≡ λ1L = λ1R ,

λ4 ≡ λ4L = λ4R ,
(5.10)

the potential will be parity symmetric. Strictly speaking, parity symmetry also dictates
µ1 = µ2. Nevertheless, we allow µ1 ̸= µ2 and hence adopt a LRSM with softly broken
parity symmetry.
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A detailed study of the potential in Eq. (5.9) is beyond the scope of this work. For
now, we assume that a non-zero VEV of η breaks the U(1)X′ symmetry at a high scale.
Subsequently, this is followed by the breaking of SU(2)R and SU(2)L according to

SU(3)C × SU(2)R × SU(2)L × U(1)X × U(1)X′
⟨η⟩−→ SU(3)C × SU(2)R × SU(2)L × U(1)X
⟨χR⟩−→ SU(3)C × SU(2)L × U(1)Y
⟨χL⟩−→ SU(3)C × U(1)EM .

(5.11)

By convention, we define the VEVs of the fields as

⟨χL⟩ =
1√
2

(︄
0

vL

)︄
, ⟨χR⟩ =

1√
2

(︄
0

vR

)︄
, ⟨η⟩ =

vη√
2
, (5.12)

and identify vL = 246 GeV with the electroweak scale. Note that without loss of generality,
all VEVs are real.

Counting degrees of freedom, we see that out of the ten real scalar components, seven
become longitudinal modes for the massive gauge bosons. Therefore, the physical scalar
spectrum is comparatively small and only made up of three neutral scalars. For the following
calculations, we expand the neutral components of χL = (χ+

L , χ
0
L)
T , χR = (χ+

R, χ
0
R)

T and η
in terms of the fields

χ0
L =

1√
2
(vL + σL + iρL) , χ

0
R =

1√
2
(vR + σR + iρR) , η =

1√
2

(︁
vη + ση + iρη

)︁
. (5.13)

In this notation, σL, σR and ση are the three physical scalars, while ρL, ρR and ρη become
the massless Goldstone bosons that are eaten by the three neutral gauge bosons in the
process of spontaneous symmetry breaking. From the potential given in Eq. (5.9) we deduce
the scalar masses

L ⊃ 1

2

(︂
σL σR ση

)︂
M2

σ

⎛⎜⎝ σL

σR

ση

⎞⎟⎠ , (5.14)

where the mass matrix M2
σ is given by

M2
σ =

⎛⎜⎝ 2λ1v
2
L λ2vLvR λ4vLvη

λ2vLvR 2λ1v
2
R λ4vRvη

λ4vLvη λ4vRvη 2λ3v
2
η

⎞⎟⎠ . (5.15)

To simplify our calculations, we examine the limit λ4 ≪ 1. In this case, η does not mix
with the remaining scalars and its mass is determined from the U(1)X′ symmetry breaking
scale via the relation

M2
η = 2λ3v

2
η . (5.16)
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We emphasize that this is a simplification which does not have to be true in general. The
remaining two scalars mix due to the presence of non-zero off-diagonal mass matrix entries.
A proper transformation of the basis (σL, σR) to the new states (h, H) via(︄

h

H

)︄
=

(︄
cos ξ sin ξ

− sin ξ cos ξ

)︄(︄
σL

σR

)︄
(5.17)

diagonalizes the mass matrix and yields the mass eigenstates with a mixing angle

tan(2ξ) =
λ2vLvR

λ1(v
2
R − v2L)

. (5.18)

To align with experimental observations, the right-handed breaking scale needs to be larger
than the left-handed one and we find the scalar mass eigenvalues

M2
h ≃

(︄
2λ1 −

λ22
2λ1

)︄
v2L , (5.19)

M2
H ≃ 2λ1v

2
R , (5.20)

using vL ≪ vR. Obviously, the lighter states plays the role of the SM Higgs. When we fix
its mass to the experimentally observed value Mh = 125.25 GeV [31], we find that λ1 is
given by the expression

λ1 =
1

8

⎛⎜⎝2M2
h

v2L
+

⌜⃓⃓⎷(︄2M2
h

v2L

)︄2

+ 16λ22

⎞⎟⎠ . (5.21)

5.2.3 Gauge boson sector

Neglecting the unbroken SU(3)C for a moment, the theory has in total eight gauge bosons
stemming from the rank eight gauge symmetry SU(2)R×SU(2)L×U(1)X ×U(1)X′ . In the
following, SU(2)L (SU(2)R) gauge bosons are labeled by W i

Lµ

(︂
W i
Rµ

)︂
, while we indicate

the single gauge bosons from U(1)X and U(1)X′ with Bµ and Xµ, respectively. To align
with observations, seven of these gauge bosons need to become massive4 leaving only one
massless state which will be the photon. Gauge boson masses follow from the Lagrangian

L ⊃
(︁
DµχL

)︁†
(DµχL) +

(︁
DµχR

)︁†
(DµχR) +

(︁
Dµη

)︁†
(Dµη) , (5.22)

after spontaneous symmetry breaking. In the literature, LRSMs often include a scalar
bi-doublet and automatically induce tree level mixing of charged gauge bosons. However,
in our model this scalar is not present and the states W±

L =
(︂
W 2
L ∓ iW 1

L

)︂
/
√
2 and

4They absorb exactly the seven massless Goldstone modes as discussed in the previous section.
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W±
R =

(︂
W 2
R ∓ iW 1

R

)︂
/
√
2 only start to mix at one-loop level. Hence, at the tree level their

masses are given by

M2
WL

=
g2Lv

2
L

4
, M2

WR
=
g2Rv

2
R

4
, (5.23)

where gL and gR are the gauge couplings of SU(2)L and SU(2)R. In the parity symmetric
limit considered here, gauge couplings in the left- and right-handed sector are identical and
therefore we use g ≡ gL = gR. Generally, mixing among neutral gauge bosons happens after
spontaneous symmetry breaking. In the basis (W 3

L,W
3
R, B,X), the squared mass matrix is

provided by the expression

M2 =
1

4

⎛⎜⎜⎜⎜⎝
g2Lv

2
L 0 −gLg

′v2L 0

0 g2Rv
2
R −gRg

′v2R 0

−gLg
′v2L −gRg

′v2R g′2(v2R + v2L) 0

0 0 0 g2Xv
2
η

⎞⎟⎟⎟⎟⎠ , (5.24)

where the U(1)X and U(1)X′ gauge couplings are given by g′ and gX . Since η is the only
scalar which carries U(1)X′ charge, the gauge boson Xµ decouples from the remaining
spectrum and its mass is given by

M2
X =

g2xv
2
η

4
. (5.25)

Due to the appearance of non-diagonal matrix entries, the three leftover gauge bosons mix
and the mass matrix needs to be diagonalized. As a first step, we rotate away the zero
mode corresponding to the photon. In order to do so, we apply a basis transformation

⎛⎜⎝ A

ZL

ZR

⎞⎟⎠ =

⎛⎜⎜⎜⎝
sw sw

√︂
c2w − s2w

cw −s2w/cw −sw
√︂
c2w − s2w/cw

0

√︂
c2w − s2w/cw −sw/cw

⎞⎟⎟⎟⎠
⎛⎜⎝ W 3

L

W 3
R

B

⎞⎟⎠ , (5.26)

where sw ≡ sin(θw) = e/g is the weak mixing angle and the coupling e is defined by the
relation 1/e2 = 2/g2 + 1/g′2. In the new basis (A,ZL, ZR), the photon A is massless. The
remaining two states (ZL, ZR) still mix and their 2×2 mass matrix is characterized through
the entries

M2
LL =

e2v2L

4s2wc
2
w

,

M2
RL =

e2v2L

4c2w

√︂
c2w − s2w

,

M2
RR =

e2

4
(︂
c2w − s2w

)︂ (︄c2wv2R
s2w

+
s2wv

2
L

c2w

)︄
.

(5.27)
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Therefore, the last step to obtain the mass eigenstates is a further diagonalization. We
apply a unitary transformation(︄

Z

Z ′

)︄
=

(︄
cos ζ sin ζ

− sin ζ cos ζ

)︄(︄
ZL

ZR

)︄
, (5.28)

where Z and Z ′ are now mass eigenstates and their mixing angle is defined as

tan(2ζ) =
2M2

LR

M2
LL −M2

RR

. (5.29)

The lighter of the two, defined as Z, plays the role of the SM Z boson and the final masses
can be obtained from the formula

M2
Z,Z

′ =
1

2

(︃
M2
LL +M2

RR ∓ (M2
LL −M2

RR)

√︂
1 + tan2(2ζ)

)︃
. (5.30)

Of course, Z − Z ′ mixing is subject to experimental constraints. We therefore provide a
rough estimate on the mixing angle. For gR = gL ≃ 0.65, g′ = 0.428, sin2(θw) = 0.231 and
a VEV of vR = 5 TeV, we find ζ = 6.9× 10−4. This mixing is already quite small and will
be even further suppressed for larger vR.

5.2.4 Yukawa interactions

In this section we give the details on Yukawa interactions which are allowed with the present
gauge charges and particles. As a start, we consider the quark sector. Writing down all
terms that align with the gauge symmetry yields the Lagrangian

LY uk =− yqaQLχ̃LTR − yqbQRχ̃RTL

− yqcQLχLBR − yqdQRχRBL

− yq1TLη
†T ′
R − yq2TRηT

′
L

− yq3BLηB
′
R − yq4BRη

†B′
L + h.c.

(5.31)

The Yukawa coupling matrices yqx, x = a, b, c, d are of dimension 3×2 while those labeled by
x = 1, 2, 3, 4 have dimension 2× 1. From the Lagrangian we see that no terms appear which
directly combine QL and QR at the renormalizable level. Instead, SM fermions couple
to vector-like fermions (T, B), and these in turn are connected to the primed fermions
(T ′, B′). In addition, the gauge charges of vector-like fermions allow us to add explicit
masses

LV LF = −MTTLTR −MBBLBR + h.c. , (5.32)

which are described by the 2× 2 matrices MT and MB. We emphasize that explicit mass
terms for T ′ and B′ are forbidden due to the assigned U(1)X′ charges.

The specific characteristics of the fermions fields NL/R lead to a different situation in
the lepton sector. As they are complete gauge singlets, lepton number violating terms are
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allowed in principle.5 The presence of LNV operators will be crucial to achieve realistic
neutrino masses in our model and we postpone their discussion to Section 5.5. For now,
we restrict ourselves to lepton number conserving operators which are relevant for the
generation of charged lepton masses. The lepton number conserving Lagrangian is defined
by

LY uk =− yℓaΨLχ̃LNR − yℓbΨRχ̃RNL

− yℓcΨLχLER − yℓdΨRχREL

− yℓ1NLηN
′
R − yℓ2NRη

†N ′
L

− yℓ3ELη
†E′

R − yℓ4ERηE
′

L + h.c. ,

(5.33)

where the superscript ℓ distinguishes the lepton Yukawa matrices from the quark ones.
Similarly, we can write down the explicit vector-like masses

LV LF = −MNNLNR −MEELER + h.c. (5.34)

The addition of right-handed lepton doublets in LRSMs allows to define parity as a
symmetry. To be precise, parity can be defined by the transformation

QL ↔ QR , ΨL ↔ ΨR , T
(
′
)

L ↔ T
(
′
)

R , B
(
′
)

L ↔ B
(
′
)

R ,

N
(
′
)

L ↔ N
(
′
)

R , E
(
′
)

L ↔ E
(
′
)

R , χL ↔ χR , η ↔ η† .
(5.35)

Clearly, if the Lagrangian is invariant under such a transformation, this will have significant
impact on the parameters of the model. In the quark sector, we can identify the Yukawa
couplings

yqa = yqb , yqc = yqd , yq1 = yq2 , yq3 = yq4 , (5.36)

and the same holds for lepton couplings

yℓa = yℓb , yℓc = yℓd , yℓ1 = yℓ2 , yℓ3 = yℓ4 . (5.37)

Furthermore, the vector-like mass matrices need to satisfy

MT =M †
T , MB =M †

B , MN =M †
N , ME =M †

E . (5.38)

Note that without loss of generality, we can choose a basis where the vector-like matrices
are real and diagonal. The number of parameters is reduced significantly and we adopt a
parity symmetric Lagrangian for our further analysis, i.e. we apply Eqs. (5.36 - 5.38) in the
subsequent discussion. Furthermore, we point out that the strong CP angle θ is zero at
tree level due to parity symmetry (compare with notation in Section 2.3).

5Each of the fields Ψ, N , E, N ′ and E
′ carries +1 unit of lepton number.
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5.3 Quark masses

The Yukawa Lagrangian given in Eq. (5.31) is the origin of fermion masses after spontaneous
symmetry breaking and we discuss the details of the up-type quark sector in this section.
It is therefore convenient to drop the superscript yq in our notation and only reintroduce it
when it is not clear from the context.

In the following, we examine a setting with two vector-like up-type quarks T1, T2 and
one additional fermion T ′. Together with the three SM quarks, we arrive at a 6× 6 mass
matrix which is given by

M(0)
u =

⎛⎜⎝ 0 vLya/
√
2 0

vRy
†
a/
√
2 MT vηy1/

√
2

0 vηy
†
1/
√
2 0

⎞⎟⎠ , (5.39)

in the basis (u1, u2, u3, T1, T2, T
′). Note that with this particular setup, ya becomes a 3× 2

matrix and y1 has dimension 2× 1. All zeros appearing in the above mass matrix follow
from the gauge charges of our model and no further global or discrete symmetries are
needed. The tree level mass matrix has rank four demonstrating that besides the two
massive states T1 and T2, two further states obtain a mass. These can be identified with
the T ′ and the top quark. Hence, we get exactly what we aim for: one massive SM quark
at the tree level. To illuminate this in more detail, we cast the matrix in Eq. (5.39) to the
well known form of a type I seesaw. To do so, we define the matrix

MS ≡

(︄
MT vηy1/

√
2

vηy
†
1/
√
2 0

)︄
(5.40)

together with the Yukawa coupling Ya ≡ (ya, 0) which allows us to rewrite

M(0)
u =

(︄
0 vLYa/

√
2

vRY
†
a /

√
2 MS

)︄
. (5.41)

The seesaw limit is then characterized by a hierarchy of scales vη,MT > vR > vL and we
can give the approximate expressions

M light ≃ −vLvR
2

YaM
−1
S Y †

a ,

Mheavy ≃ MS ,
(5.42)

for the block diagonalization of M(0)
u . Here, the rank three matrix Mheavy represents the

three heaviest states, while M light is a rank one matrix and represents the masses of SM
up-type quarks. Including the form of Ya, we can further analyze the expressions and find
YaM

−1
S Y †

a = ya(M
−1
S )1,1y

†
a, where (..)1,1 indicates the entry in the corresponding matrix.
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The inverse of MS is easily found by applying the general formula for block matrix inversion
and we quote our result

M−1
S =

⎛⎝ M−1
T −M−1

T y1

(︂
y†1M

−1
T y1

)︂−1
y†1M

−1
T

√
2v−1
η M−1

T y1

(︂
y†1M

−1
T y1

)︂−1

√
2v−1
η

(︂
y†1M

−1
T y1

)︂−1
y†1M

−1
T −2v−2

η

(︂
y†1M

−1
T y1

)︂−1

⎞⎠ .

(5.43)
Thus, in total we get

M light ≃ −vLvR
2

ya

(︃
M−1
T −M−1

T y1

(︂
y†1M

−1
T y1

)︂−1
y†1M

−1
T

)︃
y†a

= −vLvR
2

yaM
−1
T y†a +

vLvR
2

ya

(︃
M−1
T y1

(︂
y†1M

−1
T y1

)︂−1
y†1M

−1
T

)︃
y†a ,

Mheavy ≃ MS .

(5.44)

In Appendix B.1, we give analytic expressions for the eigenvalues of M light, demonstrating
that indeed two quarks are massless at this level.

Now we turn our interest to the one-loop corrected mass matrix. A summary of all
one-loop Feynman diagrams is given in Figure C.1 of the Appendix. Out of these, the two
most important graphs are presented in Figure 5.2 and we summarize their contributions
by δM (1)

u . The important thing to note is that both diagrams populate the subspace
(u1, u2, u3) and thereby enhance the matrix rank. Also other matrix entries, which vanish
at tree level, are filled by loop corrections such that the mass matrix at one-loop is given by

M(1)
u =

⎛⎜⎝ δM (1)
u vLya/

√
2 δvL

vRy
†
a/
√
2 MT vηy1/

√
2

δ†vR vηy
†
1/
√
2 δM̃ (1)

u

⎞⎟⎠ . (5.45)

Here, radiative corrections from X and η exchange contribute to δM̃ (1)
u . In general, mixed

χL− η and χR− η diagrams can also contribute to the entries δvL and δ†vR (see Figure C.1
diagram c), d), g) and h)). Nonetheless, in the limit λ4 ≪ 1 they will have suppressed
contributions. From the Feynman diagrams we deduce the proportionality δM (1)

u ∼ yay
†
a,

δM̃ (1)
u ∼ y†1y1 and δ ∼ yay1. The radiative corrections increase the matrix rank by one.

Again, separating into light and heavy eigenstates we find

M light ≃ δM (1)
u − vLvR

2
Y (1)
a

(︂
M(1)

S

)︂−1
Y (1)†
a

Mheavy ≃ M(1)
S ,

(5.46)

where the coupling matrix is now Y (1)
a ≡

(︁
ya, δ

√
2
)︁

and the one-loop corrected M(1)
S reads

M(1)
S =

(︄
MT vηy1/

√
2

vηy
†
1/
√
2 δM̃ (1)

u

)︄
. (5.47)
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Figure 5.2 Feynman diagrams which generate the charm quark mass at one-loop order in the
LRSM. Published in [3].

We emphasize that M light has rank two and therefore the charm quark picks up mass.6

The main contribution to the charm quark mass originates from the graphs in Figure 5.2.
We separate the individual contributions in three different parts

δM (1)
u ≡ δM(1),Z + δM(1),Z

′
+ δM(1),χ . (5.48)

Depending on the relative size of g2 and λ2, either the gauge mediated or scalar diagram
can be the dominant contribution. We are interested in the former case where the leading
order contribution to the charm quark mass is approximately given by

mc ∼ δM (1)
u ≃ g2

16π2
vLvRya

MT

M2
T −M2

Z

y†a

≃ g2

16π2
vLvRyaM

−1
T y†a ,

(5.49)

assuming MT > vR > vL. In comparison to the leading term in Eq. (5.44), the 1/(16π2)

suppression naturally arises from the loop. Note that the detailed calculation of the one-loop
corrections can be found in Appendix C.

Up to now, one of the quarks is still massless and we need to analyze the two-loop
radiative corrections in our model. Out of the huge number of diagrams, the Feynman graph
presented in Figure 5.3a is unique, as it involves Yukawa couplings from the down-type
sector. As a reminder, mixing between WL and WR occurs only at one-loop level via an
internal fermion loop as shown in Figure 5.3b. From the Feynman graph, we can easily
deduce the proportionality δM (2)

u ∼ ycy
†
c and we emphasize that the down-type Yukawa

6Because of the proportionality δM
(1)
u ∼ yay

†
a, the matrix rank of δM (1)

u is at maximum two, since the
3× 2 matrix ya can have at most two linear independent 3-vectors.
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(a) (b)

Figure 5.3 (a) Two-loop Feynman diagram which generates the first generation quark mass via
charged gauge boson exchange. The mixing of WL −WR (grey circle) happens at one-loop and is
illustrated in (b). Published in [3].

coupling yc is in general different from the up-type coupling ya. This property is crucial to
further raise the matrix rank. The two-loop corrected mass matrix is thus given by

M(2)
u =

⎛⎜⎝ δM (1)
u + δM (2)

u vLya/
√
2 δvL

vRy
†
a/
√
2 MT vηy1/

√
2

δvR vηy
†
1/
√
2 δM̃ (1)

u

⎞⎟⎠ , (5.50)

and the linear independence of ya and yc guarantees that M(2)
u is a rank six matrix, such that

the up quark obtains a mass at second loop order.7 We postpone the detailed calculation
of the diagram to Appendix C and approximate the size of the two-loop contribution by

mu ∼ δM (2)
u ≃ Nc

(16π2)2
g4v3Lv

3
RMB

MTMBM
2
WL
M2
WR

, (5.51)

where we assumed order one Yukawa couplings. Knowing that M2
WL

∼ v2L and M2
WR

∼ v2R,
this gives another suppression factor of (16π2)−1 compared to the second generation mass
in Eq. (5.49). In this simplistic approximation, a ratio of vR/MT ≃ 10−1 would be enough
to achieve a realistic up quark mass of a few MeV.

Similar considerations are applicable to the down-type quark sector. In order to
demonstrate that our model can accommodate quark masses and mixings within the
experimentally allowed parameter range, we present two benchmark scenarios in Section 5.6.

7We have not included any other two-loop corrections to the mass matrix besides the one shown in
Figure 5.3a, as it is the only diagram which enhances the matrix rank and therefore contributes to the up
quark mass.
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5.4 Charged lepton masses

The scheme presented in the quark sector can be transferred to the charged leptons in a
straight forward way and Figure 5.4 summarizes the different mass contributions. At tree
level, only the tau lepton is massive and the mass matrix is similar to Eq. (5.39) up to the
replacements MT ↔ME and yq ↔ yℓ. The neutral gauge boson exchange diagram causes
a mass for the muon and the two-loop WL −WR exchange process is the origin of non-zero
electron mass. As illustrated in the right panel of Figure 5.4, the vector-like neutrino mass
MN contributes to the electron mass and causes a correlation with the neutrino sector.
This leads to a proportionality between the electron mass and the Dirac neutrino mass.
Taking all vector-like fermion masses at roughly the same scale MN ≃ME ≃MB ≃MT ,
the electron mass can be correctly reproduced without fine tuning. With natural order
one Yukawa couplings, we expect Dirac neutrino masses at same orders as charged lepton
masses. This is in conflict with experimental results and we discuss possible solutions to
achieve small active neutrino masses in the following section.

Figure 5.4 Tree level and one- and two-loop contributions to the charged lepton masses in the
LRSM. Published in [3].

5.5 Neutrino masses

If there is no lepton number violation in the theory, neutrinos will be pure Dirac states and
the mass matrix up to two-loop level has the following structure (we drop superscripts ℓ for
a better readability):

M(2)
ν,Dirac =

⎛⎜⎝ δM (1)
ν + δM (2)

ν yavL/
√
2 δvL

y†avR/
√
2 MN y1vη/

√
2

δ†vR y†1vη/
√
2 δM̃ (1)

ν

⎞⎟⎠ . (5.52)

In analogy to the quark sector, we block diagonalize the above rank six matrix and find

M light
ν,Dirac ≃ (δM (1)

ν + δM (2)
ν )− vLvR

2
Ya

(︂
M(1)

S

)︂−1
Y †
a

Mheavy
ν,Dirac ≃ M(1)

S ,

(5.53)
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where the matrix M(1)
S is defined as

M(1)
S =

(︄
MN y1vη/

√
2

y†1vη/
√
2 δM̃ (1)

ν

)︄
, (5.54)

and Ya ≡
(︁
ya, δ

√
2
)︁
.8 A realistic electron mass necessitates MN ≃ ME and Yukawa

couplings of the same order in both sectors (see discussion in Section 5.4). Therefore, the
Dirac mass eigenstates of M light

ν,Dirac are expected to be O(mτ ), O(mµ) and O(me). Clearly,
a further suppression is necessary to achieve active neutrino masses below one electron volt.

Up to now, we only considered lepton number conserving operators. However, the
vector-like neutrinos N1,2 are gauge singlets and lepton number violating operators are in
general allowed. Including those, the complete Lagrangian for the neutrino sector is defined
by

Lν = yaΨ
T χ̃LN

c + y′aΨ
T χ̃LN +MNNN

c + y1N
cηN ′ +M ′

LNN + y′1NηN
′ + yaΨ

cT χ̃RN

+ y′aΨ
cT χ̃RN

c +MNN
cN + y1Nη

∗N ′c +M ′
RN

cN c + y′1N
cηN ′c + h.c. ,

(5.55)

where we change to a notation with only left-handed fields and ...c is the charge conjugate
of right-handed fermion fields. Note that in addition to the lepton number conserving mass
MN , the LNV masses M ′

R and M ′
L are present now as well. We allow a soft breaking of

parity and thus M ′
R ̸=M ′

L. Also in the Yukawa sector, primed parameters are LNV (y′),
while unprimed ones (y) correspond to the lepton number conserving couplings (compare
to definition in Eq. (5.33)). When the scalar fields obtain VEVs, the tree level neutrino
mass matrix is given by

M(0)
ν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 y
′
i1
a

vL√
2

yi1a
vL√
2

y
′
i2
a

vL√
2

yi2a
vL√
2

0 0

0 0 yi1a
vR√
2

y
′
i1
a

vR√
2

yi2a
vR√
2

y
′
i2
a

vR√
2

0 0

y
′
i1
a

vL√
2

yi1a
vR√
2

M ′
L,11 MN1 M ′

12 0 y
′
1
1
vη√
2

y11
vη√
2

yi1a
vL√
2

y
′
i1
a

vR√
2

MN1 M ′
R,11 0 M ′

12 y11
vη√
2

y
′
1
1
vη√
2

y
′
i2
a

vL√
2

yi2a
vR√
2

M ′
12 0 M ′

L,22 MN2 y
′
2
1
vη√
2

y21
vη√
2

yi2a
vL√
2

y
′
i2
a

vR√
2

0 M ′
12 MN2 M ′

R,22 y21
vη√
2

y
′
2
1
vη√
2

0 0 y
′
1
1
vη√
2

y11
vη√
2

y
′
2
1
vη√
2

y21
vη√
2

0 0

0 0 y11
vη√
2

y
′
1
1
vη√
2

y21
vη√
2

y
′
2
1
vη√
2

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.56)

where we use the basis (ν, νc, N1, N
c
1 , N2, N

c
2 , N

′, N ′c). In the above matrix, superscripts
indicate matrix entries of the coupling matrices ya, y

′
a and y1, y

′
1 and the index i = 1, 2, 3

labels the three SM generations. To check whether light active neutrinos are viable, we
will need to find the eigenvalues of the given 12× 12 matrix. Though finding an analytic
solution, which expresses the parameter dependencies in a meaningful way, is challenging

8As M(1)
S has full rank, we do not include subdominant two-loop corrections to this matrix.
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for such a big matrix. Hints for the general behavior can be found by checking the matrix
rank of the LNV violating mass matrices. Since both M ′

L and M ′
R are rank two matrices,

we conjecture four light neutrino states in our model. An extensive study of the neutrino
sector entails not only a complete parameter scan but also the inclusion of further loop
corrections and is outside the scope of this work. As a first approximation, we investigate
the tree level matrix with only the third generation neutrino included (i = 3). The outcome
of this study is described in the next section, together with numerical results for the quark
and charged lepton sector.
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Figure 5.5 Scatter plot showing viable lepton number violating masses M ′
L, M ′

R that lead to a
light active neutrino with mν < 0.3 eV in the tree level approximation. Table 5.2 summarizes lepton
number conserving couplings used for the BPs. Left panel: lepton number violating couplings
are zero (y′ = 0). Right panel: y′couplings are randomly selected within the interval {0.1, 1.0}.
Published in [3].

5.6 Numerical results

As a proof of concept, we show two benchmark scenarios which align with the current
measurements of fermion masses and mixings. We follow the methods presented in Sec-
tions 5.3 to 5.5 and use the results of the explicit loop calculation quoted in Appendix C.
The couplings α = 1/2 and gX = 1 are fixed throughout the analysis. The symmetry
breaking scales of our first benchmark point (BP1) are given by

vR = 20 TeV , vη = 30 TeV , (5.57)

which yields the massive eigenstates MWR
= 6.53 TeV and MZ

′ = 7.82 TeV. Note that
the right-handed breaking scale is in agreement with current direct searches for W ′ gauge
bosons [228]. For the vector-like quark masses we assume

MT1 = 9 TeV , MT2 = 14 TeV ,

MB1 = 38 TeV , MB2 = 42 TeV,
(5.58)
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while the vector-like lepton masses are

MN1 = 60 TeV , MN2 = 65 TeV ,

ME1 = 44 TeV , ME2 = 51 TeV .
(5.59)

In the second benchmark scenario (BP2), we choose higher scales for the symmetry breaking

vR = 80 TeV , vη = 120 TeV . (5.60)

Therefore, the gauge bosons from the right-handed sector have larger masses MWR
=

26.13 TeV and MZ
′ = 31.26 TeV. This implies also slightly larger vector-like mass scales

MT1 = 19 TeV , MT2 = 21 TeV ,

MB1 = 47 TeV , MB2 = 49 TeV,
(5.61)

MN1 = 82 TeV , MN2 = 85 TeV ,

ME1 = 61 TeV , ME2 = 64 TeV .
(5.62)

Table 5.2 shows the Yukawa couplings used in BP1 and BP2. We emphasize that these
parameters are enough to describe the Dirac masses in our model. The reproduced
observables are presented in Table 5.3. For comparison we show the 3σ experimental
bounds for observables in the quark sector, while for the tau, muon and electron mass we
indicate the ±5% range of the best fit value [30,203]. Both our benchmark points agree with
the quoted limits. We emphasize that all Yukawa couplings are manifestly order one and
loop suppression factors of 1/(16π2) explain the full hierarchy between generations. At the
same time, the parameters of our model are sufficient to reproduce the mixing angles and
CP violation in the quark sector. Still, it is important to note that the size of these mixing
parameters is not explained in our mechanism. The vector-like fermion masses exhibit a
mild hierarchy MT < MB < ME that accounts for the difference in third generation mass
scales mt > mb > mτ through the seesaw relation.

Since we chose ME ≃MN , neutrinos receive Dirac masses in the same range as charged
lepton masses. In addition, the gauge singlet fermions N1,2 allow to introduce LNV
contributions as considered in Section 5.5. Analyzing the full 12 × 12 matrix shown in
Eq. (5.56) together with all loop corrections is challenging. For now, we check whether a
light neutrino mass eigenstate arises in the tree level approximation where we only take
into account i = 3. For our analysis, we keep the Yukawa couplings and masses provided
in Table 5.2 as representatives of lepton number conserving parameters and check which
LNV masses are necessary to achieve a light neutrino mν < 0.3 eV. Starting from the
assumptions M ′

L ≡ M ′
L,11 = M ′

L,22, M
′
R ≡ M ′

R,11 = M ′
R,22 and M ′

L,12 = 0 = M ′
R,12, we

randomly generate M ′
L, M

′
R ∈ {103, 1014} GeV and display parameter choices that lead to

a light neutrino state in Figure 5.5. While the left plot shows the case y′ = 0, i.e. all LNV
Yukawa couplings vanish, the right plot considers random values y′ ∈ {0.1, 1}. Clearly,
allowing non-zero y′ enlarges the possible parameter space in the M ′

L −M ′
R plane. From
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the counting of LNV operators, we anticipate that three light active neutrinos can be
achieved in the full framework. A preliminary study however suggests that a subtle tuning
of parameters is necessary to agree with oscillation data. Therefore, we postpone a detailed
parameter scan to future work.

Yukawa Couplings Benchmark Points

BP1 BP2

yqa

⎛⎝ 0.616 0.345
0.543 0.742
2.291 0.905

⎞⎠ ⎛⎝ −1.374 1.594
−1.114 1.536
0.797 0.246

⎞⎠
yqc

⎛⎝ 0.233 0.251
0.279 0.376
1.569 1.849

⎞⎠ ⎛⎝ 0.913 0.452
0.555 0.265
0.534 0.229

⎞⎠
yq1

(︄
1.21× e0.060i

1.55

)︄ (︄
0.300× e0.060i

−0.200

)︄
yq3

(︃
0.740
1.320

)︃ (︃
1.200
0.800

)︃

yℓa

⎛⎝ 0.267 0.272
0.752 0.730
0.583 0.580

⎞⎠ ⎛⎝ 1.217 1.143
0.555 0.519
0.552 0.512

⎞⎠
yℓc

⎛⎝ 0.580 0.371
0.860 0.638
0.587 0.430

⎞⎠ ⎛⎝ 0.758 0.288
0.754 0.246
0.277 0.123

⎞⎠
yℓ1

(︃
0.650
0.920

)︃ (︃
0.600
0.700

)︃
yℓ3

(︃
1.680
0.740

)︃ (︃
0.500
0.100

)︃
Table 5.2 Yukawa couplings used for the benchmark scenarios in the LRSM. Published in [3].
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Model PredictionObservable
(Masses in GeV) Exp. Range BP1 BP2

Quark Sector

mu/10
−3 1.38 → 3.63 2.17 2.05

mc 1.21 → 1.33 1.27 1.23
mt 171.7 → 174.1 172.9 172.9

md/10
−3 4.16 → 6.11 4.65 4.73

ms 0.078 → 0.126 0.094 0.120
mb 4.12 → 4.27 4.18 4.18

|Vud| 0.973 → 0.974 0.974 0.974
|Vus| 0.222 → 0.227 0.227 0.226

|Vub|/10
−4 31.0 → 45.4 38.7 39.0

|Vcd| 0.209 → 0.233 0.226 0.226
|Vcs| 0.954 → 1.020 0.973 0.973

|Vcb|/10
−3 36.8 → 45.2 40.0 40.3

|Vtd|/10
−4 71.0 → 89.0 80.6 80.4

|Vts|/10
−3 35.5 → 42.1 39.4 39.6

|Vtb| 0.923 → 1.103 0.999 0.999

J /10−5 2.73 → 3.45 3.06 3.05

Charged Lepton Sector

me/10
−3 0.485 → 0.537 0.511 0.512

mµ 0.100 → 0.111 0.106 0.106
mτ 1.688 → 1.866 1.777 1.788

Table 5.3 Predicted fermion masses and mixings for the considered benchmark points in the
LRSM. For comparison we show 3σ experimental limits on the observables, apart from charged
lepton masses where we displayed a ±5% uncertainty. Published in [3].
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Chapter 6

Testing neutrino non-standard
interactions at future colliders

The observation of neutrino oscillations provides a sound proof that new physics beyond
the SM should exist. Our work in Chapter 4 and 5 has discussed possible realizations of
small neutrino masses and adds to the extensive list of models that have been suggested
during the last decades. However, the large variety of new physics proposals that underlie
neutrino mass mechanisms is challenging for experimental searches. Neutrino non-standard
interactions represent a way to parameterize novel physics in the neutrino sector in a general
effective field theory framework. Present experiments thoroughly probe NSIs but so far the
focus is mainly on interactions with up and down quarks and electrons. In this chapter,
we want to focus on NSIs with muons, the second generation charged lepton. The latest
measurement of the anomalous magnetic moment of the muon reinforced the suspicion that
some kind of new muonic force could exist.1 Testing the four-fermion contact interactions
involving two neutrinos and two muons can therefore possibly provide further insights into
neutrino mass generation and potential muon related new physics.

Combining the precision of ee colliders with the energy of pp collision, the muon collider
is one of the most promising projects for the post-LHC era. In recent years, the interest in
a high energy muon collider has therefore grown a lot and a plethora of studies investigated
its discovery potential [218, 233–262] (a review can be found in [91]). In the following
chapter, we analyze how a muon collider can be used to test NSIs with muons through the
process µ+µ− → ννγ. We start by defining the relevant NSI operators in Section 6.1. By
considering a simplified toy model, Section 6.2 elaborates how NSIs can be constrained
with the monophoton signal. Finally, Section 6.3 discusses three UV complete models that
lead to muonic NSIs and shows the complementarity with other experiments. The content
of this chapter is based on the publication [2].

1Note that hints on new physics from rare B meson decays vanished [229–232].
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6.1. CONNECTING EFFECTIVE FIELD THEORIES TO SIMPLIFIED MODELS

6.1 Connecting effective field theories to simplified models

In general, the effective interaction of two muons and two neutrinos µµνν can be character-
ized by a collection of four-fermion operators that include different combinations of fermion
bilinear forms. Specifically, we consider vector, axial-vector, scalar, axial-scalar and tensor
interactions. At dimension six, the corresponding four-fermion interaction Lagrangian is
given by

Lµµνν = −2
√
2GF

∑︂
α,β

10∑︂
i=1

ϵµµαβ
(i) (︁

ναOiνβ
)︁ (︁
µO′

iµ
)︁
, (6.1)

where we indicate the neutrino flavor by α, β ∈ {e, µ, τ} and all operators are normalized
to GF , the Fermi constant. Using the definitions PL/R ≡

(︂
1∓ γ5

)︂
/2 and σµν ≡ i

2 [γ
µ, γν ],

the effective couplings ϵµµαβ
(i) and operators O, O′ can be found in Table 6.1. In the

SM, interactions of charged leptons and neutrinos are mediated by W± and Z bosons.
Integrating these heavy fields out produces flavor diagonal four-fermion operators whose
strength depends on the Weinberg angle θw and is given by

ϵµµαβ
(V,LL)

= δαµδβµ +

(︃
−1

2
+ sin2 θw

)︃
δαβ (SM)

ϵµµαβ
(V,LR)

= sin2 θwδαβ (SM)

(6.2)

The coefficients reflect the fact that neutral current processes contribute to the interaction
of all neutrino flavors, whereas the charged current interaction is limited to νµ. Figure 6.2
shows the two Feynman diagrams that contribute in the SM to the process µ+µ− → ννγ.
In what follows we refer to these SM processes as background events, whereas signal events
originate from new interactions beyond the SM.

i ϵµµ
αβ

(i) O O′

1 ϵµµαβ
(V,LL)

γµPL γµPL

2 ϵµµαβ
(V,RL)

γµPR γµPL

3 ϵµµαβ
(V,LR)

γµPL γµPR

4 ϵµµαβ
(V,RR)

γµPR γµPR

5 ϵµµαβ
(S,LL)

PL PL

6 ϵµµαβ
(S,RL)

PR PL

7 ϵµµαβ
(S,LR)

PL PR

8 ϵµµαβ
(S,RR)

PR PR

9 ϵµµαβ
(T,LL)

σµνPL σµνPL

10 ϵµµαβ
(T,LL)

σµνPR σµνPR

Table 6.1 Dimension six effective operators contributing to the interaction of two neutrinos and
two muons. Published in [2].
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FUTURE COLLIDERS

In low energy oscillation experiments, the EFT approach is appropriate to describe
neutrino non-standard interactions. However, the case is different for high energy collider
experiments. With growing energy scales, the momentum transfer can become considerable
and the EFT is not the right tool to investigate these regimes. For this reason, we carry
out a more thorough study in this work and take propagating force mediators directly into
account. In specific, we consider three different classes of new physics models that induce
NSIs with muons. They cover the scenarios of a neutral gauge boson extension, a neutral
scalar extension and a charged scalar extension and are portrayed in Figure 6.1.

As a start, we explore a toy Z ′ model. The Lagrangian of this simplified scenario is
given by

LSimp,Z
′

NSI =
∑︂

Y=L,R

[︂
(gν)αβναγ

µPLνβ + gYµ µγ
µPY µ

]︂
Z ′
µ , (6.3)

where the coupling strengths gν and gYµ represent free parameter for now as well as the
mass MZ

′ . This type of interaction contributes to the operators i = 1, 3 and we define the
associated effective coupling by

ϵµµαβ
(V,LY )

=
(gν)αβg

Y
µ

2
√
2GFM

2
Z

′
, Y ∈ {L,R} . (6.4)

In the following, we analyze limits that can be set on the parameter space of the model
given in Eq. (6.3) and present our results in terms of the effective coupling ϵµµαβ .

6.2 Testing NSI with a monophoton signal

Similar to dark matter searches at high energy colliders [233, 263, 264], mono-X events
such as monophoton, mono-Z, mono-W or mono-jet events with large missing transverse
energy are suitable to probe neutrino non-standard interactions in collider experiments.
In our study, we examine the signal µ+µ− → γ + /ET with a single photon and missing
transverse energy in the final state. For that, we implement the model Lagrangian with the
FeynRules package [265] and carry out a Monte Carlo simulation of both the background
and signal events in the process µ+µ− → ννγ with the help of the software package

Figure 6.1 Examples of vector- and scalar-mediated four-fermion interactions that create a
monophoton signal through the process µ+µ− → ννγ. Published in [2].
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6.2. TESTING NSI WITH A MONOPHOTON SIGNAL

Figure 6.2 SM processes that contribute to the monophoton signal by charged and neutral
current interactions.

MadGraph5aMC@NLO [266,267]. The process of hadronization and parton showering is done
by Pythia8 [268], while we use the Delphes3 package [269] for the detector simulation.2

In our work, we perform a cut-and-count analysis. For this we apply several steps of
requirements on the signal and background events and afterwards count the number of
events passing each selection step. As a basic cut we demand the events to comply with a
limit on the photon pseudorapidity and transverse momentum

pTγ > 10 GeV , |ηγ | < 2.44 . (6.5)

This last criteria corresponds to an angular acceptance 10◦ < θγ < 170◦, where θγ describes
the angle of the photon relative to the beam axis. Next, we deploy a series of nine more
selection steps which restrict the missing transverse energy /ET by a threshold

/ET > 10, 20, 30, 40, 50, 60, 70, 80, 100 GeV . (6.6)

Out of these nine different cuts, we obtain the sensitivity to NSIs from the region that has
the maximum statistical significance

S ≡ NS√︂
NB +NS + (δσBNB)

2
, (6.7)

Here, the number of signal and background events is given by NS and NB, respectively.
The parameter δσB quantifies a systematic uncertainty on the background. By applying
this procedure and choosing the cuts, the number of background events can be significantly
reduced compared to the number of signal events. A more detailed demonstration of the
efficiency of the different cuts can be found in Appendix D.

2We use the Delphes default card for the detector simulation.
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Figure 6.3 Differential cross section dσ/d/ET and dσ/dη for the process µ+µ− → ννγ at a muon
collider with

√
s = 3 TeV. Shown are the results of the Monte Carlo simulation for the SM (red),

only NSI (black) and both together including interference effects (blue). For comparison we display
the sum of NSI and SM contributions (green) which demonstrates that interference effects are small.
For the NSI contribution, we consider the model defined in Eq. (6.3) with the parameters MZ

′ = 3

TeV, ΓZ
′ = 0.3 TeV, gLµ = gRµ = 1 and gαβν = δατδβτ . Figure published in [2].

Interference effects can in principle occur between SM and new physics contributions.
To check how large these effects are, we show the differential cross sections dσ/d/ET and
dσ/dη that we obtain from the Monte Carlo simulation of the process µ+µ− → ννγ in
Figure 6.3. While the red curve gives the SM contribution, the black line indicates the pure
NSI effect following from the Lagrangian in Eq. (6.3). As the total effect including SM,
NSI and interference effects (blue curve) is comparable to the sum of SM and NSI (green
curve), we conclude that interference effects play a minor role and can be neglected in the
following. As a consequence, the signal cross section σS is proportional to ∝ ϵ2 [80].
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The final result for the projected sensitivity to NSIs of a muon collider with a center-of-
mass energy of

√
s = 3 TeV at 95% confidence level (CL) is shown in Figure 6.4. For the

sake of simplicity, we assume that the Z ′ boson only couples to tau neutrinos such that
(gν)αβ ≡ gνδατδβτ and we consider two different scenarios which differ in the chosen decay
width ΓZ′/MZ

′ = 0.1 and 0.3. Under the assumption that the coupling of the Z ′ to muons
is vector-like, i.e. gLµ = gRµ , the upper plot displays the sensitivity to the effective coupling
|ϵµµ(V,LL)ττ | as a function of the mass MZ

′ . For the ease of reading, we drop superscripts and
only use the notation |ϵµµττ | in the following whenever the chiral structure is clear from the
context. We study two integrated luminosities L = 1, 10 ab−1 and results are given as solid
and dashed lines, respectively. For the lower luminosity, the effect of varying the systematic
uncertainty within δσB = 0.0%− 0.1% is shown by the width of the band. The results for
L = 10 ab−1 present the case δσB = 0.0% only [233]. For all shown benchmark scenarios
one can see a clear resonance behavior. The sensitivity increases when the mediator can
be produced resonantly, i.e. at MZ

′ ∼ 3 TeV. A larger decay width of the Z ′ reduces the
sensitivity. For an integrated luminosity L = 1 ab−1 and ΓZ′ = 0.1MZ

′ it is possible to test
the parameter space |ϵµµττ | ≳ 1.5× 10−4 in the resonance region. Towards larger mediator
masses MZ

′ >
√
s, the NSI bound becomes a constant indicating that the EFT regime

started.

General considerations allow to put further constraints on the viable parameter space.
For example, the total decay width of the Z ′ (ΓZ′) has to be larger than or equal to the
sum of partial decay widths which leads to the constraint ΓZ′ ≥ ΓZ′→µµ + ΓZ′→νν . Using
expressions for the partial decay widths of a Z ′ boson given in [74], we deduce that

ΓZ′ ≥
MZ

′

24π

[︃
(gν)

2 +
(︂
gLµ

)︂2
+
(︂
gRµ

)︂2]︃
≥
MZ

′

24π
2
√
2gνg

L
µ . (6.8)

This approximation is valid for the decay to one neutrino flavor and ignores phase space
factors of order O(m2

f/M
2
Z

′) with f = ν, µ. Finally, from the definition in Eq. (6.4) we find
the consistency condition

|ϵµµττ | ≤
3π

GFM
2
Z

′

ΓZ′

MZ
′
, (6.9)

for a specific ratio ΓZ′/MZ
′ . In Figure 6.4 we illustrate this constraint by red solid and

dashed lines for the two respective cases ΓZ′ = 0.1MZ
′ and ΓZ′ = 0.3MZ

′ . For comparison,
we also displayed the perturbativity bound where gνg

L
µ = 2π by a black solid line.

In general, Z ′ couplings to muons do not have to be vector-like. Therefore we dismiss
this assumption and take arbitrary values for gLµ and gRµ , while we fix MZ

′ = 1 TeV.
The projected sensitivity in the ϵµµ(V,LL)ττ − ϵµµ(V,LR)

ττ plane is shown in the lower part of
Figure 6.4. From these results we see that constraints for a vector-like theory with gLµ = gRµ

are as stringent as for models with axial-vector couplings gLµ = −gRµ .
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Figure 6.4 Projected sensitivity at 95% CL for NSI parameters at a muon collider with
√
s = 3 TeV

and L = 1, 10 ab−1 in a toy Z ′ model. Upper panel: Sensitivity in the parameter plane MZ
′ vs.

|ϵµµττ | for a vector-like muon coupling and decay widths ΓZ
′ = 0.1(0.3)MZ

′ . Lower panel: Degeneracy
in the ϵµµ(V,LL)

ττ vs. ϵµµ(V,LR)
ττ plane with MZ

′ = 1 TeV. Published in [2].

6.3 Probing UV complete models

The previously considered toy model gave us a first impression on the sensitivity reach of
a muon collider to test NSIs. However, UV complete models can lead to more complex
constraints, as left-handed charged leptons and neutrinos are part of the same doublet
representation of SU(2)L. In the following we examine three particular UV complete
models which can lead to NSIs and compare the sensitivity reach of a muon collider to
other existing experiments. Figure 6.1 summarizes the three completions which we consider
in the next sections.
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6.3.1 Gauged Lµ − Lτ model

As a start, we investigate the UV complete theory where the difference of individual lepton
numbers Lµ−Lτ is gauged. The lepton numbers Lµ and Lτ belong to the accidental global
U(1) symmetries of the SM and their difference can be gauged in an anomaly free way
which makes this SM extension particularly well motivated [270,271]. At the same time,
it delivers possible solutions to the anomalous magnetic moment of the muon and to the
Hubble tension [272–275]. Promoting U(1)Lµ−Lτ

to a local gauge symmetry, gives rise to a
Z ′ boson. Its interactions with fermions can be described by the Lagrangian

L ⊃ gµτ
[︁
Lµγ

µLµ + µRγ
µµR − Lτγ

µLτ − τRγ
µτR

]︁
Z ′
µ , (6.10)

where we defined the left-handed SU(2)L lepton doublets Lµ ≡
(︁
νµL, µL

)︁T , Lτ ≡ (ντL, τL)
T

and the gauge coupling gµτ . The analysis of NSIs in this model is done in a similar way
as described in Section 6.2 and we present our results in Figure 6.5. Here, the 95% CL
exclusion curves in the gµτ −MZ

′ parameter plane are given for a benchmark scenario
of a

√
s = 3 TeV muon collider with L = 1, 10 ab−1 integrated luminosity. To simplify

the comparison with NSI parameters, black dotted lines represent isocontours of the NSI
coupling

ϵµµττ ≡
g2µτ

2
√
2GFM

2
Z

′
. (6.11)

The regions in parameter space that explain the Hubble tension (with ∆Neff ≃ 0.2−0.5) [275]
and the anomalous muon magnetic moment (at 2σ) [274,276] are shaded in green and red
color, respectively. Numerous other experimental constraints are summarized by a grey line.
These bounds include four-muon searches at BaBar and CMS [277,278] which reside in the
mass range 200 MeV to 70 GeV. Limits from neutrino trident production at CCFR [279]
that gives the most serious constraint for MZ

′ > 70 GeV and restrictions in the low mass
window from Neff in cosmological observations [275] and white Dwarf cooling [280].

With an integrated luminosity of L = 1 ab−1, the monophoton search at a muon
collider is most sensitive at a mediator mass MZ

′ ∼ 3 TeV. There one can test the region
|ϵµµττ | ≳ 1.1× 10−4. Our result shows that the monophoton search at a muon collider could
especially test yet unexplored parameter space in the high mass range of the gauged Lµ−Lτ
model, whereas for MZ

′ ≤ 100 GeV it cannot compete with other experimental bounds.
Additionally, we note that the monophoton signal is a less sensitive probe compared to
other possible signatures of this model which could also be tested at a muon collider such
as µ+µ− → ffγ, where f = µ, τ [219]. Still, the monophoton signal would give a direct
probe of the coupling to neutrinos in a laboratory experiment.

6.3.2 Neutral scalar extension

Neutral scalar extensions do not only offer an explanation for the difference between the
measured and predicted value of the muon magnetic moment. They also approach the
Hubble tension by large neutrino self-interactions in a certain range of parameter space.
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Figure 6.5 Projected sensitivity to NSIs for a
√
s = 3 TeV muon collider with integrated

luminosity L = 1, 10 ab−1 in the gauged Lµ − Lτ model. The limits are displayed in the gauge
coupling vs. gauge boson mass plane as blue solid and blue dashed line. Further experimental
bounds are summarized by the grey line. Black dots indicate lines of equal NSI parameter |ϵµµττ |.
Published in [2].

In this section, we consider a scalar field φ which couples to neutrinos and muons
through the following Yukawa interaction

− LY ⊃
∑︂
αβ

(yν)αβναPLνβφ+ yµµPLµφ+ h.c. , (6.12)

where the strength of the interaction is determined by the independent couplings (yν)αβ and
yµ. We note that such a type of coupling to muons can in general arise in two-Higgs-doublet
models and for a certain range of parameters it addresses the measured discrepancy in
(g − 2)µ as described in [281]. On the other hand, the Yukawa coupling to neutrinos may
occur for example in type II seesaw extensions [65,67,68,282]. The mixing of the charge
zero component of an SU(2)L triplet scalar with the neutral part of a second Higgs doublet
would then result in the Lagrangian given above. Since we deal with Yukawa couplings,
their values can in principle be arbitrary and unrelated to each other. However, in this
study we will proceed with the simplifying assumptions that the scalar φ solely couples to
ντ neutrinos and we fix the relation (yν)ττ/10 = yµ. Searches for a monophoton signal plus
missing transverse energy will be especially important to test models where the coupling
to charged leptons is suppressed with respect to the coupling to neutrinos, which justifies
our previous parameter choice. With this selection of parameters, we present the 95 %
CL exclusion plot in the parameter space Mφ vs. (yν)ττ in Figure 6.6 for a center-of-mass
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energy
√
s = 3 TeV. For a better comparison, we indicate the contour of constant NSI

parameter

ϵµµττ ≡
(yν)ττyµ

2
√
2GFM

2
φ

, (6.13)

by a black dotted line. As it was the case for the previously analyzed s-channel processes,
the highest sensitivity is achieved for a mediator mass of Mφ ≈ 3 TeV where one can test
the NSI coupling down to |ϵµµττ | ≳ 1.3× 10−4. Interestingly, a muon collider can test yet
unconstrained regions of the parameter space where Mφ ≳ 90 GeV. This also includes
untested areas that could explain the anomalous (g − 2)µ [281] at 2σ (red region). Other
experiments set further limits to the parameter space as for example BaBar which searches
for the process e+e− → µ+µ−φ with a subsequent decay φ → µ+µ− in the mass range
Mφ > 200 MeV [278,283] (orange domain). Regions excluded by CMS search for four-muon
events [277, 283] and Z invisible decay width [284] are displayed as pink and grey area.
Contrary to the previous Z ′ model, limits from neutrino trident production do not exists
for tau neutrinos. Even though the monophoton search at a muon collider can probe parts
of the parameters space that would explain the Hubble tension through large neutrino
self-interactions (green area) [285], it is not competitive with Z to invisible decay searches.
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Figure 6.6 Sensitivity of a
√
s = 3 TeV muon collider to NSIs at the 95 % CL in the neutral

scalar extension of the SM. Limits are shown in terms of the Yukawa coupling and scalar mass
for the integrated luminosities L = 1, 10 ab−1 (blue solid and blue dashed line). For comparison
we display existing experimental constraints and further details can be found in the text. Red
and green areas indicate the parameter space that could resolve (g − 2)µ and the Hubble tension.
Dotted lines denote isocontours for the parameter |ϵµµττ |. Published in [2].
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6.3.3 Zee model

In a final step, we focus on the Zee model [70] that is a representative of a singly charged
scalar extension of the SM. The special feature of the Zee model is that is generates
Majorana masses for neutrinos via a one-loop radiative process and hence can give an
explanation of their small masses compared to charged leptons. In the Zee model, the scalar
sector encompasses two Higgs doublets H1,2 ∼ (1, 2, 1/2) and a charged scalar η+ ∼ (1, 1, 1)

with the gauge charges under the SM symmetry group SU(3)C × SU(2)L ×U(1)Y given in
brackets.3 This model is particularly interesting as it does not need an extension of the
fermionic field content. We will shortly summarize the main features of the Zee model here,
and refer the reader to [286] for a more detailed analysis of this model. In the following, it
will be most convenient to work in the Higgs basis [287] where only one of the two Higgs
doublets acquires a VEV. Let us denote denote this scalar by H1 and its VEV in the neutral
component is given by v. In this basis, the possible Yukawa couplings are

− LY ⊃ ỸαβLαH̃1ℓ
c
βϵ+ YαβLαH̃2ℓ

c
βϵ+ h.c. , (6.14)

where we use the notation ℓcα for the left-handed antilepton field with the flavor index α
and H̃1,2 = iσ2H

∗
1,2. The Yukawa couplings are represented by 3× 3 matrices Ỹαβ , Yαβ . On

top of that, the charged singlet scalar η+ is coupled to the lepton doublet according to

− LY ⊃ fαβLαϵLβη
+ + h.c. . (6.15)

The Levi-Civita tensor ϵ acts here on the SU(2)L indices that are suppressed in our notation
and fαβ is an anti-symmetric Yukawa matrix whose values are forced to be small due to
constarints from lepton flavor violation. Completed by a trilinear term in the scalar potential

− V ⊃ µH1ϵH2η
− + h.c. , (6.16)

this model generates radiative neutrino masses as shown in Figure 6.7. The physical
spectrum contains two neutral charged scalars h and H that are CP-even, two charged
scalar h+ and H+, and a CP-odd scalar A.

In the charged lepton mass basis where the mass matrix is diagonal, i.e. mE =

diag
(︁
me, mµ, mτ

)︁
, the neutrino mass matrix is given by

Mν = a0

(︂
fmEY − Y TmEf

)︂
, (6.17)

where we defined

a0 =
sin 2ω

16π2
log

(︄
M2
h
+

M2
H

+

)︄
, sin 2ω =

√
2vµ

M2
h
+ −M2

H
+

. (6.18)

3Note that we use here a convention Q = T3L + Y for the electric charge.
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Note that ω represents the mixing angle between charged scalars. Hence, the eigenstates of
the mass basis h+ and H+ are defined as

h+ = cosωη+ + sinωH+
2 ,

H+ = − sinωη+ + cosωH+
2 .

(6.19)

In this new basis, the NSI strength is determined by the Yukawa couplings

− LY ⊃ Yαβ

(︂
h− sinω +H− cosω

)︂
ναℓ

c
β + h.c. (6.20)

and in our case we have specifically β = µ such that the second column of Y provides
the couplings of muons to να. Eventually, integrating out the charged scalars leads to the
effective NSI parameter

ϵµµαβ =
YαµY

⋆
βµ

4
√
2GF

(︄
sin2 ω

M2
h
+

+
cos2 ω

M2
H

+

)︄
. (6.21)

In principle, the Yukawa couplings proportional to the matrix f can also lead to NSIs,
however these effects have to be small since the matrix entries of f are seriously constrained
by lepton flavor violating observables. We also see that for the case M

h
+ ≪ M

H
+ , the

NSI coupling ϵµµαβ can be dominated by the contribution of the lighter scalar. To simplify
the following analysis we consider that h+ mainly couples to tau neutrinos and therefore
Yτµ ̸= 0, while we neglect other couplings leading to NSIs with muons for the moment, i.e.
Yeµ = Yµµ = 0.

Within this setup we present the sensitivity of a high energy muon collider to probe NSIs
at 95 % CL via the monophoton signal in Figure 6.8. We show the constraints as a function
of the product |Yτµ| sinω, which is the effective Yukawa coupling to the mass eigenstate
h+ (compare to Eq. (6.20)). Our result shows the two respective integrated luminosities
L = 1, 10 ab−1 as solid and dashed blue lines. Absolute values of the NSI parameter
|ϵµµττ | caused by h+ are represented by dashed black lines. In contrast to the previously

Figure 6.7 Feynman diagram that generates Majorana neutrino mass at one-loop in the Zee
model.
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Figure 6.8 Projected sensitivity of a
√
s = 3 TeV muon collider to NSI parameters at 95 % CL

in the Zee model. We display the results for L = 1, 10 ab−1 in the coupling against mediator mass
plane. For comparison, experimental bounds from LEP and LHC searches for singly charged scalars
are shown as well. Black lines represent contours of constant NSI coefficient |ϵµµττ |. Published in [2].

considered cases, the sensitivity curve does not show a resonance behavior because the
process occurs via the t-channel channel as shown in Figure 6.1. This leads to a completely
different behavior and the largest sensitivity is obtained for small mediator masses. However,
other experiments constrain M

h
+ from below. For instance, LEP excludes singly charged

scalars with masses below 95 GeV [286] and the ATLAS experiment at LHC even puts the
more stringent bound M

h
+ > 219 GeV due to smuon searches [288]. From Figure 6.8 we

deduce that a muon collider can test scenarios with |Yτµ| sinω ≥ 0.45 at a mediator mass
M
h
+ ≈ 220 GeV which in turn corresponds to NSI parameters |ϵµµττ | ≳ 7%. Finally, we

point out that the result shown in Figure 6.8 can be generalized to other SM extensions
including singly charged scalars such as 2HDMs [289] or other radiative mass models for
neutrinos [286].

Of course, realistic patterns of neutrino masses and mixing demand that more couplings
besides Yτµ are non-zero. In order to prove that the Zee model can reproduce the observed
squared neutrino mass differences and mixing angles, while at the same time giving rise to
large NSIs, we give a benchmark scenario here. For simplicity, we assume that all Yukawa
couplings are real and a normal mass ordering. Then, we find that the couplings

Yαβ =

⎛⎜⎝ 0. 0. −0.00378

6.747× 10−6 0. −3.219× 10−6

0.000115 2.219 −0.143

⎞⎟⎠ (6.22)
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a0f =

⎛⎜⎝ 0. −0.0000234 −3.011× 10−12

0.0000234 0. 2.843× 10−12

3.011× 10−12 −2.843× 10−12 0.

⎞⎟⎠ (6.23)

produce the neutrino mass splittings ∆m2
21 = 7.22× 10−5eV2, ∆m2

31 = 2.449× 10−3eV2

and mixing angles θ12 = 33.04◦, θ23 = 51.89◦ and θ13 = 8.88◦ that agree within 3σ with
current experimental best fit values [30]. In the case where charged scalar masses are given
by M

H
+ ≈ MH ≈ MA ≈ 2 TeV and M

h
+ ≈ 220 GeV with a mixing angle sinω ≈ 0.35,

NSIs can be as large as ϵµµ(h
+
)

ττ ≈ 19% which is within the testable regime of a muon collider.
In an explicit scenario, there are more experimental constraints to consider apart from
the ones already shown in Figure 6.8. Especially lepton flavor violating decays that occur
due to new scalar couplings can impose serious constraints. Nevertheless, the structure of
Yukawa matrices Y and f shows us that charged lepton flavor violating decays would be
suppressed if there was only a single large entry in a row. Thus, the large coupling Yτµ
constrains the other couplings of the row to be small. Note however that it is not possible
to set them all to zero in order to realize the observed neutrino oscillation data. For our
benchmark model, the radiative decay τ → µγ can occur via charged scalar exchange an
has an approximate branching ratio of [286]

Br(τ → µγ) ≃ 1

Γτ

α

4

|YττY
∗
τµ|

2

(16π2)2
m5
τ

144

(︄
sin2 ω

M
h
+

+
cos2 ω

M
H

+

)︄2

≃ 3.0× 10−9 ,

(6.24)

which is in agreement with the PDG bound BR(τ → µγ) < 4.4× 10−8 [31]. We examined
similar decays of the category ℓα → ℓβγ and ℓα → ℓβℓγℓδ for our benchmark scenario.
While all are in agreement with current limits, Br(τ → µγ) is closest to future experimental
searches. On top of that, a number of other constraints arises from new muon and tau
decay channels to two neutrinos and a charged lepton. The branching ratio for the lepton
flavor violating decay µ− → e−νµντ is for example given by

Br(µ− → e−νµντ ) ≃
1

Γµ

2

6144π3
m5
µ

M4
h
+

(︁
sinω cosωYτµfµe

)︁2
≃ 1.7× 10−7 .

(6.25)

However, the only current constraint on LFV muon decays to two neutrinos quoted by
the PDG is Br(µ− → e−νµνe) < 1.2% [31] which constitutes a rather soft limit. For more
details on the anomalous decay of muons we refer the reader to [290]. Our benchmark
point contributes to the effective operator Leff = 2

√
2GF g

S
RR(ναLeR)(µRνβL) which is

constrained by global fits to muon decay parameters.4 If the lighter scalar h+ mediates the
decay, we will find gSRR = YαeY

∗
βµ sin

2 ω/(2
√
2GFM

2
h
+). In our case this is also below the

4For the notation used here see [31].
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limit |gSRR| < 0.035 [31]. We consider similar constraints for tau decay parameters and find
no conflict with existing limits. Our benchmark points also align with constraints coming
from the electroweak T parameter, Higgs observables and charge-breaking minima, where
more details are given in [286].

The preceding discussion shows that large NSIs can in principle occur in the Zee model.
Our benchmark point demonstrates that there is some parameter space which evades all
current bounds. The search for NSIs at a muon collider will therefore be able to test
important parts of the parameter space of this model.
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Chapter 7

Summary and conclusion

In its current form, the flavor sector of the Standard Model leaves us with many puzzling
questions. The majority of parameters that describe the Standard Model are needed
to characterize the emerging fermion masses and mixings, but their diverse scales and
peculiar patterns remain unexplained. In addition, neutrinos are massless in this description
manifesting that the Standard Model in its present state is not complete. A particularly
intriguing class of solutions explains the hierarchical structure of fermion masses from
radiative quantum corrections, and a number of proposals implement this idea by means of
new scalar interactions. In this thesis, we have investigated the appealing and economical
alternative that gauge interactions are responsible for radiative corrections, eventually
leading to a hierarchy in fermion masses. Moreover, we examined how small neutrino
masses can be incorporated into this scheme.

In Chapter 4, we have investigated a U(1)X Standard Model extension where fermion
masses arise at the tree level or from one-loop radiative corrections. Consequently, the
presence of different mass scales could be naturally explained. The basic ingredient of
this model are new generations of vector-like up-type and down-type quarks (T, B) and
vector-like leptons (N, E). Gauge charges are defined in such a way that a generalized
seesaw mechanism occurs when two scalar fields obtain a VEV and the gauge symmetry
is spontaneously broken to SU(3)C × U(1)EM. The seesaw mechanism provides tree level
masses for third and second generation fermions, which approximately scale with the
Yukawa coupling y and vector-like fermion mass M according to ∼ y2vEW vS/M . Flavor
non-diagonal interactions of a Z ′ gauge boson are the origin of one-loop radiative corrections
that provide mass for the first generation fermions. Hence, their masses are suppressed by
an additional factor 1/(16π2) and therefore naturally small (see illustration in Figure 4.1).
Our idea can be employed for up- and down-type quarks as well as charged leptons and
neutrinos. Interestingly, due to the particle representation and symmetries, neutrinos carry
Dirac characteristic in our model.

We have given explicit benchmark scenarios to prove that fermion masses and mixing
patterns can be correctly mapped with the parameters of our framework (see results in
Table 4.2). Vector-like quark and charged lepton masses of several tens of TeV together
with Yukawa couplings O(10−2) - O(1) correctly reproduce fermion masses in these sectors

93



CHAPTER 7. SUMMARY AND CONCLUSION

for M ′
Z = 300 TeV. Realistic neutrino masses require moderately smaller Yukawa couplings

of O(10−4) in connection with larger vector-like fermion masses MN ∼ O(107 TeV). Even
though there is still an inherent hierarchy in the Yukawa couplings, this constitutes a
significant improvement compared with the twelve orders of magnitude that separate the
neutrino mass scale from the top quark. The mechanism explains the difference in fermion
masses by a combination of loop suppression and slightly hierarchical heavy new physics,
while the size of mixing parameters in the CKM and PMNS matrix remains unexplained.
Nevertheless, the two benchmark scenarios have demonstrated that mixing in agreement
with observations can be achieved for appropriately chosen parameters.

On the phenomenological side, many interesting consequences follow from our model.
We have analyzed the impact of the proposed new physics on flavor violating observables.
From our analysis we found that current experimental bounds on charged lepton decays
li → ljγ are close to the value predicted in our theory. Also observations of neutral meson

oscillations, especially that of B0
d −B

0
d , allows to test this model in future. If the vector-like

masses were at the scale of a few TeV, signals from heavy vector-like fermions could also be
found through decays to multi-lepton final states in association with jets or missing energy
at future collider experiments.

The one-loop suppression nicely explains the comparatively small first generation masses.
However, the model presented in Chapter 4 is not completely satisfying in the sense that
it does not describe the mass difference between second and third generation fermions
by a radiative process. In Chapter 5 of this work, we have demonstrated that the mass
differences between all three fermion generations can be attributed to tree level, one-loop
and two-loop effects within a left-right symmetric model. To realize this, we looked at a
variant of the left-right symmetric model featuring two scalar doublets χL, χR and one scalar
singlet η. Furthermore, we extended the fermion sector by different types of new fermions
(T, B, N, E) and (T ′, B′, N ′, E′). Some of them are equipped with vector-like masses,
to implement a double seesaw texture after spontaneous symmetry breaking (see particle
content in Table 5.1). The third generation fermions gain a tree level mass from the seesaw
with heavy vector-like fermions, while the second and first generation stay massless at this
level. Corrections mediated by neutral gauge bosons ZL/R allow that second generation
fermions pick up mass at the one-loop level. The exchange of charged gauge bosons WL/R

creates first generation masses at two-loop level (see Figure 5.1). Our setup constitutes
a complete framework where the rank of the fermion mass matrix is increased by one at
each loop level and the double seesaw structure is crucial for this to work. The presence
of a charged gauge boson WR, which interacts with right-handed fermion doublets, is an
elementary difference to the model presented in Chapter 4. Through its mixing with the
WL boson (at one-loop), it allows to contribute radiatively to fermion masses.

Our mechanism is applicable not only for quarks but also for charged leptons, whereas
small neutrino masses require an individual treatment. While loop factors account for a
hierarchy between generations, the mass differences between the tau lepton and the bottom
and top quark arises from a mild inverted mass hierarchy of the respective vector-like
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partners MT < MB < ME by means of the seesaw relation. It is also interesting to note
that two-loop radiative corrections from charged gauge boson exchange exhibit a cross
correlation between isospin partners. The mass of the first generation up quark receives
therefore contributions from the masses of second and third generation down quarks. The
other way around, the down quark mass is proportional to second and third generation up
quark mass insertions. This could point towards a possible explanation why mu < md for
the first generation, even though the opposite is true for quarks of the second and third
generation. The charge current WL/R interaction also connects the electron mass to the
neutrino sector and vice versa (see Figure 5.4). In this way, the Dirac masses of both
sectors are related to each other and expected to exist at roughly the same scales. Sub-eV
active neutrino masses therefore necessitates further lepton number violating operators. A
major advantage of the presented mechanism is the minimal scalar sector. Loop corrections
creating first and second generation masses arise mainly from gauge boson contributions
and the model includes only those scalars essential for spontaneous symmetry breaking.

We gave explicit benchmark points demonstrating that quark masses and mixings as
well as charged lepton masses comply with experimental data (see results presented in
Table 5.3). For a low scale breaking of SU(2)R with MWR

≃ 7 TeV, vector-like fermion
masses of several tens of TeV are needed and all Yukawa couplings are O(1). We highlight
that the absolute scale of new physics is not predetermined by our mechanism though.
Both, symmetry breaking scales as well as vector-like masses can be at higher values as long
as their relative size is retained. The heavy vector-like neutrinos are complete gauge singlets
in our framework and therefore allow to introduce lepton number violating operators. In
the tree level approximation, we have shown that high scale lepton number violation leads
to a light active neutrino state (see Figure 5.5). A full study of the neutrino sector which
takes into account all parameter dependencies and radiative corrections up to two-loop
level is left for future investigations.

Our mechanism, as it is right now, cannot explain mixing angles though it would
be worth to explore in future whether new symmetries relating the up and down quark
sector could shed further light on the mixing behavior. Furthermore, our model is close
to left-right-symmetric models which provide an axion-free solution to the strong CP
problem [56,123]. Since parity is a symmetry of the tree level Lagrangian, contributions to
the strong CP parameter θ can only arise at higher loop order. At one-loop, first generation
quarks are massless in our case and a strong CP phase is unphysical. Only at two-loop,
when all quarks are massive, θ can be non-zero and it would be an interesting subject for
upcoming studies to see whether it agrees with current experimental bounds.

Eventually probing the huge variety of Standard Model extensions is critical to improve
our understanding of nature. Among the many unresolved questions, the existence of
massive neutrinos is one of the clearest signs for physics beyond the Standard Model. Since
mechanisms that accommodate massive neutrinos usually involve new interactions, the
probe of neutrino non-standard interactions can be an efficient tool to falsify theories.
In Chapter 6 of this work, we have demonstrated that the monophoton signal from the
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scattering process µ+µ− → ννγ can be used to probe neutrino non-standard interactions
at a high energy muon collider. In our study we have explicitly considered muonic forces,
i.e. four-fermion interactions of the type µµνν. This interaction is less constrained than
neutrino non-standard interactions with first generation quarks and charged leptons, but
equally compelling in consideration of recent measurement of the muon magnetic moment.

In our study, we have considered explicit force mediators that lead to neutrino non-
standard interactions and carried out a Monte Carlo simulation to analyze the signal
µ+µ− → γ + /ET at a muon collider with center of mass energy

√
s = 3 TeV. As representa-

tives, we investigated three extensions of the Standard Model. First, the gauged Lµ − Lτ

model, second a model featuring a neutral scalar and third, Zee’s radiative neutrino mass
model. We presented the projected sensitivity to the NSI strength ϵµµαβ at 95% confidence
level for the integrated luminosities L = 1, 10 ab−1 and compare them with other ex-
perimental constraints (see Figs. 6.5, 6.6 and 6.8). For the s-channel processes, highest
sensitivities are achieved when the mediator is resonantly produced and our study has
shown that a muon collider can probe NSI strengths as small as |ϵµµττ | ≳ 1.5× 10−4. We
highlight that the search for NSIs at a muon collider can provide complementary insights,
especially when the new physics couplings to neutrinos exceed those to muons. For the
neutral scalar extension, we found that parts of the parameter space can be probed which
allow to explain the anomalous (g − 2)µ. For the Zee model, we demonstrated that a
realistic neutrino mass spectrum can lead to NSI strengths ϵµµττ ≈ 19%, which are testable
in future. A high energy muon collider therefore shows great potential to test interesting
parameter space of different models and hopefully helps us to gain further insights in new
physics related to neutrinos.

This thesis demonstrates that hierarchical fermion masses can naturally arise from
quantum loop corrections in both Abelian and non-Abelian gauge extensions of the Standard
Model. New gauge interactions drive these corrections, and the scalar sector remains minimal,
containing only fields necessary for symmetry breaking. Notably, no strongly hierarchical
Yukawa couplings are required to explain quark and charged lepton masses, while neutrino
masses can be incorporated straightforwardly. Our work provides a roadmap for addressing
flavor mass hierarchies through radiative mechanisms, with potential extensions to explain
mixing angles and promising testable signals of flavor violation in future experiments.
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Appendix A

Neutral meson mixing

The Hamiltonian for ∆F = 2 processes is generally given by

H∆F=2
eff =

5∑︂
i=1

CiQi +

3∑︂
i=1

C̃iQ̃i . (A.1)

The Wilson coefficients are indicated by Ci and belong to a basis of four-fermion operators

Q1 = qαiLγµq
α
jLq

β
iLγ

µqβjL , Q2 = qαiRq
α
jLq

β
iRq

β
jL, Q3 = qαiRq

β
jLq

β
iRq

α
jL ,

Q4 = qαiRq
α
jLq

β
iLq

β
jR , Q5 = qαiRq

β
jLq

β
iLq

α
jR ,

(A.2)

where α, β are color indices and i, j = 1, 2, 3 indicate the generation. The corresponding
operators Q̃i are obtained from an interchange of chirality L↔ R.

As we obtain the Wilson coefficients by integrating out new physics at a high scale, it
is necessary to consider their renormalization group running to the energy scale that is
relevant for hadron physics. The running from the high scale MH to the low scale µ can be
described by the method of magic numbers according to [208]

Cr(µ) =
∑︂
i

∑︂
s

(b
(r,s)
i + ηc

(r,s)
i )ηaiCs(MH) . (A.3)

While η = αs(MH)/αs(mt) depicts the running of the strong coupling, the numbers b(r,s)i ,
c
(r,s)
i and ai that enter the calculation are called magic numbers and are given for each

meson in the following.
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A.1 B-mesons

The magic numbers for B-meson mixing are taken from [208] and are given by

b
(1,1)
i = (0.865, 0, 0, 0, 0) , c

(1,1)
i = (−0.017, 0, 0, 0, 0)

b
(2,2)
i = (0, 1.879, 0.012, 0, 0) , c

(2,2)
i = (0, −0.18, −0.003, 0 , 0)

b
(3,3)
i = (0, 0.011, 0.54, 0, 0) , c

(3,3)
i = (0, 0, 0.028, 0 , 0)

b
(4,4)
i = (0, 0, 0, 2.87, 0) , c

(4,4)
i = (0, 0, 0, −0.48, 0.005)

b
(5,5)
i = (0, 0, 0, 0.29, 0.863) , c

(5,5)
i = (0, 0, 0, −0.007, 0.019)

b
(2,3)
i = (0, −0.493, 0.18, 0, 0) , c

(2,3)
i = (0, −0.014, 0.008, 0, 0)

b
(3,2)
i = (0, −0.044, 0.035, 0, 0) , c

(3,2)
i = (0, 0.005, −0.012, 0, 0)

b
(4,5)
i = (0, 0, 0, 0.961, −0.22) , c

(4,5)
i = (0, 0, 0, −0.25, −0.006)

b
(5,4)
i = (0, 0, 0, 0.09, 0) , c

(5,4)
i = (0, 0, 0, −0.013, −0.016)

and
ai = (0.286, −0.692, 0.787, −1.143, 0.143) .

For the Higgs contributions, we have MH = mϕ = 125.1 GeV and the operators Q2 and Q4

are involved. With the help of Eq. (A.3) we find at µ = mb:

C2(µ) = 1.650 · C2(MH) , C3(µ) = −0.014 · C2(MH) ,

C4(µ) = 2.259 · C4(MH) , C5(µ) = 0.056 · C4(MH) .
(A.4)

Evidently, the operators Q3 and Q5 originate from operator mixing, however their contri-
bution is rather small and will therefore not be considered. The correction factors needed
in the calculation of Eq. (4.59) can be read off as η2(µ) = 1.650 and η4(µ) = 2.259.

Equally, for the Z ′ induced operators we have MH =MZ
′ = 300 TeV and the operators

Q1 and Q4 contribute at this scale. The evolution to µ yields

C1(µ) = 0.713 · C1(MH) , C4(µ) = 5.446 · C4(MH) ,

C5(µ) =0.165 · C4(MH) .
(A.5)

We therefore deduce η1(µ) = 0.713, η4(µ) = 5.446 while the operator contribution Q5 is
negligible and will not be considered in the calculation.
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A.2 K-mesons

The procedure for K-mesons is similar, but individual magic numbers have to be used. For
our calculation, we take the magic numbers from [206] that are given by

b
(1,1)
i = (0.82, 0, 0, 0, 0) , c

(1,1)
i = (−0.016, 0, 0, 0, 0)

b
(2,2)
i = (0, 2.4, 0.011, 0, 0) , c

(2,2)
i = (0, −0.23, −0.002, 0 , 0)

b
(3,3)
i = (0, 0.0049, 0.43, 0, 0) , c

(3,3)
i = (0, 0.00021, 0.023, 0, 0)

b
(4,4)
i = (0, 0, 0, 4.4, 0) , c

(4,4)
i = (0, 0, 0, −0.68, 0.0055)

b
(5,5)
i = (0, 0, 0, 0.061, 0.82) , c

(5,5)
i = (0, 0, 0, −0.013, 0.018)

b
(2,3)
i = (0, −0.63, 0.17, 0, 0) , c

(2,3)
i = (0, −0.018, 0.0049, 0, 0)

b
(3,2)
i = (0, −0.019, 0.028, 0, 0) , c

(3,2)
i = (0, 0.0028, −0.0093, 0, 0)

b
(4,5)
i = (0, 0, 0, 1.5, −0.17) , c

(4,5)
i = (0, 0, 0, −0.35, −0.0062)

b
(5,4)
i = (0, 0, 0, 0.18, 0) , c

(5,4)
i = (0, 0, 0, −0.026, −0.016)

and
ai = (0.29,−0.69, 0.79,−1.1, 0.14).

For the K meson we evaluate the Wilson coefficients at µ = 2 GeV and find for the Higgs
induced operators

C2(µ) = 2.210 · C2(MH) , C3(µ) = 0.003 · C2(MH) ,

C4(µ) = 3.523 · C4(MH) , C5(µ) = 0.1289 · C4(MH) ,
(A.6)

from which we get the result η2(µ) = 2.210 and η4(µ) = 3.523.

For the Z ′ induced operators our result is

C1(µ) = 0.674 · C1(MH) , C4(µ) = 8.181 · C4(MH) ,

C5(µ) =0.329 · C4(MH) ,
(A.7)

and therefore η1(µ) = 0.674 and η4(µ) = 8.181.
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A.3 D-mesons

Finally, for the D-meson we use the magic numbers [209]

b
(1,1)
i = (0.837, 0, 0, 0, 0) , c

(1,1)
i = (−0.016, 0, 0, 0, 0)

b
(2,2)
i = (0, 2.163, 0.012, 0, 0) , c

(2,2)
i = (0, −0.2, −0.002, 0 , 0)

b
(3,3)
i = (0, 0.008, 0.474, 0, 0) , c

(3,3)
i = (0, 0.0, 0.025, 0, 0)

b
(4,4)
i = (0, 0, 0, 3.63, 0) , c

(4,4)
i = (0, 0, 0, −0.56, 0.006)

b
(5,5)
i = (0, 0, 0, 0.045, 0.839) , c

(5,5)
i = (0, 0, 0, −0.009, 0.018)

b
(2,3)
i = (0, −0.567, 0.176, 0, 0) , c

(2,3)
i = (0, −0.016, 0.006, 0, 0)

b
(3,2)
i = (0, −0.032, 0.031, 0, 0) , c

(3,2)
i = (0, 0.004, −0.01, 0, 0)

b
(4,5)
i = (0, 0, 0, 1.21, −0.19) , c

(4,5)
i = (0, 0, 0, −0.29, −0.006)

b
(5,4)
i = (0, 0, 0, 0.14, 0) , c

(5,4)
i = (0, 0, 0, −0.019, −0.016)

and
ai = (0.286,−0.692, 0.787,−1.143, 0.143).

After evolving the Wilson coefficients induced by the Higgs to µ = 2.8 GeV we get

C2(µ) = 1.906 · C2(MH) , C3(µ) = −0.006 · C2(MH) ,

C4(µ) = 2.903 · C4(MH) , C5(µ) = 0.097 · C4(MH) ,
(A.8)

Hence, our final result is η2(µ) = 1.906 and η4(µ) = 2.903.
For the Z ′ we do a similar analysis and get

C1(µ) = 0.690 · C1(MH) , C4(µ) = 6.939 · C4(MH) , C5(µ) = 0.263 · C4(MH) , (A.9)

and as a consequence η1(µ) = 0.690 and η4(µ) = 6.939.
We note that in all considered cases, operators that are induced only by operator mixing

play a secondary role are neglected in our analysis.
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Appendix B

Model details for extended left-right
symmetric model

B.1 Matrix eigenvalues and eigenvectors

By suitable basis rotations, it is possible to transform the Yukawa couplings to a basis
where

ya =

⎛⎜⎝ 0 0

0 a

b c

⎞⎟⎠ (B.1)

and

y1 =

(︄
n1

n2

)︄
(B.2)

In this basis, the eigenvectors and eigenvalues of the tree level matrix M light defined in
Eq. (5.44) are particularly simple. While the eigenvectors are given by

v1 =

(︃
0 ,−−n2b

∗ + n1c
∗

n1a
∗ , 1

)︃T
,

v2 = (1, 0, 0)T ,

v2 =

(︃
0,

an∗1
cn∗1 − bn∗2

, 1

)︃T
,

(B.3)

the corresponding eigenvalues are

e1 = 0 ,

e2 = 0 ,

e3 =
vLvR(−an1a

∗n∗1 + cn2b
∗n∗1 − cn1c

∗n∗1 − bn2b
∗n∗2 + bn1c

∗n∗2)

2(MT2
n1n

∗
1 +MT1

n2n
∗
2)

.

(B.4)
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We confirmed that the eigenvalue equations

M lightvi = ei vi , i = 1, 2, 3 , (B.5)

are fulfilled for all three eigenvalues. Since the number of non-zero eigenvalues determines
the rank of a matrix, M light has rank one. Thus, two fermions stay massless at tree level. By
the same procedure, it is easy to show that the inclusion of one-loop corrections enhances
the matrix rank of M light to two, leaving one fermion massless.

B.2 Fermion interaction

For the calculation of loop diagrams it is important to define the couplings between fermions
and gauge bosons or scalars appropriately. We exemplify our notation for the quark sector
only, since results for leptons can be easily deduced.

When all quarks obtain masses at the two-loop level, a bi-unitary transformation

V u
LM

(2)
u (V u

R )
† = Mdiag

u ≡ diag(mu,mc,mt,mU1
,mU2

,mU3
) ,

V d
LM

(2)
d (V d

R)
† = Mdiag

d ≡ diag(md,ms,mb,mD1
,mD2

,mD3
) .

(B.6)

diagonalizes the mass matrix and provides the mass eigenstates which are defined as

ûL/R = V u
L/RuL/R ,

d̂L/R = V d
L/RdL/R ,

(B.7)

and u, d label the 6× 1 vectors of flavor eigenstates. Transforming the charged current to
the fermion mass basis yields

L ⊃ g√
2
W+
Lµ

[︂
ûγµĝqL(WL)PLd̂

]︂
+ h.c. , (B.8)

where the coupling matrix is defined as the matrix product

ĝqL(WL) = V u
L g

q
L(WL) (V

d
L )

† , (B.9)

and the original coupling in the flavor basis reads

gqL(WL) = diag(1, 1, 1, 0, 0, 0) . (B.10)

Note that gqL(WL) is not proportional to the identity matrix, owing to the fact, that T, T ′

and B, B′ transform as singlets with respect to SU(2)L and SU(2)R. A misalignment
between the mass bases of the up- and down-sector leads to a non-vanishing mixing between
quarks which is characterized by the CKM matrix

UL ≡ ĝqL(WL) . (B.11)
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The left-right symmetric structure of our model ensures, that mixing in the right-handed
sector becomes in principle observable and we therefore define the analog right-handed
mixing matrix by

UR ≡ ĝqR(WR) = V u
Rg

q
R(WR)(V

d
R)

† , (B.12)

where similarly gqR(WR) = diag(1, 1, 1, 0, 0, 0).

Following the diagonalization process of the neutral gauge boson matrix in Section 5.2.3,
we quote here our results for the couplings of the gauge bosons ZL and ZR to up-type
quarks. Note that these states correspond to a basis, where the massless photon is already
identified. The neutral current Lagrangian in the interaction basis is provided by

L ⊃ ZLµuγ
µ [guL(ZL)PL + guR(ZL)PR]u

+ ZRµuγ
µ [guL(ZR)PL + guR(ZR)PR]u ,

(B.13)

The operators appearing in the above expression act diagonally in generation space and
depend on T 3

L and T 3
R, which are the three-components of isospin under SU(2)L and SU(2)R,

and on the electric charge Q of the fermion. They are defined as follows:

guL(ZL) =
g

cw

[︂
T 3
L −Qs2w

]︂
, guR(ZL) =

g

cw

[︂
−Qs2w

]︂
,

guL(ZR) =
gcw√︂
c2w − s2w

[︂
t2w

(︂
T 3
L −Q

)︂]︂
, guR(ZR) =

gcw√︂
c2w − s2w

[︂
T 3
R − t2wQ

]︂
,

(B.14)

and sw is the weak mixing which stems from the mixing with the photon. A transformation
to the mass eigenbasis (Z, Z ′) then gives (compare definition in Eq. (5.28))

L ⊃ gZµuγ
µ [︁cζ{guL(ZL)PL + guR(ZL)PR}+ sζ{g

u
L(ZR)PL + guR(ZR)PR}

]︁
u

+ gZ ′
µuγ

µ [︁−sζ{guL(ZL)PL + guR(ZL)PR}+ cζ{g
u
L(ZR)PL + guR(ZR)PR}

]︁
u .

(B.15)

If we also transform the fermions to the mass eigenbasis, the neutral current interaction
will be given by

L ⊃ gZµûγ
µ
[︂
ĈL(Z)PL + ĈR(Z)PR

]︂
û

+ gZ ′
µûγ

µ
[︂
ĈL(Z

′)PL + ĈR(Z
′)PR

]︂
û

(B.16)

where we used the abbreviations

ĈL(Z) ≡ VLCL(Z)V
†
L ,

ĈR(Z) ≡ VRCR(Z)V
†
R ,

ĈL(Z
′) ≡ VLCL(Z

′)V †
L ,

ĈR(Z
′) ≡ VRCR(Z

′)V †
R ,

(B.17)

103



B.2. FERMION INTERACTION

and we defined

CL(Z) ≡ cζg
u
L(ZL) + sζg

u
L(ZR) ,

CR(Z) ≡ cζg
u
R(ZL) + sζg

u
R(ZR) ,

CL(Z
′) ≡ −sζg

u
L(ZL) + cζg

u
L(ZR) ,

CR(Z
′) ≡ −sζg

u
R(ZL) + cζg

u
R(ZR) .

(B.18)

Clearly, the matrices defined above are not proportional to 1l6×6, as SM fermions and their
vector-like partners have different gauge assignments.

Next we define the couplings between fermions and scalars. Using the expansion from
Eq. (5.13), the interaction Lagrangian involving σL and σR reads

L ⊃ − 1√
2
σLu(YaPR +Y†

aPL)u− 1√
2
σRu(Y

†
aPR +YaPL)u , (B.19)

and the coupling matrix is defined by

Ya ≡

⎛⎜⎝ 03×3 ya 03×1

02×3 02×2 02×1

01×3 01×2 01×1

⎞⎟⎠ . (B.20)

Sometimes it is more convenient to work in the scalar mass eigenbasis (h, H). Then, using
the transformation properties from Eq. (5.17), we obtain

L ⊃ − 1√
2
hu(

(︂
cξYa + sξY

†
a

)︂
PR +

(︂
cξY

†
a + sξYa

)︂
PL)u

− 1√
2
Hu(

(︂
cξY

†
a − sξYa

)︂
PR +

(︂
cξYa − sξY

†
a

)︂
PL)u .

(B.21)

A further rotation to the fermion mass eigenstates results in

L ⊃ − 1√
2
hû(VL

(︂
cξYa + sξY

†
a

)︂
V †
RPR + VR

(︂
cξY

†
a + sξYa

)︂
V †
LPL)û

− 1√
2
Hû(VL

(︂
cξY

†
a − sξYa

)︂
V †
RPR + VR

(︂
cξYa − sξY

†
a

)︂
V †
LPL)û ,

(B.22)

which we write in short hand notation as

L ⊃ − 1√
2
hû(Ĉ(h)PR + Ĉ†(h)PL)û

− 1√
2
Hû(Ĉ(H)PR + Ĉ†(H)PL)û ,

(B.23)

with the couplings defined by

C(h) =
[︂
cξYa + sξY

†
a

]︂
,

C(H) =
[︂
−sξYa + cξY

†
a

]︂
,

(B.24)
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and

Ĉ(h) = VLC(h)V †
R ,

Ĉ(H) = VLC(H)V †
R .

(B.25)
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Appendix C

Loop calculations

This section is intended to give some more details on the loop calculations that are performed
in the context of Chapter 4 and 5. We start by giving some general formulas that are
frequently used throughout the calculations, before we go to the details of each diagram.

The Feynman integrals that appear in our calculation are evaluated with the Mathe-
matica Package-X [291]. For an easier understanding, we quote here the results for the
involved integrals

∫︂
d4k

(2π)4
1

k2 −m2

1

k2 −M2 =
i

16π2

⎛⎝1 + ϵ̃−
m2 log

(︂
m

2

M
2

)︂
m2 −M2 + log

(︂
µ2/M2

)︂⎞⎠ ,

∫︂
d4k

(2π)4
1

k2
1

k2 −m2

1

k2 −M2 =
−i
16π2

log
(︂
m

2

M
2

)︂
m2 −M2 ,

∫︂
d4k

(2π)4
1

k2 −m2

1

k2 −M2
1

1

k2 −M2
2

=
i

16π2
1

M2
1 −M2

2

⎛⎜⎝−
M2

1 log
(︂
m

2

M
2
1

)︂
m2 −M2

1

+
M2

2 log
(︂
m

2

M
2
2

)︂
m2 −M2

2

⎞⎟⎠ ,

(C.1)

and the divergence in the first integral is parameterized in terms of the quantity ϵ̃ ≡
1/ϵ− γE + log(4π). Further useful identities that we applied are given by

γµgµνγ
ν = 4 · 1l ,

/k/k = k2 ,

γµ(k − p)µ(k − p)νγ
ν = (k − p)2 .

(C.2)

C.1 One-loop diagrams

In Figure C.1 we give an overview over relevant one-loop Feynman diagrams that occur in
the model described in Chapter 5. While these diagrams specifically illustrate contributions
in the up-type quark sector, it is easy to transfer the results to the down-type quarks and
leptons by appropriate replacement of the couplings and masses. As a start, we evaluate
the contribution from neutral gauge boson exchange that is given in Figure C.1a. It is
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C.1. ONE-LOOP DIAGRAMS

convenient to evaluate the diagram in the mass basis (Z, Z ′), since no mixed diagrams
need to be considered in this case. The exchange of the SM Z boson leads to a contribution

δM(1),Z = i

∫︂
d4k

(2π)4
CL(Z)γ

µ 1

/k

yavL√
2

(/k +MT )

k2 −M2
T

y†avR√
2

1

/k

× 1

(k − p)2 −M2
Z

[︄
gµν − (1− ξZ)

(k − p)µ(k − p)ν

(k − p)2 − ξZM
2
Z

]︄
γνCR(Z) .

(C.3)

As terms linear in /k vanish when we integrate over full momentum space, only terms
proportional to MT survive in the above expression. If we apply on top of that the relations
given in Eq. (C.2), we will find

δM(1),Z = i
3CL(Z)CR(Z)vLvR

2

∫︂
d4k

(2π)4
1

k2
ya

MT

k2 −M2
T

y†a
1

k2 −M2
Z

, (C.4)

for the self-energy in Landau gauge at vanishing external momentum p = 0. With the help
of Eq. (C.1), the final result

δM(1),Z =
3CL(Z)CR(Z)vLvR

32π2
ya

MT

M2
T −M2

Z

log

(︄
M2
T

M2
Z

)︄
y†a , (C.5)

is obtained. In a similar way, the result for Z ′ exchange yields1

δM(1),Z
′
=

3CL(Z
′)CR(Z

′)vLvR

32π2
ya

MT

M2
T −M2

Z
′
log

(︄
M2
T

M2
Z

′

)︄
y†a . (C.6)

Generally, when evaluating the diagrams in Landau gauge, also the Goldstone boson
contributions need to be considered in the calculation. In our model, the Goldstones ρL and
ρR become the longitudinal components of the Z and Z ′ boson, respectively. Nevertheless,
their contributions cancel exactly in Landau gauge. This can be understood in the following
way. The Goldstones couple according to the Lagrangian

L ⊃ − i√
2
ρLu

(︂
YaPR +Y†

aPL

)︂
u− i√

2
ρRu

(︂
Y†

aPR +YaPL

)︂
u (C.7)

to quarks, which can be deduced from Eq. (B.19). On top of that, bilinear couplings
to gauge bosons of the type Z(

′
)

µ ∂µρL(R) are generated from the kinetic terms given in
Eq. (5.22). To get rid of these mixed terms, a gauge fixing term is introduced to the
Lagrangian that is of the form

LGF ⊃ − 1

2ξZ

(︁
∂µZµ − iξZMZ ρ̂L

)︁2 − 1

2ξZ′

(︁
∂µZ ′

µ − iξZ′MZ
′ ρ̂R
)︁2
. (C.8)

1Note that the one-loop contribution to the mass matrix in Chapter 4 can be easily deduced from this
result and we therefore do not repeat the calculation here.
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It is now easy to check that Eq. (C.8) will exactly eliminate all bilinear terms Z(
′
)

µ ∂µρL(R)

in Eq. (5.22) when we identify(︄
ρL

ρR

)︄
=

(︄
cG sG

−sG cG

)︄(︄
ρ̂L

ρ̂R

)︄
, (C.9)

where cG ≡ cos(θG), sG ≡ sin(θG) and θG is an appropriately chosen mixing angle. In the
gauge fixing process, Golstone bosons obtain a mass that is given by

Lmass,gold = −1

2
(ρ̂L ρ̂R)

(︄
ξZM

2
Z 0

0 ξZ′M2
Z

′

)︄(︄
ρ̂L

ρ̂R

)︄
. (C.10)

Transferring the quark couplings to the basis (ρ̂L, ρ̂R) then yields

L ⊃ − i√
2
ρ̂Lu

(︂
C(ρ̂L)PR +C(ρ̂L)

†PL

)︂
u− i√

2
ρ̂Ru

(︂
C(ρ̂R)PR +C(ρ̂R)

†PL

)︂
u (C.11)

where we defined

C(ρ̂L) =
[︂
cGYa − sGY

†
a

]︂
,

C(ρ̂R) =
[︂
sGYa + cGY

†
a

]︂
.

(C.12)

Including the matrix structure of Ya, we find the one-loop corrections generated by the
Goldstone bosons to be

δM(1),ρ̂L =
−i
2

∫︂
d4k

(2π)4
1

(k − p)2
sGcGya

/k +MT

k2 −M2
T

y†a , (C.13)

δM(1),ρ̂R =
i

2

∫︂
d4k

(2π)4
1

(k − p)2
sGcGya

/k +MT

k2 −M2
T

y†a , (C.14)

which evidently cancels.

We continue with the evaluation of the scalar contribution displayed in Figure C.1b
and obtain the finite result

δM(1),χ = i
λ2vLvR

2
ya

∫︂
d4k

(2π)4
/k +MT(︂

k2 −M2
T

)︂(︂
(p− k)2 −m2

χL

)︂(︂
(p− k)2 −m2

χR

)︂y†a
=
λ2vLvR

32π2
ya

MT

m2
χL

−m2
χR

⎡⎢⎢⎣m
2
χL

log

(︃
M

2
T

m
2
χL

)︃
M2
T −m2

χL

−
m2
χR

log

(︃
M

2
T

m
2
χR

)︃
M2
T −m2

χR

⎤⎥⎥⎦ y†a ,
(C.15)
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by means of Eq. (C.1) for p = 0. With these results the complete contribution δM (1)
u , as

defined in Eq. (5.45), is given by the sum

δM (1)
u ≡ δM(1),Z + δM(1),Z

′
+ δM(1),χ . (C.16)

As a next step, the diagrams from Figure C.1i and C.1f, which contribute to the lower
right zero block of the mass matrix, are evaluated. The gauge boson contribution is

δM(1),X =i
g2Xα

2

4
v2η
y†1√
2

∫︂
d4k

(2π)4
1

k2
MT

k2 −M2
T

4

k2 −M2
X

y1√
2

+ i
g2Xα

2

4

v2η

M2
X

y†1√
2

∫︂
d4k

(2π)4
1

k2
k2MT

k2 −M2
T

(︃
− 1

k2 −M2
X

+
1

k2 − ξXM
2
X

)︃
y1√
2
,

(C.17)

and we already applied the simplifications given in Eq. (C.2). Substituting the mass MX

yields

δM(1),X =i
g2Xα

2

4
v2η
y†1√
2

∫︂
d4k

(2π)4
1

k2
MT

k2 −M2
T

d

k2 −M2
X

y1√
2

+
i

2
y†1

∫︂
d4k

(2π)4
MT

k2 −M2
T

(︃
− 1

k2 −M2
X

+
1

k2 − ξXM
2
X

)︃
y1 .

(C.18)

To obtain a finite and gauge independent result, the contribution from the scalar and
Goldstone boson needs to be included. The diagram involving η contributes as

δM(1),η =
i

2
y†1

∫︂
d4k

(2π)4
MT

k2 −M2
T

1

k2 −M2
η

y1 . (C.19)

From this result, the Goldstone boson contribution is obtained by simply replacing M2
η →

ξXM
2
X and adding an extra factor i for each vertex:

δM(1),ρη =− i

2
y†1

∫︂
d4k

(2π)4
MT

k2 −M2
T

1

k2 − ξXM
2
X

y1 . (C.20)

As the Goldstone contribution cancels the gauge dependent term in Eq. (C.18), the total
correction to the mass matrix is expressed by

δM̃ (1)
u ≡ δM(1),X + δM(1),η

= i
g2Xα

2

4
v2η
y†1√
2

∫︂
d4k

(2π)4
1

k2
MT

k2 −M2
T

d

k2 −M2
X

y1√
2

− i

2
y†1

∫︂
d4k

(2π)4
MT

k2 −M2
T

1

k2 −M2
X

y1

+
i

2
y†1

∫︂
d4k

(2π)4
MT

k2 −M2
T

1

k2 −M2
η

y1 .

(C.21)
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We now carry out the momentum integrals and find

δM̃ (1)
u =− i

g2Xα
2

4
v2η
y†1
2
4MT

log
(︂
M

2
X

M
2
T

)︂
M2
X −M2

T

y1

+
1

2
y†1

1

16π2
MT

⎛⎜⎝1 + ϵ̃−
M2
X log

(︂
M

2
X

M
2
T

)︂
M2
X −M2

T

+ log
(︂
µ2/M2

T

)︂⎞⎟⎠ y1

− 1

2
y†1

1

16π2
MT

⎛⎜⎜⎝1 + ϵ̃−
M2
η log

(︃
M

2
η

M
2
T

)︃
M2
η −M2

T

+ log
(︂
µ2/M2

T

)︂⎞⎟⎟⎠ y1 .

(C.22)

Clearly, the integrals in the second and third row are divergent by themselves. However,
together they yield a finite contribution which is

δM̃ (1)
u =

g2Xv
2
ηα

2

4× 32π2
y†14MT

log
(︂
M

2
X

M
2
T

)︂
M2
X −M2

T

y1

−
g2Xv

2
ηα

2

4× 32π2
y†1MT

log
(︂
M

2
X

M
2
T

)︂
M2
X −M2

T

y1

+
1

2
y†1

1

16π2
MT

M2
η log

(︃
M

2
η

M
2
T

)︃
M2
η −M2

T

y1 .

(C.23)

Further simplification provides the final result

δM̃ (1)
u =

3

32π2
g2Xv

2
ηα

2

4
y†1MT

log
(︂
M

2
T

M
2
X

)︂
M2
T −M2

X

y1

+ y†1
1

32π2
MT

M2
η log

(︃
M

2
T

M
2
η

)︃
M2
T −M2

η

y1 .

(C.24)

The diagrams Figure C.1c and Figure C.1j contribute to the entry δ†vR as described in
Section 5.3. Likewise, the Feynman graphs Figure C.1d and Figure C.1k populate the entry
δvL. The contributions from these diagrams are similar to the results derived so far and can
be obtained by an appropriate replacement of couplings. We like to emphasize, that gauge
boson contributions proportional to the unit matrix in flavor space (such as electromagnetic
charge Q) do not add to masses of first and second generation fermions. Hence, we do not
include those terms to our numeric calculation.

111



C.2. TWO-LOOP DIAGRAMS

T 'R

TL

⟨𝜒
𝐿
⟩ ⟨𝜒

R
⟩

𝜒
𝐿

𝜒
R

⟨𝜒
𝐿
⟩ ⟨𝜒

R
⟩

𝜒
R

⟨𝜒
R
⟩

𝜒
𝐿

⟨𝜒
𝐿
⟩ ⟨𝜒

R
⟩ ⟨𝜒

𝐿
⟩

𝜒
R

𝜒
𝐿

⟨𝜂⟩

⟨𝜂⟩

⟨𝜂⟩ ⟨𝜂⟩⟨𝜒
R
⟩ ⟨𝜒

𝐿
⟩

𝜂

𝜂

uiL uiL ujR ujR uiL ujRTkR TkLTkR TkL

TL uR TL TR uL TR

X

/ZR

uL TR TL

TR TL uR

TR TL

a) b) c)

d) e) f)

TL T 'R
⟨𝜒
R
⟩

⟨𝜒
R
⟩

𝜒
R 𝜂

⟨𝜂⟩

uR

⟨𝜂⟩ ⟨𝜒
𝐿
⟩

⟨𝜒
𝐿
⟩

T 'L TRTR uL

𝜒
𝐿𝜂

g) h)

TR TL

𝜂 𝜂

⟨𝜂⟩ ⟨𝜂⟩

i)

T 'RT 'R

T 'RT 'L

T 'L T 'L

T 'L

ZL 

j) k)

T 'L T 'L uR uRTR TL TLTRuL uL T 'R T 'R

/ZRZL /ZRZL 

⟨𝜂⟩ ⟨𝜂⟩⟨𝜒
R
⟩ ⟨𝜒

𝐿
⟩

Figure C.1 Feynman diagrams contributing at one-loop level to the up-type quark mass matrix.
In the limit λ4 ≪ 1, η decouples from the scalar sector and diagrams c), d) g) and h) can be
neglected. Furthermore, the correction of diagram e) to the vector-like mass MT is small and
will therefore not be included in our calculation. We note that even after including all presented
one-loop diagrams, one state is still massless. For the detailed calculation of the remaining diagrams
see text.

C.2 Two-loop diagrams

Since there is no bi-doublet scalar in our model, the charged gauge bosons WL and WR

only mix at the one-loop level via the Feynman diagram presented in Figure 5.3b. Their
mixing can be parameterized in terms of the off-shell amplitude

Πσρ(p
2) =− iNc gσρ

gLgR
2

v2Lv
2
R

4

3∑︂
α,β=1

2∑︂
k,l=1

[yqa]αk√
2

[yq†a ]kβ√
2

[yqc ]αl√
2

[yq†c ]lβ√
2
MTk

MBl

×
∫︂

d4k

(2π)4
1

(p+ k)2
1

(p+ k)2 −M2
Tk

1

k2
1

k2 −M2
Bl

.

(C.25)
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Note that we return to a notation where quark Yukawa couplings are labeled by an
superscript q to prevent ambiguities. With the mixing being quantified through Πσρ(p

2),
the full expression for the two-loop amplitude in Figure 5.3a is

δM (2)
u

⃓⃓⃓
ij
=
gLgR
2

vLvR
2

∫︂
d4p

(2π)4
γµ

(︂
gµσ − pµpσ/M2

WL

)︂
p2 −M2

WL

Πσρ(p
2)

×

(︂
gρν − pρpν/M2

WR

)︂
p2 −M2

WR

γν
1

p2
[yqc ]ik√

2

MBk

p2 −M2
Bk

[yq†c ]kj√
2

.

(C.26)

For the further calculation, we introduce the notation

δM (2)
u

⃓⃓⃓
ij
= Nc

∑︁3
α,β=1

∑︁2
k,l,m=1

g2Lg
2
R

4

v3Lv
3
R

8
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MBl

M2
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[y
q
a]αk√
2

[y
q†
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2

[y
q
c ]αl√
2

[y
q†
c ]lβ√
2

[y
q
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2

[y
q†
c ]mj√

2
MBm

Iklm ,

(C.27)
where all integrals are combined in the expression

Iklm ≡
∫︁ d4k

(2π)4
∫︁ d4p

(2π)4
3M2

WL
M2
WR

+ (p2 −M2
WL

)(p2 −M2
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)(︂
(p+ k)2 −M2

Tk

)︂(︂
k2 −M2

Bl

)︂(︂
p2 −M2

Bm

)︂
p2(p+ k)2k2(p2 −M2
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)(p2 −M2
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)
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(C.28)
The numerator of Iklm is composed of two terms. The authors of [223] analyzed those
contributions with respect to their relative importance and found that the first part
proportional to 3M2

WL
M2
WR

is suppressed with respect to the second term for the whole
considered parameter space. We will therefore only proceed with the evaluation of the
second term which can be rewritten as

Iklm ≃
∫︂

d4k

(2π)4

∫︂
d4p

(2π)4
1(︂

(p+ k)2 −M2
Tk

)︂(︂
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p2(p+ k)2k2
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(C.29)

We follow the calculation method presented in [223,292] and do a partial fraction decompo-
sition to recast the expression to

Iklm =
1

M2
Bl
M2
Tk
M2
Bm

∫︂
d4k

(2π)4
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(C.30)
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Further carrying out the multiplication yields the lengthy expression
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To improve the readability, it is convenient to introduce the abbreviation(︂

M11
M12

....M1n1
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....M2n2
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....M3n3
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=
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in the following calculation and the eight terms in Eq. (C.31) are given by the much shorter
term
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A useful identity, which allows a further simplification, is given by [292]
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The evaluation of the momentum integrals gives [292]

(MM |M1|M2) =π
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where ∆ = 1 − 2(a + b) + (a − b)2 and Li2(x) is the dilogarithm function. The further
variables appearing in the above expression are given by
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From its definition, it is easy to verify that f fulfills the relations f(a, b) = f(b, a), f(0, 0) =
π2/6 and f(a, 0) = Li2 (1− a). The preceding results allow to recast Iklm to the form
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properties of f then provides the final expression
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Putting altogether, Eq. (C.27) therefore becomes
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Appendix D

Technical details of the collider
analysis

D.1 Cut-and-count analysis

The aim of this appendix is, to provide some deeper insights on the cut-and-count analysis,
which is carried out in Chapter 6. As we perform a Monte Carlo simulation for both, the
SM background and the new physics signal, the cuts should be ideally optimized to include
as many signal events as possible and at the same time reduce the number of background
events.

In the subsequent, we consider the effect of different cuts on the signal and background
cross section. For the illustration, we discuss three benchmark points for the simplified Z ′

model (see Section 6.1 for details) with the following parameters:

BP 1 : MZ
′ = 1 TeV , ΓZ′ = 0.1 TeV ,

gLµ = gRµ = 0.0865 , (gν)αβ = δταδτβ .

BP 2 : MZ
′ = 100 GeV , ΓZ′ = 10 GeV ,

gLµ = gRµ = 1 , (gν)αβ = δταδτβ .

BP 3 : MZ
′ = 100 GeV , ΓZ′ = 30 GeV ,

gLµ = gRµ = 1 , (gν)αβ = δταδτβ .

(D.1)

The basic cut demands
pTγ > 10 GeV , |ηγ | < 2.44 , (D.2)

and is implemented for all data sets. After that we apply increasing limits on the missing
transverse energy /ET . Table D.1 shows the signal and background cross section σS and
σB after each cut. Compared to the signal events, the background is efficiently reduced
by the missing /ET cut. For our final analysis we determine the /ET cut with the maximal
statistical significance for each of the data sets individually.
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D.2. SIGNAL-TO-BACKGROUND RATIO

σS [fb] σB [fb]

cuts BP 1 BP 2 BP 3
before cuts 2.152 246.0 138.2 2980
basic cuts 2.107 240.5 135.4 2929

/ET > 10 GeV 2.105 240.5 135.3 2901
/ET > 20 GeV 2.058 239.7 129.7 2099
/ET > 30 GeV 2.020 238.5 125.4 1621
/ET > 40 GeV 1.991 237.3 122.0 1302
/ET > 50 GeV 1.965 236.0 119.2 1071
/ET > 60 GeV 1.943 234.7 116.8 897.2
/ET > 70 GeV 1.923 233.5 114.8 763.2
/ET > 80 GeV 1.905 232.3 113.0 656.7
/ET > 100 GeV 1.873 229.9 110.0 503.3

Table D.1 Signal and background cross section σS and σB for the process µ+µ− → ννγ after
applying different cuts. For the signal we choose three benchmark scenarios in the simplified Z ′

model defined in Eq. (6.3). The model parameters are given in the text.

D.2 Signal-to-background ratio

In this section, we want to show how the signal-to-background ratio depends on the model
parameters. We exemplify our findings again with the simplified Z ′ model.

Figure D.1 displays the ratio NS/
√
NB versus the mediator mass MZ

′ for fixed couplings
gLµ = gRµ = 0.05 and (gν)αβ = δταδτβ . The plot shows how the largest ratio will be achieved
if the resonance condition MZ

′ ≫
√
s is met. When one enters the EFT regime with

MZ
′ ≫

√
s, the signal-to-background ratio scales as NS/

√
NB ∝ ϵ2. Furthermore, the two

presented decay widths ΓZ′/MZ
′ = 0.1 and 0.3 show that the signal-to-background ratio

decreases for broader resonances.
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Figure D.1 Comparison of signal-to-background ratio NS/
√
NB for the process µ+µ− → ννγ in

the simplified Z ′ model with couplings gLµ = gRµ = 0.05 and (gν)αβ = δταδτβ and ΓZ
′/MZ

′ = 0.1,
0.3 at a

√
s = 3 TeV muon collider.
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