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Stochastic Approaches and the Physics of Ultracold Fermions:
From Lattice Simulations to Machine Learning

This thesis investigates fermionic ultracold atom systems in reduced dimensions using stochas-
tic and lattice-based methods. One particular focus of the current work lies in exploring the
role trapping potentials play in these systems. Including traps in lattice simulations poses a
challenge, as they break translational symmetry, and is made possible via efficient sampling
techniques. Another aspect we examine is the effect of population imbalances, which lead to
a sign problem in Monte Carlo simulations. To mitigate this issue, we employ both complex
Langevin and reweighting methods, analyzing their effectiveness and applicability. Notably,
our approach to trapped systems matches experimental and theoretical benchmark results in
one dimension perfectly but allows for significantly larger particle numbers and imbalances,
for which we find signs of FFLO-type pairing. In two-dimensional untrapped systems, we
encounter only mild sign problems and explore the normal phase of the BEC-BCS crossover
regime. We offer falsifiable predictions for thermodynamic quantities. In addition to the re-
sults on fermionic systems, we introduce a novel normalizing flow architecture for upscaling
field configurations. This architecture shows promise for reducing computational complexity
and tackling the problem of critical slowing down in lattice simulations of all kinds.

Stochastische Methoden und die Physik ultrakalter Fermionen:
Von Gitter-Simulationen zu maschinellem Lernen

Diese Arbeit untersucht fermionische ultrakalte Atomsysteme in reduzierten Dimensionen un-
ter Verwendung stochastischer und gitterbasierter Methoden. Ein besonderer Fokus liegt dabei
auf der Erforschung der Rolle von Fallenpotenzialen in derartigen Systemen. Die Einbeziehung
von Fallen in Gitter-Simulationen stellt eine Herausforderung dar, da diese die Translations-
symmetrie brechen, und wird durch den Einsatz effizienter Samplingalgorithmen ermöglicht.
Ein weiterer Aspekt, den wir untersuchen, ist der Einfluss von Populationsungleichgewichten,
die in Monte-Carlo-Simulationen zu einem Vorzeichenproblem führen. Um dieses Problem zu
mildern, verwenden wir sowohl die komplexe Langevin- als auch die Umgewichtungs-Methode
und analysieren deren Effektivität und Anwendbarkeit. Bemerkenswert ist, dass unser Ansatz
für Systeme mit Fallen in einer Dimension die experimentellen und theoretischen Vergleich-
sergebnisse perfekt widerspiegelt, jedoch wesentlich größere Teilchenzahlen und Ungleichge-
wichte zulässt, bei denen wir Anzeichen einer FFLO-artigen Paarung finden. In zweidimen-
sionalen Systemen ohne Fallen stoßen wir auf nur leichte Vorzeichenprobleme und erforschen
die normale Phase des BEC-BCS-Crossover-Regimes. Dabei machen wir überprüfbare Vorher-
sagen für thermodynamische Größen. Neben den Ergebnissen zu fermionischen Systemen
stellen wir eine neuartige Architektur für normalisierte Flüsse vor, die zur Skalierung von Feld-
konfigurationen dient. Diese Architektur ist vielversprechend, um Rechenkomplexität sowie
critical slowing down in Gitter-Simulationen zu reduzieren.
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Chapter 1

Introduction

The study of many-body systems has long been a central theme in physics and other natural sci-
ences, appearing in diverse areas such as complex materials in condensed matter physics, the col-
lective behavior of cells in biophysics, and the intricate phase structures of quantum chromody-
namics (QCD). Despite the seemingly disparate nature of these systems, common features emerge
when the number of constituents becomes large. One of the most striking examples is, without a
doubt, the emergence of phase transitions, in which small variations in a controllable parameter
lead to sudden and qualitative changes in behavior. A multitude of physical phenomena vital to
the existence of human life on Earth are based on such transitions, most notably the freezing and
evaporation of water and the inner workings of basic rice cookers1.

Describing many-body systems theoretically is a formidable task, as analytic solutions are gen-
erally not attainable when dealing with hundreds, thousands or even more particles. Instead, ide-
alizations and approximations are made in order to simplify the problem. For systems in thermal
equilibrium, statistical physics offers one such approach in the form of collective descriptions. Sin-
gle particle degrees of freedom are replaced by collective ones, such as the temperature, pressure,
and density, leading to a substantial simplification.

Another idealization comes in the form of low-energy effective theories, which aim to capture
only the essential physics. Instead of an entirely microscopic description of interactions, effective
theories offer formulations in terms of the most relevant degrees of freedom. Prominent exam-
ples include the introduction of phonons for the description of lattice vibrations in solids or the
use of mesons and baryons in models for QCD. Another staggering success of effective theories is
the explanation of superconductivity via Bardeen-Cooper-Schrieffer (BCS) theory, which models
the pairing of electrons and predicts the emergence of a gap in the excitation spectrum of certain
metals at low temperatures.

While effective theories and collective descriptions greatly reduce the complexity of many-body
systems, gaining physical insight can still be challenging. Mean-field approaches allow for analyt-
ical access and can provide good qualitative results but are often insufficient in the strongly corre-
lated regimes of interest. For this reason, numerical methods have become an indispensable tool

1Simple rice cookers work by virtue of the transition between ferromagnetic and paramagnetic phases in an induced
magnet and the liquid-gas transition in water. Loosely speaking, a permanent magnet and a ferromagnetic alloy keep
the activated power switch in place at temperatures below 100◦C. Once the water has evaporated and temperatures rise
above 100◦C, the alloy demagnetizes and the switch is released, shutting down the appliance.

1



2 CHAPTER 1. INTRODUCTION

in the study of many-body problems. Prime among them are Markov chain Monte Carlo meth-
ods, which reduce the problem of computing high-dimensional integrals to a problem of sam-
pling a non-trivial probability distribution. Crucially, stochastic methods can be applied even in
strongly interacting scenarios and allow for non-perturbative studies of systems inaccessible by
conventional approaches. Today, they provide gold-standard results for many problems in con-
densed matter physics, nuclear physics, and quantum field theory. In the latter, lattice gauge
theory simulations, which discretize spacetime into a finite grid, have been instrumental in the
study of the strong force. Amongst other numerical methods, they offer the distinct advantages
of a well-defined strategy to remove systematic errors and exhibit benign scaling with larger par-
ticle contents. This is in contrast to the exponential growth of the Hilbert space, which makes full
diagonalization intractable for more than a few particles.

Unfortunately, several pathologies can plague Monte Carlo simulations in physically interest-
ing regimes. In particular, the infamous sign problem, arising when one cannot identify a real
and positive probability distribution, is prevalent in systems with fermions [7]. Another challenge
comes in the form of critical slowing down, which occurs when the correlation length grows large
in the continuum limit. In both of these examples, the computational cost of generating relevant
configurations grows rapidly, often rendering the stochastic approach infeasible.

Experimentally, probing the physics of many body systems is similarly challenging. In par-
ticular, particle physics experiments require an enormous amount of effort and infrastructure in
the form of particle accelerators and detectors. In contrast, the advent of cold atom experiments
in the last three decades has led to a revolution in the study of many-body effects. The field was
kickstarted by the realization of a Bose-Einstein condensate in 1995 [8–10], and has since been ex-
tended to fermions, mixtures and even artificial gauge fields [11–15]. Typically, these experiments
use alkali atoms such as 86Rb or 23Na for bosons and 7Li and 40K for fermions, as well various other
alkali, alkaline earth and rare earth atoms. Using a robust hierarchy of scales, which is made possi-
ble through laser cooling and trapping techniques, cold atom experiments allow for precise control
of the interactions between particles. Hamiltonians can be engineered almost at will, and the sys-
tems can be probed with high precision. Amazingly, the use of suitable trapping potentials even
opens up the possibility of confining the atoms to one or two spatial dimensions to test the effects
of dimensionality. In total, cold atom experiments offer a unique opportunity to study many-body
physics and can serve as simulators for other systems, as they are not restricted by the couplings
provided in nature.

This meteoric rise of cold atoms experiments has also led to a gold rush in the theoretical com-
munity, both to supply falsifiable predictions and explain experimental results. The current thesis
can be seen as part of this effort and focuses in large parts on the study of fermionic cold atoms
systems in reduced dimensions. In particular, we investigate the effects of trapping potentials in
one dimension and how they can be included in lattice Monte Carlo simulations. Additionally, we
study population imbalanced Fermi gases, where non-degenerate Fermi surfaces allow for exotic
pairing. Since fermionic systems can suffer both from sign problems and critical slowing down, we
also explore existing and novel approaches to alleviate these issues in the form of complex Langevin
simulations and normalizing flow-based machine learning architectures.
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1.1 Basics of cold atom physics

This section gives a brief overview of the basic concepts behind cold atom physics. We begin by
exploring the principles of trapping and cooling, along with the different scales required to create
cold atomic gases, enabling the use of low-energy effective theories. Next, we introduce the con-
cept of Feshbach resonances, which allow precise control over atomic interactions. This, in turn,
leads us to the BEC-BCS crossover, which describes the transition between a Bose-Einstein con-
densate (BEC) and a Bardeen-Cooper-Schrieffer (BCS) superfluid in Fermi gases. We conclude by
reviewing Fermi gases with imbalanced populations, where unconventional pairing may emerge.

1.1.1 Trapping and cooling atoms

The first step in creating a cold atomic gas is to trap the atoms within a confined region of space.
This is typically achieved by using a combination of magnetic and optical traps [16], which can be
used to create arbitrary trapping geometries in modern experiments. Due to their ease of imple-
mentation, harmonic potentials, defined by

V (r) = m

2

(
ω2

x x2 +ω2
y y2 +ω2

z z2
)

, (1.1)

are most commonly used. Here, m is the mass of the atom, and ωi represents the trapping fre-
quency in the i -th direction. Crucially, these frequencies can be tuned independently, allowing for
anisotropic configurations. If the frequency in one direction is made grater than all other scales, ex-
citations in that direction become energetically unfavorable. This leads to quasi-two-dimensional
or even quasi-one-dimensional behavior.

The ubiquity of harmonic trapping potentials presents challenges when comparing experimen-
tal results with theoretical models. In the latter, the assumption of homogeneity is often used,
which simplifies computations but is violated by a harmonic potential. This issue also affects typ-
ical lattice simulations, where translational invariance is essential for enhancing statistical accu-
racy. A major focus of this thesis lies in the inclusion of trapping potentials in lattice simulations
and how they can be implemented efficiently to allow for direct comparison with experiments.

With the atoms trapped, the next step is to cool them to temperatures where quantum effects
become relevant. This is achieved by a combination of laser cooling [17] and evaporative cool-
ing [18]. The former is based on the principle of Doppler cooling, where the absorption and re-
emission of photons slows down atoms. Evaporative cooling works by modulating the trap so that
the hottest atoms can spill out, thereby cooling the remaining gas. These methods can achieve
temperatures as low as a few nanokelvins, enabling studies down to the ground state.

1.1.2 An interplay of scales

We now discuss the various length scales present when realizing cold atomic gases and how control
over them is instrumental in the study of many-body physics.

The first important length scale is the inter-particle spacing ln , which is directly related to the
density n of the gas as

n = l−d
n , (1.2)
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where d is the spatial dimension. This relationship assumes that the gas is homogeneous, a con-
dition met in box-shaped trapping geometries but not in harmonic traps. In the latter case, the
density and inter-particle distance become dependent on spatial position.

Secondly, there is the length scale associated with the trapping potential itself. For an isotropic
harmonic trap with frequency ω, the characteristic length scale is the oscillator length given by

lTrap =
√

ħ
mω

, (1.3)

where ħ is the reduced Planck constant. In a box potential, this scale is simply the linear size of
the box. The trap length should be the largest scale present when studying many-body systems in
the thermodynamic limit. This ensures minimal boundary effects and allows for the use of a local
density approximation (LDA) for harmonic potentials.

Next, we have the thermal (or de Broglie) wavelength λT, given as

λT =
(

2πħ2

mkBT

)1/2

, (1.4)

where kB is the Boltzmann constant, and T is the temperature. The thermal wavelength is related
to the kinetic energy of particles and can be interpreted as a measure of the size of their wave pack-
ets. Together with the inter-particle spacing, the thermal wavelength determines the degeneracy
of the gas. In the regime where ln/λT > 1, wavepackets of different particles do not overlap signifi-
cantly, and quantum statistics play no role. However, when ln/λT ≃ 1, the system transitions from
a classical to a quantum degenerate regime, making the gas ultracold.

The final initial length scales is associated with the interaction between single alkali atoms. The
interaction potential between alkali atoms can be approximated using a Lennard-Jones potential,
which is effectively modeled as V (r ) =∞ for a core r < r0, with tails V (r ) = Cr−6 for r > r0. Here,
C is a constant. The length scale associated with the interaction is then given by the van der Waals
length

lvdW =
(

mC

ħ2

)1/4

. (1.5)

This constitutes the smallest relevant length scale, which allows interactions to be described as
point-like in an effective description.

A typical hierarchy of these length scales for studying the quantum degenerate but finite-tem-
perature properties of ultracold gases is thus given by

lvdW ≪ ln ≪λT ≪ lTrap . (1.6)

While the van der Waals length must always remain the smallest, the order of the others may vary
without invalidating the effective description. For example, when examining the ground state
properties in a harmonic trap, the thermal wavelength should be much larger than the harmonic
oscillator length to prevent the population of excited states. Conversely, when considering the
equation of state of the gas, one may adjust the system from a classical to a quantum regime, flip-
ping the order of the inter-particle spacing and the thermal wavelength in the process.

Since scattering processes in cold atom experiments happen exclusively at very low energies,
only the s-wave channel is relevant. This means that the associated scale, the s-wave scattering
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Figure 1.1: Schematic depiction of the inter-atomic potential as a function of the distance r be-
tween atoms. The straight solid line indicates the bound state permitted by the closed channel,
while the dashed line indicates the asymptotic state in the open channel.

length as , fully characterizes the interactions between atoms. In contrast to the van der Waals
length, the scattering length is not required to be small and may even be tuned to become much
larger than the other scales, leading to the regime of unitarity in three dimensions. This is achieved
by exploiting Feshbach resonances, which we discuss in the next section.

1.1.3 Feschbach resonances

One of the main attractions of experiments with cold atoms is the unprecedented control over
particle interactions. This control is primarily achieved by exploiting the hyperfine structure of
alkali atoms, which enables the tuning of the scattering length as via Feshbach resonances.

The concept can be illustrated using a simple two-channel model of two-body scattering. The
first channel asymptotically connects two free atoms in the gas and is called open. On the other
hand, the closed channel is not available as an asymptotic state. Crucially, the closed channel must
support a bound state with energy Ec in the vicinity of the open channel threshold. A schematic
depiction of the inter-atomic potential as a function of the distance r between atoms is shown in
Figure 1.1.

When the energy of a pair of colliding atoms is close to the bound state energy Ec , they may
briefly form a virtual bound state before scattering elastically. This resonance can be tuned by, for
example, applying an external magnetic field, leading to a so-called magnetic Feshbach resonance.
The scattering length as is then related to the external magnetic field B by the formula

as(B) = abg

(
1− ∆B

B −B0

)
, (1.7)

where abg is the background scattering length of the open channel, B0 is the field at which the
resonance occurs and ∆B is the width of the resonance. These parameters vary depending on the
specific atomic species used in the experiment.
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Naturally, the situation in actual experiments is more complicated than the simple two-chan-
nel model presented here, but the basic idea remains the same. A much more detailed discussion
of Feschbach resonances in cold atoms physics can be found in [19].

1.1.4 The BEC-BCS crossover

We now consider a Fermi gas of atoms with two internal states, which couple to each other through
a tunable contact interaction. Even a weak attractive interaction makes it energetically favorable
for fermions to form pairs. These pairs are situated around the Fermi surface, involving atoms with
opposite momenta and spins, and are not localized in position space. This paired state is stable
against fluctuations at low temperatures and leads to a gap in the excitation spectrum, allowing for
superfluidity. This is the essence of Bardeen-Cooper-Schrieffer (BCS) theory.

The situation changes drastically when looking at strong, attractive interactions between the
atom species. In that case, the pairs become tightly bound and effectively form a gas of composite
bosons. The strong interactions between fermions are screened, and the system is well described
by weakly interacting composites. When the temperature becomes sufficiently low, the gas un-
dergoes a transition to a Bose-Einstein condensate (BEC) with an over-occupied zero momentum
state.

One of the greatest successes of cold atoms experiments is undoubtedly the realization of the
BEC-BCS crossover (see [20] and [21] for reviews). One finds a smooth transition between the two
aforementioned regimes by tuning the interactions between particles. Notably, this is true in both
three and two dimensions, even though the mechanisms behind the phase transitions are differ-
ent. While both the BEC and BCS limits can be well described by mean-field theory, the crossover
regime is characterized by strong correlations and is inherently non-perturbative, calling for ad-
vanced (numerical) methods on the theoretical side.

1.1.5 Fermi gases with imbalanced populations

So far, we have considered Fermi gases with equal populations so that each particle may find a
partner to form a pair. A natural extension of the discussion above presents itself in the form of
population imbalance in the gas. An imbalance may be understood as the effect of an external
magnetic field that energetically favors one of the internal states. Note that this is not to be con-
fused with the magnetic field used to tune the Feschbach resonance. Consequently, the Fermi
surfaces for each spin species are no longer degenerate, disrupting conventional BCS-type pairing.

This situation has a direct influence on the occurrence of superfluidity in the gas, and we can
straightforwardly identify two regimes, separated by the Chandrasekhar-Clogston limit [22, 23].
They are characterized by the competition of the pairing energy against the energy gain from align-
ing with the magnetic field in the normal phase. In the regime where the pairing energy dominates,
the system remains in a spin-balanced superfluidity phase, and BCS theory is still applicable. Once
the energy gain from aligning the spins becomes dominant, superfluid behavior is destroyed, and
the system enters a spin-imbalanced normal phase. When the magnetic field is increased even
further, the system eventually becomes fully polarized, and the gas turns non-interacting.

However, the situation may be more complex than the picture above. As both Fulde and Fer-
rel [24] as well as Larkin and Ovchinnikov [25] have pointed out, superfluidity could still be possible
in the form of an intermediate phase with a spatially modulated order parameter. While the de-
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tails between the proposals differ, they both predict pairing at a finite center of mass momentum,
starkly contrasting conventional BCS theory.

Experimental studies of imbalanced Fermi gases have been performed most notably in three-
dimensional trapped systems [26–29], where spatial phase separation between regions of an (al-
most) balanced superfluid and a polarized normal phase has been observed. Similar effects have
also been found in two-dimensional systems [30, 31]. However, concrete evidence for the emer-
gence of a Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) phase has been elusive, likely due to the small
parameter regions where it is predicted to exist.

Studying imbalanced Fermi gases poses a considerable challenge in lattice simulations. While
the attractive, balanced gas allows for sign problem free formulations, no such simplifications are
known in the imbalanced case. For Fermi gases in particular, the literature offers a small set of
works using the complex Langevin method in three spatial dimensions [32–34], but a comprehen-
sive study of the phase diagram has not been possible so far. This is also true for reduced dimen-
sions, where some work in the context of the (dilute) Hubbard model exists [35], but a complete
characterization of the sign problem severity is still missing.

1.2 Outline

This thesis is structured as follows:

Chapter 2 briefly introduces the general concepts of lattice field theory and stochastic sam-
pling. We focus on non-relativistic fermions in particular, which come with some unique chal-
lenges and opportunities compared to their relativistic counterparts.

In Chapter 3, we introduce complex Langevin evolution, which allows for sampling in the pres-
ence of a sign problem and constitutes one of the main methods used in this work. We also discuss
several shortcomings of the approach and explore its applicability to the study of zeros in the par-
tition function, also known as Lee-Yang zeros.

As a final building block for successful lattice simulations, we discuss further technical details
of the Determinant Quantum Monte Carlo (DQMC) approach for fermions in Chapter 4. Notably,
we use a recently developed method that reduces the model space and speeds up computations
considerably. This reduction is crucial when studying trapped systems, as the loss of translational
invariance significantly increases the amount of samples required to obtain reliable results.

In Chapter 5, we apply the methods introduced in the previous chapters to study trapped
fermions in one dimension. We show that the trapping potentials can be included straightfor-
wardly and discuss the effects of the trap on the system. Moreover, we compare to results from
experiments and other theoretical approaches.

Chapter 6 concerns the (untrapped) Fermi gas in two dimensions and its equation of state with
population imbalance. The sign problem turns out to be fairly mild for a wide range of parameters,
and we find excellent agreement with results obtained from a virial expansion.

Finally, in Chapter 7, we introduce a novel approach to stochastic sampling based on upscaling
field configurations combined with generative machine learning models. Our method can be un-
derstood as an inversion of renormalization group transformation and has the potential to alleviate
critical slowing down, which is present in any lattice simulation. While the test cases presented in
this work are based on scalar fields, an extension to fermions is possible and is the subject of ongo-
ing research.





Chapter 2

Lattice field theory

We now introduce fundamental ideas in lattice field theory that are essential for understanding the
subsequent chapters. We begin with an overview of general concepts, such as the discretization of
continuum theories. This is followed by a brief introduction of stochastic sampling methods and
the sign problem. We then discuss lattice simulations for non-relativistic fermions, including the
decoupling of fermionic interactions and projective methods for canonical computations in detail.

Since we cannot possibly cover every aspect, readers interested in a more comprehensive over-
view, particularly in the context of QCD, are encouraged to refer to the standard literature [36–38].
Additional resources focusing on condensed matter and cold atom systems include [39, 40].

2.1 Basics

The study of many-body quantum systems typically begins with the partition function, which is
expressed in terms of the Hamiltonian Ĥ and the inverse temperature β= 1/T as

Z = Tr
[

e−βĤ
]

, (2.1)

where the trace is taken over the Hilbert space of the system. In this formalism, the expectation
value of observables can be computed as

〈Ô〉 = 1

Z
Tr

[
Ô e−βĤ

]
. (2.2)

Another way to express the partition function is by using the Euclidean path integral formalism
of quantum field theory. This approach involves Wick rotating the time coordinate from the real-
time tM to −i t , where t now represents Euclidean time. As a result, the time evolution operator
e−i Ĥ tM becomes its thermal counterpart e−Ĥ t , which is featured in the partition function (2.1).
We may thus rewrite a given QFT into a thermal field theory using this imaginary time formalism.
Given the Euclidean action SE , the partition function can be written as

Z =
∫
Dφe−SE [φ], (2.3)

where the field is a function of the spatial position and euclidean time, φ = φ(x, t ). The latter is
restricted to the interval [0,β]. The compactness implies the need for suitable boundary condi-
tions, which follow directly from the cyclicity of the trace in (2.1). The boundaries are periodic and

9
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anti-periodic for bosonic and fermionic field variables, respectively. Crucially, the integral over
field configurations in (2.3) now takes the form of an integral over a Boltzmann weight, allowing for
stochastic sampling as long as the Euclidean action is real and the partition function finite.

2.1.1 Discretization & Cutoff

While we now have an integral over a probability distribution, the degrees of freedom are still con-
tinuous fields and not directly accessible for numerical computations on digital computers. This
issue is addressed by defining the field values only on a finite lattice, which creates a regular grid
in space and time. The spatial lattice comes with an associated lattice spacing a, denoting the
distance between neighboring lattice sites. Moreover, it has a linear extent L, which is related to
the total volume in units of the lattice spacing as V = Ld , where d is the number of spatial dimen-
sions. Such a discretization introduces a cubic momentum cutoffΛ=π/a to the theory, restricting
momentum integrals, ∫

d d k

(2π)d
→

∫ π/a

−π/a

d d k

(2π)d
, (2.4)

to the first Brillouin zone of the lattice. Furthermore, the lattice introduces a natural IR cutoff,
related to its inverse linear extent 1/L. It renders the above integral discrete, leaving a finite grid in
both momentum and position.

Due to the space-time symmetry in relativistic theories, the discretization of the time direction
can proceed just the same as for the spatial directions. In non-relativistic theories, however, the
time direction must be treated separately, which we will discuss in Section 2.3.1.

Some care must be taken when discretizing the derivative operators in the action, as naïve
discretization can lead to lattice artifacts, such as the fermion doubling problem in relativistic
theories. While non-relativistic fermions are typically free of this problem, various discretization
schemes are still worth considering, as they impact the approach to the continuum limit and the
practical speed of computations. We will use a = 1 for the following discussion, which fixes the
lattice unit. The central difference formula yields the naïve lattice Laplacian,

∆mn =
∑
µ

[−2δm,n +δm,n+µ̂+δm,n−µ̂
]

, (2.5)

where the sum runs over all lattice directions, and µ̂ denotes the unit vector pointing to the neigh-
boring lattice site. As a result, free particles carry the energy dispersion relation

E(k) = 2
∑
µ

sin2 (kµ/2) , (2.6)

where kµ = 2πnµ

L are the allowed momenta in the first Brillouin zone with integer nµ. The lattice
model is only a good approximation for small momenta, k ≪π/a, since the free dispersion of non-
relativistic particles is given by E(k) = k2/2 using m = 1.

Alternatively, we may introduce a discretization that reproduces the continuum dispersion ex-
actly at all momenta. This can be achieved by simply taking the Fourier transform of the desired
dispersion, yielding

∆m,n =
∫ π

−π
d d p

p2

2
e ippp(mmm−nnn) , (2.7)
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where the bold letters indicate volume sized vectors. Note that the continuous Fourier transform is
replaced by a discrete Fourier transform (DFT) for finite-sized lattices. The form above brings clear
advantages when considering the approach to the continuum limit; see, e.g., [40–42]. However, it
also comes with the disadvantage of a dense Laplacian in position space. This contrasts the simple
finite difference discretization, which is sparse and thus computationally more efficient, needing
O(N ) operations for a matrix-vector multiplication, where N is the number of lattice sites. The
dense matrix naïvely requires O(N 2) operations, which can be mitigated by performing Fourier
transforms on the vectors at runtime, reducing the complexity to O(N log N ).

2.1.2 The continuum limit

With the system now on a finite grid, it is crucial to consider how the continuum is approached as
the spacing decreases and the volume increases. For lattice systems, the two aforementioned limits
roughly correspond to the thermodynamic limit, L →∞, and the continuum limit, a → 0. They are
usually taken via extrapolations and performed subsequently, starting with the thermodynamic
limit, to arrive at a well-defined theory in the continuum. Moreover, the physical theory possesses
several scales, which can be made dimensionless via combinations and must be reproduced by the
lattice theory in the continuum limit. To accomplish this, the bare parameters of the lattice action
are adjusted to replicate the physical scales for each discretization. Given some dimensionless
observable θ(λ(a), a), where λ(a) denotes the set of bare parameters that depend on the lattice
spacing, we can formulate the requirement as

d

d a
θ(λ(a), a) = 0. (2.8)

Numerous observables can be used to tune the couplings of the lattice theory, and ones where the
running is known exactly a priori are most attractive. In the case of two-dimensional Fermi gases,
such a parameter is given by the two-body binding energy, which can be computed exactly for
arbitrary lattice parameters and will be used for scale setting in Chapter 5 and Chapter 6.

While the scales remain fixed in physical units, they must change in units of the lattice spacing,
and length scales such as the correlation length ξ diverge in the continuum limit. Consequently,
the continuum limit is associated with a critical point, and lattice systems must necessarily be close
to criticality to reproduce continuum physics. We refer to [36] for more details on this.

In addition to UV effects induced by the finite lattice spacing, lattice simulations can also show
a strong dependence on the IR cutoff due to the finite size of the system. In cold atom compu-
tations, this behavior stems from the large thermal wavelength λT =

√
2πβ, which increases with

decreasing temperature. As a result, wavefunctions of particles begin to overlap with themselves
on small lattices with periodic boundaries, and larger lattices L ≫λT are required to obtain reliable
results.

2.2 Stochastic sampling

In this section, we introduce the notion of stochastic sampling for high dimensional integrals,
which forms the basis of numerical computations in lattice field theory. After discretization, the
field integral over configurations becomes a high dimensional integral over real-valued variables,
that is generally not solvable analytically. In addition, the integration domain’s high dimensionality



12 CHAPTER 2. LATTICE FIELD THEORY

makes it infeasible to discretize the entire space for numerical integration. Instead, we may sam-
ple the integrand stochastically, drawing more samples in the region where the probability weight
is large while neglecting those where the weight vanishes. The goal is to sample a finite set of con-
figurations φn , which are distributed according to the weight in (2.3),

φn ∼ e−SE [φ], (2.9)

such that expectation values of physical observables can be computed as averages over the finite
set of samples as

〈O〉 ≈ 1

N

N∑
n=1

O(φn). (2.10)

Stochastic sampling also introduces statistical errors beyond the systematic finite size and differ-
ence effects discussed above. The sample size controls the errors, which scale with a factor of
1/
p

N . Reducing uncertainties to a point where useful predictions are possible can be challenging
since the sample size needs to grow quadratically compared to the reduction in error.

In practice, sampling is facilitated by a stochastic process. Markov chains are commonly used,
in which subsequent configurations depend solely on the previous field values. Field configura-
tions are updated according to a transition probability, which is chosen such that the stationary
distribution of the Markov chain is the desired distribution. One simple and frequently used way
to construct Markov processes is via the detailed balance condition, which is defined for a transi-
tion probability P (φ→φ′) and stationary distribution π(φ) as

π(φ)P (φ→φ′) =π(φ′)P (φ′ →φ). (2.11)

This condition is the basis of the most commonly used algorithms for lattice computations, includ-
ing Hybrid and Metropolis Monte Carlo, as we will briefly discuss in the following sections.

2.2.1 General recipe

The collection of samples follows a fairly generic recipe independent of the specific algorithm used.
The usual steps involved in a lattice simulation are as follows:

1. Set a seed for the random number generator and initialize the field configuration φ, either at
a random or predetermined value. The former is done to ensure reproducibility of random
number streams.

2. Thermalize the Markov chain. To ensure that expectation values are not biased by the initial
configurations, we perform a certain number of update steps according to P (φ→φ′) before
collecting samples. The number of steps required for thermalization depends on the system
and the specific algorithm used. It can be determined by monitoring the expectation values
of observables, which should stabilize after thermalization.

3. Samples are collected by stepping the stochastic process according to the transition prob-
ability. Usually, not every sample needs to be saved, as consecutive samples can be highly
correlated, especially in local updating schemes.
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4. (Optional) It can be desirable to compute observables based for the configurations on the fly
during sampling. This is the case when much of the computational effort, such as computing
matrix determinants, is the same between sampling and evaluation. On the other hand, if
sampling is not the limiting factor, we may only store the observables instead of the actual
configurations.

5. Save the final configuration and the state of the random number generator. This enables us
to restart the computation from where it ended and construct a longer chain if we desire. In
case of an interruption, it is advisable to also perform intermediate saved states during the
simulation.

2.2.2 Metropolis Monte Carlo

Metropolis Monte Carlo is a simple but widely used method for sampling the weight via local up-
dates of the field configurations. Starting from an initial configuration φ, a new configuration φ′ is
proposed by updating one or more of the field variables via some proposal probability PP (φ→φ′).
The latter is usually chosen as an independent symmetric distribution on each site,

PP (φ→φ′) =
∏

φi∈{φi }
PP (φ′

i →φi ), (2.12)

where {φi } is the set of sites to be updated. In order to satisfy the detailed balance condition for
the desired weight, the update is accepted with a likelihood given by the Metropolis acceptance
probability

P A(φ→φ′) = min

(
1,
π(φ′)PP (φ′ →φ)

π(φ)PP (φ→φ′)

)
. (2.13)

If the proposal distribution is symmetric when exchanging the previous and new configuration, it
cancels out, and the acceptance probability simplifies to a function of the weight ratio alone.

Assuming the target weight to be exp(−SE ) with symmetric proposals, a single step in the
Metropolis algorithm proceeds as follows:

1. Select one or more lattice sites to update. This selection can be performed either randomly
or systematically. In the systematic approach, we can introduce the concept of sweeps. A
single sweep refers to having made a single proposal at each lattice site.

2. Propose a new configuration φ′ according to the proposal distribution PP (φ→φ′).

3. Accept the new configuration with probability P A(φ→ φ′) = min
(
1,e−SE (φ′)+SE (φ)

)
by com-

paring the weight ratio to a random number drawn from a uniform distribution. Note that
local updates can be beneficial, as they allow us to only consider the local change in energy
of the action ∆Sloc. This reduces the cost associated with computing the full action.

4. If the update is accepted, the new configuration is added to the Markov chain. Otherwise,
the previous configuration is restored, and another copy is added to the chain.



14 CHAPTER 2. LATTICE FIELD THEORY

2.2.3 Global updating

Due to its simplicity, the Metropolis-Hastings algorithm is very attractive and remains widely used
for condensed matter and non-relativistic systems [41, 42]. However, systems with large correlation
lengths (in units of the lattice spacing) can often suffer from painfully low acceptance rates or re-
quire very narrow proposal distributions. This situation is perhaps best understood in the context
of the two-dimensional Ising model close to criticality. Let us consider the likelihood of accepting a
single spin flip. We will find it very low, as a large correlation length ξ implies that the surrounding
spins will likely have the same orientation as the spin we are trying to flip.

To partially tackle this issue, there are several algorithms available that discard the local updates
in favor of global ones proposed in a way that keeps acceptance rates high. Mixed forms also exist,
which, for instance, perform updates for all spatial points at the same time and iterate over the
slices. Such an approach is used for certain computations of ultracold fermion systems later in this
work and is described in more detail in Section 4.2.2.

Some of the most successful approaches rely on updates based on the gradient of the action
with respect to the fields, called drift and given by

Ki =−∂SE

∂φi
. (2.14)

These include the Hybrid Monte Carlo (HMC) algorithm, which is widely used in lattice QCD, and
the Langevin algorithm. The former will be briefly discussed in the following, while the latter is
discussed in detail in Chapter 3.

In Hybrid Monte Carlo, additional variables conjugate to the fields are introduced as momenta
pi , sampled from a unit variance Gaussian distribution with zero mean. The fields and momenta
are then evolved according to the Hamiltonian equations of motion, given by

dφi

dτ
= pi ,

d pi

dτ
=−∂SE

∂φi
, (2.15)

where τ is the fictitious time. These coupled differential equations are solved using numerical
integration schemes, which must be symplectic to preserve the phase space volume. If we had
a perfect integrator, no additional step would be necessary, and the problem would be reduced
to sampling random momenta and solving the equations of motion. However, in practice, the
numerical integration introduces a systematic error, which must be corrected. This is done by
inserting an additional accept/reject step based on the change in the Hamiltonian,

∆H = SE (φ′, p ′)−SE (φ, p)+ 1

2

(
p ′2 −p2) , (2.16)

which accepts the new configuration with probability P A = min
(
1,e−∆H

)
. For more details on

HMC, we refer to [36].

2.2.4 Autocorrelation & Critical slowing down

The most important characteristic for assessing the performance of different sampling approaches
beyond the raw computation time is the autocorrelation time between samples in the Markov
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chain. Roughly speaking, the autocorrelation time measures the number of steps required for sam-
ples to become uncorrelated. Given some observable, the time-lagged correlation function is given
by

CÔ(τ) = 〈(Ôi −〈Ô〉)(Ôi+t −〈Ô〉)〉 (2.17)

where Ôi indicates the value of the observable at the i -th step in the Markov chain. The correla-
tion function only depends on the time lag t since we are assuming an equilibrated process. This
correlation function is expected to show the long time behavior

CÔ(t ) ∼ e−t/τexp , (2.18)

where τexp is the exponential autocorrelation time. Note that this time generally depends on which
observable we are considering, and we need to take the maximum over all observables to measure
the overall autocorrelation in the system. In practice, computing the exponential autocorrelation
time by fitting is often not feasible due to the large number of samples required for reliable re-
sults. Instead, the integrated autocorrelation time is used, which can be computed directly from
the lagged correlation function, see, e.g., [38].

Given the estimate of the autocorrelation time, the effective number of samples can be com-
puted by a rescaling as the total number of steps in the Markov chain as

Neff =
N

2τexp
, (2.19)

while the estimator for the standard error of the mean is given by

σ2 = 2τexp

N

(〈Ô2〉−〈Ô〉2) . (2.20)

Since the computation of autocorrelation times can be computationally expensive and labor-
intensive, more straightforward methods are often used in practice. For instance, a simple blocking
analysis can be performed, where the Markov chain is split into blocks of a specific size, for which
the means are computed. The standard errors can then be computed based on the mean blocks.
The block size is increased until the standard error stabilizes. Related to this approach, we may use
the embarrassingly parallel nature of Markov chain Monte Carlo simulations to compute several
statistically independent chains, from which the standard error can be computed. We take this
approach for most of the computations of the ultracold Fermi systems in this work, where we run
independent Markov chains on each hardware thread of a multi-core CPU. Each Markov chain
carries a different random number seed, and sampling can only be started when the configurations
between the chains are completely independent. This requires some thermalization on each of the
threads, which can come with a significant overhead but is found to be unproblematic in most
cases.

Notably, the autocorrelation time is not a function of the sampling algorithm alone but directly
related to the physical system under study. In particular, it depends on the correlation length as

τexp ∼ ξz , (2.21)

where z is a dynamical critical exponent set by the sampling algorithm. As the correlation length
necessarily diverges in the continuum limit, the autocorrelation time will also diverge, a phenomenon
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Figure 2.1: Visualization of the volume dependence of the average sign on the example of a spin
imbalanced Fermi gas in two spatial dimensions. The sign is computed while keeping all physical
scales except for the volume fixed at βeb =βµ=βh = 3. The average sign shows a clear exponential
decrease as the volume is increased. The dashed line indicates a fit to the data, where only the
colored points were considered.

known as critical slowing down. Consider a d-dimensional square lattice, where we keep the cor-
relation length fixed in units of the linear extent of the lattice ξ/L = ξ/V 1/d = const . The above
relation then implies that the autocorrelation time will scale with the volume as

τexp ∼V z/d . (2.22)

One of the foremost aims when developing new sampling algorithms for lattice systems is the
reduction of the exponent z. Amongst the more recent attempts is the use of a machine learn-
ing method called normalizing flows [43, 44], which aims to find an invertible map from the de-
sired distribution to a trivial one. This idea is similar to the idea of trivializing flows introduced by
Lüscher [45] and can, in principle, eliminate autocorrelation times by sampling the trivial distri-
bution precisely. However, practical implementations are still in their infancy and generally show
unfavorable scaling with increasing volume [46, 47]. Further discussion of normalizing-flows can
be found in Chapter 7.

2.2.5 The sign problem

So far, we have only considered the possibility of real actions, leading to a straightforward inter-
pretation of exp(−S) as a probability weight. While this is typically the situation encountered in
statistical systems, it is not generally true in quantum ones. Examples of systems with complex
actions include lattice QCD at finite chemical potential, the repulsive Hubbard model away from
half-filling, attractive Fermi gases at finite spin imbalance, and any real-time formulation of quan-
tum field theories. The complex action immediately suggests a weight that is either complex or
not positive definite. This disrupts the probabilistic interpretation and creates what is commonly



2.2. STOCHASTIC SAMPLING 17

known as a sign or phase problem. The term ’Fermion sign problem’ often appears in the literature
because complex weights frequently arise in systems with fermions. However, such behavior is not
exclusive to fermions, nor do all fermionic systems exhibit a sign problem. Bosons may also suffer
from sign problems, particularly when considering real-time computations where the action gives
a pure phase exp(i S). On the other hand, some fermionic systems, such as QCD at zero chemical
potential and spin-balanced fermions with contact interactions, are sign problem free.

Without the probabilistic interpretation, the direct application of the previously discussed ap-
proaches for stochastic sampling is not possible. Naïvely, a straightforward solution to the sign
problem is to simply sample the absolute value of the weight, which we call the phase-quenched,
and compute the expectation values of observables as

〈O〉 =
∫

dφO(φ)e−S∫
dφe−S

=
∫

dφO(φ)e iϕ
∣∣e−S

∣∣∫
dφe iϕ

∣∣e−S
∣∣

=
∫

dφO(φ)e iϕ
∣∣e−S

∣∣∫
dφe iϕ

∣∣e−S
∣∣

∫
dφe iϕ

∣∣e−S
∣∣∫

dφe iϕ
∣∣e−S

∣∣
= 〈Oe iϕ〉pq

〈e iϕ〉pq
. (2.23)

Here, ϕ is the phase of e−S associated with a given lattice configuration, and 〈〉pq denotes expec-
tation values with respect to the phase quenched weight. While this procedure is mathematically
sound as long as the average sign 〈e iϕ〉pq does not vanish identically, problems arise already when
it is finite but much smaller than one. In that case, samples with different phases can be under-
stood to cancel, introducing a large amount of noise in which the signal is buried. Indeed, error
estimates will heavily depend on the relative error of the average sign, which typically increases as
the average sign tends to zero.

Unfortunately, the average sign decreases exponentially with the system’s volume. The free
energy density f is related to the partition function as

Z = eβV f , Zpq = eβV fpq , (2.24)

for the full and phase quenched partition functions, respectively, where βV is the total spacetime
volume. The average sign can be expressed as the ratio of the two partition functions

〈e iϕ〉pq = Zpq

Z
= eβV ( fpq− f ), (2.25)

and the exponential decrease is clear, as the free energy density is an intensive quantity. This be-
havior is illustrated in Figure 2.1, where the average sign is computed for a spin-imbalanced Fermi
gas in two spatial dimensions as a function of the spatial volume of the lattice.

Finally, we note that a severe sign problem can have different effects on different observables,
depending on the correlation between the phase and the observable we are interested in. Particu-
larly, if

〈Oe iϕ〉pq = 〈O〉pq〈e iϕ〉pq, (2.26)
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the sign problem is not relevant for computations of the Observable O, and the phase-quenched
expectation value becomes exact. There may also be cases where the relation (2.26) holds only ap-
proximately, and the phase-quenched result is still a good approximation to the full one. Later on,
we will come across a similar situation in Chapter 6 while discussing the two-dimensional spin-
imbalanced Fermi gas. Generally, the correlation must be taken into account when propagation
errors for (2.23). In the cases of vanishing correlation, the error is computed via the standard for-
mula, which neglects covariances.

2.3 Fermions on the lattice

We will now focus on fermionic systems and how they are made amenable to lattice simulations.
In contrast to bosons, fermionic actions are integrals over anti-commuting Grassmann variables,
which cannot be represented directly on digital computers. Moreover, in relativistic theories, the
fermion doubling problem arises when discretizing the Dirac operator, leading to unwanted modes
in the continuum limit. Fortunately, the latter issue is absent in the non-relativistic formulations
considered in this work.

The continuum Hamiltonian for a two-component Fermi gas with contact interactions is given
by

Ĥ =
∫

d d x
∑
σ
ψ̂†
σ(x)

−∇2

2m
ψ̂σ(x)+ g

∫
d d x n̂↑(x)n̂↓(x), (2.27)

where ψ̂σ(x) is the fermionic annihilation operator for spin σ, n̂σ(x) = ψ̂†
σ(x)ψ̂σ(x) is the density

operator, and g is the bare coupling constant. In practice, one tunes g to reproduce a desired
scattering length to match the physical system. This is accomplished by, for example, computing
the two-body binding energy exactly, see Chapter 5 and Chapter 6. To make contact with the ac-
tion formalism introduced in the previous section, we may write the action as an integral over the
Hamiltonian in terms of Grassmann fields ψ and ψ†, yielding

S =
∫ β

0
d t

∫
d d x

∑
σ
ψ†
σ

(
∂t −

∇2

2m
−µσ

)
ψσ+ gψ†

↑ψ↑ψ
†
↓ψ↓. (2.28)

Here, we have introduced the species-dependent chemical potential µσ, which controls the parti-
cle number. Moreover, we have identified the inverse temperature β with the length of the imagi-
nary time direction.

The lattice Hamiltonian is obtained by a straightforward discretization, yielding

Ĥ =
∑
p
ψ̂†

p,σϵpψ̂p,σ+λ
∑
x
ψ̂†

x,↑ψ̂x,↑ψ̂
†
x,↓ψ̂x,↓,

= T̂ + V̂ (2.29)

where ψ̂†
p,σ and ψ̂p,σ are the creation and annihilation operators for a fermion with momentum p

and spin σ. The lattice coupling constant λ generally differs from the continuum value g and de-
pends on the momentum cutoff. In the second line, we have explicitly separated the Hamiltonian
into kinetic T̂ and potential V̂ terms. The sums run over all momenta or positions on the lattice.
We use the dispersion

ϵp = p2

2m
(2.30)
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unless stated otherwise, which reproduces the free particle dispersion for all momenta. Using a
first-order finite-difference discretization of the lattice Laplacian instead yields the Fermi-Hubbard
Hamiltonian, which has also been used in the context of ultracold Fermi gases, but shows slower
convergence to the continuum limit [35, 40–42, 48].

2.3.1 Time discretization

When discretizing the time direction in (2.28), it is most convenient to stick with the Hamiltonian
formalism. The time evolution operator in the partition function is sliced into Nt components of
length ∆t =β/Nt , and the partition function becomes

Z = Tr

[
e−βµσN̂σ

∏
Nt

e−∆t Ĥ

]
. (2.31)

Here, the components of the product are propagators from one time slice to the next. We have
excluded the chemical potential from the product as an aesthetic choice, since the time discretiza-
tion does not affect it. Given a sufficiently small time step, the propagators can now be split into
the kinetic and interaction terms via a Trotter-Suzuki decomposition [49]. This allows us to express
the exponential of a sum of operators as a product of the exponentials of the individual operators,
yielding to second order

e−∆t Ĥ = e−∆t T̂ e−∆tV̂ +O(∆t 2). (2.32)

A third-order equation can be obtained via a symmetric decomposition as

e−∆t Ĥ = e−
∆t
2 T̂ e−∆tV̂ e−

∆t
2 T̂ +O(∆t 3), (2.33)

and is widely used in cold atom systems in the ground state and at finite temperature[32, 40, 50].
We use this formulation for ground state computations but employ the second-order one at finite
temperature, as the cyclic nature of the trace makes the approaches equivalent.

2.3.2 Auxiliary field transformatios

Superficially, little has been gained by discretizing the fermionic system so far, as we still need
real-valued fields that can be sampled stochastically. This can be achieved by the introduction
of auxiliary fields via a Hubbard-Stratonovich transformation [51]. We will now discuss various
available transformations for the Hamiltonian in (2.29) and their usefulness in different scenarios.

The Hubbard-Stratonovich transformation is a general method used to decouple density-den-
sity interactions in the Hamiltonian by replacing them with an integral over an auxiliary field. For
our purposes, there will be four major variants of the transformation. We begin by introducing
discrete fields, which directly couple to the total density, as originally presented in [52],

e−λ∆t n̂x,↑n̂x,↓ = 1+
N∑

n=1

(−λ∆t )n

n!
n̂x,↑n̂x,↓

= 1+ (e−λ∆t −1)n̂x,↑n̂x,↓

= 1

2

∑
φ=±1

(
1+ Aφ n̂x,↑

)(
1+ Aφ n̂x,↓

)
. (2.34)
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In the first line, we used the series expansion of the exponential and the density operators’ idempo-
tence. This transformation is performed separately for each spatial point on each time slice, lead-
ing to a total of Nt Ld auxiliary fields, which we label as φt ,x . The effective coupling of the auxiliary

field to the density is A =
√

(e−λ∆t −1). It is real and positive for λ< 0, corresponding to attractive
inter-particle interactions, and purely imaginary for repulsive interactions λ> 0. The transforma-
tion above is quite attractive for Metropolis-based sampling, as the state space is large but finite
and equivalent to the Ising model, which comes with a large machinery of efficient sampling algo-
rithms. However, if we want to apply global updating schemes such as HMC or Langevin sampling,
we require a continuous auxiliary field. To achieve this, a slight modification to the transformation
is necessary, yielding

e−λ∆t n̂x,↑n̂x,↓ = 1

2π

∫ π

−π
dφ

(
1+ Ac n̂x,↑ sinφ

)(
1+ Ac n̂x,↓ sinφ

)
. (2.35)

To verify the above expression, we can integrate the right-hand side and then compare it with
(2.34). The continuous auxiliary field φ is defined on the interval [−π,π), such that the overall
state space [−π,π)Nt L is bounded but continuous. The effective coupling constant, denoted by Ac ,

is modified slightly and becomes Ac =
√

2(e−λ∆t −1). This value remains real for attractive interac-
tions and imaginary for repulsive ones. We will use the continuous auxiliary field decomposition
later for complex Langevin simulations.

In addition to the density-channel decomposition, we can introduce transformations that cou-
ple to the local magnetization, also called spin-channel transformations. They are related to the
density-channel decompositions by a simple sign flip, yielding

e−λ∆t n̂x,↑n̂x,↓ = 1

2

∑
φ=±1

(
1+Bφ n̂x,↑

)(
1−Bφ n̂x,↓

)
. (2.36)

for the discrete field and

e−λ∆t n̂x,↑n̂x,↓ = 1

2π

∫ π

−π
dφ

(
1+Bc n̂x,↑ sinφ

)(
1−Bc n̂x,↓ sinφ

)
. (2.37)

for the bounded but continuous one. The coupling parameters become B =
√

(1−e−λ∆t ) and Bc =√
2(1−e−λ∆t ). They are now real for repulsive interactions and imaginary for attractive ones. This

kind of formulation is often used in the context of the two-dimensional Hubbard model at half-
filling, as it is free of the sign problem.

Note that the abovementioned list of transformations is neither exhaustive nor unique, and
other transformations are possible. For example, the one initially proposed in [51] is commonly
used and leads to a continuous and unbounded field reminiscent of scalar lattice field theories.
Moreover, a transformation into the coupling channel ψ†

↑ψ↓, physically motivated by the emer-
gence of BCS type pairing, was recently brought forward in [53]. Unfortunately, it doubles the
number of degrees of freedom. It also introduces a complex-valued weight, which increases the
computational cost of simulations and requires strategies such as complex Langevin to avoid the
sign problem. Initial applications are limited to the case of a 0+1-dimensional theory, and we do
not use it here.
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2.3.3 Computing the weight

We are now ready to cast the partition function into a form amenable to stochastic sampling. Con-
sider a generic auxiliary field decomposition

e−λ∆t n̂x,↑n̂x,↓ =
∫

dφV̂↑(φ)V̂↓(φ) , (2.38)

where the potential operators are bilinear in the creation and annihilation operators. All transfor-
mations discussed in the previous section allow for this structure. The contribution of a single time
slice to the time evolution operator, accurate to second order in the time step, is given by

e−∆t T̂ e−∆tV̂ =e−∆t
∑
σ T̂σ

∏
x

∫
dφt ,x V̂↑(φt ,x )V̂↓(φt ,x ) ,

=
∫ ∏

x
dφt ,x ⊗σ e−∆t T̂σV̂σ(φt ,x ) . (2.39)

Here, the spin species are decoupled via a tensor product by virtue of the auxiliary field transfor-
mation. The full partition function now becomes a time-ordered product,

Z =
∫ ∏

t ,x
dφt ,x Tr

[∏
t
⊗σe−∆t T̂σV̂σ(φt ,x )e∆tµσN̂σ

]
,

=
∫ ∏

t ,x
dφt ,x

∏
σ

det

[
I+eβµσ

∏
t

e−∆tT Vσ(φt )

]
,

=
∫ ∏

t ,x
dφt ,x

∏
σ

det

[
I+eβµσ

∏
t

Bσ(φt )

]
, (2.40)

where the trace over Fock space has been carried out in the second line, resulting in a simple rep-
resentation of the weight as the determinant of matrices of spatial volume size. The matrices

Bσ(φt ) = Bσ
t = e−∆tT Vσ(φt ) = e∆t Hσ,t , (2.41)

can be interpreted as the time evolution operator in the presence of the auxiliary field.

A proof for the final line of (2.40) can be found, for example, in [54] using the Baker–Campbell–
Hausdorff formula, or in [55], which expands the trace directly. Alternatively, [56] provides proof
based on the fermionic action. While we do not provide the full proof here, we present a brief
intuitive argument supporting the correctness of the formula. By interpreting the determinant as
the result of an integration over fermionic fields, we can restore the temporal dimension using a
simple bock matrix of the form

Dσ =



I 0 · · · 0 B1

−B2 I 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . . I 0

0 · · · 0 −BNt I

 , (2.42)

where all entries are matrices of size Ld ×Ld , and we have dropped the spin indices. Taking the
determinant over both spatial and temporal dimensions naturally restores the form given in (2.40).
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In terms of discrete field operators, we may now write the action as

S =
∑
σ
ψ†
σDσψσ . (2.43)

In the limit ∆t → 0, the time evolution matrices can be expanded to first order in the time steps
Bσ

t ≈ I+∆t Hσ,t , leading to the action

S =∆t
∑
σ,t
ψ†
σ,t

(
ψσ,t −ψσ,t−1

)
/∆t +ψ†

σ,t Hσ,tψσ,t−1

=
∑
σ

∫
d td d xψ†

σ

(
∂

∂t
+Hσ

)
ψσ , (2.44)

where we have taken the continuum limit in the second line and suppress the time argument. This
is just the expected form of the action given out Hamiltonian.

We are now ready to calculate the weight in (2.40) by constructing the matrix product Uσ =∏
σBσ

t directly and subsequently computing the determinant. The procedure can be technically
demanding due to the computational cost of matrix multiplications and the stability challenges
posed by large condition numbers at low temperatures. A detailed discussion of these aspects can
be found in Chapter 4.

2.3.4 The sign problem for two fermion species

Whether or not a sign problem occurs is influenced by the specifics of the chosen Hubbard-Stra-
tonovich transformation and the nature of the coupling. In the absence of interactions, sampling
becomes unnecessary since the weight is independent of the auxiliary field, thus eliminating the
sign problem.

To analyze the interacting system, we begin with a density-channel decomposition under at-
tractive interactions, where the matrices Vσ(φ) remain real. However, the matrix product can have
negative eigenvalues, leading to configurations with negative determinants. The weight remains
positive only if the two spin species have equal chemical potentials, resulting in spin-balanced
populations, expressed as

µ↑ =µ↓ → det
[

I+eβµ↑U↑
]
= det

[
I+eβµ↓U↓

]
, (2.45)

P (φ) = det
[

I+eβµ↑U↑
]2

∈R+. (2.46)

Here, the weight is real and non-negative, and we can apply the full arsenal of stochastic sampling
methods. This construction can be trivially extended to larger numbers of fermion flavors with
SU (N ) symmetry as long as N is even. However, if the populations are imbalanced, the weight,
while remaining real, is not guaranteed to be positive, and a sign problem may arise in simulations.
In the presence of repulsive interactions, the potential matrix becomes imaginary, resulting in an
inherent sign problem. The Hubbard model at half-filling is a notable exception to this, where the
positivity of the weight is maintained through a particle-hole transformation [57].

In spin channel, the situation is similar, albeit slightly more involved. For attractive interac-
tions, the potential matrices are purely imaginary, and the matrix products are related to each other
via complex conjugation,

U↑ =U∗
↓ . (2.47)
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Channel λ< 0 λ< 0 λ> 0 λ> 0
µ↑ =µ↓ µ↑ ̸=µ↓ µ↑ =µ↓ µ↑ ̸=µ↓

Density R+ R C, HF: R+ C

Spin R+ C R, HF: R+ R

Coupling C C C C

Table 2.1: Summary of the sign problem for the different transformations and physical scenarios.
The entries denote the domain of the weight. HF indicates half filling.

By utilizing the transposition invariance of the determinant, we can replace the complex conjuga-
tion with the Hermitian adjoint, allowing the weight to be written as

P (φ) = det
[

I+eβµ↑U↑
]

det
[

I+eβµ↓U †
↑
]
=

∣∣∣det
[

I+eβµ↑U↑
]∣∣∣2

∈R+ , (2.48)

where we have assumed µ↑ = µ↓ in the last line. If the spin species are imbalanced, the weight
becomes complex instead, incurring a sign problem. Although all matrices are real in systems with
repulsive interactions, negative weights may appear, as in the spin-imbalanced density channel
case. Nevertheless, half-filling remains free of sign problems. A summary of the sign problem for
the different transformations and physical scenarios can be found in Table 2.1.

2.3.5 Observables for lattice fermions

Equipped with a suitable weight, we now proceed to compute physical observables from the sam-
pled lattice configurations. Given some bilinear operator Ô = ψ̂†

σ,i Oi j ψ̂σ, j , expectation values are
given by

〈O(t )〉φ =
Tr

[
e−t ĤφÔe−(β−t )Ĥφ

]
Tr

[
e−βĤφ

] (2.49)

where we have inserted the operator at time t of the imaginary time evolution, and Ĥφ indicates the
Hamiltonian in the background of a specific auxiliary field. Note that the superscript φ indicates
that we evaluate the observable on a specific field configuration. The average over all samples gives
the actual expectation value of the physical system. For simplicity, we will omit the spin index and
chemical potential from here on, as the latter can be absorbed into the Hamiltonian.

Next, we insert an exponential and rewrite the expectation value in terms of a derivative with
respect to an external source J as

〈O(t )〉φ = ∂

∂J

(
logTr

[
e−t Ĥφe JÔe−(β−t )Ĥφ

])∣∣∣
J=0

= ∂

∂J

(
logdet

[
I+B1 . . .Bt e JOBt+1 . . .BNt

]) |J=0 , (2.50)

where the second step introduced the matrix representation, as before. The logarithm of the deter-
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minant can be replaced by a trace logarithm, allowing for a direct derivative calculation, yielding

〈O(t )〉φ = ∂

∂J

(
Trlog

[
I+B1 . . .Bt e JOBt+1 . . .BNt

]) |J=0 ,

= Tr
[(

I+B1 . . .Bt e JOBt+1 . . .BNt

)−1
B1 . . .Bt Oe JOBt+1 . . .BNt

]
|J=0 ,

= Tr
[

Bt+1 . . .BNt

(
I+B1 . . .BNt

)−1 B1 . . .Bt O
]

, (2.51)

where in the final line, we used the cyclic property of the trace and evaluated the expression at zero
external field.

Finally, we use the Woodbury matrix identity to obtain

〈O(t )〉φ = Tr
[(

I− (
I+Bt+1 . . .BNt B1 . . .Bt

)−1
)

O
]

. (2.52)

To identify the elements of the reduced density matrix, we set the operator matrix to contain only
a single element, yielding

〈ψ̂†
i (t )ψ̂ j (t )〉φ = nφ

i j (t ) = δi j +
[(

I+Bt+1 . . .BNt B1 . . .Bt
)−1

]
j i

. (2.53)

The second term corresponds to the equal-time single-particle Green’s function, given by the in-
verse of the Fermi matrix as

Gφ

i j (t ) =
[(

I+Bt+1 . . .BNt B1 . . .Bt
)−1

]
i j

. (2.54)

The single-particle operators considered here do not depend on the specific time slice when aver-
aged, a property that arises from the time-translation invariance of the bosonic fields. This invari-
ance is reflected in the cyclic symmetry of the weight, as can be observed in (2.46). We can use this
property when computing observables by averaging over the time slices, enhancing the statistical
accuracy depending on the observable in question.

Many-body observables

So far, our focus has been on bilinear operators. However, higher-order observables, such as densi-
ty-density correlators, are also of significant physical interest. Fortunately, the Hubbard-Stratono-
vich allows us to understand the systems as non-interacting fermions in the presence of an external
field. This reinterpretation enables us to apply Wicks theorem, which decouples the higher-order
operators into products of bilinear ones.

Conveniently, correlations between the different spin species are also fully decoupled and can
be written as products like

〈ψ†
i ,↑ψ j ,↑ψ

†
k,↓ψl ,↓〉

φ = 〈ψ†
i ,↑ψ j ,↑〉

φ〈ψ†
k,↓ψl ,↓〉

φ

= nφ

i j ,↑nφ

kl ,↓ , (2.55)

where we have assumed equal times. Generally, if operators involving different spin species are
considered, the expectation values factorize, allowing each spin sector to be computed indepen-
dently.
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When considering higher-order contractions involving the same spin species, additional terms
arise. For example, in the case of four-fermion interactions within the same spin species, the full
density correlation is given by

〈ψ†
i ,↑ψ j ,↑ψ

†
k,↑ψl ,↑〉

φ = nφ

i j ,↑nφ

kl ,↑−nφ

i l ,↑nφ

k j ,↑ . (2.56)

Note that permutations of the field operators are easily accounted for by simply using the commu-
tation rules.

For a generic number of fermionic operators, the contractions can be performed using the de-
terminant formula

〈ψ†
i0,↑ψ j0,↑ . . .ψ†

in ,↑ψ jn ,↑〉
φ = det

[
Gφ

iα jβ

]
, (2.57)

where k, l = 1, . . . ,n and Gφ

iα jβ
is a matrix with n ×n elements constructed from the full equal-time

greens function. A detailed proof of this relation can be found in the Appendix of [58].

2.4 Canonical computations

In the previous sections, we discussed the computation of observables in the grand canonical en-
semble, where the chemical potential is fixed, but the particle number is allowed to fluctuate. How-
ever, in many practical scenarios the canonical ensemble, with a set particle number, is more rel-
evant. To achieve this, we can use projective techniques, which we will discuss in the following
sections, for both ground state and finite temperature calculations.

2.4.1 Ground state

To study systems at zero temperature, the general lattice approach described above must be refined
to eliminate contributions from excited states. This is achieved by realizing that the ground state
wave function can be obtained from the infinite time limit of the time evolution operator as

|Ψ0〉∝ lim
Nt→∞

∏
Nt

e−∆t Ĥ |ΨT 〉 . (2.58)

Here, |Ψ0〉 is the ground state, and |ΨT 〉 is some trial state that has a non-zero overlap with the
ground state. In practice, the limit cannot be taken exactly, and one needs to monitor the conver-
gence of the ground state energy with respect to the number of time slices. Within this framework,
the ground state partition function can be expressed as

Z =〈Ψ0|Ψ0〉
= lim

Nt→∞
〈ΨT |

∏
Nt

e−∆t Ĥ |ΨT 〉 , (2.59)

and observables can be computed analogously via

〈O〉 = 〈ΨT |
∏

Nt /2 e−∆t Ĥ Ô
∏

Nt /2 e−∆t Ĥ |ΨT 〉
〈ΨT |

∏
Nt

e−∆t Ĥ |ΨT 〉
, (2.60)
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where we use a symmetric splitting of the time evolution operator. Following the procedure dis-
cussed in Section 2.3.2, various auxiliary field transformations can now be applied to decouple the
interaction.

One of the most attractive features of the ground state approach is the reduced size of the ma-
trices involved in practical computations. The trail states can be written as Slater determinants
composed of single-particle basis states. In matrix representation, they take the form of Ns×N ma-
trices, where N is the number of particles, and Ns = V is the total number of single-particle states
permitted by the lattice, which is set by the number of sites. This means that the matrix-matrix
operations required to compute the weight become O(N 2

s N ) compared to the original O(N 3
s ), re-

ducing computational cost significantly. Similar to the finite temperature case, the weight can be
computed via a determinant formula and is given by the overlap of Slater determinants as

〈Ψ|Ψ′〉 = det
[

SψS′
ψ

]
, (2.61)

where Sψ and Sψ′ are the Slater determinant matrices.

The efficiency of the ground state approach strongly depends on the choice of trial states. A
good initial overlap between the actual ground state and the trial state is desirable, as it reduces
the number of time slices required to reach convergence. On a rectangular lattice, plane waves
provide a natural and commonly used choice for the single-particle basis. However, in systems
with strong correlations or inhomogeneities, other trial states have been used, such as projected
BCS wavefunctions [59] or harmonic oscillator orbitals [60, 61].

2.4.2 Finite temperature

Computing the canonical partition function at finite temperatures is more challenging, but various
methods to do so exist. For example, we may expand the partition function on a field configuration
in the fugacity z = eβµ as

Zφ = det[I+ zU ] =
Ns∑

n=0
zn Zφ

n

= exp
[
Trlog(I+ zU )

]
= exp

[
Ns∑

n=1

(−1)n+1

n
zn TrU n

]
, (2.62)

where Zφ

N is the canonical trace for a fixed particle number N . This technique, known as the activ-
ity expansion, has been applied in contexts such as the nuclear shell model [62]. However, there
are several drawbacks to the approach, including the need to compute high powers of the matrix
U , which can be numerically expensive. Moreover, substantial cancellations and large condition
numbers can lead to problems with numerical precision. Although diagonalizing the matrix can
mitigate these problems, we instead turn to the projective approach to canonical computations
first introduced in [63].

Starting from the grand canonical partition function, we introduce a phase factor ϕn = 2πn
Ns

to
the weight, resulting in

det
[

I+e iϕn eβµU
]
=

Ns∑
m=0

e i mϕn emβµZφ
m . (2.63)
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To isolate the canonical component for a specific particle number N , we leverage the orthogonality
of the phase factors and project out the undesired terms, yielding

Zφ

N = 1

Ns

Ns∑
n=1

e−i Nϕn e−Nβµdet
[

I+e iϕn eβµU
]

, (2.64)

where the number of quadrature points is fixed to match the total number of single-particle states
Ns . This expression requires the evaluation of Ns determinants, which can be prohibitively ex-
pensive but may be avoided via diagonalization [64, 65]. It is important to note that the chemical
potential here does not have a physical meaning, but serves as a stabilizing parameter. It is tuned to
maximize the overlap between the canonical and grand canonical partition functions, either once
for the whole run or on a per-configuration basis.

In a two-component Fermi gas, separate projections must be performed for each spin species,
which is easily possible due to the decoupling of the respective contributions to the full weight.
If we want to compute observables, they will also require a projection. Working with a generic
bilinear operator Ô = ψ̂†

i Oi j ψ̂ j , the expectation value on a single field configuration becomes

〈O〉φN = e−Nβµ

Zφ

N Ns

Ns∑
n=1

e−i Nϕn det
[

I+e iϕn eβµU
]

Tr

[(
I−

(
I+e iϕn eβµU

)−1
)

O

]
. (2.65)

Higher-order observables may be computed using Wick’s theorem in analogy to the grand canoni-
cal case.

There are different strategies for sampling the canonical weight. One approach involves making
projections at each step of the Markov chain, while another samples the grand canonical ensem-
ble at a fixed chemical potential and reweights the configurations to the canonical weight. The
latter method requires a good guess for the chemical potential to be known a priori. Alternatively,
promising results for particle projection have been achieved using the complex Langevin method
in [66], where small three-dimensional lattices were considered. This approach leaves the Fourier
sum continuous and samples it along with the auxiliary field in the complex plane.

Whether a sign problem is present in canonical computation depends on the specifics of the
auxiliary field transformation, as well as the interaction and spin or mass balance, similar to the
grand canonical case discussed Table 2.1.

While direct sampling of the canonical weight is appealing, this work will focus on the reweight-
ing approach. It allows the use of the same configurations for grand canonical and canonical com-
putations, facilitating a direct comparison between the two ensembles.





Chapter 3

Stochastic quantization

Stochastic quantization originated in the late 60s in the context of quantum mechanics [67] and
underwent significant further development in the 80s [68, 69]. It is an approach in which Euclidean
quantum field theory and quantum mechanics emerge from a stochastic process, which can either
be treated perturbatively or non-perturbatively via lattice computations.

This chapter introduces the Langevin method for real-valued actions, a sampling algorithm
based on stochastic quantization, in Section 3.1, after which we discuss the extension to complex
weights in Section 3.2. Complex Langevin is a powerful tool for systems with sign problems and
can allow for the computation of observables that are Section 3.2.2. Lastly, Section 3.3 presents an
investigation of Lee-Yang zeros in scalar field theories based on complex Langevin.

3.1 Langevin sampling

The central idea behind stochastic quantization is to replace the conventional path integral with a
stochastic evolution of the field’s degrees of freedom, governed by the Langevin equation

∂φ

∂τ
=−δS

δφ
+η(τ) , (3.1)

where η(τ) is Gaussian white noise with zero mean and variance 〈η(τ)η(τ′)〉 = 2δ(τ−τ′) and τ is a
non-physical stochastic time. To grasp the intuitive picture, we can draw an analogy to classical
Brownian motion. The field can be envisioned as a particle moving in a potential V (φ) = −S(φ),
with the random noise acting as thermal fluctuations. In the absence of noise, the field would
follow the path of steepest descent, ultimately leading to the classical equations of motion for the
theory in question. Consequently, the noise introduces quantum fluctuations into the system.

Observables of interest are computed as averages over stochastic time. They agree with the
path integral formulation in the infinite time limit, as long as the stochastic process is ergodic, so
we have

〈O〉 = lim
T→∞

1

T

∫ T

0
dτO[φ(τ)] = 1

Z

∫
DφO[φ]e−S[φ] . (3.2)

This equivalence is guaranteed by the correspondence between the Langevin evolution and a Fokker-
Planck equation, which possesses a unique equilibrium distribution given by P (φ) = e−S(φ).

29
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3.1.1 Formal justification

We now briefly sketch the correspondence between the Langevin and Fokker-Planck equations. To
this end, we consider the time evolution of observables O(x) in both formalisms. Writing Equa-
tion (3.1) for a lattice system as a stochastic differential equation of Ito-type, we have

dφi =− ∂S

∂φi
dτ+d wi . (3.3)

Here, d wi is a Wiener measure, for which the expectation values are as 〈d wi 〉 = 0 and 〈d wi d w j 〉 =
2δi j d t at equal time. These expectation values vanish for unequal times, and the Wiener process

scales as
p

dτ.

To explore the time evolution of a field configuration φ(τ), we expand the observable O(φ) to
first order, yielding

O
(
φ(τ+dτ)

)=O
(
φ(τ)

)+∑
i

∂O

∂φi
dφi +

1

2

∑
i , j

∂2O

∂φi∂φ j
dφi dφ j +O(dτ3/2) .

=O
(
φ(τ)

)+∑
i

∂O

∂φi

(
− ∂S

∂φi
dτ+d wi

)

+ 1

2

∑
i , j

∂2O

∂φi∂φ j
d wi d w j +O(dτ3/2) . (3.4)

Terms of order d t 2 are dropped in the second line. This expression allows us to determine the time
evolution of the expectation value, given an initial distribution P (φ) as

d

d t

〈
O

(
φ(τ)

)〉= 1

d t

〈
O

(
φ(τ+dτ)

)−O
(
φ(τ)

)〉
= 〈

∑
i
− ∂O

∂φi

∂S

∂φi
+ ∂2O

∂φ2
i

〉

=
∫
Dφ

(∑
i
− ∂O

∂φi

∂S

∂φi
+ ∂2O

∂φ2
i

)
P (φ)

=
∫
DφO(φ)

(∑
i

∂

∂φi

∂S

∂φi
+ ∂2

∂φ2
i

)
P (φ) . (3.5)

In the final step, we used integration by parts, which requires sufficiently fast decay of the distri-
bution towards infinity. We are now left with a Fokker-Plank equation for the time evolution of the
distribution itself instead of the fields

∂τP (φ) =
(∑

i

∂

∂φi

∂S

∂φi
+ ∂2

∂φ2
i

)
P (φ) . (3.6)

The equilibrium solution to this equation is P (φ) = e−S(φ), demonstrating that the Langevin equa-
tion naturally leads to the correct equilibrium distribution and ensuring that the expectation values
computed in the infinite-time limit are accurate. For a more detailed proof, refer to [70].
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3.1.2 Discretization & Technical aspects

The discussion thus far has centered on a continuous stochastic time t , an idealization that is not
practical in numerical simulations. Instead, we need to discretize the time evolution of the fields,
which can be done in several ways. As with ordinary differential equations, a variety of integration
schemes are available, each varying in terms of accuracy and stability.

The most straightforward method is the Euler-Maruyama scheme, which can be seen as the
equivalent of the Euler method and is given by

φi ,t+1 =φi ,t −
∂S

∂φi
ϵL +

√
2ϵL ηi , (3.7)

where ϵL is the discretized time step and ηi is a Gaussian random number with zero mean and unit
variance. While this scheme is only first-order accurate, it is simple to implement and computa-
tionally inexpensive. The discretization maintains stability if the time step ϵL is sufficiently small
and the action is bounded. However, observables computed in this scheme will carry an error that
has to be removed by an extrapolation ϵL → 0 to continuous stochastic time.

Alternative integration techniques have been developed and employed in lattice computations.
These include second-order Runge-Kutta schemes [71] and implicit methods [72], which offer im-
proved accuracy and stability under certain conditions.

3.2 Complex Langevin

The Langevin approach described above is well suited for cases where the action is real and bound-
ed from below, avoiding sign problems and ensuring a well-defined equilibrium distribution. How-
ever, many physical systems do not allow for a description via a real action, and complex parts ap-
pear. In such cases, the Langevin approach can be extended via complexification so that sampling
remains possible. This was already noticed in the 80s [73, 74], but interest waned due to significant
numerical and convergence challenges encountered at the time [75, 76].

Recently, there has been a resurgence of interest in the method, with various applications in the
context of QCD [77–80] and beyond, in particular in the realm of ultracold many-body quantum
systems [32, 50, 81–85]. These contemporary investigations also introduced partial solutions to
previously identified issues with the method [86–89].

3.2.1 Complexification

To extend the Langevin formalism to cases involving complex-valued actions, we allow the field
variables to become complex φi = φR

i + iφI
i . Here, φR

i and φI
i are the real and imaginary compo-

nents. This leads the Langevin equation to change domains from Rn to Cn ≡ R2N . The resulting
system of coupled equations is given by

∂φR
i

∂τ
=−Re

(
∂S

∂φi

)
+ηi (τ) , (3.8)

∂φI
i

∂τ
=− Im

(
∂S

∂φi

)
, (3.9)
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where the derivative of the action with respect to the complex field appears. For the equations to
be well-defined, the action must be holomorphic (or at least meromorphic) to avoid ambiguities in
the differentiation process. In Equation (3.9), the noise is chosen to be purely real. While noise with
a complex part is generally possible under a suitable normalization condition, it has been found to
hinder numerical stability [90, 91] and is therefore typically avoided.

The discretization of the complex Langevin equation follows the same procedure as in the real-
valued case, using the Euler-Maruyama method. However, numerical stability is often an issue
when using the naive discretization scheme with a fixed step size. Instabilities usually arise from
repulsive directions in the complexified space, where large drift values can cause the stochastic
process to diverge. An adaptive stepping scheme was introduced in [86] to avoid these instabilities.
This method adjusts the step size dynamically based on the magnitude of the drift term, ensuring
that the product of the step size and drift magnitude remains constant. The approach allows for
smaller steps in regions with large drift and larger steps where the drift is small, thus improving
numerical stability.

Sampling in the complex Langevin framework proceeds similarly to the real case, but now oc-
curs in the complexified field space. Unlike conventional sampling methods, the exact form of
the probability distribution we sample is not generally known. However, under certain conditions,
the complex Langevin process has been shown to converge to the desired distribution, as will be
discussed in the next section. We then have a direct correspondence of observables∫ ∏

i
dφi O

(
φ

)
e−S(φ) ↔

∫ ∏
i

dφR
i dφI

i O
(
φR + iφI )P

(
φR ,φI ) , (3.10)

allowing for computations even in the presence of otherwise prohibitive sign problems.

3.2.2 Criteria for correctness

Complex Langevin has been applied in various contexts, perhaps most notably in QCD, for which
it was initially proposed, as well as in systems involving non-relativistic fermions [32, 50, 81]. Un-
fortunately, the method is not guaranteed to converge to the correct result. Indeed, there are now
two separate time evolutions: one for the real-valued weight with complex domain P (φR ,φI ) and
one for the complex weight with real domain ρ(φ). The former is given by

∂τP (φR ,φI ) = LT P (φR ,φI ) (3.11)

=
∑

i

∂

∂φR
i

(
∂

∂φR
i

+Re

(
∂S

∂φi

))
+ ∂

∂φI
Im

(
∂S

∂φi

)
, (3.12)

where LT is the real Fokker-Planck operator acting on the complexified field space. The second
evolution equation is given by

∂τρφ= LT
c ρ(φ) =

∑
i

∂

∂φi

(
∂

∂φi
+ ∂S

∂φi

)
ρ(φ) , (3.13)

which resembles the standard Fokker-Planck operator but is extended to a complex action. Here,
LT

c is the complex Fokker-Plank operator, extended to act on a complex-valued function of real
variables.
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Extensive research has been conducted on the convergence properties of the complex Lange-
vin method. Perhaps most notably, there is proof of convergence that relates the time evolution of
observables under both of the operators mentioned above [87]. The proof relies on several partial
integrations, which require a sufficiently fast decay of the equilibrium distribution towards infinity.
However, this condition is not always met, and in some cases, the complex Langevin process may
converge to incorrect results.

Various criteria have been proposed to identify situations where the method might fail. An
easily used approach is the so-called "drift criterion", for which one monitors the magnitude of the
drift term and its decay towards large values [88]. In practice, one computes

max
i

(
∂S

∂φi

)
, (3.14)

for each field configuration and bins the values into a histogram. If the distribution decays at least
exponentially, the complex Langevin process is expected to converge correctly. However, slower
than exponential decay does not necessarily imply a failure of the complex Langevin process, as it
may still converge to the correct result.

Additionally, methods for correcting wrong convergence have been proposed, involving the
computations of so-called "boundary-terms" [92]. These are related to the difference between the
complex and real Fokker-Plank operators and can be computed order-by-order under some as-
sumptions to an interpolating function between both evolutions. In terms of observables that can
be computed from the stationary complex Langevin process, they are given as [93]

Bn = lim
Y →∞

∫
|φ|<Y

dφP (φR ,φI )Ln
c O(φ) . (3.15)

Here, a cutoff in field space is introduced to ensure the convergence of the integral. It must be
carefully removed by searching for a plateau in the observable as a function of the cutoff. Note
that a boundary term computed like this is not a generic feature of the complex Langevin process
but depends on the observable under study. There may be observables that converge to the exact
result, while others do not, even when evaluating the same Langevin trajectory.

Nonetheless, caution is warranted, as the complex Fokker-Planck operator is not guaranteed to
have a non-degenerate zero mode or a non-positive spectrum. Recent studies have explored such
cases [94], indicating that these issues can significantly affect the results.

A similar problem may arise in the presence of singularities in the complexified action. They
are often encountered in fermionic theories, where zeros in the fermionic determinant can lead
to diverging actions and singularities in the drift. The impact of singularities depends on their
location relative to the sampled distribution. If a pole lies entirely outside the sampled region, it
typically does not cause problems. In contrast, if the pole lies inside the sampled area, correctness
depends on the decay of the distribution towards the pole, which is a similar requirement to the
one for large field values. Unfortunately, the correction procedures described earlier are ineffective
in cases where singularities lead to incorrect convergence.
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3.3 Evaluating complex Langevin for the search of Lee-Yang zeros

This section is based on [2].

In this section, we will discuss the potential of complex Langevin in the search of Lee-Yang
zeros based on simple toy models and full-dimensional lattice computations. A secondary aim is
to provide a simple, practical introduction to complex Langevin based on these toy models.

The Yang-Lee theorem [95, 96] states that O(N ) models have branch cuts for purely imaginary
values of h0, and the cuts end at second-order critical points, known as Lee-Yang edge singularities.
These singularities provide an upper bound on the radius of convergence of a Taylor expansion in
h0 around the origin.

O(N ) models are of great interest. Indeed, around the chiral phase transition the matter dy-
namics of QCD can be well-approximated by a theory of massless pions and scalar quark con-
densate. In this low-energy regime, nucleons and heavier hadrons play no role, and the model is
described by an O(4) scalar field with quartic self-interactions. In this model, an external source
h0 coupled to the quark condensate plays the role of chemical potential. The breaking of chiral
symmetry, signaled by a vacuum expectation value of the quark condensate, is controlled by the
sign and strength of the mass parameter.

Thus, the expansion in h0, would correspond to an expansion in the chemical potential µ
around the chiral phase transition in QCD. Knowing the location of the edge singularity in the
O(N ) case provides information on how far in the chemical potential a Taylor expansion in QCD
can be trusted. An earlier investigation on this topic, using random matrix models, can be found
in [97]. Recent works on this topic include Taylor expansions [98], lattice QCD results for non-
universal parameters [99], reweighting [100], Functional Renormalisation Group methods [101],
Padé resummations [102], as well as studies in QCD via imaginary chemical potential [103].

3.3.1 One-site toy model

We start by considering a zero-dimensional, single-site toy model with the action defined as

S(φ) = m2

2
φ2 + λ

4!
φ4 + i hIφ , (3.16)

where m and λ are real and positive. The external field hI is also real, so the coupling to φ is purely
imaginary. The partition function is a simple integral given by

Z (h) =
∫

dφe−S(φ) =
∫

dφe−m2/2φ2−λ/4!φ4−i hIφ , (3.17)

which takes the form of a Fourier transform. In the following, we set m = 0 and λ = 1, noting that
the parameters do not significantly influence qualitative features as long as both are non-negative.
The Langevin evolution is then given by

∂τφ
R =− 1

3!
Re

(
φ3)+η(t ) , (3.18)

∂τφ
I =− 1

3!
Im

(
φ3)−hI , (3.19)
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Figure 3.1: Susceptibility for the one-site toy model from complex Langevin (green points) com-
pared to the exact result (blue lines) as a function of the external field. The statistical errors are
smaller than the symbol size in all cases. The red line shows the relative weight between the two
equally contributing thimbles.

which we discretize in the Euler-Maruyama scheme. We employ an adaptive step size with a refer-
ence step size of ϵL = 0.05 and compute the susceptibility for various external field values. Since a
simple integral solves the model, we can compare the results of the complex Langevin process to
the exact solution. The susceptibility is expected to diverge at the positions of the Lee-Yang zeros,
where the partition function vanishes.

We present results for the imaginary part of the susceptibility in Figure 3.1. While complex
Langevin agrees well with the exact value for external field h ≤ 0.5, it begins to deviate heavily as
the external field increases. Notably, the complex Langevin approach fails to capture the diver-
gence at the Lee-Yang zeros. Indeed, it is unclear how the complex Langevin process could capture
such a feature in the first place, as a large imaginary magnetization would require the Langevin
distribution to be localized far from the origin in the complex plane.

This model was previously examined by Salcedo [104], who pointed out an interesting pathol-
ogy: Since the imaginary part of the drift term is always negative for any real-valued field, the
stochastic process cannot cross the real axis from below, making the sampling non-ergodic. This
is a clear violation of the conditions for the convergence of complex Langevin and can be seen as
a reason for the failure of the method. Although this argument is compelling, it can be countered
by introducing a small imaginary component to the noise, allowing for random jumps in the imag-
inary direction. However, this modification does not resolve the issue of incorrect convergence.

Finally, we note that there appears to be a point where the exact and complex Langevin results
coincide, which will be discussed further in the following section.
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Figure 3.2: Drift and thimble structure of the quartic one-site model (3.16). The Langevin drift
is shown in blue. There are two attractive fixed point, which are associated with two contribut-
ing thimbles (solid red lines). The fixed point of the single non-contributing thimble is repulsive
(black). The dashed lines are the corresponding anti-thinbles.

3.3.2 Lefschetz Thimbles - a short excursion

To better understand the failure of the complex Langevin approach in the simple one-site model,
this section briefly introduces Lefschetz Thimbles [105, 106] and their use for the model in ques-
tion. A Lefschetz thimble is a manifold in complex field space, defined as the set of points where
the imaginary part of the action remains constant, starting from a fixed point in the drift. Formally,
the thimble is described by the differential equation

∂φ

∂θ
= ∂S

∂φ
, (3.20)

where the path flows into a fixed point zσ of the action in the infinite time limit. Analogously, we
define the anti-thimble as the set of lines with

∂φ

∂θ
=− ∂S

∂φ
, (3.21)

ending in the same fixed point. There exists a mapping of the original integral to an integral over
the various available thimbles, given by

Z =
∑
σ

nσ

∫
Dσ

dφe−S(φ) =
∑
σ

nσe− Im[S(zσ)]
∫

Dσ

dφe−Re[S(φ)] . (3.22)

Here, Dσ represents the domain of the thimble, and nσ is the intersection number of the anti-
thimble with the original integration domain. The latter governs whether a specific thimble con-
tributes to the original integral. The second equality follows directly from (3.20), as the imaginary
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part of the action remains constant along the thimble. It is important to note that while the thimble
decomposition addresses part of the sign problem, two sources of a sign problem persist.

First, the Jacobian induced by the change of variables necessary to sample the individual thim-
bles is not guaranteed to have a real and positive determinant. This leads to a residual sign prob-
lem, even when sampling a single thimble. We call this the local residual sign problem. It is quite
mild in most practical applications and does not typically pose a significant problem.

Secondly, a sign problem can arise if multiple thimbles are contributing with a similar mag-
nitude but different phases exp(− Im[S(zσ)]), leading to cancellations of contributions between
thimbles. We call this the global residual sign problem.

This global sign problem is observed in the model (3.16), where the thimble structure is illus-
trated in Figure 3.2. The symmetry Reφ→−Reφ of the action is reflected in the drift and thimble
structure. Two contributing thimbles are associated with attractive fixed points in the drift, while
the sole repulsive fixed point does not contribute. These contributing thimbles are related via sym-
metry and must carry the same absolute magnetization. In order to find the vanishing weight re-
quired for Lee-Yang zeros, the contributing thimbles must have opposite phases. As the absolute
value of the partition functions is the same, the relative weight is just given by

Zrel =
|Z1 +Z2|
|Z1|+ |Z2|

, (3.23)

where Zi are the parts of the partition function associated with the individual thimbles. We show
results for the relative weight in Figure 3.1. The points where Zrel goes to zero also mark the zeros in
the full partition function and the divergence of the magnetization. Interestingly, the points where
Zrel = 1 coincide perfectly with the values for which the exact and complex Langevin results agree.
This suggests that the complex Langevin method fails to capture the relative phases between thim-
bles correctly, effectively sampling a system where the global sign between thimbles is quenched.

Finally, it is worth noting that this same model was recently studied in the context of boundary
terms in [94], where the authors identified positive real eigenvalues in the spectrum of the complex
Fokker-Planck operator, which hinders convergence.

3.3.3 O(2) site model

Since the lattice model we are interested in is a O(4) model, we modify our toy to include an addi-
tional field, making it O(2) symmetric. The action is then given by

S(φ1,φ2) = m2

2

(
φ2

1 +φ2
2

)+ λ

4

(
φ2

1 +φ2
2

)2 + i hIφ1 , (3.24)

where the hI is coupled to the first field only. The partition function can be cast into the form of an
integral over the radial coordinate as

Z (h) = 2π
∫ ∞

0
dr r I0(−i hr )exp

[
−m2r 2

2
− λr 4

4

]
, (3.25)

where In(x) denotes the modified Bessel functions of the first kind. The magnetization can then be
obtained via a derivative of the partition function with respect to the external field,

M = 〈x〉 =− ∂Z

∂i h
= 2π

Z

∫ ∞

0
dr r 2 I1(−i hr )exp

[
−m2r 2

2
− λr 4

4

]
. (3.26)
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Figure 3.3: Imaginary part of the magnetization of the single site O(2) model as a function of h. The
continuous lines represent the exact solutions, while the points resulted from complex Langevin
simulations. The divergences correspond to zeros of the partition function, which the complex
Langevin fails to capture.

To perform simulations, we again discretize the Langevin equation in the Euler-Maruyama scheme,
and use an adaptive step size. As can be seen in Figure 3.3, the complex Langevin process fails to
capture the divergence of the magnetization at the Lee-Yang singularities, analogous to the one-
site model. Such behavior appears to be somewhat common with complex Langevin, as similar
features have been observed in studies of Random Matrix theory [107] and models with singular
Langevin drift [108].

3.3.4 Three-dimensional field theory

Moving on from the simple models with only the local potentials, we now consider the full three-
dimensional O(N ) model with an imaginary external field. The action is given by

S =
∫

d 3x

[
1

2
∂µϕi∂µϕi +

m2
0

2
ϕiϕi +

λ0

4!
(ϕiϕi )2 +h0ϕ1

]
, (3.27)

where 1 ≤ i ≤ N and the external field h0 only couples to the first component. According to the
Lee-Yang theorem, in the symmetric phase, the magnetic equation of state exhibits branch cuts
terminating in edge singularities. Consequently, our focus lies on computing the average magneti-
zation, given by

M = 1

V

∂

∂h0
ln Z = 1

V
〈Φ1〉 , Φ1 =

∫
d 3xϕ1(x) (3.28)



3.3. EVALUATING COMPLEX LANGEVIN FOR THE SEARCH OF LEE-YANG ZEROS 39

−10−1 −10−3 0 10−3 10−1

hR

−0.5

0.0

0.5

R
e

M

hI = 1.5

hI = 1.0

−10−1 −10−3 0 10−3 10−1

hR

1.0

1.2

1.4

1.6

Im
M

hI = 1.5 hI = 1.0

Figure 3.4: Real (left) and Imaginary (right) part of the magnetization of the three-dimensional
O(2)-Model on a V = 83 lattice. Note that the horizontal axis is in units of powers of 10, except at
0. The real part shows the expected behavior: for hI < hc the magnetization is continuous across
hR = 0, while for hI > hc a discontinuity appears.
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Figure 3.5: Real (right) and Imaginary (left) part of the average magnetization as a function of the
imaginary part of the external magnetic field. Dashed lines connecting the data points are drawn
to guide the eye. The results for the three different volumes collapse onto a single curve in the
given scales. Notably, there is a kink in the real part of the magnetization at hI ≈ 1.185, while the
imaginary part peaks around the same value.

where V is the total volume of the system. The per-site magnetic susceptibility can be computed
from the partition function via a second derivative with respect to the external field,

χ= 1

V

∂2

∂h2
0

ln Z = 1

V

[〈
Φ2

1

〉−〈Φ1〉2] . (3.29)
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Figure 3.6: Left: Absolute value of the (complex) magnetic susceptibility as a function of the imag-
inary external field hI for the three volumes considered. The peaks exhibit the typical behaviour
of finite volume phase transitions of growing with the volume. Right: Negative real and imaginary
part of the second boundary term associated with the magnetization, computed for V = 283. Dif-
ferent volumes show similar behavior. Note the similarity to the magnetization itself. The dashed
lines connecting data points are drawn to guide the eye.

Splitting up the external field into a real and imaginary part, h0 = hR +i hI , we anticipate a disconti-
nuity in the magnetization when crossing the branch cut at constant hR , whereas the susceptibility
should peak at a critical value |hI |≊ hc

Our simulations utilize the lattice parameters m0 = 1, λ0 = 1, and N = 2 for various external
field values and total volume values. To verify the aforementioned (dis)continuous behavior, we
conduct preliminary investigations at small volumes V = 83 and at two values of hI , for which the
results are shown in Figure 3.4. We find the expected continuous behavior in the hI < hc regime,
while a discontinuity appears for values hI > hc . For all computations, we introduce a slight offset
hR = 10−4, similar to techniques employed in Ising model studies.

Results of a large-scale scan with Volumes V = 243,283, and 323 can be found in Figure 3.5.
The behavior resembles a second-order phase transition, as can be found, e.g., in the Ising model,
where the magnetization is continuous but displays a kink and onset to a non-zero value at the
critical point. The imaginary part of the magnetization is finite everywhere but at the origin and
shows a cusp at hI ≈ 1.185, which is the exact location as the peak of the real part. This behavior is
further investigated on the left plot of Figure 3.6, where we show the absolute value of the magnetic
susceptibility. As is also typical for second-order phase transitions, the susceptibility shows a peak
at the critical value, which grows with the system volume.

Additionally, we computed the first two boundary terms of the magnetization to validate the
complex Langevin results. While we find the first order term B1(M) to vanish within statistical
errors, the second term B2(M) takes on a finite value even at small external fields and is shown on
the right side of Figure 3.6. This behavior is relatively unusual and makes the correction procedure
proposed in [93] unusable, as it relies on the ratio B1/B2. The observed hierarchy of boundary
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terms casts some doubt on the reliability of complex Langevin simulations for the given model.

3.3.5 Conclusion

We have studied the complex Langevin method in the search for Lee-Yang zeros for simple toy
models and a full three-dimensional lattice model. Overall, the findings paint a mixed picture. The
method failed to capture the divergence in both toy models, producing smooth curves instead. In
the single-field toy model, we identified the source of this problem as a failure to capture the rela-
tive phases between thimbles correctly. Further investigation of the three-dimensional O(2) model
with complex Langevin has revealed somewhat different behavior, including a discontinuity and
onset of the magnetization with an increasing imaginary external field reminiscent of a second-
order phase transition. This is very promising for the search of Lee-Yang zeros. However, boundary
terms are present, and thus, CL results must be interpreted with care.

In recent work [109–112], several technical advancements in the complex Langevin method
have been made via the introduction of a kernel aided by Machine Learning. This has enabled the
use of the method in real-time equilibrium simulations at far greater imaginary times than was
previously possible and may also prove useful for the search for Lee-Yang zeros in the future.





Chapter 4

DQMC & Technical aspects

Since the introduction of Determinant Quantum Monte Carlo (DQMC) calculations for non-relati-
vistic fermions, the Blankenbecler, Scalapino, and Sugar (BSS) algorithm [56] has been a workhorse
for the field, and has seen a large range of developments and enhancements. In this chapter, we will
discuss various technical aspects of the sampling algorithms used in this work, which are largely
derived from BSS, and the specifics of their implementation. We start by detailing methods for
constructing the Green’s function in a stable and efficient way via Fourier acceleration, matrix de-
compositions, and wrapping. Subsequently, updating schemes are described, followed by a discus-
sion of recent developments in the field of DQMC, which enable simulations of significantly larger
systems through systematic model space truncation.

4.1 Constructing the Green’s function

As already discussed in Section 2.3, the Green’s function is a central quantity in the DQMC method
and is directly related to observables and the weight of configurations. Therefore, handling and
constructing the Green’s function stably and efficiently is one of the most important aspects of
the DQMC approach. In the following, we will work with the equal time Green’s function Gφ(t ) =
〈ψ(t )ψ†(t )〉 given by

Gφ(t ) = (
I+Bt+1 . . .BNt B1 . . .Bt

)−1 . (4.1)

The weight contribution can be computed by taking the determinant and does not depend on the
time slice t due to cyclicity. Since the matrices are of size Ns ×Ns , the naïve computational cost of
constructing the Green’s function for a single time slice and field configuration is O(N 3

s Nt ), assum-
ing standard matrix multiplication. This significant bottleneck in simulations calls for specialized
methods to accelerate computations.

4.1.1 Fourier acceleration

The first improvement we can make to constructing the Green’s function is using sparse matrix
operations. Remember that the matrices Bn are a product of kinetic and interaction contributions,

Bn = e−∆tT V (φn) , (4.2)

43
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where the potential part is diagonal in position space for the decompositions discussed in Sec-
tion 2.3.2. The form of the kinetic part depends on the desired lattice dispersion. Suppose we use
the Hubbard dispersion, which allows for hopping only between nearest neighbors. In that case,
the kinetic part is sparse in position space, and one may use checkerboard breakup [113] to de-
crease the cost to effectively O(N 2

s Nt ). However, the kinetic part is not sparse in position space for
more general dispersion relations. In particular, the continuum dispersion of free particles p2/2m
yields a dense matrix, rendering the checkerboard breakup ineffective. Instead, we make use of so-
called Fourier acceleration in all our computations by noticing that the kinetic part is diagonal in
momentum space. The matrix product is constructed sequentially, performing a Fourier transform
on the partial product of matrices at each step. The full product can be constructed from right to
left, starting in momentum space, where we denote it as Ũpartial. Each step proceeds as

Bn Ũpartial =

FFT Col︷ ︸︸ ︷
V (φn)

(
e−∆tT Ũpartial

)
︸ ︷︷ ︸

iFFT Col

, (4.3)

where we act with an (inverse) Fourier transformation on the matrix between the multiplications,
indicated by the curly brackets. In this case, the transformations act on each matrix column but
leave the rows untouched. If we instead construct the matrix from right to left, we begin with the
matrix in position space, yielding

Upartial Bn =

iFFT Row︷ ︸︸ ︷(
Upartial V (φn)

)
︸ ︷︷ ︸

FFT Row

e−∆tT , (4.4)

and each row is taken to momentum space and back. In practice, we use both directions exten-
sively in a modified form. Since all of our matrices are stored in column-major format, we only
create FFT plans for the columns of the matrices. This is because they are contiguous in memory,
making the FFTs easily parallelizable. We found plans created on the rows to degrade performance
significantly. When constructing the matrix from right to left, we transpose the entire matrix and
apply the FFTs column-wise. The transpose is a simple operation and does not significantly impact
the performance for the matrix sizes we are dealing with.

The overall procedure can lead to a significant reduction in runtime. Matrix operations are re-
duced to O(N 2

s log Ns), as they only involve diagonal matrices. The FFTs acting on each column of
the matrix are O(Ns log Ns), which is the dominant cost. Overall, the scaling using Fourier accel-
eration becomes O(N 2

s Nt log Ns), which is a significant improvement over the naïve O(N 3
s Nt ). In

Section 4.3, we will see that this cost can be further reduced by using matrix decomposition and
truncation techniques.

4.1.2 Stable matrix algebra

Quite early on in the development DQMC, it was realized that computing the product of the ma-
trices Bn is numerically unstable at low temperatures [114, 115]. To illustrate the issue, we will
consider the simple example of non-interacting fermions in a single spatial dimension. We use a
lattice with L = 8 sites and Hubbard dispersion, an anisotropy of ∆t = 0.05, and tune the chemical
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Figure 4.1: Singular values of the matrix U for a system of L = 8 sites at half-filling with Hubbard
dispersion and an anisotropy of ∆t = 0.05. The solid lines indicate the singular values computed
directly from the momentum space matrix, while the dashed orange lines are computed via a sin-
gular value decomposition (SVD) after computing the product in position space. The dashed black
line indicates the maximum relative precision expected for a double-precision floating-point num-
ber.

potential to half-filling. In momentum space, constructing the matrix U is unproblematic, as the
Bn are all diagonal, and no mixing of energy states occurs. With decreasing temperature and fixed
anisotropy, the number of component matrices increases, leading to an exploding condition num-
ber in their product1. An issue arises if we try to work in position space instead. Each component
Bn and the partial U matrices are now dense, and matrix elements mix at different scales.

Once the condition number becomes larger than the maximum relative precision of a double
precision floating point number, roughly 1.11×10−16, errors in the matrix product will accumulate.
This can lead to numerically unstable simulations and wrong results. The singular values for the toy
model as a function of the temperature are shown in Figure 4.12. The dashed black line indicates
the theoretical precision bound relative to the biggest singular value. All singular values computed
directly from the diagonal matrix in momentum space are well-behaved and untouched by pre-
cision problems. However, mixing in position space leads to a loss of precision, starting with the
smallest singular values and progressively destroying any information below the precision limit.

Initially, this may not appear to be a major issue. After all, the states with tiny singular values
correspond to energy states far above the Fermi surface and should not contribute to the physics
of the system. However, once the precision limit becomes comparable to the scale of the Fermi
surface, given by 100, numerical errors will inevitably appear in physical observables. To illustrate
the problem we consider the total particle number in a given system, which we may write in terms
of the eigenvalues di of U as

N =
∑

i

di

di +1
. (4.5)

1The condition number is directly related to the ratio of the maximum and minimum eigenvalues of the matrix, but
equal only if the matrix is normal.

2For the given example, the singular values and eigenvalues are identical.
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Clearly, as long as any single eigenvalue stays well below unity, its actual value is irrelevant to the
overall sum. If, however, the small eigenvalues are lifted up, as can be seen in Figure 4.1, the total
particle number will be overestimated. As the temperature is lowered, the system appears to move
away from half-filling, and the computed particle number will wrongly indicate a fully filled lattice
in the β→∞ limit.

We have seen that the non-interacting system allows a simple solution to the stability prob-
lem by computing in momentum space, where the Hamiltonian is diagonal. Unfortunately, the
generic case with finite interaction between spin species and potentially complex trapping geome-
try does not allow such a straightforward resolution. Instead, matrix decomposition techniques are
typically used to keep the diverging scales separated throughout the simulation [114, 116]. In the
following, we will introduce the general idea behind the aforementioned decompositions, enabling
us to construct the weight, Green’s function, and any observables in a numerically stable manner.

Constructing matrix products

We can construct the matrix products using various matrix decomposition methods, including
SVD, (pivoted) QR, and eigenvalue decompositions. While all approaches have an asymptotic com-
putational cost of O(N 3

s ), prefactors can vary significantly. An exhaustive study regarding the prop-
erties of the different decompositions and their performance in the context of DQMC can be found
in [116]. We will mostly use column-pivoted QR decompositions, since they offer relatively fast
runtimes and near-perfect numerical stability when paired with the truncation approaches we will
discuss in Section 4.3. Note that the general framework for computations is the same for all meth-
ods. We start by writing the partial product of matrices as

Un = BnUn−1 = Bn . . .B1 , (4.6)

and denote the decomposition at each step as

Un = LnDnRn . (4.7)

Here, Dn is a diagonal matrix, while the nature of Ln and Rn depends on the specific method. For
QR decomposition, Ln is unitary while Rn is an upper triangular with a unit determinant (up to
a phase). Starting with this form, we multiply with a single matrix Bn+1 to obtain the next partial
product. We can keep the scales separated throughout this whole procedure by organizing the
operations appropriately, namely

Un+1 =

Bn+1Ln


d

d
d

d


Rn =


X X X X

X X X X

X X X X

X X X X

Rn . (4.8)

The letters of different sizes indicate the scales, which are initially separated and ordered. Impor-
tantly, the scales in the matrix Bn need to be under numerical control so that the multiplication
with the diagonal matrix does not lead to information loss. In the first step, we perform the matrix
multiplications of all matrices on the left, leading to a column-stratified result and avoiding mixing.
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Note that if we were to include the final multiplication with Rn , the scales would be mixed, and in-
formation about the small values would be lost. To avoid this, we perform another decomposition
on the column matrix, 

X X X X

X X X X

X X X X

X X X X


︸ ︷︷ ︸

Ln+1Dn+1R̃n+1

Rn = Ln+1Dn+1Rn+1 , (4.9)

and only multiply the resulting unit scale matrices. For QR decomposition, Ln+1 stays unitary,
but Rn+1 will not generally be triangular. We can now construct the full matrix product without
losing relevant information on the smaller scales. In practice, several multiplications with Bn can
be made from the left before performing a new decomposition, saving significant computational
time. The matrix can also be constructed from left to right, leading to an analogous procedure for
row-stratified matrices.

In some situations, we may want to multiply two decomposed matrices in a numerically stable
way, which can be achieved via

B1B2 = L1D1R1L2D2R2

= L1 (D1 (R1L2)D2)︸ ︷︷ ︸
L̃DR̃

R2

= LDR , (4.10)

where the different scales behave as follows:
d1

d1

d1

d1




X X X X
X X X X
X X X X
X X X X


︸ ︷︷ ︸

unit scale


d2

d2

d2

d2



=


X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X


︸ ︷︷ ︸

L̃DR̃

. (4.11)

The matrix in the center of (4.10) is the product of two unit scale matrices and easy to compute.
After multiplication with the diagonal matrices, the scales remain well separated, decreasing with
both the column and row index. Moreover, there is no numerical issue when multiplying values
of different scales. The decomposition of the product can be performed as before and is usually
stable. However, it can exhibit instability in extreme situations compared to the construction with
purely column-stratified matrices.
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Computing the Green’s function

For a successful DQMC simulation, we next need viable way to compute the weight and Green’s
function. Both can be hard to obtain, as the calculations involve sums and inverses of the ill-
conditioned matrices. The weight is given by the determinant of the inverse Green’s function I+U ,
which we compute as

G−1 =I+U

=I+LDR

=L
(
L−1R−1 +D

)︸ ︷︷ ︸
L̃D̃R̃

R , (4.12)

where the inversions of L and R are unproblematic. In the last step, we perform an additional de-
composition to remain in LDR form. From this, the weight can be computed as the product of
all diagonal values. Inevitably, adding the identity matrix to the product destroys the small scales
beyond 10−15, making the procedure not invertible in practice. The weight itself is not affected
by this, but it can become an issue in downstream computations of observables using the Green’s
function, which must be kept in mind. Moreover, the procedure described above can be insuffi-
cient in extreme scenarios. An extended scheme for these cases is provided in [117], where the
diagonal matrix is factorized into scales smaller and larger than the Fermi surface D = Dl Ds with
the Ns ×Ns matrices

Dl = max(D,1), Ds = min(D,1) . (4.13)

The inverse Green’s function can be computed safely with two intermediate decomposition as

G−1 = 1+LDR

= 1+LDl DsR

=
[(

R−1D−1
l +LDs

)︸ ︷︷ ︸
L̃D̃R̃

Dl

]
︸ ︷︷ ︸

L′D ′R ′

R. (4.14)

In most of the computations in this work, we have used the first method, as we found the more
elaborate scheme unnecessary in the presence of the model space truncation, discussed in Sec-
tion 4.3.

Stabilization for the Canonical Ensemble

Thus far, we have discussed methods to compute and construct the Green’s function for grand
canonical computations in a stable manner. In canonical computations, as discussed in Section 2.4,
the projections naïvely require an independent computation of the weight for every point in the
discretized frequency domain, which is prohibitively expensive. However, this issue may be avoid-
ed by using the diagonalized form of the Green’s function, which can be computed from the de-
composed matrix product [65]. To do so, we consider a cyclic permutation of the decomposition,



4.2. UPDATING 49

which leaves the eigenvalues invariant, yielding

LDR =L [DRL]L−1

=L[P̃DλP̃−1]L−1

=PDλP−1 , (4.15)

where Dλ is the diagonal matrix of eigenvalues and P is the matrix of eigenvectors. Conveniently,
the permuted matrix is in row stratified format, avoiding the mixing of scales,

DRL =


X X X X
X X X X
X X X X

X X X X

 . (4.16)

The eigenvalues can be computed safely with solvers using balancing, as provided by LAPACKS
zgeevx routine. The computation of the weight via the Fourier sum in Equation (2.64) reduces
from complexityO(N 4

s ) toO(N 3
s ), assuming the number of frequencies corresponds to the number

of states in the system, and is given by

Zφ

N = 1

Ns

Ns∑
n=1

e−i Nϕn e−Nβµ
∏

j

[
1+e iϕn eβµd j

]
. (4.17)

Here, d j are the eigenvalues of U , and a product of eigenvalues replaces the computation of the
determinant. Note that in practical computations, the factor eβµ is already included in the diagonal
values. To ensure the precision of the eigen decomposition, we compare the ϕn = 0 term to the
grand canonical weight computed via the QR decompositions in every step.

A similar procedure can be used to reduce the complexity of computing observables. For a
general bilinear operator, as used in Section 2.4.2, we find

〈O〉φN =e−Nβµ

Zφ

N Ns

Ns∑
n=1

e−i Nϕn det
[

I+e iϕn eβµU
]

Tr

[(
I−

(
I+e iϕn eβµU

)−1
)

O

]

=e−Nβµ

Zφ

N Ns

Ns∑
n=1

e−i Nϕn
∏

j

[
I+e iϕn eβµd j

]
Tr

[(
1−

(
I+e iϕn eβµPDλP−1

)−1
)

O

]

=e−Nβµ

Zφ

N Ns

Ns∑
n=1

e−i Nϕn
∏

j

[
I+e iϕn eβµd j

]
Tr

[(
I−

(
I+e iϕn eβµDλ

)−1
)

P−1OP

]
, (4.18)

where the last step uses the cyclic property of the trace. The matrix product P−1OP needs to be
computed only once for each auxiliary field configuration, and the preceding term reduces to a
delta. Higher order correlations may be obtained similarly using Wicks theorem, and a second
projection must be included to fix the particle number for both species.

4.2 Updating

In the next section, we discuss some general procedures for efficient updating with DQMC for con-
tinuous fields using global updating schemes and discrete fields with time-local updates. Both
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update schemes rely on an efficient way to compute the equal time Green’s function (2.54) and
weight. The different methods each offer their advantages and disadvantages in terms of compu-
tational cost, the autocorrelation of the Markov chain, and variance of the measured observables
[118–120]. Notably, time-local updates typically lead to lower variances.

4.2.1 Wrapping

Naively computing the matrix product, addition, and inversion for each time slice independently
would incur a high computational cost. However, we can avoid this by recognizing that Green’s
functions evaluated at neighboring time slices are related by

Gφ(t +1) = (
I+Bt+2 . . .BNt B1 . . .Bt+1

)−1

= Bt+1
(
I+Bt+1 . . .BNt B1 . . .Bt

)−1 B−1
t+1

= Bt+1Gφ(t )B−1
t+1 . (4.19)

Using this relationship, we efficiently move the Green’s function between different time slices by
multiplying by Bt+1 and its inverse, for which we use Fourier acceleration. This procedure is known
as wrapping and is a crucial part of the algorithm. We take the same approach for the Matrix prod-
uct and the inverse of the Green’s function. Unfortunately, wrapping for an arbitrary number of
time slices is not possible due to the large condition number at low temperatures. Instead, we typ-
ically set a fixed timescale tw for wrapping, after which the Green’s function is recomputed from
scratch. The number of complete computations of the matrix product thus scales with Nt /tw in-
stead of Nt . Our simulations typically use between tw = 10 and tw = 20, which offers a significant
speedup while keeping errors below the numerically relevant threshold.

4.2.2 Time local updates

Various updating schemes for DQMC calculations exist. The most straightforward approach changes
only a single spin in each accept-reject step, while updating the Green’s function and weights ac-
cordingly [56]. This corresponds to space-time local updating, which is efficient for small systems
but becomes impractical as system size increases. Instead, we employ a time local scheme, inspired
by the one used in [41] for ground state computations, to perform updates on all fields simultane-
ously on a single time slice.

Consider the fully computed matrix product U (φ, t ), where t as an argument indicates the per-
mutation. We may change the auxiliary field values on a single time slice by multiplying with the
appropriate potential factors from the right side, like

U (φ, t ) = Bt+1(φt+1) . . .BNt (φNt )B1(φ1) . . .Bt (φt ) , (4.20)

U (φ′, t ) =U (φ, t )
V (φ′

t )

V (φt )
, (4.21)

where φ′ differs from the original field only on the time slice t . Unlike in space-time local ap-
proaches where the Green’s function is used to compute the relative weight between different con-
figurations [114], we typically do not track it during computations. Instead, we only keep U (φ, t )
and compute (4.12) for every proposed field configuration to obtain the weight. This comes with an
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O(N 3
s ) cost for the matrix decomposition, which is the same order one would obtain from updating

all fields on a single time slice separately with space-time local updates.

When updating multiple fields at once, the choice of proposal distribution becomes crucial to
maintain a high acceptance rate in the Markov chain. We use the finite temperature version of the
approach employed in [41], where proposed updates are conditioned on the current configuration
of all other time slices. This works particularly well for discrete and finite auxiliary fields, as the
normalization of the proposal distribution is easy to compute. For the discrete decomposition in
density channel, the proposal distribution becomes

P (φ′
t |φ) = 1

N
∏

x

(
1+ Aφ′

t ,x ñ↑,x
)(

1+ Aφ′
t ,x ñ↓,x

)
, (4.22)

and the partial densities ñx are computed like the density but dropping the time slice under con-
sideration, yielding

Ũ (φ, t ) =U (φ, t )
1

V (φt )
, (4.23)

ñx = diag

[
Ũ (φ, t )

1+Ũ (φ, t )

]
. (4.24)

The proposals reproduce the exact distribution to order ∆t , improving as the time step decreases
in the continuum limit. In our computations, acceptance rates are typically well above 90% with
∆t = 0.05 and sufficient to ensure fast decorrelation of the Markov chain.

4.2.3 Global updates

In order to perform global updates via Hybrid Monte Carlo or Langevin dynamics, we need to com-
pute the gradient of the action,

S[φ] = Trlog
[
1+U↑

]+Trlog
[
1+U↓

]
, (4.25)
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with respect to the auxiliary fields. The gradient is computed straightforwardly, yielding

Kt ,x = ∂φt ,x Trlog1+U

= Tr

[(
I+B1 . . .BNt

)−1 B1 . . .Bt−1
∂Bt

∂φt ,x
Bt+1 . . .BNt

]

= Tr

[(
1+B1 . . .BNt

)−1
(
B−1

Nt
. . .B−1

t+1

(
∂Bt

∂φt ,x

)−1

B−1
t−1 . . .B−1

1

)−1]

= Tr

[(
B−1

Nt
. . .B−1

t+1

(
∂Bt

∂φt ,x

)−1

B−1
t−1 . . .B−1

1 +

BNt . . .Bt+1

(
∂Bt

∂φt ,x

)−1

B−1
n . . .B−1

Nt

)−1]

= Tr

[((
∂Bt

∂φt ,x

)−1

B−1
t−1 . . .B−1

1 B−1
Nt

. . .B−1
t+1 +

(
∂Bt

∂φt ,x

)−1

Bt

)−1]

= Tr

B−1
t

(
B−1

t−1 . . .B−1
1 B−1

Nt
. . .B−1

t+1B−1
t + I

)−1

︸ ︷︷ ︸
G̃(t )−1

∂Bt

∂φt ,x

 (4.26)

In this expression, G̃(t ) is directly related to the equal-time Green’s function via

G̃−1(t −1) =
(
B−1

t−1 . . .B−1
1 B−1

Nt
. . .B−1

t + I
)−1

= Bt . . .BNt B1 . . .Bt−1
(
Bt . . .BNt B1 . . .Bt−1 + I

)−1

= I− (
Bt . . .BNt B1 . . .Bt−1 + I

)−1

= I−G(t −1)φ , (4.27)

and may be propagated by wrapping as before. The matrix product can again be computed using
the decomposition techniques discussed in the last section. Importantly, to compute the gradi-
ent, we use the final expression from (4.26), as it avoids extra multiplications that could reduce
numerical accuracy.

To obtain the full gradients on all fields, we still need to wrap through all time slices, which
comes with the same computational cost as a full sweep of single-site updates. However, the global
update does not require a weight comparison at every time slice and may be more efficient regard-
ing autocorrelation times.

4.3 Model space truncation

The regular BSS or HMC algorithms provide an exact approach for computations of systems like
the Hubbard model at half-filling and ultracold fermions at finite temperatures. However, they are
not as efficient as the respective ground state variants of the algorithms (see Section 2.4). This
inefficiency is particularly problematic for simulations of ultracold fermions, which require a con-
tinuum extrapolation where the number of lattice points increases, but the particle content stays
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fixed. The finite temperature algorithm scales with a complexity of O(Nt N 3
s ), whereas the ground

state algorithm scales more efficiently with O(Nt N N 2
s ), where N is the number of particles. Thus,

there is a scaling difference of Ns/N that increases as the continuum is approached. Here, we have
assumed that the matrix multiplications are the primary computational cost source. The scaling
difference can become even more crucial when using Fourier acceleration, as the ground state al-
gorithm does not have other N 2

s terms.

Recent studies have addressed this discrepancy for both the canonical [121] and grand canoni-
cal ensembles [122] using truncation schemes on the decomposed matrix product. These schemes
dynamically exclude low-lying, unoccupied modes from computations. As a result, matrices be-
come rectangular instead of square, leading to computational costs comparable to the ground
state method as the temperature decreases. In the following section, we will give an overview of
the truncations used in this work and discuss their effectiveness and implementational details.

4.3.1 Truncations in the grand canonical ensemble

Since we perform all sampling in the grad canonical ensemble, we begin by detailing the truncation
procedure for this case. The main quantity of interest both during sampling and when evaluating
observables is the (inverse) Green’s function. Assuming the matrix product U is computed as an
eigendecomposition U = PDP−1, the Green’s function can be written as

G−1 = I+U = I+PDP−1 = P (I+D)P−1 , (4.28)

and the contribution to the probability weight becomes
∏

i 1 + di . Thus, the small eigenvalues
of U do not contribute to the weight, nor do they significantly affect the Green’s function from
which observables are computed. This insight can be utilized when constructing U by dropping
the smallest modes during intermediate matrix decompositions. While we typically do not use
eigendecomposition, opting instead for SVD or column-pivoted QR decomposition, the general
principle of dropping the smallest values in the diagonal matrix remains valid as long as the scales
can be kept separated.

We start with a matrix decomposition U = LDR, where the diagonal values are ordered in de-
scending magnitude, and we have already applied a truncation to include only the first m modes.
Clearly, we must have 1 ≤ m ≤ Ns , and the truncation effectively sets all values beyond the m-th
entry in D to zero. The decomposed matrices are of shape Ns ×m, m×m, and m×Ns , respectively,
and the general procedure of multiplying additional time slices goes as follows:

1. Multiply a new batch of matrices B j+i . . .Bi from the left. This has a cost of O(mNs log N s)
with Fourier acceleration, since the right side has a reduced number of columns.

2. Multiply the left and diagonal matrices with a cost of O(m2Ns).

3. Perform a new decomposition on the rectangular matrix, which also comes at a cost ofO(m2Ns).
This yield three more matrices in LDR format, the first is of size Ns ×m, while the others are
m ×m.

4. Cut all diagonal values below a certain threshold ϵT to obtain a new truncation rank m′. We
use ϵT = 10−5 in all computations where the truncation is applied.
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5. Multiply the right matrix in the new truncation, which is m′×m, with the original m × Ns

matrix, at a cost of O(m′mNs).

It must be noted that the described procedure still contains terms that scale as O(N 3
s ) since the ini-

tial QR decompositions are performed on the full rank matrix. However, all subsequent operations
can benefit from the truncation, avoiding the cost of the conventional method, which carries an
additional factor Nt proportional to the number of time slices.

The computation of the weight can also be made more efficient when using the truncated de-
composition since

det
(
INs +LDR

)= det(Im +DRL) , (4.29)

where DRL is an m ×m matrix and needs O(m2Ns) operations to compute. We obtain the deter-
minant via an additional decomposition on the m ×m matrix, which is an O(m3) operation and
a significant improvement over the O(N 3

s ) cost of the full rank matrix. One may use a procedure
similar to the one in (4.14) to ensure numerical stability as discussed, e.g., in [123]. However, since
the smaller scales are already excluded from the computation, we have not found it necessary in
our simulations.

The equal-time Green’s function can be obtained from the truncated decomposition via the
Woodbury matrix identity, yielding

G = (INs +LDR)−1

= INs −L
(
D−1 +RL

)−1
R . (4.30)

The final line can be evaluated in O(mN 2
s ) operations but is only relevant when we compute ob-

servables and not during the generation of samples.

To demonstrate the efficiency of the truncation scheme, we perform a test on a one-dimensional
model with attractive contact interactions. We measure the efficiency by comparing the number of
active diagonal values m with the number of particles in the system N as

ηT = Ns −m

Ns −N
(4.31)

whereηT = 1 indicates that the truncation is optimal andηT = 0 that no truncation is performed [122].
Figure 4.2 shows the test results for systems with and without a harmonic trapping potential, using
10+10 particles on a lattice with Ns = 120 sites, Nt = 1200 time slices, ∆t = 0.05, and a coupling
of g = −1, which we tune in the tapped system. We measure the efficiency for several thousand
steps during sampling to yield a smooth average curve. All computations are grand canonical and
achieve a fixed particle content by tuning the chemical potential.

Both cases show a rapid decimation of states as the matrix product is assembled, which can
be interpreted as decreasing the temperature. In the trapped case, ηT ≥ 0.9 once the temperature
becomes larger than the single particle gap of the harmonic oscillator. In contrast, the untrapped
case shows similar behavior when the temperature becomes comparable to the Fermi temperature.
Notably, density channel computations show faster state decimation compared to the spin chan-
nel due to the different ways interactions enter the matrix product. In the density channel, the
real-valued interactions increase the condition number, while interactions of pure phases in spin
channel lead to slower mode decimation. This behavior is specific to attractive contact interactions
and is expected to reverse for repulsive systems.
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Figure 4.2: Efficiency of the truncation as the matrix product in build up for the trapped (left)
and uptrapped (right) systems. All computations are done in 1D, and we use g = −1. The density
channel computations (blue squared) result in a faster decimation of states compared to the spin
channel (orange diamond) and non-interacting (gray circle) cases.

4.3.2 Truncations in the canonical ensemble

The truncation scheme in the canonical ensemble works similarly to the grand canonical case, with
a few additional steps. In particular, the reconstruction of the eigenvectors, needed for efficient
computations from the truncated matrices, must be handled with care.

Overall, the procedure stays much the same, but the eigendecomposition takes the form

U = PmDmP−1
m , (4.32)

where Pm and P−1
m are the first m columns/rows of the original eigenvector matrix and its inverse.

From this, we compute bilinear observables as

〈ψ†
iψ j 〉φN = e−βµ

ZN Ns

Ns∑
n=1

e−i Nϕn
m∏
j

[
1+e iϕn eβµλ j

] m∑
k

Pm, j k
λk

1+λk
P−1

m,ki , (4.33)

where the λ j are the truncated eigenvalues of U and the Pm,ni are the elements of the truncated
eigenvector matrix. In (4.33), the Fourier sum runs over a full set of states, but may be reduced to
N f < Ns quadrature points to reduce computational costs. We typically use values comparable or
larger than the number of particles per spin species.

To obtain the truncated eigendecomposition from the decomposed matrix product, we first
compute the eigenvectors of the m ×m matrix, yielding

DRL = P̃ D̃P̃−1 , (4.34)

where P̃ and D̃ are also m ×m matrices. The eigenvalues correspond to the first m eigenvalues
of U , as the (full rank) matrices are related via a similarity transform. To compute the truncated
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eigenvector matrix and its inverse, we may use the relations

Pm = LP̃ (4.35)

P−1
m = X −1R , (4.36)

where L and R are the truncated left and right matrices from the decomposition of U . X is the
Ns ×Ns matrix

X = RLP̃ . (4.37)

We refer to the appendix of [121] for a detailed derivation of these relations. Our approach differs
from the one presented therein, as we truncate the decomposition during the construction of the
matrix products and only have part of the left and right unit scale matrices. This is not an issue,
since none of the relations rely on the full rank matrix, which saves computational effort during
construction.

Overall, the truncation scheme in the canonical ensemble reduces computational costs simi-
larly to the grand canonical case. The leading contribution to the eigendecomposition comes from
(4.37) with O(N 2

s m). Furthermore, the full observable in (4.33) is computed in O(N 2
s N f m) opera-

tions.

4.4 Implementation

We now discuss some implementational details regarding the truncation schemes, which help us
balance the number of repeated operations with memory usage. So far, we have assumed that the
full matrix is recomputed after applying a certain number of wrapping steps tw . However, this
approach is costly because the initial decomposition when reconstructing the matrix is of full rank
each time. Instead, we split the matrix product into two parts, which are computed only once and
partially cached to avoid excessive repeated operations. At the start of each sweep over the lattice,
we compute the full product once moving from left to right. We store the decomposed partial
product of matrices to memory as Pi after each decomposition, such that

U =
P2︷ ︸︸ ︷

B1 . . .Btw︸ ︷︷ ︸
P1

. . .B2tw . . . , (4.38)

where i ≤ Nt /tw . Since the involved matrices are complex and double precision, storing all partial
products requires 32×N 2

s ×Nt /tw bytes, disregarding the diagonal matrix. This memory require-
ment can become hard to handle for systems in higher dimensions or at low temperatures. There-
fore, we only store intermediate products when truncation reaches a certain value mT . The cached
matrices are Ns ×mT or mT ×Ns , resulting in a decreased storage cost of 32×NsmT Nt /tw bytes.

A sweep begins with the fully constructed matrix product, which we wrap tw times as discussed
in Section 4.2. After each block, we sequentially construct the product of matrices with the updated
fields,

PL,n = Bntw . . .BNt , (4.39)

built from right to left. After applying a set of wrapping steps, we recompute the matrix product via

U (ntw ) = PL,nPn (4.40)
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as described in (4.10). Since both decompositions are already truncated, the operations involved
are inexpensive, scaling as O(m2m′), where m′ > m. If the decomposition of Pn is not in storage
due to insufficient truncation m > mT , we compute the full matrix by applying the standard prod-
ucts and decompositions on PL,n from the right. Although suboptimal, this does not pose a major
problem, as Pn is usually already quite small in cases where we do not have the remaining matrices
in memory and vice versa.

Unfortunately, the product for the updated field, computed on the fly, cannot be used in the
next sweep, as it is constructed from right to left. As a result, we must compute the matrix product
twice per sweep, which doubles the number of full-rank matrix operations.

Another critical aspect of the implementation involves determining when to compute observ-
ables and thus when to take measurements3. Indeed, DQMC simulation can suffer from a slow
decay of sampled distributions, which may lead to exploding variance when computing standard
errors for some higher-order observables or slow convergence of the observable itself. The issue
is particularly relevant for the two-dimensional canonical computations performed in Chapter 6.
Several strategies to mitigate the problem have been proposed. We considered the reweighting
approach discussed in [119, 120], as well as the measurement synchronization scheme discussed
in [124]. Since we find the latter to be sufficient for our purposes, and the computational effort
required is smaller, we use it for all grand canonical computations in two dimensions. For com-
pleteness, a brief introduction to the reweighting method is provided in Appendix A.

Since our updating scheme is time-local, we cannot use the space-time synchronized measure-
ments proposed in [124], but use time synchronized ones instead. For equal-time observables,
(imaginary-)time translation allows for a simple average over all times, yielding

〈O〉 = 1

Nt

Nt∑
t=1

〈O(t )〉 , (4.41)

which boosts statistics. Typically, we would apply a full sweep to update, followed by evaluating the
observables for all times. However, in the time-synchronized scheme, we measure the observable
at a specific time immediately after updating the corresponding time slices. This approach reduces
variance and decreases computational effort, as we avoid building the relevant matrix products
twice when computing observables simultaneously with updates.

3Computing an observable and storing its result to memory is often referred to as ’measuring’ in the context of lattice
Monte-Carlo simulations. This is not to be confused with actually measuring observables in experiments.





Chapter 5

Trapped fermions in one dimension

In early cold atoms experiments, (approximately) harmonic potentials were used to trap the atoms.
While arbitrary potentials can be realized today [125–128], the harmonic trap remains a popu-
lar choice due to its simplicity and the precise control over, e.g., the particle number that can be
achieved [129–133].

The majority of lattice simulations of ultracold quantum gases have instead been conducted
without an external potential and with the goal of reaching a thermodynamic limit. They encom-
pass studies of the ground state and finite temperature properties in one to three spatial dimen-
sions [41, 59, 134], and the thermodynamics of the unitary gas [52, 135] in particular. More recently,
the BKT-transition temperature [42] and pseudogap effects [136] were computed in the BEC-BCS
crossover regime of the 2D gas.

In this section, our focus is on harmonically trapped fermions in one spatial dimension and
methods to make them amenable to lattice computations. Previous theoretical investigations on
the ground state of the trapped system have employed diverse methodologies. Exact diagonaliza-
tion approaches, typically confined to small particle numbers, have been utilized [137–139]. Non-
uniform lattice Monte Carlo methods [60, 61] have been used to study systems of up to 20 particles,
while coupled cluster [140, 141] and diffusion Monte Carlo [142] approaches have allowed for com-
putations with higher particle numbers. At finite temperature, the canonical system has been stud-
ied with exact diagonalization [143], while lattice-based methods include grand canonical auxiliary
field and canonical stochastic Green’s function [48] approaches.

While quantum Monte Carlo methods have been successfully applied to study trapped systems,
as stated above, they often rely on the one-dimensional nature of the problem to avoid a sign prob-
lem. The lattice approach used here does not suffer from a sign problem for spin-balanced systems
in any dimension. This chapter thus lays the groundwork for future studies of trapped systems via
lattice approaches, particularly in two spatial dimensions.

We structure our discussion into three main components. In Section 5.1, we discuss how the
harmonic potential is added to the lattice model. Section 5.2 is dedicated to the application of the
complex Langevin method to trapped fermions, encompassing a discussion of the method’s gen-
eral properties and a specific focus on repulsive contact interactions. Finally, Section 5.3 presents
results from canonical Monte Carlo simulations of trapped fermions from finite temperature down
to the ground state.

59
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5.1 Harmonic potentials on the lattice

The continuum Hamiltonian of a harmonically trapped gas of fermions with two components and
contact interactions is given by

Ĥ =
∫

dx ψ̂†
σ(x)

(−∇2

2m
+ 1

2
mω2x2

)
ψ̂σ(x)

+ g
∫

dx n̂↑(x)n̂↓(x) . (5.1)

Here, ψ̂†
σ and ψ̂σ are creation and annihilation operators of fermions in spin states σ ∈ {↑,↓} re-

spectively. The particle number density operators are given by n̂σ = ψ̂†
σψ̂σ. In what follows, we set

m = 1 in lattice units, leaving the trap frequency ω and lattice coupling λ as the key parameters
for the lattice system. Note, that the coupling is affected by cutoff effects and must be tuned to
match the continuum theory. The given Hamiltonian is put on a rectangular spatial grid of size
L and spacing a with Nx = L/a sites and periodic boundaries. In units of the lattice spacing, the
discretized Hamiltonian then reads

Ĥ =
∑
p,σ

ϵp ψ̂
†
pσψ̂pσ+

∑
x,σ

1

2
ω2x2 n̂xσ

+
∑
x
λ n̂x↑n̂x↓ , (5.2)

where ψ̂†
pσ and ψ̂pσ are creation and annihilation operators for fermions with momentum p. The

dispersion relation used here is ϵp = p2/2, corresponding to that of free particles. For a brief dis-
cussion on the choice of dispersion relation, see Section 5.3.1. By inclusion of the frequency ω,
we introduce an additional length scale into the system, known as the harmonic oscillator length
given by

LT = 1p
ω

, (5.3)

To mitigate finite size and volume effects, the oscillator length must be larger than the inter-site
spacing while remaining significantly smaller than the overall extent of the lattice, i.e., 1 ≪ LT /a ≪
Nx . In practice, the lattice size required for good results also depends on the system’s temperature
and number of particles. Larger lattices are needed to resolve the wave functions of higher energy
levels, which have a larger spatial extent.

Most aspects of the numerical procedure such as the Hubbard-Stratonovich transformation,
weight construction, stabilization, and sampling methods are largely consistent with what is dis-
cussed in Chapter 2. The primary distinction lies in the construction of the matrix product for U , a
crucial element in the simulation process. Each component of this matrix product becomes

Bn = e−∆tT VI e−∆tVT , (5.4)

where VI indicates the field dependent interaction potential, while VT is the trapping potential.
They are applied simultaneously, as both terms are diagonal in position space, and Fourier accel-
eration is used as before.

In order to tune the lattice to the continuum coupling, we use the ground state energy of the
two-particle system as a reference. An exact solution for the two-body problem is available [144,
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145], providing a relation between the continuum coupling g and the two-body binding energy E ,
namely

g (E) =
p

2(E −1)Γ
(
1− E

2

)
Γ

(3
2 − E

2

) . (5.5)

To determine the appropriate bare lattice coupling, we adjust it to match the exact ground state
energy of the two-particle system, as given by the relation above. We do not rely on Monte Carlo
simulations to fine-tune the interaction strength. In the case of the harmonic trap in one dimen-
sion, lattices are generally small enough to allow for the exact diagonalization of the two-body
lattice Hamiltonian. When dealing with larger lattices (> 100 spatial sites), we use a central frame,
which introduces a small error. Consequently, we compute the two-body ground state energy using
Monte Carlo simulations to ensure that any errors remain within statistical precision.

5.2 Complex Langevin for trapped fermions

This section is based on [3].

Applications of the complex Langevin method to systems of non-relativistic field theories, both
bosonic and fermionic, have garnered significant interest in recent years. For the former, the litera-
ture offers investigations of quantum vortices [83], spin-orbit coupling [82], as well as the Berezin-
skii–Kosterlitz–Thouless transition [84, 85]. In the context of fermions, a sizeable body of work has
been developed, including studies of the thermal properties of the spin-imbalanced unitary Fermi
gas [32, 33], the ground state and thermal properties of spin and mass imbalanced fermions in a
single spatial dimension [50, 81], as well as approaches to computations in the pairing decoupling
channel and direct computation of particle number projections [53, 66].

In this section, we use the complex Langevin approach to study trapped fermions, focusing on
the one-dimensional case. Additionally, we provide a general discussion of the method’s applica-
bility to spin-imbalanced systems. In the following we will primarily use bare lattice parameters for
simplicity. Subsequent work will offer further investigations using physical parameters and direct
comparisons to experimental results.

5.2.1 Regularization

Since the Langevin process requires a continuous field variable, we use a Hubbard-Stratonovich
transformation that yields a continuous scalar field in density channel (2.35). As noted in [81], the
sine terms produce unstable directions upon complexification. A Gaussian regulator term may be
included in the drift force to counteract these instabilities, arranging for trajectories that do not
wander too far out in field space. Consequently, the action becomes S → S +ξφ2, which results in
the complexified Langevin equations

∂t Re
{
φ

}= Re
{
∂φS

[
φ

]+ξφ}+η , (5.6)

∂t Im
{
φ

}= Im
{
∂φS

[
φ

]+ξφ}
. (5.7)

For all simulations, including those without a sign problem, we use a regulator with a strength of
ξ = 0.01. This value is sufficiently small to have a negligible effect on the result, as confirmed by
extrapolations for various cases.
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Figure 5.1: Second moment of the field for the sine toy model. The solid line indicates the exact
result, while the dashed line is the phase-quenched expectation value. The Langevin simulations
are shown as blue points and agree with the phase-quenched result up to artifacts from the finite
step size.

5.2.2 Reliability considerations for complex Langevin

In Chapter 3, we have already discussed various pathologies of the complex Langevin method.
Here, we will focus on a specific issue arising when the weight is real-valued but not necessarily
positive. This scenario is encountered in the study of spin-imbalanced Fermi gases in the density
channel, as widely used in the literature [32–34]. In a different context, it has been observed that
the complex Langevin approach can produce phase-quenched results when dealing with a weight
that is not complex, but still faces a sign problem [79]. To illustrate the problem, let us consider a
simplified model with a real-valued weight that depends only on a single field φ ∈ [−π,π), given by

P (φ) = e−S(φ) = sinφ+σ , (5.8)

whereσ is a real-valued offset parameter. Forσ= 0, the weight has equal positive and negative con-
tribution, and the partition function vanishes. Increasingσwill increase the positive contributions
until the weight becomes entirely positive at σ = 1, so that no sign problem is present anymore.
Evaluating the Langevin drift force, we find

∂φS = cosφ

sinφ+σ , (5.9)

which has poles at the zeros of the weight sinφ=−σ. Poles in the drift immediately raise questions
of ergodicity, and can spoil results in the limit of zero step size [146]. This is not an issue since we
keep the step size large enough for the stochastic process to jump over the singularities.

After running the toy model simulation with a fixed step size of ϵL = 1.0×10−3 and evolving to
tmax = 2000 in Langevin time (after thermalization), we calculated the second moment of the field
as displayed in Figure 5.1. We opt for a small step size because larger ones tend to underestimate
the expected value for intermediate σ. Hints of this behavior are still visible in our computation.
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Figure 5.2: LHS: Density distribution for various chemical potentials and a comparison to
Metropolis results, which are shifted for visibility. The position is given in length scales of the
trap, while the density is normalized by its saturation value. Solid lines indicate the free case with
matched average particle number. RHS: Connected density-density correlator of the trapped com-
pared to the untrapped system at constant chemical potential with momenta in the Brillouin zone.

The results indicate that we are sampling from the phase quenched weight. This is unsurprising,
as the Langevin process does not differentiate between positive and negative contributions. In-
deed, for any positive weight exp(−S), we can find a corresponding negative weight expS + iπ,
which will evaluate to the same drift force. Moreover, the points at which phase changes occur
represent lower-dimensional sub-manifolds in field space and are thus not visited by the Langevin
process in practice. Consequently, the phase plays no role, and the sampled result must be the
phase-quenched one. One might argue that this could be circumvented by initializing the stochas-
tic process in the complex plane. However, our computations show the same behavior for such
initializations.

Although these considerations limit the usefulness of Langevin simulations for spin-imbalanced
fermions, they do not necessarily invalidate previously obtained results. As we will see in Chapter 6,
the phase-quenched expectation values can be very close to the exact ones, especially when con-
sidering collective observables such as density.

5.2.3 Attractive systems and pairing

We first test the standard Langevin approach for an attractive, trapped system without a sign prob-
lem. The following takes m = 1 in lattice units for all cases. We use an inverse temperature of β= 8,
with Nt = 160 time slices, leading to a ∆t = 0.05 Trotter time discretization. The average Langevin
step size is ϵL = 10−2 for all cases, and we employed an adaptive step size to prevent runaways [86].
This is sufficient for our results to converge within the statistical error. Our spatial lattice consists
of Nx = 80 points, which sits comfortably above the length scale of the trap (Lt = 3.76) and the
thermal wavelength (λT = 7.1), both in lattice units.
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On the left-hand panel of Figure 5.2, we compare the density profiles in the trap with their free1

counterparts for different chemical potentials. To achieve the same average particle content as in
the interacting system, we adjusted the chemical potential for the non-interacting one accordingly.
Our computations reveal an enhancement of the peaks at the center due to the attractive interac-
tion. Because the average particle content is low, the effect is barely visible for βµ=−2. Moreover,
we compare the Langevin results for βµ= 4 to runs performed via Metropolis sampling with global
proposals and find that the density profiles agree within error. Note that the Langevin result was
sampled with a finite regulator and finite step size, without performing an extrapolation. Hence,
some deviations are expected, given the extensive statistics. On the other hand, we can rule out
ergodicity issues since the Metropolis never sees a sign change in the determinants, indicating the
absence of boundaries in the relevant regions in configuration space.

In addition to the density profile, we compute the connected density-density correlator, also
called shot-noise in the experimental context,

G↑,↓(k) = 〈n̂↑(k)n̂↓(−k)〉−〈n̂↑(k)〉〈n̂↓(−k)〉 . (5.10)

The plot on the right side of Figure 5.2 shows the shot-noise correlator for a system at fixed chem-
ical potential with and without a trapping potential. In the untrapped case, a distinct peak at the
Fermi momentum of the system is visible, indicating the appearance of BCS-type pairing around
the Fermi surface. When a harmonic trapping potential is present, the peak appears less distinct
but does not fall off as steeply towards smaller momenta. Since we do not work in physical units
here, and the temperatures and particle numbers are not directly comparable, we cannot make
definitive statements about pairing differences between trapped and untrapped systems.

For a discussion of the systems in the presence of a finite population imbalance, we refer to
Section 5.3.5.

5.2.4 Density profiles for repulsive systems

In repulsive systems, there is a sign problem, specifically a complex weight problem. This is the
regime where standard algorithms fail, and we resort to complex Langevin simulations for possible
solutions. The density profiles for different interaction strengths, from small (λ = 0.85) to mod-
erate (λ = 1.7), are shown in Figure 5.3. We use a trotterization step size of ∆t = 0.05, an inverse
temperature of β= 8, a spatial lattice size of Nx = 80, and a trap length of Lt = 3.76. In contrast to
the attractive system, we observe a flattening and outward displacement of the distribution com-
pared to its free, particle-content matched counterpart. This effect becomes more pronounced
with stronger repulsion.

Since the stochastic process now explores the complex plane, we need to monitor the occur-
rence of potential boundary terms that may spoil convergence toward the correct result. Indeed, as
was found in previous studies, repulsive interactions induce some degree of slow decay in the field
and drift distributions at any coupling strength. However, while slow decay can indicate possible
wrong convergence, no one-to-one correspondence exists. In systems at zero temperature with
moderate interaction strengths, complex Langevin results have aligned with those from a formula-
tion using hard-wall bosons, despite slow decay [147, 148]. Further investigations are necessary to

1We use the terms non-interacting and free interchangeably. "Free" does not indicate the absence of a trapping
potential.
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Figure 5.3: Density profiles for small (left) and moderate (right) repulsive interactions at various
chemical potentials in the presence of a harmonic trapping potential. The dashed lines are spline
fits to the data, while solid lines indicate the free case with matched average particle number

understand the full impact of boundary terms in these systems and whether correction terms are
needed.

Finally, the repulsive case can easily be extended to imbalanced mixtures of spins, since there
is no qualitative change in the nature of the phase problem under investigation. We rewrite the
chemical potentials using

µ= µ↑+µ↓
2

, h = µ↑−µ↓
2

. (5.11)

In Figure 5.4, we show results for a system with repulsive interactionλ= 1.7, an imbalance ofβh = 2
and β= 32. The spatial lattice size is Nx = 40, and the trap frequency is ω= 0.0707. The left panel
displays the position space density profiles for various chemical potentials, while the right panel
shows the local polarization. We observe a maximum at a finite radius, which moves further out
as the filling increases. It is worth noting that the bump in the majority profile is not solely due
to the repulsive interaction. Instead, it partly originates from the oscillations appearing in density
profiles at lower temperatures. Some further caution is required here since low temperatures can
lead to a significant separation of scales and consequently to a loss of precision when calculating
the drift force and observables.

5.2.5 Summary & Outlook

In this section we have discussed the application of complex Langevin simulations to trapped
non-relativistic fermions in situations with attractive and repulsive couplings. Our investigation
focused on one-dimensional systems, for which we have computed density profiles and correla-
tions. We found that systems with repulsive interactions present a significant sign problem, and
have demonstrated that complex Langevin provides a way to tackle this issue. Our observations
indicate that density measurements are well-behaved within specific parameter ranges. However,
incorrect convergence cannot be ruled out due to the sub-exponential decay in the distribution of
the drift and observables. Notably, the case of spin and mass imbalance with attractive interactions
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Figure 5.4: LHS: Density profile of spin imbalanced systems at various particle contents. The dotted
lines are the minority, the dashed lines the majority species. RHS: Local polarizations. The lines
are spline fits to the data.

requires further investigation, as it represents a scenario where complex Langevin simulations are
known to face challenges. As an extension, we will apply lattice approaches to ground state and
fixed particle number systems in the next section with more conventional Markov chain methods.

5.3 Monte Carlo computations from the ground state to finite
temperature

This section is based on [1].

This section focuses on Metropolis-like Monte Carlo simulations of trapped fermions with at-
tractive contact interactions in one dimension. We use the stabilization and truncation methods
introduced in Chapter 4, which enable computations for both canonical and grand canonical sys-
tems at any temperature, down to the ground state. Our analysis includes density profiles, corre-
lations, and separation energies. We also explore the effects of spin species population imbalance.
While the latter can introduce a sign problem, we do not encounter one in the parameter ranges
studied here.

Our results are structured as follows. In Section 5.3.1, we provide a brief discussion on the
lattice size and parameters. Section 5.3.2 presents results for density profiles and correlations in
systems with balanced population. In Section 5.3.4 we provide a comparison to exact diagonaliza-
tion results for separation energies and compute the temperature dependence of the pairing gap
for various particle numbers. Finally, in Section 5.3.5, we discuss the sign problem and provide a
tomographic picture of density-density correlations in the imbalanced system.
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dispersion (blue squares) in the non-interacting trapped lattice system compared to the contin-
uum theory.

5.3.1 Technical setup

In the following, we use a discrete Hubbard-Stratonovich transformation in density channel, specif-
ically

e−∆tλn̂i↑n̂i↓ = 1

2

∑
φi=±1

e(γφi−∆tλ/2)(n̂i↑+n̂i↓−1) , (5.12)

where γ = cosh(γ) = e∆tλ/2. The discrete auxiliary field does not allow sampling via drift-based
methods, and we opt for the time local update discussed in Section 4.2.2 instead. We have found
that this method reduces autocorrelation times compared to global updates with a continuous
field.

An essential aspect of lattice simulations is the choice of parameters to ensure rapid conver-
gence towards the continuum limit. In our case, we need to consider several variables. One of
these is the temporal lattice spacing at , which dictates the number of time slices used and thus
influences the error of the Trotter decomposition. We find at /a = 0.05 to be sufficiently small to
ensure a negligible Trotter error.

The ratio Lt /a governs the finite size and finite distance errors, and we set it to Lt /a = 4. Simul-
taneously, the total number of spatial sites is Nx = 80, corresponding to a box size of Nx /LT = 20
in units of the harmonic oscillator. For the system with up to N = 20 particles, corresponding to a
total filling of N /Nx = 0.25, we use these values unless stated otherwise. However, it is worth noting
that a higher number of particles necessitates a larger spatial extent and smaller spacing to avoid
finite size and filling effects. In particular, one must ensure that the trap’s center is sufficiently be-
low the saturation density, which is the case in all our computations. In Section 5.3.3, we consider
systems with up to N = 80 particles, for which we use an Nx = 200 lattice and Lt /a = 8, leading
to Nx /Lt = 25 and a filling of N /Nx = 0.4. The proximity to the continuum theory is evidenced by
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the excellent agreement with previous results, e.g., in Figure 5.11 and Figure 5.10. Additionally, we
have compared the density profiles for N = 20 fermions for various lattice parameters and found
them to fall on universal curves, see Figure 5.10.

A note on the particle dispersion

Besides the discretization and bare parameters, the choice of the particle dispersion relation is
crucial for the accuracy of results. In this work, we use

ϵp = p2

2
, (5.13)

for the kinetic energy of the lattice system. Another form often used is given by the finite difference
approximation of the derivatives, yielding

ϵp = 2sin2
( p

2

)
. (5.14)

This is the standard dispersion of the Hubbard model and was previously employed for the trapped
system in, for example, [48]. To perform a simple check, we diagonalize the non-interacting lattice
Hamiltonians with both dispersions and compare the resulting energies to the continuum theory.
We use the smaller lattice with Nx = 80, ω= 0.0625. Figure 5.5, depicts the relative deviation of the
energy levels for both cases given by

∆E (n) = |E (n) −E (n)
cont|

E (n)
cont

. (5.15)

The comparison shows that the quadratic dispersion agrees significantly better with the contin-
uum result, with only small deviations up to half-filling. In contrast, the Hubbard dispersion devi-
ates even for the lowest-lying states. Both cases exhibit an even-odd effect in higher shells. Note
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that this issue does not affect our simulations, as they are conducted in more dilute regimes. More-
over, these results suggest that using the quadratic dispersion is necessary to obtain accurate re-
sults for observables such as the total energy or separation energies. It is worth mentioning that
methods which keep the energy levels exact are available, but they require a non-uniform spatial
lattice [60, 61].

5.3.2 Balanced spin species

In the case of spin-balanced systems, the determinants in (2.46) are real and equal sinceµ=µ↑ =µ↓
and thus no sign problem is present. This is true for the density channel Hubbard-Stratonovich
transformation used in this section and the spin-z channel not applied here, where the determi-
nants are complex conjugates of each other.

Before making use of the particle number projection methods described in Section 2.4, we
compute the expectation value of the particle number operator N̂σ = ∫

d x n̂σ(x) as a function of
the chemical potential for different temperatures, along with the correlation between up and down
spin number operators, 〈N̂↑N̂↓〉−〈N̂↑〉〈N̂↓〉.

Figure 5.6 (a) depicts clear steps at nearly integer particle numbers for the lowest tempera-
ture of T /ω = 0.125, indicating the thresholds in the chemical potential where each energy level
is filled. This effect is smoothened by thermal fluctuations, as can also be seen. Moreover, the at-
tractive interaction between up and down spins causes the departure from the empty system at
negative chemical potentials. Conversely, the non-interacting theory would have this threshold
around µ/ω= 1 for small but finite temperatures.

Figure 5.6 (b) shows the (connected) correlation between N̂↑ and N̂↓. Similar to what we saw for
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the average particle number, this correlation function for T /ω = 0.125 exhibits repeating patterns
following the filling of the different energy levels. The behavior is absent at high temperatures, and
the correlator changes more smoothly with the chemical potential.

Turning to the canonical ensemble, we investigate the density profile of a fixed number of
particles in the trapping potential. The ground state exhibits distinct particle peaks that stem di-
rectly from the wave functions of the harmonic oscillator states. These oscillations are already
present in the ground state of the non-interacting system g = 0, where the density is determined by
n(0)(x) =∑Nσ−1

n=0 |ψn(x)|2, using the well-known harmonic oscillator wavefunctionsψn(x). The den-
sity peaks are thus not necessarily a sign of pairing but rather a direct consequence of the harmonic
potential.

In Figure 5.7, the density profiles n(x) = n↑(x) = n↓(x) for g /
p
ω = −3 with 3+ 3 particles are

shown for various temperatures. In the ground state, the density distribution displays three peaks
equal to the number of filled oscillator shells. We find the same behavior at temperatures signifi-
cantly smaller than the spacing between energy levels in the trapping potential, since the ground
state dominates in these cases. As the temperature is raised to the point where the thermal en-
ergy becomes comparable to the energy gap, the peaks vanish, and the density profile gradually
becomes smoother, highlighting the significant impact of temperature on the density profile. With
larger particle numbers, the amplitude of the particle peaks is expected to decrease, and they be-
come more frequent. Eventually, the density converges towards a smooth profile in the thermody-
namic limit.

As an indicator for the existence of pairing in the system, we compute the connected density-
density correlation function in momentum space, given by

S(k,k ′) = 〈n↑(k)n↓(k ′)〉−〈n↑(k)〉〈n↓(k ′)〉 . (5.16)
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Pairing around the Fermi surface will manifest as positive correlation peaks at S(±kF ,∓kF ). In
Figure 5.8 we present results for the system at g /

p
ω = −3 and S(k,−k) for various temperatures.

Close to the ground state, the peaks around the Fermi surface are more pronounced. The corre-
lations decrease rapidly towards larger momenta, but they do not disappear at vanishing opposite
momenta due to the finite particle number and the resulting finite size of the systems. We observe
a weakening in correlations, similar to the breakup of ground state features in the density profile
when temperatures become comparable to the level spacing of the trapping potential. Moreover,
the overall picture appears more flat. However, in contrast to the oscillations in the density profile,
the density-density correlations at lower temperatures remain clearly visible.

5.3.3 Few to many

To show the applicability of our approach to systems of larger particle numbers, we compute the
density profiles and energies for systems of up to N = 80 particles. To this end, we adjust the lattice
parameters to Nx = 200 and ω = 0.015625, corresponding to LT /a = 8. In Figure 5.9, we plot the
density profiles N = 6, 20, 50 and 80 particles at g /

p
ω=−5 and T /ω= 0.25, as well as the ground

state densities of the corresponding non-interacting systems. The larger number of lattice sites
and smaller lattice spacing allow for a satisfactory resolution of the density oscillations close to the
ground state. We compare the energies obtained at different particle numbers to verify the compu-
tations further. In [140], the authors found the energy, normalized by the non-interacting energy,
to only show very weak dependence on the particle number when plotted against the rescaled cou-
pling

γ= πgp
ωN

. (5.17)

This behavior is reproduced by our data, as seen in Figure 5.10, where we compare the energies
against those of the two-particle system in the ground state. The lattice results generally slightly
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overshoot the two-particle system, which is expected at higher particle numbers but may also par-
tially result from the finite temperature.

Our current approach faces limitations when studying systems with strong couplings due to
ergodicity issues in the Markov process. These issues complicate the tuning of particle numbers,
particularly at very low chemical potentials. A similar challenge arises in the Hubbard model at
half-filling, where ergodicity problems can be alleviated by implementing global updates [149]. To
address these limitations, alternative strategies could be employed. One possibility is to sample
the canonical weight more directly or to perform computations in a different decoupling channel.
Preliminary tests suggest that spin channel computations are less prone to being trapped in sectors
with fixed particle numbers compared to density channel computations.

5.3.4 Energy observables

Having explored density observables and their correlations, we now focus on energy-related quan-
tities. Specifically, separation energies have been experimentally measured [150] and theoretically
analyzed through exact diagonalization [138, 141]. These measurements serve as a valuable bench-
mark to assess the accuracy of our computations near the ground state. The separation energy can
be understood as the interaction energy cost of adding a single particle to the system and is defined
in terms of the ground state chemical potential of the system,

µ(N ) = E(N )−E(N −1) , (5.18)

∆S(N ) =µ(N )−µ∗(N ) , (5.19)
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numbers.

where µ∗(N ) is the chemical potential of the free system. Note that this is not the tuning parameter
seen in the grand-canonical case and must be computed instead.

At low temperatures, direct simulations of the imbalanced systems are necessary because the
overlap between the balanced canonical simulation and the imbalanced sector becomes small. In
Figure 5.11, we see strong agreement between our results labeled as "Lattice", calculated at a fi-
nite temperature of T /ω= 0.125, and results obtained using exact diagonalization from [138]. The
step-like pattern, with lower energies for even particle numbers indicating shell closures, suggests
the presence of pairing between particles of up and down spin. We also note the proximity to ex-
perimental values at a slightly different coupling. Some deviations are visible, likely due to anhar-
monicity of the trapping potential present in the experiment. While beyond the scope of this work,
our method generally allows the study of an arbitrarily shaped external potential, which opens up
avenues to investigate the effects of anharmonicity in a controlled manner. For the comparison to
exact diagonalization results, we match both two-body energies to the same ground state values,
resulting in a value for the coupling slightly smaller than what was given in [138]. While the results
in Figure 5.11 are at weak coupling, similar agreement with exact diagonalization is found in more
strongly coupled scenarios.

Next, we compute the energy staggering pairing gap, defined for even particle numbers as

∆P (N ) = 1

2
[2E(N /2−1, N /2)−E(N /2, N /2)−E(N /2−1, N /2−1)] . (5.20)

This quantity serves as an indicator for pairing in the system and has been used to study pseu-
dogap effects [136, 151] and pair correlations [152] in higher dimensions. Although higher-order
estimators are available [153], we use a three-point estimator here for simplicity. At large enough
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temperatures, it is often enough to sample for a single chemical potential and reweight the differ-
ent particle numbers from the same data. This approach breaks down around T /ω∼ 0.5, where we
perform independent simulations for the energies at different particle numbers.

Figure 5.12 depicts the pairing gap at g /
p
ω = −3 for 1+1, 4+4, and 10+10 particles at finite

temperature. For two particles, we agree with the continuum theory’s exact result up to T /ω =
5. We see an increase in the gap when temperature increases before it decays again. Evidently,
the energy of the single particle contribution increases more rapidly than that of the two particle
one for small temperatures. The agreement between the two-particle systems and the exact result
indicates the validity of the renormalization approach used to fix the coupling, where no excited
states were considered. However, we expect the agreement to break down at higher temperatures
as high-energy states beyond the limits of the lattice start to contribute significantly.

The systems with eight and twenty particles respectively follow a similar general trend to the
two-particle one, but at lower total magnitude, consistent with available ground state results [140].
Interestingly, we still find peaks at finite temperatures, which move to lower temperatures when the
particle number increases. It remains unclear, from our computations, whether the peak converges
to a fixed temperature or vanishes in the thermodynamic limit, indicating a shell effect.

5.3.5 Imbalanced populations

An important open question in the study of ultracold fermionic gases is whether an exotic paring
phase exists at finite spin imbalance. Such a phase, known as the FFLO phase, is characterized by
pairing at non-degenerate Fermi surfaces, resulting in pairs with finite total momentum kF↑−kF↓.

However, the extent to which such systems can be studied using standard lattice methods is
unclear. In the case of imbalanced spin species, the configuration weight is no longer necessarily
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positive, and a sign problem can arise. This is the case in 2D and 3D simulations [35, 154]. In
contrast, some previous studies of Fermi gases with contact interactions in 1D have not shown
a sign problem in the considered parameter regions [3, 155, 156]. The trapped system studied
here displays similar behavior. We find no negative weight configurations for any combination of
temperature, chemical potential, and coupling. It is important to note that this is not an issue of
ergodicity. Our code runs into the expected sign problems in 2D and 3D and reproduces known
results in 1D, as has already been shown above in the case of separation energies, which require
simulations at a slight imbalance.

We complement previous studies that consider trapped systems with imbalances [143, 156,
157], by computing pairing patterns at higher particle numbers than done before. In Figure 5.13,
we present a visualization of the connected density-density correlations (5.16) for a system with
4+ 4 to 4+ 12 particles at g /

p
ω = −3 and T /ω = 0.25 in momentum space. The spin-balanced

correlator is peaked at k↑ + k↓ = 0, while the imbalanced systems show a clear signal of pairing
at finite momentum, which is consistent with the expected FFLO behavior. Note that Figure 5.13
does not show the relative magnitude of correlations at different particle numbers. Each plot is
independently normalized to ensure visibility. Moreover, several pockets of positive and negative
correlation are visible, forming an oscillatory pattern. Similar to the oscillatory pattern in the den-
sity profile, these oscillations are a feature of the harmonically trapped system and not found in
the same way in the untrapped gas [50]. While a thorough analysis is left to future work, we gener-
ally find a decrease in correlations when going to higher temperatures and larger imbalance. This
aligns with results from a recent exact diagonalization study of few-particle systems at finite tem-
perature [143].

5.3.6 Summary & Outlook

We have conducted lattice simulations of trapped fermionic systems in one dimension with both
balanced and imbalanced populations. The sampling was performed in the grand canonical en-
semble with a reweighting process to obtain canonical expectation values. This method is more
efficient than directly sampling the canonical weight but requires tuning the chemical potential.
Our stabilization procedure enabled us to simulate the entire range of temperatures down to the
ground state, which we then compared to a projective approach. We compared experimental and
theoretical data for the separation energies of up to six particles to validate our results and found
good agreement. Furthermore, we computed the energy staggering pairing gap for up to twenty
particles and found agreement with exact results for two particles. The computation of separa-
tion energies, in particular, requires simulations for spin-imbalanced systems, which we find to be
sign problem-free in the parameter ranges studied. This is also the case when computing density-
density correlations in the presence of larger imbalances, where we find clear signals of unconven-
tional pairing.

In future studies, it may be interesting to explore polaronic effects, as no sign problem appears
to be present, allowing computations even at large imbalances. In contrast to, e.g., Path Integral
Monte Carlo (PIMC) computations, the canonical lattice formulation used in this work does not
incur a sign problem in higher dimensions as long as the population remains balanced. Given
the good agreement of our lattice computation to previous results in, e.g., Figure 5.11, we expect
the approach to generalize straightforwardly to higher dimensions. Indeed, using a very similar
truncation approach as the one employed here, lattices for up to 752 were recently studied in the
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two-dimensional untrapped gas [42], which is close to the linear extent we found sufficient for the
1D system.

5.4 Conclusion

In this chapter we have shown that a straightforward lattice approach is well suited for computa-
tions of trapped fermionic systems in one dimension. We were able to model both attractive and
repulsive interactions. The former is made possible by complex Langevin, which allows for simu-
lations even with a significant sign problem. However, it is important to note that the accuracy of
our results is not guaranteed in all scenarios. We have observed slow decay in the sampling distri-
bution towards infinity and around poles for all computations of the repulsive system. While this
does not necessarily mean that complex Langevin has failed, it does require further investigation.
Tools to address potential wrong convergence are available, but little success has been found when
the errors originate from singularities instead of at infinity, as is the case here.

The Monte Carlo-based approach for attractive systems is free of the sign problem and facili-
tates exact computations. Even relatively small lattices of only 80 spatial points provide excellent
agreement with exact results for separation energies. Moreover, we have demonstrated that the
lattice dispersion chosen is crucial for the accuracy of results. In particular, a naïve discretization
of the derivatives leads to significant deviations from the continuum theory even without interac-
tions. In comparison, the quadratic dispersion we used gives accurate and stable results.

For the spin imbalanced gas, we have discussed the challenges faced by complex Langevin due
to the nature of the sign problem. To the best of our knowledge, this had yet to be addressed in the
literature. However, we found the sign problem to be wholly absent in the parameter ranges stud-
ied for the one-dimensional trapped gas, which allowed us to uncover signals of unconventional
pairing. The absence of the sign problem is fascinating, as there is not a priori reason to expect it.

Many direct extensions of this chapter are worth pursuing. Chief among them is the appli-
cation to higher dimensions, where other methods suffer from sign problems even for balanced
populations. Applying complex Langevin to rotating systems in this context might also be possi-
ble. These are accessible experimentally [130], but challenging for Monte Carlo methods, due to
the complex weight. Additionally, the complex Langevin simulations did not utilize the stabiliza-
tion and truncation scheme and could be improved to handle lower temperatures by incorporating
these methods. The severity of the sign problem in higher dimensions needs to be fully understood
and warrants further review in light of the results presented here. This will be the focus of the next
chapter, where we will discuss untrapped gases in two dimensions.





Chapter 6

Fermi gases in two dimensions

When the number of spatial dimensions is increased from one to two, a plethora of new phenom-
ena and physical effects emerge. Chiefly among them is the appearance of a superfluid phase at
low temperatures induced by a Berezinskii–Kosterlitz–Thouless transition. The two-dimensional
case is exceptional in this regard, as it represents the marginal dimension beyond which superflu-
idity may appear. Although the Mermin-Wagner theorem rules out the possibility of a second-order
phase transition and long-range order, as seen in three-dimensional systems, quasi-long-range or-
der may exist. This is made possible by the formation of vortex-antivortex pairs, which generate
algebraically decaying correlations. The two-dimensional system is of great interest, not least due
to the proximity to condensed matter phenomena such as high-Tc [158] and topological supercon-
ductors [159].

For fermions with contact interactions in particular, the literature provides a rich body of work
concerning, for example, the BKT transition in the BEC-BCS crossover [160–164], the density equa-
tion of state [134, 165–167], pairing properties [131], spin imbalances [30, 31] and many more.
Lattice and Monte Carlo methods have been used extensively in the context of the Fermi-Hubbard
model [168, 169], which describes a Fermi gas in the dilute limit. Moreover, direct applications to
cold atoms systems, where the continuum limit is considered, have recently been performed [42,
136, 170].

This chapter focuses on lattice simulation for two-dimensional gases and explores their behav-
ior under finite population imbalances. To start, in Section 6.1, we introduce the model, discuss
the various scales, and describe how the lattice system can be tuned to match experimental pa-
rameters. In Section 6.2, we briefly review the balanced gas, which serves as a benchmark for our
computations. Finally, Section 6.3 presents results for the imbalanced gas, focusing on the normal
phase of the system. We also address the sign problem and its impact on the system and compare
our results with those from the virial expansion.

6.1 Model parameters and scales

We first discuss the parameters and scales relevant to the grand canonical ensemble and the re-
lation between physical and bare lattice parameters. For a two-dimensional system, the lattice
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Hamiltonian, including the chemical potential, is given by

Ĥ =
∑
p,σ

ϵp ψ̂
†
pσψ̂pσ+

∑
x,σ
µσ n̂xσ+

∑
x
λ n̂x↑n̂x↓ , (6.1)

where µσ is the chemical potential for each spin species, λ is the interaction strength, and ϵp is the
dispersion relation. The temporal extent β of the lattice controls the temperature. In cold atoms
experiments, the interaction strength is typically expressed either as the two-body binding energy
eb or the s-wave scattering length a. For a two-dimensional system with ħ = 1 and m = 1, the
coupling parameters are related by [171]

eb = 4

e2γa2 , (6.2)

where γ = 0.5772. . . is Euler’s constant. While some literature omits this constant in defining the
scattering length, we include it here to maintain consistency with previous work.

The only other relevant scale in the system is the Fermi energy given by

EF = 2πn . (6.3)

Here, n represents the total density per spin species when assuming balanced populations1. These
parameters allow us to express any physical quantities in dimensionless form, facilitating direct
comparison between experimental and lattice results.

6.1.1 Tuning the coupling

To match a lattice system to a physical one, a precise connection between the lattice coupling and
the physical scattering length must be established. The literature offers two similar approaches,
both of which yield slightly different results for coarse lattices.

The first approach used, for example, in [170] involves computing the two-body binding energy
produced by the lattice Hamiltonian and then matching it to the desired two-body energy in the
continuum. Subsequently, the scattering length can be computed using Equation (6.2). Assuming
the lattice to be of infinite spatial extent, one finds for the binding energy

1

λ
=

∫ π

−π
d 2p

(2π)2

1

p2 +ϵp
. (6.4)

We have also tested matching to the binding energy on the finite lattice, which makes the momen-
tum integral above discrete. However, for small lattices, the bound state can be significantly af-
fected by periodic boundary conditions. We found that thermodynamic observables yield a cleaner
infinite volume extrapolation when tuning the coupling with continuous integral above.

The second approach defines the scattering length directly from the lattice system after solving
the two-body problem [172]. The resulting relation between the lattice coupling and the scattering
length is given by

1

λ
=− log

[
aeγ−2β(2)/ππ

]
2π

, (6.5)

1In parts of the literature n is taken to be the sum of the densities of the spin species instead. The formulations differ
by a factor of one half in the Fermi energy.
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where β(2) = 0.915. . . is Catalan’s constant.

Given the s-wave scattering length and the Fermi momentum, we may define the dimension-
less coupling as

η= lnkF a , (6.6)

where η≫ 0 corresponds to weak interactions and the BCS regime, η≪ 0 indicates strong interac-
tions with BEC behavior, and η = 0 sits directly in the BEC-BCS crossover regime. Since the Fermi
momentum is entirely determined by the density, the target lattice coupling is also dependent on
this parameter. To reach the continuum limit, the density of lattice points is increased while keep-
ing the total number of particles constant, thereby decreasing the density. Consequently, Equa-
tion (6.5) implies that as the scattering length increases, and the numerical value of the lattice
coupling must decrease to maintain a constant dimensionless coupling.

We have run tests using both Equation (6.5) and Equation (6.4) to tune the coupling. While
both converge to the same values for small binding energies and large scattering lengths, they differ
at finite densities and with strong interactions. We used the more straightforward binding based
approach for all our computations in the following. This is motivated by the excellent agreement
with virial expansion results when comparing thermodynamic observables, as will be discussed
in Section 6.3. The second approach, although accurate when approaching the continuum limit,
shows some deviations from the virial expansion when the lattice couplings are too large. Our
preference for the first method is thus justified by its more rapid convergence to the continuum.

Alternatively, in the grand canonical ensemble, a natural set of dimensionless parameters is
defined via combinations of the inverse temperature and the binding energy or chemical potential.
The quantities βµ and βeb fully characterize the system. These parameters have been used in
theoretical [32, 134, 165, 173] and experimental [166, 167] studies of two-dimensional Fermi gases,
and can be tuned without effort in lattice computations. However, the density and scattering length
parameters remain the more popular choice in experiments.

6.1.2 Tuning grand canonical parameters

When using dimensionless grand canonical parameters to characterize the system, we can imme-
diately begin computations. However, to achieve a specific value for η in equation (6.6), we also
need to set the density of the system. This can be challenging, as the density is not a direct input
of the lattice Hamiltonian. Instead, it requires adjusting the chemical potential through multiple
independent simulations to reach the desired value.

To lessen the burden of finding the correct value of µ for each set of parameters T /TF and η, we
have performed a sweep of parameters space for a fixed lattice size of V = 292. A grid scan of the
binding energy and chemical potential allows us to compute η and the density for each point and to
create an interpolated map back to the original parameters. Figure 6.1, shows a small region in the
T /TF -η space with the corresponding chemical potential, extrapolated from a finite set of points.
From this plot, we can infer the dimensionless chemical potential. The density is determined by
the temperature in lattice units and the target Fermi temperature, which are also provided. Finally,
the coupling on the lattice is also entirely determined via either Equation (6.5) or Equation (6.4).

This approach, while effective, is only an approximation. It doesn’t yield the exact point in cou-
pling space due to the fixed lattice size and finite volume and density effects. However, it provides
a strong starting point and minimizes the time-consuming tuning process.
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Figure 6.1: The dimensionless chemical potential as a function of the temperature in units of the
Fermi temperature TF and the common coupling logkF a. We use this plot to tune couplings in the
given region. The color gradient represents an interpolation from a finite set of points obtained
from a lattice of fixed size. The white spaces indicate the regions outside the boundaries of this
specific example.

The next step is an iterative refinement based on observables measured directly from the lat-
tice system. Given the initial guess, we choose a desired value for the density and dimensionless
coupling, which we use to set the lattice coupling definitively. Now, λ and β are set, and what re-
mains is to find µ so that a desired density is achieved. Since the chemical potential inferred from
Figure 6.1 will not reproduce this density exactly, we compute the change in particle number with
respect to the chemical potential as

∂〈N〉
∂βµ

= 〈(N↑+N↓)2〉−〈N↑+N↓〉2 = Ndiff , (6.7)

This result, which represents particle number fluctuations, is directly related to the compressibility
of the gas. We now discretize the left-hand side of the equation to first order and obtain an expres-
sion for the change in chemical potential required to arrive at the desired particle number Ntarget,
given by

∆µ= Ntarget −〈N〉
Ndiff

. (6.8)

Updating the chemical potential like this over several steps leads to precise and efficient conver-
gence toward the desired particle content. Our experience is that with suitable initial parameters,
a single ’pre-run’ is usually sufficient to tune the particle content to a precision within statistical
error.

So far, we have assumed the spin species to be balanced, in which case the tuning is complete.
However, the spin species’ chemical potentials lose their degeneracy in the spin-imbalanced case.
We use their difference

h = µ↑−µ↓
2

, (6.9)
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Figure 6.2: Momentum space density distribution of the 2D Fermi gas in the BEC-BCS crossover.
The density is shown for different values of the coupling strength lnkF a, starting with the BCS
regime at lnkF a = 2.0 indicated by the blue circles and ending in the BEC regime at lnkF a = −0.5
indicated by the purple pentagons. The dashed line corresponds to the exact solution for the non-
interacting gas. The inset shows the density on double logarithmic scale, highlighting the polyno-
mial decay for large momenta.

as an additional tuning parameter for simulations, while the central chemical potential is given by

µ= µ↑+µ↓
2

. (6.10)

These parameters control the total magnetization M and particle number N , respectively, and we
tune them in unison to land on the target values. The approach is much the same as before, but
now involves three derivative relations, specifically

∂〈N〉
∂βµ

,
∂〈N〉
∂βh

,
∂〈M〉
∂βh

. (6.11)

The chemical potential derivative of the magnetization is equal to the second term and not com-
puted separately.

Approaches to offload the effort of tuning the lattice parameters directly to a single simulation
exist. For instance, the value of the chemical potential can be adjusted dynamically during the
simulation or the thermalization period of the Markov chain [174]. However, we do not make use
of these more sophisticated methods, as the overhead of conducting a single ’pre-run’ for each set
of parameters is quite manageable for our purposes.

6.2 The balanced gas in 2D

To verify the validity of our computations, we start by examining the balanced gas in two spatial di-
mensions. This system has been studied extensively in the literature, initially as the attractive Hub-
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Figure 6.3: Shot-noise / density-density correlations of the 2D Fermi gas in the BEC-BCS crossover.
The correlations are shown for different values of the coupling strength lnkF a, starting with the
BCS regime at lnkF a = 2.0 indicated by the blue circles and ending in the BEC regime at lnkF a =
−0.5 indicated by the purple pentagons. In the BCS regime, a clear peak at the Fermi surface is
visible, which gradually vanishes as the system enters the BEC regime. The inset shows the corre-
lations normalized by their maximum value, highlighting the general shape.

bard model for small fillings and later explicitly as a Fermi gas[41, 42, 114, 134, 136, 169, 170]. Fully
featured extrapolations to the continuum limit were hard to obtain for a long time but have become
possible due to recent breakthroughs with the truncation methods discussed in Section 4.3.

As a preliminary test, we compared our results with those found in the literature for the density
equation of state, pressure, and compressibility [134]. Additionally, we calculated the double occu-
pancy and condensate fraction for N = 58 particles and compared them to the values given in [42].
All results agree with the literature values within statistical precision.

The qualitative behavior of the 2D gas when varying the coupling strength parameter lnkF a is
well known. The gas is in the BCS regime for small coupling strengths and exhibits clear pairing
peaks around the Fermi surface. As the coupling strength increases, the system smoothly transi-
tions into a phase of tightly bound composite particles with bosonic quantum statistics.

6.2.1 Densities and correlations in the BEC-BCS crossover

To illustrate the effect of the crossover on the density distribution and correlations in the system,
we perform a sweep of the coupling strength η = ln(kF a) at a fixed temperature of T /TF = 0.125
while keeping the total (average) particle number fixed at 〈N〉 = 86. This is achieved by adjusting
the chemical potential as described in Section 6.1.2. We use a lattice volume of V = 352 and a
temporal extent of Nt = 560, which yields a total of 6.86×106 auxiliary field points. The four Fermi
interaction is decoupled by a spin-channel decomposition, leading to faster convergence for this
system, and we apply truncations with a threshold of ϵT = 10−5.
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The momentum space density distribution is presented in Figure 6.2. It is important to note
that this is not the Fourier transform of real space density but is represented by ψ†

pψp . The non-
interacting gas shows quick saturation of momentum states inside the Fermi surface and a steep
slope in the distribution around kF . As the coupling strength increases from η = 2.0 to η = −0.5,
the slope becomes smoother, and the distribution extends to larger momenta while lower-lying
states are depleted. The inset presents the same data in a double logarithmic scale, highlighting
the polynomial decay of the density for larger momenta. This decay can be used to determine the
contact parameter, as demonstrated in [42, 136].

In Figure 6.3, we show the connected density-density correlations, also called shot-noise, as
defined in Equation (5.16), using the same parameters as before. The inset displays the correla-
tions normalized by their maximum value. There is a clear peak around the Fermi surface for weak
interactions, indicating BCS-type pairing. With increasing interaction strength, this peak broad-
ens and eventually vanishes so that correlations are instead maximal at zero momentum. The plot
also shows an increase in the magnitude of correlations in the system. The chosen temperature
T /TF = 0.125 is well above the BKT-transition temperature at η= 2 but lies in the superfluid phase
at η = −0.5 when comparing with the results in [42]. The breakup of the Fermi surface as well as
the phase transition may be reasons for the increased correlations in the BEC regime.

6.3 Imbalanced systems in 2D

We now explore the thermodynamic properties of the imbalanced Fermi gas in two dimensions
using Monte Carlo sampling, while addressing the sign problem and its effects on the system. Al-
though numerous mean-field studies have examined imbalanced gases in two dimensions [175–
177], the low-temperature physics are far from settled. In particular, it is still unclear whether su-
perfluidity is supported in the presence of finite polarization and, if so, what type of superfluid
phase might emerge.

Concerning lattice-based Monte Carlo approaches, we are aware of only a single study [35],
which considers the deep BCS regime exclusively. In contrast to the 1D and 3D cases, an attempt
has yet to be made to apply the complex Langevin method to two-dimensional systems.

Experimentally, two major studies have investigated imbalanced Fermi gases in two dimen-
sions. In the first work by Ong et al. [30], the authors used a harmonic trapping potential and found
that excess fermions are pushed outwards so that a balanced center is formed. This behavior mir-
rors what was observed in three-dimensional systems, where balanced and imbalanced phases
are separated by a first-order transition [28, 29]. In [31], the authors found the same behavior but
were also able to measure a condensate fraction in the trap center, even with a slight imbalance.
Whether there is a first-order transition between the balanced and imbalanced regions is still an
open question that likely requires lower temperatures to resolve. More recently, an investigation
using a rectangular confining potential found no signs of such a transition [178]. Additionally, the
existence and nature of an FFLO-type or other unconventional phase remains unknown at the time
of writing.

In the following, we focus on the normal phase of the system and the grand canonical param-
eters. This can be seen as a direct extension of previous works [134, 165–167], where the thermo-
dynamics of the balanced gas were examined both theoretically and experimentally. We compute
in the strongly interacting parameter regions of the BEC-BCS crossover regime, and discuss the
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implications of population imbalances. We also discuss the sign problem in the system and its
effects, particularly considering previous complex Langevin results for similar systems in three di-
mensions.

6.3.1 Model and technical setup

We use the same lattice Hamiltonian as in the balanced case (6.1), but allow for non-degenerate
chemical potentials. Truncations are performed on the majority U -matrix, from which the minor-
ity matrix can be computed, see Section 4.3.

For the imbalanced case, we use the discrete density channel Hubbard-Stratonovic transfor-
mation given in Equation (2.34). The choice is motivated by the sign problem, which is typically
less severe in density channel compared to spin channel.

6.3.2 Virial expansion

To facilitate a comparison with the lattice results, we compute select observables by virial expan-
sion. For this, we use the coefficients computed in [179] via a time discretization and the method
for Padé approximations therein. The virial expansion is an expansion in the fugacity z = eβµ, for
which the grand potential becomes

Ω−Ω0 =−βZ1

∞∑
n,m=0

zn
↑ zm

↓ ∆bn,m , (6.12)

where ∆bn,m = bn,m −b0
n,m is the difference of virial coefficients between the interacting and non-

interacting systems, Ω0 denotes the non-interacting grand potential and Z1 is the partition func-
tion for a single particle. Next, we compute the relevant observables via derivatives of the grand
potential. For the density, we find

n −n0 =
Z1

V

∑
n,m

∆bn,m(n +m)zn zm , (6.13)

where n0 =
∑
σ log[1+ zσ] is the non-interacting density. In order to find the polarization, we com-

pute the magnetization, which is given by

m −m0 =
Z1

V

∑
n,m

∆bn,m(n −m)zn zm , (6.14)

with the non-interacting magnetization m0 = log
[
1+ z↑

]− log
[
1+ z↓

]
. With these results, we com-

pute [3/2] Padé approximants as a function of the parameters βµ, while keeping βh fixed. A more
in-depth introduction to the virial expansion and Padé approximation for the two-component
Fermi gas is provided in Appendix C.

6.3.3 Thermodynamic properties

This section presents results for thermodynamic quantities at various external magnetic field val-
ues. To achieve this, we use a lattice of size V = 272, sufficient to provide a good description of the
thermodynamic limit. The temporal spacing is set to∆t = 0.05. Additionally, we choose the tempo-
ral extent β such that the thermal wavelength satisfies 1 ≪λT =

√
2πβ≪ L. For the computations
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Figure 6.4: Density equation of state for βϵb = 2 and various values of the external field βh. The
density is normalized by that of the non-interacting system at βh = 0. The dashed black line is a
Padé approximation based on a fifth order virial expansion. The inset shows the same data, but
normalized by the non-interacting density at the respective value of βh.

in this section, β is set to 16, corresponding to λT ≈ 10. It is important to note that β controls the
filling when the physical parameters are fixed and needs to be increased to reach the continuum
limit. For the largest coupling considered, systematic errors in the density are negligible in the di-
lute regime. However, we observe deviations of 1% in the crossover regime at βµ = 0 and 2.5% at
βµ= 4. A detailed discussion regarding the errors introduced by the finite lattice and filling can be
found in Section 6.3.4.

In Figure 6.4, we show the density equation of state for βϵb = 2, and various external magnetic
field values βh. We normalize the density by that of the non-interacting system at βh = 0 to keep
the convention established in previous work [32]. This allows for a detailed comparison with re-
sults obtained via virial expansion, including a subsequent Padé approximation, to which we find
excellent agreement up to βµ=−1. At larger values of βµ, the virial expansion breaks down. Inter-
estingly, the densities for different external fields fall on a single curve quite rapidly as the chemical
potential increases, even for the largest imbalance considered.

The inset shows the same quantities normalized with the non-interacting density at the same
external field. There, we find a delayed onset of the enhancing behavior with increasing imbalance,
owing to the smaller number of possible pairs, which is constrained by the number of minority
species fermions.

The impact of the sign problem on the density is minimal, even in scenarios where the average
sign is small, provided it remains distinguishable from zero. This minimal impact is due to a high
correlation between the observables 〈n × sign〉 and 〈sign〉. The correlation can be explained by
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Figure 6.5: Polarization equation of state forβϵb = 2 and various values of the external fieldβh. The
dashed black line is a Padé approximation based on a fifth order virial expansion. The inset shows
the average sign of the lattice simulations for the same parameters.

inspecting the total density of a field configuration determined by

n = 1

V
Tr

[
U↑

1+U↑
+ U↓

1+U↓

]
,

= 1

V

∑
i

di ,↑
1+di ,↑

+ di ,↑
e2βh +di ,↑

, (6.15)

where di ,σ are the eigenvalues of the matrix Uσ. The relative shift in chemical potential does not af-
fect the contribution of particles deep in the fermi-sea, owing to their large (absolute) eigenvalues,
leading them to contribute as unity irrespective of the sign. In general, we find the density per field
configuration to be positive, which means that 〈n × sign〉 only becomes negative if the sign itself is
negative.

In Figure 6.5, we show the polarization, given by

P = n↑−n↓
n↑+n↓

. (6.16)

It generally increases with the external field and is suppressed when going to larger chemical po-
tentials. Once again, we find good agreement with the virial expansion result, which we compute
via the ratio of the Padé approximants for the density (6.13) and magnetization (6.14). The average
sign for the corresponding parameters is shown in the inset. It decreases rapidly when increasing
βµ. Interestingly, when considering the average sign as a function of the external field, changes are
most rapid for small βh, particularly between βh = 0 and βh = 1. We believe the smaller number
of available pairs also causes this as βh becomes large, decreasing the effect of interactions on the
overall system.
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Figure 6.6: Compressibility in units of the non-interacting compressibility for βϵb = 2 for βh =
1,2,3,4 from bottom to top (circles, squares, triangles, diamonds). The dashed black line is a Padé
approximation based on a fifth-order virial expansion.

The pressure of the imbalanced gas can be directly derived from the density equation of state
through integration, yielding

P (βµ) = 1

λ2
T

∫
n d(βµ)′ . (6.17)

We also use this equation to calculate the non-interacting pressure for normalization purposes. We
present results for the pressure in Figure 6.7. Given the smooth nature of the density data, we apply
a simple spline extrapolation between data points, which we then integrate. To account for the
contribution from the tail of n(x) for βµ→−∞, we integrate the virial expansion result up to the
first lattice data point, indicated by the dashed lines. Since the statistical errors in the density are
minimal, they are not explicitly shown for the pressure. In analogy to the density equation of state,
the pressure enhancement grows weaker as the external field increases. This effect is especially
evident in the crossover regime, where the enhancement is strongest for the balanced gas [134,
165, 166].

Finally, we compute the isothermal compressibility of the imbalanced gas, which is obtained
by taking the derivative of the density with respect to the chemical potential, yielding

κ= 1

n2

dn

d
(
βµ

) . (6.18)

Using the density computed in Figure 6.4, we perform a spline extrapolation to the data and obtain
the compressibility. This estimation is crosschecked via the direct evaluation of the field configu-
rations using

dn

d
(
βµ

) = 1

V 2 〈N 2 −〈N〉2〉 , (6.19)
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Figure 6.7: Pressure in units of the non-interacting pressure for βϵb = 2. The dashed lines on the
left indicate the tails integrated from the virial expansion in the high temperature regime.

where N = N↑+N↓. Generally, both methods yield excellent agreement, although some deviations
occur as βµ increases due to the finite lattice size. When these deviations exceed the statistical er-
rors of the direct estimation, we adjust the error bars to span twice the range between them [134].
In Figure 6.6, we show the compressibility for βϵb = 2 and various external field values. As βh
increases, the compressibility shows an enhancement compared to its non-interacting counter-
part, contrasting the situation for the balanced gas and at small βh, where it is suppressed. This
enhancement can be attributed to the stronger suppression of the density (see Figure 6.4 inset)
compared to the particle number fluctuations (6.19). Crucially, we again agree with the virial ex-
pansion results up to βµ ≈ −2, including the upwards bending behavior for large external fields.
The Padé approximation also correctly predicts a peak and subsequent drop in the compressibility
for βh = 3 and βh = 4. However, both height and position do not agree with the lattice results.

6.3.4 Systematic error estimates

We conduct a series of checks to estimate the systematic errors of the results presented in the pre-
vious section. Specifically, we examine the system’s density at three different values of the dimen-
sionless chemical potential βµ = −4,0,4 for an asymmetry of βh = 3 and βϵb = 2. This approach
allows us to analyze the system as it transitions from a high-temperature dilute regime to a low-
temperature quantum degenerate state.

There are two limits to consider: the thermodynamic limit and the continuum limit. The ther-
modynamic limit is approached by keeping the lattice parameters fixed while increasing the num-
ber of points. To take the continuum limit, one decreases β, which leads to a decrease in filling and
consequently decreases the bare coupling g . This reduction in g also makes the error induced by
the Trotter-Suzuki decomposition smaller. For our computations, which use∆t = 0.05, we find this
error to be small compared to those introduced by spatial lattice effects and typically of the order
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Figure 6.8: Extrapolation of the density for βeb = 2, βh = 3 in the thermodynamic limit for β = 16
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the lattice results shown in Figure 6.4.

of the statistical uncertainty.

The results of an extrapolation to large lattices and dilute systems are shown in Figure 6.8.
Achieving the thermodynamic limit is particularly challenging for fermions due to strong shell ef-
fects caused by the sharp momentum space distribution. This can be seen in the top panel of
Figure 6.8, where we plot the density for various lattice sizes with β = 16. We find that the density
oscillates as the number of lattice points increases, with the amplitude decreasing as the lattice size
grows. These effects are most prominent at smaller fillings, where the density of available momen-
tum states is smaller. Since linear extrapolation is not feasible in this scenario, we use the largest
lattice computed to estimate the continuum limit. We use V = 412 for the most dilute systems,
while smaller lattices suffice to reach the thermodynamic limit at larger β.

In the bottom panels of Figure 6.8, the density is shown for various values of β on the largest
lattices used. Its behavior is well described by a linear extrapolation in 1/β, which we use as an
estimate for the infinite volume result. Note that this extrapolation is effectively equivalent to an
extrapolation in the total filling of the lattice when sufficiently close to the thermodynamic limit.
In the semiclassical regime (βµ = −4), the density remains constant within the error margin, as
expected, since the filling is small even for the lowest β considered. Thus, the density computed
on the finite lattice is expected to agree with the continuum result, as indicated by the excellent
agreement with the virial expansion prediction. We observe a stronger dependence in the quan-
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Figure 6.9: Magnetization, normalized by the asymptotic magnetization of the non-interacting sys-
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The gray crosses indicate quenched results for the largest lattice.

tum degenerate regime, where the linear extrapolation indicates a decrease in the dimensionless
density as the lattice system becomes more dilute. Comparing with the results given in Figure 6.4,
we find the extrapolated value to carry a relative deviation of 1% at βµ= 0 and 2.5% at βµ= 4.

For two reasons taking a continuum limit of the grand-canonical description becomes increas-
ingly difficult for large βµ. First, the Fermi surface becomes sharper if the lattice density remains
fixed, leading to a stronger dependence on the total volume, even for a spin-balanced system. Sec-
ondly, the sign problem becomes severe at low temperatures, rendering the reweighting procedure
increasingly ineffective.

6.3.5 Magnetization

In contrast to the density, the total magnetization of the system,

M = N↑−N↓ , (6.20)

can display a relatively strong dependence on the volume, mainly when the imbalance is small,
but the temperature is low. This sensitivity partly arises from the non-monotonic behavior of the
density discussed in Section 6.3.4 and is further enhanced by taking the difference between the two
spin species. While the issue is somewhat obscured in the total density due to the large number
of fermions below the Fermi surface, these fermions do not significantly affect the magnetization
when the imbalance is slight.

Figure 6.9 shows the magnetization for increasing central chemical potential and βh = 1 across
lattices ranging from L = 17 to 43. The values are normalized by the asymptotic magnetization
of the free system m0,∞, where βµ→∞ while βh remains fixed. We observe that the volume de-
pendence of the magnetization is more pronounced than that of the density. Specifically, the 172
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lattice exhibits strong fluctuations, which smooth out as the volume increases. The magnetization
seems to decrease after about βµ = 3, possibly due to pairing becoming energetically favored as
the temperature drops, eventually leading to a balanced conventional superfluid. However, due
to the large volume dependence, we cannot draw a definitive conclusion. Further tests suggest an
enhancement of the down-bending behavior as β increases while keeping the dimensionless pa-
rameters fixed. It is important to note that the back-bending occurs only for low imbalances and is
not present for the computations at βϵb = 2,3,4. For the 432 lattice, we also observe that the phase
quenched estimator of the magnetization starts to deviate significantly from the reweighted one at
about βµ= 2, which does not show a decrease but rather a monotonic increase.

Overall, we expect the stronger dependence on volume to make the magnetization less reliable
than the total density when studied in the grand canonical context. In particular, the susceptibility
becomes difficult to estimate, as it is directly related to the magnetization of the derivative with the
external field,

χ= 1

V

d M

dh
. (6.21)

One possible solution is to work in the canonical ensemble or to treat the grand canonical param-
eters as tuning parameters, aiming for a fixed density and imbalance.

6.3.6 Coupling scan

In Figure 6.10, we show the density for a set of different dimensionless couplings ranging from
βϵb = 0.25 to βϵb = 3 for βh = 3. We use the same lattice parameters as in Figure 6.4. In agreement
with the results for the balanced gas [134, 165–167], the density is a smooth curve and becomes
enhanced with increasing interaction strength. However, the sign problem becomes severe for
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the largest coupling considered, indicated by a significant rise in statistical error when βµ exceeds
2.5. The Padé approximants show good agreement in the regime of low chemical potential but
begin to deviate beyond βµ= 2. These approximants are provided only for couplings greater than
βϵb = 1, as they become increasingly unstable for smaller couplings, offering little improvement
over the regular fifth-order virial expansion. Overall, this shows that while we can obtain reliable
results in the crossover regime, the sign problem becomes prohibitive on the BEC side and at low
temperatures.

6.4 Conclusion

This chapter explored the thermodynamic properties of a spin-imbalanced gas of fermions with
attractive contact interactions in two spatial dimensions. To study these properties, we performed
lattice Monte Carlo simulations of the grand canonical partition function, which is known to be
affected by the sign problem. However, we demonstrated that the sign problem is mild for a wide
range of parameters. Moreover, we argued that some observables, such as the density, are only
mildly impacted, even when the average sign is small. This suggests that phase-quenched estima-
tors can still yield accurate results. Due to the mildness of the sign problem, we were able to per-
form computations on larger lattices, facilitated by a model space truncation approach, and em-
ployed standard reweighting procedures to obtain unbiased estimators for physical observables.

We calculated the density and polarization equations of state, compressibility, and pressure. All
these observables show excellent agreement with results derived from a Padé approximant based
on fifth-order virial coefficients up to roughly βµ ≈ −2. In particular, we find an enhancement in
compressibility compared to the non-interacting system as the external field increases. All results
presented here are quantities directly accessible to cold atoms experiments and make for falsifiable
predictions. In fact, experiments measuring the density, pressure, and compressibility of spin-
balanced systems have already been conducted [166, 167].

Overall, the weak sign problem opens up opportunities for further investigations of the spin-
imbalanced Fermi gas. While reaching temperatures low enough to search for an inhomogeneous
superfluid phase may be challenging, the smallest temperatures we considered are well within the
regime where the balance gas displays pseudogap effects. It could be interesting to explore whether
similar effects occur in the imbalanced gas and, if so, how the imbalance influences them. Al-
though we expect the sign problem to be more pronounced in higher dimensions, the reweighting
approach can be easily generalized. This may present an opportunity to study the unitary gas,
which has previously been done via a complex Langevin approach [32, 33], and could provide a
helpful crosscheck and insights into the validity of the latter.



Chapter 7

Inverse Renormalization group
architectures for normalizing flows

In the previous chapters, we have shown how the sign problem can make lattice simulations in-
tractable and discussed approaches to alleviate this issue. A similarly challenging problem in lattice
field theory is critical slowing down, which occurs when correlation lengths become large. Since
this happens in the continuum limit regardless of the system specifics, the problem is of general
interest. It affects any lattice simulation even away from the critical point of the physical theory.
Fortunately, the critical exponent associated with critical slowing down is not universal but de-
pends on the sampling algorithm. This is made evident, for example, by the staggering success
of cluster algorithm for spin models, which can reduce autocorrelation times by several orders of
magnitude and show better scaling behavior than Metropolis Monte Carlo [180]. With the ever-
rising popularity of machine learning, it is natural to ask if these methods can similarly aid critical
slowing down in lattice field theory.

Normalizing flows are a class of generative models that aim to find a map between a trivial
(most of the time Gaussian) distribution and some complicated target distribution. While nor-
malizing flows, in the context of machine learning, have become popular roughly within the last
decade [181–183], related ideas have been proposed in the context of lattice field theory before. In
particular, the trivializing maps introduced by Lüscher [184] can be seen as a direct precursor.

In this chapter, we will give a general introduction to normalizing flows and discuss the pop-
ular Real NVP and continuous flow architectures. Moreover, we show how normalizing flows may
be used to upscale lattice configurations in the context of inverse renormalization group transfor-
mations. This can substantially decrease the computational footprint of the model compared to
the architectures proposed in the literature. Additionally, since the large-scale features are already
sampled on the coarse lattice, critical slowing down could be avoided with such an approach.

7.1 Normalizing flows for lattice field theory

A normalizing flow model aims to map a simple, known prior distribution to a more complicated
posterior, or target, one. For our purposes, we are interested in posterior distributions, where the
(unnormalized) probability density is known, but sampling may be hard due to, e.g., large autocor-
relation times. Notably, the construction of flows does not depend on the choice of prior distribu-

95
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tion, and a good initial guess can significantly reduce training time and model performance.

The general idea is to find some changes of variables, such that the probability density of the
target distribution p(φ), where φ ∈RN , may be written in terms of the prior distribution pp (z) as

p(φ) ≃pp ( f −1(φ))

∣∣∣∣det

(
∂ f −1(φ)

∂φ

)∣∣∣∣
=pp ( f −1(φ))

∣∣det J [ f ]
∣∣−1 = q(φ) . (7.1)

Here, z ∈R and f −1(φ) :RN→RN is an invertible function. It describes the normalizing direction of
the flow and maps samples from the target distribution to the prior, typically normal distribution.
Consequently, f maps samples from the prior to the target distribution and is called the generative
direction.

Since critical slowing down poses a significant challenge to conventional lattice simulations,
the allure of a map that can generate samples is clear. Configurations are drawn from the prior,
trivial distribution. Each sample is independent by construction. As a result, the samples in the
target distribution are also independent, effectively eliminating autocorrelation and resolving crit-
ical slowing down.

In practice, the function f is defined by a machine learning architecture and must allow for
the computation of the Jacobi determinant in a tractable manner. However, training these func-
tions comes with a significant computational cost, which increases exponentially close to criticality
based on early experiments [47]. Thus, while critical slowing down is diminished in sampling, it is
transferred to the training process.

It is important to note that the learned map will never precisely match the target distribution,
and the relation in (7.1) holds only approximately. We thus denote the distribution actually learned
by the flow as q(φ), which is an approximation to the target distribution p(φ). A Markov Chain in-
troduced on the drawn samples resolves this problem and corrects possible deviations. The proba-
bility of accepting a new configuration φ′ based on the current configuration φ is computed in the
usual Metropolis-Hastings fashion,

paccept(φ
′|φ) = min

(
1,

p(φ′)q(φ)

q(φ′)p(φ)

)
. (7.2)

If the mapping is exact, the acceptance rate will be one, rendering the Markov Chain unnecessary.
The acceptance rate can serve as a measure of model quality and an optimization target during
training. However, it tends to be quite noisy in practice. Instead, the reverse Kullback-Leibler (KL)
divergence, which is the relative entropy between the target and the approximate distribution,

DK L(q ||p) =
∫

q(φ) log

(
q(φ)

p(φ)

)
dφ , (7.3)

is typically used. The KL divergence, is minimized precisely when the two distributions are equal,
making it an effective measure of flow quality. It is estimated stochastically during training by
drawing samples from the approximate distribution q , representing a variational, unsupervised
training approach. This is a distinct advantage over the forward KL divergence, which requires
samples from the target distribution instead. Importantly, the overall normalization of the target
distribution, Z = ∫

exp(−S), does not affect the minimization procedure. As long as it remains
constant during training, the KL divergence value only shifts by a fixed amount.
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7.1.1 Real NVP flows

The first and still one of the most popular normalizing flow architectures for lattice field theory are
real non-volume-preserving (real NVP) flows [43, 183]. They construct the complicated function
f by a set of affine coupling layers, which scale and offset a subset of the field component in each
step. Assuming we have N field component in φ, the lattice is split into two halves of size N /2,
we call φa the active and φb the frozen subset. A single affine coupling layer gi is defined as the
transformation

gi (φa) =φa ⊙exp(si (φb))+ ti (φb) , (7.4)

which leaves the frozen subset unchanged. Here, the scaling and offset functions si and ti both
map RN /2 to itself and are conditioned on the frozen half of the fields. The operator ⊙ denotes
element-wise multiplication. In order to achieve a high level of expressiveness, si and ti are usually
defined by unique neural networks for each coupling layer. Importantly, these neural networks do
not necessarily need to be invertible themselves. The inverse transformation can be calculated
with the same computational cost as the forward pass and is expressed as

g−1
i (φa) = (φa − ti (φb))⊙exp(−si (φb)). (7.5)

This simple form makes the Jacobian determinant of the transformation easy to compute via∣∣∣∣det

(
∂gi (φa)

∂φa

)∣∣∣∣= exp

(∑
j

[si (φb)] j

)
, (7.6)

where the sum runs over all N /2 components of the scaling function.

Layers are stacked sequentially, alternating between frozen and active field components. The
choice of how to separate the fields is arbitrary, and different decompositions may be used for
different layers. A popular approach is a simple checkerboard breakup, allowing all fields to be
conditioned on their nearest neighbors.

The scaling and offset functions are typically parameterized by deep convolutional neural net-
works. This has the advantage of encoding the translational symmetry of the lattice into the flow.
Including symmetries is crucial to the success of flow-based methods and can significantly re-
duce model complexity and training time. Affine coupling layers that are equivariant under SU (N )
gauge symmetry and the Z 2 symmetry of scalar φ4-theory are also available [47].

7.1.2 Continuous flows

The real NVP flows in the last section are a discrete set of transformations that map from the prior
to the target distribution in a finite number of steps. On the other hand, continuous flows are
defined by a differential equation, describing a continuous path between the two distributions.
The concept of continuous flows first emerged in 2018 [185], along with the introduction of neu-
ral ordinary differential equations (NODEs). Using the adjoint method, NODEs enable efficient
backpropagation through the solution of ordinary differential equations (ODEs). This was a cru-
cial development, as regular backpropagation through an ODE solver is computationally expensive
and can be numerically unstable.

In the most generic form, the field is determined by an ODE, which is defined for the flow time
t ∈ [0,T ] as

dφ(t )

d t
= g (φ(t ), t ). (7.7)
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In the machine learning sense, this can be seen as a type of shallow architecture, but we are free to
parametrize the vector field g as we see fit. The only constraint is that it must be Lipschitz contin-
uous. Notably, the function itself is not required to be invertible. The complete transformation is
obtained by integrating the ODE from t = 0 to t = T

φ(T ) =φ(0)+
∫ T

0
g (φ(t ), t )d t . (7.8)

It is immediately clear that the transformation is inverted by simply reversing the direction of the
flow time. In order to evaluate the weight of the transformed field, the probability density is also
tracked during the integration. This is done by integrating another ODE, given by

log p(φ(t ))

d t
=−(∇φ · g

)
(φ(t ), t ). (7.9)

We require only the gradient of g with respect to the field, which is readily computed analytically
or via automatic differentiation, depending on the architecture.

In lattice field theory, continuous flows have been used, e.g., for scalar φ4 models [186], gauge
theories [187] and Nambu-Goto strings [188].

In the following, we will consider scalar theories and architectures based on the one proposed
in [186]. Therein, the vector field g is parametrized by a basis expansion in the field components
and a Fourier expansion in the flow time. In total, the vector field is given by

gx (φ(t ), t ) =
∑

y,d , f
Wx y d f K (t )d H(φ(t )y ) f , (7.10)

where d and f run over the number of field and time basis functions D and F respectively, and y in-
dexes the N lattice sites. The function H :R→RF governs the basis expansion, while K : [0,T ] →RD

is the Fourier expansion. In principle, both of these functions may contain learnable parameters in
addition to the N 2DF learnable weights of the tensor W . The latter can be interpreted as a convo-
lutional kernel spanning the whole lattice. The effective range at which lattice points interact can
be controlled by fixing the specific weights connecting them to zero. We will call the range of this
kernel K in the following.

In some cases, training can be improved by factorizing the weight tensor and adding more
parameters in the form of bond dimensions

Wx y d f =
∑

d ′, f ′
W̃x y d ′ f ′Ud ′d V f ′ f , (7.11)

where, d ′ and f ′ index the bond dimensions. The resulting matrices U and V are real-valued and
of size D ′×D and F ′×F , respectively.

In our basis expansion, we use a combination of a polynomial expansion up to order P and
learnable frequency terms of the form sin(ω f t ) and cos(ω f t ). In practical computations, including
higher-order terms in the polynomial expansion can lead to numerical instabilities. Therefore, in
most cases, we only include the linear term. If the theory is symmetric under a global φ → −φ
transformation, the cosine and even polynomial terms can be omitted.

Furthermore, making the model fully equivariant under all symmetries of the lattice actions
is crucial for the success of continuous flows and drastically reduces the number of parameters
required. In [186], the translational, rotational, and mirror symmetries encountered in scalar the-
ories are discussed in detail. We use a similar construction in the following sections but adjust to
symmetry based on upscaling.
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7.2 Inverse RG with normalizing flows

The renormalization group is a powerful tool in statistical physics and quantum field theory that
facilitates the study of systems at various length scales [189]. In its most basic form, a renormaliza-
tion group transformation involves "block spinning", a process in which a lattice is coarse-grained
step by step, reducing the number of degrees of freedom. One example of such a coarse graining
step is simple averaging over blocks of spins or fields. This averaging procedure, however, is not
invertible for a given configuration.

Efforts to develop an (approximate) inverse transformation have mainly focused on statistical
spin systems [190, 191]. More recently, the idea has sprung over to lattice field theories, where
convolutional neural networks were used to map from small to large lattices [192]. The authors
take a supervised approach, training the network on fine configurations and the corresponding
coarse-grained counterparts. The resulting map may then be used to increase the size of a lattice
configuration iteratively. Unfortunately, this procedure does not allow for sampling in the coarse
theory, as the weight of the coarse configurations is not know analytically.

Related concepts in lattice field theory and machine learning include multi-grid and multi-
level sampling approaches [193, 194], as well as a range of super-resolution techniques commonly
used in image processing [195].

7.2.1 Upscaling configurations with continuous flows

Since the weight of coarse-grained configurations is generally unknown, and there is a mismatch
in size between fine and coarse-grained lattices, we cannot directly use coarse samples to train
the flow. Instead, we propose a procedure where the flow effectively links two lattice models, each
potentially having different parameters and sizes. This approach requires us to address the issue
of bijectivity between the original and coarse field spaces, as the number of degrees of freedom
differs.

To tackle the mismatch in dimensionality, we employ an injective layer, which allows us to
compute the density change as

p(ψ) = pp (U−1(ψ))
∣∣det

(
J T [U ]J [U ]

)∣∣−1/2
U−1(ψ) , (7.12)

where U : Rn → RN is an injective function with n < N , and the Jacobain is a N ×n matrix. Note
that U−1 in only defined on a subset MN ⊂RN .

Our approach utilizes a fixed transformation that duplicates field components along all dimen-
sions, resulting in a single upscaling step L → 2L. Here, L is the linear extent of the lattice. The
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Figure 7.1: Illustration of the full upscaling procedure. The original sample is naively upscaled by a
factor of 2, and noise is added to each block. The flow then maps the noisy, upscaled sample to the
target distribution.

Jacobian for this upsampling operation also used in [196] is given by

J =



1 0 · · · 0
... 0 · · · 0
1 0 · · · 0
0 1 · · · 0

0
... · · · 0

0 1 · · · 0
...

...
0 0 · · · 1
0 0 · · · 1


(2L)d×Ld

. (7.13)

Since the transformation is independent of the field, the determinant remains constant with a
value of log |det J T J | = Ld log(2d ), where d is the dimensionality of the lattice. This constant shift in
the KL divergence can be disregarded during training. However, it may be relevant when calculat-
ing specific observables, such as the change in the partition function between prior and posterior
distribution.

As stated above, renormalization group transformations are non-invertible, which means the
coarse configuration is ignorant regarding the fine-scale information lost in the coarsening step.
We parametrize this ignorance by introducing a degree of stochasticity to the sample in the form
of correlated noise for each block B in Figure 7.1. This is easily achieved by drawing a multivariate
random variable ζ of size NB−1 from a Gaussian distribution, where NB is the number of sites in a
single block, and the covariance matrix is given by

Σ= INB−1 −
1

NB
. (7.14)

We require the noise added to each block to be homogeneous and to sum to zero. The latter ensures
that a simple averaging over blocks leads back to the original coarse sample and means that the
operation can be understood as the left inverse of both the upscaling and noise application. With
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Figure 7.2: Effective sample size (ESS) as a function of the kernel size in one dimension for target
lattices of size L = 256 and L = 512. We compare the upscaling flow (UCNF, squares) to the original
continuous flow architecture trained from a Gaussian prior (CNF, circles). The couplings are tuned
so that a correlation length of ξ/L ≃ 0.078 is achieved in all cases.

these requirements, the final component of the noise for each block is trivially computed as

ζNB =−
NB−1∑

i=1
ζi . (7.15)

Samples are drawn independently for each block, which means that we have essentially added
(2L)d −Ld degrees of freedom via noise. The operation that adds the noise is denoted as N (ψ,ζ),
where ψ ∈ M(2L)d ≃ RLd

and ζ ∈ R(2L)d−Ld
. The configuration on the coarse lattice and the noise

now match the degrees of freedom on the fine lattice, enabling us to learn a bijective map between
them. Indeed, with the described procedure, any configuration on the fine lattice can be broken
up into a coarsened field and a noise part, and their densities can be tracked exactly.

We complete the model by incorporating a normalizing flow Fθ that maps from the upscaled
sample with noise to the target distribution. This flow is continuous and similar to the one dis-
cussed earlier, with some adjustments in terms of symmetries and kernel size. The upscaling pro-
cedure described so far destroys the sample’s translational symmetry, and we rely on the flow to
restore it. However, we can still use the symmetry of the original sample, which manifests in a
2-step-translational symmetry, and mirror and rotational symmetries in the upscaled field with
noise. Consequently, the upscaling flows require more parameters than the original continuous
flow architecture, all else equal. To counteract this increase, the range at which lattice points in-
teract with each other can be reduced using the weight tensor W in (7.10). This is possible since
we want the flow to learn short-scale behavior while inheriting the long-range behavior from the
coarse sample.
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Figure 7.3: Effective sample size (ESS) as a function of the coupling of the coarse system. The
dashed gray line indicates the value where the correlation lengths between the coarse and fine
systems agree in units of the volume.

7.2.2 Experiments

To test the proposed upscaling architecture, we use it on a simpleφ4-theory in one and two dimen-
sions. The lattice action is given by

SL[φ̂] =
∑
x

[
m̂2

L

2
φ̂2

x +
λ̂L

4
φ̂4

x +
1

2

∑
µ>0

(
2φ̂2

x − φ̂xφ̂x+µ̂− φ̂xφ̂x−µ̂
)]

, (7.16)

where the lattice spacing was absorbed into the fields and parameters, yielding the dimensionless
quantities

φ̂x =φ(aL x) ad/2−1
L (7.17)

m̂L = m aL (7.18)

λ̂L =λ a4−d
L . (7.19)

For now, the bare parameters of the fine S2L and coarse SL levels are tuned to maintain consistent
physics and enable effective upscaling. Unless stated otherwise, we use D = 17 components to
expand the time kernel and F = 20 for the fields. The latter includes a linear term and 19 learnable
frequencies. Moreover, the bond dimensions are set to D ′ = 20 and F ′ = 20.

In our first experiment, we consider φ4–theory in d = 1 dimensions and use the proposed ar-
chitecture to learn a continuous normalizing flow between lattices of size L and L′ = 2L. Since the
coarse theory reproduces the infrared (IR) features of the fine level quite well, a significantly smaller
kernel K can be used when learning between theories compared to learning with a Gaussian dis-
tribution as prior. Results for lattices of size L′ = 256, L′ = 512 and correlation length ξ/L = 0.078
are shown in Figure 7.2. To evaluate and compare the performance of the different models, the
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Figure 7.4: Effective sample size on a V = 642 lattice as a function of the number of training steps.
We compare the upscaling architecture to regular continuous flows trained from Gaussian and free
theory priors.

effective sample size (ESS) per sample after training is estimated as

ESS =
( 1

N

∑
i p[φ̃i ]/q[φ̃i ]

)2

1
N

∑
i
(
p[φ̃i ]/q[φ̃i ]

)2 . (7.20)

It is defined so that ESS = 1 for a perfect match between the target and flowed distribution. The
model with a coarse prior achieves an ESS of > 0.9 for kernels as small as K = 11 and is well above
0.5 even for K= 5. With a Gaussian prior, performance is considerably worse. This is a direct con-
sequence of the correlation length growing large in lattice units as the volume is increased (ξ= 20
and ξ = 40 respectively). Performance improves steadily with increasing kernel size and becomes
larger than 0.5 for K≳ 2ξ, which is expected since correlating sites separated by more than half the
kernel size is challenging with the single layer continuous flow architecture. Overall performance is
slightly better for the upsampling model, with a final ESS of > 0.9 compared to 0.8 for the baseline
model, even when the kernel spans the entire lattice.

We conducted tests to gauge the impact of varying parameters at the coarse level with fixed
kernel sizes of K= 5,9,21 in Figure 7.3. The model is sensitive to these changes, and the ESS peaks
when the correlation length (measured in terms of volume units) aligns between the coarse and
target levels. This indicates the need for a careful tuning and robust matching method to ensure
optimal performance. We have performed additional experiments with different levels of external
noise, which we found to have a minor impact on overall performance. However, the noise should
have reasonable intensity, roughly comparable to the fluctuations between nearest neighbors on
the coarse lattice. Also, the upsampling models generally perform better than the baseline ones
when the number of frequency basis components is decreased.

In a second experiment, we consider the theory in two spatial dimensions. This case has been
studied extensively using various normalizing flow architectures and is an excellent benchmark. In
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contrast to the one-dimensional theory, there is a second-order phase transition in two dimensions
associated with the breaking of Z 2 symmetry. This makes the problem more challenging due to
significant autocorrelation times at criticality. We use m̂L = 1 and tune the coupling so that the
correlation length becomes ξ/L = 0.25. Overall, the behavior is very similar to the one-dimensional
case. We can drastically reduce the kernel size without a significant loss in performance. Moreover,
we find the training to be slightly faster, in terms of optimization steps, than the benchmark when
learning from a Gaussian, as evidenced in Figure 7.4. We also show the regular CNF when training
starts from a non-interacting theory with unit mass. This trains slightly faster than the Gaussian
prior but cannot benefit from the reduced kernel size. Unfortunately, the upscaling model does not
perform significantly better than the other approaches after training, with the final ESS remaining
broadly consistent across all models.

7.2.3 Summary & Outlook

We have introduced a novel architecture for upscaling lattice configurations in scalar field theories.
Our approach can be viewed as an inversion of a block-spinning transformation and involves an
upscaling step that encodes the uncertainty of fine-scale information as noise. We then reconstruct
this short-range information from the noise using a continuous normalizing flow. Our architecture
achieves performance comparable to the best benchmark normalizing flows currently available for
both one- and two-dimensional φ4 theories.

However, a notable limitation of our method is the requirement to tune the correlation lengths
between the two lattices, which demands prior knowledge of the underlying physical properties.
This knowledge is typically obtained through conventional lattice simulations. The tuning is a sig-
nificant disadvantage, and ongoing work aims to infer the appropriate lattice coupling of the theory
on the fine lattice during training.

We are exploring the potential of applying the flow iteratively to upscale configurations pro-
gressively to finer grids. In this envisioned scenario, higher momentum modes would be added
step by step, thereby avoiding the issue of critical slowing down.

Moreover, the approach should extend to fermionic theories, such as the ones studied in pre-
vious chapters. The baseline computational cost is higher there, and the potential gains from nor-
malizing flows and inverse RG techniques are even more substantial.



Chapter 8

Conclusion, Summary & Outlook

In this work, we used stochastic approaches to explore the physics of fermionic ultracold atom sys-
tems in reduced dimensions. This was motivated by the rapid experimental progress in the field
of ultracold atoms, which has made it possible to gain insights into strongly correlated systems
in a controlled environment. Lattice-based methods, like those used here, are well-suited for in-
vestigating cold atom physics because they provide non-perturbative access, even when particle
numbers are large and interactions are strong. Our work specifically contributes to understanding
the role of trapping potentials in lattice approaches and the effects of population imbalances.

In Chapter 2, we briefly introduced lattice field theory and stochastic methods. Potential pit-
falls of lattice approaches, including the sign problem and critical slowing down, were also dis-
cussed, and solutions were outlined. We reviewed in detail how non-relativistic fermions are put
on a lattice and how bosonic auxiliary fields can be introduced, and we particularly focused on
the occurrence of a sign problem. The chapter also discussed the projective reweighting approach
used for simulations in the canonical ensemble and the ground state later on.

One key simulation method we used was complex Langevin, which we introduced inChapter 3.
The approach allows for computations even in the presence of a sign problem but comes with
some issues, as discussed. We investigated the applicability of the methods to scalar field theories
with an external magnetic field. These models are attractive due to the occurrence of Lee-Yang
zeros, but they carry a severe sign problem. In simple toy models, the complex Langevin approach
failed, likely due to the stochastic process’s inability to correctly handle the phases of different fixed
points contributing to the result. Notably, the complete three-dimensional theory showed phase
transition like behavior but also some signs of wrong convergence. However, we could not make a
definitive statement about its correctness. For this, a benchmark calculation would be necessary,
which is made difficult by the sign problem and beyond the scope of this work.

In Chapter 4, we discussed the technical aspects of DQMC computations for non-relativistic
fermions. Numerical difficulties arise at low temperatures, which can be addressed by stabiliza-
tion techniques based on matrix decompositions. This chapter also details the truncation scheme
used in subsequent sections, which is crucial for efficient computations, particularly for trapped
systems.

The physics of trapped fermions in one dimension were explored in Chapter 5, beginning with
complex Langevin computations. To start, we discussed the general applicability of the approach.
We argued that it is unsuitable for studying imbalanced Fermions with attractive interactions, at
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least in the density-channel Hubbard-Stratonovic transformation. On the other hand, repulsive
interactions were found to be treatable, although some slow decay in sampling distributions is al-
ways present. To further investigate the balanced system and the effect of trapping potentials, we
turned to a more standard DQMC approach. Using this method, we identified the dispersion as
a crucial ingredient to the success of simulations. We presented results for density profiles and
correlations with up to 80 particles. Moreover, energy observables were compared to results from
experiments and exact diagonalization, to which we found good agreement. Studying the imbal-
anced system, we encountered no sign problem for the parameter ranges considered, which is sur-
prising, as there is no reason for the weight to be purely positive a priori. Clear signs of FFLO-type
pairing appeared when computing density-density correlations in the imbalanced system. This
result opens the door for further exploration of imbalanced gases through Monte Carlo methods,
offering the potential for unbiased predictions.

The absence of a sign problem in one dimension led us to explore the imbalanced (and un-
trapped) gas in two spatial dimensions in Chapter 6. After briefly reviewing the balanced case, we
computed the density equation of state in the presence of an external magnetic field. We found that
the sign problem is relatively mild for a wide range of parameters and that the density is only mildly
affected, even when the sign problem is severe. We also computed various other observables in the
BEC-BCS crossover regime above Tc , including the pressure, magnetization, and compressibility.
The latter showed an enhancement in the crossover regime compared to its population-balanced
counterpart. These results constitute predictions that experiments can test directly. No signs of a
transition to a FFLO phase were evident for the parameters considered.

Finally, in Chapter 7, we introduced a novel normalizing flow architecture for upscaling field
configuration, effectively acting as an inverse renormalization group transformation. This was
made possible by a naïve upscaling step and the use of noise that encodes the small-scale features.
A continuous normalizing then learns a map between this noisy configuration and the theory of
interest. We showed that our approach significantly reduces the required model size compared to
learning a standard continuous flow with a Gaussian distribution as prior. Moreover, training was
faster and more stable, reaching a similar final performance to the benchmark results.

Several direct extensions to this work immediately suggest themselves. For example, a detailed
exploration of different auxiliary field decompositions could be performed in the case of complex
Langevin simulations for cold atoms. This would help to alleviate the conceptual issues we dis-
cussed and potentially lead to a better understanding of the spin-imbalanced system with attrac-
tive interactions. The work done on harmonic traps in one dimension should extend straightfor-
wardly to more complicated trapping potentials and higher dimensions. A multitude of interesting
phenomena in the two-dimensional trapped case could be studied, including the emergence of su-
perfluid behavior with an increasing number of particles and even rotating systems. The normaliz-
ing flow method for inverse RG is still under construction, and the envisaged approach is generic,
allowing for applications to an extensive range of systems. One of the most exciting prospects is the
possibility of exploring models with long-range interactions. These are typically computationally
challenging due to large correlation lengths and the non-local nature of the action.
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Appendix A

Diverging variance - a simple example

We consider a simple, one-dimensional model to illustrate the effect of a divergence in the variance
on Monte Carlo simulations. One way of realizing such a divergence is by choosing a distribution
that decays only polynomially. For our purposes, let

p(x) = 1

N
1

(x +1)5 , x ∈ [0,∞) , (A.1)

where N is a normalization constant. The second moment of the distribution exists and is given
by

〈x2〉 =
∫ ∞

0
d x x2 p(x) = 1

3
. (A.2)

The variance, however, does not exist due to a logarithmic divergence in the integral. Consequently,
naive Monte Carlo estimations of even the second moment are difficult, as no reliable estimate of
the error can be given. Indeed, tails in p(x), which are heavily suppressed, contribute significantly
to the second moment, making a large number of samples necessary.

As an analog to the method used in the main text, we introduce a modified distribution,

pα(x) = 1

Nα

1

(x +1)5−α , α> 0. (A.3)

Although this distribution exhibits an even more severe variance problem, we can use it to obtain
better estimates of the moments of our initial distribution. We draw samples from pα(x), and use
a reweighting step to move back to p(x)

〈O(x)〉 =
∫ ∞

0
d x O(x)

p(x)

pα(x)
pα(x) = 〈O(x)

p(x)

pα(x)
〉α . (A.4)

This new observable on the modified distribution can now have a finite variance, depending on
the parameter α, allowing us to compute a reliable error estimate. Analytically, the variance of the
second moment is now given by

〈(x
p(x)

pα(x)
)2〉α−〈x

p(x)

pα(x)
〉2
α = 384Γ(α)

(4−α)Γ(5+α)
, (A.5)
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Figure A.1: Left: Comparison of a Monte-Carlo estimate on 〈x2〉 with α = 0,1. The dashed line
indicates the analytical result. Right: The variance of the respective estimators converges for α= 1
but not for α= 0. The dashed line indicates the analytical result for α= 1.

which diverges for α→ 0 as expected, but is finite for 4 >α> 0. In fig. A.1, we compare the Monte-
Carlo estimate of 〈x2〉 for α = 0,1. The left panel shows the running average of up to 106 samples.
The naive estimator produces some notable jumps, which are a result of the diverging variance.
In contrast, the reweighted estimator is much smoother and converges with the analytical result
relatively quickly. The right panel shows the variance of the respective estimators. While the vari-
ance of the naive estimator does not show convergence, the reweighted estimator converges to the
analytical result.

Some care needs to be taken when using metropolis-type sampling on a distribution that de-
cays only polynomially. In the tails, the probability density only varies very slowly with x, which
means large steps have to be taken to ensure a reasonable autocorrelation time. This starkly con-
trasts exponentially decaying distributions, where large steps in the tails are generally suppressed.
To address this issue, steps are proposed via a Gaussian with position-dependent variance σs =
β(1+ x), where β is a parameter tuned to give the desired acceptance rate. This ensures that the
acceptance rate is roughly constant over the entire range of x and that the autocorrelation time is
not dominated by the tails of the distribution.



Appendix B

Trapped fermions

B.1 Approach to the continuum

To demonstrate the proximity of our computations to the continuum theory, we compare the den-
sity profiles of the N = 20 balanced system with g /

p
ω = −3 at various filling values. To this end,

we keep the extent of the lattice fixed in unit of the harmonic oscillator Nx /LT = 20, while varying
the number of lattice sites between Nx = 24 and 200. Note, that this procedure requires a retuning
of the coupling for each lattice as described in Section 6.1.1. The results are shown in Figure B.1.
We find the density profile around the center of the trap to be well converged, even for lattices with
only 40 point. In contrast, smaller lattice sizes show clear signs of saturation. As can be seen in the
inset, the N x = 80 and 200 lattices show good agreement in the tails over eight orders of magnitude,
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Figure B.1: Density profile for the N = 20 balanced system at various lattice sizes. The inset shows
the tails of the density profile on a log scale.
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after which they become indistinguishable from zero. We do not show the smaller lattices in the
inset to avoid visual clutter.



Appendix C

The virial expansion

C.1 Basics

In the main text, several thermodynamic quantities were compared to results from virial expansion.
This appendix briefly overviews the method and derivations for the aforementioned quantities.

The virial expansion uses the fact that in the dilute or high-temperature regime, thermody-
namic systems are typically well described by considering only few-body terms. This is possible
due to the increase in the inter-particle spacing or decrease in thermal wavelength. The grand
canonical partition function is given as an expansion in the fugacity z = eβµ as

Z = TreβĤ−βµN̂

=
∞∑

N=0
zN ZN , (C.1)

Here ZN is the canonical partition function of the system with N particles. Clearly, the range of
validity of such an expansion is constrained by the value of βµ, which governs the temperature and
density. For βµ→ −∞ the main contribution is from the single particle canonical system, while
higher particle contributions appear as the value is increased. The expansion is usually written in
terms of the grand potential −βΩ= log Z , which is obtained by a straightforward expansion of the
logarithm,

−βΩ= Z1

∞∑
n=0

bn zn . (C.2)

Here, the bn are called virial coefficients and can be found in terms of the N-body canonical parti-
tion functions by comparing eq. (C.1) and eq. (C.2). This yields b1 = 1 for the first coefficient, while
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the next three are given by

Z1b2 =Z2 −
Z 2

1

2
, (C.3)

Z1b3 =Z3 −b2Z 2
1 − Z 3

1

3!
, (C.4)

Z1b4 =Z4 − (b3 +
b2

2

2
)Z 2

1 −b2
Z 3

1

2!
− Z 4

1

4!
. . (C.5)

As the non-interacting canonical systems can be solved exactly for any particle number, it is con-
venient to define the change in the virial coefficients due to interactions as

∆bn = bn −b(0)
n . (C.6)

where b(0)
n is the n-th virial coefficient of the non-interacting system in d dimensions

b(0)
n = (−1)n+1n−(d+1)/2. (C.7)

The relative coefficients can be obtained from the change in the partition functions by recasting
eqs. (C.3) to (C.5) to depend on ∆bn and ∆Qn , see e.g. [179].

C.2 Two flavour fermi gases

In the case of two flavor fermi gases, which we are interested in, there are two independent fugacity
parameters, z↑ and z↓, for the two fermion species. This leads to a double expansion of the partition
function and the grand potential, which takes the form

Z =
∞∑

n,m=0
zn
↑ zm

↓ Zn,m , (C.8)

−βΩ= Z1

∞∑
n,m=0

zn
↑ zm

↓ bn,m . (C.9)

In the special case of the spin-balanced gas, the fugacity parameters are equal, and the expansion
simplifies to the one described above with

b2 = b1,1 , (C.10)

b3 = b2,1 +b1,2 , (C.11)

b4 = b3,1 +b2,2 +b1,3 . (C.12)

The two-body system is given by the celebrated Beth-Uhlenbeck result, which, in two dimensions,
reads

∆b2 = e(βeb )2 −
∫ ∞

0

d y

y

2e−(ebβy)2

π+4ln2 y
, (C.13)

where eb is the two-body binding energy used to set the scales. The third coefficient is more dif-
ficult to obtain but has been computed in [197] via a diagrammatic approach. A later study using
time discretization with a subsequent continuum extrapolation found good agreement with this
diagrammatic result while also providing coefficients up to fifth order [179]. The latter study also
introduced Padé approximants and Borel resummation to extend the range of convergence of the
expansion.
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C.3 Physical observables from the virial expansion

In order to obtain observables that can be compared to the lattice Monte Carlo results from the
main text, we generally need to compute derivatives of the grand potential. To this end, the grand
potential is split into a free and interaction part in analogy to the virial coefficients above

−βΩ=−β(
Ω(0) +∆Ω)

(C.14)

−β∆Ω=Z1

∞∑
n,m=0

zn
↑ zm

↓ ∆bn,m (C.15)

Perhaps the simplest observables to compute are the density and magnetization, which are ob-
tained via derivatives with respect to the chemical potential µ= (

µ↑+µ↓
)

/2, and the external mag-
netic field h = (

µ↑−µ↓
)

/2. One finds the density

n = n(0) +∆n , (C.16)

∆n =− 1

β

∂∆Ω

∂βµ

= Z1

V

∑
n,m

(n +m) zn
↑ zm

↓ ∆bn,m

= Z1

V

[
2 z↑z↓∆b1,1 +3(z↑z2

↓ + z2
↑z↓)∆b1,2 +4

(
z2
↑z2

↓∆b2,2 + z1
↑z3

↓∆b1,3 + z3
↑z1

↓∆b3,1

)
+5

(
z3
↑z2

↓∆b3,2 + z2
↑z3

↓∆b2,3 + z1
↑z4

↓∆b1,4 + z4
↑z1

↓∆b4,1

)]
,

(C.17)

where n(0) is the density of the non-interacting system. The last line gives the expansion up to fifth
order as used in the main text. The magnetization is given by

m = m(0) +∆m , (C.18)

∆m =− 1

β

∂∆Ω

∂h

= Z1

V

∑
n,m

(n −m) zn
↑ zm

↓ ∆bn,m

= Z1

V

[
(z2

↑z↓∆b2,1 − z↑z2
↓∆b1,2 + z3

↑z2
↓∆b3,2 − z2

↑z3
↓∆b2,3)+2

(
z1
↑z3

↓ + z3
↑z1

↓
)
∆b3,1

+3
(
z4
↑z1

↓ − z1
↑z4

↓
)
∆b4,1

]
,

(C.19)

where m(0) is the non-interacting magnetization, and the last line again gives the expansion up to
fifth order.

The rest of the observables can be obtained analogously by using the derivative and integral
relations given in Section 6.3.

C.3.1 Padé approximants

To further enhance the range from which results can be obtained, Padé approximants can be used.
This was done in [179] for the fifth-order virial expansion and spin imbalanced fermions in one
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and three dimensions, respectively. In two dimensions no such analysis was performed. We there-
fore use the results from in the same work and compute Padé approximants for the density and
magnetization.

The Padé approximant of order [n/m] is defined as

R[n/m](z) = P (z)

Q(z)
, (C.20)

where P (z) and Q(z) are polynomials of degree n and m respectively. The coefficients of these poly-
nomials are determined by requiring that the Taylor expansion of R[n/m](z) around z = 0 matches
the virial expansion up to order zn+m , yielding an ’optimal’ expansion in terms of the rational func-
tions of chosen order. In comparison to the Taylor expansion, Padé approximants are often able
to capture more of the asymptotic behavior of a function and are, therefore, better suited to ex-
trapolate the virial expansion to higher orders. In practice, we compute the approximant for each
observable separately while setting βh to a fixed value, leading to an expansion parameter

z = eβµ = eβ(µ↑+µ↓)/2 , (C.21)

which is just the central chemical potential.
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[137] Tomasz Sowi ński, Tobias Grass, Omjyoti Dutta, and Maciej Lewenstein. “Few interacting
fermions in a one-dimensional harmonic trap”. In: Phys. Rev. A 88 (3 Sept. 2013), p. 033607.
DOI: 10.1103/PhysRevA.88.033607.

[138] Pino D’Amico and Massimo Rontani. “Pairing of a few Fermi atoms in one dimension”. In:
Phys. Rev. A 91 (4 Apr. 2015), p. 043610. DOI: 10.1103/PhysRevA.91.043610.

[139] Lukas Rammelmüller, David Huber, Matija Čufar, Joachim Brand, Hans-Werner Hammer,
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