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Abstract

Gene expression is a multi-layered process, tightly regulated by several transcriptional

and post-transcriptional mechanisms. While transcription is regulated for example by

DNA methylations and chromatin modifications, the fate of RNA post-transcriptionally is

modulated by RNA modifications on coding and non-coding RNAs. The accurate control

of gene expression is essential to ensure proper cellular function and normal development.

Its disruption can lead to diseases. The aberrant deposition of tRNA modifications has

been closely linked to neuro-developmental disorders and mitochondrial-linked disorders.

However, the precise underlying molecular mechanisms how tRNA modifications

contribute to human neuro-developmental processes are still largely unknown. In my

study, I focused on elucidating the influence of tRNA modifications in human early

ectodermal differentiation which defines the origin of central nervous system development.

I differentiated human embryonic stem cells into the major ectodermal cell types

neuroectoderm, neural crest, cranial placode and non-neural ectoderm. To determine the

landscape of tRNA modifications, including expression of tRNA modifying enzymes and

tRNA anticodon pools, I performed mass spectrometry, RNA sequencing, tRNA pool

sequencing and proteomics analysis. I observed, that while tRNA modifications and tRNA

anticodon pools remained largely stable throughout differentiation, the tRNA modifying

enzymes were strongly downregulated in ectodermal cells compared to pluripotent stem

cells. This downregulation of tRNA modifiers was accompanied by reduced global and

mitochondrial protein synthesis in differentiated cells.

By performing a knockdown screen of 47 tRNA modifiers, I observed that mitochondrial

tRNA modifying enzymes affected not only mitochondrial protein synthesis but also

strongly affected global protein synthesis. The reduction in mitochondrial protein synthesis

in ectodermal cells led to reduced mitochondrial metabolic and OXPHOS activity. Since

protein synthesis requires high amounts of energy, reduction of mitochondrial activity and

therefore, reduced energy production affected also global protein synthesis.

In summary, I showed that human early ectodermal cell types are in a more quiescent

state compared to pluripotent stem cells and downregulate tRNA modifying enzymes,

protein synthesis and mitochondrial activity.
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Zusammenfassung

Die Genexpression ist ein vielschichtiger Prozess, der streng reguliert wird durch

verschiedene transkriptionelle und posttranskriptionelle Mechanismen. Während die

Transkription zum Beispiel durch DNA-Methylierungen und Chromatin-Modifikationen

reguliert wird, wird das Schicksal der RNA nach der Transkription durch RNA-

Modifikationen auf kodierenden und nichtkodierenden RNAs bestimmt. Eine genaue

Kontrolle der Genexpression ist essenziell um die Zellfunktion zu erhalten und eine

normale Entwicklung sicherzustellen. Wird diese gestört, kann das in Erkrankungen

resultieren. So wurden Fehler in der Modifizierung von tRNAs in engen Zusammenhang

mit neurologischen Entwicklungsstörungen und Mitochondriopathien gebracht.

Die genauen zugrunde liegenden molekularen Mechanismen, wie tRNA-Modifikationen

zur menschlichen neurologischen Entwicklung beitragen, sind allerdings noch weitgehend

unbekannt. In meiner Studie fokussierte ich mich auf die Aufklärung des Einflusses von

tRNA-Modifikationen auf die frühe Entstehung des Ektoderms im Menschen, welches den

Ursprung für das zentrale Nervensystem bildet.

Hierfür habe ich menschliche embryonale Stammzellen in die wichtigsten ektodermalen

Zelltypen differenziert: in Neuroektoderm, in die Neuralleiste, in kraniale Plakode und

in Oberflächenektoderm. Um die Landschaft der tRNA-Modifikationen, einschließlich

der Expression der tRNA modifizierenden Enzyme und der Zusammensetzung des tRNA-

Anticodon-Pools, zu bestimmen nutze ich Massenspektrometrie, RNA-Sequenzierung,

tRNA-Pool-Sequenzierung und Proteomik Analyse. Ich konnte beobachten, dass die tRNA-

Modifikationen und tRNA-Anticodon-Pools während der Differenzierung größtenteils

stabil blieben, jedoch die tRNA modifizierenden Enzyme in ektodermalen Zellen stark

herunterreguliert wurden im Vergleich zu pluripotenten Stammzellen. Damit gingen in

differenzierten Zellen eine verringerte globale und auch eine verringerte mitochondriale

Proteinsynthese einher.

Mithilfe eines Knockdown-Screenings von 47 tRNA modifizierenden Enzymen

konnte ich zeigen, dass Enzyme, die mitochondriale tRNAs modifizieren, nicht nur

die mitochondriale Proteinsynthese, sondern auch die globale Proteinsynthese stark

beeinflussten. In den ektodermalen Zellen konnte ich sehen, dass die reduzierte

mitochondriale Proteinsynthese zu einer verringerten mitochondrialen metabolischen
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Aktivität und verringerten oxidativen Phosphorylierung führte. Da die Synthese von

Proteinen große Mengen an Energie erfordert, wirkte sich die verringerte mitochondriale

Aktivität, und die damit einhergehende verringerte Energieproduktion, auch auf die

globale Proteinsynthese aus.

Zusammenfassend habe ich gezeigt, dass sich die frühen ektodermalen Zelltypen im

Menschen in einem ruhenden Zustand befinden und dass tRNA modifizierende Enzyme,

Proteinsynthese und mitochondriale Aktivität nach der Differenzierung herunterreguliert

sind.
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1 Introduction

1 Introduction

1.1 Gene expression

1.1.1 An overview

Gene expression describes the process of translating the information in the deoxyribonucleic

acid, short DNA, into functional molecules (Figure 1.1). Genes, which are the basic unit

of inheritance, contain the information that define physical and biological features of an

organism. Humans have approximately 20,000 protein coding genes which are encoded

by only 1.5% of the entire genome. The rest of the genome is considered noncoding

DNA, which contains many types of regulatory elements and genes for ribonucleic acid

(RNA) species, e.g. transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs) (International

Human Genome Sequencing Consortium, 2004).

Figure 1.1: Overview of nuclear gene expression.
Nuclear gene expression consists of four major steps: Transcription of DNA into mRNA,
mRNA processing, mRNA export into the cytoplasm and translation of mRNA into a
protein. This figure was generated using Biorender.
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1 Introduction

The DNA is the molecule that carries the genetic information in our cells. It is made out

of two linked strands forming a double helix (Watson and Crick, 1953). Each strand is

composed of a backbone, made from the sugar deoxyribose and phosphate groups, and

four nucleobases: adenine (A), thymine (T), cytosine (C) and guanine (G). These bases

can pair with each other through the formation of hydrogen bonds, where A pairs with T

and C pairs with G (Watson and Crick, 1953). The DNA is stored in the nucleus and

compactly packed by being wrapped around histone octamers and further condensed into

chromosomes (Berg et al., 2013). Each cell has 22 pairs of autosomes and one pair of sex

chromosomes (Adkison, 2012).

The process of gene expression is divided in transcription of DNA into messenger RNA

(mRNA), mRNA processing, mRNA export and translation. Transcription is the first

step in gene expression. A piece of DNA is transcribed into RNA which contains the base

uracil (U) instead of thymine. An RNA polymerase binds to a promoter on the antisense

DNA strand and transcribes in 3’ to 5’ direction. The resulting RNA matches the sense

strand, also called coding strand (Alberts et al., 2014). RNA polymerase II produces

mRNA which can be further translated into proteins. Other RNA species are produced by

either RNA polymerase I (rRNAs) or III (tRNAs and other non-coding RNAs) (Roeder

and Rutter, 1969, Roeder and Rutter, 1970).

The processing of the produced primary transcript (pre-mRNA) starts already during

transcription elongation. The pre-mRNA molecule undergoes splicing, where intronic

non-coding regions are excised by the spliceosome (Alberts et al., 2014). Alternative

splicing allows for the production of several different proteins from the same gene,

generating proteomic diversity (M. Chen and Manley, 2009). Furthermore, the pre-mRNA

molecule is modified by the addition of a 5’ 7-methylguanosine (m7G) cap (Ramanathan

et al., 2016) and a 3’ poly(A) tail (Passmore and Coller, 2022). The final structure of the

mRNA molecule is: 5’ m7G cap – 5’ untranslated region (UTR) – coding sequence – 3’

UTR – poly(A) tail. Since protein synthesis takes place in the cytoplasm, the mRNA

molecule is transported into the cytoplasm through the nuclear pore complex, which

recognizes and transports only completely processed mRNAs (Soheilypour and Mofrad,

2018).

During protein synthesis, the nucleotides of the mRNA are translated into amino acids,

2



1 Introduction

which are the building blocks for proteins. The connection between nucleic acid sequence

and amino acid sequence is described by the genetic code. It contains 64 codons, each

composed of three bases, which decode 20 amino acids and three stop codons (Brenner

et al., 1967). The genetic code is almost universal (Koonin and Novozhilov, 2009).

Protein synthesis, also called translation, happens at the ribosomes. The ribosome

is a complex molecular machinery build of 80 ribosomal proteins and four ribosomal

RNA molecules: 28S rRNA, 5S rRNA, 5.8S rRNA in the 60S subunit and the 18S rRNA

in the 40S subunit of the ribosome (Rodnina et al., 2017). The ribosome is not only

catalyzing the peptide bond formation but also ensures a correct reading frame and

accuracy (Djumagulov et al., 2021, Milicevic et al., 2024). Actively translated mRNAs

are not only translated by one ribosome but many, which are called polysomes.

Translation can be split into three parts: initiation, elongation and termination.

During initiation, the small 40S ribosome subunit binds to the mRNA together

with several initiation factors and a special initiator tRNA, tRNAi(Met) (Kolitz

and Lorsch, 2010), and scans the mRNA in 5’ to 3’ direction until it finds the start

codon AUG. The initiator tRNA, which is bound in the peptidyl site (P site) of the

ribosome, pairs with the start codon and provides the first peptide building block.

The initiation factors leave the complex and the large 60S subunit joins, assembling

the 80S ribosome. Elongation of the peptide chain occurs by the entering of a

new aminoacyl-tRNA into the aminoacyl site (A site), formation of a peptide bond,

release of the now deacylated P site tRNA through the exit site (E site) and the

move of the newly formed peptidyl-tRNA from the A site to the P site (Dever et al.,

2018). Once a stop codon is reached, release factors bind to the A site and a H2O

molecule is added to the peptide. The polypeptide chain is released and the ribosome

falls off (Nakamura et al., 1996). The emerging peptide starts folding into a protein

while being synthesized. The folding process is controlled by chaperones (Kim et al., 2013).

Mitochondrial gene expression

Gene expression in mitochondria differs from the nuclear one, which is described above

(Figure 1.2). Mitochondria contain their own mitochondrial DNA (mtDNA) and gene

expression machinery. In addition, the genetic code used in mitochondria is different: the

codon AUA is used for methionine (Met), the codon UGA for tryptophan (Trp) and the

3



1 Introduction

codon AGR (R = A and G) for stop codons (Gonzalez et al., 2012). In total there are 60

sense codons which are decoded by 22 mt-tRNAs.

The inheritance of the mtDNA is asexual and maternal (Luo et al., 2018). The

DNA is circular and double stranded. It is packaged into a compact nucleoid structure,

composed of a single copy of the DNA plus mitochondrial transcription factor A (TFAM)

protein (Brown et al., 2011). Mitochondria have their own 37 genes: 13 genes for essential

subunits of the respiratory chain complexes, 22 mt-tRNA genes and 2 mt-rRNA genes.

Each DNA strand contains a main promoter for transcription, which is executed by the

polymerase POLRMT. The two generated transcripts are first processed into tRNAs,

rRNAs and mRNAs (Ojala et al., 1981). Another difference from nuclear gene expression

is, that mt-mRNAs do not have the m7G cap modification and they have only short

poly(A) tails (Ojala et al., 1981).

Figure 1.2: Overview of mitochondrial gene expression.
Mitochondrial DNA is transcribed into two big transcripts, which are further processed
into rRNAs, tRNAs and mRNAs. The mRNAs are then translated into proteins.This
figure was generated using Biorender.

Mitoribosomes contain 80 ribosomal proteins, 2 mt-rRNA molecules (16S and 12S) and

a mitochondrial tRNA(Val), which substitutes the 5.8S rRNA of the ribosome (Amunts
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et al., 2015, Greber et al., 2015). Ribosomal proteins, translational factors, the aminoacyl-

tRNA synthetases, processing and modifying enzymes are encoded in the nucleus. The

principal of translation in mitochondria is similar to cytoplasmic translation, except for the

usage of distinct initiation, elongation and termination factors (Rackham and Filipovska,

2022).

1.1.2 Transfer RNAs

Transfer RNAs are the most abundant small non-coding RNAs in the cell, constituting

4-10% of all cellular RNA. Their unique structure is well conserved throughout all three

domains of life. Consisting of 76 to 93 nucleotides, tRNAs fold into a cloverleaf-like

secondary structure with four arms, the acceptor stem, the dihydrouridine (D) arm,

the anti-codon arm and the TΨC-arm. Any additional nucleotides beyond the 76th are

incorporated in a variable loop which bulges out from the back of the structure to avoid

internal steric conflicts. The tertiary structure of a tRNA forms an L shape (Giegé,

2008). Their structure and high density of nucleotide modifications (discussed in Chapter

1.2 in more detail) makes them extremely stable with a half-life of about 100 hours

(Choe and Taylor, 1972). At the 3’-end, the tRNAs contain a CCA trinucleotide which

provides the site of amino-acylation. Acylation is performed by 20 different aminoacyl

tRNA synthetases (aaRSs) that are specific for each of the 20 canonical amino acids,

discriminating the tRNAs by the anticodon loop and the discriminator base located

before the 3’ CCA tail (Ibba and Soll, 2000). The specificity of the amino-acylation is

critical since the ribosome itself does not control if the correct amino acid is inserted.

In humans, 429 high-confidence nuclear-encoded tRNA genes exist, coding for only 21

different isoacceptor families (P. P. Chan and Lowe, 2016). Isoacceptor tRNAs are carrying

the same amino acid. Isodecoder tRNAs describe tRNAs sharing the same anticodon but

differ in the rest of the sequence. tRNA genes are transcribed by RNA polymerase III

and transcription factors IIIB and IIIC into around 100 nucleotide long precursors (pre-

tRNAs) (Jarrous et al., 2022). Pre-tRNAs are then processed by addition of preliminary

modifications and the removal of the 5’ leader sequence by RNase P and 3’ trailer sequence

by RNase Z (Deutscher, 1984). Next, pre-tRNA splicing is performed by the tRNA

splicing endonuclease (TSEN) complex and HSPC117. After the addition of the 3’-CCA
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tail and further modifications, the pre-tRNAs are exported from the nucleus into the

cytoplasm, where they are modified into mature tRNAs. Correct tRNA biogenesis is

controlled by TRAMP complex, which targets hypomodified pre-tRNAs for degradation

(Kewu et al., 2015) and the rapid tRNA decay pathway (RTD), which leads to degradation

of hypomodified and unstable mature tRNAs (Alexandrov et al., 2006, Guy et al., 2014).

The genetic code contains 61 amino acid encoding codons plus three stop codons. The

discrepancy between the number of available tRNAs and the 61 codons is compensated

by some of the tRNAs which tolerate a mismatch between their first anticodon and the

third mRNA codon base (wobble basepairing) allowing the translation of multiple codons

by a single tRNA (Crick, 1966).

Beyond their canonical role as adapter molecules in protein synthesis, tRNAs are involved

in many other cellular processes. Uncharged tRNAs regulate gene expression upon amino

acid starvation by activating a protein kinase that phosphorylates the eukaryotic translation

initiation factor 2 (eIF2). This inhibits binding of Met-tRNAi(Met) and thereby lowering

translation initiation (Wek et al., 1995). Additionally, tRNAs are involved in cell wall

biogenesis in bacteria (Lloyd et al., 2008), in regulation of cell death (Mei et al., 2010) and

in stress response (Thompson et al., 2008, Saikia et al., 2014, Oberbauer and Schaefer,

2018).

1.1.3 Regulation of gene expression

Gene expression is a highly complex process that is carefully regulated to determine if a

gene is expressed and how much protein is synthesized. Being able to steer and adapt

gene expression is necessary for cells to respond to changes in their environment and to

either gain or keep a specific cell identity and cell type. Dynamic regulation is therefore

essential for proper cellular function and normal development (reviewed in T. I. Lee and

Young, 2013).

Epigenetic mechanisms build the first layer of regulation on DNA level. The structure

and density of chromatin determines if a gene is accessible for the transcription machinery.

Histone acetylation and phosphorylation lead to chromatin remodeling and higher

accessibility (Z. Wang et al., 2008) while histone methylation affects binding of chromatin
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factors (Bannister and Kouzarides, 2011). Methylation is also present on the DNA itself.

Here it recruits gene repressor proteins or inhibits binding of transcription factors and

therefore is a mechanism of gene repression (Holliday and Pugh, 1975, Schulz et al., 2006).

As mentioned in Chapter 1.1.1, most of the genome consists of noncoding DNA

containing e.g. cis regulatory elements (CREs). CREs comprise promoters, enhancers

and transcription factor binding sites (Ong and Corces, 2011). Enhancer sequences are

binding sites for regulatory proteins that enhance transcription and are located up- or

downstream of a gene, in introns or even far away of the gene they regulate (Kleinjan and

van Heyningen, 2005). Transcription factors are proteins that bind DNA at promoters or

enhancers and interact with RNA polymerase II. Besides the general transcription factors

that assemble on promoters of all genes, thousands of transcription factors are expressed

specifically in certain cell types or stages of development. They play an important role in

initiating patterns of gene expression and giving a cell its unique characteristics (Alberts

et al., 2014).

Not only transcription needs to be tightly regulated but also processing and translation

of mRNAs. The cell uses alternative splicing to produce several proteins from one gene,

called isoforms, to create more proteomic diversity (M. Chen and Manley, 2009). The

poly(A) tail, which is added to mRNAs after transcription, stabilizes the mRNAs and is

important for translation (Gallie, 1991). Interestingly, the poly(A) tail is not static but

dynamic and a shortening can repress translation and lead to mRNA decay, which can

be rescued by subsequent poly(A) extension. Other regulatory sequences in an mRNA

molecule are the 5’ UTR and the 3’ UTR. A 5’ UTR can contain upstream open reading

frames (uORFs) which decrease translation by trapping a scanning ribosome initiation

complex, causing it to translate the uORF instead of the downstream gene. It can contain

internal ribosome entry sites (IRES) which allows translation of two distinct protein

coding sequences on one mRNA. And the 5’ UTR can also contain micro RNA (miRNA)

binding sites (Ryczek et al., 2023). Micro RNAs are involved in gene silencing through

binding their target mRNAs and initiating their degradation (Filipowicz et al., 2008).

The 3’ UTR of an mRNA regulates its localization, stability and translation (Mayr, 2019).

Another big part in regulating gene expression is done by the epitranscriptome,

which summarizes modifications on RNA. These are chemical modifications of RNA

nucleotides, e.g. methylation, which affect RNA-RNA and RNA-protein interactions.
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They are present in all types of RNA, coding and non-coding, and offer a quick way

to adjust protein synthesis to changes in environment. They will be discussed in

more detail in Chapter 1.2. And finally, synthesized proteins are also subjected to

modifications. There are 400 different types of amino acid side chain modifications,

e.g. acetylation, phosphorylation, glycosylation and methylation. These modifications

affect the structure and dynamics of proteins (Mann and Jensen, 2003, Xu and Chou, 2016).

Taken together, all steps during gene expression are tightly regulated and can be adjusted

depending on the cells need.

1.2 RNA modifications

Since their first discovery around 1960 (Amos and Korn, 1958, Cohn, 1960) over 300 types

of RNA modifications across all species have been described until today (Boccaletto et al.,

2022) including 180 nucleotide, 152 nucleoside modifications and three base modifications.

Their importance gained more and more attention in the last years due to improved

sequencing and detection technologies.

About ten types of modifications have been reported in eukaryotic mRNAs (Delaunay

et al., 2024), e.g. the m7G modification in the 5’ cap of the mRNA, inosine (I), 6-

methyladenosine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ). Inosine is

generated by deamination of adenosine. This reaction, which is called A-to-I RNA editing,

is performed by ADAR enzymes (adenosine deaminases acting on RNA) (Savva et al.,

2012). Inosine can pair with cytidine and therefore allows recoding of amino acid codons,

start and stop codons and it has been shown to affect splicing (Nishikura, 2016). The

m6A and pseudouridine modifications are installed co-transcriptionally. The m6A writer

complex consists of methyltransferases METTL3 and METTL14 while pseudouridine

is introduced by pseudouridine synthaseses (PUS). The m5C modification in mRNA is

mediated by NOP/Sun RNA methyltransferases (NSUNs). Most mRNA modifications

ensure correct transcription (J.-H. Lee et al., 2021), processing (N. M. Martinez et al.,

2022), subcellular localization, stability (Mauer et al., 2017, X. Chen et al., 2019) and

translation of transcripts.

RNA modifications are also present in non-coding RNAs, like miRNAs, long noncoding

RNAs (lncRNAs) and ribosomal RNAs. In rRNA, modifications stabilize the complex
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structure and facilitate RNA-RNA and RNA-protein contacts during translation (Polikanov

et al., 2015).

1.2.1 tRNA modifications

Transfer RNAs are highly modified, with a modification density of 10% to 20% in one

tRNA molecule. Over 80 different types of modifications have been found in tRNAs across

all species (Boccaletto et al., 2022). In humans, 39 modification types have been described

in cytoplasmic tRNAs (Suzuki, 2021) (Figure 1.3A) and 18 types in mt-tRNAs (Suzuki

et al., 2020) (Figure 1.3B).

Depending on their chemical nature and position within the tRNA molecule,

modifications exert different functions. Modifications located in the anticodon loop

mostly affect translation, while modifications in the body of the tRNA can affect the

secondary and tertiary structure and stability of the tRNA. However, the exact role of

many modifications is still not known and might also change depending on the context.

A large number of diverse tRNA modifications are located at positions 34, the wobble

position, and 37 in the anticodon loop, e.g. inosine at position 34 and 1-methylguanosine

(m1G) at position 37, contributing to increased translational accuracy and efficiency

(Agris et al., 2007), accurate decoding and reading frame maintenance (Björk et al., 1989,

L. Han and Phizicky, 2018). I34 is produced by deamination of adenosine catalyzed by

heterodimeric adenosine deaminase acting on tRNAs (hetADAT), a complex consisting of

the catalytic subunit ADAT2 and ADAT3 (Torres et al., 2015). Whereas A34 can only

pair with U-ending codons, inosine expands the decoding capacity by pairing with U-,

C- and A-ending codons and therefore reduces the required number of tRNA species for

codon-anticodon recognition (Crick, 1966).

The N 6-threonylcarbamoyladenosine (t6A) modification is another modification

found at position 37 and is present in almost all ANN-decoding tRNAs (Thiaville et al.,

2014). It is deposited by YRDC and the KEOPS complex in cytoplasmic tRNAs /

OSGEPL1 in mitochondrial tRNAs and has been shown to stabilize codon-anticodon

pairing (Rozov et al., 2015). Modifications at position 38 in the anticodon loop have

been also found to enhance translation accuracy, e.g. m5C by DNMT2 (Tuorto et al.,

2015). This modification fulfills an additional role, together with NSUN2 mediated m5C

modifications in the variable loop (Blanco et al., 2011). They have been shown to stabilize
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the tRNA structure and protect tRNAs against endonucleolytic cleavage. A lack of these

modifications allows tRNA cleavage by angiogenin and the derived 5’ tRNA fragments

(tRFs) inhibit cap-dependent translation (Tuorto et al., 2012, Blanco et al., 2014) and

can lead to activation of cap-independent stress-response pathways (Ivanov et al., 2011).

Besides their important role in translation and involvement in oxidative stress (Yoluç

et al., 2021), tRNA modifications have been linked to cell cylce (Lin et al., 2018, Chang

et al., 2019) and immunity (Koh and Sarin, 2018, Rak et al., 2021) as well.
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Figure 1.3: tRNA modifications in human.
(A) cytosolic tRNA modifications. (B) mitochondrial tRNA modifications. tRNA
modifying enzymes listed in Suppl. Table 5.1.

While mitochondria contain the genes for their own tRNAs, the mt-tRNA modifying

enzymes are all nuclear encoded and have to be transported into the mitochondria. Some

enzymes modify both, cytoplasmic and mitochondrial tRNAs, but there are also several

enzymes that exclusively modify mitochondrial tRNAs. An important modification in

mt-tRNAs for decoding is the 5-formylcytidine (f5C) modification at position 34 of mt-

tRNA(Met). This modification is made by a first methylation of cytosine to m5C by

NSUN3 and further modification by ALKBH1 to form f5C. It enables the decoding of

AUA codons (Takemoto et al., 2009) and has been shown to be essential for normal

mitochondrial translation and therefore, for a normal mitochondrial activity and function

(Delaunay et al., 2022).
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1.3 Mitochondria - the powerhouse of the cell

1.3.1 Structure and morphology

Mitochondria are semi-autonomous cell organelles that contain their own DNA, but they

still require nuclear-encoded proteins for their function. They have two membranes, the

outer membrane and a strongly folded inner membrane that forms cristae. The space

between both membranes is called the intermembrane space and the inner space is called

matrix. The matrix is the place where the citric acid cycle (TCA cycle) and the fatty

acid oxidation take place. Oxidative phosphorylation (OXPHOS) happens in the inner

membrane. Mitochondria are typically 2 µm long. They are associated with microtubules

and they can for example move long distances along these microtubules as in neurons or

they can have a fixed position at points of high energy demand as in muscle cells (Berg

et al., 2013, Alberts et al., 2014).

Although mitochondria are usually depicted as round organelles, they are highly dynamic

and can change their shape. They can exist in a fragmented, round state or they can

build long connected networks. In general, fragmented mitochondria correlate with

low OXPHOS and higher reactive oxygen species (ROS) production and longer fused

mitochondria correlate with high OXPHOS and increased adenosine triphosphate (ATP)

levels (Molina et al., 2009). These shaping processes are called fission and fusion and are

used as quality control mechanisms. Fusion of mitochondria is used to dilute dysfunctional

proteins and mutated mtDNA (D. C. Chan, 2006). It is mediated by OPA1, MFN1 and

MFN2. Fission describes the fragmentation of mitochondria. The mitochondria can get

rid of damaged components or even whole mitochondria through mitophagy (Youle and

van der Bliek, 2012). Fission is mediated by DRP1, FIS1, MFF and MiD49 and MiD51

(Fonseca et al., 2019). Mitophagy describes the removal of dysfunctional mitochondria by

autophagy. PINK1 accumulates in damaged mitochondria, recruits parkin and induces

the degradation of mitochondria by lysosomes (Lazarou et al., 2015).

11



1 Introduction

1.3.2 Mitochondrial functions

Mitochondria are the main place for energy production in the cell. They are involved in

many metabolic pathways, including the glucose, amino acid and lipid metabolism. In

the TCA cycle, acetyl-CoA, which derived from either pyruvate from glycolysis or fatty

acids from fatty acid beta oxidation, is metabolized into CO2, NADH and FADH2 and

thereby produces a lot of ATP. The electrons in NADH and FADH2 are further used in

the electron transport chain (ETC) and OXPHOS to produce even more ATP. They are

transported through the ETC complexes I to IV into the intermembrane space and there

transferred onto oxygen (Kühlbrandt, 2015). This builds a proton gradient which is used

by the ATP synthase to phosphorylate ADP to ATP (MITCHELL, 1961).

Additionally, mitochondria are also involved in two steps of the urea cycle (Haskins

et al., 2020), biosynthesis of heme groups (Piel et al., 2019), calcium buffering/homeostasis

(Duchen, 2000), ROS production (Palma et al., 2024) and apoptosis (Renault and Chipuk,

2014).

1.4 RNA modifications in disease

The importance of tRNA modifications for correct gene expression and a functional

cell is highlighted by the many diseases that have been linked to disruptions of tRNA

modifiers and modifications, summarized under the term ‘RNA modopathies’. Mutations

in modifying enzymes and aberrant deposition of modifications can result in cancer,

diabetes (Vangaveti et al., 2022), mitochondrial diseases (Bykhovskaya et al., 2004),

encephalopathies and neurodevelopmental diseases.

tRNA modifications in cancer

Several modifications and modifying enzymes have not only been linked to cancer

development but also to therapy resistance. These modifiers are mostly overexpressed in

cancer and usually correlate with poor survival. Therefore, more and more research is

toggled towards targeting them in therapy.

The METTL1/WDR4 mediated m7G46 modification was found to be enriched in

intrahepatic cholangiocarcinoma (ICC). The increased level of modification is needed

by the cancer cell to ensure proper decoding of oncogenic mRNAs, which have a
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higher frequency of m7G-related codons (Dai et al., 2021). Additionally, m7G was

linked to radiotherapy resistance in hepatocellular carcinoma (HCC) (Liao et al., 2023).

PUS7, which modifies uridine to pseudouridine in tRNA at position 13 and 35, is

high expressed in glioblastoma multiforme (GBM) and associates with poor prognosis.

It was shown, that this modification affects codon specific translation and regulates

glioblastoma stem cell growth by downregulation of the TYK2-STAT1 pathway (Cui

et al., 2021). Another modification involved in cancer development and progression

is the mcm5s2U34 modification by the Elongator complex and CTU1/2, which was

shown to be essential for invasion and metastasis of breast cancer (Delaunay et al.,

2016). The mitochondrial m5C34 modification by NSUN3 is essential for metastasis

as well. Delaunay et al. have shown, that a lack of this modification results in

reduced OXPHOS and drastically decreases the cancer cells ability to metastasize

(Delaunay et al., 2022). This makes tRNA modifier an interesting target for future therapy.

tRNA modifications in neurological diseases

The fact that several neurological impairments are connected to tRNA modifications

shows, that especially the brain is really sensitive to disruptions in the epitranscriptome

(Table 1.1).

Intellectual Disability (ID) is a neurodevelopmental disorder that manifests during

childhood. It is concomitant with cognitive deficits (an IQ below 70), deficits in functional

and adaptive skills and difficulties in conceptual and social areas of living. Usually in RNA

modopathies, it comes along with many more symptoms, as for example microcephaly

and growth retardation (K. Lee et al., 2024).

The 2’-O-methyltransferase FTSJ1 is primarily expressed in the fetal brain (Freude

et al., 2004). A loss of this enzyme and its modifications leads to a decrease of the

tRNA(Phe)GAA, which affects the decoding of UUU codons which are enriched in genes

associated with brain and nervous system (Li et al., 2020). Loss-of-function of NSUN2,

which methylates cytosines at position 34 and in the variable loop, results in microcephaly

(Abbasi-Moheb et al., 2012). In mouse, NSUN2 is highest expressed in the cerebral cortex,

hippocampus and striatum. Flores et al. could show, that repression of NSUN2 inhibits

neural migration and therefore impairs neural lineage commitment and growth of the

brain (Flores et al., 2017).
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Table 1.1: Neurological diseases linked to tRNA modifications

Neurological disease tRNA
modification Enzyme Literature

Intellectual disability,
microcephaly, growth
retardation, metabolic
disorder

2‘-O-methylribose FTSJ1 Freude et al., 2004

m2
2G TRMT1 Blaesius et al., 2018

m5C NSUN2,
NSUN3

F. J. Martinez et al.,
2012, Van Haute et al.,
2016

m7G WDR4 Shaheen et al., 2015

A-to-I editing ADAT3 Alazami et al., 2013

mchm5U ALKBH8 Monies et al., 2019

s2U, mcm5s2U CTU2 Shaheen et al., 2016

m1A FTO Daoud et al., 2016

Ψ PUS3 Shaheen et al., 2016

ac4C THUMPD1 Broly et al., 2022

m1G TRMT10A,
TRMT10C Yew et al., 2016

Galloway-Mowat syndrome t6A
GON7,
OSGEP,
YRDC

Arrondel et al., 2019

Familial dysautonomia mcm5s2U IKBKAP Slaugenhaupt et al.,
2001

Amyotrophic lateral sclerosis,
motor neuron degeneration mcm5s2U ELP3 Simpson et al., 2009,

Bento-Abreu et al., 2018

Rolandic epilepsy mcm5s2U ELP4 Strug et al., 2009

Encephalopathy tm5U GTPBP3 Kopajtich et al., 2014

Optic neuropathy, cognitive
disability tm5U MTO1 Charif et al., 2015

Autism spectrum disorder Ψ PUS7 S. T. Han et al., 2022
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1.5 Ectodermal differentiation

1.5.1 The potential of embryonic stem cells

One of the first arising cell types in development are embryonic stem cells (ESCs). They

originate from the inner cell mass of the early embryo and build the starting material for

the development of the whole organism. ESCs are pluripotent, which means they have

the ability to differentiate into almost all cell types, except extraembryonic tissue as the

placenta. Another special feature of ESCs is, that in suitable culture conditions they have

an indefinitely proliferation capacity due to high expression levels of active telomerase

(Alberts et al., 2014).

In 2006, Nobel Prize winner Yamanaka and his colleague Takahashi reported a way

to reprogram adult cells into pluripotent stem cells (iPSCs). By overexpressing OCT4,

SOX2, KLF4 and MYC (OSKM), adult cells started to mimic embryonic stem cells and

could now be used in research of pluripotency and development (Takahashi and Yamanaka,

2006). The reprogramming efficiency could be more and more improved by manipulating

the activity of chromatin remodelers, histone and DNA modifiers and non-coding RNA

expression (Alberts et al., 2014).

Both, ESCs and iPSCs, offer the opportunity of differentiation into various cell types

or even into small organs. Therefore, they are an excellent model to study development

and related diseases. Since iPSCs derive from adult cells, they can be obtained directly

from patients helping to understand how the disease occurs and to study the effect of

drugs. Additionally, they overcome the problem of immune rejection in stem cell therapy

(Alberts et al., 2014).

1.5.2 Overview of brain development

The development of the central nervous system starts very early at day 16 post fertilization

(in human) with the event of gastrulation. During gastrulation, the three germ layers are

formed: mesoderm, endoderm and ectoderm, which will give rise to the nervous system

and epidermis (Ghimire et al., 2021) (Figure 1.4A). The next important event in brain

development is called primary neurulation. It starts with the formation of the notochord,

which is a cylinder of mesodermal cells directly under the ectoderm. The notochord sends
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inductive signals to the ectoderm in its close proximity which induces a neural fate and

the formation of the so called neuroectoderm. The neuroectoderm thickens and forms the

neural plate, which will fold inwards and forms the neural tube (Danzer et al., 2017). The

neural tube is the origin structure for the brain (Figure 1.4B).

A B
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Endoderm

Mesoderm

Neural plate

Neural plate 
border Notochord
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Neural crest Non-neural ectoderm

Neural tube
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Figure 1.4: Gastrulation and Neurulation.
(A) Embryonic state after gastrulation. (B) Neural tube formation.

At about the fourth and fifth week of gestation, brain vesicle formation starts. Initially

three vesicles are formed: the prosencephalon (forebrain), the mesencephalon (midbrain)

and the rhombencephalon (hindbrain). The prosencephalon/forebrain then further divides

into the telencephalon and diencephalon, while the rhombencephalon/hindbrain divides

into the metencephalon and myelencephalon (Figure 1.5).

The walls of the neural tube in these vesicles contain neuroepithelial cells (NEC). They

sit in the ventricular zone (VZ) and divide rapidly, with each cycle driving the growth of

the early brain. At the onset of neurogenesis, neuroepithelial cells give rise to apical radial

glial cells (aRG) which are the major neuronal progenitors. These aRG cells can either

self-renew or differentiate into neurons via intermediate progenitors (IPs), which reside

in the subventricular zone (SVZ), or even directly into neurons (Paridaen and Huttner,

2014). The emerging neurons then migrate to their final location using special adhesion

molecules on a temporary framework of supporting glial cells and differentiate into their

predestined cell type (Figure 1.6). Distinct regions of similar cell types are formed.

The layers of the cortex are built from the inside to the outside, so later originated

neurons have to travel through all previously settled neurons. Once the migration stage is

completed, some of the supporting glial cells will degrade but the rest will build the white

matter of the brain. The final events of brain development start prenatal but continue for

years after birth (Ackerman, 1992). Neurons will form innumerable connections within

and across regions. At the age of 18 months, no more neurons are added, which marks the

time of maximum connections. However, these connections compete among each other
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Figure 1.5: Human brain vesicles during development.

and are selectively eliminated until around 100 trillion are stabilized.

Ethical reasons limit in vivo brain research in humans. Therefore, most findings in this

field were made in animals, e.g. in mouse. However, brain development in humans differs in

various ways which already appears in the first stages of development. Human embryonic

stem cells (hESCs) do not resemble mouse embryonic stem cells (mESCs) but rather

mouse epiblast-derived stem cells (Brons et al., 2007, Kojima et al., 2014). And while

the developmental events from fertilization to the blastocyst are basically similar between

mouse and human, the timing and molecular details, as e.g. transcriptional environments,

are different (Rossant and Tam, 2017). An obvious difference between mouse brain and

human brain is the size. The subventricular zone is substantially enlarged compared to

rodents (Lui et al., 2011) and contains additionally outer radial glial cells (oRG)-like cells

which are not observed in mouse (Haldipur et al., 2019).

Due to these differences, many human genomic and developmental features still remain
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Figure 1.6: Overview of human brain development.
NECs = neuroepithelial cells; aRGs = apical radial glial cells; IPs = intermediate
progenitors; oRGs = outer radial glial cells; VZ = ventricular zone; SVZ = subventricular
zone; IZ = intermediate zone

largely elusive and research using human pluripotent stem cell models is an important

tool to uncover those.

1.5.3 Early ectodermal cell types

Besides the above described neuroectodermal cells (NE or NES), which are induced

through notochord signaling and will form the central nervous system, there are three

other early ectodermal cell types evolving during ectodermal differentiation.

Neural crest cells

Neural crest cells (NCs) are a migratory stem cell population that arises during neurulation

(neural tube formation). They form at the edges of the infolding neuroectoderm between

neural and non-neural ectoderm (neural plate border) and start delaminating via

epithelial-to-mesenchymal transition (EMT) and migrate towards their appropriate

destinations in the embryo. More than 30 distinct cell types arise from neural crest

cells, e.g. melanocytes (pigment cells), neurons of the peripheral nervous system, facial

bones and cartilage, smooth muscle cells, adipocytes and endocrine cells (Le Lièvre and
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Le Douarin, 1975, Noden, 1983, Bronner and Simões-Costa, 2016).

Cranial placode

Cranial placodes (CP) are specialized regions of the non-neural ectoderm. They form as

local thickenings after neural tube closure in the cranial part of the embryo. The special

features of the placodes are an increased proliferation compared to the epidermis (Saka

and Smith, 2001), morphogenetic movements such as migration and invagination, and the

ability for neuronal differentiation. There are six types of cranial placodes present in the

human embryo (Schlosser, 2006):

• the adenohypophyseal, which will form the anterior lobe of the pituitary gland

• the olfactory, which will form the olfactory epithelium of the nose

• the lens placode, which will form the transparent lens of the eye

• the trigeminal, which will form the sensory neurons of the Vth cranial nerve

• epibranchial placodes, which will form the sensory neurons of the VIIth, IXth and

Xth cranial nerves

• the otic placode, which will form precursors for sensory epithelia of the inner ear

and neurons of the VIIIth cranial nerve

Cranial placodes build important parts of the sensory organs and ganglia and defects in

placode development can result in blindness, deafness, loss of smell or hormone imbalance

(Baker and Bronner-Fraser, 2001).

Non-neural ectoderm

All of the ectoderm, that is not exposed to notochord signaling and is not committed

to a neural fate, is called non-neural ectoderm (NNE) or surface ectoderm. It will give

rise to the skin, hair and nails. Development of the skin starts by the formation of the

embryonic epidermal basal layer which gives rise to all structures of the future epidermis,

including hair follicles and sweat glands, as well as the basement membrane (Mikkola,

2007), which separates the epidermis from the dermis and additionally provides growth

factors for basal cells (S. Liu et al., 2013).
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1.5.4 Mitochondrial function in neurodevelopment

In the last years it became more and more prominent that development and metabolism

are closely connected (Khacho et al., 2019). The balance between aerobic glycolysis and

oxidative phosphorylation is important for regulating cell state transitions. In general,

the main energy resource during differentiation shifts from glycolysis in stem cells (Gu

et al., 2016) to OXPHOS in differentiated cells. Nevertheless, mitochondrial respiration

and oxidative phosphorylation are still active in hESCs (H. Zhang et al., 2016). The

change in metabolism during differentiation is accompanied by a change in mitochondrial

morphology. In mouse, Khacho et al. observed elongated mitochondria in uncommitted

neural stem cells (NSCs) in the ventricular zone, fragmented mitochondria once NSCs

commit and again elongated mitochondria during differentiation into neurons (Khacho

et al., 2016).

Neural crest cells also undergo metabolic changes during their differentiation. Before

delaminating from neural plate borders, they have a basal metabolism which changes into

upregulated glycolysis in for migration primed NCs. During migration, neural crest cells

use the Warburg effect to generate energy (Bhattacharya et al., 2020). Upon reaching

their final destination and differentiation, they decrease their glycolysis and switch to

OXPHOS (Bhattacharya et al., 2021).

Disruption of mitochondrial function during development causes encephalopathies,

resulting in cognitive dysfunctions, as e.g. behavioral abnormalities (Fattal et al., 2006),

epilepsy, hearing loss and progressive dementia (Kartsounis et al., 1992, Turconi et al.,

1999). Examples of disorders are MELAS syndrome and Wolfram syndrome, both caused

by mutations in mtDNA, Leigh syndrome and COX deficiency, both caused by mutations

affecting mitochondrial respiration and OXPHOS. Mutations affecting mitochondrial

morphology have been linked to encephalopathies as well (Kimmel et al., 2000, Waterham

et al., 2007, Fang et al., 2016, Spiegel et al., 2016).
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1.6 Aims of this thesis

Gene expression is a multi-layered process, tightly regulated by several transcriptional

and post-transcriptional mechanisms. While transcription is regulated for example by

DNA methylations and chromatin modifications, the fate of RNA post-transcriptionally

is modulated by RNA modifications on coding and non-coding RNAs. The accurate

control of the gene expression is essential to ensure proper cellular function and normal

development and its disruption can lead to diseases. Aberrant deposition of tRNA

modifications has been linked to cancer, type 2 diabetes, neuro-developmental disorders

and mitochondrial-linked disorders.

However, the precise underlying molecular mechanisms how tRNA modifications

contribute to developmental processes are still largely unknown. In this study, I focused on

elucidating the influence of tRNA modifications in human early ectodermal differentiation

which defines the origin of central nervous system development. I was using human

pluripotent stem cells (hPSCs) and their differentiation into five early ectodermal cell

types as a model system. I aimed to address the following by using multiple methods

(Figure 1.7):

1. Landscape of tRNA modifications and modifying enzymes in early ectodermal

differentiation.

2. Whether the tRNA anticodon pool changes during early ectodermal differentiation.

3. Effect of tRNA modifications on global translation.

4. Impact of mitochondrial tRNA modifications on mitochondrial function in early

ectodermal differentiation.
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Figure 1.7: Methodical concept to address the aims of this thesis.
Mitotracker staining to analyze morphology, number and activity of mitochondria.
Proteomics analysis to determine the change in proteomes. Incorporation of OP-
puromycin the measure translation. Mass spectrometry to measure levels of tRNA
modifications. Sequencing of tRNA pools to determine if tRNA anticodon pools change
during differentiation. RNA sequencing to validate cell type identity and measure changes
in transcriptomes. hPSC = human pluripotent stem cells. This figure was generated using
Biorender.
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2 Materials and Methods

2.1 Cell Culture

2.1.1 Cell lines

The following cell lines were used in this thesis:

The pharyngeal carcinoma cell line “FaDu” was purchased from ATCC (ATCC-

HTB-43).

The “Cal-33” cell line was obtained from the German Collection of Microorganisms

(DSMZ). Experiments with this line were performed by Marc Krontal. Cells were cultured

in Dulbecco’s Modified Eagle Medium (DMEM) with high glucose + pyruvate (41966029,

Life Technologies), supplemented with 10% FBS (16140071, Life Technologies) and 1%

Penicillin-Streptomycin (15140122, Life Technologies).

The human embryonic stem cell line “H1” (WA01) was purchased from WiCell. A

licence by the Robert-Koch-Institute for import and application of human embryonic stem

cells is on hand (AZ 3.04.02/0143).

Induced pluripotent stem cells (iPSCs) and neuroepithelial stem cells (NES) were

provided by Prof. Dr. Anna Falk from Lund University. iPSCs were induced from healthy

donors and further differentiated into stable NES lines (Figure 2.1). In this thesis, five

lines were used: control 7 (male), control 9 (male), control 10 (male), control 11 (female)

and control 14 (female).

Figure 2.1: Protocol for NES generation.
NES cells were generated by the Anna Falk group. Figure made using Biorender.

23



2 Materials and Methods

SAI1 cells, another hindbrain NES cell line, were originally obtained from Austin

Smith (Tailor et al., 2013).

2.1.2 Culture of FaDu cells

FaDu cells were cultured in Eagle’s minimum essential medium (EMEM) (30-2003, ATCC)

supplemented with 10% FBS (16140071, Life Technologies) and 1% Penicillin-Streptomycin

(15140122, Life Technologies). Cells were passaged twice a week. For passaging, cells were

washed with PBS (14190250, Life Technologies) and then detached using Trypsin/EDTA

(25200056, Life Technologies) for 5 minutes at 37°C. The Trypsin was inactivated by

culture medium and cells were transferred into a new flask in the desired density.

To freeze, cells were pelleted after detachment at 400xg for 5 minutes and resuspended

in culture medium with 10% DMSO (D2650-5x5ml, Sigma Aldrich) and stored in liquid

nitrogen.

2.1.3 Culture of hESCs

Preparation of Matrigel coated plates

An aliquot of Corning® Matrigel® hESC-qualified matrix (11573560, Fisher Scientific)

was thawed on ice and then added to ice cold DMEM/F-12 (11320033, Life Technologies).

One 6-well was coated with 1 ml Matrigel® and incubated at room temperature for 1

hour before storing at 4°C for up to one week. Before use, plates were warmed up at 37°C

for 30 minutes.

Culture of H1 cells

H1 cells were cultured in mTeSRTM Plus medium (100-0276, Stemcell Technologies) in

Matrigel coated 6-well plates. Medium change was performed daily. Cells were passaged

every 3 - 4 days or once the colonies started touching each other. First, cells were washed

with PBS (14190250, Life Technologies). Then, 1 ml of ReLeSRTM (05872, Stemcell

Technologies) was added per well and directly aspirated again. Cells were incubated at

37°C for 3 - 5 minutes and then carefully resuspended in medium, keeping them in small

aggregates. Cells were splitted in a ratio of 1:4 to 1:10, depending on the experimental

need.
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For freezing, detached cell aggregates were spun down at 200xg for 3 minutes and

resuspended in 500 µl CryoStor® CS10 (07930, Stemcell Technologies). Cells were stored

at liquid nitrogen.

2.1.4 Ectodermal differentiation of hESCs

The ectodermal differentiation of H1 cells into neuroectoderm (NE), neural crest (NC),

cranial placode (CP) and non-neural ectoderm (NNE) was performed according to the

protocol of Tchieu et al., 2017.

Previous to the differentiation, H1 cells were cultured in TeSRTM-E8TM medium (05990,

Stemcell Technologies) for one passage. Cells were detached using ReLeSRTM (05872,

Stemcell Technologies) for 10 minutes at 37°C and gently dissociated from the plate. Cells

were seeded in the ratio of 1:2 per 6-well in TeSRTM-E8TM medium supplemented with 10

µM ROCK inhibitor Y-27632 (72302, Stemcell Technologies). The next day, cells were

washed once with PBS and further cultured in TeSRTM-E6 medium (05946, Stemcell

Technologies) containing different supplements for each line (Table 2.1).

Day 0 Day 1 Day 2
Day
3/5/7/9/11

Day
4/6/8/10/12

Day13

NE
E6 + 500nM
LDN +
10µM SB

E6 + 500nM
LDN +
10µM SB

E6 + 500nM
LDN +
10µM SB

Harvest
cells

NC

E6 + 1ng/ml
BMP4 +
10µM SB
+ 600nM
CHIR

E6 + 1ng/ml
BMP4 +
10µM SB
+ 600nM
CHIR

E6 + 1ng/ml
BMP4 +
10µM SB
+ 600nM
CHIR

E6 + 10µM
SB + 1.5µM
CHIR

Harvest
cells

CP
E6 + 5ng/ml
BMP4 +
10µM SB

E6 + 5ng/ml
BMP4 +
10µM SB

E6 + 5ng/ml
BMP4 +
10µM SB

E6 + 10µM
SB +
50ng/ml
FGF2

E6 + 10µM
SB +
50ng/ml
FGF2

Harvest
cells

NNE

E6 +
10ng/ml
BMP4 +
10µM SB +
10µM SU

E6 +
10ng/ml
BMP4 +
10µM SB +
10µM SU

E6 + 5ng/ml
BMP4 +
10µM SB

E6 + 5ng/ml
BMP4 +
10µM SB

Harvest
cells

Table 2.1: Protocol for ectodermal differentiation of hESCs

At day 13, cells were harvested for RNA isolation. Briefly, cells were washed with PBS
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and detached using 0.5 ml StemProTM AccutaseTM (A1110501, Thermo Fisher) per well

for 10 minutes at 37°C. Accutase was inactivated by the addition of 1.5 ml medium and

cells were pelleted.

Used supplements: LDN 193189 (T1935-5mg-TM, Biocat), SB 431542 (1614/10, R&D

systems), rhBMP-4 (314-BP-010, R&D systems), CHIR 99021 (4423/10, R&D systems),

SU-5402 (BV-1645-1, Biovision) and rhFGF2 (233-FB-010/CF, R&D systems).
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Figure 2.2: Ectodermal differentiation of hESCs.
Protocol from Tchieu et al. 2017. Figure was made using Biorender.
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2.1.5 Culture of iPSCs

Preparation of laminin coated plates

Induced pluripotent stem cells (iPSCs) were cultured on Laminin-521 coated plates.

LN-521 (BioLamina) was diluted 20x in PBS +/+ (with calcium and magnesium,

14190-94, Life Technologies). One 6-well was coated with 1.5 ml and stored overnight at

4°C. Plates were warmed up at 37°C for 30 minutes before use.

Culture of iPSCs

The iPSC cell lines were cultured in Essential 8TM medium with supplement (A1517001,

Life Technologies) and passaged every 4 days. Medium change was performed daily. Cells

were washed with PBS and 1 ml TrypLE Select (12563-011, Life Technologies) was added.

Cells were incubated at 37°C for 5 minutes and afterwards transferred into a 2 ml E8

medium with ROCK inhibitor (Y-27632, SCM075, Millipore) containing falcon tube. Cells

were pelleted for 3 minutes at 300xg and resuspended in 1 ml E8 plus ROCK inhibitor for

counting. 180 thousand cells were seeded per 6-well in E8 medium with ROCK inhibitor.

2.1.6 Culture of NES cells

Preparation of laminin coated plates

Neuroepithelial stem cells (NES) were cultured on Laminin2020 coated plates. First,

plates are coated with PolyOrnithine (PO). PO (P3655-100MG, Sigma Aldrich) was

diluted 500x in PBS (without calcium/magnesium, 14190250, Life Technologies) to a

final concentration of 100 µg/ml or a premade solution of Cultrex Poly-L-Ornithine was

used (3436-100-01, R&D systems). Wells were coated with 1 ml and incubated at 37°C

for 2 hours. Afterwards, wells were washed three times with PBS. Laminin2020 (L2020,

Sigma Aldrich) was diluted 500x in PBS and wells were coated with 1.5 ml for either 4

hours at 37°C or overnight at 4°C. Before use, plates were warmed up at 37°C for 30 minutes.

Culture of NES cells

Both, NES cell lines from the Falk lab as well as the SAI1 cell line, were cultured in

DMEM/F12 plus Glutamax medium (31331-028, Life Technologies) supplemented with

N-2 (17502048, Life Technologies) and B-27 (17504044, Life Technologies), and with 10
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ng/µl bFGF (CTP0261, Life Technologies or 233-FB-010/CF, R&D systems) and 10

ng/µl EGF (AF-100-15, PeproTech or PHG0314, Life Technologies). Medium change

was performed daily. The cells were passaged every three days when they reached 100%

confluency. First, cells were washed with PBS and 1 ml TrypLE Express (12604-013, Life

Technologies) was added to detach the cells. After 5 minutes incubation at 37°C cells were

resuspended and transferred in a flacon tube containing 2 ml medium. Cells were pelleted

at 300xg for 3 minutes and resuspended in 1 ml medium for counting. 400 thousand cells

were plated per 6-well.

2.2 siPOOL transfection

siPOOLs (siTOOLs Biotech) are pools of 30 siRNAs against the gene of interest, which

greatly reduces off-target effects and allows for efficient and specific gene silencing. The

used siPOOLs are listed in Table 2.3. A scrambled negative control siPOOL was used in

all experiments.

Transfection of FaDu and Cal-33

Experiments in Cal-33 cells were performed by Marc Krontal. FaDu cells and Cal-33 cells

were reverse transfected with 4 nM siPOOL. First, the transfection mixes (Table 2.2) were

prepared, mixed and added to a 6-well. Next, 2.7 x 105 cells were added. The knockdown

was carried out for 72 hours.

Transfection mix Volume per well

siPOOL (10 µM stock) + Opti-MEMTM 0.8 µl + 249.2 µl
500 µl

RNAiMAX + Opti-MEMTM 4 µl + 246 µl

2.7 x 105 cells 1.5 ml

Table 2.2: siPOOL transfection in FaDu and Cal33
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Gene siPOOL
ADAT1 23536 ADAT1
ADAT2 134637 ADAT2
ADAT3 113179 ADAT3

ALKBH1 8846 ALKBH1
ALKBH8 91801 ALKBH8
BCDIN3D 144233 BCDIN3D
CDKAL1 54901 CDKAL1

CDK5RAP1 51654 CDK5RAP1
CTU1 90353 CTU1
CTU2 348180 CTU2

DNMT2 1787 TRDMT1
DUS2 54920 DUS2
DUS3L 56931 DUS3L
ELP1 8518 IKBKAP
ELP6 54859 ELP6
ELP3 55140 ELP3
FTSJ1 24140 FTSJ1

GTPBP3 84705 GTPBP3
KEOPS 84520 GON7

METTL1 4234 METTL1
METTL2A+B 339175 METTL2A+B

METTL6 131965 METTL6
METTL8 79828 METTL8
MOD5 54802 TRIT1

Gene siPOOL
MTO1 25821 MTO1
NAT10 55226 NAT10
NSUN2 54888 NSUN2
NSUN3 63899 NSUN3
NSUN6 221078 NSUN6

OSGEPL1 64172 OSGEPL1
PUS7 54517 PUS7
PUS10 150962 PUS10
PUS1 80324 PUS1
PUS3 83480 PUS3

QTRT1 81890 QTRT1
TRMO 51531 TRMO

TRMT13 54482 TRMT13
TRMT44 152992 TRMT44

TRMT61A 115708 TRMT61A
TRMT10A 93587 TRMT10A
TRMT6 51605 TRMT6

TRMT9B 57604 KIAA1456
TRMT2A 27037 TRMT2A
TRMT11 60487 TRMT11
TRMT1 55621 TRMT1
TRMU 55687 TRMU
TYW1 55253 TYW1
WDR4 10785 WDR4

Table 2.3: siPOOLs

2.3 MitoTracker staining

MitoTracker staining for imaging

NES cells and iPSCs were growing on coated coverslips in a 24-well. They were

stained with 100 nM MitoTrackerTM Red CMXRos (M7512, Thermo Fisher) for 30

minutes at 37°C. Afterwards, the medium was removed and the cells were fixed with

4% Paraformaldehyde solution in PBS (sc-281692, Santa Cruz) for 15 minutes at room

temperature in the dark. After washing two times with PBS, the cells were permeabilized

with 0.5% TritonX-100 (T8787, Sigma Aldrich) in PBS for 5 minutes at room temperature

in the dark. The cells were washed two times with PBS and then the nuclei were stained

with DAPI (10236276001, Sigma Aldrich) for 5 minutes at room temperature. After

another wash with PBS, coverslips were mounted on microscopy slides.
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MitoTracker staining for flow cytometry

SAI1 cells and H1 cells were growing in 6-well format. Cells were treated with 100 nM

MitoTrackerTM Deep Red FM (M22426, Thermo Fisher) or 100 nM MitoTrackerTM Red

CMXRos for 45 minutes at 37°C. Cells were washed with PBS and detached with 1

ml TrypLE Express for 4 minutes at 37°C. After inactivation with 2 ml medium and

centrifugation at 200xg (H1) or 300xg (SAI1) for 3 minutes, cells were fixed with 4% PFA

solution for 15 minutes on ice, dark. Cells were washed two times with PBS and then

directly used for flow cytometry analysis.

2.4 OP-puromycin incorporation

2.4.1 Global translation analysis

All cell lines (FaDu, Cal33, H1 and SAI1) were treated with 50 µM O-propargyl-puromycin

(OP-puro) (Medchem Source) and one well was additionally treated with 50 µg/ml

cycloheximide (CHX) (C4859-1ML, Sigma Aldrich) as a control. FaDu und Cal33 cells

were treated for 1 hour at 37°C and H1 and SAI1 cells were treated for 45 minutes at 37°C.

Afterwards, cells were washed with PBS and harvested according to their protocol. Cells

were fixed with 4% PFA solution for 15 minutes on ice and washed two times with PBS

(14190250, Life Technologies). For permeabilization, cells were incubated in PBS plus 3%

FBS and 0.1% saponine (S7900-25G, Sigma Aldrich) for 5 minutes at room temperature.

To fluorescently label the OP-puro, a Click-it reaction was performed for 30 minutes

at room temperature in the dark, using the Click-iTTM cell reaction buffer kit (C10269,

Thermo Fisher) with 2 µM Alexa FluorTM azide (A10266 or A10277, Life Technologies).

Afterwards, cells were washed twice with permeabilization buffer and finally resuspended

in PBS for flow cytometry analysis.

2.4.2 Mitochondrial translation analysis

To analyze mitochondrial translation, H1 and SAI1 cells were treated with 50 µM OP-puro

and 100 nM MitoTrackerTM Deep Red FM (MitoTracker DR) for 30 min at 37°C. One

6-well plate was treated additionally with 2 µg/ml puromycin (P8833, Sigma Aldrich) as

a control. Afterwards, cells were harvested as previously described and six 6-wells were

pooled per sample. Next, mitochondria were isolated using the Mitochondria Isolation Kit
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for Cultured Cells (89874, Thermo Fisher). Briefly, cells were resuspended in 800 µl Buffer

A and disrupted using a dounce tissue grinder for 30 times (5 times douncer A and 25

times douncer B, D8938-1SET, Sigma Aldrich). One sample was processed at a time until

centrifugation. After addition of 800 µl buffer C, cell debris was pelleted at 700xg, 4°C for

10 minutes. The mitochondria containing supernatant was transferred in a new tube and

centrifuged at 12,000xg, 4°C for 15 minutes. The mitochondria pellet was washed with

500 µl buffer C and subsequently, the obtained mitochondria were fixed in 500 µl 1% PFA

in PBS for 15 minutes on ice, dark. All further centrifugation steps were carried out at

12,000xg and 4°C. Fixed mitochondria were washed with PBS and permeabilized with

PBS plus 3% FBS plus 0.1% saponine for 5 minutes at room temperature in the dark.

Next, OP-puro was stained with the Click-it reaction as previously described (Chapter

2.4.1), mitochondria were washed two times with permeabilization buffer and resuspended

in PBS for flow cytometry analysis.

2.5 Flow Cytometry

2.5.1 OP-puro analysis

Fluorescence of Alexa Fluor 488 was measured with BL-530/30 488 nm laser and of Alexa

Fluor 647 was measured with RL-670/14 640 nm laser. The median intensity of the

fluorescent signal of single cells was used as the value for OP-puro.

2.5.2 Mitotracker analysis

Fluorescence of CMXRos was measured with YG-610/20 531 nm laser and of DR was

measured with RL-670/14 640 nm laser. The median intensity of fluorescent signal of

single cells was used as the value of MitoTracker.

2.5.3 Cell cycle analysis

For cell cycle analysis, cells were stained with DAPI (10236276001, Sigma Aldrich) 1:3000

in PBS prior to flow cytometry analysis. DAPI fluorescence was measured with VL-450/50

405 nm laser. Cell cycle phases were determined by the signal peaks of single cells.
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2.5.4 Apoptosis assay

To measure apoptosis, all cells of interest (e.g. knockdown FaDu cells after OP-puro

treatment) were harvested, including floating cells in the supernatant. Cells were washed

two times with PBS and resuspended in 1 ml PBS for counting. 5 x 105 cells were

resuspended in 500 µl 1x binding buffer (556454, BD PharmingenTM) of which 100 µl were

transferred in a new tube. Next, 5 µl FITC Annexin V (556419, BD PharmingenTM) were

added, as well as 10 µl Propidium iodide staining solution (PI) (556463, BD PharmingenTM).

Cells were gently vortexed and incubated for 15 minutes at room temperature in the dark.

Finally, 400 µl 1x binding buffer were added and cells were analyzed by flow cytometry.

Unstained cells, only FITC Annexin V and only PI cells were used as controls to set up

the cytometer. Fluorescence was measured with BL-530/30 488 nm laser and BL-670/LP

488 nm laser.

2.5.5 Marker staining

Cells were harvested as previously described (Chapter 2.1.4) and fixed with 4% PFA in

PBS. After washing, cells were permeabilized with PBS plus 10% FBS plus 0.1% saponine.

Incubation with primary antibodies (Table 2.4) was 30 minutes at room temperature. After

three rounds of washes with permeabilization buffer, cells were stained with secondary

antibodies (Table 2.4) for 30 minutes at room temperature. After another three rounds of

washes with permeabilization buffer, cells were resuspended in PBS and analyzed by flow

cytometry.

1st Antibody 2nd Antibody

NE anti-FOXG1, rabbit, 5 µg (702554,
Life Technologies)

anti-rabbit 647, 1:1,000 (A31573,
Thermo Scientific)

NC anti-SOX10, mouse, 25 µg/ml
(MAB2864-SP, Bio-techne)

anti-mouse 647, 1:1,000 (A21235,
Thermo Scientific)

CP anti-SIX1, rabbit, 2 µg/ml (ATA-
HPA001893-100, Biozol)

anti-rabbit 647, 1:1,000 (A31573,
Thermo Scientific)

NNE anti-TFAP2A, mouse, 5 µg/ml (3B5,
DHSB)

anti-mouse 647, 1:1,000 (A21235,
Thermo Scientific)

Table 2.4: Antibodies used for marker staining in differentiated cells
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2.6 Microscopy

2.6.1 Brightfield imaging

Brightfield images were acquired using the ZEISS Axio Vert.A1 microscope.

2.6.2 Mitotracker imaing and analysis

Images for MitoTracker analysis were acquired using a ZEISS Axio Imager.M2 microscope.

Images were processed and analyzed using Fiji. Mitochondrial length was measured in µm.

Per cell line, three to five images were analyzed and per image, 50 to 250 mitochondria

were measured using the freehand line tool in Fiji.

2.7 mRNA expression analysis

2.7.1 RNA extraction

RNA, which was only used for RT-qPCR, was isolated using the RNeasy Mini kit (74104,

Qiagen) according to the manufacturer’s instructions. Briefly, cell pellets were lysed in

350 µl RLT buffer, RNA was bound to a column and finally eluted in 30 µl nuclease-free

water (10977035, Thermo Fisher). RNA concentration was quantified using NanoDropTM

One Spectrophotometer (Thermo Scientific).

Total RNA was isolated using TRIzol (15596018, Life Technologies). Cell pellets were

resuspended in 1 ml TRIzol and incubated for 5 minutes at room temperature. 200

µl chloroform (22720.360, VWR) was added, samples were vortexed and incubated for

3 minutes. After centrifugation at 12,000xg, 4°C for 15 minutes, the upper aqueous

phase was transferred into a new tube and 500 µl 2-propanol (Fisher Scientific) were

added. The samples were mixed by inverting and incubated for 10 minutes. After another

centrifugation at 12,000xg, 4°C for 10 minutes, the RNA pellet was washed with 75%

Ethanol (1.00983.2511, Supelco). The dried pellet was resuspended in 30 µl nuclease-free

water. RNA concentration was measured with NanoDrop or with the Qubit RNA BR

assay (Q10210, Life Technologies).
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2.7.2 Reverse transcription

Reverse transcription of RNA into cDNA was performed with 1 µg of RNA. RNA was

mixed with 0.5 µl random primers (10 mM stock, C1181, Promega) and 1 µl dNTPs (10

mM stock, N0447S, NEB). After incubation at 65°C for 5 minutes, 4 µl 5x first strand

buffer (18080093, Thermo Fisher), 1 µl DTT (0.1 M stock, 18080093, Thermo Fisher), 1

µl RNasin® Plus (N2615, Promega) and 1 µl SuperScriptTM III Reverse Transcriptase

were added. The reaction was incubated at 25°C for 5 minutes, at 50°C for 60 minutes

and at 70°C for 15 minutes.

2.7.3 Real-time quantitative PCR

For RT-qPCR, 1 µl of cDNA was mixed with 5 µl TaqManTM Fast Advanced Master

Mix (4444557, Thermo Fisher), 3.5 µl nuclease-free water and 0.5 µl TaqManTM gene

expression assay (Thermo Fisher) (Table 2.5). PCR was carried out using a Quantstudio 3

applied biosystems real-time PCR system (Thermo Fisher). Probes against house-keeping

genes are used for normalization. Fold changes in gene expression were calculated using

the delta delta Ct method.
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Gene Taqman probe
ADAT1 Hs00201527_m1
ADAT2 Hs00699339_m1
ADAT3 Hs00707957_s1

ALKBH1 Hs00195696_m1
ALKBH8 Hs00299122_m1
BCDIN3D Hs00416915_m1

CDK5RAP1 Hs01001899_m1
CDKAL1 Hs00214949_m1

CTU1 Hs00293325_m1
CTU2 Hs00419111_m1
DUS2 Hs00250393_m1
DUS3L Hs01116425_m1
ELP3 Hs00986846_m1
ELP6 Hs01015876_m1
FBLL1 Hs01584505_s1
FTSJ1 Hs01125798_g1
GON7 Hs01897983_s1

GTPBP3 Hs00378443_m1
IKBKAP Hs00175353_m1
KIAA1456 Hs00332747_m1
METTL1 Hs01096147_g1

METTL2A+B Hs00276553_m1
METTL6 Hs00379179_m1
METTL8 Hs00227054_m1
MTO1 Hs00969127_g1
NAT10 Hs00226545_m1
NSUN2 Hs00214829_m1
NSUN3 Hs00222961_m1
NSUN6 Hs01013871_m1

OSGEPL1 Hs01088658_g1
PUS1 Hs01124619_m1
PUS10 Hs00328708_m1
PUS3 Hs00229938_m1
PUS7 Hs01031425_m1

QTRT1 Hs00229674_m1
TRIT1 Hs01091215_m1

Gene Taqman probe
TRMO Hs00939134_m1
TRMT1 Hs01551973_g1

TRMT10A Hs01083083_m1
TRMT11 Hs00935252_m1
TRMT13 Hs01052225_m1
TRMT2A Hs00224133_m1
TRMT44 Hs01013769_m1
TRMT5 Hs00418256_m1
TRMT6 Hs01017508_m1

TRMT61A Hs00293457_m1
TRMU Hs00972705_m1
TYW1 Hs04989072_m1
WDR4 Hs00218742_m1

ELAVL4 Hs00956610_mH
HES5 Hs01387463_g1
HMX1 Hs00232746_m1
KRT16 Hs00373910_g1
PAX6 Hs01088114_m1

POU5F1 Hs00999632_g1
SIX1 Hs00195590_m1

SMYD1 Hs00400855_m1
SOX1 Hs01057642_s1
SOX10 Hs00366918_m1
FOXG1 Hs01850784_s1
TFAP2A Hs01029413_m1
WISP1 Hs05047584_s1
ZNF229 Hs00970996_g1
LHX2 Hs00180351_m1
OTX2 Hs00222238_m1
SIX3 Hs00193667_m1
GBX2 Hs00230965_m1
PAX5 Hs05040337_s1

HOXB2 Hs01911167_s1

TBP Hs00427620_m1
18S Hs99999901_s1

Table 2.5: Taqman probes

2.8 Measuring modifications with Mass Spectrometry

Mass Spectrometry was performed to measure tRNA modifications. Per sample, 5 µg total

RNA was sent to Dr. Cathrine Broberg Vågbø, Proteomics and Modomics Experimental

Core (PROMEC), NTNU, Trondheim, Norway.

36



2 Materials and Methods

The following text was written by Cathrine Broberg Vågbø: “tRNA was enriched using an

Agilent 1260 Infinity II Analytical-Scale LC-UV Purification System with a Bio SEC-3 300

Å, 2.1 x 300 mm column (Agilent Technologies) chromatographed isocratically with 100

mM ammonium acetate pH 7 at 0.280 ml/min and 40°C for 20 minutes. Chromatograms

were recorded at 260 nm and tRNA collected, lyophilized and dissolved in water. The

collected tRNA was enzymatically digested using benzonase (Santa Cruz Biotech) and

nuclease P1 (Sigma) in 10 mM ammonium acetate pH 6.0, 1 mM MgCl2 and 100 µM

erythro-9-Amino-β-hexyl-α-methyl-9H-purine-9-ethanol at 40 °C for 1 h, added ammonium

bicarbonate to 50 mM, phoshodiesterase I and alkaline phosphatase (Sigma) and incubated

further at 37 °C for 1 h. Digested samples were precipitated with 3 volumes of acetonitrile

and supernatants were lyophilized and dissolved in internal standard (I.S.) solution for

LC-MS/MS analysis. An Agilent 1290 Infinity II UHPLC system with an ZORBAX

RRHD Eclipse Plus C18 150 x 2.1 mm (1.8 µm) column protected with an ZORBAX

RRHD Eclipse Plus C18 5x2.1 mm (1.8 µm) guard (Agilent) was used for chromatographic

separation. The mobile phase consisted of A: water and B: methanol (both added 0.1%

formic acid) at 0.22 ml/min, starting with 5% B for 0.5 min followed by 2.5 min of 5-20% B,

3.5 min of 20-95% B, and 4 min re-equilibration with 5% B. Mass spectrometric detection

was performed using an Agilent 6495 Triple Quadrupole system monitoring the mass

transitions 268.1-136.1 (A), 284.1-152.1 (G), 244.1-112.1 (C), 245.1-113.1 (U), 282.1-150.1

(m6A and m1A), 296.1-164.1 (m6,6A), , 283.1-151.1 (m1I), 298.1-166.1 (m1G, m2G and

m7G), 312.1-180.1 (m2,2G and m2,7G), 258.1-126.1 (m3C and m5C), 274.1-142.1 (hm5C),

272.1-140.1 (f5C), 286.1-154.1 (ac4C), 258.1-112-1 (Cm), 302.1-170.1 (ncm5U), 317.1-

185.1 (mcm5U), 333.1-183.1 (R/S-mchm5U), 333.1-201.1 (mcm5s2U), 259.1-113.1 (Um),

285.1/153.1 (d3-m6A, I.S.), 286.1-154.1 (d3-m1I, I.S.), 261.1-112.1 (d3-Cm, I.S.), 301.1-

152.1 (d3-m7G, I.S.), 301.1-152.1 (d3-Gm, I.S.), 264.1-127.1 (13C5-m5U, I.S.), 273.1/136.1

(13C5-A, I.S.), 246.1/114.1 (d2-C, I.S.) in positive ionization mode, and 267.1-135.1 (I)

and 272.1-135.1 (13C5-I, I.S.) in negative ionization mode.”
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2.9 Sequencing

2.9.1 RNA sequencing

iPSC and NES cells

Samples were first treated with DNase. 4 µg of RNA in 50 µl nuclease-free water was mixed

with 5 µl 10x TURBOTM buffer and 1 µl TURBOTM DNase (AM2239, Thermo Fisher)

and was incubated at 37°C for 30 minutes. Afterwards, samples were cleaned up using

the RNeasy Mini kit (Qiagen) and eluted in 25 µl nuclease-free water. Concentrations

were measured with the Qubit RNA BR kit.

To determine the RNA integrity number (RIN), samples were analyzed with the Bioanalyzer

RNA 6000 Nano kit (5067-1511, Agilent).

Finally, RNA samples were submitted to the DKFZ sequencing facility. For library prep,

the TruSeq Stranded protocol was used and samples were sequenced on a NovaSeq 6K PE

100 S4 split.

H1 and differentiated lines

4 µg RNA was DNase treated as described above. Libraries for sequencing were prepared

from 100 ng RNA using the Illumina Stranded Total RNA Prep with Ribo-Zero Plus kit

(20040525, Illumina) according to the manufacturer’s protocol. The IDT for Illumina

RNA UD Indexes Set A kit (20040553, Illumina) was used for indexes. Concentrations of

libraries were measured with the Qubit 1x dsDNA HS assay (Q33230, Life Technologies)

and library sizes were determined using the TapeStation Agilent High Sensitivity D1000

ScreenTape assay (5067-5585, Agilent). One multiplex was created from the libraries with

a concentration of 10 nM. Present adapters were cleaned up using AMPure XP beads

(A63881, Beckman Coulter). The multiplex was sequenced on 2 lanes of a NovaSeq 6K

PE 100 SP.

2.9.2 tRNA pool sequencing

The tRNA pool sequencing protocol was developed by Kristen et al. in Prof. Dr. Mark

Helms lab (Figure 3.11). The libraries were prepared in collaboration with Marc Lander.

2 µg of total RNA was used and filled up to 7 µl with nuclease-free water. A mix of
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2 µl cytosolic oligos (6-FAM labelled), 2 µl mitochondrial oligos (Cy-5 labelled), 3 µl

10x hybridization buffer (150 mM HEPES pH 7.5, 500 nM potassium acetate) and 1 µl

nuclease-free water was added per sample. The sample was denatured for 2 minutes at

94°C and gradually cooled down to 25°C. tRNA/oligo hybrids were subsequently separated

from unhybridized RNAs on a Native 10% PAGE run at 12 W for 40 minutes. The gel

was stained and the hybrid band was excised. The gel pieces were crushed, transferred in

a tube and 300 µl 0.5 M ammonium acetate was added. The tube was incubated for 15

minutes at -80°C and shook overnight at 15°C. The next day, everything was transferred

on a Nanosep spin column and centrifuged for 5 minutes in a table top centrifuge. Flow

through was transferred into a new tube, 1 µl glycogen was added as well as 700 µl 100%

ethanol (-80°C cold) and then the tube was incubated for 1 hour at -80°C followed by

centrifugation at 4°C for 1 hour. The pellet was washed with 300 µl cold 75% ethanol

and centrifuged at 4°C for 30 minutes. The pellet was dried and resuspended in 5 µl

nuclease-free water.

Next, 2.5 µl sample was amplified in a PCR using 1 µl i5 primer (10 µM), 1 µl i7 primer

(10 µM), 2 µl 10x Standard Taq reaction buffer, 1.2 µl MgCl2, 1 µl dNTPs, 10.3 µl water

and 1 µl Taq polymerase. The PCR was run for 6 cycles and cleaned-up on a denaturing

10% PAGE gel for 2 hours at 14 W. PCR product band was excised and the libraries were

extracted as described above. Pellets were eluted in 5 µl water.

Concentrations of libraries were measured with the Qubit 1x dsDNA HS assay and sizes

were determined with the Bioanalyzer DNA 1000 kit. Libraries were pooled to a multiplex

and sequenced on 2 lanes of a MiSeq V3 PE 75.

2.10 Protein expression analysis

2.10.1 Protein extraction

Protein for Western Blot analysis was extracted from cells by adding 75 µl (to cells

from 6-well) RIPA buffer (50 mM Tris-HCl pH 7.4, 1% NP-40, 150 mM NaCl, 0.1%

SDS, 0.5% sodium deoxycholate) supplemented with cOmpleteTM EDTA-free protein

inhibitor cocktail (11873580001, Sigma Aldrich) and PhosSTOPTM phosphatase inhibitor

cocktail (4906837001, Sigma Aldrich) to each well. Cells were scraped off and transferred

to an Eppendorf tube on ice. Tubes were incubated on ice for 15 minutes and then
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centrifuged at maximum speed, 4°C for 15 minutes. The protein containing supernatant

was transferred into a new tube and stored at -80°C until use.

Protein used in proteomics analysis was extracted as follows: cells were washed two times

with ice cold PBS before storing as cell pellets at -80°C. For lysis, cells were resuspended

in 40 µl lysis buffer (Table 2.6) and incubated on ice for 1 hour. After centrifugation at

20,000xg, 4°C for 60 minutes, the protein containing supernatant was transferred in a new

tube and stored at -80°C.

10 ml RIPA buffer SLCC5042, Sigma Aldrich

100 µl 1 M NaF 215309-10G, Sigma Aldrich

10 µl 1 M Na3VO4 450243-10G, Sigma Aldrich

1 pill Complete EDTA free protease inhibitor 4693159001, Merck

1 pill Phsopho Stop 4906845001, Merck

10 µl Benzonase (2500 U)

37 µl DNase 1 (100 U)

Table 2.6: Lysis buffer for Proteomics

Protein concentrations were determined using PierceTM BCA protein assay kit (23225,

Thermo Fisher) according to the manufacturer’s protocol. Absorbance was measured with

the GloMax Explorer spectrophotometer (Promega). Samples were measured in three

technical replicates.

2.10.2 Western Blot

50 µg of protein was used for Western Blot. First, samples were mixed with 4x Laemmli

buffer (1610747, Bio-Rad) plus 2-Mercaptoethanol (21985023, Life Technologies) and

denatured at 98°C for 5 minutes. To separate samples according to their size, they were run

on an SDS-PAGE (4-15% Mini-PROTEAN® TGXTM Precast Protein Gel, 4561084DC,

Bio-Rad) in electrophoresis buffer (1 g SDS, 14 g Glycine, 3.03 g Trizma-base in 1 l water)

for 20 minutes at 40 V and for 1 hour at 140 V. Next, proteins were plotted onto a PVDF

membrane (AmershamTM HybondTM 0.45 PVDF, 10600023, GE Healthcare) in a wet
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transferring system in transfer buffer (3.03 g Trizma-base, 14.4 g glycine, 200 ml methanol

in 1 l water) for 1 hour at 400 mA.

The membrane was blocked in 5% skim milk (42590.01, Serva) in PBS-Tween (524653-1EA,

Sigma Aldrich) for 1 hour at room temperature. Primary antibodies (Table 2.7) were

incubated in 5% skim milk in PBS-T at 4°C overnight.

Protein of interest Protein size Antibody Dilution

ADAT2 21 kDa ab135429, abcam, rabbit 1:1,000

ADAT3 38 kDa ab125540, abcam, rabbit 1:1,000

METTL1 31 kDa PA580810, Life
Technologies, rabbit 1:1,000

ALKBH1 44 kDa MA535781, Life
Technologies, rabbit 1:1,000

PUS3 56 kDa A304-958A-M, Biomol,
rabbit 1:1,000

TRIT1 53 kDa PA531715, Life
Technologies, rabbit 1:1,000

Hsp90 90 kDa Sc-13119, Santa Cruz,
mouse

2 µl in 5 ml
block

Table 2.7: Primary Antibodies for Western Blot

The next day, the membrane was washed three times with PBS-Tween and then incubated

with the secondary antibody (Table 2.8) for 1 hour at room temperature. After another

three rounds of washes with PBS-Tween, detection was done with the ECLTM Prime

Western Blotting Detection Reagents (GERPN2232, Sigma Aldrich) and with the

ChemiDoc System (Bio-Rad).

Species Antibody Dilution

anti-rabbit IgG, HRP linked 6401-05, BioVision 1:10,000

anti-mouse IgG, HRP linked 6402-05, BioVision 1:10,000

Table 2.8: Secondary Antibodies for Western Blot

41



2 Materials and Methods

2.10.3 Proteomics analysis

Proteomics analysis was performed with 20 µg protein in 10 µl lysis buffer. LC-MS analysis

with label-free quantification was performed in the Proteomics Core Facility of the DKFZ.

2.11 Bioinformatic Analysis

2.11.1 RNA sequencing analysis

Bioinformatic RNA sequencing data analysis was performed by Dr. Anke Heit-Mondrzyk:

“RNA sequencing data was processed by the DKFZ One Touch Pipeline (OTP) using the

RNA-seq workflow version 1.3.0 in combination with the workflow management system

Roddy version 3.5.9 or 3.5.10. In brief, RNA sequencing data was aligned against the

reference genome 1KGRef_PhiX (generated from the 1000 Genomes assembly, based on

hs37d5 and including decoy sequences merged with PhiX contigs to be able to align spike

in reads) using the STAR aligner version 2.5.3a. Duplicate marking was performed using

Sambamba version 0.6.5 and quality control was performed using Samtools version 1.6

flagstat as well as rnaseqc version 1.1.8. FeatureCounts of the Subread package version

1.5.1 was used for gene specific quantification of reads on the GENCODE version 19 gene

annotation in the strand-specific counting mode. Additionally, FPKM and TPM values

were calculated.

Raw gene count values were then used as input for a differential gene expression

analysis using DESeq2 version 1.28.1 within R version 4.0.0 which was made using default

conditions besides fitType="local". For iPSC and NES samples, the sex of the cell

lines was included as a variable in the design formula while building the DESeqDataSet.

Results tables were then generated for each differentiated cell line compared to stem cells

(NE/NC/CP/NNE vs H1; NES vs iPSC). PCA plots were generated using the plotPCA

function from transformed data by Variance stabilizing transformation.”

2.11.2 tRNA pool sequencing analysis

Bioinformatic tRNApool sequencing data analysis was performed by Dr. Sabrina Weser.

The analysis was performed according to Kristen et al. (Kristen et al., 0, unpublished).

Downsampling of read counts was performed when necessary. For the analysis, she used
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command line tools. First, reads were trimmed with Trimmomatic version 0.38 to a length

of 40 nucleotides corresponding to the cDOQ sequence. Trimmed reads were assigned to

the cDOQ sequences and quantified using alignment-free Sailfish version 0.10.1., based on

k-mer indexing and counting.

In principal component analysis, samples first clustered by library size so they were

batch corrected for this. Differential expression analysis was performed in R version 4.3.0

using limma version 3.58.1.

2.11.3 Proteomics analysis

Bioinformatic analysis of proteomics data was performed by Dr. Sabrina Weser.

Transformed intensity values were provided by proteomics facility. Differential protein

expression analysis on log2 transformed intensity values was performed in R version 4.3.0

using limma version 3.58.1.

2.12 Data analyis and Statistical tests

Data was analyzed and plotted using RStudio packages, GraphPad Prism 8 and ClustVis

(Metsalu and Vilo, 2015). Gene ontology analysis was performed with Gorilla (Eden et al.,

2007, Eden et al., 2009). Statistical testing was performed with GraphPad Prism 8 and

RStudio. Significance depicted by either directly shown p-value or via asteriks (* for P <

0.05, ** for P < 0.01, *** for P < 0.001, **** for P < 0.0001).
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3 Results

3.1 Modelling early ectodermal cell states by

differentiation of human pluripotent stem cells

Development is a highly complex process and is heavily dependent on accurate regulation

of gene expression. However, development is also the process that displays the power of

gene expression regulation best by forming a whole organism from one initial cell type.

Modifications on tRNA are one part of this regulatory program that have been shown to

be crucial during development (Frye et al., 2018). Especially the development of the brain

is sensitive to mutations in tRNA modifying enzymes (see Chapter 1.4). Studying human

nervous system development in vivo is limited due to ethical reasons. Therefore, most

research in this field is made in animal models. However, brain development in humans

differs in various ways which already appears in the first stages of development (Rossant

and Tam, 2017). The alternative is to use human embryonic stem cells and differentiate

them in vitro.

Previous work in the Frye group demonstrated that embryonic stem cells optimize

codon usage depending on the inosine modification at the wobble position of tRNAs and

showed that tRNA modifications affect already early cell fate decisions (Bornelöv et al.,

2019). The early ectoderm (consisting of neuroectoderm, neural crest, cranial placodes

and non-neural ectoderm) constitutes the very beginning of brain development.

To model this early step, I used the human embryonic stem cell line H1 which originates

from human blastocyst (James A. Thomson et al., 1998) and differentiated it into the

four major ectodermal cell types (Figure 3.1A):

• Neuroectoderm (NE), which will give rise to central nervous system.

• Neural crest (NC), which will give rise to pigment cells, cartilage and bone, gland

cells and connective tissue.

• Cranial placode (CP), which will form sensory organs and ganglia.

• Non-neural ectoderm (NNE), which will form the epidermis, hair and nails.
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Figure 3.1: Differentiation of human pluripotent stem cells into early
ectodermal cell types.
(A) Neuroepithelial stem cells (NES) were derived from induced pluripotent stem cells
(iPSCs) (both cell types provided by Prof. Dr. Anna Falk). Human embryonic stem cells
(hESCs) were differentiated into neuroectoderm (NE), neural crest (NC), cranial placode
(CP) and non-neural ectoderm (NNE) using a protocol from Tchieu et al., 2017. Figure was
generated with Biorender. (B) Analysis of lineage markers by RT-qPCR. RNA expression
levels are depicted as log2-transformed fold changes relative to RNA expression in human
pluripotent stem cells (hPSCs). Each data point represents a biological replicate and the
mean of two technical replicates. Significance determined by unpaired t-test compared to
hPSC. Box plot shows minimum, first quartile, median, third quartile and maximum. (C)
Flow cytometry analysis of lineage markers. For each cell line, one representative plot of
three biological replicates is shown. (D) Overview of used methods to analyze mechanisms
steering this early ectodermal differentiation step.

The protocol used for differentiation was published by Tchieu et al. in 2017 and allows

for efficient differentiation in twelve days. Since the cells have to be confluent from the
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beginning of differentiation and cannot be passaged, they are slightly overgrown at the

end of the differentiation protocol and might have exited the cell cycle. Therefore, I

included another neuroectodermal cell type: the neuroepithelial stem cells (NES) derived

from induced pluripotent stem cells (Figure 3.1A) to exclude proliferation-dependent

differences. These two cell lines were made and provided by Prof. Dr. Anna Falk from

Lund University (Falk et al., 2012). An overview of how they differentiated the iPSC into

NES cells is provided in Chapter 2.1.1. They transformed the NES cells into a stable

cell line which allowed for far more application options and continuous culturing and

could therefore be used as a culture-independent control. While iPS cells grew in typical

colonies (Figure 3.2A), the NES cells showed the typical rosette structures (Figure 3.2B).

A

B

iPSC

100 µm

C D

NES

100 µm

H1 NES
P = 0.0963

P < 0.0001 P = 0.0698

P = 0.3186Cells

Single Cells subg0

g1g0

s

g2m

Figure 3.2: hPSC and NES cells in culture.
Representative bright field images of iPSCs (A) and NES cells (B). NES cells show typical
rosette structures. Scale bars, 100 µm. (C) Gating strategy for cell cycle analysis using
Dapi staining flow cytometry analysis. (D) Cell cycle analysis of hESCs (H1) and SAI1
cells (NES). Each data point represents one biological replicate. Box plot shows minimum,
first quartile, median, third quartile and maximum. P = unpaired t-test.

Measuring their cell cycle through DAPI staining, NES cells exhibited an increase

of cells in G1 and G2M phase and reduction of cells in S phase compared to hESCs
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(Figures 3.2C and 3.2D). Embryonic stem cells have a shortended G1 phase due to rapid

proliferation (Bigarella et al., 2014).

To test for correct differentiation, I analyzed lineage marker expression by RT-qPCR

(Figure 3.1B). Both, NES and NE, expressed the neuroectoderm markers PAX6 (Osumi

et al., 2008) and HES5. Neural crest is defined by SOX10 expression, cranial placode

by SIX1 expression and non-neural ectoderm by expression of transcription factor AP2α

(TFAP2A) (Tchieu et al., 2017). All markers were significantly enriched compared to

expression in human pluripotent stem cells (hPSC), proving successful differentiation. To

control for cell population purity, I stained NE, NC and CP cells with a lineage marker

antibody and performed flow cytometry analysis (Figure 3.1C). For all three cell types, I

observed over 95% positively stained cells, suggesting a relatively homogeneous population.

These two model systems, iPSC – NES and H1 – NE – NC – CP – NNE, could

then be used to analyze changes in gene expression during ectodermal differentiation by

RNA sequencing, mass spectrometry, proteomics, tRNA pool sequencing, OP-puromycin

treatment and mitotracker staining (Figure 3.1D).

I started with performing RNA sequencing on these cells. Bioinformatic analysis was

assisted by Dr. Anke Heit-Mondrzyk. Principle component analysis based on the top

500 genes with highest row variance clearly separated human pluripotent stem cells and

differentiated cells (Figures 3.3A and 3.3B). Differentiated cell types NE, NC, CP and

NNE could be separated as well with PC2, with NE and NNE being furthest apart

highlighting their clear future distinction into nervous system and epidermis. Lineage

marker expression, depicted as z-scores of normalized read counts, was also confirmed using

this RNA sequencing data (Figure 3.3C). As expected, pluripotency markers were only

expressed by H1. Some counter expressions of neural, neural crest, placode and non-neural

ectoderm marker could be explained by either some impurities in cell population or the

close proximity of cell types, e.g. cranial placodes are specialized regions of the non-neural

ectoderm. Nevertheless, this could be tolerated due to clear separation in the PCA plot

and good lineage marker expression, showing that the majority of cells was the desired

cell type.

NE and NES are both neuroectodermal cell types but they differ in the aspect, that

NE resembles forebrain cells and NES resembles hindbrain cells (Figure 3G). I confirmed
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this by looking at marker expression in the RNA sequencing data (Figure 3.3D) and

RT-qPCR (Figures 3.3E and 3.3F).
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Figure 3.3: NE and NES depict forebrain and hindbrain.
(A) Principal component analysis of top 500 genes with highest row variance of iPSC and
NES cells. Each data point represents one biological replicate. (B) Principal component
analysis of top 500 genes with highest row variance of H1, NE, NC, CP and NNE cells.
Each data point represents one biological replicate. (C) Heatmap depicting z-scores of
lineage marker expression. Each column represents one biological replicate. (D) Log2
fold change of gene expression of all genes in NE was plotted against NES. Marker for
pluripotency (blue), forebrain (orange), midbrain (red) and hindbrain (pink) are highlighted.
Simple linear regression line. (E + F) Log2 fold change of RNA expression in NES and
NE vs hESCs measured by RT-qPCR. Each data point represents a biological replicate and
the mean of two technical replicates. (G) Overview of brain vesicles forebrain, midbrain
and hindbrain.
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Next, I performed gene ontology analysis on significantly up and down regulated genes

in differentiated cells compared to stem cells. In NES cells, I found a lot of microtubule

and neuron related terms upregulated and signaling, translation and metabolism related

terms downregulated (Figure 3.4A). In NE, genes related to cell migration and neuron fate

were upregulated, and DNA and metabolic related genes downregulated (Figure 3.4B). In

NC, CP and NNE mostly cell type specific GO terms were upregulated and translation,

signaling, metabolic and DNA related GO terms were downregulated (Figures 3.4C, 3.4D

and 3.4E).

Since a lot of the observed GO categories seem to be similar across the different cell

types, I performed gene ontology analysis on up and down regulated genes shared between

all of them. I found 1825 genes commonly upregulated compared to gene expression

in stem cells, which were mostly related to developmental processes and differentiation

(Figure 3.5A). The 2168 commonly downregulated genes mostly fell into translation and

RNA related GO categories (Figure 3.5B and Suppl. Figure 5.1). This suggested, that

translation and its regulation through modifications are changed during differentiation

and are part of the characteristics of early ectodermal cell types.
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Figure 3.4: Gene ontology analysis of differentially expressed genes compared
to hPSCs. Caption on next page.
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Figure 3.4: (Previous page.) GO analysis of significant > 0.5 log2FC up (red) and < -
0.5 log2FC down (blue) regulated genes in (A) NES vs iPSC, (B) NE vs hESC, (C) NC
vs hESC, (D) CP vs hESC and (E) NNE vs hESC. Chosen categories are representative
for all results. GO analysis was performed with GOrilla (Eden et al., 2007, Eden et al.,
2009).
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Figure 3.5: Early ectodermal cells commonly downregulate translation and
RNA related genes.
Gene ontology analysis of shared significant (A) > 0.5 log2FC up (red) and (B) < -
0.5 log2FC down (blue) regulated genes in all differentiated cell types compared to stem
cells. Chosen categories are representative for all results. GO analysis was performed with
Gorilla (Eden et al., 2007, Eden et al., 2009).

Taken together, I established a model suited for studying changes in gene expression

between pluripotent stem cells and early ectodermal cell types.
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3.2 tRNA modifying enzymes are downregulated in

early ectodermal cell types

Genes related to translation and its regulation were differentially expressed in all early

ectodermal cell types compared to stem cells (Figure 3.5B). A key role in regulating

protein synthesis is played by RNA modifications (Agris et al., 2007, Novoa and

Ribas de Pouplana, 2012, Roundtree et al., 2017). Due to the involvement of especially

tRNA modifications in many neurodevelopmental diseases, I was particularly interested

in studying whether abundance and expression levels changed during differentiation.

First, I wanted to investigate expression levels of the enzymes that modify tRNAs (Suppl.

Table 5.1). Principal component analysis based on the expression of these enzymes

allowed clear separation of differentiated and stem cells by PC1 (Figures 3.6A and 3.6B).

Additionally, neuroectoderm NE and non-neural ectoderm NNE could be separated by

PC2. Implying that they have a different composition of tRNA modifying enzymes

expressed. Looking at the log2 fold change of enzyme expression in differentiated cells

versus stem cells, I observed that most tRNA modifying enzymes were downregulated

(Figure 3.6C).
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Figure 3.6: Expression of tRNA modifying enzymes changes during
differentiation.
Principal component analysis based on z-scores of n = 70 tRNA modifying enyzmes of (A)
H1, NE, NC, CP and NNE and (B) iPSC and NES. Z-scores calculated from normalized
read counts. (C) Heatmap showing log2 fold changes of tRNA modifier expression vs.
hPSC. Unbiased clustering based on correlation distance and average linkage. PCA plots
and heatmap made with ClustVis (Metsalu and Vilo, 2015).
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When I applied unbiased clustering on the cell types, I observed that NC and CP

clustered closest together while the neuroectodermal cell types NE and NES clustered

further apart from each other. The hindbrain NES cells even clustered closer to the not

neuroectodermal cell types NC, CP and NNE than to the forebrain NE cells. Whether

this depends on culture conditions or is a hindbrain characteristics cannot be concluded

here.

To look at the tRNA modifying enzymes and their expression throughout early

ectodermal differentiation in more detail, I calculated z-scores based on normalized read

counts in H1, NE, NC, CP and NNE (Figure 3.7A). Confirming what was seen in the

fold change analysis (Figure 3.6C), most tRNA modifiers were highest expressed in

embryonic stem cells. NE had the lowest expression of the different cell types. Unbiased

clustering resulted in three major tRNA modifier cluster. Looking at their expression

levels across differentiation they could be separated into cluster 1 (containing 4 modifiers)

with no significant change in expression, cluster 2 (containing 24 modifiers) with significant

downregulation in NE while significant upregulation in NES, CP and NNE, and cluster 3

(containing 53 modifiers) with significant downregulation in all early ectodermal cell lines

(Figure 3.7B). This second cluster distinguished neuroectoderm NE from NES and the

other cell types. Interestingly, 22 of the 24 tRNA modifiers in this cluster only modify

cytoplasmic tRNAs.
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Figure 3.7: Landscape of tRNA modifying enzymes during early ectodermal
differentiation.
(A) Heatmap showing z-scores of normalized read counts of tRNA modifier expression
across the different lineages. A high z-score indicates a higher expression of a gene
compared to mean expression across all lines. Heatmap and unbiased clustering made with
ClustVis. (B) Log2 fold change of tRNA modifier expression of differentiated cell types vs
expression in stem cells. Significance determined by paired t-test compared to hPSC. Box
plot shows minimum, first quartile, median, third quartile and maximum.

In NES cells 23 tRNA modifying enzymes were significantly downregulated (with

log2FC < -0.5) (Figure 3.8A). The most downregulated enzymes were METTL8, which

produces m3C in mitochondrial tRNAs, PUS1, which produces pseudouridine in both

cytoplasmic and mitochondrial tRNAs, and ADAT2, which modifies the wobble position

in cytoplasmic tRNAs into inosine (Figures 3.8H and 3.8I). Significantly upregulated

(with log2FC > 0.5) were 10 modifiers, with TRMT10A, producing m1G in both types of
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tRNA, with BCDIN3D, producing mmpG in cytoplasmic tRNAs, and with KIAA1456

upregulated the most. KIAA1456 is also known as TRMT9B, a homolog of yeast Trm9,

and is thought to produce mchm5U at the wobble position in cytoplasmic tRNAs. However,

no experimental prove for its methylation ability on tRNAs is available yet (Hogan et al.,

2023). TRMT9B was fount to be enriched in the nervous system and is important for

synapse function (Hogan et al., 2023).

To determine changes in protein levels of tRNA modifying enzymes, I performed

a proteomics analysis on NES cells and iPS cells. Bioinformatic analysis was assisted

by Dr. Sabrina Weser. On protein level, 24 modifiers were significantly downregulated

(with log2FC < -0.5), with PUS1, PUS7 and TARBP1 having the biggest fold change.

7 modifiers were significantly upregulated, with LCMT2, TRMT10A and PUS10 being

mostly up (Figure 3.8B). Downregulated PUS7 produces pseudouridine and TARBP1

produces 2’-O-methylguanosine (Gm), both in cytoplasmic tRNAs. Upregulated LCMT2

produces wybutosine and PUS10 produces pseudouridine, both in cytoplasmic tRNAs as

well. RNA levels and protein levels of tRNA modifying enzymes correlated really well

(Figure 3.8C).

In the forebrain neuroectodermal cell type NE, 44 tRNA modifying enzymes were

significantly downregulated (with log2FC < -0.5) and only 2 significantly upregulated

(with log2FC > 0.5) (Figure 3.8D). In neural crest, 38 modifiers were significantly

downregulated and 5 significantly upregulated (Figure 3.8E). In cranial placode, 36

modifying enzymes were significantly down- and 6 significantly upregulated (Figure

3.8F). And in non-neural ectoderm, 37 tRNA modifiers were significantly down- and 8

significantly upregulated (Figure 3.8G). The enzymes whose expression changed the most

during differentiation modify both types of tRNA in various positions (Figures 3.8H and

3.8I).
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Figure 3.8: Early ectodermal cells downregulate tRNA modifiers.
(A) Log2 fold change of RNA expression of tRNA modifiers in neuroepithelial stem
cells (NES) vs. induced pluripotent stem cells (iPSC). (B) Log2 fold change of protein
expression of tRNA modifiers in NES cells vs. iPSCs. (C) Correlation of RNA expression
vs. protein expression of tRNA modifiers in NES cells vs. iPSCs. Simple linear regression
line. (D) Log2 fold change of RNA expression of tRNA modifiers in neuroectoderm cells
(NE) vs. human embryonic stem cells (hESC). (E) Log2 fold change of RNA expression
of tRNA modifiers in neural crest cells (NC) vs. hESCs. (F) Log2 fold change of RNA
expression of tRNA modifiers in cranial placode cells (CP) vs. hESCs. (G) Log2 fold
change of RNA expression of tRNA modifiers in non-neural ectoderm cells (NNE) vs.
hESCs. (A, B, D - G) Dotted lines at p.adj 0.05 marks significance. Each data point
represents the mean of 5-6 biological replicates. All not significant data points colored
in light grey, all significant data points with -0.5 < log2FC > 0.5 colored in dark grey,
all significant data points with log2FC < -0.5 colored in blue and all significant data
points with log2FC > 0.5 colored in red. (H + I) Schematic representation of a human
cytoplasmic tRNA and a mitochondrial tRNA with highlighted modifications and modifying
enzymes. Enzymes highlighted in red were most upregulated in differentiated cells and
enzymes highlighted in blue most downregulated. mmpG – 5’-monomethylmonophosphate
guanosine; m1G – 1-methylguanosine; - pseudouridine; m2G – 2-methylguanosine; m2,2G
– 2,2-dimethylguanosine; m3C – 3-methylcytosine; I – Inosine; Q – Queosine; mchm5U –
5-(carboxyhydroxymethyl)uridine methyl ester.
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Overall, in all cell types the modifying enzymes were mostly downregulated, especially in

the hESC derived ectodermal cell types. This could be related to culture conditions

and limited growth capacity of H1 derived cells. NES cells were always harvested

before becoming confluent and their undisturbed possibility to cycle could allow a higher

translation and therefore higher dependency and usage of tRNA modifications.

To out rule hits influenced by culture conditions, I checked which up- and

downregulated tRNA modifiers were shared between all cell types. Only 2 enzymes were

collectively upregulated: METTL6 and PUS10 (Figure 3.9A). Collectively downregulated

were 33 enzymes (Figure 3.9B). While NES cells had a lot more individual upregulated

modifiers, most of the modifiers that were downregulated during differentiation were

shared between the different cell types. Human embryonic stem cells derived cells shared

additional 8 downregulated modifiers. Interestingly, there were no neural cell type

specific differentially expressed tRNA modifying enzymes. Nevertheless, expression in

NE correlated with expression in NES (Figure 3.9C). Looking at the distribution of

enzymes modifying only cytoplasmic tRNAs versus enzymes modifying both or only

mitochondrial tRNAs it stands out that mt-tRNA modifiers were more consistently down

regulated. This stronger downregulation compared to cytoplasmic tRNA only modifiers

was significant (Figure 3.9D).

Taken together, I found that tRNA modifying enzymes were downregulated in early

ectodermal cell types compared to pluripotent stem cells. This downregulation was most

prominent in mitochondrial tRNA modifiers. The next chapters describe, how this might

influence modifications, tRNAs and protein synthesis.
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Figure 3.9: Early ectodermal lines commonly downregulate mitochondrial
tRNA modifier.
(A) Shared significantly upregulated tRNA modifying enzymes. (B) Shared significantly
downregulated tRNA modifying enzymes. (C) Correlation of log2 fold change RNA
expression of tRNA modifier in NE vs. NES. Simple linear regression line. Enzymes
modifying only cytoplasmic tRNAs colored in grey, enzymes modifying both or only
mitochondrial tRNAs colored in brown. (D) Log2 fold change RNA expression of modifiers
of only cytoplasmic tRNAs (grey) or modifiers of both/only mitochondrial tRNAs (brown)
in NE, NES and NNE. P-value determined by unpaired t-test. Box plot shows minimum,
first quartile, median, third quartile and maximum.
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3.3 tRNA modifications and tRNA anticodon pools

are largely stable during early ectodermal

differentiation

As previously mentioned, tRNA modifications regulate gene expression and are thought to

be an instrument for cell state transitions (reviewed in Frye et al., 2018). However, there

are almost no studies so far analyzing the landscapes and dynamics of tRNA modifications

and tRNA pools during development, except a study in the amoeba Dictyostelium

discoideum (Hoffmann et al., 2021), a study in Drosophila (White et al., 1973) and a

recently published study in zebrafish (Danio rerio) (Rappol et al., 2024). The reason

for this, besides earlier mentioned ethical limitations regarding human development, is

probably related to the technical difficulties to detect tRNA modifications and to sequence

tRNAs. Transfer RNAs are highly modified which interferes with reverse transcription

into cDNA, a step that almost all sequencing methods rely on. Additionally, the huge

variety of chemical modifications represents another challenge.

I used mass spectrometry to analyze modification levels on tRNAs. Mass spectrometry

enables the quantification of many modifications in one sample and is a direct detection

method. Other available methods depend on misincorporations or stops of the reverse

transcriptase (Behrens et al., 2021, Rappol et al., 2024) and therefore detect modifications

indirect. I used three biological replicates of each cell type and sent total RNA to Dr.

Cathrine Broberg Vågbø in Norway, who isolated small RNAs via high-performance

liquid chromatography and who performed the mass spectrometry analysis on 20 types of

modifications. The same RNA was also used in RT-qPCR, RNA sequencing and tRNA

sequencing.

Surprisingly, most measured modification levels seemed to not change upon

differentiation (Figures 3.10A – 3.10E), although the majority of modifying enzymes

was downregulated. Modification levels did not correlate with modifier enzyme expression

(Figures 3.10F – 3.10J). Rappol et al. made the same observation in zebrafish development

(Rappol et al., 2024). They also observed, that expression levels of tRNA modifying

enzyme expression did not correlate with their observed modification levels throughout

59



3 Results

development.

NES NE

NNE

NC

CP

A B C

D E

R2 = 0.0047
P = 0.6005

R2 = 0.0048
P = 0.5946

R2 = 0.0021
P = 0.7262

R2 = 0.0006
P = 0.8469

R2 = 0.000005
P = 0.9865

NES NE NC
F G H

NNECP
I J

Figure 3.10: tRNA modifications stay mostly stable during early ectodermal
differentiation.
(A – E) Log2 fold change of modification levels measured by mass spectrometry in
differentiated cells vs. stem cells. P-value determined by unpaired t-test compared to stem
cells. Each data point represents the mean of 3 biological replicates. All not significant
data points colored in light grey, all significant data points with -0.5 < log2FC > 0.5
colored in dark grey, all significant data points with log2FC < -0.5 colored in blue and
all significant data points with log2FC > 0.5 colored in red. (Caption continued on next
page.)
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Figure 3.10: (Previous page. Caption continued here.) mcm5U –
5-methoxycarbonylmethyluridine; f5C – 5-formylcytosine; mcm5s2U – 5-
methoxycarbonylmethyl-2-thiouridine; m1I – 1-methylinosine; Um – 2’-O-methyluridine;
ncm5U – 5-carbamoylmethyluridine; m5C – 5-methylcytosine; I – inosine; Cm
– 2’-O-methylcytosine; ac4C – N4-acetylcytidine; ms2t6A - 2-methylthio-N6-
threonylcarbamoyladenosine; m5U – 5-methyluridine; hm5C – 5-hydroxymethylcytosine;
m3C – 3-methylcytosine. (F – J) Correlation of modification levels with RNA expression
of the matching modifying enzyme. Log2 fold changes compared to stem cells. Simple
linear regression line.

The disadvantage of using mass spectrometry to detect modifications is, that sequence

information is lost. Since several modifications can be present at different positions in the

tRNA and being produced by different enzymes, it could be that changes in modification

levels are balanced out and result in visually no change here. Regarding the hESC derived

samples (NE, NC, CP and NNE), it could be also due to ‘older’ modified tRNAs that still

being around in the cell. The differentiation protocol is twelve days long and the effect

of downregulation of modifying enzymes could be not visible yet, since tRNAs have a

relatively long half-life of more than four days (Choe and Taylor, 1972). Additionally,

modification levels also depend on the presence of the tRNA itself.

Therefore, I sequenced the tRNA anticodons pools in pluripotent stem cells and early

ectodermal cells. Prof. Dr. Mark Helms group developed a protocol which overcomes

artefacts from cDNA synthesis (Kristen et al., unpublished). The quantitative information

of the tRNA pool is directly transferred onto DNA oligonucleotides which are then used

for library preparation (Figure 3.11). Library preparation was assisted by Marc Lander

and bioinformatic analysis was assisted by Dr. Sabrina Weser. First, total RNA of 4-6

biological replicates of all cell types were incubated with 44 complementary DNA molecules

for cytoplasmic tRNAs and 22 complementary DNA molecules for mitochondrial tRNAs.

The formed hybrids where then visualized on a gel, isolated and then used for library

preparation.
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Hybridization Separation

PCR Next generation
sequencing

Figure 3.11: Overview of tRNA anticodon pool sequencing.
Protocol was developed by Kristen et al. First, RNA is incubated with fluorescently labelled
complementary DNA oligonucleotides that contain adapter sequences for final library
preparation. The formed hybrids of tRNA and DNA oligonucleotides are then separated
from unhybridized RNAs and oligonucleotides on a gel. The hybrid band can then be
excised and used in an index PCR to generate a library for next-generation sequencing.
Figure adapted from Kristen et al.

Looking at a principal component analysis based on all measured tRNAs, stem cells

and differentiated cells clustered separately (Figures 3.12A and 3.12B), suggesting that

tRNA anticodon pool changed. The overall composition of cytoplasmic tRNAs was mostly

stable across cell types (Figure 3.12C). High abundant tRNAs as e.g. tRNA(Asn)GTT,

tRNA(Ile)AAT_GAT and tRNA(Val)AAC_CAC_TAC stayed high abundant throughout

differentiation. Same applied for low abundant tRNAs. The mitochondrial pool was

dominated by the tRNA(Val)TAC (Figure 3.12D). It was by far the highest abundant

mt-tRNA in all cell types. This tRNA substitutes the 5S rRNA in mitochondrial ribosomes.

Interestingly, it was significantly downregulated in all differentiated cells (Figure 3.12E)

which might influence mitochondrial protein synthesis. While most mitochondrial tRNAs

seemed to be stably expressed from iPSCs to NES cells, more differences in abundance

was observable in H1 differentiation. Overall, the proportion of cytoplasmic tRNA reads

to mitochondrial tRNA reads changed significantly (Figure 3.12F).
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Figure 3.12: Landscape of tRNA anticodons in early ectodermal differentiation.
(A) Principal component analysis on counts per million of all 66 genes in iPSC and NES
cells. Each data point represents one biological replicate. (Caption continued on next
page.)
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Figure 3.12: (Previous page. Caption continued here.) (B) Principal component analysis
on counts per million of all 66 genes in hESC and differentiated cells. Each data point
represents one biological replicate. (C) Composition of cytoplasmic tRNA anticodon pool
in stem cells and differentiated cells. Heatmap displays abundance of tRNAs in % of
cytoplasmic tRNA reads. (D) Composition of mitochondrial tRNA anticodon pool in stem
cells and differentiated cells. Heatmap displays abundance of tRNAs in % of mitochondrial
tRNA reads. (C + D) tRNAs labeled in three-letter amino acid code. Multiple anticodons
listed when DNA oligos target multiple isoacceptors. Anticodons are numbered when
different isodectoders are targeted. (E) Amount of mitochondrial tRNA(Val)TAC in % of
mitochondrial tRNA reads. Significance determined by unpaired t-test compared to stem
cells. (F) tRNA pool composition of cytoplasmic and mitochondrial tRNAs. Significance
determined by unpaired t-test compared to stem cells.

In the hindbrain neuroepithelial stem cells mitochondrial tRNAs were clearly

downregulated (Figure 3.13A), reflecting the reduction in mitochondrial tRNA fraction.

A

B

Figure 3.13: Differential expression of tRNAs during early ectodermal
differentiation.
(Figure and caption continued on next page.)
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C

D

E

Figure 3.13: (Figure and caption continued here from previous page.) (A – E) Log2 fold
change of abundance (%) of cytoplasmic and mitochondrial tRNAs in differentiated cells
vs. stem cells. Each data point represents mean of 4-6 biological replicates. Significance
determined by unpaired t-test. Dotted line at 0.05 marks significance. All not significant
data points colored in light grey, all significant data points with -0.5 < log2FC > 0.5
colored in dark grey, all significant data points with log2FC < -0.5 colored in blue and all
significant data points with log2FC > 0.5 colored in red.
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In the other cell types, an upregulation of mitochondrial tRNAs was observed (Figures

3.13B – 3.13E). However, mito-tRNA(Phe)GAA was commonly downregulated. Only a

few cytoplasmic tRNAs were differentially expressed, with tRNA(Gly)CCC significantly

upregulated in all.

I wondered where the difference in mitochondrial tRNA expression between NES

and the other differentiated cells came from, when they commonly downregulate genes

associated to mitochondrial gene expression and RNA processing (Figure 3.5B). Looking

at the RNA expression of mitochondrial protein coding genes, they were downregulated in

all ectodermal lines (Figure 3.14A). The mitochondrial tRNA genes were on the other hand

slightly up or downregulated in the RNA sequencing data. As previously mentioned, RNA

sequencing is not ideal to measure tRNA expression. However, since in mitochondria the

whole DNA is transcribed into one transcript, carrying both protein coding and non-coding

RNAs, gene expression of proteins and tRNAs should be roughly the same. And the

whole mitochondrial gene expression machinery was downregulated in all ectodermal

cell types (Figures 3.14B – 3.14E). The same was observed on protein level of genes in

the MitoCarta3.0 category ‘Central dogma’, including genes associated with mtDNA

maintenance, mtRNA metabolism and mitochondrial translation (Figure 3.14F).

Taken together, NES cells and the H1 derived ectodermal cell types looked the

same regarding mitochondrial gene expression when compared to pluripotent stem cells.

Therefore, also mitochondrial tRNA expression levels should be roughly similar when

compared to pluripotent stem cells. However, genes for biogenesis of cytoplasmic tRNAs

were downregulated only in H1 derived cells (Figure 3.14G). A reduction in cytoplasmic

tRNAs could have indirectly led to the observed increase of the mitochondrial tRNA

fraction.
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vs hPSC
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Figure 3.14: Genes related to mitochondrial gene expression are downregulated
in early ectodermal cells.
(A) Heatmap displaying log2 fold change of mitochondrial encoded genes in differentiated
cells vs. stem cells. (B) Log2 fold change of mito transcription genes. Analyzed genes:
TFAM, POLRMT, TFB2M, TEFM. (C) Log2 fold change of mito RNA processing genes.
Analyzed genes: TRMT10C, HSD17B10, KIAA0391, ELAC2, GRSF1, RPUSD4. (D)
Log2 fold change of mito translation genes. Analyzed genes: TACO1, TUFM, GFM2,
GFM1, MTIF3, MTIF2. (E) Log2 fold change of mito RNA degradation genes. Analyzed
genes: PNPT1, SUPV3L1, REXO2. (F) Differential expression of mito central dogma
proteins in log2 fold change of NES vs. iPS cells. Each data point represents the mean of
six biological replicates. All not significant data points colored in light grey, all significant
data points with -0.5 < log2FC > 0.5 colored in dark grey, all significant data points with
log2FC < -0.5 colored in blue and all significant data points with log2FC > 0.5 colored
in red. (G) Log2 fold change of cyto tRNA biogenesis genes. Analyzed genes: POLR3A,
BRF1, GTF3C1, RPP14, RPP21, RPP25, POP4, RPP30, RPP38, RPP40, POP1, POP5,
TSEN54, TSEN2, TSEN34, TSEN15, RTCB.

In summary, the modification landscape stayed mostly stable upon differentiation.

Cytoplasmic transfer RNA anticodon pools stayed mostly stable as well with a few

minor changes in abundance. However, mitochondrial tRNAs were downregulated in NES

cells.
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3.4 Mitochondrial tRNA modifications shape both

mitochondrial and cytoplasmic translation

In the previous chapters, I analyzed the expression of tRNA modifying enzymes, tRNA

modifications and tRNA anticodon pool in stem cells and early ectodermal cells. I found

that especially tRNA modifying enzymes were downregulated during differentiation.

In this chapter I am analysing the consequences of this downregulation for protein synthesis.

I started by performing a knockdown screen of 47 different modifiers and analyzed how

this affected protein synthesis. Although several tRNA modifying enzymes and their

involvement in gene expression have been studied in certain contexts, for most modifiers

their importance for global translation has not been studied yet. To knockdown the tRNA

modifying enzymes I used so called siPOOLs, which consist of 30 siRNAs against the

gene of interest and allow for an efficient knockdown. For the screen I used a highly

proliferative and easy to transfect cancer cell line (FaDu). After 72 hours of knockdown, I

measured protein synthesis via incorporation of OP-puromycin and flow cytometry and

compared it to a scrambled negative control siPOOL (Figure 3.15A).

I observed a significant reduction in global protein synthesis for 26 out of the 47

analyzed tRNA modifying enzymes (Figure 3.15B). The strongest downregulation was

measured in ALKBH1, NSUN2 and TRIT1 knockdown. Interestingly, an upregulation of

protein synthesis was observed for METTL1. The knockdown efficiency was measured via

RT-qPCR (Suppl. Figure 5.2) and did not affect results of OP-puromycin (Figure 3.15C).

Additionally, efficient reduction of protein levels in 72 hours was controlled by Western

Blot for four modifiers (Suppl. Figure 5.3). Reduction in protein synthesis was also not

due to dying cells. Cell state was controlled by Annexin/PI staining in knockdown cells

with highest reduction in translation (Figures 3.15D and 3.15E).
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Figure 3.15: Knockdown screen of 47 tRNA modifier to assess their importance
for translation.
(A) Experimental outline of knockdown screen. Figure was generated with Biorender. (B)
Log2 fold change of OP-puromycin signal compared to scrambled negative control siPOOL.
Each data point represents mean of 5 replicates. Non-significant points colored in light
grey, significantly downregulated points in blue, significantly upregulated data points in red.
P-value determined by unpaired t-test. (C) Log2 fold change of OP-puromycin signal vs
relative mRNA expression, both compared to scrambled negative control siPOOL. Each data
point represents mean of 5 replicates. Simple linear regression line. Non-significant points
colored in light grey, significantly downregulated points in blue, significantly upregulated
data points in red (based on OP-puro). (D) Gating strategy of apoptosis assay. (E)
Percentage of cells in each category: viable, early apoptosis, late apoptosis and dead.
Significance determined by unpaired t-test compared to scrambled negative control.

These knockdown experiments were repeated with 29 siPOOLs in a different cancer

cell line (Cal33) by Marc Krontal under my supervision (Figure 3.16A). Results in Cal33
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cells correlated with the results obtained in FaDu cells. In both cell lines, knockdown

of ALKBH1 and NSUN2 resulted in the strongest reduction of protein synthesis, while

knockdown of METTL1 led to an increase (Figure 3.16B).

AA

R2 = 0.3279
P = 0.0012

B

Cal33 cells

Figure 3.16: Knockdown screen of tRNA modifiers in Cal33 cells correlates
with results in FaDu cells.
(A) Experimental outline of knockdown screen of 29 tRNA modifier in Cal33 cells.
Experiments were performed by Mark Krontal under my supervision. (B) Correlation of
log2 fold change of OP-puromycin signal vs. scrambled negative control siPOOL in FaDu
and in Cal33 cells. Linear regression line.

The general consent is, that modifications in the anticodon loop play an important role

in translation, while modifications in the body of the tRNA stabilize its structure. I

analyzed if this holds true by looking at relative translation rate compared to position of

the modification in the tRNA (Figure 3.17). Enzymes modifying only cytoplasmic tRNAs

and enzymes modifying either only mitochondrial tRNAs or both types, were separated.

Indeed, depletion of almost all modifications in the wobble position led to a significant

decrease of global protein synthesis (Figure 3.17A).

FTSJ1, for which no reduction in translation was observed, is a 2’-O-methyltransferase

and modifies 11 tRNAs (Nagayoshi et al., 2021). Previously it has been shown, that

depletion of FTSJ1 affects decoding of phenylalanine codons and leads to reduction of

gene specific translation (Nagayoshi et al., 2021). Therefore, it is likely that the effect

cannot be seen in the here measured global translation rate or that FaDu cells do not

express FTSJ1 dependent transcripts.

Depletion of ALKBH1 had, together with NSUN2, the strongest effect on translation.

ALKBH1 produces f5C in the wobble position of mitochondrial tRNAs, but also

demethylates m1A in the T loop (F. Liu et al., 2016). The f5C modification depends on a

previous m5C modification by NSUN3. Knockdown of NSUN3 did not significantly reduce
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translation rate (Figure 3.17A). Since this modification is only found in mitochondrial

tRNAs, global translation was not affected in this experimental setup. Regarding the

other function of ALKBH1, the m1A demethylation activity, a depletion was previously

linked to an increase in translation initiation and elongation (F. Liu et al., 2016). Whether

the here observed effect is then due to its f5C modification, if ALKBH1 has another yet

uncovered function or if it depends on a certain cell stage remains unknown.

NSUN2 is a methyltransferase and produces m5C at the wobble position on one

cytoplasmic tRNA and in the variable loop of both cytoplasmic and mitochondrial tRNAs

(Figures 3.17A and 3.17B) (Brzezicha et al., 2006, Blanco et al., 2011). The modification

in the variable loop protects the tRNA from enzymatic cleavage and a depletion of the

modification leads to the biogenesis of tRNA derived fragments which inhibit protein

synthesis (Tuorto et al., 2012, Blanco et al., 2014). Therefore, the strong reduction in

translation rates coincides with previously published literature.

Another enzyme modifying in the variable loop is METTL1, producing m7G together

with WDR4 in a complex. Interestingly, knockdown of METTL1 led to an increase of

translation (Figure 3.17B). Knockdown of WDR4 on the other hand did not change

translation rate. A previous study in mouse embryonic stem cells showed, that lack of this

m7G modification led to a translation defect (Lin et al., 2018). If METTL1 has another

function related to translation needs to be further investigated.

Interestingly, I found modifying enzymes significantly affecting translation in all

positions of the tRNA, not only in the anticodon loop (Figures 3.17C – 3.17G), but also

modifying enzymes in all positions that did not affect translation.
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Figure 3.17: Effect on translation assessed based on the modification position
in the tRNA.
Log2 fold change of OP-puromycin signal compared to a scrambled negative control siPOOL
of modifications in (A) wobble position, (B) variable loop, (C) position 37, (D) anticodon
loop, (E) D loop, (F) T loop and (G) acceptor stem. Enzymes modifying only cytoplasmic
tRNAs at this position colored in grey, enzymes modifying mitochondrial or both tRNAs
at this position colored in brown. Significance determined by unpaired t-test compared to
scrambled control siPOOL.

Looking at overall translation rates of enzymes modifying only cytoplasmic tRNAs and

enzymes modifying mitochondrial tRNAs, it stands out, that knockdown of mitochondrial

tRNA modifiers had a stronger effect on translation (Figure 3.18A). The difference

between only cytoplasmic tRNA modifier and mitochondrial tRNA modifier was significant

(Figure 3.18B). Therefore, mitochondrial tRNA modifiers and modifications shape both

cytoplasmic and mitochondrial translation.
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Figure 3.18: Knockdown of mitochondrial tRNA modifier affects translation
more than cytoplasmic tRNA modifier.
(A) Log2 fold change of OP-puromycin signal vs. p-value compared to scrambled negative
control siPOOL. Each data point represents mean of 5 replicates. Enzymes modifying
only cytoplasmic tRNAs are colored in grey, enzymes modifying mitochondrial or both
tRNAs are colored in brown. P-value determined by unpaired t-test. Simple regression lines
for both. (B) Log2 fold change of OP-puromycin signal compared to scrambled negative
control siPOOL for enzymes modifying only cytoplasmic tRNAs (grey) or mitochondrial
or both tRNAs (brown). Significance determined by unpaired t-test compared to cyto only.

With the data obtained from the screen, I know that downregulation of many tRNA

modifying enzymes leads to a reduction in translation. Therefore, I measured global

translation as well as mitochondrial translation in NES cells and embryonic stem cells.

I used OP-puromycin incorporation and measured global translation rate in whole cells

(Figures 3.19A and 3.19B) and mitochondrial translation rate in isolated mitochondria

(Figures 3.19C – 3.19E).

Global translation rate was strongly reduced in NES cells compared to stem cells (Figure

3.19B). Looking at mitochondrial translation, I found that the number of mitochondria

with a high translation rate was reduced compared to H1 (Figure 3.19D). Translation rate

was also slightly reduced, but not significantly (Figure 3.19E).

Additionally, I looked at expression of translation initiation and elongation factors

in cytoplasmic and mitochondrial translation (Figures 3.19F and 3.19G). They were

also downregulated in ectodermal cells and confirmed the observed reduced protein

synthesis, together with the previously found reduction in mito-tRNA(Val) (Figure 3.12E).
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Figure 3.19: Protein synthesis is reduced in early ectodermal cells.
(A) Gating strategy for measuring global translation rate via OP-puromycin incorporation
by flow cytometry. (B) Log2 fold change of OP-puromycin signal compared to H1.
Significance determined by unpaired t-test compared to H1. (C) Gating strategy for
measuring mitochondrial translation rate in isolated mitochondria via OP-puromycin
incorporation by flow cytometry. Mitochondria stained with Mitotracker DR. (D)
Percentage of Mitotrack DR high and OP-puromycin high mitochondria. Puromycin
as control. Significance determined by unpaired t-test. (E) Log2 fold change of OP-
puromycin signal compared to H1. Significance determined by unpaired t-test compared to
H1. (F) Log2 fold change of RNA expression of cytoplasmic translation initiation and
elongation factors in ectodermal cells compared to stem cells. Significance determined
by paired t-test compared to stem cells. (G) Log2 fold change of RNA expression of
mitochondrial translation initiation and elongation factors in ectodermal cells compared to
stem cells. Significance determined by paired t-test compared to stem cells.

Overall, I showed which tRNA modifiers are important for global translation and I showed,

that the downregulation of tRNA modifiers in early ectodermal cells compared to stem

cells resulted in lower translation rate.
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3.5 Mitochondrial dynamics and activity during early

ectodermal differentiation

In the previous chapters, I found several indications that regulation of mitochondrial gene

expression is a strong characteristics of early ectodermal cell types. I found that during

early ectodermal differentiation especially mitochondrial tRNA modifying enzymes were

downregulated, the mitochondrial tRNA(Val) which is part of the mitochondrial ribosome

was downregulated, mitochondrial tRNA anticodon pool fractions were changing and both,

cytoplasmic and mitochondrial, protein synthesis pathways were downregulated. How

did the differential regulation of mitochondrial gene expression affected mitochondrial

function?

Previously it was shown, that the main energy resource in stem cells is glycolysis

(Gu et al., 2016) and in differentiated cells OXPHOS. Here, I am looking at very early

differentiated cells which are still multipotent stem cells. So far, Khacho et al. analyzed

neural stem cells in mouse, which are equivalent to NE and NES, and found that they

have elongated mitochondria but are not using OXPHOS for energy production (Khacho

et al., 2016). I aim to identify mitochondrial dynamics and activity in all major human

early ectodermal cell types.

I started by looking at mitochondrial morphology by staining mitochondria with

Mitotracker in induced pluripotent stem cells and neuroepithelial stem cells. I observed

fragmented mitochondria in iPSCs (Figure 3.20A), which was also seen in previous studies

(J. Zhang et al., 2011). They had a median mitochondrial length of 1 µm (Figure 3.20B).

In NES cells, the mitochondria appeared elongated (Figure 3.20A), which is usually

associated with more metabolically active mitochondria (Yao et al., 2019). Their median

length was with 2.25 µm more than double the length of mitochondria in iPSCs (Figure

3.20B). Overall, the pluripotent stem cells had a significantly larger percentage of small

mitochondria (< 0.5 – 1 µm) while NES cells had a significantly larger percentage of

long mitochondria (> 2 µm) (Figure 3.20C). Besides longer mitochondria, I observed less

mitochondria in NES cells compared to stem cells by measuring Mitotracker DR staining

via flow cytometry (Figure 3.20D).
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Figure 3.20: Mitochondrial network grows during early neural differentiation.
(A) Representative images of induced pluripotent stem cells (iPSCs) and neuro-epithelial
stem cells (NES) stained with Mitotracker CMXRos and DAPI. Scale bar: 20 µm. (B)
Median mitochondria length (µm) in iPSCs and NES cells. Significance determined by
unpaired t-test compared to iPSCs. (C) Comparison of mitochondrial length distribution
in iPSCs and NES cells. Each dot represents one cell line; per cell line 3 to 5 images
with each 50 to 250 mitochondria were measured. Significance determined by unpaired
t-test compared to iPSC. (D) Log2 fold change of Mitotracker DR signal. Mitotracker DR
stains mitochondria independent of activity. Significance determined by unpaired t-test
compared to H1.

To analyze how mitochondrial function is affected during differentiation, I looked at the

expression of genes encoding the mitochondrial proteome, cataloged in the MitoCarta3.0

dataset (Rath et al., 2021). The genes are categorized into the following ‘MitoPathways’:

‘Small molecule transport’, ‘Signaling’, ‘Central dogma’, ‘Protein import, sorting and

homeostasis’, ’Metabolism’, ‘OXPHOS’ and ‘Dynamics and surveillance’ (Figures 3.21A

and 3.21B).

Genes in ‘Central dogma’, which contains genes related to mtDNA maintenance,

mtRNA metabolism and translation, were, as shown in Chapter 3.3, significantly

downregulated in all ectodermal cell types (Suppl. Figure 5.4A). ‘Protein import, sorting

and homeostasis’ was also significantly downregulated in all cell types compared to stem

cells (Suppl. Figure 5.4B). Genes in ‘Metabolism’, which comprises all metabolic pathways

taking place in mitochondria, were also slightly downregulated in all differentiated cells

(Suppl. Figure 5.4C). Expression of genes in categories ‘Small molecule transport’,

‘Signaling’ and ‘Dynamics and surveillance’ was mostly unchanged (Suppl. Figures 5.4D –

5.4F).
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Figure 3.21: Mitochondrial activity is downregulated during early ectodermal
differentiation.
(A) Overview of ‘MitoPathways’ defined in the MitoCarta3.0 dataset. Figure generated
with Biorender. (B) Heatmap depicting log2 fold change of gene expression in differentiated
cells vs. stem cells of ‘MitoPathways’. (C) Log2 fold change of genes involved in
ROS pathways in differentiated cells vs. stem cells. Gene set from GSEA. Significance
determined by paired t-test compared to hPSC. (D) Log2 fold change of genes involved
in mitophagy in differentiated cells vs. stem cells. Gene set from MitoCarta3.0 dataset.
Significance determined by paired t-test compared to hPSC. (Caption continued next page.)
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Figure 3.21: (Previous page. Caption continued here.) (E) Log2 fold change of genes
involved in OXPHOS in differentiated cells vs. stem cells. Gene set from MitoCarta3.0
dataset. Significance determined by paired t-test compared to hPSC. (F) Log2 fold change
of genes involved in TCA cycle in differentiated cells vs. stem cells. Gene set from GSEA.
Significance determined by paired t-test compared to hPSC. (G) Log2 fold change of genes
involved in fatty acid beta oxidation in differentiated cells vs. stem cells. Gene set from
GSEA. Significance determined by paired t-test compared to hPSC. (H) Log2 fold change
of Mitotracker CMXRos staining in NES cells vs. H1 cells measured by flow cytometry.
Each data point represents one biological replicate. Significance determined by unpaired
t-test. (I) Log2 fold change of genes involved in glycolysis in differentiated cells vs. stem
cells. Gene set from GSEA. Significance determined by paired t-test compared to hPSC.
All box plot show minimum, first quartile, median, third quartile and maximum.

Mitochondria are the major source for intracellular reactive oxygen species (ROS)

(de Almeida et al., 2022). ROS, which act as signaling molecules, have been shown

to regulate stem cell function (Bigarella et al., 2014) and are involved in differentiation

and lineage commitment (Khacho et al., 2016). Genes related to ROS were slightly

upregulated in hESC derived cells, while being slightly downregulated in NES cells (Figure

3.21C). Higher ROS in neural stem cells was shown to stabilize the master redox regulator

NRF2, which leads to upregulation of genes for differentiation (Khacho et al., 2016).

NRF2 was upregulated in NE and NNE but unchanged in NES, NC and CP compared to

expression in stem cells (Suppl. Figure 5.4G). This could mean that neuroectoderm (NE)

and non-neural ectoderm (NNE) were already more committed than the other lines.

To control if mitochondrial quality suffered under downregulation of several

mitochondrial pathways, I analyzed mitophagy related genes (Figure 3.21D). These genes

were downregulated although not significantly in differentiated cells, which shows that

mitochondria were functional and were not discarded.

Finally, I wanted to check energy production pathways in differentiated cells (Figures

3.21E, 3.21H – 3.21J). OXPHOS related genes were significantly downregulated during

differentiation (Figure 3.21E). Genes involved in the Krebs cycle were also downregulated,

although not significantly in cranial placode and non-neural ectoderm (Figure 3.21F).

Fatty acid beta oxidation was unchanged compared to stem cells (Figure 3.21G). Therefore,

early ectodermal cells were not switching their metabolism to OXPHOS and mitochondria

dependent energy production yet as more final differentiated cell types would do.

Downregulation of OXPHOS was also confirmed by a strongly reduced Mitotracker
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CMXRos signal in NES cells compared to stem cells, which stains mitochondria depending

on their membrane potential (Figure 3.21H). The membrane potential results from the

proton gradient which forms in the electron transport chain during OXPHOS (Zorova

et al., 2018).

Glycolysis seemed to be still the main resource for ATP in early ectodermal cells

since genes were mostly unchanged (Figure 3.21I). Only in NES cells, glycolysis was also

slightly downregulated.

In summary, mitochondria underwent morphological changes during ectodermal

differentiation into neuroepithelial stem cells. The discovered downregulation of

mitochondrial tRNA modifying enzymes and translation came along with a downregulation

of mitochondrial dependent energy production pathways in early ectodermal cells and

resulted in overall less abundant and less active mitochondria.
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4 Summary, Discussion and Future

perspectives

4.1 Summary and Key findings

In my PhD project I aimed to better understand the influence of tRNA modifications

in human early ectodermal differentiation, which defines the origin of central nervous

development. I investigated the landscape of tRNA modifications and modifying enzymes

and whether tRNA anticodon pools change during differentiation of human pluripotent

stem cells into the major early ectodermal cell types: fore- and hindbrain neuroectoderm,

neural crest, cranial placode and non-neural ectoderm. Furthermore, I analyzed the

importance of tRNA modifications and tRNA modifying enzymes in global protein

synthesis and mitochondrial function.

The main findings from this thesis are:

• tRNA modifying enzymes are mostly downregulated in early ectodermal cell types

compared to pluripotent stem cells.

• Modification levels are largely stable and therefore, do not correlate with

downregulation of modifying enzymes.

• Cytoplasmic tRNA anticodon pool stays largely stable during differentiation.

• In neuroepithelial stem cells (NES), mitochondrial tRNAs are downregulated.

• Downregulation of many tRNA modifying enzymes reduces global translation rate.

• This downregulation does not depend on the location of the modification in the

tRNA molecule.

• Mitochondrial tRNA modifying enzymes shape not only mitochondrial but also

cytoplasmic translation.

• The observed downregulation of tRNA modifying enzymes during differentiation is

accompanied by reduced global and mitochondrial translation in NES cells.
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• Mitochondria change their morphology during differentiation from fragmented in

pluripotent stem cells to elongated in neuroepithelial stem cells.

• Early ectodermal cells are in a low metabolic state and clearly reduce mitochondrial

related energy production.

Figure 4.1: Key findings.
This figure summarizes my key findings. hPSC = human pluripotent stem cells. Figure
was generated with Biorender.
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4.2 Discussion

4.2.1 Modelling early ectodermal cell states by differentiation of

human pluripotent stem cells

The Epitranscriptome, comprising RNA modifications on all types of RNA including

transfer RNAs, gained more and more attention in the last years. While for a long time,

the study of tRNAs was hindered by lack of good methods, the development of new

technologies in the last years allowed to analyze and discover their function in more

depth. The involvement of tRNAs and tRNA modifications in proper cell function has

been shown in several studies (rewied in Torres et al., 2014, Kirchner and Ignatova,

2015, L. Wang and Lin, 2023). Nevertheless, there are still a lot of open questions to be

answered. Several tRNA modifying enzymes have been linked to neurodevelopmental

disorders (Table 1.1). Here in this thesis, I aimed to understand better why tRNA

modifications are so important for proper neural development.

Most research on neural and brain development was made in animal models. However,

there are critical differences between human development and e.g. mouse development

(Lui et al., 2011, Rossant and Tam, 2017, Haldipur et al., 2019). Therefore, I wanted to

study tRNA modification function solely in a human model. I used human pluripotent

stem cells, induced (iPSC) and embryonic (ESC), and differentiated them into the major

early ectodermal cell types neuroectoderm (NE), neural crest (NC), cranial placode (CP)

and non-neural ectoderm (NNE) using a protocol from Tchieu et al. (Tchieu et al., 2017).

In human development, these cell types are formed early on after gastrulation at around

the fifth week of gestation.

In general, there are several protocols published to generate neural stem cells,

neuroepithelial stem cells or neural progenitor cells (Dhara and Stice, 2008, Falk et al., 2012,

Reinhardt et al., 2013). However, they either differ in the aspect of which brain vesicle

they represent, depict different points in time of differentiation or are more unspecific by

using retinoic acid or embryoid bodies. To generate the other ectodermal cell types (NC,

CP and NNE), there are also several protocols available, but they would differ in length

and medium composition. Therefore, the protocol by Tchieu et al. offered the option
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to generate all of the four mentioned cell types in twelve days by simple adjustment of

supplements in the medium.

My results showed that differentiation into the desired cell types was successful and

they expressed distinct gene sets consisten with their cell fate. However, I did observe

some counter marker expression across some cell types. It would be possible that the cell

types still share some resemblance due to fact that their formation during development is

really close to each other. Additionally, all of these cell types are still multipotent stem

cells and not finally differentiated.

One downside of the used protocol was, that cells were completely confluent at the

end of differentiation and further passaging was not possible. Therefore, I included

the neuroepithelial NES cell lines (Falk et al., 2012, Tailor et al., 2013) which enabled

continuous culturing and allowed to exclude proliferation-dependent differences.

4.2.2 Landscape of tRNA modifying enzymes, tRNA

modifications and tRNA anticodon pools in early

ectodermal differentiation

When looking at the expression of tRNA modifying enzymes in early ectodermal cell

types compared to expression in pluripotent stem cells, I observed that most of them were

downregulated. Interestingly, expression levels changed quite similarly in the different cell

types. I could not observe a neural or non-neural expression profile. So far, there are

no studies looking at the landscape of tRNA modifier expression of human embryonic

stem cell differentiation neuroectoderm, neural crest, cranial placode and non-neural

ectoderm. Most studies on tRNA modifier function in neurodevelopment look at later

steps in differentiation (Flores et al., 2017, Brazane et al., 2023) or use a different model

organism (Lin et al., 2018, Wu et al., 2023). The other ectodermal cell types NC, CP and

NNE have not been investigated in the context of tRNA modifications at all.

Downregulation of most tRNA modifying enzymes in early ectodermal cells did not

correlate with levels of modifications, which remained quite stable during differentiation.

Recently, Rappol et al. published an analysis on tRNA modification landscape in

zebrafish development (Rappol et al., 2024). They developed a new method for tRNA

83



4 Summary, Discussion and Future perspectives

sequencing, called tRAM-seq, and identified tRNA modifications via reverse transcription

stops. In their analysis, modification levels were highest in activated eggs and the

very early embryonic stages. Mitochondrial tRNA modifications were stable throughout

differentiation. They also observed like me, that expression levels of modifying enzymes

did not correlate with modification levels.

I used mass spectrometry to measure the levels of tRNA modifications. This method

offered the measurement of 20 different modifications in the same sample. However,

sequence information is lost. Other methods to measure modifications are based on

reverse transcription stops or mismatches (Behrens et al., 2021, Rappol et al., 2024) or

only allow the detection of a specific modification (Schaefer et al., 2009, Lin et al., 2019).

In the last years, more and more of these methods were developed and together with the

ability to directly sequence tRNA molecules with Nanopore sequencing (Garalde et al.,

2018, Lucas et al., 2024), detection and evaluation of tRNA modifications will be come

much easier and more precise in the future.

The research of tRNAs has been difficult in the past, since normal RNA sequencing fails to

properly detect tRNAs. Transfer RNAs are small, highly structured and highly modified.

Only in the last years, new methods were developed that overcame these issues by either

removing modifications prior library generation, usage of improved reverse transcriptase

molecules (Behrens et al., 2021, Rappol et al., 2024) or by usage of complementary DNA

oligos that allow transfer of tRNA quantity onto these oligos without the need of reverse

transcription (Kristen et al., unpublished). To measure whether the tRNA anticodon

pools change during early ectodermal differentiation, I used the method from Kristen and

colleagues.

In the past, Gingold et al. found that the tRNA composition changes from proliferating

cells to differentiated cells and that the anticodons correspond to changes in codon usage

(Gingold et al., 2014). Back then, no specific tRNA sequencing protocols were available

yet, so they used microarrays and histone modification maps to determine tRNA pools.

However, two recent publications by Gao et al. (Gao et al., 2024) and Rappol et al.

(Rappol et al., 2024) also investigated tRNA pools in development. Gao et al. found,

that anticodons were robustly expressed during differentiation of induced pluripotent

stem cells to neural progenitor cells (NPCs) and even to neurons. They reasoned that

84



4 Summary, Discussion and Future perspectives

stable expression ensures constant decoding rates throughout development and would

minimize translation errors and protein misfoldings (Nedialkova and Leidel, 2015). Both

publications showed, that anticodon expression did not correlate with cell type-specific

codon usage but rather with mRNAs that are stably expressed throughout differentiation

(Gao et al., 2024, Rappol et al., 2024).

Like Gao et al., I observed a mitochondrial tRNA fraction of less than 4%. When

they looked into tRNA anticodon expression in iPSCs and NPCs, they also observed

an upregulation of cytoplasmic tRNA(Gly)CCC and tRNA(Sec)TCA, like me. Both

of us found tRNA(Asp)GTC downregulated. This shows, that both used methods,

mim-tRNAseq and the method from Kristen et al., are reliable and confirm each other.

Interestingly, I found that overall non-neural ectodermal lines neural crest (NC),

cranial placode (CP) and non-neural ectoderm (NNE) are really similar to the neural

lines neuroectoderm (NE) and neuroepithelial stem cells (NES) in prospect of tRNA

modification landscape. It seems that this point of time during development, around

neural tube closure, requires lower expression of tRNA modifying enzymes but stable

modifications and tRNA anticodon pools.

4.2.3 Mitochondrial tRNA modifications shape both

mitochondrial and cytoplasmic translation and affect

mitochondrial activity in early ectodermal cell types

Previously, it has been shown, that protein synthesis is rather low in embryonic stem cells

(Buszczak et al., 2014). Upon differentiation of mouse ESCs into embryonic bodies, global

translation increases (Sampath et al., 2008, Ingolia et al., 2011). However, looking into

a model that resembles more closely my study, Chau et al. showed in mouse forebrain

development in vivo, that upon neural tube closure, ribosome biogenesis and translation

rate are strongly downregulated (Chau et al., 2018). This matches what I observed in

human early ectodermal cells.

I could show, that downregulation of tRNA modifying enzymes reduces protein

synthesis rate. Since many tRNA modifiers were downregulated in early ectodermal cell

types compared to stem cells, this could explain the observed downregulation of protein
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synthesis rate.

Additionally, I observed, that downregulation of mitochondrial tRNA modifiers even

affected global translation more than downregulation of only cytoplasmic tRNA modifiers.

Mitochondrial tRNAs need to be highly modified to be functional in mitochondrial

translation (Kopajtich et al., 2014). Impaired mitochondrial protein synthesis reduces

mitochondrial function and energy generation (Delaunay et al., 2022), and since protein

synthesis is the most highly energy consuming process in cells (Buttgereit and Brand,

1995), reduced mitochondrial function affects also global protein synthesis.

I also observed lower mitochondrial function and metabolism in ectodermal cells compared

to stem cells, accompanied by a structural change from fragmented to elongated

mitochondria. These dynamics in morphology were also observed in mouse forebrain

development (Fame et al., 2019) and in mouse ESC differentiation to neural stem cells

(Khacho et al., 2016). Khacho et al. further reported, that mitochondria return to a

fragmented state in neural progenitor cells before reaching their final elongated state in

neurons.

There are several publications showing reduced mitochondrial activity in neural stem

cells. Baser et al. observed low protein synthesis rate and low cellular metabolism in

adult neural stem cells (Baser et al., 2017). Khacho et al. could show, that mouse neural

stem cells have low OXPHOS activity and predominantly use glycolysis (Khacho et al.,

2016). And Lees et al. found that human neural progenitor cells have less mitochondrial

mass and lower mitochondrial membrane potential than iPSCs (Lees et al., 2018).

This low metabolic state was also previously shown to exist in pre-migratory neural

crest cells (Bhattacharya et al., 2021).

Overall, it was known that early neural stem cells adopt a more quiescent metabolic state

compared to pluripotent stem cells. My findings showed, that this reduced mitochondrial

activity is linked to reduced mitochondrial protein synthesis due to low expression of

tRNA modifying enzymes. Interestingly, this observation was made in all human major

ectodermal cell types and not only neural stem cells.
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4.3 Future perspectives

Work in this thesis shows that all major human early ectodermal cell types downregulate

the expression of tRNA modifying enzymes which is accompanied by reduced mitochondrial

protein synthesis, reduced mitochondrial metabolic activity and reduced global protein

synthesis. To understand the impact of tRNA modifications in brain development further,

this work could be continued in the following ways:

• Modification mapping could be improved by usage of further detection methods, e.g.

bisulfite sequencing, mim-tRNAseq and Nano-tRNAseq.

• There are indications that already the exit of pluripotency marks a big turn of

events. Lees et al. observed a metabolic exit event 24 hours after introduction of

differentiation (Lees et al., 2018). Therefore, it could be interesting to investigate

the tRNA modification landscape already from the beginning of differentiation.

• Furthermore, it has been shown, that cells switch to mitochondrial dependent energy

production during further neural differentiation (Khacho et al., 2016). Additionally,

Harnett et al. showed in mouse that a burst of gene expression regulation occurs at

day E15.5 (roughly 5 days after neural tube closure) (Harnett et al., 2022). Analysis

of tRNA modification landscape during later timepoints in development would be

also interesting.

• The function of tRNA modifications in ectodermal differentiation could be analyzed

more in detail by manipulating their expression levels in either pluripotent stem

cells or ectodermal cells and analyze how this affects self-renewal and differentiation

capabilities, but also how protein synthesis and metabolism are affected.
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5.1 Supplementary materials

Figure 5.1: RNA related GO categories downregulated in early ectoderm.
GO analysis was performed with Gorilla (Eden et al., 2007, Eden et al., 2009).
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Figure 5.2: Relative RNA expression after knockdown using siPOOLs.
Relative RNA expression measured with RT-qPCR compared to negative control siPOOL.
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Figure 5.3: Western Blot showing protein expression after knockdown using
siPOOLs.
(A) TRIT1 protein expression after siPOOL knockdown. (B) PUS3 protein expression
after siPOOL knockdown. (C) ALKBH1 protein expression after siPOOL knockdown. (D)
METTL1 protein expression after siPOOL knockdown.
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Figure 5.4: Differential expression of MitoCarta3.0 genes.
Log2 fold changes of genes of MitoCarta3.0 categories in early ectodermal cell types
compared to human pluripotent stem cells. Significance determined by paired t-tests
compared to hPSCs. Box plot shows minimum, first quartile, median, third quartile and
maximum. (A) Category ‘Central Dogma’ which comprises genes related to mtDNA
maintenance, mtRNA metabolism and translation. (B) Category ‘Protein import, sorting
and homeostasis’. (C) Category ‘Metabolism’ which comprises genes related to carbohydrate
metabolism, amino acid metabolism, lipid metabolism, nucleotide metabolism, metals
and cofactor metabolism, vitamin metabolism, detoxification and electron carriers. (D)
Category ‘small molecule transport’. (E) Category ‘Signaling’. (F) Category ‘Dynamics
and surveillance’ which comprises genes involved in fusion, fission and mitophagy. (G)
Log2 fold change of NRF2 RNA expression compared to hPSC. Bars represent mean fold
change of six biological replicates. Significance displayed as adjusted p-value.
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Table 5.1: tRNA modifying enzymes

Enzyme Mod
symbol Mod name Position tRNA species Reference

ADAT1 I Inosine A37 cytoplasmic De Crécy-Lagard
et al., 2019

ADAT2 I Inosine A34 cytoplasmic De Crécy-Lagard
et al., 2019

ADAT3 I Inosine A34 cytoplasmic De Crécy-Lagard
et al., 2019

ALKBH1 m1A 1-methyladenosine A58
(removal) cytoplasmic F. Liu et al., 2016

ALKBH1 f5C 5-formylcytidine C34 mitochondrial F. Liu et al., 2016

ALBKH3 m1A 1-methyladenosine A58
(removal) cytoplasmic Z. Chen et al.,

2019

ALKBH3 m3C 3-methylcytidine
C20,
C32, C47
(removal)

cytoplasmic Z. Chen et al.,
2019

ALKBH8
mcm5U,
(S)-
mchm5U

5-methoxycarbonylmethyluridine, (S)-5-
methoxycarbonylhydroxymethyluridine U34 cytoplasmic De Crécy-Lagard

et al., 2019

BCDIN3D mm(pN) 5’-monomethylmonophosphate 5’ cytoplasmic Tomita and Liu,
2018

CKD5RAP1 ms2i6A 2-methylthio-N6-isopentenyladenosine A37 mitochondrial De Crécy-Lagard
et al., 2019

CDKAL1 ms2i6A 2-methylthio-N6-isopentenyladenosine A37 cytoplasmic De Crécy-Lagard
et al., 2019

CIAO1 s2U,
mcm5s2U

2-thiouridine, 5-methoxycarbonylmethyl-2-
thiouridine U34 cytoplasmic De Crécy-Lagard

et al., 2019

CTU1 s2U,
mcm5s2U

2-thiouridine, 5-methoxycarbonylmethyl-2-
thiouridine U34 cytoplasmic De Crécy-Lagard

et al., 2019

CTU2 s2U,
mcm5s2U

2-thiouridine, 5-methoxycarbonylmethyl-2-
thiouridine U34 cytoplasmic De Crécy-Lagard

et al., 2019

DUS1L D Dihydrouridine U16, U17 cytoplasmic De Crécy-Lagard
et al., 2019

DUS2 D Dihydrouridine U20 both De Crécy-Lagard
et al., 2019

DUS3L D Dihydrouridine U47 cytoplasmic De Crécy-Lagard
et al., 2019

ELP3 cm5U 5-carboxymethyluridine U34 cytoplasmic De Crécy-Lagard
et al., 2019

ELP4 cm5U 5-carboxymethyluridine U34 cytoplasmic De Crécy-Lagard
et al., 2019

ELP5 cm5U 5-carboxymethyluridine U34 cytoplasmic De Crécy-Lagard
et al., 2019

ELP6 cm5U 5-carboxymethyluridine U34 cytoplasmic De Crécy-Lagard
et al., 2019

FTO m1A 1-methyladenosine removal cytoplasmic

FTSJ1 Nm 2’-O-methylation 32, 34 cytoplasmic De Crécy-Lagard
et al., 2019

GTPBP3 tm5U 5-taurinomethyluridine U34 mitochondrial De Crécy-Lagard
et al., 2019

GON7 t6A N6-threonylcarbamoyladenosine A37 cytoplasmic Srinivasan et al.,
2011

IKBKAP cm5U 5-carboxymethyluridine U34 cytoplasmic De Crécy-Lagard
et al., 2019

LAGE3 t6A N6-threonylcarbamoyladenosine A37 cytoplasmic De Crécy-Lagard
et al., 2019

LCMT2 yW Wybutosine G37 cytoplasmic De Crécy-Lagard
et al., 2019

METTL1 m7G 7-methylguanosine G46 cytoplasmic De Crécy-Lagard
et al., 2019

METTL2A m3C 3-methylcytidine C32 cytoplasmic De Crécy-Lagard
et al., 2019

METTL2B m3C 3-methylcytidine C32 both De Crécy-Lagard
et al., 2019

METTL6 m3C 3-methylcytidine C32 cytoplasmic De Crécy-Lagard
et al., 2019

METTL8 m3C 3-methylcytidine C32 mitochondrial Kleiber et al., 2022

MOCS3 s2U,
mcm5s2U

2-thiouridine, 5-methoxycarbonylmethyl-2-
thiouridine U34 cytoplasmic De Crécy-Lagard

et al., 2019

MPST s2U,
mcm5s2U

2-thiouridine, 5-methoxycarbonylmethyl-2-
thiouridine U34 cytoplasmic De Crécy-Lagard

et al., 2019

MTO1 tm5U 5-taurinomethyluridine U34 mitochondrial De Crécy-Lagard
et al., 2019

NAT10 ac4C N4-acetylcytidine C12 cytoplasmic De Crécy-Lagard
et al., 2019

NSUN2 m5C 5-methylcytidine C34, C48-
50 both De Crécy-Lagard

et al., 2019

NSUN3 m5C 5-methylcytidine C34 mitochondrial De Crécy-Lagard
et al., 2019

NSUN6 m5C 5-methylcytidine C72 cytoplasmic De Crécy-Lagard
et al., 2019

NUBP1 s2U,
mcm5s2U

2-thiouridine, 5-methoxycarbonylmethyl-2-
thiouridine U34 cytoplasmic De Crécy-Lagard

et al., 2019

OSGEP t6A N6-threonylcarbamoyladenosine A37 cytoplasmic De Crécy-Lagard
et al., 2019

OSGEPL1 t6A N6-threonylcarbamoyladenosine A37 mitochondrial De Crécy-Lagard
et al., 2019
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symbol Mod name Position tRNA species Reference

PUS1 Ψ Pseudouridine U27, U28 both De Crécy-Lagard
et al., 2019

PUS1 Ψ Pseudouridine U29, U67 mitochondrial De Crécy-Lagard
et al., 2019

PUS1 Ψ Pseudouridine U30 cytoplasmic De Crécy-Lagard
et al., 2019

PUS10 Ψ Pseudouridine U54 cytoplasmic De Crécy-Lagard
et al., 2019

PUS3 Ψ Pseudouridine U38, U39 both De Crécy-Lagard
et al., 2019

PUS7 Ψ Pseudouridine U13, U35 cytoplasmic De Crécy-Lagard
et al., 2019

PUS7L Ψ Pseudouridine U13, U35 cytoplasmic De Crécy-Lagard
et al., 2019

PUSL1 Ψ Pseudouridine mitochondrial

QTRT1 Q Queuosine 34 both De Crécy-Lagard
et al., 2019

QTRT2 Q Queuosine 34 both De Crécy-Lagard
et al., 2019

TARBP1 Gm 2’-O-methylguanosine G18 cytoplasmic De Crécy-Lagard
et al., 2019

THADA Um, Cm 2’-O-methylation 32 cytoplasmic De Crécy-Lagard
et al., 2019

THG1L xG unknown modified guanosine 0 cytoplasmic

De Crécy-
Lagard et al.,
2019De Crécy-
Lagard et al., 2019

THUMPD1 ac4C N4-acetylcytidine C12 cytoplasmic De Crécy-Lagard
et al., 2019

THUMPD3 m2G 2-methylguanosine G6, G7 cytoplasmic Yang et al., 2021

TRDMT1 m5C 5-methylcytidine C38 cytoplasmic De Crécy-Lagard
et al., 2019

TRIT1 i6A N6-isopentenyladenosine A37 both De Crécy-Lagard
et al., 2019

TRMO m6t6A N6-methyl-N6-threonylcarbamoyladenosine A37 cytoplasmic Kimura et al., 2014

TRMT1 m2,2G 2,2-dimethylguanosine G26 both De Crécy-Lagard
et al., 2019

TRMT9B mchm5U ? 5-(carboxyhydroxymethyl)uridine methyl ester cytoplasmic ? De Crécy-Lagard
et al., 2019

TRMT10A m1G 1-methylguanosine G9 cytoplasmic De Crécy-Lagard
et al., 2019

TRMT10B m1A 1-methyladenosine A9 cytoplasmic Vilardo et al., 2020

TRMT10C m1A, m1G 1-methyladenosine, 1-methylguanosine 9 mitochondrial De Crécy-Lagard
et al., 2019

TRMT11 m2G 2-methylguanosine G10 both De Crécy-Lagard
et al., 2019

TRMT112 m2G 2-methylguanosine G6, G10 cytoplasmic,
both Yang et al., 2021

TRMT12 o2yW Peroxywybutosine G37 cytoplasmic De Crécy-Lagard
et al., 2019

TRMT13 Nm 2’-O-methylation 4 cytoplasmic De Crécy-Lagard
et al., 2019

TRMT1L m2,2G 2,2-dimethylguanosine G37 cytoplasmic Jonkhout et al.,
2021

TRMT2A m5U 5-methyluridine U54 cytoplasmic De Crécy-Lagard
et al., 2019

TRMT2B m5U 5-methyluridine U54 both De Crécy-Lagard
et al., 2019

TRMT44 Um 2’-O-methyluridine U44 cytoplasmic De Crécy-Lagard
et al., 2019

TRMT5 m1G 1-methylguanosine G37 both De Crécy-Lagard
et al., 2019

TRMT6 m1A 1-methyladenosine A58 cytoplasmic De Crécy-Lagard
et al., 2019

TRMT61A m1A 1-methyladenosine A58 cytoplasmic De Crécy-Lagard
et al., 2019

TRMT61B m1A 1-methyladenosine A58 mitochondrial De Crécy-Lagard
et al., 2019

TRMU tm5s2U 5-taurinomethyl-2-thiouridine U34 mitochondrial De Crécy-Lagard
et al., 2019

TRUB1 Ψ Pseudouridine U55 cytoplasmic De Crécy-Lagard
et al., 2019

TRUB2 Ψ Pseudouridine U55 mitochondrial De Crécy-Lagard
et al., 2019

TYW1 yW Wybutosine G37 cytoplasmic De Crécy-Lagard
et al., 2019

TYW3 yW Wybutosine G37 cytoplasmic De Crécy-Lagard
et al., 2019

WDR4 m7G 7-methylguanosine G46 cytoplasmic De Crécy-Lagard
et al., 2019

WDR6 hm5Cm 2’-O-methyl-5-hydroxymethylcytidine 34 cytoplasmic De Crécy-Lagard
et al., 2019

WDR6 Cm, Gm 2’-O-methylation 34 cytoplasmic De Crécy-Lagard
et al., 2019

WDR6 f5Cm 5-formyl-2’-O-methylcytidine 34 cytoplasmic De Crécy-Lagard
et al., 2019

YRDC t6A N6-threonylcarbamoyladenosine A37 both De Crécy-Lagard
et al., 2019
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5.2 List of Abbreviations

Abbreviation Description
A adenine
A site aminoacyl site
aaRS aminoacyl tRNA synthetase
aRG apical radial glial cell
Asn asparagine
Asp aspartate
ATP adenosine triphosphate
C cytosine
CP cranial placode
CREs cis regulatory elements
DNA deoxyribonucleic acid
E site exit site
eIF eukaryotic translation intitiation factor
ETC electron transport chain
G guanine
Gly glycine
hESC human embryonic stem cell
hetADAT heterodimeric adenosine deaminase acting on tRNA
hPSC human pluripotent stem cell
ID Intellectual Disability
Ile isoleucine
IP intermediate progenitor
iPSC induced pluripotent stem cell
IRES internal ribosome entry site
lncRNA long noncoding RNA
mESC mouse embryonic stem cell
Met methionine
METTL methyltransferase
miRNA micro RNA
mRNA messenger RNA
mt- mitochondrial
NC neural crest
NE neuroectoderm
NEC neuroepithelial cell
NES neuroepithelial stem cell
NNE non-neural ectoderm
NSC neural stem cell
NSUN NOP/Sun RNA methyltransferase
OP-puro O-propargyl-puromycin
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Abbreviation Description
oRG outer radial glial cell
OXPHOS oxidative phosphorylation
P site peptidyl site
Phe phenylalanine
pre- precursor
PUS pseudouridine synthase
RNA ribonucleic acid
ROS reactive oxygen species
rRNA ribosomal RNA
RTD tRNA decay pathway
Sec selenocysteine
SVZ subventricular zone
T thymine
TCA cycle citric acid cycle
TFAM mitochondrial transcription factor A
tRFs tRNA derived fragments
tRNA transfer RNA
Trp tryptophan
TSEN tRNA splicing endonuclease
U uracil
uORFs upstream open reading frames
UTR untranslated region
Val valine
VZ ventricular zone
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