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Abstract  

Over the course of the last decade, the world health organization (WHO) classification of 

tumors of the central nervous system (CNS) has started to incorporate different molecular 

insights as decision criteria for the categorization of different tumor types, which have 

promoted the surge of novel tumor types and subtypes. While methodology advances have 

enabled for an easier and more accurate diagnosis of the tumor cases, the underlying biology 

and tumor heterogeneity between tumor types and subtypes remain to be fully elucidated. 

This is evidenced by the dismal prognosis some tumor subtypes possess, underscoring the 

need for more effective and subtype-targeted tumor therapies. 

Developing in parallel to the new CNS tumor classification, single-cell technologies have 

emerged as very powerful approaches to perform comparative analysis of tumor subtypes at 

different Omics layers, including transcriptomics and chromatin accessibility. Within this 

context, the two research projects I have worked on during my PhD focused on understanding 

the tumor heterogeneity depicted by the various IDH-mutant glioma or atypical 

teratoid/rhabdoid tumor (ATRT) subtypes.  

In both cases, single-cell analyses identified a novel tumor cell subpopulation. In the case of 

IDH-mutant gliomas, this was a non-cycling, ribosomal-enriched tumor cell population 

harboring a stemness phenotype and exhibiting expression of elongation factors and 

oncogenes (annotated as RE). For ATRTs, a “rhabdoid ground-state” tumor cell population was 

identified and characterized across all SMARCB1-deficient ATRT subtypes, which presented 

high stemness activity, together with an expression profile resembling that of neuroblasts with 

cycling activity (annotated as IPC-like). Both these tumor cell populations in IDH-mutant 

gliomas and ATRTs, upon validation in external datasets, hold promise for the development of 

subtype-specific therapies, albeit further research is still needed.  

Further analyses on the IDH-mutant glioma cohort revealed a differential composition of 

tumor-associated macrophages (TAM) across subtypes, with an increased prevalence of pro-

inflammatory TAM states in astrocytomas, for which immunohistochemistry (IHC) staining 

revealed elevated p-STAT1 expression, suggesting the promotion of a pro-inflammatory 

microenvironment in astrocytomas. Longitudinal analyses on paired primary-recurrent 
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astrocytomas sample pairs demonstrated that the composition of tumor cell types across 

patients at tumor recurrence remained consistent, emphasizing their therapeutic potential.  

Subsequent analyses on the ATRT cohort are still being carried out. These include the 

examination of the single-cell chromatin accessibility data, and the characterization of the 

crosstalk between both tumor cell populations and the tumor and its microenvironment. 

Additional experiments encompass the validation, in ATRT organoid models, of druggable 

targets designed to push tumor cells into differentiated cell states within ATRT subtype-specific 

tumor cell lineages. Other analyses include the validation and spatial distribution of the various 

tumor and TME cell pupations in ATRTs of all three subtypes using spatial transcriptomics.  

Finally, in order to address the increasing need of streamlined alternatives to generate high-

quality, publication-ready data visualizations of single-cell transcriptomics data, I developed a 

software package for R, SCpubr. The software tool provides data visualization one-liner 

functions, the scope of which range from simpler visualization tasks such as inspecting 

dimensional reduction embeddings, displaying cell type composition, or assessing the 

expression or enrichment of selected genes, to inspecting the output of more complex 

analyses, such as copy number variant analysis or gene set enrichment analysis. Altogether, 

the scientific community has successfully adopted SCpubr for visualizing single-cell 

transcriptomic data, as evidenced by its growing number of citations.  
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Zusammenfassung 

Im Laufe des letzten Jahrzehnts hat die Weltgesundheitsorganisation (WHO) bei der 

Klassifizierung von Tumoren des Zentralnervensystems (ZNS) damit begonnen, verschiedene 

molekulare Erkenntnisse als Entscheidungskriterien für die Kategorisierung verschiedener 

Tumortypen zu berücksichtigen, was eine Welle von neuartigen Tumortypen und -subtypen 

hervorgerufen hat. Während Fortschritte in der Methodik eine einfachere und genauere 

Diagnose der Tumorfälle ermöglicht haben, müssen die zugrunde liegende Biologie und 

Tumorheterogenität zwischen Tumortypen und -subtypen noch vollständig aufgeklärt werden. 

Dies wird durch die schlechte Prognose einiger Tumorsubtypen belegt und unterstreicht die 

Notwendigkeit wirksamerer und mehr auf Subtypen spezialisierter Tumortherapien. 

Parallel zur neuen Klassifizierung von ZNS-Tumoren entwickelten sich Einzelzelltechnologien 

als sehr einflussreiche Ansätze für die vergleichende Analyse von Tumorsubtypen auf 

verschiedenen Omics-Ebenen, einschließlich den Ebenen der Transkriptomik und der 

Chromatinzugänglichkeit. In diesem Zusammenhang konzentrierten sich die beiden 

Forschungsprojekte, an denen ich während meiner Doktorarbeit gearbeitet habe, auf das 

Verstehen der Tumorheterogenität, welche sich in den verschiedenen Subtypen von IDH-

Gliomen oder atypischen teratoiden/rhabdoiden Tumoren (ATRT) widerspiegelt.  

In beiden Fällen identifizierten Einzelzellanalysen eine neuartige Tumorzellsubpopulation. Im 

Fall der IDH-Gliome handelte es sich um eine nicht proliferierende, ribosomal angereicherte 

Tumorzellpopulation, die einen stammzellartigen Phänotyp aufwies und sich durch die 

Expression von Elongationsfaktoren und Onkogenen auszeichnete (annotiert als RE). Für ATRTs 

wurde eine Tumorzellpopulation mit „rhabdoidem Grundzustand“ über alle SMARCB1-

defizienten ATRT-Subtypen hinweg identifiziert und charakterisiert, welche eine hohe 

stammzellartige Aktivität sowie ein Expressionsprofil aufwies, das dem von Neuroblasten mit 

proliferierender Aktivität ähnelte (als IPC-ähnlich bezeichnet). Sowohl die genannte 

Tumorzellpopulation der IDH-Gliome und als auch die der ATRTs scheinen nach Validierung in 

externen Datensätzen vielversprechend für die Entwicklung subtypspezifischer Therapien, 

auch wenn hierfür noch weitere Forschung erforderlich sein wird.  
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Weitere Analysen der IDH-Gliomkohorte ergaben eine unterschiedliche Zusammensetzung 

von tumorassoziierter Makrophagen (TAM) über die Subtypen hinweg, mit einer erhöhten 

Prävalenz proinflammatorischer TAM-Zustände bei Astrozytomen, bei welchen die 

immunhistochemische (IHC) Färbung eine erhöhte p-STAT1-Expression aufzeigte, was auf die 

Förderung einer proinflammatorischen Mikroumgebung in Astrozytomen schließen lässt. 

Längsschnittanalysen an Probenpaaren aus primären und rezidivierenden Astrozytomen 

zeigten, dass die Zusammensetzung der Tumorzelltypen über alle Patienten hinweg beim 

Tumorrezidiv konstant blieb, was ihr therapeutisches Potenzial unterstreicht.  

Nachfolgende Analysen der ATRT-Kohorte werden noch durchgeführt. Dazu gehören die 

Untersuchung der Daten zur Chromatinzugänglichkeit auf Einzelzellebene und die 

Charakterisierung der Kommunikation sowohl zwischen Tumorzellpopulationen als auch 

zwischen dem Tumor und seiner Mikroumgebung. Weitere Experimente umfassen die 

Validierung von Zielstrukturen, die einer Medikamentenbehandlung zugänglich sind und die 

darauf ausgelegt sind, Tumorzellen in differenzierte Zellzustände innerhalb ATRT-Subtyp-

spezifischer Abstammungslinien zu bringen, in ATRT-Organoidmodellen. Weitere Analysen 

umfassen die Validierung und Untersuchung der räumlichen Verteilung der verschiedenen 

Tumor- und TME-Zellpopationen in ATRTs aller drei Subtypen mithilfe räumlicher 

Transkriptomik.  

Zu guter Letzt, um dem zunehmenden Bedarf an zielgerichteten Alternativen zur Generierung 

hochwertiger, publikationsbereiter Datenvisualisierungen von Einzelzell-Transkriptomdaten 

gerecht zu werden, habe ich ein Softwarepaket für R, SCpubr, entwickelt. Das Softwaretool 

bietet einzeilige Funktionen zur Datenvisualisierung, deren Umfang von einfacheren 

Visualisierungsaufgaben wie der Überprüfung von Dimensionsreduktionseinbettungen, der 

Beschreibung der Zelltypzusammensetzung oder der Beurteilung der Expression oder 

Anreicherung ausgewählter Gene, bis hin zur Überprüfung der Ergebnisse komplexerer 

Analysen reicht, wie beispielsweise der Analyse der Kopiezahlvarianten oder Analysen zur 

Anreicherung von bestimmten Gengruppen. Insgesamt hat die wissenschaftliche 

Gemeinschaft SCpubr erfolgreich zur Visualisierung transkriptomischer Einzelzelldaten 

angenommen, was durch die wachsende Zahl von Zitaten demonstriert wird. 
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Prologue 

The following thesis has been structured into several, independent chapters. First, I will place 

IDH-mutant gliomas and atypical teratoid/rhabdoid tumors (ATRT) within the context of central 

nervous system (CNS) tumors, briefly delving into the different major groups of CNS tumors 

and their overall incidence in the general population.  

Then, I will provide a general introduction to single-cell genomics covering the different 

available methods and analyses that can be utilized in single-cell transcriptomics and 

chromatin accessibility data, narrowing them down to the ones relevant to the different 

projects I have worked on.  

Next, I will expand on my contribution to single-cell methodology development with the 

publication of SCpubr, my R package, that generates high-quality data visualizations of single-

cell transcriptomics data ready for publication in scientific journals, which I have employed 

throughout both of my research projects. 

Following that, I will extensively illustrate the results of my research in both ATRT and IDH-

mutant glioma tumors. Each project will encompass its own chapter, following a traditional 

structure: starting with an introduction summarizing the state of the art, followed by the 

methodology associated to the research project, continuing with a report of the results 

obtained, and finalizing with their discussion.  

Afterwards, I will move on to the final remarks in an epilogue chapter, where I will elaborate 

on the current status of single-cell technologies in the context of tumor research and how the 

advent of spatial transcriptomics can reshape the way research is performed.  

Finally, I will conclude my thesis by outlining the various research publications I am part of, 

both ongoing and published. 
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Introduct ion to CNS tumors 

Central nervous system (CNS) tumors encompass a wide variety of different tumor types and 

subtypes, each with distinct molecular and clinical characteristics. This complexity has led to 

global efforts to accurately classify and diagnose these tumors. Traditionally, classification 

heavily relied on histology, but the latest versions of the world health organization (WHO) 

classification of CNS tumors have started to also include molecular features in the diagnostic 

criteria. In particular, DNA methylation profiling has contributed significantly to a more 

accurate diagnosis of CNS tumors and has led to the identification of many new tumor types 

and subtypes that were added to the 5th edition of the WHO classification of CNS tumors1. In 

this thesis chapter, I aim to provide a general overview of the major CNS tumor types, 

highlighting the placement of IDH-mutant gliomas and atypical teratoid/rhabdoid tumors 

(ATRTs), the specific tumor types I have researched. While I wrote the original text of this 

chapter, I used ChatGPT to enhance its readability. 

Based on the 5th edition of the WHO classification of CNS tumors, these tumors can be broadly 

categorized into 12 major groups: gliomas, glioneural tumors and neuronal tumors; choroid 

plexus tumors; embryonal tumors; pineal tumors, cranial and paraspinal nerve tumors; 

meningiomas; mesenchymal, non-meningothelial tumors involving the CNS; melanocytic 

tumors; hematolymphoid tumors involving the CNS; germ cell tumors; tumors of the sellar 

region; and metastases to the CNS. Furthermore, the classification includes a separate chapter 

encompassing various genetic tumor syndromes involving the CNS. Examples within this group 

include, for instance, Li-Fraumeni syndrome, a familial disposition syndrome associated with 

germ-line mutations in TP532, which can develop different pediatric and adult tumor types, 

such as medulloblastoma3, among others. Each major group comprises various tumor types, 

defined not only by histological traits but also by molecular features. For instance, IDH-mutant 

gliomas are characterized by recurrent mutations in the IDH1 or IDH2 genes4 and belong to the 

larger group of gliomas, which includes many other tumor types that are molecularly and 

clinically distinct. ATRTs are part of the embryonal tumors, exhibiting biallelic inactivation of 

either the SMARCB15 or SMARCA46 genes. Other embryonal tumor types include 

medulloblastoma, cribriform neuroepithelial tumor (CRINET), embryonal tumor with 

multilayered rosettes (ETMRs), CNS neuroblastoma with FOXR2 activation, and CNS embryonal 



 4 

tumors with BCOR alterations. ATRTs are distinct from these other embryonal tumors based 

on DNA methylation, transcriptomics, and their mutational landscape. Subsequently, 

molecular features are crucial for accurate diagnosis, including specific DNA methylation 

profiles or characteristic genetic aberrations such as gene fusions or (in)activation of specific 

oncogenic drivers7. Furthermore, recent research has introduced machine learning-based 

methylation classifiers that, when combined with current diagnostic standards, assist in 

diagnosing the most challenging cases8. Methylation data is particularly valuable as it indicates 

the cell of origin9,10 and can help infer the primary site of metastatic cancers11.  

Furthermore, not all major CNS tumor groups occur equally in the population. According to the 

latest CBTRUS statistical reports12,13, across all age groups, the majority of CNS tumor cases are 

benign (72.1%, 17.88 cases per 100.000 population12), with malignant cases exhibiting a lower 

incidence (27.9%, 6.94 cases per 100.000 population12), with the most common CNS tumor 

type being non-malignant meningioma (40.5%) and glioblastoma for malignant cases (14.2%) 

(Figure 1). However, in children, malignant cases have a higher incidence rate (3.55 cases per 

100.000 population13) than non-malignant cases (2.67 cases per 100.000 population13), and 

therefore the majority of CNS tumors in children between 0-14 years are classified as malignant 

(65.8%)14. IDH-mutant gliomas are also malignant CNS tumors, most common in older children 

and younger adults, and can present as astrocytoma, IDH-mutant (incidence rate of 0.45 cases 

per 100.000 population12) or oligodendroglioma, IDH-mutant and 1p/19q codeleted (incidence 

rate of 0.29 cases per 100.000 population12). ATRTs are rare embryonal CNS tumors, mostly 

occurring in very young children (incidence rate of 0.09 cases per 100.000 population13), and 

are extremely rare in adults.  

Focusing on pediatric CNS tumor cases only, tumors can arise throughout the CNS, but most 

commonly affected sites are the pituitary and craniopharyngeal duct (18.8%), followed by the 

cerebellum (13.6%) (Figure 2A). Among the different tumor types, gliomas are the most 

common (44.1%), which include low-grade gliomas such as pilocytic astrocytomas, and high-

grade gliomas like ependymal tumors, astrocytomas, oligodendrogliomas, and glioblastomas. 

Furthermore, embryonal tumors account for a total of 9.1% of pediatric cases, with ATRTs 

representing 1.4% of all pediatric CNS cases (Figure 2B).  
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Figure 1: “Distributiona of Primary Brain and Other Central Nervous System Tumors by Behavior (Five-Year 
Total=453,623; Annual Average Cases=90,725), CBTRUS Statistical Report: US Cancer Statistics—NPCR and SEER, 
2016-2020”. ICD-O-3 codes represent an international coding of tumor types where the first four digits designate 
the histology term, with the fifth digit (separated by a “/”), referring to the behavior code (whether a tumor is 
malignant, benign, in situ or uncertain)15. Reprinted with permission from Ostrom, et al.12 

 

 
Figure 2: “Distributiona in Children and Adolescents (Ages 0-19 Years) of Primary Brain and Other Central Nervous 
System Tumors (Five-Year Total=24,999; Annual Average Cases=5,000) by A) Site and B) Histopathology Subtypes, 
CBTRUS Statistical Report: US Cancer Statistics—NPCR and SEER, 2016-2020” ICD-O-3 codes represent an 
international coding of tumor types where the first four digits designate the histology term, with the fifth digit 
(separated by a “/”), referring to the behavior code (whether a tumor is malignant, benign, in situ or uncertain)15. 
Reprinted with permission from Ostrom, et al.12  
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Overall, tumor types and subtypes are molecularly and clinically different, exhibiting varying 

prevalence across different age groups and tumor types. This highlights an inherent tumor 

heterogeneity that still needs to be explored. Further research is essential to understand the 

biological differences driving these tumor types and subtypes. Single-cell technologies are 

proving to be key in this effort, as they can identify novel tumor cell types with therapeutic 

potential.  
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Introduct ion to s ingle-cel l  genomics 

In this introductory chapter, I aim to provide a comprehensive summary of the typical steps 

involved in analyzing single-cell transcriptomics and chromatin accessibility sequencing data, 

restricting it to the methods applied throughout my research. The structure of this chapter will 

be based on a recent review, which outlines current best practices in the field of single-cell 

genomics16. While I wrote the original text of this chapter, I used ChatGPT to enhance its 

readability.  

One of the major breakthroughs in molecular biology over the past decade has been the 

transition from bulk sequencing methods to single-cell techniques, and more recently, spatial 

transcriptomics. From targeting the transcriptome to encompassing other Omics layers such 

as chromatin accessibility17, T cell receptor (TCR)/B cell receptor (BCR) repertoires18, surface 

proteins19 and spatial location20, single cell technologies have become essential tools in the 

study of tumor types21. This shift has led to the development of numerous software tools, with 

over a thousand dedicated to single-cell transcriptomic analysis alone22. These tools range 

from popular computational frameworks like Seurat23 or Scanpy24 to specialized method 

benchmarks and best practices workflows, all aimed at ensuring the correct data analysis and 

visualization of single-cell transcriptomics data16,25–29.  

Single-cell  transcriptomics 

Expanding on the principles of bulk transcriptomics, single-cell RNA sequencing (scRNAseq, 

fresh tissue) / single-nuclei RNA sequencing (snRNAseq, frozen tissue) measures the quantity 

of mRNA molecules per cell. To accomplish this, tissue is extracted and digested to isolate the 

cells. Generally, scRNAseq technologies can be divided into plate-based and droplet-based 

protocols, the latter rising in popularity30. In both protocol types, after sequencing, raw reads 

are mapped to a reference genome and matched to their respective originating cell. Each 

sequencing method employs a proprietary approach to tackle this task, typically involving the 

assignment of a barcode to each mRNA molecule prior to sequencing. These barcodes are then 

tracked during reference mapping to generate a count matrix. Individual mRNA molecules 

originating from a single cell are commonly denoted as unique molecular identifiers (UMI).  
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Data pre-processing 

Typically, the initial step of any scRNAseq analysis involves performing quality control (QC), 

normalization, feature selection and dimensionality reduction (Figure 3A). In essence, the 

objective is to eliminate any potential sources of bias that could affect the analysis, including 

technical artifacts derived from the sequencing steps or potential biological confounders such 

as cell cycle or apoptosis16,31.  

 
Figure 3: “Overview of unimodal analysis steps for scRNA-seq. a, Count matrices of cells by genes are obtained 
from raw data processing pipelines. To ensure that only high-quality cells are captured, count matrices are 
corrected for cell-free ambient RNA and filtered for doublets and low-quality or dying cells. The latter is done by 
removing outliers with respect to quality control metrics (the number of counts per barcode, called count depth 
or library size, the number of genes per barcode and the fraction of counts from mitochondrial genes per barcode 
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(percentage mito.)). All counts represent successful capture, reverse transcription and sequencing of an mRNA 
molecule. These steps vary across cells, and therefore count depths for identical cells can differ. Hence, when 
comparing gene expression between cells, differences may originate solely from sampling effects. This is 
addressed by normalization to obtain correct relative gene abundances between cells. Single-cell RNA sequencing 
(scRNA-seq) data sets can contain counts for up to 30,000 genes for humans. However, most genes are not 
informative, with many genes having no observed expression. Therefore, the most variably expressed genes are 
selected. Different batches of data are integrated to obtain a corrected data matrix across samples. To ease 
computational burden and to reduce noise, dimensionality reduction techniques are commonly applied. This 
further allows for the low-dimensional embedding of the transcriptomics data for visualization purposes. b, The 
corrected space can then be organized into clusters, which represent groups of cells with similar gene expression 
profiles, annotated by labels of interest such as cell type. The annotation can be conducted manually using prior 
knowledge or with automatic annotation approaches. Continuous processes, such as transitions between cell 
identities during differentiation or reprogramming, can be inferred to describe cellular diversity that does not fit 
into discrete classes. c, Depending on the question of interest and experimental set-up, conditions in the data set 
can be tested for upregulated or downregulated genes (differential expression analysis), effects on pathways 
(gene set enrichment) and changes in cell-type composition. Perturbation modelling enables the assessment of 
the effect of induced perturbations and the prediction of unmeasured perturbations. Expression patterns of 
ligands and receptors can reveal altered cell–cell communication. Transcriptomics data further enable the 
recovery of gene regulatory networks. q, q value.” Reprinted with permission from Heumos, et al.16  

Quality control (QC) 

Quality control of scRNAseq data primarily involves filtering out low-quality cells, ambient DNA 

or instances where multiple cells might have been captured together (doublets) or none at all 

(empty droplets). Typically, three metrics play a key role in detecting low-quality cells: the 

number of UMIs per cell (count depth), the number of genes per cell and the fraction of 

mitochondrial genes. A high fraction of mitochondrial genes often indicates dying cells32,33. 

Examining the distribution of these covariates independently for each sample allows for the 

establishment of individualized thresholds tailored to each sample. While these metrics can 

vary significantly across samples and sequencing techniques, community-based guidelines 

have been developed to provide some ground-basis of what are commonly used 

thresholds.25,27,34.  

Another significant confounding factor is cell-free RNA, often termed as ambient RNA. This is 

RNA that does not belong to a captured cell, but that actually comes as a contamination from 

other lysed cells in the solution, which can ultimately lead to the detection of markers 

identifying different cell populations within the same group of cells, therefore adding noise and 

mixing two genuine populations together35. Various software tools have been developed to 

estimate and eliminate ambient RNA, such as SoupX35, CellBender36 and Decontx37.  
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Ensuring that each droplet contains a single cell is a crucial final step of the quality control. 

Empty droplets are relatively straightforward to identify as they exhibit minimal to no 

expression. By applying the aforementioned QC cutoffs, empty droplets can be effectively 

removed from the dataset. However, identifying doublets presents a more complex challenge, 

as they come in different nature: homotypic and heterotypic. Homotypic doublets occur when 

two cells of the same cell type are captured in a single droplet, while heterotypic doublets 

contain cells from different cell types. Heterotypic doublets result in a barcode with expression 

profiles from two distinct cell types, while homotypic doublets manifest as a barcode with high 

expression of marker genes of a particular cell population.  

The consensus approach is to target homotypic doublets by applying QC cutoffs on the number 

of UMIs and genes per cells. For heterotypic doublets, a diverse array of tools and methods 

have been developed, leading to benchmarking reviews38,39 that recommend the use of 

scDblFinder38,40 and DoubletFinder39,41. Additionally, meta-analysis tools such as 

Demuxafy42, which consolidate the output of several doublet detection tools, are beginning to 

emerge.  

Normalization 

Within a single dataset, cells may exhibit a different number of transcripts. Consequently, it 

becomes necessary to transform raw counts to ensure that the expression profiles across cells 

are comparable. This transformation is followed by a variance stabilization step to mitigate the 

influence of outliers on the structure of the data43 and scaling, which standardizes counts to 

have zero mean and unit variance. Numerous normalization methods have been developed 

over time to address this need, each with its own strengths and weaknesses. Benchmarking 

reviews have demonstrated that simpler normalization methods perform comparably to more 

sophisticated ones44. Methods like the shifted logarithm44 are better-suited for cases where 

optimal dimensional reduction is desired. Others, such as the approach proposed by scran45, 

are most effective for datasets requiring strong batch correction. Additionally, methods based 

on analytical Pearson residuals excel at feature selection and identification of rare cell types46. 

One widely adopted normalization method, available in Seurat, is SCtransform47, which has 

recently been updated48. Therefore, the choice of normalization method depends on the 

specific goals of downstream analysis. 
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Feature selection 

After normalization, the next step involves identifying the most variable genes through feature 

selection, which serves as the basis for dimensionality reduction. Various feature selection 

methods are available, broadly categorized into empirical-distribution-based methods, 

generative-model-based methods, and distribution-free methods, with the first group being 

the most widely used49. Empirical-distribution-based methods rank genes based on summary 

statistics, typically gene expression variance or dispersion, computed over the empirical 

distribution of genes across cells49. Genes are ranked accordingly, with the top-ranking genes 

selected as highly variable genes (HVGs).  

However, the selection of the number of HVGs can impact downstream analysis. A meta-

analysis of 153 studies revealed that the selected number of HVGs ranged from 1.000 to 3.000 

in 65% of studies49. Popular empirical-distribution-based methods implemented in Seurat and 

Scanpy are dispersion (DISP), mean-variance plot (MVP) and variance stabilizing 

transformation (VST). 

Dimensionality reduction 

The subsequent step in data pre-processing involves dimensionality reduction. Starting from 

the basis that the expression values of each gene act as independent variables in the analysis, 

a single-cell transcriptomics experiment has as many degrees of freedom as genes. The 

selection of HVGs serves as an initial step towards reducing the number of degrees of freedom 

in the analysis, while dimensionality reduction methods aim to either summarize the 

underlying topology of the data or visualize it16. Principal component analysis (PCA) is a popular 

method used to summarize the data, while techniques like uniform manifold approximation 

and projection (UMAP)50, t-distributed stochastic neighbor embedding (t-SNE)51 and potential 

of heat-diffusion for affinity-based trajectory embedding (PHATE)52 are employed for data 

visualization16,27,52.  

While dimensionality reduction methods are valuable for analyzing and interpreting single cell-

transcriptomics data, reviews suggest not to solely rely on the topology of two-dimensional 

dimensional reduction embeddings but rather using them as a complementary tool to results 

derived from quantitative analyses16,53. 



 12 

Data integration and batch correction 

Following normalization and dimensional reduction, eliminating confounding sources of 

variation is a critical step for accurate downstream analyses. These sources can be of two types: 

technical and biological. An example of technical variation could be a dataset comprising 

several samples collected from different laboratories or under varying experimental conditions 

(batch), thereby introducing batch effects. To address this, data integration tools have been 

developed over the last years. A recent benchmark review evaluating up to 16 different 

methods54 recommended the use of canonical correlation analysis (CCA)55 or Harmony56 for 

cases where the batch effect is rather simple. For datasets with more complex batch effects, 

tools such as scANVI57, scVI58, scGen59 or Scanorama60 are preferred.  

Examples of biological variation include the cell cycle effect, where observed differences in 

cells stem from their differential phases in the cell cycle during sequencing rather than a 

genuine biological effect. Recent benchmarks have recommended the use of the cell cycle 

regression methods offered by tools such as Scanpy24 and Seurat47. These methods compare 

the mean expression values of the cell cycle genes to reference cell cycle-based gene 

signatures. Subsequently, the use of Tricycle61, a software tool that maps the dataset to a 

cell cycle-derived dimensional reduction embedding, is suggested, particularly for highly 

heterogeneous datasets62. Ultimately, deciding whether to remove this batch effect depends 

on whether significant cell cycle differences are observed in the dataset, and doing so risks 

losing the identification of cycling cells in the dataset.  

Clustering and cell type annotation 

After pre-processing the data, biological questions can be addressed. The initial step involves 

generating groups of cells with similar expression profiles, known as cell clusters. These clusters 

can be then analyzed to determine their identity through cell type annotation (Figure 3B). 

Clustering 

A diverse range of clustering algorithms can be applied to address this question, leading to 

benchmarking reviews that rank the optimal clustering algorithms for single-cell 

transcriptomics63,64. The findings from such studies suggested the use of Louvain algorithm, 

which serves as default implementation in Seurat. However, further research has highlighted 
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that the Louvain algorithm may produce poorly connected communities. This insight led to the 

development of Leiden algorithm65, which is currently recommended as the algorithm of 

choice in reviews of single-cell transcriptomics16,27. 

Cell type annotation 

Cell type annotation is the process of assigning biological meaning to clusters. This process 

typically involves assessing how transcriptionally similar a given cluster is to other known cell 

types. Current best practices suggest approaching cell type annotation in three consecutive 

steps: automatic annotation, manual annotation and expert validation16,66. Automatic 

annotation involves the use of pre-trained classifier models or reference mappers. Reference 

mappers such as scArches67, Symphony68 or Azimuth23 are software tools that utilize 

annotated external datasets or atlases to compute a co-embedding with the query datasets, 

followed by label transfer. The second step involves manual annotation, which can be achieved 

by examining the expression of selected marker genes on given clusters, the combined 

expression of gene signatures across clusters, or the computation and analysis of differentially 

expressed genes between each cluster. Finally, expert validation is advisable, especially in cases 

where prior reference datasets are lacking66. 

Downstream analyses 

Once annotations have been assigned to the different clusters in the dataset, different 

downstream analyses become feasible. These include but are not limited to: differential 

expression analysis, gene set enrichment analysis, copy-number variant analysis, ligand-

receptor analysis, deconvolution analysis, and non-negative matrix factorization (Figure 3C).  

Differential expression analysis 

Differential expression analysis aims to identify genes that are either up- or downregulated 

across conditions. Methods for testing differential expression can be broadly classified into 

pseudobulk-based and cell-level-based approaches16. Pseudobulk-based methods involve 

aggregating count data across all cells within a biological replicate, resulting in a count matrix 

resembling that of bulk transcriptomics. Differential expression testing is then performed by 

widely adopted tools such as edgeR69, DESeq270 or limma71. On the other hand, cell-level-based 

methods utilize generalized mixed models16. Benchmarking reviews72,73 have shown minimal 
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overlap in results across differential expression methods, often favoring the use of bulk 

transcriptomics methods16,74,75. Scanpy defaults to using t-test for differential expression 

analysis, while Seurat resorts to Wilcoxon rank-sum test.  

Gene set enrichment analysis 

Gene set enrichment analysis aims to move beyond individual genes to explore terms that 

represent specific biological functions or phenotypes, such as pathways, transcription factors 

and its downstream targets (regulon), gene ontology terms, among others. This is facilitated 

by prior knowledge databases containing such terms and their associated genes, including 

Gene Ontology76, KEGG77, Reactome78 or MSigDB79, as well as weighted gene set databases 

like PROGENy80 for pathways, or DoRothEA81 and CollecTRI82 for regulons. Enrichment analysis 

is typically performed using methods such as hypergeometric tests, GSEA83 or GSVA84, among 

others16. Due to its widespread use, gene set enrichment analysis has promoted the 

development of framework tools like decoupleR85, which integrate various prior knowledge 

networks and enrichment methods. An important aspect to take into consideration when 

performing gene set enrichment analysis is the choice of prior knowledge network, as it 

significantly influences the range of terms the method can identify as enriched16,86. 

Cell-cell communication 

An annotated dataset enables the examination of interactions between different cell 

populations by assessing the joint expression of ligand-receptor pairs, a process commonly 

referred to as cell-cell communication. Numerous tools have been developed to quantify this 

effect, including CellChat87, CellPhoneDB88 and SingleCellSignalR89. These tools typically 

utilize databases of ligand-receptor interactions to infer crosstalk between clusters. Research 

has demonstrated than the choice of tool significantly influences the observed results90. To 

address this variability, framework tools such as LIANA (for R)90 and LIANA+ (for python)91 have 

been developed.  

These tools allow for the computation of ligand-receptor interactions using multiple methods 

and rank the results to generate a consensus scoring across tools90. Additionally, inferring 

interactions across all possible cluster pairs is not recommended, as the results might be 

overwhelming to interpret due to the sheer number of significant interactions returned. 

Therefore, narrowing the scope of the analysis to selected clusters is advisable, coupled with 
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expert validation to extract biologically significant insights out of the statistically significant 

interactions. 

Copy number variant (CNV) analysis 

Copy number variant (CNV) analysis, in the context of single-cell transcriptomics, involves 

inferring of copy-number aberrations by comparing expression profiles between reference and 

target clusters. This analysis is particularly relevant when studying tumor datasets, as the 

presence or absence of specific CNV events can help classify cells as healthy or tumor cells. 

Numerous tools have been developed to tackle CNV analysis in single-cell transcriptomics, 

including XClone92, sciCNV93, copyKAT94 or inferCNV95. However, there are currently no 

benchmarking reviews comparing different tools, nor are there any framework tools that 

generate a consensus CNV calling out of the results from multiple tools. Regarding inferCNV, 

the tool was originally designed for SMARTseq2 data but can also be applied to 10X datasets. 

Since overall counts in 10X datasets are lower than in SMARTseq2 datasets, increasing the 

sensitivity of the analysis by generating metacells (artificial cells designed by aggregating the 

raw counts of several cells within a given cluster) may be advisable (see Copy Number Variant 

analysis).  

Cell deconvolution analysis 

Over the decades, a multitude of bulk transcriptomics datasets have been generated due to 

scientific research and routine protocols for tumor diagnosis. These datasets represent 

heterogeneous mixtures of the various cell types present in the original tissue. Cell 

deconvolution methods aim to infer cell proportions from bulk transcriptomics data by using a 

reference gene expression profile from annotated cell types, such as pseudobulked annotated 

single-cell transcriptomics data96. This approach is especially useful for validating the empirical 

proportions from a given single-cell dataset against reference datasets and for repurposing 

extensive existing data, such as the cancer genome atlas program (TCGA), for novel research 

utilizing single-cell datasets97. Many tools have been developed over the years to perform cell 

deconvolution. A benchmarking review evaluating 20 different cell deconvolution tools 

recommended the use of regression-based tools like CIBERSORT98 when working with bulk 

transcriptomics datasets. It also suggested pairing such tools with those designed for single-

cell transcriptomics data, such as MuSiC99, emphasizing the importance of curating a reference 
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matrix that accurately represents all cell types present on the query datasets100. However, cell 

deconvolution methods are continuously evolving alongside advancements in the field of 

single-cell transcriptomics. For instance, there has been the development of cell deconvolution 

tools tailored for spatial transcriptomics, such as SPOTlight101.  

Non-negative matrix factorization (NMF) 

Tumor cells often exhibit a continuum of differentiation, ranging from the most stem-like 

tumor cells to more differentiated cells, following specific tumor lineages. In single-cell 

transcriptomics datasets where the differentiation lineages are unknown, unsupervised 

analysis like non-negative matrix factorization (NMF) can uncover complex biological processes 

within the data. 

 
Figure 4: “The Matrix Product of the Amplitude and Pattern Matrices Approximates the Preprocessed Input 
Data Matrix. (A) The number of columns of the amplitude matrix equals the number of rows in the pattern matrix, 
and represents the number of dimensions in the low-dimensional representation of the data. Ideally, a pair of one 
column in the amplitude matrix and the corresponding row of the pattern matrix represents a distinct source of 
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biological, experimental, and technical variation in each sample (called complex biological processes, CBPs). (B) 
The values in the column of the amplitude matrix then represent the relative weights of each molecule in the CBP, 
and the values in the row of the pattern matrix represent its relative role in each sample. Plotting of the values of 
each pattern for a pre-determined sample grouping (here indicated by yellow, grey, and blue) in a boxplot as an 
example of a visualization technique for the pattern matrix. Abbreviation: Max(P), maximum value of each row of 
the pattern matrix.” Reprinted with permission from Stein-O’Brien, et al.102 

NMF is a matrix factorization technique applied on non-negative matrices, such as count data, 

which returns two independent matrices with the property of reconstructing the original when 

multiplied. These matrices are commonly referred as amplitude and pattern matrices (Figure 

4A)102. The amplitude matrix retains the genes from the original matrix, while the pattern 

matrix retains the cells, both completed by new rows or columns termed NMF factors102. Both 

matrices offer meaningful insights into the data: in the amplitude matrix, each NMF factor 

represents a molecular signature or complex biological process, while in the pattern matrix, 

each NMF factor represents the contribution of a given molecular signature to a given cell 

(Figure 4B)102. When applied to tumor cells on a per-patient basis, NMF yields a set of 

signatures present within the tumor cells as a whole. These signatures, when correlated, can 

define molecular patterns present across tumor cases, termed NMF metaprograms103. Gene 

set enrichment analysis applied on the top scoring genes for each NMF metaprogram can 

reveal their biological nature. Overall, NMF is a powerful tool for uncovering biological patterns 

across tumor datasets, as evidenced by its use in pan-cancer studies aiming to identify 

recurrent tumor subpopulations across tumors104. 

Single-cell  chromatin accessibi l ity 

Chromatin accessibility throughout the whole genome can be assessed through the assay for 

transposase accessible chromatin with high-throughput sequencing, commonly referred as 

ATAC-seq105. Similar as bulk transcriptomics, this method has evolved to the single-cell 

resolution, allowing for the investigation of chromatin accessibility in individual cells. In ATAC-

seq, chromatin accessibility is assessed by sequencing DNA fragments resulting from the 

activity of Tn5 transposase enzyme106. Tn5 transposase is used to fragment DNA in open 

regions of the chromatin and add sequencing adapters to the resulting fragments. In regions 

of the chromatin presenting a closed state, the 3D structure prevents efficient tagging and 

fragmentation by the enzyme, therefore remaining largely unaffected105.  
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Despite being a broadly used technique, there are no standards that define the features of the 

analysis. The reads are typically summarized into cell-by-peak, cell-by-bin, cell-by-gene and 

cell-by-TF count matrices, with evidence suggesting the latter two perform less effectively 

compared to the former107. Cell-by-peak count matrices capture chromatin openness across 

the genome, indicated by the enrichment of Tn5 transposition events in open chromatin 

regions compared to closed chromatin regions, generally referred as peaks. These matrices 

tend to be sparse107, requiring a sufficient number of cells to correctly identify rare cell types108. 

Conversely, cell-by-bin matrices utilize uniformly sized windows (bins) across the genome, 

measuring the amount of Tn5 transposition events occurring between specified genomic 

coordinates defined by each bin, making them particularly useful for clustering purposes108. 

Signac, a widely adopted tool for the analysis of single-cell chromatin accessibility data109, 

primarily utilizes cell-by-peak matrices. 

Data pre-processing 

From the fragment files, which contain the DNA fragments resulting from Tn5 transposition 

events16, various QC metrics can be derived. These metrics encompass the total number of 

fragments per cell, serving as an indicator of sequencing depth; the enrichment of fragments 

in transcription start sites (TSS), illustrating the degree of enrichment in open chromatin 

regions compared to the background16; the nucleosome signal, determined by the ratio of long 

to short fragments, being low ratio indicative of high quality110; and the ratio of reads mapping 

in ENCODE’s blacklist regions111 can be computed, with a higher ratio indicating lower quality16.  

Examining these metrics individually for each dataset is essential for accurately defining QC 

thresholds to eliminate low-quality cells16. To identify and remove doublets from the analysis, 

best practices recommend utilizing two doublet scoring methods, such as scDblFinder40 and 

AMULET112, and combining their outputs to filter out doublets16,40. 

Normalization, dimensional reduction and clustering 

To normalize the features, recent studies lean towards peak binarization108,113,114, although 

alternative methods like modelling the counts have demonstrated better preservation of 

biological information115. For dimensional reduction, benchmarking reviews recommend the 

use of latent semantic indexing (LSI), facilitated by tools such as ArchR113 or Signac109; latent 
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Dirichlet allocation via cisTopic114; or spectral embedding through snapATAC108. 

Subsequently, batch correction can be performed using LIGER54, followed by cell clustering 

using Leiden algorithm.  

Cell type annotation 

To annotate the different cell clusters, several approaches are available. Gene activity 

estimation can be derived from the peaks based on the number of ATAC-seq counts mapping 

on the gene and two kilobases upstream. Gene activity effectively acts as RNA-seq counts, and 

enrichment scoring methods querying gene sets for different cell populations can be employed 

to annotate the cell clusters. Based on the cell clustering, differentially accessible peaks can be 

inferred similarly to single-cell transcriptomics data, utilizing tools such as edgeR or DESeq2116. 

Differentially accessible peaks can serve as a proxy for TF enrichment analysis using 

hypergeometric tests113, with tools like chromVAR117. Analysis of top enriched TFs can aid in 

determining the cell identity of the clusters.  

Alternatively, when matching single-cell transcriptomics data is available, cell annotation labels 

can be transferred from the RNA to the ATAC modality since the cells share matching 

identifiers. When matching IDs are not available, label transfer methods can be applied to 

project the labelling from RNA towards the ATAC modality118. In short and simplified, this 

process involves computing dimensional reduction through canonical correlation analysis 

(CCA) to project both query and reference datasets into a shared dimensional reduction space, 

from which “anchors” are retrieved. Anchors represent pairs of cells (one for the reference 

and one for the query dataset) deemed to originate from the same cell type118. Therefore, gene 

activity is correlated with expression, and a prediction score for each cell in the ATAC dataset 

is returned based on the correlation scores118. 
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SCpubr:  publ icat ion-ready plots  for  s ingle-cel l  transcr iptomics  

Introduction 

In recent years, there has been a significant shift towards the use of single-cell technologies in 

research, with research projects relying on single-cell data across various Omics layers, such as 

transcriptomics and chromatin accessibility. This shift has created an environment that 

fostered the development of software tools designed to address the unique analysis challenges 

posed by single-cell datasets.  

With a wide range of specialized software tools available for different types of analyses, efforts 

have been made to consolidate the most widely used analyses into unified framework tools. 

This led to the creation of community-favorite tools like Seurat23 for R, and Scanpy24 for 

python. Moreover, as these framework tools are increasingly adopted by the scientific 

community, more software tools are developed using them as a foundation. This creates an 

ecosystem of interdependencies that broadens and simplifies the analysis of single-cell data. 

Subsequently, the need for data analysis tools has expanded to the field of data visualization, 

as effectively displaying results has become increasingly important. Both Seurat and Scanpy 

cover basic types of data visualization, leaving further style enhancements to the user. 

However, these fine-grained style modifications can be time-consuming and technically 

challenging. Therefore, there is a need for software solutions that offer easy customization of 

data visualizations for single-cell data.  

As a result, several tools have been published in recent years to facilitate the visualization of 

single-cell data, including scCustomize119, dittoSeq120, iSEE121 shiny app, LotOfCells122, 

and plot1cell123. While these tools streamline the generation of figures, users still need to 

make additional modifications if desired, which can be technically challenging. Proficiency in 

plotting software like ggplot2124 is often required to make these changes, creating a barrier 

for users who are not familiar with these tools.  

Here, I present SCpubr (Single-Cell publication-ready), a user-friendly R package designed to 

generate high-quality, publication-ready data visualizations of single-cell transcriptomics 

datasets (Figure 5A-B). Based on the use of Seurat objects, SCpubr offers a wide variety of 
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functions, each tailored to a specific data visualization relevant to single-cell transcriptomics. 

With a syntax designed to match that of Seurat, SCpubr aims to facilitate seamless integration 

between the two packages. Additionally, SCpubr produces publication-ready plots with a 

minimalistic yet aesthetic appearance, while still allowing for full customization if desired.  

 
Figure 5: SCpubr logo and banner. (A) SCpubr logo, emphasizing the use of eye-catching color palettes available 
in the package. The background grid symbolizes cells forming different clusters. The logo was designed by the 
artist Keryan125 based on my indications. (B) SCpubr banner, created by modifying the X and Y coordinates of the 
UMAP embedding of a Seurat object to arrange cells into letter formations. Cells are colored based on their 
position along the UMAP2 component. UMAP1, x-axis; UMAP2, y-axis. 
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Methods 

This R package has been developed independently, being all the design choices and 

functionalities of the package decided by me. However, I would like to thank Prof. Dr. Marcel 

Kool for promoting a curiosity-driven working environment that made this project possible. 

While I wrote the original text of this chapter, I used ChatGPT to enhance its readability.  

Datasets 

For development and testing purposes, a single-cell transcriptomics dataset comprising 10.000 

peripheral blood mononuclear cells (PBMCs) was utilized126. This dataset underwent standard 

quality control, considering several metrics: the number of unique molecular identifiers (UMI) 

per cell (nCount_RNA), the number of genes per cell (nFeature_RNA) and the percentage of 

mitochondrial RNA per cell (percent.mt). Cells were filtered out if nCount_RNA < 1000, 

nFeature_RNA < 500 or percent.mt > 20%.  

Normalization of the count data was performed using regularized negative binomial regression 

(RNBR) via the Seurat::SCTransform() function. Normalized counts served as the basis for 

dimensional reduction, first by principal component analysis (PCA), and then by uniform 

manifold approximation and projection (UMAP) using the top 30 principal components. Cell 

clusters were identified via the Louvain algorithm127, using Seurat::FindNeighbors() and 

Seurat::FindClusters() functions. This dataset provided the foundation for function 

development and testing, and is used throughout the user manual website. However, for the 

purposes of this thesis chapter, the datasets from the ATRT project will be used instead, with 

the figures being slightly modified in Affinity Designer to achieve a better layout of the panels 

within figures. 

Function development and implementation 

The entire SCpubr package is coded in R (v4.2.0). Each function within SCpubr focuses on a 

specific type of data visualization, ranging from displaying data distributions to visualizing 

dimensional reduction embeddings and summarizing the results of specific analyses. Shared 

functionalities between functions are stored in private functions, promoting a modular and 

less redundant coding design. The parameter syntax and function names were chosen to match 
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those of Seurat, thus allowing for an easy adoption of SCpubr by any current Seurat user. 

That includes parameters such as group.by, split.by or features, among others. 

Package development 

The various functions were built into an R package following established guidelines128. This 

process included proper code and function documentation using roxygen2129, unit testing with 

testthat130, and adding the associated metadata and GPLv3 license to the package. SCpubr 

was tested for compliance with CRAN policies using devtools131. After passing all checks, it 

was deposited in the CRAN repository, where it is now available for download.  

Website development 

All the code was stored in a GitHub repository, and a user manual website was generated using 

Quarto132. Tutorials for each function were created and compiled with Quarto, selecting HTML 

book as the output format. The resulting files were stored in a separate GitHub repository. 

GitHub Actions were enabled to publish the book as a website through GitHub Pages.  

Manuscript preparation 

A manuscript133 was written and deposited in bioRxiv to allow SCpubr to be cited as a research 

paper rather than as a website link. Further efforts are ongoing to prepare a manuscript for 

submission to a peer-reviewed journal.  

Data availability 

The source code is available in the respective GitHub repositories: 

- Source code: https://github.com/enblacar/SCpubr 

- User manual: https://github.com/enblacar/SCpubr-book  

  

https://github.com/enblacar/SCpubr
https://github.com/enblacar/SCpubr-book
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Use cases 

The various functions included in SCpubr can be broadly characterized into four main groups, 

each covering different aspects of data visualization for single-cell transcriptomics datasets: 

visualization of dimensional reduction embeddings, inspection of data distributions, 

summarization of results from specific methods, and miscellaneous functions aimed at 

improving user experience. While this section provides an overview of the major functionalities 

in SCpubr, not every data visualization type is covered here. Subsequently, an in-depth user 

manual covering all the plot types and customization options is available online134. 

Visualizing dimensional reduction embeddings is a critical aspect of single-cell transcriptomics 

analysis, providing a streamlined and direct way to assess the results at various stages of the 

analysis. For instance, the PCA embedding can be visualized to determine the major sources of 

variability within a dataset, or the results of data integration can be assessed by displaying the 

integrated embedding colored by the sources of variation that were regressed out, among 

many other applications (Figure 6).  

For these purposes, SCpubr allows for the visualization of any dimensional reduction 

embeddings stored in the Seurat object. Categorical data can be projected onto these 

embeddings (Figure 6A), and SCpubr also supports facetted visualizations where the 

dimensional reduction silhouette is drawn for clarity (Figure 6B). Additionally, facetted plots 

where the faceting and color encoding are mapped to two different categorical variables are 

also possible (Figure 6C). Continuous variables can also be projected onto the dimensional 

reduction embeddings (Figure 6D), with the color encoding range kept identical across facets 

to facilitate side-by-side comparisons (Figure 6E). 

Next, the inspection of data distributions can be particularly relevant, as it can unveil the nature 

of data variables such as the enrichment of cells in a given gene marker set and the cell type 

composition across individual samples, among others (Figure 7). The distribution of data 

variables can be inspected through various data visualization types, many of which are included 

in SCpubr. For instance, a pictogram of the distribution of a categorical variable in the dataset 

can be generated as a waffle plot (Figure 7A), where each tile corresponds to 1% of the cells. 
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Figure 6: Visualizing dimensional reduction embeddings. UMAP representation of ATRT single-cell 
transcriptomics dataset, colored based on different scenarios. UMAP1, x-axis; UMAP2, y-axis. (A) Colored by ATRT 
subtype. (B) Split by each ATRT subtype, with cells of a given subtype colored and the remaining cells greyed out. 
(C) Split by each ATRT subtype, with cells colored based on the different patients within each subtype, and the 
remaining cells greyed out. (D) Colored based on the number of genes (nFeature_RNA) per cell. (E) Split by each 
ATRT subtype, with cells colored based on their position within UMAP2, and the remaining cells greyed out. 

Therefore, waffle plots serve as a visual guide to determine whether there is an 

overrepresentation of a given group within a data variable. Categorical variables can also be 

summarized using bar plots (Figure 7B), where the proportion of the different groups is 

displayed as stacked bars, accounting for up to 100%. 
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Figure 7: Inspecting distributions of the data. (A) Waffle plot depicting the distribution of ATRT subtypes in the 
dataset, with each tile representing 1% of the data. (B) Stacked bar plot showcasing the cell cycle phase 
assignment across ATRT subtypes. (C-G) Various visualization types inspecting the position of cells along the 
UMAP2 component: (C) box plots showing the differential position cells. Statistical significance between ATRT-
TYR and ATRT-SHH cells is tested (Wilcoxon test, *** = 0.001); (D) violin plots, displaying the distribution of the 
data and including a box plot representation; (E) geyser plots, categorical scatter plots with jittered dots to identify 
outliers; (F) beeswarm plot, where cells are ranked by their UMAP2 position and dot jittering is defined by density, 
allowing for higher dispersion in denser regions; (G) ridge plots, displaying the distribution of a numerical variable 
across groups by density. (H) Dot plot depicting gene expression, with color encoding the average expression 
across a group and size representing the fraction of cells expressing the gene. 

Furthermore, canonical data visualization types such as box plots (Figure 7C), which can be 

used to test for statistical differences between groups, or violin plots (Figure 7D), which help 

determine the distribution nature of a data variable, are included in SCpubr. Additionally, more 
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niche representations are available. This includes geyser plots (Figure 7E), where a 

continuous variable is displayed as a categorical jittered scatter plot, allowing for the 

identification of distribution outliers; beeswarm plots (Figure 7F), where a continuous 

variable is ranked and displayed across groups, with increased jittering proportional to the 

density of ranked values; and ridge plots (Figure 7G), where a continuous variable is displayed 

across groups as a function of density. Finally, continuous variables such as the expression of 

selected genes can be visualized as a dot plot (Figure 7H), where dot color encodes expression 

levels and size represents the fraction of cells within a group expressing the gene. 

Additionally, following the inspection of dimensional reduction embeddings and data 

distributions, the summarization of results from different analyses is another crucial aspect of 

single-cell transcriptomics data analysis. For this, SCpubr provides functions for the most 

popular analyses, including: visualizing the density of expression of selected genes (Figure 

8A); assessing the activity of pathways and regulons across categorical groups (Figure 8B-C); 

displaying top differentially enriched genes between two conditions as a volcano plot (Figure 

8D); assessing the expression and enrichment of selected genes and gene sets across 

categorical groups (Figure 8E-F); generating correlation matrices based on Jaccard similarity 

(Figure 8G); classifying cells into three distinct cellular cell states based on gene sets as per 

Tirosh, et al.135 (Figure 8H); and visualizing top enriched GO terms for a given gene set 

(Figure 8I).  

Additional analyses covered by SCpubr, though not included in this chapter, include the 

visualization of top ligand-receptor pairs across categorical groups; copy number variant 

analysis scores across categorical groups, classifying cells into four distinct cellular states based 

on gene sets as per Neftel, et al.136, and visualizing metadata as a categorical heatmap, among 

others. Some of these data visualization types are included in the following chapters of this 

thesis. 

Finally, SCpubr offers a set of functions designed to enhance the overall user experience. This 

include a wrapper that saves plots to disk with specified proportions, resolution, and format, 

and an installation checker that ensures all necessary dependencies are installed, generating a 

report on which functions can be used with the current user installation.  
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Figure 8: Summarizing experiments. (A) UMAP representation colored by the density of GLI2 expression. 
UMAP1, x-axis; UMAP2, y-axis. (B-C) Activity scores computed over a set of 500 randomly selected cells for gene 
pathways (B) and regulons (C) across ATRT subtypes. ATRT subtypes, columns; pathway or regulon, rows. (D) 
Volcano plot of genes differentially expressed between ATRT-TYR (right) and ATRT-SHH (left) cells, with a 
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significance threshold of 0.05 and fold change cutoff is set to 2. Genes meeting these criteria are colored in blue. 
(E-F) Average expression values (E) and enrichment scores (F) of selected genes and gene sets across ATRT 
subtypes. ATRT subtypes, columns; genes or gene sets, rows. (G) Correlation matrix based on Jaccard similarity 
of the top 100 differentially expressed genes per patients in the ATRT single-cell transcriptomics cohort. (H) 
Cellular states plot adapted from Tirosh, et al.135, discriminating ATRT cells based on the top 100 differentially 
expressed genes across ATRT subtypes. The Y-axis separates between ATRT-MYC from ATRT-TYR/ATRT-SHH cells, 
while the X-axis separates between ATRT-TYR from ATRT-SHH cells. (I) Dot plot showcasing the top 25 enriched 
GO terms based on the G2M cell cycle phase gene set available in Seurat, with color encoding for significance and 
size representing the ratio of genes supporting the term.  

Additionally, SCpubr allows for the generation of color palettes based on a chosen color, 

ensuring all colors within the palette maintain the same contrast and brightness values while 

varying only in hue (Figure 9A). Users can also select specific combination of colors based on 

color theory, including opposite, adjacent, triadic, split complementary, tetradic or square 

color combinations (Figure 9B). 

 
Figure 9: Generating color palettes. (A) A color palette comprising ten different colors generated across the 
same hue, with constant contrast and brightness values. (B) Various color combinations based on color theory 
derived from the original color palette including opposite, adjacent, triadic, split complementary, tetradic and 
square combinations. 
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Outlook 

With the recent popularity of single-cell transcriptomic technologies, the repertoire of analysis 

and software tools available for its analysis is ever increasing. However, most of the available 

software tools do not offer a wide range of options for customizing data visualizations, often 

returning plots with default theming, requiring users to apply further style changes if desired. 

This can be time-consuming and often presents a technical barrier, preventing inexperienced 

users from performing such modifications.  

Aiming to address this issue, I developed SCpubr in parallel with my research projects. This led 

to a gradual development, where new functions were introduced to meet the different needs 

arising in the projects. As a result, SCpubr provides the tools to generate most of the plots 

required for a publication containing single-cell transcriptomics datasets in a user-friendly 

manner. While allowing full customization of the resulting plots, using SCpubr with default 

parameters generates data visualizations that are minimalistic and aesthetically pleasing, 

suitable for publication in scientific journals. 

Since its public release on CRAN in February 2022, along with its corresponding manuscript 

deposited in bioRxiv133, SCpubr has successfully captured the attention of the single-cell 

community. Currently, SCpubr has over 12.000 downloads from CRAN, and its GitHub 

repository has been starred 132 times. Moreover, the manuscript has been cited 25 times, 

with a significant proportion of citations coming from high-impact journals. These metrics 

confirm the need that SCpubr addresses within the community. Future plans include further 

developing SCpubr and preparing a manuscript for publication in a scientific journal.  
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Mult i -omics sequencing of  atypical  teratoid rhabdoid tumors 

unvei ls  a  rhabdoid ground-state populat ion promoting subgroup-

specif ic  d i f ferent iat ion trajector ies 

Introduction 

Malignant rhabdoid tumors (MRT) are a relatively rare but highly malignant fraction of 

pediatric tumors. They are typically characterized by the presence of undifferentiated cells 

alongside rhabdoid cells, which have the potential to differentiate into various cell lineages, 

including neuroepithelial, epithelial and mesenchymal cells. MRTs can arise in several 

anatomical regions. In the central nervous system (CNS), they are referred to as atypical 

teratoid/rhabdoid tumors (ATRT). MRTs can also occur in the kidney, where they are known as 

malignant rhabdoid tumors of the kidney, or in soft tissues, collectively termed extra-cranial 

malignant rhabdoid tumors (ecMRT)137.  

MRTs are characterized by biallelic inactivation of the SMARCB1 gene in 95% of the cases. In 

rare cases (5%)138,139, the SMARCA4 gene is inactivated6. Whole genome sequencing (WGS) 

studies140–142 have confirmed that ATRTs exhibit a relatively simple cancer genome, 

characterized by mutation rates of 0.19 mutations per megabase (Mb) and that the biallelic 

inactivation of either SMARCB1 or SMARCA4 gene is the sole recurrent event across 

patients139,141,143,144. SMARCB1 is a tumor-suppressor gene that encodes a protein member of 

the switch/sucrose non-fermentable (SWI/SNF) complex (also known as INI1, SNF5 or 

BAF47)145, which is involved in chromatin remodeling, cell differentiation and lineage 

specification146–148. The SWI/SNF complexes, also known as BRG1/BRM-associated (BAF) 

complexes148, use the energy from ATP hydrolysis to slide nucleosomes149. In mammals, 

SWI/SNF complexes are classified into three main families: canonical BAF (cBAF), polybromo-

associated BAF (PBAF), and non-canonical BAF (ncBAF). While all families share a common set 

of core subunits, they include variable subunits encoded by multi-gene families, adding 

heterogeneity and slight variation in function148,150. On an epigenetic level, the SWI/SNF 

complex recruits transcription factors and chromatin-remodeling enzymes, promoting cell 

proliferation and differentiation151. 
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In the context of tumorigenesis, up to nine SWI/SNF subunits are known to be linked to 

different cancer types when mutated152. Specifically, the inactivation of either SMARCB1 or 

SMARCA4 gene is present across all rhabdoid tumors, including ATRTs6,153 (Figure 10). 

Epigenetically, the loss of SMARCB1 protein results in a global depletion of H3K27Ac 

(epigenetic mark associated with active gene transcription) and H3K27me3 (epigenetic mark 

associated with gene expression and enhancer silencing) in ATRTs154. However, the loss of 

SWI/SNF activity and the loss of H3K27ac at promoters and enhancers of genes involved in 

differentiation programs leads to an increase of H3K27me3 at these sites, as activity of the 

Polycomb-repressing complex 2 (PRC2), mediated by EZH2, a methylase subunit of the 

complex155–157, is no longer inhibited at these sites by the SWI/SNF complex147,154,158. However, 

SWI/SNF activity is not completely lost in ATRTs, as there is still residual activity present at 

active (super)enhancers and promoters of genes involved in cell cycle regulation and 

oncogenesis154. The exact tumorigenic mechanisms driven by mutations in the SWI/SNF 

complex are, however, not yet fully characterized. This includes understanding the precise 

interplay between the SWI/SNF complex and the PCR2 complex, and how exactly SMARCB1 

inactivation affects the function of EZH2151. Current hypotheses suggest that these mutations 

might lead to either dysfunctional transcriptional regulation impacting lineage specification or 

defects in DNA damage repair mechanisms148. Further research in this area could pave the way 

for improved therapeutic treatments.  

Notably, despite ATRTs having a relatively simple caner genome, there is a substantial clinical 

and molecular heterogeneity between tumor cases. Based on DNA methylation profiling and 

transcriptome analyses, three main molecular subtypes of ATRTs have been identified, each 

with distinct molecular and clinical characteristics: ATRT-TYR, ATRT-SHH and ATRT-

MYC139,144,159 (Figure 11). Furthermore, recent methylation studies have demonstrated that 

SMARCA4-deficient ATRTs constitute a separate subtype from the rest and should be 

considered as an infrequent fourth ATRT subtype (ATRT-SMARCA4)160. 

The ATRT-TYR subtype, accounting for around 34% of the cases160, presents at a median age 

of 12 months160 and predominantly locates in infratentorial regions139. This subtype is 

characterized by the enrichment of tyrosinase (TYR) expression, a feature not observed in 

other subtypes.  
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Figure 10: “Frequency and pattern of SWI/SNF subunit mutations across human cancers. The heatmap depicts 
the frequency of non-synonymous mutations and deletions in select genes encoding components of SWI/SNF 
complexes across cancer types. Overall, the figure depicts the high prevalence of mutations affecting nine 
SWI/SNF subunits and the context-specificity of these mutations, with most being highly enriched in certain 
pediatric and adult malignancies. ARID1A is the most frequently mutated SWI/SNF complex gene, followed by 
SMARCA4 and PBRM1.” Reprinted with permission from Mittal, et al.148  

While TYR expression can be used diagnostically, its role in ATRT tumorigenesis remains 

unclear139. However, its co-expression with TYRP and MITF suggest a neuroectodermal 

origin161. The methylation profiles of ATRT-TYR are highly similar to cribriform 

neuroectodermal tumors (CRINETs), indicating a potential shared cell of origin162. CRINETs are 

associated with better outcomes, suggesting that comparative studies of single-cell data from 

ATRT-TYR and CRINET tumors could provide valuable insight. Biallelic inactivation of SMARCB1 

in this subtype typically occurs through a total or partial loss of chromosome 22 in one allele 

combined with a point mutation in the other allele. Additionally, ATRT-TYR exhibits a higher 

degree of open chromatin163.  
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Figure 11: “Proposed model for including ATRT-SMARCA4 in the subgroup classification of ATRTs. Note that 
frequencies for each subgroup are based on published datasets and represent only a rough estimation. Estimated 
frequencies of SMARCB1-deficient ATRT subgroups (n = 321), their male to female ratios (n = 82 for ATRT-TYR, 
n = 105 for ATRT-SHH, n = 56 for ATRT-MYC), age (n = 62 for ATRT-TYR, n = 72 for ATRT-SHH, n = 43 for ATRT-MYC), 
and locations (n = 68 for ATRT-TYR, n = 91 for ATRT-SHH, n = 48 for ATRT-MYC) as well as information regarding 
genetics, signature genes and pathways is based on the study by Ho et al.139 Frequencies of germline mutations 
was taken from Frühwald et al.164 Frequencies of ATRT-SMARCA4 is estimated based on studies published by 
Johann et al.144 and Frühwald et al.164 Information concerning the sex ratio (n = 19), age (n = 19), location (n = 19), 
and germline mutations (n = 10) of ATRT-SMARCA4 are taken from the study presented here and published 
reports6,165.Genetics, global DNA methylation levels as well as signature genes and pathways of ATRT-SMARCA4 
are based on the here generated results. Design is inspired by the model proposed by Ho et al.139” Reprinted with 
permission from Holdhof, et al160.  
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The ATRT-SHH subtype, which accounts for around 41% of the cases160, presents at a median 

age of 20 months160. This subtype is characterized by the overexpression of members of the 

SHH and NOTCH pathways, including GLI2, PTCH1 and BOC for the SHH pathway and ASCL1, 

HES1 and DTX1 for the NOTCH pathway139. Gene set enrichment analysis (GSEA) suggests a 

neuronal cell of origin for this subtype139. ATRT-SHH exhibits inactivation of SMARCB1 gene 

through point mutations and focal deletions139,160. Methylation profiling reveals two major 

subtypes within ATRT-SHH: ATRT-SHH-1 and ATRT-SHH-2, with recent studies further dividing 

ATRT-SHH-1 into ATRT-SHH-1A and ATRT-SHH-1B166. ATRT-SHH-1A and ATRT-SHH-1B mainly 

localize supratentorially, while ATRT-SHH-2 is found infratentorially, with potential extension 

into the pineal region139,166. While all three ATRT-SHH subtypes exhibit overexpression of the 

SHH and NOTCH pathways, there are notable differences: ATRT-SHH-1B is enriched for 

expression of the proneural marker ASCL1, whereas ATRT-SHH-2 lacks expression of glial 

markers such as OLIG2 and GFAP166. In terms of survival, older patients (> 3 years) with the 

ATRT-SHH-1B subtype tend to have more favorable outcomes compared to the other two 

ATRT-SHH subtypes166. Despite these findings, further analyses are needed to fully characterize 

the differences between the three ATRT-SHH subtypes. It has been shown that inactivation of 

SMARCB1 can activate the SHH pathway167, but it remains unclear why this activation appears 

to be restricted to the ATRT-SHH subtype139. A possible explanation could be the potentially 

different cells of origin of the ATRT subtypes.  

The ATRT-MYC subtype, accounting for around 23% of the cases160, presents at a median age 

of 27 months160 and predominantly localizes in supratentorial regions, but can also be found 

in the spine139,160. This subtype is distinguished by MYC overexpression. Additionally, ATRT-

MYC tumors exhibit overexpression of HOXC cluster genes144, indicating a likely mesenchymal 

cell of origin163. These tumors are characterized by the inactivation of SMARCB1 via focal 

deletions, which can span several hundred kilobases144,163, while point mutations as an 

inactivation mechanism are mostly absent. The methylation profiles of ATRT-MYC tumors show 

similarities to extra-cranial malignant rhabdoid tumors (ecMRTs), suggesting a potential shared 

cell of origin159. Along with the ATRT-SMARCA4 subtype, the ATRT-MYC subtype exhibits an 

overall hypomethylated state139,159,160, which is known to be indicative of poor prognosis168–

170. 
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The ATRT-SMARCA4 subtype, accounting for around 0.5-2% of the cases160, presents at a 

median age of three months160 and predominantly locates supratentorially160. This subtype is 

characterized by either homozygous nonsense or missense inactivation of SMARCA4 and an 

overall hypomethylated phenotype160. This loss may lead to tumor development and 

progression through the activation of proto-oncogenes and cancer-germline genes171,172, 

possibly explaining why ATRT-SMARCA4 subtype is more aggressive than the SMARCB1-

derived subtypes160. At the transcriptional level, ATRT-SMARCA4 exhibits upregulation of 

EPHA5, ROCK1 and FGF10, alongside downregulation of DMRT2. This results in the enrichment 

of the Ephrin forward signaling pathway, which is crucial for CNS development and is 

commonly altered in various cancer types173. Potential treatment avenues specifically for 

ATRT-SMARCA4 subtype might involve targeting EPHA5, as has been tested for other 

pathologies174–176. 

Overall, the cell of origin of ATRTs remain largely elusive, with only hypotheses available. 

Furthermore, instances of SMARCB1-deficient ATRTs emerging in the context of other tumors 

such as ependymoma, high-grade glioma and low-grade glial tumors have been described, 

suggesting the potential for ATRTs to progress from other tumor entities177–180. Treatment 

strategies for ATRTs depend on factors such as tumor location, initial staging, and patient age, 

with varying outcomes across subtypes. Current therapeutic approaches typically involve 

multimodal methods combining surgery, radiotherapy and chemotherapy. Nonetheless, fact 

remains that the overall survival rate for patients with ATRT tumors averages around 17 

months181–183, highlighting the urgent need for more effective and subtype-specific 

treatments.  

In light of current knowledge, the need to delve deeper into the inherent heterogeneity 

underlying ATRT subtypes, including those within ATRT-SHH, becomes evident. Crucial tasks 

such as delineating the cell of origin of these subtypes, determining whether it is shared or 

distinct among them, linking various cell populations to tumor developmental hierarchies, 

characterizing the enriched pathways and transcriptional factors in different tumor cell 

lineages, and exploring the interplay between the tumor microenvironment-derived cell 

populations and the distinct tumor cell types, all require further research. Such studies hold 

promise for uncovering novel therapeutic targets aimed at improving survival rates of ATRT 

patients.  
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To unveil the answers to these questions, I have been granted access to an extensive collection 

of ATRT single-cell datasets derived from both in-house sequencing efforts and international 

collaborations. As a discovery cohort, I possess 19 datasets: six ATRT-TYR, ten ATRT-SHH and 

four ATRT-MYC, all derived from single-nuclei (frozen tissue) using 10X v3 3’ technology (n = 

12), as well as 10X multiome (RNA + ATAC, n = 7), resulting from a collaboration with Dr. Jarno 

Drost at the Princess Maxima Center in Utrecht, the Netherlands. Additionally, in collaboration 

with Sam Behjati at the Wellcome Sanger institute in the UK, I possess one ATRT-TYR single-

cell (fresh tissue) 10X v3 3’ dataset, ideal for trajectory analysis given that current state-of-the-

art tools for such analyses are designed for whole cells rather than just nuclei184. For validation 

purposes, in collaboration with Mariella Filbin at the Dana Farber Cancer Institute in Boston, I 

have obtained eight SMARTseq2 datasets, comprising three single-cell (ATRT-TYR = 1, Not 

known = 2) and five single-nuclei datasets (ATRT-TYR = 1, ATRT-SHH = 1, ATRT-MYC = 3). Lastly, 

for functional validation, I have at my disposal five ATRT cell-line single-nuclei 10X 3’datasets. 
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Materials and Methods 

This section provides an overview of the datasets and methods employed in the project. Each 

subsection will contain a final statement of the people involved in the experiments. All 

bioinformatic analyses, unless specified otherwise at the end of each subsection, were 

conducted by me. Throughout all analyses and data interpretation, I received supervision from 

Prof. Dr. Marcel Kool, initially also from Dr. Natalie Jäger and Dr. med. Pascal Johann, and later 

in the project also from Dr. Jarno Drost at the Princess Máxima Center in Utrecht, who is one 

of the main collaborators on the project. While I wrote the original text of this chapter, I used 

ChatGPT to enhance its readability. 

Ethical statement 

Informed consent was obtained in written form from all patients or their respective legal 

guardians. Patient samples were acquired under the ethical approval of the ethics committee 

of the DKFZ or Princess Máxima Center, respectively. Approval for Máxima samples and clinical 

data within the scope of this study was obtained by the Máxima biobank and data access 

committee (biobank request nr. PMCLAB2018.005). 

Sample processing and nuclei isolation 

For single-nucleus RNA-seq (snRNA-seq, n = 12), sequencing was conducted by Aniello Federico 

and Monika Mauermann following established protocols185. Briefly, each sample was thawed, 

sectioned into smaller pieces (1-2mm3), and minced thoroughly in ice-cold “CHAPS, with salts 

and Tris” (CS) digestion buffer for five minutes. The homogenized tissues were then filtered 

twice through 40 µm cell strainers and washed three times with “salt-Tris” (ST) detergent 

buffer. Subsequently, the samples were centrifuged for five minutes at 500g at 4 °C and the 

nuclei pellets were resuspended in PBS + 0.05% BSA and counted using the Luna Automated 

cell counter (Logos Biosystems). If visible agglomerates and/or cell debris were present, 

samples underwent an additional filtration step using Flowmi 40 µm cell strainers. 

Approximately 20.000 nuclei per sample were loaded into the Chromium single-cell 3’chip (10X 

Genomics), where each cell and its respective transcriptome were individually partitioned and 

barcoded. The steps for cDNA amplification and gene expression library preparation were 

carried out using the Chromium Next GEM Single Cell 3’ Reagent Kits v3.1 (10X Genomics), 
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following the manufacturer’s instructions. The concentration and quality of cDNA and libraries 

were assessed using the Qubit dsDNA HS Assay Kit (ThermoFisher Scientific) and TapeStation 

(Agilent). Equimolar pooled libraries (multiplexes) were sequenced on a NovaSeq 6000 

(Illumina) sequencer, according to the manufacturer’s instructions. 

For single-nucleus multiome samples (n = 7), tissues were processed using manufacturer’s 

standard procedures (Chromium v3, 10x Genomics protocol (CG000338 Rev D)) by Jarno 

Drost’s team at the Princess Máxima Center. This involved mincing and homogenizing tissues 

using a dounce tissue grinder. After cell lysis, the samples underwent filtration using a 70 µM 

filter followed by a 40 µM filter. Intact nuclei were sorted based on 7AAD positivity and size of 

the nuclei.  

Single-nucleus RNA-seq analysis 

Read alignment and count matrix generation 

Sequencing reads were utilized to generate a count matrix using cellranger count 

(v7.0.0)186. This version of cellranger inherently considers introns from the reference 

transcriptome (GRCh38). The count matrices obtained through this method were imported 

into R (v4.2.0) and further processed using Seurat (4.9.9.9045)23,187. 

Quality control of snRNAseq data 

To ensure the exclusion of low-quality cells and droplets, stringent cutoffs were applied 

according to standard guidelines25. The following metrics were taken into consideration: total 

number of unique molecular identifiers (UMI) per cell (nCount_RNA), total number of genes 

per cell (nFeature_RNA) and percentage of mitochondrial RNA per cell (percent.mt). Cells 

were filtered out if they exhibited nCount_RNA < 100, nFeature_RNA < 500 and percent.mt 

> 5%. Additionally, cells falling outside the mean plus three standard deviations of the 

distribution of UMI and genes were also excluded, resulting in a dataset containing only high-

quality cells. 

Doublet removal 

To identify and eliminate doublets from the data, scrublet188 (v0.2.1) was employed. As this 

is a python-based package, it was imported into R using reticulate via the 
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scrublet$Scrublet() function. The output of scrublet exhibited a bimodal distribution, 

based on which the threshold to classify a cell as doublet was determined as the local minimum 

between the two modes of the distribution. This process was conducted independently for 

each patient, and the cells identified as doublets were subsequently removed from the 

analysis. 

Normalization 

To normalize the raw counts, the Seurat::NormalizeData() function was applied using 

default parameters, conducted on a patient-by-patient basis. Subsequently, datasets 

originating from different patients were merged into a single dataset, and highly variable genes 

were selected using the Seurat::FindVariableFeatures() function. The normalized counts 

were then scaled using the Seurat::ScaleData() function while regressing out the effect of 

number of UMIs (nCount_RNA), genes (nFeature_RNA) and percentage of mitochondrial RNA 

(percent.mt) per cell. 

Dimensional reduction 

Dimensionality reduction was performed by first computing principal component analysis 

(PCA) via the Seurat::RunPCA() function, with the normalized data as the basis for the 

method and default parameters. A total of 50 principal components (PC) were generated as 

the output of the method, out of which the top 25 were selected for downstream analysis. This 

selection process involved inspecting the amount of standard deviation represented by each 

principal component using the Seurat::ElbowPlot() function. Following PCA, uniform 

manifold approximation and projection50 (UMAP) was computed using the 

Seurat::RunUMAP() function, also under default parameters. 

Data integration 

Data integration was performed using the Harmony56 package, via the function 

harmony::RunHarmony(). This was based on the PCA reduction embedding, and the method 

generated a new embedding known as Harmony reduction. In this new embedding, the effect 

of cells originating from different patients and sequencing technologies was mitigated. The 

method was run with default parameters, except for setting theta as 1 for patients and 2 for 

sequencing technologies. 
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Clustering and cell type annotation of the Tumor Microenvironment 

To identify cells and clusters that were not malignant, the composition of patients per cluster 

was examined using SCpubr133 package via the function SCpubr::do_BarPlot(). Clusters 

composed of cells originating from the majority, if not all, patients were designated as tumor 

microenvironment (TME). Conversely, clusters predominantly consisting of cells from a single 

patient were annotated as malignant cells. Additionally, chromosome 22 loss was assessed 

using copy number variant (CNV) analysis via the inferCNV95 package, with TME clusters 

serving as reference. The following parameters were applied: cutoff = 0.1, 

min_cells_per_gene = 3, HMM = TRUE, HMM_type = “i6” and window_length = 201. To 

enhance the sensibility of the analysis, metacells were computed, following the method 

outlined in previous publications189. Clusters presenting a chromosome 22 loss were classified 

as malignant cells, in line with published data that chromosome 22 loss is most common in 

ATRT-TYR tumors139. 

For annotating the TME clusters, enrichment scores were calculated using the UCell190 

package. Various TME cell populations commonly found in tumors were selected, and their 

corresponding marker gene sets were retrieved from PanglaoDB191. Enrichment scores were 

then visualized as feature plots using SCpubr::do_FeaturePlot() and also as enrichment 

heatmaps using SCpubr::do_EnrichmentHeatmap(). 

Annotation of tumor cells 

A three-step workflow was devised to characterize the different tumor subpopulations within 

the tumor cells. Initially, supervised annotation was performed based on selected gene sets 

sourced from publications. The gene sets comprised differentially expressed genes from the 

cell populations identified in the human fetal brain atlas192, pan-cancer recurrent cell states104 

derived from non-negative matrix factorization (NMF), and choroid plexus markers obtained 

from PanglaoDB. Enrichment scores for these gene sets were computed using UCell, and 

transformed into an Assay object compatible with Seurat, serving as input for the previously 

described dimensional reduction workflow. The enrichment scores were then visualized in the 

context of the new UMAP embedding by plotting them as feature plots with 

SCpubr::do_FeaturePlot() and as heatmaps using SCpubr::do_EnrichmentHeatmap(). 

Clusters exhibiting unique enrichment for a particular gene set were subsequently annotated.  
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Cells not annotated in the previous step underwent unsupervised annotation using NMF, 

following previous publications189. In summary, NMF was applied independently for each 

patient, yielding NMF programs that were correlated and clustered using Pearson’s 

correlation. Highly correlated NMF programs were grouped into NMF metaprograms, from 

which the top 30 scoring genes were extracted and used for annotation. Consequently, clusters 

were annotated based on the NMF metaprogram in which they were uniquely enriched. 

Finally, the remaining cells underwent a new round of clustering, and marker genes for each 

of the newly computed clusters were identified using COSGR193. The top differentially enriched 

genes were analyzed for functional annotation using Metascape194. In cases where no strong 

association with a specific phenotype was evident, clusters were annotated based on the ATRT 

subtype to which they belonged. 

Stemness activity analysis 

To characterize tumor cell populations based on their activity in different stem cell gene 

marker sets, decoupleR85 was used. This tool calculates a cell-wise activity score based on prior 

knowledge networks, which can be generated based on specific gene sets or retrieved from 

public sources. In this case, marker gene sets for pluripotent stem cell (PSC), embryonic stem 

cell (ESC) and neuronal stem/precursor cell (NSPC), originating from PanglaoDB Extended 2021 

database hosted in EnrichR195 were retrieved and used to build the prior knowledge network. 

The mode of regulation of the custom network was set to 1, as all the genes were considered 

marker genes for their respective cell types. The inferred activities were visualized as a 

heatmap using SCpubr::do_AffinityAnalysisPlot(). 

Panel design for spatial transcriptomics using Xenium 

In addition to the genes included in the commercially available Xenium Multi-Tissue and Cancer 

panel (377 genes)196, a custom panel for spatial transcriptomics was created by incorporating 

100 additional genes. To select these additional genes, differential expression analysis across 

all cell populations was performed using COSGR193, enforcing a 25% of representation of the 

gene in the cell type. Mitochondrial, ribosomal, and long non-coding genes, as well as 

alternative spliced variants, were filtered out. The top four DE genes per cell population were 

then retrieved, resulting in a total of 76 genes. Additional genes representative of different 
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immune fractions and TFs were included by Jarno Drost’s team in the Princess Máxima Center 

to reach a total of 100 add-on genes. In total, the designed panel comprised 477 genes.  
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Results 

To elucidate distinct cell states within ATRT tumors across each of the ATRT subtypes, single 

nucleus RNA sequencing (snRNAseq, Marcel Kool’s laboratory) and multiome (RNA + ATAC, 

Jarno Drost’s laboratory) on primary patient ATRT tissues (Figure 12) was conducted. My role 

in this project primarily involved analyzing the RNA data, while Irene Paasen and Jiayou He are 

currently analyzing the ATAC data and performing wet-lab validations.  

 
Figure 12: Metadata ATRT discovery cohort. Molecular characteristics of the ATRT discovery cohort are 
presented. Not all ATRT-SHH patients received an ATRT-SHH subtype diagnosis, therefore called as “ATRT-SHH”. 

Initially, my focus was on comprehending the nature of the dataset by examining the metadata 

associated with the patients. The cohort comprised of 19 distinct tumor samples spanning the 

three ATRT subtypes (ATRT-TYR = 6, ATRT-SHH = 9, ATRT-MYC = 4), utilizing various sequencing 

techniques (10X 5’ v3 = 12, 10X multiome = 7) and originating from different tissue types 

(Viably frozen = 12, snap frozen = 7). This dataset represents a significant contribution to the 

field of pediatric neurooncology, particularly given the absence, at the time of writing, of 

comprehensive single-cell transcriptomics cohorts for the different ATRT subtypes.  

Identifying tumor cells apart from tumor microenvironment 

To distinguish between tumor and tumor microenvironment cells, stringent quality control was 

enforced to filter out low quality cells, following recommendations from previous studies25. 

Subsequently, total of 36.601 nuclei passed quality control and underwent normalization 

according to standard guidelines34. Upon dimensional reduction through PCA followed by 
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UMAP and clustering, a total of 21 distinct clusters were identified. To initiate the cluster 

labelling process, I opted to inspect the clusters to determine the ones belonging to the tumor 

microenvironment (TME) and which ones were tumor cells. Various approaches can be 

employed for this purpose. Typically, TME cells tend to aggregate into a single cluster before 

integration, whereas the tumor fraction predominantly remains as a patient-specific cluster. 

To verify this pattern, I examined the composition of patients per cluster (Figure 13A-B). The 

results suggested that clusters 13, 16, 19 and 20 exhibited a multi-patient composition, while 

the remaining clusters were predominantly comprised of cells from a single patient.  

In addition, copy number variant (CNV) profiles of the tumor cells can be inferred using the 

TME cell clusters as a reference. Through this analysis, I anticipated identifying a chromosome 

22 loss in tumor cells belonging to ATRT-TYR subtype (Figure 14A-C), consistent with previous 

studies139,197. Additionally, projecting chromosome 22 CNV scores onto the merged UMAP 

revealed a distinct pattern specific to tumor cells of the ATRT-TYR subtype, corresponding to 

tumor cells (Figure 14C). However, distinguishing tumor cell populations from ATRT-SHH or 

ATRT-MYC subtype through CNV analyses is not straightforward, as tumors in these subtypes 

exhibit no CNVs139. 

 
Figure 13: Identifying cell clusters shared across patients. (A) UMAP representation colored by patient. UMAP1, 
x-axis; UMAP2, y-axis. (B) Patient composition per each cluster identified prior to data integration. Clusters 
located at the top belong to tumor microenvironment and clusters in the bottom group are tumor cells. 
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Figure 14: Chromosome 22 loss identifies tumor cells in ATRT-TYR. (A) UMAP representation of ATRT single-
cell cohort prior to integration colored by ATRT subtype. UMAP1, x-axis; UMAP2, y-axis. (B) Inferred copy number 
variant profile using cells from tumor microenvironment as a reference (top). CNV scores are further aggregated 
by ATRT subtype and chromosome and displayed as a heatmap (bottom). Scores around 1 mean no CNV, being 
higher associated with a chromosome gain and lower with a loss. (C) UMAP representation of ATRT single-cell 
cohort where chromosome 22 scores (see B) have been mapped onto. Chromosome 22 loss can be observed in 
the regions of the UMAP where ATRT-TYR cells are located (see A). UMAP1, x-axis; UMAP2, y-axis. 

 

 
Figure 15: Querying ATRT bulk RNA-seq literature markers on single-cell data. Enrichment (left) and expression 
(right) heatmap of literature ATRT subtype marker gene sets139,198.  
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Following this, I hypothesized that another method to delineate the tumor cells within each 

ATRT subtype could be computing enrichment scores based on gene marker sets previously 

identified from bulk RNA sequencing studies on ATRTs139,198. Analyzing the enrichment trends 

of clusters in marker gene sets specific of specific ATRT subtypes (Figure 15) revealed a clear 

expression pattern for ATRT-TYR-specific marker genes. In contrast, ATRT-SHH and ATRT-MYC 

markers exhibited more diffuse expression profiles within their respective subtypes. These 

findings underscore a general lack of specificity of literature-based marker sets derived from 

ATRT bulk transcriptomics datasets in my single-cell data. 

Next, I aimed to gain insights into the biological characteristics of the TME clusters. To achieve 

this, I retrieved various sets of marker genes for different TME cell populations from 

PanglaoDB191 and generated enrichment scores. This analysis revealed a total of six distinct 

TME populations within my datasets: astrocytes, endothelial cells, microglia and immune cells, 

neurons, oligodendrocyte precursor cells (OPC) and pericytes (Figure 16A-B). 

 

 
Figure 16: Annotation of TME clusters based on reference marker sets. (A) Enrichment heatmap of literature 
marker gene sets191 for tumor microenvironment cell types for a selection of cell clusters shared across patients. 
(B) UMAP representation colored by tumor microenvironment clusters. Grey cells are tumor cells. UMAP1, x-axis; 
UMAP2, y-axis. 
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Finally, to exclude batch effects from impacting dimensional reduction, I integrated the dataset 

to regress out the effects of patient identity and sequencing batch. This resulted in a UMAP 

reduction where clustering was based on ATRT subtypes while maintaining TME clusters 

together. The UMAP revealed three main branches, each representing one of the ATRT 

subtypes, supporting the presence of subtype-specific expression signatures (Figure 17A-B). 

However, in one of the branches, I observed a mixture of ATRT-MYC and ATRT-SHH cells. 

Additionally, at the center of the UMAP, there was a region where the three ATRT subtypes 

converged, and subtype-specific signatures appear to overlap. 

 
Figure 17: Integration with Harmony. (A) Integrated UMAP representation colored by tumor microenvironment 
clusters. Grey cells are tumor cells. UMAP1, x-axis; UMAP2, y-axis. (B) Integrated UMAP representation colored 
by ATRT subtype. UMAP1, x-axis; UMAP2, y-axis. 

Characterization of tumor lineages: a supervised and unsupervised pipeline 

Next, I explored whether the expression patterns of tumor cells resembled those of normal cell 

types. To achieve this, annotated TME cell types were removed from the analysis, and tumor 

cells were annotated based on an annotation pipeline I developed (Figure 18). This pipeline 

involved several stages. Initially, supervised annotation on the tumor cells was conducted 

based on a collection of literature-derived marker gene sets. The remaining tumor cells 

underwent supervised annotation through first the computation of non-negative matrix 

factorization (NMF), resulting in the identification of NMF metaprograms.  
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Figure 18: Tumor annotation workflow. Schematic overview of tumor cell annotation workflow. Supervised 
annotation based on literature marker gene sets (left) following by unsupervised annotation via NMF and 
differential expression analysis of the remaining, not annotated cells (right). Illustration made by Irene Paassen 
and modified by me. 

Subsequently, unannotated cells were then reclustered, and differentially expressed genes 

were identified for each cluster. In both variants of unsupervised annotation, I attempted to 

assign a phenotype to each gene marker set based on Gene Ontology (GO) enrichment 

analysis. In the supervised annotation step (Figure 18-left), I curated literature-derived 

gene sets that encompassed phenotypes related to fetal development191,192 and recurrent 

tumor programs across different cancer types104. These gene sets were included as they 

offered potential phenotypes that might also be observed in ATRTs. My rationale was that the 

enrichment on these gene signatures could serve as a foundation for clustering and 

dimensional reduction, leading to clusters with distinct enrichment patterns.  

Using this approach, I annotated the clusters as “alike” due to their distinctive enrichment in 

one or several gene signatures (Figure 19A-C). This method unveiled different developmental 

trajectories across ATRT subtypes: ATRT-TYR cells exhibited choroid plexus-like and cilia-like 

tumor populations; ATRT-SHH presented radial glia (RG)-like cells, branching into neuronal 

precursor cell (NPC)-like and oligodendrocyte precursor cell (OPC)-like tumor populations; and 

ATRT-MYC showcased a mesenchymal-like tumor population (Figure 19D). Moreover, the 

cilia-like population, although present in some ATRT-SHH patients, was entirely absent in ATRT-

MYC cases (Figure 19E).  

Notably, I identified a tumor population shared across all ATRT subtypes with expression 

signatures resembling those of neuronal intermediate precursor cells (defined as neuroblast-

like cells with cycling activity), which I termed IPC-like. Additionally, I identified a cluster of 

hypoxic cells, primarily mapping to a single patient. Previously, it has been shown that ATRT-
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SHH can be further subclassified into ATRT-SHH-1A, ATRT-SHH-1B and ATRT-SHH-2166. 

Interestingly, the majority of NPC-like cells belonged to the ATRT-SHH-2 subtype, while the 

OPC-like population was predominantly composed of cells from ATRT-SHH-1A (Figure 19F). 

ATRT-SHH-1B cells were not represented in the NPC-like nor OPC-like populations, but instead 

were primarily identified as a distinct NMF metaprogram (see below). 

 
Figure 19: Supervised annotation of tumor cells. (A and B) UMAP representation computed based on 
enrichment scores in the supervised annotation gene sets, colored by original integration clusters (A) and inferred 
annotation derived from the supervised step in the annotation workflow (B). UMAP1, x-axis; UMAP2, y-axis. (C) 
Heatmap depicting enrichment scores for a representative subset of gene sets used in the supervised annotation 
step. Choroid plexus markers (CP) were retrieved from PanglaoDB database191. Rows: tumor cell populations in 
(B), columns: gene set. Color gradient is subset to comprise [0.05, 0.2]. OPC: oligodendrocyte precursor cell; NPC: 
neuronal precursor cell; RG: radial glia; IPC: neuronal intermediate precursor cell; CP: choroid plexus. (D) 
Integrated UMAP representation highlighting tumor cell types. UMAP1, x-axis; UMAP2, y-axis. OPC: 
oligodendrocyte precursor cell; NPC: neuronal precursor cell; RG: radial glia; IPC: neuronal intermediate precursor 
cell; CP: choroid plexus. (E) Tumor population composition per patient from the cell types resulting from the 
supervised annotation step. Bars are grouped by ATRT subtype and ordered based on decreasing proportion of 
IPC-like cells. OPC: oligodendrocyte precursor cell; NPC: neuronal precursor cell; RG: radial glia; IPC: neuronal 
intermediate precursor cell; CP: choroid plexus. (F) Integrated UMAP representation of ATRT-SHH-1A and ATRT-
SHH-2 across NPC-like and OPC-like populations (left) and the ATRT-SHH subtype and patient composition of these 
tumor populations (right). 
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The fraction of tumor cells that remained unannotated underwent unsupervised annotation 

(Figure 18-right). This process began with non-negative matrix factorization (NMF) (Figure 

20A-D), and for any cells still unannotated, continued through re-clustering followed by 

differential expression analysis (Figure 20E). Correlation analysis on the NMF programs 

revealed a total of eight highly correlated NMF metaprograms. NMF programs that were not 

correlated, or correlated groups mostly originating from a single patient, were excluded 

(Figure 20C). I performed GO enrichment analysis on both NMF metaprograms and clusters, 

assigning annotations to those showing clear enrichment, while labelling the remaining cells as 

“Unannotated” (Figure 20F). NMF-based cell populations were named based on the order of 

retrieval of NMF metaprograms, while subsequent clusters were named based on the 

predominant ATRT subtype.  

A ground-state rhabdoid tumor cell population at the basis of the developmental 

hierarchies of each ATRT subtype 

Next, I investigated whether the IPC-like population, given its presence across ATRT subtypes 

and patients (Figure 21A), truly exhibited a cycling nature. To do this, I conducted differential 

expression analysis comparing the IPC-like population to the other cell populations. I focused 

on the top 100 differentially expressed genes and subjected them to GO enrichment analysis. 

Remarkably, the top 10 enriched GO terms were clearly associated with a cell cycle phenotype 

(Figure 21B). This observation was consistent with the inferred cell cycle phase for each 

tumor population: IPC-like cells exhibited a phase assignment predominantly in the S and G2M 

phases, indicating increased cell proliferation compared to most other tumor cell populations, 

which were majorly on the G1 phase199 (Figure 21C). The only other tumor cell population 

showing a high fraction of cells in the G2/M was the mesenchymal-like, although also exhibiting 

a small fraction of cells in the G1 phase, unlike the IPC-like cells.  

Given that the IPC-like population resembles neuroblasts, I assessed its similarity to different 

stem cell types using literature marker gene sets from PanglaoDB Augmented 2021191,195. 

These gene sets served as a prior knowledge network, and activity scores were computed 

across tumor cell populations85.  
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The results showed that activity scores for pluripotent stem cell marker genes were highest in 

IPC-like population, suggesting that this tumor cell population also harbors a stem-like 

phenotype (Figure 21D-E).  

 
Figure 20: Unsupervised annotation of tumor cells. (A) Heatmap depicting Pearson’s correlation score between 
each pair of NMF programs. Groups of highly correlated programs shared across patients become NMF 
metaprograms. Non-correlated programs or highly correlated programs unique of single patients are excluded. 
(B) Heatmap depicting enrichment scores for each metaprogram in a re-clustering using only the unannotated 
cells from the supervised annotation step. (C, D) UMAP representation based on enrichment scores in the NMF 
metaprograms, colored by cluster (C) and derived annotation from the unsupervised annotation step based on 
NMF (D). UMAP1, x-axis; UMAP2, y-axis. (E) UMAP representation of the remaining, unannotated, cells after the 
unsupervised annotation step based on NMF, colored by inferred clusters with slight GO term enrichment, that 
predominantly associated with a single ATRT subtype. Unannotated cells are a mixture of cells that were not 
labelled in any of the previous steps. UMAP1, x-axis; UMAP2, y-axis. (F) Integrated UMAP representation colored 
by the inferred cell populations (TME + tumor cells). UMAP1, x-axis; UMAP2, y-axis.  
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Figure 21: IPC-like population is highly proliferative and displays features of pluripotent stem cells. (A) 
Integrated UMAP representation highlighting IPC-like cells colored by ATRT subtype. UMAP1, x-axis; UMAP2, y-
axis. (B) Dot plot depicting the enriched GO terms based on top 100 marker genes for the IPC-like population 
against the rest of cell identities in the dataset. Top ten GO terms are shown. Color encodes for adjusted p-value 
and size indicates the number of marker genes supporting each term. (C) Cell cycle phase proportion across tumor 
cell populations. (D) Heatmap of activity scores for different literature gene sets associated with stemness (PSC = 
pluripotent-stem cells, ESC = embryonic stem-cells, NSPC = neuronal stem/precursor cells)191. Scores are scaled 
and centered, thus comparison across columns should be avoided. (E) Box plot depicting non-scaled and not 
centered PSC activity scores across tumor cell populations. Activity scores for IPC-like population are significantly 
higher than those of the second scoring population, Mesenchymal-like (Wilcoxon test: *** < 0.001). (F) Schematic 
illustration based on the integrated UMAP representation where different ATRT subtype-specific trajectories have 
been showcased. Arrows indicate the possible direction of differentiation within the tumor cell population. 
Illustration made by Irene Paassen. 

While previous studies support the notion of a differential cell of origin for each ATRT 

subtype139, I hypothesize that the loss of SMARCB1 may alter the transcriptome in these 

distinct cells of origin, causing them to resemble neuronal IPC-like progenitor cells.  

These cells may serve as the basis for the various differentiation lineages emerging in each 

ATRT subtype (Figure 21F). Therefore, these cells are clustered together in the UMAP due to 

their shared cycling and stem-like properties. 

 



 56 

Consequently, due to the overarching cycling nature of the IPC-like tumor cell population, I 

aimed to ascertain whether their presence was not due to biological batch effect in my analysis. 

For this, I conducted an experiment to determine whether regressing out the effect of cell cycle 

genes prior to dimensional reduction and supervised annotation would affect the identification 

of the IPC-like tumor cell population.  

After performing this process, I identified a new IPC-like cluster, the cells of which exhibited a 

high degree of overlap with those previously annotated as IPC-like (Figure 22). This finding 

suggested that the cell cycle was not a confounding artifact in my analyses. 

 
Figure 22: IPC-like bias. Integrated UMAP representation highlighting the IPC-like population (top-left) prior to 
regressing out the effect of cell cycle. Cell cycle-regressed cells underwent supervised annotation step. UMAP 
representation based on enrichment scores (bottom-left) and colored by the enrichment is Neuronal IPC and 
Cycle marker sets are displayed. New IPC-like population is defined and projected onto the original integrated 
UMAP representation (top-right). Cell type proportion across the new clusters and IPC-like population is displayed 
as a bar plot (bottom-right), where most of the new IPC-like population is formed by the old one, thus reassuring 
that I did not find this population as a bias from not regressing out cell cycle effect. UMAP1, x-axis; UMAP2, y-axis. 
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Inferring the presence of IPC-like cells in additional datasets 

Next, I aimed to determine whether the identification of an IPC-like tumor cell population was 

unique to my datasets or if this population could also be detected in additional datasets. To 

explore this, I utilized various validation datasets, including single-nuclei (n = 5) and single-cell 

(n = 3) SMARTseq2 datasets, single-nuclei ATRT cell line 10X v3 3’datasets (n = 5), and fresh-

tissue 10x v3 3’ single-cell (n = 1) datasets. After conducting quality control, normalization, 

clustering and dimensional reduction, I proceeded with supervised annotation using the same 

gene sets as previously described. The findings indicated that, across the various datasets 

examined, there were cell clusters showing enrichment for both neuronal IPC and cycling gene 

sets (Figure 23A-D), thus confirming the presence of IPC-like cells as a distinct tumor cell 

population within ATRT tumors. 

Designing a gene panel for Xenium spatial transcriptomics 

To examine the spatial arrangement of the previously characterized tumor and tumor 

microenvironment cell populations, I devised a gene panel for Xenium spatial transcriptomics. 

To assess the specificity of the selected genes for each cell population, I evaluated their 

enrichment and expression across all cell populations. The findings revealed that each cell 

population could be distinguished by, at most, a combination of two gene sets (Figure 24A). 

Moreover, the expression of individual genes was predominantly restricted to individual cell 

populations, except for closely related cell types within specific ATRT subtype-specific tumor 

lineages, such as CP-like and cilia-like tumor cell populations (Figure 24B). 

With a tailored gene panel crafted to encompass the heterogeneity within my datasets, the 

experiment design for the Xenium datasets was then established. This involved selecting 

representative sample pairs across ATRT subtypes showcasing contrasting levels of immune 

infiltration, for which spatial transcriptomics data is currently being generated. While my work 

related to this PhD thesis concluded at this stage, the results stemming from this analysis could 

yield crucial insights into the interplay between ATRT tumor cells and their microenvironment, 

offering potential avenues for identifying therapeutical targets. 
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Figure 23: Inferring IPC-like tumor cell population in validation datasets. Four validation datasets are used in 
order to retrieve, among others, the IPC-like population: 5x 10x v3 5’ snRNAseq cell line data (A), 1x 10x v3 5’ 
scRNAseq ATRT-TYR (B), 5x SMARTseq2 snRNAseq (C) and 3x SMARTseq2 scRNAseq (D). For each dataset, 
enrichment scores for the supervised annotation set are computed. UMAP representation and clustering based 
on enrichment scores are computed (left) and scores are visualized as a heatmap (middle). Scores for Neuronal 
IPC and Cycle gene sets are normalized to range from 0 to 1 and a linear combination of both is calculated to form 
a combined score, projected onto the UMAP visualization (right). Cells with highest scoring for both gene sets will 
have a high combined score, and therefore will be highlighted in the UMAP. Across datasets, a specific region of 
the UMAP is highlighted, suggesting the presence of IPC-like cells. UMAP1, x-axis; UMAP2, y-axis. 
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Figure 24: Panel generation for Xenium. Enrichment scores (A) and expression levels (B) for the different genes 
and associated gene sets per each cell population. Gene set or individual genes, x-axis; cell clusters, y-axis. 
Unannotated cells belong to the subset of tumor cells that could not be annotated by neither supervised nor 
unsupervised annotation methods. Color scale for enrichment scores restricted to a maximum of 0.5 and to a 
maximum of 1 for average expression level. 
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Discussion 

ATRTs are notorious for their poor prognosis within pediatric brain tumors. Over the past 

decade, numerous studies have explored the heterogeneity across ATRT subtypes139,163,200,201. 

However, no comparative analysis has been conducted at the single-cell level, nor has the cell 

of origin of each ATRT subtype been fully characterized, leaving only hypothesis available. In 

this project, I aimed to systematically compare the inherent heterogeneity present at 

transcriptional and chromatin accessibility levels within and between SMARCB1-deficient ATRT 

subtypes at a single-cell level. I devised a comprehensive tumor cell type annotation strategy 

and characterized the different tumor lineages that ATRT tumor cells commit to. 

The results of the tumor cell type annotation revealed ATRT subtype-dependent overarching 

tumor lineages, consistent with previous studies139,144. Specifically, ATRT-TYR cells exhibited a 

transition from choroid plexus-like cells towards cilia-like cells, while ATRT-SHH cells showed a 

transition from radial glia-like cells towards either an oligodendrocytic or neuronal/astrocytic 

lineage. Additionally, ATRT-MYC cells harbored a shift towards a mesenchymal-like lineage. 

Since ATRT-SHH can be further classified into three distinct subtypes166, the distinct lineages 

observed in the data may be linked to specific ATRT-SHH subtypes. Tumor cell type 

composition analysis suggested a polarization of ATRT-SHH-1A subtype towards the 

oligodendrocytic lineage and ATRT-SHH-2 towards the neuronal/astrocytic lineage. However, 

further research on a larger ATRT-SHH cohort is needed to validate these observations.  

Despite previous studies suggesting different cells of origin for each ATRT subtype139,198,202, 

tumor cells within my datasets converged in an integrated embedding into a tumor cell 

population shared across patients and ATRT subtypes. These cells exhibited expression 

signatures resembling those of neuroblasts with cycling activity, which I termed IPC-like cells. 

Even after accounting for cell cycle genes as a potential confounding factor, the same 

population persisted, indicating their integration into a single cell cluster based on additional 

phenotypes beyond cycling nature. Gene set enrichment analysis focusing on stemness-

associated gene sets revealed that IPC-like highly scored for pluripotent stem cell gene 

markers. These findings position IPC-like cells at the root of the differentiation lineages of each 

ATRT subtype, being integrated together based on their dominant overarching cycling and 

stem phenotype while still retaining expression signatures characteristic of their subtype of 
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origin. Consequently, IPC-like cells may serve as a “rhabdoid ground-state” cell population 

within each patient, potentially crucial for promoting tumorigenesis. Furthermore, IPC-like 

cells appear not to be a unique finding from my datasets, with their presence being confirmed 

in the various validation datasets. Therefore, targeting this tumor population to induce 

differentiation towards the end of the aforementioned tumor lineages could be pivotal in 

developing ATRT subtype-targeted therapies.  

Having identified the differential tumor lineages across ATRT subtypes at a single-cell level and 

characterized the presence of a ground-state tumor cell population with therapeutic potential, 

the next crucial step is validation. Functional validation through gene set enrichment analysis 

at the pathway and transcription factor levels will provide insights into the roles of each tumor 

cell population in ATRT biology. Additionally, ligand-receptor analysis can shed light on the 

crosstalk between tumor populations and the microenvironment. Furthermore, contrasting 

these results at the chromatin accessibility level may be essential to determine whether other 

epigenetic factors contribute to the observed heterogeneity in ATRTs.  

Assessing the role of the IPC-like population as a “rhabdoid ground-state” tumor cell 

population may involve performing drug testing analysis on organoid models, where a 

combination of drugs selected to promote differentiation can be tested by comparing viability 

readouts against a control setting. Furthermore, exploring the spatial disposition of the 

different tumor cell populations can provide key insights on the interplay between tumor cell 

populations and tumor microenvironment. By designing experiments where sample pairs per 

ATRT subtype are selected with varying degrees of immune infiltration, a comparative analysis 

of tumor and tumor microenvironment composition in relation to immune infiltration can be 

conducted. Altogether, these results and follow-up experiments hold promise for further 

research and serve as a foundation for the development of potential ATRT subtype-specific 

therapies.  
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Tumor heterogeneity  and tumor-microgl ia  interact ions in  pr imary 

and recurrent IDH1-mutant g l iomas 

Introduction 

Diffuse gliomas are prevalent malignant brain tumors in adults203. The latest WHO classification 

of CNS tumors, updated in 2021, categorizes adult-type diffuse gliomas into three main 

supergroups: astrocytoma, isocitrate dehydrogenase (IDH)-mutant, oligodendroglioma, IDH-

mutant and 1p/19q-codeleted and glioblastoma, IDH-wildtype7. With the exception of 

glioblastoma, IDH wildtype, these tumors are collectively referred as IDH-mutant gliomas. 

IDH-mutant gliomas are diffusely infiltrating tumors characterized by a hallmark mutation in 

either the IDH1 or IDH2 gene, encoding homologous proteins. The most common IDH1 

mutations, occurring on amino acid 132, includes substitutions such as arginine-to-histidine 

(IDH1 R132H, 83-91% of cases)204; arginine-to-cysteine (IDH1 R132C, 3.6-4.6% of cases)204; 

arginine-to-glycine (IDH1 R132G, 0.6-3.8% of cases)204; arginine-to-serine (IDH1 R132S, 0.8-

2.5% of cases)204; or arginine-to-leucine (IDH1, R132L, 0.5-4.4% of cases)4,204,205. In the case of 

IDH2 mutations, which occur on amino acid 172, the arginine-to-lysine substitution (IDH2, 

R172K) is the most frequent206.  

These mutations lead to a gain of function that disrupts the conversion of isocitrate to α-

ketoglutarate (α-KG), shifting it to a production of D-2-hydroxyglutarate (D-2HG) (Figure 

25A), an oncometabolite207 that decreases the activity of hypoxia-inducible factor 1 α (HIF1α) 

protein208, known to be a suppressor of gliomagenesis209 and also antagonizes via competitive 

inhibition with other tumor-suppressors part of the α-KG-dependent dioxygenase family such 

as ten-eleven translocation (TET) DNA modifying enzymes and jumonji-C domain-containing 

(JmjC) histone demethylases210,211 (Figure 25B-C). This interference results in DNA 

hypermethylation, known as the glioma-associated CpG island methylator phenotype (G-

CIMP)212, leading to a differentiation block213 and the exhibition of tumor cell populations close 

to that of stem cells in both oligodendrogliomas an astrocytomas135,214. G-CIMP can be 

characterized as “G-CIMP-high” and “G-CIMP-low” (state seems to alter alongside tumor 

progression)215, with the latter associated with worse prognosis216. 
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Figure 25: “Functions of normal and mutated IDH enzymes. (A) Normal IDH1 and IDH2 proteins use NADP+ as 
an electron acceptor to catalyze the oxidative decarboxylation of isocitrate, producing α-ketoglutarate (αKG) and 
CO2. However, mutant IDH1 and IDH2 produce D-2-hydroxyglutarate (D-2-HG) from α-KG using NADPH as an 
electron donor. (B) The normal isoforms IDH1 and IDH2 catalyze αKG production in the cytoplasm and 
mitochondria, respectively. As a critical intermediate in the Krebs cycle, αKG is involved in many biological 
metabolic processes. A superfamily of enzymes called αKG-dependent dioxygenases (αKGDs), including TET, KDM, 
and EglN, can decarboxylate αKG to succinate while hydroxylating different substrates for various further changes, 
such as DNA demethylation, histone demethylation, and ubiquitination of transcription factor HIF-1α. (C) Mutant 
IDH1 produces high level D-2-HG. As a structural analog of αKG, excessive D-2-HG competitively inhibits the 
catalytic efficiency of the TETs and KDMs while paradoxically stimulating EglN activity. Decreased TET and KDM 
activity causes DNA and histone hypermethylation, respectively, while increased EglN activity lowers HIF. 
Collectively, these changes affect gene expression, cell division and differentiation.” Reprinted with permission 
from Miller, et al.217  

Studies also show that DNA hypermethylation at cohesion and CCCTC-binding factor (CTCF) 

binding sites affects chromosomal topology, promoting new chromosomal interactions that 

induces expression of glioma oncogenes such as platelet-derived growth factor receptor alpha 

(PDGFRA)218.  
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Additionally, MGMT promoter methylation is a recurrent event in IDH-mutant gliomas212,219. 

MGMT promoter encodes for a DNA repair protein responsible for removing alkyl groups from 

the O6 position of guanine in DNA, affecting the efficiency of therapy treatments with 

alkylating agents such as temozolomide (TMZ)220. Hypermethylation at MGMT promoter 

silences the gene, therefore depleting its protein levels and thus allowing for TMZ to have an 

increased effect.  

Based on histologic and molecular and methylation data, IDH-mutant gliomas can thus be 

classified into two major subtypes: astrocytomas and oligodendrogliomas217. Astrocytomas can 

range from WHO grade 2-4 and is typically presented at a median age of 38 years for WHO 

grade 2-3 cases221, which is slightly higher than for WHO grade 4 cases222. Molecularly, 

astrocytomas often harbor loss-of-function mutations in TP53 and alpha thalassemia/mental 

retardation (ATRX, 70% cases)221 genes. Mutations in the ATRX gene lead to an abnormal 

telomere maintenance mechanism commonly referred to as alternative lengthening of 

telomeres (ALT)223,224, contributing to genomic instability225. This instability can manifest as 

copy-number abnormalities, including amplifications of oncogenes such as MYC or CCND2221. 

These molecular features contribute to the pathogenesis and progression of astrocytomas. 

Oligodendrogliomas are characterized by a specific genetic alteration being the codeletion of 

chromosome arms 1p and 19q, resulting from an unbalanced translocation between these 

chromosome arms226. This event is a defining feature for the classification and diagnosis of 

oligodendrogliomas. Oligodendrogliomas can range from WHO grade 2-3 and are typically 

diagnosed at a median age of 43 years for CNS grade 2 cases and of 50 years for CNS grade 3 

cases227. Oligodendrogliomas very frequently exhibit IDH1 R132H substitution, which is present 

in approximately 90% of cases. However, some cases may have non-canonical substitutions in 

either IDH1 or IDH2 gene.205  

Additionally, mutations in telomerase reverse transcriptase (TERT) promoter (most of the 

cases)228,229, CIC (70% of cases)221,230 or FUBP1 (20-30% of cases)230 are commonly observed in 

oligodendrogliomas. TERT promoter mutations, such as C228T or C250T substitutions, lead to 

transcriptionally upregulation of TERT, promoting cellular immortalization and proliferation 

and telomere stabilization231, and are considered to be a clonal event in oligodendroglioma 

formation232,233. CIC, a repressor of the MAPK pathway234, is involved in controlling cellular 
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growth, development and metabolism235. Lower levels of CIC resulting from mutations are 

linked to gliomagenesis by promoting the proliferation of neural stem cells236 and upregulating 

D-2HG237. FUBP1 is essential for the maintenance and self-renewal of neural stem cells238 and 

promotes alternative splicing of oncogenes and tumor suppressor genes239. The combined loss 

of CIC and FUBP1 are linked to shorter tumor recurrence time240.  

Both astrocytomas and oligodendrogliomas can originate in any part of the CNS, with a 

preference for the supratentorial region241,242. They share a common origin from glial 

progenitor cells such as neural precursor cells, oligodendrocyte precursor cell or astrocytes243. 

These progenitor cells play a crucial role in promoting developmental hierarchies, consisting of 

astrocyte-like and oligodendrocyte-like lineages135,214.  

In the light of the current knowledge, several questions remain unanswered regarding the 

transcriptional and epigenetic differences between astrocytomas and oligodendrogliomas at a 

single-cell resolution. Additionally, it is unclear whether specific subpopulations of tumor-

associated microglia/macrophages (TAMs) are associated with particular glioma subtypes, 

despite evidence supporting distinct TAM activation states in IDH-mutant gliomas244,245. The 

interplay between tumor cell populations and TAMs, potential variations in both tumor and 

TAM populations between oligodendrogliomas and astrocytomas, and whether tumor and 

TAM populations vary as a factor of tumor grade and tumor recurrence remain unexplored 

areas of research.  

To address these questions, single-nucleus RNA sequencing data (n = 14, six astrocytomas, IDH-

mutant and eight oligodendrogliomas, IDH-mutant. From here onwards, IDH-mutant gliomas 

will be referred as astrocytomas and oligodendrogliomas) along with matching single-nucleus 

ATAC sequencing data (n = 11, five astrocytomas and eight oligodendrogliomas) were 

generated in the laboratory of Dr. Şevin Turcan and made accessible to me for bioinformatics 

analyses. Additionally, single-nucleus RNA sequencing of another cohort of matching primary-

recurrent astrocytoma tumor pairs (n = 12, six tumor pairs) was generated to broaden and 

validate the findings. This data was analyzed in collaboration with the laboratory of Dr. Holger 

Heyn, in the Centre for Genomic Regulation/Centro Nacional de Análisis Genómico, Barcelona.   
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Materials and Methods 

This section provides an overview of the dataset generation and methods used in the project. 

Unless otherwise noted at the end of each subsection, I conducted all bioinformatic analyses. 

I also generated all the data visualizations for the published article189. Throughout the analyses, 

I received supervision from Prof. Dr. Matthias Schlesner, Dr. Ashwin Narayanan and Dr. Şevin 

Turcan. While I wrote the original text of this chapter, I used ChatGPT to enhance its readability. 

Patient samples 

The following paragraph is extracted from Blanco-Carmona, et al.189 and adapted to match the 

figure references to those in this thesis: 

“A total of 14 fresh frozen archival IDH-mutant glioma samples (8 oligodendroglioma and 6 

astrocytoma) were used for snRNA-seq and snATAC-seq. Additionally, 6 fresh frozen paired 

primary and recurrent samples (IDH-mutant astrocytoma) were used for snRNAseq. Patient 

information and tumor characteristics are provided in Figure 26 and Figure 48A. Fresh frozen 

samples were collected by the Division of Experimental Neurosurgery, Department of 

Neurosurgery, University Hospital Heidelberg, and the Department of Neurosurgery, Acıbadem 

Mehmet Ali Aydınlar University, School of Medicine, Istanbul. Samples used as validation cohort 

for immunohistochemistry were retrieved from the institutional databases of the Department 

of Pathology, Spedali Civili of Brescia, and the Department of Neuropathology, Heidelberg 

University Hospital. All patients provided written informed consent, in accordance with the 

Declaration of Helsinki. All samples were reviewed and received approval from the respective 

Institutional Review Boards and local authorities at the institutions where samples were 

originally collected. Specifically, the samples were approved by the Ethics Committee of Spedali 

Civili of Brescia, Institutional Review Board at the Medical Faculty of Acıbadem Mehmet Ali 

Aydınlar University, and the Ethics Committee of Heidelberg University.” 

Sample preparation and library construction for sequencing 

The following paragraph is extracted from Blanco-Carmona, et al.189: 

“Isolation of nuclei for snRNA-seq and snATAC-seq was performed as previously described. 

Briefly, fresh frozen tissue samples were cut into small pieces and homogenized using a Dounce 
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homogenizer in EZ lysis buffer (Sigma Aldrich). Tissue was homogenized 20 times with pestle A 

and 20 times with pestle B. This was followed by centrifugation, filtration, and buffer-mediated 

gradient centrifugation to obtain pure single nuclei, which were then used for snRNA-seq and 

snATAC-seq. Nuclei were counted using a hemocytometer, and their concentration adjusted as 

needed to meet the optimal range for loading on the 10x Chromium chip. The nuclei were then 

loaded into the 10x Chromium system using the Single Cell 30 Reagent Kit v3 or v3.1 (for snRNA-

seq) and Chromium Next GEM Single Cell ATAC Library & Gel Bead Kit v1.1 (for snATAC-seq) 

according to the manufacturer’s protocol. We aimed to load ~20,000 nuclei for each snRNA-

seq run and ~10,000 nuclei for each snATAC-seq run. Following library construction, libraries 

were sequenced on the Illumina NovaSeq 6000 system.” 

Single-nucleus RNA-seq analysis 

Read alignment and count matrix generation 

Raw reads from the sequencer were used to generate a count matrix using the count module 

of cellranger (version 3.1.0)186. Since reads were from frozen tissue, a modified version of 

the GRCh38 transcriptome accounting for introns was used246. This transcriptome, commonly 

referred as “pre-mRNA” reference, was generated using the mkfastq module of cellranger. 

A custom GTF annotation, where all introns are accounted for as exons, was provided and 

incorporated during the count matrix generation step. Subsequent analyses were carried out 

using Seurat118,247 (version 3.1.0 – 4.3.0). 

Quality control of snRNAseq data 

To remove low-quality cells, including droplets, the following metrics were considered: the 

total number of unique molecular identifiers (UMI) per cell (nCount_RNA), the total number of 

genes per cell (nFeature_RNA) and the percentage of mitochondrial RNA per cell 

(percent.mt). Cells with nCount_RNA < 1000, nFeature_RNA < 500 and percent.mt > 5% 

were filtered out, according to best practices25. Additionally, to remove extreme outliers, cells 

falling outside the mean plus three standard deviations of the distribution of UMI and genes 

were also filtered out, leaving only high-quality cells. 
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Doublet removal 

Despite cells being of high quality, cells can still exhibit a doublet nature, which is a side-effect 

of the sequencing technology and needs to be removed. To detect and remove doublets, 

scrublet188 (version 0.2.1) was used. Following standard guidelines248, the package was 

imported into R using reticulate with reticulate::import() and doublet scores were 

computed using scrublet$Scrublet(). This process returned a list of doublet scores that 

displayed a bimodal distribution. Cells with doublet scores falling on the second peak (high 

doublet score) were removed. The threshold to determine whether a cell was a doublet or not 

was sample-dependent and was set manually upon individual inspection. 

Normalization 

Cell expression data was normalized using Seurat::SCTransform()48 with default 

parameters, which performs regularized negative binomial regression on the count data. 

Following the developer’s guidelines249, individual datasets from each patient were pooled 

together into a merged dataset for normalization. 

Dimensional reduction 

To perform dimensionality reduction using principal component analysis (PCA) a total of 3.000 

highly variable genes were identified and used as basis for the method. PCA was computed 

using Seurat::RunPCA(), retrieving a total of 50 principal components (PC). Upon manual 

inspection of the variability captured by each PC using Seurat::ElbowPlot(), the top 15 PCs 

were selected. Subsequently, further dimensional reduction was applied using the selected PCs 

with Seurat::RunUMAP(), which computes uniform manifold approximation and projection 

(UMAP)50, resulting in the dimensional reduction embedding that serves as the basis for the 

analysis. 

Data integration 

To remove biases arising from each individual patient, integration was applied to the data using 

Harmony56 with default parameters. Based on the PCA dimensional reduction, a new 

dimensional reduction was generated where the effect of cells originating from different 

patients was corrected. This corrected dimensional reduction was then used to generate a new 

UMAP embedding, commonly referred as the “integrated UMAP”.  
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Clustering and cell type annotation of the Tumor Microenvironment 

To cluster the cells based on their transcriptional similarity, Louvain algorithm127 was applied 

either on the PCA (merged data) or Harmony embedding (integrated data). This was achieved 

by using Seurat::FindNeighbors() followed by Seurat::FindClusters(). The resulting 

clusters served as the foundation for the subsequent cell type annotation step. Initially, gene 

sets representing various cell types were retrieved from panglaoDB191, including microglia, 

oligodendrocytes, neurons, astrocytes, endothelial cells, pericytes and T cells. Enrichment 

scores were then calculated for each gene signature and cell using 

Seurat::AddModuleScore(). Subsequently, to assess whether a particular cluster correlated 

with any gene signature, the enrichment scores were visualized as feature plot with 

SCpubr::do_FeaturePlot() and as heatmaps with SCpubr::do_EnrichmentHeatmap().  

Copy Number Variant analysis 

To identify malignant cells, two distinct methods can be employed. Firstly, in the context of a 

merged UMAP, cells from the TME typically form clusters regardless of the patient-specific 

biases. Therefore, malignancy can be inferred by identifying clusters where the majority or 

entirety of the cells originate from a single patient. In the case of oligodendrogliomas, an 

additional confirmation step involves detecting the codeletion of chromosome arms 1p and 

19q. Therefore, copy number variant (CNV) events were identified from expression data using 

inferCNV95, using microglia and oligodendrocytes cells as reference. The analysis was carried 

out with the following parameters: cutoff = 0.1, min_cells_per_gene = 3, HMM = TRUE, 

HMM_type = “i6”, window_length = 201. To further enhance the sensitivity of the analysis, 

raw counts of up to five cells from the same cell cluster were aggregated into “metacells”. 

These metacells were then used in the copy number variant analysis, effectively enhancing the 

signal while minimizing the inherent noise arising from using 10X datasets when utilizing 

inferCNV.  

Non-Negative Matrix Factorization 

To reveal the predominant cell states within tumor cells across both oligodendrogliomas and 

astrocytomas, non-negative matrix factorization (NMF) was used, following established 

methodology103. This involved, for each patient independently, filtering out cells from the TME 

followed by scaling and centering the normalized count matrix. NMF was conducted using the 
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NMF R package250 via NMF::nmf()function. Key parameters included: rank = X, being X a 

number varying from two to ten, seed = 777 and method = “snmf/r”. The rank parameter 

determined the number of independent NMF programs that are retrieved from each patient, 

from which mitochondrial genes were excluded, and the top 30 scoring genes were selected 

for further analysis.  

To assess the enrichment level of each cell for a given NMF program, a scoring system 

developed by Dr. Volker Hovestadt was implemented. For every gene within the NMF program, 

a control set comprising the top 100 genes with the most similar expression profiles was 

defined. Expression similarity was determined by subtracting the expression value of the 

selected gene from the average expression value across all cells. The resulting values were 

sorted in ascending order, and the top 100 genes (excluding the initially selected gene) 

constituted the control set. Subsequently, the expression difference between the selected 

gene and the control set was computed for each cell. This process was repeated for every gene 

in the NMF program. The output of this scoring method yielded a matrix where each column 

represented a cell and each row represented a gene in the NMF program. The values of the 

matrix were then averaged across genes, resulting in a single score for each cell pertaining to 

the given NMF program. This score effectively quantifies the extent to which a particular cell 

is enriched in the NMF program.  

To identify similarities among the scoring of different NMF programs across cells, a correlation 

matrix using Pearson’s correlation coefficient was computed. Highly correlated NMF programs 

formed NMF metaprograms. This process was iterated for each value of the NMF rank, 

selecting the value that produced the most distinct and highest number of NMF 

metaprograms. To extract the genes driving each NMF metaprogram, I applied a modified 

version of the previously described scoring method. However, in this iteration, the matrix 

containing scores was averaged across all cells. This resulted in a single scoring value for each 

gene, illustrating its relevance across all cells and thus within the metaprogram. The top 30 

scoring genes were then chosen as the drivers of each NMF metaprogram.  

While the NMF method and initial scoring method were provided by Dr. Volker Hovestadt, the 

adaptation of the method to identify the driver genes of NMF metaprograms was the outcome 

of collaborative work between Dr. Christina Blume and me. 
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Permutation-testing as a method to assign metaprograms to cells 

After obtaining the top 30 genes for each NMF metaprogram, I developed a method to 

statistically identify cells enriched for each NMF metaprogram. This approach involved 

conducting permutation testing to compare an empirical distribution against a null 

distribution. The empirical distribution comprised enrichment scores for all cells associated 

with a given NMF metaprogram. In contrast, the null distribution was generated by permuting 

the expression values across all cells for each gene belonging to the NMF metaprogram being 

analyzed. This permutation ensured a complete disruption of any enrichment patterns 

stemming from the specific combination of genes. Enrichment scores were computed using 

Seurat::AddModuleScore() function with default parameters. Subsequently, new 

enrichment scores were calculated for all cells based on the permuted expression matrix, 

thereby representing the null distribution. This permutation process was repeated until a total 

of one million permuted values were generated.  

The determination of whether a particular cell exhibited statistically significant enrichment for 

a given NMF metaprogram involved computing p-values based on the fraction of cells in the 

null distribution where the enrichment score surpassed that of the queried cell. To prevent 

infinite values, a value of plus one (+1) was added to both components of the fraction. The 

number of permuted values generated determined the lowest achievable p-value by the 

method. Therefore, with a total of one million permuted values, the method allowed for a 

minimum p-value of up to 1e-6. This aspect was particularly crucial as p-values required 

correction for multiple testing.  

The correction of p-value was necessary to address two main factors: multiple testing and 

multiple comparisons. Firstly, multiple testing occurred when the same cells were utilized to 

shuffle the expression scores. Secondly, multiple comparisons arose when several NMF 

metaprograms were queried and compared with each other for the same cell. To correct for 

these issues, the Benjamini-Hochberg method for p-value adjustment was employed251 using 

the stats::p.adjust() function with parameters method = “BH”. Cells were deemed 

significant in a given comparison if the adjusted p-value was below 0.05 (false discovery rate 

(FDR) = 5%). When multiple comparisons were conducted, the FDR threshold was further 
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adjusted by dividing it by the total number of comparisons. This adjustment helped control 

against the inflation of the alpha error, commonly known as type I error.  

This method was developed thanks to the collaborative effort involving Prof. Dr. Matthias 

Schlesner, Dr. Martin Sill and myself. While I undertook the implementation and coding to test 

significance of enrichment scores, the process was overseen by Prof. Dr. Matthias Schlesner, 

and Dr. Martin Sill provided guidance on the template code and ensured the statistical rigor of 

the method.  

Pathway and transcription factor enrichment analysis 

To identify which pathways and transcription factors (and downstream targets) are up- or 

downregulated in the cells, decoupleR85 was used. DecoupleR computes activity scores based 

on prior knowledge networks. For pathway analysis, the network used was PROGENy80, and for 

the transcription factor enrichment analysis, DoRothEA81. The resulting activity scores were 

calculated for each cell and then aggregated by cell population using 

SCpubr::do_PathwayActivityPlot() and SCpubr::do_TFActivityPlot(). In the case of 

the scores based on DoRothEA, the top 30 scoring regulons were selected for plotting. 

Ligand-Receptor analysis 

Inference of ligand-receptor pairs between tumor and microglia subpopulations was 

performed using liana (v.0.1.10)90. Aggregated consensus rank was used as filtering metric, 

excluding interactions for which rank < 0.05. From the statistically significant interactions, a 

biologically relevant subset was selected and then visualized as a dot plot. 

This analysis was a collaborative effort. Dr. Marc Elosua-Bayes contributed the code, Dr. 

Inmaculada Hernández conducted the analysis and Dr. Juan C. Nieto provided the biological 

expertise to select the relevant interactions. Data visualizations were generated by me. 

Diffusion analysis 

To characterize tumor subpopulations based on their stemness activity, I gathered various 

stemness-related marker sets from PanglaoDB191 and previous publications252. Tumor 

microenvironment cell populations were filtered out before the analysis. Diffusion maps were 

computed using the destiny253 R package, with the function destiny::DiffusionMap(). For 

this purpose, the Seurat objects were converted into Single Cell Experiment (SCE) objects, for 
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which the function Seurat::as.SingleCellExperiment() was used. The results were 

visualized in two ways: as a dimensional reduction plot with SCpubr::do_DimPlot(), and as 

a bar plot where scaled and centered scores were plotted over the ranking of cell positions 

along a given diffusion component with SCpubr::do_DiffusionMapPlot().  

Deconvolution analysis 

To validate the presence of the tumor subpopulations in external datasets, a deconvolution 

analysis was performed on the cancer genome atlas program (TCGA) and the Chinese glioma 

genome atlas (CGGA) IDH-mutant glioma bulk transcriptomics datasets using SPOTlight101 

(v1.0.3). Initially, the model was trained on a pseudobulked version of the datasets to evaluate 

its accuracy in predicting the proportion of each cell type within the same datasets. Marker 

genes for each cell population were retrieved using Seurat::AddModuleScore() with the 

following parameters: min.pct = 0.5, test.use = "MAST", logfc.threshold = 0.5 and 

only.pos = TRUE. The avg_log2FC scores obtained were used as weights to initialize the 

NMF method in SPOTlight. The correlation between true and estimated proportions per cell 

type was calculated patient-wise and displayed as a dot plot, along with the respective 

correlation coefficients. After confirming a sufficient correlation between the proportions, the 

datasets coming from TCGA and CGGA were processed. The resulting estimated proportions 

were displayed as a stacked bar plot.  

In this section, the method generation and implementation were carried out by Dr. Marc 

Elosua-Bayes and Dr. Inmaculada Hernández, while I generated the figures for the analysis. 

Generation of custom prior knowledge networks for activity inference analysis 

To generate a custom prior knowledge network for use with decoupleR, I created a data frame 

containing that included the pathway name, the genes involved in the pathway and their mode 

of regulation was generated. Since all the genes were used as marker genes for the analysis, 

the mode of regulation, which can range between -1 to 1, was set to 1 for all genes to indicate 

that they positively influence the associated phenotype.  
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Single-nucleus ATAC-seq analysis 

The analysis of snATACseq data was conducted using Signac109 R package. Dr. Inmaculada 

Hernández performed all bioinformatic analyses, while I was responsible for generating the 

figures. 

Quality control and Normalization of count data 

To filter out low-quality cells in the snATACseq data, the following variables were defined: the 

number of fragments per cell (peak_region_fragments), the percentage of reads in peaks 

(percentage_reads_in_peaks), the number of reads located in ENCODE’s blacklist regions111 

(blacklist_ratio), the chromosome binding pattern (nucleosome_signal, computed with 

Signac::NucleosomeSignal()), and the enrichment of the peaks transcription start site 

regions (TSS.enrichment , computed with Signac::TSSEnrichment()). Cells not meeting 

the following criteria were filtered out: 3000 < peak_region_fragments < 20000, 

percentage_reads_in_peaks > 15%, blacklist_ratio < 0.05, TSS.enrichment > 2. 

Peak annotation for downstream analyses was conducted using Ens.Db.Hsapients.v86254 R 

package. 

Dimensional reduction and clustering 

Dimensional reduction was performed by computing term frequency-inverse document 

frequency (TF-IDF) using Signac::RunTFIDF(), followed by selecting all peaks in the dataset 

with Signac::FindTopFeatures(), using the parameter: min.cutoff = “q0”. Singular value 

decomposition (SVD) was then applied to the TF-IDF matrix, yielding a total of 30 components. 

The first component was removed as it correlated with sequencing depth. Non-linear 

dimensionality reduction was subsequently carried out using Seurat::RunUMAP(), and cells 

were clustered using Seurat::FindNeighbors() and Seurat::FindClusters(). 

Computing gene activity, label transfer and integration of the data 

Gene activity can be estimated based on the accessibility associated with each gene. This was 

done using Signac::GeneActivity(), which created a new “ACTIVITY” assay representing 

raw counts. These raw counts were further normalized using Seurat::SCTransform(). To 

generate a co-embedding from the RNA and ATAC (ACTIVITY) assays, shared anchors were 

identified using Signac::FindTransferAnchors() following Signac::TransferData(), 
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corresponding to expression trends shared between the RNA and the ATAC assay109. The RNA 

assay was used as a reference since it was already annotated.  

This resulting co-embedding was integrated with harmony using harmony::RunHarmony() to 

remove patient-specific effects, and a new UMAP was generated using the same number of LSI 

components as previously mentioned. 

Transcription factor enrichment analysis 

To infer gain or loss of accessibility on peaks within TF motifs, Signac::AddMotifs() was 

used, which is a wrapper for chromVAR (version 1.14.0)117. Motif activity scores across tumor 

cell populations were compared using Seurat::FindAllMarkers() with default parameters. 

Significant motifs were annotated to their closest gene with Signac::ClosestFeature(), 

and the top motifs enriched across populations were displayed as a heatmap. 

Immunohistochemistry 

Immunohistochemistry was performed by J.T., M.C., and P.L.P. as described in Blanco-

Carmona, et al.189 The following paragraph is extracted from the publication: 

“2 µm sections were cut from formalin-fixed paraffin-embedded (FFPE) tissue samples provided 

by the Pathological Department of Spedali Civili of Brescia. Sections were de-waxed and 

rehydrated. Endogenous peroxidase activity was blocked with 0.3% H2O2 in methanol for 20 

min. Antigen retrieval was performed using a microwave oven or a thermostatic bath in 1.0 mM 

EDTA buffer (pH 8.0) or in 1.0 mM Citrate buffer (pH 6.0). Sections were then washed in tris-

buffered saline (TBS, pH 7.4) and incubated for 1 h with the specific primary antibody diluted in 

TBS 1% bovine serum albumin. The reaction was revealed by using Dako EnVision System-HRP 

Labeled Polymer anti-mouse or anti rabbit (Dako) or Novolink Polymer Detection System 

(Novocastra) followed by diaminobenzydine (DAB) as chromogen and hematoxylin as 

counterstain. For double immunohistochemistry, after completing the first immune reaction, 

the second one was revealed by using MACH4 Universal AP Polymer kit (Biocare Medical) 

followed by Ferangi Blue Chromogen kit (Biocare Medical) and nuclei were counterstained with 

hematoxylin. Images were acquired with a Nikon DS-Ri2 camera (4908 x 3264 full-pixel) 

mounted on a Nikon Eclipse 50i microscope equipped with Nikon Plan lenses (x10/0.25; 

x20/0.40; x40/0.65; x100/1.25) using NIS-Elements 4.3 imaging software (Nikon Corporation). 
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The following primary antibodies were used: anti-Iba1 rabbit polyclonal (1:300, Wako), anti-

CD74 mouse monoclonal (clone LN2) (1:100, BioLegend), anti-CD163 mouse monoclonal (clone 

10D6) (1:50, ThermoFisher Scientific), anti-STAT1 (pY701) mouse monoclonal (clone 14/P-

STAT1) (1:500, BD Biosciences), anti-EEF2 rabbit monoclonal (EP880Y) (1:250, Abcam), and 

anti-EEF1A1 rabbit monoclonal (EPR9470) (1:50, Abcam).  

For IHC staining of human astrocytomas, 5µm FFPE sections were obtained from the 

Department of Neuropathology, Heidelberg University Hospital, and stained with the following 

antibodies: mouse monoclonal CSF1 antibody (1:25, clone 2D10, Sigma-Aldrich #MABF 191), 

rabbit polyclonal CSF1R antibody (1:50, Proteintech #25949-1-AP), rat monoclonal human PIGF 

antibody (1:25, clone #358905, R&D #MAB 2642), mouse monoclonal NRP1 antibody (1:50, 

clone 2H3F6, Proteintech #60067-1-Ig). For CSF1, a pre-treatment steamer with Tris buffer pH 

9.0 was performed followed by overnight incubation at room temperature. Detection was 

performed with ImmPress HRP, universal antibody (horse, anti-mouse) polymer detection kit, 

peroxidase (Vector # MP 7500). For CSF1R, we performed the same incubation and antigen 

retrieval as for CSF1 and detected with Dako REAL Detection System, Alkaline 

Phosphatase/RED, Rabbit/Mouse (Biocompare #K5005). For PIGF, pre-treatment with citrate 

buffer pH 6.0 was performed, followed by overnight incubation at room temperature. Detection 

was performed using the secondary antibody - biotinylated anti-rat IgG (Vector # BA-4001, 

1:200) for 300 at 37°C, followed by HRP Streptavidin (1:200, Vector #SA-5004), for 30’ at 37°C, 

and DAB (brown color) was used as a chromogen (ImmPress HRP Universal Antibody (Horse 

Anti-Mouse/Rabbit IgG) Polymer detection Kit, Peroxidase, (Vector # MP 7500). For NRP1 IHC, 

samples were pretreated with citrate buffer pH 6.0 and incubated for 2 h at 37°C, and detected 

using the Dako REAL Detection System, Alkaline Phosphatase/RED, rabbit/mouse, (Biocompare 

#K5005). Samples were imaged at 40x magnification with an Olympus VS.200 slide scanner 

(Olympus Corporation).” 
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Results 

To gain deeper insights into the tumor heterogeneity between IDH-mutant gliomas subtypes 

(oligodendrogliomas and astrocytomas), 14 snap-frozen 10X v3 3’ primary tissue datasets were 

processed and sequenced in the lab of Dr. Şevin Turcan. These datasets were entrusted to me 

for further analyses. My initial step was to get a general overview of the datasets, for which I 

examined the metadata associated with each patient sample (Figure 26). In summary, the 

datasets provided a balanced representation across various dimensions: IDH-mutant glioma 

subtypes (OD = 8, AS = 6), tumor grades (Grade 2 | OD = 3, Grade 3 | OD = 5, Grade 2 | AS = 2, 

Grade 3 | AS = 4) and sequencing methodologies (snRNAseq | OD = 8, snRNAseq | AS = 6, 

snATACseq | OD = 4, snATACseq | AS = 5). Furthermore, patients exhibited diversity in MGMT 

methylation status (Methylated = 6, Not available = 8), TERT status (WT = 3, C228T = 2, C250T 

= 1, Not available = 8) and gender distribution (Female = 5, Male = 9). Collectively, these 

datasets present a promising avenue for delving deeper into the biology of IDH-mutant gliomas 

at a single cell resolution across both oligodendrogliomas and astrocytomas, thus constituting 

a valuable resource for the scientific community. 

 
Figure 26: “Metadata of primary samples. Clinical and molecular characteristics of the IDH-mutant glioma cohort 
for single-nuclei sequencing.” Reprinted from Blanco-Carmona, et al.189 



 79 

Identifying tumor cells apart from tumor micro-environment 

Supervised annotation based on literature gene marker sets 

To comprehend the biological nature of the different cell clusters within oligodendroglioma 

and astrocytomas, first I needed to understand whether the cells belonged to the tumor 

microenvironment (TME) or were tumor cells. To accomplish this, the cells underwent quality 

control and dimensional reduction. Subsequently, I analyzed the cells in the context of a 

merged UMAP. Normally, cells that belong to the TME usually typically cluster together prior 

to integration, whereas the tumor cells tend to segregate into distinct clusters, each 

comprising cells predominantly originating from a single patient (Figure 27A-B).  

After identifying the clusters that belonged to the TME, my next step was to determine their 

identity. To achieve this, I conducted enrichment analysis using literature-derived gene marker 

sets sourced from PanglaoDB191 (Figure 27C-D). The results showcased cell clusters that were 

uniquely enriched in specific gene sets, therefore confirming their identity. This allowed for the 

characterization of: microglia, oligodendrocytes, astrocytes, neurons and pericytes (Figure 

27E-F). Subsequently, I integrated the datasets together using Harmony, removing the effect 

originating from the individual patients. This integration yielded a new UMAP embedding 

where TME cell populations formed single clusters, while the tumor cells would also aggregate 

together into a large cluster (Figure 28A-B). At this stage of the analysis, I opted to exclude 

from the oligodendroglioma dataset a cell cluster comprised solely of cells from a single 

patient, whose data exhibited low quality. This cluster integrated with microglia cells (Figure 

27E, Figure 28A), with subsequent CNV analysis also revealing chromosome arms 1p and 

19q codeletion. 

Inferring copy number variant events in IDH-mutant gliomas 

In the context of oligodendrogliomas, a defining characteristic is the presence of chromosome 

1p/19q codeletion, a copy number variant event crucial to their classification. Thus, I 

anticipated observing this codeletion across the tumor clusters, while being absent in TME 

clusters. To infer CNV scores, I employed inferCNV, originally developed for inferring CNV 

events on SMARTseq data95, and designed an optimization experiment to enhance its efficiency 

in 10X datasets.  
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In this experiment, CNV scores were inferred under different scenarios, and efficiency was 

benchmarked based on its ability to successfully identify chromosome 1p deletion in 

oligodendrogliomas. Initially, endothelial cells served as a reference, which identified 

chromosome 1p loss across some of the clusters, therefore deeming clusters that lacked this 

deletion as TME (Figure 29A). However, the analysis output exhibited a notable amount of 

noise, with regions classified as gains or losses where no such events should occur. To minimize 

this noise, I iteratively refined the method by adjusting the clusters utilized as reference 

(Figure 29B) and also treating them as a single unique reference cluster (Figure 29C).  

 
Figure 27: TME annotation. Patient composition across cell clusters for primary oligodendrogliomas (A) and 
astrocytomas (B). Enrichment scores for selected TME cell type gene marker sets for primary oligodendrogliomas 
(C) and astrocytomas (D). UMAP representation for primary oligodendrogliomas (E) and astrocytomas (F) 
showcasing TME annotation. UMAP1, x-axis; UMAP2, y-axis. 
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Figure 28: Integration with Harmony on primary datasets. Integrated UMAP representation of primary 
oligodendroglioma (A) and astrocytoma (B). The effect of individual patients is removed during integration. Grey 
cells are part of the tumor compartment. UMAP1, x-axis; UMAP2, y-axis. 

 
Figure 29: Enhancing the sensitivity of inferCNV for 10X datasets. Different setups were tested in an inferCNV 
run. Each panel represents a zoomed-in cut into chromosome 1p scores as a comparison metric. Reference panels 
and cluster annotations are not included. From left to right: (A) using microglia and endothelial cells as reference, 
(B) only endothelial cells as reference, (C) including microglia and endothelial cells as reference but treating them 
as a single cluster, (D) using oligodendrocyte cells and computing metacells, (E) and using oligodendrocyte cells, 
computing metacells, and setting the window size to 201 genes. Each row is a cell in the dataset and each column 
depicts the selected window size of genes. Chromosome gains are depicted as red, while chromosome loses are 
shown as blue.  
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Both approaches yielded marginal improvements compared to the first scenario. 

Subsequently, to increase the sensitivity of the analysis, I aggregated the count data of five 

different cells from the same cluster into metacells. The use of metacells greatly increased the 

sensitivity of the CNV calling, allowing for a clear detection of chromosome 1p deletion (Figure 

29D). Finally, despite experimenting with increasing the number of genes accounted for in a 

single window, there were no notable improvements observed (Figure 29E). Consequently, 

based on these iterative analyses, I determined that generating metacells without modifying 

the window size (Figure 29D) yielded optimal results.  

This configuration was thus adopted for the final CNV inference used for downstream analyses. 

The results indicated that, in the context of oligodendrogliomas, chromosome 1p codeletion 

could be reliably inferred and used to identify tumor cells. However, the same level of clarity 

as not observed for chromosome 19q deletion, which exhibited an overall diminished signal 

and, in certain instances, lacked deletion scores even when corresponding 1p deletion was 

present (Figure 30A). Conversely, in the case of astrocytomas, no recurrent CNV event was 

identified across patients (Figure 30B). Therefore, to infer the tumorigenic state of the cells 

within my datasets, the patient composition of the clusters in a merged UMAP, along with 

enrichment in marker gene sets were utilized for astrocytomas, while also relying on the 

chromosome 1p deletion scores for oligodendrogliomas.  

 
Figure 30: “Output of inferCNV for OD and AS. (A and B) Heatmap of CNV profiles inferred from snRNA-seq from 
oligodendrogliomas (A) and astrocytomas (B). Each row corresponds to a nucleus, ordered by initial cluster 
labeling from merged data. Red indicates gain and blue indicates loss.” Adapted from Blanco-Carmona, et al.189 
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Inferring recurrent transcriptional programs across tumor cells from different patients 

The next step in the analysis is to identify the different tumor cell populations within the 

dataset. Typically, there are several approaches, broadly classified as either supervised or 

unsupervised methods, to achieve this goal. Supervised annotation methods aim to identify 

tumor cell populations based on existing knowledge, often relying on gene marker sets known 

to be associated with specific phenotypes. On the other hand, unsupervised methods aim to 

uncover patterns within the expression data in the dataset, which can then be analyzed to 

assign phenotypes. Previously, it has been established that IDH-mutant gliomas harbor three 

primary tumor cell types, typically exhibiting astro-like, oligo-like and stemness-like 

phenotypes135,252. With this knowledge in mind, I sought to ascertain whether these cell 

populations were also present in my datasets. To do so, I computed enrichment scores on the 

marker genes reported in Venteicher, et al.252 Out of the three expected tumor cell 

populations, I identified clusters enriched in oligo-like and astro-like gene marker sets, while 

enrichment for stemness markers was not observable in my datasets (Figure 31A-B). 

 
Figure 31: Gradient enrichment of astro and oligo programs. Enrichment in the gene programs reported in 
Venteicher, et al.252 across tumor clusters for both primary oligodendrogliomas (A) and astrocytomas (B). Clusters, 
x-axis; Gene sets, y-axis. 

Furthermore, in both tumor populations, the enrichment in astro-like and oligo-like markers 

manifested in a gradient fashion, distinctly forming two ends of a spectrum. This suggests that 

the tumor cells may potentially differentiate along these two trajectories, with cells at various 

differentiation stages captured at the time of sequencing. 

NMF analysis: choice of rank and retrieval of NMF metaprograms 

To further explore tumor heterogeneity in IDH-mutant gliomas beyond the described astro-

like and oligo-like tumor populations, I employed NMF. The method yielded four sets of 

correlated NMF programs for oligodendrogliomas and three for astrocytomas (Figure 32A-

B). Interestingly, all NMF metaprograms identified in astrocytomas exhibited gene-wise overlap 
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with those in oligodendrogliomas, encompassing OPC-like (OPCML, DSCAM), astro-like (NGR3, 

SPARCL1, ADGRV1) and cycling (MKI67, CENPK) phenotypes.  

The NMF metaprograms recapitulating astro-like and OPC-like phenotypes closely resembled 

those described in Venteicher, et al.252 The fourth NMF metaprogram in oligodendrogliomas 

featured stemness genes (OLIG1), oncogenes (ETV1), elongation factors (EEF2, EEF1A1) and 

ribosomal genes, which I termed ribosomal enriched (RE). This represented a novel tumor 

population in the field of IDH-mutant gliomas. Consequently, downstream analyses will explore 

the biological nature of the RE population.  

Permutation testing to overcome gradient-based enrichment on cell annotation 

To annotate the tumor cells in both oligodendrogliomas and astrocytomas datasets based on 

the retrieved NMF metaprograms, I calculated enrichment scores. The enrichment in each 

NMF metaprogram but the cycling exhibited a gradient pattern, suggesting that tumor cells 

would progressively transition towards each of the phenotypes associated with the NMF 

metaprograms (Figure 33A-B). 

 
Figure 32: “NMF metaprograms for OD and AS. (A and B) Pearson’s correlation scores for individual NMF 
programs (rows and columns) in oligodendrogliomas (n = 8) (A) and astrocytomas (n = 6) (B). Metaprograms were 
identified by hierarchical clustering of individual NMF programs.” Reprinted from Blanco-Carmona, et al.189 
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Figure 33: Enrichment in NMF metaprograms. Enrichment scores for each NMF metaprogram retrieved for both 
oligodendrogliomas (A) and astrocytomas (B). AS: Astrocytoma, OD: Oligodendroglioma, RA: Ribosomal active 
(later renamed as RE). UMAP1, x-axis; UMAP2, y-axis. 

Given the absence of clear enrichment within specific cell clusters, it became a necessity to 

devise a method for statistically selecting cells based on enrichment for the NMF 

metaprograms. Statistical significance was crucial, as I intended to compare tumor cell type 

proportions across IDH-mutant glioma subtypes later in the analysis. The method I devised 

centered around permutation testing, which compares the distribution of enrichment scores 

to that of a control gene set. This approach provides a corrected p-value to each cell for each 

NMF metaprogram.  

Tumor cell type annotation was conducted in two stages. Initially, cells were classified into 

either astro-like or OPC-like as a baseline phenotype. Subsequently, they were assigned to 

either cycling or RE if deemed significant. Cells failing to meet the significance threshold for 

any of the NMF metaprograms were designated as gradient cells, indicating their position in 

the middle of the differentiation trajectory and thus insufficiently differentiated into any of the 

retrieved NMF metaprograms. This resulted in a tumor annotation in which, for both 

oligodendroglioma and astrocytoma datasets, astro-like and OPC-like tumor populations 



 86 

occupied opposite ends of the UMAP, with gradient cells in between and a cluster of cycling 

cells detached from the rest of tumor cells. RE cells were dispersed across the UMAP, failing to 

form a single cluster (Figure 34A-B). Despite being predominantly present in a single patient, 

RE cells were also observed in lesser proportions in other patients in both oligodendroglioma 

and astrocytoma datasets (Figure 34C). Across IDH-mutant glioma subtypes, tumor 

populations exhibited a similar expression profile for key marker genes of each NMF 

metaprogram (Figure 34D). 

 
Figure 34: “Overview of tumor annotation for OD and AS. (A and B) UMAP embedding of oligodendrogliomas 
(A) and astrocytomas (B), colored by NMF metaprograms, gradient cells, and TME (dark gray). UMAP1, x-axis; 
UMAP2, y-axis. (C) Bar plot showing tumor population proportions across individual samples, grouped by subtype 
and grade. Bars are arranged by descending RE proportion. UMAP1, x-axis; UMAP2, y-axis. (D) Dot plot displaying 
selected five marker genes for each NMF-derived tumor population for both oligodendrogliomas and 
astrocytomas.” Reprinted from Blanco-Carmona, et al.189 
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The biological nature of the gradient population 

Despite being the result of applying an annotation method based on statistical testing, the 

gradient tumor cell population still comprised the majority of the tumor cells. Therefore, while 

downstream analyses will primarily focus on the other tumor cell populations, it was important 

to validate the biological nature of the gradient cells.  

To accomplish this, gradient cells for both primary (oligodendroglioma and astrocytoma) and 

primary-recurrent datasets (see below) were isolated, reclustered, and a new UMAP 

embedding was generated. Subsequently, for each dataset, enrichment scores for the NMF 

metaprograms and the marker genes sets from Venteicher, et al.252 were computed.  

The results revealed that enrichment scores for OPC-like and astro-like metaprograms also 

exhibited a gradient pattern (Figure 35A-C), further confirming the lineage nature of these 

cells. This validation reinforces the decision to focus on the remaining, significantly enriched, 

tumor cell populations in downstream analyses. 

 

 
Figure 35: “Understanding the biological nature of the Gradient tumor cell population. (A, B, and C) Gradient 
subset of the tumor subpopulation for primary oligodendrogliomas (A), primary astrocytomas (B) and paired 
astrocytomas (C). Cells are re-normalized, and dimensional reduction is computed, generating a new UMAP 
embedding and clustering (top). For each cluster, enrichment scores for the NMF metaprograms and the 
programs described in Venteicher, et al.252 are computed, and displayed as an enrichment heatmap (bottom). 
UMAP1, x-axis; UMAP2, y-axis.” Reprinted from Blanco-Carmona, et al.189 
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The RE tumor cell population: a true biological tumor cell population or a bias in the 

analysis 

To ascertain whether the presence of the RE population stemmed from a bias in the analysis 

or constituted a biological finding, I initially examined the distribution of UMI, genes and 

mitochondrial RNA across each cell population. This analysis confirmed that the RE population 

exhibited a distribution similar to that of the other high-quality cell populations within the 

datasets (Figure 36A-C).  

Subsequently, I recomputed NMF in the oligodendroglioma dataset under various conditions: 

excluding mitochondrial genes (OD/AS_), excluding mitochondrial and ribosomal genes (N_), 

and excluding mitochondrial and ribosomal genes together with removing the patient 

accounting for the majority of RE cells (N2_). In each iteration, four NMF metaprograms were 

obtained. Jaccard similarity analysis revealed a high concordance between each iteration of 

OPC-like, astro-like and RE NMF metaprograms (Figure 36D). With the consistency of the RE 

NMF metaprogram confirmed across iterations, I proceeded to apply the permutation testing 

method to identify cells enriched for each iteration of the RE metaprogram. Jaccard similarity 

comparing the different sets of statistically enriched cells in the primary oligodendroglioma, 

primary astrocytoma and primary-recurrent astrocytoma datasets (see below) demonstrated 

that mainly the same subset of cells were selected in each iteration and dataset (Figure 36E-

G). These results support the validity of the RE population as a biological entity rather than as 

an artifact of the analysis. 

Validation of the presence of RE population in external datasets 

Given the novelty and potential relevance of the RE population in future research in IDH-

mutant gliomas, I aimed to ascertain the presence of the RE population beyond my datasets. 

For this, I employed several approaches. 

Deconvolution analysis 

The following analysis was performed by I.H. and M.E.B. in Blanco-Carmona, et al.189 The cancer 

genome atlas (TCGA) and the Chinese glioma genome atlas (CGGA) IDH-mutant glioma bulk 

transcriptomics datasets were deconvoluted using Spotlight101. Both cohorts were divided 

into oligodendroglioma or astrocytoma patient samples.  
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Figure 36: “Determining RE as a true biological tumor population, not arising from bias effects. (A-C) Boxplots 
showing from left to right, distribution of UMIs per cell, genes per cell and percentage of mitochondrial RNA per 
cell are shown for primary oligodendroglioma (A), primary astrocytoma (B) and paired astrocytoma (C) tumors. 
(D) Correlation matrix depicting the Jaccard similarities between the NMF metaprograms and the Astrocyte-like, 
Oligo-like and Stemness programs in Venteicher, et al.252. Three iterations of NMF have been computed, 
represented by the prefixes in the metaprograms names: OD_ and AS_ metaprograms belong to the first iteration, 
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containing ribosomal genes. N_ metaprograms correspond to the metaprograms retrieved prior removal of 
ribosomal genes. N2_ metaprograms refer to the metaprograms retrieved prior removal of ribosomal genes and 
exclusion of sample IDH_ACB_AD_540, which has a significantly higher proportion of RE. OD_RE_Curated 
metaprogram contains the genes present across all three RE metaprogram iterations. Jaccard similarities depict 
a high consensus between all homologue iterations of NMF metaprograms. (E-G) Permutation testing selection 
method based on the enrichment scores for the three different RE metaprograms retrieved including ribosomal 
genes (OD_RE), excluding them (N_RE) and excluding the sample with the highest proportion of RE cells, 
IDH_ACB_AD_540 (N2_RE) is used in the tumor cells of oligodendrogliomas (E) and astrocytomas (F) and paired 
astrocytomas (G). Jaccard similarities between the selected cells for each of the NMF metaprograms is shown 
(bottom). Enrichment scores are shown on the left and the selected cells on the right. UMAP1, x-axis; UMAP2, y-
axis.” Reprinted from Blanco-Carmona, et al.189 

The inferred proportions revealed the presence of the RE population in both TCGA and CGGA 

oligodendroglioma cohorts, with the exception of a single patient in CGGA. However, not all 

astrocytomas datasets exhibited detection of the RE population (Figure 37A-D). Nonetheless, 

these findings suggest that the RE population is present in oligodendrogliomas and partially in 

astrocytomas, to varying degrees.  

 

Figure 37: “Deconvolution of publicly available bulk glioma RNA-seq datasets (TCGA and CGGA). (A) SPOTlight 
results of TCGA (the Cancer Genome Atlas) OD IDH mutant glioma cohort (on top, proportion of RE, ordered. on 
the bottom, all proportions ordered also by descending RE). (B) SPOTlight results of TCGA AS IDH mutant glioma 
cohort (on top, proportion of RE, ordered. on the bottom, all proportions ordered also by descending RE) (C) 
SPOTlight results of CGGA OD (Chinese Glioma Genome Atlas) IDH mutant glioma cohort (on top, proportion of 
RE, ordered. on the bottom, all proportions ordered also by descending RE). (D) SPOTlight results of CGGA AS IDH 
mutant glioma cohort (on top, proportion of RE, ordered. on the bottom, all proportions ordered also by 
descending RE).” Reprinted from Blanco-Carmona, et al.189 
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Cell activities based on custom prior-knowledge networks 

Furthermore, I sourced published fresh tissue single-cell datasets (scRNAseq) for both 

oligodendrogliomas135 and astrocytomas252. In both cases, I generated a UMAP embedding and 

computed enrichment scores for the RE NMF metaprogram. In contrast with my frozen tissue 

datasets (snRNAseq), enrichment scores in these datasets exhibited a normal distribution 

(Shapiro test, p <= 0.05) (Figure 38A-B, top). To define the RE population, I selected a 

threshold of enrichment scores such that the probability of finding a cell with a score higher 

than the threshold was 5% (Figure 38A-B, top right). Once the RE population was defined, 

I aimed to assess its specificity to the gene marker sets retrieved from the primary datasets. 

 
Figure 38: “The RE metaprogram in publicly available scRNA-seq datasets from IDH mutant gliomas, and the 
stemness score per patient in snRNA-sq dataset from oligodendrogliomas and astrocytomas. Datasets from 
publicly available oligodendrogliomas135 (A) and astrocytomas252 (B) are used to determine the presence of the 
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RE metaprogram. UMAP representation of the tumor cells is shown together with the enrichment scores for the 
RE metaprogram (top, left and middle). The distribution of enrichment scores is tested for normality using Shapiro 
test (top-right) and the value so that the probability of finding an enrichment score higher is 5% is used to select 
the RE population. The activity of the different cell clusters and the RE population towards the NMF metaprograms 
and the publicly available programs is computed by using decoupleR. Activity scores are scaled and centered and 
displayed grouped by cell population (bottom-left). To query the robustness of RE metaprogram towards the RE 
population, 50 different gene sets of equal size are generated by randomly selecting genes in the same bin of 
expression as the genes in the RE metaprogram. Activity scores are computed, scaled, and centered, and displayed 
grouped by cell population. UMAP1, x-axis; UMAP2, y- axis.” Reprinted from Blanco-Carmona, et al.189 

To accomplish this, activity scores were computed based on a custom prior knowledge network 

generated using the NMF metaprograms and the tumor programs from Venteicher, et al.252 

The results unveiled specific clusters in both datasets that were activated in diverse gene sets, 

including RE metaprogram (Figure 38A-B, bottom-left). Moreover, to ensure the validity 

of these results and rule out the possibility of observing them due to chance, the robustness 

of the analysis was assessed by generating 30 control gene sets containing genes whose 

expression levels were similar to those in the NMF RE metaprogram.  

Subsequently, activity scores were computed based on a custom prior knowledge network that 

contained the RE metaprogram and the control gene sets. The findings revealed that, for both 

datasets, the defined RE population exhibited the highest activation in the NMF RE 

metaprogram, contrasting with the other control gene sets (Figure 38A-B, bottom right). 

Collectively, these results demonstrate that the RE population can indeed be identified in 

external datasets, further underlining its potential biological relevance.  

Reference mapping  

Finally, I aimed to contextualize the RE population within the context of development and 

glioblastoma lineages. The overarching hypothesis was that since the RE and cycling cells were 

annotated as secondary phenotypes, the primary phenotype of either OPC-like and astro-like 

should still be present. Therefore, performing reference mapping onto datasets containing 

either astrocytes/oligodendrocytes or astro-like/OPC-like cells would result in the RE cells 

mapping onto these populations.  

To achieve this, Azimuth was used to perform reference mapping of the oligodendroglioma 

and astrocytoma datasets against a single-cell atlas of glioblastoma (GBmap)255 and a human 

fetal development atlas256. In GBmap, RE cells primarily mapped onto OPC-like cells, while in 
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the fetal brain atlas, RE cells mapped equally to oligodendrocytes and astrocytes (Figure 39A-

D). These findings suggest a similarity between RE cells and an oligodendrocyte program. 

Immunohistochemistry 

To validate the previous findings, IHC staining was conducted by J.T., M.C. and P.L.P. in Blanco-

Carmona, et al.189 in a validation cohort comprising 37 patient samples (oligodendroglioma = 

22, astrocytoma = 15). The results revealed a higher degree of staining in oligodendrogliomas 

compared to astrocytomas (Figure 40A-B).  

Additionally, a statistically significant increase in EEF2 levels with tumor grade was observed in 

astrocytomas, while a statistically significant increase of EEF1A1 levels in oligodendrogliomas 

compared to astrocytomas was also noted (Figure 40C). Notably, IHC staining revealed spatial 

heterogeneity, particularly pronounced in astrocytomas compared to oligodendrogliomas 

(Figure 40D-E). 

Investigating the stemness profile of tumor cell populations through diffusion maps 

Once the RE population was established as a biological finding in my datasets, I set out to 

determine its role in the tumor biology of IDH-mutant gliomas. To achieve this, I first 

investigated whether this population harbored a stem-like phenotype. Diffusion maps based 

on a universe of genes containing the programs reported in Venteicher, et al.252 were 

computed. The results showcased that diffusion component one (DC_1) distinctly separated 

OPC-like and astro-like cells, while diffusion component two (DC_2) separated RE cells from 

cycling cells (Figure 41).  

Hence, I hypothesized that DC_2 would comprise a potential stemness phenotype. To assess 

this, I computed enrichment scores for all three programs from Venteicher, et al.252 and scaled 

and centered the scores for clarity. The scores were visualized as a heatmap, with the X-axis 

representing cells ordered by their position along DC_2, and the Y-axis displaying the 

enrichment scores for each program. This analysis revealed the highest enrichment of the 

Stemness program at the end of the DC_2, where RE cells were located, suggesting that RE 

cells harbor a stemness phenotype (Figure 41B).  
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Pathway and TF activity profiles of tumor cell populations 

Finally, to provide a more comprehensive understanding of the tumor populations present in 

the primary datasets, I conducted functional enrichment analysis at both the pathway and 

transcription factor level using decoupleR85, together with published prior knowledge 

networks80,81. The resulting activities revealed a depletion of p53 signature in the cycling cells 

(Figure 42A). More interestingly, there was an enrichment of FOXM1 regulon in cycling cells 

but not in RE cells (Figure 42B). This transcription factor is known to be associated with 

proliferation257. In light of these results, the RE tumor cell population seems to be a non-cycling 

stem-like tumor population. 

Querying accessibility profiles of tumor cell populations 

The following analysis was conducted by I.H. in Blanco-Carmona, et al.189 Next, I aimed to 

compare the chromatin accessibility profiles of the different tumor populations in 

oligodendrogliomas and astrocytomas. To accomplish this, I.H. was granted access to the 

snATACseq cohort of the IDH-mutant glioma primary datasets (oligodendroglioma = 4, 

astrocytoma = 5) (Figure 26A). She performed label transfer using the tumor annotation I 

generated from the transcriptomic data of the primary datasets, excluding the gradient 

population. I argued that including the gradient population, that encompasses a spectrum of 

cells amidst differentiation into astro-like or OPC-like, would be detrimental to the efficiency 

of the label transfer.  

The results revealed that all populations (both TME and tumor-based) could be retrieved in the 

snATACseq data of both oligodendroglioma and astrocytoma datasets (Figure 43A-C). 

Notably, the RE population was consistently identified across all patients, defining it as a 

separate entity from the other tumor populations based on chromatin accessibility. Correlation 

analysis of the highly variable peaks showed a positive correlation between OPC-like and RE 

tumor cell populations (Figure 44A). This was also reflected at the level of transcription factor 

enrichment analysis, demonstrating similarities between RE and OPC-like tumor cell 

populations across IDH-mutant glioma subtypes (Figure 44B-C).  
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Figure 39: “Reference mapping using Azimuth. (A, B) Tumor subsets for primary oligodendrogliomas (A) and 
primary astrocytomas (B) are mapped onto the fetus reference from Azimuth. (C, D) Tumor subsets for primary 
oligodendrogliomas (C) and primary astrocytomas (D) are mapped onto the GBmap reference. For each variation, 
original UMAP embedding is shown on the top-left, cells mapped onto the reference UMAP on the top-right, cells 
re-labelled based on the reference mapping on the bottom left and a bar plot of the proportions of the new 
annotation per each original tumor entity on the bottom-right. UMAP1, x-axis; UMAP2, y-axis.” Reprinted from 
Blanco-Carmona, et al.189 
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Figure 40: “Representative IHC staining for EEF1A1 and eEF2 in IDH mutant gliomas. (A) Representative IHC 
staining for H&E and two RE population markers, EEF2 and EEF1A1, for oligodendroglioma and astrocytoma 
samples, separated by grade. Oligodendroglioma (OD) n = 22 (11 grade 2, 11 grade 3); astrocytoma (AS) n = 15 
(10 grade 2, 5 grade 3). Scale bars represent 50 µm. (B) Spatial distribution of EEF2 and EEF1A1 (40x). Scale bars 
represent 50 µm. (C) Plots showing semi-quantitative histological scores (0 = 0%, 1 = 0%–5%, 2 = 6%–29%, 3 = 
30%–69%, and 4 >70% positive staining) for EEF2 (top) and EEF1A1 (bottom). Top: a qualitative increase in EEF2 
staining in grade 3 compared with grade 2 AS tumors. Bottom: a qualitative increase in EEF1A1 staining in grade 
2 OD tumors compared with grade 2 AS tumors. Wilcoxon rank-sum test was performed to test for significance, 
*p < 0.05. (D, E) Representative IHC staining for EEF1A1 and eEF2 population marker genes in grade 2 (top) and 
grade 3 (bottom) oligodendrogliomas (D) and astrocytomas (E). Images are shown as 10x and 40x to show the 
spatial distribution of EEF1A1 and EEF2 in both tumor types. OD, oligodendroglioma; AS, astrocytoma.” Panels A, 
B, D and E were generated by J.T., M.C. and P.L.P. in Blanco-Carmona, et al.189 Reprinted from Blanco-Carmona, 
et al.189 

Characterizing the immune microenvironment of IDH-mutant gliomas 

After examining the cell type composition of the primary datasets, I noticed a consistent 

presence of microglia cells across patients. Typically, clusters designated as microglia in single-

cell datasets can be further subdivided into different cell fractions belonging to tumor 

associated macrophages (TAMs). Previous studies have indicated that IDH-mutant gliomas 

harbor TAMs, including border-associated macrophages (BAMs), bone-marrow-derived 

macrophages (BMD) and tissue-resident microglia, as their most abundant TME cell type258. 

Based on this knowledge, I decided to further investigate into the inherent heterogeneity of 

the microglia populations in the primary samples.  
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For this, I received assistance from I.H., that conducted the bioinformatics analyses, and J.N.S., 

that provided the biological expertise to accurately characterize the different TAM 

subpopulations. My role involved the discussion of the results and the generation of the 

figures. 

 

 
Figure 41: “Stemness profile in RE population. Diffusion map visualization of tumor cells in OD and AS tumors, 
based on publicly available astro-like, oligo-like, and stemness program markers.252 Right: scaled and centered 
enrichment scores for NMF metaprograms. Cells are ordered along diffusion components 1 (DC_1) and 2 (DC_2); 
gradient cells were excluded for clarity.” Reprinted from Blanco-Carmona, et al.189 

 

 
Figure 42: “Pathway and TF enrichment analysis. Scaled and centered pathway (A) and regulon (B) activity 
scores (normalized weighted) for OD and AS tumor cell populations.” Reprinted from Blanco-Carmona, et al.189 
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Figure 43: “Cluster annotation in snATACseq datasets. (A and B) UMAP embedding of OD (A) and AS (B) snATAC-
seq data (OD n = 4, AS n = 5) colored by labels transferred from snRNA-seq datasets. UMAP1, x axis; UMAP2, y 
axis. (C) Bar plot showing proportion of cell types in snATAC-seq data.” Reprinted from Blanco-Carmona, et al.189 

 

 
Figure 44: “Motif and TF enrichment analysis. (A) Pearson correlation of highly variable peaks from snATAC-seq 
data in OD and AS tumors. (B and C) Heatmap showing the top significantly enriched transcription factor motifs 
in AS (B) and OD tumors (C). Scores are scaled and centered for clarity.” Reprinted from Blanco-Carmona, et al.189 

Supervised annotation of TAM subpopulations  

First, microglia cells from both oligodendroglioma and astrocytoma datasets were aggregated, 

normalized and integrated. J.N.S. curated gene marker sets from the literature259,260 that were 

utilized to label different TAM subpopulations (Figure 45A-B). A total of 10 subpopulations 

were identified, including BAMs, BMD Anti-Inflammatory TAMs, Microglia (Mg) Activated, Mg 

Homeostatic, Mg Interferon gamma (INFγ) TAM, Mg Inflammatory ICAM1+, Mg Inflammatory 

TAMs, Mg, Phagocytic, Mg Resident-like TAMs and Mg Stressed TAMs (Figure 45C). 

Comparisons across IDH-mutant glioma subtypes revealed significant shifts in TAM 

composition. Specifically, Mg Homeostatic cells were more prevalent in astrocytomas (p = 0.01, 
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Wilcoxon test), while BAM (p = 0.048, Wilcoxon test) and BMD anti-inflammatory TAMs (p = 

0.048, Wilcoxon test), and Mg Phagocytic TAM (p = 0.012, Wilcoxon test) were more prevalent 

in oligodendrogliomas (Figure 45D). These findings provided initial confirmation of 

differential TAM compositions across IDH-mutant glioma subtypes.  

Pro- and anti-inflammatory TAM composition across IDH-mutant gliomas subtypes 

Given the differential prevalence of TAM subpopulations associated with pro- and anti-

inflammatory phenotypes between IDH-mutant glioma subtypes, J.N.S. and I sought to 

determine whether these subpopulations were also differentially enriched in literature-based 

gene marker sets for such phenotypes261,262. To address this, enrichment scores for gene 

marker sets for pro- and inti-inflammatory phenotypes were calculated across TAM 

subpopulations. These scores were visualized as a function of the density of the neighboring 

cells that were also enriched for these markers. The results revealed no significant differences 

for either pro- or anti-inflammatory across IDH-mutant glioma subtypes (Figure 46A-B). 

The crosstalk between TAM subpopulations and tumor cell types across IDH-mutant 

gliomas subtypes 

In collaboration with J.N.S., M.E.B. and I.H., the interplay between the different TAM 

subpopulations and the tumor compartment was characterized. Ligand-receptor interactions 

were inferred using liana90. Subsequently, J.N.S. filtered the significant interactions to those 

with a biological relevance to the project.  

In oligodendrogliomas, biologically relevant interactions comprised BMP pathway proteins 

originating from OPC-like tumor cell population and PGF-NRP1/2 from Astro-like tumor cell 

population towards TAMs. Other widespread interactions such as SIRPA-CD47 pointed towards 

a reduction of the phagocytic functions of innate immune cells263. Similarly, WNT5A-FZD3 and 

WNT5A-PTPRK were significant across all TAMs. Interestingly, CSF1-CSF1R was particularly 

prominent in astro-like tumor population of astrocytomas (Figure 47A). Further investigation 

into the ligand-receptor interactions from TAMs to tumor subpopulations revealed TNF in 

oligodendrogliomas and DLL1 in astrocytomas (Figure 47B).  
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Figure 45: “Microglia TAM subpopulation characterization. (A) UMAP embedding of integrated microglia from 
snRNA-seq data of primary OD and AS tumors, colored by assigned TAM subpopulations. UMAP1, x axis; UMAP2, 
y axis. (B) Bar plots indicating TAM subpopulation proportions, separated by tumor subtype and grade. (C) Dot 
plot showing three key marker genes for the TAM subpopulations in oligodendrogliomas (top) and astrocytomas 
(bottom). OD, oligodendroglioma; AS, astrocytoma. (D) Boxplots showing TAM subpopulation proportions by 
tumor type. OD, oligodendroglioma; AS, astrocytoma. Wilcoxon rank-sum test was performed to test for 
significance.” Reprinted from Blanco-Carmona, et al.189 

Investigating the effect of tumor grade and recurrence in IDH-mutant gliomas 

I next sought to understand the biology of IDH-mutant gliomas in the context of tumor grade 

and tumor recurrence. For this purpose, a dataset comprising primary and recurrent 

astrocytomas (n = 12) was generated (Figure 48A). The analysis of this dataset was done 

collaboratively: I conducted tumor cell type annotation and I.H. and J.N.S. analyzed and 

characterized TAM subpopulations.  

Similar to the primary samples, TME cell populations were identified based on enrichment in 

gene marker sets from PanglaoDB191. Tumor cell populations were identified through 

permutation testing utilizing the NMF metaprograms retrieved from the primary samples 

(Figure 48B). While the RE population was identified across tumor pairs, neither the RE, astro-

like nor OPC-like tumor cell populations exhibited significant changes at recurrence.  
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However, there was a noticeable trend of decreasing astro-like and OPC-like populations and 

increasing cycling and gradient proportions with tumor grade (Figure 48C). To further validate 

these findings, IHC staining for EEF2 and EEF1A1 was conducted by J.T., M.C. and P.L.P. in 

Blanco-Carmona, et al.189 on a cohort of 12 patients encompassing both primary and recurrent 

tumors (oligodendroglioma = 6, astrocytoma = 6) (Figure 48D). The results revealed elevated 

levels of both EEF2 and EEF1A1 in recurrent astrocytomas compared to primary tissue. 

Interestingly, the levels of these proteins remained consistently high in both primary and 

recurrent oligodendrogliomas (Figure 48E).  

Following this, microglia cells were isolated from the dataset and reclustered. Using the same 

marker sets as in the primary samples, J.N.S. identified the same TAM subpopulations, with the 

exception of BAMs (Figure 49A-B). This observation was consistent with BAMs being 

exclusively identified in oligodendroglioma cells in the primary datasets. Upon analyzing cell 

type proportions across pairs, it was noted that pairs 2 and 5 had a very low number of cells in 

one of the pairs, resulting in their exclusion from further comparisons (Figure 49C). Examining 

the shifts in proportions at recurrence revealed no significant increase or decrease of TAM 

subpopulations (paired Wilcoxon test), indicating that TAMs remain consistent after tumor 

recurrence. However, several trends were observed, which may become statistically significant 

with a larger sample size. These trends included decreased Mg Homeostatic and increased Mg 

Hypoxic, BMD anti-inflammatory TAMs and Mg IFNγ at recurrence. 
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Figure 46: “Defining Microglia pro- and anti-inflammatory. (A) Density gradient of pro-inflammatory and anti-
inflammatory signatures in TAMs of astrocytomas and oligodendrogliomas. OD, oligodendroglioma; AS, 
astrocytoma. (B) Boxplots showing pro-inflammatory (top) and anti-inflammatory (bottom) scores per TAM 
subpopulation in oligodendrogliomas and astrocytomas.” Reprinted from Blanco-Carmona, et al.189 

 
Figure 47: “LR interactions. (A and B) Selected statistically significant receptor-ligand interactions between OPC-
like and astro-like tumor populations (source) and the TAM subpopulations (target) (A) and TAM subpopulations 
(source) and OPC-like and astro-like tumor cells (target) (B). Dot size represents significance (adjusted p values); 
dot color reflects expression magnitude (means of average expression level of the interacting pair of genes).” 
Adapted from Blanco-Carmona, et al.189 
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Figure 48: “snRNA-seq of paired primary and recurrent AS cohorts indicates shifts in tumor populations 
associated with grade. (A) Clinical and molecular characteristics of 6 paired primary and recurrent IDH-mutant 
AS cohorts for snRNA-seq. (B) UMAP embedding of integrated snRNA-seq data from paired AS tumors, colored 
by assigned cell types. UMAP1, x axis; UMAP2, y axis. (C) Bar plots showing tumor population proportions, 
separated by pairs, relapse status, and grade. (D) Representative IHC staining for RE markers EEF2 and EEF1A1 in 
paired primary (grade 2) and relapse (grade 3) AS tumors. Images are captured at 40x original magnification (scale 
bar, 50 µm). OD: oligodendroglioma. AS: Astrocytoma. (E) Heatmap showing semi-quantitative EEF1A1 
histological scores (0 = 0%, 1 = 0%–5%, 2 = 6%–29%, 3 = 30%–69%, 4 >70% positive staining) for six pairs of primary 
and recurrent OD and AS tumors. Wilcoxon signed-rank test for paired samples was performed to test for 
significance, *p < 0.05. OD: oligodendroglioma. AS: Astrocytoma.” Panel D was generated by J.T., M.C. and P.L.P. 
in Blanco-Carmona, et al.189 Reprinted from Blanco-Carmona, et al.189 
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Figure 49: “TAM subpopulations in paired datasets. (A) UMAP embedding of integrated microglia population of 
paired primary and recurrent AS cohorts, colored by assigned TAM subpopulations. UMAP1, x axis; UMAP2, y axis. 
(B) Dot plot showing three key marker genes for the TAM subpopulations in the paired datasets. (C) Bar plots 
showing TAM subpopulation proportions separated by pairs, relapse status, and grade. (D) Boxplots showing TAM 
subpopulation proportions separated by relapse status. P, primary; R, relapse.” Reprinted from Blanco-Carmona, 
et al.189 
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Discussion 

Over recent years, several research projects have explored the heterogeneity of IDH-mutant 

gliomas135,252. However, these studies were conducted on independent cohorts focusing 

exclusively on either oligodendroglioma or astrocytoma tumor cases. Consequently, a 

comprehensive and comparative study between both IDH-mutant gliomas subtypes remained 

unfulfilled. In this project, I aimed to address this gap by systematically analyzing snRNAseq 

and snATACseq datasets from two independent cohorts comprising of primary IDH-mutant 

gliomas (oligodendroglioma and astrocytoma) and primary-recurrent astrocytoma pairs. 

Expanding on the obtained results and to elucidate the composition of tumor and TAM cell 

populations, single-cell data was complemented with IHC staining on a separate cohort of 

primary and recurrent oligodendrogliomas and astrocytomas. This approach enabled 

comparisons across IDH-mutant gliomas subtypes and WHO tumor grades. 

Following a throughout analysis of the tumor cell populations across both oligodendrogliomas 

and astrocytomas, in line with previous research135,214, I observed that tumor cells primarily 

segregated into cycling cells, forming a distinct cluster after cell integration, and tumor cells 

exhibiting expression profiles resembling that or healthy astrocytes and oligodendrocyte 

precursor cells (referred to as astro-like and OPC-like). These populations were located in 

opposite ends of the UMAP embedding, effectively forming a gradient of differentiation of the 

tumor cells from more undifferentiated towards either of astro-like or OPC-like tumor cell 

populations. This hypothesis was further supported by a permutation testing approach 

designed to statistically select cells enriched for either tumor cell population. The cells located 

at the two ends of the gradient were identified as the most significantly enriched, categorizing 

the remaining cells as undifferentiated (termed “gradient”). While the gradient population 

represented cells that did not surpass the significance thresholds applied to the permutation 

testing analysis, further analysis on this tumor population alone revealed a gradient-like 

enrichment for astro-like and OPC-like marker genes. This finding supports previous knowledge 

that tumor cells in IDH-mutant gliomas differentiate into astrocytic and oligodendrocytic 

lineages.135,214 

Through non-negative matrix factorization (NMF), in addition to the aforementioned tumor 

cell populations, I identified a novel tumor cell population in both oligodendroglioma and 
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astrocytomas exhibiting stem-like properties coupled with high expression of ribosomal genes 

and elongation factors, but lacking expression of genes associated with cell proliferation, 

termed ribosomal enriched (RE). The presence of this population was confirmed by 

immunostaining of protein markers EEF1A1 and EEF2 in independent IDH-mutant gliomas 

cohorts, revealing a broader distribution of both markers despite the relatively low frequency 

of RE population in the snRNAseq cohort. The discrepancy between the snRNAseq and 

immunostaining results may stem from the limited number of cells expressing the entirety of 

the NMF metaprogram, as opposed to the two protein markers assessed through 

immunostaining, along with potential spatial features within the tumors. Nonetheless, the 

association between ribosomal composition and spatial heterogeneity has been recently noted 

in glioblastoma research264, and the function of ribosome biogenesis in IDH-mutant gliomas 

remains to be fully explored. Gene set enrichment analysis across tumor cell populations 

unveiled high activity of the MYC/MYCN regulon in the RE population, indicative of enhanced 

biosynthetic properties due to the association of MYC and EEF1A1265. Jointly, snRNAseq and 

immunostaining experiments suggested a higher prevalence of the RE population in 

oligodendrogliomas compared to astrocytomas, a finding validated through deconvolution of 

IDH-mutant gliomas datasets from TCGA and CGGA, where almost the entire 

oligodendroglioma cohort exhibited expression of the RE population. Hence, therapy 

approaches promoting differentiation targeting the RE population may be a potential avenue 

of research266,267, as during tumor cell differentiation biosynthetic capabilities are reduced268. 

Identifying tumor progression drivers in IDH-mutant gliomas through comparative analysis 

between primary and recurrent tumors remains an ongoing challenge, with consortiums like 

the Glioma Longitudinal Analysis (GLASS) currently investigating glioma dynamics269,270. In this 

project, I aimed to gain insights into glioma progression through the comparative analysis of 

primary and recurrent astrocytomas. The results revealed that tumor cell populations 

remained consistent between primary and recurrent tumor pairs, regardless of treatment 

(radiotherapy, temozolomide or none), aligning with recent studies indicating stable tumor cell 

populations at recurrence271. This underscores these tumor cell populations as potential 

therapeutic targets. Furthermore, functional studies on these populations paired with master 

regulator protein analysis272 could unveil essential mechanisms maintaining these tumor cell 

populations at recurrence. 
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Despite the fact that IDH-mutant gliomas exhibit tumor cell populations the expression profile 

of which resemble that of OPCs, their exact role in the biology of IDH-mutant gliomas is yet to 

be fully characterized. Thus, understanding the bidirectional interplay between tumor cell 

populations and tumor microenvironment is crucial for developing effective therapeutical 

strategies. In this project, I aimed to elucidate the crosstalk between tumor cells and the 

microenvironment by inferring ligand-receptor interactions between astro-like and OPC-like 

tumor cell populations and the distinct TAMs compartments characterized in the primary IDH-

mutant glioma cohort. The results suggested that the astro-like tumor cell population in 

astrocytomas promotes a pro-inflammatory microenvironment primarily through IFNγ 

signaling. This includes the induction of phosphorylation of STAT1, highlighting the pivotal role 

of IFNγ in astrocytoma biology. Consequently, therapy approaches targeting these tumor cell 

populations may lead to alterations in the tumor microenvironment. 

Although several studies have focused on understanding the nature and composition of TAMs 

in IDH-mutant gliomas244,273, no comparative analysis focusing on whether TAM composition 

varies between oligodendrogliomas and astrocytomas is available. To address this gap, in this 

project, I sought to characterize potential changes in TAM composition across IDH-mutant 

gliomas subtypes. The results revealed an overall higher proportion of Mg-derived TAMs 

compared to BMD-derived TAMs, consistent with previous studies273. Furthermore, a 

differential TAM composition between oligodendrogliomas and astrocytomas was observed. 

Paired with immunostaining, the results highlighted an increased proportion of inflammatory 

TAMs expressing p-STAT1 in astrocytomas, a regulator of TAM inflammatory response also 

associated with neuronal damage274,275.  

Given the differential tumor-specific molecular alterations between IDH-mutant gliomas 

subtypes, further research is needed to determine their contributions to myeloid diversity. 

Among the inferred ligand-receptor interactions, the interaction between PGF and NRP1 was 

particularly interesting. PGF, a member of the VEGF family, is involved in cancer pathogenesis 

and immune modulation276, playing a role in medulloblastoma growth via its signaling with 

Nrp1277. Despite the presence of both proteins being validated in primary tissue by 

immunostaining, follow-up studies targeting these interaction pairs are needed.  
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Altogether, in this study I have addressed the tumor heterogeneity inherent in IDH-mutant 

gliomas through a comparative analysis between oligodendrogliomas and astrocytomas, 

characterizing and expanding on the different tumor cell populations, determining TAM 

composition across IDH-mutant gliomas subtypes, inferring the crosstalk between tumor and 

TAM cell populations, and assessing the consistency of tumor and TAM cell populations at 

tumor recurrence. These findings represent a valuable contribution to our understanding of 

the biology of IDH-mutant gliomas and lay a solid foundation for further research in this field. 
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Epi logue 

Recent method developments have allowed for easier and more affordable molecular 

characterization of different tumor types, resulting in a shift towards including molecular 

features into CNS tumor classification. This is evidenced by the 5th edition of the WHO CNS 

tumor classification, where many novel tumor types and subtypes have emerged as a result. 

Therefore, understanding the biological differences underlining these novel tumor types and 

subtypes has become a necessity in the recent times. 

Consequently, single-cell technologies have powered multitude of comparative studies aimed 

at filling this gap in knowledge. These studies, including the IDH-mutant glioma and ATRT 

projects I researched on, typically encompass several Omics layers, such as transcriptomics and 

chromatin accessibility. While being fundamental to characterize the commonalities and 

differential characteristics across tumor subtypes, single-cell technologies can often be very 

descriptive, resulting in the discovery and characterization of novel tumor cell types, such as 

the RE cells in IDH-mutant gliomas or the IPC-like population in ATRTs. These findings hold 

promise for the development of subtype-specific therapies, albeit still require additional 

validation beyond what bioinformatic analyses of single-cell data alone can achieve, typically 

involving immunostaining of key protein markers to validate the presence of a cell population 

and the use of preclinical models such as cell lines, organoid models or animal models for 

subsequent hypothesis-driven experiments.  

Nonetheless, a paradigm shift is currently taking place as a result of the development of spatial 

transcriptomics methodologies, which provide insights into the spatial arrangement of the cells 

of different cell populations within the tumor tissue. Altogether, spatial transcriptomics offers 

a new layer of possibilities, not only allowing for the validation of these novel tumor cell 

populations but also for the examination of the crosstalk between different tumor cells and 

between the tumor and its microenvironment, through the co-expression of ligand-receptor 

pairs together with the spatial disposition of the different cell types. Moreover, experimental 

setup is a crucial aspect in spatial transcriptomics, as it can enable the comparative analysis of 

tumors with varying degree of immune infiltration, or the evaluation of longitudinal changes 

occurring at tumor recurrence, among others.  
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All in all, single-cell technologies are reshaping the way studies are carried out, particularly in 

the field of cancer research. As technologies develop, so does their associated software tools, 

resulting in a stream of framework and method-specific tools that smooth the adoption of 

single-cell analyses by the scientific community. With the popularity of single-cell technologies 

at its peak, not only data analysis is facilitated by the software tools but also new solutions that 

streamline the generation of high-quality data visualization figures are becoming available, for 

which I contributed with the development of my R package, SCpubr.  

While my work as a PhD student has arrived to its end, as a scientist and bioinformatician I am 

thrilled to experience the coming of a new era in both tumor research and bioinformatics. May 

these new avenues of research pave the way towards more specific and effective therapy 

treatments. 
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